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ABSTRACT

Taehun Lee: AN EM ALGORITHM FOR MAXIMUM LIKELIHOOD ESTIMATION
OF PROCESS FACTOR ANALYSIS MODELS

(Under the direction of Robert C. MacCallum and Stephen H. C. du Toit)

In this dissertation, an Expectation-Maximization (EM) algorithm is developed and im-

plemented to obtain maximum likelihood estimates of the parameters and the associated

standard error estimates characterizing temporal flows for the latent variable time se-

ries following stationary vector ARMA processes, as well as the parameters defining the

relationship between the latent stochastic vector and the observed scores taking mea-

surement errors into account. Such models have been known as Process Factor Analysis

(PFA) models (Browne & Nesselroade, 2005). In the E-step, the complete-data expected

log-likelihood, the so-called Q-function, which is the joint likelihood of the manifest vari-

ables and the latent time series process variables, is constructed by supposing the latent

process variables are observed. In the M-step, the Newton-Raphson algorithm is em-

ployed in order to update the parameter estimates. The closed form expressions for the

gradient vector and the Hessian matrix of the target function are derived for implement-

ing the M-step of the EM algorithm. Methods for obtaining the associated standard

error estimates are developed and implemented. The proposed EM algorithm employs

the covariance structure derived by du Toit and Browne (2007) where the influence of the

time series prior to the first observation has remained stable and unchanged when the

first observations are made. Thus, unlike other conventional structural equation modeling

(SEM) software, model implied covariance matrices satisfy the stability condition and are

Block-Toeplitz matrices. The proposed algorithm is applied to simulated data in order to
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ascertain its viability. Specifically, the recovery of the population parameter values of the

proposed EM algorithm is studied with simulated data, which is generated so as to follow

a PFA model. The performance of the developing method for standard error estimation

is evaluated in the simulation study. The results of the simulation study show that the

proposed methods for obtaining parameter estimates and the associated standard error

estimates for PFA models can be effectively employed both to single-subject time-series

analysis and to repeated time-series analysis. Remaining methodological issues for future

research are discussed.
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Chapter 1

Introduction

In psychological research, it is common for researchers to administer a battery of

measures that allow inferences about unobserved latent factors that are presumed to

underlie the observed measures. In cross-sectional data analysis, when the central theme

of research is to investigate correlational or causal relationships among latent factors,

latent variable modeling such as factor analysis, structural equation modeling (SEM),

and item response theory (IRT) have been routinely employed and commercial software

is readily available to applied researchers.

However, when the central theme of research is to investigate psychological processes

of latent factors, (e.g. whether conscientiousness shows any dramatic change over time,

how the change in conscientiousness is related to the change in emotional stability, etc.)

a new development dealing with a sequence of measurements taking measurement error

into account is necessary in terms of model specification and parameter estimation.

A sequence of measurements on multiple variables at equally spaced time intervals is

called a multivariate time series. In psychology, multivariate time series data may occur

in a context where a moderate number of measurements is obtained on each individual

in a large sample (Browne & du Toit, 1991; Browne & Zhang, 2007b) or in the situation

where a large number of measurements is made on a single individual (Browne & Zhang,

2007a; Hamaker, Dolan, & Molenaar, 2005). Often times, the latter is called a single

time series and the former is called a repeated time series in psychological literature

(Browne & Nesselroade, 2005). Since structural equation modeling (SEM) was employed



by Jöreskog (1970) to fit a nonstationary first order autoregressive (AR) process model,

known as the Simplex model, SEM methodology has been used frequently for modeling

time series data in psychology (Browne & Zhang, 2007b).

For example, in the context of a univariate time series observed in a single sub-

ject, van Buuren (1997) investigated how the stationary autoregressive moving average

(ARMA) model can be formulated and fitted as a structural equation model using a

lagged covariance matrix. In a slightly different context where the number of measure-

ments T is intermediate, say, T = 30 and the sample size is small, say, N = 5, Hamaker,

Dolan, and Molenaar (2003) showed how the raw data maximum likelihood method,

which is conventionally adopted for modeling incomplete data in SEM software, can

be effectively employed to estimate autoregressive and moving average coefficients in a

univariate ARMA model. Recently, du Toit and Browne (2007) developed the model

specification for the covariance structure of a vector ARMA time series compatible with

conventional SEM software. The derived expression is suitable both for the covariance

structure of a single-subject time series and for the covariance structure of a repeated

time series in a random sample of subjects.

The idea for fitting a (vector) ARMA model in SEM software is as follows. In a

repeated time series, where a sequence of observations on k variables at T time points

for each of n = 1, . . . , N subjects, which amounts to N × T × k observations in all,

are obtained and assumed to follow the same vector ARMA (VARMA) process, the

usual sample covariance matrix, S can be calculated and a structural equation modeling

program such as LISREL may be used to fit a VARMA covariance structure.

In other situations, where a single time series, a sequence of observations on multiple

variables on a single subject at regular intervals over time, is being analyzed, there are two

alternative approaches that may be used (du Toit & Browne, 2007). One is to calculate

autocovariance matrices and analyze them using structural equation modeling software

(Hamaker, Dolan, & Molenaar, 2002; Nesselroade, McArdle, Aggen, & Meyers, 2002; van
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Buuren, 1997). The other alternative is to maximize the log-likelihood function based

on a single set of repeated measurements. Some structural equation modeling programs

providing full information maximum likelihood estimates by considering subjects one at

a time can be adapted to estimating a single subject times series model. An alternative

is to use the Kalman filter in conjunction with the prediction error decomposition of the

log-likelihood function of an ARMA model (Engle & Watson, 1981), but this approach

can not be implemented with available SEM software.

An advantage of the aforementioned approaches is that some of them can be readily

implemented with available SEM software. Those available SEM programs, however, do

not provide facilities for imposing complicated stability constraints on the autoregressive

weight matrices and inequality constraints on the moving average weight matrices for

identification (Brockwell & Davis, 2002; du Toit & Browne, 2007). More importantly,

none of the available SEM software can accommodate the specification of the covariance

structure of a VARMA(p, q) times series model with the stationarity condition imposed

(du Toit & Browne, 2007) although, in the case of a VARMA(1,1), this might be accom-

plished in LISREL by imposing complicated constraints on the time series parameters1.

In other words, when the psychological process has started in the distant past and the

parameters have remained constant throughout so that the stability conditions are sat-

isfied, there is no way of implementing this constraint in estimating parameters using

available SEM software. In particular, although the autocorrelation approach must as-

sume that a sample of observations is generated by a stationary underlying process,

conventional SEM software does not provide an easy way of constructing appropriate

model-implied covariance structure matrices of Block-Toepliz form with the stationariy

condition imposed.

The autocorrelation approach has an additional danger because the independence

assumption required for the autocovariance matrices to follow the Wishart distribution

1By personal communication with Dr. Stephen du Toit
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is routinely violated. Consequently standard error estimates and test statistics produced

by these programs have no theoretical foundation. A least squares estimation method

combined with bootstrapping has been proposed (Zhang, 2006) based on the autocorre-

lation matrix but the resultant estimates do not have the desirable statistical properties

of maximum likelihood estimates.

Above all, the current approaches are restricted to modeling univariate time series

data of manifest variables disregarding measurement error, which plays a crucial role

in psychometric methodology such as factor analysis and latent variable modeling in

psychological research. In other words, when the observed scores at time t, say, yt may

be decomposed into the three components of a deterministic trend (µt), a latent stochastic

component (ft), and a measurement error (εt), and one desires to model the dynamic

processes of the latent component (ft) using a VARMA time series, new developments are

necessary in terms of model specifications and parameter estimations. Furthermore, when

dynamic processes are assumed to be stationary, to the best of the author’s knowledge,

no existing SEM software possesses the facility of estimating AR and MA coefficients

for the latent variable VARMA models with the nonlinear constraints of the stationarity

condition imposed. In addition, as Hamaker et al. (2003) pointed out, the parameter

estimates obtained from SEM software based on autocovariance matrix are not true

maximum likelihood estimates.
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Chapter 2

Objectives

The goal of this dissertation is to develop and implement an Expectation-

Maximization (EM) algorithm to obtain maximum likelihood estimates (MLEs) of the

AR and MA coefficients characterizing the latent time series following stationary VARMA

processes as well as the parameters defining the relationship between the latent stochas-

tic vector and the observed scores taking measurement errors into account. Such models

have been known as Process Factor Analysis (PFA) models in psychological research

(Browne & Nesselroade, 2005). The closed form expressions of the gradient vector and

the Hessian matrix for implementing the M-step of the EM algorithm will be derived

in such a way that they can be readily implemented in SEM software such as LISREL

(Jöreskog & Sörbom, 2006).

In order to ascertain that the proposed EM algorithm and the associated gradient

vector and Hessian matrix are suitable to maximize the expected complete data log-

likelihood to obtain the MLEs, a simulation study will be conducted with known values

of parameters. The proposed algorithm will be implemented in the general scientific com-

puting program, R (R Development Core Team, 2009) and resulting parameter estimates

will be compared to the specified population parameter values.

In practice, getting maximum likelihood estimates is not the final end of the model

fitting and statistical inference process. One of the early criticisms of the EM approach

is that the EM algorithm does not automatically produce an estimate of the covariance

matrix of the maximum likelihood estimates. The proposed algorithm is not free from



this criticism, either. In this dissertation project, a method for standard error estimation

is developed and its performance is evaluated by comparing the estimates and the actual

variability of the parameter estimates obtained in the simulation study.

The remainder of this dissertation is organized as follows. First, after a brief review

of maximum likelihood estimation and the EM algorithm, the PFA model is introduced

with the associated covariance structure originally derived by du Toit and Browne (2007)

briefly reproduced. Next, the E-step and the M-step are described to implement the

EM algorithm for obtaining maximum likelihood estimates for PFA models. Details

of derivation of the gradient vector and the Hessian matrix are described. Then, a

method for standard error estimation is developed. The performances of the proposed

EM algorithm and standard error estimation method are then investigated by application

to simulated data. Finally, relevant methodological issues and future research plans are

discussed.
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Chapter 3

Method of maximum likelihood and the EM algorithm

Suppose that random vector, Y has the density function f(Y |γ), where Y =

(Y1, . . . , Yn)′ and γ = (γ1, . . . , γq)
′. Given the observed data y = (y1, . . . , yn)′ and a

statistical model parameterized by a q × 1 unknown vector of values, γ, the likelihood

function L(γ|y) is any function of γ proportional to f(y|γ). The likelihood function

provides us with a measure of relative preferences for various parameter values and the

maximum likelihood estimate (MLE), denoted by γ̂, provides a point estimate for a vector

of parameters of interest that makes the observed data most likely.

Under certain regularity conditions, maximum likelihood estimators possess so-

called asymptotically optimal properties (Bickel & Doksum, 2001; van der Vaart, 1998;

Lehmann & Casella, 1998). That is, as sample size approaches infinity, the bias of MLE

tends to zero (asymptotically unbiased), and the variance of the MLE tends to the inverse

Fisher information, achieveing the Cramér-Rao lower bound (asymptotic efficiency). In

addition, as the sample size tends to infinity, the distribution of MLE converges to the

normal distribution with mean equal to the true value of the parameter and covariance

matrix equal to the inverse of the Fisher-information matrix . This is practically a very

important result because we may treat γ̂ as a normal variate with mean γ and with

covariance that can be calculated from a knowledge of the postulated density f(Y |γ).

In most situations where exponential families are involved, it is more convenient to

work with the natural logarithm of L(γ|y), which is termed the log-likelihood function

and denoted by `(γ|y). Then, for a given sample, y = (y1, . . . , yn)′, the MLE of γ, is



the value of γ that maximizes the log-likelihood function, `(γ|y). If `(γ|y) has partial

derivatives with respect to γ1, . . . , γq, then γ̂ can be obtained by solving the likelihood

equations,

∂`(γ|y)

∂γr
= 0, r = 1, . . . , q (3.1)

In general situations, one may use an iterative numerical method to locate a mode of

the likelihood function, i.e. MLE. Let γ(0) denote an initial guess of γ̂ and let γ(i) denote

the guess at the ıth iteration. Then, one such algorithm, the Newton-Raphson algorithm,

is given as

γ(ı+1) = γ(ı) +

[
−∂

2`(γ|Y )

∂γ ∂γ′

]−1

γ=γ(ı)

[
∂`(γ|Y )

∂γ

]
γ=γ(ı)

(3.2)

The vector of first-order partial derivatives of a function is called the gradient vector

and the symmetric matrix of second-order partial derivatives of a function is called the

Hessian matrix. In the present setting, the gradient vector and the Hessian matrix are

given as ∂`(γ|Y )
∂γ

and ∂2`(γ|Y )
∂γ ∂γ′

, respectively. If the log-likelihood function is quadratic, this

algorithm converges in one iteration from any starting value. For general functions, this

method gives quadratic convergence near the minimum. As can be seen in equation (3.2),

the Newton-Raphson algorithm requires the gradient vector and the Hessian matrix of the

log-likelihood function, which may not be a trivial task in highly parameterized models.

However, when converged, this algorithm provides the asymptotic variance-covariance

matrix associated with the parameter estimates as its natural by-product. The expec-

tation of the negative Hessian matrix is called the Fisher information matrix and the

asymptotic variance-covariance matrix is given by the inverse of the Fisher information

matrix evaluated at MLE i.e. −E
[
∂2`(γ|Y )
∂γ ∂γ′

]−1

γ=γ̂
. The Fisher-Scoring algorithm, an alter-

native approach to the Newton-Raphson algorithm, replaces the Hessian matrix by its

expectation, which is given by

γ(ı+1) = γ(ı) +

[
−E

(
∂2`(γ|Y )

∂γ ∂γ′

)]−1

γ=γ(ı)

[
∂`(γ|Y )

∂γ

]
γ=γ(ı)

(3.3)
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The Newton-Raphson and Fisher-Scoring algorithms have been important tools for

finding MLE in the context of factor analysis and structural equation modeling (Jöreskog,

1966, 1967, 1969, 1971; Bock & Bargmann, 1966; du Toit & du Toit, 2008).

3.1 The EM algorithm as a method to obtain MLE

The Newton-Raphson algorithm is a calculus-based method that can be employed

for finding the zeroes (or roots) of a real-valued function in general. On the other hand,

the EM algorithm is a statistically motivated algorithm where missing data are involved

and the analysis of the likelihood function based on the observed data is somewhat

complicated. The notion of ‘missingness’ does not have to involve actual missing data

but any incomplete information. For example, unobservable latent variables can be

treated as missing (Dempster, Laird, & Rubin, 1977).

The EM algorithm is a type of data augmentation algorithm in which one augments

the observed data Y with the unobserved missing or latent data Z. The augmented data

X = (Y, Z) are called the complete data, while p(X|γ), the associated likelihood function

of X, is termed the complete data likelihood function. Specifically, while the observed

data likelihood function p(Y |γ) is difficult to maximize with respect to γ, the augmented

or the complete data likelihood function p(Y, Z|γ) is simple to maximize with respect

to γ. The EM algorithm makes use of this simplicity in maximizing the observed data

likelihood function (Schafer, 1997).

Dempster et al. (1977) in their seminal paper showed that the EM algorithm con-

verges to a (local) maximum of the observed data likelihood function without explicitly

manipulating it. The EM algorithm, since first proposed by Dempster et al. (1977) has

attracted a great deal of interest and stimulated a considerable amount of research. In

psychometric literature, Rubin and Thayer (1982) applied the EM algorithm to the ex-

ploratory factor analysis model and Bock and Aitkin (1981) to the item response theory

model. Lee and Poon (1998) and Liang and Bentler (2004) applied the EM algorithm to

the multilevel structural equation model.

9



The EM algorithm consists of two steps called the expectation step (E-step) and the

maximization step (M-step). In the E-step, the conditional expectations of the missing

data are computed given the observed data and the current estimates of the parameters.

These expected values are then substituted for the missing data and used to complete

the data. In the M-step, maximum likelihood estimation of the parameters is performed

in the usual manner using the completed data. The estimated parameters are then used

to reestimate the missing data, which in turn lead to new parameter estimates. These

two steps define an iterative procedure, which is repeated until convergence is achieved.

Formally stated, the EM algorithm starts with an initial guess of the parameters,

γ(0) and alternates the following two steps at ` = 0, 1, 2, . . .: The E -step and the M -step.

In the most general setting, the E -step computes the target function

Q(γ|γ(`)) =

∫
ln p(Y, Z|γ)p(Z|γ(`), Y ) dZ (3.4)

i.e. the expectation of ln p(Y, Z|γ) with respect to p(Z|γ(`), Y ). In the M -step, the Q

function is maximized with respect to γ to obtain γ(`+1). The algorithm is iterated until

‖γ(`+1) − γ(`)‖ or |Q(γ(`+1)|γ(`))−Q(γ(`)|γ(`))| is sufficiently small.

10



3.2 The monotonicity of the EM algorithm

One of the most important properties of the EM algorithm, known as monotonicity,

is that it always increases the observed likelihood:

p(Y |γ(`+1)) ≥ p(Y |γ(`)) (3.5)

The monotonicity of the EM algorithm in (3.5) can be shown as follows. Notice that

p(Y, Z|γ) = p(Y |γ)p(Z|, Y γ), which implies

− ln p(Y |γ) = − ln p(Y, Z|γ) + ln p(Z|Y, γ) (3.6)

By taking the conditional expectation of (3.6) with respect to the density p(Z|Y, γ(`))

yields

h(γ|γ(`)) = Q(γ|γ(`))− ln p(Y |γ) (3.7)

where h(γ|γ(`)) =
∫

ln p(Z|Y, γ)p(Z|Y, γ(`)) dZ. Then, by the Kullback-Leibler informa-

tion inequality, it can be shown that

h(γ|γ(`)) ≤ h(γ(`)|γ(`)) (3.8)

Substituting (3.7) into (3.8) and rearranging the terms, we have

ln p(Y |γ(`+1))− ln p(Y |γ(`)) ≥ Q(γ(`+1)|γ(`))−Q(γ(`)|γ(`)) ≥ 0 (3.9)

By definition of γ(`+1) as the maximizer of Q(γ|γ(`)), the last inequality of (3.9) holds.

Thus, the monotinicity of the EM algorithm holds. In other words, the EM algorithm

guarantees the increment of the observed likelihood at each iteration.
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Chapter 4

Introduction to Process Factor Analysis

The process factor analysis (PFA) model is a type of dynamic factor model. There are

various definitions of a dynamic process but one that is adopted in this dissertation is “any

natural process in which each succeeding state is a function of the preceding states plus

a non-forecastable change” (Browne & Zhang, 2007b). Dynamic factor analysis models

include variables representing the forces that cause change (random-shock variables),

variables on which the change (outcomes) is actually manifested (process variables), and

parameters that define, at least to some extent, a temporal flow in the relationships among

and between the two kinds of variables (autoregressive and moving average coefficients)

(Browne & Nesselroade, 2005). The random variable providing the dynamic force that

changes the process variable is the so-called “white noise” variable or “random shock”

variable. The values of random shock are unpredictable and produce sudden changes in

the process variables (Browne & Nesselroade, 2005).

One notable characteristic of PFA models is that the process variables are treated as

latent variables measured with manifest indicators. For example, in a PFA model, state

of food deprivation, treated as an unobserved variable and assumed to be measurable by

observable indicators such as blood sugar level and self-reported feelings of hunger, can

be represented as a common factor that drives the two indicators (Nesselroade et al.,

2002, p.245). Thus, in PFA models, process variables are latent common factors.



4.1 The model specification

In PFA models, the manifest variables, Yt are assumed to satisfy a factor analysis

model

Yt = µt + λtηt + εt, t = 1, . . . , T (4.1)

where Yt represents a k × 1 random vector of manifest variables at time t, µt is a k × 1

mean vector, which can be constant, µt = µ or may vary systematically with time, ηt is

an m × 1 random vector representing latent common factors at time t, λt is a constant

k × m factor loading matrix at time t and εt is a k × 1 random vector representing

unique factors at time t. Unique factors are assumed to be independent of ηt for all t.

Common factors, ηt are regarded as process variables and they are assumed to follow a

VARMA(p, q) process, vector autoregressive of order p and moving average of order q

process of the form:

ηt = A1ηt−1 + A2ηt−2 + · · ·+ Apηt−p + zt +B1zt−1 +B2zt−2 + · · ·+Bqzt−q (4.2)

where E(zt) = 0 and cov(zt, z
′
t) = Ψ. The elements of zt are m random shocks that drive

change in the m common factors.

The PFA model is given by Equation (4.1) and (4.2). In particular, (4.1) shows

that the principal role of the observed variables is that of the indicator variables for

the common factors of the form represented by Equation (4.2), which is one of major

differences from previous attempts to specify and fit (vector) ARMA models where the

process variables were manifest variables rather than latent variables.

Figure 4.1 shows a path diagram for a vector of two common factors following a

stationary VARMA(1,1) time series, which can be given in the following scalar form

equations:

η1,t = α11η1,t−1 + α12η2,t−1 + z1,t + β11z1,t−1

η2,t = α21η1,t−1 + α22η2,t−1 + z2,t + β22z2,t−1

13



Figure 4.1: VARMA(1,1) Time Series, m = 2, T = 5
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where t = 1, 2, . . . , 5 and Ψ =

 ψ11 ψ12

ψ21 ψ22

. Dashed circles represent the unseen process

common factors and random shock variables before Time 1. Dashed arrows are used to

represent that the VARMA(1, 1) process has started before Time 1 and may continue

after Time 5.

In most general settings, the random vectors Yt and ηt can follow any distributions

other than normal but, in this dissertation, only normally distributed Yt and ηt will be

discussed. The primary purpose of such restriction is to prove the point that the proposed

EM algorithm can be employed to yield MLE for PFA models. Theoretically, it is indeed a

trivial extension to incorporate non-normal distributions in model specifications. Issues

related to the extensions beyond normality, e.g. numerical integration, will be briefly
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discussed in the final chapter and will be further investigated in the future research.

4.2 Relationships to other dynamic factor analysis models

There is another type of dynamic factor analysis model known as shock factor analysis

(SFA) models (Geweke & Singleton, 1981; Molenaar, 1985; Browne & Nesselroade, 2005),

also known as white noise factor score (WNFS) models (Nesselroade et al., 2002). In these

models, the process variables are no longer latent and they are manifested on the observed

variables. Thus, the observed variables such as blood sugar level and self-reported hunger

level are represented as the process variables, whose changes over time are driven by the

current and earlier random shocks or white noise. The model specification of a SFA

model is given as

Yt = µt + Λ0zt + Λ1zt−1 + · · ·+ Λqzt−q + εt (4.3)

where Yt, µt, εt, and zt are defined as before. In this model, the process variables are Yt

and the zt, possibly regarded as underlying factors, are actually unpredictable random

shocks or white noise variables, being identically and independently distributed between

any two time periods.

The choice between which model to fit should be made based on substantive consid-

eration (Nesselroade et al., 2002, p.254). For example, if the underlying common factors,

such as state of food deprivation, are regarded as unpredictable shocks to the system of

manifest variables such as blood sugar or self-reported hunger level, a SFA model can

reflect such substantive considerations more adequately. In contrast, if the state of food

deprivation is considered to be relatively stable and predictable by earlier state with

changes being caused by unobserved, unpredictable shocks acting on the factors, with

measures of blood sugar and self-reported hunger levels being multiple indicators of the

state of food deprivation, a PFA model can be a more accurate representation of such

substantive considerations.

Mathematical relationships between PFA models and SFA models are explained in
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Browne and Nesselroade (2005, p.447) and Nesselroade et al. (2002, p.254). In this

dissertation, the procedures for obtaining MLEs for only PFA models are to be considered.

The estimation of SFA or WNFS models will be investigated in the future.

4.3 The covariance structure of the latent stationary VARMA(p, q) model

Now the goal of this dissertation can be restated as follows: given the observed

scores on the vector of manifest variables, y1, . . . , yT , our problem is to find the maximum

likelihood estimates of the unknown parameters, µt, λt, At, and Bt, in equations (4.1)

and (4.2). The equations in (4.1) and (4.2) are often referred to as the data model in

psychometric literature. It is clear that equations (4.1) and (4.2) represent a severely

under-identified system of equations because the number of known quantities in yt is far

out-numbered by the number of unknown quantities so that it is not possible to estimate

all of these values simultaneously.

However, the data model implies a testable model for the population covariance

matrix of the manifest variables. Such a model-implied covariance matrix is known as

a covariance structure in psychometric literature and this covariance structure can be

derived from the data model and reflects a hypotheses concerning the variances and

covariances among y1, . . . , yT . A motivation of deriving a covariance structure from the

data model is in the reduced number of unknown quantities to be estimated by modeling

variance and covariances among the common factors (ηt), unique factors (ut), and random

shock variables (µt), instead of estimating their actual scores by fitting the data model.

The closed form expression for the covariance structure of a random vector following a

VARMA(p, q) times series was derived by du Toit and Browne (2007).

In this section, steps for deriving the covariance structure of the latent common

factors following a VARMA (p, q) time series will be briefly reproduced using the same

notation used by du Toit and Browne (2007). Then, based on the model-implied covari-

ance matrix, the complete-data log-likelihood function will be derived, whereby the EM

algorithm begins.
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First, consider an infinite VARMA(p, q) Gaussian time series:

ηt =

p∑
i=1

Aiηt−i + ut +

q∑
j=1

Bjut−j, t = 0,±1,±2, . . . (4.4)

where the m×1 vector variate ηt are the process vectors and the ut are the m×1 random

shock vectors mutually independently distributed as

ut ∼ Nm(0,Ψ) (4.5)

where Ψ is a m × m positive definite random shock covariance matrix, A1, . . . , Ap are

m×m autoregression weight matrices and B1, . . . Bq are m×m moving average weight

matrices. Here the process vector, ηt represents latent variables underlying the manifest

variables. Then the covariance structure of ηt following VARMA(p, q) with t = 1, . . . , T

can be derived as follows: First, let s = max(p, q) and also let IT |s be a matrix formed

by the first m× s columns of the (m× T )× (m× T ) identity matrix. Then, the random

vector η = (η1, . . . , ηT )′ can be written as

η = T−1
−A(IT |sx1 + TBu) (4.6)

where

x1 =



x11

x21

...

xs1


=



A
[1]
s · · · A

[1]
2 A

[1]
1

A
[2]
s · · · A

[2]
2

. . .
...

A
[s]
s





η−(s−1)

...

η−1

η0



+



B
[1]
s · · · B

[1]
2 B

[1]
1

B
[2]
s · · · B

[2]
2

. . .
...

B
[s]
s





u−(s−1)

...

u−1

u0


(4.7)
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T−A =



Im 0 · · · 0

−A1 Im
. . .

...
. . . . . . 0

...

−As −A1 Im
. . .

0
. . .

...
. . . . . . 0

0 0 −As −A1 Im


(4.8)

TB =



Im 0 · · · 0

B1 Im
. . .

...
. . . . . . 0

...

Bs B1 Im
. . .

0
. . .

...
. . . . . . 0

0 0 Bs B1 Im


(4.9)

Then, the covariance structure of η, Σ(τ) is given by

cov (η, η′) = T−1
−A
(
IT |sΘI

′
T |s + TB(IT ⊗Ψ)T′B

)
T−1′

−A (4.10)

where Θ = cov(x1, x
′
1). In the case where the stationary VARMA process is assumed,

there is no need of superscripts in (4.7). Moreover, du Toit and Bronwe (2007) showed

that Θ is a function of autoregressive and moving average parameters, Ai’s and Bj’s .

More specifically, they showed that

vec(Θ) = (I − A⊗ A)−1vec(GΨG′) (4.11)
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where

A =



A1 Im 0 0

A2 0 Im
...

. . .

As−1

As

0

0

0

0

Im

0


(4.12)

G =



A1 +B1

A2 +B2

A3 +B3

...

As +Bs


(4.13)

Then, the covariance structure of a random vector following a stationary VARMA(p, q)

process is given by substituting (4.11) into (4.10), resulting in the form of a Block-

Toeplitz matrix. This covariance structure of the latent process variables will be the

building blocks of the EM algorithm developed in the next chapter for maximum likeli-

hood estimation for PFA models.
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Chapter 5

Maximum likelihood estimation for the PFA model by the EM

algorithm

The EM algorithm is a method for finding maximum likelihood estimates of param-

eters by alternating two steps, that is, the E-step and the M-step. In the E-step, an

expectation of the complete-data log-likelihood is computed given the observed data and

the current estimates of the parameters. In the M-step, the parameter estimates are up-

dated by maximizing the expected complete-data log-likelihood. Thus, it is clear that the

EM algorithm begins with the complete-data log-likelihood function. In the next section,

the construction of the complete-data log-likelihood function for PFA(p, q) models and

its expectation for completing the E-step will be described. And then, the details of the

M-step will be followed.

5.1 The general expression

Let Y = (Y1, Y2, . . . , YT )′ and η = (η1, η2, . . . , ηT )′ be random vectors of the observed

variables and the latent process variables, respectively. By supposing η is observed, the

complete data log-likelihood function, ln p(Y, η|ξ) can be written as

ln p(Y, η|ξ) = ln g(Y |η, ξ1) + lnh(η|ξ2) (5.1)

where ξ1 and ξ2 represent the collection of parameters governing the generation of the

observed data and the latent time series data, respectively. The separation of the com-

plete data log-likelihood into two terms in this way will play a crucial role in the context



of PFA modeling because the two terms on the right hand side represent the general

expressions of the measurement model log-likelihood and the latent time-series model

log-likelihood function, immediately suggesting that the current algorithm can readily

incorporate various types of measurement models well developed in item response theory

(IRT) as well as the general time series models by treating η as observed.

The target function can be obtained by taking conditional expectation of the un-

known η given the observed data, Y and the current estimates of the parameters, ξ(`).

That is,

Q(ξ|ξ(`)) =

∫ {
ln g(Y |η, ξ1) + lnh(η|ξ2)

}
p(η|Y, ξ(`)) dη (5.2)

In most general settings, ln g(Y |η, ξ1) and lnh(η|ξ2) can be assumed to take any

distributional forms, but in the next section, only normally distributed Y and η are

considered for the purpose of proving the feasibility of the proposed algorithm.

5.2 The conditional likelihood function of Y given η

Let Yt be a k × 1 normally distributed random vector for manifest variables or

indicator variables at time t and ηt be a m × 1 normally distributed random vector for

unobserved latent common factors at time t. And let λt be a constant k × m factor

loading matrix at time t, where m is smaller than k. Then, the conditional distribution

of Y = (Y1, Y2, . . . , YT )′ given η = (η1, η2, . . . , ηT )′ is again normal with mean µ+ Λη and
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covariance matrix Φ, where µ = (µ1, . . . , µT )′, Λ and Φ are given by,

Λ =



λ1 0 · · · 0

0 λ2 · · · 0

...
. . .

0 · · · 0 λT


(5.3)

Φ =



φ11 φ12 · · · φ1T

φ21 φ22

...
. . .

φT1 φT2 · · · φTT


(5.4)

where φt,t′ represents the k × k covariance matrix between unique factor vectors ut and

ut′ where t = 1, . . . , T and t′ = 1, . . . , T . In the most general settings, Φ is allowed to

be any symmetric matrix, but a reasonable way of imposing constraints in the current

setting of PFA model fitting would be to restrict φt,t′ as a diagonal matrix so that all

the unique factors are uncorrelated with each other within time and the covariances of

specific factors are allowed to be non-zero across time . In a similar way, any other types

of constraints can be imposed on Φ. It is often appropriate to incorporate deterministic

trends for the mean over time, in which case the mean vector can be expressed as a

function of time t and a parameter vector γ i.e. µt = µ(t, γ). In the present context,

however, where the primary goal is in obtaining maximum likelihood estimates for AR

and MA coefficients explaining the temporal flow of latent common factors, the mean

vector of µ is effectively a nuisance parameter so that it will be set to be a zero vector in

the population. Thus, the observed-data log-likelihood function conditional on η is given

proportional to

ln g(Y |η,Λ,Φ) = −kmT
2

ln 2π − 1

2
ln |Φ| − 1

2
(Y − Λη)′Φ−1 (Y − Λη) (5.5)
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5.3 The marginal likelihood function of η

The marginal distribution of η = (η1, . . . , ηT )′ following a VARMA(p, q) process is

assumed to be normal with zero mean and covariance matrix, Σ(τ), where τ is the pa-

rameter vector representing AR and MA coefficients and the variance-covariance matrix

of the initial status vector, Θ, and the random shock vector, Ψ. Then, the likelihood

function of η is proportional to

lnh(η|τ) = −mT
2

ln 2π − 1

2
ln |Σ(τ)| − 1

2
η′Σ(τ)−1η (5.6)

The general expression of the covariance structure of a stationary latent time series,

Σ(τ) was derived by du Toit and Browne (2007), which was reproduced in the previous

section in equation (4.10).

5.4 The complete-data log-likelihood of Y and η

The EM algorithm uses the complete-data likelihood, which is the joint likelihood of

Y and η constructed by supposing η is observed. Let ξ be the collection of the model

parameters specified in Λ, Φ, and τ . Then the joint log-likelihood is proportional to

ln f(Y, η|ξ) = ln g(Y |η,Λ,Φ) + lnh(η|τ)

= −mT (k + 1)

2
ln 2π − 1

2
ln |Φ| − 1

2
ln |Σ(τ)|

− 1

2
tr
{

Φ−1Y Y ′ − Φ−1ΛηY ′ − Φ−1Y η′Λ′ + Φ−1Ληη′Λ′
}

− 1

2
tr
{

Σ(τ)−1ηη′
}

(5.7)

The complete-data expected log-likelihood or Q-function is

Q(ξ|ξ(`)) = E[ln f(Y, η|ξ)|Y, ξ(`)]

= −mT (k + 1)

2
ln 2π − 1

2
ln |Φ| − 1

2
ln |Σ(τ)|

− 1

2
tr
[
Φ−1

{
Y Y ′ − ΛE[η|Y, ξ(`)]Y ′ − Y E[η|Y, ξ(`)]′Λ′ + ΛE[ηη′|Y, ξ(`)]Λ′

}]
− 1

2
tr
{

Σ(τ)−1E[ηη′|Y, ξ(`)]
}

(5.8)
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where the ξ(`) indicates the current estimates of parameters. As proved in Appendix A,

E[η|Y, ξ(`)] =

(`)︷ ︸︸ ︷
Σ(τ)Λ′(Φ + ΛΣ(τ)Λ′)−1 Y

=
(
Λ′Φ−1Λ + Σ(τ)−1

)−1
Λ′Φ−1︸ ︷︷ ︸

(`)

Y (5.9)

cov[η, η′|Y, ξ(`)] =

(`)︷ ︸︸ ︷
Σ(τ)− Σ(τ)Λ′(Φ + ΛΣ(τ)Λ′)−1ΛΣ(τ)

=
(
Λ′Φ−1Λ + Σ(τ)−1

)−1︸ ︷︷ ︸
(`)

(5.10)

where the overbraced- and the underbraced- quantities with ` represent that parameters

in Λ, Φ and Σ(τ) matrices are replaced by current estimates of those parameters. Notice

that

E[ηη′|Y, ξ(`)] = E[η|Y, ξ(`)]E[η|Y, ξ(`)]′ + cov[η, η′|Y, ξ(`)] (5.11)

Therefore, the E step is completed by inserting (5.9) and (5.11) into (5.8). The next M

step then maximizes this expected complete log-likelihood function of (5.8) to obtain the

next iterate ξ(`+1). The Newton-Raphson or Fisher Scoring subroutine can be employed.

In order to implement these subroutines, the analytic gradient vector and the Hessian

matrix of Q-function are required, which will be derived in the next section.

5.5 The analytic gradient vector and Hessian matrix of Q-function

Let γ denote a vector of parameters for the latent VARMA(p, q) process model. Then

the typical element of the gradient vector of the Q-function with respect to an element
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in γ can be calculated by using the following facts of matrix calculus

∂y

∂x
= tr

[
∂y

∂Z

∂Z ′

∂x

]
= tr

[
∂y

∂Z ′
∂Z

∂x

]
(5.12)

∂Z−1

∂x
= −Z−1∂Z

∂x
Z−1 (5.13)

∂ ln |Z|
∂Z

= Z−1′ (5.14)

where y is a scalar function of the elements of a p × q nonsingular Z matrix and the

elements of Z, in turn, are functions of the scalar variable, x. The equation (5.14) holds

when Z is a nonsingular p× p matrix. Therefore, the the gradient vector is given as

∂Q

∂γr
= −1

2
tr

{
Σ−1
τ

∂Στ

∂γr

}
+

1

2
tr

{
Σ−1
τ

∂Στ

∂γr
Σ−1
τ E[ηη′|Y, ξ(`)]

}
= −1

2
tr

{
Σ−1
τ

(
Στ − E[ηη′|Y, ξ(`)]

)
Σ−1
τ

∂Στ

∂γr

}
= −1

2
vec′

{
Σ−1
τ

(
Στ − E[ηη′|Y, ξ(`)]

)
Σ−1
τ

}(
∂vecΣτ

∂γr

)
= −1

2

{(
Σ−1
τ ⊗ Σ−1

τ

)
vec
(
Στ − E[ηη′|Y, ξ(`)]

)}′(∂vecΣτ

∂γr

)
= −1

2

{
vec′

(
Στ − E[ηη′|Y, ξ(`)]

) (
Σ−1
τ ⊗ Σ−1

τ

)}(∂vecΣτ

∂γr

)
(5.15)

where γr represents the rth element in γ. In matrix notation,

∂Q

∂γ
= −1

2
4′(γ)

{(
Σ−1
τ ⊗ Σ−1

τ

)
vec
(
Στ − E[ηη′|Y, ξ(`)]

)}
(5.16)

where 4(γ) ≡ ∂vecΣτ
∂γ′

.

Also note the following fact regarding the derivative of a product of matrices with

respect to a matrix,

∂XY

∂Z
=
∂X

∂Z
(Iq ⊗ Y ) + (Ip ⊗X)

∂Y

∂Z
(5.17)
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where X, Y , and Z are matrices of order m×n, n× v and p× q, respectively. Then, the

Hessian matrix can be derived using the above fact in conjunction with other properties

of the matrix calculus including equations (5.12) to (5.14), which is given as

∂2Q

∂γ ∂γ′
=

∂

∂γ′

[
−1

2
4(γ)′W

]
= −1

2

[
∂4(γ)′

∂γ′
(Iq ⊗W ) + (I1 ⊗4(γ)′)

∂W

∂γ′

]
(5.18)

where Iq is a q×q identity matrix, I1 = 1 and W = (Σ−1
τ ⊗ Σ−1

τ ) vec
(
Στ − E[ηη′|Y, ξ(`)]

)
.

Notice that

W =
(
Σ−1
τ ⊗ Σ−1

τ

)
vec
(
Στ − E[ηη′|Y, ξ(`)]

)
= vec{Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ } (5.19)

Therefore,

∂W

∂γ′
=
∂vec{Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ }

∂γ′

=

q∑
s=1

∂vec{Σ−1
τ (Στ − E[ηη′|Y, ξ(`)])Σ−1

τ }
∂γs

E1q

=

q∑
s=1

vec

{
− Σ−1

τ

(
∂Στ

∂γs

)
Σ−1
τ (Στ − E[ηη′|Y, ξ(`)])Σ−1

τ

+ Σ−1
τ

(
∂Στ

∂γs

)
Σ−1
τ − Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

(
∂Στ

∂γs

)
Σ−1
τ

}
E1q

=

q∑
s=1

{
−
(
Σ−1
τ (Στ − E[ηη′|Y, ξ(`)])Σ−1

τ ⊗ Σ−1
τ

)
vec

(
∂Στ

∂γs

)

+
(
Σ−1
τ ⊗ Σ−1

τ

)
vec

(
∂Στ

∂γs

)
−
(
Σ−1
τ ⊗ Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

)
vec

(
∂Στ

∂γs

)}
E1q

= −
(
Σ−1
τ (Στ − E[ηη′|Y, ξ(`)])Σ−1

τ ⊗ Σ−1
τ

)
4(γ) +

(
Σ−1
τ ⊗ Σ−1

τ

)
4(γ)

−
(
Σ−1
τ ⊗ Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

)
4(γ) (5.20)

where E1q is a 1 × q zero vector with only non-zero element, 1, positioned at (1, q). It
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follows that the Hessian matrix of (5.18) becomes

∂2Q

∂γ ∂γ′
= −1

2

{
∂4(γ)′

∂γ′
(
Iq ⊗

(
Σ−1
τ ⊗ Σ−1

τ

)
vec
(
Στ − E[ηη′|Y, ξ(`)]

))}
− 1

2
4(γ)′

{(
Σ−1
τ ⊗ Σ−1

τ

)
−
(
Σ−1
τ (Στ − E[ηη′|Y, ξ(`)])Σ−1

τ ⊗ Σ−1
τ

)
−
(
Σ−1
τ ⊗ Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

)}
4(γ) (5.21)

Using the following relationship,

4(γ)′
(
Σ−1
τ (Στ − E[ηη′|Y, ξ(`)])Σ−1

τ

)
⊗ Σ−1

τ 4(γ)

= 4(γ)′N ′
(
Σ−1
τ (Στ − E[ηη′|Y, ξ(`)])Σ−1

τ

)
⊗ Σ−1

τ N4(γ)

= 4(γ)′N ′
(
Σ−1
τ ⊗ Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

)
N4(γ)

= 4(γ)′
(
Σ−1
τ ⊗ Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

)
4(γ) (5.22)

where N is a matrix such that Nvec(A) = 1
2
vec(A+A′), the final form of Hessian matrix

is given as

∂2Q

∂γ ∂γ′
= −1

2

{
∂4(γ)′

∂γ′
(
Iq ⊗

(
Σ−1
τ ⊗ Σ−1

τ

)
vec
(
Στ − E[ηη′|Y, ξ(`)]

))}
− 1

2
4(γ)′

{(
Σ−1
τ ⊗ Σ−1

τ

)
− 2

(
Σ−1
τ ⊗ Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

)}
4(γ)

= −1

2

{
∂4(γ)′

∂γ′
(
Iq ⊗

(
Σ−1
τ ⊗ Σ−1

τ

)
vec
(
Στ − E[ηη′|Y, ξ(`)]

))}
+4(γ)′

(
Σ−1
τ ⊗ Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

)
4(γ)

− 1

2
4(γ)′

(
Σ−1
τ ⊗ Σ−1

τ

)
4(γ) (5.23)

In order to complete the analytic derivation of the gradient vector and the Hessian matrix,
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the Jacobian matrix, denoted by 4(γ), whose typical element is ∂Στ
∂γr

, is required.

∂Στ

∂γr
=

∂

∂γr

{
T−1
−A
(
IT |sΘI

′
T |s + TB(IT ⊗Ψ)T′B

)
T−1′

−A

}
= U + U ′ + T−1

−A

{
IT |s

(
∂Θ

∂γr

)
I ′T |s + V + TB

[
IT ⊗

(
∂Ψ

∂γr

)]
T ′B + V ′

}
T−1′

−A

= U + U ′ + T−1
−A(V + V ′)T−1′

−A + T−1
−AIT |s

(
∂Θ

∂γr

)
I ′T |sT

−1′

−A

+ T−1
−ATB

[
IT ⊗

(
∂Ψ

∂γr

)]
T ′BT

−1′

−A (5.24)

where U = −T−1
−A

(
∂T−A
∂γr

)
Στ , V =

(
∂TB
∂γr

)
(IT ⊗Ψ)T ′B with

∂T−A
∂γr

=


−
∑T−j

c=1 J1 u+(j+c−1)m,v+(c−1)m, γr = Aj(u,v)

0, γr = Bj(u,v)

0, γr = Ψ(u,v)

(5.25)

∂TB
∂γr

=


0, γr = Aj(u,v)∑T−j

c=1 J1 u+(j+c−1)m,v+(c−1)m, γr = Bj(u,v)

0, γr = Ψ(u,v)

(5.26)

∂Ψ

∂γr
=


0, γr = Aj(u,v)

0, γr = Bj(u,v)

2−δuv
2

(J2 u,v + J2 v,u), γr = Ψ(u,v)

(5.27)

where j = 1, 2, . . . , s = max(p, q) and J1 u,v is the mT × mT zero matrix that has its

only nonzero element, a one, in the (u, v)th position and J2 u,v is the m×m zero matrix

with its nonzero element, a one, in the (u, v)th position. Finally, vec
(
∂Θ
∂γr

)
is give by

vec

(
∂Θ

∂γr

)
= (I − A⊗ A)−1vec(G∗γs) (5.28)

where

G∗γs =

(
∂A

∂γr

)
ΘA′ + AΘ

(
∂A′

∂γr

)
+

(
∂G

∂γr

)
ΨG′ +G

(
∂Ψ

∂γr

)
G′ +GΨ

(
∂G′

∂γr

)
(5.29)
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and

∂A

∂γr
=


J3 (j−1)m+u,v, γr = Aj(u,v)

0, γr = Bj(u,v)

0, γr = Ψ(u,v)

(5.30)

∂G

∂γr
=


J4 (j−1)m+u,v, γr = Aj(u,v)

J4 (j−1)m+u,v, γr = Bj(u,v)

0, γr = Ψ(u,v)

(5.31)

where J3 u,v is the ms×ms zero matrix that has its only nonzero element, a one, in the

(u, v)th position and J4 u,v is the ms×m zero matrix with its nonzero element, a one, in

the (u, v)th position. Again, s = max(p, q) and j = 1, 2, . . . , s.

In addition, the typical element for the second order partial derivatives of Στ , whose

typical element can be represented as ∂2Στ
∂γr∂γs

, needs to be derived for obtaining ∂4(τ)′

∂γ′
.

Notice that

∂2T−A
∂γr∂γs

=
∂2TB
∂γr∂γs

=
∂2Ψ

∂γr∂γs

=
∂2A

∂γr∂γs
=

∂2G

∂γr∂γs
= 0 (5.32)

Therefore,

∂U

∂γs
= T−1

−A

(
∂T−A
∂γs

)
T−1
−A

(
∂
T−A
∂γr

)
Σγ − T−1

−A

(
∂T−A
∂γr

)(
∂Στ

∂γs

)
(5.33)

∂V

∂γs
=

(
∂TB
∂γr

)(
IT ⊗

∂Ψ

∂γs

)
T ′B +

(
∂TB
∂γr

)
(IT ⊗Ψ)

(
∂TB
∂γs

)′
(5.34)

Then, ∂2Στ
∂γr∂γs

is given as

∂2Στ

∂γr∂γs
=
∂U

∂γs
+
∂U

∂γs

′
+W +W ′ + T−1

−A

(
∂V

∂γs
+
∂V ′

∂γs

)
T−1′

−A

+ Z + Z ′ + T−1
−ATT |s

(
∂2Θ

∂γr∂γs

)
I ′T |sT

−1′

−A

+X +X ′ + Y + Y ′ (5.35)
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where

W = −T−1
−A

(
∂T−A
∂γs

)
T−1
−A(V + V ′)T−1′

−A (5.36)

Z = −T−1
−A

(
∂T−A
∂γs

)
T−1
−AIT |s

(
∂Θ

∂γr

)
I ′T |sT

−1′

−A (5.37)

X = −T−1
−A

(
∂T−A
∂γs

)
T−1
−ATB

[
IT ⊗

(
∂Ψ

∂γr

)]
T ′BT

−1′

−A (5.38)

Y = T−1
−A

(
∂TB
∂γs

)[
IT ⊗

(
∂Ψ

∂γr

)]
T ′BT

−1′

−A (5.39)

The
(

∂2Θ
∂γr∂γs

)
can obtained by taking partial derivatives of the following equations

derived by du Toit and Browne (2007).

Θ− AΘA′ = GΘG′ (5.40)

The first order partial derivatives are given as

∂Θ

∂γr
−
{(

∂A

∂γr

)
ΘA′ + A

(
∂Θ

∂γr

)
A′ + AΘ

(
∂A′

∂γr

)}
=

(
∂G

∂γr

)
ΨG′ +G

(
∂Ψ

∂γr

)
G′ +GΨ

(
∂G′

∂γr

)
(5.41)

(5.42)

And the second order partial derivatives are given as

∂2Θ

∂γr∂γs
−
{(

∂A

∂γr

)(
∂Θ

∂γs

)
A′ +

(
∂A

∂γr

)
Θ

(
∂A′

∂γs

)
(
∂A

∂γs

)(
∂Θ

∂γr

)
A′ + A

(
∂2Θ

∂γr∂γs

)
A′ + A

(
∂Θ

∂γr

)(
∂A′

∂γs

)
(
∂A

∂γs

)
Θ

(
∂A′

∂γr

)
+ A

(
∂Θ

∂γs

)(
∂A′

∂γr

)}
=(

∂G

∂γr

)(
∂Ψ

∂γs

)
G′ +

(
∂G

∂γr

)
Ψ

(
∂G′

∂γs

)
(
∂G

∂γs

)(
∂Ψ

∂γr

)
G′ +G

(
∂Ψ

∂γr

)(
∂G′

∂γs

)
(
∂G

∂γs

)
Ψ

(
∂G′

∂γr

)
+G

(
∂Ψ

∂γs

)(
∂G′

∂γr

)
(5.43)
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Therefore,

vec

(
∂2Θ

∂γr∂γs

)
= (I − A⊗ A)−1vec

(
G̈
)

(5.44)

where

G̈ =

(
∂A

∂γr

)(
∂Θ

∂γs

)
A′ +

(
∂A

∂γr

)
Θ

(
∂A′

∂γs

)
(
∂A

∂γs

)(
∂Θ

∂γr

)
A′ + A

(
∂Θ

∂γr

)(
∂A′

∂γs

)
(
∂A

∂γs

)
Θ

(
∂A′

∂γr

)
+ A

(
∂Θ

∂γs

)(
∂A′

∂γr

)
(
∂G

∂γr

)(
∂Ψ

∂γs

)
G′ +

(
∂G

∂γr

)
Ψ

(
∂G′

∂γs

)
(
∂G

∂γs

)(
∂Ψ

∂γr

)
G′ +G

(
∂Ψ

∂γr

)(
∂G′

∂γs

)
(
∂G

∂γs

)
Ψ

(
∂G′

∂γr

)
+G

(
∂Ψ

∂γs

)(
∂G′

∂γr

)
(5.45)

Finally, ∂4(τ)
∂γ

can be calculated by using the following properties well known in the

matrix algebra (Abadir and Magnus, 2005),

A =
∑
j

A.je
′
j (5.46)

Kpm(A⊗ b) = b⊗ A (5.47)

Kmn(dc′ ⊗ A) = c′ ⊗ A⊗ d (5.48)

where A.j indicates jth column of a m× n A matrix, ej represents the jth column of the

n × n identity matrix, and b, c and d is a p × 1, q × 1, and n × 1 vector, respectively.

Kmn is the so-called communication matrix such that Kmnvec(A) = vec(A′).
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∂4(τ)

∂γ
=

q∑
s=1

es ⊗
(
∂4(τ)

∂γs

)

=

q∑
s=1

es ⊗
∂

∂γs

(
∂vecΣτ

∂γ′

)

=

q∑
s=1

es ⊗
∂

∂γs

[
s∑
r=1

(
∂vecΣτ

∂γr

)
e′r

]

=

q∑
r=1

q∑
s=1

es ⊗ (arse
′
r)

=

q∑
r=1

q∑
s=1

Kqp2 (arse
′
r ⊗ es)

=

q∑
r=1

q∑
s=1

(e′r ⊗ es ⊗ ars) (5.49)

where ars = ∂2vecΣτ
∂γr∂γs

In sum, the gradient vector and the Hessian matrix of the Q-function with respect

to γ are given by

∂Q

∂γ
= −1

2
4(γ)′

{(
Σ−1
τ ⊗ Σ−1

τ

)
vec
(
Στ − E[ηη′|Y, ξ(`)]

)}
(5.50)

where 4(γ) = ∂vecΣτ
∂γ′

. The Hessian matrix is given as

∂2Q

∂γ ∂γ′
= −1

2

{
∂4(γ)′

∂γ′
(
Iq ⊗

(
Σ−1
τ ⊗ Σ−1

τ

)
vec
(
Στ − E[ηη′|Y, ξ(`)]

))}
+4(γ)′

(
Σ−1
τ ⊗ Σ−1

τ (Στ − E[ηη′|Y, ξ(`)])Σ−1
τ

)
4(γ)

− 1

2
4(γ)′

(
Σ−1
τ ⊗ Σ−1

τ

)
4(γ) (5.51)
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Now, the gradient vector and the Hessian matrix of the Q function with respect to

free parameters in Λ and Φ need to be derived. Note the following facts from matrix

calculus,

tr[ABCD] = vec′(B′)(A′ ⊗ C)vec(D) (5.52)

where A, B, C, and D are square matrices of appropriate order.

Using the above fact in conjunction with equations (5.12) to (5.14), the typical

element in the gradient vector of the the Q-function with respect to parameters in the

measurement model, λ and Φ is given as follows:

∂Q

∂λ(r,s)

= −1

2
tr

{
−2E[η|Y, ξ(`)]Y ′Φ−1

(
∂Λ

∂λ(r,s)

)
+ 2E[ηη′|Y, ξ(`)]Λ′Φ−1

(
∂Λ

∂λ(r,s)

)}
= vec′

(
Φ−1Y E[η|Y, ξ(`)]′ − Φ−1ΛE[ηη′|Y, ξ(`)]

)
vec

(
∂Λ

∂λ(r,s)

)
(5.53)

∂Q

∂Φ(r,s)

= −1

2

∂ ln |Φ|
∂Φ(r,s)

− 1

2
tr

{(
∂Φ−1

∂Φ(r,s)

)
ê

}
= −1

2
tr

{
∂ ln |Φ|
∂Φ′

(
∂Φ

∂Φ(r,s)

)}
+

1

2
tr

{
Φ−1

(
∂Φ

∂Φ(r,s)

)
Φ−1ê

}
= −1

2
tr

{(
Φ−1 − Φ−1êΦ−1

)( ∂Φ

∂Φ(r,s)

)}
=

1

2
vec′

(
Φ−1(ê− Φ)Φ−1

)
vec

(
∂Φ

∂Φ(r,s)

)
(5.54)

where ê = Y Y ′−ΛE[η|Y, ξ(`)]Y ′−Y E[η|Y, ξ(`)]′Λ′+ ΛE[ηη′|Y, ξ(`)]Λ′. In matrix notation,

∂Q

∂vec(λ)
= 4′(λ)

[(
E[η|Y, ξ(`)]Y ′ ⊗ Φ−1

)
vec(I)−

(
E[ηη′|Y, ξ(`)]⊗ Φ−1

)
vec(Λ)

]
∂Q

∂vec(φ)
=

1

2
4′(φ)

[(
Φ−1 ⊗ Φ−1

)
vec (ê− Φ)

]
(5.55)

where 4(λ) = ∂vecΛ
∂vec′(λ)

and 4(φ) = ∂vecΦ
∂vec′(φ)

. Here, λ and φ represent the vector of free

parameters in Λ and Φ, respectively.
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The typical elements in the Hessian matrix of the Q-function with respect to λ, Φ

are derived as follows:

∂2Q

∂λ(r,s)∂λ(u,v)

= −1

2
tr

{
2E[ηη′|Y, ξ(`)]

(
∂Λ

∂λ(u,v)

)′
Φ−1

(
∂Λ

∂λ(r,s)

)}
= −vec′

(
∂Λ

∂λ(u,v)

)(
E[ηη′|Y, ξ(`)]⊗ Φ−1

)
vec

(
∂Λ

∂λ(r,s)

)
(5.56)

∂2Q

∂Φ(r,s)∂Φ(u,v)

= −1

2
tr

{
−Φ−1

(
∂Φ

∂Φ(u,v)

)
Φ−1

(
∂Φ

∂Φ(r,s)

)}
+

1

2
2tr

{
−Φ−1êΦ−1

(
∂Φ

∂Φ(u,v)

)
Φ−1

(
∂Φ

∂Φ(r,s)

)}
=

1

2
vec′

(
∂Φ

∂Φ(u,v)

)(
Φ−1 ⊗ Φ−1

)
vec

(
∂Φ

∂Φ(r,s)

)
− vec′

(
∂Φ

∂Φ(u,v)

)(
Φ−1êΦ−1 ⊗ Φ−1

)
vec

(
∂Φ

∂Φ(r,s)

)
=

1

2
vec′

(
∂Φ

∂Φ(u,v)

)[(
Φ−1(Φ− 2ê)Φ−1

)
⊗ Φ−1

]
vec

(
∂Φ

∂Φ(r,s)

)
(5.57)

∂2Q

∂λ(r,s)∂Φ(u,v)

= −tr

{
E[η|Y, ξ(`)]Y ′Φ−1

(
∂Φ

∂Φ(u,v)

)
Φ−1

(
∂Λ

∂λ(r,s)

)}
+ tr

{
E[ηη′|Y, ξ(`)]Λ′Φ−1

(
∂Φ

∂Φ(u,v)

)
Φ−1

(
∂Λ

∂λ(r,s)

)}
= −vec′

(
∂Φ

∂Φ(u,v)

)(
Φ−1Y E[η|Y, ξ(`)]′ ⊗ Φ−1

)
vec

(
∂Λ

∂λ(r,s)

)
+ vec′

(
∂Φ

∂Φ(u,v)

)(
Φ−1ΛE[ηη′|Y, ξ(`)]⊗ Φ−1

)
vec

(
∂Λ

∂λ(r,s)

)
= vec′

(
∂Φ

∂Φ(u,v)

)[(
Φ−1ΛE[ηη′|Y, ξ(`)]− Φ−1Y E[η|Y, ξ(`)]′

)
⊗ Φ−1

]
vec

(
∂Λ

∂λ(r,s)

)
(5.58)

where ê = Y Y ′−ΛE[η|Y, ξ(`)]Y ′−Y E[η|Y, ξ(`)]′Λ′+ ΛE[ηη′|Y, ξ(`)]Λ′. In matrix notation,
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∂2Q

∂vec(λ)∂vec′(λ)
= −4′(λ)

(
E[ηη′|Y, ξ(`)]⊗ Φ−1

)
4(λ) (5.59)

∂2Q

∂vec(φ)∂vec′(φ)
=

1

2
4′(φ)

[(
Φ−1(Φ− 2ê)Φ−1

)
⊗ Φ−1

]
4(φ) (5.60)

∂2Q

∂vec(λ)∂vec′(φ)
= 4′(λ)

[ (
E[ηη′|Y, ξ(`)]Λ′Φ−1 − E[η|Y, ξ(`)]Y ′Φ−1

)
⊗ Φ−1

]
4(φ)

(5.61)

In sum, the gradient vector and the Hessian matrix of the target function in (5.8)

with respect to a vector of parameters of the latent VARMA(p, q) process, γ, are given in

(5.50) and (5.51), respectively. The corresponding gradient vector and the Hessian matrix

with respect to free parameters in Λ and Φ of the measurement model are given in (5.55)

and (5.59)-(5.61), respectively. These vectors and matrices constitute the gradient vector

and the Hessian matrix of the target function with respect to ξ, the vector of all free

parameters in the model, i.e. Λ, Φ, and τ .

Specifically, let ∂Q(ξ|ξ(`))
∂ξ

and ∂2Q(ξ|ξ(`))
∂ξ∂ξ′

denote the gradient vector and the Hessian

matrix of the target function, respectively. Then, they are given as

∂Q(ξ|ξ(`))

∂ξ
=


∂Q(ξ|ξ(`))

∂γ

∂Q(ξ|ξ(`))
∂vec(λ)

∂Q(ξ|ξ(`))
∂vec(φ)

 (5.62)

∂2Q(ξ|ξ(`))

∂ξ∂ξ′
=


∂2Q(ξ|ξ(`))
∂γ∂γ′

0 0

0 ∂2Q(ξ|ξ(`))
∂vec(λ)∂vec(λ)′

∂2Q(ξ|ξ(`))
∂vec(λ)∂vec(φ)′

0 ∂2Q(ξ|ξ(`))
∂vec(φ)∂vec(λ)′

∂2Q(ξ|ξ(`))
∂vec(φ)∂vec(φ)′

 (5.63)

where the sub-vectors and sub-matrices in (5.62) and (5.63) are given by equations (5.50),

(5.51), (5.55), and (5.59)-(5.61).
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Finally, the the M-step, the updating of the current parameter estimates, ξ(`) by

maximizing the target function in (5.8), is carried out by calculating

ξ(`+1) = ξ(`) −
[
∂2Q(ξ|ξ(`))

∂ξ∂ξ′

]−1
∂Q(ξ|ξ(`))

∂ξ
(5.64)

The updated parameter estimates, ξ(`+1) are then regarded as the current parameter

estimates at the next iteration and used to re-estimate the unknown quantities in (5.9),

(5.10), and (5.11), which, in turn, will be substituted in the target function to complete

the subsequent E-step. These two steps, i.e. the E-step and M-step, alternate until some

convergence criterion is satisfied. A standard criterion for deterministic EM algorithm is

to stop iterations when the relative change in the parameter estimates (or target function

values) from successive iteration is smaller than a pre-specified value.
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Chapter 6

Estimation of Standard Errors for Parameter Estimates

In practice, getting maximum likelihood estimates is not the final end of the model

fitting and statistical inference process. The sampling variability of the parameter es-

timates needs to be estimated for statistical inferences and one way of addressing this

issue is to compute the asymptotic covariance matrix of the parameter estimates. One

of the early criticisms of the EM approach is that, unlike the Newton-Raphson and re-

lated methods directly maximizing the observed-data log-likelihood function, the EM

algorithm does not automatically produce an estimate of the covariance matrix of the

maximum likelihood estimates. The proposed algorithm is not free from this criticism,

either. In this chapter, a new method to obtain standard error estimates is proposed.

Before describing the details of the proposed method, the relevant theory and previous

investigations are briefly described.

6.1 The principle of missing information

Using the same notation as the previous chapters, let (Y, η) be the complete data

constructed by supposing η is observed, where Y and η represent random vectors of

observed variables and unobserved common factors, respectively. Notice that p(Y, η|ξ) =

p(Y |ξ)p(η|Y, ξ), which implies that

− ∂2

∂ξ∂ξ′
ln p(Y |ξ) = − ∂2

∂ξ∂ξ′
ln p(Y, η|ξ) +

∂2

∂ξ∂ξ′
ln p(η|Y, ξ) (6.1)



where ξ represents the vector of model parameters indexing the log-likelihood function.

Integrating both sides with respect to p(η|Y, ξ̂), we can obtain

− ∂2

∂ξ∂ξ′
ln p(Y |ξ) = − ∂2

∂ξ∂ξ′
Q(ξ|ξ̂) +

∂2

∂ξ∂ξ′
H(ξ|ξ̂) (6.2)

where

Q(ξ|ξ̂) =

∫
ln p(Y, η|ξ)p(η|Y, ξ̂) dη (6.3)

H(ξ|ξ̂) =

∫
ln p(η|Y, ξ)p(η|Y, ξ̂) dη (6.4)

The equation (6.2) is known as the Missing Information Principle (Louis, 1982; Orchard

& Woodbury, 1972). Let

I(ξ|Y ) = −∂
2 ln p(Y |ξ)
∂ξ∂ξ′

, Ic(ξ|Y ) = −∂
2Q(ξ|ξ̂)
∂ξ∂ξ′

, Im(ξ|Y ) = − ∂2

∂ξ∂ξ′
H(ξ|ξ̂) (6.5)

be the observed data information, the complete data information and the missing infor-

mation matrix, respectively. Then, the Missing Information Principle can be expressed

as

I(ξ|Y ) = Ic(ξ|Y )− Im(ξ|Y )

= {Iq −∇(ξ)} Ic(ξ|Y ) (6.6)

where ∇(ξ) = Im(ξ|Y )I−1
c (ξ|Y ), known as the fraction of missing information (Dempster

et al., 1977) and Iq is a q × q identity matrix. Intuitively, this principle means that the

information contained in the complete data is greater than the information in the observed

data by the amount of missing information. In other words, the observed information can

be computed by subtracting the missing information from the complete data information.

Alternatively, the observed information can be obtained by adjusting out the fraction of

missing information from the compete data information.

6.2 Previous studies on standard error estimation

The large-sample theory explains that the inverse of the observed information matrix

provides the asymptotic variance-covariance matrix associated with the MLEs. Unlike
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the results obtained with the Newton-Raphson or Fisher Scoring algorithm, however, this

matrix is not given as an automatic by-product, but must be derived separately under

the EM algorithm. In some situations, arriving at the observed information by directly

evaluating the Hessian matrix of the observed data log-likelihood may be very difficult for

a given problem and hence alternative approaches have been proposed. Among others,

major contributions were made by Louis (1982), Meng and Rubin (1991) and Oakes

(1999). The idea behind these approaches is to find simpler formulae to compute the

observed data information using the quantities available as a by-product of the EM

algorithm. A key result obtained by Louis (1982) showed that

Im(ξ̂|Y ) = var

(
∂ ln p(Y, η|ξ)

∂ξ

∣∣∣∣Y, ξ̂) ∣∣∣∣
ξ=ξ̂

(6.7)

and, by treating both ξ and ξ̂ as free variables, Oakes (1999) showed that,

Im(ξ̂|Y ) = −∂
2Q(ξ|ξ̂)
∂ξ∂ξ̂′

∣∣∣∣
ξ=ξ̂

(6.8)

In other words, Louis (1982)’s method computes the missing information by calculating

the conditional variance of the score function of the complete data log-likelihood, while

Oakes (1999)’s method requires calculating the mixed second order derivative of Q(ξ|ξ̂)

with respect to ξ and ξ̂ by considering both of them to be free variables.

Inspired by the result due to Dempster et al. (1977) that, in the neighborhood of

ξ̂, the Jacobian matrix of the EM map, ξ 7→ M(ξ), is equal to the faction of missing

information,

∇(ξ̂) =
∂M(ξ)

∂ξ

∣∣∣∣
ξ=ξ̂

(6.9)
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Meng and Rubin (1991) proposed the so-called Supplemented EM algorithm that ap-

proximates ∂M(ξ)
∂ξ

∣∣∣∣
ξ=ξ̂

by numerically differentiating the EM map, thereby augments the

original EM algorithm by computing the observed data information matrix.

These methods, proposed to provide general frameworks for calculating observed data

information matrix, commonly require computing the complete data information matrix.

The key difference lies in the way the missing information is calculated, suggesting that

the choice of a particular method largely depends on the relative simplicity of deriving

and implementing different formulae for a given problem.

In the current context of PFA modeling, computing the conditional variance in (6.7)

or the mixed second order derivative in (6.8) is not as simple a problem as the original

authors suggested due in large part to the complexity of multidimensional optimization

problem. The method by Meng and Rubin (1991) can be of use in such cases, but as

the original authors pointed out (Meng & Rubin, 1991, p.903), the estimated observed

data information matrix may be asymmetric, which is not an acceptable property for a

covariance matrix.

In the next section, yet another alternative method for computing the missing infor-

mation is proposed. This method takes a full advantage of the fact that the complete

data information matrix is already available from the proposed EM algorithm. Only the

missing information matrix is computed by directly taking the second order derivatives

of H(ξ|ξ̂) in (6.2). Surprisingly, for PFA models, this method turns out to be simpler

than the aforementioned Louis’ and Oakes’ method in computing the missing informa-

tion matrix. This method, unlike the Supplemented EM method, guarantees a symmetric

observed data information matrix.

6.3 The derivation of the missing information matrix

The large-sample variance-covariance matrix of the parameter estimates can be cal-

culated by inverting Equation (6.2), whose square root of diagonal elements provide the
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associated standard error estimates. Note that the first term of the right-hand-side in

(6.2) was already derived in equations (5.50), (5.59), (5.60), (5.61), and (5.64). Therefore,

the second term needs to be obtained. In the current context,

ln p(η|Y, ξ) = −mT
2

ln 2π − 1

2
ln |Ω(ξ)| − 1

2
tr
{

Ω(ξ)−1G(ξ)
}

(6.10)

where G(ξ) = (η − µ(ξ)) (η − µ(ξ))′, µ(ξ) = E[η|Y, ξ] = Ω(ξ)Λ′Φ−1Y , and Ω(ξ) =

(ΛΦ−1Λ + Σ(τ)−1)
−1

. Notice that

∂ ln p(η|Y, ξ)
∂ξr

= −1

2
tr

{
Ω(ξ)−1

(
∂Ω(ξ)

∂ξr

)
+

(
∂Ω−1(ξ)

∂ξr

)
G(ξ) + Ω−1(ξ)

(
∂G(ξ)

∂ξr

)}
=

1

2
tr

{
Ω(ξ)

(
∂Ω−1(ξ)

∂ξr

)}
− 1

2
tr

{
G(ξ)

(
∂Ω−1(ξ)

∂ξr

)}
+ tr

{
Ω−1(ξ) (η − µ(ξ))

(
∂µ(ξ)

∂ξr

)′}
(6.11)

and

∂2 ln p(η|Y, ξ)
∂ξr∂ξs

= −1

2
tr

{
Ω(ξ)

(
∂Ω−1(ξ)

∂ξs

)
Ω(ξ)

(
∂Ω−1(ξ)

∂ξr

)}
+

1

2
tr

{
Ω(ξ)

(
∂2Ω−1(ξ)

∂ξr∂ξs

)}
− 1

2
tr

{(
∂G(ξ)

∂ξs

)(
∂Ω−1(ξ)

∂ξr

)}
− 1

2
tr

{
G(ξ)

(
∂2Ω−1(ξ)

∂ξr∂ξs

)}
+ tr

{(
∂Ω−1(ξ)

∂ξs

)
(η − µ(ξ))

(
∂µ(ξ)

∂ξr

)′}
− tr

{
Ω−1(ξ)

(
∂µ(ξ)

∂ξs

)(
∂µ(ξ)

∂ξr

)′}
+ tr

{
Ω−1(ξ) (η − µ(ξ))

(
∂2µ(ξ)

∂ξr∂ξs

)′}
(6.12)

Therefore, taking expectations of (6.12) with respect to p(η|Y, ξ̂) yields the second term

in (6.2). Because E[(G(ξ)|Y, ξ̂)] = Ω(ξ̂), where expectations are taken with respect to

p(η|Y, ξ̂), the typical element of the second term in (6.2) is given as,

∂2

∂ξr∂ξs
H(ξ|ξ̂) = −1

2
tr

{
Ω(ξ)

(
∂Ω−1(ξ)

∂ξs

)
Ω(ξ)

(
∂Ω−1(ξ)

∂ξr

)}
− tr

{
Ω−1(ξ)

(
∂µ(ξ)

∂ξs

)(
∂µ(ξ)

∂ξr

)′}
(6.13)
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Notice that

∂Ω−1(ξ)

∂λr
=

(
∂Λ

∂λr

)′
Φ−1Λ + Λ′Φ−1

(
∂Λ

∂λr

)
∂Ω−1(ξ)

∂φr
= −Λ′Φ−1

(
∂Φ

∂φr

)
Φ−1Λ

∂Ω−1(ξ)

∂γr
= −Σ−1

τ

(
∂Στ

∂γr

)
Σ−1
τ

∂µ(ξ)

∂λr
= −Ω(ξ)

(
∂Ω−1

∂λr

)
Ω(ξ)Λ′Φ−1Y + Ω(ξ)

(
∂Λ

∂λr

)
Φ−1Y

∂µ(ξ)

∂φr
= Ω(ξ)Λ′Φ−1

(
∂Φ

∂φr

)
Φ−1ΛΩ(ξ)Λ′Φ−1Y − Ω(ξ)Λ′Φ−1

(
∂Φ

∂φr

)
Φ−1Y

∂µ(ξ)

∂γr
= Ω(ξ)Σ−1

τ

(
∂Στ

∂γr

)
Σ−1
τ Ω(ξ)Λ′Φ−1Y (6.14)

Inserting (6.14) into (6.13) yields the closed form expressions of typical elements of the

missing information matrix, the details of which are given in the Appendix B. Putting

these together, the large-sample variance-covariance matrix of the MLEs can be calcu-

lated by substituting (5.51) and (6.13) into (6.2) and inverting.
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Chapter 7

A study of parameter recovery of the proposed EM Algorithm

In order to ascertain that the proposed EM algorithm and the associated gradient

vector and Hessian matrix are suitable in maximizing the expected complete data log-

likelihood with its maximum achieved at MLE, a simulation study was conducted with

the known values of parameters. The procedure was as follows: a sample of size equal to

N was generated from the model-implied population covariance structure of a PFA(p, q)

model in which multivariate latent process variables follow a stationary VARMA(p, q)

process with each latent process variable being measured by multiple indicators. Then,

a PFA(p, q) model was fitted to the simulated data-set using the proposed methods

for obtaining MLEs and the associated standard error estimates. This procedure was

repeated 1,000 times.

Because both the conditional distribution of Y given η and the marginal distribution

of η are assumed to be multivariate normal, the marginal distribution of Y is also mul-

tivariate normal, whose mean and covariance matrix can be easily calculated as follows:

E [Y ] = E [E(Y |η)] = E [Λη] = ΛE [η] = 0 (7.1)

cov [Y ] = cov [E(Y |η)] + E [cov(Y |η)]

= cov [Λη] + E [Φ]

= ΛΣ(τ)Λ′ + Φ (7.2)

A sample of size equal to N was generated by Cholesky decomposition of the above

model-implied population covariance matrix of Y .



7.1 The first case: repeated time-series with N = 500 and T = 5

In this case, the PFA model was specified setting p = q = 1, m = 2, N = 500, and

T = 5. Each of the two factors had 4 variables as its indicators so that there were a

total of 40 manifest variables in the model. Thus, a sample of N = 500 was generated by

Cholesky decomposition of the 40×40 population covariance matrix of Y . The population

values of model parameters were specified as follows:

λ1 = λ2 = λ3 = λ4 = λ5 =



1 0

.8 0

.8 0

.8 0

0 1

0 .7

0 .5

0 .5



(7.3)

φ11 = φ22 = φ33 = φ44 = φ55 =



.8 0 0 0 0 0 0 0

0 .8 0 0 0 0 0 0

0 0 .8 0 0 0 0 0

0 0 0 .8 0 0 0 0

0 0 0 0 .8 0 0 0

0 0 0 0 0 .8 0 0

0 0 0 0 0 0 .8 0

0 0 0 0 0 0 0 .8



(7.4)

The off-diagonal values of Φ were specified as follows1:

1Φ is a symmetric matrix in which off-diagonal elements in the upper triangular part have the same
pattern and values corresponding to the lower triangular part specified in (7.5) to (7.8).
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Φ(9,2) = Φ(17,10) = Φ(25,18) = Φ(33,26) = .8× 1

4
(7.5)

Φ(17,2) = Φ(25,10) = Φ(33,18) = .8×
(

1

4

)2

(7.6)

Φ(25,2) = Φ(33,10) = .8×
(

1

4

)3

(7.7)

Φ(33,2) = .8×
(

1

4

)4

(7.8)

The autoregressive coefficients, moving average coefficients and random-shock covari-

ance matrices in the latent time series model were specified as

A1 =

 .7 .3

.2 .4

 (7.9)

B1 =

 .5 0

0 .2

 (7.10)

Ψ =

 1 0

0 1

 (7.11)

The Newton-Raphson algorithm was employed for the M-step, in which the de-

rived analytic expressions of the gradient vector and the Hessian matrix was used. The

PFA(1,1) model was fitted to a sample of size equal to 500, which was repeated 1,000

times. For model identification, the factor loadings of the first items in each measure-

ment occasion are fixed to unity, e.g. Λ(1,1) = Λ(9,3) = Λ(17,5) = Λ(25,7) = Λ(32,9) = 1.
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Based on the definition of the random-shock, the cross-lagged effect of random shock

was constrained to be zero, e.g. B1(1,2) = B1(2,1) = 0. The equality constraints were also

imposed such that measurement invariance held across time for all factor loadings. The

unique variances were also set to be equal across time and covariances among specific

factors were constrained in such a way that the equality relations specified in equations

(7.5) to (7.8) held. These constraints may not be realistic in practical situations but the

goal of imposing these constraints was to make sure that the proposed EM algorithm

was suitable for optimization with such constraints.

The Tables 7.1 and 7.2 show the results obtained by the proposed EM algorithm.

The first and second column show the name of parameters and the associated population

values. A random sample of size N equal to 500 was generated and fit a PFA(1,1)

model to the generated sample data using the proposed EM algorithm in order to obtain

maximum likelihood estimates. The same procedure was repeated 1,000 times. The third

to eighth columns show the minimum (Min.), the 25th percentile (Q1), median, mean,

the 75th percentile (Q3), and maximum (Max.) of the parameter estimates obtained

from 1,000 replications, respectively.

Across all parameter estimates, there is a hint of bias in that the means of 1,000

replications are not exactly equal to the corresponding population values. However, the

large-sample theory explains that the maximum likelihood estimator is unbiased only

asymptotically i.e. as sample size tends to infinity. Because the sample size of the

current simulation study is only finite i.e. N = 500, biased estimates can be expected.

In fact, it can be seen that the central tendencies reflected in the mean and median of

the parameter estimates from the 1,000 replications closely match the population values.

The dispersions reflected in the interquartile range (Q3−Q1) are also very small. The

maximum and minimum of parameter estimates among 1,000 replications do not seem

to show any erratic behavior of the proposed algorithm.

The Tables 7.3 and 7.4 show the performance of the proposed standard error esti-
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mation method. The number in each cell from the third to eighth column represents the

minimum (Min.), the 25th percentile (Q1), median, mean, the 75th percentile (Q3), and

maximum (Max.) of the standard error estimates over the 1,000 replications, respectively.

The target values to be compared are the corresponding standard deviations (SD) in the

second column, which shows the actual variability of the parameter estimates. It can be

seen that the means and medians of standard error estimates are almost identical with the

corresponding standard deviations to the third decimal point across all parameters. The

dispersions of the estimates reflected in the interquartile range (Q3−Q1) are also small

across all estimates. Although the respective maximums of standard error estimates for

β1,11 (0.382) and ψ11 (0.269) appear to be unusually large, this may simply reflect the fact

that relatively larger sampling errors may have been involved in particular replications

than in others. This argument can be supported by the fact that those two maximums

came from the same replication (the 671th replication out of 1,000), which yielded the

respective maximum value (.881) of MLE for β1,11 (Table 7.1) and the minimum value

(.712) of MLE for ψ11 (Table 7.2), respectively. Except for this particular replication,

in general, the maximum and minimum of standard error estimates among 1,000 repli-

cations did not show any erratic behavior of the proposed standard error estimation

method. The benefit of having standard error estimates is clear. They provide a measure

of uncertainty associated with the parameter estimates and allow for the construction of

asymptotic confidence intervals.
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7.2 The second case: repeated time-series with N = 10 and T = 50

In this study, the PFA model was specified setting p = q = 1, m = 2, N = 10, and

T = 50. The population parameter values were the same as the first case, except for

off-diagonal elements in Φ constrained to be zero. Such constraints can be easily relaxed

if necessary. The procedures to generate data were the same as the first case.

Tables 7.5, 7.6, 7.7, and 7.8 show the performances of the proposed methods for

obtaining MLEs and the associated standard error estimates. For simpler presentations,

the parameters constrained to be equal across measurement occasions were presented

as single parameters. For example, λ1,km = . . . = λ50,km are represented as λkm, and

φ1,kk = . . . ,= φ50,kk are represented as φkk (m = 1, 2 and k = 1, . . . , 8).

As the previous results, the summary statistics for MLEs and standard error esti-

mates do not show any erratic behaviors of maximum likelihood estimators. The mean

and median of MLEs obtained from 1,000 replications reasonably well match the pop-

ulation values, and the standard error estimates also appear to adequately reflect the

actual variability of the parameter estimates over repeated sampling. Again, a hint of

bias in parameter estimates and standard error estimates can be seen, but such results

are expected under finite sample size, i.e. N = 10 in this case. Across all parameter esti-

mates and the standard error estimates, the interquartile ranges and the ranges across all

parameter estimates and the standard error estimates are reasonably narrow. As inferred

in the first case, very deviant-looking maximum or minimum values may simply reflect

relatively large sampling errors of a particular replication.
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7.3 The third case: single-subject time series with N = 1 and T = 100

In this study, the PFA model was specified setting p = q = 1, m = 2, N = 1, and

T = 100. The population parameter values are the same as the first case, except for Φ

constrained to be a diagonal matrix as in the second case. The procedures to generate

data were the same as the previous cases.

Tables 7.9, 7.10, 7.11, and 7.12 show the performances of of the proposed methods for

obtaining MLEs and the associated standard error estimates. The mean and median of

MLEs obtained from 1,000 replications are reasonably close to the population values, and

the standard error estimates seem to reasonably well reflect the actual variability of the

parameter estimates over repeated sampling. In this study, there is a clearer sign of bias

in parameter estimates and standard error estimates, however, such results are expected

under the condition of small finite sample size, i.e. N = 1 in this case. The interquartile

ranges and the ranges are also reasonably narrow across all parameter estimates and the

associated standard error estimates. Again, very deviant-looking maximum or minimum

values may simply reflect the large sampling errors of a particular replication, contributing

to the bias of parameter and standard error estimates.

Thus, the results of this study clearly show that the proposed EM algorithm and the

proposed method for standard error estimation can be effectively employed for single-

subject time-series data analysis.
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Table 7.1: Summary of the maximum likelihood estimates of free parameters in Λ and Φ

obtained from the simulation study (1,000 replications, T=5,N=500 PFA(1,1)).

Value Min. Q1 Median Mean Q3 Max.

λ1,11 = . . . = λ5,11 1.000 -a - - - - -

λ1,21 = . . . = λ5,21 0.800 0.763 0.792 0.800 0.800 0.807 0.833

λ1,31 = . . . = λ5,31 0.800 0.769 0.793 0.800 0.800 0.807 0.831

λ1,41 = . . . = λ5,41 0.800 0.769 0.792 0.800 0.799 0.807 0.833

λ1,52 = . . . = λ5,52 1.000 - - - - - -

λ1,62 = . . . = λ5,62 0.700 0.648 0.687 0.700 0.700 0.711 0.754

λ1,72 = . . . = λ5,72 0.500 0.457 0.490 0.500 0.501 0.511 0.548

λ1,82 = . . . = λ5,82 0.500 0.456 0.489 0.500 0.500 0.511 0.553

φ1,11 = . . . = φ5,11 0.800 0.694 0.778 0.798 0.798 0.819 0.918

φ1,22 = . . . = φ5,22 0.800 0.715 0.780 0.800 0.800 0.820 0.901

φ1,33 = . . . = φ5,33 0.800 0.716 0.780 0.798 0.798 0.816 0.880

φ1,44 = . . . = φ5,44 0.800 0.718 0.782 0.797 0.800 0.819 0.889

φ1,55 = . . . = φ5,55 0.800 0.678 0.772 0.800 0.799 0.825 0.938

φ1,66 = . . . = φ5,66 0.800 0.709 0.781 0.800 0.801 0.820 0.889

φ1,77 = . . . = φ5,77 0.800 0.717 0.784 0.800 0.801 0.818 0.876

φ1,88 = . . . = φ5,88 0.800 0.726 0.783 0.800 0.800 0.818 0.886

φ12,22 = φ23,22 = φ34,22 = φ45,22 0.200 0.110 0.184 0.199 0.200 0.215 0.279

φ13,22 = φ24,22 = φ35,22 0.050 -0.040 0.031 0.049 0.049 0.067 0.132

φ14,22 = φ25,22 0.013 -0.101 -0.009 0.013 0.013 0.034 0.118

φ15,22 0.003 -0.135 -0.026 0.004 0.005 0.035 0.130
aThe parameter estimates and the associated quantities are not available for fixed

parameters.
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Table 7.2: Summary of the maximum likelihood estimates of free parameters in A1, B1,

and Ψ obtained from the simulation study (1,000 replications, T=5, N=500, PFA(1,1)).

Value Min. Q1 Median Mean Q3 Max.

α1,11 0.700 0.645 0.685 0.699 0.698 0.712 0.749

α1,21 0.200 0.134 0.186 0.201 0.201 0.216 0.271

α1,12 0.300 0.207 0.282 0.301 0.301 0.320 0.402

α1,22 0.400 0.223 0.359 0.398 0.396 0.434 0.558

β1,11 0.500 0.326 0.458 0.502 0.506 0.549 0.881

β1,21 0.000 -a - - - - -

β1,12 0.000 - - - - - -

β1,22 0.200 -0.043 0.156 0.207 0.206 0.256 0.425

ψ11 1.000 0.712 0.956 1.004 0.999 1.048 1.195

ψ21 0.000 - - - - - -

ψ12 0.000 - - - - - -

ψ22 1.000 0.830 0.955 0.994 0.994 1.031 1.217
aThe parameter estimates and the associated quantities are not available for fixed

parameters.
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Table 7.3: Summary of the standard error estimates associated with free parameters in Λ

and Φ obtained from the simulation study (1,000 replications, T=5, N=500, PFA(1,1)).

SD Min. Q1 Median Mean Q3 Max.

λ1,11 = . . . = λ5,11 -a - - - - - -

λ1,21 = . . . = λ5,21 0.011 0.010 0.011 0.011 0.011 0.011 0.013

λ1,31 = . . . = λ5,31 0.010 0.009 0.010 0.010 0.010 0.010 0.011

λ1,41 = . . . = λ5,41 0.011 0.009 0.010 0.010 0.010 0.010 0.011

λ1,52 = . . . = λ5,52 - - - - - - -

λ1,62 = . . . = λ5,62 0.017 0.016 0.018 0.018 0.018 0.018 0.020

λ1,72 = . . . = λ5,72 0.016 0.014 0.015 0.016 0.016 0.016 0.018

λ1,82 = . . . = λ5,82 0.016 0.014 0.015 0.016 0.016 0.016 0.018

φ1,11 = . . . = φ5,11 0.031 0.028 0.031 0.031 0.031 0.032 0.035

φ1,22 = . . . = φ5,22 0.029 0.026 0.028 0.029 0.029 0.030 0.032

φ1,33 = . . . = φ5,33 0.026 0.025 0.027 0.027 0.027 0.028 0.030

φ1,44 = . . . = φ5,44 0.028 0.025 0.027 0.027 0.027 0.028 0.030

φ1,55 = . . . = φ5,55 0.040 0.036 0.039 0.039 0.039 0.040 0.043

φ1,66 = . . . = φ5,66 0.028 0.026 0.028 0.029 0.029 0.029 0.031

φ1,77 = . . . = φ5,77 0.026 0.023 0.025 0.025 0.025 0.026 0.027

φ1,88 = . . . = φ5,88 0.026 0.023 0.025 0.025 0.025 0.026 0.028

φ12,22 = φ23,22 = φ34,22 = φ45,22 0.024 0.020 0.023 0.023 0.024 0.024 0.026

φ13,22 = φ24,22 = φ35,22 0.026 0.023 0.025 0.026 0.026 0.026 0.028

φ14,22 = φ25,22 0.032 0.028 0.030 0.031 0.031 0.032 0.034

φ15,22 0.044 0.040 0.043 0.044 0.044 0.045 0.048
aThe standard deviations of parameter estimates and the associated quantities are not

available for fixed parameters.
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Table 7.4: Summary of the standard error estimates associated with free parameters in

A1, B1, and Ψ obtained from the simulation study (1,000 replications, T=5, N=500,

PFA(1,1)).

SD Min. Q1 Median Mean Q3 Max.

α1,11 0.019 0.017 0.019 0.020 0.020 0.020 0.022

α1,21 0.021 0.017 0.019 0.020 0.020 0.021 0.024

α1,12 0.030 0.027 0.030 0.031 0.031 0.031 0.035

α1,22 0.054 0.044 0.050 0.052 0.052 0.054 0.063

β1,11 0.068 0.051 0.062 0.068 0.071 0.075 0.382

β1,21 -a - - - - - -

β1,12 - - - - - - -

β1,22 0.077 0.065 0.070 0.072 0.072 0.073 0.082

ψ11 0.068 0.059 0.065 0.068 0.070 0.073 0.269

ψ21 - - - - - - -

ψ12 - - - - - -

ψ22 0.056 0.050 0.054 0.055 0.055 0.056 0.062
aThe standard deviations of parameter estimates and the associated quantities are not

available for fixed parameters.
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Table 7.5: Summary of the maximum likelihood estimates of free parameters in Λ and Φ

obtained from the simulation study (1,000 replications, T=50, N=10, PFA(1,1)).

Value Min. Q1 Median Mean Q3 Max.

λ11 1.000 -a - - - - -

λ21 0.800 0.750 0.784 0.797 0.799 0.814 0.865

λ31 0.800 0.738 0.789 0.799 0.799 0.811 0.855

λ41 0.800 0.755 0.788 0.803 0.802 0.816 0.859

λ52 1.000 - - - - - -

λ62 0.700 0.629 0.679 0.700 0.704 0.726 0.814

λ72 0.500 0.424 0.473 0.499 0.499 0.528 0.582

λ82 0.500 0.420 0.479 0.504 0.501 0.523 0.572

φ11 0.800 0.627 0.741 0.785 0.791 0.833 0.975

φ22 0.800 0.646 0.754 0.795 0.793 0.830 0.960

φ33 0.800 0.657 0.763 0.796 0.800 0.834 0.985

φ44 0.800 0.644 0.750 0.800 0.796 0.840 0.993

φ55 0.800 0.589 0.752 0.797 0.798 0.845 1.068

φ66 0.800 0.645 0.765 0.808 0.805 0.847 0.987

φ77 0.800 0.671 0.756 0.803 0.804 0.847 0.969

φ88 0.800 0.642 0.752 0.788 0.786 0.820 0.938
aThe parameter estimates and the associated quantities are not available for fixed

parameters.
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Table 7.6: Summary of the maximum likelihood estimates of free parameters in A1, B1,

and Ψ obtained from the simulation study (1,000 replications, T=50, N=10, PFA(1,1)).

Value Min. Q1 Median Mean Q3 Max.

α1,11 0.700 0.539 0.670 0.696 0.698 0.729 0.794

α1,21 0.200 0.103 0.172 0.202 0.203 0.224 0.358

α1,12 0.300 0.102 0.264 0.312 0.306 0.348 0.498

α1,22 0.400 0.018 0.331 0.396 0.391 0.467 0.590

β1,11 0.500 0.220 0.416 0.484 0.473 0.543 0.812

β1,21 0.000 -a - - - - -

β1,12 0.000 - - - - - -

β1,22 0.200 -0.064 0.124 0.215 0.216 0.296 0.677

ψ11 1.000 0.780 0.959 1.005 1.021 1.086 1.318

ψ21 0.000 - - - - - -

ψ12 0.000 - - - - - -

ψ22 1.000 0.733 0.904 0.981 0.990 1.083 1.278
aThe parameter estimates and the associated quantities are not available for fixed

parameters.
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Table 7.7: Summary of the standard error estimates associated with free parameters in Λ

and Φ obtained from the simulation study (1,000 replications, T=50, N=10, PFA(1,1)).

SD Min. Q1 Median Mean Q3 Max.

λ11 -a - - - - - -

λ21 0.021 0.018 0.021 0.022 0.022 0.023 0.027

λ31 0.021 0.018 0.021 0.022 0.022 0.023 0.028

λ41 0.022 0.018 0.021 0.022 0.022 0.023 0.028

λ52 - - - - - - -

λ62 0.035 0.032 0.038 0.040 0.040 0.042 0.048

λ72 0.036 0.028 0.033 0.035 0.035 0.037 0.042

λ82 0.033 0.028 0.033 0.035 0.035 0.037 0.041

φ11 0.069 0.057 0.064 0.067 0.067 0.070 0.077

φ22 0.059 0.050 0.058 0.060 0.060 0.062 0.070

φ33 0.061 0.052 0.058 0.060 0.060 0.062 0.072

φ44 0.065 0.050 0.057 0.060 0.060 0.063 0.073

φ55 0.080 0.075 0.082 0.085 0.085 0.089 0.099

φ66 0.065 0.053 0.061 0.064 0.064 0.066 0.075

φ77 0.061 0.048 0.054 0.056 0.056 0.059 0.067

φ88 0.053 0.047 0.053 0.055 0.055 0.057 0.064
aThe standard deviations of parameter estimates and the associated quantities are not

available for fixed parameters.
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Table 7.8: Summary of the standard error estimates associated with free parameters in

A1, B1, and Ψ obtained from the simulation study (1,000 replications, T=50, N=10,

PFA(1,1)).

SD Min. Q1 Median Mean Q3 Max.

α1,11 0.041 0.034 0.038 0.040 0.040 0.043 0.051

α1,21 0.043 0.029 0.037 0.039 0.040 0.043 0.055

α1,12 0.066 0.050 0.059 0.063 0.063 0.067 0.077

α1,22 0.100 0.070 0.087 0.094 0.095 0.102 0.127

β1,11 0.098 0.081 0.105 0.118 0.122 0.134 0.312

β1,21 -a - - - - - -

β1,12 - - - - - - -

β1,22 0.133 0.106 0.124 0.129 0.130 0.135 0.157

ψ11 0.103 0.109 0.128 0.135 0.137 0.144 0.292

ψ21 - - - - - - -

ψ12 - - - - - - -

ψ22 0.121 0.097 0.112 0.119 0.118 0.124 0.137
aThe standard deviations of parameter estimates and the associated quantities are not

available for fixed parameters.

57



Table 7.9: Summary of the maximum likelihood estimates of free parameters in Λ and Φ

obtained from the simulation study (1,000 replications, T=100, N=1, PFA(1,1)).

Value Min. Q1 Median Mean Q3 Max.

λ11 1.000 -a - - - - -

λ21 0.800 0.686 0.767 0.795 0.800 0.836 0.908

λ31 0.800 0.705 0.772 0.795 0.800 0.825 0.942

λ41 0.800 0.678 0.772 0.807 0.806 0.841 0.908

λ52 1.000 - - - - - -

λ62 0.700 0.476 0.631 0.705 0.702 0.770 1.048

λ72 0.500 0.284 0.425 0.492 0.489 0.532 0.731

λ82 0.500 0.265 0.428 0.482 0.487 0.538 0.645

φ11 0.800 0.356 0.705 0.790 0.793 0.896 1.194

φ22 0.800 0.466 0.662 0.778 0.771 0.854 1.071

φ33 0.800 0.517 0.725 0.779 0.795 0.866 1.159

φ44 0.800 0.505 0.687 0.785 0.786 0.858 1.197

φ55 0.800 0.332 0.639 0.771 0.777 0.901 1.237

φ66 0.800 0.402 0.656 0.768 0.761 0.852 1.022

φ77 0.800 0.513 0.721 0.805 0.820 0.895 1.157

φ88 0.800 0.505 0.691 0.770 0.779 0.859 1.038
aThe parameter estimates and the associated quantities are not available for fixed

parameters.
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Table 7.10: Summary of the maximum likelihood estimates of free parameters in A1, B1,

and Ψ obtained from the simulation study (1,000 replications, T=100, N=1, PFA(1,1)).

Value Min. Q1 Median Mean Q3 Max.

α1,11 0.700 0.462 0.639 0.720 0.701 0.759 0.867

α1,21 0.200 0.022 0.134 0.192 0.197 0.256 0.456

α1,12 0.300 -0.043 0.162 0.263 0.268 0.366 0.611

α1,22 0.400 -0.116 0.285 0.430 0.405 0.545 0.795

β1,11 0.500 -0.104 0.280 0.400 0.375 0.491 0.776

β1,21 0.000 -a - - - - -

β1,12 0.000 - - - - - -

β1,22 0.200 -0.463 -0.028 0.164 0.151 0.380 0.754

ψ11 1.000 0.605 0.921 1.022 1.067 1.224 1.854

ψ21 0.000 - - - - - -

ψ12 0.000 - - - - - -

ψ22 1.000 0.565 0.860 1.030 1.022 1.164 1.504
aThe parameter estimates and the associated quantities are not available for fixed

parameters.
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Table 7.11: Summary of the standard error estimates associated with free parameters in

Λ and Φ obtained from the simulation study (1,000 replications, T=100, N=1, PFA(1,1)).

SD Min. Q1 Median Mean Q3 Max.

λ11 -a - - - - - -

λ21 0.051 0.034 0.045 0.051 0.052 0.057 0.080

λ31 0.047 0.037 0.045 0.051 0.053 0.059 0.076

λ41 0.051 0.035 0.045 0.051 0.052 0.059 0.080

λ52 - - - - - - -

λ62 0.107 0.046 0.077 0.089 0.091 0.100 0.156

λ72 0.084 0.049 0.072 0.080 0.081 0.089 0.132

λ82 0.079 0.052 0.068 0.079 0.079 0.088 0.119

φ11 0.153 0.102 0.138 0.149 0.151 0.166 0.206

φ22 0.124 0.093 0.116 0.133 0.131 0.142 0.173

φ33 0.135 0.093 0.124 0.131 0.134 0.145 0.185

φ44 0.135 0.095 0.119 0.132 0.133 0.142 0.194

φ55 0.188 0.122 0.176 0.188 0.191 0.205 0.273

φ66 0.132 0.089 0.127 0.138 0.137 0.150 0.181

φ77 0.135 0.096 0.115 0.127 0.128 0.138 0.175

φ88 0.121 0.083 0.110 0.120 0.122 0.132 0.164
aThe standard deviations of parameter estimates and the associated quantities are not

available for fixed parameters.
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Table 7.12: Summary of the standard error estimates associated with free parameters

in A1, B1, and Ψ obtained from the simulation study (1,000 replications, T=100, N=1,

PFA(1,1)).

SD Min. Q1 Median Mean Q3 Max.

α1,11 0.084 0.060 0.080 0.088 0.091 0.095 0.139

α1,21 0.094 0.031 0.075 0.087 0.088 0.101 0.200

α1,12 0.133 0.095 0.119 0.132 0.135 0.149 0.201

α1,22 0.202 0.108 0.170 0.199 0.207 0.238 0.356

β1,11 0.168 0.154 0.197 0.224 0.239 0.271 0.500

β1,21 -a - - - - - -

β1,12 - - - - - - -

β1,22 0.273 0.178 0.256 0.282 0.284 0.311 0.489

ψ11 0.234 0.208 0.250 0.285 0.286 0.312 0.553

ψ21 - - - - - - -

ψ12 - - - - - - -

ψ22 0.208 0.155 0.243 0.268 0.269 0.292 0.378
aThe standard deviations of parameter estimates and the associated quantities are not

available for fixed parameters.
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Chapter 8

Discussion

8.1 Objectives accomplished

Objectives of this dissertation were as follows: 1) to develop and implement the EM

algorithm to obtain maximum likelihood estimates for Process Factor Analysis models;

2) to derive closed-form expressions of the gradient vector and the Hessian matrix for

implementing the M -step of the EM algorithm; 3) to test the viability of the proposed

algorithm by applying to simulated data; 4) to develop and implement a method of

standard error estimation in the context of the EM algorithm.

To accomplish these objectives, the target function i.e. the Q-function in the EM

algorithm was constructed in such a way that the algorithm can be implemented in struc-

tural equation modeling framework. The analytic expressions of the gradient vector and

the Hessian matrix of the Q-function were derived for the M -step. A simulation study

was conducted to demonstrate the viability of the proposed algorithm in terms of the

recovery of population parameter values and the results verified that the algorithm is

viable. The results of the simulation study also showed the proposed method of stan-

dard error estimation fairly accurately quantifies the actual variability of the parameter

estimates over repeated sampling. Therefore, the objectives of the project have been

completed.



8.2 A methodological implication of the objectives accomplished

The results of the simulation study clearly demonstrated that the covariance struc-

ture in (4.10), the proposed EM algorithm and standard error estimation method can

be employed not only for repeated time series data analysis, but also for single-subject

time series data analysis.

Typically, the analysis of single-subject time series data requires a large number

of measurements, e.g. T = 100, which will play the role of an effective sample size

in parameter estimation, causing a sharp increase of the dimension of the covariance

structure in (4.10). Although, with the rapid increase in computing power, today’s

personal computers can invert and multiply matrices of order of hundreds by hundreds

without difficulty, differentiating a matrix of the same size is another matter, especially

when the elements of the matrix are complex nonlinear functions of unknown variables,

as in the covariance structure for a VARMA(p, q) process in (4.10) with T = 100.

It is worth noting that the analytic expressions of the gradient vector and the Hessian

matrix derived in Chapter 5 (see Section 5.5) replace numerical differentiations required

in the M-step with simple matrix multiplications and inversions, which can be handled

without difficulty in personal computers. This simplification of the M-step and the

consequent capability of the proposed EM algorithm to deal with a large covariance

structure matrix constitute a major benefit of the objectives accomplished regarding the

derivations of the closed-form expressions of the gradient vector and the Hessian matrix

of the target function. The results of the simulation study also showed that standard

error estimates associated with the parameter estimates can be obtained by simple matrix

multiplications and inversions as the closed-form expressions are derived in Chapter 6

(see Section 6.3 and Appendix B).
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8.3 A substantive implication of the objectives accomplished

In psychology, panel data with relatively large sample size, N , and a moderate num-

ber of measurement occasions, usually called longitudinal data set, are very common.

The proposed EM algorithm is well suited for analyzing such data, providing a useful

tool for fitting process-oriented time-series methods to longitudinal data. By applying

time-series methods, researchers can empirically test the effect of a latent psychological

construct X on another construct Y , taking account of the autoregressive effects of Y on

itself, which is a widely known method of examining causality of X on Y in time series

literature (Granger, 1969, p.431). The maximum likelihood estimates of such effects and

the associated standard error estimates are provided by the proposed EM algorithm.

8.4 On the analysis of non-stationary data under the proposed algorithm

The proposed algorithm can be applied both to single-subject time series data analy-

sis and to repeated time series data analysis. The single-subject time series data analysis

assumes that the data be generated by a stationary process for the purpose of parameter

estimation, and consequently the proposed algorithm can be directly applied. The pro-

posed algorithm can also be employed for parameter estimation of repeated time-series

data, under the assumption that each subject is an independent replication following the

identical stationary time series.

However, either theories or data could reveal that stationarity is not a plausible

constraint. A nice property of the proposed EM algorithm is that it has the capability to

deal with non-stationary process of certain kinds. Such capability of the algorithm can

be achieved by flexible adaptations of the initial status covariance matrix Θ specified in

(4.11).

For example, when day to day variability of emotional processes of ordinary adults

is of interest, it may be sensible to assume that the same stationary underlying process

as the VARMA(p, q) process postulated in the model has started in the distant past and
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continued to the first measurement, thereby to adopt the covariance matrix of the initial

status specified as in (4.11). However, when either substantive theory or the data suggest

a change of emotional process as the first measurements were made, for example, as a

result of promotion, marriage, etc., one can incorporate such hypothesis by specifying

the initial status covariance matrix (denoted by Θ-free) as any positive definite matrix

without any constraints imposed on elements of Θ. In a completely different context such

as a learning experiment where subjects are required to conduct completely unfamiliar

tasks, it may be a plausible hypothesis that there is no influence of prior experiences on

the initial performance so that the covariance matrix of the initial status vector, Θ is set

to be a null matrix i.e. Θ = 0. In this model, the time series data are assumed to start

with the first observation.

8.5 On relationships to the quasi-simplex model

The current model specification for PFA models given in Equations (4.1) and (4.2)

provides a great flexibility as a general model containing a wide range of specific models as

its special cases. Therefore, by allowing the parameters to be fixed, free, or constrained,

the developed methods for the estimation of PFA models can be directly employed to

obtain the maximum likelihood estimates and the associated standard error estimates

for such special cases. A very important class of such special cases in the context of

longitudinal data analysis include the quasi-simplex model.

Since the seminal paper of Guttman (1954) regarding simplex correlation struc-

tures to be constructed by tests ordered by their complexity, many investigators have

studied so-called the simplex or the quasi-simplex model in terms of model formula-

tion (Anderson, 1959), model identification and estimation (Jöreskog, 1970; Jöreskog &

Sörbom, 1977), and applications to sociological panel data analysis (Heise, 1969; Wiley &

Wiley, 1970). In particular, Heise (1969) and Wiley and Wiley (1970) proposed employ-

ing quasi-simplex models for separating reliability and stability in test-retest correlation,

thereby obtaining reliability estimates adjusted for the attenunation caused by changes

65



in true-scores across time. Most recently, Biemer, Christ, and Wiesen (2009) proposed a

generalized simplex model (GSM) for estimating scale score reliability for panel survey

data where true scores change over time.

It is worth noticing that the GSM proposed in Biemer et al. (2009, p.406) can be

specified as a PFA(1,0) model with T = 3 where a single latent variable, measured by two

manifest indicators (m = 1, k = 2), follows a non-stationary AR(1) process with time-

varying autoregressive coefficients and random-shock variances with a null initial status

covariance matrix. As special cases of the generalized simplex model, the quasi-simplex

model and the simplex model can also be specified as special cases of PFA models. As

such, the generality of PFA models, encompassing the aforementioned class of simplex

models as special cases, suggests that the developed estimation methods for PFA models

can be employed to achieve the same goal that the previous investigators have pursued,

under different or more general conditions.

More specifically, by employing PFA models, further generalizations beyond the cur-

rently most general QSM approaches (Biemer et al., 2009) may be possible for the ap-

propriate estimation of reliability in the context of longitudinal data analysis. In other

words, PFA models can provide a way of obtaining reliability estimates under the situ-

ation where the true scores are multidimensional, measured by multiple indicators, and

changing over time following a more complex process, e.g. a non-stationary VARMA(p, q)

process. In particular, when the changes in true scores can justifably be assumed to be

a stationary VARMA(p, q) process, the parameter estimation method proposed in this

dissertion can provide an effective way of incorporating such processes for the reliability

estimation. Furthermore, using the standard error estimates obtained by the proposed

method, the possibility of quantifying the sampling variaibility of the reliability estimates

in the context of longitudinal data analysis can be explored.
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8.6 Future studies

Although the success of the proposed algorithm for maximum likelihood estimation

of PFA models has been shown in previous chapters, there are a few important issues that

remain to be addressed for the proposed algorithm to be adopted fully in stand-alone PFA

model-fitting software and applied psychological research. Those issues include obtaining

good starting values, incorporating comprehensive measurement models, and identifying

the order of latent time series, among others. Here, possible ways open to addressing

each issue are discussed.

8.6.1 Starting values

The proposed EM algorithm includes an iterative process of updating the ‘current’

parameter estimates in the next step until convergence is achieved. Thus, at the outset,

some values need to be assigned as initial estimates of the parameters for the algorithm

to operate on. It is generally advantageous to provide good initial estimates to facilitate

the iterative procedures. In the simulation study of the proposed algorithm, the starting

values were arbitrarily chosen close enough to the population parameter values because

the purpose of the study was not in developing a procedure to find good starting values

but in testing the viability of the proposed algorithm assuming reasonable starting values

that will lead to the convergence of the algorithm. In this instance convergence was

reached without difficulty. In empirical studies, however, population parameter values

are not known. Thus, it is recommended to employ the best available starting values

because convergence may not be attained or may be a very slow process with poor

starting values. Extension of Yule-Walker equations to latent vector time series models

will be explored as a method of determining reasonable starting values for the proposed

algorithm1. The two stage least squares (2SLS) estimators (Bollen, 1996) or ordinary

least squares estimator (Browne & Zhang, 2007a) can be considered as other candidates

1By personal communication with Dr. Stephen du Toit.
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for non-iterative algorithms for providing starting values. Further research on this issue

is necessary.

8.6.2 Comprehensive measurement models

In psychological research, observed data are not always suitable to be modeled with

normal random vectors. Dichotomous responses, for example, produced by yes or no

response choices, are very common. It is also not uncommon for each item in a Lik-

ert Scale, which is commonly used in questionnaires, to offer three to four alternatives

reflecting level of agreement to a certain statement. In such cases, modeling the item

responses according to continuous normal distributions is likely to distort the statistical

inferences, especially when the normality assumption is not tenable (Browne, 1984). For

example, for modeling a random variable taking values 0 and 1, it is more reasonable to

suppose a Bernoulli distribution rather than continuous normal distributions (Moustaki

& Knott, 2000; Moustaki, 1996). Similarly, a Poisson distribution may be a better choice

for modeling a random variable consisting of counts (Moustaki & Knott, 2000).

The proposed algorithm has been developed based on the assumption that all relevant

random vectors are multivariate normally distributed. However, this assumption can be

easily relaxed so as to encompass more general response data generating mechanisms.

For example, the logistic distribution can be used for modeling dichotomous manifest

variables. In this sense, it would be fair to say that the proposed algorithm laid out the

foundations for including more comprehensive measurement models in maximum likeli-

hood estimation for PFA(p, q) models. Equation (5.1) clearly shows that various types of

distributions for measurement models can be handled in the first term separately with-

out affecting the distribution and the derived covariance structure of the latent process

variables. This flexibility constitutes a major advantage of the proposed EM algorithm.

It may be difficult to analytically compute the conditional expectation in equations

(5.2), (5.9), (5.10), and (5.11), especially when the predictive density of the latent vari-

able, p(η|Y, ξ(`)) is of mathematically intractable form. A numerical integration method
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such as Gauss-Hermite Adaptive Quadrature (Liu & Pierce, 1994) may be adopted here,

but the demand for computational resources, due to the high dimensionality of numeri-

cal integrations in PFA models even under the moderate size of T , can easily exceed the

computational capacity of today’s high-speed desktop computers. A possible solution to

such computational difficulties, known as the curse of dimensionality, can be found in

Monte Carlo methods (Wei & Tanner, 1990), where independent samples drawn from

p(η|Y, ξ(`)) approximate the expectations or integrals. When direct draws of indepen-

dent samples from p(η|Y, ξ(`)) are not plausible, Importance Sampling (Rubin, 1988) or

the Markov Chain Monte Carlo method (Gilks & Spiegelhalter, 1996; Robert & Casella,

2004) can be explored as viable choices.

8.6.3 Identification of order of latent time series

Applications of time series data analysis require a decision of the appropriate order

of the underlying (vector) autoregressive moving average process. In most areas of ap-

plication of time series, methods used to select a model have been developed for a time

series for manifest variables. Exploratory procedures based on autocorrelation functions

and partial autocorrelation functions are not directly applicable when the time series of

interest is latent (Browne & Nesselroade, 2005). A potential advantage of the proposed

EM algorithm is the availability of the estimated latent scores by equation (5.9). Thus,

the order of the latent time series may be determined based on these estimated factor

scores by employing various model selection techniques such as AIC, BIC, and MDL,

etc. Another important advantage of the SEM methodology is that it provides model fit

indices such as RMSEA (Steiger & Lind, 1980; Browne & Cudeck, 1993). Such indices

will provide applied researchers with useful tools of model evaluation and the selection of

proper order of the latent process variables. Further research is warranted on this issue.
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8.7 Conclusion

The proposed EM algorithm for obtaining maximum likelihood estimates for

PFA(p, q) models can be effectively used in applied psychological research by providing

statistically optimal solutions, i.e. MLEs. Most of all, the proposed algorithm provides a

method for estimating temporal relationships among (stable) latent process factors with

their measurement errors being accounted for. Once the aforementioned issues are well

addressed, the proposed algorithm will have the potential of full functioning as an es-

tablished statistical tool to aid applied researchers who need to use latent variable time

series models.
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Appendix A: Proof of equations (5.9) and (5.10)

During the derivation, the following well-known facts about the multivariate normal

distribution (Mardia et al, 1976) will be used: SupposeX1

X2

 ∼ N


µ1

µ2

 ,

 Σ11 Σ12

Σ21 Σ22


 (1)

Here N denotes the multivariate normal distribution and X1 and X2 are vectors of

arbitrary dimension. Then, the conditional distribution of X1 given X2 = x2 is

N
[
µ1 + Σ12Σ−1

22 (x2 − µ2) ,Σ11 − Σ12Σ−1
22 Σ21

]
(2)

Conversely, if X2 ∼ N (µ2,Σ22) and (2) holds, then so does (1). Note that

Y |η ∼ N (Λη,Φ) (3)

Identifying X1 = Y and X2 = η, and applying (1) and (2), it can be seen that

µ2 = 0 (4)

Σ22 = Σ(τ) (5)

µ1 + Σ12Σ−1
22 (y2 − µ2) = Λη (6)

Σ11 − Σ12Σ−1
22 Σ21 = Φ (7)

Rearranging the terms yields,

Σ12Σ−1
22 = Λ (8)

Σ12 = ΛΣ(τ) (9)

µ1 = Σ12Σ−1
22 µ2 = 0 (10)

Finally,

Σ11 = Σ12Σ−1
22 Σ21 + Vt = Σ12Σ−1

22 (Σ22) Σ−1
22 Σ21 + Vt = ΛΣ(τ)Λ′ + Φ (11)
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Therefore, Y

η

 ∼ N


 0

0

 ,

 ΛΣΛ′ + Φ ΛΣ(τ)

Σ(τ)Λ′ Σ(τ)


 (12)

Now applying (1) an (2) again, reversing the role of X1 and X2, the conditional distri-

bution of η given Y is

η|Y ∼ N (E [η|Y ] , cov [η, η′|Y ]) (13)

where

E [η|Y ] = Σ(τ)Λ′ (ΛΣΛ′ + Φ)
−1
Y

=
(
Λ′Φ−1Λ + Σ(τ)−1

)−1
Λ′Φ−1Y (14)

cov [η, η′|Y ] = Σ(τ)− Σ(τ)Λ′ (ΛΣΛ′ + Φ)
−1

ΛΣ(τ)

=
(
Λ′Φ−1Λ + Σ(τ)−1

)−1
(15)

The last step uses the matrix identity, known as Sherman-Morrison-Woodbury Matrix

Identity, (Searle, 1982),

(A+ URV ′)
−1

= A−1 − A−1U
(
R−1 + V ′A−1U

)−1
V ′A−1 (16)

where A,U,R and V are matrices of appropriate order with A and R being nonsingular.
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Appendix B: The closed form expressions for typical elements of missing

information matrix
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