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ABSTRACT

JOSE ALFONSO CAMPILLO GARCIA: THREE PAPERS ON WEAK
IDENTIFICATION ROBUST BOOTSTRAP INFERENCE.
(Under the direction of Jonathan B. Hill)

This manuscript is composed of three chapters that develop bootstrap methods in models
with weakly identified parameters. In the first chapter, joint with Jonathan B. Hill, we intro-
duce an asymptotically valid wild bootstrapped t-test, which provides robust inference for
models with unknown identification category. Under weak identification, the wild bootstrap
needs to be constructed using residuals imposing lack of identification, because the usual
regression residuals are non-consistent. The robust t-test has better small sample properties
compared to the asymptotic approximation counterpart and is simpler to estimate in prac-
tice, especially when the underlying Gaussian process has an unknown form and/or is high
dimensional. A simulation exercise shows the benefits of using a robust t-test exposing the
large-size distortions of the standard t-test when weak identification is present.

In the second chapter, joint with Jonathan B. Hill, we introduce a parametric bootstrap
that provides an alternative approach to construct statistical tests when parameters are
weakly identified. The method extends the parametric bootstrap in regression models, to
cases where some of the parameters cannot be consistently estimated, reducing the number
of nuisance parameters that arise in the asymptotic distribution of the test statistic under
weak identification. Unlike the known statistical tests in the literature, this parametric
bootstrap method can mimic the true distribution without nuisance parameters in some
important cases. We establish robust critical values of the t-statistic that lead to correct
asymptotic size when the identification category is unknown. The simulation exercise shows
that the parametric bootstrap can lead to very accurate test sizes and considerable test power

comparable to the (infeasible) test statistic that assumes nuisance parameters are known.

il



In the final chapter, we consider the mixed data sampling (MIDAS) model proposed by
Ghysels, Santa-Clara, and Valkanov (2005) to evaluate the empirical performance of the
wild bootstrapped robust t-test of Chapter 1 and the parametric bootstrapped robust t-
test of Chapter 2. To test the statistical significance of the MIDAS estimators, we derive
the bootstrapped t-test assuming weak identification because the parameters of the MIDAS
model cannot be separately identified under the null hypothesis. Contrary to the results by
Ghysels et al. (2005), the bootstrapped t-tests suggest that the estimators of the MIDAS
model are not statistically significant, implying that the proposed functional form has low
explanatory and predictive power in the study of the risk-return trade-off. We extend the
empirical results to different sample frequencies to evaluate the small sample performance
of the bootstrap methods and propose an alternative MIDAS specification constructed with

the absolute value of excess returns.
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CHAPTER 1

A WILD BOOTSTRAPPED T-TEST ROBUST TO ALL IDENTIFICATION
CATEGORIES

1.1 Introduction

Conducting inference in econometric models is essential to evaluate the policy implica-
tions of the results obtained from model estimation. One of the most important assumptions
needed to obtain valid inference is parameter identification of the particular model being
studied. When parameters are weakly identified, the strong identification asymptotic results
are are not valid in general because the parameters cannot be consistently estimated. A
robust test is helpful in situations where strong identification cannot be assumed because
it provides valid inference regardless of the identification case. Unfortunately, hypothesis
tests robust to cases where parameters are weakly identified are scarce in the econometrics
literature. The objective of this paper is to construct a t-test that allows us to perform
hypothesis testing even when the parameter of interest cannot be uniquely recovered with
the existing data, and provide valid inference for all identification cases.

Andrews and Cheng (2012, 2014, 2013) introduced a unified treatment to derive the
asymptotic distributions of parameters with different identification category: that is, pa-
rameters that can be weak, semi-strong, and strongly identified according to their value
along the parameter space. In a nonlinear least squares regression model, for example, the
framework of Andrews and Cheng (2012) provides the theoretical results to perform inference
on models in which weak identification leads to least squares estimators with a non-invertible
Hessian matrix for some values in the parameter space. Because the parameters that are
possibly weakly identified are known in a parametric model, we perform quadratic expan-

sions around the points of lack of identification and obtain stochastic processes dependent



on the identification category thereby, bridging the gap between weak and strong identifica-
tion. Following the definitions and framework of Andrews and Cheng (2012), we propose an
asymptotically valid, wild bootstrap t-test that encompasses the limit distribution of each
identification category. Specifically, we propose a t-test constructing a t-statistic that; 1) is a
wild bootstrap based on the multiplier bootstrap structure of Wu (1986) and Liu et al. (1988)
allowing for heterogeneously distributed data; 2) is robust to all identification categories be-
cause we derive two asymptotically valid bootstrap distributions, one for the nonstandard
asymptotic distribution under non and weak identification, and another for the strong and
semi-strong identification categories; and 3) has better small sample properties compared to
the asymptotic approximation counterpart, and is simpler to estimate in practice; especially
when the underlying Gaussian process has an unknown form and/or is high dimensional.
In empirical applications, the identification category is unknown. We expect a loss in
size and power in robust statistics that do not assume the identification category of the
parameters. To compensate for this loss, we chose to construct a wild bootstrap process,
over asymptotic limit approximations, for the following reasons: 1) the bootstrap is more
accurate because an asymptotic refinement (faster higher order convergence rates in the
Edgeworth expansion) can be achieved in small samples. In particular, the bootstrapped
pivotal statistics like the t-statistic achieve asymptotic refinements which usually outper-
form the asymptotic limit approximations (see Mammen (1993), MacKinnon (2002), see
also Horowitz (2001), Hardle, Horowitz, and Kreiss (2003). 2) As the asymptotic distribu-
tion of the t-statistic under weak identification is non-standard, the bootstrap is simpler to
simulate when we do not have closed-form expressions of the stochastic process, especially
when the process is high dimensional. 3) The wild bootstrap has proven to be particularly
useful for cases with heteroscedastic data, non-symmetric statistic distributions, and when
the parameter dimension is large. As under weak identification the asymptotic distributions
are asymmetrical, in the simulation study, we show that an asymmetric two-point distribu-
tion distributions perform better than the (symmetric) limit approximation counterpart. To

the best of our knowledge, there is no study that develops a bootstrap method to perform



parameter inference robust to all identification categories.

In addition to Andrews and Cheng (2012) and the subsequent extensions to Generalized
Method of Moments and Maximum Likelihood (Andrews and Cheng 2014, 2013), the results
in this study are based on arguments from the bootstrap literature which was introduced by
Efron et al. (1979). As the classic resampling bootstrap method of Efron relies on the strong
assumption of i.i.d. observations, in this paper, we construct the t-statistic using a wild
bootstrap. Following the suggestions of Wu (1986) and Beran (1986), Liu et al. (1988) intro-
duced the wild bootstrap as an alternative bootstrap with heterogeneously distributed data.
In regression models, the wild bootstrap is a convenient method to perform inference in mod-
els with unknown heteroscedasticity as it avoids the estimation of the variance-covariance
matrix of the residuals. The Heteroscedastic Consistent Covariance Matrix Estimator (HC-
CME) introduced by White (1980) is perhaps the most popular estimator of the variance
of residuals in models with heteroscedasticity. However, it has been shown that the HC-
CME estimator suffers from large bias, particularly in small samples and when outliers are
present. MacKinnon and White (1985) demonstrate that the bias of the t-statistic can be
very large in regression models with heteroscedastic observations. The wild bootstrap has
been demonstrated itself to be an advantageous option to reduce the small sample bias.
Mammen (1993), Horowitz (2001) show via Edgeworth expansions that asymptotic refine-

ments, of size n~1/?

, can be achieved using a wild bootstrap, while the simulation exercise
of Davidson and Flachaire (2008) demonstrates that the wild bootstrap outperforms asymp-
totic approximations and the resampling bootstrap of Efron et al. (1979). Even though the
wild bootstrap results developed by Liu et al. (1988) assume independence throughout the
paper, Shao (2010) extends the wild bootstrap to models with weakly dependent data.
Performing a bootstrap procedure under weak identification is not an immediate exten-
sion of the theoretical results of Efron et al. (1979), Liu et al. (1988), etc. The assumptions
ensuring uniform convergence of the bootstrapped distribution, which are required for the

asymptotic validity of the bootstrap, fail precisely for the parameter values that lead to weak

identification (see Efron et al. (1979), Giné and Zinn (1990), Andrews and Guggenberger



(2010), Mammen (1993), among others). For example, a resampling residual bootstrap for a
non-linear regression model under weak identification leads to invalid inference because the
residuals cannot be resampled when some of the parameters are not consistent. The same
problem would apply to the Integrated Conditional Moment test of Bierens and Ploberger
(1997), which is comparable to our t-test in the sense that it has a nonstandard distribution
and depends on nuisance parameters under the null hypothesis. On the other hand, models
with parameters that allow different identification category have an asymptotic distribution
that varies within the parameter space. To overcome these issues, the wild bootstrap is con-
structed using residuals centered at the point of lack of identification, which does not depend
on the weakly identified parameters and therefore, relies solely on the available consistent
estimators.

The t-test developed in this paper is subject to similar challenges from previous studies
which analyze hypothesis testing on statistics that depend on nuisance parameters under
the null hypothesis. Under weak identification, the nuisance parameters are precisely those
that cannot be estimated consistently but appear in the asymptotic distribution of the test
statistic. Testing the null hypothesis Hy : # = 0, where 7 is weakly identified, leads to a
t-test whose asymptotic distribution depends on the its true (unknown) parameter m (see
Section 1.2 and 1.3). The challenges of hypothesis testing with nuisance parameters under the
null or alternative dates back to Chernoff and Zacks (1964) for a sup-Lagrange multiplier and
Davies (1977, 1987) for a sup-Likelihood ratio test. More recently, Hansen (1996) studied the
effect of testing with nuisance parameters in the null hypothesis, introducing a transformation
that eliminates the dependence on the nuisance parameter. Stinchcombe and White (1998),
Andrews and Ploberger (1994) develop smoothed test statistics when there is a nuisance
parameter under the alternative hypothesis. Hill (2017) developed a conditional mean test
with nuisance parameters under the alternative that is consistent against general alternatives
in the sense of Bierens (1990), Bierens and Ploberger (1997) and Hill (2008), Hill (2013). To
obtain a robust t-statistic, Hill (2017) constructed a test that exploits the p-value occupation

time, which does not depend on a nuisance parameter as it integrates over its support.



A smaller number of research papers have analyzed the consequences of hypothesis test-
ing under weak identification in the parameter space. Studies by Antoine and Renault
(2009, 2012) and Caner (2009) provide asymptotic results of GMM models with near weak
instruments. In particular, Caner (2009) shows parameter inference is possible as the Wald,
LR, and LM tests have a standard x? limit distribution when nearly-weak instruments are
present. Nelson and Startz (2007) and Ma and Nelson (2008) analyze models in which the
asymptotic variance of one parameter depends on the identification of a different parameter.
However, none of these studies extend their results to construct tests that are robust for
strong and weak identification nor do they employ a bootstrap method.

The weak identification literature is vast and encompasses very different fields and method-
ologies. A partial list of recent studies include Nelson and Startz (1988), Stock and Wright
(2000), Dufour and Taamouti (2005), Staiger and Stock (1994), Kleibergen (2002, 2005), etc.
Bootstrapping methods with weak instruments have received less attention; some examples
include Davidson and MacKinnon (2014), Moreira, Porter, and Suarez (2009). In contrast to
the weak instrument literature, wherein the source of weak identification is treated as exoge-
nous, in the framework of Andrews and Cheng (2012), the source of lack of identification is
known to be caused by specific values of the parameter space. For this reason, the approach
of Andrews and Cheng (2012) is complementary to the weak instrument literature. The
ability to pinpoint the weak identification cases is key to develop a valid bootstrap method.

Robust inference is an important issue in economic applications. Ignoring the conse-
quences of weak identification in hypothesis testing can lead to severely biased statistics.
We claim using a robust t-test leads to more accurate asymptotic sizes when weak identifi-
cation is present, with a minor loss in the power of the test. Examples of parametric models
that can encounter weak identification for certain values of the parameter space include;
ARMA models (Andrews and Cheng 2012), Maximum Likelihood Estimation (Andrews and
Cheng 2013), Generalized Method of Moments (Andrews and Cheng 2014), Dynamic General

Equilibrium models (Guerron-Quintana, Inoue, and Kilian 2013; Andrews and Mikusheva



2015), MIDAS regression (Ghysels, Hill, and Motegi 2016), Smooth Transition Autoregres-
sive models (Andrews and Cheng 2013), Probit models (Andrews and Cheng 2014), Regime
Switching models (Chen, Fan, and Liu 2016), among others. The t-test proposed in this
study allows to perform robust inference against weak identification for all the previously
enlisted models.

This paper has the following structure. In Section 1.2, we introduce the framework used
throughout the paper and define the identification categories: strong, semi-strong, weak,
and non-identification. Section 1.3 shows consistency and derives the limit distribution of
the parameters and t-statistics under all identification categories. We introduce the wild
bootstrap method and develop the bootstrapped distribution of the parameters and the
bootstrapped distribution of the t-statistic in Section 1.4. Simulation results are presented
in Section 1.5, while Section 1.6 concludes the paper. All proofs are provided in the Appendix.
Let X,,(7) = 0,.x(1) be defined as sup,p; || X (7)|| = 0,(1), where ||-|| denotes the Euclidean
norm. Let eig(A) and eig(A) denotes the smallest and largest eigenvalues of matrix A. The
symbol =- denotes weak convergence of a stochastic process indexed by 7 € II for parameter

space II.

1.2 Identification Categories

In this section, we introduce the framework used throughout the paper and define the
identification categories: strong, semi-strong, weak and non-identification. We begin by
introducing some examples of data generating processes in which identification depends on

the value the parameter takes within the parameter space.

1.2.1 Examples

Example 1. Nonlinear Regression Model

Yr = Qo X1e + Byh(Xap, mo) + € (1.1)

The identification of my depends on By being non-zero. If 5y = 0, the parameter m



is weakly identified. The identification of (3 does not depend on the identification of ei-
ther By or mp; it is always strongly identified. Usual examples of the function h(Xy,m)
include a) Exponential h(X:, m9) = exp(—mo1(X: — mo2)), and b) Logistic h(X;,m) =

1/(1 4 exp(—mo1 (X — m022))).
Example 2. ARMA(1,1) model

Y = (mo + Po)yt—1 + € — To€r—1 (1.2)

The parameters 3y and my are not identified when they have equal numerical value. When
By = mp, the model is observationally equivalent to the model 3; = ¢;. Ansley and Newbold
(1980) and Nelson and Startz (2007) demonstrate that when the time series y; is serially
uncorrelated, the estimators suffer from substantial bias and large variance and hypothesis

testing may suffer from size distortions.

Example 3. MIDAS Regression

Consider a mixed data sampling process {y;, X (m)}, where y,; is observable at times

t/m

t=1,..,n and Xf;:i = (1, Xl(?/)m, o XI()?/)m), where m is the number of high frequency lags

used in the temporal aggregation of X /,,. The MIDAS regression sets the higher frequency

variable on the right-hand side of a regression equation

yr = BoXi(mo) + € (1.3)

where X;(my) is a nonlinear function that maps the high frequency data into the lower

frequency data,

X (mox) = 3wy (mo) LX) (1.4)

Jj=1

where L denotes the lag operator. If 5y = 0, then 7y is not identified, and the weight function



w; k(T ) can potentially take any value.

1.2.2 Definitions and model setup

Before we state the assumptions, we introduce several concepts and notation. Consider
a sampling process W; = {y;, X;} of observable random variables X; € R% y;, € R, and
0 = (¢',p',7") denotes the vector of parameters. Throughout this study, we consider a

generalized non-linear model:
&(0) =y — (' X1y — fh(Xoy,m) (1.5)

where X;,; and X,; denote elements of the X; matrix and h is a non-random function.
The parameters are defined as elements contained in compact sets of R, ( € Z C R%,
BeBCR® and m €Il C R%.

The estimator 6, minimizes the objective function @, (#). For simplicity, we use the least

squares objective function.

n

A . . 1
On = ifQn(Wi, 0) = inf -3 €(0) (1.6)

ni4

Under weak identification, the limit objective function of the non-linear model does not
depend on the weakly identified parameter, i.e., the objective function @, (6) becomes flatter
with respect to 7 as n grows to infinity and /3 goes to zero. As a consequence, the second-order
derivative of @,(0) is singular or near singular for some values of the parameter space. In
these cases, the delta method cannot be applied because the uniformity conditions required
for the bootstrap are not valid. To develop the wild bootstrap method, we derive first-order
expansions around the point of lack of identification, which is defined using drifting sequences
of true parameters.

We assume drifting sequences of true parameters to define the degree of identification
and true process €/(6,) for each n > 1. The drifting sequence of parameters serves as a

useful theoretical tool to describe the range of behavior of the asymptotic distribution of



parameters under the different identification categories. Suppose the sequences of true pa-
rameters are defined by 6,, = (8., (,,/ 7)) for n > 1, converging to the limit true parameters
defined by 6y = (8}, ¢}, 7). Table 1.1 illustrates the definitions of identification categories

introduced by Andrews and Cheng (2012, 2014, 2013).

Table 1.1: Identification categories

Category {5,} sequence Identification Property of 7
I(a) fn=0Vn>1 Unidentified

I(b) B, # 0 and /nB, — b € R%» Weakly identified

II Bn — 0 and /B, — co Semi-strongly identified

11 Bn — Bo # 0 Strongly Identified

For notational convenience, we partition the parameter space according to each parame-

ter’s identification category.

0= (0 7") =, ) (1.7)

The parameter ) denotes the strongly identified parameters, which can be estimated con-
sistently, whereas m denotes parameters that are weakly identified. The identification of 7
depends on the parameter 3, whereas ( denotes all other parameters that do not affect the
identification of .

The speed at which the parameter (3, converges to zero determines the identification
category of m and therefore if a consistent estimator of 7 is attainable. If n®||3,|| = O(1) for
some « € [0,1/2), a consistent estimator of 7 is feasible because the sequence is converging
to zero at a slower rate than /n. Subsequently, if the speed is larger or equal to 1/2, that
is n?||5,|] = O(1) for some o > 1/2, no consistent estimate of 7y is available because the
elements of the first order expansion with respect to m and the noise process ¢; have the

same order of magnitude. The non-linear model studied in this paper defines the true error

IFor more details on drifting sequences of distributions see Staiger and Stock (1994) and Stock and Wright
(2000).



process for each sequence of drifting true parameters n, which we denote by €,(6,), with

O = (Cos B> )’

Y n’

Et(Qn) =Yt — C;Xl,t - B;Lh(Xz,t, 7Tn) (1-8)

Accordingly, the limit error process is denoted by €:(6y) = yr — ¢ X1+ — Byh(Xat, o), where
0o = (¢}, B35, ), while the finite sample and limit variance of errors are defined by o?(6,,)
and o2(6y) respectively.

Semi-strong identification bridges the gap between weak identification and strong iden-
tification. In Section 1.3 we show 7 cannot be estimated consistently when 5, — 0 and
VnB, — b (i.e., weak identification). Nonetheless, we can obtain an expression of the
asymptotic distribution of 7 that depends on functionals of an empirical process. Moreover,
the weak identification of 7 has consequences on the parameter 3, which although it can be
consistently estimated, has a non-standard asymptotic distribution because 8 depends on
the random draw of the distribution of 7. On the other hand, under semi-strong identifi-
cation, § and 7 can be consistently estimated, and inference is standard under the proper
normalization which avoids the singularity of the second order term in the Taylor expansion.

We define the degree of identification into three non-exclusive cases of sequences of true

parameters:

O6y) ={{, €O :n>1}:0, — 6, € O} (1.9)
O(6,0,b) = {{0,} € O(6) : Bo = 0 and \/nf, — b € R} (1.10)

O(fo, 00, wo) = {0} € O(6o) : V/nl|Bal| = 00 and B,/[|8,]| — wo € R?} (1.11)

Unless we explicitly differentiate within identification categories, we write “under ©(6y, 0,b)”
to refer to cases under weak identification, while we write “under ©(fy, 00, wy)” when refer-
ring to strongly identified parameters. The asymptotic distribution of the estimators and the

t-statistics turn out to be standard under ©(fy, 0o, wy) and non-standard under (6,0, b).
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1.3 Asymptotic results under weak and strong identification
In this section, we show consistency and convergence in distribution for each identification
category. In particular, we show that under weak identification, 7,, converges to a random

variable which leads to non-standard asymptotics of @/AJn

1.3.1 Asymptotic distributions of the estimators

Let 6, be the estimator that minimizes the objective function Q,,(6) over the parameter
space ©. We assume that the true parameters 3, lie in the interior of the parameter space
© as boundary effects are not the main focus of this paper (see Andrews (1999, 2001)).
In the weak identification case, it is necessary to obtain the asymptotic results of ¢ and
7 separately as the distribution of ¢ depends on the (random) draw of m. We define the
extremum estimator Qﬂn(ﬂ), which characterizes the minimizer of the objective function for

each m € Il as:

A

Qu(n(m),m) = inf Qu(d,m)+o(n™") (1.12)

pev(m)

To estimate the possibly weakly identified parameter m, we let Q¢ (7) denote the concentrated
sample objective function Q, (¢, (7), 7). The parameter #, is defined as the extremum

estimator that minimizes the concentrated estimator sample objective function.

Qi(7) = inf Qi(m) + o(n ™) (113

We derive the second-order expansion of the objective function uniformly on 7, meaning the
quadratic expansion is made around v for each m. Define d,(0) = %et(é) as the derivative
of €; with respect to the strongly identified parameters. Using least squares estimation, the

gradient of the objective function with respect to ¢ uniformly on 7 takes the following form:

0 1
%Qn(e) = ; €:(0)dy4(m) (1.14)
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Under semi-strong identification we consider the gradient of the objective function with
respect to all parameters because, in this case, a normalization matrix is be enough to obtain
convergence in distribution. The gradient is denoted by, ZQ,(0) = L 371 €,(0)dp.(6), with
dy(0) = %et(ﬁ). Without loss of generality, we express the parameter space dependent on

to work with the concentrated estimator.

O={0= ' n"):¢e¥(r),n e€ll}, where (1.15)
M= {r: (', 7") €O for some 1} (1.16)
U(m)={y: (W' 7)) €O} formell (1.17)

The following stochastic processes are important, as they define the asymptotic distribution

of ¢ and 7.
92
Hn(djo,na ) ad}aw,Q (’I/JOTLJ ) (118)
Gyn(m) = \/ﬁ[an(%,m ™) —Eo. (5, Qn(l/fom m))] (1.19)
O o)
0
Kn(¢0,naﬂ;9 ) aﬁnEen(ann(¢0na )) (120)
where 57— 6 denotes a partial derivative with respect to the true parameter /3,,. In Lemma A.2.3

we show that the limit distribution of Gy, (7) converges to a zero mean Gaussian process
Gy (m) with bounded continuous sample paths and covariance kernel Q(m, 7; 0,) for =, 7 € IL.
The process H,(0) is standard and converges uniformly to a probability limit. Conversely,
the process K, (m) is a first-order bias that arises when we center the stochastic quadratic

expansion around the point of lack of identification.
Assumption A Identification of data generating process
(1) €(6,) is a martingale difference sequence and L, bounded for p =4 + ¢ for small .

(i) Eq, (€(0,)]X,) = 0 a.s.

12



(i7i) Varg, (e,(6,)1X,) = Eq, (€(6,)|X:) = 02(6,) > 0 a.s.

(iv) Under weak identification Eg, (e,(¢), m)dy (7)) = 0 for unique ¢, = ({,,[,) in the
interior of U*(mw) and under strong identification Eq, (€:(0,)dg+(6,)) = 0 for unique

0, = ((,, B),,m,)" in the interior of ©F.

Y n? n
Assumption B Properties of data generating process

(i) The random variables Wy = {y;, X;} are a —mixing of size —r/(r —2) for some r > 2

and X, is L, bounded for p =4+ ¢ for small ¢.

(1t) The stochastic processes {dy,(m) : m € II} and {dy,(8) : 6 € ©} are L, bounded, for p =
4+ with tiny v and all n, that is By, (||(dy+(7)]|*) < C and Ey, (||(dg+(0)||*T) < C

for some constant C.

(iii) The stochastic processes {dy,(m) : m € II} and {dp,(0) : 6 € O} are Lipschitz, that
is Vr, % € T1, 3C, such that |[n=" X0, dy, (1) — n~ ' S0, dy, (7)]] < Co(W))||7 — 7],
and V0,0 € ©, ||n ' " dg,(0) —n~ 7, do, (0)|] < C(W))||0 — 8| for some random
variable such that C,(W;) = O,(1) for all n.

(iv) The function h(-) is a Borel measurable function for each m € 11, twice continuously

differentiable in II, non-degenerate and bounded for all values of Xo, and .

Assumption C Long Run Variances

(1) The limit variance of the stochastic processes Gy, and Gy, are positive definite and
finite, that is Vm € II, Ep, (Gyn(m)Gyn(m)) and V0 € O, Ey, (Gon(0)Gon(0)) are

positive definite and finite.

(7i) The uniform limits of the stochastic process and random matriz are positive definite
and finite, that is Vr € 11, By, (dy+(m)dy (7)) and V8 € ©, Ky, (do+(0)dg+(0)") are

positive definite and finite.

Assumption D Parameter Spaces

13



(i) © is a compact set of R%  where dg = d; + dg + d

(i) ©* = {(B*, ¢, 7Y : B € B*,( € Z*, 7 € II*} is a compact set and O C int(0) and

Odﬁ € znt(B*)
(iii) ||7*|| > € for some e >0, n* € II

Remark 1. Assumption A imposes correct specification, i.e., conditional mean zero of
€, for the whole sequence of drifting true parameters 6,. Under strong identification, the
conditional mean zero condition applies to the gradient with respect to all parameters, while
under weak identification the mean zero expectation applies to the gradient with respect to
1 uniformly over 7. The variance of ¢, is assumed to be time-varying, allowing for stochastic
volatility models such as ARCH and GARCH.

Remark 2. We focus on a data generating process that allows time series data satisfying
a strong mixing decay rate stated in Assumption B. We assume dy; and dp; are Lipschitz,
which can be relaxed using the results of Newey (1991). The measurability and boundedness
of function h(-) are standard in parametric models with known objective function.

Remark 3. Assumption C specifies that the limit variances must be nondegenerate and
positive definite. These variance-covariance conditions do not apply to the weakly identified
parameters because the second order derivative is singular by construction.

Remark 4. Assumption D is equivalent to the parameter space assumptions of Andrews
and Cheng (2012). The compactness assumption is standard in the econometrics literature
to show weak convergence. Moreover, as boundary effects are not the focus of this paper,
we assume that the true parameters are in the interior of the parameter space and refer to
Andrews (2001, 1999) for more details on the limit theory with boundary constraints.

Now we state the consistency result.

Proposition 1.3.1 Suppose that Assumptions (A) to (D) hold. Under {0,} € ©(6y),
(a) When By = 0, then sup||th, (1) — Un|| 2 0, in particular P, (7,) — ¥, 2 0.
mell

(b) When By # 0, then ||6, — 0,]| 2 0.
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The theorem states that consistency under strong identification is achieved for all param-
eters, whereas under weak identification 7, is inconsistent. Even though we are not able to
estimate 7 consistently, we can derive its random probability limit in Proposition 1.3.2.

Before we state the convergence in distribution result, we provide some intuition on how
the result is derived (see further details in Appendix A.1). It is key to express the Taylor
expansion around the point of lack of identification, i.e., setting § = 0. Taking a first-order
condition of the objective function with respect to the strongly identified parameter ) and

letting o, = ((p, 0) yields:

A~ 2 R
0= i@n(d%@ﬂa 7T> = aannOpO,naﬂ') + (‘91/1881/}/@”(1/}0’”’ W)(Q/}n — 1/10’”) + 0p(1) (121)
2
= aqwan(wﬂ,m W)\/ﬁ(&n - wO,n) = \/ﬁ[a(ijn(wO,na 7T) - Ee"ai@"(%m’ 7T) + EgngﬁQn(@bom’ 7T)]

The previous expression follows uniformly over 7 using the Mean Value Theorem at the
point of lack of identification. At 1y,, the objective function does not depend on 7, and
valid residuals can be estimated using z/zo,n. Using Equation (1.21) and the results from

Appendix A.1, we derive the asymptotic distribution of @En(w) under weak identification:
7'(71'; 90, b) = —H_l(’ﬂ'; 90)(Gw(7’(’; 90) + K(’]T; 90)[)) — (b, 0d<) (122)

The stochastic process 7(m; 6y, b) establishes that the asymptotic distribution of 1/3n depends
on the value of 7, which does not converge to a fixed constant under weak identification.
Obtaining the limit distribution of 7 requires a quadratic expansion of the concentrated

estimator. The limit distribution of 7 is a non-central x? process:

6(71'; 90, b) = —;(G¢(7T; 90) + K(?T; eo)b),H_l(ﬂ'; 90)(Gw(ﬂ'; 90) + K(T[’; eo)b) (123)

We assume that for each random sample path of {(; 6y, b), there exists a unique minimizer

(6o, b) = argmin . &(m;60p,b). The minimizer 7*(6p, b) defines the distribution function
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of @@n(w) Two more assumptions are stated to prove weak convergence of 8,
Assumption E Identification of ©

(i) Each sample path of the stochastic process {£(m;00,b) : m € 11} is minimized over 11
at a unique point denoted 7 (6y,b) Y0y € © in some set A(0y, b) with Py, (A(0y, b)) =1

with By = 0 and ||b|| < 0.
(i1) Poy (557 (7" (b),b) = 0) = 0

Remark 6. Assumption E is equivalent to Assumption C6 of Andrews and Cheng
(2012). The Assumption guarantees that, although we cannot estimate the weakly identified
parameter consistently, the random probability limit of 7 is a uniquely identified random
variable, because 7*(fy, b) is unique for each sample path of £(7; 0, b).

Under weak identification, the Hessian matrix with respect to 6 converges to a non-
singular matrix for all identification cases in which g — 0. Furthermore, the parameter
achieves a root-n limit distribution, while 7 has a different rate of convergence. Nonetheless,
under semi-strong identification, a normalization matrix is enough to obtain a normal asymp-
totic distribution of 8, because 7 can be consistently estimated. To obtain a finite limit of

the gradient and Hessian of the objective function, we define the normalization matrix as

follows:
1, 0
Bg)=| “ (1.24)
Odrxd,  t(B)
where () = 5 is B is scalar and «(8) = ||5]| if B is a vector. Now define the variance-

covariance matrix of the estimators as 3, = J 'V, /! and the limit variance-covariance

n

matrix X(6y) = J1(0p)V (60)J 1 (0). The matrix B(f3) is used to obtain non-singular ex-

pressions of the variance-covariance matrix.

82

S 2 087 (52) 2 J(60) (1.25)

Jn = B_l(ﬂn)
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Vi = VAB ™ (Bu) 55 Qul00) % N (O, V(0) (1.20)

The next assumption imposes regularity conditions on the limit functions J and V.
Assumption F Continuity and non-singularity of variance-covariance matrix
(i) J(0;600) and V(0;6,) are continuous in 6 € O, Y0, € © with [ = 0.

(it) J(m;6p) and V (7;00) are positive definite matrices Vr € 11,6y € © with By = 0. (that is,
the maz-min eigenvalues are finite, eig(J(m; 0y)), eig(V(m;6p)) > 0 and eig(J(m;6))), eig(V (73 00)) <

)

Remark 5. The variance-covariance matrix of the estimators in Assumption F must
be consistent regardless of the identification case. Under weak identification, consistency
must be uniform over m because the asymptotic distribution of z@n(ﬂ) is a function of .
Assumption F guarantees that the limit exists and that it is positive semi-definite for all
identification categories.

We state the convergence in distribution result for weak and strong identification.
Proposition 1.3.2 Suppose that Assumptions (A) to (E) hold.

(a) Under {60,} € O(6y,0,b) with ||b|]| < oo, the following holds

Vi(a(fta) =) | 4 [ (7 (00,); 00, )
—
ﬁn 7T*<90,b)

(b) Under {6,} € ©(6y, 00,wp), the following holds

VB(B,) (0 — 0,) 5 N(0, T (66)V (60) T~ (60))

In sum, the strongly identified parameters can be consistently estimated for all identifi-

cation categories, while under weak identification we cannot consistently estimate w. The
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asymptotic distribution of \/ﬁ(én — 0,,) is asymptotically normal under semi-strong identi-
fication when we multiply it by the normalizing matrix B(/3). The asymptotic distribution
of \/ﬁ(zzn — 1,,) is a functional of a Gaussian processes by the inconsistency of 7, and de-
pends on the minimizer of the functional £(7). The distribution of 7, is non-standard and
influences the distribution of z[;n

Even though we have a consistent estimator for 5, we cannot estimate the parameter
b consistently. As the process 7(m;0,b) is a function of b, the t-statistic we develop in

Section 1.3.2 includes b as a nuisance parameter under the null hypothesis.

1.3.2 The t-statistic under weak and strong identification

We have derived the asymptotic distribution of 0, for all identification categories. In this
subsection, we derive the distribution of the t-statistic. For the remainder of this subsection,
we assume the parameter [ is a scalar for ease of exposition. The asymptotic distribution
of the t-statistic differs slightly when § is a vector (see Appendix A.3).

The null hypothesis of the t-test, which formally tests all values of the true sequences of

parameters, is denoted by a restriction function r : © — R as follows:

Hy :1(0,) = qn (1.27)

Under weak identification, the asymptotic distribution of the t-statistic depends on which
parameters are tested. Testing with respect to the parameter ( is standard in a non-linear
regression model; the classic t-statistic under strong identification is valid because the param-
eter’s distribution is not affected nor does it affect the distribution of the weakly identified
parameter m. The interesting cases are the t-statistics with restrictions with respect to
and 7 because the limit distribution is non-standard.

Let dim(ry(6)) and dim(r.(#)) denote the dimension of the derivative of the restriction
function with respect to the parameters ¢ and w. If the proposed null hypothesis solely

concerns 1, then dim(ry(0)) = 1, whereas, if the restriction concerns 7, then dim(r,(¢)) = 1.
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We now consider the regularity assumptions required to obtain the asymptotic distribution

of the t-statistic under all identification categories.
Assumption G Properties of the restrictions function

(i) r(0) € R is continuously differentiable on ©
(77) 19(0) #0 V0 € ©
(7ii) rank(r(0)) = d: for some constant di < min(d,,d,),V0 € O5 ={6 € © : ||5]| <}

Remark 7. The conditions on Assumption G are non-restrictive. Differentiability is
required to use the delta method of the restriction function.

It is well known that the standard sample t-statistic converges to a standard normal
under strong identification. Under semi-strong and weak identification, the standard t-
statistic does not have a finite probability limit as the variance-covariance matrix is singular.
The sample t-statistic must be modified to obtain valid critical values under weak and semi-
strong identification. The statistic requires a non-singular variance-covariance matrix of én,
which can be obtained using the normalization matrix B(/3) because the values that lead to
lack of identification are known. Specifically, the robust t-statistic (robust in the sense of

converging to a distribution for all identification categories) is defined as:

y Var0) —v) (1.28)

[76(0n) B~ (5n) X (00) B~ (Bn )79 (0 )]/
Under weak identification, the asymptotic distribution of the t-statistic is non-standard and
varies according to the parameter tested. Testing with respect to the m modifies the limit
distribution as the estimators ¢, () and #, have different rates of convergence. Specifically,
when the null hypothesis tests a restriction on =, the randomness of 7, dominates the
randomness of zﬂn When the restrictions of the t-test are with respect to the strongly

identified parameters 1), the limit distribution of the t-statistic 7% takes the following form:

Tw(W)T(W; 6o, b)
[Tw(ﬂ)z(ﬁ; 0o, b)rw<7r)/]1/2

TV () = (1.29)
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Conversely, when the t-test restrictions are with respect to 7, i.e., d% = 1, we must normalize
the asymptotic distribution with respect to 75 to obtain a finite limit distribution. Let
75(m; M0, 04, b) = Sp7(m; 70, 04, 0) + blgg and Sg = [l4p : Ogyxq.] be the selector matrix that
selects B out of 1. Define the asymptotic distribution of the t-statistic when we test with

respect to mas T™

N O e )
) = e e S o, By () ]2 (1.30)

Finally, for the semi-strong identification case, {6, } € ©(fy, 00, wy), it is not surprising that,
because the asymptotic distribution of 0,, is normal under the proper normalization, the t-
statistic has a standard normal distribution. Additionally, as 7 is consistent, the convergence
result is pointwise and a standard central limit theorem applies. The following theorem
formalizes the results of the asymptotic distribution of the t-statistic for all identification

cases.

Proposition 1.3.3 Suppose assumptions (A) to (H) hold
(a) Under {6, € ©(0y,0,b)} with ||b]| < co and dim(r,(6)) =0, T, LN T%(7*(6o,b); 0o, b)
(b) Under {6, € ©(0y,0,b)} with ||b|| < oo and dim(r,(0)) =1, T, KN T (7*(00,b); 0o, b)
(¢c) Under {6,} € ©(6y, 00,wp), T, KN N(0,1)

The asymptotic distribution under semi-strong identification of the t-statistic is equiva-
lent to the asymptotic distribution under strong identification. The robust t-statistic critical
values involve exclusively two cases: the weak/non-identification (non-standard) distribution,
and the semi-strong/strong identification standard normal distribution. For this reason, un-
less the distinction is necessary, we use the term “weak identification” to characterize non
and weak identification categories, and we use the term “strong identification” for the strong
and semi-strong identification. As the asymptotic distribution only depends on these two
grouped identification categories, we develop a bootstrap process for weak /non-identification

and another for the strong/semi-strong identification.
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1.4 Wild Bootstrap under Weak and Semi-strong Identification

Constructing critical values of the t-test using Proposition 1.3.3 involves simulating
a stochastic process dependent on the (unknown) randomness structure of 7 (see Equa-
tion (1.32)). We propose using a wild bootstrap approach which multiplies by a random
variable 2", the process G ,(7) to separate the effects from the randomness structure of 7
and the randomness from the data probability space. This bootstrapped process is asymp-
totically valid while it performs better in small samples. For example, if the asymptotic
distribution is known to be symmetric but the small sample distribution is skewed; a wild
bootstrap with a skewed process z;* would lead to better inference. As under weak identi-
fication, no consistent estimator of 7 is available, the wild bootstrap cannot be constructed

using the residuals €,(6,). Nonetheless, we can construct the bootstrap using the errors

centered at the point of lack of identification €;(1y,,) since they are consistent estimates of

€:(6p).

1.4.1 Wild bootstrapped limit distributions

Two bootstrapped processes are necessary to construct the bootstrap distribution of the
t-test. Let G, denote the bootstrapped process under weak identification, and let Gy,
be the process under strong identification. First, we focus on the weak identification case
and establish the steps to derive the wild bootstrapped process G7,,. From the definition of

Gy, centering €, at the point 1) ,, we obtain the following weak convergence result:

1 & 0 0
Gw,n<w0,n7 7T) = 7 Z[%G? (wo,nv 7T) - Een %G? (wo,na 71—)]

t=1

S

zn: €1(0r)dy + () + 0p 2 (1) = Gy(m) (1.31)
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where Gy (7) is a zero mean Gaussian process with covariance kernel:

n

O, 7100) = lim 0" > Eg, (€(0,)dyo(7)dy 1 (7)) (1.32)

n—00
t=1

where Equation (1.32) follows as Ey, (€,(6,,)dy (7)) = 0, Vr € II by Assumption A, while
the weak convergence result follows from Lemmas A.2.1 to A.2.3 in the Appendix. We
can construct a multiplier bootstrap to generate random draws of Equation (1.31). We
define G!,,(m) as a wild bootstrapped stochastic process, centered at the point of lack of

identification vy,

Zzt f(er(o,n))dy () (1.33)

For this study, we let f(e:(10n)) = €:(10.n) because ¥y, can be estimated consistently, and we
assume ¢; is a martingale difference sequence. Under more stringent assumptions such as ¢
being i.i.d., a more convenient choice of f(-) would be f (& (1)) = o2, which is equivalent to
performing the resampling bootstrap of Efron et al. (1979). The assumptions required for z}™
to converge weakly to the Gaussian process limit distribution are E(z;*) = 0 and Var(z") = 1
and E|z/"|*™ < C' < co. A common choice in the literature is 2" ~ N(0,1), which is
convenient when the small sample distribution is close to the asymptotic distribution. An
option to obtain small sample improvements over the asymptotic approximation is to use

the Rademacher distribution suggested by Liu et al. (1988).

{ 1 with probability 1/2 (1.34)
2" =

—1  with probability 1/2
The simulation results of Davidson, Monticini, and Peel (2007) and Davidson and Flachaire
(2008) show that the Rademacher distribution performs better than other distributions if

the conditional distribution of the errors is symmetric and suggest it should be preferred in

practice. When the distribution of the errors is asymmetric, a more convenient choice is the
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two point distribution proposed by Mammen (1993).

—(v5—-1)/2  with probability (v/5 + 1)/(2v/5) (1.35)
(V5+1)/2  with probability (v/5 - 1)/(2v/5)

Lemma A.2.9 in the Appendix shows G}, = G () is asymptotically valid for any of the
options of 2" described above. The choice of 2" does not affect the first-order terms and
consequently does not affect the asymptotic distribution. Nonetheless it can lead to very
different critical values in small samples. The bootstrapped process Gmm(ﬂ') is used to con-
struct the bootstrapped distributions of 7,, and an in the same fashion as in Equation (1.18)
o (1.23). Specifically, we construct the bootstrapped stochastic processes under weak iden-

tification according to the following expressions:

82

Hn(’/T) = awaw,@n(wo,m - 1Zd¢t dwt (136)
0 0 "

K, (0, 7 By, —Qn(0) = —nS" h(Xo, mn)dus 1.37
CESE 8ﬁn98¢Q() n;uw)m) (137
E(m, T, b) = —§[G$n(7r) + Kn(ﬂ',Wn)b]’Hn(']r)_l[Gmn(Tr) + K, (m,7,)0] (1.38)
7 =argmin £ (m, m,,b) (1.39)

well
T T, ) = —H, () (G () + Koo (7, 70)b) — (D, 0) (1.40)

Next, we construct the bootstrapped distribution of the parameters z/?n and 7, under strong
identification. The major difference with respect to the weak identification case hinges on
the construction of a bootstrapped process G that does not depend on 7. This construction
leads to theoretically and practically simpler expressions that can be simulated using a
sequence of independent draws instead of sample paths depending on a grid of 7. When we
let {0,} € ©(6, 00, wp), the wild bootstrapped process G, under semi-strong identification

takes the following form:

Zzt €:(0,,)dg .+ (0,,) (1.41)

23



Moreover, the normalizing matrix B(/3) is required to obtain a non-singular variance-covariance
matrix in the limit. With the bootstrapped stochastic process GG, and the consistent proba-
bility limits .J,,, V,,, we can derive the asymptotic distribution of 6, under strong identification

which we denote by 757,

0) = (B0 55 m QuOB G0 B GVASQ0)  (142)
= J, ' (0)Gy,(0) (1.43)

where J,(0) = n' Y0 dg(0)des(6) and nZQm(8) = Gy (f). The bootstrapped t-
statistic distribution under semi-strong identification is replicated using Equations (1.41)
0 (1.43) as well as Equation (1.29) and (1.30).

The following consistency theorem requires the introduction of some notation. Define
i, = inf{z € R® : Py (7(7*(0p,b);00,b) < 2) > 1 —a} and let ¢f , = inf{z € R :
Py, (7*(60,b) < z) > 1 — a} be the 1 — o asymptotic critical values of 7(7*(6y,b); 6y, b) and
(0o, b) respectively. To obtain the critical values of the bootstrapped statistics, let M,
denote the number of bootstrapped samples. For the sequence of bootstrapped distributions
{FmyMn = L7 (77 1, b))} denote the order statistics 7[ < 721 < . < #[Mal - The

~[(1—a) M|

approximated 1 — « critical value of {77} is defined by Codlo = TA . For {#zm}Mn |

define ¢, #l(1=e)Mn] - Equivalently, under strong identification let c?’_a be the 1 —a crit-

ical value of the distribution N (0, =1 (6)V (6p)J~}(6o)). Also, let {72 }Mm, = {757 (8,)} o,

be the bootstrapped samples with order statistics 71l < 7121 < . < #[Mal and 1 — « critical

m,Tm __ ~l(1—a)My]

values ¢, 1", = Tq,,

. The next theorem shows that the bootstrap procedure is valid.

Theorem 1.4.1 Suppose that Assumptions (A) to (E) hold. Under weak identification,
let @™ be constructed using Equation (1.39) and 7"(7"; mo,b) be constructed using Equa-
tion (1.40), while under strong identification let ?ﬁn(én) be constructed using Equation (1.42).
Denote c

Zfia—a and c{_,, with a = m, 7,7y be the critical values of the bootstrapped and asymp-

totic distributions, respectively. Letting M, — oo as n — oo then
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(a) Under {0,} € ©(0y,0,b) with ||b|| < oo, [ _q — ¢]_o| = 0 and |}, — _,| 5 0.

b) Under {6,} € ©(6y, 00, wp), |, — .| 2 0.
( ,

It is worth mentioning that contrary to Gy ., the bootstrapped stochastic process G},
does not have to be demeaned by a non-zero expectation. In practice, the unknown ex-
pectation of Gy (), namely Eg, (€,(100,n)dy (7)) is not required to construct the bootstrap
process. The bootstrapped stochastic process G, is mean zero by construction. In con-
trast, the sample process Gy, (7) derived has a non-zero expectation Eg, €;(g ,dy (7)) that
has to be estimated. This expectation not only depends on the unknown true parameters
f,, but also depends on the expectation of the induced measure with respect to the true
parameters, which is not simple to estimate. The estimation error that can arise from the
estimation of this expectation is not present in the wild bootstrap estimation, suggesting

that bootstrapped distributions are more precise in practice.

1.4.2 The bootstrapped t-statistic

The bootstrapped t-test is derived using a two-step procedure. In the first step, we
estimate ", 7," and 7, and the relevant probability limits using Equation (1.31) to (1.43).
The second step consists of constructing the asymptotic distribution of Proposition 1.3.3

ﬂ'

using the bootstrapped processes. Specifically, let T7",, T, be bootstrapped asymptotic

am

distributions under weak identification incorporating the bootstrapped processes @,)", 7", 77,

T, = 7 = 1.44

o = ) = S R .

e (o DRI ) )
| e ) S G 1

As the parameters ¢ and 7 have different rates of convergence, the asymptotic distribution
of the t-statistic depends on the identification category and the parameters that the null

hypothesis is testing.
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Under strong identification, the t-statistic is evaluated at 0, and takes the form

ro0n)

T (0,) = _ . .
o) [r0(0,) 220 (0,)r0(0,)1]1/2

(1.46)

Using the definitions in Theorem 1.4.1, let ¢y, with 7%, T™, T% denote the 1 — « critical

n,l—«

value of the bootstrapped t-statistics 77", T, Tg", . Similarly, let ¢f_, with a = T}, T, N
denote the 1 — « critical value of T%,T™ and N(0,1). The next theorem demonstrates that
the bootstrapped statistics converge to the same limit distributions and therefore can be

used for hypothesis testing.

Theorem 1.4.2 Suppose assumptions (A) to (H) hold. Let Tj',, T}, be the bootstrapped

™n

t-statistics of Equation (1.44) to (1.46). Denote ¢y, and ¢{_, with a = T, T™, T N

the 1 — « critical values of the bootstrapped and asymptotic distributions, respectively. Let

M, — 0o as n — 0o
(a) Under {0, € ©(6y,0,b)} with ||b|]| < co and dim(r,(6)) =0, |c;7f’1T,wa — 150

(b) Under {6, € ©(6,,0,b)} with ||b|| < co and dim(r.(8)) =1, |/, — I | &0

n,l—a l—a

(¢) Under {6,} € O(fg, 00,w0), iy — el o] 50

n,l—a

Under weak identification, the bootstrapped distributions 77", , 17", depend on the nui-
sance parameters. The nuisance parameters in the non-linear model are (b, m). To recover
the critical values, we consider a grid of nuisance parameters p € P? and use the supremum
over that grid. Under strong identification, we do not have to deal with nuisance parameters
because we have a consistent estimator of my and the value b has no role outside of weak
identification.

After deriving the bootstrapped distribution under weak and strong identification, the

salient question is “which critical values should be chosen if the identification category is

2The nuisance parameters can be reduced if we use null imposed critical values. For example, if we are
testing f3,, = 0 and use null imposed critical values, by construction the number of nuisance parameters is
reduced as b = 0 under the null hypothesis.
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unknown”?. We consider two specifications of robust critical values which incorporate the
critical values under weak and strong identification: 1) Least Favorable Critical Value (LF)
and 2) Identification Category-Selection Type 1 (IC'Sy).

The LF critical value, as the name suggests, adopts the largest critical value regardless
of the true identification category. Let ¢’y ,(p), p € P denote the critical values of the
weakly identified bootstrap statistic and ¢’y ;_, denote the critical values of the semi-strong
identified bootstrap statistic. The LF' critical value is defined as

LFm m

cn,lfa - max{sup Cn,l—a(p)7 Cm@,l—a} (147)
peEP

The LF critical value is a naive selection as we use the larger critical values regardless
of the identification case. To improve the size and power of the test, Andrews and Cheng
(2012) propose a data-driven critical value, IC'Sy, that relies on a first-step test to determine
whether b is finite, implying weak identification. If we cannot reject the null hypothesis of
finite b, the LF critical value is selected; otherwise, the strong identification bootstrapped

critical value is used. The IC'S; critical values are defined by

ke it A, <k, (1.48)
ICS1,m '
n,l—a T
Cnpi-a A Ay >ky
A, = (nB,51 5,2 (1.49)

where A, is a first step statistic and k,, is a sequence of positive constants such that x, — oo
and k,/n'/? = o(1). For example, &, = (logn)'/? is analogous to the penalty term used in
the Bayesian Information Criterion. The null hypothesis Hy : [|b]] < oo is accepted in
favor of weak identification when A, < k,, while the null hypothesis is rejected in favor of
strong identification if H; : ||b|| = oo when A, > k,,. We need one more assumption about

the validity of the critical values proposed. Let ¢,_(0c0) denote the 1 — a quantile of a
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normal standard distribution and let fl; ! be the upper left variance matrix size dg x dg in

Assumption F.
Assumption H Properties of LF and [CSy critical values

i) The distribution function of T% and T™ are continuous at ci_o(p), Vp € P. If ¥ >
-«

c1-a(00), ¢t is attained at some pax € P.

(ii) Kn — 00 and k,/\/n — 0

(iii) The distribution function of TY and T™ are continuous at the critical values ci_q,

Vp e P.

Remark 8. Assumption H is equivalent to Assumptions LF, K and V3 of Andrews and
Cheng (2012).

To prove that the robust critical values lead to the correct asymptotic size, Andrews and
Cheng (2012) introduce the asymptotic size of the t-test under different identification cate-
gories. We are interested in the effects of the Confidence Sets from various null hypotheses
of #. Recall the null hypothesis for any element of the drifting sequence is Hy : 7(6) = q.
The Confidence Sets are obtained by inverting a test. For example, the t-statistic 1 — «

Confidence Set under 7(0) is defined as:

CS, =1{q:Tw(q) < cni-alq)} (1.50)

Notice that the Confidence Sets are a function of the value ¢ as well as sample size n. The

coverage probability of a Confidence Set for r(6) is
CP,(0) =Py(r(0) € CS,) =Po(Tn(r(0) < cri-a(r(d)))) (1.51)

An important measure of the t-test is the maximum null rejection probability as it is equiv-

alent to the asymptotic size of the test. The test null rejection probability is defined by
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Py(T,,(r(0)) > cni—a(r(f))) with asymptotic size

AsySz =liminf  inf  Py(T,,(r(0)) < cni—a(r(0))) (1.52)

n—00 feO:r(f)=q

We need to introduce one more assumption need to assume the convergence of the Coverage
probabilities for all nuisance parameters. For more details on asymptotic size, see Section 2

of Andrews and Cheng (2012), in particular Lemma 2.1.
Assumption I Properties of the Coverage Probabilities

(i) Under weak identification for any 0, € ©(6y,0,b) with b < oo, CP,(0,) — CP(p) for
some C'P(p) € [0, 1], where p = (b,6y) € P.

(7i) Under strong identification for any 60, € ©(0y, 00, wy), liminf, ., CP,(0,) > CP,, for
CPy €10,1] and for some 6, CP,(0,) — CPx.

(iii) For some d >0, 0= (', 8, 7') € © with 0 < ||B]| < & implies that 6 = (¢, ', 7') € ©
for all B € R% with 0 < ||| < 4.

Remark 9. Assumption I is equivalent to Assumption ACP of Andrews and Cheng (2012).

To obtain robustness against all identification categories, the critical values must either
change according to the unknown identification category or be the largest critical values
according to the asymptotic distribution obtained for each case. The IC'S; and LF' critical
values fulfill these requirements, as proven in the following theorem. Further, the power of
the test approaches 1 in the limit. For our purposes, we focus on the asymptotic power of

the test, instead of the Confidence Sets, which are defined for each n > 1.

Theorem 1.4.3 Let M,, — 0o as n — oo. Under the null hypothesis Hy : r(0) = q, the
LF and ICS; critical values of the t-test have the correct asymptotic size with probability

approaching one,

(a) AsySz"Fm =liminf — inf P, (T.(r(0)) < 2™ (r(0)) =1 — «

n—o0  §eO:r(h)=q nl-a
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(b) AsySZ1Stm =liminf inf = P, (T, (r(0)) < 32" (r(0) =1 — «

n—00  HeO:r(0)=q

(¢) If Hy is false, that is r(0,) # q, then T, (r(0)) 5 oo

1.5 Simulation Results

The simulation exercise compares the performance of the robust t-test which has correct
asymptotic size with respect to all identification categories, and the standard t-test, which in-
variably assumes strong identification. The data generating process assumes strong, weak or
non-identified according to the value of 5,,. Moreover, we compare the differences in the size
and power of using the wild bootstrapped t-statistic against the asymptotic approximation
distribution of Andrews and Cheng (2012, 2014, 2013).

We assume a non-linear model with an autoregressive exponential smoothing specification

as in Cheng (2015). The data generating process of the residuals takes the following form:

€t(0n> =Yt — Col"l,t - Bn’yt_1(1 - exp(—c(xu - 71'0)2)) (1-53)

We require a drifting sequence of true parameters for 3, only, albeit ( and 7 have a unique
true value (y and 7. The simulations are constructed by assuming the following true values:
(o = 1,7 =0 and b = 0.9. The drifting sequence of true parameters (3, takes the values
Bn = b under strong identification, 3, = b/y/n under weak identification and /3, = 0 under
non-identification. We assume x4, x2; ~ N(0,1) and set ¢ = —1 to reduce the optimization
parameter space. Four distributions for the errors ¢, are considered: standard normal N (0, 1),
t-distribution with 4 degrees of freedom ¢(4) and GARCH(1,1) errors with parameters w =
0.1,aa = 06,6 = 0.3 and w = 0.1, = 0.3,8 = 0.6. The results are estimated for the
sample sizes n = 100, 250 and 500. We use two tailed critical values and assume z;" as in
Mammen (1993). Under weak identification the asymptotic distribution is asymmetric and
can have large skewness and kurtosis, which justifies the use of two tailed critical values.
The number of simulations is 1, 000. For each simulation, we construct a bootstrapped and

asymptotic approximation distribution to derive their critical values using 500 samples. For
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brevity we report the size and power of the test for sample size n = 250 and ¢, ~ N(0, 1)
and GARCH(1,1). The Appendix contains the remaining tables.
We estimate the model by Least Squares. Let €(0) = v — (z14 — Syi—1(1 —exp(—c(xo, —

7)?)), and 6 = (¢, 3, 7). In the simulation exercise, h(Xoy, 7)) = y;_1(1—exp(—c(xe—7)?)).

dw,t = (Xl,t,h(thﬂT))/ dat = (Xlt> h(th,W) N (XQ,t>7T))/
1 Z 8
Qu(0) =5~ t:1e§(9) 55 (0) = —— Zet B)dg.q () (1.54)
0 0) = Ly 0)d i dy(m)d
%Qn( ) _E;Q( )2 () 31#(%’ nZ ot () oyt (7
o 0) = Ly B(B)dy¢(0)de+(0) B 0)D, (6
5995 2 (0) = 5 SIB(3)dau(0)do.(0) B(5) = c0)Di(0)
0 0 0 (1.55)
Di#)=1 0 0 ha(Xay, )
0 hﬂ<X2,ta 7T) 5h7r,7r(X2,t, 7T)

For ease of exposition, we state the steps required to derive the bootstrapped t-test. These
steps follow the results of Section 1.4. For more details on the estimation see Appendix A.4.

Step 1. Construct the following matrices

H,(m,7)=n" Zdw Yy () )=n" Zdet )do .1 (0
=1
K, (7, m,) = —n_IZh(Xt77Tn)d¢7t(7T> )=n IZGt Vdp.+(0)dp+(6)'
=1
H(rs00) = Jim 0™ Y- B (W) (0 = 3 (a0,
=1

n

K (i 60) = lim —n > Eg, (h(Xem)due(m) V(02 = 0> o, (€dos(6)dos(60))

n—00
t=1 t=1

S(60) = T (8o)V (60) T (6y) Sn =, (00)Vi(0,) 7, (0,)
(1.56)

Note that the only variables that depend on the nuisance parameter 7, are the stochastic
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processes K, (m) and K ().
Step 2. Construct the weak identification bootstrap process Ggﬁn(z/zojn, 7) and the strong
identified process G (é ) developed in Section 1.4 where &(t,,) denote the residuals cen-

tered at the point of lack of identification and @EO,n is a consistent estimator of 1)y

m(r) = —;ﬁ Z ey ()
€117, 50,8) = 3 G () K, ] Ho () [ ) + Ko, )

,ﬁ-Zl = arg min 521(7-(’ T 6—757 b)

o (' 7n, 0) = —Hil(ﬂ)( e (") 4 K (R, 0 )b) — (0, 0) (1.57)
g?n Z wOn d@t(é )
t:
Tom Z w)do,o(00)') Gy (0)

As the error process ¢; is an martingale difference sequence, the residuals et(izo,n) are
heterogeneously distributed. The bootstrapped process 7, depends on the minimizer 7",
which is derived using a grid of 1001 values of 7 within the interval [my — 2, m + 2]. It is
worth noting that the wild bootstrap procedure presented here avoids the inconvenience of
simulating the (unknown) stochastic process Gy (7).

Step 3. Define the null hypothesis r(6,) = ¢. If the null hypothesis sets restrictions
with respect to m, we use the asymptotic process defined by T, whereas if the restrictions

depend solely on v, we construct the statistic 7.

mo T¢(7Arm) rd)(A:?)Tg%(ﬁ-gz) (158)

ﬁ?)? ;n) - r(@zn(Am)a a9

(1.59)

The semi-strong identification case t-statistic is simpler because we do not need to simulate
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the random paths of a stochastic process.

T3, (0n) = (1.60)

We consider three null hypotheses in this simulation exercise. The first null hypothesis sets
the parameters equal to their true values. The second and third consider the false null
hypotheses of parameters within one and three standard deviations of the true value. The
false null hypotheses are important to analyze the loss of power of the robust t-test compared

to the standard t-test.

Hglzﬁzﬁn H{)r’lmr:wo
H£2:6:6n+0g Hi,:m=m+0x (1.61)

Hg3zﬁzﬁn+3ag Hiz:m=mo+ 305

The robust sample t-statistic is constructed by

T, = (1.62)

75 = \/)ﬁ<r<é") —Y) (1.63)

The critical values of the bootstrapped t-statistic are computed using order statistics.
Let {777, (m)}j; be a sequence of independent draws of the t-statistic with a = ¥, 0.
Denote the order statistics by I m < 1o s - €t The LF and ICS; critical values are
computed using ¢;'\", » = inf{c > 0: P(T}" < ¢) > 1 — /2} and 7, = inf{c > 0:
P(T7" < ¢) > «/2}, as we use two tailed critical values. To construct the /C'S; critical value,

we use £, = (In(n))"/?, as suggested by Andrews and Cheng (2012).

All critical values of the t-statistic are simulated for the asymptotic approximation t-tests
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of Andrews and Cheng (2012), the robust wild bootstrap t-test and the standard t-test. For
ease of comparison, the p-values of the tests are compared using the distribution with known
nuisance parameters and the distribution with unknown nuisance parameters.

The results in Tables 1.2 and 1.3 show that the bootstrapped critical values behave
better than the asymptotic approximation critical values, particularly in small samples, but
the difference is small. The benefits of bootstrapping are overshadowed by the loss in size and
power resulting from constructing a grid of nuisance parameters. The loss of power of the
robust t-test is small compared to the important gains in size. As we expected, the standard
t-test works well only when the data generating process is strongly identified. When the
process is weakly identified the size distortions are significant leading, to p-values of 0.30 to
0.40 for asymptotic sizes of 0.10.

Figure 1.1 and Figure 1.2 compare the large sample asymptotic distribution of the t-
statistic under strong and weak identification. The figures show that there are large size
distortions of the parameters é’n and Bn when weak identification is present, which would lead
to over-rejection of the null hypothesis when the standard t-statistic is employed. It is worth
noticing that the rejection rates of the t-statistic of fn can be severely large, especially when

errors have a t(4) distribution, which is surprising because ( is always strongly identified.

1.6 Conclusions

In this paper, we introduce an asymptotically valid, wild bootstrap t-test robust to all
identification categories, in the sense of Andrews and Cheng (2012). The wild bootstrap
is developed using a multiplier bootstrap at the point of lack of identification, instead of
around the true parameter. The robust t-test properties include the asymptotic refinements
of the bootstrap and the simplicity to estimate when the asymptotic Gaussian process has
unknown form and/or is high dimensional. The simulations affirm that the wild bootstrap
performs better than the finite sample counterpart, while it exposes the large-size distortions

of the standard t-test when weak identification is present.
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CHAPTER 2

PARAMETRIC WILD BOOTSTRAP INFERENCE WITH WEAKLY IDENTIFIED
PARAMETERS

2.1 Introduction

Identification is one of the most important assumptions in econometric modeling. Be-
ing able to correctly specify the model is essential to obtain estimates that are informative.
Identification is usually assumed but the validity of this assumption is rarely tested. Im-
plementing standard hypothesis tests on models that are unidentified would usually lead to
false positives. This paper expands the parameter identification literature by proposing a
parametric bootstrap to conduct hypothesis testing for any identification category.

Heuristically, the parameters in an econometric model are identified if a unique value of
the parameter can be obtained with a sufficient amount of data. If this is the case, we say
that the parameter is strongly identified. In contrast, when the parameter value does not
have enough signal to noise ratio and a unique value cannot be obtained regardless of the
amount of data at our disposal, we say that the parameter is weakly identified.

In principle, the identification category of parameters is unknown. Not surprisingly, the
asymptotic distribution of the estimators, as well as their convergence rate, depends on
being either strongly or weakly identified. In consequence, assuming strong identification in
models where weak identification is present leads to erroneous statistical testing. In the case
of the t-statistic, the Hessian converges to a singular matrix when parameters are weakly
identified. The t-statistic is growing without bound which leads to an eventual rejection
of the null hypothesis, i.e. false positives. This is conceptually similar to the spurious
regression phenomenon introduced by Granger and Newbold (1974) because the t-statistic
of a regression constructed with (drift-less) unit root variables does not have a standard

normal distribution and is growing at rate O,(n'/?).
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In Chapter 1 we propose a wild bootstrapped robust t-test that can be employed in models
with strongly or weakly identified parameters. The authors derive a bootstrap method to
generate the asymptotic distribution and generate robust testing by combining the critical
values. In this paper, we propose an alternative bootstrap method to construct the t-test.
The parametric bootstrap is developed for models in which consistent estimators of some
parameters are not available.

One of the most important properties of the parametric bootstrap is that it reduces
the number of nuisance parameters of the test statistic under weak identification. When
a parameter in a model cannot be consistently estimated (i.e., it is weakly identified), the
t-test proposed by Andrews and Cheng (2012) and the wild bootstrapped t-test proposed in
Chapter 1 include nuisance parameters under the null hypothesis. To be able to construct the
statistic in practice, the usual approach is to generate a grid of possible nuisance parameters
and obtain the supremum of the critical values as in Davies (1977, 1987). This approach
would lead to test statistics with correct level but not correct size. If the rejection rate of the
test is 5%, the statistic rejects at a 5% level or lower. Unfortunately, for a large enough grid,
some test statistics lose all statistical power. The simulation study of Chapter 1 shows that
the t-statistic with respect to the weakly identified parameter 7 has no statistical power for
a large enough grid as the distribution is centered around a nuisance parameter. Reducing
the number of nuisance parameters in the limit distribution leads to statistical tests with
better performance.

This paper proposes a parametric bootstrap influenced by the residual bootstrap em-
ployed in strongly identified regression models e.g. Freedman (1981); Mammen (1993); Liu
et al. (1988); Horowitz (2001); Davidson and Flachaire (2008). The residual bootstrap is
used to generate bootstrap samples of the original data, by resampling residuals and gen-
erating new draws imposing the regression model. When parameters are weakly identified,
this procedure cannot be employed as residuals depend on estimators that are inconsistent.
Nonetheless, our parametric bootstrap method generates valid bootstrap samples by resam-

pling residuals over a grid of potential values for the weakly identified parameters. More
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specifically, the parametric bootstrap under weak identification follows these steps: 1) ob-
tain residuals centered at the point of lack of identification which are valid to perform a
bootstrap, 2) generate bootstrapped residual draws using a Wild bootstrap multiplicative
approach as in Wu (1986); Liu et al. (1988); Shao (2010), 3) obtain bootstrapped data draws
by imposing the null hypothesis over a grid of parameters, and 4) minimize the objective
function with the bootstrapped samples to retrieve bootstrapped estimators. The main dif-
ference of our parametric bootstrap hinges on step 3, in which the bootstrap is performed
along a grid of potentially weakly identified parameters, from which a consistent estimator
cannot be obtained.

Andrews and Cheng (2012, 2014); Andrews and Mikusheva (2015) introduce a unified
framework of identification categories in which the definitions of identification depend on the
true values that parameters take along the parameter space. In other words, for some values
along the parameter space, the parameters are strongly identified while for other values
the parameters are weakly identified. The authors introduce four different identification
categories that comprise all possible cases. As all identification categories can be grouped
into a t-test with two distributional cases, we regroup the identification categories of Andrews
and Cheng (2012) into two groups: weak and strong identification. For simplicity, as the
four distributions can be grouped into two cases that enclose all other cases. Specifically, we
refer to weak identification for the weak and non-identification categories of Andrews and
Cheng (2012), while we refer to strong identification the semi-strong and strong identification
categories.

One of the most important differences between the identification categories is that under
weak identification, the parameter 7, converges to a random variable. The random out-
come of m will determine the value of the other estimator @n. The distribution of these
parameters is non-standard and usually very different from a normal distribution. To obtain
critical values of these distributions we can rely on simulation methods that depend on nui-
sance parameters. The parametric bootstrap method will simplify the construction of these

distributions, avoiding the simulation of these non-standard distributions.
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The bootstrap method introduced in this paper relies on bootstrapping residuals and
generating valid draws of the model at hand. With validity, we mean that the bootstrapped
distribution is equivalent to the asymptotic distribution of the statistic generated with the
true data generating process. In this paper we bootstrap the residuals using a wild bootstrap
approach (Wu 1986; Liu et al. 1988; Shao 2010) as we work with heteroscedastic and depen-
dent data. The wild bootstrap has important advantageous properties: 1) using a pivotal
statistic it leads to an asymptotic refinement in small samples (Mammen 1993; Horowitz
2001; Hardle et al. 2003); 2) the wild bootstrap is useful to approximate asymmetric distri-
butions with fat tails, and 3) the multiplicative form of the wild bootstrap extends easily to
multivariate settings. The resampling residual method proposed by Efron et al. (1979) can
be applied if the data are independent and identically distributed. We do not pursue this
approach because economic and financial data is usually heteroscedastic and dependent.

Extending bootstrap methods to models where weak identification is present is not a
trivial extension. The uniformity assumptions required for any bootstrap method, are not
satisfied in this setting. As weak identification is present for some values of the parameter
space, the distribution of the estimators will be different according to the true value the
parameter takes. In particular, the delta method cannot be used for the weakly identified
parameters as the objective function does not have a clean minimum (see Assumption J).
The non-uniformity of the bootstrap is comparable to the case studied by the integrated
conditional test of Bierens and Ploberger (1997). This lead to technical difficulties that are
solved using stochastic expansions centered at the point of lack of identification (Andrews
and Cheng 2012; Andrews and Mikusheva 2015; Andrews and Cheng 2014). Consequently,
if we wish to replicate the distributions under weak and strong identification, we must per-
form two bootstrap procedures to construct the two distributions separately. The bootstrap
procedures for both identification categories are introduced in Section 2.4.

The most relevant contribution of this paper is the ability to construct t-tests that do not
depend on nuisance parameters. Hypothesis testing with nuisance parameters dates back to

Chernoff and Zacks (1964). Davies (1977, 1987) studies the consequences of having nuisance
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parameters under the alternative hypothesis and proposes using the sup-Likelihood ratio
test over a grid of potential nuisance parameters. This approach leads to a test with the
correct level, but not the correct size as the correct distribution can only be constructed
if the nuisance parameter is known. In other words, if the test has a 5% size, the sup
test would asymptotically have an empirical size of 5% or less. Stinchcombe and White
(1998); Andrews (1994) develop smoothed test statistics with nuisance parameters under the
alternative hypothesis. Hansen (1996) derives a sup-test to eliminate the nuisance parameter
under the null hypothesis, constructing the asymptotic distribution using a local-to-null
reparametrization. Contrary to these studies, this paper proposes a bootstrap method valid
for all identification categories. To the best of our knowledge, this is the first research paper
that proposes a parametric bootstrap method to construct robust critical values using the
identification category definitions of Andrews and Cheng (2012).

The paper has the following structure. Section 2.2 introduces the notation of the model
and the identification categories framework. Section 2.3 introduces the assumptions used
to prove the main results of the paper. Section 2.4 introduces the parametric bootstrap for
the strong and weak identification categories, while the following section discusses how to
impose the null hypothesis in the parametric bootstrap. Section 2.6 derives the bootstrapped
distribution of the t-statistic employed in the simulation exercise. Simulation results are

analyzed in Section 2.7. The last section concludes the paper.

2.2 Model Setup

Identification in this paper refers to the ability to extract the true value of the parameters
in a model with a sufficient amount of data. In circumstances where a consistent estimator of
the parameter is not available with an infinite amount of data, we say that the parameter is
weakly identified. On the other hand, when a consistent estimator of the parameter is avail-
able, we say that the parameter is strongly identified. The identification of a parameter will
depend on the value that it takes in the parameter space. Before introducing identification

categories, we present two examples of identification.
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Example 1. Nonlinear Regression Model
yr = (X114 + Boh(Xag, mo) + & (2.1)

The identification of 7y depends on Sy being non-zero. If Sy = 0, the parameter 7 is
weakly identified. The identification of {; does not depend on the identification of either 3,
or mp; it is always strongly identified.

Example 2. MIDAS Regression

Consider a mixed data sampling process {yt,Xt(/":,)L}, where 1, is observable at times
t=1,..,n and Xf;:g = (1, Xfff/)m, o X]S?/)m), where m is the number of high frequency lags

used in the temporal aggregation of X /,,. The MIDAS regression sets the higher frequency

variable on the right-hand side of a regression equation

Y = /BéXt(ﬂ'(]) + €t (22)

where X;(my) is a nonlinear function that maps the high frequency data into the lower

frequency data,

Xy (mog) = S wyk(mos) LX)

Jj=1

(2.3)

m

Where L denotes the lag operator. If 5, = 0, then my is not identified, and the weight
function w;(mo ) can potentially take any value. Other examples of models that suffer
from weak identification for some values in the parameter space include: ARMA models
(Andrews and Cheng 2012), Maximum Likelihood Estimation (Andrews and Cheng 2013),
Generalized Method of Moments (Andrews and Cheng 2014), Dynamic General Equilibrium
models (Guerron-Quintana et al. 2013; Andrews and Mikusheva 2015), MIDAS regression
(Ghysels et al. 2016), Smooth Transition Autoregressive models (Andrews and Cheng 2013),
Probit models (Andrews and Cheng 2014), Regime Switching models (Chen et al. 2016),

among others.
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Ghysels et al. (2005); Ghysels, Plazzi, and Valkanov (2016) propose a MIDAS model to
analyze the risk-return trade-off at a monthly or quarterly frequency using a volatility esti-
mator constructed with daily excess returns. The authors conclude that the estimators of the
MIDAS model are significant and that the risk-return trade-off relationship can be captured
using the data-driven polynomial of the MIDAS aggregation function. The hypothesis tests
constructed by Ghysels et al. (2005, 2016) ignore the presence of weak identification. The
null hypotheses § = 0 or m = 0 cannot be tested using the standard t-statistic because we
cannot separately identify both parameters under the null and in consequence, would not
be normally distributed. Chapter 3 analyses if the parameters of the MIDAS model stud-
ied by Ghysels et al. (2005, 2016) maintain their statistical significance when critical values
robust to weak identification are used. Using a wild bootstrapped t-test robust, Chapter 3
concludes that the MIDAS representation of the risk-return trade-off is not significant for all
samples studied. The author suggests exploring other possibilities to model the risk-return
trade-off using a different stochastic discount factor (e.g. the utility function introduced by
Epstein and Zin (2013)).

The cases where weak identification is present can be hard to visualize using general
extremum estimator notation. For this reason, the results of the paper the non-linear model
in which weak identification is easy to portray. Let {W;}}; = {w, X:}7-, be observable
data, and 6 = (¢’, 3/, ") denote a vector of parameters. We divide the parameter vector
0 into these three groups because each of them describes a different identification category.
The parameter 7w characterizes the parameter that is potentially weakly identified. The
identification category of 7 is determined by the value of 3, which is itself always strongly
identified. Moreover, the parameter ( is always strongly identified, and its identification does

not affect the identification of other parameters. The non-linear model takes the form:

er(0) =y — (' X1y — B'h(Xoy, 7) (2.4)

where X ; and X5, denote elements of the X; € R? matrix of explanatory variables, v, € R
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is the dependent variable and A(-) is a non-random function. We define the parameters as
elements of compact sets ( € Z C Rl¢, 3 € B ¢ Rl# and 7 € I ¢ R%*. Clearly, the
parameters of the non-linear model are always strongly identified except when § = 0. This
value is particularly relevant as we usually want to test if the parameters are significant,
which implies testing § = 0. Under the null, Hy : § = 0, 7 is not identified and inference is
non-standard.
The estimator 6, minimizes an objective function @, (0). For simplicity we consider the
least squares objective function.
~ 1 2
O = inf Qn(W;,0) = inf o D XAC (2.5)
The objective function does not depend on 7 under weak identification. For a smaller and
smaller /3, the signal that comes from 7 is diminished more and more. If the signal is smaller
than the random noise, we say that the parameter is weakly identified (see next subsection).
To simplify the notation, for the rest of the paper we partition the parameters into two

groups according to their identification category.
0=(.0.7) =) (2.6)

The parameter 1) denotes the strongly identified parameters, whereas m denotes parameters
that are weakly identified. In the next section we argue that the strongly identified param-
eters 1 can be consistently estimated, while the weakly identified parameters m cannot be

consistently estimated.

2.2.1 Drifting Sequences of Distributions

To determine whether the parameters are weakly or strongly identified, we consider drift-
ing sequences of distributions as in Staiger and Stock (1994) and Stock and Wright (2000).
The drifting sequences of distributions determine the asymptotic behaviour of the estimators

for distinct identification categories, according to the speed in which parameters converge to
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their true value. Suppose the sequences of true parameters are defined by 0,, = (3., ¢, 7))
for n > 1, converging to the limit true parameters 6y = (5}, ¢}, 7))’ Table 2.1 illustrates
the definitions of identification categories following Andrews and Cheng (2012) which are

derived using drifting sequences of parameters.

Table 2.1: Identification categories

Category {5,} sequence Identification Property of 7
I(a) fn=0Vn>1 Unidentified

I(b) B, # 0 and /nB, — b € R%» Weakly identified

II Bn — 0 and /B, — co Semi-strongly identified

11 Bn — Bo # 0 Strongly Identified

Heuristically, the speed at which 3, converges to zero will determine if the parameter m
is strongly or weakly identified. If 3, is converging to zero at a rate faster or equal to \/n,
then 7 is weakly identified. On the other hand, if (,, is converging to zero at a slower rate
than /n (or if it is not converging to zero at all), then 7 is strongly identified. The following

table exemplifies this argument.

Table 2.2: Alternative Table of Identification categories

{Bn} sequence Category Identification Property of 7
If 3, - 0and 5, =0, Vn > 1, I(a) Unidentified

If 8, — 0 and 8, = O(n™*) with a > 1/2 I(b) Weakly Identified

If B, = 0and 5, = O(n~*) with a € [0,1/2) II  Semi-strongly Identified

If B, — Po#0 III Strongly Identified

In the following sections, we argue that the asymptotic distributions of the t-test of all
four categories can be simplified into two cases, Category I(a)-I(b) and Category II-I1I. To
simplify the terminology we will refer to "weak identification” to discuss categories I(a) and
I(b), while we refer to "strong identification” when we discuss categories I1 and I11.

The non-linear model studied in this paper defines the true error process for each sequence
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of drifting parameters, which we denote by €(0,,), 6,, = (¢, 5., 7,)

YEn '

et(en) =Yy — C;LXl,t - B;h(XQ,ta 7Tn) (2-7)

The limit error process is denoted by €(6y) = vy — (X1t — Bih(Xay, mo), where 6y =
(o, Bo, mo), while the finite sample and limit variance of errors are defined by ¢2(6,) and
02(6y) respectively. It is worth mentioning that the exogeneity assumption is not the sub-
ject of our study. The exogeneity assumption E(e(6,,)|X;) = 0 is always satisfied, although
not for a unique value of 6,. Identification in this paper is complementary to the weak

instruments literature in which E(e(6,,)|X;) # 0.

2.3 Assumptions
In this section, we introduce the assumptions required for the implementation of the
parametric bootstrap. The parametric bootstrap is constructed to derive the distribution of

the estimators and the t-statistic in Section 2.6.
Assumption J Identification of data generating process
(1) €(6,) is L, bounded for p =4+ for small ¢.
(7i) By, (e:(0,)|X¢) =0 a.s.
(7ii) Varg, (6:(60,)|X:) = To(6,) + 23252 L';(60,) a.s.

(tv) Under weak identification Eqg, (e:(¢), m)dy (7)) = 0 for unique ¢, = (), 5,)" in the
interior of W*(m) and under strong identification Eq, (€:(6,)do+(0,)) = 0 for unique

0, = (C,, B),,m,)" in the interior of ©F.

Y n’ n

Remark J. Assumption J establishes the valid moment conditions under weak and
strong identification. As there is no unique 7 that satisfies Assumption A(iv), the parameter

is weakly identified. All random variables are L, bounded for p =4 + ¢.

Assumption K Properties of data generating process
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(i) The random variables {Wi Y, = {y, X4}y are strictly stationary and o — mizing of

size —r/(r — 2) for some r > 2 and X is L, bounded for p =4+ ¢ for small v.
(ii) The processes {y;(0)} is Lipschitz for all t and all values 6 € ©.

(iii) The function h(X, ) is twice continuously differentiable in w € 11, non-degenerate
and bounded for fired values of X;. Moreover, h(X;, ) is a Borel measurable function

and L, bounded for p =4+ for tiny ¢ for any fived 7 € 11.

Remark K. Assumption K establishes the dependence and distributional properties of
the data. As our focus is on stationary time series data, we assume strictly stationary and
a - mixing to establish a law of large numbers and central limit theorems. The Lipschitz
is a mild condition used to prove weak convergence. Differentiability and measurability of

h(X;, ) are standard.
Assumption L Parameter Spaces
(i) © is a compact set of R%  where dy = d; + dg + d

(ii) ©* = {(B",¢, 7)) : B € B, ( € Z*,m € II*} is a compact set and O C int(0) and

Odﬁ € mt(B*)

(iii) IT is a compact set in R and 7, € II, Vn > 1, where II denotes a fine grid of elements

of ™ used for the parametric bootstrap.

Remark L. The parameter spaces are compact while the whole sequence of true param-
eters lies in the interior of the compact set. Condition (ii) emphasizes on true values in the

interior of the parameter space to eliminate boundary effects (Andrews 1999, 2001).
Assumption M Identification of ™

(1) Each sample path of the stochastic process {&(m; 0o, b) : m € 11} is minimized over 11 at
a unique point denoted 7 (0o 1, b) V0o 1. € © in some set A(Oo k, b) with Py, , (A(Ook, b)) =

1 with By =0, my = 7, and ||b]| < co.
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Remark M. Assumption M establishes an identification condition when parameters
cannot be estimated consistently. Weak identification implies that the signal and the noise
are growing at the same rate, nonetheless, the signal of 7 must lead to a unique distribution
function. The second condition expands the identification condition of 7 along the grid of II

used for the parametric bootstrap.

Assumption N Continuity and non-singularity of variance-covariance matrix
(i) J(6;60) and V(0;6y) are continuous in 6 € ©, Yy € © with Sy = 0.

(ii) J(m;60) and V(m;0y) are positive definite matrices Vm € 11,0y € © with By = 0. (that
is, eig(J(m; 6)),eig(V(m;6p)) > 0 and eig(J(m;6p)),eig(V(m;60y)) < oo, i.e. the maz-

min eigenvalues are finite)

Remark N. The conditions in Assumption N guarantee that the variance and covari-
ance matrices in t-statistic are non-singular. The normalization matrix B(f5) will play an

important role to obtain a non-singular matrix in the limit.
Assumption O Properties of the restrictions function

(i) r(0) € R is continuously differentiable on ©

(7i) re(0) # 0 VO € ©

(iii) rank(r.(0)) = d* for some constant dt < min(d,,d,),V0 € O5={0 € © : ||| < ¢}

Remark O. Conditions in Assumption O are standard for the construction of the t-
statistic. The restrictions in the hypothesis test must be linearly independent. As we will
discuss in detail in the following sections, testing with respect to ¢ or 7 is relevant because of
the asymptotic distribution of the t-statistic changes according to which parameter is being
tested.

Let p € P be the set of nuisance parameters. In the framework of Andrews and Cheng

(2012) the set of nuisance parameters is characterized by p = (b, 6y).
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Assumption P Properties of LF and ICSy critical values

(i) The distribution function of TV and T™ are continuous at c;_o(p), Vp € P. If ¢t >

c1-a(00), ¢ is attained at some Pz € P.

(i) K = 00 and 7= — 0

(iii) The distribution function of TY and T™ are continuous at the critical values ci_,

Vp € P.

Remark P. The use of Least Favourable and IC'Sy robust critical values lead to correct
asymptotic size if they satisfy Assumption P. As we show in the following sections, the
parametric bootstrap reduces the number of nuisance parameters of the t-statistic.

Before we introduce the next assumption, we must define the Confidence Sets of a test.
Let Hy : 7(0,) = q and T}, be the t-statistic while ¢, 1, denotes the 1 — « critical value. The

confidence sets are defined by,

CSy={q:Tu(q) < cni-ala)} (2.8)

Notice that the Confidence Sets are a function of the value ¢ as well as sample size n. The

Coverage Probability of a Confidence Set for r(6) is defined by,
CP,(0) =Py(r(0) € CS,) =Py(T,,(r(0) < cni-a(r(9)))) (2.9)

For more information about confidence sets and coverage probabilities using drifting se-
quences of parameters see Andrews and Cheng (2012). An important measure of the t-test
is the minimum null rejection acceptance as it is equivalent to the asymptotic size of the
test. ! The asymptotic size is defined by,

AsySz =liminf inf  Pp(T.(r(0)) < cni-alr(0))) (2.10)

n—00 fcO:r(f)=q

!The test null rejection probability is defined analogously, Py(T,,(r(6)) > ¢y.1-a(7(6))).
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One more assumption about the convergence of the coverage probabilities is introduced.
Assumption Q Properties of the Coverage Probabilities

(i) Under weak identification for any 0, € ©(6y,0,b) with b < oo, CP,(6,) — CP(p) for
some C'P(p) € [0,1], where p = (b,0) € P.

(7i) Under strong identification for any 6, € ©(0y, 00, wy), liminf, ., CP,(6,) > CPy for
CP, €10,1] and for some 0, CP,(0,) — CPx.

(iii) For some § >0, 6 = (¢, 5,7) € © with 0 < ||8|| < & implies that 6 = (¢, 3,7) € © for
all B € R% with 0 < ||5|| < 6.

Remark Q. Assumption Q is equivalent to Assumption ACP of Andrews and Cheng
(2012). See Section 2 and in particular Lemma 2.1 of Andrews and Cheng (2012) for a more

complete discussion of Asymptotic size and coverage probabilities.

2.4 Parametric Bootstrap

The parametric bootstrap method introduced in this paper will cover two separate cases.
Under strong identification, the parametric bootstrap follows the residual bootstrap proce-
dure as in Freedman (1981); Mammen (1993); Liu et al. (1988); Horowitz (2001); Davidson
and Flachaire (2008). Consistent estimators of § are obtained, to build bootstrapped samples
of residuals and generate new data with the regression model that has the same distribution
as the underlying data generating process. Under weak identification, the process follows the
same idea with a few modifications. We cannot use the standard residuals as the estimator
of 7 is not consistent. To eliminate this dependence, we use the residuals at the point of lack
of identification, that is, we set 5 = 0, to eliminate the dependence of ¢ on 7. Using these
residuals we generate bootstrap samples using a wild bootstrap fixing the value of 7 along a
grid. Clearly, for one element of the grid, the bootstrapped samples have the same underly-
ing distribution as the true data generating process as long as the true value 7, lies inside
the grid. We introduce the bootstrap procedure for each identification category separately

in a sequence of steps. The validity of each step is proven in the Appendix.
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Let 0, be the estimator of the original sample {W,}7_, = {y;, X;}"_,, 0™ be the estimator

with respect to a bootstrapped sample {th}%;f 1~

The concentrated estimator objective function is defined as

Q5 (7) = inf Q5 () + o(n ™) (2.11)

mell

The concentrated estimator is used to obtain the signal of 7 fixing all other parameters.
The assumptions introduced in the previous sections guarantee that the gradient has a
unique minimum for the derivative of the objective function with respect to 6 under strong
identification. Under weak identification, the limit objective function does not depend on 7
and therefore, the gradient is still equal to zero for any value of 7. In consequence, we derive
the gradient of the objective function as a function of 7 to obtain the distribution of ¥ as a

function of 7.

n

> e(0)dy () (2.12)

t=1

0

%Qn(e) =

Constructing the t-statistic with respect to g using the parametric bootstrap has some
complications. Without imposing a null hypothesis describing the behavior of the complete
drifting sequence of parameters, the null hypothesis can admit two different distributions.
When we construct the parametric bootstrap, it must be able to replicate the underlying
distribution under the null for the weak and strong identification case. This cannot happen
when the null hypothesis imposed contradicts the identification category. For example,
imposing the null Hy : 8 = 0, the parametric bootstrap cannot generate bootstrap samples
under strong identification. For this reason, the parametric bootstrap introduced in this
paper will be used to construct inference for all parameters except for f3.

We begin by introducing the parametric bootstrap under strong identification to compare
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its derivation to the weakly identified case. For more information on the parametric bootstrap
under weak identification see Horowitz (2001); MacKinnon (2006); Davidson and Flachaire

(2008) among many others.

2.4.1 Strong identification

Bootstrapping residuals to generate bootstrapped samples in regression models has been
used extensively in the econometrics literature since Freedman (1981). As 0, is a consis-
tent estimator, and E(e,(6,)|X;) = 0, the standard residuals ¢;(6,) are valid to mimic the
asymptotic distribution, and therefore we can use them to generate bootstrap samples e.g.
MacKinnon and White (1985); Hardle et al. (2003). As the t-statistic is pivotal, the boot-
strap method has an asymptotic refinement which leads to better small sample properties
compared to the asymptotic approximation counterpart. See Horowitz (2001) for a more
detailed explanation on the asymptotic refinements obtained from the higher order terms
of the Edgeworth expansion of pivotal statistics. We present the steps of the parametric

bootstrap under strong identification as a reference and to compare its differences to the

weak identification case.

Parametric Bootstrap under Strong Identification

e Step 1 SI. Estimate #% using the original data {W;}"_, = {y, X;}_, and the objective

function introduced in Section 2.2,

A

0, = argmin @Q,,(6) (2.13)
6€6

Under strong identification, the estimator and residuals are consistent. Obtain the

residuals.

A

e(05) =y — G X1 — B h( Xy, 73) (2.14)
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e Step 2 SI. Perform a wild bootstrap using the method of Liu et al. (1988) or the

method of Shao (2010). 2

[Independence] — €(03) = z"e,(05) 2"

[Dependent] — €"(0%) = 2"e,(62) 2 &

e Step 3 SI. Generate bootstrapped variables W;™* = {y"*, X, }Mn

m=1-"

A

uit = GUXTE By h(X5 w) e (6) (2.17)

e Step 4 SI. Estimate the parameters {é;;” %;1 for each bootstrapped sample W,™* =

m,s m,s\ M,
v, Xi =

m=1-

A

Om* = argmin Q,, (W;"™*, 0) (2.18)
0co
The next proposition states that the bootstrap process outlined in the previous steps

leads to correct inference.

Proposition 2.4.1 Suppose that Assumptions (J) to (N) hold and suppose that the true
data generating process is strongly identified. Let M,, — oo as n — oo. The estimators

obtained following Step 1 SI to Step 4 SI have the following distribution,

P (M BB (0% = 6,) < 2) = Po, (VABB) B —62) < 2) | B0 (2.19)

sup
z€R%

The previous proposition follows the results of Wu (1986); Liu et al. (1988) among many

others that have demonstrated the validity of the wild bootstrap in regression models. The

20ther bootstrap methods are available in the literature which can be employed without changing the
results, e.g. Resampling bootstrap Efron et al. (1979), Stationary bootstrap Politis and Romano (1994)
Moving Block bootstrap Kunsch (1989), Tapered Block Bootstrap Paparoditis and Politis (2001), among
others.
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wild bootstrap is particularly useful to mimic the heteroscedasticity and dependence proper-
ties of the data (see Shao (2010)) with a simple multiplier bootstrap structure. As the model
is known up to the parameter values, the draws of the bootstrapped samples should be as

close as possible to the true data generating process when we use consistent estimators.

2.4.2  Weak identification

The idea of the following bootstrap is to notice that if we knew the true value m,, the
model would not be weakly identified, and estimation is standard. This idea will be exploited
by generating bootstrapped samples {th}f\,/fif =1 = {y", X;”}n]\fl’{f -1 for each element over
a grid of w. Assumption M is important as it states that the true sequence of true parameters
{m,} exists in the interior of the bootstrap grid, say [Tmin, -, Tmaz| € I1. Assuming that m,
is an element of the grid, we know that one of those bootstrapped samples has the same
distribution as the original sample {W;}?,. Therefore we can obtain a bootstrapped statistic
for each bootstrapped sample in the grid and obtain the supremum critical values as in Davies
(1977, 1987). This test statistic would have the correct level although not the correct size.
Moreover, as the value of 7 is weakly identified, generating many samples over a grid of 7 does
not generate substantially different random draws. The weak identification guarantees that
the signal of 7 is very weak, and therefore, for all values in the grid of 7, the bootstrapped
samples {y/"} M are numerically very similar.

Let 6, be the estimator of the original sample {W;}", = {y;, X;}"_,, 0,,, be the estima-
tor with respect to each bootstrapped sample m = 1,...M,,. Let W/(m;,) denote the boot-
strapped samples of W, imposing 7 = m; (see Step 3 WI). Let 0™ (73,) = (C™ (i)', B™(m3), 7™ (7)),
denote the estimator of 6 obtained using bootstrapped sample W™ (7). Similarly, minimiz-
ing the concentrated estimator for each fixed m, let ™ (7, mp) = (C™(m, m,), B (w, m)') be
the estimators using bootstrapped samples W/ (m). Notice that X;" depends on 7, when

the explanatory variables include lags of ;.

The steps to obtain a bootstrapped asymptotic distribution are listed as follows.
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Parametric Bootstrap under Weak Identification

e Step 1 WI. Construct a discrete grid of I, [Tmin, -y Timaz) € f[, and let d = dim(f[).
Obtain the extremum estimator with respect to each m, € II, k = 1, ...,dp for the
objective function @, (v, 7). Notice that this problem is standard, all estimators are
consistent as and weak identification is not present in this objective function. We fix

i and obtain {¢, (1)}, as follows

A

1/Jn(7rk) = arg min Qn(¢a 7Tk) (220)

YeW (1)

Obtain the optimal @o,n setting / = 0 and obtain the residuals that do not depend on

T using 1207”. In the non-linear model, the residuals are constructed as follows.

€(thom) = Y — Cu X1 (2.21)

where %Eo,n = (0, 5,1) for this particular model.

e Step 2 WI. Using the residuals centered at the point of lack of identification et(zﬂojn),
obtain bootstrap samples {€(¢)g,)} M, using either the Wild Bootstrap process of
Liu et al. (1988) or the Dependent Bootstrap of Shao (2010).

a(hon) 2" 4 D(0,1) (2.22)

M:

[Independence] (wo n) = 27 (& %n —nt

H
Il
—_

&(Pon) 2" 4 D0,T(2))

M:

[Dependent] 62"(?20,”) = Z?(Et(qﬁo,n) —n!

I
I

(2.23)

where D denotes a strictly stationary distribution, mean zero and variance one. Cen-
tering of et(zﬁom) is required as they are not necessarily mean zero. Two examples are
the Normal distribution or the two point distributions of Rademacher or Mammen

(1993).
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e Step 3 WI. Obtain bootstrapped samples W/ (my,) = {y;"(mx), X" (7x), }%2’{{2:1 using
the bootstrapped residuals for each extremum estimator obtained in Step 1 with fixed

Tk -

Y7 (1) = Gu(ma) X7 () + Ba(me) (X3 (7)., 7)) + € (tho.0) (2.24)

for matrices {yz"(ﬂk)}%i’izzl of size (n x dg). The variable {X?(Wk)}%lﬁgzl would

be equal to X;, Vm if X; does not include lags of y;.

e Step 4 WI. Obtain the bootstrapped estimators for each element of the grid of 73, € II

: m m m Mo dy
using samples W/ (7)) = {y;"(7x), X7 (k) ] A1

n

O (mx) = Q' (W™ (my), 0) = axgmin 0" Y~ (ye(mp) — (' Xug(m) — BA(Xz(mi), 7))?

(4SS t=1

(2.25)

The resulting steps leads to a sequence of estimators that depend on the data generating
process imposed on Step 3, {6 () = (G (77 (i)Y', By (7 (), 70 (7)) e -
Alternatively, the estimators can be obtained applying a two step procedure using the

concentrated estimator.

To introduce the asymptotic results of the parametric bootstrap under weak identifica-
tion, we consider first the case where 7, is assumed to be known. Even though this case is
unrealistic, it illustrates the validity of the parametric bootstrap. This assumption will be

dropped in the next subsection.

2.4.3 The ideal case: known m,

When 7, is known, we can estimate 1) consistently and obtain residuals that are valid
for bootstrapping. Moreover, a grid of II is not necessary and the bootstrapped samples
{th}%;’ﬂ ,—1 can be used to obtain bootstrapped estimators of all parameters §. That is

because if 7, were known or if we were able to consistently estimate it, there would not be a
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weak identification problem, and the bootstrapped would be similar to the case under strong
identification.

The first proposition proved in this paper states that we can mimic the asymptotic
distribution using the parametric bootstrap when m, is known. In this case, we abstract for
the grid of [T and we do not have an estimator for each 7. The assumption of known ,, will

be dropped in the following subsection and is used as a preamble for the results that follow.

Proposition 2.4.2 Suppose Assumption J to Assumption N hold. Suppose that the true
value of the weakly identified parameter m, is known and imposed on Step 3 WI. The following

holds letting M,, — o0 as n — o0,

< z
sup | P, — Py, 2 (2.26)
2z€R% ’ﬁ'TT(?Tn) S 29 T S )

where P, is the bootstrap induced probability measure.

The distribution on the right-hand side of the proposition id derived by Andrews and
Cheng (2012) and a wild bootstrapped method to replicate this distribution is derived in
Chapter 1. It is worth noticing that the parametric bootstrap can be used to construct

the non-standard distribution without the knowledge of the closed for expression derived by

Andrews and Cheng (2012).

2.4.4 The realistic case: unknown m,

Now we focus on the asymptotic size of the test when we do not know the true value m,.
The parametric bootstrap generates bootstrapped samples that depend on the parameter
7, along the grid, which we write as W/"(m;). With the bootstrapped samples we can
obtain bootstrapped estimators é,T(?Tk) and generate the distribution of the t-statistic for
each element of the grid. As the true m, is unknown, we construct the supremum of the
critical values as in Davies (1977, 1987).

Let clf_a(ﬂk) denote the one tailed critical values of the asymptotic distribution under
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weak identification of ¢ using a data generating process that sets m = 7y, i.e. the critical val-
ues of 7(m, 0y, b) generating using the data generating process with 7. Clearly, the supremum
of this critical value along all 7y, is rejected with probability of at least « for all estimators
generated with any 7. Similarly, let ¢f__(m) denote the critical value of the asymptotic
distribution under weak identification of 7, i.e. 7*(6p,b) using the data generating process

that assumes m = 7.

Proposition 2.4.3 Suppose Assumption J to Assumption N hold. Let m, be unknown. Un-

der weak identification, the following holds letting M, — oo as n — oo.

VML (G (e m) — a(m)) < sup ()
liminf Py, mEll > 1-a (2.27)

T () sup ¢f_,(mk)
T €11

IA

with probability approaching one.

The proposition above is a first step to prove that the t-statistic introduced in the next
section has correct asymptotic size. The t-statistic is based on this asymptotic result and
the construction of matrices that converge in probability to a constant. In contrast to the
standard t-statistic, the robust t-statistic constructed in Section 2.6 will include a normaliza-
tion matrix which is necessary to obtain a finite probability limit of the variance-covariance

matrix under weak identification.

2.5 Imposing the null hypothesis
2.5.1 Strong Identification, imposing the null hypothesis

The result in Proposition 2.4.1 gives us a bootstrap method to construct the bootstrapped
t-statistic under strong identification. If we wish to test Hy : 8 = 0o, we impose the null
hypothesis and generate bootstrapped random draws of the distribution of y, under the null.
As stated by MacKinnon (2006), "imposing the restrictions of the null hypothesis yields more
efficient estimates of the nuisance parameters upon which the distribution of the test statistic

may depend. This generally makes bootstrap tests more reliable, because the parameters of
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the bootstrap data generating process are estimated more precisely”.

The wild bootstrapped t-test developed in Chapter 1 derives the asymptotic distribution
under strong and weak identification and subsequently generates the bootstrapped distribu-
tion using a wild bootstrap. The parametric bootstrap is constructed without the knowledge
of those underlying distributions. Imposing the null hypothesis must be implemented in Step
3 because this step generates bootstrapped samples of the underlying data generating pro-
cess.

First, we consider imposing the null hypothesis under strong identification. Suppose
we implement the parametric bootstrap Step 1 SI to Step 4 SI, replacing Step 3 with the

following,

e Step 3 SI*. Generate bootstrapped random variables W;™* = {y,* X;™* %ZI" —1

imposing the null hypothesis Hy : 6 = 0y

A

ui" = CroXTe + Bioh(X3y wio) + € (67) (2.28)

Besides Step 3 SI, the rest of the bootstrap method is equivalent to the parametric
bootstrap described in Section 2.4. Proposition 2.4.1 follows when the null is imposed,

although the distribution would be centered by 6 instead of 0,.

2.5.2  Weak Identification, imposing the null hypothesis

Imposing the null hypothesis under weak identification is implemented in Step 3 although
this has the potential to disregard the grid of parameters 7. This implies that imposing the
null hypothesis reduces the number of nuisance parameters and can potentially eliminate
all of them in some cases. For example, imposing the null hypothesis Hy : 7 = a leads to
a t-test without nuisance parameters because if the null is true, weak identification is no
longer present and all parameters in the estimation are consistent. Fixing the value of 7
would imply that the estimator 7,, is not required to generate bootstrapped samples.

The number of nuisance parameters in the bootstrapped distribution is different the null
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is imposed on either ¢ or m. First we assume that the null hypothesis imposes the null
with respect to the strongly identified parameters v. Suppose we implement the parametric

bootstrap Step 1 WI to Step 4 WI, replacing Step 3 with the following,

e Step 3 WI* (¢). With the bootstrapped residuals obtained in Step 2 WI, construct
bootstrapped samples W™ (m) = {y7"(m.), X7 (m), bt fey imposing Ho : ¢ = thyo

for each 7.

y () = Crro(me) X4 (m) + Brro(m) (XY (), ) + € (Y0,0) (2.29)

for matrices {y{”(ﬂk)}%gﬁg:l of size (n x dg).

In the non-linear model introduced in Section 2.3, imposing the null with respect to
leads to a reduction of the set of nuisance parameters to only one, my. As 7y is the only
nuisance parameter, the grid II is used to fix that value to generate bootstrapped samples.
On the other hand, imposing the null with respect to parameter 7, i.e. when we are testing
Hy : m = a, leads to a generating bootstrapped samples y; without nuisance parameters as

the model is no longer weakly identified.

e Step 3 WI* (7). With the bootstrapped residuals constructed in Step 2 WI, obtain

the bootstrapped samples {y;" (7o), XZ"(WHO)}%; imposing Hy : m = mppo.

~

Y (mr0) = Cuo(mr0) X1y (7o) + Bn(WHO)/h(Xg:;(WHO)ﬂTHO) + E::n(?;o,n) (2.30)

for matrices {y™ (7o) }Mr, of size (n x dg).

It is worth noticing that imposing the null hypothesis can contradict the identification
category we are studying. For example, if we wish to test Hy : § = 0, this null hypothesis im-
plies weak identification. Constructing the parametric bootstrap under strong identification
imposing this null hypothesis would lead to invalid critical values as both conditions are con-

tradictory. Nonetheless, the parametric bootstrap under weak identification would lead to
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the correct critical values (surprisingly without nuisance parameters) as weak identification
is implied by the null hypothesis.

Generating bootstrapped samples using the parametric bootstrap method can be compu-
tationally intensive in a model with a large number of parameters. Nonetheless, the paramet-
ric bootstrap abstracts from the derivation of the expressions that compose the non-standard
distributions of the estimators and the simulation of these processes. The parametric boot-
strap only requires to bootstrap residuals and generate new bootstrap samples. Moreover, it

has a computational intensity comparable to other bootstrap methods with dependent data.

2.6 Bootstrapped t-statistic

The bootstrapped distributions of the estimators developed in the previous sections are
used to construct the bootstrapped t-statistic under strong and weak identification. The
t-statistic not only has a different distribution according to the identification category, it
can also have a different convergence rate. For example, @, = O,(1/y/n) under strong
identification but #,, = O,(1) under weak identification. To obtain an O,(1) t-statistic, we
will adopt a normalization matrix B(f).

Let the null hypothesis be defined as,

Hy:r(0)=q (2.31)

The robust t-statistic requires a normalization matrix B(/3), defined as follows,

P (2.32)

Ly xa, 1(B)Ia,

_ B, if B is a scalar
i(8) =
18], if B is a vector

The matrix B(f3) is necessary to avoid singularity of the variance-covariance matrix which
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leads to a t-statistic bounded in probability for any parameter. See Andrews and Cheng
(2012) for more details on the normalization matrix B(/3), in particular Theorem 3.3. The

robust t-statistic is defined as follows,

il —a)
[6(0n) B=(8,) %0 B (571)7’9(9”))’]1/2

T, = (2.33)

The robust t-statistic is compared to the bootstrapped distribution for both identification

categories constructed using the parametric bootstrap.

2.6.1 Bootstrapped distribution of the robust t-statistic

Theorem 4.1 of Andrews and Cheng (2012) derive the limit distribution of the t-statistic
for each identification category. The limit distribution depends on the identification category
and on which parameter is being tested. Specifically, under weak identification, the t-statistic
takes a particular distribution when we impose a null hypothesis with respect to 1 and
another distribution when we test a null hypothesis with respect to .

The parametric bootstrap is used to replicate this distributions directly using the re-
gression model and residuals centered at the point of lack of identification. We begin by
assuming that the model is weakly identified and that 7, is known. We also assume that we
are testing a null hypothesis with respect to 1. The asymptotic distribution of the t-statistic

when we test with respect to the strongly identified parameters v, is denoted by 7% and and

Mn

can be constructed using the bootstrapped estimators {6 },,2,

A

Ty — TV (7o) — () (230
[ () S () () )12

where 7, is the derivative of the restriction matrix and ¥ denotes the variance covariance
matrix defined on Chapter 1. Notice that T¥™ is the bootstrapped version of T using the
parameter distribution \/n (™ (7, 7,) — Uy ().

Let Sg = [1yp : Odgxdc] is the selector matrix that selects 3 out of v for parameter .
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The bootstrapped t-statistic takes the following form when the null hypothesis tested is with

respect to m,

~

T () = IISﬁ(\/ﬁ(W(W,Wn))ll(r(@??(mﬂn),ﬁ) — (W (m, T0), 7))
! [ (7)o ()1 ()12

(2.35)

When the model is strongly identified, the distribution of the t-statistic does not depend on
which parameters we are testing. It is not very surprising that as the asymptotic distribution

of 6, is standard normal under the proper normalization 3,

pom _ o0 (/BB (B — 6,))
T a0 a0 o672

(2.36)

Let TY, T™ denote the asymptotic distribution of the t-statistic under weak identification
when the restrictions are imposed on v and 7 respectively. The next theorem states that the
bootstrapped distributions approximate the asymptotic distribution for each identification

case separately.

Theorem 2.6.1 Suppose Assumption J to Assumption () are satisfied. Let m, be known.
Using the parametric bootstrap introduced in from Step 1 WI to Step 4 WI and Step 1 SI to

Step 4 WI, and letting M,, — oo as n — oo for each identification category,
(a) Under weak identification with dim(r(0)) = 0, T¥™ (7™ (7)) % T (* (6, b): 6y, b)
(b) Under weak identification with dim(r,(0)) = 1, T™™ (7™ (7,))) <% T™(x* (6o, b); 6o, b)
(¢) Under strong identification, T%™ % N(0,1)

The previous proposition assumes that m, and the identification category is known. In

the following subsection, we relax both of this unrealistic assumptions.

3the normalization matrix is necessary for the semi-strong identification category
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2.6.2 Robust Critical Values

The previous results state that we can obtain critical values of the distributions under
strong and weak identification. Nonetheless, it is not clear which critical values should
be employed when the identification category is unknown. The simplest way to obtain
the correct level of a test is to be conservative and use the largest critical value of both
distributions.

The LF critical value proposed by Andrews and Cheng (2012) follows this approach as

m
n,l—a

it selects the largest critical value. Let ¢ (p), p € P denote the critical values of the
weakly identified bootstrap statistic constructed using Step 1 WI to Step 4 WI. Recall the
set P denotes the set of nuisance parametrs that arise in the bootstrapped distribution of
the t-statistic when the model is weakly identified. Let c,'} , denote the critical values of
the strong identified bootstrap statistic constructed using Step 1 SI to Step 4 SI. The LF
critical value is defined as

LFm

Cpile = max{sup 'y, (7k), cni- (2.37)

n,l—« n,l—«
€Il

The set of nuisance parameters P would change according to the parameters tested as
well as the null hypothesis imposed. The wild bootstrap t-test developed in Chapter 1 and
the asymptotic approximations of Andrews and Cheng (2012) have two nuisance parameters
under the null (b, my). The parametric bootstrap, on the other hand, the nuisance parameters
are only 7y as b is not required to impose the null hypothesis. As only one of the 7y is
the correct one, the sup of the critical values along the grid provides with a test of the
correct level. Moreover, when the test is with respect to 7, imposing the null eliminates
all nuisance parameters and in consequence, our statistic has the correct test size. The
simulation exercise in the next section shows that is this case the parametric bootstrap has
empirical sizes comparable to the infeasible statistic where nuisance parameters are known.

Clearly, the LF' critical value is not ideal because it is over-conservative. To improve

the size and power of the test, Andrews and Cheng (2012) propose a data-driven critical
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value, IC'Sy, that relies on the first-step test of weak identification. If we cannot reject the
null of weak identification, the LF' critical value is selected; otherwise, the strong identifi-
cation bootstrapped critical value is used. We modify the IC'S; critical values introducing
a critical value we name IC'Sy. This critical value is based on selecting between weak and

strong identification, unlike the IC'S; critical value which selects between LF' and strong

identification.
m if A, <k, 2.38
(s _ fi% Co_olme) i <k (2.38)
7 ot if A, > ky
A, = (nB,51B,) 2 (2.39)

A, is a first step statistic and &, is a sequence of positive constants such that x,, — oo
and k,/n'/? = o(1). For example, s, = (logn)'/? is analogous to the penalty term used
in the Bayesian Information Criterion. The null hypothesis Hy : ||b|]| < oo is accepted in
favor of weak identification when A, < k,,, while the null hypothesis is rejected in favor of
strong identification i.e. Hy :|[b]| = co when A, > k,. For large enough n, the statistic A,
established if the parameters of the model are weakly identified.

The following proposition proves that the robust critical values lead to correct asymp-
totic size. Unlike Theorem 2.6.1, the conditions of the theorem specify that m, and the

identification category are unknown.

Theorem 2.6.2 Let M,, — 0o as n — oo. Under the null hypothesis Hy : 7(0) = q, the LF

and ICSy critical values of the t-test have correct asymptotic size w.p.a.1,

(a) AsySzPFm =liminf  inf P, (T,(r(0)) < 25 (r(0) =1 —a

n—oo  HcO:r(0)=q nl-a

(b) AsySz'C%m —liminf inf P, (T.(r(0)) < 5% (r(6))) =1 —

n—00  feO:r(0)=q

(¢) If Hy is false, that is r(0,) # q, then T, (r(0)) 5 oo
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The LF critical values lead to test sizes that can be substantially smaller than the correct
test sizes when an incorrect identification category is used. On the other hand, the IC'S,
critical value uses the correct asymptotic distribution as long as the first step estimator A,
establishes the identification category. The next section develops a simulation exercise shows

that the parametric bootstrap has good properties and performs very well empirically.

2.7 Simulation Exercise

The bootstrapped procedure introduced in this paper is motivated by the loss of size
and power from the nuisance parameters that appear in the distribution in Chapter 1. In
this section, we test if the parametric bootstrap helps to obtain more accurate test sizes in
practice.

For the simulation exercise, we use the exponential smoothing model as in Cheng (2015).

The model specification is defined as follows.

Et(gn) =Yt — C[)xl,t - BnyH(l - exp(—c(x% - 7T0)2)) (2-40)

For this model, there is not need to use drifting sequences of true parameters for ¢ and
7, the speed at which [, — oo will determine the identification category. We assume the
following true values in the simulations : (; = 1,79 = 0 and b = 1. In this exercise we
compare the identification categories as follows, under strong identification we set 5, = b,
under weak identification we set 8, = b//n and under non-identification (limiting case of
weak identification) we set (3, = 0.

The sample size takes value n = 100, 250 and 500. We set are x4, T2, g N(0,1), ¢ = —1.
We let the true errors to be either Normal(0,1) or GARCH(1,1) with w = 0.1, = 0.3
and § = 0.6. The wild bootstrap of Liu et al. (1988) using the two point distribution
multiplier as in Mammen (1993) to generate the bootstrapped residuals in Step 2. The
number of simulations is 1,000. For each simulation, we construct bootstrapped samples

using 500 draws. We also refer Chapter 1 for a complete reference of gradient, Hessian and
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other expressions required for estimation and construction of the bootstrap as well as other
simulation details. The remaining tables are presented in the Appendix.

We consider three null hypotheses in this simulation exercise. The first null hypothesis
sets the parameters equal to their true values. To evaluate the power of the test, the second
and third hypothesis consider the false null hypotheses of parameters within one and three

standard deviations of the true value.

H(?,l:ﬁ:ﬁn H(;137T:7T0
H52:6:ﬁn+aﬁ Hiy:m=m+ 0x (2.41)
H§3:ﬁzﬁn+30ﬁ Hiy:m=m+ 30

The robust sample t-statistic is constructed by

T, =

(2.42)

T = \/)ﬁ(r( n) = V) (2.43)

The critical values of the bootstrapped t-statistic are computed using order statistics.
Let {7, (m)}7, be a sequence of independent draws of the t-statistic with a = 1, 7,0.
Denote the order statistics by T, ) <177 ..., ete. The LF and ICSy critical values are
computed using ¢;'1" , , = inf{c > 0: P(T}" < ¢) > 1 —a/2} and ;7 = inf{c > 0:
P(T < ¢) > «/2}, as we use two tailed critical values. To construct the IC'Sy critical value,
we use , = (In(n))'/2, as suggested by Andrews and Cheng (2012).

Tables 2.3 and 2.4 compares the results of the parametric bootstrap introduced in this

paper and the (unfeasible) asymptotic approximation of Andrews and Cheng (2012). The

LF AC and ICSy AC' critical values are unfeasible because it is assumed that the nuisance
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parameters are known while the identification category is still unknown. The bootstrapped
critical values are feasible as they do not assume that the identification category or the nui-
sance parameters are known. Even though the testing of 3 is not valid using the parametric
bootstrap, the tables illustrate its performance and its irregular behavior in the weakly
identified case.

The results in Tables 2.3 and 2.4 indicate that the parametric bootstrap works excep-
tionally well for the cases of strong and non-identification. The critical values that are
constructed in these cases are numerically close to the infeasible critical values of Andrews
and Cheng (2012). When the model is weakly identified, the critical values work well, but
not as well as the infeasible case. The difference in accuracy hinges on the inability of the A,
statistic to recognize if the parameters are weakly or strongly identified. When the A, leads
to the incorrect conclusion, the IC'Sy selects the incorrect critical value, and in consequence
rejection rates are usually higher than the correct test size. The least favorable critical values
perform better as the simulation exercise shows that the distributions under weak identifi-
cation have larger critical values that the strong identification case. The critical values for 7
work particularly well compared to the asymptotic approximations of Andrews and Cheng
(2012). In the case of the asymptotic approximations, test sizes close to zero when we test
with respect to w. As the t-test is centered at my which is a nuisance parameter, generating
a grid and taking the supremum of the critical values does not perform well in practice
because the critical values are too wide. Using the parametric bootstrap presented in this
paper, we can test m without nuisance parameters, which performs as well as the infeasible
critical values of Andrews and Cheng (2012). In summary, the parametric bootstrap works
very well as long as the IC'Sy critical values are able to recognize if the parameters of the

model are weakly or strongly identified.

2.8 Conclusion
We introduce a parametric bootstrap method for models where parameters are potentially

weakly identified. The parametric bootstrap is easy to construct as closed-form expressions

70



of the t-statistic are not required, and can reduce the number of nuisance parameters. The
simulation exercise suggests that the t-test constructed using the parametric bootstrap leads
to accurate test size and test power compared to the asymptotic approximations of Andrews

and Cheng (2012) or the wild bootstrap method of Chapter 1.
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CHAPTER 3

THE RISK-RETURN TRADE-OFF UNDER WEAK IDENTIFICATION

3.1 Introduction

The risk-return trade-off is one of the most important relations in the finance literature.
The relation characterizes the common conception that potentially high levels of risk of an
asset should be followed by potentially high returns. Based on the portfolio selection mean-
variance analysis model of Markowitz (1952), Merton (1973) proposed the Intertemporal
Capital Asset Pricing Model (ICAPM). The ICAPM is derived by solving a micro-founded
optimization problem in which a representative investor maximizes his expected utility in-
vesting in a portfolio of risky assets and a risk-free bond. In equilibrium, the ICAPM char-
acterizes the risk-return trade-off, suggesting that conditional excess return of a portfolio

should have a linear relationship with respect to its conditional variance.

Ei(Riy1) = ¢ + BVar(Ri) (3.1)

Here (5 is the coefficient of relative risk aversion of the representative agent, and { should be
equal to zero. The expectation and variance are conditional on the information prior to time
t. According to the risk-return trade-off relationship obtained by Merton (1973), the value
of B must be positive and statistically significant, implying that the conditional variance of
an asset has a positive and linear relationship with respect to conditional excess returns.

A significant number of research papers have tested the theoretical implications of the
risk-return trade-off using data, which has lead to contradictory results. One of the most im-
portant difficulties to estimate the risk-return trade-off empirically hinges on the estimation
of the (unobservable) conditional variance. As the measure of conditional mean and variance

depends on the model at hand, some authors find a positive risk-return trade-off while other
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find a negative relationship. Using a GARCH-in-Mean model, Baillie and DeGennaro (1990)
find a positive non-significant relationship, while French, Schwert, and Stambaugh (1987)
obtain similar results using a rolling window estimator of conditional variance. On the other
hand, Campbell (1987) and Nelson (1991) find a negative, statistically significant risk-return
trade-off. In particular, Nelson (1991) uses a GARCH model that accounts for volatility and
return distributional asymmetries (i.e. leverage effect). Glosten, Jagannathan, and Runkle
(1993) and Turner, Startz, and Nelson (1989) argue that the results of risk-return relationship
can change from positive to negative by slightly modifying their model specification.

Lettau and Ludvigson (2001b) argue that conditioning on information is crucial to obtain
meaningful results for the risk-return relationship. In particular, they find a positive and
significant risk-return relationship using conditional returns and a negative non-significant
relationship using unconditional returns. Ludvigson and Ng (2007) use a three-factor model
with 172 financial indicators and find that these factors lead to a positive and significant
risk-return relationship. The three factors contain synthesized information from volatility,
risk and “real economy” factors. Lettau and Ludvigson (2001a) propose the residual of a
cointegrating relationship, cay,, formed with consumption, wealth and labor income data.
The authors argue that cay, has a strong ability to forecast the return on aggregate stock
market indices, which supports the validity of the CCAPM model to explain future market
returns.

Given that the different results in the literature depend substantially on model selection,
Ghysels et al. (2005) propose an optimally weighted estimator of conditional variance using
the mixed data sampling (MIDAS) model. The MIDAS estimator of conditional variance
combines high-frequency (e.g. daily) data into a lower frequency (e.g. monthly, quarterly)
specification using a data-driven optimized weighting function. The results of Ghysels et al.
(2005) suggest that there is a positive and significant risk-return trade-off robust to subsam-
ples. The authors argue that their results emerge because estimating the optimal weights

leads to a more accurate estimator of conditional variance. In particular, the optimal weights
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are key to identify the persistence component of the volatility process. The short-term fluc-
tuations in the conditional variance are mostly driven by negative shocks, while positive
shocks have a persistent impact on the variance process. The MIDAS model facilitates the
construction of a highly persistent conditional variance process whose persistence differs
between positive and negative returns.

In a subsequent paper, Ghysels et al. (2016) present a correction and extension of their
2005 paper. The authors argue that even though the evidence of the risk-return trade-off is
low when using the corrected results, the relationship still holds if episodes of financial crises
are eliminated from the sample, specifically, the Great Depression, the subprime mortgage
financial crisis, and the Great Recession. The authors suggest that during financial crises
investment decisions are driven by a flight-to-safety phenomenon, which dominates the long-
run risk-return trade-off relationship.

In this paper, we construct the wild bootstrapped and parametric bootstrapped robust
t-test proposed in Chapter 1 and Chapter 2 to test the validity of the MIDAS specification
proposed by Ghysels et al. (2005, 2016) to characterize the risk-return trade-off. Ghysels
et al. (2005, 2016) use the standard t-test to evaluate the explanatory and predictive power
of the MIDAS model. Nonetheless, the MIDAS model suffers from weak identification in the
sense of Andrews and Cheng (2012, 2014, 2013), which implies that the standard t-test is
not valid. For example, testing if Hy : § = 0 cannot be established using the standard t-test
because under the null hypothesis  and m cannot be separately identified. Testing whether
£ = 0 is empirically relevant because it determines the adequacy of the MIDAS specification
to model the risk-return trade-off. Moreover, as the rejection rates of the standard t-test
are usually larger than the rejection rates of the robust t-test, using the wrong critical
values would lead to false positives, i.e. erroneous statistical significance of the estimators
composing the MIDAS model. We compare the different outcomes of testing parameter
significance and model adequacy using the standard t-statistic, the wild bootstrapped, and

parametric bootstrapped robust t-test.
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3.2 The MIDAS model under weak identification

Constructing regression models using data sets with variables sampled at different fre-
quencies can be challenging. The usual approach is to adjust the data sets such that all
variables are expressed in the duration of the variable with the lowest frequency. Since eco-
nomic data is commonly sampled at a monthly or quarterly frequency, while financial data
is sampled daily or intraday, this approach leads to a loss of a large number of observa-
tions. The MIDAS model provides an alternative framework to construct regression models
using variables sampled at different frequencies. The model summarizes a large amount of
information using a relatively small number of parameters.

The specification proposed by Ghysels et al. (2005) characterizes the risk-return trade-off
in monthly or quarterly frequency along with explanatory variables at a daily frequency. The
left-hand side of the regression equation contains monthly or quarterly market excess returns,
while the right-hand side will be composed by a conditional variance estimator constructed
with weighted daily returns. We use monthly and quarterly market excess returns because
the risk-return trade-off is considered a long-run relationship that daily and intraday returns
cannot capture.

Following Ghysels, Santa-Clara, and Valkanov (2004) we introduce the MIDAS model.
Let R; denote monthly (or quarterly) returns, between the month ¢t—1 and ¢, and 7, denote the
daily return at time ¢, and let V;(7) denote the MIDAS model conditional variance estimator.
Following Ghysels et al. (2005, 2016) we construct the conditinoal variance estimator Vi(m)

using an Almon-lag weighting function,

=A Z d T, T2 T't d (32)

exp(md + mod?)
S P exp(mik 4 mok?)

w(d, T, M) = (3.3)

By construction, the Almon-lag weighting function is always positive and sums to one.

Moreover, the behavior of the weighting function is completely determined by m; and 7.
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It can be either increasing or decreasing as well as concave or convex for different values
of m and m. We set D = 252 to construct the conditional variance with the 252 daily
observations prior to day ¢, which is roughly the number of trading days in one year. Notice
that the MIDAS specification is not imposing a conditional variance estimator with one year
of daily observations. The weighting function will determine endogenously what subset of
the 252 observations is significant to capture the risk-return trade-off. The estimates of
m and 7y determine the weighting function that minimizes the sum of squared residuals
of Equation (3.4). Another important property of the MIDAS model is parsimony. The
conditional variance estimator includes thousands of daily observations which are weighted
with only two parameters m; and m,. With a small number of parameters, it is more likely
that we can find a relationship that is causal instead of a spurious results caused by model
overfitting. The value A is used to express variance in monthly or quarterly terms. As a
month has 22 trading days on average, A = 22 with monthly data and A = 66 with quarterly
data.

The MIDAS model of the risk-return trade-off introduced by Ghysels et al. (2005) mini-
mizes the sum of squared residuals of the following non-linear function, which is composed by

low frequency returns and a conditional variance estimator constructed with daily returns,

Rt+1 = C+ ﬁ%(ﬂ') + €t+1 (34)

where ((, 3, m,m2) denote the parameters and ¢, is a noise process.

The MIDAS specification includes a polynomial function to reduce the dimensionality of
the dataset and the number of parameters in the model. Moreover, the polynomial function
is advantageous to obtain a data-driven lag selection method. A linear regression model
with autoregressive regressors such as ARMA requires that the number of lag has to be
set before estimation. The task of choosing the number of lags that are appropriate can
be particularly complicated, especially when large amounts of high-frequency data are used.

For example, the number of informative lags of the daily stock market index to forecast GDP
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next period is hard to determine for any type of regression model specification. The MIDAS
model proposes the solution of using a flexible polynomial function in which the number of
observations being averaged is determined endogenously.

The polynomial function determines the weights of the higher frequency data to affect the
lower frequency specification. Even though the procedure is data-driven, we usually obtain
a smooth weighting function with its shape determined by the temporal significance of the
explanatory variable. In most economic and financial applications, we expect observations
that are closer to time period ¢ to be higher weighted compared to observations that are
farther away from ¢. Graphically, the weighting polynomial function would be a decreasing
function over time. Nonetheless, it is not clear if the weighting function should have a convex
or concave shape. In the convex case, the observations very close to ¢t have a much larger
weight than observations that are further away, while in the concave case, observations that
are farther away may have a weight close to the value of observations close to t. The shape
of the weighting function is determined endogenously by the MIDAS estimation.

Estimating this model using Maximum Likelihood is not appropriate because is unclear
what type of probability density function the MIDAS errors follow. To avoid making a

strong distributional assumption, we estimate ((, 3, 71, m2) using Quasi-Maximum Likelihood

(QML),

€t+1(§,5»77) N
e N(0,1) (3.5)
Qu) =S Qu0) - - > | tos(Vi(m) + Evffﬁ) (3.6)

Based on the results by White (1982), the QML estimator converges in probability to the

pseudo-true value #* '. Even though the model may be mispecified, the QML estimator is

IThe estimator is consistent with respect to the pseudo-true value because the log-likelihood is misspeci-
fied, and therefore it could be inconsistent with respect to the true value 6.
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asymptotically normal with the following variance-covariance sandwich estimator.

Va0, — 6%) 5 N(0, J 169V (%) (6%)) (3.7)
) =ty BT OO) 3.3

s 02Qu (67
o) =n" Z acéaef) (3.9)

The QML esimator is consistent and asymptotically normal under mild regularity conditions,
e.g. White (1982); Newey and McFadden (1994). Appendix C.1 presents more details on

the estimation method.

3.2.1 Weak Identification

Hypothesis testing of the MIDAS model cannot be employed using the standard t-test
because the parameters in the model are potentially weakly identified. If we wish to test
the null hypothesis Hy : f = 0, the parameter 7 is not identified under the null. Using the
critical values of the standard t-statistic would be incorrect and can lead to false positives.
For example, under weak identification, the standard delta method is not valid to obtain
the asymptotic distribution of the parameters because the Hessian is converging to a similar
matrix.

The inability to identify both parameters under the null leads a t-statistic with non-
standard distributions and nuisance parameters. To construct the bootstrapped distribu-
tions under weak identification, Chapter 1 proposes a wild bootstrap method in which the
bootstrap samples are generated using a multiplier. On the other hand, Chapter 2 proposes
a parametric bootstrap method to reduce the number of nuisance parameters and obtain
more accurate test sizes and higher power. These bootstrap procedures are not a straight-
forward extension. As the estimators can have different distributions according to the value
taken along the parameter space, the uniformity conditions required for the bootstrap are
no longer valid. The bootstrap methods rely on generating bootstrapped distributions of

the t-statistic under weak and strong identification and then combining them to construct
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robust critical values. The next subsections discuss the properties of the wild bootstrapped

and parametric bootstrapped robust t-test.

3.2.2 Wild Bootstrapped robust t-test

The development of these bootstrap methods relies on the ability to pinpoint the cases
where weak identification is present. The construction of this bootstrap relies on the asymp-
totic results of Andrews and Cheng (2012, 2014); Andrews and Mikusheva (2015). The
authors present a unified treatment in which they characterize all possible identification
categories according to the value parameters take along the parameter space. The authors
present four categories of identification which depend on the speed at which the drifting
sequence of true parameters is converging. We avoid the technical definitions encompassing
the identification categories and refer to Andrews and Cheng (2012, 2014); Andrews and
Mikusheva (2015) for an analysis in the asymptotic theory, and we refer Chapter 1 and 2 for
two bootstrap methods. We combine the four categories into two groups which we refer to
as strong and weak identification. This convention simplifies the construction of the robust
critical values, as the four identification categories lead to only two probability distribution
that should be analyzed.

The wild bootstrap method follows the bootstrap specification introduced by Wu (1986);
Liu et al. (1988) when data is independent and heteroscedastic, while it follows the depen-
dent wild bootstrap specification of Shao (2010) when data is dependent. The wild bootstrap
has the benefit of using a multiplier which generates bootstrap samples in a simple way.
Moreover, the bootstrap can have much better small sample performance compared to the
asymptotic approximations as it can obtain an asymptotic refinement (faster higher order
convergence rate in the Edgeworth expansion, e.g. Horowitz (2001)). Under weak identifi-
cation, the asymptotic distribution of the estimators is asymmetric, which can be captured
easily using a multiplier such as the two-point distribution by Mammen (1993). On the other
hand, the selection of a wild bootstrap is important because the standard conditions of the

bootstrap are not satisfied.
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The wild bootstrapped robust t-test of Chapter 1 has important properties. The robust
t-test does not require assuming that the identification category is known. The method
is used to derive bootstrapped distributions under strong and weak identification. After
computing the bootstrapped distribution for each identification category, we construct robust
critical values that combine the critical values of both distributions. The results presented in
Chapter 1 suggest that the bootstrapped process works well in small samples when nuisance
parameters are assumed to be known. Moreover, the wild bootstrap is simpler to estimate
than the asymptotic approximation counterpart, especially in multivariate settings with non-
linear functional form.

The wild bootstrap method in Chapter 1 is simple to simulate when the parameters of
the model are weakly identified as some closed-form expressions of the underlying processes
are not required to obtain bootstrapped samples. For example, to obtain the critical values
using the asymptotic approximations derived by Andrews and Cheng (2012), an estimator of
the variance-covariance of the stochastic process G() is required. A closed-form expression
of this matrix can be complicated to obtain in models with a large number of parameters.
The wild bootstrap method can be used to generate bootstrapped samples of the stochastic

process G(7) using a multiplier.

3.2.3 Parametric Bootstrap robust t-test

One of the limitations of the wild bootstrapped robust t-test is the inability to obtain
the correct asymptotic size unless nuisance parameters are known. To improve the empirical
sizes of the test, Chapter 2 proposes a parametric bootstrap robust t-test.

The parametric bootstrap in Chapter 2 is similar to the residual bootstrap employed in
the econometric literature,Freedman (1981); Mammen (1993); Liu et al. (1988); Horowitz
(2001); Davidson and Flachaire (2008). This method relies on generating bootstrap residu-
als imposing the parametric specification of the model, while subsequently generating boot-
strapped data samples from which bootstrapped distributions can be constructed. When

parameters are weakly identified, this procedure cannot be employed as residuals depend
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on estimators that are inconsistent. Nonetheless, the parametric bootstrap process leads to
correct inference when the models have weakly identified parameters.

Under weak identification, the parametric bootstrap follows the next steps: 1) obtain
residuals that do not depend on 7 by setting 5 = 0, 2) obtain bootstrapped residual samples
using a wild bootstrap multiplier as in Wu (1986); Liu et al. (1988); Shao (2010), 3) fix a
grid of parameters to generate bootstrapped data samples over each element in the grid,
and 4) obtain bootstrapped estimators for each bootstrapped sample along the grid. It
is worth mentioning two advantages of this process, 1) the bootstrapped distributions are
generated by imposing the model along the grid, even if we do not have prior knowledge of
the asymptotic distribution of the estimators, 2) the number of nuisance parameters in the
bootstrapped distribution can be reduced because this bootstrap method does not require
knowing the value of the nuisance parameter b and in some cases m;, m (see Chapter 1 and
2). The parametric bootstrap is also used to obtain the bootstrapped t-statistic distribution
under strong identification and to construct robust critical values.

The parametric bootstrap leads to a t-statistic whose hypothesis tests with respect to 7
do not depend on nuisance parameters. The results of Ghysels et al. (2005) indicate that
the statistical significance of 7 validates the explanatory power of the conditional variance
estimator constructed with the MIDAS weighting function. In consequence the hypothesis
test Hy : m = 0 is of particular importance in this study to test the added value of the
MIDAS specification.

The empirical exercise of the following section compares the p-values of the t-test by using
the wild bootstrapped t-statistic in Chapter 1, the parametric bootstrap robust t-statistic
of Chapter 2, and the standard t-statistic considered by Ghysels et al. (2005, 2016). The
results of the empirical exercise show that the p-values of the robust t-test and the standard

t-test are substantially different, suggesting that the standard t-test leads to false positives.
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3.3 Empirical Analysis

Assuming a constant relative risk aversion utility function, the microeconomic and asset
pricing literature suggests that 8 > 1. Specifically, Arrow (1970) indicate that risk aversion
should be almost constant and approximately one. Farber (1978) provides empirical evidence
of the coefficient being larger than one. Friend and Blume (1975) present empirical evidence
that the estimate of risk aversion should be closer to two. Kydland and Prescott (1982)
argue that as the parameter measures the representative consumer’s willingness to substitute
consumption through time, 5 should be between one and two to mimic the variability between
consumption and investment. Mehra and Prescott (1985) argue that the coefficient of risk
aversion exceeds one significantly. The results of many utility models with uncertainty
depend on the coefficient of risk aversion being larger or smaller than one. For example,
Bansal and Yaron (2004) use an Epstein-Zin utility function, which separates the coefficients
of the intertemporal elasticity of substitution and risk aversion, to obtain a risk premium
in line with empirical evidence. Their results hinge on using Epstein Zin utility function
Ludvigson and Ng (2007) show that the relationship between risk and return can be positive
when you summarize a large amount of economic information using a factor model. The
numerical values of the coefficient of risk aversion 3 are of particular interest in this study as
they have an economic interpretation. Moreover, the statistical significance of 7 and 7y is
important to test because determines if the optimized weights under a MIDAS specification
have a relevant explanatory power to describe the risk-return trade-off.

The data used for the estimation of the risk-return trade-off using a MIDAS specification
consist of the market return portfolio and a risk-free rate. Following the approach of Ghysels
et al. (2005, 2016), we use the value-weighted returns including dividends from the Center
for Research and Security Prices (CRSP) as a proxy of the market portfolio. The risk-free

rate is approximated using the three-month T-bill yield from CRSP. 2

2Daily T-bill yields are not available before 1980, we transform the T-bill yield to daily frequency by
assuming that rates stay constant within the month and compounding them.
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The estimation exercise derived in this paper covers six subsample periods. The first
three subsamples are equivalent to the subsamples analyzed by Ghysels et al. (2005), which
include the complete subsample from 1928 — 2000 and two subsamples 1928 — 1963 and
1964 — 2000 which are composed by roughly the same number of observations. The fourth
subsample, 1928 — 2016, considered by Ghysels et al. (2016), includes the last 16 years
of observations. The results of Ghysels et al. (2016) suggest that the risk-return trade-off
relationship holds only if the extreme market movements are eliminated from the MIDAS
estimation sample. These periods, the authors argue, are characterized by investor’s flight to
safety instead of the long-run risk-return relationship. To test this hypothesis, the fifth and
sixth subsample studied in this paper, characterize the periods 1928 — 2000 and 1964 — 2000
removing returns that are above or below two times their standard deviation. Specifically,
we eliminate all observations such that R;1; < —20 or R:;11 > 20, where o denotes the
unconditional standard deviation of R;;;. This approach eliminates roughly 5% of the
subsamples. We refer to these sample periods as flight-to-safety (FTS) subsamples and
express them as 1928 — 2000775 and 1964 — 2000775,

Our choice of truncation for subsamples 1928 — 200077 and 1964 — 2000779 differs
from the truncation proposed by Ghysels et al. (2016). In their paper, they choose to
truncate all monthly or quarterly returns that are below 1.5 times the unconditional standard
deviation. That is, they eliminate all returns in the left tail of the distribution that satisfy
the condition R;,; < —1.50. Their approach eliminates around 5% of the number of return
observations, which is close to the number of observations truncated using our truncation
approach described in the previous paragraph. Nonetheless, their truncation eliminates all
observations that are on the left tail, which by construction leads to a positive bias on
the parameter estimates. This bias has been studied extensively in regression models with
truncated data sets such as the Tobit regression model of Tobin (1958). To avoid this
potential bias, we truncate the aberrant observations from the left and right tail of the
distribution to analyze the risk-return trade-off around the mean the sample returns.

Table 3.1 and Table 3.2 present the summary statistics of monthly and quarterly market
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excess returns across the six subsample periods. Surprisingly, the mean and variance of the
monthly and quarterly excess market returns change substantially across subsamples. The
mean of monthly returns changes from 0.74% between 1928 — 1963 to 0.48% in 1964 — 2000.
Moreover, the variance of monthly returns is roughly three times greater in the 1928 — 1963
period than in the 1964 — 2000 period. The results indicate that the market excess return
volatility process increases substantially during financial crises, especially during the Great
Depression and the subprime financial crisis. The negative skewness and high kurtosis of the
return subsamples reflect the well-known facts in the financial literature that the uncondi-

tional distribution is asymmetric and fat-tailed.

Table 3.1: Summary statistics of monthly excess returns

Monthly Mean  Variance Skewness Kurtosis
(x10?) (x10?)
1928 — 2000 0.613 0.319 -0.125 11.256
1928 — 1963 0.747 0.466 -0.063 10.054
1964 — 2000 0.481 0.181 -0.466 5.153
1928 — 2016 0.589 0.293 -0.161 11.185
1928 — 200075 0.779 0.161 -0.218 2.849
1964 — 2000775 0.592 0.148 -0.141 2.910

This table shows the mean, variance, skewness and kurtosis of monthly returns for the six
subsamples analyzed. The proxy of the return from the stock market is the value weighted
portfolio from the Center for Research and Security Prices (CRSP) and the risk-free rate is
the three month Treasury bill from CRSP. F'T'S denotes Flight-to-Safety subsamples.

3.3.1 Estimation results of the wild bootstrap

We begin by discussing the estimation results of the MIDAS model using monthly excess
market returns. Table 3.3 shows the estimated coefficients, their variances, and p-values of
the standard t-statistic and the wild bootstrapped robust t-statistic. The p-values denote
the probability of rejecting the null hypothesis of the parameter is equal to zero. As with
real-world data, the identification category is unknown. We construct the wild bootstrapped
robust t-test assuming weak identification to compare the differences in rejection probabilities

between the robust and standard t-test.
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Table 3.2: Summary statistics of quarterly excess returns

Sample Mean  Variance Skewness Kurtosis
(x10%) (x10?)
1928 — 2000 1.839 1.186 0.737 13.115
1928 — 1963 2.243 1.810 0.899 10.973
1964 — 2000 1.431 0.605 -0.729 4.900
1928 — 2016 1.767 1.086 0.639 13.017
1928 — 2000875 2.068 0.575 -0.459 3.216
1964 — 2000875 2.072 0.486 -0.066 2.939

This table shows the mean, variance, skewness and kurtosis of quarterly returns for the six
subsamples analyzed. The proxy of the return from the stock market is the value-weighted
portfolio from the Center for Research and Security Prices (CRSP) and the risk-free rate is
the three month Treasury bill from CRSP. F'T'S denotes Flight-to-Safety subsamples.

The estimator 3, which characterizes the coefficient of risk aversion, is highly variable
across subsamples, ranging from —0.7 to 3.6. Surprisingly, B is non-significant for any of the
non-FTS subsamples according to the standard or robust t-statistic. Ghysels et al. (2016)
argue that to obtain a statistically significant B we need to remove market crashes from the
estimation data. The results of the FTS subsamples, which exclude observations above and
below two standard deviations, establish that the standard t-test 3 is statistically significant
at a 10% level. On the other hand, /3 is not significant for any of the F'TS subsamples if the
robust t-test is considered. In other words, the standard t-test erroneously concludes that
the estimator B is significant for both FTS subsamples. We know that the results of the
standard t-test are erroneous because for the null hypothesis Hy : § = 0, the parameter 7 is
weakly identified, consequently, the t-statistic does not have a standard normal distribution.
Moreover, the standard t-statistic is growing as sample size increases because the variance-
covariance matrix is singular under weak identification.

The results of the t-tests with respect to m; and m, presented in Table 3.3 are harder to
interpret because they jointly characterize the shape of the weighting function. For simplicity,
we analyze the statistical results of both estimators simultaneously. The estimates 7; and

7o characterize a weighting function that decreases with time for all subsamples. In other

words, daily market excess returns that are closer to time period ¢ have a higher explanatory
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power of conditional variance than observations that are farther away from time ¢. In spite
of using one year of daily trading days, the weighting function shows a sharp convex shape
that dies out quickly. This implies that observations that are roughly three months prior to
t have a very marginal contribution in the estimation, meaning that all observations that
are from one year to three months prior to time ¢ are assigned an optimal weight close to
zero for the construction of the conditional variance estimator.

In their 2005 paper, Ghysels et al. (2005) argue that the statistical significance of the
t-statistic with respect to 7, demonstrate the advantage of using a MIDAS specification. The
authors compare their results to the model employed by French et al. (1987) which uses an
estimator of conditional variance that assigns equal weight to all daily observations. Using
the equally weighted variance estimator, French et al. (1987) find non-significant estimates of
the risk-return trade-off. The estimates of 7 in the study by Ghysels et al. (2005) are highly
significant. The authors argue that the explanatory power of MIDAS relies on optimally
weighting daily market excess returns to generate an informative estimator of conditional
variance V;(7). Our results suggest that the statistical significance of the t-tests of 7; and 7y
found by Ghysels et al. (2005, 2016) are false positives, because there is almost no subsample
period where the null hypotheses Hy : 71 = 0 and H, : 7o = 0 are both rejected at a 5% level.
Using the standard t-test, the MIDAS weighting function is significant at a 5% level for all
non-FTS subsamples except for the period 1928 —1963. On the other hand, the robust t-test
suggests that the relationship is not significant for any of the non-FTS subsamples except
1964 — 2000. The results illustrate the consequences of using the standard t-test in models
that have weakly identified parameters. The test leads us to incorrectly conclude that the
MIDAS model has statistically significant parameters for most of the non-FTS subsamples.
The evidence from our hypotheses tests suggests that daily returns and the MIDAS weighting
polynomial do not provide enough information to obtain an accurate measure of conditional
variance.

Figure 3.1 shows the scatter plot and regression line of the monthly excess returns MIDAS

model estimation. The linear regression model has low explanatory power as the data does
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not seem to have a linear relationship. The R? is very low, sometimes even negative, for
all subsamples analyzed in this study. Interestingly, the estimation of the slope estimator
i changes substantially with the elimination of a few observations, which suggests that
the model suffers from parameter instability across subsamples. Regression models that are
misspecified suffer from estimates that vary considerably with outliers and across subsamples,
e.g. (Rousseeuw and Leroy 2005). For example, the exclusion of financial crises changes
the estimate of B from 0.32 to 1.39 between subsamples 1928 — 2000 and 1928 — 2000779,
and from 2.13 to 3.69 between subsamples 1964 — 2000 and 1964 — 200077, The non-
statistical significance of the estimators BA, m and 7o, as well as the evidence of model
misspecification, suggests that the MIDAS model is not capturing the risk-return trade-off
relationship appropriately.

Table 3.3 shows that the estimator 5 is significant for most periods. In the framework of
the ICAPM, the statistical significance of f suggests that the model is misspecified because
this coefficient captures the covariance of market returns with respect to state variables not
included in the model. The results of Ludvigson and Ng (2007) suggest that incorporating
economic and financial control variables reduces misspecification because the conditional
mean and variance are estimated more accurately.

The results of the MIDAS estimation for quarterly excess market returns are presented
in Table 3.4. The conclusions presented with respect to monthly excess returns are in line
with the results obtained using quarterly excess market returns. For example, the standard
t-test suggests that the estimator 3 is significant at a 5% level in subsamples 1964 — 2000
and 1964 — 2000779 while the robust t-test of 3 is non-significant for all subsample periods
included in this study.

In conclusion, the wild bootstrapped robust t-test indicates that the MIDAS model is
insufficient to obtain a statistically significant risk-return trade-off. As the model suffers
from weak identification under the null, the standard t-test erroneously leads to statistical
significant estimators when estimation is employed on the FTS subsamples. On the other

hand, the robust t-test rejects the statistical significance of at least one of the estimators
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B, %1 or # in all subsamples analyzed. In the next subsection, we study if these results also

hold using the parametric bootstrap robust t-test.

3.3.2 Estimation results of the parametric bootstrap

One of the problems of the wild bootstrapped robust t-test presented in the previous
subsection is that the bootstrapped distribution depends on nuisance parameters. The in-
ability to identify this parameter leads to a bootstrapped t-statistic that depends on m,
which has to be fixed to perform inference. The parametric bootstrap method can help in
this circumstance as it is developed without bootstrapping the limit distributions directly.
In this subsection, we analyze the statistical significance of the estimators in the MIDAS
model using the parametric bootstrapped t-test.

Inference and testing with nuisance parameters have been a subject of study in the statis-
tics literature for many years. Chernoff and Zacks (1964) introduce a sup-Lagrange multiplier
to eliminate nuisance parameters while Davies (1977, 1987) introduce a sup-Likelihood ratio
test when the nuisance parameters are present under the alternative hypothesis. Hansen
(1996) introduces a transformation to eliminate nuisance parameters that are present under
the null. Nuisance parameters that are not identified under the null can be either chosen
at random (e.g. White (1989)) or chosen over a fine grid (e.g. Davies (1977, 1987), Hansen
(1996), Andrews (1994)). Fixing nuisance parameters over a grid leads to statistical tests
with correct level but incorrect size. For example, If we set the level of rejection at 5%, a
test with correct test level has a rejection rate of 5% or lower. Moreover, the power of a test
is reduced when the underlying distribution includes nuisance parameters.

The simulation exercise of Chapter 1 analyzes the empirical performance of the wild
bootstrapped t-test and finds rejection rates that are way below 5% when a grid of nuisance
parameters is employed. The empirical test sizes show to be inaccurate compared to the
infeasible statistic which assumes that nuisance parameters are known. The hypothesis tests
with respect to m are clearly inaccurate as the distribution of the t-test is centered around one

nuisance parameter. To improve the test size and power, Chapter 2 proposes a parametric

90



Table 3.3: Risk-return trade-off wild bootstrapped t-test, monthly frequency.

Monthly ¢ B m Ty R?
(x10?) (x10%) (x10%)
1928 — 2000 Coeft. 0.522  0.342 -2971  1.045 0.002
Std. Dev. 0.196 0.975  1.539  0.565

Std. p-value  0.000 0.726  0.045  0.000
WB p-value 0.006 0.792  0.114  0.180
1928 — 1963 Coeft. 1.030 -0.775 -1.933  0.755 -0.008
Std. Dev. 0.300 1.213  1.827  0.688
Std. p-value  0.000 0.523  0.270  0.000
WB p-value 0.000 0.622  0.292  0.282
1964 — 2000 Coeft. 0.098 2.136 -4.477  1.354 -0.008
Std. Dev. 0274 1.692 1929  0.776
Std. p-value  0.583 0.207  0.010  0.000
WB p-value 0.926 0.408  0.008  0.020
1928 — 2016 Coeft. 0.522  0.241 -3.635 1.235 0.001
Std. Dev. 0.173 0.805  1.428  0.528
Std. p-value  0.000 0.764  0.009  0.000
WB p-value 0.000 0.862  0.110  0.206
1928 — 2000775 Coeff. 0475 1.392 -5.323  1.846 -0.018
Std. Dev. 0.185 0.818 1.311  0.536
Std. p-value  0.000 0.089  0.000  0.000
WB p-value 0.002 0.232  0.016  0.038
1964 — 2000775 Coeft. -0.060 3.691 -4.024  1.133 0.022
Std. Dev. 0.315 1.660  1.686  0.789
Std. p-value  0.746 0.026  0.016  0.000
WB p-value 0.992 0.096 0.014 0.012

This table presents the estimates, standard deviation and p-values of the standard and wild
bootstrapped t-test of the MIDAS model using monthly frequency. The conditional variance
estimator of returns is calculated using daily returns as in Equation (3.2). The variance of
the coefficients is obtained using the sandwich formula of the QML estimator White (1982).
R? is the coefficient of determination. The coefficients and standard deviation are multiplied
by the value in the second row. F'T'S denotes Flight-to-Safety subsamples.
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Table 3.4: Risk-return trade-off wild bootstrapped t-test, quarterly frequency.

Quarterly ¢ B m T R?
(x10?) (x10%) (x10%)
1928 — 2000 Coeft. 1.258 0.740 -2.232 0.823 0.009
Std. Dev. 0.696 1.180 2177 0.852

Std. p-value  0.008 0.530  0.270  0.000
WB p-value 0.032 0.638  0.252  0.180
1928 — 1963 Coeft. 2.754 -0.470 -2.155  1.052 -0.014
Std. Dev. 1.051 1407  3.169 1.134
Std. p-value  0.000 0.738  0.496  0.000
WB p-value 0.010 0.784  0.500  0.158
1964 — 2000 Coeft. -0.257  3.435 -3.679  0.433 0.045
Std. Dev. 0.735 1.707  1.883  0.729
Std. p-value  0.616 0.044  0.035  0.271
WB p-value 0.940 0.160 0.036  0.274
1928 — 2016 Coeft. 1.314 0.539 -2.577 0915 0.007
Std. Dev. 0.608 0.964 2128  0.836
Std. p-value  0.002 0.576  0.207  0.000
WB p-value 0.010 0.708  0.194  0.180
1928 — 2000775 Coeft. 2.023 0.066 -2.313  0.766 -0.003
Std. Dev. 0.599 0934 1.68  0.671
Std. p-value  0.000 0.943  0.129  0.000
WB p-value 0.000 0.960  0.106  0.506
1964 — 2000775 Coeft. -0.364  5.065  0.009 -2.922 0.079
Std. Dev. 0.846 1.788  4.023  3.142
Std. p-value  0.498 0.005  0.998  0.014
WB p-value 0.888 0.064 0.998  0.046

This table shows the estimates of the model shown in Equation (3.5), standard deviation
and p-values of the standard and wild bootstrapped t-test at a quarterly frequency. The
conditional variance estimator of returns is calculated using daily returns. The variance of
the coefficients is obtained using the sandwich formula of the QML estimator (White 1982).
R? is the coefficient of determination. The coefficients and standard deviation are multiplied
by the value in the second row, while the p-values are not. FTS denotes Flight-to-Safety
subsamples.
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bootstrap that reduces the number of nuisance parameters. The bootstrap data sets are
generated sequentially by imposing the null hypothesis and the regression model instead of
using the limit distributions. Using this method, 7 is the only nuisance parameter under
the null because if the true value my were known, the model would not suffer from weak
identification. Moreover, if 7 is a scalar value and we wish to test Hy : m = 0, imposing the
null hypothesis leads to a statistic without nuisance parameters because, under the null, the
parameters left to estimate are strongly identified.

Similar to the wild bootstrap case of the previous subsection, we compare the statistical
significance of the standard t-statistic to the parametric bootstrapped robust t-statistic.
Table 3.5 and Table 3.6 present the results of the parametric bootstrap for the monthly and
quarterly frequency. The results of Table 3.5 suggest that the parametric bootstrap method
leads to conclusions that are comparable to the wild bootstrapped robust t-test. Using the
parametric bootstrapped robust t-test, B is non-significant for any of the subsamples except
for the FTS subsamples. We find B is statistically significant at a 5% level in the FTS
subsamples. Nonetheless, B is non-significant at a 1% level for any of the subsamples.

The results of the parametric bootstrapped t-test with respect to 7; and 7, are more
interesting. We find that the null hypothesis m, = 0 is rejected for all subsamples, while
71 is not significant for any of them. These results suggest that the quadratic term of the
weighting function is potentially informative to construct a conditional variance estimator.
Using the standard t-test leads to rejection of the null hypothesis at a 5% level for all
subsamples except 1928 — 1963.

Table 3.6 presents the results of the parametric bootstrapped robust t-test using quarterly
returns. The only subsamples that are significant with respect to § are 1964 — 2000 and
1964 — 200079 similar to the wild bootstrap case. There is no subsample where #; and
7 are both significant at a 5% level. Overall, we conclude that the risk-return trade-off
relationship is not captured with the MIDAS model because using the robust t-test, the
parameters are non-significant. Nonetheless, the results of the parametric bootstrap suggest

that the weighting function itself can be useful to construct a conditional variance estimator
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because m, is significant in all subsamples.

3.4 Alternative MIDAS specification with absolute returns

The parameter instability across subsamples found in the results of the previous section
suggests that the model is misspecified. In this section, we propose an alternative MIDAS
specification using the absolute value of returns to analyze the risk-return trade-off. This
model does not have a microeconomic motivation like the ICAPM model, as it is not derived
from a maximization problem with a representative agent. The motivation is the presence
of outliers in the MIDAS specification with squared returns.

Forsberg and Ghysels (2007) argue that absolute returns are more informative to predict
future increments of quadratic variation than squared returns. The empirical evidence in
the paper suggests that realized absolute returns are a better predictor of volatility than
realized variance. Moreover, the authors argue that absolute returns have a different persis-
tence dynamics than squared returns and in consequence are more informative to construct
forecasts.

We propose a conditional variance estimator of market excess returns constructed by a

MIDAS specification with daily absolute returns.

Rip1 = (+ BVi(T) + €1 (3.10)

AZ (d, 71, m2) |ri_al (3.11)

exp(md + mad?)
ZkD:_Ol exp(mk + mok?)

w(d, m,m) = (3.12)

The estimation results of the MIDAS model with absolute returns are presented in Ap-
pendix C.2. The results suggest that, similar to the estimation results of the squared returns,
the estimators of the MIDAS model are generally non-significant when the wild bootstrapped
robust t-test is implemented. Table C.1 shows the results of the estimation using monthly

excess returns. The estimator B is non-significant for any of the subsamples. The standard
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t-test is non-significant for any of the subsamples except for the FTS subsamples. With
respect to 7; and 79, both estimators are significant at a 1% level for samples 1928 — 2000,
1928 — 2016 and 1928 — 2000775, On the other hand, when you consider the robust wild
bootstrapped t-test, we do not find significant results of any of the samples at a 1% level.
Similar to the case of squared returns, the risk does not seem to be captured by the MIDAS
model specification.

The results of the absolute return MIDAS model with quarterly excess returns are pre-
sented in Table C.2. The results are similar to the monthly returns estimation. When the
wild bootstrapped robust t-test is considered, we do not find a statistical significance with
respect to B. The FTS subsample 1928 — 200077 suggests that #; and #, are significant,
but all other subsamples are non-significant. The R? does not surpass 0.06 for any of the
subsamples considered.

Now we analyze the results of the parametric bootstrapped t-test using the MIDAS model
with absolute returns. Table C.3 and Table C.4 suggest that none of the subsamples leads
to a MIDAS specification where all parameters are significant. The estimator B is non-
significant with respect to all subsamples except 1964 — 200077, On the other hand, the
estimator 7 is significant at a 10% level for all subsamples while 7 is not significant in any
of them.

In conclusion, the results of Tables C.1 to C.4 indicate that the MIDAS specification using
absolute excess returns does not improve the fit of the model compared to the specification
using squared excess returns. The specification presented in this papers relies on a conditional
variance estimator constructed with daily returns. The model can be improved including
economic and financial variables that are informative to explain the behavior of conditional
variance, e.g. Lettau and Ludvigson (2001b). Moreover, the linear specification of the
ICAPM assumes that agents have Constant Relative Risk Aversion (CRRA) preferences. A
utility function such as the one proposed by Epstein and Zin (2013) can potentially capture
the dynamics of the risk-return trade-off more accurately because it separates the effects of

the intertemporal elasticity of substitution and risk aversion.
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3.5 Conclusion

Testing the significance of the parameters in a MIDAS model is complicated as the
parameters cannot be separately identified under the null hypothesis. In this paper, we
study the statistical significance of the MIDAS model proposed by Ghysels et al. (2005) to
analyze the risk-return trade-off specification derived by Merton (1973)’s ICAPM. Using a
wild bootstrapped and parametric bootstrapped t-test, the empirical results of this study
suggest that the parameters of the MIDAS model are non-significant with respect to most
subsamples analyzed. Moreover, the standard t-test leads to many cases of false positives. A
more realistic model should consider the risk-return trade-off specification using a different
stochastic discount factor as well as estimators of conditional variance that include a large

number of macroeconomic and financial variables.
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Table 3.5: Risk-return trade-off parametric bootstrapped t-test, monthly frequency.

Monthly ¢ I6] m T R?
(x10?) (x10%) (x10%)
1928 — 2000 Coef. 0.521 0.343 -2.999  1.055 0.002
Std. Dev. 0.196 0975 1.538  0.565

Std. p-value  0.000 0.725  0.043  0.000
PB p-value 0.004 0.708  0.482  0.034
1928 — 1963 Coeft. 1.029 -0.771 -1.952  0.763 -0.008
Std. Dev. 0.300 1.213 1.829  0.689
Std. p-value  0.000 0.525  0.266  0.000
PB p-value 0.000 0.550  0.382  0.050
1964 — 2000 Coeft. 0.098 2.137 -4.476 1.354 -0.008
Std. Dev. 0.274 1.692 1.929  0.776
Std. p-value  0.582 0.207  0.010  0.000
PB p-value 0.576 0.192  0.138  0.028
1928 — 2016 Coeft. 0.524 0.228 -3.668 1.248  0.001
Std. Dev. 0.173 0.804  1.428  0.529
Std. p-value  0.000 0.777  0.008  0.000
PB p-value 0.000 0.762  0.552  0.084
1928 — 2000775 Coeff. 0.475 1.393 -5.329 1.849 -0.019
Std. Dev. 0.185 0.818 1.311  0.536
Std. p-value  0.000 0.089  0.000  0.000
PB p-value 0.004 0.092 0.162  0.000
1964 — 200075 Coeft. -0.061  3.695 -4.016  1.129 0.022
Std. Dev. 0.315  1.660 1.686  0.789
Std. p-value  0.743 0.026  0.016  0.000
PB p-value 0.744 0.022  0.118  0.044

This table presents the estimates, standard deviation and p-values of the standard and para-
metric bootstrapped t-test of the MIDAS model using monthly frequency. The conditional
variance estimator of returns is calculated using daily returns as in Equation (3.2). The
variance of the coefficients is obtained using the sandwich formula of the QML estimator
White (1982). R? is the coefficient of determination. The coefficients and standard deviation
are multiplied by the value in the second row. FT'S denotes Flight-to-Safety subsamples.
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Table 3.6: Risk-return trade-off parametric bootstrapped t-test, quarterly frequency.

Quarterly ¢ 15} T o R?
(x10?) (x10%) (x10%)
1928 — 2000 Coeft. 1.273  0.706 -2.279  0.842 0.008
Std. Dev. 0.695 1.179  2.185  0.855

Std. p-value  0.007 0.549  0.263  0.000
PB p-value 0.012 0.582 0490 0.052
1928 — 1963 Coeft. 2.753 -0.460 -2.118  1.039 -0.014
Std. Dev. 1.0561 1406  3.194  1.142
Std. p-value  0.000 0.744  0.506  0.000
PB p-value 0.000 0.778  0.714  0.162
1964 — 2000 Coeft. -0.256  3.435 -3.678  0.432 0.045
Std. Dev. 0.735 1.707  1.883  0.730
Std. p-value  0.617 0.044  0.035  0.271
PB p-value 0.612 0.036  0.084  0.402
1928 — 2016 Coeft. 1.318 0.529 -2.538  0.899 0.007
Std. Dev. 0.609 0.965 2125  0.835
Std. p-value  0.002 0.583  0.213  0.000
PB p-value 0.002 0.606  0.452  0.084
1928 — 2000775 Coeff. 2.023 0.064 -2.335 0.775 -0.003
Std. Dev. 0.599 0.934 1.689 0.672
Std. p-value  0.000 0.945  0.126  0.000
PB p-value 0.000 0.932 0.786  0.584
1964 — 2000775 Coeft. -0.364  5.067  0.005 -2.919 0.079
Std. Dev. 0.846 1.788  4.022  3.141
Std. p-value  0.497 0.005 0.999  0.015
PB p-value 0.478 0.002 0998  0.118
This table presents the estimates, standard deviation and p-values of the standard and para-
metric bootstrapped t-test of the MIDAS model using quarterly frequency. The conditional
variance estimator of returns is calculated using daily returns as in Equation (3.2). The
variance of the coefficients is obtained using the sandwich formula of the QML estimator
White (1982). R? is the coefficient of determination. The coefficients and standard deviation
are multiplied by the value in the second row. FT'S denotes Flight-to-Safety subsamples.
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APPENDIX A

SUPPLEMENTAL APPENDIX OF “A WILD BOOTSTRAPPED T-TEST ROBUST TO
ALL IDENTIFICATION CATEGORIES”

The assumptions for the strongly identified convergence results follow the work of Newey
(1991) and Andrews (1994); see also Newey and McFadden (1994). Necessary and sufficient
conditions for weak convergence are convergence on finite dimensional distributions and
stochastic equicontinuity Davies (1977); Pollard (1990). To show stochastic equicontinuity

we assume the functions are Lipschitz, see Newey (1991).

A.1 Proofs of the main results

Proposition 1.3.1 Suppose that Assumptions (A) to (D) hold. Under {0,} € ©(6y),
(a) When By =0, then supH@En(ﬂ) — || 0, in particular zﬁn(frn) — 1, 5 0.
well
(b) When By # 0, then ||0, — 0,]| 2 0.

Proof of Proposition 1.3.1
(a) Following Andrews and Cheng (2012), by Assumption A, which implies the minimum
of Q(6;0o) is unique, and equicontinuity of Q(0;6y) for some 7 € II (equicontinuity proven

below), Je > 0 s.t. V neighborhoods 1)y € ¥ and V7 € 11

P(¢), () € U(w)/ T, for some ) (A.1)

A

< P(Q(¢n(m), m;00) — Q(ho, m;09) > € for some 7) — 0 (A.2)

The first inquality follows as 5y # 0. The convergence result follows as n — oo because:

sup\Q(zEn(ﬂ), m;600) — Q(1o, 75 00)| = 0 which follows as:

0 < inf |Q(dn(m), m; 6) — Q(tbo, m; o) (A.3)
< sup QW (7). 3 60) — Q (3o, 3 6p)] (A.4)
< sup QW (7). 73 60) — Qu(¥u(m), m)| + sup |Qu(Pn(m), ™) — Q(to, 73 60))| (A.5)
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< sup |Q(a(m), 75 60) — Qu(ha(m),m)| + Sup |Qn(vo, ™) — Q(Wo, 73 6o) | + o(n™") (A.6)

mell

<2 sup [Qu(1h,m) — Q(vb,m;00) +o(n”) B0 (A7)

YW (r),mell

The first inequality follows by assumption. The fourth inequality follows by definition of the
extremum estimator objective function. And the last last line follows using the same argu-
ment as in Lemma A.2.1, that is, we show that the conditions of Theorem 2.1 Newey (1991)
are satisfied. We prove: 1) a pointwise law of large numbers, 2) stochastic equicontinuity of
Qn(0) and 3) equicontinuity of Q(6;6y).

First we show the pointwise law of large numbers. For fixed ¢(7) € W(r), by McLeish
et al. (1975) we obtain a pointwise law of large numbers using mixing conditions and moments
of Assumption A and B. To prove Stochastic Equicontinuity of Q,, (1, 7) = n=! 31 €(¢, 7)?,
by Assumption B, notice that as €;(1, 7) is continuous with respect to 6 and © is compact,
then @, () is uniformly continuous, and therefore bounded Vn. Also as dy () is Lipschitz,
then h(Xs,, ) and €(0) are Lipschitz too. By Assumption B, we can find a random variable

Ch = 0,(1) s.t.

1Qn (¥, 7) = Qu(, m)|| < Cullo(m) = P(m)]]  wp. (A.8)

By Markov’s inequality.

Py, (sup ~ sup 1Qn (v, 7) — Qu(¥, 7)|| > 1) (A.9)
mEIL () 3 (m) €W ()| |9 ()~ () || <8
1 - 5
< —Ey, (sup ) sup Collib(m) —(m)]]) < —Eq,(Cn)
n TEIL () Wb (m) €W ()| [vo (m)—h(m)|| <8 N

By Assumption B(iii), Ey, (C,,) = O(1). Let €¢,n > 0, consider ¢ = en/Eq, (C,), then
Py, (sup sup 1Qu(¥, ) = Qu(&, )| > 1) < e (A.10)

€I 4 (m),3p(m) €6, |3 (m) ~1h(m)[| <6

which proves stochastic equicontinuity.
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To prove equicontinuity of Q(6;6y) we notice that in this case Q(0;6p) is not a sequence
of non-random function, and therefore proving continuity is enough. Recall that Q(6;6,) =
Eg, (y: — (X141 — Bh(Xa,),7)?, which is continuous by construction for each ¢ € ¥(w) and
some 7 € II. Moreover, ¥(7) and II are compact sets in R, which shows equicontinuity of
Q(0;0,). Notice that as 7, € I, U () — 1y 2 0.

(b) For the semi-strong identification case, the proof is equivalent to the previous case
with minor changes. As 3y # 0, Equation (A.2) follows by replacing ¢, () with 0,,, and ¥(r)
with ©. Equation (A.7) also follows without the supremum or infimum in place. The proofs
of pointwise law of large numbers and stochastic equicontinuity follow as in (a), without

fixing 7. A

Proposition 1.3.2 Suppose that Assumptions (A) to (E) hold.

(a) Under {0,} € O(6y,0,b) with ||b]| < oo, the following holds

Vi (Fa) —a) | 4 [ 7(7*(60,0);00,)
—
ﬁn W*<90,b)

(b) Under {6,} € ©(6y, 00,wy), the following holds

VB(B,) (0 — 0,) 5 N(0, T (06)V (60) T~ (60))

Proof of Proposition 1.3.2
(a) To show joint convergence we notice that /n(¢ () — 1b,) and #, are continuous
functions of Gy, (7) and H, (7). The continuity of 7, follows from the mapping theorem

Van Der Vaart and Wellner (1996) as

[arg min n[Qu(Pn(m), ™) = Qu (W, )] - arg min £(7; 0o, b) (A.11)
= |larg min &, (m, b) — argmin &(m; 6o, b)|| 5 0 (A.12)
well well
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in particular, 7, N arg Igin &(m;0p,0). Then 7, can be expressed as a continuous mapping
of Gy n(m) and Hn(7r).7re

The processes Gy, ,,(7) and H, () converge jointly as H,,(m) converges uniformly to a non-
random limit by Lemmas A.2.1 to A.2.3. Then, {\/n(¢(7) — b,), 7} = {7(m; 6y, b), 7 (b)}

follows by Lemma A.2.5, Van der Vaart (1994) mapping theorem, joint convergence follows

as m* € int(Il) which is a compact set. That is,
(VA(n(n) = n). ) > (7(7" (60, 0): 0, ), 7" (60, 1) (A13)

(b) For the data generating process proposed, we have the following terms,

dos = (X1, h(Xoy, ), he(Xoy, m)) (A.14)
5357 2 000 (0) = &3 (B(E)do ()Y B(5) — (0)Di0)]
0 0 0
D0)=1 0 0 hr(Xoy, )
0 he(Xop,m) har(Xoy,m)p
8 1 &
% - > e(0)B(B)dg ()

And B(p) is the selection matrix as in Equation (1.55). Using a first order Taylor expansion

Vit = 6,) =B (B[S [dos(0)doe(0) — B(B)er(0) D) B (8]
=t (1)
< BB (0, B(5,)do(6,)] (A.15)

t=1

Term (/) converges in probability to zero as

n! ZB (Bn)ec(00)Dy(Bn) B~H(B,) = n~ /2 iet(en)ﬁt(ﬁn) = Op(1)oy(1) = 0,(1) (A.16)

t=1
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0 0 ha(Xog,m)/ v/l
where Dy(f3,) = 0 0 0

ha(Xoa, ) /V/0l|Bull 0 Bl x(Xo, m) /v/n|Ball

as Dy(Bn) % 04,x4, Equation (A.16) converges in distribution (and therefore in proba-

bility) to zero. By Equation (A.15)

VaB(B,) (0 — 0,) = [n 1Zn;d0t )do1(0) + 0, (1)) 1/\/_Z€t ), (0n)] + 0p(1)
(A7)

4 N(0, J(6)V (60)J (6))

the first term converges pointwise to J(6y) by McLeish et al. (1975) (Theorem 2.10) law of
large numbers as in Proof of Proposition 1.3.1. The second term converges to a standard

normal by Wooldridge and White (1988) pointwise central limit theorem. Notice that

Eo, (€:(0n)dp¢(0,)) =0 (A.18)
Vo, (€:(6n)do 1 (6n)) = o, (07 (6n) .1 (6n)dp .1 (6,)") (A.19)
Cov(e(0,,)do (1), €1—i(0r)dg—j(0,)) =0 (A.20)

all results follow from the Law of iterated expectations as ¢ is a martingale difference.
To obtain Wooldridge and White (1988) pointwise central limit theorem, we have that
sup, Eg, [|€2dg 1(0,)da+(6,)'||'™ < C < oo by Assumption B(i). By Assumption B(ii) and
as they are a-mixing of size —r/(r — 2) for r > 2. The mixing and moment conditions hold,

the central limit theorem follows.

l/\/_Zet Vot (6,) 5 N(0,V(6p)) (A.21)

where V(0y) = lim,, oo n™ ' 1 B, (02(0,,)do +(0,)dg+(6,)"). W
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Proposition 1.3.3 Suppose assumptions (A) to (H) hold
(a) Under {6, € ©(0y,0,b)} with ||b]| < oo and dim(r,(6)) =0, T, RN TY (7 (6o, b); 0o, b)
(b) Under {6, € ©(6y,0,b)} with ||b]| < co and dim(r.(0)) = 1, T,, % T™(x* (6o, b); 6o, b)
(¢) Under {6,} € ©(y,00,ws), T, % N(0,1)

Proof of Proposition 1.3.3

D>
N~—
=,

=+

=
©]
=

(a) For the case of df = 0 we have [ry(6,),

Tw(én)B_l (3n)inB_1(Bn)rw(én)/ = rw(én)znriﬁ(én) (A-QQ)

Now taking a mean value expansion around 7, 7(¢,, #) — 7(n, ) = 17 (Y, T) (i — 70) +
0p(1) = 0,(1) as r,(6) = 0, where 7, is a mean value between 7, and m,. This implies

(Vs n) = 7(1hn, ) = 0,(1). Taking a mean value expansion of v,

r(0n) = 7(0,) = 1(Yn, 7n) — 7 (s Fa) + 7 (W, 7o) — (W0, ) (A.23)
= 1 (Y, 7o) (Y (F) — Un) + 0p(1) (A.24)

here v, is a mean value between z[)n and 1,. Taking the numerator and denominator and

using the expressions from above.

A () ) R
T m@Sape Y )
_ Tiﬁ(wnvﬁn)\/_(@b (ﬁ ) ) +0p(1)

[ (Y ) Bty (Y, 71112

= Tyn(ftn) + 0p(1)

This follows as 1, is uniformly consistent over = € II and Assumption F, because 7(r)
and 7, can be written as continuous functions of Gy, (7). By Proposition 1.3.2, we have
Ty (7n) + 0p(1) KN Ty (7*(6o, b); 00, b) which proves (a). which follows as 7,(7) and 7, can

be written as continuous functions of Gy .
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(b) First we notice that

Te(én)B_l(Bn) = [Tw(én)a HﬁnH_lTW(én)]
= HﬁnH_l[rw(én)BmTW(én)]

= 11Bal 71 ([0, 72(8)] + 0,(1) (A.26)

Now take a mean value expansion with respect to ¢ for fixed 7, r(én) = (¢, Ttn) +

7 (U, T ) (0n (7)) — ). Letting ¢, denote the mean value:

V[ Ball(r(0,) = 7(62)) (A.27)
= \/ﬁHBnH(T(@Z]mﬁn) - T(d’m 7Tn)) + HBnHTw(szna ﬁn)\/ﬁ(&n(ﬁn) - ¢n) (A'QS)
= /0|l | [P (W o) = 7 (W0, 7)) + (1) (A.29)

which follow by uniform consistency of ¥, (and therefore of 1,,) and the fact that B, = 0p(1),

Vi, — ) = 0,(1) and 7y (b, 7,) = O,(1). From the expression from above we obtain.

VBl (r(Bn) = 7(6)) 5
T, = [rﬂgén)in’r’ﬂ(én)]lm + 0,(1) (A.30)
_ H\/ﬁﬁnH(r(zbria 7A"n) - T<wn> Wn))
[ (Y0, Tn) Bz (0, 7AT?@)]I/Q

= T n(7n) + 0,(1)

+ 0p(1)

By the joint convergence result in Proposition 1.3.2, T} ,(7,,) & T (7 (6o, b); b, 6)

(c) By Proposition 1.3.2 and the delta method

V(r(0,)) = 1(0,)) 5 79(00) B (Bo)Z(00) B~ (Bo)ro(60) (A.31)
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Rearranging terms and the fact that parameters are consistent under semi-strong identifica-

tion Proposition 1.3.1 and Lemma A.2.7.

% N(0,1) (A.32)

which proves Proposition 1.3.3.

Theorem 1.4.1 Suppose that Assumptions (A) to (E) hold. Under weak identification,
let @™ be constructed using Equation (1.39) and 7" (7"; mo,b) be constructed using Equa-

A

tion (1.40), while under strong identification let 757, (0,) be constructed using Equation (1.42).

m,a

Denote ¢,

mi—a ond ¢t with a =7, 7,79 be the critical values of the bootstrapped and asymp-

totic distributions, respectively. Letting M, — oo as n — oo then

(a) Under {0,} € ©(6,0,b) with ||b]] < oo, |y — ] o] 2 0 and |, — | 2 0.

n,l—« n,l—a

(b) Under {6,} € ©(fy,00,w), |eni’e — i’ 2 0.

-« -«

Proof of Theorem 1.4.1

We prove weak convergence of each individual term and then prove joint convergence
using the Cramer Wold Device.

First we show 7" 4 7*(b). By Lemma A.2.1, Lemma A.2.2 and Lemma A.2.9 it follows

that {7 : 7 € [1} = {¢ : 7w € [1} where
5?@@5):‘—;{Gﬁn@ﬂ%-KhﬁﬂbYH210ﬂ{Gﬁn0ﬁ4-K%Uﬂby (A.33)

which follows by the continuous mapping theorem as &;" is a continuous function of G3! ., H,,, K,
and the last two have non-random uniform limits. By mapping theorem (Van der Vaart

(1994))

argmin &£ (7,b) < arg min Ep(m,b) (A.34)
mell mell

which proves the first claim.
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Now we show /7 (¢, (A7) — 1y, KN T(7*;6p,b). Considering the equivalent expression

from Lemma A.2.5,

\/ﬁ(@gn(ﬂ-) — ) = _Hn_l(w)( mn(ﬂ) + Kn(¢0,n)\/ﬁﬁn) + (Y0 — ¢O,n> + OPJF(]') = 7(m; 00, b)
(A.35)

The argument is the same as Step 1, the function 7 is a continuous function of G77,,, H,,, K,
with the last two having nonrandom limits. Finally, as 7" converges in distribution to
(0o, b), we conclude /1 (P, (A7) — 1y, 2 (7% 60, b).

Joint convergence follows form the Cramer Wold Device. Let A\, Ay € R.
Alﬁ(izn(ﬁ?) - 1/Jn> + >\2ﬁ_;n == )\17'”(7%21) + )\27%:? i) )\1T(7T*(¢90, b)) + )\271'*(@0, b) <A36)

by the Continuous Mapping Theorem.

Now we show consistency of the critical values. Recall the definitions. Define ¢]_, =
inf{z € R% : Py, (7(7*(0y,b); 0, b) < 2) > 1 —a} and ¢f_,, = inf{z € R : Py, (7*(6y,b) <
z) > 1 — a} be the 1 — o asymptotic critical values of 7(7*(6y,b);0p,b) and 7*(6y,b) re-

spectively. To obtain the critical values of the bootstrapped statistics, let M, denote the

My

number of bootstrapped samples. For the sequence of bootstrapped distributions {77*},'"; =

{7 (7™ 7, b)}Mn | define the order statistics 7! < 721 < . < #IMnl The approximated

m,T ~Al(1—a) My

1 — « critical value of {#7}2n, is defined by 'y, = 7! I, Similarly for {#}M~, we

m,T

define ¢

n,l—«

of the distribution N (0, J71(6y)V (65)J " (6y)). Also let {?g’fn}%;l = {rgjn(én)}%gl be the

1-a)

= #l(l=e)Mu] - Under strong identification, let ¢’ , be the 1 — « critical value

bootstrapped samples with order statistics 711 < 22 < < #IMul "and 1 — o critical values

m,mg __ l(l—a)My]

Cn,l—oc — '0n :

To prove consistency of the critical values, we condition with respect to the sample
W;. Under Hy, the bootstrapped draws {7} and {77} are independent and identi-
cally distributed. Moreover, each of them converges weakly to the asymptotic distributions

7(7* (0o, b); 00, b) and 7*(6y,b) respectively by Equation (A.34) and (A.35). Hence by the
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Glivenko Cantelli Theorem.

sup [Py, (7" < 2[W) — P, (7(7 (60, b); 60, 0) < 2)[ = 0 (A.37)
z€ER4T
sup |Py, (7" < z|W;) — Py, (7*(0,b) < z) 20 (A.38)
zERdm

T (1]

as M, — oco. By the continuous mapping theorem, we can express ¢,y , = G, +

op(1) = ¢f_,, + 0p(1), where cg’]l_a denotes the 1 — « critical value of 7. Tt follows that
lemi o — o] & 0 with M,, — oo as n — oo. By the same argument |}, — c¢7_,| 5 0

with M, — oo as n — .

(b) Notice that, T, = 747%,(0). By Lemma A.2.10 and the Delta method.

VBB (r(01) = 7(00)) = 0(0,)757(00) % N(0,79(60)' T~ (60)V (60).T (B0 )ra(6))
(A.39)

Under 6,, € ©(0y, 0o, wp), we have 6, 2 6,. Also by Lemma A.2.7 the variance-covariance

estimator converges in probability to the true variance under the proper normalization.

4 N(0,1) (A.40)

which shows convergence in distribution. Consistency of the critical values follows from the
Glivenko Cantelli theorem, as the bootstrapped samples are i.i.d. draws following the same

argument as with Equation (A.37) and (A.38). B

Theorem 1.4.2 Suppose assumptions (A) to (H) hold. Let Ty, T, be the bootstrapped
t-statistics of Equation (1.44) to (1.46). Denote ¢, and ¢{_, with a = T, T, T% N
the 1 — « critical values of the bootstrapped and asymptotic distributions, respectively. Let

M, — oo asn — oo

a) Under {0, € o, 0, wit < 0o and dim(r, =0, |c -0 —C_o| —
Under {6, € ©(6y,0,b)} with ||b dd 0)) =0, [ — 1B o

n,l—«

(b) Under {8, € ©(6,,0,b)} with ||b|| < co and dim(r.(8)) =1, |/, — I | &0

n,l—a l1—a
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(¢) Under {6,} € ©(0y, 00,wy), |cm’1T,0a N B0

11—«

Proof of Theorem 1.4.2

The proofs follow similar arguments to Proposition 1.3.3, using different supporting lem-
mas from Appendix A.2.

(a) Follows immediately from Proposition 1.3.3, Theorem 1.4.1, specifically in Equa-
tion (A.24), we replace @/AJn by with 1221 and notice that the denominator converges to the
same (non-random) probability limit and using Lemmas A.2.1, A.2.2, A.2.8 and A.2.9. (b)
Same argument as in (i) but now use Equation (A.29) and use results Lemmas A.2.1, A.2.2,
A.2.8 and A.2.9 (c¢) The result of Proposition 1.3.3c) is enough as we have convergence a stan-
dard Normal by Lemmas A.2.7 and A.2.10. The quantile function is a simple transformation

to obtain consistent critical values. l

Theorem 1.4.3 Let M,, — oo as n — oo. Under the null hypothesis Hy : v(0) = q, the
LF and ICS; critical values of the t-test have the correct asymptotic size with probability

approaching one,

(a) AsySzFm =liminf  inf P, (T.(r(0)) < 2™ (r(0)) =1 — a

n—o 9e:r(0)=q ml-a

(b) AsySZCSm =liminf inf P, (T,(r(0)) < 22" (r(0)) =1 —a

n—00  feO:r(0)=q nl-a

(¢) If Hy is false, that is (0,) # q, then T, (r(0)) & oo

Proof of Theorem 1.4.3

(a) This proof follows the lines of Hill(2017) and Lemma 2.1 of Andrews and Cheng
(2012). We work with the absolute value of the t-statistic to focus on one sided critical
values. The proof for the t-statistic with two sided critical values is analogous. Define the
sample quantile function ¢™?(p,u) = inf{c > 0 : P, ((T/(p))* < ¢) > u}, *(p,u) =
inf{c > 0 : Py, ((T%(p))* < ¢) > u} and %(p,u) = inf{c > 0 : Py, ((T%(p))* < ¢) > u}
where a = ¢, 7 and p € P. By Proposition 1.3.3, under weak identification we have that

cn(p,u) — c(p,u),¥p € P and u € [0,1]. Conditioning with respect to W, we obtain that
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the only source of randomness in the critical values comes from stochastic processes G7/,,
and Gy.

By Theorem 1.4.2 (c), using the probability measure conditional on W;, we obtain
P [P (T7(p))? < ©)— o, ((T*(p))? < )] & 0 and consequently sup, o, 7 (, ul W) —
(p,u)| & 0, Vp € P, under semi-strong identification when n — oo and M, — oo, as
the bootstrapped draws are independent. Similarly, we have that sup,cpo1 [cp" (p, u|W;) —
*(p,u)| 2 0,Vp € Pasn — oo which follows from Theorem 1.4.2 (c¢). We combine the three
results to obtain |¢7¢(p, u|W;) — c¢*(p,u)| & 0,Vp € P. The critical values of the |N(0,1)]
under semi-strong identification are the asymptotic ones, therefore they are equal to ¢ ..

By the continuous mapping theorem of the max function, we obtain |cﬁ€"2(p) —ckF (p)] B0

Vp e P.
We have shown the bootstrapped critical values are valid for each identification category,
strong, semi-strong and weak identification under Hy : r(0) = ¢. It is left to show that

the asymptotic size is equal to a when using the asymptotic critical values as we shown

|cﬁ€i21(p) — M (p)] B 0, Vp € P, where a = ¢, 7. For the reminder of the proof we use

the asymptotic Least Favorable critical values cﬁg’f‘ and follow the argument of Andrews

a

LEF%m
n,l—a

and Cheng (2012). The Least Favorable asymptotic critical values take the form ¢

m, T
max{sup Crl—a
peEP

values is

(p), o1 o) The asymptotic size with respect to the asymptotic critical

AsySzEm —liminf  inf  P,,(T,(r(9)) < X507 (r(9))) (A.41)

n—00 9cO:r(0)=q nl-a

= min{Pq, (T*(r(0)) < 12, Po, (IN(0, )| < e173)} + 0p(1) (A.42)

which follows form Lemma 2.1 of Andrews and Cheng (2012), and 7 denotes the asymptotic
distribution of either 7% or T™. The second argument in Equation (A.42) follows because un-
der strong identification the t-statistic is pivotal. The asymptotic size of the Equation (A.42)

is greater or equal to 1 — a because Py, (|N(0,1)] < cFF%(p)) > Py, (|N(0,1)] < MOVl =

[0}
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1 — «, where the second critical value denotes the critical value of the |N(0,1)| distribu-
tion. Similarly, for the first critical value of Equation (A.42), Py, (T%(r(9)) < cFf.(p)) >
Py, (T%(r(0)) < c” (p)) =1 —a, Vp € P where the second critical value denotes the critical
value of T%(p) for each fixed p € P.

On the other hand, the critical values are less than or equal to 1 — a because if ¢l =
ANODE then Py, (IN(0,1)] < ) = 1—a and if A7 > VOV then Py, (T (pimas) < ) =
Py (T (pmaz) < ¢ o, (Pmaz)) by Assumption H. Then AsySzLFm =1 — o w.p.a.l.

(b) The proof is equivalent to proof of Theorem 1.4.3 arguing that under weak identifica-
tion, P(A, < k,) 2 1 and under any other case P(A4, < k,) 2 0 as M,, — oo with n as n —
oo. This implies that in either case, for large enough m and n, ¢!“51(p, b) = ' (p, b) +0,(1),
Vp e P.

(c) First consider 7,,, only for restrictions of ¢, that is with dim(r,) = 0. If Hy is false
r(0,) # ¢, and by Equation (A.23) of Proposition 1.3.3 replacing it with 6, = (C/, 3., #")'

r(0,) — 7(0,) = 7(0,) — r(0,) +1(0,) — g = CIi, + 0p(1) (A.43)

for some C' # 0 and identity matrix I, and large enough n as ||, —t, || £ 0 (Theorem 1.4.1).

Then we have

T, V€

= ~ — 4+ 0,(1) > 0o as n — o A .44
T (0n) X0y (0n) 1) (544

as the denominator converges in probability to r,(6p)%(60)ry(6p) which is finite and non-
random.

Similarly consider 7T,, with dim(r,) = 1,

r(0,) = 1(00) = (¥, n) — 7 (W ) + 70, 1) — g = C L, + Op(1) (A.45)

Using the arguments of the proof in Proposition 1.3.3, specifically by Equation (A.30) and
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Equation (A.27) - Equation (A.29)

VBl (n, n) = 7 (0, ™)) ,
Tn B [Tﬂ(w(h 7Arn>znr7r<wOa ﬁ'n)]l/Q * p(l) (A46)
= Ve — +0,(1) B 0o as n — o0 (A.A47)
7y (0n) Sy (6r)

as the denominator converges in probability to r,(6p)%(6o)rx(6p) which is finite and non-

random. W

A.2 Supporting Lemmas

The following lemmas are necessary for the resutls in the previous section of the Appendix.

Lemma A.2.1 Under {6, € ©(6y,0,b)} with ||b|| < oo, sup||H,(7) — H(m;6,)|| 2 0
well

Proof. Recall that || - || denotes the /; norm. To prove the Uniform Law of Large Numbers
(uniform law of large numbers) we use Theorem 2.1 of Newey (1991). We need four conditions
to be satisfied: i) IT compact, ii) Pointwise convergence |H, () — H(m;6,)| 2 0, for fixed
7 € 11, iii) Stochastic Equicontinuity of H,(7), and iv) Equicontinuity of H(w,8,,).

i) Is satisfied by Assumption D.

ii) To prove pointwise Law of Large Numbers, let 7 € II. We use McLeish et al. (1975)
(Theorem 2.10) law of large numbers. By Assumption B(i) we have that H, () is mixing
size —r/(2r — 1) for r > 1, as functions of mixing are mixing too. Moreover we show that

for some § > 0

o Ko, (|| Hn(m) — H(7;6,)|])
pRER; (A.48)
k=1
which follows as
o Eo, (|| Hn(m) — H(m;0,)]) _ = Eo, (|[Hn(7)|| + Eg, || H (75 0,)]]) .
ki+o Z f1+6 S Cl Z L1+0 < 02
k=1 k=1 k=1
(A.49)
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for some constants Cy,Cs, as each dy,(m) are uniformly L, bounded for p = 4 + ¢ by
Assumption B(ii).

iii) To prove Stochastic Equicontinuity of H,,, notice that as dy () is continuous and
IT is compact, then H, () is uniformly continuous and by Assumption B it is bounded Vn.

Also as dy(m) is Lipschitz then by Assumption B
|| H,(7) — Hy(7)|| = Cyl|m — 7|| w.p.1 (A.50)
for some Lipschitz constant C,, = O,(1) from Assumption B. By Markov’s inequality.

Po,( sup  |[Hy(m) — Ho(7)]| > 1) (A.51)

m, eIl ||m—7||<d

1 1
< —Ep,(  sup  Cillr—7) < 551['39”(071)

N gel|ln—|<

By Assumption B(iii), Eg, (C,,) = O(1). Let €, > 0, consider § = en/Eqy,_ (C,,), then

By, swp  |[Ha(m) — H(7)|| > ) < e (A.52)

 FElL | [r—]| <6

which proves stochastic equicontinuity.

iv) To prove equicontinuity of H(m,#,,), follow the same lines of iii), let €,7 > 0, then

Po( sup  [[H(m;0,) — H(7;0)[| > 1) (A.53)

m,wElL||m—7||<é
<Py, sup By, [[Hn(m;0n) — Hn(7500)] > 1)
m,wEIL||m—7||<d

1 1
< —Ey, ( sup Collmr = 7]) < EéEgn(C’n) < €

N e gelL|lm—|<

for 6 = en/Ey, (C,) which is finite as C,, is O,(1). Where the first inequality follows by
Jensen’s. This shows equicontinuity of H(7;6,). Furthermore, we have eig(H(m;6,) > 0

and eig(H (m;0,)) < oo by Assumption C. B
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Lemma A.2.2 Under {0, € ©(6y,0,b)} with ||b|| < oo, sup||K,(7) — K(m;6,)|] =0
well

Proof. The proof is equivalent to the proof for Lemma A.2.1 following steps i) - iv). Proof
of ii) follows as the K, (7) are mixing and L, bounded for p = 4 + . For iii), stochastic
equicontinuity of K, follows as,

P, ( sup  |[Kn(m) = Kn(7)]] > 1) (A.54)

n

eIl ||r—7|| <6

<Py, ( sup o7t (Ilsup h(Xar, m)l| lldy(m) = dya(F)I]) > )
t=1

eIl ||m—7|| <6

< ( s G-l < ;&Een(cscn)s }75<Een<03>>1/2<ﬂzen<cs>>1/2

N e gel|ln—|<

where C = || sup; h(Xa, ma)|| = Op(1) and ||n™" 3L dy () = n™" Ly dy ()| < Cof |7 —
7|| which by Assumption B is O,(1) . The last inequality follows by Holder’s inequality and
Ch, Cs are bounded and ¢; and dy(7) are L, bounded p = 4+ «. Now let €, > 0 and let
§ = en/(Eqy, (C?))/%(Ey, (C?))'/? which shows stochastic equicontinuity. The same argument

follows for the equicontinuity of K(m;8,,) as

Pg,(  sup  ||K(m;6,) — K(7;0,)]] >n) (A.55)

el ||m—7|| <

<Py, (  sup By [[Ky(7) - Ku(7)] >n)

7€l ||r—7|| <4
Lemma A.2.3 {Gy,(7):7mell} = {Gy(n): 7 e Il}
Proof. As the parameter space © is compact, weak convergence requires pointwise conver-

gence for each m € II and Stochastic Equicontinuity (Dudley (1978) and Pollard (1990)).

For pointwise convergence notice that

Gyn(m) = [€(0.n )yt () — Eo, (€4(0.n) st (70)] (A.56)

NE

H
Il
—

WE

[€6(0n)dus o (7) + B h(Xa, ™) — B, (€1(0n)dy 1 () + B, h(X24,7))] (A5T7)

S-Sl

I
I
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= DB + ™ S K, () = B (XK, ()

(A.58)

By the same arguments as in Lemma A.2.2 the second terms are o, .(1). That is, the second
term satisfies sup|| K, (7) — K(m;6,)|| = 0
well
Consider Gy, (7) = ﬁzyil €(0,,)dy+(m) + 0, -(1). For the pointwise central limit
theorem, we use Wooldridge and White (1988) pointwise central limit theorem (1975) law

of large numbers for dependent heterogeneously distributed random variables. Notice that

Eo, (€:(6y)dy (7)) =0 (A.59)
Vo, (0 dy(m)) = Eo, (07(0)dyo(m)dya(m))  (AGO)
Cov(er(B) (). 1y (0u) -y () = 0 (A.61)

all results follow using the Law of iterated expectations as ¢; is a martingale difference. We
have that sup, Ey, |€7dy (7)dy+(7)'|'™ < C' < 0o by Assumption B(i). By Assumption B(ii)
and as they are a-mixing of size —r/(r — 2) for r > 2. The moment and mixing conditions

hold and therefore,
Gyn(m) 5 N(0, Avar(Gy . ())) (A.62)

where the asymptotic variance for fixed 7w € II equals,

n

Q(n) = lim n! ZEgn(Jf(&n)dw(ﬂ)dzp,t(w)’) (A.63)

n—00
t=1

Stochastic equicontinuity follows from the Lipschitz argument used in Lemmas A.2.1 and A.2.2

Po,( sup - [[Gyu(m) = Gua(@)]| > 1) (A.64)

7 FEIL|r—7]|<6

<Py, (__swp 07t (lsupel] [ldya(m) = dy (7)) > m)
t=1

. FEIL | [r—7]| <6
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1 1 1
< -E, ( sup - GGyl —f]) < 56Een(050n)§ 55(]}39"(622))1/2(153«%(03;))1/2

N wel|lm—|<

The last inequality follows by Holder’s inequality and as (), Cs are bounded and ¢; and
dy(m) are L, bounded p = 4 + ¢, specifically Cs = || sup, &(0,)|| = O,(1) and the Lips-
chitz constant C,, is O,(1) from Assumption B with [|[n™! Y1 dy (7)) —n =30 dy o (7)]] <
Cy||lm —7||. Now let €, > 0 and let § = en/(IEg, (C?))'/2(Ey, (C2))'/? which shows stochastic

equicontinuity. Wl

Lemma A.2.4 Under Assumption A to Assumption D

a) For some non-stochastic function Q(6;6y), sup|Qn(9) —Q0,0,)] &0

b) When B = 0 for every neighborhood Wy of wo, mE(%\Pl(nf Q(Y, m;0p) — Q(to, m;00)) >
0V 0y = (o, mo)

Proof. First notice that the objective function doesn’t depend on 7 when 5 = 0.

To prove a) we follow Newey (1991) (Theorem 2.1) and prove pointwise law of large
numbers and SE for Qn(f). Notice that for fixed § € © by McLeish et al. (1975) (Theorem
2.10) law of large numbers, as the {y;, X;} are mixing, then any non-random function is

mixing of the same size —r/(2r — 1) with » > 1 (Assumption B). Also the condition

< Cg

= By, (|Qu(r) — Q(m: 0, f: Q)+ B, | QLm0 g, 5

k.1+5 k1+5 k1+6

(A.65)

which follows using C; = sup, Eg, ||[n~' 37, €2(0)|], by Assumption A. This shows that for
fixed § € ©

|Qu(6) = Q(6,0,)] = 0 (A.66)

To prove Stochastic Equicontinuity of @),,, we use Markov’s Inequality and the Mean Value
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Theorem.

Po,( sup  [[Qu(7) = Qu(T)]| > 1) (A.67)
0,0€0,||10—-0||<d

1 ~ n 1
< “Eo(( sup  [|0=0])) 2n7" ) [supei(0)])) < 0K, (Cn)
n 0,0€0,||0—0]|<5 i—1 6€® Ui

for C,, = 2n7t 321 | | suppee €2(0)|, which is bounded by Assumption A. Let €,1 > 0, the for
d = en/Ey, (Cn) satisfies stochastic equicontinuity.
The same argument applies to prove Equicontinuity of Q(6;6,) we can use the same

d = en/Eq, (Cn), as by Jensen’s Inequality

Po,( sup  [|Q(6;0,) — Q(0;0,)] > n) (A.68)
0,0€0,|/0—0||<6

<Py, ( sup_
0,6€0,|/6—6]|<6

Qn(6) = Qu(9)] > 1)

Gn

b) To prove the identification condition let 5 = 0. By definition of concentrated estimator and
as all @, are uniformly continuous (© is a compact set), converging uniformly to Q (v, m; 6y),
the limit function is uniformly continuous. The extreme value theorem guarantees that a

minimum exists, and by Assumption A(iv) it is unique. l

Lemma A.2.5 Under {6, € ©(0,,0,b)} with |[b|| < 0o, v/m(tn(m)—=10y) = —H " (m;00) (G (7; 6p)+

K(m;00)b) — (b,04,) = 7(m;60,b)

Proof. Let p;(0) = €2(). Taking derivatives of the objective function with respect to the

strongly identified parameters and using the Mean Value Theorem.

a n
Qn(wn( = ! Zpt wo ny T a¢a¢, Zpt ¢0 ny T n(ﬂ-) - ¢O,n) + 0p,7r(]-)

81" 81"

O

= Zpt ¢0 ny T Wﬁ ;Pt(?/fo,m W)(Tﬁn(ﬂ) — Uy + Yy, — ¢0,n) + Op,ﬂ'(l)
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zi: (Yo, 7)) = V(b — Yo,n) + 0p.r(1)

(A.69)

aw

19
B0

for some mean value #. Notice that 1o,n 1s an intermediate value between 1y and ,,. By

Equation (A.69),

8 1 & 01L& 01L&
Zpt %n, %ﬁ;pt(wo,mﬂ-) —Een**Zpt %n, +E9”8¢ Zﬂt %m
=0 2Gy 0 (Yo, ™) + = ZEen o (Vo™ (A.70)
(I)

Further from (I) using the mean value theorem with respect to the parameter /3 solely.

1 & 0
E;E ngwpt(wOna )
1 _
ﬁ ;E%nal/}pt wO ny T Z aﬁ 9n a¢pt wO ny T )ﬁn = K”(z/}O,mﬂ-; 971)5” <A71>

(1

Where the last equality follows as (II) equals zero by the Law of Iterated Expectations and

Assumption A(iv), specifically,

w7 By ) = 17 B (B (6t W) =0 (AT

t=1

As 6, is a mean value between 6,, and 6o,n, and consistency of @n we have by Lemma A.2.1
sup || K, (o, 75 0,) — K(360,)]] 2 0 (A.73)
mell

uniformly over © € II. Therefore ﬁ STy %Pt(i/}o,n, ) = Gyn(Von, ™) + Kn(ton, T H_n)ﬁn

By Lemma A.2.3 Gy (o0, ™) = Gy(m), where Gy (7) is zero mean and covariance kernel

0 0

Q(’]rla 25 90) = nh—>IEO n_l ; E9n<%pt(Wt7 wny Wl)%pt(Wia wna 7-‘_2),)' (A74)
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Also as \/nf, — b, we obtain.

Z gt (Yo ™) = Gu(m) + K (o, m: 60)b (A.75)

Finally, by /n(¢¥n — to.) = vn(8;,,0")" — (b,04,) Lemma A.2.1, the continuous mapping

theorem and sup, .y || H; ' (7) — H™'(7;6,)|| 2 0, we obtain the desired result,

\/ﬁ(@gn(ﬂ—) — ) = _Hgl(@DO,na ) (G¢,N(¢O,m ) + K (Yo, 7; én)ﬁn) - \/ﬁ(wn - wo,n) + Op,ﬂ(l)
= —H Y(m; 00)(Gy(m;00) + K (m;00)b) — (b,0g,) = 7(m;600,0) M (A.76)

Lemma A.2.6 Under {6, € ©(00,0,b)} with ||b|| < oo,
n[Qn(@En(W),W) — Qn(Yon, )] = —;T(W;eo,b)H(’ﬂ'; 00)7(m;00,b) = (7360, b) (A.77)

Proof. Take a Taylor expansion of the objective function with respect to the point of non-

identification v, = (So, ¢») and by consistency of the strongly identified parameters.

0 Qn(TpO,n» 71') (1;7L<7T) - 7vZ)O,n)

Qn(&n(ﬂ-)a 7T> - Qn(ﬁjo,m 7T) - %

1 - o? “
+ 5(%(%) - wO,n)<WQn<w0,m 7"'))(1/}n<7r> - wO,n) + Op,ﬂ'(1>
A Qu (@ (1), ) — Qo )] = afm@nwo,n, V() — o)
1 N o? R
+ 3V = Vo) Qo s PV () = 02) + (1)

(A.78)

Where /nQ,(Yon, ) = ﬁ S pe(Yon, m). By Equation (A.69) from the previous lemma

9?1 71

V() = ) Vi V) = 5550 S ) 9o

Z aw wo ny T ] + Opﬁ(l)

t:l
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R U
ie. Vn(t,(m) — o) = awaw,* Zpt Yo, T [ln ; %Pt(%n,ﬂ)] = Z,(m)
(A.79)
By Equation (A.69) we also get
n a A
-1/ — - _
nt 2; awl)t(%n, = 12 81/181/1’pt (Yo, ™)V () — b0 ) (A.80)

combining Equations (A.78) to (A.80)

A(Qn(n(7), 7) = Qu(tom, )]
ol = 1 0?1
- > G IZR) + 52

_ _;zn@r)Hn(wo,n, ) Zn(7) (A.81)

Zn; (s 1)) Zo()

By Lemmas A.2.1 to A.2.3 Z,(7) = —H (m;60)(Gy(7; 00) + K (7; 60)b) as H, and K, have

non-random limits. Using the continuous mapping theorem we obtain the desired result

n[Qn(QZJn(W): 7T) - Qn (¢0,n7 W)] (A.82)
= —;(Gw(w; 0o) + K (5 00)b) H ' (13 00) (Gy (73 00) + K (m;00)b) = &(7;60p,0)

Lemma A.2.7 Under 6,, € ©(6y, 00, wyp)

(a) J, = J,(0,) = Bil(ﬁn)aeae,Qn(é )B=Y(3,) — J(00) 2 0 where J(0y) is non-singular

and symmetric.

(b) n'2B~Y(B,) 2 Qn(0,) 4 N(0,V(60)) for some symmetric and positive definite matriz
V(0o), and ||V, — V(60)|| = 0

Proof. (a) Under semi-strong identification we need pointwise law of large numbers and
central limit theorem which follow as the parameters are consistent. For fixed 6 € 6 we

use McLeish et al. (1975) (Theorem 2.10) law of large numbers, as in Equations (A.48)
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and (A.49). By Markov’s inequality, sup, Eg, ||dg+(0,)de(6,)||"™ < C < oo, as dp4(6) is
uniformly L, bounded for p = 4+ by Assumption B(ii), see also Equation (A.16). The law
of large numbers conditions hold.

b) For the pointwise central limit theorem, we prove the conditions of Wooldridge and
White (1988) central limit theorem (1975) for dependent heterogeneously distributed random
variables are satisfied. We have that sup, Eg, ||€Zdg (0,)dp(6,)'||'™ < C < 0o, by Assump-
tion B(ii) and as they are a-mixing of size —r/(r — 2) for r > 2 and by Assumption B(i)

they are uniformly bounded. The central limit theorem conditions hold. B

Lemma A.2.8 Under 0, € O(0,,0,b) with ||b|| < oo, the matrices J, = J,(0,) and V, =

Vn(én) satisfy a uniform law of large numbers with non-singular limits.

sup ||J,(6) — J(8;6,)|| = 0 (A.83)
0cO
sup ||V, (6) — V(6;6,,)[] = 0 (A.84)
[ISC)

Proof. We prove that conditions i) - iv) of Newey (1991) (Theorem 2.1) hold. i) Compact-
ness is given by Assumption D. ii) The law of large numbers for pointwise # € © is proven
in Lemma A.2.7. We are left to show Stochastic Equicontinuity.

iii) To prove Stochastic Equicontinuity of .J,, and V,,, we use a similar approach to Lem-
mas A.2.1 and A.2.2. Specifically, let €,n > 0, for J, consider 6 = en/Ey, (C,), with
C,, = sup, ||ds+(8)ds(A)']|. The proof for V, follows the same approach § = en/2Eq, (C,,),
with C,, = (sup, ||€2(0)]]2)"2(||do(0)do..(A)'||2)"/? for V,,. The constants C, are O,(1) by
Assumption B and are obtained using Markov’s and Holders inequalities.

iv) To prove equicontinuity of V'(,6,,) and J(0, 6,,), follow the same lines of iii). Consider
J(0;0,)

Pe,( sup  [|J(6;0,) — J(é; 0.)|| > n) (A.85)
0,0€0,]|0—0]|<6

< Py, ( _ Sup Eo, |[.(0;6,) — Jn(éS 0n) > )
0,6€0,(10—0]|<5
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The inequality follows by Jensen’s. This shows equicontinuity of J(m;6,,). Furthermore, we
have eig(J(m;6,) > 0 and eig(J(m;6,)) < co by Assumption G. To show equicontinuity of

V(6;0,), just replace J, in the inequality of Equation (A.85) and use the same 6. B

Lemma A.2.9 Let M, — oo as n — oo, under 8, € ©(0,0,b) with |[b|| < oo, {G7!,(7) :

mell} = {Gy(r) : 7 € I}

Proof. We follow the proof of Lemma A.2.3, we show pointwise convergence in distribution
and stochastic equicontinuity.

To show pointwise convergence in distribution, we show the conditions of Wooldridge
and White (1988) central limit theorem hold. The moments of G}, () are equivalent to
equations (A.59) - (A.61). We also have that as z{" is i.i.d. then it follows that G}, (7) is

mixing of size —r/(r — 1) for r > 1, also we have

o, 50D [|(27")26} (0n) s (7)Y | (A.86)

< Ba, sup | ("1 Eo, 5up |6 (00)dia (M) (m)|[F < C < o0, Vr €T, (A7)

which follows by Assumption A and B. The central limit theorem follows for fixed © € II,
G () 4 Gy(m) follows by Lemma A.2.3. By law of iterated expectations, the asymptotic
variance kernel is equal to

Q(m, 7:0y) = lim n™* iEen(Ef(gn)dw,t(ﬂ)dw,t(ﬁ),) (A.88)

n—00
t=1

To show Stochastic Equicontinuity we let €,17 > 0 and let § = en/(Ey, (C?))Y/2(Ey, (C?))"/?
with C; = || sup, 2"€:(6,)|| = O,(1) and the constant C,, = O,(1) is the Lipschitz constant
from Assumption B, ||[n™t S0 dy () —nt 30 dy o (7)|| < Cyllmr—7||. This shows stochas-

tic equicontinuity of G, (7). W

Lemma A.2.10 Consider the bootstrapped distribution Tg'fn(én). Let M,, — oo as n — o0,

under 6, € ©(0y, 00,w0), 74 (0) % N (0, J71(66)V ()T~ (60))
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Proof. From Equation (1.42)

2037 @n(00) B~ (B)] 7 BT (Ba) Vi Qi (0) (A.89)

By Lemma A.2.8, we only need to show Ggfn(én) <4 N(0,V(6)). As 8, is consistent, the
Central Limit Theorem is pointwise, we use Wooldridge and White (1988). Mixing conditions

follow from Assumption B(i). By Assumption A and B the inequality follows
sup By, [(27")? €7 du,o () ()| = sup By, €7 dyp,o () dypo ()| < C < 00 (A.90)
t t

as €; is a martingale difference and 2;" is an i.i.d. process. The conditions of the central limit

theorem hold and therefore
S 26y (0,)dg s (6) + 0,(1) 5 N(0,V (65)) (A.91)

The matrix .J,, 2 J(6,) which is non-random, and .J(6y), V (#,) matrices are positive semidef-

inite by Assumption G. We have the desired result using the product limit rule. B

A.3 Vector j3

When [ is a vector, the derivation of the t-statistic requires slight changes in the as-
sumptions of the variance-covariance matrix (see Supplemental Appendix A of Andrews and
Cheng (2012)). The proofs are essentially equivalent, we only need to redefine some of the
processes used. Let w = 3/|||| if 8 # 0 and w = 14,/||14,|| where 14, denotes a vector of
ones. Let 07 = (||3||,w, ', 7") € ©F, where ©T = {07 : 6+ = (||8||, 5’ /||B|l|, (', 7"), 0 € ©}.

We define analogously the matrices with respect to 8%, J(07;60,) and V(6";6,,) and let
Y(00,) =T HO0T0,)V(07;0,)T167;0,) (A.92)
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X(m,w, 0,) = E(|[Bol], w, Co, 3 6) (A.93)

For the vector § we must modify Assumption F to apply for matrices J(07;6,,) and V(67;8,,).

Moreover, Lemma A.2.8 applies for this matrices, that is

sup || J(0) — J(07;6,)|| & 0 (A.94)
0cO
sup ||V,(0) = V(6736,)|| - 0 (A.95)
0co

The difference now is that we focus on the convergence of w, instead of 3,. Combining
these results along with Assumption E is equivalent to the Assumptions V1 of Vector § from
Supplemental Appendix A of Andrews and Cheng (2012)). Proposition 1.3.3 applies with

analogous proof defining

X(m;00,b) = X(m,w*(7;0,,0);0,) (A.96)

W (5 O, b) = 75(7; 0, 0) /||75(7; 0, b) | (A.97)

We define 25,5 and imr analogously to the [ scalar case as the upper and lower matrix of

2.

A.4 Simulation Details

In this section, we provide with the details of the simulation performed to obtain the
Tables of the Size and power of the t-test. The sample sizes used are n = 100, 250 and 500.
The number of simulations are 1000. We assume four distributions for the error component,
N(0,1), t(4), GARCH with w = 0.1, = 0.3,5 = 0.6 and GARCH with w = 0.1,a =
0.6, 5 = 0.3. The number of bootstrapped samples is 500.

The method for optimization used is MATLAB fmincon function providing the gradient.
For the initial estimation of the parameters, we use 100 uniformly distributed initial values

for estimation, which are considered enough as the problem has low dimensionality and the
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functions are smooth. Following Andrews and Cheng (2012) we use x,, = log(n)'/? which is
equivalent to the BIC.

The robust t-statistic are obtained the using the t-statistic Equation (1.28), while the
standard t-statistic is the usual statistic used in econometric literature that assumes strong
identification. The critical value of the t-statistic are obtain simulating the asymptotic
distribution in Proposition 1.3.3 and Theorem 1.4.2 for each pair of nuisance parameters
(b, m). The grid contains 100 combinations of b € [—1,1] and © € [—2,2], with true values

= /nf, and mp = 0. Section 1.3 presents the asymptotic approximation statistic of
Andrews and Cheng (2012) while Section 1.4 derives the distribution of the bootstrapped
t-statistic. The stochastic process G, ,, is obtained simulating each sample path individually

using the mvnrnd command in MATLAB using the estimated variance-covariance matrix.

Qo =n"") el (Bo.n)dy+(m)dys(7)  under heteroscedasticity (A.98)
t=1
Qun(m,7) = 64(00,0) n~" Z Ay (T)dy (T under homoscedasticity (A.99)

As the derivative with respect to ¢ does not depend on 7, the Qw,n (7, 7) is constructed using
derivatives with respect to  solely. The bootstrapped asymptotic distribution is constructed
using the stochastic processes depicted in Equation (1.57). For each of the 1000 simulations,
critical values are obtained using 500 draws from G, and 500 bootstrapped draws from
wn- The stochastic process T% and T™ follow using the processes G, or G, probability
limits in Lemmas A.2.1 and A.2.2 and processes &, and 7,.
The t-statistics 7, and 77 are compared to the critical values, rejection rates are obtained
for all simulations that surpass these values for each simulation. The critical values obtained
for each simulation are computed for the grid of nuisance parameters, with the robust critical

values derived using Equation (1.47) and (1.49).

A.5 Supplemental Tables and Figures
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APPENDIX B
SUPPLEMENTAL APPENDIX OF “PARAMETRIC WILD BOOTSTRAP INFERENCE
WITH WEAKLY IDENTIFIED PARAMETERS”

To show Proposition 2.4.1, we first need to show that the steps of the parametric boot-
strap under strong and weak identification are valid. We prove the bootstrap steps using the
following lemmas. Let X, (m) = 0,.(1) be defined as sup,cp || X,(7)|| = 0,(1), where || - ||
denotes the Euclidean norm and |- | denotes the absolute value. Let = denote weak conver-
gence of a sequence of stochastic processes indexed by 7w € II for some set II. See Chapter 1

for more details. We begin with the parametric bootstrap under strong identification.

B.1 Proofs of the main results

Lemma B.1.1 Step 1 SI leads to consistent residuals, that is
(a) [ler(0n) — e(6)]] 20

Proof of Lemma B.1.1 Let (0,) be the sample residuals,

lle:(0n) — €(0,)]] = [lye — Boh(Xog, 7n) — C X1 — ye — Buh(Xog,ma) — G X4l (B1)

= [1(G = Go)' X + BLh( X, 7t0) — Buh(Xoz, 70 )| (B.2)

By Theorem 3.2 of Andrews and Cheng (2012) or Chapter 1 in our context, we know
that /n((, — G) = O0,(1) and /n||B,|(7, — mn) = O,(1). Notice that as h(-) is a non-
random bounded function, and by the mean value theorem. h(Xoy, 7,) = h(Xoy, m,) +

L h(Xay, 7) (R — mn). Then, from Equation (B.2)

llev(B) — e(60)] (B.3)
o " 0 RN ,
= (G — Gu)' X1t + Bp(M(Xa, mn) + 5 M Xt ™) (ftn = 7)) = Bu (Ko, )| (B.4)
. ) , .0 .
= H (Cn - Cn) X17t + (6n - Bn) h(XQ,tv 7Tn) +Bnaih(X2,tv 7T) (7Tn - 7Tn) || = Op(l) u (B'5)
—_——— T —_———
Op(n=1/2) Op(n=1/2) Op(1) 0 (n1/2) Op(1)
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This proves Step 1 SI. In Step 2 SI, we argue that the Wild bootstrap is a valid procedure to
simulate random draws. For a formal proof we refer to Liu et al. (1988) for heteroscedastic

independent data, and Shao (2010) for dependent data. Now we consider Step 3 SI.

Lemma B.1.2 The bootstrapped samples y;"* have the same distribution as the original

sample.
nEYl Lyt <z nEE y(0,) < 2
sup (P, = — Py, =1 4:0r) %0 (B.6)
2€R nTESE XM < 2 nV2YR L Xi(6,) < 2

Proof of Lemma B.1.2 In the case of X;, we have that X;" = X, if X, is not determined
recursively (i.e. lags of dependent variable). If it is determined recursively, we only need to

show the results hold for y;" with respect to y;.

sup P (2" < 2) — Po, (y(0n) < 2) (B.7)
< sup [P 1/2Zy””g — Py, (n WZ% to) < 2)] (B.8)
zZE t=1
+ sup Py, (n /2 Zy (60) < 2) n~1/? Zy (B.9)
ze t=1

The second term of the inequality is o(1) as the non-random sequence 6,, — 6y, and the
continuity of measures property theorem. Therefore the distribution functions of v;(6,)
converges to the distribution function of y;(6y). Now we consider the first term of the

inequality.

gt = O Xy + B (X, 7000) + 26 (0,) (B.10)
= (G = Go) Xua + B W (X, 277°) = Bl (X, 7n) (B.11)
+ ¢ Xy + B0 Xoy, m0) + 2 (6,) (B.12)
= ¢ X1y + B KXoy, ) + 2me(0,) + 0,(1) (B.13)
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The last equality follows by the same argument as in Equation (B.5). Notice that

Eo, (2"ai(0)) = Eo, (B[ X0)er(0,)) = 0 (B.14)
Varg, ('(0.)) = EE((" 21X (0,)) = To(0) +0,(1)  (B.15)
Coug, (" et (Bn). 2"t~ (Bu)) = T5(6) + 0,(1) (B.16)

The variance equality follows from Lemma B.1.1, and the covariance equality follows similarly
from the construction of the Dependent Wild bootstrap (see Shao (2010)). The Central Limit
Theorem of Wooldridge and White (1988) follows as ¢; has finite 4+ moments and is mixing

size —r/(r — 2) for r > 2. The central limit theorem follows,

VZZzt ) 5 N(0, V.(6o)) (B.17)
where V(0p) = To(f) + 2352, I'j(0p) denotes the variance covariance matrix of ¢. In
consequence,

nTVEY g = T Y (G X+ Buh(Xa ™) + 26 (0,)) (B.18)
t=1 t=1

The first two terms of ;" are equivalent to the terms of y,(0,,) = (/, X1+ + B,h(Xoy, 7,) + €,
while the last term converges in distribution to €. Then y™* and y;(6,) have the same

distribution in the limit, (conditional on the sample X, see Giné and Zinn (1990)), i.e

sup [P, (n /2 Zyms < 2) — Py, (n1/? > wi(b) < 2)| 50 (B.19)
z€R t=1
To prove joint convergence use the Cramer Wold device. Let A\; € R and Ay € R?. Then

MY+ XX S Myn(0n) + N Xo(0,) (B.20)

by the Continuous Mapping Theorem. W
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The previous lemmas are used to show the next proposition.

Proposition 2.4.1 Suppose that Assumptions (J) to (N) hold and suppose that the true
data generating process is strongly identified. Let M, — oo as n — oo. The estimators

obtained following Step 1 SI to Step 4 SI have the following distribution,

Py (y/ Mo BB (0 — 0,) < 2) — Py, (vnB(B) (0 — 0,) < 2) | 20 (2.19)

sup
2€R%

Proof of Proposition 2.4.1 By Lemma B.1.2, sup,cgat1 ||Pn(W,™* < 2) — Py, (W3(6,,) <
2)|| = 0p(1). In other words, the bootstrapped samples and original samples have the same
distribution in the limit. As Qm(W;™*,0) = n=' >0 e(W,*,0)> = n= ' Y1 ¢,(W,0)? +
0p(1) then by the classic results of extremum estimators Newey (1991); Newey and McFad-
den (1994), the bootstrapped estimators é,’f“s converge to the limit distribution which is
normal. The distribution result follows Theorem 3.2 of Andrews and Cheng (2012). We
must show that the conditions of Andrews and Cheng (2012) are satisfied. This is proven in

Proposition 1.3.1 and Proposition 1.3.2 of Chapter 1. N

Lemma B.1.3 To prove Step 1 WI, we must show,
(a) sup |[$n(m) = || 50
well
(b) sup €2 (thn(m), ) = €r(thn)| 0
S

(c) le:(Don) — ex(ibn)]| 20

Proof of Lemma B.1.3 (a) This result follows from Lemma 3.1 of Andrews and Cheng
(2012). We show that the conditions of this result are satisfied in Proposition 1.3.1 and
Proposition 1.3.2 of Chapter 1. Specifically, we need to show that the objective function
Q. (1, ™) satisfies a pointwise law of large numbers, is stochastic equicontinuous, and that
the limit objective function Q (v, ;60y) is equicontinuous.

(b) Consider,

sup ||e;(Pn (), ) — er(1n)]] (B.21)

mell
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= sup||(Ga(m) = Gu) X1+ Ba(m)h(Xa, ™) = Bl X, )| (B.22)

mell
< Slelgll(fn(ﬂ) — Gn) X1l + Slelgllffn(ﬂ)h(Xz,t, ) = Bult(Xop, 7)) (B.23)
< sup||(Ga () = Ga)l| supl|X14|| + sup||B () — Bal| supl[A(Xs, 7)]| (B.24)
mell mell well mell
= Opr(n™Y)0p (1) + Opr(n™)0p (1) = Opr(n~1/?) (B.25)

(¢) Similarly,

sup Hﬁt(izo,n) —&(Un)l| = |y — énXl,t — Yt + G X+ Buh(Xoy, m0)| (B.26)

mell

= sup||(Ga () — Ca)|| sup||X14]| + sup||Ba|| sup||h(Xa,, 7| (B.27)
mell mell mell mell

= Op<n71/2)0p(1) + Op(n71/2>0p(1) = Op(n71/2) u (B.28)

Lemma B.1.4 To prove Step 2 WI, we must show,
(a) sup [Py (02 0 (" (o) — En(€($0.0))) < 2) = Bo, (072 L0 €4(6) < 2)] 5 0
ze

Proof of Lemma B.1.4 By Lemma B.1.3, et(iﬁo,n) = €(¢on) + 0p(1) (there is no influence
from the weakly identified parameters 7). Therefore, we will use 1, in place of zﬁom for
the arguments that follow. We notice that the residuals centered at the point of lack of

identification are not necessarily mean zero by construction.

sup [Py (7 zn;ez”(@o,n) B (o)) < 2) — Py, (112 Z q6,) <2)|  (B29)
< sup [By (17 il@mzzio,n) LB (o)) < 2) — @u(2) (B.30)
+ ilelllfg Py, (n‘lﬂéet(ﬁn) < z) — P (2)] (B.31)

where ®.(z) is the limit distribution of the scaled average of €;(6y), that is, a mean zero
normal distribution with variance Vc(6y) = T'o(6) + 23252, I';(6h). Equation (B.31) is 0,(1)

as the sequence of non-random numbers #,, — 6y, continuity of measures, and the residuals
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do not depend on 7. More specifically, we show it using a central limit theorem argument.
Notice that Eqy, (e:(0,)) = 0 and Vary, (€:(6,,)) = T'o(0,,). The limit variance is bounded away

from zero, i.e. for some 6 > 0

n

lim n~'Vary, ( zn;et(ﬁn)) = lim [n~* zn; Varg, (€,(0,)) +2n~* zn; > Couve, (e1(6y), €5(6,))]

n—oo
=1 s=1

(B.32)

0n)] = Lo(6h) + Zn:Fj(Go) >§>0

(B.33)

As the limit variance is bounded away from zero and €(6,,) is L, bounded for p = 4+, then

the Wooldridge and White (1988) central limit theorem applies,
1/22 ) 5 N(0, Vi(6o)) (B.34)

The central limit theorem result proves Equation (B.31) is 0,(1). To prove Equation (B.30)

is 0,(1), consider

n

no/? i[etwo,n) — En(e(¥on))] = 02> [ e (Von) — Em (2 e (to,0))] (B.35)

t=1

— n L2 Z 27 €(0n) + 2" Brh(Xat, mn) — Er(277€:(0,) + 2" Brh(Xat, ™)) (B.36)
= 023 e (0,) — B2 (00))] — b 0t 2 h(Xoy, m) — B (2" h(Xoy, 7))
t=1 t=1
(1) (I
(B.37)

First we show (/1) follows a law of large numbers. Let E,, be the expectation conditional

on W; (see Giné and Zinn (1990)),

E, (2" h(Xop, ) = Eg, (2" |Wi)h( X, 7)) =0 (B.38)
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The process z;"h(Xs4,m,) is a sequence of stationary and mixing random variables, and
Eo, (|28 h(Xa, m)[[77) < (Bo, (|12"]1))* T (Bo, ([[2( KXo ) |[77)) T <00 (B.39)

which follows from Assumption K. By McLeish et al. (1975),

n

n > (" M Xo, ) — En(2"h(Xoy, ma)))|| 2 0 (B.40)

t=1

This implies E,,(2]":(¢0n)) = Eo, (27" €:(%0.,)) + 0,(1). Now we consider (I) of Equa-
tion (B.37), we show that {z]"€,(0,)} satisfies a central limit theorem as n — oco. If 2 < iid
as in Liu et al. (1988), the expectation and variances of the bootstrapped samples are:
E..(2"€:(0,)) = Epn(zl|Wy)e(6,)) and Var,(2"e,(0,)) = Ep(2€(0,))* = To(6,). More-
over, the sequence is L, bounded for p = 2 + ¢ by Assumption K and stationary and mixing.
If z;, are dependent, to prove the central limit theorem we must also prove the covariances
are converging, which can be shown using the large block, small block argument. We refer
to Theorem 3.1 of Shao (2010), particularly Equation (A.3), for a proof. Having shown the

conditions of the central limit theorem,

n

w2y [ e (0n) — B2 er(0))] 5 N (0, Vi(0)) (B.41)

=1
which implies that (1) is 0,(1). W
Before we show the next lemma, we need to introduce a few concepts. Let {Y™ (¢, (), 7) :
7 € I} be a stochastic process of the bootstrapped sample, that is Y™ (x) = n= Y2 S0, g (dn(7), 7).

Let {Y (¢, 7) : m € 11} be the limit Gaussian process of y;(1)y, 7) as a function of w. That

is, a stochastic process with the following mean and variance-covariance kernel,

B, (Y (400, 7)) = oy (100, 7)) (B.42)

Varg, (Y (vo, 7)) = E(y:(o, )yt (tho, 7)) (B.43)
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Similarly let {W™ (¢, (), 7) : 7 € I} and {W (4, 7) : 7 € I} be defined analogously with
W, m) ={(Y(,n),X(,n) : 7w €I} and {X (¢, 7) : 7 € II} depends on 7 € II only if X,
includes lags of y;. In the next Lemma we show the bootstrap sample converges weakly to

the limit stochastic process.

Lemma B.1.5 Let {Y"(¢{,(n),7) : 7 € O} and {Y (o, 7) : © € I} be the stochastic

processes defined in the previous paragraph. Letting M, — oo as n — oo,
(@) LY (§n(m),m) s 7w € T} = {Y (¢, 7) : 7 € TT}
(b) AW (n(m), ) : 7 € M} = {W (¢, m) : w € 1T}

Proof of Lemma B.1.5 AsII is a compact set, to show the weak convergence result to the
Gaussian process Y (g, m) and W (g, m), we must show convergence in finite dimensional
distributions and stochastic equicontinuity Dudley (1978); Pollard (1990).

(a) First we notice that, {n="/2 3", y,(¢,, m) : 7 € U} = {Y (3o, 7) : ® € I}, because
Y (¢, m) is the limit Gaussian process for fixed 7 € II. This follows as v, — 1, and
therefore the sequence of (1, ) follows a central limit theorem for each = € II and
Stochastic Equicontinuity. This proof is verbatim to the proof below replacing y;"(¢n, 7)
with y; (Y, 7).

Now we consider, y7(1, (), 7). By Lemma B.1.3, we can replace 1, () by ¥, letting
the stochastic process take the form (¢ (), 7) = 47" (1n, 7) + 0,(1) for each = € II.
Similar to the previous lemma, we assume z; 2 iid. We refer to Theorem 3.1 of Shao (2010),
particularly Equation (A.3), for a proof when z; is dependent. To show convergence in finite

dimensional distributions, notice that,

B (47" (o ) = Eo,, (4" (¢n, )| X2) (B.44)

= X1+ B h(Xop, m) + B, (27" (e(V0,0) — 17" e(ho0)))  (B.45)
=1

= C;Xl,t -+ ﬁgh(Xgﬂg, 7T) <B46)

Varg, (2" €(von)) = B, (") € (Y0,0)) = Eo, ((2")* (e — (1 X14)) (B.47)
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= Eo, (") (4 — G X1 — B X, ma) + B (X, ma))?)  (B.48)

= Eo, ((2")*(€(0n) + (B1( X2, m)* + B0 X, Ta)er(0)))  (B.49)

= By, (Bo, ((2")*|W0)€; () + Op(n~"/?) = To(6,,) (B.50)
Vare, (y"| X¢) = Varg, (yi" (¥n, )| X¢) = To(60,) (B.51)
Cove, (41", yi" 5| Xe) = Cove, (y;" (¥, 7), 4" (¥, )| Xe) = T(6,) (B.52)

This implies B, (4;"(¢n, 7)) = B, (4:(¢n, 7)) and Varg, (y;" (¢n, 7)) = Varg, (yi(n, 7). By

Assumption J and Assumption K, for each m= € II, y" (¢, ) is a stationary and mixing

process, and for some § > 0

Jim n” Warg, ( i (Y, ) (B.53)
=l 73 Vars, (0 ) + 207 33 Co, (v m) s m)] (B
t=1s=1
—lim [T i )T, 5(60)] = Tyo(60) + 23 Ty (60) > 6> 0 (B.55)
= )

Therefore the limit variance is positive definite, and we can apply Wooldridge and White

(1988) central limit theorem. This shows convergence in distribution for fixed 7 € I,

‘1/22% (¥, 1) > N(0,V, (b)) (B.56)

where %(00) = Fy70(90) + 2 Z?:l Fyhj(@()).
Now we show Stochastic Equicontinuity, which follows by the Lipschitz condition in
Assumption K and the fact that y"(¢,,7) is uniformly continuous with respect to 7 in a

compact set. Let w, 7 € Il and §,n > 0,

IP’m(” sup 5|Iy?‘(¢n,7r) — 4" (n, )|l > 1) (B.57)

T—1||<

< Pen(H SU‘F‘) 6|\5£h(X2,t>7T) — B h(Xay, )| > 1) (B.58)
T—7||<
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1

< ~Eg,( sup Cyllm — 7)) (B.59)
n [|m—7|| <8

< 7175E9n(0n) (B.60)

The second line follows from the fact that the second expression does not depend on the
bootstrapped sample z;", it only depends on the randomness of X;. In consequence we can
substitute the bootstrapped probability measure with the original probability measure. The
third line follows by Markov’s inequality and C,, = O,(1) is the Lipschitz constant. Moreover
as Ey, (Cy,) = O(1) by Assumption K. Let €, > 0 and § = en/Ey, (C,,), then

Py, ( sup [[yf" (¢n, m) = 4" (o, T)|| > 1) <€ (B.61)

[|m—7||<d

which proves stochastic equicontinuity.
(b) If X, does not include lags of y,, the result follows directly from (a) and the fact that
X" = X;. If X; includes lags of y;, then the proof is verbatim to (a) replacing y;"(7) by

yi",(m). Joint convergence follows using the Cramer-Wold device. Bl

For the rest of the proofs, we assume that X" is not autoregressive and therefore does
not depend on 7 for any of the bootstrapped samples. The proof for X;(m) follows the same

argument as in Lemma B.1.5(b).
Lemma B.1.6 In addition to Lemma B.1.5, Step 8 WI requires,
(a) sup || (m, 70) — Gnl| 2 0
mwell
(b) Fore each ), € 11, sup H&T(W,ﬂk) — || 0
well

Proof of Lemma B.1.6 Notice that we assume that m, is known, therefore ¢™(m, m,) is
estimated using bootstrapped samples that are generated using consistent estimators.

(a) Consider the above term,

sup [ (, ) = thul| < sup 17 (7, ) = ()| sup [[hn(m) = ¥l (B.62)

(1) (I1)
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The term (/) in Equation (B.62) is o, (1) by Lemma B.1.3(a). Consider term (I). We
notice that ¢/™(x) is constructed analogously to v, (), using the bootstrapped data W;™
instead of W,. By Lemma B.1.5, for each fixed 7 € I, W™ (x) < W,(x). Then,

M:

QuW,0) =01 (g — (' X1y — B'h(X5Y, m))? (B.63)

~
I
—

-1

M:

d
~n

(" (M) — C'XTy = Bh(XT3,m))* = Qu(Wi™,0) (B.64)

o~
Il
—

Where y;*(m,) denotes that the bootstrapped samples are generated setting m = m,. In par-
ticular, as Q,(W;, 0) is converging to a real value Qo(W, 0) = Eg, (y: — ' X1, — B'h(Xay, 7))?,
then both objective functions are converging in probability to the same value using the same
arguments of Newey and McFadden (1994). By the mapping theorem Van Der Vaart and
Wellner (1996), min Q,(W;,0) & min E Wi, 0)) and therefore Vrr € 11,

(1996), min Qu(Wi,6) % min Eq,(Qo(Wi.0))

sup || min Qn(Wm( n),0) — min Qn(Wy, 0] =Sg§|!1@?(ﬂ,ﬁn)—1@n(ﬂ)|| 0 W (B.65)

nell  Yev »eW()

(b) The bootstrapped samples generated in Step 3 WI are generated without the knowl-

edge of 7, along the grid. Notice that,

Y (On(), ) = Ca(m)' + Bu(m) B Xap, i) + €' (o) (B.66)
= (X1 4 BL(Xas, ™) + € (o) + (Galm) — Go)' X (B.67)
+ (Bu() = Bu) M(Xap, ) + Byh(Xag, 7x) — B X, ) (B.68)
= 4u(6n) + 1/ /1[G (7) = Gu) X14 + Vn(Ba(w) = Ba) h(Xay, ) (B.69)
+ VB X o, ) — VB (X, )] (B.70)
= 4" (6n) + Opr(n™"?) (B.71)

That is, sup,cr |[47 (¥n (1), ) — 37 (6,)]] 2 0. By Lemma B.1.5, Yy (n (), ) < y,. Using

the same argument as in Lemma B.1.6(a), Q,(W;™(m), 6) depends on 47 (¢, (), m,) and X7
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which have the same distribution as y;, X; respectively. In consequence Q,(W;™(m),6) %
Qo(Wy,0) = Eg,(y; — (' X141 — B'h(Xoy,m))? and by the mapping theorem of Van Der Vaart
and Wellner (1996),

. m . . _ “m 7 D
ilelgngggr)Qn(Wt (%), 0) wgg)Qn(Wtﬂ)H frlelg!!wn(mm) Yo(m)|| =0 B (B.72)

Proposition 2.4.2 Suppose Assumption J to Assumption N hold. Suppose that the true
value of the weakly identified parameter m, is known and imposed on Step 8 WI. The following

holds letting M,, — oo as n — 00,

Mn 217?2177711_ n\Tn, <z n\Yn — nSZ
- p |V (' ) = Yn(mn)) < 21 B, Vi, —¥,) < = 2, 1.26)
2€R% A1) < 29 Tin < 22
where P, is the bootstrap induced probability measure.
Proof of Proposition 2.4.2 The first step is to notice that,
sup | P (vi(05 (711) =) < 2) = Pu(v/n(n(f) — ) < 2) | (B.73)
z€R%
< sup | Py (V05 (A7) = thn) < 2) = By ((7*,00,b) < 2) | +
z€R%
sup | P (Vi(n(Fn) — 1) < 2) = Poy (7(7", 60,0) < 2) | (B.74)
z€R%
Similarly,
sup | P (7 < 2) = P (71, < 2) | (B.75)
z€R%
< sup | P (70 < 2) — Py (7%(60,0) < 2) | + (B.76)
2ER%
sup | P, (7, < 2) — Py, (7" (6p, ) < 2) | (B.77)
z€R%

Equation (B.74) and Equation (B.76) converge to zero by Theorem 3.1 of Andrews and

Cheng (2012) or in our context by Proposition 1.3.2 of Chapter 1.
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Part 1. We begin by showing that 77" N (0o, b) where 7*(6p,b) = mingcn &(m) in
Equation (B.76). In Proposition 1.3.2 of Chapter 1 we show that {&, () : 7 € I1} = {&(n) :
7 € II}, where &(n) is defined in as the limit distribution such that #, <% minyey &(7)
(see the Appendix A for the definition of the stochastic process £(m)). Using the fact that
Y (P (100), ) = (700 ) X1g + B (700 ) B( X g, 00 ) + €7(1g ) is generated with known value

m,. Let,

™) = n(QEM () — QFL) (B.78)
() =t i(y?w;"(m, 1) = M Xy — BV h(Xar ) (B.T9)
Q. =n! il@mz;"(m), ) — X ) (B.80)

No we show that £™(m) = £(). Consider Q5™ (:) = O, .(n™'),

Qu"()=n"" ilmmm ) = G () X1e — B () h(Xae, ) (B.81)

= 0 S Xae + B (X ) (W) = GO X = B R(Xa, )
+ (M) = Go) X+ (B (ma) — Ba) h( Xz, m0))? (B.82)
:n-lil@ (6) = C () Xve — B (Y h(Xar, ) (B.33)
+n i((l’?(ﬂ ) = ) Xiy 4 (B (mn) — Bu) h(Xay, mn))? (B.84)

(I
+n 12_:1 0n) ()Xlt 5 ()h( X2y, -)) (B.85)
(11
(G () = Co) X1 + (B2 (70) — Ba) h(Xag, m0)] (B.86)
(11

where y;"(0,,) = ¢\ X1+ B, h(Xoy, m) +e§”(@/§0,n). By Lemma B.1.4, 47" (6,,) L ys, that is, the

boostrapped sample of y; using the true parameters has the same distribution as y,;. First,
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consider (1),

Z (G () = o) X1a)? + (VR(BP () = Ba) W(Xay, )

+ (VG () = o) Xut) (VB (1) = Ba) B Xz )] = Op(n™7%) (B.87)

Next consider (I7), i.e. the product of Equations (B.85) and (B.86)

(Y (0n) — () X1 — BT () (X oy -))

Ms

1
(I = —

# (VG () = Go) X + V(B () = Bu) h( Xz, )] = Opr(n ™) (B.88)

Now we use the other term of {(7). Consider Qf’,

Qb = 17" YW (O (1), ) — G X )? (B.89)
t=1

= 0> (0n) — G X 0) (B.90)
t=1

+n! an((é’l‘(wn) — ) Xy 4 (B™(m) = Bu)'h(Xay, 7)) (B.91)
t=1

()
¥ DT 6) — G X (VA () = G X+ VB (ra) = B B(Xo, o))

(111)

(B.92)

By Equation (B.87), we have (I) = O,(n=3/?). Taking (II) and (II1),

(I1) — (I11) ;fj V(G = G X = VnB () h( Xz, )

(\/_( n (o) — Cn)/XLt + \/E(Bgl(ﬂ—n) - Bn),h(XZtﬂTn)) = Opyﬂ(n_3/2)
(B.93)
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Combining the results from (1), (I1) and (/11),

@Qm() — Q) = ! ilwz”(en) (Y Xy — A R(Xag, ) — 12”;@;”(9”) X
— (1) + (I1) = (I) = (I1]) (B.94)

n

n Y (0n) = G () X (B.95)

=1

= BV (X, )P =07t D0 (0n) = G X1) + Opn (072) (B.96)

t=1

~+

Which is what we needed for the results as,

&r() = n(Q5" () — Q) (B.97)
= > (0,) — )Xo (8.98)
= B MKar ) = 070 = X+ Opeln™) (B9
= () + Opn(n ™) = £() (B.100)

By Lemma A.2.0.6 of Appendix A as y;"*(6,) L 4, and ™ are obtained identically to
zzn, using y;"(6,) instead of y;. We use the equivalence in distribution argument as in
Lemma B.1.4, conditional on the sample X; from Giné and Zinn (1990). The stochastic
processes £ (m) and &,(m) are constructed analogously, and by Equation (B.100) {£7(7) :
m € I} = {&(7) : m € I1}, and in consequence, 7" N 7*(0y,b) by the mapping theorem of
Van Der Vaart and Wellner (1996).

Part 2. To show /n({™(7) — 1b,) 5 7(7*(6o, b)), the proof follows the lines of Part 1.

Consider,
on(m) = inf TS (W (Wn(m), ) — ¢ X — BR(Xayp, ) (B.101)
Ppev(n) =1
= wégfﬂ n - Z yzn ﬂ Cn(ﬂ-n> Cn)IXLt + (Bn(ﬂ-n> - Bn)/h(XZ,taﬂ-n)
— X1 = B X, 7)) (B.102)
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= inf 723" (W (0,) — X1 — Bh(Xap, 7))+ Op(n™1?) (B.103)

YeW(m) t=1

The last line follow multiplying by n'/2. Moreover, the first term is O,(1) while the second
is O,(n~Y/?), using a similar argument as (I) and (II) of Part 1. More specifically, take the

cross product of Equation (B.102),

ni/z D" (0n) = (X1 = Bh(Xop, ) (B.104)
t=1

* (\/ﬁ(én(ﬂ-n> - Cn)/Xl,t + ﬁ(éﬂ(ﬂ'n) - Bn)/h<X2’t, o)) = Op(n_l) (B.105)

By Equation (B.103), 1™ (m,,) is obtained using ;(6,,) < , and the same objective function.
Moreover, the parameters are all strongly identified as the weakly identified parameter has
been fixed to its true value 7,. This proves that 7,577? (m,) is getting closer and closer to sz as
in Part 1 of the proof. Therefore for large enough n, 1@? has the same distribution as @n In
consequence /n (™ () — y,) KN 7(7* (6o, b).0,b) by Lemma A.2.0.5. of Appendix A. Joint

convergence of 1) and 7 follows from the Cramer Wold Device. B

Proposition 2.4.3 Suppose Assumption J to Assumption N hold. Let m, be unknown. Un-

der weak identification, the following holds letting M, — oo as n — oo.

VML (@ m) = u(m)) < sup oo (m)

liminf P, €l > 1-a (2.27)
n—oo A
o (k) < sup oo (m)
ﬂ'kEfI

with probability approaching one.

Proof of Proposition 2.4.3 It is easier to prove the inequality for each marginal distribu-

tion. We follow this approach and argue that the joint result follows by a similar argument.

First we show it for 7, i.e. we show, liminf, . P, (7, (7)) < supcf_, (7)) > 1—a w.p.a.l,
ﬂ'kEl:[

where P, » denotes the marginal distribution probability measure with respect to m, which

is well defined as the joint distribution exists. Let 7, (m) be the estimators of 7 constructed
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with the data generating process that setsm = m, specifically

Ye(n, ) = O X 10+ Buh(Xae, i) + €(Po,n) (B.106)

Consider the following terms,

V5 () = 7o () (B.108)
V(1) = 7 (0o, b; Tk) (B.109)

The expression 97" (7 ) depends on 7 because we assume that the bootstrapped estimators
are generated using the data generating process setting m, in Step 3 WI. We consider the

right tailed critical values,

Criea(mi) = inf{e > 0: Py, (977 (1) < ¢) > 1 - a} (B.110)
Cpio(m) = inf{c > 0: Py, (07 (m) <) >1—a} (B.111)
_o(mp) =inf{c > 0: Py, (9" (m) < ¢) > 1 —a} (B.112)

where Py, » and Py, . are the marginal distribution probability measure with respect to 6,
and 6, respectively. Consider the supremum of the one tailed critical values with respect to
Tk, that is, we take the largest critical value with size 1 — a from all possible data generating

process generated along the grid of II. We construct the coverage probabilities,

CP (k) = Py n (0777 (1) < sup i (71)) (B.113)
T €Il
CPpy_o(mk) = P, (V5 (k) < sup cp (k) (B.114)
€Il
CPl_, (m) = Pyy (97 () < sup cf_,(mx)) (B.115)
T €Il

Clearly, P, (97 (1) < cp"o(mr)) = 1 — a. All coverage probabilities are well defined

n,
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as £(m) is a stochastic process with continuous sample paths a.s. and therefore the critical

values are well defined and unique. By Proposition 1.3.2 of Chapter 1, ¢ | (m) — ¢]_,(7x)

n,l—«

as n — oo for each m, € II, and by Theorem 1.4.2 of the same paper, Coiea(mr) =

cna—al(mh) + 0p(1) L ¢m (m.). Notice that ¢7_ (7)) depends on the optimal draw of
(0o k,b), where 6y denotes the limit of 6, which imposes 7 = 7 as the true value

of w. Therefore, sup ¢, ,(m) — sup f_,(m) and sup o ,(m) = sup ¢, () as

T €Il €11 T €11 T €11
n — oo . Assumption Q states that the coverage probabilities of the marginal distribu-

tion with respect to m converge, i.e. CP7,  (6x) — CP[_,(0k,p), for some p € P. Using
this assumption and Theorem 1.4.2, CP*™(m,) = CP],_,(m) + 0p(1). In consequence,
CP\" (mi) = CP_ (m),p) + 0,(1) > 1 — a4 0,(1), ie. liminf, .o CP" (m) > 1 -«
w.p.a.l.

Now we prove the result with respect to the margnial distribution of ¢. For every 7, € II,

define the following,

It () = V(] (o my) = da(my) (B.116)
I8 (m,m) = V(W (0, mx) = ) (B.117)
WY (m,m) = 7(m, 0, b; ) (B.118)

where 7(7, 0, b) is defined on Lemma A.2.0.5 of Appendix . We consider one tailed critical

values,

cnm7’1w_a(7r, ) = inf{c > 0 : Py, (V7Y (7, m) < ¢) > 1 —a} (B.119)
cﬁl_a(ﬂ, ) = inf{c > 0: Py, y(I(m,m) <) > 1—a} (B.120)
& (mmy) = inf{c >0 : Py (0% (m,m) <¢) >1—a} (B.121)

Now define the coverage probabilities with respect to 1,

CP"

n,l—a

(7, 71) = Py (0™ (, 1) < sup epy” , (m, 7)) (B.122)
TI'kEﬁ
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CPyi—o(m,mi) =Py, o (v] (7, ) < sup ¢y, (7, 7)) (B.123)

n,l—«
T EIL

CPr_o(m, ) = Pgy o (v™ (m, ) < sup i, (7, 7)) (B.124)
T €Il

All coverage probabilities are well defined as 7(m, 0y, b) is a stochastic process with con-
tinuous sample paths a.s. and therefore the critical values are well defined and unique. By
Proposition 1.3.2 of Chapter 1, Cg’l_a(ﬂn, ™) — & () for each 7, € II. Notice that, ¢,
depends on the random draw of m when we set the data generating process with m = 7, that

is ¢ (mr) = (7 (8o, b), T ), where 6y denotes the limit sequence of 6 setting 7 = 7.

By Theorem 1.4.2 of the same paper, cnm’fb,a(ﬁ?,m) = cﬁ,l,a(wn,wk) +0,(1) B & (mh).

mﬂb

. A p
Therefore, sup cﬁl_a(wn,wk) — sup ¢ (m) and in consequence, sup Cpi-o (I, ) =

T €Il 7Tk€1:[ T E€ll

sup ¢ (m,). Assumption Q states that, C’Pfﬁl,a(Qk) — CPY (0y,p), for some p € P.
ﬁseil?qg this assumption and Theorem 1.4.2, (with respect to the coverage probabilities of the
marginal distribution with respect to 1) CP™¥ (1) = CPfﬁ 1—a(mk) +0,(1). In consequence,
C’P,Tl’qfa(wk) = CPY (7, p) + 0p(1) > 1 — a + 0y(1), i.e. liminf,_,o C’P,Tl’qfa(wk) >1—«
w.p.a.l.

The argument with respect to the joint distribution of v, 7 follows a verbatim using
the joint distribution instead of the marginals. All critical values are well defined and are
unique as the stochastic process have continuous sample paths (a.s) on a compact set. An-
other way to prove it is using the Cramer Wold Device. The proof that considers the left

tailed or two-tailed critical values follows the same argument considering inf,, e c’f_a(wk)

and inf, e cf_, (7). A

Theorem 2.6.1 Suppose Assumption J to Assumption @ are satisfied. Let w, be known.
Using the parametric bootstrap introduced in from Step 1 WI to Step 4 WI and Step 1 SI to

Step 4 WI, and letting M,, — oo as n — oo for each identification category,
(a) Under weak identification with dim(r(6)) = 0, TY™(7™(x,)) <5 T (x* (6o, b); 6o, b)

(b) Under weak identification with dim(r,(0)) = 1, T™™(7™(x,))) <5 T™ (7 (6o, b); b5, b)
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(c) Under strong identification, T™ % N(0,1)

Proof of Theorem 2.6.1 As we are assuming that the true m, is known, the proof follows
almost verbatim from Proposition 1.3.2 and Proposition 1.3.3 of Chapter 1 and using the
bootstrap convergence result of Proposition 2.4.2. See also Theorem 3.1 and Theorem 4.1 of
Andrews and Cheng (2012). In particular, as we have shown that 777" () N (6o, b), the re-
sult follows from the continuous mapping theorem and Lemma A.2.0.7 and Lemma A.2.0.8 of
Appendix A. The variance-covariance matrices 3,,(0), ¥(6) are well defined. The convergence
in probability to the limit covariance matrices follows by Lemma A.2.0.7 and Lemma A.2.0.8.
See the simulation exercise of Chapter 1 for an example of matrices J,(0), V,,(0), J(0), V()

using an exponential smoothing regression function. B

Theorem 2.6.2 Let M, — oo as n — oo. Under the null hypothesis Hy : r(0) = q, the LF

and [CSy critical values of the t-test have correct asymptotic size w.p.a.1,

(a) AsySzlFm =liminf  inf P (T,(r(0)) < 5™ (r(0) =1 —a

n—o0  feO:r(0)=q nl-a

(b) AsySzIC%m =liminf inf P, (T,(r(0)) < céﬁioo’ém(r(e))) =1—a«

n—00  HcO:r(0)=q

(c) If Hy is false, that is v(6,) # q, then T,(r(0)) 2 oo

Proof of Theorem 2.6.2 The proof of this theorem uses Lemma 2.1 of Andrews and Cheng

(2012). This results states that,
AsySz = min{ig?f3 CP(p),CPy} (B.125)
P

where C'P(p) is the limit coverage probability of the t-test under weak identification.

(a) To construct the least favorable critical values, consider the t-test critical values,

e () = inf{e > 01 B (TO™ (1) < ¢) > 1 —a} (B.126)
el o(my) = inf{e > 0: Py, (T%(m) < ¢) > 1—a} (B.127)
i (me) = inf{c > 0 : Py, (T(m) < ¢) > 1 —a} (B.128)
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where T° can be either 7% or T™ according to which parameter is tested. Notice that

the least favourable critical values take the following form,

nlj_gl = max{ sup cnmf_aa(wk), cnmle_ao’f (B.129)
T €Il

m, %, s

ni-a denotes the critical values of the t-statistic under strong identification, a = v, 7.

where ¢

By Equation (B.125) and Theorem 2.6.1,

LF%m — i 3 : < LFm .
AsySz lim inf eeg{rrl(%):q P (T (r(0)) < cyi™n(r(9))) (B.130)
= min{Pg, (T7(r(0)) < c1%,), Po, (N (0,1) < e1Z5)} + 0,(1) (B.131)

as the t-statistic is pivotal under strong identification and the o,(1) term follows from The-
orem 2.6.1. Notice that under weak identification Py, (T%(r(0)) < cF7) > 1 — a and
under strong identification P, (N(0,1) < 7)) = 1 — a. 1In either case we have that
AsySZHEm > 1 — o wop.a.l.

(b) Consider the I1C'Sj critical value. In the limit, we assume that we are able to correctly
conclude if the model is weakly identified or strongly identified. Under weak identification,
P(A, < k,) 2 1 as n — co. This would imply that C,Iﬁ“i? = cﬁlflna = c1_o(m) + 0,(1) >

sup ¢1-q(mk) + 0p(1) whose size is greater or equal to 1 — a by Proposition 2.4.2. In the
T €11

case of strong identification, P(A, < k,) % 0 and therefore cff’}i&n = ¢;_, + 0,(1) whose size

is equal to 1 — . In consequence, letting inf,ep C'P(p) being the coverage probability using
critical value Su% ¢1—o(m) and CP,, being the coverage probability using critical value ¢;_,
then AsySz :ﬂkfnin{infpep CP(p),CPyx} =1—aw.p.a.l.

(c) First consider T,,, only for restrictions of 1, that is with dim(r,) = 0. This proof

follows the argument of Theorem 1.4.3 in Chapter 1. If Hy is false 7(6,,) # qn,

r(0,) — r(0,) = 7(0,) — 7(0,) + 7(0n) — @n = CLi + 0,(1) (B.132)
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for some C' # 0 and identity matrix I and large enough n and by consistency of the

numerator. Then we have

Nze

T, =— — +0,(1) = 00 as n — o0 (B.133)
m(é’n)an(Qn)

as the denominator converges in probability to 7,(09)3(6y)ry(6p) which is finite and non-
random.

Similarly consider 7;, with dim(r,) = 1,
r(0n) = 1(0n) = 1(thn, 7n) = (0, M) + 7V, M) — o = CIi + O, (1) (B.134)

Using the arguments in the proof of Proposition 1.3.3 of Chapter 1,

_ IVABO W ) = (o, )
= (77 (Vs o) BT (Vs T ) |12 +op(1) (B.135)
V/nC

Ty (en)znrib (én)

+0,(1) B 00 as n — oo (B.136)

as the denominator converges in probability to r.(6p)X(6y)7r:(6p) which is finite and non-

random. W

B.2 Supplemental Tables and Figures
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APPENDIX C

SUPPLEMENTAL APPENDIX OF “THE RISK RETURN TRADE-OFF UNDER
WEAK IDENTIFICATION”

C.1 Risk-return QML estimation

In this section, we provide the expressions used to estimate the values and variance of
the parameters using QML. Let V;(7) be the midas estimator of the conditional variance and
D = 252 the number of daily observations which roughly represents the number of trading

days in a year.

Ryp1 ~ N(C+ BVi(m), Vi(mr)) (C.1)
exp(md—i— Tod?)
P 0 exp(mk + mok?)

=A Z d 7T1,7T2 Tt d (CB)

w(da 1, 7T2)

Define €,(0) = Ryy1 — ¢ — BVi(w), where 0 = ((, 8, 7). From Equation (C.1) we derive
the log-likelihood objective function to be maximized. Let n be the number of monthly

observations.

— ! ith(ﬁ) - —21 i log(Vi(m Evtt((?) (C.4)

t=1

The gradient of the likelihood function dQ" ) takes the following form.

4 i ©3
CEE 30 ()
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where the previous expressions take the form

oVi(m) Dol ow(d, 7T1,7T2>T2
¢

o :Adz:%) or —d

ow(d,m,m)  Numg(r) | d ~ Numy(r) 0Den(r)
on ~ Den(n) 02 Den(m)?  Orm

Numy(r) = exp(mid + mod?)

D-1
Den(m Z exp(mik + mok?)
k=0
oD =
M — Z eXp(?le + 71_2]{:2)
N
ONum(m) = exp(md + mod?)
on &2

(C.10)

(C.11)

(C.12)

(C.13)

To obtain the variance of the parameters, we require the Hessian matrix of the likelihood

function 828359(,@). The second derivatives of the log likelihood are as follows.
Gl Ty V()™
t=1
[¢.68]: -1
als a3 + a2 | S
™
8,5 n‘li—v;
or): YT
e R a()  e(0)* ] 0°Vi(r)
mig Zﬂ” 2 o i
OVy(m) 0 €(0) &(0) 0 e(f) | 0Vi(nm)
l‘vﬁ(ﬂ) or P orviin) _2\4(%)8#‘/2(#)] o
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}

(C.14)

(C.15)

(C.16)
(C.17)

(C.18)

(C.19)



where the previous expressions take the form,

0 al0) OVi(r) L, Vi(n)

— -1 _
I Vil ) =—Vi(m)"p o e (0)Vi(m) o (C.20)
82% - d 71, 7T2) 2
87r87r dz:%) orom (C.21)
Pw(d,m,m) | d| & Numg(r) dDen(m) 0 Numqy(r)
onor’ B 22| 7' Den(r) or  On’ Den(m)?
Numg(m) R= Kk
W Z eXp 7711{; + 7T2k ) kS k4 (C22)
0 Numg(m) 1, JONumgy(m) 72 dDen(r)
7 Den(r) Den (ﬂ)iaw — Den(m) Numd(ﬁ)i(97T (C.23)
0 Numg(m) o, \ONumg4(m) 3 dDen(m)

By Wooldridge and White (1988), the QMLE converges in probability to the pseudo-true
value 0* and its asymptotic distribution takes the following form. The estimator is consistent
with respect to the pseudo-true value because the log-likelihood is misspecified, and therefore

it could be inconsistent with respect to the true value 6.

V0, —0°) 5 N(0, J 169V (%) H(6%)) (C.25)
o) =ty PO (C.26)
0*) =n"! znj 0 a%tagf* (C.27)

C.2 Supplemental Tables and Figures
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Table C.1: Risk Return Trade-off wild bootstrapped t-test, absolute returns at monthly
frequency.

Monthly ¢ 6] T e R?
(x10%) (x10%) (x10%)
1928 — 2000 Coeft. 0.541 0.463 -4.289  1.551 0.000
Std. Dev. 0.476 3.753  2.057  0.776

Std. p-value  0.000 0.902  0.030 0.000
WB p-value 0.000 0.960  0.090 0.412
1928 — 1963 Coeft. 1.232 -2.791  -2.953 1.189 -0.003
Std. Dev. 0.700 5.200  3.571 1.341
Std. p-value  0.000 0.591  0.388 0.000
WB p-value 0.000 0.746  0.404 0.200
1964 — 2000 Coeft. 0.061 2.989 2925 -19.859 0.003
Std. Dev. 0.524 4.185 16.084  29.348
Std. p-value  0.731 0.475  0.842 0.001
WB p-value 0.722  0.452  0.850 0.000
1928 — 2016 Coeft. 0.542  0.293 -5.270 1.846  0.000
Std. Dev. 0.387 2973  1.729 0.683
Std. p-value  0.000 0.921  0.002 0.000
WB p-value 0.000 0.978  0.138 0.354
1928 — 2000775 Coeff. 0.380 2.745 -6.063 2.029 -0.003
Std. Dev. 0.326 2.374  1.722 0.753
Std. p-value  0.004 0.248  0.000 0.000
WB p-value 0.022 0.48  0.016 0.046
1964 — 2000775 Coeff. -0.617 8594  3.220 -10.933 0.023
Std. Dev. 0.536 3.841 13.298 22.221
Std. p-value  0.001 0.025  0.804 0.035
WB p-value 0.010 0.118  0.798 0.026

This table presents the estimates, standard deviation and p-values of the standard and wild
bootstrapped t-test of the MIDAS model using monthly frequency and absolute returns.
The conditional variance estimator of returns is calculated using daily returns as in Equa-
tion (3.2). The variance of the coefficients is obtained using the sandwich formula of the QML
estimator White (1982). R? is the coefficient of determination. The coefficients and stan-
dard deviation are multiplied by the value in the second row. FT'S denotes Flight-to-Safety
subsamples.
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Table C.2: Risk Return Trade-off wild bootstrapped t-test, absolute returns at quarterly
frequency.

Quarterly ¢ & m T R?
(x10?) (x10%)  (x10%)
1928 — 2000 Coeft. 0.906  2.003 -5.454 1.975  0.003
Std. Dev. 1.629  4.326 7.593 2.972

Std. p-value  0.049  0.643 0.466 0.000
WB p-value 0.118  0.780 0.486 0.072
1928 — 1963 Coeft. 3.796 -2.949 68.589 -22.629 -0.014
Std. Dev. 2.237  5.600 514.754 170.316
Std. p-value  0.000  0.595 0.893 0.000
WB p-value 0.000  0.724 0.892 0.000
1964 — 2000 Coeft. -1.312  6.690 10.428 -28.412 0.040
Std. Dev. 1.267  3.562  22.398  43.001
Std. p-value  0.012  0.060 0.628 0.019
WB p-value 0.056  0.128 0.634 0.026
1928 — 2016 Coeft. 1.026  1.546  -6.287 2.245  0.002
Std. Dev. 1.310  3.391 5.917 2.371
Std. p-value  0.012  0.648 0.284 0.000
WB p-value 0.032  0.786 0.278 0.090
1928 — 2000775 Coeff. 3.839 -3.955 180.311 -48.788  0.038
Std. Dev. 0.865  2.077  63.795 17.077
Std. p-value  0.000  0.056 0.003 0.000
WB p-value 0.000  0.142 0.004 0.000
1964 — 2000775 Coeft, -2.285 10.589  -0.354  -2.612 0.057
Std. Dev. 1.602  4.175 4.761 3.274
Std. p-value  0.000 0.011 0.941 0.019
WB p-value 0.018  0.138 0.950 0.016

This table presents the estimates, standard deviation and p-values of the standard and wild
bootstrapped t-test of the MIDAS model using quarterly frequency and absolute returns.
The conditional variance estimator of returns is calculated using daily returns as in Equa-
tion (3.2). The variance of the coefficients is obtained using the sandwich formula of the QML
estimator White (1982). R? is the coefficient of determination. The coefficients and stan-
dard deviation are multiplied by the value in the second row. FT'S denotes Flight-to-Safety
subsamples.
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Table C.3: Risk Return Trade-off parametric bootstrapped t-test, monthly frequency.

Monthly ¢ 6] T e R?
(x10%) (x10%) (x10%)
1928 — 2000 Coeft. 0.537 0.482 -4.258  1.539  0.000
Std. Dev. 0.476 3.754  2.053  0.773

Std. p-value  0.000 0.898  0.031 0.000
PB p-value 0.000 0912  0.676 0.232
1928 — 1963 Coeft. 1.212 -2.646 -2.820 1.138 -0.003
Std. Dev. 0.700 5.197  3.615 1.352
Std. p-value  0.000 0.611  0.414  0.000
PB p-value 0.000 0.634  0.508 0.024
1964 — 2000 Coeft. 0.022 3.314  3.051 -19.843 0.003
Std. Dev. 0.530 4.223 16.334 29.638
Std. p-value  0.903 0.432  0.836 0.001
PB p-value 0.854 0.404  0.804 0.030
1928 — 2016 Coeft. 0.544 0.292 -5.165 1.803  0.000
Std. Dev. 0.388 2979  1.706 0.673
Std. p-value  0.000 0.922  0.002 0.000
PB p-value 0.000 0914 0.654  0.334
1928 — 200077 Coeff. 0.374 2795 -6.080 2.036 -0.003
Std. Dev. 0.326 2374  1.725 0.754
Std. p-value  0.004 0.239  0.000 0.000
PB p-value 0.006 0.218  0.096 0.006
1964 — 2000775 Coeft. -0.619  8.608  3.538 -11.463 0.023
Std. Dev. 0.536  3.839 13.861 23.209
Std. p-value  0.001 0.025  0.793 0.032
PB p-value 0.000  0.000  0.760 0.040
This table presents the estimates, standard deviation and p-values of the standard and
parametric bootstrapped t-test of the MIDAS model using monthly frequency and absolute
returns. The conditional variance estimator of returns is calculated using daily returns as
in Equation (3.2). The variance of the coefficients is obtained using the sandwich formula
of the QML estimator White (1982). R? is the coefficient of determination. The coefficients
and standard deviation are multiplied by the value in the second row. F'T'S denotes Flight-
to-Safety subsamples.
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Table C.4: Risk Return Trade-off parametric bootstrapped t-test, absolute returns at quar-

terly frequency.

Quarterly 15} T o R?
(x10?) (x10%)  (x10%)
1928 — 2000 Coeft. 0.900 2.021 -5.362 1.938 0.003
Std. Dev. 1.643  4.356 7.597 2.972
Std. p-value  0.051  0.643 0.471 0.000
PB p-value 0.046  0.676 0.636 0.020
1928 — 1963 Coeft. 3.749 -2.831 128.824 -42.667 -0.013
Std. Dev. 2.034 5.195 1033.203 343.220
Std. p-value  0.000  0.586 0.901 0.000
PB p-value 0.000  0.572 0.920 0.012
1964 — 2000 Coeft. -1.309  6.681 10.401 -28.356  0.040
Std. Dev. 1.266  3.562 22.346  42.879
Std. p-value  0.012  0.061 0.628 0.019
PB p-value 0.012  0.002 0.612 0.054
1928 — 2016 Coeft. 1.024  1.549 -6.314 2.256  0.002
Std. Dev. 1.310  3.390 5.929 2.376
Std. p-value  0.012  0.648 0.283 0.000
PB p-value 0.010  0.650 0.538 0.022
1928 — 2000775 Coeff. 3.533 -3.272 1.327  -0.454 0.025
Std. Dev. 1.787  4.097 9.673 3.223
Std. p-value  0.000 0.424 0.796 0.125
PB p-value 0.000  0.404 0.796 0.280
1964 — 2000775 Coeft. -2.292  10.605 -0.312  -2.648 0.057
Std. Dev. 1.601  4.175 4.763 3.279
Std. p-value  0.000 0.011 0.948 0.018
PB p-value 0.020  0.006 0.888 0.082

This table presents the estimates, standard deviation and p-values of the standard and
parametric bootstrapped t-test of the MIDAS model using quarterly frequency and absolute
returns. The conditional variance estimator of returns is calculated using daily returns as
in Equation (3.2). The variance of the coefficients is obtained using the sandwich formula
of the QML estimator White (1982). R? is the coefficient of determination. The coefficients
and standard deviation are multiplied by the value in the second row. F'T'S denotes Flight-

to-Safety subsamples.
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