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ABSTRACT 

Amanda Anne Seyerle: Pharmacogenomics of Ventricular Conduction in Multi-Ethnic 

Populations 

(Under the direction of Christy L. Avery) 

 

 Adverse drug reactions (ADRs) pose a serious public health burden, yet the role of 

genetics in drug response remains incompletely characterized.  Thiazide diuretics, commonly 

used anti-hypertensives, may cause QT interval (QT) prolongation, a major drug 

development barrier that increases risk for highly fatal and difficult to predict ventricular 

arrhythmias.  We thus examined whether common SNPs modified the association between 

thiazide use (17% mean prevalence) and QT or its component parts (QRS interval, JT 

interval) by performing ancestry-specific, trans-ethnic, and cross-phenotype genome-wide 

analyses of European (66%), African American (15%), and Hispanic (19%) populations (N-

78,199).  Analyses leveraged longitudinal data, incorporated corrected standard errors to 

account for underestimation of interaction estimate variances, and evaluated evidence for 

pathway enrichment.  Although no loci achieved genome-side significance (P<5x10
-8

), we 

found suggestive evidence (P<5x10
-6

) for SNPs modifying the thiazide-QT association at 22 

loci, including biologically plausible ion transport loci (e.g. NELL1, KCNQ3).  

Given our highly plausible, but only suggestive findings and our observational cohort 

setting, we next examined the influence of prevalent user bias and exposure misclassification 

on pharmacogenomics studies conducted in observational settings.  Specifically, we 

simulated three study designs (longitudinal, cross-sectional, new user), two control groups 



 

iv 

(whole cohort, active comparator), and two scenarios (extreme or modest drug effects) to 

enable comparison of 12 settings.  For each setting, we simulated N=120,000 participants, 

conducted 10,000 iterations, applied an alpha=5x10
-8

, and introduced varying degrees of 

prevalent user bias and drug exposure misclassification.  When large drug effects (>10 ms 

change in QT) or exposure misclassification were present, drug-SNP interaction estimates 

were biased (bias range: 0.02–3.4 ms) across settings.  Under no settings did power to detect 

the drug-SNP interaction estimate exceed 80% for effects less than 2 ms; detection of drug 

effects below 2 ms required a longitudinal design with at least 150,000 participants.  Results 

from this dissertation suggest that despite leveraging longitudinal data in 78,199 participants, 

our study was likely underpowered to detect modest or clinically significant 

pharmacogenomics effects on QT.  Future pharmacogenomics efforts will require even larger 

sample sizes and innovative methods to enable prevention of ADRs in the large and 

increasingly at-risk population exposed to medications.   
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CHAPTER 1: OVERVIEW 

Over the past decade, the use of prescription drugs has skyrocketed, with nearly half 

of all Americans taking at least one prescription drug.
1
  Despite the considerable increases in 

drug exposure, variability in drug response, a significant cause of morbidity and mortality 

accounting for approximately 100,000 deaths and 2.2 million serious health effects 

annually,
2-5

 remains poorly understood.
6
  One promising avenue to understanding variability 

in drug response is offered by pharmacogenomics,
7
 which as the potential to illuminate novel 

pathways with the goal of informing drug development and selection,
8-10

 modifying dosing 

regimens,
11-15

 and avoiding adverse drug reactions.
16-18

 

Pharmacoepidemiology is a branch of epidemiology that seeks to understand both the 

use of and the effects of drugs in populations.  Pharmacogenomics is an extension of 

pharmacoepidemiology and evaluates the role of genetics in drug response.  This work will 

perform a genome-wide association study (GWAS) that examines whether common genetic 

variants modify the association between thiazide diuretics and the QT interval (QT), a 

measure of ventricular depolarization and repolarization taken from the electrocardiogram 

(ECG).  QT is a promising candidate for pharmacogenomic study, as it is a risk factor for 

ventricular tachyarrhythmia,
19

 coronary heart disease,
20

 congestive heart failure,
21

 stroke,
22

  

cardiovascular mortality, and all-cause mortality.
23

  Furthermore, QT is highly heritable (35-

40%),
24-28

 with early family studies identifying rare and highly penetrant mutations 

associated with long- and short-QT syndrome
29

 and more recent GWAS identifying multiple 
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common single nucleotide polymorphisms (SNPs) associated with modest increases in QT.
30-

35
  Thiazide diuretics, an increasingly common antihypertensive therapy used by over a 

quarter of the hypertensive population in the U.S.,
36, 37

 are one of many common 

pharmaceuticals that may cause QT prolongation.
38-40

  However, the mechanisms underlying 

thiazide-induced QT prolongation is not well understood.
41-43

  Given the rising prevalence of 

thiazide use, the established genetic basis of QT, the inter-individual variability in thiazide 

response, and the Food and Drug Administration’s standard for regulating QT-prolonging 

medications, which requires a change of just 5 ms, a change easily obtained  through both 

pharmaceutical and genetic exposures,
44

 it is critical that pharmacogenomic interactions be 

identified.  Pharmacogenomics remains one of the few areas where genetic research has been 

translated into actionable results and the pharmacogenomics of thiazides and QT 

prolongation is an excellent candidate for pharmacogenomics study. 

Pharmacogenomics studies like the one presented herein often leverage the extensive 

data available in large observational study settings, a setting in which 

pharmacoepidemiologic studies are known to be prone to multiple forms of bias (e.g. 

prevalent user bias, indication/contraindication, healthy-user effects, etc.).
45-51

  However, it is 

unclear if pharmacogenomic studies are subject to the same biases.  For example, previous 

work has indicated that pharmacogenomics studies may not be subjected to the same degree 

of bias by indication/contraindication as pharmacoepidemiologic studies.
47

  However, to 

date, no one has evaluated how additional threats to internal validity, such as prevalent user 

bias, impacts pharmacogenomics studies conducted in observational settings.  This 

dissertation will examine the effect of prevalent user bias on pharmacogenomics studies, 
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work which could inform the future design and interpretation of pharmacogenomics studies 

in large cohort studies. 
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CHAPTER 2: SPECIFIC AIMS 

This work will be conducted through a collaboration between the Women’s Health 

Initiative (WHI),
52

 the Hispanic Community Health Study/Study of Latinos (SOL),
53

 and the 

Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE)
54

 

pharmacogenomics working group (PWG) investigators, yielding a diverse population of 

participants of European (N=58,813), African (N=15,625), and Hispanic (N=16,657) descent.  

We therefore will: 

Specific Aim 1:  Identify genetic variants that modify the association between thiazide 

diuretics and QT and its component parts (QRS complex [QRS]; JT interval [JT]) in 

European descent, African descent, and Hispanic populations.  

a. Classify thiazide diuretic exposure among all cohorts using medication 

inventories, which have been validated in cohort studies against physiologic 

measurements,
55

 pharmacy databases,
56

 and serum measurements.
57

 

b. Conduct genome-wide, race-stratified analyses to identify significant interactions 

between genetic variants, thiazides, and QT and its component parts (QRS; JT), 

leveraging longitudinal data when possible.  Study and race/ethnic-stratified 

results will be combined across studies using fixed-effect, trans-ethnic, and cross-

phenotypic meta-analytic techniques (Ntotal=78,199).  

c. Characterize identified genetic variants using in silico functional characterization 

techniques including computer databases and pathway analysis. 



 

5 

Specific Aim 2:  Examine the influence of prevalent user bias and exposure misclassification 

caused by prevalent user bias on a pharmacogenomics study conducted in an observational 

setting. 

a. Using simulations, evaluate bias, power, and type I error in the drug-SNP 

interaction caused by prevalent user bias and exposure misclassification   

b. Compare the results of aim 2a under different study designs (e.g. whole cohort, 

active comparator, new-user).  
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CHAPTER 3: BACKGROUND AND SIGNIFICANCE 

Ventricular Conduction 

  The role of electrical impulses in cardiac conduction was first identified in the mid-

19
th

 century by Rudolf Kollicker and Johannes Mueller, who showed that the same electrical 

impulses which caused a frog’s legs to kick could also cause the heart to beat.
58

   During the 

next fifty years, researchers identified and characterized all of the primary structures 

involved in conducting electrical impulses throughout the heart (Table 1, Figure 1).
59

  These 

structures control the coordinated contraction and relaxation of the cardiac muscle cells, first 

with the rapid contraction of the atria and followed by the slower contraction of the 

ventricles, and together form the cardiac electrical conduction system. 

Table 1.  Discovery of the Structures of the Cardiac Conduction System 

Year Structure Scientist 

1845 Purkinje Fibers J.E. Purkinje 

1865/1893 Bundle of Kent G. Paladino and A.F.S. Kent 

1893 Bundle of His W. His, Jr. 

1906 AV Node L. Aschoff and S. Tawara 

1906/1907 Wenckebach Bundle K.F. Wenckebach 

1907 Sinus Node A.G. Keith and M.W. Flack 

1916 Bachmann Bundle J.G. Bachmann 
Adapted from Oto and Breithardt, 200159 

A. Electrical Conduction of the Heart 

 Electrical activity in the heart results from the rapid depolarization and subsequent 

repolarization of the cardiac cells, which creates an action potential.  There are two types of 

cardiac cells: pacemaker cells and non-pacemaker cells, hereafter referred to as myocytes.  

Pacemaker cells are capable of generating regular, spontaneous action potentials and are 
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primarily found in the sinoatrial (SA) node and the atrioventricular (AV) node.  These cells 

are responsible for generating the initial depolarizing current of the heartbeat.  Myocytes 

make up the majority of cardiac cells but cannot generate their own action potential.  

 Action potentials in the heart are primarily initiated in the SA node, which is the 

heart’s primary pacemaker site and provide an intrinsically automated rate of depolarizations 

that drives the overall electrical activity of the heart.
60

  From the SA node, the depolarization 

current spreads through the myocytes of the atria.  However, the AV valves, which separate 

the atria and the ventricles, are composed on non-conductive connective tissue which 

prevents the action potentials generated by the SA node from entering the ventricles 

directly.
58, 60

  Instead, the action potential enters through the AV node, a specialized region of 

pacemaker cells in the wall between the atria and ventricles.  The AV node conducts 

electrical impulses at 1/10
th

 the rate of the atrial cells and thus delays the conduction between 

the atria and ventricles, ensuring enough time for blood to exit the atria and fill the ventricles.  

However, once the action potential leaves the AV node, it spreads rapidly through the His-

Purkinje system (Figure 1) in a process known as rapid depolarization, ensuring the spread of 

Figure 1.  Electrical Conduction System of the Heart 

Adapted from http://en.wikipedia.org/wiki/Atrioventricular_node
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depolarization throughout the ventricles simultaneously.  From here, the action potential 

spreads to the remaining myocytes of the ventricles through cell-to-cell conduction, causing 

the ventricles to contract. 

Rapid ventricular depolarization (Phase 0) is followed by a much slower period of 

repolarization, which consists of four phases (Figure 2).  Phase 1 consists of a short, initial 

burst of repolarization which is then followed by a plateau phase (Phase 2), where there is 

minimal repolarization activity.  Finally, cells undergo rapid repolarization (Phase 3) and 

return to their resting state (Phase 4).  

 Progression through each of the five action potential phases is controlled by the 

movement of sodium, calcium, and potassium ions into and out of the cardiac cells.  Both 

pacemaker cells and non-pacemaker cells have multiple ion channels embedded in their 

membranes which control the movement of ions into and out of the cells.  In their resting 

Figure 2.  Action Potential of the Ventricular Cell 

and Associated Ion Conductances 

Adapted from Klabunde 2012
56 

Phase 0: Rapid depolarization; Phase 1: Initial 

repolarization; Phase 2: Plateau phase; Phase 3: 

Repolarization; Phase 4: Resting potential; gK
+
: 

Potassium conductance; gNa
+
: Sodium conductance; 

gCa
++

: Calcium conductance 
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state, cardiac cells have a negative electrical potential relative to the outside of the cell.
58, 60

  

The net negative electrical potential is produced through a combination of ion concentrations.  

K
+
 ions are present in higher concentrations inside the cell relative to outside while both Ca

++
 

and Na
+
 ions are present in higher concentrations outside the cell relative to inside.

60
  

Depolarization (Phase 0) occurs with the movement of Na
+
 into the cell.  Phase 1 of 

repolarization is caused by the movement of K
+
 ions out of the cell and is then slowed (Phase 

2) by the continued, slow movement of Ca
++

 into the cell.  Phase 3 is brought about by the 

end of inward Ca
++

 movement and the continued outward movement of K
+
.  Resting potential 

(Phase 4) is maintained through the movement of K
+
 ions back into the cell.  The ion 

gradients needed to control the electrical impulses of the heart are controlled by a series of 

ion channels. 

A.1. Sodium Channels 

Table 2.  Cardiac Ion Channels 

Channels Gating Characteristics 

Sodium 

     Fast Na
+
 Voltage Phase 0 of myocytes 

     Slow Na
+
 Voltage/Receptor Contributes to Phase 4 pacemaker current in SA and AV 

nodal cells 

Calcium 

     L-type Voltage Slow inward, long-lasting current; Phase 2 of myocytes 

and phases 4 and 0 of SA and AV nodal cells 

     T-type Voltage Transient current; contributes to Phase 4 pacemaker 

current in SA and AV nodal cells 

Potassium 

     Inward rectifier Voltage Maintains negative potential in Phase 4; Closes with 

Depolarization 

     Transient outward Voltage Contributes to Phase 1 in myocytes 

     Delayed rectifier Voltage Phase 3 repolarization 

     ATP-sensitive Receptor Inhibited by ATP; opens when ATP decreases during 

cellular hypoxia 

     Acetylcholine activated Receptor Activated by acetylcholine and adenosine; Gi-protein 

coupled; Slows SA nodal firing 

     Calcium activated Receptor Activated by high cytosolic calcium; Accelerates 

repolarization 

Adapted from Klabunde 2012
60 
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Sodium channels are the most common ion channels found in cardiac cells, with over 

100,000 sodium channels expressed in each cardiac cell and over 1 million expressed in cells 

of the Purkinje fibers.
61

  Two types of sodium channels are critical to regulating the electrical 

activity of the heart: fast acting and slow acting (Table 2).  Fast acting sodium channels are 

responsible for the rapid depolarization of the myocyte.  The activation gates are opened 

when the depolarization current spreads from cell to cell, which increases the conductance of 

Na
+

 across the cell membrane (Figure 2).  This allows Na
+
 to move into the cell but the 

channels close rapidly, limiting the length of time in which sodium can enter the cell.
60

  Slow 

acting sodium channels play a minor role in myocytes but are involved in the spontaneous 

depolarization of cardiac pacemaker cells where the slow inward movement of Na
+
 is partly 

responsible for the spontaneous depolarizing current, or pacemaker current, which 

differentiates pacemaker cells from myocytes.
60

 

 Sodium channels are expressed in virtually all eukaryotic organisms; Ren et al. 

identified a primitive counterpart to the eukaryotic sodium channel which is expressed in 

prokaryotes,
61, 62

 and the genes encoding sodium channel genes are highly conserved across 

organisms.
61

  The primary gene involved in the cardiac isoform of the sodium channels is 

SCN5A.
61, 63

  However, many additional genes are involved in the encoding of human sodium 

channels in the heart, including many from the sodium channel (SC) family of genes such as 

SCN10A, SCN4B, SCN1B, SCN2B, SCN3B, and SNC4B.
64-66

  Mutations in the genes 

encoding the primary cardiac isoforms have been implicated in rare familial cardiac 

conduction disorders (See Section QT Interval Genetics). 
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A.2. Calcium Channels 

Similarly to sodium channels, there are two types of calcium channels influencing 

cardiac conduction: L-type and T-type (Table 2).
60

  However, the average myocyte has 

approximately 1/5
th

  as many calcium channels as sodium channels.
61

  Despite the smaller 

number, calcium channels play a critical role in cardiac electrophysiology.  After 

depolarization, L-type calcium channels continue to allow Ca
++

 to flow into the myocyte.  

Unlike the fast acting sodium channels which cause depolarization, L-type calcium channels 

remain open for a longer period of time and are the primary cause of the plateau phase (Phase 

2 in Figure 2).
60

  T-type calcium channels are, similarly to slow acting sodium channels, 

primarily involved in the spontaneous depolarization of pacemaker cells and play little role in 

the action potential of general myocytes. 

Calcium channel genes are highly conserved across vertebrates.
64

  There are at least 

ten calcium channel genes in the human genome but only half are expressed in cardiac cells.  

Calcium channel genes belong to the CACN gene family and include CACNA1C, CACNA1D, 

CACNA1E, CACNA1G, and CACNA1H.
61

  The first three CACN genes encode isoforms of 

the L-type channel while the latter two encode isoforms of the T-type channel.  Of the three 

L-type calcium channel genes, CACNA1C produces the primary isoform found in cardiac 

cells.
61

     

A.3. Potassium Channels 

Unlike sodium and calcium channels which both have two main subtypes, potassium 

channels have six main subtypes (Table 2) and transient outward channels and delayed 

rectifier channels can be further broken down into subclasses based on their speed of action 

(Table 3).  Transient outward K
+
 channels are responsible for initial repolarization (Phase 1 
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in Figure 2) while delayed rectifier K
+
 channels are responsible for the increase in K

+
 

conductance that causes Phase 3 repolarization.
60

  Inward rectifiers are involved in the last 

phases of repolarization and in setting the resting potential (Phase 4).
61

 

Given the wide range of potassium channel subtypes, it is therefore unsurprising to find 

a wide variety of genes encode potassium channel subunits.  These genes are highly 

conserved across eukaryotes and comprise the KCN gene family.
66, 67

  The KCN gene family 

is composed of over 90 genes but only a subset are expressed in the heart.
65

  In addition to 

the genes which encode alpha subunits of the numerous cardiac potassium channels (Table 

3), multiple accessory subunits are also expressed in cardiac cells: KCNIP2, KCNAB1, 

KCNAB2, KCNE2, and KCNE1.
61

  Mutations in genes in the KCN family have been linked to 

inherited forms of Long QT Syndrome (LQTS), a Mendelian disorder with an increased 

duration of ventricular repolarization, and with the overall duration of ventricular 

repolarization (See Section QT Interval Genetics).  

Table 3.  Alpha Subunits of Cardiac Potassium Channels 

Current Description Gene(s) 

Action 

Potential 

Phase Activation Mechanism 

Ito,f Transient Outward Current 

(Fast) 

KCND2, KCND3 Phase 1 Voltage (depolarization) 

Ito,s Transient Outward Current 

(Slow) 

KCNA4, KCNA7, 

KCNC4 

Phase 1 Voltage (depolarization) 

IKur Ultra-Rapid Delayed Rectifier KCNA5, KCNC1 Phase 2 Voltage (depolarization) 

IKr Rapid Delayed Rectifier KCNH2 Phase 3 Voltage (depolarization) 

IKs Slow Delayed Rectifier KCNQ1 Phase 3 Voltage (depolarization) 

IK1 Inward Rectifier (Strong) KCNJ2, KCNJ12 Phase 3, 

Phase 4 

Voltage (depolarization) 

IKATP ADP Activated KCNJ11 Phase 1, 

Phase 2 

↑ADP/ATP Ratio (ATP 

depletion) 

IKACh M2 Receptor Gated K
+
 

Channel 

KCNJ3, KCNJ5 Phase 4 Acetylcholine 

IKp Background K
+
 Channels KCNK1/6, 

KCNK3, KCNK4 

All Phases Metabolic parameters, 

Membrane stretch 

Ih Pacemaker Channel
 

HCN2, HCN4 Phase 4 Voltage 

(hyperpolarization) 

Adapted from Zipes 2004
61 
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B. Ventricular Conduction on the Electrocardiogram 

In 1887,  a French scientist by the name of Gabriel Lippmann first demonstrated that 

the electrical impulses of the heart could be recorded from the body’s surface.
59

  Fifteen 

years later, Dutch physiologist Willem Einthoven published the first modern tracings from a 

surface electrocardiogram (ECG).
59

  He identified five distinct points on the ECG rhythm, 

which he labeled P, Q, R, S, and T, nomenclature which is still used over a century later to 

describe points on the ECG (Figure 3).    The P wave is produced as a depolarization wave is 

sent from the SA node and spreads through the atria.  The break between the P wave and the 

Q point corresponds to the slowing of the depolarization wave as it enters the AV node.  As 

depolarization is rapidly spread through the ventricles, the QRS complex (QRS) is produced 

(Figure 4).
68

  This is then followed by another break, which represents the plateau phase of 

repolarization.  The final wave on the ECG, the T wave, represents the rapid phase of 

repolarization (Figure 4).
58, 68

  Together, these points produce a number of commonly studied 

intervals (Figure 3).  The PR interval (PR) represents the period of atrial depolarization and 

AV nodal conduction, including the propagation of the impulse through the bundle of His, 

the bundle branches, and the Purkinje fibers.
69

  The QT interval (QT) is a measure of the 

ventricular action potential and can be broken down into the QRS complex (QRS, ventricular 

depolarization) and the JT interval (JT, ventricular repolarization).
60, 69

      

B.1. QT Interval 

The QT interval, the subject of this dissertation, is a measure of both ventricular 

depolarization and repolarization.  It is measured from the onset of the QRS complex to the 

end of the T wave. In a standard 12-lead ECG, with 3 standard limb leads, 3 augmented limb 

leads, and 6 precordial chest leads, QT can vary between leads, a phenomenon called QT 
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dispersion.  To standardize measurement, QT is measured from the lead that has the largest T 

wave with the most distinct termination.
69

  The latter feature is particularly important, as the 

T wave can sometimes be difficult to define and can be influenced with by the presence of a 

U wave.
68, 70

  The U wave is a small wave sometimes seen on the ECG following the T wave; 

its origins are unknown but it is believed to represent repolarization of the Purkinje fibers or 

the prolonged repolarization of cells in the mid-myocardium.
71

   

 Despite the potential introduction of measurement error through lead placement or 

external environmental factors, repeatability studies have found that QT measurements are 

reliable.
72-74

  Savelieva et al. found that, over the course of 10 consecutive ECGs, QT interval 

measurement demonstrated a modest 1-2% coefficient of variation, or the ratio of the 

standard deviation to the mean, among the general population, among a population of 

myocardial infarction (MI) patients, and among patients with hypertrophic cardiomyopathy.
73

  

Similarly, Vaidean et al. found that the interclass correlation coefficient (ICC), which is the 

Figure 3.  ECG Rhythm with Labeled Intervals 

Adapted from http://en.wikipedia.org/wiki/QT interval
 

http://en.wikipedia.org/wiki/QT
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ratio of between-person variance to the total variance in the study, for QT was 0.86 (95% 

Confidence Interval [CI]: 0.81 – 0.92),
74

 suggesting low within-person variance in QT.  

Furthermore, Vaidean and colleagues demonstrated that, as the total sample size increases, 

the precision of the mean QT measurement for a group of study participants increases 

significantly, allowing studies with large sample sizes to reliably study QT and QT 

correlates.
74

 

Heart Rate Correction Formulas for QT Interval 

Table 4.  Heart Rate Correction Formulae for QT Interval 

Formula Mathematical Form 

Bazett
75

 𝑄𝑇𝑐 =
𝑄𝑇

√𝑅𝑅
 

Fridericia
76

 𝑄𝑇𝑐 =
𝑄𝑇

√𝑅𝑅
3  

Hodges
77

 𝑄𝑇𝑐 = 𝑄𝑇 + 1.75(𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 − 60) 
Framingham

78
 𝑄𝑇𝑐 = 𝑄𝑇 + 0.154(1 − 𝑅𝑅) 

Normogram
79

 𝑄𝑇𝑐 = 𝑄𝑇 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 

Adapted from Aytemir 1999
80 

QT: Uncorrected QT interval; QTc: Corrected QT interval; RR: RR interval 

Normal QT intervals range from 200 to 400 ms.
60

  However, despite the overall 

reliability of QT measurements, inter-individual variation remains high, largely reflecting the 

Figure 4.  Action Potential of the Ventricle Cell and 

Corresponding Surface ECG Components 

Adapted from Bednar 200168 

Phase 0: Rapid depolarization; Phase 1: Initial repolarization; 

Phase 2: Plateau phase; Phase 3: Repolarization; Phase 4: 

Resting potential 
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influence of heart rate.  QT is expected to be prolonged at slower heart rates and shortened at 

faster heart rates.
38, 75, 81, 82

  This range can be extreme.  Data from the Framingham Heart 

Study (FHS) have shown that in men, QT can range from 450 ms at 40 beats per minute 

(bpm) to 300 ms at 120 bpm, and in women, QT can range from 465 ms at 40 bpm to 310 ms 

at 120 bpm.
69, 78

  Because of the large influence of heart rate, studies of QT commonly 

account for heart rate in their analysis, either through simple adjustment or through the use of 

one of the numerous correction formulae available in the literature.  After adjustment, 

corrected QT (QTc) is expected to be no greater than 440 ms and QTc greater than 500 ms is 

considered critically prolonged.
38, 60

  One of the most commonly used correction formula is 

Bazett’s formula.
38, 75

  However, Bazett’s correction can be inaccurate at elevated heart 

rates.
38

 

Because of the potential for inaccuracy when using Bazett’s formula, numerous 

alternatives have been suggested.  Fridericia, a contemporary of Bazett’s, suggested using the 

cubed root of the RR interval (RR), an inverse measure of heart rate, rather than the squared 

root.
76

  In 1936, Shipley and Hallaran modified Bazett’s formula to 𝑄𝑇𝑐 = 𝑘√𝑅𝑅 where k is 

0.397 in men and 0.415 in women.
69, 83

  Despite these alternatives, many researchers have 

remained skeptical of the accuracy of the existing formulas and multiple additional formulas 

have been proposed (Table 4).
80

  In 1992, the FHS offered a new method to correct for heart 

rate based on a large population based cohort.
78

  The normogram formula attempted to 

develop a heart rate correction formula that had a correction factor that varied by heart rate, 

making it more accurate at the extreme heart rates and allowing it to vary by population.  

Rautaharju et al.  have also proposed the QT prolongation index (QTI), which is calculated 

as a proportion of the limiting value of QT when heart rate approaches zero (QTmax): 
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𝑄𝑇𝐼 =
𝑄𝑇 × (𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 + 100)

𝑄𝑇𝑚𝑎𝑥
 

where QTmax = 656 ms; because this is a proportion, the mean value is 100 and the upper 2% 

of prolonged QT have a value greater than 110, making it difficult to compare to other 

studies which used one of the standard correction formulae.
84, 85

  However even with the 

wide variety of correction formulae available, there is still no consensus on the preferred 

approach, but the suggestion has been made that it is may be necessary for each individual 

study to investigate which correction model best fits their data.
80, 86, 87

 

B.2. QRS Complex 

The QRS complex, sometimes referred to the QRS interval, is a measure of 

ventricular depolarization (Figure 3, Figure 4).  It also measures an early component of 

ventricular repolarization (Phase 1).
88

  Its duration is controlled by the His-Purkinje system, 

composed of the His bundle, the left and right bundle branches, and the Purkinje fibers 

(Figure 1).  The His-Purkinje system ensures the spread of the depolarization impulse from 

the AV node through both ventricles simultaneously.  It is also during the QRS that atrial 

repolarization occurs but, due to its short duration and small amplitude, this process is 

masked by ventricular repolarization on the surface ECG.
60

  QRS is measured on the lead 

with the widest QRS complex with the sharpest onset and termination, usually one of the six 

precordial chest leads.
69

  Because QRS includes an early phase of repolarization, the 

transition from the QRS complex to the ST segment can be gradual making it hard to define 

the J point (Figure 4).  Further complicating the definition of the QRS complex is the Q 

wave, which is often absent on ECGs.
58

 

When the Q wave is present, its duration is used in the diagnosis of MI.  A widened Q 

wave on limb leads I, II, aVL, or aVF is indicative of an MI.  However, use of limb lead III or 
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aVR can lead to a false diagnosis, as the Q wave is typically wider on these leads.
69

  

Widening of the whole QRS complex can also be indicative of malfunctions of the cardiac 

conduction system, e.g. bundle branch blocks.  The QRS is typically wider in young 

populations,
89

 in males,
90, 91

 and in Whites.
92

  Widening of the interval is also seen in 

hyperkalemic populations,
93-95

 in obese populations,
96

 in populations using certain anti-

arrhythmic medications
93, 97, 98

 and in populations on hemodialysis.
99

  A normal QRS 

duration is between 60 and 100 ms, with about half of the general population falling near 80 

ms,
60, 69

 although a QRS duration of as high as 110 ms is not considered abnormal.
69

  

However, a QRS greater than 120 ms is a very specific marker of ventricular dysfunction.
100, 

101
  

B.3. JT Interval 

 The JT interval is a measure of ventricular repolarization and is composed of the ST 

segment and the T wave.  The ST segment represents the plateau phase of repolarization 

while the T wave represents phase 3 repolarization.
58

  JT is generally calculated as 𝐽𝑇 =

𝑄𝑇 − 𝑄𝑅𝑆 rather than measured directly from the surface ECG.  JT is highly correlated with 

QT but, unlike QT and QRS, JT has not been as commonly studied.
28

  However, it has been 

suggested that, JT is better than QT for monitoring increased risks due to prolongation of 

ventricular repolarization, as JT represents the repolarization phase of QT and it is this phase 

which is predicted to be most clinically relevant.
102

  Tsai et al. have demonstrated that JT is a 

better marker of changes in repolarization duration when monitoring patients on 

antiarrhythmic drug therapy, a common cause of prolonged QT (See Section Drug-Induced 

QT Prolongation).
103

  Additionally, JT is a better marker than QT when studying conditions 

with a wide QRS.
104

  For example, prolonged QT is considered a risk factor for coronary 
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heart disease (CHD) (See Section Coronary Heart Disease); however, Crow et al. found that 

JT was actually a better predictor of CHD mortality than QT in cases where a wide QRS was 

present.
105

  These findings indicate that studies of JT are informative in addition to studies of 

QT and QRS.     

QT Interval Prolongation 

 

QT ranges from 200-400 ms in the general population; after adjustment for heart rate, 

the distribution of QT shifts upward so that intervals up to 440 ms are considered normal.  

QT is normally distributed and is shifted upwards in females and in older populations (Figure 

5).
75, 106, 107

  However, malfunction of the ion channels associated with the cardiac conduction 

system and disruptions in the action potential of the heart, both achieved through multiple 

mechanisms, can lead to a shortening or lengthening of the QT interval beyond the normal 

range.  While short QT syndrome can be pathogenic, it is exceedingly rare and is primarily 

congenital.
108, 109

  QT prolongation, however, is more prevalent in the population and can be 

caused by many common innate and acquired risk factors.   

Adapted from Benoit 2005
106

 

Data from the Third National Health and Nutrition Evaluation Survey, 1988 – 1994 

QTc corrected for heart rate using the Fridericia formula  
 

B A 

Figure 5. QTc Distribution in the U.S. Population by Age and Sex 
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C. Risk Factors 

QT prolongation can occur through multiple mechanisms and numerous risk factors for 

prolonged QT have been identified.  Broadly, risk factors for prolonged QT can be classified 

into three categories: clinical conditions, congenital conditions, and electrolyte imbalances. 

C.1. Acquired Clinical Conditions 

Table 5.  Acquired Clinical Causes of QT Prolongation 

Myocardial Infarction 

Valvular Disease* 

Cardiomyopathy* 

Bradycardia 

Subclinical Cardiovascular Disease 

Liver Function Impairment 

Diabetes Mellitus 

Hypothyroidism 

Obesity 

Anorexia 

Use of QT-Prolonging Medications 

*Can be either acquired or congenital 

 Numerous clinical conditions have been identified as risk factors for QT 

prolongation (Table 5).  Multiple diseases of the heart can interfere with normal cardiac 

conduction, including myocardial infarction,
69, 110, 111

 structural heart disease (e.g. valvular 

disease, cardiomyopathy),
65, 108

 and bradycardia (slow heart rate),
112, 113

 all of which can lead 

to QT prolongation.  Furthermore, some research has suggested that QT prolongation could 

serve as a marker of subclinical CVD
114, 115

   
 

Non-cardiac diseases also confer a risk of QT prolongation.  QT prolongation is 

present in populations with cirrhosis of the liver,
116-118

 with diabetes,
119

 and with 

hypothyroidism.
120, 121

   Liver disease has been shown to confer a 3-4 fold increase in the risk 

of QT prolongation associated with liver disease.
122

  Based on NHANES data, diabetes 

confers a 1.6-fold increase in risk (95% CI: 1.1-2.3) of prolonged QT,
123

 and hypothyroidism 

could increase the risk of QT prolongation by over 2-fold.
106

  Additionally, studies have 
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found between 20-30% of obese individuals have a prolonged QT,
124-126

 which suggests that, 

given the high prevalence of obesity in the U.S. (~35% of adults), obesity may be one of the 

most common causes of prolonged QT.
69, 127

  On the opposite end of the weight spectrum, 

QT prolongation is also more common in cases of anorexia nervosa than in the general 

population.
128-130

  Finally, many prescription medications can cause QT prolongation (See 

Section Drug-Induced QT Prolongation).
39

    

C.2. Congenital Conditions 

Several congenital conditions have been associated with a prolonged QT, including 

the congenital versions of several structural heart diseases including valvular disease and 

cardiomyopathy, which manifest similarly to their acquired counterparts.
110, 111

  QT 

prolongation also has a strong genetic component.
24, 25, 33, 131

  Congenital LQTS was first 

described in 1957 by Anton Jervell and Fred Lange-Nielsen.
132

    There are two predominant 

forms, Jervell and Lang-Nielsen syndrome and Romano-Ward syndrome, named after the 

researchers who first described the two subtypes.
59

  These conditions are caused by mutations 

in the genes encoding the Na
+
, K

+
, and Ca

++
 ion channel expressed in the heart.

69
  For greater 

detail on the genetics of the QT interval, see Section QT Interval Genetics. 

C.3. Electrolyte Imbalances 

Electrolyte imbalances are a common cause of QT prolongation, second only to drug-

induced LQTS (diLQTS).
133

  In fact, it has been suggested that electrolyte imbalances may 

be responsible for the underlying mechanism of the associations seen with several clinical 

conditions discussed above, such as anorexia and diabetes.
134, 135

  The three most common 

electrolyte imbalances associated with QT prolongation are hypokalemia, hypocalcemia, and 

hypomagnesemia, three disorders which represent decreased levels of potassium, calcium, 
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and magnesium, respectively, in the blood.
111

  Linkages between electrolytes and QT were 

first documented in case reports in the late twentieth century.
136-138

  Subsequently, Zeltser 

and colleagues found that hypokalemia was present in 28% of a population of 249 patients 

who developed a highly fatal ventricular arrhythmia associated with prolonged QT, torsades 

de pointes (TdP).
139

  The prevalence of hypokalemia in Zeltser’s study was significantly 

higher than that seen in the general U.S. populations according to the NHANES study 

(3%).
140

  Larger, population-based studies have shown that the risk of developing prolonged 

QT increases between 2 and 4-fold in the presence of hypokalemia, although it is unclear if 

this association is the same in both men and women.
106, 122

  Additional evidence of the role of 

electrolyte imbalances in the role of QT prolongation was provided by Hoshino and 

colleagues, who showed that treatment with magnesium sulfate was successful in the 

treatment of TdP associated with prolonged QT in the presence of hypomagnesemia.
141

  A 

study by Benoit et al. in the NHANES III population with over 4,000 men and 4,000 women, 

suggested that hypocalcemia conferred an increased risk of QT prolongation (OR=6.12 [95% 

CI: 1.03-36.53]).
106

  However, given the imprecision of the results, further work is needed to 

confirm this association.  One possible avenue to investigate is the effect of electrolyte 

imbalances on mean QT, rather on QT prolongation.  However, few studies to date have 

examined the association any QT risk factors other than genetics with mean QT.  The role of 

electrolyte imbalances in QT prolongation is unsurprising; these electrolyte imbalances can 

impair the function of the ion channels which are responsible for the electrical conduction of 

the heart, especially the Ikr current, which plays a critical role in ventricular repolarization 

(Table 3).
134, 142
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D. Drug-Induced QT Prolongation 

The most common cause of acquired LQTS is the use of prescription drugs.
133

  In 

1964, Seizer and Wray first identified drug-induced Long QT Syndrome in patients using the 

antiarrhythmic quinidine.
143, 144

  Drug-induced QT prolongation was the most common cause 

for medications to withdrawn from the market after approval by the U.S. Food and Drug 

Administration (FDA) over the past decade.
39, 145

  FDA guidelines begin regulating 

medications after an increase in QT duration of just 5 ms, a modest change in the overall 

length of the QT interval relative to the mean.
44

  As the use of prescription drugs continues to 

rise
1
 and the number of QT prolonging medications identified continues to grow,

146, 147
 the 

importance of understanding the mechanisms of diLQTS will remain critical. 

D.1. QT-Prolonging Medications 

The University of Arizona’s Center for Education and Research on Therapeutics 

(UAZ-CERT) maintains a database of all medications reported to prolong the QT interval.
146

  

This database currently includes over 170 medications, most of which are still available in 

the U.S. market.  Of these 170 medications, 107 are known to prolong QT, 36 prolong QT 

under specific conditions, and a further 28 should be avoided by those with congenital 

LQTS.
146

  Of medications which prolong QT beyond FDA guidelines, there is a broad range 

of prolongation.  A recent study by Iribarren et al. found that aripirazole, an antipsychotic, 

prolonged QT by 7.6 ms while amiodarone, an antiarrhythmic , prolonged QT by 25.2 ms.
148

  

Cardiac Medications 

Numerous medications used to treat CVD can result in QT prolongation (Table 6).  

Unsurprisingly, many additional anti-arrhythmic medications have also been found to 

prolong QT, as these medications interfere directly with the ion channels of the heart.
69

   



 

24 

Table 6.  List of Cardiac Medications by Category That Prolong the QT Interval 

Anti-anginal Antiarrhythmic Antihypertensive Diuretics Vasodilators 

Bepridil Amiodarone Isradipine Furosemide Anagrelide 

Ivabradine Disopyramide Moexipril Hydrochlorothiazide Vardenafil 

Ranolazine Dofetilide Nicardipine Indapamide  

 Dronedarone    

 Flecainide    

 Ibutilide    

 Procainamide    

 Quinidine    

 Sotalol    

List obtained from UAZ-CERT crediblemeds.org on November 17, 2014
146 

 

 Class 1A antiarrhythmics (disopyramide, procainamide, quinidine) are also known to 

prolong the QRS interval and JT intervals when examined separately, while class III 

antiarrhythmics (amiodarone, dofetilide, ibutilide, sotalol) prolong only the JT interval of 

QT; conversely, class 1C antiarrhythmics (flecainide, trycyclic anti-depressants) are known 

to prolong QRS but not JT.
69

  In addition to antiarrhythmics, anti-anginals, antihypertensives, 

diuretics, and vasodilators are also known to prolong QT.  Of particular interest, 

hydrochlorothiazide is included in the UAZ-CERT database as a conditional QT prolonging 

agent but is still a commonly used anti-hypertensive.   

Additionally, Iribarren and colleagues found that indapamide, a thiazide-like diuretic, 

prolonged QT by an average of 9.4 ms and by more than 20 ms in 43% of participants.
148

 For 

greater detail on hydrochlorothiazide and other thiazide and thiazide-like diuretics, the 

subject of this proposal, see Section Thiazide Diuretics. 

Non-Cardiac Medications 

In addition to cardiac medications, there are many medications that are not designed 

for CVD treatment which also have a risk of QT prolongation.  In fact, more than 120 of the 

drugs listed on the UAZ-CERT QT prolonging drug list are not primarily designed to CVD 

(Table 7).
146

  These medications cover a broad range of therapeutic classes, including
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Table 7.  List of Non-Cardiac Medications by Category That Prolong the QT Interval 

Antibiotic Anti-cancer Anticonvulsant Antidepressant Antifungal Antihistamine 

Azithromycin Tamoxifen Felbamate Trazodone Fluconazole Astemizole 

Ciprofloxacin Lapatinib Fosphenytoin Venlafaxine Itraconazole Terfenadine 

Clarithromycin Arsenic trioxide  Citalopram Ketoconazole Diphenhydra-mine 

Gatifloxacin Antimalarial Fluoxetine Posaconazole 

Grepafloxacin Nilotinib Dihydroartemisinin+ 

Piperaquine 

Paroxetine Voriconazole Anti-nausea 

Gemifloxacin Vorinostat Sertraline  Domperidone 

Grepafloxacin Dabrafenib Chloroquine Escitalopram Antipsychotic Dolasetron 

Levofloxacin Eribulin Halofantrine Amoxapine Pipamperone Granisetron 

Moxifloxacin Sunitinib Quinine sulfate Mirtazapine Mesoridazine  

Norfloxacin Vandetanib  Amitriptyline Thioridazine Anti-viral 

Ofloxacin  Kinase Inhibitor Clomipramine Haloperidol Amantadine 

Roxithromycin Muscle Relaxant Crizotinib Desipramine Pimozide Telaprevir 

Sparfloxacin Vemurafenib Doxepin Droperidol Atazanavir 

Telavancin Tolterodine Pazopanib Imipramine Promethazine Foscarnet 

Trimethoprim-

Sulfamethoxazole 

Tizanidine Sorafenib Nortriptyline Chlorpromazine Nelfinavir 

Solifenacin Bosutinib Protriptyline Sertindole Rilpivirine 

Erythromycin  Dasatinib Trimipramine Amisulpride Ritonavir 

Pentamidine Opiate   Aripiprazole Saquinavir 

Metronidazole Levomethadyl Miscellaneous Clozapine  

Bedaquiline Methadone Famotidine Sevoflurane Iloperidone Sedative 

  Tacrolimus Ondansetron Paliperidone Dexmedeto-mide 

  Cocaine Probucol Quetiapine 

  Tetrabenazine Lithium Risperidone Chloral hydrate 

  Oxytocin Mirabegron Sulpiride  

  Mifepristone Galantamine Ziprasidone  

  Bortezomib Apomorphine Olanzapine  

  Pantoprazole Toremifene   

  Pasireotide Cisapride   

  Fingolimod    

List obtained from UAZ-CERT crediblemeds.org on November 17, 2014
146 
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antibiotics and antivirals, cancer treatments, antidepressants and antipsychotics, sedatives, 

and pain medications, in addition to numerous others.  However, identifying non-cardiac 

medications is particularly difficult because the risk of QT prolongation is rarely identified in 

clinical trials but is rather identified after the medications have been approved, marketed to 

the public, and commonly used, sometimes after many years.
149

  For example, in a large, 

population based study based in the Netherlands, van Noord et al. studied antipsychotics and 

anti-depressants, two classes of medication which are commonly found to prolong QT.  In 

the study, the antipsychotic thioridazine was found to prolong QT 28.3 ms (95% C.I.: 5.9-

50.8) compared with nonusers.
150

  A further six medications which significantly prolonged 

QT were found to increase QT by more than the minimum FDA guidelines (5 ms): lithium 

(10.1 ms), olanzapine (22.9 ms), amitriptyline (5.1 ms), maprotiline (9.6 ms), imipralnine 

(12.8 ms), and nortriptyline (23.3 ms).
150

  Furthermore, when Iribarren et al. examined 90 

medications that had been reported to prolong QT in a population-based cohort (N=59,531), 

they found 78 (87%) significantly prolonged QT and of these 78 medications, 63 were non-

cardiac medications.
148

   

D.2.  Prevalence of QT-Prolonging Medication Use 

Despite the rising awareness in both clinical and research settings, the use of QT 

prolonging drugs continues to be a concern.  In a study of 2 million members of health 

maintenance organizations (HMOs) over a two and a half year period, over 180,000 members 

filled a prescription for a high-risk QT prolonging medication.
151

  Among patients who were 

admitted to a hospital in Switzerland over a 3 month period who had prolonged QT at 

admission, defined as QTc ≥ 450 ms in men and 460 ms in women, half were subsequently 

administered a known QT prolonging medication.
122

  Similarly, in a study of admissions to a 
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cardiac care unit, a third of patients who had prolonged QT at admission were later 

administered a QT prolonging medication and 42% of those who had a QTc ≥ 500 ms 

(extreme prolongation) were administered a QT prolonging agent.
152

  These findings indicate 

that diLQTS remains a prominent concern and more work is needed to prevent diLQTS, 

either through the development of new medications that do not prolong QT or through the 

identification of those most at risk for QT prolongation in order to better prescribe QT 

prolonging medications and avoid potential adverse reactions. 

D.3. Clinical Considerations 

 The continued use of QT prolonging medications despite the risk of severe negative 

outcomes has been widely acknowledged by the medical community.
151, 152

  Physicians must 

weigh the risks and benefits of the use of such medications.  In cases where effective 

alternative treatments are available, the risks of using a QT prolonging agent would outweigh 

the benefits.
39

  Also, in cases where multiple risk factors for prolonged QT are present, 

adding a QT prolonging medication presents particular concern.
38

  However, in cases where 

an effective alternative treatment is not available, such as with the use of arsenic trioxide to 

treat a relapse of promyelocytic leukemia, then these medications can and should be used.
39

  

But in these cases, it is critical to monitor patients.  While some clinicians do not consider 

regular ECGs, both before and after subscribing a QT prolonging agent, cost effective, as for 

many of these drugs, a thousand patients would need to be assessed to identify a single 

person at risk, experts in QT pharmacology recommend that patients be screened by ECG 

prior to administering a QT prolonging medication.
38

  Continued, long term monitoring is 

also important, as Zeltser et al. found that, among published cases of torsades de pointes 

(TdP), an arrhythmia which results diLQTS, only 18% of patients developed TdP within 72 
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hours of the onset of drug therapy, while 42% developed TdP between 3 and 30 days after 

the onset of therapy and 40% developed TdP more than a month after the onset of therapy.
139

  

It is critical that both researchers and clinicians continue to work to identify those at risk of 

QT prolongation and the mechanisms of this risk to better prescribe, monitor, and prevent 

diLQTS. 

D.4. Mechanisms 

Drug-induced LQTS is caused when prescription medications interfere with the 

normal action of the ion channels of the cardiac conduction system.  The ion channel most 

commonly disrupted is the rapid delayed rectifier K
+
 channel, or the IKr.  This channel, 

encoded by the KCNH2 gene, also known as the human ether-a-go-go related gene (HERG).  

The HERG channel is composed of six transmembrane subunits and it is on the sixth subunit 

that the two most important drug binding sites are located: Tyr652 and Phe656 (Figure 6).
143

  

Adapted from Ponte 2010
144

 

The fourth membrane’s planning unit (S4) contains positively 

charged residues and functions as the voltage sensor. 

The residues between S5 and S6 form the ion selective pore. 

Tyr652 (Tyr) and Phe656 (Phe), marked in the diagram, are the 

two most important drug binding sites 

Figure 6.  Schematic Representation of the HERG (KCNH2) 

Channel 
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When drugs bind to the tyrosine located at the 652
nd

 amino acid or phenylalanine at the 656
th

 

amino acid, they can reorient these amino acids, subsequently trapping the drug in the central 

cavity of the channel and preventing the conduction of K
+
 ions.

143, 153
  The blockage of the IKr 

current primarily affects the Purkinje fibers and the mid-myocardium (M cells).
143

  The M 

cells are particularly responsive to drug exposure.
154

  In addition to blockage of the HERG 

channel, M cells can prolong QT through pharmacologic interference of the slow delayed 

rectifier potassium channel, the sodium channels, and the sodium-calcium exchangers, which 

while less common than the disruption of the IKr, make the M cells a primary source in 

prolongation of Phase 2 and 3 of the action potential of the heart.
154

 

E. Categorical Versus Continuous Measures of QT Prolongation 

QT prolongation does not have a single, standard threshold.  When evaluating QT 

prolongation suing a threshold, a common cut-point is 450 ms in men and 460 ms in 

women,
20, 155-158

 a threshold which, according to the NHANES population, only 2% of men 

and 3% of women exceed.
159

  In clinical settings, the risk of adverse outcomes is believed to 

increase substantially at 500 ms.
39, 111

  Despite these commonly-used cutpoints, there is no 

clear threshold at which risks due to QT prolongation increase, and many studies of QT use 

alternate cut-points or study QT as a continuous outcome.  Another alternative is to study QT 

as a continuous variable and report results for a standard deviation of the population 

distribution.
160, 161

  However, reporting results for a standard deviation prevents 

generalization across populations and cannot be used in meta-analysis efforts, such as large 

genetics consortia.  Furthermore, it is conceivable that risk factors for QT prolongation may 

prolong QT a small amount and it is only through a combination of risk factors that higher 

levels of prolongation are achieved.  This is particularly true of the genetic component of QT 

duration (See Section QT Interval Genetics).  Thus, we have chosen to evaluate QT as a 
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continuous outcome in order to identify risk factors which have smaller although still 

important effects on QT. 

F. Potential Clinical Outcomes of Prolonged QT 

QT prolongation has been extensively studied.  QT prolongation was first described 

in association with sudden death in 1957 by Anton Jervell and Fred Lange-Nielsen, for 

whom the subtype of familial long QT syndrome (LQTS) which they described is named.
132

  

Torsades de pointes (TdP), the ventricular tachyarrhythmia commonly associated with 

prolonged QT, was also first described in the mid-20
th

 century (1966) by the French scientist 

Dessertenne.
162, 163

  Since then, prolonged QT has been identified as a risk factor for not just 

TdP but also numerous other clinical conditions, including coronary heart disease (CHD),
20

 

congestive heart failure (CHF),
164

 stroke,
165

 and both cardiovascular and all-cause 

mortality.
23

    

F.1. Arrhythmias 

Cardiac arrhythmias, or abnormal heart rhythms, are the most common cause of 

sudden cardiac death (SCD), which is defined as unexpected death which occurs within one 

hour of the onset of symptoms if the death is witnessed or within 24 hours of last being seen 

alive if the death was unwitnessed.
166

  SCD accounts for between 200,000 and 400,000 

deaths annually in the U.S. and for more than 60% of all cardiovascular deaths, the leading 

cause of the death in the U.S.
166-168

  TdP is the distinctive ventricular tachycardia, a rapid 

heart rhythm, associated with both congenital and acquired LQTS.
68, 163, 169

  TdP is thusly 

named because it is characterized by a twisting of the QRS peaks through the axis of the 

ECG (Figure 7).  Intermittent TdP often results in syncope (loss of consciousness) before 

reverting back to a normal rhythm while sustained TdP often devolves into ventricular 
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fibrillation and cardiac arrest, often leading to SCD.
19, 163

  SCD peaks both in elderly age and 

in infancy, the latter peak associated with sudden infant death syndrome (SIDS).
166, 167

  

Very little is known about the underlying epidemiology of TdP.  Drug-induced TdP is 

the most closely monitored form of TdP and is reported as an adverse drug reaction (ADR) to 

the World Health Organization’s (WHO) Drug Monitoring Centre.  For drug-induced TdP, 

there were 750 total cases reported from 1990 to 1999,
149

 a number likely to be an extreme 

underrepresentation, given the high level of underreporting found for ADRs (as high as 

95%).
170

   Further complicating the measurement of TdP prevalence are cases of syncope and 

SCD.  In both cases, patients usually present without ECG, making it unclear if TdP was the 

underlying cause.
171

        

It is also worth noting that both a widened QRS and a severely prolonged QTc were 

independent predictors of another arrhythmia, atrial fibrillation.
172

  In a study of 42,751 

participants, 1,050 of whom developed atrial fibrillation during the study period, QRS > 

110ms was associated with a hazard ratio (HR) of 1.9 (95% CI: 1.7-2.2) and QTc > 450 ms 

was associated with HR = 1.7 (95% CI: 1.5-2.0) of developing atrial fibrillation.
172

  Atrial 

fibrillation is the most common arrhythmia in the U.S., affecting an estimated 2.2 million 

Adapted from Yap and Camm 2003153 

Figure 7.  ECG Rhythm Strip in a Patient with Torsades de Pointes 
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people.
173

  It is highly associated with both stroke and mortality, accounting for 

approximately 75,000 strokes per year
174

 and a nearly 2-fold increase in the risk of death.
175

  

The association between QT prolongation and both TdP and atrial fibrillation, one a highly 

fatal arrhythmia, the other a highly prevalent arrhythmia, underscores the importance of 

studying QT prolongation and its risk factors. 

F.2. Coronary Heart Disease 

Coronary heart disease (CHD) is the clinical manifestation of the blockage of the 

arteries supplying blood to the myocardium, most often through atherosclerosis of the 

coronary arteries.  As of 2010, CHD affected an estimated 15.4 million Americans over the 

age of 20 and makes up more than half of all CVD events in men and women under age 75.
36

  

QTc prolongation is an established risk factor for CHD and CHD mortality.
20, 158, 176-180

  

Multiple studies have found that QTc prolongation, corrected using Bazett’s formula, is 

associated with CHD in both black and white men and women (Table 8).  Broadly, a 

prolonged QT has been found to have between a 1.5 and a 2-fold increase in the risk of 

developing incident CHD or CHD mortality.  Using data from the Atherosclerosis Risk in 

Communities (ARIC) study, Dekker and colleagues found that prolonged QTc imparted a 

greater risk of CHD in blacks than in whites when comparing the top 10% of the QTc 

distribution to the rest of the population (HR = 2.07 [95% CI: 1.24-3.46] and 1.39 [95%CI: 

1.00-1.92], respectively).
20

  Maebuchi et al. also conducted a study of prolonged QT and 

CHD in Japanese adults and reported that prolonged QTc, corrected using Bazett’s formula, 

was associated with incident CHD in Japanese men but not in women (HR = 4.50 [95% CI: 

2.18-9.27] and 0.99 [95% CI: 0.37-2.65], respectively) when comparing prolonged QTc,  
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Table 8.  Review of Four Studies of QT Prolongation and CHD Risk in Black and White Men and Women 

Author Year Study N % Male % Black Outcome 

Prolonged  

QT (ms) 

Reference 

QT (ms) 

HR 

(95% CI) 

Dekker
176 

1994 Zutphen 851 100 0 
CHD 

Mortality 
>420 <385 

4.4 

(1.2-16.4) 

Dekker
27 

2004 ARIC 14,548 43.4 27.0 Incident CHD 

Male: >440 

Female: >454 
<403 

2.34* 

(1.72-3.19) 

1.55**  

(1.08-2.23) 

Male: >450 

Female: >465 

Male: ≤450 

Female: ≤465 

2.14 * 

(1.71-2.69) 

1.51** 

 (1.15-1.89) 

Robbins
113 

2003 CHS 4,988 40.1 14.7 
CHD 

Mortality 
>450 ≤410 

1.6†
 

(1.0-2.5) 

2.0††
 

(1.1-3.7) 

Schillaci
179 

2006 PIUMA 2,110 55 0 Incident CHD 
Male: >440 

Female: >450 

Male: ≤440 

Female: ≤450 

1.95 

(1.12-3.42) 

*Adjusted for age, gender, and race 

**Adjusted for age, gender, race, and CVD risk factors (heart rate, hypertension, systolic blood pressure, ECG abnormalities, body mass index, waist-hip 

ratio, cigarette smoking status, cigarette years, total cholesterol, HDL cholesterol, triglycerides, cardiac medications, diabetes, intima-media thickness 

†Hazard ratio among participants without CHD at baseline 

††Hazard ratio among participants with CHD at baseline 

ARIC: Atherosclerosis Risk in Communities; CHD: Coronary heart disease; CHS: Cardiovascular Health Study; CI: Confidence Interval; HR: Hazard ratio; 

N: Number of study participants; PIUMA: Progetto Ipertensione Umbria Monitoraggio Ambulatoriale 
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defined as QTc ≥ 440 ms to the referent category of QTc < 400 ms, although results were 

imprecise.
178

  This association has also been generalized to populations with other CHD risk 

factors (type II diabetes mellitus, hypertension, and chronic kidney disease [CKD]).
177, 179, 180

  

It has been hypothesized that the underlying mechanisms of this association may be irregular 

regulation of cardiac ion channels, leading to cardiac instability, a mechanism also believed 

to be the cause of QT-related arrhythmias.
179

 

F.3.  Chronic Heart Failure 

Congestive heart failure (CHF) is characterized by the impaired pumping function of 

the left ventricle, which results in the heart’s inability to meet the body’s cardiometabolic 

demands.  CHF is estimated to affect more than 5 million Americans over the age of 20 and 

is expected to increase in prevalence by 25% between 2013 and 2030.
36, 181

  Both prolonged 

QT and QRS have been associated with CHF.
21, 164, 177, 182

  Dhingra et al. found that, in an 

elderly population of 1,759 white men and women, extreme values of QRS (QRS ≥ 120 ms) 

conferred a significant increase in heart failure risk over normal QRS (QRS < 100 ms), with 

a HR of 1.74 (95% CI: 1.28-2.35).  Furthermore, intermediate levels of QRS prolongation 

(QRS 100-119 ms) had a HR for risk of heart failure of 1.43 (95% CI: 1.05-1.96) when 

compared to normal QRS.
182

  Similarly, studies have found that prolonged QT confers 

approximately a 2-fold risk of incident CHF.  In a study of 32,283 multiethnic participants in 

the Women’s Health Initiative (WHI), prolonged QT (QTc ≥ 437 ms corrected using the 

linear-scale model) conferred an HR of 1.80 (95% CI: 1.40-2.31) of incident heart failure 

compared to the rest of the population; this represented an additional 26 cases of incident 

CHF for every 10,000 women attributable to prolonged QT.
21

  A study of 13,555 participants 

from the ARIC study (57% female, 26% black) found that prolonged QT (QTc > 436 ms in 
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men and 442 ms in women, corrected using the linear-scale model) resulted in a HR of 1.99 

(95% CI: 1.53-2.58) in men.
164

  It has also been shown that the risk of CHF associated with 

prolonged QT is higher in populations with decreased kidney function compared to 

populations with normal kidney function (HR=4.95 [95% CI: 1.99-12.34], HR=1.66 [95% 

CI: 1.08-2.58], respectively).
177

  It is speculated that both QT and QRS are markers of other 

underlying causes of CHF, such as structural heart defects or electrolyte abnormalities, rather 

than direct causes of CHF.   

F.4. Stroke 

Strokes are a cardiovascular event caused by the acute interruption of blood flow to 

one or more sections of the brain; there are two main types of stroke: ischemic (most 

common form) caused by the formation of a blood clot, and hemorrhagic caused by the 

buildup of blood in the brain or skull.  An estimated 6.8 million Americans over age 20 have 

suffered at least one stroke, with nearly 800,000 new and recurrent strokes occurring 

annually and over 125,000 annual deaths due to stroke.
36

  Several studies have found 

prolonged QT to be a predictor of incident stroke (both ischemic and hemorrhagic).  Early 

work by Goldstein suggested an association between QT and stroke, finding that 45% of 

acute stroke patients had a prolonged QT compared with only 12% of the control group, 

although the direction of the association was not clear.
183

  Cardoso  and colleagues expanded 

this work and examined a population of 471 participants with type II diabetes mellitus and 

found prolonged QT (QTc  ≥ 470 ms, corrected using Bazett’s formula), increased the risk of 

incident stroke 2.78-fold (95% CI: 1.33-5.81) and increased the risk of incident or recurrent 

stroke 2.63-fold (95% CI: 1.21-5.28).
22

  Soliman and colleagues further expanded this, 

examining a population of 27,411 participants in the REasons for Geographic and Racial 
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Differences in Stroke (REGARDS) study.  They found a prolonged QT (QTc ≥ 460 ms in 

women and 450 ms in men, corrected using the Framingham formula) was associated with a 

smaller increase in the risk of incident stroke (HR = 1.12 [95% CI: 1.03-1.21]) and that using 

a continuous measure of QT also produced associations as good as using the cut-points, 

suggesting that the use of specific thresholds may mask some associations.
165

  Sensitivity 

analysis found the same association for ischemic stroke as for both stroke types combined.
165

  

Similarly to the association between CHF and QT, researchers hypothesize that QT is 

actually marking subclinical atherosclerosis, which is responsible for the association between 

QT and stroke. 

F.5. Mortality 

CVD is the number one cause of death worldwide.
181

  The relationship between ECG 

traits and mortality has been extensively studied and both QT and QRS prolongation have 

been associated with CVD and all-cause mortality (Table 9).  This relationship generally falls 

around a 1.5-3-fold increase in the risk of death with a prolonged QT or QRS interval, 

although modest variation by heart rate correction method has been observed.
184, 185

  It is also 

unclear if there is a difference in associated risk in men versus women.
184, 186

  However, the 

relationship between QT, QRS, and mortality has been broadly studied and, while most 

studies have been conducted in white populations, some work has been done in blacks,
20, 158, 

177, 185
 Hispanics,

185
 and American Indians,

157
 suggesting that the association generalizes 

across race/ethnicities.  Finally, a recent meta-analysis of the extensive literature on the 

association between QT and mortality and found that prolonged QT was associated with a 

1.35-fold increase in risk (95% CI: 1.24-1.46) of all-cause mortality and a 1.51-fold increase 

in risk (95% CI: 1.29-1.78) of CVD mortality.  However, it is worth noting that, as is 
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evidenced in Table 9, there is no single definition for prolonged QT or for the reference 

category used by these studies and, as mentioned above in regards to stroke, the relationship 

is likely more continuous than indicated with the use of thresholds. 

QT Interval Genetics 

As described above, many genes are involved in the electrical conduction system of the 

heart.  These include the many genes in the gene families encoding the multitude of different 

ion channels involved in cardiac conduction (SCN, CACN, and KCN gene families) as well 

as numerous other genes or gene regions (loci) which have been implicated in cardiac 

conduction.  In many cases, the genes in addition to ion channels have been associated with 

measures of cardiac conduction but their function remains unknown.   

A. Heritability 

 The QT interval is heavily influenced by an individual’s genetic code.  Broadly, a 

trait’s heritability takes into account both Mendelian inheritance patterns (i.e. dominant, 

recessive, etc.) and the more complex modes of inheritance, most commonly represented as 

additive effects.  While it is difficult to measure a broad sense of heritability, population-

specific heritability (h
2
), estimated using only genetic effects which are additive, can be 

measured, which is interpreted as the proportion of the inter-individual variability of a 

particular phenotype, or trait, which is determined by genetics.  For QT, estimates indicate 

that between a quarter and a half of the phenotypic variation is explained by genetics, which 

represents a moderately strong genetic influence.
24, 26, 28, 131, 187-190

  Given the known forms of 

congenital LQTS which are caused by dominant, loss-of-function mutations and are therefore 

not accounted for in the above h
2
 estimates, it can therefore be expected that the actual broad 

heritability of QT is larger than 25-50%.   
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Table 9.  Review of 11 Studies of QT Prolongation and All-Cause or CVD Mortality Risk 

Author Year N Race 

Prolonged 

(ms) 

Reference 

(ms) 

Outcome 

(Mortality) 

HR 

(95% CI) 

Algra
191

 1991 6,693 White ≥440 <440 All-Cause 2.1 

(1.4-3.1) 

de Bruyne
184

 1999 5,241 White >446
a 

>437
b 

<418
a
 

<406
b
 

All-Cause 1.8 

(1.3-2.4) 

      CVD 1.7 

(1.0-2.7) 

Dekker
27 

2004 14,548 

 

27% Black 

73% White 

>454
a
 

>440
b 

<417
a
 

<403
b
 

All-Cause 2.28 

(1.73-3.00) 

      CVD 3.91 

(2.40-6.37) 

Elming
192

 1998 3,455 White ≥440 310-380 All-Cause 1.89 

(1.04-3.37) 

      CVD 3.31 

(1.04-9.91) 

Hage
155 

2010 280 White ≥460
a
 

≥450
b
 

<460
a
 

<450
b
 

All-Cause 1.008 

(1.001-1.014) 

Nilsson
193

 2006 433 White ≥430 <430 All-Cause 2.4 

(1.5-3.7) 

Noseworthy
156

  2012 6,895 White >470
a
 

>450
b 

≤470
a
 

≤450
b 

All-Cause 1.21 

(0.88-1.66) 
      CVD 1.78 

(0.90-3.50) 

Okin
157 

2000 1,839 American 

Indian 

>460 ≤460 All-Cause 2.6 

(1.8-3.7) 

      CVD 2.3 

(1.2-4.6) 

Schillaci
179

  2006 2,110 White ≥450
a
 

≥440
b 

<450
a
 

<440
b 

CVD 2.05 

(1.03-4.37) 

Sohaib
161

 2008 3,596 White 1 SD (26 ms)
c
 All-Cause 1.13 

(1.05-1.22) 

      CVD 1.17 

(1.05-1.31) 

Zhang
185

 2011 7,828 9% Black 

4% Hispanic 

87% White 

≥439 401-421 All-Cause 2.03 

(1.46-2.81) 

     CVD 2.55 

(1.59-4.09) 

CI: Confidence interval; CVD: Cardiovascular disease; HR: Hazard ratio; ms: millisecond; N: Number of 

participants; QT: QT interval; SD: Standard deviation 

a. In female populations 

b. In male populations 

c. Linear regression used with ECG variable as continuous variable; HR reported for a unit increase 
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Several studies have attempted to better understand the heritability of QT.  

Dalageorgou et al., who found the heritability of QT to be upwards of 50%; 16% of the 

estimated heritability was explained by genetic factors unique to QT, while the remainder 

was explained by genetic factors which were also associated with resting heart rate, a 

relationship which was also mimicked in the environmental determinants of QT (Figure 8).
187

  

Yang et al. determined the amount of the variance which was explained by common single 

nucleotide polymorphisms (SNPs) and found a lower heritability estimate for QT (h
2
 = 21%) 

using only common variants.
189

  They also evaluated heritability by chromosomes and found 

that the heritability estimates for QT explained by each chromosome were proportional to 

both the length of the individual chromosome and the length of the genes on the 

chromosome.
189

  Furthermore, Yang and colleagues found that a substantial portion of the 

21% heritability they found was explained by intergenic variants (7.5%), with the remainder 

Adapted from Dalageorgou 2008
190

 

LogHR refers to the logarithmic transformation of resting heart rate 

Figure 8.  Sources of Variance in QT Interval 
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explained by genic variants (13.5%).
189

    Researchers have also sought to understand the 

heritability of not just QT but also its component parts.  Two studies of twins found 

heritability estimates between 40-50% for QRS.
26, 190

  A more recent study by Newton-Cheh 

et al. found the heritability of JT to be 25%.
28

  Combined, these findings suggest that QT and 

its component parts are strong candidates for genetic study and that researchers are likely to 

find genetic variants influencing QT in both the coding and noncoding regions of the human 

genome.  

B. Early Studies 

Early work in genetics focused on two research strategies.  Monogenic diseases, 

which often followed a Mendelian mode of inheritance (i.e. dominant, recessive), were 

studied using segregation and linkage analysis.
194

  In relation to QT, these included 

congenital long and short QT syndromes.  The second strategy used family and twin studies 

that were not ascertained for Mendelian diseases to identify genes associated with complex 

diseases and traits, again using segregation and linkage analysis methods.  These early 

studies were successful in identifying several highly associated regions but struggled to 

replicate findings across studies and failed to explain much of the heritability observed in the 

above studies. 

B.1. Congenital Long and Short QT Syndrome 

As stated above, congenital long QT syndrome was first described by Jervell and 

Lange-Nielsen in 1957.
132

  However, it wasn’t until 1999 that the first case of congenital 

short QT syndrome (SQTS) was described in humans.
195 

 With both LQTS and SQTS, 

researchers have since identified numerous genetic mutations believed to cause the two 

disorders, almost all in gene encoding cardiac ion channels (Table 10).  Overall, hundreds of 
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distinct rare mutations have been linked to congenital LQTS within the six ion channel genes 

associated with the disorder.
29

   

 In addition to rare mutations in ion channels, a single mutation in ANK2, which 

encodes ankyrin B, a scaffolding protein, has been linked to LQTS, highlighting the role of 

non-ion channel genes in QT duration.
196

  Ankyrin B influences the functional expression of 

both ion channels and transporter proteins.
29

   

Table 10.  Genes Associated With Congenital Forms of Long and Short QT Syndrome 

Disease Subtype Chromosome Gene Protein Protein Function 

Inheritance 

Pattern 

LQTS      

    LQT1 11p15 KCNQ1 KvLQT1 (IKs) IKs channel (α subunit) AD 

    LQT2 7q35 KCNH2 HERG (IKr) IKr channel (α subunit) AD 

    LQT3 3p21 SCN5A Na Channel INa channel AD 

    LQT4 4q25 ANK2 Ankyrin B Ankyrin AD 

    LQT5 21q22 KCNE1 MinK (IKs) IKs channel (β subunit) AD 

    LQT6 21q22 KCNE2 MiRP1 (IKr) IKr channel (β subunit) AD 

    LQT7 17 KCNJ2 IK1 IK1 channel (α subunit) AD 

    LQT-JLN1 11p15 KCNQ1 KvLQT1 (IKs) IKs channel (α subunit) AR 

    LQT-JLN2 21q22 KCNE1 MinK (IKs) IKs channel (β subunit) AR 

SQTS      

    SQTS 7 KCNH2 HERG (IKr) IKr channel (α subunit) AD 

    SQTS 11 KCNQ1 KvLQT1 (IKs) IKs channel (α subunit) AD 

Adapted from Shah 2005
36

 and Zipes 2004
61 

AD, Autosomal dominant; AR, Autosomal recessive 

 

 

 SQTS is similarly associated with numerous ion channel genes.  The first to be 

identified was KCNH2 (also known as HERG), where Brugada et al. identified two missense 

mutations, both of which change the 588
th

 amino acid in the HERG protein from an 

asparagine (neutrally charged) to a lysine (positively charged), causing a substantial increase 

in IKr.
197

  Additionally, five more genes have been associated with SQTS, beyond those 

described in Table 10, when patients with both SQTS and Brugada syndrome phenotypes are 

studied.
29

  Brugada syndrome is another disorder that is characterized by ECG abnormalities, 

in this case elevation of the ST segment.  The five genes include one potassium ion channel 

gene (KCNJ2) and three calcium channel genes (CACNA1C, CACNB2B, CACNA2D1).
29, 198-
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200
  In total, there have been ten genes associated with congenital forms of LQTS and SQTS 

and they further enhance the evidence for ion channels, particularly potassium channels, 

involvement in prolonging QT.  

B.2. Family/Twin Studies 

While research in families with LQTS or SQTS worked in identifying the genes 

associated with the rare congenital forms of the disorders, they did not establish if the same 

genes, or others, influenced QT variability on a population level.  To determine if the same 

genes were involved, early research on QT used linkage analysis in twin and family studies 

taken from populations without congenital LQTS.  These linkage studies often focused on 

regions of the genome harboring genes already associated with the congenital form of LQTS.  

One of the first studies to successfully link a LQTS gene to QT duration in a population not 

ascertained for LQTS or SQTS was conducted by Busjahn and colleagues in 1999.  Busjahn 

et al. examined 166 pairs of twins and found strong evidence for linkage between QT and the 

genetic regions containing KCNQ1 and ANK2.
190

  Newton-Cheh et al. expanded on this work 

in 2005, using FHS families to conduct a genome-wide linkage scan in 10 centimorgan (cM) 

intervals.  A cM measures a genetic distance in which 0.01 crossover events are expected to 

occur each generation.  This family-based linkage study was a precursor to the later genome 

wide association studies discussed in the next section and allowed Newton-Cheh and 

colleagues to identify linkages between QT and three genetic regions including the region 

surrounding SCN5A on chromosome 3, a region on chromosome 9 at 104 cM, and a region 

on chromosome 15 at 102 cM.
28
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B.3. Candidate Gene Studies 

While linkage analyses of QT were successful in identifying many of the same 

regions that harbored genes associated with congenital LQTS, they only identified large 

regions of the genome.  Candidate gene studies, on the other hand, relied on genotyped SNPs 

and could evaluate specific genetic variants.  However, candidate gene studies required a 

priori hypotheses and were thus limited to examining a handful of SNPs from a limited 

number of loci underlying previously identified linkage peaks or loci associated with 

Mendelian forms of LQTS/SQTS.
201

  For example, Pfeufer et al. examined 174 SNPs from 

four candidate genes (KCN Q1, KCNH2, KCNE1, and KCNE2) and were able to identify 

one SNP in KCNQ1 and KCNE1 and two independent loci in KCNH2.
202

  However, the 

identified SNPs explained only 1% of the variance in QT.  Because of this, candidate gene 

studies, like linkage analyses, have not been successful in expanding our knowledge of the 

genetic underpinnings of ventricular conduction.  Instead, the field has moved into a GWAS 

era. 

C. Genome-Wide Association Studies 

The completion of the Human Genome Project (HGP), which sought to catalog human 

genetic variation by identifying all human genes and sequencing the three billion bases in the 

human genome, allowed researchers to conduct large-scale human genome studies such as 

GWAS.
203, 204

  Specifically, GWAS enabled researchers to test associations between complex 

traits of interest and thousands-to-millions of SNPs throughout the human genome, greatly 

increasing the coverage from linkage analyses and candidate gene studies.
8
  One reason for 

the success of GWAS is that they leverage an important property of SNPs in the human 

genome: linkage disequilibrium (LD).  LD describes the degree to which one allele, or 

variant, of a SNP is correlated with another SNP on the same chromosome within a 
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population.
205

  Two SNPs in high LD with each other tend to be inherited together and when 

the allele of one SNP is known, it can be used to infer the allele of the second SNP.  Because 

of LD, researchers do not need to genotype every SNP in the human genome to make 

inferences about large segments of the genome.  Instead, GWAS rely on indirect associations 

(Figure 9).  Using indirect association, researchers expect that in most cases, the specific 

SNP identified in a GWAS is not actually the causal SNP but is rather a marker of the causal 

SNP, with which it is in high LD.  Because GWAS can be conducted in large, unrelated 

populations and do not require a candidate region to be identified a priori, they have been 

highly successful in unraveling the genomic etiology of many complex diseases and 

identifying thousands of novel associations. 

ECG traits have been a popular phenotype for GWAS inquiry.  To date, there have 

been eleven GWAS performed for QT, two of which also evaluated QRS separately from 

QT, and another three which evaluated QRS but not for QT (Table 11).  The earliest of these 

was conducted by Arking and colleagues on approximately 4,000 European descent 

individuals and identified three genetic loci (regions) which were associated with QT, 

including NOS1AP, which has since become the top finding in many subsequent GWAS 

(Table 11, Appendix 1).
30

    However, Arking studied only the extremes of the QT 

Adapted from Bush 2012
201

 

Figure 9.  Indirect Associations in GWAS Using Linkage 

Disequilibrium 
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distribution.  Later GWAS which evaluated the whole QT distribution had even greater 

success in identifying and replicating novel associations which are now considered valid QT 

loci (Table 11).  Most GWAS of QT and QRS have been conducted in European descent 

populations; however, there have been three GWAS in Asian/Pacific Islander populations
31, 

206, 207
 and one in African descent populations.

208
  The results of these GWAS have confirmed 

the role of ion channel genes in ventricular conduction across global populations, as well as 

identified numerous novel associations. 

C.1. Ion Channel Genes 

Seven different ion channel genes have been associated with QT or QRS in at least 

one GWAS (Table 11).  The majority of the ion channel genes associated with QT are 

potassium channel genes (KCNE1, KCNH2, KCNJ2, KCNQ1).  All four of the potassium 

channel genes identified through GWAS were previously associated with congenital LQTS 

and SQTS (Table 10), but the identified variants are more common in the population than the 

rare variants associated with LQTS and SQTS.  Each of these four genes was identified by at 

least two different studies with approximately 10,000 participants or more.  Within the four 

potassium channel genes, fifteen different SNPs have been associated with QT in the five 

largest studies with ~10,000 participants or more, making it unclear what the causal SNP or 

SNPs are  (Appendix 1).  In addition to the potassium channel genes, two sodium channel 

genes have also been identified, SCN5A and SCN10A, two genes which are next to each other 

on the chromosome three but are not in strong LD.  However, while SCN5A has been 

associated with both QT and QRS,
35, 209, 210

 SCN10A has only been associated with QRS,
210, 

211
 suggesting that it may not be critical to the repolarization process but may be involved in 

depolarization.  While both sodium and potassium channels have been heavily implicated in 
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the duration of ventricular conduction, the evidence for calcium channels is far weaker.  Only 

one calcium channel gene (CACNA1D) has been associated with QRS and none have been 

associated with QT in a GWAS.
210

  Furthermore, the single calcium channel gene identified 

is not the same as the calcium channel genes potentially associated with congenital LQTS.
198, 

210
 

C.2. Novel Associations 

In addition to the ion channel genes, GWAS have identified a multitude of novel 

associations with QT.  In the five largest studies alone, more than 70 SNPs have been 

associated at more than 30 loci across the genome (Appendix 1).  The most consistently 

associated locus in GWAS of QT is NOS1AP.  Within this locus, rs12143842 is the most 

commonly identified SNP.  Six of the eleven GWAS of QT have found an association 

between rs12143842 and QT, with effect sizes near 3 ms.
31, 33-35, 208, 209

  This association has 

also undergone functional characterization.  Kapoor et al. examined rs12143842 as well as 

all SNPs in high LD with it and found that rs7539120 is the most likely functional variant 

underlying this association, as the T allele of rs7539120 increases expression of NOS1AP and 

that increased NOS1AP expression does alter cardiac electrophysiology, potentially through 

the propagation of the electrical current rather than directly through the depolarization and 

repolarization currents.
214

 

In addition to NOS1AP, other notable loci associated with QT are listed in Table 11.  

Many of these loci have been associated not just with QT but with other measures of cardiac 

conduction.  For example, in addition to its association with QT and QRS, TBX5 has also 

been associated with the PR interval, as have CAV1, SLC8A1, SCN5A, and SCN10A.
214-217

  

Furthermore, PLN has also been associated with left ventricular structure and is known to   
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Table 11.  Summary Results of QT and QRS Genome-Wide Association Studies 

Author, Year 

ECG 

Trait(s) Race N Populations 

Notable Results 

Ion 

Channel 

Genes 

Novel 

Associations 

Arking, 2006
37 

QT EU 3,996 FHS, KORA  NOS1AP 

Newton-Cheh, 2007
212

 QT EU 1,345 FHS  NOS1AP 

Marroni, 2009
32

 QT EU 2,325 EUROSPAN  NOS1AP 

Newton-Cheh, 2009
33

 QT EU 13,685 CHS, FHS, RS KCNH2 

KCNQ1 

SCN5A 

LIG3 

LITAF 

NDRG4 

NOS1AP 

PLN 

Nolte, 2009
34

 QT EU 3,558 BRIGHT, DCCT/EDIC, 

TwinsUK 

 NOS1AP 

PLN 

Pfeufer, 2009
35

 QT EU 15,842 ARIC, KORA, 

SardiNIA, GenNOVA, 

HNR 

KCNH2 

KCNJ2 

KCNQ1 

SCN5A 

ATP1B1 

LITAF 

NDRG4 

NOS1AP 

PLN 

Smith, 2009
207

 QRS AS 1,604 Kosrae   

Chambers, 2010
31

 QT 

QRS 

AS 6,543 London Life Sciences 

on the Indian 

Subcontinent 

KCNH2 

KCNJ2 

SCN5A 

SCN10A 

ATP1B1 

LITAF 

NOS1AP 

PLN 

Holm, 2010
213

 QT 

QRS 

EU 9,860 Icelandic Cohort KCNE1 

KCNH2 

KCNQ1 

ATP1B1 

LITAF 

NDRG4 

TBX5 

Sotoodehnia, 2010
210

 QRS EU 40,407 CHARGE CACNA1

D 

SCN10A 

SCN5A  

PLN  

TBX5 

Kim, 2012
206

 QT AS 6,805 KARE KCNH2 

KCNQ1 

SCN5A 

NDRG4 

NOS1AP 

PLN 

SLC8A1 

Smith, 2012
208

 QT AA 12,097 COGENT, CARe, WHI  ATP1B1 

NOS1AP 

SLC8A1 

Ritchie, 2013
211

 QRS EU 5,272 eMERGE SCN5A 

SCN10A 

 

Arking, 2014
209

 QT EU 76,061 QT-IGC KCNE1 

KCNH2 

KCNJ2 

KCNQ1 

SCN5A 

ATP1B1 

CAV1  

LIG3  

LITAF 

NDRG4 

NOS1AP 

PLN  

SLC8A1 

AA, African descent population; ARIC, Atherosclerosis Risk in Communities; AS, Asian descent 

population; BRIGHT, British Genetics of Hypertension; CARe, Candidate-gene Association Resource; 

CHARGE, Cohorts for Heart and Aging Research in Genetic Epidemiology; CHS, Cardiovascular Health 

Study; COGENT, Continental Origins and Genetic Epidemiology Network; DCCT/EDIC, Diabetes Control 

and Complications Trial/Epidemiology of Diabetes Interventions and Complications; eMERGE, Electronic 

Medical Records and Genomics; EU, European descent population; EUROSPAN, European Special 
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Population Research Network; FHS, Framingham Heart Study; GenNOVA, EURAC-Institute for Genetic 

Medicine; HNR, Heinz Nixdorf Recall Study; KARE, Korea Association Resource; KORA,  Cooperative 

Health Research in the Region of Agusburg; N, Number of study participants; QT-IGC, QT Interval-

International GWAS Consortium; RS, Rotterdam Study; SardiNIA, Progenia for the Sardinian public; 

TwinsUK, Twin Registry of the United Kingdom; WHI, Women’s Health Initiative 

affect rates of cardiac contraction in mice.
34, 218

  Together, these results suggest that 

ventricular conduction is influenced not just by the ion channels directly involved in 

ventricular depolarization and repolarization, but also by many other factors broadly involved 

in overall cardiac electrophysiology.  This emphasizes the potential for GWAS to identify 

novel biology underlying complex traits. 

C.3. Replication in Multi-Ethnic Populations 

As previously mentioned, most GWAS to date have been conducted in population of 

European descent.  However, there has been some effort to generalize the results from 

European descent populations (EU) to multi-ethnic populations.  In particular, results from 

the NOS1AP locus have been generalized to African descent (AA), Asian descent (AS), 

American Indian, and Hispanic/Latino populations (HL).
219-221

  Furthermore, SNPs from 

NDRG4, KCNE1, SCN5A, SCN10A, and KCNH2 have been generalized to AA populations 

for QT and QRS.
220, 222

  Additionally, the following loci have been generalized to American 

Indian populations: ATP1B1, SCN5A, PLN, KCNH2, KCNQ1, LITAF, and NDRG4.
220

  Only 

four additional loci have been generalized to HLs: ATP1B1, KCNH2, LITAF, and NDRG4.
220

  

However, global genetic architecture varies by race/ethnic group, with EU populations 

having the largest regions of LD and AA populations having the smallest regions of LD.
223

  

Given the underlying differences in LD patterns between different ancestral populations, it is 

not surprising that in many cases, the index, or most highly associated, SNP in EU 

populations is not associated with QT in multi-ethnic populations or there is a better marker 

of the signal in these populations.
224

  For example, a fine mapping study of QT found that of 
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the six loci which generalized to the AA, four had different index signals in the AA 

populations than the one which had been previously identified in EU populations and for two 

of these four, the index signal identified in EU populations was not significantly associated 

with QT.
225

  Furthermore, the SLC8A1 locus was not identified in EU populations but has 

been identified and replicated in AS populations for not only QT but also other ECG 

metrics.
206, 215, 226

  This illustrates why it is imperative to expand genetic studies beyond EU 

populations and include a diverse range of populations. 

D. Gene-Environment Studies 

Several lines of evidence suggest that environmental influences, including potassium 

levels, moderate the genetic associations with QT.  Two family studies of congenital LQTS 

identified two different mutations in the KCNQ1 gene, which is mutated in LQT1 patients, 

both of which are only identified in patients presenting with hypokalemia at the time of their 

ECG.
227, 228

  Furthermore, a recent study in AAs identified a mutation in SCN5A for which 

hypokalemia can moderate its association.
229

  Further evidence for the potential role of gene-

environment (GxE) interactions in QT is provided by the concept of “missing heritability.”  

While GWAS have identified a multitude of genetic variants associated with QT, they only 

explain 10% of the variance in QT.
209

  One common hypothesis for this “missing 

heritability” is GxE interactions.
230

  However, GxE studies require a much greater sample 

size to achieve sufficient power to detect associations and for this reason, there have been 

few well-powered GxE studies of QT.  To successfully identify GxE interactions, studies 

must often combine into large consortia, as is proposed in this work, to achieve the sample 

sizes required to detect GxE associations.  Such further work in GxE studies could help 

illuminate the underlying biology of the missing heritability of QT. 
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Thiazide Diuretics 

Thiazide diuretics are a promising candidate for GxE inquiry in QT, as this class of 

medications has been associated with QT prolongation (Section Thiazide-Induced QT 

Prolongation).  Briefly, thiazide and thiazide-like diuretics are members of a class of 

pharmaceuticals which increase renal excretion of sodium and water.  Thiazides were first 

released in 1957 as an antihypertensive and have since become a critical drug in hypertension 

treatment.
40, 231

  Thiazide and thiazide-like diuretics are distinguished by their molecular 

structure (Figure 10).  Thiazides are derived from the bezothiadiazine core while thiazide-

like diuretics are derived from sulfonamide.
40

  Thiazides and thiazide-like medications are 

commonly considered together, as they have a similar mechanism of action.  They will be 

referred to jointly as thiazides for the remainder of this proposal.  Below, I will examine the 

Adapted from Tamargo 2014
47

 

Panel A: Thiazide diuretics with the characteristic 1,2,4-benzothiadiazine-1,1-dioxide   

Panel B: Thiazide-like diuretics with the sulfonamide group but not the benzothiadiazide group 

Figure 10.  Molecular Structure of Thiazide and Thiazide-Like Diuretics 
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pharmacology of thiazides and the association between thiazides and QT. 

A. Pharmacologic Characteristics 

Thiazide diuretics increase the excretion of sodium by inhibiting the reabsorption of 

Na
+
 in the kidneys.  Thiazides are actively excreted from the proximal tubule of the renal 

nephron from which they then move to block the electroneutral Na
+
-Cl

-
 cotransporter (NCC) 

on the apical membrane of the distal convoluted tubule (DCT) of the renal nephron (Figure 

11).
40

  The NCC is encoded by SLC12A3 from the SLC family of genes.
40, 66

  At the NCC, 

Na
+
 moves down its concentration gradient using energy produced by the Na

+
/K

+
-ATPase on 

the basolateral membrane of the DCT.  When Na
+
 absorption is inhibited, resulting in an 

increased delivery of Na
+
 to the DCT, K

+
 excretion is also increased, which can lead to 

hypokalemia.  An increase in Mg
++

 excretion, which can result in hypomagnesemia, is also 

seen with thiazide use but the mechanism underlying this phenomenon is not well understood 

but may result from a downregulation of the transient receptor potential cation channels on 

the apical membrane of the DCT, encoded by TRPM6.
40

  Conversely, thiazide use increases 

Adapted from Tamargo 2014
47 

 

Figure 11.  Transport Mechanisms of the Distal 

Convoluted Tubule 
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Ca
++

 reabsorption, thereby reducing calcium excretion.  When water and sodium excretion is 

increased with thiazide use, the contraction of the extracellular fluid volume triggers an 

increase in sodium reabsorption in the proximal tubules, which also causes passive Ca
++

 

transport.  Thiazides also stimulate Ca
++

 reabsorption in the DCT through the basolateral 

Na
+
/Ca

++
 exchanger (NCX1) and the Ca

++
-ATPase channel (PMCA1b).

40
   

B. Indications of Use 

Thiazides are most commonly used to treat hypertension and are effective in lowering 

blood pressure (BP) in hypertensive individuals without lowering BP in normotensive 

individuals.
40

  The “Seventh Report of the Joint National Committee on Prevention, 

Detection, Evaluation, and Treatment of High Blood Pressure” (JNC 7) recommend thiazide 

diuretics as the first choice medication, either as monotherapy or as part of a combination 

therapy, in the treatment of hypertension.
232

  Thiazides are also used to treat edema, or the 

accumulation of fluid in the body cavities, in patients with heart failure, although usually 

only in combination with a loop diuretic.
233

  Similarly, thiazides are used to treat edema 

associated with liver cirrhosis and renal therapy.
234

  Thiazides have also been found effective 

in treating osteoporosis, likely due to its effects on calcium reasbsorption.
235, 236

  The same 

mechanism leads to the usage of thiazides to treat calcium-based kidney stones.
237

 

B.1.  Contraindications 

Thiazides are contraindicated in patients with anuria, renal failure, an allergy to 

thiazides or other sulfonamide drugs, or hepatic coma.
234

  Thiazides are also contraindicated 

if BP control worsens in patients with chronic kidney disease that progresses to stage 4 or 5.  

Pregnant women should also avoid thiazides.  Furthermore, patients with impaired liver 

function, hypokalemia, hyponatremia, hyperuricemia, hypercalcemia, glucose intolerance, or 

diabetes should be closely monitored while using thiazides to prevent adverse outcomes.
40
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C.  Prevalence 

 Thiazide diuretics are an increasingly common antihypertensive therapy.  Over a 

quarter of the hypertensive population in the U.S. (1 in 3 U.S. adults) uses a thiazide diuretic, 

amounting to 13% of the total U.S. EU population, 10% of the HL population, and 23% of 

the AA population.
36, 37, 238

  The use of thiazides increased from 2001 to 2010, with 22% of 

hypertensive individuals using a thiazide in 2001 to almost 28% of hypertensives using a 

thiazide in 2010 (Table 12).
37

  The majority of those using a thiazide (>90%) were using it in 

conjunction with other drugs in polytherapy.
37

  Thiazide use is more common in females than 

males (32% and 23%, respectively).  These medications are also more commonly used by 

Blacks (34%) and least commonly by Hispanic populations (22%).  Of the different types of 

thiazide and thiazide-like diuretics, hydrochlorothiazide is the most commonly used (11% of 

the U.S. adult hypertensive population).
37, 40, 239

  However, despite the high prevalence of 

thiazide diuretic use, it is worth noting that adherence to thiazides is particularly low, with 

some of the lowest adherence rates among antihypertensive medications, with only 51% 

mean adherence, compared to 65% adherence to angiotensin receptor blockers, the drug class 

with the highest levels of adherence.
240, 241

  However, Smith et al. found that 

hydrochlorothiazide, the most commonly used thiazide, had good agreement between 

reported thiazide use and serum measurements of thiazides (kappa [degree of agreement 

beyond chance] = 0.62, 95% C.I.: 0.53-0.91).
57
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Table 12.  Prevalence of Thiazide Diuretic Use Among Hypertensive Adults Over Time in the United 

States 

Population 

2001-2002 

% (SE) 

2003-2004 

% (SE) 

2005-2006 

% (SE) 

2007-2008 

% (SE) 

2009-2010 

% (SE) 

P 

trend 

Overall 22.4 (2.1) 24.2 (1.4) 26.3 (1.9) 26.7 (1.8) 27.6 (1.3) 0.02 

Monotherapy NA 1.6 (0.4) 4.1 (0.6) 2.1 (0.5) 2.5 (0.4) 0.09 

Polytherapy 20.8 (1.9) 22.5 (1.4) 22.2 (1.7) 24.5 (1.6) 25.1 (1.3) 0.04 
       

Male 16.4 (2.1) 21.2 (2.0) 20.9 (2.4) 21.0 (1.9) 23.3 (1.4) 0.04 

Female 27.2 (2.1) 26.8 (1.7) 31.3 (2.1) 31.8 (2.0) 31.6 (2.1) 0.04 
       

Non-Hispanic White 23.3 (2.4) 23.8 (1.4) 26.6 (2.6) 27.4 (2.1) 27.4 (1.6) 0.07 

Non-Hispanic Black 26.0 (2.7) 29.0 (2.9) 32.0 (2.3) 30.7 (1.8) 34.2 (2.2) 0.02 

Mexican American 13.4 (3.2) 19.2 (2.8) 10.4 (2.8) 18.4 (2.0) 22.2 (2.4) 0.06 
Adapted from Gu 201244 

 

D.  Thiazide-Induced QT Prolongation 

Thiazide diuretic use has been linked to the development of QT prolongation and drug-

induced torsades de pointes, although the underlying mechanism of this association is not as 

well understood as that of many of the other QT prolonging drugs, making it an excellent 

candidate for pharmacogenomics inquiry.
38-40

  Both indapamide and hydrochlorothiazide are 

considered to have conditional risk of QT prolongation and TdP by the UAZ-CERT database 

but it is not well-established what the risk is conditional on.  Pharmacogenomics work can 

help elucidate what potential mechanisms are underlying the risk of QT prolongation and 

thiazide use, aiding in identification of those at highest risk of QT prolongation and TdP due 

to thiazide use. 

D.1. Pharmacoepidemiology 

Associations between thiazide diuretics, ECG abnormalities, and arrhythmogenic 

death was first reported in the 1980s,
242-245

 when Hollifield and Slaton found that patients 

taking hydrochlorothiazide were more likely to suffer SCD than patients not on a thiazide 

diuretic.
242

  The relationship between SCD and diuretic use was also reported by Hoes et al. 

and Cooper et al. in the 1990s.  While not restricted to thiazides, both studies found that the 

use of non-potassium sparing diuretics increased the risk of SCD: Cooper et al. found that 
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diuretics increased the risk of SCD 1.33-fold (95% CI: 1.05-1.69); Hoes et al. found an OR 

of 2.2 (95% CI: 1.1-4.6) if the diuretic was not taken with a beta blocker.
246, 247

  It was 

estimated that, in 1994, thiazide use was responsible for more than 10% of all SCD in the 

Netherlands, totaling 120 deaths.
248

  Furthermore, Siscovick and colleagues found that the 

relationship between cardiac arrest and thiazides was dose dependent.  A high dose (100 mg) 

was found to increase the risk of cardiac arrest compared to a low dose (25 mg) with an OR = 

3.6 (95% CI: 1.2-10.8).
249

  Together, these results suggested a link between thiazide use and 

SCD, a correlate of QT prolongation.   

 In addition to the link between thiazides and SCD, a link has also been found 

between thiazides and ECG abnormalities.  Hollifield and Slaton found that thiazide use was 

associated with an increased prevalence of premature ventricular contractions (PVCs) in the 

presence of exercise, which have been shown to precede TdP in cases of LQTS.
242, 250

  

Additionally, the Multiple Risk Factor Intervention Trial (MRFIT) identified an unexpected 

excess of CVD mortality, primarily sudden death, among hypertensive men with ECG 

abnormalities who received high-dose diuretic treatment (hydrochlorothiazide or 

chlorthalidone).
243

  Porthan et al. also found that hydrochlorothiazide use increased the 

length of the T wave component of the QT interval, which suggests an increase in the 

repolarization heterogeneity.
251

  Repolarization heterogeneity has been suggested as a marker 

of TdP development in the case of prolonged QT, indicating thiazide use may predispose 

individuals for fatal outcomes of QT prolongation.
251

   

The link between thiazides and prolonged QT has been specifically tested in several 

studies.  This was first shown by Struthers et al. who found that pretreatment with 

benzofluamethiazide was associated with prolongation of the QT interval in the presence of 
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adrenaline.
245

  However, it was not clear if prolonged QT was the result of the thiazide usage 

or adrenaline.  The Prevention of Atherosclerotic Complications with Ketanserin (PACK) 

trial was able to better separate the effects of the thiazide from that of ketanserin, the 

serotonin antagonist which was being tested in the trial, to get a clearer result.  The PACK 

trial found that, at randomization and prior to the introduction of ketanserin, patients who 

were taking a diuretic had a longer QT than those not on a diuretic by an average of 7 ms; 

when ketanserin was added, participants on a diuretic had a QT interval that was an average 

of 12 ms longer than those who were not taking a diuretic and just taking ketanserin alone.
244

  

Finally, Rautaharju et al. examined the association between thiazide usage and QT 

prolongation in a population of more than 4,000 men and women in the Cardiovascular 

Health Study (CHS).  They found that, after adjusting for the use of other QT prolonging 

agents, serum potassium levels, sex, gender, and other potential confounders, thiazide 

diuretic usage was associated with a significantly increased likelihood of QT-prolongation 

(OR = 1.73, 95% C.I.: 1.43-2.11).
252

 

Despite the above studies, there are still several areas of research that are lacking.  

For example, no studies to date have examined the relationship between thiazide use and QT 

prolongation in a large, population-based cohort.  Iribarren and colleagues did examine a 

single thiazide-like diuretic, indapamide, in a large cohort of almost 60,000 individuals and 

found indapamide increased QT by an average of 9.4 ms (95% C.I.: 4.9-14.0).
148

  However, 

no larger studies of additional thiazide class medications has been conducted for QT 

prolongation.  Furthermore, while both the study by Struthers and the PACK trial found that 

diuretic use was associated with an increased QT in the presence of other medications, few 

additional studies to date have specifically examined potential modifications of the thiazide-
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QT relationship.  Given the conditional nature of the thiazide-QT relationship, it is 

imperative to understand the conditions by which thiazides prolong QT, which calls for 

additional studies of potential modifiers, including genetics, which is the subject of this 

proposal. 

D.2. Proposed Mechanisms 

While thiazide diuretics interfere with cellular ion channels, the ion channels affected 

by thiazides have not yet been identified in cardiac conduction.  Therefore, it has been 

suggested the thiazide-induced QT prolongation is the result of the electrolyte imbalances 

induced by thiazide usage, primarily hypokalemia.  Potassium depletion is a well-known side 

effect of thiazides,
253-256

 and is also an established risk factor for QT prolongation and TdP, 

suggesting that QT prolongation may be caused by the thiazide-induced hypokalemia.
111

   

Further evidence supporting a potassium-mediated cause for QT prolongation in 

thiazide users comes from patients who suffer from Gitelman syndrome (GS).  GS is a 

familial hypokalemia-hypomagnesemia disorder affecting approximately 1 in 40,000 

individuals.
42

  Most cases of GS are caused by mutations in the SLC12A3 gene, which 

encodes the thiazide-sensitive NCC (Figure 11).
42

  Studies of patients with GS have found 

that QT is significantly prolonged in these patients and they are at higher risk for cardiac 

arrhythmias.
41, 257

 

However, there has been some evidence that thiazide diuretics interfere directly with 

cardiac conduction and that the mechanism of QT prolongation may not be solely through 

electrolyte levels.  For example, Lu et al. found that the thiazide-like diuretic agent 

indapamide inhibited the sodium currents in the heart, as well as two of the potassium 

currents directly involved in ventricular repolarization: the Ito (transient outward current), 
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involved in phase 1 of repolarization and the IKs (slow delayed rectifying current), involved 

in phase 3.
43

  Additionally, Fiset et al. demonstrated that the addition of indapamide to class 

III antiarrhythmic drugs, known QT prolonging medications, exacerbates the block of the IKs 

and can lead to excessive QT prolongation.
258

  While thiazides do not have as clear or strong 

direct effects on cardiac ion channels, these effects may still be significant enough to prolong 

ventricular conduction, especially when taken in combination with other QT prolonging 

agents. 

Pharmacogenomics 

Drug efficacy and safety are highly variable between individuals and this variability in 

drug response poses a significant problem in the effective treatment of disease.
2-4

  For 

example, as discussed above, many drug classes including thiazides can lead to QT 

prolongation but this potentially dangerous side effect does not occur in all individuals.  

However, it is often unclear what the underlying causes of this variability are.  Genetics are 

believed to play a major role in determining drug response.  Genetic variants are known to 

interfere in pharmacokinetic, or the relationship between drug dose and concentration, 

processes, which include absorption, distribution, metabolism, and excretion, as well as in 

pharmacodynamic, or the manifestation of drug action, processes, such as the interaction 

between the drug and drug targets.
61

  This has led to the field of pharmacogenomics, which 

studies gene-environment interactions relating to pharmaceuticals.   

 The most well-known example of applied pharmacogenomics is warfarin (a 

commonly used anticoagulant) dosing.
259

  Genetic variants identified in the CYP2C9 and 

VKORC1 explain up to 50% of the variability in dose response to warfarin.
259

  These two 

genes are responsible for metabolizing the pharmacologically active S-warfarin isomer and 

variants in these genes confer increased sensitivity to warfarin, resulting in a smaller 
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effective dose in patients with these variants.
7
  However, there have also been numerous 

other successful applications of pharmacogenomics research.  The FDA recommends genetic 

testing for AS populations before prescribing carbamazepine, an anticonvulsant, after a 

prospective trial found that variants in the HLA-B gene found on the Asian haplotype 

modified the risk of fatal toxic side effects.
7, 260

  The FDA also recommends screening for 

variants in the HLA-B gene before prescribing abacavir, an antiretroviral, after a randomized 

clinical trial showed that genetic screening significantly reduced cases of hypersensitivity.
259, 

261
  These examples illustrate the potential clinical significance of pharmacogenomics 

research. 

A. Pharmacogenomics of QT-Prolonging Drugs 

As drug-induced QT prolongation is a leading cause of withdrawal or restricted 

marketing of drugs, identifying the genetic component of diLQTS is a critical question for 

pharmacogenomics researchers.  There already exists a substantial body of research on this 

subject, although most studies have evaluated QT prolonging medications in aggregate rather 

than examining specific drug classes.  In other words, these studies evaluate populations 

taking any drug or combination of drugs that have been implicated in QT prolongation.  

Unsurprisingly, many of the genes involved in congenital LQTS have also been implicated in 

diLQTS.  In particular, KCNH2, KCNE1, KCNE2, KCNQ1, and SCN5A have been associated 

with diLQTS in multiple studies.
262-267

  A subset of the genetic variants associated with 

diLQTS within these five genes and their locations within the product protein can be seen in 

Figure 12.  The majority of variants identified are rare mutations (present in less than 1% of 

the population).
266, 268

  However, Kaab et al. identified a common polymorphism in KCNE1 

(rs1805128) which was associated with a high risk of diLQTS (OR=9.0, 95% CI: 3.5-

22.9).
264
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In addition to the genes involved in congenital LQTS, several other genes have been 

implicated in diLQTS.  Jamshidi and colleagues identified a common variant in NOS1AP 

(rs10800397), the top gene associated with QT in GWAS, which confers a three-fold 

increase in risk of diLQTS (OR=3.3, 95% CI: 1.0-10.8).
269

  A candidate gene analysis of 

antipsychotics and QT also identified NOS1AP as a modifier of diLQTS.
270

  In addition, two 

genes encoding cytochrome P450 enzymes, CYP2D6 and CYP3A4, enzymes involved in 

drug metabolism, have been associated with diLQTS.
263, 271

  Mutations in these cytochrome 

P450 enzymes can reduce the efficiency of drug metabolism, thus increasing the 

concentration of QT-prolonging medications in the heart and thus induce QT prolongation.
263

  

Additionally, two GWAS of the antipsychotic-QT association identified multiple genes in the 

SLC family of genes, including SLC22A23 and SLCO3A1.  While these findings support the 

Adapted from Aerssens 2004
263 

Mutations and Polymorphisms that have been associated with drug-induced LQTS are marked with blue 

dots and labeled 
 

Figure 12.  Structure of Ion Channel Proteins Involved in Drug-Induced Long QT Syndrome 
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role of genetics in determining those at risk of drug-induced QT prolongation, few loci have 

been replicated and studies have been underpowered.  Furthermore, the reported results are 

often imprecise and the field likely suffers from publication bias.  To confirm and expand on 

the above findings, larger GWAS of diLQTS are needed. 

B. Pharmacogenomics of Thiazide Diuretics 

Multiple genetic loci have been implicated and replicated in the antihypertensive 

response and risk of side effects of thiazide diuretics.  Unlike other genetic studies, 

pharmacogenomics work on antihypertensive response has been conducted in multiple racial 

groups, including EU, AA, and AS descent populations, and has been replicated across 

populations.  For example, genes involved in the renin-angiotensin-aldosterone system, 

including  have been implicated in all three populations, including ACE and CYP11B2, in 

which genetic variants can lead to a reduced blood pressure response in those take a 

thiazide.
272-274

  Additionally, multiple ligases and kinases involved in ion channels and ion 

handling have been identified in EU and AA populations, such as NEDD4L, PRKCA, WNK1, 

and WNK4.
274-276

  Finally, YEATS4, a gene believed to be involved in RNA transcription, has 

been associated with blood pressure response among thiazide users in two separate studies of 

both EU and AA populations.
277, 278

 

In addition to antihypertensive response, genetics has been implicated in the potential 

adverse drug reactions of thiazide diuretics.  In a study of 425 EU and 342 AA participants, 

Del-Aguila et al. identified two SNPs in AAs (rs12279250 and rs4319515) in the NELL1 

gene which were associated with fasting plasma triglyceride levels among thiazide users, for 

which hypertriglyceridemia is a known potential side effect.
279

  However, these results did 

not replicate in the EU cohort.  Additionally, hypokalemia, another side effect of thiazide 

use, has been shown to be modified by genes in the HEME pathway.
280

  Another study by 
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Vandell and colleagues identified a collection of genetic variants across five genetic loci 

which explained 11% of the variability in uric acid levels among AA thiazide users; a sixth 

region was associated with uric acid levels among an EU population of thiazide users which 

was not associated in AA populations.
281

  In each of these cases, the identified genetic loci 

have brought forth potentially new pathways involved in thiazide drug reactions but have 

rarely been replicated.  Additionally, many of these studies, as well as the studies of diLQTS 

in general, have often used a candidate gene approach to account for the fact that 

pharmacogenomic studies are often underpowered; however, as was previously discussed, 

candidate gene studies have not been successful in explaining the heritability of complex 

traits.  While the findings in the above pharmacogenomic studies demonstrate the need for 

further pharmacogenomic studies of thiazides and the variability in drug response, future 

work will need to be well-powered and consider genome-wide analyses.  

B.1. Thiazide Diuretics and QT Prolongation 

To date, one study of the pharmacogenomics of thiazides and QT in EU populations 

has been conducted.
282

  In this study, no SNPs reached the genome-wide significance 

threshold.  However, the study had several notable limitations.  The study was conducted 

with only cross-sectional data using many of the same study populations to be used in this 

proposal, despite the repeated ECG and medication measures available in many of the 

studies.  Additionally, the study only evaluated EU populations.  Furthermore, the analysis 

was significantly underpowered to detect drug-gene interaction effect sizes consistent with 

those observed in QT main effect GWAS studies.  However, the authors noted that by 

including the repeat measures, such as is suggested in this proposal, the power to detect even 

small interaction effects would be greater than 80%.  This suggests that the study proposed 
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here, which will incorporate both the repeated measures as well as additional populations and 

race/ethnic groups, has the potential to identify genetic variants which modify the potential of 

thiazides to prolong QT.  Additionally, this work failed to consider the effects of prevalent 

user bias, a form of selection bias known to impact pharmacoepidemiologic studies, on study 

results.  The work proposed here will consider the effects of this bias and interpret results 

accordingly.  

Bias in Pharmacoepidemiologic and Pharmacogenomic Studies 

It is well known that pharmacoepidemiologic studies, which seek to understand both 

the use of the effects of drugs in populations, are subject to a multitude of biases.
283

  

However, it is unclear if pharmacogenomic studies are similarly susceptible.  In an era where 

prescription drug use continues to rise and variability in drug response posing a growing 

public health burden, pharmacoepidemiologic and pharmacogenomic studies continue to be 

important for understanding the effects of these massive population exposures.  However, it 

is critical to consider the potential effects of bias on these studies.   

Randomized controlled trials (RCTs) are considered the gold standard of 

pharmacoepidemiologic research although an increasing number of studies are conducted in 

observational settings.
45, 48, 284

  Observational settings often provide larger sample sizes, 

greater statistical power, and better generalization to a broader population than RCTs.
284

  

Unfortunately, observational studies also are subject to many biases, such as selection bias.
284

  

Particularly concerning for pharmacoepidemiology studies is a form of selection bias 

sometimes called prevalent user bias, reflecting the potential enrichment for prevalent, long-

term drug users who are less likely to have experienced an ADR when compared to prior 

users.  Furthermore, prevalent user bias results from depletion of susceptibles and differential 

loss of follow-up, as participants at highest risk for an ADR are not observed at the measured 
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time points as they have died or dropped out.
284, 285

  Additionally, exposure misclassification, 

in which short-term users have a lower chance of being seen while on therapy is another 

concern leading to the enrichment of prevalent users; in cases of ADRs, participants may be 

taken off the medication soon after therapy initiation and thus the outcome of interest is not 

seen in the study and the participants are classified as non-users.  These issues result in the 

potential for bias in observational studies of pharmaceutical usage.   

Pharmacogenomic studies are similarly conducted in observational settings but GxE 

studies which, unlike pharmacoepidemiologic studies, incorporate a third parameter, the 

SNP.  Pharmacogenomic studies are different than studies of main effects or of non-genetic 

modifiers, as the modifying variable, the SNP, is assigned at conception and therefore is not 

affected by subsequent exposures, a difference which is paramount in determining the effects 

of bias, and in particular, selection bias, in pharmacogenomics studies.  Supporting this 

assertion is prior research that has shown that interaction effects in genetic studies do not 

suffer from selection biases when the genotype does not influence selection other than 

through an association with the disease or the second exposure.
286-288

  In other words, there is 

no bias in cases where the selection proportions are the same between populations with the 

same genotypes even if they differ between categories of disease or environmental exposure 

status, in this case, pharmaceutical use.   

Another scenario distinguishing pharmacoepidemiologic studies from 

pharmacogenomic studies is presented by a previous study that evaluated the influence of 

confounding by contraindication.
47

  Confounding by contraindication is a form of bias 

present when an outside factor is associated with an avoidance of treatment and with the 

outcome of interest and is a common threat to internal validity in pharmacoepidemiology.
47, 
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48
  However, a pharmacogenomic simulation study found that, while there may be modest 

bias present in the interaction term when very large SNP main effects were simulated, the 

amount of bias varies by study design and the magnitude of the bias may be negligible given 

the size of effects observed in published QT GWAS.
47

  This suggests that when conducting 

pharmacogenomic studies, researchers must consider the potential effects of bias under 

different scenarios and then, if this bias is not negligible, interpret results accordingly. 

Multi-Ethnic Populations 

Minority populations are historically underrepresented in clinical and health 

research.
289-291

  Because of the lack of research in multi-ethnic populations, many health 

policies and recommendations which were developed in EU populations do not account for 

differences in disease burden and etiology found in multi-ethnic populations.
292

  Minority 

populations hold a disproportionate burden of negative health outcomes compared to the EU 

populations which represent the majority of healthcare research to date.
293, 294

  In particular, 

AAs have a higher risk of diLQTS,
295

 a higher risk of mortality due to QT prolongation,
296

 

and a higher prevalence of thiazide use compared to other race/ethnic groups.
37

   

As has been previously stated, underrepresentation of minority groups is particularly 

prominent in genomics research, where the majority of participants included in genetic 

studies to date are of EU descent.
297

  This poses multiple problems, which have been briefly 

described in the previous sections.  First among these is the limited relevance of current 

research to medical genomics and pharmacogenomics in populations of non-EU descent.
298

  

As of 2014, there are over 130 pharmaceuticals with FDA-approved genetic information on 

their labels.
299

  However, the research behind the genetic information included on these 

labels has been predominantly conducted in EU populations.  The lack of representation of 

multi-ethnic populations is particularly concerning in pharmacogenomics, as Ramos and 
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colleagues have demonstrated that the underlying genetic architecture of multi-ethnic 

populations, including genetic variants associated with drug absorption, distribution, 

metabolism, and excretion, varies widely, indicating that it is inadequate to extrapolate 

genetic findings from EU populations to diverse ancestral populations.
300

  Furthermore, in the 

pharmacogenomics of warfarin dosing, Perera et al. found a genetic variant, rs12777823, in 

the CYP2C18 gene which is associated with warfarin dosing and is population-specific, in 

this case to AA populations.
15

  According to this study, failing to account for this SNP 

accounts for 21% of the dose variability explained by the current warfarin dosing formula 

and results in higher doses than needed in AA populations with an A allele at rs12777823.
15

  

These findings emphasize the need to include minority populations in future 

pharmacogenomics research.  The work proposed herein will make use of large AA and HL 

populations in addition to the EU populations in the participating cohorts, thus enabling this 

research to incorporate multi-ethnic populations from the onset.  

Public Health Significance 

Variable drug response poses a significant problem in the effective treatment of 

disease.
2-4

  Dose response and overall therapeutic response can vary between individuals and 

is influenced by a variety of factors, such as age, diet, smoking status, temporal trends, 

chemical exposures, drug-drug interactions, genetic variants, and drug-gene interactions.
2-4, 

301-313
  As of 2002, the FDA’s Adverse Event Reporting System, begun in 1969, had recorded 

2.3 million cases of adverse events.
314

  However, this number is likely low given the 

widespread under-reporting of ADRs.
170

  Efforts to correct for this under-reporting estimate 

that ADRs cause 2.2 million serious health events, 106,000 deaths, and account for 6-7% of 

all hospital admissions annually.
5, 315

  Pharmacogenomics research represents a promising 

step forward in both the progression of genetic knowledge from academic research to applied 
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public health and medical science and the potential to better understand the mechanisms of 

and reduce the burden of variable drug response.   

The potential public health and clinical applications of this pharmacogenomics work 

are numerous.  Thiazides are commonly used pharmaceuticals, used by almost a fifth of the 

U.S. population, providing a broad potential for impact of any findings from this study.
37

  

Furthermore, genetic information has the potential to be incorporated into drug selection and 

dosing in a clinical setting, as has been done with warfarin dosing
316

 or clopidogrel 

prescribing.
317

  Furthermore, pharmacogenomics findings can be used to alter medication 

labels, or, in extreme cases, remove drugs from the market.
318, 319

  Understanding the 

pharmacogenomics of drug response can also provide insight into the mechanism of drug 

response, and consequently, ADRs, which can then be used to better understand the etiology 

of the disease or even to develop better, more effective medications.
17, 18

  As we come to 

understand more about the genetic underpinnings of human health, the possibility for 

personalized, genomic medicine moves ever closer and pharmacogenomics is on the leading 

edge of this potential. 
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CHAPTER 4: RESEARCH PLAN 

Overview 

This work will be conducted in two parts.  Specific Aim 1 will be a 

pharmacogenomics study of the thiazide-QT relationship.  Specific aim 1 will be conducted 

using extant cohort data from a collaboration between the Women’s Health Initiative (WHI), 

the Hispanic Community Health Study/Study of Latinos (SOL), and the Cohorts for Heart 

and Aging Research in Genetic Epidemiology (CHARGE) consortium’s pharmacogenomics 

working group (PWG).  All participating studies have extensive genotyping data and have 

detailed and, in many cases, repeated measurements across multiple time points on 

electrocardiograms (ECGs) and medication use.  In specific aim 2, a simulation study will be 

conducted to determine the effects of prevalent user bias on pharmacogenomics studies.  This 

simulation study will be conducted using published clinical and genome-wide association 

studies (GWAS) to inform specification of the relationship between the QT interval (QT), 

QT-prolonging medication use, and genotypes.   

Specific Aim 1 

Identify genetic variants that modify the association between thiazide diuretics and 

QT and its component parts (QRS complex [QRS]; JT interval [JT]) in European descent, 

African descent, and Hispanic populations.  

1. Classify thiazide diuretic exposure among all cohorts using medication 

inventories, which have been validated in cohort studies against physiologic 

measurements,
55

 pharmacy databases,
56

 and serum measurements.
57
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2. Conduct genome-wide, race-stratified analyses to identify significant interactions 

between genetic variants, thiazides, and QT and its component parts (QRS; JT), 

leveraging longitudinal data when possible.  Study and race/ethnic-stratified 

results will be combined across studies using fixed-effect, trans-ethnic, and cross-

phenotypic meta-analytic techniques (Ntotal=78,199).  

3. Characterize identified genetic variants using in silico functional characterization 

techniques including computer databases and pathway analysis. 

A. Study Populations 

This study will make use of fifteen separate population-based cohort studies (Table 

13).  All study participants from each participating study who have genotype data as well as 

ECG measurements and medication data will be eligible for inclusion in this study.  

Furthermore, all time points at which both ECG and medication data were measured will be 

eligible for inclusion in the analysis.  For distributions of pertinent population characteristics 

across all fifteen cohorts, see Table 13.   

A.1. Women’s Health Initiative 

The WHI is a population-based study consisted of two arms.
52

  A total of 161,808 

participants from 40 study centers were enrolled, 62,132 into the clinical trial arm and 93,676 

into the observational study.  All participants were female between the ages of 50 and 79 

years at enrollment, were postmenopausal, and did not suffer from alcoholism, drug 

dependency, mental illness, or dementia.  Participants were subsequently brought back for 

four additional visits at which ECGs and medication were measured. 
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Table 13.  Study Population Characteristics 

Characteristic WHI SOL 

 CHARGE 

AGES ARIC CHS FHS RS ERF 

Health 

2000 

Health 

ABC MESA PROSPER NEO JHS 

N, Total 161,808 16,479 5,764 15,792 5,888 14,518 14,926
 

1,503 8,028 3,075 8,313 5,804 6,673 5,301 

N, 

Genotyped+ECG 
20,395 12,456 2,587 11,132 3,856 3,168 7,196 1,503 2,124 2,802 8,313 4,556 

6,673 
1,962

1 

Baseline Visit 
93-98 09-11 02-06 87-89 

89-

90
2 

48-

53
3,4 

90-

93
5,6 02-05 00-01 97-98 00-02 97-99 

08-

12 
00-04 

Length of 

Follow-up (yrs) 
9 0

 
5 24 11

2 
60

3,4 
20

5,6 
0 0 10 10 0 0 9 

Mean Age (yrs) 64 46 77 54 72 55 65 48 50 74 62 75 56 55 

% Female 100 46 58 55 61 53 58 59 52 52 54 54 57 55 

Mean QT 401 415 406 398 414 414 399 398 389 413 412 414 NA 413 

% Thiazides 18 NA 24 12 21 3 3 2 7 11 13 26 NA 25 

% Race/Eth                

European Am 65 0 100 77 85 100 94 100 100 60 32 100 100 0 

African Am 24 0 0 23 15 0 0 0 0 40 33 0 0 100 

Hispanic 10 100 0 0 0 0 0 0 0 0 26 0 0 0 

Other 1 0 0 0 0 0 6 0 0 0 9 0 0 0 

AGES, Age, Gene/Environment Susceptibility – Reykjavik Study; ARIC, Atherosclerosis Risk in Communities; CHARGE, Cohorts for Heart and 

Aging Research in Genetic Epidemiology; CHS, Cardiovascular Health Study; ERF, Erasmus Rucphen Family Study; FHS, Framingham Heart Study; 

Health ABC, Health, Aging, Body, and Composition; JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; NEO, the Netherlands 

Epidemiology of Obesity; PROSPER, Prospective Study of Pravastatin in the Elderly at Risk; RS, Rotterdam Study; SOL, Hispanic Community 

Health Study/Study of Latinos; WHI, Women’s Health Initiative    
NA indicates that this data was available as of this proposal.  The final dissertation project will have these numbers available. 
1
Excludes overlap of participates who are also included in the ARIC cohort 

2
The CHS African American cohort (N=687) was recruited in 1992-93 and has a length of follow-up of 7 years (4 visits) 

3
The FHS Offspring cohort (N=5,124) was recruited in 1971-75 and has a length of follow-up of 34 years (8 visits) 

4
The FHS 3

rd
 Generation cohort (N=4,095) was recruited in 2002-05 and has a length of follow-up of 6 years (2 visits) 

5
The RS-II cohort (N=3,011) was recruited in 2000-01 and has a length of follow-up of 11 years (3 visits) 

6
The RS-III cohort (N=3,932) was recruited in 2006-08 and has a length of follow-up of 6 years (2 visits) 
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A.2. Hispanic Community Health Study/Study of Latinos 

The SOL study collected data on approximately 16,000 Hispanic individuals from 

four communities: Miami, Florida; the Bronx, New York; Chicago, Illinois; and San Diego, 

California.
53

  Participants were aged 18-74 years at baseline and were sampled from 

communities with large HL populations, targeting the following subgroups: Mexicans, 

Cubans, Puerto Ricans, Dominicans, Central Americans, and South Americans.  Active duty 

military personnel and those physically unable to attend clinic visits were deemed ineligible.  

To avoid a language barrier, exams were conducted in both English and Spanish. 

A.3. Cohorts for Heart and Aging Research in Genetic Epidemiology 

The CHARGE consortium was formed to facilitate genome-wide association studies, 

meta-analyses, and replication opportunities among large, well-phenotyped longitudinal 

cohort studies with genetic data.
54

  CHARGE has five founding cohorts but has since grown 

to include more than ten large cohort studies.  Analyses are conducted through working 

groups.  This project will fall under the auspices of the pharmacogenomics working group 

(PWG).  

Age, Gene/Environment Susceptibility – Reykjavik Study 

The Age, Gene/Environment Susceptibility – Reykjavík Study (AGES) is the follow-

up study to the Reykjavik study in Iceland.  The Reykjavik study was a longitudinal study 

conducted from 1967-94 of 30,795 participants born between 1907 and 1935.
320

  Participants 

were selected from a random sample of the Reykjavik population.  Between 2002-06, the 

AGES study recruited 5,764 participants from the surviving 11,549 members of the 

Reykjavik Study. 
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Atherosclerosis Risk in Communities Study 

The Atherosclerosis Risk in Communities Study (ARIC) is a population-based cohort 

study of 15,792 individuals from four communities: Forsyth County, North Carolina; 

Jackson, Mississippi; Minneapolis, Minnesota; and Washington County, Maryland.
321

  

Participants ranged in age from 45 to 64 years at baseline.  Recruitment was concentrated on 

EU and AA populations.  All individuals in the targeted age range residing in households 

identified through area sampling were considered eligible for study participation. 

Cardiovascular Health Study 

The Cardiovascular Health Study (CHS) collected data on 5,201 individuals sampled 

from Medicare eligibility lists from four communities: Forsyth County, North Carolina; 

Sacramento County, California; Washington County, Maryland; and Pittsburgh, 

Pennsylvania.
322

  Participants were 65 years or older at study entry.  In 1992-93, an 

additional 687 AA individuals were recruited.  Participants who were home-bound, receiving 

hospice care, or receiving radiation or chemotherapy treatment were excluded. 

Erasmus Rucphen Family Study 

The Erasmus Rucphen Family study (ERF) is part of the Genetic Research in Isolated 

Populations (GRIP) program in the southwest Netherlands.
323, 324

  The ERF identified twenty-

two families with a minimum of six children baptized in the community church between 

1850 and 1900 through detailed genealogical records.  All living descendants of these 

couples and their spouses were invited to take part in this study, for which 3,200 individuals 

participated between 2002 and 2005. 

  



 

73 

Framingham Heart Study 

The Framingham Heart Study (FHS) collected data on 5,209 participants aged 28 – 

62 from residents of Framingham, Massachusetts.
325-327

  In 1971, 5,214 additional 

participants were enrolled in the FHS Offspring Study, recruiting from children and spouses 

of children of the original cohort.  In 2002, 4,095 additional participants were recruited from 

the population of children from the offspring cohort and enrolled into the 3
rd

 Generation 

cohort. 

Health, Aging, Body and Composition 

The Health, Aging, Body and Composition (Health ABC) study is a prospective 

cohort study that recruited individuals aged 70 – 79 from Medicare enrollees in Pittsburgh, 

Pennsylvania and Memphis, Tennessee.
328

  Participants were excluded if they had difficulty 

performing basic daily activities, difficulty walking a quarter mile or climbing steps, or had a 

life-threatening illness. 

Health 2000 

The Health 2000 study is a population-based health examination survey carried out in 

Finland from 2000 to 2001.
329, 330

  The survey was conducted with a two-stage stratified 

cluster sample representative of the Finnish adult population 30 years of age or older.  The 

Health 2000 performed a comprehensive health examination including questionnaires, 

clinical measurements, and physical examinations on 8,028 individuals. 

Jackson Heart Study 

The Jackson Heart Study (JHS) collected data on 5,301 non-institutionalized AA 

individuals from Jackson, Mississippi, aged 35 – 84 years.
331

  Participants who were 

physically or mentally incompetent were excluded. 
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Multi-Ethnic Study of Atherosclerosis 

The Multi-Ethnic Study of Atherosclerosis (MESA) study collected data on 6,814 

participants aged 45 – 84 and free of clinical cardiovascular disease from six communities: 

Forsyth County, North Carolina; Northern Manhattan and the Bronx, New York; Baltimore 

County, Maryland; St. Paul, Minnesota; Chicago, Illinois; and Los Angeles County, 

California.
332

  Participants were recruited from a diverse range of ethnic backgrounds.  

Exams were conducted in English, Spanish, Cantonese, and Mandarin.  Individuals 

undergoing active cancer treatment, who were pregnant, weighted more than 300 pounds, or 

were in a nursing home were excluded. 

The Netherlands Epidemiology of Obesity Study 

The Netherlands Epidemiology of Obesity (NEO) study is a population-based, 

prospective cohort of 6,673 individuals from the greater Leiden area of the Netherlands.
333

  

Between 2008 and 2012, all individuals aged 45-65 from Leiderdorp, a municipality of 

Leiden, and individuals with a reported body mass index greater than 27 kg/m
2
 from the 

greater Leiden area were recruited, resulting in an oversampling of overweight (43%) and 

obese (45%) individuals.  Participants answered questionnaires and were administered 

physical and medical examinations at baseline examinations, including medical histories, 

medication inventories, blood sampling, and resting ECGs. 

Prospective Study of Pravastatin in the Elderly at Risk 

The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) study was a 

prospective, multicenter, randomized, placebo-controlled trial to assess whether treatment 

with pravastatin diminishes the risk of major vascular events in the elderly.
334, 335

  Between 

1997 and 1999, participants aged 70-82 years were screened and enrolled from Glasgow, 
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Scotland, Cork, Ireland, and Leiden, the Netherlands, resulting in a total cohort of 5, 804 

individuals. 

Rotterdam Study 

The Rotterdam Study (RS) recruited 7,893 subjects over the age of 55 from the 

Ommoord suburb of Rotterdam in the Netherlands for baseline examination.
336, 337

  In 2002, 

the RS-II recruited an additional 3,011 participants who were not eligible for the first round 

of the RS but had since turned 55 years of age or who had moved into the region since the 

start of the RS-I.  In 2006, an additional 3,932 participants were recruited into the RS-III.  

The RS-III recruited participants aged 45-54 years from the same base population as the 

previous RS recruitments.  

A.4. Exclusion Criteria 

Table 14.  Visit-Specific Exclusion Criteria 

Poor ECG Quality 

Atrial Fibrillation indicated on ECG 

Pacemaker Implantation 

2
nd

/3
rd

 Degree Atrioventricular Heart Block 

QRS > 120 ms 

Prevalent Heart Failure 

Pregnant 

Only study visits which measured both medication and ECGs will be considered for 

this analysis.  Individuals from the above studies will be excluded from this analysis based on 

the criteria listed in Table 14, which for studies with longitudinal data are visit-specific.  

Furthermore, individuals who did not consent to genetic analysis or who are not of EU, AA, 

or HL descent based on self-report or assessment of ancestry through principal component 

analysis will be excluded. 
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B. Outcome Assessment 

QT is measured, in milliseconds, using a standard 12-lead electrocardiogram (ECG).  

The 12-lead ECG involves the placement of electrodes on both arms, the left leg, and across 

the chest.  In each participating study, technicians recorded resting, supine or semi-

recumbent, standard 12-lead ECGs.  Studies used Marquette MAC 5000, MAC 12, or MAC 

PC (GE Healthcare, Milwaukee, Wisconsin, USA), or ACTA (EASOTE, Florence, Italy) 

machines.  Comparable procedures were used for preparing participants, placing electrodes, 

recording, transmitting, processing, and controlling quality of ECGs.  QT was measured 

electronically using one of the following programs: Marquette 12SL, MEANS, Burdick 

Eclips 850i, Digital calipers, or Health 2000 custom-made software.   

C. Exposure Assessment 

C.1. Medication Assessment 

Medication inventories were collected at examinations by each participating study 

except the RS on the same day as ECGs.  The RS assessment medication using pharmacy 

databases, recording all prescriptions filled less than or equal to 30 days before examination 

visits.  All other medication data was collected through a drug inventory.  The RS has 

validated this method of medication data collection against pharmacy databases, showing a 

94% concordance rate with pharmacy records.
56

  The CHS has also validated medication 

inventories against physiologic measurements
55

 and serum measurements.
57

  Medication 

inventories were either conducted during clinic visits or home interviews, varying by study.  

In both settings, medication data was recorded directly from medication containers, rather 

than through participant recall.  Recorded data included drug name, strength, and in some 

cases, dosing instructions.  Using recorded data and ingredient lists provided by drug 

companies, all participants will be classified as thiazide users or nonusers at each study visit.  
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Table 13 shows the prevalence of individuals taking a thiazide diuretic at a minimum of one 

study visit.  

C.2. Genotyping 

Each study conducted genome-wide genotyping independently prior to this study.  

WHI participants were genotyped through four sub-studies: GWAS of Treatment Response 

in Randomized Clinical Trials (GARNET); Modification of Particulate Matter-Mediated 

Arrhythmogenesis in Populations (MOPMAP); the SNP Health Association Resource 

(SHARe); and the WHI Memory Study (WHIMS).  The SOL study conducted genotyping 

using a custom array which included 109,571 ancestry informative markers.  See Table 15 

for a complete list of genotyping platforms using across all fourteen participating studies.  

All studies excluded SNPs which failed to meet Hardy-Weinberg equilibrium, had a MAF of 

less than 1%, or had a low call rate (<90-97%, varied by study).  To maximize genome 

coverage and comparisons across genotyping platforms, typed genotypes were used in each 

study to impute genotypes using HapMap2
338-341

 or 1000 Genomes
342, 343

 data. 

D. Data Analysis 

D.1. Genome-Wide Analysis 

Pharmacogenomic analyses will be conducted using a genome-wide analysis.  Each 

study will conduct race-stratified analyses with EU, AA, and HL populations for QT.  

Longitudinal data will be used whenever available and analyses will be conducted using a 

combination of linear regression, mixed effects models (MEM) and generalized estimating 

equations (GEE) depending on their study design and the availability of longitudinal data.  

All analyses will be adjusted for age (measured in years), sex, visit-specific RR  interval, 

visit specific QT altering medications defined using UAZ drug list (Table 6, Table 7), and  
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Table 15.  Genotyping Platforms 

Study Genotyping Array # of SNPs 

WHI   

GARNET Illumina HumanOmni1 Quad 1,051,295 

MOPMAP 
Affymetrix Genome-wide Human 

SNP Array 6.0 
934,940 

SHARe 
Affymetrix Genome-wide Human 

SNP Array 6.0 
934,940 

WHIMS Illumina HumanOmni Express 733,202 

SOL Illumina custom array 2,536,661 

CHARGE   

AGES Illumina 370 CNV 370,404 

ARIC 
Affymetrix Genome-wide Human 

SNP Array 6.0 
934,940 

CHS Illumina HumanOmni1 Quad 1,051,295 

FHS 
Multiple Affymetrix Mapping 

Arrays 
>262,264 

RS 
Illumina Infinium II HumanHap 

550 
555,352 

ERF Illumina 6K/318K/370K 374,496 

Health 2000 
Illumina Human610-Quad 

BeadChip 
601,273 

Health ABC Illumina 1M  1,049,348 

MESA 
Affymetrix Genome-wide Human 

SNP Array 6.0 
934,940 

PROSPER Illumina 660K 557,192 

NEO 
Illumina HumanCoreExome-

24v1_A Beadchip 
361,046 

JHS 
Affymetrix Genome-wide Human 

SNP Array 6.0 
934,940 

 

study specific measures of principal components of genetic ancestry,study site or region, and 

relatedness when appropriate. 

Cross-Sectional Studies 

Studies for which only one ECG/drug measure per participant is available will 

conduct linear regression using robust estimates of standard errors if using populations of 

unrelated individuals or MEM if using populations of related individuals.  Using the 

following model: 

𝐸[𝑌𝑖] =  𝛽0 + 𝛽𝐸𝐼𝑖 + 𝛽𝐺𝑆𝑁𝑃𝑖 + 𝛽𝐺:𝐸𝐼𝑖𝑆𝑁𝑃𝑖 + 𝛽4𝐶𝑖 
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where Yi is our outcome of interest (QT, QRS, or JT in ms) for the i
th

 participant, β0 is the 

intercept, Ii is an indicator for thiazide use, SNPi is the (dosage of the) genetic variant, and Ci 

is the vector of covariates.  The primary parameter of interest is βG:E, the multiplicative 

interaction term between genotype and thiazide use. 

Longitudinal Studies 

Studies for which there are two or more study visits measuring both ECG and 

medication use will use GEE models with independence working correlation if using 

populations of unrelated individuals or MEM if using populations of related individuals, in 

both cases using robust estimates of standard errors.  All data from as many visits as possible 

with be used within each study.  Using the following model: 

𝐸[𝑌𝑖𝑗] =  𝛽0 + 𝛽𝐸𝐼𝑖𝑗 + 𝛽𝐺𝑆𝑁𝑃𝑖 + 𝛽𝐺:𝐸𝐼𝑖𝑗𝑆𝑁𝑃𝑖 + 𝛽4𝐶𝑖𝑗 

where Yij is our outcome of interest (QT, QRS, or JT in ms) for the i
th

 participant at the j
th

 

timepoint, β0 is the intercept, Iij is an indicator for thiazide use, SNPi is the (dosage of the) 

genetic variant, and Cij is the vector of covariates.  The primary parameter of interest is βG:E, 

the multiplicative interaction term between genotype and thiazide use. 

D.2. Meta-Analytic Techniques 

Two separate meta-analytic techniques will be used to combine data across studies.  

First will be a race-stratified, fixed-effect, inverse variance weighted meta-analysis 

conducted using the METAL program.
344

  However, the assumption that each contributing 

population will have the same underlying effect does not always hold across multiple 

race/ethnicities because of differences in patterns of LD across ancestral populations, 

potential allelic heterogeneity, differences in gene-environment interactions, differences in 

gene-gene interactions, and differences in environmental and lifestyle factors between 
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different race/ethnic groups.  Thus, to allow for underlying differences between race/ethnic 

groups, we will also conduct trans-ethnic meta-analysis using a Bayesian approach developed 

by Morris using the MANTRA program.
345

 

Fixed Effects Inverse Variance Weighted Meta-Analysis 

Fixed effects meta-analysis will be conducted, stratified by race, using METAL, 

using a genome-wide significance level of P < 5x10
-8

.
344

  However, in previous 

pharmacogenomics work conducted by the PWG has indicated that there is a possibility for 

early departure of the test statistic from the null distribution.  In such scenarios, a t-

distribution approach will be used.
346

  P-values will be recalculated by applying a t reference 

distribution to the drug-SNP interaction estimates of β (standard error [SE]), and then meta-

analyzed using a weighted Z-statistic, with weights based on the SNP imputation quality 

multiplied by the estimated number of independent observations exposed to thiazides 

(Nexposed).  Nexposed will be estimated as follows: 

1. In cross-sectional studies, Nexposed equals the number of participants classified as 

thiazide users. 

2. In longitudinal studies, Nexposed will be calculated as follows: 

𝑁𝑒𝑥𝑝𝑜𝑠𝑒𝑑 =∑
𝑛𝑖

1 + (𝑛𝑖 − 1)�̂�

#{𝐸𝑖𝑡 = 1}

𝑛𝑖
𝑖

 

where ni is the number of observations for participant i, �̂� is an estimate of the 

pairwise visit-to-visit correlation within participants from a GEE-exchangeable 

model that does not contain genetic data, and #{𝐸𝑖𝑡 = 1} is the number of 

observations in which participant i is exposed. 
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Ideally, the cohort- and SNP-specific degrees of freedom (df) for the t reference distribution 

will be estimated using Satterthwaite’s method,
347

 both for cross-sectional and for 

longitudinal analyses: 

1. For cross-sectional studies, df will be calculated as follows: 

𝑑𝑓 = 2
𝐸[𝑉𝑎𝑟(�̂�)]

2

𝑉𝑎𝑟[𝑉𝑎𝑟(�̂�)]
 

Estimates of 𝐸[𝑉𝑎𝑟(�̂�)]
2
and 𝑉𝑎𝑟[𝑉𝑎𝑟(�̂�)] are calculated using an R code 

developed by Ken Rice, Thomas Lumley, et al. that is available on the CHARGE 

PWG wiki page: http://depts.washington.edu/chargeco/wiki/Pharmacogenetics. 

2. For longitudinal studies, df will be calculated as follows:  

𝑑𝑓 = 2
𝐸[𝑉𝑎𝑟(�̂�)]

2

𝑉𝑎𝑟[𝑉𝑎𝑟(�̂�)]
 

where 𝐸[𝑉𝑎𝑟(�̂�)]
2
 is assumed to equal 𝑉𝑎𝑟(�̂�) and the formula for estimating 

𝑉𝑎𝑟[𝑉𝑎𝑟(�̂�)] is based on the method presented by Pan and Wall.
348

  Longitudinal 

df estimates are calculated using the R bossWithdf package, available on the 

CHARGE PWG wiki page:  

http://depts.washington.edu/chargeco/wiki/Pharmacogenetics. 

If Satterthwaite’s method cannot be implemented in a particular cohort, then an approximate 

df will be calculated as the cohort- and SNP-specific product of the SNP imputation quality 

(range: 0,1), the MAF (range: 0, 0.50), and Nexposed. 
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Trans-Ethnic Meta-Analysis 

To allow for underlying differences between race/ethnic groups while also enabling 

us to take full advantage of the large sample size found across all three included race/ethnic 

groups, we will conduct a trans-ethnic meta-analysis using alternative methods.  The trans-

ethnic meta-analysis will use a Bayesian approach developed by Morris and implemented in 

MANTRA.
345

  MANTRA utilizes allele frequencies in each population to cluster studies 

according to genetic-relatedness and then generates a Bayes factor for each SNP.  Morris has 

determined that a significance level of 10
5
 is approximately equivalent to a genome-wide 

significant level of 5x10
-8

 and will be used as our significance level in these Bayesian 

analyses.
345

  However, this method does not provide an over-all effect estimate and so can be 

used to identify significant SNPs but cannot be used to estimate an effect size across 

race/ethnicities.  

Cross-Phenotype Meta-Analysis 

Previous studies have demonstrated the potential to increase power and detect 

evidence of pleiotropy by conducting multi-trait analysis across correlated traits.
349, 350

  To 

examine potential pleiotropy across ventricular depolarization and repolarization, we 

conducted cross-phenotype meta-analysis combining t-statistics across QRS and JT using an 

adaptive sum of powered score (aSPU) test, which tests for both concordant and discordant 

associations across some or all of the included traits.
351

  The reference distribution for the 

aSPU test was calculated using 10
8
 simulations. 
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D.3. Sensitivity Analyses 

It is important to remember that QT is a measure of both ventricular depolarization 

and repolarization, two processes that, although related, are opposites and can thus, under 

certain conditions, be oppositely affected.
60

  In the case identified by Akylbekova et al., the 

genetic effects underlying the QT interval work in opposite directions on QRS and JT and the 

associations with all intervals studied were substantially enhanced in patients with 

hypokalemia.  For example, before accounting for hypokalemia, the coded allele increased 

QTc by only 3.3 ms; however, when the interaction with hypokalemia was added, the coded 

allele increased QTc by 20.2 ms.
229

  This makes it imperative that we consider not just QT 

but also QRS and JT separately in order to fully capture the effects underlying QT 

prolongation, particularly when studying diuretics, which are known to alter potassium 

levels. 

To account for this, this work will conduct sensitivity analyses, examining both QRS 

and JT duration as outcomes.  QRS, like QT, was measured in ms using a standard 12-lead 

ECG.  For more detail, see Section Outcome Assessment.  JT will be calculated from QT and 

QRS as follows: 𝐽𝑇 = 𝑄𝑇 − 𝑄𝑅𝑆.  All analyses will be conducted using the same analysis 

plan that is used for QT, including exclusions, covariates, statistical analyses, and meta-

analysis.   

D.4. In-Silico Functional Characterization 

For all SNPs identified in the above analyses as genome-wide significant, including 

the sensitivity analyses, I will conduct in-silico functional characterization.  The in-silico 

characterization will be carried out in four stages (Figure 13).  First, I will use race-specific 

LD patterns to identify SNPs that are in high HD (r
2 

> 0.5) with the index SNPs identified in 



 

84 

the above analyses.  LD patterns will be based off the most recent release of the 1000 

Genomes
342, 343

 data and linked SNPs will be determined using two online databases: 

SNAP
352

 and HaploReg.
353

  The two databases complement each other, as the SNAP 

database examines a larger list of SNPs but HaploReg provides a greater degree of 

information, including structural details on nine cell types, conservation across different 

mammal species, and mutation type (i.e. nonsense, missense, silent, etc.).  In the second stage 

of characterization, I will examine the index SNPs, as well as all SNPs in high LD as 

determined by the first stage, in the dbSNP database
354

 and the UCSC GenomeBrowser,
355

 

which makes use of previous functional characterization, as well as the recent ENCODE 

project,
356

 which sought to characterize the non-coding regions of the genome.  I expect most 

findings will occur in the non-coding regions, such as promoter regions, and thus will impact 

expression levels rather than protein structure and function.  However, I do expect to find a 

subset of missense and nonsense mutations within the coding region of the genome, 

particularly among population-specific variants.  For this subset of SNPs, I will move onto 

the third stage of characterization, which will utilize SIFT
357-359

 and PolyPhen 2
360

 to predict 

the functional effects of the amino acid substitutions or premature terminations.  Finally, the 

fourth phase of characterization will examine each of the genetic loci identified in a pathway 

analysis using Ingenuity Pathway Analysis (IPA)
361

 to identify potential linkages within the 

genome between the genetic loci associated with drug response.  
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Figure 13.  Flowchart of In-Silico Functional 

Characterization 

Figure 14.  Statistical Power Curves, Presented for K=1, 3, and 5 Variants and a Range of 

Minor Allele Frequencies 

K represents the number of independent SNPs modifying the thiazide-QT association.  Curves 

represent the power to detect at least one SNP assuming K SNPs modify the association. 

Minor Allele Frequencies: 5% (Purple), 10% (Blue), 25% (Green), and 45% (Red) 
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E. Sample Size and Statistical Power 

Power was calculated using Quanto
362

 with a two-sided α = 5x10
-8

 and conservatively 

assuming a cross-sectional study design.  It is worth noting that 69% of the total population 

has multiple measures of medications and QT, indicating that our actual power will be higher 

than that estimated here.  Power estimates were calculated across a range of MAF (5-45%), 

an estimated 14% prevalence of thiazide use (based on Table 13), an expected main effect for 

both the SNP and thiazide of 2 ms, and a sample size of 94,479.  The power is low at low 

MAFs (interaction effects of >4 ms needed to achieve 80% power at MAF = 10%).  

However, at more common MAFs, this study is better powered.  At 25% MAF, there is 80% 

power to detect interaction effects of 2.8 ms and at 45% MAF, there is 80% power to detect 

interaction effects of 2.4 ms.  However, we expect multiple independent SNPs to be 

modifying the thiazide-QT association.  Therefore, assuming no between population variance 

in the interaction, I calculated the power to detect at least one association assuming that K 

independent SNPs modify the association between thiazides and QT (Figure 14).  At powers 

P0, P1…PN, the probability of detecting at least one variant of the K independent variants is 

1-(1-P0)(1-P1)…(1-PN).   Assuming only 3 independent SNPs modifying the thiazide-QT 

association, the threshold for 80% power decreases to 3.37 ms, 2.33 ms, and 2.03 ms for 

MAFs of 10%, 25%, and 45%, respectively.  At K=5, the threshold for 80% further decreases 

to 3.12 ms, 2.16 ms, and 1.88 ms for MAFs of 10%, 25%, and 45%, respectively.  As has 

been pointed out, these thresholds are expected to be lower given the inclusion of 

longitudinal data.  
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Specific Aim 2 

Examine the influence of prevalent user bias and exposure misclassification caused 

by prevalent user bias on a pharmacogenomics study conducted in an observational setting. 

a. Using simulations, evaluate bias, power, and type I error in the drug-SNP 

interaction caused by prevalent user bias and exposure misclassification.   

b. Compare the results of aim 2a under different study designs (e.g. whole cohort, 

active comparator, new-user). 



 

88 

A. Simulation Overview 

The simulation will begin with a literature review to design the relationships between 

QT, QT-prolonging medication use, and the genetic modification (Figure 15).  Using the 

results of this literature review, I will determine plausible effect sizes for thiazide, SNP, and 

drug-SNP effects on QT and determine important risk factors for QT prolongation.  The 

conceptual model includes seven covariates besides the SNP: age, sex, U, which represents 

unknown/unmeasured confounders of the drug-QT relationship, hypertension (HTN), 

Figure 15.  Conceptual Model of Relationship Between Study Variables 

→ Indicates a directed relationship between two variables 

┬ Indicates effect measure modification by one variable on the relationship between two other variables 

i indicates visit 1-4, ADR indicates the occurrence of an adverse drug reaction, U represents 

unknown/unmeasured correlation between QT between visits, Comparator represents an active 

comparator drug class, Drug represents the drug of interest, in this scenario modeled after a thiazide 

diuretic, SNP represents the genetic variant of interest that modifies the drug-QT relationship, and QT 

represents the QT interval 
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treatment of hypertension, diabetes, adverse drug reaction (ADR), and loss to follow-up.  

Furthermore, an active comparator is included in the model.  For our simulation analysis, we 

will simulate four visits.  The correlation between variables at Visit i and Visit i-1 will 

calculated based on correlation between visits 1 and 2 in the Atherosclerosis Risk in 

Communities (ARIC) study.  Furthermore, we will compare results across three study 

designs: whole cohort (WC), active comparator (AC), and new-user (NU). 

B. Simulation Parameters and Values 

For a summary of all variables to be simulated in this analysis, see Table 16.   

B.1. Covariates 

Age for each observation will be simulated using a normal distribution with a mean 

value determined using the ARIC baseline visit.  Sex will be simulated as a uniform random 

variable with a defined probability of being male.  Unknown/Unmeasured confounders (U) 

will be simulated using a normal distribution with a set mean and SD determined by the 

correlation seen between QT in visit 1 and visit 2 of the ARIC study.  Diabetes, hypertension, 

adverse events, and loss to follow-up will be simulated using binomial distributions as 

defined in Table 16. 

B.2. Genotype 

The genotype of the SNP will be simulated with a uniform distribution using a 

specified minor allele frequency (MAF), which will be varied across simulation runs and 

range between 5% and 45%.  The probability of an observation being heterozygous or 

homozygous for the major or minor allele will be calculated under the assumption of Hardy-

Weinberg equilibrium.  
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B.3. Drug Use 

QT-prolonging drug use at visit i will be predicted conditional on age and sex using a 

logit function:  

𝑖𝑓 {

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 = 0 𝑡ℎ𝑒𝑛 𝑝𝑟(𝐷𝑟𝑢𝑔𝑖) = 0 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 = 1 𝑡ℎ𝑒𝑛 𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐷𝑟𝑢𝑔𝑖 = 1)) = 𝛼0 + 𝛼1𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑖
+𝛼2𝐷𝑟𝑢𝑔𝑖−1|𝑖>1 + 𝛼3𝐴𝐷𝑅𝑖 + 𝜀

} 

where 𝛼0 will correspond to a preset prevalence of QT-prolonging drug use, which will then 

be assigned using a binomial distribution and this calculated probability.  An active 

comparator drug will be simulated as: 

𝑖𝑓 {
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 = 0 𝑡ℎ𝑒𝑛 𝑝𝑟(𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑖) = 0

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 = 1 𝑡ℎ𝑒𝑛 𝐿𝑜𝑔𝑖𝑡(𝑝𝑟((𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑖)) = 1 − 𝑝𝑟(𝐷𝑟𝑢𝑔𝑖) + 𝜀
} 

B.4. QT Interval 

QT at the ith visit will be calculated using a linear model:  

𝑄𝑇𝑖 = 𝛽0 + 𝛽1𝐷𝑟𝑢𝑔𝑖 + 𝛽2𝑆𝑁𝑃 + 𝛽3𝐷𝑟𝑢𝑔𝑖 × 𝑆𝑁𝑃 + 𝛽4𝐴𝑔𝑒𝑖 + 𝛽5𝑆𝑒𝑥 + 𝛽6𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 

+𝛽7𝐻𝑇𝑁 + 𝛽8𝑈 + 𝜀 

where the mean and SD of QT will be set based on ARIC’s baseline visit.   

C. Simulation Models and Analyses 

Multiple simulation models will be run to compare different conditions.  The effect of 

age, sex, heart rate, HTN, diabetes, and U will not vary across models.  The SNP main effect, 

drug-SNP interaction, and the MAF will be varied across models.  Furthermore, to test the 

effect of prevalent user bias on the interaction effect, different levels of informative 

missingness (through adverse events and loss to follow-up) will be tested.  Figure 17 presents 

different scenarios which could lead to prevalent user bias in a longitudinal study with two 

visits, spaced two years apart.  Scenario 1 represents a prevalent user.  Scenario 2 represents 

an incident user.  Scenarios 3-6 represent possible scenarios which could lead to prevalent 
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Table 16.  Simulation Parameters and Scenarios  

Parameter Simulation Scenario 

Age Normal distribution, mean determined using ARIC data 

Sex Uniform random variable with defined probability of being male 

Unmeasured/Unknown 

Confounders (U) 

Normal distribution, mean determined by the correlation between QT in visits 1 

and 2 in ARIC study 

SNP Uniform distribution with defined minor allele frequency, which will vary 

across models, and with probability of being heterozygous/homozygous 

calculated under Hardy-Weinberg equilibrium 

Diabetes (Diabetes) 

 

Binomial distribution with probability of Diabetes=1 defined as follows: 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 = 1)) = 𝛼0 + 𝛼1𝐴𝑔𝑒 + 𝜀 

Hypertension at visit i 

(HTNi) 

 

Binomial distribution with probability of HTN=1 defined as follows:  

𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐻𝑇𝑁𝑖 = 1)) = 𝛼0 + 𝛼1𝐴𝑔𝑒 + 𝛼2𝑆𝑒𝑥 + 𝛼3𝐻𝑇𝑁𝑖−1|𝑖>1 + 𝜀 

Treated HTN at visit i 

(Treatmenti) 

Binomial distribution with probability of Treatment=1 defined as follows: 

𝑖𝑓 {

𝐻𝑇𝑁𝑖 = 0 𝑡ℎ𝑒𝑛 𝑝𝑟(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖) = 0

𝐻𝑇𝑁𝑖 = 1 𝑡ℎ𝑒𝑛 𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 = 1)) = 𝛼1𝑅 + 𝜀

𝑤ℎ𝑒𝑟𝑒 𝑅 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟

 

QT Prolonging Drug Use 

at Visit i  (Drugi) 

or Alternative Drug at 

Visit i (Comparatori) 

 

 

 

Binomial distribution with probability of Comparator=1 defined as follows: 

𝑖𝑓

{
 
 

 
 
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 = 0 𝑡ℎ𝑒𝑛 𝑝𝑟(𝐷𝑟𝑢𝑔𝑖) = 0 𝑎𝑛𝑑 𝑝𝑟(𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑖) = 0

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 = 1 𝑡ℎ𝑒𝑛 𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐷𝑟𝑢𝑔𝑖 = 1)) = 𝛼0 + 𝛼1𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑖
+𝛼2𝐷𝑟𝑢𝑔𝑖−1|𝑖>1 + 𝛼3𝐴𝐷𝑅𝑖 + 𝜀

𝑎𝑛𝑑 𝐿𝑜𝑔𝑖𝑡(𝑝𝑟((𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑖)) = 1 − 𝑝𝑟(𝐷𝑟𝑢𝑔𝑖) + 𝜀

 

QT at Visit i (QTi) 

 

 

𝑄𝑇𝑖 = 𝛽0 + 𝛽1𝐷𝑟𝑢𝑔𝑖 + 𝛽2𝑆𝑁𝑃 + 𝛽3𝐷𝑟𝑢𝑔𝑖 × 𝑆𝑁𝑃 + 𝛽4𝐴𝑔𝑒𝑖 + 𝛽5𝑆𝑒𝑥 + 𝛽6𝑈
+ 𝛽7𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑖 + 𝛽8𝐻𝑇𝑁𝑖 + 𝜀 

Adverse Event (ADR) Binomial distribution with probability of ADR defined as follows: 

𝑖𝑓 {

𝐷𝑟𝑢𝑔𝑖−1 = 0 𝑡ℎ𝑒𝑛 𝑝𝑟(𝐴𝐷𝑅) = 0

𝐷𝑟𝑢𝑔𝑖−1 = 1 𝑡ℎ𝑒𝑛 𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐴𝐷𝑅𝑖 = 1)) = 𝛼0 + 𝛼1𝑄𝑇𝐿𝑜𝑛𝑔
𝑤ℎ𝑒𝑟𝑒 𝑄𝑇𝐿𝑜𝑛𝑔  𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑄𝑇𝑖−1 + 𝜀

 

 

Loss to Follow-up at Visit 

i (Lossi) 

Binomial distribution with probability of Loss=1 defined as follows: 

𝑖𝑓 {

𝐿𝑜𝑠𝑠𝑖−1|𝑖>1 = 1 𝑡ℎ𝑒𝑛 𝑝𝑟(𝐿𝑜𝑠𝑠𝑖) = 1

𝐿𝑜𝑠𝑠𝑖−1|𝑖>1 = 0 𝑡ℎ𝑒𝑛 𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐿𝑜𝑠𝑠𝑖 = 1)) = 𝛼0 +

+𝛼2𝐴𝐷𝑅 + 𝜀

𝛼1𝐴𝑔𝑒 

   

   

user bias through differential misclassification (scenarios 3-4) or depletion of susceptibles 

(scenarios 5-6).  The simulation of Drugi accounts for scenario 3 by accounting for the 

probability that an ADR occurred.  Scenarios 4-6 will be accounted for by allowing ADRs 

and loss to follow-up between visits 1 and 4.   
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Figure 16.  Flowchart of Simulation Analysis 

Process 

Figure 17.  Scenarios Leading to Prevalent User Bias in Pharmacoepidemiology Studies 
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The following parameters will be varied across models: MAF, probability of an 

ADR/loss to follow-up, SNP main effect, and SNP-drug interaction effect.  Variable MAF 

will cause the SNP parameter to vary across models.  The variable ADR will cause the Drugi 

parameter to vary across models.  Variation in the SNP and Drugi parameters will 

subsequently cause the QTi parameter to vary across models. 

I will then use the simulations to contrast three different study designs: whole cohort 

(WC), active comparator (AC), and new-user (NU).  For WC simulations, no cohort 

observations will be excluded.  For AC simulations, analyses will be restricted to those on a 

QT-prolonging drug or those on the simulated alternative drug.  Finally, for NU simulations, 

prevalent QT-prolonging drug users at visit 1 will be excluded from analyses.  For each study 

design, I will evaluate all model conditions as discussed above.  For a breakdown of the 

simulation process, see Figure 16.  All models will estimate the QT-prolonging drug-SNP 

interaction using generalized estimating equations with an independence working correlation 

matrix and be run for both longitudinal data (visits 1-4) and a stacked cross-sectional 

approach (visit 1 and 4 only). 

Integration of Specific Aims 1 and 2 

I will use the results of Specific Aim 2 to inform the interpretation of results from 

Specific Aim 1.  In an ideal scenario, the simulation study from the first aim will indicate that 

the potential impacts of prevalent user bias on a pharmacogenomics study are negligible 

under the given parameters.  However, in the event that Aim 2 indicates that prevalent user 

bias is a cause for concern, there are several potential steps which can be taken, depending on 

the level of concern.  For example, if the potential bias is only of concern in SNPs with small 

MAF, these SNPs can be excluded from the analysis on a study-by-study basis.  Furthermore, 

we can filter on effect size for bias associated with effect size.  If there is a greater potential 
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for prevalent user bias to affect the results of the pharmacogenomics study, results will be 

interpreted conditional on the level of concern indicated.  While I appreciate that 

probabilistic sensitivity analysis or inverse-probability-of-treatment-weighting are potential 

steps for handling bias in single-exposure studies, both the scale and the scope (i.e. 2.5 

million SNPs examined in fifteen studies) of this interaction study make the potential burden 

of these methods unreasonable.  Therefore, I will instead consider the results of Specific Aim 

1 conditional on the results of Specific Aim 2. 

Strengths and Limitations 

This study represents the first large, multi-ethnic pharmacogenomics study of thiazide 

diuretics, a commonly used antihypertensive medication, and QT, the prolongation of which 

is a leading cause of the withdrawal or restricted marketing of pharmaceuticals.  This work 

will also make use of the deep phenotyping and genotyping available in the participating 

cohorts (the Women’s Health Initiative [WHI], the Hispanic Community Health Study/Study 

of Latinos [SOL], and the Cohorts for Heart and Aging Research in Genetic Epidemiology 

[CHARGE] consortium).  By bringing together these fourteen study populations (WHI, SOL, 

and twelve member studies in the CHARGE consortium), many of which have longitudinal 

measures of thiazide use and QT, this study will have a significantly larger population than 

previous pharmacogenomics studies, substantially increasing the power to detect a much 

greater range of interaction effects than was possible in previous studies.  Furthermore, I will 

take advantage of the large AA and HL populations available in the participating cohorts, 

broadening generalizability and allowing me to leverage the unique genetic architecture that 

characterizes AA and HL populations.  Finally, I will incorporate recently developed 

techniques for including functional annotations in genetic analyses, which will allow this 
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work to prioritize findings based on the probability of causality, something which much of 

the early genetics and pharmacogenomics work has failed to accomplish. 

However, there are several limitations to this work.  First, I am relying on 

observational cohort studies, which are known to be potentially biased in 

pharmacoepidemiologic studies.  Of particular concern is the chance of medication 

inventories to miss cases of short term medication use and acute ADRs.  To avoid this, 

pharmacy-linked databases with more complete medication-use data are preferable.  

Unfortunately, at this stage, these databases have no mechanism for linking genetic data or 

deep phenotyping data to individual records, making large, population based cohorts the best 

alternative.  Furthermore, it is unclear if these potential biases are a concern in 

pharmacogenomic studies, which study the drug-gene interaction.  This work will also run 

simulations to determine the potential issues with selection bias on pharmacogenomics work 

and the best study designs for handling this data, which can then be used to inform the 

subsequent work. 

Additionally, results of the trans-ethnic meta-analysis will be driven by the 

contributing EU population, which is more than 3.5 times larger than the next largest 

race/ethnic group (HL).  Furthermore, the power of this study is a concern, given that this is 

both a GxE interaction study and a genome-wide study, both of which negatively impact 

power.  However, this is the largest pharmacogenomics work on QT to date and has the 

largest populations of non-EU participants.  There have been extensive efforts to identify and 

include any studies with ECG, medication, and genotype data, with an emphasis on 

identifying cohorts with multi-ethnic populations.  In addition, this work leverages the 

longitudinal data available in many of the participating cohorts, further increasing our power 
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to detect interaction associations.  Finally, given the extensive efforts to identify and include 

all available studies with the needed data, there is no replication sample for this work.  

However, given the size of the populations (78,199), results are more robust to the potential 

of winner’s curse, a form of bias that results in the over-estimation of effect sizes and 

consequently results in false positives.  While most GWAS use replication samples to protect 

against winner’s curse, the large sample size in this work will aid in protecting this analysis 

from the selection that results in winner’s curse.        
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CHAPTER 5: RESEARCH PAPER 1-PHARMACOGENOMICS STUDY OF 

THIAZIDE DIURETICS AND QT INTERVAL IN MULTI-ETHNIC 

POPULATIONS: THE COHORTS FOR HEART AND AGING RESEARCH IN 

GENOMIC EPIDEMIOLOGY (CHARGE)
1
 

Introduction 

 Over the past decade, the use of prescription drugs has skyrocketed, with nearly half 

of all Americans now taking at least one prescription drug.
1
  Accompanying the increased 

prevalence of drug use is a high burden of adverse drug reactions (ADRs), which account for 

approximately 100,000 deaths and 2.2 million serious health effects annually.
2-4

  QT interval 

(QT) prolongation, which can trigger fatal ventricular arrhythmias, is a long-recognized 

adverse effect
185

 of numerous common medications such as antipsychotics, antibiotics, 

antiarrhythmics, and antihypertensives.
146

  Within the past ten years, QT prolongation has 

represented the most common cause for withdrawal of a drug from the market (or relabeling) 

after approval by the U.S. Food and Drug Administration (FDA).
39, 145

  However, drug-

induced QT prolongation remains difficult to predict.
38

    

 Genetic variants are known to mediate both pharmacokinetic and pharmacodynamic 

processes, thereby playing a major role in drug response. 
61

  Pharmacogenomics, which 
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evaluates the role of genetics in drug response, offers a promising avenue for understanding 

variation in drug response,
7
 illuminating novel pathways, informing drug development and 

selection,
8-10

 optimizing dosing regimens,
11-15

 and avoiding ADRs.
16-18

  QT is highly 

heritable (35-40%).
24-27, 363

 Previous pharmacogenomics studies of drugs associated with QT 

prolongation, including thiazide diuretics, a common antihypertensive therapy used by over a 

quarter of the U.S. hypertensive population,
37

 identified multiple loci associated with anti-

hypertensive response and ADRs.
272, 273, 275-278

  Therefore, the pharmacogenomics of thiazide-

induced QT prolongation represents an excellent but understudied candidate for 

pharmacogenomic inquiry. 

 We previously examined evidence for common single nucleotide polymorphisms 

(SNPs) that modified the association between thiazide use and QT and failed to identify any 

genome-wide significant (P<5x10
-8

) loci.
282

  However, our previous study was limited to 

European descent populations and cross-sectional analyses, despite many of the contributing 

studies having longitudinal drug and electrocardiographic data.
282

  Here, we expand upon that 

work, applying recent statistical innovations to leverage longitudinal data and including an 

additional 44,418 participants of European, African American, and Hispanic/Latino descent 

to perform the first trans-ethnic genome-wide association study (GWAS) to examine genetic 

associations that modify the association between thiazides and QT, as well as the component 

parts of QT (JT interval [JT], QRS interval [QRS]). 

Materials and Methods 

A. Study Populations 

 Fourteen cohorts participated in this analysis from in the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE)
54

 Pharmacogenomics Working Group 

(PWG), contributing 78,199 participants: European descent (51,601), African American 
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(11,482), and Hispanic/Latino (15,116) participants (Table 19, Supplementary Text).   

Among the fourteen cohorts, six (55% of the total population) had repeated measurements of 

medication use and electrocardiogram (ECG) assessments and contributed longitudinal data 

to the analysis: Age, Gene/Environment Susceptibility – Reykjavik Study (AGES), 

Atherosclerosis Risk in Communities (ARIC) Study, Cardiovascular Health Study (CHS), 

Rotterdam Study (RS), Multi-Ethnic Study of Atherosclerosis (MESA), and Women’s Health 

Initiative (WHI).  The remaining eight cohorts contributed cross-sectional data to the 

analysis: Framingham Heart Study (FHS), Erasmus Rucphen Family (ERF) Study, Health 

2000, Health, Aging, and Body Composition (Health ABC), Prospective Study of Pravastatin 

in the Elderly at Risk (PROSPER), Jackson Heart Study (JHS), Netherlands Epidemiology of 

Obesity (NEO) Study, and Hispanic Community Health Study/Study of Latinos 

(HCHS/SOL). 

B. Study Design 

Participants with electrocardiogram (ECG) measurements, medication assessment, 

and genome-wide genotype data were eligible for inclusion.  The following exclusion criteria 

were applied: poor ECG quality, atrial fibrillation detected by ECG, pacemaker implantation, 

second or third degree atrioventricular heart block, QRS greater than 120 milliseconds (ms), 

prevalent heart failure, pregnancy, missing ECG, missing medication assessment, missing 

genotype information, or race/ethnicity other than European descent, African American, or 

Hispanic/Latino.  For studies with longitudinal data, exclusion criteria were applied on a 

visit-specific basis.  
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C. Medication Assessment 

 Medication use was assessed through medication inventories conducted during clinic 

visits or home interviews or through pharmacy databases (Table 20).  Six studies captured 

medication used on the day of the study visit.  A further six of the 14 participating cohorts 

captured medications used one to two weeks preceding ECG assessment.  HCHS/SOL 

ascertained medications used within four weeks preceding ECG measurement and the RS 

captured medication used within 30 days preceding ECG assessment.  Participants were 

classified as thiazide diuretic users if they took a thiazide or thiazide-like diuretic in a single 

or combination preparation, with or without potassium (K)-sparing agents, and with or 

without K-supplements. 

For cross-sectional studies, the number of exposed participants (Nexposed) was defined 

as the number of participants classified as thiazide users.  For studies with longitudinal data, 

Nexposed was calculated as follows: 
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where ni is the number of observations for participant i, ̂  is an estimate of the pairwise 

visit-to-visit correlation within participants from a Generalized Estimating Equation (GEE)-

exchangeable model that does not contain genetic data, and  1# itE  is the number of 

observations for which participant i was exposed.
346
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D. ECG Interval Measurement 

 QT and QRS were digitally recorded by each participating study using resting, supine 

or semi-recumbent, standard 12-lead ECGs (Table 21).  Comparable procedures were used 

for preparing participants, placing electrodes, recording, transmitting, processing, and 

controlling quality of ECGs.  Studies used Marquette MAC 5000, MAC 12, MAC 1200, or 

MAC PC (GE Healthcare, Milwaukee, Wisconsin, USA), University of Glasgow (Cardiac 

Science, Manchester, UK), or ACTA (EASOTE, Florence, Italy) machines.  Recordings were 

processed using one of the following programs (Marquette 12SL, MEANS, University of 

Glasgow, digital calipers, or Health 2000 custom-made software.  JT was calculated by the 

formula: JT=QT–QRS. 

E. Genotyping and Imputation 

 Each study conducted genome-wide genotyping independently using either 

Affymetrix (Santa Clara, CA, USA) or Illumina (San Diego, CA, USA) arrays (Table 22).  

Sex mismatches, duplicate samples, and first-degree relatives (except in ERF, FHS, 

HCHS/SOL, and JHS) were excluded.  DNA samples with call rates less than 95-98% were 

excluded as were SNPs with SNP call rates less than 90-98%, minor allele frequencies 

(MAF) less than 1%, or that failed Hardy-Weinberg equilibrium.  To maximize genome 

coverage and comparisons across genotyping platforms, genotypes were imputed using 

HapMap2,
338-340

 1000 Genomes Phase 1, or 1000 Genomes Phase 3 reference panels.
342, 343

  

Genotypes imputed using build 37 were lifted over to build 36
364, 365

 to enable comparisons 

between imputation platforms and results were restricted to SNPs present in HapMap2.  
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F. Statistical Analyses 

 Genome-wide pharmacogenomic analyses were performed by each cohort 

independently across approximately 2.5 million SNPs for QT, QRS, and JT separately.  

Drug-SNP interactions were estimated assuming an additive genetic model, using mixed 

effect models, GEE, or linear regression with robust standard errors.  The analytic model 

varied based on study design and the availability of longitudinal data (Table 23).  All 

analyses were adjusted for age (years), sex when applicable, study site or region, principal 

components of genetic ancestry, visit-specific RR interval (ms), and visit-specific QT 

altering medications defined using the University of Arizona Center for Education and 

Research on Therapeutics (UAZ CERT) QT-prolonging drug classification.
146

  Furthermore, 

ERF, FHS, and HCHS/SOL incorporated estimates of relatedness into all analyses.  Study-

specific results were corrected for genomic inflation (λ). 

 Previous simulations demonstrated that models using robust standard errors 

underestimate the variance of coefficient estimates for SNPs with low MAFs.
346

  To account 

for this underestimation, corrected standard errors were calculated using a (Student’s) t-

reference distribution.
346

  The degrees of freedom (df) for the t-reference distribution were 

estimated using Satterthwaite’s method.
347

  When cohorts were unable to implement 

Satterthwaite’s method, an approximate df was calculated as twice the cohort- and SNP-

specific product of the SNP imputation quality (range: 0,1), the MAF (range: 0.0,0.50), and 

Nexposed.  Standard errors were then “corrected” by assuming a normal reference distribution 

that yielded the t-distribution based P-values from the beta estimates.
346

  Furthermore, 

because simulations demonstrated that corrected standard errors were unstable when minor 

allele counts among the exposed were low, a cohort-specific df filter of 15 was applied across 

all SNPs.
346
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 For each trait, race-stratified and trans-ethnic betas and corrected standard errors were 

combined with inverse-variance weighted meta-analysis conducted in METAL.
344

  We used a 

genome-wide significance threshold of P<5x10
-8

 and a suggestive threshold of P<5x10
-6

.  

However, the assumptions of a fixed-effects meta-analysis do not always hold between 

race/ethnicities due to differences in patterns of linkage disequilibrium (LD) across ancestral 

populations, potential allelic heterogeneity, differences in gene-environment and gene-gene 

interactions, and differences in environmental and lifestyle factors.
300, 366

  Therefore, trans-

ethnic meta-analysis was also conducted using the Bayesian MANTRA approach and a 

genome-wide threshold of log10(Bayes Factor [BF])>6 and a suggestive threshold of 

log10(BF)>5.
345

  Additionally, previous studies have demonstrated the potential to increase 

power and detect evidence of pleiotropy by conducting multi-trait analysis across correlated 

traits.
349, 350

  To examine potential pleiotropy across ventricular depolarization and 

repolarization, we conducted cross-phenotype meta-analysis combining t-statistics across 

QRS and JT using an adaptive sum of powered score (aSPU) test, which tests for both 

concordant and discordant associations across some or all of the included traits.
351

  The 

reference distribution for the aSPU test was calculated using 10
8
 simulations. 

  Genome-wide significant and suggestive meta-analysis results were examined for 

gene or pathway enrichment.  Previous work has shown that it is beneficial to apply multiple 

methods of gene-set analysis (GSA) when the underlying etiology of the genetic mechanism 

is unclear.
367-369

   We therefore used two methods of GSA.  We performed a multiple 

regression gene analysis approach followed by a self-contained GSA using gene-level 

regression as implemented in MAGMA.
370

  Post-meta-analysis P-values were used as input 

in the analysis and gene-sets were collected from Ingenuity,
371

 Panter,
372

 KEGG,
373

 and 
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ConsensusPathDB
374, 375

 and restricted to biologically motivated pathways involved in the 

following: ion transport and homeostasis, transcription and translation, renal and cardiac 

development and function, and pharmacokinetic/dynamic pathways.  Additionally, we 

selected all SNPs with P<1x10
-5

 for analysis with DEPICT, which searches for gene, gene-

set, and tissue enrichment among 14,461 reconstituted gene-sets, eliminating the need to 

select candidate gene-sets.
376

  To account for multiple testing, we applied a false discovery 

rate (FDR) threshold of 5% for both GSA approaches.  

G. Statistical Power Simulations 

 Power to detect drug-SNP interactions using cross-sectional and longitudinal 

modeling approaches was estimated via simulation studies.  Assumptions, which were 

informed by European ancestry populations, included: (1) 50,000 participants; (2) a two-

sided, per-SNP α=5x10
-8

; (3) a mean heart rate-corrected QT (standard deviation)=400 (30) 

ms; (4) Nexposed=8,100; (5) a mean drug effect for those with zero copies of the minor allele=5 

ms; (6) a mean SNP effect for those not exposed to drug=0 ms; (7) a MAF=0.05 or 0.25; (8) 

an additive model of inheritance; (9) two study visits for longitudinal simulations; (10) 

within-person QT correlation=0.80; (11) an attrition rate between visits for longitudinal 

simulations=0.13; (12) random missingness rate across study visits=0.09; and (13) an 

independent GEE correlation structure for longitudinal simulations.  For longitudinal 

simulations, drug use was either temporally constant or variable.  When variable, drug 

exposure was assumed to be completely random at both visits.   
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Results 

A. Study Characteristics 

 A total of 78,199 participants were included in the analysis, of which 13,730 (18%) 

were exposed to thiazides (Table 19).  Thiazide use was most common among African 

Americans (36%), compared with 16% and 9% among European descent and 

Hispanic/Latino populations, respectively.  Mean age ranged from 40 (FHS) to 75 years 

(PROSPER) and the percentage of females ranged from 47% (NEO, PROSPER) to 100% 

(WHI).  Average QT was between 389 ms (H2000) and 416 ms (HCHS/SOL). 

B. Genome-Wide Analysis of Interaction Between Thiazides and QT Interval 

  Q-Q plots for individual study results, as well as for meta-analyzed results, 

demonstrated adequate calibration of study specific test statistics (Figure 18, Appendix 2).  

However, the family-based studies (ERF, FHS, HCHS/SOL) showed modest evidence of 

over-dispersion (λ=1.07 – 1.16). 

No genome-wide significant thiazide-SNP interaction effects were detected in any 

race/ethnic group (Figure 19).  However, suggestive interaction effects (P<5x10
-6

) were 

found for 22 loci in at least one race/ethnic group: European descent (seven loci), African 

American (six loci), Hispanic/Latino (six loci), or trans-ethnic (nine loci) (Figure 19, Table 

24).  Only the DNAH8/BTBD9 locus was suggestively significant in more than one 

race/ethnic group (rs862433 in African Americans, rs1950398 in Hispanic/Latinos).  Only 

two of the suggestive SNPs were heterogeneous across populations with Phet<0.05 

(rs4890550 and rs13223427). 

Additionally, examination of 35 loci previously associated with QT in a published 

main effects GWAS
209

 found no significant associations in European descent populations 

using a Bonferroni corrected threshold of P<0.001 (0.001=0.05/35; Table 25).  The 
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magnitude of the interaction effect was close to zero for all but six of the 35 SNP, which had 

interaction effects greater than 0.50 ms. 

Similarly, while no locus showed genome-wide significance in our trans-ethnic 

MANTRA analysis (Figure 20), one SNP (rs2765279) were above the suggestive threshold, 

with a log10(BF) of 5.2.  Rs2765279, located in RGSL1, a gene involved in G-protein 

signaling regulation, was also the most significant SNP in the fixed-effects trans-ethnic 

analysis (P=3x10
-7

). 

C. Genome-Wide Analysis of Interaction Between Thiazides and QRS Interval or JT 

Interval 

 Results for QRS showed a similar pattern to those for QT (Figure 21, Table 26).  

Whereas no results achieved genome-wide significance, 28 loci showed suggestive evidence 

of modifying the thiazide-QRS association (four loci in European descent populations, 11 in 

African Americans, eight in Hispanic/Latinos, and seven in trans-ethnic populations) and 

only one SNP had a Phet<0.05 (rs11591185).  The most significant SNP, rs7638855 (P=2x10
-

7
), located upstream from GAP43, was also suggestively significant after trans-ethnic 

analysis in MANTRA (log10(BF)=5.4; Figure 20).   

 Similarly, no SNPs showed genome-wide significant interaction for JT, although 19 

loci were suggestively associated (five loci in European descent populations, four in African 

Americans, five in Hispanic/Latino, and seven in trans-ethnic populations; Figure 21, Table 

27).  No SNPs showed significant heterogeneity between populations.  Moreover, MANTRA 

analysis identified two SNPs that achieved suggestive significance (Figure 20).  The 

rs1264878 variant near KCNIP4, a voltage-gated potassium channel interacting protein was 

the most significant SNP in our fixed-effects meta-analyses (P=3x10
-7

) and had a 
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log10(BF)=5.1.  However, most significant SNP in MANTRA meta-analyses was rs9303589, 

in CA10, with a log10(BF)=5.1. 

D. Cross-Phenotype Meta-Analysis 

 Cross-phenotype meta-analysis found no genome-wide significant evidence of 

pleiotropy across QRS and JT (Figure 22, Figure 23).  However, eight loci had a suggestive 

evidence of thiazide-SNP interaction after meta-analyzing QRS and JT results (Table 28).  

These included three loci that were nominally associated with QRS and JT (P<0.05), but 

whose effects did not reach the suggestive association threshold in either univariate analysis 

(rs1295230 [PIK3R6], rs6931354 [ADGRB3], and rs8119517 [PREX1]). 

E. Gene and Pathway Enrichment Analysis 

Although analysis with DEPICT found no gene or tissue enrichment, gene-set 

enrichment analysis in European descent populations found enrichment in the ATXN3 

subnetwork for the interactive effect of genotype and thiazide use on QT (P=1x10
-6

).  There 

was no enrichment found in QRS or JT analyses.  MAGMA analyses found significant 

enrichment in six genes among African Americans in the interactive effect of genotype and 

thiazide use on QRS: CNTRL, CPN1, FAM65B, RAB14, ISY1, NELL1 (Table 29).  No other 

analyses found gene enrichment.  MAGMA GSA for QT and JT analyses found significant 

enrichment for transcription and translational pathways, although no gene-set enrichment 

was found in QRS analyses (Table 30). 

F. Statistical Power 

Given the biologic plausibility of the suggestive results for all three traits, we 

examined statistical power for our analysis to assess our ability to detect interaction effects.  

Simulations demonstrated that all analyses were underpowered to detect thiazide-SNP 

interaction effects less than 3 ms (e.g. 15% power to detect an interactive effect of 2 ms; 
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Figure 24).  However, even with time-varying drug exposure (i.e. observed QT measurement 

on and off drug within an individual), which demonstrated the greatest power, analyses for 

SNPs with MAF=5% did not achieve 80% power until the thiazide-SNP interaction effect 

reached 6 ms. 

Discussion 

 In this study, we examined 78,199 participants of European, African American, or 

Hispanic/Latino descent for evidence of thiazide-SNP interactions influencing QT.  Although 

we used a comprehensive approach that considered multi-ethnic populations, leveraged 

pleiotropy, accommodated population heterogeneity, and examined QT as well as its 

component parts (QRS, JT), we did not identify any genome-wide significant SNPs 

modifying the association between thiazides and these ECG intervals.  However, we 

identified 74 loci with suggestive evidence of association through both univariate and cross-

phenotype analyses as well as evidence of enrichment in pathways involved in transcription 

and translation.   

Interestingly, our suggestive results included multiple loci involved in ion transport 

and handling, the disruption of which is believed to be an underlying mechanism in drug-

induced QT prolongation,
111

 supporting the hypothesis that common SNPs modify the 

thiazide-QT relationship.  For example, the NELL1 locus was previously associated with 

changes in fasting plasma triglyceride levels in response to hydrochlorothiazide use.
279

  Other 

interesting suggestive results include the PITX2 and RYR3 QRS loci identified in 

Hispanic/Latinos, which may directly regulate ion channel genes and genes involved in 

calcium handling.
377

  Moreover, we found suggestive evidence of thiazide-SNP interactions 

on QT, QRS, or JT in other genes involved in ion transport and handling, including STC2,
378
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EDN1,
379

 TRPC7,
380

 PKP2,
381

 and DISC1,
382

 as well as a voltage-gated potassium channel 

gene (KCNQ3). 

 Despite these intriguing results, our power simulations suggested there was limited 

power to detect interaction effects of 2 ms, sizes consistent with QT main effects analyses.
209

 

The low power suggests that larger sample sizes and/or innovative statistical methods may be 

required to study gene-environment interactions given the stringent genome-wide 

significance threshold.
383-385

  Furthermore, our power simulations demonstrated insufficient 

power to detect interaction effects of 5 ms or less for less common SNPs (MAF=5%).  

Therefore, future work should utilize larger sample sizes, particularly studies with 

longitudinal data, if available. 

 Another limitation of our work was that medication use data were collected 

infrequently, e.g. years apart.  Particularly, medication assessments covered only one to two 

weeks of medication use in most participating cohorts and variables such as medication 

dosage and duration of use were not available universally across studies.  Previous work has 

demonstrated a dose-dependent relationship between thiazide use and cardiac arrest, a 

potential outcome of QT prolongation.
249

  However, we were unable to identify participants 

using high dose thiazides because medication dosage data was unavailable in all cohorts.  

Furthermore, K
+
 measurements and information on K

+
 supplements was not obtained across 

all cohorts so we were unable to adjust for K
+
 levels in our analyses, despite the known role 

of thiazide diuretics in inducing hypokalemia and the role of hypokalemia in causing QT 

prolongation.
40, 252

 

Additionally, observational cohort studies are known to be susceptible to selection 

biases, such as prevalent user bias, whereby long-term medication users are least likely to 
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suffer from ADRs and users with ADRs often stop therapy and therefore have a lower chance 

of being seen while on therapy.
284, 285

  Unfortunately, without duration of use metrics, it 

remains difficult to assess the effects of prevalent user bias on study results.  Indeed, it is 

unclear if these biases are of concern in pharmacogenomic studies.
286, 287

  Additional work is 

needed to assess whether selection bias requires more consideration in pharmacogenomic 

research and to assess possible advantages of alternative designs, such as active comparator 

designs (whereby the control group contains participants using a different class of 

medications with similar indications to the medication of interest) or new user designs 

(whereby prevalent users are excluded).   Moreover, medication inventories may be 

associated with non-negligible measurement error.  For example, while Smith et al. reported 

good agreement between thiazide use measured using medication inventories and serum 

thiazide measurements, specificity remained moderate. 
57

  

 Given the challenges associated with assembling an adequately powered 

pharmacogenomics study, electronic medical records (EMRs) represent a potential untapped 

resource that may merit evaluation.  Strengths of EMRs include the potential to provide a 

more complete medication history, which could enable sensitivity analyses examining 

variables such as medication dose and duration of use.  Furthermore, consortia such as 

eMERGE have demonstrated the feasibility of linking EMRs to genetic data for use in 

genetic research,
386

 and have successfully identified genetic variants modifying drug 

response.
387

  However, EMRs have limitations.  Investigators using EMR data cannot control 

participant recruitment, timing and accuracy of data collection, or population 

representativeness.
388

  Considering ECG research specifically, cohort studies administer 

ECGs to all participants at study visits, whereas EMRs may capture ECGs for patients with 
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medical indications, providing an inherently different population.  EMRs therefore have the 

potential to greatly advance pharmacogenomic research but warrant further evaluation. 

In conclusion, our findings suggest that additional work is needed to fully elucidate 

potential pharmacogenomic effects influencing the thiazide-QT relationship.  Our suggestive 

results support a possible role of genetics in modifying the association between thiazides and 

QT.  However, these findings can inform the biology of thiazide-induced QT-prolongation 

and do not preclude the possibility of common variants with small effects or rare variants 

with larger effects.  Future work that leverages larger sample sizes, such as those available in 

EMRs, and innovative statistical methods to validate these suggestive findings is needed.  

The FDA considers further regulation of drugs that prolong QT by as little as 5 ms, a small 

increment easily achieved by the combination of genetic and pharmaceutical effects,
148, 282

 

making it critical that we unravel the complex etiology of drug-induced QT prolongation.
44

  

Pharmacogenomics remain a promising avenue for understanding variability in drug response 

and for utilizing genetics to improve public health but innovative solutions are needed to 

overcome inherent challenges. 
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Tables and Figures 

Table 17. Study Population Characteristics of 25 Contributing Study Populations 

Population Nexposed Ntotal 

QT in 

ms, 

mean 

(SD) 

QRS in 

ms, 

mean 

(SD) 

JT in 

ms, 

mean 

(SD) 

Age in 

years, 

mean (SD) 

Female, 

% 

European 

Descent 

       

AGES 435 2,256 405 (34) 90 (10) 316 (33) 75 (5) 64.2 

ARIC 1,449 8,567 399 (29) 91 (10) 308 (29) 54 (6) 52.6 

CHS 1,003 3,004 414 (32) 88 (10) 322 (30) 72 (5) 62.5 

ERF 29 1,792 398 (28) NA NA 48 (14) 59.0 

FHS 83 3,168 415 (30) 88 (10) 328 (30) 40 (9) 52.5 

H2000 104 1,973 389 (30) NA NA 50 (11) 52.0 

Health ABC 217 1,560 414 (32) 90 (11) 324 (32) 74 (3) 49.4 

MESA 453 2,216 412 (29) 93 (9) 320 (29) 62 (10) 52.1 

NEO 609 5,366 406 (29) 93 (10) 313 (29) 56 (6) 47.0 

PROSPER 1,175 4,556 414 (36) 94 (11) 320 (35) 75 (3) 47.0 

RS I 523 4,805 397 (29) 97 (11) 300 (28) 69 (9) 60.2 

RS II 161 1,889 403 (28) 98 (11) 305 (28) 65 (8) 56.6 

RS III 93 1,950 401 (26) 98 (11) 304 (26) 56 (6) 54.1 

WHI GARNET 431 1,981 401 (29) 86 (9) 315 (29) 66 (7) 100 

WHI MOPMAP 268 1,383 402 (30) 86 (8) 316 (30) 63 (7) 100 

WHI WHIMS 1,106 5,135 401 (30) 86 (9) 315 (29) 68 (6) 100 

Summary 8,139 51,601      

African American        

ARIC 916 2,169 400 (33) 90 (10) 310 (32) 53 (6) 62.3 

CHS 351 666 409 (35) 88 (11) 317 (36) 73 (6) 64.4 

Health ABC 268 1,151 411 (35) 88 (11) 322 (34) 73 (3) 57.6 

JHS 463 1,862 410 (32) 92 (10) 319 (30) 50 (12) 60.9 

MESA 467 1,464 410 (32) 91 (10) 319 (31) 62 (10) 54.4 

WHI SHARe 1,661 4,170 401 (34) 85 (9) 316 (33) 61 (7) 100 

Summary 4,215 11,482      

Hispanic/Latino        

HCHS/SOL 941 12,024 416 (28) 91 (10) 325 (29) 46 (14) 59.5 

MESA 211 1,316 409 (30) 91 (10) 318 (30) 61 (10) 51.8 

WHI SHARe 224 1,776 401 (30) 86 (9) 316 (30) 60 (6) 100 

Summary 1,376 15,116      

AGES, Age, Gene/Environment Susceptibility – Reykjavik Study; ARIC, Atherosclerosis Risk in 

Communities; CHS, Cardiovascular Health Study; ERF, Erasmus Rucphen Family Study; FHS, 

Framingham Heart Study; GARNET, Genome-wide Association Research Network into Effects of 

Treatment; HCHS/SOL, Hispanic Community Health Study/Study of Latinos; Health ABC, Health, Aging, 

and Body Composition Study; JHS, Jackson Heart Study; JT, JT interval; MESA, Multi-Ethnic Study of 

Atherosclerosis; MOPMAP, Modification of Particulate Matter-Mediated Arrhythmogenesis in 

Populations; NEO, the Netherlands Epidemiology of Obesity; Nexposed, Number of participants exposed to 

thiazides; Ntotal, Total number of participants in study population after exclusions; PROSPER, Prospective 

Study of Pravastatin in the Elderly at Risk; QRS, QRS interval; QT, QT interval; RS, Rotterdam Study; SD, 

Standard deviation; SHARe, The SNP Health Association Resource; WHI, Women’s Health Initiative; 

WHIMS, the WHI Memory Study 
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Table 18.  Description of Medication Assessment Methods for 14 Participating Studies 

Included in the Pharmacogenomic Analysis of QT, QRS, and JT in N=78,199 Participants 

Study 

Method of Medication 

Assessment* Time Period 

Number of Visits 

Included in 

Analysis 

AGES Medication Inventory At time of visit 2 

ARIC Medication Inventory 2 weeks before visit ≤4 

CHS Medication Inventory 2 weeks before visit up to 10 

ERF Medication Inventory At time of visit 1 

FHS Medication Inventory At time of visit 1 

Health ABC Medication Inventory 2 weeks before visit 1 

Health 2000 Medication Inventory 1 week before visit 1 

HCHS/SOL Medication Inventory 4 weeks before visit 1 

JHS Medication Inventory At time of visit 1 

MESA Medication Inventory 2 weeks before visit 2 

NEO Medication Inventory At time of visit 1 

PROSPER Medication Inventory At time of visit 1 

RS1 Pharmacy database Prescriptions filled ≤ 30 

days before visit 

5 

RS2 Pharmacy database Prescriptions filled ≤ 30 

days before visit 

3 

RS3 Pharmacy database Prescriptions filled ≤ 30 

days before visit 

1 

WHI GARNET Medication Inventory 2 weeks before visit ≤4 

WHI MOPMAP Medication Inventory 2 weeks before visit ≤4 

WHI WHIMS Medication Inventory 2 weeks before visit ≤4 

WHI CT SHARe Medication Inventory 2 weeks before visit ≤4 

*Medication inventory defined as a structured interview where trained staff member reviewed 

and recorded all medications with participant.   

AGES, Age, Gene/Environment Susceptibility – Reykjavik Study; ARIC, Atherosclerosis Risk 

in Communities; CHS, Cardiovascular Health Study; ERF, Erasmus Rucphen Family Study; 

FHS, Framingham Heart Study; GARNET, Genome-wide Association Research Network into 

Effects of Treatment; Health ABC, Health, Aging, and Body Composition Study;  HCHS/SOL, 

Hispanic Community Health Study/Study of Latinos; JHS, Jackson Heart Study; MESA, Multi-

Ethnic Study of Atherosclerosis; MOPMAP, Modification of Particulate Matter-Mediated 

Arrhythmogenesis in Populations; NEO, the Netherlands Epidemiology of Obesity; PROSPER, 

Prospective Study of Pravastatin in the Elderly at Risk; RS, Rotterdam Study; SHARe, The SNP 

Health Association Resource; WHI CT, Women’s Health Initiative Clinical Trial; WHIMS, the 

WHI Memory Study 
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Table 19.  ECG Measurement Methods for 14 Participating Studies Included in the 

Pharmacogenomic Analysis of QT, QRS, and JT in N=78,199 Participants 

Study ECG Machine Measurement System  

AGES Marquette / MAC 5000 Resting ECG  Marquette 12SL 

ARIC Marquette MAC PC Marquette 12SL 

CHS Marquette MAC PC Marquette 12SL 

ERF ACTA electrocardiographs (EASOTE, 

Florence, Italy) 

MEANS
389, 390

 

FHS GE MAC 5000 Digital calipers 

Health ABC Marquette MAC PC Marquette 12SL 

Health 2000 Marquette MAC 5000 Custom-made software 

HCHS/SOL GE MAC 1200 Marquette 12SL 

JHS Marquette MAC PC MEANS
389, 390

 

MESA Marquette MAC 1200 Marquette 12SL 

NEO University of Glasgow University of Glasgow 

PROSPER University of Glasgow University of Glasgow 

RS1 ACTA electrocardiographs (EASOTE, 

Florence, Italy) 

MEANS
389, 390

 

RS2 ACTA electrocardiographs (EASOTE, 

Florence, Italy) 

MEANS
389, 390

 

RS3 ACTA electrocardiographs (EASOTE, 

Florence, Italy) 

MEANS
389, 390

 

WHI GARNET Marquette MAC PC Marquette 12SL 

WHI MOPMAP Marquette MAC PC Marquette 12SL 

WHI WHIMS Marquette MAC PC Marquette 12SL 

WHI CT Share Marquette MAC PC Marquette 12SL 

AGES, Age, Gene/Environment Susceptibility – Reykjavik Study; ARIC, Atherosclerosis Risk in 

Communities; CHS, Cardiovascular Health Study; ERF, Erasmus Rucphen Family Study; FHS, 

Framingham Heart Study; GARNET, Genome-wide Association Research Network into Effects 

of Treatment; Health ABC, Health, Aging, and Body Composition Study;  HCHS/SOL, Hispanic 

Community Health Study/Study of Latinos; JHS, Jackson Heart Study; MESA, Multi-Ethnic 

Study of Atherosclerosis; MOPMAP, Modification of Particulate Matter-Mediated 

Arrhythmogenesis in Populations; NEO, the Netherlands Epidemiology of Obesity; PROSPER, 

Prospective Study of Pravastatin in the Elderly at Risk; RS, Rotterdam Study; SHARe, The SNP 

Health Association Resource; WHI CT, Women’s Health Initiative Clinical Trial; WHIMS, the 

WHI Memory Study 
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Table 20.  Genotyping Characteristics for the 14 Studies Included in the Pharmacogenomic Analysis of QT, QRS, and JT in N=78,199 

Participants 

Study Genotyping array 

Genotype 

calling 

algorithm 

Sample 

call 

rate 

filter 

SNP 

call 

rate 

filter 

SNP 

MAF 

filter 

HWE 

p-

value 

filter 

Imputation 

software 

Imputation 

Platform 

N. 

autoso

mal 

SNPs 

passing 

QC 

AGES Ilumina Hu370CNV BeadStudio >95% >97% <1% 10
-6

 MACHv.1.16 HapMap2 308,340 

ARIC 
Affymetrix 6.0 Birdseed <95% <90% <1% <10

-5
 MACH v1.16 

HapMap2 Build 

36 
669,450 

CHS Illumina 370CNV GenomeStudio <95% <97% NA <10
-5

 BIMBAM 0.99 HapMap2 306,655 

ERF 
Illumina 6K/318K/370K Bead Studio < 98% < 98% < 1% <10

-6
 

MACH 

v 1.0.15 
HapMap2 487,573 

FHS Affymetrix 500K + 50 

MIP 
BRLMM <97% <97% <1% <10

-6
 

MACH 

v 1.0.15 
HapMap2 378,163 

Health ABC Illumina 1M Beadstudio <97% <97% <1% <10
-6

 MACH v1.16 HapMap2 914,263 

Health 2000 Illumina Human610-

Quad BeadChip 
GenCall <95% <95% <1% <10

-6
 MACH HapMap2 558,388 

HCHS/SOL Illumina Omni 2.5M + 

Custom 
GenomeStudio <98% <98% NA <10

-5 
IMPUTE2 

1000 Genomes 

Phase 3 

2,294,0

32 

JHS 

Affymetrix 6.0 Birdseed <95% <95% NA NA 
IMPUTE 

v2.1.0 

HapMap 

P2.r22.b36, 

CEU+YRI 

868,969 

MESA 
Affymetrix 6.0 Birdseed <95% <90% <1% <10

-4
 

IMPUTE 

v2.1.0 
HapMap2 730,000 

NEO Illumina 

HumanCoreExome-

24v1_A Beadchip 

GenCall <98% <98% NA <10E-5 IMPUTE2 
1000 Genomes 

2011 v3 
361,046 

PROSPER 
Illumina 660K Bead studio <90% 

<97.5

% 
NA <10

-6
 MACH v1.15 HapMap2 557,192 

RS1 Illumina  550k, 

 

BeadStudio 

 
<98% <98% <1% <10

-6
 

MACH1 v 

1.0.15, 
HapMap2 512,349 

RS2 Illumina 550K Duo, 

610KQuad 
GenomeStudio <98% <95% <1% <10

-6
 

MACH 1 v 

1.0.16 
HapMap2 537,405 

RS3 Illimina 610 Quad Beadstudio <98% <95% <1% <10E-6 MACH v1.0.16 HapMap2 466,389 

WHI 

GARNET 

Illumina Human Omni1-

Quad v1-0 B 

BeadStudio v3.1.

3.0 
NA ≤98% NA <10E-4 

BEAGLE 

v3.3.1 
1000G v3 3/2012 NA 

WHI Affymetrix Axiom Birdseed NA ≤90% <0.5 <10E-6 MaCH Hapmap 2 Build NA 



 

 

1
1
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MOPMAP Genome-Wide Human 

CEU I 

% minimac 36 

WHI 

WHIMS 

Human OmniExpress 

Exome-8v1_B Genome-

Wide Human 

Birdseed NA ≤98% <1% <10E-4 
MaCH 

minimac 

Hapmap 2 Build 

36 
NA 

WHI CT 

SHARe 

Affymetrix 

GeneChip 

SNP Array 6.0 

Birdseed NA ≤95% <1% <10
-6 

MaCH v1.0.16 
Hapmap 2 Build 

36 (1:1 CEU:YRI) 
NA 

AGES, Age, Gene/Environment Susceptibility – Reykjavik Study; ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; ERF, 

Erasmus Rucphen Family Study; FHS, Framingham Heart Study; GARNET, Genome-wide Association Research Network into Effects of Treatment; 

Health ABC, Health, Aging, and Body Composition Study;  HCHS/SOL, Hispanic Community Health Study/Study of Latinos; JHS, Jackson Heart Study; 

MESA, Multi-Ethnic Study of Atherosclerosis; MOPMAP, Modification of Particulate Matter-Mediated Arrhythmogenesis in Populations; NEO, the 

Netherlands Epidemiology of Obesity; PROSPER, Prospective Study of Pravastatin in the Elderly at Risk; RS, Rotterdam Study; SHARe, The SNP 

Health Association Resource; WHI CT, Women’s Health Initiative Clinical Trial; WHIMS, the WHI Memory Study 
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Table 21.  Statistical Analysis Methods for 14 Participating Studies Included in the 

Pharmacogenomic Analysis of QT, QRS, and JT in N=78,199 Participants 

Study 

Statistical Analysis (Linear 

Regression, Mixed Model, GEE) 

GWAS Statistical Analysis 

Software  

AGES GEE R bosswithdf 

ARIC GEE R bosswithdf 

CHS GEE R bosswithdf 

ERF Mixed Model GenABEL/ProbABEL 

FHS GEE geepack 

Health ABC GEE R bosswithdf 

Health 2000 Linear Regression ProbABEL v.0.1-6 

HCHS/SOL Mixed Model R 

JHS GEE R bosswithdf 

MESA GEE R bosswithdf 

NEO Linear Regression Probabel v0.4.3 

PROSPER Linear Regression Probabel v0.4.3 

RS1 GEE R bosswithdf 

RS2 GEE R bosswithdf 

RS3 Linear Regression Probabel v0.4.3 

WHI GARNET GEE R bosswithdf 

WHI MOPMAP GEE R bosswithdf 

WHI WHIMS GEE R bosswithdf 

WHI CT Share GEE R bosswithdf 

AGES, Age, Gene/Environment Susceptibility – Reykjavik Study; ARIC, Atherosclerosis Risk in 

Communities; CHS, Cardiovascular Health Study; ERF, Erasmus Rucphen Family Study; FHS, 

Framingham Heart Study; GARNET, Genome-wide Association Research Network into Effects 

of Treatment; Health ABC, Health, Aging, and Body Composition Study;  HCHS/SOL, Hispanic 

Community Health Study/Study of Latinos; JHS, Jackson Heart Study; MESA, Multi-Ethnic 

Study of Atherosclerosis; MOPMAP, Modification of Particulate Matter-Mediated 

Arrhythmogenesis in Populations; NEO, the Netherlands Epidemiology of Obesity; PROSPER, 

Prospective Study of Pravastatin in the Elderly at Risk; RS, Rotterdam Study; SHARe, The SNP 

Health Association Resource; WHI CT, Women’s Health Initiative Clinical Trial; WHIMS, the 

WHI Memory Study 
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Table 22. Loci with Suggestive Evidence of Association with the Thiazide-SNP Interaction Effect on QT 

Interval 

Locus SNP Chr Position
a
 CA CAF 

Interaction Effect in 

ms (SE) P Phet 

European Descent         

KIAA2013 rs17367934 1 11890791 A 0.89 2.4 (0.5)  2x10
-6 

0.9 

SLC14A2 rs4890550 18 41409189 C 0.44 -1.4 (0.3)  3x10
-6 

0.01 

RPS29 rs10143493 14 47999650 A 0.01 -10.6 (2.3)  3x10
-6 

0.4 

NELL1 rs12225793 11 21057283 T 0.12 2.3 (0.5)  4x10
-6 

1.0 

STC2 rs10079004 5 172704698 A 0.71 -1.5 (0.3)  4x10
-6 

0.4 

LCLAT1 rs7608507 2 30447424 A 0.75 1.6 (0.3)  4x10
-6 

0.7 

PPP1R3A rs13223427 7 113199332 T 0.56 1.4 (0.3)  4x10
-6 

0.02 

African American         

ZBTB16 rs10789991 11 113424299 T 0.03 12.3 (2.4)  5x10
-7 

0.6 

DNAH8 rs862433 6 38968057 A 0.25 -2.6 (0.5)  7x10
-7 

0.2 

Intergenic rs9376483 6 140352934 T 0.94 7.2 (1.4)  7x10
-7 

0.5 

CASP8AP2 rs7753194 6 90597484 A 0.02 -11.4 (2.4)  3x10
-6 

0.2 

EBF1 rs11135035 5 157833407 A 0.41 2.1 (0.5)  4x10
-6 

0.9 

LAMA4 rs6926485 6 112630302 T 0.64 2.4 (0.5)  5x10
-6 

0.5 

Hispanic/Latino         

SPDYA rs12475612 2 28883510 T 0.48 -3.5 (0.7)  1x10
-6 

0.9 

BTBD9 rs1950398 6 38666897 T 0.97 9.6 (2.0)  2x10
-6 

0.05 

TDRP rs6558894 8 480495 C 0.14 -4.9 (1.0)  2x10
-6 

0.3 

COLCA2 rs10749974 11 110696967 A 0.09 -6.0 (1.3)  3x10
-6 

0.2 

CRYGGP rs17868255 2 51884417 A 0.97 10.3 (2.2)  3x10
-6 

0.5 

RYR3 rs16968694 15 31376213 A 0.18 4.5 (1.0)  3x10
-6 

1.0 

Trans-Ethnic         

RGSL1 rs2765279 1 180693520 T 0.28 1.4 (0.3)  3x10
-7

 0.4 

ZBTB16 rs10789991 11 113424299 T 0.03 12.3 (2.4)  5x10
-7 

0.6 

PPP1R3A rs17619887 7 113142601 A 0.47 1.2 (0.3)  2x10
-6 

0.07 

KIAA2013 rs17367934 1 11890791 A 0.89 2.3 (0.5)  2x10
-6 

1.0 

LCLAT1 rs6756908 2 30446501 A 0.65 1.3 (0.3)  2x10
-6 

0.5 

FAR1 rs7130476 11 13711632 C 0.90 2.0 (0.4)  3x10
-6 

0.5 

CASP8AP2 rs7753194 6 90597484 A 0.02 -11.4 (2.4)  3x10
-6

 0.2 

SMARCA2 rs1886261 9 2163590 A 0.75 1.5 (0.3)  3x10
-6

 0.9 

ZKSCAN8 rs13205911 6 28232093 T 0.09 -2.5 (0.5)  5x10
-6 

0.6 
a
Build 36 Base-Pair Position 

CA, Coded allele; CAF, Coded allele frequency; Chr, Chromosome; P, P-value; Phet, P-value of 

heterogeneity; SE, Standard error; SNP, Single nucleotide polymorphism 
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Table 23.  P-value of Association for Thiazide-SNP Interaction Effect on QT Interval in European 

Descent Populations at 35 Loci Previously Associated with QT Interval in Main Effects Genome-Wide 

Association Studies
209

 

Index SNP* Locus CA 

Main Effect in ms 

(SE)
209

  

Interaction Effect in 

ms (SE) P 

rs10040989  GFRA3  A -0.85 (0.13) 0.87 (0.44) 0.05 

rs1052536  LIG3  T -0.98 (0.10) -0.56 (0.31) 0.07 

rs10919070  ATP1B1  A 1.68 (0.14) -0.14 (0.44) 0.7 

rs11153730  SLC35F1-PLN  T -1.65 (0.10) -0.15 (0.30) 0.6 

rs11779860  LAPTM4B  T 0.61 (0.10) 0.16 (0.31) 0.6 

rs12143842  NOS1AP  T 3.5 (0.11) 0.29 (0.35) 0.4 

rs1296720  CREBBP  A -0.83 (0.13) 0.57 (0.40) 0.2 

rs12997023  SLC8A1  T 1.69 (0.22) 0.09 (0.72) 0.9 

rs1396515  KCNJ2  C -0.98 (0.09) 0.02 (0.30) 0.9 

rs16936870  NCOA2  A 0.99 (0.16) 1.06 (0.51) 0.04 

rs174583  FEN1-FADS2  T -0.57 (0.09) 0.30 (0.32) 0.3 

rs17784882  C3ORF75  A -0.54 (0.10) -0.18 (0.30) 0.6 

rs1805128  KCNE1  T 7.42 (0.85) -1.16 (1.21) 0.3 

rs1961102  AZIN1  T 0.57 (0.10) -0.41 (0.33) 0.2 

rs2072413  KCNH2  T -1.68 (0.11) 0.26 (0.34) 0.4 

rs2273905  ANKRD9  T 0.61 (0.09) -0.20 (0.34) 0.5 

rs2298632  TCEA3  T 0.7 (0.09) -0.11 (0.31) 0.7 

rs2363719  SLC4A4  A 0.97 (0.16) 0.33 (0.50) 0.5 

rs246185  MKL2  T -0.72 (0.10) -0.96 (0.35) 0.005 

rs246196  CNOT1  T 1.73 (0.11) -0.05 (0.34) 0.9 

rs2485376  GBF1  A -0.56 (0.10) 0.13 (0.32) 0.7 

rs295140  SPATS2L  T 0.57 (0.09) -0.40 (0.30) 0.2 

rs3026445  ATP2A2  T -0.62 (0.09) -0.29 (0.31) 0.4 

rs3105593  USP50-TRPM7  T 0.66 (0.10) 0.25 (0.30) 0.4 

rs3857067  SMARCAD1  A 0.51 (0.08) 0.05 (0.30) 0.9 

rs6793245  SCN5A-SCN10A  A -1.12 (0.10) -0.25 (0.33) 0.4 

rs7122937  KCNQ1  T 1.93 (0.12) -0.38 (0.40) 0.3 

rs728926  KLF12  T 0.57 (0.10) -0.13 (0.33) 0.7 

rs735951  LITAF  A -1.15 (0.10) 0.29 (0.33) 0.4 

rs7561149  TTN-CCDC141  T 0.52 (0.09) 0.10 (0.30) 0.7 

rs7765828  GMPR  C -0.55 (0.09) 0.03 (0.31) 0.9 

rs846111  RNF207  C 1.73 (0.13) 0.27 (0.38) 0.5 

rs938291  SP3  C -0.53 (0.09) 0.26 (0.31) 0.4 

rs9892651  PRKCA  T 0.74 (0.10) -0.04 (0.30) 0.9 

rs9920  CAV1  T -0.79 (0.14) -0.44 (0.51) 0.4 

*Index SNP as identified in a GWAS of QT main effects in European descent populations 

CA, Coded allele; P, P-value; SE, Standard error 
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Table 24. Loci with Suggestive Evidence of Modifying the Thiazide-SNP Interaction Effect on QRS 

Interval 

Locus SNP Chr Position* CA CAF 

Interaction 

Effect in ms 

(SE) P Phet 

European Descent         

L3MBTL2 rs139461 22 39941406 T 0.34 0.8 (0.2)  2x10
-6 

0.8 

CD200R1 rs9864286 3 114147601 A 0.92 1.4 (0.3)  2x10
-6 

0.7 

EDG1 rs10874488 1 101640388 A 0.95 2.1 (0.4)  3x10
-6 

0.6 

HM13 rs6088592 20 29615942 A 0.15 -2.4 (0.5)  4x10
-6 

0.2 

African American         

DDX1 rs2080798 2 15789836 T 0.76 -1.4 (0.3)  1x10
-6 

0.1 

FAM84A rs6711956 2 14204168 T 0.53 1.2 (0.2)  2x10
-6 

0.4 

GAP43 rs7638855 3 116617968 T 0.08 -2.8 (0.6)  2x10
-6 

0.2 

GUSBP1 rs7706102 5 21438324 C 0.92 3.1 (0.7)  3x10
-6 

0.3 

SV2B rs886144 15 89518356 T 0.47 -1.1 (0.2)  3x10
-6 

0.5 

SLC35B3 rs850177 6 8517446 T 0.05 -3.3 (0.7)  3x10
-6 

0.8 

RFP4AP7 rs4363212 8 50466496 A 0.94 2.5 (0.5)  4x10
-6

 1.0 

KCNQ3 rs2469514 8 133218116 T 0.83 1.5 (0.3)  4x10
-6

 0.3 

ZCWPW2 rs6777813 3 28527314 A 0.36 1.1 (0.2)  4x10
-6

 0.7 

FAM65B rs10946735 6 24980918 A 0.16 -1.5 (0.3)  4x10
-6

 0.9 

RASD2 rs2009681 22 34306117 A 0.76 1.3 (0.3)  5x10
-6

 1.0 

Hispanic/Latino         

AK2 rs11591185 1 33274771 A 0.08 3.5 (0.7)  9x10
-7 

0.04 

PKP2 rs12578228 12 33030528 T 0.10 -3.1 (0.7)  2x10
-6 

0.4 

TRPC7 rs12658104 5 135939584 A 0.03 5.2 (1.1)  2x10
-6 

0.4 

GATA3 rs10508356 10 8603852 T 0.42 1.7 (0.4)  3x10
-6 

0.1 

MYRIP rs4557094 3 39690549 T 0.74 2.0 (0.4)  3x10
-6 

0.4 

TOX2 rs8120207 20 41928841 T 0.04 -3.7 (0.8)  4x10
-6 

0.2 

PIGM rs2185214 1 158243375 A 0.88 -2.7 (0.6)  5x10
-6

 0.5 

PITX2 rs4834601 4 112190427 A 0.39 1.8 (0.4)  5x10
-6

 0.6 

Trans-Ethnic         

GAP43 rs7638855 3 116617968 T 0.07 -2.7 (0.5)  2x10
-7

 0.6 

CSMD1 rs17066601 8 3463355 T 0.08 3.0 (0.6)  7x10
-7 

0.09 

CD200R1 rs16860242 3 114125777 A 0.88 1.0 (0.2)  2x10
-6 

0.4 

TSGA10 rs720228 2 99070979 A 0.42 0.6 (0.1)  2x10
-6 

0.5 

ASCL1 rs2176822 12 102115378 T 0.94 -1.3 (0.3)  3x10
-6 

0.6 

DISC1 rs16856677 1 230389995 T 0.20 -1.2 (0.3)  4x10
-6 

0.06 

EDN1 rs7767845 6 12536024 T 0.97 2.3 (0.5)  4x10
-6

 0.5 

*Build 36 Base-Pair Position 

CA, Coded allele, CAF, Coded allele frequency; Chr, Chromosome; P, P-value; Phet, P-value of 

heterogeneity; SE, Standard error; SNP, Single nucleotide polymorphism 
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Table 25. Loci with Suggestive Evidence of Modifying the Thiazide-SNP Interaction Effect on JT Interval 

Locus SNP 

Ch

r Position* CA CAF 

Interaction 

Effect in ms 

(SE) P Phet 

European Descent         

LCLAT1 rs6733641 2 30444156 T 0.27 -2.0 (0.4)  1x10
-6 

0.2 

TEDDM1 rs171980 1 180693220 A 0.20 1.9 (0.4)  3x10
-6 

0.4 

ZNF659 rs6806788 3 21450644 T 0.07 3.0 (0.6)  3x10
-6 

0.7 

FZD8 rs1219593 10 36587628 T 0.83 -2.0 (0.4)  4x10
-6 

0.9 

NELL1 rs7106157 11 21035410 A 0.55 1.5 (0.3)  4x10
-6

 0.2 

African American         

AP4E1 rs7176764 15 49045259 A 0.04 7.3 (1.5)  2x10
-6 

0.4 

LAMA4 rs6926485 6 112630302 T 0.64 -2.2 (0.5)  3x10
-6 

0.4 

ASH1L rs11264369 1 153626454 T 0.72 2.5 (0.5)  4x10
-6 

0.9 

DCC rs7236483 18 49367477 A 0.11 3.5 (0.8)  4x10
-6 

0.6 

Hispanic/Latino         

GALNT13 rs17553946 2 155055407 A 0.23 2.4 (0.5)  9x10
-7 

0.6 

NFKBIZ rs1672383 3 103114652 T 0.80 -2.4 (0.5)  3x10
-6 

0.7 

SH3BGRL2 rs12208969 6 80370016 T 0.73 2.0 (0.4)  4x10
-6 

0.2 

SMARCA2 rs12339569 9 2117762 T 0.96 -4.7 (1.0)  5x10
-6 

0.2 

TGFBR2 rs7632716 3 30332431 T 0.83 -2.3 (0.5)  5x10
-6 

0.6 

Trans-Ethnic         

KCNIP4 rs12648787 4 21225700 C 0.67 -1.3 (0.2)  3x10
-7

 0.6 

SEL1L rs17116425 14 81712421 A 0.89 -1.9 (0.4)  1x10
-6 

0.8 

ECEL1 rs2741279 2 233053235 T 0.49 -1.3 (0.3)  1x10
-6 

0.3 

LCA5 rs1485371 6 80235061 T 0.47 -1.1 (0.2)  1x10
-6 

0.1 

AP4E1 rs7176764 15 49045259 A 0.04 7.3 (1.5)  2x10
-6 

0.4 

IMPG1 rs6905415 6 76949519 A 0.09 2.0 (0.4)  3x10
-6 

0.8 

DPP10 rs9308717 2 116212012 A 0.48 1.1 (0.2)  3x10
-6

 0.1 

*Build 36 Base-Pair Position 

CA, Coded allele, CAF, Coded allele frequency; Chr, Chromosome; P, P-value; Phet, P-value of 

heterogeneity; SE, Standard error; SNP, Single nucleotide polymorphism 
 

 

Table 26. Loci with Suggestive Evidence Modifying the Effect Thiazide Diuretics on QRS and JT 

Intervals After Cross-Phenotype Meta-Analysis 

Locus SNP Chr Position
a 

CA CAF P 

Univariate P-

value 

QRS JT 
European Americans       

PIK3R6 rs1295230 17 8682305 T 0.02 3x10
-6 

0.008 0.001 

African American       

ADGRB3 rs6931354 6 69527128 A 0.21 1x10
-7 

0.005 0.0002 

ADCY8 rs10108730 8 131767803 T 0.79 2x10
-6 

1x10
-5 

0.0003
 

PREX1 rs8119517 20 46464282 A 0.94 3x10
-6 

0.0005 0.02
 

CDH13 rs11649358 16 81415652 A 0.75 5x10
-6 

9x10
-6 

0.001
 

Hispanic/Latino        

AK2 rs11591185 1 33274771 A 0.07 2x10
-6 

7x10
-7 

3x10
-5 

ASS1P14 rs12578228 12 33030528 T 0.10 2x10
-6 

2x10
-6 

2x10
-5 

GALNT13 rs17553946 2 155055407 A 0.23 4x10
-6 

0.005 9x10
-7 

a
Build 36 Base-Pair Position 

CA, Coded allele; CAF, Coded allele frequency; Chr, Chromosome; JT, JT interval; P, P-value; 

QRS, QRS interval; SE, Standard error; SNP, Single nucleotide polymorphism 
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Table 27. Results of Gene Enrichment Analysis with MAGMA for the Association with the Interactive 

Effect of Thiazide Diuretics on QRS Interval Among African Americans (N=11,482) 

Gene Chr Start BP Stop BP N SNPs P FDR 

CNTRL 9 122885395 122981207 69 1x10
-6

 0.01 

CPN1 10 101790555 101836632 33 2x10
-6

 0.01 

FAM65B 6 24946066 24990562 55 2x10
-6

 0.01 

RAB14 9 122978737 123008913 31 5x10
-6

 0.02 

ISY1 3 130329425 130367719 7 1x10
-5

 0.03 

NELL1 11 20642712 21555077 1227 3x10
-5

 0.04 

BP, Basepair; Chr, Chromosome; FDR, False Discovery Rate; N SNPs, Number of SNPs from Analysis 

within Gene Interval; P, P-value 

 

Table 28. Gene-Sets with Enrichment for Genotype-Thiazide Interaction Effects Following Analysis with 

MAGMA 

Trait Population Gene-Set P FDR 

QT Hispanic/Latino Nucleotide Binding 5x10
-6 

0.004 

  Metal Ion Binding 6x10
-6 

0.004 

  tRNA Adenine-N1 Methyltransferase Activity 6x10
-5 

0.03 

  Transcription Coactivator Activity 8x10
-5 

0.03 

  Transcriptional Activity of SMAD2, SMAD3, SMAD4,   

     Heterotrimer 
0.0001 0.03 

  Zinc Ion Binding 0.0002 0.04 

  Other RNA Binding Protein 0.0002 0.04 

  Insulin-like Growth Factor-2 mRNA Binding Proteins  

     (IGF2BPS/IMPS/VICKZS) 
0.0003 0.05 

 Trans-Ethnic General RNA Polymerase II Transcription 4x10
-6 

0.006 

  Transcription 4x10
-5 

0.03 

JT African American Transcription Factor TFIID Complex 7x10
-5 

0.05 

  Aminoacyl-tRNA Synthetase Multienzyme Complex 0.0001 0.05 

  tRNA Aminoacylation for Protein Translation 0.0001 0.05 

  Transcription Factor TFTC Complex 0.0001 0.05 

 Trans-Ethnic Transcription 3x10
-5 

0.03 

  General RNA Polymerase II Transcription Factor 

Activity 
4x10

-5 
0.03 

FDR, False discovery rate; JT, JT interval; P, P-value; QT, QT interval 
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Figure 18.  Quantile-Quantile Plots of P-values for Thiazide-SNP Interaction Estimates for QT Interval, QRS Interval, and JT Interval Analyses 

After Inverse-Variance Weighted Meta-Analysis in METAL 
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Figure 19.  Manhattan plots of P-values for thiazide-SNP interaction 

estimates for QT interval analyses after fixed effects meta-analysis among 

European descent populations, African American populations, 

Hispanic/Latino populations, and all populations (trans-ethnic) 

On each plot, genome wide significance (P < 5x10
-8

) and suggestive 

significance (P < 5x10
-6

) are denoted with dashed lines. 
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Figure 20.  Manhattan Plots of Bayes Factors for Thiazide-SNP Interaction 

Estimates After Bayesian Trans-Ethnic Meta-Analysis in MANTRA Across 

European Descent, African American, and Hispanic/Latino Populations 

Manhattan plots of Bayes factors for thiazide-SNP interaction estimates after 

Bayesian trans-ethnic meta-analysis in MANTRA across European descent, African 

American, and Hispanic/Latino populations.  On each plot, genome-wide 

significance (BF > 10
6
) and suggestive significance (BF > 10

4
) are denoted with 

lines. 
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Figure 21.  Manhattan Plots of P-values for Thiazide-SNP Interaction Estimates for QRS, and JT 

Intervals 

 

Manhattan plots of P-values for thiazide-SNP interaction estimates for QRS and JT interval analyses after 

fixed effects meta-analysis among European descent populations, African American populations, 

Hispanic/Latino populations, and all populations (trans-ethnic).  On each plot, genome-wide significance 

(P < 5x10
-8

) and suggestive significance (P < 5x10
-6

) are denoted with dashed lines 



 

127 

   

 

 

  

Figure 22.  Manhattan Plots of P-values for Thiazide-SNP 

Interaction Estimates After Cross-Phenotype Meta-

Analysis (QRS Interval, JT Interval) 

 

Manhattan plots of P-values thiazide-SNP interaction estimates 

after cross-phenotype meta-analysis (QRS interval, JT interval) 

using aSPU among European descent populations, African 

American populations, and Hispanic/Latino populations.  On 

each plot, genome wide significance (P < 5x10
-8

) and 

suggestive significance (P < 5x10
-6

) are denoted with dashed 

lines. 
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Figure 23.  Quantile-Quantile Plots of P-values for Thiazide-SNP Interaction 

Estimates After Cross-Phenotype Meta-Analysis with aSPU in European Descent, 

African American, and Hispanic/Latino Populations 
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Figure 24.  Statistical Power of a Simulated Pharmacogenomics Study of QT 

The following assumptions were used for the calculations: 2 serial visits measuring 

electrocardiograms (ECGs) and drug exposure, N=50,000 participants, a single-nucleotide 

polymorphism (SNP) minor allele frequency (MAF) of 5% or 25%, and the Nexposed = 8,100.  

Simulation analyses were run using only the baseline visit (cross-sectional) and a 

longitudinal model.  Under the longitudinal model, simulations were run with all 

participants having constant drug exposure across visits or having varied drug exposure 

across visits. 
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Supplementary Material 

Age, Gene/Environment Susceptibility – Reykjavik Study (AGES): The Reykjavik 

Study cohort originally was composed of a random sample of 30,795 men and women born 

in 1907-1935 and living in Reykjavik in 1967.
320

  A total of 19,381 attended, resulting in 

71% recruitment rate. The study sample was divided into six groups by birth year and birth 

date within month. One group was designated for longitudinal follow-up and was examined 

in all stages. Another group was designated a control group and was not included in 

examinations until 1991. Other groups were invited to participate in specific stages of the 

study. Between 2002 and 2006, the AGES-Reykjavik study re-examined 5,764 survivors of 

the original cohort who had participated before in the Reykjavik Study. 

Atherosclerosis Risk in Communities (ARIC) Study: The ARIC study is an ongoing 

population-based cohort of 15,792 predominantly Caucasian and African-American males 

and females aged 45-64 years at baseline and selected using probability sampling from four 

United States communities (Forsyth County NC, Jackson MS, suburban Minneapolis MN, 

and Washington County MD).
321

  Participants were recruited in 1987-1989 to examine 

cardiovascular and pulmonary disease, patterns of medical care, and disease variation over 

time. Standardized physical examinations and interviewer-administered questionnaires were 

conducted at baseline (1987-1989), and at three triennial follow-up examinations (1990-

1998). Eligible participants for this effort were from the NC, MN, and MD field centers, as 

only Caucasian participants were examined in this analysis and the MS center only recruited 

African American participants. 

Cardiovascular Health Study (CHS):  The CHS is a population-based cohort study of 

risk factors for CHD and stroke in adults ≥65 years conducted across four field centers.
322

  

The original predominantly Caucasian cohort of 5,201 persons was recruited in 1989-1990 
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from random samples of the Medicare eligibility lists; subsequently, an additional 

predominantly African-American cohort of 687 persons was enrolled for a total sample of 

5,888. DNA was extracted from blood samples drawn on all participants at their baseline 

examination in 1989-90. In 2007-2008, genotyping was performed at the General Clinical 

Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai using the Illumina 

370CNV BeadChip system on 3,980 CHS participants who were free of CVD at baseline, 

consented to genetic testing, and had DNA available for genotyping. 

Erasmus Rucphen Family (ERF) study: The Erasmus Rucphen Family study 

(http://www.erasmusmc.nl/klinische_genetica/research/genepi/?lang=en) is a family-based 

cohort embedded in the Genetic Research in Isolated Populations (GRIP) program in the 

southwest Netherlands.  The aim of this program is to identify genetic risk factors for the 

development of complex disorders. In ERF, twenty-two families that had a minimum of six 

children baptized in the community church between 1850 and 1900 were identified with the 

help of detailed genealogical records. All living descendants of these couples, and their 

spouses, were invited to take part in the study. Comprehensive interviews, questionnaires, 

and examinations were completed at a research center in the area; approximately 3,200 

individuals participated.  Data collection started in June, 2002 and was completed in 

February, 2005. In the current analyses, 1503 participants for whom complete phenotypic, 

genotypic and genealogical information was available were studied. 

Framingham Heart Study (FHS): The FHS is a prospective, community based cohort 

study that was initiated in 1948 and now spans 3 generations, including the original cohort, 

their offspring and spouses of the offspring (Offspring Cohort, enrolment- beginning in 

1971), and children from the largest offspring families (Generation 3 Cohort, enrolment 

http://www.erasmusmc.nl/klinische_genetica/research/genepi/?lang=en
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beginning in 2000).  Details regarding study recruitment and design have been reported 

previously.
325, 391

  Generation 3 cohort individuals with ECGs were used for this study.  QT 

intervals were measured using digital calipers on scanned electrocardiograms in leads II (two 

cardiac cycles), V2 and V5; the average across all measurements was taken as the QT trait 

for analysis.  All study protocols were approved by the Institutional Review Board for 

Boston University Medical Center.  All study participants provided informed written consent. 

Health, Aging, and Body Composition Study (Health ABC): The Health ABC Study 

is a NIA-sponsored cohort study of the factors that contribute to incident disability and the 

decline in function of healthy older persons, with a particular emphasis on changes in body 

composition in old age. Between 4/15/97 and 6/5/98 the Health ABC study has recruited 

3,075 70-79 year old community-dwelling adults (41% African-American), who were 

initially free of mobility and activities of daily living disability. The key components of 

Health ABC include a baseline exam, annual follow-up clinical exams, and phone contacts 

every 6 months to identify major health events and document functional status between clinic 

visits.  Provision has been made for banking of blood specimens and extracted DNA (Health 

ABC repository). 

Health 2000: The Health 2000 Study is a population-based health examination survey 

carried out in Finland in 2000 – 2001.
329

  A detailed description of the implementation and 

methodology of the survey is available online: 

http://www.terveys2000.fi/doc/methodologyrep.pdf . The study involved a two-stage 

stratified cluster sample representative of the whole adult Finnish population aged > 30 years. 

The Health 2000 sample comprised 8,028 individuals, of whom 79% (6,354 individuals; 

2,876 men and 3,478 women) participated in a comprehensive health examination including 

http://www.terveys2000.fi/doc/methodologyrep.pdf
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questionnaires, clinical measurements (e.g. resting ECG) and doctor’s physical examination. 

DNA samples were collected from 6,597 persons and digital EGCs were available from 

6,295 persons. QT-interval measurements in the Health 2000 Study have been described 

elsewhere.
329

 

Hispanic Community Health Study / Study of Latinos (SOL): The Hispanic 

Community Health Study (HCHS)/Study of Latinos (SOL) is a community based cohort 

study of 16,415 self-identified Hispanic/Latino persons aged 18-74 years from randomly 

selected households in four U.S. field centers (Chicago, IL; Miami, FL; Bronx, NY; San 

Diego, CA) with baseline examination (2008 to 2011) and yearly telephone follow-up 

assessment for at least three years.
53

 The two-stage sampling design selected households 

within census block groups. Households with Hispanic/Latino surnames and individuals over 

45 years of age were oversampled to achieve increased representation of Hispanic/Latino 

individuals with a uniform age distribution. Due to this study design, sampling weights that 

reflect the probability of sampling individuals to the study were calculated for all individuals.  

These sampling weights were used in downstream analyses to protect against potential 

selection bias arising from the sampling scheme. The HCHS/SOL cohort includes 

participants who self-identified as having Hispanic/Latino background, the largest groups 

being Central American, Cuban, Dominican, Mexican, Puerto-Rican, and South American. 

The HCHS/SOL study was approved by institutional review boards at participating 

institutions, and written informed consent was obtained from all participants. 12,803 

individuals were successfully genotyped on an Illumina Omni 2.5M array, and the genotype 

and phenotype data are posted on dbGaP (accession numbers phs000880.v1.p1 and 

phs000810.v1.p1) 
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Jackson Heart Study (JHS): The JHS is a single-site, prospective, population-based 

study designed to explore the environmental, behavioral, and genetic factors that influence 

the development of cardiovascular disease (CVD) among African Americans. A total of 

5,301 women and men between the ages of 21 and 94 were recruited between September 

2000 and May 2004 from a tri-county area of Mississippi: Hinds, Madison, and Rankin 

Counties. Participants were recruited from four sources, including (1) randomly sampled 

households from a commercial listing; (2) ARIC study participants; (3) a structured volunteer 

sample that was designed to mirror the eligible population; and (4) a nested family cohort. Of 

the enrolled participants, 3,630 were recruited uniquely to JHS and did not participate in 

ARIC. Overviews of the JHS including the sampling and recruitment, sociocultural, and 

laboratory methods have been described previously.
331

  All of the participants provided 

written informed consent. Participants were between 35 and 84 years old at first visit, and 

members of the family cohort were ≥ 21 years old when consent for genetic testing was 

obtained and blood was drawn for DNA extraction. The details of first clinic visit procedures, 

including supine 12-lead digital electrocardiography (ECG), venipuncture, and other testing, 

have been previously described.  The definitions of co-morbidities as well as the details of 

ECG measurements and medication collection and coding have also been reported.
24, 392

 

Multi-Ethnic Study of Atherosclerosis (MESA): MESA is a study of the 

characteristics of subclinical cardiovascular disease (disease detected non-invasively before it 

has produced clinical signs and symptoms) and the risk factors that predict progression to 

clinically overt cardiovascular disease or progression of the subclinical disease. MESA 

researchers study a diverse, population-based sample of 6,814 asymptomatic men and 

women aged 45-84. 38 percent of the recruited participants are white, 28 percent African-
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American, 22 percent Hispanic, and 12 percent Asian, predominantly of Chinese descent.
332

   

Participants were recruited from six field centers across the United States. Two physical 

examinations (at baseline-1st and at 5th time points) were conducted since the 

electrocardiography was taken only at baseline and at 5th time points.
 
  The tenets of the 

Declaration of Helsinki were followed and institutional review board approval was granted at 

all MESA sites.  Written informed consent was obtained from each participant. 

The Netherlands Epidemiology of Obesity (NEO) study: The NEO study was 

designed for extensive phenotyping to investigate pathways that lead to obesity-related 

diseases. The NEO study is a population-based, prospective cohort study that includes 6,671 

individuals aged 45–65 years, with an oversampling of individuals with overweight or 

obesity. At baseline, information on demography, lifestyle, and medical history have been 

collected by questionnaires. In addition, samples of 24-h urine, fasting and postprandial 

blood plasma and serum, and DNA were collected. Genotyping was performed using the 

Illumina HumanCoreExome chip, which was subsequently imputed to the 1000 genome 

reference panel. Participants underwent an extensive physical examination, including 

anthropometry, electrocardiography, spirometry, and measurement of the carotid artery 

intima-media thickness by ultrasonography. In random subsamples of participants, magnetic 

resonance imaging of abdominal fat, pulse wave velocity of the aorta, heart, and brain, 

magnetic resonance spectroscopy of the liver, indirect calorimetry, dual energy X-ray 

absorptiometry, or accelerometry measurements were performed. The collection of data 

started in September 2008 and completed at the end of September 2012. Participants are 

currently being followed for the incidence of obesity-related diseases and mortality.   
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Prospective Study of Pravastatin in the Elderly at Risk (PROSPER):  All data come 

from the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). A detailed 

description of the study has been published elsewhere.
334, 335

  PROSPER was a prospective 

multicenter randomized placebo-controlled trial to assess whether treatment with pravastatin 

diminishes the risk of major vascular events in elderly. Between December 1997 and May 

1999, we screened and enrolled subjects in Scotland (Glasgow), Ireland (Cork), and the 

Netherlands (Leiden). Men and women aged 70-82 years were recruited if they had pre-

existing vascular disease or increased risk of such disease because of smoking, hypertension, 

or diabetes. A total number of 5,804 subjects were randomly assigned to pravastatin or 

placebo. A large number of prospective tests were performed including Biobank tests and 

cognitive function measurements.  

Rotterdam Study (RS):  The RS is a prospective population based cohort study 

comprising 7,983 participants aged 55 years or older (RS1), which started in 1990. In 2000-

2001, an additional 3,011 individuals aged 55 years or older were recruited (RS2). 

Furthermore, in 2006-2008, an additional 3,932 individuals aged 45 years or older were 

recruited (RS3).
393

  At baseline, participants were interviewed at home and were examined at 

the research center, which included a 10 second, 12-lead electrocardiogram (ECG). Since 

then, participants are followed continuously and re-examined during several follow-up 

examination rounds. Medical information is available of all participants by collaboration with 

the general
 
practitioners and with the pharmacies in the area of Ommoord.

 
The Rotterdam 

Study has been approved by the medical ethics committee according to the “Wet 

Bevolkingsonderzoek: ERGO” (Population Study Act Rotterdam Study), executed by the 
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Ministry of Health, Welfare and Sports of the Netherlands and written informed consent was 

obtained from all study participants. 

Women’s Health Initiative Clinical Trials (WHI CT):  The WHI is a long-term 

national health study focused on strategies for preventing heart disease, breast and colorectal 

cancer, and osteoporotic fractures in postmenopausal women.  Between 1993 and 1998, it 

randomized 68,132 women aged 50-79 years into one or more clinical trials of hormone 

therapy, dietary modification, or calcium/vitamin D supplementation.
52

  In this context, white 

WHI CT women were controls drawn from the Genome-wide Association Research Network 

into Effects of Treatment (GARNET),
394

 controls drawn from the Modification of PM-

Mediated Arrhythmogenesis in Populations (MOPMAP),
395

 or participants in the Women's 

Health Initiative Memory Study (WHIMS) .
396

  Black and Hispanic WHI CT women were 

participants in the single nucleotide polymorphism (SNP) Health Association Resource 

project (SHARe).
397
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CHAPTER 6: RESEARCH PAPER 2-EFFECT OF PREVALENT USER BIAS AND 

EXPOSURE MISCLASSIFICATION ON PHARMACOGENOMICS STUDIES 

CONDUCTED IN OBSERVATIONAL COHORT SETTINGS: A SIMULATION 

STUDY
2
 

Introduction 

Drug response and efficacy demonstrate high intra- and inter-individual variability, 

posing a significant problem for effective treatment,
2-4

 with adverse drug reactions (ADRs) 

accounting for approximately 100,000 deaths and 2.2 million serious health effects annually.
5
  

Genetics may influence variability in drug response by affecting pharmacokinetic and 

pharmacodynamics pathways.
61

  For example, single nucleotide polymorphisms (SNPs) in 

CYP2C9 and VKORC1 explain up to 50% of the variability in warfarin response,
259

 and 

HLA-B modifies the risk of toxic side effects of carbamazepine
7, 260

 and abacavir.
261

  Given 

that more than half of all American adults take at least one prescription medication, it is 

critical to understand the genetics of drug response across broad, diverse populations.
1
  

 Despite the public health and clinical significance of research evaluating the genetic 

bias of drug response, very few studies have evaluated the merits of alternative 

pharmacogenomics study designs.  Efforts examining pharmacogenomics study designs are 

warranted because, while pharmacoepidemiologic studies are subject to a multitude of biases, 

including selection bias and confounding by indication,
283

 it remains unclear if 

pharmacogenomics studies of gene-drug interactions are similarly susceptible.  Indeed, 

pharmacogenomics studies represent a specific subset of pharmacoepidemiologic studies that 

                                                 
2
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incorporate a third parameter, the SNP.  Unlike other environmental modifiers, an 

individual’s genotype is assigned at conception and therefore not affected by subsequent 

exposures, which may make SNP interaction effects less susceptible to the same biases 

affecting other modifiers.
287, 288

  For example, previous work examining bias from 

confounding by contraindication in observational pharmacogenomics settings demonstrated 

that the degree of bias varied by study design.
47

   

Yet, no studies have yet examined how other common threats to the validity of 

pharmacoepidemiologic studies affect pharmacogenomics studies conducted in observational 

settings, despite the emerging use of observational pharmacogenomics studies that offer large 

sample sizes, a diverse range of phenotypes, numerous medication exposures, and improved 

external validity when compared to clinical trials.
284

  For example, no study to the best of our 

knowledge has evaluated the degree to which pharmacogenomics studies are subject to 

prevalent user bias, whereby the cohort is enriched for prevalent long-term drug users who 

are less likely to have experienced an ADR when compared to new users.
284, 285

  The 

influence of drug misclassification remains similarly understudied in pharmacogenomics 

studies.
398-400

  We therefore conducted a series of simulations examining the influence of 

prevalent user bias and drug misclassification on pharmacogenomics studies by evaluating 

three observational designs (longitudinal, cross-sectional, and new user), two control groups 

(whole cohort and active comparator), and two scenarios (extreme and modest drug effects).  

Results of this study will help guide the design of future pharmacogenomics studies 

conducted in observational settings. 
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Materials and Methods 

A. Simulation Overview 

 We simulated a population with four study visits using QT interval (QT), a heritable 

measure of ventricular depolarization and repolarization,
24-28

 and QT-prolonging drug use as 

our pharmacogenomic model.  QT prolongation, a risk factor for highly fatal ventricular 

arrhythmias,
68, 163

 is most commonly caused by prescription drugs.
133

   

 We simulated four time points (visits 0–3 [V0–V3], Figure 25), as informed by a 

literature review.  V0 represented a wash-out period where the prevalence of drug use was 

0%.  Published clinical and genome-wide association studies (GWAS),
209

 along with 

empirical data from the Atherosclerosis Risk in Communities (ARIC) Study,
321

 informed 

assigned parameter estimates.  For the QT-prolonging medication we simulated a thiazide 

diuretic, a commonly used anti-hypertensive agent with previously reported QT-prolonging 

effects,
146

 which is henceforth referenced to as the index drug.  Participants with treated 

hypertension who were not treated by the index drug were assigned treatment on a 

comparator hypertension medication with no QT-prolonging effects.  In addition to these 

time-varying parameters measured at each visit, age, sex, diabetes status, and SNP genotype 

were simulated at V0, the latter we simulated as the causal SNP (i.e. not in linkage 

disequilibrium with the unobserved causal SNP).  Diabetes status at V0 was used as a 

determinant of index or comparator drug use among those with treated hypertension, where 

those with diabetes were more likely to use the comparator drug (Figure 26).   

To introduce prevalent user bias, whereby the cohort was enriched for long-term drug 

users, we simulated an ADR, which could occur between V1 – V3 (i.e. a maximum of two 

times).  For participants on the index drug, the probability of having an ADR was affected by 

QT at the previous visit.  The probability of remaining on the index drug at the subsequent 
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visit was then affected by the probability of an ADR (Figure 27).  Having an ADR also 

increased the probability that a participant was lost to follow-up.  Correlation between serial 

QT measurements was simulated as a function of unmeasured covariates (i.e. ‘U’, which 

represents heart rate, congenital heart disease, other medication use, other SNPs, 

hypokalemia, myocardial infarction, etc.).
68

   

B. Simulation Parameters and Values 

 We simulated a population size of 120,000, the sample size in a cross-sectional 

pharmacogenomics study necessary to achieve 80% power to detect a 1.6 ms drug-SNP 

interaction on QT (minor allele frequency [MAF] = 25%; 17% drug prevalence; 20 ms 

standard deviation [SD]), an effect estimate similar in magnitude to published SNP main 

effects on QT.
209

  In sensitivity analyses we increased the simulated population size to a 

maximum of 300,000 participants.  

  Age was simulated using a normal distribution with a mean (54.4 years) and SD (5.7 

years) equal to that observed at the ARIC baseline visit among white participants.  Sex was 

simulated as a uniform random variable with a defined probability of being male (47.3%).  A 

uniform distribution also was used to simulated SNP genotype according to a prespecified 

MAF (MAF=0.05, 0.25, and 0.45).  Participant genotype was calculated under the 

assumption of Hardy-Weinberg equilibrium.  Diabetes was predicted conditional on age 

using the logit function: 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 = 1)) = 𝛼0 + 𝛼1𝐴𝑔𝑒 + 𝜀 

Unknown/unmeasured confounding (U) was simulated using a normal distribution with a 

mean (0) and SD (20) to approximate the correlation between serial visits observed in ARIC 

(r =0.75). 
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 Hypertension status at each visit was predicted conditional on age and sex and, for 

V1-V3, hypertension status as the previous visit, using the logit function: 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐻𝑇𝑁𝑖 = 1)) = 𝛼0 + 𝛼1𝐴𝑔𝑒 + 𝛼2𝑆𝑒𝑥 + 𝛼3𝐻𝑇𝑁𝑖−1|𝑖≥1 + 𝜀 

The probability of having treated hypertension at V1 – V3 was randomly simulated among 

participants with hypertension with a defined probability of treatment (91%).  The prevalence 

of the index drug at V1 was assigned at 17%.  Among participants with treated hypertension 

at V1 – V3, drug treatment (index or comparator) was predicted conditional on diabetes 

status and, for V2 – V3, drug use at the previous visit and occurrence of an ADR between 

visits as: 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐷𝑟𝑢𝑔𝑖 = 1)) = 𝛼0 + 𝛼1𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 + 𝛼2𝐷𝑟𝑢𝑔𝑖−1|𝑖≥2 + 𝛼3𝐴𝐷𝑅𝑖|𝑖≥2 + 𝜀 

The probability of using the comparator medication was modeled as 1 – pr(Drug=1).   

Previous work has suggested the potential for measurement error in medication 

assessment conducted in observational settings.
57

  We therefore simulated an alternate 

scenario assuming a reduced sensitivity (97%) and specificity (79%) in the ascertainment of 

the index drug.
57

  

 QT was simulated as a linear function of the SNP, age, sex, U, hypertension, diabetes, 

drug treatment and the interaction between SNP and drug treatment:  

𝑄𝑇 = 𝛽0 + 𝛽1𝐷𝑟𝑢𝑔 + 𝛽2𝑆𝑁𝑃 + 𝛽3𝐷𝑟𝑢𝑔 × 𝑆𝑁𝑃 + 𝛽4𝐴𝑔𝑒 + 𝛽5𝑆𝑒𝑥 + 𝛽6𝑈 + 𝛽7𝐻𝑇𝑁

+ 𝛽8𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 + 𝜀 

where mean QT was simulated as 389 ms when all other variables equaled 0.  A one-year 

increase in age, male sex, one unit increase in U, hypertension status and diabetes status were 

associated with 0.39, -3.84, 2.00, 4.50, and -4.90 ms changes in QT, respectively (Table 29).  
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The occurrence of an ADR between visits among those on drug treatment was predicted 

using a logit model conditional on QT > 450 ms (QTLong) at the previous visit: 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐴𝐷𝑅𝑖 = 1)) = 𝛼0 + 𝛼1𝑄𝑇𝐿𝑜𝑛𝑔,𝑖−1 + 𝜀 

Loss-to-follow-up was predicted using a logit model conditional on age and the occurrence 

of an ADR between visits: 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑟(𝐿𝑜𝑠𝑠𝑖 = 1)) = 𝛼0 + 𝛼1𝐴𝑔𝑒 + 𝛼2𝐴𝐷𝑅𝑖 + 𝜀 

 Simulations assumed both extreme index drug effects on QT (i.e. the index drug 

prolonged QT by 30 ms, termed the extreme scenario, Table 29) and modest index drug 

effects on QT (i.e. the index drug prolonged QT by 5 ms, termed the modest scenario).
148

  

Simulations also were performed varying the SNP main effect on QT (range: 0–10 ms), the 

drug-SNP interactive effect on QT (range: -6–6 ms), the log-odds of drug continuation given 

an ADR (range: -50–0), the effect of drug treatment on QT (range: 0–30 ms), and the log-

odds of an ADR given prolonged QT (range: 0–50).  A total of 10,000 iterations were 

simulated for each setting across which results were averaged.  All analyses were performed 

using the statistical programming package SAS (Cary, North Carolina, USA).  

C. Analysis of Drug-SNP Interactions 

 We used our simulations to contrast 12 settings that evaluated in combination three 

study designs (new user, longitudinal, and cross-sectional), two control groups (whole cohort 

and active comparator), and two scenarios (extreme and modest drug effects).  The new user 

design was restricted to V1, where all participants on drug treatment were new initiators 

(Figure 25).  The longitudinal design included V2 and V3 and the cross-sectional design was 

restricted to V3 (Figure 25).  In each design, simulations were run for both the whole cohort 

and the active comparator control groups, the control group for the latter being restricted to 
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participants on the comparator treatment.  Finally, we examined two scenarios, the extreme 

scenario (index drugs with QT-prolonging effects of 30 ms) and modest (index drugs with 

QT-prolonging effects of 5 ms), representing 12 total settings. 

 In the new user and cross-sectional designs, the SNP-drug interaction effect was 

estimated using linear regression with QTi as the dependent variable and the SNP, drug, SNP-

drug interaction, age, sex, diabetes, and HTNi as independent variables, as follows: 

𝑄𝑇 = 𝛽0 + 𝛽1𝐷𝑟𝑢𝑔𝑖 + 𝛽2𝑆𝑁𝑃𝑖 + 𝛽3𝐷𝑟𝑢𝑔𝑖 × 𝑆𝑁𝑃𝑖 + 𝛽4𝐴𝑔𝑒𝑖 + 𝛽5𝑆𝑒𝑥𝑖 + 𝛽6𝐻𝑇𝑁𝑖

+ 𝛽7𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑖 

where β3 represents the SNP-drug interaction effect.  For the longitudinal designs, the SNP-

drug interaction effect was estimated using generalized estimating equations with an 

independence working correlation
346

 as follows: 

𝐸[𝑄𝑇𝑖𝑗] =  𝛽0 + 𝛽1𝐷𝑟𝑢𝑔𝑖𝑗 + 𝛽2𝑆𝑁𝑃𝑖 + 𝛽3𝐷𝑟𝑢𝑔𝑖𝑗 × 𝑆𝑁𝑃𝑖 + 𝛽4𝐴𝑔𝑒𝑖 + 𝛽5𝑆𝑒𝑥𝑖 + 𝛽6𝐻𝑇𝑁𝑖𝑗

+ 𝛽7𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑖 

where QTij is our outcome for the i
th

 participant at the j
th

 timepoint conditional on the SNP, 

drug, SNP-drug interaction, age, sex, diabetes, and HTNi and β3 represents the SNP-drug 

interaction effect.  Our simulations used a genome-wide α level (5x10
-8

). 

Results 

 The mean (SD) of QT was 409 ms (26 ms) at V0 for both the modest and extreme 

scenarios and increased to 410 (26) ms and 414 (29) ms at V1 for the modest and extreme 

scenarios, respectively (Table 30).  Exposure to the index drug increased across visits under 

the modest scenario, as participants initiated drug use and few discontinued due to ADRs 

(1.5% of those exposed at V2 and 1.4% of those exposed at V3 discontinued) or switched to 

the comparator drug (6-7% across V1-V3).  As expected, index drug exposure was lower at 
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V2 and V3 in the extreme versus modest scenario (17% at V2 and V3 in the extreme 

scenario), as a larger proportion of drug users were susceptible to an ADR and subsequently 

discontinued drug use (e.g. 33% index drug users before V3; 25% index drug users before 

V4) or were switched to the comparator drug (7-9% across V1-V3). 

 We first tested the performance of our models by examining bias in the index drug 

effect on QT, expecting minimal bias in the new user design.
401

  Our simulations 

demonstrated negligible bias in the drug effect using the new user design both when a 5 ms 

(modest scenario) and a 30 ms (extreme scenario) drug effect were simulated, suggesting that 

our models performed as expected (Figure 28). 

A. Simulations with Drug-SNP Interaction = 0 and Varied SNP Main Effect 

  We then evaluated the influence of prevalent user bias by contrasting the 

performance of the three study designs, two control groups, and two scenarios in the absence 

of a simulated drug-SNP interaction (i.e. drug-SNP interaction=0) but in the presence of a 

SNP main effect (range: 0 to 10 ms), which represented the effect of the SNP on QT 

independent of its interactive effect with the index drug (Figure 28-31).  Under the modest 

scenario, all estimates were minimally biased across simulated SNP main effects (mean bias 

range: -0.02 ms to -0.06 ms, Figure 29A).  Under the extreme scenario, the new user designs 

remained unbiased for both control groups (Figure 29B).  However, bias was observed 

among the remaining cohorts in the extreme scenario, particularly for the active comparator 

control group (maximum bias at simulated SNP main effect=10 ms: longitudinal active 

comparator = 1.34 ms; cross-sectional active comparator = 1.14 ms).  Simulated results with 

MAF of 5% and 45% showed similar patterns of bias (Figure 30, Figure 31). 

 Under both the modest and extreme scenarios, estimates of the false-positive 

proportion (FPP) for the drug-SNP interaction effect remained under 5% for all study settings 
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except the longitudinal active comparator setting under the extreme scenario (Figure 29C-D), 

for which the FPP ranged from 5% at a SNP main effect of 2 ms to 46% at a SNP main effect 

of 10 ms. 

B. Simulations with SNP Main Effect = 0 and Varied Drug-SNP Interaction Effect 

   We next evaluated the performance of the12 settings in the presence of a simulated 

drug-SNP effect (range: -6 ms–6 ms), but the absence of a SNP main effect (i.e. SNP main 

effect = 0).  As with the previous results, the modest scenario showed negligible bias in the 

drug-SNP interaction effect across all designs and control groups (maximum bias = -0.09 ms, 

Figure 32A).  However, under the extreme scenario, while the new user design remained 

unbiased, the whole cohort and active comparator control groups in the context of the 

longitudinal or cross-sectional designs demonstrated opposite patterns of bias, with the 

magnitude of bias being approximately 120% greater in the active comparator compared to 

whole cohort control groups (e.g. 0.77 vs 0.25 ms at a simulated drug-SNP interaction effect 

of 6ms; Figure 32B).  Patterns of bias remained the same when MAF was varied (Figure 33). 

 Despite greater bias in the extreme scenario, power to detect the drug-SNP interaction 

effect was similar under both scenarios (Figure 32C-D).  For example, power to detect the 

drug-SNP interaction effect reached 80% at drug-SNP interaction effects of 2 or 3 ms for all 

study settings except the new user or cross-sectional active comparator settings.  For the new 

user active comparator setting, power exceeded 80% at a drug-SNP interaction effect of 6 

ms.  Power for the cross-sectional active comparator setting never exceeded 50% for the 

modest scenario but reached 80% at 6 ms for the extreme scenario.  For MAFs of 5%, power 

was best for the longitudinal whole cohort setting but only exceeded 80% when a drug-SNP 

interaction effect of 4 ms was simulated.  Power to detect drug-SNP interaction effects 

ranging from -6 to 6 ms remained below 80% in the new user or cross-sectional active 
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comparator setting when MAF was 5% under both scenarios (Figure 34).  As expected, 

power was improved when evaluating SNPs with MAF of 45%, particularly for the active 

comparator control groups. 

C. Simulations with Varied Drug and ADR Effects 

 To test how medications with different degrees of QT-prolongation and the 

probability of ADRs effected bias and power, we then varied the effect of the drug on QT (0–

30 ms), the proportion of participants with a prolonged QT (QT>450 ms) who experienced 

an ADR (log-odds of an ADR given prolonged QT: 0–50), and the probability of medication 

discontinuation given an ADR (log-odds of medication continuation given an ADR: -50–0).  

For these simulations we evaluated a SNP main effect of 0 ms and a drug-SNP interaction 

effect of 5 ms.  There was no bias in the drug-SNP interaction effect for new user designs 

under any of the three scenarios examined (Figure 35).  However, as the simulated effect of 

the drug on QT increased, bias in the drug-SNP interaction effect was observed for the 

longitudinal and cross-sectional designs, which varied based on the control group and 

simulated drug effect (longitudinal whole cohort bias range = -0.53– -0.24 ms; longitudinal 

active comparator = -0.16– 0.62 ms, Figure 35A). 

 Varying the log-odds of an ADR following QT prolongation or the log-odds of 

medication discontinuation given an ADR demonstrated a distinct pattern of bias.  When the 

log-odds of an ADR given QT prolongation was small bias in the drug-SNP interaction was 

negligible (Figure 35B).  However, once the log-odds of having an ADR given QT 

prolongation exceeded 10, corresponding to an ADR probability of 60%, the bias above 

(range:  0.54–0.62 ms in active comparator control groups) and below (range: -0.24– -0.14 

ms in whole cohort control groups) in the drug-SNP interaction effect was observed for all 

designs except the new user design.  The bias also remained the same across increasing log-
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odds of an ADR (>10).  When the log-odds of medication continuation was varied, we 

observed an opposite pattern of bias (i.e. bias[range above: 0.54–0.62 ms in active 

comparator control groups; range below: -0.24– -0.14 ms  in whole cohort control groups] 

increased across decreasing log-odds of drug continuation, but remained uniform after a 

simulation log-odds of -10; Figure 35C).  

D. Simulations with Reduced Specificity and Sensitivity 

 Because medication use may be misclassified,
57

 we evaluated the influence of 

reduced sensitivity (97%) and specificity (79%) of medication use assessment.  Reduced 

sensitivity and specificity were associated with a considerable increase in bias (Figure 36) 

compared to perfect medication assessment (Figure 32).  For example, in both the extreme 

and modest scenarios, reduced sensitivity and specificity biased estimated drug-SNP 

interaction effects toward the null by as much as 59% (e.g. true effect size=6 ms; estimated 

effect size in the presence of drug measurement error=2.49 ms in longitudinal whole cohort 

setting under extreme scenario).   

 Power to detect the drug-SNP interaction effect also was expectedly reduced.  Under 

the extreme scenario, perfect sensitivity and specificity resulted in 80% power to detect the 

drug-SNP interaction effect between 2 and 6 ms, depending on study setting (Figure 32D).  

However, reduced sensitivity and specificity lowered the power so that 80% power was not 

achieved until 3 ms in the longitudinal designs and 4 ms in the new user and cross-sectional 

whole cohort settings (Figure 36D).  The new user cross-sectional active comparator settings 

did not achieve 80% power under any tested drug-SNP interaction effect tested here (range: -

6 to 6 ms).  The modest scenario demonstrated similar power to detect interaction effects as 

the extreme scenario (Figure 36C).  
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E. Power Across Varying Sample Sizes 

Lastly, given the reduced power when simulations were extended to accommodate 

reduced sensitivity and specificity, we evaluated the population size needed to achieve 80% 

power to detect a 2 ms drug-SNP interaction (Figure 37), power estimates consistent with 

study designs that assumed perfect sensitivity and specificity.  With reduced sensitivity and 

specificity, the smallest sample size that achieved 80% power to detect a 2 ms drug-SNP 

interaction was 150,000 for the longitudinal whole cohort setting.  For the cross-sectional 

design, the smallest sample size that achieved 80% power to detect a 2 ms drug-SNP 

interaction was 260,000 (whole cohort control group).  For the new user designs, power to 

detect a 2 ms drug-SNP interaction never exceeded 70% despite a sample size of 300,000 

participants. 

Discussion 

 In these simulations, we examined the influence of prevalent user bias and exposure 

misclassification in pharmacogenomic studies conducted in observational cohort settings by 

contrasting three designs (new user, cross-sectional, and longitudinal), two control groups 

(whole cohort and active comparator) and two scenarios (modes and extreme drug effects on 

QT).  Our simulations identified settings where prevalent user bias caused moderate bias on 

the drug-SNP interaction effect.  Yet, the greatest bias, as well as the largest reductions in 

power were detected when simulations were extended to examine exposure misclassification.  

Given that the amount of bias and potential for reduced power varied by the design, control 

group, and the strength of the drug-induced QT prolongation, these results have broad 

implications for pharmacogenomics studies conducted in observational settings. 

 To date, numerous pharmacogenomics GWAS with likely insufficient power have 

been published, indicating the difficulty in obtaining sample sizes sufficient to detect 
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interactions at stringent GWAS significance thresholds.
282, 402-404

  Indeed, such 

“disappointing” results have prompted the speculation that with noted exceptions,
7, 259-261

 

there might be fewer instances of large and clinically significant pharmacogenomics effects 

than previously expected.
282, 403, 405

  Yet, our results show that even at sample sizes four times 

larger than QT pharmacogenomics studies published to date,
282

 the influence of exposure 

misclassification makes it difficult to rule-out clinically significant results, generally defined 

as interactions with effects of 5 ms or greater.
44

  Further, the influence of other sources of 

measurement error (e.g. outcome measurement error) and the inability to accommodate other 

important covariates like medication dose in most observational cohort studies likely reduced 

power further.  Indeed, a strength of pharmacogenomics studies of QT is the degree to which 

QT is reliably measured.
74, 406

  However, other phenotypes of interest (e.g. blood pressure 

and glycemic traits) show greater variability in measurement, which warrants evaluation in 

future efforts.
407-409

  

 Given the massive statistical testing penalty of genome-wide association studies and 

the potential for bias in study designs that optimize power (i.e. longitudinal), it is tempting to 

consider hypothesis-based genomic analyses such as a candidate gene studies as an 

alternative to genome-wide analyses.  There has been some success in identifying genetic 

variants in genes associated with congenital long QT syndrome that modify drug-induced 

QT-prolongation.
410

   However, efforts evaluating loci from main effects QT GWAS as 

candidate genes in pharmacogenomic studies of QT-prolonging drugs have not yielded 

positive results.
282

  The lack of positive results is not unique to drug-induced QT-

prolongation.  Efforts by Bis et al. to identify genetic variants that modified the association 

between antihypertensives and cardiovascular disease in genes previously associated with 
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coronary heart disease were similarly unsuccessful.
403

  Lessons from main effects analyses 

have also demonstrated a higher success of GWAS over candidate gene studies, where few 

biologically motivated association studies were consistently replicated
411-413

 while GWAS 

have successfully replicated thousands of associations across populations.
414, 415

 

 Although drug misclassification had the greatest influence on power and bias, 

prevalent user bias also exerted non-negligible effects, which varied by the magnitude of the 

drug-outcome association.  Our simulations suggest that, even with exposure 

misclassification, longitudinal designs optimize the power to detect effects in discovery 

analyses over the other designs considered here but also demonstrated the largest potential 

for bias when the drug-outcome association was large.  Iribarren et al. identified drugs with 

QT-prolonging effects greater than 25 ms,
148

 five times the standard for regulation by the 

U.S. Food and Drug Administration (FDA).
44

  These results demonstrate the necessity of 

considering bias from extreme drug effects not only in studies of QT, but also in studies of 

other drugs with large effects on the outcome, including pharmacogenomics studies of statins 

and low-density lipoprotein levels
416

 or thiazides and antihypertensive response.
272-274

  In the 

context of large drug effects on the outcome, our results suggest the use of a longitudinal 

design with a whole cohort control group to increase power to detect drug-SNP interaction 

effects but acknowledging the potential for a drug-SNP interaction estimate moderately 

biased toward the null.  Our simulations suggested that when the drug had a modest effect on 

the outcome (i.e. indapamide, a thiazide-like diuretic that prolongs QT by under 10 ms),
148

 

bias in the drug-SNP effect was minimal but drugs with stronger effects  or studies with 

exposure misclassification can result in substantial bias in the drug-SNP interaction effect 

with up to half the true effect lost to bias.   
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 It is important to note that the conclusions of this study are limited by the scope of the 

simulations presented herein.  For example, our choice of active comparator encompassed 

any antihypertensive medication other than a thiazide diuretic, which was modeled as our 

drug of interest.  Thus, if a participant had treated hypertension but had an ADR, the 

participant was automatically changed to the active comparator control group.  Our 

simulations therefore do not indicate how prevalent user bias would affect an active 

comparator control group that was chosen from a different group of medications that had a 

different indication of treatment from the drug of interest.  Furthermore, we only investigated 

a single scenario of medication misclassification.  Given the strong effects reduced 

specificity and sensitivity had on prevalent user bias, future work examining how different 

levels of specificity and sensitivity affect prevalent user bias as well as other biases 

potentially affecting pharmacogenomic studies, such as confounding by contraindication, is 

warranted. 

 In conclusion, our simulations suggested that when medication is well assessed and 

the underlying drug effect on the outcome is modest, prevalent user bias may be negligible.  

However, prevalent user bias scales with increasing drug effects, although the bias had only 

moderate effects on study power.  The most striking effects were estimated for exposure 

misclassification, which caused sizable bias in the drug-SNP interaction and large reductions 

in power.  Researchers must carefully weigh different sources of bias and misclassification 

against power considerations when designing their pharmacogenomic analyses in order to 

optimize efforts to identify and characterize SNPs that modify drug-outcome associations. 
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Tables and Figures  
 

Table 29. Parameter Values for the Extreme, Modest, and Alternative Scenarios 

Variable Parameter  Meaning 

Parameter Values 

Extreme 

Scenario 

Modest 

Scenario 

Alternative 

Scenarios 

Diabetes 𝛼0 Value chosen for 13% prevalence of diabetes -6.00 -6.00 -- 

 𝛼𝐴𝑔𝑒  Log odds of diabetes for 1-year increase in age 0.075 0.075 -- 

Hypertension 𝛼0 Value chosen for 33% prevalence of HTN -5.25 -5.25 -- 

 𝛼𝐴𝑔𝑒  Log odds of hypertension for 1-year increase in age 0.08 0.08 -- 

 𝛼𝑆𝑒𝑥 Log odds of hypertension for men versus women 0.16 0.16 -- 

 𝛼𝐻𝑇𝑁 Log odds of hypertension for those with previous hypertension 

versus those without 
-4.74 -4.74 -- 

Drug Treatment 𝛼0 Value chosen for 17% prevalence of drug treatment 1.55 1.55 -- 

 𝛼𝐷𝑖𝑎𝑏  Log odds of drug treatment for those with diabetes versus those 

without 
-90 -90 -- 

 𝛼𝐷𝑟𝑢𝑔 Log odds of drug treatment for those previously on treatment versus 

those not previously on treatment 
4.80 4.80 -- 

 𝛼𝐴𝐷𝑅 Log odds of drug treatment for those who suffered an ADR versus 

those who did not 
-50 -3.75 -50 – 0  

QT 𝛽0 Mean QT for women with 0 copies of the minor allele and the mean 

amount of unmeasured confounding 
389 389 -- 

 𝛽𝐷𝑟𝑢𝑔 Drug effect on QT 30 5 0 – 30  

 𝛽𝑆𝑁𝑃 SNP effect on QT 0 0 0 – 10  

 𝛽𝐷𝑟𝑢𝑔×𝑆𝑁𝑃 Drug-SNP interaction effect on QT 0 0 -6 – 6  

 𝛽𝐴𝑔𝑒  Age effect on QT 0.39 0.39 -- 

 𝛽𝑆𝑒𝑥 Sex effect on QT -3.84 -3.84 -- 

 𝛽𝑈 Effect of unknown/unmeasured correlates of QT 2.00 2.00 -- 

 𝛽𝐻𝑇𝑁 Hypertension effect on QT 4.50 4.50 -- 

 𝛽𝐷𝑖𝑎𝑏  Diabetes effect on QT -4.90 -4.90 -- 

ADR 𝛼0 Value chosen for a 2.5% prevalence of ADR among those on drug 

treatment 
-4.55 -4.55 -- 

 𝛼𝑄𝑇𝑙𝑜𝑛𝑔 Log odds of ADR for those with QT > 450 ms versus those without 50 2.05 0 – 50  

Loss-to-Follow-up 𝛼0 Value chosen for a 4% prevalence of loss-to-follow-up -2.62 -2.62 -- 

𝛼𝐴𝑔𝑒  Log odds of loss-to-follow-up for 1-year increase in age -0.01 -0.01 -- 

 𝛼𝐴𝐷𝑅 Log odds of loss-to-follow-up for those with ADR versus those 

without 
2.89 2.89 -- 

ADR, Adverse drug reaction; HTN, Hypertension; QT, QT interval; SNP, Single nucleotide polymorphism 



 

154 

Table 30. Descriptive Statistics Across Visits in Simulation Studies Using the Modest Scenario and 

Extreme Scenario 

 Modest Scenario  Extreme Scenario 

 Visit 0 Visit 1 Visit 2 Visit 3  Visit 0 Visit 1 Visit 2 Visit 3 

N 120,000 120,000 115,016 110,093  120,000 120,000 111,685 104,546 

Mean Age (SD) 54 (6) 54 (6) 54 (6) 54 (6)  54 (6) 54 (6) 54 (6) 54 (6) 

Mean QT (SD) 
409 

(26) 

410 

(26) 

410 

(26) 

411 

(26) 
 

409 

(26) 

414 

(29) 

414 

(28) 

414 

(28) 

% Male 47% 47% 47% 47%  47% 47% 47% 47% 

% Diabetic 14% 14% 14% 14%  14% 14% 14% 14% 

% Hypertensive 31% 36% 40% 43%  31% 36% 39% 41% 

% Exposed to 

Drug 
0% 17% 21% 23%  0% 17% 17% 19% 

% Exposed to 

Comparator 

Drug 

0% 7% 6% 6%  0% 7% 9% 9% 

% ADR -- -- 0.4% 0.5%  -- -- 8% 6% 

 

Figure 25.  Simulation Study Timeline and Study Designs 

Visit 0 represents a wash-out period where no participants are on medications of interest.  At 

visit 1, all users are new initiators, allowing a new-user study design to be applied to this 

visit.  By visit 3, users have been on medication across time and there has been multiple 

opportunities for individuals to initiate, have adverse reactions, and stop drug use, enriching 

visit 3 for participants who are long-term drug users.  For longitudinal analyses, visit 2 is 

included, along with visit 3, as both are enriched for prevalent users. 
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Figure 26.  Decision Tree to Classify Drug Exposure in a Simulation Study 

When participants do not have treated hypertension (HTN), they are unexposed to the drug 

of interest.  If they have treated HTN, their exposure status is conditional on their diabetes 

status. 

Figure 27.  Conceptual Model of Relationship Between QT-Prolonging 

Drug Use, QT Interval, and Adverse Drug Reactions 

 

Single nucleotide polymorphism (SNP) is an effect measure modifier on the 

Drug-QT association.  Drug effects QT at visit 1, modified by SNP, which in 

turn affects ADR, which then effects drug status at visit 2. 
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  Figure 28.  Bias, False Positive Proportion, and Power in a Pharmacogenomic Study 

of QT Under an Extreme and Modest Scenario in the Absence of a Drug Main Effect 

or the Absence of a Drug-SNP Interaction Effect 

The bias in drug or SNP effect estimated for a pharmacogenomics study of QT in the absence 

of a simulated drug-SNP interaction effect over a varied main effect and the bias estimated in 

the absence of a SNP main effect over a varied drug-SNP interaction effect.  The false 

positive proportion or power in the drug effect and SNP effect estimated for a 

pharmacogenomics study of QT in the absence of a simulated drug-SNP interaction effect 

over a varied main effect or in the absence of a SNP main effect over a varied drug-SNP 

interaction effect.  Left column panels represent the drug effect under the modest scenario (5 

ms increase in QT among drug users).  Left center column panels represent the drug effect 

under the extreme scenario (30 ms increase in QT among drug users).  Right center column 

panels represent the SNP effect under the modest scenario.  Right column panels represent 

the SNP effect under the extreme scenario.  Black lines represent the longitudinal study 

design, blue lines represent the cross-sectional study design, and red lines represent the new-

user study design contrasting whole-cohort ( ─ ) and active comparator (- - -) control groups.  

Simulations were performed assuming a population of 120,000 participants with ~17% of 

participants receiving a QT-prolonging medication, with 10,000 simulations performed per 

scenario. 
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Figure 29.  Bias and False Positive Proportion in a Pharmacogenomic Study of QT 

Under an Extreme and Modest Scenario in the Absence of a Drug-SNP Interaction 

Effect 

The bias (A, B) and false positive proportion (C, D) estimated for a pharmacogenomics study 

of QT in the absence of a simulated drug-SNP interaction effect over a varied main effect.  

Left column panels represent the Modest scenario (5 ms increase in QT among drug users).  

Right column panels represent the Extreme scenario (30 ms increase in QT among drug 

users).  Black lines represent the longitudinal study design, blue lines represent the cross-

sectional study design, and red lines represent the new-user study design contrasting whole-

cohort ( ─ ) and active comparator (- - -) control groups.  Simulations were performed 

assuming a population of 120,000 participants with ~17% of participants receiving a QT-

prolonging medication, with 10,000 simulations performed per scenario. 
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Figure 30.  Bias in a Pharmacogenomic Study of QT Under an Extreme and Modest 

Scenario in the Absence of a Drug-SNP Interaction Effect Assuming a Minor Allele 

Frequency of 5% or 45% 

The bias estimated for a pharmacogenomics study of QT in the absence of a simulated drug-

SNP interaction effect under an extreme drug effect on QT and a modest drug effect on QT.  

Left column panels represent the bias in the drug-SNP interaction effect.  Middle column 

panels represent the bias in the drug main effect.  Right column panels represent the bias in 

the SNP main effect.  Top two rows represent simulations with a minor allele frequency 

(MAF) of 5%.  Bottom two rows represent simulations with a MAF of 45%.  Black lines 

represent the longitudinal study design, blue lines represent the cross-sectional study design, 

and red lines represent the new-user study design contrasting whole-cohort ( ─ ) and active 

comparator (- - -) control groups.  Simulations were performed assuming a population of 

120,000 participants with ~17% of participants receiving a QT-prolonging medication, with 

10,000 simulations performed per scenario. 
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Figure 31.  False Positive Proportion or Power in a Pharmacogenomic Study of QT 

Under an Extreme and Modest Scenario in the Absence of a Drug Main Effect or the 

Absence of a Drug-SNP Interaction Effect 

The false positive proportion (FPP) or power estimated for a pharmacogenomics study of QT 

in the absence of a simulated drug-SNP interaction effect over a varied main effect and the 

FPP or power estimated in the absence of a SNP main effect over a varied drug-SNP 

interaction effect under an extreme drug effect on QT and a modest drug effect on QT .  Left 

column panels represent the FPP or power in the drug-SNP interaction effect.  Middle 

column panels represent the power in the drug main effect.  Right column panels represent 

the FPP or power in the SNP main effect.  Black lines represent the longitudinal study design, 

blue lines represent the cross-sectional study design, and red lines represent the new-user 

study design contrasting whole-cohort ( ─ ) and active comparator (- - -) control groups.  

Simulations were performed assuming a population of 120,000 participants with ~17% of 

participants receiving a QT-prolonging medication, with 10,000 simulations performed per 

scenario. 
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Figure 32.  Bias and Power in a Pharmacogenomic Study of QT Under an Extreme 

and Modest Scenario in the Absence of a Drug Main Effect 

The bias (A, B) and power (C, D) estimated for a pharmacogenomics study of QT in the 

absence of a SNP main effect over a varied drug-SNP interaction effect.  Left column panels 

represent the Modest scenario (5 ms increase in QT among drug users).  Right column panels 

represent the Extreme scenario (30 ms increase in QT among drug users).  Black lines 

represent the longitudinal study design, blue lines represent the cross-sectional study design, 

and red lines represent the new-user study design contrasting whole-cohort ( ─ ) and active 

comparator (- - -) control groups.  Simulations were performed assuming a population of 

120,000 participants with ~17% of participants receiving a QT-prolonging medication, with 

10,000 simulations performed per scenario. 
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Figure 33.  Bias in a Pharmacogenomic Study of QT Under an Extreme and Modest 

Scenario in the Absence of a SNP Main Effect Assuming a Minor Allele Frequency of 

5% or 45%. 

The bias estimated for a pharmacogenomics study of QT in the absence of a simulated SNP 

main effect under an extreme drug effect on QT and a modest drug effect on QT.  Left 

column panels represent the bias in the drug-SNP interaction effect.  Middle column panels 

represent the bias in the drug main effect.  Right column panels represent the bias in the SNP 

main effect.  Top two rows represent simulations with a minor allele frequency (MAF) of 

5%.  Bottom two rows represent simulations with a MAF of 45%.  Black lines represent the 

longitudinal study design, blue lines represent the cross-sectional study design, and red lines 

represent the new-user study design contrasting whole-cohort ( ─ ) and active comparator (- - 

-) control groups.  Simulations were performed assuming a population of 120,000 participants 

with ~17% of participants receiving a QT-prolonging medication, with 10,000 simulations 

performed per scenario. 
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Figure 34.  False Positive Proportion or Power in a Pharmacogenomic Study of QT 

Under an Extreme and Modest Scenario in the Absence of a Drug-SNP Interaction 

Effect Assuming a Minor Allele Frequency of 5% or 45% 

The false positive proportion (FPP) or power estimated for a pharmacogenomics study of QT in the 

absence of a simulated drug-SNP interaction effect under an extreme drug effect on QT and a modest 

drug effect on QT.  Left column panels represent the FPP in the drug-SNP interaction effect.  Middle 

column panels represent the power in the drug main effect.  Right column panels represent the power in 

the SNP main effect.  Top two rows represent simulations with a minor allele frequency (MAF) of 5%.  

Bottom two rows represent simulations with a MAF of 45%.  Black lines represent the longitudinal 

study design, blue lines represent the cross-sectional study design, and red lines represent the new-user 

study design contrasting whole-cohort ( ─ ) and active comparator (- - -) control groups.  Simulations 

were performed assuming a population of 120,000 participants with ~17% of participants receiving a 

QT-prolonging medication, with 10,000 simulations performed per scenario. 
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Figure 35.  Bias in a Pharmacogenomics Study With Varying Levels of Drug Effect on 

QT Duration, Prolonged QT Effect on Adverse Drug Reactions and Adverse Drug 

Reactions on Drug Continuation 

The bias estimated for a pharmacogenomics study of QT with bias estimated in the absence 

of a SNP main effect and with a drug-SNP interaction effect of 5 ms under varying effect 

sizes of drug use on QT interval (A), varying effects of QT > 450 ms (QT long) on the 

occurrence of an adverse drug reaction (ADR, B), or varying effects of having an ADR on 

drug continuation (C).  Black lines represent the longitudinal study design, blue lines 

represent the cross-sectional study design, and red lines represent the new-user study design 

contrasting whole-cohort ( ─ ) and active comparator (- - -) control groups.  Simulations were 

performed assuming a population of 120,000 participants with ~17% of participants receiving 

a QT-prolonging medication, with 10,000 simulations performed per scenario. 
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Figure 36.  Bias and Power in a Pharmacogenomics Study Under an Extreme or 

Modest Scenario with Reduced Specificity and Sensitivity of Medication Assessment 

The bias and power to detect a drug-SNP interaction effect estimated for a 

pharmacogenomics study of QT in the absence of a simulated SNP main effect over a varied 

drug-SNP interaction effect under an extreme drug effect on QT (B, D) and a modest drug 

effect on QT (A, C).  Left column panels represent the modest scenario (5 ms increase in QT 

among drug users).  Right column panels represent the extreme scenario (30 ms increase in 

QT among drug users).  Black lines represent the longitudinal study design, blue lines 

represent the cross-sectional study design, and red lines represent the new-user study design 

contrasting whole-cohort ( ─ ) and active comparator (- - -) control groups.  Simulations were 

performed assuming a population of 120,000 participants with ~17% of participants receiving 

a QT-prolonging medication, with 10,000 simulations performed per scenario. 
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Figure 37.  Power to Detect a Drug-SNP Interaction Effect of 2 ms in a 

Pharmacogenomics Study Under an Extreme or Modest Scenario with Perfect or 

Reduced Specificity and Sensitivity of Medication Assessment with Increasing 

Population Size 

The power to detect a drug-SNP interaction effect estimated for a pharmacogenomics study 

of QT in the absence of a simulated SNP main effect with a 2 ms drug-SNP interaction effect 

over increasing population size under an extreme drug effect on QT (B, D) and a modest drug 

effect on QT (A, C).  Left column panels represent the modest scenario (5 ms increase in QT 

among drug users).  Right column panels represent the extreme scenario (30 ms increase in 

QT among drug users).  Top row represents perfect medication assessment.  Bottom row 

represents imperfect medication assessment measured with reduced specificity and 

sensitivity.  Black lines represent the longitudinal study design, blue lines represent the cross-

sectional study design, and red lines represent the new-user study design contrasting whole-

cohort ( ─ ) and active comparator (- - -) control groups.  Simulations were performed 

assuming a population of 120,000 to 300,000 participants with ~17% of participants 

receiving a QT-prolonging medication, with 10,000 simulations performed per scenario. 
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CHAPTER 7: DISCUSSION AND CONCLUSION 

 QT interval (QT) prolongation is a long-known, potentially fatal side effect of many 

common pharmaceuticals, including thiazide diuretics, a common antihypertensive 

treatment.
36, 37, 39

  Pharmacogenomics research represents a promising step forward in 

understanding and preventing adverse drug reactions like QT prolongation, as QT is highly 

heritable (35-40%) and influenced by many common SNPs.
24-28, 209

  Furthermore, 

pharmacogenomics studies of thiazides have identified numerous loci influencing patient 

response and ADRs.
274, 276, 279, 280

  However, underlying mechanisms governing thiazide-QT 

associations are poorly understood.  Theories range from a direct effect of thiazides on 

cardiac conduction mechanisms
43, 258

 to an indirect effect through electrolyte levels.
41, 42, 257

  

Together, these lines of evidence suggest that the thiazide-QT relationship is a promising 

candidate for pharmacogenomics study.  

We therefore conducted the first large, multi-ethnic pharmacogenomics study of 

thiazide diuretics and QT.  Using fourteen large, observational cohort studies (N=78,199), we 

performed a genome-wide analysis of the thiazide-SNP interaction on QT and its component 

parts (QRS interval, JT interval).  Although we used a comprehensive approach that 

considered multi-ethnic populations, leveraged pleiotropy, and accommodated population 

heterogeneity, we did not identify any genome-wide significant SNPs modifying the 

association between thiazides and these ECG intervals.  However, we identified 74 loci with 

suggestive evidence of association through both univariate and cross-phenotype analyses as 

well as enrichment in pathways involved in transcription and translation. 
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Interestingly, our suggestive results included multiple loci involved in ion transport 

and handling, the disruption of which is believed to be an underlying mechanism in drug-

induced QT prolongation,
111

 supporting the hypothesis that common SNPs modify the 

thiazide-QT relationship.  For example, our suggestive results include the PITX2 and RYR3 

QRS loci identified in Hispanic/Latinos, which may directly regulate ion channel genes and 

genes involved in calcium handling.
377

  Moreover, we found suggestive evidence of thiazide-

SNP interactions on QT, QRS, or JT in other genes involved in ion transport and handling, 

including  NELL1,
279

 STC2,
378

 EDN1,
379

 TRPC7,
380

 PKP2,
381

 and DISC1,
382

 as well as a 

voltage-gated potassium channel gene (KCNQ3).   Additionally, our power simulations 

suggested there was limited power to detect interaction effects of 2 ms, sizes consistent with 

QT main effects analyses.
209

   

Our pharmacogenomics study of thiazides and QT, particularly the lack of genome-

wide significant results despite biological plausibility and a sample size surpassing that of 

most published gene-environment studies to date suggested to us that further efforts are 

needed to better characterize pharmacogenomics studies conducted in observational settings 

and potential causes of reduced power.  For example, pharmacogenomics studies are 

increasingly being conducted in observational cohort settings, which provide large, diverse 

sample, deep phenotype characterization, numerous medication exposures, and improved 

external validity compared to clinical trials. 
284

  However, a form of selection bias called 

prevalent user bias affects pharmacoepidemiologic studies conducted in observational 

settings, as does exposure misclassification.  Yet, the effects of prevalent user bias and 

exposure misclassification on the interaction effects under evaluation in pharmacogenomics 

studies are unclear.
284, 287

  Therefore, we conducted a simulation analysis to examine the 
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influence of prevalent user bias, exposure misclassification, study design, and referent group 

on bias, power, and type I error in pharmacogenomics studies conducted in observational 

cohort settings. 

Specifically, we examined the influence of prevalent user bias and exposure 

misclassification in pharmacogenomics studies conducted in observational settings by 

contrasting three designs (new user, cross-sectional, and longitudinal) and two control groups 

(whole cohort and active comparator) under two scenarios (modest and extreme drug effects 

on QT), totaling 12 different settings.  Our simulations identified settings where prevalent 

user bias caused moderate bias on the drug-SNP interaction effect.  Yet, the greatest bias, as 

well as the largest power reductions, were detected when simulations were extended to 

examine exposure misclassification.  For example, our simulations indicated that, even in a 

longitudinal setting which provided the greatest power to detect interaction effects, 

pharmacogenomics studies require at least 150,000 participants to achieve 80% power to 

detect a 2 ms interaction effect, an effect consistent with, or slightly larger than, published 

main effects GWAS,
209

 providing further evidence that our sample size of 78,199 participants 

in our thiazides-QT pharmacogenomics GWAS was insufficient. 

Given that the amount of bias and potential for reduced power, which varied by the 

design, control group, and strength of the drug effect on the outcome, these results have 

broad implications for pharmacogenomics studies conducted in observational cohort settings, 

beyond the work presented here.  For example, recommendations for the optimal 

pharmacogenomics design and control group must balance bias and power and be tailored to 

the research question of interest.  In the context of thiazide-SNP interactions on QT, even if 

increasing the sample size by50% was possible, the influence of exposure misclassification 
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and other yet evaluated sources of measurement error makes it difficult to rule-out clinically 

significant results, generally defined as interactions with effects of 5 ms or greater. 
44

  

However, such increases in sample size are unlikely to occur through incorporating data from 

yet represented observational cohort studies, as the remaining large population-based cohort 

studies (e.g. The National Longitudinal Study of Adolescent to Adult Health [AddHealth]
417

 

or the Reasons for Geographic and Racial Differences in Stroke Study [REGARDS]
418

) do 

not have ECGs or have inadequate ECG characterization (EZ Soliman personal 

communication).  Additionally, while other phenotypes of interest (i.e. blood pressure or 

glycemic traits) are measured in more cohorts than ECG traits, many of these traits show 

greater variability in measurement, 
407-409

  which may require even larger sample sizes than 

required for QT.  Future efforts to evaluate the effect of differing levels of outcome 

measurement error is therefore warranted.  Finally, funding institutes, particularly the 

National Institutes of Health, are moving away from funding new large, population-based 

cohorts, making the de novo collection of requisite data in the future unlikely.
419, 420

  Yet, our 

results underscore the massive sample sizes required in gene-environment interaction studies 

to both identify loci as well as rule out pharmacogenomics efforts of large magnitude,
282, 402-

404
 as false negatives can negatively impact dissemination of results, innovation in drug 

design to prevent future ADRs, and future pharmacogenomics efforts.   

Given that we have identified the majority of cohort studies to date with the requisite 

drug, ECG, and GWAS data, additional avenues are likely needed to grow the analytic 

sample for future efforts.  One potentially attractive option is offered by studies of electronic 

medical records (EMRs).  Strengths of EMRs include the potential to provide a more 

complete medication history, which could enable sensitivity analyses examining variables 
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such as medication dose and duration of use.  Consortia such as the Electronic Medical 

Records and Genomics (eMERGE) Network have demonstrated the feasibility of linking 

EMRs to genetic data for use in genetic research, 
386

 and have successfully identified genetic 

variants modifying drug response. 
387

  However, investigators using EMR data cannot control 

participant recruitment, timing and accuracy of data collection, or population 

representativeness. 
388

  Considering ECG research specifically, cohort studies administer 

ECGs to all participants at study visits using strict quality control procedures, whereas EMRs 

may capture ECGs for patients with medical indications, providing an inherently different 

population.  The selection bias caused through the inclusion of only participants with medical 

indications for specific test would also be of concern to pharmacogenomics studies of 

numerous other phenotypes that are not part of standard medical examinations (e.g. cognitive 

decline, hearing, biomarker assays, etc.).  

Thus, before resources like EMRs can be combined with results from observational 

cohort studies to illuminate pharmacogenomics studies, efforts to understand the potential 

bias and threats to precision are needed.  Unfortunately, prior efforts suggest that most 

pharmacogenomics studies have been performed (and published) before extensive efforts 

validating study designs have been conducted. 
47

  In the context of EMRs, future studies 

should therefore investigate the impact of non-routine testing (e.g. ECGs) on a population 

with medical indications on bias in a pharmacogenomics analysis.  Furthermore, EMRs 

provide the opportunity to include more precise medication data (e.g. dose and duration of 

use), but the impacts of including this information, particularly when it is only available in a 

subset of populations, warrants investigation.  Finally, researchers also must consider the 

limitations of combining different sources of data (e.g. population based cohorts, EMRs, 
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biobanks, etc.) and better characterize how combining such heterogeneous data sources 

impacts bias and power. 

 Given the massive statistical testing penalty of genome-wide association studies 

(α=5x10
-8

), the potential for bias in study designs that optimize power (i.e. longitudinal), and 

uncertainty surrounding the use of EMRs, a third tempting option may be to consider 

hypothesis-based genomic analyses such as a candidate gene approach.  There has been some 

success in identifying genetic variants in genes associated with congenital long QT syndrome 

that modify drug-induced QT-prolongation.
410

   However, our evaluation of loci from main 

effects QT GWAS as candidate genes in pharmacogenomics studies of QT-prolonging drugs 

did not yielded any positive results.  The observation of loci from main effects GWAS 

having no interactive effect is not unique to pharmacogenomics studies of drug-induced QT-

prolongation.  Efforts by Bis et al. that evaluated whether SNPs with previously reported 

main effects on coronary heart disease also modified the association between anti-

hypertensives and cardiovascular disease were similarly unsuccessful.
403

  It is not surprising 

that SNPs identified in studies of main effects do not demonstrate an interactive effect in 

gene-environment such as pharmacogenomics, as SNPs selected on the basis of an extreme 

P-value for a single main effect may be less likely to harbor heterogeneity across population 

subgroups (i.e. drug users vs. non-users).
282

 

In conclusion, pharmacogenomics research is currently one of the few areas of public 

health genomics for which interventions are not only possible, but are underway, as genetics 

are used to guide drug selection.
7, 13, 259

  In addition to informing drug selection, 

pharmacogenomics research also has the potential to illuminate novel pathways in drug 

response, inform drug development, alter policy and drug labelling, modify dosing regimens, 
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and prevent ADRs, thereby influencing public health at many points of intervention.
10, 11, 13

  

However, the limitations currently posed by pharmacogenomics research have the potential 

to minimize the role of genetics in variable drug response and to naively constrain the 

advancement of pharmacogenomics inquiry.  Therefore, future analyses must seek innovative 

solutions to overcome the inherent challenges in pharmacogenomics work so that this 

contemporary field can reach its full public health potential.  
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APPENDIX 1: SUMMARY RESULTS FROM FIVE LARGEST GENOME-WIDE ASSOCIATION STUDIES OF QT 

(POPULATIONS~10,000 OR GREATER) 

  Author and Year Newton-Cheh 2009 Pfeufer 2009 Holm 2010 Smith 2012 Arking 2014 

  Ancestry European European European African European 
   N 13,685 15,842 9,860 12,097 76,061 

Gene Chr SNP CA MAF 

β  

(SE) P MAF β (SE) P MAF 

β 

(SE) P MAF 

β  

(SE) P MAF 

β  

(SE) P 

RNF207 1 rs846111 C 0.28 1.75 
(0.18) 

1E-16 0.29 1.49 
(0.25) 

4E-9       0.28 1.73 
(0.13) 

7E-40 

TCEA3 1 rs2298632 T             0.50 0.70 

(0.09) 

1E-14 

NOS1AP 1 rs12143842 T 0.26 3.15 

(0.18) 

2E-78 0.24 2.88 

(0.23) 

2E-35    0.20 3.14 

(0.39) 

2E-15 0.24 3.50 

(0.11) 

1E-213 

  rs16847548 C          0.22 2.17 
(0.33) 

2E-10    

  rs16857031 G 0.14 2.63 

(0.18) 

1E-34             

  rs12029454 A 0.15 2.98 

(0.18) 

3E-45       0.31 1.73 

(0.29) 

4E-9    

  rs7534004 A          0.31 1.73 
(0.29) 

3E-9    

  rs10127719 C          0.32 1.64 

(0.29) 

2E-8    

  rs12567315 A          0.33 1.69 

(0.28) 

2E-9    

  rs6692381 T          0.34 -1.71 
(0.28) 

1E-10    

  rs6667431 A          0.33 1.69 

(0.28) 

2E-9    

  rs4306106 A          0.33 1.66 

(0.28) 

5E-9    

  rs10800352 G          0.33 -1.66 
(0.28) 

5E-9    

  rs4480335 C          0.33 -1.67 

(0.28) 

4E-9    

  rs12116744 A          0.33 1.67 

(0.28) 

4E-9    

  rs12027785 A          0.33 1.67 
(0.28) 

3E-9    

  rs3934467 T          0.33 -1.69 
(0.28) 

3E-9    

  rs4391647 G          0.33 -1.74 

(0.28) 

8E-10    

  rs4657175 G          0.33 1.74 

(0.28) 

7E-10    

  rs12123267 T          0.34 -1.70 2E-9    
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(0.28) 

ATP1B1 1 rs12061601 C          0.29 -1.89 
(0.30) 

2E-10    

  rs1320976 A          0.25 -2.06 

(0.32) 

2E-10    

  rs10919071 A    0.87 2.05 

(0.29) 

2E-12 0.88 1.52 

(0.71) 

0.03    0.87 1.68 

(0.14) 

1E-31 

SLC8A1 2 rs12997023 C             0.05 -1.69 
(0.22) 

5E-14 

SP3 2 rs938291 G             0.39 0.53 

(0.09) 

6E-10 

TTN-

CCDC14

1 

2 rs7561149 C             0.42 -0.52 

(0.09) 

7E-9 

SPATS2L 2 rs295140 T             0.42 0.57 

(0.09) 

2E-11 

SCN5A 3 rs11129795 A    0.23 -1.27 
(0.23) 

4E-8          

  rs12053903 C 0.34 -1.23 

(0.18) 

1E-14             

  rs6793245 A             0.32 -1.12 

(0.10) 

4E-27 

C3ORF7
5 

3 rs17784882 A             0.40 -0.54 
(0.10) 

3E-8 

SLC4A4 4 rs2363719 A             0.11 0.97 

(0.16) 

8E-10 

SMARCA

D1 

4 rs3857067 A             0.46 -0.51 

(0.08) 

1E-9 

GFRA3 5 rs10040989 A             0.13 -0.85 

(0.13) 

5E-11 

GMPR 6 rs7765828 G             0.40 0.55 
(0.09) 

3E-10 

PLN 6 rs11153730 T             0.50 -1.65 

(0.10) 

2E-67 

  rs11970286 T    0.44 1.64 

(0.20) 

2E-16          

  rs11756438 A 0.47 1.40 
(0.18) 

5E-22             

CAV1 7 rs9920 C             0.09 0.79 

(0.14) 

3E-8 

KCNH2 7 rs2968864 T 0.25 1.40 

(0.18) 

8E-16    0.22 2.33 

(0.01) 

2E-5       

  rs2968863 T    0.29 -1.35 
(0.23) 

4E-9 0.22 -2.30 
(0.55) 

3E-5       

  rs4725982 T 0.22 1.58 

(0.18) 

5E-16    0.23 1.64 

(0.55) 

0.003       

  rs2072413 T          0.27 -1.68 

(0.11) 

1E-49    
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  rs3807375 T       0.35 4.42 

(0.67) 

5E-11       

NCOA2 8 rs16936870 A             0.10 0.99 

(0.16) 

1E-9 

LAPTM4
B 

8 rs11779860 C             0.47 -0.61 
(0.10) 

2E-10 

AZIN1 8 rs1961102 T             0.33 0.57 

(0.10) 

3E-9 

GBF1 10 rs2485376 A             0.39 -0.56 

(0.09) 

3E-8 

KCNQ1 11 rs2074238 T 0.06 -7.88 
(0.88) 

3E-17    0.04 -2.13 
(0.49) 

1E-5       

  rs7122937 T             0.19 1.93 

(0.12) 

1E-54 

  rs12296050 T    0.20 1.44 

(0.25) 

9E-9 0.15 4.87 

(0.75) 

8E-11       

  rs757092 G       0.34 1.14 
(0.48) 

2E-2       

  rs12576239 T 0.13 1.75 

(0.18) 

1E-15    0.13 2.31 

(0.52) 

8E-6       

FEN1-

GADS2 

11 rs174583 T             0.34 -0.57 

(0.09) 

8E-12 

ATP2A2 12 rs3026445 C             0.36 0.62 
(0.09) 

3E-12 

TBX5 12 rs3825214 G       0.22 2.18 

(0.41) 

1E-7       

KLF12 13 rs728926 T             0.36 0.57 

(0.10) 

2E-8 

ANKRD9 14 rs2273905 T             0.35 0.61 

(0.09) 

4E-11 

USP50-
TRPM7 

15 rs3105593 T             0.45 0.66 
(0.10) 

3E-12 

CREBBP 16 rs1296720 C             0.20 0.83 

(0.13) 

4E-10 

LITAF 16 rs8049607 T 0.49 1.23 

(0.18) 

5E-15 0.49 1.25 

(0.22) 

3E-8 0.52 2.30 

(0.52) 

1E-5       

  rs735951 A          0.46 -1.15 
(0.10) 

2E-28    

MKL2 16 rs246185 C          0.34 0.72 

(0.10) 

3E-13    

NDRG4-

CNOT1 

16 rs37062 G 0.24 1.75 

(0.18) 

3E-25    0.28 2.25 

(0.47) 

1E-6       

  rs246196 C             0.26 -1.73 
(0.11) 

2E-15 

  rs7188697 A    0.74 1.66 

(0.23) 

1E-12 0.71 1.75 

(0.50) 

5E-4       

LIG3 17 rs2074518 T 0.46 1.05 

(0.18) 

6E-12             
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  rs1052536 C             0.53 0.98 

(0.10) 

6E-25 

PRKCA 17 rs9892651 C             0.43 -0.74 

(0.10) 

3E-14 

KCNJ2 17 rs1396515 C             0.52 -0.98 
(0.09) 

2E-25 

  rs17779747 T    0.35 -1.16 

(0.21) 

3E-8          

KCNE1 21 rs1805128 T             0.01 7.42 

(0.85) 

2E-18 

  rs1805127 T       0.39 3.09 
(0.72) 

2E-5       

  rs727957 T       0.19 4.33 

(1.20) 

2E-12       
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APPENDIX 2: STUDY- AND RACE/ETHNIC-SPECIFIC QUANTILE-QUANTILE PLOTS OF P-VALUES FOR 

THIAZIDE-SNP INTERACTION ESTIMATES IN ALL PARTICIPATING STUDIES FOR QT, QRS, AND JT INTERVAL 

ANALYSES 
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AGES, Age, Gene/Environment Susceptibility – Reykjavik Study; ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; ERF, 

Erasmus Rucphen Family Study; FHS, Framingham Heart Study; GARNET, Genome-wide Association Research Network into Effects of Treatment; H2000, 

Health 2000; Health ABC, Health, Aging, and Body Composition Study;  HCHS/SOL, Hispanic Community Health Study/Study of Latinos; JHS, Jackson Heart 

Study; MESA, Multi-Ethnic Study of Atherosclerosis; MOPMAP, Modification of Particulate Matter-Mediated Arrhythmogenesis in Populations; NEO, the 

Netherlands Epidemiology of Obesity; PROSPER, Prospective Study of Pravastatin in the Elderly at Risk; QT, QT interval; RS, Rotterdam Study; SHARe, The 

SNP Health Association Resource; WHI CT, Women’s Health Initiative Clinical Trial; WHIMS, the WHI Memory Study 
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