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ABSTRACT 

Desinia B. Miller: Ozone Induces Systemic Metabolic Derangement Through Neuronal 

Stress Mechanisms 

(Under the direction of Urmila Kodavanti) 

 

 Diabetes is reported to be the seventh leading cause of death in the United States with 

90% of the cases characterized as type II diabetes. The conventional risk factors associated 

with diabetes are genetics, sedentary lifestyle, and high fat/high caloric diet. However, 

recently air pollution, such as ground level ozone, has also been postulated to contribute to 

diabetes, but there is limited scientific evidence. Ground level ozone is produced through the 

interaction of volatile organic compounds, nitric oxides and ultraviolet radiation. Ozone is 

known to cause pulmonary injury/inflammation but its link to peripheral metabolic effects 

have not been characterized. Through inhalation studies involving humans and rodent 

models, we examined if and how ozone exposure may change metabolism and contribute to 

insulin resistance, which can lead to type II diabetes. In our rodent studies, we observed that 

ozone exposure increases blood glucose, inhibits insulin secretion and widely affects glucose, 

protein and lipid metabolism. Our clinical ozone exposure study shows that humans present 

similar effects to rodents, especially in lipid metabolism. These types of changes over time 

have been linked to insulin resistance. Through surgical intervention, we also demonstrate 

that adrenal-derived stress hormones are essential for these ozone-induced metabolic and 

pulmonary effects. Further, our data indicates that these acute ozone-induced pulmonary, 

stress and metabolic effects persist during weekly episodic exposure subchronic exposure, 

but is reversible if the exposure discontinues for one week.
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No insulin resistance is observed in liver or muscle after subchronic ozone exposure while a 

decrease in β-cell insulin secretion. Overall, these data provide insight into the mechanism of 

how ozone may impair systemic metabolic homeostasis through a hormonal stress response 

without producing peripheral insulin resistance after subchronic exposure. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Air pollution health effects: historical perspective 

 For over a century, atmospheric pollution has been recognized to impact human 

health. In 1930, a dense fog, composed of various concentrated air pollutants, filled the 

Meuse Valley in Belgium, which resulted in 60 deaths and severely impaired the population 

with adverse respiratory effects over three days (Nemery et al., 2001). The respiratory signs 

and symptoms—dyspnea, pulmonary edema, laryngeal irritation—were diminished once the 

fog dissipated. Another key air pollution event occurred in a small industrial town, Donora, 

Pennsylvania, where over 50% of the population of 14,000 displayed respiratory function 

decrements as a result of thermal inversion that confined incomplete industrial combustion 

products near the ground (American Thorarcic Society, 1996). Similarly, the Great Smog of 

London occurred in 1952 where anticyclone wind conditions accumulated particulate and 

sulfur pollutants, from coal burning and vehicular emissions, into a fog that killed 4,000 

people over three days (American Thoracic Society, 1996). The death toll of this severe air 

pollution episode rose to over 12,000 in subsequent weeks. These three tragic events—Meuse 

Valley, Belgium, Donora, Pennsylvania, and London, England—brought awareness of the 

potential burden of high levels of air pollution, incited epidemiological studies on adverse 

health effects, and prompted new emission regulations.  
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1.2 Air pollution regulation and human health  

  The World Health Organization (WHO) reported in 2012 that there were 7 million 

premature deaths worldwide associated with air pollution (World Health Organization, 

2012). Increases in air pollution have been linked to adverse health effects as evidenced by 

increases in hospitalization, morbidity, and mortality for respiratory and cardiovascular 

diseases in humans (Schwela, 2000).  In 1970, the United States Environmental Protection 

Agency (US EPA) mandated the Clean Air Act (CAA) to reduce air pollution emissions by 

implementing air standards and developing mitigation strategies and practices (EPA, 2010). 

Based on scientifically-determined guidelines, the US EPA established the National Ambient 

Air Quality Standards (NAAQS)  to protect the  health of the general and most susceptible 

populations from six criteria air pollutants: carbon monoxide, sulfur dioxide, nitrogen oxides, 

lead, particulate matter (PM)  and ozone (EPA, 2011). Of the six common pollutants, 

ambient PM and ozone are the most ubiquitous and have been linked to majority of health 

outcomes. 

1.3 PM pollution:  

 The primary respirable ambient PM are derived from natural and man-made sources: 

anthropogenic activities, incomplete combustion of fuels, vehicular emissions, unpaved 

roads, biomass burning, wild fires, volcanic eruptions, etc (Poschl, 2005).  Ambient PM are 

composed of a complex mixture of solid particles, which can vary broadly in shape, size and 

chemical composition based on emission sources, geographical location, and meteorological 

conditions (i.e. season and weather).  Respirable PM are classified based on their 

aerodynamic diameters: coarse particles (PM10: 2.5 m--10 m), fine particles (PM2.5: 2.5 

m-0.1m), and ultrafine particles (UFP: <0.1m). The US EPA currently designated 
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NAAQS for PM2.5 and PM10 are 35 g/m3 and 150 g/m3, respectively, averaged over a 24 

hour period (EPA, 2012).  Common constituents of PM include inorganic and organic 

substances: sulfate, nitrate, ammonium, black and elemental carbon, sea salt, mineral dust, 

pollen, and plant components (Poschl, 2005). Gaseous pollutants are in dynamic interaction 

with PM surface chemicals and often form secondary particles in the atmosphere through 

condensation and nucleation (Poschl, 2005). Ambient particles can also undergo 

photochemical aging or transformation in the atmosphere by coagulation (the combination of 

more than two particles) (Poschl, 2005).  This process in the air can increase gaseous 

pollutants, such as ozone.  

1.4 Ozone   

 Ozone is a triatomic oxygen molecule and is a strong oxidizing agent. Stratospheric 

ozone, located in the upper atmosphere, protects the earth from harmful sun rays, while 

tropospheric ozone, the closest atmospheric layer to the earth’s surface, can have harmful 

effects on living organisms, including plants and animals, due to its high oxidative potential. 

Ground level ozone is formed through a secondary photochemical reaction of ultraviolent 

radiation with ambient nitrogen oxides (NO) and volatile organic compounds (VOC). These 

precursor chemicals can be produced by naturally occurring processes, agricultural activities, 

anthropogenic fuel combustion, and vehicular and industrial emissions (Ciencewicki et al., 

2008).  Due to the need of ultraviolent radiation, ozone concentrations can fluctuate during 

various seasons and throughout the day.  Levels are generally high during daylight hours and 

in the summer with warmer temperatures. The current US EPA NAAQS for ozone is set at 

0.070 parts per million (ppm) averaged over an eight hour period but is currently under 

review for revision of current standards (EPA, 2012). 
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1.5 Air Pollution and respiratory effects  

  The respiratory system is the primary and initial contact to inhaled pollutants, and as 

a result, bears many of the toxic effects caused by air pollutants. Over the years, numerous 

epidemiological studies have shown a positive association between air pollution exposure 

and increased hospitalizations, morbidity, and mortality related to respiratory conditions in 

humans (Schwartz, 1996;  Verhoeff et al., 1996;  Vigotti et al., 1996;  Burnett et al., 1997;  

Laumbach and Kipen, 2012). PM and ozone have also been observed to exacerbate 

respiratory abnormalities in people with pre-existing conditions such as asthma, pneumonia, 

and chronic obstructive pulmonary disease (Trasande and Thurston, 2005;  Kim et al., 2013a;  

Kim et al., 2013b).  Controlled acute human exposures and animal studies, especially with 

ozone and PM, have demonstrated decrements of lung function, airway hyperresponsiveness, 

lung injury, and inflammation (Schwela, 2000;  Triantaphyllopoulos et al., 2011;  Laumbach 

and Kipen, 2012).   

 Due to the high oxidation potential of particulate and gaseous pollutants, oxidative 

stress is considered the primary driver of pollutant-induced pulmonary injury and 

inflammation. Inhalation studies have demonstrated that gaseous and particulate pollutants 

can increase reactive oxygen species (ROS) in the lung that can: (1) alter DNA, protein and 

lipids, (2) stimulate endogenous production of ROS, and (3) induce inflammatory pathways 

(Ciencewicki, et al., 2008) (Figure 1.1). It is hypothesized that when antioxidant protective 

mechanisms are overwhelmed, injury to pulmonary cells, including epithelial, endothelial 

and immune cells ensues following pollutant exposure. Additionally, the epithelial lining 

fluid (ELF), which serves as a protective barrier at the air-liquid interphase, can also undergo 

chemical modifications and injure respiratory cells. Air pollution-associated transition metals 
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present on the surface of inhaled particles can participate in generation of free radicals 

though their interaction with macromolecules in the ELF and cellular components, leading to 

increased oxidative stress and initiating inflammation (Rahman, 2007). 

  Lipid peroxidation is considered the primary consequence of pollutant-induced 

damage, especially following ozone exposure.  In humans and rodents, ozone has been 

shown to increase the reactive lipid byproduct 4-hydroxy-2-nonenal (Hamilton et al., 1996;  

Kirichenko et al., 1996) in the lung, likely involving lipid-rich airway lining fluid and 

epithelial cells, which has been implicated in airway injury, inflammation and remodeling 

(Keller et al., 1997; Suc et al., 1998;  Tsukagoshi et al., 2002) ). Ozone has also been shown 

to modify protein structure and stability through its interaction with terminal amino side 

chains and formation of protein cross-links and cleavage, which can result in perturbation of 

protein structures (Ciencewicki, et al., 2008). Thus, ozone and PM exposures have been 

implicated in protein, lipid and DNA damage (Prahalad et al., 2001;  Cheng et al., 2003).  

 Upon encounter of oxidatively-modified lung lining components or other particulate 

pollutants, activated macrophages and lung epithelial cells can express proinflammatory 

cytokines, which are involved in the recruitment of immune cells — neutrophils, eosinophils, 

macrophages — at the site of injury in the lung (Ciencewicki, et al., 2008). Air pollutants, 

including ozone, are thought to activate alveolar macrophages by directly interacting with 

cells or through secondary reactive intermediates. The inflammatory mechanisms involve 

activation of Toll-like receptors (TLR) and nucleotide-binding oligomerization domain 

(NOD)-like receptors (NLR) on monocytes (Becker et al., 2002;  Bauer et al., 2012). TLR 

and NLR receptors are a subset of pattern recognition proteins that are essential for the 

activation of defense mechanisms against foreign materials and the activation of the innate 
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immune response (Bauer, et al., 2012). Activation of TLR and NLR pathways are known to 

trigger the activation of c-Jun-NH2-terminal kinase (JNK) and degradation of IKK-β 

allowing translocation of nuclear factors such as the nuclear factor kappa-light-chain-

enhancer of activated  cells (NFB ) that leads to the upregulation of many pro-

inflammatory genes and cytokines (tumor necrosis factor tumor necrosis factor(TNF)-α, 

Interleukin (IL)-1β, IL-6,  resistin, and more) (Huang et al., 2009). These pro-inflammatory 

mediators can activate other local macrophages and secrete chemokines that initiate the 

recruitment of additional monocytes and neutrophils to the site, leading to an innate immune 

response. Persistence of exposure could lead to chronic inflammatory conditions that are 

implicated in many pulmonary diseases. Although local oxidative stress leading to 

inflammation is noted as the main contributor to pollutant-induced pulmonary effects, 

relatively less is known about potential endogenous contributors (hormones, metabolites) in 

pollutant-mediated respiratory effects.  

The pulmonary airways are densely innervated with sensory afferent vagus fibers that 

carry signals through nodose and jugular ganglion, which send second-order neurons to the 

other areas of the brain through the brainstem.  This provides a communication route 

between the bronchopulmonary system and the central nervous system. The neuronal 

circuitry regulates respiratory function and its synchronization/coordination with the 

cardiovascular system. There are three types of sensory neurons: C-fibers, neurons with 

rapidly adapting stretch receptors (RAR), and neurons with slowly adapting stretch receptors 

(SAR) (Carr and Undem, 2003).  RAR and SAR fibres are classified as bronchopulmonary 

mechanosensory receptors, while chemo- and thermo-sensory C-fibers densely innervate 

upper and deep lung airways (Carr and Undem, 2003). These fibers extend to the brain stem 
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and the nucleus of solitarius tract (NTS) of the central nervous system (CNS), and stimulate 

vagal-mediated pulmonary refluxes and cardiopulmonary tone that control breathing and 

cardiac rhythms. Dysfunction of these neurons has been linked to lung function decrements 

including excessive coughing, bronchospasm, mucus secretion, and altered airway muscle 

tone (Lee and Pisarri, 2001;  Canning, 2010). A number of neuroactive substances are also 

released at the nerve terminals in the lung and in the brain, such as substance P and 

neurokines, which can act in an autocrine or paracrine manner to produce local or distant 

effects in the brain. Transient receptor ankyrin (TRPA1) and transient receptor vanilloid 

(TRPV1), located in the vicinity of each other on C-fibers, detect noxious stimuli such as 

chemical, pH changes, osmolarity changes and heat.  It is hypothesized that components of 

pollutants, including ozone, may interact with these receptors on pulmonary C-fibers to 

stimulate the central nervous system (CNS) and mediate lung refluxes; however, the specific 

mechanisms are not clearly understood (Taylor-Clark and Undem, 2010). Ozone has also 

been shown to stimulate RARs but is considered to be an indirect effector (Taylor-Clark and 

Undem, 2010). Thus, it is likely that pollutants may utilize C-fibers to alter pulmonary and 

cardiac function as well as to induce other neuronal pathways, but the mechanisms remain 

unclear.  

1.6 Air pollution and cardiovascular effects  

 Prior to the 1990s, air pollution studies primarily focused on the respiratory system. 

High level occupational exposures such as asbestos, agricultural dusts, metal fumes, and 

silica were shown to cause pulmonary diseases such as asbestosis, metal fume fever, silicosis, 

and pneumoconiosis. It was not until the late 20th century when ambient levels of pollution 

were linked to adverse cardiovascular health effects. The cardiovascular system and the lung 
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are hemodynamically and neurohumorally-linked, and therefore, any effect on one is likely to 

impact the other organ. For example, changes in heart rate and heart rate variability (HRV) 

have been implicated in altered alveolar-arterial oxygen transfer (Sin et al., 2010). Ozone 

exposure was demonstrated to increase heart rate and blood pressure along with inefficient 

pulmonary-gas exchange in healthy human subjects (Gong et al., 1998). Many 

epidemiological, clinical and experimental studies have emerged which show that PM and 

ozone can induce alterations in HRV, conductance abnormalities, vasoconstriction, 

endothelial dysfunction and thrombosis (Delfino et al., 2008;  Pope, 2009;  Brook et al., 

2010b;  Farraj et al., 2011), which are implicated in the rise of cardiac-related hospital 

admissions due to hypertension, myocardial infarctions, arrhythmias, congestive heart failure 

and vascular diseases such as atherosclerosis (Poloniecki et al., 1997;  Pope et al., 2004;  

Pope et al., 2009).  

1.7 Cardiac effects 

 A number of cardiac effects have been linked to air pollution exposure in 

epidemiological and clinical studies including changes in HRV, hypertension, arrhythmia, 

myocardial infarction and ischemia.  HRV is a clinical measure of variation in time interval 

between heartbeats and signifies changes in the autonomic nervous system (deBoer et al., 

1987;  Kaushal and Taylor, 2002). Changes in HRV are indicative of perturbed 

depolarization and repolarization synchrony of the myocardium, involving autonomic 

dysregulation. A reduction in HRV suggest a poor prognosis for future adverse cardiac 

events, such as impairment in cardiac conductance, myocardial infarctions and sudden death 

(Bigger et al., 1992;  Dekker et al., 2000).  Exposure to PM has been linked to reduction in 

HRV in several studies (Chan et al., 2004;  Liao et al., 2004;  Chow et al., 2006;  Lipsett et 
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al., 2006;  Adar et al., 2007).  However, other studies shown increases in HRV(Salvi et al., 

1999;  Ruckerl et al., 2007;  Devlin et al., 2012).   

Air pollutants have been postulated to increase ventricular arrhythmias and atrial 

fibrillation (Brook et al., 2010a).  Specifically, a case-crossover study that followed 203 

subjects given implantable cardioverter defibrillators over an average of 3.1 years reported 

that ozone and PM concentrations were associated with 798 ventricular arrhythmias in 84 of 

the subjects (Rich et al., 2005). Another study demonstrated that increases in ozone 

concentrations were associated with increased risk for supraventricular arrhythmias in the 

elderly (Sarnat et al., 2006). Rodent studies generally done at high concentration of ultrafine 

carbon black  or ozone  have demonstrated decreases in heart rate (Watkinson et al., 2003;  

Ghelfi et al., 2008), while other studies, conducted at relatively lower concentrations of PM, 

have shown increases in heart rate following exposure (Upadhyay et al., 2008). Farraj et al. 

(2012) demonstrated that high levels of ozone caused alterations in repolarization, 

atrioventricular conduction block, atrial premature beats, supraventricular beats, and second 

degrees morbitz type I atrioventricular block in hypertensive rats (Farraj et al., 2012). This 

study further showed that ozone exposure increased risk for ventricular tachycardia, 

ventricular fibrillation and cardiac arrest in rats during an aconitine challenge in a 

concentration-dependent manner. Overall these studies support the notion that pollutants can 

alter cardiac function.  

 In animal studies, myocardial dysfunction and cardiac ischemic injury were 

associated with increased inflammatory mediators, oxidative stress byproducts, and 

decreased antioxidant reserves following PM exposure (Kodavanti et al., 2000;  Liu and 

Meng, 2005). It has been postulated that circulating inflammatory mediators and ROS may 

file:///C:/Users/DJohnson/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/RQRFEF65/DMillerDissertation2016%20-%20Snow%20Edits%20(00000003).docx%23_ENREF_113
file:///C:/Users/DJohnson/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/RQRFEF65/DMillerDissertation2016%20-%20Snow%20Edits%20(00000003).docx%23_ENREF_113
file:///C:/Users/DJohnson/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/RQRFEF65/DMillerDissertation2016%20-%20Snow%20Edits%20(00000003).docx%23_ENREF_111
file:///C:/Users/DJohnson/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/RQRFEF65/DMillerDissertation2016%20-%20Snow%20Edits%20(00000003).docx%23_ENREF_36
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locally impact cardiac function by inducing myocardial contractile dysfunction through 

decreased systolic intracellular Ca2+ and activation of calmodulin kinase II (Erickson et al., 

2008), resulting in prolongation of action potential duration) and arrhythmogenesis (Ito et al., 

2008; Xie et al., 2009). Subchronic episodic exposures of combustion-derived PM exposures 

in rats have also been link to increased inflammation, myocardial cytotoxicity, fibrosis, and 

changes in gene expression pattern in the heart (Kodavanti et al., 2003).  

1.8 Vascular effects 

Several epidemiology and clinical studies have shown an association between air 

pollution and vascular dysfunction. An earlier study demonstrated impairment in 

endothelium dependent and independent vasodilation that were associated with higher 

concentrations of sulfate and black carbon in the air (O'Neill et al., 2005). Interestingly, these 

effects were noted among diabetes patients. Healthy humans exposed to traffic-related PM 

have also displayed impairment in endothelium-dependent vasodilation (Dales et al., 2007;  

Rundell et al., 2007). Brook et al. (2002) demonstrated brachial artery narrowing after ozone 

and PM exposure in healthy volunteers (Brook et al., 2002). More studies, focused primarily 

on diesel exhaust, have shown endothelial dysfunction and impaired vasodilation in 

conducting and resistant arteries in humans (Nurkiewicz et al., 2004;  Urch et al., 2004;  

Mills et al., 2005).  

 It is speculated that circulating mediators such as reactive oxidation byproducts, pro-

inflammatory cytokines, and vasoactive substances may be involved in pollutant-induced 

vasoconstriction and endothelial dysfunction. Rats receiving antioxidant treatment were 

protected from ozone-induced impairment of nitric oxide (NO)-mediated coronary artery 

dilation (Paffett et al., 2015), which suggests that increased oxidant production might be 
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involved in vascular effects. Similarly, reduced levels and functionality of NO are associated 

with increased  systemic oxidative stress (Tzeng et al., 2003;  Li et al., 2006) and 

inflammatory mediators (IL-6, TNF-) within the systemic circulation after PM exposure 

(Ruckerl, et al., 2007). PM has also been shown to increase endothelins (Thomson et al., 

2004) and angiotensin II (Li et al., 2005) in rats, contributing further to vasoconstrictive 

effects (Tzeng, et al., 2003;  Sun et al., 2005). Overall, pollutant-induced changes in systemic 

mediators have been postulated to impair peripheral physiological responses.  

1.9 Proposed mechanisms of air pollutant-induced systemic and cardiovascular effects 

 Three mechanisms have been proposed to explain how pollutant-induced pulmonary 

injury/inflammation may lead to systemic inflammation and cardiovascular effects: (1) 

translocation of pollutant components reaching peripheral tissues and causing direct extra-

pulmonary effects, (2) local lung injury causing release of vasoactive substances and 

spillover of pro-inflammatory cytokines from damaged lungs and affecting distant organs, 

and/or (3) activation of the autonomic nervous system (ANS) that perturbs function of the 

cardiovascular system (Figure 1.2). Each of these proposed mechanisms might be involved 

but is likely to be influenced by the chemical composition, size, pollutant concentration, and 

the nature of exposure, the physical integrity of the lung and the species sensitivity. 

1.9.1 Evidence for systemic translocation of air pollution components 

 Coarse and fine particles, due to their large size, are not systemically translocated but 

are phagocytosed by alveolar macrophages. The migration of these phagocytes to the lymph 

nodes and particle translocation have been reported in some cases. Due to their nanometer 

size range, UFP have the potential for systemic translocation. Although the postulate that 

these particles can translocate to the periphery without cells remains controversial, some 
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studies have demonstrated the translocation of UFPs to the circulation and various organs, 

but the level of translocation is generally low and is dependent upon the nature of UFPs 

(Nemmar et al., 2001;  Nemmar et al., 2002).  Particle-associated metals that are soluble and 

thus, bioavailable have been shown to translocate to the heart and extra-pulmonary organs 

(Wallenborn et al., 2007).   UFPs or soluble metals, if translocated, can induce extra-

pulmonary effects by directly interacting with tissues they encounter (Wallenborn et al., 

2009). It is noteworthy that pollutants which do not translocate systemically can also induce 

extra-pulmonary effects. For example, systemic effects can be induced by reactive gaseous 

pollutants such as ozone, which is unlikely to translocate from the lung.  Thus, it is difficult 

to delineate a specific mechanism for systemic effects induced by inhaled pollutant mixtures 

1.9.2 The evidence for systemic inflammation induced by inhaled pollutants 

During pollutant exposure, the lung was postulated to be the main source of 

circulating vasoactive and inflammatory mediators that can perturb cardiac and vascular 

function. It has been proposed that activated macrophages in the lung can, through the release 

of pro-inflammatory mediators, activate the bone marrow. Exposure to cigarette smoke has 

been shown to increase polymorphonuclear leukocytes production in the bone marrow of 

rabbits, which suggests that the bone marrow may be involved in pollutant-induced systemic 

inflammation (Terashima et al., 1999). However, the precise mechanisms by which lung 

macrophages upon activation may signal bone marrow to release progenitor leukocytes or 

increase circulating cytokines is not well understood.   

A number of rodent studies have shown that circulating pro-inflammatory cytokines 

are increased after pollution exposure and may be involved in peripheral effects of air 

pollutants (Nurkiewicz, et al., 2004;  Finnerty et al., 2007;  Mutlu et al., 2007;  Niwa et al., 
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2008), while many other rodent studies have demonstrated no change in circulating cytokine 

levels (Campen et al., 2006;  Kooter et al., 2006;  Gottipolu et al., 2009). Inhalation studies 

showing increased circulating cytokines have generally involved long-term (subchronic) 

exposures in mouse models. Therefore, it remains to be determined if increased systemic 

inflammation will be present during acute pollutant exposure and if cytokines are the 

initiating factor for extra-pulmonary effects as many studies have suggested.   

1.9.3 Autonomic involvement in regulation of cardiac physiological changes 

  Air pollutant-induced cardiac physiological changes, especially changes in HRV, are 

governed by autonomic regulation of sympathetic and parasympathetic tone. Ozone-induced 

bradycardia, along with decreased core temperature, suggests alterations in the ANS (Gordon 

et al., 2014). Likewise, changes in HRV following ozone and diesel exposure in rats and 

humans can also be mediated though autonomic imbalance. The ANS, which is divided into 

the sympathetic and the parasympathetic axes, regulates cardiac rhythmicity and blood 

supply to the periphery. Dysfunction of the ANS could result in perturbation of electrical 

conduction and propagation of cardiac arrhythmias.  Increased HRV is associated with 

parasympathetic nervous system (PSNS) activation, while decreased HRV indicates the 

predominance of the SNS activation.  Reduced HRV is considered detrimental and represents 

an ANS imbalance and increased risk for cardiovascular morbidity and mortality. The 

activation of the SNS will result in increased heart rate, while the predominance of the PSNS 

will result in bradycardia. Many human and animal studies have examined the effects of air 

pollution on cardiac physiology. Arito et al. revealed that  ozone-induced bradycardia was 

attenuated in rats, treated with a parasympathetic blocker, atropine(Arito et al., 1992), while 

another study displayed similar reversal of ozone-induced bradycardia in vagatomized dogs 
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(Vaughan et al., 1971), suggesting the involvement of sensory neurons. Although the 

involvement of autonomic regulation in air pollutant-induced cardiovascular effects has been 

identified, it is not clearly understood how pollutant exposure might alter autonomic 

regulation.   

1.10 Air pollution and neuronal effects 

 More recently, the CNS has been reported as another target of air pollutant effects. 

Exposure to air pollutants have been linked to neuroinflammation, neurodegeneration, 

learning and psychological impairment, and decrement in cognitive function in a number of 

epidemiological and animals studies (Block and Calderon-Garciduenas, 2009;  Costa et al., 

2014;  Calderon-Garciduenas et al., 2015;  Calderon-Garciduenas and Torres-Jardon, 2015). 

Exposure to diesel exhaust in rats has been shown to cause microglial activation and 

neuroinflammation in a number of brain regions (Levesque et al., 2011). Ozone exposure has 

been shown to cause oxidative and inflammatory changes in various areas of the brain in 

animals (Rivas-Arancibia et al., 1998; Rivas-Arancibia et al., 2010;  Mokoena et al., 2015). 

Three mechanisms have been proposed to explain how air pollutants impact the CNS. It has 

been thought that, depending on the physicochemical property, inhaled pollutants can induce 

neuronal effects (as indicated for systemic effects) through: 1) direct translocation of 

components, especially soluble materials and nanoparticles, through the olfactory bulb or 

systemic circulation, across the blood-brain barrier into the brain, 2) circulating inflammatory 

mediators that activate brain regions and induce local inflammation, and 3) activation of 

sensory neurons in the lung. Regardless of the initiating event, it has been shown that 

pollutant exposure is associated with oxidative stress and inflammatory responses in resident 



 

15 

 

endothelial glial cells such as astrocytes, and neurons, which may result in damage and loss 

of signal integration in various regions of the brain and alter behavioral outcomes. 

 PM and its constituents have been reported to translocate from the lung and into the 

brain of rodents (Oberdorster et al., 2004) and humans (Calderon-Garciduenas et al., 2008), 

which could initiate local oxidative, inflammation, and innate responses (Wang et al., 2008;  

Block and Calderon-Garciduenas, 2009). Specifically, UFP particulate have been shown to 

translocate through the olfactory nerves and reach the olfactory bulb, hippocampus, and other 

brain areas (Wang et al., 2008). These direct neuronal effects of particulates will depend 

upon the presence of pollutant components that are able to translocate to the brain upon 

inhalation. 

 Pollutants which do not translocate, such as ozone, have also been shown to cause a 

number of effects in different brain regions; however, the mechanisms still remain unclear.   

The activation of C-fibers on afferent sensory vagus nerves within the lung has been 

proposed to be involved in activation of the CNS. Acute ozone exposure has been shown to 

increase cFos staining, an indicator of neuronal activation, in the NTS, and in stress-

responsive regions including the caudal ventrolateral medulla, parabrachial nucleus, central 

nucleus of the amygdala, bed nucleus of the stria terminalis and the paraventricular 

hypothalamic nucleus (Gackiere et al., 2011).  The NTS receives vagal sensory information 

from the cardiac and pulmonary systems, and from subdiaphragmatic organs of the 

gastrointestinal tract (Travagli, 2007).  Ozone has been shown to activate specifically the 

caudal and subpostremal NTS, which overlaps with regions that receive input from the 

pulmonary C-fibers and RAR receptors (Gackiere, et al., 2011). Once the NTS is activated, it 

can relay the information to the aforementioned stress-responsive regions, specifically the 
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hypothalamus. These stress-responsive regions are known to stimulate the ANS to respond 

effectively to afferent input and lead to a plethora of responses in the body. Thus, it is likely 

that air pollutant exposure might induce peripheral effects through activation of central ANS 

mechanisms; however, the involvement of the nervous system in mediating peripheral air 

pollution systemic effects has not been well established. 

 1.11 Air pollution and metabolic effects: diabetes 

 In 2014, the American Diabetes Association estimated that 29.1 million people were 

diagnosed with diabetes (blood sugar  126 mg/dL), while 86 million were diagnosed with 

pre-diabetes (blood sugar levels between 100-125 mg/dL) in the United States. That same 

year, it was reported that 245 billion dollars were spent in medical bills associated with 

diabetes in America. Further, the diabetes epidemic goes beyond the United States. In 2013, 

the WHO estimated that 382 million people had diabetes worldwide, with 90% of the cases 

consisting of type II diabetes (TIID) and the remaining 10% being type I. TIID is 

characterized by the diminished ability of insulin to regulate glucose uptake by cells (insulin 

resistance), leading to increased blood glucose levels and the inability of cells to use glucose 

as a source of energy, resulting in a variety of other complications. Insulin resistance can 

begin to develop years before clinical signs of diabetes are observed (Froncesa, 2009) . It is 

believed that overcompensation of the pancreatic islets to produce insulin during insulin 

resistance will eventually result in β-cell dysfunction and often a reduction in circulating 

insulin, which is associated with the manifestation of TIID (Kasuga, 2006). Virtually all 

organ systems can be affected by diabetes as cells are not able to use glucose for energy 

production despite high circulating levels. Non-treatment of TIID can have an array of 
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consequences on the respiratory, urinary, reproductive, cardiovascular, CNS and endocrine 

systems.  

1.12 Systemic inflammation in insulin resistance  

 Many studies have suggested that systemic inflammation is central to the 

pathogenesis of insulin resistance (Schmidt et al., 1999;  Barzilay et al., 2001;  Pradhan et 

al., 2001;  Festa et al., 2002;  Duncan et al., 2003;  Spranger et al., 2003). High levels of  

specific pro-inflammatory markers and chemokines have been observed in diabetes patients, 

including TNF-, IL-6, IL-1β, and C-reactive protein (Shoelson et al., 2006). It is 

hypothesized that the chronic pro-inflammatory state observed in TIID patients originates in 

adipose tissue (Shoelson, et al., 2006). Obesity and high caloric diets are thought to initiate 

expansion and remodeling of adipose tissue, the activation of inflammatory mechanisms, and 

the systemic release of pro-inflammatory cytokines and chemokines. More specifically, 

recent animal studies suggest that over-nutrition and obesity can cause accumulation of free 

fatty acids (FFA) in adipocytes, leading to the activation of the inflammatory pathways c-

Jun-NH2-terminal kinase (JNK) and IKK-β pathway. The JNK and IKK-β pathways initiate 

serine phosphorylation of the insulin receptor substrate (IRS)-1/2, resulting in inhibition of 

the insulin signaling pathway and activation of transcription factors that upregulate 

inflammatory mediators (Shoelson, et al., 2006). Moreover, genetic and pharmaceutical 

intervention of JNK and IKK-B axes have ablated obesity-induced insulin resistance in mice 

(Shoelson, et al., 2006). Pro-inflammatory mediators secreted from adipose tissue can also 

activate local macrophages that initiate the recruitment of additional monocytes to the site, 

leading to chronic immune activation. These activated adipose-derived monocytes are 

observed to transition from an M2 (suppressive) to an M1 (pro-inflammatory) phenotype 
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(Shoelson, et al., 2006). Increased circulating adipose-derived FFA can also negatively 

regulate insulin signaling in other insulin-sensitive tissues like the liver and the muscle, 

contributing to global progression of insulin resistance. However, it should be noted that non-

obese individuals are also known to develop insulin resistance and diabetes. Thus, a variety 

of risk factors likely play a role in development of TIID, including calorie rich diets, 

sedentary lifestyle, genetic predisposition and chronic stress. The interactive contribution of 

these risk factors still remains unclear and thus, are under intense investigation (Finucane et 

al., 2011).  

1.13 Air pollutants and diabetes  

 More recently, air pollution has been postulated to be a contributing risk factor for 

diabetes. Epidemiological studies have shown a positive association between the incidence of 

TID and TIID and air pollution exposure (Liu et al., 2013;  Thiering and Heinrich, 2015). 

Pearson et al. in a cross-sectional study demonstrated that high levels of PM coincided with 

prevalence of diabetes in the United States (Pearson et al., 2010).  Specifically, increased 

levels of ambient PM have been associated with increases in HbA1c (a marker of  chronic 

high levels of  blood  glucose) (Chuang et al., 2011;  Tamayo et al., 2014),  impairment in 

glucose metabolism (Teichert et al., 2013), elevated homeostatic model assessment of insulin 

resistance (HOMA-IR), and decreased insulin sensitivity in humans (Kim and Y.C., 2012;  

Brook et al., 2013;  Thiering and Heinrich, 2015). However, the mechanisms by which air 

pollutants might cause metabolic effects or insulin resistance are not well understood. 

 Experimental studies have shown that long-term PM exposure results in liver 

endoplasmic reticular (ER) stress, adipose mitochondrial dysfunction,  adipose inflammation, 

and liver insulin insensitivity (Rajagopalan and Brook, 2012a), all of which have been 
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implicated in TIID. PM-induced liver ER stress, also referred to as unfolded protein response 

(UPR), has also been implicated in the onset of insulin resistance and glucose metabolic 

impairment (Rajagopalan and Brook, 2012b). ER stress is induced when protein misfolding 

occurs due to their oxidative modifications or other conformational changes  and 

impaired/decreased protein folding capacity in the ER (Lai et al., 2007).  PM exposure has 

been reported to elevate UPR-associated proteins, protein kinase RNA-like ER kinase, 

inositol-requiring enzyme-1, activating transcription factor-4, heat shock protien70, heat 

shock protein 90, and binding immunoglobulin protein in the liver and white adipose tissue 

(Rao et al., 2015). The UPR can activate inflammatory and stress signaling systems, 

including the NF-κB and JNK pathways, which may influence cellular glucose uptake 

(Rajagopalan and Brook, 2012a). However, it is not known if liver ER stress is an initiating 

event in pollutant-induced metabolic effects or a consequence of PM-induced systemic 

changes. Long-term PM exposure-induced systemic increases in pro-inflammatory cytokines 

has been postulated to contribute to insulin resistance (Xu et al., 2011). PM exposure has 

specifically been shown to increase inflammatory cytokines IL-6, TNF-, IL-1β in adipose 

tissues (Sun et al., 2009;  Sun et al., 2013). PM exposure was also associated with increases 

in systemic levels of IL-6, and reduced tyrosine phosphorylation of insulin signaling 

mediators: IRS-1/2, Protein Kinase B (PKB/AKT), and phosphatidylinositol-4,5-

bisphosphate 3-kinase in the liver, resulting in decreased insulin-mediated glucose uptake 

(O'Neill et al., 2007;  Sun, et al., 2013). Further, long-term PM exposure has been shown to 

perturb mitochondrial function in adipose tissue, leading to the accumulation of different 

metabolites, such as diacylglycerol, that could perturb insulin signaling (Xu, et al., 2011). 
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The initiating events that are involved in inducing systemic inflammation or insulin 

resistance after air pollution exposure are still under investigation. 

1.14 Neuronal involvement in air pollution-induced systemic effects 

A number of studies provide clues to the initiating events that might alter immune 

mechanisms and induce metabolic alterations. As discussed above, air pollutants alter 

autonomic function and can induce brain inflammation. It has been proposed that pollutant-

induced systemic effects may be mediated through the activation of key hypothalamic 

regions involved in the regulation of metabolic homeostasis and maintenance of energy 

requirements. A few studies have proposed that hypothalamic ER stress, and increased 

expression of pro-inflammatory cytokines such as IL-6 and transcription factors such as NF-

B  in the brain may be linked to neuronal damage, hypertension, and metabolic disturbances 

(Purkayastha, et al., 2011). Given the evidence that air pollutants can cause cardiovascular 

effects through ANS involvement and also induce neuronal inflammation in various areas of 

the brain, we postulate that systemic inflammatory and metabolic effects are mediated 

through neural pathways.   

 Ozone is a well-studied, chemically simple prototypic pollutant, which has gained 

significant interest recently for its extra-pulmonary and neuronal effects. Interestingly, 

epidemiological studies have shown a positive association between ozone and fasting 

hyperglycemia, insulin resistance and exacerbation of diabetes symptoms (Stafoggia et al., 

2010;  Zanobetti and Schwartz, 2011;  Kim and Y.C., 2012), although the mechanistic link is 

not established.  In one of our earlier studies, we showed that aged (2 year old)  rats exposed 

to ozone episodically for a period of 4 months had increased circulating insulin levels 

(Gordon et al., 2013).  This finding prompted us to examine the link between metabolic 
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alterations and ozone. We subsequently reported that acute and long-term ozone exposure in 

Brown Norway (BN) rats were associated with hyperglycemia and impaired glucose 

tolerance, but these ozone-induced metabolic effects were transient (Bass et al., 2013). 

Although inflammatory cytokines have been considered to be the main contributor to 

pollutant-induced systemic effects, our studies using rat models failed to demonstrate any 

increases in circulating cytokines with ozone or other pollutants (Gordon et al., 2013, Bass et 

al., 2013). No changes were noted in the inflammatory cytokines IL-6, IL-1β, C-reactive 

protein or TNF- in rats following an acute or subchronic ozone exposure despite impaired 

glucose tolerance; however, acute phase proteins, such as acid glycoprotein and alpha-2 

macroglobulin, were increased after an acute ozone exposure (Bass et al., 2013). Importantly, 

the metabolic effects in the Bass et al., (2013) study were evident prior to pulmonary 

inflammation or increases in circulating acute phase proteins following ozone exposure, 

suggesting that pulmonary inflammatory spillover into the systemic circulation may not be 

the main mechanism of hyperglycemia or glucose intolerance.  

 This study showed an elevation in the stress hormone, epinephrine, which suggested 

that the SNS may be activated during exposure. Epinephrine has been shown to exert insulin 

antagonistic effects by mediating increased glycogen breakdown and enhanced adipose 

lipolysis (Nonogaki, 2000). Sympathetic nerves can directly target the adipose tissue and 

stimulate lipolysis, leading to the release of non-esterified fatty acids (NEFA), which can 

potentially contribute to insulin resistance (Arner and Langin, 2014). Acute ozone exposure 

was also associated with elevated circulating corticosterone in rats, which suggests the 

activation of the hypothalamus pituitary adrenal (HPA) axis (Thomson et al., 2013). 

Corticosterone, another insulin counter-regulatory hormone like epinephrine, is known to 
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alter glucose and lipid metabolism through decreased glucose uptake and protein synthesis, 

increased hepatic glucose output, stimulated adipose lipolysis and increased amino acid 

release (Olefsky and Kimmerling, 1976). It is hypothesized that chronically elevated 

circulating corticosterone or other stress hormones may result in glucotoxicity and/or 

lipotoxicity, which may contribute to insulin resistance and the loss of glycemic control long-

term. Corticosterone has also been implicated in decreased -cell insulin secretion (Delaunay 

et al., 1997). Epinephrine and corticosterone are produced and secreted from the adrenal 

medulla and cortex, respectively, and their increases in the circulation suggests the 

stimulation of the hormones release from the adrenal gland through a stress response 

pathway. No prior air pollution studies have examined the contribution of stress hormone-

mediated systemic metabolic impairment and inflammation as a mechanism that potentially 

can impact a number of peripheral metabolic activities and insulin sensitivity or produce 

other peripheral air pollution effects including systemic inflammation. 

 Stress hormones have a major regulatory role in mediating redistribution of immune 

cells and initiating an inflammatory response after stress. Specifically, stress hormones have 

been shown to systematically shift the pro-inflammatory state characterized by increased 

production of the cytokines IL-12, TNF-, and interferon (IFN)- to an anti-inflammatory 

state, in which Il-10 and Il-4 are produced (Elenkov and Chrousos, 2002).  These stress 

hormones can influence inflammatory responses in a tissue-specific manner based on 

differential distribution of adrenergic and glucocorticoid receptors. For example, in lung-

derived monocytes and epithelial cells, catecholamines, such as epinephrine, enhance IL-8 

production, leading to further recruitment of neutrophils to the airways (Linden, 1996;  

Kavelaars et al., 1997).  Stress hormones, especially catecholamines, to initiate mononuclear 
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cell activation through the induction of the NF-B pathway (Bierhaus et al., 2003), 

subsequently increasing expression of pro-inflammatory cytokines.  

  HPA axis activation leads to stimulation of the release of stress hormones from 

adrenal glands, which regulate peripheral metabolic homeostasis under stress. These 

hormones also have potent feedback inhibitory effects at the hypothalamus and pituitary 

levels since this homeostatic response is a transient mechanism to counter stress situations. 

The activation of the hypothalamus and secretion of corticotrophin releasing hormone (CRH) 

stimulates the anterior pituitary gland to release adrenocorticotropic hormone (ACTH) in the 

circulation that directly stimulates the adrenal cortex to secrete glucocorticoids (cortisol in 

humans and corticosterone in rats) and other hormones, such as mineralocorticoids (Ulrich-

Lai and Herman, 2009). In contrast, the adrenal medulla can be directly stimulated by the 

sympathetic efferent nerves, resulting in the secretion of epinephrine and norepinephrine.  

Although stress-induced peripheral metabolic impairment is well characterized, air 

pollutants have not been linked to mediate their effects through this pathway. It has been 

proposed that circulating factors are responsible for air pollutant-induced peripheral effects, 

but no prior studies have implicated changes in circulating metabolites or neurohormones in 

mediating systemic metabolic or pulmonary responses. Therefore, we postulate that ozone-

induced increases in epinephrine, observed in pre-studies, and corticosterone, as reported by 

others, may be involved in systemic metabolic impairment and pulmonary 

injury/inflammation and are mediated through the activation of the HPA axis and SNS 

(Figure 1.3). Since the long-term dysregulation of the HPA and autonomic nervous system 

has been shown to contribute to the development of insulin resistance and other cardio-

metabolic effects (Olefsky and Kimmerling, 1976;  Nosadini et al., 1983;  Bruce et al., 1992;  
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Surwit and Schneider, 1993;  Friedman et al., 1996;  Bjorntorp et al., 1999;  Laitinen et al., 

1999;  Rask et al., 2001), we postulate that subchronic episodic ozone exposure will lead to 

tissue specific insulin resistance in the liver and muscle.  

1.15 Summary and dissertation content 

 For decades, studies related to air pollutants focused primarily on the lung. Now it is 

apparent that air pollutants that encounter the lung and produce local effects can also affect 

virtually all organ systems in our body. In recent years, pollutant exposure has been 

associated with an increased incidence of diabetes; however, causality has not been 

established and the mechanisms are not understood. Although systemic inflammation was 

implicated in a number of air pollution studies that illustrate metabolic impairment, several 

other air pollution studies failed to demonstrate increases in circulating pro-inflammatory 

cytokines.  Even though a number of studies have implicated the role of the ANS in 

pollutant-induced cardiovascular effects, its contribution to systemic and metabolic 

impairment and pulmonary injury/inflammation following air pollution exposure has not 

been examined.   

 In this dissertation, we have begun to investigate whether ozone exposure produces 

systemic metabolic impairment and to determine if these metabolic effects are associated 

with the release of stress hormones in response to SNS and HPA axis activation. We 

hypothesized that acute ozone exposure will produce broad scale metabolic derangements 

through neurohormonal activation, involving stress pathways, and that longer exposures will 

result in insulin signaling impairment in the muscle and liver. In Chapters 2 and 3, we 

characterized the nature of systemic metabolic derangement and neurohormone responses to 

acute ozone exposure using a metabolomic approach, and specifically examined the 
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temporality of glucose intolerance, release of stress and metabolic hormones, and serum 

metabolite profiling in rats. In addition, we also examined the metabolomic profile of serum 

samples obtained from humans exposed to ozone, established the coherence between rats and 

humans, and identified novel metabolite biomarkers. In Chapter 4, I examined the 

contribution of stress hormones (epinephrine and corticosterone) in metabolic impairment 

and lung injury and inflammation. For this study, I examined ozone effects in rats that 

underwent total adrenal demedullation or total bilateral adrenalectomy relative to sham 

surgeries. We showed that adrenal-derived stress hormones are essential not only in systemic 

metabolic effects of ozone, but also in pulmonary injury and inflammation. In Chapter 5, I 

determined if longer (3 months, episodic) ozone exposure in rats is associated with persistent 

metabolic alterations and liver and muscle insulin resistance by examining the 

phosphorylation of critical insulin signaling mediators that promote glucose uptake and 

metabolism, such as the phosphorylation of AKT. We also determined the relation between 

insulin sensitivity and the levels of circulating cytokines, hormones, lipids and glucose. The 

data from our studies: 1) provide causal evidence for associations between ozone exposure 

and metabolic effects observed in epidemiological studies, 2) identified novel metabolite 

biomarkers of ozone effects in humans, 3) are the first to link a systemic stress response to air 

pollution exposure in rats and in humans, 4) have a potential implication in developing a new 

adverse outcome pathway that can be employed  for many environmental stressors and 

exposures, 5) provide novel insights into how stress hormones might regulate pulmonary 

injury/inflammation induced by air pollutants, 6) challenge the current paradigm of the 

mechanisms by which ozone induces lung injury, vascular leakage and inflammation, and 7) 

examine a potential link between insulin resistance/sensitivity and air pollutant exposure.  
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Figure 1.1

 

  

Figure 1.1: Ozone-induced lung effects. Upon inhalation, ozone (O3) can directly interact 

with proteins and lipids within the epithelial lining fluid (ELF) and on the surface of cells to 

form reactive oxygen species (ROS). These ozone-derived secondary and tertiary byproducts 

can injure the pulmonary endothelium and activate nerve endings, the main targets of air 

pollutants. Injured epithelium can release pro-inflammatory mediators, tachykinins 

(Substance P and neurokinins A) and enzymes that can activate local immune cells in the 

airway and recruit additional leukocytes to the respiratory tract. These epithelial-derived 

mediators or pollutant components can also lead to the activation of vagal neurons that 

terminate in the CNS and produced extra pulmonary effects. The alveolar leukocytes can 

further exacerbate the vicious cycle of ROS and inflammatory events, resulting in vascular 

leakage and increased lung injury/inflammation. 



 

27 

 

Figure 1.2

Figure 1.2 Pollutant-induced peripheral effects. It has been proposed that pollutants can 

elicit extra-pulmonary effects from the respiratory tract through the following mechanisms: 

1) through pulmonary vagal C-fiber activation of hypothalamic regions in the brain, 2) 

spillover of lung pro-inflammatory cytokines or activation of the bone marrow, 3) spillover 

of reactive secondary oxidized by-products, and/or 4) spillover of soluble pollutant 

components.   Air pollutants have been associated with cardiovascular and CNS adverse 

effects, but the specific pathway(s) by which systemic effects occur after exposure to air 

pollutants remain unclear.  
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Figure 1.3 
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Figure 1.3 The Proposed Mechanism of Stress Mediated Metabolic Effects of Ozone. 

Physiological and psychological stress are known to increase the levels of stress hormones in 

the circulation through activation  HPA and SNS. These neuronal stress pathways are used to 

mobilize energy substrates to the appropriate tissues to combat stress. Specifically, the HPA 

leads to the activation of the adrenal cortex, which releases glucocorticoids, while 

sympathetic nerve terminals activate the adrenal medulla, which release catecholamines. 

These stress hormones are known to interact with their respective receptors on multiple 

organs and elicit responses: tachycardia, hyperglycemia, gluconeogenesis, glycogenolysis, 

adipose lipolysis, protein catabolism, etc, Chronic elevation of these stress hormones have 

been associated with metabolic dysfunction and insulin resistance. Ozone has been shown to 

activate hypothalamic neuro-stress responsive regions, potentially through stimulation of 

lung C-fibers (TRPA1).  
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CHAPTER 2 

 

INHALED OZONE INDUCES CHANGES IN SERUM METABOLOMIC 

AND LIVER TRANSCRIPTOMIC PROFILES IN RATS 

2.1 Introduction 

 The incidence of metabolic syndrome is steadily increasing worldwide, 

resulting in higher prevalence of diabetes mellitus and cardiovascular morbidity and 

mortality (Ford et al., 2002).  The common clinical components that comprise metabolic 

syndrome include, but are not limited to, abdominal obesity, hypertriglyceridemia, 

hypertension, low levels of high-density lipoprotein cholesterol (HDL-C), prothrombotic 

state, glucose intolerance, and insulin resistance (Ford et al., 2002; Grundy et al., 2004).  

Conventional etiologies, including sedentary lifestyle, diet-related obesity and genetics have 

been implicated as the major contributors to insulin resistance and the development of 

metabolic syndrome (Grundy et al., 2004).  Most recently, air pollution, such as PM, has also 

been linked to the development of metabolic syndrome, and may serve as an effect modifier 

for the epidemiological associations between environmental factors and increased rate of 

cardiovascular diseases (Chen and Schwartz, 2008). A number of recent epidemiological and 

experimental studies have shown that chronic inhalation of airborne PM may increase an 

individual’s risk for acquiring type 2 diabetes by creating a pro-inflammatory state, insulin 

resistance, and/or obesity (Brook et al., 2008, Rajagopalan and Brook, 2012; Liu et al., 2013)
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A number of mechanistic pathways have been proposed where lung 

injury/inflammation initiates systemic inflammation, which is postulated to play a central 

role in inhaled pollutant-induced insulin resistance, but the evidence remains insufficient 

(Shoelson et al., 2006, O’Neill et al., 2007, Xu et al., 2011, Yan et al., 2011; Rajagopalan and 

Brook, 2012).  Similar to PM, the ubiquitous air pollutant ozone has been associated with 

adverse pulmonary and cardiovascular health effects, such as lung injury/inflammation, 

decreased lung function and heart rate variability in animals and humans (Watkinson et al., 

2001;  Hollingsworth et al., 2007; Ciencewicki et al., 2008;  Liu et al., 2009; Farraj et al., 

2012; Wagner et al., 2014). However, the likely contribution of ozone to metabolic disorder 

and extra-pulmonary effects has yet to be systematically investigated.  

Exposure to ozone has also been shown to induce cardiovascular functional changes 

through modulation of the autonomic nervous system, which regulates sympathetic and 

parasympathetic balance (Farraj et al., 2012; Gordon et al., 2014). More specifically, acute 

ozone exposure has been shown to stimulate lung vagal C-fibers through transient receptor 

potential member A1 (TRPA-1) receptors that lead to activation of neural stress-responsive 

regions in the central nervous system where lung afferents of vagus nerves terminate (Taylor-

Clark and Undem, 2010 and Gackiere et al., 2011).  Stress-mediated hypothalamus pituitary 

adrenal (HPA) axis activation is well known to modulate a variety of physiological processes 

including thermoregulation, immune elicitation, hormonal disposition, and systemic 

metabolic alterations (Ulrich-Lai and Herman, 2009). One study has recently shown that 

acute ozone exposure increased serum corticosterone in rats (Thomson et al., 2013), which is 

a marker of HPA axis activation. Recently, we have shown that ozone induces glucose 

intolerance and increased serum leptin and epinephrine in Brown Norway (BN) rats, in 
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addition to inducing hypothermia and bradycardia during exposure (Bass et al., 2013 and 

Gordon et al., 2014). Observed increases in serum epinephrine and corticosterone during 

acute pollutant exposure suggest a potential involvement of sympathetic and/or HPA-

associated neurohumoral factors. However, a detailed characterization of ozone-induced 

metabolic impairment and involvement of neurohumoral intermediates has not been reported. 

This could aid in identifying potential mechanisms of ozone–induced systemic metabolic 

effects.  

The objective of this study was to utilize serum metabolomic and liver transcriptomic 

techniques together with metabolic hormonal assessment to gain insight into the 

characteristics and potential mechanisms of metabolic alterations during ozone-induced 

hyperglycemia and glucose intolerance. The serum metabolomic approach used in this study 

is able to detect quantifiable metabolites in the serum released from biochemical processes in 

various tissues critical for metabolic homeostasis (Barnes et al., 2014). The detection of 

metabolites can provide insight regarding organs being affected by ozone exposure. Liver 

being the major organ for control and maintenance of metabolic processes, the assessment of 

liver transcriptional changes could provide mechanistic insights into its role in ozone 

systemic metabolic response. We hypothesized that ozone-induced hyperglycemia and 

glucose intolerance will be associated with broad scale systemic metabolic impairment, and 

that the use of serum metabolomic together with liver transcriptomic approaches will provide 

insights into 1) the mechanisms by which ozone perturbs metabolic processes, and 2) the 

potential contribution of ozone to long-term metabolic alterations.  
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2.2 Materials and Methods 

2.2.1 Animals 

 Male, 10 week old, healthy Wistar Kyoto (WKY) rats (250-300g) were purchased 

from Charles River Laboratories Inc. (Raleigh, NC). Rats were housed (2/cage) in 

polycarbonate cages containing beta chip bedding in an isolated animal room in an animal 

facility maintained at 21 ± 1ºC, 50 ± 5% relative humidity and held to a 12hr light/dark cycle. 

The animal facility is approved by the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC). All animals received standard (5001) Purina pellet rat 

chow (Brentwood, MO) and water ad libitum unless otherwise stated. Animal procedures 

were approved by the U.S. EPA NHEERL Animal Care and Use Committee (IACUC; Permit 

Number: 13-02-003 and 16-03-003). Animals were treated humanely and all efforts were 

made for alleviation of suffering. 

2.2.2  Ozone generation and animal exposures 

 Ozone was produced from oxygen by a silent arc discharge generator (OREC, 

Phoenix, AZ), and its entry into the Rochester style “Hinners” chambers was controlled by 

mass flow controllers. The ozone concentrations in the chambers were recorded continuously 

by photometric ozone analyzers (API Model 400).  Chamber temperature and relative 

humidity were measured continuously. Mean chamber air temperature and relative humidity 

were 23.3 °C (74 ⁰F) and 46%, respectively. In the concentration-response study, rats were 

randomized by body weight into four exposure groups (n=6/group) to make sure each 

exposure group had the same overall average body weight. Similarly, in the time-course 

study, rats were randomized by body weight into six groups (n = 8/group) for two exposure 

conditions and each time point. In the concentration-response study, WKY rats were exposed 
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to either filtered air (FA) or ozone (0.25, 0.50, or 1.0 ppm), 6hr/day for two consecutive days 

and sacrificed 18hr after day 2.  In the subsequent time-course experiment, three groups of 

WKY rats were used. 1) The first group was either exposed to FA or 1.0 ppm of ozone for 

6hr/day for one day (1d-0hr), 2) a second group was exposed 6hr/day for two consecutive 

days (2d-0hr), and 3) a third group was allowed an 18hr recovery, following two consecutive 

days of ozone exposure (2d-18hr).  

2.2.3  Glucose tolerance testing (GTT) 

All rats that underwent GTT were fasted for 8-10hr in cage or during exposure prior 

to the assessment of blood glucose concentrations. For rats that were allowed an 18hr 

recovery period, food was removed for 10hr (overnight; 10pm to 8 am) before GTT.  

Baseline blood glucose concentrations were measured by pricking the distal surface of rats’ 

tails using a sterile needle to obtain ~1 μl of blood.  A Bayer Contour glucometer was used to 

determine blood glucose levels using test strips, which require 0.6 L whole blood.  After the 

first measurement, rats were given an intraperitoneal (I.P.) injection of glucose, 2g/kg/10 mL 

(20% D-glucose; 10ml/kg). Measurement with the glucometer was repeated every 30 min 

over the course of 2hr. In the concentration-response study, all animals underwent GTT 4 

days prior to ozone exposure, immediately following ozone on day 1 and immediately 

following ozone on day 2. For the time-course study, rats assigned to the 18hr recovery 

group were used for GTT. These rats underwent GTT one day before ozone exposure, 

immediately following ozone exposure on day 1, immediately following ozone exposure on 

day 2, and also after an 18hr recovery period following two days of ozone exposure. In 

addition, rats assigned to the 2d-0hr time point underwent GTT immediately following one 

day of FA or ozone exposure. No GTT was performed on the 1d-0hr group where tissue and 
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serum collection were performed immediately after exposure.  The 2d-0hr exposure group 

for tissue and serum collection did not undergo GTT on the 2nd day of ozone exposure.  

2.2.4  Necropsy and sample collection 

For the concentration-response study, all rats were necropsied 18hr after two 

consecutive days of FA or ozone exposure. For the time-course experiment, one group of rats 

(n=16), which did not undergo GTT, were necropsied immediately after the first day of 

exposure (1d-0hr). The 2nd group of rats (n=16) was necropsied immediately after the 

second day of ozone exposure (2d-0hr). The recovery group (n=16) was necropsied 18hr 

after the second day of exposure (2d-18hr).  In each study, rats were fasted for 8-10hr before 

necropsy regardless of fasting associated with GTT. Rats were weighed and anesthetized 

with an overdose of sodium pentobarbital (Virbac AH, Inc., Fort Worth, TX; 50-100 mg/kg, 

i.p.). Blood samples were collected through an abdominal aortic puncture directly into serum 

separator vaccutainers without coagulant for serum preparation.  Tubes were centrifuged at 

3500 x g for 10 min and aliquots of serum were stored at -80°C until analysis.  In the 

concentration-response study, bronchoalveolar lavage (BAL) was performed through tracheal 

tubing using Ca2+ and Mg2+ free phosphate buffer saline, 37°C at 28mL total lung capacity/kg 

rat weight.  Aliquots of BAL fluid were used to determine total cell counts with a Z1 Coulter 

Counter (Coulter, Inc., Miami, FL) and cell differentials were performed on cytospin slides 

stained with Diff-quick as previously described (Bass et al., 2013). The cell-free BAL fluid 

was used to analyze albumin, as previously described (Bass et al., 2013). In the time-course 

experiment, in addition to collecting serum at each time point, liver tissues were collected 

and frozen in liquid nitrogen for RNA analysis.   
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2.2.5  Serum analysis 

 Serum samples collected from rats were analyzed for insulin and leptin using rat-

specific electrochemiluminescence assays (Meso Scale Discovery, Gaithersburg, MD) via 

manufacturer’s instructions. Total cholesterol was measured in serum samples using kits 

from TECO Diagnostics (Anaheim, CA), while HDL-C and low-density lipoprotein 

cholesterol (LDL-C) were measured with kits from Thermo Fisher Scientific, Inc. 

(Middletown, VA). Both types of kits were modified for use on the Konelab Arena 30 system 

(Thermo LabSystems, Espoo, Finland). Epinephrine circulating levels was determined by 

ELISA kit (Cusabio, Wuhan, China)  

2.2.6 1 Metabolomic analysis   

 Serum global metabolomic profiling was performed by Metabolon Inc. (Durham, 

NC). Detailed methods are described in previous publications (Evans et al., 2009, Dehaven et 

al., 2010 and Reitman et al., 2011). Frozen serum samples from time-course study for 1 d–

0 h and 2d–0h time points (n = 7–8/group) were used for this analysis.  

2.2.6.2 Sample accessioning 

 Each sample received was accessioned into the Metabolon laboratory information 

management system (LIMS) and was assigned a unique identifier that was associated with 

the original source identifier only.  This identifier was used to track all sample handling, 

tasks, results, etc.  All aliquots of any sample were automatically assigned their own unique 

identifiers by the LIMS when a new task was created; the relationship of these samples is 

also tracked.  All samples were maintained at -80ºC until processed. 

http://www.sciencedirect.com/science/article/pii/S0041008X15001167#bb0090
http://www.sciencedirect.com/science/article/pii/S0041008X15001167#bb0070
http://www.sciencedirect.com/science/article/pii/S0041008X15001167#bb0070
http://www.sciencedirect.com/science/article/pii/S0041008X15001167#bb0235
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2.2.6.3 UPLC/MS/MS 

 The LC/MS portion of the platform was based on a Waters ACQUITY ultra-

performance liquid chromatography (UPLC) and a Thermo-Finnigan linear trap quadrupole 

(LTQ) mass spectrometer, which consisted of an electrospray ionization (ESI) source and 

linear ion-trap (LIT) mass analyzer.  The sample extract was dried then reconstituted in 

acidic or basic LC-compatible solvents, each of which contained 8 or more injection 

standards at fixed concentrations to ensure injection and chromatographic consistency.  One 

aliquot was analyzed using acidic positive ion optimized conditions and the other using basic 

negative ion optimized conditions in two independent injections using separate dedicated 

columns.  Extracts reconstituted in acidic conditions were gradient eluted using water and 

methanol containing 0.1% formic acid, while the basic extracts, which also used 

water/methanol, contained 6.5mM ammonium bicarbonate.  The MS analysis alternated 

between MS and data-dependent MS2 scans using dynamic exclusion.  Raw data files are 

archived and extracted as described below. 

2.2.6.4 GC/MS 

 The samples destined for GC/MS analysis were re-dried under vacuum desiccation 

for a minimum of 24hr prior to being derivatized under dried nitrogen using bistrimethyl-

silyl-trifluoroacetamide (BSTFA).  The GC column was 5% phenyl and the temperature 

ramp was from 40°C to 300°C in a 16 min period.  Samples were analyzed on a Thermo-

Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron 

impact ionization.  The instrument was tuned and calibrated for mass resolution and mass 

accuracy on a daily basis.  The information output from the raw data files was automatically 

extracted as discussed below. 
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2.2.6.5 Quality assurance (QA)/quality control (QC) 

 For QA/QC purposes, additional samples were included with each day's analysis. 

These samples included extracts of a pool of well-characterized human plasma, extracts of a 

pool created from a small aliquot of the experimental samples, and process blanks. QC 

samples were spaced evenly among the injections and all experimental samples were 

randomly distributed throughout the run. A selection of QC compounds was added to every 

sample for chromatographic alignment, including those under test. These compounds were 

carefully chosen so as not to interfere with the measurement of the endogenous compounds. 

 

2.2.6.6 Metabolomic data extraction and compound identification 

 Raw data was extracted, peak-identified and QC processed using Metabolon’s 

hardware and software. Metabolite quantification was based on area under the curve.  These 

systems are built on a web-service platform utilizing Microsoft’s .NET technologies, which 

run on high-performance application servers and fiber-channel storage arrays in clusters to 

provide active failover and load-balancing.  Compounds were identified by comparison to 

library entries of purified standards or recurrent unknown entities.  Metabolon maintains a 

library based on authenticated standards that contains the retention time/index (RI), mass to 

charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all 

molecules present in the library.  Furthermore, biochemical identifications are based on three 

criteria: retention index within a narrow RI window of the proposed identification, nominal 

mass match to the library +/- 0.2 amu, and the MS/MS forward and reverse scores between 

the experimental data and authentic standards.  The MS/MS scores are based on a 

comparison of the ions present in the experimental spectrum to the ions present in the library 
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spectrum.  While there may be similarities between these molecules based on one of these 

factors, the use of all three data points can be utilized to distinguish and differentiate 

biochemicals.  More than 2400 commercially available purified standard compounds have 

been acquired and registered into LIMS for distribution to both the LC and GC platforms for 

determination of their analytical characteristics.   

2.2.6.7 Statistical analysis of metabolomic data 

 Missing values (if any) are assumed to be below the level of detection. However, 

biochemicals that were detected in all samples from one or more groups but not in samples 

from other groups were assumed to be near the lower limit of detection in the groups in 

which they were not detected. In this case, the lowest detected level of these biochemicals 

was imputed for samples in which that biochemical was not detected. Following log 

transformation and imputation with minimum observed values for each compound, Welch’s 

two-sample t-test was used to identify biochemicals that differed significantly between 

experimental groups. Pathways were assigned for each metabolite, allowing examination of 

overrepresented pathways.  Significant (p<0.05) pathway enrichment output (cumulative 

hypergeometric distribution) was assessed for each of the selected contrasts (1d-0hr; 2d-0hr 

and 2d-18hr) using MetaboSync, version 1.0 (Metabolon, Inc. RTP, NC) to determine the 

metabolic processes impacted by ozone.  

2.2.7.1 Gene Array 

 Liver tissue samples from FA or 1 ppm ozone-exposed rats (n=5-6/group) for all 

three time points from the time-course study were used for this analysis. Total liver RNA was 

isolated from ~20 mg tissue with a commercially available RNeasy mini kit (Qiagen, 

Valencia, CA) using silica gel membrane purification.  Liver RNA was resuspended in 30µl 
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of RNAse-free water.  RNAse inhibitor was added and RNA yield was determined 

spectrophotometrically on a NanoDrop 1000 (Thermo Scientific, Wilmington, DE). RNA 

integrity was assessed by the RNA 6000 LabChip® kit using a 2100 Bioanalyzer (Agilent 

Technologies, Palo Alto, CA).  We examined global gene expression changes using the 

Affymetrix platform (RG-230 PM Array strip). Biotin-labeled cRNA was produced from 

total RNA using an Affymetrix IVT-express labeling kit (cat# 901229).  Total cRNA was 

then quantified using a Nano-Drop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE) and evaluated for quality on a 2100 Bioanalyzer. Fragmented cRNA were 

also evaluated for quality using 2100 Bioanalyzer. Following overnight hybridization at 45ºC 

to Affymetrix RG-230 PM array strip in AccuBlock Digital Dry Baths (Labnet International 

Inc.), the arrays were washed and stained using an Affymetrix GeneAtlas fluidics station as 

recommended by the manufacturer. Arrays were scanned on an Affymetrix Model GeneAtlas 

scanner.  After scanning, raw data (Affymetrix.cel files) were obtained using Affymetrix 

Command Console Operating Software.  This software also provided summary reports by 

which array QA metrics were evaluated including average background, average signal, and 

3’/5’ expression ratios for spike-in control GAPDH.   

2.2.7.2 Normalization and determination of differentially expressed genes 

 The Affymetrix GeneAtlas array data for each sample was normalized by Affymetrix 

Expression Console software using the plier algorithm with perfect match only probes.  The 

resulting expression table was downloaded from Affymetrix Expression Console software 

into a text file.  Statistical contrasts were calculated at each time point for ozone versus the 

FA control.  Each contrast was computed on a text file containing all assayed genes as rows 

and only the contrast samples as columns by a Bayes t-test using R.  Subsequently, a multiple 
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test correction using the Benjamin-Hochberg method with an alpha of 0.05 was applied to the 

Bayes t-test output in Excel.  To support subsequent analysis, the differentially expressed 

genes (DEGs) from the three time-point contrasts were consolidated into an ozone DEG 

expression table. 

2.2.7.3 Functional gene list preparation 

 The DEG list for each time point was also submitted to the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v6.7 for determination of significant Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways using a modified Fisher Exact test 

with a p-value cutoff of 0.05. Functional gene lists were generated by NetAffx queries at the 

Affymetrix website (www.affymetrix.com). The query terms were “apoptosis”, “diabetes”, 

“gluconeogenesis”, “glycolysis”, “mitochondria”, “steroid metabolism”, “tricarboxylic acid 

cycle”, “unfolded protein response” and “cytokines”. The eight lists were exported separately 

from NetAffx as text files. For each gene list, Affymetrix probeset IDs were used to select 

the corresponding gene from the ozone DEG expression table to build an expression table 

that only contains the genes for a given function that were also ozone DEGs. Hierarchical 

clustering was computed for each functional gene list using Cluster 3.0 (de Hoon et al., 2004) 

and the clusters were displayed using Java Treeview (Saldanha, 2004). Three functional 

probeset lists based on queries of “steroid receptor”, “insulin receptor” or “fatty acid” were 

obtained from NetAffx. Each of these lists was compared to the list of DEGs for the 1d–0hr 

time point to identify DEGs in each of the three functional categories. Each functional list 

was processed separately by Ingenuity Pathway Analysis (IPA) to produce a direct 

relationship graph. The graph constructed from the Ingenuity knowledgebase depicts some of 

http://www.affymetrix.com/
http://www.sciencedirect.com/science/article/pii/S0041008X15001167#bb0075
http://www.sciencedirect.com/science/article/pii/S0041008X15001167#bb0245
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the biological relationships among the probe sets on the list. The microarray data are 

publically available through Gene Expression Omnibus (accession # GSE59329). 

2.2.7.4 Real time PCR confirmation of gene array findings 

 We selected 4 genes increased in expression from the gene array (insulin receptor 

substrate-2, IRS-2; 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1, PFKFB1; 

aconitase-2, Aco-2; and peroxisome proliferator activated receptor gamma c1a, Ppargc1a) 

and a control transcript (β-actin) to determine the validity of gene array findings. RT-PCR for 

RNA from FA or ozone-exposed rat livers at 1d-0hr time point was conducted on an ABI 

Prism 7900 HT sequence detection system (Applied Biosystems, Foster City, CA) as 

described previously (Bass et al., 2013). Primers were purchased from ABI as inventoried 

TaqMan Gene Expression Assays, each containing a 6-carboxy-fluorescein (FAM dye) label 

at the 5’ end.  Data were analyzed using ABI sequence detection software (SDS version 2.2).  

For each PCR plate, cycle threshold (cT) was set to an order of magnitude above 

background.  For each individual sample, target gene cT was normalized to a control gene cT 

(β-actin) to account for variability in the starting RNA amount.  Expression of exposure 

group was quantified as fold difference over FA control.   

2.2.8.1 General statistical analysis 

 Graphpad prism 4.03 software was used for statistical analysis of GTT and biomarker 

data. Dose response study GTT was analyzed using a two-way analysis of variance 

(ANOVA) where each time blood glucose measurement was independently assessed.  The 

two independent variables were day and dose.  One-way ANOVA was used for data analysis 

of neutrophils and albumin in the BAL fluid. The time-course study GTT was analyzed by 

two-way repeated measures MANOVA (multivariate ANOVA).  The two independent 

javascript:void(0);
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variables were day and dose.  The time course study biomarker measurements were analyzed 

using a two-way ANOVA followed by Duncan’s multiple range test.  Pair-wise comparisons 

were performed as subtests of the overall ANOVA.  The nominal Type I error rate (α) was 

set at 0.05.  No adjustments were made for multiple comparisons.   

 

2.3 Results 

2.3.1 Ozone induces pulmonary injury and inflammation in a concentration-dependent 

manner 

 Although ozone is well studied for its potential to induce lung injury in many 

experimental settings, we wanted to determine the concentration-dependent cellular 

responses and inflammation in our experimental model to better correlate these changes with 

systemic metabolic alterations. Therefore, we first confirmed whether ozone-induced 

pulmonary cellular responses in WKY rats by examining the BAL fluid for increases in the 

lung vascular leakage of albumin and neutrophilic inflammation at 18hr post two consecutive 

days of ozone exposure.  Inflammation and cellular responses have been shown to peak on 

the second day of ozone exposure (van Bree et al., 2001). The concentration response 

analysis showed that 1.0 ppm ozone increased the number of neutrophils in the BAL fluid 

(Fig. 2.1A). Albumin, a lung protein leakage marker that exists at lower levels in the normal 

lung, was also elevated at 1.0 ppm ozone (Fig. 2.1B).  These changes were not evident in rats 

exposed to 0.5 or 0.25 ppm ozone. 

2.3.2 Ozone exposure induces concentration-and time-dependent hyperglycemia and glucose 

intolerance 

GTT in the concentration-response study was conducted to determine whether ozone-

induced cellular and inflammatory lung responses were associated with prior changes in 
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blood glucose regulation. In comparison to the FA group, ozone-exposed rats at 0.5 and 1.0 

ppm on day 1 displayed marked fasting hyperglycemia (0 min time point; Fig. 2.1C).  By 

contrast, the 2d-0hr ozone exposure group illustrated diminished fasting hyperglycemia (Fig. 

2.1D).  Both the 0.5 and 1.0 ppm experimental groups exhibited glucose intolerance when 

examined immediately after ozone exposure on day 1 (Fig. 2.1C) and day 2 (Fig. 2.1D).  

Ozone at 0.25 ppm caused neither hyperglycemia nor glucose intolerance (Fig. 2.1C and D).  

GTT was also performed in the time-course study where exposure was to FA or 1.0 ppm 

ozone.  As noted in the concentration-response study (Fig. 2.1C), ozone at 1.0 ppm induced 

hyperglycemia and glucose intolerance when examined immediately after a 6hr exposure 

(1d-0hr; Fig. 2.2A). Like ozone exposure on day 1, hyperglycemia and glucose intolerance 

persisted on day 2 of exposure (Fig. 2.2B).  Ozone-induced hyperglycemia and glucose 

intolerance were largely reversed after 18hr in the recovery group (Fig. 2.2C).          

2.3.3 Ozone exposure alters the serum metabolic hormones and lipids 

To determine the potential cause of hyperglycemia and glucose intolerance, we 

assessed the serum levels of metabolic hormones and cytokines through 

electroimmunochemiluminescence and colorimetric ELISA techniques. Variability was noted 

in baseline (FA control) levels of insulin between three time points, where FA-exposed rats 

after 2d-0hr had high levels of insulin relative to the other two groups. This increase in 

insulin could relate to the sustained stimulation of its release in response to the injection of a 

high dose of glucose immediately following the day 1 of FA or ozone exposure for 

performing GTT. When compared to time-matched FA group, serum insulin levels were 

lower in ozone-exposed rats at 2d-0hr time point (Fig. 2.3A). Serum leptin, a satiety 

hormone, increased after day 1 (1d-0hr) of ozone exposure, but not on day 2 (2d-0hr) or 



 

61 

 

following an 18hr of recovery (2d-18hr) (Fig. 2.3B). Circulating epinephrine levels were 

increased after 1d-0hr and 2d-0hr but was reversible in rats allowed an 18 hour recovery after 

two consecutive days of ozone exposure (Fig. 2.3C). There was a significant diurnal variation 

in cholesterol levels of FA-exposed rats such that rats necropsied in the afternoon times for 

1d-0hr and 2d-0hr had higher levels than rats necropsied in the morning at 2d-18hr time 

point. Ozone exposure resulted in elevated serum total cholesterol and HDL-C at 2d-18hr 

time point (Fig. 2.3D and F). The levels of LDL-C were increased on day 2 (2d-0hr and 2d-

18hr) after ozone exposure (Fig. 2.3E).   

2.3.4 Metabolomic analysis 

 We conducted metabolomic analysis of serum samples from FA or 1.0 ppm ozone-

exposed rats at 1d-0hr and 2d-0hr to gain understanding of the nature of metabolic changes 

and potential involvement of multiple organs in homeostatic control of metabolic processes.   

Comparison of global biochemical profiles for rat serum revealed several key metabolic 

differences between ozone-exposed rats vs. FA control. The metabolomic analysis identified 

strong effects of ozone exposure on metabolites that reflect changes in central energy 

metabolism. Of 313 named biochemicals identified in the serum, 81 metabolites were 

significantly increased in ozone-exposed rats and 48 decreased at 1d-0hr, while 71 

metabolites were increased and 80 were decreased at 2d-0hr. Pathway analysis identified a 

number of pathways that were significantly altered after ozone exposure. Those included 

lysine catabolism, branch chain amino acids (BCAA) metabolism, protein degradation, urea 

cycle, sphingolipids metabolism, fatty acid synthesis, primary and secondary bile acid 

metabolism and glutathione metabolism at 1d-0hr. Many of these pathways also remained 

changed at 2d-0hr, in addition to alteration in β-oxidation pathway. A detailed analysis of 
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metabolic processes affected based on individual metabolites impacted by ozone is given 

below. 

2.3.5 Metabolomic analysis: Ozone impairs glucose homeostasis through perturbation of 

glycolytic pathways 

 The metabolomic analysis confirmed hyperglycemia at 1d-0hr following ozone 

exposure (Table 2.1), as evident during GTT. In addition, the metabolite 1,5-anhydroglucitol, 

a biomarker inversely related to long-term glycemic control, was markedly decreased in 

ozone-exposed animals at both time points (Table 2.1). Fructose levels were also increased at 

1d-0hr but not at 2d-0hr. The glycolysis end-product pyruvate was increased on day 1 of 

ozone exposure while the anaerobic glycolytic metabolite, lactate, was significantly 

decreased at day 2 in ozone-exposed animals (Table 2.1).  Several tricarboxylic acid (TCA) 

cycle intermediates (citrate, α-ketoglutarate, fumarate and malate) were less abundant in the 

serum samples of ozone-exposed rats especially on day 2 (Table 2.1). 
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2.3.6 Metabolomic analysis: Ozone exposure increases serum amino acids 

 A number of BCAA and their metabolites were increased in the serum following 

ozone exposure (Table 2.1). The data showed several signatures of altered protein and amino 

acid catabolism.  Urea, generated to eliminate nitrogenous waste made from amino acid 

catabolism, was more abundant with ozone exposure. One muscle-specific protein catabolite 

(3-methylhistidine) and one possible muscle protein catabolite (N-acetyl-1-methylhistidine) 

were more abundant after 2 days of ozone exposure, suggesting their release from muscle 

(Table 2.1).  Increases were observed in the BCAA themselves (leucine, valine and 

isoleucine) as well as several metabolites generated when BCAA are catabolized to enter the 

TCA cycle.  Some of these metabolites (alpha-hydroxyisocaproate, alpha-hydroxyisovalerate 

and 2-hydroxy-3-methylvalerate) are typically present at low abundance unless 

dehydrogenase reactions are defective, or with mitochondrial dysfunction.  Combined with 

the observed decrease in TCA cycle intermediates, these metabolite changes may reflect 

mitochondrial dysfunction. 

2.3.7 Metabolomic analysis: Ozone exposure increases serum free fatty acids (FAA) and 

cholesterol while decreasing bile acids 

 All detectable short- and long-chain FFA were noticeably more abundant in ozone-

exposed rats at both time points. These increases included essential, non-essential, saturated, 

polyunsaturated and hydroxy fatty acids ranging in length from C12 to C22, as well as, 

palmitoyl and stearoyl sphingomyelin (Table 2.2).  Additionally, ozone exposure reduced 

mitochondrial -oxidation metabolites (beta-hydroxybutyric acid, propionylcarnitine and 

butyrylcarnitine) (Table 2.2).   
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 Bile acids are synthesized in the liver from cholesterol, further metabolized by the gut 

microbiome, and released into the intestine to facilitate dietary fat absorption.  In this study, 

several cholesterol and bile acid metabolites were changed by ozone exposure. Serum 

cholesterol was elevated, while virtually all serum bile acid metabolites were decreased in 

ozone-exposed rats at both time points (Table 2.3). The observed increase in diet-derived 

phytosterols (fucosterol, beta-sitosterol and campesterol) suggests increased dietary 

absorption of cholesterols or decreased metabolism/excretion of cholesterol.  While rats were 

not provided food during ozone exposure, the changes in circulating cholesterol and bile 

acids might be due to decreased metabolism and/or release in the circulation. The observed 

decreases in several bile acids and an intermediate in bile acid synthesis from cholesterol (7-

hoca) suggest decreased bile acid production may contribute to elevated serum cholesterol 

(Table 3).   

2.3.8 Liver transcriptomic profiling reveals its role in homeostatic control of ozone-induced 

systemic metabolic alterations 

 Because the liver is the primary organ that regulates glucose, amino acid, cholesterol 

and fatty acid metabolism, we conducted a global gene expression profiling of liver to 

determine its role in systemic metabolic impairment induced by ozone exposure. Overall, the 

effect of ozone on the liver transcriptome was greatest at 1d-0hr with reduction in number of 

genes affected at 2d-0hr and 2d-18hr. At 1d-0hr, 2335 genes were found to be significantly 

different in ozone-exposed rats compared to FA controls, while on 2d-0hr there were only 72 

genes and 2d-18hr there were 247 genes differentially expressed.  KEGG pathway analysis of 

liver DEGs at day 1 indicated that steroid biosynthesis, TCA cycle, and glyoxylate and 

decarboxylate metabolism pathways were significantly altered by ozone.  When genes 
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associated with various metabolic processes, apoptosis, mitochondria, unfolded protein 

response and diabetes were separated from master DEGs list, probe sets assigned to each of 

this process represented 11-34% of the total probes on the array, suggesting widespread liver 

gene expression impact of ozone exposure implicating metabolic processes (Appendix A. 

Table 2.1). The heatmaps of cytokine network showed inhibition of many genes with 

induction of some genes (Appendix A. Fig. 2.1A-C). Many genes belonging to apoptosis 

pathway were impacted by ozone exposure (Appendix A. Fig. 2.2A-F). Genes involved in 

steroid and fatty acid metabolism and insulin signaling were of interest and showed that 

ozone impacted key regulatory genes involved in these processes (Appendix A. Fig. 3 and  

Fig. 4A-C).  

 Ozone increased hepatic expression of numerous glycolytic genes including insulin 

receptor kinase-2, lactate dehydrogense A, aldolase A, phosphoglycerate mutase-1, enolase 

1-alpha, pyruvate kinase, 6-phosphofructo-2-kinase-fuctose-2,6 bisphosphatase, and 

glycerol-3-phosphate dehydrogenase-2 at 1d-0hr and 2d-0hr (Fig. 2.4), suggesting a central 

stimulation to increase glycolysis. However, the expression of glucokinase, an important 

enzyme for conversion of circulating glucose to glucose-6-phosphate, was decreased in 

ozone-exposed rats. Interestingly, ozone exposure also increased the expression of some of 

the gluconeogenic genes, such as the phosphoenolpyruvate carboxykinase 1-soluble, glucose-

6-phosphatase, and phosphofructo-2-kinase-fuctose-2,6 bisphosphatase, which is a multi-

functional protein that plays a role in gluconeogenesis, as well as, glycolysis.  In addition, 

ozone increased expression of genes involved in amino acid metabolism that feed into 

gluconeogenesis. Those included glutamate-ammonia ligase, tyrosine aminotransferase, 

serine dehydratase, and glycine- N-methyltransferase (Fig. 2.4).  Ozone also elevated 
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expression of genes encoding the TCA cycle enzymes such as fumarate hydratase, 

acontinase-2, and isocitrate dehydrogenase 3 NAD-alpha and gamma suggestive of enhanced 

energy expenditure in the liver. 

 Because many genes involved in glycolysis and TCA cycle were induced, we 

presumed that liver mitochondrial function might also be affected by ozone exposure. Many 

of the observed glycolysis, gluconeogenesis, and TCA genes modified by acute ozone 

exposure were seen in heat maps generated for mitochondria gene cluster (Fig. 2.5A and B). 

These also included genes involved in steroid metabolism. Mitochondrial heat maps (Fig. 

2.5A and B) showed that ozone decreased the expression of genes involved in cholesterol 

and steroid metabolism. These genes included farnesyl diphosphate synthase, ATP citrate 

lyases, and MLX interacting protein. Meanwhile, ozone  increased the expression of genes 

involved in glycolytic and fatty acid catabolic processes, such as acyl CoA thioesterase 1, 

acyl CoA thioesterase 2, acyl CoA thioesterase 7, 3-hydroxybutarte dehydrogense type 1, and 

pyruvate dehydrogenase phosphatase catalytic subunit 2 (Fig. 2.5B). Interestingly, ozone 

increased expression of genes encoding enzymes involved in mitochondria biogenesis and 

homeostasis in the liver, such as the peroxisome-proliferator-activated receptor gamma, 

involved in liver homeostatic control. Ozone-exposed rats also showed increases in 

mitochondria apoptotic genes such as the Bcl-2 interacting protein containing the BH3 

subunit and other genes involved in apoptotic pathways (Fig. 2.5B; Appendix A. Fig. 2).   

 While metabolomics data indicated marked changes in FFA and steroid metabolism, 

DEGs belonging to these processes were separated from a master DEGs list of liver genes. 

Since these metabolic pathways operate in mitochondria, some of these genes were readily 

seen in the heat maps for mitochondrial genes. A heat map of steroid metabolism genes 
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further confirmed that ozone exposure decreased expression of genes that encode enzymes 

necessary for cholesterol synthesis in the liver, including but not limited to, lanosterol 

synthase, farnesyl diphosphate synthase, mevalonate diphospho-decarboxylase, isopentenyl-

diphosphate delta isomerase, sterol regulatory element binding factor 1/2, and more (Fig. 

2.6A). In contrast, ozone increased the expression of genes that encode for the proteins 

arginase, argininosuccinate lyase, and argininosuccinate synthetase, which are essential for 

liver ammonia detoxifying processes and the progression of the urea cycle (Fig. 2.6B). 

Ozone-exposed rats also demonstrated higher expression of genes that encode for nuclear 

receptors, such as, estrogen, thyroid, and RAR-related orphan receptor A (Fig. 2.6B). 

 Since increases in circulating BCAA occurred likely due to increased muscle protein 

catabolism, we wanted to determine whether genes involved in liver amino acid metabolism 

responded to this systemic response.  Some of the genes involved in the use of amino acids 

for gluconeogenesis providing precursors for TCA cycle were induced by ozone, as indicated 

earlier.  These gene included dihydrolipamide S–succinyltransferase, serine dehydratase, 

aminoadipate-semialdehyde synthase, butyrobetaine, 2 –oxoglutarate dioxygenase 1 and 

more (Fig. 2.7). 

 We confirmed the validity of the liver gene array findings using RT-PCR for four 

transcripts at 1d-0hr time point (Fig. 2.8). All four transcripts that are important in metabolic 

regulation, including IRS-2, PFKFB1, Aco-2, and Ppargc1a, were found to be increased 

when expression was analyzed using RT-PCR, confirming that the array technique provided 

satisfactory results (Fig. 2.8). 
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2.4 Discussion 

Recent epidemiological and experimental studies have shown that ozone and ambient 

PM, in addition to causing respiratory effects in humans and animals, may also contribute to 

a number of systemic health outcomes such as neuronal, reproductive, cardiovascular and 

metabolic effects, including insulin resistance (Campbell, 2004; Thomson et al., 2013; Liu et 

al., 2013; Pedersen et al., 2014). The mechanisms of these systemic effects are poorly 

understood.  We have recently shown that acute ozone exposure in BN rats induces glucose 

intolerance, leptinemia and catecholamine release generally observed during a stress 

response (Bass et al., 2013).  Ozone exposure has been shown to induce lung injury and 

inflammation (van Bree et al., 2001), activate stress responsive regions in the brain (Gackiere 

et al., 2011), and induce hypothermia and bradycardia (Gordon et al., 2014). In this study, 

our goal was to characterize the homeostatic metabolic response of the WKY rat to ozone 

exposure using serum metabolomic and liver transcriptomic approaches to better understand 

the potential mechanisms responsible for systemic metabolic alterations. 

In WKY rats, ozone-induced fasting hyperglycemia, glucose intolerance, and serum 

leptin increases that were much more pronounced than responses we recently reported in BN 

rats (Bass et al., 2013). These metabolic and hormonal changes were accompanied by rapid 

and reversible increases in serum protein degradation byproducts, FAA and cholesterol, 

depictive of a systemic metabolic response, and decreases in TCA cycle intermediates, which 

might relate to hypothermia observed in rats after an ozone exposure (Gordon et al., 2014).  

Liver gene expression changes were coherent with changes in serum metabolites and showed 

inhibition of genes involved in steroid biosynthesis but stimulation of genes involved in 

gluconeogenesis, glycolysis, -oxidation and energy expenditure.  Ozone-induced release of 
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short- and long-chain FFA into the circulation, likely involving adipose lipolysis, was 

coincided with decreased expression of hepatic lipid biosynthesis genes. The concomitant 

increase in circulating cholesterol may be a result of reduced catabolism in the liver as a 

consequence of inhibition of bile acid synthesis evidenced by the decrease in circulating bile 

acid metabolites. Further, our data show increased flux of BCAA into the circulation, which 

corroborated with increased expression of hepatic enzymes that utilize precursor amino acids 

for gluconeogenesis.  Overall, we show that these acute systemic effects of ozone exposure 

involve a broad scale derangement of glucose, lipid, and protein metabolism reflective of a 

sympathetic and HPA-mediated stress response. If and how this reversible derangement 

might relate to chronic development of metabolic disorders will require studies involving 

long-term exposures.   

As observed in our study, ozone-induced lung injury and inflammation peaks one day 

after an acute exposure (van Bree et al., 2001).  We have shown that ozone initially induces 

acute hypothermia during exposure but this is followed by hyperthermia and lung 

inflammation the following day. The temporal pattern of metabolic changes seen in the 

present study suggests that neuronal response might be stimulated prior to inflammation. A 

number of animal studies have shown that ozone can induce neuroinflammation and activate 

catecholeminergic neurons likely through lung vagus afferents (Gackiere et al., 2011; 

Martinez-Lazcano et al., 2013). Activation of these central nervous system locations can 

stimulate sympathetic and HPA-mediated release of adrenal stress hormones in the systemic 

circulation, which can perturb metabolic functions involving glucose, lipids, and amino acids 

(Seematter et al., 2004).  We have also observed an increase of epinephrine after an acute 

ozone exposure in BN rats (Bass et al., 2013). In addition, ozone has been shown to increase 
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corticosteroidal activities in multiple tissues likely through activation of HPA axis (Thomson 

et al., 2013). The systemic metabolic changes such as hyperglycemia, glucose-intolerance, 

lipidemia, and amino acid influx induced by ozone are similar to those induced during a 

neuronally-mediated stress response following an organ injury (Molina, 2005; Wang et al., 

2007). Although stress-mediated metabolic disorder has been very well established, no prior 

air pollution studies have examined a stress response and subsequent systemic metabolic 

impairment.  

Temporal differences were noted in ozone-mediated hyperglycemia, leptinemia and 

glucose intolerance. Leptinemia was observed only on day 1, which coincided with fasting 

hyperglycemia, increased circulating pyruvate and 2-hydroxybutarate on day 1 and decreased 

lactate on day 2, while glucose intolerance persisted over both days. This may relate to a 

number of potential interactive mechanisms governing glucose intolerance and could explain 

the reversible nature of metabolic effects upon termination of ozone exposure.   It is not clear 

what stimulates leptin release immediately after ozone exposure, which coincides with 

release of FFA on day 1 but not on day 2. The stimulation of sympathetic nerves is known to 

result in inhibition of leptin secretion (Sandoval and Davis, 2003), but the activation of HPA 

has been associated with its increase (Roubos et al., 2012). Leptin is made primarily in 

adipocytes and has major impact on metabolic and immune processes (Mainardi et al., 2013).  

Since adipose lipolysis is likely stimulated after ozone exposure, it is possible that the release 

of FFA into the circulation stimulates concomitant leptin release.   However, leptin increase 

was not sustained on day 2 while FFA continued to be increased. Acute release of leptin from 

adipose tissue can directly signal the hypothalamus to mediate peripheral fat oxidation and 

suppress food intake (Roubos et al., 2012). It has been shown that increased leptin can inhibit 
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the neurons co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) in the 

arcuate nucleus in the medio-basal hypothalamus (Morton, 2007). Thus, leptin can contribute 

to the reduction of acute fasting hyperglycemia observed on day 2 of ozone exposure.   

Enhanced expressions of some of the genes involved in glycogenolysis, 

gluconeogenesis, and glycolysis after ozone exposure are suggestive of the changes induced 

following a stress response (Raz et al., 1991; Dufour et al., 2009). The ozone-induced 

increases in corticosterone (Thomson et al., 2013) may augment hepatic glucose production 

by stimulating glycogenolysis and gluconeogenesis. However, the increase in blood glucose 

is accompanied by increases in 2-hydroxybutarate on day 1 and decreases in 1,5 –

anhydroglucitol in serum at both time points, suggesting compromised glycemic control 

(Buse et al., 2003).  Concomitantly, the glycolytic metabolite pyruvate accumulated only on 

day 1 with a slight reduction on day 2, suggesting that glycolysis does not progress into the 

TCA cycle at least in the early phase of ozone exposure in the tissues. In contrast, lactate 

decrease in the ozone-exposed group on day 2 may indicate subsequent reduction of 

anaerobic glycolysis in the peripheral tissues that may coincide with the rebound effect on 

body temperature in rats following termination of exposure as previously noted (Gordon et 

al., 2014). Ozone exposed rats showed reduced serum levels of TCA cycle and β-oxidation 

intermediates despite stimulation of genes in the liver. These changes suggest that the ozone-

induced metabolic response likely involves reduced energy expenditure by peripheral tissues, 

such as the muscle, while maintaining homeostatic activities in the liver.   

Ozone exposure decreased serum insulin levels despite glucose intolerance, 

particularly on day 2, suggesting that ß-cells in the pancreas may be impacted. It has been 

shown that the autonomic nervous system can have inhibitory effects on insulin production 
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and secretion into systemic circulation by islet ß-cells (Bloom et al., 1978; Buijs et al., 2001; 

Kiba, 2004). Additionally, short-term leptin increases have also been observed to suppress ß-

cells’ insulin production through sympathetic activation in rodents (Park et al., 2010). It is 

possible that this is an adaptive mechanism involving short-term insulin resistance in the 

peripheral tissues in the midst of ozone-induced stress to ensure adequate glucose supply to 

the brain and other organs actively involved in maintenance of homeostasis, such as the liver.   

  The release of FFA into the circulation from adipose lipolysis is one of the 

hallmark features of stress-induced metabolic alterations. Ozone-induced increases in 

circulating FFA could be due to sympathetic action on white adipocytes (Nonogaki, 2000). It 

is has been shown that catecholamines during a stress response stimulate lipolysis and the 

mobilization of FFA in adipose tissue through activation of the ß-adrenergic receptors 

(Carey, 1998). ß-adrenergic receptor activation results in stimulation of adenylyl cyclase, 

followed by increases in intracellular cAMP, leading to the degradation of triglycerides and 

shuttling of FFA into the systemic circulation (Carey, 1998). In addition, activation of the 

HPA axis can also cause increased release of FFA from adipose tissues (Carey, 1998). 

Increased circulating FFA are known to induce insulin resistance by increasing serine 

phosphorylation of IRS-1 and halting insulin-mediated glucose uptake (Schulman and Zhou, 

2009), which may explain ozone-induced glucose intolerance.  

Ozone-induced increase in circulating cholesterol further supports the contribution of 

sympathetic or HPA axis activation (Kunihara and Oshima, 1983). Despite, rats being fasted 

during ozone exposure, the observed increases in circulating cholesterol and phytosterols 

suggest decreased catabolism of cholesterol.  Bile acid production is one important 

mechanism for eliminating cholesterol through excretion.  The observed decreases in several 



 

73 

 

bile acids and an intermediate of bile acid synthesis from cholesterol suggest that decreased 

bile acid production may contribute to elevated serum cholesterol.  These data are supported 

by evidence that the transcription of essential genes involved in cholesterol and steroid 

synthesis was suppressed in the liver.  

Notably, ozone-induced increases in several circulating BCAA including muscle-

specific protein catabolites, combined with the observed decrease in TCA cycle 

intermediates, may reflect increased protein catabolism and mitochondrial dysfunction.  

Given the fact that BCAA are known to regulate insulin production (Lu et al., 2013), their 

increases in the circulation after ozone exposure might influence insulin action in peripheral 

tissues. Stress has been shown to augment the catabolic state and therefore increases the 

utilization of BCAA for energy production in organs such as liver (Biolo et al., 1997; Porter 

et al., 2013).  It has been shown that muscle protein catabolism is stimulated under stress to 

provide necessary precursor amino acids for the liver to synthesize large amounts of acute 

phase proteins (Biolo et al., 1997). In addition, the increases in the expression of 

gluconeogenic enzymes involving BCAA suggests their use in energy production by the 

liver.  

Changes in liver gene expression were not restricted to metabolic processes, rather 

genes involved in apoptosis and mitochondrial function were remarkably impacted by ozone. 

Ozone exposure also changed the expression of several genes involved in inflammatory 

processes that tended to be inhibited rather than induced. Air pollution has been recently 

linked to non-alcoholic liver disease, also known as liver steatohepatitis (Zheng et al., 2013; 

Lin et al., 2014). One experimental study involving long-term exposure to concentrated 

ambient PM has shown liver inflammation, fibrosis and changes in markers of insulin 
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signaling (Zheng et al., 2013). Marked acute effects of ozone on liver gene expression 

reflecting apoptosis, alteration of mitochondrial function and metabolic processes in the 

present study support the hypothesis that air pollutants could, over a long period of time, 

induce liver disease. The mechanisms by which ozone may lead to acute changes in liver 

gene expression and contribute to long-term disease will need to be examined further.  

Although a number of studies have shown an increased release of inflammatory 

mediators from the lung into the circulation following exposure to air pollutants, specifically 

PM (Finnerty, et al., 2007; Mutlu et al., 2007; Delfino et al., 2008), ozone did not 

significantly increase serum IL-6 levels in this study. We and others have previously shown 

that acute ozone alone did not influence other serum inflammatory biomarkers such as TNF-

 (Urch et al., 2010; Bass et al., 2013).  Additionally, metabolic impairment was noted at 0.5 

ppm without changes in indicators of lung injury or inflammation, suggesting that the 

immediate metabolic response likely resulted from neurohumoral activation and not from 

cytokines released systematically. 

Some of the metabolic effects of ozone observed immediately following day 1 were 

reduced upon the second day of exposure, and most were reversed upon an 18 hour recovery 

period. This is critical in considering the relevance of these observations to humans who are 

exposed episodically over their lifetime.  The reduction of ozone effects upon subsequent 

exposure might relate to the adaptation that has been widely reported in pulmonary injury 

and inflammation (Brink et al., 2008; Hamade and Tankersley, 2009); however, the 

mechanisms are poorly understood. We observed that the adaptation response to ozone might 

also involve reduced metabolic impairments upon subsequent exposure. It is likely that the 

degree of adaptation responses vary between animal species and strain (Hamade and 
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Tankersley, 2009). In our prior study, we observed that episodic subchronic ozone exposure 

might reduce some of the acute metabolic effects in BN rats; however, glucose intolerance 

was still apparent after a 13 week episodic exposure (Bass et al., 2013). Thus, the metabolic 

consequences of low-level episodic ozone exposure are likely dependent upon the nature of 

that episodic exposure, the underlying genetic susceptibility and the biomarker of interest. 

Chronic stress has been linked to a rise in circulating lipids, insulin resistance and increased 

incidence of diabetes (Kelly and Ismail, 2015).  Thus, it remains to be established if long-

term ozone exposure might be linked to insulin resistance and diabetes predisposition 

through chronic stress and persistent metabolic alterations. The EPA.gov site states that the 

average ozone concentration that humans are exposed to across the United States is at or 

below the National Ambient Air Quality Standard of 0.075 ppm, with higher levels (0.2 to 

0.3 ppm) seen frequently in regions with hot climates (Calderón-Gacidueňas et al., 2000). 

The 1.0 ppm ozone concentration used in this study for most analysis is considered high 

compared to human relevant doses.  However, it has been shown that rats require three to 

four times the concentration of ozone to acquire an equivalent dose to humans (Hatch et al., 

1994). Thus, the concentrations of ozone used in our study, although higher than ambient 

levels, are appropriate for rodent exposures.  

 In conclusion, we show that the inhaled pulmonary irritant ozone is able to induce 

systemic metabolic changes, as seen by hyperglycemia, glucose intolerance, leptinemia, 

increased serum FFA, cholesterol, and BCAA together with varied changes in liver 

transcriptome expression involving the processes of apoptosis, mitochondrial dysfunction 

and the alterations of glucose, protein and lipid metabolism. The known increases in 

epinephrine (Bass et al., 2013) and corticosterone (Thomson et al. 2013), together with the 
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nature of systemic metabolic changes involving multiple central and peripheral tissues, 

provides supportive evidence for the involvement of a stress response in ozone-induced 

systemic metabolic impairment. Further studies will be required to determine the likely long-

term consequences of these metabolic alterations on insulin resistance. Although the 

immediate metabolic responses are not associated with the systemic increases in 

inflammatory cytokines, the contribution of chronic systemic inflammation might be 

important in the development of metabolic disorders. 
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Table 2.1. Metabolomic analysis: ozone-induced changes in serum metabolites for glucose 

and amino acid metabolism. 

 

Table depicting ozone-induced changes in circulating metabolites reflecting changes in 

glucose metabolism following 1d or 2d of FA or ozone exposure. Values indicate relative 

fold differences for each biochemical between ozone and FA samples at each time point 

(n=6-7/group).  Fold change >1 indicates increase, while fold change <1 indicates decrease.  

When p-value is <.05, the change is considered significant. 

  Fold Change 

Biological 

Processes 

Metabolite Ozone 

FA 1d 

p-Value Ozone 

FA 2d 

p-Value 

Glycolysis, 

Gluconeogenesis, 

Pyruvate 

Metabolism 

Glucose 1.47 0.0000 1.07 0.2801 

Fructose 1.64 0.0168 1.16 0.5933 

1,5 androhydroglucitol 0.77 0.0073 0.75 0.004 

Pyruvate  1.87 0.0011 0.86 0.2283 

Lactate 1.10 0.3613 0.72 0.0029 

Kreb Cycle 

citrate 1.07 0.5455 0.83 0.0778 

alpha-ketoglutarate 0.70 0.0067 0.67 0.0048 

succinate 0.88 0.4810 0.91 0.3771 

fumarate 1.08 0.9269 0.66 0.0177 

malate 0.78 0.1529 0.73 0.0414 

Tryptophan 

Metabolism 

Kinurenate 3.13 0.0004 2.11 0.0137 

Kinurenine 1.63 0.0001 1.23 0.0468 

Amino Acid 

Metabolism 

3-Methylhistidine 1.03 0.7168 1.22 0.0117 

N-acetyl-1-methylhistidine 0.85 0.1509 1.60 0.0008 

3-methyl-2-oxobutyrate 1.62 0.0001 1.46 0.0009 

3-methyl-2-oxovalerate 1.84 0.0000 1.60 0.0001 

isoleucine 1.47 0.0000 1.47 0.0000 

leucine 1.57 0.0000 1.39 0.0001 

valine 1.69 0.0000 1.49 0.0000 

4-methyl-2-oxopentanoate 1.89 0.0000 1.59 0.0000 

beta-hydroxyisovalerate 1.85 0.0005 1.78 0.0006 

beta-hydroxyisovalerate 2.03 0.0000 1.53 0.0001 

N-acetylleucine 5.72 0.0000 1.36 0.1878 

N-acetylvaline 2.16 0.0000 1.00 1.0000 

N-acetylisoleucine 5.79 0.0000 1.81 0.0180 

3-hydroxyisobutyrate 1.91 0.0000 1.40 0.0038 

4-methyl-2-oxopentanoate 1.89 0.0000 1.59 0.0000 

alpha-hydroxyisovalerate 2.06 0.0000 1.47 0.0071 

isobutyrylcarnitine 1.20 0.1633 0.61 0.0011 

2-hydroxy-3-methylvalerate 1.87 0.0000 1.34 0.0041 

2-methylbutyrylcarnitine (C5) 1.31 0.0891 1.06 0.6531 

isovalerylcarnitine 1.63 0.0029 1.26 0.0973 

Urea 1.24 0.0143 1.18 0.0398 
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Table 2.2 Metabolomic analysis: ozone exposure increases circulating FFA. 

Biological 

Processes 

Metabolite Fold Change 

 Ozone  p-Value Ozone p-Value 

 FA 1d  FA 2d  

Essential fatty 

acid 

linoleate (18:2n6) 1.57 0.0034 2.14 0.0000 

linolenate [alpha or gamma; (18:3n3 or 6)] 1.63 0.0107 2.17 0.0001 

dihomo-linolenate (20:3n3 or n6) 1.67 0.0014 1.13 0.296 

eicosapentaenoate (EPA; 20:5n3) 2.12 0.0000 1.29 0.0426 

docosapentaenoate (n3 DPA; 22:5n3) 2.02 0.0000 1.3 0.0268 

docosapentaenoate (n6 DPA; 22:5n6) 2.22 0.0000 1.7 0.0001 

docosahexaenoate (DHA; 22:6n3) 1.93 0.0000 1.59 0.0001 

Long chain 

fatty acid 

myristate (14:0) 1.31 0.0087 1.49 0.0001 

myristoleate (14:1n5) 1.33 0.0358 1.84 0.0001 

pentadecanoate (15:0) 1.37 0.0048 1.39 0.0018 

palmitate (16:0) 1.59 0.0009 1.8 0.0000 

palmitoleate (16:1n7) 1.51 0.0417 2.47 0.0001 

margarate (17:0) 1.51 0.0016 1.68 0.0001 

10-heptadecenoate (17:1n7) 1.31 0.0119 1.47 0.0003 

stearate (18:0) 1.33 0.0034 1.36 0.001 

oleate (18:1n9) 1.61 0.0069 2.38 0.0000 

cis-vaccenate (18:1n7) 1.65 0.0091 1.46 0.027 

nonadecanoate (19:0) 1.27 0.1076 1.38 0.0156 

10-nonadecenoate (19:1n9) 1.4 0.1337 1.63 0.0077 

eicosenoate (20:1n9 or 11) 1.29 0.0804 1.39 0.0227 

dihomo-linoleate (20:2n6) 1.6 0.0021 1.45 0.0057 

mead acid (20:3n9) 1.77 0.0003 1.51 0.0032 

arachidonate (20:4n6) 1.22 0.0819 1.23 0.0474 

docosadienoate (22:2n6) 1.42 0.0077 1.07 0.5246 

adrenate (22:4n6) 1.88 0.0001 1.26 0.0814 

Fatty acid, 

monohydroxy 

3-hydroxypropanoate 0.99 0.9762 0.73 0.0091 

3-hydroxyoctanoate 0.93 0.7825 0.99 0.8814 

2-hydroxystearate 1.3 0.0029 1.26 0.0066 

2-hydroxypalmitate 1.34 0.0007 1.31 0.0007 

Fatty acid  

and  BCAA 

metabolism 

propionylcarnitine 0.82 0.1495 0.64 0.008 

butyrylcarnitine 0.72 0.0168 0.54 0.0001 

butyrylglycine 0.87 0.168 0.94 0.4452 
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Table depicting ozone-induced changes in circulating FFA following 1d or 2d of FA or 

ozone exposure. Values indicate relative fold differences for each biochemical between 

ozone and FA samples at each time point (n=6-7/group).  Fold change >1 indicates increase, 

while fold change <1 indicates decrease.  When p-value is <.05, the change is considered 

significant. 
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Table 2.3 Metabolomic analysis: ozone exposure alters circulating metabolites indicative of 

impairment in cholesterol and bile acid metabolism. 

Biological 

Processes 

Metabolite Fold Change 

 Ozone p-Value Ozone p-Value 

 FA 1d  FA 2d  

Bile acid 

metabolism 

cholate 0.22 0.0100 0.24 0.0019 

glycocholate 0.21 0.0061 0.18 0.001 

chenodeoxycholate 0.27 0.0401 0.16 0.0062 

hyodeoxycholate 0.32 0.0030 0.62 0.1782 

taurodeoxycholate 0.5 0.0279 1.81 0.1032 

glycodeoxycholate 0.07 0.0042 0.16 0.0671 

glycochenodeoxycholate 0.15 0.0219 0.08 0.0041 

6-beta-hydroxylithocholate 0.17 0.0005 0.45 0.1509 

beta-muricholate 0.33 0.0251 0.30 0.0011 

hyocholate 0.38 0.0974 0.33 0.011 

alpha-muricholate 0.19 0.0130 0.12 0.0006 

tauroursodeoxycholate 0.46 0.0058 1.09 0.8176 

tauro-alpha-muricholate 0.54 0.0222 0.89 0.6976 

taurohyodeoxycholic acid 0.25 0.0011 1.14 0.5012 

Monoacyl-

glycerol 

1-linoleoylglycerol (1-

monolinolein) 
0.64 0.0009 0.54 0.0000 

2-linoleoylglycerol (2-

monolinolein) 
0.64 0.0004 0.52 0.0000 

1-arachidonylglycerol 0.64 0.0065 0.79 0.0689 

2-arachidonoyl glycerol 0.67 0.0172 0.75 0.0496 

Sphingolipid 
palmitoyl sphingomyelin 1.57 0.0004 1.75 0.0000 

stearoyl sphingomyelin 2.73 0.0018 2.66 0.0002 

Sterol/Steroid 

cholesterol 1.33 0.0003 1.27 0.0008 

beta-sitosterol 1.44 0.0003 1.10 0.2589 

campesterol 1.31 0.0047 1.07 0.5349 

fucosterol 1.43 0.0101 1.25 0.0895 

 

Table depicting ozone-induced changes in circulating cholesterol and bile acid metabolites 

following 1d or 2d of FA or ozone exposure. Values indicate relative fold differences for 

each biochemical between ozone and FA samples at each time point (n=6-7/group).  Fold 

change >1 indicates increase, while fold change <1 indicates decrease.  When p-value is 

<.05, the change is considered significant. 
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Figure 2.1.  
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Figure 2.1 Ozone-induced cellular and inflammatory responses in the lung are 

associated with hyperglycemia and glucose intolerance in WKY rats. 

Rats were exposed to FA or ozone (0.25, 0.5 or 1.0 ppm O3) for 6h/day for two consecutive 

days.  Immediately after day 1 (1d-0hr) and day 2 (2d-0hr) of exposure GTT was performed.   

Rats were necropsied 18hr after day 2 exposure (2d-18hr) and BAL fluid was analyzed for 

lung toxicity markers. (A) Neutrophils, as a marker of inflammation. (B) Albumin, as an 

indicator of vascular protein leakage. (C) Blood glucose at baseline and during GTT in rats 

exposed to FA or ozone (1d-0hr). (D) Blood glucose at baseline and during GTT in rats 

exposed to FA or ozone (2d-0hr). The values in the bar graphs are displayed as mean ± SE of 

n=6/exposure group. The GTT curve shows mean value ± SE of n=6/ group with repeated 

measures over two hours. The 0 min time point shows fasting glucose levels in each group. * 

Indicates significant difference from respective FA-exposed groups at a given time (*=p<.05, 

**=p<.01, ***=p<.001). 
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Figure 2.2.  

   

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Acute ozone exposure induces reversible hyperglycemia and glucose 

intolerance. 

GTT was performed in rats exposed to FA or 1.0 ppm of ozone immediately after first day of 

6h ozone (1d-0hr) (A); immediately after second day of 6h ozone (2d-0hr) (B); and at 18h 

after second day of 6h ozone exposure (2d-18hr) (C; recovery group). Each value represents 

mean ± SE of n=8/group. *Indicates significant difference from FA exposed rats for a given 

time point (**=p<.01, ***=p<.001). 
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Figure 2.3 

 

Figure 2.3 Acute ozone exposure alters circulating mediators, metabolic hormones and 

lipids in rats.  

Metabolic hormones and cholesterols were measured in the serum of FA and ozone (1.00 

ppm) exposed rats at various time points (1d-0hr, 2d-0hr, 2d-18hr). Each value indicated in 

the bar graphs represents mean ± SE (n=6-8/group).  *Indicates significant difference from 

time-matched FA exposed rats (*=p<.05, **=p<.01, ***=p<.001). 
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Figure 2.4 
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Figure 2.4 Altered transcription levels of genes involved in glucose metabolism in the 

livers of ozone-exposed rats.  

Functional gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com) and identified from DEGs list based on the query terms, “glycolysis”, 

“tricarboxylic acid” cycle and “gluconeogenesis”. These genes were selected to prepare 

expression value tables for each sample. Genes were then median centered with average 

linkage, hierarchically clustered using Cluster 3.0 and displayed through Java Treeview. Red 

indicates genes that have high expression values across all groups, green indicates genes that 

have low expression values across all groups, and black indicates median expression. Note 

that this heat map is truncated to show important clusters affected by ozone exposure (n=5-

6/group). 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.affymetrix.com/
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Figure 2.5 
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Figure 2.5 Acute ozone exposure modulates the expression of genes involved in liver 

mitochondrial function.  

Functional gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com) and identified from DEGs list based on the query term, 

“mitochondrial genes”. Genes were then median centered with average linkage, 

hierarchically clustered using Cluster 3.0 and displayed through Java Treeview. (A) A cluster 

of mitochondria genes showing lower expression after ozone exposure relative to FA. (B) A 

cluster of genes showing higher expression in rats exposed to ozone relative to FA-exposed 

rats. Red indicates genes that have high expression values across all groups, green indicates 

genes that have low expression values across all groups, and black indicates median 

expression (n=5-6/group). 
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Figure 2.6.1 
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Figure 2.6.2. 

 

 

Figure 2.6 Modification of steroid metabolism genes in the livers of rats after ozone 

exposure.  

Functional gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com) and identified from DEGs list based on the query term, “steroid metabolism 

genes”. Genes were then median centered with average linkage, hierarchically clustered using Cluster 

3.0 and displayed through Java Treeview. (A) A cluster of steroid metabolism genes showing lower 

expression after ozone exposure relative to FA. (B) A cluster of steroid metabolism genes showing 

higher expression in rats exposed to ozone relative to FA.  Red indicates genes that have high 

expression values across all groups, green indicates genes that have low expression values across all 

groups, and black indicates median expression (n=5-6/group). 

 

http://www.affymetrix.com/


 

91 

 

Figure 2.7 

 

Figure 2.7 Ozone exposure alters expression of genes involved in amino acid 

metabolism in the liver. 

Functional gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com) and identified from DEGs list based on the query term, “amino acid 

metabolism”. Genes were then median centered with average linkage, hierarchically 

clustered using Cluster 3.0 and displayed through Java Treeview.  Heat map of DEGs with 

significant ozone effect. Red indicates genes that have high expression values across all 

groups, green indicates genes that have low expression values across all groups, and black 

indicates median expression (n=5-6/group). 

  

http://www.affymetrix.com/
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Figure 2.8 

 

Figure 2.8 Ozone-induced increases in expression of selected genes confirmed using RT-

PCR. 

Total liver RNA from FA and ozone (O3)-exposed rats (1d-0hr) was used for RT-PCR 

-actin as 

a control transcript and then relative fold change from ozone was calculated using FA values. 

*Indicates significant difference from FA-exposed rats for a given time point (**=p<.01, 

***=p<.001). 
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CHAPTER 3 

 

OZONE EXPOSURE INCREASES CIRCULATING STRESS 

HORMONES AND LIPID METABLITES IN HUMANS 

3.1 Introduction 

 Several epidemiological studies nationally and internationally have predicted a link 

between air pollution and prevalence of diabetes (Pearson et al., 2010; Zanobetti et al., 2014; 

Eze et al., 2015; Nicole, 2015; Thiering and Heinrich, 2015). It is apparent that the 

conventional risk factors such as sedentary lifestyle, obesogenic high caloric diets, and/or 

genetics alone do not fully explain the causal relationship.  The contribution of stress and 

environmental factors has been postulated. Near road air pollution exposure has also been 

linked to diabetes (Brook et al., 2008; Brook et al., 2013; Weinmayr et al., 2015) and a recent 

study has associated roadway proximity with hyperglycemia in women (Ward et al., 2015). 

Although both particulate matter (PM) and gaseous pollutants have been associated with 

diabetes, in one study this association was presumed to be stronger with gaseous pollutants 

than PM (Janghorbani et al., 2014).  

 Subchronic ambient PM exposure studies using rodent models have shown increased 

adipose and brain inflammation, and liver insulin resistance (Rajagopalan and Brook, 

2012;Liu et al., 2014). It has been postulated that pulmonary injury/inflammation, following 
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inhalation of air pollutants, leads to increased release of cytokines and biologically active 

mediators causing systemic inflammation and metabolic effects. 

 However, most air pollution studies examining circulating cytokines fail to 

demonstrate their increases in the blood. More recently, epidemiological and experimental 

studies have associated inhaled pollutants with a variety of neural outcomes (Allen et al., 

2014; Costa et al., 2014; Calderon-Garciduenas and Torres-Jardon, 2015; Wilker et al., 

2015). Specifically, exposure to ozone activates the nucleus tractus solitarius (NTS) and 

stress responsive regions of the hypothalamus through stimulation of pulmonary vagal C-

fibers (Gackiere et al., 2011). Acute ozone exposure can increase levels of circulating stress 

hormones such as epinephrine and corticosterone in rats (Bass et al., 2013; Thomson et al., 

2013; Miller et al., 2015a). Ozone exposure also induces cardiac autonomic effects in 

humans (Arjomandi et al., 2015), hypothermia and bradycardia in rats (Gordon et al., 2014), 

and leptinemia, hyperglycemia, glucose intolerance, and global changes in circulating 

metabolites involved in peripheral glucose, lipid, and amino acid metabolism in rats (Miller 

et al., 2015b). These changes are reflective of classical stress response-mediated homeostatic 

alterations involving activation of sympathetic neurons and hypothalamus pituitary adrenal 

(HPA) axis (Miller et al., 2015a).  

 We have previously performed global metabolomic assessment of serum to 

characterize the metabolic response to ozone and gain mechanistic insights in rats (Miller et 

al., 2015a). The goal of this exploratory study was to perform a global metabolomic 

assessment of archived human serum samples from a prior clinical study involving ozone 
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exposure, and determine ozone-induced metabolic changes in humans, establish rodent to 

human coherence, and identify novel non-protein biomarkers of ozone exposure. We 

hypothesized that global metabolomic assessment of serum samples collected after air or 

ozone exposure in humans will reveal metabolic derangements through a neurohormonally-

mediated stress response, comparable to rats. Since most human ozone exposures are 

performed during intermittent exercise and day-light cycle, we predicted that there would be 

some discrepancies in the metabolite profile of the serum between non-exercising rats 

(nocturnal) exposed during their non-active circadian cycle and exercising humans. Some of 

the results of this study have been previously reported in the form of an abstract (Miller et al., 

2015b). 

3.2 Materials and Methods  

3.2.1  Original study design: study population and ozone exposure 

 Serum samples for this exploratory study were obtained from Clinical Trial 

NCT01492517. In this trial, subjects were recruited under an EPA contract with Westat 

Corporation (Rockville, MD). Cardiac and pulmonary function, and systemic effects of 

ozone on coagulation and inflammatory markers have been previously reported from this 

study (Devlin et al., 2012).  A total of 24 volunteers were involved in the study. The protocol 

and consent forms were approved by the University of North Carolina, School of Medicine 

Committee on the Protection of the Rights of Human Subjects and the US Environmental 

Protection Agency’s Institutional Review Board. The exposure was conducted in a 

randomized crossover design where two clinical visits of each individual were separated by 

at least two weeks. During each visit, the subjects were exposed to either 0.3 ppm ozone or 

clean air for 2 hrs in the morning time in a blinded manner. During the exposure, subjects 
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alternated between 15 minutes of rest and 15 minutes of exercise on a cycle ergometer 

(Devlin et al., 2012). Exposures were conducted at the US Environmental Protection Agency, 

Human Studies Facility on the campus of the University of North Carolina, Chapel Hill. 

Ozone was generated by a silent electric discharge method (model 502; Meckenheim, Bonn, 

Germany). The exposure chambers were maintained at 40% relative humidity for all 

exposures. For more details of the exposure system, see the Appendix B and Devlin et al., 

2012 publication.  

3.2.2  Serum samples and metabolomic analysis 

 Serum samples collected prior to the start of exposure, immediately post exposure 

(within 1 hr) and during the next day morning follow up visit were assessed for glucose, 

triglycerides and cholesterols (LabCorp Inc, Durham, NC) when the clinical study was 

performed. In the present study, archived serum samples collected immediately post (within 

1 hr) after air or ozone exposure were used for exploratory metabolomic assessment. These 

samples were sent to Metabolon, Inc. (Durham, NC) for global metabolomic analysis (see 

Appendix B, methods for details). Briefly, each sample was accessioned into the Metabolon 

Laboratory Information Management System (LIMS) system and assigned a unique 

identifier. Samples were prepared using the automated MicroLab STAR® system from 

Hamilton Company (Appendix B, methods). The LC-MS portion of the platform was based 

on a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo 

Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated 

electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass 

resolution (Evans et al., 2014). The GC-MS portion of the platform utilized a Thermo-

Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron 
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impact ionization (EI).  The informatics system consisted of four major components: the 

LIMS, the data extraction and peak-identification software, data processing tools, and data 

interpretation and visualization tools (see methods, and Figures E1 and E2 in the Appendix 

B).  The hardware and software foundations for these informatics components were the LAN 

backbone and a database server running Oracle 10.2.0.1 Enterprise Edition. Compounds were 

identified by comparison to library entries of purified standards or recurrent unknown 

entities. Peaks were quantified using area-under-the-curve.  Statistical analysis included log 

transformation and imputation followed by one way analysis of variance with repeated 

measures. An estimate of the false discovery rate (q-value) was calculated to take into 

account the multiple comparisons that normally occur in metabolomic-based studies.  

Significant (p<0.05) pathway enrichment output (cumulative hypergeometric distribution) 

was assessed for each of the selected contrasts using MetaboLync, version 1.1.2 (Shannon et 

al., 2003) to determine the metabolic processes impacted by ozone.  

 Serum samples collected immediately post air or ozone exposure were also analyzed 

for insulin, leptin, interleukin-6 (IL-6), and tumor necrosis factor (TNF)- -

specific antibody-based electrochemiluminescence assays (Meso Scale Discovery, 

Gaithersburg, MD) according to manufacturer’s instructions.  
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3.3 Results 

3.3.1  Demographics of human subjects 

 The clinical study from which serum samples were obtained included 24 healthy, 

young adult participants; 20 males and 4 females (Table 3.1). The average age of the subjects 

was 25.6 with a range of 22–30 years. Weights averaged 78.5 kg with a range from 50.7 to 

97.3 kg.  Eleven subjects had a body mass index between 18.5 and 24.9, and 13 subjects were 

between 25 and 29.9 (see online data supplement #2 for details on individual subjects). Most 

of the subjects never smoked. Only three subjects were previous smokers, all before the year 

2006. All subjects participated in weekly exercise: 2 mild level (90 to 180 min/week), 9 

moderate level (180 to 360 min per week) and 13 high level (over 360 min per week). 

Participants did not have a recent history of prescription medication use, cardiopulmonary 

disease, or allergies as determined by a detailed medical history and physical examination. 

Their specific characteristics are summarized in Table 3.1 and detailed in the Appendix B 

and online supplement #2. 

 Heart rate, blood pressure, and serum glucose, triglycerides, and cholesterols 

measured prior to, immediately post air or ozone exposure, and after one day follow up visit 

for each subject are provided as line graphs in Appendix B (Figures E3-E4) and individual 

subject’s data in the online supplement #2. There were no marked pre or post air or ozone 

exposure differences noted in heart rate and blood pressure; however, between subject 

variability was noted in the levels of triglycerides and cholesterols. Between subject glucose 

levels varied slightly at pre exposure time but not after post exposure or next day follow up 

visit.    
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3.3.2  Ozone exposure increases circulating cortisol but does not change cytokines or 

HOMA-IR 

 Cortisol and corticosterone were significantly increased in the serum samples 

collected after ozone exposure when compared to air (Figure 3.1). In addition, a 1.62-fold 

increase in corticosterone metabolite 11-dehydrocorticosterone, but not cortisone (see data in 

the online supplement #2) suggests HPA axis involvement in acute ozone-induced extra 

pulmonary effects. Serum levels of TNF- and IL-6 as reported earlier (25) showed no 

significant difference between air and ozone immediately post exposure (data not shown). 

Serum leptin and insulin (see Figure E5 in the Appendix B and data in the online supplement 

#2) were not significantly different between air and ozone samples immediately post 

exposure. High individual sample variability was noted for 3-4 individuals in the levels of 

insulin and leptin. Homeostatic model assessment for insulin resistance (HOMA-IR) 

provided no significant differences between air and ozone exposure (see Figure E5 in the 

Appendix B for line graph and online supplement #2 for data).  

3.3.3 Correlations of subject characteristics with individual metabolites and ozone-induced 

changes 

 We attempted to correlate ozone-induced changes (fold-increase) in selected 

metabolites, including steroid hormones with individual subject’s BMI, but no significant 

relationships appeared to occur (see Figure E6 in the Appendix B.). Although the number of 

subjects included in the study were small, especially when stratified for their prior exercise 

habit (as mild, moderate or heavy) or sex, we have provided the correlation plots and results 

in Figures E7-E8 and results section of the Appendix B. Likewise, circulating levels of 

metabolites (glucose, triglycerides and cholesterols) post air or post ozone exposure were 
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analyzed for correlations with BMI, prior exercise habit and sex, and these plots are provided 

in Figures E9-E11 in the Appendix B. No significant differences were noted between air and 

ozone exposure for pre exposure normalized glucose, triglycerides and lipids levels (see 

online data supplement #2 for all individual subject’s clinical data).  

3.3.4 Ozone exposure changes the profile of circulating metabolites 

 There were 663 compounds of known identity that were detected in human serum 

samples (see online data supplement #2 for all original data, normalized data, heat maps and 

scatter plots). Of those, statistically significant differences were found for 121 biochemicals 

(p<0.05) between air and ozone exposure as determined by ANOVA. Specifically, 85 were 

increased and 36 were decreased after ozone exposure compared to air. There were also a 

number of biochemicals for which the difference between the air and ozone exposures 

approached significance (0.05<p<0.10;23 increased and 29 decreased). A pathway 

enrichment analysis using MetaboLync (27) indicated seven biochemical pathways 

(sphingolipid metabolism, endocannabinoid synthesis, fatty acid metabolism, β-oxidation, 

dicarboxylic acid metabolism, steroid hormone biosynthesis and phospholipid metabolism) to 

be significantly altered by ozone exposure (Figure 3.2). All of these pathways are associated 

with lipid metabolism.  

3.3.5 Ozone exposure increases circulating free fatty acids and lysolipids in humans 

 One of the most consistent and strongest effects associated with ozone exposure in 

this study was the pronounced increases in serum free fatty acids (Table 3.2A). There were 

significant (p<0.05) increases in medium- and long-chain free fatty acids in the serum 

samples collected after ozone exposure relative to air, along with a significant increase in 

serum glycerol, a marker of lipolysis (Table 3.2A). Additionally, higher levels of a variety of 
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lysolipids were found in the serum samples collected after ozone exposure relative to air 

(Table 3.2B), which may be indicative of membrane phospholipid hydrolysis contributing to 

fatty acid generation.  Finally, increasing trends were also noted in sphinganine (P=0.0511) 

and sphingosine 1-phosphate (P<0.00005) in combination with elevated long-chain fatty 

acids in the serum samples obtained after ozone exposure relative to the clean air.   

3.3.6 Ozone exposure during intermittent exercise increases fatty acid oxidation in human.

 There were significant changes in biochemicals associated with fatty acid β-oxidation 

(Table 3.3). These changes included significantly higher levels of ocanoylcarnitine, 

decanoylcarnitine and cis-4-decanoylcarnitine together with a trend of an increase in 

acetylcarnitine (p=0.079; a surrogate for the fatty acid oxidation end product acetyl-CoA) in 

the serum samples collected after ozone relative to air exposure. Ozone exposure was also 

associated with increases in serum laurylcarnitine, myristoylcarnitine, palmitoylcarnitine, 

oleoylcarnitine, linoleoylcarnitine and myristoleoylcarnitine. Long-chain fatty acids (>12 

carbons) are conjugated with carnitine to facilitate transport into the mitochondrial matrix 

where they may undergo fatty acid β-oxidation for energy. These changes were also 

accompanied by lower levels of carnitine in the serum samples collected after ozone 

exposure, which may be a marker of increased utilization for acylcarnitine conjugation. 

Moreover, the dicarboxylates, azelate and 2-hydroxyglutarate were significantly (p<0.05) 

increased in the serum after ozone exposure when compared to air (Table 3.3), and may 

suggest that the β-oxidation process was saturated, thereby shifting to fatty acid ω-oxidation. 

Taken together, these findings support increased fatty acid β-oxidation for energy generation 

following the 2 hr ozone exposure during intermittent exercise.  Further indication of 

increased fatty acid β-oxidation was revealed by the elevation in the ketone body, 3-
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hydroxybutyrate (BHBA; Table 3.3), a marker of hepatic fatty acid β-oxidation which can 

accumulate in cases where the capacity of the TCA cycle is overwhelmed by the availability 

of substrate. 

3.3.7 Ozone exposure increased polyunsaturated fatty acids in the serum. 

 In addition to the observed increases in free fatty acids and fatty acid oxidation 

byproducts, n3 and n6 polyunsaturated fatty acids were also significantly (p<0.05) increased 

in the serum from ozone-exposed subjects relative to air and may contribute to production of 

inflammatory mediators (Figure 3). These included linolenate alpha or gamma (18:3n3 or n6; 

Figure 3.3A), eicosapentaenoate (EPA 20:5n3; Figure 3.3B), docosapentaenoate (n3 DPA 

22:5n3; Figure 3C), docosahexaeonate (DHA 22:6n3; Figure 3.3D), linoleate (18:2n6; Figure 

3.3E), dihomo-linolenate (20:3n3 or n6 (DHGLA); Figure 3.3F), and arachidonate (AA) 

(20:4:6; Figure 3.3G). 
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3.4 Discussion 

 Epidemiological studies have associated air pollutants with increased prevalence of 

type-2 diabetes and changes in markers of insulin resistance (Brook et al., 2008; Pearson et 

al., 2010; Kim  and Hong, 2012; Brook et al., 2013; Fleisch et al., 2014; Zanobetti et al., 

2014; Eze et al., 2015; Nicole, 2015; Thiering and Heinrich, 2015; Weinmayr et al., 2015). 

However, controlled human studies examining systemic metabolic effects and potential 

mechanisms have not been performed. A number of environmental stressors are postulated to 

be interactively involved in the development of insulin resistance over a long period of time 

and linked to lipidemia and high blood glucose. We have recently reported that acute ozone 

exposure in rodents produces systemic homeostatic changes in circulating metabolites 

reflective of activation of neuronal stress response pathways (Bass et al., 2013; Miller et al., 

2015a). The goal of the current study was to determine if metabolomic assessment of serum 

samples obtained from a prior clinical study where humans acutely exposed to ozone show 

similar systemic metabolic alterations as rodents. Serum metabolomic analysis revealed 

increases in circulating cortisol and corticosterone, but not cortisone, in samples collected 

after ozone exposure, reflective of an activation of a neurohormonally-mediated stress 

response in humans.  Pathway analysis of metabolites significantly (p<0.05) changed in 

serum after ozone exposure implicated altered lipid metabolic processes. As observed in 

rodents, increased levels of a number of circulating free fatty acids and glycerols in the serum 

from ozone-exposed individuals suggested stimulation of adipose lipolysis of triglyceride 

stores and their liberation into the circulation. Increased lysolipids, likely released from 

hydrolysis of cellular and membrane phospholipids, and serum polyunsaturated fatty acids in 

ozone-exposed humans may be linked to proinflammatory mechanisms. Unlike rodents, 
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samples obtained from humans who exercised intermittently during ozone exposure showed 

elevated circulating metabolites of β-oxidation, such as ketone bodies, dicarboxylates, and 

metabolites of –oxidation. No ozone effects were noted in HOMA-IR. Overall, this study 

demonstrates that ozone exposure in humans is associated with increased release of stress 

hormones causing lipolysis as in rodents, likely through activation of HPA axis. Chronic 

elevations of these metabolites in the circulation might contribute to insulin resistance and 

systemic inflammation (Kelly and Ismail, 2015; Magomedova et al., 2015).  

  In non-exercising rats, acute ozone exposure induces glucose intolerance and 

increases circulating leptin and epinephrine (Bass et al., 2013; Miller et al., 2015a). Both 

leptin and epinephrine changes are associated with a reversible decrease in body temperature 

(Gordon et al., 2014), suggesting involvement of the sympathetic axis and changes in 

hypothalamic thermoregulation. Increased ACTH and cortisol levels after ozone exposure 

have also been noted in other rodent studies (Soulage et al., 2004; Thomson et al., 2013).  In 

this study, humans exposed to ozone also presented elevated circulating cortisol and 

corticosterone, suggesting the activation of the HPA axis, similar to rats. However, unlike 

rats (Bass et al., 2013; Miller et al., 2015a), no differences were noted in leptin levels in 

serum samples obtained after ozone exposure in humans (see Figure E5 in the Appendix B). 

This might be due to the differences in the study design and exposure protocol. The present 

human study did not involve ozone exposure during resting and exposure occurred only for 2 

hrs. Acute ozone exposure has been shown to activate neuro-stress responsive regions and 

the NTS where pulmonary vagal nerves terminate in the brain (Soulage et al., 2004; Gackiere 

et al., 2011). Thus, pulmonary C-fibers, likely through regional neurotransmission in the 

brain, can stimulate sympathetic and/or the HPA axis, leading to the release of stress 
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hormones from sympathetic nerve endings and also from the adrenal gland (Patterson et al., 

2014; Nicolaides et al., 2015).  As a result, these stress hormones can target metabolic organs 

in a tissue specific manner and alter glucose and lipid metabolism through activation of 

cellular glucocorticoids and adrenergic receptors.  

 Acute ozone exposure in humans increased circulating long- and medium-chain fatty 

acids as observed in rats (Miller et al., 2015a). This is likely induced through stress hormone-

mediated adipose lipolysis.  Endogenous and ingested free fatty acids are re-esterified in 

adipose tissue as triacylglycerides for storage (Papakova and Cahova, 2015).  During a stress 

response, circulating epinephrine and cortisol through β-adrenergic and glucocorticoid 

receptors, respectively, can increase hormone-sensitive lipase-mediated lipolysis of adipose 

triglycerides into free fatty acids and glycerol (Papakova and Cahova, 2015). Ozone-induced 

elevation of free fatty acids in the serum could lead to uptake of these lipid metabolites by 

the peripheral tissues, including liver and muscle, for oxidation. In a previous study, we 

noted that genes involved in mitochondrial metabolism and biogenesis were markedly altered 

in the livers of ozone-exposed rats (Miller et al., 2015a). Since the metabolic changes 

occurring immediately following an ozone exposure in humans are likely reversible after 

termination of exposure, as noted in rats after a single exposure (Miller et al., 2015a), there is 

likely to be minimal long-term impact on healthy individuals. However, in those with 

underlying metabolic impairment or those with defects in homeostatic mechanisms, exposure 

to ozone might be more impactful and may contribute to metabolic imbalance. 

 Lysolipids, also known as lysophospholipids, were elevated in serum samples 

obtained after ozone exposure, indicating likely increased phospholipid turnover and plasma 

membrane remodeling by phospholipases. Although specific tissue sources cannot be 
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ascertained through serum metabolomic assessment, these lipids through their action on G-

protein-coupled lysophospholipid membrane receptors (LPL-R) have been shown to impact a 

variety of cellular responses, such as cytoskeletal integrity/stability, mitogenesis, 

inflammation, energy production and lipid metabolism (Gijon and Leslie, 1999). Ozone 

exposure also increased circulating polyunsaturated fatty acids (Figure 3). In the lung, ozone 

exposure has been shown to increase polyunsaturated fatty acids, which are formed by a 

combination of activation of phospholipases and inhibition of free fatty acid esterification 

pathways (Wright et al., 1994; Madden et al., 1998). The resulting increases in arachidonic 

acid metabolites can be involved in homeostatic and acute inflammatory responses. For 

example, arachidonic acid released by phospholipase A2 is metabolized through the 

lipoxygenase or cyclooxygenase pathways to form eicosanoids, including leukotrienes, 

prostaglandins, and thromboxanes (Serhan et al., 1996). Ozone exposure was associated with 

significant increases in plasma thromboxane B2, 6-keto prostaglandin F1 alpha and 

prostaglandin E1 in guinea pigs (Miller et al., 1987). It is unclear whether the identified 

mediators shown in Figure 3 of ozone induced phospholipase activation (Kafoury et al., 

1998) can exert extra-pulmonary effects. Enzymes involved in lipid metabolism were shown 

to be altered in a primate model after subchronic exposure to 0.3 ppm ozone (Rao et al., 

1985). Interestingly, it has also been demonstrated that cortisol inhibits phospholipase 

activity and prostaglandin production (Thompson, 2003). Since these lipids were increased in 

the serum samples obtained after ozone exposure done with intermittent exercise in humans, 

but not in rats which were exposed during inactivity, the potential mechanism and 

implication of these findings will require further studies. 



 

112 

 

 Acute ozone exposure might alter mitochondrial β-oxidation involved in catabolism 

of free fatty acids. Decreases in carnitine and increases in acylcarnitines together with 

elevated 3-hydroxybutyrate (BHBA), a marker of hepatic β-oxidation, in serum after ozone 

exposure relative to air suggests changes in fatty acid oxidation that may be attributed to 

mitochondrial involvement (Aon, Bhatt and Cortassa, 2014). Additionally, increases in 

dicarboxylic acids (DCAs) in serum after ozone exposure may relate to increased ω-

oxidation, a NADPH- and cytochrome P450-dependent process where the omega carbon of a 

fatty acid is oxidized to an alcohol and then to a carboxylic acid, thereby generating DCA. 

DCAs are produced by peroxisomes when the supply of fatty acids to the liver exceeds the 

capacity for β-oxidation and re-esterification. Because subjects during air and ozone 

exposure underwent an exercise regimen, and exercise can influence the metabolic status, it 

is likely that the ozone response was influenced by exercise. Exercise-induced oxidative 

stress (Holland et al., 2015) was postulated to contribute to ozone-induced cytogenetic 

damage to human lymphocytes after ozone exposure (Powers, Nelson and Hudson, 2011). 

Interestingly, these changes were not observed in rats exposed to ozone (Costa et al., 2014)) 

during inactivity. It is noteworthy that the ozone-induced hypothermia in non-exercising 

rodents exposed during their inactive (daytime) cycle (Gordon et al., 2014) may lead to 

diminution of peripheral metabolic processes (muscle), while this response may not be 

apparent in humans exposed during their active cycle (daytime).  

 There are several limitations of our study. We only performed metabolomic analysis 

post air or ozone exposure during two clinical visits thus, this study is not a complete 

crossover design except for clinical measures. Ozone effects were not determined in humans 

during inactivity/resting and thus, the contribution of exercise and interaction with ozone 
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can’t be assessed directly. Since we are attempting to compare the ozone effects in exercising 

humans to non-exercising rats, only some speculation of the role of exercise can be made. 

Moreover, human exposures occurred over 2 hrs, whereas rats were exposed for 6 hrs. The 

discrepancies in effective lung ozone dose could be partially explained by the evidence that 

exercising humans will inhale a larger ozone dose relative to non-exercising rats (Hatch et 

al., 2013). We have demonstrated that acute ozone-induced metabolic changes are reversible 

the following day despite a continued inflammatory response in rodents (Miller et al., 2015), 

but we were neither able to analyze the reversibility of these changes in humans nor study the 

long-term ozone effects. In a previous study involving subchronic episodic exposure of 

Brown Norway rats, we noted that glucose intolerance still occurred after 12 weekly 

exposures (Bass et al., 2013). Since, humans are exposed episodically to ozone throughout 

their lifetime, it is important to determine if persistent episodic metabolic derangement 

contributes to insulin resistance.  

 This study is the first to characterize the global metabolic derangement in humans 

after ozone exposure using a metabolomic assessment. We show that ozone exposure in 

humans is associated with marked increases in a variety of fatty acids in the circulation 

together with increases in cortisol and corticosterone, suggesting activation of the 

neurohormonal stress response pathway and subsequent changes in peripheral metabolic 

homeostasis. This study establishes the coherence between humans and rodents in ozone-

induced stress hormone increase and metabolic effects. Through this approach, novel 

biomarkers such as cortisol, free fatty acids, monoacylglycerols, and lysolipids for acute 

pollutant-induced health effects are identified.  Further studies will be needed to examine if 

these responses will persist during chronic exposure and contribute to insulin resistance. 
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Table 3.1 Demographics of study participants*. 

 

Demographics Ratio 

Gender  

     Male 20/24 

     Female 4/24 

Race  

    White 22/24 

    Hispanic 2/24 

Smoking  

    Never Smoker 21/24 

    Former Smoker† 3/24 

Medication ‡ 3/24 

Exercise§  

   Mild  2/24 

   Moderate 9/24 

   Heavy  13/24 

 Mean 

Age (yr) 25.63.8 

Height (cm) 177.99.3 

Weight (kg) 78.513.9 

Body Mass Index 24.73.0 

     18.5-24.9 11/24 

     25-29.9 13/24 

Systolic 121.0 8.4 

Diastolic  73.9 6.8 

Heart Rate (bpm) 73.414.4 

 

*For details on individual subject demographics, see the Appendix B. 

†Smoking before the year 2006.  

‡Currently on medication (Multivitamins, and/or Lexapro). 

§Exercise level  

Mild                      90 to 180 minutes per week 

Moderate            180 to 360 minutes per week 

Heavy                   over 360 minutes per week 
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Table 3.2a. Acute ozone exposure increases circulating free fatty acids and 

monoacylglycerols in humans.  

 

 
 

*Values indicate relative fold differences for each biochemical between ozone and filtered air 

samples (n=24/group).  A fold change >1 indicates an increase, while fold change <1 

indicates a decrease.   

† When the p-value is <0.05, the change is considered significant. 

  

  Fold Change  

Free Fatty Acids Metabolite 
 Ozone * 

Air 
 p-Value † q-Value 

Medium-Chain Fatty 
Acid 

caproate (6:0) 1.17 0.0041 0.048 

laurate (12:0) 1.17 0.0649 0.218 

5-dodecenoate (12:1n7) 1.57 0.0058 0.053 

Long-Chain Fatty Acid 

myristate (14:0) 1.42 0.0102 0.072 

myristoleate (14:1n5) 1.80 0.0005 0.025 

palmitoleate (16:1n7) 1.72 0.0019 0.042 

margarate (17:0) 1.30 0.0097 0.070 

10-heptadecenoate (17:1n7) 1.48 0.0041 0.048 

oleate (18:1n9) 1.38 0.0014 0.034 

cis-vaccenate (18:1n7) 1.20 0.0759 0.238 

10-nonadecenoate (19:1n9) 1.54 0.0042 0.048 

eicosenoate (20:1n9 or 11) 1.44 0.0082 0.065 

Fatty Acid, Monohydroxy 

3-hydroxyoctanoate 1.48 0.0195 0.115 

3-hydroxydecanoate 1.78 0.0031 0.045 

3-hydroxylaurate 1.77 0.0021 0.043 

Glycerolipid Metabolism glycerol 1.34 0.0072 0.059 

Monoacylglycerol 

 

1-stearoylglycerol (1-monostearin) 2.32 0.0046 0.048 

2-stearoylglycerol (2-monostearin) 1.89 0.0028 0.044 

1-oleoylglycerol (1-monoolein) 1.56 0.0000 0.004 

2-oleoylglycerol (2-monoolein) 1.85 0.0047 0.048 
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Table 3.2b Ozone exposure elevates circulating lysolipid and sphingolipid metabolites in 

humans. 

 

* Values indicate relative fold differences for each biochemical between ozone and filtered 

air samples (n=24/group).  A fold change >1 indicates an increase, while fold change <1 

indicates a decrease.   

† When the p-value is <0.05, the change is considered significant. 

  

  Fold Change  

 
Metabolite 

Ozone * 
Air 

p-Value†  
q-Value 

Lysolipids 

1-pentadecanoylglycerophosphocholine (15:0) 1.10 0.0901 0.256 

1-palmitoylglycerophosphocholine (16:0) 1.08 0.0035 0.047 

2-palmitoylglycerophosphocholine (16:0) 1.06 0.0787 0.239 

1-palmitoleoylglycerophosphocholine (16:1) 1.11 0.0313 0.155 

1-margaroylglycerophosphocholine (17:0) 1.24 0.0004 0.023 

1-stearoylglycerophosphocholine (18:0) 1.16 0.0027 0.044 

2-stearoylglycerophosphocholine (18:0) 1.19 0.0108 0.075 

1-oleoylglycerophosphocholine (18:1) 1.18 0.0014 0.034 

2-oleoylglycerophosphocholine (18:1) 1.11 0.0665 0.219 

1-linoleoylglycerophosphocholine (18:2n6) 1.08 0.0614 0.218 

2-linoleoylglycerophosphocholine (18:2n6) 1.14 0.0324 0.158 

1-linolenoylglycerophosphocholine (18:3n3) 0.82 0.0856 0.250 

2-linolenoylglycerophosphocholine(18:3n3) 0.85 0.0406 0.176 

1-nonadecanoylglycerophosphocholine(19:0) 1.29 0.0046 0.048 

1-dihomo-linoleoylglycerophosphocholine (20:2n6) 1.22 0.0007 0.028 

1-arachidoylglycerophosphocholine (20:0) 1.44 0.0112 0.076 

1-eicosenoylglycerophosphocholine (20:1n9) 1.33 0.0029 0.044 

2-eicosenoylglycerophosphocholine(20:1n9) 1.48 0.0012 0.033 

1-eicosatrienoylglycerophosphocholine (20:3) 1.22 0.0023 0.044 

2-eicosatrienoylglycerophosphocholine (20:3) 1.20 0.0009 0.032 

1-arachidonoylglycerophosphocholine (20:4n6) 1.15 0.0006 0.028 

2-arachidonoylglycerophosphocholine (20:4n6) 1.16 0.0002 0.014 

1-eicosapentaenoylglycerophosphocholine (20:5n3) 1.17 0.0378 0.170 

Sphingolipid 
Metabolism 

sphingosine 1-phosphate 1.37 0.0000 0.042 

sphinganine 1.20 0.0511 0.198 
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Table 3.3 Ozone exposure during intermittent exercise increases circulating -oxidation 

metabolites in humans. 

 

 

 

* Values indicate relative fold differences for each biochemical between ozone and filtered 

air samples (n=24/group).  A fold change >1 indicates an increase, while fold change <1 

indicates a decrease.   

† When the p-value is <0.05, the change is considered significant. 

 

 
 
 
 

 

 

 

 

 

 

  Fold Change   

Pathway Metabolite 
Ozone * 

Air 
p-Value † 

q-Value  

Fatty Acid Metabolism 
(Acyl Carnitine) 

acetylcarnitine 1.09 0.0787 0.239  

hexanoylcarnitine 1.22 0.0827 0.246  

octanoylcarnitine 1.32 0.0224 0.127  

decanoylcarnitine 1.42 0.0132 0.085  

cis-4-decenoylcarnitine 1.27 0.0235 0.132  

laurylcarnitine 1.79 0.0094 0.069  

myristoylcarnitine 1.57 0.0360 0.169  

palmitoylcarnitine 1.25 0.0319 0.157  

oleoylcarnitine 1.38 0.0022 0.043  

linoleoylcarnitine 1.31 0.0130 0.085  

myristoleoylcarnitine 1.81 0.0051 0.048  

Fatty Acid, 
Dicarboxylate 

2-hydroxyglutarate 1.26 0.0320 0.187  

azelate 1.55 0.0002 0.004  

Carnitine Metabolism carnitine 0.92 0.0102 0.072  

Ketone Bodies 3-hydroxybutyrate (BHBA) 1.82 0.0451 0.187  
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Figure 3.1 

 

 

 

Figure 3.1 Acute two hour ozone exposure increases serum levels of stress hormones, 

cortisol and corticosterone, in humans. Boxplots convey the spread of the data with the 

interquartile range represented by the shaded box and the range of the data shown by the 

whiskers (n=24/group).  Outlier values are defined as those that exceed, in either direction, 

1.5 times the interquartile range (shown as “o” in each plot).  The solid bar across the box 

represents the median value while the “+” represents the mean. * indicates significantly 

different from air group (p<0.05). For each biochemical, data are median scaled with the 

median value across all samples set to 1.0.  The y-axis thus reflects scaled intensity for each 

metabolite.  

 

 

 

 



 

119 

 

Figure 3.2 

 

Figure 3.2 Ozone altered lipid metabolism pathways in humans. Pathway enrichment 

analysis (using MetaboSync) identified seven specific biochemical pathways - sphingolipid 

metabolism, endocannabinoid synthesis, fatty acid metabolism, β-oxidation, dicarboxylic 

acid metabolism, steroid hormone biosynthesis and phospholipid metabolism - as having a 

significant (p<0.05) fold enrichment value for ozone exposure. This analysis was based on a 

number of parameters including the total number of detected metabolites in the study and 

selected pathway, as well as the abundance of total metabolites associated with each pathway.  
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Figure 3.3 
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Figure 3.3 Acute ozone exposure increases circulating polyunsaturated lipids in 

humans. Polyunsaturated lipids, (A) Linolenate (alpha or gamma; 18:3n3 or n6), (B) 

Eicosapentaenoate (EPA, 20:5n3), (C) Docosapentaenoate (n3 DPA, 22:5n3), (D) 

Docosahexaeonate (DHA 22:6n3), (E)  Linoleate(18:2n6), (F) Dihomo-linolenate (DHGLA, 

20:3n3 or n6) and (G) Arachidonate (AA, 20:4:6) were increased significantly in the serum 

of ozone-exposed subjects. The metabolic pathways in which these metabolites were 

generated is summarized in the middle panel. Boxplots convey the spread of the data with the 

interquartile range represented by the shaded box and the range of the data shown by the 

whiskers (n=24/group).  Outlier values are defined as those that exceed, in either direction, 

1.5 times the interquartile range (shown as “o” in each plot).  The solid bar across the box 

represents the median value while “+” represents the mean. For each biochemical, data are 

median scaled with the median value across all samples set to 1.0.  The y-axis thus reflects 

scaled intensity for each metabolite. * indicates significantly different from air group 

(p<0.05).
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CHAPTER 4 

ACUTE OZONE-INDUCED PULMONARY AND SYSTEMIC 

METABOLIC EFFECTS ARE DIMINISHED IN 

ADRENALECTOMIZED RATS 

 

4.1 Introduction 

Epidemiological studies have demonstrated a positive association between air 

pollution and increases in type II diabetes, hyperglycemia, glucose intolerance and increased 

homeostasis model assessment (HOMA) index (Brook et al., 2008; 2013; Rao et al., 2015; 

Thiering and Heinrich, 2015; Hu et al., 2015).  The mechanisms by which air pollutants 

impact metabolic processes and change clinical indicators of insulin resistance are still 

largely unknown. Also not known is how air pollutants can induce changes in pathways 

involving lipid and amino acid metabolism (Miller et al., 2015), which can contribute to 

insulin resistance and steatohepatitis. It has been hypothesized that systemic inflammation, 

endoplasmic reticulum stress, and/or autonomic activation induced by air pollutant exposure 

are involved in insulin resistance (Rajagopalan and Brook, 2012).  

Ambient ozone has been studied for decades for its pulmonary and cardiovascular 

effects
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 Recently, the interest in ozone health effects has been rejuvenated for two reasons: 1) 

its levels are anticipated to increase as a result of climate change (Fann et al., 2015), and 2) 

its has been increasingly recognized that even though ozone is less likely to translocate 

beyond the lung, it causes a myriad of systemic effects (Miller et al., 2015). While ambient 

particulate matter (PM) exposures have been linked to the onset and/or exacerbation of 

peripheral insulin resistance (Rajagopalan and Brook, 2012), ozone has also been associated 

with the incidence of diabetes (Ren et al., 2010; Janghorbani et al., 2014).  In addition, new 

studies show that ozone exposure induces a variety of neurological effects (Akhter et al., 

2015; Chounlamountry et al., 2015 Calderón-Garcidueñas et al., 2015). Ozone exposure 

stimulates afferent vagal sensory nerves that terminate in stress-responsive hypothalamic 

regions in the central nervous system (Gackiere et al., 2011). Acute ozone exposure has been 

shown to alter neuronal catecholamine biosynthesis and increase circulating stress hormones 

(Soulage et al., 2004; Thompson et al. 2013; Bass et al., 2013; Miller et al., 2015). Our recent 

studies have demonstrated that rats exposed acutely to ozone develop lung 

injury/inflammation, hyperglycemia, glucose intolerance, and lipidemia, which are associated 

with increases in circulating epinephrine and cortisol (Bass et al. 2013; Miller et al. 2015). 

We have also shown that acute ozone produces hypothermia and bradycardia (Gordon et al., 

2014). Collectively, these data suggest that ozone peripheral metabolic effects are likely 

mediated by central sympathetic and hypothalamus-pituitary-adrenal (HPA) stress axis 

activation.  

The neuronal stress response, activated as a result of bodily injury or threat, initiates 

physiological mechanisms that provide integrated communication between all organ systems 

(Smith and Vale, 2006). The initial event includes the release of hypothalamic 
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paraventricular nucleus (PVN)-derived corticotrophin releasing hormone and the activation 

of catecholaminergic neurons within the locus coeruleus (LC), which results in the activation 

of the HPA axis and sympathetic axis, respectively (Navarro-Oliveira et al., 2000; Ulrich-Lai 

and Herman, 2009).  The priority of the neuronal stress response is to channel energy 

substrates to appropriate tissues to restore equilibrium, which is mainly achieved by elevated 

circulating stress hormones (i.e. induction of gluconeogenesis, glycogenesis, muscle 

proteolysis, and adipose lipolysis) (Smith and Vale, 2006).  Acute ozone-induced peripheral 

metabolic changes we observed in humans and rats are similar to homeostatic changes in 

response to stress (Bass et al., 2013; Miller et al., 2015, 2016). However, it is not known if 

these stress hormones can contribute to pulmonary injury and inflammation induced by 

exposure to air pollutants. 

In response to HPA activation, the adrenal cortex secretes glucocorticoids (cortisol in 

humans and corticosterone in rats). In contrast, the adrenal medulla can be directly stimulated 

by the sympathetic efferent nerves, resulting in the secretion of epinephrine and/or 

norepinephrine (Goldstein, 2010). Adrenalectomy has been used to examine the role of these 

hormones in 1) neuronal regulation of the HPA axis (Kaminski and Watts, 2012; Weidenfeld 

and Feldman, 2000; Helmreich et al., 1996), 2) regeneration of adrenals over time (Rebuffat 

et al., 2007), and 3) endogenous corticosteroid biogenesis (Freel et al., 2007; Bykowski et al., 

2007). Surgical removal of adrenal medulla can allow one to examine the role of epinephrine 

while total bilateral adrenalectomy can be used for examining the roles of epinephrine and 

cortical steroidal hormones.   

In the present study, we test the postulate that acute ozone-induced pulmonary and 

systemic metabolic effects are mediated through adrenal-derived epinephrine and 
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corticosterone. Further, that bilateral adrenal demedullation (DEMED) will selectively 

dampen some effects, while bilateral total adrenalectomy (ADREX) will have more profound 

effect on ozone-induced systemic metabolic impairment, and pulmonary injury and 

inflammation. We examined pulmonary and systemic metabolic effects of ozone exposure 

together with an assessment of adrenal-derived hormones in rats that underwent sham 

surgery, DEMED or ADREX.  

4.2 Materials and Methods 

4.2.1 Animals 

 Healthy male Wistar Kyoto (WKY) rats (250-300g) were purchased from Charles 

River Laboratory (Raleigh, NC) at 6-8 weeks of age. Rats were housed (n=2/cage or as 

indicated below) in polycarbonate cages containing beta chip bedding in an isolated room in 

an animal facility maintained at 21 ± 1ºC, 50 ± 5% relative humidity and held to a 12h 

light/dark cycle. The animal facility is approved by the Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC). All animals received standard (5001) 

Purina pellet rat chow (Brentwood, MO) and water ad libitum unless otherwise stated. 

Animal procedures were approved by the US Environmental Protection Agency (US EPA), 

National Health and Environmental Effects Research Laboratory (NHEERL) Animal Care 

and Use Committee (IACUC; Permit Number: 16-03-003). Animals were treated humanely 

and all efforts were made for alleviation of suffering. 

4.2.2  Animal surgery and recovery protocol 

 At 12-13 weeks of age, rats underwent surgical procedures. Anesthesia was achieved 

using an intraperitoneal injection of ketamine/xylazine (25 mg/2 mg in 1mL saline/kg), 

followed by a subcutaneous injection of buprenorphine (0.02 mg/kg) for analgesia. Eye 
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ointment was applied to rats to prevent drying during surgery. Isoflurane was also used if any 

signs of movement were noticed during the procedure. Following anesthesia, rats were 

placed in sternal recumbency for Charles River Surgeons to perform SHAM, DEMED or 

ADREX) using surgical protocols established at Charles River Inc. Both (right and left) 

glands were removed for ADREX, while the DEMED involved bilateral removal of medulla 

only. The SHAM group underwent similar procedures as DEMED or ADREX rats except 

that adrenals were not removed. The muscle wall incisions were closed with absorbable 

suture. Skin incisions were then closed with stainless steel surgical wound clips. Immediately 

following surgery, animals were placed on heated pads and observed until recovery from 

anesthesia. Once recovered from anesthesia, animals were injected subcutaneously with 

Meloxicam analgesic (0.2mg/mL/kg). Additional two doses of Buprenorphine were injected 

(0.02mg/mL/kg) subcutaneously every 8-12 hours.  All drugs used in surgery were purchased 

from Henry Schein Animal Health Inc. (Dublin, OH).  Following surgery, the animals were 

single housed using Enviro Dry enrichment/nesting material and provided powdered food. 

The rats that underwent ADREX were provided with saline (0.9% NaCl) as drinking water to 

maintain water/salt balance. All animals were allowed 96 hours to recover prior to their 

exposure to air or ozone. We believe that 4 days was an appropriate time as the weight gain 

was stablized (Table 4.1), there were no clinical signs of distress noted, food and water 

consumption were normal and the recovery appeared near complete. Furthermore, a number 

of studies involving adrenalectomy previously used a 4 day recovery time (Osterlund et al., 

2013.; Sakakibara et al., 2014). We wanted to avoid the influence of secondary changes that 

might occur with a longer recovery time frame in the absence of aldosterone-

mineralocorticoids, which regulate salt-fluid balance, blood volume and cardiovascular 
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function.  The timeline of the surgery, ozone exposure, in-life testing and necropsy are shown 

in figure 4.1. 

4.2.3  Ozone generation and animal exposures 

Ozone was produced from oxygen by a silent arc discharge generator (OREC, 

Phoenix, AZ), and its entry into the Rochester style “Hinners” chambers was controlled by 

mass flow controllers (Coastal Instruments Inc., Burgaw, NC). The ozone concentrations in 

the chambers were recorded continuously by photometric ozone analyzers (API Model 400, 

Teledyne Instruments; San Diego, CA).  Mean chamber air temperature and relative humidity 

were 23.3°C (74⁰F) and 46%, respectively. Each surgery group (SHAM, DEMED, ADREX; 

n=20-24/surgery group) was randomized and subdivided into air or 1.0 ppm ozone exposure, 

4h/day for either 1 day or 2 days (n=4 for SHAM-air, n=6 for all other exposure groups). 

This ozone concentration is much higher than what one would expect environmentally. 

However, ozone concentrations as high as 0.4 ppm can be expected in tropical hot climates 

with high anthropogenic pollution (WHO, 1974). It has been shown that in rats once inhaled, 

ozone deposition in the lung is 3-4 times less than what humans will experience (Hatch et al, 

1994). We have shown that humans experience metabolic effects of ozone at 0.3 ppm (Miller 

et al., 2016).  

For the 1 day group, rats were necropsied immediately following a 1 day, 4h exposure 

(1-D group), whereas for the 2 day group, rats were necropsied immediately following the 

second day of a 4h ozone exposure (2-D group). Only the 2-D group underwent glucose 

tolerance testing (GTT) immediately following the first day of exposure. As observed in our 

prior study, the ozone effects are evident immediately following the first and also second day 

exposure. Since GTT takes ~ 3 hours and a large bolus of glucose is injected in the animals, 
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which may require several hours for blood glucose levels to return to baseline, we decided to 

do GTT immediately following first day exposure in rats assigned for 2-D exposure. Another 

group of rats, which did not undergo GTT, was necropsied immediately following first day of 

exposure (1-D) to correlate with changes in GTT. Since lung injury and inflammation 

generally takes several hours to peak after ozone exposure, and the ozone effects are 

maximum on the second day, we believed that 2-D exposure was necessary to determine the 

extent of lung damage/injury, while at the same time determining systemic responses 

immediately following the second day.  

4.2.4 Glucose tolerance test (GTT) 

Immediately following the first day of ozone exposure, rats assigned to the 2-D 

exposure group underwent GTT (rats were fasted for ~6h prior to testing).  Baseline blood 

glucose concentrations were measured by pricking the distal surface of rats’ tails using a 

sterile needle.  A Bayer Contour glucometer (Leverkusen, Germany) was used to determine 

blood glucose levels using test strips.  After the first measurement, rats were given an 

intraperitoneal injection of glucose (20% D-glucose; 10ml/kg in saline; Sigma-Aldrich, St 

Louis, MO). Measurement with the glucometer was repeated every 30 min over the course of 

2h. 

4.2.5 Whole body plethysmography 

Pulmonary ventilatory parameters were examined prior to the first day of exposure in 

the morning (6:00am), immediately following first ozone exposure (11:30am) and in the 

morning prior to second day of exposure (6:00am) in the 2-D group. A four chamber whole-

body plethysmography system using Buxco BioSystem XA software (Buxco Electronics, 

Wilmington, NC) was used to measure minute volume, tidal volume, breathing frequency, 
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and the enhanced pause (Penh), which is presumed to provide an index of airflow limitation 

and often used as a surrogate for bronchoconstriction (Hamelmann et al. 1997). Each rat was 

placed in a plethysmograph chamber and allowed 1 min prior 5 min to adapt prior to 

assessing the respiratory parameters. Respiratory parameters were computed as described 

earlier (Kodavanti et al., 2005).   

4.2.6 Necropsy and sample collection 

 The 1-D and 2-D groups were necropsied immediately following the first and second 

4h ozone exposure, respectively. Rats were weighed and anesthetized with an overdose of 

Nembutal (Virbac AH, Inc., Fort Worth, TX; 50-100 mg/kg, i.p.). Blood samples were 

collected through an abdominal aortic puncture.  Complete blood counts were performed 

using a Beckman-Coulter AcT blood analyzer (Beckman-Coulter Inc., Fullerton, CA, USA).  

All blood samples were centrifuged and aliquots of serum and plasma stored at -80°C until 

analysis.  Bronchoalveolar lavage (BAL) was performed through tracheal tubing using 37°C 

phosphate buffer saline at a volume of 28mL/kg body weight.  Aliquots of BAL fluid were 

used to determine total cell counts with a Z1 Coulter Counter (Coulter, Inc., Miami, FL) and 

cell differentials were performed on cytospin slides stained with Diff-quick (Fischer 

Scientific, Pittsburgh, PA) as previously described (Bass et al., 2013). The cell-free BAL 

fluid (BALF) was used to analyze protein, albumin, and lactate dehydrogenase (LDH) 

activity as previously described (Bass et al., 2013). 

4.2.7 Plasma and serum snalysis 

 Adrenaline and noradrenaline plasma levels were measured using kits from Rocky 

Mountain Diagnostics (Colorado Springs, CO) per the manufacturer’s protocol. Serum 

corticosterone concentrations were analyzed employing an immunoassay kit (Arbor Assay, 
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Ann Arbor, MI) per the manufacturer’s protocol. Total cholesterol and triglycerides were 

measured in serum samples using kits from TECO Diagnostics (Anaheim, CA). Non-

esterified free fatty acids were measured in serum by a coupled enzymatic reaction and the 

resultant hydrogen peroxide detection using a colorimetric probe as per the manufacturer’s 

protocol (Cell Biolabs, Inc, San Diego, CA).  The kit protocols for measuring lipids were 

modified for use on the Konelab Arena 30 system (Thermo LabSystems, Espoo, Finland). 

Branched chain amino acids (BCAA) were measured in serum using ELISA kits and the 

protocol based on chemiluminescence detection (Abcam, Cambridge, MA).       

4.2.8 Statistics 

 GTT data were analyzed using a two-way repeated measure multivariate analysis of 

variance (MANOVA) where serial blood glucose measurements were incorporated in the 

analysis (Graphpad prism 4.03 software).  Area under the curve (AUC) for GTT was 

determined by the trapezoidal method and analyzed for statistical significance by ANOVA 

followed by a Duncan’s multiple range test. Other variables were analyzed using a two-way 

ANOVA model (independent variables being exposure and surgical manipulation). The two 

assumptions associated with ANOVA models are equality of variances and normality of 

errors (residuals). We used Levene’s test to assess the equality of variances and Shapiro 

Wilk’s test to examine the normality of errors.  The ANOVA assumptions for serum 

adrenaline, serum corticosterone, serum cholesterol, serum FFA, BALF protein, BALF 

albumin, BALF LDH, BALF neutrophils, BALF eosinophils and PenH did not satisfy 

desired equal variance and/or normality. These data were then transformed to satisfy two 

assumptions (log or square root as appropriate). Pairwise comparisons were performed as 
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subsets of the overall ANOVA. The level of significance was set at 0.05. No adjustments 

were made for multiple comparisons. 

 

4.3 Results 

4.3.1 Body weights 

 Body weights were closely examined after surgery, throughout recovery and during 

ozone exposure. The SHAM and DEMED groups did not lose body weight as a result of 

surgery as determined 4 days after surgery or during the course of air exposure over 2 days 

(Table 4.1). In general, ADREX group showed a slight but significant decrease in body 

weight gain after surgery compared to other surgery groups. Ozone exposure on the second 

day tended to reduce body weight in all rats; however, this effect was not significant relative 

to time-matched air groups. 

4.3.2 ADREX, DEMED and ozone impacted circulating adrenal-derived hormones 

 To determine ozone-induced changes in adrenal-derived hormones and the 

effectiveness of surgical intervention, we evaluated levels of circulating adrenaline, 

noradrenaline and corticosterone. Concentrations of adrenaline, derived from the medulla, 

were markedly reduced in all DEMED and ADREX rats, regardless of exposure (Fig. 4.2A). 

Ozone significantly increased adrenaline plasma levels in SHAM rats on day 1 and day 2 

compared to air exposure (Fig. 4.2A). Noradrenaline plasma levels were not altered by 

exposure or surgical interventions (Fig. 4.2B). DEMED caused a slight reduction in the 

levels of circulating corticosterone, which was significant only in 2-D air-exposed rats. 

Ozone exposure in SHAM rats tended to increase levels of serum corticosterone on day 1, 

but the difference was statistically insignificant when compared to time-matched air group 
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(Fig. 4.2C).  Corticosterone levels dropped to nearly zero in all ADREX rats. Ozone did not 

affect corticosterone levels in the DEMED and ADREX groups (Fig. 4.3C). 

4.3.3 Acute ozone-induced glucose intolerance is inhibited by ADREX 

GTT was conducted in SHAM, DEMED, and ADREX groups immediately following 

the first day of ozone exposure in the 2-D group to determine the relative contribution of 

adrenal-derived hormones to acute ozone-induced glucose metabolic effects. Glucose 

tolerance was not affected by ADREX or DEMED in air-exposed rats (Fig. 4.3). The SHAM 

group exposed to ozone demonstrated significant fasting hyperglycemia and glucose 

intolerance compared to its matching air group (Fig 4.3A) as observed in our previous study 

(Miller et al., 2015). The DEMED rats showed marked suppression of ozone–induced 

hyperglycemia and glucose intolerance throughout the testing period (Fig. 4.3A). There was 

nearly a complete reversal of ozone-induced fasting hyperglycemia and glucose intolerance 

in ADREX rats (Fig. 4.3A). AUC calculations further revealed that ozone-induced glucose 

metabolic effects were almost completely eliminated in ADREX rats (Fig. 4.3B).  

4.3.4 Acute ozone-induced increases in circulating lipids and protein metabolites are reduced 

in rats with prior ADREX 

 The activation of the stress response pathway and subsequent release of adrenal stress 

hormones are central to changes in peripheral metabolism. Our prior study demonstrated that 

exposure to ozone resulted in increased circulating FFA and BCAA in rats (Miller et al., 

2015). Although prior metabolomic assessment showed a small increase in serum cholesterol 

after a 6h ozone exposure in our previous study (Miller et al., 2015), in this study 4h ozone 

exposure for 1-D or 2-D did not affect serum cholesterol levels in any group regardless of 

prior surgical procedure (Fig. 4.4A). ADREX rats exposed to air had increased triglycerides 



 

138 

 

at 1-D compared to SHAM rats (Fig.  4.4B). Serum triglycerides were significantly increased 

after day 1 of ozone exposure in SHAM rats (Fig. 4.4B). Ozone-induced triglyceride increase 

was smaller in DEMED rats while ADREX was associated with nearly a complete negation 

of ozone effect in the 1-D group (Fig. 4.4B). Circulating FFA were not affected by DEMED 

or ADREX as evident in air-exposed rats. FFA tended to increase in SHAM rats (p=0.15) 

when exposed to ozone on 1-D; however, this increase was not observed in DEMED or 

ADREX rats (Fig. 4.4C). 

 Air-exposed ADREX group showed significant increases in circulating BCAA on 1-

D relative to SHAM rats. On day 1, BCAA also tended to increase (p=0.13) in the SHAM 

ozone-exposed group but the difference remained insignificant. On day 2, however, BCAA 

levels significantly increased in the SHAM rats exposed to ozone. Importantly, this ozone-

induced increase in BCAA did not occur in the ADREX group (Fig. 4.4D). 

4.3.5 Ozone-induced ventilatory changes are reduced in ADREX rats 

Whole body plethysmography was used to assess breathing parameters. DEMED or 

ADREX did not significantly affect breathing frequency, tidal volume (data not shown), 

minute volume or PenH as determined prior to exposure in all rats or in the air groups post 

exposure (Fig. 4.5). Ozone exposure did not change body weight-normalized minute volume 

in any group (Fig. 4.5A). Immediately following 1-D of ozone exposure, PenH was markedly 

increased in SHAM and DEMED rats.  This ozone-induced increase in PenH was 

significantly lower in ADREX rats compared to SHAM rats (Fig. 4.5B). The morning after 

the first ozone exposure, the ozone-induced increases in PenH were still apparent in SHAM 

and DEMED rats but the levels were much lower compared to the measurement taken 

immediately after the first ozone exposure. In the morning after the first ozone exposure, the 
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ADREX ozone-exposed group did not present significant increases in PenH compared with 

surgery-matched air control. 

4.3.6 Ozone-induced lung injury and inflammation are diminished by DEMED and ADREX 

Ozone exposure for 1-D increased markers of vascular protein leakage including 

BALF total protein and albumin in SHAM and DEMED groups compared to surgery-

matched air controls (Fig. 4.6A and B). Ozone-induced protein and albumin increases in the 

SHAM rats were more pronounced on 2-D when compared to 1-D. The ADREX group did 

not display any ozone-induced increases in protein or albumin following 1-D ozone 

exposure. Likewise, ozone exposure did not increase BALF protein or albumin in DEMED 

and ADREX rats on 2-D (Fig. 4.6A and B). Ozone exposure led to increases in BALF LDH 

activity (a marker of lung cell injury) on day 1 in SHAM rats (Fig. 4.6C). Ozone-exposed 

DEMED and ADREX rats did not show any increase in BALF LDH activity.   

Lung inflammatory responses to ozone were assessed by determining BALF cell 

differentials. The number of macrophages in BALF did not change significantly as a result of 

DEMED or ADREX in air exposed rats. Ozone exposure also did not change the number of 

BALF macrophages (data not shown). The baseline levels of neutrophils were slightly higher 

in ADREX rats exposed to air when compared to other surgery groups (Fig. 4.7A).  

Significant increases in BALF neutrophils occurred on 1-D and 2-D in SHAM rats after 

ozone exposure. This ozone-induced increase in neutrophils was much more pronounced on 

day 2 when compared to day 1 in SHAM rats (Fig. 4.7A). The increase in neutrophils 

following ozone exposure was significantly reduced in DEMED (SHAM>DEMED) rats. 

Surprisingly, the effect of ozone on neutrophils was nearly abolished in ADREX rats, 

especially on 2-D. On day 1, only the ADREX rats exposed to ozone showed increases in 
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BALF eosinophils compared to air controls (Fig. 4.7B). On day 2, eosinophil levels in 

ADREX rats exposed to ozone remained higher than the air group.  

To determine systemic inflammatory response, hematological parameters were 

assessed. The circulating white blood cells (WBC) were significantly decreased after ozone 

exposure on 1-D and 2-D in SHAM rats (Fig. 4.7C). Ozone exposure led to a small decrease 

in WBC on day 1 also in DEMED rats, but did not decrease WBC in ADREX rats at any 

time point. ADREX and DEMED caused an increase in circulating platelets (Fig. 4.7D).  

Ozone exposure led to increases in circulating platelets in SHAM and DEMED rats but not in 

ADREX rats on 1-D. 
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4.4 Discussion 

We have recently shown that acute ozone-induced peripheral metabolic alterations are 

associated with elevated adrenal-derived stress hormones in humans and animals (Bass et al., 

2013; Miller et al., 2015, 2016). The goal of the current study was to evaluate if the adrenal-

derived stress hormones are essential for mediating acute ozone-induced metabolic and 

pulmonary effects in rats. We used surgical DEMED to remove the medulla, which produces 

catecholamines in response to sympathetic stimulation, and ADREX where the medulla as 

well as the cortex are removed in rats. The cortex produces corticosteroids in response to 

pituitary-derived ACTH via the HPA axis, when exposed to ozone, SHAM-surgery rats 

produced typical systemic metabolic effects and lung injury similar to that observed in our 

previous study (Miller et al., 2015). These effects were characterized by hyperglycemia, 

glucose intolerance, increased levels of epinephrine, corticosterone, circulating FFA, BCAA 

and decreased circulating WBC, together with increased pulmonary ventilatory changes, 

vascular leakage and neutrophilic inflammation. All these ozone effects were partially or 

fully blocked in rats with bilateral DEMED or ADREX. Thus, we demonstrate that not only 

ozone-induced metabolic impairment, but also pulmonary injury and inflammation are 

largely modulated through adrenal-derived stress hormones likely through sympathetic 

stimulation and activation of the HPA axis. 

Ozone produces nociceptive stimuli and activates pulmonary vagal C-fibers that 

trigger various cardiopulmonary reflexes (Jimba et al., 1995; Schelegle et al., 1993). Ozone 

activates the nucleus tractus solitarius (NTS) and also stimulates various hypothalamic 

stress–responsive regions-including the PVN and LC (Gackiere et al., 2011).  Consequently, 

activation of these limbic regions could lead to changes in heart rate, peripheral 
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vasoconstriction, pulmonary arterial hypertension and increased capillary permeability 

(Kubin et al., 2006; Nicolaides et al., 2015). However, these neurohormonal pathways have 

not been linked to ozone-induced pulmonary injury and systemic metabolic effects. 

Diminution of circulating epinephrine and corticosterone confirmed successful 

removal of adrenals. As expected, ozone-induced increases in epinephrine and corticosterone 

in SHAM rats were not apparent in either DEMED and ADREX rats. This confirms our 

earlier findings that acute ozone increases the release of stress hormones likely through 

activation of sympathetic adrenomedullary and the HPA axis (Bass et al., 2013; Miller et al., 

2015). Since ~80% of circulating noradrenaline is released from peripheral sympathetic 

nerve terminals and only 20% produced by the adrenal medulla (Patel et al., 2000; Esler et 

al., 1990), DEMED or ADREX did not affect those levels. The lack of ozone effect on 

noradrenaline raises the question as to the role of efferent sympathetic stimulation in 

mediating systemic metabolic and pulmonary effects. Since it is technically not feasible to 

remove the cortex and leave the medulla intact, the question about the contribution of cortex-

derived hormones in response to the release of medullary epinephrine remains.  

During the stress response, epinephrine initiates a transient increase in circulating 

glucose by the stimulation of hepatic glycogenolysis and gluconeogenesis, and inhibition of 

glucose disposal by insulin-dependent tissues (Sherwin and Sacca, 1984; Sherwin et al., 

1980). Similarly, cortisol suppresses insulin-mediated glucose uptake through the 

glucocorticoid receptors (Steiner et al., 2014). The ozone-mediated increase in circulating 

epinephrine and cortisol in SHAM rats, together with the diminution of ozone-induced 

hyperglycemia and glucose intolerance in ADREX and DEMED rats, demonstrates that the 

adrenal-derived stress hormones are essential for the observed impairment in glucose 
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metabolism. This corroborates with previous findings where DEMED suppressed hypoxia-

induced hyperglycemia and insulin secretion (Shin et al., 2014). The stress hormones are 

known to prompt adipose tissue lipolysis, leading to the release of FFAs in the circulation, 

which are known to interfere with insulin signaling and contribute to insulin resistance 

(Shulman et al., 2000). We show that ozone-induced increases in FFA and triglycerides were 

diminished in ADREX and DEMED rats, further confirming the role of stress hormones in 

the observed lipidemia. Activation of glucocorticoid receptors in response to increases in 

stress hormones results in muscle protein catabolism and release of BCAA in the circulation 

(Braun and Marks, 2015). An increase in serum BCAA levels were apparent in the present 

study in SHAM rats exposed to ozone, similar to our previous study (Miller et al., 2015), but 

not in ADREX and DEMED rats.  These data provide further confirmation that ozone 

induces stress hormone-mediated muscle protein catabolism. Accumulation of BCAA have 

been implicated in initiating pancreatic β-cell dysfunction, inflammation, endoplasmic 

reticular stress and apoptosis (Lynch and Adams, 2014). Since metabolic effects of ozone 

were found to be reversible upon termination of exposure (Miller at al., 2015), the long-term 

consequences remain to be investigated.   

The contribution of pulmonary neural refluxes mediated by different areas within the 

NTS in ozone-induced ventilatory changes has been described (Schelegle et al., 1993; 

Schelegle and Walby, 2012; Taylor-Clark and Undem, 2010; Chen et al., 2003).  It has been 

shown that ozone exposure induces reflux bronchoconstriction (Schelegle and Walby, 2012). 

In our study, PenH, which is often linked to airflow limitation, was increased in SHAM rats 

exposed to ozone. This might be due to changes in airway smooth muscle contractility. β 

receptors, which are heavily distributed in large and small airways, have been shown to play 
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a major role in regulating smooth muscle tone by epinephrine and corticosterone (Bosse, 

2014). DEMED had no effect on PenH responses after ozone, whereas the reduction in 

ozone-induced increases in PenH by ADREX suggests that corticosterone, epinephrine and 

other circulating factors might be directly or indirectly playing a role in mediating the ozone-

induced ventilatory changes.   

There are likely a number of mechanisms influencing the development of pulmonary 

edema after ozone exposure in SHAM rats. First and foremost, ozone exposure can directly 

injure capillary walls, leading to leakage of protein in the alveoli (Vella et al., 2015; Banks et 

al., 1990). Pulmonary edema can also occur through acute sympathetic activation 

(neurogenic), which may lead to baroreflex-induced bradycardia. The resulting enhancement 

of venous return can cause pulmonary vascular congestion and increase hydrostatic pressure, 

which can damage the capillary wall causing fluid leakage (Šedý et al., 2015). Increased 

circulating epinephrine can also cause systemic capillary pressure increase, which may 

contribute to pulmonary edema after ozone exposure (Krishnamoorthy et al, 2012). Increases 

in circulating epinephrine and corticosterone, and ozone-induced cardiac depression together 

might affect the protein leakage. We have previously shown that ozone induces bradycardia 

and hypothermia (Gordon et al., 2014). Ozone has also been shown to decrease blood 

pressure (Uchiyama et al., 1986) and produce cardiac depression (Wagner et al., 2014) which 

may contribute to lung protein leakage. The finding that pulmonary protein leakage and lung 

cell injury are nearly abolished in ADREX and DEMED rats suggests that release of stress 

hormones, likely through sympathetic and HPA-activation, were critical in ozone-induced 

protein leakage. 
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Ozone-induced extravasation of inflammatory cells into the lung through activation of 

signaling mechanisms involving transendothelial migration has also been well characterized 

(Alexis and Carlsten, 2014; Hollingsworth et al., 2007). Consistent to these studies, ozone 

exposure in SHAM rats caused neutrophilic lung inflammation and depletion of circulating 

white blood cells, likely due to their extravasation into the lungs. It is generally believed that 

corticosteroids inhibit inflammation (Edwards, 2012); however, numerous studies have 

shown that acute stress-mediated increases in corticosterone and epinephrine can stimulate 

leukocyte trafficking and extravasation at the site of injury in an immune cell-specific 

manner (Dhabhar, 2009; Dhabhar et al., 2012). The precise mechanisms by which distinct 

types of chronic stresses modulate inflammatory processes still remain an area of intense 

research. The selective diminution of ozone-induced neutrophil influx but stimulation of 

eosinophil influx, together with the lack of an ozone-induced decrease in circulating 

lymphocytes in ADREX and DEMED rats suggests contribution of the dynamic and 

temporal changes in corticosteroids and epinephrine (Dhabhar, 2012).  Interestingly, ozone-

mediated thymus atrophy was reduced in adrenalectomized mice (Dziedzic and White, 

1986), suggesting that adrenal hormones might modulate ozone-induced inflammatory 

response through changes in thymus function. These data together provide the insights into 

the contribution of central neurohormonal mechanisms in modulating pulmonary 

inflammatory responses induced after ozone exposure.  

In this study, we show that acute ozone exposure induced a classical stress-associated 

systemic metabolic response and pulmonary injury/inflammation in SHAM rats, similar to 

what was seen in our previous studies (Bass et al., 2013; Miller et al., 2015). This response is 

characterized by increased levels of epinephrine and corticosterone, hyperglycemia, glucose 
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intolerance, increased circulating FFA, increased BCAA, and decreased circulating white 

blood cells as has been observed in our previous study (Miller et al., 2015). Surgical removal 

of the adrenal medulla or whole adrenal glands resulted in nearly complete inhibition of these 

ozone-induced metabolic and pulmonary effects. Thus, we show adrenal-derived hormones 

mediate systemic metabolic impairment and acute pulmonary injury/inflammation likely 

through sympathetic and HPA-activation. 
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Table 4.1 Effect of surgery and ozone exposure on body weights in rats. 

 

 Time Point of Body Weights (g)  

 
Prior to 

Surgery 
Day 1 exposure Day 1 exposure Day 2 exposure Day 2 exposure 

Group Air Ozone Air Ozone Air Ozone Air Ozone Air Ozone 

SHAM 321± 32 318± 18 322±39 320±13 314±31 307±15 324±30 313±25 309± 26 299±15 

DEMED 318± 16 321± 17 319±14 327±15 310±12 315±9 318±14 316±17 305±13 305±12 

ADREX 321± 15 321± 18 305±16 299±16† 292±13 292± 9 297±13 296±14 291±11 281±9† 

 

SHAM=sham surgery; DEMED=bilateral adrenal demedullation; ADREX=total bilateral 

adrenalectomy. † Significant (p≤0.05) ADREX effect relative to sham surgery. 
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Figure 4.1 

 

 

 

Figure 4.1. Experimental Timeline. Four days prior to air or ozone exposure, WKY rats 

underwent SHAM, DEMED, ADREX. After 4 days of recovery, rats were exposed to air or 

ozone for 4h/day for 1 day (A, 1-D) or 4h/day for 2 consecutive days (B, 2-D).  GTT was 

performed in the 2-D exposure group only after the first day of exposure.  Immediately 

following each exposure, rats were necropsied for analysis of lung injury and inflammation, 

neurohormones and metabolic biomarkers. WKY, Wistar Kyoto: SHAM, sham surgery; 

DEMED, bilateral adrenal demedullation; ADREX, total bilateral adrenalectomy; GTT, 

glucose tolerance test. 
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Figure 4.2 

 

Figure 4.2 Changes in the levels of circulating hormones after air or ozone exposure in 

SHAM, DEMED, or ADREX rats. Adrenal cortex and medulla-derived hormones were 

measured in the serum and plasma, respectively, from rats exposed to air or ozone at both 

time points (1-D, 2-D), A, Adrenaline (Epinephrine), B, Noradrenaline (Norepinephrine), and 

C, Corticosterone. Values indicate mean ± standard error (n=4-6/group). *Indicates ozone 

effect when compared to matching air group at a given time point (p≤0.05). †Indicates 

surgery effect within matching exposure group at a given time point (p≤0.05).  
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Figure 4.3 

 

 

Figure 4.3 Changes in glucose tolerance after air or ozone exposure in SHAM, DEMED, or 

ADREX rats. GTT was performed only after the first day of exposure in the 2-D group (A). 

The 0 min time point shows fasting glucose levels in each group post exposure.  Panel B 

shows the graph for the area under the curve (AUC) for the GTT data. Values indicate mean 

± standard error (n=4-6/group). *Indicates ozone effect when compared to matching air 

group (p≤0.05). 
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Figure 4.4 

 

 

Figure 4.4 Changes in circulating metabolites after air or ozone exposure in SHAM, 

DEMED, or ADREX rats). Serum metabolites were measured after air or ozone exposure in 

rats at each time point (1-D, 2-D): A, Total Cholesterol, B, Triglycerides, C, FFA and D, 

BCAA. Values indicate mean ± standard error (n=4-6/group). *Indicates ozone effect when 

compared to matching air group at a given time point (p≤0.05). †Indicates surgery effect 

within matching exposure group at a given time point (p≤0.05). P=0.15 for FFA air and 

ozone, 1-D and p=0.13 for BCAA air and ozone 1-D in the SHAM rats. FFA, free fatty acids; 

BCAA, branched chain amino acids. 
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Figure 4.5 

 

 

 

 

Figure 4.5 Ozone-induced changes in lung minute volume and PenH, an index of labored 

breathing, in SHAM, DEMED and ADREX rats.  The plethysmography was performed the 

morning prior to first ozone exposure (1-D Morning), immediately following first ozone 

exposure (1-D Afternoon) and prior to the start of second exposure (2-D Morning). A, 

Minute volume was calculated based on breathing frequency and tidal volume and the values 

were normalized to body weight. B, PenH values were computed from all ventilatory 

parameters measured during plethysmography. Values indicate mean ± standard error (n=4-

6/group). *Indicates ozone effect when compared to matching air group at a given time point 

P ≤ 0.05. †Indicates surgery effect within matching exposure group at a given time point P ≤ 

0.05. 
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Figure 4.6 

 

 

Figure 4.6 Lung injury in rats as determined by analysis of bronchoalveolar lavage fluid 

(BALF) after ozone exposure in SHAM, DEMED, or ADREX rats. Rats were necropsied 

immediately after each exposure time point (1-D, 2-D). BALF was analyzed for lung injury 

markers: A, Total Protein, B, Albumin, and C, LDH activity. Values indicate mean ± 

standard error (n=4-6/group). *Indicates ozone effect when compared to matching air group 

at a given time point P ≤ 0.05. †Indicates surgery effect within matching exposure group at a 

given time point P ≤ 0.05. BALF, bronchoalveolar fluid; LDH, lactate dehydrogenase.  
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Figure 4.7 

 

Figure 4.7 Lung inflammation as determined by analysis of cells in bronchoalveolar lavage 

fluid (BALF) after air or ozone exposure in SHAM, DEMED, or ADREX rats.  BALF cell 

differentials were performed to quantify macrophages, neutrophils and eosinophils at both 

time points after air or ozone exposure (1-D, 2-D). A, Neutrophils and B, Eosinophils. Data 

for macrophages are not shown. Circulating white blood cells (WBC) and platelets were also 

quantified. C, WBC and D, Platelets. Values indicate mean ± standard error (n=4-6/group). 

*Indicates ozone effect when compared to matching air group at a given time point P ≤ 0.05. 

†Indicates surgery effect within matching exposure group at a given time point P ≤ 0.05.  
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CHAPTER 5 

 

SUBCHRONIC OZONE EXPOSURE: SYSTEMIC METABOLIC 

DERANGEMENT, PULMONARY EFFECTS AND INSULIN 

INSUFFICENCY 

5.1 Introduction 

 In 2011, the International Diabetes Federation reported that the diabetes epidemic 

affected 366 million people worldwide, with 90% of the reported cases being classified as 

type 2 diabetes (TIID). Most mitigation efforts of TIID have focused on conventional risk 

factors such as sedentary lifestyle, obesity, high-fat diet, and genetic background. Recently, 

epidemiological studies have demonstrated a positive association between air pollutants and 

chronic metabolic conditions (Pearson et al., 2010;  Liu et al., 2013;  Thiering and Heinrich, 

2015). For instance, there is an overlap of diabetes cases reported by the Center of Disease 

Control and high concentrations of particulate matter in the United States (Pearson, et al., 

2010). Likewise, several studies have shown a positive association between ozone exposure, 

insulin resistance, and exacerbation of pre-existing metabolic conditions in the elderly 

(Stafoggia et al., 2010;  Zanobetti and Schwartz, 2011;  Kim and Y.C., 2012). However, the 

causality and underlying mechanisms for air pollutant-induced metabolic effects are unclear.
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 Long-term ambient particulate matter exposures are linked to the onset of metabolic 

risk factors for TIID such as adipose inflammation, mitochondrial dysfunction, liver 

endoplasmic reticulum stress and insulin resistance in mouse models of obesity (Xu et al., 

2011;  Mendez et al., 2013;  Sun et al., 2013). It has been proposed that inhaled air pollutants 

may cause systemic insulin resistance by: 1) increased circulating pro-inflammatory 

cytokines, and/or 2) neuronal activation (Rajagopalan and Brook, 2012). While some air 

pollution studies have demonstrated systemic inflammation (Nurkiewicz et al., 2004;  

Finnerty et al., 2007;  Mutlu et al., 2007;  Niwa et al., 2008), many others show no increases 

in circulating cytokines (Campen et al., 2006;  Kooter et al., 2006;  Montero et al., 2006;  

Gottipolu et al., 2009).  

 Alternatively, air pollutants have been shown to cause neuroinflammation, oxidative 

stress and endoplasmic reticulum stress in the hypothalamus and other regions that regulate 

the autonomic nervous system (ANS) and hypothalamus pituitary adrenal (HPA) axis 

(Calderon-Garciduenas et al., 2008; Block and Calderon-Garciduenas, 2009; Levesque et al., 

2011; Liu et al., 2014). Dysfunction or chronic activation of the sympathetic nervous system 

(SNS) and the HPA-axis, have been implicated in hyperglycemia, obesity, β-cell dysfunction 

and insulin resistance (Cai, 2013; Nosadini et al., 1983; Surwit and Schneider, 1993; 

Friedman et al., 1996;  Delaunay et al., 1997;  Bjorntorp et al., 1999; Rask et al., 2001). 

Likewise, persistent increases in stress hormones, such as epinephrine and corticosterone, are 

postulated to induce insulin resistance through increased circulating non-esterified free fatty 

acids (NEFAs) (Nonogaki, 2000). It is suggested that the continuous supply of NEFAs to the 

tissues could elevate intracellular ceramide and diacylglycerol levels, which can interfere 

with insulin signaling through increased IRS-1/2 serine phosphorylation and decreased AKT-
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mediated glucose uptake (Arner and Langin, 2014;  Perry et al., 2014). However, a potential 

link between neuronal stress response and insulin resistance has not been examined in air 

pollution studies. 

 We have recently reported that acute ozone exposure in rats induces a classical stress 

response characterized by increases in circulating stress hormones, glucose, long-chain free 

fatty acids, and branched chain amino acids (BCAA), suggesting the involvement of the SNS 

and activation of the HPA axis (Miller et al., 2015). The increases in circulating lipid 

metabolites and stress hormones were also noted in humans after an acute ozone exposure 

(Miller et al., 2016a). Interestingly, adrenalectomy prior to ozone exposure resulted in 

diminution of not only metabolic but also pulmonary effects in rats (Miller et al., 2016b). 

However, no insulin resistance was observed during an acute ozone exposure in our rat or 

human studies. This is in contrast to a study conducted by Vella et al. (2015), who 

demonstrated muscle insulin resistance in rats after 16 hr ozone exposure. It is not known if 

subchronic ozone exposure could lead to long-lasting elevations in circulating stress 

hormones lipids, or peripheral insulin resistance.   

 The objective of the present study is to examine if weekly episodic ozone exposure 

will lead to non-reversible metabolic alterations and insulin resistance in the liver and muscle 

tissues in rats. In this study, rats were exposed episodically to ozone 5hr/day x 3 consecutive 

days/week (wk) x 13wks. Metabolic alterations and hormone levels were assessed 

immediately after the last exposure or following a 1wk recovery. Clinical tests for glucose 

tolerance and insulin resistance were performed intermittently during exposure, together with 

assessment of stress hormones, lung injury/inflammation, and peripheral insulin signaling.  
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5.2 Materials and Methods  

5.2.1 Animals 

 Heathy male Wistar Kyoto (WKY) rats (250-300g) were obtained from Charles River 

Laboratories Inc. (Raleigh, NC) at 10 wks of age. All rats were housed 2/cage in 

polycarbonate cages in an isolated animal room maintained at 21 ± 1ºC, 50 ± 5% relative 

humidity and on a 12hr light/dark cycle. The EPA NHEERL animal facility is approved by 

the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). 

All animals received standard (5001) Purina pellet rat chow (Brentwood, MO) and water ad 

libitum unless otherwise stated. Animals were treated humanely and all efforts were made for 

alleviation of suffering. The EPA NHEERL Animal Care and Use Committee (IACUC) 

approved the research protocol for this study. 

5.2.2 Ozone generation and animal exposures 

 Ozone was generated from oxygen by a silent arc discharge generator (OREC, 

Phoenix, AZ), and its entry into the Rochester style “Hinners” chambers was controlled by 

mass flow controllers. The chambers relative mean temperature was 23.3°C (74⁰F) and 

humidity was 46%. Ozone concentrations were recorded continuously using the photometric 

API Model 400 ozone analyzer (Teledyne Instruments, San Diego, CA). Animals were 

divided into two groups: group 1 and group 2. Each group was further seperated into three 

exposure conditions: 1) filtered air, 2) 0.25 ppm ozone, and 3) 1.0 ppm ozone (n=8-

10/exposure for each group). Both groups underwent whole body exposure to air or ozone, 

5hr/day, 3 consecutive days/wk for 13wks. For group 1, necropsies were performed 

immediately post final exposure (13wk). For group 2, necropsies were performed after 1wk 
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recovery in their home cages following the 13wk exposure (13wk + 1wk recovery) to 

determine if ozone effects were reversible (Fig. 5.1).  

5.2.3 Intraperitoneal glucose tolerance test (IPGTT) 

 IPGTT was conducted in group 1 animals during the 1st wk of exposure immediately 

following day 1 (1wk-D1) or day 3 (1wk-D3) of exposure, and during the 12th wk of 

exposure immediately following day 1 of exposure (12wk-D1). IPGTT was also performed 

in group 2 following 1wk recovery. Animals were fasted ~6hr in air or ozone exposure 

chambers and during loading/unloading, except for the recovery group where food was 

withheld for 6hr prior to IPGTT. For this test, baseline blood glucose levels were measured 

by pricking the tip of the tail using a sterile 25 gauge needle and Bayer Contour Glucometer 

(Leverkusen, Germany). Animals were then injected I.P. with pharmaceutical grade glucose 

solution (20% D-glucose; Sigma-Aldrich, St. Louis. MI)  at 2g/10 mL/kg body weight. 

Glucose levels were measured at 30, 60, 90, and 120 min post glucose injection as reported 

in our previous studies (Miller et al., 2015; 2016b). 

5.2.4 Blood collection for insulin measurement during IPGTT 

  During IPGTT at 12wk-D1, blood samples were collected from the lateral tail vein 

for insulin measurement before injecting glucose (baseline) and 30 min post glucose 

injection. Rats were placed in nose-only inhalation restraining tubes that were mounted on a 

lab bench device during blood collection. In order to reduce tube stress, rats were 

acclimatized for 5 min to restrainer tubes for three consecutive days prior to the start of the 

blood collection. The tails were warmed for 1 min using a damp warm cloth and wiped clean. 

A heparinized 20 gauge sterile needle was inserted into the tail vein, and after discarding the 

first two drops, ~200 L of blood sample was collected into serum seperator tubes. 
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Hemostasis was then achieved by pressure using clean sterile gauze. These samples were 

spun at 3500 x g for 10 min, serum aliquots were separated, and stored at -80oC until insulin 

analysis. For analysis of acute ozone exposure effects on glucose-mediated β-cell insulin 

secretion, a separate group of animals were exposed to air or 1.0 ppm ozone for 4hr. 

Immediately post exposure, ~50-100 L blood samples were collected prior to and 30 min 

post glucose injection from the tail prick. These samples were spun and serum aliquots were 

stored at -80oC for insulin measurement as stated above. 

5.2.5 Intraperitoneal insulin tolerance test (IPITT) 

Group 1 underwent IPITT at wk 1, day 2 (1wk-D2), and group 2 underwent IPITT at wk 12, 

day 1 (12wk-D1). As in the case with IPGTT, animals were fasted during air or ozone 

exposure and chamber loading/unloading for ~6hr. Immediately post air or ozone exposure in 

each group, baseline glucose levels were measured from the tail prick as in the case of 

IPGTT. HumulinR (Lilly USA, LLC, Indianapolis, IN) was injected I.P. (1.0 IU diluted in 1 

mL saline/kg body weight) and blood glucose was measured at 30, 60, 90 and 120 min post 

insulin injection.   

5.2.6 Intraperitoneal pyruvate tolerance test (IPPTT) 

 PPTT was conducted in group 2 at 1wk-D1, 13wk-D1 and at 13wk-D3. This 

procedure indirectly measures hepatic gluconeogenesis in conscious animals. As in the case 

with IPGTT and IPITT, immediately following exposure, fasting baseline glucose levels 

were measured using a glucometer through a tail prick (0 min). Pharmaceutical grade sodium 

pyruvate (Sigma-Aldrich, St. Louis. MI, diluted in saline (1g/2mL/kg body weight), was then 

injected I.P. Blood glucose levels were measured at 30, 60, 90, and 120 min following 

injection of pyruvate.   
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5.2.7 Necropsy and sample collection 

 Group 1 animals were necropsied immediately following the 13wk of exposure 

(13wk), while group 2 animals were necropsied after a 1wk recovery period (13wk + 1wk 

recovery). 10-15 min prior to necropsy, half of the animals (n=4-5) in each group were 

injected I.P. with 1.0 IU/kg body weight dose of HumulinR to accelerate insulin-mediated 

glucose uptake through AKT phosphorylation. Rats were euthanized with an I.P. injection of 

~200 mg/kg sodium pentobarbital (Fatal-Plus diluted 1:1 with saline; Vortech 

Pharmaceuticals, Ltd., Dearborn, MI). All animals in both groups were fasted 6hr prior to 

necropsy. 

5.2.8 Blood collection, complete blood count (CBC), and tissue collection 

 When animals were completely non-responsive to hind paw pinch after Fetal-Plus 

injection, blood samples were collected through the abdominal aorta. CBC was performed 

from EDTA containing blood tubes using a Beckman-Coulter AcT blood analyzer 

(Beckman-Coulter Inc., Fullerton, CA). All blood tubes were then centrifuged at 3500 rpm, 

at 4oC for 10 min. Plasma and serum samples were stored at -80°C until further analysis.  

Liver lobe and gracilis leg muscle tissues were collected and stored at -80oC for later 

assessment of markers of the insulin signaling pathway. 

5.2.9 Bronchoalveolar lavage and bronchoalveolar lavage fluid (BALF) processing for 

pulmonary injury and inflammation assessment 

 The trachea was cannulated and then a suture was used to tie the left lung. The right lung 

was lavaged using Ca2+/Mg2+ free phosphate buffered saline (pH 7.4) equal to 28 ml/kg body 

weight (total lung capacity) x 0.6 (right lung is ~60% of total lung weight). Three in-and-out 

washes were performed using the same aliquot of buffer and BALF was transfered to ice 
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until processing. Aliquots of BALF were used to determine total cell counts with a Z1 

Coulter Counter (Coulter, Inc., Miami, FL) and cell differentials as described previously 

(Bass et al., 2013).  Cell-free BALF aliquots, stored at -80oC, were used to analyze total 

protein, albumin, γ-glutamyl transpeptidase (GGT) activity, and n-acetyl glucosaminidase 

(NAG) activity as described previously (Bass et al., 2013). 

5.2.10 Serum and plasma analysis 

 The catecholamines adrenaline and noradrenaline in the EDTA plasma samples were 

measured using kits from Rocky Mountain Diagnostics (Colorado Springs, CO) per the 

manufacturer’s protocol. Serum corticosterone concentrations were analyzed employing a 

rat-specific immunoassay kit from Arbor Assays (Ann Arbor, MI) per the manufacturer’s 

protocol. Total cholesterol and triglycerides were measured in serum samples using kits from 

TECO Diagnostics (Anaheim, CA), while high density lipoprotein cholesterol (HDL-C) and 

low-density lipoprotein cholesterol (LDL-C) were measured using kits from Thermo Fisher 

Scientific, Inc (Middletown, VA). All cholesterol kit protocols were modified for use on the 

Konelab Arena 30 system (Thermo LabSystems, Espoo, Finland). Serum NEFAs were 

measured by a coupled enzymatic reaction and the resultant hydrogen peroxide detection 

using a colorimetric probe as per the manufacturer’s protocol (Cell Biolabs, Inc, San Diego, 

CA). BCAA were measured in serum using an ELISA kit and protocol based on 

chemiluminescence detection (Abcam, Cambridge, MA). Insulin serum levels were detected 

using rat-specific chemiluminescence assay kit (Millipore, Billerica, MA) via manufacturer’s 

instructions. Serum levels of inflammatory cytokines were measured in selected groups of 

animals (13wk; air and 1.00 ppm ozone groups) using rat-specific V-Plex Proinflammatory 
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Panel 2 kit based on electrochemiluminescence detection (Meso Scale Discovery, 

Gaithersburg, MD) via manufacturer’s instructions. 

5.2.11 Insulin signaling assessment in liver and muscle 

 Liver and muscle tissues from 13wk and 13wk + 1wk recovery air and ozone groups 

were homogenized in lysis buffer containing protease and phosphatase inhibitors using a 

polytrone-type homogenizer. Homogenates were centrifuged at 14,000 x g at 4oC for 10 min. 

The supernatants were analyzed for protein concentrations using Coomassie Plus protein 

assay kit (Pierce, Rockford, IL) and aliquots were stored at -80oC for total and 

phosphoprotein assessment. Phosphorylated AKT (pAKT) and non-phosphorylated AKT 

were analyzed using a rat-specific electrochemiluminescence assay (Meso Scale Discovery, 

Gaithersburg, MD) via manufacturer’s instructions. The pAKT level for each sample was 

normalized to total AKT (pAKT + non-phosphorylated AKT), and the relative fold change 

was calculated based on the air control for non-insulin injected animals for their respective 

time point. 

5.2.12 General Statistics 

 Graph Pad Prism (6.0) was used for all data analysis. IPGTT, IPITT and IPPTT data 

were analyzed using a two-way repeated measure multivariate analysis of variance 

(MANOVA). Each of these time-dependent metabolic measures were also analyzed for area 

under the curve by the trapezoidal method. All other measurements had two independent 

variables (exposure and time) and therefore, these parameters were analyzed by two way 

analysis of variance (ANOVA) followed by Duncan’s multiple range test. Pairwise 

comparisons were performed on all data and the level of significance was set at p <0.05. 
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5.3 Results 

5.3.1 Acute and subchronic episodic ozone exposure induces glucose intolerance without 

impacting insulin tolerance. 

 IPGTT was conducted immediately following exposure at 1wk-D1, 1wk-D3, 12wk-

D1 and 13wk + 1wk recovery to determine if ozone-induced glucose metabolic impairment 

would persist during subchronic exposure and if these effects were reversible following a 

recovery period. Ozone exposure at 1wk-D1 induced fasting hyperglycemia and glucose 

intolerance at the 1.00 ppm dose (Fig. 5.2A), as observed in previous studies (Miller et al., 

2015). Ozone-induced hyperglycemia and glucose intolerance appeared to be reduced at 

1wk-D3 compared to the 1wk-D1 (Fig. 5.2B). Ozone exposure led to marked increases in 

fasting glucose and glucose intolerance at 1.00 ppm at 12wk-D1 (Fig.5.2C) which appeared 

to be more pronounced relative to the 1wk-D1 time point. One week recovery resulted in a 

complete reversal of ozone-induced fasting hyperglycemia and glucose intolerance (Fig. 

5.2D).  

 IPITT was conducted to determine if subchronic ozone-induced glucose intolerance 

was accompanied with peripheral insulin resistance. Neither 1wk-D2 (Fig. 5.2E) nor 12wk-

D1 (Fig. 5.2F) assessment indicated impairment in peripheral insulin-mediated glucose 

clearance. Ozone-induced hyperglycemia and glucose intolerance were reversed after insulin 

injection suggesting effective insulin-mediated glucose uptake. 

5.3.2 Acute ozone increases hepatic gluconeogenesis 

 One of the potential contribution to hyperglycemia after ozone exposure could be 

increased hepatic gluconeogenesis. IPPTT allows one to examine the stimulation of 

gluconeogenesis since pyruvate is a gluconeogenic precursor that is converted to glucose in 
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the liver when injected. To determine if ozone-induced hyperglycemia resulted from 

stimulated gluconeogenesis, IPPTT was conducted in animals at 1wk-D1 and 13wk-D1. 

During 1wk-D1, 1.00 ppm ozone-exposed animals were already hyperglycemic and showed 

a significant increase in blood glucose levels following pyruvate injection when compared to 

air or 0.25 ppm groups (Fig. 5.3A). The AUC further confirmed the stimulation of 

gluconeogenesis at this time point. In contrast, after a 13wk subchronic ozone exposure, no 

increases in gluconeogenesis were observed (Fig. 5.3B & 3C).   

5.3.3 Acute and subchronic episodic ozone exposure attenuates glucose-activated pancreatic 

β-cell insulin secretion 

 Impairment of pancreatic β-cell insulin secretion is another potential mechanism by 

which ozone could induce glucose intolerance. We evaluated the effect of acute and 

subchronic ozone exposure on β-cell function in rats by determining baseline and glucose-

stimulated insulin release in to the circulation. No differences were observed in serum insulin 

levels between air and 1.00 ppm ozone at baseline prior to I.P. glucose injection at 1wk-D1 

(Fig. 5.4A). However, 30 min after glucose injection, insulin levels were significantly 

increased in air-exposed animals, whereas ozone-exposed rats showed no insulin increase in 

response to glucose (Fig. 5.4A). Neither baseline nor glucose-stimulated insulin release in the 

0.25 ppm ozone-exposed rats were determined during the wk 1 of exposure (Fig. 5.4A). 

Subchronic air and ozone exposures showed similar insulin responses compared to acute 

exposure responses. At 12wk-D1, baseline serum insulin levels tended to decrease with 1.00 

ppm ozone exposure relative to air group (p=0.1018; Fig. 5.4B). Bolus glucose injection led 

to marked increases in serum insulin in air and 0.25 ppm ozone-exposed rats, suggesting a 

robust response of pancreatic β-cells to release insulin when circulating glucose levels were 
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high.  This glucose-induced increase in insulin levels was completely abolished in rats 

exposed to 1.00 ppm ozone (Fig. 5.4B). Glucose-stimulated insulin secretion was not 

determined in rats after the 1wk recovery period following 13wks of ozone exposure. 

However at necropsy, we measured basal insulin levels at the 13wk and the 13wk + 1wk 

recovery to determine ozone effects. Although  the insulin levels in 1.00 ppm exposed rats 

were markedly lower relative to air or 0.25 ppm groups at 13wk, this difference did not reach 

statistical significance using a 2-way ANOVA method due to large intragroup variability and 

small group size (n=3-5; Fig 5.4C). However, when insulin mean values for the air and 1.00 

ppm ozone were compared with an unpaired t-test, there was a significant (p=.0007) 3-fold 

decrease. This ozone-induced decrease was less pronounced after a 1wk recovery period (Fig 

5.4C). 

5.3.4 Subchronic episodic ozone exposure does not produce liver or muscle insulin resistance 

 Although there was no significant change in insulin tolerance between the air- and 

ozone-exposed rats, we presumed that tissue-specific insulin sensitivity might be altered, 

specifically in the liver and muscle following subchronic ozone exposure. We measured non-

phosphorylated AKT and pAKT, which mediates insulin-induced cellular glucose uptake at 

13wk and after a 13wk + 1wk recovery in the liver and muscle from air and 1.00 ppm ozone-

exposed rats. In a selected number of rats within a given exposure condition, insulin was 

injected 10-15 min prior to necropsy to increase the sensitivity of detecting levels of pAKT 

in response to high insulin. No changes were noted in the pAKT levels in the liver (Fig. 

5.5A) nor muscle (Fig. 5.5B) following ozone exposure in rats with or without insulin 

injection, suggesting that insulin-mediated glucose uptake was not altered by ozone exposure 
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in these tissues. The validity of the pAKT measurements was confirmed by significant 

increases in the levels of pAKT in rats injected with insulin prior to necropsy. 

5.3.5 Subchronic episodic ozone exposure alters circulating stress hormone levels 

We have shown that circulating adrenaline is elevated during acute ozone exposure 

(Miller et al., 2015). We have also noted increases in circulating corticosterone following a 

2hr ozone exposure in rats (unpublished data) and humans (Miller et al., 2016a). To 

determine if these stress hormones are still elevated following a subchronic episodic 

exposure, adrenaline, noradrenaline, and corticosterone plasma levels were measured in rats 

exposed to air or ozone for 13wks and after a 1wk recovery period. Serum adrenaline levels 

were significantly increased at 13wk following 1.00 ppm ozone with levels returning to 

baseline following a recovery period (Fig. 5.6A). Noradrenaline plasma levels tended to be 

high in the 1.00 ppm ozone-exposed rats at both time points, however, these increases were 

statistically insignificant (Fig. 5.6.B). The level of corticosterone tended to be low in the 1.00 

ppm ozone-exposed rats relative to air controls at 13wk, however, this difference was not 

significant (Fig. 5.6C). No ozone effects were observed in the recovery group. 

5.3.6 The effect of subchronic ozone exposure on circulating proinflammatory cytokines and 

metabolic biomarkers 

 Although circulating cytokines are postulated to be involved in peripheral metabolic 

effects of air pollutants, our prior studies show no significant increases in IL-6 or TNF- 

after acute or subchronic ozone exposure in Brown Norway rats (Bass et al., 2013; Gordon et 

al., 2013). To determine if pro-inflammatory cytokines might be increased after subchronic 

exposure in WKY rats, we examined serum levels of cytokines at 13wks. No significant 
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increases were observed in IL-6, TNF- or IL-1β however, small increases were observed in 

serum IFN-γ, IL-4, and IL-10 after subchronic ozone exposure (Table 5.1).  

We have previously shown that acute ozone exposure elevated circulating total 

cholesterol, FFA and BCAA in rats (Miller et al., 2015). To determine if these changes 

would persist during a subchronic exposure, we evaluated the serum levels of these metabolic 

biomarkers.  At 13wk, 1.00 ppm ozone significantly increased total cholesterol (Fig. 5.7A). 

However, after a 1wk recovery, serum cholesterol levels were decreased in both ozone-

exposed groups when compared to air control (Fig. 5.7A). LDL was not significantly 

changed at the 13wk time point after ozone exposure, however, these levels were 

significantly decreased in ozone-exposed rats after the recovery period (Fig. 5.7B). HDL was 

significantly elevated in the 1.00 ppm ozone-exposed rats at 13wk (Fig. 5.7C). In the 

recovery group, HDL serum levels were significantly lower in the ozone-exposed rats 

compared to the air (Fig. 5.7C). Triglycerides were not significantly affected by ozone at 

13wk but were found to be decreased in the 1.00 ppm ozone group after recovery (Fig. 5.7D). 

Neither the levels of FFA (Fig. 5.7E) nor BCAA (Fig. 5. 7F) were not significantly changed 

by ozone at any time point.  Contrary to the marked increases in leptin following an acute 1 

day ozone exposure (Miller et al., 2015), there were no significant increases in leptin at 

13wk, with levels  decreased after recovery in rats exposed to 1.00 ppm ozone (Fig. 5.7G). 

5.3.7 Subchronic episodic ozone exposure induces lung injury and inflammation 

 Many studies have shown that acute ozone exposure causes lung injury and 

inflammation in animals and humans. To determine if subchronic episodic exposure would 

cause persistent lung changes, BALF was evaluated for injury and inflammation biomarkers. 

Both total protein and albumin, markers of lung permeability, were significantly elevated at 
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1.00 ppm ozone when compared to air at 13wk but this effect was largely reversed following 

recovery (Fig. 5.8A & 8B). Rats exposed to 1.00 ppm ozone showed significant increases in 

BALF GGT activity at 13wk, which persisted when the animals were allowed a 1wk 

recovery period (Fig. 5.8C). NAG activity was also increased in rats exposed to 1.00 ppm 

ozone at the 13wk, however, this effect was attenuated after recovery (Fig. 5.8D). 

 Lung neutrophilic inflammation was increased after 13wk of ozone exposure 

compared to air and 0.25 ppm groups. This ozone effect on neutrophils was not observed in 

recovery group (Fig. 5.9A). The number of BALF alveolar macrophages were also increased 

in rats exposed to 1.00 ppm ozone relative to air at 13wk with levels returning to baseline 

following 1wk recovery (Fig. 5.9B). Interestingly, circulating white blood cells were not 

significantly decreased by the subchronic ozone exposure as they are following an acute 

exposure (Miller et al., 2016b) (Fig. 5.9C). 1.00 ppm ozone exposure for 13wk increased 

circulating platelets, but this effect was reversed following the recovery (Fig. 5.9D).     
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5.4 Discussion 

 We have previously shown that acute ozone exposure induces a systemic stress 

response characterized by hyperglycemia, glucose intolerance, lipidemia, and elevations in 

BCAA, FFA, and circulating stress hormones (Miller et al., 2015; 2016b). Humans are 

exposed episodically to ozone throughout their lifetime, which may cause chronic stress 

response activation. Chronic elevations of stress hormones have been implicated in metabolic 

dysfunction and postulated to lead to insulin resistance. However, the persistence of these 

stress and metabolic effects, and their contribution to insulin resistance have not been 

examined after subchronic ozone exposure. The main objectives of this study were to 

determine: (1) if ozone-induced acute metabolic and stress effects would persist after 

subchronic episodic exposure, and (2) if subchronic ozone exposure will lead to liver and 

muscle insulin resistance.  

 Our data show that, as observed after an acute exposure, 3 days/wk of subchronic 

episodic ozone exposure for 13wks induced fasting hyperglycemia, glucose intolerance, and 

increases gluconeogenesis, circulating cholesterols and epinephrine levels, but these effects 

are reversible upon a 1wk recovery period. More importantly, basal circulating insulin levels 

were decreased and glucose-stimulated insulin release was abolished after subchronic ozone 

exposure. No insulin resistance was noted in liver or muscle tissues after 13 week ozone 

exposure. In addition, no ozone-induced changes were observed in serum FFA and BCAA, 

suggesting the likely contribution of adaptation. Increases in lung injury and inflammation 

were still present at 13wk but these effects were reversible after a 1wk recovery period. 

Overall, our data demonstrate that ozone-induced pulmonary, metabolic and stress effects 

persist through 13wk episodic ozone exposure however, these effects are reversible upon a 
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short recovery of 1wk. Further, subchronic ozone exposure diminishes glucose-stimulated 

insulin release, while decreasing the baseline levels over time, without the impairment of 

peripheral insulin resistance.      

 Three potential mechanisms may explain hyperglycemia and glucose intolerance after 

acute and subchronic episodic ozone exposure: 1) increased glucose release from the liver 

through gluconeogenesis, 2) decreased glucose uptake by peripheral tissues, and 3) decreased 

release of insulin from pancreatic -cells. We observed that acute ozone exposure increased 

hepatic gluconeogenesis but did not impair insulin-mediated glucose clearance from the 

circulation. In contrast, hepatic gluconeogenesis was not altered during subchronic exposure. 

More importantly, acute and subchronic ozone exposures abolished glucose-mediated -cell 

insulin secretion.  

Hepatic gluconeogenesis is activated by different physiological conditions, such as 

fasting or exercise, and is tightly regulated by the availability of gluconeogenic precursors 

and phosphorylation/expression of gluconeogenic enzymes. Moreover, gluconeogenesis is 

further regulated by the availability of insulin (Girard, 2006) and stress hormones (Altuna et 

al., 2006). It is postulated that insulin can directly or indirectly inhibit gluconeogenesis by 

specifically targeting hepatic glucose production or suppressing the release of glucagon from 

pancreatic -cells, the main stimulator of gluconeogenesis. Insulin can also suppress the 

formation of gluconeogenic precursors through the inhibition of adipose lipolysis and 

skeletal muscle proteolysis (Girard, 2006). Adrenaline, through 2-adrenergic receptors, can 

enhance hepatic glucose output by increasing endogenous cyclic AMP (cAMP), which 

subsequently activates protein kinase A that stimulates  fructose bisphosphatase 2 and cAMP 

response element binding dependent activation of  phosphoenolpyruvate 
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carboxykinase and inhibits phosphofructokinase 2 (Valera et al., 1994; Burgess et al., 2004). 

The ozone-induced increases in gluconeogenesis thus, could be explained by the increased 

levels of epinephrine together with decreased insulin levels and glucose-mediated insulin 

release.  

Pancreatic β-cell insulin secretion is regulated at many levels (central and local) by 

factors including endocannabinoids (Jourdan et al., 2016), glucocorticoids (Kuo et al., 2015), 

circulating glucose and fatty acids (Oh, 2015), micro RNAs (Esguerra et al., 2014), 

epinephrine (Iwanir and Reuveny, 2008; Gibson et al., 2006), and many more. We observed 

that acute and subchronic ozone exposure diminished glucose-mediated pancreatic -cell 

insulin secretion even though circulating glucose levels remained elevated in rats. Since this 

effect is associated with increased circulating epinephrine during acute (Miller et al., 2015) 

and chronic exposure to ozone as seen in this study, it is conceivable that diminished insulin 

secretion in the present study could be due to the effect of epinephrine on pancreatic β-cells. 

Catecholamines have been proposed to act through different members of the -adrenergic 

family of receptors and impair insulin secretion through changes in cAMP and/or Ca2+ levels, 

hyperpolarization of the pancreatic -cells or glucagon release from pancreatic -cells 

(Peterhoff et al., 2003). It has been shown that glucose-induced ERK1/2 activation and 

subsequent insulin secretion are inhibited by epinephrine through the 2-adrenergic receptors 

(Gibson et al., 2006).  However, it cannot be ascertained from our study if other factors 

played a role in inhibiting insulin secretion during ozone exposure. Since basal levels of 

insulin were not affected after acute exposure, but were decreased after subchronic ozone 

exposure, it is likely that the diminished insulin release could contribute to the observed 

persistent hyperglycemia and glucose intolerance following the 13wk subchronic exposure. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701982/#B28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701982/#B2
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 We have previously shown that subchronic ozone exposure is associated with 

increased levels of insulin in 24 month but not 4 month old Brown Norway rats (Gordon et 

al., 2013), however, peripheral insulin signaling was not examined in that study. As observed 

before, in this study too, acute or subchronic ozone exposure did not elevate insulin levels in 

young WKY rats. On the contrary, serum insulin levels decreased in ozone-exposed rats 

relative to air group (Fig. 5.4), suggesting that there might be a tendency to develop insulin 

deficiency if the exposures continued in young rats. More importantly, our data show no 

peripheral insulin resistance in the muscle or liver after ozone exposure. Incidentally, 

exposure to ozone has been associated with type 1 diabetes (T1D) in pregnancy and in 

children (Hathout et al., 2002; 2006; Beyerlein et al., 2015; Malmqvist et al., 2015). Our data 

show that insulin resistance is not the cause of ozone-induced hyperglycemia, glucose 

intolerance, or the activation of gluconeogenesis observed in our study. These findings 

contradict the Vella et al. (2015) study involving a 16hr ozone inhalation, which showed 

insulin resistance in the muscle involving the c-Jun N-terminal kinase pathway. This 

discrepancy could be due to the very long single exposure in the Vella paper as opposed to 

the episodic subchronic exposure in our study. The possibility that ozone may contribute to 

the susceptibility of T1D by producing -cell dysfunction requires further investigation. 

 Since long-term particulate matter exposures have been shown to induce systemic 

inflammation and peripheral insulin resistance (Rajagopalan and Brook, 2012) , we examined 

a number of circulating cytokines after ozone exposure. No increases were observed in IL-6, 

TNF- or IL-1β. Small increases were observed in serum IFN-γ, IL-4, and IL-10 after 

subchronic ozone exposure in our study (Table 1). Our previous studies involving long-term 

ozone exposure have also failed to demonstrate increases in circulating proinflammatory 
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cytokines such as IL-6 and TNF- (Gordon et al., 2013; Bass et al., 2013). Since ozone-

exposure was not associated with insulin resistance, the contribution of systemic 

inflammation in insulin resistance after particulate matter exposure remains to be examined. 

Although we have shown that acute ozone exposure increases circulating FFA and BCAA 

(Miller, et al., 2015), elevations in these circulating metabolites were not noted after 

subchronic ozone exposure.  Total cholesterol and HDL, however, were higher in rats after 

subchronic ozone exposure. As in the case with acute exposure, increased epinephrine could 

alter cholesterol metabolism (Kunihara and Oshima, 1983) leading to increases in cholesterol 

levels. The increases and decreases noted after the 13wk ozone exposure and recovery in 

cholesterols and triglycerides may result in lipid redistribution in peripheral tissues, which 

will be important to examine in future studies.  

 Our exposure protocol differed somewhat from previous subchronic studies we have 

done using ozone (Kodavanti et al., 2011; Gordon et al., 2013; 2014; Bass et al., 2013) in that 

this study involved 3 days/wk exposure as opposed to 1 or 2 days/wk exposure. This was 

done with the understanding that while the 1st 2 days of weekly ozone could produce 

pronounced pulmonary injury and systemic response (Miller et al., 2015), 3 consecutive days 

of exposure was expected to attenuate these ozone-induced effects. Adaptation to ozone-

induced pulmonary injury, inflammation, and function after daily repeated exposure is fairly 

well demonstrated in humans (JÖRres et al., 2000; Schelegle et al., 2003) and in animals 

(Kirschvink et al., 2002; van Bree et al., 2002). The degree of adaptation depends on the 

ozone concentration and the temporality of exposure, and it has been shown that the 

adaptation to weekly 2-3 day ozone exposure is lost within 1wk upon re-exposure (Gordon et 

al., 2013; 2014). Rats exposed to ozone for 6hr/day, 2 days/wk led to partial adaptation 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343260/#R17
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343260/#R31
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343260/#R18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343260/#R37
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relative to acute exposure in pulmonary and systemic metabolic effects when determined 

after 13wk exposures (Bass et al., 2013), suggesting that weekly exposure for several wks 

will also dampen the degree of pulmonary and systemic effects observed after the 1st wk. In 

this study, we wanted to determine if the weekly adaptation would start following 3 

consecutive days of exposure, and if so, whether repeated induction of adaptation over 13wk 

would lead to failure in this response. We noted that IPGTT and IPPTT when performed on 

the third day in a given wk showed marked reduction in ozone-induced hyperglycemia, 

glucose intolerance as well as gluconeogenesis, however, the pulmonary injury inflammation 

determined after day 3 post 13wks exposure were nearly as robust as what is reported after 

acute exposure (Miller et al,. 2015).  This suggests an adaptation in some systemic effects 

following weekly ozone exposure with less robust adaptation in pulmonary outcomes.  

The phenomenon of adaptation might involve many factors, the degree of 

injury/inflammation at a given concentration being the most critical, and thus the 

interpretation of any findings becomes highly complex. Nevertheless, one could speculate 

that central mechanisms might be playing an important role in ozone adaptation 

phenomenon.  Since we have shown that catecholamines and glucocorticoids are potentially 

involved in these ozone-induced pulmonary and metabolic effects (Miller et al., 2016b), it is 

likely that adaptive mechanisms may involve altered stress response signaling during 

subchronic exposure. Chronic stress activation can lead to the adaptive response 

“habituation”, involving neural plasticity and downregulation of glucocorticoid and β-

adrenergic receptors in the central nervous system, and in the periphery leading to reduced 

stress-mediated responses (Herman, 2013).  
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One of the critical questions we wanted to address is the reversibility of effects upon 

discontinuation of ozone exposure. The persistence of the effects, including insulin 

insufficiency, can have implications in chronic disease outcomes. As noted, pulmonary and 

systemic effects observed immediately following the 13wk exposure were largely reversed 

following the 1wk recovery. However, the circulating lipids showed a reversed pattern of 

change, suggesting that while most effects are not persistent upon discontinuation of 

exposure, lipid redistribution might remain an important outcome of chronic episodic 

exposure and needs to be further examined in light of liver and muscle diseases and their link 

to pulmonary complications.     

 In conclusion, we demonstrate that subchronic weekly episodic ozone exposure 

induces pulmonary injury/inflammation, hyperglycemia, glucose intolerance, and increase 

cholesterols as observed after acute exposures. We further show that while peripheral insulin 

resistance did not occur by subchronic ozone, it had a major impact on -cell insulin 

secretion in response to circulating glucose, likely mediated by increased circulating 

epinephrine levels. This, together with reduced circulating insulin levels after subchronic 

ozone exposure, supports a link between chronic ozone and TID. Despite the fact that most 

subchronic ozone-induced changes are reversible upon termination exposure, the question 

remains about lipid redistribution in peripheral tissues and chronic episodic pollution effects. 

Overall, these data provide further insight into the mechanism(s) of how subchronic ozone 

exposure may contribute to insulin insufficiency and produce other systemic impairments.
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Table 5.1 Serum levels of proinflammatory cytokine biomarkers in WKY rats after subchronic 

exposure to air or 1.00 ppm ozone 

 

 Exposure 

Biomarker Air  Ozone  

IL-6 (pg/ml) 210.52 9.01 229.62 ± 4.68 

TNF- (pg/ml) 3.88 ± 0.35 4.57 ±  0.45 

IL-1β (pg/ml) 63.37 ± 4.58 70.19 ± 7.74 

IFN-γ (pg/ml) 26.99 ±0.92 29.48 ± 0.49* 

IL-10 (pg/ml) 81.00 ±2.45 88.91 ± 1.38** 

IL-4 (pg/ml) 6.85 ±0.15 7.32 ± 0.12** 

IL-5 (pg/ml) 23.96 ±5.65 16.25 ± 2.28 

KC-GRO (pg/ml) 191.21 ±23.36 195.66 ± 34.85 

 

Serum samples obtained after 13wk air and 1.00 ppm ozone (mean ± SEM; n=8) were analyzed 

using a Mesoscale Discovery Inc. cytokine multiplex panel kit. *Indicates significant ozone 

effect when compared to matching air group (*p≤0.05, **p≤0.01). Note that half of rats per 

group were injected with 1U/kg insulin, 10-15 min prior to necropsy. 
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Figure 5.1 

 

Figure 5.1 Experimental design. Two groups of animals were exposed to: 1) filtered air, 2) 

0.25 ppm or 3) 1.00 ppm ozone for 5h/d, 3d/wk for 13wks (n=8-10 rats/exposure/ group). 

Group 1 rats were necropsied immediately after the final exposure. Group 2 animals were 

necropsied after a 1wk recovery period following 13wk of episodic exposure (13wk + 1wk 

recovery). Metabolic testing time points are indicated by arrows for each test: 

intraperitoneal glucose tolerance test ( IPGTT: 1wk-D1; 1wk-D3; 12wk-D1; 13wk + 1wk 

recovery; the final test conducted six days following final exposure), intraperitoneal insulin 

tolerance test (IPITT:1wk-D2; 12wk-D1) intraperitoneal pyruvate tolerance test (IPPTT:1wk-

D1; 13wk-D1; 13wk-D3). All IPGTT, IPITT, IPPTT were conducted immediately following 

exposure time points. -cell insulin secretion test was conducted on 1wk-D1 and 12wk-D1. 
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Figure 5.2  

 

 

Figure 5.2 Acute and subchronic ozone exposures induce hyperglycemia and glucose 

intolerance without impairing insulin tolerance. IPGTT was conducted in animals at (A) 

week 1, day 1 (1wk-D1), (B) week 1, day 3 (13wk-D3), (C) week 12, day 1 (12wk-D1), and 

(D) six days after the 13wk final exposure (13wk + 1wk recovery). IPITT was conducted at 

(E) week 1, day 2 (1wk-D2) and (F) week 12, day 1 (12wk-D1).  Bar graphs show respective 

area under the curve (AUC) values for each test. Values indicate mean ± SEM (n=8-10). 

*Indicate ozone effect when compared to matching air group (*p≤0.05, **p≤0.01, 

***p≤0.001). 
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Figure 5.3 

 

 

Figure 5.3 Acute and subchronic ozone exposures induce hepatic gluconeogenesis. 

IPPTT was conducted in animals at (A) week 1, day 1 (1wk-D1), (B) week 13, day 1 (13wk-

D1) and (C) week 13, day 3 (13wk-D3). Bar graphs show respective area under the curve 

(AUC) values for each test. Values indicate mean ± SEM (n=8-10). *Indicate significant 

ozone effect when compared to matching air group (*p≤0.05, **p≤0.01, ***p≤0.001). 
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Figure 5.4 

 

Figure 5.4 Acute and subchronic ozone exposure inhibits glucose-stimulated β-cell 

insulin secretion. Serum insulin levels were measured immediately following 1 day air or 

1.00 ppm ozone exposure (A; 1wk-D1; a separate group of rats was used for this testing and 

air or ozone exposures was performed only for 4hr) and at 12wk-D1 (B).  Insulin levels were 

measured at baseline (0 min) and 30 min after I.P. injection of glucose (20% D-glucose; 

2g/kg). (C) Insulin levels were also determined immediately after necropsy at 13wk and 

13wk + 1wk recovery. Insulin levels were not determined (N.D.) in 0.25 ppm ozone group 

during acute exposure. Values for A and B indicate mean ± SEM (n=6-10) while values for C 

indicate mean ± SEM (n=3-5). *Indicate significant ozone effect when compared to matching 

air group (*p≤0.05, **p≤0.01, ***p≤0.001). † Indicate significant effect of glucose injection 

compared to baseline levels. 
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Figure 5.5 

 

Figure 5.5 The effect of subchronic ozone exposure and 1wk recovery on insulin 

signaling in liver and muscle tissue. Half of the rats from each group were I.P. injected with 

1.0 IU insulin/kg body weight 10-15 min prior to blood collection (necropsy) to enhance 

phosphorylation of AKT, which mediates glucose uptake through insulin receptors. The 

levels of non-phosphorylated and phosphorylated AKT (pAKT) were measured in the (A) 

liver and (B) muscle extracts, and the relative pAKT levels were normalized to non-insulin 

injected air control group. Values indicate mean ± SEM (n=4-5). †Indicates significance 

between insulin injected and non-insulin injected rats (p≤0.05).  
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Figure 5.6 

 

Figure 5.6 Subchronic ozone exposure changes circulating stress hormones. Stress 

hormones were measured in plasma samples collected using EDTA as an anticoagulant in 

rats exposed to air, or ozone at 0.25 ppm, or 1.00 pm immediately after final exposure at 

(13wk) and immediately after 1wk recovery. Stress hormones included (A) adrenaline, (B) 

noradrenaline and (C) corticosterone. Values indicate mean ± SEM (n=8-10). *Indicates 

significant ozone effect when compared to matching air group (*p≤0.05). 
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Figure 5.7 
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Figure 5.7 Subchronic ozone-induced changes in serum metabolic markers. Changes in 

circulating metabolites and leptin were measured in rats exposed to air, 0.25 ppm, or 1.00 pm 

ozone at 13wk and after 1wk recovery. The biomarkers included (A) total cholesterol (Chol.), 

(B) low density lipoprotein (LDL), (C) high density lipoprotein (HDL), (D) triglycerides, (E) 

free fatty acids (FFA), (F) branched chain amino acids (BCAA) and (G) leptin. Values 

indicate mean ± SEM (n=8-10). *Indicates significant ozone or recovery effects (*p≤0.05, 

**p≤0.01, ***p≤0.001). 
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Figure 5.8 

 

Figure 5.8 Subchronic ozone induced lung injury as determined by the assessment of 

bronchoalveolar lavage fluid (BALF). Lung injury markers were determined immediately 

after air, 0.25 ppm or 1.00 ppm ozone exposure for 13wks (13wk) and 1wk recovery 

following 13wk exposure. BALF was analyzed for lung injury markers: (A) total protein, (B) 

albumin, (C) γ-glutamyl transferase (GGT) activity and (D) N-acetyl glucosaminidase 

(NAG) activity. Values indicate mean ± SEM (n=8-10). *Indicates differences between 

groups (*p≤0.05, ***p≤0.001). 
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Figure 5.9 

 

Figure 5.9 Subchronic ozone induced lung inflammation as determined by the assessment 

of bronchoalveolar lavage fluid (BALF). Lung inflammation was determined by analysis of 

cells in bronchoalveolar lavage fluid (BALF) immediately after air, 0.25 ppm or 1.00 ppm 

ozone exposure for 13wks (13wk) and after 1wk recovery following 13wk exposure. BALF 

total cell count and cell differentials were performed to quantify (A) alveolar macrophages 

(AM) and (B) neutrophils. Circulating white blood cells (WBC) and platelets were also 

quantified using a Beckman-Coulter AcT blood analyzer (C, WBC; D, platelets). Values 

indicate mean ± SEM (n=8-10). *Indicates significance between groups (*p≤0.05, 

***p≤0.001).  
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CHAPTER 6 

 

OVERALL CONCLUSIONS AND SIGNIFICANCE 

 

6.1 Air pollution and metabolism/diabetes  

 Recent epidemiological studies have implicated air pollutant exposure as a risk factor 

for diabetes (Pearson et al., 2010; Liu et al., 2013; Thiering and Heinrich, 2015). 

Specifically, respirable ambient particulate matter (PM) has been associated with increases in 

HbA1c (a marker of  chronic high levels of  blood  glucose) (Chuang et al., 2011;  Tamayo et 

al., 2014),  impairment in glucose metabolism (Teichert et al., 2013), elevated homeostatic 

model assessment of insulin resistance (HOMA-IR), and decreased insulin sensitivity in 

humans (Kim and Y.C., 2012;  Brook et al., 2013;  Thiering and Heinrich, 2015). High ozone 

levels have been positively correlated with fasting hyperglycemia, insulin resistance and 

exacerbation of diabetes symptoms in humans (Stafoggia et al., 2010;  Zanobetti and 

Schwartz, 2011; Kim and Y.C., 2012). Exposure to ozone has also been associated with type 

1 diabetes in pregnancy and in children (Hathout et al., 2006; Beyerlein et al., 2015; 

Malmqvist et al., 2015).  However, the question of how pollutants, specifically ozone, might 

contribute to these metabolic effects still remains. Mechanistic understanding of the causality 

of air pollutant-induced metabolic impairment will provide insight into the actual human risk 

for metabolic disease from pollutant exposures and the implementation of effective 

preventative measures.
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 Experimental studies on pollutant-induced metabolic effects have primarily focused 

on ambient respirable PM and long-term exposures in mice. Findings from these studies 

suggest that ambient PM exposure can impair glucose metabolism, increase adipose 

inflammation and induce liver insulin resistance in healthy and obese mice (Sun et al., 2009; 

Xu et al., 2011; Yan et al., 2011; Conklin et al., 2013; Sun et al., 2013; Laing et al., 2010). 

Regarding ozone, limited experimental studies have explored its role in inducing systemic 

metabolic effects. Previous ozone studies in our lab have shown that acute exposure causes 

hypothermia and bradycardia (Gordon et al., 2014) together with hyperglycemia and glucose 

intolerance in Brown Norway (BN) rats (Bass et al., 2013), while subchronic exposure 

increased circulating insulin in aged rats with a 1 day per week exposure protocol (Gordon et 

al., 2013), suggesting that like PM, ozone can induce glucose metabolic effects. A recent 

study has demonstrated that a single 16 hour ozone exposure in rats increased oxidative stress 

biomarkers and reduced insulin sensitivity in the muscle (Vella et al., 2015). However, the 

mechanisms by which an acute ozone exposure may induce systemic metabolic effects and 

over a longer period of time lead to insulin resistance are not clearly understood. 

6.2 Proposed mechanisms of pollutant-induced metabolic dysfunction and insulin resistance 

 A number of mechanisms have been proposed on how air pollutants may trigger 

metabolic dysfunction. Based on their physicochemical properties, inhaled pollutants might 

induce systemic effects by: (1) translocation of pollutant components from the airway to the 

periphery, (2) increases in circulating secondary oxidative byproducts and pro-inflammatory 

mediators and/or (3) effects on the CNS that regulate peripheral organ functions 

(Rajagopalan and Brook, 2012). It is postulated that these mechanisms can work 



 

202 

 

independently or synergistically with each other and target peripheral organs in a tissue-

specific manner to perturb biochemical processes. 

 Ozone, an oxidizing agent, once inhaled immediately reacts with airway lining 

components, such as proteins and lipids, and is not likely to translocate systemically. Thus, 

ozone-mediated peripheral effects are likely to be caused by other proposed mechanisms. 

While PM exposure studies have implicated chronic systemic inflammation and oxidative 

stress in the mechanisms for metabolic dysfunction and the onset of insulin resistance, our 

data show no increases in circulating cytokines acutely or after subchronic ozone exposure, 

although acute phase proteins are increased (Bass et al., 2013; Gordon et al., 2013; Miller et 

al., 2015). Some PM exposure studies have shown increases in circulating pro-inflammatory 

mediators (Nurkiewicz et al., 2004;  Finnerty et al., 2007;  Mutlu et al., 2007;  Niwa et al., 

2008), but other inhalation studies present no increases (Campen et al., 2006;  Kooter et al., 

2006;  Montero et al., 2006;  Gottipolu et al., 2009). Thus, systemic inflammation as an 

initiating and causal factor for the inhaled pollutant-induced metabolic effects is not 

consistently supported by the published studies, especially those involving ozone. 

6.3 The potential involvement of the CNS and stress-response pathway 

 It has been shown that ozone can induce alterations in pulmonary and cardiovascular 

physiology through the autonomic nervous system, which includes sympathetic and 

parasympathetic arms. We have previously shown that acute ozone exposure causes 

hypothermia and bradycardia within 1hr, suggesting the involvement of the CNS (Gordon et 

al., 2014). Ozone is thought to initiate changes in the autonomic nervous system through the 

activation of the transient receptor potential cation channel, member A1 (TRPA1) present on 

pulmonary C-fibers that terminate in the CNS (Taylor-Clark and Undem, 2010). Ozone has 
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been shown to activate the nucleus tractus solitarius (NTS) in the brain stem and different 

hypothalamic stress-responsive regions, such as the paraventricular nucleus (PVN) and the 

locus coeruleus (LC) (Gackiere et al., 2011) that are linked to the autonomic nervous system 

and the hypothalamus pituitary adrenal (HPA) axis (Tsigos and Chrousos, 2002;  Smith, 

2006). These hypothalamic regions stimulated by ozone exposure might regulate adaptive 

stress responses, such as the regulation of thermogenesis, immune response, and peripheral 

tissue-specific metabolic alterations, and suggest a potential link between the nervous system 

and ozone-induced systemic effects. 

 Generally, when presented with a physical injury or psychological threat, alarm 

signals in the body are sent to hypothalamic stress-responsive regions that activate the 

integrated responses of the sympathetic nervous system (SNS) and HPA axis to release 

neuroendocrine hormones that initiate temporally precise peripheral metabolic and immune 

changes to counter the threat and restore homeostasis (McEwen, 2007).  This classical stress 

response involves tissue specific changes in processes to mobilize and provide energy 

substrates to affected tissues (McEwen, 2007). The stress hormones, catecholamines 

(norepinephrine or noradrenaline and epinephrine or adrenaline) and glucocorticoids 

(corticosterone) regulate biochemical processes involving glucose, fat and protein 

metabolism through their action on stress hormone receptors (adrenergic for catecholamines 

and glucocorticoid for corticosterone), which show tissue-specific distribution in peripheral 

organs and centrally. This classical neuronally-mediated hormonal stress response and its 

implications for chronic diseases has been well studied for decades and still remains an area 

of interest.  Persistent increases in these stress hormones and associated metabolic changes 

have been implicated in chronic metabolic dysfunction and insulin resistance through a 
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number of mechanisms involving the role of systemic inflammation and lipids.  However, 

this stress response has not been linked to air pollution-induced systemic effects and 

metabolic dysfunction. 

 We have shown that circulating catecholamines increased after ozone exposure in rats 

(Bass et al., 2013). Other investigators has also noted increases in circulating corticosterone 

and adrenocorticotropic hormone (ACTH) after ozone exposure (Thomson et al., 2013). The 

adrenal gland is one of the main sources of stress hormones, where catecholamines are 

released from the adrenal medulla and glucocorticoids are released from the adrenal cortex, 

and play a central role in stress-mediated changes in metabolic homeostasis. The adrenal 

cortex can be activated through the HPA axis, which involves the activation of the 

hypothalamus and the secretion of corticotrophin releasing hormone (CRH). CRH activates 

the anterior pituitary gland to release ACTH that directly stimulates the adrenal cortex to 

secrete glucocorticoids (cortisol in humans and corticosterone in rats) and other hormones 

(Smith, 2006). In contrast, the adrenal medulla can be directly stimulated by sympathetic 

efferent nerves, which results in the secretion of epinephrine and/or norepinephrine (Smith, 

2006). Therefore, based on the evidence of acute ozone-induced increases in stress hormones 

and hyperglycemia, it can be postulated that the initiating event for metabolic alterations 

might involve the activation of a neurohormonal stress response, leading to effects in 

multiple organs. No prior air pollution studies have examined the contribution of the 

neurohormonal stress response and subsequent release of epinephrine and corticosterone in 

mediating air pollution-induced systemic effects. In addition, no prior air pollution studies 

have reported in detail the types of systemic metabolic alterations or linked these effects to a 

neuronal stress response. 
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6.4 Project goals 

 The goals of this dissertation were to address the critical missing link between ozone 

exposure and peripheral metabolic alterations involving neuronal stress response 

mechanisms, and the potential of these effects to cause insulin resistance after subchronic 

exposure.  As depicted in the second chapter, we wanted to characterize the nature of extra-

pulmonary metabolic effects of acute ozone exposure in rats using a metabolomics approach 

and examine the levels of circulating cytokines and hormones. We also wanted to examine 

the peripheral metabolic changes, especially in the liver as it is the major metabolic organ, 

using global gene expression assessment to understand the mechanisms of ozone-induced 

systemic alterations. The temporal assessment of ozone-induced systemic metabolic 

derangement was important in understanding the role of the SNS and HPA axis. To assess 

the relevancy of our findings to humans, as depicted in the third chapter, we examined the 

profile of circulating metabolites using a metabolomics approach applied to serum samples 

from a clinical study involving human exposure to air or ozone. This was done to establish 

coherence between humans and rats with respect to ozone-induced systemic alterations. 

Moreover, we also presumed that using a metabolomic approach would lead to the 

identification of novel non-protein biomarkers of acute ozone exposure and inform the 

regulatory decision for ozone.  In the fourth chapter, we evaluated if adrenal-derived stress 

hormones were essential in ozone-induced systemic and pulmonary effects using the surgical 

interventions of adrenal demedullation and total bilateral adrenalectomy followed by the 

exposure of rats to ozone. We also wanted to determine if the activation of TRPA1 and 

TRPV1 receptors were essential in mediating systemic and pulmonary effects of ozone (as 

discussed in this chapter). Lastly, as described in the fifth chapter, we determined if acute 
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ozone-induced metabolic and stress effects would persist during subchronic episodic ozone 

exposure, and lead to insulin resistance in the liver and muscle. Below, I have summarized 

the major findings from the dissertation project, stated limitations and made some 

suggestions for future research.  

6.5 Acute ozone exposure induces peripheral metabolic alterations in rats 

 We show that acute ozone exposure produces fasting hyperglycemia, glucose 

intolerance and increases hepatic gluconeogenesis in Wistar Kyoto (WKY) rats in a 

concentration and time-dependent manner (Chapter 2) as observed previously in BN rats 

(Bass et al., 2013). We further sought to evaluate the mechanism of glucose intolerance to get 

a better understanding of the contributing mechanisms. Acute ozone exposure increased 

gluconeogenesis as evident by the pyruvate tolerance test. However, acute ozone exposure 

did not induce peripheral insulin resistance as determined by the insulin tolerance test. 

Instead, ozone attenuated glucose-mediated pancreatic β-cell insulin secretion (Chapter 5). 

These results indicate that ozone-induced hyperglycemia and glucose intolerance might not 

originate from peripheral tissue insulin insensitivity but might occur as a result of insulin 

insufficiency. Altogether, our ozone studies implicate the pancreas as a potential tissue target 

in ozone-induced metabolic alterations. More research evaluating the mechanism of the 

pancreatic alterations after ozone exposure would provide insight into how ozone may alter 

β-cell insulin secretion.  

  To further characterize ozone-induced global metabolic effects, we employed a 

serum metabolomics approach since this emerging technology allows for unbiased, 

comprehensive identification and relative quantification of various biochemical metabolites. 

This approach allowed us to identify systemic changes that have not been previously reported 
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in any air pollution study. Serum metabolomics analysis in rats revealed significant ozone-

induced changes in hundreds of metabolites in the circulation. These significantly-changed 

metabolites consisted of numerous long- and medium-chain FFA, carnitines, bile acids, 

cholesterols, glucose, and BCAA, and revealed alterations in metabolic processes in the liver, 

muscle and adipose tissues. We noted that the pattern of metabolite changes after ozone 

exposure reflected those that are induced in a classical flight-or-fight hormonal stress 

response, revealing adipose lipolysis, muscle protein catabolism and a number of changes in 

liver reflecting increased gluconeogenesis and major changes in lipid metabolism. These 

metabolic effects were further associated with increases in circulating catecholamines and 

glucocorticoids as observed in our prior study (Bass et al., 2013), which collectively supports 

the hypothesis that ozone induces systemic metabolic alterations through the activation of a 

classical neurohormonal stress response.  

It is important to note that this stress response is well established with other physical 

and psychological stressors (injury, surgery, infection, fear etc.) (Schneiderman et al., 2005). 

However, these systemic changes and activation of stress mechanisms have not been studied 

with air pollution. Our data demonstrate that ozone, a prototypic air pollutant, can elicit a 

stress response and produce a myriad of extra-pulmonary effects. These data also allow us to 

postulate that a variety of environmental and social stressors might involve one common 

mechanism that can be linked to chronic disease conditions. Future studies could include the 

evaluation of the metabolomic profile of the liver, adipose and muscle tissue directly to 

provide additional insight in to the mechanism and identification of biochemical pathways 

affected by ozone exposure. Since these metabolic effects may persist during longer 
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exposure, metabolic profiling could also be used to examine the temporality and long-term 

effects of ozone exposure.   

6.6 Acute ozone exposure increases circulating stress hormones and induces metabolic 

alterations in humans 

 To determine whether humans would present a similar pattern of metabolomic 

alterations and stress response as observed in rats when exposed to ozone, a metabolomics 

approach was used to assess human serum samples obtained from a clinical study involving 

air or ozone exposure. We hypothesized that since stress response-mediated mechanisms and 

metabolic processes are conserved across species, ozone exposure in humans would produce 

comparable metabolic dysfunction as in rats. In this study, serum samples from ozone-

exposed humans showed a similar pattern of change in long-chain FFA and glycerols, 

indicating adipose lipolysis as observed in rats. This study also depicted increases in 

circulating cortisol, supporting the role of a neuronally-mediated stress response in systemic 

metabolic effects of ozone.  Since humans were performing intermittent exercise during air 

or ozone exposure, more wide-spread changes in lipid metabolites were noted, such as 

increases in lysolipids a variety of phospholipid metabolites and -oxidation byproducts, 

which were not evident in rats exposed during inactivity. Exercise alone is known to increase 

metabolic responses and thus, might have influenced some of the effects of ozone in humans. 

However because our study did not include non-exercising subjects, it is not possible to 

accurately separate ozone and exercise effects. A future study where one evaluates the 

differences between resting-state versus exercise-state in ozone-induced metabolic effects 

would further enhance our understanding of whether air pollutants might have more 

detrimental effects from ozone where humans are generally exposed outdoors during high 
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level activity. Future analysis to determine coherence between animals and humans’ 

metabolic effects should repeat the current study with a higher number of subjects so that 

data can be stratified based on different characteristics, such as diet and exercise, and 

statistical power can be increased. The future studies may also include clinical assessments 

such as glucose tolerance testing for comparisons to the acute ozone-induced glucose 

intolerance observed in rodents. Additionally, metabolic profiling can be used to profile 

effects of ozone exposure with other contributing factors that may predispose humans to 

additional metabolic dysfunction (diet, pre-existing disease, BMI, etc.), however, we did not 

see any correlation with BMI and the effects induced by ozone on lipid metabolites (Chapter 

3).  

6.7 Adrenal-derived stress hormones are required for acute ozone-induced metabolic effects  

 To determine the contribution of adrenal-derived glucocorticoids and catecholamines 

in ozone-induced metabolic effects, we performed a comparative assessment of ozone 

metabolic and pulmonary effects in rats that underwent total adrenalectomy (to determine 

overall influence of sympathetic and HPA-mediated hormone release) or adrenal 

demedullation (to determine the influence of direct sympathetic stimulation on adrenal to 

release epinephrine). Moreover, the adrenalectomy and demedullation allowed for a more 

direct approach to control for circulating stress hormones levels in contrast to 

pharmacological interventions, which can have non-specific off-target effects. These surgical 

interventions have been utilized in many studies to evaluate HPA integrity and the 

assessment stress hormones effects (Kaminski and Watts, 2012; Weidenfeld and Feldman, 

2000; Helmreich et al., 1996). However, this approach is sparingly used in air pollution 
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studies, and no studies have implicated HPA axis activation in air pollutant-induced systemic 

effects.   

 Overall, we demonstrated that the surgical removal of adrenal glands eliminated both 

corticosterone and epinephrine, while adrenal demedullation led to nearly complete 

elimination of epinephrine with a small reduction in corticosterone. This allowed us to 

examine the role of these hormones in ozone-induced systemic and pulmonary effects. 

Ozone-induced hyperglycemia, glucose intolerance, and increases in circulating adrenaline, 

FFA and BCAA were completely abolished by adrenalectomy and partially diminished by 

adrenal demedullation. Thus, it was clear that ozone-induced metabolic effects were 

produced from circulating catecholamines and corticosterone. Overexpression of the 

glucocorticoid receptors or increased levels of glucocorticoids in vivo has been shown to 

induce glucose intolerance and decrease insulin secretion, which results in insulinopenia, as 

observed in Cushing’s disease patients (Delaunay et al., 1997;  Pivonello et al., 2010;  Kuo et 

al., 2015). To further support if these stress hormones are involved in ozone-induced 

metabolic effects, a future experimental design should incorporate re-supplementation of the 

stress hormones at various concentrations in adrenalectomized rats to determine if the ozone-

induced effects would resurge. 

6.8 Adrenal-derived stress hormones are required for acute ozone-induced pulmonary injury 

and inflammation 

 The mechanism of ozone-induced lung injury and inflammation has been widely 

studied for decades. Upon inhalation, it has been demonstrated that the oxidant ozone can 

injure lung epithelial cells and mediate subsequent recruitment of inflammatory cells at the 

site of injury. It is believed that ozone-induced lung injury is a local event. No prior studies 
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have implicated the role of circulating stress hormones in mediating lung effects of ozone in 

vivo or in vitro. We were intrigued with our findings that ozone-induced lung protein 

leakage, lung cell injury and neutrophilic inflammation were partially inhibited in rats 

lacking adrenal medulla and nearly completely abolished in rats lacking whole adrenal 

glands. These results suggest that adrenal-derived hormones are not only involved in ozone-

induced peripheral metabolic effects but also the inflammation and vascular leakage in the 

lung.   

 Our data show that in adrenalectomized rats, ozone-induced protein leakage was 

abolished. One potential mechanism of vascular leakage might relate to ozone-induced 

bradycardia and generalized cardiac depression (Wagner et al., 2015), which can increase 

hydrostatic pressure in respiratory capillary walls and increase the vascular leakage (Šedý et 

al., 2015). Another study showed that sympathetically-induced increased systemic blood 

pressure can also contribute to pulmonary vasculature pressure and injury (Krishnamoorthy 

et al, 2012), however, ozone exposure is known to decrease systolic blood pressure 

(Uchiyama et al., 1986; Wagner et al., 2014). β-adrenergic stimulation by epinephrine can 

increase right ventricular output and generalized vasodilation, which can increase the blood 

volume in pulmonary capillary bed and increase capillary pressure leading to edema (Rassler, 

2012). As indicated above, ozone exposure leads to decreased blood pressure and systemic 

vasodilation. The ozone-induced increase in epinephrine, but not norepinephrine, together 

with decreased blood pressure-related systemic vasodilation, supports the role of -

adrenergic mechanisms in inducing lung protein leakage after ozone exposure and the 

decrease of edema when epinephrine is removed from circulation via adrenelectomy or 

demedullation.   
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 Ozone-induced lung neutrophilia is associated with a decrease in circulating white 

blood cells (lymphocytes) as observed in SHAM rats exposed to ozone. Supplementing 

cortisol-mimic to patients with adrenal insufficiency leads to depletion of lymphocytes in the 

circulation (Geigen et al., 2015). Generally, stress hormones, such as glucocorticoids, are 

known to produce immuno-suppression and reduce inflammatory responses in chronic 

diseases (Edwards, 2012), however, in more acute inflammatory conditions, glucocorticoids 

can initiate leukocyte trafficking and extravasation at the site of injury in an immune cell-

specific manner (Dhabhar, 2009; Dhabhar et al., 2012). For instance, circulating lymphocytes 

can decrease, as observed following ozone exposure, and neutrophils can increase in blood, 

which was not separately quantified in our study. Catecholamines initiate recruitment of 

neutrophils to the airways though initiation of IL-8 production from monocytes (Linden, 

1996;  Kavelaars et al., 1997). These findings support our results where removal of the 

adrenal medulla and the total adrenalectomy diminished ozone-induced increases in 

neutrophils in the lung while not affecting circulating lymphocytes. Instead, the removal of 

stress hormones appeared to increase eosinophils, which might suggest either the differential 

influence of catecholamines versus corticosterone in an immune cell-specific manner or the 

time-related differences in the type of cells extravasated. Identification of different types of 

immune cells and their maturation stages will need to be evaluated in a temporal manner 

using flow cytometry to understand the precise contribution of stress hormones to the 

homeostatic innate immune response after ozone exposure.  These studies should evaluate 

the role of specific stress hormones in selective recruitment of neutrophils, monocytes, and 

eosinophils to the lung from their marginated pool within bone marrow, spleen, circulation or 

other depots within the lung (i.e. lung-associated lymph nodes). 
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6.9 The role of pulmonary afferent C-fibers in mediating ozone induced activation of 

neuronal stress response through TRPA1 and TRPV1 

 It was hypothesized that ozone activation of brain stress responsive regions through 

TRPA1 and transient receptor potential-member V1 (TRPV1) receptors (Lee and Pisarri, 

2001), co-localized on pulmonary C-fibers, were involved in peripheral metabolic effects. 

These TRP receptors on C-fibers are activated in the presence of internal and/or external 

chemical and thermal stimuli and send neural impulses to the CNS regions, including the 

NTS, which regulate respiratory mechanics and its synchronization/coordination with 

cardiovascular function (Lee and Pisarri, 2001). The activation of TRPA1 on bronchial vagal 

C-fibers by ozone has been implicated in bradycardia and arrhythmias in rats (Hazari et al., 

2011), and is likely to be involved in ozone-induced metabolic effects through stress 

hormones.  To evaluate the role of TRP receptors in ozone-induced systemic and pulmonary 

effects, we pretreated rats with selective pharmacological antagonists of TRPA1 (HC030031) 

and TRPV1 (AMG 9810), separately or in combination, and then assessed ozone-induced 

metabolic impairment. The results from this study showed that antagonism of the TRPA1 and 

TRPV1 separately or in combination did not show significant protection in ozone-induced 

metabolic or pulmonary effects (Fig. 6.1.). Although the contribution of TRPA1 has been 

reported in the literature using same antagonists and similar treatment protocols, our data 

raises a concern as to the availability of the sufficient quantity of antagonists at the airway 

surface lining after intraperitoneal treatment, and potential contribution of TRPs in mediating 

neuronal activation. We did not determine the circulating levels of these pharmacological 

antagonists, therefore, it will be important to evaluate the bioavailability, efficacy, and the 

pharmacokinetics of the TRPA1 and TRPV1 receptor antagonists used in our study. Another 
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limitation is that we did not assess receptor activation to make sure the drug effectively 

inhibited the respective receptors. We presumed that the protocols reported to effectively 

antagonize TRP receptors would be adequate to modulate their effect in our experimental 

setting. It is also possible that other potential mechanisms might be involved for neuronally-

mediated stress response activation by ozone. The roles of other neurons with rapidly 

adapting receptors and slowly adapting receptors that terminate in the CNS will also need to 

be clarified since high specificity exists in which neurons are activated by distinct stimuli 

(Taylor-Clark and Undem, 2010).  

6.10 Long-term episodic subchronic ozone exposure effects on stress and metabolic 

outcomes 

 To determine if persistent stress and metabolic effects induced by long-term ozone 

exposure are linked to peripheral insulin resistance, we conducted a weekly episodic 

subchronic ozone exposure study in rats (Chapter 5). In this study, we showed that 

subchronic ozone exposure is associated with persistent pulmonary injury and inflammation, 

fasting hyperglycemia, glucose intolerance, and elevated circulating adrenaline and 

cholesterol levels when determined at the end of the last exposure, however, these responses 

are of lesser magnitude than the effects noted after 1 or 2 days of  ozone exposure. Moreover, 

the increases in FFA and BCAA that were noted after an acute ozone exposure were not 

apparent following a subchronic exposure. More importantly, if rats were allowed a one 

week recovery, these effects were largely reversed. Our data further show that subchronic 

ozone exposure did not significantly increase gluconeogenesis as determined after 13 weeks, 

but it abolished the response of -cells to increase insulin secretion in response to 

hyperglycemia. Catecholamines, such as epinephrine, decrease glucose-mediated uptake and 
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pancreatic insulin secretion through the α-adrenergic α (2A) and α (2C)-adrenoreceptors 

(Iversen, 1973;  Halter et al., 1984; Ullrich and Wollheim, 1984; Philipson, 2002; Peterhoff 

et al., 2003). Future analysis of the direct implication of ozone-mediated stress response and 

the examination of α-adrenergic and/or glucocorticoid receptors on β-cell insulin secretion 

using pharmacological means will provide valuable mechanistic information on how air 

pollutants may impair the function of the pancreatic -cells.  Our data indicating ozone-

induced impairment in insulin secretion are consistent with the finding that ozone exposure 

decreases circulating insulin after subchronic ozone exposure. More importantly, no 

peripheral insulin resistance was noted after subchronic ozone exposure, as determined by an 

insulin tolerance test and liver and muscle pAKT levels. Thus, our findings in young-adult 

rats provide insights into epidemiological studies that show a positive association between 

ozone exposures and T1D in children and pregnant women (Hathout et al., 2002; Hathout et 

al., 2006; Beyerlein et al., 2015). It is possible that ozone-induced β-cell dysfunction may 

secondarily contribute to insulin resistance and a TIID phenotype in the long term due to 

non-regulation of glucose, lipid, and protein metabolites that have been implicated in 

decreased insulin sensitivity. 

 Repeated daily ozone exposure has been shown in many studies to induce an 

adaptation response, characterized by the reduction in ozone-induced lung injury and 

inflammation. Since, our experiment included 3 days per week exposure, we expected that 

the effects seen after 3 days would be smaller magnitude than the effects seen during the 1st 

or 2nd day. Therefore, we performed IPGTT and IPPTT on the 1st and 3rd day to determine if 

the effects seen on the 1st day were diminished on the 3rd day. We noted that on the 3rd day, 

ozone-induced glucose intolerance and gluconeogenesis response was markedly reduced 
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relative to the 1st day response, suggesting an induction of adaptation upon continuous 

exposure. This adaptation response is lost if animals were allowed 4-5 days recovery prior to 

the next ozone hit. The mechanisms of ozone adaptation are unknown.  Since repeated 

stimulated stress responses have been shown to decrease c-fos staining in the medial 

parvocellular region of the PVN and glucocorticoid receptors in hypothalamic regions and in 

the periphery (Herman, 2013), we postulate that ozone adaptation is centrally regulated and 

might involve the HPA-axis. We believe that subchronic ozone-induced stress mechanisms 

are likely involved in adaptation to repeated exposure in a given week and episodic 

exposures over 13 weeks. To address the role of neuronal mechanisms in ozone-induced 

adaptation, more studies are needed with varied temporal exposure scenarios.  

 

6.11 Summary/conclusions and implications on human health 

 Neurohormonal stress response has been well characterized for decades but has not 

been linked to air pollution effects. We show that the activation of neurohormonal 

stress response pathway is involved in ozone-induced systemic metabolic and 

pulmonary effects in rats.  

 We further show that this hormonal stress response is also induced in humans after 

ozone exposure, and that rat and human metabolic responses to ozone are coherent. 

Our rat and human metabolomic data allowed us to identify novel non-protein 

biomarkers of acute ozone effects.  

 Through the use of metabolomics, we characterized “the circulating molecular 

shrapnel” referred for unknown biochemical identity by others in air pollution 

studies. This included over 100 metabolites and other biochemicals (neurohormones, 
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lipids, fatty acids, cholesterols, glucose metabolites, and acute phase proteins) – most 

are known to have varied cellular effects (Fig. 6.2).  

 Through the use of surgical intervention involving adrenalectomy that has not been 

used in prior air pollution studies, we demonstrated that not only systemic metabolic 

impairment but also pulmonary injury/inflammation are mediated through 

circulating stress hormones such as epinephrine and corticosterone after ozone 

exposure (Fig. 6.2). 

 Chronic perturbation in these homeostatic pathways can lead to disturbed metabolic 

status, immune dysfunction, disrupted neuronal regulation, and failure to repair the 

injury caused by stressors such as air pollutants. We demonstrate that ozone-induced 

pulmonary and metabolic affects still persist during subchronic exposure but are 

reversible upon termination of exposure. However, it remains to be determined how 

pre-existing conditions or longer duration may alter adaptation and reversibility of 

ozone-induced metabolic and stress effects. 

 Through the subchronic ozone inhalation study, we demonstrated that ozone, 

contrary to what was hypothesized, does not induce peripheral insulin resistance, but 

rather severely impairs the ability of the -cells to secrete insulin in response to high 

circulating glucose, and results in lower circulating insulin upon subchronic 

exposure.  
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 We believe that this neurohormonal stress response pathway induced after ozone 

exposure can also be induced by other environmental insults and thus, can be used as 

a common mechanistic pathway to stratify risk from many environmental chemicals. 

 This research emphasizes on the need to investigate the potential contribution of air 

pollution to systemic metabolic diseases, such as neuronal, developmental, liver, and 

muscular diseases, in people who have impaired stress mechanisms. 
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Figure 6.1  
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Figure 6.1 TRPA1 and TRPV1 antagonism does not inhibit acute ozone-induced 

pulmonary injury nor glucose intolerance. 

Rats were intraperitoneally injected with either DMSO (control), AMG9810 (TRPV1 

antagonist), or HC030031 (TRPA1 antagonist; 50 mg/kg) four times every 10-12 hours (the 

night before exposure, immediately before the 1st exposure, the night after the 1st exposure 

and the morning before the 2nd exposure). Rats were exposed to air or 1.00 ppm ozone for 

4h/day for two consecutive days.  Immediately after day 1, GTT was performed.  Rats were 

necropsied immediately following the 2nd day exposure and bronchoalveolar lavage fluid 

(BALF) was analyzed for lung injury markers: (A) protein and (B) albumin, as indicators of 

vascular protein leakage. (C) GTT and (D) AUC for GTT in rats exposed to air or ozone for 

4 hr, 1 day. The values in the bar graphs are displayed as mean ± SEM of n=6/exposure 

group. The GTT curve shows mean value ± SEM of n=6/group with repeated measures over 

two hours. The 0 min time point shows fasting glucose levels in each group. * Indicates 

significant difference from respective air-exposed groups at a given time (*=p<.05) 
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Figure 6.2

 

 

Figure 6.2 Proposed mechanism(s) of overall ozone-induced stress mediated pulmonary, 

cardiovascular and metabolic responses. In our studies, we show that ozone induces a 

classical stress response reflected by changes observed in multiple organs, including the lung, 

liver, adipose, and muscle, that overtime may be linked to chronic diseases. Upon inhalation, 

ozone may elicit these extrapulmonary responses through activation of the CNS and 

subsequent activation of the HPA axis, and/or SNS, resulting in changes in the periphery 

through neuroendocrine hormones. NTS, nucleus tractus solarius; PVN, paraventricular 

nucleus; HPA, hypothalamus pituitary adrenal axis; CRH, corticotropin-releasing hormone; 

ACTH, adrenalcorticotrophic hormone; TRPA1, Transient receptor potential-member A1; 

TRPV1, Transient receptor potential-member V1; RAR, rapidly adapting receptor 
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APPENDIX A.  

CHAPTER TWO 

Figure 1A. 
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Figure 1B. 

 

 

Figure 1C. 

 

Figure 1: Heatmaps of liver gene expression for cytokine network in rats exposed to ozone 

(A: immediately after 1-day 6-hr air or ozone, 0-hr time point; B. immediately after 2-day 6-

hr air or ozone, 2-day, 0-hr) and C. 18-hr after 2-day 6-hr air or ozone; 2-day, 18-hr) 

exposure. Functional gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com) and identified from differentially expressed genes (DEGs) list for 

each time point (air vs O3) based on the query term, “cytokines”. Genes were then median 

centered with average linkage, hierarchically clustered using Cluster 3.0 and displayed 

through Java Treeview.  Heat map of DEGs with significant O3 effect were identified 

separately at each time point. Red indicates genes that have high expression values across 

both groups, green indicates genes that have low expression values across both groups, and 

black indicates median expression.  

  

http://www.affymetrix.com/
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Figure 2A. 
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Figure 2B. 
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Figure 2C. 
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Figure 2D. 
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Figure 2E. 

 

Figure 2F.
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Figure 2: Heatmaps of liver gene expression showing differentially expressed genes (air 

versus O3) for apoptosis network in rats exposed to O3 (A-D, exposed for 6hr/day; 

immediately after 1-day; E, immediately after 2-day, F, 18-hr after 2-day time point). 

Functional gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com) and identified from differentially expressed genes (DEGs) list based 

on the query term, “apoptosis”. Genes were then median centered with average linkage, 

hierarchically clustered using Cluster 3.0 and displayed through Java Treeview.  Heat map of 

DEGs with significant O3 effect were identified separately at each time point. Red indicates 

genes that have high expression values across both groups, green indicates genes that have 

low expression values across both groups, and black indicates median expression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.affymetrix.com/
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Figure 3. 

 

 

Figure 3: Heatmap of liver gene expression showing differentially expressed genes (air 

versus O3) for Steroid, insulin and fatty acid receptor signaling network in rats exposed to O3 

for 6hr/day for 1-day (immediately after exposure). Functional gene lists were generated by 

NetAffx queries at the Affymetrix website (www.affymetrix.com) and identified from 

differentially expressed genes (DEGs) list based on the query term, “steroid, insulin and fatty 

acid signaling”. Genes were then median centered with average linkage, the normalized 

expression values for those probesets present on both lists were converted to z values and 

hierarchically clustered using Cluster 3.0 with average linkage and displayed with Treeview. 

Red indicates genes that have high expression values across both groups, green indicates 

genes that have low expression values across both groups, and black indicates median 

expression.                  

http://www.affymetrix.com/
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Figure 4. Ingenuity pathway analysis showing ozone exposure-induced changes in liver 

steroid receptor (A), insulin receptor (B) and fatty acid signaling (C). 

Figure 4A 
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Figure 4B 
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Figure 4C 

 

Three functional probeset lists based on queries of “steroid receptor”, “insulin receptor” or 

“fatty acid” were obtained from NetAffx.  Each of these lists was compared to the list of 

differentially expressed genes (DEGs) for the one day zero hour time point to identify DEGs 

in each of the three functional categories.  Each functional list was processed separately by 

Ingenuity Pathway Analysis (IPA) to produce a direct relationship graph.  The graph 

constructed from the Ingenuity knowledgebase depicts some of the biological relationships 

among the probesets on the list.  The shape of a gene-labeled object indicates its molecular 

function and its color indicates whether it is upregulated (red) or downregulated (green).  The 

features of the connecting lines convey the nature of the molecular interaction.  For a detailed 

legend of these IPA graphs see the ingenuity.com website. 
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Table 1: Effect of acute ozone exposure on the expression of probe sets belonging to 

different biological processes in the liver. 

 

 

 

 

 

 

 

 

 

 

Significantly different probes for specific biological processes were identified from a master 

differentially expressed genes list (DEGs) for air versus O3 exposure which included genes 

for all three time points (Immediately after 1-day 6-hr, immediately after 2-day, 6-hr and 18 

hours after 2-day, 6-hr).   

 

 

 

 

 

 

 

Process 

Number of 

probes on array 

Number of 

DEGS from 

Master List 

Per Cent Master 

List DEGs on 

Functional List 

Amino acid 

biosynthesis 

4650 507 11 

Apoptosis 2345 259 11 

Diabetes 743 117 16 

Gluconeogenesis 80 21 26 

Glycolysis 114 20 18 

Mitochondria 671 111 17 

Steroid Metabolism 416 77 19 

Tricarboxylic  29 10 34 

Unfolded protein 154 26 17 
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APPENDIX B.  

CHAPTER THREE 

Methods  

Details of the human clinical study where serum samples were obtained 

Study population 

Serum samples were obtained from a prior clinical study in which subjects were recruited 

under an EPA contract with Westat Corporation (Rockville, MD), Clinical Trial 

NCT01492517 (E1). A total of 24 volunteers were involved and completed the study. The 

median age was 27.9 years; there were 20 male and 4 female participants (22 whites, 2 

Hispanics).  Participants were free of cardiopulmonary diseases and allergies as determined by 

a detailed medical history questionnaire and physical examination. All subjects were 

nonsmokers and had normal spirometry. Subjects were informed of the procedures and 

potential risks and signed an informed consent. The protocol and consent forms were approved 

by the University of North Carolina School of Medicine Committee on the Protection of the 

Rights of Human Subjects and the US Environmental Protection Agency’s Institutional 

Review Board. The data for cardiovascular, systemic and pulmonary effects have been 

published by Devlin and collaborators (E1).  

The original study design and ozone exposures (E1): Selected serum samples for this 

exploratory assessment were obtained from a previously conducted clinical study (Clinical 

Trial NCT01492517). This study was conducted in a randomized crossover design where two 

clinical visits of each individual were separated by at least two weeks (E1). During each visit, 

the subjects arrived in the morning. In each case, the participant was exposed to 0.3 ppm ozone 
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or clean air in a blinded manner for 2hr. During the 2hr exposure, each subject alternated 

between 15 minutes of rest and 15 minutes of exercise on a cycle ergometer. Most subjects 

underwent moderate to intense intermittent exercise during the 2hr period. Exercise intensity 

(i.e. cycle ergometer workload) was adjusted so that subjects breathed at a ventilatory rate, 

normalized for body surface area, of 25 L/meter2/minute. In these subjects, this approximated 

to 50 L/minute (i.e. a VO2 of approximately 1.0 L/min). Exposures were performed as 

previously described (E1-E2). All exposures were conducted at the U.S. EPA Human Studies 

Facility on the campus of the University of North Carolina, Chapel Hill. The exposure 

chambers were maintained at 40% relative humidity for all exposures. Ozone was generated 

by a silent electric discharge method (model 502; Meckenheim, Bonn, Germany) and did not 

deviate beyond 0.001 ppm of the target concentration (0.3 ppm). During exposure, fine 

particulate matter (by TEOM, DataRa, and filter weight), NO2, NO, total hydrocarbon, SO2, 

and CO were measured for the air and ozone chambers.  All measurements were either zero or 

negligible except for total hydrocarbon, which was between 1 and 3 ppm (all of which is 

methane). All participants completed the entire study and no adverse events were reported. 

Ozone concentrations were maintained at 0.3 ppm during ozone exposure. All exposures began 

at the same time in the morning (~9am) to avoid having circadian fluctuations as a confounder. 

Prior to the start of exposure, during exposure and post exposure, blood pressure, heart rate 

and EKG were recorded (E1). Each individual’s systolic as well as diastolic blood pressure 

and heart rate were recorded and the data were available to us for correlation assessment in 

this study. 
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Sample collection and analysis 

Prior to the start of exposure, immediately upon completion of designated exposure (within 

1hr), and during the next day’s morning follow up visit, venous blood was drawn in serum 

separator vaccutainers.  Serum samples were aliquotted and stored at -80⁰C for further analysis. 

One aliquot of serum collected immediately following air or ozone exposure (two separate 

visits) for each individual was used for this exploratory metabolomic analysis. These serum 

samples were sent to Metabolon Inc. (Durham, NC) for global metabolomic analysis, as 

described below. Serum samples were also analyzed for insulin, leptin, interleukin-6 (IL-6), 

and tumor necrosis factor (TNF)-, using human-specific antibody-based 

electrochemiluminescence assays (Meso Scale Discovery, Gaithersburg, MD) via 

manufacturer’s instructions. In addition, during this clinical study, the clinical chemistry 

assessment along with complete blood cell counts were completed for blood samples collected 

prior to and post air or ozone exposure, and during next day follow up visit. While the data for 

total cholesterol and blood pressure are published as group means (E1), the individual data for 

all clinical measurements were available for this manuscript for supporting the metabolomic 

exploratory assessment performed in serum samples collected post air or ozone exposure. Post 

exposure glucose assessment was used to derive HOMA-IR with insulin data collected from 

the serum aliquot used for metabolomic assessment by Metabolon Inc (Durham, NC). 
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Clinical and biomarker data assessment 

Clinical chemistry assessment completed for serum samples collected prior to, immediately 

post air or ozone exposure, and during next day follow-up visit included measurement of 

glucose, triglycerides and cholesterols (LabCorp Inc, Durham, NC).  Clinical markers data 

were first normalized to pre-exposure values and analyzed for differences following air or 

ozone exposure using a paired t test with each subject serving as their own control. HOMA-IR 

was calculated from glucose data from clinical assessment and insulin data obtained post air 

or ozone exposure, and analyzed using a paired t test for assessment of difference post air and 

ozone exposure.  Pearson’s correlation coefficient (r) was used to determine the relationship 

between ozone-induced changes (fold-increases in selected serum free fatty acids and stress 

hormones; metabolomic data) as well as serum levels of metabolites (glucose, triglycerides 

and different cholesterols) measured in clinical chemistry to each subject’s BMI, gender, and 

exercise level. GraphPad Prism (GraphPad Software version 6.04, San Diego, CA) was used 

for statistical analyses.  A p-value < 0.05 was considered statistically significant. 

Metabolomic analysis  

Sample accessioning:  Following receipt, samples were inventoried and immediately stored 

at -80oC.  Each sample received was accessioned into the Metabolon LIMS system and was 

assigned by the LIMS a unique identifier that was associated with the original source identifier 

only.  This identifier was used to track all sample handling, tasks, results, etc.  The samples 

(and all derived aliquots) were tracked by the LIMS system.  All portions of any sample were 

automatically assigned their own unique identifiers by the LIMS when a new task was created; 
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the relationship of these samples was also tracked.  All samples were maintained at -80oC until 

processed. 

Sample preparation:  Samples were prepared using the automated MicroLab STAR® system 

from Hamilton Company.  A recovery standard was added prior to the first step in the 

extraction process for QC purposes.  To remove protein, dissociate small molecules bound to 

protein or trapped in the precipitated protein matrix, and to recover chemically diverse 

metabolites, proteins were precipitated with methanol under vigorous shaking for 2 min (Glen 

Mills GenoGrinder 2000) followed by centrifugation.  The resulting extract was divided into 

five fractions: one for analysis by UPLC-MS/MS with positive ion mode electrospray 

ionization, one for analysis by UPLC-MS/MS with negative ion mode electrospray ionization, 

one for LC polar platform, one for analysis by GC-MS, and one sample was reserved for 

backup. Samples were placed briefly on a TurboVap® (Zymark) to remove the organic solvent.  

For LC, the samples were stored overnight under nitrogen before preparation for analysis.  For 

GC, each sample was dried under vacuum overnight before preparation for analysis. 

QA/QC:  Several types of controls were analyzed in concert with the experimental samples: a 

pooled matrix sample generated by taking a small volume of each experimental sample (or 

alternatively, use of a pool of well-characterized human plasma) served as a technical replicate 

throughout the data set; extracted water samples served as process blanks; and a cocktail of 

QC standards that were carefully chosen not to interfere with the measurement of endogenous 

compounds were spiked into every analyzed sample, allowed instrument performance 

monitoring and aided chromatographic alignment.  Tables E1 and E2 describe these QC 

samples and standards.  Instrument variability was determined by calculating the median 

relative standard deviation (RSD) for the standards that were added to each sample prior to 
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injection into the mass spectrometers. Overall process variability was determined by 

calculating the median RSD for all endogenous metabolites (i.e., non-instrument standards) 

present in 100% of the pooled matrix samples.  Experimental samples were randomized across 

the platform run with QC samples spaced evenly among the injections as outlined in Figure 

E1. 
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Table E1:  Description of Metabolon QC Samples 

Type Description Purpose 

MTRX 

Large pool of human plasma 
maintained by Metabolon 
that has been characterized 
extensively. 

Assure that all aspects of the 
Metabolon process are operating 
within specifications. 

CMTRX 
Pool created by taking a small 
aliquot from every customer 
sample. 

Assess the effect of a non-plasma 
matrix on the Metabolon process and 
distinguish biological variability from 
process variability. 

PRCS Aliquot of ultra-pure water 
Process Blank used to assess the 
contribution to compound signals from 
the process. 

SOLV 
Aliquot of solvents used in 
extraction. 

Solvent Blank used to segregate 
contamination sources in the 
extraction. 

Table E2:  Metabolon QC Standards 

Type Description Purpose 

RS Recovery Standard 
Assess variability and verify 
performance of extraction and 
instrumentation. 

DS Derivatization Standard 
Assess variability of derivatization for 
GC-MS samples. 

IS Internal Standard 
Assess variability and performance of 
instrument. 

 

Figure E1. 

 

Client samples
1st injection Final injection

CMTRX         Process Blank

Client samples

DAY 1

DAY 2

Study samples randomized and balanced

CMTRX: Technical 
replicates created from an 
aliquot of all client study 

samples
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Figure E1.  Preparation of client-specific technical replicates.  A small aliquot of each study 

sample (colored cylinders) is pooled to create a CMTRX technical replicate sample (multi-

colored cylinder), which is then injected periodically throughout the platform run.  Variability 

among consistently detected biochemicals are used to calculate an estimate of overall process 

and platform variability. 

 

Ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-

MS/MS):  The LC/MS portion of the platform was based on a Waters ACQUITY ultra-

performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high 

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization 

(HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution (E3).  The 

sample extract was dried then reconstituted in acidic or basic LC-compatible solvents, each 

of which contained 8 or more injection standards at fixed concentrations to ensure injection 

and chromatographic consistency.  One aliquot was analyzed using acidic positive ion 

optimized conditions and the other using basic negative ion optimized conditions in two 

independent injections using separate dedicated columns (Waters UPLC BEH C18-2.1x100 

mm, 1.7 µm).  Extracts reconstituted in acidic conditions were gradient eluted from a C18 

column using water and methanol containing 0.1% formic acid. The basic extracts were 

similarly eluted from C18 using methanol and water, however with 6.5mM Ammonium 

Bicarbonate. The third aliquot was analyzed via negative ionization following elution from a 

HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting 

of water and acetonitrile with 10mM Ammonium Formate. The MS analysis alternated 

between MS and data-dependent MS2 scans using dynamic exclusion, and the scan range 

was from 80-1000 m/z.  Raw data files are archived and extracted as described below. 
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Gas chromatography-mass spectroscopy (GC-MS):  The samples destined for analysis by 

GC-MS were dried under vacuum for a minimum of 18 h prior to being derivatized under 

dried nitrogen using bistrimethyl-silyltrifluoroacetamide.  Derivatized samples were 

separated on a 5% diphenyl / 95% dimethyl polysiloxane fused silica column (20 m x 0.18 

mm ID; 0.18 um film thickness) with helium as carrier gas and a temperature ramp from 60° 

to 340°C in a 17.5 min period.  Samples were analyzed on a Thermo-Finnigan Trace DSQ 

fast-scanning single-quadrupole mass spectrometer using electron impact ionization (EI) and 

operated at unit mass resolving power.  The scan range was from 50–750 m/z.  Raw data files 

are archived and extracted as described below. 

Bioinformatics:  The informatics system consisted of four major components, the 

Laboratory Information Management System (LIMS), the data extraction and peak-

identification software, data processing tools for QC and compound identification, and a 

collection of information interpretation and visualization tools for use by data analysts.  The 

hardware and software foundations for these informatics components were the LAN 

backbone, and a database server running Oracle 10.2.0.1 Enterprise Edition. 

LIMS:  The purpose of the Metabolon LIMS system was to enable fully auditable laboratory 

automation through a secure, easy to use, and highly specialized system.  The scope of the 

Metabolon LIMS system encompasses sample accessioning, sample preparation and 

instrumental analysis and reporting and advanced data analysis.  All of the subsequent 

software systems are grounded in the LIMS data structures.  It has been modified to leverage 

and interface with the in-house information extraction and data visualization systems, as well 

as third party instrumentation and data analysis software. 
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Data extraction and compound identification:  Raw data was extracted, peak-identified 

and QC processed using Metabolon’s hardware and software.  These systems are built on a 

web-service platform utilizing Microsoft’s .NET technologies, which run on high-

performance application servers and fiber-channel storage arrays in clusters to provide active 

failover and load-balancing.  Compounds were identified by comparison to library entries of 

purified standards or recurrent unknown entities.  Metabolon maintains a library based on 

authenticated standards that contains the retention time/index (RI), mass to charge ratio (m/z), 

and chromatographic data (including MS/MS spectral data) on all molecules present in the 

library.  Furthermore, biochemical identifications are based on three criteria: retention index 

within a narrow RI window of the proposed identification, accurate mass match to the library 

+/- 0.005 amu, and the MS/MS forward and reverse scores between the experimental data 

and authentic standards.  The MS/MS scores are based on a comparison of the ions present in 

the experimental spectrum to the ions present in the library spectrum.  While there may be 

similarities between these molecules based on one of these factors, the use of all three data 

points can be utilized to distinguish and differentiate biochemicals.  More than 3300 

commercially available purified standard compounds have been acquired and registered into 

LIMS for distribution to both the LC-MS and GC-MS platforms for determination of their 

analytical characteristics.  Additional mass spectral entries have been created for structurally 

unnamed biochemicals, which have been identified by virtue of their recurrent nature (both 

chromatographic and mass spectral).  These compounds have the potential to be identified by 

future acquisition of a matching purified standard or by classical structural analysis.  

Curation:  A variety of curation procedures were carried out to ensure that a high quality 

data set was made available for statistical analysis and data interpretation.  The QC and 
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curation processes were designed to ensure accurate and consistent identification of true 

chemical entities, and to remove those representing system artifacts, mis-assignments, and 

background noise.  Metabolon data analysts use proprietary visualization and interpretation 

software to confirm the consistency of peak identification among the various samples.  

Library matches for each compound were checked for each sample and corrected if 

necessary. 
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Metabolite quantification and data normalization:  Peaks were quantified using area-under-

the-curve.  A data normalization step was performed to correct variation resulting from 

instrument inter-day tuning differences.  Essentially, each compound was corrected in run-day 

blocks by registering the medians to equal one (1.00) and normalizing each data point 

proportionately (termed the “block correction”; Figure E2).    

 

 

Figure E2: Visualization of data normalization steps for a multiday platform run. 

Statistical analysis of metabolomic analysis: Statistical analysis included log 

transformation and imputation followed by one way analysis of variance (ANOVA) with 

repeated measures to identify biochemicals that differed significantly between experimental 

groups. An estimate of the false discovery rate (q-value) was calculated to take into account 

the multiple comparisons that normally occur in metabolomic-based studies. Pathways were 

assigned for each metabolite, allowing examination of overrepresented pathways.  Significant 

(p<0.05) pathway enrichment output (cumulative hypergeometric distribution) was assessed 

Day

1      2        3        4      5       6        7

Day

1      2        3        4      5       6        7

A. B. 
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for each of the selected contrasts using MetaboLync (E4) to determine the metabolic 

processes impacted by ozone.  

Results 

Figure E3 shows the line plots of systolic blood pressure and heart rate data of subjects as 

determined prior to their air or ozone exposure, immediately after exposure (within 1hr) and 

during their next day morning follow-up visit to the clinic. These were no significant 

differences as determined by paired t-test between air and ozone exposure when compared 

immediately post exposure. Note that only 1 subject during clinical visit had increased heart 

rate prior to the start of air exposure, however, this was not apparent during their visit for 

ozone exposure. The heart rate and blood pressure in subjects did not appear to deviate 

between the three time points.    

Figure E4 shows the line plots for levels of serum glucose, cholesterol, triglycerides, HDL 

and LDL determined prior to, immediately post air or ozone exposure and the next day 

follow-up visit. While the time of measurement does not appear to change HDL, LDL and 

cholesterol levels in subjects, the levels of glucose seem to vary among subjects when 

measured prior to exposure. This variability between subjects seen prior to the start of 

exposure was reduced for the measurements performed on the next day morning. This could 

be due to the fact that during the first visit, subjects were not fasted while during the second 

day follow up visit, subjects were fasted overnight as they underwent bronchoscopy at that 

time (E1). Individual subject variations between pre and post exposure times in triglycerides 

and cholesterols appeared to be minimal. No ozone-related effects were observed in these 

parameters when data were normalized to pre-exposure levels.   

The graphs in Figure E5 shows line plots of leptin, insulin and HOMA-IR post-air and post-

ozone exposure. As shown in the top panel, one individual had very high leptin levels 

relative to all other individuals regardless of air or ozone exposure. No significant differences 

were noted between air and ozone exposure. Insulin and HOMA-IR levels varied between 

subjects regardless of air or ozone exposure. Mostly these variations were noted in two or 

three individuals but all others did not appear to vary markedly between air and ozone 

exposure. No significant differences were evident between air and ozone HOMA-IR, insulin 

or leptin as determined using a paired t-test. 

In Figures E6A-E, the fold increases after ozone exposure (ratios of ozone/air) for selected 

individual lipid metabolites and stress hormones that significantly changed (except for 

cortisone) were plotted against individual subject BMI to determine if high BMI could be 

linked to increased susceptibility to ozone-induced changes. These exploratory scatter plots 

appear to show no consistent relationship between the BMI value of subjects and ozone-

induced changes in individual metabolites. As in the case of Figure E6, in Figure E7A-E, 
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ozone-induced fold changes in these same metabolites were correlated with subjects prior 

exercise habit. The level of exercise routinely performed by each subject was rated as mild 

(1), moderate (2) or heavy (3) obtained through questionnaire. The scatter plots between 

individuals with different exercise habits and ozone-induced changes in lipid metabolites as 

well as steroid hormones did not appear to be related to individual’s prior exercise habit. 

However, these correlations were made with very few subjects in each exercise intensity 

group, and thus the data are limited. There were only 4 females in the study, nevertheless, we 

decided to explore any potential relationship between sex and significant ozone-induced fold 

changes in lipid metabolites and steroid hormones (Figure E8A-E). Because of the limited 

number of female subjects in this study, no inferences can be drawn from these data for 

potential sex differences in ozone-induced metabolic alterations; however, the plots suggest 

that some relationships are likely.  

Since we had the clinical chemistry data available which included serum levels of glucose, 

and lipids, such as triglycerides and cholesterols, we explored the potential relationship 

between levels of glucose as well as these lipids post air or post ozone exposure and 1) BMI 

in Figure E9A-B; 2) the prior exercise level (1, 2, or 3) in Figure E10A-B; and 3) sex in 

Figure E11A-B using scatter plots. Surprisingly, in these healthy subjects, the BMI appear 

not to correlate with post exposure circulating triglycerides, cholesterols or glucose, 

regardless of air or ozone exposure. The correlations might exist in some measured lipids 

with the level of exercise and gender, however, there seem to be no differences between post 

air and post ozone exposure.  
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Figure E3: Line plots of cardiac physiological measurements taken prior to the start, post 

exposure, and during next day morning follow up visit (post-air, left; post-ozone, right)*.  

 

 

 

* The data for systolic blood pressure and heart rate have been published by Devlin et al (E1) 

as group means. We explored the time-related individual subject differences in these 

parameters from the clinical data available to us. This was a randomized clinical assessment 

where each subject arrived to the clinic at two different times (separated by at least two 

weeks) for either air or ozone exposure and for the follow up visit, next-day morning. Thus, 

each subject visited clinic 4 times (for air exposure, follow up visit next day, for ozone 

exposure, follow up visit next day). Subjects were exposed to either 0.3 ppm ozone or clean 

air for 2hr in the morning time in a blinded manner. Heart rate and blood pressure were 

monitored prior to the start of exposure, immediately post exposure (within 1hr) and next day 

morning, in addition to continuous Holter monitoring (E1). Note that subjects were fasted 

overnight when they arrived next day morning for a follow up visit. The plots indicate values 

for each subject (n=24; 20 males and 4 females). 
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Figure E4: Line plots of serum glucose and lipid measurements taken prior to the start, post 

exposure, and next day morning during follow up visit (post-air, left; post-ozone, right)*.  

 

*The data for serum cholesterol have been published previously by Devlin et al (E1) as group 

means. We explored the time-related differences in these parameters from the clinical data 

available to us. In this clinical assessment, each subject arrived for either air or ozone 

exposure on separate days (each visit separated by more than two weeks) and for a follow up 

visit next-day morning. Thus, each subject visited clinic 4 times (for air exposure, follow up 

visit next day, for ozone exposure, follow up visit next day). Subjects were exposed to either 

0.3 ppm ozone or clean air for 2hr in the morning time in a blinded manner. Serum samples 

collected prior to the start of exposure, immediately post exposure (within 1hr) and next day 

morning and assessed for glucose and lipids by LabCorp Inc (Durham, NC). Note subjects 

were fasted overnight when they arrived next day morning for a follow up visit. The plots 

indicate values for each subject (n=24; 20 males and 4 females). 
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Figure E5: Line plots of serum leptin, insulin and HOMA-IR as determined immediately 

post-air or post-ozone exposure.*  

 

* Insulin and leptin levels were measure in serum samples collected post air or ozone 

exposure using antibody-based assays as indicated in methods within this supplement. 

Subjects were exposed to either 0.3 ppm ozone or clean air for 2hr in the morning time in a 

blinded manner prior to collecting blood samples. The data for serum glucose from the 

clinical data set and insulin measured from archived post air or post ozone exposure serum 

samples, were used to calculate HOMA-IR. HOMA-IR was calculated by multiplying 

glucose value (mmol/L) with insulin value (mU/L) and dividing with 22.5. The plots indicate 

values for each subject (n=24; 20 males and 4 females). 
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Figure E6A-E. Exlporatory correlation plots showing the relationship between body mass 

index (BMI) and ozone-induced fold change in various lipid metabolites as well as stress 

hormones (as determined using metabolomics). 

Figure E6A 
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Figure E6B 
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Figure E6C 
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Figure E6D 
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Figure E6E 

 

 

*The data for various metabolites were derived from metabolomic assessment of serum 

samples collected post air or post ozone exposure. The ratio of ozone/air values that were 

found to be significantly increased (except for cortisone) were plotted against BMI to 

determine if ozone effects were influenced by increased BMI. This is a randomized clinical 

assessment where each subject arrived to the clinic for either air or ozone exposure during 

two separate clinical visits (each separated by at least two weeks). In this study, each subject 

was exposed to either 0.3 ppm ozone or clean air for 2hr in the morning time in a blinded 

manner (n=24; 20 males and 4 females). Serum samples collected immediately post exposure 

(within 1hr) were subjected to global metabolomic assessment (complete data provided in 

online supplement #2).  
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Figure E7A-E.  Exploratory correlation plots showing the relationship between each 

subject’s prior exercise habit (mild, 1; moderate, 2; or heavy, 3) and fold change in various 

lipid metabolites post ozone relative to air exposure. 

 

Figure E7A 
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Figure E7B 
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Figure E7C 
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Figure E7D 
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Figure E7E 

 

*The data for various metabolites were derived from metabolomic assessment of serum 

samples collected post air or post ozone exposure. The ratio of ozone/air values that were 

found to be significantly increased (except for cortisone) were plotted against each subjects 

prior exercise habit scaled based on questionnarre (mild, 1; moderate, 2; or heavy, 3) to 

determine if ozone effects were influenced by individuals prior exercise habits. Each subject 

arrived for either air or ozone exposure during two clinical visits, each were separated by at 

least two weeks. During each visit, subjects were exposed to either 0.3 ppm ozone or clean 

air for 2hr in the morning time in a blinded manner (n=24; 20 males and 4 females). Serum 

samples collected immediately post exposure (within 1hr) were subjected to global 

metabolomic assessment (complete data provided in online supplement #2). Note that these 

correlations are limited due to small number of subjects in each exercise group. 
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Figure E8A-E. Exploratory correlation plots showing the relationship between sex 

(1=female; 2=males) and fold ozone-induced change in various lipid metabolites post 

exposure. 

 

Figure E8A
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Figure E8B
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Figure E8C
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Figure E8D
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Figure E8E

 

 

* The data for various metabolites were derived from metabolomic assessment of serum 

samples collected post air or post ozone exposure. The ratio of ozone/air values that were 

found to be significantly increased (except for cortisone) were plotted against sex (female, 1; 

males; 2) to determine if ozone effects were influenced by individual’s sex. In the study, each 

subject arrived for either air or ozone exposure during two clinical visits, each separated by at 

least two weeks. During each visit, subjects were exposed to either 0.3 ppm ozone or clean 

air for 2hr in the morning time in a blinded manner (n=24; 20 males and 4 females). Serum 

samples were collected immediately post exposure (within 1hr) were subjected to global 

metabolomic assessment (data provided in online supplement #2). Note that these 

correlations are limited since there were only 4 females subjects included in this study 

whereas 20 were males.   
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Figure E9A-B. Exploratory correlation plots showing the relationship between body mass 

index (BMI) and levels of clinical markers in subjects post air or post ozone exposure. 

Figure E9A 
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Figure E9B  

 

*The data available to us for clinical markers of glucose and lipids collected post air 

exposure (left panel) or post ozone exposure (right panel) are plotted against BMI for all 24 

subjects. In this study each subject arrived for either air or ozone exposure during two 

clinical visits, each separated by at least two weeks. During each visit, the subjects were 

exposed to either 0.3 ppm ozone or clean air during intermittent exercise for 2hr in the 

morning time in a blinded manner. Serum samples were collected immediately post exposure 

(within 1hr) and analyzed for lipids by LabCorp Inc (Durham, NC; complete data provided in 

online supplement #2). The plots indicate correlation between BMI values and the levels of 

lipid metabolites after air or ozone exposure (n=24; 20 males and 4 females).  
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Figure E10A-B. Exploratory correlation plots showing the relationship between each 

subject’s prior exercise habit (mild, 1; moderate, 2; or heavy, 3) and levels of clinical markers 

in subjects post air or post ozone exposure. 

Figure E10A 
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Figure E10B 

 

* The data available to us for clinical markers of glucose and lipids collected post air 

exposure (left panel) or post ozone exposure (right panel) are plotted against each subject’s 

prior exercise habit (mild, 1; moderate, 2; or heavy, 3) for all 24 subjects. In this study, each 

subject arrived for either air or ozone exposure during two clinical visits, each separated by at 

least two weeks. During each visit, subjects were exposed to either 0.3 ppm ozone or clean 

air during intermittent exercise for 2hr in the morning time in a blinded manner. Serum 

samples were collected immediately post exposure (within 1hr) and analyzed for clinical 

chemistry by LabCorp Inc (Durham, NC; complete data provided in online supplement #2). 

Note that the exploratory correlations includes limited number of subjects for each exercise 

level.  
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Figure E11A-B. Exploratory correlation plots showing the relationship between sex and the 

levels of clinical markers in subjects post air or post ozone exposure. 

Figure E11A 
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Figure 11B 

 

*The data available to us for clinical markers of glucose and lipids collected post air 

exposure (left panel) or post ozone exposure (right panel) are plotted against sex (1, females; 

2, males). In this study, each subject arrived for either air or ozone exposure during two 

clinical visits, each separated by at least two weeks. During each visit, the subjects were 

exposed to either 0.3 ppm ozone or clean air during intermittent exercise for 2hr in the 

morning time in a blinded manner. Serum samples were collected immediately post exposure 

(within 1hr) and analyzed for glucose and lipids by LabCorp Inc (Durham, NC; complete 

data provided in online supplement #2). Note that there were only 4 females in the study and 

therefore, the data are highly limited.  
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