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ABSTRACT

JOSE ALFONSO CAMPILLO GARCIA: THREE PAPERS ON WEAK
IDENTIFICATION ROBUST BOOTSTRAP INFERENCE.

(Under the direction of Jonathan B. Hill)

This manuscript is composed of three chapters that develop bootstrap methods in models

with weakly identified parameters. In the first chapter, joint with Jonathan B. Hill, we intro-

duce an asymptotically valid wild bootstrapped t-test, which provides robust inference for

models with unknown identification category. Under weak identification, the wild bootstrap

needs to be constructed using residuals imposing lack of identification, because the usual

regression residuals are non-consistent. The robust t-test has better small sample properties

compared to the asymptotic approximation counterpart and is simpler to estimate in prac-

tice, especially when the underlying Gaussian process has an unknown form and/or is high

dimensional. A simulation exercise shows the benefits of using a robust t-test exposing the

large-size distortions of the standard t-test when weak identification is present.

In the second chapter, joint with Jonathan B. Hill, we introduce a parametric bootstrap

that provides an alternative approach to construct statistical tests when parameters are

weakly identified. The method extends the parametric bootstrap in regression models, to

cases where some of the parameters cannot be consistently estimated, reducing the number

of nuisance parameters that arise in the asymptotic distribution of the test statistic under

weak identification. Unlike the known statistical tests in the literature, this parametric

bootstrap method can mimic the true distribution without nuisance parameters in some

important cases. We establish robust critical values of the t-statistic that lead to correct

asymptotic size when the identification category is unknown. The simulation exercise shows

that the parametric bootstrap can lead to very accurate test sizes and considerable test power

comparable to the (infeasible) test statistic that assumes nuisance parameters are known.
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In the final chapter, we consider the mixed data sampling (MIDAS) model proposed by

Ghysels, Santa-Clara, and Valkanov (2005) to evaluate the empirical performance of the

wild bootstrapped robust t-test of Chapter 1 and the parametric bootstrapped robust t-

test of Chapter 2. To test the statistical significance of the MIDAS estimators, we derive

the bootstrapped t-test assuming weak identification because the parameters of the MIDAS

model cannot be separately identified under the null hypothesis. Contrary to the results by

Ghysels et al. (2005), the bootstrapped t-tests suggest that the estimators of the MIDAS

model are not statistically significant, implying that the proposed functional form has low

explanatory and predictive power in the study of the risk-return trade-off. We extend the

empirical results to different sample frequencies to evaluate the small sample performance

of the bootstrap methods and propose an alternative MIDAS specification constructed with

the absolute value of excess returns.
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CHAPTER 1

A WILD BOOTSTRAPPED T-TEST ROBUST TO ALL IDENTIFICATION
CATEGORIES

1.1 Introduction

Conducting inference in econometric models is essential to evaluate the policy implica-

tions of the results obtained from model estimation. One of the most important assumptions

needed to obtain valid inference is parameter identification of the particular model being

studied. When parameters are weakly identified, the strong identification asymptotic results

are are not valid in general because the parameters cannot be consistently estimated. A

robust test is helpful in situations where strong identification cannot be assumed because

it provides valid inference regardless of the identification case. Unfortunately, hypothesis

tests robust to cases where parameters are weakly identified are scarce in the econometrics

literature. The objective of this paper is to construct a t-test that allows us to perform

hypothesis testing even when the parameter of interest cannot be uniquely recovered with

the existing data, and provide valid inference for all identification cases.

Andrews and Cheng (2012, 2014, 2013) introduced a unified treatment to derive the

asymptotic distributions of parameters with different identification category: that is, pa-

rameters that can be weak, semi-strong, and strongly identified according to their value

along the parameter space. In a nonlinear least squares regression model, for example, the

framework of Andrews and Cheng (2012) provides the theoretical results to perform inference

on models in which weak identification leads to least squares estimators with a non-invertible

Hessian matrix for some values in the parameter space. Because the parameters that are

possibly weakly identified are known in a parametric model, we perform quadratic expan-

sions around the points of lack of identification and obtain stochastic processes dependent
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on the identification category thereby, bridging the gap between weak and strong identifica-

tion. Following the definitions and framework of Andrews and Cheng (2012), we propose an

asymptotically valid, wild bootstrap t-test that encompasses the limit distribution of each

identification category. Specifically, we propose a t-test constructing a t-statistic that; 1) is a

wild bootstrap based on the multiplier bootstrap structure of Wu (1986) and Liu et al. (1988)

allowing for heterogeneously distributed data; 2) is robust to all identification categories be-

cause we derive two asymptotically valid bootstrap distributions, one for the nonstandard

asymptotic distribution under non and weak identification, and another for the strong and

semi-strong identification categories; and 3) has better small sample properties compared to

the asymptotic approximation counterpart, and is simpler to estimate in practice; especially

when the underlying Gaussian process has an unknown form and/or is high dimensional.

In empirical applications, the identification category is unknown. We expect a loss in

size and power in robust statistics that do not assume the identification category of the

parameters. To compensate for this loss, we chose to construct a wild bootstrap process,

over asymptotic limit approximations, for the following reasons: 1) the bootstrap is more

accurate because an asymptotic refinement (faster higher order convergence rates in the

Edgeworth expansion) can be achieved in small samples. In particular, the bootstrapped

pivotal statistics like the t-statistic achieve asymptotic refinements which usually outper-

form the asymptotic limit approximations (see Mammen (1993), MacKinnon (2002), see

also Horowitz (2001), Härdle, Horowitz, and Kreiss (2003). 2) As the asymptotic distribu-

tion of the t-statistic under weak identification is non-standard, the bootstrap is simpler to

simulate when we do not have closed-form expressions of the stochastic process, especially

when the process is high dimensional. 3) The wild bootstrap has proven to be particularly

useful for cases with heteroscedastic data, non-symmetric statistic distributions, and when

the parameter dimension is large. As under weak identification the asymptotic distributions

are asymmetrical, in the simulation study, we show that an asymmetric two-point distribu-

tion distributions perform better than the (symmetric) limit approximation counterpart. To

the best of our knowledge, there is no study that develops a bootstrap method to perform

2



parameter inference robust to all identification categories.

In addition to Andrews and Cheng (2012) and the subsequent extensions to Generalized

Method of Moments and Maximum Likelihood (Andrews and Cheng 2014, 2013), the results

in this study are based on arguments from the bootstrap literature which was introduced by

Efron et al. (1979). As the classic resampling bootstrap method of Efron relies on the strong

assumption of i.i.d. observations, in this paper, we construct the t-statistic using a wild

bootstrap. Following the suggestions of Wu (1986) and Beran (1986), Liu et al. (1988) intro-

duced the wild bootstrap as an alternative bootstrap with heterogeneously distributed data.

In regression models, the wild bootstrap is a convenient method to perform inference in mod-

els with unknown heteroscedasticity as it avoids the estimation of the variance-covariance

matrix of the residuals. The Heteroscedastic Consistent Covariance Matrix Estimator (HC-

CME) introduced by White (1980) is perhaps the most popular estimator of the variance

of residuals in models with heteroscedasticity. However, it has been shown that the HC-

CME estimator suffers from large bias, particularly in small samples and when outliers are

present. MacKinnon and White (1985) demonstrate that the bias of the t-statistic can be

very large in regression models with heteroscedastic observations. The wild bootstrap has

been demonstrated itself to be an advantageous option to reduce the small sample bias.

Mammen (1993), Horowitz (2001) show via Edgeworth expansions that asymptotic refine-

ments, of size n−1/2, can be achieved using a wild bootstrap, while the simulation exercise

of Davidson and Flachaire (2008) demonstrates that the wild bootstrap outperforms asymp-

totic approximations and the resampling bootstrap of Efron et al. (1979). Even though the

wild bootstrap results developed by Liu et al. (1988) assume independence throughout the

paper, Shao (2010) extends the wild bootstrap to models with weakly dependent data.

Performing a bootstrap procedure under weak identification is not an immediate exten-

sion of the theoretical results of Efron et al. (1979), Liu et al. (1988), etc. The assumptions

ensuring uniform convergence of the bootstrapped distribution, which are required for the

asymptotic validity of the bootstrap, fail precisely for the parameter values that lead to weak

identification (see Efron et al. (1979), Giné and Zinn (1990), Andrews and Guggenberger

3



(2010), Mammen (1993), among others). For example, a resampling residual bootstrap for a

non-linear regression model under weak identification leads to invalid inference because the

residuals cannot be resampled when some of the parameters are not consistent. The same

problem would apply to the Integrated Conditional Moment test of Bierens and Ploberger

(1997), which is comparable to our t-test in the sense that it has a nonstandard distribution

and depends on nuisance parameters under the null hypothesis. On the other hand, models

with parameters that allow different identification category have an asymptotic distribution

that varies within the parameter space. To overcome these issues, the wild bootstrap is con-

structed using residuals centered at the point of lack of identification, which does not depend

on the weakly identified parameters and therefore, relies solely on the available consistent

estimators.

The t-test developed in this paper is subject to similar challenges from previous studies

which analyze hypothesis testing on statistics that depend on nuisance parameters under

the null hypothesis. Under weak identification, the nuisance parameters are precisely those

that cannot be estimated consistently but appear in the asymptotic distribution of the test

statistic. Testing the null hypothesis H0 : π = 0, where π is weakly identified, leads to a

t-test whose asymptotic distribution depends on the its true (unknown) parameter π0 (see

Section 1.2 and 1.3). The challenges of hypothesis testing with nuisance parameters under the

null or alternative dates back to Chernoff and Zacks (1964) for a sup-Lagrange multiplier and

Davies (1977, 1987) for a sup-Likelihood ratio test. More recently, Hansen (1996) studied the

effect of testing with nuisance parameters in the null hypothesis, introducing a transformation

that eliminates the dependence on the nuisance parameter. Stinchcombe and White (1998),

Andrews and Ploberger (1994) develop smoothed test statistics when there is a nuisance

parameter under the alternative hypothesis. Hill (2017) developed a conditional mean test

with nuisance parameters under the alternative that is consistent against general alternatives

in the sense of Bierens (1990), Bierens and Ploberger (1997) and Hill (2008), Hill (2013). To

obtain a robust t-statistic, Hill (2017) constructed a test that exploits the p-value occupation

time, which does not depend on a nuisance parameter as it integrates over its support.
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A smaller number of research papers have analyzed the consequences of hypothesis test-

ing under weak identification in the parameter space. Studies by Antoine and Renault

(2009, 2012) and Caner (2009) provide asymptotic results of GMM models with near weak

instruments. In particular, Caner (2009) shows parameter inference is possible as the Wald,

LR, and LM tests have a standard χ2 limit distribution when nearly-weak instruments are

present. Nelson and Startz (2007) and Ma and Nelson (2008) analyze models in which the

asymptotic variance of one parameter depends on the identification of a different parameter.

However, none of these studies extend their results to construct tests that are robust for

strong and weak identification nor do they employ a bootstrap method.

The weak identification literature is vast and encompasses very different fields and method-

ologies. A partial list of recent studies include Nelson and Startz (1988), Stock and Wright

(2000), Dufour and Taamouti (2005), Staiger and Stock (1994), Kleibergen (2002, 2005), etc.

Bootstrapping methods with weak instruments have received less attention; some examples

include Davidson and MacKinnon (2014), Moreira, Porter, and Suarez (2009). In contrast to

the weak instrument literature, wherein the source of weak identification is treated as exoge-

nous, in the framework of Andrews and Cheng (2012), the source of lack of identification is

known to be caused by specific values of the parameter space. For this reason, the approach

of Andrews and Cheng (2012) is complementary to the weak instrument literature. The

ability to pinpoint the weak identification cases is key to develop a valid bootstrap method.

Robust inference is an important issue in economic applications. Ignoring the conse-

quences of weak identification in hypothesis testing can lead to severely biased statistics.

We claim using a robust t-test leads to more accurate asymptotic sizes when weak identifi-

cation is present, with a minor loss in the power of the test. Examples of parametric models

that can encounter weak identification for certain values of the parameter space include;

ARMA models (Andrews and Cheng 2012), Maximum Likelihood Estimation (Andrews and

Cheng 2013), Generalized Method of Moments (Andrews and Cheng 2014), Dynamic General

Equilibrium models (Guerron-Quintana, Inoue, and Kilian 2013; Andrews and Mikusheva

5



2015), MIDAS regression (Ghysels, Hill, and Motegi 2016), Smooth Transition Autoregres-

sive models (Andrews and Cheng 2013), Probit models (Andrews and Cheng 2014), Regime

Switching models (Chen, Fan, and Liu 2016), among others. The t-test proposed in this

study allows to perform robust inference against weak identification for all the previously

enlisted models.

This paper has the following structure. In Section 1.2, we introduce the framework used

throughout the paper and define the identification categories: strong, semi-strong, weak,

and non-identification. Section 1.3 shows consistency and derives the limit distribution of

the parameters and t-statistics under all identification categories. We introduce the wild

bootstrap method and develop the bootstrapped distribution of the parameters and the

bootstrapped distribution of the t-statistic in Section 1.4. Simulation results are presented

in Section 1.5, while Section 1.6 concludes the paper. All proofs are provided in the Appendix.

Let Xn(π) = op,π(1) be defined as supπ∈Π ||Xn(π)|| = op(1), where || · || denotes the Euclidean

norm. Let eig(A) and eig(A) denotes the smallest and largest eigenvalues of matrix A. The

symbol⇒ denotes weak convergence of a stochastic process indexed by π ∈ Π for parameter

space Π.

1.2 Identification Categories

In this section, we introduce the framework used throughout the paper and define the

identification categories: strong, semi-strong, weak and non-identification. We begin by

introducing some examples of data generating processes in which identification depends on

the value the parameter takes within the parameter space.

1.2.1 Examples

Example 1. Nonlinear Regression Model

yt = ζ ′0X1,t + β′0h(X2,t, π0) + εt (1.1)

The identification of π0 depends on β0 being non-zero. If β0 = 0, the parameter π0
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is weakly identified. The identification of ζ0 does not depend on the identification of ei-

ther β0 or π0; it is always strongly identified. Usual examples of the function h(Xt, π0)

include a) Exponential h(Xt, π0) = exp(−π0,1(Xt − π0,2)), and b) Logistic h(Xt, π0) =

1/(1 + exp(−π0,1(Xt − π0,2))).

Example 2. ARMA(1,1) model

yt = (π0 + β0)yt−1 + εt − π0εt−1 (1.2)

The parameters β0 and π0 are not identified when they have equal numerical value. When

β0 = π0, the model is observationally equivalent to the model yt = εt. Ansley and Newbold

(1980) and Nelson and Startz (2007) demonstrate that when the time series yt is serially

uncorrelated, the estimators suffer from substantial bias and large variance and hypothesis

testing may suffer from size distortions.

Example 3. MIDAS Regression

Consider a mixed data sampling process {yt, X(m)
t/m}, where yt is observable at times

t = 1, ..., n and X
(m)
t/m = (1, X(m)

1,t/m, ..., X
(m)
p,t/m), where m is the number of high frequency lags

used in the temporal aggregation of Xt/m. The MIDAS regression sets the higher frequency

variable on the right-hand side of a regression equation

yt = β′0Xt(π0) + εt (1.3)

where Xt(π0) is a nonlinear function that maps the high frequency data into the lower

frequency data,

X
(m)
k,t (π0,k) =

m∑
j=1

wj,k(π0,k)Lj/mX(m)
k,t/m (1.4)

where L denotes the lag operator. If β0 = 0, then π0 is not identified, and the weight function
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wj,k(π0,k) can potentially take any value.

1.2.2 Definitions and model setup

Before we state the assumptions, we introduce several concepts and notation. Consider

a sampling process Wt = {yt, Xt} of observable random variables Xt ∈ Rd, yt ∈ R, and

θ = (ζ ′, β′, π′)′ denotes the vector of parameters. Throughout this study, we consider a

generalized non-linear model:

εt(θ) = yt − ζ ′X1,t − β′h(X2,t, π) (1.5)

where X1,t and X2,t denote elements of the Xt matrix and h is a non-random function.

The parameters are defined as elements contained in compact sets of R, ζ ∈ Z ⊂ Rdζ ,

β ∈ B ⊂ Rdβ and π ∈ Π ⊂ Rdπ .

The estimator θ̂n minimizes the objective function Qn(θ). For simplicity, we use the least

squares objective function.

θ̂n = inf
θ∈Θ

Qn(Wt, θ) = inf
θ∈Θ

1
2n

n∑
t=1

ε2t (θ) (1.6)

Under weak identification, the limit objective function of the non-linear model does not

depend on the weakly identified parameter, i.e., the objective function Qn(θ) becomes flatter

with respect to π as n grows to infinity and β goes to zero. As a consequence, the second-order

derivative of Qn(θ) is singular or near singular for some values of the parameter space. In

these cases, the delta method cannot be applied because the uniformity conditions required

for the bootstrap are not valid. To develop the wild bootstrap method, we derive first-order

expansions around the point of lack of identification, which is defined using drifting sequences

of true parameters.

We assume drifting sequences of true parameters to define the degree of identification

and true process εt(θn) for each n ≥ 1. The drifting sequence of parameters serves as a

useful theoretical tool to describe the range of behavior of the asymptotic distribution of

8



parameters under the different identification categories. Suppose the sequences of true pa-

rameters are defined by θn = (β′n, ζn,′ π′n)′ for n ≥ 1, converging to the limit true parameters

defined by θ0 = (β′0, ζ ′0, π′0)′ 1. Table 1.1 illustrates the definitions of identification categories

introduced by Andrews and Cheng (2012, 2014, 2013).

Table 1.1: Identification categories

Category {βn} sequence Identification Property of π
I(a) βn = 0 ∀n ≥ 1 Unidentified
I(b) βn 6= 0 and

√
nβn → b ∈ Rdβ Weakly identified

II βn → 0 and
√
βn →∞ Semi-strongly identified

III βn → β0 6= 0 Strongly Identified

For notational convenience, we partition the parameter space according to each parame-

ter’s identification category.

θ = (ζ ′, β′, π′)′ = (ψ′, π′)′ (1.7)

The parameter ψ denotes the strongly identified parameters, which can be estimated con-

sistently, whereas π denotes parameters that are weakly identified. The identification of π

depends on the parameter β, whereas ζ denotes all other parameters that do not affect the

identification of π.

The speed at which the parameter βn converges to zero determines the identification

category of π and therefore if a consistent estimator of π is attainable. If nα||βn|| = O(1) for

some α ∈ [0, 1/2), a consistent estimator of π is feasible because the sequence is converging

to zero at a slower rate than
√
n. Subsequently, if the speed is larger or equal to 1/2, that

is nα||βn|| = O(1) for some α ≥ 1/2, no consistent estimate of π0 is available because the

elements of the first order expansion with respect to π and the noise process εt have the

same order of magnitude. The non-linear model studied in this paper defines the true error

1For more details on drifting sequences of distributions see Staiger and Stock (1994) and Stock and Wright
(2000).
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process for each sequence of drifting true parameters n, which we denote by εt(θn), with

θn = (ζ ′n, β′n, π′n)′

εt(θn) = yt − ζ ′nX1,t − β′nh(X2,t, πn) (1.8)

Accordingly, the limit error process is denoted by εt(θ0) = yt − ζ ′0X1,t − β′0h(X2,t, π0), where

θ0 = (ζ ′0, β′0, π′0)′, while the finite sample and limit variance of errors are defined by σ2
t (θn)

and σ2
t (θ0) respectively.

Semi-strong identification bridges the gap between weak identification and strong iden-

tification. In Section 1.3 we show π cannot be estimated consistently when βn → 0 and
√
nβn → b (i.e., weak identification). Nonetheless, we can obtain an expression of the

asymptotic distribution of π that depends on functionals of an empirical process. Moreover,

the weak identification of π has consequences on the parameter β, which although it can be

consistently estimated, has a non-standard asymptotic distribution because β depends on

the random draw of the distribution of π. On the other hand, under semi-strong identifi-

cation, β and π can be consistently estimated, and inference is standard under the proper

normalization which avoids the singularity of the second order term in the Taylor expansion.

We define the degree of identification into three non-exclusive cases of sequences of true

parameters:

Θ(θ0) = {{θn ∈ Θ : n ≥ 1} : θn → θ0 ∈ Θ} (1.9)

Θ(θ0, 0, b) = {{θn} ∈ Θ(θ0) : β0 = 0 and
√
nβn → b ∈ R} (1.10)

Θ(θ0,∞, ω0) = {{θn} ∈ Θ(θ0) :
√
n||βn|| → ∞ and βn/||βn|| → ω0 ∈ Rdβ} (1.11)

Unless we explicitly differentiate within identification categories, we write “under Θ(θ0, 0, b)”

to refer to cases under weak identification, while we write “under Θ(θ0,∞, ω0)” when refer-

ring to strongly identified parameters. The asymptotic distribution of the estimators and the

t-statistics turn out to be standard under Θ(θ0,∞, ω0) and non-standard under Θ(θ0, 0, b).

10



1.3 Asymptotic results under weak and strong identification

In this section, we show consistency and convergence in distribution for each identification

category. In particular, we show that under weak identification, π̂n converges to a random

variable which leads to non-standard asymptotics of ψ̂n.

1.3.1 Asymptotic distributions of the estimators

Let θ̂n be the estimator that minimizes the objective function Qn(θ) over the parameter

space Θ. We assume that the true parameters βn lie in the interior of the parameter space

Θ as boundary effects are not the main focus of this paper (see Andrews (1999, 2001)).

In the weak identification case, it is necessary to obtain the asymptotic results of ψ and

π separately as the distribution of ψ depends on the (random) draw of π. We define the

extremum estimator ψ̂n(π), which characterizes the minimizer of the objective function for

each π ∈ Π as:

Qn(ψ̂n(π), π) = inf
ψ∈Ψ(π)

Qn(ψ, π) + o(n−1) (1.12)

To estimate the possibly weakly identified parameter π, we let Qc
n(π) denote the concentrated

sample objective function Qn(ψ̂n(π), π). The parameter π̂n is defined as the extremum

estimator that minimizes the concentrated estimator sample objective function.

Qc
n(π̂n) = inf

π∈Π
Qc
n(π) + o(n−1) (1.13)

We derive the second-order expansion of the objective function uniformly on π, meaning the

quadratic expansion is made around ψ for each π. Define dψ(θ) = ∂
∂ψ
εt(θ) as the derivative

of εt with respect to the strongly identified parameters. Using least squares estimation, the

gradient of the objective function with respect to ψ uniformly on π takes the following form:

∂

∂ψ
Qn(θ) = 1

n

n∑
t=1

εt(θ)dψ,t(π) (1.14)
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Under semi-strong identification we consider the gradient of the objective function with

respect to all parameters because, in this case, a normalization matrix is be enough to obtain

convergence in distribution. The gradient is denoted by, ∂
∂θ
Qn(θ) = 1

n

∑n
t=1 εt(θ)dθ,t(θ), with

dθ(θ) = ∂
∂θ
εt(θ). Without loss of generality, we express the parameter space dependent on π

to work with the concentrated estimator.

Θ = {θ = (ψ′, π′)′ : ψ ∈ Ψ(π), π ∈ Π},where (1.15)

Π = {π : (ψ′, π′)′ ∈ Θ for some ψ} (1.16)

Ψ(π) = {ψ : (ψ′, π′)′ ∈ Θ} for π ∈ Π (1.17)

The following stochastic processes are important, as they define the asymptotic distribution

of ψ and π.

Hn(ψ0,n, π) = ∂2

∂ψ∂ψ′
Qn(ψ0,n, π) (1.18)

Gψ,n(π) =
√
n[ ∂
∂ψ

Qn(ψ0,n, π)− Eθn( ∂
∂ψ

Qn(ψ0,n, π))] (1.19)

Kn(ψ0,n, π; θn) = ∂

∂βn
Eθn( ∂

∂ψ
Qn(ψ0,n, π)) (1.20)

where ∂
∂βn

denotes a partial derivative with respect to the true parameter βn. In Lemma A.2.3

we show that the limit distribution of Gψ,n(π) converges to a zero mean Gaussian process

Gψ(π) with bounded continuous sample paths and covariance kernel Ω(π, π̃; θ0) for π, π̃ ∈ Π.

The process Hn(θ) is standard and converges uniformly to a probability limit. Conversely,

the process Kn(π) is a first-order bias that arises when we center the stochastic quadratic

expansion around the point of lack of identification.

Assumption A Identification of data generating process

(i) εt(θn) is a martingale difference sequence and Lp bounded for p = 4 + ι for small ι.

(ii) Eθn(εt(θn)|Xt) = 0 a.s.
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(iii) V arθn(εt(θn)|Xt) = Eθn(ε2t (θn)|Xt) = σ2
t (θn) > 0 a.s.

(iv) Under weak identification Eθn(εt(ψ, π)dψ,t(π)) = 0 for unique ψn = (ζ ′n, β′n)′ in the

interior of Ψ∗(π) and under strong identification Eθn(εt(θn)dθ,t(θn)) = 0 for unique

θn = (ζ ′n, β′n, π′n)′ in the interior of Θ∗.

Assumption B Properties of data generating process

(i) The random variables Wt = {yt, Xt} are α−mixing of size −r/(r− 2) for some r > 2

and Xt is Lp bounded for p = 4 + ι for small ι.

(ii) The stochastic processes {dψt(π) : π ∈ Π} and {dθt(θ) : θ ∈ Θ} are Lp bounded, for p =

4 + ι with tiny ι and all n, that is Eθn(||(dψ,t(π)||4+ι) < C and Eθn(||(dθ,t(θ)||4+ι) < C

for some constant C.

(iii) The stochastic processes {dψt(π) : π ∈ Π} and {dθt(θ) : θ ∈ Θ} are Lipschitz, that

is ∀π, π̃ ∈ Π, ∃Cn such that ||n−1∑n
t=1 dψt(π) − n−1∑n

t=1 dψt(π̃)|| ≤ Cn(Wt)||π − π̃||,

and ∀θ, θ̃ ∈ Θ, ||n−1∑n
t=1 dθt(θ)− n−1∑n

t=1 dθt(θ̃)|| ≤ Cn(Wt)||θ− θ̃|| for some random

variable such that Cn(Wt) = Op(1) for all n.

(iv) The function h(·) is a Borel measurable function for each π ∈ Π, twice continuously

differentiable in Π, non-degenerate and bounded for all values of X2,t and π.

Assumption C Long Run Variances

(i) The limit variance of the stochastic processes Gψ,n and Gθ,n are positive definite and

finite, that is ∀π ∈ Π, Eθn(Gψ,n(π)Gψ,n(π)′) and ∀θ ∈ Θ, Eθn(Gθ,n(θ)Gθ,n(θ)′) are

positive definite and finite.

(ii) The uniform limits of the stochastic process and random matrix are positive definite

and finite, that is ∀π ∈ Π, Eθn(dψ,t(π)dψ,t(π)′) and ∀θ ∈ Θ, Eθn(dθ,t(θ)dθ,t(θ)′) are

positive definite and finite.

Assumption D Parameter Spaces
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(i) Θ is a compact set of Rdθ , where dθ = dζ + dβ + dπ

(ii) Θ∗ = {(β∗′ , ζ∗′ , π∗′)′ : β ∈ B∗, ζ ∈ Z∗, π ∈ Π∗} is a compact set and Θ∗ ⊂ int(Θ) and

0dβ ∈ int(B∗)

(iii) ||π∗|| > ε for some ε > 0, π∗ ∈ Π

Remark 1. Assumption A imposes correct specification, i.e., conditional mean zero of

εt, for the whole sequence of drifting true parameters θn. Under strong identification, the

conditional mean zero condition applies to the gradient with respect to all parameters, while

under weak identification the mean zero expectation applies to the gradient with respect to

ψ uniformly over π. The variance of εt is assumed to be time-varying, allowing for stochastic

volatility models such as ARCH and GARCH.

Remark 2. We focus on a data generating process that allows time series data satisfying

a strong mixing decay rate stated in Assumption B. We assume dψ,t and dθ,t are Lipschitz,

which can be relaxed using the results of Newey (1991). The measurability and boundedness

of function h(·) are standard in parametric models with known objective function.

Remark 3. Assumption C specifies that the limit variances must be nondegenerate and

positive definite. These variance-covariance conditions do not apply to the weakly identified

parameters because the second order derivative is singular by construction.

Remark 4. Assumption D is equivalent to the parameter space assumptions of Andrews

and Cheng (2012). The compactness assumption is standard in the econometrics literature

to show weak convergence. Moreover, as boundary effects are not the focus of this paper,

we assume that the true parameters are in the interior of the parameter space and refer to

Andrews (2001, 1999) for more details on the limit theory with boundary constraints.

Now we state the consistency result.

Proposition 1.3.1 Suppose that Assumptions (A) to (D) hold. Under {θn} ∈ Θ(θ0),

(a) When β0 = 0, then sup
π∈Π
||ψ̂n(π)− ψn||

p→ 0, in particular ψ̂n(π̂n)− ψn
p→ 0.

(b) When β0 6= 0, then ||θ̂n − θn||
p→ 0.
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The theorem states that consistency under strong identification is achieved for all param-

eters, whereas under weak identification π̂n, is inconsistent. Even though we are not able to

estimate π consistently, we can derive its random probability limit in Proposition 1.3.2.

Before we state the convergence in distribution result, we provide some intuition on how

the result is derived (see further details in Appendix A.1). It is key to express the Taylor

expansion around the point of lack of identification, i.e., setting β = 0. Taking a first-order

condition of the objective function with respect to the strongly identified parameter ψ and

letting ψ0,n = (ζn, 0) yields:

0 = ∂

∂ψ
Qn(ψ̂n(π), π) = ∂

∂ψ
Qn(ψ0,n, π) + ∂2

∂ψ∂ψ′
Qn(ψ0,n, π)(ψ̂n − ψ0,n) + op(1) (1.21)

⇔ ∂2

∂ψ∂ψ′
Qn(ψ0,n, π)

√
n(ψ̂n − ψ0,n) =

√
n[ ∂
∂ψ

Qn(ψ0,n, π)− Eθn
∂

∂ψ
Qn(ψ0,n, π) + Eθn

∂

∂ψ
Qn(ψ0,n, π)]

The previous expression follows uniformly over π using the Mean Value Theorem at the

point of lack of identification. At ψ0,n, the objective function does not depend on π, and

valid residuals can be estimated using ψ̂0,n. Using Equation (1.21) and the results from

Appendix A.1, we derive the asymptotic distribution of ψ̂n(π) under weak identification:

τ(π; θ0, b) = −H−1(π; θ0)(Gψ(π; θ0) +K(π; θ0)b)− (b, 0dζ) (1.22)

The stochastic process τ(π; θ0, b) establishes that the asymptotic distribution of ψ̂n depends

on the value of π, which does not converge to a fixed constant under weak identification.

Obtaining the limit distribution of π requires a quadratic expansion of the concentrated

estimator. The limit distribution of π is a non-central χ2 process:

ξ(π; θ0, b) = −1
2(Gψ(π; θ0) +K(π; θ0)b)′H−1(π; θ0)(Gψ(π; θ0) +K(π; θ0)b) (1.23)

We assume that for each random sample path of ξ(π; θ0, b), there exists a unique minimizer

π∗(θ0, b) = arg minπ∈Π ξ(π; θ0, b). The minimizer π∗(θ0, b) defines the distribution function
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of ψ̂n(π). Two more assumptions are stated to prove weak convergence of θ̂n

Assumption E Identification of π

(i) Each sample path of the stochastic process {ξ(π; θ0, b) : π ∈ Π} is minimized over Π

at a unique point denoted π∗(θ0, b) ∀θ0 ∈ Θ in some set A(θ0, b) with Pθ0(A(θ0, b)) = 1

with β0 = 0 and ||b|| <∞.

(ii) Pθ0( ∂
∂β
τ(π∗(b), b) = 0) = 0

Remark 6. Assumption E is equivalent to Assumption C6 of Andrews and Cheng

(2012). The Assumption guarantees that, although we cannot estimate the weakly identified

parameter consistently, the random probability limit of π is a uniquely identified random

variable, because π∗(θ0, b) is unique for each sample path of ξ(π; θ0, b).

Under weak identification, the Hessian matrix with respect to θ converges to a non-

singular matrix for all identification cases in which β → 0. Furthermore, the parameter ψ

achieves a root-n limit distribution, while π has a different rate of convergence. Nonetheless,

under semi-strong identification, a normalization matrix is enough to obtain a normal asymp-

totic distribution of θ̂n because π can be consistently estimated. To obtain a finite limit of

the gradient and Hessian of the objective function, we define the normalization matrix as

follows:

B(β) =

 Idψ 0dψ×dπ

0dπ×dψ ι(β)

 (1.24)

where ι(β) = β is β is scalar and ι(β) = ||β|| if β is a vector. Now define the variance-

covariance matrix of the estimators as Σ̂n = Ĵ−1
n V̂nĴ

−1
n , and the limit variance-covariance

matrix Σ(θ0) = J−1(θ0)V (θ0)J−1(θ0). The matrix B(β) is used to obtain non-singular ex-

pressions of the variance-covariance matrix.

Jn = B−1(βn) ∂2

∂θ∂θ′
Qn(θn)B−1(βn) p→ J(θ0) (1.25)
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Vn =
√
nB−1(βn) ∂

∂θ
Qn(θn) d→ N(0, V (θ0)) (1.26)

The next assumption imposes regularity conditions on the limit functions J and V .

Assumption F Continuity and non-singularity of variance-covariance matrix

(i) J(θ; θ0) and V (θ; θ0) are continuous in θ ∈ Θ, ∀θ0 ∈ Θ with β0 = 0.

(ii) J(π; θ0) and V (π; θ0) are positive definite matrices ∀π ∈ Π, θ0 ∈ Θ with β0 = 0. (that is,

the max-min eigenvalues are finite, eig(J(π; θ0)), eig(V (π; θ0)) > 0 and eig(J(π; θ0)), eig(V (π; θ0)) <

∞)

Remark 5. The variance-covariance matrix of the estimators in Assumption F must

be consistent regardless of the identification case. Under weak identification, consistency

must be uniform over π because the asymptotic distribution of ψ̂n(π) is a function of π.

Assumption F guarantees that the limit exists and that it is positive semi-definite for all

identification categories.

We state the convergence in distribution result for weak and strong identification.

Proposition 1.3.2 Suppose that Assumptions (A) to (E) hold.

(a) Under {θn} ∈ Θ(θ0, 0, b) with ||b|| <∞, the following holds


√
n(ψ̂n(π̂n)− ψn)

π̂n

 d→

 τ(π∗(θ0, b); θ0, b)

π∗(θ0, b)



(b) Under {θn} ∈ Θ(θ0,∞, ω0), the following holds

√
nB(βn)(θ̂n − θn) d→ N(0, J−1(θ0)V (θ0)J−1(θ0))

In sum, the strongly identified parameters can be consistently estimated for all identifi-

cation categories, while under weak identification we cannot consistently estimate π. The
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asymptotic distribution of
√
n(θ̂n − θn) is asymptotically normal under semi-strong identi-

fication when we multiply it by the normalizing matrix B(β). The asymptotic distribution

of
√
n(ψ̂n − ψn) is a functional of a Gaussian processes by the inconsistency of π̂n and de-

pends on the minimizer of the functional ξ(π). The distribution of π̂n is non-standard and

influences the distribution of ψ̂n.

Even though we have a consistent estimator for β, we cannot estimate the parameter

b consistently. As the process τ(π; θ0, b) is a function of b, the t-statistic we develop in

Section 1.3.2 includes b as a nuisance parameter under the null hypothesis.

1.3.2 The t-statistic under weak and strong identification

We have derived the asymptotic distribution of θ̂n for all identification categories. In this

subsection, we derive the distribution of the t-statistic. For the remainder of this subsection,

we assume the parameter β is a scalar for ease of exposition. The asymptotic distribution

of the t-statistic differs slightly when β is a vector (see Appendix A.3).

The null hypothesis of the t-test, which formally tests all values of the true sequences of

parameters, is denoted by a restriction function r : Θ→ R as follows:

H0 : r(θn) = qn (1.27)

Under weak identification, the asymptotic distribution of the t-statistic depends on which

parameters are tested. Testing with respect to the parameter ζ is standard in a non-linear

regression model; the classic t-statistic under strong identification is valid because the param-

eter’s distribution is not affected nor does it affect the distribution of the weakly identified

parameter π. The interesting cases are the t-statistics with restrictions with respect to β

and π because the limit distribution is non-standard.

Let dim(rψ(θ)) and dim(rπ(θ)) denote the dimension of the derivative of the restriction

function with respect to the parameters ψ and π. If the proposed null hypothesis solely

concerns ψ, then dim(rψ(θ)) = 1, whereas, if the restriction concerns π, then dim(rπ(θ)) = 1.
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We now consider the regularity assumptions required to obtain the asymptotic distribution

of the t-statistic under all identification categories.

Assumption G Properties of the restrictions function

(i) r(θ) ∈ R is continuously differentiable on Θ

(ii) rθ(θ) 6= 0 ∀θ ∈ Θ

(iii) rank(rπ(θ)) = d∗π for some constant d∗π ≤ min(dr, dπ), ∀θ ∈ Θδ = {θ ∈ Θ : ||β|| < δ}

Remark 7. The conditions on Assumption G are non-restrictive. Differentiability is

required to use the delta method of the restriction function.

It is well known that the standard sample t-statistic converges to a standard normal

under strong identification. Under semi-strong and weak identification, the standard t-

statistic does not have a finite probability limit as the variance-covariance matrix is singular.

The sample t-statistic must be modified to obtain valid critical values under weak and semi-

strong identification. The statistic requires a non-singular variance-covariance matrix of θ̂n,

which can be obtained using the normalization matrix B(β) because the values that lead to

lack of identification are known. Specifically, the robust t-statistic (robust in the sense of

converging to a distribution for all identification categories) is defined as:

Tn =
√
n(r(θ̂n)− v)

[rθ(θ̂n)B−1(β̂n)Σ̂n(θ̂n)B−1(β̂n)rθ(θ̂n)′]1/2
(1.28)

Under weak identification, the asymptotic distribution of the t-statistic is non-standard and

varies according to the parameter tested. Testing with respect to the π modifies the limit

distribution as the estimators ψ̂n(π) and π̂n have different rates of convergence. Specifically,

when the null hypothesis tests a restriction on π, the randomness of π̂n dominates the

randomness of ψ̂n. When the restrictions of the t-test are with respect to the strongly

identified parameters ψ, the limit distribution of the t-statistic Tψ takes the following form:

Tψ(π) = rψ(π)τ(π; θ0, b)
[rψ(π)Σ(π; θ0, b)rψ(π)′]1/2 (1.29)

19



Conversely, when the t-test restrictions are with respect to π, i.e., d∗π = 1, we must normalize

the asymptotic distribution with respect to τβ to obtain a finite limit distribution. Let

τβ(π; π0, σt, b) = Sβτ(π; π0, σt, b) + bIdβ and Sβ = [Idβ : 0dβ×dζ ] be the selector matrix that

selects β out of ψ. Define the asymptotic distribution of the t-statistic when we test with

respect to π as T π

T π(π) = ||τβ(π; π0, b)||(r(ψ0, π)− r(ψ0, π0))
[rπ(π)Σ(π; θ0, b)rπ(π)′]1/2 (1.30)

Finally, for the semi-strong identification case, {θn} ∈ Θ(θ0,∞, ω0), it is not surprising that,

because the asymptotic distribution of θ̂n is normal under the proper normalization, the t-

statistic has a standard normal distribution. Additionally, as π is consistent, the convergence

result is pointwise and a standard central limit theorem applies. The following theorem

formalizes the results of the asymptotic distribution of the t-statistic for all identification

cases.

Proposition 1.3.3 Suppose assumptions (A) to (H) hold

(a) Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞ and dim(rπ(θ)) = 0, Tn d→ Tψ(π∗(θ0, b); θ0, b)

(b) Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞ and dim(rπ(θ)) = 1, Tn d→ T π(π∗(θ0, b); θ0, b)

(c) Under {θn} ∈ Θ(θ0,∞, ω0), Tn d→ N(0, 1)

The asymptotic distribution under semi-strong identification of the t-statistic is equiva-

lent to the asymptotic distribution under strong identification. The robust t-statistic critical

values involve exclusively two cases: the weak/non-identification (non-standard) distribution,

and the semi-strong/strong identification standard normal distribution. For this reason, un-

less the distinction is necessary, we use the term “weak identification” to characterize non

and weak identification categories, and we use the term “strong identification” for the strong

and semi-strong identification. As the asymptotic distribution only depends on these two

grouped identification categories, we develop a bootstrap process for weak/non-identification

and another for the strong/semi-strong identification.
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1.4 Wild Bootstrap under Weak and Semi-strong Identification

Constructing critical values of the t-test using Proposition 1.3.3 involves simulating

a stochastic process dependent on the (unknown) randomness structure of π (see Equa-

tion (1.32)). We propose using a wild bootstrap approach which multiplies by a random

variable zmt , the process Gψ,n(π) to separate the effects from the randomness structure of π

and the randomness from the data probability space. This bootstrapped process is asymp-

totically valid while it performs better in small samples. For example, if the asymptotic

distribution is known to be symmetric but the small sample distribution is skewed; a wild

bootstrap with a skewed process zmt would lead to better inference. As under weak identi-

fication, no consistent estimator of π is available, the wild bootstrap cannot be constructed

using the residuals εt(θ̂n). Nonetheless, we can construct the bootstrap using the errors

centered at the point of lack of identification εt(ψ0,n) since they are consistent estimates of

εt(θ0).

1.4.1 Wild bootstrapped limit distributions

Two bootstrapped processes are necessary to construct the bootstrap distribution of the

t-test. Let Gm
ψ,n denote the bootstrapped process under weak identification, and let Gm

θ,n

be the process under strong identification. First, we focus on the weak identification case

and establish the steps to derive the wild bootstrapped process Gm
ψ,n. From the definition of

Gψ,n, centering εt at the point ψ0,n, we obtain the following weak convergence result:

Gψ,n(ψ0,n, π) = 1√
n

n∑
t=1

[ ∂
∂ψ

ε2t (ψ0,n, π)− Eθn
∂

∂ψ
ε2t (ψ0,n, π)]

= − 1√
n

n∑
t=1

[(yt − ζ ′nX1,t)dψ,t(π)− Eθn((yt − ζ ′nX1,t)dψ,t(π))]

= − 1√
n

n∑
t=1

(yt − ζ ′nX1,t − β′nh(X2,t, πn))dψ,t(π)

+ b n−1
n∑
t=1

[h(X2,t, πn)dψ,t(π)− Eθnh(X2,t, πn)dψ,t(π)]

= − 1√
n

n∑
t=1

εt(θn)dψ,t(π) + op,π(1)⇒ Gψ(π) (1.31)
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where Gψ(π) is a zero mean Gaussian process with covariance kernel:

Ω(π, π̃; θ0) = lim
n→∞

n−1
n∑
t=1

Eθn(ε2t (θn)dψ,t(π)dψ,t(π̃)) (1.32)

where Equation (1.32) follows as Eθn(εt(θn)dψ,t(π)) = 0, ∀π ∈ Π by Assumption A, while

the weak convergence result follows from Lemmas A.2.1 to A.2.3 in the Appendix. We

can construct a multiplier bootstrap to generate random draws of Equation (1.31). We

define Gm
ψ,n(π) as a wild bootstrapped stochastic process, centered at the point of lack of

identification ψ0,n,

Gm
ψ,n(π) = 1√

n

n∑
t=1

zmt f(εt(ψ0,n))dψ,t(π) (1.33)

For this study, we let f(εt(ψ0,n)) = εt(ψ0,n) because ψ0,n can be estimated consistently, and we

assume εt is a martingale difference sequence. Under more stringent assumptions such as εt

being i.i.d., a more convenient choice of f(·) would be f(εt(ψ0,n)) = σ2
ε , which is equivalent to

performing the resampling bootstrap of Efron et al. (1979). The assumptions required for zmt

to converge weakly to the Gaussian process limit distribution are E(zmt ) = 0 and V ar(zmt ) = 1

and E|zmt |2+ι ≤ C < ∞. A common choice in the literature is zmt ∼ N(0, 1), which is

convenient when the small sample distribution is close to the asymptotic distribution. An

option to obtain small sample improvements over the asymptotic approximation is to use

the Rademacher distribution suggested by Liu et al. (1988).

zmt =


1 with probability 1/2 (1.34)

−1 with probability 1/2

The simulation results of Davidson, Monticini, and Peel (2007) and Davidson and Flachaire

(2008) show that the Rademacher distribution performs better than other distributions if

the conditional distribution of the errors is symmetric and suggest it should be preferred in

practice. When the distribution of the errors is asymmetric, a more convenient choice is the
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two point distribution proposed by Mammen (1993).

zmt =


−(
√

5− 1)/2 with probability (
√

5 + 1)/(2
√

5) (1.35)

(
√

5 + 1)/2 with probability (
√

5 - 1)/(2
√

5)

Lemma A.2.9 in the Appendix shows Gm
ψ,n ⇒ Gψ(π) is asymptotically valid for any of the

options of zmt described above. The choice of zmt does not affect the first-order terms and

consequently does not affect the asymptotic distribution. Nonetheless it can lead to very

different critical values in small samples. The bootstrapped process Gm
ψ,n(π) is used to con-

struct the bootstrapped distributions of π̂n and ψ̂n in the same fashion as in Equation (1.18)

to (1.23). Specifically, we construct the bootstrapped stochastic processes under weak iden-

tification according to the following expressions:

Hn(π) = ∂2

∂ψ∂ψ′
Qn(ψ0,n, π) = n−1

n∑
t=1

dψ,t(π)dψ,t(π)′ (1.36)

Kn(π, πn) = ∂

∂βn
Eθn

∂

∂ψ
Qn(θ) = −n−1

n∑
t=1

h(X2,t, πn)dψ,t(π) (1.37)

ξmn (π, πn, b) = −1
2[Gm

ψ,n(π) +Kn(π, πn)b]′Hn(π)−1[Gm
ψ,n(π) +Kn(π, πn)b] (1.38)

πmn = arg min
π∈Π

ξmn (π, πn, b) (1.39)

τmn (πmn , πn, b) = −H−1
n (πmn )(Gm

ψ,n(πmn ) +Kn(πmn , πn)b)− (b, 0) (1.40)

Next, we construct the bootstrapped distribution of the parameters ψ̂n and π̂n under strong

identification. The major difference with respect to the weak identification case hinges on

the construction of a bootstrapped process G that does not depend on π. This construction

leads to theoretically and practically simpler expressions that can be simulated using a

sequence of independent draws instead of sample paths depending on a grid of π. When we

let {θn} ∈ Θ(θ0,∞, ω0), the wild bootstrapped process Gm
θ,n under semi-strong identification

takes the following form:

Gm
θ,n(θn) = 1√

n

n∑
t=1

zmt εt(θn)dθ,t(θn) (1.41)
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Moreover, the normalizing matrixB(β) is required to obtain a non-singular variance-covariance

matrix in the limit. With the bootstrapped stochastic process Gm
θ,n and the consistent proba-

bility limits Jn, Vn, we can derive the asymptotic distribution of θ̂n under strong identification

which we denote by τmθ,n

τmθ,n(θ) = [B−1(βn) ∂2

∂θ∂θ′
Qn(θ)B−1(βn)]−1B−1(βn)

√
n
∂

∂θ
Qm
n (θ) (1.42)

= J−1
n (θ)Gm

θ,n(θ) (1.43)

where Jn(θ) = n−1∑n
t=1 dθ,t(θ)dθ,t(θ)′ and

√
n ∂
∂θ
Qm
n (θ) = Gm

θ,n(θ). The bootstrapped t-

statistic distribution under semi-strong identification is replicated using Equations (1.41)

to (1.43) as well as Equation (1.29) and (1.30).

The following consistency theorem requires the introduction of some notation. Define

cτ1−α = inf{z ∈ Rdψ : Pθ0(τ(π∗(θ0, b); θ0, b) ≤ z) ≥ 1 − α} and let cπ1−α = inf{z ∈ Rdπ :

Pθ0(π∗(θ0, b) ≤ z) ≥ 1 − α} be the 1 − α asymptotic critical values of τ(π∗(θ0, b); θ0, b) and

π∗(θ0, b) respectively. To obtain the critical values of the bootstrapped statistics, let Mn

denote the number of bootstrapped samples. For the sequence of bootstrapped distributions

{τ̂mn }Mn
m=1 = {τmn (π̂mn ; π0, b)}Mn

m=1, denote the order statistics τ̂ [1]
n ≤ τ̂ [2]

n ≤ ... ≤ τ̂ [Mn]
n . The

approximated 1−α critical value of {τ̂mn }Mn
m=1 is defined by cm,τn,1−α = τ̂ [(1−α)Mn]

n . For {π̂mn }Mn
m=1,

define cm,πn,1−α = π̂[(1−α)Mn]
n . Equivalently, under strong identification let cτθ1−α be the 1−α crit-

ical value of the distribution N(0, J−1(θ0)V (θ0)J−1(θ0)). Also, let {τ̂mθ,n}Mn
m=1 = {τmθ,n(θ̂n)}Mn

m=1

be the bootstrapped samples with order statistics τ̂ [1]
n ≤ τ̂ [2]

n ≤ ... ≤ τ̂ [Mn]
n and 1− α critical

values cm,τmn,1−α = τ̂
[(1−α)Mn]
θ,n . The next theorem shows that the bootstrap procedure is valid.

Theorem 1.4.1 Suppose that Assumptions (A) to (E) hold. Under weak identification,

let π̂mn be constructed using Equation (1.39) and τ̂mn (π̂mn ; π0, b) be constructed using Equa-

tion (1.40), while under strong identification let τ̂mθ,n(θ̂n) be constructed using Equation (1.42).

Denote cm,an,1−α and ca1−α with a = π, τ, τθ be the critical values of the bootstrapped and asymp-

totic distributions, respectively. Letting Mn →∞ as n→∞ then
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(a) Under {θn} ∈ Θ(θ0, 0, b) with ||b|| <∞, |cm,τn,1−α − cτ1−α|
p→ 0 and |cm,πn,1−α − cπ1−α|

p→ 0.

(b) Under {θn} ∈ Θ(θ0,∞, ω0), |cm,τθn,1−α − cτθ1−α|
p→ 0.

It is worth mentioning that contrary to Gψ,n, the bootstrapped stochastic process Gm
ψ,n

does not have to be demeaned by a non-zero expectation. In practice, the unknown ex-

pectation of Gψ,n(π), namely Eθn(εt(ψ0,n)dψ,t(π)) is not required to construct the bootstrap

process. The bootstrapped stochastic process Gm
ψ,n is mean zero by construction. In con-

trast, the sample process Gψ,n(π) derived has a non-zero expectation Eθnεt(ψ0,ndψ,t(π)) that

has to be estimated. This expectation not only depends on the unknown true parameters

θn but also depends on the expectation of the induced measure with respect to the true

parameters, which is not simple to estimate. The estimation error that can arise from the

estimation of this expectation is not present in the wild bootstrap estimation, suggesting

that bootstrapped distributions are more precise in practice.

1.4.2 The bootstrapped t-statistic

The bootstrapped t-test is derived using a two-step procedure. In the first step, we

estimate π̂mn , τ̂mn and τ̂mθ,n and the relevant probability limits using Equation (1.31) to (1.43).

The second step consists of constructing the asymptotic distribution of Proposition 1.3.3

using the bootstrapped processes. Specifically, let Tmψ,n, Tmπ,n be bootstrapped asymptotic

distributions under weak identification incorporating the bootstrapped processes π̂mn , τ̂mn , τ̂mθ,n.

Tmψ,n = Tψ(π̂mn ) = rψ(π̂mn )τmn (π̂mn )
[rψ(π̂mn )Σ̂n(π̂mn )rψ(π̂mn )′]1/2

(1.44)

Tmπ,n = T π(π̂mn ) = ||τβ(π̂mn )||(r(ψ̂n(π̂mn ), π̂mn )− r(ψ̂n(π̂mn ), π0))
[rπ(π̂mn )Σ̂n(π̂mn )rπ(π̂mn )′]1/2

(1.45)

As the parameters ψ and π have different rates of convergence, the asymptotic distribution

of the t-statistic depends on the identification category and the parameters that the null

hypothesis is testing.
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Under strong identification, the t-statistic is evaluated at θ̂n and takes the form

Tmθ,n(θ̂n) =
rθ(θ̂n)τmθ,n(θ̂n)

[rθ(θ̂n)Σ̂n(θ̂n)rθ(θ̂n)′]1/2
(1.46)

Using the definitions in Theorem 1.4.1, let cm,an,1−α with Tψ, T π, T θ denote the 1−α critical

value of the bootstrapped t-statistics Tmψ,n, Tmπ,n, Tmθ,n. Similarly, let ca1−α with a = Tψ, Tπ, N

denote the 1− α critical value of Tψ, T π and N(0, 1). The next theorem demonstrates that

the bootstrapped statistics converge to the same limit distributions and therefore can be

used for hypothesis testing.

Theorem 1.4.2 Suppose assumptions (A) to (H) hold. Let Tmψ,n, Tmπ,n be the bootstrapped

t-statistics of Equation (1.44) to (1.46). Denote cm,an,1−α and ca1−α with a = Tψ, T π, T θ, N

the 1 − α critical values of the bootstrapped and asymptotic distributions, respectively. Let

Mn →∞ as n→∞

(a) Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞ and dim(rπ(θ)) = 0, |cm,T
ψ

n,1−α − cT
ψ

1−α|
p→ 0

(b) Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞ and dim(rπ(θ)) = 1, |cm,T
π

n,1−α − cT
π

1−α|
p→ 0

(c) Under {θn} ∈ Θ(θ0,∞, ω0), |cm,T
θ

n,1−α − cN1−α|
p→ 0

Under weak identification, the bootstrapped distributions Tmψ,n, Tmπ,n depend on the nui-

sance parameters. The nuisance parameters in the non-linear model are (b, π0). To recover

the critical values, we consider a grid of nuisance parameters p ∈ P2 and use the supremum

over that grid. Under strong identification, we do not have to deal with nuisance parameters

because we have a consistent estimator of π0 and the value b has no role outside of weak

identification.

After deriving the bootstrapped distribution under weak and strong identification, the

salient question is “which critical values should be chosen if the identification category is

2The nuisance parameters can be reduced if we use null imposed critical values. For example, if we are
testing βn = 0 and use null imposed critical values, by construction the number of nuisance parameters is
reduced as b = 0 under the null hypothesis.
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unknown”?. We consider two specifications of robust critical values which incorporate the

critical values under weak and strong identification: 1) Least Favorable Critical Value (LF )

and 2) Identification Category-Selection Type 1 (ICS1).

The LF critical value, as the name suggests, adopts the largest critical value regardless

of the true identification category. Let cmn,1−α(p), p ∈ P denote the critical values of the

weakly identified bootstrap statistic and cmn,θ,1−α denote the critical values of the semi-strong

identified bootstrap statistic. The LF critical value is defined as

cLF,mn,1−α = max{sup
p∈P

cmn,1−α(p), cmn,θ,1−α} (1.47)

The LF critical value is a naive selection as we use the larger critical values regardless

of the identification case. To improve the size and power of the test, Andrews and Cheng

(2012) propose a data-driven critical value, ICS1, that relies on a first-step test to determine

whether b is finite, implying weak identification. If we cannot reject the null hypothesis of

finite b, the LF critical value is selected; otherwise, the strong identification bootstrapped

critical value is used. The ICS1 critical values are defined by

cICS1,m
n,1−α =


cLF,mn,1−α if An ≤ κn (1.48)

cmn,θ,1−α if An > κn

An = (nβ̂nΣ̂−1
n β̂n)1/2 (1.49)

where An is a first step statistic and κn is a sequence of positive constants such that κn →∞

and κn/n
1/2 = o(1). For example, κn = (log n)1/2 is analogous to the penalty term used in

the Bayesian Information Criterion. The null hypothesis H0 : ||b|| < ∞ is accepted in

favor of weak identification when An ≤ κn, while the null hypothesis is rejected in favor of

strong identification if H1 : ||b|| = ∞ when An > κn. We need one more assumption about

the validity of the critical values proposed. Let ca−α(∞) denote the 1 − α quantile of a
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normal standard distribution and let Σ̂−1
n be the upper left variance matrix size dβ × dβ in

Assumption F.

Assumption H Properties of LF and ICS1 critical values

(i) The distribution function of Tψ and T π are continuous at c1−α(p), ∀p ∈ P. If cLF1−α >

c1−α(∞), cLF1−α is attained at some pmax ∈ P.

(ii) κn →∞ and κn/
√
n→ 0

(iii) The distribution function of Tψ and T π are continuous at the critical values c1−α,

∀p ∈ P.

Remark 8. Assumption H is equivalent to Assumptions LF, K and V3 of Andrews and

Cheng (2012).

To prove that the robust critical values lead to the correct asymptotic size, Andrews and

Cheng (2012) introduce the asymptotic size of the t-test under different identification cate-

gories. We are interested in the effects of the Confidence Sets from various null hypotheses

of θ. Recall the null hypothesis for any element of the drifting sequence is H0 : r(θ) = q.

The Confidence Sets are obtained by inverting a test. For example, the t-statistic 1 − α

Confidence Set under r(θ) is defined as:

CSn = {q : Tn(q) ≤ cn,1−α(q)} (1.50)

Notice that the Confidence Sets are a function of the value q as well as sample size n. The

coverage probability of a Confidence Set for r(θ) is

CPn(θ) = Pθ(r(θ) ∈ CSn) = Pθ(Tn(r(θ) ≤ cn,1−α(r(θ)))) (1.51)

An important measure of the t-test is the maximum null rejection probability as it is equiv-

alent to the asymptotic size of the test. The test null rejection probability is defined by
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Pθ(Tn(r(θ)) > cn,1−α(r(θ))) with asymptotic size

AsySz = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pθ(Tn(r(θ)) ≤ cn,1−α(r(θ))) (1.52)

We need to introduce one more assumption need to assume the convergence of the Coverage

probabilities for all nuisance parameters. For more details on asymptotic size, see Section 2

of Andrews and Cheng (2012), in particular Lemma 2.1.

Assumption I Properties of the Coverage Probabilities

(i) Under weak identification for any θn ∈ Θ(θ0, 0, b) with b < ∞, CPn(θn) → CP (p) for

some CP (p) ∈ [0, 1], where p = (b, θ0) ∈ P.

(ii) Under strong identification for any θn ∈ Θ(θ0,∞, ω0), lim infn→∞CPn(θn) ≥ CP∞ for

CP∞ ∈ [0, 1] and for some θn, CPn(θn)→ CP∞.

(iii) For some δ > 0, θ = (ζ ′, β′, π′)′ ∈ Θ with 0 < ||β|| < δ implies that θ̃ = (ζ ′, β̃′, π′)′ ∈ Θ

for all β̃ ∈ Rdβ with 0 < ||β̃|| < δ.

Remark 9. Assumption I is equivalent to Assumption ACP of Andrews and Cheng (2012).

To obtain robustness against all identification categories, the critical values must either

change according to the unknown identification category or be the largest critical values

according to the asymptotic distribution obtained for each case. The ICS1 and LF critical

values fulfill these requirements, as proven in the following theorem. Further, the power of

the test approaches 1 in the limit. For our purposes, we focus on the asymptotic power of

the test, instead of the Confidence Sets, which are defined for each n ≥ 1.

Theorem 1.4.3 Let Mn → ∞ as n → ∞. Under the null hypothesis H0 : r(θ) = q, the

LF and ICS1 critical values of the t-test have the correct asymptotic size with probability

approaching one,

(a) AsySzLF,m = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pm(Tn(r(θ)) ≤ cLF,mn,1−α(r(θ))) = 1− α

29



(b) AsySzICS1,m = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pm(Tn(r(θ)) ≤ cICS1,m
n,1−α (r(θ))) = 1− α

(c) If H0 is false, that is r(θn) 6= q, then Tn(r(θ)) p→∞

1.5 Simulation Results

The simulation exercise compares the performance of the robust t-test which has correct

asymptotic size with respect to all identification categories, and the standard t-test, which in-

variably assumes strong identification. The data generating process assumes strong, weak or

non-identified according to the value of βn. Moreover, we compare the differences in the size

and power of using the wild bootstrapped t-statistic against the asymptotic approximation

distribution of Andrews and Cheng (2012, 2014, 2013).

We assume a non-linear model with an autoregressive exponential smoothing specification

as in Cheng (2015). The data generating process of the residuals takes the following form:

εt(θn) = yt − ζ0x1,t − βnyt−1(1− exp(−c(x2,t − π0)2)) (1.53)

We require a drifting sequence of true parameters for βn only, albeit ζ and π have a unique

true value ζ0 and π0. The simulations are constructed by assuming the following true values:

ζ0 = 1, π0 = 0 and b = 0.9. The drifting sequence of true parameters βn takes the values

βn = b under strong identification, βn = b/
√
n under weak identification and βn = 0 under

non-identification. We assume x1,t, x2,t ∼ N(0, 1) and set c = −1 to reduce the optimization

parameter space. Four distributions for the errors εt are considered: standard normalN(0, 1),

t-distribution with 4 degrees of freedom t(4) and GARCH(1,1) errors with parameters ω =

0.1, α = 0.6, β = 0.3 and ω = 0.1, α = 0.3, β = 0.6. The results are estimated for the

sample sizes n = 100, 250 and 500. We use two tailed critical values and assume zmt as in

Mammen (1993). Under weak identification the asymptotic distribution is asymmetric and

can have large skewness and kurtosis, which justifies the use of two tailed critical values.

The number of simulations is 1, 000. For each simulation, we construct a bootstrapped and

asymptotic approximation distribution to derive their critical values using 500 samples. For
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brevity we report the size and power of the test for sample size n = 250 and εt ∼ N(0, 1)

and GARCH(1,1). The Appendix contains the remaining tables.

We estimate the model by Least Squares. Let εt(θ) = yt− ζx1,t−βyt−1(1− exp(−c(x2,t−

π)2)), and θ = (ζ, β, π)′. In the simulation exercise, h(X2,t, π)) = yt−1(1−exp(−c(x2,t−π)2)).

dψ,t = (X1,t, h(X2,t, π))′

Qn(θ) = 1
2n

n∑
t=1

ε2t (θ)

∂

∂ψ
Qn(θ) = − 1

n

n∑
t=1

εt(θ)dψ,t(π)

dθ,t = (X1,t, h(X2,t, π), hπ(X2,t, π))′

∂

∂θ
Qn(θ) = − 1

n

n∑
t=1

εt(θ)B(β)dθ,t(π)

∂2

∂ψ∂ψ′
Qn(θ) = 1

n

n∑
t=1

dψ,t(π)dψ,t(π)′

(1.54)

∂2

∂θ∂θ′
Qn(θ) = 1

n

n∑
t=1

[B(β)dθ,t(θ)dθ,t(θ)′B(β)− εt(θ)Dt(θ)]

Dt(θ) =


0 0 0

0 0 hπ(X2,t, π)

0 hπ(X2,t, π) βhπ,π(X2,t, π)


(1.55)

For ease of exposition, we state the steps required to derive the bootstrapped t-test. These

steps follow the results of Section 1.4. For more details on the estimation see Appendix A.4.

Step 1. Construct the following matrices

Hn(π, π̃) = n−1
n∑
t=1

dψ,t(π)dψ,t(π)′

Kn(π, πn) = −n−1
n∑
t=1

h(Xt, πn)dψ,t(π)

H(π; θ0) = lim
n→∞

n−1
n∑
t=1

Eθn(dψ,t(π)dψ,t(π)′)

K(π, πn; θ0) = lim
n→∞

−n−1
n∑
t=1

Eθn(h(Xt, πn)dψ,t(π))

Σ(θ0) = J−1(θ0)V (θ0)J−1(θ0)

Jn(θ) = n−1
n∑
t=1

dθ,t(θ)dθ,t(θ)′

Vn(θ) = n−1
n∑
t=1

ε2t (θ)dθ,t(θ)dθ,t(θ)′

J(θn) = n−1
n∑
t=1

Eθn(dθ,t(θn)dθ,t(θn)′)

V (θn) = n−1
n∑
t=1

Eθn(ε2tdθ,t(θn)dθ,t(θn)′)

Σ̂n = J−1
n (θ̂n)Vn(θ̂n)J−1

n (θ̂n)
(1.56)

Note that the only variables that depend on the nuisance parameter πn are the stochastic
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processes Kn(π) and K(π).

Step 2. Construct the weak identification bootstrap process Gm
ψ,n(ψ0,n, π) and the strong

identified process Gm
θ,n(θ̂n) developed in Section 1.4 where ε̂t(ψ̂0,n) denote the residuals cen-

tered at the point of lack of identification and ψ̂0,n is a consistent estimator of ψ0

Gm
ψ,n(π) = − 1√

n

n∑
t=1

zmt εt(ψ̂0,n)dψ,t(π)

ξmn (π, πn, σ̂t, b) = −1
2[Gm

ψ,n(π) +Kn(π, πn)b]′Hn(π)−1[Gm
ψ,n(π) +Kn(π, πn)b]

π̂mn = arg min ξmn (π, πn, σ̂t, b)

τmn (π̂mn ; πn, b) = −H−1
n (π)(Gm

ψ,n(π̂mn ) +Kn(π̂mn , πn)b)− (b, 0) (1.57)

Gm
θ,n(θ̂n) = − 1√

n

n∑
t=1

zmt εt(ψ̂0,n)dθ,t(θ̂n)

τmθ,n(θ̂n) = [n−1
n∑
t=1

dθ,t(θ̂n)dθ,t(θ̂n)′]−1Gm
θ,n(θ̂n)

As the error process εt is an martingale difference sequence, the residuals εt(ψ̂0,n) are

heterogeneously distributed. The bootstrapped process τmn depends on the minimizer π̂mn ,

which is derived using a grid of 1001 values of π within the interval [π0 − 2, π0 + 2]. It is

worth noting that the wild bootstrap procedure presented here avoids the inconvenience of

simulating the (unknown) stochastic process Gψ(π).

Step 3. Define the null hypothesis r(θn) = q. If the null hypothesis sets restrictions

with respect to π, we use the asymptotic process defined by T π, whereas if the restrictions

depend solely on ψ, we construct the statistic Tψ.

Tmψ,n = Tψ(π̂mn ) = rψ(π̂mn )τmn (π̂mn )
[rψ(π̂mn )Σ̂n(π̂mn )rψ(π̂mn )′]1/2

(1.58)

Tmπ,n = T π(π̂mn ) = ||τβ(π̂mn )||(r(ψ̂n(π̂mn ), π̂mn )− r(ψ̂n(π̂mn ), π0))
[rπ(π̂mn )Σ̂n(π̂mn )rπ(π̂mn )′]1/2

(1.59)

The semi-strong identification case t-statistic is simpler because we do not need to simulate
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the random paths of a stochastic process.

Tmθ,n(θ̂n) =
rθ(θ̂n)τmθ,n(θ̂n)

[rθ(θ̂n)Σ̂n(θ̂n)rθ(θ̂n)′]1/2
(1.60)

We consider three null hypotheses in this simulation exercise. The first null hypothesis sets

the parameters equal to their true values. The second and third consider the false null

hypotheses of parameters within one and three standard deviations of the true value. The

false null hypotheses are important to analyze the loss of power of the robust t-test compared

to the standard t-test.

Hβ
0,1 : β = βn Hπ

0,1 : π = π0

Hβ
0,2 : β = βn + σβ Hπ

0,2 : π = π0 + σπ (1.61)

Hβ
0,3 : β = βn + 3σβ Hπ

0,3 : π = π0 + 3σπ

The robust sample t-statistic is constructed by

Tn =
√
n(r(θ̂n)− v)

[rθ(θ̂n)B−1(β̂n)Σ̂n(θ̂n)B−1(β̂n)rθ(θ̂n)′]1/2
(1.62)

while the standard t-statistic takes the form

T sn =
√
n(r(θ̂n)− v)

[rθ(θ̂n)Σ̂n(θ̂n)rθ(θ̂n)′]1/2
(1.63)

The critical values of the bootstrapped t-statistic are computed using order statistics.

Let {Tma,n(π)}mj=1 be a sequence of independent draws of the t-statistic with a = ψ, π, θ.

Denote the order statistics by Tma,n,[1] ≤ Tma,n,[2], ..., etc. The LF and ICS1 critical values are

computed using ca,mn,1−α/2 = inf{c ≥ 0 : P(Tmn ≤ c) ≥ 1 − α/2} and ca,mn,α/2 = inf{c ≥ 0 :

P(Tmn ≤ c) ≥ α/2}, as we use two tailed critical values. To construct the ICS1 critical value,

we use κn = (ln(n))1/2, as suggested by Andrews and Cheng (2012).

All critical values of the t-statistic are simulated for the asymptotic approximation t-tests
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of Andrews and Cheng (2012), the robust wild bootstrap t-test and the standard t-test. For

ease of comparison, the p-values of the tests are compared using the distribution with known

nuisance parameters and the distribution with unknown nuisance parameters.

The results in Tables 1.2 and 1.3 show that the bootstrapped critical values behave

better than the asymptotic approximation critical values, particularly in small samples, but

the difference is small. The benefits of bootstrapping are overshadowed by the loss in size and

power resulting from constructing a grid of nuisance parameters. The loss of power of the

robust t-test is small compared to the important gains in size. As we expected, the standard

t-test works well only when the data generating process is strongly identified. When the

process is weakly identified the size distortions are significant leading, to p-values of 0.30 to

0.40 for asymptotic sizes of 0.10.

Figure 1.1 and Figure 1.2 compare the large sample asymptotic distribution of the t-

statistic under strong and weak identification. The figures show that there are large size

distortions of the parameters ζ̂n and β̂n when weak identification is present, which would lead

to over-rejection of the null hypothesis when the standard t-statistic is employed. It is worth

noticing that the rejection rates of the t-statistic of ζ̂n can be severely large, especially when

errors have a t(4) distribution, which is surprising because ζ is always strongly identified.

1.6 Conclusions

In this paper, we introduce an asymptotically valid, wild bootstrap t-test robust to all

identification categories, in the sense of Andrews and Cheng (2012). The wild bootstrap

is developed using a multiplier bootstrap at the point of lack of identification, instead of

around the true parameter. The robust t-test properties include the asymptotic refinements

of the bootstrap and the simplicity to estimate when the asymptotic Gaussian process has

unknown form and/or is high dimensional. The simulations affirm that the wild bootstrap

performs better than the finite sample counterpart, while it exposes the large-size distortions

of the standard t-test when weak identification is present.
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CHAPTER 2

PARAMETRIC WILD BOOTSTRAP INFERENCE WITH WEAKLY IDENTIFIED
PARAMETERS

2.1 Introduction

Identification is one of the most important assumptions in econometric modeling. Be-

ing able to correctly specify the model is essential to obtain estimates that are informative.

Identification is usually assumed but the validity of this assumption is rarely tested. Im-

plementing standard hypothesis tests on models that are unidentified would usually lead to

false positives. This paper expands the parameter identification literature by proposing a

parametric bootstrap to conduct hypothesis testing for any identification category.

Heuristically, the parameters in an econometric model are identified if a unique value of

the parameter can be obtained with a sufficient amount of data. If this is the case, we say

that the parameter is strongly identified. In contrast, when the parameter value does not

have enough signal to noise ratio and a unique value cannot be obtained regardless of the

amount of data at our disposal, we say that the parameter is weakly identified.

In principle, the identification category of parameters is unknown. Not surprisingly, the

asymptotic distribution of the estimators, as well as their convergence rate, depends on

being either strongly or weakly identified. In consequence, assuming strong identification in

models where weak identification is present leads to erroneous statistical testing. In the case

of the t-statistic, the Hessian converges to a singular matrix when parameters are weakly

identified. The t-statistic is growing without bound which leads to an eventual rejection

of the null hypothesis, i.e. false positives. This is conceptually similar to the spurious

regression phenomenon introduced by Granger and Newbold (1974) because the t-statistic

of a regression constructed with (drift-less) unit root variables does not have a standard

normal distribution and is growing at rate Op(n1/2).
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In Chapter 1 we propose a wild bootstrapped robust t-test that can be employed in models

with strongly or weakly identified parameters. The authors derive a bootstrap method to

generate the asymptotic distribution and generate robust testing by combining the critical

values. In this paper, we propose an alternative bootstrap method to construct the t-test.

The parametric bootstrap is developed for models in which consistent estimators of some

parameters are not available.

One of the most important properties of the parametric bootstrap is that it reduces

the number of nuisance parameters of the test statistic under weak identification. When

a parameter in a model cannot be consistently estimated (i.e., it is weakly identified), the

t-test proposed by Andrews and Cheng (2012) and the wild bootstrapped t-test proposed in

Chapter 1 include nuisance parameters under the null hypothesis. To be able to construct the

statistic in practice, the usual approach is to generate a grid of possible nuisance parameters

and obtain the supremum of the critical values as in Davies (1977, 1987). This approach

would lead to test statistics with correct level but not correct size. If the rejection rate of the

test is 5%, the statistic rejects at a 5% level or lower. Unfortunately, for a large enough grid,

some test statistics lose all statistical power. The simulation study of Chapter 1 shows that

the t-statistic with respect to the weakly identified parameter π has no statistical power for

a large enough grid as the distribution is centered around a nuisance parameter. Reducing

the number of nuisance parameters in the limit distribution leads to statistical tests with

better performance.

This paper proposes a parametric bootstrap influenced by the residual bootstrap em-

ployed in strongly identified regression models e.g. Freedman (1981); Mammen (1993); Liu

et al. (1988); Horowitz (2001); Davidson and Flachaire (2008). The residual bootstrap is

used to generate bootstrap samples of the original data, by resampling residuals and gen-

erating new draws imposing the regression model. When parameters are weakly identified,

this procedure cannot be employed as residuals depend on estimators that are inconsistent.

Nonetheless, our parametric bootstrap method generates valid bootstrap samples by resam-

pling residuals over a grid of potential values for the weakly identified parameters. More
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specifically, the parametric bootstrap under weak identification follows these steps: 1) ob-

tain residuals centered at the point of lack of identification which are valid to perform a

bootstrap, 2) generate bootstrapped residual draws using a Wild bootstrap multiplicative

approach as in Wu (1986); Liu et al. (1988); Shao (2010), 3) obtain bootstrapped data draws

by imposing the null hypothesis over a grid of parameters, and 4) minimize the objective

function with the bootstrapped samples to retrieve bootstrapped estimators. The main dif-

ference of our parametric bootstrap hinges on step 3, in which the bootstrap is performed

along a grid of potentially weakly identified parameters, from which a consistent estimator

cannot be obtained.

Andrews and Cheng (2012, 2014); Andrews and Mikusheva (2015) introduce a unified

framework of identification categories in which the definitions of identification depend on the

true values that parameters take along the parameter space. In other words, for some values

along the parameter space, the parameters are strongly identified while for other values

the parameters are weakly identified. The authors introduce four different identification

categories that comprise all possible cases. As all identification categories can be grouped

into a t-test with two distributional cases, we regroup the identification categories of Andrews

and Cheng (2012) into two groups: weak and strong identification. For simplicity, as the

four distributions can be grouped into two cases that enclose all other cases. Specifically, we

refer to weak identification for the weak and non-identification categories of Andrews and

Cheng (2012), while we refer to strong identification the semi-strong and strong identification

categories.

One of the most important differences between the identification categories is that under

weak identification, the parameter π̂n converges to a random variable. The random out-

come of π will determine the value of the other estimator ψ̂n. The distribution of these

parameters is non-standard and usually very different from a normal distribution. To obtain

critical values of these distributions we can rely on simulation methods that depend on nui-

sance parameters. The parametric bootstrap method will simplify the construction of these

distributions, avoiding the simulation of these non-standard distributions.
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The bootstrap method introduced in this paper relies on bootstrapping residuals and

generating valid draws of the model at hand. With validity, we mean that the bootstrapped

distribution is equivalent to the asymptotic distribution of the statistic generated with the

true data generating process. In this paper we bootstrap the residuals using a wild bootstrap

approach (Wu 1986; Liu et al. 1988; Shao 2010) as we work with heteroscedastic and depen-

dent data. The wild bootstrap has important advantageous properties: 1) using a pivotal

statistic it leads to an asymptotic refinement in small samples (Mammen 1993; Horowitz

2001; Härdle et al. 2003); 2) the wild bootstrap is useful to approximate asymmetric distri-

butions with fat tails, and 3) the multiplicative form of the wild bootstrap extends easily to

multivariate settings. The resampling residual method proposed by Efron et al. (1979) can

be applied if the data are independent and identically distributed. We do not pursue this

approach because economic and financial data is usually heteroscedastic and dependent.

Extending bootstrap methods to models where weak identification is present is not a

trivial extension. The uniformity assumptions required for any bootstrap method, are not

satisfied in this setting. As weak identification is present for some values of the parameter

space, the distribution of the estimators will be different according to the true value the

parameter takes. In particular, the delta method cannot be used for the weakly identified

parameters as the objective function does not have a clean minimum (see Assumption J).

The non-uniformity of the bootstrap is comparable to the case studied by the integrated

conditional test of Bierens and Ploberger (1997). This lead to technical difficulties that are

solved using stochastic expansions centered at the point of lack of identification (Andrews

and Cheng 2012; Andrews and Mikusheva 2015; Andrews and Cheng 2014). Consequently,

if we wish to replicate the distributions under weak and strong identification, we must per-

form two bootstrap procedures to construct the two distributions separately. The bootstrap

procedures for both identification categories are introduced in Section 2.4.

The most relevant contribution of this paper is the ability to construct t-tests that do not

depend on nuisance parameters. Hypothesis testing with nuisance parameters dates back to

Chernoff and Zacks (1964). Davies (1977, 1987) studies the consequences of having nuisance
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parameters under the alternative hypothesis and proposes using the sup-Likelihood ratio

test over a grid of potential nuisance parameters. This approach leads to a test with the

correct level, but not the correct size as the correct distribution can only be constructed

if the nuisance parameter is known. In other words, if the test has a 5% size, the sup

test would asymptotically have an empirical size of 5% or less. Stinchcombe and White

(1998); Andrews (1994) develop smoothed test statistics with nuisance parameters under the

alternative hypothesis. Hansen (1996) derives a sup-test to eliminate the nuisance parameter

under the null hypothesis, constructing the asymptotic distribution using a local-to-null

reparametrization. Contrary to these studies, this paper proposes a bootstrap method valid

for all identification categories. To the best of our knowledge, this is the first research paper

that proposes a parametric bootstrap method to construct robust critical values using the

identification category definitions of Andrews and Cheng (2012).

The paper has the following structure. Section 2.2 introduces the notation of the model

and the identification categories framework. Section 2.3 introduces the assumptions used

to prove the main results of the paper. Section 2.4 introduces the parametric bootstrap for

the strong and weak identification categories, while the following section discusses how to

impose the null hypothesis in the parametric bootstrap. Section 2.6 derives the bootstrapped

distribution of the t-statistic employed in the simulation exercise. Simulation results are

analyzed in Section 2.7. The last section concludes the paper.

2.2 Model Setup

Identification in this paper refers to the ability to extract the true value of the parameters

in a model with a sufficient amount of data. In circumstances where a consistent estimator of

the parameter is not available with an infinite amount of data, we say that the parameter is

weakly identified. On the other hand, when a consistent estimator of the parameter is avail-

able, we say that the parameter is strongly identified. The identification of a parameter will

depend on the value that it takes in the parameter space. Before introducing identification

categories, we present two examples of identification.
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Example 1. Nonlinear Regression Model

yt = ζ ′0X1,t + β′0h(X2,t, π0) + εt (2.1)

The identification of π0 depends on β0 being non-zero. If β0 = 0, the parameter π0 is

weakly identified. The identification of ζ0 does not depend on the identification of either β0

or π0; it is always strongly identified.

Example 2. MIDAS Regression

Consider a mixed data sampling process {yt, X(m)
t/m}, where yt is observable at times

t = 1, ..., n and X
(m)
t/m = (1, X(m)

1,t/m, ..., X
(m)
p,t/m), where m is the number of high frequency lags

used in the temporal aggregation of Xt/m. The MIDAS regression sets the higher frequency

variable on the right-hand side of a regression equation

yt = β′0Xt(π0) + εt (2.2)

where Xt(π0) is a nonlinear function that maps the high frequency data into the lower

frequency data,

X
(m)
k,t (π0,k) =

m∑
j=1

wj,k(π0,k)Lj/mX(m)
k,t/m (2.3)

Where L denotes the lag operator. If β0 = 0, then π0 is not identified, and the weight

function wj,k(π0,k) can potentially take any value. Other examples of models that suffer

from weak identification for some values in the parameter space include: ARMA models

(Andrews and Cheng 2012), Maximum Likelihood Estimation (Andrews and Cheng 2013),

Generalized Method of Moments (Andrews and Cheng 2014), Dynamic General Equilibrium

models (Guerron-Quintana et al. 2013; Andrews and Mikusheva 2015), MIDAS regression

(Ghysels et al. 2016), Smooth Transition Autoregressive models (Andrews and Cheng 2013),

Probit models (Andrews and Cheng 2014), Regime Switching models (Chen et al. 2016),

among others.
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Ghysels et al. (2005); Ghysels, Plazzi, and Valkanov (2016) propose a MIDAS model to

analyze the risk-return trade-off at a monthly or quarterly frequency using a volatility esti-

mator constructed with daily excess returns. The authors conclude that the estimators of the

MIDAS model are significant and that the risk-return trade-off relationship can be captured

using the data-driven polynomial of the MIDAS aggregation function. The hypothesis tests

constructed by Ghysels et al. (2005, 2016) ignore the presence of weak identification. The

null hypotheses β = 0 or π = 0 cannot be tested using the standard t-statistic because we

cannot separately identify both parameters under the null and in consequence, would not

be normally distributed. Chapter 3 analyses if the parameters of the MIDAS model stud-

ied by Ghysels et al. (2005, 2016) maintain their statistical significance when critical values

robust to weak identification are used. Using a wild bootstrapped t-test robust, Chapter 3

concludes that the MIDAS representation of the risk-return trade-off is not significant for all

samples studied. The author suggests exploring other possibilities to model the risk-return

trade-off using a different stochastic discount factor (e.g. the utility function introduced by

Epstein and Zin (2013)).

The cases where weak identification is present can be hard to visualize using general

extremum estimator notation. For this reason, the results of the paper the non-linear model

in which weak identification is easy to portray. Let {Wt}nt=1 = {yt, Xt}nt=1 be observable

data, and θ = (ζ ′, β′, π′)′ denote a vector of parameters. We divide the parameter vector

θ into these three groups because each of them describes a different identification category.

The parameter π characterizes the parameter that is potentially weakly identified. The

identification category of π is determined by the value of β, which is itself always strongly

identified. Moreover, the parameter ζ is always strongly identified, and its identification does

not affect the identification of other parameters. The non-linear model takes the form:

εt(θ) = yt − ζ ′X1,t − β′h(X2,t, π) (2.4)

where X1,t and X2,t denote elements of the Xt ∈ Rd matrix of explanatory variables, yt ∈ R
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is the dependent variable and h(·) is a non-random function. We define the parameters as

elements of compact sets ζ ∈ Z ⊂ Rdζ , β ∈ B ⊂ Rdβ and π ∈ Π ⊂ Rdπ . Clearly, the

parameters of the non-linear model are always strongly identified except when β = 0. This

value is particularly relevant as we usually want to test if the parameters are significant,

which implies testing β = 0. Under the null, H0 : β = 0, π is not identified and inference is

non-standard.

The estimator θ̂n minimizes an objective function Qn(θ). For simplicity we consider the

least squares objective function.

θ̂n = inf
θ∈Θ

Qn(Wt, θ) = inf
θ∈Θ

1
2n

n∑
t=1

ε2t (θ) (2.5)

The objective function does not depend on π under weak identification. For a smaller and

smaller β, the signal that comes from π is diminished more and more. If the signal is smaller

than the random noise, we say that the parameter is weakly identified (see next subsection).

To simplify the notation, for the rest of the paper we partition the parameters into two

groups according to their identification category.

θ = (ζ ′, β′, π′)′ = (ψ′, π′)′ (2.6)

The parameter ψ denotes the strongly identified parameters, whereas π denotes parameters

that are weakly identified. In the next section we argue that the strongly identified param-

eters ψ can be consistently estimated, while the weakly identified parameters π cannot be

consistently estimated.

2.2.1 Drifting Sequences of Distributions

To determine whether the parameters are weakly or strongly identified, we consider drift-

ing sequences of distributions as in Staiger and Stock (1994) and Stock and Wright (2000).

The drifting sequences of distributions determine the asymptotic behaviour of the estimators

for distinct identification categories, according to the speed in which parameters converge to
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their true value. Suppose the sequences of true parameters are defined by θn = (β′n, ζ ′n, π′n)′

for n ≥ 1, converging to the limit true parameters θ0 = (β′0, ζ ′0, π′0)′. Table 2.1 illustrates

the definitions of identification categories following Andrews and Cheng (2012) which are

derived using drifting sequences of parameters.

Table 2.1: Identification categories

Category {βn} sequence Identification Property of π
I(a) βn = 0 ∀n ≥ 1 Unidentified
I(b) βn 6= 0 and

√
nβn → b ∈ Rdβ Weakly identified

II βn → 0 and
√
βn →∞ Semi-strongly identified

III βn → β0 6= 0 Strongly Identified

Heuristically, the speed at which βn converges to zero will determine if the parameter π

is strongly or weakly identified. If βn is converging to zero at a rate faster or equal to
√
n,

then π is weakly identified. On the other hand, if βn is converging to zero at a slower rate

than
√
n (or if it is not converging to zero at all), then π is strongly identified. The following

table exemplifies this argument.

Table 2.2: Alternative Table of Identification categories

{βn} sequence Category Identification Property of π
If βn → 0 and βn = 0, ∀n ≥ 1, I(a) Unidentified
If βn → 0 and βn = O(n−α) with α ≥ 1/2 I(b) Weakly Identified
If βn → 0 and βn = O(n−α) with α ∈ [0, 1/2) II Semi-strongly Identified
If βn → β0 6= 0 III Strongly Identified

In the following sections, we argue that the asymptotic distributions of the t-test of all

four categories can be simplified into two cases, Category I(a)-I(b) and Category II-III. To

simplify the terminology we will refer to ”weak identification” to discuss categories I(a) and

I(b), while we refer to ”strong identification” when we discuss categories II and III.

The non-linear model studied in this paper defines the true error process for each sequence
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of drifting parameters, which we denote by εt(θn), θn = (ζ ′n, β′n, π′n)′

εt(θn) = yt − ζ ′nX1,t − β′nh(X2,t, πn) (2.7)

The limit error process is denoted by εt(θ0) = yt − ζ ′0X1,t − β′0h(X2,t, π0), where θ0 =

(ζ0, β0, π0), while the finite sample and limit variance of errors are defined by σ2
t (θn) and

σ2
t (θ0) respectively. It is worth mentioning that the exogeneity assumption is not the sub-

ject of our study. The exogeneity assumption E(εt(θn)|Xt) = 0 is always satisfied, although

not for a unique value of θn. Identification in this paper is complementary to the weak

instruments literature in which E(εt(θn)|Xt) 6= 0.

2.3 Assumptions

In this section, we introduce the assumptions required for the implementation of the

parametric bootstrap. The parametric bootstrap is constructed to derive the distribution of

the estimators and the t-statistic in Section 2.6.

Assumption J Identification of data generating process

(i) εt(θn) is Lp bounded for p = 4 + ι for small ι.

(ii) Eθn(εt(θn)|Xt) = 0 a.s.

(iii) V arθn(εt(θn)|Xt) = Γ0(θn) + 2∑∞j=1 Γj(θn) a.s.

(iv) Under weak identification Eθn(εt(ψ, π)dψ,t(π)) = 0 for unique ψn = (ζ ′n, β′n)′ in the

interior of Ψ∗(π) and under strong identification Eθn(εt(θn)dθ,t(θn)) = 0 for unique

θn = (ζ ′n, β′n, π′n)′ in the interior of Θ∗.

Remark J. Assumption J establishes the valid moment conditions under weak and

strong identification. As there is no unique π that satisfies Assumption A(iv), the parameter

is weakly identified. All random variables are Lp bounded for p = 4 + ι.

Assumption K Properties of data generating process
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(i) The random variables {Wt}nt=1 = {yt, Xt}nt=1 are strictly stationary and α−mixing of

size −r/(r − 2) for some r > 2 and Xt is Lp bounded for p = 4 + ι for small ι.

(ii) The processes {yt(θ)} is Lipschitz for all t and all values θ ∈ Θ.

(iii) The function h(Xt, π) is twice continuously differentiable in π ∈ Π, non-degenerate

and bounded for fixed values of Xt. Moreover, h(Xt, π) is a Borel measurable function

and Lp bounded for p = 4 + ι for tiny ι for any fixed π ∈ Π.

Remark K. Assumption K establishes the dependence and distributional properties of

the data. As our focus is on stationary time series data, we assume strictly stationary and

α - mixing to establish a law of large numbers and central limit theorems. The Lipschitz

is a mild condition used to prove weak convergence. Differentiability and measurability of

h(Xt, π) are standard.

Assumption L Parameter Spaces

(i) Θ is a compact set of Rdθ , where dθ = dζ + dβ + dπ

(ii) Θ∗ = {(β∗′ , ζ∗′ , π∗′)′ : β ∈ B∗, ζ ∈ Z∗, π ∈ Π∗} is a compact set and Θ∗ ⊂ int(Θ) and

0dβ ∈ int(B∗)

(iii) Π̃ is a compact set in RdΠ and πn ∈ Π̃, ∀n ≥ 1, where Π̃ denotes a fine grid of elements

of π used for the parametric bootstrap.

Remark L. The parameter spaces are compact while the whole sequence of true param-

eters lies in the interior of the compact set. Condition (ii) emphasizes on true values in the

interior of the parameter space to eliminate boundary effects (Andrews 1999, 2001).

Assumption M Identification of π

(i) Each sample path of the stochastic process {ξ(π; θ0,k, b) : π ∈ Π} is minimized over Π at

a unique point denoted π∗(θ0,k, b) ∀θ0,k ∈ Θ in some set A(θ0,k, b) with Pθ0,k(A(θ0,k, b)) =

1 with β0 = 0, π0 = πk and ||b|| <∞.
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Remark M. Assumption M establishes an identification condition when parameters

cannot be estimated consistently. Weak identification implies that the signal and the noise

are growing at the same rate, nonetheless, the signal of π must lead to a unique distribution

function. The second condition expands the identification condition of π along the grid of Π

used for the parametric bootstrap.

Assumption N Continuity and non-singularity of variance-covariance matrix

(i) J(θ; θ0) and V (θ; θ0) are continuous in θ ∈ Θ, ∀θ0 ∈ Θ with β0 = 0.

(ii) J(π; θ0) and V (π; θ0) are positive definite matrices ∀π ∈ Π, θ0 ∈ Θ with β0 = 0. (that

is, eig(J(π; θ0)),eig(V (π; θ0)) > 0 and eig(J(π; θ0)),eig(V (π; θ0)) < ∞, i.e. the max-

min eigenvalues are finite)

Remark N. The conditions in Assumption N guarantee that the variance and covari-

ance matrices in t-statistic are non-singular. The normalization matrix B(β) will play an

important role to obtain a non-singular matrix in the limit.

Assumption O Properties of the restrictions function

(i) r(θ) ∈ R is continuously differentiable on Θ

(ii) rθ(θ) 6= 0 ∀θ ∈ Θ

(iii) rank(rπ(θ)) = d∗π for some constant d∗π ≤ min(dr, dπ), ∀θ ∈ Θδ = {θ ∈ Θ : ||β|| < δ}

Remark O. Conditions in Assumption O are standard for the construction of the t-

statistic. The restrictions in the hypothesis test must be linearly independent. As we will

discuss in detail in the following sections, testing with respect to ψ or π is relevant because of

the asymptotic distribution of the t-statistic changes according to which parameter is being

tested.

Let p ∈ P be the set of nuisance parameters. In the framework of Andrews and Cheng

(2012) the set of nuisance parameters is characterized by p = (b, θ0).
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Assumption P Properties of LF and ICS0 critical values

(i) The distribution function of Tψ and T π are continuous at c1−α(p), ∀p ∈ P. If cLF1−α >

c1−α(∞), cLF1−α is attained at some pmax ∈ P.

(ii) κn →∞ and κn√
n
→ 0

(iii) The distribution function of Tψ and T π are continuous at the critical values c1−α,

∀p ∈ P.

Remark P. The use of Least Favourable and ICS0 robust critical values lead to correct

asymptotic size if they satisfy Assumption P. As we show in the following sections, the

parametric bootstrap reduces the number of nuisance parameters of the t-statistic.

Before we introduce the next assumption, we must define the Confidence Sets of a test.

Let H0 : r(θn) = q and Tn be the t-statistic while cn,1−α denotes the 1−α critical value. The

confidence sets are defined by,

CSn = {q : Tn(q) ≤ cn,1−α(q)} (2.8)

Notice that the Confidence Sets are a function of the value q as well as sample size n. The

Coverage Probability of a Confidence Set for r(θ) is defined by,

CPn(θ) = Pθ(r(θ) ∈ CSn) = Pθ(Tn(r(θ) ≤ cn,1−α(r(θ)))) (2.9)

For more information about confidence sets and coverage probabilities using drifting se-

quences of parameters see Andrews and Cheng (2012). An important measure of the t-test

is the minimum null rejection acceptance as it is equivalent to the asymptotic size of the

test. 1 The asymptotic size is defined by,

AsySz = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pθ(Tn(r(θ)) ≤ cn,1−α(r(θ))) (2.10)

1The test null rejection probability is defined analogously, Pθ(Tn(r(θ)) > cn,1−α(r(θ))).
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One more assumption about the convergence of the coverage probabilities is introduced.

Assumption Q Properties of the Coverage Probabilities

(i) Under weak identification for any θn ∈ Θ(θ0, 0, b) with b < ∞, CPn(θn) → CP (p) for

some CP (p) ∈ [0, 1], where p = (b, θ0) ∈ P.

(ii) Under strong identification for any θn ∈ Θ(θ0,∞, ω0), lim infn→∞CPn(θn) ≥ CP∞ for

CP∞ ∈ [0, 1] and for some θn, CPn(θn)→ CP∞.

(iii) For some δ > 0, θ = (ζ, β, π) ∈ Θ with 0 < ||β|| < δ implies that θ̃ = (ζ, β̃, π) ∈ Θ for

all β̃ ∈ Rdβ with 0 < ||β̃|| < δ.

Remark Q. Assumption Q is equivalent to Assumption ACP of Andrews and Cheng

(2012). See Section 2 and in particular Lemma 2.1 of Andrews and Cheng (2012) for a more

complete discussion of Asymptotic size and coverage probabilities.

2.4 Parametric Bootstrap

The parametric bootstrap method introduced in this paper will cover two separate cases.

Under strong identification, the parametric bootstrap follows the residual bootstrap proce-

dure as in Freedman (1981); Mammen (1993); Liu et al. (1988); Horowitz (2001); Davidson

and Flachaire (2008). Consistent estimators of θ are obtained, to build bootstrapped samples

of residuals and generate new data with the regression model that has the same distribution

as the underlying data generating process. Under weak identification, the process follows the

same idea with a few modifications. We cannot use the standard residuals as the estimator

of π is not consistent. To eliminate this dependence, we use the residuals at the point of lack

of identification, that is, we set β = 0, to eliminate the dependence of ε̂t on π. Using these

residuals we generate bootstrap samples using a wild bootstrap fixing the value of π along a

grid. Clearly, for one element of the grid, the bootstrapped samples have the same underly-

ing distribution as the true data generating process as long as the true value πn lies inside

the grid. We introduce the bootstrap procedure for each identification category separately

in a sequence of steps. The validity of each step is proven in the Appendix.
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Let θ̂n be the estimator of the original sample {Wt}nt=1 = {yt, Xt}nt=1, θ̂mn be the estimator

with respect to a bootstrapped sample {Wm
t }

Mn,n
m=1,t=1.

The concentrated estimator objective function is defined as

Qc
n(π̂n) = inf

π∈Π
Qc
n(π) + o(n−1) (2.11)

The concentrated estimator is used to obtain the signal of π fixing all other parameters.

The assumptions introduced in the previous sections guarantee that the gradient has a

unique minimum for the derivative of the objective function with respect to θ under strong

identification. Under weak identification, the limit objective function does not depend on π

and therefore, the gradient is still equal to zero for any value of π. In consequence, we derive

the gradient of the objective function as a function of π to obtain the distribution of ψ as a

function of π.

∂

∂ψ
Qn(θ) = 1

n

n∑
t=1

εt(θ)dψ,t(π) (2.12)

Constructing the t-statistic with respect to β using the parametric bootstrap has some

complications. Without imposing a null hypothesis describing the behavior of the complete

drifting sequence of parameters, the null hypothesis can admit two different distributions.

When we construct the parametric bootstrap, it must be able to replicate the underlying

distribution under the null for the weak and strong identification case. This cannot happen

when the null hypothesis imposed contradicts the identification category. For example,

imposing the null H0 : β = 0, the parametric bootstrap cannot generate bootstrap samples

under strong identification. For this reason, the parametric bootstrap introduced in this

paper will be used to construct inference for all parameters except for β.

We begin by introducing the parametric bootstrap under strong identification to compare
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its derivation to the weakly identified case. For more information on the parametric bootstrap

under weak identification see Horowitz (2001); MacKinnon (2006); Davidson and Flachaire

(2008) among many others.

2.4.1 Strong identification

Bootstrapping residuals to generate bootstrapped samples in regression models has been

used extensively in the econometrics literature since Freedman (1981). As θ̂n is a consis-

tent estimator, and E(εt(θn)|Xt) = 0, the standard residuals εt(θ̂n) are valid to mimic the

asymptotic distribution, and therefore we can use them to generate bootstrap samples e.g.

MacKinnon and White (1985); Härdle et al. (2003). As the t-statistic is pivotal, the boot-

strap method has an asymptotic refinement which leads to better small sample properties

compared to the asymptotic approximation counterpart. See Horowitz (2001) for a more

detailed explanation on the asymptotic refinements obtained from the higher order terms

of the Edgeworth expansion of pivotal statistics. We present the steps of the parametric

bootstrap under strong identification as a reference and to compare its differences to the

weak identification case.

Parametric Bootstrap under Strong Identification

• Step 1 SI. Estimate θ̂sn using the original data {Wt}nt=1 = {yt, Xt}nt=1 and the objective

function introduced in Section 2.2,

θ̂sn = arg min
θ∈Θ

Qn(θ) (2.13)

Under strong identification, the estimator and residuals are consistent. Obtain the

residuals.

εt(θ̂sn) = yt − ζ̂s
′

nX1,t − β̂s
′

n h(X2,t, π̂
s
n) (2.14)
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• Step 2 SI. Perform a wild bootstrap using the method of Liu et al. (1988) or the

method of Shao (2010). 2

[Independence] εmt (θ̂sn) = zmt εt(θ̂sn) zmt
d∼ D(0, 1) (2.15)

[Dependent] εmt (θ̂sn) = zmt εt(θ̂sn) zmt
d∼ D(0,Γ(z)) (2.16)

• Step 3 SI. Generate bootstrapped variables Wm,s
t = {ym,st , Xm,s

t }Mn
m=1.

ym,st = ζ̂s
′

nX
m,s
1,t + β̂s

′

n h(Xm,s
2,t , π̂

s
n) + εmt (θ̂sn) (2.17)

• Step 4 SI. Estimate the parameters {θ̂m,sn }Mn
m=1 for each bootstrapped sample Wm,s

t =

{ym,st , Xm,s
t }Mn

m=1.

θ̂m,sn = arg min
θ∈Θ

Qn(Wm,s
t , θ) (2.18)

The next proposition states that the bootstrap process outlined in the previous steps

leads to correct inference.

Proposition 2.4.1 Suppose that Assumptions (J) to (N) hold and suppose that the true

data generating process is strongly identified. Let Mn → ∞ as n → ∞. The estimators

obtained following Step 1 SI to Step 4 SI have the following distribution,

sup
z∈Rdθ

∣∣∣∣∣ Pm(
√
MnB(β̂m,sn )(θ̂m,sn − θ̂n) ≤ z)− Pθn(

√
nB(β̂n)(θ̂n − θn) ≤ z)

∣∣∣∣∣ p→ 0 (2.19)

The previous proposition follows the results of Wu (1986); Liu et al. (1988) among many

others that have demonstrated the validity of the wild bootstrap in regression models. The

2Other bootstrap methods are available in the literature which can be employed without changing the
results, e.g. Resampling bootstrap Efron et al. (1979), Stationary bootstrap Politis and Romano (1994)
Moving Block bootstrap Kunsch (1989), Tapered Block Bootstrap Paparoditis and Politis (2001), among
others.
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wild bootstrap is particularly useful to mimic the heteroscedasticity and dependence proper-

ties of the data (see Shao (2010)) with a simple multiplier bootstrap structure. As the model

is known up to the parameter values, the draws of the bootstrapped samples should be as

close as possible to the true data generating process when we use consistent estimators.

2.4.2 Weak identification

The idea of the following bootstrap is to notice that if we knew the true value πn, the

model would not be weakly identified, and estimation is standard. This idea will be exploited

by generating bootstrapped samples {Wm
t }

Mn,n
m=1,t=1 = {ymt , Xm

t }
Mn,n
m=1,t=1 for each element over

a grid of π. Assumption M is important as it states that the true sequence of true parameters

{πn} exists in the interior of the bootstrap grid, say [πmin, ..., πmax] ∈ Π̃. Assuming that πn

is an element of the grid, we know that one of those bootstrapped samples has the same

distribution as the original sample {Wt}nt=1. Therefore we can obtain a bootstrapped statistic

for each bootstrapped sample in the grid and obtain the supremum critical values as in Davies

(1977, 1987). This test statistic would have the correct level although not the correct size.

Moreover, as the value of π is weakly identified, generating many samples over a grid of π does

not generate substantially different random draws. The weak identification guarantees that

the signal of π is very weak, and therefore, for all values in the grid of π, the bootstrapped

samples {ymt }Mn
m=1 are numerically very similar.

Let θ̂n be the estimator of the original sample {Wt}nt=1 = {yt, Xt}nt=1, θ̂m be the estima-

tor with respect to each bootstrapped sample m = 1, ...Mn. Let Wm
t (πk) denote the boot-

strapped samples ofWt imposing π = πk (see Step 3 WI). Let θ̂mn (πk) = (ζ̂mn (πk)′, β̂mn (πk)′, π̂mn (πk)′)′

denote the estimator of θ obtained using bootstrapped sample Wm
t (πk). Similarly, minimiz-

ing the concentrated estimator for each fixed π, let ψ̂mn (π, πk) = (ζ̂mn (π, πk)′, β̂mn (π, πk)′)′ be

the estimators using bootstrapped samples Wm
t (πk). Notice that Xm

t depends on πk when

the explanatory variables include lags of yt.

The steps to obtain a bootstrapped asymptotic distribution are listed as follows.
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Parametric Bootstrap under Weak Identification

• Step 1 WI. Construct a discrete grid of Π, [πmin, ..., πmax] ∈ Π̃, and let dΠ̃ = dim(Π̃).

Obtain the extremum estimator with respect to each πk ∈ Π̃, k = 1, ..., dΠ̃ for the

objective function Qn(ψ, πk). Notice that this problem is standard, all estimators are

consistent as and weak identification is not present in this objective function. We fix

πk and obtain {ψ̂n(πk)}
dΠ̃
k=1 as follows

ψ̂n(πk) = arg min
ψ∈Ψ(πk)

Qn(ψ, πk) (2.20)

Obtain the optimal ψ̂0,n setting β = 0 and obtain the residuals that do not depend on

π using ψ̂0,n. In the non-linear model, the residuals are constructed as follows.

εt(ψ̂0,n) = yt − ζ̂ ′0,nX1,t (2.21)

where ψ̂0,n = (0, ζ̂n) for this particular model.

• Step 2 WI. Using the residuals centered at the point of lack of identification εt(ψ̂0,n),

obtain bootstrap samples {εmt (ψ̂0,n)}Mn
m=1 using either the Wild Bootstrap process of

Liu et al. (1988) or the Dependent Bootstrap of Shao (2010).

[Independence] εmt (ψ̂0,n) = zmt (εt(ψ̂0,n)− n−1
n∑
t=1

εt(ψ̂0,n)) zmt
d∼ D(0, 1) (2.22)

[Dependent] εmt (ψ̂0,n) = zmt (εt(ψ̂0,n)− n−1
n∑
t=1

εt(ψ̂0,n)) zmt
d∼ D(0,Γ(z))

(2.23)

where D denotes a strictly stationary distribution, mean zero and variance one. Cen-

tering of εt(ψ̂0,n) is required as they are not necessarily mean zero. Two examples are

the Normal distribution or the two point distributions of Rademacher or Mammen

(1993).
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• Step 3 WI. Obtain bootstrapped samples Wm
t (πk) = {ymt (πk), Xm

t (πk), }
Mn,dΠ̃
m=1,k=1 using

the bootstrapped residuals for each extremum estimator obtained in Step 1 with fixed

πk.

ymt (πk) = ζ̂n(πk)′Xm
1,t(πk) + β̂n(πk)′h(Xm

2,t(πk), πk) + εmt (ψ̂0,n) (2.24)

for matrices {ymt (πk)}
Mn,dΠ̃
m=1,k=1 of size (n × dΠ̃). The variable {Xm

t (πk)}
Mn,dΠ̃
m=1,k=1 would

be equal to Xt, ∀m if Xt does not include lags of yt.

• Step 4 WI. Obtain the bootstrapped estimators for each element of the grid of πk ∈ Π̃

using samples Wm
t (πk) = {ymt (πk), Xm

t (πk)}
Mn,dΠ̃
m=1,k=1.

θ̂mn (πk) = Qm
n (Wm

t (πk), θ) = arg min
θ∈Θ

n−1
n∑
t=1

(yt(πk)− ζ ′X1,t(πk)− β′h(X2,t(πk), π))2

(2.25)

The resulting steps leads to a sequence of estimators that depend on the data generating

process imposed on Step 3, {θ̂m,kn (πk) = (ζ̂m,kn (π̂mn (πk))′, β̂mn (π̂mn (πk))′, π̂mn (πk)′)′}
Mn,dΠ̃
m=1,k=1.

Alternatively, the estimators can be obtained applying a two step procedure using the

concentrated estimator.

To introduce the asymptotic results of the parametric bootstrap under weak identifica-

tion, we consider first the case where πn is assumed to be known. Even though this case is

unrealistic, it illustrates the validity of the parametric bootstrap. This assumption will be

dropped in the next subsection.

2.4.3 The ideal case: known πn

When πn is known, we can estimate ψ consistently and obtain residuals that are valid

for bootstrapping. Moreover, a grid of Π is not necessary and the bootstrapped samples

{Wm
t }

Mn,n
m=1,t=1 can be used to obtain bootstrapped estimators of all parameters θ. That is

because if πn were known or if we were able to consistently estimate it, there would not be a
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weak identification problem, and the bootstrapped would be similar to the case under strong

identification.

The first proposition proved in this paper states that we can mimic the asymptotic

distribution using the parametric bootstrap when πn is known. In this case, we abstract for

the grid of Π̃ and we do not have an estimator for each πk. The assumption of known πn will

be dropped in the following subsection and is used as a preamble for the results that follow.

Proposition 2.4.2 Suppose Assumption J to Assumption N hold. Suppose that the true

value of the weakly identified parameter πn is known and imposed on Step 3 WI. The following

holds letting Mn →∞ as n→∞,

sup
z∈Rdθ

∣∣∣∣∣∣ Pm

√
Mn(ψ̂mn (π̂mn , πn)− ψ̂n(πn)) ≤ z1

π̂mn (πn) ≤ z2

 − Pθn


√
n(ψ̂n − ψn) ≤ z1

π̂n ≤ z2


∣∣∣∣∣∣ p→ 0(2.26)

where Pm is the bootstrap induced probability measure.

The distribution on the right-hand side of the proposition id derived by Andrews and

Cheng (2012) and a wild bootstrapped method to replicate this distribution is derived in

Chapter 1. It is worth noticing that the parametric bootstrap can be used to construct

the non-standard distribution without the knowledge of the closed for expression derived by

Andrews and Cheng (2012).

2.4.4 The realistic case: unknown πn

Now we focus on the asymptotic size of the test when we do not know the true value πn.

The parametric bootstrap generates bootstrapped samples that depend on the parameter

πk along the grid, which we write as Wm
t (πk). With the bootstrapped samples we can

obtain bootstrapped estimators θ̂mn (πk) and generate the distribution of the t-statistic for

each element of the grid. As the true πn is unknown, we construct the supremum of the

critical values as in Davies (1977, 1987).

Let cψ1−α(πk) denote the one tailed critical values of the asymptotic distribution under
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weak identification of ψ using a data generating process that sets π = πk, i.e. the critical val-

ues of τ(π, θ0, b) generating using the data generating process with πk. Clearly, the supremum

of this critical value along all πk, is rejected with probability of at least α for all estimators

generated with any πk. Similarly, let cπ1−α(πk) denote the critical value of the asymptotic

distribution under weak identification of π, i.e. π∗(θ0, b) using the data generating process

that assumes π = πk.

Proposition 2.4.3 Suppose Assumption J to Assumption N hold. Let πn be unknown. Un-

der weak identification, the following holds letting Mn →∞ as n→∞.

lim inf
n→∞

Pm


√
Mn(ψ̂mn (π̂mn , πk)− ψ̂n(πk)) ≤ sup

πk∈Π̃
cψ1−α(πk)

π̂mn (πk) ≤ sup
πk∈Π̃

cπ1−α(πk)

 ≥ 1− α (2.27)

with probability approaching one.

The proposition above is a first step to prove that the t-statistic introduced in the next

section has correct asymptotic size. The t-statistic is based on this asymptotic result and

the construction of matrices that converge in probability to a constant. In contrast to the

standard t-statistic, the robust t-statistic constructed in Section 2.6 will include a normaliza-

tion matrix which is necessary to obtain a finite probability limit of the variance-covariance

matrix under weak identification.

2.5 Imposing the null hypothesis

2.5.1 Strong Identification, imposing the null hypothesis

The result in Proposition 2.4.1 gives us a bootstrap method to construct the bootstrapped

t-statistic under strong identification. If we wish to test H0 : θ = θH0, we impose the null

hypothesis and generate bootstrapped random draws of the distribution of yt under the null.

As stated by MacKinnon (2006), ”imposing the restrictions of the null hypothesis yields more

efficient estimates of the nuisance parameters upon which the distribution of the test statistic

may depend. This generally makes bootstrap tests more reliable, because the parameters of
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the bootstrap data generating process are estimated more precisely”.

The wild bootstrapped t-test developed in Chapter 1 derives the asymptotic distribution

under strong and weak identification and subsequently generates the bootstrapped distribu-

tion using a wild bootstrap. The parametric bootstrap is constructed without the knowledge

of those underlying distributions. Imposing the null hypothesis must be implemented in Step

3 because this step generates bootstrapped samples of the underlying data generating pro-

cess.

First, we consider imposing the null hypothesis under strong identification. Suppose

we implement the parametric bootstrap Step 1 SI to Step 4 SI, replacing Step 3 with the

following,

• Step 3 SI*. Generate bootstrapped random variables Wm,s
t = {ym,st , Xm,s

t }Mn,n
m=1,t=1

imposing the null hypothesis H0 : θ = θH0

ym,st = ζs
′

H0X
m,s
1,t + βs

′

H0h(Xm,s
2,t , π

s
H0) + εmt (θ̂sn) (2.28)

Besides Step 3 SI, the rest of the bootstrap method is equivalent to the parametric

bootstrap described in Section 2.4. Proposition 2.4.1 follows when the null is imposed,

although the distribution would be centered by θH0 instead of θ̂n.

2.5.2 Weak Identification, imposing the null hypothesis

Imposing the null hypothesis under weak identification is implemented in Step 3 although

this has the potential to disregard the grid of parameters π. This implies that imposing the

null hypothesis reduces the number of nuisance parameters and can potentially eliminate

all of them in some cases. For example, imposing the null hypothesis H0 : π = a leads to

a t-test without nuisance parameters because if the null is true, weak identification is no

longer present and all parameters in the estimation are consistent. Fixing the value of π

would imply that the estimator π̂n is not required to generate bootstrapped samples.

The number of nuisance parameters in the bootstrapped distribution is different the null
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is imposed on either ψ or π. First we assume that the null hypothesis imposes the null

with respect to the strongly identified parameters ψ. Suppose we implement the parametric

bootstrap Step 1 WI to Step 4 WI, replacing Step 3 with the following,

• Step 3 WI* (ψ). With the bootstrapped residuals obtained in Step 2 WI, construct

bootstrapped samples Wm
t (πk) = {ymt (πk), Xm

t (πk), }
Mn,dΠ̃
m=1,k=1 imposing H0 : ψ = ψH0

for each πk.

ymt (πk) = ζ̂H0(πk)Xm
1,t(πk) + β̂H0(πk)h(Xm

2,t(πk), πk) + εmt (ψ̂0,n) (2.29)

for matrices {ymt (πk)}
Mn,dΠ̃
m=1,k=1 of size (n× dΠ̃).

In the non-linear model introduced in Section 2.3, imposing the null with respect to β

leads to a reduction of the set of nuisance parameters to only one, π0. As π0 is the only

nuisance parameter, the grid Π̃ is used to fix that value to generate bootstrapped samples.

On the other hand, imposing the null with respect to parameter π, i.e. when we are testing

H0 : π = a, leads to a generating bootstrapped samples yt without nuisance parameters as

the model is no longer weakly identified.

• Step 3 WI* (π). With the bootstrapped residuals constructed in Step 2 WI, obtain

the bootstrapped samples {ymt (πH0), Xm
t (πH0)}Mn

m=1 imposing H0 : π = πH0.

ymt (πH0) = ζ̂n(πH0)′Xm
1,t(πH0) + β̂n(πH0)′h(Xm

2,t(πH0), πH0) + εmt (ψ̂0,n) (2.30)

for matrices {ymt (πH0)}Mn
m=1 of size (n× dΠ̃).

It is worth noticing that imposing the null hypothesis can contradict the identification

category we are studying. For example, if we wish to test H0 : β = 0, this null hypothesis im-

plies weak identification. Constructing the parametric bootstrap under strong identification

imposing this null hypothesis would lead to invalid critical values as both conditions are con-

tradictory. Nonetheless, the parametric bootstrap under weak identification would lead to
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the correct critical values (surprisingly without nuisance parameters) as weak identification

is implied by the null hypothesis.

Generating bootstrapped samples using the parametric bootstrap method can be compu-

tationally intensive in a model with a large number of parameters. Nonetheless, the paramet-

ric bootstrap abstracts from the derivation of the expressions that compose the non-standard

distributions of the estimators and the simulation of these processes. The parametric boot-

strap only requires to bootstrap residuals and generate new bootstrap samples. Moreover, it

has a computational intensity comparable to other bootstrap methods with dependent data.

2.6 Bootstrapped t-statistic

The bootstrapped distributions of the estimators developed in the previous sections are

used to construct the bootstrapped t-statistic under strong and weak identification. The

t-statistic not only has a different distribution according to the identification category, it

can also have a different convergence rate. For example, π̂n = Op(1/
√
n) under strong

identification but π̂n = Op(1) under weak identification. To obtain an Op(1) t-statistic, we

will adopt a normalization matrix B(β).

Let the null hypothesis be defined as,

H0 : r(θ) = q (2.31)

The robust t-statistic requires a normalization matrix B(β), defined as follows,

B(β) =

 Idψ Idψ×dπ

Idπ×dψ i(β)Idψ

 (2.32)

i(β) =


β, if β is a scalar

||β||, if β is a vector

The matrix B(β) is necessary to avoid singularity of the variance-covariance matrix which
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leads to a t-statistic bounded in probability for any parameter. See Andrews and Cheng

(2012) for more details on the normalization matrix B(β), in particular Theorem 3.3. The

robust t-statistic is defined as follows,

Tn =
√
n(r(θ̂n)− q)

[rθ(θ̂n)B−1(β̂n)Σ̂nB−1(βn)rθ(θ̂n))′]1/2
(2.33)

The robust t-statistic is compared to the bootstrapped distribution for both identification

categories constructed using the parametric bootstrap.

2.6.1 Bootstrapped distribution of the robust t-statistic

Theorem 4.1 of Andrews and Cheng (2012) derive the limit distribution of the t-statistic

for each identification category. The limit distribution depends on the identification category

and on which parameter is being tested. Specifically, under weak identification, the t-statistic

takes a particular distribution when we impose a null hypothesis with respect to ψ and

another distribution when we test a null hypothesis with respect to π.

The parametric bootstrap is used to replicate this distributions directly using the re-

gression model and residuals centered at the point of lack of identification. We begin by

assuming that the model is weakly identified and that πn is known. We also assume that we

are testing a null hypothesis with respect to ψ. The asymptotic distribution of the t-statistic

when we test with respect to the strongly identified parameters ψ, is denoted by Tψ and and

can be constructed using the bootstrapped estimators {θmn }Mn
m=1,

Tψ,mn (π) = rψ(π)
√
n(ψ̂mn (π, πn)− ψ̂n(πn))

[rψ(π)Σ̂n(π)rψ(π)′]1/2
(2.34)

where rψ is the derivative of the restriction matrix and Σ denotes the variance covariance

matrix defined on Chapter 1. Notice that Tψ,mn is the bootstrapped version of Tψ using the

parameter distribution
√
n(ψ̂mn (π, πn)− ψ̂n(πn).

Let Sβ = [Idβ : 0dβ×dζ ] is the selector matrix that selects β out of ψ for parameter β.
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The bootstrapped t-statistic takes the following form when the null hypothesis tested is with

respect to π,

T π,mn (π) = ||Sβ(
√
n(ψ̂mn (π, πn))||(r(ψ̂mn (π, πn), π)− r(ψ̂mn (π, πn), πn))

[rπ(π)Σ̂n(π)rπ(π)′]1/2
(2.35)

When the model is strongly identified, the distribution of the t-statistic does not depend on

which parameters we are testing. It is not very surprising that as the asymptotic distribution

of θ̂n is standard normal under the proper normalization 3,

T θ,mn = rθ(θ̂m,sn )(
√
nB(β̂m,sn )(θ̂m,sn − θ̂n))

[rθ(θ̂m,sn )Σ̂n(θ̂m,sn )rθ(θ̂m,sn )]1/2
(2.36)

Let Tψ, T π denote the asymptotic distribution of the t-statistic under weak identification

when the restrictions are imposed on ψ and π respectively. The next theorem states that the

bootstrapped distributions approximate the asymptotic distribution for each identification

case separately.

Theorem 2.6.1 Suppose Assumption J to Assumption Q are satisfied. Let πn be known.

Using the parametric bootstrap introduced in from Step 1 WI to Step 4 WI and Step 1 SI to

Step 4 WI, and letting Mn →∞ as n→∞ for each identification category,

(a) Under weak identification with dim(rπ(θ)) = 0, Tψ,mn (π̂mn (πn)) d→ Tψ(π∗(θ0, b); θ0, b)

(b) Under weak identification with dim(rπ(θ)) = 1, T π,mn (π̂mn (πn)) d→ T π(π∗(θ0, b); θ0, b)

(c) Under strong identification, T θ,mn
d→ N(0, 1)

The previous proposition assumes that πn and the identification category is known. In

the following subsection, we relax both of this unrealistic assumptions.

3the normalization matrix is necessary for the semi-strong identification category
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2.6.2 Robust Critical Values

The previous results state that we can obtain critical values of the distributions under

strong and weak identification. Nonetheless, it is not clear which critical values should

be employed when the identification category is unknown. The simplest way to obtain

the correct level of a test is to be conservative and use the largest critical value of both

distributions.

The LF critical value proposed by Andrews and Cheng (2012) follows this approach as

it selects the largest critical value. Let cmn,1−α(p), p ∈ P denote the critical values of the

weakly identified bootstrap statistic constructed using Step 1 WI to Step 4 WI. Recall the

set P denotes the set of nuisance parametrs that arise in the bootstrapped distribution of

the t-statistic when the model is weakly identified. Let cm,sn,1−α denote the critical values of

the strong identified bootstrap statistic constructed using Step 1 SI to Step 4 SI. The LF

critical value is defined as

cLF,mn,1−α = max{ sup
πk∈Π̃

cmn,1−α(πk), cm,sn,1−α} (2.37)

The set of nuisance parameters P would change according to the parameters tested as

well as the null hypothesis imposed. The wild bootstrap t-test developed in Chapter 1 and

the asymptotic approximations of Andrews and Cheng (2012) have two nuisance parameters

under the null (b, π0). The parametric bootstrap, on the other hand, the nuisance parameters

are only π0 as b is not required to impose the null hypothesis. As only one of the πk is

the correct one, the sup of the critical values along the grid provides with a test of the

correct level. Moreover, when the test is with respect to π, imposing the null eliminates

all nuisance parameters and in consequence, our statistic has the correct test size. The

simulation exercise in the next section shows that is this case the parametric bootstrap has

empirical sizes comparable to the infeasible statistic where nuisance parameters are known.

Clearly, the LF critical value is not ideal because it is over-conservative. To improve

the size and power of the test, Andrews and Cheng (2012) propose a data-driven critical
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value, ICS1, that relies on the first-step test of weak identification. If we cannot reject the

null of weak identification, the LF critical value is selected; otherwise, the strong identifi-

cation bootstrapped critical value is used. We modify the ICS1 critical values introducing

a critical value we name ICS0. This critical value is based on selecting between weak and

strong identification, unlike the ICS1 critical value which selects between LF and strong

identification.

cICS0,m
n,1−α =


sup
πk∈Π̃

cmn,1−α(πk) if Ân ≤ κn (2.38)

cm,sn,1−α if Ân > κn

Ân = (nβ̂nΣ̂−1
n β̂n)1/2 (2.39)

Ân is a first step statistic and κn is a sequence of positive constants such that κn → ∞

and κn/n
1/2 = o(1). For example, κn = (log n)1/2 is analogous to the penalty term used

in the Bayesian Information Criterion. The null hypothesis H0 : ||b|| < ∞ is accepted in

favor of weak identification when Ân ≤ κn, while the null hypothesis is rejected in favor of

strong identification i.e. H1 : ||b|| =∞ when Ân > κn. For large enough n, the statistic Ân

established if the parameters of the model are weakly identified.

The following proposition proves that the robust critical values lead to correct asymp-

totic size. Unlike Theorem 2.6.1, the conditions of the theorem specify that πn and the

identification category are unknown.

Theorem 2.6.2 Let Mn →∞ as n→∞. Under the null hypothesis H0 : r(θ) = q, the LF

and ICS0 critical values of the t-test have correct asymptotic size w.p.a.1,

(a) AsySzLF,m = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pm(Tn(r(θ)) ≤ cLF,mn,1−α(r(θ))) = 1− α

(b) AsySzICS0,m = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pm(Tn(r(θ)) ≤ cICS0,m
n,1−α (r(θ))) = 1− α

(c) If H0 is false, that is r(θn) 6= q, then Tn(r(θ)) p→∞
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The LF critical values lead to test sizes that can be substantially smaller than the correct

test sizes when an incorrect identification category is used. On the other hand, the ICS0

critical value uses the correct asymptotic distribution as long as the first step estimator Ân

establishes the identification category. The next section develops a simulation exercise shows

that the parametric bootstrap has good properties and performs very well empirically.

2.7 Simulation Exercise

The bootstrapped procedure introduced in this paper is motivated by the loss of size

and power from the nuisance parameters that appear in the distribution in Chapter 1. In

this section, we test if the parametric bootstrap helps to obtain more accurate test sizes in

practice.

For the simulation exercise, we use the exponential smoothing model as in Cheng (2015).

The model specification is defined as follows.

εt(θn) = yt − ζ0x1,t − βnyt−1(1− exp(−c(x2,t − π0)2)) (2.40)

For this model, there is not need to use drifting sequences of true parameters for ζ and

π, the speed at which βn → ∞ will determine the identification category. We assume the

following true values in the simulations : ζ0 = 1, π0 = 0 and b = 1. In this exercise we

compare the identification categories as follows, under strong identification we set βn = b,

under weak identification we set βn = b/
√
n and under non-identification (limiting case of

weak identification) we set βn = 0.

The sample size takes value n = 100, 250 and 500. We set are x1,t, x2,t
d∼ N(0, 1), c = −1.

We let the true errors to be either Normal(0,1) or GARCH(1,1) with ω = 0.1, α = 0.3

and β = 0.6. The wild bootstrap of Liu et al. (1988) using the two point distribution

multiplier as in Mammen (1993) to generate the bootstrapped residuals in Step 2. The

number of simulations is 1,000. For each simulation, we construct bootstrapped samples

using 500 draws. We also refer Chapter 1 for a complete reference of gradient, Hessian and
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other expressions required for estimation and construction of the bootstrap as well as other

simulation details. The remaining tables are presented in the Appendix.

We consider three null hypotheses in this simulation exercise. The first null hypothesis

sets the parameters equal to their true values. To evaluate the power of the test, the second

and third hypothesis consider the false null hypotheses of parameters within one and three

standard deviations of the true value.

Hβ
0,1 : β = βn Hπ

0,1 : π = π0

Hβ
0,2 : β = βn + σβ Hπ

0,2 : π = π0 + σπ (2.41)

Hβ
0,3 : β = βn + 3σβ Hπ

0,3 : π = π0 + 3σπ

The robust sample t-statistic is constructed by

Tn =
√
n(r(θ̂n)− v)

[rθ(θ̂n)B−1(β̂n)Σ̂n(θ̂n)B−1(β̂n)rθ(θ̂n)′]1/2
(2.42)

while the standard t-statistic takes the form,

T sn =
√
n(r(θ̂n)− v)

[rθ(θ̂n)Σ̂n(θ̂n)rθ(θ̂n)′]1/2
(2.43)

The critical values of the bootstrapped t-statistic are computed using order statistics.

Let {Tma,n(π)}mj=1 be a sequence of independent draws of the t-statistic with a = ψ, π, θ.

Denote the order statistics by Tma,n,[1] ≤ Tma,n,[2], ..., etc. The LF and ICS0 critical values are

computed using ca,mn,1−α/2 = inf{c ≥ 0 : P(Tmn ≤ c) ≥ 1 − α/2} and ca,mn,α/2 = inf{c ≥ 0 :

P(Tmn ≤ c) ≥ α/2}, as we use two tailed critical values. To construct the ICS0 critical value,

we use κn = (ln(n))1/2, as suggested by Andrews and Cheng (2012).

Tables 2.3 and 2.4 compares the results of the parametric bootstrap introduced in this

paper and the (unfeasible) asymptotic approximation of Andrews and Cheng (2012). The

LF AC and ICS0 AC critical values are unfeasible because it is assumed that the nuisance
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parameters are known while the identification category is still unknown. The bootstrapped

critical values are feasible as they do not assume that the identification category or the nui-

sance parameters are known. Even though the testing of β is not valid using the parametric

bootstrap, the tables illustrate its performance and its irregular behavior in the weakly

identified case.

The results in Tables 2.3 and 2.4 indicate that the parametric bootstrap works excep-

tionally well for the cases of strong and non-identification. The critical values that are

constructed in these cases are numerically close to the infeasible critical values of Andrews

and Cheng (2012). When the model is weakly identified, the critical values work well, but

not as well as the infeasible case. The difference in accuracy hinges on the inability of the Ân

statistic to recognize if the parameters are weakly or strongly identified. When the Ân leads

to the incorrect conclusion, the ICS0 selects the incorrect critical value, and in consequence

rejection rates are usually higher than the correct test size. The least favorable critical values

perform better as the simulation exercise shows that the distributions under weak identifi-

cation have larger critical values that the strong identification case. The critical values for π

work particularly well compared to the asymptotic approximations of Andrews and Cheng

(2012). In the case of the asymptotic approximations, test sizes close to zero when we test

with respect to π. As the t-test is centered at π0 which is a nuisance parameter, generating

a grid and taking the supremum of the critical values does not perform well in practice

because the critical values are too wide. Using the parametric bootstrap presented in this

paper, we can test π without nuisance parameters, which performs as well as the infeasible

critical values of Andrews and Cheng (2012). In summary, the parametric bootstrap works

very well as long as the ICS0 critical values are able to recognize if the parameters of the

model are weakly or strongly identified.

2.8 Conclusion

We introduce a parametric bootstrap method for models where parameters are potentially

weakly identified. The parametric bootstrap is easy to construct as closed-form expressions
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of the t-statistic are not required, and can reduce the number of nuisance parameters. The

simulation exercise suggests that the t-test constructed using the parametric bootstrap leads

to accurate test size and test power compared to the asymptotic approximations of Andrews

and Cheng (2012) or the wild bootstrap method of Chapter 1.
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CHAPTER 3

THE RISK-RETURN TRADE-OFF UNDER WEAK IDENTIFICATION

3.1 Introduction

The risk-return trade-off is one of the most important relations in the finance literature.

The relation characterizes the common conception that potentially high levels of risk of an

asset should be followed by potentially high returns. Based on the portfolio selection mean-

variance analysis model of Markowitz (1952), Merton (1973) proposed the Intertemporal

Capital Asset Pricing Model (ICAPM). The ICAPM is derived by solving a micro-founded

optimization problem in which a representative investor maximizes his expected utility in-

vesting in a portfolio of risky assets and a risk-free bond. In equilibrium, the ICAPM char-

acterizes the risk-return trade-off, suggesting that conditional excess return of a portfolio

should have a linear relationship with respect to its conditional variance.

Et(Rt+1) = ζ + βV art(Rt+1) (3.1)

Here β is the coefficient of relative risk aversion of the representative agent, and ζ should be

equal to zero. The expectation and variance are conditional on the information prior to time

t. According to the risk-return trade-off relationship obtained by Merton (1973), the value

of β must be positive and statistically significant, implying that the conditional variance of

an asset has a positive and linear relationship with respect to conditional excess returns.

A significant number of research papers have tested the theoretical implications of the

risk-return trade-off using data, which has lead to contradictory results. One of the most im-

portant difficulties to estimate the risk-return trade-off empirically hinges on the estimation

of the (unobservable) conditional variance. As the measure of conditional mean and variance

depends on the model at hand, some authors find a positive risk-return trade-off while other
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find a negative relationship. Using a GARCH-in-Mean model, Baillie and DeGennaro (1990)

find a positive non-significant relationship, while French, Schwert, and Stambaugh (1987)

obtain similar results using a rolling window estimator of conditional variance. On the other

hand, Campbell (1987) and Nelson (1991) find a negative, statistically significant risk-return

trade-off. In particular, Nelson (1991) uses a GARCH model that accounts for volatility and

return distributional asymmetries (i.e. leverage effect). Glosten, Jagannathan, and Runkle

(1993) and Turner, Startz, and Nelson (1989) argue that the results of risk-return relationship

can change from positive to negative by slightly modifying their model specification.

Lettau and Ludvigson (2001b) argue that conditioning on information is crucial to obtain

meaningful results for the risk-return relationship. In particular, they find a positive and

significant risk-return relationship using conditional returns and a negative non-significant

relationship using unconditional returns. Ludvigson and Ng (2007) use a three-factor model

with 172 financial indicators and find that these factors lead to a positive and significant

risk-return relationship. The three factors contain synthesized information from volatility,

risk and “real economy” factors. Lettau and Ludvigson (2001a) propose the residual of a

cointegrating relationship, ˆcayt, formed with consumption, wealth and labor income data.

The authors argue that ˆcayt has a strong ability to forecast the return on aggregate stock

market indices, which supports the validity of the CCAPM model to explain future market

returns.

Given that the different results in the literature depend substantially on model selection,

Ghysels et al. (2005) propose an optimally weighted estimator of conditional variance using

the mixed data sampling (MIDAS) model. The MIDAS estimator of conditional variance

combines high-frequency (e.g. daily) data into a lower frequency (e.g. monthly, quarterly)

specification using a data-driven optimized weighting function. The results of Ghysels et al.

(2005) suggest that there is a positive and significant risk-return trade-off robust to subsam-

ples. The authors argue that their results emerge because estimating the optimal weights

leads to a more accurate estimator of conditional variance. In particular, the optimal weights
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are key to identify the persistence component of the volatility process. The short-term fluc-

tuations in the conditional variance are mostly driven by negative shocks, while positive

shocks have a persistent impact on the variance process. The MIDAS model facilitates the

construction of a highly persistent conditional variance process whose persistence differs

between positive and negative returns.

In a subsequent paper, Ghysels et al. (2016) present a correction and extension of their

2005 paper. The authors argue that even though the evidence of the risk-return trade-off is

low when using the corrected results, the relationship still holds if episodes of financial crises

are eliminated from the sample, specifically, the Great Depression, the subprime mortgage

financial crisis, and the Great Recession. The authors suggest that during financial crises

investment decisions are driven by a flight-to-safety phenomenon, which dominates the long-

run risk-return trade-off relationship.

In this paper, we construct the wild bootstrapped and parametric bootstrapped robust

t-test proposed in Chapter 1 and Chapter 2 to test the validity of the MIDAS specification

proposed by Ghysels et al. (2005, 2016) to characterize the risk-return trade-off. Ghysels

et al. (2005, 2016) use the standard t-test to evaluate the explanatory and predictive power

of the MIDAS model. Nonetheless, the MIDAS model suffers from weak identification in the

sense of Andrews and Cheng (2012, 2014, 2013), which implies that the standard t-test is

not valid. For example, testing if H0 : β = 0 cannot be established using the standard t-test

because under the null hypothesis β and π cannot be separately identified. Testing whether

β = 0 is empirically relevant because it determines the adequacy of the MIDAS specification

to model the risk-return trade-off. Moreover, as the rejection rates of the standard t-test

are usually larger than the rejection rates of the robust t-test, using the wrong critical

values would lead to false positives, i.e. erroneous statistical significance of the estimators

composing the MIDAS model. We compare the different outcomes of testing parameter

significance and model adequacy using the standard t-statistic, the wild bootstrapped, and

parametric bootstrapped robust t-test.

76



3.2 The MIDAS model under weak identification

Constructing regression models using data sets with variables sampled at different fre-

quencies can be challenging. The usual approach is to adjust the data sets such that all

variables are expressed in the duration of the variable with the lowest frequency. Since eco-

nomic data is commonly sampled at a monthly or quarterly frequency, while financial data

is sampled daily or intraday, this approach leads to a loss of a large number of observa-

tions. The MIDAS model provides an alternative framework to construct regression models

using variables sampled at different frequencies. The model summarizes a large amount of

information using a relatively small number of parameters.

The specification proposed by Ghysels et al. (2005) characterizes the risk-return trade-off

in monthly or quarterly frequency along with explanatory variables at a daily frequency. The

left-hand side of the regression equation contains monthly or quarterly market excess returns,

while the right-hand side will be composed by a conditional variance estimator constructed

with weighted daily returns. We use monthly and quarterly market excess returns because

the risk-return trade-off is considered a long-run relationship that daily and intraday returns

cannot capture.

Following Ghysels, Santa-Clara, and Valkanov (2004) we introduce the MIDAS model.

LetRt denote monthly (or quarterly) returns, between the month t−1 and t, and rt denote the

daily return at time t, and let Vt(π) denote the MIDAS model conditional variance estimator.

Following Ghysels et al. (2005, 2016) we construct the conditinoal variance estimator Vt(π)

using an Almon-lag weighting function,

Vt(π) = A
D−1∑
d=0

w(d, π1, π2)r2
t−d (3.2)

w(d, π1, π2) = exp(π1d+ π2d
2)∑D−1

k=0 exp(π1k + π2k2)
(3.3)

By construction, the Almon-lag weighting function is always positive and sums to one.

Moreover, the behavior of the weighting function is completely determined by π1 and π2.
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It can be either increasing or decreasing as well as concave or convex for different values

of π1 and π2. We set D = 252 to construct the conditional variance with the 252 daily

observations prior to day t, which is roughly the number of trading days in one year. Notice

that the MIDAS specification is not imposing a conditional variance estimator with one year

of daily observations. The weighting function will determine endogenously what subset of

the 252 observations is significant to capture the risk-return trade-off. The estimates of

π1 and π2 determine the weighting function that minimizes the sum of squared residuals

of Equation (3.4). Another important property of the MIDAS model is parsimony. The

conditional variance estimator includes thousands of daily observations which are weighted

with only two parameters π1 and π2. With a small number of parameters, it is more likely

that we can find a relationship that is causal instead of a spurious results caused by model

overfitting. The value A is used to express variance in monthly or quarterly terms. As a

month has 22 trading days on average, A = 22 with monthly data and A = 66 with quarterly

data.

The MIDAS model of the risk-return trade-off introduced by Ghysels et al. (2005) mini-

mizes the sum of squared residuals of the following non-linear function, which is composed by

low frequency returns and a conditional variance estimator constructed with daily returns,

Rt+1 = ζ + βVt(π) + εt+1 (3.4)

where (ζ, β, π1, π2) denote the parameters and εt is a noise process.

The MIDAS specification includes a polynomial function to reduce the dimensionality of

the dataset and the number of parameters in the model. Moreover, the polynomial function

is advantageous to obtain a data-driven lag selection method. A linear regression model

with autoregressive regressors such as ARMA requires that the number of lag has to be

set before estimation. The task of choosing the number of lags that are appropriate can

be particularly complicated, especially when large amounts of high-frequency data are used.

For example, the number of informative lags of the daily stock market index to forecast GDP
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next period is hard to determine for any type of regression model specification. The MIDAS

model proposes the solution of using a flexible polynomial function in which the number of

observations being averaged is determined endogenously.

The polynomial function determines the weights of the higher frequency data to affect the

lower frequency specification. Even though the procedure is data-driven, we usually obtain

a smooth weighting function with its shape determined by the temporal significance of the

explanatory variable. In most economic and financial applications, we expect observations

that are closer to time period t to be higher weighted compared to observations that are

farther away from t. Graphically, the weighting polynomial function would be a decreasing

function over time. Nonetheless, it is not clear if the weighting function should have a convex

or concave shape. In the convex case, the observations very close to t have a much larger

weight than observations that are further away, while in the concave case, observations that

are farther away may have a weight close to the value of observations close to t. The shape

of the weighting function is determined endogenously by the MIDAS estimation.

Estimating this model using Maximum Likelihood is not appropriate because is unclear

what type of probability density function the MIDAS errors follow. To avoid making a

strong distributional assumption, we estimate (ζ, β, π1, π2) using Quasi-Maximum Likelihood

(QML),

εt+1(ζ, β, π)
Vt(π) ∼ N(0, 1) (3.5)

Qn(θ) = n−1
n∑
t=1

Qt(θ) = − 1
2n

n∑
t=1

[
log(Vt(π) + εt(θ)2

Vt(π)

]
(3.6)

Based on the results by White (1982), the QML estimator converges in probability to the

pseudo-true value θ∗ 1. Even though the model may be mispecified, the QML estimator is

1The estimator is consistent with respect to the pseudo-true value because the log-likelihood is misspeci-
fied, and therefore it could be inconsistent with respect to the true value θ0.
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asymptotically normal with the following variance-covariance sandwich estimator.

√
n(θ̂n − θ∗) d→ N(0, J̃−1(θ∗)Ṽ (θ∗)J̃−1(θ∗)) (3.7)

J̃(θ∗) = n−1
n∑
t=1

∂Qt(θ∗)
∂θ

∂Qt(θ∗)
∂θ′

(3.8)

Ṽ (θ∗) = n−1
n∑
t=1

∂2Qt(θ∗)
∂θ∂θ′

(3.9)

The QML esimator is consistent and asymptotically normal under mild regularity conditions,

e.g. White (1982); Newey and McFadden (1994). Appendix C.1 presents more details on

the estimation method.

3.2.1 Weak Identification

Hypothesis testing of the MIDAS model cannot be employed using the standard t-test

because the parameters in the model are potentially weakly identified. If we wish to test

the null hypothesis H0 : β = 0, the parameter π is not identified under the null. Using the

critical values of the standard t-statistic would be incorrect and can lead to false positives.

For example, under weak identification, the standard delta method is not valid to obtain

the asymptotic distribution of the parameters because the Hessian is converging to a similar

matrix.

The inability to identify both parameters under the null leads a t-statistic with non-

standard distributions and nuisance parameters. To construct the bootstrapped distribu-

tions under weak identification, Chapter 1 proposes a wild bootstrap method in which the

bootstrap samples are generated using a multiplier. On the other hand, Chapter 2 proposes

a parametric bootstrap method to reduce the number of nuisance parameters and obtain

more accurate test sizes and higher power. These bootstrap procedures are not a straight-

forward extension. As the estimators can have different distributions according to the value

taken along the parameter space, the uniformity conditions required for the bootstrap are

no longer valid. The bootstrap methods rely on generating bootstrapped distributions of

the t-statistic under weak and strong identification and then combining them to construct
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robust critical values. The next subsections discuss the properties of the wild bootstrapped

and parametric bootstrapped robust t-test.

3.2.2 Wild Bootstrapped robust t-test

The development of these bootstrap methods relies on the ability to pinpoint the cases

where weak identification is present. The construction of this bootstrap relies on the asymp-

totic results of Andrews and Cheng (2012, 2014); Andrews and Mikusheva (2015). The

authors present a unified treatment in which they characterize all possible identification

categories according to the value parameters take along the parameter space. The authors

present four categories of identification which depend on the speed at which the drifting

sequence of true parameters is converging. We avoid the technical definitions encompassing

the identification categories and refer to Andrews and Cheng (2012, 2014); Andrews and

Mikusheva (2015) for an analysis in the asymptotic theory, and we refer Chapter 1 and 2 for

two bootstrap methods. We combine the four categories into two groups which we refer to

as strong and weak identification. This convention simplifies the construction of the robust

critical values, as the four identification categories lead to only two probability distribution

that should be analyzed.

The wild bootstrap method follows the bootstrap specification introduced by Wu (1986);

Liu et al. (1988) when data is independent and heteroscedastic, while it follows the depen-

dent wild bootstrap specification of Shao (2010) when data is dependent. The wild bootstrap

has the benefit of using a multiplier which generates bootstrap samples in a simple way.

Moreover, the bootstrap can have much better small sample performance compared to the

asymptotic approximations as it can obtain an asymptotic refinement (faster higher order

convergence rate in the Edgeworth expansion, e.g. Horowitz (2001)). Under weak identifi-

cation, the asymptotic distribution of the estimators is asymmetric, which can be captured

easily using a multiplier such as the two-point distribution by Mammen (1993). On the other

hand, the selection of a wild bootstrap is important because the standard conditions of the

bootstrap are not satisfied.

81



The wild bootstrapped robust t-test of Chapter 1 has important properties. The robust

t-test does not require assuming that the identification category is known. The method

is used to derive bootstrapped distributions under strong and weak identification. After

computing the bootstrapped distribution for each identification category, we construct robust

critical values that combine the critical values of both distributions. The results presented in

Chapter 1 suggest that the bootstrapped process works well in small samples when nuisance

parameters are assumed to be known. Moreover, the wild bootstrap is simpler to estimate

than the asymptotic approximation counterpart, especially in multivariate settings with non-

linear functional form.

The wild bootstrap method in Chapter 1 is simple to simulate when the parameters of

the model are weakly identified as some closed-form expressions of the underlying processes

are not required to obtain bootstrapped samples. For example, to obtain the critical values

using the asymptotic approximations derived by Andrews and Cheng (2012), an estimator of

the variance-covariance of the stochastic process G(π) is required. A closed-form expression

of this matrix can be complicated to obtain in models with a large number of parameters.

The wild bootstrap method can be used to generate bootstrapped samples of the stochastic

process G(π) using a multiplier.

3.2.3 Parametric Bootstrap robust t-test

One of the limitations of the wild bootstrapped robust t-test is the inability to obtain

the correct asymptotic size unless nuisance parameters are known. To improve the empirical

sizes of the test, Chapter 2 proposes a parametric bootstrap robust t-test.

The parametric bootstrap in Chapter 2 is similar to the residual bootstrap employed in

the econometric literature,Freedman (1981); Mammen (1993); Liu et al. (1988); Horowitz

(2001); Davidson and Flachaire (2008). This method relies on generating bootstrap residu-

als imposing the parametric specification of the model, while subsequently generating boot-

strapped data samples from which bootstrapped distributions can be constructed. When

parameters are weakly identified, this procedure cannot be employed as residuals depend
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on estimators that are inconsistent. Nonetheless, the parametric bootstrap process leads to

correct inference when the models have weakly identified parameters.

Under weak identification, the parametric bootstrap follows the next steps: 1) obtain

residuals that do not depend on π by setting β = 0, 2) obtain bootstrapped residual samples

using a wild bootstrap multiplier as in Wu (1986); Liu et al. (1988); Shao (2010), 3) fix a

grid of parameters to generate bootstrapped data samples over each element in the grid,

and 4) obtain bootstrapped estimators for each bootstrapped sample along the grid. It

is worth mentioning two advantages of this process, 1) the bootstrapped distributions are

generated by imposing the model along the grid, even if we do not have prior knowledge of

the asymptotic distribution of the estimators, 2) the number of nuisance parameters in the

bootstrapped distribution can be reduced because this bootstrap method does not require

knowing the value of the nuisance parameter b and in some cases π1, π2 (see Chapter 1 and

2). The parametric bootstrap is also used to obtain the bootstrapped t-statistic distribution

under strong identification and to construct robust critical values.

The parametric bootstrap leads to a t-statistic whose hypothesis tests with respect to π

do not depend on nuisance parameters. The results of Ghysels et al. (2005) indicate that

the statistical significance of π validates the explanatory power of the conditional variance

estimator constructed with the MIDAS weighting function. In consequence the hypothesis

test H0 : π = 0 is of particular importance in this study to test the added value of the

MIDAS specification.

The empirical exercise of the following section compares the p-values of the t-test by using

the wild bootstrapped t-statistic in Chapter 1, the parametric bootstrap robust t-statistic

of Chapter 2, and the standard t-statistic considered by Ghysels et al. (2005, 2016). The

results of the empirical exercise show that the p-values of the robust t-test and the standard

t-test are substantially different, suggesting that the standard t-test leads to false positives.
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3.3 Empirical Analysis

Assuming a constant relative risk aversion utility function, the microeconomic and asset

pricing literature suggests that β > 1. Specifically, Arrow (1970) indicate that risk aversion

should be almost constant and approximately one. Farber (1978) provides empirical evidence

of the coefficient being larger than one. Friend and Blume (1975) present empirical evidence

that the estimate of risk aversion should be closer to two. Kydland and Prescott (1982)

argue that as the parameter measures the representative consumer’s willingness to substitute

consumption through time, β should be between one and two to mimic the variability between

consumption and investment. Mehra and Prescott (1985) argue that the coefficient of risk

aversion exceeds one significantly. The results of many utility models with uncertainty

depend on the coefficient of risk aversion being larger or smaller than one. For example,

Bansal and Yaron (2004) use an Epstein-Zin utility function, which separates the coefficients

of the intertemporal elasticity of substitution and risk aversion, to obtain a risk premium

in line with empirical evidence. Their results hinge on using Epstein Zin utility function

Ludvigson and Ng (2007) show that the relationship between risk and return can be positive

when you summarize a large amount of economic information using a factor model. The

numerical values of the coefficient of risk aversion β are of particular interest in this study as

they have an economic interpretation. Moreover, the statistical significance of π1 and π2 is

important to test because determines if the optimized weights under a MIDAS specification

have a relevant explanatory power to describe the risk-return trade-off.

The data used for the estimation of the risk-return trade-off using a MIDAS specification

consist of the market return portfolio and a risk-free rate. Following the approach of Ghysels

et al. (2005, 2016), we use the value-weighted returns including dividends from the Center

for Research and Security Prices (CRSP) as a proxy of the market portfolio. The risk-free

rate is approximated using the three-month T-bill yield from CRSP. 2

2Daily T-bill yields are not available before 1980, we transform the T-bill yield to daily frequency by
assuming that rates stay constant within the month and compounding them.

84



The estimation exercise derived in this paper covers six subsample periods. The first

three subsamples are equivalent to the subsamples analyzed by Ghysels et al. (2005), which

include the complete subsample from 1928 − 2000 and two subsamples 1928 − 1963 and

1964 − 2000 which are composed by roughly the same number of observations. The fourth

subsample, 1928 − 2016, considered by Ghysels et al. (2016), includes the last 16 years

of observations. The results of Ghysels et al. (2016) suggest that the risk-return trade-off

relationship holds only if the extreme market movements are eliminated from the MIDAS

estimation sample. These periods, the authors argue, are characterized by investor’s flight to

safety instead of the long-run risk-return relationship. To test this hypothesis, the fifth and

sixth subsample studied in this paper, characterize the periods 1928− 2000 and 1964− 2000

removing returns that are above or below two times their standard deviation. Specifically,

we eliminate all observations such that Rt+1 < −2σ or Rt+1 > 2σ, where σ denotes the

unconditional standard deviation of Rt+1. This approach eliminates roughly 5% of the

subsamples. We refer to these sample periods as flight-to-safety (FTS) subsamples and

express them as 1928− 2000FTS and 1964− 2000FTS.

Our choice of truncation for subsamples 1928 − 2000FTS and 1964 − 2000FTS differs

from the truncation proposed by Ghysels et al. (2016). In their paper, they choose to

truncate all monthly or quarterly returns that are below 1.5 times the unconditional standard

deviation. That is, they eliminate all returns in the left tail of the distribution that satisfy

the condition Rt+1 < −1.5σ. Their approach eliminates around 5% of the number of return

observations, which is close to the number of observations truncated using our truncation

approach described in the previous paragraph. Nonetheless, their truncation eliminates all

observations that are on the left tail, which by construction leads to a positive bias on

the parameter estimates. This bias has been studied extensively in regression models with

truncated data sets such as the Tobit regression model of Tobin (1958). To avoid this

potential bias, we truncate the aberrant observations from the left and right tail of the

distribution to analyze the risk-return trade-off around the mean the sample returns.

Table 3.1 and Table 3.2 present the summary statistics of monthly and quarterly market
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excess returns across the six subsample periods. Surprisingly, the mean and variance of the

monthly and quarterly excess market returns change substantially across subsamples. The

mean of monthly returns changes from 0.74% between 1928− 1963 to 0.48% in 1964− 2000.

Moreover, the variance of monthly returns is roughly three times greater in the 1928− 1963

period than in the 1964 − 2000 period. The results indicate that the market excess return

volatility process increases substantially during financial crises, especially during the Great

Depression and the subprime financial crisis. The negative skewness and high kurtosis of the

return subsamples reflect the well-known facts in the financial literature that the uncondi-

tional distribution is asymmetric and fat-tailed.

Table 3.1: Summary statistics of monthly excess returns

Monthly Mean Variance Skewness Kurtosis
(×102) (×102)

1928− 2000 0.613 0.319 -0.125 11.256
1928− 1963 0.747 0.466 -0.063 10.054
1964− 2000 0.481 0.181 -0.466 5.153
1928− 2016 0.589 0.293 -0.161 11.185
1928− 2000FTS 0.779 0.161 -0.218 2.849
1964− 2000FTS 0.592 0.148 -0.141 2.910

This table shows the mean, variance, skewness and kurtosis of monthly returns for the six
subsamples analyzed. The proxy of the return from the stock market is the value weighted
portfolio from the Center for Research and Security Prices (CRSP) and the risk-free rate is
the three month Treasury bill from CRSP. FTS denotes Flight-to-Safety subsamples.

3.3.1 Estimation results of the wild bootstrap

We begin by discussing the estimation results of the MIDAS model using monthly excess

market returns. Table 3.3 shows the estimated coefficients, their variances, and p-values of

the standard t-statistic and the wild bootstrapped robust t-statistic. The p-values denote

the probability of rejecting the null hypothesis of the parameter is equal to zero. As with

real-world data, the identification category is unknown. We construct the wild bootstrapped

robust t-test assuming weak identification to compare the differences in rejection probabilities

between the robust and standard t-test.
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Table 3.2: Summary statistics of quarterly excess returns

Sample Mean Variance Skewness Kurtosis
(×102) (×102)

1928− 2000 1.839 1.186 0.737 13.115
1928− 1963 2.243 1.810 0.899 10.973
1964− 2000 1.431 0.605 -0.729 4.900
1928− 2016 1.767 1.086 0.639 13.017
1928− 2000FTS 2.068 0.575 -0.459 3.216
1964− 2000FTS 2.072 0.486 -0.066 2.939

This table shows the mean, variance, skewness and kurtosis of quarterly returns for the six
subsamples analyzed. The proxy of the return from the stock market is the value-weighted
portfolio from the Center for Research and Security Prices (CRSP) and the risk-free rate is
the three month Treasury bill from CRSP. FTS denotes Flight-to-Safety subsamples.

The estimator β̂, which characterizes the coefficient of risk aversion, is highly variable

across subsamples, ranging from −0.7 to 3.6. Surprisingly, β̂ is non-significant for any of the

non-FTS subsamples according to the standard or robust t-statistic. Ghysels et al. (2016)

argue that to obtain a statistically significant β̂ we need to remove market crashes from the

estimation data. The results of the FTS subsamples, which exclude observations above and

below two standard deviations, establish that the standard t-test β̂ is statistically significant

at a 10% level. On the other hand, β̂ is not significant for any of the FTS subsamples if the

robust t-test is considered. In other words, the standard t-test erroneously concludes that

the estimator β̂ is significant for both FTS subsamples. We know that the results of the

standard t-test are erroneous because for the null hypothesis H0 : β = 0, the parameter π is

weakly identified, consequently, the t-statistic does not have a standard normal distribution.

Moreover, the standard t-statistic is growing as sample size increases because the variance-

covariance matrix is singular under weak identification.

The results of the t-tests with respect to π1 and π2 presented in Table 3.3 are harder to

interpret because they jointly characterize the shape of the weighting function. For simplicity,

we analyze the statistical results of both estimators simultaneously. The estimates π̂1 and

π̂2 characterize a weighting function that decreases with time for all subsamples. In other

words, daily market excess returns that are closer to time period t have a higher explanatory
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power of conditional variance than observations that are farther away from time t. In spite

of using one year of daily trading days, the weighting function shows a sharp convex shape

that dies out quickly. This implies that observations that are roughly three months prior to

t have a very marginal contribution in the estimation, meaning that all observations that

are from one year to three months prior to time t are assigned an optimal weight close to

zero for the construction of the conditional variance estimator.

In their 2005 paper, Ghysels et al. (2005) argue that the statistical significance of the

t-statistic with respect to π, demonstrate the advantage of using a MIDAS specification. The

authors compare their results to the model employed by French et al. (1987) which uses an

estimator of conditional variance that assigns equal weight to all daily observations. Using

the equally weighted variance estimator, French et al. (1987) find non-significant estimates of

the risk-return trade-off. The estimates of π in the study by Ghysels et al. (2005) are highly

significant. The authors argue that the explanatory power of MIDAS relies on optimally

weighting daily market excess returns to generate an informative estimator of conditional

variance Vt(π). Our results suggest that the statistical significance of the t-tests of π̂1 and π̂2

found by Ghysels et al. (2005, 2016) are false positives, because there is almost no subsample

period where the null hypotheses H0 : π̂1 = 0 and H0 : π̂2 = 0 are both rejected at a 5% level.

Using the standard t-test, the MIDAS weighting function is significant at a 5% level for all

non-FTS subsamples except for the period 1928−1963. On the other hand, the robust t-test

suggests that the relationship is not significant for any of the non-FTS subsamples except

1964 − 2000. The results illustrate the consequences of using the standard t-test in models

that have weakly identified parameters. The test leads us to incorrectly conclude that the

MIDAS model has statistically significant parameters for most of the non-FTS subsamples.

The evidence from our hypotheses tests suggests that daily returns and the MIDAS weighting

polynomial do not provide enough information to obtain an accurate measure of conditional

variance.

Figure 3.1 shows the scatter plot and regression line of the monthly excess returns MIDAS

model estimation. The linear regression model has low explanatory power as the data does
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not seem to have a linear relationship. The R2 is very low, sometimes even negative, for

all subsamples analyzed in this study. Interestingly, the estimation of the slope estimator

β̂ changes substantially with the elimination of a few observations, which suggests that

the model suffers from parameter instability across subsamples. Regression models that are

misspecified suffer from estimates that vary considerably with outliers and across subsamples,

e.g. (Rousseeuw and Leroy 2005). For example, the exclusion of financial crises changes

the estimate of β̂ from 0.32 to 1.39 between subsamples 1928 − 2000 and 1928 − 2000FTS,

and from 2.13 to 3.69 between subsamples 1964 − 2000 and 1964 − 2000FTS. The non-

statistical significance of the estimators β̂, π̂1 and π̂2, as well as the evidence of model

misspecification, suggests that the MIDAS model is not capturing the risk-return trade-off

relationship appropriately.

Table 3.3 shows that the estimator ζ̂ is significant for most periods. In the framework of

the ICAPM, the statistical significance of ζ̂ suggests that the model is misspecified because

this coefficient captures the covariance of market returns with respect to state variables not

included in the model. The results of Ludvigson and Ng (2007) suggest that incorporating

economic and financial control variables reduces misspecification because the conditional

mean and variance are estimated more accurately.

The results of the MIDAS estimation for quarterly excess market returns are presented

in Table 3.4. The conclusions presented with respect to monthly excess returns are in line

with the results obtained using quarterly excess market returns. For example, the standard

t-test suggests that the estimator β̂ is significant at a 5% level in subsamples 1964 − 2000

and 1964− 2000FTS, while the robust t-test of β̂ is non-significant for all subsample periods

included in this study.

In conclusion, the wild bootstrapped robust t-test indicates that the MIDAS model is

insufficient to obtain a statistically significant risk-return trade-off. As the model suffers

from weak identification under the null, the standard t-test erroneously leads to statistical

significant estimators when estimation is employed on the FTS subsamples. On the other

hand, the robust t-test rejects the statistical significance of at least one of the estimators
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β̂, π̂1 or π̂2 in all subsamples analyzed. In the next subsection, we study if these results also

hold using the parametric bootstrap robust t-test.

3.3.2 Estimation results of the parametric bootstrap

One of the problems of the wild bootstrapped robust t-test presented in the previous

subsection is that the bootstrapped distribution depends on nuisance parameters. The in-

ability to identify this parameter leads to a bootstrapped t-statistic that depends on π,

which has to be fixed to perform inference. The parametric bootstrap method can help in

this circumstance as it is developed without bootstrapping the limit distributions directly.

In this subsection, we analyze the statistical significance of the estimators in the MIDAS

model using the parametric bootstrapped t-test.

Inference and testing with nuisance parameters have been a subject of study in the statis-

tics literature for many years. Chernoff and Zacks (1964) introduce a sup-Lagrange multiplier

to eliminate nuisance parameters while Davies (1977, 1987) introduce a sup-Likelihood ratio

test when the nuisance parameters are present under the alternative hypothesis. Hansen

(1996) introduces a transformation to eliminate nuisance parameters that are present under

the null. Nuisance parameters that are not identified under the null can be either chosen

at random (e.g. White (1989)) or chosen over a fine grid (e.g. Davies (1977, 1987), Hansen

(1996), Andrews (1994)). Fixing nuisance parameters over a grid leads to statistical tests

with correct level but incorrect size. For example, If we set the level of rejection at 5%, a

test with correct test level has a rejection rate of 5% or lower. Moreover, the power of a test

is reduced when the underlying distribution includes nuisance parameters.

The simulation exercise of Chapter 1 analyzes the empirical performance of the wild

bootstrapped t-test and finds rejection rates that are way below 5% when a grid of nuisance

parameters is employed. The empirical test sizes show to be inaccurate compared to the

infeasible statistic which assumes that nuisance parameters are known. The hypothesis tests

with respect to π are clearly inaccurate as the distribution of the t-test is centered around one

nuisance parameter. To improve the test size and power, Chapter 2 proposes a parametric
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Table 3.3: Risk-return trade-off wild bootstrapped t-test, monthly frequency.

Monthly ζ β π1 π2 R2

(×102) (×102) (×104)
1928− 2000 Coeff. 0.522 0.342 -2.971 1.045 0.002

Std. Dev. 0.196 0.975 1.539 0.565
Std. p-value 0.000 0.726 0.045 0.000
WB p-value 0.006 0.792 0.114 0.180

1928− 1963 Coeff. 1.030 -0.775 -1.933 0.755 -0.008
Std. Dev. 0.300 1.213 1.827 0.688
Std. p-value 0.000 0.523 0.270 0.000
WB p-value 0.000 0.622 0.292 0.282

1964− 2000 Coeff. 0.098 2.136 -4.477 1.354 -0.008
Std. Dev. 0.274 1.692 1.929 0.776
Std. p-value 0.583 0.207 0.010 0.000
WB p-value 0.926 0.408 0.008 0.020

1928− 2016 Coeff. 0.522 0.241 -3.635 1.235 0.001
Std. Dev. 0.173 0.805 1.428 0.528
Std. p-value 0.000 0.764 0.009 0.000
WB p-value 0.000 0.862 0.110 0.206

1928− 2000FTS Coeff. 0.475 1.392 -5.323 1.846 -0.018
Std. Dev. 0.185 0.818 1.311 0.536
Std. p-value 0.000 0.089 0.000 0.000
WB p-value 0.002 0.232 0.016 0.038

1964− 2000FTS Coeff. -0.060 3.691 -4.024 1.133 0.022
Std. Dev. 0.315 1.660 1.686 0.789
Std. p-value 0.746 0.026 0.016 0.000
WB p-value 0.992 0.096 0.014 0.012

This table presents the estimates, standard deviation and p-values of the standard and wild
bootstrapped t-test of the MIDAS model using monthly frequency. The conditional variance
estimator of returns is calculated using daily returns as in Equation (3.2). The variance of
the coefficients is obtained using the sandwich formula of the QML estimator White (1982).
R2 is the coefficient of determination. The coefficients and standard deviation are multiplied
by the value in the second row. FTS denotes Flight-to-Safety subsamples.
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Table 3.4: Risk-return trade-off wild bootstrapped t-test, quarterly frequency.

Quarterly ζ β π1 π2 R2

(×102) (×102) (×104)
1928− 2000 Coeff. 1.258 0.740 -2.232 0.823 0.009

Std. Dev. 0.696 1.180 2.177 0.852
Std. p-value 0.008 0.530 0.270 0.000
WB p-value 0.032 0.638 0.252 0.180

1928− 1963 Coeff. 2.754 -0.470 -2.155 1.052 -0.014
Std. Dev. 1.051 1.407 3.169 1.134
Std. p-value 0.000 0.738 0.496 0.000
WB p-value 0.010 0.784 0.500 0.158

1964− 2000 Coeff. -0.257 3.435 -3.679 0.433 0.045
Std. Dev. 0.735 1.707 1.883 0.729
Std. p-value 0.616 0.044 0.035 0.271
WB p-value 0.940 0.160 0.036 0.274

1928− 2016 Coeff. 1.314 0.539 -2.577 0.915 0.007
Std. Dev. 0.608 0.964 2.128 0.836
Std. p-value 0.002 0.576 0.207 0.000
WB p-value 0.010 0.708 0.194 0.180

1928− 2000FTS Coeff. 2.023 0.066 -2.313 0.766 -0.003
Std. Dev. 0.599 0.934 1.686 0.671
Std. p-value 0.000 0.943 0.129 0.000
WB p-value 0.000 0.960 0.106 0.506

1964− 2000FTS Coeff. -0.364 5.065 0.009 -2.922 0.079
Std. Dev. 0.846 1.788 4.023 3.142
Std. p-value 0.498 0.005 0.998 0.014
WB p-value 0.888 0.064 0.998 0.046

This table shows the estimates of the model shown in Equation (3.5), standard deviation
and p-values of the standard and wild bootstrapped t-test at a quarterly frequency. The
conditional variance estimator of returns is calculated using daily returns. The variance of
the coefficients is obtained using the sandwich formula of the QML estimator (White 1982).
R2 is the coefficient of determination. The coefficients and standard deviation are multiplied
by the value in the second row, while the p-values are not. FTS denotes Flight-to-Safety
subsamples.
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bootstrap that reduces the number of nuisance parameters. The bootstrap data sets are

generated sequentially by imposing the null hypothesis and the regression model instead of

using the limit distributions. Using this method, π0 is the only nuisance parameter under

the null because if the true value π0 were known, the model would not suffer from weak

identification. Moreover, if π is a scalar value and we wish to test H0 : π = 0, imposing the

null hypothesis leads to a statistic without nuisance parameters because, under the null, the

parameters left to estimate are strongly identified.

Similar to the wild bootstrap case of the previous subsection, we compare the statistical

significance of the standard t-statistic to the parametric bootstrapped robust t-statistic.

Table 3.5 and Table 3.6 present the results of the parametric bootstrap for the monthly and

quarterly frequency. The results of Table 3.5 suggest that the parametric bootstrap method

leads to conclusions that are comparable to the wild bootstrapped robust t-test. Using the

parametric bootstrapped robust t-test, β̂ is non-significant for any of the subsamples except

for the FTS subsamples. We find β̂ is statistically significant at a 5% level in the FTS

subsamples. Nonetheless, β̂ is non-significant at a 1% level for any of the subsamples.

The results of the parametric bootstrapped t-test with respect to π̂1 and π̂2 are more

interesting. We find that the null hypothesis π2 = 0 is rejected for all subsamples, while

π̂1 is not significant for any of them. These results suggest that the quadratic term of the

weighting function is potentially informative to construct a conditional variance estimator.

Using the standard t-test leads to rejection of the null hypothesis at a 5% level for all

subsamples except 1928− 1963.

Table 3.6 presents the results of the parametric bootstrapped robust t-test using quarterly

returns. The only subsamples that are significant with respect to β are 1964 − 2000 and

1964 − 2000FTS, similar to the wild bootstrap case. There is no subsample where π̂1 and

π̂2 are both significant at a 5% level. Overall, we conclude that the risk-return trade-off

relationship is not captured with the MIDAS model because using the robust t-test, the

parameters are non-significant. Nonetheless, the results of the parametric bootstrap suggest

that the weighting function itself can be useful to construct a conditional variance estimator
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because π2 is significant in all subsamples.

3.4 Alternative MIDAS specification with absolute returns

The parameter instability across subsamples found in the results of the previous section

suggests that the model is misspecified. In this section, we propose an alternative MIDAS

specification using the absolute value of returns to analyze the risk-return trade-off. This

model does not have a microeconomic motivation like the ICAPM model, as it is not derived

from a maximization problem with a representative agent. The motivation is the presence

of outliers in the MIDAS specification with squared returns.

Forsberg and Ghysels (2007) argue that absolute returns are more informative to predict

future increments of quadratic variation than squared returns. The empirical evidence in

the paper suggests that realized absolute returns are a better predictor of volatility than

realized variance. Moreover, the authors argue that absolute returns have a different persis-

tence dynamics than squared returns and in consequence are more informative to construct

forecasts.

We propose a conditional variance estimator of market excess returns constructed by a

MIDAS specification with daily absolute returns.

Rt+1 = ζ + βVt(π) + εt+1 (3.10)

Vt(π) = A
D−1∑
d=0

w(d, π1, π2) |rt−d| (3.11)

w(d, π1, π2) = exp(π1d+ π2d
2)∑D−1

k=0 exp(π1k + π2k2)
(3.12)

The estimation results of the MIDAS model with absolute returns are presented in Ap-

pendix C.2. The results suggest that, similar to the estimation results of the squared returns,

the estimators of the MIDAS model are generally non-significant when the wild bootstrapped

robust t-test is implemented. Table C.1 shows the results of the estimation using monthly

excess returns. The estimator β̂ is non-significant for any of the subsamples. The standard
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t-test is non-significant for any of the subsamples except for the FTS subsamples. With

respect to π̂1 and π̂2, both estimators are significant at a 1% level for samples 1928− 2000,

1928 − 2016 and 1928 − 2000FTS. On the other hand, when you consider the robust wild

bootstrapped t-test, we do not find significant results of any of the samples at a 1% level.

Similar to the case of squared returns, the risk does not seem to be captured by the MIDAS

model specification.

The results of the absolute return MIDAS model with quarterly excess returns are pre-

sented in Table C.2. The results are similar to the monthly returns estimation. When the

wild bootstrapped robust t-test is considered, we do not find a statistical significance with

respect to β̂. The FTS subsample 1928 − 2000FTS suggests that π̂1 and π̂2 are significant,

but all other subsamples are non-significant. The R2 does not surpass 0.06 for any of the

subsamples considered.

Now we analyze the results of the parametric bootstrapped t-test using the MIDAS model

with absolute returns. Table C.3 and Table C.4 suggest that none of the subsamples leads

to a MIDAS specification where all parameters are significant. The estimator β̂ is non-

significant with respect to all subsamples except 1964 − 2000FTS. On the other hand, the

estimator π̂2 is significant at a 10% level for all subsamples while π̂1 is not significant in any

of them.

In conclusion, the results of Tables C.1 to C.4 indicate that the MIDAS specification using

absolute excess returns does not improve the fit of the model compared to the specification

using squared excess returns. The specification presented in this papers relies on a conditional

variance estimator constructed with daily returns. The model can be improved including

economic and financial variables that are informative to explain the behavior of conditional

variance, e.g. Lettau and Ludvigson (2001b). Moreover, the linear specification of the

ICAPM assumes that agents have Constant Relative Risk Aversion (CRRA) preferences. A

utility function such as the one proposed by Epstein and Zin (2013) can potentially capture

the dynamics of the risk-return trade-off more accurately because it separates the effects of

the intertemporal elasticity of substitution and risk aversion.
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3.5 Conclusion

Testing the significance of the parameters in a MIDAS model is complicated as the

parameters cannot be separately identified under the null hypothesis. In this paper, we

study the statistical significance of the MIDAS model proposed by Ghysels et al. (2005) to

analyze the risk-return trade-off specification derived by Merton (1973)’s ICAPM. Using a

wild bootstrapped and parametric bootstrapped t-test, the empirical results of this study

suggest that the parameters of the MIDAS model are non-significant with respect to most

subsamples analyzed. Moreover, the standard t-test leads to many cases of false positives. A

more realistic model should consider the risk-return trade-off specification using a different

stochastic discount factor as well as estimators of conditional variance that include a large

number of macroeconomic and financial variables.
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Table 3.5: Risk-return trade-off parametric bootstrapped t-test, monthly frequency.

Monthly ζ β π1 π2 R2

(×102) (×102) (×104)
1928− 2000 Coeff. 0.521 0.343 -2.999 1.055 0.002

Std. Dev. 0.196 0.975 1.538 0.565
Std. p-value 0.000 0.725 0.043 0.000
PB p-value 0.004 0.708 0.482 0.034

1928− 1963 Coeff. 1.029 -0.771 -1.952 0.763 -0.008
Std. Dev. 0.300 1.213 1.829 0.689
Std. p-value 0.000 0.525 0.266 0.000
PB p-value 0.000 0.550 0.382 0.050

1964− 2000 Coeff. 0.098 2.137 -4.476 1.354 -0.008
Std. Dev. 0.274 1.692 1.929 0.776
Std. p-value 0.582 0.207 0.010 0.000
PB p-value 0.576 0.192 0.138 0.028

1928− 2016 Coeff. 0.524 0.228 -3.668 1.248 0.001
Std. Dev. 0.173 0.804 1.428 0.529
Std. p-value 0.000 0.777 0.008 0.000
PB p-value 0.000 0.762 0.552 0.084

1928− 2000FTS Coeff. 0.475 1.393 -5.329 1.849 -0.019
Std. Dev. 0.185 0.818 1.311 0.536
Std. p-value 0.000 0.089 0.000 0.000
PB p-value 0.004 0.092 0.162 0.000

1964− 2000FTS Coeff. -0.061 3.695 -4.016 1.129 0.022
Std. Dev. 0.315 1.660 1.686 0.789
Std. p-value 0.743 0.026 0.016 0.000
PB p-value 0.744 0.022 0.118 0.044

This table presents the estimates, standard deviation and p-values of the standard and para-
metric bootstrapped t-test of the MIDAS model using monthly frequency. The conditional
variance estimator of returns is calculated using daily returns as in Equation (3.2). The
variance of the coefficients is obtained using the sandwich formula of the QML estimator
White (1982). R2 is the coefficient of determination. The coefficients and standard deviation
are multiplied by the value in the second row. FTS denotes Flight-to-Safety subsamples.
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Table 3.6: Risk-return trade-off parametric bootstrapped t-test, quarterly frequency.

Quarterly ζ β π1 π2 R2

(×102) (×102) (×104)
1928− 2000 Coeff. 1.273 0.706 -2.279 0.842 0.008

Std. Dev. 0.695 1.179 2.185 0.855
Std. p-value 0.007 0.549 0.263 0.000
PB p-value 0.012 0.582 0.490 0.052

1928− 1963 Coeff. 2.753 -0.460 -2.118 1.039 -0.014
Std. Dev. 1.051 1.406 3.194 1.142
Std. p-value 0.000 0.744 0.506 0.000
PB p-value 0.000 0.778 0.714 0.162

1964− 2000 Coeff. -0.256 3.435 -3.678 0.432 0.045
Std. Dev. 0.735 1.707 1.883 0.730
Std. p-value 0.617 0.044 0.035 0.271
PB p-value 0.612 0.036 0.084 0.402

1928− 2016 Coeff. 1.318 0.529 -2.538 0.899 0.007
Std. Dev. 0.609 0.965 2.125 0.835
Std. p-value 0.002 0.583 0.213 0.000
PB p-value 0.002 0.606 0.452 0.084

1928− 2000FTS Coeff. 2.023 0.064 -2.335 0.775 -0.003
Std. Dev. 0.599 0.934 1.689 0.672
Std. p-value 0.000 0.945 0.126 0.000
PB p-value 0.000 0.932 0.786 0.584

1964− 2000FTS Coeff. -0.364 5.067 0.005 -2.919 0.079
Std. Dev. 0.846 1.788 4.022 3.141
Std. p-value 0.497 0.005 0.999 0.015
PB p-value 0.478 0.002 0.998 0.118

This table presents the estimates, standard deviation and p-values of the standard and para-
metric bootstrapped t-test of the MIDAS model using quarterly frequency. The conditional
variance estimator of returns is calculated using daily returns as in Equation (3.2). The
variance of the coefficients is obtained using the sandwich formula of the QML estimator
White (1982). R2 is the coefficient of determination. The coefficients and standard deviation
are multiplied by the value in the second row. FTS denotes Flight-to-Safety subsamples.
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APPENDIX A

SUPPLEMENTAL APPENDIX OF “A WILD BOOTSTRAPPED T-TEST ROBUST TO
ALL IDENTIFICATION CATEGORIES”

The assumptions for the strongly identified convergence results follow the work of Newey

(1991) and Andrews (1994); see also Newey and McFadden (1994). Necessary and sufficient

conditions for weak convergence are convergence on finite dimensional distributions and

stochastic equicontinuity Davies (1977); Pollard (1990). To show stochastic equicontinuity

we assume the functions are Lipschitz, see Newey (1991).

A.1 Proofs of the main results

Proposition 1.3.1 Suppose that Assumptions (A) to (D) hold. Under {θn} ∈ Θ(θ0),

(a) When β0 = 0, then sup
π∈Π
||ψ̂n(π)− ψn||

p→ 0, in particular ψ̂n(π̂n)− ψn
p→ 0.

(b) When β0 6= 0, then ||θ̂n − θn||
p→ 0.

Proof of Proposition 1.3.1

(a) Following Andrews and Cheng (2012), by Assumption A, which implies the minimum

of Q(θ; θ0) is unique, and equicontinuity of Q(θ; θ0) for some π ∈ Π (equicontinuity proven

below), ∃ε > 0 s.t. ∀ neighborhoods ψ0 ∈ Ψ0 and ∀π ∈ Π

P(ψ̂n(π) ∈ Ψ(π)/Ψ0 for some π) (A.1)

≤ P(Q(ψ̂n(π), π; θ0)−Q(ψ0, π; θ0) ≥ ε for some π)→ 0 (A.2)

The first inquality follows as β0 6= 0. The convergence result follows as n → ∞ because:

sup
π
|Q(ψ̂n(π), π; θ0)−Q(ψ0, π; θ0)| p→ 0 which follows as:

0 ≤ inf
π∈Π
|Q(ψ̂n(π), π; θ0)−Q(ψ0, π; θ0)| (A.3)

≤ sup
π∈Π
|Q(ψ̂n(π), π; θ0)−Q(ψ0, π; θ0)| (A.4)

≤ sup
π∈Π
|Q(ψ̂n(π), π; θ0)−Qn(ψ̂n(π), π)|+ sup

π∈Π
|Qn(ψ̂n(π), π)−Q(ψ0, π; θ0)| (A.5)
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≤ sup
π∈Π
|Q(ψ̂n(π), π; θ0)−Qn(ψ̂n(π), π)|+ sup

π∈Π
|Qn(ψ0, π)−Q(ψ0, π; θ0)|+ o(n−1) (A.6)

≤ 2 sup
ψ∈Ψ(π),π∈Π

|Qn(ψ, π)−Q(ψ, π; θ0)|+ o(n−1) p→ 0 (A.7)

The first inequality follows by assumption. The fourth inequality follows by definition of the

extremum estimator objective function. And the last last line follows using the same argu-

ment as in Lemma A.2.1, that is, we show that the conditions of Theorem 2.1 Newey (1991)

are satisfied. We prove: 1) a pointwise law of large numbers, 2) stochastic equicontinuity of

Qn(θ) and 3) equicontinuity of Q(θ; θ0).

First we show the pointwise law of large numbers. For fixed ψ(π) ∈ Ψ(π), by McLeish

et al. (1975) we obtain a pointwise law of large numbers using mixing conditions and moments

of Assumption A and B. To prove Stochastic Equicontinuity of Qn(ψ, π) = n−1∑n
t=1 εt(ψ, π)2,

by Assumption B, notice that as εt(ψ, π) is continuous with respect to θ and Θ is compact,

then Qn(θ) is uniformly continuous, and therefore bounded ∀n. Also as dψ,t(π) is Lipschitz,

then h(X2,t, π) and εt(θ) are Lipschitz too. By Assumption B, we can find a random variable

Cn = Op(1) s.t.

||Qn(ψ, π)−Qn(ψ̃, π)|| ≤ Cn||ψ(π)− ψ̃(π)|| w.p.1 (A.8)

By Markov’s inequality.

Pθn(sup
π∈Π

sup
ψ(π),ψ̃(π)∈Ψ(π),||ψ(π)−ψ̃(π)||<δ

||Qn(ψ, π)−Qn(ψ̃, π)|| > η) (A.9)

≤ 1
η
Eθn(sup

π∈Π
sup

ψ(π),ψ̃(π)∈Ψ(π),||ψ(π)−ψ̃(π)||<δ
Cn||ψ(π)− ψ̃(π)||) ≤ δ

η
Eθn(Cn)

By Assumption B(iii), Eθn(Cn) = O(1). Let ε, η > 0, consider δ = εη/Eθn(Cn), then

Pθn(sup
π∈Π

sup
ψ(π),ψ̃(π)∈Θ,||ψ(π)−ψ̃(π)||<δ

||Qn(ψ, π)−Qn(ψ̃, π)|| > η) < ε (A.10)

which proves stochastic equicontinuity.
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To prove equicontinuity of Q(θ; θ0) we notice that in this case Q(θ; θ0) is not a sequence

of non-random function, and therefore proving continuity is enough. Recall that Q(θ; θ0) =

Eθ0(yt − ζX1,t − βh(X2,t), π)2, which is continuous by construction for each ψ ∈ Ψ(π) and

some π ∈ Π. Moreover, Ψ(π) and Π are compact sets in R, which shows equicontinuity of

Q(θ; θ0). Notice that as π̂n ∈ Π, ψ̂n(π̂n)− ψn
p→ 0.

(b) For the semi-strong identification case, the proof is equivalent to the previous case

with minor changes. As β0 6= 0, Equation (A.2) follows by replacing ψ̂n(π) with θ̂n, and Ψ(π)

with Θ. Equation (A.7) also follows without the supremum or infimum in place. The proofs

of pointwise law of large numbers and stochastic equicontinuity follow as in (a), without

fixing π. �

Proposition 1.3.2 Suppose that Assumptions (A) to (E) hold.

(a) Under {θn} ∈ Θ(θ0, 0, b) with ||b|| <∞, the following holds


√
n(ψ̂n(π̂n)− ψn)

π̂n

 d→

 τ(π∗(θ0, b); θ0, b)

π∗(θ0, b)



(b) Under {θn} ∈ Θ(θ0,∞, ω0), the following holds

√
nB(βn)(θ̂n − θn) d→ N(0, J−1(θ0)V (θ0)J−1(θ0))

Proof of Proposition 1.3.2

(a) To show joint convergence we notice that
√
n(ψ̂(π) − ψn) and π̂n are continuous

functions of Gψ,n(π) and Hn(π). The continuity of π̂n follows from the mapping theorem

Van Der Vaart and Wellner (1996) as

|arg min
π∈Π

n[Qn(ψ̂n(π), π)−Qn(ψ0,n, π)]− arg min
π∈Π

ξ(π; θ0, b)| (A.11)

= ||arg min
π∈Π

ξn(π, b)− arg min
π∈Π

ξ(π; θ0, b)||
p→ 0 (A.12)
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in particular, π̂n d→ arg min
π∈Π

ξ(π; θ0, b). Then π̂n can be expressed as a continuous mapping

of Gψ,n(π) and Hn(π).

The processes Gψ,n(π) and Hn(π) converge jointly as Hn(π) converges uniformly to a non-

random limit by Lemmas A.2.1 to A.2.3. Then, {
√
n(ψ̂(π) − ψn), π} ⇒ {τ(π; θ0, b), π∗(b)}

follows by Lemma A.2.5, Van der Vaart (1994) mapping theorem, joint convergence follows

as π∗ ∈ int(Π) which is a compact set. That is,

(
√
n(ψ̂n(π̂n)− ψn), π̂n) d→ (τ(π∗(θ0, b); θ0, b), π∗(θ0, b)) (A.13)

(b) For the data generating process proposed, we have the following terms,

dθ,t = (X1,t, h(X2,t, π), hπ(X2,t, π))′ (A.14)
∂2

∂θ∂θ′
Qn(θ)Qn(θ) = 1

n

n∑
t=1

[B(β)dθ,t(π)dθ,t(π)′B(β)− εt(θ)Dt(θ)]

Dt(θ) =


0 0 0

0 0 hπ(X2,t, π)

0 hπ(X2,t, π) hπ,π(X2,t, π)β


∂

∂θ
Qn(θ) = − 1

n

n∑
t=1

εt(θ)B(β)dθ,t(π)

And B(β) is the selection matrix as in Equation (1.55). Using a first order Taylor expansion

√
n(θ̂n − θn) =B−1(βn)[n−1

n∑
t=1

[dθ,t(θ)dθ,t(θ)′ −B−1(βn)εt(θn)Dt(βn)B−1(βn)︸ ︷︷ ︸
(I)

]]−1

×B−1(βn)[n−1/2
n∑
t=1

εt(θn)B(βn)dθ,t(θn)] (A.15)

Term (I) converges in probability to zero as

n−1
n∑
t=1

B−1(βn)εt(θn)Dt(βn)B−1(βn) = n−1/2
n∑
t=1

εt(θn)D̃t(βn) = Op(1)op(1) = op(1) (A.16)
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where D̃t(βn) =


0 0 hπ(X2,t, π)/

√
n||βn||

0 0 0

hπ(X2,t, π)/
√
n||βn|| 0 βhπ,π(X2,t, π)/

√
n||βn||



as D̃t(βn) p→ 0dθ×dθ Equation (A.16) converges in distribution (and therefore in proba-

bility) to zero. By Equation (A.15)

√
nB(βn)(θ̂n − θn) = [n−1

n∑
t=1

[dθ,t(θn)dθ,t(θn) + op(1)]−1[−1/
√
n

n∑
t=1

εt(θn)dθ,t(θn)] + op(1)

(A.17)

d→ N(0, J(θ0)V (θ0)J(θ0))

the first term converges pointwise to J(θ0) by McLeish et al. (1975) (Theorem 2.10) law of

large numbers as in Proof of Proposition 1.3.1. The second term converges to a standard

normal by Wooldridge and White (1988) pointwise central limit theorem. Notice that

Eθn(εt(θn)dθ,t(θn)) = 0 (A.18)

Vθn(εt(θn)dθ,t(θn)) = Eθn(σ2
t (θn)dθ,t(θn)dθ,t(θn)′) (A.19)

Cov(εt(θn)dθ,t(θn), εt−j(θn)dθ,t−j(θn)) = 0 (A.20)

all results follow from the Law of iterated expectations as εt is a martingale difference.

To obtain Wooldridge and White (1988) pointwise central limit theorem, we have that

supt Eθn||ε2tdθ,t(θn)dθ,t(θn)′||1+ι < C < ∞ by Assumption B(i). By Assumption B(ii) and

as they are α-mixing of size −r/(r− 2) for r > 2. The mixing and moment conditions hold,

the central limit theorem follows.

1/
√
n

n∑
t=1

εt(θn)dθ,t(θn) d→ N(0, V (θ0)) (A.21)

where V (θ0) = limn→∞ n
−1∑n

t=1 Eθn(σ2
t (θn)dθ,t(θn)dθ,t(θn)′). �
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Proposition 1.3.3 Suppose assumptions (A) to (H) hold

(a) Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞ and dim(rπ(θ)) = 0, Tn d→ Tψ(π∗(θ0, b); θ0, b)

(b) Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞ and dim(rπ(θ)) = 1, Tn d→ T π(π∗(θ0, b); θ0, b)

(c) Under {θn} ∈ Θ(θ0,∞, ω0), Tn d→ N(0, 1)

Proof of Proposition 1.3.3

(a) For the case of d∗π = 0 we have [rψ(θ̂n), 0] then

rψ(θ̂n)B−1(β̂n)Σ̂nB
−1(β̂n)rψ(θ̂n)′ = rψ(θ̂n)Σnrψ(θ̂n) (A.22)

Now taking a mean value expansion around π̂n, r(ψn, π̂)− r(ψn, πn) = rπ(ψn, π̃)(π̂n − πn) +

op(1) = op(1) as rπ(θ) = 0, where π̃n is a mean value between π̂n and πn. This implies

r(ψm, π̂n)− r(ψn, πn) = op(1). Taking a mean value expansion of ψ̂n

r(θ̂n)− r(θn) = r(ψ̂n, π̂n)− r(ψn, π̂n) + r(ψn, π̂n)− r(ψn, πn) (A.23)

= rψ(ψ̃n, π̂n)(ψ̂n(π̂n)− ψn) + op(1) (A.24)

here ψ̃n is a mean value between ψ̂n and ψn. Taking the numerator and denominator and

using the expressions from above.

Tn = rψ(ψ̃n, π̂n)
√
n(ψ̂n(π̂n)− ψn)

[rψ(θ̂)Σ̂nrψ(θ̂)′]1/2
+ op(1) (A.25)

= rψ(ψn, π̂n)
√
n(ψ̂n(π̂n)− ψn)

[rψ(ψn, π̂n)Σ̂nrψ(ψn, π̂n)′]1/2
+ op(1)

= Tψ,n(π̂n) + op(1)

This follows as ψ̂n is uniformly consistent over π ∈ Π and Assumption F, because τ(π)

and π̂n can be written as continuous functions of Gψ,n(π). By Proposition 1.3.2, we have

Tψ,n(π̂n) + op(1) d→ Tψ(π∗(θ0, b); θ0, b) which proves (a). which follows as τn(π) and π̂n can

be written as continuous functions of Gψ,n.
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(b) First we notice that

rθ(θ̂n)B−1(β̂n) = [rψ(θ̂n), ||βn||−1rπ(θ̂n)]

= ||βn||−1[rψ(θ̂n)β̂n, rπ(θ̂n)]

= ||βn||−1([0, rπ(θ̂n)] + op(1)) (A.26)

Now take a mean value expansion with respect to ψ for fixed π̂n, r(θ̂n) = r(ψn, π̂n) +

rψ(ψ̃n, π̂n)(ψ̂n(π̂n)− ψn). Letting ψ̃n denote the mean value:

√
n||β̂n||(r(θ̂n)− r(θn)) (A.27)

=
√
n||β̂n||(r(ψn, π̂n)− r(ψn, πn)) + ||β̂n||rψ(ψ̃n, π̂n)

√
n(ψ̂n(π̂n)− ψn) (A.28)

=
√
n||β̂n||[r(ψn, π̂n)− r(ψn, πn)] + op(1) (A.29)

which follow by uniform consistency of ψ̂n (and therefore of ψ̃n) and the fact that β̂n = op(1),
√
n(ψ̂n − ψn) = Op(1) and rψ(ψ̃n, π̂n) = Op(1). From the expression from above we obtain.

Tn = ||
√
nβ̂n||(r(θ̂n)− r(θn))

[rπ(θ̂n)Σ̂nrπ(θ̂n)]1/2
+ op(1) (A.30)

= ||
√
nβ̂n||(r(ψn, π̂n)− r(ψn, πn))

[rπ(ψ0, π̂n)Σ̂nrπ(ψ0, π̂n)]1/2
+ op(1)

= Tπ,n(π̂n) + op(1)

By the joint convergence result in Proposition 1.3.2, Tπ,n(π̂n) d→ Tπ(π∗(θ0, b); b, θ0)

(c) By Proposition 1.3.2 and the delta method

√
n(r(θ̂n))− r(θn)) d→ rθ(θ0)B−1(β̂0)Σ(θ0)B−1(β̂0)rθ(θ0) (A.31)
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Rearranging terms and the fact that parameters are consistent under semi-strong identifica-

tion Proposition 1.3.1 and Lemma A.2.7.

√
n(r(θ̂n))− r(θn))

(rθ(θ̂n)B−1(β̂n)Σ̂nB−1(β̂n)rθ(θ̂n))1/2
d→ N(0, 1) (A.32)

which proves Proposition 1.3.3. �

Theorem 1.4.1 Suppose that Assumptions (A) to (E) hold. Under weak identification,

let π̂mn be constructed using Equation (1.39) and τ̂mn (π̂mn ; π0, b) be constructed using Equa-

tion (1.40), while under strong identification let τ̂mθ,n(θ̂n) be constructed using Equation (1.42).

Denote cm,an,1−α and ca1−α with a = π, τ, τθ be the critical values of the bootstrapped and asymp-

totic distributions, respectively. Letting Mn →∞ as n→∞ then

(a) Under {θn} ∈ Θ(θ0, 0, b) with ||b|| <∞, |cm,τn,1−α − cτ1−α|
p→ 0 and |cm,πn,1−α − cπ1−α|

p→ 0.

(b) Under {θn} ∈ Θ(θ0,∞, ω0), |cm,τθn,1−α − cτθ1−α|
p→ 0.

Proof of Theorem 1.4.1

We prove weak convergence of each individual term and then prove joint convergence

using the Cramer Wold Device.

First we show π̂mn
d→ π∗(b). By Lemma A.2.1, Lemma A.2.2 and Lemma A.2.9 it follows

that {ξmn : π ∈ Π} ⇒ {ξ : π ∈ Π} where

ξmn (π, b) = −1
2{G

m
ψ,n(π) +Kn(π)b}′H−1

n (π){Gm
ψ,n(π) +Kn(π)b}′ (A.33)

which follows by the continuous mapping theorem as ξmn is a continuous function ofGm
ψ,n, Hn, Kn

and the last two have non-random uniform limits. By mapping theorem (Van der Vaart

(1994))

arg min
π∈Π

ξmn (π, b) d→ arg min
π∈Π

ξψ(π, b) (A.34)

which proves the first claim.
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Now we show
√
n(ψ̂n(π̂mn ) − ψn) d→ τ(π∗; θ0, b). Considering the equivalent expression

from Lemma A.2.5,

√
n(ψ̂n(π)− ψn) = −H−1

n (π)(Gm
ψ,n(π) +Kn(ψ0,n)

√
nβn) + (ψn − ψ0,n) + op,π(1)⇒ τ(π; θ0, b)

(A.35)

The argument is the same as Step 1, the function τ is a continuous function of Gm
ψ,n, Hn, Kn

with the last two having nonrandom limits. Finally, as π̂mn converges in distribution to

π∗(θ0, b), we conclude
√
n(ψ̂n(π̂mn )− ψn) d→ τ(π∗; θ0, b).

Joint convergence follows form the Cramer Wold Device. Let λ1, λ2 ∈ R.

λ1
√
n(ψ̂n(π̂mn )− ψn) + λ2π̂

m
n = λ1τn(π̂mn ) + λ2π̂

m
n

d→ λ1τ(π∗(θ0, b)) + λ2π
∗(θ0, b) (A.36)

by the Continuous Mapping Theorem.

Now we show consistency of the critical values. Recall the definitions. Define cτ1−α =

inf{z ∈ Rdψ : Pθ0(τ(π∗(θ0, b); θ0, b) ≤ z) ≥ 1 − α} and cπ1−α = inf{z ∈ Rdπ : Pθ0(π∗(θ0, b) ≤

z) ≥ 1 − α} be the 1 − α asymptotic critical values of τ(π∗(θ0, b); θ0, b) and π∗(θ0, b) re-

spectively. To obtain the critical values of the bootstrapped statistics, let Mn denote the

number of bootstrapped samples. For the sequence of bootstrapped distributions {τ̂mn }Mn
m=1 =

{τmn (π̂mn ; π0, b)}Mn
m=1, define the order statistics τ̂ [1]

n ≤ τ̂ [2]
n ≤ ... ≤ τ̂ [Mn]

n . The approximated

1− α critical value of {τ̂mn }Mn
m=1 is defined by cm,τn,1−α = τ̂ [(1−α)Mn]

n . Similarly for {π̂mn }Mn
m=1, we

define cm,πn,1−α = π̂[(1−α)Mn]
n . Under strong identification, let cτθ1−α be the 1 − α critical value

of the distribution N(0, J−1(θ0)V (θ0)J−1(θ0)). Also let {τ̂mθ,n}Mn
m=1 = {τmθ,n(θ̂n)}Mn

m=1 be the

bootstrapped samples with order statistics τ̂ [1]
n ≤ τ̂ [2]

n ≤ ... ≤ τ̂ [Mn]
n , and 1− α critical values

cm,τθn,1−α = τ̂
[(1−α)Mn]
θ,n .

To prove consistency of the critical values, we condition with respect to the sample

Wt. Under H0, the bootstrapped draws {τmn }Mn
m=1 and {πmn }Mn

m=1 are independent and identi-

cally distributed. Moreover, each of them converges weakly to the asymptotic distributions

τ(π∗(θ0, b); θ0, b) and π∗(θ0, b) respectively by Equation (A.34) and (A.35). Hence by the
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Glivenko Cantelli Theorem.

sup
z∈Rdτ

|Pθ0(τ̂mn ≤ z|Wt)− Pθ0(τ(π∗(θ0, b); θ0, b) ≤ z)| p→ 0 (A.37)

sup
z∈Rdπ

|Pθ0(π̂mn ≤ z|Wt)− Pθ0(π∗(θ0, b) ≤ z)| p→ 0 (A.38)

as Mn → ∞. By the continuous mapping theorem, we can express cm,τn,1−α = c
[1]
n,1−α +

op(1) = cτ1−α + op(1), where c[1]
n,1−α denotes the 1 − α critical value of τ [1]

n . It follows that

|cm,τn,1−α − cτ1−α|
p→ 0 with Mn → ∞ as n → ∞. By the same argument |cm,πn,1−α − cπ1−α|

p→ 0

with Mn →∞ as n→∞.

(b) Notice that, Tmθ,n = τmθ,n(θ). By Lemma A.2.10 and the Delta method.

√
nB(β̂n)(r(θ̂mn ))− r(θn)) = rθ(θ̂n)τmθ,n(θ̂n) d→ N(0, rθ(θ0)′J−1(θ0)V (θ0)J−1(θ0)rθ(θ0))

(A.39)

Under θn ∈ Θ(θ0,∞, ω0), we have θ̂n
p→ θ0. Also by Lemma A.2.7 the variance-covariance

estimator converges in probability to the true variance under the proper normalization.

√
n(r(θ̂n))− r(θn))

(rθ(θ̂n)B−1(β̂n)Σ̂nB−1(β̂n)rθ(θ̂n))1/2
d→ N(0, 1) (A.40)

which shows convergence in distribution. Consistency of the critical values follows from the

Glivenko Cantelli theorem, as the bootstrapped samples are i.i.d. draws following the same

argument as with Equation (A.37) and (A.38). �

Theorem 1.4.2 Suppose assumptions (A) to (H) hold. Let Tmψ,n, Tmπ,n be the bootstrapped

t-statistics of Equation (1.44) to (1.46). Denote cm,an,1−α and ca1−α with a = Tψ, T π, T θ, N

the 1 − α critical values of the bootstrapped and asymptotic distributions, respectively. Let

Mn →∞ as n→∞

(a) Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞ and dim(rπ(θ)) = 0, |cm,T
ψ

n,1−α − cT
ψ

1−α|
p→ 0

(b) Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞ and dim(rπ(θ)) = 1, |cm,T
π

n,1−α − cT
π

1−α|
p→ 0
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(c) Under {θn} ∈ Θ(θ0,∞, ω0), |cm,T
θ

n,1−α − cN1−α|
p→ 0

Proof of Theorem 1.4.2

The proofs follow similar arguments to Proposition 1.3.3, using different supporting lem-

mas from Appendix A.2.

(a) Follows immediately from Proposition 1.3.3, Theorem 1.4.1, specifically in Equa-

tion (A.24), we replace ψ̂n by with ψ̂mn and notice that the denominator converges to the

same (non-random) probability limit and using Lemmas A.2.1, A.2.2, A.2.8 and A.2.9. (b)

Same argument as in (i) but now use Equation (A.29) and use results Lemmas A.2.1, A.2.2,

A.2.8 and A.2.9 (c) The result of Proposition 1.3.3c) is enough as we have convergence a stan-

dard Normal by Lemmas A.2.7 and A.2.10. The quantile function is a simple transformation

to obtain consistent critical values. �

Theorem 1.4.3 Let Mn → ∞ as n → ∞. Under the null hypothesis H0 : r(θ) = q, the

LF and ICS1 critical values of the t-test have the correct asymptotic size with probability

approaching one,

(a) AsySzLF,m = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pm(Tn(r(θ)) ≤ cLF,mn,1−α(r(θ))) = 1− α

(b) AsySzICS1,m = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pm(Tn(r(θ)) ≤ cICS1,m
n,1−α (r(θ))) = 1− α

(c) If H0 is false, that is r(θn) 6= q, then Tn(r(θ)) p→∞

Proof of Theorem 1.4.3

(a) This proof follows the lines of Hill(2017) and Lemma 2.1 of Andrews and Cheng

(2012). We work with the absolute value of the t-statistic to focus on one sided critical

values. The proof for the t-statistic with two sided critical values is analogous. Define the

sample quantile function cm,an (p, u) ≡ inf{c ≥ 0 : Pm((Tm,an (p))2 ≤ c) ≥ u}, ca(p, u) ≡

inf{c ≥ 0 : Pθ0((T a(p))2 ≤ c) ≥ u} and can(p, u) ≡ inf{c ≥ 0 : Pθn((T an (p))2 ≤ c) ≥ u}

where a = ψ, π and p ∈ P . By Proposition 1.3.3, under weak identification we have that

cn(p, u) → c(p, u),∀p ∈ P and u ∈ [0, 1]. Conditioning with respect to Wt, we obtain that
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the only source of randomness in the critical values comes from stochastic processes Gm
ψ,n

and Gψ.

By Theorem 1.4.2 (c), using the probability measure conditional on Wt, we obtain

supc≥0 |Pm((Tm,an (p))2 ≤ c)−Pθn((T a(p))2 ≤ c)| p→ 0 and consequently supu∈[0,1] |cm,an (p, u|Wt)−

can(p, u)| p→ 0, ∀p ∈ P , under semi-strong identification when n → ∞ and Mn → ∞, as

the bootstrapped draws are independent. Similarly, we have that supu∈[0,1] |cm,an (p, u|Wt) −

ca(p, u)| p→ 0, ∀p ∈ P as n→∞ which follows from Theorem 1.4.2 (c). We combine the three

results to obtain |cm,an (p, u|Wt) − ca(p, u)| p→ 0,∀p ∈ P . The critical values of the |N(0, 1)|

under semi-strong identification are the asymptotic ones, therefore they are equal to cN1−α.

By the continuous mapping theorem of the max function, we obtain |cLF,mn,1−α(p)−cLF1−α(p)| p→ 0

∀p ∈ P .

We have shown the bootstrapped critical values are valid for each identification category,

strong, semi-strong and weak identification under H0 : r(θ) = q. It is left to show that

the asymptotic size is equal to α when using the asymptotic critical values as we shown

|cLF
a,m

n,1−α (p) − cLFa1−α(p)| p→ 0, ∀p ∈ P , where a = ψ, π. For the reminder of the proof we use

the asymptotic Least Favorable critical values cLF,mn,1−α and follow the argument of Andrews

and Cheng (2012). The Least Favorable asymptotic critical values take the form cLF
a,m

n,1−α =

max{sup
p∈P

cm,T
a

n,1−α(p), cmn,θ,1−α}. The asymptotic size with respect to the asymptotic critical

values is

AsySzLF
a,m = lim inf

n→∞
inf

θ∈Θ:r(θ)=q
Pm(Tn(r(θ)) ≤ cLF

a,m
n,1−α (r(θ))) (A.41)

= min{Pθ0(T a(r(θ)) ≤ cLF
a

1−α),Pθ0(|N(0, 1)| ≤ cLF
a

1−α)}+ op(1) (A.42)

which follows form Lemma 2.1 of Andrews and Cheng (2012), and T a denotes the asymptotic

distribution of either Tψ or T π. The second argument in Equation (A.42) follows because un-

der strong identification the t-statistic is pivotal. The asymptotic size of the Equation (A.42)

is greater or equal to 1 − α because Pθ0(|N(0, 1)| ≤ cLF
a

1−α(p)) ≥ Pθ0(|N(0, 1)| ≤ c
|N(0,1)|
1−α ) =
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1 − α, where the second critical value denotes the critical value of the |N(0, 1)| distribu-

tion. Similarly, for the first critical value of Equation (A.42), Pθ0(T a(r(θ)) ≤ cLF
a

1−α(p)) ≥

Pθ0(T a(r(θ)) ≤ cT
a

1−α(p)) = 1− α, ∀p ∈ P where the second critical value denotes the critical

value of T a(p) for each fixed p ∈ P .

On the other hand, the critical values are less than or equal to 1 − α because if cLFa1−α =

c
|N(0,1)|
1−α then Pθ0(|N(0, 1)| ≤ cLF

a

1−α) = 1−α and if cLFa1−α > c
|N(0,1)|
1−α then Pθ0(T θ(pmax) ≤ cLF1−α) =

Pθ0(T θ(pmax) ≤ cT
θ

1−α(pmax)) by Assumption H. Then AsySzLF,m = 1− α w.p.a.1.

(b) The proof is equivalent to proof of Theorem 1.4.3 arguing that under weak identifica-

tion, P(An ≤ κn) p→ 1 and under any other case P(An ≤ κn) p→ 0 as Mn →∞ with n as n→

∞. This implies that in either case, for large enough m and n, cICS1(p, b) = cLF (p, b)+op(1),

∀p ∈ P .

(c) First consider Tn, only for restrictions of ψ, that is with dim(rπ) = 0. If H0 is false

r(θn) 6= qn and by Equation (A.23) of Proposition 1.3.3 replacing it with θ̂n = (ζ̂ ′n, β̂′n, π̂′n)′

r(θ̂n)− r(θn) = r(θ̂n)− r(θn) + r(θn)− qn = CIk + op(1) (A.43)

for some C 6= 0 and identity matrix Ik and large enough n as ||ψ̂n−ψn||
p→ 0 (Theorem 1.4.1).

Then we have

Tn =
√
nC

rψ(θ̂n)Σnrψ(θ̂n)
+ op(1)→∞ as n→∞ (A.44)

as the denominator converges in probability to rψ(θ0)Σ(θ0)rψ(θ0) which is finite and non-

random.

Similarly consider Tn with dim(rπ) = 1,

r(θ̂n)− r(θ̂n) = r(ψn, π̂n)− r(ψn, πn) + r(ψn, πn)− qn = CIk +Op(1) (A.45)

Using the arguments of the proof in Proposition 1.3.3, specifically by Equation (A.30) and

113



Equation (A.27) - Equation (A.29)

Tn = ||
√
nβ̂n||(r(ψn, π̂n)− r(ψn, πn))

[rπ(ψ0, π̂n)Σnrπ(ψ0, π̂n)]1/2 + op(1) (A.46)

=
√
nC

rψ(θ̂n)Σnrψ(θ̂n)
+ op(1) p→∞ as n→∞ (A.47)

as the denominator converges in probability to rπ(θ0)Σ(θ0)rπ(θ0) which is finite and non-

random. �

A.2 Supporting Lemmas

The following lemmas are necessary for the resutls in the previous section of the Appendix.

Lemma A.2.1 Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞, sup
π∈Π
||Hn(π)−H(π; θn)|| p→ 0

Proof. Recall that || · || denotes the l1 norm. To prove the Uniform Law of Large Numbers

(uniform law of large numbers) we use Theorem 2.1 of Newey (1991). We need four conditions

to be satisfied: i) Π compact, ii) Pointwise convergence |Hn(π) − H(π; θn)| p→ 0, for fixed

π ∈ Π, iii) Stochastic Equicontinuity of Hn(π), and iv) Equicontinuity of H(π, θn).

i) Is satisfied by Assumption D.

ii) To prove pointwise Law of Large Numbers, let π ∈ Π. We use McLeish et al. (1975)

(Theorem 2.10) law of large numbers. By Assumption B(i) we have that Hn(θ) is mixing

size −r/(2r − 1) for r ≥ 1, as functions of mixing are mixing too. Moreover we show that

for some δ > 0

∞∑
k=1

Eθn(||Hn(π)−H(π; θn)||)
k1+δ (A.48)

which follows as

∞∑
k=1

Eθn(||Hn(π)−H(π; θn)||)
k1+δ ≤

∞∑
k=1

Eθn(||Hn(π)||+ Eθn||H(π; θn)||)
k1+δ ≤ C1

∞∑
k=1

1
k1+δ < C2

(A.49)
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for some constants C1, C2, as each dψ,t(π) are uniformly Lp bounded for p = 4 + ι by

Assumption B(ii).

iii) To prove Stochastic Equicontinuity of Hn, notice that as dψ,t(π) is continuous and

Π is compact, then Hn(π) is uniformly continuous and by Assumption B it is bounded ∀n.

Also as dψ,t(π) is Lipschitz then by Assumption B

||Hn(π)−Hn(π̃)|| = Cn||π − π̃|| w.p.1 (A.50)

for some Lipschitz constant Cn = Op(1) from Assumption B. By Markov’s inequality.

Pθn( sup
π,π̃∈Π,||π−π̃||<δ

||Hn(π)−Hn(π̃)|| > η) (A.51)

≤ 1
η
Eθn( sup

π,π̃∈Π,||π−π̃||<δ
Cn||π − π̃||) ≤

1
η
δEθn(Cn)

By Assumption B(iii), Eθn(Cn) = O(1). Let ε, η > 0, consider δ = εη/Eθn(Cn), then

Pθn( sup
π,π̃∈Π,||π−π̃||<δ

||Hn(π)−Hn(π̃)|| > η) < ε (A.52)

which proves stochastic equicontinuity.

iv) To prove equicontinuity of H(π, θn), follow the same lines of iii), let ε, η > 0, then

Pθn( sup
π,π̃∈Π,||π−π̃||<δ

||H(π; θn)−H(π̃; θn)|| > η) (A.53)

≤ Pθn( sup
π,π̃∈Π,||π−π̃||<δ

Eθn||Hn(π; θn)−Hn(π̃; θn)| > η)

≤ 1
η
Eθn( sup

π,π̃∈Π,||π−π̃||<δ
Cn||π − π̃||) ≤

1
η
δEθn(Cn) < ε

for δ = εη/Eθn(Cn) which is finite as Cn is Op(1). Where the first inequality follows by

Jensen’s. This shows equicontinuity of H(π; θn). Furthermore, we have eig(H(π; θn) > 0

and eig(H(π; θn)) <∞ by Assumption C. �

115



Lemma A.2.2 Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞, sup
π∈Π
||Kn(π)−K(π; θn)|| p→ 0

Proof. The proof is equivalent to the proof for Lemma A.2.1 following steps i) - iv). Proof

of ii) follows as the Kn(π) are mixing and Lp bounded for p = 4 + ι. For iii), stochastic

equicontinuity of Kn follows as,

Pθn( sup
π,π̃∈Π,||π−π̃||<δ

||Kn(π)−Kn(π̃)|| > η) (A.54)

≤ Pθn( sup
π,π̃∈Π,||π−π̃||<δ

n−1
n∑
t=1

(|| sup
t
h(X2t, πn)|| ||dψ,t(π)− dψ,t(π̃)||) > η)

≤ 1
η
Eθn( sup

π,π̃∈Π,||π−π̃||<δ
CsCn||π − π̃||) ≤

1
η
δEθn(CsCn) ≤ 1

η
δ(Eθn(C2

s ))1/2(Eθn(C2
n))1/2

where Cs = || supt h(X2t, πn)|| = Op(1) and ||n−1∑n
t=1 dψ,t(π)− n−1∑n

t=1 dψ,t(π̃)|| ≤ Cn||π −

π̃|| which by Assumption B is Op(1) . The last inequality follows by Holder’s inequality and

Cn, Cs are bounded and εt and dψ,t(π) are Lp bounded p = 4 + ι. Now let ε, η > 0 and let

δ = εη/(Eθn(C2
s ))1/2(Eθn(C2

n))1/2 which shows stochastic equicontinuity. The same argument

follows for the equicontinuity of K(π; θn) as

Pθn( sup
π,π̃∈Π,||π−π̃||<δ

||K(π; θn)−K(π̃; θn)|| > η) (A.55)

≤ Pθn( sup
π,π̃∈Π,||π−π̃||<δ

Eθn||Kn(π)−Kn(π̃)| > η) �

Lemma A.2.3 {Gψ,n(π) : π ∈ Π} ⇒ {Gψ(π) : π ∈ Π}

Proof. As the parameter space Θ is compact, weak convergence requires pointwise conver-

gence for each π ∈ Π and Stochastic Equicontinuity (Dudley (1978) and Pollard (1990)).

For pointwise convergence notice that

Gψ,n(π) = 1√
n

n∑
t=1

[εt(ψ0,n)dψ,t(π)− Eθn(εt(ψ0,n)dψ,t(π)] (A.56)

= 1√
n

n∑
t=1

[εt(θn)dψ,t(π) + β′nh(X2,t, πn)− Eθn(εt(θn)dψ,t(π) + β′nh(X2,t, π))] (A.57)
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= 1√
n

n∑
t=1

εt(θn)dψ,t(π) + b n−1
n∑
t=1

[h(X2,t, πn)dψ,t(π))− Eθn(h(X2,t, πn)dψ,t(π))]

(A.58)

By the same arguments as in Lemma A.2.2 the second terms are op,π(1). That is, the second

term satisfies sup
π∈Π
||Kn(π)−K(π; θn)|| p→ 0

Consider Gψ,n(π) = 1√
(n)

∑n
t=1 εt(θn)dψ,t(π) + op,π(1). For the pointwise central limit

theorem, we use Wooldridge and White (1988) pointwise central limit theorem (1975) law

of large numbers for dependent heterogeneously distributed random variables. Notice that

Eθn(εt(θn)dψ,t(π)) = 0 (A.59)

Vθn(εt(θn)dψ,t(π)) = Eθn(σ2
t (θn)dψ,t(π)dψ,t(π)′) (A.60)

Cov(εt(θn)dψ,t(π), εt−j(θn)dψ,t−j(π)) = 0 (A.61)

all results follow using the Law of iterated expectations as εt is a martingale difference. We

have that supt Eθn|ε2tdψ,t(π)dψ,t(π)′|1+ι < C <∞ by Assumption B(i). By Assumption B(ii)

and as they are α-mixing of size −r/(r − 2) for r > 2. The moment and mixing conditions

hold and therefore,

Gψ,n(π) d→ N(0, Avar(Gψ,n(π))) (A.62)

where the asymptotic variance for fixed π ∈ Π equals,

Ω(π) = lim
n→∞

n−1
n∑
t=1

Eθn(σ2
t (θn)dψ,t(π)dψ,t(π)′) (A.63)

Stochastic equicontinuity follows from the Lipschitz argument used in Lemmas A.2.1 and A.2.2

Pθn( sup
π,π̃∈Π,||π−π̃||<δ

||Gψ,n(π)−Gψ,n(π̃)|| > η) (A.64)

≤ Pθn( sup
π,π̃∈Π,||π−π̃||<δ

n−1
n∑
t=1

(|| sup
t
εt|| ||dψ,t(π)− dψ,t(π̃)||) > η)
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≤ 1
η
Eθn( sup

π,π̃∈Π,||π−π̃||<δ
CsCn||π − π̃||) ≤

1
η
δEθn(CsCn) ≤ 1

η
δ(Eθn(C2

s ))1/2(Eθn(C2
n))1/2

The last inequality follows by Holder’s inequality and as Cn, Cs are bounded and εt and

dψ,t(π) are Lp bounded p = 4 + ι, specifically Cs = || supt εt(θn)|| = Op(1) and the Lips-

chitz constant Cn is Op(1) from Assumption B with ||n−1∑n
t=1 dψ,t(π)−n−1∑n

t=1 dψ,t(π̃)|| ≤

Cn||π− π̃||. Now let ε, η > 0 and let δ = εη/(Eθn(C2
s ))1/2(Eθn(C2

n))1/2 which shows stochastic

equicontinuity. �

Lemma A.2.4 Under Assumption A to Assumption D

a) For some non-stochastic function Q(θ; θ0), sup
θ∈Θ
|Qn(θ)−Q(θ, θn)| p→ 0

b) When β = 0 for every neighborhood Ψ0 of ψ0, inf
π∈Π

( inf
ψ∈Ψ(π)/Ψ0

Q(ψ, π; θ0) − Q(ψ0, π; θ0)) >

0 ∀ θ0 = (ψ0, π0)

Proof. First notice that the objective function doesn’t depend on π when β = 0.

To prove a) we follow Newey (1991) (Theorem 2.1) and prove pointwise law of large

numbers and SE for Qn(θ). Notice that for fixed θ ∈ Θ by McLeish et al. (1975) (Theorem

2.10) law of large numbers, as the {yt, Xt} are mixing, then any non-random function is

mixing of the same size −r/(2r − 1) with r ≥ 1 (Assumption B). Also the condition

∞∑
k=1

Eθn(||Qn(π)−Q(π; θn)||)
k1+δ ≤

∞∑
k=1

Eθn(||Qn(π)||+ Eθn ||Q(π; θn)||)
k1+δ ≤ C1

∞∑
k=1

1
k1+δ < C2

(A.65)

which follows using C1 = supt Eθn||n−1∑n
t=1 ε

2
t (θ)||, by Assumption A. This shows that for

fixed θ ∈ Θ

|Qn(θ)−Q(θ, θn)| p→ 0 (A.66)

To prove Stochastic Equicontinuity of Qn, we use Markov’s Inequality and the Mean Value

118



Theorem.

Pθn( sup
θ,θ̃∈Θ,||θ−θ̃||<δ

||Qn(π)−Qn(π̃)|| > η) (A.67)

≤ 1
η
Eθn(( sup

θ,θ̃∈Θ,||θ−θ̃||<δ
||θ − θ̃||) (2n−1

n∑
t=1
| sup
θ∈Θ

ε2t (θ)|)) ≤
1
η
δEθn(Cn)

for Cn = 2n−1∑n
t=1 | supθ∈Θ ε

2
t (θ)|, which is bounded by Assumption A. Let ε, η > 0, the for

δ = εη/Eθn(Cn) satisfies stochastic equicontinuity.

The same argument applies to prove Equicontinuity of Q(θ; θn) we can use the same

δ = εη/Eθn(Cn), as by Jensen’s Inequality

Pθn( sup
θ,θ̃∈Θ,||θ−θ̃||<δ

||Q(θ; θn)−Q(θ̃; θn)|| > η) (A.68)

≤ Pθn( sup
θ,θ̃∈Θ,||θ−θ̃||<δ

Eθn||Qn(θ)−Qn(θ̃)| > η)

b) To prove the identification condition let β = 0. By definition of concentrated estimator and

as all Qn are uniformly continuous (Θ is a compact set), converging uniformly to Q(ψ, π; θ0),

the limit function is uniformly continuous. The extreme value theorem guarantees that a

minimum exists, and by Assumption A(iv) it is unique. �

Lemma A.2.5 Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞,
√
n(ψ̂n(π)−ψn)⇒ −H−1(π; θ0)(Gψ(π; θ0)+

K(π; θ0)b)− (b, 0dζ) ≡ τ(π; θ0, b)

Proof. Let ρt(θ) = ε2t (θ). Taking derivatives of the objective function with respect to the

strongly identified parameters and using the Mean Value Theorem.

0 = ∂

∂ψ
Qn(ψ̂n(π), π) = ∂

∂ψ

1
n

n∑
t=1

ρt(ψ0,n, π) + ∂

∂ψ∂ψ′
1
n

n∑
t=1

ρt(ψ̄0,n, π)(ψ̂n(π)− ψ0,n) + op,π(1)

= ∂

∂ψ

1
n

n∑
t=1

ρt(ψ0,n, π) + ∂

∂ψ∂ψ′
1
n

n∑
t=1

ρt(ψ0,n, π)(ψ̂n(π)− ψn + ψn − ψ0,n) + op,π(1)
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⇔
√
n(ψ̂n(π)− ψn) = −Hn(ψ0,n, π)−1( ∂

∂ψ

1√
n

n∑
t=1

ρt(ψ0,n, π))−
√
n(ψn − ψ0,n) + op,π(1)

(A.69)

for some mean value θ̄. Notice that ψ0,n is an intermediate value between ψ0 and ψn. By

Equation (A.69),

∂

∂ψ

1
n

n∑
t=1

ρt(ψ0,n, π) = ∂

∂ψ

1
n

n∑
t=1

ρt(ψ0,n, π)− Eθn
∂

∂ψ

1
n

n∑
t=1

ρt(ψ0,n, π) + Eθn
∂

∂ψ

1
n

n∑
t=1

ρt(ψ0,n, π)

= n−1/2Gψ,n(ψ0,n, π) + 1
n

n∑
t=1

Eθn
∂

∂ψ
ρt(ψ0,n, π)

(I)

(A.70)

Further from (I) using the mean value theorem with respect to the parameter β solely.

1
n

n∑
t=1

Eθn
∂

∂ψ
ρt(ψ0,n, π)

= 1
n

n∑
t=1

Eθ0,n
∂

∂ψ
ρt(ψ0,n, π)

(II)

+ 1
n

n∑
t=1

∂

∂β
Eθ̄n

∂

∂ψ
ρt(ψ0,n, π)βn = Kn(ψ0,n, π; θ̄n)βn (A.71)

Where the last equality follows as (II) equals zero by the Law of Iterated Expectations and

Assumption A(iv), specifically,

n−1
n∑
t=1

Eθ0,n
∂

∂ψ
ρt(ψ0,n, π) = n−1

n∑
t=1

Eθ0,n(Eθ0,n(εt(ψ0,n, π)|Wt)dψ,t(π)) = 0 (A.72)

As θ̄n is a mean value between θn and θ0,n, and consistency of ψ̂n we have by Lemma A.2.1

sup
π∈Π
||Kn(ψ0,n, π; θ̄n)−K(π; θn)|| p→ 0 (A.73)

uniformly over π ∈ Π. Therefore 1√
n

∑n
t=1

∂
∂ψ
ρt(ψ0,n, π) = Gψ,n(ψ0,n, π) + Kn(ψ0,n, π; θ̄n)βn.

By Lemma A.2.3 Gψ,n(ψ0,n, π)⇒ Gψ(π), where Gψ(π) is zero mean and covariance kernel

Ω(π1, π2; θ0) = lim
n→∞

n−1
n∑
t=1

Eθn( ∂
∂ψ

ρt(Wt, ψn, π1) ∂
∂ψ

ρt(Wi, ψn, π2)′). (A.74)
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Also as
√
nβn → b, we obtain.

1√
n

n∑
t=1

∂

∂ψ
ρt(ψ0,n, π)⇒ Gψ(π) +K(ψ0, π; θ0)b (A.75)

Finally, by
√
n(ψn − ψ0,n) =

√
n(β′n, 0′)′ → (b, 0dζ) Lemma A.2.1, the continuous mapping

theorem and supπ∈Π ||H−1
n (π)−H−1(π; θn)|| p→ 0, we obtain the desired result,

√
n(ψ̂n(π)− ψn) = −H−1

n (ψ0,n, π)(Gψ,n(ψ0,n, π) +Kn(ψ0,n, π; θ̄n)βn)−
√
n(ψn − ψ0,n) + op,π(1)

⇒ −H−1(π; θ0)(Gψ(π; θ0) +K(π; θ0)b)− (b, 0dζ) ≡ τ(π; θ0, b) � (A.76)

Lemma A.2.6 Under {θn ∈ Θ(θ0, 0, b)} with ||b|| <∞,

n[Qn(ψ̂n(π), π)−Qn(ψ0,n, π)]⇒ −1
2τ(π; θ0, b)H(π; θ0)τ(π; θ0, b) ≡ ξ(π; θ0, b) (A.77)

Proof. Take a Taylor expansion of the objective function with respect to the point of non-

identification ψ0,n = (β0, ζn) and by consistency of the strongly identified parameters.

Qn(ψ̂n(π), π)−Qn(ψ0,n, π) = ∂

∂ψ
Qn(ψ0,n, π)(ψ̂n(π)− ψ0,n)

+ 1
2(ψ̂n(π)− ψ0,n)( ∂2

∂ψ∂ψ
Qn(ψ0,n, π))(ψ̂n(π)− ψ0,n) + op,π(1)

n[Qn(ψ̂n(π), π)−Qn(ψ0,n, π)] = ∂

∂ψ

√
nQn(ψ0,n, π)

√
n(ψ̂n(π)− ψ0,n)

+ 1
2
√
n(ψ̂n(π)− ψ0,n)( ∂2

∂ψ∂ψ
Qn(ψ0,n, π))

√
n(ψ̂n(π)− ψ0,n)) + op,π(1)

(A.78)

Where
√
nQn(ψ0,n, π) = 1√

n

∑n
t=1 ρt(ψ0,n, π). By Equation (A.69) from the previous lemma

√
n(ψ̂n(π)− ψn) +

√
n(ψn − ψ0,n) = −[ ∂2

∂ψ∂ψ′
1
n

n∑
t=1

ρt(ψ0,n, π)]−1[ 1√
n

n∑
t=1

∂

∂ψ
ρt(ψ0,n, π)] + op,π(1)
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i.e.
√
n(ψ̂n(π)− ψ0,n) = −[ ∂2

∂ψ∂ψ′
1
n

n∑
t=1

ρt(ψ0,n, π)]−1[ 1√
n

n∑
t=1

∂

∂ψ
ρt(ψ0,n, π)] ≡ Zn(π)

(A.79)

By Equation (A.69) we also get

n−1/2
n∑
t=1

∂

∂ψ
ρt(ψ0,n, π) = −[n−1

n∑
t=1

∂2

∂ψ∂ψ′
ρt(ψ0,n, π)]

√
n(ψ̂n(π)− ψ0,n) (A.80)

combining Equations (A.78) to (A.80)

n[Qn(ψ̂n(π), π)−Qn(ψ0,n, π)]

= −Zn(π)[n−1
n∑
t=1

∂2

∂ψ∂ψ′
ρt(ψ0,n, π)]Zn(π) + 1

2Zn(π)[ ∂2

∂ψ∂ψ′
1
n

n∑
t=1

ρt(ψ0,n, π)]Zn(π)

= −1
2Zn(π)Hn(ψ0,n, π)Zn(π) (A.81)

By Lemmas A.2.1 to A.2.3 Zn(π)⇒ −H−1(π; θ0)(Gψ(π; θ0) +K(π; θ0)b) as Hn and Kn have

non-random limits. Using the continuous mapping theorem we obtain the desired result

n[Qn(ψ̂n(π), π)−Qn(ψ0,n, π)] (A.82)

⇒ −1
2(Gψ(π; θ0) +K(π; θ0)b)′H−1(π; θ0)(Gψ(π; θ0) +K(π; θ0)b) ≡ ξ(π; θ0, b) �

Lemma A.2.7 Under θn ∈ Θ(θ0,∞, ω0)

(a) Ĵn = Jn(θ̂n) = B−1(β̂n) ∂2

∂θ∂θ′
Qn(θ̂n)B−1(β̂n) − J(θ0) p→ 0 where J(θ0) is non-singular

and symmetric.

(b) n1/2B−1(β̂n) ∂
∂θ
Qn(θ̂n) d→ N(0, V (θ0)) for some symmetric and positive definite matrix

V (θ0), and ||V̂n − V (θ0)|| p→ 0

Proof. (a) Under semi-strong identification we need pointwise law of large numbers and

central limit theorem which follow as the parameters are consistent. For fixed θ ∈ θ we

use McLeish et al. (1975) (Theorem 2.10) law of large numbers, as in Equations (A.48)
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and (A.49). By Markov’s inequality, supt Eθn||dθ,t(θn)dθ,t(θn)′||1+ι < C < ∞, as dθ,t(θ) is

uniformly Lp bounded for p = 4 + ι by Assumption B(ii), see also Equation (A.16). The law

of large numbers conditions hold.

b) For the pointwise central limit theorem, we prove the conditions of Wooldridge and

White (1988) central limit theorem (1975) for dependent heterogeneously distributed random

variables are satisfied. We have that supt Eθn||ε2tdθ,t(θn)dθ,t(θn)′||1+ι < C < ∞, by Assump-

tion B(ii) and as they are α-mixing of size −r/(r − 2) for r > 2 and by Assumption B(i)

they are uniformly bounded. The central limit theorem conditions hold. �

Lemma A.2.8 Under θn ∈ Θ(θ0, 0, b) with ||b|| < ∞, the matrices Ĵn = Jn(θ̂n) and V̂n =

Vn(θ̂n) satisfy a uniform law of large numbers with non-singular limits.

sup
θ∈Θ
||Jn(θ)− J(θ; θn)|| p→ 0 (A.83)

sup
θ∈Θ
||Vn(θ)− V (θ; θn)|| p→ 0 (A.84)

Proof. We prove that conditions i) - iv) of Newey (1991) (Theorem 2.1) hold. i) Compact-

ness is given by Assumption D. ii) The law of large numbers for pointwise θ ∈ Θ is proven

in Lemma A.2.7. We are left to show Stochastic Equicontinuity.

iii) To prove Stochastic Equicontinuity of Jn and Vn, we use a similar approach to Lem-

mas A.2.1 and A.2.2. Specifically, let ε, η > 0, for Jn consider δ = εη/Eθn(Cn), with

Cn = supt ||dθ,t(θ)dθ,t(θ̃)′||. The proof for Vn follows the same approach δ = εη/2Eθn(Cn),

with Cn = (supt ||ε2t (θ)||2)1/2(||dθ,t(θ)dθ,t(θ̃)′||2)1/2 for Vn. The constants Cn are Op(1) by

Assumption B and are obtained using Markov’s and Holders inequalities.

iv) To prove equicontinuity of V (θ, θn) and J(θ, θn), follow the same lines of iii). Consider

J(θ; θn)

Pθn( sup
θ,θ̃∈Θ,||θ−θ̃||<δ

||J(θ; θn)− J(θ̃; θn)|| > η) (A.85)

≤ Pθn( sup
θ,θ̃∈Θ,||θ−θ̃||<δ

Eθn||Jn(θ; θn)− Jn(θ̃; θn)| > η)
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The inequality follows by Jensen’s. This shows equicontinuity of J(π; θn). Furthermore, we

have eig(J(π; θn) > 0 and eig(J(π; θn)) < ∞ by Assumption G. To show equicontinuity of

V (θ; θn), just replace Jn in the inequality of Equation (A.85) and use the same δ. �

Lemma A.2.9 Let Mn → ∞ as n → ∞, under θn ∈ Θ(θ0, 0, b) with ||b|| < ∞, {Gm
ψ,n(π) :

π ∈ Π} ⇒ {Gψ(π) : π ∈ Π}

Proof. We follow the proof of Lemma A.2.3, we show pointwise convergence in distribution

and stochastic equicontinuity.

To show pointwise convergence in distribution, we show the conditions of Wooldridge

and White (1988) central limit theorem hold. The moments of Gm
ψ,n(π) are equivalent to

equations (A.59) - (A.61). We also have that as zmt is i.i.d. then it follows that Gm
ψ,n(π) is

mixing of size −r/(r − 1) for r > 1, also we have

Eθn sup
t
||(zmt )2ε2t (θn)dψ,t(π)dψ,t(π)′||1+ι (A.86)

≤ Eθn sup
t
|(zmt )2|1+ι Eθn sup

t
||ε2t (θn)dψ,t(π)dψ,t(π)′||1+ι < C <∞, ∀π ∈ Π, (A.87)

which follows by Assumption A and B. The central limit theorem follows for fixed π ∈ Π,

Gm
ψ,n(π) d→ Gψ(π) follows by Lemma A.2.3. By law of iterated expectations, the asymptotic

variance kernel is equal to

Ω(π, π̃; θ0) = lim
n→∞

n−1
n∑
t=1

Eθn(ε2t (θn)dψ,t(π)dψ,t(π̃)′) (A.88)

To show Stochastic Equicontinuity we let ε, η > 0 and let δ = εη/(Eθn(C2
s ))1/2(Eθn(C2

n))1/2

with Cs = || supt zmt εt(θn)|| = Op(1) and the constant Cn = Op(1) is the Lipschitz constant

from Assumption B, ||n−1∑n
t=1 dψ,t(π)−n−1∑n

t=1 dψ,t(π̃)|| ≤ Cn||π−π̃||. This shows stochas-

tic equicontinuity of Gm
ψ,n(π). �

Lemma A.2.10 Consider the bootstrapped distribution τmθ,n(θ̂n). Let Mn → ∞ as n → ∞,

under θn ∈ Θ(θ0,∞, ω0), τmθ,n(θ̂n) d→ N(0, J−1(θ0)V (θ0)J−1(θ0))
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Proof. From Equation (1.42)

τmθ,n(θ) = [B−1(β̂n) ∂2

∂θ∂θ′
Qn(θ̂n)B−1(β̂n)]−1B−1(β̂n)

√
n
∂

∂θ
Qm
n (θ̂n) (A.89)

= [B−1(β̂n)B(β̂n)J−1
n (θ̂n)B(β̂n)B−1(β̂n)]B−1(β̂n)B(β̂n)Gm

θ,n(θ̂n)

= J−1
n (θ̂n)Gm

θ,n(θ̂n) = Op(1)

By Lemma A.2.8, we only need to show Gm
θ,n(θ̂n) d→ N(0, V (θ0)). As θ̂n is consistent, the

Central Limit Theorem is pointwise, we use Wooldridge and White (1988). Mixing conditions

follow from Assumption B(i). By Assumption A and B the inequality follows

sup
t

Eθn|(zmt )2ε2tdψ,t(π)dψ,t(π)′|1+ι = sup
t

Eθn|ε2tdψ,t(π)dψ,t(π)′|1+ι < C <∞ (A.90)

as εt is a martingale difference and zmt is an i.i.d. process. The conditions of the central limit

theorem hold and therefore

Gm
θ,n(θ̂n) = 1√

n

n∑
t=1

zmt εt(θ̂n)dθ,t(θ̂n) + op(1) d→ N(0, V (θ0)) (A.91)

The matrix Jn
p→ J(θ0) which is non-random, and J(θ0), V (θ0) matrices are positive semidef-

inite by Assumption G. We have the desired result using the product limit rule. �

A.3 Vector β

When β is a vector, the derivation of the t-statistic requires slight changes in the as-

sumptions of the variance-covariance matrix (see Supplemental Appendix A of Andrews and

Cheng (2012)). The proofs are essentially equivalent, we only need to redefine some of the

processes used. Let ω = β/||β|| if β 6= 0 and ω = 1dβ/||1dβ || where 1dβ denotes a vector of

ones. Let θ+ = (||β||, ω, ζ ′, π′)′ ∈ Θ+, where Θ+ = {θ+ : θ+ = (||β||, β′/||β||, ζ ′, π′)′, θ ∈ Θ}.

We define analogously the matrices with respect to θ+, J(θ+; θn) and V (θ+; θn) and let

Σ(θ+; θn) = J−1(θ+; θn)V (θ+; θn)J−1(θ+; θn) (A.92)
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Σ(π, ω, θn) = Σ(||β0||, ω, ζ0, π; θn) (A.93)

For the vector β we must modify Assumption F to apply for matrices J(θ+; θn) and V (θ+; θn).

Moreover, Lemma A.2.8 applies for this matrices, that is

sup
θ∈Θ
||Jn(θ)− J(θ+; θn)|| p→ 0 (A.94)

sup
θ∈Θ
||Vn(θ)− V (θ+; θn)|| p→ 0 (A.95)

The difference now is that we focus on the convergence of ωn instead of βn. Combining

these results along with Assumption E is equivalent to the Assumptions V1 of Vector β from

Supplemental Appendix A of Andrews and Cheng (2012)). Proposition 1.3.3 applies with

analogous proof defining

Σ̄(π; θ0, b) = Σ(π, ω∗(π; θn, b); θn) (A.96)

ω∗(π; θn, b) = τβ(π; θn, b)/||τβ(π; θn, b)|| (A.97)

We define Σ̄β,β and Σ̄π,π analogously to the β scalar case as the upper and lower matrix of

Σ.

A.4 Simulation Details

In this section, we provide with the details of the simulation performed to obtain the

Tables of the Size and power of the t-test. The sample sizes used are n = 100, 250 and 500.

The number of simulations are 1000. We assume four distributions for the error component,

N(0, 1), t(4), GARCH with ω = 0.1, α = 0.3, β = 0.6 and GARCH with ω = 0.1, α =

0.6, β = 0.3. The number of bootstrapped samples is 500.

The method for optimization used is MATLAB fmincon function providing the gradient.

For the initial estimation of the parameters, we use 100 uniformly distributed initial values

for estimation, which are considered enough as the problem has low dimensionality and the
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functions are smooth. Following Andrews and Cheng (2012) we use κn = log(n)1/2 which is

equivalent to the BIC.

The robust t-statistic are obtained the using the t-statistic Equation (1.28), while the

standard t-statistic is the usual statistic used in econometric literature that assumes strong

identification. The critical value of the t-statistic are obtain simulating the asymptotic

distribution in Proposition 1.3.3 and Theorem 1.4.2 for each pair of nuisance parameters

(b, π0). The grid contains 100 combinations of b ∈ [−1, 1] and π ∈ [−2, 2], with true values

b =
√
nβn and π0 = 0. Section 1.3 presents the asymptotic approximation statistic of

Andrews and Cheng (2012) while Section 1.4 derives the distribution of the bootstrapped

t-statistic. The stochastic process Gψ,n is obtained simulating each sample path individually

using the mvnrnd command in MATLAB using the estimated variance-covariance matrix.

Ω̂ψ,n(π, π̃) = n−1
n∑
t=1

εt(θ̂0,n)dψ,t(π)dψ,t(π̃) under heteroscedasticity (A.98)

Ω̂ψ,n(π, π̃) = σ̂2(θ̂0,n) n−1
n∑
t=1

dψ,t(π)dψ,t(π̃) under homoscedasticity (A.99)

As the derivative with respect to ζ does not depend on π, the Ω̂ψ,n(π, π̃) is constructed using

derivatives with respect to β solely. The bootstrapped asymptotic distribution is constructed

using the stochastic processes depicted in Equation (1.57). For each of the 1000 simulations,

critical values are obtained using 500 draws from Gψ,n and 500 bootstrapped draws from

Gm
ψ,n. The stochastic process Tψ and T π follow using the processes Gψ,n or Gm

ψ,n, probability

limits in Lemmas A.2.1 and A.2.2 and processes ξn and τn.

The t-statistics Tn and T sn are compared to the critical values, rejection rates are obtained

for all simulations that surpass these values for each simulation. The critical values obtained

for each simulation are computed for the grid of nuisance parameters, with the robust critical

values derived using Equation (1.47) and (1.49).

A.5 Supplemental Tables and Figures
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APPENDIX B

SUPPLEMENTAL APPENDIX OF “PARAMETRIC WILD BOOTSTRAP INFERENCE
WITH WEAKLY IDENTIFIED PARAMETERS”

To show Proposition 2.4.1, we first need to show that the steps of the parametric boot-

strap under strong and weak identification are valid. We prove the bootstrap steps using the

following lemmas. Let Xn(π) = op,π(1) be defined as supπ∈Π ||Xn(π)|| = op(1), where || · ||

denotes the Euclidean norm and | · | denotes the absolute value. Let ⇒ denote weak conver-

gence of a sequence of stochastic processes indexed by π ∈ Π for some set Π. See Chapter 1

for more details. We begin with the parametric bootstrap under strong identification.

B.1 Proofs of the main results

Lemma B.1.1 Step 1 SI leads to consistent residuals, that is

(a) ||εt(θ̂n)− εt(θn)|| p→ 0

Proof of Lemma B.1.1 Let εt(θ̂n) be the sample residuals,

||εt(θ̂n)− εt(θn)|| = ||yt − β̂′nh(X2,t, π̂n)− ζ̂ ′nX1,t − yt − β′nh(X2,t, πn)− ζ ′nX1,t]|| (B.1)

= ||(ζn − ζ̂n)′X1,t + β̂′nh(X2,t, π̂n)− β′nh(X2,t, πn)|| (B.2)

By Theorem 3.2 of Andrews and Cheng (2012) or Chapter 1 in our context, we know

that
√
n(ζ̂n − ζn) = Op(1) and

√
n||β̂n||(π̂n − πn) = Op(1). Notice that as h(·) is a non-

random bounded function, and by the mean value theorem. h(X2,t, π̂n) = h(X2,t, πn) +
∂
∂π
h(X2,t, π̄)(π̂n − πn). Then, from Equation (B.2)

||εt(θ̂n)− εt(θn)|| (B.3)

= ||(ζn − ζ̂n)′X1,t + β̂′n(h(X2,t, πn) + ∂

∂π
h(X2,t, π̄)(π̂n − πn))− β′nh(X2,t, πn)|| (B.4)

= || (ζn − ζ̂n)′︸ ︷︷ ︸
Op(n−1/2)

X1,t + (β̂n − βn)′︸ ︷︷ ︸
Op(n−1/2)

h(X2,t, πn)︸ ︷︷ ︸
Op(1)

+ β̂′n
∂

∂π
h(X2,t, π̄)︸ ︷︷ ︸

Op(n−1/2)

(π̂n − πn)︸ ︷︷ ︸
Op(1)

|| = op(1) � (B.5)
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This proves Step 1 SI. In Step 2 SI, we argue that the Wild bootstrap is a valid procedure to

simulate random draws. For a formal proof we refer to Liu et al. (1988) for heteroscedastic

independent data, and Shao (2010) for dependent data. Now we consider Step 3 SI.

Lemma B.1.2 The bootstrapped samples ym,st have the same distribution as the original

sample.

sup
z∈Rdθ

∣∣∣∣∣∣Pm
 n−1/2∑n

t=1 y
m,s
t ≤ z1

n−1/2∑n
t=1X

m,s
t ≤ z2

 − Pθn

 n−1/2∑n
t=1 yt(θn) ≤ z1

n−1/2∑n
t=1Xt(θn) ≤ z2


∣∣∣∣∣∣ p→ 0 (B.6)

Proof of Lemma B.1.2 In the case of Xt, we have that Xm
t = Xt if Xt is not determined

recursively (i.e. lags of dependent variable). If it is determined recursively, we only need to

show the results hold for ymt with respect to yt.

sup
z∈R
|Pm(ym,st ≤ z)− Pθn(yt(θn) ≤ z)| (B.7)

≤ sup
z∈R
|Pm(n−1/2

n∑
t=1

ym,st ≤ z)− Pθ0(n−1/2
n∑
t=1

yt(θ0) ≤ z)| (B.8)

+ sup
z∈R
|Pθ0(n−1/2

n∑
t=1

yt(θ0) ≤ z)− Pθn(n−1/2
n∑
t=1

yt(θn) ≤ z)| (B.9)

The second term of the inequality is o(1) as the non-random sequence θn → θ0, and the

continuity of measures property theorem. Therefore the distribution functions of yt(θn)

converges to the distribution function of yt(θ0). Now we consider the first term of the

inequality.

ym,st = ζ̂m,s
′

n X1,t + β̂m,s
′

n h(X2,t, π̂
m,s
n ) + zmt εt(θ̂n) (B.10)

= (ζ̂m,sn − ζn)′X1,t + β̂m,s
′

n h(X2,t, π̂
m,s
n )− β′nh(X2,t, πn) (B.11)

+ ζ ′nX1,t + β′nh(X2,t, πn) + zmt εt(θ̂n) (B.12)

= ζ ′nX1,t + β′nh(X2,t, πn) + zmt εt(θ̂n) + op(1) (B.13)
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The last equality follows by the same argument as in Equation (B.5). Notice that

Eθn(zmt εt(θ̂n)) = Eθn(E(zmt |Xt)εt(θ̂n)) = 0 (B.14)

V arθn(zmt εt(θ̂n)) = E(E((zmt )2|Xt)ε2t (θ̂n)) = Γ0(θn) + op(1) (B.15)

Covθn(zmt εt−j(θ̂n), zmt εt−j(θ̂n)) = Γj(θn) + op(1) (B.16)

The variance equality follows from Lemma B.1.1, and the covariance equality follows similarly

from the construction of the Dependent Wild bootstrap (see Shao (2010)). The Central Limit

Theorem of Wooldridge and White (1988) follows as εt has finite 4+ι moments and is mixing

size −r/(r − 2) for r > 2. The central limit theorem follows,

n−1/2
n∑
t=1

zmt εt(θ̂n) d→ N(0, Vε(θ0)) (B.17)

where Vε(θ0) = Γ0(θ0) + 2∑∞j=1 Γj(θ0) denotes the variance covariance matrix of εt. In

consequence,

n−1/2
n∑
t=1

ym,st = n−1/2
n∑
t=1

(ζ ′nX1,t + β′nh(X2,t, πn) + zmt εt(θ̂n)) (B.18)

The first two terms of ym,st are equivalent to the terms of yt(θn) = ζ ′nX1,t+β′nh(X2,t, πn) + εt,

while the last term converges in distribution to εt. Then ym,st and yt(θn) have the same

distribution in the limit, (conditional on the sample Xt, see Giné and Zinn (1990)), i.e.

sup
z∈R
|Pm(n−1/2

n∑
t=1

ym,st ≤ z)− Pθ0(n−1/2
n∑
t=1

yt(θ0) ≤ z)| p→ 0 (B.19)

To prove joint convergence use the Cramer Wold device. Let λ1 ∈ R and λ2 ∈ Rd. Then

λ1y
m
t + λ′2X

m
t

d→ λ1yt(θn) + λ′2Xt(θn) (B.20)

by the Continuous Mapping Theorem. �

142



The previous lemmas are used to show the next proposition.

Proposition 2.4.1 Suppose that Assumptions (J) to (N) hold and suppose that the true

data generating process is strongly identified. Let Mn → ∞ as n → ∞. The estimators

obtained following Step 1 SI to Step 4 SI have the following distribution,

sup
z∈Rdθ

∣∣∣∣∣ Pm(
√
MnB(β̂m,sn )(θ̂m,sn − θ̂n) ≤ z)− Pθn(

√
nB(β̂n)(θ̂n − θn) ≤ z)

∣∣∣∣∣ p→ 0 (2.19)

Proof of Proposition 2.4.1 By Lemma B.1.2, supz∈Rd+1 ||Pm(Wm,s
t ≤ z) − Pθn(Wt(θn) ≤

z)|| = op(1). In other words, the bootstrapped samples and original samples have the same

distribution in the limit. As Qm
n (Wm,s

t , θ) = n−1∑n
t=1 εt(W

m,s
t , θ)2 = n−1∑n

t=1 εt(Wt, θ)2 +

op(1) then by the classic results of extremum estimators Newey (1991); Newey and McFad-

den (1994), the bootstrapped estimators θ̂m,sn converge to the limit distribution which is

normal. The distribution result follows Theorem 3.2 of Andrews and Cheng (2012). We

must show that the conditions of Andrews and Cheng (2012) are satisfied. This is proven in

Proposition 1.3.1 and Proposition 1.3.2 of Chapter 1. �

Lemma B.1.3 To prove Step 1 WI, we must show,

(a) sup
π∈Π
||ψ̂n(π)− ψn||

p→ 0

(b) sup
π∈Π
|εt(ψ̂n(π), π)− εt(ψn)| p→ 0

(c) ||εt(ψ̂0,n)− εt(ψn)|| p→ 0

Proof of Lemma B.1.3 (a) This result follows from Lemma 3.1 of Andrews and Cheng

(2012). We show that the conditions of this result are satisfied in Proposition 1.3.1 and

Proposition 1.3.2 of Chapter 1. Specifically, we need to show that the objective function

Qn(ψ, π) satisfies a pointwise law of large numbers, is stochastic equicontinuous, and that

the limit objective function Q(ψ, π; θ0) is equicontinuous.

(b) Consider,

sup
π∈Π
||εt(ψ̂n(π), π)− εt(ψn)|| (B.21)
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= sup
π∈Π
||(ζ̂n(π)− ζn)X1,t + β̂n(π)h(X2,t, π)− βnh(X2,t, πn)|| (B.22)

≤ sup
π∈Π
||(ζ̂n(π)− ζn)X1,t||+ sup

π∈Π
||β̂n(π)h(X2,t, π)− βnh(X2,t, πn)|| (B.23)

≤ sup
π∈Π
||(ζ̂n(π)− ζn)|| sup

π∈Π
||X1,t||+ sup

π∈Π
||β̂n(π)− βn|| sup

π∈Π
||h(X2,t, π)|| (B.24)

= Op,π(n−1/2)Op,π(1) +Op,π(n−1/2)Op,π(1) = Op,π(n−1/2) (B.25)

(c) Similarly,

sup
π∈Π
||εt(ψ̂0,n)− εt(ψn)|| = ||yt − ζ̂nX1,t − yt + ζnX1,t + βnh(X2,t, πn)|| (B.26)

= sup
π∈Π
||(ζ̂n(π)− ζn)|| sup

π∈Π
||X1,t||+ sup

π∈Π
||βn|| sup

π∈Π
||h(X2,t, π)|| (B.27)

= Op(n−1/2)Op(1) +Op(n−1/2)Op(1) = Op(n−1/2) � (B.28)

Lemma B.1.4 To prove Step 2 WI, we must show,

(a) sup
z∈R
|Pm(n−1/2∑n

t=1(εmt (ψ̂0,n)− Em(εmt (ψ̂0,n))) ≤ z)− Pθn(n−1/2∑n
t=1 εt(θn) ≤ z)| p→ 0

Proof of Lemma B.1.4 By Lemma B.1.3, εt(ψ̂0,n) = εt(ψ0,n) + op(1) (there is no influence

from the weakly identified parameters π). Therefore, we will use ψ0,n in place of ψ̂0,n for

the arguments that follow. We notice that the residuals centered at the point of lack of

identification are not necessarily mean zero by construction.

sup
z∈R
|Pm(n−1/2

n∑
t=1

(εmt (ψ̂0,n)− Em(εmt (ψ̂0,n))) ≤ z)− Pθn(n−1/2
n∑
t=1

εt(θn) ≤ z)| (B.29)

≤ sup
z∈R
|Pm(n−1/2

n∑
t=1

(εmt (ψ̂0,n)− Em(εmt (ψ̂0,n))) ≤ z)− Φε(z)| (B.30)

+ sup
z∈R
|Pθn(n−1/2

n∑
t=1

εt(θn) ≤ z)− Φε(z)| (B.31)

where Φε(z) is the limit distribution of the scaled average of εt(θ0), that is, a mean zero

normal distribution with variance Vε(θ0) = Γ0(θ0) + 2∑∞j=1 Γj(θ0). Equation (B.31) is op(1)

as the sequence of non-random numbers θn → θ0, continuity of measures, and the residuals
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do not depend on π. More specifically, we show it using a central limit theorem argument.

Notice that Eθn(εt(θn)) = 0 and V arθn(εt(θn)) = Γ0(θn). The limit variance is bounded away

from zero, i.e. for some δ > 0

lim
n→∞

n−1V arθn(
n∑
t=1

εt(θn)) = lim
n→∞

[n−1
n∑
t=1

V arθn(εt(θn)) + 2 n−1
n∑
t=1

n∑
s=1

Covθn(εt(θn), εs(θn))]

(B.32)

= lim
n→∞

[Γ0(θn) + 2
n∑
j=1

(n− j
n

)Γj(θn)] = Γ0(θ0) + 2
n∑
j=1

Γj(θ0) > δ > 0

(B.33)

As the limit variance is bounded away from zero and εt(θn) is Lp bounded for p = 4 + ι, then

the Wooldridge and White (1988) central limit theorem applies,

n−1/2
n∑
t=1

εt(θn) d→ N(0, Vε(θ0)) (B.34)

The central limit theorem result proves Equation (B.31) is op(1). To prove Equation (B.30)

is op(1), consider

n−1/2
n∑
t=1

[εt(ψ0,n)− Em(εt(ψ0,n))] = n−1/2
n∑
t=1

[zmt εt(ψ0,n)− Em(zmt εt(ψ0,n))] (B.35)

= n−1/2
n∑
t=1

[zmt εt(θn) + zmt βnh(X2,t, πn)− Em(zmt εt(θn) + zmt βnh(X2,t, πn))] (B.36)

= n−1/2
n∑
t=1

[zmt εt(θn)− Em(zmt εt(θn))]︸ ︷︷ ︸
(I)

− b n−1
n∑
t=1

[zmt h(X2,t, πn)− Em(zmt h(X2,t, πn))]︸ ︷︷ ︸
(I)

(B.37)

First we show (II) follows a law of large numbers. Let Em be the expectation conditional

on Wt (see Giné and Zinn (1990)),

Em(zmt h(X2,t, πn)) = Eθn(zmt |Wt)h(X2,t, πn)) = 0 (B.38)

145



The process zmt h(X2,t, πn) is a sequence of stationary and mixing random variables, and

Eθn(||zmt h(X2,t, πn)||1+ι) < (Eθn(||zmt ||2+ι))2+ι(Eθn(||h(X2,t, πn)||2+ι))2+ι ≤ ∞ (B.39)

which follows from Assumption K. By McLeish et al. (1975),

||n−1
n∑
t=1

(zmt h(X2,t, πn)− Em(zmt h(X2,t, πn)))|| p→ 0 (B.40)

This implies Em(zmt εt(ψ0,n)) = Eθn(zmt εt(ψ0,n)) + op(1). Now we consider (I) of Equa-

tion (B.37), we show that {zmt εt(θn)} satisfies a central limit theorem as n→∞. If zt d∼ iid

as in Liu et al. (1988), the expectation and variances of the bootstrapped samples are:

Em(zmt εt(θn)) = Em(zmt |Wt)εt(θn)) and V arm(zmt εt(θn)) = Em(zmt εt(θn))2 = Γ0(θn). More-

over, the sequence is Lp bounded for p = 2 + ι by Assumption K and stationary and mixing.

If zt are dependent, to prove the central limit theorem we must also prove the covariances

are converging, which can be shown using the large block, small block argument. We refer

to Theorem 3.1 of Shao (2010), particularly Equation (A.3), for a proof. Having shown the

conditions of the central limit theorem,

n−1/2
n∑
t=1

[zmt εt(θn)− Em(zmt εt(θn))] d→ N(0, Vε(θ0)) (B.41)

which implies that (I) is op(1). �

Before we show the next lemma, we need to introduce a few concepts. Let {Y m
n (ψ̂n(π), π) :

π ∈ Π} be a stochastic process of the bootstrapped sample, that is Y m
n (π) = n−1/2∑n

t=1 y
m
t (ψ̂n(π), π).

Let {Y (ψ0, π) : π ∈ Π} be the limit Gaussian process of yt(ψ0, π) as a function of π. That

is, a stochastic process with the following mean and variance-covariance kernel,

Eθ0(Y (ψ0, π)) = Eθ0(yt(ψ0, π)) (B.42)

V arθ0(Y (ψ0, π)) = E(yt(ψ0, π)yt(ψ0, π)′) (B.43)
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Similarly let {Wm
n (ψ̂n(π), π) : π ∈ Π} and {W (ψ0, π) : π ∈ Π} be defined analogously with

W (ψ, π) = {(Y (ψ, π), X(ψ, π) : π ∈ Π} and {X(ψ, π) : π ∈ Π} depends on π ∈ Π only if Xt

includes lags of yt. In the next Lemma we show the bootstrap sample converges weakly to

the limit stochastic process.

Lemma B.1.5 Let {Y m
n (ψ̂n(π), π) : π ∈ Π} and {Y (ψ0, π) : π ∈ Π} be the stochastic

processes defined in the previous paragraph. Letting Mn →∞ as n→∞,

(a) {Y m
n (ψ̂n(π), π) : π ∈ Π} ⇒ {Y (ψ0, π) : π ∈ Π}

(b) {Wm
n (ψ̂n(π), π) : π ∈ Π} ⇒ {W (ψ0, π) : π ∈ Π}

Proof of Lemma B.1.5 As Π is a compact set, to show the weak convergence result to the

Gaussian process Y (ψ0, π) and W (ψ0, π), we must show convergence in finite dimensional

distributions and stochastic equicontinuity Dudley (1978); Pollard (1990).

(a) First we notice that, {n−1/2∑n
t=1 yt(ψn, π) : π ∈ Π} ⇒ {Y (ψ0, π) : π ∈ Π}, because

Y (ψ0, π) is the limit Gaussian process for fixed π ∈ Π. This follows as ψn → ψ0 and

therefore the sequence of yt(ψn, π) follows a central limit theorem for each π ∈ Π and

Stochastic Equicontinuity. This proof is verbatim to the proof below replacing ymt (ψn, π)

with yt(ψn, π).

Now we consider, ymt (ψ̂n(π), π). By Lemma B.1.3, we can replace ψ̂n(π) by ψn, letting

the stochastic process take the form ymt (ψ̂n(π), π) = ymt (ψn, π) + op,π(1) for each π ∈ Π.

Similar to the previous lemma, we assume zt d∼ iid. We refer to Theorem 3.1 of Shao (2010),

particularly Equation (A.3), for a proof when zt is dependent. To show convergence in finite

dimensional distributions, notice that,

Em(ymt (ψn, π)) = Eθn(ymt (ψn, π)|Xt) (B.44)

= ζ ′nX1,t + β′nh(X2,t, π) + Eθn(zmt (εt(ψ0,n)− n−1
n∑
t=1

εt(ψ0,n))) (B.45)

= ζ ′nX1,t + β′nh(X2,t, π) (B.46)

V arθn(zmt εt(ψ0,n)) = Eθn((zmt )2ε2t (ψ0,n)) = Eθn((zmt )2(yt − ζ ′nX1,t)2) (B.47)
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= Eθn((zmt )2(yt − ζ ′nX1,t − β′nh(X2,t, πn) + β′nh(X2,t, πn))2) (B.48)

= Eθn((zmt )2(ε2t (θn) + (β′nh(X2,t, πn)2 + β′nh(X2,t, πn)εt(θn))) (B.49)

= Eθn(Eθn((zmt )2|Wt)ε2t (θn)) +Op(n−1/2) = Γ0(θn) (B.50)

V arθn(ymt |Xt) = V arθn(ymt (ψn, π)|Xt) = Γ0(θn) (B.51)

Covθn(ymt , ymt−j|Xt) = Covθn(ymt (ψn, π), ymt−j(ψn, π)|Xt) = Γj(θn) (B.52)

This implies Eθn(ymt (ψn, π)) = Eθn(yt(ψn, π)) and V arθn(ymt (ψn, π)) = V arθn(yt(ψn, π)). By

Assumption J and Assumption K, for each π ∈ Π, ymt (ψn, π) is a stationary and mixing

process, and for some δ > 0

lim
n→∞

n−1V arθn(
n∑
t=1

yt(ψn, π)) (B.53)

= lim
n→∞

[n−1
n∑
t=1

V arθn(yt(ψn, π)) + 2 n−1
n∑
t=1

n∑
s=1

Covθn(yt(ψn, π), yt−j(ψn, π))] (B.54)

= lim
n→∞

[Γy,0(θn) + 2
n∑
j=1

(n− j
n

)Γy,j(θn)] = Γy,0(θ0) + 2
n∑
j=1

Γy,j(θ0) > δ > 0 (B.55)

Therefore the limit variance is positive definite, and we can apply Wooldridge and White

(1988) central limit theorem. This shows convergence in distribution for fixed π ∈ Π,

n−1/2
n∑
t=1

ymt (ψn, π) d→ N(0, Vy(θ0)) (B.56)

where Vy(θ0) = Γy,0(θ0) + 2∑n
j=1 Γy,j(θ0).

Now we show Stochastic Equicontinuity, which follows by the Lipschitz condition in

Assumption K and the fact that ymt (ψn, π) is uniformly continuous with respect to π in a

compact set. Let π, π̃ ∈ Π and δ, η > 0,

Pm( sup
||π−π̃||<δ

||ymt (ψn, π)− ymt (ψn, π̃)|| > η) (B.57)

≤ Pθn( sup
||π−π̃||<δ

||β′nh(X2,t, π)− β′nh(X2,t, π̃)|| > η) (B.58)
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≤ 1
η
Eθn( sup

||π−π̃||<δ
Cn||π − π̃||) (B.59)

≤ 1
η
δEθn(Cn) (B.60)

The second line follows from the fact that the second expression does not depend on the

bootstrapped sample zmt , it only depends on the randomness of Xt. In consequence we can

substitute the bootstrapped probability measure with the original probability measure. The

third line follows by Markov’s inequality and Cn = Op(1) is the Lipschitz constant. Moreover

as Eθn(Cn) = O(1) by Assumption K. Let ε, η > 0 and δ = εη/Eθn(Cn), then

Pθn( sup
||π−π̃||<δ

||ymt (ψn, π)− ymt (ψn, π̃)|| > η) < ε (B.61)

which proves stochastic equicontinuity.

(b) If Xt does not include lags of yt, the result follows directly from (a) and the fact that

Xm
t = Xt. If Xt includes lags of yt, then the proof is verbatim to (a) replacing ymt (π) by

ymt−1(π). Joint convergence follows using the Cramer-Wold device. �

For the rest of the proofs, we assume that Xm
t is not autoregressive and therefore does

not depend on π for any of the bootstrapped samples. The proof for Xt(π) follows the same

argument as in Lemma B.1.5(b).

Lemma B.1.6 In addition to Lemma B.1.5, Step 3 WI requires,

(a) sup
π∈Π
||ψ̂mn (π, πn)− ψn||

p→ 0

(b) Fore each πk ∈ Π̃, sup
π∈Π
||ψ̂mn (π, πk)− ψn||

p→ 0

Proof of Lemma B.1.6 Notice that we assume that πn is known, therefore ψ̂mn (π, πn) is

estimated using bootstrapped samples that are generated using consistent estimators.

(a) Consider the above term,

sup
π∈Π
||ψ̂mn (π, πn)− ψn|| ≤ sup

π∈Π
||ψ̂mn (π, πn)− ψ̂n(π)||︸ ︷︷ ︸

(I)

+ sup
π∈Π
||ψ̂n(π)− ψn||︸ ︷︷ ︸

(II)

(B.62)
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The term (II) in Equation (B.62) is op,π(1) by Lemma B.1.3(a). Consider term (I). We

notice that ψ̂mn (π) is constructed analogously to ψ̂n(π), using the bootstrapped data Wm
t

instead of Wt. By Lemma B.1.5, for each fixed π ∈ Π, Wm
t (π) d∼ Wt(π). Then,

Qn(Wt, θ) = n−1
n∑
t=1

(yt − ζ ′X1,t − β′h(Xm
2,t, π))2 (B.63)

d∼ n−1
n∑
t=1

(ymt (πn)− ζ ′Xm
1,t − β′h(Xm

2,t, π))2 = Qn(Wm
t , θ) (B.64)

Where ymt (πn) denotes that the bootstrapped samples are generated setting π = πn. In par-

ticular, as Qn(Wt, θ) is converging to a real value Q0(Wt, θ) = Eθ0(yt−ζ ′X1,t−β′h(X2,t, π))2,

then both objective functions are converging in probability to the same value using the same

arguments of Newey and McFadden (1994). By the mapping theorem Van Der Vaart and

Wellner (1996), min
ψ∈Ψ(π)

Qn(Wt, θ)
p→ min

ψ∈Ψ(π)
Eθ0(Q0(Wt, θ)) and therefore ∀π ∈ Π,

sup
π∈Π
|| min
ψ∈Ψ(π)

Qn(Wm
t (πn), θ)− min

ψ∈Ψ(π)
Qn(Wt, θ)|| = sup

π∈Π
||ψ̂mn (π, πn)− ψ̂n(π)|| p→ 0 � (B.65)

(b) The bootstrapped samples generated in Step 3 WI are generated without the knowl-

edge of πn along the grid. Notice that,

ymt (ψ̂n(π), πk) = ζ̂n(π)′ + β̂n(π)′h(X2,t, πk) + εmt (ψ̂0,n) (B.66)

= ζ ′nX1,t + β′nh(X2,t, πn) + εmt (ψ̂0,n) + (ζ̂n(π)− ζn)′X1,t (B.67)

+ (β̂n(π)− βn)′h(X2,t, πk) + β′nh(X2,t, πk)− β′nh(X2,t, πn) (B.68)

= yt(θn) + 1/
√
n[
√
n(ζ̂n(π)− ζn)′X1,t +

√
n(β̂n(π)− βn)′h(X2,t, πk) (B.69)

+
√
nβ′nh(X2,t, πk)−

√
nβ′nh(X2,t, πn)] (B.70)

= ymt (θn) +Op,π(n−1/2) (B.71)

That is, supπ∈Π ||ymt (ψ̂n(π), πk)−ymt (θn)|| p→ 0. By Lemma B.1.5, ymt (ψ̂n(π), πk) d∼ yt. Using

the same argument as in Lemma B.1.6(a), Qn(Wm
t (πk), θ) depends on ymt (ψ̂n(π), πk) and Xm

1,t
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which have the same distribution as yt, Xt respectively. In consequence Qn(Wm
t (πk), θ)

p→

Q0(Wt, θ) = Eθ0(yt − ζ ′X1,t − β′h(X2,t, π))2 and by the mapping theorem of Van Der Vaart

and Wellner (1996),

sup
π∈Π
|| min
ψ∈Ψ(π)

Qn(Wm
t (πk), θ)− min

ψ∈Ψ(π)
Qn(Wt, θ)|| = sup

π∈Π
||ψ̂mn (π, πk)− ψ̂n(π)|| p→ 0 � (B.72)

Proposition 2.4.2 Suppose Assumption J to Assumption N hold. Suppose that the true

value of the weakly identified parameter πn is known and imposed on Step 3 WI. The following

holds letting Mn →∞ as n→∞,

sup
z∈Rdθ

∣∣∣∣∣∣ Pm

√
Mn(ψ̂mn (π̂mn , πn)− ψ̂n(πn)) ≤ z1

π̂mn (πn) ≤ z2

 − Pθn


√
n(ψ̂n − ψn) ≤ z1

π̂n ≤ z2


∣∣∣∣∣∣ p→ 0(2.26)

where Pm is the bootstrap induced probability measure.

Proof of Proposition 2.4.2 The first step is to notice that,

sup
z∈Rdθ

| Pm(
√
n(ψ̂mn (π̂mn )− ψn) ≤ z)− Pn(

√
n(ψ̂n(π̂n)− ψn) ≤ z) | (B.73)

≤ sup
z∈Rdθ

| Pm(
√
n(ψ̂mn (π̂mn )− ψn) ≤ z)− Pθ0(τ(π∗, θ0, b) ≤ z) | +

sup
z∈Rdθ

| Pn(
√
n(ψ̂n(π̂n)− ψn) ≤ z)− Pθ0(τ(π∗, θ0, b) ≤ z) | (B.74)

Similarly,

sup
z∈Rdθ

| Pm(π̂mn ≤ z)− Pn(π̂n ≤ z) | (B.75)

≤ sup
z∈Rdθ

| Pm(π̂mn ≤ z)− Pθ0(π∗(θ0, b) ≤ z) | + (B.76)

sup
z∈Rdθ

| Pn(π̂n ≤ z)− Pθ0(π∗(θ0, b) ≤ z) | (B.77)

Equation (B.74) and Equation (B.76) converge to zero by Theorem 3.1 of Andrews and

Cheng (2012) or in our context by Proposition 1.3.2 of Chapter 1.
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Part 1. We begin by showing that π̂mn
d→ π∗(θ0, b) where π∗(θ0, b) = minπ∈Π ξ(π) in

Equation (B.76). In Proposition 1.3.2 of Chapter 1 we show that {ξn(π) : π ∈ Π} ⇒ {ξ(π) :

π ∈ Π}, where ξ(π) is defined in as the limit distribution such that π̂n d→ minπ∈Π ξ(π)

(see the Appendix A for the definition of the stochastic process ξ(π)). Using the fact that

ymt (ψ̂mn (πn), πn) = ζ̂mn (πn)′X1,t + β̂mn (πn)′h(X2,t, πn) + εmt (ψ̂0,n) is generated with known value

πn. Let,

ξmn (π) = n(Qc,m
n (·)−Qm

0,n) (B.78)

Qc,m
n (·) = n−1

n∑
t=1

(ymt (ψ̂mn (πn), πn)− ζ̂mn (·)′X1,t − β̂mn (·)′h(X2,t, ·))2 (B.79)

Qm
0,n = n−1

n∑
t=1

(ymt (ψ̂mn (πn), πn)− ζ̂m′0,nX1,t)2 (B.80)

No we show that ξmn (π)⇒ ξ(π). Consider Qc,m
n (·) = Op,π(n−1),

Qc,m
n (·) = n−1

n∑
t=1

(ymt (ψ̂mn (πn), πn)− ζ̂mn (·)′X1,t − β̂mn (·)′h(X2,t, ·))2 (B.81)

= n−1
n∑
t=1

(ζ ′nX1,t + β′nh(X2,t, πn) + εmt (ψ̂0,n)− ζ̂mn (·)′X1,t − β̂mn (·)′h(X2,t, ·)

+ (ζ̂mn (πn)− ζn)′X1,t + (β̂mn (πn) − βn)′h(X2,t, πn))2 (B.82)

= n−1
n∑
t=1

(ymt (θn)− ζ̂mn (·)′X1,t − β̂mn (·)′h(X2,t, ·))2 (B.83)

+ n−1
n∑
t=1

((ζ̂mn (πn)− ζn)′X1,t + (β̂mn (πn) − βn)′h(X2,t, πn))2

︸ ︷︷ ︸
(I)

(B.84)

+ n−1
n∑
t=1

(ymt (θn)− ζ̂mn (·)′X1,t − β̂mn (·)′h(X2,t, ·))︸ ︷︷ ︸
(II)

(B.85)

[(ζ̂mn (πn)− ζn)′X1,t + (β̂mn (πn) − βn)′h(X2,t, πn)]︸ ︷︷ ︸
(II)

(B.86)

where ymt (θn) = ζ ′nX1,t+β′nh(X2,t, πn)+ εmt (ψ̂0,n). By Lemma B.1.4, ymt (θn) d∼ yt, that is, the

boostrapped sample of yt using the true parameters has the same distribution as yt. First,
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consider (I),

(I) = 1
n2

n∑
t=1

[(
√
n(ζ̂mn (πn)− ζn)′X1,t)2 + (

√
n(β̂mn (πn) − βn)′h(X2,t, πn))2

+ (
√
n(ζ̂mn (πn)− ζn)′X1,t)(

√
n(β̂mn (πn) − βn)′h(X2,t, πn))] = Op(n−3/2) (B.87)

Next consider (II), i.e. the product of Equations (B.85) and (B.86)

(II) = 1
n3/2

n∑
t=1

[(ymt (θn)− ζ̂mn (·)′X1,t − β̂mn (·)′h(X2,t, ·))

∗ (
√
n(ζ̂mn (πn)− ζn)′X1,t +

√
n(β̂mn (πn)− βn)′h(X2,t, πn)] = Op,π(n−1) (B.88)

Now we use the other term of ξ(π). Consider Qm
0,n

Qm
0,n = n−1

n∑
t=1

(ymt (ψ̂mn (πn), πn)− ζ̂m′0,nX1,t)2 (B.89)

= n−1
n∑
t=1

(ymt (θn)− ζ̂m′0,nX1,t)2 (B.90)

+ n−1
n∑
t=1

((ζ̂mn (πn)− ζn)′X1,t + (β̂mn (πn) − βn)′h(X2,t, πn))2

︸ ︷︷ ︸
(I)

(B.91)

+ 1
n3/2

n∑
t=1

[(ymt (θn)− ζ̂m′0,nX1,t)(
√
n(ζ̂mn (πn)− ζn)′X1,t +

√
n(β̂mn (πn) − βn)′h(X2,t, πn))]︸ ︷︷ ︸

(III)

(B.92)

By Equation (B.87), we have (I) = Op(n−3/2). Taking (II) and (III),

(II)− (III) = 1
n2

n∑
t=1

(
√
n(ζ̂m0,n − ζ̂mn (·)′X1,t −

√
nβ̂mn (·)′h(X2,t, ·))

∗ (
√
n(ζ̂mn (πn)− ζn)′X1,t +

√
n(β̂mn (πn)− βn)′h(X2,t, πn)) = Op,π(n−3/2)

(B.93)
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Combining the results from (I), (II) and (III),

(Qc,m
n (·)−Qm

0,n)) = n−1
n∑
t=1

(ymt (θn)− ζ̂mn (·)′X1,t − β̂mn (·)′h(X2,t, ·))2 − n−1
n∑
t=1

(ymt (θn)− ζ̂m′0,nX1,t)2

= (I) + (II)− (I)− (III) (B.94)

= n−1
n∑
t=1

(ymt (θn)− ζ̂mn (·)′X1,t (B.95)

− β̂mn (·)′h(X2,t, ·))2 − n−1
n∑
t=1

(ymt (θn)− ζ̂m′0,nX1,t)2 +Op,π(n−3/2) (B.96)

Which is what we needed for the results as,

ξmn (·) = n(Qc,m
n (·)−Qm

0,n)) (B.97)

=
n∑
t=1

(ymt (θn)− ζ̂mn (·)′X1,t (B.98)

− β̂mn (·)′h(X2,t, ·))2 −
n∑
t=1

(ymt (θn)− ζ̂m′0,nX1,t)2 +Op,π(n−1/2) (B.99)

= ξn(·) +Op,π(n−1/2)⇒ ξ(·) (B.100)

By Lemma A.2.0.6 of Appendix A as ymt (θn) d∼ yt, and ψ̂mn are obtained identically to

ψ̂n, using ymt (θn) instead of yt. We use the equivalence in distribution argument as in

Lemma B.1.4, conditional on the sample Xt from Giné and Zinn (1990). The stochastic

processes ξmn (π) and ξn(π) are constructed analogously, and by Equation (B.100) {ξmn (π) :

π ∈ Π} ⇒ {ξ(π) : π ∈ Π}, and in consequence, π̂mn
d→ π∗(θ0, b) by the mapping theorem of

Van Der Vaart and Wellner (1996).

Part 2. To show
√
n(ψ̂mn (π) − ψn) d→ τ(π∗(θ0, b)), the proof follows the lines of Part 1.

Consider,

ψ̂mn (π) = inf
ψ∈Ψ(π)

n−1
n∑
t=1

(ymt (ψ̂n(πn), πn)− ζ ′X1,t − β′h(X2,t, πn))2 (B.101)

= inf
ψ∈Ψ(π)

n−1
n∑
t=1

(ymt (θn) + (ζ̂n(πn)− ζn)′X1,t + (β̂n(πn)− βn)′h(X2,t, πn)

− ζ ′X1,t − β′h(X2,t, πn))2 (B.102)
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= inf
ψ∈Ψ(π)

n−1/2
n∑
t=1

(ymt (θn)− ζ ′X1,t − β′h(X2,t, πn))2 +Op(n−1/2) (B.103)

The last line follow multiplying by n1/2. Moreover, the first term is Op(1) while the second

is Op(n−1/2), using a similar argument as (I) and (II) of Part 1. More specifically, take the

cross product of Equation (B.102),

1
n3/2

n∑
t=1

(ymt (θn)− ζ ′X1,t − β′h(X2,t, πn)) (B.104)

∗ (
√
n(ζ̂n(πn)− ζn)′X1,t +

√
n(β̂n(πn)− βn)′h(X2,t, πn)) = Op(n−1) (B.105)

By Equation (B.103), ψ̂mn (πn) is obtained using yt(θn) d∼ yt and the same objective function.

Moreover, the parameters are all strongly identified as the weakly identified parameter has

been fixed to its true value πn. This proves that ψ̂mn (πn) is getting closer and closer to ψ̂n, as

in Part 1 of the proof. Therefore for large enough n, ψ̂mn has the same distribution as ψ̂n. In

consequence
√
n(ψ̂mn (π)− ψn) d→ τ(π∗(θ0, b).θ0, b) by Lemma A.2.0.5. of Appendix A. Joint

convergence of ψ and π follows from the Cramer Wold Device. �

Proposition 2.4.3 Suppose Assumption J to Assumption N hold. Let πn be unknown. Un-

der weak identification, the following holds letting Mn →∞ as n→∞.

lim inf
n→∞

Pm


√
Mn(ψ̂mn (π̂mn , πk)− ψ̂n(πk)) ≤ sup

πk∈Π̃
cψ1−α(πk)

π̂mn (πk) ≤ sup
πk∈Π̃

cπ1−α(πk)

 ≥ 1− α (2.27)

with probability approaching one.

Proof of Proposition 2.4.3 It is easier to prove the inequality for each marginal distribu-

tion. We follow this approach and argue that the joint result follows by a similar argument.

First we show it for π, i.e. we show, lim infn→∞ Pm,π(π̂n(πk) ≤ sup
πk∈Π̃

cπ1−α(πk)) ≥ 1−α w.p.a.1,

where Pm,π denotes the marginal distribution probability measure with respect to π, which

is well defined as the joint distribution exists. Let π̂n(πk) be the estimators of π constructed
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with the data generating process that setsπ = πk, specifically

yt(ψ̂n, ψk) = ζ̂ ′nX1,t + β̂′nh(X2,t, πk) + εt( ˆψ0,n) (B.106)

Consider the following terms,

ϑm,πn (πk) = π̂mn (πk) (B.107)

ϑπn(πk) = π̂n(πk) (B.108)

ϑπ(πk) = π∗(θ0, b; πk) (B.109)

The expression ϑm,πn (πk) depends on πk because we assume that the bootstrapped estimators

are generated using the data generating process setting πk in Step 3 WI. We consider the

right tailed critical values,

cm,πn,1−α(πk) = inf{c ≥ 0 : Pm,π(ϑm,πn (πk) ≤ c) ≥ 1− α} (B.110)

cπn,1−α(πk) = inf{c ≥ 0 : Pθn,π(ϑπn(πk) ≤ c) ≥ 1− α} (B.111)

cπ1−α(πk) = inf{c ≥ 0 : Pθ0,π(ϑπ(πk) ≤ c) ≥ 1− α} (B.112)

where Pθ0,π and Pθn,π are the marginal distribution probability measure with respect to θ0

and θn respectively. Consider the supremum of the one tailed critical values with respect to

πk, that is, we take the largest critical value with size 1−α from all possible data generating

process generated along the grid of Π̃. We construct the coverage probabilities,

CPm,π
n,1−α(πk) = Pm,π(ϑm,πn (πk) ≤ sup

πk∈Π̃
cm,πn,1−α(πk)) (B.113)

CP π
n,1−α(πk) = Pθn,π(ϑπn(πk) ≤ sup

πk∈Π̃
cπn,1−α(πk)) (B.114)

CP π
1−α(πk) = Pθ0,π(ϑπ(πk) ≤ sup

πk∈Π̃
cπ1−α(πk)) (B.115)

Clearly, Pm,π(ϑm,πn (πk) ≤ cm,πn,1−α(πk)) = 1 − α. All coverage probabilities are well defined
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as ξ(π) is a stochastic process with continuous sample paths a.s. and therefore the critical

values are well defined and unique. By Proposition 1.3.2 of Chapter 1, cπn,1−α(πk)→ cπ1−α(πk)

as n → ∞ for each πk ∈ Π̃, and by Theorem 1.4.2 of the same paper, cm,πn,1−α(πk) =

cπn,1−α(πk) + op(1) p→ cπ1−α(πk). Notice that cπ1−α(πk) depends on the optimal draw of

π∗(θ0,k, b), where θ0,k denotes the limit of θn,k which imposes π = πk as the true value

of π. Therefore, sup
πk∈Π̃

cπn,1−α(πk) → sup
πk∈Π̃

cπ1−α(πk) and sup
πk∈Π̃

cm,πn,1−α(πk)
p→ sup

πk∈Π̃
cπn,1−α(πk) as

n → ∞ . Assumption Q states that the coverage probabilities of the marginal distribu-

tion with respect to π converge, i.e. CP π
n,1−α(θk) → CP π

1−α(θk, p), for some p ∈ P . Using

this assumption and Theorem 1.4.2, CPm,π
n (πk) = CP π

n,1−α(πk) + op(1). In consequence,

CPm,π
n,1−α(πk) = CP π

1−α(πk, p) + op(1) ≥ 1 − α + op(1), i.e. lim infn→∞CPm,π
n,1−α(πk) ≥ 1 − α

w.p.a.1.

Now we prove the result with respect to the margnial distribution of ψ. For every πk ∈ Π̃,

define the following,

ϑm,ψn (π, πk) =
√
n(ψ̂mn (π, πk)− ψ̂n(πk)) (B.116)

ϑψn(π, πk) =
√
n(ψ̂n(π, πk)− ψ̂n) (B.117)

ϑψ(π, πk) = τ(π, θ0, b; πk) (B.118)

where τ(π, θ0, b) is defined on Lemma A.2.0.5 of Appendix . We consider one tailed critical

values,

cm,ψn,1−α(π, πk) = inf{c ≥ 0 : Pm,ψ(ϑm,ψn (π, πk) ≤ c) ≥ 1− α} (B.119)

cψn,1−α(π, πk) = inf{c ≥ 0 : Pθn,ψ(ϑψn(π, πk) ≤ c) ≥ 1− α} (B.120)

cψ1−α(π, πk) = inf{c ≥ 0 : Pθ0,ψ(ϑψ(π, πk) ≤ c) ≥ 1− α} (B.121)

Now define the coverage probabilities with respect to ψ,

CPm
n,1−α(π, πk) = Pm,ψ(vm,πn (π, πk) ≤ sup

πk∈Π̃
cm,πn,1−α(π, πk)) (B.122)
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CPn,1−α(π, πk) = Pθn,ψ(vπn(π, πk) ≤ sup
πk∈Π̃

cπn,1−α(π, πk)) (B.123)

CP1−α(π, πk) = Pθ0,ψ(vπ(π, πk) ≤ sup
πk∈Π̃

cπ1−α(π, πk)) (B.124)

All coverage probabilities are well defined as τ(π, θ0, b) is a stochastic process with con-

tinuous sample paths a.s. and therefore the critical values are well defined and unique. By

Proposition 1.3.2 of Chapter 1, cψn,1−α(πn, πk)→ cψ1−α(πk) for each πk ∈ Π̃. Notice that, cψ1−α

depends on the random draw of π when we set the data generating process with π = πk, that

is cψ1−α(πk) = cψ1−α(π∗(θ0,k, b), πk), where θ0,k denotes the limit sequence of θ setting π = πk.

By Theorem 1.4.2 of the same paper, cm,ψn,1−α(π̂mn , πk) = cψn,1−α(πn, πk) + op(1) p→ cψ1−α(πk).

Therefore, sup
πk∈Π̃

cψn,1−α(πn, πk) → sup
πk∈Π̃

cψ1−α(πk) and in consequence, sup
πk∈Π̃

cm,ψn,1−α(π̂mn , πk)
p→

sup
πk∈Π̃

cψ1−α(πk). Assumption Q states that, CPψ
n,1−α(θk) → CPψ

1−α(θk, p), for some p ∈ P .

Using this assumption and Theorem 1.4.2, (with respect to the coverage probabilities of the

marginal distribution with respect to ψ) CPm,ψ
n (πk) = CPψ

n,1−α(πk) + op(1). In consequence,

CPm,ψ
n,1−α(πk) = CPψ

1−α(πk, p) + op(1) ≥ 1 − α + op(1), i.e. lim infn→∞CPm,ψ
n,1−α(πk) ≥ 1 − α

w.p.a.1.

The argument with respect to the joint distribution of ψ, π follows a verbatim using

the joint distribution instead of the marginals. All critical values are well defined and are

unique as the stochastic process have continuous sample paths (a.s) on a compact set. An-

other way to prove it is using the Cramer Wold Device. The proof that considers the left

tailed or two-tailed critical values follows the same argument considering infπk∈Π c
ψ
1−α(πk)

and infπk∈Π c
π
1−α(πk). �

Theorem 2.6.1 Suppose Assumption J to Assumption Q are satisfied. Let πn be known.

Using the parametric bootstrap introduced in from Step 1 WI to Step 4 WI and Step 1 SI to

Step 4 WI, and letting Mn →∞ as n→∞ for each identification category,

(a) Under weak identification with dim(rπ(θ)) = 0, Tψ,mn (π̂mn (πn)) d→ Tψ(π∗(θ0, b); θ0, b)

(b) Under weak identification with dim(rπ(θ)) = 1, T π,mn (π̂mn (πn)) d→ T π(π∗(θ0, b); θ0, b)
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(c) Under strong identification, T θ,mn
d→ N(0, 1)

Proof of Theorem 2.6.1 As we are assuming that the true πn is known, the proof follows

almost verbatim from Proposition 1.3.2 and Proposition 1.3.3 of Chapter 1 and using the

bootstrap convergence result of Proposition 2.4.2. See also Theorem 3.1 and Theorem 4.1 of

Andrews and Cheng (2012). In particular, as we have shown that π̂mn (πk) d→ π∗(θ0, b), the re-

sult follows from the continuous mapping theorem and Lemma A.2.0.7 and Lemma A.2.0.8 of

Appendix A. The variance-covariance matrices Σn(θ),Σ(θ) are well defined. The convergence

in probability to the limit covariance matrices follows by Lemma A.2.0.7 and Lemma A.2.0.8.

See the simulation exercise of Chapter 1 for an example of matrices Jn(θ), Vn(θ), J(θ), V (θ)

using an exponential smoothing regression function. �

Theorem 2.6.2 Let Mn →∞ as n→∞. Under the null hypothesis H0 : r(θ) = q, the LF

and ICS0 critical values of the t-test have correct asymptotic size w.p.a.1,

(a) AsySzLF,m = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pm(Tn(r(θ)) ≤ cLF,mn,1−α(r(θ))) = 1− α

(b) AsySzICS0,m = lim inf
n→∞

inf
θ∈Θ:r(θ)=q

Pm(Tn(r(θ)) ≤ cICS0,m
n,1−α (r(θ))) = 1− α

(c) If H0 is false, that is r(θn) 6= q, then Tn(r(θ)) p→∞

Proof of Theorem 2.6.2 The proof of this theorem uses Lemma 2.1 of Andrews and Cheng

(2012). This results states that,

AsySz = min{ inf
p∈P

CP (p), CP∞} (B.125)

where CP (p) is the limit coverage probability of the t-test under weak identification.

(a) To construct the least favorable critical values, consider the t-test critical values,

cm,T
a

n,1−α(πk) = inf{c ≥ 0 : Pm(T a,mn (πk) ≤ c) ≥ 1− α} (B.126)

c,T
a

n,1−α(πk) = inf{c ≥ 0 : Pθn(T an (πk) ≤ c) ≥ 1− α} (B.127)

c,T
a

1−α(πk) = inf{c ≥ 0 : Pθ0(T a(πk) ≤ c) ≥ 1− α} (B.128)
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where T a can be either Tψ or T π according to which parameter is tested. Notice that

the least favourable critical values take the following form,

cLF
a,m

n,1−α = max{ sup
πk∈Π

cm,T
a

n,1−α(πk), cm,T
a,s

n,1−α } (B.129)

where cm,T
a,s

n,1−α denotes the critical values of the t-statistic under strong identification, a = ψ, π.

By Equation (B.125) and Theorem 2.6.1,

AsySzLF
a,m = lim inf

n→∞
inf

θ∈Θ:r(θ)=q
Pm(Tn(r(θ)) ≤ cLF,mn,1−α(r(θ))) (B.130)

= min{Pθ0(T a(r(θ)) ≤ cLF
a

1−α),Pθ0(N(0, 1) ≤ cLF
a

1−α)}+ op(1) (B.131)

as the t-statistic is pivotal under strong identification and the op(1) term follows from The-

orem 2.6.1. Notice that under weak identification Pθ0(T a(r(θ)) ≤ cLF
a

1−α) ≥ 1 − α and

under strong identification Pθ0(N(0, 1) ≤ cLF
a

1−α) = 1 − α. In either case we have that

AsySzLF
a,m ≥ 1− α w.p.a.1.

(b) Consider the ICS0 critical value. In the limit, we assume that we are able to correctly

conclude if the model is weakly identified or strongly identified. Under weak identification,

P(Ân ≤ κn) p→ 1 as n → ∞. This would imply that cICS,mn,1−α = cLF,mn,1−α = c1−α(πk) + op(1) ≥

sup
πk∈Π

c1−α(πk) + op(1) whose size is greater or equal to 1 − α by Proposition 2.4.2. In the

case of strong identification, P(Ân ≤ κn) p→ 0 and therefore cICS,mn,1−α = cs1−α + op(1) whose size

is equal to 1− α. In consequence, letting infp∈P CP (p) being the coverage probability using

critical value sup
πk∈Π

c1−α(πk) and CP∞ being the coverage probability using critical value cs1−α,

then AsySz = min{infp∈P CP (p), CP∞} = 1− α w.p.a.1.

(c) First consider Tn, only for restrictions of ψ, that is with dim(rπ) = 0. This proof

follows the argument of Theorem 1.4.3 in Chapter 1. If H0 is false r(θn) 6= qn,

r(θ̂n)− r(θn) = r(θ̂n)− r(θn) + r(θn)− qn = CIk + op(1) (B.132)
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for some C 6= 0 and identity matrix Ik and large enough n and by consistency of the

numerator. Then we have

Tn =
√
nC

rψ(θ̂n)Σnrψ(θ̂n)
+ op(1)→∞ as n→∞ (B.133)

as the denominator converges in probability to rψ(θ0)Σ(θ0)rψ(θ0) which is finite and non-

random.

Similarly consider Tn with dim(rπ) = 1,

r(θ̂n)− r(θ̂n) = r(ψ̂n, π̂n)− r(ψn, πn) + r(ψn, πn)− qn = CIk +Op(1) (B.134)

Using the arguments in the proof of Proposition 1.3.3 of Chapter 1,

Tn = ||
√
nβ̂n||(r(ψn, π̂n)− r(ψn, πn))

[rπ(ψn, π̂n)Σnrπ(ψn, π̂n)]1/2 + op(1) (B.135)

=
√
nC

rψ(θ̂n)Σnrψ(θ̂n)
+ op(1) p→∞ as n→∞ (B.136)

as the denominator converges in probability to rπ(θ0)Σ(θ0)rπ(θ0) which is finite and non-

random. �
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APPENDIX C

SUPPLEMENTAL APPENDIX OF “THE RISK RETURN TRADE-OFF UNDER
WEAK IDENTIFICATION”

C.1 Risk-return QML estimation

In this section, we provide the expressions used to estimate the values and variance of

the parameters using QML. Let Vt(π) be the midas estimator of the conditional variance and

D = 252 the number of daily observations which roughly represents the number of trading

days in a year.

Rt+1 ∼ N(ζ + βVt(π), Vt(π)) (C.1)

w(d, π1, π2) = exp(π1d+ π2d
2)∑D−1

k=0 exp(π1k + π2k2)
(C.2)

Vt(π) = A
D−1∑
d=0

w(d, π1, π2)r2
t−d (C.3)

Define εt(θ) = Rt+1 − ζ − βVt(π), where θ = (ζ, β, π)′. From Equation (C.1) we derive

the log-likelihood objective function to be maximized. Let n be the number of monthly

observations.

Qn(θ) = n−1
n∑
t=1

Qt(θ) = − 1
2n

n∑
t=1

[
log(Vt(π) + εt(θ)2

Vt(π)

]
(C.4)

The gradient of the likelihood function ∂Qn(θ)
∂θ

takes the following form.

[ζ] : n−1
n∑
t=1

εt(θ)
Vt(π) (C.5)

[β] : n−1
n∑
t=1

εt(θ) (C.6)

[π] : −1
2n
−1

n∑
t=1

[
Vt(π)−1 − 2β εt(θ)

Vt(π) −
εt(θ)2

Vt(π)2

]
∂Vt(π)
∂π

(C.7)
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where the previous expressions take the form

∂Vt(π)
∂π

= A
D−1∑
d=0

∂w(d, π1, π2)
∂π

r2
t−d (C.8)

∂w(d, π1, π2)
∂π

= Numd(π)
Den(π)

 d
d2

− Numd(π)
Den(π)2

∂Den(π)
∂π

(C.9)

Numd(π) = exp(π1d+ π2d
2) (C.10)

Den(π) =
D−1∑
k=0

exp(π1k + π2k
2) (C.11)

∂Den(π)
∂π

=
D−1∑
k=0

exp(π1k + π2k
2)

 k
k2

 (C.12)

∂Num(π)
∂π

= exp(π1d+ π2d
2)

 d
d2

 (C.13)

To obtain the variance of the parameters, we require the Hessian matrix of the likelihood

function ∂2Qn(θ)
∂θ∂θ′

. The second derivatives of the log likelihood are as follows.

[ζ, ζ] : n−1
n∑
t=1
−Vt(π)−1 (C.14)

[ζ, β] : −1 (C.15)

[ζ, π] : n−1
n∑
t=1
−
[
βVt(π)−1 + εt(θ)Vt(π)−2

]
∂Vt(π)
∂π′

(C.16)

[β, β] : n−1
n∑
t=1
−Vt(π) (C.17)

[β, π] : n−1
n∑
t=1
−β∂Vt(π)

∂π′
(C.18)

[π, π] : −1
2 n−1

n∑
t=1

{[
Vt(π)−1 − 2β εt(θ)

Vt(π) −
εt(θ)2

Vt(π)2

]
∂2Vt(π)
∂π∂π′

+[
− Vt(π)−2∂Vt(π)

∂π
− 2β ∂

∂π

εt(θ)
Vt(π) − 2 εt(θ)

Vt(π)
∂

∂π

εt(θ)
Vt(π)

]
∂Vt(π)
∂π′

}
(C.19)
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where the previous expressions take the form,

∂

∂π

εt(θ)
Vt(π) = −Vt(π)−1β

∂Vt(π)
∂π

− εt(θ)Vt(π)−2∂Vt(π)
∂π

(C.20)

∂2Vt(π)
∂π∂π′

=
D−1∑
d=0

∂2w(d, π1, π2)
∂π∂π′

r2
t−d (C.21)

∂2w(d, π1, π2)
∂π∂π′

=

 d
d2

 ∂

∂π′
Numd(π)
Den(π) −

∂Den(π)
∂π

∂

∂π′
Numd(π)
Den(π)2

− Numd(π)
Den(π)2

D−1∑
k=0

exp(π1k + π2k
2)

k2 k3

k3 k4

 (C.22)

∂

∂π

Numd(π)
Den(π) = Den−1(π)∂Numd(π)

∂π
−Den(π)−2Numd(π)∂Den(π)

∂π
(C.23)

∂

∂π

Numd(π)
Den(π)2 = Den−2(π)∂Numd(π)

∂π
− 2Den(π)−3Numd(π)∂Den(π)

∂π
(C.24)

By Wooldridge and White (1988), the QMLE converges in probability to the pseudo-true

value θ∗ and its asymptotic distribution takes the following form. The estimator is consistent

with respect to the pseudo-true value because the log-likelihood is misspecified, and therefore

it could be inconsistent with respect to the true value θ0.

√
n(θ̂n − θ∗) d→ N(0, J̃−1(θ∗)Ṽ (θ∗)J̃−1(θ∗)) (C.25)

J̃(θ∗) = n−1
n∑
t=1

∂Qt(θ∗)
∂θ

∂Qt(θ∗)
∂θ′

(C.26)

Ṽ (θ∗) = n−1
n∑
t=1

∂2Qt(θ∗)
∂θ∂θ′

(C.27)

C.2 Supplemental Tables and Figures
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Table C.1: Risk Return Trade-off wild bootstrapped t-test, absolute returns at monthly
frequency.

Monthly ζ β π1 π2 R2

(×102) (×102) (×104)
1928− 2000 Coeff. 0.541 0.463 -4.289 1.551 0.000

Std. Dev. 0.476 3.753 2.057 0.776
Std. p-value 0.000 0.902 0.030 0.000
WB p-value 0.000 0.960 0.090 0.412

1928− 1963 Coeff. 1.232 -2.791 -2.953 1.189 -0.003
Std. Dev. 0.700 5.200 3.571 1.341
Std. p-value 0.000 0.591 0.388 0.000
WB p-value 0.000 0.746 0.404 0.200

1964− 2000 Coeff. 0.061 2.989 2.925 -19.859 0.003
Std. Dev. 0.524 4.185 16.084 29.348
Std. p-value 0.731 0.475 0.842 0.001
WB p-value 0.722 0.452 0.850 0.000

1928− 2016 Coeff. 0.542 0.293 -5.270 1.846 0.000
Std. Dev. 0.387 2.973 1.729 0.683
Std. p-value 0.000 0.921 0.002 0.000
WB p-value 0.000 0.978 0.138 0.354

1928− 2000FTS Coeff. 0.380 2.745 -6.063 2.029 -0.003
Std. Dev. 0.326 2.374 1.722 0.753
Std. p-value 0.004 0.248 0.000 0.000
WB p-value 0.022 0.486 0.016 0.046

1964− 2000FTS Coeff. -0.617 8.594 3.220 -10.933 0.023
Std. Dev. 0.536 3.841 13.298 22.221
Std. p-value 0.001 0.025 0.804 0.035
WB p-value 0.010 0.118 0.798 0.026

This table presents the estimates, standard deviation and p-values of the standard and wild
bootstrapped t-test of the MIDAS model using monthly frequency and absolute returns.
The conditional variance estimator of returns is calculated using daily returns as in Equa-
tion (3.2). The variance of the coefficients is obtained using the sandwich formula of the QML
estimator White (1982). R2 is the coefficient of determination. The coefficients and stan-
dard deviation are multiplied by the value in the second row. FTS denotes Flight-to-Safety
subsamples.
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Table C.2: Risk Return Trade-off wild bootstrapped t-test, absolute returns at quarterly
frequency.

Quarterly ζ β π1 π2 R2

(×102) (×102) (×104)
1928− 2000 Coeff. 0.906 2.003 -5.454 1.975 0.003

Std. Dev. 1.629 4.326 7.593 2.972
Std. p-value 0.049 0.643 0.466 0.000
WB p-value 0.118 0.780 0.486 0.072

1928− 1963 Coeff. 3.796 -2.949 68.589 -22.629 -0.014
Std. Dev. 2.237 5.600 514.754 170.316
Std. p-value 0.000 0.595 0.893 0.000
WB p-value 0.000 0.724 0.892 0.000

1964− 2000 Coeff. -1.312 6.690 10.428 -28.412 0.040
Std. Dev. 1.267 3.562 22.398 43.001
Std. p-value 0.012 0.060 0.628 0.019
WB p-value 0.056 0.128 0.634 0.026

1928− 2016 Coeff. 1.026 1.546 -6.287 2.245 0.002
Std. Dev. 1.310 3.391 5.917 2.371
Std. p-value 0.012 0.648 0.284 0.000
WB p-value 0.032 0.786 0.278 0.090

1928− 2000FTS Coeff. 3.839 -3.955 180.311 -48.788 0.038
Std. Dev. 0.865 2.077 63.795 17.077
Std. p-value 0.000 0.056 0.003 0.000
WB p-value 0.000 0.142 0.004 0.000

1964− 2000FTS Coeff. -2.285 10.589 -0.354 -2.612 0.057
Std. Dev. 1.602 4.175 4.761 3.274
Std. p-value 0.000 0.011 0.941 0.019
WB p-value 0.018 0.138 0.950 0.016

This table presents the estimates, standard deviation and p-values of the standard and wild
bootstrapped t-test of the MIDAS model using quarterly frequency and absolute returns.
The conditional variance estimator of returns is calculated using daily returns as in Equa-
tion (3.2). The variance of the coefficients is obtained using the sandwich formula of the QML
estimator White (1982). R2 is the coefficient of determination. The coefficients and stan-
dard deviation are multiplied by the value in the second row. FTS denotes Flight-to-Safety
subsamples.
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Table C.3: Risk Return Trade-off parametric bootstrapped t-test, monthly frequency.

Monthly ζ β π1 π2 R2

(×102) (×102) (×104)
1928− 2000 Coeff. 0.537 0.482 -4.258 1.539 0.000

Std. Dev. 0.476 3.754 2.053 0.773
Std. p-value 0.000 0.898 0.031 0.000
PB p-value 0.000 0.912 0.676 0.232

1928− 1963 Coeff. 1.212 -2.646 -2.820 1.138 -0.003
Std. Dev. 0.700 5.197 3.615 1.352
Std. p-value 0.000 0.611 0.414 0.000
PB p-value 0.000 0.634 0.508 0.024

1964− 2000 Coeff. 0.022 3.314 3.051 -19.843 0.003
Std. Dev. 0.530 4.223 16.334 29.638
Std. p-value 0.903 0.432 0.836 0.001
PB p-value 0.854 0.404 0.804 0.030

1928− 2016 Coeff. 0.544 0.292 -5.165 1.803 0.000
Std. Dev. 0.388 2.979 1.706 0.673
Std. p-value 0.000 0.922 0.002 0.000
PB p-value 0.000 0.914 0.654 0.334

1928− 2000FTS Coeff. 0.374 2.795 -6.080 2.036 -0.003
Std. Dev. 0.326 2.374 1.725 0.754
Std. p-value 0.004 0.239 0.000 0.000
PB p-value 0.006 0.218 0.096 0.006

1964− 2000FTS Coeff. -0.619 8.608 3.538 -11.463 0.023
Std. Dev. 0.536 3.839 13.861 23.209
Std. p-value 0.001 0.025 0.793 0.032
PB p-value 0.000 0.000 0.760 0.040

This table presents the estimates, standard deviation and p-values of the standard and
parametric bootstrapped t-test of the MIDAS model using monthly frequency and absolute
returns. The conditional variance estimator of returns is calculated using daily returns as
in Equation (3.2). The variance of the coefficients is obtained using the sandwich formula
of the QML estimator White (1982). R2 is the coefficient of determination. The coefficients
and standard deviation are multiplied by the value in the second row. FTS denotes Flight-
to-Safety subsamples.
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Table C.4: Risk Return Trade-off parametric bootstrapped t-test, absolute returns at quar-
terly frequency.

Quarterly ζ β π1 π2 R2

(×102) (×102) (×104)
1928− 2000 Coeff. 0.900 2.021 -5.362 1.938 0.003

Std. Dev. 1.643 4.356 7.597 2.972
Std. p-value 0.051 0.643 0.471 0.000
PB p-value 0.046 0.676 0.636 0.020

1928− 1963 Coeff. 3.749 -2.831 128.824 -42.667 -0.013
Std. Dev. 2.034 5.195 1033.203 343.220
Std. p-value 0.000 0.586 0.901 0.000
PB p-value 0.000 0.572 0.920 0.012

1964− 2000 Coeff. -1.309 6.681 10.401 -28.356 0.040
Std. Dev. 1.266 3.562 22.346 42.879
Std. p-value 0.012 0.061 0.628 0.019
PB p-value 0.012 0.002 0.612 0.054

1928− 2016 Coeff. 1.024 1.549 -6.314 2.256 0.002
Std. Dev. 1.310 3.390 5.929 2.376
Std. p-value 0.012 0.648 0.283 0.000
PB p-value 0.010 0.650 0.538 0.022

1928− 2000FTS Coeff. 3.533 -3.272 1.327 -0.454 0.025
Std. Dev. 1.787 4.097 9.673 3.223
Std. p-value 0.000 0.424 0.796 0.125
PB p-value 0.000 0.404 0.796 0.280

1964− 2000FTS Coeff. -2.292 10.605 -0.312 -2.648 0.057
Std. Dev. 1.601 4.175 4.763 3.279
Std. p-value 0.000 0.011 0.948 0.018
PB p-value 0.020 0.006 0.888 0.082

This table presents the estimates, standard deviation and p-values of the standard and
parametric bootstrapped t-test of the MIDAS model using quarterly frequency and absolute
returns. The conditional variance estimator of returns is calculated using daily returns as
in Equation (3.2). The variance of the coefficients is obtained using the sandwich formula
of the QML estimator White (1982). R2 is the coefficient of determination. The coefficients
and standard deviation are multiplied by the value in the second row. FTS denotes Flight-
to-Safety subsamples.
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Härdle, W., J. Horowitz, and J.-P. Kreiss (2003). Bootstrap methods for time series. Inter-
national Statistical Review 71 (2), 435–459.

Hill, J. B. (2008). Consistent and non-degenerate model specification tests against smooth
transition and neural network alternatives. Annales d’Économie et de Statistique, 145–179.
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nomics/Revue canadienne d’économique 35 (4), 615–645.

MacKinnon, J. G. (2006). Bootstrap methods in econometrics. Economic Record 82 (s1).

MacKinnon, J. G. and H. White (1985). Some heteroskedasticity-consistent covariance ma-
trix estimators with improved finite sample properties. Journal of econometrics 29 (3),
305–325.

Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. The

181



annals of statistics, 255–285.

Markowitz, H. (1952). Portfolio selection. The journal of finance 7 (1), 77–91.

McLeish, D. L. et al. (1975). A maximal inequality and dependent strong laws. The Annals
of probability 3 (5), 829–839.

Mehra, R. and E. C. Prescott (1985). The equity premium: A puzzle. Journal of monetary
Economics 15 (2), 145–161.

Merton, R. C. (1973). An intertemporal capital asset pricing model. Econometrica: Journal
of the Econometric Society, 867–887.

Moreira, M. J., J. R. Porter, and G. A. Suarez (2009). Bootstrap validity for the score test
when instruments may be weak. Journal of Econometrics 149 (1), 52–64.

Nelson, C. and R. Startz (1988). Some further results on the exact small sample properties
of the instrumental variable estimator.

Nelson, C. R. and R. Startz (2007). The zero-information-limit condition and spurious
inference in weakly identified models. Journal of Econometrics 138 (1), 47–62.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach.
Econometrica: Journal of the Econometric Society, 347–370.

Newey, W. K. (1991). Uniform convergence in probability and stochastic equicontinuity.
Econometrica: Journal of the Econometric Society, 1161–1167.

Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing.
Handbook of econometrics 4, 2111–2245.

Paparoditis, E. and D. N. Politis (2001). Tapered block bootstrap. Biometrika 88 (4), 1105–
1119.

Politis, D. N. and J. P. Romano (1994). The stationary bootstrap. Journal of the American
Statistical association 89 (428), 1303–1313.

Pollard, D. (1990). Empirical processes: theory and applications. In NSF-CBMS regional
conference series in probability and statistics, pp. i–86. JSTOR.

Rousseeuw, P. J. and A. M. Leroy (2005). Robust regression and outlier detection, Volume
589. John wiley & sons.

Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Asso-
ciation 105 (489), 218–235.

Staiger, D. O. and J. H. Stock (1994). Instrumental variables regression with weak instru-
ments.

182



Stinchcombe, M. B. and H. White (1998). Consistent specification testing with nuisance
parameters present only under the alternative. Econometric theory 14 (3), 295–325.

Stock, J. H. and J. H. Wright (2000). Gmm with weak identification. Econometrica 68 (5),
1055–1096.

Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica:
journal of the Econometric Society, 24–36.

Turner, C. M., R. Startz, and C. R. Nelson (1989). A markov model of heteroskedasticity,
risk, and learning in the stock market. Journal of Financial Economics 25 (1), 3–22.

Van Der Vaart, A. W. and J. A. Wellner (1996). Weak convergence. In Weak convergence
and empirical processes, pp. 16–28. Springer.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct
test for heteroskedasticity. Econometrica: Journal of the Econometric Society, 817–838.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica:
Journal of the Econometric Society, 1–25.

White, H. (1989). An additional hidden unit test for neglected nonlinearity in multilayer
feedforward networks. In Proceedings of the international joint conference on neural net-
works, Volume 2, pp. 451–455. Washington, DC.

Wooldridge, J. M. and H. White (1988). Some invariance principles and central limit theo-
rems for dependent heterogeneous processes. Econometric theory 4 (2), 210–230.

Wu, C.-F. J. (1986). Jackknife, bootstrap and other resampling methods in regression anal-
ysis. the Annals of Statistics, 1261–1295.

183


	LIST OF TABLES
	LIST OF FIGURES
	A Wild Bootstrapped t-test Robust to All Identification Categories
	Introduction
	Identification Categories
	Examples
	Definitions and model setup

	Asymptotic results under weak and strong identification
	Asymptotic distributions of the estimators
	The t-statistic under weak and strong identification

	Wild Bootstrap under Weak and Semi-strong Identification
	Wild bootstrapped limit distributions
	The bootstrapped t-statistic

	Simulation Results
	Conclusions

	Parametric Wild Bootstrap Inference with Weakly Identified Parameters
	Introduction
	Model Setup
	Drifting Sequences of Distributions

	Assumptions
	Parametric Bootstrap
	Strong identification
	Weak identification
	The ideal case: known n 
	The realistic case: unknown n

	Imposing the null hypothesis
	Strong Identification, imposing the null hypothesis
	Weak Identification, imposing the null hypothesis

	Bootstrapped t-statistic
	Bootstrapped distribution of the robust t-statistic
	Robust Critical Values

	Simulation Exercise
	Conclusion

	The Risk-Return Trade-off under Weak Identification
	Introduction
	The MIDAS model under weak identification
	Weak Identification
	Wild Bootstrapped robust t-test
	Parametric Bootstrap robust t-test

	Empirical Analysis
	Estimation results of the wild bootstrap
	Estimation results of the parametric bootstrap

	Alternative MIDAS specification with absolute returns
	Conclusion

	Supplemental Appendix of ``A Wild Bootstrapped t-test Robust to All Identification Categories"
	Proofs of the main results
	Supporting Lemmas
	Vector 
	Simulation Details
	Supplemental Tables and Figures

	Supplemental Appendix of ``Parametric Wild Bootstrap Inference with Weakly Identified Parameters"
	Proofs of the main results
	Supplemental Tables and Figures

	Supplemental Appendix of ``The Risk Return Trade-off under Weak Identification"
	Risk-return QML estimation
	Supplemental Tables and Figures

	BIBLIOGRAPHY

