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ABSTRACT 

 

Julie Korda Holsclaw: Novel roles for the Drosophila melanogaster ortholog of SMARCAL1 
in DNA damage repair 

(Under the direction of Jeff Sekelsky) 
 

Schimke immuno-osseous dysplasia (SIOD) is a monogenic, autosomal recessive 

disorder with highly variable penetrance and expressivity caused by biallelic mutations in the 

gene SMARCAL1.  SMARCAL1 and its orthologs have been implicated in multiple repair 

pathways including replication-associated DNA damage repair and stability, gene 

expression in response to environmental stress, and non-homologous end joining. Early 

studies of SMARCAL1 suggest a role in double strand break (DSB) repair but have not been 

thoroughly tested.  

DSBs pose a serious threat to genomic integrity. If unrepaired, they can lead to 

chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations 

and chromosome rearrangements. DSBs are repaired using end-joining or homology-

directed repair strategies, with the predominant form of homology-directed repair being 

synthesis-dependent strand annealing (SDSA). SDSA is the first defense against genomic 

rearrangements and information loss during DSB repair, making it a vital component of cell 

health and an attractive target for chemotherapeutic development. SDSA has also been 

proposed to be the primary mechanism for integration of large insertions during genome 

editing with CRISPR/Cas9. Despite the central role for SDSA in genome stability, little is 

known about the defining step: annealing. I hypothesized that annealing during SDSA is 

performed by SMARCAL1, which can anneal RPA-coated single DNA strands during 



iv 
 

replication-associated DNA damage repair. I utilized unique genetic tools in Drosophila 

melanogaster to test whether the fly ortholog of SMARCAL1, Marcal1, mediates annealing 

during SDSA. Repair that requires annealing is significantly reduced in Marcal1 null mutants 

in both a synthesis-dependent and synthesis-independent (single-strand annealing) assays. 

Elimination of the ATP binding activity of Marcal1 also reduced annealing-dependent repair, 

suggesting that the annealing activity requires translocation along DNA. Unlike the null 

mutant, however, the ATP binding-defect mutant showed reduced end-joining, shedding 

light on the interaction between SDSA and end-joining pathways. Lastly, I found that 

Marcal1 genetically interacts with Blm in SDSA and replication-associated repair. Blm 

prevents replication fork damage that is often repaired via Marcal1-mediated pathways. 

These data contribute to our understanding of DNA damage repair mechanisms and 

regulation.  
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CHAPTER 1: HOMOLOGY-DIRECTED REPAIR OF DOUBLE-STRAND BREAKS1 

 

DNA double-strand breaks (DSBs) are stochastic and detrimental in somatic cells. 

They can arise from exogenous exposures such as chemical mutagens in the environment, 

ionizing radiation, and UV light (reviewed in Ciccia and Elledge 2010; Sage and Shikazono 

2016). They can also occur as a byproduct of endogenous cellular processes including 

oxidative stress during cellular metabolism, replication problems, or repair of other DNA 

lesions that are converted into DSBs during replication or for processing (reviewed in 

Pfeiffer et al. 2000). Altogether, DSBs are a common occurrence in mitotic cells, with a 

predicted frequency of ~50 endogenous DSBs per cell cycle in human cells—an amount 

equivalent to 1500 rads of ionizing radiation (Vilenchik and Knudson 2003).  

Proper repair of DSBs in somatic cells is paramount to the health of the cell and the 

organism as a whole. Unrepaired DSBs can lead to chromosome fragmentation and 

apoptosis; however, repair can also generate products that affect viability such as insertions, 

deletions, and gross rearrangements (Tsai and Lieber 2010).  Recombinational repair of 

mitotic DSBs can be detrimental, causing loss of heterozygosity and chromosome 

rearrangements that affect viability. Here I discuss the major pathways for DSB repair in 

mitotic cells, focusing on synthesis-dependent strand annealing (SDSA), a form of 

homology-directed repair (HDR), and the relationship between SDSA and end-joining (EJ).   

                                                
1
 This chapter is adapted from previously published work in the book Genome Stability. The original 

citation is as follows: 
Korda Holsclaw J, Hatkevich T, Sekelsky J. "Meiotic and Mitotic Recombination: First in Flies." In 
Kovalchuk, I and Kovalchuk, O (Eds), 2016 Genome Stability. Cambridge: Elsevier Inc. Academic 
Press. 
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Drosophila as a model system: Why flies? 

Drosophila melanogaster has many benefits for genetic study of DSB repair, 

including simple husbandry; established genetic tools; a relatively small, well-annotated 

genome; and fast generation time. In addition to these basic necessities, Drosophila is the 

only multicellular eukaryotic system with genetic tools to study SDSA, and HDR is favored 

over other repair strategies (elaborated on below) increasing my ability to recover HDR 

events. Furthermore, meiotic recombination occurs only in female flies; male flies have an 

alternate system for the proper segregation of their chromosomes that does not rely on 

crossing over of homologous chromosomes (Hawley 2002), allowing the recovery of mitotic 

repair events in subsequent generations for analysis. Most importantly, the only other model 

system with SDSA tools, yeast, lacks a known SMARCAL1 ortholog (as discussed in 

Chapter 2), the primary gene investigated in these studies.  

Homology-directed repair 

In Drosophila, as in other eukaryotes, mitotic DSB repair strategies can be separated 

into two major categories: processes that require a template (HDR) and processes that do 

not (EJ). HDR necessitates access to an undamaged copy of DNA—either a sister 

chromatid or a homologous chromosome. It can have multiple outcomes including both non-

crossover (NCO) and crossover (CO) products, but mitotic regulation in Drosophila favors 

NCO formation (Andersen et al. 2011; Kuo et al. 2014; Sarbajna et al. 2014; LaFave et al. 

2014). The understanding of HDR has been driven primarily by studies of meiotic 

recombination (particularly in yeast) and somatic HDR has been proposed to utilize the 

same intermediate, the double Holliday junction (dHJ) (reviewed in Jasin and Rothstein 

2013).  

HDR strategies share a common set of steps (central model in Figure 1.1) that begin 

with resection of the 5' ends of the break to yield 3' single-stranded DNA tails that are 
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protected by the single-strand binding protein RPA. Brca2 facilitates exchange of RPA for 

Rad51, creating a filament competent to search for and invade a homologous duplex 

template, typically the sister chromatid or homologous chromosome (Jensen et al. 2010; 

Reuter et al. 2014). The invading strand anneals to the template strand, displacing its 

complement and generating a structure called a D-loop (Figure 1.1, step 2). Synthesis off 

the template extends the invading strand.  

It is at this point that the HDR strategies diverge. In SDSA (central model in Figure 

1.1), the D-loop is disassembled and a complementarity test between the nascent strand 

and the opposing end of the break is performed. If complementarity is found, the two ends 

anneal. Trimming of non-complementary overhangs, filling of gaps, and ligation restore a 

duplex DNA molecule (Gloor et al. 1991; Nassif and Engels 1993; Pâques et al. 1998). An 

alternative form of HDR (orange box in Figure 1.1) occurs when the opposing end of the 

break anneals to the D-loop in a process called 2nd-end capture. Continued synthesis from 

both ends and subsequent ligation produces a dHJ, which must be further processed to give 

duplex products. This model of repair has been called a variety of names throughout the 

literature, but for clarity, I will refer to it as the dHJ model in this work. 

EJ, on the other hand, involves direct ligation of the broken ends, often after end-

processing that can result in small insertions or deletions (Figure 1.1, blue box).  Drosophila 

actively uses at least three variations of EJ depending on the context of the break: canonical 

non-homologous end joining (cNHEJ); microhomology mediated end joining (MMEJ), which 

is referred to as polymerase theta-mediated end joining (TMEJ) in metazoans and in this 

work; and alternative (cryptic) end joining (alt-EJ). cNHEJ is utilized as an early response 

prior to the first steps leading to HDR and is mediated by the Ku70/80 heterodimer and Lig4 

(see Initial strategy choice); whereas TMEJ is utilized later in repair, after resection (see 

Special circumstances) and is dependent on polymerase theta (POLQ) (mus308 in  
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Figure 1.1 Strand model of DSB repair strategies. 
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Figure 1.2 Diagram of DSB repair strategy processes and choices. 
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Figure 1.1 Strand model of DSB repair strategies. A DSB occurs in the blue DNA 
molecule. 1) 5' resection marks the first step of HDR and results in 3' ssDNA tails; 
alternatively, direct ligation may occur via cNHEJ (1B). 2) Rad51-coated ssDNA tails invade 
a template duplex, displacing one strand to creating a D-loop, and prime synthesis. 3) The 
D-loop is disassembled and a complementarity test between the opposing ends of the break 
occurs. 4A) SDSA is defined by annealing between complementary sequences, followed by 
5A) trimming and/or gap filling and ligation to restore an intact duplex DNA molecule. 4B) If 
complementarity is not found, the strand can re-invade the template for further synthesis or 
4C) utilize micro-homologies to end join via TMEJ, which is associated with indels around 
the break site (or incomplete filling of a gap). If the DSB occurs between two direct repeats, 
complementary sequences may be exposed during resection, and annealing can occur 
without synthesis. This process (not depicted, but see Special circumstances section) is 
called single-strand annealing (SSA). 5B) Re-invasion can lead to annealing of the opposing 
end to the D-loop (2nd-end capture); this can also occur during the first round of invasion if 
the D-loop is not disassembled. Ligation generates a dHJ intermediate that can be 
processed via 6B) dissolution or 7B-C) resolution. Dissolution involves migration of the 
junctions toward each other and decatenation via topoisomerase activity resulting in a non-
crossover (NCO) product. Resolution requires endonucleolytic activity and can result in a 
crossover (CO) product, which can be detrimental. 

Figure 1.2 Diagram of DSB repair strategy processes and choices. A flow chart 
representation of decision points and processes that contribute to DSB repair outcomes in 
model systems based on the literature and the work presented here. Ovals represent 
start/end points; Diamonds are decision points; rectangles are processes. End joining 
events are in gray; single strand annealing in light blue; synthesis dependent strand 
annealing in green; double Holliday junction model in pink. 

 

Drosophila) (Mimitou and Symington 2009a; Williams et al. 2014; Rodgers and McVey 2016; 

Wyatt et al. 2016). Alt-EJ is less understood and represents a category of EJ that is both 

Lig4 and mus308 independent. EJ strategies employ a range of mechanisms, including 

direct ligation of the ends (cNHEJ) and annealing of micro-homologies (TMEJ) (Yu and 

McVey 2010; Garcia et al. 2011). 

Traditionally, the processes leading to repair of a break via HDR have been thought 

of as a series of irrevocable choices often leading to the formation of dHJ intermediates, as 

shown in Figure 1.1. Discoveries in the past 25 years, however, have shown that DSB repair 

is a much more flexible and dynamic process than previously proposed (Figure 1.2), starting 

with the early response at the break. 
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Initial strategy choice 

Extensive work in yeast and mammalian cells has established the MRN complex 

(Mre11-Rad50-Nbs in Drosophila) as the DSB sensor for mitotic cells. The MRN complex 

activates the DNA damage response protein kinase ATM (Drosophila tefu), which then 

phosphorylates many downstream factors to initiate repair, one of which is the histone 

variant H2AX (Drosophila H2AV) (reviewed in Mimitou and Symington 2009; Daley et al. 

2015). The γH2AV signal peaks within five minutes of gamma irradiation in flies and 

provides a scaffold to recruit additional proteins to amplify the repair signal (Madigan et al. 

2002).  

In yeast and mammalian cells, initial strategy choice is cell cycle-dependent. In G0-

G1, phosphorylated 53BP1 binds the broken ends of a DSB to block 5’-3’ resection of the 

ends, preventing HDR. During S-G2, when the genome has been replicated and a sister 

chromatid is available as a template, BRCA1 is phosphorylated by ATM leading to 

degradation of 53BP1, freeing the ends for resection (reviewed in Mimitou and Symington 

2009; Daley et al. 2015). Thus, it appears that the choice between HDR and cNHEJ is 

decided by whether or not resection occurs. 

Additionally, the role of 53BP1 suggests the default repair mechanism for DSBs is 

HDR, and cNHEJ occurs only if the ends are protected from resection. Equal recruitment of 

early repair factors for both strategies, regardless of cell cycle phase, has been observed in 

response to laser microbeam irradiation in human cells (Kim et al. 2005). These data 

suggest a dynamic repair response that is regulated at the break by cell cycle dependent 

activating factors as opposed to cell cycle dependent expression of genes. 

It is less clear how initial strategy choice is made in Drosophila. While the core 

components of the early response are conserved, flies lack both 53BP1 and BRCA1 raising 

the question of how ends are protected or whether they are protected at all from resection 
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during G0-G1.  Equally confounding is how cNHEJ is carried out. DNA-PKcs is a kinase that 

interacts with the Ku70/80 heterodimer at the break to both tether the ends and activate 

downstream factors via phosphorylation (reviewed in Waters et al. 2014; Williams et al. 

2014). Drosophila has no known ortholog of this key regulatory factor, however, Lig4 mutant 

flies have elevated lethality when exposed to ionizing radiation and this phenotype is 

synergistic with mutations in Rad54, a gene involved in HDR, suggesting cNHEJ is 

functional and utilized in wild-type flies (Gorski et al. 2003). Flies also lack key end-

processing factors such as Artemis, Polλ, and Polμ and, while there is evidence of end-

processing in Lig4 proficient flies (Bozas et al. 2009), it remains unclear how such 

processing is accomplished.   

According to limited studies, strategy choice is somewhat age-dependent, with HDR 

strongly favored in older flies (>2 weeks) while EJ is utilized more in young flies (<2 weeks) 

(Preston et al. 2006a). There are a few caveats worth noting in this study: 1) the dominant 

repair pathway was single-strand annealing (SSA) (described in Special circumstances), a 

pathway strongly favored by the 157-bp repeats flanking the cut site in the reporter 

construct; 2) age-dependent pathway choice has only been studied in the male germline 

and these studies may reveal cell-type specific pathway choice (mature sperm-EJ vs. stem 

cells-HDR) rather than a true age correlation; 3) These studies report final repair events 

seen in the progeny of males, which could result from a variety of processes and decision 

points (Figure 1.1).  Incongruously, tumorigenesis in epithelial cells of older flies correlates 

with errors in HDR, but not EJ, suggesting adverse effects on fitness with utilization of HDR 

as flies age (Dekanty et al. 2015). 

Strategy choice does not seem to be affected by the chromatin environment of the 

break in Drosophila. It has been proposed that heterochromatin is naturally more resistant to 

DSBs due to compaction and when breaks occur, EJ is the preferred repair pathway to 
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avoid illegitimate recombination due to the highly repetitive nature of heterochromatic DNA. 

Chiolo et al. showed that neither of these hypotheses is supported in Drosophila: 

heterochromatin is as susceptible to DSB formation via ionizing radiation as euchromatin, 

and HDR is the dominant pathway for repair. Drosophila heterochromatin forms a distinct 

region within the nucleus and using high-resolution microscopy, Chiolo and colleagues were 

able to show γH2AV within the heterochromatin domain in response to  radiation. It was 

further shown that resection occurred within the heterochromatin domain but the remaining 

steps of HDR were suspended until the break physically moved to the outer periphery of the 

heterochromatin and was stripped of the heterochromatin marker HP1a, presumably to 

reduce compaction and enable repair factors access to the lesion (Chiolo et al. 2011). 

These studies did not test HDR factors downstream of resection and it remains unclear if 

heterochromatic DSBs are repaired via SSA or SDSA (or the dHJ model). These data do 

indicate that EJ and HDR have a dynamic and contextual relationship and that flies may 

utilize repair strategies that rely on resection at a much higher frequency than other 

metazoans.  

Resection 

The most extensive studies of resection have been performed in S. cerevisiae, 

however, studies in human and murine cells have provided important insights as well. Once 

successfully bound to the ends of the break, the human MRN complex promotes 5’-3’ 

resection via an interaction with CtIP (D.melanogaster CG5872 is a putative ortholog) 

(Sartori et al. 2007). In yeast, this initial resection is limited in length to ~200 nt (reviewed in 

Symington and Gautier 2011) after which long resection is facilitated by EXO1 or DNA2-

WRN/DNA2-BLM (Nimonkar et al. 2011; Sturzenegger et al. 2014; Myler et al. 2016).  The 

3’ ssDNA tails become coated with the single strand binding protein RPA, which has been 

shown to inhibit EXO1-mediated resection (Myler et al. 2016).  
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While initial resection represents the first pro-HDR decision, the shift from short 

resection to long resection creates a potential decision point between HDR and TMEJ. 

Mus308 utilizes microhomologies between two ssDNA ends to facilitate end-joining 

(described in more detail in Special circumstances), however, the efficiency of that process 

with human POLQ is limited by how proximal the microhomology is to the ssDNA termini 

(personal communication J. Carvajal Garcia). It is possible that two-step resection in 

mammals creates continued opportunity for EJ once cNHEJ is excluded, though this 

hypothesis currently lacks experimental evidence. My observations in Drosophila suggest 

that TMEJ is rarely utilized prior to strand exchange (Chapter 3).  

Strand exchange 

Once sufficiently resected, human BRCA2 facilitates the exchange of RAD51 for 

RPA on the 3’ ssDNA tails (Jensen et al. 2010; Jensen 2013; Bakr et al. 2016; 

Chalermrujinanant et al. 2016), creating a nucleoprotein filament competent for homology 

searching and strand exchange. The RAD51 nucleoprotein filament is stabilized by RAD51 

paralogs, which vary in number and degree of similarity to RAD51 depending on the 

organism studied (reviewed in Karpenshif and Bernstein 2012; Amunugama et al. 2013). 

The stabilized filament searches the dsDNA template strand for homology using multiple 

contact points along the filament (Forget and Kowalczykowski 2012).  

In Drosophila, there appears to be a preference for the sister chromatid as a 

template, even when an intrachromosomal template is available (Do et al. 2013). Do et al. 

further showed that increasing the polymorphisms between two copies of the same gene 

reduced the use of the diverged gene as a template, suggesting that preference of the sister 

over the homolog may be a byproduct of homology search mechanisms. SNP sequencing is 

the primary method for determining which template is used; therefore, it is possible that the 

homolog is utilized with the same efficiency as the sister when the break occurs in a region 



 

11 
 

of strong conservation provided the homologs are in close proximity within the architecture 

of the nucleus. This type of repair event would be indistinguishable from repair off the sister 

chromatid. Drosophila homologs are paired throughout the cell cycle in somatic cells 

(Henikoff 1997), which provides ample opportunity for homolog templating and may help to 

explain the strong preference for HDR in flies. 

Work in yeast has shown that once Rad51 has facilitated pairing of a sufficient 

number of nucleotides with the template to make dissociation kinetically unfavorable (Qi et 

al. 2015), Rad54 strips Rad51 from the invading strand, annealing it to the template strand 

in the process, and displacing its complement to form a structure called a displacement loop 

(D-loop) (Wright and Heyer 2014). Wright and Heyer’s experiments highlight many important 

functions for Rad54. The first is to strip Rad51 from the invading strand to facilitate assembly 

of synthesis machinery. The second is to properly anneal the invading strand to the 

template, which is also necessary for synthesis to occur. Lastly, and arguably most 

importantly, this process forces annealing of the invading strand to a single template. Rad51 

homology searches consist of multiple contacts along the nucleoprotein filament that can 

interact with multiple dsDNA strands. Rad54 requires a filament terminus for activity, thus 

ensuring that the 3’ end of the invading strand is properly annealed to a single template 

strand. These studies also found that Rad54 activity is halted by dsDNA, which suggests 

that the entire resected tail is annealed to the template prior to synthesis initiation. 

Special circumstances 

Resection almost invariably leads to template strand invasion, though there are 

notable exceptions as elaborated below. 

 



 

12 
 

Polymerase theta mediated end joining 

Recent studies have uncovered a type of EJ that is reliant on microhomologies near 

the termini of the resected ends and is mediated by POLQ/mus308. It has also been 

referred to as microhomology mediated end joining (MMEJ) as well as alt-EJ, though the 

latter is a generalized category that encompasses any EJ that is mediated by cryptic factors. 

In MEF cells, microhomologies of 4 nt that are ≤ 25 nt from the termini are strongly favored 

(Wyatt et al. 2016) suggesting TMEJ is preferred when resection is short or aborted (as 

suggested in Resection). In vivo evidence from Drosophila support this interpretation as 

TMEJ is utilized predominantly after synthesis during gap repair in wild type flies (Chan et al. 

2010) and SSA is highly favored in assays without an available template or with tandem 

homologies of greater lengths than those favored by mus308 (Rong and Golic 2003; 

Preston et al. 2006a; Mukherjee et al. 2009). These data argue that long resection is a poor 

substrate for TMEJ and long resection is often employed early at the break. Altogether, 

these data suggest TMEJ is utilized most often as an exit strategy for attempted HDR and 

not as a primary repair means directly after resection in Drosophila.   

Single strand annealing 

SSA has been proposed to occur when resected ends are complementary to each 

other such as when a DSB is generated between tandem repeats (reviewed in Bhargava et 

al. 2016). SSA appears to occur readily in yeast cells, which lack key factors necessary for 

TMEJ, most notably a POLQ ortholog. Rad52 mediates SSA in both yeast and human cells, 

whereas other organisms like Drosophila completely lack a Rad52 ortholog.  Rad52 also 

has an expanded role in yeast compared to other organisms: it both anneals during SSA 

and loads Rad51 onto resected tails (New et al. 1998), whereas Brca2 is the Rad51 loader 

in other organisms (Thomas et al. 2013; Jensen 2013). This makes yeast Rad52 uniquely 

situated to utilize SSA over HDR whenever homologies are present, unlike other systems 
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that require removal of Rad51 or inhibition of Rad51 loading as well as recruitment of an 

annealase after resection.  

SSA has been observed in other organisms as well, though predominantly in artificial 

situations where long resection has occurred and a template is unavailable (Pâques et al. 

1998; Rong and Golic 2003; Storici et al. 2006). Preston et al. observed high incidence of 

SSA in Drosophila when there was 157 bp of homology between the two break termini, even 

in the presence of a repair template (Preston et al. 2006a), suggesting that SSA is efficiently 

utilized in flies. It is unclear how SSA is regulated or how the choice between SSA, TMEJ, 

and strand exchange is made. Difficulties in sequencing largely repetitive regions make it 

difficult to test the extent of SSA utilization across the genome and deleterious repair of a 

break within direct repeats can arise from multiple repair strategies, including TMEJ, SDSA, 

and the dHJ model. 

Synthesis 

Determining the primary synthesis machinery for HDR is difficult due to multiple 

functions of polymerases within the nucleus. Translesion polymerases have been implicated 

in DSB repair, specifically REV1 and polymerase zeta (Polζ) (Kane et al. 2012; Sharma et 

al. 2012). Replicative polymerase delta (Polδ) as well as the Pol32 subunit have also been 

implicated in HDR, though cautious interpretation should be used for these studies as any 

mutation in Polδ or Pol32 impacts replication dynamics (reviewed in Prindle and Loeb 2012). 

Kane et al. proposed that translesion polymerases are recruited early but lack processivity 

or stable association with DNA (Kane et al. 2012). In this model, Polδ can be swapped for 

the translesion polymerases to facilitate longer synthesis. For a more detailed review of 

polymerase roles in HDR, I point the reader to this recent review (McVey et al. 2016)  

Synthesis length appears to be highly variable in vivo. In yeast, break induced 

replication (BIR) can result in synthesis from the break to the end of the chromosome, 
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though this process has yet to be observed in other systems (Saini et al. 2013). In contrast, 

HDR-induced synthesis for as few as 5 bp has been observed in Drosophila (Adams et al. 

2003). While it is tempting to assume length varies with experimental system, it is more 

likely that synthesis is a highly tractable process with upper and lower limits and observed 

variation in synthesis length is at least partially the product of differences in experimental 

design.  

Dissociation loops 

Structure 

Little is known about the structure of D-loops in vivo, specifically the structure of D-

loops as synthesis progresses beyond 100 nt. There are two main models for HDR D-loop 

progression: the migrating bubble and the ever-extending bubble (Figure 1.3). In the 

migrating bubble model, nascent DNA is extruded as synthesis progresses, as observed in 

yeast BIR (Saini et al. 2013). The extruded DNA is presumably coated in RPA which is 

known to interact with many repair factors, including the annealase SMARCAL1 (Ciccia et 

al. 2009; Yusufzai et al. 2009; Bhat et al. 2014; Xie et al. 2014). In contrast, D-loops could 

form ever-extending bubbles which are structurally similar to replication bubbles without 

lagging strand synthesis or bi-directionality. In this model the nascent strand is protected 

through base pairing with the template while the displaced strand is protected by RPA. The 

ever-extending model is predicted to favor 2nd-end capture by preventing complementarity 

tests of the nascent strand as well as encouraging RPA-mediated interactions between the 

D-loop and the opposing ssDNA tail via Rad52 activity (McIlwraith and West 2008; Nimonkar 

et al. 2009).  

Figure 1.3 Models of D-loop 
progression during synthesis.  Top: 
The migrating bubble model extrudes 
nascent DNA, which would aid 
complement-arity tests during synthesis. 
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Bottom: The ever-extending bubble model 
protects nascent DNA from complementarity tests 
until synthesis machinery is disassembled and 
leaves the displaced strand open to 2nd-end 
capture. 

 

It is possible that both models are utilized depending on the desired outcome. 

Migrating bubbles would likely favor SDSA whereas ever-extending bubbles are more 

conducive to dHJ formation. It is also possible that the size of the break plays a role in D-

loop structure. A gap that requires significant synthesis via a highly processive polymerase 

may generate a different type of D-loop than a clean break, which may use less processive 

polymerases.  

Long-tract, conservative synthesis in BIR proceeds through a migrating bubble (Saini 

et al. 2013), which suggests that ever-extending bubbles are specific to semi-conservative 

replication during S-phase. Perhaps bubble structure is influenced by whether or not 

synthesis is semi-conservative (all HDR synthesis is conservative). Long synthesis 

necessitates the highly processive Polδ, which would be a substantial roadblock to D-loop 

dissociation since putative D-loop dissociating helicases have limited unwinding activity past 

~800 bp (Brosh et al. 2000; Romero et al. 2016). Dissociation kinetics were not measured in 

these experiments, though it is possible that multiple molecules of D-loop dissociators could 

dismantle a long D-loop if their rate was faster than the polymerase rate of synthesis. So 

little is known about the structure of D-loops in vivo; it is a field of study with exciting 

possibilities for future research.  

Disassembly 

Many enzymes can disassemble D-loops in vitro, making it difficult to determine 

which are involved in vivo. Genetic evidence suggests the BTR complex, consisting of Blm 

helicase, Top3a, and RMI1/2 (Drosophila lack known orthologs of both RMI proteins) plays a 
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role in D-loop disassembly. McVey et al. showed that Blm mutants were defective in D-loop 

disassembly (McVey et al. 2007), while Fasching et al. showed that the yeast ortholog of 

Blm, Sgs1, could only disassemble protein-free D-loops in vitro whereas Top3a was capable 

of disassembling protein-bound D-loops, which are more likely to be biologically significant 

(Fasching et al. 2015). These data suggest that the Blm-Top3a interaction is necessary for 

proper D-loop disassembly in vivo. 

 The helicase RTEL1 has been shown to both prevent protein-bound D-loop 

formation and disassemble pre-formed protein-bound D-loops in vitro, though corroboration 

in vivo has been hampered by embryonic lethality of RTEL1 null mutations in both mice and 

Drosophila (Ding et al. 2004; Barber et al. 2008; observations in our lab). Cell culture studies 

performed by Ding and Barber suggest RTEL1 inhibits HDR, though the mechanism 

remains unclear.  

The yeast and Drosophila orthologs of FANCM helicase, Mph1 and Fancm 

respectively, are also capable of disassembling D-loops in vitro (Prakash et al. 2009; 

Romero et al. 2016). Both RTEL1 and FANCM achieve D-loops disassembly without 

disrupting the Rad51 nucleofilament, which suggests they act upstream of Rad54 and may 

be utilized to abort HDR prior to synthesis, which could promote TMEJ or SSA. Interestingly, 

Fancm mutants have slightly elevated mitotic CO and slightly reduced SDSA in Drosophila, 

supporting a role for Fancm in facilitating NCO outcomes of HDR (Kuo et al. 2014). More 

studies are necessary to clarify this role.  

 The mechanics of D-loop disassembly also remain unclear. Blm interacts with RPA 

which stimulates its helicase activity, particularly on partial duplexes with 256 bp of dsDNA 

and D-loops of ~800 bp (Brosh et al. 2000), which would be most efficient on the migrating 

bubble model of synthesis. In this scenario, Blm could interact with RPA bound to the 

displaced strand to facilitate unwinding from either end. Blm also has a preference for 5’-3’ 
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directionality, which could promote migration of the bubble as well as facilitate removal of 

the invading strand (Bachrati et al. 2006). Drosophila Fancm has 3’-5’ polarity but can only 

unwind D-loops of less than 20 bp in vitro, and it has been suggested that Fancm may 

recruit Blm to D-loops for dissociation (Romero et al. 2016). 

As previously mentioned, translesion polymerases have been implicated in HDR and 

lack processivity. It is possible that Blm-Top3a track behind the synthesis machinery, 

reducing the size of the D-loop and extruding the nascent strand until the polymerase 

dissociates from the DNA, at which point the 3’ end of the invading strand becomes 

unfettered and can be removed by Fancm to completely disassemble the D-loop. This 

hypothesis supports the stochastic synthesis lengths observed in repair assays. 

Complementarity tests and annealing 

Little is known about the mechanisms of repair after D-loop disassembly, how the 

ends interact to perform complementarity tests, or which factors are responsible for 

annealing the two ends. Studies in budding yeast have identified Rad52 as an important 

mediator of annealing during SSA (Ivanov et al. 1996; Storici et al. 2006; Jensen 2013), 

however mammalian Rad52 mutations do not result in strong HDR defects (Rijkers et al. 

1998). Human RAD52 has been found to be important for 2nd-end capture through 

interactions with RPA and Rad51 (McIlwraith and West 2008; Nimonkar et al. 2009; Khade 

and Sugiyama 2016), which suggests that RAD52 functions in animals may be confined to 

steps of HDR where Rad51 is active, such as strand invasion, making it unlikely that RAD52 

is the mediator of annealing during SDSA. 

Recent studies in mammalian systems have uncovered a class of helicases with 

ATP-driven annealing activity called annealing helicases (Yuan et al. 2012). Members of this 

family can anneal two RPA-coated, complementary single DNA strands, making these 

enzymes ideal candidates for annealing during SDSA. The first member of this family to be 
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identified, SMARCAL1, is highly conserved throughout metazoans (as well as plants and 

some protists), though it is notably absent from yeast supporting an expanded role for 

Rad52 in that organism. SMARCAL1 and the Drosophila ortholog, Marcal1, have been 

shown to interact with RPA to facilitate annealing and increased the annealing rate of 

ssDNA oligos in solution as well as traditional annealing assays (described in more detail in 

Chapter 2)  (Yusufzai et al. 2009; Kassavetis and Kadonaga 2014). Further support for a 

role of Marcal1 in annealing during SDSA is suggested by a previous study showing that 

mutations in mei-41, which encodes the Drosophila ortholog of ATR, significantly reduce 

annealing during both SDSA and SSA (LaRocque et al. 2007), suggesting that an ATR-

activated protein, such as SMARCAL1/Marcal1, catalyzes annealing during DSB repair. 

The dHJ model 

Mitotic crossovers (CO), a product of dHJ processing, are observed in certain 

Drosophila genetic backgrounds, such as Blm and Fancm mutants, suggesting that the dHJ 

model is still a valid and utilized pathway for repair in flies (LaFave et al. 2014). dHJ 

formation occurs when the second resected end of a DSB anneals to the D-loop and begins 

synthesis. This process is thought to occur sequentially, with strand invasion occurring first 

to open the D-loop, followed by synthesis then annealing of the opposing ssDNA tail to the 

D-loop (2nd end capture). As synthesis continues on both strands, the nascent strands 

eventually meet the opposing sides and ligate to the remaining 5’ ends to form a 

concatenated joint molecule—the dHJ. dHJs are toxic structures that prevent proper 

segregation during mitosis and block transcription (Sarbajna et al. 2014; Pipathsouk et al. 

2016); it is imperative that the chromosomes are separated accurately, preferably without 

exchange of genetic information in the form of COs. There are two possible mechanisms for 

disentanglement: dissolution via migration and decatenation or resolution via 

endonucleolytic cleavage. 
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 Migration and decatenation is carried out by the BTR complex in humans (BLM, 

TOPO3α, RMI1/2) and the STR complex in yeast (Sgs1, Top3α, Rmi1) (Plank et al. 2006; 

Wu et al. 2006). BLM helicase migrates the junctions toward each other and TOPO3α (a 

type I topoisomerase) decatenates the strands through nicking and religating one strand of 

the dsDNA. The RMI proteins are thought to provide stability to the complex as well as 

facilitate decatenation through coordination with TOPO3α. Mitotic COs are elevated in Blm 

mutant flies, suggesting that the function of the complex is conserved in Drosophila (LaFave 

et al. 2014). Interestingly, flies do not have orthologs to the RMI proteins; the C-terminal 

region of Top3α has a large insertion that may play a similar role but this hypothesis has not 

been tested (Chen et al. 2012).  

 The presence of mitotic COs in Blm mutants, rather than an increase in lethality, 

suggests unbiased resolution of dHJs (with equal probability of yielding CO or NCO) by 

structure-specific endonucleases called resolvases. Andersen et al. showed that Blm 

mutations are lethal when combined with mutations in the genes mus81, mus312, or Gen 

(MUS81, SLX4, GEN1, respectively in humans), all of which encode subunits of putative HJ 

resolvases (Andersen et al. 2011). The synthetic lethality of the double mutants could be 

partially rescued by mutating spn-A, (in the case of mus81 Blm double mutant, fully rescued) 

suggesting that the phenotype was strand invasion-dependent and therefore related to a 

toxic HDR product. The absence of mitotic COs in flies with wild-type Blm, combined with 

the viability of single endonuclease mutants, indicate that the primary pathway for 

disentangling dHJs is Blm-mediated dissolution with endonuclease cleavage serving as a 

back-up mechanism. 

The evidence presented in this chapter indicate that DSB repair is a much more 

dynamic and tractable process than previously proposed. The dHJ model was thought to be 

the predominant form of DSB repair since it was first proposed (Szostak et al. 1983). 

However, advances in assay design led to the discovery of SDSA (Nassif and Engels 1993), 
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which is gaining traction as the primary form of HDR in mitotic cells. More recent studies 

identified TMEJ as another form of DSB repair utilized in mitotic cells (Chan et al. 2010; Yu 

and McVey 2010). Surprisingly, we still know relatively little about the defining step of SDSA, 

annealing, or how strategies downstream of resection and upstream of dHJ formation 

interact with each other. In this work, I explore the role of Marcal1, the Drosophila ortholog 

of the annealing helicase SMARCAL1, in SDSA. My studies open new avenues to explore, 

particularly in how annealing affects other decisions (such as TMEJ and dHJ formation) 

during HDR. 
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CHAPTER 2: SMARCAL1: STRUCTURE, ACTIVITY, AND DISEASE STATES 
 

Human SMARCAL1 (originally called HARP for HepA-Related Protein) and its 

orthologs have been implicated in multiple repair pathways including replication-associated 

DNA damage repair and stability, gene expression, and NHEJ. Here I summarize what is 

known about the activity of SMARCAL1 in cellular processes; the structure of the 

SMARCAL1 protein and its known interactions with other proteins; and how these attributes 

contribute to the severity and progression of Schimke immuno-osseous dysplasia (SIOD), 

the disease caused by biallelic mutations in SMARCAL1. 

Structure and conserved interactions 

Human SMARCAL1 has a C-terminal SWI/SNF2 family helicase domain and two N-

terminal HARP domains (Coleman et al. 2000; Yusufzai and Kadonaga 2008). Drosophila 

Marcal1 is 41% identical and 60% similar to human SMARCAL1 across the helicase domain 

(based on BLAST alignment of residues 154-679 of Marcal1 to residues 337-869 of 

SMARCAL1). Marcal1 has a single HARP domain versus the two in SMARCAL1 (Figure 

2.1A); the presence of two HARP domains appears to be unique to chordates.  

The distance between the helicase ATPase domain and the proximal HARP domain 

is critical for the annealing function of SMARCAL1 in vitro (Ghosal et al. 2011; Bétous et al. 

2012), and that distance is conserved in Marcal1. In vitro studies comparing the activity of 

Marcal1 to SMARCAL1 showed that both proteins have robust annealing activity; Marcal1 

annealed a variety of structures including splayed arms and Holliday junctions but was 

unable to regress a model replication fork (Kassavetis and Kadonaga 2014). The authors 
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also noted that oligo annealing during substrate preparation was accelerated in the 

presence of either SMARCAL1 or Marcal1, suggesting that two strands of ssDNA do not 

have to be in the same DNA molecule for efficient annealing activity catalyzed by 

SMARCAL1 orthologs.  Based on these studies, it is possible that Marcal1 performs a 

subset of roles compared to SMARCAL1.  

 

Figure 2.1 SMARCAL1 domain conservation. (A) Schematic of human SMARCAL1 (top) 
and Drosophila Marcal1 (bottom). Green: RPA interacting domains. Blue: family-specific 
HARP domains. Pink I-III: SWI/SNF2 family motifs I-III responsible for ATP binding (yellow 
bar) and ATP hydrolysis. Pink IV-VI: SWI/SNF2 family IV-VI helicase motifs. (B) 
Conservation of 9 key residues (red boxes) of the RPA-binding interface of SMARCAL1. 
Top to bottom: Homo sapiens, Bos taurus, Mus musculus, Danio rerio, Xenopus tropicalis, 
Drosophila melanogaster. Dark gray indicates full conservation of a key residue; asterisk (*) 
indicates full conservation of a residue not predicted to bind RPA. Light gray indicates high 
similarity of a key residue; colon (:) indicates high similarity of a residue not predicted to bind 
RPA. Amino acid positions are listed to the right of the sequences. 

 

Human SMARCAL1 and Drosophila Marcal1 have been shown to interact with the 

single strand binding protein RPA, specifically the 32 kDa subunit RPA2 (also called RPA32, 

because of its size), and this interaction is required for its recruitment to DNA (Ciccia et al. 

2009; Yusufzai et al. 2009; Bhat et al. 2014; Kassavetis and Kadonaga 2014). Structural 



 

23 
 

studies of the human SMARCAL1-RPA2 interface have identified 11 key residues in the N-

terminus of SMARCAL1 that directly interact with RPA2 (Feldkamp et al. 2014) (Figure 1.4B, 

red boxes). These studies also found that SMARCAL1 bound RPA more tightly than RAD52. 

It was proposed that the increased affinity of RPA for SMARCAL1 may reveal an order of 

events at sites of DNA damage, with SMARCAL1 recruited prior to RAD52. An alternative 

possibility is that SMARCAL1 can outcompete RAD52 if both are recruited at the same time. 

It is, therefore, possible that the strong conservation of the nine core RPA-interacting 

residues in vertebrate SMARCAL1 orthologs is due to presence of RAD52 in these 

organisms. Drosophila lack a RAD52 ortholog and this could explain the reduced 

conservation of the RPA-interacting domain in flies.  

Differential conservation of the RPA binding domain could also cause altered 

substrate specificity, however, the difference seen in branch migration activity between 

human and Drosophila orthologs is most likely due to the number of HARP domains and not 

RPA binding. SMARCAL1 recruitment, but not substrate specificity, is reliant on the 

presence of RPA, presumably to position SMARCAL1 at the proper ssDNA:dsDNA junction 

(parental-nascent vs. parental-parental, depending on whether the fork needs to be 

regressed or is already regressed) (Bétous et al. 2013b). In the absence of RPA, 

SMARCAL1 can bind any ssDNA:dsDNA junction with equal affinity and SMARCAL1 protein 

without the RPA-interacting domain (SMARCAL1∆32)  likewise shows no junction 

preference. Both SMARCAL1 and SMARCAL1∆32 can regress model replication forks and 

model Holliday junctions, indicating that SMARCAL1 activity is independent of RPA 

interaction (Yusufzai and Kadonaga 2008; Bétous et al. 2013b). The HARP domains of 

SMARCAL1 appear to affect substrate specificity (Ghosal et al. 2011; Mason et al. 2014) 

and Mason et al. found single nucleotide changes within the HARP domain could influence 
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binding to different substrates. These observations suggest that Marcal1 may bind a 

reduced number of substrates compared to human SMARCAL1. 

SMARCAL1 appears to be highly regulated. It is phosphorylated by ATM,ATR, and 

DNA-PK in response to DNA damage (Bansbach et al. 2009; Postow et al. 2009; Couch et 

al. 2013), though the most characterized is ATR-dependent phosphorylation. SMARCAL1 

has multiple putative phosphorylation sites, three of which have been confirmed to affect 

SMARCAL1 activity (Couch et al. 2013; Carroll et al. 2014). S652 is phosphorylated in an 

ATR-dependent manner yet reduces ATPase activity, whereas S889 phosphorylation 

appears to stimulate ATPase activity. These data suggest phosphorylation serves to 

attenuate SMARCAL1 activity in response to stimuli. 

Activity 

Replication 

The first in vitro studies of human SMARCAL1 showed that it was able to anneal a 

partially unwound, RPA-coated plasmid in an ATP-dependent manner, however, it failed to 

exhibit any unwinding activity expected of a canonical helicase (Yusufzai and Kadonaga 

2008). These studies also showed that SMARCAL1 preferentially bound forked DNA 

structures. From this work, SMARCAL1 came to be known as an “annealing helicase” with 

the potential for replication-associated roles.  

Functional assays in human cells support a role for SMARCAL1 during replication. 

Bansbach et al. showed that SMARCAL1 forms foci that co-localized with ATRIP in 

response to treatment with hydroxyurea (HU), a ribonucleotide reductase inhibitor, 

suggesting a role in fork stability during replication stalling (Bansbach et al. 2009). They 

further showed that increased loading of RPA as well as hyper-phosphorylation of RPA 

occurs in SMARCAL1 depleted cells, suggesting an accumulation of ssDNA during 
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replication and activation of S-phase checkpoints in the absence of SMARCAL1. Further 

studies by Bétous et al. showed that SMARCAL1 travels with the replisome during normal 

synthesis and prevents mus81-mediated DSBs during replication (Bétous et al. 2012). 

In vitro studies of SMARCAL1 binding and activity support these findings. 

SMARCAL1 can bind almost any structure with a ssDNA-dsDNA junction including dsDNA 

with overhangs of both polarities (5’ and 3’); forked structures with 2 strands (splayed arms), 

3 strands (leading or lagging strand), or 4 strands (model replication fork); forked structures 

with variable and asymmetrical arm lengths; structures with ssDNA gaps; 3-way junctions; 

and 4-way junctions (resembling Holliday junctions)  (Bétous et al. 2012). All structures 

stimulated ATPase activity, though ssDNA of at least 5 nt is needed to achieve full activity, 

implicating replication uncoupling as a key activator of SMARCAL1 activity. Later work 

established that SMARCAL1 preferentially regresses model replication forks with leading 

strand gaps (indicative of uncoupling) and migrates regressed forks (chicken foot structure, 

similar to a single Holliday junction) to restore a functional fork with a lagging strand gap 

(Bétous et al. 2013b). These studies highlight a critical role for SMARCAL1 in replication 

stability. 

Gene expression 

SMARCAL1 was first identified in a sequence similarity-based screen for SNF2 

family chromatin remodelers (Coleman et al. 2000) and assumed to be a new type of SNF2 

family chromatin remodeler with functions in transcription and nucleosome remodeling, 

though the authors noted that SMARCAL1 family proteins did not have domains 

characteristic of transcription roles such as bromodomains, chromodomains, or zinc fingers. 

Additionally, the SNF2 family DEAD box necessary for ATP hydrolysis is altered to DESH in 

SMARCAL1 family proteins, making SMARCAL1 and its orthologs structurally distinct from 
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other SNF2 family proteins. While these data suggest that SMARCAL1 may have a 

specialized role in the cell, gene expression studies remain an active area of research.   

SMARCAL1 has been shown to co-precipitate with SPT16 which complexes with 

SSRP1 to form the FACT heterodimer (Bétous et al. 2013a). FACT has multiple roles within 

the cell, one of which is chaperoning H2A/H2B histones during transcription (Mandemaker 

et al. 2014). Studies in Drosophila showed that mutations in transcriptional components 

rescued a very mild wing vein phenotype seen in Marcal1 overexpression assays 

(Baradaran-Heravi et al. 2012a). While the authors argue that this phenotype is indicative of 

an interaction with transcription machinery, an alternate interpretation is that reducing 

transcription results in less ssDNA:dsDNA junctions that could be aberrantly bound by 

Marcal1  when it is overexpressed. Furthermore, SPT16 catalyzes the exchange of DNA-PK 

phosphorylated H2AX/H2B for H2A/H2B in response to DNA damage (Heo et al. 2008), 

confirming a role for SPT16 outside of transcription and suggesting the co-precipitation 

could be mediated by H2AX and not direct protein-protein interactions. The presence or 

absence of histones was not tested nor was a direct interaction between SMARCAL1 and 

SPT16 confirmed in the study.  

Heat stress (39.5 C for 6.5 hrs) is lethal for SMARCAL1del/del mice and Marcal1del 

flies raised at 25-30C showed reduced viability and hatch rates (Baradaran-Heravi et al. 

2012a).  The authors also found gene expression profiles to be different between wild-type 

and Marcal1del flies in response to heat shock. It is important to note that 25C is a standard 

temperature for raising flies and I observed that heteroallelic Marcal1 null flies had high 

fecundity under normal, control (25C) conditions. I also did not observe increased lethality 

when performing heat shock (37C for 1 hour on two subsequent days) necessary for 

promoter activation during the P{wIw} assay (Chapter 3). It is likely that the heat sensitivity 

observed by Baradaran-Heravi et al. is due to the genetic background of the homozygous 
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stock used rather than the effect of the Marcal1del mutation, which also casts doubt on the 

gene expression data observed in these experiments. The gene expression defects and 

heat stress phenotype observed in SMARCAL1del/del mice is much more pronounced than the 

Drosophila phenotype. This could be due to differences between the orthologs (see 

Structure and interactions) or it could be due to unassociated differences between the two 

organisms.  

DSB repair 

 Early studies of SMARCAL1 suggest a role in DSB repair in addition to its 

replication-associated roles. SMARCAL1 depletion via RNAi resulted in activation of the 

DNA damage response and formation of H2AX foci (a histone variant used as a marker of 

DNA damage, often DSBs) that co-localized with DSB repair factors such as Rad51 

(Bansbach et al. 2009). Bansbach et al. also showed that endogenous SMARCAL1 formed 

foci during S/G2 in response to treatment with ionizing radiation (IR), consistent with a role 

in DSB repair. 

SMARCAL1 is phosphorylated by ATR, ATM, and DNA-PK (Bansbach et al. 2009), 

suggesting a role in DNA damage repair in both replication-associated and replication-

independent contexts. SMARCAL1 also precipitates with Ku 70/80, though, this could be 

due to pulldown of a common interacting protein such as RPA or H2AX (Ku70/80 also 

precipitates with H2AX)  (Heo et al. 2008; Bétous et al. 2013a). Studies in DT40 cells 

showed that SMARCAL1-/- cells were sensitive to camptothecin (CPT), a topoisomerase I 

inhibitor; etoposide (ETS), a topoisomerase II inhibitor; and ionizing radiation (IR) (Keka et 

al. 2015). Ku70-/- cells were more sensitive to ETS than SMARCAL1-/- and SMARCAL1-/- Ku-

/- cells had a sensitivity phenotype identical to Ku-/- suggesting that Ku acts earlier in DSB 

repair than SMARCAL1. The same pattern was observed for Lig4-/- and DNA-PKcs-/- human 

cells, with NHEJ factors acting upstream of SMARCAL1 in DSB repair.  
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Interestingly, BRCA2-/- (a factor required for RAD51 loading during HDR) human 

cells were not sensitive to ETS, suggesting that SMARCAL1 has a role that is activated by 

topoisomerase II inhibition and is independent of HDR (Keka et al. 2015). Consistent with 

this observation are studies showing that SMARCAL1 and BRG1 positively influence each 

other’s expression in response to doxorubicin treatment (Haokip et al. 2016). Doxorubicin is 

another topoisomerase II inhibitor that acts by intercalating DNA, whereas ETS forms a 

ternary complex with topoisomerase II and the nicked DNA, preventing religation. It is 

possible that topoisomerase II inhibition reflects a role in transcription, though a role in DSB 

repair independent of HDR cannot be excluded. 

Disease states 

Biallelic mutations in SMARCAL1 cause the rare genetic disease Schimke immuno-

osseous dysplasia (SIOD). SIOD is a pleiotropic disease that affects the growth and 

development of the spine and the ends of long bones (spondyloepiphyseal dysplasia) 

(Hunter et al. 2010). Major characteristics of SIOD include: immune cell deficiency, 

specifically T-cell deficiency, and increased incidence of non-Hodgkin lymphoma (Basiratnia 

et al. 2011; Baradaran-Heravi et al. 2012b); focal segmental glomerulosclerosis of the 

kidney that ultimately leads to steroid-resistant nephropathy and end stage renal failure 

(Safder et al. 2014; Sarin et al. 2015); and vaso-occlusive processes including 

atherosclerosis and cerebral ischemia (Kilic et al. 2005; Deguchi et al. 2008; Morimoto et al. 

2012).  

SIOD has penetrance and expressivity, which can be a challenge for proper 

diagnosis. Onset of disease can occur prenatally through late childhood and patients can 

have a multitude of symptoms in addition to those listed above or a few (Lou et al. 2002). 

Lou et al. also found that age of onset and genotype does not always predict longevity, 
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though most patients with severe SIOD die in early childhood from renal failure, stroke, or 

infection. 

Even though SIOD has been shown to be monogenic, nearly half of patients with 

clinical SIOD do not have identifiable mutations in coding regions of SMARCAL1 (Hunter et 

al. 2010). Two separate studies have shown that intronic splice site mutations, which are not 

normally tested in genetic screens, can have variable effects on disease severity, 

suggesting that an individual’s splicing factors may play a role in disease expression (Dekel 

et al. 2008; Carroll et al. 2015), however efforts to establish genotype-phenotype 

correlations have been largely inconclusive (Lücke et al. 2005; Yue et al. 2010; Simon et al. 

2014). Siblings with the same mutations in SMARCAL1 can have grossly different clinical 

features, suggesting that cryptic factors sensitize a patient with SMARCAL1 deficiency. 

Sensitization could be caused by endogenous processes like splicing or gene expression, 

genetic interactions with replication or DNA damage repair genes, or environmental 

exposures.  

The unexplained variability in SIOD disease expression highlights the need for 

diverse molecular and genetic studies of SMARCAL1 and its orthologs.  In this work I 

provide evidence of a novel role for Marcal1, the Drosophila ortholog of SMARCAL1, in DNA 

damage repair via SDSA. My work contributes to a growing list of SMARCAL1 functions, 

which can be variably affected by different mutations and may help to explain why SIOD 

patients have high allelic heterogeneity (Clewing et al. 2007) and a broad range of 

phenotypes.  
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CHAPTER 3: ANNEALING OF COMPLEMENTARY SEQUENCES DURING DOUBLE 

STRAND BREAK REPAIR IS MEDIATED BY THE DROSOPHILA ORTHOLOG OF 
SMARCAL11 

 

Introduction 

Synthesis-dependent strand annealing (SDSA) is gaining acceptance as the 

predominant form of homology-directed repair (HDR) in mitotic cells due to its parsimony 

and a growing amount of circumstantial evidence, such as the rarity of mitotic crossovers in 

wild-type backgrounds (Andersen and Sekelsky 2010). Despite this growing support, there 

are few assays in existence with the capacity to determine whether non-crossover gene 

conversion events are generated through SDSA or the double Holliday junction (dHJ) 

pathway (Chapter 1). As such, little is known about the defining step of SDSA: annealing. 

Based on the evidence presented in Chapters 1 and 2, I hypothesize that SMARCAL1 plays 

a significant role in annealing during SDSA.  

Drosophila is one of the few model systems with genetic tools available to assay 

SDSA, making it an ideal system to test whether SMARCAL1 plays a role in annealing 

during SDSA in vivo. I show here that Drosophila Marcal1 mutants have elevated lethality 

when exposed to double strand break (DSB)-inducing agents, indicating Marcal1 has a role 

in HDR. I used well-characterized assays to demonstrate that annealing during both SDSA 

and SSA is severely reduced in Marcal1 mutants. Abrogating Marcal1 ATP-binding reduces 

                                                
1
 This work presented in this chapter was previously published in Genetics. The original citation is as 

follows:  
Korda Holsclaw J and Sekelsky J. 2017 Annealing of complementary DNA sequences during double-
strand break repair in Drosophila is mediated by the ortholog of SMARCAL1. Genetics. doi: 
10.1534/genetics.117.200238 [Epub ahead of print] 
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end joining (EJ) as well as annealing, suggesting that Marcal1 activity is epistatic to 

polymerase theta mediated end joining (TMEJ). Altogether, these data uncover new 

information about HDR that further our understanding of DSB repair, which will aid in 

improving the efficiency of chemotherapeutics and laboratory technologies such as 

CRISPR/Cas9. These data also have the potential to direct studies of human SMARCAL1 

that can aid in prognoses of patients with Schimke immuno-osseous dysplasia (SIOD), the 

disease caused by bi-allelic mutations in SMARCAL1. 

Results 

Marcal1 mutants show elevated lethality when exposed to DSB-inducing agents 

I tested whether Marcal1 has a role in DSB repair by exposing mutant larvae to DNA 

damaging agents and measuring survival to adulthood relative to unexposed siblings. 

Marcal1 mutant survival was not affected when exposed to methyl methanesulfonate 

(MMS), an alkylating agent (Lundin et al. 2005), or nitrogen mustard (HN2), which generates 

both mono-adducts and inter-strand crosslinks (Povirk and Shuker 1994) (Figure 2). Studies 

in mice have shown that SMARCAL1 null mutations confer sensitivity to killing by 

hydroxyurea (HU) (Baradaran-Heravi et al. 2012b), a ribonucleotide reductase inhibitor 

thought to result in stalled replication forks (Hammond et al. 2003); however, Marcal1 

mutant larvae showed no decrease in survival when exposed to HU. HU treatment is most 

detrimental in cells sensitive to perturbations in replication which is consistent with published 

in vitro evidence that Marcal1 cannot regress a four-stranded model replication fork 

(Kassavetis and Kadonaga 2014) and suggests Marcal1 may not have a significant role in 

protecting stalled forks in flies.  
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Figure 3.1 Marcal1 mutants are sensitive to killing by DSB-inducing agents. Flies 
heterozygous for null mutations in Marcal1 were mated in two broods of at least 10 vials, 
with each vial representing a biological replicate. Brood one was unexposed; brood two 
received a dose of MMS (methyl methanesulfonate), HN2 (nitrogen mustard), HU 
(hydroxyurea), ETS (etoposide), CPT (camptothecin), or IR (ionizing radiation) during larval 
feeding. Relative survival was calculated as the ratio of homozygous mutant to 
heterozygous control adults in treated vials, normalized to the same ratio in the 
corresponding unexposed vial. Dotted line represents 100% relative survival. ****, P <0.0001 
in paired t-tests between unexposed and exposed vials. Dosage, number of replicates, and 
total progeny counts are in Table 3.1. 

 
I found a significant reduction in survival of Marcal1 mutant larvae exposed to 

ionizing radiation (IR), an established DSB-inducing agent (Radford 1985). Marcal1 mutant 

flies were also sensitive to killing by camptothecin (CPT), similar to both mouse and human 

cell studies (Baradaran-Heravi et al. 2012b). CPT prevents topoisomerase I from re-ligating 

DNA after it has nicked a strand and become covalently bound to the end (Pommier et al. 

2010). CPT is thought to be most lethal during replication, where the nick can become a 

DSB. Previous studies have suggested that CPT lesions are repaired via HDR in Drosophila 

(Andersen et al. 2011) and in chicken DT40 cell lines (Maede et al. 2014). Interestingly, 

Marcal1 mutant flies did not have elevated lethality when exposed to etoposide (ETS), a 

topoisomerase II poison that generates DSBs (Pommier et al. 2010).  
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Figure 3.2 The P{wa}  assay for SDSA. Inset: The construct is a 14-kb P element inserted 
into the 2nd intron of the essential gene scalloped (sd) (blue) in reverse orientation (diagram 
is relative to genome coordinates on X chromosome). Black segments represent P element 
sequences needed for excision. Red segments are exons (boxes) and introns (lines) of a 
white (w) gene, the product of which loads eye pigments when functional. This copy of w is 
interrupted by a copia retrotransposon (orange central box) which is flanked by two 276-bp 
LTRs (green directional boxes), resulting in partial loss of w function and an apricot-eyed 
phenotype. (A) Line representations of the construct on two sister chromatids in the male 
germline. Exposure to inefficient P transposase results in excision of the construct from one 
sister, leaving 17-nt non-complementary overhangs on each side and the ends are resected. 
(B) One of the 3’ ssDNA tails invades the intact sister to initiate synthesis. If D-loop 
dissociation is defective, the D-loop is cleaved, creating a deletion into a sd exon on one or 
both sides of the construct. When mated to a homozygous P{wa} female, the progeny with 
flanking deletions will have a yellow eye (due to the full copy of the construct from the 
mother) but the event will be male-lethal in subsequent generations (~0% of progeny from 
wild-type males have this phenotype). (C) Premature end joining after two-ended strand 
exchange and some synthesis results in complete loss of w function; progeny will have 
yellow eyes and viable males in subsequent generations (~8% of progeny from wild-type 
males). (D) Synthesis of the LTRs followed by annealing, tail clipping and gap filling restores 
w function and progeny have a red eye (~5% of progeny from wild type males).  



 

34 
 

Figure 3.2 (continued from previous page) (E) Synthesis to the LTRs followed by 
inappropriate end joining in copia results in an apricot eye in the progeny and is 
indistinguishable from non-excision or full gene conversion events via dHJ intermediates 
(~87% of progeny from wild-type males). These progeny are scored but not counted as 
repair events. 

 

A genetic screen of DT40 cells found that mutations in EJ genes conferred sensitivity 

to  ETS and resistance to CPT whereas mutations in HR genes resulted in higher sensitivity 

to CPT than to ETS (Maede et al. 2014). It is possible that Marcal1 mutants are sensitive to 

ETS at higher doses than those tested here, however the data from CPT and IR treatments 

sufficiently support my hypothesis that Marcal1 is involved in DSB repair 

Marcal1 mutants have reduced annealing capacity during gap repair 

Because Marcal1 mutants are sensitive to agents that cause DSBs, I tested the 

ability of these mutants to repair a double-stranded gap by SDSA. I used the well-

characterized P{wa} assay in the germline of male Drosophila (Figure 3.2)  (Kurkulos et al. 

1994; McVey et al. 2007). P{wa} is a 14 kb P element that is a non-lethal insertion into the 

first intron of the essential gene scalloped (sd) on the X chromosome (Figure 3.2, inset). 

The P element contains a white (w) gene, the product of which loads red pigment 

into the eye, interrupted by an intronic copia retrotransposon flanked by two 276-bp long 

terminal repeats (LTRs). The copia insertion alters w splicing and results in an apricot-

colored eye in hemizygous males or homozygous females. When exposed to an inefficient 

source of P element transposase, the P{wa} element is excised from one chromatid; the 

intact sister chromatid serves as an efficient template for HDR. Excision generates 17-nt 

non-complementary overhangs on both sides of the break, which are structurally similar to 

short resected ends and are poor substrates for end-joining via cNHEJ (Symington and 

Gautier 2011). Repair events from single males are recovered in female progeny by 

crossing to females homozygous for P{wa}.  
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 For SDSA to occur, both sides of the break must be extended (via synthesis) beyond 

the first region of complementarity, the copia LTRs, and these must be annealed correctly 

(Figure 3.2). The resultant product deletes copia except for a single LTR, resulting in 

restoration of w splicing, observable as red eyes in progeny inheriting this product. If EJ 

occurs either without synthesis or after incomplete synthesis, w function is lost, resulting in 

yellow-eyed progeny (due to the maternally-inherited complete P{wa} copy). Complete 

restoration of P{wa} could occur via a dHJ intermediate or through SDSA or EJ that 

synthesizes past the LTRs. These are not scored as repair events because they cannot be 

differentiated from a lack of excision; however, lack of excision is the most frequent class 

(>85% of progeny), whereas complete restoration is estimated to be <2% in wild-type males. 

SDSA and EJ events are quantified as a percentage of total scorable progeny (daughters 

that do not inherit the transposase source) from each male, including apricot-eyed progeny. 

I also measured the distribution of events per male. 

I found that Marcal1 mutants had significantly reduced SDSA (red-eyed progeny) 

compared to wild type both in percentage of total progeny scored (Figure 3.3A) and in 

number of males with observable SDSA events in the progeny (Figure 3.4). EJ (yellow-eyed 

progeny) was not significantly changed in Marcal1 mutants (Figure 3.3B). SDSA could be 

reduced if P element excision is reduced or strand exchange is impaired. To test this, I 

performed the assay in a Brca2 mutant. Drosophila Brca2 has a strand exchange function 

similar to that of human BRCA2 (Brough et al. 2008), so I expected strand exchange to be 

defective in Brca2 mutants and for all repair to be the result of EJ events prior to strand 

invasion, which would be observable as yellow-eyed progeny. As expected, I observed no 

red-eyed progeny in Brca2 single mutants and a compensatory increase in yellow-eyed 

progeny compared to wild type (Figure 3.3A-B).  
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Figure 3.3 Marcal1 mutants have reduced SDSA capacity in the P{wa} assay. (A) SDSA 
events are measured as the percentage of scored progeny with red eyes. Mean and SEM 
are indicated. Marcal1 null mutant, Brca2 mutant, and Marcal1 Brca2 double mutant 
frequencies were all significantly reduced compared to wild type. The numbers of single 
males (biological replicates) and total progeny scored are listed below the graph. (B) EJ 
events were measured as the percentage of scored progeny with yellow eyes. Brca2 and 
Marcal1 Brca2 mutants had significantly elevated EJ compared to wild type and Marcal1 
single mutants. P-values: ****, P <0.0001, **, P <0.002, *, P <0.05, based on parametric 
ANOVA. (C) Synthesis tracts in repair events recovered in yellow-eyed progeny were 
measured using a series of PCRs (Table 3.2). Each interval was measured independently 
and quantified as a percentage of total independent events analyzed. X-axis denotes 
distance (in nucleotides) from each end of the gap, on the same scale as the schematic of 
P{wa} below. Y-axis is percent of events analyzed that had a positive PCR and therefore 
synthesized at least as far as the most internal primer. Marcal1 (n= 90) was not significantly 
different from wild type (n=48) when corrected for multiple intervals (Materials and Methods). 
Blm (n=75) mutants were significantly different (P <0.0001) from both wild type and Marcal1. 
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Figure 3.4 Distribution of repair events per replicate (single male). Each male 
(replicate) from the P{wa} assay was categorized according to the distribution of repair 
events observed in his progeny and the data are displayed as a percentage of all males 
assayed in each genotype. Red indicates red-eyed progeny were observed; yellow indicates 
yellow-eyed progeny; both indicates red- and yellow-eyed progeny; and no repair indicates 
no red or yellow-eyed progeny were observed. Apricot-eyed progeny were observed in the 
progeny of every male. 

 

If Marcal1 mutations reduce P element excision or affect the pathway upstream of 

Brca2 function in DSB repair, I would expect Marcal1 Brca2 double mutants to have reduced 

EJ compared to Brca2 single mutants due to an overall reduction in observable repair 

products. However, I found Marcal1 Brca2 double mutants to have a repair phenotype that 

was not significantly different from Brca2 single mutants (Figure 3.3A-B). I therefore 

conclude that the decreased SDSA in Marcal1 mutants results from a loss of function 

downstream of strand invasion.  

While the Marcal1 mutant phenotype could result from defective LTR annealing, it 

could also be due to compromised D-loop disassembly or reduced capacity to synthesize 

past the LTRs. In Blm mutants, which are believed to be defective in D-loop disassembly, 
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the synthesis length in repair products is significantly shorter than in wild-type males (McVey 

et al. 2007). 

In addition, many repair events have deletions from the break site into the flanking sd 

gene; these are hypothesized to arise from nucleolytic cleavage of D-loops that cannot be 

disassembled (Adams et al. 2003; McVey et al. 2004a). I analyzed the aggregated amount 

of synthesis from each end of the break in all observed EJ events to determine the overall 

synthesis pattern within the population of EJ events (Figure 3.3C). Synthesis tracts in 

Marcal1 mutants was similar in length to those of wild-type flies but significantly longer tracts 

in Blm mutants (Figure 3.3C). Repeated rounds of strand exchange, synthesis, and D-loop 

dissociation have been observed in previous assays of gap repair (McVey et al. 2004b) and 

my finding that aggregated synthesis tract lengths in Marcal1 mutants is similar to wild type 

suggests that the length of synthesis per cycle, while likely having some stochastic 

component, is unchanged by loss of Marca1. Also, I did not observe any flanking deletions 

among EJ repair products from Marcal1 mutants, whereas 48% of EJ repair in Blm mutant 

was associated with deletion. Altogether, these data suggest that the reduction in red-eyed 

progeny in Marcal1 mutants is not due to defects in synthesis or inability to disassemble D-

loops. These data support the hypothesis that Marcal1 mutants have a defect in LTR 

annealing. 

Marcal1 mediates annealing independent of synthesis 

SMARCAL1 annealing studies have been restricted to replication-associated roles 

and I observed reduced annealing in Marcal1 mutants using the P{wa} assay, which requires 

synthesis for annealing. I wanted to know if Marcal1 mediates annealing in contexts that do 

not require synthesis, so I used SSA assay called P{wIw} (Rong and Golic 2003).   
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Figure 3.5 Marcal1 mutants have reduced annealing capacity in the P{wIw} assay. 
Inset: The construct is on chromosome 3 and consists of two copies of the mini-white (mini-
w) gene that are tandemly arrayed and separated by a linker containing an I-SceI 
recognition site. The upstream copy is missing exon 1 and intron 1 rendering it non-
functional, while the downstream copy is functional (represented by a red glow in the 
schematic), and produces a wild-type red eye in a w null background. The upstream mini-w 
has a 5’ FRT site and the downstream copy has an FRT insertion in intron 1. PCR 
amplification of the FRT anchored in mini-w yields different size products for each gene 
which is used to identify the presence or absence of each copy. (A) The assay is performed 
in the male germline with P{wIw} heterozygous. I-SceI is expressed via heat shock during 
larval development, resulting in DSBs with 4-nt overhangs on both sister chromatids.  
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Figure 3.5 (continued from previous page) (B) Mutational cNHEJ can occur at the cut 
site, yielding red-eyed progeny and the presence of both FRTs but a mutated I-SceI cut site. 
(C) If resection is insufficient to expose complementary sequences, MMEJ/TMEJ can give 
white-eyed progeny with a deletion that includes the downstream FRT. These events cannot 
be differentiated from products of SSA unless the deletion is sufficiently large (>1000 bp); if 
no difference in size was observed, these events were classified as SSA. (D) Full resection 
of at least 3.6 kb reveals complementarity between the ssDNA ends that can be annealed. 
This results in white-eyed progeny with only the upstream FRT site; such events were 
categorized as SSA. (E) Excessive resection can result in deletion of the entire construct, 
resulting in white-eyed progeny with no amplification products. (F) Percentage of total 
progeny with white or red eyes for wild type and Marcal1 mutants. P <0.0001 using χ2 test.  
(G) Percentage of repair products that involved annealing, after molecular analysis 
correction (Figure 3.6). Marcal1 null mutants had significantly reduced annealing compared 
to wild type, P <0.0001. Error bars are SD. Biological replicates (single males) and total 
progeny scored are denoted below each genotype. 

 

P{wIw} is a P element that has two mini-white (mini-w) genes in tandem (Figure 3.5, 

inset). The downstream copy (~4.3 kb) is functional, while the upstream copy (~3.6 kb) is 

non-functional due to a deletion of the promoter and first exon. The two are separated by a 

linker region containing an I-SceI recognition site and can be differentiated by amplifying 

FRT sites present in the 5’ region of each copy (Figure 3.5, inset). I-SceI is expressed in the 

germlines of male larvae heterozygous for an insertion of P{wIw} on chromosome 3 and 

repair events are recovered in the progeny (Figure 3.5A). Previous studies have shown that 

I-SceI cuts at >90% efficiency in this context, thus the most common outcome is cutting of 

both sister chromatids (Rong and Golic 2003). Since the homologous chromosome does not 

have a P{wIw} insertion, strand invasion is a rare event; however, full resection of both sides 

can reveal the 3.6 kb of complementarity between the upstream and downstream copies of 

mini-w. If these sequences are annealed, completion of SSA repair gives a product that 

retains only a non-functional copy of mini-w; progeny that inherit this repair event will have 

white eyes and the upstream FRT site (Figure 3.5D). 

Red-eyed progeny can result from EJ with little or no resection or from an uncut 

construct; which will have both FRT sites and a mutated I-SceI cut site (Figure 3.5A-B). 

White eyes can also result from EJ repair with deletion into the promoter of the downstream 



 

41 
 

mini-w, which will have both FRT sites (not depicted); however, EJ events with deletions that 

extend into the downstream FRT site can be indistinguishable from SSA events (Figure 

3.5C).  

I observed a significant difference in the distribution of eye color between wild type 

and Marcal1 mutants (Figure 3.5F). Every Marcal1 mutant male had progeny with both eye 

colors, whereas almost 40% of wild-type males did not produce any red-eyed progeny. I 

collected 10 (or all if less than 10) red-eyed progeny from each male for molecular analyses.  

These analyses showed no difference in cutting efficiency of I-SceI between Marcal1 

and wild type (Figure 3.6A), suggesting that the increase in red-eyed progeny in Marcal1 

mutants is not due to reduced induction of DSBs. Furthermore, the distribution of EJ events 

in red-eyed flies was strikingly similar between Marcal1 and wild type, which suggests that 

the type of EJ utilized is not affected by Marcal1. This is consistent with a role for Marcal1 

after resection since the type of EJ is dictated by the structure of the DNA ends.  

I also collected 10 white-eyed progeny for analysis. 98% of the white-eyed males 

from wild-type flies were consistent with annealing by SSA (Figure 3.6B). In stark contrast, 

34% of analyzed white-eyed progeny from Marcal1 mutant males were confirmed as EJ. It is 

likely that this number is under-reported because the large regions of homology in the 

construct obscures identification of EJ events that are similar in size to the predicted 

annealed length. Altogether, these data show significantly reduced SSA annealing capacity 

in Marcal1 null mutants (44.6%) compared to wild type (93.0%) (Figure 3.5G), indicating 

Marcal1 is important for annealing in both synthesis-dependent (SDSA) and synthesis-

independent (SSA) repair strategies. 
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Figure 3.6 Distribution of P{wIw} events in wild type and Marcal1 mutants after 
molecular analysis. A) Distribution of molecularly analyzed events from collected red-eyed 
progeny as a percentage of total red analyzed events (listed below genotype). Mutated cut 
site: amplified band (primer set wIw_cut, Table 3.3) was not cut with I-SceI; indel at cut site: 
band was smaller or larger than predicted; intact cut site: band was cut with I-SceI; deletion 
of linker region: no amplification with primer set. B) Distribution of molecularly analyzed 
events from collected white-eyed progeny as a percentage of total white analyzed events 
(listed below genotype). Upstream FRT: only FRT associated with upstream mini-w 
amplified (primer set, Table 3.3) (categorized as annealed events); upstream FRT verified 
EJ: larger or smaller than predicted products from whole construct amplification (categorized 
as EJ events); downstream FRT: only downstream FRT amplified (verified to be in the 
upstream locus, removed from final data set); both FRTs: both amplified (categorized as EJ 
events); no FRTs: no amplification (categorized as EJ events). 
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ATP-binding is required for Marcal1 activity during SDSA 

I next asked if Marcal1 translocation is required for annealing during SDSA. 

Helicases use the conserved Walker A and Walker B motifs to bind and hydrolyze ATP for 

translocation. SMARCAL1 can bind DNA in the absence of ATP (Yusufzai and Kadonaga 

2008), so I abolished the ATP-binding site in the Walker A motif by mutating the conserved 

lysine to a methionine (K275M) in the endogenous Marcal1 gene via CRISPR/Cas9. I then 

tested the ability of Marcal1K275M ATP-binding defective mutants to repair a gap using the 

P{wa} assay.   

Marcal1K275M mutants had a reduction in SDSA similar to that of Marcal1 null mutants 

(Figure 3.7A), suggesting that translocation is required for its function during SDSA. 

Surprisingly, EJ events were significantly reduced compared to wild type and Marcal1 null 

mutants (Figure 3.7B), revealing a genetic interaction between Marcal1 and EJ pathways. I 

compared synthesis patterns in Marcal1K275M mutants to wild type and Marcal1 null mutants. 

I found that Marcal1K275M mutants did not have significantly different synthesis length 

compared to either genotype (Figure 3.7C). 

Lastly, I tested the ability of Marcal1K275M mutants and Marcal1K275M heterozygotes to 

anneal complementary sequences during SSA using the P{wIw} assay. White-eyed flies 

were significantly decreased in Marcal1K275M mutants (66.88%), compared to Marcal1K275M 

heterozygotes (95.59%) (Figure 3.7D). The white-eyed frequency in heterozygotes was not 

statistically different from wild type (wild type data from Figure 3.5B) and like wild type, 40% 

of Marcal1K275M heterozygous males had no red-eyed progeny (all Marcal1K275M homozygous 

males had red-eyed progeny). The percentage of red- and white-eyed progeny in 

Marcal1K275M mutants was not significantly different from Marcal1 null mutants (null data 

from Figure 3.5B), suggesting that ATP-binding does not affect EJ in the absence of strand 

exchange, synthesis, and D-loop dissociation.  
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Figure 3.7 Marcal1K275M mutants have reduced SDSA and EJ capacity. SDSA (A) and EJ 
(B) events were measured in Marcal1K275M mutants as described in Figure 3.3. SDSA was 
similar between Marcal1K275M and Marcal1 null, but EJ events were significantly reduced in 
Marcal1K275M compared to both wild type and Marcal1 null mutants. (C) Synthesis tracts 
lengths, measured as described in Figure 3.3C. No significant differences were found 
between Marcal1K275M (n=52) and wild type (n = 48) or Marcal1 null mutants (n=90). (D) 
Marcal1K275M heterozygotes and Marcal1K275M mutants were tested in the P{wIw} SSA assay 
as described in Figure 3.5. Heterozygotes had 96% white-eyed progeny, which is not 
statistically different from wild type (Figure 3.5F) based on a parametric ANOVA test. 
Marcal1K275M mutants had 67% white-eyed progeny, which was significantly reduced 
compared to heterozygotes but not significantly different from Marcal1 null mutants (Figure 
3.5F). 
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These data also show that ATP-binding is required for annealing during SSA, supporting our 

findings from P{wa} and establishing a requirement for ATP hydrolysis in annealing activities 

of Marcal1. 

Discussion 

Prior to the studies reported here, little was known about annealing during HDR in 

animals or how the decision between annealing, dHJ formation, and TMEJ is regulated. My 

data provide in vivo evidence that Marcal1 mediates annealing during SDSA and SSA in 

Drosophila, and suggest that Marcal1 acts directly to anneal complementary strands, as 

abrogating Marcal1 translocation activity via Walker A mutation (Marcal1K275M) recapitulates 

the null phenotype. The Marcal1K275M mutation reduces EJ as well as annealing during 

SDSA, which suggests that Marcal1K275M antagonizes EJ in contexts where EJ follows 

strand exchange, synthesis, and D-loop dissociation. Unlike P{wa}, the P{wIw} assay for 

SSA did not reveal any differences between Marcal1K275M and null mutants which is likely 

due to differences in assay design (discussed in detail in Chapter 5).  

The findings reported here provide evidence that Marcal1 mediates annealing in both 

SDSA and SSA. I have further shown that Marcal1 impacts EJ pathways (most likely TMEJ) 

during HDR, providing new information on the regulation of the anneal—EJ—strand re-

invade decision point. 

Materials and methods 

Drosophila stocks 

Fly stocks were maintained at 25 C on standard cornmeal medium. All Marcal1 null 

assays were performed using heteroallelic null mutations Marcal1del and Marcal1kh1. 

Marcal1del is a 679-bp deletion of part of the first exon and second intron generated via 

imprecise P element excision as described in (Baradaran-Heravi et al. 2012a). Marcal1kh1 
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was generated using CRISPR/Cas9 technology (Gratz et al. 2013; Bassett and Liu 2014). 

Oligonucleotides (IDT) used for guide RNA were cloned into pU6 BbsI chiRNA vector then 

injected into Bloomington stock #51323 (y1 M{vas::Cas9}ZH-2A w1118/FM7c) (BestGene). 

Marcal1kh1 deletes 2L:4,955,554-4,956,729 (Drosophila annotated genome r6.13), which 

encompasses exon 1 through part of exon 2. The Brca243 null mutation was used in trans to 

the Brca247 null mutation in all assays. Both are large deletions produced via imprecise P 

element excision, described in (Thomas et al. 2013). 

 Marcal1K275M mutation was generated using CRISPR/Cas9. The gRNA vector was 

prepared as described for the Marcal1kh1 allele. A repair template vector was generated by 

amplifying 1234 bp upstream and 643 bp downstream of the conserved lysine codon from 

BacPac genomic DNA clone library (ID BACR13M11) and inserted into the pSL1180 vector. 

QuickChange Site-Directed Mutagenesis Kit (Agilent Technologies) was used to introduce a 

mutation in the PAM recognition site as well as two single bp changes to alter the lysine 

codon to methionine (primer sequence: 5’- GAAATGGGCCTGGGCATGACTATCAGGCCTT 

GGCCGTAGCCG-3’). The repair vector was injected with the BbsI chiRNA vector into the 

same stock used for generating the Marcal1kh1 allele. 

Exposure assays 

Vials of five heterozygous Marcal1del females and three heterozygous Marcal1kh1 

males each were incubated for three days (brood 1) before being transferred to fresh vials of 

food for two additional days (brood 2), after which the adult flies were discarded. One day 

later, 250 μl of aqueous mutagenic solution was added directly to the food in brood 2 vials 

and the larvae were allowed to develop to adulthood (dosages listed in Table 3.1). For 

ionizing radiation experiments, larvae were exposed to Cesium-137 for the required time to 

reach the desired dosage. Surviving adults in both broods were quantified by genotype 

(heterozygous or heteroallelic null) and the ratio of heterozygous to heteroallelic was 
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calculated per vial. Exposed vials were normalized to unexposed paired brood 1 ratios. 

Paired t-tests were performed between unexposed and exposed ratios. Each round of 

biological replicates had 10-20 vials and each mutagen had two or more rounds. 

Mutagen Dosage 
Biological 
replicates 

Unexposed 
progeny 

Exposed 
progeny 

Methyl methanesulfonate 3.23 mM 16 2864 1397 

Nitrogen mustard 0.2 mM 22 3828 3131 

Hydroxyurea 100 mM 22 3964 1841 

Etoposide 10 mM 9 1098 876 

Camptothecin 0.05 mM 26 3432 2233 

Ionizing radiation 
2000 rads  
(20 Gy) 

19 2196 1395 

 

Table 3.1. Dosage and sample sizes of mutagen exposure experiment. Marcal1 null 
mutants were treated with each mutagen in separate experiments as described in Materials 
and Methods. Biological replicates refers to individual vials assayed, each containing a 
single male (ratios of wt:mutant survival were calculated per vial). Progeny counts are the 
aggregated total number of flies scored for each mutagen. 

 
P{wa} assays 

The P{wa} assay was performed as previously described (Adams et al. 2003). Briefly, 

single males of the genotype y w P{wa}; Marcal1del/Marcal1kh1; Sb P{∆2-3, ry+}/TM6B were 

crossed to four females homozygous for y w P{wa} and Sb+ female progeny were scored for 

red, yellow, or apricot eyes. Representative samples of red and yellow eyed females were 

collected and crossed to FM7w males to recover the repair product in subsequent males. 

DNA was extracted from a single adult male progeny with the repair product for PCR 

analysis. Multiple repair events were recovered per male, however, only repair events that 

could be confirmed unique were analyzed and reported. The same methods and 

transposase source were used for all genotypes.  
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Description Primer 1 Primer 2 

5 bp right side CCGCGGCCGCGGACCACCTTATGTTA
TTT 

GCCTTGCTTCTTCCACACAGCG
TG 

0.9 Kb right side CCCTCGCAGCGTACTATTGAT AGATGGGTGTTTGCTGCCTCC
G 

2.4 Kb right side GAGCGAGATGGCCATATGGCTG CGTTGTTTGCACGTCTCGCTCG 

4.6 Kb right side 
(into copia) 

GGACTGGGCCCATAACCTGTTG GAGCGACACATACCGGCG 

5 bp left side CCGCGGCCGCGGACCACCTTATGTTA
TTT 

ACCATTGCAAGCTACATAGCTG
AC 

2 Kb left side GACTGTGCGTTAGGTCCTGT CGTTTCGTAGTTGCTCTTTCGC 

5.2 Kb left side 
(all w exons into 
copia) 

TGCCAGAGAGCAAGTTCAGA GAGGTCATCCTGCTGGACAT 

 

Table 3.2 P{wa} primers. Diagram above table depicts PCR products. Sizes represent 
synthesis from break end, not PCR product size. The null white (w) gene in the ywP{wa} 
genotype is a partial deletion of the 5’ end of w leaving the 3’ end intact. The left side of the 
construct above is identical to the 3’ end of w; therefore, all PCRs of the left end must be 
anchored in the P-element ends or in copia to prevent amplification of the background copy 
of w. 

Each vial of progeny from a single male was scored independently and a ratio of 

either red- or yellow-eyed progeny to total progeny was calculated per vial. Outliers were 

identified using the ROUT method and removed from the data set. No outliers were 

removed from the Brca2 data set; one was removed from Marcal1 Brca2; and three were 

removed from Marcal1, wild type, and Marcal1K275M data sets. To determine and compare 

mean frequency of repair events, the red-eye (SDSA) ratios were compared between 

genotypes using parametric ANOVA and the mean ratios of each genotype were compared 

to the mean ratios of all other genotypes; the analysis was repeated for yellow-eye (EJ) 

ratios. Rate of lack of excision was calculated by subtracting the EJ rate of Brca2 mutants 

from the total scored progeny as Brca2 mutants are incapable of strand invasion. Rate of 

complete restoration of P{wa} was calculated by summing the frequency of all repair events 
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in wild-type males and subtracting that rate from the EJ rate of Brca2 mutants, using the 

assumption that all excisions were repaired by EJ in these mutants. 

To assess synthesis capability, each repair event was analyzed with a series of 

seven PCRs (primers are listed in Table 3.2). Amplified products using one primer set were 

calculated as a percentage of total events analyzed and repeated for all primer sets 

(intervals). Percentage of events with positive PCRs were compared between genotypes 

using parametric ANOVA. When compared as individual PCRs, P <0.05 was considered to 

be statistically significant; however, when asking how much difference exists between 

genotypes across all PCRs, P-values for each interval were multiplied by the number of 

intervals (7) to correct for multiple comparisons. 

P{wIw} assays 

The P{wIw} assay was performed as previously described (Mukherjee et al. 2009). 

Briefly, four Marcal1del/CyO;P{wIw}/TM6B females were crossed to three Marcal1kh1/CyO; Sb 

P{70I-SceI}/TM6B males for three days then the parents were discarded. One day later, the 

1st-instar larval progeny were heat-shocked at 37o for one hour. Heat shock was repeated on 

the following day to ensure all 1st-instar larvae received treatment. Larvae were allowed to 

develop to adulthood. All Sb+ progeny were scored for red or white eyes. All red-eyed flies 

were collected (up to a maximum of 10) from each vial; 10 white-eyed flies were collected 

per vial. DNA was extracted from each collected fly for analysis. 

Red-eye events: The linker region was amplified (primer sets in Table 3.3) and 

subjected to digestion with I-SceI. Events that failed to amplify or were not cut by I-SceI 

were categorized as EJ events. Events that were successfully cut by I-SceI could not be 

distinguished between EJ and uncut and were removed from the dataset. 
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White-eye events: The 5’ region of the upstream mini-white gene is 480 bp whereas 

the 5’ region of the downstream mini-white is 369 bp using the same primer set (Table S3). 

The presence of both products indicates SSA did not occur; these events were categorized 

as EJ events. A small number of events had only the 369-bp product, these were verified to 

be in the upstream location via primer anchored in the P element and categorized as SSA 

events. PCRs with no product were categorized as EJ events. The percentage of SSA 

events in the white class was calculated per vial. SSA and EJ events were then adjusted by 

this number. The adjusted percentages of SSA events per vial were compared via unpaired 

t-tests between control and mutant genotypes per experiment. Marcal1K275M heterozygotes 

and homozygotes were compared to each other, wild type, and Marcal1 using parametric 

ANOVA. 

 

Description Primer 1 Primer 2 

X97 CGACGTGAACAGTGAGCTGT GCTCATCTAACCCCGAACAA 
wIw_cut TGTGTGTTTGGCCGAAGTAT CGCGATGTGTTCACTTTGCT 
Pin 5 GACTGTGCGTTAGGTCCTGT  
   

Table 3.3. P{wIw} primers. Diagram above table depicts PCR products. The wIw_cut 
primer set was used to amplify the I-SceI cut site in red-eyed repair events. The X97 primer 
set was used to assess annealing via SSA in white-eyed repair events. The upstream 
product is 480 bp whereas the downstream product is 369 bp. Presence of only the 
upstream product represents correct annealing via SSA; presence of both indicates EJ that 
abolishes mini-white function; the presence of only the downstream product was rare and 
verified to be in the upstream location using the Pin 5 and X97 primer 2 set. These events 
are interpreted as SSA with small deletions in the X97 region. Lack of amplification with the 
X97 primer set indicates EJ. 
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CHAPTER 4: PRELIMINARY DATA REFINING THE ROLE OF MARCAL1 IN DOUBLE 

STRAND BREAK REPAIR 
 

As stated in Chapter 2, Human SMARCAL1 and its orthologs have been implicated 

in multiple repair pathways including replication-associated DNA damage repair and 

stability, gene expression in response to environmental stress (particularly heat stress), and 

non-homologous end joining. Most recently, I uncovered a role for the Drosophila ortholog, 

Marcal1, in homology-mediated repair of double strand breaks (DSBs) via synthesis-

dependent strand annealing (SDSA).  These data suggest that Marcal1 may be involved in 

other processes that rely on homology-directed repair (HDR), such as meiotic 

recombination. Additionally, Marcal1 does not have replication fork regression activity in vitro 

but this finding has not been corroborated in vivo. To refine the role of Marcal1 in HDR, I 

performed a series of experiments including meiotic nondisjunction assays, synthetic 

lethality assays, mutagen sensitivity/lethality experiments, and further SDSA assays. I did 

not find evidence for Marcal1 activity during meiosis or after annealing during SDSA; 

however, I did find complex genetic interactions with Blm helicase that provide insight into 

Blm activities during DNA damage repair.  

Marcal1 null mutations do not affect meiotic chromosome segregation 

 Crossovers (CO) are necessary for proper segregation of chromosomes during 

meiosis. Formation of CO is tightly regulated to ensure the proper number and placement of 

CO. In Drosophila, more programmed DSBs are generated than are needed to achieve the 

proper distribution of one CO per chromosome arm; the remaining DSBs are repaired into 

non-crossovers (NCO) (Thacker and Keeney 2009). Meiotic NCOs have been shown to 

arise from SDSA in yeast (Allers and Lichten 2001) and I recently showed that Marcal1 

mutants were defective in annealing during mitotic SDSA (Chapter 3) which suggests 

Marcal1 may play a role in meiotic DSB repair by mediating the formation of NCO products. 
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A defect in NCO formation could result in persistent intermediates or the formation of 

unwanted double Holliday junctions (dHJ), both of which would result in mis-segregation of 

chromosomes called non-disjunction (NDJ). To determine if Marcal1 might be involved in 

NCO formation during meiosis, I tested Marcal1 null mutants for NDJ and found the NDJ 

rate not significantly different from wild-type flies (Table 4.1). The previously published NDJ 

rate for mei-9 mutants was used as a positive control (Kohl et al. 2012). Mei-9 is the dHJ 

resolvase responsible for the formation of CO during meiosis (Yildiz et al. 2002, Heyer et al. 

2003). 

Genotype Total progeny 
Exceptional 

classes 
NDJ rate 

P value 
compared to wt 

wild type 1697 1 0.12% N/A 

Marcal1del/kh1 620 3 0.96% 0.136 

Mei-9a/A2 1310 190 22.49% < 0.0001 

Table 4.1 Comparison of X chromosome non-disjunction rates. Marcal1 null mutant 
females were crossed to NDJ marker males and all surviving progeny were scored. 
Exceptional class denotes an abnormal number of X chromosomes (XXY females or XO 
males). NDJ rates were calculated by multiplying the exceptional class by 2 to account for 
lethal NDJ and expressed as a percentage of total progeny. P values were calculated using 
the equations in (Zeng et al. 2010). Wild type and Mei-9 data were previously published 
(Kohl et al. 2012). 

 Recent work from our lab has proposed that NCOs and COs arise from the same 

intermediate, an unligated dHJ, in Drosophila (Crown et al. 2014). In contrast, work in yeast 

suggests NCOs arise from a D-loop intermediate similar to mitotic SDSA (Hunter and 

Kleckner 2001). The intermediate predicted by Crown et al. is structurally distinct from D-

loops (specifically in its lack of ssDNA) making it a poor substrate for Marcal1 since 

SMARCAL1 orthologs bind ssDNA:dsDNA junctions (Bétous et al. 2012). Likewise, it is 

currently unknown if annealing occurs concomitant with synthesis or D-loop disassembly 

during mitosis and it is similarly unknown how these steps are ordered during meiosis. If 

annealing occurs after intermediate disassembly, the ends could be joined via polymerase 
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theta (Drosophila mus308) mediated end joining (TMEJ) in Marcal1 mutants, which would 

not affect disjunction. It is possible that a large defect in NCO formation could potentiate an 

increase in CO formation without increased NDJ, though it is likely to only be observable 

when multiple repair strategies are defective such as in Marcal1; mus308 double mutants 

(which would affect both annealing and TMEJ). Séguéla-Arnaud et al. found that mutating 

Blm orthologs in conjunction with the Fancm ortholog (both are involved in promoting NCO 

during meiosis) in Arabidopsis resulted in significantly elevated COs without chromosome 

disjunction defects (Séguéla-Arnaud et al. 2015). However, mutations in Blm result in 

significantly elevated NDJ in Drosophila (McVey et al. 2007, Hatkevich and Kohl et al. 

2017). It remains unclear if these differences are due to altered roles for Blm between 

orthologs or if there are key differences in meiotic disjunction mechanisms between 

organisms. Further studies of Marcal1 genetic interactions with genes that antagonize 

recombination may help to clarify whether or not Marcal1 has a role in meiotic NCO 

formation.  

Marcal1 genetically interacts with Blm helicase but not structure-specific 

endonucleases 

Previous work has shown that structure-specific endonucleases are necessary in the 

absence of Blm helicase, specifically, the mus312-Slx1 complex (SLX4-SLX1 in humans), 

mus81, and Gen (GEN1 in humans, Yen1 in yeast). All three endonuclease orthologs have 

been shown to cleave Holliday junctions (HJs) (reviewed in Svendsen and Harper 2010) and 

are synthetically lethal with Blm mutations in flies (Johnson-Schlitz and Engels 2006; 

Trowbridge et al. 2007; Andersen et al. 2009, 2011). Work from our lab has shown that 

genetic interactions between endonucleases and Blm are partially rescued by mutations in 

Spn-A (the Drosophila ortholog of Rad51), suggesting that the synthetic lethality phenotype 

is predominantly due to the inability to process toxic intermediates during HDR.  
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In yeast, mutations in MUS81 and SLX4-SLX1 are synthetically lethal with mutations 

in SGS1, the yeast ortholog of Blm, whereas mutations in YEN1 are not, though they do 

have increased sensitivity to DNA damaging agents (Fabre et al. 2002; Blanco et al. 2010). 

The synthetic lethality of mus81∆ sgs1∆ and yen1∆ sgs1∆ increased sensitivity are rescued 

by mutations in RAD51, as well. Interestingly, the same genetic interactions are also 

rescued by mutations in RAD52. In vitro assays of Rad52 and Rad51 strand exchange 

dynamics suggests that Rad52 is necessary for Rad51 loading (Benson et al. 1998; New et 

al. 1998; Song and Sung 2000); however genetic assays of HDR via ectopic gene 

conversion show additive effects of mutations in RAD51 and RAD52 suggesting that Rad52 

may not be biologically necessary for strand exchange activity (Manthey et al. 2016).   

Interestingly, Rad52 has also been implicated in 2nd-end capture leading to dHJ 

formation during DSB repair (McIlwraith and West 2008; Wu et al. 2008; Nimonkar et al. 

2009) as well as annealing during SSA in yeast and human cells  (Ivanov et al. 1996; Storici 

et al. 2006; Wu et al. 2008; Bhargava et al. 2016). As previously mentioned, Drosophila do 

not have a known Rad52 ortholog and Marcal1 appears to be the major annealase during 

SSA in flies (see Chapter 3) raising the question of whether it may also mediate annealing in 

2nd-end capture. To test this hypothesis, I tested the viability of mus81, Gen, mus312, and 

Blm mutant combinations in a Marcal1 null background (Table 4.2) with the prediction that 

Marcal1 mutations would rescue synthetic lethality phenotypes in a similar manner to Rad51 

mutations by preventing the formation of dHJs. 
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Gene(s) Viability n Observed Expected P value 
Viability 

with 
Marcal1 

n Observed Expected P value 

Marcal1 + 3381 1173 1127 0.094 N/A N/A N/A N/A N/A 

ENDONUCLEASES 

mus312 + 948 386 316 2.07 x 10-6 + 406 58 45.1 0.05 

mus81 + 2026 1081 1013 0.0025 + 609 216 203 0.266 

Gen + 745 292 248.3 8.09  x 10-4 + 313 61 34.8 1.6 x 10-5 

mus312 Gen + unk unk unk unk + 410 37 45.6 0.166 

Gen Blm - unk unk unk unk - 136 0 15.1 1.51 x 10-8 

mus312 Blm - unk unk unk unk - 57 0 6.3 2.48 x 10-4 

HELICASES & POLYMERASES 

Fancm + 1246 345 311.5 0.03 + 256 39 28.4 0.045 

Blm + 2568 1019 856 1.71 x 10-11 + 154 20 17.1 0.469 

mus308 + 1440 611 480 6.70 x 10-13 + 348 42 38.7 0.574 

Polα-180 / + + N/A N/A N/A N/A + 710 292 236.7 1.5 x 10-5 

Table 4.2 Viability in Marcal1 double and triple mutants. Combinations of null mutations were assayed for synthetic lethality or 
rescue of synthetic lethality by crossing heterozygous parents and scoring incidence of mutant progeny. Two-tailed P values were 
calculated by G-test for goodness of fit between observed and expected mutant progeny counts. Fancm single mutant data were 
from the control group in mutagen lethality assays reported in (Romero et al. 2016). Mus308 and mus312 single mutant data were 
generated by J. Carvajal Garcia (unpublished controls for mutagen lethality assays); mus308 single mutant data are from mus308118H 
homozygotes whereas Marcal1 mus308 double mutant data were generated with heteroallelic mus308118H/2003. Polα-180 mutations 
are homozygous lethal. Gen and mus81 single mutant data were generated by S. Bellendir (controls for mutagen lethality assays, 
manuscript in review); mus81 Marcal1 double mutant assay was performed using mus81 homozygous mutants. “Unk” signifies that 
the assays were qualitative, not quantitative.  
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The balancer effect 

I observed a statistically significant increase in homozygous progeny in all mutants 

tested, with the exclusion of Marcal1, compared to what is expected by Mendelian 

inheritance (Table 4.2). This phenomenon is likely due to the presence of balancer 

chromosomes in heterozygous genotypes. 

Balancers are versions of a chromosome that have extensive inversions that prevent 

meiotic recombination from occurring between homologs, which is very useful for retaining 

recessive mutations in laboratory practices but can also lead to increased NDJ of that 

chromosome, slightly reducing fitness (Stocker and Gallant 2008). It is common to see 

slightly skewed progeny numbers in stocks that have a balancer and are homozygous 

viable. 

Marcal1 does not have genetic interactions with structure-specific endonucleases 

 The gene mus81 is located on the X chromosome and the stock used in this assay 

has greatly improved fitness when homozygous for the mutant allele, mus81nheI. Female flies 

have two X chromosomes while males have an X and a Y chromosome, making retention of 

a balancer increasingly difficult in stocks with a preference for homozygosity on the X. I 

therefore opted to test if mus81 mutations affected Marcal1 viability and found that Marcal1 

mutants were unaffected by mus81 mutations suggesting that there is no significant genetic 

interaction between mus81 and Marcal1. 

I did not observe synthetic lethality when any gene was in a Marcal1 mutant 

background. I also did not observe rescue of Gen Blm or mus312 Blm synthetic lethality 

phenotypes in a Marcal1 null background. Synthetic lethality could be due to the inability to 

process dHJ joint molecules, as previously suggested, in which case I would expect rescue 

of the synthetic lethality if Marcal1 participated in formation of the dHJ via a role in 2nd-end 

capture. However, synthetic lethality could also be due to defects in DNA damage repair 
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during replication. Blm has been implicated in replication associated repair (Rao et al. 2005; 

Selak et al. 2008; Sidorova et al. 2013; Chaudhury et al. 2013; Manthei and Keck 2013) and 

all three endonucleases can cut other structures, including flaps and forks (Ehmsen and 

Heyer 2008; Ip et al. 2008; Rass et al. 2010; Wyatt et al. 2013). Mus81 has also been 

implicated in common fragile site expression via cleavage of under-replicated regions during 

mitosis (Naim et al. 2013; Ying et al. 2013). Additionally, SMARCAL1 has well-characterized 

roles in replication-associated repair and SMARCAL1 deficient cells have elevated mus81-

dependent H2AX staining (Bansbach et al. 2009; Bétous et al. 2013b; Couch et al. 2013). If 

the main source of synthetic lethality is accumulation of replication-associated damage, 

Marcal1 may fail to rescue the phenotype. Andersen et al. showed that mutations in Spn-A 

could partially rescue synthetic lethality by preventing strand exchange which suggests both 

potential causes (HDR joint molecule processing and replication-associated damage) 

contribute to the phenotype. It is possible that Marcal1 mutations could have a modest effect 

on replication-associated repair resulting in partial rescue of synthetic lethality phenotypes, 

however, such incremental effects were not measured in this assay. It should be noted, 

however, that Marcal1 does not have fork regression activity in vitro (Kassavetis and 

Kadonaga 2014) nor have I observed increased lethality when Marcal1 mutants are 

exposed to mutagens that have been proposed to be most lethal during replication such as 

MMS, HU, and ETS (Figure 3.1). Based on these data, it is unlikely that Marcal1 participates 

in 2nd-end capture, however whether or not it has a role during replication remains unclear. 

Marcal1 genetically interacts with Blm 

While I did not observe lethality when any gene was in a Marcal1 mutant 

background, I found that some genes, such as Blm and mus308, had significantly different 

genotype distributions in a Marcal1 mutant background whereas other genes, such as 

Fancm, were less affected. To determine the cause of these differences, I scored each 
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balancer separately in two different crosses: Marcal1 mus308 and Marcal1 Blm (Table 4.3). 

Both mus308 and Blm single mutants were observed in a significantly higher amount than 

expected with P values of 6.70 x 10-13 and 1.71 x 10-11, respectively, whereas both Marcal1 

mus308 and Marcal1 Blm double mutants observed were not significantly different than 

expected with respective P values of 0.574 and 0.469. No change was observed for Fancm, 

another helicase implicated in D-loop dissociation suggesting Marcal1 and Fancm do not 

genetically interact. 

In Marcal1 mus308 double mutants, I found that the number of double-balanced flies 

was slightly less than expected while the occurrence of Chr. 2 or Chr. 3 single-balanced 

progeny was roughly equal (89 and 86, respectively) and slightly more than expected 

(presumably as compensation). Despite these small variations, the overall distribution of 

genotypes in Marcal1 mus308 double mutants was not significantly different than expected 

(P = 0.124).  

 Marcal1 mus308 Marcal1 Blm 

Balancer 
combination 

Expected Observed P value Expected Observed P value 

Chr. 2 only 78 89 

0.124 

165.3 231 

2.60 x 10-9 
Chr. 3 only 78 86 165.3 182 

Chr. 2 & Chr. 3 156 134 330.7 260 

Double mutant 39 42 82.7 71 

  n = 351 
  

n = 744 
 

 

Table 4.3 Balancer chromosome distribution in viability assays. Heterozygous flies for 
Marcal1 mus308 or Marcal1 Blm double mutations were crossed and progeny were scored 
according to genotype. Observed counts were compared to expected counts based on 
genotype probability and a G-test for goodness of fit was used to calculate P values for each 
distribution.  
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In contrast, the occurrence of double-balanced flies in Marcal1 Blm double mutants was 

much less than expected (260 vs. 331 expected) and the single balanced flies were 

unevenly distributed (231 Chr. 2 and 182 Chr. 3 vs. 165 expected for both). These variations 

resulted in a significant deviation from the expected distribution. 

Marcal1 mus308 Expected Observed P value 

Chr. 3 and double balanced 234 220 
0.116 

mus308 mutant 117 131 

Chr. 2 and double balanced 234 223 
0.216 

Marcal1 mutant 117 128 

 

Marcal1 Blm Expected Observed P value 

Chr. 3 and double balanced 496 442 
3.6 x 10-5 

Blm mutant 248 302 

Chr. 2 and double balanced 496 491 
0.698 

Marcal1 mutant 248 253 

 

Table 4.4 Analysis of single mutant distribution in two double mutants. Data from 
Table 4.3 was used to calculate the occurrence of single mutants within double mutant 
backgrounds and a G-test for goodness of fit was used to calculate P values for distributions 
of single mutants.   

 

I next asked if the distributions were due to additive effects of the single mutations. I 

analyzed the occurrence of each mutation singly within the double mutant class: for Marcal1 

mus308, I combined the Chr. 2 balancer total with the double mutant total to get the total 

number of mus308 mutant progeny; the remaining flies were mus308 heterozygous and 

counted as balanced. This process was repeated for Marcal1 in Marcal1 mus308 double 

mutants and the entire method was repeated for the Marcal1 Blm double mutant data (Table 

4.4). Interestingly, I found the distribution of mus308 single mutants was not altered in a 

Marcal1 mutant background whereas Marcal1 Blm mutant distributions were additive. These 

data suggest that Marcal1 and mus308 do not genetically interact whereas Marcal1 and Blm 
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likely act in separate processes and/or at different times in the same pathway. These data 

further show that comparisons of double mutant and single mutant distributions are 

insufficient to determine genetic interactions, but balancer distribution in conjunction with 

single mutant distribution analysis in double mutant assays can uncover putative genetic 

interactions for further investigation. 

Marcal1 mutant viability is increased in a Polα-180/+ background 

 As previously mentioned, SMARCAL1 has known roles in replication-associated 

repair. Marcal1 does not exhibit regression activity on model replication fork structures in 

vitro (Kassavetis and Kadonaga 2014). SMARCAL1 has been shown to stabilize stalled 

replication forks during HU treatment (HU reduces the nucleotide pool, causing replication to 

stall) in cell culture assays (Yuan et al. 2009), however I found that Marcal1 null mutants did 

not have increased lethality when exposed to HU. SMARCAL1 deficient cells are sensitive 

to CPT, which is proposed to cause DSBs during replication, and I did observe elevated 

lethality in mutants treated with CPT. These apparently conflicting data could be due to 

differences in mutagen stability, mechanism of action, or other cryptic variables. Lethality 

assays are performed by adding the agent in aqueous solution to the fly food and allowing 

larvae to consume it. It is possible that the difference in outcomes observed in HU- and 

CPT-treated groups is due to the stability of the agent in the food over time as well as how 

the agent is metabolically processed once consumed. Conversely, it is possible that CPT 

lesions are repaired via HDR (as I proposed in Chapter 3) and the elevated lethality is due 

to the role of Marcal1 in HDR rather than fork regression or stability functions. To assess 

replication specifically, I tested the ability of Marcal1 mutants to survive in a Polα-180 

heterozygous background. 

DNA polymerase alpha (Polα) is an essential gene that is required for both 

replication initiation and Okasaki fragment synthesis during eukaryotic replication (Pellegrini 
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2012). It is complexed with Primase and facilitates short DNA extension of RNA primers 

before processive extension by the replicative polymerases Pol δ and Pol ε. The Polα-180 

mutation is a premature stop codon in the catalytic subunit of Polα that results in loss of 

function (LaRocque et al. 2007). LaRocque et al. further showed that, while homozygous 

lethal, Polα-180 heterozygotes had sufficiently reduced dosage to display proliferation 

defects in a checkpoint deficient background. Polα-180 heterozygosity has been used to 

mimic partial replication blockage caused by low dosage aphidicolin treatment (a reversible 

Polα inhibitor) that can cause fork collapse resulting in DSBs (LaFave et al. 2014) and I 

hypothesized that Marcal1 mutants would have reduced fitness in this background. 

Surprisingly, I found a significant elevation in observed Marcal1 mutants in a Polα-

180/+ background compared to expected (Table 4.2), suggesting that Marcal1 may have a 

role in replication fork maintenance.  It is possible that Marcal1 generates structures at the 

fork that are more likely to become DSBs during stalling/blockage. More studies are needed 

to verify this interaction is due to replication stalling and to explore this potential role.  

Marcal1 and Blm have complex genetic interactions 

 Similar to SMARCAL1, BLM helicase (yeast Sgs1, Drosophila Blm) has been 

implicated in a variety of cellular processes from replication fork stability and repair to 

resection, D-loop dissociation, and dHJ processing during HDR (reviewed in Wu 2007; 

Mimitou and Symington 2009b; Manthei and Keck 2013).  I observed the potential for an 

additive genetic interaction in Marcal1 Blm double mutants (Figure 4.4). To explore this 

relationship further and determine if Marcal1 and Blm have any overlapping functions, I 

performed a series of experiments with Marcal1 Blm single and double mutants.   
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Marcal1 mutants do not have elevated spontaneous mitotic crossovers 

 Elevated sister chromatid exchange and increased wide-spectrum cancer 

predisposition are hallmarks of Bloom syndrome (BSyn), the disease caused by mutations in 

BLM (German 1993). Recent studies of Schimke immuno-osseous dysplasia (SIOD) 

patients have reported a chromosome breakage phenotype and increased incidence of 

specific cancers (Baradaran-Heravi et al. 2012b; Simon et al. 2014). The recombinational 

phenotype in BSyn patients is attributed to the role of Blm in dHJ processing (Ira et al. 2003; 

LaFave et al. 2014). I wanted to know if the chromosome breakage phenotype in SIOD 

patients could be attributed to similar mechanisms. To test this hypothesis, I performed a 

mitotic CO assay in the male germline of Drosophila.  

I crossed Marcal1 mutant male flies heterozygous for the recessive markers scarlet 

(st), an eye color phenotype, and ebony (e), a body color phenotype, to females 

homozygous for st e and scored the progeny. Any progeny with both markers (st e) or no 

observable markers (wild type) did not have a CO whereas any progeny with only one 

marker (st e+ or st+ e) indicated a mitotic CO occurred in the father’s germline (male 

Drosophila do not have meiotic recombination). I did not observe any COs in Marcal1 null 

mutants which is not significantly different than wild type (Figure 4.1). In contrast, the mean 

CO rate in Blm mutants is 1.43% (LaFave et al. 2014). Marcal1 Blm double mutants had a 

mean CO rate of 1.57%, which was not significantly different from Blm single mutants. I next 

measured how many males had at least one progeny with a CO. 69% (61/88) of Blm mutant 

males assayed had progeny with a CO. The number of males with CO progeny significantly 

increased in Marcal1 Blm double mutants to 87% (27/31), with a P value of 0.02 (G-test and 

t-test with unequal variance). 
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Figure 4.1 Marcal1 does not contribute to the formation of mitotic crossovers. Males 
heterozygous for the recessive markers scarlet (st) and ebony (e) were crossed to females 
homozygous for st e and the progeny were scored for CO (st e+ or st+ e) or NCO (st e or st+ 
e+) repair events. Percent CO was calculated per male (replicate) as a percentage of total 
progeny scored. Parametric ANOVA was used to calculate significance between the mean 
percent CO of the different genotypes. **** P < 0.0001. 

 

 It is possible that DSBs are more likely to be repaired into a CO in a Marcal1 Blm 

mutant background, however, a more reasonable explanation is that Marcal1 mutations 

contribute to the formation of DSBs that are repaired into a CO in a Blm mutant background. 

This hypothesis suggests that Marcal1 and Blm contribute to genome stability in similar, 

perhaps overlapping, pathways but do not directly interact.  

Marcal1 and Blm have distinct functions in vivo 

In vitro studies of Marcal1 have shown that it cannot regress a model replication fork, 

however, a primary role of human SMARCAL1 is replication-associated repair via replication 

fork regression and restart (Bétous et al. 2012; Couch et al. 2013; Kassavetis and 

Kadonaga 2014). I observed increased survival of Marcal1 mutants when replication speed 
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was reduced via Polα-180 heterozygosity (Table 4.2) and Marcal1 mutants are not sensitive 

to killing by hydroxyurea (HU) (Figure 3.1), a ribonucleotide reductase inhibitor that stalls 

replication forks (Table 4.5). These data suggest that Marcal1 has a role during replication 

that becomes detrimental during replication slowing/stalling, which is in contrast to human 

SMARCAL1 functions that protect and maintain forks during slowing/stalling.  

Human BLM helicase has been implicated in fork maintenance and has fork 

regression and restart activity in vitro (Machwe et al. 2006, 2011; Sidorova et al. 2013). 

Additionally, BLM has been heavily implicated in replication progression and proper 

maintenance of under-replicated regions at the S- to M-phase transition (Chan et al. 2009; 

Naim and Rosselli 2009; Lukas et al. 2011; Sofueva et al. 2011; Naim et al. 2013; Ying et al. 

2013). It is possible that both proteins play a role at the fork, however, this potential has yet 

to be explored.  To test potential genetic interactions between Marcal1 and Blm, I measured 

Marcal1, Blm, and Marcal1 Blm double mutant survival when exposed to an array of 

mutagens. 

Previous studies in our lab have shown that Blm mutants have elevated lethality 

(sensitivity) when exposed to nitrogen mustard (HN2), methyl methanesulfonate (MMS), and 

ionizing radiation (IR), and these phenotypes are additive with Fancm mutations suggesting 

that multiple pathways are utilized in response to these agents (Kuo et al. 2014). I had 

previously tested Marcal1 single mutants in a subset of mutagens (Figure 3.1) and found 

Marcal1 mutants to be sensitive to fewer agents than previously reported for Blm mutants 

(Kuo et al. 2014). I therefore hypothesized that Blm single mutants would be more sensitive 

than Marcal1 mutants to most of the agents tested (Table 4.5). I hypothesized that double 

mutant sensitivity would be additive for replication-associated agents and the remainder of 

double mutant phenotypes would not be significantly different from Blm single mutants, due 
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to the lack of sensitivity in Marcal1 mutants to most agents and the epistatic role of Blm in 

HDR.  

Mutagen Lesion / mechanism 

Hydroxyurea (HU) 
Ribonucleotide reductase 

inhibitor—replication stalling 
(Hammond et al. 2003) 

Nitrogen mustard (HN2) 
Monoadducts & interstrand 

crosslinks (ICLs) 
(Povirk and Shuker 

1994) 

Methyl 
methanesulfonate 

(MMS) DNA alkylation, DSBs? 
(Ui et al. 2005; Lundin 

et al. 2005) 

Ionizing radiation (IR) Double strand breaks (DSBs) (Radford 1985) 

Cisplatin (CPL) 
ICLs (different structure than 

HN2-induced) 
(Sawant et al. 2017) 

Formaldehyde (HCHO) DNA-protein crosslinks (Grafstrom et al. 1984) 

Camptothecin (CPT) 
Topoisomerase I inhibitor, 

repaired by HDR 
(Pommier et al. 2010; 

Maede et al. 2014) 

Etoposide (ETS) 
Topoisomerase II inhibitor, 

repaired by NHEJ 
(Pommier et al. 2010; 

Maede et al. 2014) 

Table 4.5 Mutagens tested in sensitivity assays. Mutagens used for sensitivity assays; 
the abbreviation used in the text; the lesion created or mechanism of action, as applicable; 
reference for the lesion/mechanism. 

 

 I found that Marcal1 mutants were not sensitive to IR at 1500 rads exposure 

(P=0.771), while the same exposure resulted in significantly reduced survival in Blm mutants 

(P<0.0001) (Figure 4.2A). The Marcal1 Blm double mutant mean survival was not 

significantly different from Blm single mutants (Figure 4.2A). Interestingly, the variability in 

survival was more similar to Marcal1 mutants than Blm mutants suggesting that Marcal1 

mutations affect the Blm phenotype in the double mutant, both increasing and decreasing 

survival. I also observed that Marcal1 mutants are sensitive to IR at 2000 rads (Figure 4.2B).  

I observed a similar pattern when mutants were exposed to cisplatin (CPL) (Figure 

4.2C). Marcal1 mutants were not sensitive at 0.25 mM concentration whereas Blm mutants 

were not viable at the same dose. The potential contribution of Marcal1 to the double mutant 

phenotype was unobservable, most likely due to the lethality of the dose in Blm mutants.  
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Figure 4.2 Marcal1 is more resistant to ionizing radiation and cisplatin than Blm. (A) 
Flies heterozygous for null mutations in Marcal1, Blm, or Marcal1 Blm double mutations 
were mated in two broods of at least 10 vials, with each vial representing a biological 
replicate. Brood one was unexposed; brood two received a dose of ionizing radiation (IR) 
during larval feeding. Relative survival was calculated as the ratio of homozygous mutant to 
heterozygous control adults in treated vials, normalized to the same ratio in the 
corresponding unexposed vial. Lethality P value refers to the significance of relative survival 
in paired t-tests between unexposed and exposed vials and indicates sensitivity to killing 
when P<0.05. Parametric ANOVA was used to calculate significance between genotypes. 
n.s.: not significant; ****, P<0.0001. At 1500 rads, Marcal1 mutants are not sensitive 
whereas Blm and Marcal1 Blm double mutants are similarly sensitive. (B) Marcal1 flies were 
treated as described in (A) with 1500 rads or 2000 rads of IR. Marcal1 mutants were 
significantly sensitive to 2000 rads of IR. (C) The same method was used to test sensitivity 
to cisplatin (CPL) by applying an aqueous solution of CPL to larval food and measuring 
survival to adulthood. Marcal1 mutants were not sensitive at 0.25 mM concentration while 
Blm and Marcal1 Blm double mutants had no survival when exposed to the same treatment. 
(D) Marcal1 mutants are significantly sensitive to CPL at 0.50 mM, P=0.0001. 
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In contrast to IR treatment, CPL-treated double mutants did not have any incidence of 

increased survival compared to Blm single mutants. Again, Marcal1 mutants were sensitive 

to CPL at a higher dose than Blm mutants (Figure 4.2D). 

 The genetic relationship between Marcal1 and Blm appears similar to IR and CPL 

when treated with MMS, HN2, and formaldehyde (HCHO) (Figure 4.A, C, E). Marcal1 

mutants were not sensitive to MMS or HN2, whereas Blm mutants were very sensitive. The 

double mutant had slightly increased sensitivity to MMS compared to Blm single mutants 

(Figure 4.3A). However, unlike IR and CPL treatment, Marcal1 mutants were surprisingly 

insensitive to MMS, even at high dosages (Figure 4.3B), suggesting that few DSBs are 

generated when Blm is functional and supporting evidence from Lundin et al that DSBs do 

not form in cells treated with MMS (Lundin et al. 2005).  

 Blm mutants were significantly sensitive to HN2 treatment, whereas Marcal1 mutants 

were not (Figure 4.3C). Similar to MMS, Marcal1 mutants were insensitive to HN2 treatment 

independent of dose (Figure 4.3D). The double mutant was not tested for HN2 sensitivity, 

though I suspect it would behave in a similar manner to MMS. More studies are needed to 

test this hypothesis.  

Marcal1 mutants were not sensitive to HCHO treatment but Blm mutants were. 

Similar to the phenotype observed in IR-treated flies, the double mutant was not statistically 

different from the Blm single mutant, probably due to increased variation within the double 

mutant class (Figure 4.3E).  Unlike IR, however, Marcal1 mutants were insensitive to HCHO 

treatment at all dosages tested. 

Marcal1 mutants were sensitive to 70 mM HU (Figure 4.4A), however, this sensitivity 

was abolished by increasing the dose to 100 mM (Figure 4.4B) and it is likely that the 

sample size in the 70 mM treatment group lacks sufficient statistical power.  
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Figure 4.3 Blm mutations can sensitize Marcal1 mutants to damaging agents. Flies 
were treated as described in Figure 4.2. Lethality P value refers to the significance of 
relative survival in paired t-tests between unexposed and exposed vials and indicates 
sensitivity to killing when P<0.05. Parametric ANOVA was used to calculate significance 
between genotypes. n.s.: not significant; *, P<0.0424; ****, P<0.0001. (A) Marcal1 flies were 
not sensitive to 0.65 mM MMS, however Blm flies were significantly sensitive and Marcal1 
Blm double mutants were more sensitive than Blm. (B) Marcal1 flies were not sensitive to 
increasing concentrations of MMS. (C) Marcal1 flies were not sensitive to 0.004% HN2 while 
Blm flies were very sensitive. No double mutants were tested. (D) Marcal1 flies were not 
sensitive to increasing concentrations of HN2. (E) Marcal1 flies were not sensitive to 2.4% 
HCHO while Blm and Marcal1 Blm double mutants were similarly sensitive. (F) Marcal1 flies 
were not sensitive to increasing concentrations of HCHO.  

 

   Blm mutants were significantly sensitive to 70 mM HU (Figure 4.4A), supporting a 

role for Blm in maintaining stability at stalled replication forks. Interestingly, Marcal1 Blm 

double mutants were not significantly different from Marcal1 mutants and had wide variation 

in survival (0 – 200% relative to unexposed siblings). HU was the only mutagen where the 

double mutant had a phenotype more similar to Marcal1 than to Blm. 

 CPT treatment was the only mutagen that resulted in similar sensitivities in 

both Marcal1 and Blm single mutants (Figure 4.4). Furthermore, these sensitivities are 

additive in the double mutant suggesting that at least two separate mechanisms facilitate 

repair of CPT-generated lesions. Marcal1 mutants are sensitive to CPT in a dose-dependent 

manner (Figure 4.4D), which is similar to human SMARCAL1 (Zhang et al. 2012). 

Lastly, I tested mutant sensitivity to etoposide (ETS) and found that Marcal1 mutants 

were not sensitive to 10 mM ETS whereas Blm mutants were significantly sensitive and 

double mutants were inviable at that dose (Figure 4.4E). This genetic interaction is similar to 

the one observed after MMS treatment (and possibly CPL) (Figure 4.3A, 4.2C) and suggests 

that Blm mutations sensitize Marcal1 mutants to ETS.  
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Figure 4.4 Marcal1 and Blm act in 
separate and overlapping pathways. 
Flies were treated as described in Figure 
4.2. Lethality P value refers to the 
significance of relative survival in paired t-
tests between unexposed and exposed 
vials and indicates sensitivity to killing 
when P<0.05. Parametric ANOVA was 
used to calculate significance between 
genotypes. n.s.: not significant; *, P<0.05; 
****, P<0.0001. (A) Marcal1 mutants were 
statistically sensitive to 70 mM HU (), Blm 
was very sensitive, and the double mutant 
was not sensitive. *, P=0.0472; ***, 

P=0.0004. (B) Marcal1 mutant sensitivity was abolished by increasing the dose of HU to 
100mM. (C) Marcal1 and Blm were similarly sensitive to CPT and this effect was additive in 
the double mutant. *, P=0.0278 (D) Marcal1 mutants are sensitive to CPT in a dose-
dependent manner. (E) Marcal1 is not sensitive to ETS; Blm is significantly sensitive to ETS 
and the double mutant is more sensitive than Blm single mutants. 
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Altogether, these data show that Marcal1 and Blm do not have overlapping functions 

during DNA damage repair. Blm mutants were sensitive to every agent tested, which 

supports a role for Blm in a wide range of repair pathways (discussed in depth in Chapter 5). 

In contrast, Marcal1 mutants were insensitive to most agents tested, suggesting it acts in 

aspecific damage repair pathway (most likely HDR). Interestingly, Blm mutations sensitized 

Marcal1 mutants to an additional set of mutagens suggesting that these lesions become 

structures that are repaired via Marcal1-dependent pathways in the absence of Blm. Our lab 

has previously shown that mitotic CO are elevated in Blm mutants treated with MMS, HN2, 

and CPT but not HU, supporting my hypothesis that many of these structures are converted 

to DSBs that are then repaired via HDR in the absence of Blm (LaFave et al. 2014). 

Marcal1 and Blm mutations are synergistic during gap repair 

 I have shown that Marcal1 mediates annealing during SDSA in the P{wa} assay 

(Chapter 3). Previous work from our lab established that Blm facilitated D-loop dissociation 

in the same assay (Adams et al. 2003). If these interpretations are correct, the Marcal1 Blm 

double mutant should have a phenotype similar to Blm single mutants. My data from 

sensitivity assays, however, suggest that Marcal1 and Blm have both additive and 

synergistic relationships depending on the lesion, which I propose is due to Blm activity in a 

variety of repair pathways in addition to its established roles in HDR. To test this hypothesis, 

I performed the P{wa} assay in the male germline of Marcal1 Blm double mutants (males do 

not undergo meiotic recombination).   

 The P{wa} assay is described in detail in Chapter 3 (Figure 3.2). Briefly, the construct 

is a stably integrated P element that encodes a white (w) gene which is responsible for 

loading pigment into the eye. The gene is interrupted by a copia retrotransposon flanked by 

two 276-bp long terminal repeats (LTRs). The copia insertion causes a w splicing defect and 

results in an apricot-colored eye in hemizygous males or homozygous females. When 
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exposed to an inefficient source of P element transposase, the P{wa} element is excised 

from one chromatid; the intact sister chromatid serves as an efficient template for HDR (the 

structure of the ends are poor substrates for end-joining via cNHEJ) (Symington and Gautier 

2011). Repair events from single males are recovered in female progeny by crossing to 

females homozygous for P{wa}.  

 For SDSA to occur, both sides of the break must be extended (via synthesis) beyond 

the first region of complementarity, the copia LTRs. If the LTRs are annealed correctly, 

SDSA is completed and these events are observable as red eyes in progeny inheriting this 

product. If EJ occurs either without synthesis or after incomplete synthesis, w function is 

completely lost, resulting in yellow-eyed progeny (due to the maternally-inherited full P{wa} 

copy). Complete restoration of P{wa} could occur via a dHJ intermediate or via SDSA or EJ 

that synthesizes sufficiently past the LTRs to retain a splicing defect. Apricot-eyed progeny 

are counted as part of total progeny scored but do not contribute to any repair class 

because they cannot be differentiated from a lack of excision. SDSA and EJ events are 

quantified as a percentage of total scorable progeny (daughters that do not inherit the 

transposase source) from each male.  

 I observed red-eyed progeny (SDSA events) from only one Marcal1 Blm double 

mutant male, which was removed from the data set after being categorized as an outlier by 

both ROUT and Grubbs tests (Figure 4.5A). These data were not statistically different than 

Marcal1 or Blm, despite the increased occurrence of red-eyed progeny in both single 

mutants. Red-eyed progeny are sufficiently rare in these genotypes (0.95% in Marcal1 

mutants and 0.90% in Blm mutants) that the ability of parametric ANOVA to identify 

differences is limited when wild type frequency is included in the data set. While these data 

fail to show a statistically significant difference that could reveal an additive or synergistic 
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relationship, they do show that SDSA is severely compromised in a Marcal1 Blm double 

mutant. 

 I encountered the same statistical quandary when analyzing yellow-eyed progeny 

(EJ events) (Figure 4.5B). Wild-type and Marcal1 EJ events were not statistically different, 

however both were significantly higher than Blm or Marcal1 Blm double mutants. In this data 

set, ROUT identified every EJ event as an outlier in the Marcal1 Blm double mutant class 

only though EJ events occurred at a higher frequency than SDSA events. Due to the 

increased incidence, I did not remove any EJ events in the Marcal1 Blm data set as outliers. 

From these data I conclude that EJ events, when they occur in Marcal1 Blm double mutants, 

are not significantly different from Blm mutants and EJ is compromised during SDSA in all 

Blm mutant backgrounds I tested.  

 I observed flanking deletions and significantly reduced synthesis in Blm single 

mutants, consistent with past observations (Chapter 3, Adams et al. 2003; McVey et al. 

2004a). In contrast, Marcal1 mutants have synthesis length that is not significantly different 

from wild type and I do not observe any flanking deletions in Marcal1 mutants (Chapter 3). 

These data are consistent with past interpretations that Blm dissociates D-loops and 

Marcal1 mediates downstream annealing. To confirm these roles, I performed the standard 

series of PCRs to test synthesis length in Marcal1 Blm (Chapter 3, Materials and Methods). 

Marcal1 Blm double mutants were not statistically different from Blm single mutants (Figure 

4.5C), supporting the model that Blm D-loop dissociation is epistatic to Marcal1 annealing 

during SDSA. 
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Figure 4.5 Marcal1 and Blm are additive during gap repair. Wild type, Marcal1, and Blm 
data are from Chapter 3, Figure 3.3. (A) SDSA events are measured as the percentage of 
scored progeny with red eyes. Mean and SEM are indicated. Marcal1 null mutant, Blm 
mutant, and Marcal1 Blm double mutant frequencies were all significantly reduced 
compared to wild type. The numbers of single males (biological replicates) and total progeny 
scored are listed below the graph. (B) EJ events were measured as the percentage of 
scored progeny with yellow eyes. Blm and Marcal1 Blm mutants had significantly reduced 
EJ compared to wild type and Marcal1 single mutants. P-values: ****, P <0.0001; ***, 
P=0.003; **, P =0.0055 based on parametric ANOVA. (C) Synthesis tracts in repair events 
recovered in yellow-eyed progeny were measured using a series of PCRs (Table 3.2). Each 
interval was measured independently and quantified as a percentage of total independent 
events analyzed. X-axis denotes distance (in nucleotides) from each end of the gap, on the 
same scale as the schematic of P{wa} below. Y-axis is percent of events analyzed that had a 
positive PCR and therefore synthesized at least as far as the most internal primer. Marcal1 
(n= 90) was not significantly different from wild type (n=48) when corrected for multiple 
intervals (Chapter 3, Materials and Methods). Blm (n=75) and Marcal1 Blm (n=26) mutants 
were significantly different (P <0.0001) from both wild type and Marcal1. 
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Figure 4.6 The majority of repair events in the P{wa} assay are unrecoverable in 
Marcal1 Blm double mutants. Each male (replicate) from the P{wa} assay was categorized 
according to the distribution of repair events observed in his progeny and the data are 
displayed as a percentage of all males assayed in each genotype. Red indicates red-eyed 
progeny were observed; yellow indicates yellow-eyed progeny; both indicates red- and 
yellow-eyed progeny; and no repair indicates no red or yellow-eyed progeny were observed. 
Apricot-eyed progeny were observed in the progeny of every male. 

 
The ROUT data from Marcal1 Blm double mutants suggests that both SDSA and EJ 

are highly compromised to a greater extent than the single mutants. To test this hypothesis, 

I measured repair event distribution per male by counting the number of males in each 

genotype that had red-eyed progeny, yellow-eyed progeny, both eye colors in the progeny, 

or only apricot (no observable repair event) in the progeny (Figure 4.6). Surprisingly, the 

Marcal1 Blm phenotype was distinctly different from both Marcal1 and Blm single mutants. 

Males with only apricot-eyed progeny represented the majority (71.1%) of Marcal1 Blm 

double mutants tested, whereas this class was only 32.7% of Blm single mutant males. The 

same class represented only 12.2% of Marcal1 males, revealing synergism between 

Marcal1 and Blm in the P{wa} assay that results in a significant reduction in recoverable 

repair events. 
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Discussion 

 The data presented here show that Marcal1 does not affect meiotic disjunction, 

which could be due to a variety of reasons. NCOs could be generated from SDSA-like 

structures but require meiosis-specific annealases, not Marcal1. NCOs could also be 

generated from alternate structures that do not resemble mitotic SDSA intermediates and 

are differentially regulated. It is also possible that meiotic chromosome segregation can 

tolerate reduced NCOs or a back-up mechanism like EJ is utilized in the absence of Marcal1 

to facilitate NCO formation. More studies are needed to determine if Marcal1 has a role in 

meiosis.  

 Marcal1 also does not appear to genetically interact with any nucleases, including 

those responsible for replication fork collapse (mus81) and dHJ processing (Gen, mus312, 

mus81). I did observe potential interactions with genes involved in DSB repair such as 

mus308 and Blm, though these interactions were very mild in the absence of exogenous 

DNA damage and require further studies to corroborate. Lastly, Polα-180/+ increased 

Marcal1 mutant survival, though the mechanism of this phenomenon remains unclear. 

 Marcal1 mutants had a similar increase in survival to when exposed to HU and Blm 

mutations amplified this effect, suggesting that my observations of Polα-180/+ were not due 

to cryptic variables in the assay.  Interestingly, this phenotype was the only treatment where 

Marcal1 was epistatic to Blm.  Molecular experiments such as fiber combing may help to 

shed light on the mechanism behind this interaction.  

Generally, Marcal1 Blm double mutants had a phenotype similar to Blm single 

mutants when exposed to mutagens, though I also observed that Blm mutations could 

sensitize Marcal1 mutants to some mutagens (MMS, CPL).  Marcal1 mutants were generally 

less sensitive than Blm and the complex genetic interactions I observed between Marcal1 

and Blm is suggestive of multiple roles for Blm in DNA repair. Furthermore, some lesions 
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may be converted into DSBs in the absence of either Marcal1 or Blm, explaining the 

sensitization phenotype seen in Marcal1 Blm double mutants. 

Finally, I found that Marcal1 Blm double mutants have severe gap repair defects 

indicative of a synergistic relationship between Marcal1 and Blm during HDR. Marcal1 Blm 

double mutants had no observable repair events in the majority of males assayed and the 

few repair events recovered revealed severe synthesis defects similar to those seen in Blm 

mutants. These data suggest that Blm has more roles in DNA repair than previously thought 

whereas Marcal1 activity is most likely specific to HDR. 

Materials and methods 

Drosophila stocks 

Fly stocks were maintained at 25 C on standard cornmeal medium. All Marcal1 null 

assays were performed using heteroallelic null mutations Marcal1del and Marcal1kh1. 

Marcal1K275M assays were performed homozygous. Detailed descriptions of these alleles can 

be found in Chapter 3. 

Nondisjunction assay 

Five heteroallelic Marcal1 null females were crossed to three y cv v f / Bs Y y+ males 

in a brood of six vials. Progeny were scored according to the number of X chromosomes 

and sex. Exceptional classes (y cv v f males or Bar-eyed females) indicated X chromosome 

nondisjunction. These totals were multiplied by 2 to account for inviable non-disjoined 

progeny and expressed as a percentage of total progeny. Confidence intervals and 

probability were calculated as described in (Zeng et al. 2010); wild type rates were 

previously published (Kohl et al. 2012). 
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Synthetic lethality assays 

Five heterozygous females were crossed to three heterozygous males in a brood of 

five vials for each experiment. Progeny were scored and the number of homozygous flies 

observed was compared to the expected number (calculated by multiplying the total flies 

scored by the probability of observing the mutant class) using a G-test for goodness of fit. 

Crossover assay 

Single males of the genotype Marcal1del/Marcal1kh1 ; st e/+ were crossed to five 

homozygous st e females and progeny were scored. Mitotic crossovers derived from the 

male germline were measured as progeny with st + or e + phenotypes and expressed as a 

percentage of total progeny. Wild type and Blm single mutant data are from a previous 

publication but were performed by me in the same manner (st e on the same chromosome) 

(LaFave et al. 2014). Parametric ANOVA tests were performed for significance. 

Exposure assays 

All exposure assays were performed and analyzed as described in Chapter 3. 

P{wa} assays 

All P{wa} assays were performed and analyzed as described in Chapter 3. 
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CHAPTER 5: CONCLUDING REMARKS 

 

The variability of disease severity and penetrance in SIOD patients has resulted in a 

wide range of studies and interpretations of SMARCAL1 activity in the cell. SMARCAL1 has 

an established role in DNA damage repair during replication, however the level at which that 

impacts survival and symptoms is less clear. Early studies have implicated human 

SMARCAL1 in DNA double-strand break (DSB) repair but these roles were not fully 

explored until now.  

The work discussed here establishes a role for the Drosophila ortholog of 

SMARCAL1, Marcal1, in DSB repair via synthesis-dependent strand annealing (SDSA). This 

role appears to be restricted to annealing of complementary sequences after synthesis and 

can affect downstream repair decisions including double Holliday junction (dHJ) formation 

and polymerase theta-mediated end joining (TMEJ). I failed to find direct evidence of 

Marcal1 fork regression activity that was similar to SMARCAL1, despite multiple 

approaches. Instead, I found evidence that supports a role for Blm in a similar capacity to 

SMARCAL1 during replication in Drosophila.  

Marcal1 in homology directed repair 

DSB repair strategies can be thought of as a series of choices that are made by 

weighing a combination of complex factors, including availability of a repair template, cell 

cycle timing, nuclear architecture, and the chromatin context of the break itself (Figure 5.1).  
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Figure 5.1 DSB repair strategies. Blue: dsDNA molecule; orange: dsDNA template (sister 
chromatid or homologous chromosome). (A) A DSB occurs in the blue DNA molecule. (B) 5' 
resection marks the first step of homology-directed repair and results in 3' ssDNA tails. (C) 
Rad51-coated ssDNA tail invades a template duplex, displacing one strand to creating a D-
loop, and primes synthesis. (D) The D-loop is disassembled and a complementarity test 
between the opposing ends of the break occurs. (E) SDSA is defined by annealing between 
complementary sequences, followed by trimming and/or gap filling. (F) Ligation restores an 
intact duplex DNA molecule. Alternative strategies (dotted arrows). (G) Canonical non-
homologous end joining can occur instead of resection, which directly ligates the ends and 
can generate small insertions and deletions (pink segment). (H) Microhomology-mediated 
end joining (catalyzed by DNA polymerase theta in metazoans) can occur prior to strand 
exchange or after failure to find or anneal at complementary sequences. (I) MMEJ/TMEJ 
can will usually generate a deletion or insertion (pink segment). (J) If the DSB occurs 
between two direct repeats, complementary sequences may be exposed during resection, 
and annealing can occur without synthesis, called single-strand annealing (SSA). (K)  SSA 
results in deletion of one repeat. (L) 2nd-end capture (annealing of the opposing strand to the 
D-loop, allowing for extension of that strand) can occur during synthesis. (M) Ligation to the 
opposing 5’ ends creates a double-Holliday junction (dHJ). (N) Dissolution of the dHJ 
involves migration of the junctions toward each other and decatenation via topoisomerase 
activity to (O) restore the DNA molecule. (P) Resolution involves endonucleolytic cleavage 
of the junctions which can be cut in either orientation, resulting in both (O) non-crossover 
(restoration of the DNA molecule) and (Q) crossover (recombinant) products. 
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The first key decision point is resection (Figure 5.1B), which dictates a commitment to HDR 

strategies (sequestering the ends of the break from resection results in direct ligation via 

cNHEJ (Figure 5.1G) (reviewed in Mimitou and Symington 2009)). Brca2 acts downstream 

of resection to facilitate strand exchange with the template and the phenotype of Brca2 

Marcal1 double mutants in the P{wa} assay shows Brca2 is epistatic to Marcal1, indicating 

that Marcal1 acts later in the HDR pathway and is unlikely to be involved in resection.  

Resection almost invariably leads to strand exchange and synthesis. SSA is an 

exception (Figure 5.1J), but this can occur only when there are direct repeats flanking the 

break and perhaps primarily when there is no available template for HDR. It is unclear how 

much SSA is utilized outside of specialized assays such as P{wIw}, though Preston et al. 

found it was preferred over HDR when a similar construct was used that had a mutated I-

SceI site on the homologous chromosome (Preston et al. 2006b). It is possible that the 

preference for SSA in this context is due to the template being on the homolog and not the 

sister chromatid. Regardless, SSA is efficiently used in specific situations and the data 

presented here provide evidence that it shares a common annealing mediator, Marcal1, with 

other HDR strategies.  

The second key decision point in HDR repair is disassembly of the D-loop, which 

dictates the choice between SDSA and the dHJ pathway (Figure 5.1C). Disassembly favors 

SDSA by promoting complementarity tests and annealing, whereas continued synthesis 

increases the likelihood of 2nd-end capture and dHJ formation. In Drosophila, Blm helicase 

has been identified as a key mediator of D-loop disassembly (Adams et al. 2003; McVey et 

al. 2004b), and recent studies suggest Fancm may play a minor role in this step as well 

(Kuo et al. 2014; Romero et al. 2016), though studies in human cells do not show a role for 

FANCM in SDSA (Zapotoczny and Sekelsky 2017). I did not observe phenotypes indicative 
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of defects in D-loop dissociation in Marcal1 mutants, suggesting that the role of Marcal1 is 

downstream of D-loop dissociation.  

The third key decision point is annealing (Figure 5.1D), which I propose impacts the 

choice between SDSA (Figure 5.1, central model), EJ (primarily TMEJ) (Figure 5.1H-I), and 

re-invasion that can lead to dHJ formation (Figure 5.1L-Q). Prior to the studies reported 

here, little was known about annealing during HDR in animals or how the decision between 

these three options is regulated. My data provide in vivo evidence that Marcal1 mediates 

annealing during SDSA and SSA in Drosophila, and suggest that Marcal1 acts directly to 

anneal complementary strands, as abrogating Marcal1 translocation activity via Walker A 

mutation recapitulates the null phenotype. Furthermore, I did not observe genetic 

interactions with structure-specific endonucleases, indicating that Marcal1 activity is 

restricted to annealing of nascent DNA strands, not 2nd end capture or dHJ 

formation/processing. 

The Marcal1K275M mutation reduces EJ as well as annealing during SDSA, which 

suggests that Marcal1K275M antagonizes EJ in contexts where EJ follows strand exchange, 

synthesis, and D-loop dissociation. EJ in Marcal1 null mutants is unaffected, which further 

suggests the EJ phenotype in Marcal1K275M mutants is likely due to defective annealing 

activity leading to aberrant interactions with the DNA rather than a non-annealing protein-

protein interaction. I propose the Marcal1K275M phenotype is a consequence of localization to 

the DNA without translocation activity, which may indicate Marcal1 precedes recruitment of 

EJ factors after D-loop dissociation. Further studies are needed to test this hypothesis.  

An intriguing finding from my study is that synthesis tract length is not elevated in 

Marcal1 mutants even though annealing is defective. Early studies of gap repair in 

Drosophila have shown that continuous synthesis averages 1379 bp and complete 

restoration decreases as template length increases (Gloor et al. 1991); additional studies 
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with the P{wa} assay suggest that gap filling involves multiple cycles of strand exchange, 

synthesis, and D-loop dissociation (McVey et al. 2004b). These attributes appear unaffected 

in Marcal1 mutants suggesting that the choice to strand re-invade or EJ during a given 

round is not solely dependent on the outcome of complementarity tests even though the 

reduction in EJ in Marcal1K275M mutants argues that Marcal1 is recruited to the nascent ends 

prior to recruitment of EJ factors. It is possible that rounds of strand invasion, synthesis, and 

D-loop disassembly are simply stochastic in nature, and after each a complementarity test is 

performed by Marcal1. When Marcal1 is present but defective, EJ factors may be excluded 

after D-loop dissociation, whereas when Marcal1 is completely absent EJ factors would 

have access to the DNA, but EJ would still be reliant on the synthesis machinery and 

unknown regulatory signals. These data support a model where complementarity tests are 

upstream of the EJ vs. strand re-invade decision.  

I predicted Blm would be epistatic to Marcal1 due to its role in D-loop dissociation, 

however, I found that Marcal1 mutations were synergistic with Blm mutations in the P{wa} 

assay. Repair events were significantly reduced in Marcal1 Blm double mutants and only 

one male had progeny with putative SDSA products; EJ events resembled Blm single 

mutants. Even though SDSA events represent less than 1% of total progeny in Marcal1 and 

Blm single mutants, the number of males with red-eyed progeny represent 19.6% and 

10.6%, respectively whereas only one male (2.6%) had progeny with red eyes. Blm 

mutations affect synthesis to the LTRs, resulting in a reduced number of repair events with 

the capacity for SDSA. However, if synthesis to the LTRs occurs and D-loop dissociation is 

achieved, perhaps through a back-up mechanism, Marcal1 can mediate annealing. This 

explains the residual red-eyed events in Blm mutants. Likewise, Marcal1 mutations do not 

affect synthesis to the LTRs, resulting in a higher percentage of repair events with the 

capacity for SDSA. In this context, annealing is compromised but the higher number of 
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SDSA-proficient DNA ends results in residual red-eyed progeny, either through a back-up 

mechanism or through EJ that restores w splicing. The paucity of SDSA events in the 

double mutant suggests that the combination of D-loop dissociation defects and reduced 

annealing capacity are synergistic and all but abolish LTR annealing.  

The extreme reduction in observable repair events in Marcal1 Blm double mutants 

compared to either single mutant suggests that either the majority of cells with P element 

excision were inviable or the majority of events synthesized into the copia element and 

resulted in apricot-eyed progeny. Considering that EJ events had significantly reduced 

synthesis compared to wild type and flanking deletions were observed, it is more likely that 

the majority of cells with an excision were inviable. Blm deficient cells cannot dissociate D-

loops, resulting in cleavage of the structure and further resection (as proposed by Adams et 

al. 2003; McVey et al. 2004a) until a cryptic signal results in EJ of the ends. In Marcal1 Blm 

mutants, this process is further deregulated, suggesting both Blm and Marcal1 are part of 

the signaling process that activates EJ during gap repair. Further studies of genetic 

interactions between Marcal1, Blm, and EJ factors may help to clarify this interaction. 

Unlike P{wa}, the P{wIw} assay did not reveal any differences between Marcal1K275M 

and null mutants. P{wa} requires multiple iterations of the anneal vs. EJ vs. re-invade 

decision (McVey et al. 2004b), providing increased opportunities to observe moderate 

defects in that decision among repair products. On the other hand, in the P{wIw} assay there 

is usually no intact homologous template for repair (in wild-type flies, <1% of the products 

were uncut or restored to the original sequence). While it is not possible to determine which 

repair strategy is initially favored at the break, the efficiency of I-SceI cutting may ultimately 

select for HDR, since direct ligation would often restore the cut site, perhaps to be cut again. 

Once resected, annealing becomes the strongly favored strategy since long ssDNA tails are 

not ideal substrates for TMEJ or cNHEJ (Waters et al. 2014; Wyatt et al. 2016) and strand 
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invasion is not possible. SSA represents over 93% of all repair products in wild type and 

Marcal1K275M heterozygotes, supporting this interpretation. Because the anneal vs. EJ vs. 

strand re-invade decision point is highly altered and potentially de-regulated by the assay 

design, it is likely that EJ events in P{wIw} are facilitated through alternative pathways that 

are less influenced by Marcal1. My data support this interpretation as we see a large (>7-

fold) increase in EJ events in both Marcal1K275M and null mutants. These EJ events are 

predominantly joined near the break site without large deletions, suggesting an alternative 

form of EJ is utilized on long resected ends when annealing is compromised. EJ was 

reported by Chan et al. in mutants defective in both cNHEJ and TMEJ (Chan et al. 2010), 

though the key mediator of this form of EJ remains unknown. 

Interestingly, I observed that Marcal1K275M is completely recessive in the P{wIw} 

assay (Figure 3.7D). It is possible that Marcal1K275M mutant protein may bind DNA less 

tightly than the wild-type protein. While ATP-binding is not required for DNA binding by 

SMARCAL1, it can cause a conformational change that influences the DNA binding constant 

(Gupta et al. 2015). It is also possible that multiple Marcal1 molecules bind the nascent DNA 

and the presence of any wild-type protein is sufficient to rescue the Marcal1K275M phenotype. 

Recent work on the RPA-SMARCAL1 interface has shown that SMARCAL1 binds to the C-

terminal region of RPA32 with 1:1 stoichiometry (Bhat et al. 2014; Xie et al. 2014) and it is 

likely that many molecules of Marcal1 bind the RPA-coated nascent DNA, allowing for 

multiple complementarity searches to occur simultaneously. Studies have revealed a similar 

mechanism for homology searching by  Rad51-coated ssDNA (Wright and Heyer 2014; Qi 

and Greene 2016). Mutation of the Walker B motif to allow ATP binding (thus preserving 

DNA binding kinetics) but prevent ATP hydrolysis (translocation) as well as in vitro studies of 

Marcal1 interactions with long RPA-bound filaments may help to clarify the mechanistic 

basis of the Marcal1K275M phenotype. 
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The limitations of P{wIw} are predominantly due to extensive homology to either side 

of the break, which makes it difficult to definitively identify annealed events vs. MMEJ/TMEJ 

of approximately the same size. Molecular analysis revealed that 22% of white-eyed 

progeny in Marcal1 mutants had this type of event (Figure 3.6) and it is highly probable that 

the true percentage is even higher but sequence similarity is an impediment to fine-scale 

amplification. Amplification of the entire construct followed by single-molecule sequencing, 

as done in the S. cerevisiae gap repair assay of Guo et al., might allow sampling of a larger 

number of repair events from multiple tissues of a single individual and it could be further 

adapted to recover events in different progeny from a single male germline, as in my 

strategy (Guo et al. 2015). My work has highlighted the need for fine-scale assays capable 

of distinguishing true annealing events from microhomology-mediated events. 

Marcal1 mutations uncover roles for Blm at replication forks 

 Marcal1 mutants had a phenotype consistent with a role in annealing during SDSA 

and SSA in every assay I performed. I did not find evidence of a role in replication, despite 

repeated approaches. In contrast, Blm mutants had elevated lethality when exposed to 

every mutagen tested indicating a role in a variety of DNA damage repair pathways. It is 

possible that Blm is part of a large genome surveillance complex called BASC consisting of 

BRCA1, BLM, resection proteins, ATM, and mismatch repair proteins, as proposed by Wang 

et al. (Wang et al. 2000). If such a complex exists in Drosophila, it is unclear which protein 

acts as the scaffold since the putative scaffold protein, BRCA1, does not have a known 

ortholog in flies. It is more likely that Blm has different roles depending on the context of the 

lesion and the type of repair required. 

 BLM is necessary for recruitment of Fanconi anemia (FA) proteins FANCM and 

FANCD2 to interstrand crosslinks (ICLs) (Hirano et al. 2005; Hemphill et al. 2009; Hoadley 

et al. 2012; Ling et al. 2016; Panneerselvam et al. 2016) and the high lethality I observed in 



 

87 
 

Blm mutants treated with nitrogen mustard (HN2) and cisplatin (CPL) support this role. 

Interestingly, Hirano et al. proposed that the interaction between Blm and FA proteins at 

ICLs was due to repair of the lesions via HDR mechanisms, however I was unable to 

corroborate this hypothesis since Marcal1 Blm double mutants did not survive CPL 

treatment nor were they assessed in HN2 treatment. 

 Blm and FA proteins have also been shown to interact during replication-associated 

repair. In human cells, BLM is recruited to replication forks stalled by aphidicolin treatment 

and this recruitment is FANCD2-dependent (Naim and Rosselli 2009; Chaudhury et al. 

2013). FANCD2 also recruits HDR-associated proteins such as CtIP (resection) and BRCA2 

(strand exchange) suggesting that replication fork maintenance is mediated via HDR 

mechanisms (Yeo et al. 2014; Raghunandan et al. 2015). Blm has been implicated in 

resection in both human cells and yeast (Nimonkar et al. 2011; Chen et al. 2013; Daley et al. 

2014; Sturzenegger et al. 2014), which makes its role at stalled/blocked replication forks 

difficult to determine. Is it performing HDR roles or does it act on the fork itself to prevent 

recombinational repair? 

 My observations of mutants treated with methylmethansulfonate (MMS) suggest that 

Blm stabilizes blocked replication forks. I found that Blm mutants were sensitive to killing by 

MMS, but Marcal1 mutants were not. The Marcal1 Blm double mutant was synergistically 

sensitive, consistent with a role for Blm in replication fork stability. In the absence of Blm, 

MMS-generated lesions are likely converted to DSBs at the fork (Ui et al. 2005). Blm also 

has roles in HDR, further sensitizing Blm mutants to MMS treatment. The residual repair in 

Blm mutants is likely due to single-strand annealing (SSA) mechanisms that bypass D-loop 

dissociation and are mediated by Marcal1. This hypothesis is supported by the complete 

lethality of Marcal1 Blm double mutants when exposed to MMS.  
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 Interestingly, I observed a similar phenotype in response to etoposide (ETS) 

treatment. Blm mutants had elevated lethality when treated with ETS, Marcal1 mutants were 

not sensitive, and Marcal1 Blm double mutants were inviable at the dose tested. ETS 

inhibits Topoisomerase II (TopII) which acts as a dimer and is responsible for relieving 

torsional stress during transcription and replication by cutting both DNA strands, rotating, 

and re-ligating them (reviewed in Yan et al. 2016). ETS can inhibit one or both dimers to 

generate nicks or DSBs. ETS is generally thought to affect viability through the creations of 

DSBs (ssDNA nicks can be converted to DSBs during replication). ETS lesions can be 

repaired by either cNHEJ or HDR in human and DT40 cells (de Campos-Nebel et al. 2010; 

Maede et al. 2014); however Drosophila lack the end processing machinery needed to 

remove covalently bound TopII from DNA ends so ETS lesions are most likely repaired via 

HDR in flies. It is possible that Blm helps prevent the formation of ETS-induced DSBs during 

replication, in a similar manner to its role in response to MMS treatment, and a subset of 

these can be repaired via Marcal1-mediated SSA. In the absence of both proteins, ETS 

lesions cause catastrophic fork collapse, resulting in total lethality in Marcal1 Blm double 

mutants.  

 Blm mutants were sensitive to ionizing radiation (IR) at lower doses than Marcal1 

mutants and the double mutant was not significantly different than Blm single mutants. The 

increased resilience of Marcal1 mutants to IR compared to Blm mutants may be due to 

differences in specialization during HDR. Marcal1 mediates annealing later in the pathway 

(Chapter 3) whereas Blm has been implicated in multiple steps of HDR both before and after 

Marcal1 activity (Bachrati et al. 2006; Johnson-Schlitz and Engels 2006; Nimonkar et al. 

2011). Marcal1 Blm double mutants had increased survival compared to MMS and ETS 

treated groups, suggesting IR does not impact replication to the same extent nor is it 

predominantly repaired via SSA as I hypothesized for MMS and ETS.  
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Interestingly, camptothecin (CPT) has a similar mechanism to ETS but did not result 

in synergistic lethality in Marcal1 Blm double mutants. CPT inhibits Topoisomerase I (TopI) 

after it nicks the DNA, resulting in a covalently-bound protein and a ssDNA break. Marcal1 

and Blm mutants had similarly elevated lethality when exposed to CPT and Marcal1 Blm 

double mutants had an additive phenotype at the same dose. Studies of the DNA damage 

response to CPT-induced lesions have shown that RPA2 is phosphorylated and both ATR 

and ATM are activated, suggesting a pleiotrpoic cellular response (reviewed in Pommier 

2006). My data supports these findings and suggests that CPT lesions activate multiple 

separate pathways for repair that are additive when defective whereas ETS produces 

lesions that are repaired by fewer mechanisms that have catastrophic consequences when 

defective.  

Formaldehyde (HCHO) causes protein/DNA crosslinks (Table 4.5), which can be 

converted to ssDNA breaks. These types of breaks are most detrimental when they escape 

ATM-mediated delay of entry into S-phase; if replication occurs across a ssDNA break, it 

can be converted into a one-ended DSB (Khoronenkova and Dianov 2015). It is possible 

that a replication-associated role for Blm confers sensitivity to Blm mutants, similar to my 

observations with MMS treatment. Unlike MMS, however, double mutants were not 

increasingly sensitive to HCHO compared to Blm single mutants, arguing against the 

formation of DSBs during replication. Previous studies in yeast indicate that acute, high 

doses of HCHO like the treatment used here are predominantly repaired via nucleotide 

excision repair (NER) pathways whereas low, chronic exposure is dependent on HDR for 

repair (de Graaf et al. 2009). Blm has not been shown to interact with proteins in the NER 

pathway outside of meiosis (Andersen et al. 2011; Hatkevich et al. 2016) nor has it been 

shown to have a role in repair of ssDNA gaps or protein-DNA crosslinks. More studies are 

needed to determine the mechanisms that contribute to HCHO sensitivity in Blm mutants. 
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Marcal1 mutations significantly increased Blm mutant survival when exposed to the 

ribonucleotide reductase inhibitor hydroxyurea (HU), which depletes the nucleotide pool, 

causing replication fork stalling. Studies of HU-induced replication stress have shown that 

stalled forks are reset in a HDR-dependent manner (i.e. template switching) in human cells 

when exposure is <2 hours (Petermann et al. 2010). Petermann et al. further found that 

prolonged exposure (>12 hours) resulted in fork collapse (formation of DSBs). My data 

suggests that HU treatment during larval feeding more closely resembles short exposures 

since Blm mutants are sensitive, consistent with a role for Blm in replication fork 

maintenance, but Marcal1 mutants are not.  

The observation that Marcal1 mutations enhance Blm mutant survival suggests that 

Marcal1 has a detrimental effect on stalled/slowed replication forks, which is consistent with 

the enhanced survival observed in Marcal1 mutants n a Polα-180/+ heterozygous 

background. When Blm is present, Marcal1 is blocked from acting on stalled forks, though 

genome-wide replication slowing like that in Polα-180/+ heterozygotes may overwhelm the 

protection conferred by Blm and result in reduced viability in wild type compared to Marcal1 

mutants. In the absence of both proteins, Blm’s function is no longer required and survival is 

enhanced. These data suggest that Blm’s function at stalled forks is inherently different from 

its response to DNA lesions.  

Extrapolating from this interpretation and the findings of Petermann et al., it is likely 

that the role of Blm at replication forks encountering DNA damage is restart through 

mechanisms that resemble HDR such as template switching, whereas its role at stalled forks 

is to exclude proteins that may erroneously identify the fork as an aberrant structure and 

attempt to process it into dsDNA. Studies of Blm during replication have focused on lesions 

that result in DSBs in the absence of Blm. My data have revealed a role for Blm at the fork 
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that protects forks from DSB formation by either lesion bypass (presumably via template 

switching) or by protecting a functional fork from aberrant processing by repair proteins. 

The findings reported here provide evidence that Marcal1 mediates annealing in both 

SDSA and SSA. I have further shown that Marcal1 and Blm genetically interact during gap 

repair. Marcal1K275M mutations as well as Marcal1 Blm double mutations impact EJ pathways 

(most likely TMEJ) during HDR, providing new information on the regulation of the anneal—

EJ—strand re-invade decision point. Additionally, I uncovered evidence of fork maintenance 

roles for Blm during replication. Absence of Blm results in the conversion of some DNA 

lesions into damage that can be repaired by Marcal1, establishing a genetic interaction 

between Blm and Marcal1 in contexts beyond gap repair.  Understanding the interplay 

between Marcal1, Blm, and EJ mechanisms has broad implications for multiple applications 

including chemotherapeutics, genome editing technologies, and SIOD prognosis. Many 

cancer drugs generate DSBs as a primary mechanism; the role in DSB repair discovered 

here suggests SMARCAL1 is important for multiple repair mechanisms during S/G2, making 

it an attractive target for drug development, as has been proposed by Zhang, et al. (Zhang 

et al. 2012). Additionally, insertion of long fragments during CRISPR/Cas9 genome editing 

has been proposed to occur via SDSA (Byrne et al. 2015); understanding the regulation of 

SDSA will improve the efficiency of this technology. Lastly, understanding the interplay of 

multiple repair strategies as well as gaining insight into which strategies are used in different 

contexts enhances our understanding of both the basis of SIOD and its progression.  
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