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ABSTRACT 

Katherine Rose Tech: The Intersection between Aerobic Glycolysis, Cerebellar Neurogenesis, and 
Medulloblastoma  

(Under the direction of Jeffrey M. Macdonald and Timothy R. Gershon) 

Aerobic glycolysis supports proliferation in development and cancer through unresolved 

mechanisms. Aerobic glycolysis, which supports the generation of biomass, is integral to cerebellar 

granule neuron progenitors (CGNPs) for normal growth and is hijacked in medulloblastoma. 

Medulloblastoma, the most common malignant pediatric brain tumor, is approached as a disorder of 

normal brain development. Arising as a disruption of normal cerebellar growth, medulloblastoma exploits 

the cellular processes used for cerebellar development to promote tumor formation. Thus, genes that are 

involved in developmentally-regulated progenitor growth may contribute to tumorigenesis when aberrantly 

expressed. A better understanding of cerebellar development and thus the pathogenesis of 

medulloblastoma, may lead to more targeted cancer treatments. 

In response to the developmental mitogen Sonic Hedgehog (SHH), CGNPs increase aerobic 

glycolysis and up-regulate key glycolytic enzymes Hexokinase-2 (Hk2) and Pyruvate Kinase M2 (Pkm2). 

HK2, which catalyzes the first step in glycolysis, is required for aerobic glycolysis in brain progenitors and 

medulloblastomas. Hk2 deletion blocks aerobic glycolysis, disrupts proliferation, and restricts 

medulloblastoma growth to prolong survival. Moreover, Hk2 was found by others to be up-regulated in 

medulloblastomas resistant to SHH pathway inhibition by vismodegib treatment. These findings raise the 

question if Hk2 deletion sensitizes medulloblastoma to vismodegib. Downstream of Hk2, the effect of 

deleting PKM2 and disrupting the last step in glycolysis in cerebellar neurogenesis and medulloblastoma 

is unknown. This dissertation examines the importance of aerobic glycolysis to development and cancer. 

Specifically, I determined the effect of Pkm2 deletion on the cerebellar neurogenesis and 

medulloblastoma tumorigenesis and the effect of vismodegib treatment on Hk2-deleted
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medulloblastomas. I demonstrate that CGNPs and medulloblastomas specifically express Pkm as the 

less active PKM2 isoform. Pkm2 deletion in CGNPs reduces aerobic glycolysis, alters metabolism to 

increase progenitor proliferation, and accelerates medulloblastoma growth to shorten survival. Thus 

PKM2 is not required for neural progenitor proliferation or tumorigenesis. Rather, the loss of pyruvate 

kinase releases cells from growth inhibition. I also found that vismodegib treatment of Hk2-deleted tumors 

further restricts tumor growth but does not extend survival. Together, these studies demonstrate the 

potential of targeting aerobic glycolysis as an anti-cancer strategy.   
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PREFACE 

 Chapter Four of this dissertation was previously published. Permission to include the following 

article was provided by Elsevier: 

 

Tech K, Deshmukh M, Gershon TR. 2014. Adaptations of energy metabolism during cerebellar 
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CHAPTER I: INTRODUCTION 

1.1 Aerobic glycolysis 

1.1.1 Overview 

 Glucose is a major source of cellular energy and carbons for biosynthetic reactions. Cells may 

metabolize glucose through glycolysis to produce pyruvate. Under high cellular energy demands, 

pyruvate is oxidized into CO2 in the Krebs cycle to produce 38 ATP per glucose molecule through coupled 

oxidative phosphorylation. Pyruvate can have other metabolic fates such as its conversion into ethanol, 

acetate, alanine, and lactate. Aerobic glycolysis is the conversion of glucose to lactate and 2 ATP even in 

the presence of sufficient oxygen needed for oxidative phosphorylation. Likewise, cells with large ATP 

requirements are less likely to use aerobic glycolysis over energy-efficient oxidative phosphorylation for 

ATP production. In addition to low energy production, glucose catabolism through aerobic glycolysis 

generates metabolic intermediates that can be used for lipid, amino acid, and nuclei acid biosynthesis. 

Thus, proliferating cells exhibiting increased aerobic glycolysis must use this metabolic phenotype to 

meet competing cellular demands for energy production and biosynthesis. Increased aerobic glycolysis is 

a metabolic phenotype found in both unicellular and multicellular organisms used to support normal and 

aberrant proliferation1.  

 

1.1.2 Supporting biosynthesis 

 Glycolysis is inefficient at ATP production compared to oxidative phosphorylation. Aerobic 

glycolysis, however, can produce more ATP than oxidative phosphorylation by generating ATP at a faster 

rate2. However, it is unlikely that rapidly dividing cells are opting for the faster but less efficient route for 

primary ATP production when glycolysis-derived ATP only makes up on average 17% of the total ATP 

pool3. Moreover, a low ATP:AMP ratio is needed to prevent inhibition of key, rate-limiting steps in 
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glycolysis4. Specifically, phosphofructokinase is sensitive to the ATP:AMP ratio, controlling the 

downstream flow of glycolytic intermediates5. To maintain low ATP:AMP ratio, proliferating cells can also 

increase ATP consumption to promote the catabolism of glucose to lactate, increasing glycolytic flux6. In 

all, aerobic glycolysis serves a more important function beyond energy metabolism in proliferating cells.  

 The major function of increased aerobic glycolysis is to support biosynthesis. Rapidly dividing 

cells use anabolic reactions to generate nucleotides, amino acids, and lipids required for cell division. 

Glucose catabolism can generate the precursors needed for these synthesis reactions, and increased 

aerobic glycolysis is likely used to maintain the glycolytic intermediate pool needed for biosynthesis1,7. For 

example, in de novo nucleotide synthesis carbon atoms are needed from the extracellular environment. 

Once phosphorylated, glucose can supply carbons to nucleotide synthesis as the ribose ring in two ways. 

The direct way is through the oxidative phase of the pentose phosphate pathway where glucose 6-

phosphate (G6P) becomes ribose 5-phosphate (R5P)8. The indirect route is through glycolytic 

intermediates fructose 6-phosphate (F6P) and glyceraldehyde-3-phosphate (GAP) feeding into the non-

oxidative pentose phosphate pathway to generate the ribose ring9,10. R5P is then converted to 5-

phosphoribosyl-α-pyrophosphate (PRPP), the last common intermediate in the de novo synthesis 

pathways for pyrimidine and purine nucleotides11. The generation of PRPP is catalyzed by PRPP 

synthetase, which exhibits increased activity in response to mitogen stimulation12. Moreover, PRPP is 

specifically important for purine nucleotides as its synthesis is the rate-limiting step in the production of 

purine precursors11. Thus, PRPP production is important for nucleotide synthesis during cell growth. In 

addition to the ribose ring, glucose metabolism through glycolysis can source up to an additional 3 and 4 

carbons to the synthesis of the pyrimidine and purine bases1. The purine base, adenine, furthers the 

reach of glucose-derived carbons as adenine is an essential component of cofactor biosynthesis1,5.    

 In addition to nucleotide synthesis, glucose catabolism through glycolysis also supplies carbons 

to amino acids. As proliferating cells must generate a large amount of protein for cell division1, there is a 

large amino acid requirement. Cells may increase aerobic glycolysis to meet these amino acid demands 

as glycolytic intermediates are direct precursors for nonessential amino acids cysteine, glycine, serine, 

and alanine1,5. Offshoot serine metabolism is a component in phosphatidylserine biosynthesis and a 
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precursor for other major phospholipid head groups ethanolamine and choline, further emphasizing the 

importance of glucose-derived carbons5. Downstream of glycolysis, glucose-derived pyruvate can enter 

the Krebs cycle to generate oxaloacetate and α-ketoglutarate. These intermediates are, in turn, used to 

make asparagine, aspartate, glutamate, glutamine, proline and arginine1,5. Thus, aerobic glycolysis can 

supply the carbons required for amino acid synthesis during proliferation. 

As for lipid synthesis, the glycolytic intermediate dihydroxyacetone phosphate is the precursor to 

glycerol 3-phosphate and lipids such as cardiolipin. Glycerol 3-phosphate is critical for the generation of 

phospholipids and triglycerides, which are major structural lipids in cell membranes, while cardiolipin is a 

component of mitochondrial membranes5. Another glycolytic intermediate, 3-phosphoglycerate, is the 

precursor to sphingolipids, which are important membrane components and mediate cell signaling13. 

Glucose metabolism through glycolysis also indirectly supplies carbons for acetyl-CoA, an important 

component of lipid synthesis. After the conversion of glucose to pyruvate, pyruvate is decarboxylated and 

becomes acetyl-CoA in the mitochondria. As acetyl-CoA cannot cross the mitochondrial membrane, 

acetyl-CoA must enter the Krebs cycle and be exported as citrate. ATP-citrate lyase then converts citrate 

to acetyl-CoA in the cytosol. The recovered cytosolic acetyl-CoA provides the carbons for fatty acid 

chains and for mevalonate, a precursor to cholesterol. In all, the ability to produce cytosolic acetyl-CoA14 

and synthesize fatty acids from extracellular nutrients15,16 is critical to proliferation.  

Nucleotide, amino acid, and lipid synthesis all rely on glycolysis to source glucose carbons for 

their respective reactions. The increased aerobic glycolysis of proliferating cells is used to maintain pools 

of precursors needed for biosynthesis. Thus, the function of aerobic glycolysis extends beyond energy 

metabolism as a metabolic phenotype that supports rapid growth.   

 

1.1.3 Lactate  

 Excess lactate is not a driver but a by-product of increased aerobic glycolysis. As described 

previously, high glycolytic flux maintains precursor pools for biosynthetic reactions. Biosynthesis, a low-

flux pathway, is paired to aerobic glycolysis, a high-flux pathway, such that the former would stop if there 
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was a slight decrease in the latter17. High glycolytic flux produces pyruvate, and as a way to remove 

excess from the cell, pyruvate is converted to alanine and lactate18 given that its entry into the Krebs 

cycle is rate limited by slower pyruvate dehydrogenase activity1,19. Lactate generation efficiently produces 

NAD+20, balancing the NAD+/NADH ratio and supplying the NAD+ used in upstream glycolytic 

reactions1,5. NAD+ is also used during nucleotide and amino acid synthesis, suggesting that lactate 

generation facilitates high glycolytic flux and faster utilization of glucose-derived carbons by anabolic 

reactions. Nonetheless, the production of excess lactate is a wasteful and inefficient use of glucose-

derived carbons. However, proliferating cells are willing to accept the cost of lactate production over 

efficient carbon utilization because of the biosynthetic growth advantage provided by aerobic glycolysis.   

 

1.1.4 In cancer 

 In 1924, Otto Warburg first reported in that cancer cells consume more glucose and produce 

more lactate than their normal counterparts in oxygen-rich environments21. This metabolic phenotype of 

increased aerobic glycolysis in cancer cells became to be known as the “Warburg effect”. Initially, 

Warburg thought that a defect in mitochondrial respiration caused cancer cells to increase glycolytic flux. 

However, most cancer cells do not have impaired mitochondrial respiration3,22 and enhanced aerobic 

glycolysis actually supports rapid, aberrant growth. After Warburg’s discovery, a major focus in cancer 

research now is the study of metabolic reprogramming and its unanswered questions. What is the impact 

of altered metabolism and increased aerobic glycolysis? What are the exact reactions that mediate this 

phenotype? What are the cellular mechanisms upstream of this phenotype? Can we target metabolism as 

an anticancer therapy? Briefly described below are few of the ways that cancer reprograms its cellular 

metabolism to increase aerobic glycolysis and support growth.  

 To support aberrant growth, cancer cells hijack and reprogram signaling pathways, increasing 

aerobic glycolysis and altering metabolism. For example, cancer cells are known to activate the 

phosphoinositide 3-kinase (PI3K) signaling pathway, which increases glucose uptake and glycolysis23,24. 

Moreover, cancer cells are able to alter other pathways including Src, Myc, Ras, and p53, to promote 

proliferation through changes in metabolism1,23,25,26.  
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In addition to appropriating signaling pathways, altering metabolic enzymes is another 

mechanism used during tumorigenesis to tailor metabolism for growth. One prominent example is 

Pyruvate kinase M (Pkm), which catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate in 

glycolysis. Pkm is preferentially expressed in cancer cells and normal proliferating cells as the PKM2 

isoform. The alternative to PKM2 is the PKM1 isoform, which is typically found in differentiated tissues 

requiring constitutively high pyruvate kinase activity27. PKM2, with its intrinsically low pyruvate kinase 

activity, is expressed ubiquitously in cancer, suggesting that this isoform may mediate a growth 

advantage. At the level of PEP, cancer cells can redirect glycolytic intermediates upstream of PEP by 

expressing PKM2. Thus, during increased aerobic glycolysis, glucose is metabolized quickly and not 

immediately turned into lactate as PKM2 expression lowers pyruvate production and replenishes 

glycolytic intermediate pools for biosynthesis. A seminal study by Israelsen et al demonstrated that low 

pyruvate kinase activity provides a growth advantage as their Pkm2-deleted breast cancers exhibited 

accelerated tumorigenesis28. In the case of nutrient stress during rapid growth, cancer cells can activate 

PKM2 through intracellular signaling pathways29 or allosterically30. Increasing pyruvate kinase activity 

would shift the metabolic program from anabolic reactions and growth to efficient ATP production31,32. 

Thus, PKM2 is a tool cancers can use to direct glycolytic intermediates in response to changes in 

precursor pools and nutrient availability.  

In contrast to the well-known PKM2 isoform paradigm, is the lesser-known 

phosphofructokinase/fructose-2,6-bisphosphatase B3 gene (PFKFB3). While PFKFB3 is not a canonical 

glycolytic enzyme, its catalytic activity increases the rate of glycolysis resulting in its high expression in 

human tumors33. PFKFB3 has six splice variants that are preferentially expressed in specific cancerous 

and normal tissues to support growth23. Besides expressing specific isoforms, cancer cells can also 

mutate metabolic enzymes such as succinate dehydrogenase34, fumarate hydratase35, and isocitrate 

dehydrogenase36,37. Mutations in these enzymes facilitate a metabolic phenotype that is conducive 

towards growth in diverse cancers23,38. In all, metabolic reprogramming is a signature of cancer cells used 

to support aberrant proliferation and is a potential target of anticancer strategies23–25. 
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Since Warburg’s first report of increased aerobic glycolysis in cancer cells, cancer diagnoses and 

treatment strategies have been developed around the Warburg effect. The most commonly known 

diagnostic method is fluorodeoxyglucose-position emission tomography (FDG-PET) imaging. FDG is a 

glucose analogue that cannot be metabolized and competes with glucose for transport across the cell 

membrane. FDG-PET is based on the assumption that malignant tissues have a higher rate of glucose 

uptake than normal tissues, such that tumors are identified by FDG accumulation when visualized by PET 

imaging. However, FDG uptake is influenced by confounding factors such as endogenous glucose pools, 

tissue heterogeneity, tissue volume, and non-glycolytic catabolism of glucose, which limit the usefulness 

of the FDG-PET technique3,39.  

As for cancer treatments, inhibition of glycolysis alone is not potent enough to induce significant 

anti-cancer effects40,41. The lack of potency in targeting glycolysis alone most likely arises from tumor 

heterogeneity and metabolic plasticity such that malignant cells can use alternative metabolic pathways to 

sustain rapid growth. Targeted therapies against glycolysis are being tested to determine if they 

potentiate the cytotoxic effects of other therapies40,41 or should be multiplexed with additional 

metabolically-based therapies. For example, 2-deoxyglucose (2DG), the unlabeled form of FDG, may be 

used in combination with radiation therapy in the treatment of glioblastoma multiforme (GBM)42. However, 

further clinical studies are required to determine efficacy of this combination therapy. Another strategy in 

the treatment of GBM could be 2DG and metformin combination therapy. Metformin, an inhibitor of 

oxidative phosphorylation, in combination with 2DG decreased the invasiveness of tumorspheres and 

significantly prolonged survival in a GBM xenograft model43. Furthermore, direct and selective therapies 

against aerobic glycolysis can be limited by the lack of small molecule inhibitors. Hexokinase-2 (HK2) 

catalyzes the first irreversible step in glycolysis and is considered to be a potent target for cancer 

treatment. However, for the past 50 years, the intrinsic properties of the HK2 enzyme have delayed the 

development of selective HK2 small molecule inhibitors and their application in the clinic. Only recently 

has a potential HK2 inhibitor been made44. In all, further research into the intersection of metabolism, 

aerobic glycolysis, and cancer biology will provide the insight required for the development of novel 

metabolism-based cancer therapies. 
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1.2 Medulloblastoma and cerebellar development 

1.2.1 Overview 

 Medulloblastoma is the most common malignant pediatric brain tumor. Current therapies for 

medulloblastoma rely on the sensitivity of the tumor to DNA damage. Craniospinal radiation therapy, 

which was first implemented in the 1950s, transformed medulloblastoma from a 100% fatal disease into a 

treatable cancer with 60% long-term survival45–47. Since then, the coupling of optimized radiation 

regimens with chemotherapeutics has improved patient outcomes to 80% long-term survival48–51. The 

success of these therapies, however, is dampened by their debilitating side effects. Survivors must live 

with significant long-term injuries, such as growth impairment, early strokes, cognitive deficits, and 

endocrine failure, while acutely aware of the risk of recurrence46,52,53. Importantly, 20-30% of 

medulloblastoma patients ultimately die from the disease. Thus, the identification of new therapeutic 

targets in addition to DNA damage-based chemotherapies is necessary. By improving our understanding 

of medulloblastoma tumorigenesis, we may discover novel pathways to target in the clinic, which may 

also bring reduced toxicity and improved patient outcomes.  

 Defined by molecular analyses, there are four distinct subgroups of medulloblastoma: wingless 

(WNT), sonic hedgehog (SHH), Group 3, and Group 454–56. Approximately 35% of all medulloblastomas 

are Group 4 tumors, followed by SHH (30%), Group 3 (25%), and (10%) WNT tumors56. Among infants 

and adults, however, the SHH subgroup is the most common medulloblastoma, representing more than 

50% of patient cases, with significant decreased frequency in children54. In contrast, the WNT (1%) and 

Group 4 (11%) subgroups rarely arise in infants while Group 3 (6%) is less common in adults54. Each 

medulloblastoma subgroup presents as a distinct disease with different patient demographics, 

transcriptomics, and genomics54–58. Of the four subgroups, SHH-driven medulloblastoma is the best 

characterized as animals models that recapitulate the disease59 have enabled and progressed basic, 

preclinical, and clinical research. 
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In research, medulloblastoma has been increasingly approached as a disorder of brain 

development. During the first year of life in humans, or the first 15 days of life in mice, neural progenitors 

rapidly divide. Cerebellar granule neuron progenitors (CGNPs) proliferate in the external granule cell layer 

(EGL), located along the outside of the cerebellum. In mice, peak CGNP proliferation and expansion 

occurs between postnatal day (P) 5 and 860. Then, CGNPs switch to the postmitotic, premigratory state in 

the inner EGL (iEGL)61 before differentiating and migrating to the internal granule cell layer (IGL) where 

they reside as cerebellar granule neurons (CGNs)60,62,63. By P20, CGNP migration and differentiation is 

complete. CGNPs represent the largest population of neurons in the brain and the cell of origin for SHH-

driven medulloblastoma. SHH-medulloblastoma specifically arises in the cerebellum from CGNPs that 

aberrantly proliferate, lacking normal growth control62,64,65. Thus, developmentally-regulated genes 

involved in normal cerebellar growth may contribute to tumorigenesis when they fail to turn off during 

differentiation.  

 

1.2.2 SHH-driven medulloblastoma  

SHH-driven medulloblastoma is characterized by activation of the SHH signaling pathway. This 

developmental pathway regulates postnatal CGNP proliferation at physiological levels but mutations that 

activate the SHH pathway can prolong proliferation and lead to SHH-driven medulloblastoma61,63,66. 

During normal cerebellar development, Purkinje cells secrete the SHH mitogen which diffuses to the EGL 

where CGNPs proliferate61 (Fig. 1.1A). In CGNPs, SHH binds to the transmembrane protein Patched 1 

(PTC), inducing a conformational change that releases the transmembrane protein Smoothened (SMO) 

from inhibition (Fig. 1.1B). Activated SMO then initiates an intracellular signal transduction pathway that 

activates the GLI transcription factor family and other target genes such as cyclinD1 and D267,68 (Fig. 

1.1B). SHH signaling drives CGNP expansion and wanes as progenitors differentiate and migrate to the 

IGL in response to negative growth regulation63. However, mutations in Ptc69,70, Suppressor of fuse 

homolog (Sufu)71, and Smo72 aberrantly activate the SHH signaling pathway in patients to drive 

medulloblastoma tumorigenesis.  
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 These activating mutations in patients have led to the development of animal models that 

recapitulate the disease. These models are critical for elucidating medulloblastoma tumorigenesis and 

have allowed for unprecedented, preclinical in vivo studies that test for targeted therapies against SHH-

driven medulloblastoma. Multiple models of SHH-driven medulloblastoma have been made; activating the 

developmental pathway through manipulation of different pathway effectors. One of the first models was 

the Ptc1-knockout mouse in which viable heterozygotes (Ptc+/-) developed tumors at a 15% incidence73. 

This model has been significantly improved as a research tool after crossing with Tp53-/- mice, as tumor 

incidence increased to 100% with loss of p5374.  

Of the tumor models that alter the SHH pathway downstream of Ptc, the ND2:SmoA1 model is 

the most widely used75. In these tumor-prone transgenic mice, the SHH subgroup is recapitulated in 

pathology and transcriptionally by the constitutive expression of the activated Smoothened transgene, 

SmoA1. The activating point mutation in SmoA1 is the single amino acid substitution W539L, derived 

from a sporadic basal cell carcinoma patient exhibiting SHH pathway activation59,76,77. The mutation, a 

conversion of Trp to Leu at residue 539, alters the binding pocket where PTC adheres to permit SmoA1-

mediated activation. Thus, the SHH pathway is activated and primarily in CGNPs as controlled by the 

NeuroD2 promoter, ND259,78. In mice hemizygous for ND2:SmoA1, tumor incidence is about 50% over 6 

months59 while the homozygous Smo/Smo model has >90% incidence over 2 months78. Similar to these 

models is the Cre-driven SmoM2 model, which expresses the constitutively active SMO-W539L mutant 

when activated by Cre recombinase79. In Math1-Cre;SmoM2 mice, mutant SMO activates the SHH 

pathway in Math1 lineage CGNPs to induce medulloblastoma with 100% incidence and with an average 

survival of 41 days64. As for hGFAP-Cre driven SmoM2 tumors, the developmental pathway is activated 

in the stem cells that give rise to the neurons and glia of the cerebrum and cerebellum, excluding Purkinje 

cells80. These animals have 100% medulloblastoma formation with an average survival of 33 days64. 

Together, these models provide a way to study how SHH-regulated genes impact both cerebellar 

development and medulloblastoma tumorigenesis, resulting in new targets for clinical treatments and 

insight into the overall link between disordered development and cancer.  
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Using animal models, previous work has shown that the SHH pathway induces aerobic glycolysis 

during CGNP proliferation and medulloblastoma formation81,82. To increase aerobic glycolysis, SHH up-

regulates the expression of key glycolytic enzymes, HK2 and PKM2, which catalyze virtually irreversible 

reactions at opposing ends of glycolysis81,82. Required for proper CGNP proliferation and tumor growth, 

as previously shown in SHH-driven medulloblastoma and glioblastoma multiforme, HK2 is a potential 

target to inhibit in metabolism-based clinical interventions82–84. The role of PKM2 in neural progenitors and 

tumorigenesis, however, needs to be elucidated in order to assess its potential as a therapeutic target. 

Identifying PKM2 as a target is particularly important as the dual targeting of direct SHH pathway 

effectors and an interacting non-SHH pathway (such as aerobic glycolysis) is a clinical strategy in the 

treatment of SHH-driven medulloblastoma. In all, studies with these models have led to the development 

of targeted therapies for the SHH subgroup56 and continued work will provide the insight needed to treat 

the primary and recurrent tumor in new ways. 

 

1.3 Metabolomics 

1.3.1 Overview 

 Metabolites are low molecular weight compounds (<2 kDa), not encoded by the genome, and are 

produced and altered by cells under a specific state85–87. The metabolome refers to all metabolites 

present in and produced by an organism86,88. Analytical techniques that can detect changes in 

metabolites are critical to the study of metabolism and its role in cancer. While routinely used in other 

disciplines such as analytical chemistry and biochemistry, methods based on mass spectrometry (MS) 

and nuclear magnetic resonance (NMR) are just starting to be used by the cancer research community to 

study metabolism89. The resurgent interest in metabolomics and cancer stems from its inherent 

measurement of cell function and phenotype23,86,87,89. In contrast to the transcriptome and proteome, 

changes in the metabolome reflect upstream, amplified changes in genes, transcripts, and proteins such 

that minute differences can be quantified90,91. Thus, metabolomic analysis is a tool that is driven by and 

generates hypotheses, as knowledge of expected metabolic differences can vary. In sum, metabolic 

profiling by MS or NMR detects a broad range of metabolites to provide a quick snapshot of metabolism. 



	

 11 

 

1.3.2 Nuclear magnetic resonance spectroscopy 

NMR is a nondestructive, unbiased method to analyzing metabolites. Independently developed by 

Felix Bloch92 and Edward Mills Purcell93 in the 1940s, NMR is a technique use to determine physical, 

chemical, and electronic properties of molecules. NMR, the foundation for magnetic resonance imaging 

(MRI), uses the magnetic properties of atomic nuclei, such that any nucleus possessing a magnetic 

moment can be studied. After applying a strong, external magnetic field, nuclei are observed by the 

absorption and emission of electromagnetic radiation at a wavelength that corresponds to 

radiofrequencies, or megahertz (MHz) (Fig. 1.2). Zeeman levels, the induced energy differences between 

nuclear spin states, is relatively small in NMR compared to other techniques and reduces sensitivity94. 

Since the 1940s, NMR sensitivity has improved greatly by the use of higher magnetic fields and with the 

advent of Fourier transform NMR95 and noise decoupling96. Together, these innovations have made 1H 

and 13C NMR robust analytical techniques. 

1H NMR is a analytical technique used to study biologically important metabolites in normal and 

malignant cells and tissues, including alanine in ovarian cancer97 and lactate in CGNPs and 

medulloblastoma82. The proton nucleus (1H) is the most sensitive nucleus for NMR besides the hydrogen 

isotope tritium, which has a low natural abundance and is radioactive. 1H has a high natural abundance 

(>99%) and intrinsically high sensitivity for NMR as indicated by its high gyromagnetic ratio. The 

gyromagnetic ratio is the ratio of the magnetic moment to the angular moment of a particle, a constant for 

a given nuclei94. However, the application of 1H NMR can be challenging, as the precise resonance 

frequency range (i.e., the chemical shift range) is only 8 ppm for nonexchangeable protons. The short 

chemical shift range limits the separation and quantification of many overlapping metabolites94. Thus, 

spectral processing methods such as line broadening correction, phase/frequency adjustment, baseline 

correction, and water signal removal, are required to distinguish and measure metabolites in 1H NMR 

spectra.  

  13C NMR analysis complements 1H NMR analysis as almost all metabolites contain carbon. In 

contrast to the small chemical shift range of 1H NMR, 13C NMR has a large range (>200 ppm).  13C also 
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has a 1.1% natural abundance and low gyromagnetic ratio, resulting in relatively low sensitivity for 

detection by NMR. To overcome low sensitivity, dynamic nuclear polarization (DNP) is used to increase 

13C NMR sensitivity by 5-fold. The concept behind DNP is to increase the polarization of nuclear spins in 

order to overcome the low gyromagnetic ratio. DNP is achieved in an amorphous solid state at ~1 K by 

coupling the nuclear spins with unpaired electrons through an organic-free radical94. As another way to 

achieve spectral sensitivity, metabolites of interest can be fractionally enriched using 13C precursors. If 

there is enough signal, 13C NMR can provide positional information with better resolution compared to 1H 

NMR, as a simpler system with inherently fewer coupling partners85. Moreover, 13C-labeled metabolites 

are detectable by 1H NMR as 1H-13C coupling gives rise to distinct satellite peaks around the main 1H 

peak on the spectra. Notably, 13C is a naturally abundant tracer that can be studied and does not interfere 

with the intact metabolism of a system. Thus, 13C-labeled precursors can be used in 1H and 13C NMR 

analyses to study metabolic flux, i.e. the mass balance of a system85.  

 

1.3.3 Metabolic footprint and fingerprint 

The metabolic footprint and fingerprint of a given system are the profiles of metabolites outside 

and inside of the analyzed system86. In metabolic footprinting, the less technically-demanding process 

begins with tissue or cell culture in complete medium. After reaching equilibrium with cells, media are 

sampled and analyzed, a design that permits high-throughput studies. Media analysis is used to 

determine the change in metabolites consumed from and secreted into the media. The consequent 

metabolite profile of the media represents the effect of a specific, cellular metabolic program on the 

extracellular environment. For example, lactate and alanine secretion into the media are indicators of 

increased, intracellular glutamine metabolism in transformed cells18. For metabolic fingerprinting, the 

transformed cell extracts would be analyzed to detect changes in a wide range of metabolites at a given 

time. Metabolic fingerprinting detects changes from the norm to provide functional insight into a mutant 

cell or disease state. Interpretation of metabolic fingerprints, however, should be performed carefully and 

account for experimental design and limitations. For example, changes in metabolites in response to drug 

treatment could have several interpretations. If drug treatment increases intracellular citrate 
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concentration, it could mean that elevated glycolysis is replenishing intermediate pools of the Krebs cycle. 

Another interpretation is that decreased activity in the later reactions of the Krebs cycle is causing a 

backflux of intermediates such as citrate. Moreover, the increased citrate could be sourced from 

increased glutamine consumption in response to drug treatment. To improve clarity in metabolic 

fingerprinting studies, 13C tracers should be used. 13C precursor studies provide the added benefit of 

studying metabolic flux while determining metabolite concentration. Thus, in this described example, 

labeled glutamine or glucose would elucidate the carbon source for the increased citrate and show which 

metabolic pathway(s) are altered.   
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1.4 Figures and Legends 

Figure 1.1 SHH signaling pathway 

 During postnatal cerebellar development, (A) CGNPs located in the EGL proliferate in response 

to SHH secreted by Purkinje cells. Postmitotic, premigratory CGNPs reside in the inner EGL before 

migrating to the IGL. In active SHH signaling, (B) the mitogen SHH binds with PTC, releasing SMO from 

inhibition. Active SMO initiates intracellular signal transduction to activate the GLI family of transcription 

factors to express target genes and support growth. SUFU is degraded and GLI can initiate transcription. 

EGL, external granule layer; PCL, purkinje cell layer, IGL, internal granule layer; ECM, extracellular 

matrix; SHH, sonic hedgehog; PTC, Patch 1; SMO, Smoothened; SUFU, suppressor of fused homolog.  
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Figure 1.1 
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Figure 1.2 The basis of NMR 

Spin-1/2 nuclei include 1H and 13C nuclei. As in (A), nuclei are electrically charged and have an 

intrinsic spin that causes them to act like a magnet. Once an external magnetic field (Bo) is applied, nuclei 

spin at two energy states, β and α. In the (B) higher energy state β, the nucleus spins to generate a 

magnetic field in the opposite direction to the applied field. In the (C) lower energy state α, the nucleus 

spins to generate a magnetic field that aligns with the applied field. NMR spectroscopy is the 

measurement of the energy difference that reads as radiofrequencies.  
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CHAPTER II: PYRUVATE KINASE INHIBITS PROLIFERATION DURING POSTNATAL CEREBELLAR 

NEUROGENESIS AND SUPPRESSES MEDULLOBLASTOMA FORMATION 

2.1 Overview  

Aerobic glycolysis supports proliferation in development and cancer through unresolved 

mechanisms. Aerobic glycolysis is integral to cerebellar neurogenesis and medulloblastoma, a malignant 

cerebellar tumor. Blocking glycolysis in cerebellar granule neuron progenitors (CGNPs) by deleting 

Hexokinase-2 (Hk2) disrupts proliferation and restricts medulloblastoma growth. In contrast, we now show 

that inhibiting the later stages of glycolysis by disrupting Pyruvate kinase-M (Pkm) increases CGNP 

proliferation and medulloblastoma growth. Differentiated neurons splice Pkm to the more active PKM1 

isoform while neural progenitors and medulloblastomas exclusively express the less active PKM2. 

Isoform-specific Pkm2 deletion in CGNPs ablated PKM2 without inducing compensatory PKM1, resulting 

in reduced glycolysis and increased progenitor proliferation. Moreover, Pkm2 deletion accelerated tumor 

formation in medulloblastoma-prone ND2:SmoA1 mice. Thus PKM2 is not required for neural progenitor 

proliferation or tumorigenesis. Rather, the loss of pyruvate kinase releases cells from growth inhibition. 

We show that aerobic glycolysis supports growth through steps upstream of pyruvate kinase.  

 

2.2 Introduction 

Increased aerobic glycolysis is a common feature of proliferating cells during developmental and 

malignant growth1–3. CGNPs are transit amplifying cells that proliferate in the postnatal brain4,5 and utilize 

aerobic glycolysis during normal brain development6. CGNP proliferation is strictly regulated; excessive 

CGNP growth and delayed maturation promote the formation of medulloblastoma, the most common 

malignant pediatric brain tumor7–9. Medulloblastomas co-opt developmentally-regulated programs of 

CGNPs10,11, including the metabolic phenotype of increased aerobic glycolysis6,12. Determining how 
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aerobic glycolysis supports CGNP proliferation and medulloblastoma tumorigenesis may provide new 

insight into both neurodevelopmental disorders and cancer biology. 

During postnatal brain development, CGNPs proliferate in the cerebellum in response to locally 

secreted Sonic Hedgehog (SHH), generating the largest neuron population in the mammalian brain13–16. 

In synchrony with increased proliferation, SHH signaling in CGNPs induces Hexokinase-2 (HK2) 

expression and aerobic glycolysis6,12. 30% of medulloblastoma patients show SHH-pathway activation17–

19 and mice with activating SHH-pathway mutations develop spontaneous medulloblastomas that 

recapitulate the human disease20–22. These tumors, like CGNPs, up-regulate HK2 and aerobic glycolysis. 

Examining CGNP proliferation and SHH-driven tumorigenesis in mice provides an in vivo model for 

determining how aerobic glycolysis supports developmental and malignant growth.  

We have previously shown that conditional deletion of Hk2 in the developing brain blocks SHH-

induced aerobic glycolysis, disrupts the typical pattern of CGNP differentiation, and reduces 

medulloblastoma growth, extending the survival of medulloblastoma-prone mice6. These findings suggest 

that blocking glycolysis through HK2 inhibition may produce a clinically significant anti-tumor effect. 

Development of HK2 inhibitors for anti-cancer therapy however, has been problematic23. Furthermore, 

while the effects of HK2 inhibition demonstrate the importance of aerobic glycolysis in development and 

cancer, the specific glycolytic reactions or products that support proliferation have not been identified. To 

better characterize how glycolysis supports physiologic and malignant proliferation, we investigated the 

role of pyruvate kinase in cerebellar growth and medulloblastoma. 

While HK2 catalyzes the first step in glycolysis24, pyruvate kinase catalyzes the final step in the 

pathway, converting phosphoenolpyruvate (PEP) and ADP into pyruvate and ATP25. Pkm is the pyruvate 

kinase gene expressed in most tissues including the central nervous system26. Alternative splicing of a 

single exon from Pkm gives rise to either Pkm1, which includes exon 9, or Pkm2, which replaces exon 9 

with exon 1027. PKM1 is expressed in differentiated tissues and is a constitutively active enzyme, while 

PKM2 is commonly expressed in cancer and has activity that is subject to regulation28–34. Fructose-1,6-

bisphosphate (FBP), an upstream intermediate in glycolysis, regulates PKM2 by stabilizing the enzyme 

as a tetramer. This tetrameric conformation is comparable to the constitutively active PKM1 
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tetramer26,33,34. PKM2 activation can be suppressed by interaction with tyrosine-phosphorylated proteins 

in response to growth factor receptor signaling31,33,35. The ability to regulate PKM2 through both 

endogenous allosteric effectors and intracellular signaling pathways may allow proliferating cells to adjust 

their metabolism to meet dynamic cellular requirements29.  

Because PKM2 is the pyruvate kinase isoform expressed in most cancers, it has been suggested 

as a potential target for anti-cancer therapy. Xenograft tumors engineered to overexpress either PKM1 or 

PKM2 showed that PKM2 isoform expression confers a growth advantage36. Other studies have reported 

nonmetabolic, growth-promoting functions such as transcriptional regulation37,38 and histone 

phosphorylation30,39–41, however, whether PKM2 can act as a protein kinase is controversial42. Moreover, 

the oncogenic potential of Pkm2 was challenged by the finding that the isoform-specific deletion of PKM2 

accelerates tumorigenesis in a mouse model of breast cancer43, and promotes late-onset liver cancer in 

mice44. 

In the brain, PKM2 has been reported to be induced by SHH in CGNPs and expressed in the 

ND2:SmoA1 mouse model of medulloblastoma12,45, suggesting a role in SHH-driven growth. PKM2 up-

regulation has also been noted in MYC-amplified Group 3 medulloblastomas46, suggesting a role for 

PKM2 in tumor growth across medulloblastoma subgroups. Here, we analyzed how conditional Pkm2 

deletion in CGNPs alters metabolism, proliferation, and medulloblastoma tumorigenesis. Pkm2 deletion, 

like Hk2, decreased glycolysis. In contrast to Hk2-deleted mice, however, Pkm2-deleted animals showed 

increased CGNP growth and accelerated medulloblastoma formation. The differential effects of impeding 

aerobic glycolysis through deletion of Hk2 or Pkm2 point to the glycolytic steps upstream of pyruvate 

kinase as critical to promoting proliferation.  

 

2.3 Results 

2.3.1 Pkm isoform expression in the brain mirrors differentiation status 

We found a dichotomous pattern of Pkm splicing in the postnatal brain, with PKM2 expressed by 

undifferentiated neural progenitors, and PKM1 expressed by neurons. Immunohistochemistry (IHC) 
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showed PKM1 expression in differentiated neurons throughout the brain and absence of PKM1 in 

progenitor regions, including the cerebellar external granule layer (EGL), the hippocampus, and the 

subventricular zone/rostral migratory stream (SVZ/RMS) (Fig. 2.1A). In contrast, the neural progenitors of 

the EGL, the hippocampus, and the SVZ/RMS specifically expressed PKM2 and not PKM1 (Fig. 2.1B).  

In the postnatal cerebellum, neural progenitor proliferation peaks at P7 then wanes, ending by 

P15, as CGNPs exit the cell cycle, migrate to the internal granule layer (IGL), and differentiate into 

cerebellar granule neurons (CGNs)4,11,47. Western blot of whole cerebellum lysates showed that PKM2, 

like the proliferation marker Cyclin D2 (CCND2), decreased between P7 and P15, while PKM1 conversely 

increased (Fig. 2.1C). PKM2 expression, however, was not limited to proliferating cells; both proliferating 

PCNA+ CGNPs in the outer layer of the EGL (oEGL), and differentiating PCNA- CGNPs of the inner EGL 

(iEGL) expressed PKM2 (Fig. 2.1D). Similarly, in the SVZ/RMS, both PCNA+ and PCNA- progenitors 

expressed PKM2 (Fig. 2.1E). Thus, PKM2 marked undifferentiated brain progenitors, whether 

proliferating or quiescent, while PKM1 marked differentiated neurons.   

To determine if medulloblastomas, like CGNPs, exclusively expressed PKM2, we analyzed PKM 

isoform expression in transgenic, medulloblastoma-prone ND2:SmoA1 mice. ND2:SmoA1 mice express a 

mutant, constitutively active allele of Smo, driven by the NeuroD2 promoter. In CGNPs of ND2:SmoA1 

mice, cell autonomous SHH activation prolongs proliferation beyond P15. These mice develop 

medulloblastoma with incomplete penetrance after a variable latency20. During this latent period, CGNPs 

continue to proliferate as premalignant lesions within the EGL, generating progeny that differentiate, 

undergo apoptosis, or remain proliferative.  

We found that CGNPs in the premalignant lesions of P60 ND2:SmoA1 mice expressed PKM2 

and not PKM1 (Fig. 2.1F). Similarly, medulloblastomas that arose from these premalignant lesions 

consistently and homogeneously expressed PKM2, while adjacent, normal brain expressed PKM1 (Fig. 

2.1G). Thus, PKM2 expression persisted as undifferentiated CGNPs gave rise to SHH-driven 

medulloblastoma.  

We compared the expression of PKM1 and PKM2 mRNA in human medulloblastoma samples 

analyze by RNA-seq. As in the mouse model, we found exclusive expression of PKM2, with minimal 
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expression of PKM1 in all four medulloblastoma subgroups (Fig. 2.1H). Together, our studies of mouse 

and human tumors show that PKM2 expression in the mouse model recapitulates the distinct pattern of 

PKM expression in medulloblastoma patients.   

 

2.3.2 SHH stimulates PKM2 expression  

To examine the effect of SHH signaling on PKM1/2 expression, we isolated CGNPs and 

compared PKM isoform expression in the presence or absence of SHH ligand. We identified cells at S-

phase by adding 5-ethynyl-2’-deoxyuridine (EdU) to CGNP cultures 1h before fixation. EdU+ cells and 

PKM2+ cells were more numerous in SHH-treated wells (Fig. 2.2A; cyan arrows) compared SHH-

deprived controls (Fig. 2.2B; arrows). In SHH-treated wells, PKM2 was detected in both EdU+ and EdU- 

cells (Figs. 2.2A,B; white arrowheads). Consistent with the absence of PKM1 expression in the EGL, no 

CGNPs in either condition showed a detectable level of PKM1; rare cells that were PKM1 positive did not 

have the size and shape characteristic of CGNPs (Figs. 2.2C,D). These data show that SHH sustained 

PKM2 expression in CGNPs, while PKM1 expression remained low as SHH-deprived CGNPs exited the 

cell cycle.  

We used Western blot to compare PKM1 and PKM2 expression between CGNPs cultured with or 

without SHH ligand or with SHH ligand plus the Smo inhibitor vismodegib (vismo)48. As an indicator of 

SHH-driven proliferation, we also measured the expression of CCND2 protein. As expected, SHH-treated 

CGNPs expressed 5.5-fold more CCND2 compared to CGNPs without SHH (Fig. 2.2E). SHH-treated 

CGNPs expressed 2-fold more PKM2 (Fig. 2.2E). The low level of PKM1 expression that did not localize 

to CGNPs by immunostaining was also significantly increased by SHH (Fig. 2.2E). However, while SHH 

inhibition by vismo decreased CCND2 by 30%, the effects of vismo on PKM1 and PKM2 were relatively 

small and not statistically significant (Fig. 2.2E). These data show that the expression of both PKM2 and 

CCND2 was up-regulated by SHH. Compared to CcnD2, however, Pkm was markedly less responsive to 

changes in SHH signaling, suggesting that Pkm, unlike CcnD2, is not a direct SHH target15.  

 



 28 

2.3.3 Pyruvate kinase activity in CGNPs is increased by growth stimulation 

SHH and IGF receptor (IGFR) signaling converge to regulate aerobic glycolysis in CGNPs6. 

Tyrosine kinase signaling, and specifically insulin signaling, can down-regulate the enzymatic activity of 

PKM2 in diverse cell lines33,49,50. While CGNPs are typically cultured with insulin-rich N2 supplement to 

improve cell viability51, we have previously shown that CGNPs can be cultured in the absence of N2 for 

24h, reducing IGFR activation without compromising survival6. We maintained CGNPs in the presence or 

absence of SHH or N2, to determine the effect of SHH and IGFR stimulation on CGNP pyruvate kinase 

activity.  

We found that withholding either SHH6 or N2 similarly reduced glycolysis, detected by reduced 

lactate production (Fig. 2.2F). We measured pyruvate kinase activity in lysates of CGNPs cultured with or 

without SHH or N2 by quantifying the conversion of exogenous PEP to pyruvate. CGNPs maintained with 

SHH + N2 showed significantly higher pyruvate kinase activity compared to either SHH without N2 or N2 

without SHH (Figs. 2.2G,H). These findings show that CGNP pyruvate kinase activity, like PKM 

expression, was responsive to extracellular signaling, and was maximal with SHH/IGFR co-activation. 

While reduced pyruvate kinase activity has been correlated with growth factor stimulation in cancer 

cells31,35,36, in CGNPs, developmentally-relevant growth factors increased pyruvate kinase expression, 

pyruvate kinase activity, and aerobic glycolysis.  

 

2.3.4 Pkm2 deletion is not replaced by Pkm1 in brain progenitors 

To determine the developmental significance of PKM function and splicing in CGNPs, we 

examined the effect of conditionally deleting Pkm exon 10, the exon that is differentially included in PKM2 

and excluded from PKM127. We crossed Math1-Cre mice, which express Cre recombinase in CGNPs52,53, 

with Pkm2fl mice that harbor loxP sites flanking exon 10 of Pkm43. The resulting Math1-Cre; Pkm2fl/fl mice 

(Pkm2cKO) mice were viable and fertile with no overt neurologic deficits. Examination of the Pkm2cKO 

cerebellum showed normal foliation and cellular organization, with an EGL that showed no detectable 

PKM2 (Fig. 2.3A,B). Pkm2 deletion did not induce PKM1 in CGNPs, but increased PKM1 expression in 
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CGNs, the terminally differentiated CGNP progeny (Fig. 2.3A, inset). Consistent with these changes, 

Western blot of whole P7 cerebellum lysates showed reduced PKM2 and increased PKM1 in Pkm2cKO 

mice compared to no-Cre littermate controls (Fig. 2.3C). In whole cerebellum lysates, pyruvate kinase 

activity was equivalent in Pkm2cKO and littermate controls (Fig. 2.3D). In CGNPs, however, Pkm2 deletion 

blocked all detectable PKM expression. 

During the breeding of Pkm2cKO mice, we noted an unanticipated tendency for germline 

recombination of the Pkm2fl allele. This recombination event was detected as a smaller than expected 

PCR product when primers flanking Pkm exon 10 were used to amplify genomic DNA extracted from toe 

cuts. While these primers were separated by 605 bp in the Pkm2fl/fl allele and 560 bp in the Pkm2+/+ allele, 

we found pups in several litters that generated 220 bp PCR products consistent with the recombined 

allele (Fig. 2.S1A). Sequencing of this band demonstrated that intron 9-10 and 10-11 were brought 

together, separated by a single loxP site, consistent with Cre-mediated excision of exon 10 from Pkm43 

(Fig. 2.S1B). Germline recombination has been observed when Pkm2fl mice were crossed with other non-

germline Cre drivers (M. Vander Heiden, unpublished), suggesting that Pkm exon 10 deletion may be 

positively selected in the germline. The recombined allele (Pkm2null) was heritable and Pkm2null/null mice 

were viable and fertile without overt neurologic abnormalities, consistent with the published Pkm2 null 

phenotype44. Although Pkm2 null mice have been reported to develop spontaneous hepatocellular 

carcinoma after 55 weeks44, we did not observe any spontaneous tumor formation in our Pkm2null/null aged 

for up to 1 year. In Pkm2null/null mice, PKM2 was absent from all brain progenitor regions and endothelial 

cells, while PKM1 was appropriately limited to differentiated neurons (Fig. 2.S1C,D). Like Pkm2cKO mice, 

Pkm2null/null mice showed normal brain anatomy. 

 

2.3.5 Pkm2 deletion increases CGNP proliferation  

Although Pkm2cKO cerebella had normal organization, quantitative analysis showed that CGNP 

proliferation was increased compared to PKM2-intact littermate controls without Cre. We analyzed 

proliferation dynamics in vivo, by injecting EdU at P6 into Pkm2cKO and Pkm2fl/fl littermates without Cre, 

then harvesting cerebella 24h later and staining tissue sections for EdU and the CGNP differentiation 
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marker p27Kip1. Both genotypes showed EdU in p27+ and p27- cells in the EGL (Figs. 2.4A,B). While the 

fraction of EdU+ cells was similar between genotypes (Fig. 2.4C), we noted a trend toward reduced 

p27Kip1+ cells in the EGL of Pkm2cKO mice (Fig. 2.4D). Quantification of double labeling demonstrated that 

EdU+ CGNPs that were p27Kip1-, and thus in a proliferative state, were more numerous in the EGL of 

Pkm2cKO mice (Fig. 2.4E). Conversely, the fraction of p27Kip1+ CGNPs that were EdU- was lower in the 

EGL of Pkm2cKO mice, indicating that in these mice, a greater proportion of the differentiating CGNPs had 

been proliferating 24h earlier (Fig. 2.4F). In vitro studies provided additional evidence of increased 

proliferation with Pkm2 deletion. CGNPs explanted from Pkm2cKO mice showed a higher fraction of EdU+ 

cells after a 1h pulse, compared to CGNPs explanted from littermate controls (Fig. 2.4G). 

Consistent with the increased proliferation of Pkm2cKO CGNPs, analysis of equivalent midline 

cerebellar sections showed that Pkm2cKO cerebella contained significantly more cells (CGNPs and CGNs) 

compared to littermate controls (Fig. 2.4H). We did not detect a significant difference in the ratio of EGL to 

IGL between the two genotypes however (Fig. 2.4I), indicating that Pkm2 deletion did not prevent CGNPs 

from progressing through their normal differentiation trajectory. Taken together, our data show that Pkm2 

deletion blocks PKM expression in CGNPs, with the effects of increasing proliferation and reducing cell 

cycle exit, without altering cell fate.  

 

2.3.6 Pkm2 deletion inhibits the catabolism of glucose to lactate 

We used a non-biased, metabolomic approach to determine the effect of Pkm2 deletion and 

consequent loss of PKM function on CGNP metabolism. We isolated CGNPs from P5 Pkm2cKO and 

littermate control pups and cultured them in three replicate wells in vitro for 24h in media in which [1,6-

13C] glucose was substituted for unlabeled glucose. We analyzed media metabolites from each replicate 

well for each condition at 0 and 24h using NMR spectroscopy followed by orthogonal partial least squares 

discriminant analysis to identify metabolites that varied consistently across genotypes (Table 1).  

Lactate production was significantly reduced in Pkm2cKO CGNPs compared to controls (Fig. 

2.5A), and lactate was the only analyzed media metabolite that showed a change over time that was 
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significantly different between genotypes (Table 1). We confirmed that Pkm2cKO CGNPs produced less 

lactate by measuring media lactate concentrations over time in a replicate set of wells by colorimetric 

assay (Fig. 2.5B). Thus Pkm2 deletion, like Hk2 deletion, impaired the conversion of glucose to lactate in 

CGNPs. Together with our findings that Pkm2cKO CGNPs have increased proliferation and Hk2-deleted 

CGNPs have premature differentiation6, these studies show that blocking glycolysis at different steps 

(hexokinase versus pyruvate kinase) produces markedly different developmental effects.  

Pkm2cKO CGNPs demonstrated detectable but decreased 13C incorporation into lactate (Figs. 

2.5C,D). The reduced fractional enrichment of lactate in Pkm2-deleted CGNPs is consistent with less 

efficient conversion of PEP to pyruvate. However, these data also demonstrate that glucose carbons can 

flow into lactate in the absence of PKM1 and PKM2. 

To determine effect of Pkm2 deletion on the intracellular disposition of glucose in CGNPs, we 

analyzed 13C incorporation in cell extracts by liquid chromatography-mass spectrometry (LC-MS). LC-MS 

detected diverse small molecules that did not show significantly different distributions between genotypes, 

although we noted a trend toward increased choline in Pkm2cKO CGNPs, consistent with their increased 

proliferation (Fig. 2.5E). We were able to detect 13C-labeling in glutamate, indicative of flow through the 

Krebs cycle, and in the ribose component of ATP, ADP and AMP, indicative of flow through the pentose 

phosphate pathway (PPP) (Fig. 2.6).  

Relative to Pkm2cKO CGNPs, Pkm2-intact controls produced significantly more glutamate with 3 

or more 13C atoms incorporated (Fig. 2.6). The incorporation of multiple 13C atoms from [1,6-13C] glucose 

requires both conversion of pyruvate to acetyl-CoA and multiple turns of the Krebs cycle (Fig. 2.S2). The 

increased glutamate enrichment with 3 or 4 incorporated 13C atoms in controls indicates that a higher 

proportion of glucose-derived metabolites remained in the Krebs cycle. In contrast, less glutamate 

labeling in Pkm2cKO CGNPs demonstrates increased channeling of glucose-derived metabolites out of the 

Krebs cycle.  

Both genotypes demonstrated 13C incorporation into ribose. LC-MS demonstrated labeled parent 

masses of ATP, ADP, and AMP that fragmented into unlabeled adenine  and 13C-labeled ribose. These 

data demonstrate active flow through the PPP. However, we did not detect a robust difference in PPP flux 
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between genotypes (Fig. 2.6). These data show that the presence or absence of PKM2 did not profoundly 

alter the generation of ribose from glucose.  

Our data do not identify the reactions that bypass the conversion of PEP to pyruvate catalyzed by 

pyruvate kinase. However, the incorporation of 13C into glutamate and lactate shows that Pkm2-deleted 

CGNPs are able to metabolize glucose into 2- and 3- carbon species at a reduced but detectable rate, 

while maintaining comparable flow through the PPP. Thus Pkm2 deletion impedes PEP 

dephosphorylation and redirects glucose-derived metabolites away from both lactate generation and 

retention in the Krebs cycle.  

 

2.3.7 Medulloblastoma tumorigenesis is exacerbated by loss of PKM2 

We examined the functional consequence of Pkm2 deletion on SHH-driven medulloblastoma 

tumorigenesis by crossing Pkm2cKO and Pkm2null/null mice with medulloblastoma-prone mouse lines. We 

generated tumor-prone mice using either the SmoM2 allele that induces rapidly developing progressive 

medulloblastoma with 100% incidence by P20, or with the ND2:SmoA1 allele that induces tumors more 

slowly. In contrast to the anti-tumor effect of Hk2 deletion, we found that Pkm2 deletion did not slow tumor 

progression in Math1-Cre;SmoM2;Pkm2fl/null mice (Fig. 2.7A) or hGFAP-cre;SmoM2;Pkm2fl/null mice (data 

not shown) compared to Pkm2-intact, littermate controls. In both of these models, however, rapid tumor 

growth limits the ability to determine whether the loss of PKM2 accelerates disease. To address this 

question, we examined Pkm2 deletion in ND2:SmoA1 mice. 

We found that ND2:SmoA1 mice with Pkm2 deletion developed tumors more frequently than 

Pkm2-intact ND2:SmoA1 controls and this difference became more pronounced over time. We compared 

ND2:SmoA1 mice with two mutant copies of Pkm2, including Math1-Cre;ND2:SmoA1;Pkm2fl/fl, Math1-

Cre;ND2:SmoA1;Pkm2fl/null, and ND2:SmoA1;Pkm2null/null genotypes to control ND2:SmoA1 mice with two 

intact copies of Pkm2, including no-Cre;ND2:SmoA1;Pkm2+/+, no-Cre;ND2:SmoA1;Pkm2fl/+, and Math1-

Cre;ND2:SmoA1;Pkm2+/+ genotypes. We observed a trend toward increased tumor formation in Pkm2–

deleted mice at P150, where the incidence was 37.5% with Pkm2 deletion vs 15.8% for controls 
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(p=0.245, Fisher’s Exact test). By 300, increased tumor formation in Pkm2–deleted mice was detectable 

with statistical significance, showing 100% incidence with Pkm2 deletion vs 57.9% for controls (p=0.004, 

Fisher’s Exact test). Consistent with increased tumor formation, ND2:SmoA1 mice with Pkm2 deletion 

demonstrated significantly shorter survival (Fig. 2.7B).  

To determine if Pkm2 deletion accelerated tumor growth through a cell autonomous process, we 

separately compared the Math1-Cre;ND2:SmoA1;Pkm2fl/null and ND2:SmoA1;Pkm2null/null subgroups to 

Pkm2-intact ND2:SmoA1 controls. This analysis also showed significantly shorter survival for both Math1-

Cre;ND2:SmoA1;Pkm2fl/null (Fig. 2.7C) and ND2:SmoA1;Pkm2null/null genotypes (Fig. 2.7D). We found no 

statistically significant difference between different Pkm2-deleted genotypes. The similar effect of Pkm2 

deletion in the Math1-Cre;ND2:SmoA1;Pkm2fl/null and ND2:SmoA1;Pkm2null/null subgroups shows that the 

effect of Pkm2 deletion is cell autonomous.  

Like Pkm2-deleted CGNPs, Pkm2-deleted medulloblastoma cells did not express PKM2 (Fig. 

2.7E) or PKM1 (Fig. 2.7F). However, we noted scattered PKM1+ cells within Pkm2-deleted tumors (Fig. 

2.7E’’’). These cells were consistently PCNA- (Fig. 2.S3) and were also found in Pkm2-intact tumors. 

These non-proliferative, PKM1+ cells may be entrapped neurons or differentiated progeny of tumor cells. 

Similar PKM1+ stromal cells were previously observed in Pkm2-deleted breast tumors43.  

The slow process of tumor formation in ND2:SmoA1 mice allowed us to analyze the effect of 

Pkm2 deletion on the growth of premalignant lesions. We counted PCNA+ cells in cerebella of 

ND2:SmoA1 mice with deleted or intact Pkm2, harvested at either P60 or P120 and normalized the 

number of PCNA+ cells to the total number of cells in each cerebellar section (Fig. 2.7G). In controls, the 

median fraction of PCNA+ cells in the cerebellum and the range of these values decreased over time, 

consistent with a dynamic balance between growth and growth suppression. In contrast, in Pkm2-deleted 

genotypes, the median and range of PCNA+ fractions increased over time, consistent with reduced 

growth suppression during the premalignant period. Altogether, Pkm2 deletion increased SHH-driven 

CGNP proliferation during development, accelerated tumorigenesis in premalignant lesions in Smo-

mutant mice, and increased the incidence of tumor formation from these lesions.  
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The more rapid progression of mouse tumors with Pkm2 deletion was mirrored by a trend toward 

shorter survival in medulloblastoma patients with low PKM2 expression. We classified SHH-subgroup 

medulloblastoma patients as having either high or low PKM2 expressing tumors and compared their 

clinical outcomes. All patients were treated similarly with radiation and chemotherapy. While not 

statistically significant, we found that patients with low PKM2 expression trended toward shorter survival 

times (Fig. 2.7H). Together, these data confirm that PKM2 is not essential for tumor progression and 

suggest that low PKM2 expression, like Pkm2 deletion, enhances medulloblastoma tumor growth. 

 

2.4 Discussion  

This study is the first to analyze the functional significance of pyruvate kinase isoform expression 

in the developing brain and in medulloblastoma. While aerobic glycolysis has been associated with 

proliferation in both development6,54,55 and cancer1,2, our data show that disrupting glycolysis at pyruvate 

kinase actually increases, rather than decreases both developmental proliferation and tumorigenesis. We 

show that within the neural lineage, Pkm is spliced into mutually exclusive expression patterns that 

correlate pyruvate kinase activity with differentiation state. In the postnatal brain, undifferentiated 

progenitors in the cerebellum, hippocampus, and SVZ expressed the less catalytically active PKM2 

isoform, while differentiated neurons expressed the more active PKM1. The correlation of PKM2 with the 

undifferentiated state was maintained in medulloblastoma. Moreover, the PKM1:PKM2 dichotomy 

persisted after conditional or germline deletion of Pkm2, which increased PKM1 in differentiated cells but 

not in progenitors. The lack of compensatory up-regulation of PKM1 in brain progenitors contrasts with 

prior observations in MEFs and other tissues, where PKM1 expression increases when Pkm exon 10 is 

deleted44,56. In Pkm2-deleted MEFs, increased PKM1 caused nucleotide scarcity and cell cycle arrest. 

However, Pkm2cKO CGNPs expressed neither PKM isoform and showed decreased glycolysis and 

increased proliferation. Pkm2 deletion also enhanced the growth of premalignant lesions and tumors in 

ND2:SmoA1 mice. These findings demonstrate that PKM2 is not required for the physiologic or malignant 

proliferation of neural progenitors. Rather, the absence of detectable PKM in Pkm2cKO mice was 

associated with increased proliferation.  
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The different effects of Pkm2 deletion in CGNPs and MEFs, taken together, argue that 

proliferation is restricted by PKM1, rather than enhanced by PKM2. We propose a model in which high 

pyruvate kinase activity inhibits proliferation and suppresses tumor formation; consistent with this model, 

splicing Pkm pre-mRNA to generate PKM2 has a permissive effect on proliferation and abrogation of 

PKM expression is more permissive. The finding that SHH and IGFR signaling increased maximal 

pyruvate kinase activity is not necessarily at odds with this model as growth factors are known to induce 

simultaneously both positive and negative regulation of proliferation. For example, mitogenic SHH 

activation up-regulates, Patched (Ptc), which negatively regulates SHH signaling57–59. Activating PKM2 

may be a similar inhibitory element that is part of the normal regulation of SHH-induced growth. 

Alternatively, the normal regulation of PKM2 activity in CGNPs may not be fully recapitulated in lysates 

where the intracellular architecture is disrupted. 

Our prior studies of Hk2 deletion demonstrate that the initiation of glycolysis supports postnatal 

neurogenesis and sustains the malignant growth of medulloblastomas. In contrast, our present studies of 

Pkm2 deletion show that impeding the flow of glucose to lactate increases CGNP proliferation and 

accelerates medulloblastoma tumorigenesis. Together, these deletion studies show that the pathways 

through which glucose is metabolized significantly influence the proliferative behavior of undifferentiated 

cells. The divergent effects of Hk2 deletion versus Pkm2 deletion establish the glycolytic steps upstream 

of pyruvate kinase as critical to promoting the proliferative phenotype. 

Between the reactions catalyzed by HK2 and PKM2 are several reversible reactions that permit 

glycolytic intermediates to be shunted toward biosynthetic processes. We and others have previously 

proposed that low flow downstream of PEP, achieved by preferentially splicing PKM to generate PKM2, 

may support growth by diverting glycolytic intermediates away from lactate generation and towards the 

synthesis of macromolecules28,60,61. However, evidence for this was lacking in MEFs56 and recent work 

found that the direct incorporation of glucose carbons is a minor component of the biomass of 

proliferating cells62. Working with explanted neural progenitors limited the range of metabolites we could 

detect, as the amount of material for analysis was quite small. However, we were able to detect 13C label 

in extracellular lactate and in intracellular glutamate and ribose. Pkm2 deletion decreased the 
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incorporation of glucose into lactate and decreased the repeated cycling of glucose-derived carbons 

through the Krebs cycle. These changes show that altering PEP metabolism decreases flow through the 

final step of aerobic glycolysis while increasing cataplerosis. Pkm2 deletion did not produce a detectable 

effect on the incorporation of glucose into ribose, suggesting that PPP flux is not the major destination of 

glucose carbons redirected by low pyruvate kinase activity.  

Our 13C studies show that CGNPs lacking both PKM1 and PKM2 can metabolize glucose to 

pyruvate, raising the question of what alternative pathway metabolizes PEP. We were not able to detect 

changes in glycolytic intermediates that might indicate how PEP is processed in Pkm2cKO CGNPs. 

However, prior studies have shown that PKM2-expressing cells with low pyruvate kinase activity can 

generate pyruvate by transferring the high-energy phosphate of PEP to the enzyme PGAM163. This 

phosphorylation activates PGAM1, which may promote biosynthetic metabolism 64,65. If PEP-PGAM1 

phosphotransfer occurs in CGNPs, it may mediate the growth promoting effect of PKM2 splicing that is 

enhanced by Pkm2 deletion.  

The ubiquitous expression of PKM2 in cancer has suggested that this protein may be essential 

for tumorigenesis. The identified, nonmetabolic functions of PKM2 that could promote malignant growth 

include phosphorylating Histone H339,41, participating in cytokinesis66, and regulating gene expression37. 

However, our data on the effects of Pkm2 deletion in medulloblastoma together with previous findings in 

breast cancer43 demonstrate that these nonmetabolic functions of PKM2 are not required for tumor 

growth.  

Our work suggests that Pkm functions as a tumor suppressor. Identifying Pkm as a tumor 

suppressor has profound implications for aerobic glycolysis and may be effectively targeted in cancer 

treatment. Inhibiting PKM function as an anti-cancer therapy would be counterproductive while drugs that 

increase PKM catalytic activity may be of limited therapeutic value if tumors can thrive with low Pkm 

expression. The loss of tumor suppressor genes, however, may be targeted through alternative 

approaches that require defining the consequent changes in pathway regulation67,68. A detailed 

understanding of how low pyruvate kinase activity promotes proliferation may produce novel clinical 

strategies to treat tumor growth. 
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2.5 Materials and Methods 

Animals 

All wild-type and genetically engineered mice were maintained on the C57/Bl6 background with at 

least 5 backcrosses. ND2:SmoA1 mice were provided by Dr. James Olson (Fred Hutchinson Cancer 

Research Center, Seattle, WA, USA). Math1-Cre mice were provided by Dr. David Rowitch (UCSF, CA, 

USA) and Robert Wechsler-Reya (Sanford-Burnham Medical Research Institute, La Jolla, CA, USA). Eva 

Anton (UNC-CH, NC, USA) provided hGFAP-Cre mice. Pkm2fl/fl mice were generously shared by Dr. 

Matthew Vander Heiden (MIT, Cambridge, MA, USA). Medulloblastoma-prone mice were monitored daily 

for abnormalities of head shape and movement. At the onset of tumor symptoms, such as weight loss, 

ataxia, and impaired movement, animals were sacrificed and survival time to onset of symptoms was 

considered the event-free survival.  

For EdU experiments, mice were IP injected with EdU (#A10044, Life Technologies, Grand 

Island, NY, USA) at 40 mg/kg in 50 µL of HBSS and dissected 24h later. Brains were fixed in 4% 

paraformaldehyde in 1X PBS for 24h at 4°C, then processed for histology. All animal handling and 

protocols were carried out in accordance with established NIH practices and approved under UNC IACUC 

#13-121.0 and 15-306.0.  

 

Cell Culture Techniques 

CGNPs were isolated and cultured as previously described6,69. Briefly, cerebella were dissected 

from P5 pups, dissociated, and allowed to adhere to coated culture wells in DMEM/F12 (#11320, Life 

Technologies, Grand Island, NY, USA) with 25 mM KCl, supplemented with FBS and N2. After 4h, media 

were replaced with identical serum-free media. Cells were maintained in 0.5 µg/mL SHH (#464SH, R&D 

Systems, Minneapolis, MN, USA) or vehicle (0.1% BSA in 1X PBS). Where indicated, vismo (#S1082, 

Selleck Chemicals, Houston, TX, USA) was added to cultures after the first 24h, at the specified 

concentration, with cells harvested 24h after drug treatment. In vitro CGNP proliferation was measured by 

EdU incorporation after a 1h exposure to 20 µM EdU. EdU was visualized following the manufacturer’s 
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protocol (#C10337, Life Technologies). Cell counts were performed using Leica-Metamorph software 

(Molecular Devices, Sunnyvale, CA, USA). 

 

In vitro metabolism studies 

Briefly, CGNPs of each genotype were cultured in at least 3 replicate wells. Explanted CGNPs 

were maintained in [1,6-13C] glucose media for 24h followed by media sampling and cell extraction for 

metabolomic analysis. For 1H-NMR metabolomic analysis of the media, samples were processed as 

previously described6,70. Briefly, 1H spectra were acquired at 25ºC on a 14.1T Varian INOVA spectrometer 

at 600 MHz 1H frequency and equipped with a CapNMRTM microcoil (Magnetic Resonance Microsensors 

Corp, Savoy, MN, USA). The 1H spectra were acquired using a one-pulse sequence with presaturation of 

the water resonance with a 90º flip angle and a total repetition time of 12.65 sec. For analysis, 1H spectra 

were first zero-filled to 32,000 points and line broadened by applying a 0.5 Hz exponential Gaussian 

function using ACD Labs 12.0 1D NMR Processor (ACD Labs Toronto, Ontario, Canada). Metabolites 

were identified using Chenomx NMR processing software version 7.1 (Edmonton, Alberta, Canada) and 

the Human Metabolome Database71 for chemical shifts.  

For LC-MS metabolomic analysis of the cells, dried extract was resuspended in 60 µL of 1:1 

acetonitrile: water, vortexed, and 10 µL was used for analysis. The HILIC column (Venusil HILIC Column, 

3 µm, 100Å, 2.1 x 100 mm, Agela Technologies Inc., Wilmington, DE, USA) was used for liquid 

chromatography and optimized for both nucleotide and amino acid organic separation using the following 

solvent gradient requiring 10 min cycles. Solvent A: 100 mM ammonium acetate (Fisher Chemicals, Fair 

Lawn, NJ, USA) and 20 mM ammonium hydroxide (Fisher Chemicals) in HPLC grade water (Fluka, 

Sigma-Aldrich, St. Louis, MO, USA). Solvent B: 100% HPLC grade acetonitrile (Fluka). LC gradient: 

Starting with 98% Solvent B, 1 min – starting gradient, 6 min – 50% Solvent B, 6.01 min – 2% Solvent B, 

7 min – 2% Solvent B, 8 min – 98% Solvent B, 10 min – stop, with a total binary flow of 0.4 mL/min. Mass 

spectrometry was performed in positive mode using an AB Sciex TripleTOF 5600 with the following 

parameters: Ion source gas 1 – 45, Ion source gas 2 – 30, Curtain gas – 20, Temperature – 450, Ion 

spray voltage – 4500 V, Declustering potential – 80 V, Collision energy 5 (35 – for phosphonucleotide 
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detection and product ion fragmentation, 25 – for amino acid detection and fragmentation). TOF mass 

detection at 5 to 1050 Da for phosphonucleotides and 43 to 155 Da for amino acids. MS-MS was 

performed for the 10 highest products. Where applicable, mass spectrometry data were corrected for the 

contribution of naturally abundant isotopes using IsoCor72 (MetaSys, LISBP, Toulouse, France). 

  For the enzymatic measurement of lactate, media from at least three replicate wells were 

sampled at the specified time points and lactate was quantified using the L-Lactate Assay Kit 

(#1200011002, Eton Bioscience, San Diego, CA, USA) per manufacturer’s protocol.   

For pyruvate kinase activity assays, cells from at least three replicate wells per condition, or 

whole cerebella from at least three replicate mice per genotype, were lysed and processed for the 

colorimetric assay per manufacturer’s protocol (#K709-100, BioVision Inc., Milpitas, CA, USA).   

 

Histology and immunohistochemistry 

Mouse brain and tumor tissues were processed for IHC as previously described73 using 

antibodies from Cell Signaling Technology (Danvers, MA, USA): PKM1 (#7067), PKM2 (#4053), 

Proliferating cell nuclear antigen (PCNA; #2586), and p27Kip1 (#3686). EdU was visualized per 

manufacturer’s protocol. After IHC and EdU staining, where indicated, nuclei were counterstained with 

200 ng/mL 4’6-diamidino-2-phenylindole (DAPI; #D1306, ThermoFisher Scientific, Waltham, MA, USA) in 

1X PBS for 5 min. Stained slides were digitally acquired using an Aperio ScanScope XT (Aperio, Vista, 

CA, USA). Where indicated, maximum intensity projections of stained tissue sections were acquired on a 

Zeiss LSM 780 confocal microscope with a Plan-Apochromat 20x objective (NA 0.8). To quantify EdU, 

PCNA, and p27Kip1 positive cells in the EGL, the EGL region was manually annotated on each section, 

which was then subjected to automated cell counting using Tissue Studio (Definiens, München, 

Germany) for fluorescent slides. For premalignant lesion analysis, the entire cerebellum was annotated 

and used for cell counts. 
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Western blot analysis 

Cultured cells and whole cerebella were lysed by homogenization in RIPA buffer containing 

protease inhibitor cocktail, NaF, and sodium orthovanadate. Protein concentrations were quantified using 

the bicinchoninic acid (BCA) method (#23229, ThermoFisher Scientific) and equal concentrations of 

protein were resolved on SDS-polyacrylamide gels followed by transfer onto polyvinylidene difluoride 

membranes. Immunologic analysis was performed on the SNAP i.d. Protein Detection System (Millipore, 

Billerica, MA, USA) per manufacturer’s protocol with antibodies from Cell Signaling Technology: β-actin 

(#4970), PKM1 (#7067), PKM2 (#4053), and Cyclin D2 (CCND2; #3741), anti-Rabbit IgG HRP (#7074) 

and anti-Mouse IgG HRP (#7076). Western blots were developed using the enhanced chemiluminescent 

SuperSignal West Femto Maximum Sensitivity Substrate (#34095, ThermoFisher Scientific) and digitized 

using the C-DiGit blot scanner (LI-COR, Lincoln, NE, USA). Quantification was performed using Image 

Studio Lite software (LI-COR).  

 

Primers used for genotyping  

Pkm2fl were TAGGGCAGGACCAAAGGATTCCCT and CTGGCCCAGAGCCACTCACTCTTG, 

producing a ~605 bp band from the floxed allele and a ~560 bp band from the wildtype allele. Cre primers 

were GCGGTCTGGCAGTAAAAACTATC and GTGAAACAGCATTGCTGTCACTT, producing a ~200 bp 

band. SmoM2 primers were AAGTTCATCTGCACCACCG and TCCTTGAAGAAGATGGTGCG, 

producing a ~200 bp band. ND2:SmoA1 primers were AATCTCTGCTTTTCCTGCGTTGGG and 

CTCGGTCATTCTCACACTTG, producing a ~700 bp band.  

 

DNA sequencing 

DNA was lysed from toe cuttings and used to generate Pkm2 PCR products. Pkm2 PCR primers 

were F_ TAGGGCAGGACCAAAGGATTCCCT and R_CTGGCCCAGAGCCACTCACTCTTG. PCR 

products were extracted from a 0.8% agarose gel using the MinElute Gel Extraction Kit (#28604, Qiagen, 
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Valencia, CA, USA), cloned by TOPO TA Cloning (#K4575-J10, Life Technologies) and sequenced from 

the M13F and M13R primer sites by Sanger sequencing (Eton Bioscience). 

 

Patients and samples 

All patient samples were obtained with consent as outlined by individual institutional review 

boards. Written informed consent was obtained at the time of surgical resection. De-identified 

medulloblastoma tissues were obtained from Queensland Children’s Tumor Bank (Brisbane, Australia), 

German Cancer Research Center (Heidelberg, Germany), Sanford-Burnham Medical Research Institute 

(La Jolla, USA), and Hospital for Sick Children (Toronto, Canada). 

 

Differential Pkm isoform expression analysis of RNA-seq data 

Library construction, sequencing, and alignment of RNA-seq data are described in detail in the 

Messenger RNA library construction and sequencing section. Transcriptome aligned binary alignment 

files (bams) were processed using RNA-Seq by Expectation Maximization (RSEM) software74. The 

reference for RSEM was built using the same GRCh37-lite assembly and GRCh37.75 GTF as used by 

STAR aligner75. This was followed by the calculation of PKM isoform level FPKM using RSEM with 

default parameters in 97 human tumors. The accession number for the RNA-seq data is European 

Genome-phenome Archive: EGAD00001001899.  

 

Messenger RNA library construction and sequencing 

Two micrograms of total RNA samples were arrayed into a 96-well plate and polyadenylated 

(PolyA+) messenger RNA (mRNA) was purified using the 96-well MultiMACS mRNA isolation kit on the 

MultiMACS 96 separator (Miltenyi Biotec, Bergisch Gladbach, Germany) with on-column DNase I-

treatment per the manufacturer's instructions. The eluted polyA+ mRNA was ethanol precipitated and 

resuspended in 10 µL of DEPC treated water with 1:20 SuperaseIN (Life Technologies, Grand Island, NY, 
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USA). First-strand cDNA was synthesized from the purified polyA+ mRNA using the Superscript cDNA 

Synthesis kit (Life Technologies) and random hexamer primers at a concentration of 5 µM along with a 

final concentration of 1 µg/µL Actinomycin D, followed by Ampure XP SPRI beads on a Biomek FX robot 

(Beckman-Coulter, Brea, CA, USA). The second strand cDNA was synthesized following the Superscript 

cDNA Synthesis protocol by replacing the dTTP with dUTP in the dNTP mix, allowing the second strand 

to be digested using UNG (Uracil-N-Glycosylase, Life Technologies) in the post-adapter ligation reaction 

and thus achieving strand specificity. The cDNA was quantified in a 96-well format using PicoGreen (Life 

Technologies) and VICTOR3V Spectrophotometer (PerkinElmer, Inc., Waltham, MA, USA). The quality 

was checked on a random sampling using the High Sensitivity DNA chip Assay (Agilent, Santa Clara, CA, 

USA). The cDNA was fragmented by Covaris E210 (Covaris, Woburn, MA, USA) sonication for 55 

seconds, using a Duty cycle of 20% and Intensity of 5. Plate-based libraries were prepared following the 

BC Cancer Agency's Michael Smith Genome Sciences Centre (BCGSC) paired-end (PE) protocol on a 

Biomek FX robot (Beckman-Coulter). Briefly, the cDNA was purified in 96-well format using Ampure XP 

SPRI beads, and was subject to end-repair and phosphorylation by T4 DNA polymerase, Klenow DNA 

Polymerase, and T4 polynucleotide kinase respectively in a single reaction, followed by cleanup using 

Ampure XP SPRI beads and 3’ A-tailing by Klenow fragment (3’ to 5’ exo minus). After cleanup using 

Ampure XP SPRI beads, picogreen quantification was performed to determine the amount of Illumina PE 

adapters used in the next step of adapter ligation reaction. The adapter-ligated products were purified 

using Ampure XP SPRI beads, then PCR-amplified with Phusion DNA Polymerase (Thermo Fisher 

Scientific Inc., Waltham, MA, USA) using Illumina’s PE primer set, with cycle conditions of 98°C 30sec 

followed by 10-15 cycles of 98°C 10 sec, 65°C 30 sec and 72°C 30 sec, and then 72°C 5 min. The PCR 

products were purified using Ampure XP SPRI beads, and checked with a Caliper LabChip GX for DNA 

samples using the High Sensitivity Assay (PerkinElmer, Inc.). PCR products with a desired size range 

were purified using a 96-channel size selection robot developed at the BCGSC, and the DNA quality was 

assessed and quantified using an Agilent DNA 1000 series II assay and Quant-iT dsDNA HS Assay Kit 

using Qubit fluorometer (Invitrogen, Carlsbad, CA, USA), then diluted to 8 nM. The final concentration 

was verified by Quant-iT dsDNA HS Assay. The libraries, 2 per 100 PE lane, were sequenced on the 

Illumina HiSeq 2000/2500 platform using v3 chemistry and HiSeq Control Software version 2.0.10. 
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Alignment of RNA-seq data 

RNA sequencing data was aligned to GRCh37-lite genome-plus-junctions76 using BWA (version 

0.5.7)77. This reference is a combination of GRCh37-lite assembly and exon-exon junction sequences 

with coordinates defined based on transcripts in Ensembl (v61), Refseq and known genes from the UCSC 

genome browser (both were downloaded from UCSC in November 2011; The GRCh37-lite assembly is 

available at http://www.bcgsc.ca/downloads/genomes/9606/hg19/1000genomes/bwa_ind/genome. BWA 

was run with default parameters, except for the inclusion of the (-s) option to disable the Smith-Waterman 

alignment. Reads failing the Illumina chastity filter were flagged with a custom script, and duplicated 

reads were flagged with Picard Tools (version 1.31). After the alignment, the junction-aligned reads that 

mapped to exon-exon junctions were repositioned to the genome as large-gapped alignments and tagged 

with "ZJ:Z". 

Aligned genome coordinates for the Pkm region where then extracted in fastq format and 

converted to transcriptome coordinates using the STAR aligner75, to facilitate downstream processing. 

The reference for STAR was built using chromosome 15 of the GRCh37-lite assembly, the GRCh37.75 

GTF file from Ensembl, and using parameters of --sjdbOverhang 99. STAR was then run with parameters 

--quantMode TranscriptomeSAM and SortedByCoordinate to generate the transcriptome aligned binary 

alignment files (bams). 

 

Survival analysis of SHH-subgroup medulloblastoma patients 

PKM2 FPKM expression was converted to a Z-score and used to segregate SHH patients into a 

high or low category with the criteria of being greater than 0.5 or smaller than -0.5 respectively. A cox 

proportional hazard model was used to determine the presence of a survival difference. 

 

  

http://www.bcgsc.ca/downloads/genomes/9606/hg19/1000genomes/bwa_ind/genome
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2.6 Figures and Legends 

Figure 2.1 Mutually exclusive expression patterns of PKM1 and PKM2 correspond to 

differentiation state.  

(A-A’’) PKM1 (brown) demonstrated by IHC in differentiated neurons throughout the P7 brain, but 

excluded from progenitors. (B-B’’) PKM2 (brown) demonstrated by IHC in neural progenitors of the SVZ, 

HC, and EGL. (C) Western blot and quantification of CCND2, PKM2, and PKM1 in whole cerebellum 

lysates harvested at the indicated age, normalized to β-actin. PKM2 decreases as proliferation wanes 

from P7 (n=4) to P15 (n=4), while PKM1 increases. Graph presents average ± s.e.m. (D) 

Immunofluorescence in P7 wildtype mice, shows PKM2 expressed in both the PCNA+ oEGL and the 

PCNA- iEGL. (E) P7 SVZ, stained as in D, demonstrates PKM2 in PCNA+ and PCNA- progenitors 

(arrowheads identify PCNA- cells). (F) Premalignant lesions in P60 ND2:SmoA1 mice identified by PCNA 

staining, express PKM2 and not PKM1. High magnification of boxed area is shown in F’-F’’’. (G) PKM2 

and PCNA are expressed in a medulloblastoma in the cerebellum of a ND2:SmoA1 mouse, while the 

adjacent normal tissue expresses PKM1. High magnification of boxed area is shown in G’-G’’’. (H) RNA-

seq analysis shows that PKM2 is preferentially expressed in all human medulloblastoma subgroups (total 

n=97). P values determined by Student’s t-tests. SVZ, subventricular zone; HC, hippocampus; EGL, 

external granule layer; IGL, internal granule layer; PC, Purkinje cell layer; oEGL, outer EGL; iEGL, inner 

EGL; ML, molecular layer; FPKM, Fragments Per Kilobase of transcript per Million mapped reads. Scale 

bars: 2 mm (A,B,G); 600 µm (A’,B’); 100 µm (A”,B”,E); 50 µm (D,E inset); 1 mm (F); 500 µm (F’-F’”); 300 

µm (G’-G’”). 
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Figure 2.1 
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Figure 2.2 Growth factor signaling regulates PKM expression and activity.  

(A,B) Immunofluorescence on explanted wildtype CGNPs exposed to EdU for 1h in presence or 

absence of SHH. SHH increases both PKM2 and EdU staining. (C,D) Rare cells within CGNP explants 

expressed PKM1 (arrowheads) in both SHH- and vehicle-treated wells. (E) Western blot and 

quantification of CCND2, PKM2, and PKM1 in cell cultures, normalized to β-actin. SHH induces a 5.5-fold 

increase in CCND2 that is blocked by 1 µM vismodegib. Both PKM1 and PKM2 show statistically 

significant increase with SHH. However, vismodegib does not significantly alter PKM1 or PKM2. (F) N2-

deprived CGNPs produce significantly less lactate detected by enzymatic assay. (G,H) Pyruvate kinase 

(PK) activity of CGNPs significantly increases with combined SHH and N2 supplementation. Graphs 

present average ± s.e.m. P values determined by Student’s t-tests. Scale bars: 50 µm. 
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Figure 2.2 
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Figure 2.3 Conditional Pkm2 deletion blocks all Pkm expression in CGNPs.  

(A,B) IHC of PKM1 and PKM2 in representative sagittal cerebellar sections from P7 Ctrl and 

Pkm2cKO mice. Pkm2 deletion does not induce compensatory PKM1 expression in the EGL. High 

magnification of boxed area is shown on the right. (C) Western blot and quantification normalized to β-

actin in whole P7 cerebellar lysates demonstrates significantly decreased PKM2 and increased PKM1. 

(D) Pyruvate kinase activity in lysates of whole, P7 cerebella is not significantly different between Ctrl and 

Pkm2cKO genotypes. EGL, external granule layer; IGL, internal granule layer; ML, molecular layer. Graphs 

present average ± s.e.m. P values determined by Student’s t-tests. Scale bars: 500 µm; 100 µm (inset). 
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Figure 2.4 Pkm2 deletion increases CGNP proliferation.  

(A,B) Confocal images of P7 (A) Ctrl and (B) Pkm2cKO cerebellar sections, labeled for the 

differentiation marker p27Kip1 and for EdU incorporation, 24h after EdU injection. High magnifications of 

boxed areas are shown on the right. (C) Quantification of EdU+ cells in the EGL from sections analyzed 

as in A and B, demonstrates comparable incorporation of EdU between genotypes. (D) Quantification of 

p27Kip1+ cells in the EGL shows a trend towards decrease in the Pkm2cKO genotype. (E) Analysis of 

p27Kip1 expression in the EdU+ population CGNPs shows reduced cell cycle exit by Pkm2cKO progenitors. 

(F) Decreased p27Kip1+ EdU- cells in the Pkm2cKO EGL indicates that a greater fraction of differentiating 

CGNPs were in S-phase 24h earlier. (G) EdU incorporation after a 1h pulse in vitro. Pkm2cKO CGNPs 

demonstrate increased proliferation. (H) Analysis of midsagittal cerebellar sections shows significantly 

increased EGL and IGL populations in Pkm2cKO mice. (I) EGL:IGL ratio is similar between genotypes. 

Graphs present average ± s.e.m. P values determined by Student’s t-tests. Scale bars: 500 µm (A,B); 50 

µm (A,B, insets). 
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Figure 2.4 
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Figure 2.5 Pkm2 deletion reduces the conversion of glucose to lactate.  

(A) 1H NMR analysis of culture media at 24h demonstrates significantly decreased lactate 

production by Pkm2cKO CGNPs compared to Pkm2-intact controls (**p=0.029). (B) Lactate concentration 

in culture media, measured by enzymatic assay, also show decreased production by Pkm2cKO CGNPs. 

(C) Representative 1H NMR spectra of Ctrl and Pkm2cKO media at 24h demonstrate the doublet, satellite 

peaks generated by [3-13C] lactate (dashed line) and by unlabeled lactate (solid line). The magnitudes of 

the peaks and the areas under the curve are lower in media from Pkm2cKO CGNPs. (D) Quantification of 

NMR spectra demonstrates reduced fractional enrichment (FE) of lactate in media from Pkm2cKO CGNPs. 

(E) LC-MS analysis of metabolites in cell extracts of explanted CGNPs demonstrates comparable levels 

between genotypes. A trend toward increased choline was noted in Pkm2cKO CGNPs. Graphs present 

average ± s.e.m. P values determined by Student’s t-tests. 
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Figure 2.5 
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Figure 2.6 Pkm2-deleted CGNPs show altered glutamate progression through the Krebs cycle but 

comparable PPP flux.  

The canonical pathways through which [1,6-13C] glucose can label glutamate and ribose are 

presented in schematic form. LC-MS analysis demonstrated reduced fractional enrichment of glutamate 

in Pkm2cKO CGNPs, with a specific decrease in the fractional enrichment of glutamate molecules with 3 or 

4 13C atoms, (m3, m4). Incorporation of 13C into the ribose of adenine nucleotides was not significantly 

altered, indicating comparable flow through the PPP. Graphs present average ± s.e.m. P values 

determined by Student’s t-tests. OxPPP, oxidative phase of pentose phosphate pathway; Non-OxPPP, 

non-oxidative phase of pentose phosphate pathway; GAP, glyceraldehyde 3-phosphate; X5P, xylulose 5-

phosphate; E4P, erythrose 4-phosphate; F6P, fructose 6-phosphate; S7P, sedoheptulose 7-phosphate; 

R5P, ribose 5-phosphate; Ru5P, ribulose 5-phosphate; LDH, lactate dehydrogenase; PDH, pyruvate 

dehydrogenase; PC, pyruvate carboxylation.  
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Figure 2.6 
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Figure 2.7 Pkm2 deletion accelerates medulloblastoma tumorigenesis  

(A) Kaplan-Meier curves demonstrate no effect of Pkm2 deletion on survival in the rapidly 

progressive Math1-Cre;SmoM2 model of medulloblastoma. (B) In the slow growing ND2:SmoA1 model, 

Pkm2 deletion significantly accelerates tumorigenesis, reducing mouse survival. (C,D) Significantly 

reduced survival of ND2:SmoA1 mice with (C) conditional Pkm2 deletion or (D) global Pkm2 deletion, 

compared to Pkm2-intact ND2:SmoA1 controls. (E,F) A representative Pkm2-deleted ND2:SmoA1 mouse 

brain with medulloblastoma at P147 shows (E) PKM1 (brown) in the normal brain adjacent to the tumor 

and (F) absence of PKM2 (brown). Within the Pkm2-deleted tumors, we noted scattered PKM1+ cells with 

relatively large cell bodies. The morphology of these cells suggests that they are differentiated cells 

entrapped within or generated by the tumor. (G) Comparison of premalignant lesions at P60 and P120 

between genotypes. The proportion of PCNA+ cells to the total number of cells in the cerebellum 

increases over time in the Pkm2 deleted genotypes. (H) Kaplan-Meier curve demonstrates a trend toward 

shorter survival in SHH medulloblastoma patients with low PKM2 expression. P values determined by log-

rank test for Kaplan-Meier curves (A-D), cox proportional hazard model (H), and by Student’s t-test (G). 

Scale bars: 2 mm (E,F); 100 µm (E’-E’”, F’-F’”).  
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Figure 2.7 
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2.7 Tables  

Table 2.1 Percent change of analyzed media metabolites.   

 

 

 

 

 

 

 

Media from explanted CGNPs with intact or deleted Pkm2 was sampled at 0 and 24h then 

subjected to 1H NMR. Data presented are mean ± s.e.m. P values determined by Student’s t-tests. 
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2.8 Supplemental Figures and Legends 

Figure 2.S1 Germline deletion of Pkm2.  

(A) PCR genotyping of genomic DNA from Pkm2fl/fl, Pkm2fl/null, Pkm2null/null, and Pkm2+/+ mice. 

Genotyping primers anneal outside of the loxP sites and produce amplicons of 560 bp from the Pkm2+ 

allele, 605 bp from the Pkm2fl allele, and 220 bp from the Pkm2null allele. (B) Schematic of the Pkm2null 

allele with partial alignment (bold) between Pkm2fl and Pkm2null sequences shown below. (C,D) IHC 

demonstrates no overt malformation of the P8 Pkm2null/null brain. PKM1 expression (brown) is limited to 

differentiated neurons and PKM2 (brown) is absent from all brain regions. High magnification of boxed 

area is shown on the right. SVZ, subventricular zone; HC, hippocampus; EGL, external granule layer; 

IGL, internal granule layer; PC, Purkinje cell layer. Scale bars: 2 mm (C,D); 500 µm (C’,D’); 100 µm 

(C”,D”).  
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Figure 2.S1 
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Figure 2.S2 Scrambling of 13C glucose label in the Krebs cycle.  

Incorporation 13C from [1,6-13C] glucose into glutamate starts with [3-13C] pyruvate entering the 

Krebs cycle. Glutamate labeling at different carbons depends on whether [3-13C] pyruvate enters the 

Krebs cycle through carboxylation, catalyzed by pyruvate carboxylase (*PC), to form [3-13C] oxaloacetate 

or through decarboxylation, catalyzed by pyruvate dehydrogenase (PDH), to form [2-13C] acetyl-CoA. In 

the first turn of the cycle, [4-13C] glutamate is formed from [2-13C] acetyl-CoA, while [2-13C] glutamate is 

formed from [3-13C] oxaloacetate. Additional 13C atoms are incorporated on subsequent turns of the cycle 

as [2-13C] acetyl-CoA joins with labeled oxaloacetate to form citrate. Decreased 13C incorporation into 

glutamate in Pkm2-deleted CGNPs suggests increased cataplerosis of Krebs cycle intermediates. 

 

	  



 61 

Figure 2.S2 
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Figure 2.S3 Entrapped PKM1+ cells in Pkm2-deleted tumors are not proliferating.  

A representative Pkm2-deleted ND2:SmoA1 mouse brain with medulloblastoma at P147 shows 

(A) PKM1 (red) in the normal brain adjacent to the tumor. (B-B”) The scattered PKM1+ cells with relatively 

large cell bodies (arrowheads) noted in Fig. 7E are PKM1+ PCNA- cells. These differentiated cells were 

entrapped or generated by the tumor. Scale bars: 2 mm (A); 100 µm (B-B”). 
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CHAPTER III: VISMODEGIB TREATMENT AND HK2 DELETION ACT IN CONCERT TO RESTRICT 

MEDULLOBLASTOMA GROWTH 

3.1 Overview 

Medulloblastoma accounts for 18% of all malignant pediatric brain tumors as the most common 

malignant brain tumor in children1. Of the four subgroups, Wnt, SHH, Group 3, and Group 4, the SHH 

subgroup represents a third of all medulloblastoma cases. The SHH subgroup is driven by aberrant 

activation of the SHH signaling pathway. In CGNPs, SHH binds to the Patched1 (PTC) receptor, 

releasing the transmembrane protein Smoothened (SMO) from inhibition, and ultimately dissociates the 

SUFU-GLI complex to promote proliferation. Genetic and molecular alterations in Ptc, Sufu, and other 

downstream effectors of the SHH pathway activation lead to uncontrolled CGNP growth and 

medulloblastoma tumorigenesis. One strategy in the targeted treatment of SHH medulloblastoma is SMO 

inhibition. The competitive antagonist vismodegib binds to SMO to block downstream SHH signaling. 

While vismodegib has demonstrated safety and efficacy in the treatment of SHH medulloblastoma, 

acquired resistance is common. To identify vismodegib-resistance mechanisms, collaborators used the 

Sleeping Beauty mutagenesis screen in a SHH-driven medulloblastoma model. In a subset of resistant 

medulloblastomas, Hexokinase-2 (HK2) expression was increased independently of Gli2 amplification. In 

collaboration with the Michael D. Taylor lab at The Hospital for Sick Children in Toronto, I investigated the 

effects of vismodegib treatment on Hk2-deleted medulloblastomas. Hk2 deletion sensitized SHH tumors 

to vismodegib, promoting differentiation, reducing tumor growth, but did not prolong survival when 

compared to vehicle-treated counterparts. In all, these studies suggest that Hk2 activation is a new 

mechanism of resistance to SMO inhibition such that the inhibition of both HK2 and the SHH pathway 

may be a novel, potent treatment for SHH-driven medulloblastoma.  
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3.2 Introduction 

 Medulloblastoma was universally fatal until the advent of craniospinal radiation therapy in 19532. 

Decades of empirical trials have led to optimized regimens using surgical resection, radiation to the entire 

brain and spinal cord, followed by a year of chemotherapy. The conventional treatment, however, is 

unable to specifically target cancer cells resulting in damage to normal cells and untoward injuries. While 

80% of medulloblastoma patients become long-term survivors, this treatment causes significant adverse 

effects, including cognitive impairment, strokes at a young age, hearing loss, and other toxicities. 

Moreover, the risk of recurrence looms over survivors as recurrent medulloblastoma is almost universally 

fatal3. Further research into medulloblastoma will contribute to the understanding of the disease and lead 

to novel treatments for both primary and recurrent tumors. 

Genomic analyses has demonstrated that medulloblastoma is comprised of four distinct 

molecular variants defined by alterations in the wingless pathway (Wnt), sonic hedgehog pathway (SHH), 

MYC-amplification (Group 3), and heterogeneity (Group 4)4–6. SHH-driven medulloblastoma comprises 

about a third of all patient cases and predominately affects infants and adults6. Activating mutations in 

SMO and inactivating mutations in negative pathway regulators PTC and SUFU result in aberrant SHH 

pathway activation5,7–9. While this subgroup is defined by the SHH pathway, other genetic alterations 

contribute to subgroup heterogeneity which may affect drug response. Germline TP53 mutations, in 

addition to MYCN and GLI2 co-amplifications, add to the complexity of SHH-driven medulloblastoma and 

its targeted treatment1,10. A better understanding of SHH signaling and its alterations in medulloblastoma 

may produce new anti-cancer strategies and provide insight to drug response.  

Vismodegib is a competitive antagonist of SMO used in the treatment of SHH-driven 

medulloblastoma. While vismodegib treatment can prolong progression-free survival and induce tumor 

regression, the effects vary across SHH medulloblastoma patients11,12 and are transient13. Within the SHH 

subgroup are vismodegib non-responders who have pathway-activating mutations downstream of SMO in 

SUFU and GLI211,12. Likewise, SHH patients with pathway alterations upstream of SMO, such as loss-of-

heterozygosity and loss-of-function PTC1 mutations, had longer progression-free survival with vismo 

treatment. Thus, SMO inhibitors are only clinically significant for medulloblastomas with genetic mutations 
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upstream of Smoothened11,12. Moreover, the initial success of vismodegib and other SMO inhibitors14, 

however, is now overshadowed by drug resistance. In a single adult male medulloblastoma patient, 

vismodegib treatment induced robust tumor regression followed by relapse and death from disease 

progression. Subsequent analysis showed that this specific relapse was associated with a single amino 

acid substitution in SMO that impaired vismodegib binding15. Other mechanisms of vismodegib-resistance 

include SMO point mutations16, amplification of SHH pathway effectors downstream of SMO (Gli2, 

Ccnd1)17, loss-of-function mutations in SUFU18, and phosphoinositide 3-kinase (PI3K) pathway 

activation17,19. Identifying additional mechanisms of resistance would provide ways sensitize tumors to 

current treatments and critical information for the development of second-generation SMO inhibitors. 

Unfortunately, the vismodegib-resistant human medulloblastomas essential for these studies are rarely 

biopsied, requiring the use of animal models. 

To identify mechanisms of resistance to vismodegib, the Michael D. Taylor lab at The Hospital for 

Sick Children used an unbiased, genome-wide approach in a mouse model of SHH-driven 

medulloblastoma. The highly active Sleeping Beauty (SB) insertional mutagenesis system is used for 

functional genomic screens as an unbiased tool for the identification of genes and pathways involved in 

cancer20–22. Specifically, the transposition events in the SB system can mediate loss-of-function or gain-

of-function mutations in somatic tissues and accelerate solid tumor formation in tumor-prone mice23,24 

(Fig. 3.1). To examine the genomic changes facilitating vismodegib-resistance, the Ptc+/- mouse model of 

SHH medulloblastoma was integrated with the SB system (Ptc-SB)25. In the Ptc-SB model, the Math1 

enhancer limits SB11 transposase expression to CGNPs and is in the presence of the mutagenic 

transposon vector T2/Onc on the Ptc+/- background25. The SB system increases the penetrance of Ptc+/- 

medulloblastoma, drives metastatic dissemination, and decreases latency from 826 to 2.5 months25, 

making it the ideal system to study drug resistance.  

Transposition events that confer vismodegib-resistance are expected to generate a clonal 

advantage in vismo-treated mice. Likewise, our collaborators found that relapsed, vismo-treated Ptc-SB 

mice up-regulated Hexokinase-2 (HK2) expression and activity. These findings were validated by re-

analyzing a published gene expression profile of medulloblastomas from Ptc+/-;p53-/- mice19 treated with 
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the SMO inhibitor NVP-LDE22527. Hk2 was initially down-regulated with NVP-LDE225 treatment and then 

restored when the tumor developed resistance19. Importantly, these changes in Hk2 were independent of 

Gli2 amplification, a known mechanism of SMO-resistance in medulloblastoma17,19,28. Together, these 

data suggest that HK2 activation is a novel driver of resistance to SMO inhibition, conferring a growth 

advantage through increased aerobic glycolysis. Here, I examine if Hk2 deletion sensitizes primary, SHH-

driven medulloblastomas to SMO inhibition. Hk2 deletion and vismodegib treatment act in concert to 

restrict tumor growth but do not prolong survival compared to vehicle-treated counterparts. In all, these 

studies further emphasize the importance of aerobic glycolysis to SHH-driven medulloblastoma and its 

potential as a targeted cancer treatment.  

 

3.3 Results 

3.3.1 Vismodegib reduces proliferation in cultured, Hk2-deleted SHH-driven medulloblastomas 

 To examine the functional importance of HK2 in sensitizing SHH-driven medulloblastoma to SMO 

inhibition, I analyzed the anti-tumor effect of vismodegib treatment in Hk2-deleted tumors. The Gershon 

lab has previously shown that Hk2 drives aerobic glycolysis and supports growth in SHH 

medulloblastomas of hGFAP-Cre;SmoM2 mice29. In the Cre-driven SmoM2 model, the activating point 

mutation W529L in SMO induces the rapid development of progressive SHH-driven medulloblastoma with 

100% incidence by P20. The mutation changes the binding pocket to block PTC binding and 

repression30,31. Because the oncogenic mutant SmoM2 is known to attenuate the effects of other SMO 

antagonists32–34 and vismodegib binding is sensitive to SMO domain changes such as D473H15, I first 

tested the effects of vismodegib in cultured medulloblastomas. 

I cultured freshly isolated medulloblastoma cells from P12 hGFAP-Cre;SmoM2;Hk2fl/+ (Hk2fl/+) 

and hGFAP-Cre;SmoM2;Hk2fl/fl (Hk2cKO) mice with and without vismodegib. Western blot and 

quantification confirmed Hk2 deletion and showed that HK2 expression was not altered by 24 hours of 

vismodegib treatment in Hk2fl/+ mice (Figs. 3.2A,B). In Hk2-deleted medulloblastoma cells, vismodegib 

treatment significantly decreased the proliferation marker CCDN2 (Fig. 3.2C) with no significant change in 
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apoptosis marker cleaved caspase-3 (Fig. 3.2D). In contrast, CCND2 and cC3 were not altered by 

vismodegib treatment in Hk2fl/+ tumor cells. These data demonstrate that vismodegib decreases the 

proliferation of Hk2-deleted SmoM2-driven medulloblastomas, supporting the potential for vismodegib to 

inhibit SmoM2. My methods, however, did not demonstrate an effect of in vitro vismodegib on Hk2-intact 

tumor cells. 

 

3.3.2 Injectable vismodegib maintains anti-tumor effects in vivo 

 Following the promising in vitro data, I then examined if Hk2 deletion sensitizes medulloblastoma 

to short vismodegib treatment in vivo. As hGFAP-Cre;SmoM2 mice develop medulloblastomas and 

succumb to disease by P20, I designed a short regimen to determine the effects of bolus vismodegib 

dosing delivered by intraperitoneal injection (IP). Starting at P12, hGFAP-Cre;SmoM2 mice with and 

without Hk2 deletion, were treated once a day for three days with either vehicle, 10% N-Methyl-2-

pyrrolidone (NMP) in PEG200 (polyethylene glycol 200), or 100 mg/kg of vismodegib dissolved in 10% 

NMP in PEG 200. At P15, animals and tissues were collected for analysis.  

 Representative H&E stains of the four conditions, tumors with and without Hk2 deletion treated 

with vismodegib or vehicle, are shown in Fig. 3.3A. IHC demonstrates that SMO inhibition reduces tumor 

size in both Hk2-intact and deleted mice. Subsequent immunohistochemistry stains for the proliferation 

marker proliferating cell nuclear antigen (PCNA) and the differentiation marker p27Kip1 are shown in Fig. 

3.3B. After three days, the bolus vismodegib dose significantly decreased PCNA expression and 

increased p27Kip1 expression in both genotypes. There were no detectable differences in the response to 

drug treatment between genotypes over the short period of the experiment. Together, I demonstrate a 

novel, injectable formulation of vismodegib that inhibits proliferation and increases differentiation in SHH 

pathway-driven medulloblastoma. This work provided the experimental foundation for determining the 

survival benefit of blocking aerobic glycolysis by Hk2 deletion in tandem with SMO inhibition by 

vismodegib treatment. 
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3.3.3 Hk2 deletion and IP vismodegib treatment restrict tumor growth 

  To determine the survival benefit of simultaneously decreasing aerobic glycolysis and impeding 

the SHH signaling pathway, hGFAP-Cre;SmoM2 mice with and without Hk2 deletion were injected with 

vehicle or 100 mg/kg vismodegib every other day starting at P12. Similar to the previous Hk2 deletion 

survival study29, vehicle-treated Hk2-deleted mice survived significantly longer than vehicle-treated Hk2-

intact controls (Fig. 3.4A). Vismodegib treatment provided a statistically significant survival benefit to the 

Hk2fl/+ group (Fig. 3.4B). In the Hk2cKO group, where survival was longer and more heterogeneous, there 

was no statistically significant benefit of vismodegib (Fig. 3.4C). Comparing the two vismodegib-treated 

groups, the statistical significance of the benefit of Hk2 deletion decreased to p=0.098, as vismodegib 

increased the relatively short survival of Hk2-intact controls but did not measurably increase the relatively 

long survival of Hk2-deleted mice (Fig. 3.4D). The overall survival data, however, were significant (Fig. 

3.4E), likely due to the effect of Hk2 deletion.  

While treatment did not prolong the already extended survival of Hk2-deleted mice, vismodegib 

significantly reduced tumor size compared to vehicle-treated counterparts (Fig. 3.4F). Toxicity from 

chronic vismodegib is likely to have contributed to some of the deaths in the vismodegib-treated Hk2cKO 

group, as several mice died without large tumors. These findings demonstrate that both genotypes 

respond to vismodegib treatment and that survival may not be an ideal endpoint to determine treatment 

effect. The strong suppression of tumor growth by vismodegib in the longest surviving mice in the Hk2cKO 

group argues for a decreased rate of vismodegib resistance, compared to the Hk2-intact mice, where 

100% of the animals developed tumor progression on vismodegib. 

 

3.3.4 Oral vismodegib does not prevent toxicity or prolong survival in Hk2-deleted mice 

Vismodegib is typically delivered orally in humans11 and in mice35. For my initial in vivo drug 

experiments, I dissolved vismodegib in NMP36, a common drug vehicle, for IP delivery. Although the final 

injection volume only contained NMP at the routine 10% v/v, there were concerns about NMP-induced 

toxicity and PEG200 accumulation. Specifically, the surviving vismo-treated, Hk2-deleted mice tended to 
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develop abdominal abnormalities and did not survive longer than vehicle-treated counterparts despite a 

clear decrease in tumor size (Fig. 3.4F). To further parse the survival benefit of vismodegib treatment in 

Hk2-deleted medulloblastomas, I conducted another survival study where vismodegib was delivered 

orally.  

Consistent with prior work35, vismodegib was formulated as a suspension in 0.5% 

methylcellulose, 0.2% Tween-80 (MCT) and administered orally at 100 mg/kg. As oral gavage is typically 

performed on adult mice, wildtype animals were first used to determined if ~P10 pups could endure MCT 

vehicle or vismodegib oral gavage every other day. After determining that healthy ~P10 pups can 

withstand oral gavage (data not shown), I started the oral gavage survival study on medulloblastoma-

bearing mice. Starting at P12, hGFAP-Cre;SmoM2 mice with and without Hk2 deletion, were dosed four 

days a week with MCT vehicle or vismodegib. Similar to previous findings, Hk2 deletion prolonged 

survival compared to Hk2 intact controls in both vehicle- (Fig. 3.5A) and vismo-treated (Fig. 3.5B) groups. 

The oral gavage study again found a survival benefit of vismodegib only in Hk2-intact mice (Fig. 3.5C,D) 

with a similar overall significant difference (Fig. 3.5E). Oral gavage vismodegib treatment also reduced 

tumor size in Hk2-deleted mice compared to vehicle-treated counterparts (data not shown). Together, 

these data demonstrate that vismodegib prolongs survival in Hk2 intact mice. While this survival benefit 

did not extend to Hk2-deleted mice, tumor size comparison showed that SMO inhibition works in tandem 

with blocked aerobic glycolysis to reduce tumor growth.  

 

3.4 Discussion 

Cancer chemotherapies have become increasingly targeted, and yet no anti-cancer treatment is 

100% effective. Moreover, acquired resistance to these targeted, small molecule therapeutics in cancer is 

now common. SMO inhibition was once a promising anti-cancer strategy against SHH-driven 

medulloblastoma. Now, identifying and targeting the mechanisms of resistance to SMO inhibition is a 

requirement for the advancement of targeted SHH-medulloblastoma treatments. Using the Sleeping 

Beauty mutagenesis screen in the Ptc+/- model of SHH-driven medulloblastoma, our collaborators 

identified Hk2 up-regulation as a potential driver of resistance to SMO inhibition. Here, I demonstrate that 
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blocking aerobic glycolysis at the start and SMO inhibition work in concert to further restrict tumor growth. 

Thus, HK2 inhibition in tandem with SHH-targeted therapies is a novel approach to disrupting SMO 

inhibitor-resistance.  

 Resistance to SMO inhibition in medulloblastoma is mostly independent of SMO mutations and is 

partly driven by Gli2 amplification23. Our collaborators found that Ptc-SB medulloblastomas that recur 

after vismodegib treatment increase aerobic glycolysis through insertional mutagenic events that activate 

Hk2 and do not have concurrent Gli2 insertions. This metabolic rewiring in response to treatment was 

independent of Gli2 activation, suggesting that Hk2 activation is a Gli2- and Smo-independent, novel 

driver of SMO inhibitor-resistance. The Gershon lab has previously shown that Hk2 drives aerobic 

glycolysis in primary medulloblastomas29. Together, these data support a role for Hk2-mediated aerobic 

glycolysis in conferring a growth advantage in both primary and recurrent medulloblastomas.  

My work demonstrates that blocking aerobic glycolysis during SMO inhibition decreases 

proliferation without changing the rate of apoptosis in cultured medulloblastoma cells. The decrease in 

proliferation was mirrored by in vivo studies where short treatment of vismodegib reduced PCNA and 

increased p27Kip1 expression. The short regimen study is the first to demonstrate that vismodegib 

maintains anti-tumor effects in both Hk2-intact and -deleted mice when delivered as an injectable 

solution. This additional delivery route has implications for preclinical and clinical studies in which oral 

delivery of vismodegib is not an option.  

Hk2-deleted medulloblastomas responded similarly to vismodegib treatment when delivered by IP 

and by oral gavage. Compared to vehicle-treated counterparts, SMO inhibition significantly decreases 

tumor size in Hk2-deleted mice but does not prolong the already extended survival of these mice. My data 

demonstrate that Hk2 deletion is twice more effective in extending survival than vismodegib treatment 

alone (Fig. 3.4A versus 3.4B; Fig. 3.5A versus 3.5C). Thus, Hk2 deletion may mask the survival benefit of 

vismodegib treatment in SHH-driven medulloblastoma. An alternative endpoint in these preclinical studies 

is the measurement of tumor volume differences in medulloblastoma-bearing mice, with and without Hk2 

deletion, treated with vehicle or vismodegib.  
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In the clinic, combination therapy of HK2 and SMO inhibition has the potential to improve toxicity 

and efficacy in SHH-driven medulloblastoma patients. As HK2 inhibition sensitizes medulloblastoma to 

SMO inhibition, HK2 inhibitors could be used subvert acquired SMO-resistance or used prophylactically to 

circumvent the recurrent disease altogether. However, this novel anti-cancer strategy is limited by the 

absence of HK2 inhibitors. The intrinsic properties of the HK2 enzyme have stifled the development of 

selective HK2 small molecule inhibitors, that is, until recently37. In all, dual HK2/SMO inhibition is a novel 

strategy in the treatment of SHH-driven medulloblastoma that can now be explored. 

 

3.5 Materials and Methods 

Animals 

All wildtype and genetically engineered mice were maintained on the C57/Bl6 background with at 

least 5 backcrosses. Eva Anton (UNC-CH, NC, USA) provided hGFAP-Cre mice and SmoM2 mice on a 

Bl6 background were purchased from Jackson Laboratories (Bar Harbor, ME, USA). Hk2fl/fl mice were 

obtained from the European Mouse Mutant Archive (EMMA; Munchen, Germany). Medulloblastoma-

bearing mice were monitored daily for abnormalities of head shape and movement. At the onset of tumor 

symptoms, such as ataxia, weight loss, and impaired movement, animals were sacrificed and survival 

time to onset of symptoms was considered the event-free survival. Animals were IP injected or oral 

gavaged with a final volume of 50 to 100 µL based on age and weight. Doses were updated every two 

weeks for changes in weight. All animal handling and protocols were carried out in accordance with 

established NIH practices and approved under UNC IACUC #13-121.0 and 15-306.0. 

 

Drug formulation 

Vismodegib (GDC-0449) was purchased from Selleckchem (#S1082; Houston, TX, USA). For the 

injectable drug solution, vismodegib was reconstituted in 100% NMP (#494496; Sigma-Aldrich, St. Louis, 

MO, USA) and diluted with PEG 200 (#P3015, Sigma-Aldrich). The final injection volume contained no 
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more than 10% NMP. For oral gavage, vismodegib suspension was prepared in 0.5% (w/v) 

methylcellulose (#274429, Sigma-Aldrich) and 0.2% (w/v) Tween-80 (#P1754, Sigma-Aldrich).  

 

PCR 

Cre primers were GCGGTCTGGCAGTAAAAACTATC and GTGAAACAGCATTGCTGTCACTT, 

producing a ~200 bp band. hGFAP-Cre primers were ACTCCTTCATAAAGCCCTCG and 

ATCACTCGTTGCATCGACCG, producing a ~190 bp band. Hk2fl primers were 

CCCCTTCGCTTGCCATTAC and TGTCTTGGCTCAGATGTGAC, producing a ~450 bp band from the 

floxed allele and a ~400 bp band from the wildtype allele. SmoM2 primers were 

AAGTTCATCTGCACCACCG and TCCTTGAAGAAGATGGTGCG, producing a ~200 bp band.  

 

Cell culture 

 Medulloblastoma cells were isolated and cultured as previously described29,38. Tumors were 

harvested from P12 hGFAP-Cre;SmoM2;Hk2fl/+ and hGFAP-Cre;SmoM2;Hk2fl/fl mice followed by trypsin 

digestion and trituration. Cells were maintained in DMEM/F12 (#11330-032; Thermo Fisher Scientific, 

Waltham, MA, USA) containing 25 mM KCI, Pen-Strep, and supplemented with N-2 (#17502048; Thermo 

Fisher Scientific) and 5% HI-FBS for 4 hours. After 4 hours, media were replaced with identical, serum-

free media containing DMSO, 0.5, 1, or 2 µM vismodegib. Cells were lysed and collected after 24 hours. 

 

Western blot analysis 

Cultured cells were homogenized in RIPA lysis buffer supplemented protease inhibitor cocktail, 

NaF, and sodium orthovanadate. Protein concentrations were determined by Bicinchoninic acid (BCA) 

assay per manufacturer’s protocol (#23229, Thermo Fisher Scientific). Equal concentrations of protein 

were resolved on SDS-Polyacrylamide gels followed by transfer onto polyvinylidene difluoride 

membranes (#IPSN07852; MilliporeSigma, Billerica, MA, USA). Immunologic analysis was performed on 
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the SNAP i.d. Protein Detection System (MilliporeSigma) per manufacturer’s protocol using the following 

antibodies from Cell Signaling Technology (Danvers, MA, USA): β-actin (#4970), HK2 (#2867), Cyclin D2 

(CCND2; #3741), cleaved Caspase-3 (cC3; #9661), anti-Rabbit IgG HRP (#7074) and anti-Mouse IgG 

HRP (#7076). Western blots were developed using the enhanced chemiluminescent SuperSignal West 

Femto Maximum Sensitivity Substrate (#34095, Thermo Fisher Scientific) and digitized using the C-DiGit 

blot scanner (LI-COR, Lincoln, NE, USA). Quantification was performed using Image Studio Lite software 

(LI-COR).  

 

Histology and immunohistochemistry 

 Brain tissues were processed for H&E staining and IHC as previously described39 and the 

following antibodies from Cell Signaling Technology were used: Proliferating cell nuclear antigen (PCNA; 

#2586) and p27Kip1 (#3686). After immunofluorescent staining, nuclei were counterstained with 200 ng/mL 

4’6-diamidino-2-phenylindole (DAPI; #D1306, Thermo Fisher Scientific) in 1X PBS for 5 min. Stained 

slides were digitally acquired using an Aperio ScanScope XT (Aperio, Vista, CA, USA).  

 

Statistical analysis 

 SPSS software (IBM, Armonk, NY, USA) was used to generate Kaplan-Meier curves and perform 

the log-rank test. Excel was used to calculate Student’s t-test.  
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3.6 Figures and Legends 

Figure 3.1 Multiple ways Sleeping Beauty mutagenesis can occur 

The Sleeping Beauty system is a powerful tool in identifying the genes involved in cancers. SB 

system transposons can randomly integrate at a TA dinucleotide junction anywhere in the genome and 

does not show affinity for hot or cold spots in the genome. Superior to retroviral infection, SB transposition 

can be controlled to mutagenize any target tissue and without extracellular signals for transposition 

activity. In the SB system, a mutagenic transposon vector (A) is used to increase SB transposition 

frequency and induce mutations. Containing a murine stem cell virus (MSCV) and a splice donor (SD), 

the transposon can promote gene expression when incorporated upstream or within a gene. It also 

contains two splice acceptors (SA) and a bi-directional polyA that can end transcription when 

incorporated in either orientation in a gene. As shown in B and C, the transposon can induce gain-of-

function mutations in oncogenes when integrated within the promoter region (B) or transcription unit (C), 

driving overexpression of the full or truncated oncogene transcript. In tumor suppressor genes, 

transposon integration within the transcription unit can induce loss-of-function mutations. The SA and 

polyA signals can trap the promoter of a tumor suppressor gene in either orientation (D,E).  
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Figure 3.1  

 

 

 

 

 

 

 

 

 

 

 

 

                                                  Adapted from Dupuy et al20,24. 

 

 

 

 

  



 81 

Figure 3.2 Vismodegib decreases proliferation in cultured Hk2-deleted medulloblastoma cells  

 Hk2 ablation sensitizes cultured medulloblastoma cells to vismodegib by decreasing proliferation. 

(A) Western Blot showing HK2, Cyclin D2 (CCND2) and cleaved Caspase-3 (cC3) protein expression 

levels in untreated and vismodegib-treated tumor cells from P12 hGFAP-Cre;SmoM2;Hk2fl/+ (Hk2fl/+) and 

hGFAP-Cre;SmoM2;Hk2fl/fl (Hk2cKO) mice. Protein quantification normalized to β-actin shows that (B) Hk2 

deletion ablates HK2 expression compared to Hk2 intact controls and that (C) vismodegib treatment 

decreases proliferation marked by CCND2 levels in Hk2-deleted mice with (D) no changes in apoptosis 

marker cC3 across the board. Graphs are averages ± s.e.m. P values were determined by Student’s t-

test. n=3 per condition.    
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Figure 3.3 Vismodegib increased differentiation and decreased proliferation in vivo 

P12 hGFAP-Cre;SmoM2;Hk2fl/+ (Hk2fl/+) and hGFAP-Cre;SmoM2;Hk2fl/fl (Hk2cKO) mice were 

injected with 100 mg/kg of vismodegib once a day for three days and collected at P15. (A) Representative 

H&E stains demonstrate that medulloblastomas maintained typical pathology while decreasing in overall 

size with vismodegib treatment. (B) Immunohistochemistry stains for PCNA (red) and p27Kip1 (green) 

show a significant decrease in PCNA+ and an increase in p27Kip1+ regions with vismodegib treatment in 

both Hk2fl/+ and Hk2cKO mice. All scale bars are 2 mm. PCNA, Proliferation cell nuclear antigen. 
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Figure 3.3 
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Figure 3.4 Vismodegib has anti-tumor effects in Hk2-intact and -deleted mice 

 In vehicle-treated mice, (A) Hk2 deletion significantly prolonged survival compared to Hk2-intact 

controls. Vismodegib treatment significantly prolonged survival in (B) Hk2-intact mice and not in (C) Hk2-

deleted mice. Vismo treatment also increased the (D) short survival of Hk2-intact mice but did not extend 

the long survival of Hk2-deleted mice. In all, the survival curves were significantly different (E). 

Representative (F) H&E stains demonstrate that vismodegib treatment significantly decreases tumor size 

in Hk2-deleted mice. P values were determined by log-rank test. All scale bars are 2 mm. 
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Figure 3.4 
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Figure 3.5 Oral vismodegib does not prolong survival in Hk2-deleted animals 

Kaplan-Meier curves show that Hk2 deletion prolonged survival in both (A) MCT vehicle- and (B) 

vismo-treated groups. Vismodegib treatment significantly prolonged survival in (C) Hk2-intact mice but not 

in (D) Hk2-deleted mice when compared to MCT vehicle-treated counterparts. Overall, there is a 

significant difference in survival curves (E). P values were determined by log-rank test.   
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Figure 3.5 
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CHAPTER IV: ADAPTATIONS OF ENERGY METABOLISM DURING CEREBELLAR NEUROGENESIS 

ARE CO-OPTED IN MEDULLOBLASTOMA  

4.1 Overview 

Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis 

and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. 

In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural 

progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid 

oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain 

tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic 

proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including 

Hexokinase-2 (HK2) and Pyruvate kinase M2 (PKM2) configure energy metabolism to support growth. In 

these non-malignant cells, expression of HK2 and PKM2 is driven by transcriptional regulators that are 

typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive HK2 and PKM2 

in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and 

medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the 

‘‘metabolic transformation’’ that is a hallmark of cancer is not specifically limited to cancer. Rather, 

metabolic transformation represents a co-opting of developmental programs integral to physiologic 

growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic 

transformation may nevertheless present ideal targets for novel anti-tumor therapy. 

 

 4.2 Introduction  

Many cancers demonstrate metabolic transformation, configuring cellular metabolism to support 

malignant growth1. Metabolic patterns commonly observed in cancer include increased lipogenesis2–4 and 
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aerobic glycolysis, the metabolism of glucose to lactate, despite the availability of oxygen for oxidative 

phosphorylation5,6. Up-regulation of aerobic glycolysis in cancer is known as the Warburg effect and is 

understood to be a malignant adaptation that allows continued proliferation in diverse microenvironments. 

The importance of metabolic transformation to cancer pathogenesis, however, raises important questions: 

Are these metabolic programs unique to cancer cells? If not, what might be their physiologic origins? 

Recent studies of postnatal neurogenesis have identified a physiological role in neural development for 

metabolic patterns typically associated with cancer, including both increased lipogenesis7,8 and aerobic 

glycolysis9,8. In contrast to the production of aberrant onco-metabolites such as 2-hydroxyglutarate, which 

requires IDH mutation10–12, the lipogenic and glycolytic phenotypes frequently observed in cancer 

originate in the normal metabolic repertoire of neural progenitor cells. Neurogenesis, like cancer, involves 

rapid proliferation and these studies show that metabolic pathways in neural progenitors, as in cancer 

cells, are optimized for cell division. The pattern of increased lipogenesis and aerobic glycolysis that 

manifests in neural progenitors is maintained in the progenitor-derived brain tumor medulloblastoma; in 

this cancer, developmentally-regulated metabolism is co-opted to support malignant growth. These 

studies provide a developmental perspective on the origins of cancer cell metabolism. 

Medulloblastoma is the most common malignant brain tumor in children, and presents an ideal 

opportunity to examine cancer arising as a disruption of developmentally-regulated growth13. 

Medulloblastomas originate from the cerebellum, which is the most prominent site of neural progenitor 

proliferation in early postnatal life. Several lines of evidence link cerebellar neural progenitor proliferation 

to medulloblastoma pathogenesis. In the first year of life in humans, or the first 15 days of life in mice, 

cerebellar granule neuron progenitors (CGNPs) proliferate in a germinal matrix along the outside of the 

cerebellum called the external granule cell layer (EGL). This period of rapid proliferation is triggered by 

activation of the Sonic Hedgehog (Shh) signaling pathway14. While proliferation of cerebellar progenitors 

is virtually shut down once cerebellar development is complete, mutations in humans that aberrantly 

activate the Shh pathway predispose individuals to medulloblastoma formation; importantly, this process 

is recapitulated in transgenic mice15–17. Thus mice with conditional deletion of Patched (Ptc) or 

constitutively active alleles of Smoothened (Smo) allow the process of medulloblastoma tumorigenesis 

process to be examined prospectively, from CGNP proliferation forward to cancer17,18. 
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4.3 Metabolism and medulloblastoma 

4.3.1 Lipid metabolism 

Along with induction of proliferation in the postnatal cerebellum, Shh signaling induces 

characteristic metabolic patterns in CGNPs, including decreased fatty acid oxidation7, increased 

lipogenesis7 and aerobic glycolysis9,8. Despite the normoxic environment of the postnatal brain, Shh 

drives a shift in energy production away from oxidative reactions. This developmentally-programmed 

metabolic configuration of CGNPs persists in primary medulloblastoma in transgenic mice7–9. Studies of 

human patients, moreover, show that the glycolytic phenotype of the model is shared by the actual 

disease; medulloblastomas are readily detected by clinical 18FDG-PET studies19,20 and glucose uptake 

correlates inversely with patient survival19. Thus understanding the cellular and molecular mechanisms of 

metabolic configuration of neural progenitors places the metabolic patterns of medulloblastoma into a 

developmental context and may provide key insight in tumor pathogenesis. 

Bhatia et al demonstrated that Shh induced a metabolic switch from lipid consumption to lipid 

production7. After observing abundant lipid deposition in Shh-driven medulloblastomas in transgenic mice, 

the investigators examined whether fatty acid metabolism was altered by Shh in CGNPs, the normal cells 

from which these tumors originate. Bhatia et al found that CGNPs explanted into media containing Shh 

up-regulated key lipid synthesis enzymes, including Fatty Acid Synthase (FASN) and Acetyl-CoA 

Carboxylase (Acc1). Shh also caused down-regulation of enzymes required for lipid catabolism, including 

Acyl-CoA Oxidase 1 (Acox1) and Medium Chain Acyl-CoA Dehydrogenase (MCAD)7. These 

transcriptional changes seemed to be coupled with proliferation as they depended on the activity of the 

Rb-E2F axis; E2F1 knockdown blocked the induction of FASN and the suppression MCAD in Shh-treated 

CGNPs. Direct measurement of palmitate oxidation demonstrated that these transcriptional changes 

potently altered lipid metabolism; Shh reduced palmitate oxidation, which could be restored by the 

subsequent addition of E2F1 shRNA. Thus, as depicted in Fig. 4.1, Shh shifted the lipid metabolism of 

CGNPs from catabolic to synthetic, and this shift was mediated by E2F1 and negatively regulated by Rb7. 

Importantly, this metabolic switch was maintained in medulloblastoma, where it promoted tumor 

growth7. Treatment of medulloblastoma-bearing mice with inhibitors of either FASN or the CDK-Rb-E2F 
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signaling pathway slowed medulloblastoma progression and prolonged mouse survival. Bhatia et al used 

the transgenic ND2:SmoA1 mouse line to generate animals with primary medulloblastoma. After tumor 

formation, these mice were injected daily for 2 weeks with either the CDK inhibitor olomoucine or with the 

FASN inhibitor C75. Both agents significantly extended animal survival by slowing tumor growth. Within 

treated tumors, C75 reduced lipid synthesis as expected. Similarly, olomoucine reduced intratumoral 

abundance of FASN7. Thus, direct inhibition of fatty acid synthesis exerted a significant anti-tumor effect 

and this effect was duplicated through CDK inhibition. Together these data show that lipogenic 

metabolism is both essential to tumor growth and derives from developmental physiology7.  

 

4.3.2 Aerobic glycolysis 

The same group, in a follow up investigation, demonstrated that the metabolic regulator, 

Peroxisome Proliferator-Activated Receptor-γ (PPARγ) plays a key role in shaping the metabolic 

response of CGNPs to Shh stimulation in a manner that persists after medulloblastoma formation8. The 

investigators show that E2F1 up-regulates PPARγ and that PPARγ in turn causes up-regulation of key 

glycolytic enzymes, Hexokinase-2 (HK2) and Pyruvate Kinase M2 (PKM2), and of the glucose transporter 

Glut4. Inhibiting PPARγ in medulloblastoma-bearing ND2:SmoA1 mice decreased the expression of both 

HK2 and PKM2, and reduced tumor glucose uptake, measured in vivo by 18FDG-PET scan. Similar to the 

inhibition of CDK and FASN, PPARγ inhibition reduced the rate of tumor growth and extended survival8. 

These findings further demonstrate that the proliferative and metabolic functions of neural progenitors are 

interconnected and jointly become subverted in medulloblastoma tumorigenesis. Moreover, as shown in 

Fig. 4.1, this investigation demonstrates that changes in lipid and carbohydrate metabolizing enzymes 

occur in concert, jointly regulated by common intracellular signals. 

A non-biased metabolomic analysis determined the functional significance of Shh-mediated 

changes in the expression of metabolic enzymes. CGNPs were explanted into media with or without Shh 

and changes in media metabolite concentrations were measured over time. Shh increased lactate 

production and glucose utilization of CGNPs, without causing additional changes in nutrient utilization and 

metabolite production. Continuous, real-time measurement of media oxygen content showed that Shh did 
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not increase the CGNP oxygen consumption rate, and that Shh-treated CGNPs retained significant 

unused capacity for mitochondrial respiration. In vivo studies, including quantitative measurement of 

18FDG uptake and MR spectroscopy, further showed that glucose utilization and lactate production in the 

cerebellum were highest during the period of CGNP proliferation. 18FDG-PET also demonstrated that the 

glycolytic phenotype of CGNPs is preserved in ND2:SmoA1 medulloblastoma. These studies confirmed 

that Shh signaling increased aerobic glycolysis in CGNPs and that Shh-driven medulloblastomas 

inherited the metabolic phenotype of their progenitor cells of origin9. 

Importantly, these studies revealed that hexokinase isoforms HK1 and HK2 were expressed in 

mutually exclusive domains in the postnatal brain, defined by the presence or absence of proliferating 

progenitors. While proliferating CGNPs up-regulated HK2, HK1 was expressed by differentiated neurons 

throughout the brain. HK1 was notably absent from the sites of postnatal progenitor proliferation, 

including the hippocampus, the subventricular zone, and the external granule layer of the cerebellum, the 

site of CGNP proliferation. These non-overlapping patterns suggested that the selective expression of 

HK2, rather than HK1, was integral to neural progenitor proliferation9. 

Insight into the functional significance of HK2 expression in neural progenitors came from studies 

that conditionally deleted HK2 in the brain. Mice with a floxed allele of Hk2 (Hk2f/f) were crossed with 

hGFAP-Cre mice that express Cre recombinase in brain stem cells during early brain development. While 

HK2 was deleted throughout the cerebellum, only CGNPs were directly affected because CGNPs are the 

primary source of HK2 in the postnatal cerebellum21. Metabolomic analysis showed that CGNPs in 

hGFAP-Cre;Hk2f/f mice generated markedly less lactate when exposed to Shh, confirming that Hk2 

deletion blocked the induction of aerobic glycolysis by Shh9. 

Genetic deletion of Hk2 enabled functional studies to determine the role of aerobic glycolysis in 

both CGNP development and medulloblastoma tumorigenesis. Mice with conditional deletion of Hk2 were 

viable and fertile and had no overt neurologic deficits. Inspection of the cerebellar microanatomy, 

however, revealed disruption of the typically regular pattern of cell layering, and increased capillary 

formation disrupting the EGL. CGNPs typically migrate along a predictable route as they differentiate into 

neurons; in focal areas, HK2-deficient CGNPs differentiated without completing migration, resulting in 
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granule neurons positioned aberrantly on both sides of the Purkinje cell layer. The increased vascularity 

of the cerebellum in hGFAP-Cre;Hk2f/f mice suggested that HK2-deficient CGNPs were increasingly 

dependent on oxidative metabolism and local tissue oxygenation, while the aberrant migration suggested 

disrupted timing of CGNP differentiation. 

Further evidence that aerobic glycolysis negatively regulates terminal differentiation came from 

conditional deletion of Hk2 in medulloblastoma-prone mice. These mice were generated by crossing 

hGFAP-Cre, Hk2f/f and SmoM2 mouse lines. Mice heterozygous for hGFAP-Cre and SmoM2 alleles 

develop medulloblastoma with 100% frequency by P12 and typically die from tumor progression by 

P2022,23. In these mice, cerebellar development is profoundly altered as the posterior fossa becomes filled 

with rapidly growing tumor. Tumors with homozygous conditional deletion of Hk2 occurred in hGFAP-

Cre;SmoM2;Hk2f/f with similar incidence, but were markedly less malignant. Deletion of Hk2 significantly 

increased median survival from 18 to 30 days and in contrast to the 100% mortality of mice with 

medulloblastoma with intact Hk2, allowed 30% of tumor-bearing mice to survive long-term and to breed9. 

Similar survival benefits were demonstrated when Hk2 was deleted in mouse models of glioblastoma24, 

and more recently, lung and breast cancer, confirming the broad relevance of Hk2 to solid tumors beyond 

developmental brain tumors25. 

Histologic examination of Hk2-deleted medulloblastomas showed that Hk2-deficiency 

dramatically increased the proportion of SmoM2-expressing CGNPs that differentiated appropriately, 

leading to relative normalization of cerebellar architecture. Staining for endothelial marker CD31 

demonstrated increased vascularization in Hk2-deficient tumors. Proliferating cells localized 

predominantly in the perivascular regions; between regions of perivascular proliferation tumor cells exited 

the cell cycle and up-regulated the differentiation marker p27. The increased angiogenesis of Hk2-

deficient tumors and the increased dependence of proliferative behavior on vascular proximity, suggested 

that growth restriction occurred when these Hk2-deficient tumors exceeded the limits of the compensatory 

effect of neovascularization. The presence of energy scarcity in Hk2-deficient tumors was assessed by 

studies of the phosphorylation of the intracellular energy sensor, AMP-activated Kinase (AMPK). 
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Consistent with energy scarcity, in Hk2-deficient tumors AMPK was consistently phosphorylated, as was 

the AMPK target, Acc19. 

 

4.3.3 Metabolic switches 

How does AMPK activation in Hk2-deficient tumors impair malignant growth? As shown in Fig. 

4.1, the metabolic switch from lipid catabolism to lipid synthesis, identified by Bhatia et al as required for 

tumor growth7,8, may be the underlying mechanism that is targeted by AMPK. While Bhatia et al showed 

that lipogenesis is regulated in CGNPs by E2F1 and PPARγ, AMPK-Acc1 signaling has been shown to 

down-regulate lipid production in diverse cell types26 and may similarly affect the lipid metabolism of 

CGNPs. AMPK activation in Hk2-deletion medulloblastoma increased the inhibitory phosphorylation of 

Acc19, which would be predicted to block lipogenesis by inhibiting production of malonyl-CoA27, leading to 

increased fatty acid oxidation28. Thus lipogenic metabolism may be a key mechanism of tumor 

pathogenesis that is supported by Hk2-dependent glycolysis. By preventing AMPK activation, Hk2-

mediated aerobic glycolysis may enhance tumor growth not only by generating energy with less oxygen, 

but also by allowing lipogenesis to proceed. If so, pharmacologic agents that directly activate AMPK may 

be able to exploit this mechanism to inhibit tumor growth. 

The induction of PKM2 by Shh, noted by Bhatia et al may be another critical link between Shh-

driven glycolysis and Shh-driven lipid synthesis. We have recently found that Smo-driven 

medulloblastomas in mice, like CGNPs, up-regulate PKM2 (unpublished data). While pyruvate kinase 

plays an essential role in glucose metabolism, there are key differences in the activity of the PKM1 and 

PKM2 isoforms. In contrast to PKM1, the PKM2 isoform is subject to down-regulation of enzymatic 

activity and this regulation may be essential to its growth promoting effect29. By poorly catalyzing the 

conversion of phosphoenolpyruvate into pyruvate, PKM2 may increase the supply of glycolytic 

intermediaries up-stream of phosphoenolpyruvate that can be diverted into alternative fates, including 

lipid production and nucleotide biosynthesis30,31. 
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The expression of the less active PKM2 isoform rather than the constitutively active PKM1, in 

both Shh-stimulated CGNPS and medulloblastoma suggests that pyruvate kinase activity may have an 

inhibitory effect on growth. Recent work by Anastasiou et al demonstrated that PkM2 activators, DASA-58 

and TEPP-46, can block lipogenesis and inhibit the growth of PkM2-expressing cancers32. Unlike the 

activation of PKM2 by endogenous FBP, the activating effect of these agents could not be inhibited by 

phosphotyrosine signaling. Cells treated with DASA-58 reduced the flux of glucose-derived carbons into 

acetyl-CoA and generally lowered de novo lipid synthesis. Similarly, TEPP-46 treatment reduced the 

intracellular concentrations of acetyl-CoA, lactate, ribose phosphate, and serine, important precursors for 

lipid metabolism. Moreover, xenograft tumors from TEPP-46-treated mice recapitulated the metabolic 

profile found in vitro and exhibited delayed latency and smaller size than vehicle-treated mice. These 

findings show that increasing PKM2 activity alters glucose and lipid metabolism and reduces tumor 

growth. Conversely, Israelsen et al showed that conditional deletion of PKM2 actually accelerates 

tumorigenesis in an in vivo model of breast cancer33. Within Pkm2-deficient tumors, a subpopulation of 

non-proliferating cells expressed PKM1. Proliferative tumor cells, however, expressed no PKM1 and 

completely lacked PKM2. Together these studies show that pyruvate kinase activity correlates inversely 

with malignant growth. 

The switch to PKM2 expression in CGNPs may similarly promote neural progenitor growth, again 

demonstrating a developmental origin for a metabolic pattern typically associated with cancer. As 

depicted in Fig. 4.2, in Shh-stimulated CGNPs, low PKM2 activity, operating downstream of high HK2-

driven glycolytic flux, may divert glycolytic intermediates from lactate generation, into lipogenesis. PKM2 

activation may reduce this diversion of glycolytic intermediates, reducing lipid synthesis required for 

growth. As medulloblastomas up-regulate PKM2, agents that increase PKM2 enzymatic activity may be 

able to block the lipogenic metabolism of these tumors. Through this mechanism, PKM2 activation, like 

AMPK activation, may offer a novel approach to medulloblastoma therapy by disrupting metabolic 

patterns that support tumor growth. 

By up-regulating glycolytic enzymes HK2 and PKM2, and lipid synthesis enzymes FASN and 

Acc1, while down-regulating lipid catabolizing enzymes including Acox1, Shh configures CGNPs for both 
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aerobic glycolysis and lipid synthesis. These processes operate in tandem to satisfy the ATP needs of the 

cell while carrying out a net conversion of glucose into lactate and lipids. CGNPs integrate developmental 

regulation of lipid synthesis and aerobic glycolysis in order to support physiological proliferation during 

brain development. These same metabolic patterns become activated in medulloblastoma tumorigenesis 

and function similarly to support malignant growth. 

 

4.4 Discussion 

An important question is the relevance of these findings beyond cerebellar development and its 

disruption in medulloblastoma tumorigenesis. Transcriptional analyses of patient-derived samples 

demonstrate that medulloblastoma is a heterogeneous group of tumors, with at least 4 molecular 

subtypes34–38. The SHH sub-group of medulloblastoma makes up approximately 25% of the cases of this 

rare tumor. Do observations of metabolic regulation in cerebellar progenitors and medulloblastoma have 

relevance for other cell types during development and for other cancers? 

Rather than being unique to CGNPs, aerobic glycolysis is likely to be a common feature of neural 

progenitors throughout the neuraxis. While Shh-dependent proliferation is unique to cerebellar 

progenitors, HK1 is absent in all progenitor regions of the postnatal brain9, suggesting a molecular switch 

to HK2 may be activated by diverse growth factors. Similarly, PKM2 is known to integrate diverse growth 

factor signaling pathways into a common output of reduced PK activity39,40. Thus the activation of aerobic 

glycolysis by CGNPs in response to Shh may be a general response of progenitor cells to the specific 

growth factors that drive them to proliferate. As a group, tumors of neural progenitors, including 

retinoblastoma, Ewing sarcoma and neuroblastoma comprise the largest set of solid tumors in children; 

the set of tumors recapitulating the metabolism of their cells of origin is thus likely to be broad. 

The role of N-Myc in mediating Shh-induced glycolysis in CGNPs supports the general relevance 

of metabolic configuration to progenitor function. N-Myc, and the homolog C-Myc, are essential regulators 

of neural and hematopoietic progenitor function41,42. They are also among the common oncogenes 

activated in human cancer43,44, including all 4 medulloblastoma subtypes45. Disruption of Myc-Max 
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interaction in CGNPs treated with the inhibitor 10058-F4 blocked the induction of aerobic glycolysis by 

Shh and prevented Shh-induced proliferation9. These findings are consistent with the documented role of 

c-Myc in up-regulating glycolysis in both normal tissues and in cancer46,47. Moreover, disruption of N-Myc-

Max interaction with the same agent in neuroblastoma reduced tumor growth while altering metabolism48. 

Thus while the metabolic and proliferative behaviors induced by Shh may be specific to CGNPs, the 

pattern of growth factor-induced metabolic configuration may be generalizable to diverse progenitors and 

progenitor-derived cancers. N-Myc and C-Myc proteins may be common effectors of metabolic 

transformation that operate downstream of diverse mitogenic signals, typified by Shh, that are cell-type 

specific. 

The phenomenon of postnatal cerebellar neurogenesis degenerating into medulloblastoma in 

mice presents an ideal system in which to study the developmental origins of cancer metabolism. 

Because the cells of origin of these tumors are identifiable and accessible, the molecular regulation of 

energy metabolism in these progenitors can be discerned in detail. Moreover, the patterns of metabolism 

in cells of origin and in resulting tumors can be compared. Importantly, Shh-pathway activation drives 

medulloblastoma tumorigenesis through downstream oncogenes, including N-myc, that are relevant to 

diverse cancers in both children and adults. Understanding the mechanisms that regulate the metabolism 

of cerebellar progenitors during development may thus lead to novel, metabolic approaches to anti-

cancer therapy. 
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4.5 Figures and Legends 

Figure 4.1 Shh signaling regulates lipid metabolism and glycolysis in an integrated manner.  

Regulatory genes and effector proteins are denoted by ovals and rounded rectangles, 

respectively, whereas inhibitors are in hexagons. Entities involved in lipid or glucose metabolism are in 

blue or red. AMPK may switch-off lipogenesis when aerobic glycolysis is blocked and energy scarcity 

results. Acc1, Acetyl-CoA carboxylase 1; Acox1, Acyl-CoA oxidase 1; AMPK, 5’ adenosine 

monophosphate-activated protein kinase; E2F1, E2F transcription factor 1; FASN, Fatty acid synthase; 

Hk2, Hexokinase 2; PPARγ, Peroxisome proliferator-activated receptor-γ; PkM2, Pyruvate kinase isoform 

M2; Shh, Sonic hedgehog. 
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Figure 4.2 Changing the flow of glycolytic intermediates through HK2 and PKM2 regulation 

By providing variable resistance to glycolytic flux, PkM2, induced by Shh, is ideally positioned to 

divert glycolytic intermediates, generated downstream of Shh-induced Hk2, to alternate metabolic 

pathways, such as lipogenesis, that support developmental and malignant growth. (A) Low PkM2 activity 

may channel glycolytic intermediates to alternate fates while allowing some production of lactate. (B) Hk2 

deletion reduces glycolytic flux upstream of PkM2, preventing both lactate generation and alternate uses 

of glycolytic intermediates. (C) Pharmacologic activation of PkM2 activation may increase lactate 

generation while acting like Hk2 deletion to block the growth-promoting effects of aerobic glycolysis. 
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CHAPTER V: CONCLUSIONS 

5.1 Overview 

The work presented here contributes to the understanding of aerobic glycolysis and its role in 

cerebellar development and medulloblastoma tumorigenesis. I approached medulloblastoma as a 

disorder of normal cerebellar development. Elucidating the developmental programs of proliferating 

CGNPs and how they are co-opted during tumorigenesis can lead to more targeted clinical interventions. 

Currently, targeted therapies against SHH-driven medulloblastoma have had potent, but limited clinical 

success. While SHH subgroup patients initially respond with dramatic tumor regression to direct inhibitors 

of the SHH signaling pathway, their medulloblastomas inevitably adapt and become drug-resistant. In 

drug-treated tumors, clonal genetic events mediate resistance to SHH pathway inhibition. Clonal 

selection, however, is unlikely to mediate concurrent genetic alterations to both the SHH pathway and a 

pathway that interacts with SHH signaling to acquire dual resistance. Thus, dual targeting of SHH 

pathway effectors and an interacting pathway is a potential clinical strategy in the treatment of SHH-

driven medulloblastoma to circumvent and subvert drug resistance. 

CGNPs and medulloblastomas both exhibit increased aerobic glycolysis, a metabolic program 

initiated by SHH signaling. To target aerobic glycolysis in the clinic, a better understanding of the 

metabolic program is required. SHH signaling increases the expression of two key glycolytic enzymes, 

Hexokinase-2 (HK2) and Pyruvate kinase M2 (PKM2). Previous work has demonstrated that inhibiting 

aerobic glycolysis at the start by Hk2 deletion promotes CGNP differentiation, blunts medulloblastoma 

growth, and prolongs survival. In contrast, work presented here demonstrates that inhibiting aerobic 

glycolysis at the end by Pkm2 deletion has opposite effects. Pkm2 deletion supports CGNP proliferation, 

accelerates tumor growth, and shortens survival. These animal model findings were validated by SHH 

subgroup patient data, showing that low PKM2 expression was associated with decreased survival. Thus, 

Pkm2 activation, rather than inhibition, may be a new treatment against SHH-driven medulloblastoma. 
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Together, these studies demonstrate that targeting aerobic glycolysis as an anti-cancer strategy must be 

sensitive to the location of therapeutic inhibition or activation. As a monotherapy, however, targeting 

aerobic glycolysis would not be effective because the cancer would adapt and undergo metabolic 

reprogramming, using alternate metabolic pathways to maintain aberrant growth. Glycolysis-based 

therapies could potentiate the cytotoxic effects of other treatments by disabling the downstream metabolic 

response to pro-survival mechanisms. Thus, dual targeting of SHH pathway effectors and aerobic 

glycolysis is a potential clinical strategy for medulloblastoma treatment. 

In a preclinical model of SHH-driven medulloblastoma, I demonstrate that aerobic glycolysis 

inhibition by Hk2-deletion and SHH pathway inhibition by vismodegib treatment act in concert to reduce 

tumor growth. Vismodegib inhibits the Smoothened mutant allele SMO-W539L in tumor-bearing, Hk2-

intact mice, demonstrated by a small, but statistically significant, reproducible increase in mouse survival. 

The anti-tumor effects of vismodegib treatment were also detected in Hk2-deleted mice as drastically 

reduced tumor growth compared to vehicle-treated counterparts. The robust survival benefit of Hk2 

deletion, however, obscured the survival benefit of vismodegib treatment. In all, these data suggest that 

dual inhibition of HK2 and the SHH pathway is a novel therapy against SHH-driven medulloblastoma.  

The present work has implications for the SHH subgroup of medulloblastoma and cancer biology 

as whole. SHH pathway activation has been reported in other cancers including, basal cell carcinoma, 

gastric, pancreatic, and colorectal cancer. The insight demonstrated here might have parallel effects in 

these diverse cancers. However, additional studies are needed before these findings can be translated to 

the clinic. 

 

5.2 Future studies 

A new study of PKM2 activation in a preclinical model of SHH-driven medulloblastoma would 

provide further insight into the potential efficacy of therapeutically increasing the activity of PKM2. PKM2 

activators are currently available for research use and are reported to cross the blood brain barrier after 

IP injection1. My unpublished in vitro studies with the PKM2 activator TEPP-46 have demonstrated that 
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CGNPs increase pyruvate kinase activity with treatment as measured by enzymatic assay. EdU 

proliferation studies with TEPP-46 will determine if PKM2 activation slows CGNP proliferation. These 

initial in vitro studies may lead to similar findings in vivo, using both normal and medulloblastoma-prone 

mice. Small molecule activation of PKM2 in vivo, however, has its limitations. While a short bolus dose of 

TEPP-46 may activate PKM2 and promote differentiation, treated tumors may develop resistance after 

chronic use. In response to prolonged PKM2 activation, medulloblastomas may reprogram their 

metabolism and stop expressing PKM2 to maintain rapid growth. In this regard, an alternative to small 

molecule activation of PKM2 is overexpression of PKM1 in the system. Studying pyruvate kinase 

activation with SHH inhibition in medulloblastoma would further elucidate the efficacy of simultaneously 

targeting aerobic glycolysis and the SHH pathway. 

Hk2 deletion with vismodegib treatment demonstrated that dual targeting is a potential clinical 

strategy for the treatment of SHH-driven medulloblastoma. There are several compounds currently 

available that generally target hexokinases, including 2-deoxyglucose, lonidamine, and 3-bromopyruvate2, 

which could be used in clinical trials with vismodegib. A caveat to combination therapy is drug-drug 

interactions, which would require additional preclinical testing to parse out. These readily available 

compounds with established toxicity and safety profiles would significantly expedite the bench-to-clinic 

timeline of this dual targeting strategy. More specific HK2 inhibitors, however, are not on the market as 

their development has been technically difficult. This year, Lin et al just published their synthesis of a 

selective HK2 inhibitor3. While this new compound has vast potential, it currently lacks the preclinical data 

required for testing in clinical trials.  
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