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Abstract

Many cells adjust the direction of polarized growth or migration in response to external direc-

tional cues. The yeast Saccharomyces cerevisiae orient their cell fronts (also called polarity

sites) up pheromone gradients in the course of mating. However, the initial polarity site is

often not oriented towards the eventual mating partner, and cells relocate the polarity site in

an indecisive manner before developing a stable orientation. During this reorientation

phase, the polarity site displays erratic assembly-disassembly behavior and moves around

the cell cortex. The mechanisms underlying this dynamic behavior remain poorly under-

stood. Particle-based simulations of the core polarity circuit revealed that molecular-level

fluctuations are unlikely to overcome the strong positive feedback required for polarization

and generate relocating polarity sites. Surprisingly, inclusion of a second pathway that pro-

motes polarity site orientation generated relocating polarity sites with properties similar to

those observed experimentally. This pathway forms a second positive feedback loop involv-

ing the recruitment of receptors to the cell membrane and couples polarity establishment to

gradient sensing. This second positive feedback loop also allows cells to stabilize their

polarity site once the site is aligned with the pheromone gradient.

Author summary

Cells perform many complex tasks, including directed growth, migration, division and

differentiation. To accomplish these tasks, the relevant molecular machinery is localized

to specific cellular regions. The asymmetric distribution of cellular components is referred

to as cell polarity. Polarity is established by localized activation of the protein Cdc42.

Establishing mechanisms that regulate the spatiotemporal activity of Cdc42 is a funda-

mental area of cell biology. Mating yeast cells dynamically relocate a region of high Cdc42

activity, referred to as the polarity site, and grow toward each other after proper alignment
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of the sites. We investigated mechanisms that generate dynamic polarity sites by perform-

ing particle-based simulations of the biochemical reactions that regulate Cdc42 activity.

The reactions contain two positive feedback loops that reinforce Cdc42 activity. The first

involves autocatalytic activation of Cdc42 through recruitment of an activator. While nec-

essary for polarity establishment, this feedback loop on its own created a stable polarity

site that did not relocate. Incorporation of the second feedback loop, which couples the

polarity machinery to extracellular mating signals, generated relocating polarity sites. This

feedback loop also provides a mechanism for developing stable alignment of polarity sites.

Our findings provide insight into how cells regulate polarity dynamics to accomplish

complex tasks.

Introduction

Cell polarity is the asymmetric distribution of cellular components along some axis. Many

cells dynamically adapt the direction of polarization in response to environmental cues. Migra-

tory cells relocate the cell “front” when tracking extracellular signals [1–3]. Pollen tubes, plant

root apices, fungal hyphae, neuronal axons, and yeast cells change the direction of polarized

growth in response to physical or chemical cues [4–8]. The mechanisms underlying polarity

site relocation are not yet understood.

The molecular machinery that controls cell polarity centers on the Rho-family GTPase

Cdc42, which is highly conserved among eukaryotes [9,10]. Cdc42 acts as a molecular switch.

When bound with GDP, Cdc42 is in its off state and a majority is held in the cytosol through

interactions with a GDP dissociation inhibitors (GDIs). Inactive Cdc42 can transition to the

membrane and dissociate from the GDI. Membrane-associated Cdc42 is activated by a gua-

nine nucleotide exchange factor (GEF) that promotes the release of GDP to allow binding of

GTP. Active GTP-Cdc42 binds various “effector” proteins that regulate the cytoskeleton.

The polarity circuit of the budding yeast Saccharomyces cerevisiae has been extensively

characterized. Yeast cells polarize their growth during budding and mating. Polarity is estab-

lished and maintained by autocatalytic positive feedback [11,12]. A cytoplasmic protein com-

plex containing an effector and a GEF associates with active Cdc42 at the membrane and

promotes activation of neighboring Cdc42 molecules [11,13]. Because diffusion is slow in the

membrane as compared to the cytosol, a cluster of Cdc42 molecules in the membrane is slow

to disperse but can recruit cytoplasmic polarity factors from a wide catchment area, sustaining

a polarity site. Mathematical models capturing these features recapitulate the patterns of

Cdc42 localization observed in vegetative yeast cells: unpolarized cells develop clusters that

rapidly coarsen to form a single polarity site that is then stably maintained [12–17]. However,

during mating, yeast cells relocate their polarity sites in an apparent search for mating partners

[18,19]. This observation raises the question of how the yeast polarity circuit might be modi-

fied to allow relocation.

During mating, yeast cells of each mating type express G-protein-coupled receptors

(GPCRs) that detect extracellular peptide pheromones released by the opposite mating type

[20]. Pheromone binding to the receptor stimulates the Gα subunit to exchange GDP for GTP,

which dissociates Gα from Gβγ at the membrane. Gα and Gβγ transmit signals to prepare cells

for mating, including activation of pathways that regulate cell polarity. The pathway that allows

cell polarity to be influenced by external pheromone gradients is mediated by the scaffold pro-

tein Far1, which binds to both Gβγ and the Cdc42 GEF [21–23]. This leads to activation of

Cdc42 where there is Gβγ, which reflects the location of active GPCR [22,23]. Thus, an external
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gradient in pheromone concentration can be translated into an internal gradient in active

Cdc42 concentration. Vesicles carrying mating-specific proteins and lipids are delivered to the

cluster of Cdc42 via formin-nucleated actin cables, enabling a cell to grow toward a mating

partner at the polarity site [13]. However, yeast cells mate in crowded conditions in which

global pheromone gradients could be uninformative [24,25], and a shallow gradient may be

difficult to interpret given the perturbing effects of molecular noise [26]. Indeed, Cdc42 clus-

ters in mating yeast cells often form at a location that is not directed towards the partner

[18,27,28]. Relocation of the polarity site is then needed to successfully mate. During an initial

“indecisive phase”, multiple Cdc42 clusters in mating yeast spontaneously appear, disappear,

and relocate erratically [18]. This behavior is thought to enable the search for a mating partner,

and after the indecisive phase the cell develop a single stable polarity site oriented towards the

chosen partner [29].

What leads to the indecisive behavior of Cdc42 clusters in mating cells? One proposal is

that erratic relocation is a product of molecular-level noise acting on the yeast polarity circuit

[27,30,31]. Molecular-level noise is not captured by deterministic models such as the ones

solely based on reaction-diffusion equations (RDEs), which ignore the molecular nature of

biochemical systems and therefore miss noise-driven phenomena. In contrast to deterministic

models, stochastic models attempt to capture stochastic effects that arise from the random

nature of biochemical reactions. Molecular-level noise is most accurately captured by particle-

based models [17,32,33]. With particle-based simulations, we confirm that polarity site reloca-

tion in a realistic yeast polarity circuit can arise from stochastic noise, but only in a very nar-

row parameter regime. we find that incorporation of the pheromone-responsive Far1 pathway

can dramatically expand the parameter space in which models display polarity site relocation.

This same pathway can also explain why polarity eventually becomes stably oriented towards a

partner.

Results

Noise-driven relocation of the polarity site

To systematically investigate whether the core yeast polarity circuit can yield indecisive Cdc42

clustering like that seen in mating cells, we used a previously validated model developed to

describe Cdc42 behavior in vegetative yeast cells [12,17,32,34] (Fig 1A and Table 1). The

model species are inactive Cdc42 (which can exchange between membrane and cytosolic com-

partments), active Cdc42 (which is restricted to the membrane compartment), and a heterodi-

mer of an effector and an activator of Cdc42 (here called Bem1-GEF). This complex also

exchanges between membrane and cytosol, and can bind to active Cdc42. At the membrane,

the complex promotes activation of inactive Cdc42. The main structural feature of the model

is the positive feedback loop formed by mutual activation of Cdc42 and Bem1-GEF (Fig 1A,

inset). In this feedback loop, active Cdc42 recruits Bem1-GEF from the cytoplasm and

increases its GEF activity. In turn, Bem1-GEF activates Cdc42, leading to further Cdc42

recruitment from the cytosolic pool. This positive feedback loop amplifies local fluctuations in

Cdc42 activity eventually leading to the formation of a polarity site [12,35].

Our first goal was to determine if molecular-level fluctuations arising from the stochastic

nature of biochemical reactions and diffusion are sufficient to promote relocation of the polar-

ity site. To test this possibility we used the simulation platform Smoldyn [33,36] to perform

particle-based simulations of the core polarity circuit, with parameters described previously

[17]. We performed simulations with varying numbers of Cdc42 and Bem1-GEF molecules.

These initial simulations revealed three distinct types of behavior: 1) unpolarized, in which no

significant Cdc42 clusters formed (S3A Fig), 2) polarized, in which a single strong cluster was
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maintained (S3B Fig), and 3) transient polarity, in which clusters could spontaneously form,

disappear, and re-form (Fig 1C and 1D and S1 Movie). These results suggest that molecular-

level noise is able to trigger intermittent transitions between polarized and unpolarized steady

states, consistent with previous work on regulatory systems [37–39].

To quantify our results, we used a normalized version of Ripley’s K-function (K) [40,41]. K
measures clustering strength as the deviation of the observed particle distribution from that of

a uniform distribution [17]. A value of K close to zero signifies a uniform distribution, and the

larger the value of K the more polarized the distribution. We designated a threshold value of

1.5 to distinguish unpolarized (K< 1.5) from polarized (K� 1.5) states for all 2D simulations

(S1A Fig). In the transient polarity regime, the K values exhibit a bimodal distribution, consis-

tent with a bistable system that switches between polarized and unpolarized states (Fig 1C,

right panel) [16,37–39]. To investigate how robustly the core polarity circuit can give rise to

transient polarity, we developed a method for distinguishing the three types of behavior based

Fig 1. Behavior of the core polarity circuit. A) Reaction scheme for the core polarity circuit of yeast (diagram adapted from Pablo et al. [17]).

Polarity is driven by positive feedback through mutual activation (Inset). B) Two-parameter bifurcation diagram for molecular abundances of

Cdc42 and Bem1-GEF (Unpolarized regime–green, transient polarity–blue, polarized–red). C) Simulation results for the transient polarity

regime. Time series for Ripley’s K-function values (a measure of Cdc42 clustering) were generated for ten simulations (left panel). Distribution

of K values (right panel). D) Distributions of Cdc42-GTP molecules at indicated times. Distributions are taken from the black time series in C

using time points indicated with ticks on the time axis. Simulations correspond to 3000 Cdc42 and 102 Bem1-GEF molecules using uniform

random distributions for Cdc42 and Bem1-GEF as initial conditions. E) Time series for number of clusters. Simulation results taken from the

black time series in C (left panel). Example of cluster count from experiments (right panel).

https://doi.org/10.1371/journal.pcbi.1011523.g001

Table 1. Parameters for the core polarity circuit.

Description Parameter 2D Model 3D Model Ref.

Bem1-GEFc! Bem1-GEFm k1a 10 s-1 8.333 μm s-1 [17]

Bem1-GEFm! Bem1-GEFc k1b 40 s-1 40 s-1 [17]

Bem1-GEFm + Cdc42Dm!

Bem1-GEFm + Cdc42T

λ2a 5.3 s-1 5.3 s-1 [17]

Cdc42T! Cdc42Dm k2b 0.35 s-1 0.35 s-1 [17]

Cdc42T-Bem1-GEF + Cdc42Dm!

Cdc42T-Bem1-GEF + Cdc42T

λ3 180 s-1 180 s-1 [17]

Cdc42T + Bem1-GEFm!

Cdc42T-Bem1-GEF

λ4a 9.6 s-1 40 s-1 [17]

Cdc42T-Bem1-GEF!

Cdc42T + Bem1-GEFm

k4b 40 s-1 40 s-1 [17]

Cdc42Dc! Cdc42Dm k5a 36 s-1 30 μm s-1 [17]

Cdc42Dm! Cdc42Dc k5b 13 s-1 13 s-1 [17]

Cdc42T + Bem1-GEFc!

Cdc42T-Bem1-GEF

λ7 256 s-1 6400 s-1 [17]

Diffusion coefficient in cytoplasm Dc 15 μm2 s-1 15 μm2 s-1 [17]

Diffusion coefficient on membrane Dm 0.0025 μm2 s-1 0.0025 μm2 s-1 [17]

Membrane surface area Am 78.540 μm2 78.540 μm2 [17]

Total Cdc42 Cdc42 1800–3500 molecules 3000 molecules (76.1 nM) [17]

Total Bem1-GEF Bem1-GEF 20–600 molecules 170 molecules (4.3 nM) [17,32]

Reactive radius ρ 0.05 μm 0.05 μm [17]

Time step Δt 0.1 ms 0.1 ms [17]

References are for the 2D model parameters. Probability rates λ are presented for second-order reactions. Reaction rates k are presented for first-order reactions.

Cdc42Dc and Cdc42Dm are cytosolic and membrane-bound Cdc42-GDP. Bem1-GEFc and Bem1-GEFm are cytosolic and membrane-bound Bem1-GEF. Cdc42T is

active Cdc42 (Cdc42-GTP). Cdc42T-Bem1-GEF is the complex of Cdc42-GTP and Bem1-GEF.

https://doi.org/10.1371/journal.pcbi.1011523.t001
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on the distribution of K values (Methods and S2 Fig). Specifically, we defined the transient

polarity regime according to the bimodal distribution of K values (S2 Fig). Our analysis revealed

that the parameter regime supporting transient polarity is limited to a small range of molecular

abundances (Fig 1B), as also found in earlier work [32]. Thus, it would require very precise con-

trol for cells to exploit this parameter regime to develop transitory polarity. Moreover, the tran-

sient polarity regime exhibits transitions between long-lived unpolarized and polarized states

with a single cluster, rather than multiple rapidly fluctuating clusters observed in indecisive

yeast cells (Fig 1E). We conclude that the indecisive polarity behavior of mating yeast cells is

unlikely to be a simple consequence of molecular noise acting on the core polarity circuit.

The receptor-Far1 pathway

During mating, there is an additional mechanism for bringing GEF molecules to the mem-

brane. Specifically, following exposure to pheromone, GEF molecules in complex with Far1

(Far1-GEF) are recruited to the membrane through Far1’s interaction with Gβγ released by

active receptors. Far1’s interaction with Gβγ couples the polarity circuit to the extracellular

pheromone concentration. In addition, the receptor-Far1 circuit forms a second positive feed-

back loop, because active Cdc42 leads to the trafficking of new receptors to the membrane (Fig

2A). To gain insight into the behavior of the receptor-Far1 circuit, we considered a model con-

sisting of Cdc42, receptors and Far1-GEF, neglecting Bem1-GEF. To simplify the model, the G

proteins that mediate interaction between receptors and Far1-GEF are not modeled explicitly.

That is, we assume that active receptors recruit Far1-GEF from the cytoplasm. Once at the

membrane Far1-GEF promotes Cdc42 activation with the same efficacy as Bem1-GEF in com-

plex with active Cdc42 (Fig 2A and Table 2). We also assume all pheromone receptors are

active (this is analogous to the situation in which cells are exposed to saturating pheromone

concentration). Pheromone receptors are delivered to the cell surface via Cdc42-oriented actin

cables. The model does not explicitly take actin cables or vesicle delivery into account. Rather,

we assume the rate at which receptors are delivered is determined by the local concentration of

active Cdc42 (see Methods for details). Surface receptors are internalized via endocytosis, at

well-characterized rates [42,43]. We further assume that receptors diffuse very slowly at the

membrane, consistent with experimental findings [18]. As noted above, because Cdc42 clus-

ters enhance local accumulation of receptors, and receptors recruit Far1-GEF to activate

Cdc42, this pathway forms a mutual activation positive feedback loop (Fig 2A, inset). Thus, we

anticipated that the receptor-Far1 circuit, like the Bem1-GEF circuit (Fig 1A), would have the

capacity to spontaneously polarize.

When we simulated this circuit using realistic receptor trafficking rates and initial particle

distributions drawn from a uniform distribution, the model did not spontaneously develop a

polarized cluster of Cdc42 in biologically relevant timescales. Even when the initial conditions

included a strong cluster of active Cdc42 but distributed receptors, the initial clustering was

rapidly lost (Fig 2B). To understand why a polarized distribution of Cdc42 was not main-

tained, consider that receptor trafficking occurs at a much slower rate than the rates for Cdc42

and Far1-GEF association and dissociation: the average membrane residence time of receptors

is about 8 minutes [42,43] compared to a few seconds for Cdc42 [46,47] and Far1-GEF [44].

Thus, any clusters of Cdc42 dissipate before they can be reinforced by receptor traffic. Consis-

tent with that interpretation, when the receptor residence time was decreased by increasing

receptor trafficking rates the receptor-Far1 circuit did spontaneously establish polarity

(Fig 2C).

Our simulations indicate that in spite of its positive feedback loop (Fig 2A), the receptor-

Far1 circuit by itself cannot establish a polarity site due to the mismatch between the residence
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times for Cdc42 (short) and receptor (long). However, it is not clear how the Far1 pathway

might influence polarity behavior if the Bem1-Cdc42 circuit was also present, as is the case

during the indecisive phase. To understand how these pathways interact, we modeled a system

that combined the polarity circuit (Bem1-GEF and Cdc42) with the receptor-Far1 pathway

(receptors and Far1-GEF).

The receptor-Far1 circuit promotes polarity site relocation and generates

indecisive behavior

The combined polarity circuit (Fig 3A) includes two interconnected positive feedback loops,

one from the core polarity circuit and the other from the receptor-Far1 circuit (Fig 3A, inset).

Importantly, these feedback loops operate on different time scales, with the faster polarity cir-

cuit supporting polarization, whereas the slower receptor-Far1 circuit is unable to generate a

stable polarity site. Therefore, it is not obvious how the combined system will behave. To

investigate the behavior of the combined polarity circuit we performed simulations starting

Fig 2. Behavior of the receptor-Far1 circuit. A) Reaction scheme for the receptor-Far1 circuit. This circuit forms a

second positive feedback loop through mutual activation (inset). B) Distributions of active Cdc42 (top row) and

receptors (bottom row) shown for 0 min and 0.3 min. Long receptor lifetimes prevent maintenance of a polarity site.

Simulations performed using 3000 Cdc42, 280 Far1-GEF, and 2500 receptor molecules. Initial conditions consisted of

a polarized cluster of 3000 Cdc42-GTP and uniformly distributed receptor and Far1-GEF molecules. C) Final K values

as a function of receptor membrane residence time. Values of K taken at t = 4000 secs. Data points represent averaged

values of K for 30 simulations and the shaded area denotes standard deviation. Snapshots are for active Cdc42 at

t = 4000 secs.

https://doi.org/10.1371/journal.pcbi.1011523.g002
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from two different initial conditions: a uniform random distribution of pathway components

and a pre-polarized Cdc42 cluster. Similar to the polarity circuit alone (Fig 1B), the combined

system exhibited one of three behaviors (Figs 3B and S4) depending on the molecular abun-

dance of the components: an unpolarized regime with little Cdc42 clustering (S5A Fig), a

polarized regime with stable and static clusters (S5B Fig), and an intermediate regime where

clusters can form or disappear (Fig 3C). However, the unpolarized regime was expanded and

the transition to the polarized regime required a larger amount of the Bem1-GEF complex

(compare Figs 3B and 1B). In between, there was a substantially larger transient polarity

regime. Interestingly, in this regime the behavior of the system appeared to be qualitatively dif-

ferent from the model with only the core polarity circuit. Rather than a single well-formed

polarity site appearing and dispersing (Fig 1D), the addition of Far1-GEF seemed to promote

multiple transient Cdc42 clusters that dynamically relocate in a manner reminiscent of indeci-

sive polarity clustering in yeast cells (Fig 3C and S2 Movie). To quantify this observation, we

employed a cluster detection algorithm based on Voronoi tessellation [48] and tracked the

number of detected clusters over time (S6A Fig). From these time series we computed the frac-

tion of time each model spent in states with 0, 1 and 2+ clusters and transition probabilities

between states (S6B Fig). We then compared our simulation results directly with a similar

analysis of the data presented in Clark-Cotton et al. 2021 [19] (see Methods for details). Our

analysis revealed that coexisting Cdc42 clusters in the combined model were more frequent

and exhibited similar behavior to polarity sites of indecisive yeast cells (S6 Fig). We also com-

puted distributions for the dwell times in states with 0 or 1 clusters for the two models (S6C

Fig). These distributions demonstrate that transitions between cluster states occur more fre-

quently in the combined model than in the core polarity circuit alone. (We are not able to

compute similar distributions from the experimental data because in the experiments, data

were taken every 2 minutes, which is insufficient to resolve all transitions.) Note that indecisive

behavior is also distinct from the unpolarized state in that it exhibits higher values of K with

larger fluctuations and multiple coexisting clusters, which are absent in the unpolarized state.

When we initiated the simulations with a pre-polarized Cdc42 cluster but uniform recep-

tors, the cluster immediately dissipated (Fig 3D and S3 Movie). Thus, even though the recep-

tor-Far1 circuit has a positive feedback architecture, the slow timescale of receptor trafficking

allows distributed receptors to overcome Bem1-GEF-maintained polarity. Note that in many

of the simulations the polarity site did eventually reform (Fig 3D). In these cases the receptor

distribution also became polarized.

Table 2. Parameters for the uniformly activated receptor-Far1 pathway.

Description Parameter 2D Model 3D Model Ref.

Far1-GEF + Ram! RaGEF λ8a 300 s-1 7500 s-1

RaGEF! Far1-GEF + Ram k8b 0.11 s-1 0.11 s-1 [44]

Cdc42Dm + RaGEF!

Cdc42T + RaGEF

λ2c 180 s-1 180 s-1

Ric + Cdc42T!

Ram + Cdc42T

λ9 0.025 s-1 0.625 s-1

Ram! Ric
RaGEF! Far1-GEF + Ric

k10 0.002 s-1 0.002 s-1 [42,43]

Diffusion coefficient of RaGEF and Ram Dreceptor 0.0001 μm2 s-1 0.0001 μm2 s-1 [18]

Total Far1-GEF Far1-GEF 5–280 molecules 30 molecules (0.76 nM) [45]

Total receptors Ra + Ri 2500 molecules 2500 molecules

We let λ 2c = λ3 to make the GEF activity of Far1-GEF equal to that of Bem1-GEF when bound with Cdc42-GTP. Ric and Ram are cytosolic and membrane-bound

receptors. Receptors are active on the membrane while inactive in the cytosol. RaGEF is the complex of Far1-GEF and Ram.

https://doi.org/10.1371/journal.pcbi.1011523.t002
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We suggest the following mechanism to explain how indecisive behavior arises in the com-

bined model. Far1-GEF molecules recruited to the membrane by active receptors can seed

multiple small Cdc42 clusters, which are then amplified by Bem1-GEF-mediated positive feed-

back. Without Far1-GEF, clusters would compete to yield a single winning polarity site

[16,17]. However, as this competition process begins, Far1-GEF nucleates new clusters,

thwarting effective competition: although some Cdc42 cluster(s) may transiently become dom-

inant, newly seeded clusters continue to compete such that no stable cluster can develop. For

this mechanism to operate, there are several requirements that the system must satisfy.

First, the distributed nature of active receptors is key to the continual seeding of new clus-

ters: if receptors were instead clustered, then the combined Bem1-GEF and Far1-GEF positive

feedbacks would act synergistically to maintain a Cdc42 cluster. This was indeed the case.

Fig 3. Combined circuit allows relocation and stabilization of the polarity site. A) Reaction scheme for the

combined polarity circuit. The combined model consists of dual positive feedback architecture (inset). B) Two-

parameter bifurcation diagram for molecular abundances of Cdc42 and Bem1-GEF (Unpolarized regime–green,

transient polarity–blue, polarized–red). C)–E): Simulations results for the transient polarity regime. Plots for K consist

of 10 realizations. The distributions for active Cdc42 come from the black time series using the time points indicated

by tick marks on the time axis. All simulations were performed using 3000 Cdc42, 170 Bem1-GEF, 30 Far1-GEF and

2500 receptor molecules, with different initial conditions as indicated. C) Multiple transient polarity sites form using

uniform random distributions as initial conditions. In a subset of the simulations, a single polarity site is eventually

formed. D) An established polarity site rapidly dissipates following the addition of randomly distributed receptors and

Far1-GEF molecules. E) A polarity site is rapidly established and stably maintained for simulations started with a

cluster of active receptors and uniformly distributed Cdc42 molecules.

https://doi.org/10.1371/journal.pcbi.1011523.g003
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When simulations were run with an initially focused receptor distribution, all simulations pro-

duced a well-polarized Cdc42 distribution (Fig 3E and S4 Movie). As initial receptor distribu-

tions were varied, more dispersed receptor distributions lowered the probability that the

system would remain polarized (Fig 4A).

Second, slow trafficking of pheromone receptors is key to promote indecisive behavior: if

trafficking rates were to be increased, then receptor internalization would deprive Far1 of the

potential for seeding competing clusters, while delivery of receptors to currently dominant

clusters would stabilize them. Indeed, we found that accelerating receptor traffic (reducing

receptor residence time) switched the behavior of the combined model, from indecisive reloca-

tion to stable polarity (Fig 4B).

Third, increasing the abundance of Far1-GEF would increase the number of newly seeded

Cdc42 clusters, driving the system towards a more uniform Cdc42 distribution. This was also

observed (Fig 4C). Changing either receptor trafficking rates or Far1-GEF abundance revealed

parameter regimes that produced unpolarized states, polarized states, or switching between

the two (Fig 4B and 4C).

To directly visualize the hypothesized competition between clusters nucleated by Far1-GEF,

we distributed immobile Far1-GEF molecules at specific locations in the simulation domain,

so that each fixed Far1-GEF molecule could initiate a cluster of Cdc42. As the number of

Far1-GEF molecules increased, the competition time between seeded Cdc42 clusters also

increased, delaying the establishment of a single “winner” polarity site (Fig 4D). Cdc42 clusters

relocated between different Far1-GEF “seeds” in an indecisive manner, and even when one

cluster became dominant, smaller clusters continued to coexist (Fig 4E and S5 Movie).

To confirm that our results held in three dimensions, we performed 3D simulations of the

combined polarity circuit. Most parameters for 2D and 3D simulations were kept the same

(Tables 1 and 2) so that the steady-state amount of species were similar between the two types of

simulations (S7 Fig). Polarity sites in the 3D simulations relocated erratically around the cell cor-

tex, as seen with indecisive polarity clustering in yeast cells (Fig 4F and S6 Movie). In sum, these

simulations indicate that a system combining the core Bem1-GEF circuit with the receptor-Far1

circuit can exhibit indecisive polarity behavior, with clusters of Cdc42 rapidly relocating.

Pheromone gradients act to stabilize the polarity site

Our simulations demonstrated the Far1 pathway can destabilize polarity to promote relocation

in the presence of a uniform pheromone concentration. By contrast, experimental studies

found that this pathway is required for orientation and stabilization of polarity sites towards a

mating partner [27,49–51]. One way to reconcile these findings is that the Far1 pathway’s

effects are dependent on the pheromone concentration profile that cells experience.

A yeast cell emits ~ 1400 pheromone molecules per second [52]. With this number, the

maximum pheromone concentration that the partner cell is exposed to is likely to be below 10

nM [19]. Surprisingly, yeast cells secreting only 20% as much pheromone (peak concentration

around 1–2 nM) are still able to stabilize their mating partner’s polarity site [53]. This is well

below the concentration of uniform pheromone required for stabilization of a polarity site

[51,54]. These findings suggested it may be the pheromone gradient, rather than the absolute

pheromone concentration, that stabilizes the position of the polarity site [53]. To test the plau-

sibility of this hypothesis, we included pheromone molecules in our combined polarity circuit

simulations (Fig 5A and Table 3). In this situation the receptors are activated upon pheromone

binding, allowing us to test whether a pheromone gradient can change polarity site behavior.

Although the actual pheromone gradients experienced by mating yeast cells have not been

experimentally visualized, previous work simulated the pheromone gradient that would be
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Fig 4. The Far1 pathway promotes indecisive behavior by delaying or preventing coarsening of polarity sites. A)

The fraction of time polarized as a function of the degree of dispersion in the initial receptor distribution. The fraction

of time was measured as the ratio of K values� 1.5 to the total number of K values in the interval 2000 to 4000 secs to

avoid any initial transients. Each point represents a single simulation result from 30 total simulations. Initial receptor

distributions were generated from 2D Gaussian distributions. The degree of dispersion represents the standard

deviation of the distribution. B) Final K values (t = 4000 secs) as a function of receptor membrane residence time. 5�

n� 30 simulations for each data point. Standard deviations are shaded. C) Final K values as a function of Far1-GEF

molecule number. 5� n� 30 simulations for each data point. D) Time to stabilization of the polarity site (K� 3) as a

function of number of fixed Far1-GEF molecules in the membrane. Distributions of Far1-GEF molecules are shown

along the x-axis. E) Time series of K values for the case of 15 fixed Far1-GEF molecules (left panel). Right panels show

distributions for active Cdc42 molecules for the black time series at times indicated with ticks on the time axis. F)

Results for a 3D particle-based simulation. Cdc42T molecules shown as blue dots on the cell surface. Rate constants

converted from 2D case as described in the Methods and listed in Tables 1 and 2. All simulations performed using

3000 Cdc42, 170 Bem1-GEF, 2500 receptor and unless otherwise noted 30 Far1-GEF molecules.

https://doi.org/10.1371/journal.pcbi.1011523.g004
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perceived by a cell with an adjacent partner secreting pheromone from its polarity site [19]

(Fig 5B), assuming experimentally measured pheromone emission rates [52]. To simulate cells

that are initially searching for a partner, we initialized the simulations with a uniform phero-

mone concentration of 1.5 nM, which resulted in relocating Cdc42 clusters (S8 Fig). Then, to

simulate a situation in which the cell orients polarity (and hence pheromone secretion)

towards the partner cell, we imposed a pheromone gradient that varied between 1.5–5.8 nM

(Fig 5C). In many but not all simulations, this gradient led to cessation of polarity site reloca-

tion within 50 min and development of a stable cluster of Cdc42 oriented towards the

Fig 5. Simulating pheromone gradients. A) Reaction scheme for pheromone receptor binding. B) A 3D pheromone

gradient was simulated between an emitter and receiver cell as described in Clark-Cotton et al. [19]. C and D) Time-

averaged pheromone concentrations for two different emission rates (C—650 molecules/sec with a uniform

background pheromone concentration of 1.5 nM, and D—150 molecules/sec). Concentrations were measured in the

“rings” shown below the x-axis. Error bars denote ± std.

https://doi.org/10.1371/journal.pcbi.1011523.g005

Table 3. Parameters for the pheromone-induced receptor-Far1 pathway.

Description Parameter 3D Model Ref.

Rim + pheromone! Ram λ11 1.8 s-1

Ric + Cdc42T! Rim + Cdc42T λ12 0.625 s-1

Ram! Rim + pheromone k13 0.002 s-1 [55,56]

Ram! Ric + pheromone k14 0.002 s-1 [42,43]

Rim! Ric k15 0.0004 s-1 [42]

Diffusion coefficient of Rim Dreceptor 0.0001 μm2 s-1 [18]

Diffusion coefficient of pheromone Dpheromone 150 μm2 s-1 [19]

Rim is membrane-bound inactive receptors. λ11 is chosen to make sure the equilibrium dissociation constant (KD) for the receptor is 6–7 nM [56].

https://doi.org/10.1371/journal.pcbi.1011523.t003
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pheromone source (Fig 6A and S7 Movie). We next ran simulations using a gradient that ran-

ged from 0–1.2 nM (Fig 5D). Remarkably, in this case all simulations produced a stable polar-

ity site located in the region of high pheromone within 30 min (Fig 6B and S8 Movie). These

results are consistent with experimental findings in which cells secreting only 20% of the

amount of pheromone as wildtype cells are able to stabilize the polarity sites of mating partners

[53]. Polarity stabilization occurred more rapidly in 0–1.2 nM than in 1.5–5.8 nM gradients

(Fig 6C), consistent with the idea that the main obstacle to polarity stabilization is provided by

competition with distinct polarity clusters seeded by the background levels of pheromone. In

summary, our simulations of the combined polarity circuit demonstrate that while a uniform

concentration of pheromone destabilizes polarity and promotes relocation, a local pheromone

gradient can stabilize polarity.

Discussion

Models of the yeast polarity circuit

The first realistic model for the yeast polarity circuit was proposed by Goryachev and Pokhilko,

who considered a deterministic model that consisted of a set of reaction-diffusion equations

[12]. They used their model to demonstrate that Bem1-GEF mediated positive feedback cou-

pled with diffusion rates that vary between the membrane and cytosol was sufficient to gener-

ate a stable polarity site through a Turing mechanism [12]. Several more abstract minimalistic

models, containing as few as two chemical species with non-linear positive feedback, were also

studied to gain a deeper understanding of how cells might use Rho-family GTPases to generate

spatial patterns. Because of their mathematical tractability, these models produced important

insights into the mechanisms underlying establishment, competition and coexistence of

GTPase clusters [14,15,30,57–61]. While theoretical work has begun to establish conditions

that support polarity establishment and coarsening, less attention has been given to identifying

mechanisms that produce movement or relocation of the polarity site.

Dynamic polarity site relocation is critical during the indecisive phase of yeast mating,

when polarity clusters undergoes erratic assembly, disassembly, and seemingly random

motion. Aspects of this behavior have been recapitulated by stochastic models that incorporate

stochastic effects resulting from randomness in biochemical reactions. Particle-based simula-

tions of a very simple two-species model were used to investigate the behavior of a system with

linear positive feedback [30,31]. With linear positive feedback, clustering of Cdc42 only occurs

in regimes with small molecule numbers, making the degree and location of clustering suscep-

tible to molecular fluctuations. Hegemann et al. exploited the noise-driven relocation of polar-

ity clusters in this model to explore how pheromone gradients might direct polarity to the

correct site via the Far1 pathway [27]. However, experimental findings suggest that yeast polar-

ization is robust to increased molecular abundances [16,62,63], indicative of more robust non-

linear positive feedback. Particle-based models with non-linear positive feedback could also

display noise-driven relocation of polarity clusters, but (as with the linear feedback model)

such behavior required fine-tuning and only occurred in a small region of parameter space

[32]. Thus, it remained unclear whether simply incorporating molecular noise into a polarity

circuit would suffice to explain the indecisive polarity behavior seen in mating yeast or if addi-

tional regulatory elements are required.

Prior modeling studies produced dynamic polarity sites by including negative feedback in

the polarity circuit. Ghose et al. showed that actin-mediated negative feedback via stochastic

vesicle delivery promotes persistent movement of a single stable polarity site [50,64]. Khalili

et al. used a reaction-diffusion equation model for mating in fission yeast to demonstrate how

coupled positive and negative feedback regulation acting on Ras1 can generate a single polarity
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site that continually assembles and disassembles in different locations [65]. However, neither

study reproduced multiple transient clusters of GTPase activity as observed in the indecisive

phase of budding yeast mating. Shi et al. implemented a local excitation, global inhibition

biased excitable network (LEGI-BEN) model to describe cells undergoing chemotaxis [66]. In

their model the LEGI module converts an external chemical gradient into an internal gradient

of signaling activity which biases where the excitable network is active. In turn, the excitable

network is linked to a polarization module involving the cytoskeleton allowing migration to

occur in the direction of the gradient. This model differs from ours in that our model does not

require an excitable network to generate multiple clusters of Cdc42 activity. Rather, active

receptors seed formation of new clusters insuring a single polarity site does not form.

Complementary positive feedback loops ensure successful mating

Successful mating requires that yeast cells direct their growth toward potential mating part-

ners, which requires proper positioning of the polarity site. To achieve this task, the polarity

system must satisfy several often competing requirements: 1) detection of pheromone gradi-

ents, 2) establishment of a single polarity site, 3) reorientation of the polarity site when mis-

aligned with the gradient, and 4) stabilization of the polarity site when oriented toward a

mating partner. Our modeling results suggest that these requirements are met through a series

of three coupled positive feedback loops acting on different time scales (Fig 7).

The first positive feedback loop forms the core polarity circuit (Fig 7A). In this circuit, posi-

tive feedback occurs because active Cdc42 molecules increase the activation rate of

Fig 6. Pheromone gradients stabilize the polarity site. Simulation results using the two gradients shown in Fig 5. For both

cases, cells were exposed to 1.5 nM uniform pheromone for the first 5 min. The pheromone gradient was applied starting at 5

min. A) Results for the gradient shown in Fig 5C. Time series for K for 10 simulations (Top). Distributions for active Cdc42

corresponding to the time series shown in black (Bottom). B) Same as A using gradient shown in Fig 5D. C) Time for K to 50 for

the two gradients.

https://doi.org/10.1371/journal.pcbi.1011523.g006

Fig 7. Summary of system architecture. Schematics of positive feedback loops for A) the core polarity circuit, B) the

intracellular receptor-Far1 circuit, C) the combined circuit and D) the trans-cellular receptor-Far1 circuit. u denotes

the membrane-associated slowly-diffusing “active” form, while v denotes the cytosolic, rapidly diffusing “inactive”

form of the relevant protein—Cdc42 is indicated by the subscript C, Bem1-GEF by the subscript G, and Receptor-

Far1-GEF by the subscript R.

https://doi.org/10.1371/journal.pcbi.1011523.g007
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neighboring Cdc42 molecules by recruiting active GEF molecules to their location. Because

diffusion in the cytosol is fast as compared to diffusion in the membrane, this positive feedback

loop provides an effective mechanism for forming clusters of active Cdc42. Rapid diffusion in

the cytosol also allows competition between coexisting clusters for polarity factors in the cyto-

sol. Larger clusters generate stronger positive feedback and thus are able to out-compete

smaller clusters, leading to a “winner take all” mechanism for establishing a single polarity site.

While strong positive feedback is effective at generating a unique polarity site, it also exhib-

its undesirable features for gradient tracking. First, initiation of a polarity cluster is highly sus-

ceptible to fluctuations in the local concentrations of relevant molecules, so that polarity sites

can easily form at sites that are misaligned with the pheromone gradient. Second, it is difficult

to relocate a polarity site once it has been established: except in a very narrow slice of parame-

ter space, this makes polarity sites resistant to molecular fluctuations (Fig 7A). The Far1 path-

way by which the polarity circuit is coupled to pheromone sensing in yeast appears to

overcome both of these drawbacks (Fig 7B). Active pheromone receptors recruit GEF mole-

cules in complex with the multifunctional protein Far1, thereby activating Cdc42 near active

receptors. Thus, active receptors continuously seed formation of new Cdc42 clusters, while

blunting competition between coexisting clusters. This diminished competition generates

dynamic clusters of Cdc42 that form and disassemble throughout the cell surface, providing a

search mechanism for finding a local pheromone source. The combined polarity/Far1 circuit

exhibits a much larger region of parameter space where molecular fluctuations can drive polar-

ity site relocation (Fig 7C).

Interestingly, receptor-mediated activation of Cdc42 forms a second positive feedback loop

because active Cdc42 molecules recruit actin cables along which vesicles containing new recep-

tors that are trafficked (Fig 7B). Due to long receptor lifetimes on the membrane [67,68], this

feedback loop does not support polarity establishment under conditions of constant phero-

mone concentration. However, in the presence of a pheromone gradient, positive feedback by

the receptor-Far1 circuit operates more strongly in the region of high pheromone concentra-

tion, because receptor activation is higher leading to more active Cdc42 in this region. In turn,

higher Cdc42 activity leads to an increase in the local concentration of receptors, reinforcing

Cdc42 activity and promoting the formation of a stable polarity site. Interestingly, this mecha-

nism of gradient tracking is able to respond effectively to pheromone gradients of low peak

concentration (1.2 nM), consistent with observations that cells in which pheromone produc-

tion has been reduced by 80% are still able to successfully signal their location to mating part-

ners [53]. A potential limitation of this mechanism for gradient tracking is that cells can be

confused when the gradient is superimposed on a background of constant pheromone (e.g.,

the case in which the gradient ranges from 1.5–5.8 nM). As pheromone concentrations experi-

enced by yeast in the wild are likely to be quite variable, we speculate that yeast have evolved

additional mechanisms to overcome this limitation.

Finally, a third positive feedback loop acts between cells of opposite mating type (Fig 7D).

All haploid yeast cells emit mating-type-specific pheromones, which bind to receptors on the

surface of cells of the opposite mating type. Signaling through these receptors both increases

the rate of pheromone production within the receiving cell and, by locally activating Cdc42,

increases the probability that pheromone is released in the direction of the opposite mating

type. Our simulations confirm experimental findings that this localized release of pheromone

is important for establishing gradients steep enough to be detected by the adjacent mating

partner [19]. This positive feedback loop is likely to play a role during the indecisive phase of

mating when both cells’ polarity sites are dynamic. Considering this two-cell scenario will be

the subject of future investigations.
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Biological implications and future directions

Our conclusions may be applicable to polarity regulation in other systems. Similar to S. cerevi-
siae, polarity sites in the distantly related fission yeast S. pombe also exhibit erratic assembly-

disassembly behavior during mating, and are stabilized when they happen to align with a part-

ner [69,70]. Interestingly, fission yeast lack the Far1 pathway, but possess a pathway with the

same architecture, where pheromone-receptor binding leads to local recruitment of a Cdc42

GEF [71]. Thus, our findings may apply broadly to fungal mating systems [25].

Our work suggests that molecular noise is sufficient to promote relocation of polarity clus-

ters in cells that combine the polarity circuit with the receptor-Far1 pathway. Far1 is a multi-

functional protein that is required for cell cycle arrest. Therefore, deletion of this protein

would not provide a test of our model. However, it is possible to construct point mutants that

specifically target Far1’s various functions. Such mutants would provide a mechanism for test-

ing our model. It is also possible that other phenomena may also promote mobility of polarity

clusters. In particular, polarized vesicle trafficking can cause dilution and lateral displacement

of polarity factors [55,64,72,73]. In the future, it may be useful to investigate whether a model

combining vesicle traffic and the receptor-Far1 pathway can accurately reproduce polarity site

behaviors in mating yeast.

Our proposed mechanism of polarity site relocation has implications for a range of cell

functions beyond mating yeast cells. For example, migratory cells often exhibit relocating

polarity sites while moving in chemical gradients [1,74,75]. In axon development, multiple

polarity sites (neurites) are formed initially, and one of them differentiates into an axon as it

moves up chemical gradients [76]. Many of these functions require receptor endocytosis [77–

79]. It will be interesting to investigate whether dynamic polarity might result from differences

in the time scales of polarity factor diffusion and receptor trafficking. Comparing the princi-

ples of polarity in mating yeast to those in other eukaryotic cells promises to provide insight

into many cell functions.

Methods

2D Particle-based model

All particle-based simulations were performed using Smoldyn (v2.67) with continuous space

and discretized time intervals on a Linux-based computing system (Longleaf cluster at UNC

Chapel Hill, 2.50 GHz and 2.30 GHz Intel Processors) [33,36]. Periodic boundary conditions

were assumed in both spatial directions. Molecules were regarded as point particles with no

volumes. Brownian motion of the molecules was simulated with the Euler-Maruyama method

as follows. Let x(t) and y(t) represent the coordinates of a given molecule at time t, then mole-

cule’s position at t + Δt is calculated as:

xðt þ DtÞ ¼ xðtÞ þ Zx
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

yðt þ DtÞ ¼ yðtÞ þ Zy
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

where Zx and Zy are independent random numbers drawn from the standard normal distribu-

tion, and D is the diffusion coefficient. Coordinates of all species were stored every 10 seconds

from a 4000-second simulation.

Second-order reactions are governed by two parameters: the reaction radius ρ and reaction

rate λ. When two reacting partners are within a distance ρ, then the probability that they react

within a time step Δt is P = 1-exp(-λΔt). When Δt is sufficiently small, P� λΔt. When bound

molecules dissociate, they are placed at a distance which is 0.00001 μm beyond the binding
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radius ρ to avoid immediate reassociation. First-order reactions occur with the probability

P = 1-exp(-kΔt), where k is the rate constant for the reaction. Parameter values used in the sim-

ulations are listed in Tables 1 and 2.

3D Particle-based model

The yeast cell was approximated as a sphere. Membrane-bound species diffuse on the surface of

the sphere. Cytosolic species diffuse inside the sphere. Reaction rates for the 3D model are listed

in Tables 1–3. Initial choices for the rate constants in the 3D simulations were obtained by con-

verting rate constants from the 2D simulations using the method of Ramirez et al. [32]. However,

a few rate constants required additional tuning to ensure the steady-state concentrations of the

2D and 3D simulations were similar. Rate constants for reactions between membrane-bound

species did not change between the 2D and 3D simulations. Rate constants for first-order reac-

tions in which a cytosolic species associated with the membrane were scaled as follows:

k3D ¼
Vc

Am
k2D

Vc is the volume of the sphere, and Am is the area of the membrane.

The rate constants for second-order reactions that involved a cytosolic species and mem-

brane-bound species were scaled as follows:

l3D ¼
Vc

Am

V2D

V3D
l2D

V2D ¼ pr
2

V3D ¼
1

2

4

3
pr3

� �

V2D is the 2D reaction area, and V3D is the reaction volume for 3D simulations. The reason

V3D is half the volume of a sphere is because one of the reactants is membrane-bound.

Simulating receptor cycling

Actin cables directed by Cdc42 bring pheromone receptors to the polarity site. We did not

explicitly take into account actin cables in our simulations. Actin-dependent delivery of recep-

tors was implicitly modeled as a bimolecular reaction. Each individual Cdc42-GTP is able to

recruit a receptor from the cytoplasm to the membrane with a specified rate (λ9 in Table 2, and

λ12 in Table 3) during each time step. Membrane receptors are internalized via endocytosis,

which was modeled as a first-order reaction with specified rate constants (k10 in Table 2, and

k14, k15 in Table 3).

Simulating pheromone molecules

3D Pheromone gradients were simulated according to the method described previously [19].

A pair of mating cells were modeled as two spheres with a diameter of 5 μm. One cell emitted

pheromone. We assumed that the number of released pheromone molecules followed a Pois-

son process, and all molecules were emitted from a single point source. Vesicle release events

were simulated in Smoldyn using the command pointsource. Pheromone was removed at a

spherical absorbing boundary 7 μm from the origin. Cell membranes were treated as reflecting

boundaries.
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Quantifying polarity

Polarity was measured using normalized versions of Ripley’s K-function [17,32,40,41,80]. The

function K(r) measures the deviation of the current particle distribution from a uniform distri-

bution based on the cumulative distribution of pairwise molecular distances P(r).:

P rð Þ ¼
1

NðN � 1Þ

XN

i¼1

miðrÞ

For particle distributions on a 2D plane:

K rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
p

Z r

0

Pðr0Þdr0

s

� r

For particle distributions on a 3D sphere:

K rð Þ ¼ 4pR2

Z r

0

Pðr0Þdr0 � 2pR2 1 � cos
r
R

� �� �

where mi(r)Δr is the number of molecules at a distance d from molecule i such that r� d� r
+Δr, N is the total number of molecules in the domain, and A is the area of the domain. K(r) =

0 if particles are distributed uniformly. For a non-uniform distribution, the K-function typi-

cally goes through a maximum value for a finite value of r. To quantify polarity, we used the

maximum value of K. For 2D simulations, we defined a molecule distribution with K< 1.5 as

unpolarized states; K� 1.5 as polarized states; and K� 3 as stable polarity (S1A Fig). For 3D

simulations, we defined a distribution with K< 30 as unpolarized states; K� 30 as polarized

states; and K� 50 as stable polarity (S1B Fig).

Identifying polarity regimes

To identify the three polarity regimes (unpolarized, transient polarity, and polarized), we

recorded values of K every 10 seconds during the last 2000 seconds of each simulation. Simula-

tions were run using two kinds of initial conditions: random and polarized. For random initial

conditions, positions of the Cdc42 molecules were chosen from a uniform distribution,

whereas for the polarized case position for the Cdc42 molecules were chosen according to a

Gaussian in the center of the domain with a standard deviation of 0.2. For a given number of

Cdc42 and Bem1-GEF molecules, we ran ten simulations for each type of initial condition. For

each simulation, we calculated the difference Δ between the number of polarized states F
(K� 1.5) and number of unpolarized states F(K< 1.5):

D ¼ FðK � 1:5Þ � FðK < 1:5Þ

If the system spends half its time in a polarized state and half unpolarized, Δ equals 0. A

large positive value of Δ indicates a polarized regime and a large negative value indicates an

unpolarized regime. Let N equal the total number of K values recorded during simulation. To

identify the transient polarity regime, we used the condition:

� a �
D

N
� a

with α = 0.85. If Δ/N> α, the regime was categorized as polarized and Δ/N< -μ unpolarized.

For a given number of Cdc42 molecules, the relationship between Δ and the number of
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Bem1-GEF molecules, x, was assumed to follow the logistic function:

D xð Þ ¼
2N

1þ e� bðx� cÞ
� N

This function was then fit to the simulation results to determine values of Bem1-GEF mole-

cules at which the system transitioned between polarity regimes (S2 and S4 Figs).

Cluster detection by Voronoi tessellation

We utilized a previous method based on Voronoi tessellation to detect clusters [48,81]. A clus-

ter was defined as a group of adjacent Voronoi polygons with sizes below a predetermined

threshold. The threshold for polygon sizes was determined as follows. As a negative control,

we generated 50 realizations of particle distributions from a uniform distribution. These distri-

butions were used to generate a probability density for Voronoi polygon sizes. We also

obtained the probability density for the polygon size distribution of Cdc42-GTP molecules

generated from our simulations. The intersection of the probability densities from the negative

control and our simulations defines the threshold of polygon sizes for cluster formation. A

polygon was deleted from the Voronoi diagram if its size was above the threshold, meaning

that the density of molecules in the polygon was too low to be considered as part of a cluster.

The remaining polygons on the Voronoi diagram would be considered as components of

potential clusters. Then, we grouped the neighboring polygons into clusters and applied filters

for cluster area and number density. The threshold area of a cluster was set to be 0.785 μm2 as

the diameter of a polarity site of yeast was estimated to be 1 μm. We set the threshold number

of Cdc42 in a cluster according to a previous measurement [62]. Groups of polygons passed

the filters were recorded as true clusters.

Manual cluster detection

The analysis of polarity cluster behavior in mating yeast cells was performed using videos

reported by Clark-Cotton et al. [19]. These consist of time-lapse two-color confocal imaging of

a mixture of opposite-mating-type S. cerevisiae strains containing green (DLY9069: MATa

BEM1-GFP) and red (DLY12944: MATα BEM1-tdTomato) polarity probes. Yeast growth and

imaging conditions were described in detail in Clark-Cotton et al. [19].

When cells of opposite mating type are mixed together to allow mating, they are initially

growing vegetatively by budding. As the budding cycle finishes, the Bem1 probe localizes to

the mother-bud neck for cytokinesis, after which polarity clusters exhibit indecisive behavior

for some time. A subset of cells then align their polarity sites towards each other, entering the

committed phase that culminates in cell-cell fusion. For this analysis, we considered only cells

that had completed cytokinesis (Bem1 probe no longer at the bud neck) but had not

yet aligned polarity. Thus, all cells are considered “indecisive”.

Fluorescent signals from Z-stacks were projected onto a single plane to observe polarity

clusters (intense groups of pixels in red or green channels). Images taken at 2-min intervals

were visually scored to count the number of polarity clusters. A polarity cluster was defined as

a grouping of>10 pixels with intensity clearly above background. Groups of intense pixels

that were separated by clear zones of background intensity were counted as separate clusters.

Supporting information

S1 Fig. Examples of the Ripley’s K-function. Cluster distributions corresponding to the listed

K values. A) 2D examples for a square domain of length 8.8623 μm. B) 3D examples for a
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sphere of radius 2.5 μm.

(PDF)

S2 Fig. Polarity regimes for the core polarity circuit. A) Difference in the number of polar-

ized and unpolarized states as a function of Bem1-GEF abundance. Data points (o) represent

simulation results for the total number of Cdc42 molecules indicated in the plot title. Curves

represent fits to the data using a logistic function (unpolarized regime—green, polarized

regime—red, and transient regime—blue). B and C) Distributions for K in the transient

regime using a total Cdc42 abundance of 3000. Stars indicate the Bem1-GEF abundances used

to produce the distributions (100 lower panels and 106 upper panels).

(PDF)

S3 Fig. Simulation results for unpolarized and polarized regimes of the core polarity cir-

cuit. A) Time series for K for 10 simulations in the unpolarized regime (left panel). Distribu-

tions for active Cdc42 taken form black time series using time points indicated with ticks on

the time axis (right panels). Simulations were performed using uniform random distributions

of molecules as initial conditions with 3000 Cdc42 and 70 Bem1-GEF molecules. B) Same as A

except with 3000 Cdc42 and 120 Bem1-GEF molecules.

(PDF)

S4 Fig. Polarity regimes for the combined polarity circuit. A) Difference in the number of

polarized and unpolarized states as a function of Bem1-GEF abundance. Data points (o) repre-

sent simulation results for the total number of Cdc42 molecules indicated in the plot title.

Curves represent fits to the data using a logistic function (unpolarized regime—green, polar-

ized regime—red, and transient regime—blue). B and C) Distributions for K in the transient

regime using a total Cdc42 abundance of 3500. Stars indicate the Bem1-GEF abundances (135

lower panels and 165 upper panels). All simulations were performed using 30 Far1-GEF and

2500 receptor molecules.

(PDF)

S5 Fig. Simulation results for unpolarized and polarized regimes of the combined polarity

circuit. A) Time series for K for 10 simulations in the unpolarized regime (left panel). Distri-

butions for active Cdc42 taken form black time series using time points indicated with ticks on

the time axis (right panels). Simulations were performed using uniform random distributions

of molecules as initial conditions with 3000 Cdc42, 80 Bem1-GEF, 30 Far1-GEF and 2500

receptor molecules. B) Same as A except with 280 Bem1-GEF.

(PDF)

S6 Fig. Number of clusters as a function of time. A) Five examples of time series for the

number of clusters, B) the distribution of cluster counts, the transition probabilities to a subse-

quent cluster count, and C) the dwell time of clusters for simulations of the core polarity cir-

cuit with 3000 Cdc42 and 102 Bem1-GEF molecules and simulations of the combined polarity

circuit with 3000 Cdc42 and 170 Bem1-GEF molecules. Note that the images were taken at

120-second intervals in experiments, so we were not able to compare dwell times of clusters

between simulations and experiments. The total time duration in A) are 4000 secs with inter-

vals of 120 secs. The red line denotes the time at which cells became committed.

(PDF)

S7 Fig. Comparison of 2D and 3D models. Simulations were performed with 3000 Cdc42,

170 Bem1-GEF, 30 Far1-GEF, and 2500 receptor molecules. Simulations started with uni-

formly distributed molecules. Lines represent molecule number averages and the shaded areas
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represent ± std for 30 simulations (3D –blue, 2D –red). All simulations were run for 66 min.

(PDF)

S8 Fig. Indecisive polarity behavior with uniform pheromone concentration. Simulations

were performed using 3000 Cdc42, 170 Bem1-GEF, 2500 receptor, 30 Far1-GEF and 1.5 nM

uniform concentration of pheromone molecules.

(PDF)

S1 Movie. Spatiotemporal distribution of Cdc42-GTP in a transient polarity regime of the

core polarity circuit model simulation. Blue dots represent individual molecules of active

Cdc42. Corresponds to Fig 1D.

(MP4)

S2 Movie. Spatiotemporal distribution of Cdc42-GTP in a transient polarity regime of the

combined polarity circuit model simulation. Corresponds to Fig 3C.

(MP4)

S3 Movie. A cluster of Cdc42-GTP dissipates after introducing the Far1 pathway. Receptors

and Far1-GEF molecules were introduced at 400 seconds. Corresponds to Fig 3D.

(MP4)

S4 Movie. A cluster of Cdc42-GTP is established and maintained if receptors are initially

polarized. Corresponds to Fig 3E.

(MP4)

S5 Movie. Cdc42-GTP clusters relocate between fixed Far1-GEF molecules. 15 fixed Far1--

GEF molecules directly activate Cdc42 without receptors. Corresponds to Fig 4E.

(MP4)

S6 Movie. Spatiotemporal distribution of Cdc42-GTP of the 3D combined polarity circuit

model simulation. Corresponds to Fig 4F.

(MP4)

S7 Movie. A 1.5–5.8 nM pheromone gradient can promote stable formation of Cdc42-GTP

clusters. 1.5 nM uniform pheromone was applied for the first 5 min. Starting from 5 min, a

gradient was imposed. Corresponds to Fig 6A.

(MP4)

S8 Movie. A 0–1.2 nM pheromone gradient can efficiently stabilize Cdc42-GTP clusters.

1.5 nM uniform pheromone was applied for the first 5 min. Starting from 5 min, a gradient

was imposed. Corresponds to Fig 6B.

(MP4)
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73. Gerganova V, Lamas I, Rutkowski DM, Vještica A, Castro DG, Vincenzetti V, et al. Cell patterning by

secretion-induced plasma membrane flows. Sci Adv. 2021 Sep 17; 7(38):eabg6718. https://doi.org/10.

1126/sciadv.abg6718 PMID: 34533984

74. Xiong Y, Huang CH, Iglesias PA, Devreotes PN. Cells navigate with a local-excitation, global-inhibition-

biased excitable network. Proc Natl Acad Sci U S A. 2010; 107(40):17079–86. https://doi.org/10.1073/

pnas.1011271107 PMID: 20864631

75. Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A. Differential regulation of protrusion and

polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell. 2010 Feb 16; 18(2):226–36. https://

doi.org/10.1016/j.devcel.2009.11.015 PMID: 20159593

76. Yogev S, Shen K. Establishing neuronal polarity with environmental and intrinsic mechanisms. Neuron.

2017 Nov; 96(3):638–50. https://doi.org/10.1016/j.neuron.2017.10.021 PMID: 29096077

77. Maritzen T, Schachtner H, Legler DF. On the move: Endocytic trafficking in cell migration. Cell Mol Life

Sci. 2015 Jun 1; 72(11):2119–34. https://doi.org/10.1007/s00018-015-1855-9 PMID: 25681867

78. Kawada K, Upadhyay G, Ferandon S, Janarthanan S, Hall M, Vilardaga JP, et al. Cell migration is regu-

lated by platelet-derived growth factor receptor endocytosis. Mol Cell Biol. 2009 Aug 15; 29(16):4508–

18. https://doi.org/10.1128/MCB.00015-09 PMID: 19528233

PLOS COMPUTATIONAL BIOLOGY Two positive feedback loops ensure successful mating

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011523 October 2, 2023 26 / 27

https://doi.org/10.1371/journal.pcbi.0030108
https://doi.org/10.1371/journal.pcbi.0030108
http://www.ncbi.nlm.nih.gov/pubmed/17559299
https://doi.org/10.48550/arXiv.2203.03892
https://doi.org/10.7554/eLife.58768
http://www.ncbi.nlm.nih.gov/pubmed/33899733
https://doi.org/10.1111/tra.12211
http://www.ncbi.nlm.nih.gov/pubmed/25158298
https://doi.org/10.1038/ncomms2795
https://doi.org/10.1038/ncomms2795
http://www.ncbi.nlm.nih.gov/pubmed/23651995
https://doi.org/10.1091/mbc.E20-01-0040
http://www.ncbi.nlm.nih.gov/pubmed/32186970
https://doi.org/10.1371/journal.pcbi.1006317
http://www.ncbi.nlm.nih.gov/pubmed/30028833
https://doi.org/10.1371/journal.pcbi.1003122
https://doi.org/10.1371/journal.pcbi.1003122
http://www.ncbi.nlm.nih.gov/pubmed/23861660
http://doi.org/10.1083/jcb.141.2.349
http://doi.org/10.1083/jcb.141.2.349
http://www.ncbi.nlm.nih.gov/pubmed/9548714
https://doi.org/10.1091/mbc.e09-07-0541
http://www.ncbi.nlm.nih.gov/pubmed/19828733
https://doi.org/10.1016/j.cub.2012.10.042
http://www.ncbi.nlm.nih.gov/pubmed/23200991
https://doi.org/10.1016/j.cub.2016.02.064
http://www.ncbi.nlm.nih.gov/pubmed/27020743
https://doi.org/10.1242/jcs.230706
http://www.ncbi.nlm.nih.gov/pubmed/31152053
https://doi.org/10.1091/mbc.E11-10-0837
http://www.ncbi.nlm.nih.gov/pubmed/22438587
https://doi.org/10.1126/sciadv.abg6718
https://doi.org/10.1126/sciadv.abg6718
http://www.ncbi.nlm.nih.gov/pubmed/34533984
https://doi.org/10.1073/pnas.1011271107
https://doi.org/10.1073/pnas.1011271107
http://www.ncbi.nlm.nih.gov/pubmed/20864631
https://doi.org/10.1016/j.devcel.2009.11.015
https://doi.org/10.1016/j.devcel.2009.11.015
http://www.ncbi.nlm.nih.gov/pubmed/20159593
https://doi.org/10.1016/j.neuron.2017.10.021
http://www.ncbi.nlm.nih.gov/pubmed/29096077
https://doi.org/10.1007/s00018-015-1855-9
http://www.ncbi.nlm.nih.gov/pubmed/25681867
https://doi.org/10.1128/MCB.00015-09
http://www.ncbi.nlm.nih.gov/pubmed/19528233
https://doi.org/10.1371/journal.pcbi.1011523


79. Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth

Differ. 2015 May 1; 57(4):291–304. https://doi.org/10.1111/dgd.12218 PMID: 25966925

80. Robeson SM, Li A, Huang C. Point-pattern analysis on the sphere. Spat Stat. 2014; 10:76–86.

81. Andronov L, Orlov I, Lutz Y, Vonesch JL, Klaholz BP. ClusterViSu, a method for clustering of protein

complexes by Voronoi tessellation in super-resolution microscopy. Sci Rep. 2016 Apr 12; 6:2408

https://doi.org/10.1038/srep24084 PMID: 27068792

PLOS COMPUTATIONAL BIOLOGY Two positive feedback loops ensure successful mating

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011523 October 2, 2023 27 / 27

https://doi.org/10.1111/dgd.12218
http://www.ncbi.nlm.nih.gov/pubmed/25966925
https://doi.org/10.1038/srep24084
http://www.ncbi.nlm.nih.gov/pubmed/27068792
https://doi.org/10.1371/journal.pcbi.1011523

