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ABSTRACT
RITEN MITRA: Bayesian Model Based Approaches In The Analysis Of

Chromatin Structure And Motif Discovery.
(Under the direction of Dr P.K.Sen.)

Efficient detection of transcription factor (TF) binding sites is an important and un-

solved problem in computational genomics. Recently, due to the poor predictive ability of

motif finding algorithms, along with the recent proliferation of high-throughput genomic

technologies, there has been a drive to utilize secondary information, such as the position-

ing of nucleosomes, for improving predictions. Nucleosomes prevent transcription factor

binding at those sites by blocking the TF access to the DNA. We aimed to construct

an accurate map of nucleosome-free regions (NFRs), based on data from high-throughput

genomic tiling arrays in yeast. Direct use of Hidden Markov Models are not always ap-

plicable due to variable-sized gaps and missing data. So we have extended the hidden

Markov model procedure to a continuous time version while efficiently incorporating DNA

sequence features that are relevant to nucleosome formation. Simulation studies and an

application to a yeast nucleosomal assay demonstrate the advantages of the new method.

The established biological role of nucleosomes in relation to TF binding, led us to formulate

a joint model in the fourth chapter. The algorithm was implemented on the FAIRE data

set, and comparisons were made with existing motif search algorithms. The fifth chapter

deals with HMM asymptotics. We obtained results on consistency asymptotic normality

and contiguity of a hidden Markov model. These have helped our inference on the conver-

gence properties of the posterior and the consistency of the Bayesian posterior estimates.

This has led to the conclusion that the Bayesian inference of a HMM run on sufficiently

large datasets ( which is typical, in the case of genomic data) leads us very close to the

underlying true parameters, as in the case of iid models. The result is fairly general in

nature to provide the justification for HMM inference in a wide variety of datasets.
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Chapter 1

Introduction

Research in computational biology over the past few decades has consistently

supplemented and strengthened the field of genomics. It plays as much important a role

in paving the the path to discoveries of great consequence, as the laboratory methods.

The field has arisen out of a demand to address the new questions posed by the size and

nature of the genomic data that has been in proliferation. These data arising out of new

technological setup, has features and characteristics of its own. This, in turn, has led to

framing innovative statistical methodologies and algorithms. Most of these algorithms are

centered around a Bayesian paradigm, mostly in the field of motif discovery.

The growing acceptability of Bayesian methods in statistics applications can be partly

attributed to the computational resources we have in hand today. With the help of these

resources a Bayesian algorithm can help us make inferences from large complex models

where the interrelationship between the components are often hierarchical. . However, the

blind application of a Bayesian sampling scheme into a data model, without getting into

the issues of the statistical features of the models, can be an issue of serious concern. The

inference that we make from these models, is often subject to a set of assumptions that

need to be fulfilled in order to guarantee issues of identifiability and proper posteriors.

The central problem that we deal with here is that of motif discovery in DNA. The DNA

has short repetitive patterns present which are potential transcription factor binding sites

and hence of a great biological significance. We have shown our methods to greatly

improve on the shortcomings of earlier motif discovery models. This we have done by



trying to incorporate secondary information in the form of presence or absence

nucleosomal structures. The secondary information has come up in . But our methods

that we have implemented are just not based on merging of two data sources in coming

up with more information . It goes beyond that in the sense that it implements the

merger efficiently so that propagation biases from one prediction to another gets

minimized. This issue has led us to come up with a suitable statistical model that jointly

samples nucleosomes and motifs.

This modeling framework gives a biologically plausible structure to the data and forms

one part of the picture. The other part comes from the set of issues originating from type

of data that we are dealing with. The FAIRE technology that outputs the genome wide

intensities has missing information inform of non contiguous probes. This must be dealt

with first before we could possibly extend our nucleosome prediction models into a joint

model. The first chapter is concerned with implementation and evaluation of such a

model. We have been able to incorporate sequence features directly into the link function

of a model to see if sequence features has an influence on the length of nucleosome and

the propensity of nucleosome occurrence ( measured by intensity data) Having satisfied

ourselves that this framework produces remarkably favourable results on comparison with

known data bases, and provides a significant improvement over the currently used HMM

methods on modelling accurately the location features. we have been encouraged to build

up on it and venture into the joint model described above. The joint model instead of one

has two layer of hidden states, one for the nucleosome and one for the data structure.

The data sources come in the form of nucleosomal intensity data and sequence data,

obtained from Chip-Chip experiments and microarrays. The recursive forward algorithm

that we implemented for the first chapter gets extended into a modified algorithm with

two running indices for the two hidden states.

The inferences both from the joint model and the nucleosomal model ( which consists of a

single layer of hidden states) is aided by MCMC sampling from the posterior. The

posterior mode here is actually the value attaining the maximum likelihood, when the

prior is flat.The flatness of the prior distributions do not pose a problem since there arises

no necessity of making the posterior proper. We get finite integrals when we integrate the

likelihood kernel with respect to the parameters. On the other hand it helps us having a
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non informative background on the parameters to be inferred, and make our inferences

solely based on the data alone. The flat prior assumption essentially enables us to

analyze the likelihood function and its properties through MCMC sampling techniques.

So our inference on Maximum Likelihood Estimation of a a continuous time hidden

markov model gets directly translated into making inferences on the posterior mode of

the Bayesian model. By our conclusions in the third chapter, we have shown that the this

mode is a consistent estimator. That is , under large sample size conditions the posterior

mode is very close to the true parameter values. This is a very important and immensely

relevant result considering the size of the genomic data that wee handle. In our

application the sequence size runs in arange of 340000-500000 base pairs. Taking the

mode of our posterior samples from MCMC would give us a very accurate prediction of

the parametrs governing the underlying hidden markov process, and we would be able to

predict the DNA structural positions to a very high degree of accuracy. This result has

scopes beyobnd the applications that we have considered in the first two chapters and can

find useful application in numerous classification and optimization problems in genomics

which are based on likelihood approach .

We have taken the techniques of analyzing the HMM likelihood one step further and

proved the asymptotic normality of the score function and the maximum likelihood

estimates. This enabled us in building asymptotic confidence intervals of the sampled

posterior mode of the parameters. By examining the position of the null with respect to

the upper and lower bound of the interval we assessed the significance of the parameters.

The fascinating thing about this result is that we no longer have to depend on the

simulation sample sizes in order to get an estimate of the interval length, but we could

directly obtain it from a single round of computations from the complete data likelihood.

The MLE results and consistency are based on simple assumptions on the boundedness of

transition parameters. By the biological constraints on the length of the nucleosome free

regions and the nucleosomes, these conditions are trivially satisfied.

This methodology gives us a statistically rigorous estimate of the distance of our

estimates from the null distribution However in some cases we need to assess the power of

our test statistics under suitable alternatives For example we need to know if for

organisms which share a very close geneological relationship have similar or different

3



nucleosomal lengths. Or in the case of yhe joint model, if a weak link joining the motif

strength and signal is existent. Sometimes we are dealing with weakly pronounced motif

signals that are not very different from the background and hence is difficult to

distinguish or pick up. Here the decreasing genomic distance on the phylogenetic tree

between related species, or the link value tending towards 0 or the weak motif signals,

denote a sequence of alternatives tending towards the null. and testing procedures would

necessitate deriving the distribution of power statistics under these conditions. This ahs

been facilitated by the property of contiguity which we have been able to derive for the

continuous time HMM. The contiguity property relied on asymptotic noramlity of the log

likelihood and the asymptotic similarity of the observed and expected Fisher Information.

The third chapter thus provides a repertoire of statistical tools to supplement our

inferences in the first and the second. The document is organized as follows. The first

chapter introduces the continuous hidden markov model and extends it to include

sequence features. By implementing the model on a well known data set, we have been

able get new insights into the relationships between nucleosomes and DNA

characteristics. The second chapter of our document describes a nucleosome-motif model

and quantifies the link between gene signal and motif strength. The third chapter deals

with asymptotics of the models described above and provides the setup for testing

hypothesis under biologically plausible local alternatives. The last chapter gives an

overview of the body of work and points to the future directions in this area.

This document is organized into three main divisions. In Chapter 2, I have made a review

of the research done in the area of motif search algorithms, nucleosome mapping,and

asymptotic properties of Hidden Markov Models. I have depicted the importance of motif

search algorithms in computational biology, its development since the beginning of the

last decade, and its connection with nucleosome mapping. I have described in details,

some of the main statistical methodologies that have dominated this field. In the course

of the review, I have given a short overview of our proposed methods, and how they

improve upon inadequacies of earlier models. The last section of the review deals with

asymptotic results of Hidden Markov Models, which have an important role to play in

connection with inferential procedures of our proposed models. For this section, I have

described in details some of the main theoretical developments, giving weight to usage of

4



certain sophisticated theoretical tools in the proof of maximum likelihood

estimation–which have been a recurrent theme in work done in this area. Within the

same section, I have provided a short description of our proposed method, which attempt

to extend the known results of discrete HMM to its continuous time version.

Chapter 3 deals with the first paper of our proposal. These sections give the motivation

of our proposed method, describe in detail the biological background and data

structure,provide an explanation of our estimation techniques, and show clearly the

potential of our newly developed methodology to contribute significantly to current

research.

The next major division, Chapter 4, constitutes the content of our second paper. It talks

about a joint model that uniquely combines nucleosome finding, and motif search into a

single Bayesian framework.

Chapter 5 talks about the asymptotic results and the contiguity arguments thereof.

The concluding chapter 6 deals with future directions of research.

The simulation tables and figures are provided in the Appendix.
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Chapter 2

Literature Review

2.1 Introduction

The DNA sequence can be viewed as a series of letters taken from the set ( A C G T),

which correspond to the nucleotides Adenosine, Thymine, Cytosine and Guanin

respectively. In reality, we do not have a single sequence, but a double helical structure,

where one strand has the ’complementary’ base, relative to another. Due to the chemical

affinity formed from their structure, these nucleotide pairs form matching pairs. For

example, if we take a subsection of one DNA strand and observe the sequence ACGT we

can readily infer that the other strand has TGCA in the same positions. This

complementarity allows us to focus our attention on a single DNA strand.

Since its discovery as the key constituent of cellular life in living organisms, attempts

have been made to unearth the information contained in the genome. Advances in

technology in the last two decades have made it possible to (a) make a map of the DNA

sequence pattern and (b) reveal the physical structure of DNA. The DNA sequence, when

considered alone, does not adhere to a regular deterministic pattern. Today,however, we

know that there are subsequences in the DNA called genes, which are the key

constituents in initiating the bio-chemical processes that lead to the formation of proteins

in our cell, thus acting as the building block for all life processes in an organism.

Transcription is the first step in the process. It is onset when the enzyme RNA

polymerase binds to the upstream region of a gene. This enables the information from



the DNA sequence to be copied into mRNA. The information is then transferred from

mRNA by the process of translation to form proteins. A special group of proteins, called

the ’transcription factors’ interacts with RNAp and regulate gene expression. They do so

by attaching themselves to certain regions in the upstream section of a gene. The binding

of transcription factors is a chemical process that depends on the binding energy of the

interacting molecules,(the biology of which is not fully understood till date) and the

chromatin structure of the region. Knowledge of the location of these binding sites would

serve as a very useful guide in locating the functionally important regions of the genome,

and hence ranks as one of the most important quests facing the field of bioinformatics

today.

Experimental detection of the transcription factor binding sites remain an infeasible task.

Hence, much of the work done in this direction, relies on statistical and numerical

algorithms that exploit the quantitative differences in the base composition of the binding

sites and the rest of the sequence. The binding sites are typically 8-20 base pairs long.

One important property of these sites is that the sequence structure is more or less

conserved across all binding sites corresponding to a particular transcription factor.

Mismatches or some random deviations from a fixed pattern are, however, tolerated. The

underlying fixed pattern is called a ’motif’.

Motifs are, thus, defined to be short repetitive ( with some fuzzy mismatches )

subsequences of unknown length within a DNA sequence. So now, the biological problem

of finding the transcription factor binding sites translates to the computational and

statistical problem of locating motifs in a sequence. It is expected that probabilistic

models will have a big role to play in the motif search algorithms, since the patterns are

repetitive with a degree of fuzziness or random error. The following section gives us an

overview of the motif discovery models and methodologies.

2.2 Algorithms for motif discovery

One of the first approaches in motif search was a method called ’Consensus’, developed

by Stormo and Hartzell (1989). The main objective of the algorithm was to find motif

sites across a set of unaligned sequences. A motif was designated by a 4 x k matrix,

7



where k is the motif length. Each column corresponded to a position in the binding site,

and the frequencies in each column denoted the frequencies of occurences of different base

pairs in that particular position. Initially all k length words ( contagious subsequences)

were chosen from one sequence . These words were equivalent to several 4 x k matrices

where the first row is 1. In other words these initial choice of motifs were free of any

random error components. Next, each of these matrices were compared to all k-length

words from the next sequence. The comparison was quantitatively done using the

Kullback- Liebler information score

IKL =
∑
i

∑
j

fijlog
fij
f0j

where i ranged over the positions and j is the index of the base pair. For each matrix, the

highest score was retained, and the k-word that gave rise to the score was added as a row

in the matrix. The matrix was then normalized to the relative frequency scale. This was

done progressively over all sequences and the highest scoring matrices were retained.

Although computationally feasible, the above method lacked in a rigorous statistical

framework that would allow us to test the significance of the motifs obtained. The

scoring criterion, though having the intuitive appeal, was also chosen arbitrarily. This

motivated researchers in the early 90s to come up with more rigorous stochastic models,

that aimed in determining simultaneously the unknown matrix (the motif pattern) and

the sites of their occurrence. Attempts to construct such a model was first taken by

Lawrence and Reilly(1993). In their formulation, the sequences were allowed to have only

one motif site . This was a restrictive assumption. Also, the model was based on the fact

that there would be only one motif pattern prevalent in the entire set of sequences-not a

valid assumption.

Both these conditions were relaxed, and a more complete version of the motif model

emerged with the paper by Liu and Lawrence(1995) Liu et al. (1995). The model

proposed by them, turned out to be the basic framework, on which further work was

done. In the following sections we lay out the model setup and study in detail the

inferential procedures.

8



2.2.1 Position Weight Matrix models

We have N different sequences with Si of length Li. For k different motif types, the k

Position Weight matrices are denoted as Θ = Θ1, .....Θd. Each Θk = (θk1, θk2....θwk)

where wk is the width of the kth motif type and θki = (θki1, θki2θki3, θki4) denotes the

probabilities of the 4 bases to occur in the ith binding position of motif type k. The

corresponding probabilities for the distribution of sequences under the background ( i.e in

places not occupied by motifs) is denoted by θ0 = (θ01, θ02θ03, θ04).

The start position of the motif sites is indicated by the indicator variable

A = ((Aijk)) = 1 iff position j in sequence i, is the start position of the motif type k. Ak

denotes the indicator variable for the start position of the motif type k, spanning all

sequences. Let SiAk
denote the set of letters occuring in position i of every instance of

motif type k. If C(S) denotes the set of frequencies of all letters in a set S, then

(C(S1
Ak

), ..............C(Swk
Ak

)) follows Product multinomialMN(θk1, ...θkwk
) i.e the ith

position in the motif type k, has column frequencies that follow a multinomial model with

parameters θki.

Using the notation uv =
∏p
i=1 u

vi
i for vectors u and v in Rp the likelihood conditioned on

the indicator matrix A is

P (S|Θ, A, θ0) = θ
C(SAc

)
0

K∏
k=1

wk∏
i=1

θ
C(S

Ak
i )

ki (2.2.1)

The prior assumed on θ0 is Dirichlet(β0) where β0 = (β01.......β0K) and the corresponding

Dirichlet prior is PD(B) for Θk where B = (βk1, ....βkwk
) is a 4 by wk matrix. π denotes

the probability that any position is a motif start site, i.e π = P (A(ijk) = 1). The prior

assumed on π is Beta(α, β) The posterior conditional probability of the data can now be

written as

P (Θ, A, θ0|S) = θ
C(SAc

)+β0
0

K∏
k=1

wk∏
i=1

θ
C(S

Ak
i )+βki

ki , (2.2.2)

where L =
∑N

i=1(Li − w) and |A| is the cardinality of the set A, or the number of

positions covered by motifs.
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2.2.2 Inference in Position Weight Matrix Models

Since the full conditionals are easily available, straight forward Gibbs sampling of the

parameters is one possible approach. However for computational efficiency, Θ and π can

be integrated out and sampling could be done directly from the posterior distribution

P(A/S). The sampling of A would be then done using a Gibbs method, i.e. conditioned

on the presence or absence of motif sites elsewhere in the set of sequences sequence, the

probability of having a motif of type k, start at a particular position, is calculated. The

position is then assigned to a possible motif start position with the calculated probability.

Based on an approximation, Liu et al Liu et al. (1995) computed the following predictive

formula

P (A(ijk) = 1/S)

P (A(ijk) = 0/S)
=

π

1− π

wk∏
i=1

θ̂kl

θ̂0

C(Si,j+1,k)

where θ̂kl and θ̂0 are the estimated posterior means.

The above formula is intuitively appealing, since it shows directly the influence of the

nucleotide counts of the motif models ( the matrix column counts updated by the

Bayesian parameters go into the posterior mean estimates). However the Gibbs approach

becomes ’sticky’, when the motif sites are abundant. (This is because we shall not be able

to sample till after w positions of a selected motif site.)

One alternative to this would be to use a Data Augmentation technique. Under this

approach we do not integrate out θ and π but conditioned on these parameters draw

directly from the joint distribution of A. However, the conditional distribution of A does

not have a closed form. To get rid of this problem, the algorithm of forward summation

and backward sampling is implemented. This algorithm plays a key role in computational

genomics and is widely used for models with unobserved hidden states.

The first step in the algorithm is constructing the forward sum- a sequence, which

recursively computes the likelihood that the motif type k ends at a particular position j

in the sequence. Let F (j, k) denote the likelihood that the motif type k ends at position j,

k > 1 and F(j,0) denote the likelihood till position j, when the jth sequence comes from

10



background.

F (j, k) =
∑
k≥0

F (j − w, l)θC(Sj−w:j)
k , k ≥ 1 (2.2.3)

F (j, 0) =
∑
k≥0

F (j − w, l)θC(Sj−w:j)
b (2.2.4)

Backward sampling is then implemented to sample motif occurring sites from the end of

the sequence. The rationale behind the backward sampling procedure is that the joint

distribution of P (A|S) can be written as the product of conditional distributions.

We initiate the backward sampling by first selecting the last position of the sequence as a

motif ending site of type k with probability

F (N, k)∑
l 6=k F (N, l)

If the position is selected as a motif of type k, we move back w steps and sample at the

N-w position.Else, we sample from the position N-1 with probability F(N-1, k). Generally

for any position j, the probability of sampling a motif of type k is given as

F (j, k)∑
l 6=k F (j, l)

We continue the above chain of conditional sampling till we reach the beginning of the

sequence. The beauty of the backward sampling is that the Markovian property makes

the backward sampling probabilities only dependent on the forward probabilities, and not

on the configuration of the previously sampled motifs.

2.2.3 Extensions

One extension to the above model is to have an unknown motif width w, with a suitable

Poisson prior. However, in that case, we have a dimensionality change in θ. Reversible

jump Monte Carlo can be implemented to circumvent this problem, or, as was discussed

previously, θ can be integrated out. The width parameter,w, is then updated by a

metropolis Hastings step. A more generalized form of the position weight matrix model
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needed to be formulated for complex eukaryotes(e.g, humans, mouse) . This is because in

such organisms, some potential problems can arise in the form of weak motif signals,

sparseness of signals, ( the binding site might be 2000 base pair away from gene), and the

tendency of motifs to occur in clusters.

In order to accommodate these features, a more complete Bayesian model was proposed

that incorporated the distance between the motifs(λ), a correlation transition matrix

reflecting the probability of transition between adjacent motifs -( τ ), and a variable list

of putative motifs D = (D1, D2, ...Dp).

D0 denotes the background model.

The length,d, between the motifs is assumed to follow a geometric distribution with

parameter λ truncated at w.

Let u denote a p-vector of binary random variables where uj = 1 iff Dj is a part of the

module. Thus number of non-zero entries in the vector u denote the number of motif

types currently included in the model.

The prior distributions are as follows:

P (uj = 1) = π (2.2.5)

λ ≈ Beta(a, b) (2.2.6)

Di =
k∏
j=1

Dirichlet(βij) (2.2.7)

D0 ≈ Dirichlet(β0) (2.2.8)

The ith row of τ follows Dirichlet(αi). The multinomial parameters have closed form

conditional distributions, as previously. The indicator matrix of motif positions, A, could

be sampled through the data augmentation technique by first recursively computing the

forward likelihood and then implementing backward sampling. The forward algorithm

and backward sampling procedure needs to be adapted to the extended parameter

settings.

However for sampling u, or in selecting the putative binding sites that go into the

module, we encounter a problem, since the dimension of θ and τ vary according to the

number of motif types. So θ and τ is integrated out analytically and the marginalized
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posterior probability is given as

P (u/A, T, S) = π|u|(1− π)p−|u|
∫
P (S/A, T,Du)P (Du/u)d(Du)

Evolutionary Monte Carlo is then applied to sample u. A set of temperatures (t1......t) is

chosen for each ui . Now we define

φ(ui) = exp(log(P (u/A, T, S)/ti)

A new configuration is now selected by the following steps:

1. Mutation: A new configuration vk is chosen by randomly selecting uk and changing.

uk is then replaced by vk with the probability min( φ(vk)
φ(uk) , 1)

2. Crossover: Two configurations uk and uj are randomly selected and new units vj

and vk are formed by a random exchange of their segments.

The two new units then replace the old ones with probability

min(
φ(vk)φ(vj)

φ(uk)φ(uj)
, 1).

Alternative models for motif discovery were being suggested since early 2000, that

employed the concept of segmentation of the sequence data. Recursive formulae for

computation of likelihood formed the basis of inference in such models. Below,we present

a short overview of one such category of models.

2.2.4 Dictionary models

Bussmeker et al(2000) Bussemaker et al. (2000) introduced a dictionary model for motif

discovery by making a novel formulation of the problem. The assumption was that

Nature has dictionary of some words, which are sampled with replacement and are

concatenated together to form the DNA sequence. The set of possible words is denoted

by (M1, ....MD) The sampling probability of the set of words is denoted by
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ρ = [ρM1 , .....ρMD
] . H is the index for all possible segmentation of the sequence into

words. (H1, ...Hk) represents the possible partition of the sequence into k words.

Let N(H) denote the number of words in H, NMj(H) be the number of occurences of type

Mj in the partition. The full likelihood of the data can be written as

P (S|ρ) =
∑
H

Nh∏
i=1

ρ(SHi) =
∑
H

d∏
j=1

[ρ(Mj)]
NMj(H)

The likelihood does not have a closed form, but its computation can be made feasible by

using the forward recursive formula below. Let Fi denote the likelihood till position i.

Then

Fi =
w∑
j=1

ρ(Si−j:i)Fi−j

where w is the length of the longest word.

The maximum likelihood estimate of the parameters can be obtained through a

Newton-Raphson algorithm. Alternatively, expectation maximization(EM) or Gibbs

sampling can be used. The iterative procedure of estimation, introduced by Bussmeker et

al,was to start off with an initial dictionary of only 4 single letter words (A, C, G,T) . At

each stage of the dictionary, the maximum likelihood estimate of the word frequencies

were computed. Based on these estimated probabilities, it was observed whether random

concatenation of words were more probable than expected under the current model.

These words were then added to the dictionary.

The above algorithm had two major drawbacks. One was that the algorithm would have

the longer words consist of overrepresented segments, though that might not be true. The

other was the fact that it overlooked the stochastic nature of motifs. An improved version

of the above was presented in the paper by Keles et al(2003) [Keles et al. (2003)], where a

probabilistic model was introduced to model the lengths of the first and last segments.

A substantial improvement to the dictionary model was done in Gupta and Liu(2003)

Gupta and Liu (2003) where the concept of a stochastic dictionary was first introduced.

A stochastic dictionary consisting of D words is equivalent to D Position Weight

Matrices( introduced in the previous section). Each Position Weight Matrix Θk of width
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w is represented as (θ1, .....θwk). The occurrences of letters in motif sites corresponding to

the same motif thus follow a product multinomial model. As in the notation defined in

the earlier section, Aik represents the indicator of the motif type k beginning at position

i. Let C = [Cq+1, ....CD] represent the count matrices corresponding to the probability

matrices. The complete data likelihood is

L(N,C,A|ΘD, ρ) =
D∏
l=1

ρl

D∏
k=5

wk∏
j=1

w∏
i=1

θ
cijk
ijk

A Dirichlet distribution is assumed for

ρ ≈ Dirichlet(β0)

A corresponding Dirichlet prior PD(B)is assumed for Θk = [θ1k, ....θwkk] where

B=(β1, β2.....βk) is a 4 x wk matrix, with each βj = (β1j , ..β4j) The posterior distribution

of Θk is Product Dirichlet PD(B +Ck) i,e the column counts of the kth word are updated

by the Beta prior coefficients.The posterior distribution of ρ is Dirichlet (N + β0). The

complete likelihood till the ith position, Li(Θ) is computed from a recursive formula

identical to the Bussemaker’s model given above. Motif start sites are then conditionally

sampled with the probability:

P (Aik = 1|Ai+wk,Θ) =
P (Si:i+wk−1,Θ, ρ)Li−1(Θ)

Li−1(Θ)

Next, the stochastic matrix parameters and ρ is sampled from their conditional

distributions, as given above.

The start sites and the motif parameters are sampled in this way till convergence. Then

the number of words in the dictionary is incremented by 1 ( D=D+1) and the algorithm

starts from step 1.

A particular motif alignment is scored by the MAP criterion ( Maximum A posteriori

Probability). For a particular motif pattern A, the MAP is given by

P (A ∗ |M1)

P (.|M0)
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where M0 denotes the model that the entire sequence is generated from background,

while M1 is the model that incorporates motifs. P (A ∗ |M1) is the maximum of the

posterior density of A. θ is integrated out in order to calculate the numerator and

denominator. The MAP score was tracked along with the steps of the algorithm.

2.2.5 Relaxing the Product Multinomial assumption

The product multinomial likelihood obtained in the position weight matrix models was

derived from the assumption that the nucleotide occurrences at motif positions were

independent.

This constraint was first relaxed in Zhou and Liu(2003) Zhou and Liu (2004) . The motif

binding positions were allowed to be correlated with each other, but only pairwise

correlations were permitted. That is, a given position could be correlated with only one

other position in the binding site.

The total model space, H is huge and contains Hm, the space of models having m

correlations. A prior was put on the model spaces so as to penalize the models with

larger number of correlations. Also, all models having the same number of correlations

were assigned equal weight. That is

P (H1) = P (H2)

if H1 and H2 belong to Hm

P (H1)

P (H2)
= Choose(w − 2m, 2)

i.e models that have larger correlations are given a weight inverse to the number of ways

of inducing the additional correlations.

The prior probability for any H ∈ Hm is calculated as proportional to 2m

(w−2m)!w!

The motif occurence probability is given as ρ. ρ is assigned a Beta (a, b) prior. The usual

Dirichlet priors are imposed on the motif and background parameters.

The joint distribution of the data and the unknown parameters can be written as

P (S,A, |θH , π) = P (H)P (θH |H)P (π)P (A|π)P (S|A, θH)
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Sampling is done from the above distribution in the following steps.

1. Conditional on all other parameters, A is sampled through a Gibbs procedure.

2. ρ is sampled from its posterior distribution, Beta(a+ |A|, L− |A|+ b)

3. Motif parameters are sampled from their conditional distributions which are

Dirichlet.

4. Updating of H directly is a problem, since the dimension of the motif parameters

change with the cardinality of H.

So the motif parameters and ρ are integrated out from the joint posterior to give

P (S,A|H).P (H|S,A) is proportional to P (SA|H)P (H).

H is now updated by a Metropolis-Hastings step. The new candidate H∗ is obtained in

the following two ways:

Addition: A pair of positions is randomly selected from (w − 2m) positions of the motif

and added to H.

Deletion: A pair of positions is selected from the m correlated pairs and removed.

We accept the new H∗ with the probability min( 1, r) where r is the ratio

P (H∗|S,A)T (H/H∗)

P (H|SA)T (H∗|H)

and T is the proposal density. A phase shifting step is implemented once in every 20

iterations of the algorithm to escape local modes.

Among the 95 sets of TF binding sites in which the algorithm was applied, 22 of them

had the posterior probability of the most likely model about six times that of the PWM

model . Simulation studies further showed that even with the same position weight

matrices, the generalized weight model was able to pick up more true motifs than the

independent model. This clearly showed that the independence assumption in motif

positions will fail in detecting less conserved correlated sites. Barash et al in 2003 later

extended the correlation structure to include all possible correlations by using a Bayesian

Tree network.
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Alongside the product multinomial hypothesis, we usually assume that the conservation

is uniform over all regions in a motif. Again this is not biologically true. In reality,

transcription factors act over certain segments of DNA bases at a time. A fragmentation

model was proposed in Liu and Lawrence that allowed for a prior to be set up on the

motif positions,reflecting the importance of each motif position. Kechris et al Kechris

et al. (2004) used a prior distribution ( normal or double exponential) that penalized

deviations ( absolute or squared)from the conservation profile. The parameters were

updated using EM algorithm.

The methodologies discussed above were de novo, in the sense that they did not use any

external information for finding motif sites. These methods suffer from the disadvantage

of poor predictive ability and a high false positive rate. Recently, with the remarkable

improvement of genome output technology, there has been a proliferation of genomic data

that has motivated researchers to take advantage of external information and incorporate

them in motif search. The most important sources of these external information arise in

the form of

1. Evolutionary data. Genomic data for comparing different species are now available

to us. The conservation pattern in the binding sites are directly dependent on the

inter-species evolutionary distance.

2. Gene expression

3. Data on the underlying chromatin structure.

2.3 Using auxiliary information in motif discovery

2.3.1 Evolutionary conservation

When multiple sequence information is available it has been seen that multiply aligning

sequences and using regions having a high sequence similarity increases the specificity of

motif search. Wasserman et al Wasserman et al. (2000) generalized the species

comparison to multi-cellular organisms. By this, they found that 98 percent (74/75) of

experimentally defined sequence-specific binding sites of skeletal-muscle-specific
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transcription factors are confined to the 19 percent of human sequences that are most

conserved in the orthologous rodent sequences.

Based on the knowledge that regulatory regions are more conserved between human and

mouse genomes than the background, Liu and Liu Liu et al. (2004) developed a method

called Compare-Prospecter that extends Gibbs sampling by biasing the search in regions

conserved across species. Recently, based on the interactions arising from clusters of

TFBSs with known binding patterns, a variety of computational methods have been

created for the discrimination of CRMs.

It is often the case that no prior information exists on binding patterns of any relevant

transcription factors for sets of genes identified in large-scale expression studies. One

approach is a method for identification of modules using known motifs, but it includes a

preliminary step of motif identification using either a Gibbs sampling algorithm or an

algorithm based on overrepresented oligonucleotide sequences One other approach uses

suffix-trees and word consensus rather than a statistical model to locate ordered

collections of motifs Marsan and Sagot (2000). In this method, sites of each motif type

are assumed to occur exactly once in each module. An expectation-maximization

algorithm based on a discriminant model with multiple iterative optimization steps has

also been described Segal and Sharan (2005). Although these approaches are promising,

computational identification of a TFBSs without prior knowledge of binding patterns

remains elusive. Thompson et al Thompson et al. (2004) used the strategy of modelling

neigboring interactions in synergy-model to improve predictions.

Phylogenetic analysis has also been used by Koch et al Koch et al. (2001) to determine

conserved cis regulatory regions in certain plant species. Promoters were aligned by

hand,phylogenetic distances were computed using a two-parameter model, and the

resulting distance matrices were subjected to a neighbor-joining algorithm . However it

remains challenge to efficiently incorporate phylogenetic trees in probabilistic motif

models.

One major problem in using evolutionary approach is that cross-species comparison of

sequences from orthologous genes, or phylogenetic footprinting, shortens the amount of

sequence under consideration by focusing attention on conserved regions that are more

likely to serve a biological function. Although such methods can increase binding-site
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densities by fivefold, only the strongest sites are detected at this level.

2.3.2 Gene expression

Incorporating gene expression for finding regulatory modules has mostly relied on

clustering genes based on their gene expression levels, and then finding motifs in the

highly clustered genes. However, this technique might give rise to larger number of false

positives due to spurious correlations. This happens because there can be genes in cluster

without a motif, and all motifs in a gene might not respond. If the gene mechanism is

multi factorial, then genes in separate clusters are not actually disjoint, and making them

do so would lead to a loss of information. A filtering method was adopted to remove this

inadequacy Hughes et al. (2000), however the algorithm sensitivity still remained low.

Bussemaker et al Bussemaker et al. (2001) introduced a novel technique of modeling the

relationship between gene expression and motifs . They came up with a linear model

Ag = c+
∑
µ∈M

FµNµg

where Ag denotes the log ratio of the abundnace of gene expression between two cells,

Nµg represents the number of occurences of motif µ in gene g. The Fµ coefficient

measures the increment or decrement in the gene expression when a new motif is added.

M denotes the set of motifs.

Both the gene expression and the number of motifs for each gene were centered around

their mean and scaled by their variance. The model was then fitted to the data obtained

from the chromosome sequence and ORF coordinates in the Sacchromyces genome data

base.

Motifs were progressively included in the model based on their residual deviance. That is,

based on a current set of motifs, the statistical significance of adding a new motif was

judged by calculating the residual deviance of the model including the motif and the

previous motif set. These residual deviances were ranked, and the largest one, which

satisfied the significance criterion was added to the model. The significance criterion for

the maximum residual deviance was found out from the extreme value distribution.

The model overall accounted for only 30 percent of the total signal present in gene
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expression. However it performed well in the case of genes that had combinatorial effects

in transcription regulation, i.e. where they co-varied in one circumstance but were

different in another. It is in those cases that the previous clustering techniques failed.

Gene expression data was also used by Conlon et al Conlon et al. (2003a). First, MDscan

was used to select motifs from a list of putative motif sites. All w mers in the top K

sequences were used as seeds. For each seed, the w mers that shared at least m binding

sites were used to construct motif matrices. These matrices were then scored using a

Bayesian scoring function, and the 50 top scoring motifs were retained. W mers were

then added from the top sequences to these motif matrices to improve the score . Motifs

with average frequency of consensus bases less than .7 were removed. If several motifs of

same width were similar upto m bases then the highest scoring one was retained. 30

motifs were reported at the final stage.

At the next step, the upstream sequence of gene is compared with a motif. The following

scoring function was used to test how well a motif correlates with the gene expression

Smg = log[
∑
xg

Pr(x|θm)

Pr(x|θ0)
]

where xg denotes all w-mers in the upstream sequence, θm denotes the motif matrix and

θ0 is the background probability vector estimated from fitting a third order markov

model to the intergenic sequence.

A simple linear regression is then performed to test the significance of the selected motifs.

For each motif and gene, we have the following equation:

Yg = α+ βmSmg + εg

In the above equation, Yg is log2(gene expression data) and εg is the gene specific error

term.

This model, though similar to the linear model used by Bussemaker et al, uses not just

the number of motifs as the variable of interest, but the motif strength. ( as quantified by

the scoring function, obtained through position weight matrices.)

The significant motifs ( pvalue for βm less than .001) were then used for a multiple
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stepwise regression.

Yg = α+
∑
m

βmSmg + εg

Initially only the intercept is added, and then motifs are added increasingly based on

their residual error. The algorithm was designed to stop when no remaining motif met

the criterion for entry.

Although the above methods are an improvement on the previous clustering techniques,

the problem with them is that they unrealistically assume linearity, and are ill-suited to

cope with problems dealing with multiple data sets and high dimensionality.

2.4 Statistical modeling of chromatin structure

2.4.1 The biology of Nucleosomes

The relationship between DNA flexibility, nucleosomes and the positioning of TFBS has

recently been a hot area of research . Nucleosomes are compact chromatin structures

which contain DNA sequence of 147 base pairs wrapped around a histon protein octamer.

By this,they prevent RNA polymerase, regulatory proteins and other recombination

complexes from acting on the genomic sequence at those positions. Hence the

nucleosome-wrapped DNA would be expected to be free of transcription sites. So, the

nucleosome positioning information would be a very useful guide in helping us locate the

functionally important genomic regions.

The sharp bending of the nucleosomal sequence occurs at around 10 bp helical repeat of

the DNA when the major groove faces outward and again at 5 bp away, when the major

groove faces inward. Bends of each direction are facilitated by specific dinucleotides.

Neighboring nucleosomes are separated by 10-50 bp long stretches of linker DNA, so

about 75-90 percent of DNA is occupied by nucleosomes. High resolution images of

nucleosomal DNA structure have suggested that the genome has sequence-specific

conformational abilities, in the form of roll and twist angles, that enable its wrapping

around the nucleosome. Typically AA TT signals have higher roll angles.

Dinucleotides,overall, have very high correlation between roll and twist angles. The ability

of the DNA sequence to bend around the histone octamer varies greatly, and this variance
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is dependent on the sequence composition. The main question is whether the DNA

sequence influences the positioning of nucleosomes across the genome in a way such that

the ability of transcription factors to access binding sites is either inhibited or increased.

Nucleosomes are being increasingly relied upon as the most important guiding tool in

helping us determine a complete picture of gemome transcriptional activity. The

biological role of nucleosomes is directly related to transcription, (in a way which we shall

see, in the following section), and hence it would serve as a more powerful predictive tool

than the information provided by comparative genomics and gene expression. The latter

approaches definitely add to the knowledge provided by sequence information alone, but

the prediction uncertainties associated with these methods place them in a rank lower to

nucleosomes, in the context of motif search.

2.4.2 Nucleosome prediction algorithms

One of the first experiments to identify nucleosome positions was performed by the Yuan

et al group Yuan et al. (2005). Based on the linker DNA’s susceptibility to micrococcase

nuclease, nucleosomal DNA was isolated and labeled with CY3 (green) fluorescent dye

while the total genomic DNA was labeled CY5(red). These segments were then hybridized

in microarrays printed with 50 mer oligonucleotide probes tiled at 20 base pairs across

chromosome 3 of yeast. The log hybridization ratios(green to red) were considered as the

signal of interest. A two state hidden Markov model was implemented on the data signal

to classify the genomic region of interest into nucleosomal and non nucleosomal states.

Regions classified as nucleosomes and having state length of 140-147 base pairs were

labeled ’well positioned’ whereas longer nucleosomal regions were labeled as ’delocalized’

nucleosomes. It was observed that highly enriched genes were surrounded by regions of

delocalized nucleosomes. This is supported by the biological reasoning that the action of

RNAp causes nucleosomes to be disrupted and assemble behind the coding regions.

Sequence conservation patterns were examined among related species of yeast. It was

found that coding regions were always highly conserved. Intergenic sequences in

nucleosomal regions were poorly conserved whereas, NFRs (Nucleosome Free Regions)

were highly conserved.One interesting feature was that the conservation was not limited

only to the coding regions. The conservation regions included stretches of poly A-dt,
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along with TFBS. Also, the location of the NFRs had high correlation with the poly A-dt

stretches indicating a possible role of these molecules in the formation of nucleosome free

regions. The results of the prediction were compared with the existing databases of

transcription factor motifs. 47 percent of unbound motifs were identified in linker

sequences, whereas, 87 percent of motifs that are associated with transcription factors

were found to be depleted of nucleosomes. Nucleosome free regions were identified as 51

percent of unbound motifs found on the array. This suggested that NFRs were

transcriptional start sites, and a RNA hybridization experiment showed that indeed the

5’ ends of the coding regions coincided with NFRs.

Segal et al(2007) Segal et al. (2006) also constructed a map of the nucleosomal positions

in yeast genome, based on the statistical distribution of dinucleotides in nucleosomal

DNA. Their approach was the first attempt to incorporate dinucleotides in nucleosome

prediction. The statistical distribution was obtained from aligning a set of nucleosomal

sequences from log phase yeast. Mononucleosomes were extracted by standard methods

and protected fragments of length 147 bp were sequenced and cloned . These sequences

and their reverse complements were then aligned about their centers. Next, dinucleotide

frequency counts were obtained from each position. A moving average spanning three

neighboring positions was then applied on the frequency counts to give a smoothed

version of the frequencies for every position.From these frequencies, the empirical

statistical distribution of dinucleotides for the nucleosomal sequence was computed from

the given dinucleotide frequencies. The background distribution, i.e the distribution for a

nucleosome free position was assumed to be a multinomial distribution, where each

mononucleotide has equal frequency. Based on this empirical distribution, a two state

constrained hidden Markov model was formulated. The nucleosome lengths were fixed at

147 bp, and at least 10 bp distance was allowed between adjacent nucleosomes. The set

up resembled a motif model, with the only differences being

1. A dinucleotide distribution (obtained empirically) was used instead of a product

multinomial distribution in the nucleosomal states

2. While both the parameters and the state structure is unknown in the case of motif

models, in this case, the emission distribution is known.

24



The unconditional likelihood of the data is given as

L =
∑
A

Pb[S1, Sc[1]−1]

k∏
i=1

P [Sc[i], Sc[i]+146]

k∏
i=1

P [Sc[i]+147, Sc[i+1]−1]Pb[Sc[k]+147, SN ]

where A represents all hidden state configurations, c[1],c[2]...c[k] represents nucleosome

start positions, Pb is the distribution for background sequence, while P is the distribution

in the nucleosomal state.

A forward algorithm is implemented as follows

F0 = 1 (2.4.1)

Fi = Fi−1Pb[Si]if1 ≤ i ≤ 146 (2.4.2)

Fi = Fi−1Pb[Si] + Fi−147P [Si−146, Si]ifi > 147. (2.4.3)

Similarly the the likelihood of SN to Si is calculated as follows

RN+1 = 1 (2.4.4)

Ri = Ri+1Pb[Si] i ≥ N − 145 (2.4.5)

Ri = Ri+1Pb[Si] +Ri−147P [Si, Si+146] i ≤ N − 146 (2.4.6)

The probability of a nucleosomal position beginning at i is calculated as

P [i] =
Fi−1P [Si, Si+146]Ri+147

R1

The probability that a position i is covered by a nucleosome is given by

146∑
k=0

P [i− k]

Stable nucleosomes were used to denote all those positions where P [i] > .5.

54 percent of predicted stable nucleosomes were found to be within 35 bp of the positions

found in earlier literature. 68 percent of depleted coding regions, and 57 percent of
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depleted intergenic regions had low predicted nucleosome occupancy. Together, the

results indicate that approximately 50 percent of the nucleosome organization can be

predicted from the nucleosomal sequence information.

Not taking into account the sequence information of the nucleosome free regions, does not

make a strong case for the strength of the above classification approach, and is a

potential reason why we do not get a high predictive value.

2.4.3 Relationship with sequence features

The relationship between DNA flexibility, nucleosome positioning and the sequence was

more quantitatively investigated by Lee et-al(2007) Lee et al. (2007). It was found that

the CTG trinucleotide correlates well with nucleosome occupancy while poly A-dT

correlates negatively. A lasso model was constructed to bring out a linear relationship

between the tip, tilt, twist angles, the sequence composition, and the transcription factor

binding sites. Propeller twist capacity emerged as the most significant variable, (

dinucleotides having highly negative propeller twist angles were found to be more rigid

than those having lower negative values) The AAAA tetranucleotide was found to

contribute to the rigidity of DNA conformation.

Nucleosomes were mostly found in coding regions and centromeres whereas nucleosome

depleted regions corresponded with intergenic regions, most of which were promoter

regions. In fact nucleosome free regions marked the boundary of transcription start sites,

in that they were found just upstream of these start sites. A ladder of well positioned

nucleosomes was found start from the beginning of transcription start sites. The

nucleosome depleted regions also corresponded well with the occurence of transcription

factor binding sites, which are clustered 100 bp upstream of the transcription start

sites.126 known transcription factor binding sites and their position specific weight

matrices were taken, and Wilcoxon mann whitney pvalues were computed for nucleosome

occupancy. A strong relationship between nucleosome occupancy and the occurence of

TFBs was observed. Four main clusters of coding regions were identified based on their

nucleosome occupancy signature. Interestingly, these regions corresponded to four

different gene regulatory functions.

Some recent nucleosome prediction methodologies were investigated by Peckham et al
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(2007)Peckham et al. (2007) and Yassour-et-al(2008)Yassour et al. (2008). Yassour et al

extended the HMM technique employed by Yuan-et-al. They implemented a hidden

markov model with multiple states, in order to account for unstable nucleosome position

and to adjust for global trends. Peckham-et-al employed a support vector machine for

classification of nucleosomal and non nucleosomal states. They tested the efficiency of

classification by using ROC curve. Their results were similar to that of studies, where

G-C sequence features were found to be positively correlated with nucleosome formation,

and A-T appeared to have inhibitory influence.

In 2008 Yuan and Liu Yuan and Liu (2008) used wavelet decomposition to represent the

sequence signal and then used them as covariates in a logistic model. Based on the

predictions from this model, they came up with the N -score, a statistical measure that

quantifies the the tendency of a sequence to be occupied by a nucleosome. Below, we give

a short sketch of the derivation of the N score.

Construction of the N score: 199 Nucleosomal DNA sequences were determined

experimentally. They were then aligned by both forward and reverse strand as in Segal et

al. Each nucleosomal DNA was about 145-153 base pair long. 296 NFR sequences were

determined using a tiling micro array. Each NFR sequence had a 100 bp long linker

region. From both the nucleosomal and NFR sequences, the central 131 bp was retained

for statistical analysis. The linker sequences which were shorter than 131 bp was

expanded symmetrically on both sides. The reverse strands were also added to the data

set.

Next, for each sequence and each dinucleotide d, a 0-1 vector of length 130 is set up. The

jth component of the vector denotes the indicator of whether the dinucleotide is in jth

and the (j + 1)th position. From this, a vector of length 128 is computed by averaging

over the entire sequence. The ith element in this vector is denoted by fs,d(i/128)

The crucial step in the construction of N score comes in the wavelet transform of each of

these dinucleotide frequency signals. Each of these signals is written as a linear

combination of wavelets is the following manner.

fs,d(i/128) =
∑
jk

cjk(s, d)ψjk(i/128) + c0(s, d)
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where ψjk is a Haar wavelet function defined as follows:

ψjk(x) = 1 0 < x < 1/2 (2.4.7)

= −1 1/2 < x < 1 (2.4.8)

= 0 otherwise (2.4.9)

The wavelet transform coefficients cjk(s, d) can be obtained as in the coefficients for an

orthonormal basis. (Note that ψjk(x) construct an orthonormal basis for a 0-1 valued

function)

cjk(s, d) =
∑
i

fs,d(i/128)ψjk(i/128)

The energy of a signal at level j is defined as

E =
∑
k

[cjk]
2

It represents the variance of the signal at 27−j level. For 8 dinucleotides, we have 8

energy values for a given signal.

A logistic regression is now performed where the response is the indicator function of

being a nucleosomal sequence, and the covariates are the 8 energy signals.

log
P (s)

1− P (s)
= β0 +

∑
l

βlxl(s)

where xl(s) is the energy of the lth dinucleotide in sequence s. A stepwise procedure is

then implemented to retain only the important covariates. The N score for each sequence

is defined as the predicted logit from this model.

The N score model was validated by a two fold cross validation.The linker and

nucleosomal sequences were divided into two groups, such that there are equal

proportions of both types in each group. While one dataset was used to train, the other

was used for testing. This was repeated five times. A ROC curve was obtained and the

area under the ROC curve, i.e, the ROC score was used to tests its performance against

the other models. One surprising result was that N scores derived from yeast data
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matched quite well with the human genome data indicating that sequence specificity of

nucleosomes may be conserved across eukaryotes.

Segal’s model with a ROC score of .67 performed poorly against the N-score model. But

the poor performance of the model was due to the fact that it did not use a

discriminative approach for nucleosome prediction, as discussed earlier. It relied only on

the properties of the nucleosomal sequence data for prediction. The ROC score for the

support vector machine model was .82, insignificantly lower than the N score model.

When the linker sequence data was incorporated into the Segal model, the ROC score

shot up to .81, very close to that of the N score model. This showed that the superiority

of the N score model was not derived from its use of wavelets, but in the fact it was the

first nucleosomal prediction algorithm that use discriminative approach.

Poly Da-Dt tracks have been found to be correlated with the occurence of nucleosome

free regions. The N scores helped to verify the result once again. Relationship between

the N score at poly Da-Dt loci and the length of the ploy Da-Dt run was investigated. A

negative correlation of .15 ( pvalue less than .001) was obtained, confirming the

experimental evidence, that poly Da-Dt tracks are depleted of nucleosomes. From the

results of the logistic regression, it was seen that TT/AA/TA were the most important

predictors, followed by TA/AC/GT, while GC had moderate predictive power. These

results match with the results obtained from earlier studies. One interesting result was

that the important predictors were related with nucleosome depletion rather than

nucleosome formation. This suggested that the main role of the sequence information lay

in determining boundaries of the nucleosome free regions.

Distribution of N score was compared at the transcription factor binding sites, unbound

motif sites, and the genomic background. The average N score over the transcription

factor binding sites is -1.03 which is less than that in the unbound motif sites(.70) and

the genomic background (.77).

An interesting property of nucleosome occupancy investigated by Struhl et al Sekinger

et al. (2005), was that deletion of sequence elements from promoter region increased DNA

accessibility. In order to test this hypotheses, a computational experiment was

performed. From every set of promoter regions, DNA sequences were progressively

removed, starting from 10 bp. At each step 10 was further removed, and this was
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continued till 200 bp. The change of n score was calculated for every deletion. A positive

correlation of .48 (pvalue < .001) was obtained between the length of deleted sites and

the N score. This result had motivated us to incorporate sequence features into our

model for nucleosome prediction.

The nucleosome models discussed so far, however,leave sufficient room for significant

improvements . In the following section, we discuss them and also suggest the approach

that we took in this regard.

2.4.4 Mapping positions and its connection with motif search

From the previous approaches to nucleosome prediction, one pattern is clear. Most of the

algorithms for nucleosome prediction aimed at classifying the nucleosomal states based on

gene expression . After the prediction, the relationship between the predicted nucleosomal

states, and other pertaining features such as presence of promoters, sequence features etc

was investigated ( by logistic regression as in Yuan (2008), or by Lasso regression in

Lee(2007), or, mostly by just comparison of the statistical measures of these features in

the two states). Also, the sequence features were limited to dinucleotide counts.

What has not been attempted so far, is the incorporation of the sequence features into a

hidden markov model for improved classification. This is what we have implemented

next,in our work. We have extended the above continuous time model in two ways:

1. Make the lengths of the states dependent on the sequence covariates. We did this

by modeling the transition rates as a function of these covariates.

2. Make the emission means dependent on the covariates.

Selection of covariates is one issue of concern. Each probe has a number of non

overlapping base pairs. We need to efficiently extract those features from the sequence set

that contributes most to the signal. Earlier work in this area have mostly restricted

themselves to di-tri-nucleotides. Here, we extend our feature set to include all oligomers

upto length of 4. Principal components analysis is then performed on this set, and the

top scoring variables retained for analysis.

Given an accurate prediction of the nucleosome states, one of its chief purposes, is to

utilize this information in improving the sensitivity and specificity of the current motif
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search algorithms. One way to achieve this would be to first obtain a prediction of the

nucleosome positions, and then use it as a prior in motif search. We have attempted to

formulate an unique joint model that predicts nucleosome positions and motifs

simultaneously, based on the gene expression and sequence data. The joint model can be

represented by the following components:

1. The indicator variable of motif start positions, similar to that in PWM

2. The hidden nucleosomal states.

3. Gene expression data.

Nucleosomal states are not allowed to have any instance of a motif. The probes in

different nucleosomal states have different baseline means. Further in regions where a

motif is present, the baseline mean gets incremented by a quantity, that reflects the

strength of the motif (a function of the ratio of PWM probabilities to background

probabilities) in that region. It is to be noted that due to the last assumption, the PWM

parameters fail to have a Dirichlet prior. Metropolis hastings algorithm, needs to be thus

suitably adapted for efficient estimation of these parameters.

Earlier,we have encountered models, where the relationship between gene expression data

and sequence features, nucleosomal states and gene expression, gene expression and

nucleosomal states were separately explored. In our improved algorithms for nucleosome

expression, we have combined all three inter-relationships into a single hidden markov

model.

The formulation of the hidden markov model is an important step with respect to setting

up the combined approach, and also with respect to extending the model to continuous

time frame. For this we need to have an overview of the asymptotic results, which we

shall begin in the next section.

2.5 Statistical inference in hidden Markov models

From the previous sections, we have seen that hidden markov models (HMM, in

short)have been the standard method of modeling sequence data. In the later sections we
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shall see how we require extensions of such model to the continuous time case, in order to

take into account the spatial and temporal lag between consecutive measurements. We

also need a strong theoretical framework for the assessment of issues such as convergence

rate, and identifiability in joint nucleosome-motif models, where there are two layers of

hidden variables. The next subsection provides a brief overview of some of the theoretical

work done in this context, where we discuss some of the major results in the area, and

more importantly, some interesting techniques and properties used in the derivation of

these results.

The main idea behind the hidden model framework, is that the observed sequence Y is in

fact, dependent on an unobserved sequence X, which is a markov chain, ( having discrete

states typically). Conditional on Xk, Yk are independent, and the density of Y depends

upon the state of X. This density is generally referred to as ’emission density’. The

markov chain transition probability q(x,x‘) is usually assumed to be ergodic. ( This is a

direct result of the irreducibility and aperiodicity of the transition matrix).

For example, we can have two unobserved states, 0 and 1. The transition probabilities

are given as

λ = q(0, 0) (2.5.1)

µ = q(1, 1) (2.5.2)

1− λ = q(0, 1) (2.5.3)

1− µ = q(1, 0) (2.5.4)

If the state X is 0, Y follows (N(µ1, σ1) . If the state X is 1,, Y follows N(µ1, σ1). The

objective of inference is to produce estimates of the emission parameters,µ1, µ0, σ1, σ0,

and the transition parameters, λ,µ. In the context of properties of the given sequence

data, the transition probabilities can be thought of as modeling the lengths that the

sequence spends in each state. We shall see, that in certain situations, such as the

proposed joint nucleosome-motif model, it would me more convenient to model the

lengths directly rather than in terms of transition probabilities.
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2.5.1 Previous theoretical results: General assumptions and an

overview

Theoretical results regarding the asymptotic properties of the MLE had started

developing since early 1990s. The first major paper, in this direction, was by

Leroux(1992) where consistency of MLE was established. Bickel and Ritov proved local

asymptotic normality in 1996, and Ryden et al proved asymptotic normality under

general conditions in 1998 . This result was later extended to autoregressive HMM

models by Douc et al(2000). In most of these papers, an interesting technique of

’conditioning on the infinite past’ and the principle of ’uniform forgetting’ was used. We

shall illustrate the methodologies in the following section. First, let us introduce some

notations and assumptions.

Since the results have been extended to compact X, we will assume the most general form

of notations: θ denotes the parameters indexing the transition probability and the

emission density. qθ is the transition probability function and gθ is the emission density.

X is the set of all hidden states, Y is the set of all possible observed values y. The

assumptions are :

1. For all (x,x’) ∈ (X, X) qθ(x, x
′), gθ(x, y) is twice continuously differentiable.

2.

supθsupx,x′ ||∇θlog(qθ(x, x
′))|| <∞

supθsupx,x′ ||∇2
θlog(qθ(x, x

′))|| <∞

3.

Eθ[supθsupx,x′ ||∇θlog(gθ(x, Y1))||2] <∞

Eθ[supθsupx,x′ ||∇2
θlog(gθ(x, Y1))||2] <∞

4. The transition probability satisfies

0 < σ− < qθ(x, x‘) <= σ+∀x, x′ ∈ X,∀θ
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5.

∀y ∈ Y, 0 <
∫
X
gθ(x, Y1) <∞

In the following subsections, we shall try to give an outline of the proof of consistency

and asymptotic normality established by the papers of Ryden et al in 1996 and 1998

2.5.2 MLE Results:Consistency

Here we shall see, how the ergodic properties have been made use of in establishing

consistency results.

Since (xk, yk) is ergodic, it is possible to extend it to a doubly infinite

sequence(xk, yk)
∞
k=−∞. This is the crucial step in the proof of the asymptotic results.

Let us denote the log likelihood of the data till position n by lx0,n(θ). This can be written

as
n∑
k=0

∫
log[gθ(xk, yk)Pθ(xk ∈ dxk|Y0:k−1)(dxk; θ)]

It would be convenient if the ergodic properties of lx0,n(θ) could have been applied to

obtain stationary martingale increments, and then the central limit theorems on

martingales could be used However that is not the case. lx0,n(θ) is not ergodic . So the

trick is to approximate it by a function lsx0,n(θ) which is very similar to it, except that it

is conditioned on past observations all the way till -∞, i.e

n∑
k=0

∫
log[gθ(xk, yk)Pθ(xk ∈ dxk|Y−∞:k−1)(dxk; θ)]

The results of the MLE are now obtained in the following three steps.

1. The ergodic properties of lsx0,n(θ) are established,leading to a unimodal function

l(θ) which is the ergodic limit of n−1[lsx0,n(θ)].

2. It is formally shown that lsx0,n(θ) and lx0,n(θ) are very similar asymptotically and

this was used to show that the latter converges to l(θ). We then show that the

convergence is uniform.
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3. The general argument for proving consistency in iid models, is used based on 2.

A finite approximation to
∫
log[gθ(xk, yk)Pθ(xk ∈ dxk|Y−∞:k−1)(dxk; θ)] is obtained by

conditioning till -m. We denote this by

h(k,m, x, θ) =

∫
log[gθ(xk, yk)Pθ(xk ∈ dxk|Y−m:k−1)(dxk; θ)]

It is then shown that h(k,m, x, θ) is a uniform Cauchy sequence, i.e

|h(k,m, x, θ)− h(k,m′, x′, θ| ≤ ρk+m−1

1− ρ

where ρ = 1−σ−
σ+ . (This result is obtained from assumptions (4) and (5), whereby it can

be shown that the total variation of
∫
Pθ(xk ∈ dxk|Y−∞:k−1)(dxk; θ)] is less than ρk ).

The uniform Cauchy property of h(k,m, x, θ) leads to the result that this sequence has a

limit independent of x, denoted by h(k,∞, θ). Now since

lsx0,n(θ) =

n∑
k=0

h(k,∞, θ)

and

lx0,n(θ) =
n∑
k=0

h(k,m, x0, θ)

the Cauchy property produces a bound on |lsx0,n(θ)− lx0,n(θ)|.
If Eθ[h(k,∞, θ)] is denoted by L(θ) (note that it doesn’t depend on k, since h(k,∞, θ) is

ergodic) then by ergodic theorem n−1[lsx0,n(θ)] converges to l(θ). From this it can be

shown that lx0,n(θ) also converges to l(θ). The fact that the convergence is uniform is

obtained from the continuity properties of the functions stated in the assumptions.

The identifiability properties of HMM, which have been proved in 1967Teicher (1967),is

next utilized to show that l(θ) has a global unique maximum. Let the maximum be
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denoted by (θ∗). If θ̂n denotes the MLE then

0 ≤ l(θ∗)− l(θ̂n) (2.5.5)

≤ l(θ∗)− n−1ln(θ∗) + n−1ln(θ∗)− n−1ln(θ̂n) + n−1ln(θ̂n)− l(θ̂n) (2.5.6)

≤ 2supθ|(l(θ)− n−1ln(θ̂n)| (2.5.7)

This shows that for any compact subset

l(θn)→ l(θ∗)

as n→∞. Since l is continuous, this shows that the MLE converges to θ∗ almost surely.

The consistency result was proved by Leroux (1992). Asymptotic normality was

established by Bickel Ritov Ryden(1998). Although they did not explicitly use the

’conditioning on infinite past’ approach,the argument was built along those lines.

2.5.3 Alternative Estimation Methods

The consistency and asymptotic normality of the MLE was established , not before, 1998

. Before that, a number of alternative likelihood methods were suggested and their

properties were studied under mild regularity conditions. The asymptotic normality of

Maximum Split Data Likelihood methods was proved by Ryden (1996). A number of

recursive estimation methods were suggested,by LeGland and Mevel (1997), e.g the

RMLE ( recursive maximum likelihood estimate).

A novel estimation method was suggested by LeGland and Mevel (2000) where by writing

the log likelihood as the summation form discussed in the previous section, they were

able to obtain recursive formulae for the score and observed information. (This result was

later extended to compact spaces by Douc and Matias in 2002.) This estimation

procedure was based on what is known as the ’geometric ergodicity property of an

extended HMM, which we shall establish below.

Let pn denote P (Xn|Y1, ....Yn) . An extended chain [Xn, Yn, pn] is constructed.

pn+1 can be expressed in terms of pn by the forward equation. Under ergodicity, there

will be a solution to the equation, which would not depend on the initial conditions. So
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the first step in establishing ergodicity is to get a bound on the difference between two

solutions under two different initial conditions. The difference measure and its functions

are defined below.

δ(y) =
minxg(y, x)

maxxg(y, x)
(2.5.8)

∆1 = minx

∫
δ(y)g(y, x)λ(dy) (2.5.9)

∆ = maxx

∫
δ(y)g(y, x)λ(dy) (2.5.10)

f(yn.....ym, p) = pn where the dependency is up to the mth observation, where m < n,and

the initial probability is p.

It can be then shown that

limsupn→∞(1/n)log||f(yn.....ym, p)− f(yn.....ym, p
′)|| <= log(1− ε)

where ε= minimum entry of the transition probability matrix, and

||f(yn.....ym, p)− f(yn.....ym, p
′)|| <= 2ε−1δym(1− ε)n−m+1||p− p′||

where p and p’ are two different initial conditions. The above equation tells us that the

markov chain becomes indifferent to the initial condition at an exponential rate. This is

called the property of ’exponential forgetting’. Based on this, we have the following result.

Under the condition that the transition matrix is irreducible and aperiodic, ∆ is finite,

and certain regularity conditions related to continuity and integrability of the emission

densities, the markov chain Zn = (Xn, Yn, pn) has unique invariant measure µ .

This is a very useful result, and allows the log likelihood to be expressed as an additive

functional of the extended markov chain.

For example, a recursive version of the conditional likelihood estimator can be obtained.

This estimator minimizes the function

en(θ) =
n∑
k=0

(1/2n)|Yk − Eθ(Yk|Yk−1)|2
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Now this can be written as the additive functional

n∑
k=0

(1/2n)|Yk − φθpkθ |2

It can be also proved that the law of large number holds i.e

en(θ)→ e(θ)

almost surely, where

e(θ) = 1/2

∫
Rdx

P (X)|y − φθpθ|2(dy, dp).

Then, the recursive algorithm defined by

ˆθkn+1 = π(θ̂kn + γn−1H
k

θ̂kn
(yn, p̂n, ŵn))

where

Hθ(y, p, w) = φθ(y − φθp)wk −∇(y − φθp)p

is asymptotically normal.

2.5.4 L mixing processes

A new approach for maximum likelihood estimation in hidden markov models was

investigated by Saska and Gerenser in 2003 , where they tried to use the HMM

representation given by Borkar (1993). Links between hidden markov models and general

stochastic system via L-mixing processes were established.

In the third chapter of our proposal, we shall talk about extending the asymptotic MLE

results to a HMM, where the states are not equispaced. A continuous time markov chain

has used to to model such a state space. The analysis of such models are more

complicated, because due to a non-specific gap patterns, even the conditional likelihoods

lack a closed form. We shall start from some basic assumptions on the boundedness of

transition rates and emission densities, and use CLT for martingales to prove normality
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for the emission and transition parameters.

2.5.5 Conclusions

Our review of the research done in this area provides us the necessary strength, in terms

of tools developed by previous researchers, and motivation, in terms of the limitations

and incompleteness of earlier approaches, to work towards a more efficient, accurate, and

unified approach for nucleosome mapping and motif finding.

The subsequent sections describes in detail the proposed continuous time Hidden Markov

Model and Bayesian estimation procedures that were performed for analysis. The data

description, the peculiarities thereof, and the results related to the robustness and

performance of our proposed model have been explicitly shown It constitutes the first

paper of the proposal, and the second major division of this document. We begin by

revisiting the definition and concept of nucleosomes, and the related experimental work

done in this context.

39



Chapter 3

Determining chromatin features using

continuous time hidden Markov models

3.1 Introduction

Genomic DNA in the cell nucleus exists as a DNA-protein complex called chromatin, in

which the DNA is locally folded and compacted through a series of interactions with

proteins called histones. At the first level of compaction, a stretch of DNA about 147 bp

in length, is wrapped around a disc shaped octamer of histone protein, yielding a

structure called a “nucleosome”. Nucleosome structure has been determined by X-ray

crystallography (Richmond and Davey, 2003), and steric constraints defining the

separation of nucleosomes along the chromosome have been defined. This biological fact

has an important implication in relation to gene regulation. The wrapping of DNA

around the histone octamer prevents transcription factors (TFs) from binding to the

sequence at nucleosomal positions (Widom, 1992). Thus, a well-defined map of the

nucleosome positions could be used to improve the predictive power of current motif

search algorithms. Most commonly used transcription factor motif search algorithms use

the property of sequence conservation at binding sites as the only tool for analysis (Liu

et al., 1995; Bussemaker et al., 2000; Liu et al., 2001; Gupta and Liu, 2003). However, in

complex genomes, these methods often suffer from poor predictability and high false

positive rates. More recent methods have used gene expression measurements through



regression-type models (Conlon et al., 2003b; Gupta and Ibrahim, 2007) or ChIP-chip

(Chromatin Immunoprecipitation) experimental data (Buck and Lieb, 2004) to improve

predictions, but weak relationships in the first approach often lead to missing important

binding sites, and the second approach is limited in applicability to a small set of TFs.

The connection of nucleosome positioning to TF-binding has motivated researchers to

make use of information obtained from nucleosomal mapping for motif search. For

example, Narlikar et al. (2007) have used nucleosome mapping information to create a

prior for motif search. However, these methods will not work well unless the input data,

that is, nucleosome positions, are based on high-quality predictions from experimental

data. Before describing our methodology and its advantages over existing methods for

nucleosome prediction, we discuss the various experimental assays for nucleosome

detection and a number of existing computational approaches.

3.1.1 Genomic assays for nucleosome position detection

One of the first experiments to identify nucleosome positions was performed by Yuan

et al. (2005), based on high-density genome tiling arrays. Tiling arrays are microarrays

involving short overlapping probes, covering a genomic region of interest, or even the

entire genome. These arrays have been used to experimentally measure positions of

various genomic-level events, such as TF binding, histone methylation, and positioning of

nucleosomes. In Yuan et al. (2005), based on the nucleosome-free DNA’s susceptibility to

micrococcal nuclease (MNase), nucleosomal DNA was isolated and labeled with green

(cy3) fluorescent dye while the total genomic DNA was labeled with red (cy5) dye. These

segments were then hybridized on to microarrays printed with 50-mer oligonucleotide

probes tiled at 20 base pair overlaps across chromosome III in yeast. After pre-processing

and normalizing of the data, the ratio of green-to-red measurement intensity values for

spots along the chromosome indicate how likely that locus is to have been wrapped

around a histone, constituting a nucleosome.

A more recent experimental technology– Formaldehyde assisted isolation of regulatory

elements (FAIRE)– was developed by Hogan et al. (2006). The principle behind this

procedure is that regions of the genome that are cross-linked with the histone protein are

less susceptible to binding by transcription factors, and thus get retained at the
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interphase of organic and aqueous phase, while the nucleosome-free (potentially

regulatory) regions get enriched. The FAIRE procedure is initiated by first fixing whole

yeast cells in a growth medium by formaldehyde, harvesting them by centrifugation, and

finally sonicating the extracts, labeling the purified DNA and hybridizing them to

microarrays. The microarray in Hogan et al. (2006) used 50-mer oligonucleotide probes

that overlap every 20-mers to tile almost all of chromosome III and 1 kb of 223 additional

regulatory regions. Four microarrays (three biological experiments and one technical

replicate) were performed. Data of the median of ratios were extracted directly from

arrays using Genpix. Acquired images were visually inspected and low quality spots were

removed. The data were log transformed, block normalized, and the technical replicates

were averaged and treated as one biological replicate, followed by averaging all three

biological replicates. The resulting enrichment throughout the genome, in terms of

logarithmic ratios of intensity measurements, represents the positioning of the regulatory

regions which are free of nucleosomes. Yuan et al. (2005), in contrast, used the MNase

(micrococcal nuclease) enzyme to extract histone proteins, the resultant microarray

enrichment representing locations of the nucleosomal regions. Thus, as expected, the raw

data from Yuan et al. (2005) roughly exhibits a negative correlation with the FAIRE

enrichment values (Hogan et al., 2006). Both the experiments use identical probes in the

same regions of the genome, thus can be used for comparison, however since FAIRE

enriches nucleosome-free regions the exact model framework used in Yuan et al. (2005) is

not appropriate for FAIRE data.

3.1.2 Computational approaches for nucleosome detection

We now discuss a number of existing computational approaches towards detection of

nucleosome positioning in data from genomic assays discussed in the previous section.

Most of these methods are adapted to the data from the first type of experiment (MNase

digestion of Yuan et al. (2005)). In Yuan et al. (2005), a hidden Markov model (HMM)

was implemented for classifying the genomic regions into nucleosomal and

non-nucleosomal regions. This genome wide tiling array approach was repeated in other

genomes, enabling the identification of many general features of the nucleosomal

landscape shared across species (Pokholok et al., 2005). Ozsolak et al. (2007) performed a

42



similar genome wide DNA foot printing experiment on human fibroblasts, isolating

mono-nucleosomal DNA using micrococcal nuclease. Their method used wavelet

decomposition followed by outlier averaging and a peak trough analysis for classification.

The HMM method could not be applied because of non contiguous DNA fragments.

High-throughput tiling array data also has other complications that arise as a result of

the data generation process, such as amplification bias, problematic or inaccurate reads,

and varying degrees of non-random noise and measurement error. Relying solely on

experimental signal intensities for nucleosome classification could lead to prediction errors

that would be further propagated if the predictions are used as secondary input data for

motif discovery methods.

Recent work has linked particular DNA sequence features with nucleosome formation

(Sekinger et al., 2005), motivating researchers to exploit these features for improved

classification. Segal et al. (2006) constructed a map of the nucleosomal positions in the

yeast genome, based on the statistical distribution of dinucleotides in nucleosomal DNA.

An empirical statistical distribution of dinucleotides was obtained by aligning a set of

nucleosomal sequences from log phase yeast. However, neglecting the sequence

information of the nucleosome free regions weakened the above classification approach.

Some recent nucleosome prediction methodologies include Peckham et al. (2007), who

employed a support vector machine for classification of nucleosomal and non nucleosomal

states; and Yassour et al. (2008) who extended the HMM technique of Yuan et al. (2005)

by implementing a hidden Markov model with multiple states, to account for unstable

nucleosome positions and global trends. The relationship between the predicted

nucleosomal states, and other features such as presence of promoters, and sequence

features was investigated through prediction by Lasso regression in Lee et al. (2007).

Yuan and Liu (2008) used wavelet decomposition to represent the sequence signal as

covariates in a logistic model for the predicted states. However, in all these approaches,

restricting the sequence features to dinucleotide distribution differences could be a

potential reason for the overall poor classification rates, in spite of clear biological

evidence that sequence composition strongly affects nucleosome positioning (Sekinger

et al., 2005). Also, the sequence features were not used in the prediction models– the

relationship was explored only on the basis of first obtaining nucleosome predictions (from
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an HMM on intensity data) and then inferring potential influential sequence features.

One important feature of the data encountered in the new technologies for nucleosome

mapping are the gaps between adjacent probes. Employing a simple hidden Markov

model, assuming equally spaced probes, would seriously misspecify the parameters and

give us an erroneous state prediction in the case where there are unevenly spaced probes

and/or missing data. In ChIP-chip assays for detecting potential transcription factor

binding sites, where missing probe data may also be present, this limitation may not be

as serious as the TF-bound enriched probes only constitute a tiny fraction of the total.

Recent literature has also suggested that the conformability of DNA structure might

strongly depend on the sequence combinations over an extended set of nucleotides. In this

article we propose a novel general model framework for extending a hidden Markov model

in two directions for this problem: (i) use of an underlying continuous-index Markov

process that allows for gaps and missing data between probes, and (ii) incorporation of

relevant sequence features, not limited to dinucleotide frequencies, into nucleosomal state

prediction, through dimension reduction techniques. This unified model uses both the

signal intensity and sequence features to predict the likelihood of nucleosome formation,

lessening the dependence on only one data source to increase the accuracy of prediction.

Continuous-index Markov processes have been successfully applied to certain other

problems involving genomic data, such as copy-number variation detection (Stjernqvist

et al., 2007) and genetic linkage analysis (Lander and Green, 1987), but the present

problem presents some unique characteristics motivating our particular model

formulation and fitting algorithm. The structure of the article is as follows. In Sections

3.2 and 3.3, we describe our proposed new model framework and methodology for

model-fitting. In Section 3.5 we show that including sequence features of a higher order

than di-nucleotides leads to a higher predictive power in this model framework, through

applications to yeast nucleosomal assay data as well as a number of simulation studies.

3.2 Model framework

In the following sections, we describe our proposed model to extract positional estimates

of nucleosome-free regions from the FAIRE enrichment data (Hogan et al., 2006), and
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then illustrate its performance on real data as well as simulation studies. Although our

model is developed with the FAIRE data structure as a template, it is a general model

which can be used for a variety of high-throughput microarray settings. Also, from a

biological standpoint, since the FAIRE technology is simpler to use, it is likely to be

useful in nucleosomal studies for a wide variety of organisms.

3.2.1 Data structure

Due to experimental errors and image processing failures, the final data often has a lot of

missing probe measurements. The actual intervals between probe measurements thus

vary in length, especially for large data sets over entire chromosomes. For each position

on the chromosome with fully observed measurements, the following data are available:

Yij = log-ratio of the intensity of the replicate j of probe i

ti = Nucleotide index of the beginning of probe i

Xi = d-dimensional vector of covariate measurements for probe i,

for i = 1, . . . , P , and j = 1, . . . , R. In addition, we also define ta,b = tb − ta as the gap

between the center positions of probes indexed a and b, which is the genomic distance

between two probes (measured on the base pair scale). If all probes are of the same length

and equispaced, which is typically the case in these experiments, the gaps arise solely out

of the existence of missing probes, leading to the distance t(a, b) being a constant multiple

of the number of missing probes in between. In this simplified case, it is equivalent to

work with the metric of the number of missing probes as a distance measure.

3.2.2 Continuous index hidden Markov process

The observed probe measurements are subject to various sources of error. The actual

underlying nucleosome occupancy status is thus assumed to be an unobserved stochastic

process evolving over a continuous index, denoted by [Z(t), t > 0]. Further, we assume

that Z(t) represents a two-state Markov process, with Z(t) = 1 (0) representing a NFR
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(non-NFR) state, such that

P [Z(ti)|Z(ti−1), . . . , Z(t1),Y i−1, . . . ,Y 1] = P [Z(ti)|Z(ti−1)] = Pzi−1zi(ti − ti−1), (3.2.1)

where Pzi−1zi(·) denotes the transition probability that state zi was occupied at index ti

given that the process was in state zi−1 at index ti−1. For the moment, let us assume

that the transition probabilities of this process are stationary. We also assume that,

conditional on the state of the process Z at index ti, the observed measurement Y i is

independent of the hidden process and all observed measurements prior to index ti, that is

P [Y i|Z(ti), . . . , Z(t1),Y i−1, . . . ,Y 1] = P [Y i|Z(ti)] = f(Y i|zi). (3.2.2)

Expressions (3.2.1) and (3.2.2) constitute a continuous index hidden Markov process. For

notational simplicity, we shall henceforth refer to Z(ti) as simply Zi.

We assume that the probability of staying in a state is linear with respect to index for an

infinitesimal interval. The two-state hidden process can then be parameterized by the

transition rate from a nucleosomal state to a NFR, (λ), and the reverse transition rate,

(µ). The rate (or intensity) matrix Q is given by Q =
(
λ −λ
−µ µ

)
. The matrix of transition

probabilities P (t) over an interval t is generated by the matrix exponential of a matrix of

instantaneous transition rates Q, that is, P (t) = exp(Qt). Indexing the nucleosomal

(non-NFR) state by 0 and NFR state by 1, we then have the following form for the

transition probabilities:

P00[t] =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t

P11[t] =
λ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)t. (3.2.3)

For sampling parameters under the MCMC framework, a parameterization in terms of

the log-intensities is useful, i.e. we take log λ = θl0 and log µ = θm0. The initial

distributions of the hidden states are taken to be uniform across the states, that

π = (π0, π1) = (.5, .5). In fact we can take any prior probability since a) the stationary

distribution exists b) the markov chain irreducible, aperiodic and recurrent. So

46



convergence to the target distribution is guaranteed for any initial distribution . Also, no

selective criteria are used to determine the starting point of the data sequence.

Fixing the transition structure, next we specify the emission densities. The data

structure consists of three replicates within each probe. We can impose the same

distribution for all replicates within all probes belonging to a particular state. However

there might be a variation of the mean intensity between probes in the same state. In

order to account for this variability, we implemented a hierarchical model where we have

separate means for each probe, and these means are centered around a state-specific

mean with a state-specific variance. The hierarchical Gaussian model is given by:

Yij |Zi = k ∼ N(νik, σ
2
k); k = 0, 1;

νik|Zi = k ∼ N(νk0, τ
2
k ),

(3.2.4)

A more general form of the hierarchical model could involve probe-specific variances; but

since we observed little evidence of variation among probe variances, we used the simpler

form of the model to avoid an excessive computational burden. Though it is not possible

to do an analysis of the variances belonging to different probes in different states, since

the states themselves would be unknown before the estimation, luckily we found out that

the variances within the probe were uniform throughout the data set, i.e, the variances of

these probe specific variances were negligible (less than .01) So we settled for a less

complex hierarchical model which took into account the diversity between the probes

only in terms of th mean structure

3.2.3 Adding covariate effects to the model

Underlying characteristics of the DNA sequence that affect chromatin rigidity may affect

positioning of nucleosomes. In previous studies, the prevalence of certain polynucleotide

sequences such as poly-A (repetitions of the “A” nucleotide), poly-T and some others

have been seen to affect nucleosome positioning. Hence such sequence characteristics may

be assumed to affect the correct prediction of nucleosomal state. In order to model the

association between the covariates and states, we used three levels of models, relating the
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covariates to the transition rates, or emission probabilities, via link functions.

• Model M0: the original model (Eqns. 3.2.4 and 3.2.3) assuming that the covariates

do not affect either the state transitions or emissions.

• Model M1 (“transition model”): Here we use a multiplicative intensity model for

associating the covariates to the transition rates, by assuming that the transition

rate during the interval between two points depends on the the value of the

covariates at the end of the interval, i.e. the last probe. Let Xij

denote the value of covariate j (j = 1, . . . , d) for probe i. Then the transition rates

over the interval [ti−1, ti] become:

log λi(Xi) = θl0 +

d∑
j=1

θljXij

logµi(Xi) = θm0 +
d∑
j=1

θmjXij . (3.2.5)

In the later sections, to simplify notation, we shall denote λi(Xi) and µi(Xi)

simply as λi and µi.

• Model M2 (“emission model”): Here we assume that the probability distribution of

the observations conditional on the hidden state can also be affected by the

covariate measurements (i.e. probe sequence features). In this case, we assume that

the state-specific probe measurement mean can be modeled as a linear function of

the covariates, i.e.,

νi|Z(ti) = k ∼ N
(
νk0 +

d∑
j=1

βkjXij , τ0σ
2
k

)
(3.2.6)

Note that the emission model (M2) has probe specific means already built into the

model. So instead of modeling νij of the hierarchical set up we directly model νi

(We implemented the hierarchical setup for the base and transition models).
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• Model M3 (“full model”): Here we assume both the transition intensities and state

emission probabilities are affected by the covariates, that is, both expressions

(3.2.5) and (3.2.6) hold.

None of these models described above lead to a closed-form analytical expression for the

likelihood due to the hidden state variable Z, although this can be computed numerically

through recursive techniques, as we discuss in Section 3.3. Before the model estimation

procedure is described, we discuss the issue of identifiability in our proposed models, as it

is highly relevant to the validity of our inference.

3.2.4 Identifiability

Here, we examine closely the identifiability conditions of the model described in Sections

3.2.2 and 3.2.3. Non-identifiability of a model implies that there are two sets of

parameter settings that give rise to the same likelihood (and posterior distribution, with

a suitably non-informative prior). Usually in a Bayesian framework imposing an

informative prior may ensure identifiability. But since we want to impose minimal prior

effects on inference and accordingly set flat priors, non-identifiability can lead to serious

convergence problems in the Markov chain Monte Carlo (MCMC) sampling procedure

and bias inference. There are two parts to the proof. Our approach is very similar to

Leroux’s in the sense that we both base our result on the fundamental theorem stated by

Teicher in his 1967 paper ’On the identifiability of mixtures in product measures’ This

theorem has been the basis for proving identifiability conditions in several settings where

the joint modeling of dependent data has come up. Hidden markov models form one such

category of models. In Leroux’s proof of identifiability in HMM, the part of identifiability

of emission densities ( that follow from the that the collection of emission densities should

be same and the emission parameters have one to one correspondence with the densities )

is the same as ours. However for the next part on equivalence of the mixture weights, we

diverge. From this part it can be concluded in both the models that the laws of the

processes are equal, which implies that the transition probabilities are equal. In Leroux’s

model, the proof is completed there itself since the parameters are the transition

probabilities. However in our model, the transition parameters are related to the
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transition probabilities by means of the transition equations, and it needs some work in

this stage to translate the condition of equivalence of transition probabilities to that on

transition rates.

To establish identifiability conditions for the proposed models, we extend the results of

Teicher (1967). First, let us state the following definition and results.

Definition. Let fφ(y) be a parametric family of densities of Y with respect to a common

dominating measure µ and parameter φ in some set Φ. If π is a probability measure on

Φ, then the density

fπ(y) =

∫
Φ
fφ(y)π(dφ)

is called a mixture density.

We say that the class of (all) mixtures of fφ is identifiable if

fπ = fπ′ µ− a.e iff π = π′for all y

Further, we say that the class of finite mixtures of fφ is identifiable if for all measures π

and π′ with finite support, fπ = fπ′µ a.e iff π = π′.

Proposition 1. (Teicher, 1967). The class of joint finite mixtures of the normal

family is identifiable.

Proposition 2. (Teicher, 1967). Assume that the class of finite mixtures of the family

fφ of densities of Y with parameter φ ∈ Φ is identifiable. Then the class of finite mixtures

of n-fold product densities f
(n)
φ (y) = fφ(y1) . . . fφ(yn) with parameter φ ∈ Φn is

identifiable.

Proposition 2 was proved by induction on n (Teicher, 1967).

Now, note that any hidden Markov model is a finite mixture of n-fold product densities,

where the the weights of the mixture are functions of the transition probabilities.

Keeping this in mind, we applied the above results to prove the identifiability of models

M0-M3, given in the following result.

Theorem 1. Models M0, M1, M2 and M3 are identifiable. In other words, if η denotes

the total set of all parameters in any of the four models, and L(η;y) denotes the

likelihood of η, there does not exist any η′ 6= η such that L(η;y) = L(η′;y) for all y.
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The proof of Theorem 1 is given in the Appendix.

3.3 Model-fitting and Estimation procedure

First, we write down the likelihood under the proposed model framework, and then

discuss estimation of parameters and hidden states. Let η = (θ,β,ν,σ2) denote the set

of all parameters in the model. (For model M0, θ = (λ, µ)β = (ν0, ν1), and likewise for all

models except M3, at least one parameter becomes void.) The likelihood of a sequence of

N observed probe measurements, conditional on the covariates X = (X1, . . . ,XN ) and

probe locations T = (t1, . . . , tN ), can be written as

L(η) = P (Y 1, . . . ,Y N |X,T ,η)

= [π0P (Y 1|z1 = 0) + π1P (Y 1|z1 = 1)]
∑

z1,...,zN

N∏
i=2

Pzi−1,zi|xi(ti − ti−1)f(Y i|Xi, zi)(3.3.1)

Direct evaluation of (3.3.1) would involve summing over all possible sequences of hidden

states z1, . . . , zN . However, under the Markovian assumption, this can be instead

evaluated recursively, through a forward summation procedure.

One common approach to parameters and state estimation in HMMs is the

expectation-maximization (EM) approach (Dempster et al., 1977). However, in fitting

our model by EM, due to the complex nature of the transition probabilities, no closed

form expression exists for the M-step, necessitating numerical optimization which would

be very computationally intensive. The problem in the M step arises mainly due to the

fact that the complete data likelihood is a product of the terms of the type coming in the

transition equations 3.2.3. Although there have been analytically tractable M-steps for

some continuous time hidden Markov models (Roberts and Ephrain, 2008), our model

differs substantially from these in a very important aspect. In models of the former

category, it is assumed that the state remains constant throughout the gap and there is a

state jump only at the observation points. These models rely on the fundamental

assumption that the probability of transition is linear with respect to the time spent in a

time interval, and the proportionality constant is the rate of transition. Since the
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transition structure is such that the observed value is obtained only after a jump over a

period in a constant state, the transition equations are formulated simply in linear terms

of the rates. On differentiating the log-likelihood we get a simple linear equation in terms

of the rates. However, a basic aspect of our model is the assumption that there can be an

arbitrary number of state changes within the gapped period, and the probability

spanning the whole set of changes cannot be formulated in terms of the transition

equations as described above. These make inferring a closed form M-step impossible. On

the other hand, an MCMC sampling-based approach appears attractive due to the

standard or log-concave forms of many of the conditional distributions. It is also more

attractive to use a Bayesian MCMC approach in order to obtain the full posterior

probability landscape of the parameters rather than a single maximum likelihood-based

point estimate. In the next sections, we describe prior elicitation, and the steps of an

MCMC algorithm that makes use of a recursive procedure to sample parameters from

their posterior distributions.

3.3.1 Prior elicitation and sensitivity analysis

In an effort to keep the effect of the priors minimal, we assumed a flat prior for most

parameters in the model. It can be deduced from the structure of the full model likelihood

that the conditional posteriors assume proper densities with a flat prior. This can be

observed from two facts. First, the emission densities are normal. Thus, marginalizing the

joint density along the axes of emission parameters would be equivalent to integrating out

normal densities. This would eventually yield a finite weighted summation of finite terms.

Second, the expressions containing the transition parameters are a finite summation of

terms of the type f(a) exp(−g(a)) where f is a function bounded by 0 and 1 and g is a

positive scalar multiple in M0 and is a monotonic function in the transition model M1.

For all such functions of this type the integral is finite, and again leads to a finite

summation of finite terms.

However there are two cases in the above likelihood corresponding to all probes being

classified into either the 0 or 1 state, which when integrated out with a flat prior would

yield infinity, as these parameters are not contained in such terms. In this case the

posterior is improper and Gibbs sampling with such a model might lead to incorrect
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results. However this problem can be circumvented by noting that the probabilities of

these two extreme conditions is infinitesimally low (and typically zero in the real-life

application here). However this problem can be circumvented by imposing a constrained

hidden state model. This constrained state space will exclude these two states. Then we

have a proper posterior. The adavantage of this technique derives from the observation

that when we sample from these constrained space model, the conditional probabilities of

the hidden states (excluding the all 0 or all 1 case) involved in the sampling procedures

would differ from the conditional probabilities of our sampling scheme( which includes

the extreme states) by a negligible margin. This is because the probabilities of these two

extreme conditions is infinitesimally low (and typically zero in the real-life application

here) and make practically no difference at all to the probabilities. Here we must note

that that it is not because of the configuration of the states that we are able to get round

this problem, since the likelihood of any state vector is very low for large N. It is because

of the finiteness of such state vectors(2,in this case) that we can progress in the way

mentioned above. In practical implementation,our sampling scheme can hit one of these

two states. Apart from the assurance that such a situation can never occur in the current

application on this genomic data, where the log intensities are so distributed that the

sampler can never assign zeros to all the positions simultaneously( except when we

initialize one transition rate to be a unrealistically large negative number such that the

corresponding transition probability becomes 0), we can ignore the sample and re-sample.

This is a valid step under the constrained sampling set-up. By this way of proceeding

with a regular Gibbs sampler with a flat prior, we can approximate performing Gibbs

sampling on the constrained space model.

Together with these observations and the fact that we would not like to bias the data

with extraneous information, we initially assumed a flat uniform prior for the transition

parameters and the emission mean parameters of our model. For the variance

parameters, we used a non-informative prior for (τ−1) where τ is the inverse of the

variance σ2. We fit the models again assuming a vague normal prior (with a variance of

5) on the transition parameters. Then we systematically reduced the variance by .25

units, to see the changes. For the vague prior there was no identifiable difference in the

results. When the prior variance reduced beyond 1, there was an effect of pushing the log
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of the transition parameters towards 0.

Thus for our analyses and simulation studies, we chose the emission parameters and

transition parameters to be uniformly flat. Specifically, we chose, p(log(λ)) ≈ 1;

p(log(µ)) ≈ 1; p(νk0) ≈ 1 (k = 0, 1); p(σ2
k) ≈ σ

−2
k (k = 0, 1); p(θmj) ≈ 1, p(θlj) ≈ 1

(j = 1, . . . , d); and p(βkj) ≈ 1 (k = 0, 1; j = 1, . . . , d).

3.3.2 The MCMC sampling algorithm

Let us denote Pjk(ti+1|ti) as the transition probability from state j to state k, for

adjacent probes situated at positions ti+1 and ti, which is implicitly dependent on the

transition rates λ and µ. The following steps constitute one iteration of the MCMC

sampler designed to sample from the posterior distributions of all parameters of interest.

1. Use the forward algorithm to calculate the full likelihood given the set of

parameters. This algorithm iteratively computes the likelihood of the data till a

step in the sequence, with the last step being in a particular state. The first

application of this algorithm in computing HMM likelihoods was shown by Baum

et al. (1970) and later extended for a variety of models (Rabiner, 1989). Let F ij
denote the “partial” likelihood until position i of the sequence, where position i is

in state j, that is,

F ij = P (Zi = j, Y1, . . . , Yi|X1, . . . , Xi).

In our model, this is equivalent to:

F ij =
∑

z1,...,zi

P (Y 1|z1)
i∏
l=2

Pzl−1,zl|xl(tl|tl−1)f(Y l|X l, zl),

j = 0, 1 representing the nucleosomal and the NFR states respectively. The

recursive procedure to calculate the likelihood is given by

F ij = [F i−1
0 P0j(ti|ti−1) + F i−1

1 P1j(ti|ti−1)]f(Y i|Zi = j,η), i = 2, . . . , N.(3.3.2)

We must note Y i is a vector in our case consisting of one two or three replicates at

the non missing positions. So its dimension varies with the number of non missing
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replicates in the data. and

f(Y i|Zi = j,η) =
∫

[
∏3
k=1 φ(Yik, νij , σj)][φ(νij , ν0j , τj)]

The above integral has a closed form expression. It can be computed by the usual

method of completing squares of the exponent of the kernel of the Gaussian

densities.

The initial conditions are: F 1
j = πjf(Y 1|Z1 = j,η), (j = 0, 1), and the full

likelihood of the entire sequence is given by FN0 + FN1 .

2. Next, we employ a backward sampling procedure (Rabiner, 1989) to get a sample of

the hidden states. Conditional on the sampled states at positions ti+1, . . . , tN , the

probability that position i is in state j is

P (Zi = j|Zi+1, . . . , ZN ,Y ,X,η) ∝ F ijPj,Zi+1(ti+1|ti)

The probability that the last position is in state j is proportional to FNj . In actual

applications, the above procedures need to be reformulated in terms of the

logarithms of the probabilities to avoid computational underflow.

3. Conditional on the other parameters, hidden state path, and observed data, update

log λ and log µ using a Metropolis-Hastings procedure. For models M0 and M2, this

is done directly for θl0 and θm0, while for models M1 and M3 this is done for each

component in turn.

4. Conditional on the other parameters, hidden state path, and observed data, update

the emission parameters νk0 (k = 0, 1) for model M0 and M1 and additionally,

βk = (βk1, . . . , βkd), for models M2 and M3.

3.4 Details of sampling procedure

Our prior specification scheme is set as in Section 3.3.1. For the reader’s convenience we

present it again here

p[log(λ)] ≈ 1; p[log(µ)] ∝ 1; p(νki) ∝ 1 (k = 0, 1); p(νk0) ∝ N(
∑nk

i=1 νki
nk

, τ2
k ); k = 0, 1;

p(σ2
k) ∝ σ

−2
k (k = 0, 1); p(τ2

k ) ∝ 1
τ2k
p(θmj) ∝ 1, π(θlj) ∝ 1 (j = 1, . . . , d); and p(βkj) ∝ 1
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(k = 0, 1; j = 1, . . . , d).

Note that the log of the transition parameters (both in M0 and M1) has an uniform

prior. This is because a uniform prior on any of these transition parameters, say, λ would

result in an improper posterior for the logarithm of that parameter. The emission

parameters in the model have been given a flat prior.

We adopt the following notations for convenience.

We denote the collection of emission parameters in the base model M0 and the emission

model M2 as as ηb and ηe respectively. That is

[ν10, ν00, σ0, σ1, τ0, τ1, ν01, ν02 . . . ν0N , ν11, ν12 . . . ν1N ] = ηb

[β, σ0, σ1] = ηe

In a similar fashion we use a shortened notation for the collection of transition

parameters. That is

[log(λ), log(µ)] = ψb

( This would denote the set of transition parameters for models M0 and M2.)

[θl0, θl1θl2 . . . θld, θm0, θm1, θm2 . . . θmd] = ψt

(This would denote the set of transition parameters for model M1.)

Here d=6. These correspond to the six covariates that we have included in the model for

the nucleosomal and NFR states, including the intercepts.

Also we use nk to denote the number of observations in state k. That is

nk =
∑N

i=1 I(Zi = k).

We employ a Gibbs sampling method. The basic steps of the algorithm for model are

enumerated as follows:

1. P (Z|Y , ηb, ψb).
For this step we use the Data Augmentation technique described in subsection 3.3.2.

2. P (ψb|Y , ηb)
( As in a conventional Gibbs sampler, we should have sampled from

P (log(λ)|log(µ)|ηb, Z,Y ) and P (log(µ)|log(λ)|ηb, Z,Y ). However,instead of that,

we are integrating out Z from the full conditional. The reason we are doing that is

that we want to replace the collection of these three full conditional steps

P (log(λ)|log(µ)|ηb, Z,Y ) , P (log(µ)|log(λ)|ηb, Z,Y ) and P (Z|Y , ηb, log(λ), log(µ))
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by the collection of the two following block sampling steps.

1. P (Z|Y , ηb, log(λ), log(µ)

2. P (Z|Y , ηb, log(λ), log(µ))

In this way we would be drawing en block from the distribution of P (Z,ψb|Y , ηb)
Note that

P (Z,ψb|Y , ηb) = P (log(λ), log(µ)|ηb,Y )P (Z|Y , ηb, log(λ), log(µ))

A Gibbs block sampler, if it can be implemented, is always a more efficient sampler

than the one composed of full conditional distributions. )

• Note that in case of model M2 the above two steps are replaced by P (ψb|Y , ηe).

• In case of model M1 the above two steps are replaced by P (ψt|Y , ηb).

3. P (ηb|Y , Z, ψb)
This step is replaced by P (ηe|Y , Z, ψb) in the case of model M2 and P (ηb|Y , Z, ψt)
in case of Model M1.

We now elaborate on Steps (2) and (3).

3.4.1 Step I–Sampling the transition parameters

P (ψb|Y , Z, ηb)

• For Models M0 and M2: The posterior distribution is proportional to the

likelihood, since we have an uniform prior.

P (ψb|Y , Z, ηb) = P (log(λ)|log(µ), ηb,Y ) ∝ L(log(λ), µ, ηb|Y )p(log(λ))

= L(log(λ), log(µ), ηb|Y )

The last expression is computed by the forward algorithm given in Subsection 3.3.2.

Here the forward algorithm essentially calculates the full likelihood expression∏N
i=i

∑
z1,...,zN

P (Y 1|z1)Pzi−1,zi|xi(ti − ti−1)
∏3
j=1 f(Y ij |Xi, zi).

(So essentially here we are integrating out Z from the conditional likelihood).
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Since there is no closed form for the kernel of the posterior given by

L(log(λ), log(µ)|ηbY ) we resort to a conditional Metropolis Hastings updating

Scheme. The scheme is given below.

1. Generate a sample log(λnew) ∼ N(log(λold), V ).

2. Compute the ratio R = L(log(λnew)),µ,ηb|Y
L(log(λ),µ,ηb,|Y )

3. Accept λnew with probability min(1,R).

4. Repeat the above steps for log(µ).

( In our application on the Hogan dataset,we actually got a stable rejection rate of

35 percent by taking V=0.4.)

• For Model M1:

Again as before, we do not have a closed form for the kernel of the posterior given

by P (ψt|Y , ηb). Hence we implement a conditional Metropolis Hastings update as

follows:

1. Start from j=1.

2. Generate a sample θnewlj ∼ N(θlj , V ).

3. Compute the ratio R =
L(θnew

lj ,µ,ηb|Y )

L(θlj ,µ,ηb,|Y )

4. Accept θnewlj with probability min(1,R).

5. Put j=j+1. Go back to step 2.

6. Stop when j = d .

7. Repeat all of the above steps for log(θmj) j = 1 . . . d.

3.4.2 Step II : Sampling of emission parameters

We first note that the posterior distribution

P (ηb|Y , Z, ψb) ∝ L(ψb, ηb|, Z,Y )p(ηb)

(The last expression is simply the complete data likelihood times the prior for ηb).

= L(ψb, ηb|, Z,Y )[
∏N
i=1

∏1
k=0 φ(νik, ν0k, τ

2
k )
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Now from the likelihood equation we see that

L(ψb, ηb|, Z,Y ) =
N∏
i=1

∑
z1,...,zN

P (Y 1|z1)
N∏
i=2

Pzi−1,zi|xi(ti − ti−1)
3∏
j=1

f(Y ij |Xi, zi)

Note that in the right hand side of the equation the first part does not involve ηb and so

the posterior is further proportional to∏N
i=1

∏1
k=0 φ(νik, ν0k, τ

2
k )
∏3
j=1[f(Y ij |Xi, η, zi)].

( Here φ denotes the normal density function).

This is equal to the following expression∏N
i=1

∏1
k=0 φ(νik, ν0k, τ

2
k )
∏3
j=1[φ(Y ij , νki, σ

2
k)].

The above expression tells us that the components of ηb emerge as the mean and variance

parameters in an expression of product of normal densities. Thus it is easy to deduce

that their posterior distributions are normal and Inverse Gamma. The sampling steps are

enumerated below

1. Sample νk0 ≈ N(
∑nk

i=1 νki
nk

, τ2
k ); k = 0, 1;

2. Sample νik ≈ N(
νk0/τ

2
k+ ¯yik/σ

2
k

1/τ2k+1/σ2
k
, 1

[1/τ2k+1/σ2
k]

); k = 0, 1

3. Sample τ2
k ≈ IG(

∑nk
i=1(νik−ν̄k)2

2 , (nk−1)
2 )

4. Sample σ2
k ≈ IG(

∑N
i=1

∑3
j=1(yij−ȳi)2I(Zi=k)

2 , (nk − 1))

In the above expressions ȳik denotes the average of the intensity data over the replicates

at the ith probe where Zi = k.

ν̄k =
∑nk

i=1(νik)
nk

denotes the average of the probe specific means in all probes of the

particular state.

For model M2, we do not have the hierarchical setup. However, following the exact same

argument as in the base model M0, the posterior distribution of ηe can be found to be

proportional to
∏N
i=1

∏1
k=0

∏3
j=1[f(Y ij |Xi, ηe, zi)].

Recall that the components of ηe are given by :

ηe = [β, σ0, σ1]

59



Expanding the above expression of the kernel of the posterior in terms of these

parameters we get

P (ηe|Y , Z, ψb) ∝
N∏
i=1

1∏
k=0

3∏
j=1

[φ(Y ij , [Xi]
′βk, σk]

where βk = [βk1, ....βk6] Writing this in matrix notation we get

P (ηe|Y , Z, ψb) ∝
1∏

k=0

3∏
j=1

[Φ(Y k,W
′
kβ

k, σk]

where Φ denotes the multivariate normal function. i.e

Φ(y, a, b) = exp[− (y−a)′(y−a)
2b2

]

and Y k represents a subset of the full data vector Y where Zi = k. Zk denotes a subset

of the state vector where Zi = k. Wk denotes a subset of the covariate matrix where

Zi = k. Thus we see that in the expression of the posterior, the β and the variance

parameters emerge as the slope vector and the variance parameters of a simple linear

regression model. Now we implement the following sampling steps:

1. Sample βk ≈ P (βk|Zk, Y, σk) k = 0, 1;

where

P (βk|Zk, Y, σk) = N([W ′kWk]
−1W ′kY k, σ

2
k[W

′
kWk]

−1)

k=0,1.

2. Sample σk ≈ P (σk|Zk, Y,β) k = 0, 1; where

P (σ2
k|Y , Z,β) = IG((nk − d)/2, (1/2)s2

k)

k=0,1 and

s2
k =

∑
i:Zi=k

(Yi −X ′iβk)2/(nk − 1).

IG denoting the InverseGamma distribution.
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3.5 Application to yeast nucleosome array data

The estimation procedure for the base, transition and emission models was applied to the

FAIRE data set from Hogan et al. (2006), that comprised a total of 13947 probes. The

data structure consists of two elements:

• Signal: This gives the log of the hybridization ratios obtained from the microarrays.

For each probe we have three replicates each giving a measure of the intensity data

at the particular probe. The number of probes is uniform throughout the data set

The higher the value of these intensity measurement, the greater the chance for the

probe to be in a nucleosome free region. The data was preprocessed by a z-score

standardization to remove skewness. The average of the three replicates of the

intensities was taken as the signal, denoted by Yi. This signal was missing at

certain probes. The missingness pattern was random, and the maximum length of a

missing block was 13. The non-missing signal values numbered 12760, about 88% of

the total data set. More details on the standardization used can be found in Hogan

et al. (2006).

• Sequence: Each probe was of length 50 nucleotides, with an overlap of 20

nucleotides with the adjacent probe. As covariates which may potentially influence

the nucleosomal signal, we first extracted an initial feature set consisting of counts

of all oligomers upto length 5. For example a measurement of a covariate

corresponding to the dinucleotide TA would be the number of occurrences of this

dinucleotide throughout the length of the probe. Each probe thus corresponds to a

point in a 1364-dimensional Euclidean space, the coordinate for each probe given by

the corresponding oligomer word counts. These covariates, especially for longer size

oligomers, have very sparse counts, and tend to be highly correlated with counts of

words which are smaller segments of them. To avoid collinearity and also reduce

dimensionality of the covariate space, we performed principal components analysis

(PCA) on these 1364 covariates for all the probes in our data set. The first five

principal components were seen to explain about 95% of the variability in the

covariate space, and were retained as the final collection of covariates in the model.
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3.5.1 Model-fitting using three models

Next, we compared the performance of the estimation methods for each of the models by

applying them to the nucleosomal array data. All analyses were run in the statistical

software R (http://www.r-project.org/). The MCMC procedure was initialized at values

generated from a N(0,1) distribution for log(λ), log(µ), log(θ) log(β), ν00 and ν10, while

the variance parameters were initialized to 1. Multiple starting points were observed to

make no significant difference in the results. Convergence was attained for all the models

within 1000-5000 iterations. About 10000 iterations were used for each model after

burn-in, for inference. The posterior estimates of the parameters were calculated from the

mean of the lagged samples after burn-in, taken to be the first 10% of the iterations. We

present below a subset of the analyses that indicate most strongly the power of the new

approach. Table 3.1 gives the numerical summary of the parameter estimates obtained

from all three models. The parameters corresponding to the second principal component

variable was the only covariate that turned out to be significant at a 5% level in either

state, in both models M1 and M2. On analyzing the data set with Model M3, MCMC

convergence appeared to be very slow, hence we did not use this for further analysis. We

used the same dataset consisting of 12760 probes for all the three methods. For this

dataset,as we had mentioned earlier, the number of non missing probes varied. But the

hierarchical model was able to take into account this discrepancy by being able to

integrate out all the probe specific parameters at each probe level. We also ran the

algorithm on a reduced data set where we had three non missing observations at each

probe. The parameters obtained from there are very similar to the that obtained for the

original data set, except for the values of σ0 and σ1. These two values are further

separated out ( .4 and .6 respectively) for the reduced data set. This indicates that the

pattern of missig data is a little different between the two hidden states.

In the base model, M0, the parameter estimates for log(λ) and log(µ) implied that if a

particular probe was covered by a nucleosome free region, the probability of remaining in

the state is very high, approximately about 0.98. These probability estimates support the

belief that nucleosomes are separated by long nucleosome-free sequences. The nucleosomal

states predicted also appear to be quite long; which is natural in this case as the low

resolution of the data is motivated towards enrichment of nucleosome-free potential
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regulatory regions, and do not allow for detection of short nucleosome free linker regions

(< 10 bp) between adjacent nucleosomes, which are absorbed into the nucleosomal state.

In the transition model, M1, the estimates for the emission means and variances were

exactly equal to that obtained in M0. The intercept estimates of the transition

parameters matched quite well with the transition rates obtained from model M0. The

second principal component was significant both in the the nucleosomal and NFR

category (Table 3.1). The opposing signs of these estimates imply that the AT oligomers

associated with this covariate help in continuation of the NFR subsequences and are

detrimental to nucleosome formation. The estimates of other variables were not strictly

negligible, but their absolute values were comparably lower than that of the second

principal component variable. Recomputing the weights of the actual dinucleotide counts

with respect to this variable, we see the following oligomers play an important role in the

differentiation between nucleosomal and NFR regions. (All these oligomers have a weight

of greater than .1): A,T, AA, TT, AT,TA, AAT,ATA,ATT,TTA,TAT,TAA,TTTTA,TTTAT.

The maximum weights were seen to be given to AT and TA simultaneously. The

mono-nucleotides, the tetra-nucleotides and dinucleotides AA and TT had the lowest

weights. The tri-nucleotides occupied the intermediate ranks. Interestingly, all

statistically significant oligomers (of the AT combination) having the same number of

nucleotides in their configuration, shared very similar weights.

In the emission model, M2, the estimates for the transition probabilities and variances

were very similar to that obtained in the model M0. Again, the second principal

component of the oligomer counts turned out to be the only significant variable. However

unlike the transition model, this covariate was significant only in the NFR state.

We refitted the emission and transition models using only those 14 oligomer counts which

were associated with the second principal component. The parameter estimates are given

in tables 3.2 and 3.3

The starred values indicate that the estimates were less than .005.

AA and TT dinucleotides turned out to be the most significant variable for the emission

model. As was in the case, when the principal components were fitted, none of the

parameters corresponding to nucleosomes appeared to be significant. In fact many of

them have starred values (less than .05) indicating that their effects were almost
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negligible. This suggests that the intensity data within the nucleosomal segments is more

or less uniformly distributed, however in the nucleosome free regions, the intensity mean

is a variable function of the the AA and TT dinucleotide counts. It is interesting to

observe that the effect of the other oligomer combinations, which were a part of the

second principal component, vanishes when we refit the model with the oligomer counts.

This implies that the effect of the second principal component was borne primarily by the

counts of these two dinucleotide categories. The results from the transition model

reiterates the sole importance of the AA and TT dinucleotides in influencing the state

lengths. Here as in the PCA fitted transition model, these two features were important

both for the nucleosomal and the NFR states. The other features though not individually

significant, the combination may be significant in determining the states

Model comparison using the BIC. One important question is which of the models

M0, M1 or M2 is most appropriate for the data. One possible criterion for model choice is

the Bayes factor, which however would be difficult to compute analytically here due to

the complexity of the model. A simpler alternative is the Bayesian Information Criterion

(BIC) which can under many circumstances be considered an approximation to the Bayes

Factor. It is straightforward to compute the BIC under the different models by the

formula BIC = −2 log(L̂) + k log(n), where L̂ is the modal posterior likelihood, k is the

number of parameters, and n is the number of data points (the log-likelihood is computed

through a forward algorithm). The BIC for the three models are 17154.27 (M0) 14386.92

(M1) and 13337.19 (M2), showing that the incorporation of the sequence features was an

essential part in determining the structural classification. The emission model, M2,

turned out to have the best fit for this data set, indicating that local sequence features

indeed influence nucleosome formation; however, the sequence does not exhibit as strong

an effect in determining the lengths of the state of neighboring regions.

3.5.2 Comparison with known NFR regions from UCSC genome

browser

As a biological validation step to check whether our algorithm correctly predicts known

NFRs, we extracted the set of known regulatory regions in yeast from the UCSC data

base (http://genome.ucsc.edu/). Although the set of all validated nucleosome-free regions
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is not available, the presence of known active TF binding sites can serve as a useful

indicator that the region is likely to be nucleosome-free. We looked at the overlap of our

predicted nucleosome-free regions with the location of known TF binding sites

The results show an excellent performance for the continuous-index models as compared

with the Yuan et al. (2005) method. Overall the base and transition model results

perform very well (above 90% correct classification rate) against the database of known

NFR regions. The predictive power of the emission model is also high (70%). Since we do

not have a corresponding database of nucleosome regions, the false positive rate for all

the models is underestimated. This might be one of the reasons why the emission model,

M2, has a lower sensitivity than the base model, M0, in this comparison, although it fits

the data better.

3.6 Simulation studies

In order to determine the power and robustness of our methodology, we next performed

simulation studies to study the (i) consistency of model estimation under different

parameter settings, (ii) detection of the correct model under model misspecification and

(iii) importance of the continuous index assumption in the hidden Markov framework.

3.6.1 Consistency of model parameter estimation

Data sets were generated first under the three models M0, M1 and M2. Ten data sets of

size 5000 probes were generated for each parameter setting under each of the models, and

the models were fit using the MCMC procedure detailed in Section 3.3. In each case, the

estimated bias and MSE of the estimators showed consistently accurate estimation of the

model parameters. Below, as an example, we describe one such study.

For the base model, M0, the emission distributions were assumed to be normal with

means -0.4 and 0.4, the transition parameters λ and µ were fixed at -3, and variances of

the emission distributions were fixed at 0.35. For the emission and transition models, the

intercept parameter corresponding to both states were fixed to 1. Next, each of the

regression coefficients (θ for M1, and β for M2) corresponding to one of the five covariates

were fixed to 1, while others were fixed to 0. This was done for both the nucleosomal and
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nucleosome-free states. Thus a typical β (or θ) vector would be, for example,

(1, 0, 1, 0, 0, 0) for the nucleosomal state and (1, 0, 0, 0, 0, 0) for NFR state. For all 3

models, 2500 iterations were done for each parameter setting, with a burn-in taken to be

20% of iterations. For purposes of evaluating the misclassification rates, the probes

having an average state membership probability greater than 0.8 were rounded off to 1,

while others were fixed at 0. For all data sets under the base model, M0, the MSE of all

the emission parameters were less than 0.0001, the maximum MSE of the transition

parameters was 0.03, and the maximum misclassification rate was 0, indicating the model

was fit accurately in each case. For the transition model, M1, the maximum MSE for the

corresponding parameters was also 0.03, with the maximum misclassification rate being

0.1. In addition, the MSE for the regression coefficient θ ranged between 0.05 and 0.09.

For the emission model M2, the maximum MSE for emission and transition parameters

was slightly higher (0.08 for µ), the maximum misclassification rate was 0.1, and the

range of MSE for β was .001 to .004. More details of these simulation studies are

provided in the Supplementary materials.

3.6.2 Cross comparison under different models

Next, we simulated data under one specific model, and tried to estimate the parameters

and states from a model different to the earlier model, in order to judge whether in each

case the correct model was the one that most accurately fitted the generated data. For

this set of simulations, the variances were fixed to 0.48 and 0.64 for the nucleosomal and

NFR states respectively. The base model transition parameters were -3 and -3. For both

the transition and emission models, M1 and M2, the parameter corresponding to the first

principal component covariate in the NFR state was fixed to 1, while the other

parameters were set to 0.

As expected, when the simulation and estimation models matched, the method overall

performed very accurately, with the maximum MSE of the emission distribution

parameters µ and σ being less than 0.01, and for λ and µ, less than 0.05. The

classification rates are highest for the estimation models which match the simulation

model. This pattern is also seen in the MSEs of the estimated parameters (more details

in Supplementary materials).
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We also computed the BIC for each analytical method under the condition that the data

is simulated from one of these models (Table ??). We used 5 data sets for computing the

BIC under each simulation model. We then used the proportion of times BIC selected the

model as a measure of model fit. to give a measure of the performance of an estimation

method under a model. In general, we see that if we use the model for simulation in

estimation, we tend to get the best results. Also given a simulation model, say MA, if we

try to estimate it by a model which contains it, say MB, we get a very similar value of

the maximal log likelihood. Although it is, in principle, erroneous to state that the same

maximal log likelihood is achieved,however,in the ideal scenario of estimation, the extra

components in the bigger model would turn out to be 0, and we would get the same

likelihood This is not expected to be achieved in all data sets. However, in our case, we

see that the log likelihood values are very close,( the error margin is less than .01) and

the expected log-likelihood , obtained from the averages of the MCMC iterations are

equal. This is so because of the large size of the data set. In another of our working

papers’ titled ’Asymptotics of continuous time Hidden Markov models’ we have discussed

how as in the iid cases, consistency results can be achieved for Bayesian estimates hidden

markov models, as an extension of previous Bayesian consistency approaches. This

implies that since our data set is sufficiently large, the errors in estimation have got

smoothened out to a considerable degree, the parameters are actually equal to the true

simulation parameters with a very high probability ( a fact reflected in the table for mean

squared errors and misclassification rates), and that the estimated log likelihood would be

actually very close to the true log likelihood of the given model .

Five data sets were simulated under each model. The variances of the parameter

estimates over the simulation sets were in the range of .01 to .04. The MSE s for each

data set under a model was averaged to give an estimate of the estimation error of the

parameters under a given model. The state classification percentages were similarly

averaged over the five datasets. For all the five datasets, and for each simulation setting

the BIC model chose the best estimation model to be the model under which the datasets

were simulated. Thus the proportion of times BIC selected the model as a measure of

model fit was always 100 percent for the simulation model. See Table 3.4

Due to issues with convergence, the fourth model proposed by us (Model M3) which had
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both the transition and emission functions dependent on the covariates could not be

tested. However we generated a total of 5 set from this model, and ran the other three

estimation models on this simulated data to see how these models perform under this

setup. For this set of simulations too, the variances were fixed to 0.48 and 0.64 for the

nucleosomal and NFR states respectively. The base model transition parameters were -3

and -3. For both the transition and emission parameters, the parameter corresponding to

the first principal component covariate in the NFR state was fixed to 1, while the other

parameters were set to 0. The length of the simulated data sets were 5000. We took the

sequence features of the first 5000 covariates of the Hogan data set to be the covariates.

The MSEs and the BICs were averaged over all the five data sets to give a measure of the

performance of the estimation models. We report the classification errors and the BICs in

Table 3.5. In 2 of the five datasets, the transition model achieved the lowest BIC and

MSE, while in the rest of the 3 the emission model scored the top position. In all five

datasets , the base model M0 had the lowest rank.

3.6.3 Importance of the continuous index model

In order to show that the continuous index hidden Markov model was an essential

improvement, required to fit the gapped probe data, we simulated a data set of length

5000, where the gap distribution was the same as in the FAIRE data hidden Markov

model. It was then analyzed first by a continuous index HMM and then a discrete HMM.

We then simulated a second data set of 5000 measurements where the gap structure was

assigned randomly. This data set was analyzed using both discrete and continuous index

models. Table 3.6 displays the results. The matching rate was calculated by comparing

the number of prediction matches with the simulated state set. Clearly, we can see that

the discrete HMM fails to capture the true picture in the gapped data framework.

3.7 Discussion

Researchers have been increasingly shifting focus to nucleosomes as a secondary source of

information that will help in creating a more authentic map of the transcription factor

binding site locations. Previous approaches to nucleosome positioning used gene signal
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data to predict nucleosomes. Here, we propose a novel extension of the nucleosomal

region prediction method with two major improvements: (i) use of a continuous-index

Markov model to accommodate missing information or variably gapped probes; and (ii)

use of underlying DNA sequence features that influence the transition rates and the

emission densities. We have demonstrated the application of our proposed model on the

data obtained from FAIRE, a method developed by Hogan et al. (2006), and now widely

used for prediction of nucleosome free regions from the yeast genome. Our methods are

reasonably efficient in terms of computer time, given their complexity– the time taken (in

seconds) for 1000 iterations of the MCMC sampler for the models M0, M1, and M2 are

15343s, 47007s, and 18401s respectively.

Our first extension was in the form of a Bayesian continuous index hidden Markov model.

Here we assumed that there is an underlying continuous index chain that generates the

latent nucleosomal states, which we get to observe only in terms of emissions at the

points where we have measured data. The transition probabilities are derived from the

assumption that the probability of transition is linear with respect to index in an

infinitesimal interval. We further extended the above model to create two new models M1

and M2 where the DNA sequence features influenced the transition rates and the

emission densities respectively. For all three models, we proved the identifiability

conditions, which allow us to construct an MCMC procedure that is simple to implement

using minimally informative priors.

We employed Bayesian methodology in analyzing the model.Although the Bayesian setup

allows us to incorporate prior information in addition what is provided by the data, we

utilized minimal extraneous information. We employed powerful computational tools ,like

MCMC and recursive likelihood computations which are now essential to any Bayesian

analysis for their power in inference on complex posterior distributions.

In simulation studies, all models performed very well, with a correct classification rate of

1 in base and transition models, and above 0.9 for the emission model. The analyses were

fairly insensitive to the assumptions of normality, as were seen by its performance under

data sets simulated from the t-distribution.

The results of applying the models to the FAIRE data were compared with a set of

known regulatory regions from the UCSC genome data base, as a surrogate for NFRs
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(which have not all been marked with certainty). All three models performed fairly well,

and most regulatory regions had a matching rate of 100 percent, with the corresponding

predicted NFR regions. The performances of the transition and the base model were

quite similar, and both were slightly better at predicting regulatory regions than the

emission model, indicating that a non-homogeneous transition rate is probably most

accurate for predicting nucleosome-free regions, unlike the simple HMMs that have been

used in the past.

The non-zero parameter estimates from the emission and transition models clearly show

that the DNA nucleotide combinations play a significant role in determining nucleosome

positions. The covariates used in the model were obtained from principal component

analysis of all nucleotide combination counts up to 4-mers (tetra-nucleotides). By

computing the weights of the significant covariates with respect to the original collection

of counts, we could determine the roles of specific nucleotide combinations. It turned out

that the combinations of the nucleotides Adenosine and Thymine (A and T) are the most

effective in determining nucleosome positioning. Of the different combinations, the

dinucleotides (AT and TA) carry the maximum weight, followed by the tri-nucleotides.

Our proposed models thus successfully extend the hidden Markov model methodology to

gapped data sets, and by incorporating sequence information directly into the models,

provide useful insights into the relationship between the DNA sequence and nucleosome

positions. This also opens up the possibility for future work in synergistically modeling

multiple complex data sets having differing intervals between probes.

Recently attempts have been made in the direction of combining data from multiple

probe replicates into a hidden Markov framework (Johnson et al., 2009). Also, there have

been efforts to develop more sophisticated technologies to overcome the major problems

of ChIP-on-chip technology (large arrays and amplification bias) by performing massive

parallel sequencing (Barski et al., 2007). However, such technologies are only in their

preliminary stages of development and more critical refinement is necessary before their

potential (and limitations) are fully realized.
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Table 3.1: Panel 1: 95% Credible Intervals (CI) for parameter estimates for models M0
(base), M1 (transition), and M2 (emission). The indices l (or 0) and m (or 1) indicate
the nucleosomal and NFR states; for instance, the term θl0 refers to the intercept term for
the nucleosomal state in the transition model M1, ν10 refers to the intercept term for the
NFR state in the emission model M2. The CIs for parameters significant at a 95% level
are given in bold fonts. Panel 2: Principal component weights of the significant covariate
from the emission and transition models.
[Parameter Estimates]

Parameter 95% CI SE

log(λ) (-3.52,-3.75) .5
log(µ) (-3.77,-4.19) .38

M0 ν00 (-.52,-.67) .08
ν10 (.85,.99) .07
τ0 (.45,.50) .02
τ1 (.72,.79) .03
σ0 (.25,.34) .04
σ1 (.32,.38) .03

θl0 (-3.63,-3.75) .05
θm0 (-3.91,-.4.07) .05
θl1 (.-.01,.02) .01
θm1 (.-.05,.05) .04
θl2 (-.82,-.54) .68
θm2 (.78,.80) .1

M1 θl3 (-.04,.05) .03
θm3 (-.08,.07) .07
θl4 (-.03,.02) .02
θm4 (-.05,.04) .04
θl5 (-.02,.02) .02
θm5 (-.03,.03) .03
ν00 (-.54,-.63) .05
ν10 (.88,.95) .03
τ0 (.42,.51) .04
τ1 (.72,.80) .04
σ0 (.28,.33) .02
σ1 (.31,.39) .02

ν00 (-.54,-.56) .01
ν10 (.92,.93) .01
β01 (-.05,.05) .05
β11 (-.06,.05) .05
β02 (-.03,.03) .02

M2 β12 (.20,.22) .05
β03 (-.02,.01) .01
β13 (-.03,.03) .02
β04 (-.01,.01) .01
β14 (-.04,.04) .04
β05 (-.01,.01) .01
β15 (-.02,.01) .01

log(λ) (-3.53,-3.7) .25
log(µ) (-3.85,-4.15) .15

σ0 (.47,.49) .01
σ1 (.74,.76) .01

Oligomer Weight

A .1
T .1

AA .12
TT .13
AT .17
TA .18

ATA .13
ATT .14
TTA .13
TAT .13
TAA .14

TTTTA .1
TTTAT .1
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Table 3.2: Significant oligomers for the emission model
Oligomer NFR parameter (β1j) Nucleosome parameter(β0j)

A -.09 .02
T -.08 .01

AA .24 .02
TT .35 .02
AT .02 .01
TA .06 .01

ATA .04 -.03
ATT .04 -.04
TTA .03 .01*
TAT .05 -.01*
TAA ..02 -.01

TTTTA .02 -.01*
TTTAT .02 -.01*

Table 3.3: Significant oligomers for the transition model
Oligomer NFR parameter (θ1j) Nucleosome parameter(θ0j)

A .07 .05
T .06 .05

AA .25 -.18
TT .17 -.10
AT .09 -.04
TA .10 -.07

ATA .08 .01*
ATT .06 .01*
TTA .07 -.01
TAT ..02 -.02
TAA .05 .04

TTTTA .03 .01*
TTTAT .04 .01*
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Table 3.4: Simulation study:Proportion of datasets classified under the true model by the
BIC criterion

Simulation model
Base Transition Emission

Base 100 .00 .00
Estimation Model

Transition .00 100 .00
Emission .00 .00 100

Table 3.5: Tabulation of (a) correct state classification percentage ( Match”) and (b)
Bayesian Information Criterion for model M3 under the three estimation models.

Model Match BIC

Base (M0) 81 21343.52
Transition (M1) 92 18279.65

Emission (M2) 94 18047.93

Table 3.6: Simulation study to compare the performance of discrete-index and continuous-
index HMMs under two gap scenarios. The numbers “1” and “2” in the column “Set”
refer to results obtained from data sets simulated under the FAIRE gap structure and the
arbitrary gap structure respectively. “Match” refers to the percentage of probes classified
into their correct state.

Model Set MSE(λ) MSE(µ) AveMSE(ν00, ν10) AveMSE(σ0, σ1) Match (%)

Continuous 1 .01 .01 .01 .01 99
Discrete 1 .03 .01 .01 .01 85

Continuous 2 .01 .01 .01 .01 99
Discrete 2 .08 .09 .05 .03 68
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Chapter 4

A joint model approach to motif finding,

using nucleosomal information

4.1 Introduction

As we have stated in the introductory chapters,finding functional DNA binding sites of

transcription factors (TFs) throughout the genome is a necessary step in understanding

transcriptional regulation. However, despite an explosion of TF binding data from

high-throughput technologies like ChIP-chip Ren et al. (2000) Harbison et al. (2004),

DIP-chip Liu et al. (2005), PBM Mukherjee et al. (2004), and gene expression arrays,

finding functional occurrences of binding sites of TFs remains a difficult problem because

the binding sites of most TFs are short, degenerate sequences that occur frequently in the

genome by chance. In particular, matches to known TF motifs in the genome often do

not appear to be bound by the respective TFs in vivo. This is because when the DNA is

in the form of chromatin, not all parts of the DNA are equally accessible to TFs. In this

state, DNA is wrapped around histone octamers, forming nucleosomes. In the first

chapter ,our motivation for finding nucleosome positions was based on this specific role of

nucleosomes to provide a mechanism for differential access to transcription factors .

Indeed, it has been shown that functional binding sites of TFs at regulatory regions are

typically depleted of nucleosomes in vivo Yuan et al. (2005)?Yuan et al. (2005). If we

knew the precise positions of nucleosomes throughout the genome under various



conditions, we could increase the specificity of motif finders by restricting the search for

functional binding sites to nucleosome-free areas. One way to achieve this would be to

first obtain a prediction of the nucleosome positions, and then use it as a prior in motif

search. Narlikar (Narlikar et al. (2007)) employed this approach to get an improved motif

mapping of the yeast genome. Their main goal was to find transcription factor binding

sites in sequences which are already known to bind to TFs For this they had to impose a

prior which adequately reflected nucleosomal occupancy in w mers. This prior was

constructed in an adhoc manner from nuclesomal occupancy scores. The scores

themselves were obtained from a previous prediction algorithm by Segal et al. Each score

gave the probability of a particular position being occupied by a nucleosome. These

scores were then averaged over all w positions and normalized to give a positional prior

probability for a w-mer starting a particular position. Next, a discriminative prior

distribution was also used where a discriminative prior used. In this case, the probability

of a w mer being accessible for transcription factor binding was calculated by taking a

weighted ratio of the number of such w mers occurring at all positions in bound

sequences over the total number total numbers of the occurrence of this particular w mer

in all bound and unbound sequences. The weights were provided by the same positional

cores used in the non-discriminative prior. It was shown that while nucleosome

occupancy used as a simple positional prior only marginally improves the performance of

a motif discovery algorithm, when it is used to compute a discriminative priortaking into

account accessibility over the whole genome There were a number of problems with this

method. First, the prior formulation was not based on likelihood of data of an external

source or on the probability estimates of a w mer being occupied by a nucleosome.

Instead it used a only the positional probability of a particular site to be occupied by a

nucleosomes ,and used it as a proxy for the actual probability, by taking a simple average

over the positions. This proxy can only work for short motif lengths, but for large w, the

difference could be marked. Secondly the positional scores were dependent only on

property of the distribution of dinucleotides within a nucleosome and hence missed other

distinguishing sequence features. Thirdly and very importantly, the positional scores

themselves were not obtained from a discriminative approach, but used the sequence

distribution of nucleosomes only. So the power of the discriminative approach seem to
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come only by the raw numbers of unbound sequences considered, along with the bound

sequences, but the weights in itself do not emerge as an important factor because of the

way the scores are built. The construction of a prior for nucleosomal positional estimates,

though a useful technique, can suffer from one major drawback . The predictions for

motif search lie would propagate the statistical uncertainties associated with prediction

strategies directly into motif algorithms. This often yields results with low predictive

power. The ideal would be to work with raw nucleosomal intensity data, and incorporate

its likelihood into the broad Bayesian framework of a motif model. and Our approach in

this paper is to use nucleosomal information, in a way such that these prediction biases

do not arise. Also, we have addressed the goal of statistically quantifying the biological

connection between motifs and signal strength . In order to achieve these,we have

formulated an unique joint model that predicts nucleosome positions and motifs

simultaneously, based on the gene expression and sequence data.

4.2 Methods

4.2.1 Data Structure and Assumptions

The joint model consists of four main components: the measured data: Y , the

log-intensities; X, the sequence; and the unobserved (latent) components: A, the

indicator variable of all motif start positions, and S, the set of latent nucleosomal states

for each probe. The sequence data, X, can be considered one long string of DNA, each

element being a letter from A,C,G or T. The probe intensity data Y , however, is at a

resolution of individual probes, which consist typically of about 25-50 base pairs in our

experimental data. However, in order to build a coherent joint model, we require data

from both these sources to be at the same resolution. Hence we need to make a choice

between two simplifying assumptions: (i) for all the base pairs within a single probe, Y

has a constant probe specific value, or (ii) assign a value to each base pair of the probe

(e.g. by numerical interpolation). If all probes are of equal length and equi-spaced the

first option may work well, but since we typically have probes with gaps and of varying

distance we choose option (ii), which also leads to including variability in the intensity

over a probe.
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4.2.2 Observed data and latent variables.

For the moment, consider the sequence as a single vector of length L, denoted by

X = (X1, . . . , XL). Each Xi (i = 1, . . . , L) takes values in the set {A,C,G, T}. Let X [a:b]

denote the subsequence Xa, . . . , Xb. The signal intensity data, at the same resolution, are

represented by Y = (Y11, Y12, . . . , Y1j1 , Y21, . . . , Y2j2 , . . . , YPjP ), where P denotes the total

number of probes, and jp (p = 1, . . . , P ) is the number of basepairs corresponding to

probe p (which is typically equal, but could vary in some cases, depending on

experimental limitations), and j1 + j2 + · · ·+ jP = L. Along with X and Y , we also

define a vector t of length L, which contains the actual chromosomal location of the

nucleotides corresponding to X and Y . For instance, if there is a gap of N nucleotides

between probes p1 and p2, we will still denote the sequence corresponding to Yp1,jp1 as,

say, some Xq, and the sequence corresponding to Yp2,1 (the next probe measurement) as

Xq+1; however, the value of tq+1 = N would contain the information on the distance

between the closest measured probes in this scenario. Next, S = (S1, . . . , SP ) denotes the

indicator vector for nucleosomal state, with Sp = 1 if probe p belongs to a

nucleosome-free region (NFR) and 0 if it belongs to a nucleosomal region. We can also

write this in expanded form as an L-dimensional vector (S11, . . . , S1j1 , . . . , SPjP ), where

Spjp takes the same value for 1, 2, . . . , jp (p = 1, . . . , P ). Finally, let A = (A1, . . . , AL)

denote a latent vector of indicator variables with Ai = 1 if a motif site originates at

position i of the sequence, and 0 otherwise.

4.2.3 Model formulation.

For simplicity, assume there is one motif type in the model, with w columns,

characterized by a 4× w matrix of probabilities Θ. Column l (l = 1, . . . , w) of Θ is a

vector (θl1, . . . , θl4)′, where θlm denotes the probability of observing the m-th base in the

set {A,C,G, T}, and
∑4

m=1 θlm = 1. We can generalize this to a model with, K motif

types, characterized by weight matrices {Θ1, . . . ,ΘK}, of motif widths w1, . . . , wK . Also,

denote the background distribution of nucleotides by the parameter ρ. In the simplest

model, ρ is a vector of probabilities (ρ1, . . . , ρ4) of the 4 nucleotides; however, in complex

genomes it may be necessary to use a Markov chain of moderate order (2 or 3) for
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nucleotides due to the presence of long repeat sequences. We assume that each column l

of a motif instance (l = 1, . . . , w) is generated by a draw from the multinomial

distribution characterized by parameter θl = (θl1, . . . , θl4)′. Then, let Θ[X [a:a+w−1]], and

ρ[X [a:a+w−1]] denote the probability of the segment X [a:a+w−1] being generated from the

motif and the background model respectively, that is, Θ[X [a:a+w−1]] =
∏w
l=1 θlXa+l−1

, and

ρ[X [a:a+w−1]] =
∏w
l=1 ρlXa+l−1

(for an i.i.d. background). Additionally, π denotes the

probability of occurrence of a motif at any position (only within the NFR regions). For

the model of transition between the states of nucleosome (0) and NFR (1), we assume a

continuous time Markov process characterized by a matrix of transition probabilities P (t)

for an interval t, where, we have, P00[t] = µ
λ+µ + λ

λ+µe
−(λ+µ)t, P11[t] = λ

λ+µ + µ
λ+µe

−(λ+µ)t.

Next, the log-intensity data for probe p is assumed to be N(µps, σ
2
s), where the index s

denotes the nucleosomal state s ∈ {0, 1}. For the nucleosomal state, we assume a

conjugate hierarchical model for µp0, such that µp0 ∼ N(µ0, τ0σ
2
s). For the NFR state, the

mean of the normal distribution at position a of the probe, µpa is modeled as a baseline

value µ1 linked to a parameter which associates the occurrence of motifs at that position

of the probe to the observed intensity value. Specifically, we assume, conditionally on the

latent variables A and S, µa1 = µ1 + β log

(
Θ[X [a:a+w−1]]/ρ[X [a:a+w−1]]

)
, where

1 ≤ a ≤ jp − w + 1. β is an unknown parameter measuring the direct association between

signal data and the occurrence of motifs. The positive sign of the log-likelihood ratio

translates into the scenario where the motif probabilities are different from the

background; the higher the difference, the higher the strength of the motif. The priors for

µ0,µ1 and β are assumed to be uniform (flat); and the priors for σ2
s are also taken to be

flat 1
σ2
s

(s = 0, 1). For Θ and ρ we assume product Dirichlet and Dirichlet distributions

with hyperparameters equal to 1. The only parameter for which we require an informative

prior is the motif site prevalence π, since a non-informative prior for π typically leads to

non-identifiability in practice (Gelfond et al., 2009). For π we thus use a relatively strong

Beta(δ(1− γ), δγ) prior where δ is a large “pseudocount” and γ (0 < γ < 1) is a “prior

expected value”. Based on preliminary studies in a number of other studies including

Gelfond et al. (2009), we propose to choose γ over a range of values between 10−5 and

10−3 which seem to be reasonable, and test the sensitivity of the final inference to such

choice. Let us denote by η the set of all non-motif related parameters in the model, that
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is, η = (µ0, µ1, σ
2
0, σ

2
1, β). We denote by ψ all the transition parameters. That is,

ψ = (log(λ), log(µ)) Now, the complete data likelihood can be expressed in the form:

L(Y ,X,S,A|η,Θ,ρ, π) = P (Y |A,S,X, η,Θ,ρ, π)P (X|A,Θ,ρ, π)P (A|S, π)P (S|λ, µ).

The problem of interest is to estimate the latent variables A and S, and the unknown

parameters. Given the complex form of the likelihood, the estimation procedure we

propose is a hybrid MCMC algorithm, that incorporates elements of recursive

sampling-based data augmentation for efficient inference.

4.3 Estimation Procedure-The Setup

We implement Gibbs sampling by drawing from

1. p(S|η,Θ,ρ, π,Y ,X)

2. P (A|S, η,Θ,ρ, π,Y ,X)

3. P (η|Θ, π,A,S,Y ,X)

4. P (π|Θ, π,A,S,Y ,X)

5. P (ψ|S)

4.4 Estimation Procedure

As with any Gibbs Bayesian procedure, computation of conditional probabilities play a

major role. Since these probabilities are analytically intractable, a recursive algorithm is

used. Below we present three forward algorithms forward algorithm for computing the

unconditional likelihood. n this section we present three forward algorithms that would

be useful in the sampling stage

1. Forward Algorithm I for computing the likelihood –L(Θ,ρ, η|Y ,X). Note that in

computing this quantity we are integrating out A from the posterior. This

algorithm recursively computes the likelihood upto each position in the data and for

each positions outputs a two component vector
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(L(Θ,ρ, η|Y ,X,S[i] = 0), L(Θ,ρ, η|Y ,X,S[i] = 1)). The sum of these two terms

give the complete likelihood for position i. The N by 2 matrix of likelihoods thus

obtained is used in sampling from p(S|η,Θ,ρ, π,Y ,X)

2. Forward algorithm II for computing the Likelihood conditioned on

states—L(Θ,ρ, η|Y ,X,S). This is used in sampling from P (A|S, η,Θ,ρ, π,Y ,X)

3. Forward algorithm III for joint sampling of S and A. This also computes the

unconditional likelihood but unlike (1) it outputs its results as a three component

vector for each position i. L(Θ,ρ, η|Y ,X,S[i] = 0), L(Θ,ρ, η|Y ,X,S[i] = 1A[i] =

1)L(Θ,ρ, η|Y ,X,S[i] = 1A[i] = 0)). The previous two algorithms can be

implemented one after the other in order to sample from p(S,A|η,Θ,ρ, π,Y ,X).

This is because the kernel of the joint posterior is proportional to

p(S|η,Θ,ρ, π,Y ,X)P (A|S, η,Θ,ρ, π,Y ,X). However, Forward algorithm III

samples from this joint posterior directly with the help of N by 3 matrix of

likelihoods. In this way it presents an alternative to the combined work of the first

two algorithms.

4.4.1 Forward Algorithm I

Let F[i,k] denote the likelihood till position i of the data, with the position i being in the

kth state k= 0,1.

F [i, k] = Li(Θ,ρ, η|Y ,X,S[i] = k)

The following equations compute the likelihood for different values of i.

1. 1 < i < w :

F [i, 1] =

i∏
j=1

(φ(yi, µ0, σ0)ρXj
) (4.4.1)

F [i, 2] =

i∏
j=1

(φ(yi, µ1, σ1)ρXj
) (4.4.2)
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2. i=w:

F [w, 1] = (1− π)
w∏
j=1

(φ(Y w, µ0, σ0)ρ[X1:w])

F [w, 2] = (1− π)

w∏
j=1

(φ(Y j , µ1, σ1)ρXi) + π(φ(Y 1:w, µ1a, σ1)Θ[Xi−w+1:i])

F [i, 2] = (1− π)[F [i− 1, 1](1− λ) + F [i− 1, 2](µ)]φ(Y i, µ1, σ1)ρXi

+(π)[F [i− w, 1](1− λ) + F [i− w, 2](µ)](φ(Y i−w+1:i, µ21, θm, θb), σ1)Θ[Xi−w+1:i])

4.4.2 Forward algorithm II

Let G[i] denote the likelihood of having a motif or a background at the position i,

conditional on the states. That is G[i] = L(Θ,ρ, η|Y ,X,S)

S[1] = 1⇒ G[1] = θb[seq[1]]

S[1] = 0⇒ G[1] = 0

The computation is done differently for different values of i.

1. 2 < i < (w − 1) :

S[i] = 0⇒ G[i] = G[i− 1]

S[i] = 1⇒ G[i] = G[i− 1]ρX i
φ(Y i, µ0, σ0)

2. i=w :

S[i] = 0⇒ G[i] = G[i− 1]

S[1 : w] = 1⇒

G[i] = (1− π)G[i− 1]ρX i
φ(Y i, µ0, σ0)

+π(φ(Y i−w+1:i, µa1, σ1)Θ[Xi−w+1:i])
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S[i] = 1 and(S[1 : w] 6= 1)⇒ G[i] = (1− π)G[i− 1]φ(Y i, µ1, σ1)ρXi

3. i > w :

S[i] = 0⇒ G[i] = G[i− 1]

S[i− w + 1 : i] = 1⇒

G[i] = (1− π)G[i− 1]ρX i
∗ φ(Y i, µ1, σ1)

+π(φ(Y i−w+1:i, µa1, , σ1)Θ[Xi−w+1:i])

S[i] = 1 and(S[1 : w] 6= 1)⇒ G[i] = (1− π)G[i− 1]φ(Y i, µ1, σ1)ρXi

4.4.3 Forward algorithm III to be used for joint sampling

Let H[i,1] =Li(Θ,ρ, η|Y ,X,S[i] = 0)

H[i,2]= Li(Θ,ρ, η|Y ,X,S[i] = 1A[i] = 1)

H[i,3]=Li(Θ,ρ, η|Y ,X,S[i] = 1A[i] = 0)).

The initial conditions are :

H[1, 1] = h[1, 2] = .5

The following equations compute the likelihood for different values of i.

1. 2 < i <= w :

H[i, 1] = [H[i− 1, 1]λ+H[i− 1, 2](1− µ)]φ(Y i, µ0, σ0)ρXi

H[i, 2] = [H[i− 1, 1](1− λ) +H[i− 1, 2](µ)]φ(Y i, µ0, σ0)ρXi

H[1 : w − 1, 3] = 0

H[w, 3] = π(φ(Y 1:w, µa1, σ1)Θ[X1:w])

2. i > w

82



H[i, 1] = [H[i− 1, 1]λ+ (H[i− 1, 2] +H[i− 1, 3])(1− µ)]φ(Y i, µ0, σ0)ρXi

H[i, 2] = [H[i− 1, 1](1− λ) + (H[i− 1, 2] +H[i− 1, 3])(µ)]φ(Y i, µ1, σ1)ρXi

H[i, 3] = [H[i−w, 1](1−λ)w+(H[i−w, 2]+H[i−w, 3])(µ)w]π(φ(Y i−w+1:i, µa1, σ1)Θ[Xi−w+1:i])

4.5 Sampling scheme and Conditional distributions

The main steps of the sampling procedure are:

1. p(S|η,Θ,ρ, π,Y ,X)

2. P (A|S, η,Θ,ρ, π,Y ,X)

3. P (η|Θ, π,A,S,Y ,X)

4. P (π|Θ, π,A,S,Y ,X)

The details for each of these steps are given below:

• P (S|η,Θ,ρ,Y ,X, π)

Sample the nucleosomal states starting from the end of the sequence Use forward

algorithm I. Recall that N is the entire length of the sequence Draw S[N] with

probability
F [N, 1]

F [N, 1] + F [N, 2]

Conditioned on S[i+1] Draw S[i] with probability

F [i, 2]T [S[i],S[i+ 1]]

F [i, 1]T [2,S[i+ 1]] + F [i, 2]T [1,S[i+ 1]]

• P (A|S, η,Θ,ρ,Y ,X, π)

Sample the motifs conditional on on the states. In order to achieve this, we use the

results of the forward algorithm II.

Sample backward starting from position L.
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At a given position i, compute

P = π(φ(Y i−w+1:i, µa1, σ1)Θ[Xi−w+1:i])

The sampling probability that this position is a motif ending position is given by
P
G[i]

If the motif position is selected, set a[i-w+1:i]=1. Or in other words declare the last

w positions as a motif region. Else move back one position.

Set i=i-1.

Stop when i < w.

• P (η|S,A,Θ,ρ, π)

Conditioned on the motifs and states, we sample the emission parameters as follows:

σ2
0 ∼ Gamma((n0 − 1)/2,

∑
i;S[i]=0

(Y i − Y m0)2/2)

where n0 is the number of positions in the nucleosomal state

and Y m0 =
∑

i;S[i]=0 Y i/n the average of the signal strength in the nucleosomal

states.

Sample

µ0 ∼ N(a, b)

where

a =

∑
i;S[i]=0 Y i

n0

and

b = σ2
0

Sample

(µ1, β) ∼MultivariateNormal(b̂, σ2
1)

where b̂ is the least squares estimate of the vector of regression from regressing Y 1

on Z1. Here, X1 is a n2 by 2 matrix . The first column of Z1 is a one vector.
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The second column of X1 takes the value 0, when A[i]=0.

Mathematically,

b̂ = (Z ′1Z1)−1Z ′1Y

Ŷ iis the predicted value in position i, defined as Z1[i] ∗ b̂

σ2
1 ∼ Gamma((n1 − 1)/2,

∑
i;S[i]=1

(Y i − Ŷ i)
2/2

• P (Θ|A,E)

The conditional posterior distributions are

Θ ∼
∏

i,j;A[i:j]=1

[Θ[Xi:j ]

k=j∏
k=i

φ(Y k, µa1, σ1) (4.5.1)

θb ∼
∏

i,j;A[i:j]=10

[ρ[Xi:j ]] (4.5.2)

In order to sample Θ and ρ we needed to make a transformation of the 4*w

probabilities of the position weight matrix . For each such probability,

θil(l = 1 . . . w, j = 1 . . . 4) the logit function p‘ = log((p)/(1− p)) will be used.

That is, we define a new 4 by w matrix L and a new 1 by 4 vector R as follows

Lil =
log(Θil)

1− log(Θil)
(4.5.3)

Ril =
log(ρi)

1− log(ρi)
(4.5.4)

A Metropolis Hastings algorithm is then applied to sample the new parameters

under the constraint ∑
j

Θjl = 1∀ l

and, ∑
j

ρi = 1
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where j is the nucleotide index .

The Metropolis Hastings algorithm is implemented in the following steps.

1. Start with l= 1.

2. Generate a 3 x 1 random vector Nl from Multivariate Normal (Rl, 0.4I) where

Rl is the vector (R1l, R2l, R3l)

3. Compute Jil = exp(Ril)
1+exp(Ril)

4. If
∑

i Jil > 1 then go to the previous step.

5. If
∑

i Jil < 1 then calculate J4l = 1−
∑3

i=1 Jil

6. Recompute Nl by appending log(J4l)
1−log(J4l)

7. By inverse transformation calculate the new motif matrix Θn where the lth

column of Θn is the inverse logit transform of Nl and all other columns remain

the same.

8. Compute Ratio =
L(Θn,ρ,πη|Y ,X ,S)

L(Θ,ρ,πη|Y ,X ,S)

9. Accept new matrix Θn with probability min(1,R)

10. Repeat the above steps for l = 2, 3, . . . w

11. Update ρ in the same way. Note that, in place of w columns, we have to

update only one vector.

• P (π|A)

We sampled π from the Beta distribution, Beta(n1 − nsg + 1, n1 + 1) where

nsg = |A|
w ,which is equal to the number of motifs sampled in the previous step.

• P (ψ|S)

Since there is no closed for for the kernel of the posterior given by

L(log(λ), log(µ)|Y ,S) we resort to a Metropolis Hastings Scheme. The jump

distribution was taken to be Gaussian,with a the variance of the jump denoted as

V. The scheme is given below.

1. Generate a sample log(λnew) ∼ N(log(λold), V ).

2. Compute the ratio R = L(log(λnew),µ,ηb|Y )

L(log(λ),µ,ηb,|Y )
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3. Accept λnew with probability min(1,R).

The same steps are repeated for µ. Note that in the above sampling procedure we have

used a combination of Forward Algorithms I and II ( i.e we have sampled out the states

unconditionally first, and then the motifs) as an alternative to using the Forward

Algorithm III. Initially the way the forward algorithm is formulated, forward algorithm

III took more computational time than algorithms I and II combined. This is because a

three by N matrix has to be defined and accessed throughout the algorithm. However, we

see that essentially the time can be much reduced, because in the recursion equations,

H[i,1] and H[1,2] occur together as a common summand. This motivated us to implement

the same forward algorithm II without taking recourse to defining a new matrix, but

using F[i,1] and F[i,2] of the forward algorithm I. That is, the idea is not use the three

state representation in the computational stage. In computing the likelihood, we use only

the two way representation of whether the state is in a nucleosomal position or not. But

while sampling for say position i, we do not use F[i,1] or F[i,2] but go back a number of

steps F[i-1,1] F[i-1,2] F[i-w,1] F[i-w,2] and use them in computing the three probabilities

for the three possible scenarios in the position i. Here we are doing a joint sampling but

without having a new matrix to define. This procedure cost us less computational time

(44 seconds) instead of the combination of I and II(76 seconds). However we have seen

that Forward Algorithm III , does not typically takes more time to converge than the

combination of I and II. Because in both cases we are doing a block sampling of motifs

and states together. In I and II , we are achieving this by by first doing P (S|.)P (A|S|.)
and in the third we are doing P (A,S|.) Both of them are improvements on trying to

execute the full conditionals as in a conventional Gibbs sampler.

4.6 Simulations

A set of simulation studies were designed to test the efficacy of our sampling scheme. The

main objective for this design of simulation studies is to ensure that our algorithm has

the potential to work on a wide variety of data sets . Though, in essence, the data

components would remain the same in the sense that it would comprise of the nucleosome

intensity signal, and the sequence probes, there would differences in overall pattern across
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different genomes This can be due to sparseness of signals, weak motifs , low motif

occurrence probabilities, and varying strengths of the links between motifs and intensity.

We would like to know whether in different settings as above, our algorithm is able to

capture the true reality, and if so, to what extent. Is there a trend in the efficiency of this

algorithm with an increase or decrease in the corresponding parameters? There is also

the need to question how far the distributional assumptions that we have employed

modeling the intensity is valid, and if we are doing a good job with large numbers. That

is, though we have to face the computational burden of dealing with larger datasets, are

we being able to estimate the underlying the parameters with greater precision? With

these goals in mind we have designed the following simulation studies.

1. Checking the trend of convergence with increase and decrease in motif occurrence

probability (π) [Section 4.6.2]

2. The influence of initial values on the MCMC chain, in particular, the issues with

initializing the motif matrix.[Section 4.6.3]

3. Consistency: The errors of our predictions in increasingly large data sets.[Section

4.6.5]

4. Changing distributional assumptions[Section 4.6.4]

5. Varying β and π simultaneously.[Section 4.6.6]

4.6.1 Parameter Settings and inference methods for the simulation

studies

For all these simulation studies,we restricted the length of the data set to 20000. We

fixed ρ to (.25,.25,.25,.25) . The parameter values are taken to be

Table 4.1: Parameter values

(λ) (µ) (µ1) (µ2) (σ1) σ2 (β) (π)

.8 .57 -.6 .9 .48 .64 1 .01
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The transition parameter values were chosen so as to get the NFR coverage region to be

30 percent, approximately. This basic parameter setting was used through out for all

simulation studies. In the following subsections, where the values for parameter needed to

be varied, the range has been specified. We used two simulation matrices for generating

the motif matrix, which were obtained from the JASPAR data base. The matrices are the

following

Table 4.2: Motif matrix

1 2 3 4 5 6 7 8

1 0.40 0.10 0.75 0.80 0.15 0.04 0.04 0.10
2 0.40 0.06 0.05 0.08 0.02 0.04 0.04 0.10
3 0.10 0.80 0.10 0.08 0.82 0.04 0.04 0.10
4 0.10 0.04 0.10 0.04 0.01 0.88 0.88 0.70

and

1 2 3 4 5 6 7 8

1 0.40 0.35 0.20 0.12 0.35 0.60 0.20 0.10
2 0.40 0.15 0.20 0.18 0.35 0.10 0.50 0.10
3 0.10 0.30 0.40 0.35 0.12 0.20 0.15 0.10
4 0.10 0.20 0.20 0.35 0.18 0.10 0.15 0.70

In the second table the weights are a little more uniformly distributed across the

nucleotides than the first table.

In all the simulation settings in the current and the following subsections, the Auto

Correlation function drop was taken as the measure of convergence. we marked the

threshold iteration value from where the ACF of all the parameters dropped down to less

than .1. We then took a burn in of 2000 samples and used the mean of the parameters as

the posterior estimate.

The sensitivity rates are calculated by dividing the number of true positives by the total

number of ’true’ simulates sites. Specificity rates are calculated by dividing the number of

true positives by the number of predicted positives. The average Mean squared errors of
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the motif parameters were calculated on the basis of posterior sample mean and variance.

4.6.2 Checking convergence pattern with π

One important issue that could arise in the motif discovery algorithms is that we might

be dealing with sequences where the motifs occur very rarely. In those extreme cases,

many motif discovery algorithm could break down , and the resultant motif sensitivities

would turn out to be very poor . By trying to check our convergence pattern by changing

the π values we tried to determine the breaking point of our algorithm, the exact reasons

and issues associated with the break-down , and methods to remedy the situation. We

monitored the π values , reducing it step by step, and tried to see the convergence

pattern. The parameter values were fixed at the numbers set in table 4.1. The motif

matrix used was the first table from the JASPAR database, Table 4.2

The results are given in table 4.3:

Table 4.3: Convergence pattern

(π) Num-iterations Motif Sensitivity Motif specificity.

.01 840 .88 .92
.009 930 .85 .91
.008 1150 .88 .93
.007 1200 .82 .87
.006 1350 .84 .86
.005 1500 .89 .93
.004 1700 .88 .92
.003 2000 .84 .90
.002 2200 .87 .1

When we further decrease the π value beyond .001, we see a breakdown of the algorithm.

At a π value of .0008 we see that no motif sites are getting selected when the iteration

number crosses 500. The algorithm breaks down because the the β parameter is sampled

from a regression of the intensity data on a matrix which is a function of the motif

covariates. In absence of motif covariates, the second column reduces to 0 and we get a

less than full rank matrix, which cannot be inverted to give a estimate of β. Under a flat
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prior the posterior sample would have generated from a normal distribution with this

least squares estimate as the mean. However it is not possible under a circumstance

where one column of the regression matrix is 0. This problem was circumvented by

taking a vague normal prior , with mean 0 and a variance of (106) around β. Due to the

vagueness of the prior used for β the difference in parameter estimates obtained under

this modified posterior and that of the values obtained ( where π was fixed at .01) was

negligible. The differences were less than .01. We checked this pattern by repeating the

simulation for values of π = .004, .008, .005. However as we see in Table 4.3, the lower the

π value the more number of iterations needed to converge. This is because in the

algorithm output there are quite a few runs where the β parameters gets only the random

numbers generated the vague prior distribution in the absence of a motif, and the chain

gets stuck in a certain pocket. And it needs a certain amount of time ( as in the case of

π = .002) when the state transitions parameters are sufficiently updated to steer the

convergence in the correct direction.

4.6.3 Initial values for the MCMC chain

Initial values affect the convergence of a MCMC in a number of ways. It is well known

that if we start close to the initial values, we would get convergence faster than if we

would have done farther away. Sometime the convergence can take unusually long for an

initial value which is at a large distance from the true parameters. Sometimes the chain

would get stuck in a local mode due to particular set of initializations. Th motif matrix

initialization is important and sometimes a weak motif initialization in a MCMC where

the dataset is actually simulated under a strong motif can slow down the chain for a

considerable period of time and lead to issues encountered in the previous subsection.

Here we examine the different scenarios by plugging in different sets of initial values.

The initial values for µ1, µ2, β were simulated from N(0,1) The variance parameters σ1

and σ2 were set at 1. The background parameters were generated uniformly from the unit

simplex in R4 This generation was done by generating three U(0,1) random numbers.

Upon the condition that the sum is less than 1, the fourth number in θb vector was set by

subtracting the sum of the three from 1.

A number of initial motif matrices were tried out. However not all of them led to
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convergence Initially we tried to fix the 3 columns of the initial motif matrix to be the

same as the generator motif matrix in the simulations. In all these cases we achieved

convergence. Then we tried to generate a set of initial matrices by randomly permuting

the numbers in each column of the generating motif matrix. When the initial motif

configuration was such that the highest probability occupying nucleotide mismatched in

more than 5 out of 8 positions, we ran into a situation where the number of motifs

selected was 0. The second Jaspar motif matrix in Table 4.6.1 was used as a proxy for a

motif matrix which distributed weights more uniformly. A set of initial matrices were

generated from this second motif matrix by the same way of randomly permuting the row

numbers within each column of the matrix This set did well with respect to convergence

in all situations, when the motif matrix generator was the fixed second Jaspar motif

matrix ( Table 4.6.1). But it failed in some situations ( i.e in some of the random

settings) where the simulation motif matrix was the first motif matrix. Again the

problem in convergence was mainly due to no motifs getting selected. And this was

successfully taken care of by assuming a vague normal prior on β. A second technique

employed in getting round this problem is to get a estimate of the transition parameters

without assuming a motif in the estimation model. This would boil down to running a

simple Hidden Markov Model(of the type used in Chapter 3. Taking estimates of these

parameters after 500-1000 iterations, these values were then used with a randomly

generated motif matrix model. This would always yield good convergence results . The

convergence was achieved at less than 1500 iterations of running the full joint model with

these updated estimates. However, when we applied the algorithm on real data, we

employed the second method. The size of the data set acts hindrance which increases the

computational time considerably because we had to run a precursor to the main algorithm

just for generating the initial values. It has been observed ( from one simulation setting

with π fixed at .007) that this increase in computational time is less compared to the

time spent in convergence for the MCMC with a non-flat β prior. However it is not

possible to draw a general conclusion, regarding comparison of these two methods.
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4.6.4 Changing distributional assumptions

Our model is based on the imposition of a Gaussian density on the intensity function.

One of the motivations for this specification was that a Gaussian density would give us

simple closed form for many full conditional posteriors in the sampling stage. Another

motivation was that the log intensities are generally obtained from centering and scaling

around several data points, and it is reasonable to assume that in the processed data,

each data points corresponds to a large sample average, and hence a Gaussian

approximation can hold true. There is also the evidence from the qq plots in Chapter 1,

that the log intensities behave approximately normal. However we would liek to see how

far the deviation from this assumption would affect our estimation results. We tried to

change the distributional assumptions and check the robustness of our methods. For this,

we generated data from a t distribution with 5 and 10 degrees of freedom . The results in

4.4 show that the model estimation procedure is pretty robust to the distributional

assumptions. We see an improvement in motif specificities and sensitivities with an

increase in the degrees of freedom of the T distribution. All other parameters were fixed

at the values set in Table 4.1 and the motif matrix was fixed at the matrix given in Table

4.2

Table 4.4: Robustness

T degrees of freedom Motif Sensitivity Motif specificity.

5 .82 .89
10 .86 .91

4.6.5 Consistency

Increase in the size of the data set would lead us to more precision in estimation of our

parameters. This is the basic notion of consistency and is known to be valid for

frequentist estimates in iid and other dependent model extensions. Here we would like to

test the precision of our Bayesian estimate with the increase in the size of our data set. It

must be noted that there is no procedure to check on consistency from a Bayesian model
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in itself. This is due to that fact that we do not have any closed form for the Bayesian

estimates on which we can apply the limits. The only option is to check the precision of

the MCMC estimates and compare it to the true parameter.(This would be known in a

simulation setting) and see the variance of the estimate over a number of data sets

simulated under the same setting. Thus we tried to see how close our estimates get to the

real parameter values when the data size increases. In table 4.5 we see a strict pattern–

the mean square errors decrease with increase in the lengths of the data sets. The other

parameters were fixed at the values set in table 4.1 This clearly points to the consistency

of the Bayesian estimates obtained through MCMC.

Table 4.5: Consistency of Parameter Estimates

Data length Average-MSE-Transition Average-MSE-Emission.

20000 .007 .004
30000 .006 .001
50000 .005 .001
70000 .003 .000
90000 .001 .000

4.6.6 Varying Beta and Motif occurrence Probability simultaneously

The simulation studies were designed with the purpose of investigating how the parameter

estimates behave under different settings. One important object of finding was to to have

a minimum bound or threshold on the motif probability π under which the algorithms

converge. The other was to check the bias precision of parameter estimates obtained

under decreasing or increasing levels of individual certain parameters. This was followed

by a simulation setting where a combination of parameters were used . ( Although the

direction of biases and precision are expected to follow a set pattern in certain scenarios,

the pattern obtained in all cases does not lend itself to an easy interpretation).

Along with this, we have tried to obtain the conditions under which the motif width is

misspecified, and have obtained an estimate of its mis specifications on the the transition

, emission and state estimates. We have also tried to see the effect of the conservation
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pattern of a motif has on the variance of the estimates and the classification errors. This

is done by considering a specific set of motif matrices.

1. Motif Category 0. We used the motif matrix of the Jaspar database that we used in

earlier simulations

2. Motif Category A: This motif has a fixed width 7. We randomly chose 4 positions

of the motif columns and to each column arbitrarily assigned a unique nucleotide to

have the highest probability. This probability was taken to be .75 The other

nucleotides in those columns were assigned a probability of .082. From the

remaining 3 columns we assigned two columns to have nucleotide probabilities .5

and .3 in the first two rows ( A and C ) and equal probabilities in the remaining

dinucleotides. We assigned a .8 to T in the last column and equal probabilities in

the remaining rows.

3. Motif Category B: This motif also has fixed width 8. We choose any four columns

and to each of these columns assign the probabilities (.5,.4,.05,.05) in random order.

For the remaining 4 columns we assign .3 randomly to any of the three rows and .1

to the remaining row.

4.6.7 Motif Categories 0 and A

We first performed our simulations on motif category A and O. The transition and

emission parameters were fixed at the values specified in 4.1

Keeping all other parameters constant, we changed the β value over the range (1.2-2.7).

The β values were increased by an increment of 0.2 till 2 . We appended the values 2.5

and 2.7 later to the list to detect any changes over a greater range. There were four π

values (.002,.003,.005 and .006) for each β setting.

We see that there is an increase in motif sensitivity and state classification rate when we

increase β fixing a π value. The pattern of increase is similar over different π values till

.006. Also fixing a β we see that the motif sensitivities and state classification rates

increase over π. However at .006 we see break in the increasing pattern of sensitivities

and state matching with β. We observe that at this π value there is an increasing trend
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of motif sensitivity till β = 2.5 Although before this stage we have a considerable increase

in motif sensitivity till β = 2. Similarly for the state classification rates, a slight decrease

in motif sensitivity there we have an increased motif sensitivity till β = 2.1 and then a

decreasing trend.

There was no trend observed for motif specificities, although we could see a somewhat

increasing trend ( with increasing β and π values) till π = .004.

The plots in the figure ?? gives us the pattern of change in motif specificities,

sensitivities, and state misclassification rates over changes in β and π, where motif 0 is

chosen as the motif under which the data is simulated.

4.6.8 Motif Category B

Next, we went on to investigate if the above trends of the mean square errors , obtained

by varying β and π hold for a different type of motif matrix. For this we performed a set

of simulations where the motif matrix in the simulation model was motif category B.

For this set of simulations, The transition and emission parameters were fixed at the

values specified in 4.1. The motif width was fixed at 8.

Keeping all other parameters constant, we changed the β value over the range (1.2-2.7).

We increase the β value by an increment of 0.2 till 2 . We appended the values 2.5 and

2.7 later to the list to detect any possible changes over a wider domain. Three π values

(.002,.003, .006) were taken for each setting of the β parameter.

We observe that this pattern of change of β and π mentioned in the previous subsection

is valid only for motif category A and motif category 0. In the B category of motif

matrices, increase in β and π do not accompany a decrease in misclassification rates for

the motifs. The motif specificities and sensitivities matches are obtained at a reduced

level, and they stay more or less constant through out the increase in levels of β and π .

But interestingly, there is a decrease in state classification percentage with π and β.

Figure ?? gives us a graphical representation of this scenario.

This can be accounted for the fact that since the conservation pattern in these category

of motifs is relatively weak, the contribution to the mean of the intensity score from the

motifs in the NFR region is equally distributed both on the positive and negative range .

This makes differentiation between the NFR and nucleosomal states difficult,
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contributing to an increase in the MSE s of the state transition parameters.

4.6.9 Mis-specifying the motif width

We wanted to see what effect the mis-specification of a motif width has on the estimation

of parameter estimates. In all these simulation settings we worked with a category B

motif matrix. The results were obtained for two sets of simulations.

• a)when the motif width was extended by 3 units

• b) when the motif width was extended by 5 units.

The β value was fixed to 1.4 and the motif probability π was set at .004. All other values

were set at previous settings as in table 4.1.

After increasing the motif width by these amounts, we changed the value of β and π to

see the effect of motif width misspecification, under these changed parameter settings.

The effect is most pronounced in the estimation of β parameters and motif predictions.

The motif specificities and sensitivities were reduced by .12 and .16 respectively. We

observe that the MSEs of β increase by .09 and 1.27, when motif width is increased by 3

and 5 positions respectively. There is a slight but not very significant change in the

transition parameters. The MSEs of λ and µ increase by .1 and .089.The state

classification percentage also suffers and we see an increase of 1.13 in state classification

error under a misspecification of 3 units. The motif specificities and sensitivities were

reduced by .12 and .16 respectively.

However, when µ was increased from .57 to .7,keeping all other parameters fixed, we see

that the mean square errors of the β estimates is reduced from that in the previous

setting ( when µ was set at .57) by an amount of .034 and .021 with a motif width

increase of 3 units and 5 units respectively. However there is an absolute increase of 0.06

units and .07 units with the misspecification width, the mean squared errors margin only

reduces when µ is increased. The increase in state specification error remains the same

under these mis-specifications at this increased µ value.

On increasing π from .004 to .006, keeping all other parameters fixed we see a similar

decrease ( about .045 for 3 unit change and .057 for a change of 5 units) of the transition
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parameters MSE’s and a slight decrease in the state classification errors(.005 and .006)

although there is no decrease in motif sensitivity and specificity.

Overall we see that the mis-specifying the motif width not only increases the mean

squared errors in β parameters and the motif site predictions but also has an adverse

effect on the state classification error. Increasing the mean of the intensity distribution in

the NFR region and the motif occurrence probability slightly controls this error rate.

4.6.10 Two Step approach and its comparison with the joint model

We next tried to see how our method compares with the two step approach where we first

estimate the nucleosomal positions and then try to estimate motifs based on nucleosome

positions. We obtained the nucleosomal predictions by running a simple hidden markov

model on the intensity data . The hidden states belonged to a nucleosomal or a

Nucleosome Free Region. The emission and transition parameters for the nucleosomal

prediction models were set to be the same as the previous simulations. We assigned a

position to be nucleosomal if the posterior probability was found to be greater than .5.

We then extracted the predicted nucleosome free regions and concatenated the NFR

segments into one single data set where we ran the motif search algorithm– Bioprospector

The motif width was selected to be 8. and the top motif was targetted for output. The β

value was fixed at 1.2. For a fixed π we see that the two step approach fails to come close

to the level of the joint modeling approaching ,as regards accurate motif detection. In

table 4.6 we have denoted the two step approach by method ’B’ and the joint modeling

approach by ’A’. The β value was fixed at 1.2.

4.7 Identifiability

The identifiability results can be obtained by viewing the model as a hidden markov

model where we have each position covered by one of three hidden states namely

1. Nucleosomal–S0

2. NFR with no motifs–S1

3. NFR with motif –S2
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Table 4.6: Comparison with the two step approach

Estimation method (π) Motif Sensitivity Motif specificity.

A .002 .88 .92
B .002 .69 .87
A .004 .91 .88
B .004 .73 .82
A .006 .90 .91
B .006 .78 .76
A .008 .94 .94
B .008 .75 .82
A .010 .95 .94
B .010 .82 .84

Each of the states has its own unique emission density.

The transition probabilities between the different states are computed as the cross

product of the motif occurrence probabilities, and the state transition probabilities. The

following equations provide an example of the pattern in which the transition

probabilities between the different states( 27 equations in total) emerge.

T [S0, S0] = (1− π)(λ) (4.7.1)

T [S0, S1] = (1− π)(1− λ) (4.7.2)

T [S0, S2] = (π)(1− λ) (4.7.3)

T [S1, S0] = (1− π)(1− µ) (4.7.4)

(4.7.5)

and so on.

To establish identifiability conditions for the proposed models, we extend the results of

Teicher,1960.

Proposition 2. . Assume that the class of finite mixtures of the family fφ of densities of

Y with parameter φ ∈ Φ is identifiable. Then the class of finite mixtures of n-fold product
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densities f
(n)
φ (y) = fφ(y1) . . . fφ(yn) with parameter φ ∈ Φn is identifiable.

Proposition was proved by induction on n . Now, suppose there are two sets of

parameters yielding the same likelihood, given by

η = (λ, µ, ν1, ν2, σ1, σ2, θb, θm, β, π) and η′ = (λ′, µ′, ν ′1, ν
′
2, σ
′
1, σ
′
2, θ
′
b, θ
′
m, β

′, π′).

In order to prove identifiability, we need to show that η = η′.

From Proposition 1 and the observation that our model is a hidden markov model, and

hence a model is a finite mixture of n-fold densities of normal likelihoods,a shown in

chapter 1 we can directly invoke Proposition 2 to get the following. The finite collection

of n-dimensional densities and the mixture weights attached to these densities shall be

the same for the two parameter settings.

Since the finite collection of n-dimensional densities have a one to one correspondence

with the emission parameters, and the equality of the collection is established from

Proposition 1, we have from the equality of the emission densities in State 0

(µ0, σ0), θb) = (µ′0, σ
′
0),ρ),

Similarly from the equivalence of densities in Stat1 we have

(µ1, σ1)) = (µ′1, σ
′
1)),

Lastly, the equivalence of emission densities yield the equation:

(µa1,Θ,ρ), σ2), θm) = (µa1,Θ,ρ)′, σ′2), θ′m),

Now from the µ2 = µ′2 and Θ = Θ′ . From this step, the equality of all emission

parameters is proved.

Now we make use of the fact that the mixture weights are equal, and in order to translate

this condition to an equality condition on the transition rates, we exploit the relation

between the transition probabilities and the transition parameters. The equivalence of

the mixture weights imply that law of the processes are equal and hence the transition

probabilities between different given by the set of 27 equations are equal. Dividing the
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equation (1− π)(λ) = (1− π′)(λ′) and (1− π)(1− λ) = (1− π′)(1− λ′) we get λ = λ′

Now from (π)(1− λ) = (π′)(1− λ′) we get π = π′. Plugging this equality into

(1− π)(µ) = (1− π′)(µ′) we get µ = µ′. Hence the equality of transition parameters is

proved.

4.8 Structure of the hidden Markov model

In order to prove identifiability results, we formulated the model as Hidden Markov

Model with three hidden states. It is possible to extend the structure to a model with

w+2 states, where the additional w states come from the w motif positions. There we can

assume each position to add an an extra intercept in addition to the effect of the log

likelihood score covariate. This would make the hidden Markov model with w+2 states

identifiable. This formulation is essential to the deriving of the asymptotic properties of

the Bayes estimators and the testing of hypothesis under contiguity. With the help of

asymptotic properties and contiguity results proved in Chapter 5, we can test a range of

hypothesis relating to the presence of a link connecting the motif strength and

nucleosomal intensity signal.

4.9 Results

4.9.1 Applications on the yeast genome data set

The model was applied on the FAIRE data set. FAIRE is an acronym for Formaldehyde

assisted isolation of regulatory elements (FAIRE) . This experimental technology is based

on the principle that regions of the genome that are cross-linked with the histone protein

are less susceptible to binding by transcription factors, and thus get retained at the

interphase of organic and aqueous phase, while the nucleosome-free (potentially

regulatory) regions get enriched. The FAIRE procedure is initiated by first fixing whole

yeast cells in a growth medium by formaldehyde, harvesting them by centrifugation, and

finally sonicating the extracts, labeling the purified DNA and hybridizing them to

microarrays. The microarray in used 50-mer oligonucleotide probes that overlap every

20-mers to tile almost all of chromosome III and 1 kb of 223 additional regulatory
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regions. Four microarrays (three biological experiments and one technical replicate) were

performed. Data of the median of ratios were extracted directly from arrays using Genpix.

Acquired images were visually inspected and low quality spots were removed. The data

were log transformed, block normalized, and the technical replicates were averaged and

treated as one biological replicate, followed by averaging all three biological replicates.

The enrichment throughout the genome represents the positioning of the regulatory

regions which are free of nucleosomes. The nucleosome intensity data and sequence

features were simultaneously used for nucleosome and motif finding within the sequences.

Due to the gaps between the probe positions in the FAIRE data, we had to incorporate

continuous time equations for the transition intensities. This involved a set of Metropolis

Hastings steps to sample λ and µ in addition to the sampling steps described in the

estimation procedures in subsection 4.5.

The initial values for log(λ), log(µ), ,µ0, µ1, β were generated from N(0,1). π was

assumed to be .05. The motif width was set at 8 and the initial motif matrix was fixed to

Motif0, taken from the Jaspar database . ρ was initialized at (.25,.25,.25,.25). The

parameter estimates were calculated over a sample of 2000 iterations after burn-in. The

estimates are given in 4.7

Table 4.7: Parameter values

log(λ) log(µ) (µ1) (µ2) (σ1) σ2 (β)

-4.8 -3.19 -.8 .56 .47 .66 .64

The motif matrix Θ parameter estimates are given in 4.8:

Table 4.8: Estimated Motif Matrix

1 2 3 4 5 6 7 8

A 0.11 0.05 0.09 0.07 0.35 0.55 0.04 0..02
C 0.64 0.66 0.1 0.58 0.11 0.17 0.8 0.15
G 0.18 0.15 0.73 0.29 0.12 0.08 0.06 0.78
T 0.07 0.14 0.08 0..06 0.42 0.20 0.1 0.04
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The background probability vector [θb] estimates are given in table 4.9:

Table 4.9: Estimated Background Probability vector

A C G T

.34 .27 .21 .29

Both forward algorithms I and III were used in computing the log likelihood . Forward

algorithm I incurred substantially lesser time than forward a algorithm III. Convergence

was detected by monitoring the auto-correlation function.

4.9.2 Comparison with the denovo motif discovery and the two-step

method

We compared our method with a motif search algorithm that did not take into account

the nucleosome positional information. This de novo motif discovery method was

implemented on the Hogan data set. The applied motif discovery algorithm is actually

the classical motif discovery algorithm based on the Position Weight Matrix Model. For

this implementation, the motif width was fixed to 8. A forward algorithm was used to

compute the likelihood and motifs were sampled through backward sampling technique.

The forward algorithm for computing the likelihood is given below:

T[i,1] denotes the likelihood till position i, with the position i being the end of a motif

position. T[i,2] denotes the likelihood till position i, with the position i being in

background

T [i, 1] = (T [i− w, 1] + T [i− w, 2])Θ[Xi−w+1:i] (4.9.1)

T [i, 2] = (T [i− 1, 1] + T [i− 1, 2])ρXi (4.9.2)

(4.9.3)

After getting the motif predictions from this algorithm, we implemented the two step

approach on this real data set. As in the simulation we first got the nucleosomal
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predictions by running a simple hidden markov model on the intensity data . We assigned

a position to be NFR if the posterior probability of being NFR was found to be greater

than .5. We then extracted the predicted nucleosome free regions and concatenated the

NFR segments into one single data set where we ran the previous de-novo motif search

algorithm. Table ?? shows the comparison between these approaches.

4.10 Conclusions

A joint motif nucleosome model, presented in this chapter, takes into account the

nucleosome mapping information, and thereby, may have greater predictive power The

increase in predictive power comes from efficiently incorporating nucleosomal mapping

information. Although the main purpose of this model is to reduce the false positives in

motif search, it simultaneously yields nucleosomal predictions. Also, for the first time,

there has been an attempt to measure quantitatively the link between gene signal data

and motifs, in spite of past biological evidence. Simulation studies have shown that the

proposed nucleosome-adapted motif discovery algorithm beats the de-novo one both with

respect to sensitivity and specificity of motif finding. It is also superior to the two-step

approach of first getting nucleosomal predictions and then using it as a prior. This is

because the prediction biases get propagated when we use predictions from a different

model. The unified model takes this problem into account. The forward recursive

algorithm and backward sampling procedure is a useful technique of Data Augmentation

and likelihood computation in complex models which involve hidden variables. Our set

up has two layers of hidden variables namely the state configuration and the motif

positions. Also due to the link between the intensity data and the motif strength, the

relationship between these components among themselves and with the data is complex

and unique. Hence we needed to modify the existent recursive algorithms for motif

discovery and come up with two new algorithms that are more general in nature. Gibbs

sampling was implemented to sample from the posterior. Special attention was given so

that block sampling replaces the full conditional steps wherever it was possible.This was

done to speed up MCMC convergence to a considerable extent. There are scopes to

extend our current model to accommodate length constrained states. The recursive
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algorithms defined earlier, would definitely work in the new scenario, but at the cost of

extra computational complexities. The link function can be suitably modified to

accommodate a more general weighing scheme for the motif positions, whereby their

positional preferences with respect to gene expression could be judged. The two layered

hierarchical hidden structure of our model provides an interesting set up, that could find

possible applications in other fields.
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Chapter 5

Asymptotic results for continuous time

hidden Markov models

5.1 Introduction

In recently introduced procedures like FAIRE (Formaldehyde Assisted Isolation of

Regulatory elements), missing information due to experimental constraints in possibly

non-contiguous probes may make hidden Markov models (HMM) intractable and lead to

model misclassifications.The use of a continuous time Markov chain eliminates some of

the impasses. In a setup of discrete state space, the transition probabilities are then

derived from a continuous time Markov chain. This motives us to formulate a two-state

exponential model of the hidden states. Along with the preliminary notion, this

continuous time Markov chain model is introduced in Section 5.2. This chapter is

primarily devoted to the development of general likelihood function based asymptotics

providing the desired results of
√
n consistency of the estimators as well as related

asymptotic normality results. In this formulation a key tool is the incorporation of

’contiguity of probability measures’ in a HMM setup. All these basic motivations are

presented in Section 5.1.1. The derivations of the main results are considered in

subsequent sections. The relevance of these asymptotic results in the two important

problems considered in Chapters 3 and 4 is discussed in Section 5.6.2.



5.1.1 Preliminary Notion

Under the continuous time index framework, the tranistion between the hidden states

occur in a continuous continuum .We get to observe and infer only in a discrete subset of

that domain. We get the transition probability from one state to another from the

properties of the continuous time markov chain. We assume that the chain leaves the

current state at a rate proportional to the current duration. This gives us an two-state

exponential model of the hidden states with transition rates λ and µ.

The transition probability from one state to itself in time interval t,is given as

P (0, 0, t) =
λ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)t

The basic assumptions and notations required for this section :

Let Xi denote the unobserved states.

Xi=1 or 0, i=1,2. . . N

The probabilities of transition between these states follow Equation 3.2.3

We assume that the transition rates are bounded from below and above . That is

0 < σ− < λ, µ < σ+ <∞

Let Yi denote the observed data. Density of Yi is fXi , i= 1,2,. . . N where f is a bounded

density function indexed by the hidden states.

Let Lk denote the data likelihood up to position k.

Let a[k,0] denote L(Y1, Y2, .Yk−1, Xk = 0) Let a[k,1] denote L(Y1, Y2, .Yk−1, Xk = 1) where

L(Y1, Y2, .Yk−1, Xk = i) is the likelihood up to position k with the kth state=i.

We can see the motivation for these asymptotic results in view of their implications in the

inferential procedures in Chapters 1 and 2. The goal of the set of all asymptotic results is

to establish consistency of the posterior mode and the
√

(n) convergence of the

posterior.This discussion is important for the HMM model defined by the transition

structure above and for any non-homogeneous HMM run on long chains, with bounded

transition probabilities. Thus it would have huge and widespread applications in genomic

data. In Chapter Three, we have applied the continuous time HMM on such a
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dataset,where the length was 15000. Establishing the rate of this convergence to be
√

(n)

we would have a fair idea of the sample size needed to have such kind of asymptotic

behavior. However the benefits of asymptotic results provided by increasing data size do

not hold for arbitrary distribution of gap lengths. This we shall discuss in the section on

posterior convergence and its implications. We can place a high degree of credibility of

the results obtained through MCMC algorithm used for Bayesian inference due to the

consistency results of the Bayesian parameters estimates and the log likelihood. It also

validates the pattern of estimated log likelihood and BIC criterion which were observed in

different simulation experiments performed on the model in Chapter 3.

5.2 Asymptotic inference for parameter estimates, score

and information in continuous time HMMs

In this section we set about to prove the almost sure consistency of the maximum

likelihood estimates for continuous time hidden index models. For homogeneous hidden

Markov models, a proof of consistency by Leroux(1992) employs the technique of

conditioning on the infinite past.We, on the other hand, utilized the martingale approach.

It will be a recurrent theme in later subsections and play a major role in the proof of

asymptotic normality.

5.2.1 The main results

• Result I. Consistency: Convergence of MLE s and the scaled log-likelihood.

• Result II: The Asymptotic Normality of the score function.

• Result III. Contiguity- We prove the asymptotic equivalence of observed

information and Fisher’s matrix. This, combined with Result II leads directly to

the asymptotic distribution of parameter estimates.

• Result IV. Posterior Convergence:discusses the convergence of posterior under any

continuous prior distribution.
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5.3 Consistency

Here, we prove the consistency of HMM parameter estimates. We employ a martingale

approach to centered ratios of log likelihood. In the course of this proof, we shall exploit

the uniform forgetting property of the hidden markov models. The latter will follow from

the results on the ignorability of the initial condition and equating moments of shifted

markov processes. In a latter subsection, we prove identifiability. This will serve as a

crucial condition for the final proof. Let

Dk = log(Lk)− log(Lk−1)

denote the log likelihood increment. For notational convenience we will write fi(Yk) as

simply fi,k We can write this as

log
a[k,0]f0,k+a[k,1]f1,k

a[k−1,0]f0,k−1+a[k−1,1]f1,k−1

This can be further written as

log[[ a[k,0]
a[k−1,0]f0,k−1+a[k−1,1]f1,k−1

]f0,k + [ a[k,1]
a[k−1,0]f0,k−1+a[k−1,1]f1,k−1

]f1,k]

Which is another form of the expression

log(P (Xk = 0|Y1....YK−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k)

We start by showing that E(P (Xk = 0|Y1....Yk−1)f0,k + P (XK = 1|Y1....Yk−1)f1,k) is a

Cauchy sequence in k.

For m > k consider the expression

E((P (Xm = 0|Y1....Yk−1)f0,m + P (Xm = 1|Y1....Yk−1)f1,m)

−(P (Xk = 0|Y1....Yk−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k))

We employ the trick of writing the above expression as

E((P (Xm = 0|Y1....Yk−1)f0,m + P (Xm = 1|Y1....Yk−1)f1,m)

−(P (Xm = 0|Y1....Yk−1, XM−k = 0)f0,m + P (Xm = 1|Y1....Yk−1, Xm−k = 1)f1,m)

+(P (Xm = 0|Y1....Yk−1, Xm−k = 0)f0,m + P (Xm = 1|Y1....Yk−1, Xm−k = 1)f1,m)
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−(P (Xk = 0|Y1....Yk−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k))

Which can be written as the sum of two components:

E((P (Xm = 0|Y1....Yk−1)f0,m + P (Xm = 1|Y1....Yk−1)f1,m)−

(P (Xm = 0|Y1....Yk−1, XM−k = 0)f0,m + P (Xm = 1|Y1....Yk−1, Xm−k = 1)f1,m))

and

E(P (Xm = 0|Y1....Yk−1, Xm−k = 0)f0,m + P (Xm = 1|Y1....Yk−1, Xm−k = 1)f1,m)

−(P (Xk = 0|Y1....Yk−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k))

Note that the second component is 0 since the two random variables whose first moments

are taken have the same distribution. One is a shifted version of the other. Due to the

Markov structure, the distribution of the processes depend only on the initial condition.

For the first component we use the uniform forgetting property. This gives us the bound:

||(P (Xm = 0|Y1....Yk−1)− P (Xm = 0|Y1....Yk−1, Xm−k = 0)||TV < (1− σ−

σ+ )k = τk where τ

is less than 1.

This shows that E(P (Xk = 0|Y1....Yk−1)f0,k + P (XK = 1|Y1....Yk−1)f1,k is a Cauchy

sequence in k.

Now |log(x)− log(y)| < |x−y|
min(x,y)

Using the above and the fact that (P (Xk = 0|Y1....Yk−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k)

is bounded it is easy to show that

log[E(P (Xk = 0|Y1....Yk−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k)] is a Cauchy sequence as well.

Jensen’s inequality can now be used to show that:

E[log(P (Xk = 0|Y1....Yk−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k)] is a Cauchy sequence.

We now write the entire log likelihood

Ln = L0 +
∑

[Lk − Lk−1]

Let E(Lk − Lk−1) be denoted as Uk.

So Uk = E(Dk)
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Now (1/n)Ln = (1/n)[L0 +
∑n

i=1[Zk + Uk]]

We have shown that Uk is Cauchy and hence convergent.

The sequence Zk is a mean zero martingale. Recall that

Zk = log(P (Xk = 0|Y1....Yk−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k)

P (Xk = 0|Y1....Yk−1)f0,k + P (Xk = 1|Y1....Yk−1)f1,k < 1

and since the parameters lie in a bounded set. So any continuous function in this set is

bounded . The boundedness of Zk implies that Kolmogrov Strong Law of Large numbers

for martingales holds and
∑

(Zk/n) is convergent almost surely. From this, we get that

Ln/n is convergent.

5.3.1 Identifiability

We go on to establish the identifiability conditions for the base and emission models by

extending the results of Teicher (1967) Teicher (1967) . For this, we use the following

main definition and result.

Definition: Let fφ(y) be a parametric family of densities of Y with respect to a common

dominating measure µ and parameter φ in some set Φ If π is a probability measure on Φ

then the density

fπ(y) =

∫
Φ
fφ(y)πd(φ)

is called a mixture density .

We say that the class of (all) mixtures of (fφ) is identifiable if

fπ = fπ′µ a.e iff π = π′

Furthermore we say that the class of a finite mixtures of fφ is identifiable if for all

measures π and π′ with finite support fπ = fπ′µ a.e iff π = π′.

Result 1: The class of joint finite mixtures of the normal family is identifiable

(Telcher,1960).

Result 2: Assume that the class of finite mixtures of the family fφ of densities of Y with

parameter φ ∈ Φ is identifiable . Then the class of finite mixtures of n-fold product

densities f
(n)
φ (y) = fφ(y1)......fφ(yn) with parameter φ ∈ Φn is identifiable. The result was

proved by induction on n. [ Teicher (1967)].
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We shall now apply the above results to prove the identifiability of the base model. (Note

that any hidden markov model is a finite mixture of n-fold product densities, where the

the weights of the mixture are functions of the transition probabilities). Now, suppose

there are two sets of parameters

Θ = (λ, µ, µ1, µ2, σ1, σ2)

and

Θ′ = (λ′, µ′, µ′1, µ
′
2, σ
′
1, σ
′
2)

yielding the same likelihood. We need to show that

Θ = (λ, µ, µ1, µ2, σ1, σ2) (5.3.1)

= (λ′, µ′, µ′1, µ
′
2, σ
′
1, σ
′
2) (5.3.2)

Proof: From result 1 and the fact that and our model is a finite mixture of n-fold

densities of normal likelihoods we can directly invoke Result 2 to get the following. The

finite collection of n dimensional densities and the mixture weights attached to these

densities shall be the same for the two parameter settings.

Now since the n-fold densities arise from the normal family, they have a one to one

correspondence with the collection of n dimensional parameter sets formed by the n-fold

convolution of the sets (µ1, σ1) and (µ2, σ2) . Since the finite collection of n dimensional

densities have a one to one correspondence with the emission parameters, and the

equality of the collection is established from result 1) we have

(µ1, σ1), (µ2, σ2) = (µ′1σ
′
1), (µ′2, σ

′
2)

and hence the individual parameters are equal up to a permutation or reordering.

Now we make use of the fact that the mixture weights are equal. In order to translate

this condition to an equality condition on the transition rates, we exploit the relation

between the transition rates and the transition probability functions. From the equality

of the mixture weight probabilities, it can be inferred that the laws of these two processes

are the same, i.e P (Xi = a|Xi−1 = b) for any sequence position i, and for any states a, b,
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up to a permutation of the indices a and b. Let the permuted indices be denoted as a′, b′.

Thus, if we denote the transition probability under Θ′ as P ′(Xi = a|Xi−1 = b) we have

P = P ′

Adding up the equations for P00[t] and P11[t] for both Θ and P ′00[t] and P ′11[t] for both Θ′

we get

e(−λ−µ)t = e(−λ′−µ′)t∀ t (5.3.3)

⇒ λ− λ′ = µ− µ′ (5.3.4)

Assume a′ = a and b′ = b.

Then, from the equation of P00[t] we have:

µ

λ+ µ
+

λ

λ+ µ
exp−(λ+ µ)t =

µ′

λ′ + µ′
+

λ′

λ′ + µ′
exp−(λ′ + µ′)t

Subtracting Right hand side from left hand side we get

[
µ

λ+ µ
− µ′

λ′ + µ′
] + [

λ

λ+ µ
− λ′

λ′ + µ′
] exp−(λ′ + µ′)t] = 0

Noting that λ− λ′ = µ− µ′ and equivalently λ+ µ = λ′ + µ′ we get

(λ− λ′)(1− exp((−λ− µ)t)) = 0∀ t (5.3.5)

⇒ λ = λ′ = 0 (5.3.6)

Again using

λ− λ′ = µ− µ′

we get

µ = µ′

If we assume a′ = b and b′ = a we can repeat the above steps to see that λ = µ′ and

µ = λ′ Thus the identifiability of the model is completely proved.
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5.3.2 Identifiabilty and Asymptotics of log likelihood gives us

consistency

We utilize the identifiability properties of HMM to show that l(θ) has a global unique

maximum. Let the maximum be denoted by (θ∗). If θ̂n denotes the MLE then

0 ≤ l(θ∗)− l(θ̂n) (5.3.7)

≤ l(θ∗)− n−1ln(θ∗) + n−1ln(θ∗)− n−1ln(θ̂n) + n−1ln(θ̂n)− l(θ̂n) (5.3.8)

≤ 2supθ|(l(θ)− n−1ln(θ̂n)| (5.3.9)

This shows that for any compact subset

l(θn)→ l(θ∗)

as n→∞. Since l is continuous, this shows that the MLE converges to θ∗ almost surely.

5.4 Asymptotic Normality of the score function

The main part of the proof of asymptotic normality lies in the application of the

martingale central limit theorem. The proof of asymptotic normality for simple HMM is

also dependent on the central limit theorem for martingales, but on the version of CLT

where stationary processes are used. In order to facilitate CLT application, a large

machinery was built by Ryden et al,which approximated the score function to a

stationary process. We departed from this approach of proof for continuous index hidden

markov models, as the algebraic calculations would be too cumbersome to

handle.Instead,we used the non-stationary version of the martingale CLT that required

the Lindberg-Feller condition and some properties of conditional squared expectations.

For the latter, we again invoked martingale results. In this way, we could handle a more

general scenario,involving any bounded non-homogeneous transition probability

functions,and not just the specific structure we have from the transition equations. Here

our function of interest is the derivative of the log likelihood, l′x0,n(θ). The double indices

x0 and n denote the initial state and the position up to which the likelihood is computed,
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respectively. In keeping with the conventions of Douc, whose results we are going to use,

we make a slight notational change. We denote the observed and unobserved processes (

denoted hitherto by Y and X) as y and x respectively.

l′x0,n(θ) = l′x0,0(θ) +
n∑
k=1

[l′x0,k(θ)− l
′
x0,k−1(θ)] =

n∑
k=0

h′(k, 0, x0, θ)

where

h′(k, 0, x0, θ) = Eθ[
k∑
i=1

φθ(xi−1, xi, yi)|y0:k, x0 = x]− Eθ[
k∑
i=1

φθ(xi−1, xi, yi)|y0:k−1, x0 = x]

and

φθ(x, x
′, y) = ∇θlog[qθ(x, x

′)gθ(x
′, y)]

h′(∞,m, x, θ) = Eθ[
∞∑
i=1

φθ(xi−1, xi, yi)|y1:k, x0 = x]− Eθ[
∞∑
i=1

φθ(xi−1, xi, yi)|y0:k−1, x0 = x]

We use the notation Gk denote the derivative of the log likelihood increment at stage k.

Writing the score function as a sum of increments has important consequences.

We know that the derivative of log likelihood increments form a martingale.

The Central Limit Theorem for Martingales states that: If [Xk] is a martingale

increment sequence Tn =
∑n

k=1Xk, s
2
n =

∑n
k=1E(X2

k) , v2
k = E(X2

k |X1...Xk−1) and

w2
n =

∑n
k=1 v

2
k. The sufficient conditions are:

1. w2
n
s2n
−→ 1 as n −→∞

2. For every ε > 0 s−2
n

∑n
k=1E[X2

kI[|Xk|>εsn]] −→ 0 as n −→∞

We now try to get a L2 bound on the difference between h′(k,m, x, θ) and h′(∞, 0, x, θ).
For this, we take corresponding terms in h′(k,m, x, θ) and h′(k,∞, θ) and match them

one by one. Two types of terms come up

1. [φθ(xi−1, xi, yi)|y1:k, x0 = x] and [φθ(xi−1, xi, yi)|y−∞:k].

2. [φθ(xi−1, xi, yi)|y1:k, x0 = x] and [φθ(xi−1, xi, yi)|y1:k−1, x0 = x]
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We get a bound on the first group of terms by the Cauchy sequence property of

h′(k,m, x, θ) proved earlier.

For the second type of difference terms, we use the ’uniform forgetting’ and ’conditional

mixing’ properties. For this we invoke the backward decomposition theorem .

Conditional on y0:n the joint distribution of xj downwards to xm is a time reversed non

homogeneous markov chain with the transition kernel B[ym+1 : j](x; ). This can be

defined for each j = −m+ 1, ......k − 1.

where these backward kernels satisfy the inequality

σ−

σ+
v[ym+1:j ] <= B[ym+1:j ](x; ) <=

σ+

σ−
v[ym+1:j ]

where

v[ym+1:j ] =

∫
....
∫ ∏j

u=m+1 qθ(xu−1, xu)gθ(xu, yu)λ(dxu)f(xj)∫
....
∫ ∏j

u=m+1 qθ(xu−1, xu)gθ(xu, yu)λ(dxu)

The Derbushin coefficient of any kernel K is defined as

DC =
1

2
supx,x′ ||K((x, )−K(x′, )||TV

The Transition kernel is bounded because the transition function is a continuous function

on a compact bounded set, as we have a lower and upper bound on the transition rates.

Using the result that for a kernel satisfying a condition as above, the Derbushin

coefficient is bounded, we have the DC for the time reversed markov chain to be less than

1− σ−

σ+
= ρ

Now each of the terms of the type Pθ(xi ∈ .|ym−1:k, xm) and Pθ(xi ∈ .|ym−1:k−1, xm) can

be viewed as time reversed distributions from k-1 to i with backward kernel being < ρ.

Hence the total variation norm of the difference is ρk−1−i.

From this above property, we achieve bounds on the difference term . Next we combine

these bounds and use Minkowski’s inequality to obtain:-

||h′(k,m, x, θ)− h′(k,∞, θ)||2)1/2 ≤ Cρ
k+1/2−1

1− ρ
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⇒ G2
k is asymptotically bounded. P (G2

k > k) < ρk.

From the boundedness of G2
k the condition 1 of the Martingale CLT, the Lindberg-Feller

condition is immediate While the sum in the numerator is convergent (
∑
ρk = 1

1−ρ) the

sum in the denominator diverges to ∞. For the second condition we need to invoke the

following theorem.

Theorem : Let Xn be a sequence of random variables and Fn be an increasing sequence

of sigma fields with respect to Fn If X be a random variable such that E|X| <∞ and

there exists a constant c such that P (|Xn| > x) <= cP (|X| > x)for each x > 0 then

n−1
∑

[E(Xi)− E(Xi|Fi−1)]⇒ 0

We apply the result on random variables [G2
k].

From there we get n−1[
∑
E[G2

k|Fk−1]− σ2
k] −→ 0

We know that n−1
∑
σ2
k is bounded as σ2

k is bounded.

Dividing this by n−1
∑
σ2
k we get∑k

i=1 E(G2
k)/Bk−1∑k

i=1 E(G2
k)

− 1 converges to 0.

⇒∑k
i=1 E(G2

k)/Bk−1∑k
i=1 E(G2

k)
converges to 1.

Hence the second condition of the Martingale Central Limit Theorem is verified. So we

get

n−1/2
n∑
0

h′(k,∞, θ∗)→ N(0, J(θ∗))

weakly where

J = Eθ∗ [h
′(1,∞, θ∗)h′t(1,∞, θ∗)]

is the Fisher information matrix. This shows :

n−1/2∇θln(θ∗)→ N(0, J(θ∗) weakly.

5.5 Contiguity

The concept of contiguity plays an essential role in developing the distribution of test

statistics under a sequence of local alternatives. For this, we need to consider a sequence
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of hypotheses, Pn := P θ0n and Qn := Qθnn where

θn = θ0 + δ/
√

(n)

Pn is said to be contiguous to Qn if for any sequence of events An

[Pn(An) −→ 0]⇒ [Qn(An) −→ 0]

The relation of contiguity to asymptotic properties of test statistics under alternate

hypotheses is established by the celebrated Le Cam’s third lemma. In most cases,as in

the continuous time HMM, the derivations of the distributions of these statistics are very

difficult. The following lemma helps us surmount these obstacles:

Le Cam’s Third Lemma: If Qn is contiguous to Pn and the pair of statistics (Sn, Ln)

is asymptotically normal with mean (µ1, µ2, σ
2
1, σ

2
2, σ12) with µ2 = −1

2σ
2
2 and Ln being the

likelihood ratio, then under Qn

Sn is asymptotically normal (µ1 + σ12, σ
2
1)

Thus we can translate the asymptotic normality under null distributions to that under

alternatives.

Le Cam’s first lemma gives us a very useful and widely used characterization of

contiguity for a sequence of hypotheses.

Le Cam’s first lemma: If under Pn the log-likelihood ratio Ln is asymptotically

log-normal (−1
2(σ2), σ2) then Qn is contiguous to Pn

This lemma is used in establishing contiguity for a class of iid models by essentially

expanding the log likelihood around the null by a Taylor’s expansion. We extend that

approach to the continuous time HMM model. For this,we approximate the behavior of

log-likelihood as a ergodic sequence of stationary increments. Specifically we invoke the

following propositions of Douc et al:

• Proposition 1: For all θ, there exists a stationary ergodic sequence hk,∞ such that

|ln(θ)−
∑n

k=0 hk,∞(θ)| → 0 as n→∞

• Proposition 2: hk,∞ is obtained as a uniform limit of the continuous and

differentiable sequnece hk,m,x(θ) and hence is continuous and differentiable. We call
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the gradient as h′k,∞(θ) .

These propositions helps us mimic the Taylor’s expansion argument as in the iid model.

However our proof is not identical. We employ the trick of approximating the log

likelihoods to a stationary sequence-a property that holds for our models. We then

combine theorems of Douc et al that guarantee certain properties of the stationary

processes and observed information. We then use the latter in our main proof to establish

contiguity properties.

We write

ln(θn)− ln(θ0) = [ln(θn)−
∑n

k=0 hk,∞(θn)]+

[−ln(θ0) +
∑n

k=0 hk,∞(θ0)] + [
∑n

k=0 hk,∞(θn)−
∑n

k=0 hk,∞(θ0)]

The first two term tend to 0 by Proposition 1. For the third term we can write∑n
k=0 hk,∞(θn)−

∑n
k=0 hk,∞(θ0)

=
∑n

k=0[h′k,∞(θ0) + 1/2(θ0 − θn)2[hk,∞(θ0)′′ + r(k, θ0)

Now recall that θn = θ0 + δ/
√

(n) and note that r(k, θ0) −→ 0 as θn −→ θ0

The ergodic and stationarity property of hk,∞(θ) was proved by Leroux(1992). The

ergodicity and stationarity of hk,∞(θ)′ and hk,∞(θ)′′ is a consequence of theorems 4 and 5

of Douc et al.

So from Birkoff’s ergodic theorem we have
∑n

k=0 r(k, θ0)/n→ 0 From section 5.4 on

normality we know that the score function i.e ln(θ0)′/
√
n =

∑n
k=0[h′k,∞(θ0)/

√
n] is

asymptotically normal. Thus we have

∆log(Ln) = δN(0, J0)− 1

2
δ2J1

For contiguity we need to show J0 == J1 asymptotically.

where J0 = Eθ0 [h′(1,∞, θ0)h′t(1,∞, θ0)] and J1 = limn→∞n
−1∇2

θln(θ0) which is the limit

of the observed information score .

The concluding part of this section establishes the asymptotic equivalence of the observed

score information J1 and the asymptotic covariance matrix J0 ( Note that in iid

exponential model, they are equal for every n)
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Recall that we had defined

h′(k, 0, x0, θ) = Eθ[

k∑
i=1

φθ(xi−1, xi, yi)|y0:k, x0 = x]− Eθ[
k∑
i=1

φθ(xi−1, xi, yi)|y0:k−1, x0 = x]

where

φθ(x, x
′, y) = ∇θlog[qθ(x, x

′)gθ(x
′, y)]

We drop the subscripts x0 and θ for notational convenience. Note that

∇2
θln(θ0) == Eθ[

n∑
i=l

φθ(xi−1, xi, yi)|y0:k, x0] + varθ[

n∑
i=1

φθ(xi−1, xi, yi)|y0:k, x0]

As in the expression of the score function we can break up the above as

Eθ[
∑n

i=l φθ(xi−1, xi, yi)|y0:k, x0 = x]

=
∑n

k=1(Eθ[
∑k

i−1 φθ(xi−1, xi, yi)|y0:k, x0]

−Eθ[
∑k−1

i−1 φθ(xi−1, xi, yi)|y0:k−1, x0]

and

varθ[
∑n

i=1 φθ(xi−1, xi, yi)|y0:k, x0 = x]

=
∑n

k=1(varθ[
∑k

i=1 φθ(xi−1, xi, yi)|y0:k, x0]

−(varθ[
∑k−1

i=1 φθ(xi−1, xi, yi)|y0:k−1, x0]

Define

τ1,k(θ) = varθ[
k∑
i=1

φθ(xi−1, xi, yi)|y0:k−1, x0]

From Proposition 5 of Douc et al, under the assumptions Eθ[supxsupθφ(θ, x1, Y1)] <∞
and Eθ[supxsupθφ(θ, x1, Y1)]2 <∞; h′1,k(θ) and τ1,k(θ) both have limits as k −→∞, Pθ -

a.s. The assumptions are trivially true from the boundedness of the transition function

and the emission densities. Let hk,∞(θ) and τk,∞(θ) denote these limits. It follows from

the definitions above that [hk,∞]∞k=1 and [τk,∞]∞k=1] are Pθ∗-stationary and ergodic. Also,

the limit of the observed Fisher information will be -Eθ0 [h0,∞(θ0) + τ0,∞(θ0)] . This is

= Eθ0 [h′(1,∞, θ0)h′t(1,∞, θ0)] Thus we can conclude that

∆log(Ln) = δN(0, J0)− 1
2δ

2J0

establishing the conditions for LeCam’s first lemma. This proves that continuous time
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Hidden Markov models admit a contiguous structure. The equivalence of the asymptotic

information and Fisher’s matrix now yields the asymptotic normality of the MLE.

To see this we recall the result of asymptotic normality of the score function:

n−1/2∇θln(θ∗)→ N(0, J(θ∗) weakly.

Now we can apply a Taylor’s expansion around θ∗ to get

0 = ∇θln(θ̂n) = (5.5.1)

∇θln(θ̂∗) + ln[θ∗ + t(θ̂n − θ∗)](θ̂n − θ∗) (5.5.2)

⇒ n1/2(θ̂n − θ∗) = −n−1ln[θ∗ + t(θ̂n − θ∗)]−1n−1/2∇θln(θ∗) (5.5.3)

By strong consistency we have θ̂n → θ∗ almost surely, so the first factor converges to

J(θ∗)
−1 a.s. The second factor by virtue of the equivalence converges to N(0, J(θ∗))

.Hence the following result

n1/2(θ̂n − θ∗)→ N(0, J−1(θ∗))

which is the standard asymptotic result of the MLE.

5.6 Posterior Convergence

In Bayesian analysis, one starts with a prior knowledge expressed as a distribution on the

parameter space and updates the knowledge according to the posterior distribution given

the data. It is therefore of importance to know whether the updated knowledge becomes

more and more accurate and precise as data are collected indefinitely.This has motivated

researchers to come up with frequentist results related to convergence and consistency of

Bayesian estimates, mostly for iid models.

The proof of Walker(1969) for asymptotic normality for posterior density in iid models

could be used as a guideline for similar results for Hidden Markov Models.The Bayesian

Central limit theorem ( The Bernstein Von Mises theorem) tells us that provided the

prior is continuous and positive, the posterior distribution of a parameter of interest, will

be asymptotically normal with mean as the maximum likelihood estimate, and variance

as the inverse of the observed information. We can establish this result heuristically by

121



taking a Taylor’s expansion around the MLE and then using the inverse formula of

characteristic functions to deduce normality. However to rigorously prove the original

theorem, restrictive conditions of an iid model are a must. In later extensions and

modifications of this result by Walter and others, the iid structure was always retained.

There have been attempts to extend it to dependent processes and stationary data

(mostly by Walker(2003,2004) and Ghoshal(2006)). Till date, there has not been any

extensions to HMM. In our work, we have combined HMM asymptotics and Bayesian

consistency approaches to arrive at similar results for our model.

While we relax the iid condition in our proof for HMM, we mimic Walker’s technique.

What went into the heart of the previous proof is actually a collection of results on

convergence of log likelihood and observed information ( which are easily obtained for iid

models). These have been obtained in the earlier sections of HMM. The complexity of

Walker’s proof is also simplified by the fact that we do not get infinite integrals(as

expectations of log-likelihoods) anywhere in our calculations if we assume a positive

continuous prior π .

5.6.1 The proof of asymptotic convergence of posterior density under a

continuous prior

We first state and prove three conditions related to the behavior of the log posterior. It is

noteworthy that Walker used the same three conditions as the building blocks of the proof

for iid models. Our proof, however, does not depend on the surplus conditions about log

likelihood and information, but only on the assumption of bounded transition rates.

These are :

1. Let N0(δ) = θ : |θ − θ0| < δ be a neighborhood of θ0 . Then there exists a positive

number, k(δ) such that

limn→∞P [supθ∈N0(δ)′n
−1[Ln(θ)− Ln(θ0)] < −k(δ)] = 1

2. limn→∞Ln(θn)′′ = −J(θ0)

But this is precisely the conclusion from the theorem on the asymptotics of the

observed score information by Douc et al and our result of consistency on θ̂n. To

see this, we invoke Douc’s theorem
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limδ→0limn→∞sup|θ−θ∗|<δ||n−1[Ln(θ∗)′′ − Ln(θ)′′]|| → 0

Our earlier proved result on consistency states θ̂n → θ a.s

Combining the two, we get limn→∞Ln(θ)′′ = −J(θ0)

3. Ln(θ̂n)− Ln(θ0) = Op(1) For this we use Taylor’s expansion once again:

Ln(θ0) = Ln(θ̂n) + 1/2(θ0 − θ̂n)2Ln(θ∗)′′

where θ∗ ∈ (θ0, θ̂n)

Now we have already shown that the limiting distribution of n1/2(θ − θ̂n) is

N(0, J(θ0)−1) and from (2) we have limn→∞Ln(θ̂n)′′ = −J(θ0) This implies

Ln(θ̂n)− Ln(θ0) = Op(1)

Before going into the main part of the proof we prove condition(1).

For this we use the Douc method( used also in the proof by Ryden et al) of

approximating the log likelihood to stationary ergodic sequence. Using this property we

have two stationary sequences h1k and h2k, for which the following holds

|Ln(θ0)−
∑n

k=1 h1k| → 0

|Ln(θ̂n)−
∑n

k=1 h2k| → 0

Therefore n−1[Ln(θ̂n)− Ln(θ0)]− n−1[h1k(θ̂n)− h2k(θ0)]→ 0

Now since h1k and h2k is stationary, [h1k(θ̂n)− h2k(θ0)] is a stationary sequence.

Now since Ln(θ̂n)− Ln(θ0) =
∑

k[Lc,k(θ̂n)− Lc,k−1(θ0)]

where Lc,k denotes the conditional log likelihood till position k,( Pi denoting the

conditional likelihood) we have

E[Lc,k(θ0)− Lc,k−1(θ̂n)] < logEθ0 [Pi(θ̂n)/P i(θ0)] = 0 and hence

E(n−1[Ln(θ̂n)− Ln(θ0)]) < 0 for all n

Since n−1[Ln(θ̂n)− Ln(θ0)]− n−1
∑

[h1k(θ̂n)− h2k(θ0)]→ 0

we have E(n−1[Ln(θ̂n)− Ln(θ0)])− E(n−1
∑

[h1k(θ̂n)− h2k(θ0)])→ 0

Since [h1k(θ̂n)− h2k(θ0)] is a stationary sequence this has a stationary mean, say q. The

above equation implies q < 0

By the ergodic theorem we have n−1[h1k(θ̂n)− h2k(θ0)]→ q.

And now by finally invoking once again the approximation equation

n−1[Ln(θ̂n)− Ln(θ0)]− n−1[h1k(θ̂n)− h2k(θ0)]→ 0

we have
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limn→∞P [supθ∈N0(δ)′n
−1[Ln(θ)− Ln(θ0)] < −k(δ)] = 1 Hence the first condition is

proved.

We now come to the main part of the proof.

We denote pn(θ̂n|Y ) as the likelihood under the MLE and we denote πn(θ|Y ) as the

posterior likelihood.

Note that πn(θ|Y ) = pn(θ̂n|Y )π(θ)∫
pn(θ̂n|Y )π(θ)dθ

Now,

pn(Y |θ) = pn(Y |θn)exp(Ln(θ)− Ln(θ0))

=pn(Y |θn)exp[(−(θ − θ̂n)2/2)(1 +Rn)] where Rn = L′′n(θ∗)− L′′n(θ0) with θ∗ ∈ (θ, θ̂n).

We now split the integral into two parts I1 and I2 taken over the sets N0(δ) and

N0(δ)‘(the complement set)

I1 = pn(Y |θn)exp(Ln(θ̂n)− Ln(θ0))

∫
N0(δ)‘

π(θ)exp(Ln(θ)− Ln(θ0))dθ

Now from the first condition the integral is less than

exp(−nk(δ))
∫
N0(δ)‘ π(θ)dθ

This proves that the posterior is finite. This does not hold true if we have a flat prior.

We must note here, that this property of the integrability of the posterior kernel is shown

for all types of transition structures assumed. We just need to assume the boundedness of

the transition probabilities for all time points within the continuous time index markov

chain. This again is a direct outcome of the boundedness of the transition rates. In the

discussion in the third chapter on continuous index chains, we proved the posterior

integrability ( upto exclusion of a finite number of extreme states) using the same

assumptions, and for a particular case of the transition structure. The same general

argument can be applied there too.

Now from the second condition,

exp(Ln(θ̂n)− Ln(θ0)) = Op(1) and from the third condition

Plimn→∞σ
−1
n exp(−nk(δ)) = Plim[−n−1Ln(θn)′′]1/2exp(−nk(δ))

=J(θ0)1/2limn→∞n
1/2exp(−nk(δ)) = 0

Hence

lim[[pn(Y |θn)σn]−1I1] = 0
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We define I2 as the second integral .

I2 = pn(Y |θn)

∫
N0(δ)

π(θ)exp[(−(θ − θ̂n)2/2)(1 +Rn)]dθ

Since the prior is continuous and positive at θ = θ0 for any ε > 0 we can choose δ so that

|π(θ)− π(θ0)| < επ(θ0) if θ ∈ N0(δ)

Then if we define

I3 =

∫
N0(δ)

exp[(−(θ − θ̂n)2/2)(1 +Rn)]dθ

we have

(1− ε)I3 < [π(θ0)[pn(Y |θn)σn]−1I2] < (1 + ε)I3

Now |(nσ2
n)−1Rn| = |(nσ2

n)−1Rn| = n−1[L′′n(θ∗)− L′′n(θ0)] where θ∗ ∈ (θ̂n, θ0)

From the second condition and Douc’s theorem on asymptotic equivalance of observed

information, this can be bounded by ε for any fixed δ.

When ε < 1,∫
N0(δ) exp[(−(θ − θ̂n)2/2)(1± ε)]dθ =

(2π)1/2(1± ε)1/2σn[Φ(σ−1
n (θ0 + δ − θ̂n)(1± ε)1/2)− Φ(σ−1

n (θ0 − δ − θ̂n)(1± ε)1/2)]

The factor in square brackets converges in probability to unity. So we have

limn→∞P [(2π)1/2(1 + ε)1/2σn < I3 < (2π)1/2(1− ε)1/2σn] = 1 Since δ can be chosen for

arbitrary small ε we have

limn→∞P [(2π)1/2(1− η)1/2σn < [π(θ0)[pn(Y |θn)σn]−1I2] < (2π)1/2(1 + η)1/2σn] = 1 This

shows that

[pn(Y |θn)σn]−1pn(Y |θn) = (2π)1/2π(θ0)

Now let I4 =
∫ θ̂n−aσn
θ̂n+bσn

π(θ0)pn(Y |θn)

Since limn→∞P [(θ̂n + bσn, θ̂n − bσn) ⊂ N0(δ)] = 1

we can make the replacements in the earlier equation with the condition that the

probabilities tend to 1 as n tends to infinity. Thus we no longer requiring the constraint

on the parameter space as a condition on these equations. Hence

lim[[pn(Y |θn)σn]−1I4] = (2π)1/2π(θ0)[Φ(a)− Φ(b)]

Therefore
∫ θ̂n−aσn
θ̂n+bσn

πn(θ|Y )dθ = I4/pn(Y )

converges in probability to Φ(a)− Φ(b) which is the required result.
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5.6.2 Consequences of posterior consistency and convergence on

Bayesian inference in nucleosome positioning models

The results for asymptotics that has been developed all along this chapter are not all

directly relevant to Bayesian inference. The main results that link our work to Bayesian

inference is as follows:

1. Consistency of the MLE. For a flat prior this translates into the consistency of the

posterior mode.

2. Asymptotic convergence of log-likelihood. This has been used to determine the

behavior of BIC of estimation models in simulation settings

3. Asymptotic
√

(n) convergence of the posterior. This gives us the rate of

convergence of the posterior density, and since any continuous prior distribution is

used, guarantees the asymptotic distribution of the posterior for a more general

setup.

We must however note, that almost all of the subsidiary frequentist results proved along

the way contribute to the above conclusions. While we have proved the first two results

in the section of consistency, the third result uses asymptotic normality of MLE and a

condition on observed information score-a powerful tool that went into proving contiguity

Therefore, it is important to see that the frequentist results do not stand on their own,

but is closely connected to its role in Bayesian inference. Instead of directly trying to

prove only the results relevant to the Bayesian setup, we thought that is worth the effort

to build a more complete and unified theory of frequentist asymptotics for continuous

index HMM.

We now discuss the implication of these three results.

For result 1, the consistency results suggest that the estimated parameters will converge

to the true parameter almost surely. In our simulation experiments we got MSEs as low

as .001 for the Bayesian parameter estimates. See Tables ??, ?? for base and emission

models in Chapter 3. This pattern did not change with the different datasets. Also in

Chapter 2, we have clearly shown how the parameter estimates MSE decrease towards

zero with increase in the number of observations. See Table ??.
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This is indeed the Bayesian consistency result for HMM which is coming to play over

here. In our sufficiently large datasets, the Bayesian estimates obtained are close to the

true parameter with a very high probability. This implies we can have as much faith in

our estimates from estimating a hidden markov model through MCMC on a large

dataset, as we have when we are estimating an iid model on a large sample.

For result (2), we extend the consistency results of the parameter estimates to estimated

log likelihood and hence to Bayesian Information Criterion. Note that

BIC = −2logL̂+ klog(n) where n is the sample size and k is the number of parameters.

We know that:

θ̂n → θ0

Since Ln is continuous , there exists a sufficiently large N such that for all n > N

⇒ |Ln(θ̂n)− Ln(θ0)| < ε Now we invoke the result

Ln(θ0)/n→ l(θ0),−Pθ0 a.s. This is the main result proved in the section on consistency.

This implies that for sufficiently large n, |n−1(Ln(θ̂n)− l(θ0))| < ε for any ε.

The above result implies the asymptotic similarity of the actual and estimated data log

likelihoods.

This combined with result Ln(θ0)/n→ l(θ0),−− Pθ0 a.s, implies that the estimated data

log-likelihood converge to a single number dependent only on the parameter setting and

the data-length. Also this number is equal to the actual data log likelihood for the model.

This explains the pattern we see in the BIC tables for simulation settings in chapter 3.

The estimation models are superset of the simulation model. We must note that since the

maximization is done over a bigger space, the MLE s could be potentially different.

However we must also note that when the data is coming from the subset model, it is

equivalent to assume that the data is generated from a superset model with extra

parameters fixed to 0.The rest of them have the same values as the subset model. When

we are estimating data coming from such a model with the same estimation model, our

MLEs must converge to the true parameter set. This is the parameter space of the subset

model, concatenated with 0s. Hence the estimated data log likelihood will be very close

to the actual data log likelihood computed with this extended parameter set. In the same

way when we use the simulation model in estimation, we see that the estimated data

log-likelihood will be very close to the actual data log-likelihood. But these two data log
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likelihoods computed (1) with the extended parameter set and (2) with the non extended

parameter set, is the same, because we have the extra parameters in (1) fixed at null

value. Hence, both the estimated log likelihoods are very close to a specific number

(dependent on n and the parameter setting). For large sample size this is bound to occur

with probability tending to one, for any dataset used. This suggests that if the simulation

model is the minimal model, (in our case it is the base model) the BIC criterion will be

driven solely by the number of parameters used. Hence the minimal model will emerge as

the one with the lowest BIC criterion.

For simulation models which are not the minimal model (e.g transition and emission) the

situation is little different.For convenience, let us fix the simulation model to be

transition. When using a subset estimation model we are, in effect, maximizing our log

likelihood within a constrained space. Hence the estimated log-likelihood of the base

model will be always less than that under the simulation model. For the emission

estimation model too, data coming from a transition model is equivalent to data coming

from a combined transition-emission model where the emission parameters are fixed to 0.

Estimating it by an estimation model is equal to estimation by a similar combined model,

where the transition parameters are fixed to zero. This constraint on the estimation space

once again makes the estimated data log-likelihood lesser.( unlike the earlier case on

superset estimation models where we do not have constraints on the space of estimating

models. But in both scenarios the parameter space is reduced for simulation models). So

in all these settings we see that going solely by the criterion of estimated data

log-likelihood only the simulation model will be chosen as the best model with probability

1. In the minimal simulation models, this principle extends to BIC. It might not be true

for non minimal simulation models, as the increase in number of parameters might

override the advantages of greater log likelihood. In our setting, however we see that BIC

chooses the simulation model as the best model in 100 percent of the cases.

Result 3 implies that the rate of convergence of posterior is
√

(n). This suggests that as

the data size increases the shape of the posterior will be normal. Also, the distribution

will grow tighter around the true parameter, with the length of a fixed alpha confidence

interval rapidly shrinking at the rate of
√

(n). In genome technology data like Chip-Chip

and Faire, the size of the dataset is large. Thus we can have an accurate idea of exact
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proximity of our parameter estimates to the true values for a particular dataset length.

From the previous consistency result, we only could predict that the estimates will be

close. This result gives us a direct relationship between the dataset length and the

convergence.

However we must be clear about one restriction on the increase in data size.

We cannot assume that with the increase in data the discrete number of different gap

lengths tend to infinity, or that the gap lengths themselves tend to infinity. This will

result in an unboundedness of the ’t’–the gap length parameter, in the transition

function. This would go on to imply that the transition probabilities will not be bounded

in a compact subset of [0,1]. All our inferences in this chapter are based on this

boundedness assumption. So these results of convergence and consistency are good only

under the condition that with the increase in data length size, the number of differing gap

lengths will be bounded under a finite set.

Lastly, these results not only validate and strengthen the the inferences obtained in

Chapters 3 and 4, but are fairly general in nature to provide the justification for HMM

inference in a wide variety of datasets, specially in the fields of genomics and signal

processing.

5.7 Conclusions

In this chapter of our thesis, we have extended the asymptotic MLE results to a

continuous time index HMM. Such models are relevant in genomic data, where the probes

are not equispaced. The analysis is more complicated since the conditional likelihoods

lack a closed form. We started from some basic assumptions on the boundedness of

transition rates and emission densities. The stationarity property of the underlying

continuous markov chain and the ergodicity implied by the finite number of states in the

model led us to consistency and normality results. One major step in the proof of

asymptotic normality of the parameter estimates is the proof of asymptotic normality of

the score function. We used this in establishing contiguity. The proof of contiguity is

similar to the the iid case in the sense that we used Taylor’s expansion to extract out the

score function for which similar results hold. But it departs significantly from previous
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approaches in our use of the asymptotic equivalence of the Information matrix and

Fisher’s matrix. Lastly, as in the case of i.i.d. observations, we obtained results on the

long term behavior of Bayesian estimators and posterior for HMMs, directly from the

asymptotic properties of the model log-likelihood, score function, and parameter

estimates.
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Chapter 6

Conclusion and Future directions

Nucleosomes are units of chromatin structure, consisting of DNA sequence wrapped

around proteins called histones. Nucleosomes occur at variable intervals throughout

genomic DNA, and prevent transcription factor (TF) binding by blocking TF access to

the DNA. A map of nucleosomal locations would enable researchers to detect TF binding

sites with greater efficiency. Our objective is to construct an accurate genomic map of

nucleosome-free regions (NFRs), based on data from high-throughput genomic tiling

arrays in yeast. These high volume data typically have a complex structure, in the form

of dependence on neighboring probes as well as underlying DNA sequence, variable sized

gaps and missing data. Previous methods often relied on the use of hidden Markov

Models (HMMs), and ignored the role of sequence information in predicting nucleosomal

positions. We propose a novel continuous time model appropriate for non-equispaced

tiling array data, that simultaneously incorporates DNA sequence features relevant to

nucleosome formation. Simulation studies and an application to a yeast nucleosomal

assay demonstrate the advantages of using the new modeling framework, as well as its

robustness to distributional misspecifications. Our results reinforce the previous

biological hypothesis that higher order nucleotide combinations are important in

distinguishing nucleosomal regions from NFRs.

Bayesian methodologies have a growing relevance in the field of genomics. In our work on

the first paper, we have applied these methodologies and made extensions of the same,

keeping in mind the new features of the data outputted from high throughput genome



technology. So in this way, our methodological approach, is driven by the current

requirements that these new types of data demand. However, it is also a more general

technique for inference from missing continuous data. This could have widespread

applications for a model based classification approach in several areas of biomedical

research . The asymptotic properties of the model, once established, would help us in

using the distributional properties of the normal distribution in enriching our inferential

procedures. We shall be able to test a set hypothesis related to length distributions of

nucleosomal states and the gene signal features, directly from our proposed model.

The huge amount of genomic data is a blessing in terms of our ability to apply

asymptotic results for inference. But it is also a curse, in term of computational time

involved in analysis. This is also one area where we can concentrate on, for future work.

Metropolis hastings algorithms applied conditionally on a set of parameters, utilizes the

multiple computation of log likelihood in a model. For larger data sets, there is a need to

plan efficient proposal distribution, for a multivariate Metropolis sampling, that can

simultaneously cut down computational cost and give us a reasonable rejection rate.

The other technique that can be possibly applied in case of larger data sets is by

combining our hidden markov model with the wavelets and peaks analysis– which have

been used earlier to infer from gene signal data. The idea behind this approach would lie

in the fact that the main differences between the two states are in the sharp rises and

falls of the signal. Hence effectively, the data can be compressed to a size of reasonable

amount for HMM application. For this, we need to formulate a model for the distribution

between subsequent crests and troughs, ( extreme value distributions can be used in this

context) in order to statistically validate this compression.

The other feature of the data that can be a potential hurdle in future applications, is the

differing gap structure between replicates. We need to see how this can be handled by the

continuous time frame work.

The unified nucleosome model proposed in the second paper can be possibly extended in

order to account for nucleosomal length constraints. We have formulated a combined

model where the transition parameters are replaced by length distributions. However we

need to put certain constraints on the assumptions of these distributions and the

associated structure, in order to reduce computational complexities.
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Lastly, there is a scope to extend the asymptotic work on continuous time HMM to areas

where we have a specific form of gap structure., i.e where the gaps are not random, but

follow a certain distribution. The extension of the state space to include a finite number

of states , with bounded transition probability functions is obvious. The incorporation of

these assumptions into our model would help us in applying our results to a wide variety

of data sets.
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