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ABSTRACT 
Kimberly M. Stratford: Vitamin D Deficiency and Air Pollution: Effects Impacting the 

Cardiovascular System 

(Under the direction of Mehdi Hazari) 

Human studies have shown that air pollution is associated with cardiovascular 

morbidity, yet the role of nutrition in modifying this susceptibility is unclear. Vitamin D 

deficiency (VDD) is a public health concern and the adverse consequences of its 

interaction with other stressors is understudied. VDD is linked to low levels of klotho, an 

anti-aging protein with a critical role in sinoatrial function. Transient receptor potential 

(TRP) channels are regulated by klotho and mediate cardiac effects to air pollution. 

TRPC6 is a cation channel that is physiologically inactive under normal conditions but 

upregulated with cardiovascular disease. I hypothesized that VDD changes 

cardiovascular function through mechanisms involving klotho and TRPC6 that mediate 

the responses to air pollution. First, I determined the effect of early-life VDD on 

cardiovascular responses to photochemical smog in mice. Three-week-old mice were 

placed on either a VDD or normal diet for 16-19 weeks and surgically implanted with 

biopotential radiotelemeters to continuously measure electrocardiogram, heart rate (HR) 

and whole-body plethysmography (WBP) for arrhythmias, heart rate variability (HRV) 

and ventilatory function. This study shows that VDD mice had decreased HR/tidal 

volume and increased HRV compared to controls and smog modulated the response. 

Second, I determined the role of klotho in VDD-induced adverse cardiac response to 

acrolein exposure. Mice were treated with recombinant klotho to determine if the 
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potentiated effects are blocked. This study demonstrates that compared to controls, 

HR/HRV was decreased in VDD mice. When compared to air exposure, acrolein 

increased HR/HRV and klotho blocked acrolein-induced effects in both diets. Lastly, I 

investigated the role of TRPC6 in VDD-induced cardiovascular mechanical responses. 

Dobutamine stress test was used to increase heart rate and reveal latent cardiac effects 

due to VDD and the involvement of TRPC6 in VDD mice was determined using an 

antagonist. Compared to controls, VDD mice have higher blood pressure and blunted 

HR response to dobutamine which was restored by TRPC6 antagonist. Future studies 

are needed to evaluate klotho and TRPC6 as potential therapeutic interventions. This 

project is the first to characterize the role of VDD as a nutritional modifiable factor in 

relation to cardiovascular toxicological responses to stressors.  
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Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to 
Particulate Matter-Enhanced Atmospheric Smog in Adult Mice. Environmental Science 
& Technology. 2018 52 (5), 3054-3061. 
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Chapter 1: Introduction 

Health effects of air pollution 

The London Smog of 1952 and other such extreme events ignited the public’s 

awareness of air pollution and a scientific interest in studying the deleterious health 

outcomes of air pollution exposure.(Dooley 2002) London has had numerous episodes 

of terrible smog but the one in 1952 was the worst in terms of adverse human health 

effects, which resulted in approximately 12,000 “unnecessary” deaths. For five days in 

early December, increased industrial and fire emissions for heating, diesel combustion 

from buses combined with meteorological conditions created a perfect recipe for dense 

smog. All segments of the population were impacted, including the young, but especially 

the elderly who succumbed to bronchitis, pneumonia, and other respiratory diseases. 

Yet, although the relative number of cases presenting with respiratory symptoms was 

greater than any other complications, heart related adverse effects contributed to more 

deaths.(Dooley 2002) Most of this mortality was considered to be untimely because the 

overall risk in this population was not high.(Dooley 2002, Hunt, Abraham et al. 2003) In 

addition to mortality, retrospective studies have even linked early-life exposure to the 

London smog of 1952 to the development of asthma during adulthood.(Bharadwaj, Zivin 

et al. 2016) Unfortunately, complex multi-pollutant air pollution atmospheres like smog 

are still an environmental issue worldwide to this day, particularly for those with 

underlying health conditions. 
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Smog is a complex multi-pollutant mixture comprised of particulate matter (PM) 

of various sizes, gaseous components like ozone, volatile organic compounds (VOCs) 

and other chemicals. One of the greatest challenges to assessing the health effects of 

air pollution and assigning causality is due to the complexity and variability of 

composition, which can vary from place to place, and even from one season to another 

in a given area. Among the most ubiquitous gaseous pollutants, and indeed one of the 

most irritating to the airways, are the reactive aldehyde gases like acrolein (C3H40), 

which are produced by the combustion of any hydrocarbon-based fuel, fatty foods, 

biomass, cigarettes and other organic compounds to form a toxic, volatile unsaturated 

aldehyde.(Ghilarducci and Tjeerdema 1995, Kehrer and Biswal 2000, Conklin, 

Haberzettl et al. 2017) Acrolein inhalation causes nasal and pulmonary inflammation, 

(Snow, McGee et al. 2017)  eye, nose and throat irritation, (Sim and Pattle 1957, 

Esterbauer, Schaur et al. 1991)  respiratory distress (Ben-Jebria, Marthan et al. 1994, 

Bein and Leikauf 2011) and asthma exacerbations (Leikauf, Leming et al. 1989). Very 

high levels of acrolein (100-275 parts per million) have been shown to cause cardiac 

dysfunction and even mortality (Conklin, Haberzettl et al. 2017)  and recent data 

suggest that even lower levels of the gas can lead to subtle cardiovascular changes, not 

only in people with underlying disease but healthy individuals as well.   

Air pollution is associated with cardiovascular mortality 

Although air pollution was long considered a direct threat to the health of the 

respiratory system, especially the lungs, it has become clear that its effects go beyond 

the airways. In fact, the American Heart Association (AHA) has released a statement in 

2010 alerting people to the hazardous effects of air pollution. (Brook, Rajagopalan et al. 
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2010) In the last twenty years, cardiovascular morbidity and mortality have been 

demonstrated to be strongly correlated with short and long term ambient air pollution 

exposure (Brook, Rajagopalan et al. 2010), particularly in the presence of underlying 

cardiovascular disease (e.g. hypertension). (Hazari, Callaway et al. 2012, Rajagopalan 

and Brook 2012, Hazari, Griggs et al. 2014) Scientific data points to the fact that several 

major components of air pollution, particularly particulate matter (PM), can contribute to 

these effects. The Environmental Protection Agency (EPA) has identified and regulates 

six of these pollutants: ground level ozone, nitrogen dioxide, PM, lead, carbon monoxide 

and sulfur dioxide. Each of the criteria pollutants, along with the constituent polycyclic 

aromatic hydrocarbons (PAHs), VOCs and other environmental contaminants have the 

potential to react and cause a synergistic, or even antagonistic, effect on cardiac health. 

Therefore, the cardiovascular response to mixtures of air pollutants is still being 

characterized and requires a significant amount of work. (Brook, Rajagopalan et al. 

2010) 

Studies have conclusively linked fine PM, which is less than 2.5 µm (PM2.5), and 

coarse PM (PM10) to adverse health effects. In particular, PM2.5 is produced by 

combustion of fossil fuels for human activities and short and long-term exposure to it 

has been shown to contribute to the early death of thousands of Americans every year. 

Similarly, hospitalization rates for arrhythmias, heart failure and cerebrovascular 

disease have been shown to increase for 24 hours after high PM2.5 days and for 48 

hours in individuals with previous myocardial infractions. (Brook, Rajagopalan et al. 

2010) Although the focus of many studies of the adverse cardiovascular effects of air 

pollution has traditionally been on PM, gaseous environmental contaminants also 
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contribute to cardiovascular dysfunction.(Chiu, Weng et al. 2017, Coogan, White et al. 

2017, Costa, Hoek et al. 2017, Day, Xiang et al. 2017, Mirowsky, Carraway et al. 2017, 

Yang, Qian et al. 2017) For example, ozone exposure causes systemic inflammation, 

(Mirowsky, Carraway et al. 2017) platelet stimulation, (Day, Xiang et al. 2017) 

hypertension (Coogan, White et al. 2017, Day, Xiang et al. 2017) and hospital 

admissions due to myocardial infarctions (Chiu, Weng et al. 2017) which are all major 

contributing factors to cardiovascular morbidity and mortality.  

There are three biological mechanisms that have been proposed as mediating 

the cardiovascular response to air pollution. This includes 1) pulmonary oxidative stress 

and inflammation which can spread beyond the lungs, 2) autonomic nervous system 

imbalance, which has the potential to disrupt the normal function of not only the 

respiratory and cardiovascular systems, but also the digestive and endocrine systems 

as well, and the 3) translocation of PM and/or other components into the blood towards 

secondary target sites. Epidemiological, human and animal studies have greatly 

contributed to the weight of evidence for these biological mechanisms. Each of these 

pathways is highly complex and not likely taking place independently. In fact, vascular 

dysfunction, increased coagulation, and hypertension combined have been 

demonstrated to elicit adverse cardiovascular events in human and animal studies. 

(Brook, Rajagopalan et al. 2010)  

Heart disease prevalence 

So, why is an inhaled exposure to air pollution so concerning when it comes to 

the cardiovascular system, particularly if it is short-term? Part of the answer to this 

question lies in the prevalence of cardiovascular disease in the developed world. 
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Cardiovascular disease is the leading cause of mortality in the United States and is an 

all-encompassing term that includes atherosclerosis, hypertension, myocardial 

infarction, stroke, heart failure, and arrhythmia. Cardiovascular mortality rates in 2007 

were 259.4 per 100,000 people and decreased to 223.9 per 100,000 people in 2013 

which is an improvement of about 13.7%. (Mozaffarian, Benjamin et al. 2016) However, 

cardiovascular disease still affects 30% of the US population and is an immense 

economic and societal burden. (Mozaffarian, Benjamin et al. 2016, Trehan, Afonso et al. 

2017) In addition, lifestyle and other factors which are not always fully appreciated are 

contributing to the more rapid progression of the disease. This suggests that there is a 

heightened susceptibility in a certain percentage of the population due to the presence 

of these factors.   

Autonomic nervous system and heart rate variability 

Cardiovascular function is intrinsically regulated by the autonomic nervous 

system (ANS), which is comprised of two major branches, the parasympathetic and 

sympathetic, that dynamically interact and simultaneously modulate function depending 

on the physiological state of the body and the environmental conditions or stimuli. 

(Thayer, Yamamoto et al. 2010, Shen and Zipes 2014) Parasympathetic tone of the 

autonomic nervous system is typically characterized as the “rest and digest” state and is 

critical for everyday basal bodily functions. In contrast, sympathetic tone represents the 

“fight or flight” state, which causes heart rate accelerations, regulation of blood pressure 

to accommodate stress and reduction of activities normally occuring during rest (e.g. 

digestion). Nerves of the autonomic nervous system originating from the brainstem 

innervate the heart to maintain sinus heart rhythm and when necessary modulate it to 
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respond to a given stressor (e.g. exercise). (Shen and Zipes 2014) Abnormal 

dominance of one branch over the other or inappropriate modulation during a given 

circumstance is called autonomic imbalance and it generally reflects the body’s inability 

to either maintain homeostasis or compensate for change. (Tsuji, Larson et al. 1996, 

Brook and Julius 2000, Thayer, Yamamoto et al. 2010) Furthermore, the ANS is also 

modulated by chemoreflexes which respond to decreases in blood oxygen or increases 

in carbon dioxide by increasing sympathetic modulation, and baroreflexes, which are 

activated by blood pressure changes and result in parasympathetic activation. These 

control mechanisms alter heart rate, contractility and vasoconstriction/dilatation, as well 

as breathing patterns. (Kara, Narkiewicz et al. 2003, Heusser, Tank et al. 2005) 

Therefore, any persistent changes to normal autonomic function would impact the 

regulatory outflow of these reflexes and thereby impact the response of the target 

tissues.  

Heart rate variability (HRV) is used clinically to assess autonomic tone of the 

heart and is based on the evaluation of beat-to-beat or R-R interval, which represents 

the duration of cardiac cycle. (Tsuji, Larson et al. 1996) It is not only determined by 

normal physiological signals (e.g. renin-angiotensin cascade, release of 

neurotransmitters and metabolic hormones) but also pathological conditions (e.g. 

cardiomyopathy and myocardial infractions) as well. (Tsuji, Larson et al. 1996, Brook 

and Julius 2000) Heart rate variability is measured using time and frequency domain 

parameters that are commonly used to represent the two branches, these parameters 

are constantly changing based on fluctuations of bodily activity. The time domain 

measures of HRV are standard deviation of the normal R-R interval (SDNN) and root 
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mean square of the standard deviation of the normal R-R interval (RMSSD). SDNN is 

commonly used to evaluate overall autonomic function while RMSSD indicates 

parasympathetic modulation. The frequency domain measures of HRV are low 

frequency (LF) and high frequency (HF). There is considerable debate about the 

interpretation of LF, however, in general current literature suggests that it represents 

both the sympathetic and parasympathetic influence on the heart. On the other hand, 

HF is a reliable indicator of parasympathetic tone. Some studies report the ratio of 

LF/HF as an indicator of the balance of sympathetic and parasympathetic activity. 

(Thayer, Yamamoto et al. 2010)  

Heart rate variability and cardiovascular disease 

Abnormal HRV represents a latent change in cardiac function particularly in 

instances when symptoms of dysfunction are not otherwise evident. (Stein, Domitrovich 

et al. 2005) Therefore, clinicians commonly use HRV to assess cardiac health or 

prognosis and risk of mortality, especially after an adverse cardiac event.(Thayer, 

Yamamoto et al. 2010)  On the other hand, it is important to note that changes in HRV 

may not solely be due to ANS modulation but could also be explained by modified 

cardiac receptor and myocardium function. (Rowan, Campen et al. 2007) As such, 

epidemiological studies have repeatedly linked cardiac abnormalities with low HRV (i.e. 

increased sympathetic modulation), which indicates the heart is unable to respond to 

changing circumstances (i.e. lower variability and ability to modulate). (Brook, 

Rajagopalan et al. 2010) In addition, low HRV especially at rest, suggests that there is 

greater risk of an adverse cardiac event because the heart is in a higher state of 

persistent stress than normal. In contrast, many animal studies link greater HRV to air 
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pollution exposure and a shift away from the normal homeostatic cardiac response. 

(Brook, Rajagopalan et al. 2010, Farraj, Hazari et al. 2011, Hazari, Callaway et al. 2012, 

Carll, Lust et al. 2013, Hazari, Griggs et al. 2014, Kurhanewicz, McIntosh-Kastrinsky et 

al. 2014, Stratford, Haykal-Coates et al. 2018) Therefore, it is clear that a change in 

HRV alone is not sensitive enough to diagnose cardiac disease or dysfunction and 

should be evaluated in combination with other clinical tests.  

Rodent HRV effects can be extrapolated to human HRV if the responses are 

assessed in light of differences in basic physiology (i.e. determinants of resting heart 

rate), sampling duration, circadian rhythm effects, usage of anesthesia and thermal 

responses. In such a case, the utility of evaluating HRV in rodents is due to the 

fundamental mechanisms of the cardiac regulation being similar to humans. (Rowan, 

Campen et al. 2007)  

Given the two branches are essential to the proper function of the heart and that 

a dynamic balance must be maintained, extremes in either parasympathetic or 

sympathetic activity can also increase mortality. (Gold, Litonjua et al. 2000) Sometimes, 

this autonomic imbalance is only evident if the body is exposed to a stressor (e.g. air 

pollution exposure), which forces the heart to adapt and change its function accordingly. 

(Thayer, Yamamoto et al. 2010, Carll, Crespo et al. 2017) 

Heart rate variability and air pollution exposure 

Even under acute conditions, ambient air pollution can cause relatively subtle or 

latent changes in HRV or electrical disturbances (i.e. arrhythmia) indicative of increased 

cardiovascular risk. Even in healthy young subjects, exposure to air pollution increases 

parasympathetic tone of the ANS compared to clean air suggesting autonomic 
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imbalance. (Davoodi, Sharif et al. 2010) Additionally, animal studies have consistently 

demonstrated that air pollution induces autonomic modulation that contributes to 

alterations in cardiac electrophysiology which are further exacerbated following stress. 

(Farraj, Hazari et al. 2011, Hazari, Callaway et al. 2012, Kurhanewicz, McIntosh-

Kastrinsky et al. 2014) Therefore, HRV might be thought of less as a marker of 

cardiovascular toxicity and more as an indicator of the internal state of the 

cardiovascular system and its relative ability to adapt to changing conditions. This is a 

critical point to understand because there are numerous factors that have the potential 

to influence autonomic regulation of the cardiovascular system. 

Modifiable factors influence responsiveness to air pollution exposure 

Historically, the paradigm for air pollution toxicology involved measuring the 

response of a given target tissue to a certain dose of pollutant still remains the case 

today. However, the field has evolved due to the recognition that changing lifestyles and 

other factors have the potential to change the way the body responds to an insult. In 

particular, the cardiovascular health effects of air pollution may differ from one person to 

another due to modifiable factors, despite similarities in age, gender and background, 

and may help explain divergent responses. (Requia, Adams et al. 2017) The American 

Heart Association defines ideal cardiovascular health as the absence of disease and the 

presence of seven key health factors that they term life’s simple seven: smoking status, 

body mass index, physical activity, healthy diet, total cholesterol, blood pressure and 

blood glucose. (Mozaffarian, Benjamin et al. 2016) Life’s simple seven are common 

modifiable factors that influence cardiovascular health and maintenance of a healthy 

diet is particularly important. In fact, data from the National Health and Nutrition 
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Examination Survey (NHANES) points to the prevalence of cardiovascular health 

factors in U.S. children and adults, and it shows that 63.4% of U.S. kids have poor diets 

that extends into adulthood among whom 30-50% will also have poor diets. 

(Mozaffarian, Benjamin et al. 2016) This suggests that children with poor diets (i.e. 

nutritional deficiencies) might continue on that path and become adults with poor diets; 

thus, chronically influencing the state of the body and responsiveness to air pollution 

exposure. 

Vitamin D 

One of the essential micronutrients that affects various functions throughout the 

body is vitamin D, which is endogenously synthesized by the skin and obtained from the 

diet (e.g. salmon, tuna, eggs, cheese, milk and fortified foods).(Holick 2007, Trehan, 

Afonso et al. 2017) As shown in Figure 1-1, 7-dehydrocholesterol is produced by UV 

light radiation and converted to cholecalciferol (vitamin D3) which is also obtained 

through dietary intake of animal products. The liver then hydrolyzes vitamin D 

precursors using a cytochrome P450 enzyme (CYP27A1) to produce calcidiol or 25-

hydroxyvitamin D, which is a key circulating biomarker of vitamin D. Calcidiol is 

hydrolyzed in the kidneys by 25-hydroxyvitamin D-1-alpha hydroxylase or CYP27B1 to 

produce the active vitamin D hormone termed calcitriol or 1-alpha, 25-dihyroxyvitamin D 

(1,25(OH)2D). (Holick 2007, Berridge 2015, Rai and Agrawal 2017, Trehan, Afonso et 

al. 2017) The main function of calcitriol is to maintain calcium balance in the body. 

Calcitriol is tightly regulated by secretion of parathyroid hormone (PTH) which responds 

to blood calcium and phosphorus levels. (Holick 2007, Trehan, Afonso et al. 2017)  
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Figure 1-1. Comprehensive vitamin D synthesis pathway. 
 

The vitamin D receptor (VDR) is a steroid nuclear receptor found throughout the 

body including osteoblasts, intestinal enterocytes and cells of immune and nervous 

systems. (Wang, Pencina et al. 2008) The VDR was identified in vivo and in vitro using 

the rat heart and atria-cultured cardiac cells, respectively. (Baksi , Walters) Vitamin D 

exerts its effects through the VDR and upon activation forms a complex with the retinoid 

X receptor (Figure 1-2), (Holick 2007, Fetahu, Höbaus et al. 2014, Norman and Powell 

2014, Saccone, Asani et al. 2015), which then binds to vitamin D response elements 

(VDRE) on DNA and influences expression of a wide variety of genes covering 

numerous functions (e.g. calcium homeostasis, antioxidant production, protein 
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synthesis). (Sundar and Rahman 2011, Fetahu, Höbaus et al. 2014, Norman and 

Powell 2014, Saccone, Asani et al. 2015) Thus, vitamin D is essential for homeostasis 

and proper physiological function. For example, vitamin D regulates genes involved in 

bone turnover, detoxification, antioxidant defense and immune system modulation. 

Therefore, a deficiency in vitamin D leads to potentially adverse changes in the body, 

which may go unnoticed due to subtle alterations in physiology. 

 

 

Figure 1-2. Schematic of the vitamin D receptor activation pathway that leads to 
gene transcription. 

Vitamin D deficiency 

Vitamin D deficiency (VDD) is a global epidemic affecting approximately one 

billion children and adults alike worldwide. (Trehan, Afonso et al. 2017) There is some 

contention regarding the serum level of vitamin D that is defined as “deficient” but 

typically it is accepted to be < 20-30 ng/ml (Figure 1-3). There are myriad of causes of 

VDD including diminished vitamin D synthesis in the skin, which is the most well-known 
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and decreased production of vitamin D precursors, renal/liver organ failure and 

malabsorption conditions. (Holick 2007) Low serum levels of vitamin D has been 

observed in chronic kidney disease suggesting an association between vitamin D status 

and organ dysfunction as well as impaired VDR activation. (Dusso 2011) 

 

Figure 1-3. Recommended serum vitamin D reference range.  

Vitamin D deficiency and cardiovascular disease 

The consequences of VDD are present throughout the body. Traditionally, VDD 

has been associated with bone conditions but depression, infections, neuro-

degenerative/neuromuscular diseases, diabetes and cancer are lesser known 

outcomes. (Holick 2007, DeLuca, Kimball et al. 2013, Muscogiuri, Annweiler et al. 2017)  

More recently, interest in VDD’s contribution to cardiovascular disease has grown. 

(Holick 2007, Lee, O'Keefe et al. 2008, Muscogiuri, Annweiler et al. 2017) Previous 

studies have linked decreased serum vitamin D levels to stroke, myocardial infarction, 

heart failure and subsequent cardiovascular related death. (Pilz, März et al. 2008) In 

particular, epidemiological studies have demonstrated that VDD is associated with 

increased cardiovascular risk and subsequent myocardial infarction, atherosclerosis and 

stroke. In elderly stroke patients, VDD at the start of stroke has been shown to be 

correlated to increased likelihood of death after one year. (Muscogiuri, Annweiler et al. 

2017) Similarly, data from NHANES suggests that VDD is a risk factor for 



14 
 

cardiovascular disease due to adverse effects in the heart. (Al-Khalidi, Kimball et al. 

2017)  

Vitamin D deficiency and the heart 

One of the most common cardiovascular conditions in the U.S. is hypertension, 

and although many cases are linked to high salt intake, stress, or familial genetic 

disposition, vitamin D status also might play a role. People with high blood pressure are 

at increased risk of developing heart diseases (e.g. congestive heart failure, cardiac 

hypertrophy, stroke). When combined, hypertension and VDD further increase 

probability of cardiovascular disease compared to non-hypertensive VDD individuals as 

demonstrated by a prospective study (Figure 1-4). (Lee, O'Keefe et al. 2008) Previous 

experimental studies have demonstrated that vitamin D inhibits renin production and 

reduces activity of the renin-angiotensin-aldosterone system (RAAS) activity leading to 

lower blood pressure. However, VDD results in excess renin production and potentiates 

RAAS activity leading to hypertension.(Li, Kong et al. 2002, Li, Qiao et al. 2004, Trehan, 

Afonso et al. 2017) Additionally, PTH, which is also increased in VDD, also stimulates 

renin and aldosterone release to increase RAAS activity and vascular contractility and 

induce increased pressure. (Carbone, Mach et al. 2014) Interestingly, the incidence of 

hypertension and VDD is increasing in the United States, with evidence also pointing to 

increased risk for hypertension among VDD individuals. (Martins, Wolf et al. 2007, 

Scragg, Sowers et al. 2007, Forman, Curhan et al. 2008, Judd, Nanes et al. 2008, Lee, 

O'Keefe et al. 2008)  
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Figure 1-4. Hypertensive vitamin D deficient individuals have increased 
probability of cardiovascular disease compared to non-hypertensive vitamin D 
deficient individuals. (Reproduced from Lee et al., 2008) 

Although many of the cardiovascular conditions observed in the United States 

involve intrinsic abnormalities in the heart or vasculature, extrinsic factors may also 

contribute to the development of disease. Vitamin D may influence the ANS, which is 

critical in maintaining and regulating cardiovascular function. The VDR is highly 

expressed on neurons in the brainstem suggesting a prominent role for the vitamin D. 

(Dimova, Tankova et al. 2017) This is highlighted by the fact that neurotransmitter 

synthesis is also regulated by vitamin D, particularly acetylcholine, serotonin and 

dopamine, which are important in the function of the ANS. (DeLuca, Kimball et al. 2013) 

During times of stress, the parasympathetic nervous system is typically inhibited but 

VDD has been shown to prevent this inhibition, possibly due to the vitamin’s role in the 

central nervous system. (Dimova, Tankova et al. 2017) Thus, autonomic imbalance 

even in otherwise healthy VDD individuals may set the stage for cardiac dysfunction in 

the long-term. (Canpolat, Özcan et al. 2015) To better understand the relationship 

between VDD and cardiovascular disease, and how VDD causes these deficits, the 
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mediators and the pathways involved in the vitamin D effects on the cells of the body 

need to be studied. 

Klotho 

Recent studies have shown that the cardiac effects of vitamin D are mediated 

through the production and release of klotho. Klotho was identified as an anti-aging 

gene in 1997 using mutated mouse strains that developed atherosclerosis, osteopenia, 

emphysema, skin atrophy and shortened lifespans. (Matsumura, Aizawa et al. 1998) 

Due to the pre-mature aging phenotype associated with this gene, it was termed klotho 

after the Greek goddess spinning the thread of life. (Strewler 2007) It is an anti-aging 

transmembrane protein that is cleaved and enters systemic circulation and has been 

found in blood, serum and cerebrospinal fluid. (Imura, Tsuji et al. 2007, Strewler 2007) 

The soluble form of klotho, which can form a dimer, activates a myriad of cellular 

signaling pathways including those involved in antioxidant defense, enzymatic 

detoxification, inflammation and regulation of cationic channels like transient receptor 

potential (TRP). (Berridge 2015) Additionally, there are two forms, α- and β-klotho, the 

form used in these studies is α-klotho.(Imura, Tsuji et al. 2007) Klotho receptors have 

not been identified but binding to monosialogangliosides (acidic glycosphingolipid with 

sialic acid) in lipid rafts are thought to act as potential receptors for klotho. On the other 

hand, klotho also binds to sialic acid residues on certain cation channels (e.g. TRP 

channels) and exhibit hormone-like properties. (Dalton, An et al. 2017) 

Klotho and calcium 

Klotho is expressed in numerous tissues in the body including the kidneys, 

parathyroid gland and choroid plexus of the brain, all of which have substantial 
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involvement in calcium homeostasis. (Matsumura, Aizawa et al. 1998) Interestingly, it 

was noted that klotho deficient mice have elevated calcium, phosphate and vitamin D 

levels suggesting that the body tries to compensate for the lack of klotho by increasing 

vitamin D levels. (Strewler 2007, Berridge 2015) Regardless, klotho deficiency results in 

a premature aging phenotype (e.g. shortened lifespan, atherosclerosis, osteoporosis) 

and there are several mechanisms implicated in the subsequent development of 

dysfunction. For example, organ calcifications particularly in the kidneys can lead to 

typical symptoms of osteoporosis. (Strewler 2007) Moreover, klotho’s role in calcium 

homeostasis is likely mediated by Na+-K+-ATPase, which is a membrane binding 

protein recruited to the plasma membrane in response to calcium signaling with klotho 

being required in the pathway. Klotho may also play a role in PTH secretion through the 

same Na+-K+-ATPase pathway described above. (Imura, Tsuji et al. 2007) This data 

suggests that the characteristic decrease in PTH in VDD could be mediated by 

disruption of Na+-K+-ATPase recruitment to the plasma membrane in response to 

calcium signaling. Additionally, klotho has a negative regulatory feedback mechanism to 

maintain calcium homeostasis.  

Klotho and the heart 

Recent studies suggest that klotho has cardioprotective effects (Takeshita, 

Fujimori et al. 2004), either through the prevention of oxidative stress,(Yang, Wang et 

al. 2015) or inhibition of TRP channels (Xie, Cha et al. 2012) and RAAS activation 

(Eltablawy and Ashour 2018). Additionally, klotho deficient mice have increased left 

ventricular pressure and hypertrophy,(Hu, Shi et al. 2011) likely due to premature 

activation of components of RAAS,(Zhou, Mo et al. 2015, Yu, Meng et al. 2016, Yang 
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and Xu 2017) as well as neurological deficits which might contribute to autonomic 

dysfunction (Cararo-Lopes, Mazucanti et al. 2017). Klotho has been shown to be 

expressed in the sinoatrial node region (i.e. the pacemaker) of the heart and plays a 

critical role during stress (Takeshita, Fujimori et al. 2004) and even characterized as a 

biomarker of acute stress (Abdelmalik, Stevens et al. 2018). Wild-type mice at baseline 

have a normal heart rate and electrocardiogram, but have increased heart rate and 

normal electrocardiogram changes during restraint stress. In contrast, klotho deficient 

mice also have a normal heart rate response at baseline but during restraint stress 

these mice develop a sinoatrial node arrhythmia, which is likely due to altered cation 

channel function. Interestingly, the same sinoatrial node arrhythmia has been reported 

in mice exposed to air pollution. (Takeshita, Fujimori et al. 2004, Stratford, Haykal-

Coates et al. 2018) Therefore, it appears that the bulk of VDD cardiovascular effects 

may revolve around the regulation and flux of calcium in and out of cells due to altered 

cation channel properties. 

Transient receptor potential channel C6 (TRPC6) 

One of the cation channels present in the heart and regulated by klotho is 

transient receptor potential C6 (TRPC6) cation channel. Transient receptor potential 

channels are non-selective, non-voltage gated cation channels that are important in 

cardiovascular disease (Figure 1-5). (Dietrich, Steinritz et al. 2017) (Watanabe, 

Murakami et al. 2009, Rowell, Koitabashi et al. 2010) The canonical TRP family 

includes TRPC6, under normal conditions has low expession, but it is upregulated in 

cardiac diseases and cardiac myopathy. (Rowell, Koitabashi et al. 2010, Xie, Cha et al. 

2012, Loga, Domes et al. 2013, Watanabe, Iino et al. 2013, Seo, Rainer et al. 2014) 
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TRPC6 is activated by mechanical and oxidative stress. (Seo, Rainer et al. 2014) 

Mechanical stress is characterized by frictional force that causes muscular stretching, 

which in turn activates the channel. (Davies 2009) Activation of TRPC6 results in 

alterations of calcium membrane potentials that drive calcium transport into the cell, 

resulting in increased contractility. (Watanabe, Murakami et al. 2009, Watanabe, Iino et 

al. 2013) In VDD, higher blood pressure or mechanical stress overload might stimulate 

an increase in calcium due to the potentiated TRPC6 activation. All of this occurs 

because the myocardium must stretch to allow for blood to eject against the increased 

mechanical load. Consequently, if this process is sustained, there is a likelihood that 

cardiac hypertrophy and eventually heart failure will occur. (Yamaguchi, Iribe et al. 

2017) In fact, increased expression of TRPC6 (and TRPC3) has been found in the heart 

as well as in the vascular smooth muscle and endothelium cells of humans and rodents 

prone to heart failure. (Loga, Domes et al. 2013, Watanabe, Iino et al. 2013, 

Yamaguchi, Iribe et al. 2017) Abnormal calcium signaling in the brain (Sawamura, 

Shirakawa et al. 2017) and kidneys (Wu, Xie et al. 2017) , due to other factors, also 

causes increased TRPC6 leading to dysfunction. Therefore, expression of TRPC6 

increases due to stress (e.g. mechanical stress or exercise) and appears to result in 

increased calcium influx. 



20 
 

 

Figure 1-5. Schematic of transient receptor potential channel C6 (TRPC6). 
(Reproduced from Dietrich et al, 2017) 

Klotho and TRPC6 

Chronic high blood pressure and other similar cardiovascular conditions are 

dangerous not only because of the vascular effect but also because of the resulting 

mechanical changes on the heart due to sustained pressure overload. Studies have 

demonstrated that TRPC6 inhibition prevents cardiac hypertrophy from pressure load 

and is a potential therapeutic target. (Xie, Cha et al. 2012, Seo, Rainer et al. 2014) The 

stress that pressure overload puts on the heart is characterized by abnormal calcium 

signaling and upregulation of TRPC6, which can be considered a feedback loop. Under 

such circumstances, not only is the function of the heart altered at rest (i.e. baseline 

contractile characteristics) but also if the body encounters a stressor like exercise. 

Recent studies show that in klotho deficiency and subsequent pressure overload 

conditions, TRPC6 expression and cation influx are upregulated. (Frohlich and Susic 
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2012, Xie, Cha et al. 2012) This data suggests that the calcium signaling pathways in 

normal and pressure-overload hearts are distinct and that VDD may result in the latter 

due to the coexisting hypertension. 

Cardiac stress test 

The cardiovascular system operates just like all the other organ systems in that it 

maintains physiological processes and responds to the metabolic demands of the body. 

In particular, increases in heart rate and contractility, and changes in 

vasodilatation/constriction modify the flow of oxygenated blood to the tissues that need 

it the most (i.e. demand). Luckily the cardiovascular system is well equipped to respond 

to stress due to additional reserve capacity, when work rate, oxygen consumption and 

metabolic demand increase greatly. Evaluating this ability to compensate using a 

cardiac stress test can help clinicians diagnose the presence of underlying heart 

disease and at times the etiology of symptoms (e.g. angina). (Iyngkaran, Anavekar et al. 

2017, Koyner and Chawla 2017) The purpose behind this approach is to uncover a 

latent change in the body which may be hidden or otherwise unnoticed. Although this is 

often achieved by an exercise challenge like walking or even running on a treadmill, 

dobutamine, whichi s beta-adrenergic receptor agonist, can be used to increase heart 

rate and contractility. Previous studies suggest that dobutamine administration mimics 

the cardiac effects of exercise and we have previously demonstrated that this form of 

challenge testing uncovers the harmful underlying effects of air pollution. (Hazari, 

Callaway et al. 2012, Kieu, Shaikh et al. 2017) Therefore, its use in this setting is not 

only suitable for the purposes of measuring cardiovascular toxicity but also mimicking 

what might be observed in a person. 
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Scope of dissertation 

Epidemiological, human and animal data have linked adverse cardiovascular 

outcomes to air pollution exposure. Yet, it is only recently that toxicologists have begun 

to focus on the role of other factors due to the fact that the effects of today’s ambient air 

pollution may not be perceivable. In other words, are there latent effects to the body 

despite the lower levels of air pollution in the United States and other developed 

countries and are those effects exacerbated in the presence of underlying deficiencies 

or disease. Although conditions like asthma and metabolic syndrome have been studied 

extensively in the context of air pollution, other conditions, like micronutrient 

deficiencies, have not. Part of the reason these maladies are not addressed with 

respect to cardiovascular dysfunction is the lack of conclusive evidence suggesting 

there is a link. Despite this, there is sufficient data suggesting that micronutrient 

deficiencies like VDD cause underlying physiological changes which alter the body’s 

ability to respond to fluctuations in environmental conditions and insults even if they do 

not directly cause disease. Therefore, studies need to examine the impact of conditions 

like VDD or other public health concerns such as folate deficiency, in order to uncover 

whether there is a heightened susceptibility for an adverse response. Furthermore, 

characterization of the mechanism by which VDD causes these cardiac effects will 

provide biological plausibility and aid in the risk assessment process. The project 

described herein can begin to contribute to this effort. The impact of early-life VDD in 

this paradigm has not yet been determined and air pollution is likely the type of 

ubiquitous environmental stressor that causes adverse cardiovascular effects and 

overall decrements in public health. The goal of my dissertation is to understand how 

VDD alters cardiovascular responses to air pollution and further determine the role of 
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klotho and TRPC6 in mediating such responses (Figure 1-6). Therefore, the central 

hypothesis of this project is that VDD changes the cardiovascular response to air 

pollution through mechanisms involving klotho and TRPC6. 

 

Figure 1-6. Schematic of dissertation approach. Chapter 2 and 3 will address the 
effect of early-life VDD on the cardiovascular response to air pollution exposure in adult 
mice. Chapter 3 will describe the role of klotho in VDD-induced acrolein exposure 
effects. Next, the effect of VDD on the mechanical function of the heart and the role of 
TRPC6 is explored in chapter 4. 

 

To test this hypothesis, the following specific aims were examined.  

1. Describe the effect of early-life VDD on the cardiovascular response to 

photochemical smog exposure in adult mice. 

2. Describe the role of klotho in VDD-induced adverse cardiac response to acrolein 

in adult mice. 

3. Describe the role of TRPC6 in VDD-induced cardiovascular mechanical 

responses in adult mice. 
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Specific Aim 1: Chapter 2 will describe the effect of early-life VDD on the 

cardiovascular response to photochemical smog exposure in adult mice. 

There is growing evidence that VDD, which is now a worldwide public health concern, 

leads to an increased risk of cardiovascular disease. Yet it is still unclear whether it 

exacerbates the deleterious cardiovascular effects (e.g. arrhythmia, hypertension, fatal 

heart attacks) of environmental stressors like air pollution, particularly when it persists 

from early-life to adulthood. I hypothesize that persistent early-life VDD alters cardiac 

function and modifies the response of adult mice to smog.   

Specific Aim 2: Chapter 3 will describe the role of klotho in VDD-induced adverse 

cardiac response to acrolein in adult mice.  

Klotho is an anti-aging protein expressed in the sinoatrial node region of the heart with a 

critical role during stress, and is also suggested to be a mediator in vitamin D effects 

throughout the body. Klotho deficient mice have shortened lifespans, vascular 

calcifications and susceptibility to arrhythmia. Additionally, VDD mice have lower klotho 

mRNA expression in the heart. I hypothesize that treatment with klotho blocks the 

cardiovascular response of vitamin D deficient mice to acrolein. 

Specific Aim 3: Chapter 4 will describe the role of TRPC6 in VDD-induced 

cardiovascular mechanical responses in adult mice. 

Overexpression of TRPC6 has been shown to be associated with certain cardiovascular 

diseases, particularly those with pressure-overload, and is also believed to be increased 

in VDD. In this study, my goal is to determine the effect of VDD on the mechanical 

function of the heart both at rest and during dobutamine stress test. I hypothesize that 
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the changes in cardiovascular mechanical function in adult mice due to early-life 

persistent VDD are mediated by TRPC6.  

Main objective of this dissertation 

The results of this project are expected to improve our understanding of the role 

of VDD, a common worldwide public health problem, in the development of 

cardiovascular disease and air pollution-induced cardiovascular toxicity. The relevance 

of this work to public health will be further established through on-going collaborations 

with epidemiologists examining similar effects in human populations.  
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Chapter 2: Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary 

Responses to Particulate Matter-Enhanced Atmospheric Smog in Adult Mice1 

Introduction 

It is clear from epidemiological, human and animal studies that air pollution has a 

deleterious effect on cardiovascular health (e.g. ischemic heart disease, arrhythmia, 

stroke). (Brook, Rajagopalan et al. 2010) In fact, research from the last ten years has 

shown that there are several factors, which include not only those related to air pollution 

such as concentration, composition and chemistry, but also host factors like nutrition, 

that contribute to the overall response. Thus, characterization of these factors with the 

intent of understanding the underlying toxicological mechanisms as well as providing 

useable public health information about individual susceptibility is crucial to reducing the 

harmful effects of air pollution particularly given the prevalence of chronic diseases like 

asthma and heart disease. 

 Like all the organ systems, regulation and proper function of the cardiovascular 

system is dependent on adequate levels of micronutrients like vitamin D, which is one of 

a few molecules with a critical homeostatic role throughout the body. (Holick 2007, Lee, 

O'Keefe et al. 2008)  

1This chapter previously appeared as an article in the Journal of Environmental Science 
and Technology. The original citation is as follows: Stratford, K., N. Haykal-Coates, L. 
Thompson, Q. T. Krantz, C. King and J. Krug (2018). "Early-Life Persistent Vitamin D 
Deficiency Alters Cardiopulmonary Responses to Particulate Matter-Enhanced 
Atmospheric Smog in Adult Mice." Environmental Science & Technology. 2018 52 (5), 
3054-3061. 
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Although recent data supports the relationship between VDD and cardiovascular 

impairment (Wang, Pencina et al. 2008, Anderson, May et al. 2010, Masson, Agabiti et 

al. 2014), the link to cardiovascular disease development is still not firmly established 

nor is it clear whether it contributes to adverse responses due to air pollution. Vitamin D 

(Vitamin D3) is a fat-soluble vitamin produced endogenously in the skin, after ultraviolent 

B radiation exposure, and acquired through the diet from a variety of foods like milk, 

fish, cheese and beans.(Lips 2006, Holick 2007) Vitamin D receptors are present on 

numerous tissues and cells throughout the body, including cardiomyocytes.(Holick 2007) 

Minimal sun exposure, obesity, improper nutrition as well as a myriad of other factors 

result in vitamin D deficiency (VDD)(Holick 2007, Lee, O'Keefe et al. 2008), which has 

become a public health concern affecting 8% of the pediatric population in the United 

States.(Kumar, Muntner et al. 2009) Early-life or childhood VDD can lead to vascular 

dysfunction, hypertension and other cardiac abnormalities(Carlton-Conway, Tulloh et al. 

2004, Maiya, Sullivan et al. 2008, Tare, Emmett et al. 2011), yet it’s precise role in 

electrocardiographic abnormalities and cardiac autonomic changes has not been 

extensively characterized. Vitamin D exerts its effects through a steroid nuclear receptor 

that(Holick 2007, Norman and Powell 2014) upon activation forms a complex with the 

retinoid X receptor.(Fetahu, Höbaus et al. 2014, Saccone, Asani et al. 2015) Activated 

vitamin D receptors (VDR) bind to vitamin D response elements (VDRE) on DNA and 

influence expression of a wide variety of genes covering numerous functions (ie. 

calcium homeostasis, antioxidant production, protein synthesis).(Sundar and Rahman 

2011, Fetahu, Höbaus et al. 2014, Norman and Powell 2014, Saccone, Asani et al. 

2015) For example, klotho is a membrane aging protein expressed in the sinoatrial node 
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region of the heart that is transcribed when vitamin D binds to VDRE. Decreased klotho 

has been demonstrated to be associated with shortened lifespan, vascular 

calcifications, arrhythmia as well as impaired vitamin D metabolism.(Song, Gao et al. 

2013) Given that vitamin D alters gene expression it is not entirely unreasonable to 

assume that it would contribute to cardiopulmonary dysfunction.  

Consequently, this is of interest to researchers given chronic VDD may cause 

subtle effects which increase the risk of a triggered adverse response to a stressor like 

air pollution. This is particularly true for complex, particulate matter (PM)-rich 

atmospheric photochemical smog, which is a mixture of not only PM but also ozone and 

other gaseous pollutants (e.g. acrolein and aldehyde isoforms) and represents the bulk 

of what people are exposed to in terms of ambient air pollution. It has long been 

demonstrated to be an environmental public health concern resulting in excess 

mortality.(Haagen-Smit 1952, Wilkins 1954, Lynne Page 1994) Therefore, the purpose 

of this study is to determine the effect of early-life persistent VDD in smog-induced 

cardiovascular toxicity. We hypothesized that low levels of vitamin D during early-life 

and persisting into adulthood would 1) induce electrical changes in the hearts of adult 

mice, 2) cause ventilatory alterations (i.e. altered breathing patterns), and 3) worsen the 

cardiopulmonary response to atmospheric smog. 

Materials and Methods 

Animals - Three-week old female C57Bl/6 mice (body weight = 9.6 ± 1.6g) were 

used in this study (Jackson Laboratory – Raleigh, NC). Mice were housed four-five per 

cage and maintained on a 12-hr light/dark cycle at approximately 22˚C and 50% relative 

humidity in an AAA-LAC-approved facility. Food (Prolab RMH 3000; PMI Nutrition 

International, St. Louis, MO) and water were provided ad libitum during the quarantine 
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period (3 days) after arrival. All protocols were approved by the Institutional Animal Care 

and Use Committee of the U.S. Environmental Protection Agency and are in 

accordance with the National Institutes of Health Guides for the Care and Use of 

Laboratory Animals. The animals were treated humanely and with regard for alleviation 

of suffering. 

Diet - Three days after the quarantine period ended, mice were maintained ad 

libitum on either a vitamin D deficient (VDD) (D10073001) or normal diet (ND) 

(D10012G-Research Diets Inc) for sixteen weeks. The VDD diet had no added vitamin 

D. The ND has 1000 IU per 10 grams of vitamin D. The diets had equal levels of all 

other vitamins and minerals including calcium, which was at the concentration specified 

by the American Institute of Nutrition.(Reeves, Nielsen et al. 1993) Water was provided 

ad libitum throughout the diet regimen.  

Experimental Design and Groups – At the beginning of the study, mice were 

randomly assigned into a ND (n = 28) or VDD (n = 35) group and maintained on those 

diets for the extent of the study. Of those animals, 12 of the ND and 12 of the VDD mice 

were randomly chosen and implanted with radiotelemeters at 16 weeks of age. Each of 

the ND and VDD animal groups with radiotelemeters were then further randomly 

assigned to air (FA) or smog exposure groups as were the non-telemetered ND and 

VDD mice. The timeline of the experimental design is depicted in Figure 2-1. 
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Figure 2-1. Experimental design of diet regimen, electrocardiographic/HRV 
analysis and photochemical smog exposure. 
 

Surgical Implantation of radiotelemeters and data acquisition – Animals were 

implanted with radiotelemeters and monitored as previously described(Kurhanewicz, 

McIntosh-Kastrinsky et al. 2014). Briefly, animals were anesthetized using inhaled 

isoflurane (Butler Animal Health Supply, Dublin OH) and using aseptic technique, each 

animal was implanted subcutaneously with a radiotelemeter (ETA-F10, Data Sciences 

International, St Paul, MN) to approximate the lead II of a standard electrocardiogram 

(ECG). All animals were allowed 7-10 days to recover from the surgery and reestablish 

circadian rhythms. Signals from the radiotelemeters were used to monitor heart rate 

(HR), and ECG waveforms immediately following telemeter implantation, through 

exposure until 24hrs post-exposure. This methodology provided continuous monitoring 

and collection of physiologic data from individual mice. See Supplemental Information 

for specific details on radiotelemeter implantation, and HR and ECG analysis.  

Heart Rate Variability Analysis - Heart rate variability (HRV) was calculated as 

the mean of the differences between sequential RRs for the complete set of ECG 

waveforms using ECGAuto. For each 1-min stream of ECG waveforms, mean time 

between successive QRS complex peaks (RR interval), mean HR, and mean HRV-
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analysis–generated time-domain measures were acquired. The time-domain measures 

included standard deviation of the time between normal-to-normal beats (SDNN), and 

root mean squared of successive differences (RMSSD). HRV analysis was also 

conducted in the frequency domain using a Fast-Fourier transform. The spectral power 

obtained from this transformation represents the total harmonic variability for the 

frequency range being analyzed. In this study, the spectrum was divided into low-

frequency (LF) and high-frequency (HF) regions. The ratio of these two frequency 

domains (LF/HF) provides an estimate of the relative balance between sympathetic (LF) 

and vagal (HF) activity.  

Whole-Body Plethysmography - Ventilatory function (e.g. enhanced pause, tidal 

volume and minute ventilation) was assessed in awake, unrestrained mice using a 

whole-body plethysmograph (Buxco, Wilmington, NC). Assessments were performed at 

3, 8, 11 and 15weeks of age and 24hrs prior to the day of exposure, immediately post-

exposure and 24hrs after exposure. The plethysmograph pressure was monitored using 

Biosystems XA software (Buxco Electronics Inc., Wilmington, NC). Using respiratory-

induced fluctuations in ambient pressure, ventilatory parameters including tidal volume 

(VT), breathing frequency (f), inspiratory time (Ti), expiratory time (Te), minute volume 

(MV) and enhanced pause (Penh), which is a measure of ventilatory timing and can 

indicate airway irritation, were calculated and recorded on a breath-by-breath basis. 

Tissue Collection and Analysis - Mice were euthanized 24 hours after exposure 

and blood and bronchoalveolar lavage fluid (BAL) were collected, processed and 

analyzed. Multiple biochemical markers (e.g. lactate dehydrogenase, protein, etc) were 
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assessed in the BAL. Vitamin D concentrations were determined in the serum spectro-

photometrically using a Vitamin D EIA Kit (Cayman Chemical, Ann Arbor, Michigan). 

Photochemical Smog Exposures – A PM-enriched atmosphere with high 

particulate matter and low ozone and nitrogen oxide concentrations (PM-enriched) was 

generated in the Mobile Reaction Chamber (MRC) as described in detail by Krug et al. 

(Krug 2018)Briefly, PM-enriched atmosphere was artificially generated with 0.491 ppm 

nitrogen oxide, 0.528 ppm NOx, 29.9 ppmC total hydrocarbons (THC), 24 ppmC 

gasoline and 5.3 ppmC α -pinene as the initial conditions, which were then irradiated by 

ultraviolent light. PM-enriched smog atmosphere was transported under vacuum to 0.3 

m-3 whole body inhalation chambers. Continuous gas and aerosol sampling for carbon 

monoxide, ozone, nitrogen oxides, THC and particle mass concentration were 

conducted at both the MRC unit as well as from the inhalation exposure systems. All 

PM was formed as secondary organic aerosol from the photochemical reactions in the 

MRC. Particle size distributions and gravimetric mass sampling was measured. Filter 

sampling for gravimetric analysis were conducted for the entire exposure time. Volatile 

organic compound (VOC) summa cannisters were periodically collected and analyzed 

by gas chromatography off-line to determine concentrations of various VOCs in the 

exposure atmosphere.   

Statistics - All data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC) 

software. Mixed-model ANOVAs, with Tukey’s procedure for the post hoc comparisons, 

were used to examine the statistical differences between exposure and diet. To improve 

normality of the residuals and because the HRV variable distributions were highly 

skewed, each HRV parameter was natural- log transformed. Also, the delta values of 
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the variables from baseline were used in this analysis. The statistical significance was 

set at P < 0.05. 

Results 

Exposure characteristics - The measured criteria pollutants in PM-enriched 

atmosphere (MR044) were ozone (0.094 ppm), NOx (0.154 ppb) and PM2.5 (0.307 

mg/m3). The ten most abundant secondary compounds that were generated in the 

atmosphere were: ethanol (1.03 ppm), alpha-pinene (0.533 ppm), toluene (0.463 ppm), 

2-methylpentane (0.330 ppm), n-hexane (0.222 ppm), isopentane (0.212 ppm), m-& p-

xylene (0.201 ppm), 3-methylpentane (0.187 ppm), n-pentane (0.103 ppm) and n-

butane (0.0748 ppm) (Figure 2-2) The Air Quality Health Index (AQHI), which provides a 

health-risk assessment of the smog, was 34.3. (Krug 2018) 

 

Figure 2-2. Exposure characteristics of carbonyls and criteria pollutants in PM-
enriched atmosphere. 
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Body weight and vitamin D levels - Body weight was determined on a weekly 

basis; there were no differences between ND and VDD mice (Figure 2-3). Vitamin D 

levels were confirmed to be lower in all VDD mice (1.06 ± 0.1 ng/mL) when compared to 

ND mice (21.1±2.2 ng/mL).  

 

Figure 2-3. Body weight did not differ and VDD mice did become VDD during diet 
regimen. A. No significant differences in body weight. n = 28-35 B. VDD mice had 
significantly less serum vitamin D levels than ND mice. *significantly different from ND 
(p < 0.05). Values represent means ± SE. 
 

Heart rate and heart rate variability – HR was decreased in VDD mice from the 

time of telemeter implantation up until exposure (Figure 2-4A), while HRV (SDNN, 

RMSSD, HF) increased during the same time period (Figure 2-4 B-D). Log-normal 

distribution was calculated for HRV because the data was not normally distributed. HR 

decreased significantly 24 hours after air exposure in ND animals and after PM-

enriched exposure in VDD animals. ND animals exposed to PM-enriched smog and 

VDD animals exposed to air did not exhibit any changes (i.e. their HR did not decrease 

after exposure) (Figure 2-5A). SDNN was increased in all groups both immediately and 

24 hours after exposure when compared to pre-exposure, yet it only decreased in the 
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24hrs after exposure in ND mice exposed to PM-enriched smog. VDD increased SDNN 

irrespective of the exposure, yet when combined, VDD and PM-enriched smog had a 

significantly greater effect on SDNN than either alone (Figure 2-5B). Similar trends were 

observed with RMSSD in which the combination of VDD and PM-enriched smog had a 

greater effect than either VDD or PM-enriched alone (Figure 2-5C). HF, which is the 

time frequency domain measure of HRV, decreased significantly due to VDD and PM-

enriched exposure (Figure 2-5D); interestingly, this phenomenon was also observed in 

ND mice exposed to air but not in VDD mice exposed to air or the ND mice exposed to 

PM-enriched exposure. No significant changes were observed in LF (data not shown).  

 

Figure 2-4. VDD mice had decreased heart rate and increased HRV prior to 
exposure. (A.) Heart rate was significantly decreased in VDD mice when compared to 
ND, whereas SDNN (B.), RMSSD (C.), and HF (D.) were significantly increased. 
Parameters were analyzed from the time of radiotelemeter implantation until exposure. * 
significantly different from ND (p < 0.05). Values represent means ± SE. 
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Figure 2-5. VDD alters heart rate and heart rate variability after PM-enriched 
exposure. There were no changes in HR or HRV immediately after exposure in both 
ND and VDD mice (A - D). SDNN was increased in all groups 24hrs after exposure 
when compared to pre-exposure except ND mice exposed to PM-enriched. VDD 
increased SDNN irrespective of the exposure, yet when combined, VDD and PM-
enriched exposure had a significantly greater effect on SDNN than either alone (B.). 
Similar trends were observed with RMSSD for which the combination of VDD and PM-
enriched smog had a greater effect than either VDD or PM-enriched exposure alone 
(C.). HF decreased significantly in VDD mice exposed to PM-enriched smog and ND 
mice exposed to FA but not in VDD mice exposed to FA or ND mice exposed to PM-
enriched exposure (D.) *significantly different from ND (p < 0.05).  ◊significantly different 
from pre-exposure (p < 0.05).  † significantly different from immediately post-exposure. ‡ 
significantly different from filtered air exposure. Values represent means ± SE. 

 

During exposure, HR decreased from baseline (30-minute acclimation period 

before exposure) in all animals regardless of diet or exposure. PM-enriched smog 

significantly blunted the decrease in HR in ND mice; a similar effect was seen in VDD 

mice but to a lesser degree (Figure 2-6A). SDNN increased in VDD mice during air 

exposure and in ND mice during smog exposure however there was no effect in VDD 

mice exposed to PM-enriched smog (Figure 2-6B). In addition, RMSSD increased 
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significantly in VDD mice during air exposure when compared to ND; this response was 

further increased if the animals were exposed to PM-enriched smog (Figure 2-6C). HF 

only increased in VDD mice during PM-enriched exposure (Figure 2-6D). No significant 

changes were observed in LF parameter during exposure (data not shown). Lastly, the 

number of arrhythmias significantly increased in ND mice during PM-enriched exposure 

and although VDD appears to also increase total arrhythmias the results were not 

significant (Figure 2-6E).  

 

Figure 2-6. Exposure to PM-enriched smog prevents the recovery of resting heart 
rate in normal and VDD mice but only potentiates parasympathetic modulation in 
the latter. (A.) PM-enriched exposure significantly blunted the decrease in HR in both 
ND and VDD mice. (B.) SDNN increased in VDD mice during FA and in ND mice during 
PM-enriched exposure, however there was no effect in VDD mice exposed to PM-
enriched smog. (C.) RMSSD increased significantly in VDD mice during FA when 
compared to ND; this response was further increased with PM-enriched smog. (D.) VDD 
mice exposed to PM-enriched smog had significantly increased HF when compared to 
ND and VDD mice exposed to FA. (E.) VDD mice exposed to air had significantly 
increased arrhythmia when compared to PM-enriched smog, but there was no effect of 
PM-enriched smog in VDD mice. * significantly different from ND (p < 0.05). 
‡significantly different from filtered air exposure (p < 0.05). Values represent means ± 
SE.  
 

Ventilatory function – Table 2-1, Table 2-2 and Figure 2-7 show the ventilatory 

data. Although the mice randomly placed on the ND had a lower f at 3 weeks of age 
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than those placed on the VDD the f was comparable at 8 weeks of age and continued to 

decrease with age for both groups (Figure 2-7A). Similarly, although VT/MV were higher 

in the VDD group at the beginning of the diet regimen and up to 8 weeks of age, further 

increases in VT/MV over time were blunted in the VDD mice when compared to ND mice 

(Figure 2-7B – VDD -72.4% increase; ND - 111.2% increase at 15wks). VDD mice had 

decreased Ti before and through the diet regimen when compared to ND mice while 

there were no differences in Te (Table 2-1).  

Diet Age 
(wee
ks) 

Breathing 
Frequency 
(f) 

Tidal 
Volume 
(mL) 

Inspirator
y Time  
(msec) 

Expirator
y Time 
 (msec) 

Minute 
Volume 
(mL/min) 

Ventilator
y Timing 
(penh) 

ND 3 474.2±0.6 0.13±0.0 51.69±0.1 83.46±0.1 6.42±0.0  

8 475.5±0.5 * 0.23±0.0 
* 

56.01±0.1 
* 

76.28±0.1 
* 

10.73±0.0 
* 

 

11 435.2±0.4 * 0.27±0.0 
* 

64.01±0.1 
* 

78.29±0.1 
* 

11.42±0.0 
* 

 

15 423.6±0.3 * 0.28±0.0 
* 

66.26±0.1 
* 

79.48±0.1 
* 

11.76±0.0 
* 

 

Pre-
Exp. 

432.8±0.6 0.29±0.0 61.97±0.1 81.69±0.2 12.37±0.0 1.26±0.0 

VD
D 

3 503.0±0.5 ◊ 0.15±0.0 
◊ 

50.40±0.1 
◊ 

74.72±0.1 
◊ 

7.41±0.0 ◊  

8 483.5±0.5 
*◊ 

0.23±0.0 
*◊ 

54.57±0.1 
*◊ 

75.29±0.1*
◊ 

10.56±0.0 
*◊ 

 

11 439.5±0.4 
*◊ 

0.24±0.0 
*◊ 

62.35±0.1 
*◊ 

79.56±0.1 
*◊ 

10.55±0.0 
*◊ 

 

15 426.7±0.41 
*◊ 

0.26±0.0 
*◊ 

65.17±0.1 
*◊ 

80.86±0.1 
*◊ 

10.64±0.0 
*◊ 

 

Pre-
Exp. 

435.5±0.6 0.3±0.0 61.75±0.1 81.98±0.2 12.24±0.0 1.54±0.0 

 

Table 2-1. VDD induced changes in ventilatory function parameters during diet 

regimen. * significantly different from 3-week assessment (p < 0.05).◊ significantly 

different from ND (p < 0.05). Values represent means ± SE.  
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Figure 2-7. VDD mice have impaired development of normal breathing patterns 

and higher breathing frequency during PM-enriched exposure. VDD mice had 

significantly less decrease in f and increase in Vt during the 15 weeks of development 

when compared to ND (A. and B.). PM-enriched smog prevented f and penh from 

decreasing in both ND and VDD, but VDD mice had a significantly greater effect than 

ND (C. and D.). * significantly different from ND (p < 0.05). ¥ significantly different from 

3-week assessment (p < 0.05). ‡ significantly different from filtered air exposure (p < 

0.05).  Values represent means ± SE.  

 

Other than ventilatory timing (penh) being higher in VDD versus ND mice, there 

were no significant differences in the pre-exposure ventilatory parameters between the 

two diets (Table 2-2). All subsequent comparisons for exposure-related ventilatory 

effects were made within group. As such, all animals experienced a significant decrease 
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in f after exposure; however, this decrease enriched (i.e. f decreased the least in VDD 

mice after PM-enriched). Similar trends were observed with VT, Ti, and Te however the 

values increased after exposure. Penh increased after PM-enriched exposure in ND 

mice when compared to pre-exposure and with respect to their controls; all the other 

groups including VDD mice exposed to PM-enriched had a decrease in penh post-

exposure.  

 

Die
t 

Exposure Breathing 
Frequenc
y (f) 

Tidal 
Volume 
(mL) 

Inspirator
y Time  
(msec) 

Expirator
y Time 
 (msec) 

Minute 
Volume 
(mL/min) 

Ventilator
y Timing 
(penh) 

ND Air Pre 437.9±0.6  0.29±0.0 61.89±0.1  79.64±0.1 12.59±0.0 1.38±0.0 

 Post 410.8±0.6
◊ 

0.31±0.0 
◊ 

66.07±0.1 
◊ 

86.93±0.2 
◊ 

12.53±0.0 1.15±0.0 ◊ 

Smo
g 

Pre 427.8±0.6 0.29±0.0  62.04±0.1 83.73±0.1 12.15±0.0  1.13±0.0 

 Post 405.7±0.6
◊ 

0.31±0.0 
◊‡ 

66.08±0.1 
◊ 
 

87.93±0.2 
◊‡ 

12.29±0.0 
◊ 

1.31±0.0 
◊‡ 

VD
D 

Air Pre 436.2±0.6  0.31±0.0 
* 

61.26±0.1 
* 

81.03±0.1 
* 

12.14±0.0 
* 

1.43±0.0 * 

 Post 415.6± 
0.7 *◊ 

0.30±0.0 
*◊ 

64.28±0.1 
*◊ 

86.94±0.2 
◊ 

12.18±0.0 
* 

1.28±0.0 
*◊ 

Smo
g 

Pre 434.9±0.6 
* 

0.29±0.0 62.24±0.1  82.93±0.2 
* 

12.33±0.0 
* 

1.65±0.0 * 

 Post 424.4±0.6 
*◊‡ 

0.30± 
0.0 *◊‡ 

63.38±0.1 
*◊‡ 

84.45±0.2 
*◊‡ 

12.57±0.0 
*◊‡ 

1.38±0.0 
*◊‡ 

 

Table 2-2. Ventilatory function of ND and VDD mice is altered after photochemical 

smog exposure. * significantly different from ND (p < 0.05). ◊ significantly different from 

pre-exposure (p < 0.05). ‡ significantly different from filtered air exposure (p < 0.05). 

Values represent means ± SE. 
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Electrocardiogram analysis – The data is presented in Table 2-3. There were no 

significant differences in any parameters during the pre-exposure period. The PR 

interval decreased significantly from baseline during air exposure in both ND and VDD 

animals but there were no differences between the diets during, immediately and 24hrs 

after exposure. In contrast, the PR interval of VDD mice was increased compared to ND 

mice during PM-enriched exposure, immediately after and 24hrs later. PM-enriched 

exposure caused a decreased PR interval in ND mice and increased PR interval in VDD 

mice when compared to their respective air-exposed controls. VDD animals had a 

decreased QRS interval during air exposure when compared to ND; this difference 

between VDD and ND was also observed in animals exposed to PM-enriched and 

persisted 24hrs after that exposure. Smog exposure also caused a significant decrease 

in QRS complex in ND mice when compared to controls. Lastly, VDD caused a 

decrease in QTc when compared to ND with either air or PM-enriched exposure during 

either exposure or immediately after but there were no significant differences among 

any group for the most part.  
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Diet Exposure Timing PR (ms) QRS (ms) QTcB (ms) 

ND Filtered 
Air 

Pre-Exposure 37.21±0.28 10.38±0.11 56.23±0.65 

Exposure 36.62±0.10 § 7.66±0.14 57.16±0.55 

Immediately 
Post-Exposure 

37.42±0.22 10.85±0.09 59.24±0.67 

24 Hr Post-
Exposure 

37.58±0.23 10.55±0.06 55.16±0.68 

Smog Pre-Exposure 37.22±0.34 10.40±0.08 56.21±0.80 

Exposure 36.07±0.08 ‡ 6.43±0.15 ‡ 56.53±0.47 

Immediately 
Post-Exposure 

36.27±0.30 ‡ 10.60±0.07 54.82±0.79 ‡ 

24 Hr Post-
Exposure 

36.06±0.25 ‡ 10.34±0.06 55.11±0.86 

VDD Filtered 
Air 

Pre-Exposure 37.27±0.45 10.39±0.10 55.20±0.71 

Exposure 36.49±0.10 § 6.31±0.14 §* 54.96±0.56 

Immediately 
Post-Exposure 

36.49±0.24 * 10.40±0.08 * 54.82±0.44 * 

24 Hr Post-
Exposure 

36.31±0.21 * 10.42±0.09  55.02±0.57 

Smog Pre-Exposure 37.34±0.22 10.38±0.10 56.37±0.46 

Exposure 37.46±0.08 ‡* 5.35±0.14 * 54.13±0.47 * 

Immediately 
Post-Exposure 

38.11±0.23 ‡* 10.46±0.08 54.63±0.41 

24 Hr Post-
Exposure 

37.15±0.20 ‡* 10.01±0.06 ‡* 53.37±0.46 

 

Table 2-3. Smog exposure and VDD induced alterations in electrocardiographic 

morphology in adult mice. * significantly different from ND (p < 0.05). † significantly 

different from immediately-post exposure (p < 0.05).◊ significantly different from pre-

exposure (p < 0.05). ‡ significantly different from filtered air exposure (p < 0.05). § 

significantly different from baseline of exposure (p < 0.05). Values represent means ± 

SE.  
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Discussion 

This study demonstrates that early life and persistent vitamin D deficiency into 

adulthood modifies the cardiopulmonary response to PM-enriched smog exposure. 

These results add to a growing body of research which shows that the degree and 

quality of health effects of air pollution are not only governed by concentration and 

composition but also non-environmental factors. Some of these factors are directly 

related to the host and aspects of daily living which likely accrue intrinsic changes in the 

body over many years and alter the degree of responsiveness to an environmental 

challenge or the ability to compensate for one. Such might be the case with VDD, which 

has become a growing public health concern in the United States with some estimates 

of prevalence reaching 41.6%.(Forrest and Stuhldreher 2011) This is of particular 

concern because millions of children may be deficient (Kumar, Muntner et al. 2009) and 

remain so into adulthood thus increasing the likelihood of chronic diseases. Although it 

has not been studied as extensively as bone-related maladies, the cardiopulmonary 

effects that result from VDD are increasingly being recognized as a cause, or promoter 

in the least, of several long-term diseases and heightened susceptibility to triggered 

adverse responses. Still this is the first study to show that VDD during development and 

into adulthood alters and potentially worsens the response to air pollution in mice.  

Traditional toxicological investigations, particularly in rodents, have been using 

susceptible models (e.g. hypertension, metabolic syndrome, etc) to further characterize 

the risk of adverse responses to air pollution. Our own studies indicate that rodent 

strains with underlying cardiovascular disease have a worse response (e.g. arrhythmia) 

to air pollution than normal strains although the effects are often latent and can only be 

observed when a subsequent challenge or trigger is used to manifest them. (Hazari, 
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Haykal-Coates et al. 2009, Farraj, Hazari et al. 2011, Hazari, Haykal-Coates et al. 2011, 

Hazari, Callaway et al. 2012, Carll, Lust et al. 2013, Hazari, Griggs et al. 2014) This 

suggests that to some degree the adverse effects of air pollution may be due more to 

disruption of homeostasis than direct tissue toxicity. Imbalance in autonomic control of 

the cardiovascular system as measured by heart rate variability is an example of such 

changes and has been well documented not only in rodents but in humans as well. 

(Binkley, Nunziata et al. 1991, Liao, Creason et al. 1999, Brook and Julius 2000) 

Furthermore, the importance of such an assessment rests in the fact that it indicates a 

subtle shift in the underlying regulation of the body’s dynamic systems which may not 

be manifested as clinical symptoms or overt signs of toxicity. Thus, the objective of this 

study was to investigate whether VDD acts as a modifiable factor in smog-induced 

cardiopulmonary dysfunction. We hypothesized that as a result of early-life VDD the 

homeostatic balance of the cardiopulmonary system would be altered, thus the 

cardiopulmonary response to stressors like smog would also change. 

Although the VDD mice were maintained on the deficient diet immediately post-

weaning there was no difference in the body weights or the growth of VDD animals after 

15 weeks as determined by tibia length (not shown) when compared to ND. Even 

calcium levels were found to be in the normal range for all mice irrespective of diet. 

Despite this seemingly normal development, VDD deficient mice had increased heart 

rate variability, indicating altered cardiac autonomic function, when compared to 

controls in the two weeks prior to exposure. Although decreased HRV is generally 

thought of as the primary indicator of cardiac risk (Gold, Litonjua et al. 2000, Pope, 

Hansen et al. 2004), an increase in HRV may not necessarily be a positive sign. (Stein, 
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Domitrovich et al. 2005) Instead, it may be the change from normal which suggests an 

impaired regulation of the cardiovascular system but in a way that may not be entirely 

appreciated until the body is challenged and has to maintain homeostasis. Increases in 

vagal tone or HRV have been associated with adverse cardiovascular events in 

diabetes (Eguchi, Schwartz et al. 2010), and linked with increased mortality in heart 

failure patients and the elderly. (de Bruyne, Kors et al. 1999, Stein, Domitrovich et al. 

2005)  In addition, increased RMSSD has been found to be associated with elevated 

risk of air pollution-induced arrhythmia. (Davoodi, Sharif et al. 2010)  

An increase in HRV suggests parasympathetic modulation of the cardiovascular 

system which was clearly seen as a significantly lower heart rate in the VDD animals 

when compared to ND. Vitamin D deficiency is linked to HRV changes in humans as 

well (Canpolat, Özcan et al. 2015, Jung, Jung et al. 2015, Mann, Hollenberg et al. 2015) 

and although the profile differs from rodents the overall conclusion that subtle 

underlying alterations are occurring in the deficient state holds true. It is likely the 

differences between humans and mice may be due to the fact that in contrast to 

humans, baseline heart rate in mice is influenced greatly by the sympathetic branch 

(Just, Faulhaber et al. 2000) and short-term HRV is under the control of 

parasympathetic modulation. (Gehrmann, Hammer et al. 2000, Pham, Bonham et al. 

2009) Furthermore, the HRV effects of VDD in humans may be due to other disease 

processes (e.g. kidney disease) related to chronic deficiency which is still not confirmed 

to occur in mice. It may be that mice develop a similar HRV decrement if left on the 

deficient diet for a longer period; our future studies will address this issue. In any case, it 

is not entirely clear why VDD causes altered autonomic function in mice. One study 
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showed that VDD caused changes in calcium flux and cardiomyocyte contraction-

relaxation, which was shown to be linked to vitamin D receptors (VDR) located on the T-

tubule (Tishkoff, Nibbelink et al. 2008); the authors concluded that these effects would 

likely result in changes in heart rate. On the other hand, 24hrs before exposure there 

was still a trend of increased HRV (SDNN and RMSSD) in the VDD animals when 

compared to ND even though the HR among the groups was similar. This suggests that 

other factors may have contributed to the changes in HRV; in fact, VDD has been 

shown to affect blood pressure, which is a known determinant of HRV. (Artaza, 

Mehrotra et al. 2009) 

We have consistently shown that heart rate tends to decrease gradually over a 3-

4 hour air exposure as the animal calms down in the chamber. In the presence of air 

pollution, heart rate does not decrease as much (i.e. remains elevated). (Carll, Lust et 

al. 2013, Farraj, Walsh et al. 2015) In the current study, although PM-enriched smog 

prevented HR from decreasing in both ND and VDD groups, the effect was significantly 

less in the VDD mice (i.e. HR of VDD mice was less elevated), which along with the 

greater increase in RMSSD and HF appears to confirm the shift towards 

parasympathetic modulation in the VDD animals. This modulation was also reflected in 

the greater decrease in HR and increase in RMSSD in VDD animals exposed to air. 

These trends persisted immediately after exposure with HR continuing to decrease over 

the next 24hrs. Over the same period SDNN and RMSSD continually increased in all 

groups except ND animals exposed to PM-enriched smog, which consequently had the 

smallest decrease in HR. It is unclear whether this relatively smaller decrease in HR 

and increase in HRV in the ND mice exposed to PM-enriched reflects increased risk. 
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(Tsuji, Larson et al. 1996, La Rovere, Pinna et al. 2001) These responses are similar to 

what was observed and reported for PM-enriched by Hazari et al. in this issue with the 

difference in effects due to VDD being evident here. (Hazari and Stratford 2018) Indeed, 

this group had a significantly increased number of arrhythmia during exposure but these 

stopped after it ended. Similar increases in arrhythmia incidence were observed in the 

other three treated groups, especially VDD mice exposed to air which had a large 

number of atrial premature beats, but they were not significant. Yet, there is some 

indication from past studies that VDD is associated with arrhythmia (Ozcan, Gurlek et 

al. 2015) due to a number of mechanisms, either by activation of the RAAS axis and 

predisposition to hypertension (Lee, O'Keefe et al. 2008), through the enhancement of 

myocardial oxidative stress (Argacha, Egrise et al. 2011, Gradinaru, Borsa et al. 2013), 

or by increasing PTH levels which also affects blood pressure and myocardial 

contractility (Ogard, Sondergaard et al. 2005, Zittermann 2006). Whether these 

conditions existed in our animals is unknown and further does it worsen the response to 

air pollution likely remains to be clarified.  

Assessments of ventilatory function were also performed from the beginning of 

the diet regimen to the end of the study and revealed some diet-induced effects. 

Although the animals were randomly assigned to either the normal or deficient diet, the 

VDD group had a higher breathing frequency than ND before commencing the diets. 

This difference did not exist at 15 weeks of age. In contrast, VDD animals had a 

significantly reduced increase in tidal volume over the 16 week diet regimen when 

compared to ND. Numerous studies have documented the negative effects of VDD on 

lung development in both humans and rodents. (Zosky, Hart et al. 2014, Foong, Bosco 
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et al. 2015, Chen, Wilson et al. 2016) Furthermore, it appears that VDD causes deficits 

in lung function that are primarily explained by differences in lung volume and also 

exacerbates the development of lung COPD-like characteristics (i.e. inflammation) in 

mice exposed to cigarette smoke. Two important points are relevant here given these 

conditions; first, it is clear that the dose of PM-enriched smog in VDD animals may have 

been different from ND animals, and second, it is likely the airway responsiveness of 

VDD mice to PM-enriched smog was also changed. We cannot address the first point 

since we were unable to measure ventilatory function during exposure. However, when 

compared to pre-exposure, VDD animals had a significantly smaller decrease in 

breathing frequency after exposure than ND and this effect was even greater when VDD 

and PM-enriched smog were combined. A similar trend was observed in ventilatory 

timing (penh), which is an indicator of airway irritation, suggesting VDD may have 

altered the ventilatory responses to the smog. This is relevant to the overall hypothesis 

of this study because ventilatory patterns not only affect HRV but also can play a role in 

adverse cardiac events (e.g. arrhythmia) when triggered by airway irritation. 

(Widdicombe and Lee 2001)  

Finally, there were some notable changes in ECG parameters in this study. 

Although there were no pre-exposure differences in any of the ECG parameters 

between any of the groups, PM-enriched exposure caused a significant increase in PR 

interval and decrease in QRS complex duration when compared to air; this smog effect 

was altered by VDD and persisted for 24hrs after exposure only in that group. Even 

though these changes may just represent fluctuations in the heart rate and not any true 

electrical disturbances or pathology there is a clear impact of VDD by which the PM-
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enriched-induced effect continued into the next day. In such a situation, if these ECG 

changes truly were due to an electrical disturbance then it would not be inconceivable 

for a subsequent adverse cardiac event to be triggered, even if hours after the exposure 

had ended. In addition, our animals were only kept on the diet for 16 weeks, which may 

not have been enough time for VDD to cause more tangible effects. For example, 

chronic changes in blood pressure are connected with vitamin D levels but this was not 

evaluated in this study. Thus, future experiments will be conducted on animals that are 

kept on VDD for more than 32 weeks and will include other physiological measures that 

will help to potentially clarify the ECG phenomenon.  

Conclusions 

In conclusion, persistent VDD that begins in early-life alters HR, HRV and 

ventilatory parameters and changes the response to smog. In particular, the changes in 

HRV or autonomic imbalance that were observed may represent altered homeostasis, 

which potentially suggests that the body is prone to an adverse response if an 

environmental trigger or stressor is encountered. Although this has yet to be proven, our 

previous studies clearly show that autonomic imbalance plays a role in triggered cardiac 

dysfunction. This study is relevant because it demonstrates how nutritional deficiencies 

can subtly modify the homeostatic balance of the cardiopulmonary system and increase 

risk from exposure to PM-enriched smog. This especially applies to children who are 

VDD and may be at heightened risk of developing cardiovascular disease later in life 

and so may also be particularly sensitive to the effects of air pollution. Regardless, if 

present in man such effect modification could have significant relevance to public health 

and the assessment of toxicological risk.  
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Chapter 3: The Effects of Klotho on Acrolein-Induced Heart rate and Heart Rate 

Variability Changes in Normal and Vitamin D Deficient Mice 

Introduction 

Cardiovascular morbidity and mortality are strongly correlated with short and long 

term ambient air pollution exposure,(Brook, Rajagopalan et al. 2010) which at times 

only manifests as subtle or latent changes especially in healthy individuals. These 

changes include autonomic imbalance or electrical disturbances (i.e. arrhythmia) which 

are indicative of increased cardiovascular risk even after acute exposure. Furthermore, 

research within the last ten years has shown that there are several factors that 

contribute to this effect. These include not only factors related to air pollution such as 

concentration, composition and chemistry, but also intrinsic host factors like nutrition. As 

far as the latter is concerned, homeostatic regulation and proper cardiac function is 

dependent on adequate levels of micronutrients. Vitamin D is one of the micronutrients 

needed by the body with a critical homeostatic role in several organ systems including 

the cardiovascular system.(Holick 2007, Lee, O'Keefe et al. 2008) Additionally, vitamin 

D receptors are present on numerous tissues and cells throughout the body, including 

cardiomyocytes.(Holick 2007)  

Unfortunately, vitamin D deficiency (VDD) has become highly prevalent in the 

United States, as well as in the world, even affecting otherwise healthy individuals but 

there is not a consensus regarding the threshold of VDD. (Gordon, DePeter et al. 2004, 

Holick 2007, Martins, Wolf et al. 2007, Gordon, Feldman et al. 2008, Bener, Al-Ali et al. 
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2009, Kumar, Muntner et al. 2009) Although, VDD has been traditionally studied with 

respect to calcium regulation and bone-related conditions, it is now known that it also 

contributes to adverse cardiovascular outcomes.(Holick 2007, Mann, Exner et al. 2013, 

Masson, Agabiti et al. 2014)  For example, during early-life or childhood, VDD can lead 

to vascular dysfunction and subsequent hypertension.(Gordon, Feldman et al. 2008, 

Tare, Emmett et al. 2011, Weng, Sprague et al. 2013)  We previously showed that 

early-life persistent VDD induces autonomic imbalance in VDD mice that are otherwise 

healthy, similar findings have been demonstrated by others as well.(Canpolat, Özcan et 

al. 2015) (Stratford, 2018) Due to the fact that vitamin D is active throughout the body 

and elicits molecular and cellular effects in many different cell types, it is clear that VDD 

has the potential to induce numerous effects on the homeostatic controls of the body. 

Despite this understanding of VDD, a definitive mediator for these responses is still 

unknown. 

Therefore, these studies focused on the role of klotho, which is an anti-aging 

factor regulated by vitamin D and known to play a role in controlling intracellular 

signaling, oxidative stress and cation transport in various cell types.(Hazari, Haykal-

Coates et al. 2011, Ding and Ma 2015) In fact, klotho, which is upregulated with vitamin 

D receptor agonist supplementation,(Song, Gao et al. 2013)  is highly conserved 

between humans and mice.(Ding and Ma 2015) Klotho has a direct effect on the heart 

by maintaining sinoatrial function during stress and its deficiency has been linked to 

arrhythmia(Takeshita, Fujimori et al. 2004) and certain cardiovascular diseases.(Song, 

Gao et al. 2013) Hence, klotho might be a potential mediator of vitamin D effects in the 

body, particularly when a stressor like air pollution is encountered. 
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Ambient air pollution is a mixture of many particulate, gaseous and volatile 

compounds that are usually produced by combustion of fossil fuels. For example, 

acrolein is a ubiquitous air pollutant and a common product of combustion of diesel fuel, 

fatty foods, cigarette smoke, wood and other organic compounds into a gaseous 

unsaturated aldehyde.(Ghilarducci and Tjeerdema 1995, Kehrer and Biswal 2000) In 

humans and mice, acrolein is typically an upper airway irritant and the health effects are 

mostly limited to the nasal passages.(Kehrer and Biswal 2000) Regardless, acrolein 

inhalation is linked to a myriad of respiratory conditions including eye, nose and throat 

irritation,(Sim and Pattle 1957, Esterbauer, Schaur et al. 1991)  pulmonary 

edema(Kutzman, Popenoe et al. 1985, Hales, Barkin et al. 1989), bronchial hyper-

responsiveness(Ben-Jebria, Marthan et al. 1994, Bein and Leikauf 2011), respiratory 

distress(Ben-Jebria, Marthan et al. 1994, Bein and Leikauf 2011) and asthma 

exacerbations(Leikauf, Leming et al. 1989). In addition, animal and in-vitro studies have 

demonstrated that acrolein exposure results in adverse cardiovascular responses 

including cytotoxicity in vascular endothelial cells and cardiac fibroblasts(Toraason, 

Luken et al. 1989, Kachel and Martin 1994) as well as left ventricular hypertrophy, which 

can lead to dilated cardiomyopathy(Ismahil, Hamid et al. 2011). It has also been 

demonstrated to cause cardiac autonomic dysfunction and electrical instability.(Hazari, 

Haykal-Coates et al. 2009, Conklin, Haberzettl et al. 2017) 

However, the impact of VDD on these acrolein effects is unclear and warrants 

investigation, particularly because both vitamin D (Stratford, Haykal-Coates et al. 2018) 

and acrolein modulates autonomic function of the heart. Furthermore, vitamin D affects, 

potentially through klotho, the function of TRP channels, which are potently activated by 
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acrolein. Thus, the goal of this project was to determine how VDD modifies cardiac 

responses to acrolein in adult mice and clarify the role of klotho. We hypothesized that 

VDD-induced cardiopulmonary changes in acrolein responsiveness would be blocked 

by klotho. These studies seek to clarify whether treatment with klotho (potentially 

injectable) can mitigate the effects of VDD in this paradigm. 

Materials and Methods 

Animals - Three-week old female C57Bl/6 mice were used in this study (Jackson 

Laboratory, Raleigh, NC). Mice were housed five per cage and maintained on a 12-hr 

light/dark cycle at approximately 22˚C and 50% relative humidity in an AAA-LAC-

approved facility. Food (Prolab RMH 3000; PMI Nutrition International, St. Louis, MO) 

and water were provided ad libitum during the quarantine period (3 days) after arrival. 

All protocols were approved by the Institutional Animal Care and Use Committee of the 

U.S. Environmental Protection Agency and are in accordance with the National 

Institutes of Health Guides for the Care and Use of Laboratory Animals. The animals 

were treated humanely and with regard for alleviation of suffering. 

Diet - Three days after the quarantine period ended, mice were maintained ad 

libitum on either a vitamin D deficient (VDD) (D10073001-Research Diets Inc.) or 

normal diet (ND) (D10012G-Research Diets Inc.) for nineteen or forty weeks. The VDD 

diet had no added vitamin D but had vitamin mix V10037. The ND has 1000 IU per 10 

grams of vitamin D which is the recommended amount for mice. The diets had equal 

levels of all other vitamins and minerals including calcium, which was at the 

concentration specified by the American Institute of Nutrition (Reeves, Nielsen et al. 

1993). Water was provided ad libitum throughout the diet regimen. 
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Experimental Design and Groups – At the beginning of the study, mice were 

randomly assigned into a ND (n = 20) or VDD (n = 20) group and maintained on those 

diets for the extent of the study. Of those animals, 18 of the ND and 18 of the VDD mice 

were randomly chosen and implanted with radiotelemeters at 20 weeks of age and 

given klotho. All mice were randomly assigned to filtered air (FA) or acrolein exposure 

groups. Figure 3-1 demonstrates the experimental design. 

 

Figure 3-1. Experimental Design. ND and VDD mice were put on their respective diets 
for 19 weeks. A subset of mice was implanted with radiotelemeters and then exposed to 
filtered air and then acrolein (3ppm) for 3 hours. In a follow-up study, mice were treated 
with klotho every other day for a month before the same telemeter implantation and 
exposure scheme.  
 

Surgical Implantation of Radiotelemeters - Animals were anesthetized using 

inhaled isoflurane (Isothesia, Butler Animal Health Supply, Dublin, OH). Anesthesia was 

induced by spontaneous breathing of 2.5% isoflurane in pure oxygen at a flow rate of 1 

L/min and then maintained by 1.5% isoflurane in pure oxygen at a flow rate of 0.5 L/min; 

all animals received the analgesic buprenorphrine (0.03 mg/kg, i.p. manufacturer). 

Briefly, using aseptic technique, each animal was implanted subcutaneously with a 
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radiotelemeter (ETA-F10, Data Sciences International, St Paul, MN); the transmitter 

was placed under the skin to the right of the midline on the dorsal side. The two 

electrode leads were then tunneled subcutaneously across the lateral dorsal sides; the 

distal portions were fixed in positions that approximated those of the lead II of a 

standard electrocardiogram (ECG). Body heat was maintained both during and 

immediately after the surgery. Animals were given food and water post-surgery and 

were housed individually. All animals were allowed 7-10 days to recover from the 

surgery and reestablish circadian rhythms.(Kurhanewicz, McIntosh-Kastrinsky et al. 

2014) 

Radiotelemetery Data Acquistion - Radiotelemetry methodology (Data Sciences 

International, Inc., St. Paul, MN) was used to track changes in cardiovascular function 

by monitoring heart rate (HR) and ECG waveforms immediately following telemeter 

implantation and through exposure until the end of exposure. This methodology 

provided continuous monitoring and collection of physiologic data from individual mice 

to a remote receiver. Sixty-second ECG segments were recorded every 15 minutes 

during the pre-exposure periods and continuously during exposure (baseline and hours 

1-3); HR was automatically obtained from the waveforms (Dataquest ART Software, 

version 3.01, Data Sciences International, St. Paul, MN). 

Electrocardiogram Analysis - ECGAuto software (EMKA Technologies USA, Falls 

Church, VA) was used to visualize individual ECG waveforms, analyze and quantify 

ECG segment durations and areas, as well as identify cardiac arrhythmias as previously 

described (Hazari, Haykal-Coates et al. 2009). Briefly, using ECGAuto, Pwave, QRS 

complex and T-wave were identified for individual ECG waveforms and compiled into a 
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library. Analysis of all experimental ECG waveforms was then based on established 

libraries. The following parameters were determined for each ECG waveform: PR 

interval (Pstart-R), QRS complex duration (Qstart-S), ST segment interval (S-Tend) and 

QT interval (Qstart-Tend). QT interval was corrected for HR using the correction formula 

for mice QTc = QT/(RR/100)1/2 (Mitchell, Jeron et al. 1998). Pre-exposure assessments 

were measured as the exposure time-matched four hours of data from 24 hours before 

exposure for each animal. 

Heart Rate Variability Analysis - Heart rate variability (HRV) was calculated as 

the mean of the differences between sequential RR intervals for the complete set of 

ECG waveforms using ECGAuto. For each 1-min stream of ECG waveforms, mean time 

between successive QRS complex peaks (RR interval), mean HR, and mean HRV-

analysis–generated time-domain measures were acquired. The time-domain measures 

included standard deviation of the time between normal-to-normal beats (SDNN), and 

root mean squared of successive differences (RMSSD). HRV analysis was also 

conducted in the frequency domain using a Fast-Fourier transform. The spectral power 

obtained from this transformation represents the total harmonic variability for the 

frequency range being analyzed. In this study, the spectrum was divided into low-

frequency (LF) and high-frequency (HF) regions. The ratio of these two frequency 

domains (LF/HF) provides an estimate of the relative balance between sympathetic (LF) 

and vagal (HF) activity. 

Whole-Body Plethysmography - Ventilatory function (e.g. enhanced pause, tidal 

volume and minute ventilation) was assessed in awake, unrestrained mice using a 

whole-body plethysmograph (Buxco, Wilmington, NC). Assessments were performed at 
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24 hours prior to the day of exposure and during exposure. The plethysmograph 

pressure was monitored using Biosystems XA software (Buxco Electronics Inc., 

Wilmington, NC). Using respiratory-induced fluctuations in ambient pressure, ventilatory 

parameters including tidal volume (VT), breathing frequency (f), inspiratory time (Ti), 

expiratory time (Te), minute volume (MV) and enhanced pause (Penh), which is a 

measure of ventilatory timing and can indicate airway irritation, were calculated and 

recorded on a breath-by-breath basis. 

Tissue Collection and Analysis - Mice were euthanized using euthasol 

euthanasia solution immediately after exposure and blood was collected, processed and 

analyzed. Vitamin D concentrations were previously determined (Stratford, Haykal-

Coates et al. 2018) and calicum and phosphorus were determined using (Sekisui 

Chemical, Japan). 

Klotho – Klotho protein (R&D systems, Minneapolis, MN). Mice were 

intraperitoneally treated with 1 mg/kg every other day for the 28 days just before mice 

were exposed to FA or acrolein for a total of 14 doses. Klotho mRNA was assessed 

using klotho Taqman primer for mouse (ThermoFisher, Waltham, MA) and a qPCR was 

performed (ThermoFisher, Waltham, MA). 

Acrolein Exposure – Acrolein exposures took place in whole-body 

plethysmography chambers (Model PLY3213, Buxco Electronics, Inc., Wilmington, NC). 

Acrolein gas was metered from a 1,000 ppm cylinder into a glass mixing chamber 

where the gas was mixed and diluted with dry filtered air to achieve a final concentration 

of 3 ppm of acrolein with a total flow of 6 L/min. The actual chamber concentration was 

measured once per hour using an HP5890 gas chromatograph (GMI Inc., Ramsey, MN) 
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equipped with manual injection, a flame ionization detector and a DB-VRX capillary 

column. 

Statistics - All data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC) 

software. Mixed-model ANOVAs followed by Tukey’s procedure for the post hoc 

comparisons were used to examine the statistical differences between exposure and 

diet. The statistical significance was set at P < 0.05. 

Results 

Klotho mRNA expression and serum calcium/phosphate levels – Klotho mRNA 

expression in the hearts of VDD mice was decreased compared to ND mice (Figure 3-

2A). However, serum calcium (Figure 3-2B) and phosphate (Figure 3-2C) levels were 

not different between the diets. 

 

Figure 3-2. Klotho mRNA in the heart and serum calcium and phosphate levels. 
(A.) Klotho mRNA expression in the heart was significantly decreased in VDD mice. (B.) 
Serum calcium levels were not different between the diets. (C.) Serum phosphate levels 
were not different between the diets. *significantly different from ND (p < 0.05). Values 
represent means ± SEM. N=5-6 
 

Heart rate and arrhythmias – Heart rate was measured before and during both 

filtered air and acrolein exposures. Heart rate was increased in VDD compared to ND 

mice pre-exposure and klotho blocked the response (Figure 3-3A). Acrolein exposure 
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increased HR in both ND and VDD mice, but during the first and third hours of 

exposure, VDD mice had significantly decreased HR compared to ND mice. There was 

no difference between the diets during the second hour of exposure. However, with 

klotho administration blocked the HR changes during exposure for both ND and VDD 

mice (Figure 3-3B). The number of arrhythmias observed in ND and VDD mice during 

FA exposure was similar to the first hour of acrolein exposure. Arrhythmias significantly 

increased during the third hour of acrolein exposure for both ND and VDD mice. Klotho 

further increased arrhythmias during the second and third hours of acrolein exposure in 

ND and VDD mice (Figure 3-3C). 
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Figure 3-3. Klotho blocks acrolein-induced heart rate changes but worsens 
arrhythmias.  (A.) VDD mice had higher baseline HR when compared to ND; although 
HR was higher for both diet groups with klotho, the difference between them was 
blocked by klotho. (B.) Acrolein increased HR in ND and VDD mice, however, HR was 
significantly less in the latter during the 1st and 3rd hours of exposure. The HR 
responses of both ND and VDD were completely blocked by klotho. (C.) There were no 
arrhythmias during FA or during the 1st and 2nd hours of acrolein exposure, however, 
arrhythmias increased during the 3rd hour of acrolein for both diet groups and klotho 
worsened the response. *significantly different from ND (p < 0.05). ◊significantly different 
from diet without klotho (p < 0.05). Values represent means ± SEM. N=7-9 
 

Heart rate variability – Heart rate variability was measured before and during the 

FA and acrolein exposures. Prior to the exposures, VDD mice had significantly 

decreased SDNN and RMSSD when compared to ND, klotho decreased both SDNN 

and RMSSD in both diet groups but also blocked the differences between them (Figure 

3-4A & B). The LF and HD showed a decreased trend in VDD mice (p=.055) when 

compared to ND before exposure, klotho significantly decreased these responses in 



76 
 

both diet groups (Figure 3-4C & D). 

 

Figure 3-4. Klotho decreases baseline HRV. (A.) SDNN and RMSSD were 
significantly decreased in VDD mice during pre-exposure; although treatment with 
klotho decreased both parameters in both diet groups, it also blocked the differences 
between them (A. and B.) LF and HF were not different between the diet groups pre-
exposure but klotho administration significantly decreased both in ND and VDD mice. 
(C. and D.) *significantly different from ND (p < 0.05). ◊ significantly different diet without 
klotho administration (p < 0.05). Values represent means ± SEM. N=7-9 
 

Acrolein caused SDNN, RMSSD, LF and HF to increase during the second and 

third hours of exposure in both diet groups. However, overall cardiac autonomic function 

was significantly decreased in VDD mice compared to ND during that time period 

(Figure 3-5 A-D). Treatment with klotho increased virtually all of the HRV parameters 

during the 2nd hour of acrolein exposure in both diet groups. In contrast, klotho 

decreased all HRV parameters during the third hour of acrolein exposure in ND and 

VDD mice (Figure 3-5 A-D). Overall, treatment with klotho appeared to stabilize HRV 
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and prevent the drastic change normally observed with acrolein exposure, particularly 

the increase during the 3rd hour.(Kurhanewicz, McIntosh-Kastrinsky et al. 2017)  

 

Figure 3-5. Acrolein-induced changes in HRV are modulated by klotho. Acrolein 
increased SDNN, RMSSD, LF and HF in ND and VDD mice, however, the parameters 
were significantly less for the latter during the 2nd and 3rd hours. Klotho increased these 
parameters during the 2nd hour but prevented them from increasing in the 3rd hour for 
both diets (A. – D.). *significantly different from ND (p < 0.05). ◊significantly different 
from diet without klotho (p < 0.05). Values represent means ± SEM. N=7-9 
 

Ventilatory function – Ventilatory function was assessed before and during the 

FA and acrolein exposures. During air exposure, breathing frequency was only different 

between ND and VDD mice during the first hour while klotho further increased the 

response (Figure 3-6A). ). Ventilatory timing was not different between ND and VDD 

mice during air exposure, however, klotho decreased it during the second and third 

hours for both diets (Figure 3-6B). Compared to FA, breathing frequency slightly 

decreased during acrolein exposure with ND mice having increased breathing 

frequency only during the second hour of exposure compared to VDD mice. Klotho 

significantly decreased breathing frequency with acrolein exposure especially during 

exposure compared to FA exposure (Figure 3-6C). Acrolein significantly increased 
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ventilatory timing compared to FA in both ND and VDD mice, this was significantly 

higher in VDD mice treated with klotho during the first hour. Klotho increased ventilatory 

timing in ND mice with acrolein exposure. (Figure 3-6D).  

 

Figure 3-6. VDD-induced ventilatory function changes are modified by klotho 
during both air and acrolein exposure. (A.) During air exposure, breathing frequency 
was only different between ND and VDD mice during the first hour and klotho further 
increased the response. (B.) During air exposure, ventilatory timing was the same for 
ND and VDD mice; klotho decreased the response in both diet groups. (C.) Acrolein 
caused an initial decrease in breathing frequency in all groups. Although both ND and 
VDD animals increased their breathing rate thereafter, the latter had a greater increase. 
On the other hand, klotho significantly decreased breathing frequency in both diet 
groups. (D.) All animals experienced an increase in ventilatory timing during acrolein 
exposure and klotho administration further increased ventilatory timing in ND and VDD 
mice. *significantly different from ND (p < 0.05). ◊ significantly different from diet without 
klotho (p < 0.05). N=9  
 

Discussion 

This study demonstrates that VDD modifies the cardiopulmonary response of 

mice to acrolein and although klotho appears to block these effects of VDD, it also alters 

the cardiac function and response of ND mice. Basing the approach of this study on 
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commonly-accepted pharmacological principles, it was hypothesized that treatment with 

klotho would block the acrolein response only in deficient animals. This was due to 

klotho’s low levels in VDD mice and primarily due to the fact that many of the effects of 

vitamin D are mediated by klotho.(Chen, Kuro et al. 2013, Berridge 2015, Navarro-

Garcia, Fernandez-Velasco et al. 2018) We previously showed that acrolein has potent 

effects on the autonomic nervous system as indicated by HRV (Kurhanewicz, McIntosh-

Kastrinsky et al. 2017) and we assumed that not only would vitamin D modify these 

effects but that klotho would block those effects much like a pharmacological drug. 

Vitamin D deficiency is known to cause potentially detrimental changes to the 

homeostatic mechanisms of the body, including autonomic imbalance, and it is believed 

that the effects may be due to a decrease in klotho.(Forman, Curhan et al. 2008, Weng, 

Sprague et al. 2013, Canpolat, Özcan et al. 2015, Chen, Sun et al. 2015) The data 

shown in this study demonstrates a role for klotho in cardioprotection of air pollution-

induced cardiac responses irrespective of diet. Yet, klotho’s role in vitamin D’s cardiac 

effects show that it might protect against the deleterious effects of air pollution 

irrespective of diet. 

Autonomic imbalance is characterized by inappropriate modulation of one of the 

branches of the autonomic nervous system leading to altered homeostatic 

responsiveness and in the case of the cardiovascular system, disease and ultimately 

increased mortality. This has been demonstrated with VDD and following exposures to 

air pollution.(Gold, Litonjua et al. 2000, Pope, Hansen et al. 2004, Brook, Rajagopalan 

et al. 2010, Carll, Lust et al. 2013, Canpolat, Özcan et al. 2015, Farraj, Walsh et al. 

2015) HRV changes occur in susceptible populations such as diabetics, those with 
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hypertension and arrhythmias.(Thayer, Yamamoto et al. 2010) Although VDD has not 

traditionally been identified as increasing susceptibility to cardiovascular disease recent 

data has suggested a correlation, particularly with underlying chronic conditions.(Lee, 

O'Keefe et al. 2008) In this study, VDD mice had decreased HRV, particularly SDNN 

and RMSSD compared to normal mice, even before exposure. This decreased HRV 

response (i.e. relative to normal) was similarly observed during the second and third 

hours of acrolein exposure suggesting that VDD effects autonomic regulation after 

subsequent responses to air pollution. This indicates that VDD causes a shift in 

autonomic function towards greater sympathetic modulation. As stated above, klotho 

significantly decreased SDNN and RMSSD changes in both deficient and normal mice 

suggesting its efficacy is independent of vitamin D levels in the body. 

The protective effect of klotho may be based on its role in calcium regulation, 

reduction of oxidative stress and inflammation, and/or the suppression of cardiac 

muscle pressure-load signaling. Even with normal vitamin D levels, klotho activates 

Na+, K+-ATPase to facilitate transepithelial calcium transport.(Imura, Tsuji et al. 2007, 

Razzaque 2008) Calcium regulation is critical not just in the cardiovascular system but 

throughout the body because overload is a significant risk factor for dysfunction.(Tang, 

Shen et al. 2018) and klotho helps maintain calcium homeostasis under any condition. 

Additionally, klotho inhibits reactive oxygen species production by increasing Nrf2(Zhu, 

Gao et al. 2017) and NF-kB(Guo, Zhuang et al. 2018) pro-inflammatory signaling 

pathways which promotes normal function of the heart. Interestingly, klotho also 

protects the brain against ischemic injuries, such as strokes, through similar 

mechanisms.(Zhou, Li et al. 2017) The brain is believed to be a target of klotho since it 
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is found in cerebrospinal fluid (Kuro-o, Matsumura et al. 1997) and studies suggest that 

the choroid plexus is responsible for its production due to the blood brain 

barrier.(Cararo-Lopes, Mazucanti et al. 2017) Klotho knockouts have neuronal deficits 

(e.g. diminished synapses and axon transport alterations) (Cararo-Lopes, Mazucanti et 

al. 2017) which could feasibly contribute to altered autonomic signaling. Moreover, 

biopsied cardiomyocytes from people with cardiovascular disease showed decreased 

klotho expression and increased FGF-23 signaling, oxidative stress, inflammation and 

fibrosis.(Corsetti, Pasini et al. 2016)  

Although the klotho receptor has not been identified, it is a co-receptor to FGF-23 

to (Dalton, Xie et al. 2017) which is expressed in cardiomyocytes and induced by during 

pressure overload conditions like hypertension.(Leifheit-Nestler, Kirchhoff et al. 2018) 

These data suggest that FGF-23 plays a role in pressure-overload-induced cardiac 

dysfunction and klotho counteracts the response. Although we showed that klotho 

expression in the heart of VDD mice was decreased, it is still unclear whether a similar 

decrease would be observed in normal mice undergoing cardiac stress or hypertrophy 

(e.g. isoproterenol or left anterior descending coronary artery ligation). 

In addition, klotho deficient mice are characterized as having increased vascular 

calcifications suggesting klotho is needed to maintain normal structure and function 

within the vasculature.(Kuro-o, Matsumura et al. 1997) Previous intervention studies 

have shown that when klotho protein is administered intraperitoneally in mice for even a 

short period of time there is a reduction in vascular calcifications.(Chen, Kuro et al. 

2013) A similar response was observed in mutagenic mice with a klotho deletion in 

distal/proximal tubules of the kidney.(Hu, Shi et al. 2011) Thus, the klotho effects on 
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vascular calcification are mediated by calcium and phosphate.(Mencke and Hillebrands 

2017) This data suggests that regardless of diet, klotho can protect against vasculature 

damage due to calcium imbalance. This is pertinent to the findings of this study because 

many of the cardiac effects observed in air pollution studies are secondary to vascular 

or blood pressure changes. 

Furthermore, proper levels of vitamin D and klotho regulate the RAAS pathway 

(by Wnt signaling), this is known to be cardioprotective due to its maintenance of normal 

blood pressure.(Mencke and Hillebrands 2017, Takenaka, Inoue et al. 2017, Eltablawy 

and Ashour 2018) In the RAAS pathway, renin is released by the kidneys (due to direct 

effects of sympathetic nerves, arterial pressure or mineral homeostasis), it then 

catalyzes the conversion of angiotensinogen to angiotensin I. Angiotensin I is then 

converted to angiotensin II by angiotensin converting enzyme (ACE) which is produced 

by the vascular endothelium. The formation of angiotensin II regulates mineral 

homeostasis by the kidneys, vascular constriction to increase pressure and stimulates 

release of aldosterone by the adrenal cortex. Aldosterone release increases sodium and 

fluid retention to restore blood volume or blood pressure.(Yang and Xu 2017) The result 

of these changes is an increase in blood pressure. klotho (as well as vitamin D) has 

been shown to be a negative regulator of RAAS (Li, Kong et al. 2002, Takenaka, Inoue 

et al. 2017) and directly inhibits aldosterone production by the adrenal glands, which 

protects against hypertension and eventually cardiac damage and dysfunction.(Yang 

and Xu 2017) Klotho inhibits RAAS by suppressing angiotensin II and activation of the 

Wnt/β-catenin pathway which in turn has been demonstrated to reduce cardiomyocyte 

damage.(Zhou, Mo et al. 2015, Yu, Meng et al. 2016) In addition, exogenous klotho 
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suppresses mRNA expression of chief RAAS proteins including angiotensinogen, renin 

and ACE to help with blood pressure control.(Zhou, Mo et al. 2015) Future studies 

should evaluate RAAS protein expression in ND and VDD mice and determine whether 

it plays a role in the acrolein-induced cardiac effects.  

Our previous studies have showed that, the HR of mice increases during acrolein 

exposure, probably due to a combination of stress and sensory nerve irritation.(Farraj, 

Hazari et al. 2011, Hazari, Haykal-Coates et al. 2011, Carll, Lust et al. 2013) These data 

show that VDD mice were unable to increase their HR as much as ND mice during the 

first and third hours of acrolein exposure, which is consistent with Takeshita et. al, who 

demonstrated that klotho deficient mice were unable to increase their HR due to stress 

and actually had sinoatrial node dysfunction arrhythmias.(Takeshita, Fujimori et al. 

2004) The inability of VDD mice to increase HR suggests that either the heart is unable 

to respond to normal autonomic signals or that abnormal hemodynamic properties (e.g. 

hypertension) have altered the cardiac function. In either case, klotho blocked these 

changes such that HR during acrolein was completely similar to FA. 

Air pollution also increases cardiac arrhythmias in people and rodents.(Hazari, 

Haykal-Coates et al. 2009, Hazari, Haykal-Coates et al. 2011, Carll, Lust et al. 2013) 

Acrolein increased the total number of arrhythmias particularly during the third hour of 

exposure in both diet groups. Surprisingly, treatment with klotho made it worse. 

Arrhythmias as described here are most typically sinus block or “dropped beats” and not 

premature contractions of the atria or ventricles. We have rarely seen atrial or 

ventricular premature contraction arrhythmias in mice, probably due to their high heart 

rates. Regardless, the higher incidence of arrhythmia due to klotho may be a result of 
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the decreased HR, particularly as observed during the second and third hours of 

exposure. One of the limitations of mouse electrocardiogram is the ability to clearly 

identify a “dropped beat” because the methodology only uses a single lead. On the 

other hand, the dosing scheme for klotho could have possibly activated a divergent 

mechanism resulting in increased arrhythmias given that lower doses of klotho have 

been administered and shown to be efficacious in other studies.(Chen, Kuro et al. 2013) 

Optimization of the dosing scheme using a dose-response would be appropriate for 

future studies. 

Our previous study demonstrated that the diet regimen described is adequate 

time for mice to become VDD.(Stratford, Haykal-Coates et al. 2018) Consistent with 

previous studies, serum calcium and phosphate levels are not different.(Girgis, Cha et 

al. 2015) This result may seem counter intuitive given the known physiological role of 

vitamin D to aid in calcium homeostasis. But serum calcium levels are tightly regulated 

by PTH so further studies should evaluate PTH and the tissue calcium levels, 

particularly in the heart. The heart has a high calcium demand due to its role in 

cardiomyocyte contraction. Therefore, the calcium levels in the heart may be negatively 

affected by VDD and those impairments may be mediated by decreased klotho 

expression.  

As stated previously cardioprotection by klotho has been demonstrated 

previously (Xie, Cha et al. 2012, Song, Gao et al. 2013, Song and Si 2015) but this is 

the first study to demonstrate the cardiac effects of klotho in mice exposed to air 

pollution. Acrolein was used due to its ubiquitous presence in ambient air pollution and 

its known effects on the cardiac autonomic function. Acrolein also activates TRP 
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channels which have also been linked to klotho and VDD. (McNamara, Mandel-Brehm 

et al. 2007, Eke, Igwe et al. 2014) In fact, klotho supplementation reduces the activation 

of TRP channels in response to panful stimuli.(Eke, Igwe et al. 2014) There are still 

questions about whether klotho supplementation could directly target the receptors of 

the nose and lungs or even the heart and are the effects elicited due to upstream 

changes. Klotho is a transmembrane protein that when cleaved functions as a hormone; 

(Imura, Tsuji et al. 2007, Strewler 2007) therefore, it is not unreasonable to speculate 

that the benefits of klotho supplementation could be due to systemic effects including a 

regulatory role on irritant sensor TRP channels in the airways. Additionally, klotho may 

exert its effects by binding to monosialogangliosides in lipid rafts.(Dalton, An et al. 2017) 

 Finally, we previously showed that acrolein exposure alters ventilatory function in 

both mice and rats, which is not surprising given the high concentrations we used and 

irritating nature of the chemical. Although 3ppm of acrolein is not considered even 

remotely close to ambient, such levels can be measured in structural or wildfires. Rats 

exposed to similar concentrations of acrolein had lower breathing frequency and 

increased irritation.(Snow, McGee et al. 2017) Mice exposed to acrolein have similar 

ventilatory responses to acrolein as rats and we showed here that VDD actually further 

increases the rapid (shallow) breathing due to irritation. Klotho appeared to completely 

reverse this phenomenon because mice from both diet groups had significantly 

decreased breathing rates during acrolein. Once again it is not immediately known 

whether these are direct effects in the lungs or secondary to klotho’s regulation of TRP 

channels or some other central neural process. It is worthwhile to note that these 



86 
 

ventilatory changes likely influence not only the HR but HRV as well, emphasizing once 

again a systemic shift due to VDD. 

Conclusions 

 This data presented partially indicates that klotho may protect the heart during 

acrolein exposure regardless of whether a person is VDD or not. More importantly, VDD 

modifies the cardiac response to air pollution exposure by modulating the function of the 

ANS and altering breathing. Although these results do not necessarily point to a 

definitive increase in risk, it is still reasonable to conclude that such homeostatic shifts 

can be potentially harmful with other underlying disease or in the event of encountering 

a co-stressor. Regardless, klotho represents potential therapeutic target to protect 

against air pollution-induced adverse cardiovascular events. 
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Chapter 4: Vitamin D Deficiency-Induced Cardiovascular Dysfunction is Mediated 

by TRPC6 

Introduction 

Vitamin D is one of the only micronutrient molecules that is endogenously 

produced in the body and it has a critical homeostatic role across all of the organ 

systems.(Holick 2007, Wang, Pencina et al. 2008) It is a fat-soluble vitamin synthesized 

in the skin after ultraviolent B radiation exposure and acquired through the diet from a 

variety of foods like milk, fish, cheese and vitamin D fortified foods.(Lips 2006, Holick 

2007) Vitamin D receptors are present on numerous tissues and cells throughout the 

body, including cardiomyocytes.(Holick 2007) Vitamin D exerts its effects through a 

steroid nuclear receptor that(Holick 2007, Norman and Powell 2014) upon activation 

forms a complex with the retinoid X receptor.(Fetahu, Höbaus et al. 2014, Saccone, 

Asani et al. 2015) Activated vitamin D receptors (VDR) bind to vitamin D response 

elements (VDRE) on DNA and influence expression of a wide variety of genes covering 

numerous functions (e.g. calcium homeostasis, antioxidant production, protein 

synthesis).(Sundar and Rahman 2011, Fetahu, Höbaus et al. 2014, Norman and Powell 

2014, Saccone, Asani et al. 2015) 

Cardiovascular disease is the leading cause of mortality and morbidity in the 

United States.(Mozaffarian, Benjamin et al. 2016)  Although recent data suggests there 

is a link between VDD and cardiovascular impairment (Wang, Pencina et al. 2008, 

Anderson, May et al. 2010, Masson, Agabiti et al. 2014), the association with 



95 
 

cardiovascular disease development is still not firmly established nor is it clear whether 

it contributes to adverse responses due to stress (e.g. air pollution exposure, exercise, 

psychosocial stress). Minimal sun exposure, improper nutrition as well as a myriad of 

other factors result in vitamin D deficiency (VDD) (Holick 2007, Lee, O'Keefe et al. 

2008), which has become a global public health concern affecting 8% of the pediatric 

population in the United States.(Kumar, Muntner et al. 2009) Early-life or childhood VDD 

can lead to vascular dysfunction, hypertension and other cardiac abnormalities(Carlton-

Conway, Tulloh et al. 2004, Maiya, Sullivan et al. 2008, Tare, Emmett et al. 2011), yet 

it’s precise role in electrocardiographic abnormalities and cardiac autonomic and 

mechanical changes has not been extensively characterized.  

Numerous animal and epidemiological studies demonstrate that VDD is 

associated with hypertension.(Li, Qiao et al. 2004, Martins, Wolf et al. 2007, Dobnig, 

Pilz et al. 2008, Giovannucci, Liu et al. 2008, Wang, Pencina et al. 2008, Argacha, 

Egrise et al. 2011, Nigwekar and Thadhani 2013, Weng, Sprague et al. 2013) Vitamin D 

has been shown to be a negative regulator of the renin-angiotensin-aldosterone system 

(RAAS). Previous studies have demonstrated that VDR null mice have continuous 

increased plasma renin expression, which results in increased plasma angiotensin II 

production and hypertension.(Li, Kong et al. 2002) In a study that evaluated the effect of 

VDD on blood pressure in  rats, increases in systolic blood pressure were observed with 

oxidative stress in the vasculature which leads to downregulation of genes involved in 

antioxidant defense and myocardial function.(Argacha, Egrise et al. 2011) Similarly, 

activation of RAAS has also been demonstrated in hypertensive and atherosclerotic 

mouse models fed a VDD.(Weng, Sprague et al. 2013) 
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Transient Receptor Potential Canonical 6 (TRPC6) channels, a subfamily of TRP 

channels, are non-selective cation channels that are expressed in cardiomyocytes and 

vascular smooth muscle cells, among other tissue types, and respond to neurohormonal 

and mechanical stressors.(Rowell, Koitabashi et al. 2010, Loga, Domes et al. 2013, 

Wang, Ma et al. 2016) Increased expression of TRPC6 has previously been linked to 

cardiovascular disease, hypertrophy and hypertension.(Rowell, Koitabashi et al. 2010, 

Watanabe, Iino et al. 2013, Seo, Rainer et al. 2014) For example, mice treated with 

isoproterenol to induce cardiac stress and hypertrophy, similar to a hypertensive state, 

have increased TRPC6 mRNA expression in the heart.(Xie, Cha et al. 2012) TRPC6 is 

also speculated to form a protein complex with other TRPC channels in the heart, 

thereby altering cation flux and muscular contraction.(Xie, Cha et al. 2012, Seo, Rainer 

et al. 2014) However, previous studies suggest that inhibition of TRPC6 alone is 

sufficient for cardioprotection and TRPC6 knockout mice are without obvious 

impairments in function.(Xie, Cha et al. 2012) This data suggests that the limited 

expression of TRPC6 in the heart is normal but it’s presence under conditions of cardiac 

stress is potentially detrimental.(Xie, Cha et al. 2012)  

The TRPC6 antagonist used in the study is a Grammastola spatulata toxin that 

inhibits cationic mechanosensitive ion channels such as TRPC6 and is most effective 

during pathological stress.(Wang, Ma et al. 2016) Previous in vivo studies using 

ischemia-reperfusion injury have demonstrated that TRPC6 antagonist reduced infarct 

area, improved cardiac output and decreased arrhythmias. In addition, cultured mouse 

cardiomyocytes exposed to normal and hypoxic conditions provided evidence that 
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TRPC6 antagonism improved contractility and blocked apoptotic signaling mechanisms 

in the long-term, which may improve cardiomyocyte survival.(Wang, Ma et al. 2016)  

Therefore, the purpose of this study was to determine the role of TRPC6 in VDD-

induced cardiovascular mechanical properties and responses in adult mice. We 

hypothesized that adult mice with persistent VDD would have increased blood pressure 

when compared to normal mice. Furthermore, VDD would cause baseline mechanical 

changes in the heart which are mediated by TRPC6. For the purposes of these 

experiments, dobutamine, which is typically used to mimic cardiac stress of exercise 

was used to increase heart rate and contractility, and thereby reveal underlying changes 

in cardiovascular compensatory mechanisms which may not be evident otherwise.  

Materials and Methods 

Animals - Three-week old female C57Bl/6 mice were used in this study (Jackson 

Laboratory, Raleigh, NC). Mice were housed five per cage and maintained on a 12-hr 

light/dark cycle at approximately 22˚C and 50% relative humidity in an AAA-LAC-

approved facility. Food (Prolab RMH 3000; PMI Nutrition International, St. Louis, MO) 

and water were provided ad libitum during the quarantine period (3 days) after arrival. 

All protocols were approved by the Institutional Animal Care and Use Committee of the 

U.S. Environmental Protection Agency and are in accordance with the National 

Institutes of Health Guides for the Care and Use of Laboratory Animals. The animals 

were treated humanely and with regard for alleviation of suffering. 

Diet - Three days after the quarantine period ended, mice were maintained ad 

libitum on either a vitamin D deficient (VDD) (D10073001-Research Diets Inc.) or 

normal diet (ND) (D10012G-Research Diets Inc.) for 19 weeks. The VDD diet had no 
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added vitamin D but had vitamin mix V10037. The ND has 1000 IU per 10 grams of 

vitamin D. The diets had equal levels of all other vitamins and minerals including 

calcium, which was at the concentration specified by the American Institute of Nutrition 

(Reeves, Nielsen et al. 1993). Water was provided ad libitum throughout the diet 

regimen. 

Experimental Design and Groups – At the beginning of the study, mice were 

randomly assigned into a ND (n = 20-25) or VDD (n = 20-25) group and maintained on 

those diets for the extent of the study. Of those animals, 9 of the ND and 9 of the VDD 

mice were randomly chosen and implanted with radiotelemeters at 22 weeks of age. 

The remaining mice were used for intraventricular assessments. The design is depicted 

in 4-1.

 

Figure 4-1. Experimental Design. ND and VDD mice were put on their respective diets 
for 19 weeks. A subset of mice, were implanted with radiotelemeters and allowed 7-10 
days to recover and then underwent a dobutamine stress test with 2 doses (0.5 mg/kg 
(low) and 1.5 mg/kg (high). Twenty-four hours later the mice were pre-treated with a 
TRPC6 antagonist (2 mg/kg, i.p.) for 20 minutes prior to repeating the dobutamine 
stress test. The remaining mice were used for intraventricular measurements using a 
Millar pressure probe pre-treated with TRPC6 antagonist for 20 minutes prior to the 
dobutamine stress test. Upon confirming left ventricular placement of the pressure 
probe, baseline measurements were determined. 
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Drugs – GsMTx4 (2mg/kg, Tocris, Minneapolis, MN) was dissolved in saline. Two 

doses of freshly diluted dobutamine hydrochloride (Hospira, Lake Forest, IL) were 

administered at concentrations of 0.5 mg/kg (low dose) and 1.5 mg/kg (high dose). 

Previous studies describe increased HR after acute intraperitoneal administration of 

dobutamine.(Tyrankiewicz, Skorka et al. 2013, Puhl, Weeks et al. 2016)  

Surgical Implantation of Radiotelemeters - Animals were anesthetized using 

inhaled isoflurane (Isothesia, Butler Animal Health Supply, Dublin, OH). Anesthesia was 

induced by spontaneous breathing of 2.5% isoflurane in pure oxygen at a flow rate of 1 

L/min and then maintained by 1.5% isoflurane in pure oxygen at a flow rate of 0.5 L/min; 

all animals received the analgesic buprenorphrine (0.03 mg/kg, i.p. manufacturer). 

Briefly, using aseptic technique, each animal was implanted subcutaneously with a 

radiotelemeter (ETA-F10, Data Sciences International, St Paul, MN); the transmitter 

was placed under the skin to the right of the midline on the dorsal side. The two 

electrode leads were then tunneled subcutaneously across the lateral dorsal sides; the 

distal portions were fixed in positions that approximated those of the lead II of a 

standard electrocardiogram (ECG). Body heat was maintained both during and 

immediately after the surgery. Animals were given food and water post-surgery and 

were housed individually. All animals were allowed 7-10 days to recover from the 

surgery and reestablish circadian rhythms (Kurhanewicz, McIntosh-Kastrinsky et al. 

2014). 

Radiotelemetery Data Acquistion - Radiotelemetry methodology (Data Sciences 

International, Inc., St. Paul, MN) was used to track changes in cardiovascular function 
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by monitoring heart rate (HR) and ECG waveforms immediately following telemeter 

implantation and through exposure until the end of exposure. This methodology 

provided continuous monitoring and collection of physiologic data from individual mice 

to a remote receiver. Sixty-second ECG segments were recorded every 15 minutes 

during the 24 hours pre-experiment and immediately (imm.) before dobutamine stress 

test experiment periods and continuously during the experiment; HR was automatically 

obtained from the waveforms (Dataquest ART Software, version 4.0, Data Sciences 

International, St. Paul, MN). Baseline was defined as 4 hours before the start of 

dobutamine stress test. 

Measurement of Intraventricular Pressure – Mice were anesthetized with 

urethane (1.5mg/kg intraperitoneally, Sigma) and then prepared for intraventricular 

measurements. While in a supine position and after achieving the appropriate 

anesthetic plane, the cervical region of the mouse was dissected exposing the right 

carotid artery. After isolation, the artery was catheterized with a 1.4 French transducer 

(SPR-671, ADInstruments, Colorado Springs, CO). The probe was connected via a 

Pressure Control Unit (PCU- 2000) to a receiver (Powerlab 8/30) and a computer 

acquiring data at 1000 Hz (LabChart Pro. 7.3.8) that is depicted in Figure 4-2. The 

probe was advanced while continuously monitoring the pressure trace until entry into 

the left ventricle was confirmed. Once in the left ventricle, a 4-min baseline was 

measured followed by dobutamine administration. Left ventricular pressure (LVP), 

dP/dTmax or the rate of left ventricular pressure rise and dP/dTmin or the rate of left 

ventricular pressure decrease were measured continuously during the baseline period, 
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dobutamine stress test and recovery. Adequate time was allowed for cardiac 

parameters to return to baseline between successive dobutamine doses.  

 

Figure 4-2. Representative example of intraventricular pressure measurements. 

Heart Rate Variability Analysis - Heart rate variability (HRV) was calculated as 

the mean of the differences between sequential RR intervals for the complete set of 

ECG waveforms using ECGAuto. For each 1-min stream of ECG waveforms, mean time 

between successive QRS complex peaks (RR interval), mean HR, and mean HRV-

analysis–generated time-domain measures were acquired. The time-domain measures 

included standard deviation of the time between normal-to-normal beats (SDNN), and 

root mean squared of successive differences (RMSSD). HRV analysis was also 

conducted in the frequency domain using a Fast-Fourier transform. The spectral power 

obtained from this transformation represents the total harmonic variability for the 

frequency range being analyzed. In this study, the spectrum was divided into low-

frequency (LF) and high-frequency (HF) regions. The ratio of these two frequency 
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domains (LF/HF) provides an estimate of the relative balance between sympathetic (LF) 

and vagal (HF) activity. 

Tissue Collection and Analysis – Radiotelemeter implanted mice were 

euthanized 24 hours after dobutamine stress test and blood collected, processed and 

analyzed. Vitamin D concentrations were determined in the serum spectro-

photometrically using a Vitamin D EIA Kit (Cayman Chemical, Ann Arbor, Michigan) and 

previously published (Stratford, 2018).  

Statistics - All data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC) 

software. Mixed-model ANOVAs followed by Tukey’s procedure for the post hoc 

comparisons were used to examine the statistical differences between TRPC6 

antagonist and diet and repeated measures analysis was used as needed. The 

statistical significance was set at P < 0.05. 

Results 

Heart rate – Before the start of the dobutamine stress test, the baseline HR of 

ND and VDD mice was similar. Dobutamine caused an increase in the HR of ND mice, 

albeit not in a dose-dependent manner, and the response was significantly decreased in 

VDD mice. Treatment with the TRPC6 antagonist had no effect on the baseline HR of 

either diet group, however, it blocked the reduced response to dobutamine in VDD mice 

making it similar to ND. There was no effect of the drug on the dobutamine response of 

ND mice (Figure 4-3).   
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Figure 4-3. Impaired HR rate response to dobutamine in VDD mice is mediated by 
TRPC6. Dobutamine increased HR in ND and VDD mice from baseline but this 
response was significantly decreased in VDD mice. Pre-treatment with the TRPC6 
antagonist restored the decreased response of VDD mice to dobutamine but had no 
effect in ND mice. *significantly different from ND (p < 0.05). ◊significantly different from 
baseline (p < 0.05) Values represent means ± SEM. 
 

Heart rate variability – Before the dobutamine stress test, SDNN (which indicates 

overall autonomic function) and RMSSD, which indicates parasympathetic influence on 

the heart, as well as LF and HF which represent the balance between both autonomic 

branches and other inputs into the heart, were not significantly different between ND 

and VDD mice. Dobutamine caused a decrease in SDNN and LF only at the high dose 

in ND mice, but there were no effects on RMSSD or HF. In contrast, both low and high 

dobutamine caused a significant decrease in SDNN, RMSSD, LF and HF in VDD mice. 

Pretreatment of ND mice with the TRPC6 antagonist caused SDNN and LF to become 

further decreased during dobutamine challenge and caused RMSSD and HF to 
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decrease with the high dose. On the other hand, the TRPC6 antagonist had no effect on 

SDNN in VDD mice but blocked the decreases in LF and HF (Figure 4-4).  

 

 

Figure 4-4. Vitamin D deficiency alters autonomic responses to dobutamine 
stress in mice. There were no differences in SDNN, RMSSD, LF or HF between ND 
and VDD mice at baseline. Dobutamine induced a significant decrease in only SDNN 
and LF at the high dose in ND mice, whereas, low and high dobutamine significant 
decreases in SDNN, RMSSD, LF and HF in VDD mice. Pretreatment of ND mice with 
TRPC6 antagonist induced SDNN and LF to further decrease during dobutamine stress 
test and RMSSD and HF significantly decreased with the high dose. On the other hand, 
TRPC6 antagonist had no effect on SDNN in VDD mice but blocked decrease in LF and 
HF. *significant change from ND (p < 0.05). ◊significantly different from baseline (p < 
0.05) Values represent means ± SEM. 
 

Blood pressure and baseline left ventricular function – There was no difference in 

the diastolic pressure between the diets (Figure 4-5A), however, VDD mice had 
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increased systolic pressure (Figure 4-5B) and mean arterial pressure (Figure 4-5C) 

when compared to ND. Similarly, baseline LVP was increased in VDD mice and the 

response was blocked by the TRPC6 antagonist (Figure 4-5D). The effect of the TRPC6 

antagonist on blood pressure was not measured. 

 

Figure 4-5. Vitamin D deficiency induces increased blood pressure and left 
ventricular pressure in mice. A.) There was no difference in the diastolic pressures of 
ND and VDD mice. However, systolic and mean arterial pressure were significantly 
increased in VDD when compared to controls (B. and C.) D.) Baseline LVP was 
significantly increased in VDD but blocked by TRPC6 antagonist. *significantly different 
from ND (p < 0.05). Values represent means ± SEM. 
 

Left ventricular contractility and relaxation – Figure 4-6 shows the percent 

change in dP/dTmax and dP/dTmin from baseline during dobutamine challenge in ND 

and VDD mice. Low dobutamine increased dP/dTmax or contractility in ND mice, this 

was not significantly different for VDD mice nor did the TRPC6 antagonist have an 

effect on either diet (Figure 4-6A). High dobutamine also caused contractility to increase 
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in ND mice but not as much as the low dose. In contrast, VDD mice had a significantly 

decreased response to the high dose when compared to ND and this effect was blocked 

by the TRPC6 antagonist (Figure 4-6B). Although not statistically significant, VDD mice 

had a trend of decreased dP/dTmin or ventricular relaxation during the dobutamine 

challenge which was not apparent after TRPC6 blockade (Figure 4-6 C-D). 

 

Figure 4-6. Vitamin D deficiency caused alterations in ventricular contractile 
function are mediated by TRPC6. A.) Low dobutamine caused increase in dP/dTmax 
in ND but there was no difference within VDD nor with TRPC6 pretreatment. B.) In 
contrast, VDD mice had significantly decreased responses to high dobutamine when 
compared to ND and the response was blocked by the TRPC6 antagonist. C-D.) VDD 
mice had a trend of decreased dP/dTmin during dobutamine stress test which was not 
apparent after TRPC6 blockade. *significantly different from ND (p < 0.05). Values 
represent means ± SEM.  
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Discussion 

 This study demonstrates that VDD-induced cardiovascular changes in mice are 

mediated by TRPC6. Persistent vitamin D deficiency can result in altered cardiovascular 

responses including autonomic imbalance and hypertension even in otherwise healthy 

adults.(Forman, Bischoff-Ferrari et al. 2005, Wang, Pencina et al. 2008, Canpolat, 

Özcan et al. 2015, Chen, Sun et al. 2015) Although chronic VDD was previously shown 

to increase the risk of hypertension, it was unknown whether there were any cardiac 

changes, either due to direct effects on the heart or as a result of the increased blood 

pressure. In this study, baseline cardiac electrical and mechanical function between 

normal and VDD mice was compared and a dobutamine stress test was used to 

uncover the presence of latent cardiac decrements due to VDD. Indeed, the results 

show that VDD causes increased blood pressure and altered cardiac contractile 

mechanics indicative of impairment and increased risk. Furthermore, this is the first 

study to demonstrate that VDD-induced mechanical changes in the heart are mediated 

by TRPC6, which is known to be involved in the worsening of cardiac hypertrophy.  

Dobutamine is a β1-adrenergic agonist that causes increases in HR and 

contractility that can be compared to the cardiac effects of exercise.(Hazari, Callaway et 

al. 2012, Tyrankiewicz, Skorka et al. 2013, Puhl, Weeks et al. 2016) As such, 

dobutamine was used to unmask latent cardiac effects in mice due to VDD which 

otherwise may not be evident (i.e. during rest). Such tests are used clinically to evaluate 

the cardiac response to stress because an individual is suspected of increased risk of 

adverse cardiac events or having underlying cardiovascular disease, irrespective of the 

presence of symptoms or not.(Iyngkaran, Anavekar et al. 2017) Heart rate is an intrinsic 

and dynamic characteristic of the heart and therefore the degree to which it fluctuates 



108 
 

during sudden changes can be a profound indicator of cardiac distress or dysfunction. 

In this study, HR was not significantly different between normal and VDD mice at rest, 

however, the latter had decreased HR responses to both the low and high dose of 

dobutamine (i.e. VDD mice were unable to increase their HR as much as ND mice) 

when compared to normal mice. In a study of middle-aged men, blunted heart rate 

response to exercise was associated with increase cardiovascular mortality.(Savonen, 

Lakka et al. 2006) Furthermore, other pharmacological cardiac stress tests, for instance 

with dipyridamole, have shown the same heightened risk of cardiovascular 

complications when people had a blunted heart rate response,(Mathur, Shah et al. 

2010) which in some cases may be due to under-recruitment of central neural pathways 

that regulate such responses.(Ginty, Gianaros et al. 2013) Chronotropic incompetence, 

which is the inability to raise heart rate commensurate with activity or exertion, can 

represent a serious deficit in the regulatory mechanisms that function to match heart 

rate with need for oxygen. Regardless, this condition likely occurs due to a change in 

the expression of β1-adrenergic receptors or autonomic balance.(Brubaker and Kitzman 

2011) A study of myocardial cells demonstrated that normal β-adrenergic signal 

transduction may rely on the presence of vitamin D both locally (i.e. at the level of the 

heart) as well as centrally.(Santillan, Vazquez et al. 1999) The central influence of 

vitamin D is underscored by the high density of vitamin D receptors in the region of the 

brain where neurons of the autonomic nervous system are located.(Garcion, Wion-

Barbot et al. 2002) In any case, the response observed here does not necessarily 

represent a toxicological effect in the heart, but it does signify that VDD impairs the 

heart’s ability to respond normally to this stressor. 
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 The blunted chronotropic effects of VDD were blocked by the TRPC6 antagonist 

given it restored responsive to dobutamine. Interestingly, the drug had no effect on 

resting heart rate in either normal or VDD mice. This suggests that the role of TRPC6 is 

related to neurohormonal or mechanical stress-induced cardiac changes,(Seo, Rainer 

et al. 2014) which do not necessarily occur under normal physiological circumstances 

but rather during pressure overload and oxidative stress. These latter conditions lead to 

increased influx of calcium into the myocyte and hence altered electrical-mechanical 

properties.(Koitabashi, Aiba et al. 2010) The fact that we did not see a dose-response to 

dobutamine or a more robust response, both with and without the drug, indicates that 

mouse sensitivity to this challenge is quite low.(Tyrankiewicz, Skorka et al. 2013) The 

TRPC6 antagonist used in this study (GsMTx4) prevents and raises the mechanical 

threshold for activation which appropriately explains the restoration of responsiveness 

to dobutamine.(Park, Kim et al. 2008, Xiao, Liu et al. 2017)  

The chief physiological role of TRPC6 in the heart is calcium regulation, 

(Yamaguchi, Iribe et al. 2017) which contributes to pacemaker function (Ahmad, Streiff 

et al. 2017) and stretching of myocardium to allow for ejection of blood against 

mechanical stress(Yamaguchi, Iribe et al. 2017). An increase in TRPC6 expression 

even in the sinoatrial node and right atria(Ferdous, Qureshi et al. 2016) is associated 

with cardiovascular disease,(Rowell, Koitabashi et al. 2010, Loga, Domes et al. 2013, 

Watanabe, Iino et al. 2013) myocardial infarction(Hang, Zhao et al. 2015) and is the 

preliminary event of subsequent heart failure(Yamaguchi, Iribe et al. 2017) which 

contributes to its pathological role. Due to increased TRPC6, calcium and subsequent 

activation of calcineurin is also increased.(Tomilin, Mamenko et al. 2016) Calcineurin is 



110 
 

a calcium/calmodulin-dependent serine/threonine protein phosphatase(Bandyopadhyay, 

Lee et al. 2002) and is activated as a result of mechanical stress and sustained 

increased intracellular calcium levels(Yamaguchi, Iribe et al. 2017). Calcineurin 

activates NFAT (nuclear factor of activated T-cells) which is a transcription factor that 

further increases TRPC6 mRNA expression and calcium signaling.(Tomilin, Mamenko 

et al. 2016) In fact, HEK cells overexpressing TRPC6 inhibit Na+, K+-ATPase 

(membrane protein that facilitates transepithelial calcium transport) (Razzaque 2008) to 

decrease calcium signaling as a result of TRPC6 activation and reduce TRPC6 protein 

expression.(Chauvet, Boonen et al. 2015) Increased calcium handling and TRPC6 

expression also increases calcium sensing receptor expression and consequently 

shown to be reversed by vitamin D supplementation.(Bernichtein, Pigat et al. 2017) As 

far as our model is concerned, it is unclear whether vitamin D supplementation would 

reverse the effect of increased TRPC6 mRNA expression on the electrical and 

mechanical function of the heart, whether through the pathway described above or 

otherwise. Calcium is the key mediator in VDD-induced cardiovascular dysfunction and 

increased TRPC6 expression. Future studies need to address the role of calcium 

signaling because it appears to be the key signaling ion in VDD-induced cardiovascular 

dysfunction and increased TRPC6 expression.   

Assessment of heart rate variability also revealed some differences between ND 

and VDD mice. This is not surprising given HRV is influenced not only by HR but also 

blood pressure and respiratory patterns.(Tsuji, Larson et al. 1996) Our previous studies 

have shown that HRV decreased during dobutamine stress test in the rat.(Hazari, 

Callaway et al. 2012) The current data indicate that the same is true for mice, 
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regardless of whether they are normal or VDD, albeit with variable sensitivity to 

dobutamine. SDNN and LF, both of which indicate sympathetic modulation of the heart, 

appeared to be more decreased during dobutamine challenge in VDD mice than 

normal. A similar trend was observed with RMSSD and HF, which reflect 

parasympathetic modulation. It is not surprising that the VDD-induced LF and HF (i.e. 

frequency domain parameters) changes during dobutamine were blocked by the TRPC6 

antagonist because they represent blood pressure regulation and cyclical breathing 

patterns, respectively(Shaffer and Ginsberg 2017), both of these parameters are known 

to be altered by VDD.  Similar to the HR response, blockade of TRPC6 had no effect on 

any HRV parameter at rest, which supports the contention that physiological changes 

(i.e. blood pressure and breathing rates) during a stress challenge could mediate the 

decreases in LF and HF. Another possible explanation for the efficacy of the TRPC6 

antagonist in blocking the LF and HF in VDD mice is the role TRPC6 plays in 

maintaining mechanical stress-induced vascular tone(Inoue, Jensen et al. 2009), which 

has a direct impact on blood pressure and therefore the variability in heart rate.   

Experimental and epidemiological studies have linked VDD to hypertension in 

people(Li, Kong et al. 2002, Li, Qiao et al. 2004, Scragg, Sowers et al. 2007, Judd, 

Nanes et al. 2008, Carbone, Mach et al. 2014, Zhang, Xu et al. 2017) and based on this 

data the same is true for mice. The blood pressure and assessments were performed 

under anesthesia, thus, blood pressure was lower than the normal range of a conscious 

mouse. Low vitamin D levels impact systolic blood pressure in particular because 

vitamin D increases the activity of endothelial nitric oxide synthase, which leads to the 

synthesis of nitric oxide (NO) and subsequent vasodilation.(Talmor, Golan et al. 2008) 
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Another study showed that vitamin D inhibits the release of vasoconstrictor mediators 

which tend to increase in the absence of NO.(Wong, Delansorne et al. 2010) On the 

other hand, we cannot discount the effects of vitamin D on RAAS, which numerous 

studies have demonstrated is upregulated in the absence of vitamin D.(Tamez, Kalim et 

al. 2013) Yet, with respect to TRPC6, although the antagonist appeared to block the 

increased blood pressure in VDD mice (not shown), such a response is not conclusive 

because we had to make the measurement after dobutamine challenge and withdrawal 

of the probe from the left ventricle. It is conceivable that TRPC6 plays a role in the VDD-

induced hypertension because its expression in vascular smooth muscle in humans and 

rodents is associated with higher blood pressure.(Zou, Xu et al. 2015) Additionally, it 

has been demonstrated that angiotensin II is activated in response to mechanical 

stress, and increased calcium and TRPC6 expression.(Santillan, Vazquez et al. 1999, 

Hang, Zhao et al. 2015) The relationship of VDD and hypertension likely involves the 

RAAS but further examination of the hormones involved in the pathway and in this 

paradigm is needed.  

One of the many deleterious effects of high blood pressure is the impairment of 

left ventricular function. This can lead to altered contractile mechanics and a loss of 

compensatory capacity, particularly when the body is trying to match cardiac output with 

increased demand. To our knowledge, there is no previous study describing the effects 

of VDD on cardiac mechanical function, nor is there any indication whether decrements 

in the heart are due to intrinsic changes or a consequence of higher blood pressure. 

Indeed, VDD mice had increased LVP at rest which offers some insight into how the 

condition might contribute to the development of cardiovascular disease. As mentioned 
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above, these changes may be due to altered vascular tone because the heart needs to 

consistently develop a higher pressure in order to “push” blood out into the vasculature. 

Some evidence points to the uncoupling of NOS and the resulting increase in vascular 

smooth muscle contraction, particularly in the veins, as a cause of increased 

LVP.(Knuckles, Lund et al. 2008) Regardless, elevated baseline LVP can predispose 

the heart to arrhythmia and even failure in the long-term due to hypertrophy.(Lalande 

and Johnson 2010) It also alters the degree to which the heart can increase its 

contractility during periods of stress like the conditions created by dobutamine.  

The fact that blocking TRPC6 attenuated the increased LVP in VDD mice points 

to a cardiac phenomenon in which the heart’s intrinsic contractile properties have 

changed. Xie et al. showed that stress-induced modification of pressure dynamics is 

mediated by TRPC6 and can be blocked by the putative anti-aging protein klotho, which 

consequently mediates the effects of vitamin D.(Xie, Cha et al. 2012) This might explain 

what we observed in the VDD mice because TRPC6 facilitates greater influx of calcium 

into cardiac myocytes during prolonged mechanical stress(Nishida, Watanabe et al. 

2010), which is often a sequelae of hypertension.(Lin, Chang et al. 2014) 

As a result, cardiac contractility was significantly decreased in VDD mice when 

challenged with high dobutamine and was restored by the TRPC6 antagonist, possibly 

due to the restoration of a normal LVP. In contrast, lusitropy was not significantly 

decreased in VDD mice during the challenge although there was a trend towards this 

and recovery with blockade of TRPC6. To determine whether hypertrophy played a role 

in these responses, heart weight was normalized to tibia length and determined to be 

the same for normal and VDD mice indicating that ventricular remodeling and 
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hypertrophy were not yet apparent (data not shown). However, it is unclear if VDD mice 

would eventually develop ventricular remodeling and hypertrophy following a much 

more extended diet regimen. 

Conclusions 

Increased left ventricular pressure was observed in VDD mice and blocked by 

the TRPC6 antagonist. Although diastolic pressure was not statistically significant there 

was a trend of VDD mice having elevated diastolic pressure. Therefore, taking into 

account increased left ventricular, systolic and mean arterial pressure it is certainly likely 

that VDD mice exhibit signs of essential hypertension.(Frohlich and Susic 2012) 

Hypertension is a risk factor for heart failure because it can cause pressure overload 

and when sustained can lead to ventricular remodeling and hypertrophy.(Frohlich and 

Susic 2012)  

In any case, the HR, pressure and contractility changes due to VDD are 

independently significant indicators of increased cardiac risk but when combined 

demonstrate that VDD mice have impaired mechanical cardiac function.(Achinger and 

Ayus 2005, Frohlich and Susic 2012) A wide variety of TRP sub-family members 

respond to calcium influx and are modulated in cardiovascular disease.(Rowell, 

Koitabashi et al. 2010, Watanabe, Iino et al. 2013, Yue, Xie et al. 2015) Although more 

work is still needed to determine the complete mechanism behind VDD-induced 

cardiovascular dysfunction, this study points to the role TRPC6 as a potential mediator 

and therapeutic target of VDD-induced cardiovascular mechanical dysfunction. 

Therapeutic intervention of TRPC6 in renal fibrosis (Wu, Xie et al. 2017) and pulmonary 

hypertension (Malczyk, Erb et al. 2017) is currently being evaluated; thus, inhibition of 

TRPC6 expression could also be examined with respect to cardiovascular disease. 
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Further studies will need to focus on determining the role of calcium signaling in cardiac 

and vascular cells regulated by vitamin D. Regardless, these data contribute to our 

understanding of VDD, particularly if it persists from childhood to adulthood, and the 

specific areas of public health concern and intervention (e.g. hypertension versus 

cardiac dysfunction).  
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Chapter 5: Significance, Conclusions, Future Directions and Implications 

Significance 

Ambient air pollution levels continue to be elevated in certain parts of the world 

and significantly contribute to increased hospitalizations and mortality. Fortunately, 

these levels have drastically decreased in developed countries like the U.S. in the past 

three decades. However, millions of Americans are still living in areas that meet or 

exceed federal regulatory standards for certain pollutants. Thus, air pollution is still an 

environmental public health concern despite the many improvements in technology, use 

of alternative fuels and individual awareness. In addition, susceptible populations and 

individuals with pre-existing cardiovascular conditions (e.g. elderly, hypertensive, 

metabolic-syndrome) have more recently been identified as especially sensitive to the 

adverse health effects of air pollution exposure. (Brook, Rajagopalan et al. 2010) This is 

particularly alarming because there are so many potential factors ranging from genetic 

predisposition to lifestyle to exposure to non-chemical environmental stressors, which 

can modify the development of disease and hence the body’s ability to preserve normal 

function through changing conditions. In 2016, the AHA, in conjunction with several 

federal agencies, reported that heart disease is a significant national public health and 

economic concern and that nutrition was a considerable risk factor for early death or 

disability. In fact, 678,000 deaths, regardless of the cause of mortality, in 2010 were 

attributed to poor nutrition. (Mozaffarian, Benjamin et al. 2016)   
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Adverse health effects due to air pollution have been studied for well over half a 

century and these investigations are still relevant today because extreme episodes (e.g. 

wildfires) continue to occur each year. The initial study described in this dissertation 

examined whether persistent VDD in adult mice altered the cardiac response to 

atmospheric photochemical smog, which is a relevant multipollutant mixture similar in 

composition to the ambient air pollution found in many urban centers in the United 

States. The importance of this initial study is underscored by the fact that millions of 

people across the world suffer from VDD and many of them are routinely exposed to 

smog, increasing the risk of potential adverse cardiac responses. Our previous studies 

demonstrated that a smog atmosphere comprised of high ozone (and other gases) and 

low PM was more cardiotoxic to normal mice than one that had high PM and low ozone. 

(Hazari and Stratford 2018) Therefore, the goal of my work, as presented in chapter 

two, was to determine whether VDD further modified the cardiac effects due to PM-

enriched smog such that the changes would be similar to ozone-enriched smog. 

Subsequent investigations (i.e. chapters 3) used a different approach and built on the 

findings of greater acute cardiac effects due to a predominantly gaseous smog 

atmosphere. These gases are extremely irritating to the airways and we have 

repeatedly demonstrated that they are responsible for potent cardiac effects through 

modulation of autonomic function. (Hazari, Griggs et al. 2014, Kurhanewicz, McIntosh-

Kastrinsky et al. 2014, Conklin, Haberzettl et al. 2017) Therefore, acrolein, a ubiquitous 

reactive aldehyde and gaseous pollutant, was used to elicit acute cardiac effects 

because of its known ability to activate autonomic reflex arcs. This in turn was deemed 
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to be a suitable approach to assess whether the effects of VDD on homeostatic controls 

like the autonomic nervous system would predispose mice to modified responsiveness.  

Proper function and regulation of the cardiovascular system depends on 

adequate levels of micronutrients like vitamin D. Vitamin D is required for calcium and 

phosphate homeostasis which are crucial for countless skeletal and non-skeletal bodily 

functions. Vitamin D deficiency affects approximately one billion people worldwide and 

is a global public health concern, however, the causes of VDD vary and the resulting 

deficits can range from high blood pressure to depression, rickets and even cancer. 

(Holick 2007)  Vitamin D was chosen as an initial prototype micronutrient deficiency due 

to its known cardiovascular effects and immense public health relevance. Furthermore, 

the occurrence of VDD in people living in places where air pollution is a serious concern 

(e.g. New Delhi, India) is quite high and represents an important interaction that has yet 

to be properly characterized. Vitamin D deficiency also disproportionately affects certain 

nationalities and people residing in areas with longer winters, and for many of these 

people it begins early in life and can persist into adulthood. So, the work described in 

this dissertation attempted to understand early-life physiological changes due to VDD, 

and susceptibility to chronic disease during adulthood. Although these studies focused 

on post-weaning VDD, an interesting alternative paradigm could have been an 

investigation into the effects of maternal and in-utero VDD on the development of 

adverse cardiovascular responses. 

The potential for adverse responses due to VDD are substantial given the 

vitamin’s general activity throughout the body. As far as the cardiovascular system is 

concerned, most studies suggest that VDD leads to hypertension, however, with the 
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caveat that other factors clearly play a role as well. Blood pressure is increased even in 

individuals with VDD without hypertension (Forman, Bischoff-Ferrari et al. 2005) which 

confirms that the condition on its own may not be sufficient to cause pathological high 

blood pressure. In relation, VDD also affects signaling in the brain and downstream 

autonomic imbalance, which leads to impaired regulation of cardiac function (Canpolat, 

Özcan et al. 2015), demonstrating that vitamin D is centrally neuroactive (Wadhwania 

2017). In fact, a study reported that individuals with VDD had impaired autonomic 

balance at rest and those with the lowest levels of serum 1,25-dihydroxy vitamin D had 

had “unfavorable” cardiac activity during a stress challenge. (Mann, Exner et al. 2013) It 

is not surprising that the mechanisms underlying the VDD-induced adverse 

physiological changes are quite varied because the autonomic nervous system is itself 

regulated by numerous central signals and innervates virtually every tissue type in the 

body. Almost 15 years ago the AHA recognized that vitamin D inhibits oxidative stress 

and inflammation and recommended dietary supplementation in people at risk for 

cardiovascular disease. (Kris-Etherton, Akabas et al. 2014) Therefore, the findings 

presented in this dissertation confirm the cardiac effects of VDD and begin to elucidate 

how it might be involved in altered responsiveness to air pollution exposure.  

The human body experiences numerous stressors during the course of a day 

that usually will not cause adverse responses. Persistent deficits in the nutritional state 

of the body and/or repeated insults that prevent the body from recovery can significantly 

hamper the ability to maintain homeostasis. Indeed, even with repeated insults, proper 

nutritional intake can mitigate the development of dysfunction. As such, VDD has been 

shown to play a role in aging disorders due to subtle changes in calcium signaling 
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subsequently leading to calcium deposits that contribute to the formation of reactive 

oxygen species, cognitive impairment and adverse cardiovascular impacts including 

toxicity. (Berridge 2016) On the other hand, vitamin D repletion could stimulate cardiac 

cell differentiation and improve recovery from infarct injury. (Hlaing, Garcia et al. 2014) 

Yet, when the body is both nutritionally deprived and exposed to potentially 

damaging stimuli then the risk of disease increases significantly. The work described in 

this dissertation is the first to demonstrate that early-life persistent VDD alters the 

cardiovascular response to air pollution and potentially predisposes the heart to 

dysfunction due to a mismatch in the availability of vitamin D and the requirements of a 

particular organ. Several studies have demonstrated that individual vitamin D status 

determines the response to stress and critical illness. (Lucidarme, Messai et al. 2010, 

Kestenbaum, Katz et al. 2011, Lee 2011) However, under certain circumstances it is not 

necessarily the absolute level of vitamin D in the body that determines if a stress-

induced adverse response occurs or not, but rather whether enough active vitamin D is 

made available to suffice a given tissue’s need at that moment. (Quraishi and Camargo 

2012) Furthermore, hypocalcemia is common under conditions of stress or critical 

illness and can cause a rise in PTH, which would increase conversion of inactive 

vitamin D to active vitamin D to maintain calcium homeostasis. In this setting, the rapid 

consumption of inactive vitamin D due to secondary hyper-parathyroidism would further 

exacerbate VDD. This is supported by studies that have showed that acutely stressed 

or ill patients have secondary hyperparathyroidism with hypocalcemia and VDD. 

(Lucidarme, Messai et al. 2010, Flynn, Zimmerman et al. 2012) 
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Therefore, three-week-old mice were put on a normal or vitamin D deficient diet 

for 16-19 weeks and cardiopulmonary function was evaluated after a subsequent 

stressor (e.g. air pollution exposure or dobutamine stress test). The initial study 

objective was to characterize the cardiopulmonary response of VDD after a complex, 

realistic, multipollutant exposure. A major component of the multipollutant was then 

chosen as a single-pollutant exposure to determine the cardiopulmonary response in 

the context of a potential vitamin D mediator called klotho. Lastly, the impact of early-life 

VDD on mechanical cardiac function was determined in adult mice and the role of 

TRPC6, which is a cation channel expressed in the heart, was assessed with respect to 

it. These data describe mechanisms of underlying cardiovascular dysfunction due to 

VDD that are modified by a subsequent stressor. Taken together, these results highlight 

the influence of nutritional factors in determining murine responses to air pollution. If 

present in people, these effect modifications could have significant relevance to public 

health. 

Principal Conclusions 

Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to 

Particulate Matter-Enhanced Atmospheric Smog in Adult Mice. 

The objective of this study was to determine the effect of early-life persistent 

VDD on cardiopulmonary responses to a photochemical smog composed of high PM 

and low pollutant gases like ozone. The results demonstrate that VDD modulates the 

adverse cardiovascular response of adult mice to a single air pollution exposure. 

Although body weight was similar between normal and VDD mice, VDD mice had 

decreased HR, increased HRV and decreased tidal volume when compared to controls. 

In addition, VDD appeared to blunt the normal increase in tidal volume from five to 
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fifteen weeks of age. Smog had variable effects on normal and deficient mice. Heart 

rate decreased during air exposure, this response was blunted by smog in ND mice and 

to a lesser degree in VDD (i.e. HR remained more elevated in VDD). Smog exposure 

also further potentiated the increased HRV in VDD mice and increased cardiac 

arrhythmias only in ND mice. The findings of this study show that VDD modifies the 

cardiopulmonary effects of smog exposure; thus, highlighting the possible impact of 

nutritional factors on the responsiveness of the body to environmental stressors. 

Although the effects described in this study do not necessarily represent a clinical 

disease or pathological processes, they do represent a shift in the homeostatic control 

mechanisms of the body such that there is a potential for impaired compensation and 

maintenance of equilibrium. This is important to consider because the absence of 

significant symptoms and clinical presentation does not necessarily mean the absence 

of risk.  

Klotho blocks heart rate and heart rate variability changes in early-life persistent 

vitamin D deficient mice during acrolein exposure 

Acrolein is a ubiquitous gas found in complex air pollution mixtures like smog and 

it is known to contribute to adverse cardiovascular health effects. Yet, those effects in 

the presence of underlying nutritional deficiency, as well as the mechanisms underlying 

them, are still unknown. Acrolein elicits its cardiovascular effects in part through the 

activation of airway sensory nerves and subsequent modulation of autonomic function. 

Adequate levels of essential micronutrients like vitamin D are necessary to maintain 

autonomic balance and proper regulation of cardiac function. Studies have revealed that 

vitamin D exerts some of its effects in the body through klotho, which is an anti-aging 
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transmembrane protein that is cleaved into a soluble form and is secreted into the blood 

and cerebrospinal fluid.  Consequently, klotho effects numerous cell tissues including 

the heart and is reduced in VDD. Therefore, the goal of this study was to determine the 

role of klotho in early-life VDD- induced adverse cardiac responses to acrolein in adult 

mice. Prior to exposure, HR was increased and HRV was decreased in VDD mice when 

compared to ND mice. When compared to FA exposure, HR and HRV significantly 

increased during acrolein in both ND and VDD mice. However, HR and HRV were 

significantly lower in VDD mice when compared to ND during acrolein exposure. 

Interestingly, klotho blocked the acrolein-induced HR response in both ND and VDD 

mice. Acrolein also increased arrhythmias, decreased breathing frequency and 

increased ventilatory irritation in both ND and VDD mice. Klotho administration 

unexpectedly caused the arrhythmias to increase in both diet groups and altered the 

breathing response. Therefore, VDD modifies the cardiac response of mice to acrolein 

through a mechanism involving klotho, however, contrary to what we expected, 

treatment with klotho appears to “benefit” normal mice during acrolein exposure as well.  

Although additional studies are needed to verify these findings, these data suggest 

klotho treatment could potentially lessen the effects of air pollution in people in general, 

but particularly in those with VDD. 

Cardiac mechanical dysfunction due to vitamin D deficiency is mediated by 

TRPC6 

Vitamin D modulates transient receptor potential (TRP) channel expression and 

function, and both have significant implications in cardiac physiology. However, it is still 

unknown whether VDD induces any cardiac contractile effects or if TRP channels are 
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involved. As such, it is believed that the impact of VDD on the heart occurs due to 

hypertension and pressure overload on the heart. Transient Receptor Potential C6 

(TRPC6) is a mechanosensitive ion channel found in the heart and its overexpression 

has been linked to certain cardiovascular diseases. Blockade of TRPC6 improves 

cardiac output and contractility in vivo and in vitro, respectively, following 

ischemia/reperfusion cardiac injury. Yet, the role of TRPC6 on cardiac mechanical 

responses of VDD mice is unknown. Compared to ND mice, VDD mice had higher 

blood pressure and a blunted HR response during dobutamine stress test, which was 

restored when they were treated with the TRPC6 antagonist. Increased left ventricular 

pressure and decreased contractility in VDD mice were also restored by TRPC6 

antagonist, whereas there was no change in normal mice. Heart rate variability was 

decreased in VDD mice during dobutamine stress testing, but TRPC6 antagonism had 

no effect. Thus, TRPC6 mediates VDD-induced mechanical cardiovascular dysfunction 

and altered responsiveness to an exercise-like stressor, but future studies with a 

prolonged diet regimen are needed to evaluate whether TRPC6 contributes to 

ventricular remodeling and hypertrophy in VDD. 
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Proposed Pathway 

 

Figure 5.1. Potential pathway of the cardiac effects due to VDD. 

A proposed pathway for the cardiac effects due to VDD is demonstrated in Figure 

5-1. Modifiable factors such as diet, can influence systemic responses to everyday 

stressors like exercise, air pollution exposure or even non-chemical insults like noise. 

The studies presented in this dissertation, clearly demonstrate that VDD represents a 

potential modifiable factor that under certain conditions primes the cardiovascular 

system to an adverse response. Although VDD mice have increased blood pressure, 

altered autonomic balance and cardiac mechanical changes it is only during a stressful 

challenge (e.g. exercise/dobutamine or air pollution) that these latent effects are 
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revealed. Some of these effects appear to be mediated by klotho and TRPC6, which 

depend on adequate levels of vitamin D for proper physiological function. Previous data 

on TRPC6 and klotho conclusively demonstrate that sustained increased calcium is a 

direct effect of TRPC6 and klotho actions on the heart. Although this dissertation did not 

directly examine the role of calcium, it is likely to be a key mediator in this response 

given the actions of TRPC6, klotho and vitamin D and future studies should be 

performed to further evaluate its role. Changes in the activity of nitric oxide synthase 

(NOS) and RAAS activation have also been demonstrated to affect calcium signaling, 

particularly in the vasculature, and certainly represent an area that needs further 

investigation. 

When increased calcium is sustained, adverse cardiac effects are experienced 

including autonomic imbalance, mechanical dysfunction (e.g. decrements in contractility 

and lusitropy) and hypertension. This dissertation does not explicitly examine vascular 

calcification but previous studies suggest that these effects result from increased 

calcium as well and may contribute to the overall syndrome. The data presented in this 

dissertation cannot fully explain the increase in arrhythmias due to VDD or klotho 

treatment, which may involve modulation of other channels involved in the cardiac 

action potential (e.g. Na+ channels). Finally, stress is ubiquitous and likely involves 

other regulatory pathways in the body and these could also alter the cardiac effects 

induced by VDD. 

Future Directions 

The body constantly monitors blood calcium levels to ensure adequate levels for 

the maintenance of normal physiology. Calcium dysregulation and inadequacy results in 
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aberrant processes in the body which cannot be sustained. The serum calcium and 

phosphate findings presented in this dissertation are consistent with previous studies 

(Girgis, Cha et al. 2015) but serum levels are tightly regulated and may not reflect 

deficits in intracellular calcium signaling. Future studies should evaluate PTH levels to 

get a better understanding of overall calcium homeostasis and regulation attributed to 

VDD. In persistent and severe VDD, PTH and calcium levels would also be decreased. 

Furthermore, the kidney, brain and heart are tissues with increased calcium demand 

and can be negatively affected by VDD. Understanding the differential effect of VDD 

and calcium availability in each of these tissues would help to determine calcium’s 

contribution to cardiovascular disease.  

Increased intracellular calcium levels may result from modulation of TRPC6 and 

klotho. As depicted in Figure 5-1, increased TRPC6 and decreased klotho result in 

increased calcium through activation of calcineurin/NFAT pathway and increased Na+-

K+-ATPase recruitment to the plasma membrane respectively. Determining the activity 

of the calcineurin/NFAT pathway in this model would demonstrate that increased 

TRPC6 causes increased intracellular calcium signaling. As such, demonstrating 

increased protein expression of Na+-K+-ATPase will also establish a mechanism of 

increased calcium through klotho resulting in adverse cardiac responses. Additionally, 

electrophysiology experiments using TRPC6 inhibitors (McPate, Bhalay et al. 2014) or 

even calcium channel blockers would determine the role of cation channels in VDD-

induced cardiac dysfunction. The role of calcium through TRPC6 and klotho in this 

paradigm is currently unresolved but is the latent central mediator in the cardiovascular 

responses observed. 
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Clinically, vitamin D supplementation is regularly recommended in order to 

restore VDD to normal levels likely due to the known bone effects especially in children. 

A myriad of studies examining vitamin D supplementation in relation to heart disease 

have been conducted and mostly inconclusive unfortunately. (Muscogiuri, Annweiler et 

al. 2017) For example, studies have demonstrated that vitamin D supplementation has 

no effect on inflammation in heart failure patents (Mousa, Naderpoor et al. 2017, 

Rodriguez, Mousa et al. 2018) or insulin sensitivity in obesity (Mousa, Naderpoor et al. 

2017), even with a wide variety of dosing regimens. Vitamin D supplementation had no 

effect on blood pressure (Arora, Song et al. 2015), hospital admissions after ischemic 

injury (Harvey, D'Angelo et al. 2018) and prevention of heart failure (D'Amore, Marsico 

et al. 2017) or cardiovascular disease (Scragg, Stewart et al. 2017). However, current 

clinical trials are being conducted in a more focused manner to determine the effect of 

vitamin D supplementation (with or without omega-3 fatty acids) in the prevention of 

cardiovascular disease. (Pradhan and Manson 2016)  

On the other hand, previous studies have intraperitoneally administered klotho 

and found that klotho diminished calcium accumulations in the kidneys and aorta, which 

may protect mice against disorders (i.e. vascular calcifications) associated with age. 

(Chen, Kuro et al. 2013) However, it is not currently known if and how cardiomyocytes 

uptake exogenous klotho to subsequently exert cardioprotective effects. A klotho 

receptor has not been identified but may be involved in its downstream cardioprotective 

effects through lipid rafts. (Dalton, An et al. 2017, Mencke and Hillebrands 2017) Dose 

optimization of klotho is also needed and may vary per diet regimen. 
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Increased TRPC6 mRNA expression in the heart was suggested in this work and 

it has been published previously and linked to cardiovascular disease. (Watanabe, 

Murakami et al. 2009, Xie, Cha et al. 2012, Watanabe, Iino et al. 2013, Yamaguchi, Iribe 

et al. 2017) Despite the increased TRPC6 in the heart with VDD, numerous questions 

remain, including: 1) are the increased channels functionally active, 2) is the threshold 

for their activation altered due to changes in hemodynamics and 3) how is calcium 

handling modulated and contributing to adverse cardiac responses.  

As such, vitamin D and klotho are both negative regulators of RAAS contributing 

to anti-hypertensive and cardioprotective effects. (Li, Kong et al. 2002, Takenaka, Inoue 

et al. 2017) In fact, renin production is blocked by vitamin D to regulate blood pressure. 

(Trehan, Afonso et al. 2017) Therefore, an important step in determining the impact of 

VDD on cardiovascular disease development would be to evaluate the components of 

RAAS (e.g. angiotensinogen, renin, angiotensin 1 and 2 and angiotensin converting 

enzyme) and how they contribute to dysfunction.   

Finally, the work presented here can be taken a step further would to examine a 

heart failure murine model such as ischemia-reperfusion injury, isoproterenol-stress or 

even left ascending coronary artery ligation to assess how early-life persistent VDD 

modifies the cardiovascular response to these stressors. Each of these procedures 

represent a common cardiac injury, which are also present in humans and known to 

impair overall cardiac function. Using the regimen described here, normal and VDD 

mice could undergo one of these cardiac injury procedures to determine the extent of 

the response and thereafter the response to air pollution. In all of the studies presented 

in this dissertation, the mice were healthy when exposed to the stressor and therefore, 
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further understanding of the influence of micronutrient deficiency on cardiac response to 

stress after an injury (e.g. myocardial infarct) is critical. 

Implications 

Studies have used klotho and TRPC6 as biomarkers or therapeutics and the 

work presented here provides further evidence for the utilization of klotho and TRPC6 

as potential therapeutic targets. Additional studies are needed to validate klotho as a 

potential nutritional supplement irrespective of diet and TRPC6 antagonism in 

preventing cardiovascular disease. This body of work is the first to demonstrate that 

nutritional modifiable factors should be evaluated in the context of air pollution health 

effects research. 
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