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Abstract

XIN LIU: Diffusion Approximations for Multiscale Stochastic Networks in Heavy
Traffic.

(Under the direction of Amarjit Budhiraja.)

Applications arising from computer, telecommunications, and manufacturing sys-
tems lead to many challenging problems in the simulation, stability, control, and
design of stochastic models of networks. The networks are usually too complex to be
analyzed directly and thus one seeks suitable approximate models. One class of such
approximations are diffusion models that can be rigorously justified when networks
are operating in heavy traffic, i.e., when the network capacity is roughly balanced
with network load.

We study stochastic networks with time varying arrival and service rates and rout-
ing structure. Time variations are governed, in addition to the state of the system,
by two independent finite state Markov processes X and Y. Transition times of X
are significantly smaller than the typical interarrival and processing times whereas
the reverse is true for the Markov process Y. We first establish a diffusion approx-
imation for such multiscale queueing networks in heavy traffic. The result shows
that, under appropriate heavy traffic conditions, properly normalized queue length
processes converge weakly to a Markov modulated reflected diffusion process. More
precisely, the limit process is a reflected diffusion with drift and diffusion coefficients
that are functions of the state process, the invariant distribution of X and a finite
state Markov process which is independent of the driving Brownian motion. We then
study the stability properties of such Markov modulated reflected diffusion processes

and establish positive recurrence and geometric ergodicity properties under suitable
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stability conditions. As consequences, we obtain results on the moment generating
function of the invariant probability measure, uniform in time moment estimates and
functional central limit results for such processes. We also study relationship between
invariant measures of the Markov modulated constrained diffusion processes and that
of the underlying queueing network. It is shown that, under suitable heavy traffic
and stability conditions, the invariant probability measure of the queueing process
converges to that of the corresponding Markov modulated reflected diffusion.

The last part of this dissertation focuses on ergodic control problems for discrete
time controlled Markov chains with a locally compact state space and a compact
action space under suitable stability, irreducibility and Feller continuity conditions.
We introduce a flexible family of controls, called action time sharing (ATS) policies,
associated with a given continuous stationary Markov control. It is shown that the
long term average cost for such a control policy, for a broad range of one stage cost
functions, is the same as that for the associated stationary Markov policy. Through
examples we illustrate the use of such ATS policies for parameter estimation and

adaptive control problems.
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Chapter 1

Introduction

The dissertation contains two distinct sets of problems. The first concerns stochas-
tic networks with Markov modulated parameters in heavy traffic and their diffusion
approximations while the second studies estimation and adaptive ergodic control for
discrete time Markov chains.

Stochastic networks is an active research area dealing with problems in simulation,
approximation, stability, control, and design of stochastic models of networks, with
applications in diverse areas such as computer, telecommunications, and manufactur-
ing systems. One of the most fundamental models in queueing systems is the well
known Jackson network ([31]), which considers exponential interarrival and service
times and Bernoulli type routing. However, the elegant distributional theory and
asymptotic properties of Jackson networks break down when one attempts to incor-
porate some more realistic features of specific application settings into such a model.
For example, when the distributions of the primitives are relaxed to be more general
than i.i.d. exponential, or the rates of interarrivals and services are allowed to depend
on the state of the system, such generalized Jackson networks become intractable and
thus one seeks suitable approximate models. One class of such approximations, of
particular interest in the current work, are diffusion models that can be rigorously jus-
tified when networks are operating in the heavy traffic regime, i.e., when the network

capacity is roughly balanced with network load. Attraction of such approximations



primarily lies in the fact that, analogous to the central limit theory, the limit model
is described only using a few important parameters of the underlying networks and
the complex distributional properties of the primitives are averaged out.

In this dissertation, we study a Markov modulated queueing network, where the
arrival and service rates and the routing structure are modulated by Markov processes.
We consider two independent finite state continuous time Markov processes { X (t) :
t > 0} and {Y(t) : t > 0} which can be interpreted as the random environment in
which the system is operating. The process X changes state at a much higher rate
than the typical interarrival and service times in the system, while the reverse is true
for Y. The arrival and service rates depend on the state (i.e. queue length) and two
background Markov processes X and Y. The routing mechanism is governed by X.
More precisely, the queueing network consists of K service stations each of which has
an infinite capacity buffer. We denote the " station by P;,i € K = {1,2,..., K}.
Arrivals of jobs can be from outside the system and/or from internal routing. Upon
completion of service at station P; a customer is routed to another service station or
exits the system. The routing mechanism is modulated by X whose state z, at any
given instant, determines a K x K substochastic matrix P,. Roughly speaking, the
conditional probability that a job completed at time instant ¢ at station P; is routed
to station Pj, given X (t) = x, equals the (i,7)" entry of the matrix P,. The goal of
the study is

(i) to establish suitable reduced models using techniques from diffusion approxi-

mations and heavy traffic theory;

(ii) to develop a comprehensive stability theory for the diffusion approximations of

such networks;

(iii) to study the validity of the approximation of the steady state of the queueing

network through that of the limit diffusion model.



In Chapter 2, we study diffusion approximations for Markov modulated queueing
networks of the form described above, in heavy traffic. In order to formulate a precise
heavy traffic condition we consider a sequence of queueing networks, indexed by
n € IN. Let Q™ denote the K-dimensional queue length process in the n** network.
Roughly speaking, the arrival and service rates in the n'* network are O(n). Markov

process governing the routing in the n'* network is denoted as X". We assume that

n ln
X"(t) = X(l,t) and ol 0 for some ry > 1/2,

where X is a Markov process with values in a finite state space I and a unique station-
ary distribution {p% : x € L}. This condition says that the transitions of X" occur at
a faster rate than arrivals and service completions. Denote by Y™ the slowly changing
background process modulating the arrival and service rates in the n** network. Y is
a finite state continuous time Markov process with infinitesimal generator Q™ which
converges to some matrix Q. We are interested in limit theorems for such networks
under a diffusion type scaling and appropriate heavy traffic conditions. We consider
the pair Markov process (@”, Y™), where CA)” = Q" /+/n is the normalized queue length
process. The main result (Theorem 2.3.2) shows that (Q",Y™) converges weakly to
a Markov process (Z,Y), where Y is a finite state continuous time Markov process
with infinitesimal generator QQ, and the process Z is a Markov modulated reflected

diffusion process with coefficients depending on (Z,Y), described as follows.

Z(#) =T (Z(O)—i—/.b(Z(u),Y(u))du—i—/a(Z(u),Y(u))dW(u)) (0, £>0. (1.0.1)

0 0

Here W is a K-dimensional standard Brownian motion independent of Y and T is
the Skorohod (reflection) map associated with the reflection matrix I — " piP’,

where I is the K x K identity matrix. The coefficients b and ¢ are obtained in terms



of the averaged (with respect to p*) arrival/service rates and routing matrices. Thus
one finds that, as n — oo, the effect of the Markov process X™ on the dynamics of @”
is averaged out with respect to p*. Such a result, in addition to model simplification,
allows for weaker assumptions on the routing matrices and the traffic load in the
network. For example, the assumptions permit the routing structure to oscillate
between that of a closed network and an open network. Also the network can change
between states with traffic intensity greater than one and those with intensity smaller
than one. A paper [12] based on this work has been accepted for publication in
Stochastic Processes and Their Applications.

Chapter 3 is devoted to the study of stability properties of Markov modulated
constrained diffusion processes as in (1.0.1). The state process Z is assumed to be
constrained to take values in a convex polyhedral cone G C IR¥. Denote by IH the
finite state space of Y and ¢* = {q;k : j € H} its unique stationary distribution.
We assume that the drift b can be expressed as b(z,y) = bi(z,y) + ba2(y), (2,y) €
G x H, where by : G x IH — IR¥ and by, : IH — IR¥ are measurable maps. Define
b; = > jem b2(j) and b*(2,y) = bi(z,y) + b5. Under regularity assumption on
the associated Skorohod map, we show that, when b*(z,y) takes values in the 6-
interior of a certain cone C (described in terms of the given directions of constraints
— see (3.2.5)) for some § > 0, the pair Markov process (Z,Y) is positive recurrent
and has a unique invariant probability measure. In fact, we establish a significantly
stronger result, namely the process (Z,Y") is geometrically ergodic and its invariant
distribution has a finite moment generating function in a neighborhood of zero. We
also obtain uniform time estimates for polynomial moments (of all orders) of the
process and functional central limit results for long time fluctuations of the empirical
means around their stationary averages. For the case when b; = 0, we obtain a

sharper result. Namely, if b5 is in the interior of C, then (Z,Y) is geometrically



ergodic, and if b} is outside of C, (Z,Y) is transient. We also obtain similar stability
results for a Markov modulated semimartingale reflected Brownian motion, which can
be considered as a special case of Markov modulated constrained diffusion processes
with b; = 0 and constant covariance matrix o (however, here we make much weaker
assumptions on the associated Skorohod problem). With the usual completely-S
assumption on the reflection matrix (Assumption 3.2.6), the stability condition is
formulated in terms of certain fluid trajectories (see [24]) associated with the “average
drift”, where the average is taken with respect to the stationary distribution ¢*.

In Chapter 4, we study convergence of invariant measures for the Markov mod-
ulated queueing networks in heavy traffic considered in Chapter 2. In view of the
complex structure of the original queueing network, it is important for computational
purposes that the steady state behavior of the limit diffusion model is a good approx-
imation for that of the underlying queueing system. In this chapter, we provide a
rigorous justification for such an approximation and show that under suitable heavy
traffic and stability conditions, the invariant probability measure for the Markov
modulated queueing network converges to that of the limit diffusion process. For
simplicity and since in the heavy traffic the effect of the fast Markov process on the
network is averaged out with respect to its stationary distribution, we consider in
this chapter an open queueing network with constant routing matrix and arrival and
service rates that only depend on the state and the slowly changing Markov process
(i.e., the network parameters do not depend on X™). In the n'® network, @” and
Y™ are the normalized queue length process and the modulating Markov process,
respectively. Recall that in Chapter 2 we show that (Q",Y™) converges to (Z,Y)
weakly, and in Chapter 3 that under suitable stability condition, (Z,Y") has a unique
invariant probability measure. The main result in Chapter 4 (Theorem 4.1.1) shows

that, under conditions, (@”, Y"™) admits a stationary distribution which converges to



that of (Z,Y) as n — oc.

Finally, Chapter 5 considers a topic in estimation and adaptive ergodic control
for Markov chains. Markov Decision processes have been used extensively to model
systems that involve both stochastic behavior and control. A common measure of
performance in such systems is the long-time average (or ergodic) criterion. Given all
relevant parameters, a typical goal is to find a simple (e.g. feedback or deterministic
stationary) policy that achieves the optimal value. However, in many practical setting,
the information on the underlying parameters of the system is incomplete. The goal
of adaptive control is to obtain an optimal policy, when some relevant information
concerning the behavior of the system is missing. The classical approach is to design
an algorithm which collects information, while at the same time choosing controls,
in a way that the chosen controls “approach optimality over time.” The paper [2]
shows for a finite state controlled Markov processes, that given any Markov policy
q, one can construct another policy (the so-called action time sharing (ATS) policy
corresponding to ¢) for which the control decisions can deviate from those dictated
by the Markov policy ¢, and still produce the same long term average cost, as long
as certain conditional frequencies converge to the correct values. This flexibility
is useful in many situations that require estimation and control under incomplete
information. For example, ATS policies can be used to develop variance reduction
schemes for ergodic control problems and allow for sampling (namely using controls
without regards to the ensuing cost), e.g., for the purpose of collecting auxiliary
information. In the current work we are concerned with a setting where the state and
action spaces are not (necessarily) countable. Our main objective is to formulate an
appropriate definition for an ATS policy which, similar to the countable case, not only
leads to long term costs that are identical to those for the corresponding given Markov

control, but also allows for flexible implementation well suited for various estimation



and adaptive control goals. Using a suitable sequence of “converging partitions” of
the state space, we show how ATS policies can be constructed for a given setting
and used for estimation of unknown parameters and adaptive control problems while
preserving desirable optimality properties. A paper [13] based on this work (joining
with A. Budhiraja and A. Schwartz) has been submitted for publication to SIAM

Journal on Control and Optimization.



Chapter 2

Diffusion approximations for multiscale
stochastic networks in heavy traffic

2.1 Introduction

We study stochastic networks in which arrival and service rates, as well as the
routing structure change over time. More precisely, we consider a setting in which
two independent finite state continuous time Markov processes {X(t) : t > 0} and
{Y'(t) : t > 0} govern the variations in the parameters of the system. These processes
can be interpreted as a random environment in which the system is operating. The
process X changes states at a much higher rate than the typical inter-arrival and
service times in the system, while the reverse is true for Y. The variations in the
routing mechanism of the network are governed by X, whereas the arrival and service
rates at various stations depend on the state process (i.e., queue length process)
and both X and Y. It is shown that, under appropriate heavy traffic conditions,
the properly normalized sequence of queue length processes converges weakly to a
reflected Markov modulated diffusion process. More precisely, the limit process is a
reflected diffusion with drift and diffusion coefficients that are functions of the state
process, the invariant distribution of X and a finite state Markov process which is

independent of the driving Brownian motion.



Queueing systems studied here can be regarded as generalizations of Jackson net-
works. The first general result in the study of diffusion approximations for such
networks is due to Reiman[40], who considered the case where the arrival and service
processes, associated with K processing stations in the network, are mutually inde-
pendent renewal processes, and the routing mechanism is governed by a fixed K x K
substochastic routing matrix P. The main result in [40] shows that, under a suitable
heavy traffic condition, the properly scaled queue length processes converge weakly to
a certain reflected Brownian motion. Yamada[50] (also see Mandelbaum and Pats[36]
and Kushner[35]) extended Reiman’s work to queueing networks with state depen-
dent rates, i.e., a setting where the rates of arrival and service processes depend on
the current state of network. In this case the scaling limits are reflected diffusion pro-
cesses with state dependent drift and diffusion coefficients. In a related work, Chen
and Whitt[16] establish heavy-traffic limit theorems for a class of queueing networks
with time inhomogeneous service times. Mandelbaum and Pats, in [37], considered
open queueing networks with state dependent routing structure. The diffusion limit
involves a Skorohod problem with reflection directions that vary as functions of the
state process. Queues in random environment have been considered by Choudhury,
Mandelbaum et al[17] (see also Chapter 6 of [39]). The authors considered a G/G/s
queue with s > 1, where the traffic intensity changes according to the state of the
environment. The environment process is taken to be a finite state right continuous
process (with finitely many jumps over any finite interval), whose states change at
rates slower than typical arrival and service rates.

In the model considered in this chapter, the queueing network consists of K service
stations each of which has an infinite capacity buffer. We denote the i** station by
Pie IK ={1,2,...,K}. Arrivals of jobs can be from outside the system and/or

from internal routing. Upon completion of service at station F;, a customer is routed



to another service station or exits the system. The arrival and service rates depend on
the state of the system and two Markov processes X and Y. Transition times of X are
fast, while Y changes states slowly relative to the typical arrival and service rates.
The routing mechanism is modulated by X whose state z, at any given instant,
determines a K x K substochastic matrix P,. Roughly speaking, the conditional
probability that a job completed at time instant ¢ at station P; is routed to station
P;, given X (t) = z, equals the (4, j) entry of the matrix PP,.

In order to give a precise mathematical formulation, we introduce a scaling pa-
rameter n > 1 and consider a sequence of queueing networks of the type described
above, indexed by n. Let " denote the K-dimensional queue length process in the
n'" network. Roughly speaking, the arrival and service rates in the n'* network are
O(n). Markov process, governing the routing and arrival and service rates in the n”
network, is denoted as X". Transition times of this process are of the order O(1/1,,),
where [,n~(14) — oo for some 79 > 1/2 (see (2.3.2)). In addition, we are given
another Markov process YY" with transition times of the order O(1) that modulates
the arrival and service rates in the n'® network. More precisely, Y™ is a finite state
continuous time Markov process whose infinitesimal generator Q" converges to some
matrix Q. The goal of this work is to establish limit theorems for networks with such a
hierarchy of time scales under appropriate heavy traffic conditions. The heavy traffic
conditions used in this work (see Assumption 2.3.1) differ from the usual formulation.
Here we do not require (near) traffic balance for each fixed state of the system and
background processes. In fact the traffic intensity can change values according to the
state of the Markov process X™ and take values both smaller and larger than 1. In
this sense, we impose a weaker form of traffic balance condition which is formulated

in terms of the equilibrium measure of X™. In a similar spirit, our assumptions allow

for the routing structure to oscillate between that of different (e.g., open and closed)
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networks (see the example below Assumption 2.3.1). However, we require the net-
work to be open “on the average”, where “the average” is taken with respect to the
equilibrium measure of X".

The main result, Theorem 2.3.2, considers the pair Markov process (@”,Y”),
where @” is the appropriately normalized queue length process, and shows that
(Q",Y™) converges weakly to a Markov process (Z,Y). In fact we will see that
the process Y is Markov by itself with a finite state space and generator @, and
Z can be characterized as the solution of a reflected stochastic differential equation
with coefficients depend on both Z and Y and a driving Brownian motion that is
independent of Y. One of the main steps in the proof of Theorem 2.3.2 is Theorem
2.3.3 which proves the tightness of (@”, Y™) and characterizes weak limit points in
terms of a suitable martingale problem (cf. [34]). Proof of Theorem 2.3.3 is given in
Section 2.4. The key ingredient in this proof is Lemma 2.4.1 which makes precise the
intuitive property that, as n — oo, the dynamics of @” depend on X" only through
its equilibrium distribution.

Multiscale models considered in this work are natural for many network settings
(cf. [17]). Consider, for example, a large computer network where one is interested
in modeling the traffic behavior of files with moderate size over a long period of time
within a small subset of nodes in the system. Denote by &€ the collection of all nodes
in the network and let & C £ be the subset of nodes of interest. One is interested in
building a model for traffic between nodes in & without taking a very precise account
of the interactions between such nodes and those in £ \ &. Alternatively, & may be
the entire network (i.e. & = & ) but one would like to consider a reduced model
which does not take an explicit and detailed account of small file sized traffic. One
approach to such problems is to model the effect of nodes in £\ &, (or alternatively of

small sized files) at a node e € & by a rapidly varying channel capacity (at e), with
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variations governed by an extraneous Markov process. If a large number of nodes in
&\ & are connected to e (or the small file sized traffic exhibits temporal variations
at rate significantly higher than that of the large file traffic), one expects that the
rate at which the channel capacity changes is much higher than the transmission
rate of a typical file through e. Rapid changes in channel capacity lead to variations
in processing rates and available routing options for moderate sized files processed
at nodes in &. In addition to such rapid changes, one may have changes in input
flows, and processor failure and repair patterns that occur infrequently but need to
be accounted for in a treatment of such systems over long periods of time. One is
thus led to a traffic model for nodes in & in terms of a Jackson type network where
the arrival/service rates and routing probability matrices vary randomly over time
according to finite state Markov processes of the form considered in this work.

The chapter is organized as follows. In Section 2.2, we describe the precise net-
work model. Section 2.3 introduces the diffusion scaling considered in this work and
formulates the main assumptions that are used. In this section we also present the
main result (Theorem 2.3.2) and its proof. The key ingredients for the proof are
given through Theorem 2.3.3, Theorem 2.3.1 and Proposition 2.3.2. The first result

(Theorem 2.3.3) is proved in Section 2.4 while the last two are relegated to Appendix.

2.2 Network model

Let (2, F, P,{F:}+>0) be a filtered probability space satisfying the usual condi-
tions, that is Fy contains all the null sets of F and F; = Ny F, for all ¢ € [0, 00).
Define two continuous time finite state {F;} Markov processes {X(t) : t € [0,00)}
and {Y(t):t € [0,00)} on (Q, F,P). Let I = {1,2,..., L} and IH = {1,2,..., H}

be the state spaces of X and Y, respectively. We will make the following assumption

on X.
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Assumption 2.2.1. The Markov process X has a unique stationary distribution p* =
(pi,...,p}). Furthermore, denoting the transition probability P[X(t) = | X(0) = 7l

by pji(t), we have, for allt >0,

sup |pji(t) — pi| < ae™®
ijel
for some constants ay,as € (0,00).
The queueing network consists of K service stations, denoted as Py, ..., Pk, each

of which has an infinite capacity buffer. All customers at a station are homogeneous
in terms of service requirement and routing decisions (in a sense to be made precise).
Arrivals of jobs can be from outside the system and/or from internal routing. Upon
completion of service at station P;, a customer is routed to another service station or

exits the system. Let Q;(¢) denote the number of customers at station P; at time t.

Then
K

Qi(t) = Qi(0) + Ai(t) — Di(t) + Y _Dji(t), i€ K, (2.2.1)

j=1
where A;(t) is the number of arrivals from outside at station P; by time ¢, D;(t) is
the number of service completions by time ¢ at station P;, and Dj;(t) is the number
of jobs that are routed to P; immediately upon completion at station P; by time
t. We write A = (Ay,...,Ax), D = (Dy,...,Dg)’, and Q = (@Q1,...,Qk)". The
processes A; and D;,i € IK, are counting processes defined on (2, F, P,{F;}) such
that A;, D;, Dj; : ¢,7 € IK have no common jumps. It is also assumed that, for certain

measurable functions \;, &; : Rf x IH x IL — IR, , the processes

A() - / Q). ¥ (u), X (u))du,
0. (2.2.2)

13



are locally square integrable {F;} martingales. Finally, we assume that
A, D,Y have no common jumps.

The functions A\; and &;,7 € IK, represent the arrival and service rates. We denote
by Ky (IKy C IK) the set of indices of stations which receive arrivals from outside.
In particular, A;(z,y,z) = 0 for all (z,y,z) € RE x IH x IL whenever i € IK\IK.
Reflecting the fact that no service occurs when the buffer is empty, &;(z,y,x) = 0 if
zi=0. Let A\=(\,...,A\g) and & = (&4, ..., ak)". Additional conditions on A and
& will be introduced in Assumption 2.3.1.

The counting process Dj; is given in terms of an auxiliary Markov process X and
certain marked point process constructed from D;. To formulate this precisely, we
introduce a collection of routing matrices. For each x € IL, we are given a nonnegative
K x K substochastic matrix P, with zero diagonal entries. We denote the (i, j)*"
entry of PP, by pj; and 1 — Z]K:1 Pi; bY pi k1. Roughly speaking, upon completion
of service at time ¢ at station P;, given X (t) = x, a customer is routed to station P;
with probability pj;, j € IK, or exits the system with probability py ;.

In order to make this precise, we proceed as follows. For ¢ € IK, let E; be the
space of K dimensional vectors. Each vector in E; has 0 or 1 components and 0 at
the " coordinate, and there is at most one 1 component. Let G; = EZ® . Define

125 S ,P(GZ) as

L K
— T i _ 1 L
xr= 1=

Note that for v € G; and = € IL, v* is a K dimensional vector in E; with p;{v :
vi = 1} = pi;, where vf is the 4" component of v*. Consequently, the measure ;

captures the probabilities of routing from station i to other stations in the network
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for all possible states of the background Markov process X. More precisely, upon
completion of service at station P; at time ¢, the routing of the job is governed by
a (G; valued random variable v with probability distribution p; such that a customer
is routed to station P; if ’uj?(t) = 1. Otherwise, if ’uj?(t) = 0 for every j € IK, the
customer exits the network. Abusing notation, we write v* as v(x), and denote the
J™ component of v(z) by v;(z).

We next introduce a collection of marked point processes. For i € IK, Let {Z! }1>1
be an i.i.d. sequence of G; valued random variables with law u;. For i € IK, let

{T}}1>1 be the transition times of D;. Consider the marked point process (See Chap-
ter VIII of [7].)

Si(t,B) = liziemliricy, B€B(G), t>0. (2.2.4)

k>1

We assume that S;(t, B) is {F;} adapted and has a {F;} intensity kernel \;(¢, B)
given as

Ait, B) = &(Q(t=), Y (t=), X (t=))i(B). (2.2.5)

Namely, for any bounded predictable map H(w,t,v) from  x [0,00) X G; to IR,

is a {F:} martingale.

Note that Z}, can be written as (Zi(1),. .., Z}(L)), where each Z(z) is a K dimen-
sional vector in E;. More importantly, Z} () defines the routing vector, corresponding
to state x in IL, for the k" job completion at station i. More precisely, if this job
completion occurs at time instant ¢, then it is routed to state j if and only if the j*

entry of Zi(X(t)) is 1.
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For ¢, € IK, the process Dj; can now be written as follows.

Djit) = /[0 o X )8 ), (2.2.6)

Note that, for j € IK, G; is finite, so the integral on G is a finite sum. Combining
(4.1.1) and (2.2.6), the evolution of the system state is described by the following

equation.

Qi(t) = Qi(0) + A;(t) — Dy(t) + Z/M B v(X (=) S, (du, dv), i € . (2.2.7)

2.3 Diffusion scaling and main results

In this section, we present a diffusion limit theorem for a suitably scaled version
of the queue length process. Consider a sequence of queueing networks of the type
described in Section 2.2, indexed by n € IN. We assume that all networks have
the same topology and the same set of routing matrices {P, : x € IL}. All the
notation introduced in Section 2.2 is carried forward except that we append an n in
an appropriate place to denote quantities which depend on n. In particular, on the
filtered probability space (Q*, F", P" {F/'}i>0), for i € IK, A and D} are counting
processes with rates A7 and &' respectively, and )7 denotes the queue length process
at station P in the n'* network. The marked point process S? is defined by (2.2.4)
with {7}} denoting the transition times of D!. Denote by X™ the {F;'} Markov
process governing the routing in the n'® network. Let [, € (0,00) be such that for
some 19 > 1/2,

Lyn~ 0t 5 00, asn — oo. (2.3.1)

We assume that, for ¢t > 0,

X"(t)

X(Iyt), (2.3.2)
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where X has the same probability law as the process X introduced in Section 2.2 (in
particular, X has the state space IL and satisfies Assumption 2.2.1). This condition,
along with Assumption 2.3.1(ii) and (v) introduced below, makes mathematically
precise the property that the transition times of X" are significantly smaller than
the typical inter-arrival and service times. The slow process Y in the n'* network is
assumed to be a {F}'}-Markov process with state space JH and infinitesimal generator

Q™, such that Q™ converges to some matrix Q as n — co. We assume
A" D" Y™ have no common jumps. (2.3.3)

With this notation, (2.2.7) holds with (Q, A, D, S, X) replaced by (Q", A*, D", S, X™).
Given a IR¥ valued stochastic process Z" = (Z7,..., Z%), we will denote by Z" the

scaled process which is defined as

Sy - [ Z1() Zi(t)
Z(t)_(\/ﬁ,..., \/ﬁ>,t20. (2.3.4)

The main result of this work shows that the scaled queue length process @” converges
weakly to a certain constrained diffusion process. We now introduce the coefficients
in this limit diffusion model. We assume that, for each i € IK, & restricted to
RE\{z € RY : z; = 0} x H x IL can be extended to a function af defined on

RE x H x IL. We assume o has the following form

al(z,y,x) = w(z,y)0;(x), (z,y,2) € RY x H x IL, (2.3.5)

where @! : RY x H — IRy and 6; : I — R, \{0} are measurable maps. We write

0= (6,...,0k) and @" = (w},...,w)). Then for (z,y,2) € RY x H x L,

a"(z,y,2) = (af(2,y,7), ..., af(2,y, )" = diag(0(z))@" (2, y)-
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Additional conditions on w™ and 6 are specified in Assumption 2.3.1. Recall p*
introduced in Assumption 2.2.1. Let § = 2% p*0(x). In order to define the drift

and diffusion coefficients of the limit model, define, for (z,y,z) € RE x H x L,

L
N'(z,y) = > i (2,9, 1),
r=1

a"(z,y) =Y _pia"(zy,z) = diag(0)=" (2, y), (2.3.6)

P= (Z p;;mdiagw(x))) [diag(0)] .

To formulate the heavy traffic conditions, define

b (2, y) = % (A(zw) ~ - Fla"(=0) . (2.0) € B x . (2.3.7)

The following is our main assumption. Parts (viii) and (ix) restate, for convenience,
the assumptions made in (2.3.1), (2.3.2) and (5.4.2).
Assumption 2.3.1.

(i) The spectral radius of P is strictly less than 1.

(ii) Foralln € IN and (z,y,x) € RY x H X IL, there exists some k; € (0,00) such
that

’)‘n(z7yax)| < nkKi1, |an(2’y’x)| < nky.

(i) There exists a constant ky € (0,00) such that

sup  [b"(z,y)| < Ko.
(zy)eRExH

(iv) There exists b € Co(IRE x H) such that b™(v/nz,y) — b(z,y) uniformly for (z,y)
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(vii)

(viii)

in compact subsets of RY x H asn — oo.

There exist ]Rff valued bounded Lipschitz functions X\, & defined on Bf x IH,
such that
)\n(\/ﬁz’y) 3\ @TL(\/ﬁZ?y) N
n

- —> A(’27 y)’

. a(z,y)

uniformly for (z,y) in compact subsets of Rf X IH as n — o0o. Furthermore,

A= [I-Pla.
There exist A\, a € (0,00) such that, for any n € IN and (z,y) € RY x H,

inf )\1 (\/ﬁ'z?y) > /\7 1nf ai (ﬁzay)

i€lKg n — ieK n

For each i € IK\IKy, there exists j € IKy such that @;r: > 0 for some m € IN.

The Markov process
X"(t) = X(Iyt), t >0,

where X s a Markov process with the same probability law as X, andl, satisfies

that, for some ro > 1/2, L,n= (0t 5 50 as n — oo.

Fori € IK, the service rate of defined on IRE x IH x IL has the following form

Oé?(z7y7 I) = w?(’za y)ez(x)7

where @' : RYX x H — Ry and 0; : I — R, \{0} are measurable maps.

Part (i) of the assumption says that the network under a suitable averaging is

open. This averaging is given in terms of the stationary distribution p* of the fast

Markov process X". In particular, the assumption allows for the routing structure

to oscillate between that of different (e.g., open and closed) networks. For example,
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consider the setting of a single server queue where IL = {1,2}, P; = 1,P, = 1/2,

f(x) =1, and A, v are constants (see Figure 1). Clearly whenever both p} and p} are

Prob. 1 Prob. 1/2
—_— —_—
o4 a
State 1 State 2

Figure 2.1: The network is closed when X™ is in state 1 and it is open when X" is in
state 2.

strictly positive, Assumption 2.3.1(i) is satisfied. Parts (ii)-(v) of the assumptions,

culminating in the requirement that
A= [I-Pla, (2.3.8)

represent the heavy traffic condition for this model. Once more note that the traf-
fic balance condition is formulated in terms of the parameters averaged w.r.t. the
stationary distribution of X™. For example, consider the setting of a single server
queue where K = {1,2},IL = {1,2},P = 0,0(x) = 1,p} = p3 = 1/2, \(2,y,2) =
M(z,y,2) = 2nz, and of (2,9, z) = aj(z,y, ) = 3n, for all (z,y,2) € RY x H x L.
Then although, for any given state of the background process X", the system is ei-
ther underloaded or overloaded, the traffic balance condition in the sense of (2.3.8) is
satisfied. Parts (vi) and (vii) are nondegeneracy conditions which ensure that the dif-
fusion coefficients in the reflected diffusion limit model are uniformly nondegenerate

(cf. (2.3.10)). We note that condition (vii) can be assumed without loss of generality
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since if it fails for some i € IK\ IKy, one can consider a reduced model that is obtained
by omitting station P;.

Assumptions introduced in this section will be made throughout this work and
will not be noted explicitly in the statement of the results.

Define, for (z,y) € RX x H, a K x [K + K(K + 1)] dimensional matrix ¥(z, y)
as

%(z,9) = (A(z,9), Bi(2,9), ..., Bx(2,9)) (2.3.9)

where A and B;,i € IK, are K x K and K x (K + 1) matrices given as follows. For

(2,9) € R x H,

Alz,y) = diag (, S e y)) |

Bi(z,y) = (B)(z,9), Bl (z.y),..., Bl (z,9)) ,

where BY(2,y) = —1;1/ P, p1@i(2,9), Bi(z,y) = 0and for j € IK and j # i, B! (z,y) =
1z-j\/@ijo7i(z, y). Here 1; is a K dimensional vector with 1 at the i coordinate and
0 elsewhere, 0 is K dimensional zero vector, and 1;; is a K dimensional vector with
—1 at the i*, 1 at the j* coordinates, and 0 elsewhere. It is easy to see that due
to Assumption (vi) and (vii), X(z,y)%(z,y)’ is uniformly nondegenerate (see [9, Ap-
pendix]). More precisely, there exists a k € (0,00) such that, for all ¢ € IRX and
(z,y) € RY x H,

¢'(X(z,9)5(2,9))¢ = (¢ (2.3.10)

One can then find a Lipschitz function o : RX x H — R**¥ (cf. [45, Theorem 5.2.2])
such that 3(z,y)%(z,y) = o(z,y)o(z,y). Note that the uniform boundedness of A
and a (Assumption 2.3.1(v)) implies that o(z,y) is uniformly bounded on R x .
We next recall the definition of a Skorohod map associated with the reflection matrix

I — @/]. For i € IK, define F; = {z € RYX : z; = 0}. We will call F; the i"* face of
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S = RX.

Definition 2.3.1. Let ¢ € D([0,00), IRX) be such that ¢(0) € S. Then (¢,n) €
D([0,00), RE x IRY) solves the Skorohod problem (SP) for ¢ with respect to S and
[I — P if and only if the following hold.

(i) o(t) = o(t) + [T = Pn(t) € S for all t > 0.

(ii)) Write n = (m1,...,nx) and ¢ = (¢1,...,¢K)". We have, for i € IK, (a) n;(0) =

0, (b) m; is nondecreasing, and (c) 7; can increase only when ¢ is on Fj, that is

/ Lig,(s)>0ydni(s) = 0.
0

Let Dg(]0,00), R®) = {¢ € D([0,00), R") : ¢(0) € S}. Let D C Dg([0, 00), R™)
be the domain on which there is a unique solution to the SP. On D, we define
the Skorohod map (SM) T' associated with the data (S,[I — P]) as T'(¢) = ¢, if
(0, []I—Fl]_lw—z/})) is the unique solution of the SP posed by 1. The following result,
which is a consequence of Assumption 2.3.1(i) (See [29, 50]), gives the regularity of

the Skorohod map defined by (S, [I — P]).

Proposition 2.3.1. The Skorohod map is well defined on all of Ds(]0,00), IRY), that
is, D = Dg([0,00), RY), and the SM is Lipschitz continuous in the following sense:

There exists a constant C' € (1,00) such that, for all 1,1y € Ds([0,00), IRE),

sup [I'(¢) () — I'(¥2)(2)] < Cstl;(}? |1 (£) — a(t)] -

>0
As an immediate corollary of the above proposition we have the following.

Corollary 2.3.1. Forn € IN, let y" € D, ¢" = ("), and g = [I—P]"1(¢" — ym).
Suppose {Y" : n > 1} is C-tight in D([0,00), RE). Then (™, ¢",n™) is C-tight in
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D([0,00), R® x RY x IRY). Moreover, if (¢, ¢,n) is any weak limit of (Y™, ¢", ™),
then (¢,m) is the unique solution of the SP for 1, that is ¢ = I'(¢) and n = [I —
Pl (¢~ ).

We now introduce the diffusion limit model.

Definition 2.3.2. Fix v € P(RE x H). Let (Q,F, P,{F;}:>0) be a filtered prob-
ability space on which are given RCLL adapted processes Z,Y, W which satisfy the

following conditions.
(i) W is a K dimensional standard {F;} Brownian motion.

(ii) Y is a IH valued {F;} Markov process with infinitesimal generator Q.

(iii) P o (Z(0),Y(0))"! = v.

(iv) The following stochastic integral equation holds. For all t > 0, a.s.,

Z(t)=T (Z(O) + /'b(Z(u),Y(u))du + /‘a (Z(u),Y(u))dW(u)) (t). (2.3.11)

0 0

We denote (Q, F, P, {F;}, Z,Y, W) satisfying the above properties by ¥, and refer to

it as a system with initial condition v.

The following result, proved in the appendix, is a consequence of Lipschitz prop-

erties of o, b and the Skorohod map T'.

Theorem 2.3.1. For eachv € P(REXH), there is a system U, with initial condition

v. If gl = (Qy, Fi, P, {]:t(i)}, ZW YO W@ i =12, are two such systems, then
P, o (Z(l)7 Y(l)7 W(l))—l =Pyo (Z(Q)7 Y(2)7 W(Q))—l'
The following is the main result of this chapter.
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Theorem 2.3.2. Let ¥, = (O, F, P, {F}, Z,Y,W) be a system with initial condition
v. Suppose that the sequence of measures P™ o (@"(O), Y™ (0))~! converges weakly to
v. Then

P'o(QY") ' = Po(Z,Y)",

as n — oo, in P(D([0,00), RE x H)).

To illustrate Theorem 2.3.2, we consider two special cases. In Corollary 2.3.2, the
arrival and service rates A\, o™ are assumed to only depend on the fast Markov process
X", while in Corollary 2.3.3, \", o™ are modulated by both X™ and Y™ (but not the
queue length process). In both corollaries, the routing mechanism is modulated by

X" as before. We also provide two explicit examples following the corollaries.

Corollary 2.3.2. Suppose the arrival and service rates only depend on the Markov
process X", i.e., X" and " are measurable maps from IL to IR, satisfying (2.2.2). If
P"o @"(O) converges to a probability measure v € P(ZRf), then P™ o @" = Po Z,
where Z is a reflected diffusion defined on a filtered probability space (0, F, P, {Fi}0)
such that

Z(t) =T (Z(0) + b- +aW () (¢), t > 0. (2.3.12)

Here Z(0) is a random variable with law v and W is a K dimensional {F;} Brownian
motion. The drift and diffusion coefficients b, o are constant which can be defined in
the same way as b(z,y),0(z,y) with \"(z,y,x) and o™ (z,y,z) replaced by \*(x) and

a"(x), respectively.

Suppose now the arrival and service rates A and o™ are modulated by both X™
and Y (but not the queue length process). Then A" and o™ are measurable maps
from IH x IL to IR, satisfying (2.2.2). For (y,x) € IH x IL, we can define b(z), o(z)

in the same way as b(z,y),o(z,y) with \*(z,y,z) and o"(z,y, z) replaced by \"(y, )
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and o"(y, =), respectively. For t > 0, let

Z(t) =T (2(0) + / B(Y (u)) du + / .J(Y(u))dW(u)) (). (2.3.13)

0 0

Define system ¥, = (Q, F,P,{F},Z,Y,W) as in Definition 2.3.2 with Z replaced

by Z.

Corollary 2.3.3. Suppose A" and «o" only depend on the Markov processes X™
and Y™. Let U, = (Q, F,P, {]:}},Z,Y, W) be a system with initial condition D.
If P o (Q™(0),Y™(0)) converges to a probability measure i € P(RE x H), then
P"o(@”,Y”) = Po(Z,Y) as n — .

Example 2.3.1. Let

4 4 11
K =2 \"(z) = (=nz,=nz)’,a" = (4n,4n)', L = {1,2},p* = (5, =),
3 3 22
0 1 0 2
IEDl = ’ 7IP)2 = ’
3 0 30
Therefore,
_ o i
N = (2n,2n),a" = a" = (4n,4n) | P = >,
20
and
_ 8§ —4
A=(2,2),a=(4,4) 0" = (0,0), 5% =
—4 8
2v2 0
Then we can find b = (0,0) and o = . Hence the limit process is
VAN

Z(t) = T (Z2(0) + oW () (t), t>0.
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Example 2.3.2. Let K, IL,p*, P, Py as in the above example, and make \"*(x,y) =

(2y/nz + 2ny, 2y/nx + 2ny)', o™ (y) = (4ny, 4ny)’. Therefore,
N'(y) = (V/n +2ny, vn +2ny), a"(y) = o™ = (4ny, 4ny)’, b" = (1,1),

_ . »
)‘(?J) = (Qy,Qy)’7@(y) — (4y’4y)/’ YV ( Yy Y

22y 0
Then we can find b = (1,1),0(y) = . The limit process can be
—V2y by

described as follows.

2() =T (Z(O) +b- +/' U(Y(u))W(u)) (t), ¢ > 0.

0

In order to prove Theorem 2.3.2, we will characterize the processes (Z,Y) in
terms of a suitable martingale problem. We begin by introducing the generator of
this Markov process. For f; € C3(IRY), (z,y) € RY x H and i € K, define

LAi(2y) = b= ) VH(2) + %Tr (A= 9)Vh(2)) s Difi(2) = Vi (2),

where d; is the i*" column of []I—F/], A(z,y) = o(z,y)0(z,y)', Vf denotes the gradient
vector of f, and V?f is the Hessian matrix of f. For f, € BM(IH), let Qf, € BM (IH)
be defined as
H
Qhaly) =D Qi fo(4), € H.
j=1

Define f = f1 ® fy as f(z,y) = f1(2)f2(y), (z,y) € RE x H. We denote the class of
all such functions by G. For f € G, let Lf, D;f € BM(IRY x IH) be defined as
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Lf(z,y) = Lfi(z,y) fo(y) + f1(2)Qf2(y),
Dif(z7y) = Difl(z)f2(y>'

Proof of Theorem 2.3.2 is based on the following characterization result in terms of a

(2.3.14)

martingale problem, the proof of which is given in the appendix.

Proposition 2.3.2. Fiz v € P(RY x H). Let (Z,1,Y) be a stochastic process with
sample paths in C([0,00) : RY x IRE) x D([0,00), H) on some filtered probability

space (Q, F, P, {F;}), such that Po (Z(0),Y(0))™' = v, and for all f € G,

: K .
f(Z('),Y('))—f(Z(O),Y(U))—/O Lf (Z(ULY(U))CZU—;/O Dif (Z(u), Y (u)) dri(u)
(2.3.15)
is a {F;} martingale. Then there is a K dimensional (standard) Brownian motion W
defined on this filtered space such that (Q, F, P,{F},Z,Y,W) is a V¥, system with

itial condition v.

The multiplication form of the operators £, D; (see (2.3.14)) is a consequence of the
assumption about no common jumps made in (2.3.3). This, in particular, is consistent
with the fact that the processes Y and W in Proposition 2.3.2 are independent (see
Lemma 2.5.1).

The following theorem, proved in Section 2.4, will be the key step in the proof of
Theorem 2.3.2.

Theorem 2.3.3. Assume that the sequence of measures P™ o (CTQ\"(O),Y"(O))*1 con-
verges weakly to some v € P(IRY x IH). Then we have the following two results.
(i) (@”,Y",n”) is tight, where, fori € IK,

I o
= %/ a; (VnQ" (), Y™ (u) g )y du-

0
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Furthermore, (@”,n") is C-tight.

(ii) Let (Z,Y,n) be any weak limit given on a probability space (Q, F, P). Then, for

f €G, expression (2.3.15) is a {F;} martingale with

Fi= o (Z(u),Y(w).nw) u<t).

Combining the above theorem with Proposition 2.3.2 and Theorem 2.3.1, the proof
of Theorem 2.3.2 is completed as follows.

Proof of Theorem 2.3.2. Since P"o (Q"(0), Y™(0)) converges to v, by Theorem
2.3.3, (@”, Y™ n™) is tight. Let (Z,Y,n) be any (weak) limit point of (@”, Y™ n") on a
probability space (Q, F, P). Define F; = o (Z(u),Y (u),n(u) : u < t). From Theorem
2.3.3 (ii) and Proposition 2.3.2, there is a K dimensional (standard) Brownian motion
W on this probability space such that (Q, F, P,{F}, Z,Y,W) is a ¥, system with
initial distribution v. Finally, weak uniqueness from Theorem 2.3.1 yields that P" o

(CAQ",Y”)*1 = Po(Z,Y)asn —oco. N

2.4 Proof of Theorem 2.3.3

This section is devoted to the proof of Theorem 2.3.3. In Proposition 2.4.1, we
prove Theorem 2.3.3 (i), i.e., the property that (@",Y",n”) is tight. Proposition
2.4.2 gives the proof of Theorem 2.3.3 (ii), which characterizes the limit points of
(CAQ”, Y™ n") in terms of a martingale problem. We begin with a lemma which is a

key ingredient in the proofs of both propositions.

Lemma 2.4.1. Let {g,, }new be a sequence of measurable functions from IRE x IH x IL

to IR such that, for some ko € (0,00), |gn(z,y,2)| < Ko for alln € IN and (z,y,x) €
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R x H x IL. For (z,y) € RE x H, define g.(z,y) = S =_, pton(z,y,2). Let

h" () = \/5/0 [gn(@”(U),Y"(U),X"(U)) = Q" (w),Y" (w))| du, ¢ > 0.

Then h™ converges to 0 in probability, in C([0,00), R), as n — co.
Proof: For (z,y,z) € RE x H x IL, let ¢5(2,y,2) = gn(2,y,2) — gu(z,y). Recall

the parameter ry > 1/2, introduced in (2.3.1). Fix r € (1/2,79). Then

he(t) = Vi / g5 (0" (), Y™ (), X" () )du

tn1+'r

1 o Anf U nf U nf U
- nstr /0 gn<Q <nT+1> Y (n“rl) X (n”“)) du.

Let, for ¢t € (0, 00),

n . 1 Ltnl+rJ cf An u n u n u
0= - [ (@) () )

tn1+7"

n . 1 cf An u n u n u
0= [ @) () ()

Then h™ = hY} + h}. Since g,,n € IN, are uniformly bounded, E [supy<,<y |h5(t)|]

converges to 0 for each N € IN. Consider now hf. Define for ¢ € (0, 00),

ltn' 7] g
n . 1 of Anfk—2 of k=2 nf U
hll(t) = n%Jrr Z /k 1gn<Q (TLT'H ) Y (W) , X (nr+1>) du,
k=1 -

Ltnt ] R
hiy(t) = n% ; /k kl [gﬁ(@”(nfﬂ) ,Y”(nf‘ﬂ) X”(nl:l» (2.4.1)
(@ (57) () o) o

For time ¢t < 0, we set @”(t) = @”(O) and Y"(t) = Y™(0). Thus h} = b}y + hY,. Let’s
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first consider hY,. Note that the expectation of

gz(@\”( n:il ) ’ Y"( n:il ) ’ X”< n:’il >) B g;(@n<ljf_+12> ’ Y"(i;f) ’ Xn<n:11)>‘

can be bounded by the sum of

sup
k—1<u<k

4ko P ( sup

k—1<u<k

~ U ~(k—2
(=) -0 (nm )‘ > 0) (2.4.2)

and

o/ U o k—2
4ko P (Y (nr+1> #Y (nr+1 ) for some u € [k — 1,k]> . (2.4.3)

By Assumption 2.3.1(ii), (|\"(z,y,2)| + |a"(z,y,x)|)/n < 2k;. Hence we have, for
some ¢; € (0,00), the expression in (2.4.2) is bounded, for all k£ and n, by ¢ /n".
Furthermore, since Q" — @Q, there exists some c; € (0,00), for all k£ and n, the
expression in (2.4.3) is bounded by ¢y /n"1. Combining these estimates, we have for

a suitable ¢z € (0, 00),

B | sup (0] <

0<t<N

| @) () X ()
(@(5) (5) () |

IN

Since r > 1/2, the last expression converges to 0.

We now consider hiy. For f € BM(IL), t € (0,00) and = € IL, let Pif(z) =
E[f(X(£)]|X(0) = 2]. Fix (z,y) € RE x H. For ¢ € BU(RE x H x L) we will
write E[o(z,y, X (t))| X (0) = x] as P.o(z,y, x). For each n, let §,(z,y, ) be a solution

of the Poisson equation for g5 (2, y, -) corresponding to the Markov semigroup { P! };>o,
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i.e., for z € IL and ¢ € (0, 00),

t
Plin(z,y,x) — Gu(z,y, 1) — / Prgs(z,y,x)du =0 (2.4.4)
0

(cf. [27]). We can assume without loss that M = sup, . |Gn(2,y,7)] < co. By

(2.4.4), recalling the relation between X™ and X in (2.3.2), we have that

(2. X0(0) = (20 X70) - | ey XMw)de (245)

is a {F/"} martingale. Define, for n € IN, (z,y) € RY x H,9 € (0,00), and k € IN,

M;?(Z’yv k) = gn(27y’Xn(”[9k)) - gn(zvyv)zn(ﬁaf - 1))) - / g;(27y7)2n(u))du

B(k—1) : )
2.4.6

First, from (2.4.1),

[tnltT| i
! Al k2 k—2 ~ ( lau
hn t — 4 n Yn Xn n d
1) nstr ; /k_lgn(Q (nr+1 ) ) (n“rl ) 5 <nr+1)) u
\_tn1+TJ Ink
W Wit (k=2 Ak—2\ .
o, kz:; m(rk%ll)g” Q L Y ] , X"(u) | du.

Now, combining with (2.4.6), we can rewrite hY,(t) as

[tn' 7]

n \/ﬁ ~ An k_2 n k?—2 n k
hll(t)zf Z gn| @ L Y L X L
k=1
A k=2 of k=2 o k=1
_gn(Q (nr+1)’y (nr+1)’X (nrJrl))
~ (k—2 k—2
. ln/nrJrl n n
e (@ () v (et ) ) |
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For ky, ke € IN, let

R C )
_ Pl ( Qn( nr+12) ’Yn<k;;12) | Xn(k;;11>) |
sint =@ () () ()
bl i)
S2(ky, k) = Mf;”"“(@"( Wf) Y?”(%) ,kg) .

With this notation,

[tnttT]
(ST (k, k) — ST (k,k — 1) + Sy(k, k) — S5 (k, k — 1) — Sy(k, k)] .
k=1

) = Y

Let Sp(k) = Sy (k. k) — Sy (k, k—1)— S5 (k, k). Then 1" Sp(k) is a {FTy 1

martingale. By the boundedness of g,, we can find a constant ¢, such that
skup ISy (k)| < 4.

By Doob’s inequality,

2 2

il [Nt [Nnt] 2
sup Z s | <ap |2 Suk)| =4 E {\/—ﬁsg(k;)}
o<t<N | ln In 1 k=1 I

2+4r
< 4e,NZ

l2

n

Since 1,,/n"™ ™ — 0o and 7 < 1y, the last expression converges to 0. Recalling that X

32



and X have the same law, we have by Assumption 2.2.1,
N A k=2 o k—2 o k—1 o k—2
s o] s 0 (42) (52 () ()
-2 o k—2
Sl () )

o S O R

< LMale’”l"/"T

Similarly, we have E |Sy(k,k — 1)| < LMaye=*/""" Therefore

Ltn'*7] 3

—+r
E | sup |2 3" (S5 k) — Sp(k,k—1)) SLMaan; galn/n

[
0<t<N n 1 n

3+

. _ _ — ™
Since I, /n"tt = 00", /0ot 1, /070t — oo and g > 7, B asln /07T < fpemaan0”

for large n. Thus the last expression converges to 0 as n — oco. Combining the above
estimates, we now have E [supgc,<y |17, (t)|] converges to 0. The result follows on
noting that F [supgc,<y [h"(t)]] = 0asn —ooforall Ne IN. W

Let g;‘(du, dv) = S7(du, dv) —&?(\/ﬁ@”(u), Y™(u), X™(u))dup(dv) and define IRK

valued processes ﬁn’ F " B™ R™ as follows. For ¢ € IK and t > 0,

A1) = == (410~ [ WA@Y, X )
Frio) =~ (220 - [ @@ . Y. X))

+%Z/M G_UZ-(X"(U—»S;(du,dU),
B = [ B/ ). Y w)du,
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and

R = —= [ (MR (), Y ). X7(0) = N (VAQ" (1, V")) du

o /0( FWAQ" (). Y™ () g0y — 6 (VAQ" (1), Y7 (), X" () ) du
1 & . ) )

*%;/M G, vi( X" (w))a5 (vVnQ" (), Y™ (u), X" (u))dups(dv)
1o [ i

- 2 B0, Y 0 g

J

Noting that a?(z,y,2) = a'(z,y,2)1lg,s0 for all (z,y,2) € RE x H x IL, and

recalling the definition of n™ from Theorem 2.3.3, we have that

~ ~ ~

Q"(t) = Qm(0) + A™(t) + F™(t) + B"(t) + R*(t) + [L — P'|n"(t). (24.7)
Proposition 2.4.1. Suppose {(Q"(0),Y"(0)) : n > 1} is tight in R x H. Then
(@, Y™, ) is tight in D(]0,00), RK x IRK x H). Furthermore, (Q",n") is C-tight.

Proof: First, we show (Q", ") is C-tight in D([0, 00), IR x IRE). Let
Z" = Q"(0) + A" + F" + B" + R".

Since fot 1{@n(u)>0}d77[‘(u) =0 for any ¢ > 0 and ¢ € IK, we have, from Definition 2.3.1
that @” = I'(Z™). Thus by Corollary 2.3.1, it suffices to show that Z™ is C-tight in
D([0,00), R¥). For i € IK and (z,y,z) € RY x H x L, let

9 (2,9, 7) = (A"(\/_z y ) = ar(vnz,y,r) + (/G_vi(flf)u(dv)> @?(ﬂz,y,z)>

j=1

Recalling Assumption 2.3.1 (ii) and applying Lemma 2.4.1 to ¢*(z,y,z), we get R}

converge to 0 in probability in C([0,00), IRX). Here we have also made use of the
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relation:

S (/G

Using Assumption 2.3.1 (iii),

Uz('x)u(dv)&?(\/ﬁzvyax)) :Fﬂa?(\/ﬁzvy)l{zj>0}7 Z?] € K.

J

|B"(t) — B"(s)| < kolt — 8|, VO<s<t< 0.

In particular, B™ is C-tight. We now show that A" and F™ are C-tight. Recall from
(2.2.2) that A" and F™ are {F"} martingales. Since {A?, D} :i,j € IK} have no

)

common jumps and v;(z) = 0 for any v € G;, we have

A0 =5 [ NWAQ .Y (), X" ()i

(Eryy = / &2 (V/Q"™ (w), Y™ (), X" () du

n Jo
K
1

Y [ )P/ 0. Y ), X))
T

Noting that |v(z)| < 1, and recalling Assumption 2.3.1 (ii), we see that ZZI;(A\?)
and Zfil(ﬁﬂ are C-tight, which yields the tightness of A" and F"(cf. [32, Theorem
VI.4.13]). The C-tightness of A" and F™ is now immediate on noting that |A%Al”(t)| <
K/\/n and |AF™(t)| < K/v/n, a.s., for any ¢ > 0.

Since Q" converges to Q, it follows that (cf. [26, Theorem 4.2.5]), if along some
subsequence {ny}x>1, Y™ (0) converges in distribution to some probability measure v
on IH then Y™ converges in distribution, in D([0,00) : IH) to an IH valued Markov
process with initial distribution v and infinitesimal generator Q. In particular, Y is
tight. The result follows. W

Denote by {e;}/, the canonical basis in R*. For v € G; and x € IL, let v(x) =
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vy, . vi). Let f = f1® fo € G. From (2.2.7), and recalling that A?, D? i, j € IK,
1 K i J

have no common jumps, we have, for all ¢ > 0, a.s. P"

M@ 1) = A(Q"(0 +Z / @ (=) + ) — Fi(Q"(u—)) A7 (du)

+Z [(Q"(u=) + v(X™(u=)) = ¢;) = [1(Q"(u=)) S5 (du, dv).

[0,t]x Gy

Therefore, (cf. (2.2.2)), recalling that A}, D?,4,j € IK, and Y" have no common

jumps,

@), Y"(t)) — f(Q"(0),Y™(0))
- Z/O AT (Q"(w), Y™ (), X™(w)) f2 (Y™ (u)[[1(Q" (u) + ¢;) — [1(Q" (w))]du

J=1
K

3 .Y X ) )
< AQ () + o) —e,) — (@ () eup()

/ [1(Q"(w)Q"fo (Y (u))du
is a {F]'} martingale, where, for y € IH, Q"f2(y) = 25{:1 Qy;f2(j). Equivalently, in
terms of the normalized vector Q"(t) = Q"(t)/v/n, we have
FQ" (1), Y"(t) — £(Q"(0),Y™(0))
-3 [ @ 0.0, X0 @) [ (@00 + )~ @ )]
- Z / o VAR )Y ), X ) )

< (Q"(U) # D=0 - 5@ )| duta)

- / (0" () QY™ () du
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is a {F;'} martingale.
For z € RY, j ElKandvEGj,deﬁnef”J ]L—)]Rasfm( )= fi <z+ (\)f >

and let

L (z,y) Z (Vnz, ) f(y) (fi(z + ¢;/vn) = f1(2))

Z F(Vz ) fa(y / (pr () - 9jf1(2)> pldv)
+ f1(2)Q"f2(y),
Lf(zy,2) = Y (N (Vnzy,2) = N (Vaz, ) f209) (fi(z + e;/vVn) = fi(2))

J=1

+Zw?(ﬁz,y)f2(y)/< x) f1d (x pr ) (& ) pu(dv)

+ 2 (V2 y) faly) (0 = 0,(2) fi(2),

DI (2, ) = Vi ha(y)6; /(9f1 pr fied )mdv),
Dif(z,y,7) = Vnfaly [ / (pr )@ —9i(aﬁ)f§,;f(w)> p(dv)
+(00)~0) £i(2) |
The following is an immediate consequence of the above definitions.

Lemma 2.4.2. Let f € G. Then

F@"(0),Y"(0) = (@ (0),Y"(0)
- [ er@ ey [ @ v

- [ B @y, X )du = Y [ BEQ ).y ), X))t )

0
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is a {F}'} martingale.

Recall that A(z,y) = o(z,y)o(z,y) for (z,y) € RE x H and d; is the i"* column

of [I — ]P’/]. Define a K x K matrix A"(z,y) in the same way as A(z,y) but with

(Mz,9), a(z,y)) replaced by (\"(v/nz,y),a"(v/nz,y)).

Lemma 2.4.3. For each f € G there are measurable maps &' : ]folH —R,i=1,2,

such that
£f(z) = == (Vi) = = Fla" (Vi) VAG) (o)
5 Tr (N 9) V() o) + AEDH() + € ()

Dif(z,y) = diVAi(2) 2(y) + & (2, p),

and

sup (&7 (2, )| + &3 (2, m)]) — O as n — o0o.
(z,y)G]folH

Proof: Fix f; € C3(RY), v € IL, j € IK, and v € G;. Applying Taylor series

expansion for f; at z, we have

f (z + %) = fi(z) + e;v\f%(z) L4y ;11(2’)% o),
O e R O

_I_ 5771(.]7 Z? U) aj)’
(2.4.8)
where, for some ¢; € (0, 00),
. . C1
sip  sup (D) + [l 20, 2)]) < o (2.4.9)
jelK vEG n

(z,x)GIRf x IL

First we note that [, v(x)u(dv) equals Py(j)" which is the transport of P, (j), where
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P,(j) is the j row of P,. Then, for f € G and (z,y) € RX x H,

!/

L'f(z,y)= %fz(?ﬁ(ﬂx/ﬁz, y) —Z @ (Vnz,y) Y pibi(e) (e;— IP’AJ’)’)) Vii(2)

+%ﬁ@ﬂ(<szva%@>+mawxw+ﬁmw

Dif(z,y)= (szz P ( 9(%)) Vi(z) + & (2,9),

where sup(, e piecn (€7 (2, 9)| + [€5(2,9)]) < c2//n for some ¢z € (0,00). In the

above display, for z € IL, A"(x) is a K x K matrix defined in the same way as A, with

(A(2,9), (2 y), P) replaced by (M(y/nz,y), 3" (v/iiz, y), Podiag(8(x)) [diag(6)] ). Fi-

nally, it is easily seen that

> 0i0i(@) (e;— Pa(4)) = O;d;,

The lemma follows. W

The following elementary lemma (cf. [18, Lemma 2.4]) will be needed in our proof.

Lemma 2.4.4. Suppose £" converges to & in D([0,00), IRY) and ¢™ converges to o in
C([0,00), R) as n — oo. Further, suppose that ¢" is nonnegative and nondecreasing

for each n. Then as n — oo,

§"(u)de™ (u) — §(u)dp(u).

[0,t) [0,¢)

uniformly for all t in any compact subset of [0, c0).

Proposition 2.4.2. Assume that the sequence of measures P"o (Q”( ), Y™(0))~! con-
verges weakly to some v € P(IRE x H). Let (Z,Y,n) be any weak limit of (Q”, Y™ nm)
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given on a probability space (2, F, P). Then, for all f € G,

F(Z(),Y ()~ (2(0), Y (0))— / L (Z(w), Y () du— Z / Dif (Z(u), Y (1)) ds(u)

is a {Fi} martingale with Fy = o (Z(u),Y (u),n(u) : u < t).

Proof: For (z,y,2) € RY x H x IL, let

1z 9,2) = o) {%( M)

eij1<Z)—|—

Mw

J=1 2\/ﬁ
AL /Gj(<v<x>—ej>'w1<z>+(“(l’)‘ej)/z J;ézxv(x)—ej)) M(d@],
and
[z Z[A"\/_zy, )¥a(j, 2) + &5 (Vnz, y, ) /inj,zvx) (dv)]-

In view of Assumption 2.3.1 (i) and (2.4.9), fi* and fI are uniformly bounded se-
quences of measurable functions from R x H x IL to IR. Applying Lemma 2.4.1

with g, replaced by f{* and fJ', we have, for ¢t =1, 2,

v / @ (), Y (w), X" (W) = [H(Q"(w), Y ()| du— 0, (24.10)

in probability, in C([0,00), R). Using (2.4.8), the definitions of £” and D%,i € IK,

and (2.4.10), we have that

/O E@ ), Y ), X @)du+ S [ DR w), Y™ ), X7 )i ()

i=1 70

=V [ [5Q ) X0 ) = F(Q ) Y] du =0,
~ (2.4.11)
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in probability in C([0, c0), IR).
Furthermore, by Lemma 2.4.3 and Assumption 2.3.1 (iv) and (v), £"f — Lf and

DIf — Dyf uniformly on compact subsets of RY x IH, and therefore

in D([0,00), IR?) x C([0, 00), IR). Applying Lemma 2.4.4 with " = n7(-) and £" =
D7 F(Q"(),Y"()), we have

| D@ .y i) = [ Dz, Y@)in
0 0
weakly in C'([0,00), IR). In fact, we have the joint convergence,

(@, [ 7@y, [ D@ .y )i =12, k)

:><Z,Y,/ du/DJ ) dni(u),i=1,2,..., K).

Fix 0 <s <t Forke N;i=1,....k let t; € {fu>0: P(Y(u) = Y(u—)) =
1} N0, 5], and h; € Co(RY x H x RY). Then for all f € G,
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where the first equality is a consequence of the above joint convergence and (2.4.11),

and the second equality is a consequence of Lemma 2.4.2. The result follows. W

2.5 Appendix

In this section we prove Theorem 2.3.1 and Proposition 2.3.2. Although the proofs
are simple modifications of classical arguments, we provide details for the sake of

completeness. We begin with the following useful lemma.

Lemma 2.5.1. Let (0, F, P,{F;}) be a filtered probability space on which are given
RCLL adapted processes (W,Y) with some initial distribution 7, such that W is a
K -dimensional standard {F;} Brownian motion, and Y is a IH valued {F;} Markov

process with infinitesimal generator Q. Then W and Y are independent.

Proof: For g; € C3(IR") and go € BM(IH), define A;g; € BM(IRY) and Asgs €
BM (H) as

1
Aigi(w) = STr(Vigi(2)), Asgaly) = Qgaly ZQyJQZ , re RN, ye H.

Let, for t > 0,

Then M; and M, are {F;} martingales. In particular, M; is a continuous martingale,

while M, is a martingale with sample paths of finite variation on each compact set
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of [0,00). Therefore, [My, Ms] = 0. By Ito’s formula,

gl(W(t))m(Y(t))—gl(W(O))gz(Y(O))—/O g1 (W (w)) Aaga(Y (u))du

- / ga(Y () Avg (W (u))du

is a {F;} martingale. Applying Theorem 10.1 of [34] we now have that W and Y are
independent. W

Proof of Theorem 2.3.1: Fix v € P(RY x H) and let (2, F, P,{F}) be a
filtered probability space on which are given RCLL adapted processes (W,Y") such
that W is a K-dimensional standard {JF;} Brownian motion and Y is a IH valued {F;}
Markov process with infinitesimal generator Q. Also let Z(0) be a Fy measurable RYX
valued random variable such that (Z(0), Y (0)) has probability law v. Using Lipschitz
property of b and o, we have (cf. Theorem 2.1 of Chapter III in [30]) that there is a
unique continuous {F;} adapted process Z satisfying the integral equation (2.3.11).
Clearly ¥, = (Q, F, P, {F:}, Z,Y,W) is a system with initial condition v which proves
the first part of the theorem. To prove weak uniqueness, we follow an argument similar
to [51] (also see [33, Section 5.3.D.]). Consider two systems o) = (i, Fi, Py, {]—"ti)},
ZO Y@ w@) i = 1,2, with initial condition v. Set RV (t) = (Z@(0),Y(t)) and
V() = Z0(t) — 29(0),t > 0. Consider (R®, W® V@) which induces a measure
pi on (O, B(0)), where

© = IR x D([0,00), H) x C([0,00), R") x C([0, 00), R"),
according to

pi(A) = B[(RO, WD vy e A, AcB(©),i=1,2 (2.5.1)
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Denote by 6 = (r,w, v) a generic element of ©. The marginal of p; on the w-coordinate
is the standard Wiener measure which we denoted by ~;. Also, using the Markov
property of Y and Y®, we see that R™Y and R® have the same probability law.
Define v, € P(IRE x D([0,00), IH)) as 7 = Py o (RW)™! = Pyo (R®)~L. Then the
marginal of p; on the r-coordinate of 6 is 5. From Lemma 2.5.1 W is independent
of RV i = 1,2, and so (R, W®) and (R®, W®)) have the same probability law.
Denoting this common law by 7, we have that v = 7,®;. Disintegrate the probability
measure p; as p;(drdwdv) = v;(r,w,dv)y(drdw). Here v; is the regular conditional

probability kernel given as
vi : IRY x D([0,00), H) x C([0,00), R¥) x B(C([0,00), R¥)) = [0,1],  (2.5.2)

which satisfies:

(i) for each r € RE x D([0,00), H) and w € C([0,00), R¥), v;(r,w,-) is a prob-
ability measure on (C([0, 00), IRY), B(C(]0, ), IRY))),

(ii) for each F € B(C([0, ), IR¥)), the mapping

(ryw) = vi(r,w, F)

is B(RY) @ B(D([0,0), H)) @ B(C([0, 00), IR¥))-measurable, and
(iii) for F € B(C([0, 00), RY)), G € B(RYX)2B(D([0,00), H))®B(C([0, ), R¥)),

pi(G X F) = /Gui(r,w, F)y(drdw).

To bring the two weak solutions (Z®,Y® W) i = 1,2, together on the same
space, consider the measurable space (2, J), where Z = © x C([0, ), IR¥) and J is

the completion of the o-field B(©) @ B(C([0, 00), IRF)) under the probability measure
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v defined as:

V(Ax Bx ()= /Aul(r,w,B)ug(r,w,C)fy(drdw), (2.5.3)

where A € B(IRE)®B(D([0, 00), H)®B(C([0, 00), IR¥)) and B, C' € B(C([0, 00), RY)).
In order to endow (=, 7,v) with a filtration that satisfies the usual conditions, we

take, for 0 <t < o0,
T = o{(r(s),w(s),vi(s),va(s) : 0 < s <)}, Ji = o(Js UN),

where N is the collection of null sets under measure v, £ = (r,w, v1,v9) is a generic
element of Z and 7(s) = (r1,72(s)), with 7, € IRY and r, € D(]0,00), IH). Here, with
an abuse of terminology, we have denoted the canonical coordinate maps on = by the
coordinate themselves.

By (2.5.1), (iii) and (2.5.3), we have
V€ €E: (rw,v) € Al = PI(RO, WO VDY c A, AcB(©), i=1,2

Thus for ¢ = 1,2, the distribution induced by & + (1 4 v;, r2, w) under v is the same
as that of (ZW, Y® W®) under P;, where (ry,75(t)) = r(t),t > 0. Consequently we
have constructed, on the space (Z,J), two strong solutions of the integral equation

(2.3.11). By pathwise uniqueness of (2.3.11) established earlier in the proof we get

Then for A € B(C/([0, 00), RX)) ® B(D([0, 00), H)) ® B(C([0, 00), IRX)),

P(ZW YO WD)y e Al = vE€eZ: (rn+uv,r,w) € Al =v[€ €Z: (1 + v, 79, w) € A

= P[(Z?,v® w?) e 4]
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The result follows. W

Proof of Proposition 2.3.2: For t > 0, let

Define 7,, = inf {t > 0: |Z(t)| > n} for each n € IN. For j € IK, let f € G be such
that f(z,y) = z; on S, ={(z,y) € RY x H :|z| <n}. On S,

Lf(z,y) =bi(2,9), Dif(z,y) =dj, i € IK,

where dj; is the (j,7)" entry of [I — P). Thus, for n > 1,
ATn K
ZiAm) =20 = [ (2. Y )i =Y dnd- 47
i=1

is a {F;} martingale. Since 7, — oo as n — oo, U(t) is a {F;} continuous local
martingale. Next, for 4,j € IK, let f € G be such that f(z,y) = 2;z; on S,,. Then,

on Sy,
Lf(z,y) = bi(2,9)z; +bi(z, )z + Nij(2,9), Dif(2,y) = duz; + djz, | € K.

Thus the following is a {F;} martingale.

Zi(- A1) Zi(- A7) — Zi(0) Z;(0)

_ /0 (20, Y () Z5 () + b5(Z(w), Y (1) Zu(w) + Ay (Z (), Y (u))) du (25.4)

_ Z / o (duZj(u) 4+ djZi(w)) dm(u)

0
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On the other hand, for t > 0,

(2.2
2, (U (w) + (U U)))

" / (Zu(u)by(Z (), Y (w)) + Z; (u)bi( Z (), Y () du

/0 (A Zi(us) + du Z; () dip(u).

_l’_
-

(2.5.5)

Combining (2.5.4) and (2.5.5), we have

/ Zi(u)dU;(u) + / Z,(u)dUs(w) + [U U;)() — / Ay (Z(u), Y (u))du

0 0 0

is a {F;} local martingale. Next, since U is {F;} local martingale, we have

/0. Ziu)dUs(w) + /O Z;(w)dUi(u)

is a {F;} local martingale as well. Combining the above two observations, we have

Vi () = [0 U)() — / A(Z(w), Y (w))du

is a {F;} local martingale. Since V;; has continuous sample paths of finite variations,

V;;(t) = V;;(0) = 0. Therefore, we have

U, U5)() = (U, U, (1) = / Ay (Z(u), Y (w))du, ¢ 0.
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Consider the process

Clearly W is a continuous local martingale and noting that o is invertible it is easily
checked that (W;, W;)(t) = 6;;£,1 < i < j < K. Therefore, W is a standard K-

dimensional Brownian motion. Also, clearly

and therefore, for t > 0,

Z(t) = Z(0) +/O b(Z(u),Y (u))du + /0 o(Z(u),Y (u))dW (u) + [I — @/]n(t).

Since fooo Liz,0pdni(u) = 0,1 < ¢ < K, we have, from Definition 2.3.1, that Z

solves (2.3.11). The result follows. W

48



Chapter 3

Stability properties for constrained
Markov modulated diffusions

3.1 Introduction

Stability properties of constrained stochastic processes are useful in many appli-
cations arising from computing, telecommunications, and manufacturing systems. In
this chapter, we study a family of constrained Markov modulated diffusion processes
that arise in the heavy traffic analysis of multiclass queueing networks. We estab-
lish positive recurrence and geometric ergodicity properties for such processes under
suitable stability conditions on a related deterministic dynamical system (see [24], [4]
and [10]). Results of this chapter will be used in Chapter 4 to study the convergence
of invariant measures for Markov modulated open queueing networks in heavy traffic.
It will be shown there that under suitable conditions, the invariant measure for the
queueing length process converges weakly to the invariant measure of a constrained
Markov modulated diffusion process of the form studied in the current chapter.

We now describe the basic mathematical setting. Let G C IRX be a convex
polyhedral cone with vertex at the origin given as the intersection of half spaces
Gi,i =1,---, N and denote by n; and d; the inward normal and constraint direction

associated with G;. The constrained Markov modulated diffusion process we study is



constrained to take values in G and is defined through the equation

Z() =T (z + / b(Z(s), Y (s))ds + / o(Z(s),Y(s))dW(s)> (), >0, (3.1.1)

0 0

The process (Z,Y) is defined on a filtered probability space (2, F, P, {F;}+>0) such
that Y is a {F;} Markov process with state space IH = {1,2,..., H}, infinitesimal
generator Q and stationary distribution ¢* = {q; : j € IH}, and W is a {F;} standard
Brownian motion independent of Y. We assume the Skorohod map I' defined by the
data {(d;,n;) :i=1,2,..., N} is well posed and Lipschitz continuous (Assumption
3.2.1). We also assume the Lipschitz continuity on ¢ and b (Assumption 3.2.2) and the
boundedness and and uniform nondegeneracy of o (Assumption 3.2.3). Furthermore,

we assume that the drift b can be expressed as
b(z,y) = bi(z,y) + ba(y), (2,9) € G x H, (3.1.2)

where by : G x [H — IR¥ and by : IJH — IRE are measurable maps. Define b5 =
> jem 4G02(d) and b*(z,y) = bi(z,y) + b5. We will also make a suitable stability
assumption (Assumption 3.2.5) on the drift vector b* which ensures that trajectories
of a certain deterministic dynamical system are attracted to the origin. This condition
says that there exists a 0y € (0, 00) and a bounded set A C G such that for all z € G\ A

and y € H, b*(z,y) € C(dy) where
C(0g) = {v € C : dist(v,0C) > 6},

and
N
Ci {—Zaldz&ZZO,ZE{l, ,N}}
i=1

Our main results (Theorem 3.2.2 and Theorem 3.2.4) show that, under the above
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conditions, (Z,Y) is positive recurrent and has a unique invariant measure. For
the case when by = 0, one can obtain a sharper result (Theorem 3.2.3). That is,
if b} is in the interior of C, then (Z,Y) is positive recurrent, and if b} is not in C,
(Z,Y) is transient. Under the same stability condition, we identify an appropriate
exponentially growing Lyapunov function V' and establish the V-uniform ergodicity
of (Z,Y). Consequently, we show finiteness of the moment generating function of the
invariant measure in a neighborhood of zero, uniform time estimates for polynomial
moments of all orders and functional central limit results (Theorem 3.2.4).

We note that our stability condition on the drift vector field is substantially weaker
than the requirement that b(z,y) € C(dy) for all z € G\ A and y € IH, and allow
for the drift to be “transient” in some states of the Markov process Y. For example,
consider vector by, by € IR¥ such that b; € C° and by € C°. Then it is well known
that if b(z,y) = by, Z in (3.1.1) will be positive recurrent and if b(z,y) = by, Z
will be transient. Our results show that in a Markov modulated case where, for
example, H = {1,2} and b(x,y) = by, the pair (Z,Y) will be positive recurrent (in
fact geometrically ergodic) if b* = ¢fb; + ¢5be € C° and transient if b* € C°.

We next consider a Markov modulated semimartingale reflected Brownian mo-
tion Z (modulated by the Markov process Y'), which can be considered as a spe-
cial case of constrained Markov modulated diffusion processes introduced above with
b(z,y) = ba(y) and a constant covariance matrix o. However, here we pose weaker
assumption on the constraint vectors {(d;,n;) : i = 1,2,..., K}, namely, the matrix
(dy]ds] .. .|dk) is completely-S (see Section 3.2.2). Using a standard argument based
on Girsanov’s theorem and classical results of [46], one can establish the existence
and uniquely characterize the probability law of such a process (see Theorem 3.2.5).
Under a suitable stability condition, we prove that (Z,Y") is positive recurrent and

has a unique stationary distribution (Theorem 3.2.6). Furthermore, we show that
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(Z,Y) is V-uniformly ergodic where the Lyapunov function V' grows exponentially,
and establish properties (see Theorem 3.2.7) analogous to those in Theorem 3.2.4 for
the more general setting of a completely-S reflected matrix.

The chapter is organized as follows. In Section 3.2, we collect the main results
of this chapter. Proofs are given in Section 3.3. In Appendix, we collect proofs of

results that are similar to arguments used in existing literature.

3.2 Main results

In this section we collect the main results of this chapter.

3.2.1 Stability properties under a regular Skorohod map

Recall the set G and vectors {n; : i = 1,2,..., N} from Section 3.1. Denote the
set {z € 0G : (z,n;) = 0} by F;. With each face F; we associate a unit vector d; such
that (d;,n;) > 0. This vector defines the direction of constraint associated with the
face F;. At points on G where more than one faces meet, there are more than one

allowed directions of constraint. For z € 0G, define the set of directions of constraint

d(z) ={de R :d= Y adia; >0,]d| =1, (3.2.1)
i€l(z)
where I(z) = {i € {1,2,...,N} : (z,n;) = 0}. Note that if I(z) = {j} for some
j€{1,2,...,N}, then d(z) = {d,}.
We now introduce the Skorohod problem (SP) and the Skorohod map (SM) asso-
ciated with G and d. Define Dg([0,00) : IR¥) = {4 € D([0,00) : R¥) : ¢(0) € G} .
For n € D([0,00) : IR¥), let |n|(T) denote the total variation of n on [0,7] with

respect to the Euclidean norm on IR¥.
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Definition 3.2.1. Let ¢ € Dg([0,00) : IRF) be given. Then the pair (¢,n) €
D([0,00) : G) x D([0,00) : IRK) solves the SP for 1) with respect to G and d if and
only if ¢(0) = ¢(0) and for all ¢ € [0, c0) the following hold:

(i) ¢(t) = v(t) +n(t), and ¢(t) € G.

(i) Inl(r) < oo, and Inl(t) = [y Listococrdinl(s)

(iii) There exists Borel measurable map v : [0,00) — IRX such that v(t) € d(¢(t))

a.e. dn| and n(t) = [, v(s)dnl(s).

Let D C Dg([0,00), IRX) be the domain on which there is a unique solution to
the SP. On D we define the SM T" as I'(¢)) = ¢, if (¢, ¢ — ) is the unique solution of
the SP posed by . We will make the following assumption on the regularity of the
SM defined by the data {(d;,n;) : i € {1,2,..., N}}.

Assumption 3.2.1. The SM is well defined on all of Dg([0,00), IRX), that is D =
D¢([0,00), RE), and the SM is Lipschitz continuous in the following sense. There

exists k1 € (1,00) such that for all 1,19 € Dg([0,00), IRK) :

sup [C(1) () = T(y2) (1) < #1 sup |¢h1(E) — a(t)] . (3.2.2)

t>0

We refer the reader to [22, 23, 29| for sufficient conditions under which the above
assumption holds.

We now introduce the Markov process (Z,Y) which will be studied here. The
component Y is a Markov process with a finite state space H = {1,2,...,H} en-
dowed with the discrete metric and infinitesimal generator Q, while Z is a constrained
diffusion with drift and diffusion coefficients that, in addition to depending on the

current state, are modulated through the values of Y. More precisely, the process Z
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satisfies an integral equation of the form

Z(t)=T <z + / b(Z(s),Y(s))ds+ / o(Z(s),Y(s)) dW(s)) (t)e G, (3.2.3)

0 0

where z € G, W is a standard Wiener process which is independent of Y, and
o:GxH — REK b G x H — IRX are measurable maps. We will make the

usual Lipschitz assumption on the coefficients b and ¢ as follows.

Assumption 3.2.2. There exists ko € (0,00) such that, for all 21,22 € G andy € H,

|U(Z17y) - 0-(227y)| + |b(217y) - b<227y>| S R2|Zl - 22"

Let S =G x IH and ® = (Z,Y). Using the above Lipschitz property along with
the regularity assumption on the SM I' (Assumption 3.2.1), it is easily seen that

equation (3.2.3) is well posed. In particular, we have the following.

Theorem 3.2.1. Under Assumptions 3.2.1 and 3.2.2, there is a filtered measurable
space (2, F,{Fi}i>0) on which are given a collection of probability measures {P,}.cs
and {Fi} adapted processes (Z,W,k) and Y with sample paths in C([0,00) : G X
IRX x IRX) and D([0,00) : H) respectively, such that (®,{P,},cs) is a Feller-Markov

family and, for every ¢ = (2,y) €S, P,-a.s., the following hold.
(i) W is a K-dimensional standard {F;}t>0 Brownian motion.

(ii) For allt € (0,00),

Z(t) =2 + /0 b(D(s))ds + /O o(®(s))dW (s) + k(t), (3.2.4)

and Z(t) € G.

(ili) For allt € (0,00), |k|(t) < oo and |k|(t) = fg Liz(s)cocyd|k|(s).
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(iv) There is a IR™ -valued {F;} progressively measurable process v such that ~(t) €
d(Z(t)) a.e. dlk| and for all t € (0, 00) fo v(s)d|k|(s

(v) Y is a IH-valued { F; }-Markov process with Y (0) = y and infinitesimal generator
Q.

We will denote the Markov family (®, { P,},es) merely as ¢ and denote the tran-

sition kernel of ® by Pj, namely for ¢ € S and A € B(S), Pg(p, A) = P,(®(t) € A).

We recall the definitions of positive recurrence and transience of a Markov process.

Definition 3.2.2. The Markov process {®(t) : ¢ > 0} is said to be positive recurrent
if for each A € B(G) with positive Lebesgue measure, j € IH, and ¢ € S, we have
Eo(Taxg;y) < 00, where 7oy = inf{t > 0: ®(t) € A x {j}} and E, denotes the

expectation under P,.

Definition 3.2.3. The Markov process {®(¢) : ¢ > 0} is said to be transient if
there exist A € B(G) with positive Lebesgue measure, j € IH, and ¢ € S such that

P¢(TAX{j} < OO) < 1.

We now introduce additional assumptions that will be needed for the main stability
results. The second part of the following assumption (along with Assumption 3.2.4)
will ensure irreducibility of the Markov process ® while the first will be needed in

some moment estimates.
Assumption 3.2.3.
(i) For some k3 € (0,00) and for all p €S, |o(¢)| < Ks.

(ii) There exists kg € (0,00) such that for all p € S and ¢ € RX, ('o(p)a’(p)¢ >
Ka('C.

We will make the following irreducibility assumption on the finite state Markov

process associated with the generator Q. Let T, = exp(tQ), t > 0.
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Assumption 3.2.4. For everyt >0 and i,j € H, Ty(i,j) > 0.

This assumption ensures that the Markov process with the infinitesimal generator
Q has a unique stationary distribution ¢* = {qj}je H- We now introduce the main

stability assumption on the drift coefficient b. Let

Ci{—Zaidi:aizo,ie{l,---,N}}. (3.2.5)

=1

and

C(9) = {v e C : dist(v,0C) > 6}, ¢ € (0,00). (3.2.6)

The cone in (3.2.5) plays a key role in the stability analysis of constrained diffusions
(see [8, 4, 11]). For example, it follows from results in [4] that if the drift and diffusion
coefficients do not depend on the process Y (i.e., for all (z,y) € S, b(z,y) = b(z) and
o(z,y) = o(z)), and for some &, > 0, b(z) € C(d) for all z € G, then the Markov
process Z is positive recurrent and consequently has a unique invariant probability
measure.

In the current work we will assume that the drift b can be expressed as

b(z,y) = bi(z,y) + ba(y), (2,) €S, (3.2.7)

where by : S — IRX and b, : JH — IR are measurable maps satisfying Assumption

3.2.5 below.

Assumption 3.2.5. There exist 6y € (0,00) and bounded set A C G such that for
all z € G\A and y € H, b*(z,y) € C(dy) where

b*(z,y) = bi(z,y) + b3 and b = Z q;ba(j), (2,y) €S. (3.2.8)

JjeEH

The following theorem is the first main result of this chapter.
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Theorem 3.2.2. Suppose that Assumptions 3.2.1-3.2.5 hold. Then the Markov pro-
cess (P, {P,}yes) is positive recurrent and has a unique invariant probability measure

.

Remark 3.2.1. In [49], the authors consider a 1-dimensional Markov-modulated re-

flected Ornstein—Uhlenbeck process {Z(t) : ¢ > 0} defined as follows.

Z(t) = —/0 AM(Y(9)Z(s) + X2(Y(s))]ds +/0 o(Y(s))dB(s) + k(t), t >0,

where {Y(t)}:>0 is as in Theorem 3.2.1(v), {B(t)}+>0 is a standard 1-dimensional
Brownian motion, and Aj, Ay, 0 are all strictly positive functions. The paper shows
that (Z,Y") has a unique stationary distribution. Clearly b(z,y) = —[A\1(y)z + Aa(y)]
satisfies Assumption 3.2.5 and thus Theorem 3.2.2 in particular covers the setting
considered in [49]. In fact, Theorem 3.2.2, in addition to covering the much more
general multidimensional setting, shows that the positivity assumption on Ay, Ay can

be relaxed to the condition that A;, Ay are nonnegative and As(j) > 0 for some j € IH.

For the case when b; = 0, one can obtain a sharper result as follows.

Theorem 3.2.3. Suppose that by(¢) = 0 for all p € S. Also suppose that Assump-
tions 3.2.1-3.2.4 hold. Then the following hold:

(i) If by € C°, then (®,{P,}ses) is positive recurrent.
(i) If b5 € C, then (@, {P,}ses) is transient.

In section 3.2.4, we will establish geometric ergodicity of the Markov family
(®,{P,},es). More precisely, the following result will be proved. Let f : S — IR
be a measurable function such that, for some measurable g : S — IR and for all

peS t>0,
Elr@@)+ £, | [ t (B(6)Ids] < oo, Bl @) = (o) + B | [ tg(@(s))ds} |
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Denote by D(A) the collection of all such measurable functions f. For a pair (f,g)
as above, we write (f,g) € A, or with an abuse of terminology, ¢ = Af. The
(multi-valued) operator A is referred to as the extended generator of ® and D(A) its

domain.

Theorem 3.2.4. Suppose that Assumptions 3.2.1-3.2.5 hold. Then the following

properties hold.

(1) There exists py € (0,00) such that for all measurable f :'S — IR which satisfy

1£(@)] < el for all o = (2,y) €S,

/S F(@)lm(dy) < oo.

In particular, for all c € R with |c| < i,

/e<c’z>7r(dzdy) < 0.
S

(ii) There are Ba, fB3,by € (0,00) such that for f as in (i), the following hold.

(a) For all p = (z,y) €S and t € (0,0),
|E,(f(D(t) — m(f)] < et ebot

(b) Defining fort >0, Sy = fot f(®(u))du, we have that f{(p) = E,(Si—tn(f))

converges to a finite limit f(p) for all ¢ € S.

(¢) The convergence in (b) is exponentially fast, i.e.,
fi(0) = flp)] < eBUDetot
for all ¢ = (z,y) € S and t € (0, 00).
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(d) The function f € D(A) and solves the Poisson equation: Af(p) = n(f) —

flp),p €S.

(iii) Let f:S — IR be a measurable function such that, with 8y as in (i), f*(¢) <

Pz for all o = (z,y) € S. Define fort € [0,1],

54@&5%4“@@@»—ww»@.

Let f be as in (ii)(b). Define

ﬁi?/f@ﬂﬂ@—wﬁ»ﬂw)

Then |vy¢| < oo and &, converges weakly to ;B in C([0,1], R), where B is a 1

dimensional standard Brownian motion.

3.2.2 Markov modulated SRBM

In Section 3.4 we will consider a model with somewhat more restrictive conditions
on the domain and the coefficients b and o but significantly weaker assumptions on the
constraint vector field d. Suppose that G = Rf and N = K. Fort € IK, let n; = ¢;.
Then the i*" face F; = {z € G : z; = 0}. Define a K x K matrix R = (dy|-- - |dx)
and a K-dimensional vector by € IRX. Let o be a K x K positive definite matrix.

We recall from [46] the definition of a SRBM associated with (G, by, o, R).

Definition 3.2.4. For z € G, an SRBM associated with (G, by, o, R) that starts from
2z is a continuous, {F;}-adapted K-dimensional process Z, defined on some filtered

probability space (2, F, {F; }i>0, P) such that, P-a.s., the following hold.
(i) Z(t) =z +bot + oW (t) + RU(t) and Z(t) € G for all t > 0.

(i) W is a K-dimensional standard {F;} Brownian motion.
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(iii) U is an {F;}-adapted K-dimensional process such that, for i = 1,..., K,

U;(0) = 0, U; is continuous and nondecreasing, and U; can increase only when

Z is on E, i.@., fooo 1{Zi(s)>0}dUi<S) =0.

An SRBM arises as the diffusion approximation limit for many multiclass queueing
networks in heavy traffic (see [47]). The paper [46] shows that if R is completely-S,
namely for every k x k principle submatrix R of R, there is a k-dimensional vector
v such that vy > 0 and fivé > 0, then (weak) existence and uniqueness of SRBM
hold. This condition, which is significantly weaker than Assumption 3.2.1 made in
Section 3.2.2, is in fact known to be a necessary condition for existence of an SRBM

([41, Theorem 2]). We record this condition below for future reference.
Assumption 3.2.6. The matriz R is completely-S.

The following result follows from [46] along with a straightforward argument based

on Girsanov’s theorem. Fix a measurable map b, : IH — IRE.

Theorem 3.2.5. Suppose that Assumption 3.2.6 holds. Then there is a filtered
measurable space (2, F,{Fi}i>0) on which are given a collection of probability mea-
sures {P,}yes and {Fi}-adapted processes (Z,W,U) and Y with sample paths in
C([0,00) : G x RX x G) and D([0,00) : IH), respectively, such that for every

v =(z,y) €S, Py-a.s., the following hold.
(i) W is a K-dimensional standard {F;} Brownian motion.

(ii) For allt >0,

Z(t) =2+ / t bo(Y (s))ds + oW (t) + RU(t), (3.2.9)
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(iii) For eachi=1,..., K, U;(0) =0, U; is continuous, and nondecreasing, and
/ 1{Zi(s)>0}dUi(8) =0.
0

(iv) Y is a IH-valued { F; }-Markov process with Y (0) = y and infinitesimal generator
Q.

Let ® = (Z,Y). Then (®,{P,},cs) is a Feller-Markov family.

We now recall the key stability condition, introduced in [24], for positive recurrence

of an SRBM, in terms of the associated “fluid limit” trajectories.

Definition 3.2.5. We say a vector by € IRY satisfies the DW-stability condition if
for all ¢ € C([0,00) : G) satisfying the property (F) below, we have ¢(t) — 0 as

t — o0.

: For some z € G and n € C([0,00) : G), ¢(t) = z + byt + Rn(t) for allt > 0,
F)
where fori =1,..., K,n;(0) = 0,7; is nondecreasing, and fooo Ligi(s)z0ydni(s) = 0.
In [24], the authors showed that if ® is a (G, by, 0, R) SRBM, i.e., ba(y) = by for
all y € IH, and by satisfies the DW-stability condition, then the SRBM is positive
recurrent and consequently has a unique invariant probability distribution. In the

current work we establish the following result.

Theorem 3.2.6. Suppose that Assumptions 3.2.4 and 3.2.6 hold and the vector b}
satisfies the DW-stability condition. Then the family (®,{P,},es) is positive recurrent

and admits a unique invariant probability measure .

In fact, we establish the following geometric ergodicity properties. Analogous

result for the constant drift case is established in [10].
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Theorem 3.2.7. Under the assumptions made in Theorem 3.2.6, properties in The-

orem 3.2.4 hold for Markov process ®.

3.3 Stability properties under a regular Skorohod

map

3.3.1 Positive recurrence

In this section we prove Theorem 3.2.2. Assumptions 3.2.1-3.2.5 will be assumed
throughout this section. Recall the parameter §y introduced in Assumption 3.2.5.

Let v : [0,00) — IR be a measurable map such that,
t
/ ((s)|ds < oo, for all £ > 0. (3.3.1)
0

For z € G and v as above, let

a(t) =T (z + /Otv(s)ds) >0 (3.3.2)

For z € G, let A(z) = A(z,dy) be the set of all absolutely continuous functions
z defined by (3.3.2) for some v : [0,00) — C(dy) that satisfies (3.3.1). Define the

“hitting time to the origin” function as follows.

T(z) = sup inf{t € (0,00) : z(t) =0}, z € G. (3.3.3)
z€A(z)

Note that 7'(0) = 0. The following lemma from [4](cf. Lemma 3.1) is a key ingredient

in our analysis.

Lemma 3.3.1. The function T defined by (3.3.3) satisfies the following properties.
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(i) For some ©1 = ©1(d) € (0,00), |T'(21) —T(22)| < O1|z1 — 22| for all 21,22 € G.
(ii) For some Oy = Oy(dg) € (0,00), Ozlz| < T'(2) < O4]z|, for all z € G.
(ii) Fiz z € G and let z € A(z). Then for allt >0, T(z(t)) < (T'(z) —t)".

Note that for (z,y) € S, b(z,y) — b*(z,y) = ba(y) — b5. Define b°(y) = bo(y) — b3,
y € IH. The following lemma is an immediate consequence of Lemma 3.3.1 and
the Lipschitz property of I'. The proof is quite similar to that of Lemma 4.1 of
[4], however for completeness we provide the arguments in Appendix. Recall the
filtered probability space (2, F,{Fi},{P,},es) and processes Z, W,Y, @ introduced

in Theorem 3.2.1.

Lemma 3.3.2. Let A > 0 and u > 0 be arbitrary. Fiz ¢ € S. Then, P,-a.s., on the
set {w: Z(t,w) € G\ A for allt € (u,u+ Al},

T(Z(u+A)) <(T(Z(u)) — A)" + k1010%,

where ©1 and k1 are as in Lemma 3.5.1(i) and Assumption 3.2.1 respectively, and

u o -
Un = sup
u<s<u+A

/: b(Y (v))dv + / o(®(v))dW (v)

. (3.3.4)

Lemma 3.3.3. There ezists a O3 € (0,00) such that for all a,t € (0,00) and ¢ € S,

E, (exp{ar}}) < 8exp{Oza(l + a + at)}, (3.3.5)

where v is defined as in (3.3.3) with u, A replaced by 0,t, respectively.
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Proof: By Holder’s inequality,

{E@ (exp {a sup
0<s<t
<

E, (exp { 2ac sup

0<s<t

]
1) £, (o {0 s | [ el ).

(3.3.6)
Consider the first expectation on the right hand side of the above inequality. For

/Os b (u))du + /0 (@ (u))dW (u)

/s b(Y (u))du

0

f€BM(H), s > 0andy € I, let P} f(y) = E(f(Y(s))[Y(0) = y). Let g(-) be
a solution of the Poisson equation for b°(-) corresponding to the Markov semigroup

{P§ }s>0, 1€, for y € H and s > 0,

Pygy) —g(y) — /0 PEY(y)du = 0.
Then, under P,,
M = g(Y(s)) —g(Y(0)) — /0 b(Y (u))du (3.3.7)

is an {Fs} martingale.

We next show that, for all s > 0 and y > 0,

Po(|Ms| > y) < 2exp { i +U_2)22y(5 =y } , (3.3.8)

where v = 2(|g|eo + |b]00) < 00. For fixed s > 0, let

Myy1 — My, 0< k< |[s]—1,
& =
M, — My, k=s].

Then M, = ZEO & and for 0 < k < [s|, E, (&|Fx) = 0 and |§| < v. Using well

known concentration inequalities for martingales with bounded increments (see e.g.
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Corollary 2.4.7 in [19]), for 0 < k < |s| and y > 0,

k 20
P, <Z§Z > yvk+ 1) < exp{—m}.

1=0

Therefore,

n(se <eo{ ) <o arere )

1=0

Similarly,

Ls] 2

2y
P, | — E ;> < — )
? i:()5 _y N exp{ <1+U2>2(8+1>}

The inequality in (3.3.8) follows on combining the above two estimates.

Denoting ﬁ by c¢;, we have,

B (ep(arl)) < [ 2o {200,

dra’(s + 1) exp {M}

1 C1

< 20 { (1 +4w)§2(s +1) }

= 2

An application of Doob’s inequality now yields that

(1+ 4m)a(t + 1)}.

E, (exp {204 sup |MS|}) < 4E, (exp {2a|M,|}) < 8exp{
C1

0<s<t
Combining this with (3.3.7), we have that

}) < Sexp {4a|g|oo L+ 47r)ca2(t +1) }
1 (3.3.9)

/ WY () du

0

E, (exp {2a sup

0<s<t

Next consider the second expectation on the right side of (3.3.6). Using Assumption
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3.2.3 (i), we have by standard estimates (see e.g. Lemma 4.2 of [4])

/0 o ((u))dW (1)

E, (exp {2a sup }) < 8exp {2a2H§K2t} . (3.3.10)

0<s<t

Using (3.3.9) and (3.3.10), we now have that the left side of (3.3.5) is bounded above
by

144 144
8exp 4 2|g]ootr + i Ta?+ il 7r—i—/ﬁ%KQ a’t }.
201 201

The result follows. H

Using the fact that ® is a {F;}-Markov process and that W is a {F;}-Brownian

motion (cf. Lemma 4.3 of [4]) we have the following lemma. Proof is omitted.

Lemma 3.3.4. Let ¢ € S and A > 0 be fivzed. For n € IN, let v, = VXI_I)A, where

I/XL*I)A is defined as in (3.3.4) with u replaced by (n —1)A. Then for any o € (0, 00)

and m,n € IN;m < n,

E, (exp {a Z 1/1}) < (8exp {Osa(l + a+aA)})" ™

where Oz 1s as in Lemma 3.3.3.

Given a compact set C' C S, let
7o =inf{t > 0: ®(t) € C}. (3.3.11)

For M > 0,1et Byy ={p=(z,y) €S:T(z) <M} and Cpy ={p = (2,y) €S: |z] <

Theorem 3.3.1. There exist Lya € (0,00) and ¢ € (0,1) such that for any ¢ =

(z,y) €S and t € (0,00),
P,(tp, >t) <exp{cT(z) + (a — )L} exp(—at). (3.3.12)
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In particular, for every M € (0,00) and ag < a,

sup E,(exp{ao7p,}) < oo.
el

Proof. Proof is similar to that of Theorem 4.1 of [4] so only a sketch is provided.
Fix ¢ = (z,y) € S. Recall the set A from Assumption 3.2.5. Choose L > 0 large
enough so that A x IH C Byp. Additional restrictions on L will be imposed later in

the proof. Let

0, = {w:rp, >nl} = {w . inf T(Z(s,w)) > L}.

0<s<nL

Then for ¢ € S, P,(,) < P,(T(Z(nL)) > L). By Lemma 3.3.2 we have, for w € Q,,

T(Z(nL)) <T(z) —nL+ k16, i vy,

Jj=1

where {v;} are defined as in Lemma 3.3.4 with A replaced by L. Using Lemma 3.3.4,
a calculation similar to that in the proof of Theorem 4.1 of [4] now yields for any

¢ e (0,1),
P,(Q,) < exp(s(T(z)—L)) exp {n [O35£101 (1 + ck101) + log 8 + O3¢’k1OTL — cL] } .

Take ¢ = (203x207% + 1)7'. Choose L sufficiently large so that, in addition to the

property A x IH C By, we have L™'[035k101(1 + ¢£10;) + log 8] < /2. Then
Lt [®3gn1@1(1 +6k101) + log 8 + O36°KIOL — gL] < O36%K207 — % = —a <0,

and

Py(§2) < exp{<(T'(2) — L)} exp(—nLa).
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The proof of (3.3.12) now follows from the above estimate, exactly as in the proof
of Theorem 4.1 of [4]. Second part of the theorem is an immediate consequence of
3.3.12). W

The lemma below gives the tightness of the family {P, o ®(t)™' : ¢ € Cy,t > 0}
for any M > 0. The proof is similar to Lemma 4.4 of [4]. A sketch is given in

Appendix.

Lemma 3.3.5. There exists k € (0,00) such that for all M > 0,

sup sup E, (exp{x|Z(t)|}) < oc.
el t20

The following irreducibility property is used in showing uniqueness of the invariant
measure. For j € H, ¢ € S, t > 0, define m}}' € P(G) as m}'(E) = P,(®(t) €
Ex{j}), E € B(G).

Lemma 3.3.6. For every j € IH, ¢ € S and t > 0, mi;t 1s mutually absolutely

continuous with respect to the Lebesque measure A on G.

Proof: Without loss of generality we can assume that on the filtered probability
space (Q, F,{Fi}i>0), introduced in Theorem 3.2.1 we have, for each ¢ = (z,j) €
G x IH, probability measures P/ under which (i) - (iv) of Theorem 3.2.1 hold, with

(3.2.4) replaced by
t t
Z(t) =z +/ b(Z(s),j)ds + / o(Z(s),7)dW (s) + k(t), a.s..
0 0
As argued in the proof of Lemma 5.7 of [10],
for all (z,5) € S,t > 0,P!oZ(t)"! is mutually absolutely continuous to A. (3.3.13)

Fix ¢ = (z,4) € S. Denote by {7 }xen, the sequence of transition times of the pure
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jump process Y, namely, 7o = 0, 7,41 = inf{t > 7, : Y #Y,_}, k € INy. Then P, ass.,
T, is strictly increasing to co. Also, the law of 7541 — 73, conditioned on F, (under P,)
has density ¢y, where for i € IH, ; is the Exponential density with rate Zj:j i Qij.
For k > 0, let m{ € P([0,00) x G x IH) be the probability law of (7, Z(7%), Y (7%))-

Also for j € IH, define sub-probability measures mf’j on [0,00) x G by the relation
m{?(E) =mf{(E x {j}), E € B([0,00) x G).
Then, for A € B(G), j € H, t >0,

P (Z(t) € A Y () =j) = i Py(Z(t) € A,Y () = jimu < t < Thsn)

= Z /MXG </to<; soj(v)dv) P Z(t —u) € AYm$ (dud?).

k=0

From (3.3.13) and the above display, if A\(A) = 0, then P,(Z(t) € A, Y (t) = j) = 0.
Conversely suppose that A(A) > 0. From Assumption 3.2.4, for some ky € IN,
P(Y (7%,)|Y(0) = i) > 0 and therefore mf(;j([O,t] x () is nonzero for every t > 0.

Finally, from the above display and using (3.3.13) once again we obtain

P.Z(t) € A V(1) = j) > / ( /1t h @j(v)dv> PIZ(t - u) € Aym$ (dudz) > 0.

[0,t)xG —u

The result follows. W

Proof of Theorem 3.2.2. Let S be a compact subset of G with a positive
Lebesgue measure. For the proof of positive recurrence, it suffices to show that for
every M >0 and j € H,

sup E,(19) < o0, (3.3.14)
peCnr

where 7U) = inf{t > 0 : ®(t) € S7}, § = S x {j}. Let L be as in Theorem 3.3.1.
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From Assumptions 3.2.3 and 3.2.4, it follows that

p1 = inf P,(®(1) € S7) > 0.

p€EBL,

Since the family {P, o ®(1)™', ¢ € B} is tight, there exists ¢; € (0, 00) such that

inf P,(®(1) € 87,17]; <) > 2

p€EBL,

Arguing as in the proof of Theorem 2.2 of [4], we now have that for all M > ¢,

. 2
sup B (1Y) < sup E,(1p,) + — (1 + sup E@(TBL)) :
pelCp pelCny b pelCn

This, in view of Theorem 3.3.1, proves (3.3.14) and positive recurrence of ® follows.
Existence of a unique invariant probability measure is an immediate consequence of

Lemma 3.3.5, the Feller property of ®, and the irreducibility property in Lemma

33.6. Il

3.3.2 Transience

In this subsection, we prove Theorem 3.2.3. We will assume through this section
that Assumption 3.2.1-3.2.4 hold and that bi(¢) = 0, € S. Let ¢ be the identity
map from [0,00) to [0,00). The following lemma is taken from [8] (cf. Lemma 3.1

and Theorem 3.10 therein).

Lemma 3.3.7. For each ¢ € RX, there is a { € IR such that T'(Ce)(t) = Ct for all
t > 0. Furthermore, ¢ # 0 if and only if ( € C.

Proof of Theorem 3.2.3: Part (i) is immediate from Theorem 3.2.2. Consider

now Part (ii). Since by = 0, the process ® = (Z,Y) satisfies, for every ¢ = (z,y) € S,
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P,-as.,

Z(t) =T (z + / bo(Y (s))ds + / o(@(s))dW(s)) (1), t > 0.

0 0

An application of triangle inequality shows that

(s [ mrends+ [ o@enave) o

0

D (k) ()]~ - )r (o4 [ n0ropas+ [ atepan) o - r(b;w(t)] |

0

1
t
1
> -
—t

Noting that b°(y) = ba(y) — b3, we have from the Lipschitz property of I' and Lemma
3.3.7,

K1
— — sup

)
0<s<t t

(3.3.15)

/0 o ((u))dWV (1)

/ WY (u))du

‘_ k12|
0

where = T'(b3)(1). Since by ¢ C, from Lemma 3.3.7, § # 0. Let W;(t) =
(e, f(f o(®(s))dW (s)), where {e;} K, is the standard basis in IR". Then the quadratic
variation of the martingale W; equals (W;), = f(f eia(P(s))e;ds, where a = oo’. By

Assumption 3.2.3, k4t < (W;); < k3t. Using a standard time change argument and

the law of iterated logarithm for a scaler Brownian motion, we now have for some

¢ € (0,00),
s K
: 1 . 1 -
limsup — sup / o(®(u))dW (u)| < ¢ limsup = sup E [Wi(s)| =0, P,-a.s.
t—oo b o<s<t|Jo t—00 0<s<t 4=

Next consider the martingale {M; : ¢ > 0} defined by (3.3.7). From (3.3.8), there

exists ¢p € (0,00) such that for all ¢,y € (0,00) and ¢ € S,

0292
P, (|M] > y) <2exp il
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Consequently, using Markov’s inequality and LP maximal inequality, for any € > 0,

1 1 ) 4!
P (- M|>e¢)|<—E M) ) < 557 Be (1M
G i) < (g o)) < s o

44 00 45 1 2
0

<2———
- 3ttt t+1 3tcdettt

An application of Borel-Cantelli lemma now shows that, P_-a.s.

1
lim sup <— sup |M(S)|> = 0.

t—00 0<s<t

Combining this with (3.3.7), we have

/ BV () du

0

1 2
) < lim sup (— sup \M(s)|+%) = 0.

t—o0 0<s<t t

. ( 1
limsup [ — sup

t—00 0<s<t

Recalling that 3 # 0, we now have from (3.3.15) that,

Z(t
lim inf 40l >0, P, -a.s. (3.3.16)
t—o0 t
Finally, we argue that, for some ¢ € S,
P,(1¢, < 00) <1, (3.3.17)

where 7¢, is as in (3.3.11) with C; defined as below (3.3.11) with M replaced by 1.
Suppose that (3.3.17) is false. Then by a straightforward application of the strong

Markov property, we have that

P,(®(t,) € C for some sequence {t,}, s.t. t, T oo) = 1.

However, this contradicts (3.3.16) and the result follows. W
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3.3.3 Geometric ergodicity

In this section we prove Theorem 3.2.4. Assumption 3.2.1-3.2.5 will be assumed
throughout this section. The following drift inequality is at the heart of Theorem
3.2.4.

Lemma 3.3.8. For some w > 0, the w-skeleton chain {®, = ®(nw) : n € IN}
satisfies the following drift inequality: There exist g, By € (0,1),7 € (0,00) and a

compact set S C G such that

E, (V(®1)) < (1= F0)V(9) +vlsxm(p), ¢ €S, (3.3.18)

where, for o = (z,y), V() = eo0T(2)

Proof: Define 04 = inf{t > 0 : Z(t) € A}. From Lemma 3.3.2, for ag,w €

(07 OO)?

E, (V(®1)ls,50) < By (exp{ao(T(z) — @)™ + apk1©0102} 1o,5w),  (3.3.19)

where 12 is defined by (3.3.4) with A and u replaced by @ and 0, respectively. Recall
By ={p=1(z,9) € S:T(2) < w}. Thus for ¢ € (By)*, by Lemma 3.3.3,

< E, (eXp {apgk10102 — aow}l,,A>w)

< 8exp{ciag + c20f + cradw — apw},

where ¢; = k1030, and ¢; = O3k202%. Now fix g small enough and w large enough
so that

8exp{ciap + c2a3 + cgaéw —ow} = (1 —-26) < 1.
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Then for ¢ € (Bg)¢,

Ep (V(®)1as5m) < (1 260)V ().
From the strong Markov property of ®, we see that for all ¢ € S,
Ey (V(®1)1lg,<w) = By [y (V(P)|Fo,) losce] = By [Ezion) V(Z(w = 04))] 1o,<c0] -

Therefore, by Assumptions 3.2.1, 3.2.2 and 3.2.3, there exists ¢; € (0,00) such that

E, (V(®1)ly,<0) < sup Ej; < sup V(@(t))) <.

BEAXIH 0<t<w

Choose M > w such that 5oV (p) > ¢ for all ¢ € (By)® Then on (By)S,
E, (V(®1)) < (1= Bo)V(p). For ¢ € By, (T(2) — @)™ < M and from (3.3.19),

E, (V(®1)) < By (exp {0 [(T(2) —@)* + mOuz]})

< 8exp {Mag + cro + 204 + 205w} = ¢,

The lemma follows on setting 79 = ¢ and S = By;. W

For a signed measure p on (S,B(S)) and a measurable function f : S — IR, let
u(f) = Js flo)u(de) if fis |u| integrable. If f: S — (0,00) is a |u| integrable map,
we define the f-norm of p as [|u[|; = supj < |1(g)]- We set ||ull; = oo if f is not |y
integrable. As an immediate consequence of Lemma 3.3.8 and Theorems 14.0.1, 16.0.1
in [43], we have the following theorem. Denote by {P"},en the transition kernel of
the chain {®, : n € IN}, namely, for ¢ € S and A € B(S), P"(p, A) = P,(d, € A).

From Lemma 3.3.8, it follows that P"(¢,V) < oco,¥n € IN and ¢ € S,

Theorem 3.3.2. The invariant measure 7 satisfies m(V') < oo. Furthermore, the

w-skeleton chain {®,} is V-uniformly ergodic, i.c., there exist py € (0,1) and By €
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(0,00) such that for all ¢ € S,

I1P"(¢,-) = mllv < Bop V(). (3.3.20)

Proof of Theorem 3.2.4:

(i)

(i)

This is immediate from Corollary 3.3.2 and Lemma 3.3.1(ii), on taking 5; <

Oy, where O, and oy are as in Lemma 3.3.1(ii) and Lemma 3.3.8, respectively.

(a). For a map v from S to the space of signed measures on (S, B(S)), let

HV“V - sup ”V(QO)HV

pEeS V(QO)
Recall that P} denote the transition kernel of ®. Denoting the signed measure
PL(gp,-) — () as P'(p), we have from Corollary 3.3.2, ||[P"@||V < Byp?. Fix
t € (0,00) and let ny € IN be such that ¢ € [ngw, (ng+1)w). It is easy to check

that
IBHIY < BV [ o= |V < Bopm sup |7
0<r<w

E P
< By sup PelV@ED +7(V)
peS 0<r<w V(QO)

From Lemma 3.3.2 and Lemma 3.3.3, we have for some By = By(w) € (0, 00),
sup E,[V(®(r))] < BoV (). (3.3.21)

0<r<w

Let p = po/ and B = By(By+(V))/po. Then ||P!||V < Bj'. This proves (a).

(b) & (c). By (a), for all ¢ € S, ff(p) = E,(S; — tn(f)) is well defined. We
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observe that for 0 <t < T < o0,

5(0) — fol9)] < / Pi(o, f) —n(f)lds < BV(g) (7 — F7).  (33.22)

where By = —B/logp. Noting that [f(¢) — fa(p)] — 0 as t,T — oo,
limy_,o0 f£(¢) exists. In particular, denoting the limit by f(p) and letting ¢ = 0

and 7" — oo in (3.3.22), we have for all ¢ € S,

1f()] < V(p)By. (3.3.23)

Then fixing ¢ and letting 7" — oo, we have from (3.3.22), that

() — ()| < V(p)Bipt < Bye®reolljt,

This proves (b)&(c).

(). From (3.3.23), for t > 0, E,|f(®(t))| < BLE,(V(®(t))). Also

/0 B, lm(f)— f(®(s))|ds < / E, | f(®(s))|ds-+n(f) < / B[V (®(s))|ds+tn(f).

Similar to (3.3.21), we have for all ¢ > 0, supy<,<; E,[V(®(s))] < oo. Conse-

quently,
E,|f(®(t))| + / E,ln(f) — f(B(s)]ds < .

Also note that



This proves (d).
(iii) The proof is an immediate consequence of [27, Theorem 4.4].

3.4 Markov modulated SRBM

This section is devoted to proofs of Theorems 3.2.6 and 3.2.7. We use the notation

introduced in Section 3.2.2. In particular, throughout this section, G = Rf , N =K,

and for i = 1,2,..., K, G; = {z € IRE : (2,¢;) > 0}. Also, R = (dy|---|dx) and o is
a K x K positive definite matrix as in Section 2.2.

The proof of Theorem 3.2.6 is similar to the proof of Theorem 2.6 in [24]. However,
we give details for completeness. First, we introduce the Lyapunov function F', which
was constructed in [24]. Recall the DW-stability condition introduced in Definition
3.2.5.

Theorem 3.4.1. Suppose that b5 satisfies the DW-stability condition. Then there

exists a continuous map F : RE — IR such that the following hold.
(i) F e C*(RE\{0}).

ii) Given € € (0,00), there exists an M € (0,00) such that, for all 2 € IR® and
(i) (0, 00), ,

1Z| > M, |V?F(2)| <e.
(iii) There exists ¢ € (0,00) such that

(a) forall z € G\ {0}, (VF(2),b%) < —c,

(b) for all Z € 0G\ {0} and d € d(2), (VF(Z),d) < —c.

(iv) F is radially homogeneous, i.e., F(CZ) = CF(Z) for all { >0 and z € IR¥.
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(v) VF is uniformly bounded on G\ {0}. We denote

A= sup |VF(Z)| < 0.
zeG\{0}

(vi) There exist by, by € (0,00) such that, for all Z € G, b1|Z] < F(Z) < bo|Z|.

With an abuse of notation, we set VF(0) = 0 and V2F(0) = 0. Fix ¢ = (2,y) €S

and recall the martingale {M; : t > 0} introduced in (3.3.7). Denote
T(t) = Z(t) —g(Y(t)) +9(Y(0)), t = 0. (3.4.1)

Then from (3.2.9) and (3.3.7), for all t > 0, P,-a.s., Y(t) = 2 + bt — M, + oW (t) +
RU(t). By Ito’s formula, we have that

F(T(t) = F(2) + /0 Gtr [V2F(T(s))oo’] + <VF(T(5)),b*>) ds

t

+ [P eavs) - [ (VRO-).am) (3.4.2)

+

+Z;/O (VE(T(s)), di)dUs(s) + R,

where

0<s<t

Proof of Theorem 3.2.6: Given € > 0, let r > 2|g|~ be large enough such that
|V2F(%)| < € whenever z € R and |Z| > 7 — 2|g|e. An appropriate choice of ¢ will
be made later in the proof. Define 7, = inf{t > 0: |Z(¢t)| < r}. Fix p = (2,y) € S.

We first assume |z| > r. Using the Lagrange remainder form of Taylor’s expansion

78



and Theorem 3.4.1(ii), we have

Rz,
= 3 [0 () = g (=) VEF@T() + (1= ) T(s=)o(Y (5)) = g(¥ (s=)]
<e 3 1oV () =gl ()P,

where ¢; = ¢(s,w) € [0,1]. Taking expectation, we have for some ¢; € (0, c0),
Et,D(Rt/\’Fr) S ClﬁE@(t A 7:7")7 Vit Z 0. (344)

Next by Theorem 3.4.1(ii) and (iii)(a) and for 0 < s < t A 7,, there exists ¢ =

S(s,w) € (0,1) such that

(VE(Y(s)).55) = (VF(Z(s)).53) + (VF(T(s)) ~ VE(Z(5)).3)
< et (VF(9X(s) + (1 - @) Z)(g(Y (5)) — g(Y (0))).b3) (3:45)

< —c + 2€|g|oo| b3

Similarly, by Theorem 3.4.1(ii) and (iii)(b), for 0 < s < tA7, and some ¢3 = ¢3(s,w) €

(0,1), whenever Z(s) € Fj,

(VF(Y(s)), ds) = (VF(Z(s)), ds) + (VF(X(s)) — VF(Z(s)), d;)
< (VPR T() + (1 - ) Z)(g(Y (s) — g(Y(0). ) (3:4.6)

< 2€|9]oo-

From Theorem 3.4.1(ii) and (3.4.5), there exists ¢s € (0, 00), such that for all ¢ > 0

%tr [V2E(Y(t A7))o0'] + (VE(Y(t A7) B < cae —c. (3.4.7)
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By (3.4.6), we have

K

> [T VRT).djavi(s) < 2lgl Ut A ), (348)

i=1 i=1

By Theorem 3.2 in [18], there exists h € CZ(G) such that for i € K and z € Fj,
(Vh(z),d;) > 1. Applying Ito’s formula,

E,(h(Z(tANT))) =h(z)+ E, (/0 Tr(Vh(Z(s)), b(Y(s))) + %tr[vzh(Z(S))O'o"]dS>

+ iile ( /0 (s, di>dUi(s)) |

Thus we have for ¢3 € (0, 00),

BAGGAT) <Y (/ ()t (s) )
< B2+ 106))+ B ([ TR, 6 ()] + 4ir b2 o' s

-

S 03(1 + Ew(t A ’7~'7~))
(3.4.9)

Using (3.4.8) and (3.4.9), we now have

B, (Z/O TT'<VF(T(3))7 di>dUi(5)) < 2€|gloocs(1 + EL(t AT)). (3.4.10)

We note that the constants ¢y, ¢, and c3 only depend on bounds of o, g, h, and b3. In
particular, they are independent of ¢ and ¢. Combining (3.4.4), (3.4.7), (3.4.10) and

applying (3.4.2), we have
E,(F(Y(tNT.))) — F(z) < 2€|g|loocs + [€(2]g|occs + 1 + c2) — c|EL(EAT,). (3.4.11)
Again applying the Lagrange remainder form of Taylor’s expansion and Theorem
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3.4.1(ii), (v) and (vi), there exists ¢4 € (0, 1) such that for 0 < s <t A7,

F(Y(s)) = F(Z(s)) + (9(Y(s)) = g(¥(0)))'VF(Z(s))
%(Q(Y(S)) —9(Y(0))'V?F(aX(s) + (1 — <) Z(s))(9(Y (5)) — g(¥(0)))
F(Z(s)) = 2lgloo — 2|g|2c¢

+

v

> —2|glooA — 2[g|%e.

Choosing
c

 2Q2lgleecs + 1+ c2)

€

we have

E,(tNT) < =(F(2) + 2€|g|0ccs + 2|g|cc A + 2|g|%.€) < co.

o IN

Letting t — oo, we have E,(7,) < oo. If |2] < r, E,(7,) < oo holds automatically.
Therefore, E,(7,) < oo for all ¢ € S. The rest of the argument is as in the proof of
Theorem 2.6 in [24]. Details are left to the reader. W

We next establish geometric ergodicity for . We begin with some preliminary
estimates. Arguments similar to those used in Lemmas 3.3.3 and 3.3.4 yield the

following result. Proof is omitted.

Lemma 3.4.1. Let ¢ € S and A > 0 be fivzed. For n € IN, let v, be defined as

follows:

s

/ C(VE(Y(s)), 0dW(s)) + / (VF(Y(s)), dM,)|
(n=1)A (n—1)A
(3.4.12)

Uy = sup
(n—1)A<s<nA

Then there exists ©4 € (0,00) such that, for any ¢ € S,a € (0,00) and m,n €

IN:m <n,
E, (exp {O‘Zﬁi}> < (4exp {O©407(1 +A)})n_m+1.
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For r € (0, 00), define
Cry={2€eG:FE)<r},n.=inf{t >0:Z(t) € C(r)}. (3.4.13)
Lemma 3.4.2. There exist ro, 3,71, 72 € (0,00) such that, for all p = (z,y) € G,

E, (exp{p7}) < 71 exp{rz|z[},

where T = T,, and 7., is defined as in (3.4.13) with r replaced by 1.

Proof: By Theorem 3.4.1(ii), given € > 0, there exists a 7 > 2|g|« such that
|V2F(%)| < € whenever z € IRX and |Z| > r — 2|g|s. By Theorem 3.4.1(vi), we can
choose 1 such that {Z € G : F(2) <} D {2 € G:|Z]| <r}. Letg¢e (0,1) and
¢ = (z,y) € S with |z| > r. Similar to the arguments for (3.4.9) and using Lemma

4.2 in [4], there exist ¢y, ¢, ¢35 € (0, 00) such that for all t > 0,

E, <eXp {QZ Ui(t)}) <E, <exp {gZ/Otwh(Z(s)), dl-}dUi(s)})

[ @z

ds}) (3.4.14)

< B, (exp {<|h<z<t>>| T olh()] 4+

/
0

< exp{eis + east + 36t}

(Vh(Z(s)),b(Y(s))) + %tr[VQh(Z(s))aa’]

Fix A € (0,00) and n € IN. Using (3.4.2), we have

F(Y(nA)) =F(Y((n—1)A)) + /(n_l)A (%tr [V2E(Y(s))oo'] + (VF(Y(s)), b*)) ds

i /( (VF(Y(s)),0dW (s)) + / (VF(Y(s—)),dM))

n—1)A (n—1)A

327 TP A+ Rs = R

n—1)A
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For m € INyg and m > n, define A, = {w € Q : infocscma F(Z(s)) > ro}. From

(3.4.7), we have on A,, for some ¢, € (0, 00),

nA 1
/ (5757" [V2F(Y(s))oo’] + (VF(Y(s)), b*)) ds < (cqe — 0)A,
(n—1)A

where ¢4 is independent of the choice of €, A and n. From (3.4.14) and (3.4.6), on

A, for t < mA,

E, (exp {g Z /;(VF(T(S)), di)dUi(s)}) < exp{2¢€|g|oo(c16 + cost + c367t)}.

Also note that on A, and t < mA, for some ¢5 € (0,00) (independent of ¢, ¢, e, A, t,m),

Ey(exp{cRi}) < E (exp {<6 > (Y (s) - g(Y(S—))I2}> < exp{csect}.

0<s<t
Therefore, on the set A,, and for n < m,

F(Y(nA)) < F(T((n—1)A)) + (cae — c)A + Z /(nl)A(VF(T(S)), d;)dU;(s)

+ Rna — Rin—n)a + Un,

where 77, is as in (3.4.12). Therefore, on set A, and for n < m, we have
K nA n
F(T(A)) < F(2) + (cse — A+ 3 / (VE(T(5)), d)dUL(s) + Ros + 3.
i=1 70 i=1

Noting that, on A,,, F(T(nA)) > rq, we have

<P, <Z /On (VF(Y(s)),d:i)dU;(s) + Rpa + Z U > 1o — (c4€ — c)nA — F(z))

i=1 i=1
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<E <exp { <Z/ (VF(Y(s)), d;)dU;(s) + Run + i ,,) })

x exp {—¢(ro — (cae — c)nA — F(z2))}

€C
< exp {nA {Q\g\oocl + (2|glooC2 + ¢5)€s + 8|glooczes® + 264 —|— 20,¢2

nA A

log 2 S
+ i +C4€§—Tom—<0} +<F(2)}.

Let € and ¢ be small enough and A large enough, so that

2

120,

S
+ (2|glocC2 + ¢5)€s + 8|glooczes® + Oy~ A

€S
2|g|0061_ A

log 8
20,62 + —=—
A + 487 + A + cy€C

—TL—§C:— <0
sy =N :

For t € (0,00), let ny € INy such that t € [ngA, (ng + 1)A). Then
Pp(1 > 1) < Py(An,) < exp{-—nt+ An+cF(z)}.

The result follows. W
As an immediate consequence of the above lemma, we have the following. For
0y € (0,00) and a compact set S C G, define a stopping time 7¢(6y) = inf{t > 6 :

Z(t) e S}.

Lemma 3.4.3. Fiz 0y € (0,00) and let 3,72, 79 be as in Lemma 3.4.2 and C = C(ro)

be as in (3.4.13) with r replaced by ro. Then there exists v3 € (0,00) such that for
v =(2y) €5,
Eq(exp{f7c(bo)}) < s exp{yalz[}-

Proof: An application of the strong Markov property yields

Ey(exp{f7c(bh)}) = exp{B0o} E, (Ep(exp{B(7c(0o) — b0)}Fo,))
= exp{f6} E, ( ®(60) exp{ﬁr})
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By Lemma 3.4.2,

E, (Ea@) exp{87}) < nE, (exp{72|Z(60)]}) - (3.4.15)

Using the oscillation estimate from [48](also see [5]), we have the following result:

There exists ¢; € (0, 00) such that for all p = (2,y) € Sand 0 < t; <ty < 00, P,-a.s.,

sup |Z(t)—Z(s)| <« ( sup |[W(t) — W (s)| + (t2 — t1)> : (3.4.16)

11<s<t<t2 11<s<t<t2

Combining the estimates in (3.4.15) and (3.4.16), we have

B, (Buay (s {57H) < 1explale + ) B, (ex0 {ena s W1} )

0<s5<6o

The result follows. W
A key step in the proof of geometric ergodicity is the following result from [20].
For 6y, 8, and C' as in Lemma 3.4.3, let

Eo(exp{fro(6h)}) — 1

3 + 1.

Volp) =

Define, for 6 > 0,

Vo) = ReVo(p) = /000 E,[Vo(®(1))]0 exp{—0t}dt.

By Lemma 4.3 (a), Theorem 6.2 (b), and Theorem 5.1 (a) in [20], we have the following

result.

Theorem 3.4.2. For all 0 > 0, AVy = 0(Vy — Vi), where A is the extended generator

of ® introduced below Theorem 3.2.3. Furthermore, there exist ko, hg € (0,00) such
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that for all p € S,

AVp(p) < —roVo() + holoxm (¢).

The following lemma is proved exactly as Lemma 4.8 of [10]. Proof is omitted.

Lemma 3.4.4. There exist ai, as, A1, Ay € (0,00) such that for all p = (z,y) € S,
are®? < Vy(p) < Ayet?l (3.4.17)

Furthermore, there exists a constant 0 € (0,00) such that for every 0 € (é, 00) there

are dy, ag, Ay, Ay € (0,00) such that for ¢ = (z,y) € S,
e < Vy(p) < Ayl (3.4.18)

We will fix 6 € (A, 00) and denote V = V,. Then the following corollary is an

immediate consequence of Theorem 3.4.2.

Corollary 3.4.1. V is in D(A) and AV = 0(V — Vi). Furthermore, there exist

Ko, ho € (0,00) such that for all p € S,

AV (p) < =koV () + holoxm (o).

Corollary 3.4.2. Let m be the unique invariant measure of ®. Then w(V) < oc.

Proof: By Corollary 3.4.1 and Theorem 5.1(d) of [20], for any T" > 0, there exist
so € (0,1) and hy > 0 such that for all p € S, E,(V(®(T))) < oV (p) + hloxm(p).
Integrating both sides with respect to m, we have 7(V) < hyn(C' x H)/(1 —¢) < 0.
|

As a consequence of the above corollaries and Theorem 5.2(c) of [20], we have the

following geometric ergodicity result.
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Theorem 3.4.3. The Markov process ® = (Z,Y) is V-uniformly ergodic, i.e., there

exist constants By € (0,00), po € (0,1) such that for all t € (0,00) and ¢ € S,
1P (0,-) = 7llv < BoppV ().

Proof of Theorem 3.2.7: Part (i) of the theorem is immediate from Corollary
3.4.2 and Lemma 3.4.4. Part (ii)(a) is a consequence of Theorem 3.4.3 and Lemma

3.4.4. The rest of the proof is same as that for Theorem 3.2.4. B

3.5 Appendix

Proof of Lemma 3.3.2: For t > 0, let Z(t) = Z(t +u). Then P,-a.s.,

2() =T (Z(u) + / b(®(s + u))ds + / o (B(s + u))qu(s)> (t),

0 0

where W, (s) = W(s +u) — W(u). Let

Z(t)=T (Z(u) + /0 b*(®(s + u))ds) (1),

where b* is as defined in Assumption 3.2.5. By Lipschitz property of I' (Assumption
3.2.1),

sup ’Z(t) - Z(t)) < K1 sup
0<t<A 0<t<A

/o b (Y (s +u))ds +/0 o(P(s + u))dW,(s)

= /ﬁ)ll/g.

Recalling the assumption on b} (Assumption 3.2.5), we have applying Lemma 3.3.1,

87



that on the set {w: Z(t,w) € G\ Afor allt € (u,u+ A)}

T(Z(u+ A)) = T(Z(A)) < T(Z(A)) + k1014 < (T(Z(w)) — A)* + 5101V

Proof of Lemma 3.3.5 (sketch): By arguing as in the proof of Lemma 4.4 of [4],
we can show, for A > 0 and v, defined as in Lemma 3.3.4, there exists M, € (0, 00)

such that

P, (T(Z(nA) > M,)) < i P, (2/@1@1 i v; > My+(n—1—1)A— T(z))
exp{a(T(2) + A)} & B, (eXP{%"'ﬁ@l E?:z ”j})
exp{aMy} exp{a(n — )A} ’

=1

where a € (0,00) is arbitrary. From Lemma 3.3.4 we now have

Py (T(Z (HA)) > M)

exp{a(T A} & Z (8 exp{205k101(1 + 261010 + 2k,O1aA) })" !
=1

exp{ono exp{a(n —)A}

exp{a(T(2) + 2A)} & »
< exp{aMy} Z exp {log 8 4+ 203k10 (1 + 2k101a + 2K1O1aA) — aA} .

=1

As in the proof of Theorem 3.3.1, we can choose o and A so that

log 8 + 203k101a(1 + 25101 + 2k1010A) — @A = —0 < 0.

An application of Lemma 3.3.1 yields that for every k € (0,a03) and M > 0,

sup sup F,(e"?"M) < .
|| <M neN
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The result follows from the above estimate, using the Lipschitz property of I'; in a
straightforward manner (see Lemma 4.4 of [4]). B

Proof of Lemma 3.4.1 (sketch): By the strong Markov property of ®, it suffices
to show

E,(exp{ain}) < 8exp{O,a*(1+ A)}.

By Holder’s inequality,

i

/0 (VE(Y(s)), 0d W (s)) + /0 (VF(T(s)), dM,)

E, (exp {a sup
0<t<A

< FE, (exp {2a sup

0<t<A

[ @reeneave]})

)

We first note that using Lagrange remainder form of Taylor expansion and for ¢ > 0,

< E, (exp {Qa sup /O (VE(Y(s)). dM.)

0<t<A

VE(Y(t)) = VE(Z(t) + VAF(ST(1) + (1 = ) Z([1)(g(Y (1) — 9(Y(0))),

where ¢ = ¢(s,w) € (0,1). From Theorem 3.4.1 (ii) and (v), there exists some
c1 € (0,00) forall t > 0, [VF(Y(t))| < ¢;. We have by standard estimates (see e.g.

Lemma 4.2 of [4]) for some ¢, € (0, 00),

E, <exp {2a sup /;(VF(T(s)),dW(s))‘}) < 2exp {0’ A} (3.5.1)

0<t<A

Applying arguments similar to those between (3.3.8) and (3.3.9) in the proof of Lemma

3.3.3, there exist ¢3 € (0, 00) such that

/0 (VF(T(s), dM.)

0<s<t

E, (exp {Qa sup }) < 8exp {c;a’(1+ A)}.

Result follows on combining the above estimates. B
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Chapter 4

Convergence of invariant measures for
Markov modulated open queueing
networks in heavy traffic

4.1 Introduction and main result

Frequently queueing networks of interest are too complex to be analyzed directly,
so one would like to use the steady state behavior of the limit diffusion model to
approximate that of the underlying queueing system. In this chapter, we justify such
an approximation procedure by studying convergence of the invariant measures for the
Markov modulated queueing networks considered in Chapter 2 in heavy traffic. For
simplicity, we consider an open queueing network with constant routing matrix and
arrival and service rates that only depend on the state and the slowly changing Markov
process (i.e., the network parameters do not depend on X™). In the n'* network, @"
and Y" will denote the normalized queue length process and the modulating Markov
process, respectively. The main result of this chapter (Theorem 4.1.1) shows that,
under suitable heavy traffic and stability conditions, (@”,Y”) admits a stationary
distribution which converges to that of (Z,Y’), where (Z,Y) is as in Chapter 3, as
n — oQ.

We now recall the basic network description. Consider a sequence of open queueing



networks with the following structure. Each network has K service stations each of
which has an infinite capacity buffer. We denote the i** station by P;,i € K =
{1,2,..., K}. All customers/jobs at a station are “homogeneous” in terms of service
requirement and routing decisions. Arrivals of jobs can be from outside the system
and/or from internal routing. Upon completion of service at station P; a customer
is routed to some other service station or exits the system. The external arrival
processes and service processes are assumed to depend on the state of the system and
an auxiliary finite state Markov process. The routing mechanism is governed by a
K x K substochastic matrix P. Roughly speaking, the conditional probability that
a job completed at station P; is routed to station P; equals the (i, 7)™ entry of the
matrix P. The above formal description is made precise in what follows.

In the n'* network, the Markov process modulating the arrival and service rates
is denoted as {Y"(t) : t > 0}. We assume that Y has a finite state space IH and
infinitesimal generator Q" which converges to some matrix Q. Let Q?(t) denote

the number of customers at station P; at time t. Then the evolution of Q™ can be

described by the following equation
K
Q(t) = Qp0) + AP (t) — Di(t) + Y _Di(t), i€ K. (4.1.1)
j=1

Here A?(t) is the number of arrivals from outside at station P; by time ¢, DI(t) is
the number of service completions by time ¢ at station P, and D7(¢) is the number
of jobs that are routed to P; immediately upon completion at station P; by time t.
Letting D}(t) be the number of customers by time ¢ who leave the network after

service at P;, we have

Dp(t) =Y Dp(t). (4.1.2)

The dependance of arrival and processing rates on the system state and Y is modeled
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by requiring that A} and D}, 1 <: < K,0 < j < K, are counting processes given on
a suitable filtered probability space (2", F*, P™, {F}'}) such that for some measurable

functions A\?, &' : RX x IH — IR, the processes

14?c>zzAf«)—3[:A?«9"@o,ym<u»du,

~ - (4.1.3)
%@z%@—%%@wwmwmm

are locally square integrable {F"} martingales. Here Pjy = 1 — Z]K:1 P;;. We assume
that processes A7 and D, 1 <i < K,0 < j < K, and Y" have no common jumps.
We also require that Y is a {F]'} Markov process. The functions A" and &', € IK,
represent the arrival and service rates. We denote by K, (K, C IK) the set of
indices of stations which receive arrivals from outside. In particular, A(z,y) = 0 for
all (z,y) € RY x IH whenever i € IK\IKy. Reflecting the fact that no service occurs
when the buffer is empty, &7 (z,y) = 0 if z; = 0. Let A" = (A}, ..., A\%)". We assume
that, for each i € IK, a7 restricted to (IR¥\{z € R : z; = 0}) x IH can be extended

to a function o defined on Rff x IH (that satisfies additional properties as specified

below), and write o = (af,...,a%)". Let
A" — [I—Pan

b=
vn

We introduce the main assumptions on model parameters, which are similar to

Assumption 2.3.1(i)-(vi).
Assumption 4.1.1.
(i) The spectral radius of P is strictly less than 1.
(i) There exist some 0,,0, € (0,00) such that, for alln > 1,i € IKy,j € IK and

(Z7y) € Bf X H; an S |>\IL(Z,y)| S néla an S |Oé§L(Z,y)| S nél‘
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(iii) For some 0y € (0, 00), SUD (. ) RE x I 16" (z,9)| < 6.

(iv) There exists a bounded Lipschitz map b : RY xIH — IR™ such that b"(v/nz,y) —

b(z,y) uniformly on RY x H asn — oo.

(v) There exist Rf—valued bounded Lipschitz functions \,« defined on Rf x IH,
such that

— Az,9), — a(z,y)

A" (v/nz,y) a”(y/nz,y)

uniformly for (z,y) in compact subsets of ]Rf x IH as n — o0o. Furthermore,

A= [I-Pla.
(vi) For each i € IK\IKy, there exists j € IKy such that @ZL > 0 for some m € IN.

For t > 0, let

-2,

From Theorem 2.3.2 in Chapter 2, it follows that under Assumption 4.1.1, as n — oo,
(@”, Y™) converges weakly to a Markov process (Z,Y"), where (Z,Y") is as in Definition
2.3.2. In particular, Y is a Markov process with infinitesimal generator Q and Z is a
reflected diffusion process with state dependent and Markov modulated coefficients,

which can be described as follows.

Z(t)=T (Z + / b(Z(s), Y (s))ds + / U(Z(S)vY(S))dW(S)> (t), t > 0.

0 0

The drift b is as in Assumption 4.1.1(iv) and the diffusion coefficient ¢ is constructed
as between (2.3.9) and (2.3.10). Note that b and o satisfy Assumptions 3.2.2 and
3.2.3. Denote ®" = (Q",Y"),® = (Z,Y) and ¢ = (z,y). The following is the main
result of the chapter.

Theorem 4.1.1. Suppose that Assumptions 4.1.1 and 3.2.4 hold and that b can be

expressed as in (3.2.7) in terms of functions by and by that satisfy Assumption 3.2.5.
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Then there exists N € IN such that for any n > N, the Markov process ®" admits
a stationary distribution. Let w, be an arbitrary stationary distribution of ®". Then

T, = T as n — 0o, where w is as in Theorem 3.2.2.

In the following, we provide an explicit example, where assumptions of the above

theorem hold.

1
2

Example 4.1.1. Let K = 2,H = {1,2}, and P = . The arrival and

3 0

service rate X" and o are defined as follows. For z = (z1,2) € IR% and y € H,

!/

X'(z,y) = (Vale ™V 4+ 4) 4 ny, (e =V 4 4) 4 2ny)

24 27 '
a"(y) = (gx/ﬁy +2ny, —/ny + 3ny) :

Therefore,

/
(2 = (VT 44— By e VT4 3y)

and

b(z,y) =0"(Vnz,y) = (e +4 —3y,e ™ +4—3y)". (4.1.4)

Let ¢* = (i, %) We can construct a Markov process Y™, which has state space IH and
convergent infinitesimal generator, such that it converges to a Markov process Y with
stationary distribution g*. With the above model parameters, we have from Theorem
2.3.2 that (Q",Y™) = (Z,Y), where Z is defined as in (2.3.11) with drift b defined
as in (4.1.4) and diffusion coefficient o constructed as between (2.3.9) and (2.3.10).

We note that the constraint directions for Z are dy = (1,—3) and dy = (=3, 1)’
and therefore the cone C = {—aydy — asdy : ap > 0,09 > 0} . We observe that, for

z € IR%,
b(z,1) = (e +1,e> +1) €C, b(2,2) = (e — 2,7 —2) €,
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and the “average” drift

5 5\
* - —z1 _ Y -z Y o
b*(z) = <e ik 4> cC’.

In fact, for all 0 < &y < 1, we have for all z € IR%, b*(z) € C(d). By Theorem 3.2.2,

(Z,Y) is positive recurrent and has a unique invariant measure m. Finally, from

Theorem 4.1.1, (@”,Y”) admits an invariant probability measure © and ™ = 7 as

n — 00.

4.2 Proof of Theorem 4.1.1

In this section we prove Theorem 4.1.1. Recall the processes Q", A", D" defined

in (4.1.1) and (4.1.3). Define IRX valued stochastic processes M™, B, n" as follows.
For i€ IK and t > 0,

M (1) = % (Z?Of) HOEDS Eji(t)> ,
Bi'(t) = /0 b (v/nQ"(u), Y™ (u))du, (4.2.1)

n() = % / 07 (VO™ (1), Y™ (1)L g oyl

Noting that &!'(z,y) = al'(z,y)1(,>0p for all (z,y) € RY x H, we have from (4.1.1)
that

Q" (t) = Q™(0) + M™(t) + B™(t) + [I — Pln"(t). (4.2.2)

With this notation, equation (4.2.2) can be written as

~

Q1) =T (Q"(0) + M"() + B"()) (1), (4:2.3)
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where I' is the Skorohod map with reflection matrix I — P'. As noted in Section 4.1,
due to Assumption 4.1.1(i), I" is Lipschitz continuous, namely Assumption 3.2.1 is
satisfied. The following stability result is a key step. Denote by D, = {¢ = (z,y) €
S:nz e INo}.

Proposition 4.2.1. There exist Ny € IN and ty € (0,00) such that for all t > t,
)

Proof: Fix ¢ = (z,y) € D, such that z € G\ A. Let M > 0 be large enough

sup,>n, Lo < @”(t’zb
lim

|z]—o0 |Z|2

:07 QDI (Z7y) € Dn

such that Gy = {2z € G : |z| < M} D A. Suppressing n in the notation, define a

sequence of stopping times {0y brem, as o9 =0,
Ooppr = Inf{t > oop, : Q"(t) € A}, Oopsn = inf{t > a1 : Q"(t) ¢ Gur}, k € IN.
If t € [ooks1, Oopro] for some k € INg, then
Q™ ()| < M + 1. (4.2.4)

Suppose now t € [ogx, 0ok+1) for some k € INg. Then

~

Q"(t) =T (Q"(0) + M"(- + o) — M"(021) + B"(- + o) = B" (o) ) (¢ — 721,

From convergence of Q" to Q, it follows that for some ny € IN, the Markov process
Y™ has a unique invariant measure ¢", whenever n > ng. Furthermore, ¢" — ¢* as

n — oo. We will assume without loss of generality that n > ng. Define for s > 0,

)E'"(s) =T (@”(agk) + B} (- + o9k) — Bf(@k)) (5 — o9,
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where
B2(s) = [ 0 (V@)Y (w)) do.
and

bl (z,y) = 0"(z,y) — ba(y) + D ba(y)g" (y)-
yelH

Note that B" = B} + B, where
B2s) = [ B @) do. and B(0) = ba(y) — 3 ba0)a”(0)
0 yelL

Lipschitz property of I' yields that

Q(t) — X™(t)] < 26y sup [M"(s) + BI(s)|.

0<s<t

Using Assumption 2.3.1 (iv) and the property ¢" — ¢*, we see that as n — o0,
b (\/nz,y) — bi(z,y) uniformly on S. Using Assumption 3.2.5 we now have that for
some ny € IN and n > nq, b (y/nz,y) € C(d/2) for all (z,y) € G/A x IL. Thus

r ( / T (RO (0 A ogns). Y (0 A 02k+1))du) (- — 0o) € A0, 60/2),

02k

where A is as defined below (3.3.2). Applying Lemma 3.3.1 (ii),(iii), we now have

that for all oo < 5 < T911,

D(B (- + o) — B (09)) (s — oar.)

ookt -
=T (/ b (vVnQ™ (v A ogyr), Y (0 A 02k+1))du> (s —o9) = 0.

02k

Thus using Assumption 3.2.1, we have that if k£ > 0,

X7 (1) < K1|Q™(02k)| < K1 (M + 1), VE € [Oap, Tapsr)-
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A similar argument, using Lemma 3.3.1(i), shows that in the case k = 0, i.e. t €
[00,01) and t > ©1(0y/2)||, |X"(t)] = 0, P.-a.s., where ©;(5/2) is as in Lemma

3.3.1. Combining the above estimates, for all ¢ > O|z|,

’@”(t)‘ < 2ky sup |M"(s)| + 2k1 sup |BX(s)| + ki(M +1). (4.2.5)

0<s<t 0<s<t

By martingale properties of processes in (4.1.3), Doob’s inequality and Assumption

4.1.1(ii), we have that for some ¢; € (0, 0),

E, (sup \M”(s)|> < 4ZE@(’MJL@)|2>

< %i E, ( /0 t A (ﬁ@"(u), Y”(v)) + zia; (ﬁ@n(v)yn(@)) dv) (4.2.6)

S C1t.

Next we consider E, (supg<,<; |BZL(S)])2. Let ¢"(+) be a solution of the Poisson equa-

tion for b7(-) corresponding to the Markov semigroup {P:} of Y. Then

M= g () - (o) - [ (Y (0))do

0

is a {FI'} martingale and © = sup,, |¢g"|o < oo. Therefore, another application of

Doob’s inequality yields

E, (s |Bs<s>|)2 = 5. sup [0 (5) - ") - M:|)2 < 862+ 8F, (M7 P)

0<s<t 0<s<t

Analogous to (3.3.8), we have for some ¢; € (0,00) and ny € IN,

Co
P,(|MM?*>zx) <2 — .
:;171?2 %0(| £ —x)_ exp{ t—i—l}
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Therefore,

2 00
E, ( sup |B§(s)|) < 40% + 4/ 2 exp {— el }dx
0<s<t 0 t+1
8(t+1)
Cy ’

(4.2.7)

< 40% +

Combing (4.2.5), (4.2.6) and (4.2.7), we have for some ¢35 € (0,00) and all ¢ > ©; and

n > max(ng, ny, na),

B, (|@ )

2
) < c3(1+tz]), ¢ = (2,y) € D,.

The lemma now follows on setting to = ©; and Ny = max(ng, ny,ny). B

The following proposition yields the tightness of
n n -1 . _
{Prod"(t) o= (zy) ]zl <Mt>0n>N}

for all M > 0 and N sufficiently large. Proof is similar to that of Lemma 3.3.5. For

completeness, a sketch is given in Appendix.

Proposition 4.2.2. There ezist Ny € IN and & € (0,00) such that for M > 0,

sup sup sup ki, (e’%|Qn(t)|) < 00,
n>Na p€CpNDy >0

where Cyy is defined as below (3.3.11).

The following two propositions will be needed in the proof of Theorem 4.1.1.
Proof of the next proposition is identical to that of Proposition 4.2 of [11] and thus

is omitted. For ¢ € (0,00) and a compact set F C S, let

(o) = inf{t > o: ®"(t) € O}. (4.2.8)
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Proposition 4.2.3. Let f : S — IR, be a measurable map. Define for o € (0,00),

()
Gn(p) = E, (/0 f(<1>”(t))dt> , ¢ € Dy,

Assume

sup sup Gp(p) < oo for every M > 0. (4.2.9)
n eCpyNDy

Then there exists a k € (0,00) such that, for alln € IN,t € [p,00) and z € D,,

FE Gu(@(0) + ¢ [ B (1(@()ds < {Gali) + &

By Proposition 4.2.1, there exists A € (0,00) such that for |z| > A, ¢ = (2,y) €
D, and n > Ny,

£, (|@ k0] ) < 31

where t, and N; are as in Proposition 4.2.1. The following proposition is proved

exactly as Proposition 4.2 of [9] and thus the proof is omitted.

Proposition 4.2.4. There exists N3 € IN and ¢y € (0,00) such that for all n > Nj

and ¢ € D,

sup B, (/O (1 + ‘@"(t))) dt) <o (1+]27),

n>N3
where T = 75, (toA) (see (4.2.8)), to, A are introduced above and Cy is defined below

(3.3.11) with M replaced by A.

Proof of Theorem 4.1.1: From Proposition 5.2, it follows that for alln > Ny, Z™
has an invariant probability measure on D,,. Denote by {m, },>n one such sequence of
invariant measures, where N = max(Ns, N3) and Ny, N3 are as in Propositions 4.2.2
and 4.2.4, respectively. Since 7 is the unique invariant measure of the Feller-Markov

process (®, {P,},es), we have from Theorem 2.3.2 that it suffices to establish the

100



tightness of the family {m,} (regarded as a sequence of probability measures on S).
We apply Proposition 4.2.3 with f(z) =1+ |z|,z = (z,y) € S and ¢ = tyA,F = Cy,
where ¢y and I" are as in Proposition 4.2.4. Note that condition (4.2.9) in Proposition
4.2.3 is satisfied as a consequence of Proposition 4.2.4. To prove the desired tightness
we only need to show that, for all n > N, (m,, f) < ¢; < oo. Note that for any

nonnegative, real measurable function ¢» on S and n > N,

/ E. ($(2"(1))) mu(dz) = (7o, ). (4.2.10)

n

Fix k € IN and t € (p,00). Let for z € D,,

By (4.2.10), [, ®,(2)m,(dz) = 0. From Proposition 4.2.3,

0= /n@n(z)wn(dz) > / G /Ot E.(f(Z2"(s)))ds — H) 7o (d2).

Recalling (4.2.10), we have that (m,, f) < k. The result follows. W

4.3 Appendix

Proof of Proposition 4.2.2 (sketch): Define, for j € IV,

= sup [M(s) = MM(j — DA) + B2(s) — BX((j — 1)A)].

(J—DALs<GA

Along the lines of proof of Lemma 4.4 in [4], we have that for all ¢ € IV,

T(Q™(qA)) < T(z)+2A + i(%l@lyy —A)

Jj=1
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< T(z) +2A+ max » (26,017] — A).
1<i<q ~ ]
J:

Hence for «, My € (0, 00),

P, (T(@"(qA)) > M0)> < i P, (2m@1 i V> Mo+ (g—1— 1)A — T@))
1_FE, (exp{ng@l ?:l vy )
S ep{S(TE) A= M) i)

=1

Let ¢; = 2k107. We claim that there exist constants ¢y, Ag,n € (0,00) and N € IN
such that

sup sup e 0B, (e ]F@_I)AO) < e Ao, (4.3.1)
n>N jeN

where F}* introduced below (4.1.2). Suppose, for now, that the claim holds. Then by

the Markov properties of ™ and Y, we have that, for n > N and ¢q € IV,

P, (T(@"(aBo) = Mo) ) < exp{so(T(=) + B0 = Mo)} Y exp{—colg — L+ 1o}

- exp{so(T'(2) + Ao — M)}
- 1 —exp{—nAo} .

Consequently, there exists constant x; € (0,00) such that for all M € (0, 00),

Sup sup sup E¢(€”1|Qn(qA°)|) < 00.
n>N 120 gl <M

The result now follows by a standard argument, using the Lipschitz property of I.

Finally we prove the claim in (4.3.1). Note that

vi < sup  [M"(s)) - M"((j— DA+ sup |Bl(s) — B((1 — 1A
(—1)A<s<GA (—1)A<s<jA

(4.3.2)
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Following the proof of Lemma 3.3.3 (see arguments between (3.3.7) and (3.3.9)), we

can find ¢y € (0,00) for all j € IN, ¢, A € (0, 00),

J-DA<s<GA

E, (exp {a( sup  |BX(s)— BX((j — 1)A)|} ‘ f@—l)A) < 8exp{cas(14+s+sA)}.

Furthermore, following the proof of Proposition 3.2 in [9] (see arguments below (7.4)

therein). We can find ¢3 € (0, 00) such that for j € IV, ¢, A € (0, 00),
E, (exp {a - osup |M"™(s)) — M™((5 — 1)A)]} ‘ f61)A> < 8exp{cs?A}.
(I-1)A<s<GA
By Holder’s inequality, for j € IV, ¢, A € (0, 00),
exp{—cA}E, (eXP{§C1Vf}|]:("jfl)A) < 8exp{cicas +2c3cas? +2(Eey +ies) P A — gAY
Finally, choose appropriate (small) ¢y and (large) Ay such that

log 8 + c1ca60 + 261 each + 2(cies + Gies) G A — A = —nl,

for some 7 € (0,00). The claim follows. M
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Chapter 5

Action time sharing policies for ergodic
control of Markov chains

5.1 Introduction

Markov Decision processes are used extensively as the simplest models that involve
both stochastic behavior and control [42]. A common measure of performance is the
long-time average (or ergodic) criterion. Given all relevant parameters, a typical goal
is to find a simple (e.g. feedback, or deterministic stationary) policy that achieves the
optimal value.

The goal of adaptive control is to obtain an optimal policy, when some relevant
information concerning the behavior of the system is missing. The relevant infor-
mation needs to be obtained while controls are chosen at each step. The classical
approach is to design an algorithm which collects information, while at the same time
choosing controls, in such a way that sufficient information is collected for making
good control decisions, in the sense that the chosen controls “approach optimality
over time.” Existing results include general solutions for the case of countable state
space, and specify an estimation and a control scheme (see [6, 38| and references
therein). For a more refined criterion of optimality for the adaptive case see [1, 14].
A different approach to this issue, including PAC criteria, can be found in the large

literature on Reinforcement learning, e.g. [15]. For results on adaptive control in the



non-countable setting we refer the reader to [28, 21, 25] and references therein: these
deal with the classical setup and with parameterized models.

We are concerned with a more elementary question, namely: What are the basic
controlled objects that determine the cost? Since the objective function (see (5.2.2)) is
defined as a Cesaro limit, we can expect that a similar Cesaro definition of the choice
of controls would suffice to determine the cost. Indeed, [2] shows the following, for
the case of countable state and action spaces. Let ¢ be a stationary Markov control,
namely it is a map from the state space X to the space P(A) of probability measures
on the action space A. Together with an initial distribution p on X and a transition
probability kernel Q : X x A x B(X) — [0, 1], such a Markov control determines a

probability measure ¢ on the infinite product space Q = (X x A)®> by the relation

P ((Xo, Ao) € Eo, (X1, A1) € By, -, (Xg, Ag) € Ey)
/ / / (zk, dag) Q(xk—1, ak—1,dxy) - - - q(x1, dar) Q(xo, ap, dz1)q(xo, dag) p(dzy),
eJe  JE,

Eo,El,"' ,EkGB(XXA), kEW@,

where (X, Ar)rem, is the canonical coordinate sequence on (2. Defining a general
admissible control policy requires additional notation and thus a precise description
is postponed to Section 5.2. Roughly speaking, such a policy is defined in terms of
a non-anticipative sequence {m }1epn, of P(A) valued random variables and, through
a formula similar to the above display, describes a probability measure PPj on 2. An
admissible control policy 7 is called an ATS policy for a stationary Markov control ¢

if the conditional frequencies:

Sl X =2, A =a)
0 X ==}

fr(a]x) = — q(z)(a) =q(a | x), (5.1.1)

for all (z,a) € Xx A, P7, a.e. The paper [2] shows that for such a 7, for any bounded
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one stage cost function, the costs (5.2.2) under P, and under PJ, are the same. Such a
result says that the control decisions can deviate from those dictated by the Markov
policy ¢, and still produce the same long term average cost, as long as the conditional
frequencies converge to the correct values. This flexibility is useful in many situations,
some of which will be described towards the end of this Introduction.

In the current work we are concerned with a setting where the state and action
spaces are not (necessarily) countable. Our main objective is to formulate an appro-
priate definition for an ATS policy which, similar to the countable case, on the one
hand leads to long term costs that are identical to those for the corresponding Markov
control, while on the other hand allows for flexible implementation well suited for vari-
ous estimation and adaptive control goals. Clearly, conditional frequencies of the form
in (5.1.1) are not suitable when ¢(z,-) and Q((z,a),-) are not discrete measures. In
Section 5.3 (Definition 5.3.1) we propose a definition of an ATS policy given in terms
of suitable conditional frequencies over a sequence of “converging partitions” of the
state space X. We show in Theorem 5.3.1 that, under suitable stability, irreducibil-
ity and Feller continuity conditions (Assumptions 5.2.1, 5.2.2 and 5.2.3) occupation
measures for state and action sequences, under an ATS policy given as in Definition
5.3.1, converge a.s. to the same (deterministic) measure as under the corresponding
Markov control. Such a result in particular shows that long term costs for a broad
family of one stage cost functions, under the two control policies, coincide.

We now comment on the usefulness of such a result. To see the flexibility that
ATS policies offer let’s first consider the countable setting. Consider the elementary
model where X is a singleton and A is a finite set. A Markov control in this setting
is just a single probability measure on A and the long term cost for a typical one

stage cost function ¢ : A — [0,00) under ¢, by the strong law of large numbers is
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= [, < A C . Also, the corresponding asymptotic mean square error:
N-1 2 9
lim [E? c(A c(a)q(da) | = 7
N—oo k*O ]\/v7

where 0® = [, (c(a) —c4)?q(da). Tt is easy to see that one can construct an ATS policy

7 for the Markov control ¢ (cf. Lemma 5.4.1) under which, for some a(c) € (0, c0)

1 == a(c)
¥ 2] [ elagtdn) < 5 P e
N A N
k=0
and thus the asymptotic mean square error under 7 is ;(f ).

The above simple example illustrates how ATS policies can be used to develop
variance reduction schemes for ergodic control problems. Additionally, ATS policies
provide much flexibility for sampling (namely using controls without regards to the
ensuing cost), for example for the purpose of collecting information. This could be
information which is related to the main optimization objective, but could also be
other information which is of interest. Consider, for example, the following elementary
setting. Suppose that X = {—1,0,1} and A = {a,b}. Suppose that the one stage

cost function is given as
c(£1,a) = c(£1,b) =0, ¢(0,a) =1, ¢(0,b) =2
and the transition probability kernel is defined as

Q((0,0).) = 36 ()+ 50 () QUOB)) = By () + (1= B3y ()

O((r,0),) = 1) + 500y (% Qb)) = (1= )5y () + 2000y (), == 1,

where 0 < 8, < 1. If our goal is the minimize to average cost, then we prefer to
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stay at states +1, and so we should use a at all states if v > %, but use b at states
+1if v < % Thus, from the optimization point of view, we need to find v but g is
irrelevant.

Since the probability that X; = 1 is bounded below for ¢ > 1, consider the
following estimation procedure for v. Action b will be used at time ¢ if X; = +1 and

in addition ¢t = 10" for some integer n. Let

;}/t _ Z:L:l 1{X10m = :l:l, X10m+1 — 0}
Yo H{Xgm = £1}

for 10" < ¢ < 10"+ . (5.1.2)

This estimator converges to v a.s. under any policy that is consistent with the above
requirement for time instants t = 10", n € IN. In particular, we can now choose
the following policy: At ¢t # 10™ use b iff X; = +1 and 4; < % It then follows that
there is some (random) time so that, at all later times, the optimal policy is used. It
is easy to check that the above recipe defines an implementable ATS policy for the
(unknown) optimal stationary policy and is thus optimal as well. Furthermore, we
can modify the above policy slightly to define a new ATS policy that also delivers
estimates for 8, with no effect on the cost. This is done similarly to above: use action
b at state 0 at time ¢ if X; = 0 and in addition t = 10" for some integer n. An
estimator as in (5.1.2) will be consistent. Since the number of time points where b
is used increases logarithmically it is easy to see that the limits in (5.1.1) are not
affected, and consequently the limiting cost does not change.

The above example illustrates the use of ATS policies for estimation and adaptive
control for a rather elementary setting. However similar ideas are applicable for
general state and action space models as well. In Section 5.4.2 we show how ATS
policies introduced in Section 5.3 of this work can be used for estimation of unknown
model parameters and in Section 5.4.3 we describe how they can be used for adaptive

control problems as well.
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The rest of the chapter is organized as follows. In Section 5.2 we begin with some
preliminary definitions and the main assumptions on the controlled dynamics. Section
5.3 introduces the definition of an ATS policy through a sequence of “converging
partitions” of the state space. The section also presents the main convergence result
for occupation measures associated with an ATS policy. Finally, in Section 5.4 we
describe how ATS policies can be constructed and used in settings with incomplete

model information.

5.2 Definitions and assumptions

The following notation will be used. For two measurable spaces (£21,F;) and
(Qs, F2), the space of F;/F; measurable maps from Q; to s will be denoted as
M(Qq, Fy 2 Qo, F2). When (Qo, F2) = (R, B(R)), we will merely write M (€, 1)
and if Fi, Fy are clear from the context, we will write M(Q; : Q) and M(Qy),
respectively. The space of all probability measures on a measurable space (€2, F) will
be denoted by P(Q2, F) or P(2), when clear from the context. Borel sigma fields on
a metric space T will be denoted by B(T). If (0, F) = (T,B(T)) for some complete
and separable metric (Polish) space T, we will endow P(Q) = P(T) with the the
topology of weak convergence. We recall the definition of Bounded-Lipschitz norm

on P(T) for a Polish space T. Let

where d is the metric given on 7. For vy, € P(T) denote

/wdul - /ﬁ)duz

V1 — volls = sup
$eC1(T)
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This norm metrizes the topology of weak convergence making P(7) a Polish space.
Throughout we will consider P(7) with this metric. The class of real valued contin-
uous and bounded functions on a metric space 7 will be denoted by Cy(T). Choo(T)
will denote the subset of Cy(7) consisting of all uniformly continuous functions. A
class S C Cy(T) is called separating in (7,B(7)) if whenever p,v € P(T) and
[ fdp = [ fdv for all f € S, then y = v. Since T is Polish, one can find a count-
able collection in C,,.(7) that is separating and we shall use the notation S(7)
to denote such a class. It is easy to check that if 77,7 are Polish spaces then
{f®@g:feS(T),g € S(T2)} is separating in (71 x Tz, B(T1) @ B(T3)). Given a subset
C' of a metric space T with a distance d, we define diam(C') = sup{d(z,y) : x,y € C}.

We will consider a controlled stochastic dynamical system in discrete time (i.e.
parametrized by the discrete index set Ny = {0,1,2,...}) with state space X that
is a complete and separable locally compact space. A Polish space A will represent
the control (or action) space. For each z € X we are given a compact set U(x) C A
representing the set of admissible actions when the system is in state + € X. We
assume that K = {(z,a) : z € X,a € U(z)} is a measurable subset of X x A. The

dynamics of the controlled Markov chain is described in terms of a transition kernel

Q: K x B(X) = [0,1]

satisfying:
(i) For all (z,a) € K, Q((x,a),-) = Q(- | (x,a)) is in P(X) and;
(i) for every C' € B(X), Q(-,C) € M(K).

Roughly speaking, denoting the state and control processes by (X;)ien,, (At)teno,
respectively, Q(C' | (x,a)) represents the conditional probability of {X; € C} given
that {Xo = z, 49 = a}. A convenient way to give a precise formulation of the

controlled system is through canonical sample spaces (cf. [3]), as follows. Let Q =
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(X x A)®>* and denote by F the Borel o field on 2 corresponding to the product
topology. Define sequences { X }ien,, {At}ien, of X and A valued measurable maps,

respectively, on (2, F) as follows:

Xi(w) = zy; Ay(w) = a, where w = (g, ag, - x¢, a4, -+ ), t € Np.

We also introduce the sequence of History maps, { H, }ien,, Hy : @ — H;, where

H, = (X x AP x X teN; Hy=X

as Hy(w) = (zo, a0, - Ty—1,a4-1, ;). Let

H, = (B(X x A)®Y ® B(X), and H, = o(H,) = H; ' (Hy).

Note that F = /2, Hi.
By a controlled system we will mean a probability measure on (2, F) that is

described in terms of an admissible control policy which is defined as follows.

Definition 5.2.1 (Admissible Control Policy). A sequence m = {m; }ien, of kernels,

m - Hy x B(A) — [0, 1] satisfying for all ¢t € Ny:

(i) (e, -) = m(- | he) is in P(A), for all h, € Hy;

(ii) 7 (-, D) € M(H,, H,), for all D € B(A);

(iil) 7 (he, U(xy)) = 1, for all hy = (z9, ag, - - - -1, 41, ;) € Hy,
is called an admissible (control) policy.

The set of all admissible policies is denoted by II. Given p € P(X) and 7 € I,

there is a unique probability measure Pj, on (€2, F) satisfying:
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P1(Xo € C) = (), C € B(X),

PT(A, € D | Hy)(w) = m(D | Hy(w)), PT as.,

Pr((X¢(w), Ar(w)) € K) = 1 for all t € INy.

P7 (X1 € C | Hi, A))(w) = Q(C' | Xi(w), Ai(w)), P as.

The measure P} represents a controlled system with initial distribution p and an
admissible control policy @ € II. The corresponding expectation operator will be
denoted by Ej. If pn = 9., we will write P} and Ej as P7 and E7, respectively.

A family of admissible policies that are particularly useful are the so-called station-
ary Markov policies. These correspond to those 7 € II for which there is a measurable
map ¢ : X — P(A) such that m;(hy, -) = q(xy)() for every hy = (z9, ag, - T4—1, 41, %) €
H;. The class of all such policies is denoted by Ilg, and frequently we will identify
a policy m € Ilgy with the associated map ¢. Note that for every u € P(X) and

T = q € Ilgy , (Xi)ten, is @ Markov chain under P, with transition probability kernel

04(x,C) = /A Q((z,a),C)q(x,da), (z,C) € X x B(X). (5.2.1)

If ¢ € Ilgy, is such that the map x + ¢(z) is continuous (from X to P(A)), we will
refer to q as a continuous stationary Markov policy and denote the class of all such
policies by Igyc. Occasionally, for x € X, we will write ¢(z)(-) as ¢(- | x).

The next step in the formulation of a control problem is the introduction of the
cost function that one will like to optimize. Here we are interested in a criterion that
is designed for system optimization over a long time horizon. This criterion — usually
referred to as the pathwise cost per unit time, or long time average cost — is given in

terms of a measurable map ¢ : K — R, called the one stage cost function, as

112



N-1
1
Jg = lim sup N Z (X, Ay), (5.2.2)

N—oo —0

where the right side above is a R = RU{oo} valued random variable on (2, F). Under
suitable conditions one can show that there is a 7* € IT and V' € [0, 00) such that,

for all 4 € P(X), P} (Js = V) =1 and for all 7 € II, Pj(Jg > V) = 1. Such a 7* is
then an optimal control for the problem. One typically finds that 7* can be taken to
be an element of Ilgy (i.e. a stationary Markov policy). For precise conditions under
which the above statements hold we refer the reader to Section 6 of [3]. In this work
we are not interested in the optimization of a particular one stage cost function but
rather in the study of control policies that perform well over a broad family of cost

functions. In that regard the following occupation measure plays a key role.

For N € N, define a P(X x A) valued random variable, ®y as

=

By (w)(F) = % (X, (), Aw)), F e BX x A), we Q.

t

Il
o

We will make the following assumptions. The first two can be regarded as blanket

stability conditions while the third is the weak Feller property.

Assumption 5.2.1. For each p € P(X) and © € 11, the sequence of probability

measures {®n(w), N € N} is tight, for P a.e. w.

If X and A are compact, the above assumption holds trivially. More generally,
one can formulate conditions in terms of suitable Lyapunov functions that ensure the
above almost sure tightness property. Recall that for every u € P(X) and 7 = ¢ €
sy, (Xi)ien, is a Markov chain under P7 with transition probability kernel defined

by (5.2.1).

Assumption 5.2.2. For each q € Ilg,, the Markov chain with transition kernel o,

has a unique imvariant probability measure denoted as \;.
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Remark 5.2.1. Note that if ¢, ¢ € Ilgy and ¢(x) = G(x) for A\, a.e. z, then A\, = \;.
Indeed, for C' € B(X)

M(C) = / 02 ON(dr) = [ Q((x,a), C)q(z, da)rg(de)

XxA

— Q((z,a), C)j(x, da) A\, (dz) = /X 0q(x, C)Aq(dx).

XxA

Thus A, is an invariant probability measure for the Markov chain with transition

kernel g; and consequently, from Assumption 5.2.2, A, = A;.

Assumption 5.2.3. For every f € Cy(X), the function (z,a) — [, f(%)Q((x,a), dZ)
is in Cp(X x A).

Assumptions 5.2.1 — 5.2.3 will hold throughout this work and thus will not be

noted explicitly in the statement of results.

5.3 Action time sharing policies

For the rest of this work we will consider a ¢ € Ilg,,c which leads to close to optimal
performance for the controlled system. Indeed, as remarked earlier, under suitable
conditions on the one stage cost function, the transition kernel Q and spaces (X, A),
one can show that an optimal control can be found in the family Ilg,,. Under further
smoothness and non-degeneracy conditions one can obtain a sequence of controls
in Ilgye such that the associated costs converge to that for the optimal control; in
particular for every € > 0, we can find a e-optimal control that belongs to Ilgyc. In
applications one often encounters controls which are continuous except across some
“boundary” surfaces: these may be, for example, regions where some queue is empty.
Such discontinuities may be handled by re-defining the metric so that these surfaces

become “isolated.” However, in order to focus on the main issues, we shall not pursue
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this extension here. Although we will not appeal to the (near) optimality properties
in our proofs, the control ¢ considered above can be regarded as such an e-optimal
control. Our main goal is to construct, for a given ¢ € Ilgye, a family of control
policies that allow for much more flexibility in implementation than ¢ and lead to the
same cost value (as that for ¢) for a broad range of one stage cost functions.

Define 6, € P(X x A) as

6,(C'x D) = / o(2)(D)\,(dz), C € B(X), D € B(A).

C

An immediate consequence of assumptions made in Section 5.2 is the following lemma.
The result can be deduced from a more general result given in Section 5.4.2 (Lemma

5.4.2) and thus the proof is omitted.

Lemma 5.3.1. For each 1 € P(X) the sequence of probability measures {®y(w), N €

N} converges weakly, as N — oo, to 6,, for Pl ae w.

Lemma 5.3.1 in particular says that, if the one stage cost function ¢ € C,(X x A),
then the pathwise cost per unit time associated with ¢, namely Jg (see (5.2.2)), in
fact exists as a limit and equals [y, c(x,a)fy(dzda), P4 a.c.

We now introduce a family of control policies that are quite flexible and are also
well suited for estimation of unknown parameters and for broader information col-
lection purposes, referred to as action time sharing (ATS) control policies. An ATS
policy associated with ¢ will be such that the corresponding pathwise cost per unit
time is the same as that for ¢. Such a policy is defined in terms of a sequence of
measurable partitions {Ay}r>1 of the state space X:

(k)

Ar = {Bu}[Y, X = U By, BN B =0 if 1 £ 1 (5.3.1)

=1

such that [Ay| = sup,cpq) diam(By) — 0 as k — oo, where R(k) = {1,--- ,7(k)}.
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By convention, when 7(k) = oo, R(k) = IN. We refer to {Ar}r>1 as a sequence
of converging partitions. Associated with such a sequence, consider a sequence of

random kernels {py }x>1,

e Q2 x X x B(A) — [0,1]

defined as follows: For (w,z,D) € Q x X x B(A) and k € IN, fix [ so that € By,.

Then set
b0 1n(A;(W)1B,, (X;(w))
L if 1 0
pe(w, 2, D) =pf(D | z) = 350 14y (X5(w)) Zﬂ —o Lo (X;(w)) #
1{a0($)€D} if Z] =0 1Bkl( (w)) =0
5.3.2)

where ap : X — A is an arbitrary fixed measurable function such that ag(z) € U(z)

for all x € X.

Definition 5.3.1. Given p € P(X), a policy 7 € II is called an action time sharing
(ATS) policy for g corresponding to the initial condition p if for P7 a.e. w, there is a

sequence of converging partitions {Ag(w)}x>1, such that for every compact set K C X
sup [[p(- | #) = (- | #)lls. = 0, as k — oo. (5.3.3)
faS

We denote the collection of all AT'S policies for ¢, corresponding to the initial condition

,LL, by HATS(Q? :u)

The following is the main result of this section.

Theorem 5.3.1. Let pp € P(X). Fiz 7 € H,p5(q, ). Then, as k — 0o, Pr(w) — 0,

or P™ a.e. w.
o

Proof. From Assumption 5.2.1 we can find N; € F such that P7(N;) = 0 and

116



for all w € NY, {®,(w)}n>1 is tight. For f € S(X), define
n—1
ML =X | [ 1@)0x4).d) - 706,
j=0 L/X

Then, under P7, {M/} is a martingale with bounded increments and so by the strong
law of large numbers for such martingales (see eg. [44, Theorem VIL5.4]), £ M] — 0,

a.s. PT. Let Ny € F be such that P7(N3) =0 and
1
for all w € N5, and all f € S(X), =M/ (w) =0, as n — oo. (5.3.4)
n

Since X is locally compact, we can find a sequence {K,,},>1 of compact subsets of X
such that

K, Cc K, CK;_,, and U,> K, =X

Since m € Ilirs(q), we can find a N3 € F such that P7(N3) = 0 and, for each

w € N¥, a sequence {Ag(w)}r>1 of converging partitions for which, as k — oo,

sup — 0, for every n > 1 and g € S(A),

xGKn

/A glapitda | 2) - [ glagtda o

A

(5.3.5)
where py, is defined through (5.3.2). Now let N = AN} UMN, U N3 and fix w € N
Choose a subsequence {n;} along which ®,, (w) converges to some ®(w) € P(X x A).
Suppressing w in notation, the measure ® can be disintegrated as follows: For some
v € P(X) and a transition probability kernel p : X x B(A) — [0,1], ®(dzda) =

p(z, da)y(dzx), namely

®(C' x D) = / p(z, D)vy(dx), for all C' € B(X),D € B(A). (5.3.6)
c
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Note that p(- | ) = p(x, ) € lgy. We claim that
v = (5.3.7)

To prove the claim it suffices, in view of Assumption 5.2.2, to show that for all

fesX)

/xm </f (.a) dx)) plda | z)y(dw) /f (5.3.8)

. . .. 1 ne—1
Note that the right side of (5.3.8) equals the limit (as k — oo) of ;=3 7% " f(X;(w)),

while left side equals (using Assumption 5.2.3) the limit of

LY [ @0 A da).

Also, from (5.3.4), the difference of the above two quantities approaches 0 as k — oc.
This proves (5.3.8) and thus (5.3.7) follows. To complete the proof of the theorem we

will now show that for every f € S(X) and g € S(A)

f(x)g(a)g(da | x)Ap(d) = f(x)g(a)p(da | x)Ap(d). (5.3.9)

Xx A XxA

This will prove that ¢(- | z) = p(- | z), a.e. = [As], and consequently, from Remark
5.2.1, A\; = A, Now fix a (f, g) € S(X) x S(A). We first show that

lim
k—o0

f(2)g(a)pn,(da | )P} (dw) f(x)g(a)q(da | x)Ap(dx)| = 0,  (5.3.10)

Xx A XxA

where CD%) is the first marginal of ®,,,. Let

o(z) = / 9(@)pm (da | 2), B(z) = / g(@)q(da | 7), z € X.
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Since w € N§, we have (see (5.3.5)) that for every compact K in X
sup |¢x(z) — ¢(x)] — 0, as k — oo.
reK

Also, from (5.3.7)

Since ¢ € gy, ¢ € Cp(X) and thus combining the above two displays, we have, as

/f )i ( (ID(I)dx—>/f dz).

This proves (5.3.10). We now show

k — oo,

f(@)9(a)pn(da | 2) @) (dz) — f(x)g(a)®y, (dadr)| = 0. (5.3.11)

XxA Xx A

lim
k—oo

Suppressing w from the notation, suppose that Ap(w) = Ay is given as in (5.3.1).

Along with the sequence {Ay}r>1 we consider a sequence of sets
X, = {Ikh s l‘kT(k)} C X, k>1 (5.3.12)

such that xy € By for all [ = 1,---7(k). We will refer to xy; as the center of the set

By;. Define, for £ > 1, b, : X — X as

7(k)
ZxkllBkl , r e X.

Fix € > 0. Since f is uniformly continuous and |A,| — 0 as n — oo, we can find

no € N such that

sup sup |f(z)— f(y)| <e, for all n > ny. (5.3.13)
lER(n) x,y€By;
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Fix ky € IN such that n, > ng whenever k > ky. For k > kg

Z?’“olQ(A')l{bnk(z)}(bnk(Xj))
350 Lo (00, (X))

t/;g<a>pnk<da| 7) =

This shows that

1 ] E:nkolg(/b)l{hz(XD}(bnk(X%))
K d Q:L d - Xz ! . :
XA S @)g{@)pr,(da | 2)n, (dr) T Zo e 0 Ly (x (b (X))

Note that b, (X;) = b, (X;) if and only if X; and X; are in the same B,,; and in
that case, whenever k > ko, |f(X;) — f(X;)| < e. Using this observation the right

side of the above display can be written as

n 1 n 1
1 i JkO )9(A) L, (x0)3 (b (X)) (b,
Nk

i=0 1{bnk X0} (0n (X5))

where |w(k)| < esup,ey |g(a)| for k > ko. The first term in the display can be written

as

_gf ZWW><mmwm>

i=0 =1 W Zﬁoll{fvnkz}@nk()(j))
T(nk ni—1 np—1
1 : >t F(X5)a(A) e, 3 (ba (X))
oy ZZ; (Z; Bl ) St g, (X))
7(ng) np—1
= 3 A O (X))
I=1 j=0
= 3 AXe(A)
j=0
= f(x)g(a)®n, (da dz)
XxA
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Thus for k > kg

g AJ"“(x)g(a)pnk(da | 2) @y, (dz) — g Af(x)g(a)‘l%k(da dx)

< |w(k)| < esup|g(a)l.
a€A

Since € > 0 is arbitrary, this proves (5.3.11). Combining (5.3.10) and (5.3.11) we have

lim =0.
k—oo

f(x)g(a)®n, (da dr) — f(@)g(a)q(da | x)As(dx)

XxA XxA

The above display, along with (5.3.6) and (5.3.7) yields (5.3.9) and, as noted above
(5.3.9), shows that ¢(- | ) = p(- | ), a.e. x [Ay], and Ay = A;. Thus ® = 6, and the
result follows. Il

As a immediate corollary of the above theorem and Lemma 5.3.1 we have to
following result on the convergence of costs. The result says that for a broad family
of one stage cost functions, the pathwise cost per unit time for ¢ is same as that for

any 7 € 1s(q).

Corollary 5.3.1. Let p € P(X) and © € I,15(q, 1r). Then for any c € Cp(X x A),
Js defined by (5.2.2) in fact exists as a limit and equals [ c(x,a)f,(dzda), both, a.e.
P7 and P},

5.4 Construction of ATS policies

In this section we will give a basic construction for a m € I,15(q, p) for an arbitrary
q € Hgye and p € P(X). We will then describe how this construction can be modified
in a simple manner to define control policies that are well suited for estimation and
information collection purposes while producing the same value for the pathwise cost
per unit time. To keep the presentation simple we assume that U(x) = A and that A

is a compact metric space. We will further make the following recurrence assumption.
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Assumption 5.4.1. For every m € II, p € P(X), and C € B(X) with a nonempty
mtertor,

PL(X: € C, for somet € N) = 1.

The above assumption will hold throughout this section.

We begin with the following lemma. Let
© = {9 € P(A) : 9 is supported on finitely many points .} (5.4.1)

For ¢ € ©, denote by S(¢#) the support of 9.

Lemma 5.4.1. There is a WV = (Vy,---) : © — A such that for every ¥ € ©: (i)
U;(9) € S(V), i > 1; (ii) The probability measure m,,(9) = £ 37" | by, () satisfies

4 #(5())

n

[Imn(9) = O[5 <

where #(S(1)) is the cardinality of S(0).

Proof. Fix 9 € ©. Then ¥ can be written as

l
V= ij(saja
7j=1

where [ = #(5(¥)) € N, a; € A, p; € (0,1}, and Z;:lpj =1

Define, form € Nand 7 =1,...,1,
kj(m) = [mip;], and a(m) =) k;(m).
Set «(0) = 0. It is easily seen that

(m— 1)l < a(m) < ml, (5.4.2)
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and so a(m) — 0o as m — o0.
We now define a sequence {¢;}32, with values in A, such that, for each m > 1
andr=1,...,[,
#{je{l,...,a(m)}:¢; =a,} = k,(m). (5.4.3)

One can define {1;}32, inductively as follows.

Consider m = 1. Define

r—1 r

¥; = a, whenever Zkl(l) <j< Zki(l)ﬂ“ =1L

i=1 i=1
This defines {1, }?Sl). Suppose now {1); };‘gf) has been defined such that (5.4.3) holds
with m = N. Assume without loss of generality that (N + 1) > «a(N). We now
define {1, }70 1), . Note that k,(N+1) > k(). Let b,(N+1) = k,(N+1)—k,(N),

and set

r—1 T
Y; = a, whenever oz(N)+Zbi(N+1) <j< a(N)—i—Zbi(N—I—l),r: 1,---L

i=1 =1

This completes the definition of {zﬂ]} alfiel),

Define ¥;(9) = #;,j € N. Fix n € N such that a(N) <n < a(N + 1) for some
NeN If N=0,

n

%Zf Zpl a;)| <2<

Jj=1

[ (0) — 0| = = sup

feci(h)

n l
1
w200 = 2 b
J=1 =1 BL
where the last inequality follows from (5.4.2). Consider now the case N > 1. Then

||mn(79) - ﬁ”BL =

1 n l
E Z 5¢j - Zpiéai
j=1 i=1

BL
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1< : 1<
< — k‘z N i) — 4 i - J
< o | [p S s @ - Sopse) v\ 30 1)
l ki(N) — np; a(N +1) —a(N)
- 2_: : ) ‘ (5.4.4)

By (5.4.2),
a(N+1)—a(N) < (N+1)l—(N-=1)=2L

Also, for j =1,---1,
kj(N) —np; < Nlp; —np; < Nlp; — a(N)p; < Nilp; — (N — 1)lp; < lp,,
and
kj(N) —np; > Nlp; =1 — (N + 1)p; > Nip; =1 — (N + 1)Ip; = =1 — Ip;.
Using the above estimate in (5.4.4) we now have
() = Ol < .

The lemma follows. .

5.4.1 A basic construction

Fix ¢ € Ilgye and p € P(X). We now give a pathwise construction of a 7 €
Mars(q, ). Let {[\k}kzl be a sequence of measurable partitions of X:
7(k)

Ae = {Buy), X = Bu, BunBuw =0if L £ (5.4.5)

=1
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such that |Ay| = SUD;c (k) diam(By) — 0 as k — oo, where R(k) = {1,--- ,7(k)}.
Each Bkl is required to have a nonempty interior. Also, we assume that the sequence
Ay, is nested, namely, for every k> 1 and [ € R(k + 1), there is a I’ € R(k) such that

B(kﬂ)l C Bkl/. We also assume that for any compact K C X and k > 1,

Associated with the sequence {A;}, we define sets {X;} and maps {b;} analogous to

as below (5.3.11). Namely, for & > 1
Xk = {Tp1, - - fikf(k)} cX, (5.4.6)
is such that 7, € By, for all | € R(k) and by : X — X is given as

be(x) = ) dulg,(x), € X
I€R(K)

As before, iy is called the center of the set By. Since z — ¢(- | x) is a continuous

map from X to P(A), we have that for every compact K C X

sup [lg(- | ) — (- | b (1)), — 0, as k — oo. (5.4.7)
S

Next let {A/}1>1 be a sequence of measurable partitions of A:
kSk> q

o(k)
Ny = {Fen ) A= | Foms Fom O Frw = 0 if m # m’ (5.4.8)
m=1

such that ¢(k) < oo for all k and |[A}| — 0 as k — co. Define a sequence of finite sets

Ay = {ap1, -, apey} such that ag,, € Fip, for all m = 1,---€(k). Let, for k > 1,
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b, : A — Ay be defined as

o(k)
b (a) = Z armlp, (a), a € A
m=1

We will now construct a sequence of X x A valued random variables Z = (X, Ay )sen,
on a suitable probability space (Q,F,P) such that X, has probability law x and
the probability law of Z corresponds to a controlled system associated with a policy
7w € Mars(q, ). More precisely, denoting the measure induced by Z on (2, F), by
P* (i.e. P* = Po Z7!), we will obtain an admissible control policy 7 = {m; }semv, by

disintegrating, for t € INy, the measure P, = P* o (Hy, A;)~' € P(H, x A), as
P,(dh, da) = m(h,da) P* o H; ' (dh). (5.4.9)

Note that with 7 defined through the above equation, we have that the controlled
system IP’Z = P*. The construction of (Xt, flt)teNo will be carried out in a recursive

fashion such that
P(Xen € C [ (X}, 45),5 <) = Q((Xe, A4), 0), C € B(X), t € INp.

The recursive construction of the sequence (A;) is described in what follows.
Let { K, }n>1 be the sequence of compact sets in X introduced in Section 5.3. Let,

for r > 1, by relabeling sets if needed,
]\8 = {BTla T Brj(r)} C [\r
be the finite collection of sets such that B,,, € /~\2 if and only if By () K, is non-

empty. For m = 1,---,j(r), define ¢"™ € P(A) as ¢"™ = q(- | xym). Define, for
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r>1,n:PA) = P(A,) as

£(r)
() = 3 8, 9(E), 0 € P(A).

j=1

Note that

sup Hnr(ﬁ) - 79HBL < |AH — 0, as r — oo. (5.4.10)
DEP(A)

Set ¢"™ = n,(¢"™), r > 1. Note that ¢"™ € © (cf. 5.4.1) for all r € N, m < j(r).
Denote

\Ij((jnm) = (er[m7 1]’ er[mv 2]7 T )

Note that by definition of ¥, e"[m,i] € A, for all i, € N | m < j(r). Furthermore,

from Lemma 5.4.1, for every N > 1,

< 4@(7“).
- N

BL

1 N
N Z 567" [m,i] — er’m
=1

The sequences V(¢"™), m < j(r), r € IN, will form the basic building blocks for the
sequence (A;)en,. Let {e,},>1 be a sequence of positive reals such that ¢, | 0 as
T — OQ.
Construction of Z. We are now ready to specify the sequence (X;, 4;) on a suitable
probability space. The definition of the probability space will be implicit in the
construction and a detailed description will be omitted. Let X be a X valued random
variable with probability law pu.

We now define, recursively in r, sequences {&},, s;,, ¢, (¢ [m, K])m=1,.j(r) Fez0, 7 > 1,
as follows.

Case r = 1: Define & = X, and let
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i"[m, 0] =15, (&), m=1,---j(r),
L (5.4.11)
Zm 5 (&), sh=i"[mp, 0], and ¢ = €' [m}, sp).

Note that s; = 1. Having defined {&}, s}, (i, (¢"[m, k] )m=1,jn } for k < ko, define

&kor1 through the relation

P(fzo-i-l eC | ggo) - Q((€£07C£0)7C)7 Ce B(X)v (5'4'12)

where Gi = 0{(£},(}) 1 j < ko}, and set

i(r)
m, ko + 1) = i [m, kol + 15, (Shopa)s m= 1,0 4(r), mir =Y mly (&i1)s
(5.4.13)

and

Spos1 = 1 [m’,;oﬂ, ko + 1], Cror1 = € [m’,;oﬂ, SZOH]. (5.4.14)

This completes the definition for {&}, s, (7, (i"[m, k| )m=1,..j } for r =1 and k € Nq.

Set 09 = 0 and define, for r =1,

ar =, (2001 +4(L(r) +L(r+1))), (5.4.15)
o, =inf{k :i"[m, k] > o, for all m=1,---j(r)}, (5.4.16)
Or = Or—1 + Oy (5417)

Case r > 1: Let

(ggacg) = ( ;:,11 ;:}1)7 ir[ma O] = Ovm = 17 o ](7”)
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Definition of {&}, (i, sy, (" [m, k])m=1,-jor) tr>1 and (ou, 0r, 0r), for r > 1, is given
recursively, exactly as above through (5.4.12) — (5.4.17).

Finally, the sequence (X}, A) is now constructed on the probability space (Q, F, P)
that supports the random variables {&},, (J., s}, (i"[m, k])m=1,.jtr) } 0, (0o, 0, 00), T €
IN, by piecing together the sequence (&}, (r; k,r € INp) as follows,

(X Ar) = (€7, GFL ), whenever o, < k < 0,41, 7 € Ny,

Recall from (5.4.9) the definition of 7 and P7 corresponding to the sequence
(Xk, A )ken,- We now show that 7 constructed in the above fashion is an ATS policy

for ¢ with initial condition .
Theorem 5.4.1. The policy m € 11 constructed above is in I1,.5(q, i).

Proof. From Assumption 5.4.1 it follows that, with Q) = {w € Q : o,(w)

A\

oo for all r > 1}, P(Qg) = 1. Define for w € Qq, (2, D) € X x B(A), pp(w,z,D) =
p¥(D | z) by the right side of (5.3.2), replacing (A4, X;) there by (4;, X;) and {A(w)}

(suppressing w from notation throughout) defined as follows: For k£ > 1,
Ay =Agif o5 <k <p1,8=0,1,---

where A, is taken to be A;. In order to prove the result, it suffices to show that for

all w € Q and compact K C X
sup [ (- | #) = (- | #)ls. = 0, as k — oo. (5.4.18)
xre

Fix now a compact set K C X and € € (0,1). Using (5.4.7) and (5.4.10), choose

129



ro large enough so that for all r > rq, K C K,

sup lq(- | 2) = q(- | br(@))|lo < € (5.4.19)
zeK
and
sup |9 = n.(9)]g < €. (5.4.20)
IEP(A)

We introduce some additional notation. For ¢ > 1 and [ = 1,---j(t), let
na(my,ma) = #{X; € By:mi <j< ma}, 0 <my < mg < 00

and for such my, ma, let py[my, ms] € P(A) be defined as follows: For D € B(A),

(
ntl(ml, mg)_l E;nzzn_“l 1D(Aj)1étl (Xj), if ntl(ml, m2) > 0,

pa[ma, ma] (D) =

\ dao (D), otherwise,

where ag is some fixed element of A.

Fix 8y > 79 + 1 and consider & > pg,. Let 8 € N, 8 > [y be such that g3 <
k < 0p41. We will now estimate the quantity on the left side of (5.4.18) for such a
k. Fix x € K and let i € {1,---j(B)} be such that = € Bg,. Since By = Bj; for

o < k < pgy1, we can write

Pr(- | @) = 0~ (nav + ngva + navs), (5.4.21)

where

v = pi]0, 08-1], V2 = ppilop-1, 08], Vs = ugilos, k|
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and

ny = nﬁz‘(@ 05—1), Ny = nﬁi(@ﬁ—lv gﬂ)a ng = nﬁi(@ﬁy k?), n =mny + ng + ns.

Recall that the sequence {A} is nested. Denote the sets in /~\5+1 that are contained
in B/Bi as G, Go, - -- G, and denote the corresponding centers by gi,--- , g,. Let, for
=1,---y,my =#{X; € Gt : 05 < j <k}. Then

v v
Z m; =nz and vz = ng' Z miVs;, (5.4.22)
t=1 t=1
where )
m; ' Y, (A6, (X;),  if my >0,
l/3t(D> =
dao (D), otherwise.
Then, whenever m; # 0,
406 +1)
Vst = ng+1(a(- | g6))[ler < T (5.4.23)

Also, since § > rg, from (5.4.20), whenever nz > 0,

.
155 = n5" > mug(- | gi)llen < €
t=1

where 73 = n3 ' Y7 mynsia(q(- | gi)), and from (5.4.19)

.
Ins > " mua(- | g0) — (- | )| < 2.

t=1

Thus, whenever ng > 0, |73 — ¢(- | 2)||sn < 3e. Letting oy = 0o = ng(q(- | bg(x))), we
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have by this estimate and (5.4.19), (5.4.20) that

lg(- [ &) = n™" (nain + naip + ns7s) || < 3e.

Also, from Lemma 5.4.1,

4L(B)

ng

HVQ - ﬁQHBL <
and if ng # 0, from (5.4.23), (5.4.22) and Lemma 5.4.1, we have

44 1
v — D|pr, < M
ns

Combining the above three displays with (5.4.21) and the trivial estimate ||vy— [|g, <

2, we have

k(- | ) = q( | @)l < Be+n7" (2ny + 4 (L(B) + £(B + 1))

< 3€—|—€5.

where the last inequality follows on observing that ny < gg_1, n > ny > as and using
(5.4.15). Since z € K and € > 0 are arbitrary and  — oo as k — oo, the result

follows. .

5.4.2 ATS policies for simultaneous estimation and optimiza-
tion

Consider a setting where one has a (near) optimal g € Ilg, for pathwise cost per

unit time associated with some one stage cost function ¢ € Cp(X x A). However, in

addition to cost optimization one has a secondary objective of estimating some un-

known parameter in the model. Consistent estimation may require using actions that
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are not optimal. For example, analogous to the example discussed in the introduc-
tion, it could be that under the policy ¢, estimation is impossible because transitions
do not depend at all on the parameter that need to be estimated and thus one needs
to deviate from the optimal ¢ in order to gain information on the parameter. ATS
policies provide a framework that allows one to introduce such deviations without
“paying a price” in terms of the optimization problem. In this section we describe
the construction of ATS policies for one such estimation problem.

Let ¢ € Tlgyc be as in Section 5.4.1 and ¢ € Cp(X x A). Suppose we are given

another ¢g € Ilgyc and one would like to obtain consistent estimators for

Jp = f(z,a)0,(dzda), f € Cp(X x A),

XxA

while achieving the pathwise cost per unit time [, , ¢(x,a)f,(dzda). We will show
below that by an appropriate modification of the ATS policy constructed in Sec-
tion 5.4.1 one can achieve both goals. We begin by introducing a strengthening of
Assumption 5.2.1.

Let {7k }rev be a sequence of {H; }emv,- stopping times given on (€2, F) such that

Ik <k +mp < g1, for all w € Q

for some my, € IN, k > 1. Write @w = (Jx, mi)rev and let T be the family of all such
sequences. For @w = (g, mg)rew € T, and N > 1, let ®y[w] be a measurable map

from Q — P(X x A) defined as

We will make the following assumption.
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Assumption 5.4.2. Forallw € T, p € P(X) and m € II, {®X[w] : N € IN} is tight

or P™ a.e. w.
“w

We note that the assumption is trivially satisfied if X and A are compact spaces.
More generally, blanket stability conditions in terms of a suitable Lyapunov function
can be formulated under which Assumption 5.4.2 holds.

An immediate consequence of the above assumption and other assumptions from

Section 5.2 is the following.

Lemma 5.4.2. Let w = (jg, mg)rew € T be such that my — oo as k — oo. Let

w € P(X), mell and qy € Mgy be such that for allk > 1 and j € {0,1,---my — 1}
P (A Xoogor) €D 5 C 1 Hy5) = [ @ ((X,145,0), €)Xy,
forall D x C € B(A xX), a.e. PT. Then, as N — oo,
[ON[@] = Ogoll 5 = 0, a.e. w [Pr].

Proof. For f € 8(X), let ¢s(x) = [ f(y)0g (2, dy), x € X. Then, suppressing w

in notation, we have

U= f(x)®n[w](drda) — Vy(z)®n[w](dzda)
XxA XxA
1 N 1 Jetmg—1
=12 () - >>|
k=18 =g
] g e L~ F(G0) 1 e (K1)
=sz—z (F(X;) = vs(X W; p~ NZ -
1 N 1 mg—2 2|f|oo
< N;m—kjo (f(Xgprge1) — ¥s( Jk+]>>‘ N; -
(5.4.24)
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Note that for all £ > 1 and j € {0,1,...,my — 2},

¢wam:LmMMa%@>

= | WXy @), dy)ao( Xy, da)

= ER[f (X)111) [ Hypvg] ace. P

By the strong law of large numbers for martingales (cf. [44, Theorem VIL.5.4]) and

the assumption that m; — oo as k — oo, \IIN — 0as N — oo a.e. P

Next, for g € S(X) and h € S(A), let ¢y (x ) [, h(a)go(z,da). Then
o = | [ stom@esisliads) - [ o)
LN e (5.4.25)
N2 (9(X i) P(Ayyrs) — ¢(g,h)<XJk+j))|
k=1 =0

For all k> 1 and j € {0,1,...,my — 1},

Do) (Xopss) = w&ﬁnAmw%wmﬁM>

= EZ[9<X]k+j>h(A]k+j)|H]k+j] a.e. IP)Z

Again from the strong law of large numbers for martingales and the fact that mj — oo
as k — 0o, we have @g}h) —0as N = oo ae. P7.
From Assumption 4.2, and the above two conclusions, we can find €0y € F with
P7(Q) = 1 such that for any w € Qo, {®%[w] : N € N} is tight and ) (w) —
N
0, @) (w

w € Qo and let {N, : k& € N} be some subsequence along which ®% [z] converges

(w) = 0as N — oo, for all f € S(X) and all (g,h) € S(X) x S(A). Fix such

weakly to some ® € P(X x A). We now show that & = 6,,. The continuity of go
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implies that ¢y € Cy(X) for f € Cp(X), and so

F(2)®%, [@)(deda)— | () 8%, [w](deda) - /X ()™ (dx) / 0y (2)BD (dz)

XxA XxA

where ®(1) is, as before, the first marginal of ®. Therefore, for any f € S(X),

[ 1@ = [ vr@a0an) = [ [ f)op(e.dne ).

By Assumption 5.2.2, @) = ), . Similarly, for ¢ € S(X) and h € S(A),

/X i g(x)h(a)®%[w](dvda) — P(g.) (1) PF [w](dda)

XxA

— g(x)h(a)q)(dxda)—/¢(g7h)(x)@(1)(dx).
XxA X

Hence

/XXA (x)h(a)®(dzda) /¢ (o ()20 (dz) /¢gh Mg ()
= /X XAg(x)h( )0y, (dzda).

Recalling that {g®@ h : g € S(X),h € S(A)} is separating in (X x A, B(X) @ B(A)),
we have & = 6,,. Consequently, % [w] converges weakly to 6, as N — oo a.e.
w [P7]. |

Similar to Section 5.4.1, we will now construct a sequence of X x A valued random
variables Z = (X;, A;)ten, On a suitable probability space (Q,F,P) such that: (i)
X, has probability law g, (ii) the probability law of Z corresponds to a controlled
system associated with a policy m € I rs(q, i), and (iii) consistent estimation of J;
can be achieved using the sequence Z. The sequence will be obtained by piecing
together suitable sequences (5, (lik,r € INg), (&5, (Ek,m € INg) of X x A valued

random variables. To construct these sequences we proceed recursively in r. Let
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m, = —log(e,) for r € IN, where {¢, },emv is as in Section 5.4.1, and set mg = 0.
Case r = 1: Define {&}, s}, ¢, (¢"[m, K] )m=1,.j() }, Qr,0p, 0, for r = 1 and k € Ny
exactly as in Section 5.4.1. For k =0, 1, - -m,., define X x A valued random variables,

(&r, Cr) recursively in k, by setting (&5, () = (€7 ,¢" ) and through the following two

Or? SOr
equations
P(&eClGi)=Q((E1.G).0). (5.4.26)
P(Ge DG &) = (& D) (5.4.27)

where for £k = 0,1,---m, — 1, QA}; =G, V a{(?,@“),j =0,1,---k} and G is as in
Section 5.4.1.

Case r > 1: Definition of {&}, (i, sy, (" [m, k] )m=1,j(n) k>0 and o,, a, for r > 1, is
given exactly as in Section 5.4.1 through (5.4.11) — (5.4.16), in a recursive fashion,
but with o, defined as

Or = O + 0r—1 + My (5.4.28)

and by setting

(&, ¢) = (&, .t i [m, 0] = 0.

The sequence (&, (), for k = 0,1,---m,, is defined exactly as for the case r = 1

through equations (5.4.26)-(5.4.27) (and by setting (&, ) = (€7 ,(")).

Or? SOr

Finally, the sequence (X}, Ag) is now constructed as follows. Recall that gy = 0.

(Eg—g,n él:—gr)a whenever Or < k< or +my,, 1 E N.
( ;J_rér—mw ;:J_r;r_mr), whenever o, +m, < k < 0,41, 7 € Ny.

\

(5.4.29)
The above sequence yields a 7 € Il and P, € P(Q2) as before. Consistent estimators

for J;, f € Cp(X x A) can now be obtained as follows. Define on (Q, F), a sequence
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of P(X x A) valued random variables, ®y, N € IN, as follows.

1 N 1Qk my— B
:sz— Z ), FEB(X xA), weQ.
k=1 J=0k

The following is the main result of this section. The second part of the theorem says
that for every f € Co(X x A), [, , f(, a)®y(dzda) is an (a.e.) consistent estimator
for J¢. The proof is very similar to that of Theorem 5.4.1 and so only a sketch will

be provided.

Theorem 5.4.2. The policy constructed above is in M, s(q, p). Furthermore, as
N — o0

||&)LJ<I - 0q0||BL — 0, a.e. P

Proof. Asin Theorem 5.4.1, we define Qq, p¥'(D|z), Ay, nyi(my, mg), and i (my, ms).
To show 7 € Tl,s(q, 1), it suffices to show that for all w € €y and compact K C X,
(5.4.18) holds. Fix such a w and K. As in Theorem 5.4.1, we can find ry € IV, such
that (5.4.19) and (5.4.20) hold for all r > ry and K C K,. Fix Sy > 1o + 1 and let
B €N, > By such that pg < k < gp11. Also fix x € K and let ¢ € {1,...,5(58)} be

such that & € Bg;. Similar to (5.4.21), we can write

(

I7H Iy + lomo + I373 + lyTy), whenever o5 < k < 05 + mg.
Pe(:|z) =
[7Y (i + lomy 4 1373 + 1575 + l676),  whenever g5 +mg < k < 0511
k (5.4.30)
Here

T1 = HBi [0, Qﬁ—1]7 To = Mﬁ,z’[Qﬁ—h 05-1+ mﬂ—l]y T3 = HUB,i [95—1 +mg_1, Qﬁ],

74 = ppilos, k], s = ppilos, 0p + mgl, 76 = ppilos + mgs, K]
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and

li = npi(0, 05-1), lo =ngi(0s-1,08-1 +mp-1), I3 =ng(0s—1 +ms_1, 08),
la =ngpi(0p, k), ls =mnpi(0p, 05 +mp), le = npi(op +mg, k),

l=lbtlb+l+l, I=L+l++15+1.
Analogous to 73 in Theorem 5.4.1, we can define a 75 € P(A) such that, if ng > 0,

. _ 408 + 1
o = o)l < 3, s = 7l < 01

Now let 7 = 7, = 73 = 74, = 75 = 15(q(-|bs(x))). Then, by our choice of rq,

Hq(\:v) — l_l(l17~'1 + lz7~'2 + l37~'3 + l47~'4)”BL < 2¢ when 03 < k < 03 -+ mg.

HQ(‘iL') - Z—l(l17:1 —+ l27~'2 + lg’}:g —+ l5%5 + lﬁ%ﬁ)HBL S 3¢ when 03 + mp S k< 0B+1-

(5.4.31)
Also note that
- 4¢
|73 — T3]/ < 1(5)'
3
When g < k < gg + mg, we have
5k (-|2) — q(-]2) || B < 2€ + 17121 + 21y + 44(B) + 214)
< 2e + a5 (208-1 + 2mp_1 + 4L(B) + 2my) (5.4.32)

dm
<e4e5+—2L.
ag

When g5 +mg < k < 0p41,

1Pk (-|2) — q(-|2) |2 < 3e + 171 (21y + 21y + 40(B) + 215 + 40(3 + 1))

< 3e+ ' (205-1 + 2mp_y + 40(B) + 2ms + 40(8 + 1))
4mg

<3e+eg+—.
Qg
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Recalling that ms = —log(es) and that az > sgl, M5 0 as f — oo. Since

as

f — oo as k — oo, we have that ||pr(-|z) — q(-|z)||s — 0 as k — oo and therefore

7 € Hars(q, ). Finally, the second part of the theorem is an immediate consequence

of Lemma 5.4.2. .

5.4.3 Adaptive control

In this section we consider a setting where the (near) optimal ¢ € Ilgye is not
known but there are available sampling schemes that allow for consistent estimation of
q. The goal is then to estimate ¢ dynamically and use the estimators of ¢ to construct
a control policy for which the associated pathwise cost per unit time coincides with
that for q.

In order to give a precise formulation, suppose that ¢ € Il is given as

q(- | =) = q(- | Ko, 2), (5.4.33)

where K is an unknown parameter taking values in some compact metric space I'. We
assume that the map (k, z) — ¢q(- | k, z), from I'xX — P(A), is a continuous function.
Also suppose that there is a g € Ilgc and a continuous function G : P(X x A) —» T’
such that

G(qu) = Kg.

This relationship, in view of Lemma 5.3.1, says that as N — oo, G(®y) is an (a.e.)
consistent estimator for kg, under P% for all u € P(X). However the corresponding
pathwise cost is [, c(x,a)0q(drda) ( PP a.e.) and thus although the policy go
achieves the goal of parameter estimation, it does not meet the criterion of cost
(near) optimization. In order to meet both objectives we will now construct a policy

7 which uses dynamic estimators for k (and consequently for ¢) for control decisions
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and is such that it is an ATS policy for g corresponding to the initial condition .

Let {f\k,fik, l;k,A;,Ak, b;,]\g,nk}kew be as in Section 5.4.1. Let m, be as in Sec-
tion 5.4.2. As in Section 5.4.2 we begin by introducing sequences (&}, (s k, 7 € INy),
(E,Z, 6,2; r € INg,k =1,---m,) of X x A valued random variables, recursively in r. We
will use notation and constructions from Sections 5.4.1 and 5.4.2.

Case r = 1: Set ¢, = qo. For m =1,---j(r), define

AT,

) =@ ), @ = (@), mo= 1,0 (). (5.4.34)
Abusing notation from Section 5.4.1, denote
V(g™ = (e"[m,1],e"[m,2],---). (5.4.35)

With this new definition of e”[m, ], the definition of {&}, s, (7, (i"[m, k) m=1,jtr) }»
for r =1 and k € INy is given exactly as in Section 5.4.1, through equations (5.4.11)
— (5.4.14). Also define ., 0., 0, through equations (5.4.15) — (5.4.17) (with gy =
0). Next, for t = 0,1,--- ,m,, define X x A valued random variables (£7,(]), t =
0,1,---m,, recursively in ¢, by (5.4.26) — (5.4.27) (and by setting (£, ¢5) = (£5,.¢5))-

Define a P(X x A) valued random variable ®, by the relation

]

On(F) = — > 1p(§. (), F € BX x A).

T ot=1

and let k5, = G(®,).

Case 7 > 1: Set ¢.(- | ) = q(- | Kr—1,2), © € X. Define for m = 1,---j(r),
g™ and g™, , through (5.4.34); and e"[m,i], i € IN, through (5.4.35). With this
definition of e”[m, 1], the definition of {¢}, s}, (}, (i"[m, k])m=1,..jt) }, for k € INy and

a,, 0., 0r 1s given as in Sections 5.4.1 and 5.4.2; through equations (5.4.11) — (5.4.16)
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and (5.4.28). The sequence (&5, (}), for k = 0,1,---m,, is defined exactly as for the
case r = 1 through equations (5.4.26)-(5.4.27) (and by setting (&5, ¢5) = (£7,¢")).

Or? SOr

To complete the recursion we define

P, (F) = m (Mr_lér_l(F) + Z 1p(€, 5;“)) , F e B(XxA),
T T t=1

where M,_; = 37—/ my, and let 5, = G(®,).

The definition of the sequence (X}, A;) is now given through (5.4.30). This se-
quence yields a m € Il and P, € P(£2) as before.

The following is the main result of the section. Assumption 5.4.2 will be taken to
hold. The proof is similar to that of Theorems 5.4.1 and 5.4.2 and so only a sketch

will be provided.
Theorem 5.4.3. The policy constructed above is in I, s(q, p). Furthermore, for

every compact K in X, as r — oo

sup [[Gr(+ | ) —q(- | )]z — 0,
zeK

a.e. P.

Proof. We use the same notation and definitions as in the proof of Theorem

5.4.2. First, we show that, for every compact set K C X,
Su}g 1G-(- | ) —q(- | z)[|sr — 0 ace. P. (5.4.36)
e

By Theorem 5.3.1, ®, converges weakly to 0, a.e. P. Since G is continuous, k, =

G(®,) = G(0,,) = Ko as r — oo, a.e. P. Note that
I (- | 2) = a(- | 2)lls = NgC | K@) = g(- | 8 bp (@) o1

142



Equation (5.4.36) is now an immediate consequence of the continuity of the map
(k2) = q(- | K, 2).

For e > 0, choose rq such that all r > ro, K C K,, (5.4.20) holds,

sup HQ( | ’%71‘) - q( | H>BT(x))|‘BL S €, (5437)
(z,k)EK XT
and
su}? H@"< ’ SL’) - Q<' | I)HBL <e (5438)
fAS

Fix By > ro+1and let 8 € IN , 8 > By be such that pg < k < 0541.

Let 1,1,1;, 75,4 = 1,2,...,6, and pi(:|z) be the same as in the proof of Theorem
5.4.2. In particular, we have that (5.4.30) holds. Let 71 = 7o = 73 = 7y = 75 =
n5(qs(-|bs(x))). Construct 7 in the same way as in Theorem 5.4.2 with ¢(-|#) replaced
by Gs41(-|Z) for # € X. Using (5.4.37) and (5.4.38) it is now easily checked that
(5.4.31) holds with 2¢ and 3e, replaced by 3e and 4e respectively. Also note that, if

l6>0,

46(B)
I3

, ||7—6 — 7~—6|| < w
6

|73 — 73] <

Rest of the proof now follows as for Theorem 5.4.2. H
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