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Abstract
XIN LIU: Diffusion Approximations for Multiscale Stochastic Networks in Heavy

Traffic.
(Under the direction of Amarjit Budhiraja.)

Applications arising from computer, telecommunications, and manufacturing sys-

tems lead to many challenging problems in the simulation, stability, control, and

design of stochastic models of networks. The networks are usually too complex to be

analyzed directly and thus one seeks suitable approximate models. One class of such

approximations are diffusion models that can be rigorously justified when networks

are operating in heavy traffic, i.e., when the network capacity is roughly balanced

with network load.

We study stochastic networks with time varying arrival and service rates and rout-

ing structure. Time variations are governed, in addition to the state of the system,

by two independent finite state Markov processes X̃ and Ỹ . Transition times of X̃

are significantly smaller than the typical interarrival and processing times whereas

the reverse is true for the Markov process Ỹ . We first establish a diffusion approx-

imation for such multiscale queueing networks in heavy traffic. The result shows

that, under appropriate heavy traffic conditions, properly normalized queue length

processes converge weakly to a Markov modulated reflected diffusion process. More

precisely, the limit process is a reflected diffusion with drift and diffusion coefficients

that are functions of the state process, the invariant distribution of X̃ and a finite

state Markov process which is independent of the driving Brownian motion. We then

study the stability properties of such Markov modulated reflected diffusion processes

and establish positive recurrence and geometric ergodicity properties under suitable

iii



stability conditions. As consequences, we obtain results on the moment generating

function of the invariant probability measure, uniform in time moment estimates and

functional central limit results for such processes. We also study relationship between

invariant measures of the Markov modulated constrained diffusion processes and that

of the underlying queueing network. It is shown that, under suitable heavy traffic

and stability conditions, the invariant probability measure of the queueing process

converges to that of the corresponding Markov modulated reflected diffusion.

The last part of this dissertation focuses on ergodic control problems for discrete

time controlled Markov chains with a locally compact state space and a compact

action space under suitable stability, irreducibility and Feller continuity conditions.

We introduce a flexible family of controls, called action time sharing (ATS) policies,

associated with a given continuous stationary Markov control. It is shown that the

long term average cost for such a control policy, for a broad range of one stage cost

functions, is the same as that for the associated stationary Markov policy. Through

examples we illustrate the use of such ATS policies for parameter estimation and

adaptive control problems.
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Chapter 1

Introduction

The dissertation contains two distinct sets of problems. The first concerns stochas-

tic networks with Markov modulated parameters in heavy traffic and their diffusion

approximations while the second studies estimation and adaptive ergodic control for

discrete time Markov chains.

Stochastic networks is an active research area dealing with problems in simulation,

approximation, stability, control, and design of stochastic models of networks, with

applications in diverse areas such as computer, telecommunications, and manufactur-

ing systems. One of the most fundamental models in queueing systems is the well

known Jackson network ([31]), which considers exponential interarrival and service

times and Bernoulli type routing. However, the elegant distributional theory and

asymptotic properties of Jackson networks break down when one attempts to incor-

porate some more realistic features of specific application settings into such a model.

For example, when the distributions of the primitives are relaxed to be more general

than i.i.d. exponential, or the rates of interarrivals and services are allowed to depend

on the state of the system, such generalized Jackson networks become intractable and

thus one seeks suitable approximate models. One class of such approximations, of

particular interest in the current work, are diffusion models that can be rigorously jus-

tified when networks are operating in the heavy traffic regime, i.e., when the network

capacity is roughly balanced with network load. Attraction of such approximations



primarily lies in the fact that, analogous to the central limit theory, the limit model

is described only using a few important parameters of the underlying networks and

the complex distributional properties of the primitives are averaged out.

In this dissertation, we study a Markov modulated queueing network, where the

arrival and service rates and the routing structure are modulated by Markov processes.

We consider two independent finite state continuous time Markov processes {X̃(t) :

t ≥ 0} and {Ỹ (t) : t ≥ 0} which can be interpreted as the random environment in

which the system is operating. The process X̃ changes state at a much higher rate

than the typical interarrival and service times in the system, while the reverse is true

for Ỹ . The arrival and service rates depend on the state (i.e. queue length) and two

background Markov processes X̃ and Ỹ . The routing mechanism is governed by X̃.

More precisely, the queueing network consists of K service stations each of which has

an infinite capacity buffer. We denote the ith station by Pi, i ∈ K
.
= {1, 2, . . . , K}.

Arrivals of jobs can be from outside the system and/or from internal routing. Upon

completion of service at station Pi a customer is routed to another service station or

exits the system. The routing mechanism is modulated by X̃ whose state x, at any

given instant, determines a K ×K substochastic matrix Px. Roughly speaking, the

conditional probability that a job completed at time instant t at station Pi is routed

to station Pj, given X̃(t) = x, equals the (i, j)th entry of the matrix Px. The goal of

the study is

(i) to establish suitable reduced models using techniques from diffusion approxi-

mations and heavy traffic theory;

(ii) to develop a comprehensive stability theory for the diffusion approximations of

such networks;

(iii) to study the validity of the approximation of the steady state of the queueing

network through that of the limit diffusion model.
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In Chapter 2, we study diffusion approximations for Markov modulated queueing

networks of the form described above, in heavy traffic. In order to formulate a precise

heavy traffic condition we consider a sequence of queueing networks, indexed by

n ∈ IN . Let Qn denote the K-dimensional queue length process in the nth network.

Roughly speaking, the arrival and service rates in the nth network are O(n). Markov

process governing the routing in the nth network is denoted as Xn. We assume that

Xn(t) = X(lnt) and
ln

nr0+1
→∞ for some r0 > 1/2,

where X is a Markov process with values in a finite state space L and a unique station-

ary distribution {p∗x : x ∈ L}. This condition says that the transitions of Xn occur at

a faster rate than arrivals and service completions. Denote by Y n the slowly changing

background process modulating the arrival and service rates in the nth network. Y n is

a finite state continuous time Markov process with infinitesimal generator Qn which

converges to some matrix Q. We are interested in limit theorems for such networks

under a diffusion type scaling and appropriate heavy traffic conditions. We consider

the pair Markov process (Q̂n, Y n), where Q̂n = Qn/
√
n is the normalized queue length

process. The main result (Theorem 2.3.2) shows that (Q̂n, Y n) converges weakly to

a Markov process (Z, Y ), where Y is a finite state continuous time Markov process

with infinitesimal generator Q, and the process Z is a Markov modulated reflected

diffusion process with coefficients depending on (Z, Y ), described as follows.

Z(t)=Γ

(
Z(0) +

∫ ·
0

b (Z(u), Y (u)) du+

∫ ·
0

σ (Z(u), Y (u)) dW (u)

)
(t), t ≥ 0. (1.0.1)

Here W is a K-dimensional standard Brownian motion independent of Y and Γ is

the Skorohod (reflection) map associated with the reflection matrix I −
∑

x∈L p
∗
xP′x,

where I is the K ×K identity matrix. The coefficients b and σ are obtained in terms
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of the averaged (with respect to p∗) arrival/service rates and routing matrices. Thus

one finds that, as n→∞, the effect of the Markov process Xn on the dynamics of Q̂n

is averaged out with respect to p∗. Such a result, in addition to model simplification,

allows for weaker assumptions on the routing matrices and the traffic load in the

network. For example, the assumptions permit the routing structure to oscillate

between that of a closed network and an open network. Also the network can change

between states with traffic intensity greater than one and those with intensity smaller

than one. A paper [12] based on this work has been accepted for publication in

Stochastic Processes and Their Applications.

Chapter 3 is devoted to the study of stability properties of Markov modulated

constrained diffusion processes as in (1.0.1). The state process Z is assumed to be

constrained to take values in a convex polyhedral cone G ⊂ IRK . Denote by IH the

finite state space of Y and q∗ = {q∗j : j ∈ IH} its unique stationary distribution.

We assume that the drift b can be expressed as b(z, y) = b1(z, y) + b2(y), (z, y) ∈

G × IH, where b1 : G × IH → IRK and b2 : IH → IRK are measurable maps. Define

b∗2 =
∑

j∈IH q
∗
j b2(j) and b∗(z, y) = b1(z, y) + b∗2. Under regularity assumption on

the associated Skorohod map, we show that, when b∗(z, y) takes values in the δ-

interior of a certain cone C (described in terms of the given directions of constraints

– see (3.2.5)) for some δ > 0, the pair Markov process (Z, Y ) is positive recurrent

and has a unique invariant probability measure. In fact, we establish a significantly

stronger result, namely the process (Z, Y ) is geometrically ergodic and its invariant

distribution has a finite moment generating function in a neighborhood of zero. We

also obtain uniform time estimates for polynomial moments (of all orders) of the

process and functional central limit results for long time fluctuations of the empirical

means around their stationary averages. For the case when b1 = 0, we obtain a

sharper result. Namely, if b∗2 is in the interior of C, then (Z, Y ) is geometrically

4



ergodic, and if b∗2 is outside of C, (Z, Y ) is transient. We also obtain similar stability

results for a Markov modulated semimartingale reflected Brownian motion, which can

be considered as a special case of Markov modulated constrained diffusion processes

with b1 = 0 and constant covariance matrix σ (however, here we make much weaker

assumptions on the associated Skorohod problem). With the usual completely-S

assumption on the reflection matrix (Assumption 3.2.6), the stability condition is

formulated in terms of certain fluid trajectories (see [24]) associated with the “average

drift”, where the average is taken with respect to the stationary distribution q∗.

In Chapter 4, we study convergence of invariant measures for the Markov mod-

ulated queueing networks in heavy traffic considered in Chapter 2. In view of the

complex structure of the original queueing network, it is important for computational

purposes that the steady state behavior of the limit diffusion model is a good approx-

imation for that of the underlying queueing system. In this chapter, we provide a

rigorous justification for such an approximation and show that under suitable heavy

traffic and stability conditions, the invariant probability measure for the Markov

modulated queueing network converges to that of the limit diffusion process. For

simplicity and since in the heavy traffic the effect of the fast Markov process on the

network is averaged out with respect to its stationary distribution, we consider in

this chapter an open queueing network with constant routing matrix and arrival and

service rates that only depend on the state and the slowly changing Markov process

(i.e., the network parameters do not depend on Xn). In the nth network, Q̂n and

Y n are the normalized queue length process and the modulating Markov process,

respectively. Recall that in Chapter 2 we show that (Q̂n, Y n) converges to (Z, Y )

weakly, and in Chapter 3 that under suitable stability condition, (Z, Y ) has a unique

invariant probability measure. The main result in Chapter 4 (Theorem 4.1.1) shows

that, under conditions, (Q̂n, Y n) admits a stationary distribution which converges to
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that of (Z, Y ) as n→∞.

Finally, Chapter 5 considers a topic in estimation and adaptive ergodic control

for Markov chains. Markov Decision processes have been used extensively to model

systems that involve both stochastic behavior and control. A common measure of

performance in such systems is the long-time average (or ergodic) criterion. Given all

relevant parameters, a typical goal is to find a simple (e.g. feedback or deterministic

stationary) policy that achieves the optimal value. However, in many practical setting,

the information on the underlying parameters of the system is incomplete. The goal

of adaptive control is to obtain an optimal policy, when some relevant information

concerning the behavior of the system is missing. The classical approach is to design

an algorithm which collects information, while at the same time choosing controls,

in a way that the chosen controls “approach optimality over time.” The paper [2]

shows for a finite state controlled Markov processes, that given any Markov policy

q, one can construct another policy (the so-called action time sharing (ATS) policy

corresponding to q) for which the control decisions can deviate from those dictated

by the Markov policy q, and still produce the same long term average cost, as long

as certain conditional frequencies converge to the correct values. This flexibility

is useful in many situations that require estimation and control under incomplete

information. For example, ATS policies can be used to develop variance reduction

schemes for ergodic control problems and allow for sampling (namely using controls

without regards to the ensuing cost), e.g., for the purpose of collecting auxiliary

information. In the current work we are concerned with a setting where the state and

action spaces are not (necessarily) countable. Our main objective is to formulate an

appropriate definition for an ATS policy which, similar to the countable case, not only

leads to long term costs that are identical to those for the corresponding given Markov

control, but also allows for flexible implementation well suited for various estimation
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and adaptive control goals. Using a suitable sequence of “converging partitions” of

the state space, we show how ATS policies can be constructed for a given setting

and used for estimation of unknown parameters and adaptive control problems while

preserving desirable optimality properties. A paper [13] based on this work (joining

with A. Budhiraja and A. Schwartz) has been submitted for publication to SIAM

Journal on Control and Optimization.
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Chapter 2

Diffusion approximations for multiscale
stochastic networks in heavy traffic

2.1 Introduction

We study stochastic networks in which arrival and service rates, as well as the

routing structure change over time. More precisely, we consider a setting in which

two independent finite state continuous time Markov processes {X̃(t) : t ≥ 0} and

{Ỹ (t) : t ≥ 0} govern the variations in the parameters of the system. These processes

can be interpreted as a random environment in which the system is operating. The

process X̃ changes states at a much higher rate than the typical inter-arrival and

service times in the system, while the reverse is true for Ỹ . The variations in the

routing mechanism of the network are governed by X̃, whereas the arrival and service

rates at various stations depend on the state process (i.e., queue length process)

and both X̃ and Ỹ . It is shown that, under appropriate heavy traffic conditions,

the properly normalized sequence of queue length processes converges weakly to a

reflected Markov modulated diffusion process. More precisely, the limit process is a

reflected diffusion with drift and diffusion coefficients that are functions of the state

process, the invariant distribution of X̃ and a finite state Markov process which is

independent of the driving Brownian motion.



Queueing systems studied here can be regarded as generalizations of Jackson net-

works. The first general result in the study of diffusion approximations for such

networks is due to Reiman[40], who considered the case where the arrival and service

processes, associated with K processing stations in the network, are mutually inde-

pendent renewal processes, and the routing mechanism is governed by a fixed K ×K

substochastic routing matrix P. The main result in [40] shows that, under a suitable

heavy traffic condition, the properly scaled queue length processes converge weakly to

a certain reflected Brownian motion. Yamada[50] (also see Mandelbaum and Pats[36]

and Kushner[35]) extended Reiman’s work to queueing networks with state depen-

dent rates, i.e., a setting where the rates of arrival and service processes depend on

the current state of network. In this case the scaling limits are reflected diffusion pro-

cesses with state dependent drift and diffusion coefficients. In a related work, Chen

and Whitt[16] establish heavy-traffic limit theorems for a class of queueing networks

with time inhomogeneous service times. Mandelbaum and Pats, in [37], considered

open queueing networks with state dependent routing structure. The diffusion limit

involves a Skorohod problem with reflection directions that vary as functions of the

state process. Queues in random environment have been considered by Choudhury,

Mandelbaum et al[17] (see also Chapter 6 of [39]). The authors considered a G/G/s

queue with s > 1, where the traffic intensity changes according to the state of the

environment. The environment process is taken to be a finite state right continuous

process (with finitely many jumps over any finite interval), whose states change at

rates slower than typical arrival and service rates.

In the model considered in this chapter, the queueing network consists of K service

stations each of which has an infinite capacity buffer. We denote the ith station by

Pi, i ∈ IK
.
= {1, 2, . . . , K}. Arrivals of jobs can be from outside the system and/or

from internal routing. Upon completion of service at station Pi, a customer is routed

9



to another service station or exits the system. The arrival and service rates depend on

the state of the system and two Markov processes X̃ and Ỹ . Transition times of X̃ are

fast, while Ỹ changes states slowly relative to the typical arrival and service rates.

The routing mechanism is modulated by X̃ whose state x, at any given instant,

determines a K × K substochastic matrix Px. Roughly speaking, the conditional

probability that a job completed at time instant t at station Pi is routed to station

Pj, given X̃(t) = x, equals the (i, j)th entry of the matrix Px.

In order to give a precise mathematical formulation, we introduce a scaling pa-

rameter n ≥ 1 and consider a sequence of queueing networks of the type described

above, indexed by n. Let Qn denote the K-dimensional queue length process in the

nth network. Roughly speaking, the arrival and service rates in the nth network are

O(n). Markov process, governing the routing and arrival and service rates in the nth

network, is denoted as Xn. Transition times of this process are of the order O(1/ln),

where lnn
−(1+r0) → ∞ for some r0 > 1/2 (see (2.3.2)). In addition, we are given

another Markov process Y n with transition times of the order O(1) that modulates

the arrival and service rates in the nth network. More precisely, Y n is a finite state

continuous time Markov process whose infinitesimal generator Qn converges to some

matrix Q. The goal of this work is to establish limit theorems for networks with such a

hierarchy of time scales under appropriate heavy traffic conditions. The heavy traffic

conditions used in this work (see Assumption 2.3.1) differ from the usual formulation.

Here we do not require (near) traffic balance for each fixed state of the system and

background processes. In fact the traffic intensity can change values according to the

state of the Markov process Xn and take values both smaller and larger than 1. In

this sense, we impose a weaker form of traffic balance condition which is formulated

in terms of the equilibrium measure of Xn. In a similar spirit, our assumptions allow

for the routing structure to oscillate between that of different (e.g., open and closed)

10



networks (see the example below Assumption 2.3.1). However, we require the net-

work to be open “on the average”, where “the average” is taken with respect to the

equilibrium measure of Xn.

The main result, Theorem 2.3.2, considers the pair Markov process (Q̂n, Y n),

where Q̂n is the appropriately normalized queue length process, and shows that

(Q̂n, Y n) converges weakly to a Markov process (Z, Y ). In fact we will see that

the process Y is Markov by itself with a finite state space and generator Q, and

Z can be characterized as the solution of a reflected stochastic differential equation

with coefficients depend on both Z and Y and a driving Brownian motion that is

independent of Y . One of the main steps in the proof of Theorem 2.3.2 is Theorem

2.3.3 which proves the tightness of (Q̂n, Y n) and characterizes weak limit points in

terms of a suitable martingale problem (cf. [34]). Proof of Theorem 2.3.3 is given in

Section 2.4. The key ingredient in this proof is Lemma 2.4.1 which makes precise the

intuitive property that, as n → ∞, the dynamics of Q̂n depend on Xn only through

its equilibrium distribution.

Multiscale models considered in this work are natural for many network settings

(cf. [17]). Consider, for example, a large computer network where one is interested

in modeling the traffic behavior of files with moderate size over a long period of time

within a small subset of nodes in the system. Denote by E the collection of all nodes

in the network and let E0 ⊂ E be the subset of nodes of interest. One is interested in

building a model for traffic between nodes in E0 without taking a very precise account

of the interactions between such nodes and those in E \ E0. Alternatively, E0 may be

the entire network (i.e. E0 = E ) but one would like to consider a reduced model

which does not take an explicit and detailed account of small file sized traffic. One

approach to such problems is to model the effect of nodes in E \E0 (or alternatively of

small sized files) at a node e ∈ E0 by a rapidly varying channel capacity (at e), with
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variations governed by an extraneous Markov process. If a large number of nodes in

E \ E0 are connected to e (or the small file sized traffic exhibits temporal variations

at rate significantly higher than that of the large file traffic), one expects that the

rate at which the channel capacity changes is much higher than the transmission

rate of a typical file through e. Rapid changes in channel capacity lead to variations

in processing rates and available routing options for moderate sized files processed

at nodes in E0. In addition to such rapid changes, one may have changes in input

flows, and processor failure and repair patterns that occur infrequently but need to

be accounted for in a treatment of such systems over long periods of time. One is

thus led to a traffic model for nodes in E0 in terms of a Jackson type network where

the arrival/service rates and routing probability matrices vary randomly over time

according to finite state Markov processes of the form considered in this work.

The chapter is organized as follows. In Section 2.2, we describe the precise net-

work model. Section 2.3 introduces the diffusion scaling considered in this work and

formulates the main assumptions that are used. In this section we also present the

main result (Theorem 2.3.2) and its proof. The key ingredients for the proof are

given through Theorem 2.3.3, Theorem 2.3.1 and Proposition 2.3.2. The first result

(Theorem 2.3.3) is proved in Section 2.4 while the last two are relegated to Appendix.

2.2 Network model

Let (Ω,F , P, {Ft}t≥0) be a filtered probability space satisfying the usual condi-

tions, that is F0 contains all the null sets of F and Ft = ∩u>tFu for all t ∈ [0,∞).

Define two continuous time finite state {Ft} Markov processes {X̃(t) : t ∈ [0,∞)}

and {Ỹ (t) : t ∈ [0,∞)} on (Ω,F , P ). Let IL
.
= {1, 2, . . . , L} and IH

.
= {1, 2, . . . , H}

be the state spaces of X̃ and Ỹ , respectively. We will make the following assumption

on X̃.
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Assumption 2.2.1. The Markov process X̃ has a unique stationary distribution p∗ =

(p∗1, . . . , p
∗
L). Furthermore, denoting the transition probability P [X̃(t) = i|X̃(0) = j]

by pji(t), we have, for all t ≥ 0,

sup
i,j∈IL

|pji(t)− p∗i | ≤ a1e
−a2t

for some constants a1, a2 ∈ (0,∞).

The queueing network consists of K service stations, denoted as P1, . . . , PK , each

of which has an infinite capacity buffer. All customers at a station are homogeneous

in terms of service requirement and routing decisions (in a sense to be made precise).

Arrivals of jobs can be from outside the system and/or from internal routing. Upon

completion of service at station Pi, a customer is routed to another service station or

exits the system. Let Qi(t) denote the number of customers at station Pi at time t.

Then

Qi(t) = Qi(0) + Ai(t)−Di(t) +
K∑
j=1

Dji(t), i ∈ IK, (2.2.1)

where Ai(t) is the number of arrivals from outside at station Pi by time t, Di(t) is

the number of service completions by time t at station Pi, and Dji(t) is the number

of jobs that are routed to Pi immediately upon completion at station Pj by time

t. We write A = (A1, . . . , AK)′, D = (D1, . . . , DK)′, and Q = (Q1, . . . , QK)′. The

processes Ai and Di, i ∈ IK, are counting processes defined on (Ω,F , P, {Ft}) such

that Ai, Dj, Dji : i, j ∈ IK have no common jumps. It is also assumed that, for certain

measurable functions λi, α̃i : IRK
+ × IH × IL→ IR+, the processes

Ai(·)−
∫ ·

0

λi(Q(u), Ỹ (u), X̃(u))du,

Di(·)−
∫ ·

0

α̃i(Q(u), Ỹ (u), X̃(u))du

(2.2.2)
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are locally square integrable {Ft} martingales. Finally, we assume that

A,D, Ỹ have no common jumps.

The functions λi and α̃i, i ∈ IK, represent the arrival and service rates. We denote

by IK0 (IK0 ⊆ IK) the set of indices of stations which receive arrivals from outside.

In particular, λi(z, y, x) = 0 for all (z, y, x) ∈ IRK
+ × IH × IL whenever i ∈ IK\IK0.

Reflecting the fact that no service occurs when the buffer is empty, α̃i(z, y, x) = 0 if

zi = 0. Let λ = (λ1, . . . , λK)′ and α̃ = (α̃1, . . . , α̃K)′. Additional conditions on λ and

α̃ will be introduced in Assumption 2.3.1.

The counting process Dji is given in terms of an auxiliary Markov process X̃ and

certain marked point process constructed from Dj. To formulate this precisely, we

introduce a collection of routing matrices. For each x ∈ IL, we are given a nonnegative

K × K substochastic matrix Px with zero diagonal entries. We denote the (i, j)th

entry of Px by pxij and 1 −
∑K

j=1 p
x
ij by pxi,K+1. Roughly speaking, upon completion

of service at time t at station Pi, given X̃(t) = x, a customer is routed to station Pj

with probability pxij, j ∈ IK, or exits the system with probability pxi,K+1.

In order to make this precise, we proceed as follows. For i ∈ IK, let Ei be the

space of K dimensional vectors. Each vector in Ei has 0 or 1 components and 0 at

the ith coordinate, and there is at most one 1 component. Let Gi = E
⊗
L

i . Define

µi ∈ P(Gi) as

µi(v) =
L∏
x=1

(
K∑
j=1

pxij1{vxj =1} + pxi,K+11{∑K
j=1 v

x
j =0}

)
, v = (v1, . . . , vL) ∈ Gi. (2.2.3)

Note that for v ∈ Gi and x ∈ IL, vx is a K dimensional vector in Ei with µi{v :

vxj = 1} = pxij, where vxj is the jth component of vx. Consequently, the measure µi

captures the probabilities of routing from station i to other stations in the network
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for all possible states of the background Markov process X̃. More precisely, upon

completion of service at station Pi at time t, the routing of the job is governed by

a Gi valued random variable v with probability distribution µi such that a customer

is routed to station Pj if v
X̃(t)
j = 1. Otherwise, if v

X̃(t)
j = 0 for every j ∈ IK, the

customer exits the network. Abusing notation, we write vx as v(x), and denote the

jth component of v(x) by vj(x).

We next introduce a collection of marked point processes. For i ∈ IK, Let {Zi
k}k≥1

be an i.i.d. sequence of Gi valued random variables with law µi. For i ∈ IK, let

{T ik}k≥1 be the transition times of Di. Consider the marked point process (See Chap-

ter VIII of [7].)

Si(t, B) =
∑
k≥1

1{Zik∈B}1{T ik≤t}, B ∈ B(Gi), t ≥ 0. (2.2.4)

We assume that Si(t, B) is {Ft} adapted and has a {Ft} intensity kernel λi(t, B)

given as

λi(t, B) = α̃i(Q(t−), Ỹ (t−), X̃(t−))µi(B). (2.2.5)

Namely, for any bounded predictable map H(ω, t, v) from Ω× [0,∞)×Gi to IR,

∫
[0,t]

∫
Gi

H(s, v)Si(ds, dv)−
∫

[0,t]

∫
Gi

H(s, v)α̃i(Q(t), Ỹ (t), X̃(t))µi(dv)ds

is a {Ft} martingale.

Note that Zi
k can be written as (Zi

k(1), . . . , Zi
k(L)), where each Zi

k(x) is a K dimen-

sional vector in Ei. More importantly, Zi
k(x) defines the routing vector, corresponding

to state x in IL, for the kth job completion at station i. More precisely, if this job

completion occurs at time instant t, then it is routed to state j if and only if the jth

entry of Zi
k(X̃(t)) is 1.
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For i, j ∈ IK, the process Dji can now be written as follows.

Dji(t) =

∫
[0,t]×Gj

vi(X̃(u−))Sj(du, dv). (2.2.6)

Note that, for j ∈ IK, Gj is finite, so the integral on Gj is a finite sum. Combining

(4.1.1) and (2.2.6), the evolution of the system state is described by the following

equation.

Qi(t) = Qi(0) + Ai(t)−Di(t) +
K∑
j=1

∫
[0,t]×Gj

vi(X̃(u−))Sj(du, dv), i ∈ IK. (2.2.7)

2.3 Diffusion scaling and main results

In this section, we present a diffusion limit theorem for a suitably scaled version

of the queue length process. Consider a sequence of queueing networks of the type

described in Section 2.2, indexed by n ∈ IN . We assume that all networks have

the same topology and the same set of routing matrices {Px : x ∈ IL}. All the

notation introduced in Section 2.2 is carried forward except that we append an n in

an appropriate place to denote quantities which depend on n. In particular, on the

filtered probability space (Ωn,Fn, P n, {Fnt }t≥0), for i ∈ IK, Ani and Dn
i are counting

processes with rates λni and α̃ni respectively, and Qn
i denotes the queue length process

at station Pi in the nth network. The marked point process Sni is defined by (2.2.4)

with {T ik} denoting the transition times of Dn
i . Denote by Xn the {Fnt } Markov

process governing the routing in the nth network. Let ln ∈ (0,∞) be such that for

some r0 > 1/2,

lnn
−(r0+1) →∞, as n→∞. (2.3.1)

We assume that, for t ≥ 0,

Xn(t) = X(lnt), (2.3.2)
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where X has the same probability law as the process X̃ introduced in Section 2.2 (in

particular, X has the state space IL and satisfies Assumption 2.2.1). This condition,

along with Assumption 2.3.1(ii) and (v) introduced below, makes mathematically

precise the property that the transition times of Xn are significantly smaller than

the typical inter-arrival and service times. The slow process Y n in the nth network is

assumed to be a {Fnt }-Markov process with state space IH and infinitesimal generator

Qn, such that Qn converges to some matrix Q as n→∞. We assume

An, Dn, Y n have no common jumps. (2.3.3)

With this notation, (2.2.7) holds with (Q,A,D, S, X̃) replaced by (Qn, An, Dn, Sn, Xn).

Given a IRK valued stochastic process Zn .
= (Zn

1 , . . . , Z
n
K), we will denote by Ẑn the

scaled process which is defined as

Ẑn(t)
.
=

(
Zn

1 (t)√
n
, . . . ,

Zn
K(t)√
n

)
, t ≥ 0. (2.3.4)

The main result of this work shows that the scaled queue length process Q̂n converges

weakly to a certain constrained diffusion process. We now introduce the coefficients

in this limit diffusion model. We assume that, for each i ∈ IK, α̃ni restricted to

IRK
+\{z ∈ IRK

+ : zi = 0} × IH × IL can be extended to a function αni defined on

IRK
+ × IH × IL. We assume αni has the following form

αni (z, y, x) = $n
i (z, y)θi(x), (z, y, x) ∈ IRK

+ × IH × IL, (2.3.5)

where $n
i : IRK

+ × IH → IR+ and θi : IL → IR+\{0} are measurable maps. We write

θ = (θ1, . . . , θK)′ and $n = ($n
1 , . . . , $

n
K)′. Then for (z, y, x) ∈ IRK

+ × IH × IL,

αn(z, y, x)
.
= (αn1 (z, y, x), . . . , αnK(z, y, x))′ = diag(θ(x))$n(z, y).
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Additional conditions on $n and θ are specified in Assumption 2.3.1. Recall p∗

introduced in Assumption 2.2.1. Let θ̄ =
∑L

x=1 p
∗
xθ(x). In order to define the drift

and diffusion coefficients of the limit model, define, for (z, y, x) ∈ IRK
+ × IH × IL,

λ̄n(z, y) =
L∑
x=1

p∗xλ
n(z, y, x),

ᾱn(z, y) =
L∑
x=1

p∗xα
n(z, y, x) = diag(θ̄)$n(z, y),

P =

(
L∑
x=1

p∗xPxdiag(θ(x))

)[
diag(θ̄)

]−1
.

(2.3.6)

To formulate the heavy traffic conditions, define

bn(z, y)
.
=

1√
n

(
λ̄n(z, y)− [I− P′]ᾱn(z, y)

)
, (z, y) ∈ IRK

+ × IH. (2.3.7)

The following is our main assumption. Parts (viii) and (ix) restate, for convenience,

the assumptions made in (2.3.1), (2.3.2) and (5.4.2).

Assumption 2.3.1.

(i) The spectral radius of P is strictly less than 1.

(ii) For all n ∈ IN and (z, y, x) ∈ IRK
+ × IH × IL, there exists some κ1 ∈ (0,∞) such

that

|λn(z, y, x)| ≤ nκ1, |αn(z, y, x)| ≤ nκ1.

(iii) There exists a constant κ2 ∈ (0,∞) such that

sup
(z,y)∈IRK+×IH

|bn(z, y)| ≤ κ2.

(iv) There exists b ∈ Cb(IRK
+×IH) such that bn(

√
nz, y)→ b(z, y) uniformly for (z, y)
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in compact subsets of IRK
+ × IH as n→∞.

(v) There exist IRK
+ valued bounded Lipschitz functions λ̄, ᾱ defined on IRK

+ × IH,

such that

λ̄n(
√
nz, y)

n
→ λ̄(z, y),

ᾱn(
√
nz, y)

n
→ ᾱ(z, y)

uniformly for (z, y) in compact subsets of IRK
+ × IH as n → ∞. Furthermore,

λ̄ = [I− P′]ᾱ.

(vi) There exist λ, α ∈ (0,∞) such that, for any n ∈ IN and (z, y) ∈ IRK
+ × IH,

inf
i∈IK0

λ̄ni (
√
nz, y)

n
≥ λ, inf

i∈IK

ᾱni (
√
nz, y)

n
≥ α.

(vii) For each i ∈ IK\IK0, there exists j ∈ IK0 such that Pmji > 0 for some m ∈ IN .

(viii) The Markov process

Xn(t) = X(lnt), t ≥ 0,

where X is a Markov process with the same probability law as X̃, and ln satisfies

that, for some r0 > 1/2, lnn
−(r0+1) →∞ as n→∞.

(ix) For i ∈ IK, the service rate αni defined on IRK
+ × IH × IL has the following form

αni (z, y, x) = $n
i (z, y)θi(x),

where $n
i : IRK

+ × IH → IR+ and θi : IL→ IR+\{0} are measurable maps.

Part (i) of the assumption says that the network under a suitable averaging is

open. This averaging is given in terms of the stationary distribution p∗ of the fast

Markov process Xn. In particular, the assumption allows for the routing structure

to oscillate between that of different (e.g., open and closed) networks. For example,
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consider the setting of a single server queue where IL = {1, 2}, P1 = 1,P2 = 1/2,

θ(x) ≡ 1, and λ, α are constants (see Figure 1). Clearly whenever both p∗1 and p∗2 are

Figure 2.1: The network is closed when Xn is in state 1 and it is open when Xn is in
state 2.

strictly positive, Assumption 2.3.1(i) is satisfied. Parts (ii)-(v) of the assumptions,

culminating in the requirement that

λ̄ = [I− P′]ᾱ, (2.3.8)

represent the heavy traffic condition for this model. Once more note that the traf-

fic balance condition is formulated in terms of the parameters averaged w.r.t. the

stationary distribution of Xn. For example, consider the setting of a single server

queue where IK = {1, 2}, IL = {1, 2},P = 0, θ(x) ≡ 1, p∗1 = p∗2 = 1/2, λn1 (z, y, x) =

λn2 (z, y, x) = 2nx, and αn1 (z, y, x) = αn2 (z, y, x) = 3n, for all (z, y, x) ∈ IRK
+ × IH × IL.

Then although, for any given state of the background process Xn, the system is ei-

ther underloaded or overloaded, the traffic balance condition in the sense of (2.3.8) is

satisfied. Parts (vi) and (vii) are nondegeneracy conditions which ensure that the dif-

fusion coefficients in the reflected diffusion limit model are uniformly nondegenerate

(cf. (2.3.10)). We note that condition (vii) can be assumed without loss of generality
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since if it fails for some i ∈ IK\IK0, one can consider a reduced model that is obtained

by omitting station Pi.

Assumptions introduced in this section will be made throughout this work and

will not be noted explicitly in the statement of the results.

Define, for (z, y) ∈ IRK
+ × IH, a K × [K + K(K + 1)] dimensional matrix Σ(z, y)

as

Σ(z, y)
.
= (A(z, y), B1(z, y), . . . , BK(z, y)) , (2.3.9)

where A and Bi, i ∈ IK, are K ×K and K × (K + 1) matrices given as follows. For

(z, y) ∈ IRK
+ × IH,

A(z, y) = diag

(√
λ̄1(z, y), . . . ,

√
λ̄K(z, y)

)
,

Bi(z, y) =
(
B0
i (z, y), B1

i (z, y), . . . , BK
i (z, y)

)
,

whereB0
i (z, y)

.
= −1i

√
Pi,k+1ᾱi(z, y), Bi

i(z, y) = 0 and for j ∈ IK and j 6= i, Bj
i (z, y)

.
=

1ij

√
Pijᾱi(z, y). Here 1i is a K dimensional vector with 1 at the ith coordinate and

0 elsewhere, 0 is K dimensional zero vector, and 1ij is a K dimensional vector with

−1 at the ith, 1 at the jth coordinates, and 0 elsewhere. It is easy to see that due

to Assumption (vi) and (vii), Σ(z, y)Σ(z, y)′ is uniformly nondegenerate (see [9, Ap-

pendix]). More precisely, there exists a κ ∈ (0,∞) such that, for all ζ ∈ IRK and

(z, y) ∈ IRK
+ × IH,

ζ ′(Σ(z, y)Σ(z, y)′)ζ ≥ κζ ′ζ. (2.3.10)

One can then find a Lipschitz function σ : IRK
+×IH → IRK×K (cf. [45, Theorem 5.2.2])

such that Σ(z, y)Σ(z, y)′ = σ(z, y)σ(z, y)′. Note that the uniform boundedness of λ

and α (Assumption 2.3.1(v)) implies that σ(z, y) is uniformly bounded on IRK
+ × IH.

We next recall the definition of a Skorohod map associated with the reflection matrix

[I − P′]. For i ∈ IK, define Fi = {z ∈ IRK
+ : zi = 0}. We will call Fi the ith face of
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S
.
= IRK

+ .

Definition 2.3.1. Let ψ ∈ D([0,∞), IRK) be such that ψ(0) ∈ S. Then (φ, η) ∈

D([0,∞), IRK
+ × IRK

+ ) solves the Skorohod problem (SP ) for ψ with respect to S and

[I− P′] if and only if the following hold.

(i) φ(t) = ψ(t) + [I− P′]η(t) ∈ S for all t ≥ 0.

(ii) Write η = (η1, . . . , ηK)′ and φ = (φ1, . . . , φK)′. We have, for i ∈ IK, (a) ηi(0) =

0, (b) ηi is nondecreasing, and (c) ηi can increase only when φ is on Fi, that is

∫ ∞
0

1{φi(s)>0}dηi(s) = 0.

LetDS([0,∞), IRK)
.
= {ψ ∈ D([0,∞), IRK) : ψ(0) ∈ S}. LetD ⊂ DS([0,∞), IRK)

be the domain on which there is a unique solution to the SP. On D, we define

the Skorohod map (SM) Γ associated with the data (S, [I − P′]) as Γ(ψ) = φ, if

(φ, [I−P′]−1(φ−ψ)) is the unique solution of the SP posed by ψ. The following result,

which is a consequence of Assumption 2.3.1(i) (See [29, 50]), gives the regularity of

the Skorohod map defined by (S, [I− P′]).

Proposition 2.3.1. The Skorohod map is well defined on all of DS([0,∞), IRK), that

is, D = DS([0,∞), IRK), and the SM is Lipschitz continuous in the following sense:

There exists a constant C ∈ (1,∞) such that, for all ψ1, ψ2 ∈ DS([0,∞), IRK),

sup
t≥0
|Γ(ψ1)(t)− Γ(ψ2)(t)| ≤ C sup

t≥0
|ψ1(t)− ψ2(t)| .

As an immediate corollary of the above proposition we have the following.

Corollary 2.3.1. For n ∈ IN , let ψn ∈ D, φn = Γ(ψn), and ηn = [I−P′]−1(φn−ψn).

Suppose {ψn : n ≥ 1} is C-tight in D([0,∞), IRK). Then (ψn, φn, ηn) is C-tight in
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D([0,∞), IRK × IRK
+ × IRK

+ ). Moreover, if (ψ, φ, η) is any weak limit of (ψn, φn, ηn),

then (φ, η) is the unique solution of the SP for ψ, that is φ = Γ(ψ) and η = [I −

P′]−1(φ− ψ).

We now introduce the diffusion limit model.

Definition 2.3.2. Fix ν ∈ P(IRK
+ × IH). Let (Ω̄, F̄ , P̄ , {F̄t}t≥0) be a filtered prob-

ability space on which are given RCLL adapted processes Z, Y,W which satisfy the

following conditions.

(i) W is a K dimensional standard {F̄t} Brownian motion.

(ii) Y is a IH valued {F̄t} Markov process with infinitesimal generator Q.

(iii) P̄ ◦ (Z(0), Y (0))−1 = ν.

(iv) The following stochastic integral equation holds. For all t ≥ 0, a.s.,

Z(t)=Γ

(
Z(0) +

∫ ·
0

b (Z(u), Y (u)) du+

∫ ·
0

σ (Z(u), Y (u)) dW (u)

)
(t). (2.3.11)

We denote (Ω̄, F̄ , P̄ , {F̄t}, Z, Y,W ) satisfying the above properties by Ψν and refer to

it as a system with initial condition ν.

The following result, proved in the appendix, is a consequence of Lipschitz prop-

erties of σ, b and the Skorohod map Γ.

Theorem 2.3.1. For each ν ∈ P(IRK
+×IH), there is a system Ψν with initial condition

ν. If Ψ
(i)
ν

.
= (Ωi,Fi, Pi, {F (i)

t }, Z(i), Y (i),W (i)), i = 1, 2, are two such systems, then

P1 ◦ (Z(1), Y (1),W (1))−1 = P2 ◦ (Z(2), Y (2),W (2))−1.

The following is the main result of this chapter.
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Theorem 2.3.2. Let Ψν = (Ω̄, F̄ , P̄ , {F̄t}, Z, Y,W ) be a system with initial condition

ν. Suppose that the sequence of measures P n ◦ (Q̂n(0), Y n(0))−1 converges weakly to

ν. Then

P n ◦ (Q̂n, Y n)−1 ⇒ P̄ ◦ (Z, Y )−1,

as n→∞, in P(D([0,∞), IRK
+ × IH)).

To illustrate Theorem 2.3.2, we consider two special cases. In Corollary 2.3.2, the

arrival and service rates λn, αn are assumed to only depend on the fast Markov process

Xn, while in Corollary 2.3.3, λn, αn are modulated by both Xn and Y n (but not the

queue length process). In both corollaries, the routing mechanism is modulated by

Xn as before. We also provide two explicit examples following the corollaries.

Corollary 2.3.2. Suppose the arrival and service rates only depend on the Markov

process Xn, i.e., λn and αn are measurable maps from IL to IR+ satisfying (2.2.2). If

P n ◦ Q̂n(0) converges to a probability measure ν̄ ∈ P(IRK
+ ), then P n ◦ Q̂n ⇒ P̄ ◦ Z,

where Z is a reflected diffusion defined on a filtered probability space (Ω̄, F̄ , P̄ , {F̄t}t≥0)

such that

Z(t) = Γ (Z(0) + b ·+σW (·)) (t), t ≥ 0. (2.3.12)

Here Z(0) is a random variable with law ν̄ and W is a K dimensional {Ft} Brownian

motion. The drift and diffusion coefficients b, σ are constant which can be defined in

the same way as b(z, y), σ(z, y) with λn(z, y, x) and αn(z, y, x) replaced by λn(x) and

αn(x), respectively.

Suppose now the arrival and service rates λn and αn are modulated by both Xn

and Y n (but not the queue length process). Then λn and αn are measurable maps

from IH × IL to IR+ satisfying (2.2.2). For (y, x) ∈ IH × IL, we can define b(x), σ(x)

in the same way as b(z, y), σ(z, y) with λn(z, y, x) and αn(z, y, x) replaced by λn(y, x)
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and αn(y, x), respectively. For t ≥ 0, let

Z̃(t) = Γ

(
Z̃(0) +

∫ ·
0

b (Y (u)) du+

∫ ·
0

σ (Y (u)) dW (u)

)
(t). (2.3.13)

Define system Ψ̃ν = (Ω̄, F̄ , P̄ , {F̄t}, Z̃, Y,W ) as in Definition 2.3.2 with Z replaced

by Z̃.

Corollary 2.3.3. Suppose λn and αn only depend on the Markov processes Xn

and Y n. Let Ψ̃ν̃ = (Ω̄, F̄ , P̄ , {F̄t}, Z̃, Y,W ) be a system with initial condition ν̃.

If P n ◦ (Q̂n(0), Y n(0)) converges to a probability measure ν̃ ∈ P(IRK
+ × IH), then

P n ◦ (Q̂n, Y n)⇒ P̄ ◦ (Z, Y ) as n→∞.

Example 2.3.1. Let

K = 2, λn(x) = (
4

3
nx,

4

3
nx)′, αn = (4n, 4n)′, IL = {1, 2}, p∗ = (

1

2
,
1

2
)′,

P1 =

 0 1
3

1
3

0

 ,P2 =

 0 2
3

2
3

0

 .

Therefore,

λ̄n = (2n, 2n)′, ᾱn = αn = (4n, 4n)′,P =

 0 1
2

1
2

0

 ,

and

λ̄ = (2, 2)′, ᾱ = (4, 4)′, bn = (0, 0)′,ΣΣ′ =

 8 −4

−4 8

 .

Then we can find b = (0, 0)′ and σ =

 2
√

2 0

−
√

2
√

6

 . Hence the limit process is

Z(t) = Γ (Z(0) + σW (·)) (t), t ≥ 0.
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Example 2.3.2. Let K, IL, p∗,P1,P2 as in the above example, and make λn(x, y) =

(2
3

√
nx+ 2ny, 2

3

√
nx+ 2ny)′, αn(y) = (4ny, 4ny)′. Therefore,

λ̄n(y) = (
√
n+ 2ny,

√
n+ 2ny)′, ᾱn(y) = αn = (4ny, 4ny)′, bn = (1, 1)′,

λ̄(y) = (2y, 2y)′, ᾱ(y) = (4y, 4y)′,ΣΣ′ =

 8y −4y

−4y 8y

 .

Then we can find b = (1, 1)′, σ(y) =

 2
√

2y 0

−
√

2y
√

6y

 . The limit process can be

described as follows.

Z(t) = Γ

(
Z(0) + b ·+

∫ ·
0

σ(Y (u))W (u)

)
(t), t ≥ 0.

In order to prove Theorem 2.3.2, we will characterize the processes (Z, Y ) in

terms of a suitable martingale problem. We begin by introducing the generator of

this Markov process. For f1 ∈ C2
0(IRK

+ ), (z, y) ∈ IRK
+ × IH and i ∈ IK, define

Lf1(z, y) = b(z, y)′∇f1(z) +
1

2
Tr
(
Λ(z, y)∇2f1(z)

)
, Dif1(z) = d′i∇f1(z),

where di is the ith column of [I−P′], Λ(z, y) = σ(z, y)σ(z, y)′, ∇f denotes the gradient

vector of f , and ∇2f is the Hessian matrix of f . For f2 ∈ BM(IH), let Qf2 ∈ BM(IH)

be defined as

Qf2(y)
.
=

H∑
j=1

Qyjf2(j), y ∈ IH.

Define f
.
= f1 ⊗ f2 as f(z, y) = f1(z)f2(y), (z, y) ∈ IRK

+ × IH. We denote the class of

all such functions by G. For f ∈ G, let Lf,Dif ∈ BM(IRK
+ × IH) be defined as

26



Lf(z, y) = Lf1(z, y)f2(y) + f1(z)Qf2(y),

Dif(z, y) = Dif1(z)f2(y).

(2.3.14)

Proof of Theorem 2.3.2 is based on the following characterization result in terms of a

martingale problem, the proof of which is given in the appendix.

Proposition 2.3.2. Fix ν ∈ P(IRK
+ × IH). Let (Z, η, Y ) be a stochastic process with

sample paths in C([0,∞) : IRK
+ × IRK

+ ) × D([0,∞), IH) on some filtered probability

space (Ω̄, F̄ , P̄ , {F̄t}), such that P̄ ◦ (Z(0), Y (0))−1 = ν, and for all f ∈ G,

f (Z(·), Y (·))−f (Z(0), Y (0))−
∫ ·

0

Lf (Z(u), Y (u)) du−
K∑
i=1

∫ ·
0

Dif (Z(u), Y (u)) dηi(u)

(2.3.15)

is a {F̄t} martingale. Then there is a K dimensional (standard) Brownian motion W

defined on this filtered space such that (Ω̄, F̄ , P̄ , {F̄t}, Z, Y,W ) is a Ψν system with

initial condition ν.

The multiplication form of the operators L,Di (see (2.3.14)) is a consequence of the

assumption about no common jumps made in (2.3.3). This, in particular, is consistent

with the fact that the processes Y and W in Proposition 2.3.2 are independent (see

Lemma 2.5.1).

The following theorem, proved in Section 2.4, will be the key step in the proof of

Theorem 2.3.2.

Theorem 2.3.3. Assume that the sequence of measures P n ◦ (Q̂n(0), Y n(0))−1 con-

verges weakly to some ν ∈ P(IRK
+ × IH). Then we have the following two results.

(i) (Q̂n, Y n, ηn) is tight, where, for i ∈ IK,

ηni =
1√
n

∫ t

0

ᾱni (
√
nQ̂n(u), Y n(u))1{Q̂ni (u)=0}du.
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Furthermore, (Q̂n, ηn) is C-tight.

(ii) Let (Z, Y, η) be any weak limit given on a probability space (Ω̄, F̄ , P̄ ). Then, for

f ∈ G, expression (2.3.15) is a {F̄t} martingale with

F̄t = σ (Z(u), Y (u), η(u) : u ≤ t) .

Combining the above theorem with Proposition 2.3.2 and Theorem 2.3.1, the proof

of Theorem 2.3.2 is completed as follows.

Proof of Theorem 2.3.2. Since P n ◦ (Q̂n(0), Y n(0)) converges to ν, by Theorem

2.3.3, (Q̂n, Y n, ηn) is tight. Let (Z, Y, η) be any (weak) limit point of (Q̂n, Y n, ηn) on a

probability space (Ω̄, F̄ , P̄ ). Define F̄t = σ (Z(u), Y (u), η(u) : u ≤ t). From Theorem

2.3.3 (ii) and Proposition 2.3.2, there is a K dimensional (standard) Brownian motion

W on this probability space such that (Ω̄, F̄ , P̄ , {F̄t}, Z, Y,W ) is a Ψν system with

initial distribution ν. Finally, weak uniqueness from Theorem 2.3.1 yields that P n ◦

(Q̂n, Y n)−1 ⇒ P̄ ◦ (Z, Y )−1 as n→∞. �

2.4 Proof of Theorem 2.3.3

This section is devoted to the proof of Theorem 2.3.3. In Proposition 2.4.1, we

prove Theorem 2.3.3 (i), i.e., the property that (Q̂n, Y n, ηn) is tight. Proposition

2.4.2 gives the proof of Theorem 2.3.3 (ii), which characterizes the limit points of

(Q̂n, Y n, ηn) in terms of a martingale problem. We begin with a lemma which is a

key ingredient in the proofs of both propositions.

Lemma 2.4.1. Let {gn}n∈IN be a sequence of measurable functions from IRK
+×IH×IL

to IR such that, for some κ0 ∈ (0,∞), |gn(z, y, x)| < κ0 for all n ∈ IN and (z, y, x) ∈
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IRK
+ × IH × IL. For (z, y) ∈ IRK

+ × IH, define ḡn(z, y) =
∑L

x=1 p
∗
xgn(z, y, x). Let

hn(t)
.
=
√
n

∫ t

0

[
gn(Q̂n(u), Y n(u), Xn(u))− ḡn(Q̂n(u), Y n(u))

]
du, t ≥ 0.

Then hn converges to 0 in probability, in C([0,∞), IR), as n→∞.

Proof: For (z, y, x) ∈ IRK
+ × IH × IL, let gcn(z, y, x) = gn(z, y, x)− ḡn(z, y). Recall

the parameter r0 > 1/2, introduced in (2.3.1). Fix r ∈ (1/2, r0). Then

hn(t) =
√
n

∫ t

0

gcn(Q̂n(u), Y n(u), Xn(u))du

=
1

n
1
2

+r

∫ tn1+r

0

gcn

(
Q̂n
( u

nr+1

)
, Y n
( u

nr+1

)
, Xn

( u

nr+1

))
du.

Let, for t ∈ (0,∞),

hn1 (t)
.
=

1

n
1
2

+r

∫ btn1+rc

0

gcn

(
Q̂n
( u

nr+1

)
, Y n
( u

nr+1

)
, Xn

( u

nr+1

))
du,

hn2 (t)
.
=

1

n
1
2

+r

∫ tn1+r

btn1+rc
gcn

(
Q̂n
( u

nr+1

)
, Y n
( u

nr+1

)
, Xn

( u

nr+1

))
du.

Then hn = hn1 + hn2 . Since gn, n ∈ IN , are uniformly bounded, E
[
sup0≤t≤N |hn2 (t)|

]
converges to 0 for each N ∈ IN . Consider now hn1 . Define for t ∈ (0,∞),

hn11(t)
.
=

1

n
1
2

+r

btn1+rc∑
k=1

∫ k

k−1

gcn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, Xn

( u

nr+1

))
du,

hn12(t)
.
=

1

n
1
2

+r

btn1+rc∑
k=1

∫ k

k−1

[
gcn

(
Q̂n
( u

nr+1

)
, Y n
( u

nr+1

)
, Xn

( u

nr+1

))
− gcn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, Xn

( u

nr+1

)) ]
du.

(2.4.1)

For time t < 0, we set Q̂n(t) = Q̂n(0) and Y n(t) = Y n(0). Thus hn1 = hn11 +hn12. Let’s
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first consider hn12. Note that the expectation of

sup
k−1≤u≤k

∣∣∣∣gcn(Q̂n
( u

nr+1

)
, Y n
( u

nr+1

)
, Xn

( u

nr+1

))
− gcn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, Xn

( u

nr+1

))∣∣∣∣
can be bounded by the sum of

4κ0P

(
sup

k−1≤u≤k

∣∣∣∣Q̂n
( u

nr+1

)
− Q̂n

(
k − 2

nr+1

)∣∣∣∣ > 0

)
(2.4.2)

and

4κ0P

(
Y n
( u

nr+1

)
6= Y n

(
k − 2

nr+1

)
for some u ∈ [k − 1, k]

)
. (2.4.3)

By Assumption 2.3.1(ii), (|λn(z, y, x)| + |αn(z, y, x)|)/n < 2κ1. Hence we have, for

some c1 ∈ (0,∞), the expression in (2.4.2) is bounded, for all k and n, by c1/n
r.

Furthermore, since Qn → Q, there exists some c2 ∈ (0,∞), for all k and n, the

expression in (2.4.3) is bounded by c2/n
r+1. Combining these estimates, we have for

a suitable c3 ∈ (0,∞),

E

[
sup

0≤t≤N
|hn12(t)|

]
≤ 1

n
1
2

+r

bNn1+rc∑
k=1

E

[
sup

k−1≤u≤k

∣∣∣∣ gcn(Q̂n
( u

nr+1

)
, Y n
( u

nr+1

)
, Xn

( u

nr+1

))
− gcn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, Xn

( u

nr+1

)) ∣∣∣∣] du
≤ c3N

nr−
1
2

.

Since r > 1/2, the last expression converges to 0.

We now consider hn11. For f ∈ BM(IL), t ∈ (0,∞) and x ∈ IL, let P t
nf(x) =

E[f(X(t))|X(0) = x]. Fix (z, y) ∈ IRK
+ × IH. For φ ∈ BM(IRK

+ × IH × IL) we will

write E[φ(z, y,X(t))|X(0) = x] as P t
nφ(z, y, x). For each n, let ĝn(z, y, ·) be a solution

of the Poisson equation for gcn(z, y, ·) corresponding to the Markov semigroup {P t
n}t≥0,
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i.e., for x ∈ IL and t ∈ (0,∞),

P t
nĝn(z, y, x)− ĝn(z, y, x)−

∫ t

0

P u
n g

c
n(z, y, x)du = 0 (2.4.4)

(cf. [27]). We can assume without loss that M
.
= supn,z,y,x |ĝn(z, y, x)| < ∞. By

(2.4.4), recalling the relation between Xn and X in (2.3.2), we have that

ĝn(z, y,Xn(t))− ĝn(z, y,Xn(0))−
∫ t

0

gcn(z, y,Xn(u))du (2.4.5)

is a {Fnt } martingale. Define, for n ∈ IN, (z, y) ∈ IRK
+ × IH, ϑ ∈ (0,∞), and k ∈ IN ,

Mϑ
n (z, y, k)

.
= ĝn(z, y, X̃n(ϑk))− ĝn(z, y, X̃n(ϑ(k − 1)))−

∫ ϑk

ϑ(k−1)

gcn(z, y, X̃n(u))du.

(2.4.6)

First, from (2.4.1),

hn11(t) =
1

n
1
2

+r

btn1+rc∑
k=1

∫ k

k−1

gcn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, X̃n

(
lnu

nr+1

))
du

=

√
n

ln

btn1+rc∑
k=1

∫ lnk

nr+1

ln(k−1)

nr+1

gcn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, X̃n(u)

)
du.

Now, combining with (2.4.6), we can rewrite hn11(t) as

hn11(t) =

√
n

ln

btn1+rc∑
k=1

[
ĝn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, Xn

(
k

nr+1

))
− ĝn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, Xn

(
k − 1

nr+1

))
−M ln/nr+1

n

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, k

) ]
.
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For k1, k2 ∈ IN , let

Sn1 (k1, k2)
.
= ĝn

(
Q̂n

(
k1 − 2

nr+1

)
, Y n

(
k1 − 2

nr+1

)
, Xn

(
k2

nr+1

))
− P ln/nr+1

ĝn

(
Q̂n

(
k1 − 2

nr+1

)
, Y n

(
k1 − 2

nr+1

)
, Xn

(
k2 − 1

nr+1

))
,

Sn2 (k1, k2)
.
= P ln/nr+1

ĝn

(
Q̂n

(
k1 − 2

nr+1

)
, Y n

(
k1 − 2

nr+1

)
, Xn

(
k2 − 1

nr+1

))
−

L∑
x=1

p∗xĝn

(
Q̂n

(
k1 − 2

nr+1

)
, Y n

(
k1 − 2

nr+1

)
, x

)
,

Sn3 (k1, k2)
.
= M ln/nr+1

n

(
Q̂n

(
k1 − 2

nr+1

)
, Y n

(
k1 − 2

nr+1

)
, k2

)
.

With this notation,

hn11(t) =

√
n

ln

btn1+rc∑
k=1

[Sn1 (k, k)− Sn1 (k, k − 1) + Sn2 (k, k)− Sn2 (k, k − 1)− Sn3 (k, k)] .

Let Sn0 (k) = Sn1 (k, k)−Sn1 (k, k−1)−Sn3 (k, k). Then
∑btn1+rc

k=1 Sn0 (k) is a {Fnbtn1+rc/n1+r}

martingale. By the boundedness of ĝn, we can find a constant c4 such that

sup
k,n
|Sn0 (k)| < c4.

By Doob’s inequality,

E

 sup
0≤t≤N

∣∣∣∣∣∣
√
n

ln

btn1+rc∑
k=1

Sn0 (k)

∣∣∣∣∣∣
2

≤ 4E

√n
ln

bNn1+rc∑
k=1

Sn0 (k)

2

= 4

bNn1+rc∑
k=1

E

[√
n

ln
Sn0 (k)

]2

≤ 4c4N
n2+r

l2n
.

Since ln/n
r0+1 →∞ and r < r0, the last expression converges to 0. Recalling that X
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and X̃ have the same law, we have by Assumption 2.2.1,

E |Sn2 (k, k)| = E

∣∣∣∣ E [ĝn(Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, Xn

(
k − 1

nr+1

)) ∣∣ Xn

(
k − 2

nr+1

)]
−

L∑
x=1

p∗xĝn

(
Q̂n

(
k − 2

nr+1

)
, Y n

(
k − 2

nr+1

)
, x

) ∣∣∣∣
≤M

L∑
x=1

E

∣∣∣∣P [Xn

(
k − 1

nr+1

)
= x

∣∣ Xn

(
k − 2

nr+1

)]
− p∗x

∣∣∣∣
≤ LMa1e

−a2ln/nr+1

.

Similarly, we have E |Sn2 (k, k − 1)| ≤ LMa1e
−a2ln/nr+1

. Therefore

E

 sup
0≤t≤N

∣∣∣∣∣∣
√
n

ln

btn1+rc∑
k=1

(Sn2 (k, k)− Sn2 (k, k − 1))

∣∣∣∣∣∣
 ≤ LMa1N

n
3
2

+r

ln
e−a2ln/nr+1

.

Since ln/n
r+1 = nr0−rln/n

r0+1, ln/n
r0+1 →∞ and r0 > r, n

3
2 +r

ln
e−a2ln/nr+1 ≤

√
ne−a2nr0−r

for large n. Thus the last expression converges to 0 as n→∞. Combining the above

estimates, we now have E
[
sup0≤t≤N |hn11(t)|

]
converges to 0. The result follows on

noting that E
[
sup0≤t≤N |hn(t)|

]
→ 0 as n→∞ for all N ∈ IN . �

Let S̃nj (du, dv)
.
= Snj (du, dv)−α̃nj (

√
nQ̂n(u), Y n(u), Xn(u))duµ(dv) and define IRK

valued processes Ân, F̂ n, Bn, Rn as follows. For i ∈ IK and t ≥ 0,

Âni (t) =
1√
n

(
Ani (t)−

∫ t

0

λni (
√
nQ̂n(u), Y n(u), Xn(u))du

)
,

F̂ n
i (t) = − 1√

n

(
Dn
i (t)−

∫ t

0

α̃ni (
√
nQ̂n(u), Y n(u), Xn(u))du

)
+

1√
n

K∑
j=1

∫
[0,t]×Gj

vi(X
n(u−))S̃nj (du, dv),

Bn
i (t) =

∫ t

0

bni (
√
nQ̂n(u), Y n(u))du,
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and

Rn
i (t) =

1√
n

∫ t

0

(
λni (
√
nQ̂n(u), Y n(u), Xn(u))− λ̄ni (

√
nQ̂n(u), Y n(u))

)
du

+
1√
n

∫ t

0

(
ᾱni (
√
nQ̂n(u), Y n(u))1{Q̂ni (u)>0} − α̃

n
i (
√
nQ̂n(u), Y n(u), Xn(u))

)
du

+
1√
n

K∑
j=1

∫
[0,t]×Gj

vi(X
n(u))α̃nj (

√
nQ̂n(u), Y n(u), Xn(u))duµ(dv)

− 1√
n

K∑
j=1

∫ t

0

Pjiᾱnj (
√
nQ̂n(u), Y n(u))1{Q̂nj (u)>0}du.

Noting that α̃ni (z, y, x) = αni (z, y, x)1{zi>0} for all (z, y, x) ∈ IRK
+ × IH × IL, and

recalling the definition of ηn from Theorem 2.3.3, we have that

Q̂n(t) = Q̂n(0) + Ân(t) + F̂ n(t) +Bn(t) +Rn(t) + [I− P′]ηn(t). (2.4.7)

Proposition 2.4.1. Suppose {(Q̂n(0), Y n(0)) : n ≥ 1} is tight in IRK
+ × IH. Then

(Q̂n, Y n, ηn) is tight in D([0,∞), IRK
+ × IRK

+ × IH). Furthermore, (Q̂n, ηn) is C-tight.

Proof: First, we show (Q̂n, ηn) is C-tight in D([0,∞), IRK
+ × IRK

+ ). Let

Zn = Q̂n(0) + Ân + F̂ n +Bn +Rn.

Since
∫ t

0
1{Q̂ni (u)>0}dη

n
i (u) = 0 for any t ≥ 0 and i ∈ IK, we have, from Definition 2.3.1

that Q̂n = Γ(Zn). Thus by Corollary 2.3.1, it suffices to show that Zn is C-tight in

D([0,∞), IRK). For i ∈ IK and (z, y, x) ∈ IRK
+ × IH × IL, let

gni (z, y, x)
.
=

1

n

(
λni (
√
nz, y, x)− α̃ni (

√
nz, y, x) +

K∑
j=1

(∫
Gj

vi(x)µ(dv)

)
α̃nj (
√
nz, y, x)

)

Recalling Assumption 2.3.1 (ii) and applying Lemma 2.4.1 to gni (z, y, x), we get Rn
i

converge to 0 in probability in C([0,∞), IRK). Here we have also made use of the
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relation:

∑
x∈IL

p∗x

(∫
Gj

vi(x)µ(dv)α̃nj (
√
nz, y, x)

)
= Pjiᾱnj (

√
nz, y)1{zj>0}, i, j ∈ IK.

Using Assumption 2.3.1 (iii),

|Bn(t)−Bn(s)| ≤ κ2|t− s|, ∀ 0 ≤ s ≤ t <∞.

In particular, Bn is C-tight. We now show that Ân and F̂ n are C-tight. Recall from

(2.2.2) that Ân and F̂ n are {Fnt } martingales. Since {Ani , Dn
j : i, j ∈ IK} have no

common jumps and vi(x) = 0 for any v ∈ Gi, we have

〈Âni 〉(t) =
1

n

∫ t

0

λni (
√
nQ̂n(u), Y n(u), Xn(u))du

〈F̂ n
i 〉(t) =

1

n

∫ t

0

α̃ni (
√
nQ̂n(u), Y n(u), Xn(u))du

+
1

n

K∑
j=1
j 6=i

∫
[0,t]×Gj

(vi(X
n(u)))2α̃nj (

√
nQ̂n(u), Y n(u), Xn(u))duµ(dv)

Noting that |v(x)| ≤ 1, and recalling Assumption 2.3.1 (ii), we see that
∑K

i=1〈Âni 〉

and
∑K

i=1〈F̂ n
i 〉 are C-tight, which yields the tightness of Ân and F̂ n(cf. [32, Theorem

VI.4.13]). The C-tightness of Ân and F̂ n is now immediate on noting that |4Ân(t)| ≤

K/
√
n and |4F̂ n(t)| ≤ K/

√
n, a.s., for any t ≥ 0.

Since Qn converges to Q, it follows that (cf. [26, Theorem 4.2.5]), if along some

subsequence {nk}k≥1, Y nk(0) converges in distribution to some probability measure ν

on IH then Y nk converges in distribution, in D([0,∞) : IH) to an IH valued Markov

process with initial distribution ν and infinitesimal generator Q. In particular, Y n is

tight. The result follows. �

Denote by {ej}Kj=1 the canonical basis in IRK . For v ∈ Gj and x ∈ IL, let v(x) =
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(vx1 , . . . , v
x
K)′. Let f = f1 ⊗ f2 ∈ G. From (2.2.7), and recalling that Ani , D

n
j , i, j ∈ IK,

have no common jumps, we have, for all t ≥ 0, a.s. P n

f1(Qn(t)) = f1(Qn(0)) +
K∑
j=1

∫ t

0

f1(Qn(u−) + ej)− f1(Qn(u−))Anj (du)

+
K∑
j=1

∫
[0,t]×Gj

f1(Qn(u−) + v(Xn(u−))− ej)− f1(Qn(u−))Snj (du, dv).

Therefore, (cf. (2.2.2)), recalling that Ani , D
n
j , i, j ∈ IK, and Y n have no common

jumps,

f(Qn(t), Y n(t))− f(Qn(0), Y n(0))

−
K∑
j=1

∫ t

0

λnj (Qn(u), Y n(u), Xn(u))f2(Y n(u))[f1(Qn(u) + ej)− f1(Qn(u))]du

−
K∑
j=1

∫
[0,t]×Gj

α̃nj (Qn(u), Y n(u), Xn(u))f2(Y n(u))

× [f1(Qn(u) + v(Xn(u))−ej)− f1(Qn(u))]duµ(dv)

−
∫ t

0

f1(Qn(u))Qnf2(Y n(u))du

is a {Fnt } martingale, where, for y ∈ IH, Qnf2(y) =
∑H

j=1 Qn
yjf2(j). Equivalently, in

terms of the normalized vector Q̂n(t) = Qn(t)/
√
n, we have

f(Q̂n(t), Y n(t))− f(Q̂n(0), Y n(0))

−
K∑
j=1

∫ t

0

λnj (
√
nQ̂n(u), Y n(u), Xn(u))f2(Y n(u))

[
f1

(
Q̂n(u) +

ej√
n

)
− f1(Q̂n(u))

]
du

−
K∑
j=1

∫
[0,t]×Gj

α̃nj (
√
nQ̂n(u), Y n(u), Xn(u))f2(Y n(u))

×
[
f1

(
Q̂n(u) +

v(Xn(u))− ej√
n

)
− f1(Q̂n(u))

]
duµ(dv)

−
∫ t

0

f1(Q̂n(u))Qnf2(Y n(u))du
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is a {Fnt } martingale.

For z ∈ IRK
+ , j ∈ IK and v ∈ Gj, define fn,jz,v : IL→ IR as fn,jz,v (x) = f1

(
z +

v(x)−ej√
n

)
and let

Lnf(z, y) =
K∑
j=1

λ̄nj (
√
nz, y)f2(y)

(
f1(z + ej/

√
n)− f1(z)

)
+

K∑
j=1

$n
j (
√
nz, y)f2(y)

∫
G

(
L∑
x̃=1

p∗x̃θj(x̃)fn,jz,v (x̃)− θ̄jf1(z)

)
µ(dv)

+ f1(z)Qnf2(y),

L̃nf(z, y, x) =
K∑
j=1

(λnj (
√
nz, y, x)− λ̄nj (

√
nz, y))f2(y)

(
f1(z + ej/

√
n)− f1(z)

)
+

K∑
j=1

$n
j (
√
nz, y)f2(y)

∫
G

(
θj(x)fn,jz,v (x)−

L∑
x̃=1

p∗x̃θj(x̃)fn,jz,v (x̃)

)
µ(dv)

+
K∑
j=1

$n
j (
√
nz, y)f2(y)

(
θ̄j − θj(x)

)
f1(z),

Dnif(z, y) =
√
nf2(y)θ̄−1

i

∫
G

(
θ̄if1(z)−

L∑
x̃=1

p∗x̃θi(x̃)fn,iz,v (x̃)

)
µ(dv),

D̃nif(z, y, x) =
√
nf2(y)θ̄−1

i

[∫
G

(
L∑
x̃=1

p∗x̃θi(x̃)fn,iz,v (x̃)− θi(x)fn,iz,v (x)

)
µ(dv)

+
(
θi(x)− θ̄i

)
f1(z)

]
.

The following is an immediate consequence of the above definitions.

Lemma 2.4.2. Let f ∈ G. Then

f(Q̂n(t), Y n(t))− f(Q̂n(0), Y n(0))

−
∫ t

0

Lnf(Q̂n(u), Y n(u))du−
K∑
i=1

∫ t

0

Dnif(Q̂n(u), Y n(u))dηni (u)

−
∫ t

0

L̃nf(Q̂n(u), Y n(u), Xn(u))du−
K∑
i=1

∫ t

0

D̃nif(Q̂n(u), Y n(u), Xn(u))dηni (u)
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is a {Fnt } martingale.

Recall that Λ(z, y) = σ(z, y)σ(z, y)′ for (z, y) ∈ IRK
+ × IH and di is the ith column

of [I − P′]. Define a K × K matrix Λn(z, y) in the same way as Λ(z, y) but with

(λ̄(z, y), ᾱ(z, y)) replaced by (λ̄n(
√
nz, y), ᾱn(

√
nz, y)).

Lemma 2.4.3. For each f ∈ G there are measurable maps ξni : IRK
+×IH → IR, i = 1, 2,

such that

Lnf(z, y) =
1√
n

(
λ̄n(
√
nz, y)− [I− P′]ᾱn(

√
nz, y)

)′
∇f1(z)f2(y)

+
1

2n
Tr
(
Λn(z, y)∇2f1(z)

)
f2(y) + f1(z)Qnf2(y) + ξn1 (z, y),

Dnif(z, y) = d′i∇f1(z)f2(y) + ξn2 (z, y),

and

sup
(z,y)∈IRK+×IH

(|ξn1 (z, y)|+ |ξn2 (z, y)|)→ 0 as n→∞.

Proof: Fix f1 ∈ C2
0(IRK

+ ), x ∈ IL, j ∈ IK, and v ∈ Gj. Applying Taylor series

expansion for f1 at z, we have

f1

(
z +

ej√
n

)
= f1(z) +

e′j∇f1(z)
√
n

+
e′j∇2f1(z)ej

2n
+ γn(j, z),

f1

(
z +

v(x)− ej√
n

)
= f1(z) +

(v(x)− ej)′∇f1(z)√
n

+
(v(x)− ej)′∇2f1(z)(v(x)− ej)

2n

+ ξn(j, z, v, x),

(2.4.8)

where, for some c1 ∈ (0,∞),

sup
j∈IK

sup
v∈G

(z,x)∈IRK+×IL

(|γn(j, z)|+ |ξn(j, z, v, x)|) ≤ c1

n3/2
. (2.4.9)

First we note that
∫
Gj
v(x)µ(dv) equals Px(j)′ which is the transport of Px(j), where
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Px(j) is the jth row of Px. Then, for f ∈ G and (z, y) ∈ IRK
+ × IH,

Lnf(z, y)=
1√
n
f2(y)

(̄
λn(
√
nz, y)−

K∑
j=1

$n
j (
√
nz, y)

L∑
x=1

p∗xθj(x) (ej− Px(j)′)

)′
∇f1(z)

+
1

2n
f2(y)Tr

((
L∑
x=1

p∗xΛ
n(x)

)
∇2f1(z)

)
+ f1(z)Qnf2(y) + ξn1 (z, y),

Dnif(z, y)=f2(y)θ̄−1
i

(
L∑
x=1

p∗x (ei − Px(i)′) θi(x)

)′
∇f1(z) + ξn2 (z, y),

where sup(z,y)∈IRK+×IH(|ξn1 (z, y)| + |ξn2 (z, y)|) ≤ c2/
√
n for some c2 ∈ (0,∞). In the

above display, for x ∈ IL, Λn(x) is a K×K matrix defined in the same way as Λ, with

(λ̄(z, y), ᾱ(z, y),P) replaced by (λ̄n(
√
nz, y), ᾱn(

√
nz, y),Pxdiag(θ(x))[diag(θ̄)]−1). Fi-

nally, it is easily seen that

L∑
x=1

p∗xθj(x) (ej− Px(j)′) = θ̄jdj,

L∑
x=1

p∗xΛ
n(x) = Λn.

The lemma follows. �

The following elementary lemma (cf. [18, Lemma 2.4]) will be needed in our proof.

Lemma 2.4.4. Suppose ξn converges to ξ in D([0,∞), IRK) and ϕn converges to ϕ in

C([0,∞), IR) as n→∞. Further, suppose that ϕn is nonnegative and nondecreasing

for each n. Then as n→∞,

∫
[0,t)

ξn(u)dϕn(u)→
∫

[0,t)

ξ(u)dϕ(u).

uniformly for all t in any compact subset of [0,∞).

Proposition 2.4.2. Assume that the sequence of measures P n◦(Q̂n(0), Y n(0))−1 con-

verges weakly to some ν ∈ P(IRK
+×IH). Let (Z, Y, η) be any weak limit of (Q̂n, Y n, ηn)
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given on a probability space (Ω,F , P ). Then, for all f ∈ G,

f (Z(·), Y (·))−f (Z(0), Y (0))−
∫ ·

0

Lf (Z(u), Y (u)) du−
K∑
i=1

∫ ·
0

Dif (Z(u), Y (u)) dηi(u)

is a {Ft} martingale with Ft
.
= σ (Z(u), Y (u), η(u) : u ≤ t).

Proof: For (z, y, x) ∈ IRK
+ × IH × IL, let

fn1 (z, y, x)
.
= f2(y)

K∑
j=1

[
λnj (
√
nz, y, x)

n

(
e′j∇f1(z)+

e′j∇2f1(z)ej

2
√
n

)

+
α̃nj (
√
nz, y, x)

n

∫
Gj

(
(v(x)−ej)′∇f1(z)+

(v(x)−ej)′∇2f1(z)(v(x)−ej)
2
√
n

)
µ(dv)

]
,

and

fn2 (z, y, x)
.
= f2(y)

K∑
j=1

[
λnj (
√
nz, y, x)γn(j, z) + α̃nj (

√
nz, y, x)

∫
Gj

ξn(j, z, v, x)µ(dv)

]
.

In view of Assumption 2.3.1 (ii) and (2.4.9), fn1 and fn2 are uniformly bounded se-

quences of measurable functions from IRK
+ × IH × IL to IR. Applying Lemma 2.4.1

with gn replaced by fn1 and fn2 , we have, for i = 1, 2,

√
n

∫ ·
0

[
fni (Q̂n(u), Y n(u), Xn(u))− f̄ni (Q̂n(u), Y n(u))

]
du→ 0, (2.4.10)

in probability, in C([0,∞), IR). Using (2.4.8), the definitions of L̃n and D̃ni , i ∈ IK,

and (2.4.10), we have that

∫ ·
0

L̃nf(Q̂n(u), Y n(u), Xn(u))du+
K∑
i=1

∫ ·
0

D̃nif(Q̂n(u), Y n(u), Xn(u))dηni (u)

=
√
n

2∑
j=1

∫ ·
0

[
fnj (Q̂n(u), Y n(u), Xn(u))− f̄nj (Q̂n(u), Y n(u))

]
du→ 0,

(2.4.11)
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in probability in C([0,∞), IR).

Furthermore, by Lemma 2.4.3 and Assumption 2.3.1 (iv) and (v), Lnf → Lf and

Dnif → Dif uniformly on compact subsets of IRK
+ × IH, and therefore

(
Lnf(Q̂n(·), Y n(·)),Dnif(Q̂n(·), Y n(·)), ηni

)
⇒ (Lf(Z(·), Y (·)),Dif(Z(·), Y (·)), ηi)

in D([0,∞), IR2) × C([0,∞), IR). Applying Lemma 2.4.4 with ϕn = ηni (·) and ξn =

Dni f(Q̂n(·), Y n(·)), we have

∫ ·
0

Dnif(Q̂n(u), Y n(u))dηni (u)⇒
∫ ·

0

Dif(Z(u), Y (u))dηi(u)

weakly in C([0,∞), IR). In fact, we have the joint convergence,

(
Q̂n, Y n,

∫ ·
0

Lnf(Q̂n(u), Y n(u))du,

∫ ·
0

Dnif(Q̂n(u), Y n(u))dηni (u), i = 1, 2, . . . , K

)
⇒
(
Z, Y,

∫ ·
0

Lf (Z(u), Y (u)) du,

∫ ·
0

Dif (Z(u), Y (u)) dηi(u), i = 1, 2, . . . , K

)
.

Fix 0 ≤ s ≤ t. For k ∈ IN , i = 1, . . . , k, let ti ∈ {u ≥ 0 : P (Y (u) = Y (u−)) =

1} ∩ [0, s], and hi ∈ Cb(IRK
+ × IH × IRK

+ ). Then for all f ∈ G,

E

[(
f (Z(t), Y (t))− f (Z(s), Y (s))−

∫ t

s

Lf (Z(u), Y (u)) du

−
K∑
i=1

∫ t

s

Dif (Z(u), Y (u)) dηi(u)

)
×

k∏
i=1

hi (Z(ti), Y (ti), η(ti))

]
= lim

n→∞
E

[(
f(Q̂n(t), Y n(t))− f(Q̂n(s), Y n(s))−

∫ t

s

Lnf(Q̂n(u), Y n(u))du

−
K∑
i=1

∫ t

s

Dnif(Q̂n(u), Y n(u))dηni (u)−
∫ t

s

L̃nf(Q̂n(u), Y n(u), Xn(u))du

−
K∑
i=1

∫ t

s

D̃nif(Q̂n(u), Y n(u), Xn(u))dηni (u)

) k∏
i=1

hi(Q̂
n(ti), Y

n(ti), η
n(ti))

]
= 0,
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where the first equality is a consequence of the above joint convergence and (2.4.11),

and the second equality is a consequence of Lemma 2.4.2. The result follows. �

2.5 Appendix

In this section we prove Theorem 2.3.1 and Proposition 2.3.2. Although the proofs

are simple modifications of classical arguments, we provide details for the sake of

completeness. We begin with the following useful lemma.

Lemma 2.5.1. Let (Ω,F , P, {Ft}) be a filtered probability space on which are given

RCLL adapted processes (W,Y ) with some initial distribution π, such that W is a

K-dimensional standard {Ft} Brownian motion, and Y is a IH valued {Ft} Markov

process with infinitesimal generator Q. Then W and Y are independent.

Proof: For g1 ∈ C2
0(IRK) and g2 ∈ BM(IH), define A1g1 ∈ BM(IRK) and A2g2 ∈

BM(IH) as

A1g1(x) =
1

2
Tr(∇2g1(x)), A2g2(y) = Qg2(y) =

H∑
j=1

Qyjg2(j), x ∈ IRK , y ∈ IH.

Let, for t ≥ 0,

M1(t) = g1(W (t))− g1(W (0))−
∫ t

0

A1g1(W (u))du,

M2(t) = g2(Y (t))− g2(Y (0))−
∫ t

0

A2g2(Y (u))du.

Then M1 and M2 are {Ft} martingales. In particular, M1 is a continuous martingale,

while M2 is a martingale with sample paths of finite variation on each compact set
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of [0,∞). Therefore, [M1,M2] = 0. By Ito’s formula,

g1(W (t))g2(Y (t))− g1(W (0))g2(Y (0))−
∫ t

0

g1(W (u))A2g2(Y (u))du

−
∫ t

0

g2(Y (u))A1g1(W (u))du

is a {Ft} martingale. Applying Theorem 10.1 of [34] we now have that W and Y are

independent. �

Proof of Theorem 2.3.1: Fix ν ∈ P(IRK
+ × IH) and let (Ω̄, F̄ , P̄ , {F̄t}) be a

filtered probability space on which are given RCLL adapted processes (W,Y ) such

that W is a K-dimensional standard {F̄t} Brownian motion and Y is a IH valued {F̄t}

Markov process with infinitesimal generator Q. Also let Z(0) be a F̄0 measurable IRK
+

valued random variable such that (Z(0), Y (0)) has probability law ν. Using Lipschitz

property of b and σ, we have (cf. Theorem 2.1 of Chapter III in [30]) that there is a

unique continuous {F̄t} adapted process Z satisfying the integral equation (2.3.11).

Clearly Ψν = (Ω̄, F̄ , P̄ , {F̄t}, Z, Y,W ) is a system with initial condition ν which proves

the first part of the theorem. To prove weak uniqueness, we follow an argument similar

to [51] (also see [33, Section 5.3.D.]). Consider two systems Ψ
(i)
ν

.
= (Ωi,Fi, Pi, {F (i)

t },

Z(i), Y (i),W (i)), i = 1, 2, with initial condition ν. Set R(i)(t) = (Z(i)(0), Y (i)(t)) and

V (i)(t) = Z(i)(t) − Z(i)(0), t ≥ 0. Consider (R(i),W (i), V (i)) which induces a measure

ρi on (Θ,B(Θ)), where

Θ
.
= IRK

+ ×D([0,∞), IH)× C([0,∞), IRK)× C([0,∞), IRK),

according to

ρi(A)
.
= Pi[(R

(i),W (i), V (i)) ∈ A], A ∈ B(Θ), i = 1, 2. (2.5.1)
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Denote by θ = (r, w, v) a generic element of Θ. The marginal of ρi on the w-coordinate

is the standard Wiener measure which we denoted by γ1. Also, using the Markov

property of Y (1) and Y (2), we see that R(1) and R(2) have the same probability law.

Define γ2 ∈ P(IRK
+ ×D([0,∞), IH)) as γ2 = P1 ◦ (R(1))−1 = P2 ◦ (R(2))−1. Then the

marginal of ρi on the r-coordinate of θ is γ2. From Lemma 2.5.1 W (i) is independent

of R(i), i = 1, 2, and so (R(1),W (1)) and (R(2),W (2)) have the same probability law.

Denoting this common law by γ, we have that γ = γ2⊗γ1. Disintegrate the probability

measure ρi as ρi(drdwdv) = νi(r, w, dv)γ(drdw). Here νi is the regular conditional

probability kernel given as

νi : IRK
+ ×D([0,∞), IH)× C([0,∞), IRK)× B(C([0,∞), IRK))→ [0, 1], (2.5.2)

which satisfies:

(i) for each r ∈ IRK
+ ×D([0,∞), IH) and w ∈ C([0,∞), IRK), νi(r, w, ·) is a prob-

ability measure on (C([0,∞), IRK),B(C([0,∞), IRK))),

(ii) for each F ∈ B(C([0,∞), IRK)), the mapping

(r, w)→ νi(r, w, F )

is B(IRK
+ )⊗ B(D([0,∞), IH))⊗ B(C([0,∞), IRK))-measurable, and

(iii) for F ∈ B(C([0,∞), IRK)), G ∈ B(IRK
+ )⊗B(D([0,∞), IH))⊗B(C([0,∞), IRK)),

ρi(G× F ) =

∫
G

νi(r, w, F )γ(drdw).

To bring the two weak solutions (Z(i), Y (i),W (i)), i = 1, 2, together on the same

space, consider the measurable space (Ξ,J ), where Ξ = Θ×C([0,∞), IRK) and J is

the completion of the σ-field B(Θ)⊗B(C([0,∞), IRK)) under the probability measure
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ν defined as:

ν(A×B × C) =

∫
A

ν1(r, w,B)ν2(r, w, C)γ(drdw), (2.5.3)

whereA ∈ B(IRK
+ )⊗B(D([0,∞), IH)⊗B(C([0,∞), IRK)) andB,C ∈ B(C([0,∞), IRK)).

In order to endow (Ξ,J , ν) with a filtration that satisfies the usual conditions, we

take, for 0 ≤ t <∞,

J̃t
.
= σ{(r(s), w(s), v1(s), v2(s) : 0 ≤ s ≤ t)}, Jt

.
= σ(J̃t ∪N ),

where N is the collection of null sets under measure ν, ξ
.
= (r, w, v1, v2) is a generic

element of Ξ and r(s) = (r1, r2(s)), with r1 ∈ IRK
+ and r2 ∈ D([0,∞), IH). Here, with

an abuse of terminology, we have denoted the canonical coordinate maps on Ξ by the

coordinate themselves.

By (2.5.1), (iii) and (2.5.3), we have

ν[ξ ∈ Ξ : (r, w, vi) ∈ A] = Pi[(R
(i),W (i), V (i)) ∈ A], A ∈ B(Θ), i = 1, 2.

Thus for i = 1, 2, the distribution induced by ξ 7→ (r1 + vi, r2, w) under ν is the same

as that of (Z(i), Y (i),W (i)) under Pi, where (r1, r2(t)) = r(t), t ≥ 0. Consequently we

have constructed, on the space (Ξ,J ), two strong solutions of the integral equation

(2.3.11). By pathwise uniqueness of (2.3.11) established earlier in the proof we get

ν[ξ ∈ Ξ : v1 = v2] = 1.

Then for A ∈ B(C([0,∞), IRK))⊗ B(D([0,∞), IH))⊗ B(C([0,∞), IRK)),

P1[(Z(1), Y (1),W (1)) ∈ A] = ν[ξ ∈ Ξ : (r1 + v1, r2, w) ∈ A] = ν[ξ ∈ Ξ : (r1 + v2, r2, w) ∈ A]

= P2[(Z(2), Y (2),W (2)) ∈ A].
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The result follows. �

Proof of Proposition 2.3.2: For t ≥ 0, let

U(t) = Z(t)− Z(0)−
∫ t

0

b(Z(u), Y (u))du− [I− P′]η(t).

Define τn = inf {t ≥ 0 : |Z(t)| ≥ n} for each n ∈ IN . For j ∈ IK, let f ∈ G be such

that f(z, y) = zj on Sn
.
= {(z, y) ∈ IRK

+ × IH : |z| ≤ n}. On Sn

Lf(z, y) = bj(z, y), Dif(z, y) = dji, i ∈ IK,

where dji is the (j, i)th entry of [I− P′]. Thus, for n ≥ 1,

Zj(· ∧ τn)− Zj(0)−
∫ ·∧τn

0

cj(Z(u), Y (u))du−
K∑
i=1

djiηi(· ∧ τn)

is a {F̄t} martingale. Since τn → ∞ as n → ∞, U(t) is a {F̄t} continuous local

martingale. Next, for i, j ∈ IK, let f ∈ G be such that f(z, y) = zizj on Sn. Then,

on Sn,

Lf(z, y) = bi(z, y)zj + bj(z, y)zi + Λij(z, y), Dlf(z, y) = dilzj + djlzi, l ∈ IK.

Thus the following is a {F̄t} martingale.

Zi(· ∧ τn)Zj(· ∧ τn)− Zi(0)Zj(0)

−
∫ ·∧τn

0

(bi(Z(u), Y (u))Zj(u) + bj(Z(u), Y (u))Zi(u) + Λij(Z(u), Y (u))) du

−
K∑
l=1

∫ ·∧τn
0

(dilZj(u) + djlZi(u)) dηl(u)

(2.5.4)
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On the other hand, for t ≥ 0,

Zi(t)Zj(t)− Zi(0)Zj(0) =

∫ t

0

Zi(u)dZj(u) +

∫ t

0

Zj(u)dZi(u) + [Zi, Zj](t)

=

∫ t

0

Zi(u)dUj(u) +

∫ t

0

Zj(u)dUi(u) + [Ui, Uj](t)

+

∫ t

0

(Zi(u)bj(Z(u), Y (u)) + Zj(u)bi(Z(u), Y (u))) du

+
K∑
l=1

∫ t

0

(djlZi(u) + dilZj(u)) dηl(u).

(2.5.5)

Combining (2.5.4) and (2.5.5), we have

∫ ·
0

Zi(u)dUj(u) +

∫ ·
0

Zj(u)dUi(u) + [Ui, Uj](·)−
∫ ·

0

Λij(Z(u), Y (u))du

is a {F̄t} local martingale. Next, since U is {F̄t} local martingale, we have

∫ ·
0

Zi(u)dUj(u) +

∫ ·
0

Zj(u)dUi(u)

is a {F̄t} local martingale as well. Combining the above two observations, we have

Vij(·)
.
= [Ui, Uj](·)−

∫ ·
0

Λij(Z(u), Y (u))du

is a {F̄t} local martingale. Since Vij has continuous sample paths of finite variations,

Vij(t) = Vij(0) = 0. Therefore, we have

[Ui, Uj](t) = 〈Ui, Uj〉(t) =

∫ t

0

Λij(Z(u), Y (u))du, t ≥ 0.
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Consider the process

W (t)
.
=

∫ t

0

σ(Z(u), Y (u))′Λ−1(Z(u), Y (u))dU(u).

Clearly W is a continuous local martingale and noting that σ is invertible it is easily

checked that 〈Wi,Wj〉(t) = δijt, 1 ≤ i ≤ j ≤ K. Therefore, W is a standard K-

dimensional Brownian motion. Also, clearly

U(·) =

∫ ·
0

σ(Z(u), Y (u))dW (u),

and therefore, for t ≥ 0,

Z(t) = Z(0) +

∫ t

0

b(Z(u), Y (u))du+

∫ t

0

σ(Z(u), Y (u))dW (u) + [I− P′]η(t).

Since
∫∞

0
1{Zi(u)6=0}dηi(u) = 0, 1 ≤ i ≤ K, we have, from Definition 2.3.1, that Z

solves (2.3.11). The result follows. �
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Chapter 3

Stability properties for constrained
Markov modulated diffusions

3.1 Introduction

Stability properties of constrained stochastic processes are useful in many appli-

cations arising from computing, telecommunications, and manufacturing systems. In

this chapter, we study a family of constrained Markov modulated diffusion processes

that arise in the heavy traffic analysis of multiclass queueing networks. We estab-

lish positive recurrence and geometric ergodicity properties for such processes under

suitable stability conditions on a related deterministic dynamical system (see [24], [4]

and [10]). Results of this chapter will be used in Chapter 4 to study the convergence

of invariant measures for Markov modulated open queueing networks in heavy traffic.

It will be shown there that under suitable conditions, the invariant measure for the

queueing length process converges weakly to the invariant measure of a constrained

Markov modulated diffusion process of the form studied in the current chapter.

We now describe the basic mathematical setting. Let G ⊂ IRK be a convex

polyhedral cone with vertex at the origin given as the intersection of half spaces

Gi, i = 1, · · · , N and denote by ni and di the inward normal and constraint direction

associated with Gi. The constrained Markov modulated diffusion process we study is



constrained to take values in G and is defined through the equation

Z(t) = Γ

(
z +

∫ ·
0

b(Z(s), Y (s))ds+

∫ ·
0

σ(Z(s), Y (s))dW (s)

)
(t), t ≥ 0. (3.1.1)

The process (Z, Y ) is defined on a filtered probability space (Ω,F , P, {Ft}t≥0) such

that Y is a {Ft} Markov process with state space IH
.
= {1, 2, . . . , H}, infinitesimal

generator Q and stationary distribution q∗ = {q∗j : j ∈ IH}, and W is a {Ft} standard

Brownian motion independent of Y . We assume the Skorohod map Γ defined by the

data {(di, ni) : i = 1, 2, . . . , N} is well posed and Lipschitz continuous (Assumption

3.2.1). We also assume the Lipschitz continuity on σ and b (Assumption 3.2.2) and the

boundedness and and uniform nondegeneracy of σ (Assumption 3.2.3). Furthermore,

we assume that the drift b can be expressed as

b(z, y) = b1(z, y) + b2(y), (z, y) ∈ G× IH, (3.1.2)

where b1 : G × IH → IRK and b2 : IH → IRK are measurable maps. Define b∗2 =∑
j∈IH q

∗
j b2(j) and b∗(z, y) = b1(z, y) + b∗2. We will also make a suitable stability

assumption (Assumption 3.2.5) on the drift vector b∗ which ensures that trajectories

of a certain deterministic dynamical system are attracted to the origin. This condition

says that there exists a δ0 ∈ (0,∞) and a bounded set A ⊂ G such that for all z ∈ G\A

and y ∈ IH, b∗(z, y) ∈ C(δ0) where

C(δ0)
.
= {v ∈ C : dist(v, ∂C) ≥ δ},

and

C .
=

{
−

N∑
i=1

αidi : αi ≥ 0, i ∈ {1, · · · , N}

}
.

Our main results (Theorem 3.2.2 and Theorem 3.2.4) show that, under the above
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conditions, (Z, Y ) is positive recurrent and has a unique invariant measure. For

the case when b1 = 0, one can obtain a sharper result (Theorem 3.2.3). That is,

if b∗2 is in the interior of C, then (Z, Y ) is positive recurrent, and if b∗2 is not in C,

(Z, Y ) is transient. Under the same stability condition, we identify an appropriate

exponentially growing Lyapunov function V and establish the V -uniform ergodicity

of (Z, Y ). Consequently, we show finiteness of the moment generating function of the

invariant measure in a neighborhood of zero, uniform time estimates for polynomial

moments of all orders and functional central limit results (Theorem 3.2.4).

We note that our stability condition on the drift vector field is substantially weaker

than the requirement that b(z, y) ∈ C(δ0) for all z ∈ G \ A and y ∈ IH, and allow

for the drift to be “transient” in some states of the Markov process Y . For example,

consider vector b1, b2 ∈ IRK such that b1 ∈ C◦ and b2 ∈ Cc. Then it is well known

that if b(x, y) ≡ b1, Z in (3.1.1) will be positive recurrent and if b(x, y) ≡ b2, Z

will be transient. Our results show that in a Markov modulated case where, for

example, IH = {1, 2} and b(x, y) ≡ by, the pair (Z, Y ) will be positive recurrent (in

fact geometrically ergodic) if b∗ = q∗1b1 + q∗2b2 ∈ C◦ and transient if b∗ ∈ Cc.

We next consider a Markov modulated semimartingale reflected Brownian mo-

tion Z (modulated by the Markov process Y ), which can be considered as a spe-

cial case of constrained Markov modulated diffusion processes introduced above with

b(z, y) = b2(y) and a constant covariance matrix σ. However, here we pose weaker

assumption on the constraint vectors {(di, ni) : i = 1, 2, . . . , K}, namely, the matrix

(d1|d2| . . . |dK) is completely-S (see Section 3.2.2). Using a standard argument based

on Girsanov’s theorem and classical results of [46], one can establish the existence

and uniquely characterize the probability law of such a process (see Theorem 3.2.5).

Under a suitable stability condition, we prove that (Z, Y ) is positive recurrent and

has a unique stationary distribution (Theorem 3.2.6). Furthermore, we show that
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(Z, Y ) is V -uniformly ergodic where the Lyapunov function V grows exponentially,

and establish properties (see Theorem 3.2.7) analogous to those in Theorem 3.2.4 for

the more general setting of a completely-S reflected matrix.

The chapter is organized as follows. In Section 3.2, we collect the main results

of this chapter. Proofs are given in Section 3.3. In Appendix, we collect proofs of

results that are similar to arguments used in existing literature.

3.2 Main results

In this section we collect the main results of this chapter.

3.2.1 Stability properties under a regular Skorohod map

Recall the set G and vectors {ni : i = 1, 2, . . . , N} from Section 3.1. Denote the

set {z ∈ ∂G : 〈z, ni〉 = 0} by Fi. With each face Fi we associate a unit vector di such

that 〈di, ni〉 > 0. This vector defines the direction of constraint associated with the

face Fi. At points on ∂G where more than one faces meet, there are more than one

allowed directions of constraint. For z ∈ ∂G, define the set of directions of constraint

d(z) =

d ∈ IRK : d =
∑
i∈I(z)

αidi, αi ≥ 0, |d| = 1

 , (3.2.1)

where I(z) = {i ∈ {1, 2, . . . , N} : 〈z, ni〉 = 0}. Note that if I(z) = {j} for some

j ∈ {1, 2, . . . , N}, then d(z) = {dj}.

We now introduce the Skorohod problem (SP) and the Skorohod map (SM) asso-

ciated with G and d. Define DG([0,∞) : IRK) =
{
ψ ∈ D([0,∞) : IRK) : ψ(0) ∈ G

}
.

For η ∈ D([0,∞) : IRK), let |η|(T ) denote the total variation of η on [0, T ] with

respect to the Euclidean norm on IRK .

52



Definition 3.2.1. Let ψ ∈ DG([0,∞) : IRK) be given. Then the pair (φ, η) ∈

D([0,∞) : G) ×D([0,∞) : IRK) solves the SP for ψ with respect to G and d if and

only if φ(0) = ψ(0) and for all t ∈ [0,∞) the following hold:

(i) φ(t) = ψ(t) + η(t), and φ(t) ∈ G.

(ii) |η|(t) <∞, and |η|(t) =
∫

[0,t]
1{φ(s)∈∂G}d|η|(s).

(iii) There exists Borel measurable map γ : [0,∞) → IRK such that γ(t) ∈ d(φ(t))

a.e. d|η| and η(t) =
∫

[0,t]
γ(s)d|η|(s).

Let D ⊂ DG([0,∞), IRK) be the domain on which there is a unique solution to

the SP. On D we define the SM Γ as Γ(ψ)
.
= φ, if (φ, φ− ψ) is the unique solution of

the SP posed by ψ. We will make the following assumption on the regularity of the

SM defined by the data {(di, ni) : i ∈ {1, 2, . . . , N}}.

Assumption 3.2.1. The SM is well defined on all of DG([0,∞), IRK), that is D =

DG([0,∞), IRK), and the SM is Lipschitz continuous in the following sense. There

exists κ1 ∈ (1,∞) such that for all ψ1, ψ2 ∈ DG([0,∞), IRK) :

sup
t≥0
|Γ(ψ1)(t)− Γ(ψ2)(t)| ≤ κ1 sup

t≥0
|ψ1(t)− ψ2(t)| . (3.2.2)

We refer the reader to [22, 23, 29] for sufficient conditions under which the above

assumption holds.

We now introduce the Markov process (Z, Y ) which will be studied here. The

component Y is a Markov process with a finite state space IH
.
= {1, 2, . . . , H} en-

dowed with the discrete metric and infinitesimal generator Q, while Z is a constrained

diffusion with drift and diffusion coefficients that, in addition to depending on the

current state, are modulated through the values of Y . More precisely, the process Z
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satisfies an integral equation of the form

Z(t) = Γ

(
z +

∫ ·
0

b (Z(s), Y (s)) ds+

∫ ·
0

σ (Z(s), Y (s)) dW (s)

)
(t) ∈ G, (3.2.3)

where z ∈ G, W is a standard Wiener process which is independent of Y , and

σ : G × IH → IRK×K , b : G × IH → IRK are measurable maps. We will make the

usual Lipschitz assumption on the coefficients b and σ as follows.

Assumption 3.2.2. There exists κ2 ∈ (0,∞) such that, for all z1, z2 ∈ G and y ∈ IH,

|σ(z1, y)− σ(z2, y)|+ |b(z1, y)− b(z2, y)| ≤ κ2|z1 − z2|.

Let S .
= G × IH and Φ

.
= (Z, Y ). Using the above Lipschitz property along with

the regularity assumption on the SM Γ (Assumption 3.2.1), it is easily seen that

equation (3.2.3) is well posed. In particular, we have the following.

Theorem 3.2.1. Under Assumptions 3.2.1 and 3.2.2, there is a filtered measurable

space (Ω,F , {Ft}t≥0) on which are given a collection of probability measures {Pz}z∈S

and {Ft} adapted processes (Z,W, k) and Y with sample paths in C([0,∞) : G ×

IRK×IRK) and D([0,∞) : IH) respectively, such that (Φ, {Pϕ}ϕ∈S) is a Feller-Markov

family and, for every ϕ ≡ (z, y) ∈ S, Pϕ-a.s., the following hold.

(i) W is a K-dimensional standard {Ft}t≥0 Brownian motion.

(ii) For all t ∈ (0,∞),

Z(t) = z +

∫ t

0

b(Φ(s))ds+

∫ t

0

σ(Φ(s))dW (s) + k(t), (3.2.4)

and Z(t) ∈ G.

(iii) For all t ∈ (0,∞), |k|(t) <∞ and |k|(t) =
∫ t

0
1{Z(s)∈∂G}d|k|(s).

54



(iv) There is a IRK-valued {Ft} progressively measurable process γ such that γ(t) ∈

d(Z(t)) a.e. d|k| and for all t ∈ (0,∞), k(t) =
∫ t

0
γ(s)d|k|(s).

(v) Y is a IH-valued {Ft}-Markov process with Y (0) = y and infinitesimal generator

Q.

We will denote the Markov family (Φ, {Pϕ}ϕ∈S) merely as Φ and denote the tran-

sition kernel of Φ by P t
Φ, namely for ϕ ∈ S and A ∈ B(S), P t

Φ(ϕ,A) = Pϕ(Φ(t) ∈ A).

We recall the definitions of positive recurrence and transience of a Markov process.

Definition 3.2.2. The Markov process {Φ(t) : t ≥ 0} is said to be positive recurrent

if for each A ∈ B(G) with positive Lebesgue measure, j ∈ IH, and ϕ ∈ S, we have

Eϕ(τA×{j}) < ∞, where τA×{j} = inf{t ≥ 0 : Φ(t) ∈ A × {j}} and Eϕ denotes the

expectation under Pϕ.

Definition 3.2.3. The Markov process {Φ(t) : t ≥ 0} is said to be transient if

there exist A ∈ B(G) with positive Lebesgue measure, j ∈ IH, and ϕ ∈ S such that

Pϕ(τA×{j} <∞) < 1.

We now introduce additional assumptions that will be needed for the main stability

results. The second part of the following assumption (along with Assumption 3.2.4)

will ensure irreducibility of the Markov process Φ while the first will be needed in

some moment estimates.

Assumption 3.2.3.

(i) For some κ3 ∈ (0,∞) and for all ϕ ∈ S, |σ(ϕ)| ≤ κ3.

(ii) There exists κ4 ∈ (0,∞) such that for all ϕ ∈ S and ζ ∈ IRK , ζ ′σ(ϕ)σ′(ϕ)ζ ≥

κ4ζ
′ζ.

We will make the following irreducibility assumption on the finite state Markov

process associated with the generator Q. Let Tt = exp(tQ), t ≥ 0.
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Assumption 3.2.4. For every t > 0 and i, j ∈ IH, Tt(i, j) > 0.

This assumption ensures that the Markov process with the infinitesimal generator

Q has a unique stationary distribution q∗ ≡ {q∗j}j∈IH . We now introduce the main

stability assumption on the drift coefficient b. Let

C .
=

{
−

N∑
i=1

αidi : αi ≥ 0, i ∈ {1, · · · , N}

}
. (3.2.5)

and

C(δ) .
= {v ∈ C : dist(v, ∂C) ≥ δ}, δ ∈ (0,∞). (3.2.6)

The cone in (3.2.5) plays a key role in the stability analysis of constrained diffusions

(see [8, 4, 11]). For example, it follows from results in [4] that if the drift and diffusion

coefficients do not depend on the process Y (i.e., for all (z, y) ∈ S, b(z, y) ≡ b(z) and

σ(z, y) ≡ σ(z)), and for some δ0 > 0, b(z) ∈ C(δ0) for all z ∈ G, then the Markov

process Z is positive recurrent and consequently has a unique invariant probability

measure.

In the current work we will assume that the drift b can be expressed as

b(z, y) = b1(z, y) + b2(y), (z, y) ∈ S, (3.2.7)

where b1 : S → IRK and b2 : IH → IRK are measurable maps satisfying Assumption

3.2.5 below.

Assumption 3.2.5. There exist δ0 ∈ (0,∞) and bounded set A ⊂ G such that for

all z ∈ G\A and y ∈ IH, b∗(z, y) ∈ C(δ0) where

b∗(z, y) = b1(z, y) + b∗2 and b∗2 =
∑
j∈IH

q∗j b2(j), (z, y) ∈ S. (3.2.8)

The following theorem is the first main result of this chapter.

56



Theorem 3.2.2. Suppose that Assumptions 3.2.1-3.2.5 hold. Then the Markov pro-

cess (Φ, {Pϕ}ϕ∈S) is positive recurrent and has a unique invariant probability measure

π.

Remark 3.2.1. In [49], the authors consider a 1-dimensional Markov-modulated re-

flected Ornstein–Uhlenbeck process {Z(t) : t ≥ 0} defined as follows.

Z(t) = −
∫ t

0

[λ1(Y (s))Z(s) + λ2(Y (s))]ds+

∫ t

0

σ(Y (s))dB(s) + k(t), t ≥ 0,

where {Y (t)}t≥0 is as in Theorem 3.2.1(v), {B(t)}t≥0 is a standard 1-dimensional

Brownian motion, and λ1, λ2, σ are all strictly positive functions. The paper shows

that (Z, Y ) has a unique stationary distribution. Clearly b(z, y) = −[λ1(y)z + λ2(y)]

satisfies Assumption 3.2.5 and thus Theorem 3.2.2 in particular covers the setting

considered in [49]. In fact, Theorem 3.2.2, in addition to covering the much more

general multidimensional setting, shows that the positivity assumption on λ1, λ2 can

be relaxed to the condition that λ1, λ2 are nonnegative and λ2(j) > 0 for some j ∈ IH.

For the case when b1 = 0, one can obtain a sharper result as follows.

Theorem 3.2.3. Suppose that b1(ϕ) = 0 for all ϕ ∈ S. Also suppose that Assump-

tions 3.2.1–3.2.4 hold. Then the following hold:

(i) If b∗2 ∈ Co, then (Φ, {Pϕ}ϕ∈S) is positive recurrent.

(ii) If b∗2 6∈ C, then (Φ, {Pϕ}ϕ∈S) is transient.

In section 3.2.4, we will establish geometric ergodicity of the Markov family

(Φ, {Pϕ}ϕ∈S). More precisely, the following result will be proved. Let f : S → IR

be a measurable function such that, for some measurable g : S → IR and for all

ϕ ∈ S, t ≥ 0,

Eϕ|f(Φ(t))|+ Eϕ

[∫ t

0

|g(Φ(s))|ds
]
<∞, Eϕ[f(Φ(t))] = f(ϕ) + Eϕ

[∫ t

0

g(Φ(s))ds

]
.
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Denote by D(A) the collection of all such measurable functions f . For a pair (f, g)

as above, we write (f, g) ∈ A, or with an abuse of terminology, g = Af . The

(multi-valued) operator A is referred to as the extended generator of Φ and D(A) its

domain.

Theorem 3.2.4. Suppose that Assumptions 3.2.1-3.2.5 hold. Then the following

properties hold.

(i) There exists β1 ∈ (0,∞) such that for all measurable f : S → IR which satisfy

|f(ϕ)| ≤ eβ1|z| for all ϕ = (z, y) ∈ S,

∫
S
|f(ϕ)|π(dϕ) <∞.

In particular, for all c ∈ IRK with |c| ≤ β1,

∫
S
e〈c,z〉π(dzdy) <∞.

(ii) There are β2, β3, b0 ∈ (0,∞) such that for f as in (i), the following hold.

(a) For all ϕ = (z, y) ∈ S and t ∈ (0,∞),

|Eϕ(f(Φ(t))− π(f)| ≤ eβ2(|z|+1)e−b0t.

(b) Defining for t ≥ 0, St
.
=
∫ t

0
f(Φ(u))du, we have that f ct (ϕ)

.
= Eϕ(St−tπ(f))

converges to a finite limit f̂(ϕ) for all ϕ ∈ S.

(c) The convergence in (b) is exponentially fast, i.e.,

|f ct (ϕ)− f̂(ϕ)| ≤ eβ3(|z|+1)e−b0t

for all ϕ = (z, y) ∈ S and t ∈ (0,∞).
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(d) The function f̂ ∈ D(A) and solves the Poisson equation: Af̂(ϕ) = π(f)−

f(ϕ), ϕ ∈ S.

(iii) Let f : S → IR be a measurable function such that, with β1 as in (i), f 2(ϕ) ≤

eβ1|z|, for all ϕ = (z, y) ∈ S. Define for t ∈ [0, 1],

ξn(t)
.
=

1√
n

∫ nt

0

(f(Φ(s))− π(f)) ds.

Let f̂ be as in (ii)(b). Define

γ2
f
.
= 2

∫
f̂(ϕ)(f(ϕ)− π(f))π(dz).

Then |γf | <∞ and ξn converges weakly to γfB in C([0, 1], IR), where B is a 1

dimensional standard Brownian motion.

3.2.2 Markov modulated SRBM

In Section 3.4 we will consider a model with somewhat more restrictive conditions

on the domain and the coefficients b and σ but significantly weaker assumptions on the

constraint vector field d. Suppose that G = IRK
+ and N = K. For i ∈ IK, let ni = ei.

Then the ith face Fi = {z ∈ G : zi = 0}. Define a K × K matrix R = (d1| · · · |dK)

and a K-dimensional vector b0 ∈ IRK . Let σ be a K × K positive definite matrix.

We recall from [46] the definition of a SRBM associated with (G, b0, σ, R).

Definition 3.2.4. For z ∈ G, an SRBM associated with (G, b0, σ, R) that starts from

z is a continuous, {F̄t}-adapted K-dimensional process Z̄, defined on some filtered

probability space (Ω̄, F̄ , {F̄t}t≥0, P̄ ) such that, P̄ -a.s., the following hold.

(i) Z̄(t) = z + b0t+ σW̄ (t) +RŪ(t) and Z̄(t) ∈ G for all t ≥ 0.

(ii) W̄ is a K-dimensional standard {F̄t} Brownian motion.
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(iii) Ū is an {F̄t}-adapted K-dimensional process such that, for i = 1, . . . , K,

Ūi(0) = 0, Ūi is continuous and nondecreasing, and Ūi can increase only when

Z̄ is on Fi, i.e.,
∫∞

0
1{Z̄i(s)>0}dŪi(s) = 0.

An SRBM arises as the diffusion approximation limit for many multiclass queueing

networks in heavy traffic (see [47]). The paper [46] shows that if R is completely-S,

namely for every k × k principle submatrix R̃ of R, there is a k-dimensional vector

vR̃ such that vR̃ ≥ 0 and R̃vR̃ > 0, then (weak) existence and uniqueness of SRBM

hold. This condition, which is significantly weaker than Assumption 3.2.1 made in

Section 3.2.2, is in fact known to be a necessary condition for existence of an SRBM

([41, Theorem 2]). We record this condition below for future reference.

Assumption 3.2.6. The matrix R is completely-S.

The following result follows from [46] along with a straightforward argument based

on Girsanov’s theorem. Fix a measurable map b2 : IH → IRK .

Theorem 3.2.5. Suppose that Assumption 3.2.6 holds. Then there is a filtered

measurable space (Ω,F , {Ft}t≥0) on which are given a collection of probability mea-

sures {Pϕ}ϕ∈S and {Ft}-adapted processes (Z,W,U) and Y with sample paths in

C([0,∞) : G × IRK × G) and D([0,∞) : IH), respectively, such that for every

ϕ ≡ (z, y) ∈ S, Pϕ-a.s., the following hold.

(i) W is a K-dimensional standard {Ft} Brownian motion.

(ii) For all t ≥ 0,

Z(t) = z +

∫ t

0

b2(Y (s))ds+ σW (t) +RU(t), (3.2.9)

and Z(t) ∈ G.
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(iii) For each i = 1, . . . , K, Ui(0) = 0, Ui is continuous, and nondecreasing, and

∫ ∞
0

1{Zi(s)>0}dUi(s) = 0.

(iv) Y is a IH-valued {Ft}-Markov process with Y (0) = y and infinitesimal generator

Q.

Let Φ = (Z, Y ). Then (Φ, {Pϕ}ϕ∈S) is a Feller-Markov family.

We now recall the key stability condition, introduced in [24], for positive recurrence

of an SRBM, in terms of the associated “fluid limit” trajectories.

Definition 3.2.5. We say a vector b0 ∈ IRK satisfies the DW-stability condition if

for all φ ∈ C([0,∞) : G) satisfying the property (F) below, we have φ(t) → 0 as

t→∞.

(F)


For some z ∈ G and η ∈ C([0,∞) : G), φ(t) = z + b0t+Rη(t) for all t ≥ 0,

where for i = 1, . . . , K, ηi(0) = 0, ηi is nondecreasing, and
∫∞

0
1{φi(s)6=0}dηi(s) = 0.

In [24], the authors showed that if Φ is a (G, b0, σ, R) SRBM, i.e., b2(y) = b0 for

all y ∈ IH, and b0 satisfies the DW-stability condition, then the SRBM is positive

recurrent and consequently has a unique invariant probability distribution. In the

current work we establish the following result.

Theorem 3.2.6. Suppose that Assumptions 3.2.4 and 3.2.6 hold and the vector b∗2

satisfies the DW-stability condition. Then the family (Φ, {Pϕ}ϕ∈S) is positive recurrent

and admits a unique invariant probability measure π.

In fact, we establish the following geometric ergodicity properties. Analogous

result for the constant drift case is established in [10].
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Theorem 3.2.7. Under the assumptions made in Theorem 3.2.6, properties in The-

orem 3.2.4 hold for Markov process Φ.

3.3 Stability properties under a regular Skorohod

map

3.3.1 Positive recurrence

In this section we prove Theorem 3.2.2. Assumptions 3.2.1-3.2.5 will be assumed

throughout this section. Recall the parameter δ0 introduced in Assumption 3.2.5.

Let υ : [0,∞)→ IRK be a measurable map such that,

∫ t

0

|υ(s)|ds <∞, for all t ≥ 0. (3.3.1)

For z ∈ G and υ as above, let

z(t) = Γ

(
z +

∫ t

0

υ(s)ds

)
, t ≥ 0. (3.3.2)

For z ∈ G, let A(z) ≡ A(z, δ0) be the set of all absolutely continuous functions

z defined by (3.3.2) for some υ : [0,∞) → C(δ0) that satisfies (3.3.1). Define the

“hitting time to the origin” function as follows.

T (z) = sup
z∈A(z)

inf{t ∈ (0,∞) : z(t) = 0}, z ∈ G. (3.3.3)

Note that T (0) = 0. The following lemma from [4](cf. Lemma 3.1) is a key ingredient

in our analysis.

Lemma 3.3.1. The function T defined by (3.3.3) satisfies the following properties.
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(i) For some Θ1 ≡ Θ1(δ0) ∈ (0,∞), |T (z1)−T (z2)| ≤ Θ1|z1−z2| for all z1, z2 ∈ G.

(ii) For some Θ2 ≡ Θ2(δ0) ∈ (0,∞), Θ2|z| ≤ T (z) ≤ Θ1|z|, for all z ∈ G.

(iii) Fix z ∈ G and let z ∈ A(z). Then for all t > 0, T (z(t)) ≤ (T (z)− t)+.

Note that for (z, y) ∈ S, b(z, y)− b∗(z, y) = b2(y)− b∗2. Define bc(y) = b2(y)− b∗2,

y ∈ IH. The following lemma is an immediate consequence of Lemma 3.3.1 and

the Lipschitz property of Γ. The proof is quite similar to that of Lemma 4.1 of

[4], however for completeness we provide the arguments in Appendix. Recall the

filtered probability space (Ω,F , {Ft}, {Pϕ}ϕ∈S) and processes Z,W, Y,Φ introduced

in Theorem 3.2.1.

Lemma 3.3.2. Let ∆ > 0 and u > 0 be arbitrary. Fix ϕ ∈ S. Then, Pϕ-a.s., on the

set {ω : Z(t, ω) ∈ G \ A for all t ∈ (u, u+ ∆]},

T (Z(u+ ∆)) ≤ (T (Z(u))−∆)+ + κ1Θ1ν
u
∆,

where Θ1 and κ1 are as in Lemma 3.3.1(i) and Assumption 3.2.1 respectively, and

νu∆
.
= sup

u≤s≤u+∆

∣∣∣∣∫ s

u

bc(Y (v))dv +

∫ s

u

σ(Φ(v))dW (v)

∣∣∣∣ . (3.3.4)

Lemma 3.3.3. There exists a Θ3 ∈ (0,∞) such that for all α, t ∈ (0,∞) and ϕ ∈ S,

Eϕ(exp{αν0
t }) ≤ 8 exp {Θ3α(1 + α + αt)} , (3.3.5)

where ν0
t is defined as in (3.3.3) with u,∆ replaced by 0, t, respectively.
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Proof: By Holder’s inequality,

[
Eϕ

(
exp

{
α sup

0≤s≤t

∣∣∣∣∫ s

0

bc(Y (u))du+

∫ s

0

σ(Φ(u))dW (u)

∣∣∣∣})]2

≤ Eϕ

(
exp

{
2α sup

0≤s≤t

∣∣∣∣∫ s

0

bc(Y (u))du

∣∣∣∣})Eϕ(exp

{
2α sup

0≤s≤t

∣∣∣∣∫ s

0

σ(Φ(u))dW (u)

∣∣∣∣}) .
(3.3.6)

Consider the first expectation on the right hand side of the above inequality. For

f ∈ BM(IH), s ≥ 0 and y ∈ IH, let P s
Y f(y) = E(f(Y (s))|Y (0) = y). Let g(·) be

a solution of the Poisson equation for bc(·) corresponding to the Markov semigroup

{P s
Y }s≥0, i.e., for y ∈ IH and s ≥ 0,

P s
Y g(y)− g(y)−

∫ s

0

P u
Y b

c(y)du = 0.

Then, under Pϕ,

Ms
.
= g(Y (s))− g(Y (0))−

∫ s

0

bc(Y (u))du (3.3.7)

is an {Fs} martingale.

We next show that, for all s ≥ 0 and y ≥ 0,

Pϕ(|Ms| ≥ y) ≤ 2 exp

{
−2y2

(1 + v2)2(s+ 1)

}
, (3.3.8)

where v = 2(|g|∞ + |bc|∞) <∞. For fixed s ≥ 0, let

ξk =


Mk+1 −Mk, 0 ≤ k ≤ bsc − 1,

Ms −Mbsc, k = bsc.

Then Ms =
∑bsc

i=0 ξi and for 0 ≤ k ≤ bsc, Eϕ (ξk|Fk) = 0 and |ξk| ≤ v. Using well

known concentration inequalities for martingales with bounded increments (see e.g.
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Corollary 2.4.7 in [19]), for 0 ≤ k ≤ bsc and y ≥ 0,

Pϕ

(
k∑
i=0

ξi ≥ y
√
k + 1

)
≤ exp

{
− 2y2

(1 + v2)2

}
.

Therefore,

Pϕ

 bsc∑
i=0

ξi ≥ y

 ≤ exp

{
− 2y2

(1 + v2)2(bsc+ 1)

}
≤ exp

{
− 2y2

(1 + v2)2(s+ 1)

}
.

Similarly,

Pϕ

− bsc∑
i=0

ξi ≥ y

 ≤ exp

{
− 2y2

(1 + v2)2(s+ 1)

}
.

The inequality in (3.3.8) follows on combining the above two estimates.

Denoting 2
(1+v2)2 by c1, we have,

Eϕ (exp{2α|Ms|}) ≤
∫ ∞

0

2 exp

{
− c1(log y)2

4α2(s+ 1)

}
dy

= 2

√
4πα2(s+ 1)

c1

exp

{
α2(s+ 1)

c1

}
≤ 2 exp

{
(1 + 4π)α2(s+ 1)

c1

}
.

An application of Doob’s inequality now yields that

Eϕ

(
exp

{
2α sup

0≤s≤t
|Ms|

})
≤ 4Eϕ (exp {2α|Mt|}) ≤ 8 exp

{
(1 + 4π)α2(t+ 1)

c1

}
.

Combining this with (3.3.7), we have that

Eϕ

(
exp

{
2α sup

0≤s≤t

∣∣∣∣∫ s

0

bc(Y (u))du

∣∣∣∣}) ≤ 8 exp

{
4α|g|∞ +

(1 + 4π)α2(t+ 1)

c1

}
.

(3.3.9)

Next consider the second expectation on the right side of (3.3.6). Using Assumption
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3.2.3 (i), we have by standard estimates (see e.g. Lemma 4.2 of [4])

Eϕ

(
exp

{
2α sup

0≤s≤t

∣∣∣∣∫ s

0

σ(Φ(u))dW (u)

∣∣∣∣}) ≤ 8 exp
{

2α2κ2
3K

2t
}
. (3.3.10)

Using (3.3.9) and (3.3.10), we now have that the left side of (3.3.5) is bounded above

by

8 exp

{
2|g|∞α +

1 + 4π

2c1

α2 +

(
1 + 4π

2c1

+ κ2
3K

2

)
α2t

}
.

The result follows. �

Using the fact that Φ is a {Ft}-Markov process and that W is a {Ft}-Brownian

motion (cf. Lemma 4.3 of [4]) we have the following lemma. Proof is omitted.

Lemma 3.3.4. Let ϕ ∈ S and ∆ > 0 be fixed. For n ∈ IN , let νn ≡ ν
(n−1)∆
∆ , where

ν
(n−1)∆
∆ is defined as in (3.3.4) with u replaced by (n− 1)∆. Then for any α ∈ (0,∞)

and m,n ∈ IN ;m ≤ n,

Eϕ

(
exp

{
α

n∑
i=m

νi

})
≤ (8 exp {Θ3α(1 + α + α∆)})n−m+1 ,

where Θ3 is as in Lemma 3.3.3.

Given a compact set C ⊂ S, let

τC
.
= inf{t ≥ 0 : Φ(t) ∈ C}. (3.3.11)

For M > 0, let BM
.
= {ϕ ≡ (z, y) ∈ S : T (z) ≤M} and CM = {ϕ ≡ (z, y) ∈ S : |z| ≤

M}.

Theorem 3.3.1. There exist L, a ∈ (0,∞) and ς ∈ (0, 1) such that for any ϕ ≡

(z, y) ∈ S and t ∈ (0,∞),

Pϕ(τBL > t) ≤ exp{ςT (z) + (a− ς)L} exp(−at). (3.3.12)
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In particular, for every M ∈ (0,∞) and a0 < a,

sup
ϕ∈CM

Eϕ(exp{a0τBL}) <∞.

Proof. Proof is similar to that of Theorem 4.1 of [4] so only a sketch is provided.

Fix ϕ = (z, y) ∈ S. Recall the set A from Assumption 3.2.5. Choose L > 0 large

enough so that A × IH ⊂ BL. Additional restrictions on L will be imposed later in

the proof. Let

Ωn
.
= {ω : τBL > nL} =

{
ω : inf

0≤s≤nL
T (Z(s, ω)) > L

}
.

Then for ϕ ∈ S, Pϕ(Ωn) ≤ Pϕ(T (Z(nL)) > L). By Lemma 3.3.2 we have, for ω ∈ Ωn,

T (Z(nL)) ≤ T (z)− nL+ κ1Θ1

n∑
j=1

νj,

where {νj} are defined as in Lemma 3.3.4 with ∆ replaced by L. Using Lemma 3.3.4,

a calculation similar to that in the proof of Theorem 4.1 of [4] now yields for any

ς ∈ (0, 1),

Pϕ(Ωn) ≤ exp(ς(T (z)−L)) exp
{
n
[
Θ3ςκ1Θ1(1 + ςκ1Θ1) + log 8 + Θ3ς

2κ2
1Θ2

1L− ςL
]}
.

Take ς = (2Θ3κ
2
1Θ2

1 + 1)−1. Choose L sufficiently large so that, in addition to the

property A× IH ⊂ BL, we have L−1[Θ3ςκ1Θ1(1 + ςκ1Θ1) + log 8] < ς/2. Then

L−1
[
Θ3ςκ1Θ1(1 + ςκ1Θ1) + log 8 + Θ3ς

2κ2
1Θ2

1L− ςL
]
< Θ3ς

2κ2
1Θ2

1 −
ς

2
.
= −a < 0,

and

Pϕ(Ωn) ≤ exp{ς(T (z)− L)} exp(−nLa).
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The proof of (3.3.12) now follows from the above estimate, exactly as in the proof

of Theorem 4.1 of [4]. Second part of the theorem is an immediate consequence of

(3.3.12).

The lemma below gives the tightness of the family {Pϕ ◦ Φ(t)−1 : ϕ ∈ CM , t ≥ 0}

for any M > 0. The proof is similar to Lemma 4.4 of [4]. A sketch is given in

Appendix.

Lemma 3.3.5. There exists κ ∈ (0,∞) such that for all M > 0,

sup
ϕ∈CM

sup
t≥0

Eϕ (exp{κ|Z(t)|}) <∞.

The following irreducibility property is used in showing uniqueness of the invariant

measure. For j ∈ IH, ϕ ∈ S, t > 0, define mj,t
ϕ ∈ P(G) as mj,t

ϕ (E) = Pϕ(Φ(t) ∈

E × {j}), E ∈ B(G).

Lemma 3.3.6. For every j ∈ IH, ϕ ∈ S and t > 0, mj,t
ϕ is mutually absolutely

continuous with respect to the Lebesgue measure λ on G.

Proof: Without loss of generality we can assume that on the filtered probability

space (Ω,F , {Ft}t≥0), introduced in Theorem 3.2.1 we have, for each ϕ = (z, j) ∈

G × IH, probability measures P j
z under which (i) - (iv) of Theorem 3.2.1 hold, with

(3.2.4) replaced by

Z(t) = z +

∫ t

0

b(Z(s), j)ds+

∫ t

0

σ(Z(s), j)dW (s) + k(t), a.s..

As argued in the proof of Lemma 5.7 of [10],

for all (z, j) ∈ S, t > 0, P j
z ◦Z(t)−1 is mutually absolutely continuous to λ. (3.3.13)

Fix ϕ = (z, i) ∈ S. Denote by {τk}k∈IN0 the sequence of transition times of the pure
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jump process Y , namely, τ0 = 0, τk+1 = inf{t > τk : Yt 6= Yt−}, k ∈ IN0. Then Pϕ a.s.,

τk is strictly increasing to∞. Also, the law of τk+1−τk, conditioned on Fτk (under Pϕ)

has density ϕYτk where for i ∈ IH, ϕi is the Exponential density with rate
∑

j:j 6=iQij.

For k ≥ 0, let mϕ
k ∈ P([0,∞)×G× IH) be the probability law of (τk, Z(τk), Y (τk)).

Also for j ∈ IH, define sub-probability measures mϕ,j
k on [0,∞)×G by the relation

mϕ,j
k (E) = mϕ

k (E × {j}), E ∈ B([0,∞)×G).

Then, for A ∈ B(G), j ∈ IH, t > 0,

Pϕ(Z(t) ∈ A, Y (t) = j) =
∞∑
k=0

Pϕ(Z(t) ∈ A, Y (t) = j, τk < t < τk+1)

=
∞∑
k=0

∫
[0,t)×G

(∫ ∞
t−u

ϕj(v)dv

)
P j
z̃ (Z(t− u) ∈ A)mϕ,j

k (dudz̃).

From (3.3.13) and the above display, if λ(A) = 0, then Pϕ(Z(t) ∈ A, Y (t) = j) = 0.

Conversely suppose that λ(A) > 0. From Assumption 3.2.4, for some k0 ∈ IN0,

P (Y (τk0)|Y (0) = i) > 0 and therefore mϕ,j
k0

([0, t] × G) is nonzero for every t > 0.

Finally, from the above display and using (3.3.13) once again we obtain

Pϕ(Z(t) ∈ A, Y (t) = j) ≥
∫

[0,t)×G

(∫ ∞
t−u

ϕj(v)dv

)
P j
z̃ (Z(t− u) ∈ A)mϕ,j

k0
(dudz̃) > 0.

The result follows. �

Proof of Theorem 3.2.2. Let S be a compact subset of G with a positive

Lebesgue measure. For the proof of positive recurrence, it suffices to show that for

every M > 0 and j ∈ IH,

sup
ϕ∈CM

Eϕ(τ (j)) <∞, (3.3.14)

where τ (j) = inf{t ≥ 0 : Φ(t) ∈ Sj}, Sj = S × {j}. Let L be as in Theorem 3.3.1.
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From Assumptions 3.2.3 and 3.2.4, it follows that

p1 = inf
ϕ∈BL

Pϕ(Φ(1) ∈ Sj) > 0.

Since the family {Pϕ ◦ Φ(1)−1, ϕ ∈ BL} is tight, there exists c1 ∈ (0,∞) such that

inf
ϕ∈BL

Pϕ(Φ(1) ∈ Sj, |Z|∗1 ≤ c1) ≥ p1

2
.

Arguing as in the proof of Theorem 2.2 of [4], we now have that for all M > c1,

sup
ϕ∈CM

Eϕ(τ (j)) ≤ sup
ϕ∈CM

Eϕ(τBL) +
2

p1

(
1 + sup

ϕ∈CM
Eϕ(τBL)

)
.

This, in view of Theorem 3.3.1, proves (3.3.14) and positive recurrence of Φ follows.

Existence of a unique invariant probability measure is an immediate consequence of

Lemma 3.3.5, the Feller property of Φ, and the irreducibility property in Lemma

3.3.6.

3.3.2 Transience

In this subsection, we prove Theorem 3.2.3. We will assume through this section

that Assumption 3.2.1-3.2.4 hold and that b1(ϕ) = 0, ϕ ∈ S. Let ι be the identity

map from [0,∞) to [0,∞). The following lemma is taken from [8] (cf. Lemma 3.1

and Theorem 3.10 therein).

Lemma 3.3.7. For each ζ ∈ IRK, there is a ζ̃ ∈ IRK
+ such that Γ(ζι)(t) = ζ̃t for all

t ≥ 0. Furthermore, ζ̃ 6= 0 if and only if ζ 6∈ C.

Proof of Theorem 3.2.3: Part (i) is immediate from Theorem 3.2.2. Consider

now Part (ii). Since b1 ≡ 0, the process Φ = (Z, Y ) satisfies, for every ϕ = (z, y) ∈ S,
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Pϕ-a.s.,

Z(t) = Γ

(
z +

∫ ·
0

b2(Y (s))ds+

∫ ·
0

σ(Φ(s))dW (s)

)
(t), t ≥ 0.

An application of triangle inequality shows that

|Z(t)|
t

=
1

t

∣∣∣∣Γ(z +

∫ ·
0

b2(Y (s))ds+

∫ ·
0

σ(Φ(s))dW (s)

)
(t)

∣∣∣∣
≥ 1

t
|Γ (b∗2ι) (t)| − 1

t

∣∣∣∣Γ(z +

∫ ·
0

b2(Y (s))ds+

∫ ·
0

σ(Φ(s))dW (s)

)
(t)− Γ(b∗2ι)(t)

∣∣∣∣ .
Noting that bc(y) = b2(y)− b∗2, we have from the Lipschitz property of Γ and Lemma

3.3.7,

|Z(t)|
t
≥ |β̃| − κ1

t
sup

0≤s≤t

∣∣∣∣∫ s

0

σ(Φ(u))dW (u)

∣∣∣∣− κ1

t
sup

0≤s≤t

∣∣∣∣∫ s

0

bc(Y (u))du

∣∣∣∣− κ1|z|
t

,

(3.3.15)

where β̃ = Γ(b∗2ι)(1). Since b∗2 6∈ C, from Lemma 3.3.7, β̃ 6= 0. Let W̃i(t)
.
=

〈ei,
∫ t

0
σ(Φ(s))dW (s)〉, where {ei}Ki=1 is the standard basis in IRK . Then the quadratic

variation of the martingale W̃i equals 〈W̃i〉t =
∫ t

0
e′ia(Φ(s))eids, where a = σσ′. By

Assumption 3.2.3, κ4t ≤ 〈W̃i〉t ≤ κ2
3t. Using a standard time change argument and

the law of iterated logarithm for a scaler Brownian motion, we now have for some

c1 ∈ (0,∞),

lim sup
t→∞

1

t
sup

0≤s≤t

∣∣∣∣∫ s

0

σ(Φ(u))dW (u)

∣∣∣∣ ≤ c1 lim sup
t→∞

1

t
sup

0≤s≤t

K∑
i=1

|W̃i(s)| = 0, Pϕ-a.s.

Next consider the martingale {Mt : t ≥ 0} defined by (3.3.7). From (3.3.8), there

exists c2 ∈ (0,∞) such that for all t, y ∈ (0,∞) and ϕ ∈ S,

Pϕ (|Mt| ≥ y) ≤ 2 exp

{
− c2y

2

t+ 1

}
.
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Consequently, using Markov’s inequality and Lp maximal inequality, for any ε > 0,

Pϕ

(
1

t
sup

0≤s≤t
|Ms| > ε

)
≤ 1

ε4t4
Eϕ

((
sup

0≤s≤t
|Ms|

)4
)
≤ 44

34ε4t4
Eϕ
(
|Mt|4

)
≤ 2

44

34ε4t4

∫ ∞
0

exp

{
−
c2
√
y

t+ 1

}
dy =

45(t+ 1)2

34c2
2ε

4t4
.

An application of Borel-Cantelli lemma now shows that, Pϕ-a.s.

lim sup
t→∞

(
1

t
sup

0≤s≤t
|M(s)|

)
= 0.

Combining this with (3.3.7), we have

lim sup
t→∞

(
1

t
sup

0≤s≤t

∣∣∣∣∫ s

0

bc(Y (u))du

∣∣∣∣) ≤ lim sup
t→∞

(
1

t
sup

0≤s≤t
|M(s)|+ 2|g|∞

t

)
= 0.

Recalling that β̃ 6= 0, we now have from (3.3.15) that,

lim inf
t→∞

|Z(t)|
t

> 0, Pϕ -a.s. (3.3.16)

Finally, we argue that, for some ϕ ∈ S,

Pϕ(τC1 <∞) < 1, (3.3.17)

where τC1 is as in (3.3.11) with C1 defined as below (3.3.11) with M replaced by 1.

Suppose that (3.3.17) is false. Then by a straightforward application of the strong

Markov property, we have that

Pϕ(Φ(tn) ∈ C1 for some sequence {tn}, s.t. tn ↑ ∞) = 1.

However, this contradicts (3.3.16) and the result follows. �
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3.3.3 Geometric ergodicity

In this section we prove Theorem 3.2.4. Assumption 3.2.1-3.2.5 will be assumed

throughout this section. The following drift inequality is at the heart of Theorem

3.2.4.

Lemma 3.3.8. For some $ > 0, the $-skeleton chain {Φ̌n
.
= Φ(n$) : n ∈ IN}

satisfies the following drift inequality: There exist α0, β0 ∈ (0, 1), γ0 ∈ (0,∞) and a

compact set S ⊂ G such that

Eϕ
(
V (Φ̌1)

)
≤ (1− β0)V (ϕ) + γ01S×IH(ϕ), ϕ ∈ S, (3.3.18)

where, for ϕ = (z, y), V (ϕ)
.
= eα0T (z).

Proof: Define σA = inf{t ≥ 0 : Z(t) ∈ A}. From Lemma 3.3.2, for α0, $ ∈

(0,∞),

Eϕ
(
V (Φ̌1)1σA>$

)
≤ Eϕ

(
exp

{
α0(T (z)−$)+ + α0κ1Θ1ν

0
$

}
1σA>$

)
, (3.3.19)

where ν0
$ is defined by (3.3.4) with ∆ and u replaced by $ and 0, respectively. Recall

B$ = {ϕ = (z, y) ∈ S : T (z) ≤ $}. Thus for ϕ ∈ (B$)c, by Lemma 3.3.3,

Eϕ
(
V (Φ̌1)1{σA>$}

)
V (ϕ)

≤ Eϕ
(
exp {α0κ1Θ1ν

0
$ − α0$}1σA>$

)
≤ 8 exp{c1α0 + c2α

2
0 + c2α

2
0$ − α0$},

where c1 = κ1Θ3Θ1 and c2 = Θ3κ
2
1Θ2

1. Now fix α0 small enough and $ large enough

so that

8 exp{c1α0 + c2α
2
0 + c2α

2
0$ − α0$}

.
= (1− 2β0) < 1.
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Then for ϕ ∈ (B$)c,

Eϕ
(
V (Φ̌1)1σA>$

)
≤ (1− 2β0)V (ϕ).

From the strong Markov property of Φ, we see that for all ϕ ∈ S,

Eϕ
(
V (Φ̌1)1σA≤$

)
= Eϕ

[
Eϕ
(
V (Φ̌1)|FσA

)
1σA≤$

]
= Eϕ

[
EZ(σA) [V (Z($ − σA))] 1σA≤$

]
.

Therefore, by Assumptions 3.2.1, 3.2.2 and 3.2.3, there exists c1 ∈ (0,∞) such that

Eϕ
(
V (Φ̌1)1σA≤$

)
≤ sup

ϕ̃∈A×IH
Eϕ̃

(
sup

0≤t≤$
V (Φ(t))

)
≤ c1.

Choose M > $ such that β0V (ϕ) ≥ c1 for all ϕ ∈ (BM)c. Then on (BM)c,

Eϕ
(
V (Φ̌1)

)
≤ (1− β0)V (ϕ). For ϕ ∈ BM , (T (z)−$)+ ≤M and from (3.3.19),

Eϕ
(
V (Φ̌1)

)
≤ Eϕ

(
exp

{
α0

[
(T (z)−$)+ + κ1Θ1ν

0
$

]})
≤ 8 exp

{
Mα0 + c1α0 + c2α

2
0 + c2α

2
0$
} .

= c2.

The lemma follows on setting γ0 = c2 and S = BM . �

For a signed measure µ on (S,B(S)) and a measurable function f : S → IR, let

µ(f) =
∫
S f(ϕ)µ(dϕ) if f is |µ| integrable. If f : S → (0,∞) is a |µ| integrable map,

we define the f -norm of µ as ‖µ‖f
.
= sup|g|≤f |µ(g)|. We set ‖µ‖f =∞ if f is not |µ|

integrable. As an immediate consequence of Lemma 3.3.8 and Theorems 14.0.1, 16.0.1

in [43], we have the following theorem. Denote by {P n}n∈IN the transition kernel of

the chain {Φ̌n : n ∈ IN}, namely, for ϕ ∈ S and A ∈ B(S), P n(ϕ,A) = Pϕ(Φ̌n ∈ A).

From Lemma 3.3.8, it follows that P n(ϕ, V ) <∞, ∀n ∈ IN and ϕ ∈ S.

Theorem 3.3.2. The invariant measure π satisfies π(V ) < ∞. Furthermore, the

$-skeleton chain {Φ̌n} is V -uniformly ergodic, i.e., there exist ρ0 ∈ (0, 1) and B0 ∈
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(0,∞) such that for all ϕ ∈ S,

‖P n(ϕ, ·)− π‖V ≤ B0ρ
n
0V (ϕ). (3.3.20)

Proof of Theorem 3.2.4:

(i) This is immediate from Corollary 3.3.2 and Lemma 3.3.1(ii), on taking β1 ≤

Θ2α0, where Θ2 and α0 are as in Lemma 3.3.1(ii) and Lemma 3.3.8, respectively.

(ii) (a). For a map ν from S to the space of signed measures on (S,B(S)), let

‖ν‖V .
= sup

ϕ∈S

‖ν(ϕ)‖V
V (ϕ)

.

Recall that P t
Φ denote the transition kernel of Φ. Denoting the signed measure

P t
Φ(ϕ, ·) − π(·) as P̃ t(ϕ), we have from Corollary 3.3.2, ‖P̃ n$‖V ≤ B0ρ

n
0 . Fix

t ∈ (0,∞) and let n0 ∈ IN be such that t ∈ [n0$, (n0 +1)$). It is easy to check

that

‖P̃ t‖V ≤ ‖P̃ n0$‖V ‖P̃ t−n0$‖V ≤ B0ρ
n0 sup

0≤r≤$
‖P̃ r‖V

≤ B0ρ
n0 sup

ϕ∈S
sup

0≤r≤$

Eϕ[V (Φ(r))] + π(V )

V (ϕ)
.

From Lemma 3.3.2 and Lemma 3.3.3, we have for some B̃0 ≡ B̃0($) ∈ (0,∞),

sup
0≤r≤$

Eϕ[V (Φ(r))] ≤ B̃0V (ϕ). (3.3.21)

Let ρ̃
.
= ρ

1/$
0 and B̃

.
= B0(B̃0 + π(V ))/ρ0. Then ‖P̃ t‖V ≤ B̃ρ̃t. This proves (a).

(b) & (c). By (a), for all ϕ ∈ S, f ct (ϕ) = Eϕ(St − tπ(f)) is well defined. We
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observe that for 0 ≤ t < T <∞,

|f ct (ϕ)− f cT (ϕ)| ≤
∫ T

t

|P s
Φ(ϕ, f)− π(f)| ds ≤ B1V (ϕ)

(
ρ̃t − ρ̃T

)
. (3.3.22)

where B1 = −B̃/ log ρ̃. Noting that |f ct (ϕ)− f cT (ϕ)| → 0 as t, T → ∞,

limt→∞ f
c
t (ϕ) exists. In particular, denoting the limit by f̂(ϕ) and letting t = 0

and T →∞ in (3.3.22), we have for all ϕ ∈ S,

|f̂(ϕ)| ≤ V (ϕ)B1. (3.3.23)

Then fixing t and letting T →∞, we have from (3.3.22), that

∣∣∣f ct (ϕ)− f̂(ϕ)
∣∣∣ ≤ V (ϕ)B1ρ̃

t ≤ B1e
Θ1α0|z|ρ̃t.

This proves (b)&(c).

(d). From (3.3.23), for t > 0, Eϕ|f̂(Φ(t))| ≤ B1Eϕ(V (Φ(t))). Also

∫ t

0

Eϕ|π(f)−f(Φ(s))|ds <
∫ t

0

Eϕ|f(Φ(s))|ds+tπ(f) ≤
∫ t

0

Eϕ[V (Φ(s))]ds+tπ(f).

Similar to (3.3.21), we have for all t ≥ 0, sup0≤s≤tEϕ[V (Φ(s))] < ∞. Conse-

quently,

Eϕ|f̂(Φ(t))|+
∫ t

0

Eϕ|π(f)− f(Φ(s))|ds <∞.

Also note that

Eϕ(f̂(Φ(t))) =

∫ ∞
0

Eϕ(P s
Φ(Φ(t), f)− π(f))ds =

∫ ∞
0

[P s+t
Φ (ϕ, f)− π(f)]ds

=

∫ ∞
t

[P s
Φ(ϕ, f)− π(f)]ds = f̂(ϕ)−

∫ t

0

[P s
Φ(ϕ, f)− π(f)]ds

= f̂(ϕ) +

∫ t

0

Eϕ[π(f)− f(Φ(s))]ds.
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This proves (d).

(iii) The proof is an immediate consequence of [27, Theorem 4.4].

�

3.4 Markov modulated SRBM

This section is devoted to proofs of Theorems 3.2.6 and 3.2.7. We use the notation

introduced in Section 3.2.2. In particular, throughout this section, G = IRK
+ , N = K,

and for i = 1, 2, . . . , K, Gi = {z ∈ IRK : 〈z, ei〉 ≥ 0}. Also, R = (d1| · · · |dK) and σ is

a K ×K positive definite matrix as in Section 2.2.

The proof of Theorem 3.2.6 is similar to the proof of Theorem 2.6 in [24]. However,

we give details for completeness. First, we introduce the Lyapunov function F , which

was constructed in [24]. Recall the DW-stability condition introduced in Definition

3.2.5.

Theorem 3.4.1. Suppose that b∗2 satisfies the DW-stability condition. Then there

exists a continuous map F : RK → IR such that the following hold.

(i) F ∈ C2(RK \ {0}).

(ii) Given ε ∈ (0,∞), there exists an M ∈ (0,∞) such that, for all z̃ ∈ IRK and

|z̃| ≥M , |∇2F (z̃)| ≤ ε.

(iii) There exists c ∈ (0,∞) such that

(a) for all z̃ ∈ G \ {0}, 〈∇F (z̃), b∗2〉 ≤ −c,

(b) for all z̃ ∈ ∂G \ {0} and d ∈ d(z̃), 〈∇F (z̃), d〉 ≤ −c.

(iv) F is radially homogeneous, i.e., F (ζz̃) = ζF (z̃) for all ζ ≥ 0 and z̃ ∈ IRK.
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(v) ∇F is uniformly bounded on G \ {0}. We denote

Λ
.
= sup

z̃∈G\{0}
|∇F (z̃)| <∞.

(vi) There exist b1, b2 ∈ (0,∞) such that, for all z̃ ∈ G, b1|z̃| ≤ F (z̃) ≤ b2|z̃|.

With an abuse of notation, we set ∇F (0) = 0 and ∇2F (0) = 0. Fix ϕ = (z, y) ∈ S

and recall the martingale {Mt : t ≥ 0} introduced in (3.3.7). Denote

Υ(t)
.
= Z(t)− g(Y (t)) + g(Y (0)), t ≥ 0. (3.4.1)

Then from (3.2.9) and (3.3.7), for all t ≥ 0, Pϕ-a.s., Υ(t) = z + b∗t−Mt + σW (t) +

RU(t). By Ito’s formula, we have that

F (Υ(t)) = F (z) +

∫ t

0

(
1

2
tr
[
∇2F (Υ(s))σσ′

]
+ 〈∇F (Υ(s)), b∗〉

)
ds

+

∫ t

0

〈∇F (Υ(s)), σdW (s)〉 −
∫ t

0+

〈∇F (Υ(s−)), dMs)〉

+
K∑
i=1

∫ t

0

〈∇F (Υ(s)), di〉dUi(s) +Rt,

(3.4.2)

where

Rt =
∑

0<s≤t

[F (Υ(s))− F (Υ(s−)) + 〈∇F (Υ(s−)), g(Y (s))− g(Y (s−))〉]. (3.4.3)

Proof of Theorem 3.2.6: Given ε > 0, let r > 2|g|∞ be large enough such that

|∇2F (z̃)| ≤ ε whenever z̃ ∈ IRK and |z̃| ≥ r − 2|g|∞. An appropriate choice of ε will

be made later in the proof. Define τ̃r = inf{t ≥ 0 : |Z(t)| ≤ r}. Fix ϕ ≡ (z, y) ∈ S.

We first assume |z| > r. Using the Lagrange remainder form of Taylor’s expansion
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and Theorem 3.4.1(ii), we have

Rt∧τ̃r

=
∑

0<s≤t∧τ̃r

[
(g(Y (s))− g(Y (s−)))′∇2F (ς1Υ(s) + (1− ς1)Υ(s−))[g(Y (s))− g(Y (s−))]

]
≤ ε

∑
0<s≤t∧τ̃r

|g(Y (s))− g(Y (s−))|2,

where ς1 ≡ ς1(s, ω) ∈ [0, 1]. Taking expectation, we have for some c1 ∈ (0,∞),

Eϕ(Rt∧τ̃r) ≤ c1εEϕ(t ∧ τ̃r), ∀t ≥ 0. (3.4.4)

Next by Theorem 3.4.1(ii) and (iii)(a) and for 0 ≤ s ≤ t ∧ τ̃r, there exists ς2 ≡

ς2(s, ω) ∈ (0, 1) such that

〈∇F (Υ(s)), b∗2〉 = 〈∇F (Z(s)), b∗2〉+ 〈∇F (Υ(s))−∇F (Z(s)), b∗2〉

≤ −c+ 〈∇2F (ς2Υ(s) + (1− ς2)Zs)(g(Y (s))− g(Y (0))), b∗2〉

≤ −c+ 2ε|g|∞|b∗2|.

(3.4.5)

Similarly, by Theorem 3.4.1(ii) and (iii)(b), for 0 ≤ s ≤ t∧ τ̃r and some ς3 ≡ ς3(s, ω) ∈

(0, 1), whenever Z(s) ∈ Fi,

〈∇F (Υ(s)), di〉 = 〈∇F (Z(s)), di〉+ 〈∇F (Υ(s))−∇F (Z(s)), di〉

≤ 〈∇2F (ς3Υ(s) + (1− ς3)Zs)(g(Y (s))− g(Y (0))), di〉

≤ 2ε|g|∞.

(3.4.6)

From Theorem 3.4.1(ii) and (3.4.5), there exists c2 ∈ (0,∞), such that for all t > 0

1

2
tr
[
∇2F (Υ(t ∧ τ̃r))σσ′

]
+ 〈∇F (Υ(t ∧ τ̃r)), b∗2〉 ≤ c2ε− c. (3.4.7)
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By (3.4.6), we have

K∑
i=1

∫ t∧τ̃r

0

〈∇F (Υ(s)), di〉dUi(s) ≤ 2ε|g|∞
K∑
i=1

Ui(t ∧ τr). (3.4.8)

By Theorem 3.2 in [18], there exists h ∈ C2
b (G) such that for i ∈ IK and z ∈ Fi,

〈∇h(z), di〉 ≥ 1. Applying Ito’s formula,

Eϕ(h(Z(t ∧ τr))) = h(z) + Eϕ

(∫ t∧τ̃r

0

〈∇h(Z(s)), b(Y (s))〉+
1

2
tr[∇2h(Z(s))σσ′]ds

)
+

K∑
i=1

Eϕ

(∫ t∧τ̃r

0

〈∇h(Z(s)), di〉dUi(s)
)
.

Thus we have for c3 ∈ (0,∞),

K∑
i=1

Eϕ(Ui(t ∧ τ̃r)) ≤
K∑
i=1

Eϕ

(∫ t∧τ̃r

0

〈∇h(Z(s)), di〉dUi(s)
)

≤ Eϕ(|h(Z(t))|) + |h(z)|+ Eϕ

(∫ t∧τ̃r

0

|〈∇h(Z(s)), b(Y (s))〉|+ 1

2
tr[∇2h(Z(s))σσ′]ds

)
≤ c3(1 + Eϕ(t ∧ τ̃r)).

(3.4.9)

Using (3.4.8) and (3.4.9), we now have

Eϕ

(
K∑
i=1

∫ t∧τ̃r

0

〈∇F (Υ(s)), di〉dUi(s)

)
≤ 2ε|g|∞c3(1 + Eϕ(t ∧ τ̃r)). (3.4.10)

We note that the constants c1, c2, and c3 only depend on bounds of σ, g, h, and b∗2. In

particular, they are independent of ε and t. Combining (3.4.4), (3.4.7), (3.4.10) and

applying (3.4.2), we have

Eϕ(F (Υ(t ∧ τ̃r)))− F (z) ≤ 2ε|g|∞c3 + [ε(2|g|∞c3 + c1 + c2)− c]Eϕ(t ∧ τ̃r). (3.4.11)

Again applying the Lagrange remainder form of Taylor’s expansion and Theorem
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3.4.1(ii), (v) and (vi), there exists ς4 ∈ (0, 1) such that for 0 ≤ s ≤ t ∧ τ̃r,

F (Υ(s)) = F (Z(s)) + (g(Y (s))− g(Y (0)))′∇F (Z(s))

+
1

2
(g(Y (s))− g(Y (0)))′∇2F (ς4Υ(s) + (1− ς4)Z(s))(g(Y (s))− g(Y (0)))

≥ F (Z(s))− 2|g|∞Λ− 2|g|2∞ε

≥ −2|g|∞Λ− 2|g|2∞ε.

Choosing

ε =
c

2(2|g|∞c3 + c1 + c2)
,

we have

Eϕ(t ∧ τ̃r) ≤
2

c
(F (z) + 2ε|g|∞c3 + 2|g|∞Λ + 2|g|2∞ε) <∞.

Letting t → ∞, we have Eϕ(τ̃r) < ∞. If |z| ≤ r, Eϕ(τ̃r) < ∞ holds automatically.

Therefore, Eϕ(τ̃r) < ∞ for all ϕ ∈ S. The rest of the argument is as in the proof of

Theorem 2.6 in [24]. Details are left to the reader. �

We next establish geometric ergodicity for Φ. We begin with some preliminary

estimates. Arguments similar to those used in Lemmas 3.3.3 and 3.3.4 yield the

following result. Proof is omitted.

Lemma 3.4.1. Let ϕ ∈ S and ∆ > 0 be fixed. For n ∈ IN , let ν̃n be defined as

follows:

ν̃n
.
= sup

(n−1)∆≤s≤n∆

∣∣∣∣∫ s

(n−1)∆

〈∇F (Υ(s)), σdW (s)〉+

∫ s

(n−1)∆

〈∇F (Υ(s)), dMs〉
∣∣∣∣ .

(3.4.12)

Then there exists Θ4 ∈ (0,∞) such that, for any ϕ ∈ S, α ∈ (0,∞) and m,n ∈

IN ;m ≤ n,

Eϕ

(
exp

{
α

n∑
i=m

ν̃i

})
≤
(
4 exp

{
Θ4α

2(1 + ∆)
})n−m+1

.
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For r ∈ (0,∞), define

C(r) = {z̃ ∈ G : F (z̃) ≤ r}, τr
.
= inf{t ≥ 0 : Z(t) ∈ C(r)}. (3.4.13)

Lemma 3.4.2. There exist r0, β, γ1, γ2 ∈ (0,∞) such that, for all ϕ = (z, y) ∈ G,

Eϕ (exp{βτ}) ≤ γ1 exp{γ2|z|},

where τ = τr0 and τr0 is defined as in (3.4.13) with r replaced by r0.

Proof: By Theorem 3.4.1(ii), given ε > 0, there exists a r > 2|g|∞ such that

|∇2F (z̃)| ≤ ε whenever z̃ ∈ IRK and |z̃| ≥ r − 2|g|∞. By Theorem 3.4.1(vi), we can

choose r0 such that {z̃ ∈ G : F (z̃) ≤ r0} ⊃ {z̃ ∈ G : |z̃| ≤ r}. Let ς ∈ (0, 1) and

ϕ = (z, y) ∈ S with |z| > r. Similar to the arguments for (3.4.9) and using Lemma

4.2 in [4], there exist c1, c2, c3 ∈ (0,∞) such that for all t ≥ 0,

Eϕ

(
exp

{
ς

K∑
i=1

Ui(t)

})
≤ Eϕ

(
exp

{
ς

K∑
i=1

∫ t

0

〈∇h(Z(s)), di〉dUi(s)

})

≤ Eϕ

(
exp

{
ς|h(Z(t))|+ ς|h(z)|+ ς

∣∣∣∣∫ t

0

〈∇h(Z(s)), σdW (s)〉
∣∣∣∣

+ς

∫ t

0

∣∣∣∣〈∇h(Z(s)), b(Y (s))〉+
1

2
tr[∇2h(Z(s))σσ′]

∣∣∣∣ ds})
≤ exp{c1ς + c2ςt+ c3ς

2t}.

(3.4.14)

Fix ∆ ∈ (0,∞) and n ∈ IN . Using (3.4.2), we have

F (Υ(n∆)) = F (Υ((n− 1)∆)) +

∫ n∆

(n−1)∆

(
1

2
tr
[
∇2F (Υ(s))σσ′

]
+ 〈∇F (Υ(s)), b∗〉

)
ds

+

∫ n∆

(n−1)∆

〈∇F (Υ(s)), σdW (s)〉+

∫ n∆

(n−1)∆

〈∇F (Υ(s−)), dMs)〉

+
K∑
i=1

∫ n∆

(n−1)∆

〈∇F (Υ(s)), di〉dUi(s) +Rn∆ −R(n−1)∆.
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For m ∈ IN0 and m ≥ n, define Am
.
= {ω ∈ Ω : inf0≤s≤m∆ F (Z(s)) > r0}. From

(3.4.7), we have on Am for some c4 ∈ (0,∞),

∫ n∆

(n−1)∆

(
1

2
tr
[
∇2F (Υ(s))σσ′

]
+ 〈∇F (Υ(s)), b∗〉

)
ds ≤ (c4ε− c)∆,

where c4 is independent of the choice of ε,∆ and n. From (3.4.14) and (3.4.6), on

Am, for t ≤ m∆,

Eϕ

(
exp

{
ς

K∑
i=1

∫ t

0

〈∇F (Υ(s)), di〉dUi(s)

})
≤ exp{2ε|g|∞(c1ς + c2ςt+ c3ς

2t)}.

Also note that onAm and t ≤ m∆, for some c5 ∈ (0,∞) (independent of ς, t, ε,∆, t,m),

Eϕ(exp{ςRt}) ≤ E

(
exp

{
ςε
∑

0<s≤t

|g(Y (s))− g(Y (s−))|2
})
≤ exp{c5εςt}.

Therefore, on the set Am and for n ≤ m,

F (Υ(n∆)) ≤ F (Υ((n− 1)∆)) + (c4ε− c)∆ +
K∑
i=1

∫ n∆

(n−1)∆

〈∇F (Υ(s)), di〉dUi(s)

+Rn∆ −R(n−1)∆ + ν̃n,

where ν̃n is as in (3.4.12). Therefore, on set Am and for n ≤ m, we have

F (Υ(n∆)) ≤ F (z) + (c4ε− c)n∆ +
K∑
i=1

∫ n∆

0

〈∇F (Υ(s)), di〉dUi(s) +Rn∆ +
n∑
i=1

ν̃i.

Noting that, on Am, F (Υ(n∆)) > r0, we have

Pϕ(Am)

≤ Pϕ

(
K∑
i=1

∫ n∆

0

〈∇F (Υ(s)), di〉dUi(s) +Rn∆ +
n∑
i=1

ν̃i > r0 − (c4ε− c)n∆− F (z)

)
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≤ Eϕ

(
exp

{
ς

(
K∑
i=1

∫ n∆

0

〈∇F (Υ(s)), di〉dUi(s) +Rn∆ +
n∑
i=1

ν̃i

)})

× exp {−ς(r0 − (c4ε− c)n∆− F (z))}

≤ exp

{
n∆

[
2|g|∞c1

ες

n∆
+ (2|g|∞c2 + c5)ες + 8|g|∞c3ες

2 + 2Θ4
ς2

∆
+ 2Θ4ς

2

+
log 2

∆
+ c4ες − r0

ς

n∆
− ςc

]
+ ςF (z)

}
.

Let ε and ς be small enough and ∆ large enough, so that

2|g|∞c1
ες

n∆
+ (2|g|∞c2 + c5)ες + 8|g|∞c3ες

2 + Θ4
ς

∆
+ 2Θ4

ς2

∆
+ 2Θ4ς

2 +
log 8

∆
+ c4ες

− r0
ς

n∆
− ςc ≡ −η < 0.

For t ∈ (0,∞), let n0 ∈ IN0 such that t ∈ [n0∆, (n0 + 1)∆). Then

Pϕ(τ > t) ≤ Pϕ(An0) ≤ exp{−ηt+ ∆η + ςF (z)}.

The result follows. �

As an immediate consequence of the above lemma, we have the following. For

θ0 ∈ (0,∞) and a compact set S ⊂ G, define a stopping time τS(θ0) = inf{t ≥ θ0 :

Z(t) ∈ S}.

Lemma 3.4.3. Fix θ0 ∈ (0,∞) and let β, γ2, r0 be as in Lemma 3.4.2 and C ≡ C(r0)

be as in (3.4.13) with r replaced by r0. Then there exists γ3 ∈ (0,∞) such that for

ϕ = (z, y) ∈ S,

Eϕ(exp{βτC(θ0)}) ≤ γ3 exp{γ2|z|}.

Proof: An application of the strong Markov property yields

Eϕ(exp{βτC(θ0)}) = exp{βθ0}Eϕ (Eϕ(exp{β(τC(θ0)− θ0)}|Fθ0))

= exp{βθ0}Eϕ
(
EΦ(θ0) exp{βτ}

)
.
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By Lemma 3.4.2,

Eϕ
(
EΦ(θ0) exp{βτ}

)
≤ γ1Eϕ (exp{γ2|Z(θ0)|}) . (3.4.15)

Using the oscillation estimate from [48](also see [5]), we have the following result:

There exists c1 ∈ (0,∞) such that for all ϕ = (z, y) ∈ S and 0 ≤ t1 < t2 <∞, Pϕ-a.s.,

sup
t1≤s≤t≤t2

|Z(t)− Z(s)| ≤ c1

(
sup

t1≤s≤t≤t2
|W (t)−W (s)|+ (t2 − t1)

)
. (3.4.16)

Combining the estimates in (3.4.15) and (3.4.16), we have

Eϕ
(
EΦ(θ0) (exp{βτ})

)
≤ γ1 exp{γ2(z + c1θ0)}Eϕ

(
exp

{
c1γ2 sup

0≤s≤θ0
|W (s)|

})
.

The result follows. �

A key step in the proof of geometric ergodicity is the following result from [20].

For θ0, β, and C as in Lemma 3.4.3, let

V0(ϕ)
.
=
Eϕ(exp{βτC(θ0)})− 1

β
+ 1.

Define, for θ > 0,

Vθ(ϕ) = RθV0(ϕ)
.
=

∫ ∞
0

Eϕ[V0(Φ(t))]θ exp{−θt}dt.

By Lemma 4.3 (a), Theorem 6.2 (b), and Theorem 5.1 (a) in [20], we have the following

result.

Theorem 3.4.2. For all θ > 0, AVθ = θ(Vθ−V0), where A is the extended generator

of Φ introduced below Theorem 3.2.3. Furthermore, there exist κ0, h0 ∈ (0,∞) such
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that for all ϕ ∈ S,

AVθ(ϕ) ≤ −κ0Vθ(ϕ) + h01C×IH(ϕ).

The following lemma is proved exactly as Lemma 4.8 of [10]. Proof is omitted.

Lemma 3.4.4. There exist a1, a2, A1, A2 ∈ (0,∞) such that for all ϕ = (z, y) ∈ S,

a1e
a2|z| ≤ V0(ϕ) ≤ A1e

A2|z|. (3.4.17)

Furthermore, there exists a constant θ̃ ∈ (0,∞) such that for every θ ∈ (θ̃,∞) there

are ã1, ã2, Ã1, Ã2 ∈ (0,∞) such that for ϕ = (z, y) ∈ S,

ã1e
ã2|z| ≤ Vθ(ϕ) ≤ Ã1e

Ã2|z|. (3.4.18)

We will fix θ ∈ (θ̃,∞) and denote V ≡ Vθ. Then the following corollary is an

immediate consequence of Theorem 3.4.2.

Corollary 3.4.1. V is in D(A) and AV = θ(V − V0). Furthermore, there exist

κ0, h0 ∈ (0,∞) such that for all ϕ ∈ S,

AV (ϕ) ≤ −κ0V (ϕ) + h01C×IH(ϕ).

Corollary 3.4.2. Let π be the unique invariant measure of Φ. Then π(V ) <∞.

Proof: By Corollary 3.4.1 and Theorem 5.1(d) of [20], for any T > 0, there exist

ς0 ∈ (0, 1) and h1 > 0 such that for all ϕ ∈ S, Eϕ(V (Φ(T ))) ≤ ς0V (ϕ) + h11C×IH(ϕ).

Integrating both sides with respect to π, we have π(V ) ≤ h1π(C × IH)/(1− ς0) <∞.

�

As a consequence of the above corollaries and Theorem 5.2(c) of [20], we have the

following geometric ergodicity result.
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Theorem 3.4.3. The Markov process Φ ≡ (Z, Y ) is V -uniformly ergodic, i.e., there

exist constants B0 ∈ (0,∞), ρ0 ∈ (0, 1) such that for all t ∈ (0,∞) and ϕ ∈ S,

‖P t(ϕ, ·)− π‖V ≤ B0ρ
t
0V (ϕ).

Proof of Theorem 3.2.7: Part (i) of the theorem is immediate from Corollary

3.4.2 and Lemma 3.4.4. Part (ii)(a) is a consequence of Theorem 3.4.3 and Lemma

3.4.4. The rest of the proof is same as that for Theorem 3.2.4. �

3.5 Appendix

Proof of Lemma 3.3.2: For t ≥ 0, let Z̃(t) = Z(t+ u). Then Pϕ-a.s.,

Z̃(t) = Γ

(
Z(u) +

∫ ·
0

b(Φ(s+ u))ds+

∫ ·
0

σ(Φ(s+ u))dWu(s)

)
(t),

where Wu(s) = W (s+ u)−W (u). Let

Z̄(t) = Γ

(
Z(u) +

∫ ·
0

b∗(Φ(s+ u))ds

)
(t),

where b∗ is as defined in Assumption 3.2.5. By Lipschitz property of Γ (Assumption

3.2.1),

sup
0≤t≤∆

∣∣∣Z̃(t)− Z̄(t)
∣∣∣ ≤ κ1 sup

0≤t≤∆

∣∣∣∣∫ t

0

bc(Y (s+ u))ds+

∫ t

0

σ(Φ(s+ u))dWu(s)

∣∣∣∣
= κ1ν

u
∆.

Recalling the assumption on b∗2 (Assumption 3.2.5), we have applying Lemma 3.3.1,
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that on the set {ω : Z(t, ω) ∈ G \ A for all t ∈ (u, u+ ∆)}

T (Z(u+ ∆)) = T (Z̃(∆)) ≤ T (Z̄(∆)) + κ1Θ1ν
u
∆ ≤ (T (Z(u))−∆)+ + κ1Θ1ν

u
∆.

�

Proof of Lemma 3.3.5 (sketch): By arguing as in the proof of Lemma 4.4 of [4],

we can show, for ∆ > 0 and νn defined as in Lemma 3.3.4, there exists M0 ∈ (0,∞)

such that

Pϕ (T (Z(n∆) ≥M0)) ≤
n∑
l=1

Pϕ

(
2κ1Θ1

n∑
j=l

νj ≥M0 + (n− l − 1)∆− T (z)

)

≤ exp{α(T (z) + ∆)}
exp{αM0}

n∑
l=1

Eϕ

(
exp{2ακ1Θ1

∑n
j=l νj}

)
exp{α(n− l)∆}

,

where α ∈ (0,∞) is arbitrary. From Lemma 3.3.4 we now have

Pϕ (T (Z(n∆)) ≥M0)

≤ exp{α(T (z) + ∆)}
exp{αM0}

n∑
l=1

(8 exp{2Θ3κ1Θ1α(1 + 2κ1Θ1α + 2κ1Θ1α∆)})n−l+1

exp{α(n− l)∆}

≤exp{α(T (z) + 2∆)}
exp{αM0}

n∑
l=1

exp {log 8 + 2Θ3κ1Θ1α(1 + 2κ1Θ1α + 2κ1Θ1α∆)− α∆}n−l+1 .

As in the proof of Theorem 3.3.1, we can choose α and ∆ so that

log 8 + 2Θ3κ1Θ1α(1 + 2κ1Θ1α + 2κ1Θ1α∆)− α∆ = −θ̄ < 0.

An application of Lemma 3.3.1 yields that for every κ ∈ (0, αΘ2) and M > 0,

sup
|ϕ|≤M

sup
n∈IN

Eϕ(eκ|Φ(n∆)|) <∞.
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The result follows from the above estimate, using the Lipschitz property of Γ, in a

straightforward manner (see Lemma 4.4 of [4]). �

Proof of Lemma 3.4.1 (sketch): By the strong Markov property of Φ, it suffices

to show

Eϕ(exp{αν̃1}) ≤ 8 exp{Θ4α
2(1 + ∆)}.

By Holder’s inequality,

[
Eϕ

(
exp

{
α sup

0≤t≤∆

∣∣∣∣∫ t

0

〈∇F (Υ(s)), σdW (s)〉+

∫ t

0

〈∇F (Υ(s)), dMs〉
∣∣∣∣})]2

≤ Eϕ

(
exp

{
2α sup

0≤t≤∆

∣∣∣∣∫ t

0

〈∇F (Υ(s)), σdW (s)〉
∣∣∣∣})

× Eϕ
(

exp

{
2α sup

0≤t≤∆

∣∣∣∣∫ t

0

〈∇F (Υ(s)), dMs〉
∣∣∣∣}) .

We first note that using Lagrange remainder form of Taylor expansion and for t ≥ 0,

∇F (Υ(t)) = ∇F (Z(t)) +∇2F (ςΥ(t) + (1− ς)Z(t))(g(Y (t))− g(Y (0))),

where ς ≡ ς(s, ω) ∈ (0, 1). From Theorem 3.4.1 (ii) and (v), there exists some

c1 ∈ (0,∞) for all t ≥ 0, |∇F (Υ(t))| ≤ c1. We have by standard estimates (see e.g.

Lemma 4.2 of [4]) for some c2 ∈ (0,∞),

Eϕ

(
exp

{
2α sup

0≤t≤∆

∣∣∣∣∫ t

0

〈∇F (Υ(s)), dW (s)〉
∣∣∣∣}) ≤ 2 exp

{
c2α

2∆
}
. (3.5.1)

Applying arguments similar to those between (3.3.8) and (3.3.9) in the proof of Lemma

3.3.3, there exist c3 ∈ (0,∞) such that

Eϕ

(
exp

{
2α sup

0≤s≤t

∣∣∣∣∫ t

0

〈∇F (Υ(s)), dMs〉
∣∣∣∣}) ≤ 8 exp

{
c3α

2(1 + ∆)
}
.

Result follows on combining the above estimates. �
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Chapter 4

Convergence of invariant measures for
Markov modulated open queueing

networks in heavy traffic

4.1 Introduction and main result

Frequently queueing networks of interest are too complex to be analyzed directly,

so one would like to use the steady state behavior of the limit diffusion model to

approximate that of the underlying queueing system. In this chapter, we justify such

an approximation procedure by studying convergence of the invariant measures for the

Markov modulated queueing networks considered in Chapter 2 in heavy traffic. For

simplicity, we consider an open queueing network with constant routing matrix and

arrival and service rates that only depend on the state and the slowly changing Markov

process (i.e., the network parameters do not depend on Xn). In the nth network, Q̂n

and Y n will denote the normalized queue length process and the modulating Markov

process, respectively. The main result of this chapter (Theorem 4.1.1) shows that,

under suitable heavy traffic and stability conditions, (Q̂n, Y n) admits a stationary

distribution which converges to that of (Z, Y ), where (Z, Y ) is as in Chapter 3, as

n→∞.

We now recall the basic network description. Consider a sequence of open queueing



networks with the following structure. Each network has K service stations each of

which has an infinite capacity buffer. We denote the ith station by Pi, i ∈ IK
.
=

{1, 2, . . . , K}. All customers/jobs at a station are “homogeneous” in terms of service

requirement and routing decisions. Arrivals of jobs can be from outside the system

and/or from internal routing. Upon completion of service at station Pi a customer

is routed to some other service station or exits the system. The external arrival

processes and service processes are assumed to depend on the state of the system and

an auxiliary finite state Markov process. The routing mechanism is governed by a

K × K substochastic matrix P. Roughly speaking, the conditional probability that

a job completed at station Pi is routed to station Pj equals the (i, j)th entry of the

matrix P. The above formal description is made precise in what follows.

In the nth network, the Markov process modulating the arrival and service rates

is denoted as {Y n(t) : t ≥ 0}. We assume that Y n has a finite state space IH and

infinitesimal generator Qn which converges to some matrix Q. Let Qn
i (t) denote

the number of customers at station Pi at time t. Then the evolution of Qn can be

described by the following equation

Qn
i (t) = Qn

i (0) + Ani (t)−Dn
i (t) +

K∑
j=1

Dn
ji(t), i ∈ IK. (4.1.1)

Here Ani (t) is the number of arrivals from outside at station Pi by time t, Dn
i (t) is

the number of service completions by time t at station Pi, and Dn
ji(t) is the number

of jobs that are routed to Pi immediately upon completion at station Pj by time t.

Letting Dn
i0(t) be the number of customers by time t who leave the network after

service at Pi, we have

Dn
i (t) =

K∑
j=0

Dn
ij(t). (4.1.2)

The dependance of arrival and processing rates on the system state and Y n is modeled
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by requiring that Ani and Dn
ij, 1 ≤ i ≤ K, 0 ≤ j ≤ K, are counting processes given on

a suitable filtered probability space (Ωn,Fn, P n, {Fnt }) such that for some measurable

functions λni , α̃
n
i : IRK

+ × IH → IR+, the processes

Ãni (·) ≡ Ani (·)−
∫ ·

0

λni (Qn(u), Y n(u))du,

D̃n
ij(·) ≡ Dn

ij(·)−
∫ ·

0

Pijα̃ni (Qn(u), Y n(u))du

(4.1.3)

are locally square integrable {Fnt } martingales. Here Pi0 = 1−
∑K

j=1 Pij. We assume

that processes Ani and Dn
ij, 1 ≤ i ≤ K, 0 ≤ j ≤ K, and Y n have no common jumps.

We also require that Y n is a {Fnt } Markov process. The functions λni and α̃ni , i ∈ IK,

represent the arrival and service rates. We denote by IK0 (IK0 ⊆ IK) the set of

indices of stations which receive arrivals from outside. In particular, λni (x, y) = 0 for

all (x, y) ∈ IRK
+ × IH whenever i ∈ IK\IK0. Reflecting the fact that no service occurs

when the buffer is empty, α̃ni (x, y) = 0 if xi = 0. Let λn = (λn1 , . . . , λ
n
K)′. We assume

that, for each i ∈ IK, α̃ni restricted to
(
IRK

+\{z ∈ IRK
+ : zi = 0}

)
× IH can be extended

to a function αni defined on IRK
+ × IH (that satisfies additional properties as specified

below), and write αn = (αn1 , . . . , α
n
K)′. Let

bn
.
=
λn − [I− P′]αn√

n
.

We introduce the main assumptions on model parameters, which are similar to

Assumption 2.3.1(i)-(vi).

Assumption 4.1.1.

(i) The spectral radius of P is strictly less than 1.

(ii) There exist some θ1, θ̄1 ∈ (0,∞) such that, for all n ≥ 1, i ∈ IK0, j ∈ IK and

(z, y) ∈ IRK
+ × IH, nθ1 ≤ |λni (z, y)| ≤ nθ̄1, nθ1 ≤ |αnj (z, y)| ≤ nθ̄1.
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(iii) For some θ2 ∈ (0,∞), sup(z,y)∈IRK+×IH |b
n(z, y)| ≤ θ2.

(iv) There exists a bounded Lipschitz map b : IRK
+×IH → IRK such that bn(

√
nz, y)→

b(z, y) uniformly on IRK
+ × IH as n→∞.

(v) There exist IRK
+ -valued bounded Lipschitz functions λ, α defined on IRK

+ × IH,

such that

λn(
√
nz, y)

n
→ λ(z, y),

αn(
√
nz, y)

n
→ α(z, y)

uniformly for (z, y) in compact subsets of IRK
+ × IH as n → ∞. Furthermore,

λ = [I− P′]α.

(vi) For each i ∈ IK\IK0, there exists j ∈ IK0 such that Pmji > 0 for some m ∈ IN .

For t ≥ 0, let

Q̂n(t) =
Qn(t)√

n
.

From Theorem 2.3.2 in Chapter 2, it follows that under Assumption 4.1.1, as n→∞,

(Q̂n, Y n) converges weakly to a Markov process (Z, Y ), where (Z, Y ) is as in Definition

2.3.2. In particular, Y is a Markov process with infinitesimal generator Q and Z is a

reflected diffusion process with state dependent and Markov modulated coefficients,

which can be described as follows.

Z(t) = Γ

(
z +

∫ ·
0

b(Z(s), Y (s))ds+

∫ ·
0

σ(Z(s), Y (s))dW (s)

)
(t), t ≥ 0.

The drift b is as in Assumption 4.1.1(iv) and the diffusion coefficient σ is constructed

as between (2.3.9) and (2.3.10). Note that b and σ satisfy Assumptions 3.2.2 and

3.2.3. Denote Φn ≡ (Q̂n, Y n),Φ ≡ (Z, Y ) and ϕ ≡ (z, y). The following is the main

result of the chapter.

Theorem 4.1.1. Suppose that Assumptions 4.1.1 and 3.2.4 hold and that b can be

expressed as in (3.2.7) in terms of functions b1 and b2 that satisfy Assumption 3.2.5.
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Then there exists N ∈ IN such that for any n ≥ N , the Markov process Φn admits

a stationary distribution. Let πn be an arbitrary stationary distribution of Φn. Then

πn ⇒ π as n→∞, where π is as in Theorem 3.2.2.

In the following, we provide an explicit example, where assumptions of the above

theorem hold.

Example 4.1.1. Let K = 2, IH = {1, 2}, and P =

 0 1
2

1
3

0

 . The arrival and

service rate λn and αn are defined as follows. For z = (z1, z2) ∈ IR2
+ and y ∈ IH,

λn(z, y) =
(√

n(e−z1/
√
n + 4) + ny,

√
n(e−z2/

√
n + 4) + 2ny

)′
,

αn(y) =

(
24

5

√
ny + 2ny,

27

5

√
ny + 3ny

)′
.

Therefore,

bn(z, y) =
(
e−z1/

√
n + 4− 3y, e−z2/

√
n + 4− 3y

)′
,

and

b(z, y) = bn(
√
nz, y) = (e−z1 + 4− 3y, e−z2 + 4− 3y)′. (4.1.4)

Let q∗ = (1
4
, 3

4
). We can construct a Markov process Y n, which has state space IH and

convergent infinitesimal generator, such that it converges to a Markov process Y with

stationary distribution q∗. With the above model parameters, we have from Theorem

2.3.2 that (Q̂n, Y n) ⇒ (Z, Y ), where Z is defined as in (2.3.11) with drift b defined

as in (4.1.4) and diffusion coefficient σ constructed as between (2.3.9) and (2.3.10).

We note that the constraint directions for Z are d1 = (1,−1
2
)′ and d2 = (−1

3
, 1)′

and therefore the cone C = {−α1d1 − α2d2 : α1 ≥ 0, α2 ≥ 0} . We observe that, for

z ∈ IR2
+,

b(z, 1) =
(
e−z1 + 1, e−z2 + 1

)
∈ Cc, b(z, 2) =

(
e−z1 − 2, e−z2 − 2

)
∈ Co,
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and the “average” drift

b∗(z) =

(
e−z1 − 5

4
, e−z2 − 5

4

)′
∈ Co.

In fact, for all 0 < δ0 <
1
4
, we have for all z ∈ IR2

+, b∗(z) ∈ C(δ0). By Theorem 3.2.2,

(Z, Y ) is positive recurrent and has a unique invariant measure π. Finally, from

Theorem 4.1.1, (Q̂n, Y n) admits an invariant probability measure πn and πn ⇒ π as

n→∞.

4.2 Proof of Theorem 4.1.1

In this section we prove Theorem 4.1.1. Recall the processes Qn, Ãn, D̃n defined

in (4.1.1) and (4.1.3). Define IRK valued stochastic processes Mn, Bn, ηn as follows.

For i ∈ IK and t ≥ 0,

Mn
i (t) =

1√
n

(
Ãni (t)−

K∑
j=0

D̃n
ij(t) +

K∑
j=1

D̃ji(t)

)
,

Bn
i (t) =

∫ t

0

bni (
√
nQ̂n(u), Y n(u))du,

ηni (t) =
1√
n

∫ t

0

αni (
√
nQ̂n(u), Y n(u))1{Q̂ni (u)=0}du.

(4.2.1)

Noting that α̃ni (z, y) = αni (z, y)1{zi>0} for all (z, y) ∈ IRK
+ × IH, we have from (4.1.1)

that

Q̂n(t) = Q̂n(0) +Mn(t) +Bn(t) + [I− P′]ηn(t). (4.2.2)

With this notation, equation (4.2.2) can be written as

Q̂n(t) = Γ
(
Q̂n(0) +Mn(·) +Bn(·)

)
(t), (4.2.3)
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where Γ is the Skorohod map with reflection matrix I− P′. As noted in Section 4.1,

due to Assumption 4.1.1(i), Γ is Lipschitz continuous, namely Assumption 3.2.1 is

satisfied. The following stability result is a key step. Denote by Dn = {ϕ = (z, y) ∈

S : nz ∈ IN0}.

Proposition 4.2.1. There exist N1 ∈ IN and t0 ∈ (0,∞) such that for all t ≥ t0,

lim
|z|→∞

supn≥N1
Eϕ

(∣∣∣Q̂n(t|z|)
∣∣∣2)

|z|2
= 0, ϕ = (z, y) ∈ Dn.

Proof: Fix ϕ = (z, y) ∈ Dn such that z ∈ G \ A. Let M > 0 be large enough

such that GM
.
= {z ∈ G : |z| < M} ⊇ Ā. Suppressing n in the notation, define a

sequence of stopping times {σk}k∈IN0 as σ0 = 0,

σ2k+1 = inf{t ≥ σ2k : Q̂n(t) ∈ A}, σ2k+2 = inf{t ≥ σ2k+1 : Q̂n(t) /∈ GM}, k ∈ IN0.

If t ∈ [σ2k+1, σ2k+2] for some k ∈ IN0, then

|Q̂n(t)| ≤M + 1. (4.2.4)

Suppose now t ∈ [σ2k, σ2k+1) for some k ∈ IN0. Then

Q̂n(t) = Γ
(
Q̂n(σ2k) +Mn(·+ σ2k)−Mn(σ2k) +Bn(·+ σ2k)−Bn(σ2k)

)
(t− σ2k).

From convergence of Qn to Q, it follows that for some n0 ∈ IN , the Markov process

Y n has a unique invariant measure qn, whenever n ≥ n0. Furthermore, qn → q∗ as

n→∞. We will assume without loss of generality that n ≥ n0. Define for s ≥ 0,

X̆n(s) = Γ
(
Q̂n(σ2k) +Bn

∗ (·+ σ2k)−Bn
∗ (σ2k)

)
(s− σ2k),
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where

Bn
∗ (s) =

∫ s

0

bn∗

(√
nQ̂n(v), Y n(v)

)
dv,

and

bn∗ (z, y) = bn(z, y)− b2(y) +
∑
y∈IH

b2(y)qn(y).

Note that Bn = Bn
∗ +Bn

c , where

Bn
c (s) =

∫ s

0

bnc (Y n(v)) dv, and bnc (y) = b2(y)−
∑
y∈IL

b2(y)qn(y).

Lipschitz property of Γ yields that

|Q̂n(t)− X̆n(t)| ≤ 2κ1 sup
0≤s≤t

|Mn(s) +Bn
c (s)|.

Using Assumption 2.3.1 (iv) and the property qn → q∗, we see that as n → ∞,

bn∗ (
√
nz, y)→ b∗1(z, y) uniformly on S. Using Assumption 3.2.5 we now have that for

some n1 ∈ IN and n ≥ n1, bn∗ (
√
nz, y) ∈ C(δ0/2) for all (z, y) ∈ G/A× IL. Thus

Γ

(∫ σ2k+·

σ2k

bn∗ (
√
nQ̂n(v ∧ σ2k+1), Y n(v ∧ σ2k+1))du

)
(· − σ2k) ∈ A(0, δ0/2),

where A is as defined below (3.3.2). Applying Lemma 3.3.1 (ii),(iii), we now have

that for all σ2k ≤ s < σ2k+1,

Γ(Bn
∗ (·+ σ2k)−Bn

∗ (σ2k))(s− σ2k)

= Γ

(∫ σ2k+·

σ2k

bn∗ (
√
nQ̂n(v ∧ σ2k+1), Y n(v ∧ σ2k+1))du

)
(s− σ2k) = 0.

Thus using Assumption 3.2.1, we have that if k > 0,

|X̆n(t)| ≤ κ1|Q̂n(σ2k)| ≤ κ1(M + 1), ∀t ∈ [σ2k, σ2k+1).
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A similar argument, using Lemma 3.3.1(i), shows that in the case k = 0, i.e. t ∈

[σ0, σ1) and t ≥ Θ1(δ0/2)|x|, |X̆n(t)| = 0, Pz-a.s., where Θ1(δ0/2) is as in Lemma

3.3.1. Combining the above estimates, for all t ≥ Θ1|x|,

∣∣∣Q̂n(t)
∣∣∣ ≤ 2κ1 sup

0≤s≤t
|Mn(s)|+ 2κ1 sup

0≤s≤t
|Bn

c (s)|+ κ1(M + 1). (4.2.5)

By martingale properties of processes in (4.1.3), Doob’s inequality and Assumption

4.1.1(ii), we have that for some c1 ∈ (0,∞),

Eϕ

(
sup

0≤s≤t
|Mn(s)|

)2

≤ 4
K∑
i=1

Eϕ(|Mn
i (t)|2)

≤ 4

n

K∑
i=1

Eϕ

(∫ t

0

λni

(√
nQ̂n(v), Y n(v)

)
+ 2

K∑
j=1

αnj

(√
nQ̂n(v), Y n(v)

)
dv

)

≤ c1t.

(4.2.6)

Next we consider Eϕ
(
sup0≤s≤t |Bn

c (s)|
)2

. Let gn(·) be a solution of the Poisson equa-

tion for bnc (·) corresponding to the Markov semigroup {P s
n} of Y n. Then

Mn
s
.
= gn(Y n(s))− gn(Y n(0))−

∫ s

0

bnc (Y n(v))dv

is a {Fns } martingale and Θ
.
= supn |gn|∞ < ∞. Therefore, another application of

Doob’s inequality yields

Eϕ

(
sup

0≤s≤t
|Bn

c (s)|
)2

= Eϕ

(
sup

0≤s≤t
|gn(Y n(s))− gn(y)−Mn

s |
)2

≤ 8Θ2 + 8Eϕ
(
|Mn

t |2
)

Analogous to (3.3.8), we have for some c2 ∈ (0,∞) and n2 ∈ IN ,

sup
n≥n2

Pϕ
(
|Mn

t |2 ≥ x
)
≤ 2 exp

{
− c2x

t+ 1

}
.
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Therefore,

Eϕ

(
sup

0≤s≤t
|Bn

c (s)|
)2

≤ 4Θ2 + 4

∫ ∞
0

2 exp

{
− c2x

t+ 1

}
dx

≤ 4Θ2 +
8(t+ 1)

c2

.

(4.2.7)

Combing (4.2.5), (4.2.6) and (4.2.7), we have for some c3 ∈ (0,∞) and all t ≥ Θ1 and

n ≥ max(n0, n1, n2),

Eϕ

(∣∣∣Q̂n(t|z|)
∣∣∣2) ≤ c3(1 + t|z|), ϕ = (z, y) ∈ Dn.

The lemma now follows on setting t0 = Θ1 and N1 = max(n0, n1, n2). �

The following proposition yields the tightness of

{
P n
ϕ ◦ Φn(t)−1 : ϕ = (z, y), |z| ≤M, t ≥ 0, n ≥ N

}
for all M > 0 and N sufficiently large. Proof is similar to that of Lemma 3.3.5. For

completeness, a sketch is given in Appendix.

Proposition 4.2.2. There exist N2 ∈ IN and κ̌ ∈ (0,∞) such that for M > 0,

sup
n≥N2

sup
ϕ∈CM∩Dn

sup
t≥0

Eϕ

(
eκ̌|Q̂n(t)|

)
<∞,

where CM is defined as below (3.3.11).

The following two propositions will be needed in the proof of Theorem 4.1.1.

Proof of the next proposition is identical to that of Proposition 4.2 of [11] and thus

is omitted. For % ∈ (0,∞) and a compact set F ⊂ S, let

τnF (%)
.
= inf{t ≥ % : Φn(t) ∈ O}. (4.2.8)
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Proposition 4.2.3. Let f : S→ IR+ be a measurable map. Define for % ∈ (0,∞),

Gn(ϕ) = Eϕ

(∫ τnF (%)

0

f(Φn(t))dt

)
, ϕ ∈ Dn.

Assume

sup
n

sup
ϕ∈CM∩Dn

Gn(ϕ) <∞ for every M > 0. (4.2.9)

Then there exists a κ̄ ∈ (0,∞) such that, for all n ∈ IN, t ∈ [%,∞) and z ∈ Dn,

1

t
Eϕ (Gn(Φn(t))) +

1

t

∫ t

0

Eϕ (f(Φn(s))) ds ≤ 1

t
Gn(ϕ) + κ̄.

By Proposition 4.2.1, there exists Λ ∈ (0,∞) such that for |z| ≥ Λ, ϕ = (z, y) ∈

Dn, and n ≥ N1,

Eϕ

(∣∣∣Q̂n(t0|z|)
∣∣∣2) ≤ 1

2
|z|2,

where t0 and N1 are as in Proposition 4.2.1. The following proposition is proved

exactly as Proposition 4.2 of [9] and thus the proof is omitted.

Proposition 4.2.4. There exists N3 ∈ IN and c0 ∈ (0,∞) such that for all n ≥ N3

and ϕ ∈ Dn,

sup
n≥N3

Eϕ

(∫ τn

0

(
1 +

∣∣∣Q̂n(t)
∣∣∣) dt) ≤ c0

(
1 + |z|2

)
,

where τn = τnCΛ
(t0Λ) (see (4.2.8)), t0,Λ are introduced above and CΛ is defined below

(3.3.11) with M replaced by Λ.

Proof of Theorem 4.1.1: From Proposition 5.2, it follows that for all n ≥ N2, Zn

has an invariant probability measure on Dn. Denote by {πn}n≥N one such sequence of

invariant measures, where N = max(N2, N3) and N2, N3 are as in Propositions 4.2.2

and 4.2.4, respectively. Since π is the unique invariant measure of the Feller-Markov

process (Φ, {Pϕ}ϕ∈S), we have from Theorem 2.3.2 that it suffices to establish the
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tightness of the family {πn} (regarded as a sequence of probability measures on S).

We apply Proposition 4.2.3 with f(z) = 1 + |x|, z = (x, y) ∈ S and % = t0Λ,F = CΛ,

where t0 and Γ are as in Proposition 4.2.4. Note that condition (4.2.9) in Proposition

4.2.3 is satisfied as a consequence of Proposition 4.2.4. To prove the desired tightness

we only need to show that, for all n ≥ N , 〈πn, f〉 ≤ c1 < ∞. Note that for any

nonnegative, real measurable function ψ on S and n ≥ N ,

∫
Dn

Ez (ψ(Zn(t))) πn(dz) = 〈πn, ψ〉. (4.2.10)

Fix k ∈ IN and t ∈ (%,∞). Let for z ∈ Dn,

Φn(z)
.
=

1

t
Gn(z)− 1

t
Ez (Gn(Zn(t))) .

By (4.2.10),
∫
Dn

Φn(z)πn(dz) = 0. From Proposition 4.2.3,

0 =

∫
Dn

Φn(z)πn(dz) ≥
∫
Dn

(
1

t

∫ t

0

Ez(f(Zn(s)))ds− κ̄
)
πn(dz).

Recalling (4.2.10), we have that 〈πn, f〉 ≤ κ̄. The result follows. �

4.3 Appendix

Proof of Proposition 4.2.2 (sketch): Define, for j ∈ IN ,

νnj = sup
(j−1)∆≤s≤j∆

|Mn(s))−Mn((j − 1)∆) +Bn
c (s)−Bn

c ((j − 1)∆)| .

Along the lines of proof of Lemma 4.4 in [4], we have that for all q ∈ IN ,

T (Q̂n(q∆)) ≤ T (z) + 2∆ +

q∑
j=1

(2κ1Θ1ν
n
j −∆)
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≤ T (z) + 2∆ + max
1≤l≤q

q∑
j=l

(2κ1Θ1ν
n
j −∆).

Hence for α,M0 ∈ (0,∞),

Pϕ

(
T (Q̂n(q∆)) ≥M0)

)
≤

q∑
l=1

Pϕ

(
2κ1Θ1

q∑
j=l

νnj ≥M0 + (q − l − 1)∆− T (z)

)

≤ exp{ς(T (z) + ∆−M0)}
q∑
l=1

Eϕ

(
exp{2ςκ1Θ1

∑q
j=l ν

n
j }
)

exp{ς(q − l)∆}
.

Let c1
.
= 2κ1Θ1. We claim that there exist constants ς0,∆0, η ∈ (0,∞) and N ∈ IN

such that

sup
n≥N

sup
j∈IN

e−ς0∆0Eϕ
(
ec1ς0ν

n
j | Fn(j−1)∆0

)
≤ e−η∆0 , (4.3.1)

where Fnt introduced below (4.1.2). Suppose, for now, that the claim holds. Then by

the Markov properties of Φn and Y n, we have that, for n ≥ N and q ∈ IN ,

Pϕ

(
T (Q̂n(q∆0) ≥M0)

)
≤ exp{ς0(T (z) + ∆0 −M0)}

q∑
l=1

exp{−ς0(q − l + 1)η∆0}

≤ exp{ς0(T (z) + ∆0 −M0)}
1− exp{−η∆0}

.

Consequently, there exists constant κ1 ∈ (0,∞) such that for all M ∈ (0,∞),

sup
n≥N

sup
t≥0

sup
|ϕ|≤M

Eϕ(eκ1|Q̂n(q∆0)|) <∞.

The result now follows by a standard argument, using the Lipschitz property of Γ.

Finally we prove the claim in (4.3.1). Note that

νnj ≤ sup
(j−1)∆≤s≤j∆

|Mn(s))−Mn((j − 1)∆)|+ sup
(j−1)∆≤s≤j∆

|Bn
c (s)−Bn

c ((j − 1)∆)| .

(4.3.2)
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Following the proof of Lemma 3.3.3 (see arguments between (3.3.7) and (3.3.9)), we

can find c2 ∈ (0,∞) for all j ∈ IN , ς,∆ ∈ (0,∞),

Ez

(
exp

{
α sup

(j−1)∆≤s≤j∆
|Bn

c (s)−Bn
c ((j − 1)∆)|

} ∣∣∣∣ Fn(j−1)∆

)
≤ 8 exp{c2ς(1+ς+ς∆)}.

Furthermore, following the proof of Proposition 3.2 in [9] (see arguments below (7.4)

therein). We can find c3 ∈ (0,∞) such that for j ∈ IN , ς,∆ ∈ (0,∞),

Ez

(
exp

{
α sup

(j−1)∆≤s≤j∆
|Mn(s))−Mn((j − 1)∆)|

} ∣∣∣∣ Fn(j−1)∆

)
≤ 8 exp{c3ς

2∆}.

By Holder’s inequality, for j ∈ IN , ς,∆ ∈ (0,∞),

exp{−ς∆}Ez
(
exp{ςc1ν

n
j }|Fn(j−1)∆

)
≤ 8 exp{c1c2ς+2c2

1c2ς
2 +2(c2

1c2 +c2
1c3)ς2∆− ς∆}.

Finally, choose appropriate (small) ς0 and (large) ∆0 such that

log 8 + c1c2ς0 + 2c2
1c2ς

2
0 + 2(c2

1c2 + c2
1c3)ς2

0 ∆− ς0∆ = −η∆0,

for some η ∈ (0,∞). The claim follows. �
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Chapter 5

Action time sharing policies for ergodic
control of Markov chains

5.1 Introduction

Markov Decision processes are used extensively as the simplest models that involve

both stochastic behavior and control [42]. A common measure of performance is the

long-time average (or ergodic) criterion. Given all relevant parameters, a typical goal

is to find a simple (e.g. feedback, or deterministic stationary) policy that achieves the

optimal value.

The goal of adaptive control is to obtain an optimal policy, when some relevant

information concerning the behavior of the system is missing. The relevant infor-

mation needs to be obtained while controls are chosen at each step. The classical

approach is to design an algorithm which collects information, while at the same time

choosing controls, in such a way that sufficient information is collected for making

good control decisions, in the sense that the chosen controls “approach optimality

over time.” Existing results include general solutions for the case of countable state

space, and specify an estimation and a control scheme (see [6, 38] and references

therein). For a more refined criterion of optimality for the adaptive case see [1, 14].

A different approach to this issue, including PAC criteria, can be found in the large

literature on Reinforcement learning, e.g. [15]. For results on adaptive control in the



non-countable setting we refer the reader to [28, 21, 25] and references therein: these

deal with the classical setup and with parameterized models.

We are concerned with a more elementary question, namely: What are the basic

controlled objects that determine the cost? Since the objective function (see (5.2.2)) is

defined as a Cesaro limit, we can expect that a similar Cesaro definition of the choice

of controls would suffice to determine the cost. Indeed, [2] shows the following, for

the case of countable state and action spaces. Let q be a stationary Markov control,

namely it is a map from the state space X to the space P(A) of probability measures

on the action space A. Together with an initial distribution µ on X and a transition

probability kernel Q : X × A × B(X) → [0, 1], such a Markov control determines a

probability measure Pqµ on the infinite product space Ω = (X×A)⊗∞ by the relation

Pqµ ((X0, A0) ∈ E0, (X1, A1) ∈ E1, · · · , (Xk, Ak) ∈ Ek)

=

∫
E0

∫
E1

· · ·
∫
Ek

q(xk, dak)Q(xk−1, ak−1, dxk) · · · q(x1, da1)Q(x0, a0, dx1)q(x0, da0)µ(dx0),

E0, E1, · · · , Ek ∈ B(X× A), k ∈ IN0,

where (Xk, Ak)k∈IN0 is the canonical coordinate sequence on Ω. Defining a general

admissible control policy requires additional notation and thus a precise description

is postponed to Section 5.2. Roughly speaking, such a policy is defined in terms of

a non-anticipative sequence {πt}t∈IN0 of P(A) valued random variables and, through

a formula similar to the above display, describes a probability measure Pπµ on Ω. An

admissible control policy π is called an ATS policy for a stationary Markov control q

if the conditional frequencies:

fT (a | x) =

∑T−1
t=0 1{Xt = x,At = a}∑T−1

t=0 1{Xt = x}
→ q(x)(a) ≡ q(a | x), (5.1.1)

for all (x, a) ∈ X×A, Pπµ, a.e. The paper [2] shows that for such a π, for any bounded
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one stage cost function, the costs (5.2.2) under Pqµ and under Pπµ are the same. Such a

result says that the control decisions can deviate from those dictated by the Markov

policy q, and still produce the same long term average cost, as long as the conditional

frequencies converge to the correct values. This flexibility is useful in many situations,

some of which will be described towards the end of this Introduction.

In the current work we are concerned with a setting where the state and action

spaces are not (necessarily) countable. Our main objective is to formulate an appro-

priate definition for an ATS policy which, similar to the countable case, on the one

hand leads to long term costs that are identical to those for the corresponding Markov

control, while on the other hand allows for flexible implementation well suited for vari-

ous estimation and adaptive control goals. Clearly, conditional frequencies of the form

in (5.1.1) are not suitable when q(x, ·) and Q((x, a), ·) are not discrete measures. In

Section 5.3 (Definition 5.3.1) we propose a definition of an ATS policy given in terms

of suitable conditional frequencies over a sequence of “converging partitions” of the

state space X. We show in Theorem 5.3.1 that, under suitable stability, irreducibil-

ity and Feller continuity conditions (Assumptions 5.2.1, 5.2.2 and 5.2.3) occupation

measures for state and action sequences, under an ATS policy given as in Definition

5.3.1, converge a.s. to the same (deterministic) measure as under the corresponding

Markov control. Such a result in particular shows that long term costs for a broad

family of one stage cost functions, under the two control policies, coincide.

We now comment on the usefulness of such a result. To see the flexibility that

ATS policies offer let’s first consider the countable setting. Consider the elementary

model where X is a singleton and A is a finite set. A Markov control in this setting

is just a single probability measure on A and the long term cost for a typical one

stage cost function c : A → [0,∞) under q, by the strong law of large numbers is
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cq =
∫
A c(a)q(da). Also, the corresponding asymptotic mean square error:

lim
N→∞

Eq
(

1

N

N−1∑
k=0

c(Ak)−
∫
A
c(a)q(da)

)2

=
σ2

N
,

where σ2 =
∫
A(c(a)−cq)2q(da). It is easy to see that one can construct an ATS policy

π for the Markov control q (cf. Lemma 5.4.1) under which, for some α(c) ∈ (0,∞)

∣∣∣∣∣ 1

N

N−1∑
k=0

c(Ak)−
∫
A
c(a)q(da)

∣∣∣∣∣ ≤ α(c)

N
, Pπ a.e.

and thus the asymptotic mean square error under π is α2(c)
N2 .

The above simple example illustrates how ATS policies can be used to develop

variance reduction schemes for ergodic control problems. Additionally, ATS policies

provide much flexibility for sampling (namely using controls without regards to the

ensuing cost), for example for the purpose of collecting information. This could be

information which is related to the main optimization objective, but could also be

other information which is of interest. Consider, for example, the following elementary

setting. Suppose that X = {−1, 0, 1} and A = {a, b}. Suppose that the one stage

cost function is given as

c(±1, a) = c(±1, b) = 0, c(0, a) = 1, c(0, b) = 2

and the transition probability kernel is defined as

Q((0, a), ·) =
1

2
δ{1}(·) +

1

2
δ{−1}(·); Q((0, b), ·) = βδ{1}(·) + (1− β)δ{−1}(·);

Q((x, a), ·) =
1

2
δ{−x}(·) +

1

2
δ{0}(·); Q((x, b), ·) = (1− γ)δ{−x}(·) + γδ{0}(·), x = ±1,

where 0 < β, γ < 1. If our goal is the minimize to average cost, then we prefer to
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stay at states ±1, and so we should use a at all states if γ > 1
2
, but use b at states

±1 if γ < 1
2
. Thus, from the optimization point of view, we need to find γ but β is

irrelevant.

Since the probability that Xt = 1 is bounded below for t > 1, consider the

following estimation procedure for γ. Action b will be used at time t if Xt = ±1 and

in addition t = 10n for some integer n. Let

γ̂t =

∑n
m=1 1{X10m = ±1, X10m+1 = 0}∑n

m=1 1{X10m = ±1}
for 10n < t ≤ 10n+1 . (5.1.2)

This estimator converges to γ a.s. under any policy that is consistent with the above

requirement for time instants t = 10n, n ∈ IN . In particular, we can now choose

the following policy: At t 6= 10n use b iff Xt = ±1 and γ̂t <
1
2
. It then follows that

there is some (random) time so that, at all later times, the optimal policy is used. It

is easy to check that the above recipe defines an implementable ATS policy for the

(unknown) optimal stationary policy and is thus optimal as well. Furthermore, we

can modify the above policy slightly to define a new ATS policy that also delivers

estimates for β, with no effect on the cost. This is done similarly to above: use action

b at state 0 at time t if Xt = 0 and in addition t = 10n for some integer n. An

estimator as in (5.1.2) will be consistent. Since the number of time points where b

is used increases logarithmically it is easy to see that the limits in (5.1.1) are not

affected, and consequently the limiting cost does not change.

The above example illustrates the use of ATS policies for estimation and adaptive

control for a rather elementary setting. However similar ideas are applicable for

general state and action space models as well. In Section 5.4.2 we show how ATS

policies introduced in Section 5.3 of this work can be used for estimation of unknown

model parameters and in Section 5.4.3 we describe how they can be used for adaptive

control problems as well.

108



The rest of the chapter is organized as follows. In Section 5.2 we begin with some

preliminary definitions and the main assumptions on the controlled dynamics. Section

5.3 introduces the definition of an ATS policy through a sequence of “converging

partitions” of the state space. The section also presents the main convergence result

for occupation measures associated with an ATS policy. Finally, in Section 5.4 we

describe how ATS policies can be constructed and used in settings with incomplete

model information.

5.2 Definitions and assumptions

The following notation will be used. For two measurable spaces (Ω1,F1) and

(Ω2,F2), the space of F1/F2 measurable maps from Ω1 to Ω2 will be denoted as

M(Ω1,F1 : Ω2,F2). When (Ω2,F2) = (R,B(R)), we will merely write M(Ω1,F1)

and if F1,F2 are clear from the context, we will write M(Ω1 : Ω2) and M(Ω1),

respectively. The space of all probability measures on a measurable space (Ω,F) will

be denoted by P(Ω,F) or P(Ω), when clear from the context. Borel sigma fields on

a metric space T will be denoted by B(T ). If (Ω,F) = (T ,B(T )) for some complete

and separable metric (Polish) space T , we will endow P(Ω) ≡ P(T ) with the the

topology of weak convergence. We recall the definition of Bounded-Lipschitz norm

on P(T ) for a Polish space T . Let

C1(T ) =

{
ψ : T → R : sup

t,t′∈T ,t6=t′

(
|ψ(t)|+ |ψ(t)− ψ(t′)|

d(t, t′)

)
≤ 1

}
,

where d is the metric given on T . For ν1, ν2 ∈ P(T ) denote

‖ν1 − ν2‖BL = sup
ψ∈C1(T )

∣∣∣∣∫ ψdν1 −
∫
ψdν2

∣∣∣∣ .
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This norm metrizes the topology of weak convergence making P(T ) a Polish space.

Throughout we will consider P(T ) with this metric. The class of real valued contin-

uous and bounded functions on a metric space T will be denoted by Cb(T ). Cbuc(T )

will denote the subset of Cb(T ) consisting of all uniformly continuous functions. A

class S ⊂ Cb(T ) is called separating in (T ,B(T )) if whenever µ, ν ∈ P(T ) and∫
fdµ =

∫
fdν for all f ∈ S, then µ = ν. Since T is Polish, one can find a count-

able collection in Cbuc(T ) that is separating and we shall use the notation S(T )

to denote such a class. It is easy to check that if T1, T2 are Polish spaces then

{f⊗g : f ∈ S(T1), g ∈ S(T2)} is separating in (T1×T2,B(T1)⊗B(T2)). Given a subset

C of a metric space T with a distance d, we define diam(C) = sup{d(x, y) : x, y ∈ C}.

We will consider a controlled stochastic dynamical system in discrete time (i.e.

parametrized by the discrete index set N0
.
= {0, 1, 2, . . .}) with state space X that

is a complete and separable locally compact space. A Polish space A will represent

the control (or action) space. For each x ∈ X we are given a compact set U(x) ⊂ A

representing the set of admissible actions when the system is in state x ∈ X. We

assume that K = {(x, a) : x ∈ X, a ∈ U(x)} is a measurable subset of X × A. The

dynamics of the controlled Markov chain is described in terms of a transition kernel

Q : K× B(X)→ [0, 1]

satisfying:

(i) For all (x, a) ∈ K, Q((x, a), ·) ≡ Q(· | (x, a)) is in P(X) and;

(ii) for every C ∈ B(X), Q(·, C) ∈M(K).

Roughly speaking, denoting the state and control processes by (Xt)t∈N0 , (At)t∈N0 ,

respectively, Q(C | (x, a)) represents the conditional probability of {X1 ∈ C} given

that {X0 = x,A0 = a}. A convenient way to give a precise formulation of the

controlled system is through canonical sample spaces (cf. [3]), as follows. Let Ω =
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(X × A)⊗∞ and denote by F the Borel σ field on Ω corresponding to the product

topology. Define sequences {Xt}t∈N0 , {At}t∈N0 of X and A valued measurable maps,

respectively, on (Ω,F) as follows:

Xt(ω) = xt; At(ω) = at, where ω = (x0, a0, · · ·xt, at, · · · ), t ∈ N0.

We also introduce the sequence of History maps, {Ht}t∈N0 , Ht : Ω→ Ht, where

Ht = (X× A)⊗(t−1) × X, t ∈ N; H0 = X

as Ht(ω) = (x0, a0, · · ·xt−1, at−1, xt). Let

H̄t = (B(X× A))⊗(t−1) ⊗ B(X), and Ht = σ(Ht) = H−1
t (H̄t).

Note that F =
∨∞
t=0Ht.

By a controlled system we will mean a probability measure on (Ω,F) that is

described in terms of an admissible control policy which is defined as follows.

Definition 5.2.1 (Admissible Control Policy). A sequence π = {πt}t∈N0 of kernels,

πt : Ht × B(A)→ [0, 1] satisfying for all t ∈ N0:

(i) πt(ht, ·) ≡ πt(· | ht) is in P(A), for all ht ∈ Ht;

(ii) πt(·, D) ∈M(Ht, H̄t), for all D ∈ B(A);

(iii) πt(ht,U(xt)) = 1, for all ht = (x0, a0, · · ·xt−1, at−1, xt) ∈ Ht,

is called an admissible (control) policy.

The set of all admissible policies is denoted by Π. Given µ ∈ P(X) and π ∈ Π,

there is a unique probability measure Pπµ on (Ω,F) satisfying:
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• Pπµ(X0 ∈ C) = µ(C), C ∈ B(X),

• Pπµ(At ∈ D | Ht)(ω) = πt(D | Ht(ω)), Pπµ a.s.,

• Pπµ((Xt(ω), At(ω)) ∈ K) = 1 for all t ∈ IN0.

• Pπµ(Xt+1 ∈ C | Ht, At)(ω) = Q(C | Xt(ω), At(ω)), Pπµ a.s.

The measure Pπµ represents a controlled system with initial distribution µ and an

admissible control policy π ∈ Π. The corresponding expectation operator will be

denoted by Eπµ. If µ = δx, we will write Pπµ and Eπµ as Pπx and Eπx, respectively.

A family of admissible policies that are particularly useful are the so-called station-

ary Markov policies. These correspond to those π ∈ Π for which there is a measurable

map q : X→ P(A) such that πt(ht, ·) = q(xt)(·) for every ht = (x0, a0, · · · xt−1, at−1, xt) ∈

Ht. The class of all such policies is denoted by ΠSM and frequently we will identify

a policy π ∈ ΠSM with the associated map q. Note that for every µ ∈ P(X) and

π ≡ q ∈ ΠSM , (Xt)t∈N0 is a Markov chain under Pπµ with transition probability kernel

%q(x,C) =

∫
A
Q((x, a), C)q(x, da), (x,C) ∈ X× B(X). (5.2.1)

If q ∈ ΠSM is such that the map x 7→ q(x) is continuous (from X to P(A)), we will

refer to q as a continuous stationary Markov policy and denote the class of all such

policies by ΠSMC. Occasionally, for x ∈ X, we will write q(x)(·) as q(· | x).

The next step in the formulation of a control problem is the introduction of the

cost function that one will like to optimize. Here we are interested in a criterion that

is designed for system optimization over a long time horizon. This criterion – usually

referred to as the pathwise cost per unit time, or long time average cost – is given in

terms of a measurable map c : K→ R+, called the one stage cost function, as
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JS = lim sup
N→∞

1

N

N−1∑
t=0

c(Xt, At), (5.2.2)

where the right side above is a R̄ = R∪{∞} valued random variable on (Ω,F). Under

suitable conditions one can show that there is a π∗ ∈ Π and V ∈ [0,∞) such that,

for all µ ∈ P(X), Pπ∗µ (JS = V ) = 1 and for all π ∈ Π, Pπµ(JS ≥ V ) = 1. Such a π∗ is

then an optimal control for the problem. One typically finds that π∗ can be taken to

be an element of ΠSM (i.e. a stationary Markov policy). For precise conditions under

which the above statements hold we refer the reader to Section 6 of [3]. In this work

we are not interested in the optimization of a particular one stage cost function but

rather in the study of control policies that perform well over a broad family of cost

functions. In that regard the following occupation measure plays a key role.

For N ∈ N, define a P(X× A) valued random variable, ΦN as

ΦN(ω)(F ) =
1

N

N−1∑
t=0

1F (Xt(ω), At(ω)), F ∈ B(X× A), ω ∈ Ω.

We will make the following assumptions. The first two can be regarded as blanket

stability conditions while the third is the weak Feller property.

Assumption 5.2.1. For each µ ∈ P(X) and π ∈ Π, the sequence of probability

measures {ΦN(ω), N ∈ N} is tight, for Pπµ a.e. ω.

If X and A are compact, the above assumption holds trivially. More generally,

one can formulate conditions in terms of suitable Lyapunov functions that ensure the

above almost sure tightness property. Recall that for every µ ∈ P(X) and π ≡ q ∈

ΠSM, (Xt)t∈N0 is a Markov chain under Pπµ with transition probability kernel defined

by (5.2.1).

Assumption 5.2.2. For each q ∈ ΠSM, the Markov chain with transition kernel %q

has a unique invariant probability measure denoted as λq.
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Remark 5.2.1. Note that if q, q̃ ∈ ΠSM and q(x) = q̃(x) for λq a.e. x, then λq = λq̃.

Indeed, for C ∈ B(X)

λq(C) =

∫
X
%q(x,C)λq(dx) =

∫
X×A
Q((x, a), C)q(x, da)λq(dx)

=

∫
X×A
Q((x, a), C)q̃(x, da)λq(dx) =

∫
X
%q̃(x,C)λq(dx).

Thus λq is an invariant probability measure for the Markov chain with transition

kernel %q̃ and consequently, from Assumption 5.2.2, λq = λq̃.

Assumption 5.2.3. For every f ∈ Cb(X), the function (x, a) 7→
∫
X f(x̃)Q((x, a), dx̃)

is in Cb(X× A).

Assumptions 5.2.1 – 5.2.3 will hold throughout this work and thus will not be

noted explicitly in the statement of results.

5.3 Action time sharing policies

For the rest of this work we will consider a q ∈ ΠSMC which leads to close to optimal

performance for the controlled system. Indeed, as remarked earlier, under suitable

conditions on the one stage cost function, the transition kernel Q and spaces (X,A),

one can show that an optimal control can be found in the family ΠSM. Under further

smoothness and non-degeneracy conditions one can obtain a sequence of controls

in ΠSMC such that the associated costs converge to that for the optimal control; in

particular for every ε > 0, we can find a ε-optimal control that belongs to ΠSMC. In

applications one often encounters controls which are continuous except across some

“boundary” surfaces: these may be, for example, regions where some queue is empty.

Such discontinuities may be handled by re-defining the metric so that these surfaces

become “isolated.” However, in order to focus on the main issues, we shall not pursue
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this extension here. Although we will not appeal to the (near) optimality properties

in our proofs, the control q considered above can be regarded as such an ε-optimal

control. Our main goal is to construct, for a given q ∈ ΠSMC, a family of control

policies that allow for much more flexibility in implementation than q and lead to the

same cost value (as that for q) for a broad range of one stage cost functions.

Define θq ∈ P(X× A) as

θq(C ×D) =

∫
C

q(x)(D)λq(dx), C ∈ B(X), D ∈ B(A).

An immediate consequence of assumptions made in Section 5.2 is the following lemma.

The result can be deduced from a more general result given in Section 5.4.2 (Lemma

5.4.2) and thus the proof is omitted.

Lemma 5.3.1. For each µ ∈ P(X) the sequence of probability measures {ΦN(ω), N ∈

N} converges weakly, as N →∞, to θq, for Pqµ a.e. ω.

Lemma 5.3.1 in particular says that, if the one stage cost function c ∈ Cb(X×A),

then the pathwise cost per unit time associated with q, namely JS (see (5.2.2)), in

fact exists as a limit and equals
∫
X×A c(x, a)θq(dxda), Pqµ a.e.

We now introduce a family of control policies that are quite flexible and are also

well suited for estimation of unknown parameters and for broader information col-

lection purposes, referred to as action time sharing (ATS) control policies. An ATS

policy associated with q will be such that the corresponding pathwise cost per unit

time is the same as that for q. Such a policy is defined in terms of a sequence of

measurable partitions {Λk}k≥1 of the state space X:

Λk = {Bkl}τ(k)
l=1 , X =

τ(k)⋃
l=1

Bkl, Bkl ∩Bkl′ = ∅ if l 6= l′ (5.3.1)

such that |Λk| = supl∈R(k) diam(Bkl) → 0 as k → ∞, where R(k) = {1, · · · , τ(k)}.
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By convention, when τ(k) = ∞, R(k) = IN . We refer to {Λk}k≥1 as a sequence

of converging partitions. Associated with such a sequence, consider a sequence of

random kernels {pk}k≥1,

pk : Ω× X× B(A)→ [0, 1]

defined as follows: For (ω, x,D) ∈ Ω × X × B(A) and k ∈ IN , fix l so that x ∈ Bkl.

Then set

pk(ω, x,D) ≡ pωk (D | x) =


∑k−1
j=0 1D(Aj(ω))1Bkl (Xj(ω))∑k−1

j=0 1Bkl (Xj(ω))
if
∑k−1

j=0 1Bkl(Xj(ω)) 6= 0

1{a0(x)∈D} if
∑k−1

j=0 1Bkl(Xj(ω)) = 0

(5.3.2)

where a0 : X → A is an arbitrary fixed measurable function such that a0(x) ∈ U(x)

for all x ∈ X.

Definition 5.3.1. Given µ ∈ P(X), a policy π ∈ Π is called an action time sharing

(ATS) policy for q corresponding to the initial condition µ if for Pπµ a.e. ω, there is a

sequence of converging partitions {Λk(ω)}k≥1, such that for every compact set K ⊂ X

sup
x∈K
‖pωk (· | x)− q(· | x)‖BL → 0, as k →∞. (5.3.3)

We denote the collection of all ATS policies for q, corresponding to the initial condition

µ, by ΠATS(q, µ).

The following is the main result of this section.

Theorem 5.3.1. Let µ ∈ P(X). Fix π ∈ ΠATS(q, µ). Then, as k → ∞, Φk(ω) → θq

for Pπµ a.e. ω.

Proof. From Assumption 5.2.1 we can find N1 ∈ F such that Pπµ(N1) = 0 and
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for all ω ∈ N c
1 , {Φn(ω)}n≥1 is tight. For f ∈ S(X), define

M f
n =

n−1∑
j=0

[∫
X
f(x̃)Q((Xj, Aj), dx̃)− f(Xj+1)

]
.

Then, under Pπµ, {M f
n} is a martingale with bounded increments and so by the strong

law of large numbers for such martingales (see eg. [44, Theorem VII.5.4]), 1
n
M f

n → 0,

a.s. Pπµ. Let N2 ∈ F be such that Pπµ(N2) = 0 and

for all ω ∈ N c
2 , and all f ∈ S(X),

1

n
M f

n (ω)→ 0, as n→∞. (5.3.4)

Since X is locally compact, we can find a sequence {Kn}n≥1 of compact subsets of X

such that

Ko
n ⊂ Kn ⊂ Ko

n+1, and ∪n≥1 Kn = X.

Since π ∈ ΠATS(q), we can find a N3 ∈ F such that Pπµ(N3) = 0 and, for each

ω ∈ N c
3 , a sequence {Λk(ω)}k≥1 of converging partitions for which, as k →∞,

sup
x∈Kn

∣∣∣∣∫
A
g(a)pωk (da | x)−

∫
A
g(a)q(da | x)

∣∣∣∣→ 0, for every n ≥ 1 and g ∈ S(A),

(5.3.5)

where pk is defined through (5.3.2). Now let N = N1 ∪ N2 ∪ N3 and fix ω ∈ N c.

Choose a subsequence {nk} along which Φnk(ω) converges to some Φ(ω) ∈ P(X×A).

Suppressing ω in notation, the measure Φ can be disintegrated as follows: For some

γ ∈ P(X) and a transition probability kernel p̂ : X × B(A) → [0, 1], Φ(dx da) =

p̂(x, da)γ(dx), namely

Φ(C ×D) =

∫
C

p̂(x,D)γ(dx), for all C ∈ B(X), D ∈ B(A). (5.3.6)
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Note that p̂(· | x) ≡ p̂(x, ·) ∈ ΠSM. We claim that

γ = λp̂. (5.3.7)

To prove the claim it suffices, in view of Assumption 5.2.2, to show that for all

f ∈ S(X)

∫
X×A

(∫
X
f(x̃)Q((x, a), dx̃)

)
p̂(da | x)γ(dx) =

∫
X
f(x)γ(dx). (5.3.8)

Note that the right side of (5.3.8) equals the limit (as k →∞) of 1
nk

∑nk−1
j=0 f(Xj(ω)),

while left side equals (using Assumption 5.2.3) the limit of

1

nk

nk−1∑
j=0

∫
X
f(x̃)Q((Xj, Aj), dx̃).

Also, from (5.3.4), the difference of the above two quantities approaches 0 as k →∞.

This proves (5.3.8) and thus (5.3.7) follows. To complete the proof of the theorem we

will now show that for every f ∈ S(X) and g ∈ S(A)

∫
X×A

f(x)g(a)q(da | x)λp̂(dx) =

∫
X×A

f(x)g(a)p̂(da | x)λp̂(dx). (5.3.9)

This will prove that q(· | x) = p̂(· | x), a.e. x [λp̂], and consequently, from Remark

5.2.1, λp̂ = λq. Now fix a (f, g) ∈ S(X)× S(A). We first show that

lim
k→∞

∣∣∣∣∫
X×A

f(x)g(a)pnk(da | x)Φ(1)
nk

(dx)−
∫
X×A

f(x)g(a)q(da | x)λp̂(dx)

∣∣∣∣ = 0, (5.3.10)

where Φ
(1)
nk is the first marginal of Φnk . Let

φk(x) =

∫
A
g(a)pnk(da | x), φ(x) =

∫
A
g(a)q(da | x), x ∈ X.
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Since ω ∈ N c
3 , we have (see (5.3.5)) that for every compact K in X

sup
x∈K
|φk(x)− φ(x)| → 0, as k →∞.

Also, from (5.3.7)

Φ(1)
nk
→ γ = λp̂.

Since q ∈ ΠSMC, φ ∈ Cb(X) and thus combining the above two displays, we have, as

k →∞, ∫
X
f(x)φk(x)Φ(1)

nk
(dx)→

∫
X
f(x)φ(x)λp̂(dx).

This proves (5.3.10). We now show

lim
k→∞

∣∣∣∣∫
X×A

f(x)g(a)pnk(da | x)Φ(1)
nk

(dx)−
∫
X×A

f(x)g(a)Φnk(da dx)

∣∣∣∣ = 0. (5.3.11)

Suppressing ω from the notation, suppose that Λk(ω) ≡ Λk is given as in (5.3.1).

Along with the sequence {Λk}k≥1 we consider a sequence of sets

Xk = {xk1, · · ·xkτ(k)} ⊂ X, k ≥ 1 (5.3.12)

such that xkl ∈ Bkl for all l = 1, · · · τ(k). We will refer to xkl as the center of the set

Bkl. Define, for k ≥ 1, bk : X→ X as

bk(x) =

τ(k)∑
l=1

xkl1Bkl(x), x ∈ X.

Fix ε > 0. Since f is uniformly continuous and |Λn| → 0 as n → ∞, we can find

n0 ∈ N such that

sup
l∈R(n)

sup
x,y∈Bnl

|f(x)− f(y)| < ε, for all n ≥ n0. (5.3.13)
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Fix k0 ∈ IN such that nk ≥ n0 whenever k ≥ k0. For k ≥ k0

∫
A
g(a)pnk(da | x) =

∑nk−1
j=0 g(Aj)1{bnk (x)}(bnk(Xj))∑nk−1

j=0 1{bnk (x)}(bnk(Xj))
.

This shows that

∫
X×A

f(x)g(a)pnk(da | x)Φ1
nk

(dx) =
1

nk

nk−1∑
i=0

f(Xi)

∑nk−1
j=0 g(Aj)1{bnk (Xi)}(bnk(Xj))∑nk−1

j=0 1{bnk (Xi)}(bnk(Xj))
.

Note that bnk(Xj) = bnk(Xi) if and only if Xj and Xi are in the same Bnkl and in

that case, whenever k ≥ k0, |f(Xi) − f(Xj)| ≤ ε. Using this observation the right

side of the above display can be written as

1

nk

nk−1∑
i=0

∑nk−1
j=0 f(Xj)g(Aj)1{bnk (Xi)}(bnk(Xj))∑nk−1

j=0 1{bnk (Xi)}(bnk(Xj))
+$(k),

where |$(k)| ≤ ε supa∈A |g(a)| for k ≥ k0. The first term in the display can be written

as

1

nk

nk−1∑
i=0

τ(nk)∑
l=1

1Bnkl(Xi)

∑nk−1
j=0 f(Xj)g(Aj)1{xnkl}(bnk(Xj))∑nk−1

j=0 1{xnkl}(bnk(Xj))

=
1

nk

τ(nk)∑
l=1

(
nk−1∑
i=0

1Bnkl(Xi)

)∑nk−1
j=0 f(Xj)g(Aj)1{xnkl}(bnk(Xj))∑nk−1

j=0 1Bnkl(Xj)

=
1

nk

τ(nk)∑
l=1

nk−1∑
j=0

f(Xj)g(Aj)1{xnkl}(bnk(Xj))

=
1

nk

nk−1∑
j=0

f(Xj)g(Aj)

=

∫
X×A

f(x)g(a)Φnk(da dx).
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Thus for k ≥ k0

∣∣∣∣∫
X×A

f(x)g(a)pnk(da | x)Φ1
nk

(dx)−
∫
X×A

f(x)g(a)Φnk(da dx)

∣∣∣∣ ≤ |$(k)| ≤ ε sup
a∈A
|g(a)|.

Since ε > 0 is arbitrary, this proves (5.3.11). Combining (5.3.10) and (5.3.11) we have

lim
k→∞

∣∣∣∣∫
X×A

f(x)g(a)Φnk(da dx)−
∫
X×A

f(x)g(a)q(da | x)λp̂(dx)

∣∣∣∣ = 0.

The above display, along with (5.3.6) and (5.3.7) yields (5.3.9) and, as noted above

(5.3.9), shows that q(· | x) = p̂(· | x), a.e. x [λp̂], and λp̂ = λq. Thus Φ = θq and the

result follows.

As a immediate corollary of the above theorem and Lemma 5.3.1 we have to

following result on the convergence of costs. The result says that for a broad family

of one stage cost functions, the pathwise cost per unit time for q is same as that for

any π ∈ ΠATS(q).

Corollary 5.3.1. Let µ ∈ P(X) and π ∈ ΠATS(q, µ). Then for any c ∈ Cb(X × A),

JS defined by (5.2.2) in fact exists as a limit and equals
∫
c(x, a)θq(dxda), both, a.e.

Pπµ and Pqµ.

5.4 Construction of ATS policies

In this section we will give a basic construction for a π ∈ ΠATS(q, µ) for an arbitrary

q ∈ ΠSMC and µ ∈ P(X). We will then describe how this construction can be modified

in a simple manner to define control policies that are well suited for estimation and

information collection purposes while producing the same value for the pathwise cost

per unit time. To keep the presentation simple we assume that U(x) = A and that A

is a compact metric space. We will further make the following recurrence assumption.
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Assumption 5.4.1. For every π ∈ Π, µ ∈ P(X), and C ∈ B(X) with a nonempty

interior,

Pπµ(Xt ∈ C, for some t ∈ N) = 1.

The above assumption will hold throughout this section.

We begin with the following lemma. Let

Θ = {ϑ ∈ P(A) : ϑ is supported on finitely many points .} (5.4.1)

For ϑ ∈ Θ, denote by S(ϑ) the support of ϑ.

Lemma 5.4.1. There is a Ψ ≡ (Ψ1, · · · ) : Θ → A∞ such that for every ϑ ∈ Θ: (i)

Ψi(ϑ) ∈ S(ϑ), i ≥ 1; (ii) The probability measure mn(ϑ) = 1
n

∑n
i=1 δΨi(ϑ) satisfies

||mn(ϑ)− ϑ||BL ≤
4 #(S(ϑ))

n

where #(S(ϑ)) is the cardinality of S(ϑ).

Proof. Fix ϑ ∈ Θ. Then ϑ can be written as

ϑ =
l∑

j=1

pjδaj ,

where l = #(S(ϑ)) ∈ N, aj ∈ A, pj ∈ (0, 1], and
∑l

j=1 pj = 1.

Define, for m ∈ N and j = 1, . . . , l,

kj(m) = bmlpjc, and α(m) =
l∑

j=1

kj(m).

Set α(0) = 0. It is easily seen that

(m− 1)l ≤ α(m) ≤ ml, (5.4.2)
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and so α(m)→∞ as m→∞.

We now define a sequence {ψj}∞j=1 with values in A, such that, for each m ≥ 1

and r = 1, . . . , l,

#{j ∈ {1, . . . , α(m)} : ψj = ar} = kr(m). (5.4.3)

One can define {ψj}∞j=1 inductively as follows.

Consider m = 1. Define

ψj = ar whenever
r−1∑
i=1

ki(1) < j ≤
r∑
i=1

ki(1), r = 1, · · · l.

This defines {ψj}α(1)
j=1 . Suppose now {ψj}α(N)

j=1 has been defined such that (5.4.3) holds

with m = N . Assume without loss of generality that α(N + 1) > α(N). We now

define {ψj}α(N+1)
j=α(N)+1. Note that kr(N+1) ≥ kr(N). Let br(N+1) = kr(N+1)−kr(N),

and set

ψj = ar whenever α(N) +
r−1∑
i=1

bi(N + 1) < j ≤ α(N) +
r∑
i=1

bi(N + 1), r = 1, · · · l.

This completes the definition of {ψj}α(N+1)
j=1 .

Define Ψj(ϑ) = ψj, j ∈ N. Fix n ∈ N such that α(N) ≤ n ≤ α(N + 1) for some

N ∈ N. If N = 0,

‖mn(ϑ)− ϑ‖BL =

∥∥∥∥∥ 1

n

n∑
j=1

δψj −
l∑

i=1

piδai

∥∥∥∥∥
BL

= sup
f∈C1(A)

∣∣∣∣∣ 1n
n∑
j=1

f(ψj)−
l∑

i=1

pif(ai)

∣∣∣∣∣ ≤ 2 ≤ 2l

n
,

where the last inequality follows from (5.4.2). Consider now the case N ≥ 1. Then

‖mn(ϑ)− ϑ‖BL =

∥∥∥∥∥ 1

n

n∑
j=1

δψj −
l∑

i=1

piδai

∥∥∥∥∥
BL
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≤ sup
f∈C1(A)

∣∣∣∣∣ 1n
l∑

i=1

ki(N)f(ai)−
l∑

i=1

pif(ai)

∣∣∣∣∣+

∣∣∣∣∣∣ 1n
n∑

j=α(N)+1

f(ψj)

∣∣∣∣∣∣


≤
l∑

i=1

∣∣∣∣ki(N)− npi
n

∣∣∣∣+

∣∣∣∣α(N + 1)− α(N)

n

∣∣∣∣ . (5.4.4)

By (5.4.2),

α(N + 1)− α(N) ≤ (N + 1)l − (N − 1)l = 2l.

Also, for j = 1, · · · l,

kj(N)− npj ≤ Nlpj − npj ≤ Nlpj − α(N)pj ≤ Nlpj − (N − 1)lpj ≤ lpj,

and

kj(N)− npj ≥ Nlpj − 1− α(N + 1)pj ≥ Nlpj − 1− (N + 1)lpj = −1− lpj.

Using the above estimate in (5.4.4) we now have

‖mn(ϑ)− ϑ‖BL ≤
4l

n
.

The lemma follows.

5.4.1 A basic construction

Fix q ∈ ΠSMC and µ ∈ P(X). We now give a pathwise construction of a π ∈

ΠATS(q, µ). Let {Λ̃k}k≥1 be a sequence of measurable partitions of X:

Λ̃k = {B̃kl}τ̃(k)
l=1 , X =

τ̃(k)⋃
l=1

B̃kl, B̃kl ∩ B̃kl′ = ∅ if l 6= l′ (5.4.5)
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such that |Λ̃k| = supl∈R̃(k) diam(B̃kl) → 0 as k → ∞, where R̃(k) = {1, · · · , τ̃(k)}.

Each B̃kl is required to have a nonempty interior. Also, we assume that the sequence

Λ̃k is nested, namely, for every k ≥ 1 and l ∈ R̃(k + 1), there is a l′ ∈ R̃(k) such that

B̃(k+1)l ⊂ B̃kl′ . We also assume that for any compact K ⊂ X and k ≥ 1,

#{l : B̃kl

⋂
K 6= ∅} <∞.

Associated with the sequence {Λ̃k}, we define sets {X̃k} and maps {b̃k} analogous to

as below (5.3.11). Namely, for k ≥ 1

X̃k = {x̃k1, · · · x̃kτ̃(k)} ⊂ X, (5.4.6)

is such that x̃kl ∈ B̃kl for all l ∈ R̃(k) and b̃k : X→ X is given as

b̃k(x) =
∑
l∈R̃(k)

x̃kl1B̃kl(x), x ∈ X.

As before, x̃kl is called the center of the set B̃kl. Since x 7→ q(· | x) is a continuous

map from X to P(A), we have that for every compact K ⊂ X

sup
x∈K
||q(· | x)− q(· | b̃k(x))||BL → 0, as k →∞. (5.4.7)

Next let {Λ′k}k≥1 be a sequence of measurable partitions of A:

Λ′k = {Fkm}`(k)
m=1, A =

`(k)⋃
m=1

Fkm, Fkm ∩ Fkm′ = ∅ if m 6= m′ (5.4.8)

such that `(k) <∞ for all k and |Λ′k| → 0 as k →∞. Define a sequence of finite sets

Ak = {ak1, · · · , ak`(k)} such that akm ∈ Fkm for all m = 1, · · · `(k). Let, for k ≥ 1,
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b′k : A→ Ak be defined as

b′k(a) =

`(k)∑
m=1

akm1F̃km(a), a ∈ A.

We will now construct a sequence of X×A valued random variables Z ≡ (X̄t, Āt)t∈N0

on a suitable probability space (Ω̄, F̄ , P̄) such that X̄0 has probability law µ and

the probability law of Z corresponds to a controlled system associated with a policy

π ∈ ΠATS(q, µ). More precisely, denoting the measure induced by Z on (Ω,F), by

P∗ (i.e. P∗ = P̄ ◦ Z−1), we will obtain an admissible control policy π = {πt}t∈IN0 by

disintegrating, for t ∈ IN0, the measure P̄t = P∗ ◦ (Ht, At)
−1 ∈ P(Ht × A), as

P̄t(dh, da) = πt(h, da) P∗ ◦H−1
t (dh). (5.4.9)

Note that with π defined through the above equation, we have that the controlled

system Pπµ = P∗. The construction of (X̄t, Āt)t∈N0 will be carried out in a recursive

fashion such that

P(X̄t+1 ∈ C | (X̄j, Āj), j ≤ t) = Q((X̄t, Āt), C), C ∈ B(X), t ∈ IN0.

The recursive construction of the sequence (Āt) is described in what follows.

Let {Kn}n≥1 be the sequence of compact sets in X introduced in Section 5.3. Let,

for r ≥ 1, by relabeling sets if needed,

Λ̃0
r = {B̃r1, · · · B̃rj(r)} ⊂ Λ̃r

be the finite collection of sets such that B̃rm ∈ Λ̃0
r if and only if B̃rm

⋂
Kr is non-

empty. For m = 1, · · · , j(r), define qr,m ∈ P(A) as qr,m = q(· | xrm). Define, for
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r ≥ 1, ηr : P(A)→ P(Ar) as

ηr(ϑ) =

`(r)∑
j=1

δarjϑ(Frj), ϑ ∈ P(A).

Note that

sup
ϑ∈P(A)

||ηr(ϑ)− ϑ||BL ≤ |Λ′r| → 0, as r →∞. (5.4.10)

Set q̃r,m = ηr(q
r,m), r ≥ 1. Note that q̃r,m ∈ Θ (cf. 5.4.1) for all r ∈ N, m ≤ j(r).

Denote

Ψ(q̃r,m) = (er[m, 1], er[m, 2], · · · ).

Note that by definition of Ψ, er[m, i] ∈ Ar for all i, r ∈ N , m ≤ j(r). Furthermore,

from Lemma 5.4.1, for every N ≥ 1,

∥∥∥∥∥ 1

N

N∑
i=1

δer[m,i] − q̃r,m
∥∥∥∥∥

BL

≤ 4`(r)

N
.

The sequences Ψ(q̃r,m), m ≤ j(r), r ∈ IN , will form the basic building blocks for the

sequence (Āt)t∈IN0 . Let {εr}r≥1 be a sequence of positive reals such that εr ↓ 0 as

r →∞.

Construction of Z. We are now ready to specify the sequence (X̄t, Āt) on a suitable

probability space. The definition of the probability space will be implicit in the

construction and a detailed description will be omitted. Let X̄0 be a X valued random

variable with probability law µ.

We now define, recursively in r, sequences {ξrk, srk, ζrk , (ir[m, k])m=1,···j(r)}k≥0, r ≥ 1,

as follows.

Case r = 1: Define ξr0 = X̄0 and let
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ir[m, 0] = 1B̃r,m(ξr0), m = 1, · · · j(r),

mr
0 =

j(r)∑
m=1

m1B̃r,m(ξr0), sr0 = ir[mr
0, 0], and ζr0 = er[mr

0, s
r
0].

(5.4.11)

Note that sr0 = 1. Having defined {ξrk, srk, ζrk , (ir[m, k])m=1,···j(r)} for k ≤ k0, define

ξrk0+1 through the relation

P̄(ξrk0+1 ∈ C | Grk0
) = Q((ξrk0

, ζrk0
), C), C ∈ B(X), (5.4.12)

where Grk0
= σ{(ξrj , ζrj ) : j ≤ k0}, and set

ir[m, k0 + 1] = ir[m, k0] + 1B̃r,m(ξrk0+1), m = 1, · · · j(r), mr
k0+1 =

j(r)∑
m=1

m1B̃r,m(ξrk0+1),

(5.4.13)

and

srk0+1 = ir[mr
k0+1, k0 + 1], ζrk0+1 = er[mr

k0+1, s
r
k0+1]. (5.4.14)

This completes the definition for {ξrk, srk, ζrk , (ir[m, k])m=1,···j(r)} for r = 1 and k ∈ N0.

Set %0 = 0 and define, for r = 1,

αr = ε−1
r (2%r−1 + 4 (`(r) + `(r + 1))) , (5.4.15)

σr = inf{k : ir[m, k] ≥ αr for all m = 1, · · · j(r)}, (5.4.16)

%r = %r−1 + σr (5.4.17)

Case r > 1: Let

(ξr0, ζ
r
0) = (ξr−1

σr−1
ζr−1
σr−1

), ir[m, 0] = 0,m = 1, · · · j(r).
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Definition of {ξrk, ζrk , srk, (ir[m, k])m=1,···j(r)}k≥1 and (αr, σr, %r), for r > 1, is given

recursively, exactly as above through (5.4.12) – (5.4.17).

Finally, the sequence (X̄k, Āk) is now constructed on the probability space (Ω̄, F̄ , P̄)

that supports the random variables {ξrk, ζrk , srk, (ir[m, k])m=1,···j(r)}k≥0, (αr, σr, %r), r ∈

IN , by piecing together the sequence (ξrk, ζ
r
k ; k, r ∈ IN0) as follows,

(X̄k, Āk) = (ξr+1
k−%r , ζ

r+1
k−%r), whenever %r ≤ k < %r+1, r ∈ N0.

Recall from (5.4.9) the definition of π and Pπµ corresponding to the sequence

(X̄k, Āk)k∈N0 . We now show that π constructed in the above fashion is an ATS policy

for q with initial condition µ.

Theorem 5.4.1. The policy π ∈ Π constructed above is in ΠATS(q, µ).

Proof. From Assumption 5.4.1 it follows that, with Ω̄0 = {ω ∈ Ω̄ : %r(ω) <

∞ for all r ≥ 1}, P̄(Ω̄0) = 1. Define for ω ∈ Ω̄0, (x,D) ∈ X × B(A), p̄k(ω, x,D) ≡

p̄ωk (D | x) by the right side of (5.3.2), replacing (Aj, Xj) there by (Āj, X̄j) and {Λk(ω)}

(suppressing ω from notation throughout) defined as follows: For k ≥ 1,

Λk = Λ̃β if %β < k ≤ %β+1, β = 0, 1, · · ·

where Λ̃0 is taken to be Λ̃1. In order to prove the result, it suffices to show that for

all ω ∈ Ω̄0 and compact K ⊂ X

sup
x∈K
‖p̄ωk (· | x)− q(· | x)‖BL → 0, as k →∞. (5.4.18)

Fix now a compact set K ⊂ X and ε ∈ (0, 1). Using (5.4.7) and (5.4.10), choose
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r0 large enough so that for all r ≥ r0, K ⊂ Kr,

sup
x∈K
‖q(· | x)− q(· | b̃r(x))‖BL ≤ ε (5.4.19)

and

sup
ϑ∈P(A)

‖ϑ− ηr(ϑ)‖BL ≤ ε. (5.4.20)

We introduce some additional notation. For t ≥ 1 and l = 1, · · · j(t), let

ntl(m1,m2) = #{X̄j ∈ B̃tl : m1 ≤ j < m2}, 0 ≤ m1 ≤ m2 <∞

and for such m1,m2, let µtl[m1,m2] ∈ P(A) be defined as follows: For D ∈ B(A),

µtl[m1,m2](D) =


ntl(m1,m2)−1

∑m2−1
j=m1

1D(Āj)1B̃tl(X̄j), if ntl(m1,m2) > 0,

δa0(D), otherwise,

where a0 is some fixed element of A.

Fix β0 ≥ r0 + 1 and consider k > %β0 . Let β ∈ N, β ≥ β0 be such that %β <

k ≤ %β+1. We will now estimate the quantity on the left side of (5.4.18) for such a

k. Fix x ∈ K and let i ∈ {1, · · · j(β)} be such that x ∈ B̃βi. Since Bki = B̃βi for

%β < k ≤ %β+1, we can write

p̄k(· | x) = n−1(n1ν1 + n2ν2 + n3ν3), (5.4.21)

where

ν1 = µβi[0, %β−1], ν2 = µβi[%β−1, %β], ν3 = µβi[%β, k]
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and

n1 = nβi(0, %β−1), n2 = nβi(%β−1, %β), n3 = nβi(%β, k), n = n1 + n2 + n3.

Recall that the sequence {Λ̃k} is nested. Denote the sets in Λ̃β+1 that are contained

in B̃βi as G1, G2, · · ·Gγ and denote the corresponding centers by g1, · · · , gγ. Let, for

t = 1, · · · γ, mt = #{Xj ∈ Gt : %β ≤ j < k}. Then

γ∑
t=1

mt = n3 and ν3 = n−1
3

γ∑
t=1

mtν3t, (5.4.22)

where

ν3t(D) =


m−1
t

∑k−1
j=%β

1D(Āj)1Gt(X̄j), if mt > 0,

δa0(D), otherwise.

Then, whenever mt 6= 0,

‖ν3t − ηβ+1(q(· | gt))‖BL ≤
4`(β + 1)

mt

. (5.4.23)

Also, since β > r0, from (5.4.20), whenever n3 > 0,

‖ν̃3 − n−1
3

γ∑
t=1

mtq(· | gt)‖BL ≤ ε

where ν̃3 = n−1
3

∑γ
t=1mtηβ+1(q(· | gt)), and from (5.4.19)

‖n−1
3

γ∑
t=1

mtq(· | gt)− q(· | x)‖BL ≤ 2ε.

Thus, whenever n3 > 0, ‖ν̃3 − q(· | x)‖BL ≤ 3ε. Letting ν̃1 = ν̃2 = ηβ(q(· | b̃β(x))), we
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have by this estimate and (5.4.19), (5.4.20) that

‖q(· | x)− n−1(n1ν̃1 + n2ν̃2 + n3ν̃3)‖BL ≤ 3ε.

Also, from Lemma 5.4.1,

‖ν2 − ν̃2‖BL ≤
4`(β)

n2

and if n3 6= 0, from (5.4.23), (5.4.22) and Lemma 5.4.1, we have

‖ν3 − ν̃3‖BL ≤
4`(β + 1)

n3

.

Combining the above three displays with (5.4.21) and the trivial estimate ‖ν1−ν̃1‖BL ≤

2, we have

‖p̄k(· | x)− q(· | x)‖BL ≤ 3ε+ n−1 (2n1 + 4 (`(β) + `(β + 1)))

≤ 3ε+ εβ.

where the last inequality follows on observing that n1 ≤ %β−1, n ≥ n2 ≥ αβ and using

(5.4.15). Since x ∈ K and ε > 0 are arbitrary and β → ∞ as k → ∞, the result

follows.

5.4.2 ATS policies for simultaneous estimation and optimiza-

tion

Consider a setting where one has a (near) optimal q ∈ ΠSMC for pathwise cost per

unit time associated with some one stage cost function c ∈ Cb(X × A). However, in

addition to cost optimization one has a secondary objective of estimating some un-

known parameter in the model. Consistent estimation may require using actions that
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are not optimal. For example, analogous to the example discussed in the introduc-

tion, it could be that under the policy q, estimation is impossible because transitions

do not depend at all on the parameter that need to be estimated and thus one needs

to deviate from the optimal q in order to gain information on the parameter. ATS

policies provide a framework that allows one to introduce such deviations without

“paying a price” in terms of the optimization problem. In this section we describe

the construction of ATS policies for one such estimation problem.

Let q ∈ ΠSMC be as in Section 5.4.1 and c ∈ Cb(X × A). Suppose we are given

another q0 ∈ ΠSMC and one would like to obtain consistent estimators for

Jf =

∫
X×A

f(x, a)θq0(dxda), f ∈ Cb(X× A),

while achieving the pathwise cost per unit time
∫
X×A c(x, a)θq(dxda). We will show

below that by an appropriate modification of the ATS policy constructed in Sec-

tion 5.4.1 one can achieve both goals. We begin by introducing a strengthening of

Assumption 5.2.1.

Let {k}k∈IN be a sequence of {Ht}t∈IN0- stopping times given on (Ω,F) such that

k < k +mk ≤ k+1, for all ω ∈ Ω

for some mk ∈ IN , k ≥ 1. Write $ = (k,mk)k∈IN and let T be the family of all such

sequences. For $ = (k,mk)k∈IN ∈ T, and N ≥ 1, let ΦN [$] be a measurable map

from Ω→ P(X× A) defined as

Φω
N [$](F ) =

1

N

N∑
k=1

1

mk

k+mk−1∑
j=k

1F (Xj, Aj), F ∈ B(X× A), ω ∈ Ω.

We will make the following assumption.
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Assumption 5.4.2. For all $ ∈ T, µ ∈ P(X) and π ∈ Π, {Φω
N [$] : N ∈ IN} is tight

for Pπµ a.e. ω.

We note that the assumption is trivially satisfied if X and A are compact spaces.

More generally, blanket stability conditions in terms of a suitable Lyapunov function

can be formulated under which Assumption 5.4.2 holds.

An immediate consequence of the above assumption and other assumptions from

Section 5.2 is the following.

Lemma 5.4.2. Let $ = (k,mk)k∈IN ∈ T be such that mk → ∞ as k → ∞. Let

µ ∈ P(X), π ∈ Π and q0 ∈ ΠSMC be such that for all k ≥ 1 and j ∈ {0, 1, · · ·mk − 1}

Pπµ ((Ak+j, Xk+j+1) ∈ D × C | Hk+j) =

∫
D

Q ((Xk+j, a), C) q0(Xk+j, da),

for all D × C ∈ B(A× X), a.e. Pπµ. Then, as N →∞,

‖Φω
N [$]− θq0‖BL → 0, a.e. ω [Pπµ].

Proof. For f ∈ S(X), let ψf (x)
.
=
∫
X f(y)%q0(x, dy), x ∈ X. Then, suppressing ω

in notation, we have

ΨN
f
.
=

∣∣∣∣∫
X×A

f(x)ΦN [$](dxda)−
∫
X×A

ψf (x)ΦN [$](dxda)

∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
k=1

1

mk

k+mk−1∑
j=k

(f(Xj)− ψf (Xj))

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
k=1

1

mk

k+mk−1∑
j=k+1

(f(Xj)− ψf (Xj−1)) +
1

N

N∑
k=1

f(Xk)

mk

− 1

N

N∑
k=1

ψf (Xk+mk−1)

mk

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
k=1

1

mk

mk−2∑
j=0

(f(Xk+j+1)− ψf (Xk+j))

∣∣∣∣∣+
1

N

N∑
k=1

2|f |∞
mk

.

(5.4.24)
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Note that for all k ≥ 1 and j ∈ {0, 1, . . . ,mk − 2},

ψf (Xk+j) =

∫
X
f(y)%q0(Xk+j, dy)

=

∫
X×A

f(y)Q((Xk+j, a), dy)q0(Xk+j, da)

= Eπµ[f(Xk+j+1)|Hk+j] a.e. Pπµ.

By the strong law of large numbers for martingales (cf. [44, Theorem VII.5.4]) and

the assumption that mk →∞ as k →∞, ΨN
f → 0 as N →∞ a.e. Pπµ.

Next, for g ∈ S(X) and h ∈ S(A), let φ(g,h)(x)
.
= g(x)

∫
A h(a)q0(x, da). Then

ΦN
(g,h)

.
=

∣∣∣∣∫
X×A

g(x)h(a)ΦN [$](dxda)−
∫
X×A

φ(g,h)(x)ΦN [$](dxda)

∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
k=1

1

mk

mk−1∑
j=0

(
g(Xk+j)h(Ak+j)− φ(g,h)(Xk+j)

)∣∣∣∣∣
(5.4.25)

For all k ≥ 1 and j ∈ {0, 1, . . . ,mk − 1},

φ(g,h)(Xk+j) = g(Xk+j)

∫
A
h(a)q0(Xk+j, da)

= Eπµ[g(Xk+j)h(Ak+j)|Hk+j] a.e. Pπµ.

Again from the strong law of large numbers for martingales and the fact that mk →∞

as k →∞, we have ΦN
(g,h) → 0 as N →∞ a.e. Pπµ.

From Assumption 4.2, and the above two conclusions, we can find Ω0 ∈ F with

Pπµ(Ω0) = 1 such that for any ω ∈ Ω0, {Φω
N [$] : N ∈ N} is tight and ΨN

f (ω) →

0,ΦN
(g,h)(ω)→ 0 as N →∞, for all f ∈ S(X) and all (g, h) ∈ S(X)× S(A). Fix such

ω ∈ Ω0 and let {Nk : k ∈ N} be some subsequence along which Φω
Nk

[$] converges

weakly to some Φ ∈ P(X × A). We now show that Φ = θq0 . The continuity of q0
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implies that ψf ∈ Cb(X) for f ∈ Cb(X), and so

∫
X×A

f(x)Φω
Nk

[$](dxda)−
∫
X×A

ψf (x)Φω
Nk

[$](dxda)→
∫
X
f(x)Φ(1)(dx)−

∫
X
ψf (x)Φ(1)(dx)

where Φ(1) is, as before, the first marginal of Φ. Therefore, for any f ∈ S(X),

∫
X
f(x)Φ(1)(dx) =

∫
X
ψf (x)Φ(1)(dx) =

∫
X

∫
X
f(y)%q0(x, dy)Φ(1)(dx).

By Assumption 5.2.2, Φ(1) = λq0 . Similarly, for g ∈ S(X) and h ∈ S(A),

∫
X×A

g(x)h(a)Φω
N [$](dxda)−

∫
X×A

φ(g,h)(x)Φω
N [$](dxda)

→
∫
X×A

g(x)h(a)Φ(dxda)−
∫
X
φ(g,h)(x)Φ(1)(dx).

Hence ∫
X×A

g(x)h(a)Φ(dxda) =

∫
X
φ(g,h)(x)Φ(1)(dx) =

∫
X
φ(g,h)(x)λq0(dx)

=

∫
X×A

g(x)h(a)θq0(dxda).

Recalling that {g ⊗ h : g ∈ S(X), h ∈ S(A)} is separating in (X × A,B(X) ⊗ B(A)),

we have Φ = θq0 . Consequently, Φω
N [$] converges weakly to θq0 as N → ∞ a.e.

ω [Pπµ].

Similar to Section 5.4.1, we will now construct a sequence of X×A valued random

variables Z ≡ (X̄t, Āt)t∈N0 on a suitable probability space (Ω̄, F̄ , P̄) such that: (i)

X̄0 has probability law µ, (ii) the probability law of Z corresponds to a controlled

system associated with a policy π ∈ ΠATS(q, µ), and (iii) consistent estimation of Jf

can be achieved using the sequence Z. The sequence will be obtained by piecing

together suitable sequences (ξrk, ζ
r
k ; k, r ∈ IN0), (ξ̄rk, ζ̄

r
k ; k, r ∈ IN0) of X × A valued

random variables. To construct these sequences we proceed recursively in r. Let
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mr = − log(εr) for r ∈ IN , where {εr}r∈IN is as in Section 5.4.1, and set m0 = 0.

Case r = 1: Define {ξrk, srk, ζrk , (ir[m, k])m=1,···j(r)}, αr, σr, %r for r = 1 and k ∈ N0

exactly as in Section 5.4.1. For k = 0, 1, · · ·mr, define X×A valued random variables,

(ξ̄rk, ζ̄
r
k) recursively in k, by setting (ξ̄r0, ζ̄

r
0) = (ξr%r , ζ

r
%r) and through the following two

equations

P̄
(
ξ̄rk ∈ C | Ĝrk−1

)
= Q

(
(ξ̄rk−1, ζ̄

r
k−1), C

)
, (5.4.26)

P̄
(
ζ̄rk ∈ D | Ĝrk−1, ξ̄

r
k

)
= q0(ξ̄rk, D), (5.4.27)

where for k = 0, 1, · · ·mr − 1, Ĝrk = Gr%r ∨ σ{(ξ̄
r
j , ζ̄

r
j ), j = 0, 1, · · · k} and Grk is as in

Section 5.4.1.

Case r > 1: Definition of {ξrk, ζrk , srk, (ir[m, k])m=1,···j(r)}k≥0 and σr, αr for r > 1, is

given exactly as in Section 5.4.1 through (5.4.11) – (5.4.16), in a recursive fashion,

but with %r defined as

%r = σr + %r−1 +mr−1 (5.4.28)

and by setting

(ξr0, ζ
r
0) = (ξ̄r−1

mr−1
, ζ̄r−1
mr−1

), ir[m, 0] = 0.

The sequence (ξ̄rk, ζ̄
r
k), for k = 0, 1, · · ·mr, is defined exactly as for the case r = 1

through equations (5.4.26)-(5.4.27) (and by setting (ξ̄r0, ζ̄
r
0) = (ξr%r , ζ

r
%r)).

Finally, the sequence (X̄k, Āk) is now constructed as follows. Recall that %0 = 0.

(X̄k, Āk) =


(ξ̄rk−%r , ζ̄

r
k−%r), whenever %r ≤ k < %r +mr, r ∈ N.

(ξr+1
k−%r−mr , ζ

r+1
k−%r−mr), whenever %r +mr ≤ k < %r+1, r ∈ N0.

(5.4.29)

The above sequence yields a π ∈ Π and Pπµ ∈ P(Ω) as before. Consistent estimators

for Jf , f ∈ Cb(X× A) can now be obtained as follows. Define on (Ω̄, F̄), a sequence
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of P(X× A) valued random variables, Φ̃N , N ∈ IN , as follows.

Φ̃ω
N(F ) =

1

N

N∑
k=1

1

mk

%k+mk−1∑
j=%k

1F (X̄j, Āj), F ∈ B(X× A), ω ∈ Ω̄.

The following is the main result of this section. The second part of the theorem says

that for every f ∈ Cb(X×A),
∫
X×A f(x, a)Φ̃N(dxda) is an (a.e.) consistent estimator

for Jf . The proof is very similar to that of Theorem 5.4.1 and so only a sketch will

be provided.

Theorem 5.4.2. The policy constructed above is in ΠATS(q, µ). Furthermore, as

N →∞

‖Φ̃ω
N − θq0‖BL → 0, a.e. P̄.

Proof. As in Theorem 5.4.1, we define Ω̄0, p̄ωk (D|x), Λk, nti(m1,m2), and µti(m1,m2).

To show π ∈ ΠATS(q, µ), it suffices to show that for all ω ∈ Ω̄0 and compact K ⊂ X,

(5.4.18) holds. Fix such a ω and K. As in Theorem 5.4.1, we can find r0 ∈ IN , such

that (5.4.19) and (5.4.20) hold for all r ≥ r0 and K ⊂ Kr. Fix β0 ≥ r0 + 1 and let

β ∈ N, β ≥ β0 such that %β < k ≤ %β+1. Also fix x ∈ K and let i ∈ {1, . . . , j(β)} be

such that x ∈ B̃βi. Similar to (5.4.21), we can write

p̄k(·|x) =


l−1(l1τ1 + l2τ2 + l3τ3 + l4τ4), whenever %β ≤ k < %β +mβ.

ľ−1(l1τ1 + l2τ2 + l3τ3 + l5τ5 + l6τ6), whenever %β +mβ ≤ k < %β+1.

(5.4.30)

Here

τ1 = µβ,i[0, %β−1], τ2 = µβ,i[%β−1, %β−1 +mβ−1], τ3 = µβ,i[%β−1 +mβ−1, %β],

τ4 = µβ,i[%β, k], τ5 = µβ,i[%β, %β +mβ], τ6 = µβ,i[%β +mβ, k]
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and

l1 = nβi(0, %β−1), l2 = nβi(%β−1, %β−1 +mβ−1), l3 = nβi(%β−1 +mβ−1, %β),

l4 = nβi(%β, k), l5 = nβi(%β, %β +mβ), l6 = nβi(%β +mβ, k),

l = l1 + l2 + l3 + l4, ľ = l1 + l2 + l3 + l5 + l6.

Analogous to ν̃3 in Theorem 5.4.1, we can define a τ̃6 ∈ P(A) such that, if n6 > 0,

‖τ̃6 − q(·|x)‖BL ≤ 3ε, ‖τ6 − τ̃6‖BL ≤
4`(β + 1)

l6
.

Now let τ̃1 = τ̃2 = τ̃3 = τ̃4 = τ̃5 = ηβ(q(·|b̃β(x))). Then, by our choice of r0,

‖q(·|x)− l−1(l1τ̃1 + l2τ̃2 + l3τ̃3 + l4τ̃4)‖BL ≤ 2ε when %β ≤ k < %β +mβ.

‖q(·|x)− ľ−1(l1τ̃1 + l2τ̃2 + l3τ̃3 + l5τ̃5 + l6τ̃6)‖BL ≤ 3ε when %β +mβ ≤ k < %β+1.

(5.4.31)

Also note that

‖τ3 − τ̃3‖BL ≤
4`(β)

l3
.

When %β ≤ k < %β +mβ, we have

‖p̄k(·|x)− q(·|x)‖BL ≤ 2ε+ l−1(2l1 + 2l2 + 4`(β) + 2l4)

≤ 2ε+ α−1
β (2%β−1 + 2mβ−1 + 4`(β) + 2mβ)

≤ 2ε+ εβ +
4mβ

αβ
.

(5.4.32)

When %β +mβ ≤ k < %β+1,

‖p̄k(·|x)− q(·|x)‖BL ≤ 3ε+ ľ−1(2l1 + 2l2 + 4`(β) + 2l5 + 4`(β + 1))

≤ 3ε+ α−1
β (2%β−1 + 2mβ−1 + 4`(β) + 2mβ + 4`(β + 1))

≤ 3ε+ εβ +
4mβ

αβ
.
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Recalling that mβ = − log(εβ) and that αβ ≥ ε−1
β ,

4mβ
αβ
→ 0 as β → ∞. Since

β → ∞ as k → ∞, we have that ‖p̄k(·|x) − q(·|x)‖BL → 0 as k → ∞ and therefore

π ∈ ΠATS(q, µ). Finally, the second part of the theorem is an immediate consequence

of Lemma 5.4.2.

5.4.3 Adaptive control

In this section we consider a setting where the (near) optimal q ∈ ΠSMC is not

known but there are available sampling schemes that allow for consistent estimation of

q. The goal is then to estimate q dynamically and use the estimators of q to construct

a control policy for which the associated pathwise cost per unit time coincides with

that for q.

In order to give a precise formulation, suppose that q ∈ ΠSMC is given as

q(· | x) = q(· | κ0, x), (5.4.33)

where κ0 is an unknown parameter taking values in some compact metric space Γ. We

assume that the map (κ, x) 7→ q(· | κ, x), from Γ×X→ P(A), is a continuous function.

Also suppose that there is a q0 ∈ ΠSMC and a continuous function G : P(X×A)→ Γ

such that

G(θq0) = κ0.

This relationship, in view of Lemma 5.3.1, says that as N → ∞, G(ΦN) is an (a.e.)

consistent estimator for κ0, under Pq0µ for all µ ∈ P(X). However the corresponding

pathwise cost is
∫
X×A c(x, a)θq0(dxda) ( Pq0µ a.e.) and thus although the policy q0

achieves the goal of parameter estimation, it does not meet the criterion of cost

(near) optimization. In order to meet both objectives we will now construct a policy

π which uses dynamic estimators for κ0 (and consequently for q) for control decisions
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and is such that it is an ATS policy for q corresponding to the initial condition µ.

Let {Λ̃k, X̃k, b̃k,Λ
′
k,Ak, b

′
k, Λ̃

0
k, ηk}k∈IN be as in Section 5.4.1. Let mr be as in Sec-

tion 5.4.2. As in Section 5.4.2 we begin by introducing sequences (ξrk, ζ
r
k ; k, r ∈ IN0),

(ξ̄rk, ζ̄
r
k ; r ∈ IN0, k = 1, · · ·mr) of X×A valued random variables, recursively in r. We

will use notation and constructions from Sections 5.4.1 and 5.4.2.

Case r = 1: Set q̂r = q0. For m = 1, · · · j(r), define

q̂r,mr (·) = q̂r(· | xrm), q̃r,mr = ηr(q̂
r,m
r ), m = 1, · · · j(r). (5.4.34)

Abusing notation from Section 5.4.1, denote

Ψ(q̃r,mr ) = (er[m, 1], er[m, 2], · · · ). (5.4.35)

With this new definition of er[m, i], the definition of {ξrk, srk, ζrk , (ir[m, k])m=1,···j(r)},

for r = 1 and k ∈ IN0 is given exactly as in Section 5.4.1, through equations (5.4.11)

– (5.4.14). Also define αr, σr, %r through equations (5.4.15) – (5.4.17) (with %0 =

0). Next, for t = 0, 1, · · · ,mr, define X × A valued random variables (ξ̄rt , ζ̄
r
t ), t =

0, 1, · · ·mr, recursively in t, by (5.4.26) – (5.4.27) (and by setting (ξ̄r0, ζ̄
r
0) = (ξr%r , ζ

r
%r)).

Define a P(X× A) valued random variable Φ̃r by the relation

Φ̃r(F ) =
1

mr

mr∑
t=1

1F (ξ̄rt , ζ̄
r
t ), F ∈ B(X× A).

and let κr = G(Φ̃r).

Case r > 1: Set q̂r(· | x) = q(· | κr−1, x), x ∈ X. Define for m = 1, · · · j(r),

q̂r,mr and q̃r,mr , , through (5.4.34); and er[m, i], i ∈ IN , through (5.4.35). With this

definition of er[m, i], the definition of {ξrk, srk, ζrk , (ir[m, k])m=1,···j(r)}, for k ∈ IN0 and

αr, σr, %r is given as in Sections 5.4.1 and 5.4.2, through equations (5.4.11) – (5.4.16)
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and (5.4.28). The sequence (ξ̄rk, ζ̄
r
k), for k = 0, 1, · · ·mr, is defined exactly as for the

case r = 1 through equations (5.4.26)-(5.4.27) (and by setting (ξ̄r0, ζ̄
r
0) = (ξr%r , ζ

r
%r)).

To complete the recursion we define

Φ̃r(F ) =
1

Mr−1 +mr

(
Mr−1Φ̃r−1(F ) +

mr∑
t=1

1F (ξ̄rt , ζ̄
r
t )

)
, F ∈ B(X× A),

where Mr−1 =
∑r−1

t=1 mt, and let κr = G(Φ̃r).

The definition of the sequence (X̄k, Āk) is now given through (5.4.30). This se-

quence yields a π ∈ Π and Pπµ ∈ P(Ω) as before.

The following is the main result of the section. Assumption 5.4.2 will be taken to

hold. The proof is similar to that of Theorems 5.4.1 and 5.4.2 and so only a sketch

will be provided.

Theorem 5.4.3. The policy constructed above is in ΠATS(q, µ). Furthermore, for

every compact K in X, as r →∞

sup
x∈K
‖q̂r(· | x)− q(· | x)‖BL → 0,

a.e. P̄.

Proof. We use the same notation and definitions as in the proof of Theorem

5.4.2. First, we show that, for every compact set K ⊂ X,

sup
x∈K
‖q̂r(· | x)− q(· | x)‖BL → 0 a.e. P̄. (5.4.36)

By Theorem 5.3.1, Φ̃r converges weakly to θq0 a.e. P̄. Since G is continuous, κr =

G(Φ̃r)→ G(θq0) = κ0 as r →∞, a.e. P̄. Note that

‖q̂r(· | x)− q(· | x)‖BL = ‖q(· | κr, x)− q(· | κ, b̃r(x))‖BL.
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Equation (5.4.36) is now an immediate consequence of the continuity of the map

(κ, x) 7→ q(· | κ, x).

For ε > 0, choose r0 such that all r > r0, K ⊂ Kr, (5.4.20) holds,

sup
(x,κ)∈K×Γ

‖q(· | κ, x)− q(· | κ, b̃r(x))‖BL ≤ ε, (5.4.37)

and

sup
x∈K
‖q̂r(· | x)− q(· | x)‖BL ≤ ε. (5.4.38)

Fix β0 > r0 + 1 and let β ∈ IN , β ≥ β0 be such that %β < k ≤ %β+1.

Let l, ľ, li, τi, i = 1, 2, . . . , 6, and p̄k(·|x) be the same as in the proof of Theorem

5.4.2. In particular, we have that (5.4.30) holds. Let τ̃1 = τ̃2 = τ̃3 = τ̃4 = τ̃5 =

ηβ(q̂β(·|b̃β(x))). Construct τ̃6 in the same way as in Theorem 5.4.2 with q(·|x̃) replaced

by q̂β+1(·|x̃) for x̃ ∈ X. Using (5.4.37) and (5.4.38) it is now easily checked that

(5.4.31) holds with 2ε and 3ε, replaced by 3ε and 4ε respectively. Also note that, if

l6 > 0,

‖τ3 − τ̃3‖ ≤
4`(β)

l3
, ‖τ6 − τ̃6‖ ≤

4`(β + 1)

l6
.

Rest of the proof now follows as for Theorem 5.4.2.
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