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ABSTRACT 

 
RAED KHASHAN: Developmment and Application of Ligand-based and Structure-based 

Computational Drug Discovery Tools Based on Frequent Subgraph Mining of Chemical 
Structures 

(Under the direction of Alexander Tropsha) 
 

Recent development in subgraph mining tools resulted in faster and more efficient 

algorithms that facilitate exploring the information encoded in data that can be represented 

by graphs. In this dissertation, we apply the graph mining technique to design ligand-based 

and structure-based computational drug discovery tools. For ligand-based drug design, 

molecules in a dataset will be represented by graphs, and subgraph mining tools will be 

used to find the frequent subgraphs (chemical fragments) that occur in at least a certain 

percentage of the ligands in the dataset. These chemical fragments will be used as 

molecular descriptors for the quantitative structure-activity relationship (QSAR) studies. 

They will also be used for identifying the pharmacophores responsible for the activity as 

well as the toxicophores responsible for the toxicity of a datasets of molecules.  For the 

structure-based drug design, interacting atoms at the interface of a set of protein-ligand 

complexes will be represented by graphs. Frequent subgraphs identified will define the 

patterns of chemical interactions at the interface, which will be used to pose-score docked 

complexes to identify the correct docking pose. 
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CHAPTER 1 

INTRODUCTION 

Computer-assisted drug design (CADD) techniques have been used successfully to 

improve the efficiency of the drug discovery process. The combination of computational 

chemistry concepts, robust software, and high-end computer hardware are used to assist the 

medicinal chemists identifying or designing ligands that are more likely to interact with the 

receptor of interest. CADD methods can be categorized based on the availability of the 

three-dimensional (3D) structure of the target protein. Ligand-based drug design methods 

are used if the structure of the target protein is not known. A commonly used method is the 

Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) approach (Martin, 

Y., 1981). It generates molecular descriptors for all ligands with known target property (i.e. 

biological activity, toxicity) and uses them in combination with multivariate statistical 

modeling techniques to arrive at predictive activity or property models. The success of this 

approach relies on the robustness of the molecular descriptors used, as well as the strength 

of the statistical technique used to build the predictive models. Many currently available 

molecular descriptors either lack the mechanistic interpretability or are limited by the pre-

defined set of chemical fragments that are used in chemotyping of any dataset of interest. 

The current limitations of molecular descriptors used in modern QSAR and 

cheminformatics research underline the significance of this project that is focused on 

developing dataset-specific descriptors based on the frequent sub-structures in the dataset. 

These frequent sub-structures will be identified using the graph representation of molecules 



 2

and the sub-graph mining approach, as we shall explain later. The medicinal chemist can 

easily interpret these descriptors. In addition, new important fragments that might have not 

been defined a priori can be discovered. The research question that needs to be answered in 

the course of this project is whether these descriptors can indeed give a better predictive 

QSAR model as compared to those generated with current descriptors. 

A popular ligand-based drug design method is the so-called Active Analog 

Approach (Sheridan, R., Rusinko, A., Nilakantan, R., Venkataraghavan, R., 1989). It is 

used to explore active compounds that bind to same target protein in order to identify 

“pharmacophoric” groups responsible for the specific activity; these groups are 

subsequently used to screen chemical databases for new leads. In this project, we will 

answer the question whether the frequent sub-structures can be used as novel means to 

identify the pharmacophoric groups and then examine their ability to identify new leads in 

the context of the Active Analog Approach. The significance of this particular study rests 

on the fast identification of the pharmacophoric groups for database mining. The advantage 

of our proposed approach is that it does not rely on 3D conformational search of the 

structures and therefore it is highly efficient computationally. 

If the three-dimensional structure of the target protein is available then structure-

based drug design methods are used. The most common one and a widely used method is 

the computational “docking”. Here, a database of compounds is screened to identify 

compounds that can fit into the active site of the target protein. This approach has been 

widely used in hit identification and lead optimization. However, there remain significant 

challenges in the application of this approach, in particular in relation to current scoring 

schemes. Even when binding conformations are correctly predicted, the calculations 
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ultimately do not succeed if they do not differentiate correct poses from incorrect ones, and 

if “true” ligands can not be identified. So, the design of reliable scoring functions and 

protocols is of fundamental significance. 

With the exponential increase in the number of protein-ligand crystal structures in 

the protein databank (PDB), researchers are more interested in exploring the information 

that can be gathered from these structures. This project will try to answer the question 

whether the frequent patterns of inter-atomic interactions at the protein-ligand interface can 

be used in forming new more precise scoring functions and docking schemes as compared 

to current methods. The study can be highly significant and of interest to many researchers 

in that field. The study will also bring insights to the structure based de novo design of 

ligands complementary to the active sites. 

INTRODUCTION TO FREQUENT SUBGRAPH MINING 

Frequent subgraph mining is a powerful tool that can be used to extract information 

from different types of databases (Huan, J., Prins, J., and Wang, W., 2003). It is becoming 

more important in many application areas including cheminformatics, bioinformatics, web 

mining, video indexing, and sociology, especially with the rapid growth of data available. 

The the goal is to discover interesting patterns in large collections of data where 

interestingness is related to the frequency of occurrence. The process starts by the graphical 

representation of the data; i.e. elements are represented by labeled nodes, and relationships 

between these elements are represented by labeled edges, followed by frequent subgraph 

mining to identify the frequent patterns. These patterns can then be used to make class 

predictions for unseen cases or discovering new classes. 
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Given a set S of graphs, frequent subgraphs that occur in a fraction (support value) of 

all graphs S are found. For any frequent subgraph mining algorithm, there are two 

computationally challenging problems: First, subgraph isomorphism, which is determining 

whether a given graph is a subgraph of another graph. Second, enumerating all frequent 

subgraphs efficiently (Huan et al, 2003). There are several efficient subgraph mining 

algorithms that have been presented in a recent review by Huan et al, 2003. For our study, we 

have been using Fast Frequent Subgraph Mining (FFSM) algorithm which will be described 

in the following section. The FFSM algorithm will be applied to mine datasets of small 

molecules to find frequent patterns (chemical fragments) that can be used for classification 

purposes as we will see in Chapter 2 and Chapter 3. In addition, it will be applied to find 

frequent paterns of interactions at the protein-ligand complexes as we will see in Chapter 4. 

Fast frequent subgraph mining (FFSM) algorithm  

The FFSM algorithm was developed by our collaborators in the Computer Science 

Department as a general highly efficient tool to find common frequent subgraphs in a 

family of labeled unidirectional graphs. A labeled graph G is defined as a five element 

tuple G = {V, E, ∑v, ∑E, δ} where V is the set of nodes of G and E ⊆ V ×V is the set of 

undirected edges of G. ∑v and ∑E are a set of labels and the labeling function δ: V  → ∑v ∪ 

E  → ∑E maps nodes and edges in G to their labels. The same label may appear on multiple 

nodes or on multiple edges, but we require that the set of edge labels and the set of node 

labels are disjoint.  

A labeled graph G = (V, E, ∑v, ∑E, δ) is isomorphic to another graph G'=(V', E', ∑v', 

∑E', δ') if and only if there is a bijection f: V → V' such that:  

∀ u ∈ V, δ (u) = δ'(f(u)), and  

∀ u, v ∈V,  ( ((u,v) ∈ E ⇔ (f(u), f(v)) ∈E')  ∧  δ (u,v) = δ'(f(u), f(v))). 
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The bijection f denotes an isomorphism between G and G'.  

A labeled graph G= (V, E, ∑v, ∑E, δ) is an induced subgraph of graph G'=(V', E', 

∑v', ∑E', δ') if and only if G is subgraph isomorphic to G’ and preserves all G’ edges 

connecting nodes in G.  

A labeled graph G is induced subgraph isomorphic to a labeled graph G', denoted 

by G ⊆ G', if and only if there exists an induced subgraph G'' of G' such that G is 

isomorphic to G''. Examples of labeled graphs, induced subgraph isomorphism, and 

frequent induced subgraphs are presented in Figure 1.1. 

Given a set of graphs GD (referred to as a graph database, e.g., a database of 

molecular graphs, the support of a graph G, denoted by supG is defined as the fraction of 

graphs in GD which embeds the subgraph G. Given a threshold σ (0 < σ≤1) (denoted as 

minSupport), we define G to be frequent, iff supG is at least σ. All the frequent induced 

subgraphs in the graph database GD presented in Figure 1.1 (Top) (with minSupport 2/3) 

are presented in Figure 1.1 (Bottom). Further details of the development and 

implementation of the FFSM algorithm are described elsewhere (Huan et al., 2005). The 

FFSM executable (version 1.0) is available for download at 

http://www.cs.unc.edu/~huan/FFSM.html.  
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Figure 1.1. Top: Examples of three labeled graphs (referred to as a graph 
database). The labels of the nodes are specified within the circle and the labels of 
the edges are specified along the edge. The mapping q1 → p2, q2 → p1, q3→ p3 
represents an induced subgraph isomorphism from graph Q to P. Bottom: All the 
frequent induced subgraphs with support ≥  2/3 for the graph database. 
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 OVERVIEW OF CHAPTER 2 

In this chapter, we present a novel approach to generating fragment-based 

molecular descriptors. Using labeled chemical graph representation of molecules, Fast 

Frequent Subgraph Mining (FFSM) method developed in this group is used to find 

chemical fragments that occur in at least a subset of molecules in a dataset. The counts of 

frequent fragments have been used as descriptors in variable selection k Nearest Neighbor 

(kNN) QSAR modeling. This approach was applied to Maximum Recommended 

Therapeutic Dose (MRTD), Salmonella Mutagenicity (Ames Genotoxicity), and P-

Glycoprotein (PGP) datasets. We followed established protocols for model validation, i.e., 

randomization of target property and splitting the datasets into training, test, and validation 

sets. Highly predictive models have been generated with the accuracies for the training and 

test sets exceeding 0.75, and the accuracy for the external validation sets exceeding 0.72. 

The accuracy results were comparable to commonly used molecular descriptors and in 

some cases was better. In addition, fragment-based descriptors implicated in validated 

models can afford mechanistic interpretation of the results in terms of essential 

pharmacophoric or toxicophoric elements responsible for the compounds’ target property. 

For interpretation purposes, another classification method will be used as we will see in 

Chapter 3. 

OVERVIEW OF CHAPTER 3 

In this chapter we present a novel approach to identify 2D 

pharmacophores/toxicophores based on frequent subgraph mining. Using labeled chemical 

graph representation of molecules, Fast Frequent Subgraph Mining (FFSM) method 

developed in this group is used to find chemical fragments that occur in at least a subset of 
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molecules in a dataset. These chemical fragments are used as binary descriptors for the 

dataset. Then, Classification-Based Association (CBA) algorithm is used to identify 

associated chemical fragments responsible for the activity as well as the toxicity 

(mutagenicity) for datasets of compounds and provide interpretation for these results. The 

method is validated for its ability to predict the activity/toxicity of an external dataset. This 

approach was applied to a dataset of P-Glycoprotein substrates (PGP), Maximum 

recommended therapeutic dose dataset (MRTD), and to a dataset of mutagenic compounds 

(Salmonella Ames Mutagenicity dataset). The prediction ability of the method using the 

chemical fragments identified was compared to that when using Fingerprints descriptors. 

The results show a significant improvement in the predictive ability when using the 

chemical fragments identified in this method over the Fingerprints descriptors. 

OVERVIEW OF CHAPTER 4 

Developing a scoring function that identifies the correct docking pose is very 

important in understanding the binding mode of a ligand to its receptor, and consequently, 

in the design of new lead compounds. In this chapter, we present a study for a novel 

knowledge-based scoring function that has been developed based on the frequent geometric 

and chemical patterns of inter-atomic interactions at the interface of a representative dataset 

of x-ray characterized protein-ligand complexes. The approach includes the following 

steps. First, the protein-ligand interfaces of each complex in the internal training set are 

represented by labeled chemical graphs where nodes are atoms and edges connect protein 

and ligand atoms within certain distance of each other. Second, subgraph mining 

techniques are used to find frequent subgraphs that occur in no less than a certain 

percentage of the complexes in the internal training set, and these frequent subgraphs 
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identify the patterns that are used in the scoring function. Thus, the external test protein-

ligand complexes are scored based on the similarity between interaction patterns identified 

at the protein-ligand interface of an external test protein-ligand pair to those found 

frequently in the internal training set of x-ray characterized complexes. The scoring 

function has been tested for its ability to accurately recognize the native pose of a ligand in 

the X-ray crystal structure of the protein-ligand complexes vs. non-native poses produced 

by computational docking. We have demonstrated that this novel scoring function affords 

higher accuracy of scoring than five commonly used scoring functions and their consensus 

provided by commercial docking software. 
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CHAPTER 2 

DEVELOPMENT OF FRAGMENT-BASED CHEMICAL DESCRIPTORS 

INTRODUCTION 

QSAR modeling is fundamentally based on the similarity principle implying that 

similar compounds have similar biological properties. Consequently one can predict the 

biological target property of a molecule from that of chemically similar compounds for 

which the property is known. To build quantitative predictive models a similarity metric is 

required; therefore a unit of measurement such as molecular descriptors needs to be 

identified. Once the descriptors are defined, QSAR techniques can be used to relate the 

chemical structure of a molecule to its target property. 

There are many types of molecular descriptors that can be used for QSAR studies. 

While some are based on describing molecules at atomic level (e.g. electro-negativity, 

partial charges, hydrogen bond acceptor and donor ability, etc.), others are based on 

describing them at the molecular level (e.g. molecular weight, logP, surface area, etc.). 

While three-dimensional (3D) descriptors based on the conformational structure of the 

molecule are capable of distinguishing stereo-isomers and changes in structural 

conformations, 2D descriptors offer the advantage of conformation-independence and 

much speedier computation. In this study, we present a novel approach to generate 

fragment-based molecular descriptors. Unlike molecular descriptors based on 

physicochemical properties and distances of atoms in the molecule, fragment-based 
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descriptors could potentially provide a mechanistic explanation of the dependence of the 

target property on molecular structure. Such explanation especially with respect to the 

differences between active and inactive molecules could provide useful guidance to 

medicinal chemists with respect to rational design of new biologically active chemical 

entities.  

Fragment-based descriptors have been used in QSAR modeling. Popular examples 

include fingerprints (e.g., Daylight), atom pairs, and ISIDA. A common trait to all these 

methods is that chemical fragments are identified a priori; thus frequently the total number 

of such descriptors generated for a molecular dataset is exceedingly large (e.g., hundreds or 

thousands fingerprints are generated typically) and/or fragment descriptors are generic. 

This makes it difficult to build robust and statistically predictive QSAR models that 

uniquely describe the relationship between structure and activity of specific datasets such 

that the derived QSAR models could successfully identify novel unique computational hits.  

In this study we propose a novel approach to fragment descriptor generation where 

unique chemical fragments are identified based on the dataset of interest.  To this end, we 

use a labeled chemical graph representation of molecules and employ Fast Frequent 

Subgraph Mining (FFSM) method developed in our group. Chemical graphs have been 

used very successfully and for a long time in cheminformatics and QSAR studies giving 

rise to popular molecular descriptors such as connectivity indices. Algorithms for finding 

maximum common subgraphs in chemical structures have been developed by other groups 

(Willett et al., 2002; Bradshaw et al., 2003) and used to study similarity/diversity of 

chemical structures. 
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Finding patterns from graphs has long been an interesting topic in the data 

mining/machine learning community. For instance, Inductive Logic Programming (ILP) 

has been widely used to find patterns from graph dataset (Dehaspe, Toivonen, and King, 

1999). However, ILP is not designed for large databases. Other pioneer methods focused 

on approximation techniques such as SUBDUE (Holder, Cook, and Djoko, 1994) or on 

heuristics such as the greed based algorithm (Yoshida and Motoda, 1995). Several 

algorithms have been recently developed by the data mining community to solve the so-

called frequent subgraph mining problem which reports all frequent subgraphs of a group 

of general graphs (Huan, Prins, and Wang, 2003; Huan et al., 2004; Kuramochi and 

Karypis, 2001;Yan and Han, 2002). These techniques have been successfully applied in 

cheminformatics where compounds are modeled by undirected graphs. Recurring 

substructures in a group of chemicals with similar activity are identified by finding frequent 

subgraphs in their related graphical representations. The recurring substructures can 

implicate chemical features responsible for compounds’ biological activities (Deshpande, 

Kuramochi, Wale, and Karypis, 2005). 

Our fragment-based descriptors are derived based on frequent common 

substructures that are found in at least a subset of molecules (this fraction is defined as a 

support value) in the dataset. Once these frequent substructures are identified, the counts of 

each substructure in each molecule in the dataset is calculated; thus each frequent common 

substructure serves as a chemical descriptor type and the frequency becomes a descriptor 

value. This representation affords the application of conventional QSAR modeling 

techniques to any chemical dataset with measured biological activity leading to a novel 

fragment descriptor based QSAR modeling approach. The objectives of this study include: 
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(a) provide a detailed description of the frequent subgraph mining approach as applied 

towards developing the fragment-based descriptors; (b) validate these descriptors by 

developing predictive QSAR models (using k-Nearest Neighbor (kNN) QSAR techniques) 

for several experimental datasets, and (c) finally, discuss the applications of these 

descriptors in the QSAR analysis for drug design and development. 

COMPUTATIONAL METHODS 

Application of FFSM to chemical datasets to generate chemical fragment descriptors. 

The molecules are described in the SYBYL MOL2 file format, which considers 33 

atom types and 5 bond types. Chemical structures are then represented as hydrogen 

suppressed graphs, where atoms are considered as labeled nodes and bonds are labeled 

edges. Then, the FFSM algorithm described earlier in Chapter 1 is used to find the frequent 

(chemical) subgraphs for a given a support value (σ), which is one of the model variables 

defined by the user. Figure 2.1 shows an example for representing three molecules 

comprising a small dataset as labeled unidirectional graphs and Figure 2.2 presents a 

simple example of the output generated as a result of applying FFSM to this small dataset  

with the support value of 66.7% (i.e. σ = 2/3). 

To continue with this example, Figure 2.3 shows a matrix of chemical fragment 

descriptors where all frequent subgraphs with the support of σ = 2/3 serve as descriptors 

and each descriptor’s count represent the descriptor’s value for each molecule. 
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Figure 2.1 Conversion of each molecule in the dataset into undirected, labeled 
graph. 
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Figure 2.2 Using FFSM to find common subgraphs in at least a subset of 
molecules of size 2 out of 3 molecules (σ = 2/3). 
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Figure 2.3 Matrix of counts (number of occurences) for each subgraph (chemical 
fragments) in each molecule in the dataset. 
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Removing redundant chemical fragments 

The application of the FFSM algorithm to chemical datasets may result in the 

identification of redundant features. For example, if an aromatic group is found to be 

frequent, then all the sub-structures within such aromatic group will also be frequent in 

spite of having any of these sub-structures present independently in the molecular dataset. 

This problem of subgraph redundancy is well known in graph mining, and the resulting 

subgraphs after removing redundant ones are called closed subgraphs. A subgraph g is 

closed in a database if there exist no proper supergraph of g that has the same support as g 

(Yan, X., and Han, J., 2003). In our studies reported herein to eliminate the redundancy in 

the frequent subgraphs (chemical fragments) leaving only closed ones, the following 

criteria was used: 

For each two frequent subgraphs SGi and SGj: If (SGi ⊆ SGj) and 

support (SGi) = support (SGj), then remove SGi. 

 

However, a subgraph SGi that is embedded in SGj (i.e. SGi ⊆ SGj) and has the 

same support value as SGj will not be deleted if it also occurs by itself (not as part of the 

SGj) in the graph database of molecules. This is important since it will retain subgraphs 

that can be useful. 

In the sample dataset and its features (descriptors) shown in Figures 2.1, 2.2, and 

2.3, we find that the first 3 subgraphs have the same support value of 3 out of 3 graph 

molecules in the dataset (i.e., σ = 3/3). Consequently, the first subgraph will stay while the 

second and the third ones will be eliminated. Similar considerations are applied to the next 

two subgraphs, i.e., fourth and fifth: the fourth stays and the fifth will be removed. Finally, 

the same analysis is applied to the last three subgraphs leading to the elimination of the last 
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two subgraph descriptors. Therefore, for our toy example we will end up with only three 

closed subgraphs that will be used as our unique descriptors (see Figure 2.4). 

Removing redundant subgraphs (fragments) will reduce the number of subgraphs 

drastically and therefore make the subsequent processes faster and more efficient. 
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Figure 2.4 Matrix of counts (number of occurences) for closed subgraphs 
(chemical fragments) in each molecule in the dataset. 
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Experimental datasets  

Three datasets were used in this study. The first one included 1217 drug-like 

molecules with the MRTD (Maximum Recommended Therapeutic Dose) as their target 

property. This dataset was recently analyzed by the FDA modeling group (Contrera et al., 

2004). Following the approach described in the original publication all molecules were 

divided into two classes based on the MRTD cutoff value. This results in having 576 

molecules with toxicological effect (adverse or undesirable pharmacological effect), and 

641 molecules without toxicological effect. The second dataset is composed of 3434 drug-

like molecules with the Salmonella mutagenic activity score as the target property. The 

score ranged from 10 to 80; molecules with no mutagenic activity have a score of 10, and 

the most mutagenic molecules have a score of 80. A cutoff value is used to divide the 

dataset into 2 classes: mutagenic and non-mutagenic, and thus resulting in 1615 mutagenic 

molecule versus 1819 non-mutagenic molecules. This dataset was described in a paper by 

Votano et al., 2004. The third dataset included 195 molecules shown to be substrates (108 

molecules) or non-substrates (87 molecules) of the P-Glycoprotein Protein (PGP). This 

dataset was analyzed previously in our group using several modeling techniques and 

descriptor sets and its molecules were taken from a paper by Penzotti et al., 2002. Thus, all 

experimental datasets have a binary value as their target property. 

QSAR model development and validation methods  

Dataset Division into External, Training, and Test Sets. It is commonly accepted 

that the internal validation of QSAR models built from training sets is sufficient to confirm 

their predictive power (Benigni et al., 2000; Oloff et al., 2006; Trohalaki, Gifford, and 

Pachter, 2000; Zhang, Golbraikh, and Tropsha, 2006; Zhang et al., 2006). However, 
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previous studies in this as well as several other laboratories demonstrated that no 

correlation exists between leave-one-out (LOO) cross-validated R2 (q2) for the training set 

and the correlation coefficient R2 between the predicted and observed activities for the test 

set(Golbraikh and Tropsha, 2002; Kubinyi, Hamprecht, and Mietzner, 1998). These 

findings indicated that in order to obtain QSAR models with high predictive ability, 

external validation was critical. Thus, each dataset of compounds was divided randomly 

into external and internal sets. Then, the internal set was divided into multiple chemically 

diverse training and test sets with a rational approach implemented in our group(Golbraikh 

and Tropsha, 2002) based on the Sphere Exclusion (SE) algorithm(Snarey et al., 1997). SE 

is a general procedure that is typically applied to molecules characterized by multiple 

descriptors of their chemical structures. The entire dataset can then be treated as a 

collection of points (each point corresponding to an individual compound) in the 

multidmensional descriptor space. The goal of the SE method is to divide a dataset into two 

subsets (training and test sets) using a diversity sampling procedure(Golbraikh and 

Tropsha, 2002). 

The SE algorithm used in this study included the following steps. The algorithm 

starts with the calculation of the distance matrix D between points representing compounds 

in the multidimensional descriptor space.  Let Dmin and Dmax be the minimum and 

maximum elements of D, respectively.  N probe sphere radii are defined by the following 

formulas: Rmin=R1=Dmin, Rmax=RN=Dmax/4, Ri=R1+(i-1)*(RN-R1)/(N-1), where i=2, …, N-1.  

Each probe sphere radius corresponds to one division into the training and test sets. Once 

the sphere size is defined the subsequent calculations include the following steps: (i) Select 

randomly a point in the descriptor space.  (ii) Include it in the training set.  (iii) Construct a 
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probe sphere around this point.  (iv) Select points from this sphere and include them 

alternatively into test and training sets. (v) Exclude all points within this sphere from 

further consideration.  (vi)  If no more compounds left, stop.  Otherwise let m be the 

number of probe spheres constructed and n be the number of remaining points. Let dij 

(i=1,…,m; j=1,…,n) be the distances between the remaining points and probe sphere 

centers. Select a point corresponding to the lowest dij value and go to step (ii).  The training 

sets were used to build models and the test sets were used for model validation. 

Correct classification rate (CCR). Typically, CCR is defined as the ratio of 

compounds classified correctly to the total number of compounds. This definition of CCR 

has a major drawback, if the counts of compounds belonging to different classes are 

significantly different. Suppose there are two classes, class 1 contains 75 compounds and 

class 0 contains 23 compounds. Assume that some hypothetical "model" will assign all 

compounds to class 1. Then CCR=0.76, since 75/(75+23)=0.76, i.e. we would believe that 

our "model" is very good contrary to the common sense.  

To avoid artificial overrating of the classification model accuracy, in this study 

CCR was defined as follows. Let N be the total number of compounds in a dataset, and N1 

and N0 be the number of compounds in class 1 and the number of compounds in class 0, 

respectively (i.e., N0+N1=N). Let T1 and T0 be the number of compounds predicted as 

class 1 and the number of compounds predicted as class 0, respectively. Then  

    CCR=0.5(T1/N1+T0/N0).    (1) 

In this case, for the hypothetical example described above we obtain CCR=0.5, and 

our “model” assigning all compounds to class 1 does not seem to be more accurate than the 

random assignment of each molecule with probability 0.5 to a class 1 or 0. 
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kNN-Classification. The stochastic variable selection kNN classification method is 

based on the idea that assigning a compound to a class can be defined by the class 

membership of its nearest neighbors (in a multi-dimensional chemistry space) taking into 

account weighted similarities between a compound and its nearest neighbors as follows 

(see Figure 2.5). Let N be the number of compounds in a dataset. In the simplest case of 

binary classification, these compounds are distributed between classes a or b. Let na and nb 

be the number of compounds in classes a and b, respectively, and m be the number of 

descriptors (composing the multi-dimensional chemistry space) selected by the variable 

selection kNN classification procedure. The Tanimoto coefficient can be used as a 

similarity measure between two classes as follows: 
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Where a
ijD  is the descriptor value for compound j of class a. Evidently, T (a, a) =1. 

Let k be the number of nearest neighbors of compound i. Weighted similarities between 

each compounds i and each class C (i.e., a, or b) are calculated as follows: 
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Where pa  in ),( CaT p  is the class of compound p, α is a parameter, which in this 

study was set to 1, and dip is the distance between compound i and its p-th nearest neighbor. 

In the leave-one-out cross-validation procedure, the similarity between compound i and 

each class C is calculated according to the following expression: 
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Compound i is assigned to the class which corresponds to the highest value of '
,CiS . 

The CCR for the training set (CCRtrain) is calculated using formula (1). 

Applicability Domain of kNN QSAR Models. For assigning an external 

compound (which was not included in the training set) to a class, its representative point in 

the descriptor space must be not too far from its nearest neighbors of the training set. The 

similarity threshold was defined as the maximum squared distance between a compound, 

for which the prediction is made and its nearest neighbors of the training set. This squared 

distance can be defined as a sum of the average squared distance between nearest neighbors 

within the training set and a number Z of standard deviations of the squared distances from 

the average: D2
max=<D2

near.neighb>+Zσnear.neighb. The threshold is referred to here as Z-cutoff. 

Classification accuracy of the model is estimated using the test set as follows. (1) 

For each compound of the test set, k nearest neighbors from the training set are found. (2) 
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All compounds of the test set are selected, for which the distances to their nearest 

neighbors in the training set were within the defined Z-cutoff. (3) Similarity of each 

compound chosen in step (2) to each class is calculated using formula (4). The compound 

is assigned to a class, to which it has the highest similarity. (4) Classification accuracy of 

the model is characterized by the CCR for the test set (CCRtest) calculated with the formula 

(1). Maximum Z-cutoff value, for which reliable prediction of new compounds can be 

obtained, is a characteristic of the applicability domain of a QSAR model. In this study, Z-

cutoff was set to 1.0. 

Classification kNN QSAR is a stochastic variable selection procedure based on the 

simulated annealing approach. The procedure is aimed at the development of a model with 

the highest fitness [CCRtrain]. The procedure starts with the random selection of a 

predefined number of descriptors out of all descriptors. Compound excluded in LOO CV 

procedure is assigned to a class corresponding to a highest SiC (see formula (3)), where i is 

the number of the excluded compound. After each run, cross-validated CCRtrain is defined 

(see formula (1)) and a predefined number of descriptors are randomly changed (mutated). 

The new value of CCRtrain is obtained using the modified subset of descriptors. If 

CCRtrain(new) > CCRtrain(old), the new subset of descriptors is accepted. If CCRtrain(new) ≤ 

CCRtrain(old), the new subset of descriptors is accepted with probability p = 

exp(CCRtrain(new) – CCRtrain(old))/T, and rejected with probability (1-p), where T is a 

simulated annealing parameter, “temperature”. During the process, T is decreasing until the 

predefined value. Thus, CCRtrain is optimized. In the prediction process, the final set of 

descriptors selected is used, and formula (4) is applied to predict compounds in the test set. 
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This implementation is similar to that reported for the continuous kNN QSAR method 

developed in our laboratory earlier (Zheng, W. and Tropsha, A., 2000). 

In all calculations reported in this work, the maximum number of nearest neighbors 

used (k) was 5, Tmax= 1000, Tmin=10-6, temperature decrement was 0.90, and the number of 

mutations was 2. For all descriptor types, the number of descriptors selected by the 

procedure was varied from 20 to 100 with step 5. For each number of descriptors selected, 

10 models were built. Thus, the total number of models built for one division into training 

and test sets was 170. And since we have 50 pairs of training and test sets, the total number 

of models generated would be 8500. 
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Figure 2.5. kNN QSAR modeling approach (a) and predictive QSAR modeling 
workflow (b). 
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Comparison with other molecular descriptors. In order to demonstrate that the 

fragment-based chemical descriptors perform just as good as the other molecular 

descriptors, we compare it with the commonly used MolConnZ molecular descriptors 

(Kellogg, G., Kier, L., Gaillard, P., and Hall, L., 1996), and the fingerprints descriptors (as 

we will see in Chapter 2). Models were built for the same datasets using the same 

techniques and sets of parameters. 

RESULTS AND DISCUSSIONS 

There are many parameters that are playing a role in finding models with the best 

predictive ability. In this section we study these parameters and show how they affect the 

model development process. 

Generating the fragment-based chemical descriptors  

The support value (σ) determines the set of subgraphs generated as a result of using 

FFSM, these subgraphs will then form the fragment-based chemical descriptors. Obviously, 

the larger the value of the support, the smaller the number of subgraphs found. And as 

support value decreases, the number of subgraphs increases exponentially. Figure 2.6 

shows the number of subgraphs as a function of the support value for the Ames 

Genotoxicity dataset (3,434 drug-like molecules). 
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The dark blue line shows the raw number of subgraphs generated by FFSM; the red 

line shows the number of subgraphs after removing redundant subgraphs leaving only the 

closed ones (cf. Methods). Notice how the number of subgraphs increases exponentially as 

thte support value decreases, and notice the large drop in the number of closed subgraphs. 

Figure 2.7 shows the size distribution of the subgraphs before and after removing 

correlated subgraphs for a single support value of 1.0 %. The size of a subgraph is simply 

the number of nodes in that subgraph. 

Notice that the red curve is shifted to the right, implying that smaller subgraphs 

correlated with their parent subgraphs are removed leaving only closed subgraphs. 
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Figure 2.7. Distribution of the size (number of nodes) of the subgraphs using 
support value σ = 1% before and after removing redundant subgraphs. 
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Building kNN-classification models  

Using the sets of closed subgraphs generated for a range of support values as 

descriptors classification kNN QSAR was used to build models for the three 

aforementioned datasets. Figures 2.8-2.10 show the model fitness for each dataset as a 

function of the support value. 

The analysis of the data presented in Figures 2.8-2.10 leads to the following 

conclusions. The models serve to validate the fragment-based descriptors since high 

accuracy (>75%) was achieved using actual target property whereas models built with 

randomized target property gave accuracies <60% (keeping in mind that all three datasets 

have a binary type target property, meaning that the worst model you can get will have a 

50% accuracy). 

As the support value increases, the accuracies of models decrease. These 

observations can be explained easily because smaller number of generic common 

subgraphs is found and they are not useful in distinguishing between molecules’ target 

property. 

On the other hand, as the support value decreases, the number of subgraphs 

increases exponentially, and even though we have more subgraphs to use (i.e. higher 

chance of finding better models), we are limited by the ability of the simulated annealing-

based kNN to find the right subgraphs among the huge number of subgraphs generated. 

Thus, model accuracies decrease again. That explains why best models are found when the 

number of subgraphs used is in the range of few hundreds marked by vertical dotted line in 

each figure. In theory, if kNN runs for some time that is long enough to find the right 

subgraphs, model accuracies should keep increasing. 
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Figure 2.8. Model fitness as a function of support σ (%) for PGP. 
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Figure 2.9. Model fitness as a function of support σ (%) for MRTD. 
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Figure 2.10. Model fitness as a function of support σ (%) for Ames genotoxicity. 
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Figure 2.11. External sets prediction accuracies for each dataset. 
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Using the support values that give the best training and test sets’ prediction 

accuracies for each of the three dataset, and using models with accuracies higher than 75% 

for both the training and test sets, an external validation prediction was performed. The 

accuracies for each of the datasets were above 72%, see Figure 2.11. 

Comparison with other molecular descriptors 

Finally, to compare between descriptors, subgraphs offers a direct interpretation of 

the features important in determining the target property that is easily understood and 

utilized by medicinal chemists, as we will address in Chapter 3. In addition, with variable 

selection kNN, branched features (and disconnected features) are taken care of. Also, since 

subgraph descriptors are not Boolean descriptors, but counts of subgraphs in the molecule, 

it should give a better description than structural alert descriptors and fingerprints that are 

based only on the presence or absence of such sub-structure. In addition to the fact that 

subgraph descriptors are dataset-derived and not predefined, this will open the door to 

finding new sub-structures that are not defined apriori. 

In this section, we will show the results of comparing the fragment-based descriptors 

with one of the commonly used molecular descriptors, MolConnZ descriptors. Then in 

Chapter 3 of the dissertation, we will compare these descriptors with the fingerprints 

descriptors in terms of their ability to derive accurate predictive models. 

Figure 2.12 shows the results of comparing fragment-based descriptors with 

MolConnZ descriptors. Using the same parameters’ setting of kNN-classification modeling 

technique, the total number of models generated was 8500. For each of the three datasets, the 

models that have training and test sets’ prediction accuracies higher than 75% were selected 

to be used to predict the external dataset. The accuracy of the prediction of the external 
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dataset will be compared to that obtained using the MolConnZ molecular descriptors, see 

Figure 2.12. 

As Figure 2.12 shows, models generated using fragment-based descriptors are 

comparable to those generated using MolconnZ descriptors and can perform better than the 

MolConnZ descriptors. In addition, the fragment-based descriptors provide a better 

interpretation to the medicinal chemist than MolConnZ descriptors do, see Chapter 3. 
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Figure 2.12. External sets prediction accuracies for each dataset using fragment-
based and MolConnZ descriptors. 
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CONCLUSIONS 

In this chapter, we present a novel approach to generating fragment-based 

molecular descriptors. Using labeled chemical graph representation of molecules, Fast 

Frequent Subgraph Mining (FFSM) method is used to find chemical fragments that occur 

in at least a subset of molecules in a dataset. The counts of each frequent fragment have 

been used as descriptors in variable selection k Nearest Neighbor (kNN) QSAR modeling. 

Highly predictive models have been generated for the datasets used in this study, and were 

comparable to one of the commonly used molecular descriptors. Frequent subgraphs 

implicated in validated models can afford mechanistic interpretation of the results that are 

easily understood by medicinal chemists in terms of essential pharmacophoric or 

toxicophoric elements responsible for the molecule activity, as we shall demonstrate in 

Chapter 3 of this dissertation using another classification method that can provide a better 

way of interpreting the selected descriptors than kNN does. Also, since subgraph 

descriptors are not Boolean descriptors, but counts of subgraphs in the molecule, it should 

give a better description than structural alert descriptors and fingerprints that are based only 

on the presence or absence of such sub-structure. Also, since these fragment-based 

descriptors are dataset-derived and not predefined, this will open the door to finding new 

sub-structures that are not defined apriori. In addition, they are dataset-specific, and 

therefore provide a better definition of the model applicability domain than apriori defined 

fragments. 
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CHAPTER 3 

IDENTIFYING TWO-DIMENSIONAL (TOPOLOGICAL) 

PHARMACOPHORES/TOXICOPHORES 

INTRODUCTION 

As discussed earlier in Chapter 2, QSAR modeling is fundamentally based on the 

similarity principle implying that similar compounds have similar biological properties. 

Consequently one can predict the biological target property of a molecule from that of 

chemically similar compounds for which the property is known. To build quantitative 

predictive models a similarity metric is required; therefore a unit of measurement such as 

molecular descriptors needs to be identified. Once the descriptors are defined, QSAR 

techniques can be used to relate the chemical structure of a molecule to its target property. 

Variety of molecular descriptors is available for QSAR studies. While some are 

based on describing molecules at atomic level (e.g. electro-negativity, partial charges, 

hydrogen bond acceptor and donor ability, etc.), others are based on describing them at the 

molecular level (e.g. molecular weight, logP, surface area, etc.). While three-dimensional 

(3D) descriptors based on the conformational structure of the molecule are capable of 

distinguishing stereo-isomers and changes in structural conformations, 2D descriptors offer 

the advantage of conformation-independence and much speedier computation. In this 

study, we present a novel approach to generate fragment-based molecular descriptors. 

Unlike molecular descriptors based on physicochemical properties and distances of atoms 
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in the molecule, fragment-based descriptors could potentially provide a mechanistic 

explanation of the dependence of the target property on molecular structure. Such 

explanation especially with respect to the differences between active and inactive 

molecules could provide useful guidance to medicinal chemists with respect to rational 

design of new biologically active chemical entities. 

Having the ideal descriptors by itself is not enough to do QSAR predictions. The 

descriptors should be combined with the appropriate modeling technique to provide the 

best prediction. Based on the nature of the molecular descriptors, one modeling technique 

might perform better than another. In this study we will describe a unique methodology that 

is used with the fragment-based descriptors we identify. 

As explained earlier in Chapter 2, our fragment-based descriptors are derived based 

on frequent common substructures that are found in at least a subset of molecules (this 

fraction is defined as a support value) in the dataset. Once these frequent substructures are 

identified, the occurence of each substructure in each molecule in the dataset is calculated; 

thus each frequent common substructure serves as a chemical descriptor type and the 

occurence becomes a binary descriptor value. In addition, a modeling methodology is 

developed based on identifying frequently associated chemical fragments responsible for 

producing the desired class (activity or toxicity) of the molecules studied. These associated 

fragments are used as rules (Class Association Rules, or simply CARs) that are 

characterized by confidence and support values. These CARs can then be used to build a 

classifier for predicting an external dataset of molecules. The objectives of this study 

include: (a) provide a detailed description of  the frequent subgraph mining approach as 

applied towards developing the fragment-based descriptors; (b) provide a detailed 
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description of the classification method used to utilize these descriptors; (c) validate these 

descriptors and methodology by developing predictive models for several experimental 

datasets; (d) compare the descriptors with the commonly used fingerprints descriptors; (e) 

provide an example of how the models generated can be interpreted to be useful for a 

medicinal chemist; and (f) finally discuss the applications of these descriptors in the drug 

design and development process by providing fragments that can be responsible for the 

target property such as mutagenicity. These examples should be of an interest to many 

researchers in the field who are concerned about toxicity and safety issues. 

COMPUTATIONAL METHODS  

Application of FFSM to chemical datasets to generate closed subgraphs and use them 
as chemical fragments 

In this study, we are only interested in reporting whether the chemical fragment 

occurs or does not occur in each molecule of the dataset. The reason is that the method 

used later in developing models and identifying the pharmacophore/toxicophores needs 

only binary (0 or 1) values for the chemical fragments. Using the same example in Chapter 

2 with same support value (66.7%), we will get the matrix in Figure 3.1. 
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Figure 3.1 Matrix of 1’s and 0’s for the occurrence or not, respectively, of the 
closed subgraphs (chemical fragments) in each molecule in the dataset. 
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Classification based on association (CBA) method 

Classification based on association rules (CBA) is a useful method that can provide 

an interpretable classification models. The method (described in a paper by Liu, B., Hsu, W., 

and Ma, Y., 1998) relies on the integration of two powerful data mining techniques: 

Classification rule mining, which aims to discover a small set of rules in the database to form 

an accurate classifier (Quinlan, 1992, and Breiman et al., 1984); and Association rule mining 

which finds all rules in the database that satisfy some minimum support and minimum 

confidence constraints (Agrawal, and Srikant, 1994). 

Let D be the dataset. Let I be the set of all items in D, and Y be the set of class labels. 

We say that a data case d œ D contains X Œ I, a subset of items, if X Œ d. A class association 

rule (CAR) is an implication of the form X Ø y, where X Œ I, and y œ Y. A rule X Ø y holds 

in D with confidence c if c% of cases in D that contain X are labeled with class y.  The rule 

X Ø y has support s in D if s% of the cases in D contain X and are labeled with class y (Liu, 

B., Hsu, W., and Ma, Y., 1998). In other words: 
 
      || {d œ D | X » y Œ d} || 
  Confidence (X Ø y) = ___________________      (1) 
         || {d œ D | X Œ d} || 

 
      || {d œ D | X » y Œ d} || 
        Support (X Ø y) = ___________________      (2) 
          || D || 

 

CBA consists of two parts: First, generating the complete set of rules (CARs) that 

satisfy the user-specified minimum support (called minsup) and minimum confidence (called 

minconf) constraints; Second, building a classifier by selecting CARs that’s provide the 

highest accuracy for the given dataset. The algorithm for each part is described by Liu, B., 

Hsu, W., and Ma, Y., 1998. 
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The matrix in Figure 3.1 is modified such that each molecule in the dataset shows its 

class (last coloumn) with value of either 1 (indicating activity or toxicity) or 0 (indicating no 

activity or toxicity), see Figure 3.2. 
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Figure 3.2 Matrix of 1’s and 0’s for the occurrence or not, respectively, of the 
closed subgraphs (chemical fragments) in each molecule in the dataset, as well as 
the class label for the molecule. 
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In Figure 3.2, fragments are assigned id’s (a, b, and c) for referral purposes in this 

example. So, when applying the CBA method to the dataset represented in the figure, the 

following CARs can be generated: 

1.   {a} Ø {1}; with 50% confidence, and 33.3% support. 

2.   {b} Ø {1}; with 66.7% confidence, and 66.7% support. 

3.   {c} Ø {1}; with 100% confidence, and 66.7% support. 

4.   {a, b} Ø {1}; with 50% confidence, and 33.3% support. 

5.   {a, c} Ø {1}; with 100% confidence, and 33.3% support. 

6.   {b, c} Ø {1}; with 100% confidence, and 66.7% support. 

7.   {a, b, c} Ø {1}, with 100% confidence, and 33.3% support. 

8.   {a} Ø {0}; with 50% confidence, and 33.3% support. 

9.   {b} Ø {0}; with 33.3% confidence, and 33.3% support. 

10.   {a, b} Ø {0}; with 50% confidence, and 33.3% support. 

 

After that, in building the classifier, the following steps are used. Rules are sorted by 

their confidence first, then by their support. If two rules have same confidence and support, 

the one that is generated earlier comes first. Then, for each rule in the sorted sequence, if the 

rule correctly classifies at least one case, it is marked as a potential rule in the final classifier. 

Those cases covered by that rule are identified and removed. The total error is computed each 

time a rule is added, with the default class being the majority class in the data. The process 

continues until there is no rule or no cases left. Finally, the first rule at which there is the 

least number of errors recorded is identified as the cutoff rule after which all rules are 

discarded since they only produce more errors. The undiscarded rules and the default class 

form the classifier. 

In another approach, after building the classifier, a further step is added to enrich the 

items (chemical fragments) in each rule with other items that are completely correlated with 

them in the dataset. This provides what is called the closed rules. The reason for doing this 
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approach is that is to provide the rules with some background items (chemical fragments) 

that are important for a certain class. These items were not included when building the 

classifier in CBA because simpler rules come first when rules with equal confidence and 

support are found. The results of this approach will be compared to those using CBA alone. 

Therefore, based on the threshold one uses for the minimum confidence and the 

minimum support, different classifiers will be built. Then one can decide which one can be 

accepted as a way to do the external classification for validation of the method. So when 

classifying a molecule from an external dataset, we look at all the accepted rules in the order 

they are sorted in the classifier, and see which rule comes first that is applicable to the 

molecule, and the molecule is classified as having this particular class of that rule, such as 

mutagenic or non-mutagenic. 

Experimental datasets  

Three datasets were used in this study, which are the same as the ones used in 

Chapter 2. The first one included 1217 drug-like molecules with the MRTD (Maximum 

Recommended Therapeutic Dose) as their target property. This dataset was recently 

analyzed by the FDA modeling group (Contrera et al., 2004). Following the approach 

described in the original publication all molecules were divided into two classes based on 

the MRTD cut off value. This results in having 576 molecules with toxicological effect 

(adverse or undesirable pharmacological effect), and 641 molecules without toxicological 

effect. The second dataset is composed of 3434 drug-like molecules with the Salmonella 

mutagenic activity score as the target property. The score ranged from 10 to 80; molecules 

with no mutagenic activity have a score of 10, and the most mutagenic molecules have a 

score of 80. A cut off value is used to divide molecule into 2 classes: mutagenic and non-

mutagenic, and thus resulting in 1615 mutagenic molecule versus 1819 non-mutagenic 
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molecules. This dataset was described in a paper by Votano et al., 2004. The third dataset 

included 195 molecules shown to be substrates (108 molecules) or non-substrates (87 

molecules) of the P-Glycoprotein Protein (PGP). This dataset was analyzed previously in 

our group using several modeling techniques and descriptor sets and its molecules were 

taken from a paper by Penzotti et al., 2002. 

Method validation 

Dataset division into training and external validation sets. As explained earlier 

in Chapter 2, it is commonly accepted to confirm the validity of the modeling method by 

dividing the dataset into training and external validation sets (Benigni et al., 2000; Oloff et 

al., 2006; Trohalaki, Gifford, and Pachter, 2000; Zhang, Golbraikh, and Tropsha, 2006; 

Zhang et al., 2006). Figure 3.3 explains the work flow for the method development, 

division of datasets, and validation of the method. 

Identifying chemical fragments using FFSM. Using support values in the range 

5-10%, closed frequent subgraphs were identified for each dataset and were used as our 

binary chemical fragments descriptors. Notice that we only look as the presence or absence 

of a fragment in each molecule in the dataset. This way we can build classification models 

without having to discretize the values of the descriptors, and then being able to compare it 

later on with the binary fingerprints descriptors. 

Generating rules and building classifiers. Once the chemical fragments are 

identified for the internal training set, we can generate class association rules (CARs) for 

the dataset. Multiple values of the minSupport ranging from 0.1-10%, crossed with 

multiple values of minConfidence range from 50-100% were used to generate the class 

association rules (CARs) followed by building the classifier. Therefore several classifiers 
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were built and the ones with the best accuracies were selected for the external validation. 

The accuracy of prediction for the external dataset will be used to validate the chemical 

fragments. Accuracies will also be compared to those using the closed-rule approach 

described earlier. 
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Figure 3.3 Work flow for the division of the datasets; identifying chemical 
fragments; generation of class association rules; and external validation. 
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Comparison with other molecular descriptors. To illustrate the usefulness of the 

descriptors generated, results obtained using CBA will be compared to those using the 

commonly used fingerprints descriptors. The fingerprints used are the MACCS keys 

fingerprints generated by MOE (Chemical Computing Group Inc.). The number of 

fingerprints provided is 166 feature keys. 

RESULTS AND DISCUSSION  

For the generation of chemical fragments using FFSM, the support values used 

were in the range 5 to 10% of each of the dataset. Only molecules in the internal dataset 

that have the property of interest (e.g., active or toxic molecules) were used in deriving the 

chemical fragments. Then, redundant fragments were eliminated leaving only closed ones. 

Fingerprints (MACCS keys) were generated for the internal dataset as well. Then, using the 

methodology described earlier, classifiers were built for the internal dataset. Several 

classifiers were built (using various confidence and support values) and the ones with the 

highest accuracies (lowest error) were used to predict the class for the molecules in the 

external dataset. 

Results for the Salmonella mutagenicity. Starting with the fingerprints 

descriptors, best CBA classifier was obtained with minSupport in the range 0.05-0.1%, and 

minConfidence of 50-60%. Table 3.1 shows the confusion matrix for this classifier which 

gave a total error of 19.6%. When validating this classifier by predicting the external 

dataset, the total prediction error jumped to 28.2% as shown in Table 3.2. 
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Mutagenic 

 
Non mutagenic 

 
Mutagenic 

 
955 
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Non mutagenic 

 
316 

 
895 

Table 3.1 Internal dataset for Salmonella, has a prediction a total error of 19.6% 
using the fingerprints descriptors. 

 
  

Mutagenic 
 

Non mutagenic 

 
Mutagenic 

 
414 

 
111 

 
Non mutagenic 

 
207 

 
399 

Table 3.2 External validation for Salmonella, has a total error of 28.2% using 
fingerprints descriptors. 

Predicted 
Actual 

Predicted 
Actual 
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When using the chemical fragments derived using FFSM (with an absolute support 

value of 10, and maximum size of fragments limited to 10 atoms), the number of closed 

subgraphs representing the chmical fragments was 23,657. When using these descriptors, 

the best CBA classifier was obtained with minSupport of 0.1%, and minConfidence of 50-

60%. Table 3.3 shows the confusion matrix using this classifier for the internal set with a 

total error of 14.6%. When validating this classifier by predicting the external dataset, the 

total prediction error jumped to 22.0% as shown in Table 3.4. 

Notice that the classifier generated using the fragment-based chemical descriptors 

gave less total error by 5% for the internal and 6% for the external prediction. 
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Non mutagenic 
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1074 

Table 3.3 Internal dataset for Salmonella, has a prediction a total error of 14.6% 
using the fragment-based chemical descriptors. 

 
  

Mutagenic 
 

Non mutagenic 

 
Mutagenic 

 
374 

 
150 

 
Non mutagenic 

 
99 

 
509 

Table 3.4 External validation for Salmonella, has a total error of 22.0% using 
fragment-based chemical descriptors. 

Predicted 
Actual 

Predicted 
Actual 
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Examples of associated fragments for the Ames Mutagenicity dataset 

To demonstrate how this study can be used for interpreting the results, we choose 

the Salmonella Mutagenicity dataset as an example, and we generated class association 

rules (CBA) classifier for the entire dataset of 3,434 molecules, instead of just the internal 

dataset. Using FFSM with an absolute support value of of 34, the number of closed 

subgraphs (chemical fragments) derived was 9,061 fragments. Then, CBA was used to buid 

the classifier with a minConfidence of 50% and a minSupport 0.5%. Table 3.5 shows an 

example selected rules (CARs) with at least a confidence of 90%. Each row represents a 

rule, where the fragments are found associated and responsible for the mutagenicty (Class 

T) or non-mutagenicity (Class F) of a number of molecules in the dataset represented by 

the confidence and support values. These are typically used to classify an unknown 

molecule. 
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Table 3.5 Example of rules used in the classifier built by CBA. 
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Table 3.5 Example of rules used in the classifier built by CBA. 
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Table 3.5 Example of rules used in the classifier built by CBA. 
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Table 3.5 Example of rules used in the classifier built by CBA. 
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Table 3.5 Example of rules used in the classifier built by CBA. 
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Results for the MRTD dataset. For the fingerprints descriptors, best CBA 

classifier was obtained with minSupport of 1% and minConfidence of 50-60%. Table 3.6 

shows the confusion matrix for this classifier which gave a total error of 11.7%. When 

validating this classifier by predicting the external dataset, the total prediction error jumped 

to 28.1% as shown in Table 3.7. 

When using the chemical fragments derived using FFSM (with an absolute support 

value of 5, and maximum size of fragments limited to 10 atoms), the number of closed 

subgraphs representing the chmical fragments was 51,048. When using these descriptors, 

the best CBA classifier was obtained with minSupport of 0.2%, and minConfidence of 50-

60%. Table 3.8 shows the confusion matrix using this classifier for the internal set with a 

total error of 8.2%. When validating this classifier by predicting the external dataset, the 

total prediction error jumped to 26.2% as shown in Table 3.9. 

Notice that the classifier generated using the fragment-based chemical descriptors 

gave slightly less total error by 2% for the internal and 3.5% for the external prediction. 
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354 

Table 3.6 Internal dataset for MRTD, has a prediction a total error of 11.7% using 
the fingerprints descriptors. 
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149 

Table 3.7 External validation for MRTD, has a total error of 28.1% using 
fingerprints descriptors. 

Predicted 
Actual 

Predicted 
Actual 
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391 

Table 3.8 Internal dataset for MRTD, has a prediction a total error of 8.2% using 
the fragment-based chemical descriptors. 
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Non toxic 

 
Toxic 
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52 

 
Non toxic 

 
56 

 
160 

Table 3.9 External validation for MRTD, has a total error of 26.2% using fragment-
based chemical descriptors. 

 

Predicted 
Actual 

Predicted 
Actual 
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Examples of associated fragments for the MRTD dataset 

To demonstrate how this study can be used for interpreting the results, we generated 

class association rules (CBA) classifier for the entire dataset of 1,217 molecules, instead of 

just the internal dataset. Using FFSM with an absolute support value of of 5 with maximum 

size of subgraphs as 8 nodes, the number of closed subgraphs (chemical fragments) derived 

was 25,318 fragments. Then, CBA was used to buid the classifier with a minConfidence of 

50% and a minSupport 1%. Table 3.10 shows an example selected rules (CARs) with at 

least a confidence of 90%. Each row represents a rule, where the fragments are found 

associated and responsible for the toxicity (Class Toxic) or non-toxicity (Class Non) of a 

number of molecules in the dataset represented by the confidence and support values. 

These are typically used to classify an unknown molecule. 
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Table 3.10 Example of rules used in the classifier built by CBA. 
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Table 3.10 Example of rules used in the classifier built by CBA. 
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Table 3.10 Example of rules used in the classifier built by CBA. 
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Table 3.10 Example of rules used in the classifier built by CBA. 
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Table 3.10 Example of rules used in the classifier built by CBA. 
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Table 3.10 Example of rules used in the classifier built by CBA. 
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Table 3.10 Example of rules used in the classifier built by CBA. 



 72

Results for the PGP dataset. The PGP dataset gave a different pattern of results 

unlike those seen with the Salmonella and MRTD datasets. Using the fingerprints 

descriptors, best CBA classifier was obtained with minSupport of 0.1-3% and 

minConfidence of 50-80%. Table 3.11 shows the confusion matrix for this classifier which 

gave a total error of 1.5%. When validating this classifier by predicting the external dataset, 

the total prediction error jumped drastically to 30.2% as shown in Table 3.12. 

When using the chemical fragments derived using FFSM (with an absolute support 

value of 3, and maximum size of fragments limited to 6 atoms), the number of closed 

subgraphs representing the chmical fragments was 2,491. When using these descriptors, the 

best CBA classifier was obtained with minSupport of 2%, and minConfidence of 55%. 

Table 3.13 shows the confusion matrix using this classifier for the internal set with a total 

error of 3.8%. When validating this classifier by predicting the external dataset, the total 

prediction error jumped to 23.8% as shown in Table 3.14. 
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Table 3.11 Internal dataset for PGP, has a prediction a total error of 1.5% using 
the fingerprints descriptors. 
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Inactive 
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28 
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Inactive 

 
12 

 
16 

Table 3.12 External validation for PGP, has a total error of 30.2% using 
fingerprints descriptors. 

Predicted 
Actual 

Predicted 
Actual 
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Table 3.13 Internal dataset for PGP, has a prediction a total error of 3.8% using 
the fragment-based chemical descriptors. 
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Inactive 

 
Active 

 
29 

 
6 

 
Inactive 

 
9 

 
19 

Table 3.14 External validation for PGP, has a total error of 23.8% using fragment-
based chemical descriptors. 

Predicted 
Actual 

Predicted 
Actual 



 75

In the case of the PGP, results were more interesting and are helping us to 

understand the fragment based descriptors better. First thing to notice when comparing the 

fingerprints with the fragment-based descriptors is that the error for the fingerprints was 

lower than that of the fragment-based descriptors (1.5% vs. 3.8%). However, for the 

external set, the predictions using the fragment-based were more accurate; the total error 

using the fingerprints was 30.2% compare to 23.8% for the fragment based descriptors. 

This means that the classifier built for the fingerprints was overfit for the internal dataset 

and failed to predict the external set. However, even for the fragment-based descriptors, the 

change of the total error from 3.8% to 23.8% is a sign of overfit too, but not as bad as that 

of the fingerprints descriptors. 

To further investigate the reason behind this overfitting for the fragment-based 

descriptors, another set of fragment-based descriptors was generated, but this time not 

using only the internal dataset, but the whole dataset (internal and external compined 

together). The absolute support value of FFSM used in this case was 20, resulting in 1082 

closed subgraphs. At the same time, the classifier was built for only the internal (training) 

set and then validated using the external set. Using a minSupport of 1% and a 

minConfidence of 60%, a classifier with total error for the internal dataset of 3.0% was 

obtained, and the total error for the external validation dataset was 17.7%, see Table 3.15 

and Table 3.16. Obviously, prediction accuracy for the internal dataset is slightly better 

this time (total error of 3.8% compared to 3%), and the prediction accuracy for the external 

dataset is much better (total error of 17.7% compared to 23.8%). 
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Table 3.15 Internal dataset for PGP, has a prediction a total error of 3.0% using 
the fragment-based chemical descriptors derived from the whole PGP dataset. 

 
  

Active 
 

Inactive 

 
Active 

 
23 

 
10 

 
Inactive 

 
1 

 
28 

Table 3.16 External validation for PGP, has a total error of 17.7% using fragment-
based chemical descriptors derived from the whole dataset. 

Predicted 
Actual 

Predicted 
Actual 
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Examples of associated fragments for the PGP dataset 

To demonstrate how this study can be used for interpreting the results, we generated 

class association rules (CBA) classifier for the entire dataset of 195 molecules, instead of 

just the internal dataset. Using FFSM with an absolute support value of of 20, the number 

of closed subgraphs (chemical fragments) derived from the whole dataset (not only the 

internal training dataset) was 1,082 fragments. Then, CBA was used to buid the classifier 

with a minConfidence of 60% and a minSupport 1%. Table 3.17 shows an example 

selected rules (CARs) with at least a confidence of 90%. Each row represents a rule, where 

the fragments are found associated and responsible for the activity (Class Active) or 

inactivity (Class Non) of a number of molecules in the dataset represented by the 

confidence and support values. These are typically used to classify an unknown molecule. 
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Table 3.17 Example of rules used in the classifier built by CBA. 
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Table 3.17 Example of rules used in the classifier built by CBA. 
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Table 3.17 Example of rules used in the classifier built by CBA. 
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In conlusion, what these last results telling us is: the chemical-fragments derived are 

highly dependent on the internal training set. In other words, unless a chemical fragment 

occurs frequently enough in the internal training set, we will not be able to find the active 

molecules that contain this fragment. That’s why including the external dataset in deriving 

the fragments gave a better prediction for the external dataset. This is a problem that 

appears particularily in datasets such as the PGP where fragment-based descriptors are 

intended to be used as a way to define the pharmacophores. This problem is a short coming 

of these descriptors as we will discuss shortly, and we will also discuss the solution for that 

problem in summary and future directions in Chapter 5. 

Results of replacing rules in the CBA classifier with the closed rules. Often, we 

have two rules such that one of them has all its items present in the other rule, and both 

rules are completely correlated in their appearance in the datast, and therefore have the 

same confidence and support value. The rule with more items in this case is called the 

closed rules (since it contains the closed frequent patterns), and the other rule would be the 

simple rule, and usually is generated prior the closed rule. Therefore, when building the 

classifier, the simple rule is selected instead of the closed rule. To answer the question 

whether selecting the simplest rule is better than selecting the closed one, each rule that 

was selected by the classifier was replaced by its closed one, and the prediction accuracy 

was calculated for the external dataset. Ofcourse in this case, the accuracy of the internal 

dataset will stay the same since the two rules are completely correlated in the internal 

training set to begin with. 

The accuracies for the external dataset stayed the same in almost all cases for the 

Salmonella and MRTD datasets. But, for the PGP dataset, the accuracy improved by 1.5-
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3.0% for some cases, and stayed the same in the rest of the cases, but never got worse in 

any case. An example of a case where results improved using the closed rules is shown in 

the tables below. In this example, an absolute support value of 5 was used to find frequent 

subgraphs with size no larger than 6 atoms (nodes). The number of closed subgraphs was 

18,907 constituting the fragment-based descriptors. A minConfidence of 66% and a 

minSupport of 7% were used to build the classifier. Table 3.18 shows the prediction 

accuracy for the internal set, and Table 3.19 and Table 3.20 show the prediction accuracy 

for the external dataset using the simple rules and the closed rules, respectively. 
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Table 3.18 Internal dataset for PGP, has a total error of 13.6% using the fragment-
based chemical descriptors. 

 
  

Active 
 

Inactive 

 
Active 

 
28 

 
7 

 
Inactive 

 
10 

 
18 

Table 3.19 External validation for PGP, has a total error of 27.0% using fragment-
based chemical descriptors and simple rules built by CBA. 
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Active 

 
28 
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Inactive 

 
8 

 
20 

Table 3.20 External validation for PGP, has a total error of 23.8% using fragment-
based chemical descriptors and closed rules in place of the simple rules built by 
CBA. 

Predicted 
Actual 

Predicted 
Actual 

Predicted 
Actual 
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Further more, to simulate the use of these classifiers in database screening, the 

external dataset for PGP was dissolved in the Maybridge database of 57,626 molecules 

presumed inactives, and the classifier (for same example in Tables 3.18-3.20) was used to 

screen the database seeded with the external dataset. Table 3.21 shows the accuracy results 

using the simple rules, and Table 3.22 shows the accuracy results using the closed rules. 

Using the closed rules slightly reduced the total error from 14.3% to 12.5%. Another way 

to represent the results of the hit list obtained is by using the Hit Rate (number of actives 

recovered / total hits recovered). Using simple rules built by CBA gave a hit rate of 0.34%, 

while using the closed rules gave a slightly better hit rate of 0.39%. 

These results imply that for datasets such as PGP where the fragment-based 

descriptors are intended to be used for identifying the pharmacophores, using closed rules 

will always improve the prediction accuracy. This is simply due to the inclusion of some 

background fragments that can aid in avoiding the false prediction of inactive molecules as 

active. This can be clearly seen in Tables 3.19 and 3.20, as well as Tables 3.21 and 3.22, 

where the improvement in accuracy came from the reduction of the number of inactive 

compounds that were predicted as active. On the other hand, for datasets such as 

Salmonella and MRTD, fragments responsible for the target property are independent and 

do not rely on some background structure that might be required for activity as was in the 

PGP case. 
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Active 
 

Inactive 

 
Active 

 
28 

 
7 

 
Inactive 

 
8211 

 
49415 

Table 3.21 Screening Maybridge database seeded with the external dataset of 
PGP gave a total error of 14.3% using fragment-based chemical descriptors and 
simple rules built by CBA. 

 
  

Active 
 

Inactive 

 
Active 

 
28 

 
7 

 
Inactive 

 
7212 

 
50414 

Table 3.22 Screening Maybridge database seeded with the external dataset of 
PGP gave a total error of 12.5% using fragment-based chemical descriptors and 
closed rules in place of the simple rules built by CBA. 

Predicted 
Actual 

Predicted 
Actual 
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 Weaknesses and strengths of the descriptors and methodology 

The strength of the descriptors comes from the fact that it can not miss an important 

chemical fragment in a dataset. Since defining all possible combination of atoms will give 

an exponentially large number of chemical fragments, these descriptors can identify the 

fragments related only to that particular dataset of interest. The methodology used to 

handle these descriptors (generating class association rules) provides a high chance of 

predicting external sets with easily interpretable rules to the medicinal chemist. What we 

see as the weekness of this method is the fact that fragments that are interchangeable (i.e., 

have the same physicochemical or pharmacophoric characteristic) will not be treated 

equally, and therefore, unless each of these interchangeable fragments (also known as 

bioisosters) occur frequently enough in the dataset to be used as descriptors, it won’t be 

taken into account when doing the predictions. Also, if you were to explore an external 

database of compounds looking for potential leads, unless all important fragments are 

already discovered in your internal training dataset, you will not be able to come up with a 

lead with fragments different from what you already have in your dataset. This can be 

solved in the future by providing a database of bioisosters for the fragments defined, and 

therefore allowing us to expand the applicability domain of these descriptors to identify 

new leads, as we shall explain summary and future directions in Chapter 5. 

CONCLUSIONS  

As the results show, the fragment-based descriptors can perform at least as good as 

the finger prints, and in some cases better than the fingerprints descriptors. The descriptors 

are further utilized by a methodology that takes care of the combined effect of these 

fragments in predicting the target property of interest, such as activity to a certain receptor, 
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or toxicity or mutagenicity. Medicinal chemists can use these descriptors along with the 

methodology to identify important fragments for future predictions, especially since that 

these descriptors are easily interpretable and understood by any medicinal chemist. 
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CHAPTER 4 

DEVELOPMENT OF POSE-SCORING FUNCTION FOR PROTEIN-LIGAND 

BINDING BASED ON FREQUENT PATTERNS OF INTER-ATOMIC INTERACTIONS 

AT THEIR INTERFACES 

INTRODUCTION 

Structure based drug design (SBDD) is one of the most popular and powerful 

modern methods for computer aided drug design (Brooijmans, N., and Kuntz, I., 2004; 

Kitchen, D., Decornez, H., Furr, J., and Bajorath, J., 2004). Since the first seminal paper on 

SBDD was published in 1982 by the Kuntz group, this approach has been used successfully 

in numerous studies resulting is some cases (such as HIV protease inhibitors) in the design 

of approved drugs (Wlodawer, A., and Vondrasek, J., 1998). Two major components of 

SBDD include docking and scoring.  Docking is the process of finding the correct pose for 

a small molecule in the binding pocket of the protein receptor and scoring typically implies 

the prediction of binding affinity for a pose. Docking and scoring are frequently integrated 

within the same software so the term ‘docking’ is often used in more global sense than 

merely placing a molecule within the binding site.  Most common application of docking is 

screening a virtual or combinatorial library of small molecules to find those that fit into the 

binding site and bind tightly to the receptor. Another application is lead optimization, 

which plays a critical role in the drug discovery process. In lead optimization molecules 

that are expected to be more potent than known compounds are designed by studying and 
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analyzing the ligand orientation in the binding site. Therefore, finding the correct (i.e., 

native) pose of binding is essential in this case and is different from screening (docking) to 

find ligand that bind to the binding site. Initially, several scoring functions have been 

developed to do screening (docking), and these scoring functions perform poorely in 

identifying the correct pose accurately, which is why people converged to docking and then 

using different functions to score relative poses; using in some cases consensus scoring 

(Kitchen et al., 2004; Muegge, I., and Martin, Y., 1999; Verdonk et al., 1997; Klebe et al., 

2003; Wang, R., Lu, Y., and Wang, S., 2003; Vajda, S., and Guarnieri, F., 2006). Although 

numerous robust and accurate algorithms are available to fit the molecule into the binding 

site, there remain significant challenges in developing scoring functions that can find the 

binding ligands, and more importantly accurately identifying the correct binding pose. It is 

widely recognized that the development of accurate scoring functions continues to be a 

major limiting factor in ensuring greater success of SBDD (Kitchen et al., 2004). 

Scoring functions can be generally classified into three types. Force-field-based 

scoring functions rely on explicitly computed electrostatic and van der Waals interaction 

energies between the ligand and the protein. Empirical scoring functions are defined as the 

sum of individual uncorrelated energy terms (such as: free energy of hydrogen bonding, 

ionic interactions, hydrophobic interactions, metallic interactions, rotational entropy, and 

solvation energy) and the regression analysis is used to optimize the regression coefficients 

so that the model reproduces experimental data such as binding energies. Knowledge-based 

scoring functions are designed based on various statistical parameters that could reflect the 

interaction between ligands and receptors such as statistics of pairwise atomic contacts 

(Kitchen et al., 2004). They implicitly capture binding effects that are difficult to model 
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explicitly e.g., hydrophobic interactions. Knowledge-based scoring functions are 

computationally simple allowing for fast and efficient scoring of large sets of ligand 

receptor complexes resulting from docking. On the other hand, their derivation is 

essentially based on information encoded in limited sets of protein-ligand complexes. 

However, this limitation is diminishing due to the exponential increase in the number of 

protein-ligand complexes available through X-ray and NMR studies. Therefore, researchers 

are becoming more interested in exploring these complexes to gather the information 

needed to improve the accuracy docking and scoring. 

Most scoring functions focus on ligand ranking based on their predicted binding 

affinities rather than based on direct scoring of their binding poses with regard to “native-

like” orientation of the docked ligand. Many knowledge based scoring functions are 

derived in the form of pairwise atom interaction pseudopotentials resulting from the 

analysis of interacting atoms at the interface of protein-ligand complexes. For instance, 

PMF (Muegge, I., and Martin, Y., 1999; Muegge, I., 2006), BLEEP (Nobeli, I., Mitchell, 

J., Alex, A., and Thornton, J., 2001), and SMoG2001 (Ishchenko, A., and Shakhnovich, E., 

2002) calculate the potential energy based on the statistical distribution of distances 

between pairs of pre-defined atom types. Some scoring functions define certain regions of 

interactions for each protein amino acid residue that might be occupied by the ligand atoms 

(Moreno, E., and Leon, K., 2002). A different approach designs a library of information for 

250 pre-defined chemical groups showing their preferred geometries, the library is called 

IsoStar (Bruno, I., Cole, J., Lommerse, J., Rowland, R., Taylor, R., and Verdonk, M., 

1997). Another approach designs a database called ReLiBase (Hendlich, M., Bergner, A., 

Gunther, J., and Klebe, G., 2003) for comprehensive analysis of protein-ligand interactions; 
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the database is also used to develop a scoring function called DrugScore (Gohlke, H., 

Hendlich, M., and Klebe, G., 2000). Another interesting approach uses both the 

experimental data to provide preferred geometries as well as analytical functional forms to 

describe the distribution of the experimental data, therefore providing smooth functions to 

calculate the Probabilistic Receptor Potentials for 21 protein atom types (Labute, P., 2001). 

These approaches have been used to do fragment-based de novo design and to look 

at the binding pose, even though they have been developed to rank ligands based on their 

binding affinities, but not to identify accurate binding poses, which makes the results 

inaccurate, as mensioned earlier. Here in this study, we will focus only on identifying the 

correct binding pose. We introduce a novel knowledge-based scoring function that can 

identify efficiently the correct pose among a number of poses (decoys) for a given protein-

ligand complex. The scoring function is derived from the frequent patterns of inter-atomic 

interactions that occur at the interface of crystallographically determined protein-ligand 

complexes. Frequent patterns and their internal coordinates are considered “classical” that a 

test pose of the ligand is scored against to evaluate its “nativity”. More specifically, given a 

number of poses produced by a computational docking program for a ligand in the protein 

binding site, patterns of interaction are identified at the interface of each pose. These 

patterns are then analyzed for their geometrical similarity to “classical” templates and the 

score for each pose is calculated based on the number of native-like patterns as well as the 

frequency of the corresponding “classical” patterns. Thus, the higher the geometric 

similarity and frequency the better the score is.  

We show that the approach that we introduce in this paper was able to accurately 

identify the correct native pose among other computationally generated non-natives poses 
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for 1091 protein-ligand complexes. We also demonstrate that the accuracy of predicting the 

correct binding pose using our approach was significantly higher than using five 

commercially available scoring functions (such as Shapegauss, PLP, Chemgauss, 

Chemscore, and Screenscore) both independently as wells as using their consensus scoring.  

We believe that the approach described herein is different from all scoring methods 

described in the literature. Specifically, it is not limited to using pre-defined chemical 

groups; instead, new patterns can always be derived and scored as long as they occur 

frequently in the experimentally determined protein-ligand complexes. Furthermore, the 

proposed method goes beyond traditional pairwise scoring of interatomic contacts, i.e., it 

employs multiatomic interaction patterns and consequently it should take into account 

inherently the cooperative effect of interaction between proteins and their ligands.  We 

suggest that the scoring method described in this report could be successfully used to refine 

the lists of poses generated by popular docking programs.  

COMPUTATIONAL METHODS 

Dataset of Protein-Ligand Complexes  

The dataset used in this study is the “refined set” of the PDBbind v.2004 (Wang et 

al., 2004; Wang et al., 2005), which is composed of 1,091 protein-ligand complexes. Each 

protein-ligand complex in the “refined set” is characterized by the following parameters:  

1.   It is a crystal structure with an overall resolution ≤ 2.5 °A;  

2.   It is a “clean” binary complex formed between one protein and one ligand;  

3.   It is a non-covalently bound complex without any severe clash between the 

protein and the ligand;  

4.   It has an experimentally determined Kd or Ki value;  
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5.   The ligand consists of only C, N, O, S, P, H, and halogens, and its molecular 

weight is lower than 1,000; and  

6.   There are no unnatural amino acid residues in the binding site of the protein.  

By design, this set is grouped into clusters based on protein sequence similarity. We 

have identified 77 clusters such that all pairs of proteins within one cluster shared 90% or 

greater similarity.  In each cluster we selected three representative members: one with the 

highest binding affinity; one with the lowest binding affinity; and one with the median 

binding affinity. The resulting 231 representative complexes form the “core set” of the 

PDBbind database. For our study, these 231 complexes were selected as the external testing 

set to develop the scoring function, and the remaining part of the refined set (i.e., after 

excluding the 231 core set complexes) composed of 860 complexes were selected as the 

internal training set. 

Graph Representation of the Protein-Ligand Interface 

For each protein-ligand complex in the internal training set, interacting atoms at the 

interface were identified as those within a cut off distance of 3.5 Å. This specific cut off 

was chosen because it covers the majority of the highly specific and directional interactions 

(polar, hydrogen-bond, and charge transfer interactions) as well as non-directional van der 

Waals interactions (Gohlke, H., Hendlich, M., and Klebe, G., 2000). If a water molecule 

was found at the interface, protein and ligand atoms within 3.5 Å of the water molecule 

were also considered interacting. In addition, atoms that are directly bound to these 

interacting atoms were also included as part of the interface. The atoms and bond types 

were assigned according to the notation given in Tripos SYBYL Mol2 file format. 

Connecting the interacting atoms at the protein-ligand interface creates an interaction 
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network that could be regarded as an undirected labeled graph where interacting atom-

vertices are linked by graph edges. Thus, each atom at the interface is represented by a 

labeled node and each intramolecular bond and a non-bonded interacting pair of atoms is 

represented by a labeled edge, see Figure 4.1. 

Each protein-ligand complex will then have at least one connected graph 

representing the inter-atomic interaction between the protein and the ligand at their 

interface (it is theoretically feasible that some protein ligand complexes may have a 

configuration of the interface resulting in two or even more interfacial graphs that would be 

disconnected from each other; see additional discussion vide infra). Therefore, for N 

protein-ligand complexes, we will have at least N connected graphs. As we discuss below, 

the representation of protein ligand interfaces as connected graphs affords the application 

of subgraph mining techniques to extract frequent interaction patterns. 
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Figure 4.1. Inter-atomic interactions at the protein-ligand interface, within a 
distance cutoff 3.15 A°. Protein is “adenosine deaminase”, and ligand is “PRH“ in 
the “1a4m” PDB complex. 
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Application of Frequent Subgraph Mining to Identifying Frequent Atomic 
Interaction Patterns at the Protein-Ligand Interface.  

The interfacial graphs were generated for all 860 protein-ligand complexes in our 

internal training set. Then, the Fast Frequent Subgraph Mining (FFSM) program developed 

in one of our laboratories (Huan, J., Wang, W., and Prins, J., 2003) was used to identify the 

set of subgraphs that occurs in at least a certain fraction (called support value) of these 

graphs. The FFSM has an advantage over existing similar algorithms of being both fast and 

robust; this advantage is based on efficient subgraph enumeration operations, in addition to 

an algebraic graph framework developed to reduce the number of redundant candidates 

proposed. The details of the FFSM algorithm and its applications to the analysis of small 

molecules have been described earlier in Chapter 2 of this dissertation in the computational 

methods section. Another earlier application of the FFSM algorithm to the analysis of 

protein graph families have also been described elsewhere (Huan, J., Wang, W., 

Washington, A., Prins, J., Shah, R., and Tropsha, A., 2004). 

In this study, FFSM was used with a support value of ~5%. Among these frequent 

subgraphs, we were interested only in those that contain both the ligand and protein atom-

vertices, i.e. frequent subgraphs that are composed of only protein atoms or only ligand 

atoms were eliminated. Furthermore we were only interested in closed subgraphs. In graph 

mining, a subgraph is considered closed if it has no super-graph (or parent graph) with the 

same support in the dataset. On the other hand, if a subgraph has the same support as its 

super-graph (i.e., it occurs in the same place every time its super-graph occurs) then it is 

not considered closed and consequently eliminated from the consideration. Please refer to 

the computational methods section in Chapter 2 for more details about identifying closed 
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subgraphs. The closed subgraphs resulting from this analysis naturally correspond to 

frequent patterns of inter-atomic interactions. For each of these patterns we have stored 

both its internal geometric coordinates and its frequency of occurrence in the internal 

training set of protein ligand complexes (see Figure 4.2). These were used in developing 

the scoring function as described below. 
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Figure 4.2. Example of 4 different geometries for an interaction pattern between 
protein and ligand atoms as well as water molecules. 



 99

Deriving the Scoring Function Using Frequent Protein-Ligand Interaction Patterns  

The first step in calculating the score for a given pose of a protein-ligand complex is 

identifying the interface in that complex. As discussed above, we define the interface as 

interactions formed by the protein and ligand atoms that are within 3.5 Å distance cut off; 

and if a water molecule is found, it is also considered part of the interface in addition to any 

atom within the same cut off distance of 3.5 Å from the water molecule. Then, we check 

how many frequent patterns found within the internal training set complexes can be also 

found at the interface and used in scoring the protein-ligand complex’s pose. 

We generally assume that the higher the number of frequent “classical” patterns 

found at the interface of a protein-ligand pose and the more frequent these classical patters 

are, the higher this pose should be scored. We also realize that the better the 

superimposition (i.e. the smaller the Root Mean Square Deviation, RMSD) between the 

pose pattern and the corresponding “classical” pattern, the higher the score should be as 

well. Finally, we suppose that the score should be influenced by the size of the frequent 

pattern identified for the pose, i.e., the score should be higher for bigger patterns. Taking 

these considerations into account, we derive the following formula to score a protein-ligand 

complex, 

             N    M 

   Score = ∑ ∑ |Pi| / (RMSDij+e)                 (1) 
                             i       j 

 

Where N is the total number of frequent (”classical”) patterns found at the interface, 

M is the frequency of the pattern i, and therefore is the number of modes of interaction 

(number of different internal geometric coordinate sets) for that pattern, |Pi| is the size of 
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the pattern Pi (number of protein and ligand atoms in the pattern), and RMSDij is 

calculated for the superimposed pattern Pi with the mode of interaction j at the interface. 

The first summation is over all classical patterns that are found at the interface. The 

second summation reflects the frequency of each pattern and the different modes of 

interaction for each pattern. An RMSD cut off value of 1.0 °A is used to decide if the 

pattern should be included in the scoring function or not. This cut off value defines the 

applicability domain of our knowledge-based scoring function as we will explain later. 

Also, to avoid dividing by zero, an epsilon (e) value of 1*10-60 is added to the RMSD. 

This value is chosen based on the smallest RMSD value that was found during the study 

such that it would not affect the final score. 

Validation of the Scoring Function 

In order to validate the method and test the ability of the scoring function to 

accurately identify the native pose (as determined by x-ray) among those deviating from 

the native structure (i.e., generated computationally), a set of experiments was designed. 

The basic idea behind the experimental design was to simulate the realities of virtual 

screening when the scoring functions derived from the analysis of know protein-ligand 

complexes should be used to predict the binding mode ligands in advance of the 

experimental investigation. 

In the first set of experiments, a large database of protein-ligand complexes was 

divided into two datasets with 1:4 dataset size ratios. The larger dataset (the “internal 

training dataset”) was used to extract the frequent patterns and their modes of interaction, 

and the smaller dataset (the “external test set”) had its ligands removed from each protein-

ligand complex, and then docked back using available computer programs to generate 
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various non-native poses. The challenge was to use the knowledge derived from the large 

dataset (represented by the frequent patterns) to score and accurately identify the correct 

(native) pose among other non-native poses for the external test set complexes. We were 

also interested in comparing the performance of our scoring function vs. other commonly 

used scoring functions. The selection of internal training and external test sets was 

discussed in Methods. 

The non-native (decoy) structures for each protein-ligand complex in the external 

test set were generated as follows: 

1.   Each ligand in the protein-ligand complex was processed by Omega (OpenEye 

Scientific Software, Inc) to produce up to 1,000 conformations. 

2.   Each conformation was docked into its original protein using FRED (OpenEye 

Scientific Software, Inc) to produce no more than 1,000 poses. Only one pose with the best 

score using one of FRED’s internal scoring functions was selected. 

3.   Thus, the number of ligand conformations determined the maximum number of 

non-native poses that could be generated; that is, no more than 1,000 poses were generated 

as non-native poses. 

The scoring function described in formula (1) as well as six scoring functions 

provided by FRED were used to score each of the native and non-native poses for each 

protein-ligand complex. Therefore, for each scoring function, a rank for the native pose 

was given based on its score relative to the scores of the non-native poses for each protein-

ligand complex. Ideally, each scoring function should rank the native pose as number one 

on top of all non-native structures for each complex. Since the number of non-native poses 

varies from one protein-ligand complex to another, a percentage value (in addition to the 
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absolute value) of the rank of native pose was given for each protein-ligand complex. The 

average of the ranks for all protein-ligand complexes illustrates the ability of each scoring 

function to identify native among non-native poses. It also affords the comparison between 

different scoring functions. The following six scoring functions were provided by FRED: 

1.   Shapegauss. (McGann, M., Almond, H., Nicholls, A., Grant, J., and Brown, F., 

2003). 

2.   PLP. (Verkivker et al., 2000). 

3.   Chemgauss. (Developed at OpenEye Inc.). 

4.   Chemscore. (Eldridge et al. 1997). 

5.   Screenscore. (Stahl, M., and Rarey, M., 2001). 

6.   Consensus score: the score that results from equal contribution of all the five 

scores above. 

Figure 4.3 summarizes the workflow of the first experiment designed to validate 

our scoring function. 

To verify the robustness of the method and the pose scoring function, two more sets 

of experiments were designed in addition to the first one. The two additional experiments 

have the same steps but different criteria for splitting the internal training and external test 

set. In the second experiment, the internal/external datasets switched places, i.e., core set 

became the internal training set, and remaining part of the refined set became the external 

test set. In the third experiment, 860 complexes were randomly selected as an internal 

training set, and the 230 remaining complexes were used as a external test set, such that the 

internal training set has completely different protein families than those in the external test 

set. Results of the three experiments were found satisfactory as we shall discuss below. 
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Figure 4.3. Work flow for the validation of the method. 
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RESULTS AND DISCUSSIONS 

Identification of “classical” interaction patterns in the internal training set and 
external test set scoring. 

Graphs for the internal training set of 860 protein ligand complexes were generated 

as described in Methods. As many as 1732 interfacial graphs have been obtained by 

applying contact distance threshold of 3.5 Å, which implies that on average we identify 

nearly two graphs in each complex. The application of FFSM method to identify frequent 

subgraphs that occur in at least 5% of the graphs (i.e., support value of 5%) resulted in 

70,204 frequent subgraphs, among which, 22,584 closed frequent subgraphs were 

identified. These subgraphs correspond to frequent atomic interaction patterns at the 

interface of protein ligand complexes in the internal training set. For every pattern we have 

recorded its frequency (i.e., the number of occurrences in the internal training set) as well 

as its geometric internal coordinates. The size of the patterns ranged from 4 to 13 atoms (or 

nodes) with an average of 9 atoms (or nodes). 

The external test set used for this experiment included 230 protein-ligand 

complexes. As explained above, up to 1,000 non-native poses were generated for each 

protein-ligand complex in the external test set; on average, we have generated 256 poses 

for each ligand.  Each pose including the native one was scored using formula (1) and then, 

the rank of the native pose among all poses was identified using our scoring function vs. six 

scoring functions included with the FRED software. Since the total number of poses 

generated computationally (using Omega and FRED) was different for different protein 

ligand complexes we expressed the rank order of the native structure as percent value (i.e., 

for a protein-ligand complex, the rank order of the native pose was divided by the total 
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number of poses generated for that complex and then multiplied by 100%) instead of 

expressing the rank order as an absolute value. So, for each protein-ligand complex in the 

external test set, the percentage rank order of the native pose among all other non-native 

poses was calculated. Then, the average of this percentage over the entire external test set 

of protein-ligand complexes was calculated. 

Figure 4.4 shows the results of this calculation for each scoring function for 

comparison purposes. The figure shows two scenarios for scoring using our FP-score 

scoring function: first scenario (one before last bar), is when all patterns found at the 

interface are used in scoring. In the second scenarion (last bar), only geometrically (not 

only compositionally) conserved patterns with RMSD value less than 1.0 °A with respect 

to “classical” patterns are used in scoring. Obviously, using the geometrical similarity cut 

off for the patterns used in scoring afforded much better results. In essence the geometrical 

similarity cut-off imposes a limitation on the applicability of internal training set patterns in 

scoring the external test set poses and therefore can be regarded as the applicability domain 

of the scoring function derived from the internal training set: external test set patterns that 

do not share the geometrical similarity to the internal training set patterns (with similar 

composition) are excluded from scoring. 

Figure 4.4 clearly demonstrates that the scoring function developed in this study 

(FP-Score) outperforms all six alternative functions as provided by FRED in iscrimanting 

the native vs. alternative poses. Thus, the average percentage rank for the native pose using 

FP-Score is 9.3% compared to 18.6% for the consensus score (which is the best performing 

scoring function among all those included with FRED). 
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Figure 4.4. Comparison between scoring functions using 231 (core set) as 
external testing set, and the remaining 860 as internal training set. 
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To further demonstrate the FR-Score’s ability to rank the native pose, as well as the 

pose with the smallest RMSD (i.e., the one that is closest to the native pose), Figure 4.5 

shows the number of protein complexes in the external test set (in percentage) that has its 

native pose ranking as top 1, 2, 3, 4, 5, and 6 or more. A comparison with the consensus 

score shows that the FP-score ranks the native as number one on top of all poses in 50% of 

the cases, compared to 32% using the consensus score. The figure also shows that using the 

FP-score, native pose ranked in the top 3 in 97% of the complexes in the external test set, 

compared to 75% using the consensus score. 
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Figure 4.5. The number of protein complexes in the external test set as a function 
of the rank order of the native pose for these complexes. 
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In Figure 4.6, the same analogy was applied for the pose with the smallest RMSD, 

i.e., the pose that is the closest to the native structure. Notice that even though the 

consensus score out performed the FP-score in ranking the pose with the smallest RMSD 

on top of all poses (38% for the consensus compared to 20% for the FP-score). However, 

overall, the pose with the smallest RMSD ranked in the top 4 in 95% of the cases using the 

FP-score compare to 60% using the consensus. 
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Figure 4.6. The number of protein complexes in the external test set as a function 
of the rank order of the pose with the smallest RMSD for these complexes. 
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Figure 4.7 provides an example for one of the protein-ligand complexes in the 

internal training set, the “1nc3”. As the figure shows, the native pose ranked number one 

on top of all other poses using the FP-score. This was observed in 50% of the protein-

ligand complexes in the external test set (as also shown in Figure 4.5). The figure also 

shows that the pose with the closest RMSD value (0.34 °A in this particular case) ranked as 

second after the native structure. Finally, since most of the remaining poses were out of the 

applicability domain, they ranked as third and fourth after the first two poses. 
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Figure 4.7. Rank order as function of RMSD for the protein-ligan complex ”1nc3”. 
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Applying more stringent external test: switching the internal training and external 
test sets. 

To subject our scoring function to a more challenging examination we have inverted the 

definition of the internal and external sets. Thus, a much smaller group of 231 protein-

ligand complexes was now used to derive “classical” patterns using practically the same 

criteria for frequent subgraph mining as in the previous exercise; the only difference was 

that we used a support value of 4% instead of 5% as in the previous case. Our analysis 

identified as many as 422 interfacial graphs, i.e., again almost two such graphs per protein 

ligand complex, on average. The total number of closed frequent subgraphs was 25,057, 

and the size of the patterns ranged from 4 to 13 and averaged on 8 atoms (or nodes). In this 

case we generated up to 500 non-native poses for the external test set of 860 complexes 

with the average of 174 poses for every external test protein-ligand complex.  The poses 

were scored as before using the same set of scoring functions; based on our previous 

experience we have used the pattern geometrical similarity cut-off of 1.0 Å RMSD. 
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Figure 4.8. Comparison between scoring functions using 231 (core set) as internal 
training set, and the remaining 860 as external test set. 
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The results of our experiments are shown in Figure 4.8. Somewhat surprisingly, the 

average rank of the native structure using FP-Score remained practically the same as in the 

previous experiment, i.e., 10% in spite of using a much smaller internal training set. The 

consensus FRED score ranked the native structure at 21.7%. This experiment shows that 

even a small subset of the entire original dataset of 1,091 complexes provides sufficiently 

representative set of interacting atomic patterns at the protein-ligand interface to allow for 

accurate scoring of the native ligand pose for a much larger protein ligand external test set. 

In the third experiment, we placed several protein families in the external test set 

that were completely different from those in the internal training set. 860 protein-ligand 

complexes were selected for the internal training set leaving 231 complexes for the external 

test set. A total of 1712 interfacial graphs were found, and when using a support value of 

6%, 4,809 closed subgraphs were found frequent and used as classical patterns of 

interaction. For the 231 complexes in the external test set, no more than 500 non-native 

poses were generated; the average number of poses was 120. The size of these patterns 

ranged from 4 to 13 with an average of 8 atoms (nodes). Figure 4.9 shows the results of 

this experiment. 
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Figure 4.9. Comparison between scoring functions using 860 complexes as 
internal training set, and the remaining 231 as external test set, where sets have 
different families. 
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The same RMSD cut off value of 1.0 °A was used. FP-Score ranked the native pose 

as the top 14.8% on average compared to 23.2% using the consensus score. The reason 

behind this experiment was to see if patterns derived for the internal training set were 

dependent on the protein families used in the derivation process. Ideally, the “classical” 

patterns of interaction should be dependent only on the atom types and the contact 

geometry regardless of the protein family. The results of this experiment certainly agree 

with this expectation. Nevertheless, when representatives from the same protein families 

were included in both internal training and external test sets the results were slightly better 

(cf. Figures 4.4 and 4.8), which is apparently due to the fact that the internal training and 

external test sets complexes had generally more frequent patterns in common.. 

CONCLUSIONS 

In this paper we described a novel approach to scoring ligand poses that are 

generated in multiple docking experiments.   The method is based on a simple principle of 

comparing the atomic interaction patterns identified at the interface of a external test 

protein-ligand complex with those found frequent (“classical” patterns) in x-ray 

characterized protein-ligand complexes of the internal training set. In order to identify the 

“classical” patterns we have used advanced methods of frequent subgraph mining applied 

to the unique representation of protein ligand interfaces as chemical unidirectional graphs 

with the nodes corresponding to individual atoms and edges defined by physical proximity 

of atom-nodes. Several validation experiments described in this paper have confirmed that 

the frequent “classical” geometric and chemical patterns of interaction are robust, i.e., they 

can be identified as universal even within a relatively small set of reasonably diverse 

protein-ligand complexes.  We have demonstrated that a simple scoring function based on 
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chemical and geometrical similarity between the external test complex-specific interaction 

patterns and the “classical” patterns could fairly accurately distinguish between native and 

decoy poses. Furthermore, the additional tests indicated that our FP scoring function 

identifies the most geometrically native-like pose within top four best scoring poses in 95% 

of external test protein-ligand complexes. We have shown that the FP scoring function 

demonstrated higher accuracy in both distinguishing the native pose vs. decoys and in 

identifying most native like poses than several alternative scoring functions available 

commercially. Unlike the competing functions, the FP scoring function is very simple; it 

does not consider any solvation or entropy effects, or the active site (or the ligand) 

protonation state since only heavy atoms are included in the study and hydrogen atoms are 

disregarded. What makes this function particularly unique is that our fragments are not 

limited to some number of chemical groups defined a priori; instead, new patterns can 

always be derived and analyzed as long as they occur frequently in the dataset. 

As with any empirical scoring function, it was important to define the applicability 

domain (using RMSD cut off values) for the interaction patterns. The applicability domian 

is naturally dependent on the dataset used to derive the “classical” patterns. It restricts the 

conformational flexibility of fragments that can be considered similar to the “classical” 

ones. Our studies have demonstrated that the use of the applicability domain has 

significantly improved the accuracy of scoring. 

This FP scoring function has provided efficient way to identify the correct binding 

modes for protein-ligand complexes. We expect that it will be widely used to improve the 

accuracy of modern docking approaches.  We plan to expand upon this pilot study by 

implementing most efficient frequent subgraph mining approaches as well as looking into 
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different ways of defining atom types. We shall expect further improvement in the 

accuracy of the FP scoring function with the continuing growth in the number of x-ray 

characterized protein ligand complexes stored in such databases as PDBBind (Wang et al., 

2005) and MoAD (Carlson et al., 2005). Finally, we plan to extend the use of frequent 

proten-ligand interaction patterns these patterns towards other structure-based design 

approaches such as de novo design, receptor-based pharmacophore modeling, and 

bioisosteric replacements. 
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 

Discovering new drugs is a long and expensive process. The challenge is to reduce 

both the cost and the time without compromising the efficacy of designed drugs. 

Computer-Assisted Drug Design (CADD) approaches help medicinal chemists prioritize 

synthesis and testing of compounds that are likely to be active. CADD techniques have 

been used successfully to improve the efficiency of the drug discovery process. The 

combination of computational chemistry concepts, robust software, and high-end computer 

hardware are used to assist the medicinal chemists identifying or designing ligands that are 

more likely to interact with the receptor of interest. The main objective of this research is to 

develop novel effective CADD approaches. 

CADD methods can be categorized based on the availability of the three-

dimensional (3D) structure of the target protein. Ligand-based drug design methods are 

used if the structure of the target protein is not known. A commonly used method is the 

Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) approach. It 

generates molecular descriptors for all ligands with known target property (i.e. biological 

activity, toxicity) and uses them in combination with multivariate statistical modeling 

techniques to arrive at predictive activity or property models. The success of this approach 

relies on the robustness of the molecular descriptors used, as well as the strength of the 

statistical technique used to build the predictive models. Most currently available molecular 

descriptors either lack the mechanistic interpretability or are limited by the pre-defined set 
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of chemical fragments that are used in chemotyping of any dataset of interest. The current 

limitations of molecular descriptors used in modern QSAR and cheminformatics research 

underline the significance of this research that is focused on developing dataset-specific 

descriptors based on the frequent sub-structures in the dataset. These frequent sub-

structures will be identified using the graph representation of molecules and the sub-graph 

mining approach, as we shall explain later. The medicinal chemist can easily interpret these 

descriptors. In addition, new important fragments that might have not been defined a priori 

can be discovered. The research question that needs to be answered in the course of this 

project is whether these descriptors can indeed give a better predictive QSAR model as 

compared to those generated with current descriptors. 

Another ligand-based drug design method is the Active Analog Approach. It is used 

to explore active compounds that bind to same target protein in order to identify 

“pharmacophoric” groups responsible for the specific activity; these groups are 

subsequently used to screen chemical databases for new leads. In this research, we tried to 

answer the question whether the frequent sub-structures can be used as novel means to 

identify the pharmacophoric groups and examine their ability to identify new leads in the 

context of the Active Analog Approach. The significance of this particular study rests on 

the fast identification of the pharmacophoric groups for database mining. The advantage of 

our proposed approach is that it does not rely on 3D conformational search of the structures 

and therefore it is highly efficient computationally. In addition to identifying the 

pharmacophoric groups, toxicophores and fragments responsible for mutagenicity have 

also been addressed in this research and can be helpful for doing safety predictions on 

molecules before synthesizing them. 
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If the 3D structure of the target protein is available then structure-based drug design 

methods are used. The most common one and a widely used method is the computational 

“docking”. Here, a database of compounds is screened to identify compounds that can fit 

into the active site of the target protein. This approach has been widely used in hit 

identification and lead optimization. However, there remain significant challenges in the 

application of this approach, in particular in relation to current scoring schemes. With the 

exponential increase in the number of protein-ligand crystal structures in the protein 

databank (PDB), researchers are more interested in exploring the information that can be 

gathered from these structures. In this research, we tried to answer the question whether the 

frequent chemical subgraphs at the protein-ligand interface can be used in devising novel 

accurate scoring functions and docking protocols as compared to current schemes. The 

study can be highly significant and of interest to many researchers in that field. 

SUMMARY AND FUTURE DIRECTIONS OF CHAPTER 2 

Computational QSAR modeling is fundamentally based on the similarity principle, 

which states that “similar compounds have similar biological properties”. Consequently 

one can predict the biological target property of a molecule from that of chemically similar 

compounds for which the property is known. However, to build valid quantitatively 

predictive models a similarity metric is required; therefore a unit of measurement such as 

molecular descriptors needs to be identified. Once the descriptors are defined, QSAR 

techniques can be used to relate the chemical structure of a molecule to its target property. 

In this study, we presented an approach to generate fragment-based molecular 

descriptors. Unlike molecular descriptors based on physicochemical properties and 

distances of atoms in the molecule, fragment-based descriptors could potentially provide a 
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mechanistic explanation of the dependence of the target property on molecular structure. 

Such explanation especially with respect to the differences between active and inactive 

molecules could provide useful guidance to medicinal chemists with respect to rational 

design of new biologically active chemical entities.  

A common trait to other fragment-based chemical descriptors is that fragments are 

identified a priori; thus frequently the total number of such descriptors generated for a 

molecular dataset is exceedingly large (e.g., hundreds or thousands fingerprints are 

generated typically) and/or fragment descriptors are generic. This makes it difficult to build 

robust and statistically predictive QSAR models that uniquely describe the relationship 

between structure and activity of specific datasets such that the derived QSAR models 

could successfully identify novel unique computational hits.  

In our approach, we use a labeled chemical graph representation of molecules and 

employ Fast Frequent Subgraph Mining (FFSM) method developed in our group. Our 

fragment-based descriptors are derived based on frequent common substructures that are 

found in at least a subset of molecules (this fraction is defined as a support value) in the 

dataset. This is followed by removing the smaller substructures correlated with their 

parents leaving only what is called the closed substructures. Once these frequent closed 

substructures are identified, the count of each substructure in each molecule in the dataset 

is calculated; thus each frequent common substructure serves as a chemical descriptor type 

and the frequency becomes a descriptor value. This representation affords the application 

of conventional QSAR modeling techniques to any chemical dataset with measured 

biological activity leading to a novel fragment descriptor based QSAR modeling approach. 
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The counts of each frequent fragment have been used as descriptors in variable 

selection k Nearest Neighbor (kNN) QSAR modeling. Highly predictive models have been 

generated for the datasets used in this study, and were comparable to MolConnZ 

descriptors, which is one of the commonly used molecular descriptors. Frequent subgraphs 

implicated in validated models can afford mechanistic interpretation of the results that are 

easily understood by medicinal chemists in terms of essential pharmacophoric or 

toxicophoric elements responsible for the molecule activity, as we demonstrated in Chapter 

3 of this dissertation using another classification method that can provide a better way of 

interpreting the selected descriptors than kNN does. Also, since these fragment-based 

descriptors are dataset-derived and not predefined, this will open the door to finding new 

sub-structures that are not defined apriori. In addition, they are dataset-specific, and 

therefore provide a better definition of the model applicability domain than apriori defined 

fragments. 

In the future, we would like to improve the way we select the frequent substructures 

specially that the number of these substructures increases quickly with the reduction in the 

support value. In addition, we will look for a better QSAR modeling techniques that can 

best utilize these fragment-based descriptors and their counts to optimize the prediction 

ability of the whole process. 

SUMMARY AND FUTURE DIRECTIONS OF CHAPTER 3 

Having the ideal descriptors by itself is not enough to do QSAR predictions. The 

descriptors should be combined with the appropriate modeling technique to provide the 

best prediction. Based on the nature of the molecular descriptors, one modeling technique 

might perform better than another. In this study we will describe a unique methodology that 
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is used with the fragment-based descriptors we identify. This methodology should provide 

a better interpretation to the models generated than kNN does. 

As explained earlier in Chapter 2, our fragment-based descriptors are derived based 

on frequent common substructures that are found in at least a subset of molecules (this 

fraction is defined as a support value) in the dataset. Once these frequent substructures are 

identified, the occurence of each substructure in each molecule in the dataset is calculated; 

thus each frequent common substructure serves as a chemical descriptor type and the 

occurence becomes a binary descriptor value. In addition, a modeling methodology is 

developed based on identifying frequently associated chemical fragments responsible for 

producing the desired class (activity or toxicity) of the molecules studied. These associated 

fragments are used as rules (Class Association Rules, or simply CARs) that are 

characterized by confidence and support values. These CARs can then be used to build a 

classifier for predicting an external dataset of molecules. 

As the results show, the fragment-based descriptors can perform at least as good as 

the fingerprint descriptors, and in some cases performed better. The descriptors are further 

utilized by a methodology that takes care of the combined effect of these fragments in 

predicting the target property of interest, such as activity to a certain receptor, toxicity or 

mutagenicity. Medicinal chemists can use these descriptors along with the methodology to 

identify important fragments for future predictions, especially since that these descriptors 

are easily interpretable and understood by any medicinal chemist. 

The strength of the descriptors comes from the fact that it can not miss an important 

chemical fragment in a dataset. Since defining all possible combination of atoms will give 

an exponentially large number of chemical fragments, these descriptors can identify the 
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fragments related only to that particular dataset of interest. The methodology used to 

handle these descriptors (generating class association rules) provides a high chance of 

predicting external sets with easily interpretable rules to the medicinal chemist. What we 

see as the weekness of this method is the fact that fragments that are interchangeable (i.e., 

have the same physicochemical or pharmacophoric characteristic) will not be treated 

equally, and therefore, unless each of these interchangeable fragments (also known as 

bioisosters) occur frequently enough in the dataset to be used as descriptors, it won’t be 

taken into account when doing the predictions. Also, if you were to explore an external 

database of compounds looking for potential leads, unless all important fragments are 

already discovered in your internal training dataset, you will not be able to come up with a 

lead with fragments different from what you already have in your dataset. This was clearly 

demonstrated in the PGP dataset. 

To solve this problem, in the future, we would like to use a database of bioisosters 

for the fragments defined, and therefore expand the applicability domain of these 

descriptors and therefore their ability to identify new leads. Implementing the bioisosteric 

replacement concept can be a potential improvement to the method and will aid in 

discovering new leads that can potentially be active. 

SUMMARY AND FUTURE DIRECTIONS OF CHAPTER 4 

Many docking and scoring approaches have been developed over the years in the 

context of structure based drug design. However, there remain significant challenges in 

both developing scoring functions that can identify ligands that bind to the active site 

within a large library of chemical compounds as well as accurately identify the correct 

binding pose. Many scoring functions have been reported in the scientific literature, and it 
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has been shown that most scoring functions perform poorly in identifying the correct pose 

accurately. It has become a common approach to separate the docking and scoring, i.e., 

generate several alternative binding poses using available docking algorithms and then rank 

poses using independent scoring functions or consensus scoring. In our studies, we have 

focused on the problem of identifying the correct binding pose. To this end, we have 

developed a novel knowledge-based scoring function termed Frequent Patterns-based 

Score, or simply FP-Score that can identify efficiently the correct (native or geometrically 

closest to the native) pose among many poses (decoys) for a given protein-ligand complex. 

The FP scoring function is derived based on frequent geometric and chemical patterns of 

inter-atomic interactions at the interface of a representative dataset of x-ray characterized 

protein-ligand complexes. 

The approach includes the following steps. First, the protein-ligand interface of 

each complex in the internal training set is represented by labeled chemical graph where 

nodes are atoms labeled by atom chemotypes and edges connect protein and ligand atoms 

within certain distance of each other. Second, frequent common subgraph mining 

techniques are used to find frequent subgraphs (i.e., interacting atomic patterns) that occur 

in no less than a certain percentage of the complexes in the internal training set. These 

frequent subgraphs are considered as “classical” interaction patterns, which are used in 

scoring each pose in a given protein ligand complex to determine its “native-pose-likeness” 

as follows.  For each pose produced for a ligand in the protein binding site by a 

computational docking program, patterns of interaction are identified at the protein-ligand 

interface. These patterns are then analyzed for their both chemical graph and geometrical 

similarity to “classical” templates. The score for each pose is calculated based on the 



 128

number of classical interaction subgraph patterns, their frequency of occurrence in the 

internal training set, and their similarity to the classical patterns in terms of RMSD. Higher 

geometric similarity and frequency are associated with a better score. 

For our studies we used a set of 1091 protein-ligand complexes in the PDBbind 

databaset that was divided intro internal training (860 complexes) and external test (231) 

sets. Classical patterns were derived for the internal training set and used to score multiple 

docking poses that were generated for each protein in the external test set using FRED 

software from OpenEye.  We showed that FP score ranked the native pose as best for 50% 

of the external test set, and within four top scoring poses for 95% of the external test set 

proteins. The accuracy of predicting the correct binding pose using FP score was 

significantly higher than using five commercially available scoring functions (Shapegauss, 

PLP, Chemgauss, Chemscore, and Screenscore) both independently as well as using their 

consensus scoring.  To the best of our knowledge, the approach described herein is 

different from all scoring methods described in the literature. The FP function is very 

simple; it does not consider any solvation or entropic effects and does not take into account 

the active site (or ligand) protonation state since only heavy atoms are included into the 

consideration. Furthermore, it is not limited to chemical groups defined a priori; instead, 

patterns are derived and scored as long as they occur frequently in the experimentally 

determined dataset of protein-ligand complexes. In addition, FP score goes beyond 

traditional pairwise scoring of interatomic contacts, i.e., it employs multi-atomic interaction 

patterns and consequently it takes into account inherently the cooperative effect of 

interaction between proteins and their ligands. 
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We suggest that the FP scoring function could be successfully used to refine the 

lists of poses generated by docking programs. Thus, we expect it to be used widely to 

improve the accuracy of modern docking/scoring approaches.  We plan to expand upon this 

pilot study by implementing more efficient frequent subgraph mining approaches as well as 

looking into different ways of defining atom chemotypes. We shall expect further 

improvement in the accuracy of the FP scoring function with the continuing growth in the 

number of x-ray characterized protein ligand complexes stored in such databases as 

PDBBind and MoAD. 

The results of this study suggest many uses for frequent chemical and geometric 

patterns of protein-ligand interaction. Besides the obvious use in scoring the interactions 

between ligands and proteins, the analysis of frequent interaction patterns could help 

visualizing the modes of interactions and understanding the mechanisms of interaction. 

Potentially, knowing the active site atoms and frequent patterns they could participate in 

one could think of de novo design of specific ligands; or at least their fragments that can be 

then pieced together as is done in several recent approaches (Vajda, S., 2006; Mauser, H., 

and Stahl, M., 2007)  

Another closely related potential use for these classical interaction patterns is the 

development of the receptor based pharmacophore models, which can be used in traditional 

pharmacophore based screening. Such structure based pharmacophore generating methods 

have become popular and successful in recent years (Wolber, G., and Langer, T., 2005). 

Thus, using nearest neighbor atom patterns in the active site of the protein of interest that 

participate in frequent “classical” interaction patterns one could deduce the corresponding 

3D fragments of the complimentary ligands and use these fragments as pharamacophore 
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queries against a database of multiple conformations of commercially available chemicals 

such as ZINC (Irwin, J., and Shoichet, B., 2005).  

In addition, these patterns can be used to aid in bioisosteric replacements. This can 

be done by identifying fragments from the ligan side that share the same type of atoms on 

the receptor side of the protein. Different fragments which bind to the same region of the 

protein should in theory be interchangeable. Therefore, several bioisosters can be derived 

from these patterns and used for lead optimization and drug design purposes. 
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