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ABSTRACT 

 

Wendy S. Bray: A Study of Teacher Transitions to a Reform-Based Mathematics Curriculum 

in an Urban School: The Interaction of Beliefs, Knowledge, and Classroom Practices 

(Under the direction of Mary Ruth Coleman) 

 

 

 This collective case study examines how four third-grade teachers’ beliefs and 

knowledge influenced their ways of supporting and limiting student thinking in their first 

year using a reform-based mathematics curriculum at an urban school. Of focus is the role 

teachers’ beliefs and knowledge play in supporting and limiting student thinking when 

student difficulties arise during instruction on multiplication and division. Situated in the 

growing body of research associated with current reforms in mathematics education, this 

study is also informed by general education research on urban schools, teacher beliefs, 

teacher knowledge, and teacher change.  

Data sources for case studies on individual teachers include classroom observations, 

pre-/post-observation interviews, beginning/end-of-year measures of teacher beliefs and 

knowledge, records of an on-going mathematics professional development project, and 

student achievement data. Each case study describes teacher’s beliefs and knowledge at the 

beginning and end of the year, presents a case story illuminating the teacher’s patterns of 

response to student difficulties and their relationship to the teacher’s beliefs and knowledge, 

and summarizes data from global measures of teaching. In addition to development of 

multiple case studies, a simultaneous cross-case analysis was undertaken to illuminate 

patterns across cases and increase the potential for generalizing beyond the particular cases.  
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Findings from this study suggest that some aspects of reform-oriented mathematics 

instruction are more readily adopted than others. While beliefs and knowledge both appear to 

influence teacher response to student difficulties, certain aspects of instruction seem more 

greatly influenced by teacher beliefs while others appear more greatly influenced by teacher 

knowledge. In addition, evidence suggests that teachers’ differential classroom experiences 

during initial use of reform-based mathematics curriculum were related to the degree to 

which teachers’ evolving beliefs and knowledge moved closer to alignment with reform-

based mathematics practices. Finally, the urban context of this study was found to influence 

teachers’ transitions to reform-based mathematics teaching practices in a variety of ways.  

Study findings have several implications for efforts to support teachers’ transitions to 

reform-based mathematics programs and practices within and outside of urban school 

settings. These are discussed along with directions for future research.   
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CHAPTER I 

 

INTRODUCTION 

 

 

 
 Overview of Study 

 

 

The reform agenda in mathematics education, exemplified by the National Council of 

Teachers of Mathematics (NCTM) standards documents (1989, 2000), calls for significant 

changes in the ways teachers orchestrate mathematics learning for students. The NCTM 

standards contend that elementary school mathematics should emphasize problem-solving, 

reasoning, and communicating mathematical ideas, which places student thinking and 

conceptual understanding at the center of the instructional agenda. Teachers are challenged to 

develop discourse-rich mathematics learning communities where students devise, share, and 

analyze multiple solution strategies in response to rich mathematics tasks. The new forms of 

teaching and learning required to meet these standards place significant demands on teachers. 

Not only are new kinds of mathematics and pedagogical knowledge required (Ball, 

Lubienski, & Mewborn, 2001; Floden, 1997), but also fundamental changes in beliefs about 

mathematics and mathematics teaching (Franke, Fennema, & Carpenter, 1997; Thompson, 

1992). As a growing number of schools and school districts adopt practices and policies that 

aim to reflect reform in mathematics education (Pugach & Warger, 1996), many teachers and 

classrooms are being left behind. The reasons why are as complex as teaching. But they 
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center on the dramatic changes to teachers’ mathematics instructional practices envisioned by 

these policies. 

Research on teacher change suggests that teachers’ beliefs about and knowledge of 

subject-matter, teaching, and learning influence the ways they revise their teaching practices 

in response to reform recommendations (Richardson & Placier, 2001; Spillane & Jennings, 

1997). If a teacher’s beliefs are in opposition to the pedagogical emphasis of mathematics 

reform or if teachers do not have adequate knowledge to support reform-based mathematics 

teaching practices, then the success of policy initiatives will be limited. This has strong 

implications for the ways reform policies are implemented, particularly at schools serving 

high numbers of children from poverty where teachers traditionally rely on controlled 

classroom environments to build basic skills (Anyon, 1981; Knapp, 1995a). Even though the 

exclusive focus on basic skills is inconsistent with the vision promoted by NCTM, many 

urban school teachers believe strongly that students’ needs demand it. A limited number of 

professional development projects have been successful in helping urban school teachers to 

reform their teaching practices with positive outcomes for students (Campbell, 1996; Fuson, 

Smith, & Lo Cicero, 1997; Hufferd-Ackles, Fuson, & Sherin, 2004; Knapp, 1995b). The 

question is what more can be done to support teacher transition to a reform-based 

mathematics curriculum at urban schools as well as to facilitate the transition for all teachers. 

Recognizing that teachers undergo change in significantly different ways, researchers 

have begun to examine relationships between teachers’ changing beliefs, knowledge, and 

classroom practice (Fennema & Franke, 1992; Franke et al., 1997; Franke, Carpenter, 

Fennema, Ansell, & Behrend, 1998; Richardson & Placier, 2001; Wood, Cobb, & Yackel, 

1991; Yackel, Cobb, & Wood, 1998). Based on this small body of research, the relationship 
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among beliefs, knowledge, and practice appears to be an interactive one in which teacher 

trajectories of change take a variety of paths. Research is needed to explore the interactive 

nature of this relationship as well as the developmental patterns between all three. Such 

research could inform efforts to help teachers that differ in their beliefs, knowledge and 

practice become comfortable following the path of reform-based mathematics in any school 

setting including challenging urban schools.   

 

 

Purpose of Study and Research Questions 

 

 

The purpose of this study is to examine how urban school teachers’ beliefs and 

knowledge influence the ways they support and limit student thinking during their first year 

using a reform-based mathematics curriculum. The school identified for this study is located 

in an urban setting and serves a student population characterized by high-poverty and limited 

English proficiency. By carefully studying a few urban school teachers during a time of 

change, this study aims to contribute to the growing knowledge of how teachers can be 

supported in their efforts to transition to reform-oriented mathematics pedagogy, especially 

in similar urban school settings.  

The following broad questions guided this study: 

1. In what ways and to what extent do teachers support and limit student thinking during 

mathematics instruction in their first year implementing a reform-based mathematics 

curriculum? 

2. How do teachers’ beliefs influence the ways they incorporate student thinking into 

their planning for mathematics instruction and on-the-spot instructional decision-

making in their first year of implementing a reform-based mathematics curriculum? 
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3. How does teacher knowledge of mathematics for teaching influence the ways 

teachers incorporate student thinking in their first year of implementing a reform-

based mathematics curriculum? 

4. How does the urban context, as defined by the research literature and perceived by 

teachers and school leaders, influence mathematics instruction in this urban school?    

These questions are addressed using data from a collective case study of four third-grade 

urban school teachers during their first year implementing a reform-based mathematics 

program.   

 

 

Focus on Teacher Response to Student Difficulties during Problem Solving 

 

 

To limit the scope of this study, the research questions posed are examined by 

focusing on the role teachers’ knowledge and beliefs play in supporting and limiting student 

thinking when student difficulties arise in the context of lessons focused on problem solving. 

Teaching through problem solving is a central tenant of mathematics reform (NCTM, 2000) 

and requires a major shift in pedagogical thinking for many teachers (Franke, Fennema, & 

Carpenter, 1997). Therefore, it was reasoned that a focus on lessons emphasizing problem 

solving would offer optimal opportunity to study teacher transitions to reform-oriented 

mathematics pedagogy. The study of teachers’ response to student difficulties provides an 

informative lens for insight into the influence of teachers’ knowledge and beliefs because, 

when teachers encounter students’ difficulties, on-the-spot decisions must be made and 

action taken. Teachers necessarily rely on their existing knowledge and beliefs to decide how 

to act. Furthermore, since urban schools often serve a high number of students with special 

academic and behavioral needs, a high incidence of student difficulty in these settings is 
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likely. Therefore, study of teachers’ response to student difficulties is especially relevant to 

urban schools.  

 
 

Review of the Literature 

 

 

This study is informed by the growing body of research associated with current 

reforms in mathematics education as well as research on urban schools, teacher beliefs, and 

teacher knowledge. This section will begin by describing the vision of mathematics teaching 

and learning promoted by mathematics-reform with special attention to the role of student 

thinking. Then the challenges teachers face in revising their classroom practices to reflect this 

vision will be discussed, followed by a review of additional challenges associated with urban 

schools. Next, a review of research on teachers’ knowledge and beliefs will be provided with 

focus on their relationship to mathematics teaching practices. Within this discussion, 

knowledge for teaching multiplication and division will be described, as these are the 

mathematics topics of focus during classroom observations for this study. Finally, research 

on teacher change to reform-based mathematics pedagogy will be reviewed.  

 

 

Mathematics Reform and Student Thinking 

 
 

Beginning in the late 1980s, the National Council of Teachers of Mathematics 

(NCTM) proposed and advocated for dramatic changes in the way mathematics instruction is 

organized and taught in K-12 education. In critique of longstanding traditional practices in 

the elementary mathematics classroom, NCTM made the following statement in their 1989 

publication Curriculum and Evaluation Standards for School Mathematics: 



 

 6 

The need for curricular reform in K-4 mathematics is clear. Such reform must address 

both the content and emphasis of the curriculum as well as approaches to instruction. 

A long-standing preoccupation with computations and other traditional skills has 

dominated both what mathematics is taught and the way mathematics is taught at this 

level. As a result, the present K-4 curriculum is narrow in scope; fails to foster 

mathematical insight, reasoning, and problem solving; and emphasizes rote activities. 

Even more significant is that children begin to lose their belief that learning 

mathematics is a sense-making experience. They become passive receivers of rules 

and procedures rather than active participants in creating knowledge (p.15). 

 

In this initial standards document and in a more recent document titled Principles and 

Standards for School Mathematics (2000), NCTM advocates for mathematics curriculum and 

instruction that emphasizes the interwoven development of conceptual understanding and 

procedural knowledge. This approach places problem solving and reasoning at the center of 

the mathematics classroom experience. It also suggests significantly different roles for 

students and teachers.  

Reflecting constructivist views of learning, advocates of reform-based mathematics 

instruction believe that children actively construct increasingly organized structures of 

knowledge and personal understanding by reflecting on and reasoning about experiences in 

relation to their prior knowledge and immediate contexts (von Glasersfeld, 1996). Therefore, 

students’ differential realities and existing knowledge constructions become the starting point 

for conceptually-focused instruction (Wood, Cobb, & Yackel, 1995). Children develop 

increasingly sophisticated understandings by constructing relationships among mathematical 

ideas, extending and applying mathematical knowledge, reflecting on experiences, 

articulating and defending their thinking, and by making mathematical knowledge their own 

(Carpenter & Lehrer, 1999).  

In order to emphasize conceptual understanding and build on student thinking, 

teachers must create learning environments that require significant departure from traditional 
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mathematics instructional practices. In general, such classrooms are places where, 

“…students are encouraged to be curious about mathematical ideas, where they can develop 

their mathematical intuition and analytical capabilities, where they learn to talk about and 

with mathematical expertise" (Franke, Kazemi, & Battey, 2007). Several research efforts 

have illuminated classroom efforts to make students’ mathematical thinking a central feature 

of instruction (Fraivillig, Murphy, & Fuson, 1999; Franke et al., 1997; Hiebert et al., 1997; 

Kazemi & Stipek, 2001; Stigler, Fernandez, & Yoshida, 1996).  

In all classrooms, teachers are the gatekeepers to the kinds of tasks and activities 

students encounter. Tasks that support student thinking are intentionally selected or designed 

with specific mathematical goals in mind, and they are viewed as opportunities for students 

to grapple with mathematics as problem solvers, not rule-followers (Hiebert et al., 1997). In 

reform-oriented mathematics classrooms, tasks are often situated in real-world contexts that 

allow students to use their existing knowledge to explore mathematical ideas before they are 

formally introduced (Carpenter, Fennema, & Franke, 1996). In these classrooms, teachers 

support student thinking by providing ample opportunity for students to solve mathematics-

rich tasks in their own ways (Franke et al., 1997; Stigler et al., 1996) with access to a variety 

of tools and resources to support mathematical thinking (Hiebert et al., 1997). 

In mathematics classrooms that reflect reform principles, teachers are also responsible 

for establishing a classroom culture and norms in which mathematics instruction builds on 

students’ mathematical thinking (Franke et al., 2007). The social culture of the classroom is 

such that a variety of mathematical ideas and methods are valued, mistakes are treated as 

opportunities for learning, and correctness resides in the mathematical argument instead of 

with the teacher or text (Hiebert et al., 1997; Stipek et al., 1998). Classroom norms 
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emphasize discussion, collaboration, and negotiation as ways of fostering shared meaning 

among a community of learners (Cobb, Boufi, McClain, & Whitenack, 1997; Gergen, 1995). 

Students are expected to seek and understand relations among multiple ways of solving 

mathematical problems, and the classroom discourse is consistently focused on this goal. 

Students’ flawed solution strategies are readily incorporated into class discussion in order to 

explore the contradictions in student solutions and provide greater insight into the 

mathematics of focus (Kazemi & Stipek, 2001).  

Sociomathematical norms have been introduced as important mathematics-specific 

norms that constitute what counts as mathematical thinking in the classroom (Yackel & 

Cobb, 1996). Kazemi and Stipek (2001) have identified a pattern of sociomathematical 

norms in classrooms that are associated with a high level of mathematical understanding. In 

these classrooms, it is expected that students explain how they solve problems by providing 

mathematical arguments along with procedural descriptions. Students are expected to seek 

and understand relations among multiple strategies, and the classroom discourse is 

consistently focused on this goal. When students work with a partner or a group, all students 

are individually accountable for understanding, and they are expected to reach consensus 

through mathematical argumentation. Finally, when solutions are presented that contain 

errors, the sociomathematical norm of classroom practice is to explore the contradictions in 

student solutions and use the error as an opportunity to rethink the problem.  

In a study of the relationship between normative patterns of social interaction and 

children’s mathematical thinking, Wood, Williams, and McNeal (2006) found that higher 

levels of student mathematical thinking are evident in reform-oriented classrooms in which 

classroom discourse patterns are characterized by an inquiry/argument classroom culture 
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compared to a strategy reporting classroom culture. In both kinds of classrooms, students 

solve problems in a variety of ways and significant instructional time is dedicated to class 

discussion of students’ varying mathematical solutions. In the strategy reporting classroom 

culture, however, interactions during class discussions were primarily limited to interaction 

between the individual students sharing and the teacher, limiting the involvement and 

learning of the rest of the class. In contrast, the inquiry/argument classroom culture involved 

class members in asking questions and making judgments about the reasonableness of a 

method when their peers are presenting mathematical solutions. This greater level of minds-

on participation in the classroom discourse led to more sophisticated student thinking. This 

study illustrates the importance of the teacher’s role in facilitating classroom discourse in 

ways that simultaneously support the learning of students who are sharing their mathematical 

ideas as well as the other students in the class (Franke et al., 2007).  

Other research studies have found positive correlations between factors associated 

with an instructional emphasis on student thinking and more general measures of 

mathematics student achievement (Franke et al., 2007). Fennema and her colleagues (1996) 

conducted a three-year study of first-grade teachers who were attempting to develop teaching 

practices intentionally grounded in knowledge of student thinking. This study concluded that 

instructional practices most associated with higher student achievement include a focus on 

problem-solving, ample opportunity for students to engage in conversation about 

mathematical ideas, and efforts to adapt instruction to the problem-solving levels of students. 

Similarly, Gearhart (1999) found that better student achievement outcomes were associated 

with problem-rich instruction based on students’ ways of thinking in which students are 

encouraged to see the underlying connections among mathematical concepts and symbols.  
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Clearly, instruction focused on student thinking changes the nature of the teacher’s 

role in the classroom. Fraivillig, Murphy, and Fuson (1999) have devised a pedagogical 

framework elaborating the teacher’s role in advancing children’s mathematical thinking 

through classroom interaction. The three overlapping components comprised in this 

framework include the teacher’s role in eliciting children’s solution methods, supporting 

children’s conceptual understanding, and extending children’s mathematical thinking. The 

first component, eliciting children’s solution methods, focuses on the strategies teachers use 

to give students opportunity and encouragement to express their mathematical thinking. 

Other research has also highlighted the importance of teachers eliciting student thinking in 

informal and group interactions (Franke et al., 1997; Stigler et al., 1996). Strategies used to 

elicit student thinking provide a window for the teacher into understanding how children are 

thinking about mathematics. By skillfully orchestrating class discussions focused on 

students’ many ways to solve a problem, the teacher can simultaneously facilitate group 

learning and engage in assessment of the thinking of individuals and the group.  

The second component of the Fraivillig et al. (1999) framework for advancing 

children’s thinking is supporting children’s conceptual understanding within the context of 

social interaction between the teacher and an individual student or in the context of group 

discussion. This component focuses on how the teacher might support children in devising 

and understanding solution methods that are within their current cognitive capabilities 

without telling them exactly what to do. Strategies that fall within this component aim to 

support the individual problem solver as well as other students who are listening and learning 

from a discussion centered on multiple strategies. This distinction highlights the multiple 

roles the teachers play in supporting student thinking in the classroom setting. A teacher 
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might record students’ solution methods on the board as a way of scaffolding the problem 

solver explaining her solution while at the same time aiming to support the other students 

who are trying to make sense of the solution. If the problem solver hits a sticking point, the 

teacher may ask the class to help the student work through it. This action primarily supports 

the thinking of the student describing a solution, but it also supports the other students in 

maintaining engagement and considering the problem from the perspective of the given 

solution.  

While the eliciting and supporting components of the Fraivillig et al. (1999) 

framework elaborate how teachers might facilitate children’s understanding of familiar 

solution methods, the final component focuses on strategies that aim to challenge and extend 

children’s current mathematical thinking. Strategies that aim to extend children’s thinking 

encourage students to press beyond their initial solutions to understand alternative solutions. 

Students are encouraged to analyze and reflect on patterns, draw generalizations across 

various student strategies, and to consider relationships among mathematical concepts. This 

component also includes some strategies that aim to influence students’ dispositions toward 

mathematics, including fostering perseverance and a love of challenge. 

Although the vision promoted by the NCTM standards documents and supported by 

over two decades of research has pointed toward reform that places student thinking at the 

center of the mathematics classroom experience, the widespread realization of this vision in 

classrooms across the United States has yet to occur (Ball, 2001). In the next section, I will 

explore factors that influence the way teachers respond to mathematics-reformers calls for 

change, especially change related to the role of student thinking.  
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The Challenge of Reforming Mathematics Teaching 

 

 

 National reform efforts in mathematics education have had widespread impact on 

general education curriculum policy, with most states revising state curriculum documents to 

align with the NCTM standards (Pugach & Warger, 1996). Yet many teachers, the front-line 

implementers of reform-ideas, have not made the dramatic changes to their mathematics 

instructional practices envisioned by these policies (Spillane & Jennings, 1997). Some would 

say that this is because teachers are resistant to change (McLaughlin, 1987). However, an 

alternative view that is increasingly accepted is that teaching is a more complex activity than 

has been historically acknowledged (Ernest, 1989; Richardson & Placier, 2001). This seems 

especially true of the current mathematics-reform efforts that call for teachers to emphasize 

student thinking.  

 There have been several publications of teacher narratives and university researcher’s 

first-person accounts of attempts to teach in ways consistent with the NCTM standards that 

highlight the complexity and tension inherent in this work (Ball, 1996, 2001; Heaton, 2000; 

Lampert, 2001; Schifter, 1996; Schifter & Fosnot, 1993). Challenges that are frequently cited 

include the difficulty in figuring out what children really understand and trying to determine 

how to best follow-up on student ideas. When instruction places student thinking at the 

center, teachers cannot know ahead of time exactly how a lesson will unfold. This kind of 

teaching presents teachers with the constant challenge of working “on-the-fly” to understand 

student thinking and to make decisions about which ideas to move forward with and which to 

leave alone. Student thinking itself is a dynamic phenomena and can never be known for 

certain.  



 

 13 

 Sherin (2002a) compares facilitating classroom discussion of student ideas to a 

balancing act. She describes the constant tension between attempting to support student-

centered processes of classroom discourse while, at the same time, facilitating discussion of 

significant mathematics content. These kinds of discussions also challenge teachers to 

facilitate classroom discourse such that students do the majority of the intellectual work of 

unpacking mathematical ideas such that they are comprehensible to classmates (Franke et al., 

2007). For the teacher, this involves cultivating questioning techniques that focus students’ 

attention on important mathematical ideas while at the same time being careful to avoid 

funneling the conversation such that the teacher takes on the majority of the intellectual work 

(Wood, 1998). At the same time, the teacher is responsible for facilitating class discussions 

such that all students participate in active and productive ways (Williams & Baxter, 1996). 

These tensions make teaching mathematics more like improvisation than a choreographed 

dance (Heaton, 2000). 

 Teachers accustomed to deriving personal teaching efficacy from successful 

implementation of well-prepared, teacher-centered presentations must be willing to embrace 

the uncertainty inherent in teaching practices aligned with mathematics-reform (Cooney & 

Shealy, 1997; Smith, 1996). Furthermore, as teachers transform their classrooms into 

discourse communities, there are greater opportunities for students to reveal their 

understandings and misunderstandings. This circumstance makes it likely that teachers will 

become more aware of what students do not fully understand (Ball, 1996).  

 Reform-oriented teaching relies on teachers holding the knowledge, skills, and 

dispositions that support such teaching (Sowder, 2007; Spillane & Zeuli, 1999). In order to 

interpret and build on student thinking, teachers need strong and flexible knowledge of 



 

 14 

school mathematics, knowledge of how students learn mathematics, and extensive 

pedagogical knowledge (Ball et al., 2001). In discussing findings from a study of teachers as 

they begin to explore multiple solutions for mathematics problems with their students, Silver, 

Ghousseini, Gosen, Charalambous, and Strawhun (2005) make the following observation: 

If teachers lack a sound, flexible knowledge of mathematics and of children's 

thinking, they may be more inclined toward managing multiple solutions through a 

ritualized "show-and-tell" practice, which allows them to avoid the complexity of 

choosing certain solutions, arranging them in a sequence, and connecting them to 

extract and highlight important mathematical points (p.298). 

 

These researchers found that teachers became more willing and capable of productively 

incorporating multiple student-generated solutions into their mathematics instruction as they 

became increasingly aware of particular pedagogical techniques that could be used to make 

discussion of student solutions work toward their instructional goals. In addition to needing a 

robust knowledge base for reform-oriented mathematics teaching, teachers must hold beliefs 

that support an orientation toward mathematics instruction aligned with mathematics-reform.  

Thompson, Phillip, Thompson, and Boyd (1994) draw distinctions between how 

teachers with a calculational orientation and a conceptual orientation engage students in 

classroom discourse around student-generated mathematical solutions. When working with 

contextualized tasks, teachers with a conceptual orientation continually focus students on 

making sense of numbers in relation to problem contexts and mathematical ideas. In contrast, 

teachers with a calculational orientation tend to focus on having students report procedures 

for getting answers without pressing them to justify their procedures in relation to problem 

contexts. While the teachers studied were implementing specific practices associated with 

reform-oriented mathematics instruction by engaging students in discussion around student-

generated solutions, only the teachers with a conceptual orientation were doing so in a 
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manner consistent with the principles of reform. It is important for teachers to hold beliefs 

that support an orientation toward mathematics instruction aligned with mathematics-reform 

in these types of situations, but it becomes essential when teachers must defend the new ways 

of teaching. 

 Teachers who engage in reform-based mathematics practices often find themselves 

having to explain these new ways of teaching to administrators, parents, and students who are 

accustomed to different kinds of mathematics instruction (Ball, 1996). Cooney (1985) 

describes a first-year teacher who began the school year with a clear vision of a new way to 

teach mathematics, but resistance from students and pressures to cover the curriculum 

convinced him to retreat to more traditional practices. Silver et al. (2005) have also found 

many teachers are resistant to incorporating particular recommendations of reform due to 

time constraints and perceived conflict between implementing reform-based practices and 

being able to cover the curriculum.  

In all schools, teachers attempting to adopt reform-based mathematics pedagogy face 

an array of challenges. Teachers in urban schools face additional challenges. Next, I will 

briefly review challenges associated with urbanicity.  

 

 

The Challenge of Urbanicity 

 

 

Obiakor and Beachum (2005) assert that urban areas have certain characteristics with 

implications for education: They are densely populated, increasingly populated by ethnically 

diverse people, and negatively affected by poverty. Drawing on data from several national 

surveys, Lippman, Burns, and McArthur (1996) report large differences between urban and 

non-urban schools on a variety of indicators related to student background, school 
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experiences, and student outcomes. Trends indicate that the proportion of urban school 

students who are living in poverty or have difficulty speaking English is on the rise. Urban 

students are more likely to be exposed to safety and health risks, and they are less likely to 

have the family structure, economic security, and stability that are most associated with 

desirable education outcomes. Urban school students are more likely than their suburban and 

rural school counterparts to have changed schools frequently, and they are more likely to be 

absent from school. Compared to their suburban and rural counterparts, teachers in urban 

schools report having fewer resources, less control over the curriculum, and higher levels of 

student behavior problems. 

Lippman et al. (1996) found many of these trends to be magnified in urban schools 

that are also characterized by high concentrations of students in poverty. While the 

challenges presented by urbanicity and poverty are sure to place additional demands on 

teachers, this report also challenges the perception that urban schools with the highest 

poverty concentrations are always much worse off than other schools. This study reports high 

variation among schools, suggesting that some urban schools are successfully meeting the 

challenges that face them.  

In a large-scale study of successful high-poverty schools, Knapp and his colleagues 

(Knapp, 1995b) found that the more teachers focused on teaching mathematics in ways that 

emphasize conceptual understanding, the more likely students were to demonstrate 

proficiency in problem-solving. However, many teachers in urban, high-poverty schools do 

not provide meaning-centered instruction that emphasizes conceptual understanding (Anyon, 

1981; Haberman, 1991). This finding points to an additional challenge for those who 
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promote mathematics-reforms that emphasize student thinking in urban, high-poverty 

schools.  

Many factors appear to influence the ways teachers approach mathematics instruction 

in their classrooms. As the act of teaching has been recognized as complex, researchers have 

also begun to better understand the role teachers’ cognitions play in instructional decision-

making and teacher behavior. As was touched on previously, researchers have come to 

believe that a teacher’s beliefs and knowledge strongly influence how she understands the 

recommendations of mathematics-reform (Spillane & Zeuli, 1999) and how she engages in 

mathematics instruction in her classroom (Calderhead, 1996; Ernest, 1989; Fennema & 

Franke, 1992; Schoenfeld, 1998, 2000; Thompson, 1992). Fennema and Franke (1992) 

suggest that the relationship between beliefs, knowledge, and practice is an interactive one. 

They posit that, “Within a given context, teachers' knowledge of content interacts with 

knowledge of pedagogy and students' cognitions and combines with beliefs to create a unique 

set of knowledge that drives classroom behavior” (p.162). The sections that follow will 

elaborate more fully on how teachers’ knowledge and beliefs are thought to influence 

mathematics teaching.  

 

 

Knowledge for Teaching Mathematics 

 

 

There is common agreement that what a teacher is able to do instructionally relies to a 

great extent on her knowledge base and how she is able to mobilize that knowledge in the act 

of teaching (Fennema & Franke, 1992; Hill, Sleep, Lewis, & Ball, 2007; Schoenfeld, 1998). 

Following decades of research on general pedagogical knowledge needed for teaching, 

Shulman (1986) played an instrumental role in shifting attention to the importance of subject 
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matter knowledge, calling it the missing paradigm in research on teaching. Although there is 

not yet a consensus on the knowledge needed to teach mathematics (Ball et al., 2001), much 

headway has been made in exploring the various kinds of knowledge that support teaching 

(Borko & Putnam, 1996; Ernest, 1989; Fennema & Franke, 1992; Hill et al., 2007; Shulman, 

1986, 1987) as well as how that knowledge is mobilized in the act of teaching (Leinhardt, 

1993; Schoenfeld, 1998, 2000; Sherin, 2002b).  

Borko and Putnam (1996) identify three main categories of knowledge that support 

teaching: 1) general pedagogical knowledge, 2) subject-matter knowledge, and 3) 

pedagogical content knowledge. General pedagogical knowledge refers to important 

knowledge about teaching, learners, and learning that transcends particular subject matter 

domains. This includes knowledge about effective strategies for planning, classroom 

routines, conducting lessons, and classroom management as well as general knowledge about 

how children think and learn. Subject-matter knowledge refers to knowledge of the discipline 

of mathematics that is not unique to teaching. This includes knowledge of the important 

facts, concepts, and procedures as well as knowledge of the concepts underlying the 

procedures and relationships between important concepts and mathematical ideas.  

The third category of knowledge identified by Borko and Putnam, pedagogical 

content knowledge, refers to the unique set of subject matter knowledge used in teaching. As 

first described by Shulman (1986), pedagogical content knowledge includes, “the ways of 

representing and formulating the subject that make it comprehensible to others,” and, “…an 

understanding of what makes learning of specific topics easy or difficult: the conceptions and 

preconceptions that students of different ages and backgrounds bring with them to the 

learning of those most frequently taught topics and lessons” (p. 9). Also included is the 
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knowledge needed by teachers of the instructional strategies that will help students to 

reorganize and deepen their understanding of subject matter. Grossman (1990) elaborated on 

Shulman’s initial description of pedagogical content knowledge to include knowledge of 

curriculum and curricular materials. Other researchers have highlighted the importance of 

understanding student cognitions in particular mathematics domains (Fennema & Franke, 

1992).  

Thompson and Thompson’s (1994) description of one teacher’s work with an 

individual student on understanding the concept of rates highlights the importance of 

pedagogical content knowledge. In a one-on-one tutoring session, the teacher focused on 

procedural, algorithmic aspects of problems posed, assuming that his student’s correct 

answers were evidence that she understood the concepts underlying the procedures. When 

the student became stuck, the teacher was unable to recognize the source of her difficulty. In 

this case, the teacher held a strong personal understanding of the concept he was teaching, 

but his understanding was not flexible enough to consider multiple ways of thinking about 

rates or the trajectory of his student’s mathematical understandings.  

Beyond an understanding of the knowledge needed for teaching mathematics is a 

need to consider how that knowledge is accessed and used in teaching. Teaching is a 

complex activity that involves negotiating among multiple goals simultaneously in an 

environment (the classroom) with large information-processing demands (Leinhardt, 1993). 

As teachers struggle to deal with complexities in subject-matter, some of their attention 

necessarily moves away from other foci. The complexities of teaching can be reduced if 

teachers choose to ignore the informational inputs of students (e.g., student thinking) and 

stick to structured, teacher-centered lesson plans. Conversely, as teachers attempt to focus 
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their cognitive attention on managing a class discussion of the varied mathematical solutions 

provided by students, they sometimes have difficulty staying focused on mathematics content 

goals (Williams & Baxter, 1996). Montero-Sieburth (1989) asserts that the complexities of 

teaching are compounded in the urban school context: 

Today's urban teachers are in a tenuous position. Research evidence has shown that 

teachers within impoverished urban schools are, at best, so encapsulated and 

overwhelmed by the demands of their teaching environments that they can barely 

function. They carry theory around in their heads, but they often do not know how to 

apply this knowledge in the given context because they are so immersed in practice. 

Urban teachers in the thick of their routines hardly have the time or energy to reflect 

on their experiences or their teaching styles (p.337).  

 

It is important to consider the extent to which and how teachers organize their knowledge 

such that it can be efficiently accessed while teaching.  

In the educational psychology literature, it is widely accepted that humans organize 

their experiences and subsequent knowledge in schemata that help to make sense of their 

experiences in increasingly efficient ways. In expert-novice studies of teaching, expert 

teachers have been found to have much more elaborate, interconnected, and flexible 

cognitive schemata than novices (Borko & Livingston, 1989; Leinhardt, 1993). Leinhardt and 

her colleagues (Leinhardt, 1993; Leinhardt, Putnam, Stein, & Baxter, 1991) identify some 

varieties of schema that teachers use to organize their teaching. These include agendas, 

routines, and curriculum scripts. Schoenfeld (1998; 2000) describes a similar set of 

constructs that he calls lesson images and action plans.  

 An agenda is the teacher’s dynamic “mental notepad” for a lesson (Leinhardt, 1993). 

Schoenfeld (1998; 2000) discusses a similar construct that he calls a lesson image. He 

describes the lesson image as, “everything the teacher envisions happening in the lesson – the 

day’s sequence, the forms of interaction with students, what is flexible and what is not, and 
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his or her sense of how the discussion will go” (Schoenfeld, 2000, p.250). The primary 

function of an agenda or a lesson image is to provide a conceptual roadmap charting the 

direction of a lesson. It includes the overarching goals and anticipated actions of a lesson and 

focuses primarily on the non-routine parts of that lesson. In general, experts incorporate more 

detail into their agendas than novices, and they have a better sense of how a given lesson will 

play out (Leinhardt, 1993). Expert agendas typically include an image of teacher and student 

actions, anticipation of student responses, plans for checking student learning at multiple 

points in the lesson, and subsequent branched plans based on assessment of student 

understanding. In contrast, novice agendas focus on plans for teacher moves, with little 

attention to student response, and include few contingency plans. With limited pedagogical 

content knowledge, especially knowledge of student cognitions, a teacher is limited in her 

ability to devise an agenda or lesson image that will adequately facilitate a reform-oriented 

mathematics lesson (Smith, 2000). 

 Schoenfeld (1998; 2000) identifies action plans as mechanisms for accomplishing 

goals while teaching. Routines and scripts are two types of action plans that are frequently 

used. Routines are social scripts that facilitate management and classroom norms (Leinhardt, 

1993). Established routines are necessary in teaching because they help to reduce the 

teacher’s cognitive load and facilitate focus on non-routine aspects of teaching. Routines can 

meet a diverse array of goals, from distribution of supplies to establishing norms for 

classroom discourse. Sherin (2002a) describes a teacher who developed a filtering strategy 

for classroom discussion of mathematical ideas. First she elicited solution strategies from 

several students; then she made a decision about what to filter out and focus on in order to 

address established mathematical goals. Through this routine, the teacher was able to utilize 
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student ideas and strategies while ensuring that her class focused on established mathematics 

goals. Routines serve an essential role in classroom teaching, but they also can be limiting: 

When teachers wish to modify their teaching, they often adopt the large pieces of a 

new reform (e.g., small group, cooperative teams, problem-centered inquiry, etc.), but 

they keep the old routines for producing and sharing knowledge. This has two 

consequences: First, the new system does not work, and they have management 

problems; second, the class receives mixed implicit messages. The conflict of 

routines with philosophies or social organization creates serious difficulties 

(Leinhardt, 1993, p.18). 

 

As teachers transition to reform-based mathematics pedagogy it is important that they 

intentionally cultivate new routines that support new goals.  

 Curriculum scripts (Leinhardt et al., 1991) or scripts (Schoenfeld, 2000) are action 

plans that detail content-specific scenarios for ways in which segments of instruction will 

play out. Scripts can be flexible and interactive with spaces for student actions or they can be 

more rigid, following a specific progression of teacher-determined ideas. These scripts are 

derived from a conglomeration of subject-matter knowledge and pedagogical content 

knowledge that can be easily accessed in the course of a lesson. Sherin (2002b) uses the term 

content knowledge complexes to describe these interwoven pieces of knowledge. Because of 

the way these aspects of knowledge are interwoven and accessed together, she suggests that 

they represent larger elements of accessible teacher knowledge that cannot be characterized 

as solely subject-matter knowledge or pedagogical content knowledge.  

Explanations (Leinhardt et al., 1991) or mini-lectures (Schoenfeld, 1998) are special 

cases of scripts that involve packaged information that a teacher may plan to share in the 

course of a lesson or that the teacher has ready to share in response to a student question. 

These often involve carefully selected representations that will aid students in understanding 

the content at hand. Compared to novices, expert teachers are found to have a greater number 
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of contingency explanations that they can turn to if needed (Leinhardt, 1993). Carpenter, 

Fennema, Peterson, & Carey conducted a study (1988) of how first grade teachers use their 

pedagogical content knowledge of children’s solutions to addition and subtraction word 

problems during instruction. This study found that most teachers could identify essential 

elements of problems as well as common student strategies. However, this information did 

not seem to be organized in ways that supported teachers in making instructional decisions 

that utilized this knowledge. Given the uncertain nature of classrooms that focus on student 

thinking, knowledge of alternative explanations and representations that can be accessed at a 

moment’s notice seems especially important. 

It is important to keep in mind that teachers do not always have subject-matter and 

pedagogical content knowledge to support instruction that builds on student thinking. Lehrer 

and Franke (1992) compare the way a first-grade teacher, Ms. Jackson, approached 

instruction on addition/subtraction concepts to the way she approached instruction on 

fractions. Ms. Jackson’s measured knowledge of fractions was much less developed than her 

knowledge of addition and subtraction, and her methods of instruction were also notably 

different in these two content areas. While teaching addition and subtraction concepts, the 

central activity of Ms. Jackson’s class was problem solving using a variety of problem types. 

Ms. Jackson orchestrated class discussions in which she intentionally elicited a variety of 

student strategies and supported students in making sense of the mathematical ideas 

presented by their classmates. During instruction on fractions concepts, Ms. Jackson directed 

students' interactions to a much greater extent, and she was much less likely to ask clarifying 

questions or pose a problem that built on the ideas presented by students.  
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Warfield (2001) argues that the depth, breadth, and organization of teachers' 

mathematical knowledge for teaching influences their abilities to attend to and build on the 

mathematical thinking of children in their classes. Teachers’ knowledge of children's 

thinking and the mathematics they teach influences the extent to which teachers can critically 

examine their students’ thinking to determine if it is mathematically valid. Additionally, 

limits in teachers’ knowledge impact teachers’ abilities to pose questions, respond to 

students’ novel ideas and strategies, and press children to extend their thinking.  

It is clear that teaching mathematics in ways that honor student thinking requires 

greater amounts and varied types of knowledge. Furthermore, this knowledge needs to be 

organized in a way that makes it useful as teachers plan and implement instruction. The 

content of a teacher’s knowledge base as well as its organization appears to facilitate and 

limit the ways in which teachers are capable of supporting and extending student thinking.  

Next a brief discussion of knowledge thought to support reform-oriented teaching of 

multiplication and division will be presented, since these are the mathematics topics of focus 

in the data for this research. Rather than providing an exhaustive review of the literature 

pertinent to knowledge for teaching multiplication and division, the section that follows is 

designed to selectively preview aspects of knowledge for teaching multiplication and 

division that are particularly relevant to the classroom lessons observed.  Therefore, concepts 

reviewed in the section that follows are considered central to understanding and interpreting 

the findings of this study.  
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Knowledge for Teaching Multiplication and Division 

 

 

 This discussion of knowledge for teaching multiplication and division begins with an 

overview of problem types and their relationship to students’ initial problem solving 

strategies. Next, students’ progression through increasingly efficient strategies for single-

digit multiplication and related division problems will be reviewed, with particular attention 

to things that influence strategy use. This will be followed by a brief discussion of the array 

model for multiplication and division. Finally, students’ strategies and learning trajectory for 

multidigit multiplication will be described. 

There are a variety of situations that can be represented by multiplication and 

division. These situations can be classified into symmetric and non-symmetric problem types 

(Greer, 1992). Symmetric problem types include array problems, area problems, and 

combinations problems. Non-symmetric problem types include problems involving equal 

groupings of discrete objects, rate problems, and multiplicative comparison problems. It is 

important for teachers to have a conception of multiplication and division that includes these 

various problem types for students to encounter multiplication and division problems that 

encourage different kinds of thinking and involve different kinds of quantities. For instance, 

students’ initial development of multiplication and division understanding is supported by 

problems involving equal groupings of discrete objects. But rate problems, multiplicative 

comparison problems, and area problems can be extended to rational numbers. Exposure to 

these additional problem types helps to lay the foundation for multiplication and division of 

fractions in later grades (Carpenter, Fennema, Franke, Empson, & Levi, 1999). 

Understanding how problem structures underlie children’s ways of thinking about 

mathematics problem types is an important element of knowledge for teaching mathematics 
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in a manner that builds on student thinking (Carpenter et al., 1996; Franke et al., 2007). 

Multiplication and division instruction often begins with equal-grouping problems. This type 

of problem involves three quantities: a) the number of groups, b) the number of objects in a 

group, and c) the total number of objects. The quantities known and missing determine the 

type of equal-grouping problem. Problems in which the total number of objects is unknown 

(a × b = ?) can be called groups-of multiplication. Problems in which the number of objects 

in one group is unknown (a × ? = c or c ÷ a = ?) are typically called partitive division 

problems, corresponding to the social practice of sharing equally. Problems in which the 

number of groups is unknown (? × b = c or c ÷ b = ?) are referred to as measurement division 

problems or quotative division problems. An example of each of these problem types is 

presented in Table 1.  

 

 

Table 1  

Equal-Grouping Problem Types 

Problem type Unknown Example 

Groups-of 

multiplication 

Total number of 

objects 

Josh has 4 bags with 6 cookies in each bag. How many cookies 

does Josh have in total?   

Partitive division Number in one 

group 

Josh has 24 cookies. He wants to put the same number of cookies 

in each of 4 bags. How many cookies should Josh put in each 

bag? 

Measurement division Number of 

groups 

Josh is making cookie bags with 6 cookies in a bag. If there are 

24 cookies in total, how many bags of 6 cookies can Josh make?  

 

  

 

In reform-oriented classrooms that allow children to devise their own ways of solving 

problems, children’s initial efforts at solving equal-grouping problems involve directly 

modeling the actions and relationships described in the problem situations (Carpenter et al., 
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1996). In order to directly model groups-of multiplication problems children make the 

specified number of groups (4 bags) with the specified number of objects in each group (6 

cookies) and then count the total number of objects (24 cookies). For partitive division 

problems, children initially represent the specified number of objects (24 cookies) and groups 

(4 bags) and then use a guess-and-check strategy to determine the numbers of objects 

(cookies) that can be divided evenly into each group such that all the objects are used. Later, 

children develop a more strategic approach to partitive division problems in which they 

distribute the objects in a systematic manner among the groups. For measurement division 

problems, children make sets of the number of objects specified for one group (6 cookies) 

until they have reached the total number of objects (24 cookies). The answer to the 

measurement division problem is then found by counting the number of sets or groups 

formed (4 bags).  

As is evident from the direct modeling strategies described, children do not initially 

understand these problem types in terms of multiplication and division as adults do. 

Consequently, research suggests that instruction that builds on student thinking should begin 

with students’ ways of solving these problems and introduction of concepts and symbolic 

representation should build on these student-generated solutions (Carpenter et al., 1999). For 

teachers, it is helpful to have a sense of the learning trajectory students might take as they 

develop more efficient strategies, including knowledge of the understandings students must 

acquire to make sense of increasingly sophisticated strategies. 

Understanding of multiplication and division that allows children to move beyond 

direct modeling of situations is linked to children’s abilities to simultaneously think of a 

group of objects as both the number of objects in the group and one group (Fosnot & Dolk, 
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2001). Called unitizing, students are challenged to simultaneously keep track of two counts: 

the number of objects and the number of groups of objects. There have been many research-

based accounts of how children move from direct modeling with objects (to solve equal-

grouping problem types) to increasingly efficient number-based strategies (see, e.g., 

Carpenter et al., 1999; Fosnot & Dolk, 2001; Kouba, 1989; Mulligan & Mitchelmore, 1997; 

Sherin & Fuson, 2005). Verschaffel, Greer, and De Corte (2007) summarize children’s 

progression through strategies for single-digit multiplication and division as follows: 

Generally speaking, children progress from (material-, fingers-, or paper-based) 

concrete counting-all strategies, through additive-related calculations (repeated 

adding and additive doubling), pattern-based (e.g., multiplying × 9 as by 10 – 1), and 

derived-fact strategies (e.g., deriving 7 × 8 from 7 × 7 = 49) to a final mastery of 

learned multiplication products (p.562).  

 

Progression through these strategies varies by problem type, with students using direct 

modeling strategies for partitive division problems for longer than it takes with groups-of 

multiplication and measurement division problems (Carpenter et al., 1999). The reason for 

this is rooted in the relationship between the ways that these problems are directly modeled 

and their similarity to additive-related calculations. Students who can unitize a group-of 

multiplication problem involving finding the total number of cookies in 4 bags of 6 cookies, 

can relate it to the repeated addition strategy 6 + 6 + 6 + 6 or the skip counting strategy 6, 12, 

18, 24. In each case, each count represents a group of cookies, with the number of cookies 

represented by the quantity of the count. These repeated addition and skip counting strategies 

can also be related to a measurement division problem in which the goal is to figure out how 

many bags are needed to put 24 cookies in bags such that 6 cookies are in a bag. In this case, 

the answer is determined by keeping track of the number of sixes it takes to reach 24. For 

both of these problem types, students use repeated addition or skip counting to represent the 
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number of objects in each group. However, for partitive division problems, the number of 

objects in each group is the unknown. The distribution action utilized as children are direct 

modeling partitive division problems does not translate as easily to additive strategies.  

 As students begin to move beyond direct modeling strategies, strategy use also varies 

depending on the numbers involved in a problem and students’ number-specific 

computational resources. Drawing on the retrieval-focused literature (Campbell & Graham, 

1985), problems with smaller operands (e.g., 2 × 3) are solved by learned product more 

quickly than problems with larger operands (e.g., 7 × 8). However, children appear able to 

use learned multiplication strategies for problems in which operands are the same (e.g., 6 × 

6) and problems involving 5 as an operand (e.g., 5 × 8) more quickly than is suggested by 

their operand-size. Another factor that influences strategy use is the number-specific 

computational resources students have acquired to operate on the numbers in a problem 

(Sherin & Fuson, 2005). For instance, students typically learn skip counting sequences for 2, 

5, and 10 and use these sequences in problems involving these numbers. However, use of 

skip counting sequences for problems involving other numbers such as 4 or 7 depend on 

whether these sequences have been emphasized instructionally.  

 Implicit or explicit understanding of properties also influences the strategies children 

use (Fosnot & Dolk, 2001). For example, knowledge of the distributive property allows 

children to successfully use derived fact strategies, such as solving 8 × 6 by calculating (4 × 

6) + (4 × 6). Knowledge of the commutative property of multiplication (e.g., 5 × 6 = 6 × 5) 

allows children to think about the numbers in problems more flexibly. In a problem involving 

finding the total number of sodas in five six-packs, a student with knowledge of the 

commutative property might count by fives to find a solution even though the context of the 
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problem calls for groups of six. However, it should be noted that some researchers have 

found that, even when students demonstrate knowledge of the commutative property when 

dealing with symbols on paper, they do not as readily apply this property to make 

calculations easier when numbers appear in contexts (Ambrose, Baek, & Carpenter, 2003). In 

reform-oriented classrooms, teachers are responsible for orchestrating discussion of students’ 

strategies for solving multiplication and division problems such that the relationships among 

strategies and important mathematical ideas, such as the commutative and distributive 

properties, are illuminated. This involves skillfully posing tasks that lend to use of particular 

strategies and stimulate discussion of particular ideas.  

Some mathematics curriculums, including the reform-based mathematics curriculum 

utilized by teachers in this study, explicitly introduce arrays to model multiplication and 

division. An array is a rectangular arrangement of objects in rows and columns such that 

each row has an equal number of objects (Van de Walle, 2007). Arrays are named by stating 

the number of rows by the number of objects in a row. (See Figure 1.) 

 

 

Figure 1. Naming conventions for arrays. 

 

 

 

X X X X X 

X X X X X 

X X X X X 

 

 

← 3 ×5 array 

     3 rows of 5 objects 

 

X X X 

X X X 

X X X 

X X X 

X X X 

 

 

← 5 ×3 array 

     5 rows of 3 objects 

 

 

 

Arrays are a useful model, as they can be used to illuminate the commutative property of 

multiplication as well as the relationship between multiplication and division. However, 

children do not naturally build arrays to represent contextualized problems unless the 
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problem context suggests an array (Carpenter et al., 1999). Therefore, in introducing the 

array model, teachers are challenged to organize instruction such that children build 

knowledge of arrays through connections to their own, more natural strategies. Additionally, 

teachers need to be aware that many students initially have difficulty understanding the array 

structure, particularly understanding how one square can simultaneously be part of a column 

and a row (Battista, Clements, Arnoff, Battista, & Van den Borrow, 1998). Consequently, 

teachers using the array representation must be sensitive to students’ developing 

understanding of arrays and how students are relating the array structure to problems posed.  

After children construct meaning of multiplication and division and begin to develop 

increasingly efficient strategies for working with smaller numbers, instruction turns to a 

focus on problems involving multidigit calculations. As is the case with calculations with 

smaller numbers, it is important for teachers to be able to anticipate strategies students will 

use to solve multidigit problems as well as how students might naturally move through these 

strategies.  

Baek (1998) classifies children's invented solutions to multidigit multiplication 

problems into four categories
1
: direct modeling, complete number strategies, partitioning 

number strategies, and compensating strategies. Direct modeling strategies, the most basic 

strategy type, entail modeling each group of objects in a multiplication problem with 

concrete manipulatives or drawings to count the total number of objects. Complete number 

strategies are based on repeated addition of multiplicands, but do not involve partitioning of 

the multiplier or multiplicand in any particular way. Doubling strategies that shorten the 

addition procedure are included in this category. Partitioning strategies involve partitioning 

                                            
1
 Baek’s classification is based on children's work with multiplication problems involving groupings of discrete 

objects, as opposed to rate, multiplicative comparison, or symmetric problem types. 
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the multiplier and/or the multiplicand into smaller numbers so they can be multiplied more 

easily. Within this category of problem, Baek distinguishes between partitioning into decade 

and non-decade numbers (e.g., partitioning 16 into 10 and 6 opposed to 8 and 8). 

Compensating strategies involve adjusting the multiplier and/or multiplicand up or down 

based on special characteristics of the number combination to make the calculation easier. 

Then, after major calculations have been completed, students compensate for the initial 

adjustments to the numbers. For instance, in solving the problem 4 × 19 = ?, a student might 

first find the product of 4 × 20, and then subtract 4 from this product to compensate for the 

adjustment to the original problem.  

In her research, Baek (1998) found that the students studied progressed through 

invented multidigit multiplication strategies from direct modeling to complete number to 

partitioning numbers into non-decade numbers to partitioning numbers into decade numbers. 

Children’s strategies for solving multidigit multiplication problems varied with their 

conceptual knowledge of addition, base-ten knowledge, knowledge of basic multiplication 

facts and their relationship to multidigit problems, and properties of the four operations. For 

instance, student use of partitioning and compensating strategies was dependent on students' 

knowledge of multiplication facts and the distributive property. Development of 

understanding of what happens to a number when it is multiplied by a power of ten (e.g., 6 × 

4 = 24, 6 × 40 = 240, 6 × 400 = 2,400) was found to be essential knowledge to using 

partitioning strategies involving decade numbers.  

Knowledge for teaching multiplication and division in a reform-oriented manner 

demands that teachers hold deep knowledge of mathematics content, student thinking, and 

ways of illuminating important mathematical ideas. However, just because a teacher holds 



 

 33 

certain knowledge does not ensure that she will choose to act on that knowledge. To better 

understand how teachers choose to use the knowledge they have, I will now turn to a 

discussion of teachers’ beliefs.   

 

Beliefs and Mathematics Teaching 

 

 

Beliefs and knowledge are not easily distinguishable. Indeed, people often describe 

their beliefs in terms of things they “know” (Thompson, 1992). However, beliefs generally 

refer to suppositions, commitments, and ideologies, while knowledge is viewed as factual 

propositions and understandings (Calderhead, 1996). Teachers’ beliefs are important because 

they influence teachers’ perceptions and interpretations of events (Pajares, 1992), and serve 

as a guiding force in the kinds of actions teacher take (Cooney, Shealy, & Arvold, 1998). 

Considered in this context, beliefs are the implicit and explicit personal philosophies held by 

teachers consisting of their conceptions, ideologies and values that shape practice and direct 

knowledge (Ernest, 1989). 

In considering teachers’ beliefs, it is important to distinguish between the content of 

beliefs and the structure of the beliefs system. Before discussing in greater depth the content 

of teachers’ beliefs in relation to mathematics teaching, I will briefly review theory relevant 

to the structure of beliefs and how they are held.  

Green (1971) identified three dimensions of the beliefs system:  

First there is the quasi-logical relation between beliefs. They are primary or 

derivative. Secondly, there are relations between beliefs having to do with their 

spatial order or their psychological strength. They are central or peripheral. But there 

is a third dimension. Beliefs are held in clusters and protected from relationships with 

other sets of beliefs. Each of these characteristics of belief systems has to do not with 

the content of our beliefs, but with the way we hold them (p.47-48).  
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According to Green’s theory, beliefs are held in interdependent ways, with some beliefs 

following other beliefs in a hierarchical manner. For example, if a teacher believes that 

students learn mathematics from constructing their own strategies, a belief that logically 

follows is that the teacher’s role is to provide opportunities for students to engage in 

mathematics lessons where they devise their own strategies for solving problems. Green’s 

theory also suggests that beliefs can be held in isolated clusters, making it possible for 

persons to hold conflicting beliefs.  

Additionally, Green’s theory (1971) suggests that individuals hold beliefs at varying 

levels of conviction. This is especially important to consider when examining the relationship 

between teacher beliefs and instructional practice. The complexity of teaching requires 

teachers to act in situations where multiple, sometimes conflicting, beliefs are activated at 

once (Aguirre & Speer, 2000). The action a teacher chooses to take is thought to be, in part, a 

result of the prioritization of the strength of beliefs. More recently, researchers have also 

begun to consider instances when a teacher’s instructional practice appears to conflict with 

the teacher’s espoused beliefs as being explained by the teacher’s prioritization of goals 

(Leatham, 2006; Philipp, 2007; Skott, 2001). 

For instance, Skott (2001) describes a teacher who generally views his role in the 

classroom as one of supporting students as they solve novel mathematics problems in their 

own ways in order to allow students to assume responsibility for their own learning. While 

this teacher’s instruction was generally found to reflect these beliefs, Skott describes an 

instance when this teacher was observed providing heavy computationally-focused guidance 

to a pair of students such that the complexity of the problem of focus was significantly 

decreased. When asked to reconcile this action in relation to his beliefs, the teacher asserted 
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that he believed the two struggling students would provide a significant drain on his 

attention, limiting his ability to attend to the rest of the class, until they felt confident that 

they had an answer to the problem. In this case, the teacher’s priorities related to general 

management of the class and building students’ confidence were deemed of higher priority 

than the teacher’s goal of aiming to provide support such that students assume responsibility 

for their own learning.  

So far, consideration has been given to how teachers hold beliefs in relation to each 

other and why teachers’ actions may sometimes appear to contradict certain beliefs. Now 

consideration will be given to the content of teachers’ mathematics-related beliefs and their 

implications for mathematics instruction. Calderhead (1996) identifies areas in which 

teachers are found to hold beliefs relevant to their teaching practice. These include beliefs 

about subject-matter, learners, and learning as well as beliefs about teaching, the role of the 

teacher, and teachers’ self-related beliefs. Within the mathematics education literature, there 

is a focus on the importance of teachers’ beliefs related to the nature of mathematics and 

mathematics teaching and learning (Ernest, 1989; Franke et al., 1997; Franke et al., 2007; 

Thompson, 1992). 

 According to Thompson (1992), “A teacher’s conception of the nature of 

mathematics may be viewed as that teacher’s conscious or subconscious beliefs, concepts, 

meanings, rules, mental images, and preferences concerning the discipline of mathematics” 

(p.132). Several researchers have created different terms and frameworks to describe varying 

conceptions of mathematics (Ernest, 1989; Lerman, 1983; Skemp, 1978; Thompson et al., 

1994). Conceptions of mathematics most consistent with current reform efforts view 

mathematics as a dynamic discipline focused on solving problems by thinking creatively, 
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finding patterns, and reasoning logically. Sometimes referred to as a problem-solving or 

inquiry-oriented view, this conception emphasizes mathematics as a way of thinking and 

devising a growing understanding of the world. At the other end of the spectrum, some 

teachers view mathematics as a static body of knowledge consisting of a collection of “rules 

without reasons” (Skemp, 1978, p.9). This view of mathematics emphasizes knowledge of 

established methods for performing mathematics tasks. Teachers’ beliefs about the nature of 

mathematics have implications for how they will view and approach mathematics teaching 

(Lerman, 1983).  

A teacher’s beliefs or conception of mathematics teaching includes personal 

philosophies related to the most desirable goals of mathematics instruction, related 

instructional approaches and emphasis, what counts as mathematical activity, and appropriate 

roles of teachers and students during classroom instruction (Thompson, 1992). Kuhs and Ball 

(1986, as discussed in Thompson, 1992) identify four ways teachers view mathematics 

instruction. A learner-focused view concentrates on supporting students’ personal 

construction of mathematical knowledge and is most related to the problem-solving or 

inquiry-oriented view of mathematics described earlier. Consistent with a constructivist-

orientation to teaching, the teacher’s role is to be a facilitator of student learning by asking 

probing questions and helping students to uncover misunderstandings and new 

understandings. This conception of teaching reflects the emphasis of mathematics-reform and 

places student thinking at the center.  

The other three conceptions of mathematics teaching identified by Kuhs and Ball 

(1986, as discussed in Thompson, 1992) include content-focused with an emphasis on 

conceptual understanding, content-focused with an emphasis on performance, and classroom-
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focused. The conception described as content-focused with an emphasis on conceptual 

understanding organizes instruction around the discipline of mathematics instead of student 

thinking. Mathematics is viewed as a static body of knowledge containing an underlying 

logic that students must come to understand. In the conception identified as content-focused 

with an emphasis on performance, there is a focus on mastering rules and procedures to get 

correct answers, but understanding is de-emphasized. Reflecting an instrumentalist view of 

mathematics, direct instruction is the dominant teaching style and learners are typically 

passive receivers of knowledge. The final conception of teaching, described as classroom-

focused, de-emphasizes the nature of mathematics and theories of learning. Instead, it focuses 

on instruction derived from knowledge about effective classrooms.  

These distinctions are useful in understanding the differences among teachers’ 

possible conceptions of teaching mathematics; however, it is important to note that individual 

teachers are likely to hold a conglomeration of beliefs that cut across multiple models in the 

Kuhs and Ball framework. Despite the seemingly natural connection between theories of 

learning and theories of teaching, Thompson (1992) makes the following observation:  

Although it seems reasonable to expect a model of mathematics teaching to be 

somehow related to or derived from some model of mathematics learning, for most 

teachers it is unlikely that the two have been developed and articulated into a coherent 

theory of instruction. Rather, conceptions of teaching and learning tend to be eclectic 

collections of beliefs and views that appear to be more the result of their years of 

experience in the classroom than of any type of formal or informal study (p.135).  

 

That beliefs about learning and teaching are not always linked can be explained by Green’s 

claim that beliefs are held in isolated clusters (1971). However, certain beliefs do seem 

central to teaching practices that give student thinking a central role in instruction.  

In a longitudinal study of a teacher development project aimed at helping teachers to 

develop instructional practices that build on children’s mathematical thinking, Fennema et al. 
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(1996) found that teachers whose mathematics instruction focused on supporting and 

building on student thinking held a common set of beliefs. These teachers viewed children as 

coming to their classrooms with mathematical knowledge and the ability to acquire new 

knowledge by engaging in problem-solving. Related to this belief, teachers believed that 

students can learn without direct instruction, problem-solving is central to mathematics 

instruction, and skills and knowledge are interrelated. The second belief that appeared 

instrumental in classrooms that promoted student thinking was a view that teaching involves 

listening carefully to students in order to understand their thinking. Also, these teachers 

believed that understanding of student thinking should inform instruction. 

In contrast, Warfield, Wood, and Lehman (2005) found that teachers who believe that 

only some children can be autonomous learners of mathematics interpret reform 

recommendations in unintended ways and, consequently, give limited attention to 

understanding children’s thinking. These teachers viewed their students as high kids and low 

kids, with the low kids needing to be shown how to solve mathematical problems. These 

teachers interpreted reform recommendations related to partner work and student sharing of 

mathematical strategies through class discussion as ways for the high kids to show the low 

kids strategies for finding answers to problems. This is in contrast to a reform-oriented view 

of class discussion as an opportunity for students to collectively reason about, challenge, and 

reflect on mathematical thinking through comparison of multiple problem solving strategies 

(Wood & Turner-Vorbeck, 2001). Warfield et al. indicate that, because the teachers studied 

believed that children needed to be shown how to solve mathematical problems, they gave 

minimal attention to trying to figure out how to make their mathematics lessons responsive to 

students’ mathematical thinking.  
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Cooney and Shealy (1997) point out that teaching practices advocated by 

mathematics-reform make teachers’ classroom experiences more problematic and less 

predictable and controllable. They ask teachers to accept uncertainty as an on-going reality of 

classroom life. This is in sharp contrast to more traditionally held views of mathematics that 

stress rules and order. This "crossing over" to a relativist stance, in which teachers open up to 

multiple authorities on mathematical knowledge, is central to realizing fundamental change 

in the way mathematics is taught. Teachers must come to believe that multiple perspectives 

and flawed solutions are valuable instructionally.  

In research examining impediments to teachers adopting reform-oriented teaching 

practices, Silver et al. (2005) reveal that many of the teachers they studied expressed concern 

that incorporating discussion of multiple ways of solving mathematical problems, especially 

flawed solutions, would lead to confusion for students. In a study comparing teachers’ 

handling of mistakes in U.S. and Italian classrooms, Santaga (2005) found that U.S. teachers 

generally avoid the public discussion of flawed solutions in favor of a focus on correct 

answers. When mistakes arise in class discussion of mathematics, teachers typically aim to 

correct the errors quickly and move back to a discussion of correct answers. This manner of 

addressing students’ flawed solutions stands in opposition to a reform-oriented view of 

students’ mistakes as “springboards for inquiry” (Borasi, 1994).  Conceived in this manner, 

students’ flawed solutions provide ripe opportunities for students to learn through 

engagement in genuine problem solving involving analysis of correct and incorrect aspects of 

solutions in efforts to revise solutions to correct.   

Since traditional views of mathematics teaching subscribe to a more instrumental 

view of the nature of mathematics, changes in teaching practice advocated by mathematics-



 

 40 

reform often require teachers to dramatically re-conceptualize the nature of mathematics, 

teaching, and learning (Cooney & Shealy, 1997; Franke et al., 1997). But even if a teacher 

holds certain beliefs, it does not mean that she will necessarily act in ways that are consistent 

with those beliefs. Empson and Junk (2004) report a study in which teachers expressed 

beliefs about it being a good idea to use student mistakes as opportunities for learning. 

Despite this professed belief, when asked what they would do in response to a particular 

teaching scenario, the actions described by several teachers did not reflect the professed 

belief. Empson and Junk suggest that lack of specific knowledge of children's mathematics 

may limit teachers' abilities to act on beliefs. 

 In this example, a hint of the complexity in the relationship of beliefs, knowledge, 

and practice is visible. Like Empson and Junk, Ernest (1989) suggests that no matter how 

strongly beliefs are held, necessary knowledge must be on hand to back them up in actions. If 

the base of knowledge supporting the belief is limited, it is unlikely that actions associated 

with the particular belief will be realized. Ernest also identifies the social context as an 

important determinant in the way teachers do their work. He suggests that texts, school 

norms, expectations from superiors, and external tests yield considerable influence on 

teachers’ prioritization of goals and subsequent practice, regardless of espoused beliefs.  

 

 

Beliefs Beyond Mathematics 

 

 
Leatham (2006) cautions researchers against the assumption that mathematics-related 

beliefs will have the strongest influence over teachers’ mathematics teaching. Related to 

social context, an aspect of beliefs often neglected in the mathematics education literature are 

teachers’ beliefs about children of color and low socio-economic strata (Lubienski & Bowen, 
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2000; Secada, 1992). The limited number of studies in mathematics education and more 

general studies of urban and high-poverty schools suggest that teachers’ beliefs about the 

children in their classes play a significant role in their instructional decision-making 

(Hayward, 1999; Knapp, 1995b; Spillane, 2001; Sztajn, 2003; Walker & Chappell, 1997).  

 In interviews with teachers and administrators in high-poverty schools, Spillane 

(2001) found that most educators in these schools believed higher-level learning to be 

inappropriate for their students. They viewed their students primarily in terms of deficiencies 

in fundamental knowledge and skills due to their family backgrounds and upbringing. 

Consequently, these educators saw their role as helping students to master basic skills and 

not to focus on higher-level thinking. Ms. Brady, a second-grade teacher, contrasted her 

teaching in a private school with her teaching in a school characterized by poverty. She 

indicated that she had used teaching practices that were centered on problem-solving and 

critical thinking in the private school, because those kids already had the basics. In her 

current situation, she described her teaching practices to be focused on playing catch-up. She 

shared that she would like to get to higher-level thinking activities, but that basics took up 

most of her time.  

 Similarly, Sztajn (2003) describes a case study of a teacher, Teresa, who works in a 

school with a significant number of students from low-socioeconomic backgrounds. 

Although Teresa professes that problem-solving and higher-order thinking skills are 

important educational outcomes, she believes that basic facts, drill, and practice are at the 

core of what her students need in order to overcome their backgrounds and become 

responsible members of society. Sztajn contrasts Teresa with Julie, a teacher in a school 

serving students from middle-class families. Julie believes that students learn best when they 
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are interested and happy. Consequently, her instruction emphasizes projects and activities 

that support development of higher-level thinking. At first glance, many would argue that 

Teresa and Julie’s methods of teaching differ due to divergent beliefs about the nature of 

mathematics and mathematics teaching and learning. However, this would not accurately 

represent the whole story. Julie reports that she worries less about the basics, because her 

students have a lot of support for basic skills at home. She states that when she was working 

in a school with students from lower socio-economic backgrounds, she emphasized basic 

skills and social skills instead of higher-level thinking.  

 In another study, comparative analyses of interviews with teachers at an urban school 

and a suburban school revealed similar patterns of pedagogical goals (Hayward, 1999). At 

the affluent suburban school, teachers were focused on enabling long and short-term 

academic success, teaching children to enjoy learning, and helping them become independent 

learners. At the urban school, teachers were focused on helping students to acquire survival 

skills to combat problems that they described as “the environment.” Teachers believed that it 

was their responsibility to make up for the environment by directly teaching children the 

difference between right and wrong and by helping students learn to be compliant.  

 Although there is evidence of mathematics instruction emphasizing higher-level 

thinking having positive affects on achievement in urban and high-poverty schools 

(Campbell, 1996; Fuson et al., 1997; Knapp, 1995b), beliefs to the contrary appear to be 

reflected in the actions of many teachers in urban schools serving students from low-

socioeconomic backgrounds. Knapp (1995a) refers to these pervasive beliefs as the 

“conventional wisdom” of teaching children in poverty. The conventional wisdom 

encourages teachers to focus on what students lack and to bolster these deficiencies by 
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providing sequential instruction on discrete skills. The conventional wisdom recommends a 

teaching style that is fast paced and tightly controlled by the teacher, to maximize time on 

task and minimize behavior problems. Knapp points out that there is considerable research 

support for this approach to teaching in high-poverty classrooms. In Brophy and Good’s 

1986 chapter in The Handbook of Research on Teaching, they state the following:  

Interactions between process-product findings and student SES or achievement level 

indicate that low-SES/low-achieving students need more control and structuring from 

their teachers: more active instruction and feedback, more redundancy, and smaller 

steps with higher success rates. This will mean more review, drill, and practice, and 

thus more lower-level questions. Across the school year, it will mean exposure to less 

material, but with emphasis on mastery of the material that is taught and on moving 

students through the curriculum as briskly as they are able to progress (Brophy & 

Good, 1986, p. 365). 

 

In order for teachers in urban settings to effectively implement reform-based mathematics 

curriculums in ways that emphasize student thinking, they will need to move beyond this 

conventional wisdom and adopt beliefs that view their students as competent and capable 

learners who can take control of their own learning and engage in higher-level thinking.  

 

 

The Process of Reforming Mathematics Teaching 

 

 

 Several recent studies have identified mechanisms that support teachers in developing 

the kinds of knowledge, beliefs, and practices associated with mathematics-reform. For 

instance, researchers have found that increasing teacher knowledge of student thinking 

through professional development can support teachers in rethinking their beliefs and 

reforming their instructional practices (Fennema et al., 1996; Kazemi & Franke, 2004). Other 

research provides support for the positive effects of on-going opportunities to reflect on 

teaching practice with researchers and other resource partners (Davis, 1997; Wood et al., 
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1991). Additional studies have found that reform-based mathematics curriculum materials 

can support growth in teacher knowledge (Empson & Junk, 2004) and change in teaching 

practice (Remillard, 2000). A finding that is common among several studies of teacher 

change is that teachers who engage in practical inquiry to better understand student thinking 

appear to continuously deepen their knowledge and refine their teaching practices (Fennema 

et al., 1996; Franke et al., 1998; Franke, Carpenter, Levi, & Fennema, 2001; Margolinas, 

Coulange, & Bessot, 2005; Sowder, 2007; Steinberg, Empson, & Carpenter, 2004).  Franke 

et al. (2001) suggest the kinds of activities that help teachers learn from teaching:  

If teachers can learn to talk to their students about their thinking, puzzle about what 

the responses tell them about students' understanding, decide how to use this 

knowledge in planning instruction and interacting with students, and figure out how 

to learn more about students' thinking, then the teachers' own learning can become 

generative (p.656). 

 

Finally, it is suggested that a first step in moving toward a different kind of teaching practice 

is often discontentment with the outcomes of current practices (Smith, 2000). 

Other researchers have attempted to develop frameworks that capture descriptions of 

teacher change as teachers move from traditional to reform-oriented mathematics teaching 

practices (Brendefur & Frykholm, 2000; Davis, 1997; Franke et al., 1997; Franke et al., 

2001; Hufferd-Ackles et al., 2004; Wood et al., 1991). In the remainder of this section, I will 

describe two of these efforts.  

Franke et al. (1997) describe four levels of teacher change based on their study of 

first-grade teachers involved in the Cognitively Guided Instruction project (Carpenter et al., 

1996), a teacher development effort focused on increasing teachers’ knowledge of student 

thinking related to whole number operations. At the first level, teachers believe that students 

must be taught how to solve problems. Therefore, they do not provide problem-solving 
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opportunities, ask students how they solve problems, or use mathematical thinking in 

instructional decision-making. At the second level, teachers begin to view children as able to 

solve problems without direct instruction, and they begin to expand the amount of problem-

solving opportunities and the types of problems used. But they often continue to show 

students how to solve some problems. At the third level, teachers believe it is beneficial for 

students to solve problems in their own ways, and they provide a variety of problems and 

opportunities for students to discuss their solutions. At the fourth level, the teacher believes 

that students’ mathematical thinking should influence teacher-student interactions as well as 

the evolution of the curriculum. Teachers begin to more frequently elicit and build on student 

thinking and use knowledge of student thinking to make instructional decisions.  

In discussing this trajectory of change, Franke et al. (1997) note that individual 

teachers do not fit neatly into the levels identified. As the process of change is continuous, 

teachers may exhibit aspects of multiple levels. Interestingly, there was little direct 

relationship observed between teachers’ initial beliefs and practices and change across the 

study. Some teachers who began the project at level one changed tremendously and moved 

through all the levels. Other teachers who started further on in the trajectory evidenced only 

minor changes. Some teachers’ beliefs changed before their practices, while others changed 

after trying out recommended practices, and, for others, beliefs and practices changed 

concurrently. That being said, when classroom practices changed before beliefs, the changes 

were consistently found to occur at the lower levels. In order to engage in teaching practices 

associated with the highest levels, teachers needed to have adopted the beliefs consistent with 

that level. Although the Franke et al. (1997) study provides a useful way of thinking about 

teacher change, the generalizability of this study is limited since it focuses on first-grade 
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teachers and their change while teaching whole number concepts after extensive time in 

professional development building knowledge of the mathematics and children’s thinking 

about these concepts.  

Hufferd-Ackles et al. (2004) present a four-level framework to describe changes in 

teacher actions, student actions, and classroom norms as teachers moved from traditional 

mathematics teaching to facilitating a math-talk community. The overarching shift toward 

developing a math-talk community is one in which the classroom community becomes 

increasingly supportive of students acting in leading roles and the discourse shifts from a 

focus on answers to a focus on student thinking. Hufferd-Ackles et al. initially developed 

their framework using qualitative data from one teacher’s classroom, in which dramatic 

changes were observed in the course of a single school year. Then the framework was refined 

using data from teachers at a variety of elementary grades at the same urban-Latino school. 

This study is especially significant due to the context, because it refutes conventional wisdom 

and supports the notion that urban classrooms with students that are below grade level in 

mathematics can learn as a math-talk learning community.  

Reflecting traditional mathematics instruction, Level 0 is exemplified by teacher 

directed instruction with brief, teacher-led question-and-answer sessions focused on answers 

to problems. At Level 1, teachers begin to pursue mathematical thinking; however, the 

teacher continues to play a dominant role in the discussion. The key shift is from discussion 

focused on answers to the inclusion of some questions that focus on student thinking. At 

Level 2, teachers begin to help students learn to be more involved in discussions of 

mathematics. Student-to-student talk increases and the teacher physically begins to move to 

the side or back of the classroom. At Level 3, teachers consistently share mathematical 
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authority with students and place their own focus on learning about student thinking and 

building on students’ mathematical ideas (Hufferd-Ackles et al., 2004).  

Within these four levels, Hufferd-Ackles et al. (2004) identify four distinct but related 

components, suggesting a developmental trajectory for each of four dimensions of a math-

talk community. These components include questioning, explaining mathematical thinking, 

sources of mathematical ideas, and responsibility for learning. Within the questioning 

component, teachers’ questioning strategies become increasingly open-ended and focused on 

student thinking, and teachers begin to facilitate greater amounts of students questioning 

other students. In turn, students move from only giving short answers and responses to the 

teacher to asking and answering questions in student-to-student interactions. In the focus on 

student thinking category, the trajectory for the teacher moves from minimal elicitation of 

student thinking with a focus on answers to elicitation of multiple strategies to an emphasis 

on encouraging deeper and more thorough thinking. Students move through the trajectory 

from only giving answers to providing brief and incomplete descriptions of their thinking to 

defending and justifying answers and thinking with little prompting from the teacher. The 

third component describes the shift from the teacher being the source of mathematical ideas 

to students' ideas having influence over the direction of the lesson, and the final component 

of the trajectory describes the path teacher and students take as students become increasingly 

responsible for learning and evaluation of others and self.  

 This study emphasizes the development of the math-talk community as an iterative 

process to which teachers and students contributed (Hufferd-Ackles et al., 2004). Teacher 

moves were important for providing opportunities, but student change had to occur for the 

class to move forward in the trajectory. The authors describe specific teacher actions that one 
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teacher took to facilitate student movement through the levels. First, the teacher began to 

expect that students share thinking instead of just answers. She supported this transition by 

modeling language. Next she provided ample scaffolding and probing to support students in 

developing descriptions of their strategies. Finally, as the math-talk community began to run 

itself, she remained available to jump in and support students as needed.  

Taken together, these two frameworks provide a sense of how teachers move toward 

mathematics teaching practices that emphasize student thinking. However, neither study 

explicitly considers the role of teacher knowledge in supporting or limiting student thinking. 

Although the Franke et al. (1997) study attends to teachers’ beliefs, they do not consider the 

role of beliefs teachers might have about teaching children in urban schools. It seems that the 

interaction of teachers’ knowledge, beliefs, and practices are especially important to consider 

as teachers begin to use reform-based mathematics curriculum in the urban school setting.  

 

 
A Synthesis of the Research Literature – My Analytical Framework 

 

 

 This study aims to examine how teachers’ beliefs and knowledge influence the ways 

they support and limit student thinking in their first year of implementing a reform-based 

mathematics curriculum in an urban school. Reflecting the existing research base, this study 

views the actions teachers take in relation to opportunities for students to develop 

conceptually-grounded mathematical thinking as being situated within the larger scope of 

teaching and learning practices associated with reform-oriented mathematics instruction. This 

is to acknowledge that teacher actions that support or limit student thinking do not occur in a 

vacuum. Rather, they are supported and impeded by factors such as lesson design, the culture 

of the learning community, and student dispositions towards mathematics learning. 
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Therefore, while focusing on teacher actions related to student thinking during mathematics 

instruction, these actions will be considered within the broader dimensions of reform-

oriented mathematics instruction.   

Within this context, teacher actions during mathematics instruction are thought to be 

facilitated by teachers’ knowledge and beliefs, which are shaped by teachers’ prior 

experiences. For this reason, an interactive perspective of teachers’ knowledge, beliefs, and 

experiences provides the underlying analytical framework for this study. This perspective 

accounts for the simultaneous and interactive influence of teachers’ knowledge, beliefs, and 

experiences on teacher actions during mathematics instruction, which in turn impacts 

opportunities for students to develop conceptually-grounded mathematical thinking (see 

Figure 2).  

 

Figure 2. An interactive perspective of teachers' knowledge, beliefs and experiences. 
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Teachers’ experiences are included prominently in this framework, as they are 

thought to be the basis of teachers’ knowledge and beliefs (Calderhead, 1996). Additionally, 

teachers’ knowledge and beliefs are thought to serve as the filter through which new 

experiences are interpreted. It is important to note that a teacher’s immediate teaching 

context is represented in this framework as one type of teacher experience. Through a built-in 

feedback loop, teacher knowledge, beliefs, and future actions are thought to be influenced by 

teacher interpretation of immediate context. Each of the three components ― teacher 

knowledge, teacher beliefs, and teacher experiences ― can be further elaborated to consist of 

multiple sub-components.  

The knowledge component subsumes multiple types of knowledge for teaching 

mathematics and attention to the structure of that knowledge. In order for reform-oriented 

mathematics pedagogy to be fully realized, a teacher must be able to draw on a combination 

of knowledge of mathematics, pedagogical content knowledge, general pedagogical 

knowledge, and knowledge of the ways children are likely to think mathematically. 

Structures that appear to support a teacher’s ability to draw on these types of knowledge 

during instruction include clear and detailed lesson images and a repertoire of routines and 

scripts that can be accessed during teaching. 

The beliefs component of this model is comprised of types of beliefs and attention to 

the structure of those beliefs. Mathematics-related beliefs that appear to influence teacher 

actions include beliefs about the nature of mathematics, beliefs about teaching and learning 

mathematics, and beliefs about student cognitions or how students think about mathematics. 

Furthermore, teachers have context-specific beliefs about the children they are teaching and 

the context in which they are teaching. The degree to which certain beliefs influence teacher 
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action is determined, first, by the degree to which a teacher’s beliefs reinforce each other 

resulting in a coherent theory of instruction. Second, the relative strength of beliefs and the 

teacher’s priorities within particular teaching situations are viewed as having significant 

influence on teacher action.  

Finally, the teacher experiences component of the model elaborates the kinds of 

experiences that influence teacher actions during mathematics instruction. These include the 

teacher’s formal schooling experiences throughout K-12 education and in post-secondary 

education. It also includes experiences in prior teaching contexts as well as the current 

teaching context, including interactions with students, colleagues, supervisors, and others. 

This component emphasizes teacher actions as situated within the particular histories and 

current realities of the teacher.   

 



CHAPTER II 

 

RESEARCH METHOD 

 

 

 

The purpose of this study is to examine how teachers’ beliefs and knowledge influence 

the ways they support and limit student thinking in their first year of implementing a reform-

based mathematics program within the context of an urban school. In particular, this study set 

out to answer four research questions: 

1. In what ways and to what extent do teachers support and limit student thinking during 

mathematics instruction in their first year implementing a reform-based mathematics 

curriculum? 

2. How do teachers’ beliefs influence the ways they incorporate student thinking into 

their planning for mathematics instruction and on-the-spot instructional decision-

making in their first year of implementing a reform-based mathematics curriculum? 

3. How does teacher knowledge influence the ways teachers incorporate student 

thinking in their first year of implementing a reform-based mathematics curriculum? 

4. How does the urban context, as defined by the research literature and perceived by 

teachers and school leaders, influence mathematics instruction in this urban school?    

In this chapter, I provide a detailed description of the procedures used to address these 

research questions in a trustworthy manner. The following sections describe: 1) the research 

design, 2) sample selection procedures, 3) procedures for data collection, 4) data 

management procedures, and 5) procedures for data analysis.  
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Research Design 

 

 

Overview and Justification of Research Design 
 

 

In order to better understand the influence of teachers’ beliefs and knowledge as they 

begin to use a reform-based mathematics program, a collective case study design (Stake, 

2000) utilizing qualitative research methodology was employed. Data were collected on four 

teacher participants during the 2004-2005 school year from a variety of sources. Interpretive 

case studies were developed with the individual teacher treated as the unit of analysis, a 

bounded case. Simultaneously, a cross-case analysis was completed to illuminate patterns 

across cases and increase the potential for generalizing beyond the particular cases (Merriam, 

1998; Yin, 2003).  

Qualitative research methodology was determined optimal for this study because it is 

thought to be especially suited to research that aims to delve into complexities and processes 

(Marshall & Rossman, 1999). Particular to this study, the interaction of teachers’ beliefs, 

knowledge, and mathematics teaching is highly complex and little understood. The 

qualitative method facilitates data collection and analysis that is responsive to emerging 

understandings during the research process. It also allows an array of variables to be 

considered holistically with attention to the context in which the variables are situated. That 

was an important consideration in selecting this methodology because the evolution of 

teachers’ beliefs, knowledge, and teaching practices are thought to be intertwined with each 

other and with the particular contexts in which mathematics teaching occurs (Fennema & 

Franke, 1992).  
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Within the qualitative paradigm, this research utilized a collective case study design 

(Stake, 2000). A collective case study involves the study of multiple cases of a particular 

phenomenon in order to provide insight into the complexities of the phenomenon. In general, 

the case study design is thought to be particularly suited to the study of phenomena in which 

“how” and “why” questions are of focus and the variables of interest cannot be separated 

from the context in which they exist (Yin, 2003). This study aims to unravel how teachers’ 

beliefs and knowledge influence their classroom mathematics teaching as they transition to a 

reform-based mathematics program in a particular urban teaching context. By focusing on 

multiple cases, a collective case study design offers the added benefit of increasing the 

generalizability of findings by providing opportunity to identify similarities and differences 

across cases that illuminate nuances of the phenomena of interest (Merriam, 1998; Yin, 

2003).  

While much of the case study research associated with current reforms in 

mathematics education focus on cases of exemplary teaching, this research intentionally set 

out to study typical teachers transitioning to the use of a reform-based mathematics 

curriculum in a challenging urban school setting. Specifically, the research design focused on 

the beliefs, knowledge, and teaching of urban school teachers who were likely to have 

limited prior knowledge of and experience with current reforms in mathematics education, 

but could count on sustained support from professional development. It is believed that 

teacher change is more likely to occur when teachers have sustained support (Richardson & 

Placier, 2001), and the teachers at the urban school selected were involved in an on-going 

program of mathematics professional development during the year of study.  
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A final design element integral to this study involved my role as a participant-

observer. Participant observation is a special mode of observation in which the researcher 

assumes an active role with the potential to influence the case being studied (Yin, 2003). 

During the year of this study, I served as a mathematics teacher educator for the school in 

which the case study teachers worked. In designing this research, I attempted to capitalize on 

the unique opportunities afforded by participant-observation while minimizing the drawbacks 

associated with this technique.  

Benefits associated with participant observation include the opportunity to gain 

access to case study participants in unique ways and the opportunity to intentionally 

manipulate aspects of the case (Yin, 2003). In this study, my role as a mathematics teacher 

educator afforded me the opportunity to build comfortable and trusting relationships with 

case study teachers and to become personally familiar with their teaching contexts. 

Furthermore, through this role, I was able to control the contents of mathematics professional 

development.  

Drawbacks associated with participant observation include the potential biases 

produced by being an insider and conflicts between one’s role as insider and researcher (Yin, 

2003). During the period of data collection, I attempted to address potential conflicts between 

my role as a mathematics teacher educator and researcher by being explicit about the role 

that was dominant in a given situation. For instance, my role as a teacher educator was 

dominant during professional development meetings and my informal interactions with 

teachers, while my researcher role was dominant during observations and interviews. 

Furthermore, I aimed to reduce the influence of bias by engaging in trustworthy research 

practices and by making the scope of my dual role as researcher and teacher educator 
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transparent to participants as well as consumers of this research. These aspects of the 

research design will be described in the sections that follow.  

 

 

Establishing Trustworthiness 

 

 

Throughout the research process, steps were taken to strengthen the trustworthiness of 

my research findings (Guba & Lincoln, 1989). In efforts to ensure the credibility of 

interpretations, this study was designed to allow for prolonged engagement and persistent 

observation in the research setting. I engaged in persistent monitoring of my own developing 

constructions by keeping records of my thinking during data collection and analysis. 

Additionally, I deliberately worked to explicate my own implicit assumptions and consider 

multiple interpretations of my data. Formal interviews and informal conversations with 

teachers at multiple points throughout the period of data collection provided a venue for 

member checks with the research participants, allowing me to test and refine my initial 

interpretations. Throughout the research process, I utilized peer debriefing to interrogate the 

basis of developing conjectures and theoretical claims. Through this process of checks, I 

sought to establish findings that are credible, dependable, and confirmable. In my report of 

findings, I aim to provide thick, rich description such that others can judge the transferability 

of my findings and conclusions to their own situations.  

 

 

Establishing Transparency of Researcher Position 

 

 

As has already been stated, I served as a mathematics teacher educator at the school 

in which case study teachers worked during the year of this study. In this role, I worked 
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collaboratively with one other teacher educator
2
 to provide on-going mathematics-related 

teacher development for the teachers who are the focus of this study as well as the other 

teachers in grades 3 – 5 and support personnel. The overarching goal of the teacher 

development project was to support teachers in using the newly adopted reform-based 

mathematics curriculum, Everyday Mathematics (Bell et al., 1994), and move toward reform-

oriented teaching practices that reflect the vision promoted by the NCTM standards 

documents (1989, 2000).  

In my role as mathematics teacher educator, I spent some time providing in-class 

support to case study teachers including model teaching, co-teaching, and extra help for 

particular students
3
. These experiences allowed me to become familiar with each case study 

teacher’s students and allowed the students to become comfortable with my presence in their 

classrooms. Furthermore, working directly with the case study teachers’ students provided 

opportunity for first-hand insight into the challenges of each teacher’s unique teaching 

context.  

During the year of this study, I spent at least part of a day at the school site an average 

of three days per week to engage in research or teacher development project activities. This 

level of presence facilitated regular informal interaction with case study participants. It was 

not unusual for case study participants to stop me in the hallway to tell me about something 

that happened in their classroom or to ask a question related to an upcoming mathematics 

lesson. Case study participants also conversed with me about personal and professional 

topics that were unrelated to mathematics instruction. Through the cumulative effect of my 

                                            
2
 The teacher educator with whom I worked is a respected mathematics education professor at a university near 

the school site. We jointly planned and co-led all professional development meetings.  

 
3
 The time spent providing in-class support in case study participants’ classrooms varied from four to eight 

lessons, depending primarily on frequency of teacher requests.  
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formal and informal interactions with case study participants, I was able to build mutually 

respectful and trusting relationships. As the year progressed, study participants became 

increasingly candid regarding their beliefs, struggles, and concerns related to their teaching 

of mathematics and other topics. 

In the context of formal classroom observations, my role was primarily that of 

researcher. During observations, I generally aimed to take a “fly-on-the-wall” stance. 

However, there were times when students or teachers would initiate interaction with me 

related to the lesson being observed. In these instances, I intentionally tried to keep 

interactions brief and would remind the student/teacher that my role was that of researcher 

that day. Nonetheless, I would also respond to the issue or question that initiated the 

interaction. In addition, partway through this study, one case study teacher indicated that she 

would like me to provide her with critical feedback after formal research observations. 

Consequently, I began to provide all case study teachers with verbally communicated 

feedback on formal observations. This feedback was usually provided immediately following 

the post-observation interview and consisted of noted strengths of the lesson and one or two 

suggestions for improvement. I also responded to any specific questions that the teachers had 

about their observed lessons. In this way, the lines between researcher and teacher educator 

blurred, even in the context of formal research observations.  

 

 
Sample Selection Procedures 

 

 

 In the following sections, procedures used to select the sample will be described. 

First, criteria used to select the research site will be presented. Then attention will be given to 

procedures for selecting case study participants and school leader participants.  
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Selection of the Research Site 

 

  

Lincoln Heights Elementary School (a pseudonym) was selected as a site for this 

research for several reasons. First, it is located within an urban school district that was 

beginning to use a reform-based mathematics program during the year of this study. This 

circumstance offered the opportunity to study the interrelationships of teachers’ knowledge, 

beliefs, and mathematics teaching practices as they were encouraged to transition to reform-

oriented mathematics teaching. With a student population of approximately 170,000 students, 

this school district was one of the 15 largest school districts in the United States during the 

year of this study.  Within this school district, Lincoln Heights Elementary was a Title I 

school that exemplified many of the challenges faced by urban schools. In addition to serving 

a high number of students living in poverty, over half of the student population at Lincoln 

Heights was identified with Limited English Proficiency (LEP). Table 2 provides a summary 

of the composition of the student population at Lincoln Heights and the school district during 

the year of this study.  

 

Table 2 

Composition of the Student Population at Lincoln Heights and the School District  

  Enrollment  Race/ethnicity (%)  School Services (%) 

Group 

 

n 

 

Asian Black Hisp White Other  

Fr/rd 

lunch Sp Ed LEP 

Lincoln Heights  568  2 12 74 10 2  86 14 59 

School district  170,000
a
  4 28 28 38 2  50 15 19 

a
Student enrollment at the school district level is intentionally approximated, in order to protect the identity of 

the school district.  
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Additionally, the research literature on school reform suggests that desired change is 

most likely to occur when teachers have sustained support in developing needed knowledge 

and skills within their teaching contexts (Richardson & Placier, 2001). During the year of this 

study, Lincoln Heights teachers were engaged in an on-going program of teacher 

development aimed at supporting the transition to the new mathematics program. It was 

reasoned that this circumstance made the likelihood of teachers using the new reform-based 

mathematics program greater than it might be at schools in which support was more limited. 

Finally, my role as mathematics teacher educator for this teacher development program 

provided a context through which I could influence teachers’ evolving knowledge and beliefs 

as well as forge trusting and mutually beneficial relationships with case study participants.  

 

 

Selection of Case Study Participants 

 

 

Merriam (1988) asserts that, “…cases should be selected for their power to both 

maximize and minimize differences in the phenomenon of interest” (p.154). Therefore, I set 

out to recruit teacher participants from a single grade to facilitate comparison across 

individual cases. Teachers from a single grade would share common curricular goals as well 

as a common set of professional development experiences. I invited Lincoln Heights’ third-

grade teachers to participate in this study because our first professional development meeting 

suggested that teachers on this team varied with regard to years of teaching experience and 

comfort with mathematics. Of the six third grade teachers, four agreed to be case study 

participants. The other two teachers declined participation as case study participants due to 

the time commitment involved. Characteristics of the four case study teacher participants are 

presented in Table 3.  
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Table 3 

Characteristics of Case Study Teacher Participants 

 Personal characteristics  Education  Teaching experience 

Teacher Gender 

Race/  

ethnicity 

First 

language  Highest degree  Years Grade levels 

1 Female White English  Bachelors, Elem Ed  0 Gr. 5 (intern) 

2 Female White English  Bachelors, Elem Ed  20+ Grades K-3 

3 Female Hispanic Spanish  Bachelors, Elem Ed  10 Grades 1-6 

4 Female Hispanic Spanish  Masters, Elem Ed  7 Grades 4-5 

 

 

 

Reflecting the student population at Lincoln Heights, two of the four teacher 

participants are Hispanic and learned English as a second language. The other two teachers 

identify themselves as White and learned English as their first language. All four teachers are 

female. There is wide variation in the case study teachers’ years of teaching experience, from 

0 to over 20 years. The grades these teachers have taught also vary. While all of the case 

study teachers hold college degrees in elementary education, only one of the teachers has 

completed a Masters degree. Additionally, this is the first year that any of the case study 

participants have used a reform-based mathematics program as their primary resource for 

teaching mathematics. 

 

 

Selection of School Leader Participants 

 

 

Leaders at the school and school-district levels were selected for their potential to 

provide insight into the broader context in which case study teachers were transitioning to the 

new mathematics program. At the building level, the principal and assistant principal were 

selected for their knowledge of Lincoln Heights’ school culture, history, and the school-level 
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context in which implementation of the new mathematics program was situated. At the 

district-level, the district mathematics coordinator was selected to provide a district 

perspective on the mathematics-reform initiative. Additionally, the curriculum specialist 

assigned to oversee high-need schools in the district, including Lincoln Heights, was selected 

to provide a district perspective on the needs and challenges presented by this group of 

schools.  

 

 

Data Collection Procedures 

 

 

To answer the research questions posed, data were collected from a variety of sources 

including observations, interviews, survey instruments, and records of the on-going teacher 

development project. Table 4 provides an overview of the relationship between the research 

questions and data sources. In the sections that follow, the instruments used and procedures 

followed during data collection will be described. 

 

 

Core Classroom Observations 

 

 

The focus of this research is on how teachers’ beliefs and knowledge influence 

classroom instruction; therefore analyses center on data from 16 core observations of 

classroom mathematics instruction, 4 for each teacher. Classroom observations concentrate 

on the teacher’s role and decision-making during each teaching episode, particularly the 

circumstances within which she supports or limits student thinking. During core 

observations, extensive fieldnotes were taken and audio-recording was used to capture 

verbatim dialogue between each teacher and her students. The teacher wore a lapel  
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Table 4 

Relationship Between Research Questions and Data Collection 

Research questions Data sources 

1. In what ways and to what extent do 

teachers support and limit student 

thinking during mathematics 

instruction in their first year 

implementing a reform-based 

mathematics curriculum? 

Classroom observations 

2. How do teachers’ beliefs influence 

the ways they incorporate student 

thinking into their planning for 

mathematics instruction and on-the-

spot instructional decision-making in 

their first year of implementing a 

reform-based mathematics 

curriculum? 

Classroom observations, including pre-/post- observation interviews 

Integrating Mathematics and Pedagogy (IMAP) Web-Based Beliefs-

Survey (completed at beginning and end of year) 

Beginning /end-of-year interviews 

Records of teacher development project 

3. How does teacher knowledge 

influence the ways teachers 

incorporate student thinking in their 

first year of implementing a reform-

based mathematics curriculum? 

Classroom observations, including pre-/post- observation interviews 

Beginning/end-of-year interviews 

Records of teacher development project 

4. How does the urban context, as 

defined by the research literature and 

perceived by teachers and school 

leaders, influence mathematics 

instruction in this urban school?    

Pre-/post- observation interviews 

Records of teacher development project 

Interviews with school and district leaders 

Aggregated student demographic data 

Aggregated State Standardized Test (SST) scores 

 

 

 

microphone so that conversations with individual students and small groups could be 

captured during work time, and a limited-range table microphone was used to record teacher 

and student comments during whole class discussion.  Fieldnotes and transcribed audio-

recordings were then integrated to form detailed observation transcripts of each lesson. My 

role during core observations was one of observer as participant (Merriam, 1998). While I 

aimed to be as unobtrusive as possible, the teacher and students were aware of my role as a 

researcher in their classrooms and I moved about freely to listen in on teachers’ 
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conversations with children and to observe students as they worked. The protocol used to 

guide core classroom observations is presented in Table 5.  

 

 

Table 5 

Protocol for Core Classroom Observations 

Time Researcher activity 

Before 

observation 

Set up audio-recording equipment 

Note aspects of the physical environment (seating arrangement, mathematics-related displays, 

etc.) 

Note number of students present by gender, and estimate racial/ethnic demographics  

During 

observation 

Monitor audio-recording equipment 

Record fieldnotes of observations throughout the lesson. Focus attention on the teacher’s 

“moves” within the lesson. When students are working in groups or individually, focus 

observations on the teacher and her interactions with students (giving less emphasis to action 

that is taking place throughout the classroom). Prioritize recording of the following: 

• Action sequences of the lesson. Identify time-markers for shifts or changes in the lesson 

(may be natural shifts or the result of an unanticipated event) 

• Substance of teacher interaction with students, particularly teacher actions that appear to 

support and limit student thinking 

• Instances of on-the-spot decision-making 

• Representations, examples, and explanations of mathematical ideas (Record ideas put on 

the board or chart paper)  

• Student participation in the lesson. Who participated and how?  

• Teacher response to diversity. Does the teacher’s interaction with particular students 

appear to vary in a systematic manner?  

After 

observation 

Collect documents relevant to the lesson (i.e., student sheets, lesson plans) 

Complete Reformed Teaching Observation Protocol 

Prepare for post-observation interview by identifying aspects of the lesson to probe further 

(i.e., rationale for decisions made during the lesson, interpretation of student strategies, 

reflections on student thinking, etc.)  

 

 

 

To maximize the potential for drawing relationships among observed lessons, core 

observations were scheduled when the content of instruction was multiplication and division 
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and the focus was on problem solving. Table 6 presents an overview of the four Everyday 

Mathematics lessons targeted for observation. Multiplication and division were selected as 

 

 

Table 6 

Overview of Observed Lessons 

Observation  Title and objective 

Fall  
 

Observation 1 

 

Title: Multiplication Arrays 

Objective: To use arrays, multiplication/division diagrams, and number models to 

represent and solve multiplication number stories 

Observation 2 Title: Division Ties to Multiplication 

Objective: To model division number stories with arrays, multiplication/division 

diagrams, and number models 

Spring 
 

Observation 3 Title: Extended Facts: Multiplication and Division 

Objective: To multiply by multiples of 10, 100, and 1,000; and to divide such multiples 

by 1-digit numbers 

Observation 4 Title: Use Mental Math to Multiply 

Objective: To use mental math to multiply 1-digit numbers by multidigit numbers 

Note. Titles and objectives are drawn directly from the Third Grade Everyday Mathematics Teacher’s 

Lesson Guide (Bell et al., 1994). 

 

 

 

mathematics topics of focus because the Third Grade Everyday Mathematics Lesson Guide 

(Bell et al., 1994) includes three units on multiplication and division. Therefore, it was 

reasoned that there would be ample opportunity to observe lessons with this topical focus. 

Two observations occurred as students were developing initial multiplication and division 

concepts in the Fall. The other two observations occurred as students were working with 

multiplication contexts involving multidigit numbers in the Spring. All observations focused 

on lessons in which Everyday Mathematics directed teachers to engage students in solving 
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word problems without explicit instruction followed by class discussion of students’ solution 

strategies. These lessons were selected because they strongly reflected the central tenant of 

reform-mathematics – to teach mathematics through problem solving – and offered optimal 

opportunity to observe teachers’ actions in relation to student thinking.  While observations 

were scheduled based on the particular lessons identified in the Everyday Mathematics 

program, it is important to note that teachers sometimes modified lessons significantly in 

response to perceived student needs. In these instances, teachers attempted to maintain a 

focus on the stated objective of the Everyday Mathematics lesson. 

Immediately following each core observation, I completed the Reformed Teaching 

Observation Protocol (RTOP) (Sawada et al., 2002) in efforts to capture data on a variety of 

teaching and learning practices associated with reform-oriented mathematics classrooms. The 

RTOP is a criterion-referenced instrument containing 25 items. Each item is rated on a scale 

from 0 (not observed) to 4 (very descriptive). This instrument aims to collect data on five 

sub-scales: 1) lesson design and implementation, 2) the level of significance and abstraction 

of the content, 3) the processes that students use to manipulate information, 4) the classroom 

culture as observed through the nature of communicative interactions, and 5) the nature of 

student-teacher relationships. These scales are designed to assess the degree to which 

mathematics instruction is reformed, with higher scores reflecting a greater degree of reform. 

Data collected using the RTOP instrument facilitated consideration of how teacher actions 

related to supporting and limiting student thinking were situated within a more general set of 

classroom dimensions associated with reform-oriented classrooms.  

The reliability and validity of the RTOP instrument was established by the instrument 

developers using data from observations of mathematics and science classrooms at the 
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middle school, high school, and college levels (Piburn & Sawada, 2001). Using data from 

two trained observers on each of 16 classroom observations, estimates of instrument 

reliability were determined through a best-fit linear regression of one set of observations on 

the other. The proportion of variance (R-Squared)
 
accounted for by the best-fit line, which 

also estimates the reliability, was 0.954. The reliabilities (R-Squared) on each of the five 

subscales of the RTOP were obtained in the same manner and ranged from 0.670 to 0.915. 

The face validity of the RTOP was established by designing the instrument to reflect national 

standards documents in mathematics and science, with an overall emphasis on inquiry-

orientation to classroom instruction. The construct validity of the RTOP was tested through a 

correlational analysis in which each of the five RTOP subscales was used to predict the total 

instrument score, thus testing the coherence of the theoretically-established underlying 

dimension inquiry-orientation. The R-Squared scores produced through this analysis ranged 

from 0.769 to 0.967, providing psychometric support of a strong unifying construct 

underlying the instrument.   

Although the scope of this study did not allow for multiple persons to observe and 

rate classroom instruction using the RTOP instrument, I made every effort to use the RTOP 

instrument in a reliable manner. Prior to using the RTOP instrument, I studied the RTOP 

training manual (Sawada et al., 2000), and completed an on-line version of an observer-

training workshop, which was available through the RTOP website (Arizona Collaborative 

for the Excellence in the Preparation of Teachers, 2002). The on-line workshop entailed 

using the RTOP instrument to rate three videos of classroom instruction and then comparing 

these ratings to the annotated ratings of an expert rater. I completed this training process two 

additional times during the year of this study, in efforts to assign RTOP ratings in the manner 
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intended by the instrument developers. Furthermore, in addition to assigning numerical 

ratings for each of the 25 items after each observed lesson, I created a written justification for 

each rating. This justification provided a means to check for internal consistency of ratings 

among teachers and over time, thus increasing the internal reliability of my ratings. 

 

 

Pre- and Post-Observation Interviews 
 

 

Semi-structured pre- and post-observation interviews were conducted to enhance my 

understanding of teachers’ instructional thinking before, during, and after core observations. 

General interview questions were modeled after items from A Study Package for Examining 

and Tracking Changes in Teachers’ Knowledge, published by the National Center for 

Research on Teacher Learning (Kennedy, Ball, & McDiarmid, 1993). The pre-observation 

interviews took 15-30 minutes, and the post-observation interviews lasted 30-60 minutes. 

Audio-tape recording and fieldnotes were used to capture the contents of pre- and post-

observation interviews.  

The pre-observation interview is designed to probe a teacher’s lesson image for the 

lesson to be observed. This includes elaboration of detail regarding the goals and activities of 

the lesson as well as elaboration of anticipated student response including potential 

difficulties and teacher plans to address difficulties. In addition, this interview asks teachers 

to consider ways in which their planning of the lesson was influenced by their particular 

teaching context. The protocol used to structure the pre-observation interview is presented in 

Figure 3.  
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The post-observation interview is designed to elicit a teacher’s general reaction 

following the observed lesson as well as elaboration of her instructional thinking at particular 

points in the lesson. To accomplish the latter, the post-observation interview includes a 

Figure 3. Pre-observation interview protocol. 

1. Walk me through, step by step, what you are planning to do when I observe your class.  

• Can you give me more detail on what you and the students will be doing in _______ part of 

the lesson? 

• Why are you planning to do that?  

• How is this lesson related to the rest of your work in mathematics? 

 

2. Where did you get your ideas for this lesson?  

• If the lesson (or part of the lesson) comes from the Everyday Mathematics curriculum or 

another teacher resource, ask: Is the lesson you plan to facilitate different than what is 

presented in the teacher-resource materials? If yes, how? Why did you decide to make 

changes? 

• In your planning of this lesson, did you make any decisions to do things in a certain way 

based on the urban school context in which you teach?   

 

3. Is there anything in particular that you are hoping to have happen in this lesson? 

• How is it that (what was mentioned in the initial answer) will be accomplished? 

• What will it depend on? 

• What might upset your plan? 

• If the teacher has not already discussed learning goals for the lesson: What do you hope 

students will learn as a result of the way you have planned this lesson? How will that learning 

be accomplished? 

 

4. How do you anticipate your students will respond to this lesson?  

• What will be easy and what will be difficult?  

• How do you expect students will think about these tasks? What strategies do you think they 

will use?  

• In what ways will you find out about how students are thinking about the mathematics in this 

lesson? 

• How will you support students’ mathematical thinking in this lesson?  

 

5. What mathematical knowledge is important for you to teach students these concepts? 

• How comfortable do you feel with your knowledge of this mathematics content? Of how 

students think about these mathematical ideas? 

• Have you done anything specific to prepare to teach these mathematics concepts? 

 

6. Is there anything else you would like me to know before I come to observe this lesson?  
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lesson walk in which fieldnotes completed during the observation are used to reconstruct the 

lesson and provide a context for teachers to discuss instructional decisions made at various 

points. For instance, teachers were asked to reveal how they decided who to call on during 

class discussion of students’ strategies for solving mathematics problems. In this interview, 

teachers were also prompted to consider how the urban context of their teaching influenced 

the observed lesson. The protocol used to structure the post-observation interview is 

presented in Figure 4.  

 

 

Figure 4. Post-observation interview protocol. 

1. How did you feel things went during the observed lesson? 

• How did things compare to what you had expected? Did anything surprise you? 

• Is there anything that you were particularly pleased about? What? Why? 

• Did anything disappoint you? What? Why? 

• What did the lesson tell you about what your students are learning or still need to learn in 

mathematics? 

• Were there any ways that you (personally) felt challenged during this lesson? Is there 

anything in particular that you were working on in your teaching? How confident did you feel 

about the mathematics content involved in this lesson?  

• What are your next steps with this group?  

 

2. Now I would like to walk through your lesson and ask questions about specific parts. (Use fieldnotes to 

review lesson, inserting questions about particular aspects of the lesson.)  

Typical probes:  

• The selection of tasks/examples/representations  

• Reasons for teacher moves during different parts of the lesson, especially as related to 

practices thought to support/limit student thinking 

• Impressions of how students were thinking about the various tasks 

• Why the teacher chose to use certain kinds of grouping arrangements (whole class, 

independent work, partner work) 

• How the teacher decided whom to call on 

• On-the-spot decision-making 

 

3. Finally, I am interested in how teachers adapt their teaching in urban school classrooms. How did the 

urban school context influence your teaching of this lesson (if at all)?  

 

4. Was this math class typical of what you are doing in math these days? 
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Following the pre- and post-observation interviews, fieldnotes were used to guide on-

going data collection and analyses. Audio-tapes were transcribed and integrated with 

observation transcripts for use in additional analyses.  

 

 

Beliefs Survey 

 

 

Teachers’ beliefs for reformed mathematics teaching were measured at the beginning 

and end of the year using the Integrating Mathematics and Pedagogy (IMAP) Web-Based 

Beliefs-Survey (Ambrose, Phillip, Chauvot, & Clement, 2003). This instrument is designed to 

indirectly measure teachers’ adherence to seven beliefs aligned with reform-mathematics 

pedagogy using an interactive web-based platform in which teachers comment on a series of 

classroom-based scenarios presented through video and text. The seven beliefs measured by 

the IMAP instrument are presented in Figure 5.  

 

Figure 5. Seven teacher beliefs measured by the IMAP survey. 

Belief 1: Mathematics is a web of interrelated concepts and procedures (and school mathematics should be too).  

Belief 2: One’s knowledge of how to apply mathematical procedures does not necessarily go with 

understanding of the underlying concepts.  

Belief 3: Understanding mathematical concepts is more powerful and more generative than remembering 

mathematical procedures.  

Belief 4: If students learn mathematical concepts before they learn procedures, they are more likely to 

understand the procedures when they learn them. If they learn the procedures first, they are less likely to ever 

learn the concepts. 

Belief 5: Children can solve problems in novel ways before being taught how to solve such problems. Children 

in primary grades generally understand more mathematics and have more flexible solution strategies than adults 

expect.  

Belief 6: The ways children think about mathematics are generally different from the ways adults would expect 

them to think about mathematics. For example, real-world contexts support children’s initial thinking whereas 

symbols do not.  

Belief 7: During interactions related to the learning of mathematics, the teacher should allow the children to do 

as much of the thinking as possible.  
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 Because individuals are thought to hold beliefs with varying degrees of intensity, the 

scoring rubrics used to analyze the IMAP Web-Based Beliefs-Survey instrument are 

designed to differentiate among strong evidence, evidence, weak evidence, and no evidence 

for a respondent’s holding of each belief (Integrating Mathematics and Pedagogy, 2004).  

Each target belief is measured using responses from at least two segments of the survey, 

allowing opportunity for evidence of respondent’s beliefs to be revealed in multiple contexts. 

A notable strength of this survey is that it overcomes many of the limitations associated with 

Likert scales by situating responses in scenarios and eliciting open-ended responses that 

allow respondents to emphasize or downplay issues of personal importance (Ambrose, 

Phillip et al., 2003). For instance, in one scenario respondents view a video of a teaching 

episode and are then asked to identify what stands out for them before being prompted to 

specifically identify particular weaknesses of the teaching episode. In turn, those respondents 

who identify particular weaknesses before being prompted to do so are considered to 

demonstrate greater evidence of holding the associated belief than those who only note 

weaknesses after being prompted. The web-based platform used for this survey does not 

allow respondents to revise previous responses, thus making it possible for respondents’ 

initial reactions to be captured prior to their thinking being influenced by subsequent 

questions that might more fully reveal the survey designers intentions. The IMAP Web-

Based Beliefs-Survey can be viewed in its on-line format at the IMAP web-site (Integrating 

Mathematics and Pedagogy, 2003).    

The reliability and validity of the IMAP Web-Based Beliefs-Survey instrument was 

established by survey developers in multiple ways (Ambrose, Clement, Phillip, & Chauvot, 

2004). First, the survey was reviewed by a panel of 15 mathematics educators, who agreed 
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that the survey segments provided sufficient opportunity to elicit evidence of the target 

beliefs identified. This expert panel also reviewed pilot data to verify that participants’ 

responses provided information on the target beliefs.  The validity of the survey was further 

established through a pilot study in which 15 undergraduated students enrolled in a 

mathematics education course completed the survey in its web-based format and then 

discussed survey segments in greater depth during individual interviews. Furthermore, the 15 

participants’ beliefs were studied through analysis of class discussion and written work 

during the semester-long mathematics education course and through periodic interviews that 

were not directly related to the survey. It was determined that the 15 participants’ beliefs as 

measured by the IMAP instrument were consistent with this interview and observational 

data, thus providing evidence of instrument validity. Finally, the reliability of the IMAP 

Web-Based Beliefs-Survey instrument was established through a study in which multiple 

coders rated 20% of the responses of 159 participants who completed the survey before and 

after taking part in one of five treatments. The mean interrater reliability for the 17 rubrics 

associated with the survey was 84%.  

In the research of focus in this manuscript, it took the four case-study teachers 60-90 

minutes to complete the IMAP Web-Based Beliefs-Survey at the beginning and end-of-year 

data points.  

 

 

Teacher Knowledge Interview 

 

 

To explore each teacher’s knowledge of mathematics for reformed teaching, a two-

part, semi-structured interview was used at the beginning and end of the school year. A 

summary of the knowledge interview protocol is provided in Figure 6.  
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Figure 6. Summary of knowledge interview protocol. 

Open-ended Interview: Knowledge of Teaching and Learning Multiplication 

Probes:  

• What are the important concepts or understandings that students need to develop related to multiplication?  

• Is there an order to understanding these ideas? How do students develop these understandings?   

• Is there anything that children need to be able to do or understand before they are ready to learn about 

multiplication?  

• What makes learning multiplication tricky for some children? What do you have to watch out for?  

• How do you think a teacher should go about teaching multiplication?  

Classroom Scenario 1: Knowledge of Non-standard Strategies 

One of the goals of the Everyday Mathematics curriculum is to get students to solve problems in many 

different ways. What are some different strategies that children might use to solve the following story 

problem? (Teacher records strategies.)  

Kristen and Amber were setting up some chairs for a play. They made 16 rows of chairs. Each row had 8 

chairs. How many chairs did Kristen and Amber set up? 

Follow-up Probes: 

• How does this strategy work? 

• What does a child need to know or be able to do to use this strategy? 

• Which of these strategies indicates the most sophisticated understanding? The least sophisticated 

understanding? Why? 

Classroom Scenario 2: Interpretation of Students’ Mathematical Strategies
a
 

Using student work provided, teachers are asked to interpret how three students solve the following partitive 

division problem, which results in a fraction:  

Twenty-four children want to share eight pancakes so that each one gets the same amount. How much 

pancake can each child have?  

Follow-up Probes: 

• What mathematics do you think each child understands based on the strategy used to solve this problem?  

• What questions might you ask these students to find out more about their mathematical understanding? 

Classroom Scenario 3: Addressing and Avoiding a Common Student Error
b
 

Teachers are presented with a representative sample of sixth-grade student work in which the standard U.S. 

multiplication algorithm is executed without maintaining the place values of the partial products.  

Probes: 

• What would you do if you noticed that several of your students were doing this?  

• As a third-grade teacher, what do you do to ensure that your students do not make these kinds of errors 

when they get to sixth grade? 

Classroom Scenario 4: Interpretation of and Response to a Flawed Solution
c
 

Teachers are presented with student work and a student’s explanation of an unusual flawed solution to the 

division problem 144 ÷ 8.  

Probes: 

• How would you respond to this student?  

• Where is the students’ mistake? What does the mistake suggest about the students’ understanding? 

• Could the strategy be modified to solve the problem? If yes, how? 

a
The pancake problem and student work used for Classroom Scenario 2 are from Empson (2001).  

b
Classroom Scenario 3 is an interview item from Kennedy, Ball, and McDiarmid (1993). 

c
Classroom Scenario 4 is an interview item from Empson and Junk (2004). 
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The first part of this interview uses open-ended questions to probe a teacher’s knowledge of 

mathematics for reformed teaching specifically related to multiplication concepts taught in 

third grade. Teachers are asked to describe key concepts related to multiplication, how 

children learn these concepts, and how multiplication should be taught. In the remainder of 

the interview, a teacher’s knowledge of mathematics for reformed teaching is further 

explored as the teacher is presented with specific scenarios set in multiplication and division 

instructional contexts and prompted to describe how they might respond. Drawing on 

scenarios developed by Kennedy, Ball, and McDiarmid (1993) and Empson and Junk (2004), 

teachers are asked to anticipate the varied ways children might solve a particular problem, 

interpret student work, and respond to students’ difficulties.  

The teacher knowledge interviews took teachers 75-90 minutes to complete at each 

data point. Some teachers chose to complete this interview over multiple sessions. Audio-

tape recording and fieldnotes were used to capture the contents of the teacher knowledge 

interviews. Fieldnotes were used to guide on-going data collection and analyses. Audio-tapes 

were transcribed and integrated with data from fieldnotes for use in additional analyses. 

 

 

Records of the Teacher Development Project 

 

 

Throughout the year of this study, records were collected of formal and informal 

aspects of the teacher development project and collaboration among grade-level teachers and 

researchers. Data sources include written researcher reflections on professional development 

meetings, fieldnotes describing in-class support activities, fieldnotes describing observations 
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of mathematics teaching
4
, and a log of conversations and emails between teacher educators 

and third-grade teachers. These data sources were used to further understand teachers’ 

beliefs, knowledge, and instructional practices. 

 

 

Interviews with School Leaders 

 

Interviews with school and school-district leaders were conducted to better 

understand the context in which the case study teachers were working. Interviews with the 

principal and assistant principal at Lincoln Heights were designed to elicit the respondents’ 

perspectives on school history and culture as well as current issues related to mathematics 

teaching and learning at Lincoln Heights. These interviews were conducted in the Fall 

semester and took 2-3 hours. Interviews with the district mathematics coordinator and a 

district-level curriculum specialist were designed to gain a district-level perspective on the 

transition to the Everyday Mathematics program as well as an understanding of the perceived 

needs and challenges of high-need schools in the school district. These interviews were 

completed in the Spring semester. The interview with the district mathematics coordinator 

was completed over two, one hour meetings. The interview with the district-level curriculum 

specialist took one hour. Sample questions from these interviews are presented in Table 7.  

During all interviews with school and school-district leaders, audio-tape and 

fieldnotes were used to capture the contents of the interviews.  Following these interviews, 

fieldnotes were used to guide on-going data collection and analyses. Audio-tapes were 

transcribed for use in additional analyses. 

                                            
4
 This refers to observations of mathematics teaching in addition to core observations. These observations 

usually occurred spontaneously, before or after in-class support or an interview. Beyond core observations, each 

case study teacher’s mathematics instruction was observed three to six times.  
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Table 7 

Sample Questions from Interviews with School and School-District Leaders 

Group Sample interview questions 

School 

leaders 

School history and culture:  

• Who are the students that come to this school?  

• What have been the challenges at this school historically and in the present?  

• What do you perceive as the current strengths of this school?  

• How are decisions, particularly about what is taught, made at this school?  

• What, if any, “pressures” come from the district and state leadership and how they 

influence what goes on at this school?  

• In what ways and to what extent do the accountability measures related to the State 

Standardized Test influence the way things are done at this school? 

 

Mathematics-related school improvement efforts: 

• What initiatives are underway to improve mathematics instruction this year? What is the 

intent of each? From your vantage point, how are teachers and students responding to these 

initiatives?  

• What is your involvement with improving mathematics instruction? How do you see your 

role? 

• When you observe a teacher’s mathematics instruction, what are you looking for? What 

would you consider to be the characteristics of a good mathematics lesson? 

School-

district 

leaders 

District history in relation to mathematics teaching and learning: 

• How would you characterize elementary school student achievement in mathematics in this 

school district, both currently and over the last 10 years? How would you characterize 

student achievement in urban schools compared to other schools in the district? To what do 

you attribute this characterization?  

• What is the level of priority of mathematics instruction in your district currently? What has 

it been historically (last 10 years)?  

• What are the district-level expectations for mathematics instruction? To what extent have 

these remained constant or changed? 

• What factors (external to the school) influence the way mathematics is taught? How have 

the factors influencing mathematics instruction in this district changed over the last 10 

years? 

• What current initiatives are underway to improve mathematics instruction? 

 

District adoption of Everyday Mathematics: 

• Why was this particular curriculum adopted?  

• How is this curriculum the same and different from what teachers were using last year? I 

am especially interested in your perception of the change for teachers in urban schools.  
• What do you see as the major challenges elementary teachers face in transitioning to the 

Everyday Mathematics program? Are there any challenges that you see as specific to urban 

schools?  

• What is the nature of district-level support during this transition year to the Everyday 

Mathematics program? What is the district doing to support teachers? Schools? 

Administrators? 
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Student Data 

 

 

Lincoln Heights’ student population has a history of mobility; therefore aggregated 

data on the demographics of each case study teacher’s class were collected from teachers at 

the end of each quarter. Because the case study teachers’ classes remained relatively stable 

during the year of this study, this study only reports aggregated class demographic data that 

were collected halfway through the year. Demographic data on the student population at 

Lincoln Heights were collected from Lincoln Heights’ principal and, when possible, were 

verified through publicly available information on the state department of education website.  

At the end of the school year, aggregated data related to students’ achievement on the 

mathematics section of the State Standardized Test
5
 (SST) were collected. The SST is a 

criterion-referenced achievement test in which students receive scores between 1 and 5, with 

a score of 3 or higher considered passing. The test is administered to students in late-March, 

at the end of the third quarter of the school year. Aggregated data on each case study 

teacher’s class were collected from Lincoln Heights’ principal. Aggregated third-grade SST 

data for Lincoln Heights, the school-district, and the state were collected from the principal 

and verified through publicly available information on the state department of education 

website.   

 

 

Data Management Procedures 

 

 

Data collection yielded a combination of products in the form of paper and electronic 

documents as well as numerous audio-recordings. To organize the voluminous amount of  

                                            
5
 State Standardized Test (SST) is a generic pseudonym that will be used throughout this manuscript in place of 

the actual test name.  
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data and facilitate systematic data analysis, I engaged in the activities listed below: 

• All audio-recordings were transcribed, integrated with fieldnotes, and saved as text 

documents. I personally transcribed audio-recordings in which an understanding of 

the data was partially reliant on fieldnotes, including all observations, post-

observation interviews, and the second part of the Teacher Knowledge interview. 

Three transcribers supported transcription of interviews that consisted primarily of 

dialogue between the interviewee and me. I reviewed and made minor revisions to 

transcripts completed by others, being especially attentive to places in the transcripts 

where transcribers indicated uncertainty in the verbatim dialogue.  

• Next, the transcripts of teachers’ comments from pre- and post-observation interviews 

were nested within observation transcripts. For instance, a teacher’s comments from a 

post-observation interview justifying mathematical strategies emphasized in a 

particular class discussion were nested within the observation transcript at the point of 

the lesson segment of focus. This process of nesting teachers’ commentary about a 

lesson within the transcript of real-time instruction facilitated easy access to data 

revealing teachers’ instructional thinking in relation to actual instructional practice 

being discussed.  

• After all data sources had been converted into text documents, they were imported 

into the software package ATLAS.ti (Muhr, 2004) in preparation for systematic data 

analysis. This text analysis software package facilitates the iterative process of 

creating codes from data, refining those codes, and looking for meaningful patterns 

across sources (Muhr, 1991). 
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Data Analysis Procedures 

 

 

The purpose of this study is to illuminate how teachers’ beliefs and knowledge 

influence the way they support and limit student thinking in their first year of implementing a 

reform-based mathematics curriculum at an urban school. Through a collective case study 

approach, multiple data sources were used to inform analyses as themes and patterns were 

generated within case studies of individual teachers as well as through comparative analysis 

across cases (Merriam, 1998; Yin, 2003). Triangulation among data sources was used to 

construct and interrogate emerging themes throughout a process of iterative data collection 

and analysis (Mathison, 1988).  

 

 

Analysis during Data Collection 

 

 

In keeping with qualitative research design (Lincoln & Guba, 1985), I began 

analyzing data as soon as I collected them. Fieldnotes from the observations and interviews 

were read holistically in efforts to understand how teachers’ beliefs and knowledge were 

related to instructional practices that support and limit student thinking. I was especially 

attentive to instances in observed lessons when instruction seemed to move away from a 

teacher’s lesson image, as these moments are thought to be especially revealing of a teacher’s 

goals, knowledge, and beliefs (Aguirre & Speer, 2000). One aspect of instruction that 

emerged through this process as particularly interesting was teachers’ response to student 

difficulties. 

The beginning-of-year measures of beliefs and knowledge and data from professional 

development meetings provided an initial understanding of each case study teacher’s beliefs 

and knowledge. These early understandings served as a lens that shaped my subsequent 
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interviews with and observations of each teacher. As conjectures about the nature of and 

interaction among teachers’ beliefs, knowledge, and instructional practice were formulated, I 

continuously sought evidence to confirm or disconfirm these conjectures. In particular, the 

lesson walk portion of post-observation interview provided opportunity for me to directly ask 

teachers to explain their instructional thinking in relation to specific actions within observed 

lessons. This, in turn, led to revision of conjectures and development of new conjectures. 

Additionally, themes that emerged through study of one teacher were intentionally explored 

in my observations of and interviews with the other teachers.  

 

 

Analysis after Data Collection 

 

 

In addition to the informal analysis I engaged in while collecting data, I conducted 

formal and systematic data analysis after all data were collected, transcribed, and integrated 

with fieldnotes. In the sections that follow, I present the details of various aspects of my 

research analyses after data collection was completed, including the purpose and process for 

conducting each analysis. For the sake of clarity, I discuss these analyses as if they were 

discrete and linear events. However, in reality, different aspects of the analysis overlapped 

and some analyses occurred concurrently. In actuality, I experienced the relationships 

between these analyses as recursive and cumulative, each informing the others.  

 

 

Analysis of Classroom Instruction 

 

 

Because the heart of my research questions focus on how knowledge and beliefs 

influence instruction, my analysis began with trying to understand each teacher’s 
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instructional practice. First, I reviewed observation transcripts holistically, making note of 

emerging themes related to my interest in student thinking. Then I engaged in an iterative 

decomposition of each core observation transcript, parsing it into chunks or action sequences 

based on the natural segments of the lesson (Schoenfeld, 1998). Through this process, action 

sequences of varying grain size were identified. A summary example of lesson 

decomposition is presented in Figure 7.   

 

Figure 7. Sample decomposition of lesson into action sequences of varying grain size. 

0.00 (0.20) Teacher introduces mathematics task (provides working instructions only)  

(1.10) Students begin working, teacher circulates and observes. 

• (2.05) B1 asks teacher question 

• (2.30) Teacher elicits explanation of solution strategy from B2  

• (2.50) Teacher elicits explanation of solution strategy from G1 

• (3.45) Teacher elicits explanation of (flawed) solution strategy from B3 & B4  

o B3 & B4 provide minimal response 

o Teacher reviews problem  

o B3 devises a new strategy, teacher encourages record keeping to keep track of 

solution 

• (4.40) Teacher tells G2 that she needs to show work 

• (4.55) Teacher solicits explanation of solution strategy from B5’s table  

5.00 (6.00) Teacher initiates whole group discussion 

• Teacher praises desirable behaviors 

• (6.25) Teacher asks G2 to read the problem aloud 

• (6.55) Teacher elicits description of solution strategy from a representative of group 1  

o G3 shares group 1 strategy 

o Teacher records strategy on board 

• (7.40) Teacher requests another way – B7 volunteers an alternate strategy (group 2 

solution) 

o Teacher demonstrates B7’s solution strategy 

• (8.30) Teacher elicits group 3 solution strategy 

o B5 describes group 3’s strategy 

o (9.35) Teacher asks if someone else can explain why this solution works 

� G4 provides a flawed explanation 

10.00 � Teacher suggests a conceptual way to think about the solution 

o (10.35) G5 says that she doesn’t understand how group 3’s strategy works 

� (11.00) Interruption by B6, behavior  

� (11.10) Teacher reiterates conceptual explanation of strategy, asking 

students questions as she goes 

• (13.25) B1 comments on group 1’s solution and relates to a new solution idea 

o (13.35) Teacher says that G8 had a similar approach and asks her to share 

o (14.20) B2 comments that he likes that strategy, teacher asks him to elaborate 

o (14.45) G5 agrees with B2 

Note. Bullet indentation is used to indicate action sequences imbedded within larger action sequences.  
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In this 15-minute block of instruction, there were three major action sequences: 

introduction of mathematics task, student work time, and class discussion. Within the student 

work time and class discussion, action sequences of a finer grain size were identified. For 

instance, the whole group discussion (starting at 6.00 minutes) is organized around 

discussion of four student solution strategies to a mathematics task. The discourse related to 

each of these strategies was identified as a bounded action sequence within the larger action 

sequence of class discussion.  Within an action sequence around a particular solution 

strategy, there are action sequences of grain sizes that are smaller yet, such as teacher records 

of student ideas and student response to teacher questions.  

During this initial review of observation transcripts, I also coded instances when 

teachers engaged in actions that appeared to support or limit student thinking. These codes 

were drawn from my review of the research literature as well as from the data themselves. To 

illustrate, a sample of codes used to identify teachers’ actions supporting and limiting student 

thinking within the observation transcripts are presented in Table 8.  

 

 

Table 8 

Sample of Codes Used for Teacher Actions that Support and Limit Student Thinking 

Supporting actions Limiting actions 

SpptST-ElctMltSltn: Teacher elicits multiple 

solutions for a problem posed 

LmtST-SnglMthd: Teacher directs students to use a 

particular method to solve a problem.  

SpptST-PrblmCntxt: Teacher encourages focus on 

problem context (to solve contextualized 

mathematics task) 

LmtST-IgnrPrblmCntxt: Teacher encourages student to 

use a method that minimizes focus on problem context 

(to solve contextualized mathematics task) 

SpptST-SggstRsrc: Teacher suggests use of 

resources to support problem solving other than 

direct teacher help (i.e., tools, problem solving 

chart, conversation with peer) 

LmtST-HvyHlp: Teacher provides “heavy help” by 

directing student step-by-step through problem solving 

SpptST-CmprSltn: Teacher prompts students to 

compare and contrast multiple solution methods 

LmtST- LgtmtSltnIncrrct: Teacher treats legitimate 

solution as incorrect 
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Through this analysis, I aimed to devise an understanding of how teachers’ actions 

and non-actions supported and limited student thinking. For instance, the action of prompting 

students to engage in comparison among students’ multiple solution strategies was 

considered supportive of student thinking, while rarely or never engaging in this practice was 

considered a non-action that served to limit student thinking. As new codes were developed 

in response to one teacher’s instructional practice, observation transcripts from the other 

teachers’ classrooms were reviewed and coded accordingly.  

Through these initial stages of data analysis, teacher response to students’ difficulties 

emerged as an interesting aspect of instruction in which there was significant variation 

among teachers with regard to actions supporting and limiting student thinking. 

Consequently, teacher response to student difficulties was an aspect of instruction identified 

for more fine-tuned analysis. First, I identified action sequences in which teachers 

encountered and responded to (or did not respond to) student difficulties. Next I developed a 

coding scheme to classify these action sequences based on the nature of the student 

difficulties encountered by teachers, with attention to the part of lesson in which the 

difficulty surfaced (i.e., difficulty evidenced through flawed solution presented in whole class 

discussion). This coding scheme is presented in Table 9. Coded action sequences included 

the occurrence or identification of the particular student difficulty, the teacher’s response, 

and any text deemed relevant to understanding the context of the teacher’s response. In 

addition, memos were attached to the identified action sequences providing additional 

information considered relevant to understanding the context in which each action sequence 

was located.  
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Table 9 

Codes Used to Identify Occurrence of Student Difficulty  

Part of lesson Student difficulty codes and definitions 

Student work 

time 

StdDiff-WrkTm-GttngStrtd: The teacher perceives a student/partnership/small group 

having difficulty getting started on a task. 

StdDiff-WrkTm-Stck: The teacher perceives a student/partnership/small group is stuck 

while working on a task.  

StdDiff-WrkTm-FlwdSltn: The teacher perceives a student/partnership/small group is 

devising or has devised a flawed solution strategy. 

StdDiff-WrkTm-IncrrctRspns: The teacher observes a student provide an incorrect 

response to question posed another student or herself. This code also applies when the 

teacher treats a correct response as incorrect. 

StdDiff-WrkTm-FlwdCmmnt: The teacher observes a student make a comment that is 

flawed. This code also applies when a correct comment is treated as flawed by the teacher. 

Whole group 

time 

StdDiff-WhGrp-FlwdSltn: A flawed solution is made public to the class (through 

presentation by a student or teacher OR through a record on the board or white board). This 

code also applies when a correct solution is treated as flawed by the teacher. 

StdDiff-WhGrp-FlwdExplntn: A student's explanation of a correct solution is flawed. This 

code also applies when a correct explanation is treated as flawed by the teacher. 

StdDiff-WhGrp-IncrrctRspns: A student provides an incorrect response to a question (or 

incorrect responses to multiple related questions) posed by the teacher or a student. This 

code also applies when correct responses are treated as incorrect.  

StdDiff-WhGrp-FlwdCmmnt: A student makes a comment that is incorrect or flawed. This 

code also applies when a legitimate comment is treated as flawed.  

 

 

Next the constant comparative method (Glaser & Strauss, 1967) was used to analyze 

these sets of action sequences involving student difficulties in order to construct an 

understanding of the typical patterns of response for each teacher. Consideration was given to 

patterns of response observed in the Fall and Spring lessons separately and together, as it was 

considered possible that teachers’ instructional responses might change over the course of the 

school year. Action sequences that stood in contrast to typical patterns of response were also 

identified at this time. As case stories detailing each teacher’s ways of responding to student 

difficulties emerged out of analysis of core observation transcripts, records of other 
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observations of mathematics teaching were reviewed for evidence that supported or stood in 

contrast to identified response patterns. Throughout this process of data analysis, themes that 

emerged in one teacher’s instruction were explored across the other cases. 

Finally, quantitative analysis of the ratings collected using the Reformed Teaching 

Observation Protocol (RTOP) (Sawada et al., 2002) were completed in order to consider 

how each teacher’s patterns of response to student difficulties were situated in a broader set 

of characteristics associated with reform-oriented mathematics classrooms. First, mean 

scores on each of the RTOP’s 25 items were calculated for Fall and Spring observations. 

Next, item scores were summed to determine five subscale scores, with each subscale 

representing a particular aspect of reformed teaching. These subscale scores were then 

summed to establish a total score between 0 and 100, with higher scores reflecting instruction 

more closely aligned with principles of teaching and learning associated with current reforms 

in mathematics education.  

 

Analysis of Teacher Beliefs 

 

 

Teachers completed the Integrating Mathematics and Pedagogy (IMAP) Web-based 

Beliefs Survey (Ambrose, Phillip et al., 2003) at the beginning and end of the school year. 

Following survey completion at each data point, a set of rubrics that accompany the survey 

were used as directed to evaluate seven target beliefs considered central to reform-oriented 

mathematics teaching (Integrating Mathematics and Pedagogy, 2004). Prior to using these 

rubrics to evaluate the responses of case study teachers, I completed an extensive set of 

training exercises, in order to become oriented to the nuances associated with each rubric and 

to ensure consistency with the survey designers’ intentions. Next, each of 17 segment rubrics 
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were used to rate the degree to which case study teachers’ responses in a given segment 

provided evidence that each teacher held the particular target belief. Finally, each of seven 

beliefs rubrics (one for each target belief) were used to determine a numeric score indicating 

evidence of the teachers’ adherence to each target belief based on the multiple segment 

rubrics associated with the given belief.  The beliefs rubrics differentiated evidence of a 

teacher’s beliefs using a scale ranging from 0 (no evidence of belief) to 3 (strong evidence of 

belief). Finally, a descriptive portrait of each teacher’s beliefs, as suggested by survey 

responses and reflected in numeric ratings, was constructed for use in further data analyses.  

In addition to the portrait of teachers’ beliefs suggested by the IMAP Web-Based 

Beliefs-Survey, interviews and records of the teacher development project were examined to 

identify teachers’ professed beliefs. Through these sources, additional data on teachers’ 

beliefs about what school mathematics is important, how children learn mathematics, the role 

of teachers and students during mathematics instruction, and specific instructional practices 

were identified. These data sources also provided insight into teachers’ beliefs about their 

current teaching contexts and students. Data were coded in accordance with these different 

kinds of beliefs and organized for use in further analyses. When data were available on a 

given dimension from the Fall and Spring data points, consideration was given to evidence of 

change in beliefs over the course of the year.  

 

 

Analysis of Teacher Knowledge  

 

 

Beginning and end-of-year responses to the teacher knowledge interview were analyzed 

in relation to the research literature on knowledge theorized to be supportive of teaching 

multiplication concepts in a reform-oriented manner. Specifically, the following six facets of 
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teacher knowledge related to the teaching and learning of multiplication concepts were 

explored:  

• Knowledge of big ideas related to multiplication  

• Knowledge of student strategies – for problems involving basic facts and multidigit 

numbers 

• Knowledge of student learning trajectories related to developing understanding of 

multiplication 

• Knowledge of common student difficulties 

• Knowledge of teaching strategies to support development of conceptual 

understanding 

• Ability to use mathematical knowledge to interpret student work 

First, interviews were coded according to these different facets of teacher knowledge. Then 

interview responses at the beginning and end of the year were analyzed separately, and a 

summary of teacher knowledge suggested by each interview was constructed. Next, these 

summaries of teacher knowledge at the beginning and end-of-year data points were analyzed 

in relation to each other to consider the extent to which there was evidence of change in 

teacher knowledge.  

 

 

Analysis of Student Mathematics Achievement 

 

 

The mathematics achievement of each teacher’s class was measured using aggregated 

student scores on the mathematics section of the State Standardized Test (SST). The 

aggregated scores for each teacher’s class were considered in relation to the aggregated 

scores of third graders at Lincoln Heights, in the school district, and in the state. 
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Development of Case Stories 

 

 

Following separate analyses of teachers’ beliefs, knowledge, and instructional 

practices, case stories were developed to examine the interactive relationship of these 

variables. In broad strokes, this analysis involved identifying evidence of each teacher’s 

beliefs and knowledge that might explain the teacher’s patterns of response when various 

kinds of student difficulties arose in her classroom. For a given pattern of response to student 

difficulties, I first reviewed the pre- and post-observation interview data surrounding the 

action sequences associated with the response pattern. Through this analysis, teacher 

commentary on instructional decision-making related to the particular action sequences was 

considered. Next I examined how beliefs and knowledge data collected over the course of the 

year might be related to the particular pattern of response. Through this process, I sought to 

establish key beliefs and aspects of knowledge that appeared to drive the particular pattern of 

instructional practice as well as the interplay between beliefs and knowledge in these 

instances. In other words, I attempted to discern when a given belief or aspect of knowledge 

seemed dominant in determining a particular response pattern and when beliefs and 

knowledge seemed equally in play. The outcome of these analyses was construction of case 

stories offering a theoretical explanation of how each teacher’s ways of responding to student 

difficulty were related to their beliefs and knowledge. At multiple points during the process 

of case story development, I presented drafts of the case stories to a peer debriefer who, in 

turn, interogatted the case stories in relation to my data corpus. Through this process of peer 

debriefing, I sought to ensure that the case stories were comprehensive and reflective of my 

data.  
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Cross-case Analysis 

 

Throughout data analysis, themes that emerged in one teacher’s instruction were 

explored across the other cases. After interpretive case stories were developed for each 

teacher, focus shifted to examining patterns of similarities and differences across cases. 

Specifically, four analyses across cases were performed.  

First, occurrences of teacher actions that support and limit student thinking were 

identified across cases. To accomplish this analysis, excerpts from observation transcripts 

marked with codes used to identify teachers’ actions supporting and limiting student thinking 

were collected across cases by code. Through review of these excerpts, teachers’ actions that 

support and limit student thinking were sorted into two groups: those that were observed 

often in the classrooms of at least three of the teachers studied and those that were observed 

less frequently. Then consideration was given to what these sets of teacher actions have in 

common, and a theoretical explanation suggesting why some practices are more readily 

utilized than others was devised.  

The second cross-case analyses involved reviewing the case stories to discern patterns 

in how teachers’ beliefs and knowledge influenced their response to student difficulties. 

Through this review, an attempt was made to conceptualize the data across cases by first 

identifying dimensions of teachers’ response to student difficulties that served to capture the 

response patterns of the four teachers studied. Next, the theoretical explanations for how 

beliefs and knowledge influenced teachers’ actions were examined in relation to each 

dimension of teacher response. In particular, effort was made to identify aspects of teachers’ 

beliefs and knowledge that appeared to facilitate or limit teachers’ actions related to the 
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particular dimension of response to student difficulties. Through this analysis, a theoretical 

explanation was developed to explain how teacher beliefs and knowledge drove particular 

teaching practices as well as the aspects of teacher actions related to student difficulties most 

influenced by teacher beliefs and those most influenced by teacher knowledge. 

The third cross-case analysis involved examining change in teachers’ beliefs, 

knowledge, and classroom mathematics teaching during the school year and considering 

what the data corpus suggests about the factors influencing that change. First, beginning and 

end of year measures of beliefs and knowledge as well as Fall and Spring scores on the 

Reformed Teaching Observation Protocol were reviewed to determine the extent to which 

and the nature of change in teachers’ beliefs, knowledge, and teaching. Next, data from 

interviews, professional development meetings, records of informal conversations, and other 

sources were reviewed for teachers’ commentary related to changes in their beliefs, 

knowledge, and teaching practice. Also, teachers’ classroom experiences, as detailed in the 

case stories, were taken into account. Through this process, a theoretical explanation of 

teachers’ differing levels of change was constructed with particular consideration of how 

teachers’ classroom experiences influenced change in beliefs and knowledge.  

The final cross-case analysis aimed to identify how the urban school context 

influenced mathematics instruction at the school in which this study was situated. First, 

consideration was given to the ways in which Lincoln Heights Elementary reflects the 

research literature on urban schools, particular regarding the challenges these schools face. 

Next, the data corpus was reviewed for instances when teachers and school leaders provided 

commentary on how their work was influenced by their particular teaching contexts and the 

school context. In particular, attention was given to instances when teachers referenced the 
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needs or nature of students at this school or in my class as shaping mathematics instruction. 

Also, instances in which teachers pointed to external factors as supporting or limiting their 

efforts to teach mathematics were identified. Throughout this analysis, consideration was 

given to how and to what extent particular factors influenced the beliefs, knowledge, and 

mathematics teaching practices of the four teachers studied. This analysis resulted in 

construction of a theoretical explanation of the role the urban context played in teachers’ 

transitions to a reform-based mathematics curriculum, particularly its relationship to 

teachers’ beliefs, knowledge, and mathematics teaching. 



CHAPTER III 

 

FINDINGS 

 

 

 

 

 A year-long collective case study of four third-grade teachers in an urban school was 

undertaken to address the following research questions: 

1. In what ways and to what extent do teachers support and limit student thinking during 

mathematics instruction in their first year implementing a reform-based mathematics 

curriculum? 

2. How do teachers’ beliefs influence the ways they incorporate student thinking into 

their planning for mathematics instruction and on-the-spot instructional decision-

making in their first year of implementing a reform-based mathematics curriculum? 

3. How does teacher knowledge influence the ways teachers incorporate student 

thinking in their first year of implementing a reform-based mathematics curriculum? 

4. How does the urban context, as defined by the research literature and perceived by 

teachers and school leaders, influence mathematics instruction in this urban school?    

This chapter presents research findings beginning with a description of Lincoln Heights 

Elementary School, the school in which the case study teachers work. Next each case study 

teacher’s background and teaching context during the year of this study will be introduced. 

This will be followed by a case study of each of the four teacher participants. Each case study 

begins with discussion of the teacher’s beliefs and knowledge at the beginning and end of the 



 

 94 

school year. Then a case story detailing the teacher’s patterns of response to student 

difficulties and their relationship to the teacher’s beliefs and knowledge is presented. Finally, 

findings from broader measures of teaching are offered, allowing the case story to be 

considered within a more general understanding of the teacher’s mathematics instruction and 

students’ learning. 

 

 

The School Context: Lincoln Heights Elementary 

 

 

The four teachers of focus in this research taught third grade at Lincoln Heights 

Elementary (a pseudonym) during the year of this study. In this section, a portrait of the 

school context in which these teachers worked will be presented to provide a backdrop for 

consideration of each individual case. First, attention will be given to the school culture, 

history, and demographics of Lincoln Heights during this research. This will be followed by 

an account of the mathematics-related new initiatives and mathematics teacher development 

project that took place at Lincoln Heights during the year of this study.  

 

School Culture, History, and Demographics 

 

 

Located in a large urban school district in the Southeastern United States, Lincoln 

Heights consists of a single-level main building and a maze of adjacent portable classrooms. 

Walking through the open-air hallways before and after school, faculty and staff engage in 

friendly exchanges with each other, children, and parents. There is a general feeling that this 

is a place where people will care about you.  

Although Lincoln Heights is situated within a residential neighborhood of small 

houses, most of the students attending Lincoln Heights reside in nearby apartments and rental 
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properties catering to low-income families. Lincoln Heights serves 568 students from 

kindergarten to grade 5, with 86% of those students qualifying for free or reduced lunch. The 

campus also houses two pre-kindergarten classes that are not included in the elementary 

population count. Based on the low socioeconomic status of the student population, Lincoln 

Heights is a designated Title I school that receives supplementary funding from the federal 

government.  

Approximately three-fourths of the students at Lincoln Heights Elementary are 

Hispanic and many are recent immigrants to the U.S. from countries in the Caribbean islands 

or Central and South America. The language needs of Lincoln Heights’ student population 

are significant, with most students having a first language other than English and 59% 

identified as Limited English Proficient (LEP). Reflecting the majority Hispanic student 

population, the principal at Lincoln Heights is Hispanic as are many of the teachers. It is 

common to hear both English and Spanish being spoken by children, parents, faculty, and 

staff in the hallways and classrooms. At each grade level, there are at least two transitional 

language classes designated for LEP identified students. In these classes, children receive 

instruction in both English and Spanish. In addition to the 74% of Lincoln Heights students 

who are Hispanic, the student population consists of 12% Black students, 10% White 

students, and 4% from other racial/ethnic designations.  

Lincoln Heights is a school with a recent history of school failure, having been 

designated an “F” school by the state’s school grading system five years prior to this study. 

School grades are determined based on student performance in reading, mathematics, and 

writing on the State Standardized Test (SST). Schools can raise their school grade in two 

ways: 1) by increasing the number of students achieving passing scores on the SST, and 2) 
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by increasing the number of students who demonstrate improvement from year to year on the 

SST.  

Since the time Lincoln Heights was designated an “F” school, five years prior to this 

study, steady improvements have been made and Lincoln Heights has held the grade of “C” 

for the two years preceeding this research. School administrators attribute recent 

improvement in school grade to a variety of factors including introduction of a school-wide 

behavior management system, professional development on working with impoverished and 

LEP student populations, and implementation of a scripted reading program. Still, 

approximately 20% of the third grade students from the previous year were retained in third 

grade during the year of this study because they did not achieve a passing score on the 

reading section of the SST. Despite the improvement in recent years, there is significant 

pressure on teachers and administrators to continue to raise student achievement scores on 

the SST. For instance, this pressure has led administrators to eliminate daily recess for 

students in tested grades.   

In total, there are 81 faculty and staff at Lincoln Heights, including 51 teachers. As a 

group, the teachers’ years of teaching experience vary widely. Most of the persons that 

interview for teaching positions at Lincoln Heights have limited or no teaching experience. 

While Lincoln Heights’ administrators seek to hire experienced teachers with rich curricular 

knowledge, they are most focused on finding teachers who will provide a caring presence in 

their students’ lives and who will be open to professional development on how to teach. As 

evidence, consider the following comment made by one of Lincoln Heights’ administrators:   

[When hiring teachers] the curriculum knowledge is important, but I think that when 

you are in a school like ours, the other things are more important. Because if you have 

all the other things – if you have the passion and commitment, we can teach you how 

to do the reading program.  
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At Lincoln Heights, curricular decision-making is highly centralized and a great deal of 

emphasis is placed on mandatory professional development related to school curricular 

initiatives. Lincoln Heights’ teachers generally express appreciation for the many 

professional development opportunities at the school. However, teachers also report being 

overwhelmed by the multitude of simultaneous initiatives that they are expected to learn 

about and implement. Mathematics-related initiatives underway during the year of this study 

will be described next followed by discussion of the mathematics teacher development 

project in which teachers participated during the year of this study.   

 

 

Mathematics-Related New Initiatives 

 

 

Three major mathematics-related initiatives were implemented for the first time in the 

year of this study: 1) the Everyday Mathematics program (Bell et al., 1994), 2) mini-lessons 

and assessments tied to state benchmarks, and 3) SuccessMaker (Computer Curriculum 

Corporation, 2002), an individualized computer-based instructional program. Each of these 

new initiatives will be discussed in turn.  

First, Lincoln Heights teachers began to use the newly adopted Everyday 

Mathematics program (Bell et al., 1994) along with most of the other elementary schools in 

the school-district during the year of this study. According to the district mathematics 

coordinator, the intent of this new adoption was to encourage teachers to move away from 

traditional textbook-based mathematics teaching practices toward the reform-based 

mathematics instructional practices described in the NCTM standards documents (1989, 

2000). According to school-district leaders, this change was anticipated to be a challenging 



 

 98 

one due to the significant shifts in the ways teachers would need to think about mathematics 

instruction and prepare for daily mathematics lessons. Reflecting these claims, the teachers at 

Lincoln Heights express that they find Everyday Mathematics to be a challenging program to 

teach. Teachers indicate that they must spend significantly more time preparing to teach 

Everyday Mathematics lessons than with previous programs and that, even then, they are 

sometimes unsure of how to put into practice the ideas presented in the teacher guide.  

The second mathematics-related new initiative during the year of this study was 

implementation of a program of mini-lessons and assessments tied to state benchmarks for 

mathematics (and reading). All of the schools in the district serving at-risk student 

populations, including Lincoln Heights, were required to participate in this program of extra 

instruction and frequent assessment, using tests provided by the school-district. The 

mathematics part of this testing included bi-weekly short assessments on select state 

benchmarks and longer, comprehensive assessments administered three times during the 

year. Lincoln Heights’ teachers were responsible for providing daily mini-lessons to prepare 

students for these mathematics tests. This district-level initiative was put in place during the 

year of this study in response to state mandates to devise a data-driven system of continuous 

school improvement. Therefore, the school-district vision for these tests was that they would 

help teachers to understand their students’ academic needs and make informed instructional 

decisions that would lead to gains in student achievement. However, the teachers studied 

viewed these tests and mini-lessons as one more thing to fit in to their limited instructional 

time. Furthermore, teachers regularly identified test items that they viewed as inappropriate 

or ambiguous, thus limiting the degree to which they considered test results to be valid.  
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The third mathematics-related initiative in the year of this study was implementation 

of the individualized computer-based instructional program SuccessMaker (Computer 

Curriculum Corporation, 2002).  Lincoln Heights’ administrators purchased this program 

because they believed it would positively impact student performance on standardized tests. 

After initial testing to determine each student’s instructional needs, SuccessMaker provides 

an individualized program of instruction in which students are prompted to answer 

mathematics problems that are matched to their identified learning needs. When incorrect 

responses are made, the program provides instruction that guides students through the 

process of providing correct responses. For instance, if a student provides an incorrect 

response to the problem 6 × 31, the program demonstrates the steps of the standard U.S. 

multiplication algorithm and then guides the student to apply the steps on a similar problem. 

During the year of this study, Lincoln Heights’ teachers were mandated to have all students 

spend 30 minutes daily working on the SuccessMaker program. This included 15 minutes on 

the math portion of the program and 15 minutes on the reading section. However, the 30-

minute block of time spent on SuccessMaker was not supposed to interfere with the 2-hour 

reading block; therefore this time always fell during instructional time allotted for other 

subjects, including math.  

  While these initiatives each individually sought to improve student achievement in 

mathematics, coordination among initiatives was poor. In many weeks, teachers were 

expected to focus on one set of mathematics objectives related to the Everyday Mathematics 

program and another to prepare students for the benchmark mini-assessments. The 

SuccessMaker computer-based program also addresses some key mathematics objectives in 

ways that are in conflict with the approach taken by Everyday Mathematics. Most notably, 
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SuccessMaker teaches students to perform multidigit computations by learning the 

procedures of the standard U.S. algorithms while Everyday Mathematics encourages use of 

invented and alternative algorithms. Furthermore, the instructional focus of SuccessMaker for 

some skills is highly procedural. This stands in contrast to the emphasis of mathematics-

reform which stresses the importance of developing conceptual understandings to support 

learning of procedures. As a result, this fragmentation pulled teachers in different directions 

and their energies often became scattered rather than focused.  

Throughout the year, teachers frequently expressed frustration with these competing 

initiatives because they found it difficult to implement all of them in the ways they were 

intended. Even though the school district leadership made it clear that effective use of the 

Everyday Mathematics program requires at least one hour of instructional time each day, the 

time required to fulfill the two other mandated initiatives made that difficult. In practice, time 

for the other mandated initiatives was routinely taken out of the math hour. Additionally, 

teachers were regularly pulled out of their classrooms for professional development. The 

objective of the professional development was to provide teachers with support for 

implementing mathematics-related initiatives as well as initiatives focused on other curricular 

areas. But it also took away time from teachers’ use of the reform-based curriculum that was 

already eroded by the other two mandates.  Therefore, while the Everyday Mathematics 

program was intended to be a catalyst toward reform-based mathematics teaching, it is 

important to recognize the extent to which teachers expended their energies just trying to 

keep up with all that was required of them. There was limited time left for teachers to focus 

on changing their mathematics teaching. This should be kept in mind later on as case studies 
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describing teachers’ beliefs, knowledge, and teaching practices are discussed in relation to 

reform-based mathematics ideals.  

Within this broad context of a school engaged in many initiatives and activities to 

increase student achievement on state tests, Lincoln Heights’ administrators also committed 

significant resources to put in place a teacher development project to improve mathematics 

teaching and ease the transition to the new Everyday Mathematics program. This 

mathematics teacher development project will be described next.  

 

 

Mathematics Teacher Development Project 

 

 

In anticipation of the difficulty teachers might have implementing the Everyday 

Mathematics program, Lincoln Heights administrators hired three mathematics educators to 

support teachers in grades Kindergarten through 5 with the transition to Everyday 

Mathematics. One mathematics educator worked with teachers in the primary grades (K-2), 

while two mathematics educators worked collaboratively with intermediate teachers (3-5)
6
. 

Across grades, the general format and intent of the teacher development project was the 

same. Teachers met with mathematics educators along with the other teachers on their grade-

level teams for monthly half-day workshops over the course of the year. Each workshop was 

scheduled for 2.5 hours and included a 10-minute break. Sometimes support personnel, such 

as special education teachers, would join these sessions. Workshops focused on mathematics 

knowledge for teaching select grade level topics coming up in the Everyday Mathematics 

program and pedagogical knowledge associated with reform-based mathematics teaching. 

Workshops also intentionally offered opportunities for teachers to discuss issues and ask 

                                            
6
 As was previously noted in the Methods chapter, the author was one of the two mathematics teacher educators 

for intermediate grade teachers.  
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questions related to lessons currently underway. In addition to these on-going workshops, the 

mathematics teacher development project included a limited number of in-class support 

experiences such as model teaching. 

The third-grade teaching team, including the four case study teachers, met for 

workshops nine times during the school year. The focus of each of these workshops is 

presented in Table 10. Seven of the nine workshops focused on number-concepts including  

 

 

Table 10 

Focus of Third-grade Workshops  

Session Major workshop topics 

1 Incorporating games into mathematics instruction 

Using the number grid (hundreds board) to develop place value concepts 

2 Nonstandard strategies for multidigit addition and subtraction and their relationship to place 

value understanding 

3 Having children talk about mathematics: when, why, and how 

Making sense of Everyday Mathematics focus algorithms for multidigit addition and 

subtraction, with and without base-ten blocks 

4 Beginning multiplication concepts and student thinking 

Benefits and challenges of the array model for multiplication and division 

5 The teacher’s role in building instruction around student thinking 

Division problem types: partitive vs. measurement division 

Students’ strategies for solving division problems  

6 Classification of 2-D shapes (geometry) 

7 Introducing fractions with equal-sharing problems 

Comparing fractions with physical models and reasoning strategies 

8 Derived fact strategies for basic multiplication facts 

Nonstandard strategies for multidigit multiplication 

9 Exploring area concepts with geoboards (measurement) 
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whole number concepts and operations and rational number concepts. In workshops 6 and 9, 

select geometry and measurement concepts were of focus. While pedagogical issues were 

continuously discussed alongside focus on mathematics content, workshops 1, 3, 5, and 7 

included particular attention to pedagogical topics. These included instructional use of 

mathematics games, having students engage in explanation and justification of mathematical 

ideas, and the teacher’s role in reform-oriented mathematics instruction.   

Workshops typically began with each teacher sharing her current location in the 

Everyday Mathematics program and airing questions and concerns. In early workshops, this 

portion of the meeting took much more time than was considered by teacher educators to be 

ideal. As the year continued, efforts were made to contain this section of the meeting to 20 

minutes or less. Next teacher educators led teachers through activities related to the math 

content and pedagogical foci of the workshop. Typical activities in this part of workshops 

included engagement in problem solving activities and discussion of personal mathematics 

strategies, analysis of student work, discussion of print articles and videos of classroom 

instruction, and presentation of information. Then, when appropriate, workshops ended with 

making plans for in-class support activities and/or previewing the upcoming lessons in the 

Everyday Mathematics teacher guide.  

During the workshop portion dedicated to previewing upcoming lessons, teacher 

educators aimed to illuminate connections between Everyday Mathematics lessons and 

workshop experiences, unpack how Everyday Mathematics lessons might work together to 

develop particular mathematical ideas, alert teachers to activities in which students might 

experience difficulty, and offer suggestions for modifying and supplementing lessons. 

Although teacher educators encouraged teachers to preview lessons in the teacher guide prior 
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to workshop meetings, teachers typically reported that they did not have time to look ahead 

and that they instead relied on this part of workshop sessions to help them understand what 

was coming up in the Everyday Mathematics curriculum.  

As part of the teacher development project, the third-grade team of six teachers was 

allocated five half-days of in-class support in the first half of the year. Each of these half-day 

sessions typically involved a mathematics teacher educator engaging in model teaching or 

co-teaching in each of two or three teachers’ classrooms. Although efforts were made to de-

brief with teachers after in-class support experiences, these interactions were usually short 

and often occurred during instructional time as students were working. Decisions regarding 

which teachers would receive in-class support on a given day were made by the grade-level 

team at the end of a workshop session. Then, individual teachers designated to receive in-

class support worked collaboratively with a mathematics teacher educator to determine the 

mathematics focus and support format (i.e., model teaching, co-teaching, or other) for in-

class support in their classrooms. Most often, teachers requested model teaching related to a 

mathematics concept perceived difficult for students or model teaching of an upcoming 

Everyday Mathematics lesson with which the teacher felt uncomfortable. As part of the 

author’s reciprocity agreement with case study teachers, additional opportunities for in-class 

support were provided. Case-study teachers each received an additional 4 – 6 hours of in-

class support over the course of the school year.  

Teacher feedback throughout the school year and on end-of-year evaluations indicates 

that teachers found the mathematics teacher development project to have been helpful in 

supporting their initial use of Everyday Mathematics. Teachers expressed that the workshops 

helped them to feel more confident with their teaching of Everyday Mathematics lessons and 



 

 105 

generally more knowledgeable about elementary school mathematics and how children learn 

mathematics. In addition, teachers felt that the in-class support helped them to see how the 

kinds of teaching practices discussed in the workshops might work with their own students. 

While most of the feedback on the mathematics teacher development project was positive, 

teachers also expressed concern about being out of their classrooms so frequently for this and 

other professional development. Teachers expressed that, in the following school year, they 

would like to continue with mathematics professional development with meetings scheduled 

after school to minimize time out of their classrooms.  

 

 

Summary of the School Context 

 

 

During the year of this study, Lincoln Heights Elementary was an urban school intent 

on overcoming its history of failure by improving student achievement on state 

accountability measures. The school had made many positive strides in recent years, which 

were attributed to improved behavior management, implementation of strategies to support 

students with Limited English Proficiency, and a school-wide scripted reading program. In 

turn, the success of these initiatives was attributed to on-going professional development 

efforts. With this in mind, Lincoln Heights’ administrators hired mathematics educators to 

provide professional development in the form of monthly workshops when the new Everyday 

Mathematics program was adopted. The goal of these workshops was to support teachers’ 

use of this new program and transition to reform-based mathematics teaching practices. But it 

was undermined somewhat by other initiatives started during the same year that were also 

intended to improve students’ mathematics achievement. Rather than working together in a 
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complementary manner, these initiatives competed for instructional time and focus and made 

it hard for teachers to keep up with all that was expected of them.  

 

 
The Case Study Teachers and Their Classes 

 

 

The four case study teachers began the year of this study with some tentative 

knowledge of reform-based mathematics teaching practices. Three of the teachers had 

participated in a series of professional development experiences in the previous school year, 

which were designed to increase teachers’ mathematics content knowledge and introduce 

teaching strategies consistent with reform-based mathematics. The fourth teacher, a first-year 

teacher, was exposed to reform-based mathematics teaching practices through coursework in 

an undergraduate teacher education program. None of the teacher participants had taught 

mathematics using reform-based mathematics teaching materials as their primary curriculum 

resource. In fact, the three teacher participants employed at Lincoln Heights the year before 

the adoption of Everyday Mathematics had reported that, in the previous year, they had 

primarily used a traditional mathematics textbook series and a direct instruction teaching 

methodology. They did, however, report greater sensitivity to the importance of helping 

students develop conceptual understanding of mathematics as a result of mathematics 

professional development experiences the year before. Moreover, they reported an increased 

use of manipulatives in the classroom as a result of these experiences.  

The case study teachers entered the year of this study both excited and apprehensive 

about the adoption of the reform-based Everyday Mathematics program. At the beginning of 

the school year, the third-grade teachers agreed that they should meet weekly to help each 

other work through this new math program. However, due to other demands on their time, 
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the third-grade team did not follow through with this plan. Instead, teachers discussed 

successes and difficulties with Everyday Mathematics in the scheduled workshops and 

spontaneously when opportunities presented themselves. Through informal conversations, 

Lincoln Heights’ third-grade teachers shared instructional ideas, helped each other 

troubleshoot problems, and provided moral support for each other’s experiences with the new 

mathematics program. 

Beyond these commonalities across participants, the four teachers of focus in this 

study have varied personal backgrounds and professional teaching experiences. Furthermore, 

there was significant variation in the composition of the four case study teachers’ classes. A 

summary of class demographics by teacher is provided in Table 11.  

 

 

Table 11 

Student Demographics of Case Study Teachers’ Classes 

   Gender (%)  Race/ethnicity (%)  School services (%) 

Teacher n 

 

M F  Blck Hisp Wht Othr  

Fr/rd 

lunch Gifted Sp Ed LEP 

Aria 18  50 50  17 78 5 0  89 6 11 6 

Jarmin 12  50 50  0 100 0 0  100 0 25 25 

Larsano 20  65 35  0 100 0 0  100 0 10 100 

Rosena 10  50 50  30 60 10 0  90 0 30 20 

 

 

 

In the sections that follow, aspects of each case study teacher’s background and current 

teaching context will be described.  

 

 



 

 108 

Ms. Aria and her Class 

 

 

During the year of this study, Ms. Aria is a first-year teacher who had just completed 

a traditional university-based teacher education program at a university near Lincoln Heights. 

Before deciding to pursue an elementary education degree, Ms. Aria contemplated majors in 

mathematics and science, as she considers herself strong in both of these disciplines. As part 

of her teacher education program, Ms. Aria completed courses on elementary mathematics 

content and elementary mathematics methods. Ms. Aria had some familiarity with and 

interest in the reform movement in mathematics education, as evidenced by her attendance at 

the NCTM annual meeting in the school year prior to this study. With multiple job offers, 

Ms. Aria chose to teach at Lincoln Heights Elementary because she viewed this job as an 

opportunity to make a difference in the lives of disadvantaged children. Ms. Aria is White 

and speaks little Spanish at the start of the school year.   

Ms. Aria’s class is one of two regular sections of third grade at Lincoln Heights 

during the study year. This designation indicates that Ms. Aria is not teaching one of the 

classes of retained students or one of the classes for students identified with strong English 

language needs. However, many of Ms. Aria’s students entered third grade with below grade-

level skills and, throughout the year, Ms. Aria reports that her class poses significant 

behavior management challenges. Ms. Aria describes her class as constantly in motion. 

Students move around in their chairs, tap their pencils, and shuffle papers on their desks. 

Several children have significant difficulties focusing on their school work when they are 

expected to work without direct teacher support. Not reflected in Table 11, there are several 

children in this class who are in the process of special education screening during the year of 

this study. 
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Ms. Jarmin and her Class 

 

 

Ms. Jarmin has been teaching elementary school for over 20 years, the last 10 years at 

Lincoln Heights. Reflecting her Bachelors degree in Elementary Education from a university 

in the Midwest United States, Ms. Jarmin’s teaching experience has primarily been with 

general education classes of primary students. But she also has limited experience as a 

special education teacher. Ms. Jarmin is the designated leader of the third-grade team and is 

respected for her knowledge of how things work at Lincoln Heights. Ms. Jarmin knows many 

children and families throughout the school and is often observed helping students in need. 

She expresses that she is able to connect with the student population at Lincoln Heights 

because, like many of them, she grew up in a poor family. Ms. Jarmin is a veteran teacher 

who prides herself on, “being an old dog who can learn new tricks.” Although she frankly 

states that mathematics is an area of personal weakness, Ms. Jarmin is eager to improve her 

own mathematical knowledge especially as it relates to teaching. Ms. Jarmin is White and 

speaks limited Spanish during the year of this study. 

Ms. Jarmin teaches one of two classes at Lincoln Heights comprised of students who 

are repeating third grade. While the students in Ms. Jarmin’s class were retained because of 

low scores on the state reading test, only 1 of the 12 students achieved a passing score on the 

mathematics section of the state test. In general, Ms. Jarmin’s students appear to approach 

mathematical concepts in ways that are comparable to the students in the other third-grade 

classes. As a group, Ms. Jarmin’s students appear to believe that they are not good at school. 

Throughout the school year, Ms. Jarmin talks about her efforts to convince students that they 

can be successful learners. All of Ms. Jarmin’s students are Hispanic, with one-fourth of the 
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students receiving special education services and one-fourth identified with Limited English 

Proficiency.  

 

 

Ms. Larsano and her Class 

 

 

At the time of this study, Ms. Larsano has been teaching at Lincoln Heights for two 

years. All of her previous teaching experience and education were in her native Puerto Rico. 

Ms. Larsano is passionate about helping her students and their families transition to life in the 

United States. In her classroom, Ms. Larsano is primarily focused on helping her Hispanic 

students acquire English. This commitment has led Ms. Larsano to begin working on a 

Masters degree in English for Speakers of Other Languages (ESOL), despite the challenges 

inherent in being a single parent with school age children. Within the Lincoln Heights school 

community and on the third-grade team in particular, Ms. Larsano is a social organizer. She 

regularly makes coffee for her colleagues and coordinates potluck breakfasts and lunches for 

her team members. In general, Ms. Larsano seems to be well-liked by the faculty and staff at 

Lincoln Heights and respected for her work with students and their families. In comparing 

mathematics teaching in Puerto Rico and the U.S., Ms. Larsano asserts that the mathematics 

at a given grade level is more difficult in the U.S. She explains that her own mathematics 

education and teaching of mathematics in Puerto Rico have focused on rote memorization 

and drill. She identifies mathematics as an area of personal weakness and her least favorite 

subject to teach.  

Additionally, Ms. Larsano’s first language is Spanish, and she sometimes expresses 

personal difficulty with quickly understanding new ideas – mathematical or otherwise – 

when they are presented in English. Reflecting this difficulty, Ms. Larsano is often observed 
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clarifying ideas in Spanish with her Spanish-speaking colleagues in the context of 

mathematics professional development. In general, Ms. Larsano indicates that she is able to 

think more easily and fluently in her native Spanish in comparison to English.  

Ms. Larsano’s class during the year of this study is one of two third-grade sections 

designated for students who require significant English language support. All of the 20 

students in Ms. Larsano’s class are identified as having Limited English Proficiency (LEP), 

with approximately one-fourth of the students at an early stage of learning English. Several 

of Ms. Larsano’s students have only recently arrived in the United States, and their out-of-

school lives are in significant transition. In class, Ms. Larsano’s students are typically well-

behaved and helpful to one another. As Ms. Larsano claims is typical among students with 

Limited English Proficiency, many of her students appear to take a passive approach to 

instruction, sometimes tuning out the instructional task at hand.  

 

 

Ms. Rosena and her Class 

 

 

At the time of this study, Ms. Rosena has recently moved to the U.S. from her native 

Puerto Rico and has been teaching at Lincoln Heights for one year. Ms. Rosena’s educational 

background includes a Bachelor’s degree from a U.S. university and a Masters degree 

completed in Puerto Rico. Like Ms. Larsano, Ms. Rosena indicates that thinking in Spanish is 

more comfortable for her than thinking in English. However, since her post-secondary 

education in the U.S. and in Puerto Rico was conducted primarily in English, Ms. Rosena has 

had a great deal of experience learning and conversing in English prior to taking a job at 

Lincoln Heights. In Puerto Rico, Ms. Rosena spent six years teaching upper-elementary 

grade students in private schools. At times, she specialized in mathematics and science. Ms. 
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Rosena finds the academic expectations for students at Lincoln Heights to be lower than that 

of the private school sector in Puerto Rico. Although Ms. Rosena views her Hispanic 

background and Spanish-language skills to be an asset at Lincoln Heights, she indicates the 

desire to work at a school with more curricular freedom. With regard to mathematics, Ms. 

Rosena reports that math was a weak subject for her when she was in school. However, she 

asserts that her years of teaching fourth and fifth grade have forced her to improve her 

understanding of elementary mathematics concepts. Throughout the year of this study, Ms. 

Rosena expresses confidence in her mathematical knowledge of concepts addressed at the 

third-grade level.  

Ms. Rosena teaches one of two classes at Lincoln Heights comprised of students who 

are repeating third grade because of low scores on the state reading test. While scores on the 

mathematics portion of the state test did not factor into retention decisions, none of the 10 

students in Ms. Rosena’s class achieved a passing score on the state mathematics test. As a 

group, Ms. Rosena’s students often exhibit off-task behaviors and one student frequently acts 

out in ways that significantly disrupt instruction. Throughout the year, Ms. Rosena talks 

about her efforts to get her students to see themselves as capable learners and take on greater 

responsibility for their learning. Of Ms. Rosena’s 10 students, 3 qualify for special education 

services and 2 are identified with Limited English Proficiency.   

Now that an overview of the four case study teachers and their classes has been 

shared, attention will turn to presenting the case of each teacher, starting with Ms. Aria.  
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The Case of Ms. Aria 

 

 

 Ms. Aria enters the year of this study as a first-year teacher who is excited about 

having her own classroom. Having just completed a university-based teacher education 

program, Ms. Aria is the third-grade teacher at Lincoln Heights most knowledgeable of 

current reforms in mathematics education, and she is determined to provide mathematics 

learning experiences in her classroom that are different than those she received in her own 

elementary school years.  

Ms. Aria is assigned to teach one of two regular classes of third grade at Lincoln 

Heights. The designation regular indicates that her students have not been retained and their 

language needs are not severe enough to warrant placement in one of the transition language 

classes. This designation does not, however, suggest that Ms. Aria’s teaching situation is 

easier than that of the other teachers. In fact, Ms. Aria’s class contains a handful of students 

who are either identified with or in the process of being screened for attention-related issues. 

In general, this class of third graders keeps Ms. Aria on her toes with a variety of academic 

and behavioral needs.  

The case of Ms. Aria that follows is presented in four sections. In the first two 

sections, evidence of Ms. Aria’s mathematics-related beliefs and knowledge at the beginning 

and end of the year will be presented. Next, the relationship among Ms. Aria’s beliefs, 

knowledge, and classroom practice will be explored through a case story focused on her 

patterns of response to student difficulties. Finally, global measures of Ms. Aria’s adherence 

to reform-oriented mathematics teaching and student achievement will be presented, which 

allows the case story findings to be considered in relation to these broader measures of 

teaching.  
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Ms. Aria’s Beliefs about Mathematics Teaching and Learning 

 

 

Ms. Aria’s beliefs about mathematics teaching and learning were measured at the 

beginning and end of the school year using the IMAP Web-Based Beliefs-Survey (Ambrose, 

Phillip et al., 2003). The IMAP instrument requires teachers to respond to instructional 

scenarios in an open-ended format, allowing respondents to emphasize and downplay issues 

of personal importance. A series of rubrics are then used to measure survey responses in 

relation to seven target beliefs considered central to reform-oriented mathematics instruction. 

Ms. Aria’s IMAP results are presented in Table 12, suggesting the degree to which Ms. 

Aria’s survey responses provide evidence that she holds each target belief at the beginning 

and end of the school year.  

 

 

Table 12 

Ms. Aria’s IMAP Web-Based Beliefs-Survey Results 

Belief 

Beginning 

of year 

End of 

year 

Belief 1: Mathematics is a web of interrelated concepts and procedures (and school 

mathematics should be too).  
2 3 

Belief 2: One’s knowledge of how to apply mathematical procedures does not 

necessarily go with understanding of the underlying concepts. 
3 3 

Belief 3: Understanding mathematical concepts is more powerful and more generative 

than remembering mathematical procedures.  
3 3 

Belief 4: If students learn mathematical concepts before they learn procedures, they 

are more likely to understand the procedures when they learn them. If they learn the 

procedures first, they are less likely to ever learn the concepts. 

3 3 

Belief 5: Children can solve problems in novel ways before being taught how to solve 

such problems. Children in primary grades generally understand more mathematics 

and have more flexible solution strategies than adults expect.  

1 3 

Belief 6: The ways children think about mathematics are generally different from the 

ways adults would expect them to think about mathematics. For example, real-world 

contexts support children’s initial thinking whereas symbols do not.  

1 2 

Belief 7: During interactions related to the learning of mathematics, the teacher 

should allow the children to do as much of the thinking as possible.  
1 3 

Note. 0 = No evidence; 1 = Weak evidence; 2 = Moderate evidence; and 3 = Strong evidence 
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In the sections that follow, evidence of Ms. Aria’s adherence to each reform-oriented belief 

at the beginning and end of the year will be presented.   

 

 

Aria: Belief about the Nature of Mathematics (IMAP Belief 1) 

 

 

At the beginning of the year, there is moderate evidence that Ms. Aria views school 

mathematics as a web of interrelated concepts and procedures. In response to a scenario 

presenting multiple ways of solving a multidigit addition problem and asking which 

strategies she would like children to share, Ms. Aria identifies four strategies to be included 

in a unit on multidigit addition and discusses the mathematical value of each of these 

strategies. However, when prompted to discuss how she might order these strategies within 

such a unit, Ms. Aria’s justification for order includes only one strategy-to-strategy 

connection. Therefore, while some belief in the interrelatedness of mathematics concepts and 

procedures may lead to inclusion of multiple strategies in mathematics instruction, her focus 

on fostering student understanding by emphasizing the interrelatedness of strategies is likely 

to be limited.  

In contrast, at the end of the year, Ms. Aria describes multiple relationships among 

the strategies presented and indicates that she would use strategies devised by students to 

draw connection to other strategies and further develop conceptual understanding. Therefore, 

at the end of the year, there is strong evidence that Ms. Aria holds the belief that school 

mathematics should be presented as a web of interrelated concepts and procedures.  
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Aria: Belief about the Distinction between Understanding Concepts and Applying 

Mathematical Procedures (IMAP Belief 2) 

 

 

At the beginning and end of the year, there is strong evidence that Ms. Aria believes 

that one’s knowledge of how to apply mathematical procedures does not necessarily go with 

understanding of underlying concepts. Ms. Aria consistently indicates that students can get 

correct answers to computations using algorithmic procedures without understanding the 

conceptual basis of the algorithms. For instance, when asked if a student who has solved a 

multidigit addition problem using the standard U.S algorithm could use and explain 

particular non-standard strategies, Ms. Aria asserts that there is not enough information to 

make this judgment because many students complete the standard U.S. algorithm without 

conceptual understanding.  

 

 

Aria: Belief about Source of Generative Mathematical Understanding (IMAP Belief 3) 

 

 

At the beginning and end of the year, there is strong evidence that Ms. Aria believes 

conceptual understanding is more powerful and generative than remembering mathematical 

procedures. Ms. Aria consistently asserts that students are more likely to be successful with 

strategies when they have conceptual understanding, indicating that students need to have 

conceptual understanding in order for learned procedures to stick. For instance, when a 

student who has received procedurally-focused instruction on dividing fractions is unable to 

complete a division of fractions problem, Ms. Aria explains, “She was unable to solve the 

problem because she forgot the algorithm and had no understanding of what she was doing, 

so she could not rely on any other strategies. Once she forgot the algorithm, she was stuck.” 

Without conceptual understanding, Ms. Aria suggests that students are likely to forget the 
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details of procedures and make errors. Therefore conceptual understanding is considered 

more generative.  

 

 

Aria: Belief about the Consequences of Teaching Concepts/Procedures First (IMAP Belief 4) 

 

 

At the beginning and end of the year, there is strong evidence that Ms. Aria believes 

conceptual understanding must be developed before instructional focus turns to procedures. 

At both data points, Ms. Aria provides conceptually-based rationale for when and why she 

would have children share non-traditional strategies in a unit of multidigit addition, and she 

indicates that procedures learned before concepts would be rote.  

While there is strong evidence at both data points that Ms. Aria believes conceptual 

understanding should precede introduction of specific procedures, Ms. Aria explains the 

instructional implications of this belief in more detail at the end of the year. When asked to 

suggest how she would go about teaching fraction division at the end of the year, Ms. Aria 

states, “I would allow students to divide using drawings and manipulatives, before ever 

teaching the algorithm. Allowing students to form their own strategies would allow them to 

have strategies to rely on when solving a problem like this.” At the end of year, Ms. Aria 

generally advocates having children invent their own strategies for solving problems and 

using these student-generated strategies to develop conceptual understanding prior to 

introduction of algorithmic procedures. 
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Aria: Belief about Children’s Problem Solving Capabilities (IMAP Belief 5)  

 

 

At the beginning of the year, there is weak evidence that Ms. Aria believes children 

can solve problems in novel ways before being taught how to solve such problems. She 

indicates that children are capable of devising novel ways of solving some kinds of problems 

but not others. In discussing instruction of fraction division, for instance, Ms. Aria indicates 

that children need teacher support to devise strategies successfully.  

In contrast, at the end of the year, Ms. Aria indicates that she believes students can 

develop novel solutions to contextualized fraction division problems if they are allowed to 

approach problems using manipulatives and they are given the space to problem solve. In 

discussing her own classroom practices, Ms. Aria discusses her commitment to having 

students develop their own strategies to solve problems. Overall, Ms. Aria’s end-of-year 

survey responses provide strong evidence of adherence to the belief that children can solve 

problems in novel ways before being taught how to solve such problems.   

 

 

Aria: Belief about Children’s Ways of Thinking about Mathematics (IMAP Belief 6) 

 

 

At the beginning of the year, there is weak evidence that Ms. Aria believes that 

children think about problems differently than adults. Ms. Aria indicates that multiplication 

and join-change unknown problems could be solved by first graders if manipulatives were 

available. However, Ms. Aria also indicates that use of word problems sometimes inhibits, 

rather than facilitates, students’ initial understanding of mathematical ideas. Therefore, real-

world contexts in the form of written words are not viewed by Ms. Aria as particularly 

supportive. Furthermore, survey responses do not indicate awareness of the difficulty 
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children have understanding mathematical symbols. Taken together, it appears that Ms. Aria 

may believe that students think differently than adults at the beginning of the year, but she is 

not certain of how this plays out in the classroom. Therefore, this belief is likely to have only 

a moderate influence on her actions. 

At the end of the year, there is moderate evidence that Ms. Aria believes that children 

think about problems differently than adults. As at the beginning of the year, Ms. Aria 

emphasizes the importance of providing children with opportunities to use manipulatives and 

pictures to explore concepts. In addition, she stresses the difficulty students have with 

making sense of mathematical symbols and indicates that focus on symbols should be 

delayed until students have developed models and conceptual frameworks to which symbols 

can be linked.  

As at the beginning of year data point, Ms. Aria suggests that a word problem 

providing a context for comparing fractions is confusing, and she expresses the preference to 

use non-contextualized numbers in this situation. However, in her classroom and other 

interviews, Ms. Aria consistently demonstrates commitment to the belief that real-world 

contexts support students’ initial mathematical understandings. Therefore, Ms. Aria’s 

response to the IMAP survey may not reflect her beliefs about the use of contextualized 

problems in general.  

 

 

Aria: Belief about Teacher’s Role in Supporting Student Learning (IMAP Belief 7) 

 

 

At the beginning of the year, there is weak evidence that Ms. Aria believes that the 

teacher’s role in mathematics instruction is to get students to do as much thinking as possible. 

After viewing a video of a teacher providing explicit step-by-step direction to a student 
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completing a problem solving task, Ms. Aria identified the teacher’s strong guidance as one 

of the strengths of the instructional segment rather than a factor that inhibited learning.  

In contrast, at the end of the year, Ms. Aria indicates that the teacher’s strong 

direction during the video is a weakness of the instructional segment. She suggests that it 

would have been better if the teacher had used questions to prompt student thinking rather 

than just telling the student what to do. At the end of the year, Ms. Aria generally expresses 

commitment to having students engage in problem solving with as little teacher intervention 

as possible. Therefore, there is strong evidence of Ms. Aria’s adherence to the belief that 

teacher interactions with students during mathematics instruction should allow students to do 

as much thinking as possible.  

 

 

Summary of Ms. Aria’s Beliefs 

 

 

Ms. Aria’s responses to the IMAP survey instrument suggest that some of the beliefs 

measured by this instrument were aligned with a reform-orientation from the start of the year, 

while all measured beliefs were aligned with a reform-orientation by the end of the year. In 

particular, there is evidence of an on-going belief in the importance of developing students’ 

conceptual understanding. Throughout the year, Ms. Aria views conceptual understanding as 

more powerful and generative than remembering mathematical procedures, and she indicates 

that procedures learned without conceptual understanding are likely to be forgotten. Ms. Aria 

also appears to hold the belief that school mathematics should be a web of interrelated 

concepts and procedures from the start of the year. However, at the end of the year, she is 

able to draw clearer relationship between this belief and classroom practice, thus indicating 

stronger adherence to the belief.  
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While some of Ms. Aria’s beliefs appear to have been aligned with a reform-

orientation from the start of the school year, there is evidence that other beliefs changed 

somewhat over the course of the year. Specifically, Ms. Aria’s beliefs related to children’s 

capabilities as problem solvers and the teacher’s role in interactions related to the learning of 

mathematics were aligned with a reform-orientation much more at the end of the year than at 

the beginning. At the beginning of the year, Ms. Aria’s survey responses suggested only 

weak adherence to the belief that children are capable of solving problems in novel ways 

before being taught how to solve such problems. Additionally, at the beginning of the year, 

strong teacher direction during interactions between teacher and students is considered an 

instructional strength. In contrast, at the end of the year, Ms. Aria expresses confidence in 

children’s abilities to solve problems in novel ways, and she views the teacher’s role in 

supporting student learning as one of encouraging students to do as much thinking as 

possible during teacher-student interactions. Finally, there is evidence that, at the end of the 

year, Ms. Aria more strongly holds the belief that children think about mathematics in ways 

that are different than adults than she did at the beginning of the year.  

 

 

Ms. Aria’s Knowledge of Mathematics for Teaching 

 

 

Ms. Aria’s knowledge of mathematics for teaching with a reform-orientation was 

measured at the beginning and end of the year using data from two parts of the Teacher 

Knowledge interview. In particular, this interview explores teachers’ knowledge related to 

the teaching of multiplication and division to third-grade students. First, Ms. Aria’s open-

ended discussion of teaching and learning multiplication will be presented. In this part of the 

interview, teachers were prompted to describe important understandings and common student 
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difficulties related to the learning of multiplication. In addition, interview questions direct 

teachers to discuss how children develop the important understandings identified and how 

multiplication should be taught. Next, Ms. Aria’s responses to four classroom scenarios will 

be described. These classroom scenarios probe specific aspects of teachers’ knowledge 

related to the teaching and learning of multiplication and division, specifically teachers’ 

knowledge of nonstandard strategies for multidigit multiplication, knowledge of a common 

student difficulty underlying the standard U.S. algorithm and strategies for addressing this 

difficulty, and teachers’ abilities to interpret and respond to student work. 

 

 

Aria: Open-ended Discussion of Teaching and Learning Multiplication 

 

 

At the beginning of the year, Ms. Aria reports that, through third-grade instruction on 

multiplication, students should come to understand that multiplication means finding the total 

of objects when each group has an equal number of objects (e.g., 7 × 8 means 7 groups of 8). 

She also wants students to understand that multiplication is closely related to repeated 

addition. Lastly, Ms. Aria wants her students to begin to build fluency with basic 

multiplication facts and have knowledge of back-up strategies to rely on when a given fact 

cannot be recalled. Ms. Aria indicates that the aforementioned learning goals are 

accomplished by having students initially model real-world multiplication situations with 

manipulatives. Then these physical models are used as a basis for introducing multiplication 

notation as well as the link between multiplication and addition. Ms. Aria asserts that, at this 

phase of development, students are likely to struggle with making sense of symbolic 

multiplication notation. After students have become comfortable with the meaning of 

multiplication and its relationship to symbolic notation, students should begin memorization 
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of basic facts starting with the easiest facts, times tables involving 2, 5, and10; then moving 

to times tables involving 3 and 4; and finally working on the remaining facts. Ms. Aria lists 

number sense, problem solving skills, and knowledge of addition as prerequisites to 

multiplication instruction.  

In the end-of-year interview, Ms. Aria asserts that third-grade multiplication 

instruction should develop students’ understanding of multiple representations of 

multiplication including real-world situations, pictures, and symbolic notation. She indicates 

that third-grade students should also be able to utilize knowledge of emerging, basic facts to 

solve problems involving difficult facts and larger numbers (e.g., using knowledge of 3 × 8 to 

solve 6 × 8 as well as 3 × 80 to solve 3 × 84). First, Ms. Aria suggests that students need to 

come to understand that multiplication involves multiple equal groups. This is accomplished 

through making pictures or physical models of multiplication situations and discussing the 

attributes of these models as well as methods for finding the total number of objects. Through 

this process, Ms. Aria suggests that students move from counting objects one-by-one to using 

repeated addition and skip counting strategies. As students internalize these more efficient 

strategies, Ms. Aria suggests that they move away from needing to use manipulatives and 

pictures. Through varied experiences and practice, students move toward recall of some of 

the easier facts and use of derived fact strategies and then recall for the more difficult facts. 

This leads to using basic facts to solve multiplication situations involving multidigit 

calculations. In discussing student difficulties, Ms. Aria stresses the difficulty students have 

understanding symbolic notation for multiplication without being explicitly encouraged to 

consider it in relation to real-world and visual representations. She asserts that students 

should have many experiences with multiplication situations and physical models, and 
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symbolic notation should be built out of these experiences. Ms. Aria indicates that 

knowledge of addition and the ability to move forward and backward through the number 

system are prerequisites to studying multiplication. 

 

 

Aria: Knowledge of Non-standard Strategies (Classroom Scenario 1) 

 

 

At the beginning of the year, Ms. Aria identifies seven strategies that students might 

use to solve a word problem involving finding the number of chairs in 16 rows with 8 chairs 

in each row. These are presented in Table 13. Ms. Aria identifies direct modeling strategies 

as the least sophisticated, with use of a picture being slightly more sophisticated than direct 

modeling with objects. For both of these strategies, Ms. Aria assumes that students would 

find the product by counting objects one at a time. Ms. Aria identifies complete number 

strategies as next in order of sophistication, with counting by 8 on a number grid (hundreds 

board) being less sophisticated than repeated addition. Ms. Aria reasons that, with the 

number grid strategy, students can rely on the number grid to help them track their counts to 

a greater extent than is possible without this tool. Ms. Aria identifies the standard U.S. 

multiplication algorithm is next in order of sophistication, noting that students must use 

multiplication knowledge to perform the steps of this procedure. But that they do not 

necessarily have to understand why or how the algorithm works. Finally, partitioning 

strategies are identified as the most sophisticated of the strategies listed. Ms. Aria explains 

that partitioning strategies require students to have a strong understanding of the relationships 

among multiplication and addition and multiplication and division because students must 

know how to break numbers apart and put them back together.  
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Table 13 

Strategies Identified by Ms. Aria in Response to Classroom Scenario 1 

Data point Direct modeling 

Complete 

number 

Partitioning 

number Compensating Other 

Beginning 

of year 

16 rows of 8 

squares 

16 rows of 8 

counters 

Counting by 8 

on a number 

grid 

Repeated 

addition,           

8 + 8 + 8… 

8 × 8 = 64,      

64 + 64 = 128 

8 × 10 = 80,      

8 x 6 = 48,      

80 + 48 = 128 

 Standard U.S. 

multiplication 

algorithm 

End of 

year 

16 rows of 8 

chairs (pictures 

of chairs), 

Counting by 

ones or 

counting by 

groups  

An array, 16 

rows of 8 Xs 

Repeated 

addition            

8 + 8 + 8… 

 

10 × 8 = 80,      

6 × 8 = 48,      

80 + 48 = 128 

2 × 16 = 32,    

32 + 32 + 32 + 

32 = 128 

20 × 8 = 160, 

4 × 8 = 32, 

160 – 32 = 

128 

Standard U.S. 

multiplication 

algorithm 

Note. Analysis utilizes strategy classification presented in Baek (1998).  

 

 

 

At the end of the year, Ms. Aria again identifies seven strategies to solve the 16 rows 

of 8 chairs problem. She again indicates that direct modeling strategies are the least 

sophisticated, but this time emphasizes the difference between students who need to make a 

picture of actual chairs as being at a more concrete level than students who can make an 

array that uses a symbol to represent each chair. She also indicates that a student at the most 

basic level would solve the problem by counting objects by 1. Ms. Aria identifies strategies 

that rely primarily on addition as next in order of sophistication. These include repeated 

addition and counting objects that have been directly modeled in uniform chunks. As at the 

beginning of the year, Ms. Aria lists the standard U.S. multiplication algorithm as next in 

order of sophistication. She asserts that most students who use this algorithm do not 

understand why it works, but that they do rely on knowledge of basic multiplication facts to 

apply the steps. Finally, Ms. Aria identifies partitioning and compensating strategies as the 
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most sophisticated, suggesting that students who use these strategies are able to move back 

and forth through the number system flexibly thus demonstrating understanding of 

multiplication.  

At both data points, Ms. Aria identifies direct modeling, complete number, and 

partitioning strategies that students might use to solve the problem posed. At the end of the 

year, she also identifies a compensation strategy. At both data points, Ms. Aria identifies 

cognitive resources students need to use select strategies with understanding and she is able 

to fluently discuss connections among strategies. In summary, Ms. Aria’s response to 

Classroom Scenario 1 provides evidence of reasonably strong knowledge of nonstandard 

strategies for multidigit multiplication at both data points, with stronger knowledge at the end 

of the year as evidenced by inclusion of a compensation strategy and discussion of 

connections among strategies. 

 

 

Aria: Interpretation of Students’ Mathematical Strategies (Classroom Scenario 2) 

 

 

At the beginning and end-of-year data points, Ms. Aria is able to quickly and fluently 

provide reasonable interpretations of three student work samples representing students’ 

strategies for solving the pancake problem (Twenty-four children want to share eight 

pancakes so that each one gets the same amount. How much pancake can each child have?). 

She describes plausible theories for how each child approached the task, indicates what the 

strategies suggest about each child’s mathematics understanding, and identifies how she 

might follow-up with each child in response to their work. For instance, consider the 

following excerpts of Ms. Aria’s beginning-of-year discussion of one student’s strategy: 
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He decided that he had to break up the children and the pancakes into equal groups. 

So, from what it looks like, he decided to make 4 groups. So, he broke the 24 children 

up into 4 groups, so each had six children. And he had the 8 pancakes broken up so he 

had 2 pancakes in each group. Um, to get this he had to have a pretty sophisticated 

understanding of multiplication and division, because he has it written here: 4 × 6 = 

24, 4 × 2 = 8. He knew that he was trying to get to a number that would have to 

divide evenly into both of them. So, he didn’t use 3 because 3 doesn’t go into 8. But I 

think he realized that 2 would still be so big. So, he went with 4, which was the 

greatest common factor. Um, that’s pretty sophisticated. But I don’t think that he got 

far enough to give a response from his picture. He didn’t…he has 6 children eating 2 

pancakes, but he didn’t note how much of the pancake each child would get…so, I 

would probably ask him, for this group of six children and two pancakes, how would 

you, what would you do with those pancakes? How would you decide how much 

each child gets? And see if he could just divide it up a little further.  

 

In her discussion of the student’s strategy, Ms. Aria describes possible reasoning that the 

student might have used to initially divide the children and pancakes into four groups. She 

notes the strategy’s close ties to multiplication and division knowledge as well as how the 

strategy falls short of showing a final solution. Finally, Ms. Aria identifies questions that she 

might ask the student to further probe his understanding and support him with moving toward 

a final solution. In summary, Ms. Aria’s responses to Classroom Scenario 2 provide evidence 

of her strong ability to interpret student work from the start of the year.  

 

 

Aria: Addressing and Avoiding a Common Student Error (Classroom Scenario 3)  

 

 

In Classroom Scenario 3, teachers are presented with student work in which the 

standard U.S. multiplication algorithm is executed without maintaining the place values of 

the partial products. At the beginning and end of the year, Ms. Aria quickly identifies that 

this student error is grounded in failure to connect this procedure with knowledge of place 

value. At both data points, Ms. Aria suggests that she would respond to this error by having 
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students focus on understanding what each place represents through a process of breaking 

down the problem into sub-problems.  

At the end-of-year data point, however, Ms. Aria is able to provide a more detailed 

description of how she would go about illuminating the connection between place value and 

multidigit multiplication. She discusses teaching the Everyday Mathematics partial products 

algorithm
7
 in lieu of the traditional U.S. multiplication algorithm in order to make place 

values more transparent. At the end of the year, Ms. Aria also suggests that she would 

prompt students to make magnitude estimates and consider if the results of their 

computations make sense. Finally, at the end of year, Ms. Aria indicates that she aims to help 

third-grade students make connections between place value and multidigit operations by 

infusing transparent place value language into talk about mathematics on a regular basis. For 

instance, instead of referring to a 4 in the tens place as 4, she asserts that she would identify 

that its value is 40.  

In summary, the content of Ms. Aria’s response to Classroom Scenario 3 suggests a 

strong understanding of the relationship between place value and multidigit operations at the 

beginning and end of the year. At both data points, there is evidence that Ms. Aria has 

knowledge of instructional strategies to support student development of conceptual 

understandings, with comparatively stronger knowledge demonstrated at the end of the year. 

 

 

Aria: Interpretation of and Response to a Student’s Flawed Solution (Classroom Scenario 4) 

 

 

At the beginning and end of the year, Ms. Aria is able to identify the mathematical 

basis of the error in the flawed student solution to the problem 144 ÷ 8. In this scenario, the 

                                            
7
 This algorithm involves multiplying each place in one factor with each place in the second factor, and then 

summing the partial products. For instance, 35 × 42 = (30 × 40) + (30 × 2) + (5 × 40) + (5 × 2). 
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student indicates that she can find the answer to the division problem posed by repeated 

halving of 144 because 2 + 2 + 2 + 2 = 8. At both data points, Ms. Aria identifies that the 

student’s error is in treating addition, and not multiplication, as the reciprocal operation to 

division. She explains that the student should have stopped her halving process after dividing 

by 2 three times, because 2 × 2 × 2 = 8. When prompted to suggest how she would help 

students to understand this error, Ms. Aria describes how she might model the strategy with 

manipulatives in both interviews. Consider her discussion below from the beginning of the 

year:  

I would probably do it with manipulatives. Because if you took a group of 144 and 

you broke it up into 2 groups of 72, and then you broke those up into 2 groups, you 

would have 4 groups of 36. And then when you broke each of those up into 2 groups, 

you would have 8 groups of 18, which is what they were asking for. And if you keep 

breaking it up to 9s, you would actually have 16 groups. And she only had to get to 8 

groups. Um, so I would try to explain that and I would try to show that when she 

divided it once that was 2 and when she divided it again, that was times 2. And then 

when she divided again, it was again times 2. So, 2 times 2 times 2 is 8. Not addition. 

 

Ms. Aria describes how manipulatives might be used to model the flawed student strategy 

and show the points at which eight groups are made. Then she explains how the 

multiplication number sentence 2 × 2 × 2 = 8 is related to this strategy instead of the 

student’s suggestion of 2 + 2 + 2 + 2 = 8. At the end of the year, Ms. Aria also suggests that 

she might also have students explore this strategy further with smaller numbers. 

In summary, Ms. Aria’s responses at both data points provide strong evidence of her 

ability to draw on personal mathematical knowledge to understand the mathematical 

underpinnings of students’ flawed solutions. Furthermore, Ms. Aria’s responses provide 

evidence that she has knowledge of teaching strategies that honor student thinking and guide 

children to see the conceptual basis of their errors. 

 



 

 130 

Summary: Ms. Aria’s Knowledge of Mathematics for Teaching 

 

 

Ms. Aria demonstrates reasonably strong knowledge of strategies students might use 

to approach multiplication problems at the beginning of the year and strong knowledge at the 

end of the year. At both data points, Ms. Aria identifies multiple direct modeling strategies, 

addition-based strategies, and strategies that use known multiplication facts to find the 

products of more difficult multiplication problems. At the end of the year, Ms. Aria includes 

a compensation strategy in her list of ways students might solve a multidigit multiplication 

problem, and she generally discusses strategies in greater detail.  

At the beginning of the year, Ms. Aria’s discussion of student learning of 

multiplication demonstrates knowledge of early understandings that students must develop as 

well as common difficulties encountered by students. However, her knowledge is limited 

with regard to how students move from being able to model multiplication situations 

pictorially and with symbols to fluency with facts. At the end of the year, Ms. Aria fills in 

these gaps as she describes the knowledge students must gain in order to move from one 

strategy to the next. In particular, Ms. Aria asserts that, as students internalize the 

relationship between groups of objects and skip counting or repeated addition, they begin to 

be able to apply these more efficient strategies without the support of objects or pictures. 

Then these addition-based strategies support internalization of easy multiplication facts, 

which in turn can be combined to figure out more difficult facts. Overall, interview responses 

suggest that Ms. Aria’s knowledge of student learning of multiplication increased over the 

school year, with moderate knowledge at the beginning of the year and demonstration of 

strong knowledge at the end of the year.  
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At both data points, Ms. Aria proves skillful at using student work to interpret 

students’ mathematical thinking. Furthermore, she demonstrates the ability to identify the 

mathematical basis of errors in flawed solutions and devise conceptually-grounded teaching 

strategies to use in response to these student errors. Throughout both interviews, teaching 

strategies suggested emphasize conceptual understanding and honor students’ ways of 

thinking about the problems posed.  

 

 

Case Story of Ms. Aria’s Response to Student Difficulties 

 

 

In the case story that follows, facets of Ms. Aria’s typical response to student 

difficulties will be discussed. Specifically, Ms. Aria’s routines to foster student independence 

and self-confidence in the face of difficulty, the substance of sustained support when student 

difficulties persist, and her response to student difficulties that arise in the context of whole 

class discussion will be described. Following illustration of each response pattern, 

consequences for student thinking and the relationship between Ms. Aria’s beliefs, 

knowledge, and mathematics teaching practices will be explored.  

 

Aria Response Pattern 1: Routines to Foster Student Independence and Self-Confidence  

 

 

At the beginning of the school year, Ms. Aria expresses concern about her students’ 

reluctance to attempt mathematics tasks without significant teacher guidance. As a 

consequence, she intentionally develops routines that aim to decrease students’ dependence 

on the teacher and increase their self-confidence and abilities as problem solvers. These 

practices are observed throughout the school year. 



 

 132 

A typical math lesson in Ms. Aria’s class begins with a math message problem that 

encourages students to explore a mathematical idea that is central to the lesson. One way that 

Ms. Aria fosters increased independence is by holding firm to a commitment to limit 

involvement in students’ exploration of the math message problem. In a post-observation 

interview, she explains: 

We’re still working on independence. I think the students rely so much on a teacher 

telling them whether they are doing it right or doing it wrong. Are they supposed to 

do addition or subtraction, are they supposed to do multiplication or division…you 

know? And I really want them, especially on the math message, I want them to be 

able to do that, independently, and then we are going to talk about it. 

 

When Ms. Aria does interact with a student who is having difficulty getting started with a 

problem, she generally keeps her interactions brief, with the intention of providing just 

enough support to get the student started. Her support often includes questioning related to 

important information in the problem and then a suggestion to draw on resources other than 

the teacher.  

In the following excerpt, Janelle is working on the problem, “There are 15 pennies. 

Each child receives 4 pennies. How many children are there?” Janelle is sitting at her desk 

with a pile of cubes at the top of her desk, when Ms. Aria approaches to help her get started 

with the problem:  

Ms. Aria: What does the problem say? (Janelle does not respond.) How many 

pennies do you have?  

Janelle: Fifteen. 

Ms. Aria: How many [cubes] do you have? (Janelle begins touching and counting 

unit cubes. Ms. Aria says each count aloud.) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16. So take one away. Talk to Patty about this and what to do next.  

 

After leading Janelle to identify the 15 pennies as the starting place in the problem, Ms. Aria 

encourages Janelle to use cubes to represent the pennies. Then Ms. Aria directs Janelle to talk 

with another student about where to go from there. In this brief interaction, Ms. Aria 
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encourages Janelle to utilize resources other than the teacher including physical 

manipulatives and conversation with a peer. In Fall observations, when students are working 

on beginning multiplication and division concepts, manipulatives are consistently available 

and encouraged, especially when a student is having difficulty getting started on a problem. 

In all of the lessons observed, Ms. Aria structures lessons such that students are either 

encouraged or required to work cooperatively with their peers. In a post-observation 

interview, Ms. Aria explains why she encourages her students to work with peers:   

They don’t like to be - if they’re on their own, then there’s a lot of, “I don’t 

understand this; I don’t understand this,” and you know, trying to get my attention 

and stuff, so at least if they’re in partners, they have somebody to rely on. 

 

Ms. Aria views the students’ peers as resources to draw on for support with problem solving.  

An additional way that Ms. Aria supports her students in becoming more independent 

problem solvers is by fostering the belief in students that they are capable of engaging in 

difficult mathematics and that learning mathematics involves figuring out difficult problems. 

Several students struggled to make sense of the sharing pennies problem that Janelle 

(described above) was having difficulty with. Recognizing this, Ms. Aria began the whole 

group discussion of this problem by making students’ difficulties the focus of discussion: 

Ms. Aria: Okay. Who found this problem a little difficult when they first read it? Be 

honest. You read this and you thought, ‘Oh, my goodness, this is really hard.’ 

(A few students raise their hands. A couple of students vocalize that they found 

the problem hard.) Okay. What was hard about it? Kristin, what was hard 

about it? 

Kristin: That there were 15 pennies and that we were trying… 

Ms. Aria: Just a second Kristin. Damian, we were trying to listen to you. Would you 

please listen to the rest of us. Thank you. (To Kristin) Go ahead. 

Kristin: We put…umm…15 pennies, and then there was 1 left over. And it was hard 

because we didn’t know how many children there were still.  

Ms. Aria: Okay, so it was complicated because you didn’t know how many children 

there were. Who thought it was difficult because they didn’t know how many 

children there were? Be honest. It’s okay. (Some children raise their hands.) 

Yeah, that’s tough. That’s tough. Sometimes it’s hard when you don’t know 
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some of the information, it’s hard to figure that out. What do we do? What 

could help us figure out that information? What kinds of strategies did you 

use?  

 

Ms. Aria first encourages students to recognize that the problem was difficult and to think 

about why. After acknowledging students’ difficulties, she moves on to a discussion of 

students’ sharing how they overcame the difficulties to figure out the problem. In the post-

observation interview, Ms. Aria explains that she wants it to be okay in her classroom for 

students to think that problems are hard. By highlighting that many students find problems 

difficult, she aims to encourage students to expect and embrace some level of challenge with 

problem solving tasks. Ms. Aria explains, “I wanted them to know that, sure, it’s hard, but 

it’s not impossible…there are hard things about these problems, but this is what we are 

learning to do.”  

In summary, Ms. Aria encourages student independence during mathematics 

instruction by minimizing her interactions with students while they are problem solving. 

When a student is having difficulty, Ms. Aria makes sure the student understands the task. 

Then she suggests utilizing supports other than the teacher, such as peer collaboration and 

manipulatives. In addition to these strategies, Ms. Aria sometimes insists that students 

attempt problems without teacher support. Finally, she fosters the belief among students that 

doing mathematics means figuring out how to solve problems for which the solutions are not 

readily apparent. She encourages students to talk about their difficulties with problems and 

how they worked through them.  

 

Aria response pattern 1, consequences for student thinking. Ms. Aria’s classroom is a 

place where, over the course of the year, students increasingly take on the role of problem 
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solver during mathematics instruction. While at the beginning of the year students are 

observed waiting for Ms. Aria’s direct support to initiate work on a task, at the end of the 

year students readily approach mathematics tasks and engage in a variety of self-help 

strategies when they encounter difficulties. For instance, students are observed getting 

manipulatives off the shelves and trying to use the Number Grid (e.g., Hundreds Board) and 

other resources posted on the walls. Students also readily turn to each other during work time 

to ask questions, compare ideas, and work together. Through these learning practices, 

students are generating and testing their own mathematical ideas. 

 In general, students appear to become more comfortable with problem solving tasks 

in which a solution strategy is not readily apparent. The number of students verbally 

expressing confidence in their mathematical abilities increases dramatically during the year. 

Because students learn to be more self-sufficient while problem solving, Ms. Aria is able to 

focus on observing students and asking them to justify their solutions. Instead of giving the 

lion’s share of her attention to supporting students in the beginning stages of problem 

solving, she is able to focus much greater attention on pressing students to reflect on how 

their solutions work and on what they have learned. 

 

Aria response pattern 1, link to beliefs and knowledge. The routines and practices Ms. 

Aria uses to foster students’ independence and self-confidence as problem solvers are related 

most to her beliefs but also relate to her knowledge. Throughout the year, Ms. Aria’s belief in 

the importance of allowing children to do as much of the thinking as possible without teacher 

intervention becomes a strong guiding principle in her instruction. This is evidenced in her 

responses on the IMAP survey as well as her interviews throughout the year. At the end of 
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the year, Ms. Aria articulates her commitment to encouraging students to engage in problem 

solving with minimal teacher intervention: 

I think it is important for students to have a chance to struggle with problems a little. I 

think that developing their own ways to solve a variety of problems will help them 

take ownership over what they are learning. I also think it helps them to become 

better problem solvers.  

 

Ms. Aria’s belief in her students’ abilities as problem solvers also grows through the course 

of the year. At the beginning of the year, Ms. Aria’s responses on the IMAP instrument 

suggest that she believes children require teacher guidance to be successful with novel tasks. 

In contrast, at the end of the year, her responses indicate that she believes students can be 

successful solving novel problems as long as they are permitted to use manipulatives, work 

with peers, and solve the problems in their own ways. This change in beliefs occurs over time 

as Ms. Aria works with her students and observes what they can accomplish during problem 

solving with limited intervention.  

While Ms. Aria’s commitment to encouraging student confidence and independence 

is clearly tied more closely to her beliefs than her knowledge, one can argue that Ms. Aria’s 

knowledge of her students as well as her pedagogical content knowledge supports her ability 

to organize mathematics instruction in adherence with these beliefs. Knowledge of students’ 

mathematical abilities supports Ms. Aria in constructing mathematics tasks that are within 

her students’ zone of proximal development. Although Ms. Aria follows the Everyday 

Mathematics program, she often adapts the problems suggested in the Teacher’s Edition to 

align more closely with her perception of students’ interests and instructional levels.  

Drawing on pedagogical content knowledge, Ms. Aria is able to observe students as they 

work and assess their difficulties. Then she is usually able to provide brief on-the-spot 

support to get the students moving toward a viable solution strategy. Finally, as is evidenced 
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by the classroom excerpts shared, Ms. Aria has devised a routine for supporting students 

while minimizing teacher intervention: After helping students to understand the task at hand, 

she suggests use of tools and supports other than the teacher. This routine is a type of 

pedagogical knowledge that allows Ms. Aria to implement her beliefs in the classroom.  

 

 

Aria Response Pattern 2: Substance of Sustained Support when Student Difficulties Persist 

 

 

While Ms. Aria’s first response pattern for helping students get started with a problem 

is to ask questions about the problem context and suggest resources other than the teacher 

that might help, the Fall lessons observed include a few instances when students continue to 

have difficulty moving forward with a task. When this occurs, Ms. Aria engages in sustained 

dialogue with students to move them forward with the given task.   

In the instructional excerpt below, Alex and Juan are having trouble getting started on 

the same measurement division problem cited previously: There are 15 pennies. Each child 

receives 4 pennies. How many children are there?  The excerpt begins with Juan expressing 

that this problem is different than the problem the class just completed. Although both 

problems involve division, the focus of the previous problem was on a partitive division 

context in which cookies were shared fairly among a specified number of children. To solve 

the sharing cookies problem (partitive division), most students directly modeled the problem 

with manipulatives or a picture by representing the children and then placing one cookie at a 

time next to each child until they had distributed all the cookies. Alex and Juan’s initial 

difficulty with the current penny problem is that the number of children is unknown, so they 

cannot follow the same procedure that was effective at solving the sharing cookies problem. 

Ms. Aria attempts to move the boys away from a focus on the procedures used on the 
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previous problem to thinking about the context of the current problem conceptually:  

Juan: This is different than that (indicates the cookie sharing problem on the board 

involving a partitive division context).  

Ms. Aria: How is this different? 

Juan: They don’t tell how many children there are. 

Ms. Aria: You’re right. That is how they are different. (Alex and Juan reread the 

penny problem silently.) Do you want counters? Will they help? (The students 

indicate ‘yes’ with a head nod, and Ms. Aria gets some counters off a nearby 

table.) Read the problem. 

Juan: There are 15 pennies. Each child…receives four pennies. How many children 

are there?  

Ms. Aria: What does that mean? (points at the word ‘receives’) What does ‘receives’ 

mean?  

Alex: (Inaudible) 

Ms. Aria: Yes. It means ‘to get’. Each child gets four pennies. (Pause) What will you 

do? (Pause) Get your counters. How many pennies do you have? 

Juan: Fifteen. 

Ms. Aria: Okay. Pull out 15 pennies. (Alex and Juan slowly count out 15 pennies.) 

You guys need to decide what to do with those. How many did each child get, 

Alex?  

Alex: Four. 

Ms. Aria: Four. So, what can we do with those counters? Each child needs four.  

 

As is typical, Ms. Aria’s first attempt to help the boys involves questioning aimed at 

drawing attention to the important information in the problem as well as encouragement to 

use manipulatives and partner work. At this point, Ms. Aria steps back and observes the 

boys’ progress. Juan pushes the cubes around his desk, and Alex abandons Juan’s work in 

favor of counting out 15 cubes to work with on his own desk. After another 30 seconds, 

neither boy has made any apparent progress toward a solution. Ms. Aria intervenes a second 

time by encouraging Juan to think of himself as a child in the problem:  

Ms. Aria: If you were a child in this problem, how many pennies would you get?  

Juan: I don’t know 

Ms. Aria: Don’t say you don’t know. It’s in the problem. So, you know it. Okay. 

(Juan looks at the problem.) How many? 

Juan: Four. 

Ms. Aria: Okay, so if you are a child in this problem, you receive four pennies. (Ms. 

Aria pushes 4 of the pile of 15 cubes toward Juan.) 
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During the time that Ms. Aria has been discussing the problem with Juan, Alex has 

used 15 counters to make a 5 × 3 array. Recognizing that Alex is no longer focused on the 

problem context, she attempts to reinitiate partner work by pulling Alex back into her 

conversation with Juan. They start again with the 15 pennies and act out the problem. Ms. 

Aria encourages Alex and Juan to think of themselves as children in the problem. She guides 

the boys to give four counters to Juan and four counters to Alex. When the boys see that they 

have more counters to distribute, they decide to give four counters to Ms. Aria.  Now there 

are three counters remaining that have not been distributed. Ms. Aria asks questions that 

encourage Juan and Alex to reflect on the problem context and figure out what to do with the 

remaining counters.  

 

 Juan    ���� 
        � 
 Alex    ����         � 
      � 
 Ms. Aria   ���� 

 

Ms. Aria: Can you give four pennies to another kid?  

Juan: No 

Ms. Aria: How come? 

Juan: There aren’t four. 

Ms. Aria: So, there’s not enough. These are left over. They are the remainders. 

 

In the post-observation interview, Ms. Aria explains that she decided to use the acting 

it out strategy with Juan and Alex because it became apparent to her that the problem was too 

abstract for them. She adds that the acting it out strategy is one that often helps students make 

a connection to a word problem. Ms. Aria also notes that, in addition to the problem context, 

she perceived Alex to be struggling with the fact that this problem involves a remainder. She 

views his attempt to build the 5 × 3 array as an effort to form a solution that avoids a 

remainder. This is why, at the end of the episode, she focuses her questions on the meaning 
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of the remaining counters.  

Ms. Aria aims to provide support that puts her students in the position of doing as 

much mathematical thinking as possible. This excerpt is an example of Ms. Aria providing 

more intervention with students than she thinks is ideal. In this case, at the point when she 

intended to walk away, she perceived that Juan and Alex were still stuck. Consequently, Ms. 

Aria continued to engage the students in thinking about the context of the problem and how 

this problem might be directly modeled using an ‘acting it out’ strategy. At all points, Ms. 

Aria is focused on guiding the students to devise a solution strategy derived from a 

conceptual understanding of the problem.   

 

Aria response pattern 2, consequences for student thinking. Ms. Aria’s method of 

providing support that focuses on conceptual understanding coupled with her stance of 

‘teacher as guide’ drives students to develop learning practices that support problem solving. 

In the Spring semester, students are observed rereading problems, identifying key 

information, attempting to model problems with pictures or manipulatives, and trying to talk 

out a problem with a peer much more readily than in the Fall. It is worth noting that there are 

no instances of Ms. Aria providing sustained support for students solving problems in the 

Spring lessons observed. As students develop the learning practices and confidence to engage 

in problem solving, Ms. Aria is able to further minimize the amount of support provided on 

the front-end of problem solving tasks. 

 

Aria response pattern 2, link to beliefs and knowledge. Ms. Aria’s practice of 

providing sustained support that is conceptually-grounded is related to both her beliefs and 
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knowledge. Ms. Aria’s interviews at the beginning and end of the year reveal a strong belief 

in the importance of students’ making sense of mathematical ideas by seeing how they 

connect to real-world situations:  

I think that students that have trouble with math, a lot of their trouble stems from the 

fact that they don’t see how it applies. They’re doing it as an abstract concept…2 plus 

2, or 2 plus 6, and they’re not applying it to the fact that this means: these two cookies 

plus my six cookies. And I think that if we make math apply, if we give it some 

meaning, all those numbers and shapes, if we give them meaning, then students will 

understand them more deeply. In which case, I think it will help get rid of some of the 

misconceptions…because the students will be looking for the meaning within the 

mathematics, they’re looking for the reasoning. 

 

In the instructional excerpt shared Ms. Aria could have told students to make groups of four 

with the cubes. Instead, she focuses them on acting out the problem, which makes sense of it 

in relation to the context. This focus on context encourages a modeling approach to problem 

solving as opposed to a procedure-driven focus.  

Also supportive of development of conceptual understanding, Ms. Aria believes that 

her role during problem solving is to act as a guide: 

As far as problem solving goes, I think the teacher is a guide.  I think they are there to 

keep the students interested, to keep the students asking questions and trying 

strategies, to keep the students from reaching ultimate frustration levels, but I don’t 

think that they are there to give them a strategy or give them an answer.  I think that 

it’s more as a, you know, guide.  I think the students’ role is more hands-on more 

explorative.  They’re the ones that are getting into the problem; they’re the ones that 

are trying to figure out strategies. 

 

In order to put her beliefs into practice, Ms. Aria draws on pedagogical content 

knowledge to support students’ thinking. She is aware of the differences between partitive 

and measurement division problems, and she is sensitive to students’ potential difficulties 

making sense of these different problem types. Ms. Aria is comfortable with asking questions 

and making suggestions that press students to think about problems conceptually. Finally, she 

is able to make on-the-spot judgments about the origin of students’ difficulties and provide 
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real-time support based on these judgments. In this case, Ms. Aria attributes students’ 

difficulties to the measurement division problem type and the existence of a remainder. Her 

support involves having students act out the problem situation with counters and focus on the 

meaning of the three counters remaining. 

 

 

Aria Response Pattern 3: Response to Student Difficulties during Whole Class Discussion 

 

 

While Ms. Aria frequently encourages students to help each other devise and make 

sense of solutions during work time, she only occasionally involves students in helping each 

other when errors or difficulties arise in the context of whole group discussions. Typically, in 

the whole group forum, Ms. Aria provides the majority of support to help students move 

through difficulties. To illustrate, instructional excerpts portraying nuances of this response 

pattern will be shared. In a Fall example, students are having difficulties answering Ms. 

Aria’s questions related to a mathematics task. In a Spring example, students are having 

difficulty explaining their (correct) mathematical strategy.  

In the Fall instructional excerpt that follows, Ms. Aria is having students think about 

how their solutions to a measurement division problem might be represented in the form of a 

number model (number sentence). Symbolic representation of division has been explored in 

only one lesson prior to this one, so many students appear uneasy with this skill:   

Ms. Aria: So, give me a number model that shows this problem. (Pause) What’s a 

number model that shows this problem? (Pause, a few hands go up.) Ray. 

Ray: Three times four. 

Ms. Aria: Three times four is what?  

Ray: Twelve. 

Ms. Aria:  Twelve, plus your three left over is 15, right? Okay. I want a division 

problem. Who can tell me a division problem for this? Kristin. (Pause) You’re 

alright. Go ahead. 

Kristin: Fifteen times four? 
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Ms. Aria:  Not 15 times 4…remember, we are doing a division problem. Fifteen 

what? 

Kristin: Fifteen plus four? 

Ms. Aria: not plus. That’s addition. We’re doing division.  

Kristin: Fifteen… 

Ms. Aria: divided… 

Kristin: divided by 4… 

Ms. Aria: Fifteen divided by four equals three, remainder three. (Ms. Aria writes on 

board: 15 ÷  4 = 3 R3.) 

 

First, Ray suggests a multiplication number sentence that matches the problem 

solution. Ms. Aria accepts this solution, but does not record it on the board or involve the 

other students in justifying whether or not it is reasonable. Next, Ms. Aria specifically 

requests a division problem to match the word problem. Kristin’s initial responses (15 × 4 

and 15 + 4) suggest that she is having significant difficulty thinking about this problem in 

terms of a number sentence. Instead of involving other students in judging the reasonableness 

of Kristin’s suggestions or involving the class in making additional suggestions, Ms. Aria lets 

Kristin know that these initial attempts are incorrect. Then Ms. Aria ultimately tells Kristin 

and the rest of the class the correct answer she is seeking. Rather than involving other 

students in assessing the ideas posed by Ray and Kristin during class discussion, Ms. Aria 

maintains control of judging the correctness of ideas and, ultimately, formulating a correct 

number sentence. 

Next an example from a Spring lesson is presented. In the instructional excerpt that 

follows, Thomas and Alvin have been called on to discuss their solution method for the 

problem, “If I had 5 groups of 24 pencils, how many pencils do I have altogether?” 

To solve the problem, Thomas and Alvin have broken the problem into two smaller parts. In 

order to find the product of 5 × 24, Thomas and Alvin first find the products of 2 × 24 and 3 

× 24. Then they add their partial products of 48 and 72 together to get the answer to the 
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original problem. In the whole group discussion, Thomas and Alvin are having difficulty 

communicating this strategy to the class:  

Ms. Aria: Thomas, how did you guys do it?  

Thomas: We did 72 plus 48.  

Ms. Aria:  How did you get 72? (To class) Let’s listen to how Thomas got 72. (Long 

pause, waiting for attention from class) You got 72, but how? 

Alvin: Because we added umm…like 5 forty….never mind.  

Ms. Aria:  So, you have five groups of 24 to start with. Right? Thomas, how did you 

get 72? How many of those groups did you use? 

Thomas: Ummm…two. 

Ms. Aria: Okay, so two groups of 24 would be…48.   

Alvin: We used… 

Thomas: I think we used… 

Ms. Aria:  The rest of you guys should be looking and trying to help them out.  

Thomas: Three groups. 

Ms. Aria: Three groups. Okay, so you have three groups of 24. So, you took your 24, 

and instead of doing it 5 times, you did it 3 times and you did it 2 times. 

Right? (Pause, writes on board) So, then what did you do? 

Thomas: We did 72 plus 48, and it equals 120. 

 

 Ms. Aria’s record on the board: 3 × 24 = 72 

      2 × 24 = 48 

      72 + 48 = 120 

 

Ms. Aria: Are there any questions about that one? (No one raises a hand.)  

 

 

Throughout the interchange, Ms. Aria keeps her focus on Thomas and Alvin and fills 

in the details of their solution strategy when they struggle to provide them. Although Ms. 

Aria tells the other students, “The rest of you guys should be looking and trying to help them 

out,” she never provides opportunity for other students to make conjectures about what 

Thomas and Alvin might have done.  

In summary, Ms. Aria typically provides the majority of support to help students 

move through difficulties when they arise in the context of whole group discussion. This 

practice serves to limit the involvement of other students in these instances.  
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Aria response pattern 3, consequences for student thinking. Because Ms. Aria rarely 

encourages students to help each other during whole group discussion, few students appear to 

engage in trying to understand the errors made by their peers or how to correct them. 

Students seem to learn that they are unlikely to be held accountable for thinking about their 

peers’ difficulties and that the difficulties will be corrected by Ms. Aria if they just wait a 

little bit. Perhaps because the working out of difficulties usually occurs between Ms. Aria 

and one or two students, it is typical that many students in the class appear to stop attending 

to the discussion. Consequently, the opportunity for these students to benefit from grappling 

with the mathematical ideas being put forward by their peers is limited. When students stop 

attending to the discussion, Ms. Aria’s need to maintain control is heightened and the 

likelihood that she will relinquish control to allow students to explore mathematical ideas in 

the whole group discussions is decreased. 

 

Aria response pattern 3, link to beliefs and knowledge. Ms. Aria’s practices that 

inadvertently restrict student participation when errors arise in the context of class discussion 

stand in conflict with her beliefs and are primarily related to limits in her knowledge. Ms. 

Aria’s interviews throughout the year provide evidence that she believes that whole group 

discussion is a place for students to develop appreciation and ownership of mathematical 

ideas. Reflecting this stance, Ms. Aria indicates that it is her vision for students to share 

control of discussion of mathematical ideas. In an interview at the end of the school year, Ms. 

Aria articulates this belief and why she finds it so difficult to make it a reality of her 

mathematics instruction:  

So, from the beginning of the year until now – I really struggled with, instead of 

leading discussion, letting my kids go a little, giving them a little bit of slack…letting 
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them work together, answer each other’s questions, come up with questions, and 

letting them lead a little bit more. And I think that was very difficult, especially as a 

first-year teacher, trying to give up that control. Because I didn’t want to lose control 

of the class, but at the same time, I didn’t like standing up there and saying one thing 

after the other. I wanted them to be able to explore it a little more.  

 

Ms. Aria identifies an on-going tension between the goal of orchestrating class discussions 

such that they are driven by students’ ideas and the goal of maintaining control of the class.  

As is the case for many first year teachers, Ms. Aria finds classroom management to 

be a persistent challenge. Particularly in Fall lessons, Ms. Aria attributes many of the on-the-

spot instructional decisions made during lessons to be primarily driven by classroom 

management concerns. While Ms. Aria would like student ideas to have a stronger presence 

in class discussions of mathematics, her classroom management goal holds a higher priority. 

From a teacher knowledge perspective, Ms. Aria has not developed a set of routines to 

facilitate students working as a community to grapple with mathematical difficulties that 

arise in class discussion while also keeping students on-task. Therefore, the reasons for this 

disconnect between Ms. Aria’s beliefs and instructional practices appear to be twofold. First, 

Ms. Aria is a novice teacher with limited knowledge of classroom management. Second, she 

has limited knowledge of how to involve multiple students in discussion, especially when 

student difficulties surface. As Ms. Aria becomes more comfortable with classroom 

management, she will be able to give more of her mental attention to cultivating instructional 

practices that reflect her belief in student-led discussions.  

 

 

Summary of Ms. Aria’s Response to Student Difficulty 

 

 

 Three patterns depict Ms. Aria’s typical classroom practice in response to student 

difficulties. First, she intentionally employs teaching strategies to foster student 
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independence and self-confidence in the face of difficulty during problem solving. In 

particular, Ms. Aria minimizes her interactions with students while they are initially working 

on mathematics tasks, and she encourages students who are having difficulties to rely on 

resources other than the teacher such as manipulatives and peer collaboration. Ms. Aria also 

actively works to foster the belief that doing mathematics involves encountering and working 

through difficult problems for which solutions are not readily apparent. While these teaching 

strategies most often prove successful at helping students to move forward with problem 

solving tasks, there are still occasional instances when Ms. Aria perceives students to need a 

more sustained level of support to be productive. In these instances of sustained support, Ms. 

Aria employs teaching strategies that are conceptually-grounded and encourage students to 

do as much of the mathematical thinking as possible. For instance, she uses questioning to 

focus students’ attention on the context of word problems and encourages students to act out 

the situations presented by problems.  

The third pattern of response to student difficulties observed in Ms. Aria’s classroom 

occurs in the context of whole group discussion of mathematics tasks. When student 

difficulties arise during whole class discussions, Ms. Aria tends to limit the involvement of 

class members by restricting the discourse to interaction between herself and the students 

who have provided incorrect responses or are having difficulty explaining their ideas. During 

these interactions, Ms. Aria guides the student toward a correct response, sometimes telling 

him when his response is correct or incorrect. While Ms. Aria often tells the class that they 

should be paying attention and trying to figure out how to resolve the given difficulty, she 

rarely invites other students to offer suggestions or evaluate the incorrect ideas put forward 

by their peers.  



 

 148 

 As the year moves along, Ms. Aria’s students are observed engaging in increasingly 

productive learning practices during work time allotted for problem solving. In general, 

students appear to approach problem solving tasks by trying to make sense of them to a much 

greater extent than was observed at the beginning of the year. Furthermore, students are 

observed using a variety of self-help strategies when they encounter difficulties, rather than 

immediately requesting help from Ms. Aria.  

While much growth is observed in students’ mathematics learning practices in 

response to difficulties encountered during work time, there is less evidence of the 

occurrence of meaningful group learning when difficulties arise in the context of whole class 

discussion. As Ms. Aria guides individual students to revise incorrect answers or work out 

other kinds of difficulties, many of the students in the class appear to stop attending to the 

discussion. When this occurs, Ms. Aria feels pressure to exert an even greater level of control 

over the class discussion in efforts to keep students from becoming unruly. Consequently, 

students are rarely engaged in working as a community to resolve student difficulties in the 

context of class discussion. As a result, student thinking related to resolving difficulties that 

arise in class discussion is limited.  

Ms. Aria’s ways of responding to students’ difficulties are linked to both her beliefs 

and knowledge. Ms. Aria’s beliefs seem most linked to the ways she aims to structure 

support for students as they approach problem solving tasks. Ms. Aria believes that children 

benefit from solving problems in their own ways, without significant teacher guidance. 

Therefore she structures problem solving activities such that students are expected to devise 

their own ways to approach problems. When student difficulties arise, Ms. Aria limits her 

direct support of students and instead encourages students to draw on other resources 
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available to them. This practice reflects the belief that, in teacher-student interactions related 

to mathematics, the teacher’s role is to encourage the student to do as much of the thinking as 

possible. This belief is also in play when Ms. Aria does provide sustained support for 

students when she perceives they are unable to make progress with less intervention. While 

these structures for learning are driven by Ms. Aria’s beliefs, they also necessarily rely on her 

knowledge of routines and scripts for facilitating student work time, especially when 

difficulties arise.  

This point is emphasized by contrasting the influence of Ms. Aria’s beliefs on 

teaching practices in response to student difficulties that surface during work time and whole 

class discussion. While Ms. Aria also believes that whole class discussion should also be a 

time when students work as a community to overcome challenges and difficulties, in practice 

she typically limits opportunities for the class to contribute meaningfully when difficulties 

surface in these discussions. In the case of whole class discussion, Ms. Aria views her goals 

related to having student-led discussions as conflicting with her goal to maintain control of 

the class. Since the classroom management goal holds a higher priority, Ms. Aria provides 

the majority of support to help students move through difficulties that surface in efforts to 

keep class discussions moving and the class engaged. Whereas Ms. Aria has developed a set 

of routines and teaching practices that facilitate student-to-student interactions while 

maintaining control of the class during work time, she has not yet devised a parallel set of 

strategies to draw on during the whole class discussion time. As Ms. Aria becomes more 

comfortable with classroom management, it is likely that she will develop a knowledge base 

that will allow her to more fully put into practice beliefs related student-led discussions 

without compromising classroom order.    
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Finally, the substance of Ms. Aria’s interactions with students, especially in instances 

of sustained support, reflects her beliefs and is dependent on her knowledge. There is strong 

evidence that Ms. Aria believes students need to develop conceptual understanding of 

mathematics prior to or in conjunction with procedural knowledge. Therefore, Ms. Aria aims 

to provide students with support that is conceptually-grounded and generative. These beliefs 

are able to be realized in practice because of Ms. Aria’s knowledge of mathematics for 

teaching. During mathematics instruction, Ms. Aria is able to draw on her knowledge base to 

make conjectures regarding how a student is thinking about a given problem based on a 

quick review of the student’s written work or what she hears in student-to-student talk. If Ms. 

Aria suspects a student is having difficulty with a problem, she is able to determine the 

mathematical basis of the difficulty and tailor her support to address the student’s difficulty 

in a conceptually-supportive manner. In the case of word problems, Ms. Aria has developed 

scripts to focus student attention on making sense of and modeling the context of the 

problems. In these ways, Ms. Aria’s knowledge base facilitates enactment of her beliefs 

related to the importance of developing students’ conceptual understanding.   

 

Situating Ms. Aria’s Case Story in Broader Measures of Teaching 

 

 

In the previous section, a theoretical explanation was presented suggesting how Ms. 

Aria’s teaching practices in response to student difficulties are linked to her beliefs and 

knowledge during the year of this study. Teacher response to student difficulties is one of 

many aspects of reform-based mathematics instruction that contributes to the overall quality 

of mathematics teaching and learning more broadly defined. Therefore, this section will 

present results from two more global measures of Ms. Aria’s mathematics teaching. First, 



 

 151 

data collected following each core classroom observation using the Reformed Teaching 

Observation Protocol (RTOP) (Sawada et al., 2002) will be presented. This instrument is 

designed to measure the degree to which a given mathematics lesson reflects principles and 

practices associated with reform-based mathematics instruction. Second, aggregated class 

data from the mathematics section of the State Standardized Test (SST) will be presented in 

relation to aggregated data at the school, district, and state levels. Taken together, these 

findings will allow Ms. Aria’s patterns of response to student difficulty to be considered 

within a more general understanding of her mathematics teaching and students’ learning.  

 

 

Aria: Adherence to Reformed Teaching 

 

 

The degree to which Ms. Aria’s mathematics instruction reflects current reforms in 

mathematics education was measured using the Reformed Teaching Observation Protocol 

(RTOP) (Sawada et al., 2002). The RTOP is a criterion-referenced instrument containing 25 

items, divided into 5 subscales: (1) lesson design and implementation, (2) the level of 

significance and abstraction of the content, (3) the processes that students use to manipulate 

information, (4) the classroom culture as observed through the nature of communicative 

interactions, and (5) the nature of student-teacher relationships. Following each core 

observation in Ms. Aria’s classroom, each of the 25 items on the RTOP was rated on a scale 

from 0 (not observed) to 4 (very descriptive). Next, sums were calculated for ratings on each 

subscale as well as the total instrument to assess the degree to which Ms. Aria’s mathematics 

instruction was reformed, with higher scores reflecting a greater degree of reform. 

Consequently, subscale scores on the RTOP range from 0 – 20, and total instrument scores 
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range from 0 – 100. Aggregated results from core observations of Ms. Aria’s mathematics 

teaching in the Fall and Spring are presented in Table 14.  

On the lesson design and implementation subscale, the mean scores for Ms. Aria’s 

instruction are 17.0 in the Fall and 18.0 in the Spring. Throughout the year, lessons observed 

primarily involve student exploration in which students are encouraged to devise their own 

methods for solving problems. Instructional strategies consistently respect students’ prior 

knowledge and mathematics concepts are highlighted through discussion of students’ various 

ways of solving problems. Finally, Ms. Aria designs lessons to engage members as a learning 

community by requiring or encouraging students to collaborate with each other as they work 

on assigned tasks.    

The second RTOP subscale focuses on what the contents of a lesson suggests about a 

teacher’s propositional knowledge, meaning her mathematical knowledge for teaching the 

particular content of focus in the lesson. On this subscale, Ms. Aria’s mean scores are 15.0 in 

the Fall and 19.0 in the Spring. All lessons observed involve fundamental mathematics 

concepts and provide evidence that Ms. Aria has a reasonably solid grasp of the mathematics 

of focus. While all lessons are found to promote conceptual understanding, Spring lessons 

accomplish this to a much greater extent than Fall lessons. In part, this stems from better 

inclusion of and connection to symbolic representations in Spring lessons.   

The third RTOP subscale focuses on what the contents of a lesson suggests about a 

teacher’s procedural knowledge. For the RTOP instrument, this means the quality of the 

lesson in terms of an inquiry approach to learning. In comparison to the other subscales, the 

ratings of Ms. Aria’s mathematics instruction are the weakest on this subscale at both data 

points, with mean scores of 11.0 in the Fall and 14.0 in the Spring. Students are engaged in 



 

 153 

Table 14 

Ratings of Ms. Aria’s Mathematics Teaching on the RTOP 

RTOP items by subscale Fall Spr 

Subscale 1: Lesson design and implementation   

 

1. The instructional strategies and activities respected students’ prior knowledge and preconceptions 

inherent therein. 4.0 4.0 

 2. The lesson was designed to engage students as members of a learning community. 3.0 3.0 

 3. In this lesson, student exploration preceded formal presentation.  4.0 4.0 

 

4. The lesson encouraged students to seek and value alternative modes of investigation and problem 

solving. 3.5 4.0 

 5. The focus and direction of the lesson was often determined by ideas originating with students.  2.5 3.0 

 Subscale 1 score 17.0 18.0 

     

Subscale 2: Content, propositional knowledge   

 6. The lesson involved fundamental concepts of the subject.  3.5 4.0 

 7. The lesson promoted strongly coherent conceptual understanding. 2.5 4.0 

 8. The teacher had a solid grasp of the subject matter content inherent in the lesson.  3.5 4.0 

 

9. Elements of abstraction (i.e., symbolic representations, theory building) were encouraged when it 

was important to do so. 2.5 4.0 

 10. Connections with other content disciplines and/or real world phenomena were explored and valued.  3.0 3.0 

 Subscale 2 score 15.0 19.0 

     

Subscale 3: Content, procedural knowledge   

 

11. Students used a variety of means (models, drawings, graphs, concrete materials, manipulatives, 

etc.) to represent phenomena. 3.5 3.0 

 12. Students made predictions, estimations, and/or hypotheses, and devised means for testing them. 2.0 2.0 

 

13. Students were actively engaged in thought-provoking activity that often involved the critical 

assessment of procedures. 2.0 3.5 

 14. Students were reflective about their learning. 2.0 3.0 

 15. Intellectual rigor, constructive criticism, and challenging of ideas were valued. 1.5 2.5 

 Subscale 3 score 11.0 14.0 

     

Subscale 4: Classroom culture, communicative interactions   

 

16. Students were involved in communication of their ideas to others using a variety of means and 

media. 3.0 4.0 

 17. The teacher’s questions triggered divergent modes of thinking.  2.5 3.5 

 

18. There was a high proportion of student talk and a significant amount of it occurred between and 

among students.  3.0 4.0 

 19. Student questions and comments often determined the focus and direction of classroom discourse.  2.0 3.0 

 20. There was a climate of respect for what others had to say.  2.0 2.0 

 Subscale 4 score 12.5 16.5 

     

Subscale 5: Classroom culture, student/teacher relationships   

 21. Active participation of students was encouraged and valued.  3.0 3.0 

 

22. Students were encouraged to generate conjectures, alternative solution strategies, and ways of 

interpreting evidence.  2.5 3.5 

 23. In general the teacher was patient with students.  4.0 4.0 

 24. The teacher acted as a resource person, working to support and enhance student investigations.  3.5 4.0 

 25. The metaphor “teacher as listener” was very characteristic of this classroom. 4.0 4.0 

 Subscale 5 score 17.0 18.5 

     

Total score 72.5 86.0 
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thought provoking activity involving the critical assessment of procedures in all lessons. 

However, in the Spring, students are pressed to justify their mathematical ideas more 

regularly and students generally appeared to be more reflective about their learning. Rigorous 

debate of mathematical ideas is limited in the whole class discussion section of all lessons. 

Yet, students are observed challenging each others’ mathematical ideas as they formulate 

problem solutions during work time, especially in the Spring. Finally, students are 

encouraged to represent mathematical ideas in multiple ways in all lessons observed.  

The fourth RTOP subscale focuses on communicative interactions that are part of the 

classroom culture. On this subscale, the mean scores for Ms. Aria’s instruction are 12.5 in the 

Fall and 16.5 in the Spring. While students are encouraged to engage in various means of 

communicating their mathematical ideas in all lessons, a greater percent of students appear to 

participate in productive communication in the Spring. Throughout the year, students 

collaborate with each other to generate solutions to mathematics tasks. In the Spring, students 

are also frequently observed commenting on each others’ ideas during whole class 

discussion. In this way, students’ ideas appear to determine the focus and direction of 

classroom discourse to a greater extent in the Spring. However, throughout the year, Ms. 

Aria’s class has difficulty maintaining a climate of respect during whole group discussions. It 

is not unusual for Ms. Aria to cut class discussions short because of behavioral concerns.  

The last RTOP subscale focuses on the classroom culture in terms of the teacher’s 

role and the roles students are encouraged to take. On this subscale, Ms. Aria’s mean scores 

are 17.0 in the Fall and 18.5 in the Spring. Throughout the year, Ms. Aria acts as a resource 

person for students during problem solving, while intentionally working to promote greater 

independence among students. While interacting with students, Ms. Aria typically exhibits 
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patience and spends the majority of time prompting students to explain and justify their 

mathematical thinking. Active participation of students is valued and encouraged throughout 

the year. However, teaching strategies to promote active participation are more pervasive 

during work time than in whole class discussion.  

Ms. Aria’s mean scores on the total RTOP instrument are 72.5 in the Fall and 86.0 in 

the Spring. These scores suggest that Ms. Aria’s mathematics instruction moderately reflects 

the principles of mathematics reform in the Fall and approaches strong adherence in the 

Spring.  

 

 

Aria: Student Achievement 

 

 

Aggregated student scores on the mathematics section of the State Standardized Test 

(SST) were used to measure the mathematics achievement of Ms. Aria’s class. The SST is a 

criterion-referenced achievement test in which students receive scores between 1 and 5, with 

a score of 3 or higher considered passing. Since students first take the SST in third grade, 

comparable scores of previous achievement are not available for Ms. Aria’s students. 

Without this baseline data, only a tentative understanding of the relationship between Ms. 

Aria’s teaching and her students’ mathematics achievement is possible. Also, caution is 

warranted when comparing the SST scores of Ms. Aria’s students to the other third-grade 

classes at Lincoln Heights, as each teacher studied has a class with demographic 

particularities and a statistically small number of students. With those caveats in mind, SST 

scores for Ms. Aria’s students are presented in Table 15 along with comparison data for 

third-grade students at Lincoln Heights, the school district, and the state.  
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Table 15 

Comparison of Aria Student Achievement on SST to School, District, and State 

   
Achievement level (%) 

  

Group  Students  1 2 3 4 5  Passing score (%) 

Ms. Aria's class 18  17 22 39 22 0  61 

Lincoln Heights 3rd grade 88  24 27 33 15 1  49 

School District 3rd grade 13,713  18 16 33 24 9  66 

State 3rd grade 203,037  15 17 34 25 9  68 

Note. Scores of 3 or higher are considered passing.  

 

 

 

Of Ms. Aria’s 18 students, 61% achieve a passing score of 3 or higher on the 

mathematics section of the SST. This is in comparison to passing scores achieved by 49% of 

Lincoln Heights third graders, 66% of the third graders in the school district, and 68% of the 

third graders in the state. Therefore, the percent of Ms. Aria’s students achieving grade-level 

standards, as measured by the SST, exceeds that of the third-grade students at Lincoln 

Heights but falls a little bit below the percentages of students achieving this standard at the 

district and state levels.  

 

 

Summary of Global Measures of Ms. Aria’s Mathematics Instruction 

 

 

Taken together, results from the Reformed Teaching Observation Protocol (RTOP) 

and the State Standardized Test (SST) suggest that Ms. Aria’s classroom is a place where 

students have the opportunity to learn significant mathematics through instruction that is 

somewhat reformed. RTOP results suggest that Ms. Aria’s mathematics teaching moderately 

reflects the principles of mathematics reform in the Fall and approaches strong adherence in 

the Spring. Looking across observations, the kinds of tasks posed and the ways Ms. Aria 

orchestrates student work time strongly reflect reform recommendations. In particular, 
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students are encouraged to draw on each other as resources during problem solving, and Ms. 

Aria’s interactions with students serve to support and extend students’ mathematical thinking 

rather than directing students to solve problems in particular ways. While students’ 

mathematical ideas are pervasive throughout whole class discussions, most talk during these 

discussions occurs between Ms. Aria and particular students who are sharing their problem 

solutions. Only occasionally are students prompted to describe or evaluate other students’ 

problem solutions and student-to-student interaction is generally limited. Perhaps related to 

these factors, student engagement during whole class discussion time is inconsistent and 

sometimes quite limited. However, for students who are paying attention, Ms. Aria 

consistently interprets and discusses student-generated mathematical ideas in conceptually 

coherent ways that illuminate important mathematical ideas.  

Ms. Aria’s students’ mathematics achievement scores seem to fit with this assessment 

of mathematics instruction in her classroom. Aggregated SST data indicates that 61% of Ms. 

Aria’s students are performing at or above grade level expectations. Since student attention 

during whole class discussion is an on-going challenge in Ms. Aria’s classroom, it can be 

expected that some students do not fully benefit from the mathematics learning opportunities 

available. At the same time, over half of Ms. Aria’s students do achieve grade level 

expectations, suggesting that Ms. Aria’s reform-oriented approach to mathematics instruction 

supported the mathematics learning of much of the class, despite these conditions.  

 

 
The Case of Ms. Jarmin 

 

 

 Ms. Jarmin begins the year of this study with an attitude of interest in the new 

mathematics program. Throughout her many years of teaching experience, Ms. Jarmin 
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reports that she has enjoyed trying out all of the new programs and new ways of teaching that 

have come along. Although Ms. Jarmin does not consider herself to be good at mathematics, 

she is hopeful that the new Everyday Mathematics program will help her make her students’ 

experiences with the subject better than her own. 

 Ms. Jarmin’s class is comprised of twelve students who have been retained in third 

grade as a result of failing scores on the State Standardized Test (SST). Even though only 

one-fourth of her students are identified with special education needs, Ms. Jarmin frequently 

likens her class to a self-contained special education class claiming that students have 

difficulty retaining what is learned from one day to the next. In part because of their status as 

retained students, Ms. Jarmin believes her class to have low self-esteem especially with 

regard to their academic abilities. Ms. Jarmin asserts that her students require a delicate 

balance of patience, structure, and cajoling to stay focused on learning. 

 The case of Ms. Jarmin that follows is presented in four sections. In the first two 

sections, evidence of Ms. Jarmin’s mathematics-related beliefs and knowledge at the 

beginning and end of the year will be presented. Next, the relationship among Ms. Jarmin’s 

beliefs, knowledge, and classroom practice will be explored through a case story focused on 

her patterns of response to student difficulties. Finally, global measures of Ms. Jarmin’s 

adherence to reform-oriented mathematics teaching and student achievement will be 

presented, which allows the case story findings to be considered in relation to these broader 

measures of teaching. 
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Ms. Jarmin’s Beliefs about Mathematics Teaching and Learning 

 

 

Ms. Jarmin’s beliefs about mathematics teaching and learning were measured at the 

beginning and end of the school year using the IMAP Web-Based Beliefs-Survey (Ambrose, 

Phillip et al., 2003). The IMAP instrument requires teachers to respond to instructional 

scenarios in an open-ended format, allowing respondents to emphasize or downplay issues of 

personal importance. A series of rubrics are then used to measure survey responses in 

relation to seven target beliefs considered central to reform-oriented mathematics instruction. 

Ms. Jarmin’s IMAP results are presented in Table 16, suggesting the degree to which Ms. 

Jarmin’s survey responses provide evidence that she holds each target belief at the beginning 

and end of the school year.  

 

Table 16 

Ms. Jarmin’s IMAP Web-Based Beliefs-Survey Results 

Belief 

Beginning 

of Year 

End of 

Year 

Belief 1: Mathematics is a web of interrelated concepts and procedures (and school 

mathematics should be too).  
2 3 

Belief 2: One’s knowledge of how to apply mathematical procedures does not 

necessarily go with understanding of the underlying concepts. 
1 2 

Belief 3: Understanding mathematical concepts is more powerful and more generative 

than remembering mathematical procedures.  
2 3 

Belief 4: If students learn mathematical concepts before they learn procedures, they 

are more likely to understand the procedures when they learn them. If they learn the 

procedures first, they are less likely to ever learn the concepts. 

2 2 

Belief 5: Children can solve problems in novel ways before being taught how to solve 

such problems. Children in primary grades generally understand more mathematics 

and have more flexible solution strategies than adults expect.  

0 2 

Belief 6: The ways children think about mathematics are generally different from the 

ways adults would expect them to think about mathematics. For example, real-world 

contexts support children’s initial thinking whereas symbols do not.  

1 1 

Belief 7: During interactions related to the learning of mathematics, the teacher 

should allow the children to do as much of the thinking as possible.  
1 2 

Note. 0 = No evidence; 1 = Weak evidence; 2 = Moderate evidence; and 3 = Strong evidence 
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In the sections that follow, evidence of Ms. Jarmin’s adherence to each reform-oriented 

belief at the beginning and end of the year will be presented.   

 

 

Jarmin: Belief about the Nature of Mathematics (IMAP Belief 1) 

 

 

At the beginning of the year, there is moderate evidence that Ms. Jarmin holds the 

belief that mathematics is a web of interrelated concepts and procedures. In response to a 

scenario presenting multiple ways of solving a multidigit addition problem and asking which 

strategies she would like children to share, Ms. Jarmin indicates that she would include 

sharing of all five strategies presented in a unit on multidigit addition. Yet, Ms. Jarmin views 

this sharing as valuable primarily because it provides opportunity to assess students’ 

understanding of addition concepts. Ms. Jarmin’s discussion of the interrelatedness among 

strategies is limited to consideration of how a base-ten blocks strategy relates to a partial 

sums strategy. Therefore, survey evidence suggests that while a belief in the interrelatedness 

of math concepts/procedures may drive Ms. Jarmin to value multiple ways to solve problems, 

her focus on fostering student understanding by emphasizing the interrelatedness of strategies 

is likely to be limited. 

At the end of the year, Ms. Jarmin’s response to the same scenario suggests that she 

thinks more fully about how the various strategies relate to place value and she uses place 

value as an organizing idea for discussing student strategies presented. This represents a 

more sophisticated way of thinking about the mathematics as a web of ideas. Ms. Jarmin also 

talks about the strategies in terms of what a class of students might learn from a discussion of 

them rather than what she might glean from students using the strategy (the assessment-only 

perspective identified at the beginning of the year). This represents a shift in the way she 
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thinks about use of different strategies. At the end of the year, there is strong evidence that 

Ms. Jarmin holds the belief that mathematics is a web in interrelated concepts and procedures 

because she gives greater consideration to how she might use the interrelatedness of 

strategies to help students understand mathematical ideas.  

 

 

Jarmin: Belief about Distinction between Understanding Concepts and Applying 

Mathematical Procedures (IMAP Belief 2)  

 

 

At the beginning of the year, there is weak evidence that Ms. Jarmin holds the belief 

that procedural proficiency and conceptual understanding are two different things. Ms. 

Jarmin observes that students’ use of certain strategies demonstrates understanding of 

particular mathematics concepts more than others. For instance, she suggests that use of the 

partial sums strategy for multidigit addition indicates understanding of place value concepts 

while a student using the standard U.S. algorithm may achieve a correct answer without 

understanding why this algorithm works. When asked to rank order the difficulty of four 

problems involving fractions, Ms. Jarmin indicates that her rankings are based on the 

difficulty of the procedures for solving the problems with little attention to the underlying 

mathematics concepts. Furthermore, Ms. Jarmin states explicitly that, when thinking about 

mathematical understanding, she is mostly looking to see that students have correct answers. 

This provides evidence that Ms. Jarmin does not consistently distinguish between students’ 

abilities to carry out mathematical procedures and their understanding of underlying 

concepts.  

At the end of the year, Ms. Jarmin’s responses suggest that she more fully recognizes 

a distinction between performing procedures and conceptual understanding (moderate 
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evidence). In contrast to the beginning of the year, Ms. Jarmin indicates that she is not 

thinking about “correct answers” when she evaluates understanding. Additionally, Ms. 

Jarmin defends her ordering of fraction tasks by referring to the complexity of concepts, 

although elaboration of ideas on this item is limited. Overall, there is evidence at the end of 

the year that Ms. Jarmin believes there is a distinction between knowledge of mathematical 

procedures and understanding of underlying concepts. But limited elaboration in response to 

survey items suggests the possibility that Ms. Jarmin is not entirely clear on how this 

distinction plays out with particular mathematical ideas.  

 

 

Jarmin: Belief about Source of Generative Mathematical Understanding (IMAP Belief 3)  

 

 

At the beginning of the year, Ms. Jarmin’s survey responses provide moderate 

evidence that she believes understanding mathematical concepts is more powerful and more 

generative than remembering mathematical procedures. Survey responses consistently 

suggest that mathematical concepts should be taught before or as students learn procedures. 

In response to one scenario, Ms. Jarmin indicates that a conceptually explicit nonstandard 

strategy for multidigit subtraction is likely to be easier for students to understand than the 

standard U.S. subtraction algorithm. However, she also indicates that a higher percentage of 

students using the standard U.S. algorithm will get correct answers when compared to 

students using a conceptually explicit nonstandard method. These seemingly contradictory 

responses hint that, while Ms. Jarmin may view some nonstandard strategies as more 

conceptually revealing, at the beginning of the year she views the standard algorithm as more 

reliable.  
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In contrast, Ms. Jarmin’s end-of-year survey indicates belief that a greater percentage 

of students will be successful with a conceptually explicit, nonstandard method for multidigit 

subtraction when compared to students using the standard U.S. subtraction algorithm. 

Additionally, Ms. Jarmin continues to hold the position that students benefit from learning 

about mathematical concepts before or as they learn mathematical procedures. Overall, Ms. 

Jarmin’s responses at the end of the year provide strong evidence of adherence to the belief 

that understanding mathematical concepts is more powerful and more generative than 

remembering mathematical procedures.  

 

 

Jarmin: Belief about Consequences of Teaching Concepts/Procedures First (IMAP Belief 4) 

  

 

At the beginning and end of the year, there is moderate evidence that Ms. Jarmin 

believes that students are more likely to understand mathematical procedures if they first 

learn mathematical concepts. For instance, Ms. Jarmin discusses use of manipulatives, 

pictures, and talking it through to develop students’ understanding of division of fractions. At 

the end of the year, Ms. Jarmin asserts that standard algorithmic procedures for multidigit 

addition should not be taught until students are exposed to more conceptually explicit 

methods. At both data points, Ms. Jarmin’s responses provide evidence of the belief that 

instruction on mathematical concepts should precede instruction on procedures, but 

responses do not go as far as to indicate that students who learn procedures first are less 

likely to ever gain conceptual understanding.  
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Jarmin: Belief about Children’s Problem Solving Capabilities (IMAP Belief 5)  

 

 

At the beginning of the year, there is no evidence that Ms. Jarmin believes children 

can solve problems in novel ways before being taught how to solve such problems. For 

instance, she indicates that she would never ask students to do a problem without teaching 

them how, because they would be frustrated. Furthermore, she backs her assertion that first 

grade students would not be capable of completing a certain kind of problem because it is 

unlikely that they would have been taught yet.  

In contrast, at the end of the year, Ms. Jarmin states that she does have students 

devise solutions to novel problems, with the caveat that she needs to be careful that they have 

the prior knowledge to be successful. On observing a video clip of a teacher providing step-

by-step procedural direction to a student as he solves a problem, Ms. Jarmin’s primary 

reaction assumes that the student must need this kind of direction to be successful. But later 

she acknowledges that the teacher’s intervention leaves little room to assess the student’s 

thinking; therefore it was not possible to know for sure if the student was capable of 

approaching the problem with less direction. These responses suggest that, at the end of the 

year, Ms. Jarmin believes children are sometimes capable of solving problems in novel ways 

before being taught how to solve such problems. But she believes there will also be times 

when students need strong direction to be successful. Therefore, there is moderate evidence 

of this belief.  
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Jarmin: Belief about Children’s Ways of Thinking about Mathematics (IMAP Belief 6) 

 

 

At the beginning and end of the year, there is weak evidence that Ms. Jarmin believes 

children think about mathematics in ways that are generally different than adults. Real-world 

contexts in the form of story problems are not recognized as being facilitative of initial 

understanding. Ms. Jarmin does not offer ways that first-grade students might successfully 

solve contextualized word problems with a join-change unknown or multiplication problem 

structure. In general, Ms. Jarmin’s responses used to evaluate this belief are brief at the 

beginning and end of the year. They give little attention to how children might use their own 

prior knowledge to make sense of mathematics.  

 

 

Jarmin: Belief about Teacher’s Role in Supporting Student Learning (IMAP Belief 7)  

 

 

At the beginning of the year, there is only a little evidence (weak evidence) that Ms. 

Jarmin believes that the teacher should allow children to do as much of the thinking as 

possible during math instruction. Ms. Jarmin praises a teacher’s actions in a video clip in 

which the teacher provides step-by-step direction to a student working on a problem solving 

task. She views strong teacher direction as a strength of the instructional episode and believes 

that children need strong direction in order to learn. However, Ms. Jarmin also believes that 

part of the teacher’s role in direction is to get students to talk about what is going on and 

what they are learning. In this way, she seems to be expecting the students to do some of the 

thinking after teacher-centered instruction has been provided.  

By contrast, in response to the video clip of step-by-step direction at the end of the 

year, Ms. Jarmin describes the teacher’s actions as “doing the thinking for the student,” and 
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notes that she does not think the student is likely to learn much from that mode of instruction. 

At the end of the year, Ms. Jarmin expresses a desire to have children find their own ways to 

solve problems and not be confined to only solving problems in her ways. But she provides 

little detail on how this might be accomplished instructionally.  All things considered, Ms. 

Jarmin’s responses provide moderate evidence that she holds the belief that the teacher 

should allow children to do as much thinking as possible and hints that she may still feel 

uncertain about how to adhere to this belief in the classroom.   

 

 

Summary of Ms. Jarmin’s Beliefs 

 

 

At the beginning of the year, Ms. Jarmin’s responses to the IMAP survey instrument 

suggest that she does not strongly adhere to any of the seven beliefs measured. There is no 

evidence that Ms. Jarmin believes children can solve novel problems without being taught 

how to solve such problems. There is little evidence that Ms. Jarmin believes teachers should 

allow children to do as much thinking as possible during interactions related to the learning 

of mathematics or that children’s ways of thinking about mathematics are different than 

adults’ ways. While Ms. Jarmin’s responses indicate value in developing conceptual 

understanding of mathematics, there is weak evidence that Ms. Jarmin believes that 

conceptual understanding and procedural knowledge are different things.  

By the end of the year, there is evidence that many of Ms. Jarmin’s beliefs have 

moved closer to a reform-orientation. At this point, there is strong evidence that Ms. Jarmin 

believes school mathematics should promote an interrelated understanding of concepts and 

procedures and that conceptual understanding is more powerful and generative than simply 

remembering mathematical procedures. There is moderate evidence that Ms. Jarmin believes 
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teacher interactions with students should allow children to do as much thinking as possible. 

Furthermore, Ms. Jarmin’s responses suggest that she now believes children are capable of 

solving novel problems without being taught how to solve them in some situations. However, 

Ms. Jarmin’s end-of-year responses continue to indicate that she gives little consideration to 

the differences in the ways children and adults think about mathematics, particularly with 

regard to using real-world contexts to support children’s mathematical thinking.  

  

 

Ms. Jarmin’s Knowledge of Mathematics for Teaching 

 

 

Ms. Jarmin’s knowledge of mathematics for teaching with a reform-orientation was 

measured at the beginning and end of the year using data from two parts of the Teacher 

Knowledge interview. In particular, this interview explores a teacher’s knowledge related to 

the teaching of multiplication and division to third-grade students. First, Ms. Jarmin’s open-

ended discussion of teaching and learning multiplication will be presented. In this part of the 

interview, teachers were prompted to describe important understandings and common student 

difficulties related to the learning of multiplication. In addition, interview questions direct 

teachers to discuss how children develop the important understandings identified and how 

multiplication should be taught. Next, Ms. Jarmin’s responses to four classroom scenarios 

will be described. These classroom scenarios probe specific aspects of teacher knowledge 

related to the teaching and learning of multiplication and division, specifically knowledge of 

nonstandard strategies for multidigit multiplication, knowledge of a common student 

difficulty underlying the standard U.S. algorithm and strategies for addressing this difficulty, 

and teachers’ abilities to interpret and respond to student work. 
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Jarmin: Open-ended Discussion of Teaching and Learning Multiplication  

 

 

At the beginning of the year, Ms. Jarmin reports that what students need to 

understand about multiplication in third grade is that it is a short way of doing addition and 

that a multiplication number sentence has a corresponding physical model (e.g., 2 × 5 means 

2 groups of 5). She indicates that this is accomplished by first having students build physical 

models of multiplication problems using manipulatives and then by having students talk 

about their models. During this phase of development, Ms. Jarmin suggests that students 

sometimes have difficulty making equal groups as they build physical models. Then, after 

students understand what a physical representation of multiplication is like, instruction 

should turn to providing ample practice to facilitate memorization of facts. Ms. Jarmin 

identifies knowledge of basic addition facts and place value as prerequisites to the study of 

multiplication.  

At the end of the year, Ms. Jarmin asserts that third-grade instruction on 

multiplication should develop students’ understanding of strategies for solving multiplication 

problems, why they get the answer, and how multiplication is related to addition. Ms. Jarmin 

suggests that first children should be exposed to real-world multiplication situations in the 

form of word problems, then they should build physical models of these situations. 

Instruction at this point should emphasize that multiplication involves equal groups. Next 

students move from finding products for their physical models by counting one-by-one to 

using the strategies of counting by a number or using repeated addition. Then Ms. Jarmin 

suggests students are ready to begin solving multiplication problems without the support of 

physical models. As students begin to have quick recall of a few facts, they can begin to use 
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those facts to figure out harder facts. As instruction turns to multidigit multiplication, Ms. 

Jarmin indicates that students benefit from first learning to multiply one-digit numbers by 

multiples of ten (e.g., 4 × 50 or 4 × 500). Then students are ready to multiply one-digit 

numbers by multidigit numbers because they are able to sum partial products. Ms. Jarmin 

asserts that instruction should involve use of manipulatives, opportunities for students to 

devise their own strategies, group discussion of strategies, and frequent use of word 

problems. She also suggests that games should be used as a fun way to practice basic facts. 

 

 

Jarmin: Knowledge of Non-standard Strategies (Classroom Scenario 1) 

 

 

At the beginning of the year, Ms. Jarmin identifies five strategies that students might 

use to solve a word problem involving finding the number of chairs in 16 rows with 8 chairs 

in each row. These are presented in Table 17. From least to most sophisticated (according to 

Ms. Jarmin), these strategies include direct modeling and counting by 1 to find the product, 

direct modeling and counting by 8 to find the product, repeated addition, the standard U.S. 

algorithm for multidigit multiplication, and the partitioning strategy of multiplying each 

place and combining partial products. A compensation strategy is not identified. In 

discussing her rationale for identifying the partitioning strategy as more sophisticated than 

the standard U.S. algorithm, Ms. Jarmin explains that the standard U.S. algorithm can be 

performed simply by following memorized steps. In contrast, she suggests that students who 

use a partitioning strategy demonstrate greater understanding of how multiplication works. 

Therefore it is a more sophisticated strategy.  
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Table 17 

Strategies Identified by Ms. Jarmin in Response to Classroom Scenario 1 

Data point Direct modeling 

Complete 

number 

Partitioning 

number Compensating Other 

Beginning 

of year 

16 rows of 8 Xs 

(counting by 

one or eight to 

find product) 

Repeated 

addition 8 + 8 + 

8… 

10 x 8 = 80,         

6 x 8 = 48,         

80 + 48 = 128 

 Standard U.S. 

multiplication 

algorithm 

End of 

year 

16 rows of 8 Xs 

(counting by 

one or eight to 

find product) 

 

Repeated 

addition 8 + 8 + 

8… 

Doubling 

strategy: 

Combining 8s 

to make 16, 16s 

to make 32, etc 

10 x 8 = 80,         

6 x 8 = 48,         

80 + 48 = 128 

 16 circles with 8 

dots in each 

A visual model, 

16 loops with 

the numeral 8 in 

each loop. This 

is a hybrid 

strategy. 

Note. Analysis utilizes strategy classification presented in Baek (1998).  

 

 

 

At the end of the year, Ms. Jarmin identifies eight strategies that children might 

employ to figure out how many total chairs are in 16 rows of 8 chairs (see Table 17). She 

identifies visually-based strategies as the least sophisticated, with loops and counters 

strategies being less sophisticated than modeling the situation with rows of objects (an array). 

With both of these visually-based strategies, Ms. Jarmin indicates that counting by 8 to find 

the product is more sophisticated than counting by 1. Complete number strategies, including 

repeated addition and a combining parts strategy, are identified next in order of 

sophistication. Finally, Ms. Jarmin identifies the partial products focus algorithm from 

Everyday Mathematics as being the most sophisticated strategy listed. As was the case at the 

beginning of the year, a compensating strategy is not identified.  

While at the beginning of the year Ms. Jarmin struggles to discuss how students’ 

mathematical knowledge is related to the various strategies, at the end of the year she 

exhibits some increased awareness of the cognitive resources students need to acquire as they 
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develop increasingly sophisticated strategies. For instance, she identifies the point at which 

students move from counting by 1 to counting by the multiplicand as the point at which 

students begin to recognize the relationship between multiplication and repeated addition. 

Also, Ms. Jarmin intentionally omits the standard U.S. algorithm for multidigit multiplication 

from her list of strategies. When asked about this omission, Ms. Jarmin explains that she 

believes partial products is much better because it encourages understanding, whereas the 

traditional algorithm encourages learning a procedure. In summary, Ms. Jarmin’s response to 

Classroom Scenario 1 provides evidence of moderate knowledge of non-standard strategies 

for multidigit multiplication at both data points, with greater knowledge at the end of the year 

particularly with regard to knowledge that students need to use specific strategies with 

understanding. 

 

 

Jarmin: Interpretation of Students’ Mathematical Strategies (Classroom Scenario 2) 

 

 

In response to Classroom Scenario 2 at the beginning of the year, Ms. Jarmin 

identifies the correct answer to the pancake problem
8
 but struggles to make sense of the three 

strategies presented through student work. As she initially reviews each student’s work, Ms. 

Jarmin comments that the work does not make sense or that she is unsure why the student 

would approach the problem in the way presented. After looking at two of the three student 

strategies, Ms. Jarmin reports, “I feel stupid when I look at these. I’m like, ‘I can’t 

understand how you figured this out!’” Through being prompted to continue trying to make 

sense of the student work, Ms. Jarmin eventually makes sense of each student’s solution in 

relation to the pancake problem context. However, the time and support needed to facilitate 

                                            
8
 The problem is as follows: Twenty-four children want to share eight pancakes so that each one gets the same 

amount. How much pancake can each child have? 
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successful task completion suggests that Ms. Jarmin’s ability to interpret students’ strategies 

on-the-spot during instruction is limited at the beginning of the year.  

At the end of the year, Ms. Jarmin is able to explain two of the three student strategies 

presented in this scenario after some time to study them. For these strategies, Ms. Jarmin 

identifies what she would be listening for in students’ explanations of their strategies to 

determine their mathematical understanding.  For the remaining strategy, Ms. Jarmin is able 

to relate select aspects of the picture to the pancake problem context, but she indicates that 

she does not understand how number sentences the student has included with the work relate 

to the problem or the picture. In summary, Ms. Jarmin’s response to Classroom Scenario 2 

provides evidence of limited ability to interpret students’ strategies at the beginning of the 

year, with comparatively greater skill, albeit some difficulty, at the end of the year.  

 

 

Jarmin: Addressing and Avoiding a Common Student Error (Classroom Scenario 3) 

 

 

In this classroom scenario, teachers are presented with student work in which the 

standard U.S. multiplication algorithm is executed without maintaining the place values of 

the partial products. Ms. Jarmin’s response at the beginning of the year provides evidence 

that she understands how place value concepts underlie the standard U.S. multiplication 

algorithm. She explains that the algorithm works because, when you put a zero as a place 

holder, it maintains place value in the partial products.  In discussing how she would help 

third-grade students avoid errors with multidigit multiplication like the one in the scenario, 

Ms. Jarmin’s approach is primarily teacher-centered and procedural: 

I would just explain over and over and over that the 6 doesn’t stand for a 6 and the 4 

doesn’t stand for a 4. So, you know that the 4 stands for 40, so you always know, 

whatever you are multiplying by in the tens position, it is going to end in one zero. 



 

 173 

And if you’re multiplying by the 6, it’s in the hundreds position, so the number is 

always going to end in two zeros, to hold your place. 

 

Ms. Jarmin’s suggestion of how she might respond to sixth graders making these kinds of 

errors is similar to her approach for third graders.  

At the end of the year, Ms. Jarmin states explicitly that students who make errors like 

the ones in classroom scenario 3 do not have a strong understanding of place value. She 

suggests that what students need is to have a more developed sense of the size of the product 

when you multiply large numbers. Ms. Jarmin indicates that, with sixth-grade students 

making these errors, she would, “…go back to the basics and do some problems with just the 

zeros, like 600 times 100.”  She suggests that helping students see the quantities in a visual, 

hands-on way would be useful, but she is unsure how she could do this. While reflecting on 

her role helping third-grade students avoid errors like Classroom Scenario 3, Ms. Jarmin 

expresses her heightened awareness of the importance of developing place value 

understanding: 

This is the first year that I have seen place value is really, really, really important. I 

mean, I already knew that. But I have seen it more, like when we do partial products. 

When you learn [multidigit multiplication] in the rote memory way, you should also 

know that. But it’s really important in partial products to know what that 1 represents, 

that it is 100.  

 

Ms. Jarmin suggests that she would help third-grade students to understand the relationship 

between place value and multidigit multiplication by working with base-ten blocks and 

focusing instruction on the partial products algorithm.  

In summary, Ms. Jarmin’s response to Classroom Scenario 3 provides evidence that 

she understands the origin of students’ difficulties with the standard U.S. algorithm for 

multidigit multiplication. However, at both data points, there is evidence that Ms. Jarmin is 
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limited in her knowledge of how to help students overcome the difficulties presented in the 

scenario.  

 

 

Jarmin: Interpretation of and Response to a Student’s Flawed Solution (Classroom Scenario 

4) 

 

 

At the beginning of the year, Ms. Jarmin is unable to make sense of the flawed 

strategy presented in Classroom Scenario 4. In this scenario, a student explains that the 

answer to 144 ÷ 8 = ? can be found by dividing 144 by 2 four times because 2 + 2 + 2 + 2 = 

8.  Ms. Jarmin initially attempts to make a picture of base-ten blocks in efforts to model the 

student’s thinking. But she quickly abandons this strategy citing that there would be a lot of 

trading (regrouping) involved and the strategy might not work. Ms. Jarmin identifies that the 

student would have gotten the answer correct if she had stopped after the third division, but 

she expresses that she does not know why this is true. When asked how she would respond to 

a child using this strategy, Ms. Jarmin indicates that she would have the child solve the 

problem in a different way because, “…this way obviously didn’t work.” 

At the end of the year, Ms. Jarmin is again unable to figure out why the student 

strategy presented in Classroom Scenario 4 is flawed. In contrast to her response at the 

beginning of the year, Ms. Jarmin spends more time attempting to make sense of the 

student’s strategy in this interview. She indicates that, in the context of teaching, she would 

probably have the student use an alternate strategy since she cannot figure out the error. 

However, in contrast to the beginning of the year, Ms. Jarmin appears much more interested 

in trying to understand how the strategy is correct and why it does not yield a correct answer. 

Ms. Jarmin’s response to Classroom Scenario 4 at both data points provides evidence of her 
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difficulty interpreting flawed student work and responding in a way that honors student 

thinking.  

 

 

Summary of Ms. Jarmin’s Knowledge of Mathematics for Teaching 

 

 

Ms. Jarmin demonstrates moderate knowledge of ways students might approach 

mathematical problems involving multiplication at the beginning and end of the year, with 

greater knowledge demonstrated at the end of the year. In particular, her end-of-year 

interview includes reference to how knowledge of easy multiplication facts can be used to 

figure out more difficult facts and multidigit multiplication problems. However, at neither 

data point does Ms. Jarmin identify a compensation strategy as a possible approach to 

multiplication problems. Furthermore, her inclusion of partitioning strategies is limited to 

portioning by decade numbers (like the Everyday Mathematics partial products strategy) and 

does not include other ways of partitioning numbers. 

While at the beginning of the year, Ms. Jarmin is limited in her ability to explain how 

multiplication strategies are related to each other and to student thinking, she describes a 

hypothetical learning trajectory at the end of the year that elaborates what students must 

know to understand increasingly sophisticated multiplication strategies. This suggests that 

Ms. Jarmin’s knowledge of how students learn multiplication increased significantly over the 

course of the year. Yet, at both data points, Ms. Jarmin identifies few difficulties that 

teachers might expect students to encounter as they learn about multiplication. Furthermore, 

interpretation of unfamiliar student strategies seems to be especially difficult for Ms. Jarmin 

at the beginning of the year and somewhat difficult at the end of the year. Therefore, even 

though there is evidence that Ms. Jarmin’s knowledge of student thinking increased, her end-
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of-year interview suggests that she continues to have difficulty anticipating student 

difficulties and making sense of unfamiliar student strategies.  

In discussing how multiplication should be taught, Ms. Jarmin’s end-of-year 

interview emphasizes a greater number of reform-based teaching strategies than at the 

beginning of the year. In particular, at the end of the year, Ms. Jarmin emphasizes use of real-

world situations to support students’ initial understanding of multiplication, and she indicates 

that students should have opportunities to solve problems in their own ways. Neither of these 

strategies was mentioned at the beginning of the year. Nonetheless, Ms. Jarmin’s response to 

classroom scenarios involving student work suggest that, at both data points, she has 

difficulty responding to student work in meaningful ways that honor student thinking, 

especially when students have made errors.  

 

 

Case Story of Ms. Jarmin’s Response to Student Difficulties 

 

 

In the case story that follows, facets of Ms. Jarmin’s typical response to student 

difficulties will be illuminated. Specifically, I will portray Ms. Jarmin’s general routines for 

responding to students’ difficulties, the substance of her response to students’ difficulties 

with solving word problems, and her response to unanticipated student ideas. Following 

illustration of each response pattern, consequences for student thinking and the relationship 

between Ms. Jarmin’s beliefs, knowledge, and mathematics teaching practices will be 

discussed.  
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Jarmin Response Pattern 1: Routines for Responding to Student Difficulties 

 

 

During mathematics instruction, Ms. Jarmin employs a predictable set of routines 

when she encounters student difficulties during student work time and in the context of class 

discussion. After directing students to begin working on a mathematics task, Ms. Jarmin’s 

routine is to begin approaching individual students to converse with them about the task and 

provide support for devising a viable solution strategy. Of note is the immediacy with which 

Ms. Jarmin begins her interactions with students, only occasionally standing away from 

students as they begin working. As the time allotted for students to work on a given task 

continues, Ms. Jarmin interacts with one student after another, aiming to help as many 

students as possible achieve a correct solution to the given task. In this way, she provides 

some degree of help for students, limiting the degree to which they must grapple with the 

given task on their own.  

When Ms. Jarmin encounters a student who is struggling to complete a task or who 

appears to be moving toward an incorrect answer, she initiates a teaching routine of asking 

questions and providing prompts until she perceives the student is moving in a productive 

direction with the problem. In these instances, Ms. Jarmin generally uses teacher-student 

interaction to address students’ difficulties, rarely encouraging students to consult with or 

seek support from their peers. Questions and prompts used to move student solutions forward 

seem most focused on moving toward a correct answer.  

For instance, in the following student-teacher interaction from a Spring lesson, Ricky 

is struggling to complete his solution to the problem 9 × 500. So far, Ricky has written nine 

500’s on his paper and he has combined pairs of 500s to make 1000s. When Ms. Jarmin 

approaches, Ricky is trying to figure out what to do with the ninth 500.  
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 Ricky’s work: 

 

    500    

    500 

    500 

    500 

    500 

    500 

    500 

    500 

    500 

 

Ricky: Ms. Jarmin, I’ve got 8…but I don’t know, because I have, I can’t get… 

Ms. Jarmin: Well, okay, you’ve got 8. That’s perfect. That’s fine. So, you just need 

how many more?  

Ricky: One more 

Ms. Jarmin: One more what? One more thousand? 

Ricky: Five-hundred. 

Ms. Jarmin: One more 500. So, when you add these (the four 1000s), you just need to 

add one more 500 to it.  

  

In response to Ricky’s uncertainty, Ms. Jarmin assures him that his solution is correct so far 

and, in the last line, tells him exactly what to do to produce a correct answer. In doing so, Ms. 

Jarmin makes it unnecessary for Ricky to work through the logic in his solution himself, thus 

limiting Ricky’s opportunity to grapple with the mathematical ideas inherent in the task.  

In addition to employing routines that minimize students’ struggles during work time, 

the routines employed for class discussion of mathematics tasks, especially when student 

difficulties surface, limit the degree to which students are likely to grapple with mathematical 

ideas. In general, class discussion of mathematics tasks before and after work time is limited 

to interchanges between individual students and the teacher, with little student-to-student 

discourse. Teacher-student interactions are highly controlled by Ms. Jarmin, with students 

primarily answering closed questions about strategies employed. When a student makes an 

1000 

1000 

1000 

1000 
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incorrect statement or responds to a question incorrectly, Ms. Jarmin’s response script is to 

restate the same question or ask a new question in efforts to guide the student to give a 

correct answer. Ms. Jarmin only occasionally invites other students to weigh in with alternate 

responses or to evaluate the correctness of the given students’ response. Consequently, Ms. 

Jarmin maintains authority over mathematical correctness and provides little incentive for 

students to grapple with the flawed statements or ideas put forward by their peers.  

To illustrate Ms. Jarmin’s routine for addressing students’ incorrect responses to 

questions posed, consider the interchange that follows between Ms. Jarmin and Kevin during 

a class discussion in a Fall lesson. Another student, Samuel, has just finished describing how 

he made an array representation of the problem, “Hotdog buns are sold 8 to a package. There 

are 24 hotdog buns. How many packages are there?” (Ms. Jarmin’s record of Samuel’s 

strategy is displayed on the overhead.) This excerpt begins with Ms. Jarmin asking Kevin to 

report the answer to the hotdog word problem. 

 

Samuel’s strategy, as recorded by Ms. Jarmin on the overhead: 

 

 X X X X X X X X   8 

  X X X X X X X X  16 

 X X X X X X X X  24 

 

Ms. Jarmin: So, how many packages are there Kevin, how many packages are there?  

Kevin: Eight…I mean… 

Ms. Jarmin: How many packages do we have?  

Kevin: Eight. 

Ms. Jarmin: I would like you to get in your seat Samuel. Please get in your seat. How 

many buns are in one package Kevin?  

Kevin: Twenty-four. 

Ms. Jarmin: How many buns are in one package? If I were going to give you a 

package of buns, how many buns would be in that package? 

Kevin: Eight. 

Ms. Jarmin: How many? 

Kevin: Eight. 

Ms. Jarmin: Eight. So, how many packages of eight do we have? 
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Kevin: Three. 

Ms. Jarmin: Three. 

 

Ms. Jarmin’s first response to Kevin’s reporting the number of packages incorrectly is to ask 

him the question again, thus providing a cue that the initial answer given was incorrect. Then, 

when he reports the same answer a second time, Ms. Jarmin poses additional questions to 

Kevin with the intent of helping him recognize his error and produce the correct answer. 

Other students are not invited to suggest alternate responses or comment on Kevin’s 

response, even though most of the students in the class are also struggling to make sense of 

what the objects, rows, and columns of an array represent in relation to division word 

problems. Ms. Jarmin maintains control over judging the initial correctness of a student 

response, guiding the student to change his response, and determining when a flawed 

response has been revised to correct.  

In summary, the routines that Ms. Jarmin employs during mathematics instruction 

often limit the necessity for students to grapple with mathematical ideas, both as students are 

working on mathematics tasks as well as in the whole class forum. As students work, Ms. 

Jarmin interacts with students frequently, often providing direction that reduces the challenge 

of the task. During student work time and in the context of class discussion, Ms. Jarmin 

positions herself as the primary asker of questions and evaluator of correctness. Students are 

rarely encouraged to draw on their peers as resources during problem solving or when they 

encounter difficulties. The implicit message these routines and scripts communicate is that 

students will likely require teacher support to be successful with mathematics tasks and the 

teacher is the main source of mathematical knowledge in the classroom.   
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Jarmin response pattern 1, consequences for student thinking. As the year progresses, 

the students in Ms. Jarmin’s class appear to become accustomed to their teacher’s routine of 

providing one-on-one help during the time allotted for problem solving. As Ms. Jarmin 

interacts with students one by one, it is typical for some students to spend significant 

amounts of time sitting idle, only moving forward on a task when Ms. Jarmin interacts with 

them. Students are only occasionally observed drawing on their peers to support their 

problem solving efforts, even though Ms. Jarmin indicates that she does not mind students 

talking to each other about the math problems during work time. As the year progresses, 

students continue to rely heavily on Ms. Jarmin’s direction as they work on problem solving 

tasks, limiting the degree to which they grapple with mathematical ideas.  

In the context of whole group discussion, student engagement in productive learning 

practices that advance student thinking is limited. Rather than actively listening to ideas put 

forward by peers and considering whether or not they are reasonable, students regularly 

appear to have their attention elsewhere. Students seem to have little sense of what they are 

supposed to be doing during these discussions, besides listening to their peers. If a peer 

makes an error in his description of a strategy or in response to Ms. Jarmin’s questions, it is 

the classroom norm that Ms. Jarmin will address the problem. Only occasionally are students 

observed commenting on each other’s mathematical strategies or ideas. Consequently, the 

learning potential associated with class discussion of mathematical ideas is only minimally 

realized.  

 

Jarmin response pattern 1, link to beliefs and knowledge. Ms. Jarmin’s teaching 

practices that inadvertently minimize students’ opportunities to grapple with problem solving 
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tasks seem most related to her beliefs. But they also relate to her knowledge. First, consider 

Ms. Jarmin’s practice of engaging in frequent interaction with students as they work on 

problem solving tasks. Although Ms. Jarmin believes that problem solving should be a 

prominent feature of mathematics instruction, she only sometimes encourages students who 

encounter difficulties with word problems to rely on their own mathematical knowledge to 

overcome difficulties. Aligned with a traditional orientation to mathematics instruction, Ms. 

Jarmin views the role of word problems as giving students opportunities to apply previously 

learned mathematical ideas. Following this way of thinking, Ms. Jarmin expects that students 

will require guidance to successfully solve word problems when they are incorporated into 

the introduction of new mathematics topics (as is done in the Everyday Mathematics 

program). As some students develop the practice of waiting for Ms. Jarmin’s help to 

approach mathematics tasks, Ms. Jarmin’s belief in the necessity of her on-going interactions 

with students while they are working on problem solving tasks is reinforced. 

Nonetheless, Ms. Jarmin sometimes expresses concern about the amount of help her 

students require, indicating that it is desirable for students to depend less on her support. In 

considering why her students are reluctant to work without her direct support, Ms. Jarmin 

presents several possible causes, including students’ particular learning needs and 

educational histories as students who have been retained: 

I still think some of my students are afraid to try things because they’re not sure, and 

they don’t want to be wrong, and I don’t know if it’s just this class or it’s the situation 

that they’ve been in that they’ve been wrong before or whether it’s some of their 

language problems, processing problems, or fear of being wrong.  

 

In general, Ms. Jarmin reconciles her belief in the necessity of providing significant support 

with the experiences of other teachers who engage in less intervention with the belief that her 

class of retained students has different academic and emotional needs than students in other 
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classes.  

In discussing her practice of maintaining strong control over class discussion, Ms. 

Jarmin indicates that she would like for students to do more of the talking in discussions 

around problem solving tasks, but that students have much difficulty providing mathematical 

explanations as new mathematics concepts are being introduced:   

A lot of times the beginning talk, when I’m first introducing the concept, they’re just 

answering yes and no questions because they actually don’t understand anything I’m 

saying…they don’t understand it enough to explain what we’re doing, to talk it out.   

 

Ms. Jarmin consistently reports that students need to be taught some things (by the teacher) 

before they will be capable of explaining ideas and strategies without significant teacher 

support.  She seems to believe that, at first, students must acquire strategies for finding 

correct answers. Then, through repeated experiences, they will come to better understand and 

be able to explain how and why the strategies work.  

These beliefs also seem in line with Ms. Jarmin’s work time practice of providing 

struggling students with procedural guidance focused on achieving correct answers. From 

Ms. Jarmin’s point of view, using a procedure that yields a correct answer is the first step of 

understanding. Ms. Jarmin also justifies her practice of providing struggling students with 

strong direction to achieve correct answers by noting the time constraints of classroom 

instruction. She states, “…sometimes it would take 20 to 30 minutes for one person to come 

up with the final answer, and in the real-world we don’t always have time for that.”  

While Ms. Jarmin’s teaching practices that minimize the degree to which students 

grapple with mathematical difficulties seem most related to the beliefs discussed, they are 

also related to her knowledge for teaching mathematics. In many ways, Ms. Jarmin has 

adapted teacher-centered instructional practices cultivated over her 20 years of teaching to 
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this newly adopted reform-oriented program. While Ms. Jarmin is willing to follow program 

recommendations and assign mathematics tasks before students are taught exactly how to 

solve them, she reverts to familiar routines and scripts when she must respond on-the-spot to 

perceived student difficulties. These comfortable, teacher-dominated routines and scripts are 

a kind of knowledge that serves as a barrier to practices that are more likely to facilitate 

mathematics instruction that builds on student thinking. In order to move away from these 

practices, Ms. Jarmin will need to cultivate new routines and scripts that intentionally 

encourage students to grapple with mathematical ideas more fully.  

 

 

Jarmin Response Pattern 2: Substance of Response to Student Difficulties with Word 

Problems 

 

 

As Ms. Jarmin introduces students to multiplication and division concepts, she 

follows the Everyday Mathematics program’s recommendation to use word problems in 

attempts to relate mathematics concepts to real-world situations. In this section, the substance 

of Ms. Jarmin’s typical response to students’ difficulties exploring mathematical ideas 

through word problems will be shared drawing on two classroom excerpts, one from a Fall 

lesson and the other from the Spring.  

In the Fall lesson, Samuel is working on figuring out how many weeks are in 29 days. 

Ms. Jarmin’s attempts to support Samuel are initially characterized by closed questions 

related to the problem context. When Samuel fails to make sense of the problem in context, 

Ms. Jarmin’s support becomes directive and deemphasizes the problem context. When  
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Ms. Jarmin joins Samuel at his desk, he has a 4 × 7 array made with snap cubes:  

       
       

       
       

       
       

       

 

Ms. Jarmin: Okay, so how many weeks are there?  

      Samuel: Seven…no, 28. 

Ms. Jarmin: So, how many days are in a week? Are there four days in a week or are 

there seven?  

Samuel: Seven. 

Ms. Jarmin: So, how many groups of seven do we have?  

 Samuel: Twenty-eight. 

Ms. Jarmin: How many rows of seven do we have?  

Samuel: Four. 

Ms. Jarmin: Four. So, how many weeks would be in 29 days? (Pointing to each row 

of counters) Here is one week, two weeks, three weeks… 

      Samuel: Twenty-eight. 

Ms. Jarmin: Just count them. Count the rows.  

Samuel: 1, 2, 3, 4. 

Ms. Jarmin: So, how many weeks in 29 days? 

Samuel: Four.  

Ms. Jarmin: With how many days remaining?  

Samuel: One. 

Ms. Jarmin: Okay. 

 

Samuel’s first incorrect response, that there are 7 or 28 weeks, reflects the common difficulty 

students have keeping track of the units in a division word problem (Carpenter et al., 1999). 

Ms. Jarmin’s means of follow-up initially reflect the context of the problem, focusing Samuel 

on what he knows about the number of days in a week. But then, when Samuel is unable to 

link his knowledge of seven days in a week to the array model he has made, Ms. Jarmin 

prompts Samuel to identify the number of rows instead of pressing him to understand what 

each of his counters and each of the rows represents. As Samuel’s confusion about units 

persists, Ms. Jarmin abandons strategies that encourage Samuel to understand the problem, 

and instead directs him to use a procedure that will yield a correct answer.  
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In the Spring lesson, students are working on the problem, “If I have 5 groups of 24 

pencils, how many pencils do I have altogether?” In the episode below, two students solicit 

help from Ms. Jarmin to figure out what operation they should use to solve the problem. 

Instead of encouraging students to imagine (or model) the context of the problem, Ms. Jarmin 

provides support that encourages development of a major misconception, that the product of 

a multiplication problem always results in a larger number than the factors: 

Alex: Ms. Jarmin, is this dividing? 

Ms. Jarmin: Well, what do you think it is? We are… 

Sonya: Adding. 

Ms. Jarmin: We want to find out how many altogether, so are we going to be making 

a bigger number or are we dividing into a smaller number?  

Sonya: Bigger. 

Ms. Jarmin: Bigger. So when we are making a bigger number, what do we do? 

Alex: Add. 

Ms. Jarmin: We could add or what else could we do to make a bigger number? 

Alex: Divide. 

Ms. Jarmin: Divide you make a smaller number. 

Alex: Ohh, times. 

Ms. Jarmin: Times. You can add or times. Or multiply. 

Alex: Plus? 

Ms. Jarmin: Well, well, what do you know in the problem?  

Sonya: Five groups 

Ms. Jarmin: You have five groups. How many is in each group?  

Alex: Twenty-four. 

Alex and Sonya begin working on their papers for about 20 seconds. Ms. Jarmin 

observes their work. 

Ms. Jarmin: So, you were thinking what? You were thinking 5 times what, honey? 

Sonya: 5 times…5 times 24. 

Ms. Jarmin: 5 times 24. So, how could you use that to figure out? 

 

Although Ms. Jarmin does not directly tell students what to do to solve this problem, she 

teaches the students to rely on a false premise, that multiplication always makes bigger and 

division always makes smaller. Following this logic, Ms. Jarmin expects the students to 

identify multiplication as the correct operation, since the answer to the word problem will be 

larger than both of the numbers in the situation. While this approach works for whole-
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number computation, it serves as a significant and persistent barrier to students’ 

understanding of multiplication and division of rational numbers. Furthermore, it provides 

little support for problems that involve more complexity than simple one-step computations. 

Therefore, this strategy is unlikely to move students toward deeper understanding of 

mathematical operations or greater problem solving ability.  

In summary, Ms. Jarmin often responds to students’ difficulties with word problems 

in ways that are conceptually unsupportive. She encourages students to think about the 

numbers from a given problem out of context, placing greater focus on procedures and tricks 

than on making sense of contextualized situations.  

 

 

Jarmin response pattern 2, consequences for student thinking. Ms. Jarmin’s practice 

of responding to student difficulties in conceptually unsupportive ways limits the degree to 

which her students develop problem solving practices that will be helpful for a variety of 

problems. Instead, students are observed attempting to apply procedures learned for one type 

of problem to other problems for which the procedures are not appropriate. For instance, after 

working on a series of partitive division problems, several students apply a distributing 

objects one-by-one action (reflective of partitive division) when prompted to create a 

physical model with counters for a measurement division problem. In general, students 

struggle with determining how to approach word problems throughout the year. Confusion 

over which mathematical operations to use persists, and students are limited in their abilities 

to build and justify models that reflect particular word problems. Instead of relying on their 

innate knowledge of real-world contexts to make sense of word problems, students appear to 
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focus on using recently taught mathematical procedures to solve problems, with little 

attention to whether the procedures make sense.  

 

 

Jarmin response pattern 2, link to beliefs and knowledge. Ms. Jarmin’s practice of 

responding to student difficulties in conceptually unsupportive ways is related to both her 

beliefs and knowledge. Beginning and end of year beliefs measures provide only weak 

evidence that Ms. Jarmin views real-world contexts as being supportive of children’s initial 

thinking about mathematics concepts. In addition, there is weak evidence at the beginning of 

the year that Ms. Jarmin views conceptual understanding and procedural proficiency as two 

different things. At the beginning of the year, Ms. Jarmin indicates that she thinks of 

mathematical understanding as being able to get correct answers. Reflecting these two 

beliefs, it logically follows that Ms. Jarmin’s focus is on providing children with hints and 

tricks that she knows will yield correct answers. At the end of the year, there is evidence that 

Ms. Jarmin believes more strongly in the difference between conceptual understanding and 

procedural knowledge. However, her knowledge of how to promote conceptual 

understanding is limited.   

The hints and tricks that Ms. Jarmin suggests to students throughout the year are 

grounded in her personal approach to mathematics, which is most often procedurally-

focused. In trying to teach in ways that support students’ development of conceptual 

understanding, Ms. Jarmin is challenged to devise on-the-spot explanations and support that 

illuminate mathematics concepts. She discusses her struggle to provide conceptually-based 

explanations in an end-of-year interview: 

I do struggle with what to say and how to get it across to the kids without telling them 

you know; I’m so used to just telling them, “This is the way you do it and don’t ask 
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why. We’re going to try to figure it out with our hands-on, but don’t ask me why 

because I’m not sure.” You know, but sometimes it’s hard for me - I mean, I know 

how to get there, but I just don’t know how to tell them, how to convey it to them. 

 

This difficulty providing conceptually-based explanations reflects Ms. Jarmin’s limited 

pedagogical content knowledge. Furthermore, Ms. Jarmin’s beginning-of-year interviews 

reveal limited knowledge of the conceptual basis of students’ difficulties related to 

multiplication and division concepts, another pedagogical content knowledge issue.  

End-of-year measures of mathematical knowledge provide evidence of modest gains 

in Ms. Jarmin’s knowledge of student strategies for approaching multiplication and division 

problems. Related to this knowledge growth, there is evidence of some movement toward 

beliefs that are aligned with a reform-orientation. In particular, Ms. Jarmin expresses greater 

openness to the idea that children can solve problems in novel ways using a variety of 

solution strategies, and she indicates that students’ initial understandings can be supported by 

use of contextualized word problems.  

Reflecting these changes, there is an outlier instance in a Spring lesson where Ms. 

Jarmin deliberately uses a particular real-world context to support students’ thinking when 

they struggle. In this case, students are working on figuring out how many meters a bicycle 

racer travels in eight laps around a 500 meter track. Ms. Jarmin provides each student with an 

image of a bicycle racing track, and it is part of her lesson image to support students by 

encouraging them to simulate the laps and connect this experience to a repeated addition 

solution strategy. What is notable here is that, when Ms. Jarmin thinks deliberately in her 

lesson image about how context might be used to support student thinking, she is able to 

provide more conceptually-supportive assistance.  
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While Ms. Jarmin’s thinking about the bicycle racer problem provides some evidence 

of changed practice, it is not representative of the general response pattern observed in Ms. 

Jarmin’s class in the Fall or Spring lessons. Even though Ms. Jarmin’s beliefs have moved 

closer to a reform-orientation at the end of the year, she continues to struggle with knowing 

how to support student difficulties in conceptually-grounded ways that will facilitate 

development of generative problem solving practices. 

 

 

Jarmin Response Pattern 3: Response to Unanticipated Student Ideas   

 

 

During the mathematics lessons observed, there are times when students respond to 

Ms. Jarmin’s questions or prompts in ways that are different than the correct response she is 

anticipating. Sometimes when this occurs, Ms. Jarmin treats the unanticipated response as 

flawed or incorrect when, in fact, the response is mathematically viable. At times, students’ 

responses that are treated as incorrect have minor errors or are not especially productive, but 

they are nonetheless legitimate responses to the questions or prompts posed.  Two 

instructional excerpts will be shared to illustrate this facet of Ms. Jarmin’s practice, one from 

a whole class discussion and the other from an interaction with a student during work time.  

In a Fall lesson, Ms. Jarmin is using whole class discussion time to get students to 

consider how they might find the total number of objects in a 4 × 7 array (see illustration) in 

a way other than counting each object one at a time.  

 

 On the board:  

 

X  X  X  X  X  X  X 

X  X  X  X  X  X  X 

X  X  X  X  X  X  X 

X  X  X  X  X  X  X 
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Ms. Jarmin wants students to notice that they can count the objects more efficiently by using 

the rows and columns organization of the array structure to count by fours (the columns) or 

by sevens (the rows). However, more efficient counting methods are not readily apparent to 

several students. Consider Ms. Jarmin’s interchange with Angela during this whole class 

discussion:  

Ms. Jarmin: Who can think of another way we could count? Another way we could 

count? Angela, what could we count by? 

Angela: We could count by threes.  

Ms. Jarmin: Well, where do you get threes? Where do you get threes? (Pause, no 

response from Angela) What are the numbers that we are using?   

Angela: Four and seven. 

Ms. Jarmin: So, what do you think…we could do threes, maybe, but I don’t know if it 

would get us there. We might have some left over. We don’t want to have any 

left over. What is another way we could count?  

Angela: Five? 

Ms. Jarmin - By fives? Well, where do you get fives sweetie? (Pause) (Some students 

are murmuring to each other.) Arnold, I need your attention up here please. 

Umm…Arnold. (Pause). Angela, look at Ms. Jarmin. We have packages by 

fours. What is another way we could count?  

Angela - Twos? 

Ms. Jarmin - (Ms. Jarmin sighs.) By twos, yes. But, looking at our numbers, sweetie. 

What could we count by? We’ve already counted by fours, what else could we 

count by? 

Angela – Seven. 

 

In the end, Angela produces the response, 7, that Ms. Jarmin is seeking, but not until several 

of Angela’s viable suggestions are dismissed. Angela’s suggestions to count by threes, fives, 

and twos likely reflect the numbers that she feels comfortable counting by (Sherin & Fuson, 

2005). Although counting by these numbers would not utilize the array structure, they could 

yield a correct product in a more efficient way than counting by ones, so Angela’s ideas are 

legitimate. While Ms. Jarmin recognizes that counting by 4 or 7 reflects the structure of the 

array, it is not surprising that this understanding is not shared by Angela at this early point in 

working with the array model (Battista et al., 1998). Instead of viewing Angela’s suggestions 
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as legitimate and exploring counting by threes, fives, and twos on the 4 × 7 array in relation 

to counting by fours or sevens, Ms. Jarmin asks increasingly narrow questions until Angela 

produces the answer that she is seeking.    

In a different Fall lesson focused on division concepts, students are independently 

working on figuring out how many weeks are in 29 days. In the instructional excerpt that 

follows, Ms. Jarmin interacts with Rene in efforts to help him understand the problem and 

devise a solution. When Rene vocalizes that he thinks subtraction can be used to solve the 

problem, Ms. Jarmin discounts Rene’s idea and instead directs him to solve the problem in a 

different way: 

Ms. Jarmin: Okay, Rene, now I am going to tell you that you are going to take a 

bigger number, Twenty-nine days, and make it into weeks.  

Rene: Twenty-nine weeks, right? 

Ms. Jarmin: Twenty-nine days and you want to make it into weeks.  

Rene: Twenty-nine days… 

Ms. Jarmin:  So, if you had 29 days… 

Rene: Oh, oh, oh…we subtract. 

Ms. Jarmin: You’re not subtracting. What are we doing?  

Rene: Ummm 

Ms. Jarmin:  We are going to make them into…how many are going to be in each 

group if we have 29 days and there are 7 days in a week? 

Rene: How many are in each group? 

Ms. Jarmin: Yes. What are the two numbers? What is the small number? How many 

are going to be in each group?  

Rene: Seven. 

Ms. Jarmin: So, but you only need how many counters? What is the biggest number 

up there?  

Rene: Twenty-nine. 

Ms. Jarmin: So, you only need 29 counters. 29 is the biggest number up there. And 

you are going to make 29 counters into groups of… 

Rene: Seven. 

Ms. Jarmin: Seven. So, get 29 counters. 

Rene: These are my 29. 

 

When Rene proposes that the number of weeks in 29 days can be determined using 

subtraction, Ms. Jarmin tells him that today’s mathematics lesson is not on subtraction, thus 
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indicating that subtraction is not a legitimate solution strategy. However, one viable way to 

solve this problem is to engage in a repeated subtraction strategy, keeping track of the 

number of sevens that can be subtracted from 29 to determine the number of weeks. Instead 

of encouraging Rene to move forward with his idea, Ms. Jarmin responds with a series of 

closed questions and prompts that direct Rene to represent the division problem with cubes 

similar to the way other problems have been represented during the class period. The strategy 

of making an array with cubes reflects the strategy that Ms. Jarmin identified in her pre-

observation interview when asked to anticipate how students would solve problems.  

In summary, Ms. Jarmin sometimes treats students’ plausible mathematical ideas as 

incorrect. This primarily occurs when a student suggests a mathematical strategy or idea that 

differs from that which Ms. Jarmin has in mind when she poses a task or asks a question. In 

these instances, Ms. Jarmin typically narrows her questions or prompts until the student 

produces the strategy or response she has in mind. 

 

Jarmin response pattern 3, consequences for student thinking. Ms. Jarmin’s habit of 

treating viable mathematical ideas as incorrect discourages students from taking risks by 

formulating and suggesting their own ideas for approaching problems. Instead of focusing 

their energies on trying to make sense of mathematics tasks, students appear to engage in 

trying to guess at the answer or strategy Ms. Jarmin is seeking. Ms. Jarmin, in turn, views her 

students’ perceived incorrect responses as evidence of misunderstanding. She only 

occasionally recognizes the learning potential of her students’ ideas when they differ from 

her own. Consequently, students’ opportunities to learn from their own ways of thinking are 

limited. 
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Jarmin response pattern 3, link to beliefs and knowledge. Ms. Jarmin’s pattern of 

treating students’ legitimate mathematical ideas as incorrect can be linked to her beliefs and 

knowledge. The beginning and end of year IMAP beliefs survey provides evidence that Ms. 

Jarmin is minimally sensitive to the differences in the ways adults and children think about 

mathematics. Ms. Jarmin consistently professes the belief that children learn in a variety of 

ways, but her instructional actions suggest that she primarily expects students to think about 

mathematical ideas and models in the same ways that she does. Ms. Jarmin is only 

occasionally observed persisting to make sense of students’ ideas when they are not aligned 

with her own way of thinking. Instead, she determines that the given student ideas are 

incorrect or unproductive and guides the student to approach problems in particular ways that 

are aligned with her (teacher) thinking. When asked in post-observation interviews about 

instances when students respond in ways that are different than what she anticipated, Ms. 

Jarmin often responds that she believes the students are guessing, copying from a neighbor, 

or just making careless mistakes. After student ideas are judged to be incorrect, Ms. Jarmin 

rarely considers the logic of the responses students provide.  

Whereas Ms. Jarmin’s beliefs shape her responses when she perceives student 

answers or solutions are incorrect, her limited ability to think flexibly about mathematics 

tasks on-the-spot seems most related to her initial judgments that student ideas are not viable. 

Ms. Jarmin’s responses to classroom scenarios posed in the beginning and end-of-year 

interviews indicate that she has difficulty interpreting student work, with comparatively 

greater difficulty at the beginning of the year. During the beginning-of-year interview, Ms. 

Jarmin attempts to give up on the task of interpreting student work multiple times and only 

perseveres through the task with significant prompting. While at the end-of-year interview 
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Ms. Jarmin appears more interested in understanding the correct and flawed aspects of 

student work, she is unable to uncover the reason for a student’s error at both data points. 

Given her difficulties interpreting unfamiliar student solutions in the context of an interview, 

it is not surprising that Ms. Jarmin fails to recognize the possibilities of an unanticipated 

strategy or ideas in the context of real-time teaching.  

 

 

Summary of Ms. Jarmin’s Response to Student Difficulty 

 

 

Three patterns portray Ms. Jarmin’s typical classroom practice in response to student 

difficulties. First, she employs classroom routines and scripts that limit the degree to which 

students grapple with mathematical ideas. In particular, Ms. Jarmin interacts with students 

frequently while they are working, offering help that significantly reduces the challenge of 

tasks. Ms. Jarmin also positions herself as the primary source of help as well as evaluator of 

correctness. This teacher-as-authority stance limits the opportunity and incentive for students 

to participate meaningfully in partner work and whole class discussion. Second, the nature of 

Ms. Jarmin’s help when students struggle to make sense of word problems is often 

conceptually unsupportive. She tends to minimize focus on word problem contexts, instead 

directing students to follow procedures that will yield correct answers. At times, Ms. Jarmin 

promotes use of tricks that act as crutches for completing the task at hand and are likely to 

lead to future confusion. Third, Ms. Jarmin sometimes treats students’ viable mathematical 

ideas as if they are flawed or incorrect. This practice contributes to students abandoning their 

own sense-making, as the implicit message of this action is that students are only correct 

when their answers are in sync with Ms. Jarmin’s way of thinking.  
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Taken together, Ms. Jarmin’s ways of responding to student difficulties inhibit the 

opportunities for students to develop generative problem solving practices and dispositions, 

meaning practices and dispositions that will support students in solving a variety of 

mathematical problems. Throughout the school year, Ms. Jarmin’s students’ difficulties with 

problem solving are persistent. In the face of difficulty, some students develop the habit of 

waiting for Ms. Jarmin’s help rather than attempting to persevere through challenging 

mathematics problems themselves. Students are only occasionally observed commenting on 

the mathematical ideas of others, and student engagement in class discussion is limited. In 

these ways, the degree to which mathematics instruction builds on student thinking is limited.  

Ms. Jarmin’s ways of responding to students’ difficulties are linked to both her beliefs 

and knowledge. Ms. Jarmin’s beliefs seem most related to the ways she structures support for 

students. Ms. Jarmin expects her students will require strong support to be successful 

working on and discussing novel mathematics tasks. Therefore, she provides substantial help 

to students as they work on tasks and exhibits a high level of control over class discussion. At 

the beginning of the year, there is evidence that Ms. Jarmin believes that her role is to 

provide strong direction for students by telling them how to solve problems. As the year 

progresses and Ms. Jarmin questions this belief, she begins to make attempts to support 

students without telling them exactly what to do. However, she often finds this new way of 

approaching instruction difficult and expresses frustration about not being able to figure out 

on-the-spot how to support students in productive ways. In general, Ms. Jarmin’s practices of 

providing conceptually unsupportive assistance and discounting viable mathematical ideas 

seem most related to the limits of her mathematical knowledge for teaching. In the occasional 

observed instances when Ms. Jarmin makes a point of using a conceptually supportive 
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strategy or emphasizing a particular mathematical idea, her teaching is more conceptually-

grounded even as it continues to be rather teacher-centered. With regard to her practice of 

discounting viable mathematical ideas, this occurs because the ideas students put forward are 

outside the set of strategies or ideas Ms. Jarmin thinks about as correct. As Ms. Jarmin’s 

personal knowledge of mathematical strategies becomes stronger, it is reasonable to assume 

that she will engage students’ legitimate mathematical ideas more often and more 

thoroughly.  

 

Situating Ms. Jarmin’s Case Story in Broader Measures of Teaching 

 

 

In the previous section, a theoretical explanation was presented suggesting how Ms. 

Jarmin’s teaching practices in response to student difficulties are linked to her beliefs and 

knowledge during the year of this study. Teacher response to student difficulties is one of 

many aspects of reform-oriented mathematics instruction that contributes to the overall 

quality of mathematics teaching and learning more broadly defined. Therefore, this section 

will present results from two more global measures of Ms. Jarmin’s mathematics teaching. 

First, data collected following each core classroom observation using the Reformed Teaching 

Observation Protocol (RTOP) (Sawada et al., 2002) will be presented. This instrument is 

designed to measure the degree to which a given mathematics lesson reflects principles and 

practices associated with reform-based mathematics instruction. Second, aggregated class 

data from the mathematics section of the State Standardized Test (SST) will be presented in 

relation to aggregated data at the school, district, and state levels. Taken together, these 

findings will allow Ms. Jarmin’s patterns of response to student difficulties to be considered 

within a more general understanding of her mathematics teaching and students’ learning.  
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Jarmin: Adherence to Reformed Teaching 

 

 

The degree to which Ms. Jarmin’s mathematics instruction reflects current reforms in 

mathematics education was measured using the Reformed Teaching Observation Protocol 

(RTOP) (Sawada et al., 2002). The RTOP is a criterion-referenced instrument containing 25 

items, divided into five subscales: 1) lesson design and implementation, 2) the level of 

significance and abstraction of the content, 3) the processes that students use to manipulate 

information, 4) the classroom culture as observed through the nature of communicative 

interactions, and 5) the nature of student-teacher relationships. Following each core 

observation in Ms. Jarmin’s classroom, each of the 25 items on the RTOP was rated on a 

scale from 0 (not observed) to 4 (very descriptive). Next, sums were calculated for ratings on 

each subscale as well as the total instrument to assess the degree to which Ms. Jarmin’s 

mathematics instruction was reformed, with higher scores reflecting a greater degree of 

reform. Consequently, subscale scores on the RTOP range from 0 – 20, and total instrument 

scores range from 0 – 100. Aggregated results from core observations of Ms. Jarmin’s 

mathematics teaching in the Fall and Spring are presented in Table 18.  

On the lesson design and implementation subscale, the mean scores for Ms. Jarmin’s 

instruction are 11.0 in the Fall and 15.0 in the Spring. Throughout the year, instructional 

strategies and mathematics activities observed in Ms. Jarmin’s classroom are found to 

inconsistently respect students’ prior knowledge and engage students as a learning 

community. However, four of the five items comprising this scale contain higher ratings at 

the Spring observation point compared to the Fall. This reflects greater inclusion of 

opportunities for students to explore their own ideas during student work time and through 

class discussion in the Spring. 
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Table 18 

Ratings of Ms. Jarmin’s Mathematics Teaching on the RTOP 

RTOP items by subscale Fall    Spr 

Subscale 1: Lesson design and implementation   

 

1. The instructional strategies and activities respected students’ prior knowledge and preconceptions 

inherent therein. 2.5 2.5 

 2. The lesson was designed to engage students as members of a learning community. 2.0 2.5 

 3. In this lesson, student exploration preceded formal presentation.  2.5 4.0 

 

4. The lesson encouraged students to seek and value alternative modes of investigation and problem 

solving. 2.0 3.0 

 5. The focus and direction of the lesson was often determined by ideas originating with students.  2.0 3.0 

 Subscale 1 score 11.0 15.0 

    

Subscale 2: Content, propositional knowledge   

 6. The lesson involved fundamental concepts of the subject.  3.0 4.0 

 7. The lesson promoted strongly coherent conceptual understanding. 1.5 3.0 

 8. The teacher had a solid grasp of the subject matter content inherent in the lesson.  2.5 2.5 

 

9. Elements of abstraction (i.e., symbolic representations, theory building) were encouraged when it 

was important to do so. 3.0 3.5 

 10. Connections with other content disciplines and/or real world phenomena were explored and valued.  2.0 3.0 

 Subscale 2 score 12.0 16.0 

    

Subscale 3: Content, procedural knowledge   

 

11. Students used a variety of means (models, drawings, graphs, concrete materials, manipulatives, 

etc.) to represent phenomena. 2.5 3.5 

 12. Students made predictions, estimations, and/or hypotheses, and devised means for testing them. 1.0 1.0 

 

13. Students were actively engaged in thought-provoking activity that often involved the critical 

assessment of procedures. 2.0 2.0 

 14. Students were reflective about their learning. 1.5 1.0 

 15. Intellectual rigor, constructive criticism, and challenging of ideas were valued. 1.5 1.5 

 Subscale 3 Score 8.5 9.0 

    

Subscale 4: Classroom culture, communicative interactions   

 

16. Students were involved in communication of their ideas to others using a variety of means and 

media. 2.0 2.5 

 17. The teacher’s questions triggered divergent modes of thinking.  1.5 2.0 

 

18. There was a high proportion of student talk and a significant amount of it occurred between and 

among students.  2.0 2.5 

 19. Student questions and comments often determined the focus and direction of classroom discourse.  2.0 2.0 

 20. There was a climate of respect for what others had to say.  2.0 2.5 

 Subscale 4 score 9.5 11.5 

    

Subscale 5: Classroom culture, student/teacher relationships   

 21. Active participation of students was encouraged and valued.  1.5 2.0 

 

22. Students were encouraged to generate conjectures, alternative solution strategies, and ways of 

interpreting evidence.  1.5 2.0 

 23. In general the teacher was patient with students.  2.0 3.0 

 24. The teacher acted as a resource person, working to support and enhance student investigations.  2.0 2.0 

 25. The metaphor “teacher as listener” was very characteristic of this classroom. 2.0 2.5 

 Subscale 5 score 9.0 11.5 

    

Total score 50.0 63.0 
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The second RTOP subscale focuses on what the contents of a lesson suggests about a 

teacher’s propositional knowledge, meaning her mathematical knowledge for teaching the 

particular content of focus in the lesson. On this subscale, Ms. Jarmin’s mean scores are 12.0 

in the Fall and 16.0 in the Spring. Mirroring findings from beginning and end-of-year 

interviews, Ms. Jarmin is found to have a moderate grasp of the subject matter content 

inherent in lessons observed at both data points. On other items included on this scale, ratings 

increase from Fall to Spring. Of particular note, Spring lessons are found to more fully 

involve fundamental concepts of mathematics and promote stronger conceptual 

understanding.  

The third RTOP subscale focuses on what the contents of a lesson suggests about a 

teacher’s procedural knowledge. For the RTOP instrument, this means the quality of the 

lesson in terms of an inquiry approach to learning. The ratings of Ms. Jarmin’s mathematics 

instruction are the weakest on this subscale at both data points, with mean scores of 8.5 in the 

Fall and 9.0 in the Spring. Students are only sometimes observed engaging in activities of 

inquiry such as making predictions and devising means for testing them, critically assessing 

procedures, and reflecting on learning. The presence of rigorous debate of mathematical 

ideas is minimal. However, students are encouraged to represent mathematical ideas in 

multiple ways sometimes in the Fall and with greater frequency in the Spring.   

The fourth RTOP subscale focuses on communicative interactions that are part of the 

classroom culture. On this subscale, mean scores of Ms. Jarmin’s instruction are 9.5 in the 

Fall and 11.5 in the Spring. At both data points, Ms. Jarmin is observed to maintain strong 

control over the communicative interactions during work time as well as the discourse that 

occurs during class discussion. Yet, students are sometimes prompted to present their 



 

 201 

mathematical solutions and Ms. Jarmin asks some questions intended to trigger divergent 

modes of thinking.  

The last RTOP subscale focuses on the classroom culture in terms of the teacher’s 

role and the roles students are encouraged to take. On this subscale, the mean scores of Ms. 

Jarmin’s instruction are 9.0 in the Fall and 11.5 in the Spring. Spring ratings reflect greater 

opportunity for student participation and generation of alternate solution strategies when 

compared with the Fall. In the Spring, Ms. Jarmin also exhibits greater patience with the 

process of allowing students to generate and describe their own ideas.  

The mean scores of Ms. Jarmin’s mathematics instruction on the total RTOP 

instrument are 50.0 in the Fall and 63.0 in the Spring. These ratings suggest that Ms. Jarmin’s 

mathematics teaching moderately reflects the principles of reformed instruction, with a 

greater evidence of reformed practices in the Spring than in the Fall.  

 

 

Jarmin: Student Achievement 

 

 

Aggregated student scores on the mathematics section of the State Standardized Test 

(SST) were used to measure the mathematics achievement of Ms. Jarmin’s class. The SST is 

a criterion-referenced achievement test in which students receive scores between 1 and 5, 

with a score of 3 or higher considered passing. Since Ms. Jarmin’s students are repeating 

third grade, SST scores from the previous year are available for nine of the ten students in 

Ms. Jarmin’s class
9
. All of these students received a score of 1 on the mathematics section of 

the SST in the previous year, suggesting that their understanding of third-grade mathematics 

when they entered Ms. Jarmin’s class was extremely limited.  

                                            
9
 Ms. Jarmin’s class experienced some attrition around the time of the SST test. While Ms. Jarmin had 12 

students in her class for most of the year, only 10 students were in her class at the time of testing.   
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Ms. Jarmin’s students’ SST scores in the year of this study are presented in Table 19 

along with comparison data for third-grade students at Lincoln Heights, the school district, 

and the state. However, comparisons between the scores of Ms. Jarmin’s students and the 

other groups should be made with caution, as the demographic particularities of this class of 

retained students make it arguably different than the other groups. 

 

Table 19 

Comparison of Jarmin Student Achievement on SST to School, District, and State 

   
Achievement level (%) 

  

Group  Students  1 2 3 4 5  Passing score (%) 

Ms. Jarmin's class  10  30 40 20 10 0  30 

Lincoln Heights 3rd grade 88  24 27 33 15 1  49 

School District 3rd grade 13,713  18 16 33 24 9  66 

State 3rd grade 203,037  15 17 34 25 9  68 

Note. Scores of 3 or higher are considered passing.  

 

 

 

Of Ms. Jarmin’s ten students, 70% achieve a higher score than the previous year on 

the mathematics section of the SST, but only 30% achieve a passing score of 3 or higher. 

This is in comparison to passing scores achieved by 49% of Lincoln Heights third graders, 

66% of the third graders in the school district, and 68% of the third graders in the state. 

Hence, the mathematics achievement of Ms. Jarmin’s class appears to be somewhat lower 

than that of third graders at Lincoln Heights and considerably lower than third graders at the 

district and state levels.  
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Jarmin: Summary of Global Measures of Teaching 

 

  

Taken together, results from the Reformed Teaching Observation Protocol (RTOP) and the 

State Standardized Test (SST) suggest that Ms. Jarmin’s classroom is a place where there is 

inconsistent adherence to reformed teaching practices and student learning outcomes are 

mixed. RTOP results suggest that Ms. Jarmin’s mathematics teaching moderately reflects the 

principles of mathematics reform throughout the year, with somewhat greater adherence in 

the Spring. For instance, Ms. Jarmin’s mathematics instruction often integrates aspects of 

reform such as utilizing multiple representations and sharing student solutions to problems. 

However, Ms. Jarmin inconsistently employs strategies that encourage students to engage in 

higher-level thinking around mathematics tasks, and student engagement is noted as limited 

in all lessons observed. Consequently, Ms. Jarmin’s attempts to provide reform-oriented 

mathematics instruction sometimes fall short of promoting generative understanding for 

students. The mathematics achievement data for Ms. Jarmin’s class lend further evidence to 

this claim. Aggregated SST scores for Ms. Jarmin’s class indicate that most of her students 

demonstrate growth over the previous year, but only 30% are performing at grade level. This 

finding suggests that Ms. Jarmin’s students’ understanding of the mathematics concepts and 

skills of focus in third grade is limited and underscores the importance of more professional 

development with a focus on increasing her propositional knowledge as well as teaching 

strategies to get the full benefit from a reform-based curriculum. 

 

The Case of Ms. Larsano 

 

 

 Ms. Larsano enters the year of this study open to the new ways of teaching associated 

with the Everyday Mathematics, but worried that she and her class of students with Limited 
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English Proficiency (LEP) will have a hard time adjusting to this new program. Ms. Larsano 

openly states that she is not good at doing mathematics and that it is her least favorite subject 

to teach. Furthermore, Ms. Larsano’s instructional priorities are heavily weighted toward 

supporting her students’ transitions to life in the United States and mastering the English 

language. Yet, Ms. Larsano views herself as a team-player and outwardly displays a positive 

and inquisitive attitude toward the new mathematics program and willingness to experiment 

with the teaching practices recommended in mathematics professional development.  

 Ms. Larsano’s class is comprised of 18 students, who are grouped together because of 

their high-level language needs. Since this is a designated transition-language class, Ms. 

Larsano is mandated to help students learn English while also providing support in her 

students’ native language, which is Spanish. A credit to Ms. Larsano’s loving but strict 

classroom management style, her students are typically well-behaved and the classroom 

appears to run smoothly. However, within and outside of math time, student engagement and 

participation is highly variable. Some students appear consistently reluctant to engage in 

learning without direct teacher support.   

 The case of Ms. Larsano that follows is presented in four sections. In the first two 

sections, evidence of Ms. Larsano’s mathematics-related beliefs and knowledge at the 

beginning and end of the year will be presented. Next, the relationship among Ms. Larsano’s 

beliefs, knowledge, and classroom practice will be explored through a case story focused on 

her patterns of response to student difficulties. Finally, global measures of Ms. Larsano’s 

adherence to reform-based mathematics teaching and student achievement will be presented 

so that case story findings can be considered in relation to these broader measures of 

teaching. 
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Ms. Larsano’s Beliefs about Mathematics Teaching and Learning 

 

 

Ms. Larsano’s beliefs about mathematics teaching and learning were measured at the 

beginning and end of the school year using the IMAP Web-Based Beliefs-Survey (Ambrose, 

Phillip et al., 2003). The IMAP instrument requires teachers to respond to instructional 

scenarios in an open-ended format, allowing respondents to emphasize or downplay issues of 

personal importance. A series of rubrics are then used to measure survey responses in 

relation to seven target beliefs considered central to reform-oriented mathematics instruction. 

The degree to which Ms. Larsano’s survey responses provide evidence that she holds each 

target belief at the beginning and end of the school year is presented in Table 20.   

 

Table 20 

Ms. Larsano’s IMAP Web-Based Beliefs-Survey Results 

Belief 

Beginning 

of Year 

End of 

Year 

Belief 1: Mathematics is a web of interrelated concepts and procedures (and school 

mathematics should be too).  
1 1 

Belief 2: One’s knowledge of how to apply mathematical procedures does not 

necessarily go with understanding of the underlying concepts. 
0 0 

Belief 3: Understanding mathematical concepts is more powerful and more generative 

than remembering mathematical procedures.  
0 1 

Belief 4: If students learn mathematical concepts before they learn procedures, they 

are more likely to understand the procedures when they learn them. If they learn the 

procedures first, they are less likely to ever learn the concepts. 

1 2 

Belief 5: Children can solve problems in novel ways before being taught how to solve 

such problems. Children in primary grades generally understand more mathematics 

and have more flexible solution strategies than adults expect.  

0 1 

Belief 6: The ways children think about mathematics are generally different from the 

ways adults would expect them to think about mathematics. For example, real-world 

contexts support children’s initial thinking whereas symbols do not.  

1 1 

Belief 7: During interactions related to the learning of mathematics, the teacher 

should allow the children to do as much of the thinking as possible.  
0 0 

Note. 0 = No evidence; 1 = Weak evidence; 2 = Moderate evidence; and 3 = Strong evidence 
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In the sections that follow, evidence of Ms. Larsano’s adherence to each reform-oriented 

belief at the beginning and end of the year will be presented. 

  

 

Larsano: Belief about the Nature of Mathematics (IMAP Belief 1) 

 

 

At the beginning and end of the year, there is weak evidence that Ms. Larsano views 

mathematics as a web of interrelated concepts and procedures. In response to a scenario 

presenting multiple ways of solving a multidigit addition problem and asking which 

strategies she would like children to share, Ms. Larsano indicates that she would have 

children share all five strategies at both data points. However, her discussion of why and how 

she would have students share these strategies does not consider how the strategies are 

related or supportive of one another. Therefore, while survey evidence suggests that Ms. 

Larsano sees value in including multiple ways to solve problems in her instruction, her 

instructional emphasis is unlikely to be on the interrelationships among strategies.  

 

 

Larsano: Belief about Distinction between Understanding Concepts and Applying 

Mathematical Procedures (IMAP Belief 2)  

 

 

Ms. Larsano’s beginning and end-of-year responses on the IMAP survey provide no 

evidence that she distinguishes between conceptual understanding and students’ abilities to 

perform procedures and get correct answers. There is no indication in Ms. Larsano’s 

responses that she differentiates between students who perform the steps of standard 

algorithms with understanding and without understanding. Furthermore, Ms. Larsano 

indicates that students who carry out standard algorithms accurately demonstrate greater 

mathematical understanding than students who use other methods.   
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Larsano: Belief about Source of Generative Mathematical Understanding (IMAP Belief 3)  

 

 

At the beginning of the year, there is no evidence that Ms. Larsano believes 

understanding mathematical concepts is more powerful and generative than remembering 

mathematical procedures. Although Ms. Larsano indicates that she thinks teachers should 

explain why standard procedures work, she asserts that repeated practice of standard 

procedures is what students most benefit from. When presented with non-standard methods 

for multidigit subtraction, Ms. Larsano indicates that she thinks these methods require too 

much thinking and that the known steps of the standard algorithm are better. Overall, at the 

beginning of the year, Ms. Larsano’s responses suggest that she believes procedural 

knowledge to be more important than conceptual knowledge. 

In contrast, Ms. Larsano’s responses at the end of the year do not emphasize the 

importance of paper-and-pencil practice of standard procedures as they did at the beginning 

of the year. Instead, Ms. Larsano suggests that students need experiences with manipulatives 

to help them understand why standard procedures work. However, she also indicates that 

students with good memory can be successful with learning the steps of standard procedures 

without manipulatives. Furthermore, Ms. Larsano continues to consider the standard U.S. 

multidigit subtraction algorithm to be an easier and preferable way of subtracting than a non-

standard, conceptually-explicit method. Overall, Ms. Larsano’s responses at the end of the 

year provide weak evidence of the belief that understanding mathematical concepts is more 

powerful and generative than remembering mathematical procedures, which represents a 

small shift toward a reform-orientation.  
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Larsano: Belief about Consequences of Teaching Concepts/Procedures First (IMAP Belief 4)  

 

 

At the beginning of the year, there is weak evidence that Ms. Larsano believes that 

students are more likely to understand mathematical procedures if they first learn related 

mathematics concepts. In discussing instructional practice, Ms. Larsano suggests that 

students benefit from working with manipulatives and visuals before using number-only 

procedures. However, Ms. Larsano does not explicitly discuss development of conceptual 

understanding through use of manipulatives. Rather, she indicates that manipulatives should 

be used first because they are easier than paper-pencil methods. Also, responses used to 

evaluate this belief never suggest that there may be negative outcomes if procedures are 

taught without an understanding of underlying concepts.  

Ms. Larsano’s end-of-year IMAP responses suggest some movement on this belief 

toward a reform-orientation. She explicitly states that manipulatives should be used with 

students to develop conceptual understanding of mathematical procedures. Furthermore, Ms. 

Larsano indicates that, in a unit on multidigit addition, she would expose students to a 

manipulative-based method and a non-standard partial sums method before introducing the 

standard algorithm. However, her reasons for doing this are not clearly tied to development 

of conceptual understanding. Furthermore, as at the beginning of the year, Ms. Larsano’s 

end-of-year responses do not suggest that there may be negative outcomes for teaching 

procedures before students understand concepts. Therefore, Ms. Larsano’s responses at the 

end of the year provide some evidence of adherence to the belief that students are more likely 

to understand mathematical procedures if they first learn mathematical concepts.  
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Larsano: Belief about Children’s Problem Solving Capabilities (IMAP Belief 5)  

 

 

At the beginning of the year, there is no evidence that Ms. Larsano believes that 

children can solve problems in novel ways before being taught how to solve such problems. 

She indicates that, in her classroom, she does not have students attempt to solve problems 

without first showing them how. Additionally, Ms. Larsano states the belief that children 

require examples and teacher support in order to learn how to solve new kinds of problems.  

Ms. Larsano’s responses at the end of the year suggest limited movement on this 

belief in the direction of a reform-orientation. At this data point, Ms. Larsano’s responses 

suggest greater openness to incorporating student ideas for solving problems prior to 

demonstrating particular methods. However, Ms. Larsano consistently inserts herself as a 

mediator of student ideas. There is no indication that she believes students will be able to 

successfully solve problems without some level of teacher support. Therefore, at the end-of-

year data point, there is weak evidence that Ms. Larsano believes children can solve problems 

in novel ways before being taught how to solve such problems.  

  

 

Larsano: Belief about Children’s Ways of Thinking about Mathematics (IMAP Belief 6) 

 

 

At the beginning and end of the year, there is weak evidence that Ms. Larsano 

believes children think about mathematics in ways that are generally different than adults. At 

both data points, Ms. Larsano suggests that students benefit from use of manipulatives and 

visuals to understand mathematics.  However, her responses do not include an indication of 

the belief that mathematical symbols are difficult for students to understand. IMAP responses 

also suggest that Ms. Larsano views real-world contexts in the form of word problems as 
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likely to impede rather than facilitate mathematical understanding, because students are 

likely to get caught up in trying to understand the words instead of the mathematics. It is 

important to note that Ms. Larsano’s responses regarding this issue may be related to her LEP 

students’ difficulties with reading word problems presented in English. Interviews and 

observations provide evidence that Ms. Larsano often attempts to incorporate real-world 

contexts to which students can relate through verbal instruction in English and Spanish.  

 

 

Larsano: Belief about Teacher’s Role in Supporting Student Learning (IMAP Belief 7)  

 

 

At the beginning and end of the year, there is no evidence that Ms. Larsano believes 

that teachers should allow children to do as much thinking as possible during mathematics 

instruction. In response to a video clip of a teacher providing strong, procedural direction for 

performing a fraction division computation, Ms. Larsano praises the clear, step-by-step 

approach used by the teacher and considers it one of the strengths of the instructional 

episode. At neither data point does Ms. Larsano consider that the teacher’s instructional 

guidance may have been excessive and served to limit the student thinking. Furthermore, at 

both data points, Ms. Larsano suggests that students require teacher support and guidance to 

learn how to solve problems successfully.  

 

 

Summary of Ms. Larsano’s Beliefs 

 

 

Ms. Larsano’s IMAP survey responses suggest that her beliefs at the beginning and 

end of the year are minimally aligned with a reform-orientation to mathematics instruction. 

At both data points, there is weak or no evidence that Ms. Larsano holds six of the seven 
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reform-oriented beliefs measured. In particular, there is no evidence that Ms. Larsano draws 

significant distinction between applying mathematical procedures and understanding 

mathematical concepts. In general, Ms. Larsano considers correct answers to be evidence of 

understanding.  

Although Ms. Larsano expresses openness to students using a variety of nonstandard 

strategies to solve problems, she prefers that students learn standard algorithmic procedures 

because she believes these procedures to be clear and easy to follow. At the end of the year, 

there is only weak evidence that Ms. Larsano believes understanding mathematics concepts 

to be more powerful and generative than remembering mathematical procedures.  

Ms. Larsano’s survey results also suggest that she believes children have limited 

capability to solve problems in novel ways before being taught how to solve such problems. 

Related to this belief, Ms. Larsano’s IMAP responses indicate the view that the teacher 

should provide strong direction during mathematics lessons. Specifically, the teacher should 

demonstrate and coach students on how to apply procedures that will yield correct answers. 

Finally, Ms. Larsano’s responses indicate that she gives little consideration to the differences 

in the ways children and adults think about mathematics, particularly with regard to use of 

symbols as students are learning about mathematics concepts.  

 

 

Ms. Larsano’s Knowledge of Mathematics for Teaching 

 

 

Ms. Larsano’s knowledge of mathematics for teaching with a reform-orientation was 

measured at the beginning and end of the year using data from the Teacher Knowledge 

interview. In particular, this interview explores teachers’ knowledge related to the teaching of 

multiplication and division to third-grade students. First, Ms. Larsano’s open-ended 
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discussion of teaching and learning multiplication will be presented. In this part of the 

interview, teachers were prompted to describe important understandings and common student 

difficulties related to the learning of multiplication. In addition, interview questions direct 

teachers to discuss how children develop the important understandings identified and how 

multiplication should be taught. Next, Ms. Larsano’s responses to four classroom scenarios 

will be described. These classroom scenarios probe specific aspects of teachers’ knowledge 

related to the teaching and learning of multiplication and division, specifically teachers’ 

knowledge of nonstandard strategies for multidigit multiplication, knowledge of a common 

student difficulty underlying the standard U.S. algorithm and strategies for addressing this 

difficulty, and teachers’ abilities to interpret and respond to student work. 

 

 

Larsano: Open-ended Discussion of Teaching and Learning Multiplication  

 

 

At the beginning of the year, Ms. Larsano explains that third-grade instruction on 

multiplication should help students to understand that multiplication is a faster way to add 

equal groups and should emphasize memorization of the times tables. Ms. Larsano asserts 

that students should first build physical models of multiplication situations. Then these 

physical models should be connected to symbolic multiplication notation. After students 

understand the connection between physical and symbolic models of multiplication, focus 

should turn to memorization of facts and then memorization of the steps for the standard U.S. 

multidigit multiplication algorithm. Ms. Larsano indicates that, while learning about 

multiplication, she anticipates that some students will encounter difficulties with moving 

away from counting objects one-by-one in physical models and working with large numbers. 
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Ms. Larsano identifies knowledge of addition facts and place value as prerequisites to 

learning multiplication.  

At the end of the year, Ms. Larsano indicates that third-grade students should 

understand that multiplication involves situations in which there are equal amounts in each 

group and finding the total of the groups. Also, students should understand that 

multiplication is a faster way of doing addition. At the beginning of learning multiplication, 

Ms. Larsano suggests that students should make physical models of real-world multiplication 

situations and they should be prompted to identify the number of groups and the number in 

each group. Next students are ready to learn about multiplication number sentences in 

relation to physical models and real-world situations. At this point, Ms. Larsano asserts that 

instruction should move students toward devising increasingly efficient strategies to find 

products, such as skip counting, repeated addition, doubling strategies, and using known facts 

to figure out unknown facts. One difficulty that Ms. Larsano notes students have at this stage 

is with avoiding counting errors. As students become more efficient in finding products, Ms. 

Larsano states that they need ample practice, in the form of drill and games, to remember 

facts quickly. After they know some facts, third-grade students are ready to encounter 

contextualized multidigit multiplication situations involving one-digit by two-digit 

calculations. Initially, Ms. Larsano indicates that students should be encouraged to devise, 

share, and discuss their own strategies for solving these problems. Then, after this period of 

exploration, Ms. Larsano asserts that students should be taught and then asked to memorize 

the steps of the standard U.S. multidigit multiplication algorithm. Ms. Larsano notes that a 

difficulty students often have with this process is remembering where to put the numbers at 
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each step. Finally, Ms. Larsano identifies knowledge of addition and the ability to count by 

some numbers (2s, 5s, 10s) as being prerequisites for the study of multiplication. 

 

 

Larsano: Knowledge of Non-standard Strategies (Classroom Scenario 1) 

 

 

At the beginning of the year, Ms. Larsano identifies five strategies that students might 

use to solve a word problem involving finding the total number of chairs in 16 rows of 8. 

These are presented in Table 21. Three of the strategies identified can be classified as direct 

modeling. Of these, Ms. Larsano considers direct modeling with counters or pictures of 

chairs to be the less sophisticated than direct modeling with tally marks. Ms. Larsano 

identifies increasingly sophisticated strategies to include repeated addition and then use of 

the standard U.S. multidigit multiplication algorithm. In her discussion of strategies, Ms. 

Larsano suggests that it is important for students to understand that the steps of the standard  

 

Table 21 

Strategies Identified by Ms. Larsano in Response to Classroom Scenario 1 

Data point Direct modeling 

Complete 

number 

Partitioning 

number Compensating Other 

Beginning 

of year 

16 rows of 8 

chairs (look like 

chairs) 

16 rows of 8 

tally marks 

16 rows of 8 

counters 

Repeated 

addition            

8 + 8 + 8…  

  Standard US 

algorithm 

End of year 16 rows of 8 

chairs 

 

Repeated 

addition            

8 + 8 + 8…  

Grouping 8s to 

make 16s, then 

set-up vertically 

16 + 16 + 16… 

16x4 and 16x4  16 circles with 8 

tally marks in 

each  

Standard US 

algorithm 

Note. Analysis utilizes strategy classification presented in Baek (1998).  



 

 215 

algorithm provide a quick way to count the objects represented through a direct modeling 

method, but she does not explain how a visual model of the multiplication problem relates to 

the steps of the standard algorithm. Furthermore, Ms. Larsano’s discussion of the standard 

algorithm suggests that she is focused on students knowing how to apply the steps of this 

method and not on their understanding why those steps work. At the beginning of the year, 

Ms. Larsano does not include partitioning or compensation strategies in her list of ways 

students might use to solve the problem posed. 

At the end of the year, Ms. Larsano identifies six strategies that children might use to 

figure out how many chairs are in 16 rows of 8 chairs. (See Table 21.) At this data point, Ms. 

Larsano identifies visually-based strategies, including direct modeling rows of objects and 

filling circles with tally marks, to be the least sophisticated. She assumes that students using 

these strategies would most likely find the product by counting objects one-by-one but notes 

that students who count their models by groups of eight or apply repeated addition would be 

at a higher level of understanding. Ms. Larsano lists complete number strategies, including 

repeated addition and a grouping strategy, next in order of sophistication because students 

using these strategies do not need the visuals to solve the problem. Finally, Ms. Larsano 

suggests that use of the standard U.S. algorithm or the halving and doubling (partitioning) 

strategy listed are the most sophisticated, because they both require students to recognize the 

situation as one that can be solved with multiplication. Between these two strategies, Ms. 

Larsano considers the partitioning strategy to be more sophisticated than the standard 

algorithm:  

I think this one (the partitioning strategy) is a little bit harder [than the standard 

algorithm]… because they have to have prior experience doubling the numbers or 

halving the number, putting them in half, knowing that 8 is an even number and that 
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they can half it. I think that they need more experience or practice doing this one (the 

partitioning strategy). 

 

When asked what students need to understand to use the standard U.S. multiplication 

algorithm, Ms. Larsano responds, “The steps to multiply and their facts.” These responses 

suggest that Ms. Larsano recognizes that students using the non-standard partitioning strategy 

described require a higher level of understanding; however, Ms. Larsano continues to assert 

that learning the steps of the standard U.S. multiplication algorithm is the ultimate goal of 

instruction. As was the case at the beginning of the year, Ms. Larsano does not identify a 

compensating strategy at the end-of-year data point. Also notable, Ms. Larsano does not 

identify the partitioning strategy emphasized by Everyday Mathematics, which involves 

partitioning the factors by decade numbers and summing the partial products.   

In summary, Ms. Larsano’s response to Classroom Scenario 1 provides evidence of 

weak knowledge of non-standard strategies for multidigit multiplication at the beginning and 

end of the year, with evidence of greater variety of strategies at the end of the year. It is 

particularly notable that, at the end of the year, Ms. Larsano does not discuss the non-

standard partial products strategy that is the focus of several lessons in the Everyday 

Mathematics program. At both data points, Ms. Larsano demonstrates limited knowledge of 

the cognitive resources required for students to use the strategies with understanding. While 

Ms. Larsano is able to describe a progression from direct modeling to use of complete 

number strategies, her primary goals related to instruction on multidigit multiplication appear 

to be for students to recognize when multiplication is the appropriate operation to use and 

then to be able to apply the standard U.S. multiplication algorithm to achieve a correct result. 

Therefore, her focus on using multiple strategies to develop mathematical understanding is 

minimal.  
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Larsano: Interpretation of Students’ Mathematical Strategies (Classroom Scenario 2) 

 

 

At the beginning and end-of-year data points, Ms. Larsano is able to identify the logic 

in two of the three student solutions presented for the pancake problem (Twenty-four 

children want to share eight pancakes so that each one gets the same amount. How much 

pancake can each child have?). For these solutions, Ms. Larsano is able to describe ways she 

might follow-up with each student to find out more about their mathematical understanding. 

However, her ideas for follow-up seem to come with greater ease and more elaboration at the 

end of the year. For instance, at the beginning of the year, Ms. Larsano suggested that she 

would follow up on one student’s strategy by asking him to explain his model. At the end of 

the year, her response to how she would learn more about this student’s understanding is 

more detailed:  

I would ask him what does each picture represent. What does the little dots 

represent…even though that I know, I would want him to tell me. What does the little 

dots represent and what does the big dots represent. And why did he divide the 

pancakes into 3 parts each? So, why. And maybe he could explain me a little bit. And 

how much is each kid going to eat. 

 

This greater degree of detail suggests that Ms. Larsano’s pedagogical content knowledge of 

probes and questions that will elicit information about student understanding of mathematical 

ideas has increased.  

At the beginning and end of the year, Ms. Larsano has difficulty making sense of one 

of the three student solutions presented in Classroom Scenario 2. Interestingly, the student 

solution that Ms. Larsano has difficulty interpreting is different at the two data points. 

However, her response when she is not able to interpret student work quickly is remarkably 

similar. In these instances, Ms. Larsano indicates that she does not find the students’ 

solutions to be sensible and that she thinks they were likely guessing. She determines that the 
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student does not have a good understanding of the mathematics of focus. These responses 

suggests that, when Ms. Larsano has difficulty interpreting a student solution in the 

classroom context, she is likely to spend little time trying to understand the solution and 

instead assume that the student holds limited understanding.  

In summary, Ms. Larsano’s response to Classroom Scenario 2 provides evidence of 

limited ability to interpret student work at the beginning and end of the year, with increased 

knowledge of strategies for following-up on student strategies at the end of the year.  

 

 

Larsano: Addressing and Avoiding a Common Student Error (Classroom Scenario 3) 

 

 

In Classroom Scenario 3, teachers are presented with student work in which the 

standard U.S. multiplication algorithm is executed without maintaining the place values of 

the partial products. In efforts to explain the mathematical basis of this student error, Ms. 

Larsano’s responses at the beginning and end of the year indicate that she assumes place 

value is involved but that she is not entirely clear how. Consider her response when asked to 

elaborate on the relationship between place value and the standard U.S. multiplication 

algorithm at the end of the year:  

Well, if they are multiplying, they start in the ones place. So, they are going to 

multiply first the ones with the ones. So the answer is going to be in the ones place. 

Then the ones with the tens place, so the answer is going to be in the tens place. Then 

the ones with the hundreds, so the answer is going to be in the hundreds place. If that 

works out – this is just coming out of my mind right now – I am assuming that it will 

work out. 

 

As was the case at the beginning of the year, Ms. Larsano’s explanation is limited to a review 

of the steps of the standard algorithm with attention to the places where numbers should be 
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written down. She does not identify how place value impacts the magnitude of the partial 

products. 

At both data points, Ms. Larsano indicates that she would respond to students making 

the error presented in Classroom Scenario 3 by having them work problems on grid paper or 

draw lines to emphasize the places where they should put the numbers. She indicates that she 

would show students where the numbers should go and have them practice the steps of the 

procedure until they could do it. When asked how she would respond to a student who asks 

why the numbers have to be moved over when multiplying by a number in the tens or 

hundreds place, Ms. Larsano responds that she is not sure. When asked to share what she can 

do as a third-grade teacher to help students avoid such difficulties, Ms. Larsano again 

emphasizes the importance of teaching the steps of the standard U.S. multiplication algorithm 

and teaching students how to line up the numbers.  

In summary, Ms. Larsano’s responses at the beginning and end of the year suggest 

that she holds weak personal knowledge of how the standard U.S. algorithm is related to 

place value. Furthermore, evidence of pedagogical content knowledge of conceptually-

supportive strategies for helping students understand and avoid errors in using this algorithm 

is limited at both data points. 

 

 

Larsano: Interpretation of and Response to a Student’s Flawed Solution (Classroom 

Scenario 4) 

 

 

 At the beginning and end of the year, Ms. Larsano is unable to determine the 

mathematical basis of the flawed strategy presented in Classroom Scenario 4. In this 

scenario, a student explains that the answer to 144 ÷ 8 = ? can be found by dividing 144 by 2 



 

 220 

four times because 2 + 2 + 2 + 2 = 8. The teacher is prompted to describe how she might 

respond to this student. At the beginning of the year, Ms. Larsano notes that the student 

would have the correct answer if she had stopped after her third step (e.g., after dividing by 2 

three times), but she cannot explain why that would be the case. After identifying that the 

solution is incorrect at the beginning of the year, Ms. Larsano suggests that she would 

respond by teaching the student to use the standard U.S. long division algorithm. At the end 

of the year, however, Ms. Larsano takes a different approach. She says that she would try to 

have the student explain her process again to allow her to catch the error, and then she might 

have her check the answer by using another strategy. Ms. Larsano’s response to Classroom 

Scenario 4 at both data points provides evidence of her difficulty interpreting flawed student 

work and responding in ways that honor student thinking.  

 

 

Summary of Ms. Larsano’s Knowledge of Mathematics for Teaching 

 

 

Ms. Larsano demonstrates limited knowledge of ways students might approach 

mathematical problems involving multiplication at the beginning and end of the year, with 

greater knowledge demonstrated at the end of the year. At the beginning of the year, Ms. 

Larsano’s discussion of multiplication strategies is confined to direct modeling, repeated 

addition, memorization of facts, and use of the standard U.S. multiplication algorithm for 

multidigit problems. In contrast, at the end of the year, she identifies a limited number of 

additional nonstandard strategies, including a combining numbers strategy and a partitioning 

strategy involving halving and doubling. However, in her discussion of ways to approach 

multidigit multiplication, Ms. Larsano does not discuss at either data point compensation 
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strategies or other partitioning strategies, including the partial products focus algorithm 

emphasized by Everyday Mathematics.  

In discussing multiplication instruction, there is evidence that Ms. Larsano holds 

weak knowledge of reform-minded teaching practices at the beginning of the year and 

comparatively greater knowledge at the end of the year. At the beginning of the year, Ms. 

Larsano asserts that students are ready to memorize facts and standard algorithmic 

procedures after they have an understanding of how physical models are related to 

multiplication notation. In contrast, at the end of the year, Ms. Larsano places greater 

emphasis on supporting student understanding by using real-world situations and on allowing 

students to experiment with a variety of nonstandard strategies prior to focusing on fact 

memorization and the standard U.S. algorithm for multidigit multiplication. Yet, at both data 

points, Ms. Larsano considers the end goal of instruction to be memorization of basic facts 

and the standard U.S. multidigit multiplication algorithm. Evidence suggests that Ms. 

Larsano’s personal conceptual understanding of the standard U.S. multiplication algorithm is 

weak, and her discussion of instructional practice reflects her own procedurally-based 

understanding of mathematics. 

Finally, Ms. Larsano’s ability to interpret student strategies is limited at both data 

points. If Ms. Larsano is unable to make sense of a student’s strategy quickly, she assumes 

the strategy to be illogical and indicates that she would have the student try something 

different. This trend suggests that Ms. Larsano is likely to sometimes respond to students’ 

correct and flawed strategies in ways that do not honor student thinking.  
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Case Story of Ms. Larsano’s Response to Student Difficulties 

 

 

 In the case story that follows, facets of Ms. Larsano’s response to student difficulties 

will be presented. Of focus will be Ms. Larsano’s response to students’ struggles with 

mathematics tasks during work time, her ways of responding to flawed solutions that are 

shared in the context of class discussion, and her response when students answer questions 

incorrectly. Following illustration of each response pattern, consequences for student 

thinking and the relationship between Ms. Larsano’s beliefs, knowledge, and mathematics 

teaching practice will be discussed. 

 

 

Larsano Response Pattern 1: Response to Student Difficulties during Work Time 

 

During time allotted for students to work on mathematics tasks, Ms. Larsano 

sometimes observes and interacts with students, while at other times her attention is focused 

on things other than students’ mathematical activity. Therefore, Ms. Larsano’s awareness of 

student difficulties that arise during work time is inconsistent among and within observed 

lessons. In the text that follows, Ms. Larsano’s response to students’ difficulties when she is 

attending to students’ mathematical activity during work time will be discussed. First, 

consideration will be given to how Ms. Larsano addresses students’ difficulties getting 

started with mathematics problems. Then her response to flawed solutions in the context of 

student work time will be described.  

The students in Ms. Larsano’s class have been grouped together intentionally because 

they have limited proficiency with the English language. All of the students are Spanish-

speaking, and Ms. Larsano moves between English and Spanish regularly with individual 

students. When Ms. Larsano encounters a student who is having difficulty getting started on 
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a mathematics word problem, the most frequent response observed is for her to repeat the 

problem in Spanish or English, sometimes breaking down the task for the student. Consider, 

for instance, Ms. Larsano’s support for Alicia, who is having difficulty with the problem, “23 

candles are arranged with 3 in each row. How many rows are there?” Ms. Larsano addresses 

Alicia’s difficulty getting started on the candle problem by reframing this problem in the 

following manner:  

You are going to have 23 in total (pointing at counters), and you are going to have 

rows. And each row is going to have 3. Each row is going to have 3 until you have 

23. And I am going to find out how many…and you are going to find out how many 

rows.  

 

At this point, Ms. Larsano moves away from Alicia. In this brief intervention, Ms. Larsano 

reframes the candle task in such a way that she deemphasizes the problem context and tells 

Alicia a procedure for finding the answer. This instructional excerpt illustrates Ms. Larsano’s 

tendency to address students’ difficulties getting started with word problems by suggesting 

procedures.  

In the moments that follow, Alicia appears to become focused on trying to remember 

and follow Ms. Larsano’s steps rather than on using the problem context to make sense of the 

mathematics task on her own. At the end of the time allotted for work on the candle task, 

Alicia has not devised a problem solution. In general, it is not unusual for Ms. Larsano to 

begin class discussion with only a fraction of the class having devised a personal solution to a 

given problem. Some students, like Alicia, appear to stay focused on mathematics tasks 

during work time and have difficulty figuring out what to do. Other students routinely sit idle 

during work time prior to whole group discussions and do not appear to be attempting the 

assigned problem. Ms. Larsano often provides verbal encouragement for students to try and 

figure out problems during these work sessions, but there is not an immediate consequence 
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for students who choose not to attempt the problems. In this way, Ms. Larsano’s response to 

students’ difficulties getting started on problems is to allow her students to engage minimally 

with mathematics problems during work time and instead learn from the solutions presented 

by their peers during whole class discussion.   

In addition to student difficulties getting started with mathematics problems, student 

difficulties also surface during work time when students devise flawed solutions to problems 

posed. When Ms. Larsano interacts with students who have flawed solutions in the context of 

work time, her most typical response is to provide procedural hints for correcting the errors. 

To illustrate, consider the following interaction between Ms. Larsano and Sean that occurs 

during initial exploration of multidigit multiplication problems. Sean is working on figuring 

out how many total M&Ms there are in eight bags of 500. On his paper, Sean has written the 

false number sentence: 8 × 500 = 40,000.  

Ms. Larsano: What is your strategy? Show me. Where did you get that number? Show 

me. I don’t see anything to show me where did you get that number? And why this 

number if that number is this big?  

Sean: 5 times 8 equals 40. So, it is this (points at 40,000 on his paper).   

Ms. Larsano: Check the zeros. I think I see too many. I see 2 here (points at 500) and 

4 here (points at 40,000). I see too many.  

 

In this instance, Ms. Larsano first asks Sean questions about how he came to his answer of 

40,000 while also hinting that the answer is incorrect. When Sean explains that he found his 

answer by thinking about the relationship between 5 × 8 and the problem of focus, Ms. 

Larsano explicitly indicates that the answer is incorrect and directs Sean to, “Check the 

zeros.” This procedural response of focusing on counting zeros stands in contrast to 

considering the reasonableness of the solution or checking a solution using an alternate 

method. This instructional excerpt exemplifies Ms. Larsano’s practice of responding to 

students’ flawed solutions in the context of work time with support that emphasizes 
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procedures for obtaining answers and deemphasizes conceptual understanding.  

 In summary, Ms. Larsano’s response to student difficulties that arise during work 

time typically involves brief interactions with students in which procedurally-focused support 

is provided. Additionally, Ms. Larsano responds to students’ difficulties by sometimes 

allowing students to engage minimally with mathematics tasks during work time, trusting 

that these students will learn how to solve the problems when their peers present solutions 

during whole class discussion.  

 

 

Larsano response pattern 1, consequences for student thinking. Ms. Larsano’s 

practice of providing procedurally-focused support for students when they are struggling to 

make sense of mathematical problems appears to limit the degree to which students develop 

conceptual understanding and generative problem solving practices. Instead of focusing on a 

word problem’s context to support development of reasonable solutions, some of Ms. 

Larsano’s students are observed attempting to apply recently shared procedures to new 

problems regardless of whether the procedures make sense for the problems at hand. Students 

are also observed applying procedures taught incorrectly, often unaware when their final 

answers are unreasonable. In these ways, solving problems in Ms. Larsano’s class becomes 

more about remembering procedures and less about trying to make sense of the mathematical 

ideas underlying why particular procedures work. This kind of focus limits the likelihood that 

conceptual understanding will be developed through doing and discussing problem solving 

tasks.  

In addition, when students are focused on remembering and applying procedures, 

they generally have little in the way of back-up strategies when correct procedures cannot be 
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recalled. This may, in part, explain why some of Ms. Larsano’s students sit idle during time 

allotted for work on a given task. Without immediate recognition of a procedure to apply, 

students may find themselves without a way to move forward with a problem. This kind of 

dilemma results when students focus on trying to apply mathematical procedures without 

understanding how they work or why they are appropriate for particular mathematics tasks. 

Nonetheless, when students do not engage in devising personal solutions to mathematics 

tasks, they miss out on important opportunities to use their existing understandings to 

construct new mathematical knowledge.  

 

 

Larsano response pattern 1, link to beliefs and knowledge. Ms. Larsano’s ways of 

responding to student difficulties that arise in the context of work time are related to both her 

beliefs and knowledge. First, consider Ms. Larsano’s tendency to provide procedurally-

focused support during work time. IMAP survey responses suggest that, at the beginning and 

end of the year, Ms. Larsano draws little distinction between procedural knowledge and 

conceptual understanding. As student difficulties arise, Ms. Larsano often interprets them in 

terms of difficulty remembering the appropriate procedures rather than considering how the 

difficulties or mistakes might be related to conceptual understanding. This is the case in the 

example above when Ms. Larsano directs Sean to check the zeros for his solution to the 

problem 8 × 500. It is also the case when Ms. Larsano provides Alicia with support that 

involves helping her to understand the candle problem by telling her a procedure to obtain a 

correct answer.  

While related to beliefs, Ms. Larsano’s practice of providing procedurally-focused 

support also reflects her limited personal knowledge of mathematics. Ms. Larsano’s personal 
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approach to solving mathematical problems involves heavy reliance on remembering 

standard procedures. When pressed to explain why procedures work, Ms. Larsano struggles 

to discuss the conceptual underpinnings of procedures throughout the year. For instance, in a 

post-observation interview, Ms. Larsano is unable to explain why the “count the zeros” rule 

works in problems like 8 × 500. Since Ms. Larsano primarily understands mathematics in 

terms of procedural knowledge, it is not surprising that her support for students emphasizes 

procedures.  

Ms. Larsano is also observed responding to students’ difficulties approaching 

mathematical problems by allowing them to engage minimally with problems during work 

time. This practice is primarily explained by Ms. Larsano’s beliefs. At the beginning and end 

of the school year, Ms. Larsano discusses her belief that most students require explicit 

teacher direction in order to be successful with mathematics tasks. What follows is shared in 

an interview at the end of the year:   

I think first, the teacher needs to present it.  The teacher needs to give them examples, 

to explain the concepts, make them aware of what they’re expected to do or what do 

they need to do or how do they need to do it…because teachers sometimes assume 

that they bring some concept. We assume that they know some things and sometimes 

they don’t.  So we need to present the concept, present the skill, give them an 

example, maybe two maybe three, and then let’s try it together and walk them 

through the process before they are going to do it by themselves. 

 

Although Ms. Larsano follows the Everyday Mathematics teacher guide and assigns novel 

mathematics tasks before providing explicit direction, she is not surprised when some 

students do not work out personal solutions prior to whole group discussion. She views the 

whole class discussion as the time when she and the students who have devised solutions will 

share models of procedures that students without solutions can follow on subsequent, similar 

problems.  
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Larsano Response Pattern 2: Response to Flawed Solutions in Whole Class Discussion 

 

 

Following the recommendations of the Everyday Mathematics program, Ms. Larsano 

allots time during mathematics instruction for students to share solution strategies for select 

mathematical problems in a whole class discussion format. During these class discussions, 

Ms. Larsano primarily calls on volunteers to share their problem solutions while also aiming 

to select students who, at a glance, appear to have different strategies for a given problem. 

Ms. Larsano never reports intentionally having a student share a flawed solution; however, 

flawed solutions are presented during whole class discussion in every lesson observed. In this 

section, Ms. Larsano’s primary response to flawed solutions shared in the context of whole 

class discussion will be explored. This will be followed by discussion of an additional, less 

robust pattern of response to students’ publicly shared flawed solutions.  

First, consider an excerpt from a Fall lesson in which Ms. Larsano is leading the class 

in discussing the problem, “23 candles are arranged with 3 in each row. How many rows are 

there?” Five students have put their solutions to the candle problem on the board, and Ms. 

Larsano has identified that Andre’s solution does not match the problem context: 

Andre’s work on the board: 

 

 O  O  O 

 O  O  O 

 O  O  O 

 O  O  O       24 ÷ 8 = 3 

 O  O  O 

 O  O  O 

 O  O  O 

 O  O  O 

 

Ms. Larsano: Let’s look at this one (Andre’s solution) over here. Look at what we 

have here. We have (pointing at each column) 8, 8, 8. What’s the total?  

A few students: Twenty-four. 

Ms. Larsano: What’s the total? 
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Several students: Twenty-four. 

Ms. Larsano: Twenty-four. But I started out with how many?  

A few students: Twenty-three. 

Ms. Larsano: Twenty-three. So, I have how many extra?  

A few students: One 

Ms. Larsano: One extra. So, I have to take one from here. (Erases the bottom right 

circle from Andre’s model.)  

 

 Andre’s work on the board, as modified by Ms. Larsano: 

 

 O  O  O 

 O  O  O 

 O  O  O 

 O  O  O      24 ÷ 8 = 3 

 O  O  O 

 O  O  O 

 O  O  O 

 O  O   

 

Ms. Larsano: And now it wouldn’t be equal, it wouldn’t be equal. We have to change 

it, because the problem says, “Twenty-three candles, 3 in each row”. And I have how 

many? (Pointing at each column) I have 8, I have 8, and I have 7. (Pause) You’re 

looking, you’re looking, you’re seeing it? (To Andre) I’m not telling you that you are 

wrong, I am just explaining to you what you did. So, he put that 24 divided by 8 

equals 3. So, he did have 3 groups. The only problem was that he put one more. But 

it’s okay, it’s a model.  

 

In this instructional episode, Ms. Larsano first asks the class a series of closed questions to 

establish that Andre’s model contains 24 objects instead of the 23 candles specified in the 

problem. This exchange is highly controlled by Ms. Larsano and does not invite Andre’s 

peers to evaluate his solution. Then Ms. Larsano revises the model by erasing one of the 

objects and pointing out that, with only 23 objects, the columns are not equal. Up to this 

point, Ms. Larsano’s actions indicate that having 24 objects represented does not match the 

problem. But, at this point, she turns to Andre and says, “I am not telling you that you are 

wrong…” which contradicts previous actions and introduces uncertainty regarding whether 

Andre’s approach is correct. Next Ms. Larsano addresses Andre’s number sentence, 24 ÷ 3 = 

8, and identifies that he has three groups. This is confusing because the 3 in the problem 
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denotes the number of candles in each row, not the number of groups. Before moving on to 

another student’s work, Ms. Larsano tells the students, “But it’s okay, it’s a model,” 

suggesting that if you make a model of some kind, it might be considered a correct answer. 

The correct and incorrect aspects of Andre’s model and number sentence are never made 

clear. While the revised model could be used to determine the solution to the rows of candles 

problem, this is not brought out. Furthermore, at the end of the episode, Andre’s number 

sentence that remains on the board does not match the problem context or the revised model. 

Throughout the year, Ms. Larsano’s primary response to students’ flawed solutions is 

to attempt to illuminate correct and incorrect aspects of the solutions with the goal of revising 

the flawed solutions to correct. However, this process of understanding and revising a flawed 

solution is often ended before a correct solution has been made clear. Along the way, Ms. 

Larsano sometimes appears to lose track of the logic of the solution and inserts comments or 

ideas that are mathematically incorrect or confusing. Additionally, Ms. Larsano is reluctant 

to publicly tell students their solutions are incorrect. This sometimes contributes to 

significant ambiguity regarding the correctness of a solution. Finally, Ms. Larsano typically 

maintains tight control over class discussions when flawed solutions are of focus. She does 

most of the talking and explaining, allowing students to participate primarily by answering 

closed questions.  

Another pattern observed when students share flawed solutions in the context of 

whole class discussion is that Ms. Larsano sometimes does not address an error in any way. 

For example, in a Fall lesson, students are focused on the task, “There are 24 cheerleaders in 

a big parade. Use your counters to represent the cheerleaders.” After students use counters to 

complete the task at their desks, Ms. Larsano calls on several students to draw pictures of 
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their solutions on the board. Kenny draws the 2 x 12 array displayed below. Following a 

discussion of how to write a number sentence to match other students’ arrays of 24 objects, 

Ms. Larsano requests that Kenny write a number model (number sentence) for the array he 

put on the board. Kenny approaches the board and writes 6 × 2 = 24 beside his array.  

  O O O O O O O O O O O O 

  O O O O O O O O O O O O   6 × 2 = 24 

 

While Kenny is at the board, Ms. Larsano continues with the lesson. She never comes back 

to Kenny’s array or the incorrect number model that he has written beside it. In the post-

observation interview for this lesson, Ms. Larsano confirms that she had not noticed Kenny’s 

error and that she is surprised that he would make such an error. This instance is an example 

of a pattern observed in Ms. Larsano’s teaching of not responding to students’ errors because 

she does not notice them. While this pattern is less robust than the primary response pattern 

shared, it is considered relevant because there are multiple instances of overlooking students’ 

publicly shared errors in Fall and Spring observations.  

In summary, when Ms. Larsano notices flawed solutions that surface in whole class 

discussion, her intention is to guide the class to analyze and revise the flawed solutions such 

that students can learn from their peers’ errors. However, this intention is often not realized 

because Ms. Larsano maintains tight control over these discussions and provides 

explanations that are conceptually unsupportive and fall short of making correct and incorrect 

aspects of flawed solutions clear. Additionally, there are instances when Ms. Larsano does 

not notice flawed aspects of solutions that are presented in class discussion and consequently 

does not respond at all.  
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Larsano response pattern 2, consequences for student thinking. Ms. Larsano’s 

handling of students’ flawed solutions in the context of whole class discussion often 

contributes to confusion over the correctness of solutions and mathematics concepts in 

general. When flawed solutions are of focus, it is noted that Ms. Larsano typically maintains 

tight control of discussion. While students are prompted to respond to particular questions 

posed by Ms. Larsano, the majority of questions asked are closed questions with specific 

answers. Consequently, there is limited opportunity for students’ ideas in relation to flawed 

solutions to enter into discussion segments focused on flawed solutions.  

When Ms. Larsano loses track of the logic of a solution and shares mathematically 

confusing or incorrect information, students rarely question her flawed or incorrect 

assertions. Instead, they appear to follow their teacher’s presentation of flawed information, 

writing in their notebooks and responding to the closed questions posed. Rather than thinking 

critically about the mathematical ideas put forward during discussions, Ms. Larsano’s 

students appear to accept information stated by their teacher as true.  

Finally, it is noted that Ms. Larsano’s discussion of particular flawed solutions is 

often ended before the correct and incorrect aspects of the given solution are made clear. This 

practice coupled with Ms. Larsano’s tendency to overlook flawed solutions displayed 

publicly on the board appears to contribute to confusion over the correctness of solutions as 

well as mathematics concepts in general. Overall, opportunities for development of student 

thinking during class discussion of flawed solutions in Ms. Larsano’s class are limited.  

 

 

Larsano response pattern 2, link to beliefs and knowledge. Throughout the year, Ms. 

Larsano expresses that she feels challenged and sometimes overwhelmed by the teaching 
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demands of the Everyday Mathematics lessons, especially during whole class discussions. 

Ms. Larsano’s handling of students’ flawed solutions during whole class discussions seems 

primarily related to her limited knowledge for teaching mathematics. However, facets of Ms. 

Larsano’s response are tied to her beliefs.  

Ms. Larsano consistently has difficulty making sense of students’ strategies and errors 

both on-the-spot during instruction and in interviews and professional development meetings 

away from the pressures of real-time teaching. In Ms. Larsano’s response to Andre’s flawed 

solution, it was her intention to help students see how the response was flawed. However, she 

was unable to unpack Andre’s solution in such a way that correct and incorrect aspects of the 

solution were illuminated. During this episode, Ms. Larsano lost track of the relationship 

between the word problem context and the problem solution being discussed. In order to 

provide a conceptually-grounded discussion of this flawed solution, Ms. Larsano would have 

needed to maintain mental focus on how to think about the problem in relation to its context, 

the student’s flawed solution, and a potential revised solution as well as the additional 

challenges of teaching related to orchestrating a whole class discussion. Mentally juggling 

these many cognitive demands consistently proves difficult for Ms. Larsano.  

A related problem is that Ms. Larsano does not generally anticipate the difficulties 

students are likely to have in a mathematics lesson. Consequently, Ms. Larsano only 

sometimes focuses her attention on looking for likely student errors. When asked why she 

did not respond to Kenny’s flawed solution (detailed in the instructional excerpt shared), Ms. 

Larsano expressed surprise that Kenny would write an incorrect number sentence. Ms. 

Larsano’s surprise indicates that she has underestimated the difficulty students have learning 
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to make sense of symbolic representations in relation to real-world and pictorial 

representations in initial multiplication instruction.  

Furthermore, observation of Ms. Larsano’s teaching suggests that her pedagogical 

knowledge for facilitating student discussion of mathematical ideas and debate over their 

correctness is limited. In the episode focused on Andre’s solution, Ms. Larsano dominates the 

discourse, limiting student participation to responding to closed questions. She seems to 

intentionally avoid telling the class that Andre’s response is incorrect, perhaps because she 

wants students to make this determination. However, Ms. Larsano is unable to orchestrate the 

discussion to make it likely to occur.  

When responding to students’ flawed solutions in the context of whole class 

discussion, Ms. Larsano’s mathematical knowledge for teaching appears to be the primary 

barrier to teaching practices supportive of student thinking. Yet, her beliefs also shape 

aspects of her response. First, consider Ms. Larsano’s practice of avoiding telling students 

their answers are incorrect in the public forum of whole class discussion. Ms. Larsano wants 

to be encouraging and supportive of students when they share ideas publicly. She 

intentionally avoids actions that she perceives might hurt students’ feelings or discourage 

them from participating in the future. Additionally, Ms. Larsano’s practice of maintaining 

tight control of class discussions when flawed solutions arise is, in part, related to her general 

belief in the role of the teacher being to provide explanation and direction on how to solve 

problems. In these ways, Ms. Larsano’s beliefs contribute to her ways of responding to 

students’ flawed solutions in the context of whole class discussion.  
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Larsano Response Pattern 3: Responding to Students’ Differing Answers to Teacher 

Questions 

 

 

Throughout class discussion of mathematics, it is a class norm for Ms. Larsano to 

pose closed questions to her class and for her students to respond to these questions through 

choral response. As would be expected, students sometimes call out multiple answers 

including correct and incorrect responses. Facets of Ms. Larsano’s response in this type of 

situation will be illustrated through two instructional excerpts, both from Fall lessons.  

First consider the following instructional episode in which Ms. Larsano is leading the 

class to replace the question mark in a multiplication-division diagram with the answer to the 

problem presented below:  

28 pennies are shared equally by 4 children. How many pennies per child is that? 

 
Children Pennies Per 

Children 

Total 

4 ? 28 

 

 

Ms. Larsano: So, over here (pointing to the “Pennies Per Children” section of the 

multiplication-division diagram), I have to say what? How many? How many 

pennies per child? 

Several students: (Students call out different answers.) Seven; six. 

Ms. Larsano: Six? 

Several students: No, seven.  

 

When asked what number should replace the question mark, several students call out 

suggestions, some suggesting six and others seven. Ms. Larsano then responds by repeating 

the answer, “Six?” in a questioning voice with a high pitched tone. Although Ms. Larsano 

does not directly state that six is an incorrect response, her habit of questioning a given 

answer with a high-pitched tone appears to cue students to the fact that the answer is 
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incorrect. In this instance, students seem to know that, if they initially answered six, they 

should change their answers to something different.  

The next instructional excerpt occurs after students have shared visual models used to 

solve the problem in which a boy with 36 pencils gives away 3 pencils to as many friends as 

possible. Students are to determine how many of the boy’s friends could get pencils. At this 

point, Ms. Larsano is leading the class to think about how this problem might be represented 

in a division number model (number sentence): 

Ms. Larsano: Let’s write a number model. We started with… 

Many students: Thirty-six.(Ms. Larsano writes “36 ÷” on the board.) 

Ms. Larsano: Then we divided by the number of pencils. How many was that? 

Many students: (Students call out different answers) Thirty-six; three; twelve. 

Ms. Larsano: 3. (Ms. Larsano adds to the board: 36 ÷ 3 = ) So, how many friends? 

A few students - Twelve.  

 

In this instance, students are having difficulty identifying a number sentence that matches the 

problem they have just finished solving. Ms. Larsano responds to students’ apparent 

confusion over which value to put to the right of the division sign by writing the correct 

answer on the board. In doing so, she seemingly ignores the incorrect suggestions.  

In summary, when students’ responses to questions vary, Ms. Larsano sometimes 

responds by repeating the incorrect answer in a questioning voice using a high pitched tone 

in the tail of her reply. This practice appears to cue students to change their answers. At other 

times, Ms. Larsano responds to students’ varying ideas by identifying the correct answer. 

Through these practices, Ms. Larsano maintains tight control of classroom discourse when 

students suggest differing ideas. Furthermore, she establishes herself as the primary judge of 

mathematical correctness by consistently resolving differences among student responses.  
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Larsano response pattern 3, consequences for student thinking. Ms. Larsano’s 

practice of resolving differences among students’ responses has multiple consequences for 

student thinking. First, an opportunity is missed to allow the presence of multiple answers to 

stimulate student reflection on the logic of answers posed. Teachers who delay resolution of 

differing responses to questions posed often encourage students to provide justification for 

their varying answers. This practice serves to promote reflection on problem solving 

processes and mathematical concepts, which often leads to a higher level of mental activity 

and deeper understanding. When differing answers arise in Ms. Larsano’s class, students 

look to their teacher to tell them which answer is correct. In relying on her, they engage in 

minimal reflection on their own mathematical thinking.  

Furthermore, Ms. Larsano’s practice of resolving differing student responses 

establishes the teacher as the mathematical authority in the classroom. Consequently, Ms. 

Larsano’s students do not appear to view it as part of their role to evaluate the correctness 

and incorrectness of their own or other students’ answers. This student belief plays out in 

many aspects of mathematics class activity. For instance, as students work on tasks, they 

only occasionally look to each other for support. Furthermore, students frequently look to 

adults to tell them whether or not their answers are correct. In general, students look to Ms. 

Larsano and other adults for affirmation of correctness rather than relying on their own 

mathematical reasoning or the insights of their peers.  

 

 

Larsano response pattern 3, link to beliefs and knowledge. Ms. Larsano’s practice of 

responding to students’ differing ideas by establishing mathematical correctness is related to 

her beliefs and knowledge. As has been discussed previously, Ms. Larsano holds the belief 
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that good teaching involves providing strong, explicit direction. This belief leads Ms. 

Larsano to maintain tight control over class discussions, positioning herself as arbiter of 

student ideas. Furthermore, Ms. Larsano believes that her students require fast-paced 

instruction. Hence, when students call out a mix of correct and incorrect responses to a 

question, Ms. Larsano aims to resolve that difference as quickly as possible. These beliefs 

contribute to Ms. Larsano’s practice of telling students correct answers.  

Yet, at the end of the year, Ms. Larsano expresses a value in inclusion of student 

ideas in class discussions as she talks about how working with the Everyday Mathematics 

program has changed her teaching:   

We’re letting them also give the ideas or give the way or give the strategy, so I think 

we’re a little bit more open to suggestions from the kids than maybe we were before 

than maybe I was before.  I was taught this is what you teach and we learn, and that’s 

it. But now everybody’s involved in the learning, and we learn a lot from the kids…I 

think it pumps up their self-esteem, and it also helps them think.  If they’re giving 

ideas, they’re thinking of what they’re doing.  They’re giving meaning to what 

they’re doing.   

 

This quote suggests that Ms. Larsano has come to see benefits of students’ mathematical 

ideas being a part of mathematics learning, especially during class discussions. However, 

organizing discussions to include students’ mathematical ideas is a new way of teaching for 

Ms. Larsano. It is possible that she has not considered the negative consequences of telling 

students correct answers or how she might respond differently to the situation of differing 

student answers.  

Thus, Ms. Larsano’s practice of resolving students’ differing answers can also be 

linked to her limited knowledge base related to leading reform-oriented mathematics 

discussions. While she has cultivated routines for having students share their multiple 

strategies, Ms. Larsano has not developed routines that encourage students to work as a 
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community to resolve differing mathematical ideas through discussion and debate. 

Furthermore, interviews with Ms. Larsano suggest that her pedagogical content knowledge 

related to students’ difficulties with specific mathematics topics and problem solving 

processes is limited. Consequently, she has difficulty identifying when it would be 

instructionally beneficial to stress particular mathematical ideas through extended focus on 

incorrect student answers. In these ways, Ms. Larsano’s practice of maintaining control over 

resolving student difficulties is related to her knowledge.  

 

 

Summary of Ms. Larsano’s Response to Student Difficulty 

 

 

Three patterns portray Ms. Larsano’s typical response to student difficulties during 

mathematics instruction. First, Ms. Larsano’s response to difficulties observed during work 

time involves providing brief, procedurally-focused suggestions to students and allowing 

students to enter class discussions without having devised personal solutions. In the context 

of class discussions, Ms. Larsano responds to flawed solutions that are shared by attempting 

to lead students to analyze the solutions and demonstrate how they can be revised. But 

discussion of flawed solutions is typically ended by Ms. Larsano before correct and incorrect 

aspects of the solutions are made clear. Therefore, the benefits to this approach are not 

realized. Finally, when students’ responses to questions during class discussion differ, Ms. 

Larsano typically maintains control over resolving differing ideas and establishing 

mathematical correctness.  

Taken together, Ms. Larsano’s ways of responding to student difficulties limit the 

likelihood that students will develop reform-oriented learning practices and dispositions as 

well as conceptual understanding of mathematics. By encouraging students to apply 
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mathematical procedures without understanding, Ms. Larsano encourages students to view 

mathematics as a series of unrelated procedures and tricks to memorize. Furthermore, 

students become reliant on others for mathematical knowledge rather than learning to rely on 

their own prior knowledge to make sense of mathematics problems. These beliefs are 

reinforced by Ms. Larsano’s practices whenever difficulties surface in class discussions. By 

maintaining tight control over class discussion and positioning herself as the primary 

authority of mathematical correctness, Ms. Larsano inadvertently encourages her students to 

develop a reliance on teacher direction. Additionally, these practices minimize opportunities 

for students to develop mathematical reasoning and critical reflection. Another problem is 

that mathematical concepts and the correctness of particular solutions are often left 

ambiguous at the end of each math period, which leads to student confusion and 

misunderstanding. These factors contribute to Ms. Larsano’s students’ difficulties with 

problem solving tasks throughout the year and their limited engagement during class 

discussion. 

Ms. Larsano’s response to students’ difficulties appears linked to both her beliefs and 

knowledge. Ms. Larsano’s beliefs seem most related to her expectations for students and the 

ways she structures learning experiences. In particular, Ms. Larsano’s teaching practices 

seem to be strongly influenced by her belief in teacher-centered instruction coupled with her 

belief in students’ limited capabilities to approach novel problems without teacher support. 

These beliefs explain Ms. Larsano’s low expectations of students as they encounter novel 

kinds of problems. Since she expects that students will require teacher support to be 

successful, Ms. Larsano is not surprised or upset when some students do not solve problems 

prior to group discussion. In whole class discussions, Ms. Larsano maintains tight control of 
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the discourse, in part, because she believes that good teaching involves the teacher providing 

models of and explanations for how to solve problems correctly. Ms. Larsano’s domination 

of classroom discourse and mathematical correctness is also a reflection of her limited 

knowledge of reform-oriented teaching strategies that orchestrate mathematics learning 

around student discussion and debate over their peers’ mathematical ideas. Furthermore, Ms. 

Larsano’s limited knowledge of mathematics seems most responsible for instances when her 

review of flawed solutions includes mathematically incorrect or confusing information.   

Ms. Larsano’s knowledge and beliefs are also both in play when she provides 

procedurally-focused support. Ms. Larsano believes that an important part of teaching 

mathematics is to drill students until they remember mathematical procedures that yield 

correct answers. Furthermore, Ms. Larsano views mathematical understanding as the ability 

to get correct answers, suggesting that she makes little distinction between remembering 

procedures and conceptual understanding. While Ms. Larsano’s practice of providing 

procedurally-focused support is linked to her beliefs, it seems rooted in Ms. Larsano’s base 

of knowledge for teaching mathematics. In interviews and workshops, Ms. Larsano often 

struggles to explain the mathematical underpinnings of particular procedures that she 

encourages students to use. At the same time, she views non-standard strategies that are more 

conceptually explicit than standard algorithms to be confusing. In general, Ms. Larsano 

experiences personal struggles with understanding mathematics conceptually. Therefore, 

during on-the-spot teaching situations, the knowledge that Ms. Larsano has available to draw 

on is primarily procedural.  
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Situating Ms. Larsano’s Case Story in Broader Measures of Teaching 

 

 

In the previous section, a theoretical explanation was presented suggesting how Ms. 

Larsano’s teaching practices in response to student difficulties are linked to her beliefs and 

knowledge during the year of this study. Teacher response to student difficulties is one of 

many aspects of reform-oriented mathematics instruction that contributes to the overall 

quality of mathematics teaching and learning more broadly defined. Therefore, this section 

will present results from two more global measures of Ms. Larsano’s mathematics teaching. 

First, data collected following each core classroom observation using the Reformed Teaching 

Observation Protocol (RTOP) (Sawada et al., 2002) will be presented. This instrument is 

designed to measure the degree to which a given mathematics lesson reflects principles and 

practices associated with reform-based mathematics instruction. Second, aggregated class 

data from the mathematics section of the State Standardized Test (SST) will be presented in 

relation to aggregated data at the school, district, and state levels. Taken together, these 

findings will allow Ms. Larsano’s patterns of response to student difficulty to be considered 

within a more general understanding of her mathematics teaching and students’ learning.  

 

 

Larsano: Adherence to Reformed Teaching 

 

 

The degree to which Ms. Larsano’s mathematics instruction reflects current reforms 

in mathematics education was measured using the Reformed Teaching Observation Protocol 

(RTOP) (Sawada et al., 2002). The RTOP is a criterion-referenced instrument containing 25 

items, divided into five subscales: (1) lesson design and implementation, (2) the level of 

significance and abstraction of the content, (3) the processes that students use to manipulate 
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information, (4) the classroom culture as observed through the nature of communicative 

interactions, and (5) the nature of student-teacher relationships. Following each core 

observation in Ms. Larsano’s classroom, each of the 25 items on the RTOP was rated on a 

scale from 0 (not observed) to 4 (very descriptive). Next, sums were calculated for ratings on 

each subscale as well as the total instrument to assess the degree to which Ms. Larsano’s 

mathematics instruction was reformed, with higher scores reflecting a greater degree of 

reform. Consequently, subscale scores on the RTOP range from 0 – 20, and total instrument 

scores range from 0 – 100. Aggregated results from core observations of Ms. Larsano’s 

mathematics teaching in the Fall and Spring are presented in Table 22 

On the lesson design and implementation subscale, the mean scores for Ms. Larsano’s 

instruction are 13.0 in the Fall and 11.0 in the Spring. All lessons are designed to allow 

students to devise problem solutions using their prior knowledge, thus stressing exploration 

prior to formal presentation. However, it is typical for some of Ms. Larsano’s students to sit 

idle during this exploration time, limiting the degree to which student exploration actually 

occurs. Within class discussions of students’ solutions, Ms. Larsano typically limits student 

contributions to sharing of solutions and takes on the primary role of providing commentary 

and analysis of solutions shared. In this way, Ms. Larsano is primarily responsible for 

determining the focus and direction of lessons in which students are minimally engaged as 

members of a learning community. 

The second RTOP subscale focuses on what the contents of a lesson suggests about a 

teacher’s propositional knowledge, meaning her mathematical knowledge for teaching 

particular content. On this subscale, Ms. Larsano’s mean scores are 12.5 in the Fall and 11.5 

in the Spring. All lessons are found to involve fundamental mathematics and draw on 
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Table 22 

Ratings of Ms. Larsano’s Mathematics Teaching on the RTOP 

RTOP Items by subscale Fall  Spr 

Subscale 1: Lesson design and implementation   

 

1. The instructional strategies and activities respected students’ prior knowledge and preconceptions 

inherent therein. 3.0 2.0 

 2. The lesson was designed to engage students as members of a learning community. 2.0 2.0 

 3. In this lesson, student exploration preceded formal presentation.  3.0 2.0 

 

4. The lesson encouraged students to seek and value alternative modes of investigation and problem 

solving. 3.0 3.0 

 5. The focus and direction of the lesson was often determined by ideas originating with students.  2.0 2.0 

 Subscale 1 score 13.0 11.0 

     

Subscale 2: Content, propositional knowledge   

 6. The lesson involved fundamental concepts of the subject.  3.0 3.0 

 7. The lesson promoted strongly coherent conceptual understanding. 2.0 2.0 

 8. The teacher had a solid grasp of the subject matter content inherent in the lesson.  2.5 1.5 

 

9. Elements of abstraction (i.e., symbolic representations, theory building) were encouraged when it was 

important to do so. 2.0 2.0 

 10. Connections with other content disciplines and/or real world phenomena were explored and valued.  3.0 3.0 

 Subscale 2 score 12.5 11.5 

     

Subscale 3: Content, procedural knowledge   

 

11. Students used a variety of means (models, drawings, graphs, concrete materials, manipulatives, etc.) 

to represent phenomena. 3.0 2.5 

 12. Students made predictions, estimations, and/or hypotheses, and devised means for testing them. 1.5 1.5 

 

13. Students were actively engaged in thought-provoking activity that often involved the critical 

assessment of procedures. 2.0 2.0 

 14. Students were reflective about their learning. 1.0 1.5 

 15. Intellectual rigor, constructive criticism, and challenging of ideas were valued. 1.0 1.0 

 Subscale 3 score 8.5 8.5 

     

Subscale 4: Classroom culture, communicative interactions   

 

16. Students were involved in communication of their ideas to others using a variety of means and 

media. 2.5 2.0 

 17. The teacher’s questions triggered divergent modes of thinking.  2.5 2.0 

 

18. There was a high proportion of student talk and a significant amount of it occurred between and 

among students.  2.0 2.0 

 19. Student questions and comments often determined the focus and direction of classroom discourse.  2.0 2.5 

 20. There was a climate of respect for what others had to say.  3.0 2.5 

 Subscale 4 score 12.0 11.0 

     

Subscale 5: Classroom culture, student/teacher relationships   

 21. Active participation of students was encouraged and valued.  2.5 2.0 

 

22. Students were encouraged to generate conjectures, alternative solution strategies, and ways of 

interpreting evidence.  1.5 2.0 

 23. In general the teacher was patient with students.  2.0 2.5 

 24. The teacher acted as a resource person, working to support and enhance student investigations.  2.0 2.0 

 25. The metaphor “teacher as listener” was very characteristic of this classroom. 2.0 2.5 

 Subscale 5 score 10.0 11.0 

     

Total score 56.0 53.0 
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connections to real-world phenomena. However, lessons inconsistently promote coherent 

conceptual understanding of the fundamental mathematics of focus, including understanding 

of symbolic representations. Finally, Ms. Larsano’s instruction suggests that she holds 

moderate knowledge of the content of focus in Fall lessons and weak knowledge of the 

content of focus in Spring lessons.   

The third RTOP subscale focuses on what the contents of a lesson suggests about a 

teacher’s procedural knowledge. For the RTOP instrument, this means the quality of the 

lesson in terms of an inquiry approach to learning. On this subscale, Ms. Larsano’s 

instruction rated a mean score of 8.5 in the Fall and Spring. At both data points, Ms. 

Larsano’s students are collectively observed to use multiple means to represent mathematical 

ideas. However, students are only sometimes observed engaging in activities of inquiry such 

as making predictions and devising means for testing them, critically assessing procedures, 

and reflecting on learning. Furthermore, the presence of student debate of mathematical ideas 

is minimal.  

The fourth RTOP subscale focuses on communicative interactions that are part of the 

classroom culture. On this subscale, the mean scores for Ms. Larsano’s instruction are 12.0 in 

the Fall and 11.0 in the Spring. At both data points, Ms. Larsano maintains strong control 

over the classroom discourse. Mathematics tasks are designed to trigger divergent modes of 

thinking, but questions posed by Ms. Larsano are primarily low-level, closed questions. 

During class discussion, students primarily participate by presenting their mathematical 

solutions and answering teacher questions. While students are typically polite to their 

classmates during these discussions, there is limited evidence of student engagement. This 
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suggests that students are limited in the degree to which they respect and value the 

contributions of their peers.  

The last RTOP subscale focuses on the classroom culture in terms of the teacher’s 

role and the roles students are encouraged to take. On this subscale, the mean scores for Ms. 

Larsano’s instruction are 10.0 in the Fall and 11.0 in the Spring. Active participation of 

students is valued by Ms. Larsano but inconsistently encouraged through specific 

instructional strategies. Furthermore, Ms. Larsano inconsistently acts as a resource person 

during student investigations and only sometimes encourages students to generate 

conjectures and alternative solution strategies. Finally, Ms. Larsano sometimes exhibits 

patience and takes on the role of a listener during instruction. But, at other times, she limits 

time for students to work on problems or answer questions and gives limited attention to 

students’ ideas.   

Ms. Larsano’s mean scores on the total RTOP instrument are 56.0 in the Fall and 53.0 

in the Spring. These ratings suggest that Ms. Larsano’s mathematics instruction moderately 

reflects the principles of reform at both data points.  

 

 

Larsano: Student Achievement 

 

 

Aggregated student scores on the mathematics section of the State Standardized Test 

(SST) were used to measure the mathematics achievement of Ms. Larsano’s students. The 

SST is a criterion-referenced achievement test in which students receive scores between 1 

and 5, with a score of 3 or higher considered passing. Since students first take the SST in 

third grade, comparable scores of previous mathematics achievement are not available for 

Ms. Larsano’s students. Without baseline data, only a tentative understanding of the 
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relationship between Ms. Larsano’s teaching and her students’ mathematics achievement is 

possible. Also, caution is warranted when comparing the SST scores of Ms. Larsano’s 

students to the other third-grade classes at Lincoln Heights, as each teacher studied has a 

class with demographic particularities and a statistically small number of students. In the case 

of Ms. Larsano’s class of LEP students, it should be known that testing modifications (e.g., 

the students could request that test items be read to them) were made to compensate for 

students’ English-language needs. With these caveats in mind, SST scores for Ms. Larsano’s 

students are presented in Table 23 along with comparison data for third-grade students at 

Lincoln Heights, the school district, and the state.  

 

Table 23 

Comparison of Larsano Student Achievement on SST to School, District, and State 

   
Achievement Level (%) 

  

Group  Students  1 2 3 4 5  Passing Score (%) 

Ms. Larsano's Class 18  33 24 24 19 0  43 

Lincoln Heights 3rd Grade 88  24 27 33 15 1  49 

School District 3rd Grade 13,713  18 16 33 24 9  66 

State 3rd Grade 203,037  15 17 34 25 9  68 

Note. Scores of 3 or higher are considered passing.  

 

 

 

Of the 18 students in Ms. Larsano’s class who took the SST, 43% achieve a passing 

score of 3 or higher on the mathematics section of the SST. This is in comparison to passing 

scores achieved by 49% of Lincoln Heights third graders, 66% of the third graders in the 

school district, and 68% of the third graders in the state. Hence, the mathematics 

achievement of Ms. Larsano’s class on this test is slightly lower than that of the third graders 

at Lincoln Heights and considerably lower than third graders at the district and state levels.  
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Summary of Global Measures of Ms. Larsano’s Mathematics Instruction 

 

 

Taken together, results from the Reformed Teaching Observation Protocol (RTOP) 

and the State Standardized Test (SST) suggest that Ms. Larsano’s classroom is a place where 

there is inconsistent adherence to reformed teaching practices and mixed student learning 

outcomes. RTOP results suggest that Ms. Larsano’s mathematics teaching moderately 

reflects the principles of mathematics reform throughout the year. Yet, lessons observed 

promote limited conceptual understanding and provide evidence that Ms. Larsano’s grasp of 

the mathematics is weak, especially in the Spring when multidigit multiplication is of focus. 

Consequently, Ms. Larsano’s attempts to provide reform-oriented mathematics instruction 

sometimes falls short of facilitating generative understanding of mathematics for students. 

The mathematics achievement data for Ms. Larsano’s class provides further evidence to 

support this claim. Aggregated SST scores for Ms. Larsano’s class indicate that 43% of her 

students are performing at or above grade level. This finding suggests that Ms. Larsano’s 

students’ understanding of the mathematics concepts and skills of focus in third grade is 

mixed. And the high percentage of LEP students in the class is only part of the reason why. 

Ms. Larsano could benefit from more professional development with a focus on increasing 

her propositional knowledge as well as teaching strategies to get the full benefit from a 

reform-based curriculum. 

 

The Case of Ms. Rosena 

 

 

 Ms. Rosena begins the year of this study new to third grade, having had most of her 

teaching experiences at the fourth and fifth grade levels. Ms. Rosena readily talks about her 

observation that the fifth grade students she taught in the previous year had many gaps in 
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their mathematical understanding. She attributes these problems to inadequate foundation in 

primary grade mathematics instruction and is hopeful that the new Everyday Mathematics 

program will support her efforts to get across these foundational mathematical ideas to third 

graders. Although Ms. Rosena focused her recent Masters degree studies on deepening her 

knowledge for teaching language arts, she expresses interest in and enthusiasm for teaching 

mathematics. Ms. Rosena did not consider herself to be a strong math student in school, but 

reports that her teaching assignments in upper elementary grades forced her to revisit and 

make sense of the important mathematics encountered in the elementary curriculum such that 

she now considers herself a competent teacher of elementary mathematics.  

 This year Ms. Rosena is assigned to teach a class of ten students who have been 

retained in third grade due to failing scores on the State Standardized Test (SST). Perhaps 

because Ms. Rosena is skillful at classroom management, her class includes a few students 

who have a history of being particularly disruptive due to behavioral and emotional needs. In 

addition, two students have on-going English-language needs, which Ms. Rosena is able to 

address through her fluent Spanish. In general, Ms. Rosena finds her students to be reluctant 

learners, requiring much prodding and encouragement to engage in instructional tasks.  

 The case of Ms. Rosena that follows is presented in four sections. In the first two 

sections, evidence of Ms. Rosena’s mathematics-related beliefs and knowledge at the 

beginning and end of the year will be presented. Next, the relationship among Ms. Rosena’s 

beliefs, knowledge, and classroom practice will be explored through a case story focused on 

her patterns of response to student difficulties. Finally, global measures of Ms. Rosena’s 

adherence to reform-based mathematics teaching and student achievement will be presented 



 

 250 

so that case story findings can be considered in relation to these broader measures of 

teaching. 

 

 

Ms. Rosena’s Beliefs about Mathematics Teaching and Learning 

 

 

Ms. Rosena’s beliefs about mathematics teaching and learning were measured at the 

beginning and end of the school year using the IMAP Web-Based Beliefs-Survey
 
 (Ambrose 

et al., 2003). The IMAP instrument requires teachers to respond to instructional scenarios in 

an open-ended format, allowing respondents to emphasize and downplay issues of personal 

importance. A series of rubrics are then used to measure survey responses in relation to seven 

target beliefs considered central to reform-oriented mathematics instruction. The degree to 

which Ms. Rosena’s survey responses provide evidence that she holds each target belief at 

the beginning and end of the school year is presented in Table 24. In the sections that follow, 

evidence of Ms. Rosena’s adherence to each reform-oriented belief at the beginning and end 

of the year will be presented.   

 

  

Rosena: Belief about the Nature of Mathematics (IMAP Belief 1) 

 

  

At the beginning and end of the year, Ms. Rosena’s responses on the IMAP survey 

provide weak evidence that she holds the belief that mathematics is a web of interrelated 

concepts and procedures. In response to a scenario presenting multiple ways of solving a 

multidigit addition problem and asking which strategies she would like students to learn 

about, Ms. Rosena indicates that she would expose students to all five strategies at both data 

points. This suggests that Ms. Rosena perceives exploration of multiple strategies to be  
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Table 24 

Ms. Rosena’s IMAP Web-Based Beliefs-Survey Results 

Belief 

Beginning 

of year 

End of 

year 

Belief 1: Mathematics is a web of interrelated concepts and procedures (and school 

mathematics should be too).  
1 1

a
 

Belief 2: One’s knowledge of how to apply mathematical procedures does not 

necessarily go with understanding of the underlying concepts. 
1 2 

Belief 3: Understanding mathematical concepts is more powerful and more generative 

than remembering mathematical procedures.  
2 3 

Belief 4: If students learn mathematical concepts before they learn procedures, they 

are more likely to understand the procedures when they learn them. If they learn the 

procedures first, they are less likely to ever learn the concepts. 

1 2
a
 

Belief 5: Children can solve problems in novel ways before being taught how to solve 

such problems. Children in primary grades generally understand more mathematics 

and have more flexible solution strategies than adults expect.  

1 3 

Belief 6: The ways children think about mathematics are generally different from the 

ways adults would expect them to think about mathematics. For example, real-world 

contexts support children’s initial thinking whereas symbols do not.  

2 2 

Belief 7: During interactions related to the learning of mathematics, the teacher 

should allow the children to do as much of the thinking as possible.  
0 3 

Note. 0 = No evidence; 1 = Weak evidence; 2 = Moderate evidence; and 3 = Strong evidence. 
a
 Evidence from classroom observations suggests that the end of year ratings underestimate Ms. Rosena’s 

adherence to beliefs 1 and 4. Classroom observations provide strong evidence of these beliefs. 

  

 

  

supportive of learning particular mathematical ideas, which implicitly implies a view of 

mathematics as interrelated. When prompted to justify her suggested ordering of strategies in 

a unit on multidigit addition, Ms. Rosena describes a progression that appears to start with 

the strategy she thinks students will grasp most readily to the strategy she thinks students will 

have the most difficulty understanding:  

Begin with manipulatives, then with easier rounding, then with a more complicated 

approach to rounding, then the "traditional algorithm" and finally a single strategy 

that does work with a student after the rest of the class understands the rest. 

 

While this justification hints at mathematical concepts underlying the different strategies, 

Ms. Rosena does not demonstrate an interconnected view of mathematics by explicitly 

identifying connections among strategies.  
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The lack of focus on strategy-to-strategy connections in Ms. Rosena’s survey 

response is not reflective of her instructional practice. Classroom observation reveals that 

Ms. Rosena does make the relationships among mathematical strategies a regular focus of 

class discussions. Therefore, Ms. Rosena’s adherence to the belief that mathematics is an 

interrelated web of concepts and procedures appears to be underestimated by the IMAP 

instrument, especially at the end of the year.  

 

 

Rosena: Belief about Distinction between Understanding Concepts and Applying 

Mathematical Procedures (IMAP Belief 2)  

 

 

At the beginning of the year, there is weak evidence that Ms. Rosena holds the belief 

that one’s knowledge of how to apply mathematical procedures does not necessarily go with 

understanding of underlying concepts. In response to instances of students using traditional 

U.S. algorithms, Ms. Rosena sometimes notes that students who use these algorithms may do 

this by rote. However, when asked to reveal what she is thinking about when judging 

understanding, Ms. Rosena indicates that she is thinking about whether a student has gotten a 

correct answer.  

At the end of the year, Ms. Rosena’s responses provide moderate evidence that she 

believes in a distinction between conceptual understanding and being able to apply 

mathematical procedures. At this data point, Ms. Rosena indicates clearly and consistently 

that many students use standard algorithms without understanding. Additionally, she suggests 

that students should only be permitted to use standard algorithms if they can explain how 

they work. However, as at the beginning of the year, Ms. Rosena continues to think about 

understanding as the ability to get correct answers. Taken together, these responses suggest 
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that Ms. Rosena is sensitive to the possibility that students may not understand standard 

procedures, but this sensitivity would not necessarily extend to non-standard mathematical 

procedures.  

 

 

Rosena: Belief about Source of Generative Mathematical Understanding (IMAP Belief 3)  

 

 

At the beginning of the year, there is moderate evidence that Ms. Rosena holds the 

belief that understanding mathematics concepts is more powerful and more generative than 

remembering mathematical procedures. She clearly identifies that understanding concepts is 

important, but she also considers it important for her students to learn standard computational 

procedures because they are efficient. In response to a video clip of a teacher providing step-

by-step procedural instruction on the fraction division algorithm, Ms. Rosena asserts that the 

student recipient of the instruction should successfully learn division of fractions given 

enough practice. Then, after observing a follow-up video in which the student is unsuccessful 

with a similar fraction division problem, Ms. Rosena indicates that the student would benefit 

from conceptual development with manipulatives. Overall, at the beginning of the year, Ms. 

Rosena appears to view conceptual understanding as more generative than procedural 

knowledge alone, but she also places a high value on knowing standard procedures with or 

without underlying conceptual understanding.   

In contrast, at the end of the year, Ms. Rosena’s responses indicate considerably less 

concern with whether or not students master standard algorithms. Instead, she insists that 

what is important is that students are able to explain why the standard or non-standard 

procedures they use to solve problems work. In comparing the standard U.S. subtraction 

algorithm and a non-standard subtraction method that is more conceptually explicit, Ms. 
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Rosena notes that students who use the standard procedure are likely to make more errors 

because the conceptual-basis of the procedure is not as clear. Taken together, Ms. Rosena’s 

responses at the end of the year provide strong evidence that she believes understanding 

mathematical concepts is more powerful and more generative than remembering 

mathematical procedures.  

 

 

Rosena: Belief about Consequences of Teaching Concepts/Procedures First (IMAP Belief 4)  

 

 

At the beginning of the year, there is weak evidence that Ms. Rosena holds the beliefs 

that students are more likely to understand mathematical procedures if they first understand 

related mathematical concepts. Ms. Rosena consistently indicates a preference for using 

manipulatives during the early stages of instruction on a mathematical topic. However, she 

does not explicitly connect the use of manipulatives to development of conceptual 

understandings. 

At the end of the year, Ms. Rosena’s survey responses provide increased evidence 

(moderate evidence) of adherence to the belief that focusing on development of concepts 

prior to procedures increases the likelihood that students will understand procedures. Ms. 

Rosena indicates that she would order sharing of strategies in a unit on multidigit addition 

from most concrete (manipulatives) to most abstract (standard algorithm), and she justifies 

her inclusion of each strategy by noting its conceptual value. This response represents a more 

explicit connection to the role of conceptual understanding than was present at the beginning 

of the year.  

At both data points, Ms. Rosena’s responses to the scenarios used to evaluate this 

belief are sparse. Classroom observations reveal that Ms. Rosena places significant focus on 
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development of conceptual understanding prior to focus on procedures, especially in Spring 

lessons. Therefore, Ms. Rosena’s IMAP responses appear to underestimate her belief in the 

importance of teaching concepts prior to focus on procedures, especially at the end of the 

year.  

 

 

Rosena: Belief about Children’s Problem Solving Capabilities (IMAP Belief 5)  

 

 

At the beginning of the year, there is weak evidence that Ms. Rosena holds the belief 

that children can solve problems in novel ways before being taught how to solve such 

problems. She indicates in some responses that, given tools like manipulatives, some students 

can solve some novel problems without instruction. However, she also indicates that most 

children will need teacher guidance to be able to solve mathematical problems. For instance, 

Ms. Rosena indicates that most first grade students would require teacher instruction to solve 

a contextualized multiplication problem.  

In contrast, at the end of the year, Ms. Rosena asserts that children can devise novel 

solution strategies in response to problems, as long as they have conceptual tools available 

and their teachers give them the freedom to think about problems in their own ways. When 

asked if first graders could solve a contextualized multiplication problem at this data point, 

Ms. Rosena asserts that they could as long as they were permitted to use manipulatives or 

draw a picture of the situation. At the end of the year, Ms. Rosena’s survey responses provide 

strong evidence that she believes children are capable of solving problems without being 

taught how to solve them.  
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Rosena: Belief about Children’s Ways of Thinking about Mathematics (IMAP Belief 6) 

 

 

At the beginning and end of the year, there is moderate evidence that Ms. Rosena 

believes that the ways children think about mathematics are generally different from the 

ways adults think about mathematics. For instance, at both data points, Ms. Rosena asserts 

that manipulatives and real-world contexts are supportive of students’ initial thinking about 

mathematical topics. After viewing a video clip of a teacher providing step-by-step 

procedural instruction on fraction division at the beginning of the year, Ms. Rosena indicates 

that the teaching is too mechanical. She suggests that, instead of instruction focused on the 

mechanics of fraction division, the student would benefit from use of visuals to show how 

and why the fraction division procedure works. While Ms. Rosena’s discussion of ways 

students can be supported in developing initial understanding of mathematics concepts 

suggests that she believes students think differently than adults, at neither data point does she 

explicitly mention the difficulty students have making sense of symbolic representations. 

Because her responses overlook this important difference between the mathematical thinking 

of children and adults, her overall adherence to this belief is not considered strong.  

 

 

Rosena: Belief about Teacher’s Role in Supporting Student Learning (IMAP Belief 7)  

 

 

At the beginning of the year, there is no evidence that Ms. Rosena believes that the 

teacher should allow children to do as much thinking as possible during mathematics 

instruction. In her own classroom practice, Ms. Rosena explains that she always shows 

students exactly how to solve mathematical problems and then guides students to solve 
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problems by following her model. She indicates the belief that, if she did not provide explicit 

instruction on how to solve problems, most students would not know where to start.  

In contrast, Ms. Rosena’s IMAP responses at the end of the year suggest a complete 

turn-around in this belief. In discussing why she now asks students to solve problems before 

providing explicit instruction on how to solve them, Ms. Rosena states the following: 

I now know better. I can see how I was influencing their thinking when I was giving 

them the way to solve problems. After I tried asking them to come up with a way to 

solve the problem, I was able to do different things: evaluate how much they really 

know, what would be the problems I will have with the lessons ahead, and have them 

understand that there are other ways besides theirs, to come up with the solution. 

 

At the end of the year, Ms. Rosena indicates that teachers should avoid presenting 

particular problem solving strategies until students have been given the freedom to solve 

problems in their own ways. Therefore, Ms. Rosena’s responses at the end of the year 

provide strong evidence that she believes that the teacher’s role is to orchestrate learning 

such that students do as much mathematical thinking as possible.  

 

 

Summary of Ms. Rosena’s Beliefs 

 

 

  At the beginning of the year, Ms. Rosena’s responses on the IMAP web-based survey 

suggest that she does not strongly adhere to any of the seven reform-oriented beliefs 

measured. There is no evidence that Ms. Rosena believes teachers should allow children to 

do as much thinking as possible during mathematics instruction, and there is only weak 

evidence that she believes children can devise novel solutions to mathematics problems 

without being shown how to solve them. Ms. Rosena asserts that conceptual understanding 

helps students to understand mathematics more than simply remembering procedures. She 

values use of manipulatives and real-world contexts to support children’s initial thinking 
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about mathematics topics. However, Ms. Rosena also places significant value in student 

mastery of standard algorithms and indicates that she is mainly looking for students to 

achieve correct answers when she thinks about “understanding.”  

By the end of the year, there is evidence that Ms. Rosena’s beliefs have shifted 

significantly toward a reform-orientation. Most notably, at the end of the year, there is strong 

evidence that Ms. Rosena believes students are capable of solving problems in novel ways 

without explicit teacher instruction on how to solve such problems. Reflecting this change, 

Ms. Rosena indicates that the teacher’s role is one of supporting students by allowing them to 

do as much thinking as possible during interactions related to mathematics instruction. In 

particular, Ms. Rosena asserts that students should be given opportunities to devise their own 

ways of solving problems before being shown particular strategies by the teacher. 

Furthermore, there is greater evidence at the end of the year that Ms. Rosena believes that 

understanding mathematical concepts is more powerful and more generative than 

remembering mathematical procedures.  

 

Ms. Rosena’s Knowledge of Mathematics for Teaching 

 

 

Ms. Rosena’s knowledge of mathematics for teaching with a reform-orientation was 

measured at the beginning and end of the year using data from two parts of the Teacher 

Knowledge interview. In particular, this interview explores teachers’ knowledge related to 

the teaching of multiplication and division to third-grade students. First, Ms. Rosena’s open-

ended discussion of teaching and learning multiplication will be presented. In this part of the 

interview, teachers were prompted to describe important understandings and common student 

difficulties related to the learning of multiplication. In addition, interview questions direct 
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teachers to discuss how children develop the important understandings identified and how 

multiplication should be taught. Next, Ms. Rosena’s responses to four classroom scenarios 

will be described. These classroom scenarios probe specific aspects of teachers’ knowledge 

related to the teaching and learning of multiplication and division, specifically teachers’ 

knowledge of nonstandard strategies for multidigit multiplication, knowledge of a common 

student difficulty underlying the standard U.S. algorithm and strategies for addressing this 

difficulty, and teachers’ abilities to interpret and respond to student work. 

 

 

Rosena: Open-ended Discussion of Teaching and Learning Multiplication 

 

 

 At the beginning of the year, Ms. Rosena reports that third-grade instruction on 

multiplication should help students to see a picture for a given fact in their mind’s eye, and 

then it should support students with memorizing the basic multiplication facts. She asserts 

that this is accomplished instructionally by allowing ample time for students to work with a 

variety of manipulatives to build physical models of multiplication. Then instruction should 

turn to practice of multiplication facts through drill and games. Ms. Rosena suggests that 

students’ difficulties with multiplication most often result from attempts to memorize facts 

before being able to “see” a picture of multiplication. She repeatedly stresses the importance 

of giving students the time to “mess around” with materials to internalize the conceptual 

picture of multiplication. Ms. Rosena identifies knowledge of addition as a prerequisite to 

learning multiplication. 

At the end of the year, Ms. Rosena identifies several mathematical ideas that students 

should come to understand as they study multiplication in third grade: that multiplication is a 

group of things repeated a certain number of times, the relationship between multiplication 
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and addition, the relationship between multiplication and division, and the relationship 

between real-world situations and visual and symbolic representations of multiplication. In 

addition, Ms. Rosena indicates that it is important for students to develop strategies for 

solving multiplication problems that move beyond direct modeling and repeated addition, but 

the only alternative strategy suggested is recall.  

In order to develop students’ understanding of multiplication, Ms. Rosena asserts that 

students should first work to make physical models of real-world multiplication situations to 

which they can relate. Then the idea of multiplication and multiplication notation should be 

developed through a focus on these situations and models. As students use their models to 

find products, Ms. Rosena suggests that instruction should encourage students to move 

beyond counting by ones to using more efficient count-by and repeated addition strategies. 

As students become more comfortable with these strategies, they can begin to solve problems 

without manipulatives because they are able to “see” a multiplication picture in their heads. 

At the same time, Ms. Rosena indicates that students should be exposed to division 

situations, and multiplication should be stressed as a viable strategy for solving division 

problems. Ms. Rosena indicates that the next step is for students to engage in ample practice, 

through drill and games, to memorize the basic multiplication facts. As students begin to 

recall some of their multiplication facts, they are ready to begin work on multidigit 

multiplication, using the facts they know to find solutions to these problems with larger 

numbers. Ms. Rosena indicates that students’ primary difficulties with multiplication 

instruction involve moving from thinking of multiplicative situations in terms of 

multiplication rather than addition. Finally, Ms. Rosena identifies knowledge of addition as a 

prerequisite to the study of multiplication.  
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Rosena: Knowledge of Non-standard Strategies (Classroom Scenario 1) 

 

 

At the beginning of the year, Ms. Rosena identifies six strategies that students might 

use to solve a word problem involving finding the number of chairs in 16 rows of 8 chairs. 

These strategies are presented in Table 25. Of the six strategies listed by Ms. Rosena, four 

are variations of direct modeling. Ms. Rosena also lists a repeated addition strategy and the 

standard U.S. algorithm for multidigit multiplication. At the beginning of the year, Ms. 

Rosena does not include a partitioning or compensating strategy in her list of strategy 

possibilities. However, some of her direct modeling strategies are clearly related to 

partitioning strategies. Additionally, Ms. Rosena demonstrates knowledge of a particular 

partitioning strategy in response to Classroom Scenario 3 in this interview.  

In discussing students’ progression through the strategies listed at the beginning of 

the year, Ms. Rosena asserts that students are first able to model problems with manipulatives 

or pictures. Then she asserts that students initially find products by counting objects one at a 

time. Next Ms. Rosena indicates that students begin to find quicker ways to count their 

models, such as repeated addition or by making models that involve some grouping. For 

instance, to find the total of 16 rows of 8 chairs, they might make two sections of 8 rows of 8 

chairs. Finally, Ms. Rosena identifies use of the standard U.S. multiplication algorithm as the 

most sophisticated approach that students learn after they have a sense of what multiplication 

“looks like.”  

At the end of the year, Ms. Rosena identifies five strategies that students might use to 

approach the word problem involving finding the total number of chairs in 16 rows of 8 

chairs. At this data point, Ms. Rosena identifies one direct modeling strategy, the standard 

U.S. multiplication algorithm, and three partitioning strategies. While Ms. Rosena does not 



 

 262 

Table 25 

Strategies Identified by Ms. Rosena in Response to Classroom Scenario 1 

Data point Direct modeling 

Complete 

number 

Partitioning 

number Compensating Other 

Beginning 

of year 

16 rows of 8 

circles 

8 rows of 16 

circles 

2 “sections” of 

8 rows of 8 

circles 

4 “sections” of 

4 rows of 8 

Repeated 

addition,              

8 + 8 + 8… 

  
Standard US 

multiplication 

algorithm 

End of year 16 rows of 8 

dots 

 
8 × 8 = 64,         

64 + 64 = 128 

8 × 4 = 32,         

32 + 32 = 64,     

64 + 64 = 128 

10 × 8 = 80,         

6 × 8 = 48,         

80 + 48 = 128 

 
Standard US 

multiplication 

algorithm 

Note. Analysis utilizes strategy classification presented in Baek (1998).  

 

 

 

include any complete number strategies at this data point, she demonstrates flexible 

understanding of how the more mathematically sophisticated partitioning strategies can be 

used by students. This shows much growth in knowledge from the beginning of the year, 

when no partitioning strategies were included in her response. Also, a repeated addition 

strategy (from the complete number category) is included in Ms. Rosena’s discussion of 

students’ progression through strategies at this data point, so there is evidence that she is 

aware of this strategy type. As was the case at the beginning of the year, Ms. Rosena does not 

identify a compensating strategy at this data point.  

As at the beginning of the year, Ms. Rosena asserts that students initially use direct 

modeling with objects or pictures to represent multiplication situations and they count objects 
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by one to determine the totals. Next students begin to count objects more efficiently, using 

repeated addition or groupings. Ms. Rosena suggests that this leads to use of “halving and 

doubling” strategies (a type of partitioning strategy) in which students realize they can count 

half of the group and then double their result to find the total product. After students have 

exposure to this strategy, Ms. Rosena indicates that students begin to consider other 

partitioning strategies that break groups apart in different ways. As students become able to 

use partitioning strategies without the support of visual models, Ms. Rosena suggests that 

they are ready to make sense of how the standard U.S. multiplication algorithm is similar to 

partitioning strategies focused on partitioning factors into their expanded form.  

In summary, Ms. Rosena’s response to Classroom Scenario 1 provides evidence of 

moderate knowledge of non-standard strategies for multidigit multiplication at both data 

points, with greater knowledge of partitioning strategies demonstrated at the end of the year. 

Also, Ms. Rosena’s end-of-year interview suggests that her knowledge of how students move 

from using models to number-only procedures with understanding, including the standard 

U.S. algorithm, has increased significantly. Furthermore, Ms. Rosena demonstrates strong 

understanding of the interrelationships among the strategies listed at the end of the year.  

 

 

Rosena: Interpretation of Students’ Mathematical Strategies (Classroom Scenario 2) 

 

 

At the beginning and end-of-year data points, Ms. Rosena is able to quickly interpret 

the three student work samples representing students’ strategies for solving the pancake 

problem (Twenty-four children want to share eight pancakes so that each one gets the same 

amount. How much pancake can each child have?). She describes plausible theories for how 

each child approached the task, indicates what the strategies suggest about each child’s 



 

 264 

mathematics understanding, and identifies questions she might ask each student in response 

to their work. For instance, after a brief glance at one student’s strategy at the beginning of 

the year, Ms. Rosena makes the following assessment: 

Nicholas divided the pancakes into threes. I guess these are the pancakes. Yea, 

because there are eight pancakes here. I don’t know why he put the 24 people here 

without doing any kind of grouping, I just think he just drew them. He might be able 

to solve this problem if he counts every part of each pancake. If he gets 24 parts, then 

he might solve the problem. Now, I don’t know if he would say that every person gets 

a third of a pancake. I don’t know if he would actually be able to use that kind of 

vocabulary. 

 

When prompted to identify questions she would ask this student, Ms. Rosena indicates that 

she would ask Nicholas to describe how he decided to make the parts of his representation, 

and she would ask him how much pancake each child gets. In summary, Ms. Rosena’s 

response to Classroom Scenario 2 provides evidence of strong ability to interpret students’ 

mathematical strategies at both data points.  

 

 

Rosena: Addressing and Avoiding a Common Student Error (Classroom Scenario 3)  

 

 

In this classroom scenario, teachers are presented with student work in which the 

standard U.S. multiplication algorithm is executed without maintaining the place values of 

the partial products. At the beginning and end of the year, Ms. Rosena quickly identifies that 

this student error suggests a lack of recognition regarding how place value affects this 

algorithm. She suggests that a way to address this problem is to teach students the partial 

products algorithm, which makes the role of place value in multidigit multiplication more 

explicit. At the beginning of the year, Ms. Rosena discloses that when she taught fifth grade, 

her students made the kind of error presented in the scenario and that teaching the partial 

products approach proved helpful.  
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When asked what third-grade teachers should do to keep students from making these 

kinds of errors, Ms. Rosena’s responses at the beginning and end of the year vary. At the 

beginning of the year, she says that she is not sure how she could help students avoid this 

problem as a third-grade teacher. At the end of the year, however, Ms. Rosena responds 

adamantly. She identifies the key to helping students avoid place value errors when 

performing standard algorithms is to be continuously attentive to developing students’ 

understanding of place value within and outside mathematical operations. Reflecting on her 

work with various math programs, Ms. Rosena makes the following statement: 

That is a mistake that I think a lot of [textbook] series did is that they taught place 

value at the very beginning of the year and never touched on it again or taught it 

again or applied it to other units and exercises. Even though they really don’t talk 

about place value [in Everyday Mathematics], they are using exercises that 

incorporate place value throughout the book, throughout the year. 

 

Through her work with Everyday Mathematics, Ms. Rosena appears to have developed a 

vision of how place value can be emphasized alongside her teaching of mathematical 

operations.  

 In summary, Ms. Rosena’s response to Classroom Scenario 3 provides evidence that 

she understands the mathematical basis of students’ difficulties with the standard U.S. 

multiplication algorithm at both data points. Furthermore, at both data points, Ms. Rosena 

has ideas about how to use the partial products method to illuminate the relationship between 

place value in relation to multidigit multiplication. While at the beginning of the year Ms. 

Rosena struggles with the question of how she can help students avoid the errors presented in 

this scenario, at the end of the year she suggests that place value can be woven throughout 

study of mathematical operations.   
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Rosena: Interpretation of and Response to a Student’s Flawed Solution (Classroom Scenario 

4) 

 

 

 At the beginning and end of the year, Ms. Rosena is unable to determine the 

mathematical basis of the flawed strategy presented in classroom scenario 4. In this scenario, 

a student explains that the answer to 144 ÷ 8 = ? can be found by dividing 144 by 2 four 

times because 2 + 2 + 2 + 2 = 8. When prompted to discuss how she would respond to this 

student, Ms. Rosena indicates that she is not sure at the beginning of the year. In contrast, at 

the end of the year, Ms. Rosena suggests that she would encourage the student to compare 

her (flawed) solution with a classmate, hoping that this would help the student discover her 

own error. Then, if the student did not revise her solution, Ms. Rosena suggests that she 

would lead the class to think about the (flawed) solution during group discussion. In 

summary, Ms. Rosena’s responses to this classroom scenario provide evidence that 

uncovering the mathematical basis of flawed solutions may be difficult for her. Nonetheless, 

Ms. Rosena’s end-of-year response suggests a greater knowledge of pedagogical strategies 

that she could use when a student has a flawed solution.  

 

 

Summary of Ms. Rosena’s Knowledge of Mathematics for Teaching 

 

 

 Ms. Rosena demonstrates moderate knowledge of students’ strategies for multidigit 

multiplication at the beginning and end of the year, with greater knowledge of partitioning 

strategies demonstrated at the end of the year. At neither data point does Ms. Rosena identify 

a compensating strategy. In describing student learning trajectories related to multiplication, 

Ms. Rosena displays a more thorough understanding of how students develop understanding 

of increasingly sophisticated strategies at the end of the year. In particular, she describes the 
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cognitive resources students must develop to move from using visual models to working with 

symbols. Overall, Ms. Rosena’s personal knowledge of multiplication concepts and strategies 

increases over the course of the year, with evidence of stronger and more interconnected 

knowledge at the end of the year than at the beginning. 

 At the beginning and end of the year, Ms. Rosena is skillful at making sense of 

students’ novel strategies for solving an equal-sharing division problem that results in a 

fraction. She is able to quickly make conjectures regarding how students approached the 

problem, suggest what their strategies indicate about their mathematical understanding, and 

identify questions she might ask the students to follow-up on her conjectures.  

While Ms. Rosena’s ability to interpret correct non-standard solutions appears strong 

at both data points, evidence suggests that her ability to make sense of and respond to 

students’ flawed solutions is more conditional. When presented with student work displaying 

a common mistake with the standard U.S. multidigit multiplication algorithm, Ms. Rosena is 

able to describe the mathematical basis of the mistake and suggest ways to support students 

in developing conceptually-grounded conceptions. However, only at the end of the year is 

Ms. Rosena able to describe how, as a third-grade teacher, she can help students to avoid 

making the kind of error in the scenario. In response to a scenario presenting an unfamiliar 

flawed solution to a division problem, Ms. Rosena is unable to determine the mathematical 

basis of the error at both data points. Furthermore, at the beginning of the year she is unsure 

of how she would respond to this student in her classroom. In contrast, by the end of the year, 

Ms. Rosena is confident that in the classroom context she could support the student in 

figuring out the error by encouraging peer collaboration and by discussing the (flawed) 

solution with the class.  
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Case Story of Ms. Rosena’s Response to Student Difficulties 

 

 

In the case story that follows, three facets of Ms. Rosena’s typical response to student 

difficulties will be discussed. Specifically, Ms. Rosena’s treatment of flawed solutions for 

problem solving tasks, her response to student difficulties with word problems during whole 

class discussion, and her strategies for supporting struggling students during work time will 

be described. Following illustration of each response pattern, consequences for student 

thinking and the relationship between Ms. Rosena’s beliefs, knowledge, and mathematics 

teaching practices will be explored.  

 

 
Rosena Response Pattern 1: Treatment of Flawed Solutions for Problem Solving Tasks 

 

  

Ms. Rosena’s primary method of addressing students’ flawed solutions for problem 

solving tasks is consistent through all observations. Although Ms. Rosena’s post-observation 

interviews reveal that she identifies students’ flawed solutions as they are working on tasks, 

she often delays responding to errors until students are sharing task solutions in a whole 

group discussion. Within the whole group discussion time, Ms. Rosena regularly includes 

discussion of flawed solutions alongside discussion of correct solutions.  

The following classroom episode is representative of Ms. Rosena’s treatment of 

flawed solutions in the context of a whole group discussion. This episode takes place during 

a Fall lesson focused on introducing arrays. After some exploration, the class engages in a 

lengthy discussion around solutions to the task, “There are 24 children in the class. Use the 

counters to represent the children. Arrange the counters to show them in equal rows.” Each 

student devises a solution with counters and makes a drawing of the solution on a white 
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board. Then each student’s white board is exchanged with that of another student. Ms. 

Rosena tells students to take a look at the partner’s white board and try to understand how the 

partner was thinking about the problem. After a few moments, Ms. Rosena says, “Thumbs up 

if you understand. I’m not saying if its right or wrong, if you understand what the person did, 

thumbs up.” Although a few students indicate that they understand their partner’s solution, 

several students indicate that they are not sure what their partner did. Some of the students 

further indicate that they think the partner’s solution is incorrect. Next each student’s solution 

is discussed in turn, with ample attention given to those solutions that are incorrect.  

The episode that follows presents the whole class discussion of Jeremy’s solution, 

which is one of three incorrect solutions discussed. Jeremy’s white board shows 2 columns of 

dots, with 14 dots in the first column and 10 dots in the second column. The dots are placed 

such that the columns are lined up but the rows are not clear. (See illustration below.) The 

discussion of Jeremy’s solution begins with Kamal, the recipient of Jeremy’s white board, 

talking about his understanding of Jeremy’s work. 

 Jeremy’s work:  

 
 

Ms. Rosena: Kamal, you did not understand what Jeremy did?  

Kamal: Yeah. 

Ms. Rosena: Okay. Can you tell me or ask him to explain to the class what he did.  

Kamal: Because he didn’t have an equal row… 

Ms. Rosena:  He didn’t have equal rows? 

A few students: Yeah; no. 

Ms. Rosena: Where do you see…why do you say that he doesn’t have equal rows? I 

want Christy and Tanya to pay attention to this.  
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Kamal: The first one, he has I don’t know how much. But the second one he has… 

Ms. Rosena: Okay. Explain that once more. 

Kamal: The first one, I don’t know how much he got in it. 

Ms. Rosena: Yeah, me neither. Because the first one is up here and the second one 

down here. So, in the first one (pointing at the first row) there is only one, I 

think. (Pause) Jeremy, can you explain to the class what you did here. But, 

before you do that, are there 24 dots in here?  

Kamal: Yeah 

Ms. Rosena:  So, he does have 24. Jeremy, can you explain to the class how you came 

up with this arrangement.  

Jeremy: Well, I put one row, I mean one column of 14 dots and another column of 10.  

Ms. Rosena: Okay, so this 14? (Indicates the first column, Jeremy nods) And this is 

10? (Indicates the second column, Jeremy nods) And that is 24. (Pause) But 

my question was to show the 24 children in equal rows. What does this mean 

to you - equal rows? What does this mean? 

Jeremy: Like, if you have two… (other children chiming in answers) 

Ms. Rosena:  Shhh. 

Jeremy: If you have two, you need to put two blacks on the other side. (Other 

students are agreeing.) 

Ms. Rosena:  If you have two on this row (indicates first row), you must have two on 

the second row, you must have two on the next row, etcetera. Did you do that? 

Jeremy: No. 

Ms. Rosena: Okay. 

Jeremy: But if I have 14 and 14, that would be…28.  

Ms. Rosena:  If you have 14 and 14, that would be 28. Okay. Is there a way that you 

can arrange this to make 24? To have equal rows making 24 in total?  

 

At this point, Ms. Rosena directs the class to think about how many rows of 2 children make 

24 children total. One student tentatively suggests 12 rows. Ms. Rosena replies, “Let’s see,” 

and guides the class to count by twos as she draws a model on the board. After the class is 

convinced that 24 children can be arranged in 12 rows of 2, Ms. Rosena remarks, “So 

Jeremy, if you wanted to do two in each row, you needed to have 12 rows.” 

In this classroom episode, Ms. Rosena first has Kamal try to make sense of Jeremy’s 

work, thus giving the class the opportunity to study the work too. Then Ms. Rosena guides 

Kamal and the rest of the class to understand the correct aspects of Jeremy’s flawed solution 

(that there are 24 children represented) as well as the error (that they are not placed in equal 

rows). Next Ms. Rosena interrogates Jeremy’s understanding of the concept “equal” as it 



 

 271 

relates to this situation. Through doing this, Ms. Rosena emphasizes the mathematical idea of 

equal groups that is central to understanding multiplication and division. Finally, Ms. Rosena 

shows Jeremy, with the help of Kamal, how to formulate a correct solution using pieces of 

Jeremy’s initial solution. Namely, they work to figure out how many rows of 2 are needed to 

make 24.  

In summary, Ms. Rosena’s primary approach to addressing students’ flawed solutions 

is to make these flawed solutions a focus of whole class discussion. In whole class 

discussion, Ms. Rosena guides students to understand and evaluate each other’s solutions, 

and through this process, errors are identified.  After an error is identified, Ms. Rosena leads 

students to see the underlying logic or misconception in the students’ flawed solution. Often, 

correct pieces of a given solution are also identified. Finally, Ms. Rosena focuses the class on 

figuring out how to revise the solution to a correct one. 

 

Rosena response pattern 1, consequences for student thinking. As the year progresses, 

Ms. Rosena’s students appear to increasingly view mistakes as a part of the learning process. 

They do not seem uncomfortable or unhappy when their flawed solutions are shared. Quite 

the opposite, students appear motivated to understand correct and incorrect solutions. 

Especially in the Spring observations, there is a notable sense of collaboration among the 

students. It is not uncommon for students to comment on another student’s solution strategy 

without being prompted by the teacher. When asked about this increase in participation and 

student engagement, Ms. Rosena explains that she attributes the change to students’ 

increased confidence and mathematical understanding: 

The feeling of “I get this.” I understand how to do it. And I don’t think they are 

focused that much on getting it right, but on how to get it. The process itself, and not 
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the result. They have realized that they can go and find an answer in so many 

different ways and still find the right answer. Previously, the books, and the 

curriculum, and the teacher – us – we were focused on one, maybe two, ways of 

getting the answer. And if this student didn’t understand that way, he got stuck and 

was not going to get involved. I don’t see that happening now. 

 

As further evidence of Ms. Rosena’s claim of stronger student understanding, 

students are observed making significantly fewer errors in Spring math lessons when 

compared with the Fall. This is an especially notable finding considering that this is a class of 

retained students, with a history of school failure. Ms. Rosena’s practice of making students’ 

errors a focus of instruction appears to be a contributing factor to this positive change.  

 

Rosena response pattern 1, link to beliefs and knowledge. Ms. Rosena’s intentional 

practice of making students’ flawed solutions a focus of whole class discussion is most 

related to her beliefs. Ms. Rosena’s reasonably robust knowledge of mathematics for 

teaching also supports her ability to orchestrate discussion of flawed solutions in ways that 

emphasize conceptual understanding and honor student thinking. At the end of the year, Ms. 

Rosena explains that her treatment of students’ flawed solutions is a deliberate teaching 

practice reflecting beliefs colored by her own school experience: 

When I was in school, I was not good in math. So, the teachers were always showing 

off the people who did the right thing and were right. But they never, for example, 

they would never take my way of solving the problem and explain to me why it was 

wrong. So, I never really quite got how to do it right. So, I think that having them 

share how did they come up with an answer, even when it is wrong…I think that 

makes it so I can help them understand what it is they were doing wrong so they can 

make it right in the future. I think that we are focusing on what students are doing 

right and sometimes not enough on what they are doing wrong.  

 

Ms. Rosena believes deeply that students’ errors need to be confronted directly and, after the 

errors are identified, that they should be revised into correct solutions. Post-observation 

interviews reveal that Ms. Rosena focuses on particular flawed solutions in the whole group 
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discussion because she believes the mathematical lesson of the error is beneficial for the 

given student and the rest of the class. She takes the view that there is much for all of her 

students to learn from their own mistakes as well as the mistakes made by peers. 

Contributing to her belief in the value of studying errors, Ms. Rosena views students’ 

flawed solutions as partially correct solutions with underlying logic. This is in contrast to a 

view of flawed solutions as the result of careless mistakes or unfounded guesses. This belief 

drives Ms. Rosena to dig into students’ incorrect solution strategies to understand where they 

went wrong, and as in the case of Jeremy, if the error is grounded in a misunderstanding of a 

fundamental mathematics concept. Although pre-observation interviews reveal that Ms. 

Rosena’s ability to anticipate the difficulties students will have is limited, her interactions 

with students during instruction demonstrate that she can draw on her personal mathematical 

knowledge in real-time to make sense of students’ difficulties. Ms. Rosena’s ability to do this 

stems from knowledge of key mathematical ideas related to multiplication and division as 

well as the pedagogical knowledge of how to ask questions that probe students’ mathematical 

thinking. 

As Ms. Rosena observes her students successfully completing tasks without explicit 

instruction, her beliefs regarding students’ capabilities and her role in instruction begin to 

shift. By the end of the year, there is strong evidence that Ms. Rosena believes students are 

capable of solving instructionally-appropriate novel problems as long as they have access to 

conceptual tools like manipulatives and the freedom to think about the problems in their own 

ways. Furthermore, Ms. Rosena expresses her newly formed commitment to having students 

solve problems without explicit direction. The catalyst for Ms. Rosena’s change in beliefs is 

her observations of her students being successful with solving novel problems.  
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Rosena Response Pattern 2: Response to Student Difficulties with Word Problems in Whole 

Class Discussion 

 

 

When flawed solutions to a word problem become the focus of class discussion, one 

way that Ms. Rosena supports her students in understanding and revising the flawed solution 

is by directing students’ attention on the problem context. To illustrate this point, consider a 

classroom episode in which students are working on the partitive division problem, “28 

pennies are shared equally by 4 children. How many pennies per child is that?” Ms. Rosena 

observes multiple students in the class attempting to solve this problem by counting out 28 

counters and making groups of four until all of the counters are used. This strategy reflects a 

measurement division approach to dividing 28 by 4, but it does not match this partitive 

division context. Ms. Rosena determines that students are approaching the problem 

procedurally, without attention to context. She decides to use the whole class discussion time 

to press her students to consider the problem context in relation to Linda’s flawed solution:  

Ms. Rosena: Okay, the first thing that Linda did…I am going to share this with the 

class, because many of you started doing exactly the same thing. She made 

groups of four in each. Okay…for example (walks toward the board)…This is 

what she did. (Draws on board, drawing below) 1, 2, 3, 4…1, 2, 3, 4…1, 2, 3, 

4…1, 2, 3, 4…1, 2, 3, 4…1, 2, 3, 4…1, 2, 3, 4. 28. 

 

Ms. Rosena’s drawing of Linda’s work: 

 

O O O O O O O O O O  O O O O 

O O  O O O O O O O O  O O O O 

 

Raul: (Calling out) What? 

Ms. Rosena: You do have 28 pennies here.  

Mariluz: But not four kids. 

Ms. Rosena: There are four in each.  

Jeremy: But, its almost like… 

Ms. Rosena: Four comes from this problem.  

Raul: There’s a big problem. 
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Ms. Rosena: What? 

Raul: There’s a problem. 

Ms. Rosena: What’s the problem?  

Raul: Well, you didn’t have four children.  

Mariluz: You should have put five in each one.  

Kamal: You didn’t have 16 children. 

Ms. Rosena: Are there 16 children here?  

Kamal: No. You have seven children. 

Ms. Rosena: (pointing at the drawing on the board) How many children do I have 

here?  

Several students: Seven. 

Ms. Rosena: Each group…you’re telling me that each group represents a child? 

Several students: Yes; Yeah 

Ms. Rosena: Okay. (Speaking to Linda) Is that what you were thinking, that each 

group is one kid? (Linda indicates yes with a head nod.) But there are only 

four kids [in the problem], Linda. (Pause) …So, we need to concentrate on 

four kids only. (Ms. Rosena puts a partition between the groups to partition 

off four groups.)  

 

On the board: 

 

O O O O O O O O O O  O O O O 

O O  O O O O O O O O  O O O O 

 

Ms. Rosena: Now what are we going to do with these [pennies on the right]? 

Kamal: Throw them out. 

A few students: Nooo… 

Ms. Rosena: If I throw them out, I won’t have 28 pennies anymore. That is what I 

was trying to tell Tanya.  

Tom: You need to put those (pointing to the right), with, those with, umm, the others 

(pointing to the left).  

 

As the classroom episode continues, a student piggybacks on Tom’s comment by suggesting 

that they put three pennies from the right of the partition with each of the four groups on the 

left of the partition, making four groups of seven pennies.  

Throughout this interaction with students, Ms. Rosena emphasizes the problem 

context. First she plays devil’s advocate to make the point that while the numbers from the 

problem, 28 and 4, are both represented in Linda’s drawing, the drawing does not reflect the 

problem context of 28 pennies divided among four children. Then she asks students to make 
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suggestions about what Linda’s drawing might represent, providing a basis for moving 

forward with a revised solution. When Kamal suggests that a solution to the dilemma is to 

get rid of three groups of pennies, Ms. Rosena rejects that suggestion on the basis that it does 

not match the problem context of 28 pennies.  

In summary, when flawed solutions to word problems are the focus of class 

discussion, Ms. Rosena often helps her students to make sense of the problems by pressing 

them to consider the relationship between the flawed solution and the problem context.  

 

Rosena response pattern 2, consequences for student thinking. The primary 

consequence of Ms. Rosena’s instructional practice of emphasizing context is that her 

students come to make sense of problem solving situations in light of their context. 

Throughout the year, students become increasingly proficient at identifying important 

information in a problem situation, modeling problem situations, and interpreting models 

developed by other students. When working with computation problems that are not in 

context, students sometimes invent a context to illustrate how to go about devising a solution. 

 

Rosena response pattern 2, link to beliefs and knowledge. Ms. Rosena’s practice of 

drawing student attention to problem context during class discussion of flawed solutions to 

word problems is primarily related to her beliefs, but is supported by her knowledge. In 

discussing use of real-world problems at the beginning of the school year, Ms. Rosena 

explains that, “It’s easier to understand [mathematics] concepts when you are pulling from 

the real world.” Aligning with advocates of mathematics reform, Ms. Rosena believes that 

real-world situations to which her students can relate can serve as an instructional bridge 
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between lived experiences and understanding of mathematical concepts. Therefore, she 

presses her students to make sense of the contexts of word problems and other contextualized 

tasks as a way to move students closer to understanding mathematics. In part, Ms. Rosena’s 

emphasis on pressing students to understand the context of word problems is a reaction to her 

own experiences in school:  

I remember when I was growing up I never got word problems. I always got them 

wrong. I never understood them, and very little emphasis was placed on them…I 

think word problems are important, especially if they are related to things they 

know…when you see 3 times 5 equals something, and you don’t add any meaning to 

it except three groups of five, it doesn’t, I don’t know, it doesn’t really make too 

much sense to me as [compared to] when you have it in a real situation. Three rows of 

five chairs, oh, okay, now I understand… 

 

Ms. Rosena strongly holds the belief that mathematical ideas are more meaningful to students 

when students understand them in relation to real-world situations.  

Although Ms. Rosena’s practice of focusing students’ attention on problem context is 

more clearly a reflection of her beliefs than knowledge, Ms. Rosena’s knowledge of 

mathematics for teaching supports her efforts to emphasize context effectively. First, Ms. 

Rosena’s personal ways of understanding mathematics include relating mathematical ideas to 

real-world contexts. Consequently, she is able to readily do this in the context of real-time 

instruction. Second, Ms. Rosena’s pedagogical content knowledge facilitates her ability to 

make sense of a student’s flawed solution and determine if the basis of the error is related to 

a lack of attention to context. Then Ms. Rosena is able to draw on her pedagogical 

knowledge to formulate questions that guide students to consider and revise the flawed 

solution in relation to the problem context.  

In summary, Ms. Rosena’s beliefs seem most related to her pattern of emphasizing 

problem contexts in efforts to support revision of flawed solutions to word problems in whole 
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class discussion. And her knowledge of mathematics for teaching is instrumental in 

facilitating effective use of this strategy.  

 

 

Rosena Response Pattern 3: Strategies for Supporting Struggling Students During Work 

Time 

 

 

As has been previously discussed, Ms. Rosena primarily interacts with students 

around their mathematical difficulties during the class discussion phase of instruction. As 

students initially work on mathematics tasks, Ms. Rosena is most often observed standing 

away from her students, keeping a watchful eye on what is going on. When she observes 

students sitting idle or engaged in other off-task behavior, she provides quick and clear 

directives demanding that the students work on the task at hand.  Ms. Rosena views this 

general practice as a way to encourage student autonomy and as a means of classroom 

management:  

When I go around the room, especially with this group, and I stand by a student, that 

student stops doing what he’s doing or she’s doing…and he’s always looking up for 

reinforcement. Like Kamal, for example, he doesn’t like to work by himself. If I am 

standing away from him, he will start working. But if I am standing next to him, he 

will constantly look to me, “Is this right? Is this right?” He is trying to get me to say 

that he is doing good…I think that by being in the front or in the back or on the 

side…not walking around…I can catch things more easily and they know I am 

watching. I’ve seen if I stand by a student and start working with them, some others 

will start looking around and stop working.  

 

Although Ms. Rosena most typically avoids interactions with students during their initial 

work on a task, there are times when individuals in the class seem unable to move forward 

with devising a solution to a mathematics task and Ms. Rosena determines that help is 

warranted. Ms. Rosena’s approach to addressing students’ difficulties in these instances 

differs at the Fall and Spring observation points. Her response patterns for addressing 
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persistent student difficulties in the Fall will be described next followed by discussion of 

response patterns observed in the Spring. 

 In the following excerpt from a Fall lesson, Ms. Rosena approaches a student, Tanya, 

who is sitting idle several seconds after her classmates have begun working on a mathematics 

task. The class is working on the partitive division problem, “15 pennies are shared equally 

by 4 children. How many pennies per child is that?” In this interchange between Ms. Rosena 

and Tanya, Ms. Rosena directs Tanya to solve the problem is a particular way, rather than 

asking questions to help Tanya devise her own strategy:  

Ms. Rosena: Use these [cubes] 4, 5, and 5. You have 15 in total. Now you know that 

we have four children, right? So, make four groups. (Tanya places 4 cubes on 

the white board.) 1, 2, 3, 4. Now divide these equally among that. One for 

you, one for you, one for you, one for you. (Tanya begins distributing the 

cubes one at a time to each group.) Start always with the same one, okay? 

(Tanya continues distributing cubes.) Okay, well, take these too.  

 

Tanya’s model of the problem:  

 �� �� �� �� �� 
   �   �   �   �   � 
 

Ms. Rosena: How many does each one have? 

Tanya: Three. 

Ms. Rosena: Okay, and three leftover, right? Fifteen pennies and four kids, three left 

over. Almost there. Where are the kids? Show me the kids. Circle the groups 

to represent the kids. (Tanya circles one set of three cubes, which are sitting 

on a white board.) One child. That’s one child. That’s another child. How 

many circles are you supposed to have?  

Tanya: Five. 

Ms. Rosena: Why five? Does it say five up there [in the problem]? 

Tanya: Four. 

Ms. Rosena: So, circle one more and don’t do anything with those [the last set of 

three cubes that are the left overs].  

 

Ms. Rosena first tells Tanya how to go about modeling the problem. Although Ms. 

Rosena does draw Tanya’s attention to the context of the problem, her directions are 

primarily procedural in nature. After Tanya has successfully modeled the problem, Tanya’s 
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answers to Ms. Rosena’s questions reveal that she does not fully understand the model. 

Instead of pressing Tanya to make sense of the model, Ms. Rosena again provides procedural 

directions.  

While the number of times in which Ms. Rosena engages in sustained dialogue with 

students during work time in Fall lessons is limited, her typical routines for addressing 

students’ difficulties in these instances involves providing strong direction that is procedural 

in nature. This kind of support tends to decrease the cognitive demand of the problem solving 

task for students.  

In the Spring observations, Ms. Rosena’s teaching practice of providing strong 

direction to individuals having difficulty during work time is replaced by alternative teaching 

strategies. In fact, the Spring observations contain no instances of Ms. Rosena providing 

direct support to individuals that decreases the cognitive demand of tasks posed. This change 

can be attributed in part to the fact that, by this point in the year, Ms. Rosena’s students have 

adopted learning practices consistent with trying to make sense of problems. Students are 

observed re-reading problems, making note of key information in problems, and trying to 

make visual models to support their thinking. Nonetheless, there are still instances when 

individual students appear unsure of how to move forward with a mathematics task and Ms. 

Rosena determines that teacher support is warranted.  

One strategy Ms. Rosena uses to address individual students’ difficulties in Spring 

observations is to provide additional guidance to the whole class related to understanding a 

particular task. Consider the following classroom episode in which students are working on 

the problem, “Could 6 harp seals weigh more than 1 ton? Could they weigh less than 1 ton?” 

To solve this problem, students must use a chart that provides a range of weights for different 
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animals. The chart indicates that harp seals weigh 200 – 396 pounds. In order to successfully 

solve this problem, students also need to know the relationship between pounds and tons. 

When Ms. Rosena observes individual students having difficulty getting started, she responds 

by asking the whole class questions about the relationship between pounds and tons:  

Ms. Rosena: Do you remember what a ton was?  

A few students: Two-hundred pounds. 

Ms. Rosena: Two-hundred pounds? 

Raul: Two-thousand. 

Other students: Two-thousand. 

Ms. Rosena: Two-thousand what? 

Several students: Pounds. 

 

In this instance, Ms. Rosena observes individual students struggling with the task, and 

she conjectures that their struggles may be related to difficulty recalling the relationship 

between pounds and tons. Through a brief series of questions with the whole class, Ms. 

Rosena facilitates the process of allowing students to help each other overcome difficulties. 

When Ms. Rosena becomes satisfied that her students have the information necessary to 

formulate a solution, she steps back and observes the group.  

Another strategy Ms. Rosena uses in Spring lessons to address students’ difficulties is 

to express her own confidence in their abilities to solve the mathematics task of focus using 

what they already know. To illustrate this point, consider the classroom excerpt below in 

which Mariluz is having difficulty getting started on the following problem
10

: 6[80]. At first 

blush, 6[80] may seem like a simple computation task; however, this problem is situated in 

the first lesson students have had in which they have been asked to solve multidigit 

multiplication problems. Prior to work on the problem 6[80], students have worked on only 

one other multidigit multiplication problem, which was presented in a real-world context and 

without explicit direction on how to solve it.  

                                            
10

 Everyday Mathematics uses this bracket notation for multiplication.  
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As the class begins working, Mariluz initiates an interchange with Ms. Rosena to 

solicit help. Through the interchange, Ms. Rosena encourages Mariluz to use what she knows 

to think about the task rather than providing explicit direction on how to solve the problem:  

Mariluz: Is [6 times 80] the same thing as 6 times 8? 

Ms. Rosena: No. Is 80 the same as 8? 

A few students: No. 

Ms. Rosena: Is 8 kids the same as 80 kids?  

A few students: No. 

Ms. Rosena: No.  

Mariluz: Well, I don’t know what to do then. 

Ms. Rosena: Yes. Mariluz, using what we just discussed…you can do it.  

 

After this interchange Mariluz sits idle for a few moments and then begins to doodle on her 

white board. Ms. Rosena watches Mariluz from a distance until she begins working on a 

viable solution strategy.   

It is worth noting that Mariluz failed to devise a sensible solution strategy on the 

problem posed prior to 6[80].  In the Fall, Ms. Rosena would likely have provided Mariluz 

with strong guidance to ensure successful completion of the current task. At this point in the 

Spring, she encourages Mariluz to use what she learned from class discussion of the first 

problem instead. Furthermore, she expresses confidence in Mariluz’s ability to use what she 

has learned to devise a solution.  

In summary, Ms. Rosena intentionally stands away from students as they work on 

mathematics tasks, both to encourage autonomy and so she can catch and correct off-task 

behavior quickly.  However, in all lessons observed, there are instances where Ms. Rosena 

perceives individual students to need support to move forward with the assigned problem 

solving task. In situations like this, Ms. Rosena’s instructional strategies for supporting 

students’ difficulties with mathematics tasks during work time change from Fall to Spring. 

While in the Fall Ms. Rosena typically provides procedural directives to help a student 
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through a task, her approach in the Spring involves alternative means of support. 

Specifically, she poses questions to the whole class to provide hints and clarify pertinent 

details of tasks and she expresses confidence in students’ abilities to figure out how to solve 

problems.  

 

Rosena response pattern 3, consequences for student thinking. Ms. Rosena’s practice 

of standing away from students as they begin working on mathematics tasks while also 

holding them accountable for on-task behavior proves an effective strategy for getting 

students to attempt problem solving tasks. At first, this approach to student work time yields 

many flawed solutions. However, as these flawed solutions are dissected and revised in class 

discussions, students become more skillful in their problem solving and produce fewer 

flawed solutions. As the year continues, students also become increasingly autonomous 

problem solvers.  

While Ms. Rosena most typically stands away from students during work time, there 

are a few instances in each Fall and Spring lesson when she employs strategies to help 

students who are struggling. Ms. Rosena’s Fall practice of responding to some students’ 

difficulties during work time by providing strong, procedural direction serves to limit student 

thinking, as students can achieve correct solutions by simply following teacher directions. As 

the year progresses, Ms. Rosena adopts practices in which students are helped to move 

forward with problem solving tasks in ways that do not reduce the cognitive demands of 

tasks. As a result, students are more consistently encouraged to think about problems in their 

own ways. Additionally, Ms. Rosena’s practice of telling students that she thinks they are 

capable of solving problems posed appears to be effective at convincing some students to 



 

 284 

grapple with uncertainty and persevere through difficulties that they might not have 

otherwise.  

In general, Ms. Rosena’s students appear to become increasingly confident in and 

proud of their abilities to think mathematically. As students become more confident and 

capable problem solvers, student engagement during mathematics instruction increases 

dramatically.   

 

Rosena response pattern 3, link to beliefs and knowledge. The change in Ms. 

Rosena’s teaching practice, away from providing struggling students with explicit procedural 

direction, appears related to a shift in Ms. Rosena’s beliefs about students’ capabilities as 

well as developing knowledge of how to provide support without taking over students’ 

thinking. When discussing her reasons for providing strong direction to individual students in 

the Fall, Ms. Rosena cites students’ individual needs and a general belief that some of the 

retained students in her class need procedural cues to successfully complete tasks. Despite 

her beginning-of-year belief that some students need explicit instruction, Ms. Rosena follows 

the recommendations of the Everyday Mathematics program and directs her students to 

attempt tasks without explicit instruction. As Ms. Rosena is surprised by her students’ 

abilities to successfully complete tasks without explicit instruction, her beliefs regarding her 

students’ capabilities begin to shift. As the year continues, Ms. Rosena seems to hold greater 

expectations for all of her students, including those students who were initially thought to 

require explicit instruction on procedures. In contrast to her initial beliefs, there is evidence at 

the end of the year that Ms. Rosena believes all of her students are capable of solving 

instructionally-appropriate novel problems as long as long as they have access to conceptual 
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tools like manipulatives and the freedom to think about the problems in their own ways.  

 This shift in beliefs about children’s capabilities appears to initiate a change in Ms. 

Rosena’s beliefs about her role as the teacher during mathematics lessons. On the beginning-

of-year IMAP, Ms. Rosena’s responses provide no evidence that she believes the teacher 

should allow children to do as much of the thinking as possible when working on 

mathematics tasks. In contrast, on the end-of-year IMAP, Ms. Rosena asserts that she is 

committed to having students solve problems without explicit direction. At the end of the 

year, Ms. Rosena views the practice of pressing students to devise their own ways to solve 

novel problems as one that allows her insight into students’ thinking as well as richer and 

more varied learning opportunities for students.  

 The catalyst for Ms. Rosena’s change in beliefs is her observations of her students 

being successful with solving novel problems. Ms. Rosena’s initial attempts to have students 

engage in novel problems without explicit instruction occurs in response to the Everyday 

Mathematics program coupled with professional development support for developing an 

instructional lesson image. Therefore, Ms. Rosena’s change in teaching practice also reflects 

an expanded knowledge base regarding ways to conduct mathematics lessons and ways to 

address students’ initial struggles with mathematics tasks.  

 

Summary of Ms. Rosena’s Response to Student Difficulties 

 

 

 Three patterns portray Ms. Rosena’s teaching practice in response to student 

difficulties. Her primary approach to addressing students’ difficulties involves making 

students’ flawed solutions a focus of whole class discussion. Through these discussions, Ms. 

Rosena guides students to make sense of correct and incorrect aspects of the flawed 
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solutions, while highlighting important mathematical ideas. Through this process, flawed 

solutions are typically revised to correct solutions. Second, when flawed solutions to word 

problems are the focus of class discussion, Ms. Rosena often helps students to make sense of 

a given problem by pressing them to consider the relationship between the flawed solution 

and the problem context. Finally, during the time allotted for students to work on 

mathematics tasks, Ms. Rosena generally stands away from the class in efforts to encourage 

autonomous problem solving and to hold students accountable to working on tasks. If student 

difficulties persist, in the Fall lessons, Ms. Rosena is observed providing strong, procedural 

direction to individual students. However, by the Spring, Ms. Rosena intentionally avoids 

this practice and instead employs alternate strategies to address students’ difficulties.    

As the year progresses, Ms. Rosena’s ways of responding to student difficulties in 

combination with other teaching practices help students to become increasingly confident 

and productive problem solvers. Whereas in the Fall observations Ms. Rosena finds it 

necessary to provide constant behavioral cues to keep students working on problem solving 

tasks, students exhibit greater persistence and knowledge of problem solving strategies when 

difficulties arise in the Spring semester. Additionally, student engagement in whole class 

discussion of problem solving tasks increases over the course of the year. Students appear 

eager to have their solutions discussed regardless of whether they are correct or incorrect. 

When a flawed solution is shared, students readily try to understand the logic of the solution 

and how to revise it to correct. By the Spring, it is the classroom norm for students to offer 

evaluative comments and suggestions about the mathematical strategies put forward by their 

peers. As a result, these discussions provide an effective venue for students to construct and 

test important mathematical ideas in ways that are connected to their own developing 
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mathematical understandings. An additional consequence of Ms. Rosena’s ways of 

responding to student difficulties is that her students appear to believe that errors and 

mistakes are a natural part of the learning process and that there is much to be learned from 

them.  

 Ms. Rosena’s ways of responding to students’ difficulties are linked to both her 

beliefs and knowledge. Ms. Rosena’s beliefs seem most linked to the ways she aims to 

structure support for students’ difficulties during student work time and class discussions of 

problem solving tasks. During student work time, Ms. Rosena generally stands away from 

students in order to promote student autonomy and maintain on-task behavior. However, in 

the Fall lessons, Ms. Rosena is observed responding to some student difficulties during work 

time by providing strong, procedural direction. Justifying this practice, Ms. Rosena explains 

that she believes some of her high-need, retained students will only be successful if she tells 

them what to do. By the Spring observations, Ms. Rosena has revised her beliefs to 

considering all students capable of successfully devising personal solutions to novel 

problems. Reflecting this change, Ms. Rosena is observed responding to student difficulties 

by offering less directive support and encouraging students to persist through difficulties. As 

Ms. Rosena comes to believe her students are capable of solving novel problems, she also 

comes to believe that the teacher’s role is one of orchestrating support during problem 

solving such that students do as much thinking as possible. In the context of whole class 

discussion, Ms. Rosena’s belief in the learning potential of students’ mistakes leads her to 

make flawed solutions a focus of these discussions. Ms. Rosena’s strategy of emphasizing 

word problem contexts in response to students’ difficulties reflects her belief that real-world 

situations can provide a bridge between students’ lived experiences and understanding 
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mathematics concepts.  

 While these ways of responding to student difficulties are driven by Ms. Rosena’s 

beliefs, their successful implementation relies on Ms. Rosena’s knowledge for teaching 

mathematics. Ms. Rosena proves able to make sense of the correct and incorrect aspects of 

her students’ flawed solutions in real-time such that she is able to guide the class discussion 

toward illuminating important mathematical ideas. Related to her practice of emphasizing the 

context of word problems, Ms. Rosena is able to quickly determine if the basis of an error is 

rooted in a lack of attention to context. Then she is able to draw on her pedagogical content 

knowledge to formulate questions that press students to build solutions in relation to problem 

contexts. Furthermore, Ms. Rosena has developed routines for facilitating students’ problem 

solving efforts with minimal intervention and for having students examine and evaluate each 

other’s mathematical solutions before and during classroom discussions. In these ways, Ms. 

Rosena’s knowledge base makes it possible for her to realize instructional goals driven by 

reform-oriented beliefs.  

 

Situating Ms. Rosena’s Case Story in Broader Measures of Teaching 

 

 

In the previous section, a theoretical explanation was presented suggesting how Ms. 

Rosena’s teaching practices in response to student difficulties are linked to her beliefs and 

knowledge during the year of this study. Teacher response to student difficulties is one of 

many aspects of reform-oriented mathematics instruction that contributes to the overall 

quality of mathematics teaching and learning more broadly defined. Therefore, this section 

will present results from two more global measures of Ms. Rosena’s mathematics teaching. 

First, data collected following each core classroom observation using the Reformed Teaching 
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Observation Protocol (RTOP) (Sawada et al., 2002) will be presented. This instrument is 

designed to measure the degree to which a given mathematics lesson reflects principles and 

practices associated with reform-based mathematics instruction. Second, aggregated class 

data from the mathematics section of the State Standardized Test (SST) will be presented in 

relation to aggregated data at the school, district, and state levels. Taken together, these 

findings will allow Ms. Rosena’s patterns of response to student difficulty to be considered 

within a more general understanding of her mathematics teaching and students’ learning.  

 

 

Rosena: Adherence to Reformed Teaching 

 

 

The degree to which Ms. Rosena’s mathematics instruction reflects current reforms in 

mathematics education was measured using the Reformed Teaching Observation Protocol 

(RTOP) (Sawada et al., 2002). The RTOP is a criterion-referenced instrument containing 25 

items, divided into five subscales: (1) lesson design and implementation, (2) the level of 

significance and abstraction of the content, (3) the processes that students use to manipulate 

information, (4) the classroom culture as observed through the nature of communicative 

interactions, and (5) the nature of student-teacher relationships. Following each core 

observation in Ms. Rosena’s classroom, each of the 25 items on the RTOP was rated on a 

scale from 0 (not observed) to 4 (very descriptive). Next, sums were calculated for ratings on 

each subscale as well as the total instrument to assess the degree to which Ms. Rosena’s 

mathematics instruction was reformed, with higher scores reflecting a greater degree of 

reform. Consequently, subscale scores on the RTOP range from 0 – 20, and total instrument 

scores range from 0 – 100. Aggregated results from core observations of Ms. Rosena’s 

mathematics teaching in the Fall and Spring are presented in Table 26.  
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Table 26 

Ratings of Ms. Rosena’s Mathematics Teaching on the RTOP 

RTOP items by subscale Fall Spr 

Subscale 1: Lesson design and implementation   

 

1. The instructional strategies and activities respected students’ prior knowledge and preconceptions 

inherent therein. 3.0 4.0 

 2. The lesson was designed to engage students as members of a learning community. 2.5 3.5 

 3. In this lesson, student exploration preceded formal presentation.  4.0 4.0 

 

4. The lesson encouraged students to seek and value alternative modes of investigation and problem 

solving. 3.0 4.0 

 5. The focus and direction of the lesson was often determined by ideas originating with students.  3.0 3.0 

 Subscale 1 score 15.5 18.5 

     

Subscale 2: Content, propositional knowledge   

 6. The lesson involved fundamental concepts of the subject.  3.0 4.0 

 7. The lesson promoted strongly coherent conceptual understanding. 2.5 3.5 

 8. The teacher had a solid grasp of the subject matter content inherent in the lesson.  3.0 4.0 

 

9. Elements of abstraction (i.e., symbolic representations, theory building) were encouraged when it was 

important to do so. 2.5 4.0 

 10. Connections with other content disciplines and/or real world phenomena were explored and valued.  4.0 3.5 

 Subscale 2 score 15.0 19.0 

     

Subscale 3: Content, procedural knowledge   

 

11. Students used a variety of means (models, drawings, graphs, concrete materials, manipulatives, etc.) 

to represent phenomena. 4.0 3.0 

 12. Students made predictions, estimations, and/or hypotheses, and devised means for testing them. 2.0 2.0 

 

13. Students were actively engaged in thought-provoking activity that often involved the critical 

assessment of procedures. 2.0 3.0 

 14. Students were reflective about their learning. 2.0 2.0 

 15. Intellectual rigor, constructive criticism, and challenging of ideas were valued. 2.0 2.5 

 Subscale 3 score 12.0 12.5 

     

Subscale 4: Classroom culture, communicative interactions   

 

16. Students were involved in communication of their ideas to others using a variety of means and 

media. 3.0 3.5 

 17. The teacher’s questions triggered divergent modes of thinking.  2.0 3.5 

 

18. There was a high proportion of student talk and a significant amount of it occurred between and 

among students.  2.0 2.5 

 19. Student questions and comments often determined the focus and direction of classroom discourse.  2.0 3.0 

 20. There was a climate of respect for what others had to say.  1.5 3.0 

 Subscale 4 score 10.5 15.5 

     

Subscale 5: Classroom culture, student/teacher relationships   

 21. Active participation of students was encouraged and valued.  2.5 3.5 

 

22. Students were encouraged to generate conjectures, alternative solution strategies, and ways of 

interpreting evidence.  3.0 3.0 

 23. In general the teacher was patient with students.  2.5 3.0 

 24. The teacher acted as a resource person, working to support and enhance student investigations.  3.0 3.5 

 25. The metaphor “teacher as listener” was very characteristic of this classroom. 2.5 3.0 

 Subscale 5 score 13.5 16.0 

     

Total score 66.5 81.5 
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On the lesson design and implementation subscale, the mean scores for Ms. Rosena’s 

mathematics instruction are 15.5 in the Fall and 18.5 in the Spring. In all observed lessons, 

student exploration proceeds formal presentation of mathematical ideas and students’ ideas 

determine the direction of some aspects of the lessons. Instruction is designed to respect 

students’ prior knowledge and encourage students to seek and value multiple ways to 

approach problems in all lessons, with strong adherence to these principles in Spring lessons. 

Finally, lessons are designed to engage students as a community in all lessons, with Spring 

lessons realizing this goal to a greater extent.   

The second RTOP subscale focuses on what the contents of a lesson suggests about a 

teacher’s propositional knowledge, meaning her mathematical knowledge for teaching 

particular content. On this subscale, Ms. Rosena’s mean scores are 15.0 in the Fall and 19.0 

in the Spring. All observed lessons illuminate fundamental mathematics concepts and explore 

connections with real-world phenomena, although Spring lessons promote somewhat 

stronger conceptual understanding than those observed in the Fall. Furthermore, Spring 

lessons illuminate connections between mathematical ideas and their symbolic 

representations more consistently and coherently than Fall lessons.  

The third RTOP subscale focuses on what the contents of a lesson suggests about a 

teacher’s procedural knowledge. For the RTOP instrument, this means the quality of the 

lesson in terms of an inquiry approach to learning. The scores for Ms. Rosena’s instruction 

on this subscale are similar at both data points, with 12.0 in the Fall and 12.5 in the Spring. 

Students are only sometimes engaged in activities of inquiry such as making predictions and 

devising means for testing them. Students are encouraged to engage in critical assessment of 

procedures and challenging of ideas in all lessons, but these characteristics are more 



 

 292 

descriptive of classroom norms in the Spring lessons than the Fall. In all lessons, students are 

encouraged to represent mathematical ideas in multiple ways.  

The fourth RTOP subscale focuses on communicative interactions that are part of the 

classroom culture. On this subscale, the mean scores for Ms. Rosena’s instruction are 10.5 in 

the Fall and 15.5 in the Spring. In all observed lessons, students are involved in 

communicating their mathematical ideas to others in multiple ways. While students 

participate in the classroom discourse throughout the year, a greater level of student 

determination of the direction of the discourse is observed in the Spring. This parallels a 

change in the classroom climate, toward one in which students respect what others have to 

say to a greater extent. Finally, Ms. Rosena poses questions that trigger divergent thinking 

more frequently in the Spring when compared to the Fall.  

The last RTOP subscale focuses on the classroom culture in terms of the teacher’s 

role and the roles students are encouraged to take. On this subscale, the mean scores for Ms. 

Rosena’s instruction are 13.5 in the Fall and 16.0 in the Spring. Throughout the year, Ms. 

Rosena deliberately engages in teaching strategies to support students as they work on 

mathematics tasks and discuss student solutions. Furthermore, Ms. Rosena is regularly 

observed encouraging students to generate conjectures and interpret solutions shared by their 

peers. That being said, there are times in Fall lessons when Ms. Rosena dominates class 

discussion, allowing students to take a more passive role. Therefore, items related to active 

participation and the characteristic of “teacher as listener” are more characteristic of Spring 

lessons.  
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Ms. Rosena’s mean scores on the total RTOP instrument are 66.5 in the Fall and 81.5 

in the Spring. These ratings suggest that Ms. Rosena’s mathematics instruction moderately 

reflects the principles of reform in the Fall and approaches strong adherence in the Spring.  

 

 

Rosena: Student Achievement 

 

 

Aggregated student scores on the mathematics section of the State Standardized Test 

(SST) were used to measure the mathematics achievement of Ms. Rosena’s class. The SST is 

a criterion-referenced achievement test in which students receive scores between 1 and 5, 

with a score of 3 or higher considered passing. Since Ms. Rosena’s students are repeating 

third grade, SST scores from the previous year are available for the students in Ms. Rosena’s 

class
11

. Six students received a score of 1 on the mathematics section of the SST in the 

previous year, and three students received a score of 2. This suggests that these students 

entered Ms. Rosena’s class with limited knowledge of third-grade mathematics.  

Ms. Rosena’s students’ SST scores in the year of this study are presented in Table 27 

along with comparison data for third-grade students at Lincoln Heights, the school district, 

and the state. However, comparisons between the scores of Ms. Rosena’s class and the other 

groups, including the classes of the other teachers’ studied, should be made with caution. 

Each teacher studied has a class with demographic particularities and a statistically small 

number of students. The fact that Ms. Rosena’s class is comprised entirely of students who 

have been retained makes it arguably different than these other groups.  

 

 

                                            
11

 Ms. Rosena lost 1 of her 10 students shortly before the SST testing, so data are presented for the 9 students 

tested.   
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Table 27 

Comparison of Rosena Student Achievement on SST to School, District, and State 

   
Achievement level (%) 

  

Group  Students  1 2 3 4 5  Passing score (%) 

Ms. Rosena's class 9  11 11 56 22 0  78 

Lincoln Heights 3rd grade 88  24 27 33 15 1  49 

School District 3rd grade 13,713  18 16 33 24 9  66 

State 3rd grade 203,037  15 17 34 25 9  68 

Note. Scores of 3 or higher are considered passing.  

 

 

 

Seven of the nine students in Ms. Rosena’s class who took the SST achieved a higher 

score on the mathematics test than the previous year, with six students increasing their scores 

by two or more levels. A passing score of 3 or higher was achieved by 78% of Ms. Rosena’s 

students. This is in comparison to passing scores achieved by 49% of Lincoln Heights third 

graders, 66% of the third graders in the school district, and 68% of the third graders in the 

state. Therefore, the percent of Ms. Rosena’s students achieving grade-level standards, as 

measured by the SST, exceeds that of the third-grade students at Lincoln Heights as well as 

in the school district and state.   

 

 

Summary of Global Measures of Ms. Rosena’s Teaching 

 

 

Taken together, results from the Reformed Teaching Observation Protocol (RTOP) 

and the State Standardized Test (SST) suggest that Ms. Rosena’s classroom is a place where 

students learn significant mathematics through instruction that is somewhat reformed. RTOP 

results suggest that Ms. Rosena’s mathematics teaching moderately reflects the principles of 

mathematics reform in the Fall and approaches strong adherence in the Spring. Looking 

across subscales of the RTOP, the lesson design and implementation subscale as well as the 
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propositional knowledge subscale are rated higher than the other subscales in the Fall and the 

Spring. These scales reflect Ms. Rosena’s ability to use her knowledge of mathematics to 

facilitate classroom experiences that respect students’ prior knowledge and build on students’ 

mathematical ideas. Therefore, even as Ms. Rosena is grappling with reform-oriented 

practices such as creating a classroom culture in which students guide the discourse, she is 

able to interpret and build on students’ mathematical ideas in ways that promote 

understanding. Ms. Rosena’s students’ mathematics achievement scores lend further 

evidence to this assertion. Aggregated SST data indicates that most of Ms. Rosena’s students 

(78%) are performing at or above grade level expectations. This finding suggests that Ms. 

Rosena’s class is one in which there are significant opportunities for mathematics learning. 



CHAPTER IV 

 

CROSS-CASE ANALYSIS & DISCUSSION 

 

 

 

 This research set out to explore how teachers’ knowledge and beliefs influence the 

ways they support and limit student thinking during initial use of a reform-based 

mathematics curriculum in an urban school setting. To accomplish this, a collective case 

study was conducted of four, third-grade teachers in an urban school that focused on their 

ways of responding to student difficulties during mathematics instruction on multiplication 

and division topics. The following broad questions guided this research:  

1. In what ways and to what extent do teachers support and limit student thinking during 

mathematics instruction in their first year implementing a reform-based mathematics 

curriculum? 

2. How do teachers’ beliefs influence the ways they incorporate student thinking into 

their planning for mathematics instruction and on-the-spot instructional decision-

making in their first year of implementing a reform-based mathematics curriculum? 

3. How does teacher knowledge influence the ways teachers incorporate student 

thinking in their first year of implementing a reform-based mathematics curriculum? 

4. How does the urban context, as defined by the research literature and perceived by 

teachers and school leaders, influence mathematics instruction in this urban school?    

This final chapter begins with a discussion of findings across cases. Through this 

discussion, research findings will be synthesized and the four research questions used to 
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guide this study will be answered. Next, implications of this research will be discussed 

including recommendations for advocates of mathematics reform. Then study limitations will 

be identified along with suggestions for future research. Finally, summary conclusions will 

be offered. 

 

Discussion of Findings across Cases 

 

 

My discussion of findings across cases will be presented in four parts. First, attention 

will be given to how and to what extent the teachers studied engaged in teaching practices 

that supported and limited student thinking during their first year working with a reform-

based curriculum. Then consideration will be given to what study findings suggest about the 

influence of teachers’ beliefs and knowledge on teaching practices related to student 

thinking. This will be accomplished by identifying dimensions of teachers’ response to 

student difficulties and describing the relationship between each dimension, teacher beliefs, 

and teacher knowledge. Next, the relationship among teachers’ evolving beliefs, knowledge, 

and mathematics instructional practices will be discussed. Finally, consideration will be 

given to what this research suggests about how the urban context influences teacher 

transitions to reform-based mathematics teaching practices. Through this cross-case analysis, 

the research questions that guided this study will be answered.  

 

 

Teacher Actions that Support and Limit Student Thinking 

 

 

This study set out to consider the ways and extent to which teachers support and limit 

student thinking in their first year implementing a reform-based mathematics program in an 

urban school. Reflecting the current research literature (Franke et al., 2007; Sowder, 2007), 
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findings from this study suggest that some aspects of reform-oriented teaching are more 

readily adopted than others. Table 28 summarizes the frequency with which the group of 

teachers studied was observed to engage in particular teaching practices thought to support 

and limit student thinking.  

 

 

Table 28 

Summary of Teaching Strategies Observed to Support and Limit Student Thinking 

Frequency Support Limit 

Teachers 

often 

Assign contextualized mathematical 

problems that can be solved in multiple 

ways  

Focus on a small number of  problems in a 

given class period  

Direct students to solve problems in ways 

that make sense to them  

Make manipulatives and other tools 

available for student use 

Elicit presentation of multiple problem 

solutions during class discussion. 

Elicit description of problem solving process 

from individual students 

Maintain record of solution strategies on 

board/overhead during class discussion 

Lead class discussions such that interactions 

occur primarily between teacher and 

individual students 

Focus class discussion on show and tell of 

student strategies (and not evaluation and 

comparison of strategies)  

Teachers 

sometimes  

Encourage student collaboration during 

problem solving or after problem solving 

Ask students to justify strategies employed 

(during work time and class discussion) 

Intentionally organize order of strategy 

sharing to highlight relationships among 

strategies  

Ask clarifying questions and provide instant 

replays of strategies during class discussion 

Use class discussion to illuminate 

relationships among student generated 

solutions and mathematical concepts 

Orchestrate class discussion such that 

students participate as a learning community 

by analyzing, evaluating, and commenting 

on each others’ ideas 

Use closed questions and directives to guide 

students who struggle, limiting student 

thinking in the problem solving process 

Suggest use of procedures and tricks when 

students struggle with word problems, rather 

than focusing students on making sense of 

problem situations 

Lead students to report and discuss 

strategies in a manner consistent with 

teacher thinking rather than student thinking 

Position the teacher as the primary source of 

help and authority for mathematical 

correctness (rather than using the class 

community to provide support and establish 

mathematical correctness)  

Treat students’ viable mathematical ideas as 

if they are incorrect  
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 Evidence suggests that the combination of reform-based mathematics curriculum 

materials and professional development related to use of these materials supported teachers 

in changing their mathematics instruction to ways that are aligned with reform 

recommendations. Across classrooms, all mathematics lessons observed focused on a limited 

number of problems, with initial problems being set in real-world contexts to facilitate 

informal exploration of mathematical concepts. Students were given time to devise their own 

ways to solve problems prior to being shown particular solution strategies. Also, teachers 

regularly incorporated class discussion of students’ problem solving strategies into their 

mathematics lessons. To summarize, all teachers studied were found to structure mathematics 

lessons, including task assignments, in some ways aligned with reformers’ recommendations 

for mathematics instruction.  

 While structural changes to mathematics instruction represent important steps toward 

reform (Franke et al., 1997; Hufferd-Ackles et al., 2004), these changes alone are unlikely to 

yield the kinds of student learning envisioned by reformers (Franke et al., 2007; Stipek et al., 

1998). As other researchers have found (Spillane & Zeuli, 1999), the teachers in this study 

experienced limited success with cultivating a learning community characterized by rigorous 

analysis and debate of mathematical ideas. Across classrooms, there was inconsistency in the 

degree to which teachers held students accountable for attempting problems posed and 

promoted student-to-student collaboration during problem solving. At times, some teachers 

were found to limit student thinking during problem solving by directing students to follow 

particular procedures, sometimes without attention to the conceptual basis of the procedures. 

There were also instances of teachers limiting students’ mathematical thinking by treating 

their viable mathematical ideas as incorrect. 
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 While teachers regularly convened class discussions around student-generated 

solutions, these discussions were only sometimes organized to deliberately illuminate 

particular mathematical ideas. During discussions, teachers varied in the degree to which 

they asked students to justify strategies used. Teachers also varied with the degree to which 

their questions and explanations supported the class as a whole in understanding the 

strategies presented by individual students. Additionally, class discussions in three of the four 

classrooms studied most often consisted of interactions between the teacher and particular 

students as they presented their solutions. As has been found by other researchers (Spillane & 

Zeuli, 1999), the teachers in this study found it particularly difficult to employ strategies to 

engage the class as a whole in analyzing and evaluating mathematical solutions presented 

during class discussion. These factors served to limit student attention to and engagement in 

the ideas shared by peers, thus decreasing the learning potential of class discussions. 

 The first research question posed is, “In what ways and to what extent do teachers 

support and limit student thinking during mathematics instruction in their first year 

implementing a reform-based mathematics curriculum?” In short, teachers consistently 

supported student thinking by structuring lessons to afford students opportunities to engage 

in problem solving and describe their mathematical solutions in the whole class forum.  

There was variation among classrooms in the extent to which teachers provided support that 

illuminated key mathematical concepts and encouraged development of generative problem 

solving practices. In addition, teachers’ actions varied in the degree to which they promoted 

student autonomy and student collaboration. Teachers particularly struggled to facilitate 

mathematically productive student-to-student interactions during class discussion of problem 

solving tasks.  
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It is the thesis of this research that variations in teacher actions that support and limit 

student thinking are related to teachers’ belief and knowledge. This proposition will be 

elaborated in the next section through illustration of the ways teachers’ beliefs and 

knowledge were found to be related to teachers’ response to student difficulties.  

 

 

The Influence of Beliefs and Knowledge on Teachers’ Response to Student Difficulties 

 

 

This study examines the influence of teachers’ beliefs and knowledge on mathematics 

teaching practices by focusing on teacher response to student difficulties during instruction 

on multiplication and division. Looking across cases, five dimensions of teacher response to 

student difficulties emerge. Teachers’ ways of responding to student difficulties vary in the 

extent to which they encourage student autonomy, focus on problem context, emphasize 

mathematics concepts, explore flawed solutions in whole class discussion, and engage 

students as a community of learners. These dimensions of teacher response to student 

difficulties and their relationship to teacher beliefs, teacher knowledge, and student thinking 

are summarized in Table 29. Each of these dimensions will be discussed in turn, with a focus 

on how they are linked to teachers’ knowledge and beliefs as well as their relationship to 

student thinking.   

 

 

Dimension 1: Encouragement of Student Autonomy 

 

 

First, teachers vary in the extent to which their ways of responding to student 

difficulties encourage student autonomy. In the context of this research, student autonomy 

refers to student dispositions and learning practices that support productive engagement in  
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Table 29  

Summary of the Relationship Among Teacher Response to Student Difficulties, Teacher 

Beliefs, Teacher Knowledge, and Student Thinking 

Dimension of response 

to student difficulties  Link to teacher beliefs & knowledge 

Consequences for student 

thinking 

Teachers vary in the 

extent to which their 

ways of responding to 

student difficulties 

encourage student 

autonomy.  

Beliefs. As teachers begin to view students as 

capable of solving novel problems without 

explicit instruction, they are more likely to 

respond to student difficulties in ways that 

discourage dependence on the teacher and 

encourage autonomous learning practices.  

Knowledge. Practices employed are dependent on 

a teacher’s knowledge of teaching practices that 

facilitate student autonomy and peer 

collaboration as well as the ability to exercise 

these practices in response to students’ 

difficulties. 

Students become increasingly 

productive problem solvers in 

classrooms where they learn 

strategies to persevere 

through difficulties 

encountered during problem 

solving and where they are 

held accountable for engaging 

in problem solving with 

limited or no teacher 

intervention.  

When students struggle 

with word problems, 

teachers vary in the 

extent to which they 

utilize a focus on 

problem context to 

support student thinking.  

Beliefs. Teachers who emphasize problem 

context view word problems as a way for 

students to explore mathematical ideas before 

they are formally introduced.  

Knowledge. Teachers who personally rely on 

procedural understanding of mathematics are 

more likely to strip context and provide 

procedural hints when students are struggling to 

make sense of a word problem. Teachers with 

greater conceptual understanding of mathematics 

tend to encourage students to use the problem 

context to build a model of the problem situation.  

When children are taught to 

approach problem solving by 

making sense of problem 

situations, they are 

encouraged to rely on their 

own intuitive, analytical 

modeling skills. In turn, 

symbols and formal 

procedures can be learned in 

relationship to students’ own 

ways of making sense of 

problems.  

Teachers differ in the 

extent to which their 

ways of responding to 

students’ difficulties 

emphasize mathematics 

concepts.  

Beliefs. Teachers who emphasize mathematics 

concepts are more likely to believe that 

understanding mathematical concepts is more 

powerful and more generative than remembering 

mathematical procedures.  

Knowledge. Teachers with stronger knowledge of 

school mathematics are more likely to emphasize 

key mathematics concepts as they respond to 

students’ difficulties. Teachers with weaker 

knowledge are more likely to focus on 

procedures for obtaining correct answers without 

illuminating important mathematics concepts.  

Children who develop 

conceptual understanding of 

mathematical ideas can use 

their knowledge more 

flexibly than children who 

rely on procedural knowledge 

alone. Conceptual 

understanding also helps 

students make connections 

among mathematical ideas.  
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Table 29 (Continued) 

Summary of the Relationship Among Teacher Response to Student Difficulties, Teacher 

Beliefs, Teacher Knowledge, and Student Thinking 

Teachers differ in the 

extent to which they 

intentionally make 

flawed solutions a focus 

of whole class 

discussion.   

Beliefs. Some teachers intentionally avoid 

discussion of flawed solutions because they 

believe students will be embarrassed to have their 

mistakes shared publicly. Teachers are also 

concerned that public display of flawed solutions 

might further confuse children with fragile 

understanding.  

Knowledge. Engaging students in productive 

analysis of flawed solutions requires teachers to 

draw on their knowledge base in real time to 

ensure that important mathematical ideas are 

brought out and misconceptions are confronted.  

When class discussion 

involves collaborative 

analysis and revision of 

flawed solutions, students are 

encouraged to think about 

underlying mathematics 

concepts. Additionally, 

intellectual risk taking is 

promoted because mistakes 

are viewed as opportunities 

for learning.   

 

Teachers differ in the 

extent to which they 

engage students as a 

community of learners. 

Beliefs. Teachers who believe students have 

limited capabilities to engage in problem solving 

without teacher support also tend to believe that 

students are limited in their capacity to support 

each others’ learning. Additionally, teachers who 

view the purpose of class discussion as showing 

ways to get answers (a procedural focus) are less 

likely to press students – individually or as a 

community of learners – to discuss the conceptual 

underpinnings of mathematical ideas.  

Knowledge. Engaging students as a community of 

learners draws on knowledge of routines and 

scripts to promote productive student collaboration 

and mathematical debate in class discussion. 

Further, this practice relies on a teacher’s ability to 

use her mathematical knowledge to interpret 

student contributions and steer the dialogue in 

productive directions.  

When classroom norms 

emphasize discussion, 

collaboration, and negotiation 

as ways of fostering shared 

meaning among a community 

of learners, students view 

mathematical authority as 

residing in mathematical 

arguments rather than with 

the teacher or text. 

Consequently, students’ 

energies are focused on 

making sense of mathematics 

in relation to their own 

developing constructions. 

 

 

 

 

assigned mathematics tasks with limited or no teacher intervention. Ms. Aria and Ms. Rosena 

intentionally encourage student autonomy by limiting their interactions with students during 

initial problem solving, encouraging use of resources other than the teacher, and holding 

students accountable for attempting problems prior to class discussion. In these classes, 

students learn strategies to persevere through difficulties encountered during problem 

solving, and they become increasingly productive problem solvers. In contrast, Ms. Jarmin 
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provides one-on-one assistance to students throughout the time allotted for problem solving, 

and Ms. Larsano does not hold students accountable for developing personal solutions to 

problems prior to class discussion. In both of these classes, some students regularly wait for 

the teacher or other students to provide direction on how to solve a given problem, thus 

limiting personal engagement in problem solving. 

Evidence suggests that teachers’ practices that encourage student autonomy are 

related to teachers’ beliefs about their students’ capabilities to solve novel problems without 

teacher intervention as well as pedagogical knowledge of routines to minimize students’ 

dependence on the teacher. As Ms. Aria and Ms. Rosena entertain the idea introduced in 

professional development that their students might be capable of solving novel problems 

without explicit instruction, they develop and experiment with routines to encourage greater 

student autonomy and peer-to-peer support. As they observe their students successfully 

solving novel problems with limited teacher intervention, their beliefs change to viewing 

students as more capable than they initially thought. In turn, these teachers become more 

resolute in their commitment to limiting intervention during initial problem solving and 

continue to cultivate instructional routines that reflect this belief.  

In Ms. Jarmin and Ms. Larsano’s classes, routines to discourage teacher dependence 

and encourage student autonomy are not established. Consequently, some students develop 

the practice of limiting personal engagement with problem solving and instead regularly wait 

for the teacher or other students to show them how to solve problems. In general, students in 

these classes are comparatively less successful with problem solving. As a result, these 

teachers’ experiences with their students reinforce the belief that strong teacher direction is 

necessary for their students to be successful with problem solving. In discussing the necessity 
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of strong teacher intervention, Ms. Jarmin and Ms. Larsano often point out that the students 

in their classes have special learning needs, suggesting that other students may be more 

capable of engaging in problem solving with greater autonomy. This finding echoes other 

research indicating that teachers question the capability of low-achieving students to devise 

their own solutions to problems without direct teacher guidance (Knapp, 1995a; Sztajn, 2003; 

Warfield et al., 2005). 

 

 

Dimension 2: Focus on Problem Context 

 

 

A second way in which teachers’ patterns of response to students’ difficulties vary is 

in the extent to which they utilize a focus on problem context to support student thinking 

about word problems. When children are taught to approach problem solving by making 

sense of problem situations, they are encouraged to rely on their own intuitive, analytical 

modeling skills (Carpenter et al., 1999). In turn, symbols and formal procedures can be 

learned in relationship to students’ own ways of making sense of problems. In Ms. Aria and 

Ms. Rosena’s classes, student thinking is supported as students are encouraged to pay close 

attention to problem context to figure out how to approach a problem or to analyze where a 

solution went wrong. In Ms. Jarmin and Ms. Larsano’s classes, attention to problem context 

is less consistent. Often these teachers help students obtain answers in ways that deemphasize 

problem context and, instead, encourage a procedural focus. For instance, Ms. Jarmin tells a 

student to, “count the rows,” to get a correct answer instead of encouraging the student to 

figure out what the rows represent in the problem.  

Teachers’ focus on problem context in response to student difficulties seems most 

related to teachers’ personal ways of understanding mathematics. All teachers studied 
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attempted to use problem context to support student thinking some of the time. As students’ 

difficulties persist, teachers who personally rely on procedural understanding of mathematics 

were more likely to strip context and provide procedural hints when students struggled to 

make sense of word problems. Conversely, teachers with greater conceptual understanding of 

mathematics were more committed to encouraging students to use problem contexts to make 

sense of problems by modeling problem situations. There is some evidence that these 

practices may also be related to teachers’ beliefs. Teachers who consistently emphasize 

problem context view word problems as a way for students to explore mathematical ideas 

before they are formally introduced. This belief is in contrast to a more traditional view of 

word problems, as a way for students to apply mathematics concepts that have already been 

learned.  

 

 

Dimension 3: Emphasis on Mathematics Concepts 

 

 

A third way in which teachers’ response patterns vary is in the extent to which 

teachers emphasize mathematics concepts as they address students’ difficulties. Student 

thinking is supported when mathematics concepts are emphasized, because students who 

develop conceptual understanding of mathematical ideas can use their knowledge more 

flexibly than children who rely on procedural knowledge alone (Carpenter & Lehrer, 1999). 

Conceptual understanding also serves as a basis for making connections among mathematical 

ideas.  In the instructional episodes shared, Ms. Rosena stresses the concept of equal groups 

and Ms. Aria emphasizes the meaning of remainder as they support students’ revision of 

flawed solutions. In Ms. Larsano and Ms. Jarmin’s classes, students’ difficulties are 

addressed in ways that are less likely to illuminate key mathematics concepts. Sometimes 
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these teachers focus on the mechanics of procedures for obtaining correct answers. At other 

times, teacher attempts to provide conceptual support are confusing and end before correct 

answers and underlying concepts are clear.  

The likelihood that teachers will respond to student difficulties in ways that 

emphasize key mathematics concepts seems most related to their knowledge of mathematics 

and their pedagogical content knowledge. Teachers who emphasize key mathematics 

concepts in response to student difficulties often include the mathematical ideas they want to 

stress in their lesson image. Additionally, they have either developed premeditated scripts to 

respond to anticipated student errors or are able to develop clear, conceptually-based 

explanations on-the-spot. In contrast, teachers with a weaker base of mathematical 

knowledge are less likely to identify key mathematical ideas as part of their lesson image, 

and they have difficulty formulating conceptually-based explanations when difficulties arise. 

As a result, teachers with weaker mathematical knowledge often revert to a focus on 

procedures, which more closely aligns with their personal ways of understanding 

mathematics. There is also evidence that teachers who emphasize mathematics concepts in 

response to student difficulties are more likely to believe that understanding mathematical 

concepts is more powerful and more generative than remembering mathematical procedures.  

 

Dimension 4: Intentional Use of Flawed Solutions in Whole Class Discussion 

 

A fourth way that teachers’ patterns of response to student difficulties vary is in the 

extent to which students’ flawed solutions are intentionally used to support student learning 

in whole class discussion. Kazemi and Stipek (2001) identify the practice of having students 

analyze flawed solutions in whole class discussion as a sociomathematical norm associated 
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with classrooms in which students have high levels of mathematical understanding. When 

class discussion involves collaborative analysis and revision of flawed solutions, students are 

encouraged to think about underlying mathematics concepts (Borasi, 1994). Additionally, 

intellectual risk taking is promoted because mistakes are viewed as opportunities for 

learning. Of the four teachers studied, Ms. Rosena is the only teacher who intentionally 

integrates discussion of flawed solutions into whole class discussion. The other teachers aim 

to orchestrate class discussion such that the focus is on multiple correct solutions or they call 

on volunteers, with limited awareness of the strategies that will be shared.  

Reflecting findings of other studies (Santagata, 2005; Silver et al., 2005), some 

teacher participants in this study were reluctant to focus on flawed solutions in whole group 

discussions. This reluctance appears most closely related to teachers’ beliefs. Teachers worry 

that students will be embarrassed if their mistakes are shared publicly and that the display of 

flawed solutions might confuse children with fragile mathematical understanding. 

Consequently, teachers aim to address students’ difficulties prior to whole class discussion, 

or they assume that student difficulties will be resolved as correct problem solutions are 

shared. While it appears that teachers’ beliefs primarily influence whether they choose to 

include analysis of flawed solutions in whole class discussion, there is evidence that teacher 

knowledge influences the quality of such discussions. Engaging students in productive 

analysis of flawed solutions in the whole class forum requires teachers to draw on their 

knowledge base in real time to ensure that important mathematical ideas surface and 

misconceptions are confronted. Williams and Baxter (1996) found that, as teachers attempt to 

focus their cognitive attention on managing a class discussion of multiple solutions, they 

sometimes have difficulty staying focused on content goals. There is evidence of this point in 
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the classroom episode featuring Ms. Larsano’s handling of a flawed solution in class 

discussion. In this episode, the discussion is ended before the correct and incorrect aspects of 

the flawed solution are clear.  

 

Dimension 5: Engagement of Students as a Community of Learners 

 

 

A fifth way that teachers’ patterns of response to student difficulties vary is in the 

extent to which they engage students as a community of learners. All four teachers studied 

indicate that their students are allowed to interact with each other during time allotted to 

work on mathematics tasks. However, only in Ms. Aria and Ms. Rosena’s classes are lessons 

structured to deliberately involve student collaboration during work time. When student 

difficulties surfaced in the context of whole class discussion, only one of the four teachers – 

Ms. Rosena – utilizes the reform-based practice of engaging students as members of a 

learning community to address difficulties. Especially in Spring lessons, Ms. Rosena is 

observed prompting students to analyze and evaluate their peer’s mathematical thinking, 

whether a student’s mathematical ideas are correct or flawed. If a student’s mathematical 

thinking is thought to be flawed, Ms. Rosena guides students to recognize the source of the 

error and then asks students to suggest ways to resolve the error. In contrast, when student 

difficulties surface during class discussion in the other three classrooms, discourse typically 

follows traditional interaction patterns characterized by the teacher maintaining tight control 

of discourse and limiting the extent to which students work together to analyze their peers’ 

mathematical ideas, judge mathematical correctness, and resolve mathematical errors (Franke 

et al., 2007).  
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These different ways of responding to student difficulty fit well with the distinction 

Wood, Williams, and McNeal (2006) make between reform-oriented classrooms in which 

discourse patterns are characterized by a strategy reporting classroom culture and an 

inquiry/argument classroom culture. Similar to the findings of Wood et al., the current 

research finds the class discussion of student difficulties in Ms. Rosena’s classroom, which 

come the closest to establishing an inquiry/argument classroom culture, to be the most 

productive of those observed.  

 The extent to which teachers utilize practices that engage students as members of a 

learning community seem most related to teachers’ knowledge but also related to their 

beliefs. Knowledge of routines and scripts to initiate and facilitate student collaboration are 

necessary to engage students as a learning community. This point is highlighted by the 

contrast in Ms. Aria’s instructional strategies to promote a community of learners during 

work time and the limited practices observed to stimulate student-to-student interaction 

during class discussion. Ms. Aria’s aim is to engage students as a learning community 

throughout lessons, but she has not cultivated the teaching strategies to do this effectively 

during class discussion, particularly when student difficulties arise. For Ms. Aria, much of 

her cognitive effort during class discussions is spent on classroom management issues, 

limiting the degree to which she can focus on other goals. Furthermore, the ability to 

orchestrate a class discussion characterized by an inquiry/argumentation classroom culture 

(Wood et al., 2006) also relies on a teacher’s ability to interpret and assess student 

contributions on-the-spot in order to steer the discourse productively. Some teachers may be 

unable to facilitate student inquiry into each others’ strategies during these discussions 

because they are expending their cognitive effort on simply making sense of and responding 
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to student contributions. In general, class discussions characterized by student inquiry and 

argumentation are more complex than discussions focused on strategy reporting. This greater 

complexity demands skillful application of deep and flexible teacher knowledge. 

  While a teacher’s knowledge appears to facilitate or limit a teacher’s ability to 

engage students as a community of learners, a teacher’s inclination to have students 

collaborate appears related to a teacher’s beliefs about students’ capabilities. Ms. Rosena and 

Ms. Aria were found to hold the belief that students were capable of solving novel problems 

with limited support. Related to this belief, there is evidence that these teachers believe their 

students are capable of making positive contributions to the learning of others. On the other 

hand, Ms. Larsano and Ms. Jarmin viewed students as less capable and they established 

themselves as the primary source of knowledge in the classroom. Also related, these teachers 

may have different beliefs about the purpose of class discussion. Thompson, Phillip, 

Thompson, and Boyd (1994) found that teachers with a calculational orientation viewed class 

discussion as a place primarily for children to learn ways to get answers. Like Ms. Larsano 

and Ms. Jarmin, these teachers focused on having students elaborate mathematical 

procedures without pressing them to justify the conceptual underpinnings of their procedures. 

If a teacher is not focused on using class discussion to focus on conceptual understanding, the 

potential content of class debate of mathematical ideas is limited.  

 

Summary of the Influence of Teachers’ Beliefs and Knowledge on Response to Student 

Difficulties 

 

 

 The second and third research questions guiding this study ask respectively, “How do 

teachers’ beliefs influence the ways they incorporate student thinking into their planning for 
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mathematics instruction and on-the-spot decision-making in their first year of implementing 

a reform-based mathematics curriculum?” and, “How does teacher knowledge influence the 

ways teachers incorporate student thinking in their first year of implementing a reform-based 

mathematics curriculum?” To answer these questions, five dimensions of teacher response to 

student difficulties have been identified and discussed in relation to the particular aspects of 

beliefs and knowledge found to influence teacher actions. Specifically, teachers’ beliefs and 

knowledge were found to influence the degree to which their ways of responding to student 

difficulties encourage student autonomy, focus on problem context, emphasize mathematics 

concepts, intentionally incorporate flawed solutions in whole class discussion, and engage 

students as a community of learners. 

Through analyses of the relationship among teachers’ response to student difficulties, 

teacher beliefs, and teacher knowledge, this study provides evidence of an interactive 

relationship between beliefs and knowledge in shaping classroom mathematics instruction. 

While beliefs and knowledge appear to simultaneously influence teacher actions, this 

analysis of teachers’ response to student difficulties suggests that certain aspects of 

mathematics teaching are more greatly influenced by teacher beliefs while others are more 

greatly influenced by teacher knowledge. 

Teacher knowledge seems to be the primary determinant of the particular kinds of 

support that teachers provide in the face of student difficulties. Teachers with stronger 

mathematical knowledge are more likely to address student difficulties in ways that connect 

to students’ mathematical thinking and emphasize conceptual understanding. Furthermore, 

teachers are more likely to support student thinking when they have cultivated routines and 
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scripts that deliberately aim to increase student autonomy and promote a learning community 

approach to resolving difficulties.  

Teacher beliefs, on the other hand, appear highly related to the roles teachers take on 

for themselves and the roles they ascribe for students in their classrooms. Teachers who 

believe students need to be told how to solve mathematical problems have low expectations 

for students’ abilities to persevere through novel problem solving tasks. They are not 

surprised when students have difficulties during problem solving, and they view good 

teaching as directly helping students to resolve these difficulties. Because students are 

viewed as having limited capabilities, classroom norms limit the degree to which students are 

encouraged to utilize peers as sources of mathematical support and knowledge. In contrast, 

teachers who view students as capable of devising their own solutions to problem solving 

tasks establish high expectations for students and institute practices that encourage students 

to view their peers as resources in the face of difficulty.   

In this section, a focus on examining teacher response to student difficulties was used 

to elaborate the interactive relationship between teacher beliefs and knowledge and their 

influence on mathematics teaching. In the next section, focus will shift to considering how 

teachers’ evolving beliefs and knowledge are influenced by their classroom experiences.  

 

 

Relationship among Teachers’ Evolving Beliefs, Knowledge, and Mathematics Instruction 

 

 

In addition to suggesting ways that beliefs and knowledge influence instructional 

practice, this study provides evidence that instructional practice can influence evolving 

beliefs and knowledge. In this section, consideration will be given to how classroom 
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experiences during initial use of reform-based mathematics curriculum appear to influence 

teachers’ evolving beliefs and knowledge.  

A surprising finding of this study is that the combination of professional development 

and reform-based curriculum materials led teachers to experiment with teaching practices 

that were not initially aligned with their beliefs. According to the teachers, professional 

development helped them to envision reform-based teaching practices and the curriculum 

materials gave them the tools to experiment with the practices in their classrooms. However, 

the teachers did not commit to sustained change in mathematics teaching practices until 

seeing how the reform-based ideas played out in their own classrooms. At the end of the 

year, Ms. Rosena articulates why positive experiences in the classroom are essential to 

adopting teaching practices learned about in professional development: 

In the professional development, yes, you’re sitting there, but you’re listening, and of 

course, you are doing some of the exercises, but until you come to the classroom and 

put that into practice, you won’t really get it.  You won’t really understand what the 

impact is going to be with the students, and that’s when it really happens. Because…I 

have been to professional development.  They teach all these wonderful things.  They 

help you with all these wonderful ideas. And when you come to the classroom, if you 

don’t see them work, they’re out the door. 

 

Ms. Rosena’s assertion that teachers wait to determine the worth of ideas encountered in 

professional development until they experiment with the ideas in their classrooms is echoed 

in the end-of-year interviews of all four teachers studied. In turn, the degree to which 

teachers perceive the reform-based mathematics curriculum and instructional strategies to 

“work” in their own classrooms appears related to the degree to which they revised their 

beliefs.  

The teachers who, by the end of the year, developed beliefs most closely aligned with 

reform were also the teachers who perceived their students to become increasingly 
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responsive to and successful with the reform-based teaching strategies employed in their 

classrooms. Teacher beliefs that evidenced the greatest change related to the capabilities of 

students and beliefs about the kinds of support a teacher should provide. These teachers came 

to view their students as capable of engaging in problem solving with limited intervention. 

They also came to believe that, while interacting with students, teachers should encourage 

students to do as much mathematical thinking as possible. The greater level of success 

experienced by these teachers is found to be related to their comparatively strong knowledge 

of mathematics for teaching, when compared to the other teachers studied.  Simply stated, 

these teachers were able to more readily “see” ways to connect to and capitalize on student 

thinking during instruction. This perception of instructional success initiated a commitment 

to further cultivate reform-based teaching practices as well as adoption of beliefs aligned 

with a reform-orientation.  

Teachers with weaker mathematical knowledge experienced a greater degree of 

struggle in their implementation of reform-based pedagogy. For instance, when students 

experienced difficulties, these teachers often fell back on familiar practices of directing 

students to use procedures. In general, analyses have demonstrated that students’ difficulties 

in these classes were often addressed in ways that did not move toward greater mathematical 

understanding. As might be expected, these teachers found the reform-based mathematics 

practices encouraged by professional development to yield mixed success with their students. 

Additionally, the mathematics achievement scores of students in these classes provide an 

external indicator of limited success. Although these teachers’ beliefs evidenced change 

toward reform-orientation in some ways, the shifts were not as dramatic, with evidence of 
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beliefs consistent with a reform-orientation being inconsistent or limited at the end of the 

year. 

In addition to the opportunity for classroom experiences to influence beliefs, this 

study adds to the growing body of research that suggests classroom experiences have the 

potential to increase teachers’ knowledge for teaching mathematics (Sowder, 2007). All four 

teachers involved in this study indicate that, through work in their classrooms, they became 

more knowledgeable of various nonstandard strategies and students’ ways of thinking about 

particular mathematics content. However, analysis of classroom observation and interview 

data suggest that Ms. Aria and Ms. Rosena more fully capitalized on opportunities to learn in 

their classrooms when compared to the other teachers.  

First, classroom observations and interviews suggest that Ms. Aria and Ms. Rosena 

were more deliberate than the other teachers in paying close attention to student thinking and 

considering its implications. During classroom instruction, these teachers more frequently 

pressed students to justify their correct and incorrect strategies, which created a window for 

insight into student thinking. Post-observation interviews reveal that these teachers reflected 

more fully on students’ strategies, especially incorrect strategies. Whereas Ms. Jarmin and 

Ms. Larsano were most likely to chalk up students’ incorrect strategies to being baseless, Ms. 

Aria and Ms. Rosena made effort to understand the logic behind students’ errors as well as 

their instructional implications. In this example, teacher beliefs are also in play, since 

teachers appear to vary in the extent to which they believe students’ solutions to have internal 

logic.  

Second, Ms. Aria and Ms. Rosena were both observed to intentionally cultivate 

teaching practices aligned with particular instructional goals. For instance, both of these 
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teachers experimented with instructional strategies to deliberately encourage greater student 

autonomy. While the other teachers also indicated that they would like students to be more 

autonomous, evidence suggests they gave less consideration to how particular instructional 

practices supported and inhibited this goal. Furthermore, Ms. Jarmin and Ms. Larsano 

sometimes had difficulty providing rationales for particular teaching practices. When asked 

to discuss their reasons for acting in certain ways, these teachers’ responses were sometimes 

limited to, “Because the teacher guide says to do that.” In general, the research findings of 

this study affirm findings of other researchers that teacher reflection seems an integral part of 

reforming teaching practice (Sowder, 2007).  

 In summary, new knowledge – like that gained from the professional development 

experiences and curriculum materials – appears to have stimulated teacher experimentation 

with new kinds of mathematics teaching practices associated with reform, including practices 

that were not initially aligned with the teachers’ beliefs. As teachers engaged in 

experimentation, they experienced differing levels of success. This variation appears most 

related to each teacher’s knowledge, with teachers holding greater knowledge experiencing 

higher levels of success. In turn, the degree to which teachers changed their beliefs to align 

with a reform-orientation seems related to each teacher’s perception of success with the new 

strategies. Additionally, classroom teaching experiences appear to offer opportunities for 

teachers to increase their knowledge for teaching mathematics. But these opportunities for 

learning appear to be mediated by the degree to which teachers attend to and reflect on 

student thinking and classroom practice.  
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The Influence of the Urban School Context 

 

 

Lincoln Heights Elementary was found to provide an urban school context for 

teachers to engage in reforming mathematics instruction because of its location in an urban 

setting and its student population characterized by a high level of non-White students living 

in poverty and struggling to overcome Limited English Proficiency (Obiakor & Beachum, 

2005). The students served by each teacher studied presented academic, behavioral, and 

emotional challenges that would likely not be as prevalent in schools serving middle- or 

upper-class students. Ms. Jarmin and Ms. Rosena taught classes comprised solely of retained 

students. These teachers’ class sizes were intentionally kept small because students in these 

classes were viewed by teachers and school leaders to have particularly high levels of need – 

academically, behaviorally, and emotionally. Ms. Larsano taught a transition language class 

of students identified with strong English language needs. Students in this class were 

typically in the midst of significant life changes, many having recently moved to the United 

States. Finally, the students in Ms. Aria’s regular class posed significant behavior 

management challenges. While encountering behavior management challenges is not 

uncommon for beginning teachers, there was general agreement among teachers and school 

leaders that the challenges would likely be less if Ms. Aria had taken a job in a non-urban 

school.  

The particular challenges associated with each teacher’s class varied, but across 

classes teachers perceived their students to be less prepared to successfully engage in reform-

based mathematics practices than students in non-urban school settings. In general, the 

teachers judged all or many of their students to be low performing academically. This 

judgment was regularly validated by scores on mathematics tests mandated by the school 
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district and school administration. Students’ status as low-performing students was 

sometimes used by teachers to explain students’ difficulties engaging in reform-based 

mathematics instruction. This was especially characteristic of Ms. Jarmin. Consider Ms. 

Jarmin’s explanation of why her class experienced difficulty with a lesson in the Fall 

semester:   

You know you usually you have some high, medium and low, and I do have high, 

medium, and low. But they are all lower than normal. I don’t have any gifted… you 

usually have some children who always get it, and you have the kids that you know 

get it with a little instruction, and then you always have some who can explain it to 

the rest of the class. And I don’t always have that. 

 

Rather than considering the mathematical basis of students’ difficulties, teachers in this urban 

school were sometimes found to attribute difficulties to students’ general abilities and skills 

as “low” learners.  

 Ms. Larsano also made claims about the special needs of her students. She sometimes 

indicated that she did not believe her students would think about mathematics in the ways 

suggested in the Everyday Mathematics teacher guide. In general, evidence suggests that Ms. 

Larsano believes ESOL students to need instruction that is characterized by strong teacher 

direction and ample positive reinforcement. Toward the end of the year, Ms. Larsano talked 

about why teachers on her team found the mathematics teaching practices learned about in 

professional development to play out differently with the different groups of students: 

I know you could give me the ideas, but that doesn’t mean those ideas are going to 

work with my kids, you know my personal kids, and some of the things maybe we 

tried, and it didn’t work out with this group, or I couldn’t do it this way, and for the 

other teacher it did work.  So it depends on the kids and on the groups.   

 

Like Ms. Jarmin, Ms. Larsano primarily attributes difficulties experienced to the group of 

students. This perspective leaves open the possibility that other groups of students may be 
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more successful with the suggested pedagogy. However, it limits the degree to which 

teachers consider the role of their own teaching actions in driving instructional outcomes.  

As a group, the teachers studied attributed their difficulties establishing classroom 

norms supportive of reform-based mathematics teaching practices, in part, to students’ 

backgrounds and previous instructional experiences. For instance, consider Ms. Aria’s 

commentary on her difficulties establishing classroom norms toward the end of the school 

year:  

Students come to us - many of them - not being respected at home in a way that we 

expect them to respect each other in the classroom. So they don’t necessarily have the 

social norms already that students might have at a different kind of school. I 

experienced that in my student teaching. The students listened to each other and were 

interested. We have worked on that all year here, and we are better, but there are still 

students who don’t listen and we are always working on it. 

 

This notion that students have difficulties engaging in classroom discussions as a community 

of learners because of their personal backgrounds was echoed in the comments made by 

multiple teachers. Indeed, the urban context may present teachers with greater challenges 

with regard to establishing classroom norms for student-to-student work than other 

instructional settings. However, at times, some teachers exclusively focused on students’ 

backgrounds and limited skills to explain instructional difficulties, failing to consider how 

their own teaching actions may also have contributed to the difficulties at hand.  

 These examples suggest that there is a danger at urban schools of teachers attributing 

instructional challenges encountered completely to the personal characteristics and academic 

backgrounds of students in their classes. While these factors certainly present challenges, 

teachers must focus on their own sense of agency and ability to affect change in their 

classrooms by cultivating particular instructional practices. This is especially true with regard 

to reform-based mathematics practices. Reform-oriented mathematics instruction is complex 
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and challenging to implement in all instructional settings (Franke et al., 2007). In all settings, 

but especially urban settings, teachers must exhibit patience and persistence in their efforts to 

learn about and cultivate reform-based mathematics teaching practices.   

 Lincoln Heights was also found to be characteristic of urban schools in that 

administrators reported having difficulty hiring and retaining knowledgeable teachers 

(Lippman et al., 1996). Because of this challenge, they sought to hire teachers with positive 

personal characteristics – but not necessarily curricular expertise – who were open to 

receiving training to improve their teaching. Perhaps related to the level of teaching expertise 

among faculty, Lincoln Heights administrators maintained a high level of control over the 

curriculum. Often, decisions were made for teachers to utilize curriculum materials that 

would decrease instructional decisions made by teachers. For instance, teachers spent two 

hours daily implementing a scripted reading program. Related to mathematics, the 

SuccessMaker computer-based instruction program was instituted to identify and remediate 

students’ mathematics learning needs. In general this program was viewed by the 

administration as an important tool for helping students to achieve higher scores on statewide 

achievement tests. At times, teachers expressed that their administrators seemed to believe 

that time on SuccessMaker was going to have a greater impact on student learning than any 

other learning experiences a teacher might provide.  

 Additionally, the direct instruction pedagogy of these programs stands in opposition 

to the constructivist underpinnings of reform-based mathematics programs. Reform-based 

curricula and teaching practices emphasize the importance of the teacher as a decision-maker 

and encourage teachers to develop pedagogy that is characterized by inquiry. At the end of 
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the year, Ms. Aria explained how the predominant pedagogy of direct instruction impacted 

her efforts to engage in reform-based mathematics teaching practices: 

At the beginning it was so hard keeping control of the class that I found myself, you 

know, in a teacher-led discussion, a lot of direct instruction, which also comes from 

the fact that our reading program is direct instruction, so you get used to it really fast, 

even if you’re an exploration person, you get used to it very fast, and the kids are 

used to direct instruction, which I think even more than the teachers is how these kids 

all came to me, and they work so well in direct instruction, and then when you put 

them in another situation, everything, you know, goes crazy. 

 

Ms. Aria is the only one of the four teachers studied who explicitly described a tension 

between the push to use direct instruction for reading and an inquiry-approach for 

mathematics. However, it seems reasonable that the circumstance of mandated curriculums 

emphasizing conflicting pedagogical approaches sends conflicting messages to teachers 

about how children learn. Also, research suggests that teachers in high-poverty schools are 

particularly inclined to believe their students need explicit instruction on discrete skills 

(Knapp, 1995a), which is aligned with a direct-instruction approach. Therefore, the implicit 

conflicting messages sent to teachers may serve as a further barrier to adoption of reform-

oriented beliefs and teaching practices in urban school settings.  

 Finally, at the time of this study, Lincoln Heights was a school working to overcome 

a history of school failure as determined by highly publicized standardized tests of student 

achievement. The consequences of these tests appear to weigh heavily on instructional 

decisions made by school leaders and teachers alike. It is a finding of this study that, because 

Lincoln Height’s has a history of school failure and a student population identified as at-risk 

by the school district, school leaders mandate additional requirements for teachers and 

students beyond that expected of other schools. At Lincoln Heights, this includes regular 

testing in mathematics and reading mandated by school leaders at the district and school 
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level. In the classroom, administrators required that students spend 30 minutes daily on the 

computer-based instructional program SuccessMaker with the hope that this program would 

address students’ personal learning needs and increase scores on the state tests. In practice, 

time spent preparing for and taking tests and on the SuccessMaker program takes away from 

the time teachers spend teaching mathematics with the Everyday Mathematics program. 

Although these various mathematics initiatives all aim to improve students’ mathematics 

achievement, they send different messages to teachers about the kinds of pedagogy and 

instructional outcomes that are valued. In turn, this is thought to diminish the attention 

teachers give to reforming their mathematics instructional practices to reflect reform-based 

principles.  

Furthermore, because the reading achievement test is particularly high-stakes for 

students
12

, the two-hour block of time allotted for reading instruction at Lincoln Heights is 

given instructional priority.  In practice, this means that time allotted for mathematics (and all 

subjects other than reading) is where the burden of these various initiatives falls.  In addition 

to testing and SuccessMaker time coming out of these subjects, non-reading time is used for 

visits to the library, for students to be pulled for special services, and for occasional 

assemblies. As a result, teachers frequently indicate that their mathematics instructional time 

is fragmented, and they often do not have the minimum one-hour instructional block required 

for teaching the Everyday Mathematics program. Consider Ms. Rosena’s discussion of the 

challenge of working at Lincoln Heights:  

They (the administrators) have the reading time as a sacred time, and they don’t want 

any interruptions to occur during reading, but they ignore everything else and I 

understand why the big focus on reading, but then you have math, and you see that in 

the test scores.  You see that math is not really that great compared to reading.  So 

what about math?  What about writing?  What about the rest of  - social studies or 

                                            
12

 Third-grade students who do not pass the reading portion of the SST are slated for retention. 
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science?  I think it’s a challenge for not only math but for the other classes, the 

constant interruption. 

 

Because of the pressures of state testing exacerbated by Lincoln Heights’ history of school 

failure, teachers at this school have more demands on their time than teachers in other 

instructional settings. These demands translate into less than adequate instructional time for 

implementing the reform-based Everyday Mathematics program. As a result, teachers find 

themselves perpetually behind the pacing guide and trying to cut corners in ways that are 

likely to negatively impact students’ mathematics learning.  

 While the urban context appears to serve as a barrier to teachers’ transitions to 

reform-based mathematics teaching practices, there are also some benefits of this context. 

First, administrators at Lincoln Heights were able to use their Title I funds to put in place a 

year-long program of professional development to support teachers’ transitions to the 

Everyday Mathematics program. Evidence suggests that this professional development effort 

was successful with initiating changes in teaching practice that would have been unlikely to 

occur otherwise. Second, a barrier to adoption of reform-based mathematics teaching in some 

school settings is strong resistance from parents (Ball, 1996). While teachers at Lincoln 

Heights felt many pressures, they did not generally feel constrained instructionally by the 

demands of parents. In this way, teachers were allowed a bit more freedom to work through 

the challenges of transitioning to new teaching practices.  

 The fourth guiding research question of this study asks, “How does the urban context, 

as defined by the research literature and perceived by teachers and school leaders, influence 

mathematics instruction in this urban school?” Study findings suggest that the urban context 

influenced teachers’ transitions to reform-based mathematics teaching practices in a variety 

of ways. The student population presented greater academic, behavioral, and emotional 
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challenges than might be expected in a non-urban setting. Teachers tended to view their 

students as having certain deficits, and these deficits were often used to explain instances 

when reform-based practices were unsuccessful. This may have limited the degree to which 

teachers looked to their own teaching practices as factors in students’ difficulties. In addition, 

teachers at Lincoln Heights were mandated to implement a variety of programs and 

initiatives that had significantly different pedagogical emphases than the inquiry-focused 

pedagogy of mathematics-reform and lessened their focus on transitioning to the new 

program. The conflicting messages regarding how students learn as well as school priorities 

and values may have served as barriers to reforming mathematics teaching. However, the 

opportunity for professional development afforded by Title I funds appears to have had a 

positive impact on teachers’ efforts to use reform-based mathematics curricula. Certainly the 

professional development activities offset some of the problems faced in an urban context by 

focusing teachers on strategies for transitioning to a reform-based mathematics program 

throughout the year.  

 

 
Study Implications 

 

 

The findings of this study have several implications for efforts to support teachers’ 

transitions to reform-based mathematics pedagogy. Implications for mathematics educators, 

curriculum developers, and school leaders are summarized in Table 30.  

Surprisingly, teachers studied were found willing to initially engage in practices that 

were not aligned with their beliefs, but were suggested by the reform-based curriculum and 

professional development leaders. Professional development activities that helped teachers to 

envision reform-oriented teaching practices, such as video cases, strongly influenced 
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Table 30 

Summary of Study Implications for Supporting Teacher Transitions to Reform-Based 

Mathematics Pedagogy 

 Change agent 

Study implications 
Curriculum 

developers 

Teacher 

educators 

School 

leaders 

Provide strong support during initial implementation of reform-

based mathematics curricula.  X X 

Increase teachers’ mathematics content knowledge and pedagogical 

content knowledge that supports conceptually-grounded 

mathematics instruction on specific mathematics topics. 
 X  

Increase teachers’ knowledge of and ability to anticipate common 

student difficulties related to specific mathematics topics. X X  

Support teachers with envisioning how flawed solutions can be used 

productively in class discussion of mathematics. X X  

Help teachers acquire knowledge of routines to support facilitation 

of mathematically productive discussions that engage students as a 

community of learners. 
 X  

Increase availability of professional development materials (video 

and text cases) that provide examples of exemplary reform-based 

mathematics teaching in diverse and challenging urban school 

settings. 

X   

Focus case-based professional development for urban school 

teachers on cases that are situated in similar urban school settings.    X  

Engage teachers in critical examination of the nuances of reform-

based mathematics teaching practices, especially practices that 

resemble reform recommendations but fall short of reflecting 

substantive aspects of reform. 

 X X 

Supply teachers with reform-based curriculum materials and tools 

to support students’ mathematics learning.   X 

Ensure that teachers have adequate instructional time dedicated to 

mathematics instruction utilizing reform-based mathematics 

teaching materials. 
  X 

Support school leaders in becoming knowledgeable of and 

committed to reform-based mathematics pedagogy.  X X 

Limit the number of new initiatives teachers are expected to 

implement when they are first learning about and experimenting 

with reform-based mathematics pedagogy.  
  X 

Coordinate curricular initiatives related to mathematics and across 

academic disciplines to be complementary rather than conflicting. X  X 
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teachers’ ways of using the new curriculum materials. During this period of experimentation, 

teachers judged the reform-based mathematics teaching ideas based on their experiences with 

their students. The degree to which teachers’ beliefs aligned with a reform-orientation at the 

end of the year was related to their level of success with using the reform-based mathematics 

program. One implication of this study is that strong support during initial implementation of 

reform-based mathematics programs seems warranted, as this initial period of 

implementation provides a window in which teachers seem open to change. Additionally, 

efforts to increase teachers’ mathematical knowledge for teaching are essential, as teachers’ 

abilities to successfully teach in conceptually-supportive ways that are connected to student 

thinking appear highly related to this knowledge base and consequently to teachers’ success 

with reform-based materials. 

This study suggests that the teachers studied were particularly limited in their abilities 

to predict the kinds of difficulties students might have with tasks assigned. Just as curriculum 

materials and professional development aim to help teachers anticipate various correct ways 

students commonly approach problems in reform-oriented classrooms, teachers would 

benefit from guidance related to common student difficulties as well as how to respond to 

difficulties in ways that connect to student thinking.  

An additional implication of this study is that teachers particularly need support with 

envisioning how students’ flawed solutions can be productively used as springboards for 

inquiry (Borasi, 1994), especially in the context of whole class discussions. If teachers can 

envision how this practice might work and how it might positively support student learning, 

they may be willing to give it a try. In particular, video and text-based cases of teachers’ 

different ways of handling student difficulties, like the classroom episodes presented, might 
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be useful content for teachers to unpack and critique in the context of professional 

development. 

Furthermore, this study found that teachers who primarily determined the contents of 

class discussions by calling on volunteers to share solutions were observed to have difficulty 

using students’ solutions, particularly flawed ones, to make mathematical points. Other 

teachers, who were more intentional in their efforts to select and order class discussion of 

student-generated solutions such that particular mathematical ideas could be highlighted, 

appeared more successful in emphasizing important mathematical ideas in ways that 

supported student learning. Therefore, one promising avenue for professional development is 

to help teachers acquire knowledge of routines to support facilitation of meaningful 

mathematics discussions, as such routines are likely to help teachers to organize and access 

their content knowledge and pedagogical content knowledge more productively.  

Silver et al. (2005) identify five components of pedagogical practices related to 

meaningful discussion of student-generated solutions that teachers can learn, practice, and 

improve. Prior to the lesson, teachers can think about solution methods and errors that 

students are likely to employ. As students work on tasks, teachers can learn to pay close 

attention to students’ solution methods. In addition, they can use this time to select particular 

solutions to be shared in class discussion and determine the order for sharing such that 

important mathematical ideas can be optimally emphasized. Finally, during class discussion, 

teachers can develop student understanding by comparing and contrasting the various 

solutions. Professional development efforts could be organized to deliberately model and 

make explicit these components of teaching practice for facilitating meaningful mathematical 

discussions.  
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Findings from this study also suggest that some teachers in urban schools believe 

their students to have limited capability to engage in reform-based mathematics learning 

practices, such as problem solving with limited support and contributing productively to 

inquiry-oriented discussions of mathematics tasks. And teachers that held this belief typically 

attributed students’ difficulties with particular aspects of reform-based mathematics 

instruction to personal backgrounds and academic aptitude rather than considering the 

contribution of controllable teaching practices. For this reason, it seems especially important 

for professional development with urban school teachers to emphasize examples of reform-

based mathematics teaching situated in urban school settings with diverse and challenging 

student populations. While exemplary examples of reform-based mathematics teaching in 

urban settings are needed, there is also a need for teachers to engage in critical reflection 

around practices that only structurally resemble reform recommendations but fall short of 

reflecting important substantive aspects of reform. To this end, text and video cases in urban 

school settings could be used to help teachers critically examine nuances of reform-based 

mathematics teaching practices, particularly how differential teaching practices are likely to 

yield different student outcomes.  

Finally, this study joins other research (Sowder, 2007) in emphasizing the critical role 

school leaders play in making conditions favorable for teacher transitions to reform-based 

mathematics pedagogy. School leaders can make certain that teachers have material support, 

including reform-based curricula and mathematical tools to support student learning. They 

can protect instructional time, ensuring that teachers have at least the minimum amount of 

recommended time designated for instruction centering on reform-based mathematics 

teaching. Additionally, they can organize opportunities for professional development to 
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support implementation of reform-based mathematics programs. Through participation in 

professional development alongside teachers, school leaders can also become knowledgeable 

of reform-based mathematics teaching practices and demonstrate a commitment to such 

practices. Furthermore, school leaders can limit the number of new initiatives teachers are 

expected to implement when they are first learning about reform-based mathematics 

pedagogy. This would serve to establish clear priorities and allow teachers to focus their 

attention on cultivating teaching practices consistent with reform recommendations. Lastly, 

school leaders can support teachers’ adoption of reform-based mathematics pedagogy by 

coordinating curricular initiatives within mathematics and across academic disciplines that 

are complementary rather than conflicting. While leaders in all schools are instrumental to 

successful adoption of reform-based mathematics pedagogy, instructional leadership for 

change in urban schools seems especially important due to the unique challenges and 

pressures faced by these schools.  

 

 
Study Limitations and Directions for Future Research 

 

 

The research findings presented provide insight into the interaction of teachers’ 

knowledge, beliefs, and mathematics teaching practices during their first year of 

implementing a reform-based curriculum. However, this study has several limitations.  

First, this study is limited in scope. It focuses on four teachers in a particular school 

context primarily when the focus of instruction is on multiplication and division. Future 

research should consider more fully if teachers’ response patterns to student difficulties and 

associated teacher knowledge and beliefs hold across different instructional settings and 

other mathematics topics. Furthermore, an aspect of the teachers’ school context in this study 
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was involvement in a sustained program of professional development that provided a 

moderate level of support for change. Findings suggests that teachers may not have 

experimented with certain teaching practices had the professional development effort not 

been in place. Study of teachers with varying kinds of support is warranted to fully explain 

this question. In addition, some of the urban school teachers of focus in this study attributed 

instances of difficulty with reform-based teaching to students’ deficits. This question of 

attribution and its implications would be useful to explore in a larger number of urban school 

teachers as well as in different types of instructional settings.  

Second, this study focused on examining teachers’ knowledge and beliefs as they 

manifested in teacher response patterns to student difficulties. While this focus on teacher 

response to student difficulties allowed for detailed analysis of the relationship between 

teacher knowledge, beliefs, and practice, there are other aspects of reform-oriented teaching 

for which it would be helpful to more fully understand the interaction of these variables. For 

instance, this data set might be used to consider how teachers’ beliefs and knowledge 

influenced their facilitation of whole class discussion.  

Third, this study makes claims about how teachers’ actions facilitated or limited 

student thinking. However, classroom observations and aggregated student achievement 

scores on a standardized test of general mathematics achievement are the only sources of data 

used in this study to discern student learning. In a research project with greater scope, it 

would be helpful to include a component more fully dedicated to determining what students 

are learning from particular instances of instruction.  

Fourth, the process of data collection and analysis for this research was carried out by 

a single person. While every effort was made to collect and analyze data in a consistent and 
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unbiased manner, a research project of greater scope would be strengthened by coordinating 

the observations and interpretations of multiple researchers. This limitation was especially 

apparent in the context of classroom observations, in which the complexity of the classroom 

environment limited my ability to focus on all that might have been relevant to the focus on 

my study. It would have also have been helpful for multiple raters to have rated classroom 

observations using the Reformed Teaching Observation Protocol (RTOP) and teachers’ 

survey responses to the Integrating Mathematics and Pedagogy (IMAP) Web-Based Beliefs-

Survey, as this would have strengthened the credibility of findings made from data collected 

using these instruments.  

Related to the particular context of the urban school in which this study was situated, 

it was suggested by one of the teachers that a barrier to implementation of the inquiry-

oriented practices associated with reform-based mathematics teaching was the school-wide 

focus on using a direct instruction approach for reading. Future research might consider the 

extent to which teachers in various elementary school settings are expected to use pedagogies 

across disciplines that reflect conflicting learning theories. Additionally, there is a need to 

better understand if and how the circumstance of conflicting pedagogical recommendations 

within and across disciplines impacts teaching. In hindsight, it would have been helpful in 

this study to have more fully considered teachers’ general knowledge and beliefs of child 

development and how children learn. 

Finally, the analytical framework for this study posits that teacher actions are 

influenced primarily by the interaction of teachers’ beliefs and knowledge. However, at times 

during this research, these constructs did not seem adequate to fully explain teacher behavior. 

For instance, one teacher readily indicated in interviews that she believed having students 
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work with a partner or small group could have a positive affect on student learning. Yet, she 

did not regularly engage her students in cooperative learning. When asked to explain why, 

the teacher revealed that she preferred to have a quiet classroom without a lot of commotion. 

This preference appeared to override her belief in the value of group work. Schoenfeld 

(2007) suggests that, instead of focusing solely on beliefs, researchers might consider the 

broader construct of teachers’ orientations toward teaching. Research aiming to understand 

teachers’ orientations would include consideration of teachers’ beliefs as well as other 

constructs that might influence decision-making such as preferences and values. Schoenfeld 

also emphasizes the importance of understanding teachers’ goals in efforts to make sense of 

teacher actions. Future research might be designed to more deliberately consider teachers’ 

actions in light of teacher knowledge as well as these additional promising constructs.  

 

 
Conclusions 

 

 

This study was designed to illuminate how particular aspects of teachers’ knowledge 

and beliefs influenced their ways of supporting and limiting student thinking during initial 

use of a reform-based mathematics curriculum in an urban school. Focus on teachers’ 

response to student difficulties proved a useful lens for examining the interaction of teacher 

knowledge, beliefs, and classroom practice as instances of student difficulty pressed teachers 

to rely on their existing knowledge and beliefs to act in the moment. Study findings suggest 

that, while teachers’ ways of responding to student difficulties were clearly linked to both 

their knowledge and beliefs, some aspects of teacher response were more strongly linked to 

their knowledge whereas other response patterns were more strongly linked to beliefs. 

Additionally, reform-based mathematics curriculum materials and professional development 



 

 334 

were found to stimulate teacher experimentation with reform-oriented practices that were not 

initially aligned with teachers’ beliefs. The degree of subsequent change in beliefs toward a 

reform-orientation appears to have been moderated by teachers’ perceptions of their 

classroom experiences during this period of experimentation with reform-based 

recommendations. In addition, the urban context of this study appears to have presented a 

number of barriers to reforming mathematics teaching that would be present to a lesser extent 

at non-urban schools. The urban context was also found to influence the way teachers viewed 

their students and their own experiences experimenting with reform-based mathematics 

curricula, sometimes allowing teachers to attribute difficulties to uncontrollable student 

characteristics rather than controllable instructional factors.  

This study highlights the complexity of reform-based mathematics teaching that 

builds on student thinking and reinforces the assertion that it is difficult for teachers to make 

the kinds of changes envisioned by reformers. In order to realize the vision of widespread, 

systematic reform in mathematics education, teachers require sustained support on multiple 

fronts. Teachers need material support in the form of reform-based mathematics curricula 

and the tools for supporting student learning as well as adequate instructional time and 

arrangements to utilize these materials. Teachers need time, intellectual space, and human 

support to critically examine traditional mathematics teaching practices and assumptions 

about student learning in order to inspire recognition of the need for alternative mathematics 

teaching practices and open the door to change in beliefs. To implement reform-based 

mathematics pedagogy well, many teachers require support with expanding and deepening 

their knowledge of school mathematics, knowledge of children’s mathematical thinking, and 

knowledge of routines and scripts to enact such pedagogy. Additionally, many teachers need 
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school-level support to customize reform-based teaching pedagogy to their particular 

teaching contexts, troubleshoot difficulties, and reflect on their classroom experiences with 

this new kind of teaching. While progress has been made in understanding the complexity of 

teachers’ work engaging in reform-based mathematics teaching that builds on student 

thinking, there is much left to be learned about how to support and sustain teacher transitions 

to this pedagogical approach.  
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