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ABSTRACT

Habtamu Kassa Benecha: Marginally-speci�ed Mean Models for Counts with Mixture
Distributions

(Under the direction of John Preisser)

Counts from heterogeneous populations are often modeled using mixture distributions.

These models assume that observations are generated from multiple unobserved subpop-

ulations and estimate parameters having latent class interpretations. When interest is to

make inferences about marginal means and incidence density ratios for the e�ects of risk

factors in the overall population, regression coe�cients obtained from common mixture

models do not provide direct interpretations for these population-level parameters. While

indirect techniques such as the use of post-modeling transformations may be employed to

estimate the marginal e�ects of explanatory variables of interest, there are many instances

where latent class model formulations fail to fully explain relationships between covariates

and population-wide parameters (Preisser et al., 2012; Long et al., 2014). First, we employ

two-component mixtures of non-degenerate count data distributions to estimate the overall

e�ects of exposure variables on marginal means of zero-in�ated and other heterogeneous

counts. The models are examined using simulations and further applied to a double-blind

dental caries incidence trial. Next, we develop a marginalized model for bivariate zero-

in�ated counts that allows the estimation of parameters for the overall e�ects of exposure

variables on the marginal means of the two correlated outcomes. The model employs four-

component mixture distributions and estimates marginally interpretable regression coe�-

cients. We demonstrate the application of the method by using simulations and dental

caries indices of primary and permanent teeth among children from a school-based �uo-

ride mouthrinse study. Finally, extending earlier approaches, we propose an estimation
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method for marginalized zero-in�ated count models when covariates are missing at random.

The method, which can also be applied to other missing data problems, is illustrated and

compared with complete case analysis by using simulations and dental data.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

The analysis of counts generated from heterogeneous populations present special chal-

lenges to researchers. When data arise from several unobserved subpopulations, models

based on standard probability distributions are often inadequate to explain observed vari-

abilities (Wedel and DeSarbo, 1995; Frühwirth-Schnatter, 2005). One example would be

the case of zero-in�ated counts, where proportions of zero observations are higher than

expected under standard distributions. Employing traditional distributions (such as the

Poisson) to model such data often results in biased estimates and poor predictions (Lam-

bert,1992). Instead, zero-in�ated counts are commonly modeled by using two-component

mixture distributions, hypothesizing that observations arise from two latent classes within

the source population: one class provides only zeros and the other produces both zero and

non-zero values. Such an approach is under the framework of �nite mixture modeling,

which partitions a source population into a number of unobserved classes or subpopulations

and estimates parameters speci�c to the latent classes. Common models for counts with

excess zeros such as zero-in�ated Poisson (ZIP) regression utilize two-component mixtures

consisting of a degenerate zero and a standard count distribution.

As in the univariate case, bivariate count outcomes with many zeros are commonly

modeled through the use of mixture distributions that account for zero-in�ation as well as

the dependence between the outcomes. For example, Wang et al.(2003) employ a mixture of

a bivariate Poisson distribution with a point mass at (0,0) to model counts of occupational

injuries, and Li et al.(1999) propose a four-component mixture distribution for modeling
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bivariate zero-in�ated counts.

Despite the �exibility that mixture distributions provide in modeling highly dispersed

count data, interpretations of the regression parameters from such models are limited to the

latent classes making up the study population. These parameters are not directly applicable

to making inferences about the overall e�ects of covariates on the marginal mean. Even with

the application of indirect methods of parameter estimation such as the use of post-modeling

transformations, there are many instances where latent class model formulations fail to

fully explain relationships between covariates and population-wide parameters (Preisser

et al.,2012; Long et al., 2014).

The importance of models with marginally interpretable parameters for zero-in�ated

counts has long been recognized (Lambert, 1992; Long et al.,2014; Preisser et al.,2012,

2016; Albert et al., 2014). While the literature is scarce for bivariate zero-in�ated counts,

the development of marginalized models for univariate zero-in�ated counts has been given

attention in recent years. Based on the framework of the zero-in�ated Poisson model likeli-

hood function, Long et al.(2014) propose a maximum likelihood method to estimate regres-

sion parameters for marginal means of counts with excess zeros. Marginalized zero-in�ated

negative binomial models (Preisser et al., 2016) further estimate overall e�ects of covariates

on marginal means of counts with zero-in�ated negative binomial distributions. Todem

et al.(2016) provide a general representation of two-part marginalized mean count models

including distributions for bounded counts, e.g., the zero-in�ated beta binomial distribution.

All these marginalized models assume that the count outcomes follow two-component

mixtures consisting of a standard count distribution with a point-mass at zero. However,

models employing degenerate distributions are sometimes inadequate to describe marginal

means of counts from multiple source populations; data-generating mechanisms based on

mixtures of non-degenerate count distributions could provide better �ts for count data. In

the �rst part of the dissertation, we expand the class of marginalized mixture models for

zero-in�ated and other heterogeneous count data to allow for greater model choice with
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maximum likelihood estimation. In the second part, we propose a marginalized model for

bivariate zero-in�ated counts that provides directly interpretable regression parameters for

the marginal means of the two correlated outcomes in the overall population.

While much of the statistical literature on zero-in�ated data modeling treats covariates

and outcomes as fully observed, missing data are a common occurrence in practice. In

the absence of appropriate statistical software and methods to deal with incomplete data,

modeling is typically done by using only cases with complete covariate and outcome data

(Ibrahim et al., 2005). However, this approach, often referred to as complete case analysis,

is valid only when the probability of missingness is independent of any observed and unob-

served information. Even when complete case analysis is valid, estimates can be ine�cient

if too many observations are missing (Ibrahim et al., 1999, 2005). For problems where co-

variates are missing at random and their conditional distribution is log-concave, Ibrahim

et al.(1999) propose a Monte Carlo EM (Wei and Tanner, 1990) algorithm to allow for max-

imum likelihood estimation. Although the method can be adapted to ZIP regression with

missing covariates, it is not directly applicable to marginalized zero-in�ated models because

the corresponding conditional densities may not be written as products of log-concave dis-

tributions. In the third part of the dissertation, we extend the Monte Carlo EM approach

to marginalized zero-in�ated Poisson models with missing covariates

We conduct literature review in the remainder of Chapter 1. In Chapter 2, new marginal-

ized models are developed for univariate zero-in�ated and other heterogeneous count data.

In Chapter 3, a marginalized model is proposed for two correlated count outcomes with

excess zeros and Chapter 4 presents a Monte Carlo EM method for handling missing co-

variates in marginalized zero-in�ated Poisson models. We present a conclusion in Chapter

5.
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1.2 Mixture Models

Mixture distributions have been used to model observations with variabilities that are

insu�ciently explained by standard statistical models. An underlying assumption of such

models is that variability in observations is due mainly to heterogeneity within the sam-

pled population, which may contain a number of unobserved subpopulations of unknown

proportions (Wedel and DeSarbo, 1995). In discrete modeling, a simple but popular mix-

ture is that of the Poisson and gamma distributions (i.e, the negative binomial), which

is commonly used to model counts with extra-Poisson dispersion. The Poisson and nega-

tive binomial distributions are also often mixed with a distribution degenerate at zero to

model counts with much higher proportions of zeros than expected under either of these

two standard distributions. These models presume that observations arise from a popu-

lation containing two unobserved subpopulations; while one subpopulation produces only

zero counts, observations from the other subpopulation can have zero or positive values.

Because such assumptions lead to data generating mechanisms that conveniently explain

heterogeneities in counts in various research problems, the two component mixture model

has been given a lot of attention over the past few decades (Lambert, 1992; Mullahy, 1986;

Heilbron, 1994; Böhning et al., 1999). Mixtures involving more than two component distri-

butions have also been applied in the health sciences, medicine, genetics, economics, ecology

and other areas (Wang et al., 1996, Morgan et al., 2014).

Finite mixture models partition a source population into m ≥ 2 latent subpopulations

and assume that the random variable of interest takes a value from the jth subpopulation

with a probability πj. If Yi is count random variable with observed value yi, anm component

mixture distribution can be de�ned for Yi as (Frühwirth-Schnatter, 2005)

Pr(Yi = yi∣π,θi) =
m

∑
j=1
πjfj(yi∣θij), (1.1)

where the components f1, f2, ..., fm are probability mass functions of known distributions,
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θij is the vector of parameters in fj, θi = (θi1,θi2, ...,θim), and π = (π1, π2..., πm)′ is a vector

of mixing probabilities with 0 ≤ πj ≤ 1 and ∑mj=1 πj = 1. The latent parameters πj and θij

corresponding to the jth component are also estimated either as constants or as functions

of covariates through convenient link functions. For example, if θij is a scalar and xi is a

vector of covariates from the ith subject, then θij can be related to the covariates as

θij(βj) = g−1(x′iβj), (1.2)

where βj is a vector of regression parameters corresponding to the jth component and g

is a link function. While the mixture model in equation (1.1) imposes heterogeneity only

through fj(yi∣θij), the mixing probabilities (i.e., πj) may also be allowed to vary across

individuals.

1.2.1 Poisson and Negative Binomial Mixtures

Finite Poisson mixtures are one of the popular mixture models for count data. In these

models, fj, j = 1,2, ...,m in equation (1.1) has the form

fj(yi∣µij) =
e−µijµyiij
yi!

, (1.3)

where µij is a mean parameter. While earlier applications of Poisson mixtures estimate

model parameters πj and µij as constants, Wang et al.(1996) introduce covariates to model

the latent class mean parameters as

log(µij) = x′iβj, j = 1,2, ...,m, (1.4)

where xi and βj are as de�ned in equation (1.2). The model, which estimates the mixing pa-

rameters as constants, is identi�able when the design matrix is full rank. Wang et al.(1996)
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implement the expectation maximization (EM) algorithm together with quasi-Newton max-

imization to perform estimation.

To account for extra-Poisson dispersion within each latent subpopulation, Ramaswamy,

Anderson and DeSarbo (1994) propose negative binomial mixture models, for which the

component distributions in equation (1.1) are negative binomial. That is,

fj(yi∣θij) =
Γ(yi + αj)
yi!Γ(αj)

(
αj

αj + µij
)
αj

(
µij

αj + µij
)
yi
, (1.5)

where µij is the mean parameter, αj is the dispersion parameter and θij = (µij, αj). Ra-

maswamy, Anderson and DeSarbo (1994) model the mean parameters as functions of co-

variates and estimate the mixing probabilities and dispersion parameters as constants using

the EM algorithm.

1.3 Analysis of Zero-in�ated Counts

Oftentimes, counts collected in various research areas contain high proportions of zeros.

One such area is dental caries research, where counts of decayed, missing and �lled teeth

(dmfs) are increasingly characterized by disproportionately high numbers of zeros (Lewsey

and Thompson, 2004; Mwalili et al., 2008; Preisser et al., 2012; Albert et al., 2014). Be-

cause of the excess number of zero observations relative to what is expected under standard

probability distributions, traditional generalized linear models do not su�ciently explain

variability in such counts. For instance, while the Poisson distribution assumes equality

of means and variances, the variances of zero-in�ated counts are generally larger than the

corresponding means. As a result, Poisson regression models tend to underestimate propor-

tions of zeros and those of large positives when �tted to counts with excess zeros (Lambert,

1992).

Over the past few decades several methods have been proposed for the analysis of zero-

in�ated data (Lambert, 1992; Mullahy, 1986; Heilbron, 1994; Böhning et al., 1999). Most
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of these models assume that counts originate from two latent subpopulations, and can in

general be divided into two categories depending on how they treat the generation of zero

and positive counts from the two latent groups. The �rst category of models, often called

zero-in�ated models (Long et al., 2014), presume that both zero and positive counts arise

from one latent subpopulation according to a standard probability distribution, but extra

zeros come from a second latent subpopulation based a distribution degenerate at zero.

Zero-in�ated Poisson (ZIP) regression is one of such models, and has been increasingly

popular after Lambert (1992) described the data generating processes and applied it to

defects in manufacturing processes. When zero-in�ated counts show variabilities that are

not attributed to excess zeros, the Poisson distribution in ZIP is often replaced by a negative

binomial probability function, resulting in the zero-in�ated negative binomial (ZINB) model.

Hurdle or zero-altered models (Mullahy, 1986) comprise of the second category of estimation

methods for zero-in�ated data, where zero and positive counts are considered to come from

two separate latent subpopulations. In hurdle models, regression parameters are often

speci�ed for the logit of the probability of a count being positive and the mean of the

untruncated version of the distribution assumed for positive counts.

1.3.1 ZIP and ZINB Regression Models

Zero-in�ated Poisson models assume that a count random variable follows a mixture of

a Poisson distribution with a point mass at zero. Observations are thought of as arising

from two di�erent sources: while an `imperfect' or `susceptible' subpopulation gives rise

to zero and positive counts based on a Poisson distribution, a `perfect' or `non-susceptible'

subpopulation produces excess zero counts (Lambert, 1992; Long et al.,2014; Preisser et al.,

2012). In dental caries studies among children, the `non-susceptible' group can be considered

to be the population of children not at risk of caries, from which only zero dmfs counts can

be recorded. On the other hand, children in a `susceptible' or at `caries-risk' population

can have zero or positive dmfs counts (Preisser et al., 2012). Given a sample of size n, ZIP
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assumes that the random variable Yi, i = 1,2, ..., n, takes zero or positive values as follows

(Long et al., 2014).

Yi ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, with probability ψi

Poisson(µi), with probability 1 − ψi
(1.6)

In (1.6), ψi is the probability of being from the `perfect' or `non-susciptible' subpopu-

lation, and µi is the mean of the Poisson distribution corresponding to the `imperfect' or

`susceptible' group. Considering ψi as a mixing probability, the distribution of Yi can be

written in the form of equation (1.1) as

Pr(Yi = k) = ψiI(k = 0) + (1 − ψi)g(k∣µi), k = 0,1,2, ..., (1.7)

where g is the Poisson mass function and I(T ) is an indicator variable taking the value 1

when T is true and the value 0 when T is false. Clearly, when the mixing parameter ψi

is zero, ZIP reduces to the standard Poisson model. By using the logit and the log links,

Lambert (1992) allows the probability of membership in the `perfect' state, ψi, and the

Poisson mean, µi, to depend on covariates as

logit(ψi) = z′iγ and log(µi) = x′iβ (1.8)

In (1.8), zi and xi are q × 1 and p × 1 vectors of covariates for the ith subject, and γ =

(γ1, γ2, . . . , γq) and β = (β1, β2, . . . , βp) are regression parameters. Usually, the set of covari-

ates in zi is a subset of those in xi.

The variance and the marginal mean of a ZIP random variable Yi are, V ar(Yi∣zi,xi) =

µi(1 − ψi) + µ2
iψi(1 − ψi) and E(Yi∣zi,xi) = µi(1 − ψi) (Böhning, 1999; Long et al., 2014).

While the mean and the variance are equal when ψi = 0 (i.e., for standard Poisson models),

the variance is always greater than the mean for zero in�ated counts (i.e., when ψi > 0).
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For problems where ψi and µi are believed to be related, Lambert (1992) speci�es shared

regression coe�cients to model the two latent parameters.

log(µi) = x′iβ and logit(ψi) = τx′iβ, (1.9)

where τ is a parameter to be estimated. Note that the speci�cation in (1.9) reduces the

number of regression parameters by almost half.

To estimate the parameters β and γ in equation (1.8), Lambert (1992) employs the EM

algorithm on a complete data log-likelihood function involving a binary latent variable that

de�nes membership in either of the two latent subpopulations. For the shared parameter

ZIP model in equation (1.9), estimation is performed using Newton-Raphson algorithm.

Zero-in�ated negative binomial models are similarly formulated as ZIP by using a neg-

ative binomial probability mass function g in (1.7). In addition to zero-in�ation, ZINB

models allow for the handling of overdispersion caused by unobserved heterogeneities.

1.4 Models for Bivariate Zero-in�ated Counts

While much of the literature on zero-in�ated counts is focused on univariate outcomes,

studies sometimes involve two or more correlated and zero-in�ated count variables (Divaris

et al., 2012; Li et al., 1999; Wang et al., 2003). When two dependent random variables take

higher proportions of zeros than expected under standard bivariate count distributions,

modeling requires accounting for zero-in�ation and the dependence between the outcomes.

To model counts of occupational injuries, Wang et al.(2003) employ a two-component mix-

ture of a bivariate Poisson distribution with a point mass at (0,0) and perform estimation

using the EM algorithm. Under this model, excess zeros arise from a `non-susceptible' sub-

population with a probability ψ, and with probability 1 − ψ, components of the bivariate

outcome take zero and positive values from a `susceptible' subpopulation according to a

bivariate Poisson distribution. For general multivariate zero-in�ated counts, Li et al.(1999)
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propose mixtures comprising a multivariate distribution degenerate at zero values, a mul-

tivariate Poisson distribution and a number of univariate Poisson distributions. For the

bivariate case, they assume that a zero-in�ated random variable (Y1, Y2) arises either from

a distribution degenerate at (0,0), from a bivariate Poisson distribution, or from a bivariate

distribution with one component degenerate at 0 and the other having a standard Poisson

mass function. That is,

(Y1, Y2) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0),with probability p0

(Poisson(λ1),0),with probability p1

(0,Poisson(λ2)),with probability p2

Bivariate Poisson(λ10, λ20, λ00), with probability p3,

(1.10)

where pk ≥ 0, k = 0,1,2,3, ∑3
k=0 pk = 1, and λ1, λ2, λ10, λ20, λ00 > 0. The bivariate

distribution in (1.10) reduces to the standard bivariate Poisson model for p0 = p1 = p2 = 0.

When λ1 = λ10 + λ00 and λ2 = λ20 + λ00 in equation (1.10), the marginal distributions of Y1

and Y2 become univariate ZIP. That is,

Pr(Yt = k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 − pt − p3) + (pt + p3) exp(−λt), k = 0

(pt + p3) exp(−λt)λ
k
t

k! , k = 1,2, ...
(1.11)

where t = 1,2. Li et al.(1999) employ directional grid search approaches (Powell, 1964) and

methods of moments to obtain maximum likelihood estimates of model parameters.

When covariates are used to model bivariate zero-in�ated Poisson counts, linear predic-

tors are speci�ed for the mean parameters and the mixing probabilities, for example, as

log(λ10i) = x′1iα1, log(λ20i) = x′2iα2, log(λ00i) = x′3iα3, log(p0i/p3i) = x′4iγ0, log(p1i/p3i) =

x′5iγ1 and log(p2i/p3i) = x′6iγ2, where x1i, ..., x6i are vectors of covariates from the ith indi-

vidual, and α1, α2, α3, γ0, γ1 and γ2 are vectors of parameters (Li et al., 1999; Majundar

and Gries 2010). Because the model parameters have latent class interpretations, one has
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to employ post-modeling transformations to estimate the e�ects of covariates on the over-

all population means ν1i = E(Y1i) and ν2i = E(Y2i). The marginal means and the model

parameters can be related by

ν1i = (p1i + p3i)(λ00i + λ10i) =
(ex′1iα1 + ex′3iα3)(1 + ex′5iγ1)
1 + ex′4iγ0 + ex′5iγ1 + ex′6iγ2

(1.12)

ν2i = (p2i + p3i)(λ00i + λ20i) =
(ex′2iα2 + ex′3iα3)(1 + ex′6iγ2)
1 + ex′4iγ0 + ex′5iγ1 + ex′6iγ2

Although ν1i and ν2i could be estimated at �xed covariate values by using equations (1.12),

the quanti�cation of the relationship between covariates and the marginal means with suit-

able variance estimates may be di�cult in practice. In addition, when interest is in deter-

mining whether the e�ects of an exposure on ν1i or ν2i are homogeneous across the levels

of covariates, existing bivariate zero-in�ated models usually do not provide the desired es-

timates as in the case of traditional zero-in�ated models for univariate counts (Long et al.,

2014).

1.5 Inference About the Overall Population

While traditional models for zero-in�ated counts provide �exible frameworks of estima-

tion, regression coe�cients from these methods do not have straightforward interpretations

in explaining the e�ects of covariates on the overall marginal mean count in the sam-

pled population. The limitations of such modeling approaches in quantifying important

population-level parameters has long been acknowledged (Preisser et al., 2012, Long et al.,

2014, Albert et al., 2014). Lambert (1992) discusses the di�culty of predicting changes

in the marginal mean, E(Y ) = (1 − ψ)µ, when an exposure variable increases both ψ and

µ in ZIP models. Shortcomings of the latent coe�cients in explaining exposure e�ects on

population-wide parameters are not limited to marginal mean counts. When interest is in

determining e�ects of an exposure variable on population level parameters such as incidence
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density ratios, it has been indicated that ZIP and ZINB models may not always provide the

desired estimates (Long et al., 2014). For example, consider a clinical trial where the ZIP

regression in equation (1.8) is used to model a zero-in�ated outcome variable with zi = xi.

From the relation νi = µi(1−ψi), where νi = E(Yi∣xi), the overall mean for the ith subject is

νi =
ex
′
iβ

1 + ex′iγ
(1.13)

The incidence density ratio (IDRi) or the ratio of overall means corresponding to a one unit

increase in the jth exposure variable, xij, is (Long et al., 2014),

IDRi =
E(yi∣xij = c + 1, x̃′i = x̃′i)
E(yi∣xij = c, x̃′i = x̃′i)

= eβj
1 + exp(cγj + x̃′iγ̃)

1 + exp((c + 1)γj + x̃′iγ̃)
, (1.14)

where x̃i is the vector of covariates without xij, c is a possible value of xij and γ̃ is the

vector of parameters in the logit model corresponding to x̃i (Preisser et al., 2012; Long

et al., 2014). When γj ≠ 0 in equation (1.14), the estimate of IDRi changes as the values

of the covariates in x̃i change. In other words, ZIP regression parameters do not allow

the estimation of an overall constant incident density ratio when the exposure variable of

interest is included in the logit model (Long et al., 2014).

In the literature, several approaches have been proposed for the estimation of overall

e�ects of explanatory variables on population-level parameters. While many of these meth-

ods involve �tting traditional zero-in�ated models and then using the estimates to describe

the parameters of interest, more recent approaches specify regression coe�cients directly

for the marginal mean.

1.5.1 Estimation Based on Latent Coe�cients

In the analysis of zero-in�ated data, population-wide parameters have traditionally been

estimated by exploiting latent coe�cients obtained from ZIP, ZINB and similar models. Ac-

knowledging the inadequacy of ZIP coe�cients in determining changes in marginal mean
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defect counts as levels of manufacturing settings change, Lambert (1992) estimates the over-

all population mean at a level of a categorical covariate by averaging the model estimated

means across all design points sharing the speci�c level of the covariate. This way, compar-

isons are made among levels of a covariate with regard to the overall mean of manufacturing

defects. Although the method can be employed for problems where all involved predictor

variables are categorical, it may not be appropriate when the ZIP model includes one or

more continuous covariates. In a further attempt to characterize the overall population

mean, Böhning et al.(1999) propose large sample methods to construct (1 − α)100% con�-

dence intervals for the marginal mean, ν, as Ȳ ± z(1−α
2
)

√
V ar(Y )

n , where Ȳ is the observed

mean count, V ar(Y ) is the variance, n is the sample size and z(1−α
2
) is the 1− α

2 quantile of

the standard normal distribution.

Albert et al.(2014) propose two methods of assessing overall population exposure e�ects

in clinical trials and observational studies using estimates from zero-in�ated beta-binomial

and negative binomial models. The �rst method, called average predicted value (APV),

allows to estimate di�erences and ratios of the marginal means for exposed and non-exposed

subjects. However, this approach is not directly applicable when the exposure variables

are continuous and calculation of variances may not be straightforward even for binary

covariates. Another limitation of the method is that distributions need to be assumed for the

covariates. Although average exposure e�ects can be estimated using empirical distributions

of the explanatory variables, the approach may not be generalizable to populations with

other con�gurations of covariates (Preisser et al., 2016). The second method proposed by

Albert et al.(2014) speci�es the log link, instead of the logit, to model the probability of

excess zeros in zero-in�ated negative binomial and beta-binomial regressions. The use of the

log link for ψ allows for the estimation of ratios of means for the exposed and non-exposed

groups that are independent of any of the covariates. However, the log link may not be

appropriate to model ψ, since it may give predicted values greater than 1.
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1.5.2 Marginalized Models

To estimate directly interpretable regression parameters for marginal means of ZIP dis-

tributed counts, Long et al.(2014) propose marginalized zero-in�ated Poisson (MZIP) mod-

els, where regression parameters are speci�ed for the overall population mean as well as

for the probability of being an excess zero. Preisser et al.(2016) extend MZIP models to

handle counts with extra-Poisson dispersion in addition to zero-in�ation, by using the ZINB

likelihood function. As in MZIP, the marginalized zero-in�ated negative binomial (MZINB)

regression provides coe�cients for the e�ects of covariates on the marginal means as well

as for the excess zero probabilities.

Let Yi be a random variable having a ZIP distribution with marginal mean νi and excess

zero probability ψi. The MZIP model relates νi and ψi with covariates as (Long et al., 2014)

logit(ψi) = z′iγ (1.15)

log(νi) = x′iα,

In (1.15), zi and xi are q × 1 and p × 1 vectors of covariates, and the parameters in γ =

(γ1, γ2, ..., γq)′ have the same interpretation as in standard ZIP models. Unlike ZIP models,

however, parameters α = (α1, α2, ..., αp)′ describe heterogeneity in the overall population

mean, instead of the mean count for subjects in the `susceptible' latent class. Since the mean

µi of the Poisson part of ZIP and the overall mean νi are related by νi = (1−ψi)µi = ex
′
iα, to

�nd the MZIP likelihood, Long et al.(2014) replace µi by
νi

1−ψi
in the ZIP likelihood function.

Thus, for n independent subjects, the log-likelihood function for MZIP models is written as

ℓ(γ,α∣y) = −
n

∑
i=1

log(1 + ez′iγ) +
n

∑
i=1
I(yi = 0) log {ez

′
iγ + e−(1+exp(z′iγ)) exp(x′iα)}

+
n

∑
i=1
I(yi > 0){ − (1 + ez

′
iγ)ex′iα + yi log(1 + ez

′
iγ) + yix′iα − log(yi!)}
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The corresponding score equations are (Long et al., 2014),

∂l(α,γ)
∂γ

=
n

∑
i=1
[I(yi = 0)ψi(1 − ψi)

−1(eνi(1−ψi)−1 − νi)
ψi(1 − ψi)−1eνi(1−ψi)−1 + 1

(1.16)

+ ψi(yi − 1) − I(yi > 0)ψi(1 − ψi)−1νi]z′i
∂l(α,γ)
∂α

= −
n

∑
i=1
[ I(yi = 0)νi(1 − ψi)−1
ψi(1 − ψi)−1eνi(1−ψi)−1 + 1

− (yi − νi(1 − ψi)−1)I(yi > 0)]x′i

Long et al.(2014) employ quasi-Newton optimization methods to obtain parameter esti-

mates. The variance covariance matrix of the parameters is obtained by inverting the

expected information matrix. For the case in which the counts are over-dispersed relative

to ZIP, robust standard errors are estimated.

For MZINB models, in addition to the standard regression parameter speci�cations for

ψi and νi as in (1.15), Preisser et al (2016) model ψi by using shared parameters from the

linear predictor of νi as

logit(ψi) = γ0 + γ1(x′iα) (1.17)

log(νi) = x′iα,

where γ0 and γ1 are scalar parameters.

1.6 Missing Data

In the absence of straightforward methods and software to analyze incomplete data, mod-

eling is often done by deleting all cases with missing values on any of the variables (Ibrahim

et al., 2005). However, this approach, known as complete case (CC) analysis, is valid only

when the probability of missingness is independent of any observed and unobserved data.

Even when CC analysis is valid, estimates can be ine�cient if too many observations are

missing (Ibrahim et al., 2005). Other ad-hoc methods of handling missing data include �ll-

ing in plausible values for the missing observations, available case analysis, dummy variable
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adjustments, and variable deletion (Allison, 2002). The use of such methods, however, may

result in biased estimates, reduced e�ciency and model mis-speci�cations (Allison, 2002).

Over the past few decades, much attention has been given to missing data methods for

a wide range of models. In general, such methods work under certain assumptions about

the dependence of the missingness mechanism on observed and missing values of relevant

variables. Based on the nature of missingness, Little and Rubin (2002) group missing data

into three categories: missing completely at random (MCAR), missing at random (MAR)

and not missing at random (NMAR). Under MCAR, missingness is independent of any

observed or unobserved information, and the MAR assumption holds when missingness

is independent of any unobserved data. NMAR has the weakest assumptions among the

three categories, and assumes that the probability of missingness is dependent on missing

data. In maximum likelihood estimation, when data are MAR and the model of interest

and missingness mechanism have separate parameters, missingness is ignorable, meaning

that estimation can be done without modeling the missing data mechanism (Ibrahim et al.,

2005). However, NMAR data require speci�cation of a model for the missingness mecha-

nism as part of the estimation process (Ibrahim et al., 1999, 2005). Maximum likelihood

methods for missing data often estimate model parameters either by directly maximizing

the observed data likelihood or by using the expectation-maximization algorithm on a con-

venient complete data likelihood function (Allison, 2002). However, since computing and

maximizing the observed data likelihoods is often di�cult, many of maximum likelihood

based missing data methods rely on the EM algorithm and related approaches.

1.6.1 EM Algorithm and Monte Carlo EM Methods

The EM algorithm (Dempster, Laird and Rubin, 1977) is a two-step iterative method

of estimation widely used in missing data problems as well as in situations where direct

maximizations of likelihoods are di�cult. EM works by �rst constructing a complete data

likelihood and then iteratively applying the expectation and the maximization steps until
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convergence is attained. While the expectation or E-step of EM computes the expected value

of the complete data log-likelihood conditional on the observed data and current parameter

values, the maximization or M-step maximizes the expected log-likelihood. In situations

where the E-step is di�cult to compute, the Monte Carlo EM (MCEM) algorithm (Wei

and Tanner, 1990) may be employed to estimate the log-likelihood numerically. Ibrahim

et al.(1999) apply the method for missing covariates in parametric models by using samples

obtained from the Gibbs sampler with adaptive rejection sampling (ARS) algorithm (Gilks

and Wild, 1992). Following Ibrahim et al.(1999, 2005), we review the applications of EM

and MCEM methods for missing covariate problems in count models. In the following

discussions, the outcome variable is assumed to be fully observed, but covariates can have

missing values for some of the the study subjects.

Suppose that y = (y1, y2, . . . , yn)′ is a vector of independent count outcomes from n

subjects. For the ith subject, let xi = (xi1, xi2, . . . , xip)′ be a p × 1 vector of covariates.

Because covariates are partially missing for some subjects, Ibrahim et al.(1999, 2005) write

the covariate vector xi as xi = (xobsi ,xmisi ), with xobsi and xmisi representing the observed and

the missing parts of xi, respectively. Using these notations, the observed data vector for the

ith subject is (yi,xobsi , ri), where ri = (ri1, ri2, . . . , rip) is a vector of missingness indicators

for components of xi, de�ned by,

rij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if the jth component of xi is observed.

0, otherwise.
(1.18)

Under MAR, the conditional distribution of ri given the data is a function only of the

observed information and is independent of the missing data. Thus,

Pr(ri∣yi,xobsi ,xmisi ,ϕ)∝ Pr(ri∣yi,xobsi ,ϕ), (1.19)

where ϕ is a vector of parameters. In addition, if ϕ is distinct from the parameters in the
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joint distribution of (yi,xi), missingness is ignorable and estimation can be done based on

the likelihood L from the outcome and the covariates, where L is often written as a product

of the conditional distribution of the outcome given the covariates and the joint distribution

of the covariates as (Ibrahim et al., 1999)

L(ξ,α,γ∣y,xobs,xmis) =
n

∏
i=1
Pr(yi∣xobsi ,xmisi ,α,γ)Pr(xmisi ∣xobsi ,ξ) (1.20)

=
n

∏
i=1
Li(ξ,α,γ∣yi,xobsi ,xmisi ),

where α and γ are parameter of the model that are of primary interest, ξ is a vector of

parameters in the joint distribution of the missing covariates. Note that the conditional

distributions Pr(xmisi ∣xobsi ,ξ) are used in (1.20) since the joint distribution of the covariates

is proportional to the distribution of the missing covariates conditional on the observed

(Ibrahim et al., 1999, 2005). From (1.20), the complete data log-likelihood ℓ(θ∣y,xobs,xmis)

can be written as

ℓ(θ∣y,xobs,xmis) =
n

∑
i=1
ℓ(η∣yi;xobsi ,xmisi ) +

n

∑
i=1
ℓ(ξ∣xmisi ;xobsi ) (1.21)

=
n

∑
i=1
ℓi(θ∣yi,xobsi ,xmisi )

where θ = (α, γ ,ξ), η = (α, γ), ℓ(η∣yi; xobsi , xmisi ) = log(Pr(yi∣xobsi ,xmisi ,η)) and ℓ(ξ∣xmisi ;

xobsi ) = log(Pr(xmisi ∣xobsi ,ξ)).

The observed data log-likelihood, based on which estimation is normally done, is ob-

tained by integrating (or summing) ℓ(θ∣y,xobs,xmis) over the domain of the missing covari-

ates. Such integrals or summations are often di�cult to evaluate and estimation is typically

done using the EM algorithm. In the E-step, EM estimates the expected value of the com-

plete data log-likelihood conditional on current parameter estimates and the observed data,

and maximizes the expected log-likelihood. If the vector of parameter estimates at iteration
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t is θ(t), at the (t + 1)th iteration, the E step of EM computes,

Qi(θ∣θ(t)) = E(ℓc(θ∣yi,xobsi ,xmisi )∣yi,xobsi ,θ(t)). (1.22)

In (1.22), ℓc is the log-likelihood from the complete data. The M-step of EM then maximizes

Q(θ∣θ(t)) = ∑ni=1Qi(θ∣θ(t)) to obtain the parameter estimates at iteration t + 1, and the

process continues until convergence. Values of θ obtained at convergence are maximum

likelihood estimates and the corresponding covariance matrix is commonly obtained using

the method of Louise (1982).

For problems where a direct evaluation of the E-step is di�cult, Monte Carlo EM meth-

ods estimate the expected log-likelihood numerically. At iteration t+1, the MCEM approach

generates Monte-Carlo samples of size, say s, from the conditional distribution of the missing

covariates and estimates Qi(θ∣θ(t)) in equation (1.22) by (Ibrahim et al., 1999),

Qi(θ∣θ(t)) =
1

s

s

∑
j=1
ℓ(θ∣yi,dij,xobsi ) (1.23)

where di1,di2, . . .and ,dis are vectors of Monte-Carlo samples from the conditional distri-

butions of the missing covariates. Ibrahim et al.(1999) generate Monte Carlo samples using

adaptive rejection algorithm with Gibbs sampling for problems where the conditional dis-

tributions Pr(yi∣xobsi ,η(t)) and Pr(xmisi ∣xobsi ,ξ(t)) are log-concave.
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CHAPTER 2: MARGINALIZED MIXTURE MODELS FOR COUNT DATA FROM
MULTIPLE SOURCE POPULATIONS

2.1 Introduction

The analysis of data from populations with unexplained heterogeneity presents special

challenges to researchers. When count data arise from mixtures of unobserved populations,

models based on standard probability distributions are often inadequate to explain observed

variability (Wedel and DeSarbo, 1995; Frühwirth-Schnatter, 2005). For example, in dental

caries research and many other areas, proportions of observations with zero counts are often

higher than expected under the Poisson or negative binomial distributions and regression

models based on these distributions may result in biased estimates and poor predictions. To

account for such excess zeros, Mullahy (1986) and Lambert (1992) proposed zero-in�ated

Poisson (ZIP) regression. ZIP models, which employ two-component mixture distributions,

hypothesize that observed counts arise from one of two latent classes within the source

population: one class provides only zeros and the other produces both zero and non-zero

values. However, the assumption of a model based on `at-risk' and `not-at-risk' latent

classes may not be appropriate in some settings or may provide an inadequate �t (Preisser

et al., 2012). To model counts from heterogeneous populations, Wang et al.(1996) proposed

multi-component Poisson mixture distributions and their approach has been extended to

other �nite mixtures of non-degenerate count distributions. Despite the �exibility of �nite

mixtures for describing highly dispersed count data, parameters from standard mixture re-

gression models are not directly applicable to making inferences about the overall e�ects of

covariates on marginal means of count outcomes (Preisser et al., 2012; Albert et al., 2014).

Even with the application of indirect methods of parameter estimation such as the use of
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post-modeling transformations, there are many instances where latent class model formula-

tions fail to fully explain relationships between covariates and population-wide parameters.

While the importance of the marginal mean as a target of inference in the analysis of

�nite mixtures of counts is well established (Lambert, 1992; Böhning et al., 1999; Preisser

et al., 2012; Albert et al., 2014), marginally-speci�ed mean models for �nite mixtures of

count distributions have more recently been proposed. Within a ZIP likelihood framework,

Long et al.(2014) proposed marginalized zero-in�ated Poisson (MZIP) regression, which

speci�es a two-part model for counts with a set of regression coe�cients for the marginal

mean and, to complete model speci�cation, a second set of regression coe�cients for the

latent parameter de�ning membership in the `excess-zero' class. The marginalized zero-

in�ated negative binomial (MZINB) model (Preisser et al., 2016) extended the MZIP model

to zero-in�ated negative binomial (ZINB) distributions. Todem et al.(2016) described a

general representation of two-part marginalized mean count models including distributions

for bounded counts, e.g., the zero-in�ated beta binomial distribution. All these marginalized

models assume that the count outcomes follow two-component mixtures consisting of a

standard count distribution with a point-mass at zero. Data-generating mechanisms based

on mixtures of non-degenerate count distributions could provide better �ts in the class of

marginalized mixture models for count data.

In this article, we seek to expand the class of marginalized mixture models for zero-

in�ated and other heterogeneous count data to allow for greater model choice with maximum

likelihood estimation, when there is interest in evaluating the e�ects of exposures on the

overall mean count. For counts with excess zeros, we extend the degenerate component of

traditional zero-in�ated models to standard count distributions for more �exible modeling

of the marginal mean. Our motivation comes from a double-blind caries incidence trial

conducted between 1988 and 1992 in Lanarkshire, Scotland, to compare the anti-caries

e�cacy of three toothpaste formulations in children. In this trial, a total of 4294 children

ages 11-12 were randomized to either sodium �uoride or sodium mono�uorophosphate or
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the combination of sodium �uoride and sodium trimetaphosphate (Stephen et al., 1994;

Preisser et al., 2013). The outcome variable of interest was the number of new decayed,

missing and �lled surfaces (DMFS) and dental exams were performed at baseline and after 1,

2 and 3 years. Because the DMFS counts exhibit many zeros, Poisson or negative binomial

regression is not appropriate to model the counts. We consider marginalized, two-component

�nite mixture models to obtain direct inference about the relationship between toothpaste

formulation and the marginal mean caries count in the trial population. Section 2.2 reviews

zero-in�ated mixture distributions and marginalized zero-in�ated models, while Section 2.3

brie�y discusses traditional �nite mixture models. Section 2.4 presents two di�erent two-

component marginalized mixture models involving non-degenerate distributions. Simulation

studies and an application of the proposed models are discussed in Sections 2.5 & 2.6

respectively. Concluding remarks follow in Section 2.7.

2.2 Models for Zero-in�ated Data

2.2.1 Zero-in�ated Poisson and Negative Binomial Models

Traditional zero-in�ated models assume that counts arise from a two-component mixture

of a standard count distribution with a distribution degenerate at zero. Under such models,

counts are generated either from a `non-susceptible' or `perfect' state that always gives

zeros, or from a `susceptible', `imperfect' state that produces both zero and positive counts

according to a standard count data distribution (Lambert, 1992; Long et al.,2014; Preisser

et al., 2012). Lambert (1992) introduce the zero-in�ated Poisson regression and applied it

for modeling defects in manufacturing processes, where defects are assumed coming from a

`perfect' state with a probability π or an `imperfect' state with a probability 1 − π. While

counts from the `perfect', `no-defect' state are always zero, those from the `imperfect' state

follow a Poisson distribution. The probability mass function of a random variable having a
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zero-in�ated Poisson or negative binomial distribution can be written as

Pr(Yi = k) = πiI(k = 0) + (1 − πi)g(k∣θi), k = 0,1,2, ..., (2.24)

where the mixing parameter πi is interpreted as the probability of a count being from the

`non-susceptible' or `not-at-risk' latent class, I(T ) is an indicator variable taking 1 when T

is true, and 0 when T is false; g is a Poisson or negative binomial mass function, and θi is

the vector of parameters in g. When g is the Poisson mass function, θi is equal to the mean

µi of the distribution, and for a negative binomial probability mass function g, θi = (µi, α),

where µi is the mean of the distribution and ϕ is the dispersion parameter. In this paper

we will use the following parameterization for the probability mass function of a negative

binomial distribution with mean µ and dispersion parameter α.

f(y∣µ,α) = Γ(y + α)
y!Γ(α)

( α

α + µ
)
α

( µ

α + µ
)
y

, where y = 0,1, . . . . (2.25)

In zero-in�ated models, regression parameters are speci�ed for the mixing probability πi

and the mean of the assumed standard distribution µi, by using the logit and the log links

as in equation (3) of Preisser et al.(2016), as

logit(πi) = z′iγ and log(µi) = x′iξ, (2.26)

where zi and xi are q × 1 and p × 1 vectors of covariates for the ith subject, and γ =

(γ1, γ2, . . . , γq)′ and ξ = (ξ1, ξ2, . . . , ξp)′ are regression parameters.

For n independent observations, the ZIP likelihood function is

L(ξ,γ∣y) =
n

∏
i=1
{1 + e(z′iγ)}−1 {e(z′iγ) + e− exp(x′iξ)}I(yi=0) {e

− exp(x′iξ)ex
′
iξyi

yi!
}
I(yi>0)

(2.27)
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The corresponding likelihood function for the ZINB model can be written as

L(ξ,γ∣y) =
n

∏
i=1
{1 + e(z′iγ)}−1 {e(z′iγ) + ( α

α + ex′iξ)
)
α

}
I(yi=0)

(2.28)

×
n

∏
i=1
{Γ(yi + α)
yi!Γ(α)

( α

α + ex′iξ)
)
α

( ex
′
iξ

α + ex′iξ)
)
yi
}
I(yi>0)

Since interpretations of parameters γ and ξ in ZIP and ZINB models apply to the two

latent subpopulations, they do not directly describe the overall population mean. Although

the overall mean, E(Yi) = νi, for ith subject could be estimated from such models by

νi =
ex
′
iξ

1 + ez′iγ
(2.29)

and transformations such as the delta method could be applied to estimate the correspond-

ing variance, it is not always easy to understand the behavior of νi. In particular, determin-

ing the e�ects of an exposure variable on incidence density ratios is challenging especially

when the linear predictor for the mixing proportions contain some of the covariates in the

Poisson mean model (Long et al., 2014).

2.2.2 Marginalized ZIP and ZINB Models

To estimate the overall e�ects of covariates on the population mean, marginalized

zero-in�ated Poisson (Long et al., 2014) and marginalized zero-in�ated negative binomial

(Preisser et al., 2016) models specify parameters for the marginal mean νi = E(yi) = (1−πi)µi

and the probability of being an excess zero (i.e., πi) as

log(vi) = x′iβ and logit(πi) = z′iγ, (2.30)

where β = (β1, β2, ..., βp) is a vector of regression parameters for νi, and the parameters in

γ have the same latent class interpretations as in ZIP and ZINB. The MZIP and MZINB
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likelihood functions are obtained by replacing µi by
νi

1−πi in the ZIP and ZINB likelihoods,

respectively.

2.3 Finite Mixture Models

Finite mixture distributions have been used to model counts obtained from heteroge-

neous populations (Wang et al., 1996; Morgan et al., 2014; Schlattmann et al., 2009). In

the �nite mixture model, the source population is assumed to be a partition of latent sub-

populations; with a probability πij, the count random variable Yi corresponding to the ith

individual takes a value from the jth subpopulation according to a distribution speci�c to

the subpopulation. An m component mixture distribution can be de�ned as (Wedel and

DeSarbo, 1995; Frühwirth-Schnatter, 2005)

Pr(Yi = yi∣π,θij) =
m

∑
j=1
πjfj(yi∣θij), (2.31)

where the components f1, f2, ..., fm are probability mass functions of known distributions,

θij is the vector of parameters in fj, and π = (π1, π2..., πm)′ is a vector of mixing proba-

bilities with 0 ≤ πj ≤ 1 and ∑mj=1 πj = 1. While the mixture distribution for zero-in�ated

counts in equation (2.24) allows mixing probabilities (i.e., πi) to vary across individuals,

conventional �nite mixture models assume a constant probability, πj, corresponding to the

jth subpopulation and impose heterogeneity through fj(yi∣θij).

The Poisson mixture distribution, where

fj(yi∣µij) =
e−µijµyiij
yi!

with µij being the mean of the jth component distribution, is a popular �nite mixture model

for count data. In �nite Poisson mixture regression, the mean µij is modeled as a function of

covariates using the log link. Wang et al.. (1996) discuss that such models are identi�able
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for full rank design matrices. While �nite mixture models enable �exible modeling of counts

from heterogeneous populations, their parameters have latent class interpretations. Such

coe�cients do not enable one to make direct inferences of the e�ects of covariates on the

overall population mean (Roeder et al., 1999; Min and Agresti, 2005).

2.4 Marginalized Finite Mixture Models

In this section we propose methods of estimating regression parameters for the overall

population mean of zero-in�ated and other types of heterogeneous counts by employing

non-degenerate mixture distributions. With the aim of expanding the pool of marginalized

models for such counts, we consider data generating mechanisms based on mixtures of two

Poissons (Pois-Pois) and a negative binomial and a Poisson (NB-Pois) distributions.

2.4.1 Models

The probability mass function (pmf) of a random variable with a Pois-Pois mixture

distribution can be written as

f(yi∣π,µ1i, µ2i) = πfP1(yi∣µ1i) + (1 − π)fP2(yi∣µ2i), (2.32)

where π is a mixing probability,and fP1 and fP2 are Poisson mass functions with corre-

sponding mean parameters µ1i and µ2i. Similarly, a NP-Pois random variable has a pmf

given by,

f(yi∣πi, µ1i, µ2i, α) = πfP (yi∣µ1i) + (1 − π)fNB(yi∣µ2i, α). (2.33)

In (2.33), fP is a Poisson pmf with mean parameter µ1i and fNB a negative binomial pmf

with mean and dispersion parameters µ2i and α, respectively. The marginal mean, νi, of a

random variable Yi having either of the two mixture distributions can be written as

νi = πµ1i + (1 − π)µ2i. (2.34)
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Solving for µ2i in equation (2.34) gives

µ2i =
νi − πµ1i

1 − π
. (2.35)

To estimate a model for νi, the likelihood functions of Pois-Pois and NB-Pois mixture

models can be written as functions of νi using equation (2.35) and replacing µ2i by a

linear function of the marginal mean. Thus, marginalized Poisson-Poisson (MPois-Pois) and

marginalized NB-Poisson (MNB-Pois) models de�ned immediately below can be estimated

utilizing the pmfs in equations (2.36) and (2.37), respectively.

fMPP (yi∣π,µ1i, νi) = π
e−µ1iµyi1i
yi!

+ (1 − π)
e−

νi−πµ1i
1−π [νi−πµ1i

1−π ]
yi

yi!
(2.36)

fNBP (yi∣π,α,µ1i, νi) = π
e−µ1iµyi1i
yi!

(2.37)

+ (1 − π)Γ(yi + α)
yi!Γ(α)

( α

α + νi−πµ1i
1−π

)
α

(
νi−πµ1i
1−π

α + νi−πµ1i
1−π

)
yi

The MPois-Pois model is de�ned through the speci�cation of generalized linear models

for the relationship of covariates to νi and µ1i. Given a p × n design matrix X, a model for

νi is speci�ed as

log(νi) = x′iβ, (2.38)

where xi is the ith column of X and β is a p × 1 vector of parameters. Although π, µ1i

and α are considered nuisances that are not of study interest, these parameters need to

be modeled to facilitate maximum likelihood estimation of regression coe�cients in the

marginal mean model. The logarithm of µ1i is modeled by using a linear predictor that

involves covariates of interest as in standard �nite mixture Poisson models. The nuisance
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parameter π is modeled as a constant using the logit link. Thus, the complete marginalized

Pois-Pois (MPois-Pois) model can be written as in equation (2.39).

log(νi) = x′iβ (2.39)

log(µ1i) = z′iξ

logit(π) = ρ,

where xi and zi are vectors of covariates, β and ξ are vectors of regression coe�cients, and

−∞ < ρ <∞ is a constant.

Marginalized NB-Pois models require estimation of the dispersion parameter (i.e., α) in

addition to the regression coe�cients in equation (2.39). We specify a model for α as

log(α) = −τ. (2.40)

The link functions in equations (2.39) and (2.40) correspond to νi > 0, µ1i > 0, 0 < π < 1

and α > 0. For n independent count random variables Y1, Y2, ..., Yn with corresponding

realizations y1, y2, ..., yn, the likelihood function for MPois-Pois models is given by (2.41).

L(ρ,β,ξ∣y) =
n

∏
i=0

1

(1 + eρ)yi!
{eρ exp(−ez′iξ)ez′iξyi + e−η(ρ,β,ξ;xi,zi)η(ρ,β,ξ;xi,zi)yi} , (2.41)

with

η(ρ,β,ξ;xi,zi) = ex
′
iβ(1 + eρ) − eρez′iξ. (2.42)

Similarly, the likelihood function for marginalized NB-Pois (MNB-Pois) models can be

speci�ed as
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L(ρ, τ,β,ξ∣y) =
n

∏
i=0

Γ(yi + e−τ)
(1 + eρ)Γ(yi + 1)Γ(e−τ)

( e−τ

e−τ + η(ρ,β,ξ;xi,zi)
)
e−τ

(2.43)

×
n

∏
i=0
( η(ρ,β,ξ;xi,zi)
e−τ + η(ρ,β,ξ;xi,zi)

)
yi

+
n

∏
i=0

eρ exp(−ez′iξ)ez′iξyi
(1 + eρ)yi!

,

where η(ρ,β,ξ;xi,zi) has the same interpretation as in equation (2.42).

2.4.2 Estimation

With carefully chosen starting parameter values, regression coe�cients in MPois-Pois

and MNB-Pois models can be estimated by the use of quasi-Newton optimization. While

MZIP or MZINB (Long et al., 2014; Preisser et al.,2016) model estimates can be used as

starting values of coe�cients in the marginal mean model (i.e., the βs), starting values for

coe�cients in the latent parameter models (i.e.,π, µi, and α) may be obtained from two-

component Poisson-Poisson and negative binomial-Poisson models. Following Ramaswamy

et al.(1994) and Leisch (2004), we employ EM algorithm to �nd starting values for param-

eters ρ, ξ and τ in MNB-Pois models. The same approach can be applied for MPois-Pois

models.

2.4.3 Algorithm for Finding Starting Values of Parameters

Consider a random variable Yi that takes a value yi according to the two-component NP-

Pois mixture model in equation (2.33). Latent class regression coe�cients can be speci�ed
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for parameters π, µ1i, µ2i and α as

log(µ1i) = z′iγ (2.44)

log(µ2i) = x′iζ

π = π

log(α) = −τ,

where ζ is a vector of parameters and all the other parameters and variables are as described

in equations (2.39) and (2.40). In line with standard mixture models (Ramaswamy et al.,

1994; and Leisch, 2004), the logit link is not used to model π in equation (2.44); once π is

estimated, a starting value for ρ in the marginal mean model can be obtained by setting

ρ = logit(π).

As a complete data likelihood function is needed to implement EM algorithm, we de�ne

an indicator variable Ui corresponding to the ith subject as (Ramaswamy et al., 1994; and

Leisch, 2004)

Ui =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if subject i belongs to subpopulation 1

0, if subject i belongs to subpopulation 2
(2.45)

Thus, Ui has a Bernoulli distribution with parameter π.

Pr(Ui = ui∣π) = πui(1 − π)1−ui , ui = 0,1.

The random variable (Yi, Ui) contains an observed outcome Yi and a missing variable

Ui, and the contribution of (Yi, Ui) to the complete data likelihood is given by,

Lic(π,γ,ζ, τ ∣ui, yi,xi,zi) = Pr(Yi = yi∣γ,ζ, τ,xi,zi;Ui = ui)Pr(Ui = ui∣π) (2.46)

= [πfP (yi∣γ,zi)]
ui
[(1 − π)fNB(yi∣ζ, τ,xi)]

1−ui
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The likelihood function Lc from n independent counts is the product of each likelihood

in equation (2.46). That is (Ramaswamy et al., 1994),

Lc(π,γ,ζ, τ ∣u,y,x,z) =
n

∏
i=0
[πfP (yi∣γ,zi)]

ui
[(1 − π)fNB(yi∣ζ, τ,xi)]

1−ui

.
(2.47)

The log-likelihood function is given by

ℓc(π,γ,ζ, τ ∣u,y,x,z) =
n

∑
i=0
[ui logit(π) + log(1 − π)] +

n

∑
i=0
ui log(fP (yi∣γ,zi)) (2.48)

+
n

∑
i=0
[(1 − ui)log(fNB(yi∣ζ, τ,xi))]

Given initial parameter values θ(0) = (π(0),γ(0),ζ(0), τ (0)), the E step of EM computes the

expected value of ℓc conditional on the observed variables and θ(0).

E(ℓc(π,γ,ζ, τ ∣u,y,x,z)∣θ(0),y,x,z)) =
n

∑
i=0
[E(ui∣θ(0), yi,xi,zi) logit(π) + log(1 − π)]

+
n

∑
i=0
E(ui∣θ(0), yi,xi,zi) log(fP (yi∣γ,zi))

+
n

∑
i=0
[log(fNB(yi∣ζ, τ,xi))(1 −E(ui∣θ(0), yi,xi,zi))]

(2.49)

It can be shown that (Ramaswamy et al., 1994)

E(ui∣θ(0), yi,x,z) =
π(0)fP (yi∣γ,zi)

π(0)fP (yi∣γ,zi) + (1 − π(0))fNB(yi∣ζ, τ,xi)
(2.50)

≡ P (0)i
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Thus, the M step maximizes,

E(ℓc(π,β,ζ, τ ∣u,y,x,z)∣θ(0),y,x,z)) =
n

∑
i=0
[P (0)i logit(π) + log(1 − π)] (2.51)

+
n

∑
i=0
P
(0)
i log(fP (yi∣γ,zi))

+
n

∑
i=0
[log(fNB(yi∣ζ, τ,xi))(1 − P (0)i )]

= ℓπ + ℓγ + ℓ(ζ,τ)

To obtain the next estimates in the M step, the three components ℓπ, ℓγ and ℓ(ζ,τ) of the

expected log-likelihood in (2.51), can be optimized separately. Maximizing ℓπ with respect

to π gives (Ramaswamy et al., 1994)

π(1) =
n

∑
i=0

P
(0)
i

n
.

The remaining two components of the expected log-likelihood (i.e., ℓγ and ℓ(ζ,τ)) cor-

respond to weighted log-likelihoods of generalized linear models and estimation can be

performed separately to obtain the next set of parameters γ(1), ζ(1) and τ (1). Utilizing

the parameters (π(1),β(1),ζ(1), τ (1)) estimated in the �rst step, EM again computes and

optimizes the expected log-likelihood and continues iterations between the two steps until

convergence. The NB-Poisson mixture model estimates of π,γ and τ at convergence are

then employed as starting values for parameters ρ = logit(π), ξ and τ respectively, in the

MNB-Pois model.

2.5 Simulation Study

Simulation studies were performed to examine the properties of MPois-Pois and MNB-

Pois models for various sample sizes. Counts with Pois-Pois and NB-Pois mixture distri-

butions were generated from the probability mass functions in equation (2.36) and (2.37),

32



where π, µ1i, νi and α are determined from

log(νi) = x′iβ = β0 + β1x1i + β2x2i + β3x3i (2.52)

log(µ1i) = z′iξ = ξ0 + ξ1x1i + ξ2x2i + ξ3x3i

logit(π) = ρ,

log(α) = −τ

with xi = zi and x1i ∼ Poisson(2)/3, x2i ∼ exp(1), x3i ∼ Benoulli(0.4), β0 = 1.5, β1 = −0.1,

β2 = −0.2, β3 = 0.5, ξ0 = 1.5, ξ1 = −0.5, ξ2 = −0.5 , ξ3 = 1, ρ = −0.4 and τ = −0.5. Using

these speci�cations, samples of sizes 100, 200, 500 and 1000 were generated correspond-

ing to marginalized Pois-Pois and NB-Pois models. Four marginalized models, namely,

MPois-Pois, MNB-Pois, MZIP and MZINB models were then �tted to the data, where

each simulation was repeated 10,000 times. To estimate Type I error rates of testing

H0 ∶ β1 = 0 vs H1 ∶ β1 ≠ 0, all the simulations were repeated by generating data using

β1 = 0, but keeping all the remaining parameter and covariate values the same as described

previously. For each of the four models, the Type I error rates were calculated as the pro-

portion of 10,000 models that converged and estimated a p-value from two-sided Wald tests

of less than 0.05 for β1.

Table 2.1 shows that for all sample sizes (i.e., 100, 200, 500 and 1000), estimates of β1,

β2 and β3 from the MPois-Pois model have low biases when the true model is MPois-Pois,

and that the biases tend to decrease when the sample sizes increase. In these simulations,

the MNB-Pois, MZIP and MZINB models also have low biases. From Table 2.2, it can be

seen that the MPois-Pois model estimates Type I error rates for β1 close to 0.05, but that

MNB-Pois, MZIP and MZINB models tend to over-estimate the error rates when the true

model is MPois-Pois. For such data, the MPois-Pois model estimated coverages of 95%

con�dence intervals for β1, β2 and β3 are in general close to the nominal value, particularly

when the sample sizes are 200, 500 and 1000 (Table 2.3). In the simulations, over 96% of
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MNB-Pois models converged, but convergence rates for the remaining marginalized models

range from 88.0% to 90.2% for MNB-Pois, from 75.9% to 98.4% for MZIP, and from 72.0%

to 96.6% for the MZINB models.

When the data are generated from MNB-Pois models, Table 2.5 shows that the MNB-

Pois model gives low percent relative median biases for β1, β2 and β3, and the biases appear

to decrease as sample sizes increase. The corresponding estimates from the MZINB model

also have low biases, but those from MPois-Pois and MZIP models are generally higher. In

addition, the performance of the true MNB-Pois model with regard to Type I error rates

(for β1) and coverages of 95% con�dence intervals (for β1, β2 and β3) is superior to the other

three marginalized models (Tables 2.6 and 2.7, respectively) for larger sample sizes. Overall,

the simulation results indicate that when the true model is MPois-Pois or MNB-Pois, the

model estimates parameters with small biases, Type I errors close to the assumed rate and

coverages of 95% con�dence intervals near 95% for large sample sizes.

2.6 Application to a Caries Incidence Trial

The methods described in this paper were applied to the Lanarkshire caries incidence

trial brie�y discussed in Section 2.1. A total of 4294 children ages 11-12 were randomized

to either sodium �uoride (NaF), sodium �uoride plus sodium trimetaphosphate (NaFTMP)

or sodium mono�uorophosphate (SMFP) and dental exams were performed at baseline and

after 1, 2 and 3 years. The analysis was based on 3412 children followed up until year 2

and the response variable of interest was the number of new decayed, missing and �lled

surfaces (DMFS). In addition to treatment allocation, baseline caries (bc: 1= high, 0 =

low), baseline calculus (calc:1=yes, 0= no) and the interaction of the two (bc_calc) were

considered as explanatory variables. High baseline caries values correspond to at least one

decayed, missing or �lled interior tooth or premolar, and a baseline calculus value of `1'

refers to the existence of calci�ed deposits on the teeth formed by the continuous presence

of dental plaque (Stephen et al., 1994; Preisser et al., 2013). An important feature of the
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data is the large number of zero counts in the outcome variable, as 658 (19.28 %) of the

3412 children had zero DMFS counts (Figure 2.1). Since the number of zeros is much higher

than what is expected under standard count probability mass functions (such as the Poisson

and negative binomial), regression models based on these distributions may provide biased

estimates and poor predictions. Marginalized models, however, account for zero-in�ation

and enable the estimation of treatment e�ects on DMFS counts in the overall population.

We applied each of the two mixture distributions discussed in this article (i.e., Pois-Pois

and NB-Pois mixtures) to model the marginal mean of DMFS. In each model, the marginal

mean νi of DMFS and the mean parameter in a Poisson part of Pois-Pois and NB-Pois

mixtures (i.e, µ1i) are related to the explanatory variables of interest as follows.

log(νi) = β0 + β1bci + β2calci + β3bc_calci + β4NaFi + β5NaFTMPi (2.53)

log(µ1i) = ξ0 + ξ1bci + ξ2calci + ξ3bc_calci

where bci is baseline caries from the ith child, calci is baseline calculus, bc_calci is the

interaction of bci and calci, NaFi = 1 if the child was given sodium �uoride, andNaFTMPi =

1 if the child was randomized to the NaFTMP group with children in the SMFP group

making up the reference treatment category.

To model the mixing probability π and the reciprocal of the dispersion parameter α

(for the NB-Pois model), only intercepts were speci�ed using the logit and the negative log

links, respectively.

logit(π) = ρ (2.54)

log(α) = −τ.

For comparisons, MZIP and MZINB models were also �tted to the data by employing

the same covariates as in equation (2.53) to model the marginal mean and the probability
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of excess zeros.

Table 2.9 summarizes the estimated log-likelihood and AIC values from the the four

marginalized models together with incidence rate ratios for the NaF and NaFTMP groups

relative to the SMFP group. The estimated regression coe�cients and standard errors for

the marginal mean part of each of the four marginalized models are presented in Table 2.10.

Based on the AIC criteria, the MNB-Pois (AIC=17192.9) provides the best �t to the data

compared to the other three models. The MZINB model has the next lowest AIC value and

appears to give a good prediction of observed DMFS proportions as the MNB-Pois model

(Figure 2.2).

Based on the best-�tting model (i.e., MNB-Pois), the estimated incidence density ratio of

a child in the NaF group is 0.942 CI (0.874, 1.015), relative to children with the same baseline

status of caries and calculus who were assigned to SMFP. The corresponding incidence

density ratio for children in the NaFTMP group is 0.970 CI (0.884, 1.063). Thus, children

in the NaF and NaFTMP groups had a decrease in the marginal mean DMFS count by

5.5% and 3.0%, respectively, compared to children with the same baseline characteristics

who were assigned to the SMFP group. However, the associations are not signi�cant since

the con�dence intervals of the two incidence density ratios include 1.

2.7 Discussion

We proposed two-component mixture distributions to model marginal means of counts

generated from heterogeneous populations. To estimate the e�ects of exposure variables on

the overall population mean count, we specify regression parameters directly to the mean

and perform estimation using maximum likelihood methods. The resulting model param-

eters have straightforward interpretations in describing exposure e�ects on the marginal

mean. The two proposed mixture distributions generalize the ZIP and ZINB distributions

and can be applied to a wide range of overdispersed outcomes. For zero-in�ated counts, the
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proposed method expands the family of two-part marginalized regression models by provid-

ing alternatives to MZIP and MZINB regression. The merit of each model in the larger class

of alternative marginalized models is then judged based on goodness of �t considerations.

Because our main interest is in modeling marginal means of counts, model parameters that

are not of our primary interest are allowed to depend on covariates or none whatsoever,

to complete speci�cation of the likelihood function. This provides for model parsimony as

needed while allowing all the relevant covariates to be estimated in the overall mean model.

Simulations indicate that when the true model is speci�ed, each of the proposed marginal-

ized mixture model provides low biases, Type I errors and con�dence interval coverages close

to the nominal levels. The models were also applied to a randomized trial aimed at com-

paring the anti-caries e�cacy of three toothpaste formulations in children ages 11-12. Since

the counts in this trial (i.e., number of decayed and �lled tooth surfaces) are zero for a large

proportion of children, traditional count models such as Poisson regression do not �t the

data su�ciently. Conventional zero-in�ated models �tted to the data also have limitations

in that the estimated parameters are interpreted in terms of latent classes representing

children `at-risk' and `not-at-risk' for dental caries. Parameter estimates from two-part

marginalized count models are directly interpretable and are also easily employed to com-

pute incidence density ratios for the exposure e�ect of the main exposure variables and the

other covariates. The models are compared with each other and with MZIP and MZINB

model �ts based on the AIC goodness of �t criteria. Comparisons of the new models with

each other and with MZIP and MZINB models show that the MNB-Pois model has the

best �t, as evidenced by a smaller AIC value. The proposed marginalized mixture modeling

framework provides a wide range of alternatives to estimate exposure e�ects on marginal

means of counts generated from heterogeneous populations. The methods are straightfor-

ward and can be implemented in most statistical softwares. Future research could extend

the marginalized mixture models to allow the mixing probabilities to depend on covariates

as well as to accommodate longitudinal data.
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Table 2.1: Percent relative median biases of estimates of β1, β2 and β3 from marginalized
mixture models �tted to data generated from the MPois-Pois model with 10,000 replications.

Sample Size Parameter MPois-Pois MNB-Pois MZIP MZINB
β1 -2.04 0.56 1.40 0.97

100 β2 0.08 1.54 -3.11 -3.45
β3 -0.70 -0.33 -0.61 -0.74

β1 -0.68 1.34 1.70 1.89
200 β2 -0.69 0.62 -2.64 -2.65

β3 -0.29 0.06 -0.43 -0.41

β1 -0.87 0.07 -0.36 -1.18
500 β2 0.11 0.78 -1.51 -1.44

β3 -0.14 0.19 -0.16 -0.11

β1 -0.40 0.43 -0.37 -0.64
1000 β2 0.27 0.88 -1.43 -0.91

β3 0.06 0.22 -0.08 -0.07
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Table 2.2: Type I error rates for the estimate of β1 from marginalized models �tted to data
generated from the MPois-Pois model with 10,000 replications.

Sample Size MPois-Pois MNB-Pois MZIP MZINB
100 0.068 0.073 0.102 0.070
200 0.067 0.069 0.106 0.072
500 0.060 0.065 0.112 0.073
1000 0.054 0.061 0.112 0.066

Table 2.3: Coverages of 95% con�dence intervals for estimates of β1, β2 and β3 from
marginalized models �tted to data generated from the MPois-Pois model with 10,000 repli-
cations.

Sample Size Parameter MPois-Pois MNB-Pois MZIP MZINB
β1 93.7 93.8 91.3 93.4

100 β2 93.2 92.9 90.9 92.8
β3 95.2 95.1 92.9 94.7

β1 94.1 94.1 91.2 93.8
200 β2 93.3 93.2 90.9 92.9

β3 95.1 95.2 92.6 94.9

β1 94.1 93.9 90.7 93.5
500 β2 94.4 93.9 90.5 93.1

β3 94.9 94.9 92.0 94.8

β1 94.7 94.4 90.9 93.9
1000 β2 94.7 93.8 90.8 93.1

β3 95.0 94.9 92.1 95.0
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Table 2.4: Percentages of converged marginalized models �tted to data generated from the
MPois-Pois model with 10,000 replications.

Sample Size MPois-Pois MNB-Pois MZIP MZINB
100 96.2 88.2 75.9 72.0
200 97.2 90.2 87.0 82.6
500 98.3 90.0 95.0 94.2
1000 99.3 88.0 98.4 94.6

Table 2.5: Percent relative median biases of estimates of β1, β2 and β3 from marginalized
mixture models �tted to data generated from the MNB-Pois model with 10,000 replications.

Sample Size Parameter MPois-Pois MNB-Pois MZIP MZINB
β1 6.80 11.95 23.51 13.72

100 β2 4.00 4.44 7.95 1.89
β3 -4.35 -0.25 1.40 0.88

β1 -14.85 4.57 20.12 7.41
200 β2 -1.12 2.02 5.11 0.07

β3 -5.44 0.33 1.49 0.36

β1 -29.97 -0.75 11.79 0.73
500 β2 -3.90 0.62 2.81 0.14

β3 -7.66 0.46 1.52 0.61

β1 -34.68 0.00 10.34 2.39
1000 β2 -4.75 0.87 2.63 0.39

β3 -10.13 -0.19 0.97 -0.01

Table 2.6: Type I error rates for the estimate of β1 from marginalized models �tted to data
generated from the MNB-Pois model with 10,000 replications.

Sample Size MPois-Pois MNB-Pois MZIP MZINB
100 0.262 0.103 0.271 0.079
200 0.255 0.064 0.272 0.073
500 0.232 0.053 0.273 0.074
1000 0.240 0.049 0.273 0.072
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Table 2.7: Coverages of 95% con�dence intervals for estimates of β1, β2 and β3 from
marginalized models �tted to data generated from the MNB-Pois model with 10,000 repli-
cations.

Sample Size Parameter MPois-Pois MNB-Pois MZIP MZINB
β1 76.9 89.7 77.4 92.4

100 β2 77.8 89.6 79.6 91.8
β3 83.0 92.0 79.4 93.7

β1 78.1 93.0 77.6 92.3
200 β2 78.9 92.7 79.1 91.8

β3 83.9 93.5 80.0 94.0

β1 78.1 94.2 77.0 92.2
500 β2 80.8 94.5 78.6 91.3

β3 80.2 94.5 79.7 93.9

β1 76.2 95.0 77.5 93.1
1000 β2 81.5 95.0 78.9 91.6

β3 71.6 95.3 80.7 94.6

Table 2.8: Percentages of converged marginalized models �tted to data generated from the
MNB-Pois model with 10,000 replications.

Sample Size MPois-Pois MNB-Pois MZIP MZINB
100 92.0 91.0 97.4 85.3
200 96.8 96.9 99.7 87.3
500 97.7 99.8 100.0 90.3
1000 99.4 100.0 100.0 91.4
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Figure 2.1: Distribution of DFMS counts after 2 years for 3412 children ages 11-12 partici-
pating in the Lanarkshire trial.
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Figure 2.2: Predicted and observed proportions of DMFS count increments after 2 years in
the Lanarkshire trial.
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Table 2.9: Estimated log-likelihood, AIC and incidence density ratios (95% CI) comparing
NaF and NaFTMP with SMFP in the Lanakshire trial, based on four marginalized models.

IDR (95% CI)
Model -2Log-lik. AIC NaF NaFTMP
MPois-Pois 18074.2 18096.2 0.989 (0.964, 1.015) 1.008 (0.977, 1.039)
MNB-Pois 17168.9 17192.9 0.942 (0.874, 1.015) 0.970 (0.884, 1.063)
MZIP 20413.4 20433.4 0.933 (0.900, 0.967) 0.939 (0.898, 0.981)
MZINB 17190.1 17212.1 0.948 (0.880, 1.021) 0.977 (0.892, 1.070)
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Table 2.10: Marginal mean model Estimates and standard errors from MPois-Pois, MNB-Pois, MZIP and MZINB models for
the Lanarkshire caries trial.

MPois-Pois MNB-Pois MZIP MZINB
Variable Estimate SE Estimate SE Estimate SE Estimate SE
Marginal mean model

Intercept 1.228 0.026 1.190 0.037 1.200 0.024 1.187 0.036
bc 0.683 0.030 0.784 0.040 0.784 0.026 0.783 0.040
calc -0.226 0.042 -0.148 0.052 -0.151 0.038 -0.151 0.050
bc_calc -0.067 0.062 -0.112 0.079 -0.108 0.053 -0.109 0.080
NaF -0.011 0.013 -0.060 0.038 -0.069 0.018 -0.053 0.038
NaFTMP 0.008 0.016 -0.031 0.047 -0.063 0.022 -0.023 0.046

Latent class mean model Zero-in�ation model

Intercept 2.041 0.027 -1.831 0.758 -1.124 0.064 -1.938 0.154
bc 0.529 0.031 3.886 0.777 -1.315 0.131 -2.237 0.722
calc -0.225 0.042 0.568 0.806 0.032 0.112 -0.137 0.263
bc_calc -0.042 0.061 -0.610 0.831 0.216 0.259 -0.087 1.917
Mixing probability and dispersion parameter model estimates

ρ -0.751 0.056 -1.863 0.175
τ -0.327 0.041 -0.047 0.055
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CHAPTER 3: MARGINALIZED BIVARIATE ZERO-INFLATED POISSON
REGRESSION

3.1 Introduction

Counts with excess zeros are often encountered in health research and many other ar-

eas. While much of the literature on zero-in�ated counts is focused on univariate outcomes,

studies sometimes involve two or more correlated and zero-in�ated count variables (Divaris

et al.2012; Li et al., 1999; Wang et al., 2003). When two dependent count outcomes take

higher proportions of zeros than expected under standard bivariate count distributions,

modeling requires accounting for zero-in�ation and the dependence between the outcomes.

To model counts of occupational injuries, Wang et al.(2003) employ a mixture of a bivariate

Poisson distribution with a point mass at (0,0), and estimate parameters using the expec-

tation maximization (EM) algorithm. Li et al.(1999) propose several component mixture

distributions for multivariate zero-in�ated counts and describe their applications to defects

in manufacturing processes. Based on similar distributions, Mujumdar and Gries (2010) em-

ploy Bayesian approaches to model bivariate plant count data with excess zeros, and Arab

et al.(2012) apply semi-parametric methods to model species abundances. Other works on

bivariate zero-in�ated count models include Yang, Das and Majumdar (2016), Cheung and

Lam (2005), Bermùdez and Karlis (2012), Gurmu and Elder (2008), and Walhin (2001).

A common feature of existing models for bivariate zero-in�ated counts is that, when

covariates are included in model building processes, regression coe�cients are speci�ed for

latent parameters representing unobserved subpopulations within the sampled population.

When interest is to make inferences about the overall population, such coe�cients do not

have direct interpretations in describing the e�ects of covariates on the marginal mean
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vector in the population. Thus, one has to rely on indirect methods such as the use of

post-modeling transformations, to estimate e�ects of covariates on the marginal means.

In addition to the di�culty to compute relevant variances, these methods sometimes fail

to fully explain relationships between covariates and population-wide parameters such as

incidence density ratios (Preisser et al., 2012; Albert et al., 2014, Long et al., 2014).

For univariate zero-in�ated counts, the importance of methods yielding marginally inter-

pretable parameters has long been recognized (Lambert, 1992; Böhning et al., 1999; Preisser

et al., 2012; Albert et al., 2014); lately, marginally speci�ed mean models for zero-in�ated

counts have been promulgated (Long et al., 2014; Preisser et al., 2016; Todem et al., 2016).

Based on the framework of ZIP model likelihood function, Long et al.(2014) propose a

maximum likelihood method of estimating regression coe�cients for the marginal means

of counts with excess zeros. Instead of modeling the latent class mean parameter in the

Poisson part of ZIP, the marginalized zero-in�ated Poisson (MZIP) model speci�es regres-

sion parameters directly to the overall mean and estimates an additional set of coe�cients

for the probability of being excess zero. Marginalized zero-in�ated negative binomial mod-

els (Preisser et al., 2016) extend the MZIP model to counts having zero-in�ated negative

binomial distributions, where the marginal mean and the probability of being excess zero

are modeled by using shared as well as distinct regression parameters. Todem et al.(2016)

estimate the e�ects of covariates on the marginal mean by using latent model formulations

as well as by specifying regression parameters for the marginal mean.

In this paper, we propose a marginalized model for bivariate zero-in�ated counts that

provides directly interpretable regression parameters for the marginal means of the two

correlated outcomes in the overall population. As in standard Poisson regression, the model

relates the marginal mean of each outcome variable with a linear predictor through the log

link function, but it also speci�es parameters for the underlying mixing distribution of

the latent subpopulations. The resulting estimates can be directly used in explaining the

e�ects of exposure variables on the means of the outcomes in the overall population and in
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estimating other population-wide parameters such as incidence density ratios. We illustrate

the method by using simulations and in the evaluation of the caries preventive e�ects of

a school-based weekly �uoride mouthrinse (FMR) program among North Carolina (NC)

schoolchildren.

This article is organized as follows. Section 3.2 reviews bivariate distributions for zero-

in�ated counts and Section 3.3 discusses marginalized models for such counts. Simulation

studies and an application of the proposed model are presented in Sections 3.4 & 3.5,

respectively. We conclude with a discussion in Section 3.6.

3.2 Zero-in�ated Bivariate Poisson Models

To model multivariate zero-in�ated counts, Li et al.(1999) propose mixtures of m-

dimensional distributions. For the bivariate case, they assume that a zero-in�ated random

variable (Y1, Y2) arises either from a distribution degenerate at (0,0), from a bivariate Pois-

son, or from a bivariate distribution with one component degenerate at 0 and the other

component having a standard Poisson mass function. That is,

(Y1, Y2) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0),with probability p0

(Poisson(λ1),0),with probability p1

(0,Poisson(λ2)),with probability p2

Bivariate Poisson(λ10, λ20, λ00),with probability p3,

(3.55)
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where pk ≥ 0, k = 0,1,2,3, ∑3
k=0 pk = 1, and λ1, λ2, λ10, λ20, λ00 > 0. The probability mass

function of the random variable (Y1, Y2) is given by,

P00 = p0 + p1 exp(−λ1) + p2 exp(−λ2) + p3 exp(−λ)

P10 =
p1λ

y1
1 exp(−λ1) + p3λy110 exp(−λ)

y1!
(3.56)

P01 =
p2λ

y2
2 exp(−λ2) + p3λy220 exp(−λ)

y2!

P11 =
min(y1,y2)

∑
j=0

λy1−j10 λy2−j20 λj00
(y1 − j)!(y2 − j)!j!

p3 exp(−λ),

where P00 = Pr(Y1 = 0, Y2 = 0), P10 = Pr(Y1 = y1, Y2 = 0), P01 = Pr(Y1 = 0, Y2 = y2),

P11 = Pr(Y1 = y1, Y2 = y2), λ = λ00 + λ10 + λ20, y1 > 0 and y2 > 0 .

The zero-in�ated bivariate Poisson distribution in (3.56) reduces to the standard bivari-

ate Poisson model for p0 = p1 = p2 = 0. For three Poisson random variables W1, W2 and W0

with respective means λ10, λ20 and λ00, if Y1 = W1 +W0 and Y2 = W2 +W0, then (Y1, Y2)

is distributed as Bivariate Poisson(λ10, λ20, λ00). In addition, Y1 and Y2 are marginally dis-

tributed as Poisson(λ10 + λ00) and Poisson(λ20 + λ00), respectively. In a similar fashion,

when λ1 = λ10 + λ00 and λ2 = λ20 + λ00 in equation (3.55), the marginal distributions of Y1

and Y2 become univariate ZIP (Li et al., 1999). That is,

Pr(Yt = k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 − pt − p3) + (pt + p3) exp(−λt), k = 0

(pt + p3) exp(−λt)λ
k
t

k! , k = 1,2, ...
(3.57)

where t = 1,2. In this article, we consider the case where λ1 = λ10 + λ00 and λ2 = λ20 + λ00.

Li et al.(1999) employ directional grid search methods (Powell, 1964) to obtain maximum

likelihood estimates of model parameters by using method of moment estimates as initial

values. Majundar and Gries (2010) describe a Bayesian approach in conjunction with the

EM algorithm to estimate parameters of bivariate zero-in�ated regression models, where
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they express Y1 and Y2 using latent variables as

Y1 = (1 −Z0)(1 −Z2)(W0 +W1) (3.58)

Y2 = (1 −Z0)(1 −Z1)(W0 +W2),

whereWt ∼ Poisson(λt0), t = 0,1,2 and (Z0, Z1, Z2, Z3) ∼Multinomial(1, (p0, p1, p2, p3)) with

the parameters λ00, λ10, λ20, p0, p1, p2 and p3 as de�ned in equation (3.55). In addition,

W0, W1, W2 and (Z0, Z1, Z2, Z3) are assumed independent of each other.

When covariates are used to model bivariate zero-in�ated Poisson counts, linear predic-

tors are speci�ed for the mean parameters and the mixing probabilities, for example, as

log(λ10i) = x′1iα1, log(λ20i) = x′2iα2, log(λ00i) = x′3iα3, log(p0i/p3i) = x′4iγ0, log(p1i/p3i) =

x′5iγ1 and log(p2i/p3i) = x′6iγ2, where x1i, ..., x6i are vectors of covariates from the ith indi-

vidual, and α1, α2, α3, γ0, γ1 and γ2 are vectors of parameters (Li et al., 1999; Majundar

and Gries 2010). Because the model parameters have latent class interpretations, one has

to employ post-modeling transformations to estimate the e�ects of covariates on the over-

all population means ν1i = E(Y1i) and ν2i = E(Y2i). The marginal means and the model

parameters can be related by

ν1i = (p1i + p3i)(λ00i + λ10i) =
(ex′1iα1 + ex′3iα3)(1 + ex′5iγ1)
1 + ex′4iγ0 + ex′5iγ1 + ex′6iγ2

(3.59)

ν2i = (p2i + p3i)(λ00i + λ20i) =
(ex′2iα2 + ex′3iα3)(1 + ex′6iγ2)
1 + ex′4iγ0 + ex′5iγ1 + ex′6iγ2

Although ν1i and ν2i could be estimated at �xed covariate values by using equation

(3.59), the quanti�cation of the relationship between covariates and the marginal means

with appropriate variance estimates may be di�cult in practice. In addition, when interest

is in determining whether the e�ects of an exposure variable on ν1i or ν2i are homogeneous

across levels of covariates, existing bivariate zero-in�ated models usually do not provide
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the desired estimates as in the case of traditional zero-in�ated models for univariate counts

(Long et al., 2014).

3.3 Marginalized Zero-in�ated Bivariate Poisson Models

Our primary interest is in modeling the marginal means (ν1i, ν2i) as functions of covari-

ates, while also estimating the nuisance parameters for model completion. For univariate

zero-in�ated Poisson outcomes, a similar marginalized model is previously discussed in

Long et al.(2014) and Preisser et al.(2016). Using (3.59) and eliminating nuisance param-

eters λ10i and λ20i, the probabilities in equation (3.56) can be written as functions of the

marginal means and latent parameters λ00i and (p0i, p1i, p2i). If x1i, x2i and x3i are vectors

of covariates from the ith individual, we specify regression parameters for ν1i, ν2i, and λ00i

as

log(ν1i) = x′1iβ1 (3.60)

log(ν2i) = x′2iβ2

log(λ00i) = x′3iζ,

where β1, β2 and ζ are vectors of parameters. To model the multinomial probabilities

p0i, p1i, p2i and p3i = 1 − p0i − p1i − p2i, multicategory logit models are employed as follows.

log(p0i
p3i
) = u′1iγ0 (3.61)

log(p1i
p3i
) = u′2iγ1

log(p2i
p3i
) = u′3iγ2,

where, u′1i, u
′
2i and u′3i are vectors of covariates and γ0, γ1, and γ2 are vectors of parameters.

Using equations (3.56), (3.60) and (3.61) together with the relations λ1i = λ10i + λ00i and
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λ2i = λ20i + λ00i, the log-likelihood function from n subjects can be written as

ℓ(θ∣Y1, Y2,X) =
n

∑
i=1
I(Y1i = 0, Y1i = 0) log(P00i) +

n

∑
i=1
I(Y1i > 0, Y1i = 0) log(P10i) (3.62)

+
n

∑
i=1
I(Y1i = 0, Y1i > 0) log(P01i) +

n

∑
i=1
I(Y1i > 0, Y1i > 0) log(P11i).

In (3.62), θ = (β1, β2, ζ, γ0, γ1, γ2), X is the design matrix, P00i = Pr(Y1i = 0, Y2i = 0),

P10i = Pr(Y1 = y1i, Y2 = 0), P01i = Pr(Y1i = 0, Y2i = y2i) and P11i = Pr(Y1i = y1i, Y2i = y2i) with

y1i > 0, y2i > 0. The maximum likelihood estimates of the parameters satisfy

(β̂1, β̂2, ζ̂, γ̂0, γ̂1, γ̂2) = argmax ℓ(θ∣Y1, Y2,X).

With a proper choice of starting values, we perform parameter estimation employing quasi-

Newton algorithms. Starting values for β1 and β2 may be obtained from separate MZIP

models �tted to Y1 and Y2 respectively, and estimates from the bivariate zero-in�ated models

discussed in Section 3.2 may be used as starting values for ζ, γ0, γ1 and γ2.

3.4 Simulation Study

To evaluate the performance of the marginalized bivariate zero-in�ated Poisson (MBZIP)

model in �nite samples, simulation studies were performed for various sample sizes. Let

(Y1i, Y2i) be a zero-in�ated bivariate outcome and x1i, x2i and x3i be covariates from the ith
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subject. Data were generated from the model,

log(ν1i) = β10 + β11x1i + β12x2i + β13x3i = x′iβ1 (3.63)

log(ν2i) = β20 + β21x1i + β22x2i + β23x3i = x′iβ2

log(λ00i) = ζ0

log(p0i/p3i) = γ00

log(p1i/p3i) = γ10 + γ11x1i

log(p2i/p3i) = γ20 + γ21x1i + +γ22x2i,

where x1i ∼ N(1,1), x2i ∼ Binomial(1, 0.4), x3i ∼ Exponential(2), (β10, β11, β12, β13) = (1,

−0.2, 0.3, 0.2), (β20, β21, β22, β23) = (1, 0.2, 0.3, 0.4), ζ0 = 0.5, (γ00, γ10, γ11, γ20, γ21, γ22)

= (−0.25, −0.2, −0.3, −0.4, 0.2, −0.2) and p3i = 1 − p0i − p1i − p2i. To generate the bivariate

outcome, �rst the latent parameters λ10i and λ20i were estimated from equations (3.59) and

(3.63), and Y1i and Y2i were determined from

Y1i = (1 −Z0i)(1 −Z2i)(W0i +W1i) (3.64)

Y2i = (1 −Z0i)(1 −Z1i)(W0i +W2i),

where (Z0i, Z1i, Z2i, Z3i) ∼ Multinomial(1, (p0i, p1i, p2i, p3i)), W0i ∼ Poisson(λ00i), W1i ∼

Poisson(λ10i) and W2i ∼ Poisson(λ20i) are independent random variables.

Using these speci�cations, 10000 samples of sizes n = 100,200, 500 and 1000 were gen-

erated, and the MBZIP model was �tted for each replication. In the quasi-Newton op-

timization, starting values for the marginal mean model parameters were obtained from

univariate MZIP models �tted separately for the two outcomes. Additionally, estimates

from the bivariate zero-in�ated model of Li et al.(1999) were used as starting values for ζ0,

γ00, γ10, γ11, γ20, γ21 and γ22. From each model, parameter estimates, the corresponding

percent relative median biases, standard errors, coverages of 95% con�dence intervals and
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Type I error rates with the nominal value set at 0.05 for testing H0 ∶ β11 = 0 and H0 ∶ β21 = 0

, were retained. In each simulation, univariate MZIP models (with covariates x1i and x2i

in the excess zero model parts) were �tted for the two outcomes to allow comparisons of

MBZIP and MZIP model performances. MBZIP model convergence rates for sample sizes

n = 100, 200, 500 and 1000 were 96.0%, 99.1%, 99.9% and 100%, respectively.

Table 3.1 shows that the MBZIP model has low biases for parameters in the marginal

mean models and that the biases tend to decrease as sample sizes increase. Although biases

of the marginal mean parameters from the MZIP models are generally low, parameters β10,

β20, β11 and β21 have larger biases than the corresponding MZBIP model parameters for

all sample sizes. Coverages of 95% con�dence intervals for the marginal mean parameters

of the MBZIP and MZIP models are also close to 95%. From Table 3.2, we note that

coe�cients for the mixing probabilities in MBZIP model have low biases and coverages of

95% con�dence intervals that are close to the nominal value; and that the estimate for

λ00 (i.e., ζ0) has larger biases and smaller coverage probabilities for smaller sample sizes.

However, the biases and coverage probabilities for ζ0 tend to improve as sample sizes increase

resulting in a small bias and a coverage probability close to the nominal value when the

sample sizes reach 1000.

Table 3.3 presents mean standard errors and Monte Carlo standard deviations of pa-

rameters in the marginal mean models of MBZIP and MZIP. For each sample size, mean

standard errors and Monte Carlo standard deviations of the marginal parameters from the

MBZIP model are very close to each other and they are almost identical, for sample sizes

n = 500, and 1000. In general, mean standard errors and Monte Carlo standard deviations

from the MZIP models are higher than the corresponding estimates from MBZIP models,

highlighting the statistical e�ciency that is gained by modeling the two correlated outcomes

jointly. Regarding the nuisance parameters in the MBZIP model, Table 3.2 shows that the

mean standard errors and Monte Carlo standard deviations of parameters γ00, γ10, γ11, γ20,

γ21 and γ22 are very close to each other, but the mean standard errors for ζ0 are much higher
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than the corresponding Monte Carlo standard deviations for sample sizes 100 and 200. The

di�erence between the two quantities decreases as sample sizes increase.

Two scenarios were employed to compute Type I error rates for β11 and β21 in the MBZIP

model and the corresponding coe�cients of x1i in MZIP models for each outcome. In the

�rst scenario, data were generated by setting β11 = 0 or β21 = 0 separately and the error rates

were calculated from MBZIP and MZIP models. In the second case, the Type I error rates

were calculated separately for β11 and β21, but data were generated by setting β11 = β21 = 0.

As can be seen from Table 3.4, Type I error rates of the marginal parameters in the MBZIP

model are close to the nominal value for the two parameters and under both scenarios.

3.5 Application to a School-based Fluoride Mouthrinse Program

This analysis is aimed at estimating the caries preventive e�ects of a school-based �uoride

mouthrinse program (FMR) on North Carolina (NC) schoolchildren, based on clinical and

parent reported data from a probability sample of NC schoolchildren in grades 1 through

5. As measures of caries experiences, clinical data on counts of decayed and �lled primary

tooth surfaces (dmfs) and the corresponding counts of permanent tooth surfaces (DMFS)

were collected. The exposure variable of interest is the number of years of participation in

the FMR program (Years). While the original data involved a total of 1363 children, only

677 of them had complete outcome and covariate values. The data exhibit high proportions

of zeros on both outcomes variables: out of the 677 children with complete data, 330

(48.7 %) had zero dmfs and 512 (75.6 %) had zero DMFS counts. Previously, Divaris

et al.(2012) employed zero-in�ated negative binomial regression to �t separate models for

the dfms counts and the sum of the two outcomes (i.e., dfms + DFMS) by including the

exposure variable as well as other demographic and dental care related covariates in the

linear predictors. Because primary and permanent caries counts are obtained from the

same child, dmfs and DMFS values are correlated (corr. coef. = 0.15, p-value < 0.0001).

We modeled the dfms and DFMS outcomes jointly by including the main exposure
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variable and the same adjustment variables as in Divaris et al.(2012). The model is given

by

log(ν1i) = β10 + β11x1i + β12x2i + β13x3i + β14x4i + β15x5i + β16x6i + β17x7i + β18x8i

+ β19x9i + β110x10i + β111x11i

log(ν2i) = β20 + β21x1i + β22x2i + β23x3i + β24x4i + β25x5i + β26x6i + β27x7i + β28x8i

+ β29x9i + β210x10i + β211x11i

log(p0i/p3i) = γ10 + γ10x1i + γ10x2i + γ10x3i + γ10x4i + γ10x5i + γ10x6i + γ10x7i + γ10x8i

+ γ10x9i + γ10x10i + γ10x11i

log(p1i/p3i) = γ10

log(p2i/p3i) = γ20

log(λ00i) = ζ0.

where, ν1i and ν2i are the ith marginal dmfs and DMFS mean counts respectively, x1i is

Years divided by 3, x2i is an indicator of whether the child is African American, x3i is a

binary indicator for other non-Caucasian race, x4i is the child's brushing frequency, x5i is

family income in $ 10,000, x6i is an indicator for the availability of established dental home,

x7i is an indicator for whether the child had sealants, x8i is an indicator for availability of

dental care when needed, and x9i, x10i and x11i are the child's age centered at the mean, its

square and cubic values respectively.

Table 3.5 shows parameter estimates and standard errors of the MBZIP model and the

marginal parameters of MZIP models �tted for dmfs and DMFS separately. In both parts

of the bivariate model and each of the MZIP models, the exposure variable (Years) has

negative estimates. Based on the MBZIP model, the estimated incidence rate ratios for the

overall e�ect of three years participation in the fmr program on dmfs and DMFS counts are

exp(−0.058) = 0.944 (95% CI: (0.83,1.08)) and exp(−0.013) = 0.987 (95% CI: (0.80,1.22)),
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respectively. Thus, conditional on covariates, the mean dmfs count for a child in the overall

population with three years participation in the fmr program is approximately 94.4% of the

mean dmfs count of a child with zero years of participation. Similarly, on average, three

years of participation in the program corresponds to a 1.3% reduction in DMFS counts in

the overall population. However, because the con�dence interval of each incidence rate ratio

includes the value 1.0, the association between the exposure variable and dmfs or DMFS

counts is not signi�cant. Likewise, the associations between Years and the two caries counts

are not signi�cant based on estimates from the MZIP models. An advantage of a bivariate

model for the two outcomes is that one can perform joint statistical tests across the two

sets of regression parameters. Testing for the overall e�ect of Years on dmfs and DMFS

counts (i.e., null hypothesis H0 ∶ β11 = β21 = 0) gives a likelihood ratio statistic of 0.772

with a p-value of 0.680, con�rming a lack of signi�cant overlall exposure e�ect on dmfs and

DMFS counts.
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3.6 Discussion

In this article, we proposed a joint marginalized model for two correlated counts with

zero-in�ation. The model speci�es regression coe�cients to the marginal means of the

two outcomes and provides estimates that allow direct inferences about the overall popu-

lation. Unlike traditional bivariate count models, parameters from the marginalized model

have straightforward interpretations in describing the e�ects of explanatory variables on the

marginal means of the two correlated, zero-in�ated counts; and can easily be employed to

determine the relationships between covariates and population-wide parameters such as in-

cidence density ratios with appropriate variance estimates. Under the marginalized model,

counts are assumed to have come from four latent classes: a `non-susceptible' or `per-

fect' state, from which both outcomes take zero-values, two �partially-susceptible� states

in which one outcome takes only zeros and the other follows a Poisson distribution, and

`susceptible� class where the two outcomes take both zero and positive counts according to

a bivariate Poisson distribution. Earlier approaches to model such counts utilize four com-

ponent mixtures of bivariate distributions and estimate regression parameters with latent

class interpretations. These parameters, however, are not suitable when interest is to make

inferences about the overall population. The new model extends univariate marginalized

models by accommodating two correlated outcomes, and modi�es existing bivariate models

for zero-in�ated counts by directly estimating overall covariate e�ects in the population,

when interest is in studying the relationships between the covariates and the two marginal

means.

Our simulations show that estimates of the marginal parameters in the model have low

biases with Type I error rates and coverage probabilities close to the nominal values. When

the MBZIP model is correctly speci�ed, the mean standard errors for these parameters

are very close to the Monte Carlo standard deviations of their estimates. Except for the

small sample estimates of one parameter, estimates of the nuisance parameters in the model
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also have low biases and good Type I error and coverage properties. In the simulations,

the new model provides smaller standard error estimates than marginalized zero-in�ated

Poisson models separately �tted for each outcome; underscoring the potential for statisti-

cal e�ciency gains from modeling the two outcomes jointly. In its application to evaluate

the caries preventive e�ects of a school-based �uoride mouthrinse program among North

Carolina schoolchildren, the marginal model estimated the e�ects of the exposure variable

and other covariates on the marginal means as well as incidence density ratios with con�-

dence intervals. An advantage of using the marginalized bivariate model is that it allows

hypothesis testing across parameters of the two outcomes. A likelihood ratio test showed

that participation in the �uoride mouthrinse program was not signi�cantly associated with

caries counts in primary and permanent teeth. Except for a few cases, estimates from the

model also have smaller standard errors than similar univariate models applied to each

outcome.

The MBZIP model should be used with caution when extra-Poisson dispersion in ad-

dition to excess zeros is suspected. Preisser et al.(2016) showed that the univariate MZIP

model gives in�ated Type I error and poor coverage of 95% con�dence intervals when the

true model is marginalized zero-in�ated negative binomial regression; similar results are

expected to apply to the bivariate setting.

While we performed estimation by direct maximization of the likelihood function with

carefully selected starting values, applications of Bayesian methods or the expectation-

maximization algorithm could provide alternative estimation methods. Future research

could also extend the model to handle three or more correlated outcomes with zero-in�ation

or to counts that are overdispersed in addition to zero-in�ated. Another possible extension

could be the modeling of repeated or longitudinal data in problems where the bivariate

zero-in�ated outcome is measured repeatedly for each sampling unit.
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Figure 3.1: Distributions of dmfs and DFMS counts from 677 children in the NC FMR
study.
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Table 3.1: Percent relative median biases and coverages of 95% con�dence intervals of
MBZIP and MZIP model estimates based on 10,000 replications.

MBZIP MZIP

Sample Size Par. % Rel.
Med. Bias

Cov. Prob. % Rel.
Med. Bias

Cov. Prob.

β10 -0.54 94.2 -1.12 95.2
β11 -0.29 93.6 -2.06 94.7
β12 -1.44 94.5 0.97 95.1

100 β13 -0.62 95.1 -0.72 95.4
β20 0.17 94.9 -0.42 94.5
β21 -0.90 94.3 1.31 93.2
β22 -0.55 94.5 -0.34 95.0
β23 -0.38 95.2 -0.07 95.6
β10 -0.39 94.6 -0.65 94.4
β11 -0.27 94.6 -1.00 95.1
β12 1.11 94.6 1.95 95.1

200 β13 -0.31 94.9 -0.31 95.2
β20 -0.02 94.7 -0.42 94.4
β21 -0.15 94.6 0.17 93.9
β22 -0.40 95.1 0.44 95.4
β23 0.15 95.2 0.12 95.4
β10 -0.09 94.9 -0.34 95.3
β11 0.18 95.1 -0.96 95.0
β12 0.03 95.2 0.74 95.0

500 β13 -0.06 95.0 0.08 95.1
β20 -0.05 95.4 -0.50 95.1
β21 0.00 94.9 1.70 94.8
β22 -0.41 95.0 0.37 94.8
β23 0.03 95.0 0.06 94.9
β10 -0.07 95.0 -0.26 95.0
β11 -0.41 95.0 -0.81 95.2
β12 -0.39 95.2 1.07 95.3

1000 β13 -0.13 95.3 -0.02 95.5
β20 0.00 94.9 -0.38 94.8
β21 -0.12 95.2 1.22 94.7
β22 0.24 95.0 1.20 95.1
β23 -0.06 94.7 -0.07 94.8
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Table 3.2: Percent relative median biases, mean standard errors, Monte Carlo standard
deviations and coverages of 95% con�dence intervals of nuisance parameters in the MBZIP
models, based on data generated from the MBZIP model with 10,000 replications.

Sample size Parameter
Percent rel.
med. bias

Mean SE MC SD Cov. Prob.

ζ0 27.86 42.085 3.258 82.8
100 γ00 4.44 0.273 0.280 95.3

γ10 2.66 0.363 0.383 95.0
γ11 6.08 0.260 0.281 93.1
γ20 5.12 0.440 0.473 93.7
γ21 4.74 0.250 0.274 92.8
γ22 -0.02 0.501 0.529 95.1
ζ0 11.97 7.702 1.678 88.6

200 γ00 0.70 0.193 0.194 95.1
γ10 -0.66 0.251 0.259 94.7
γ11 4.37 0.178 0.187 93.9
γ20 1.00 0.307 0.316 94.5
γ21 2.27 0.173 0.180 94.0
γ22 5.92 0.347 0.358 94.6
ζ0 5.04 0.533 0.464 92.5

500 γ00 0.92 0.121 0.122 94.9
γ10 0.90 0.156 0.156 95.4
γ11 1.94 0.110 0.111 95.0
γ20 1.62 0.192 0.195 94.7
γ21 1.15 0.108 0.111 94.3
γ22 -0.12 0.216 0.218 95.0
ζ0 1.63 0.217 0.223 93.6

1000 γ00 -0.07 0.086 0.086 94.9
γ10 1.30 0.110 0.109 95.0
γ11 0.32 0.077 0.077 95.0
γ20 0.82 0.135 0.135 95.3
γ21 0.70 0.076 0.076 94.9
γ22 -0.84 0.152 0.151 95.2
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Table 3.3: Mean standard errors and Monte Carlo standard deviations of MBZIP and MZIP
model estimates, based on data generated from the MBZIP model with 10,000 replications.

MBZIP MZIP
Sample Size Parameter Mean SE MC SD Mean SE MC SD

β10 0.164 0.171 0.190 0.194
β11 0.088 0.092 0.112 0.114
β12 0.165 0.171 0.232 0.239

100 β13 0.122 0.128 0.123 0.127
β20 0.157 0.161 0.182 0.187
β21 0.075 0.077 0.097 0.104
β22 0.131 0.136 0.204 0.212
β23 0.086 0.090 0.087 0.090
β10 0.114 0.117 0.132 0.133
β11 0.061 0.063 0.078 0.078
β12 0.114 0.118 0.161 0.163

200 β13 0.081 0.083 0.081 0.083
β20 0.110 0.111 0.128 0.130
β21 0.052 0.053 0.068 0.071
β22 0.092 0.092 0.142 0.143
β23 0.057 0.058 0.057 0.058
β10 0.071 0.072 0.082 0.083
β11 0.038 0.038 0.049 0.049
β12 0.072 0.072 0.101 0.102

500 β13 0.049 0.049 0.049 0.050
β20 0.069 0.068 0.080 0.080
β21 0.033 0.033 0.043 0.043
β22 0.057 0.058 0.089 0.090
β23 0.034 0.034 0.034 0.035
β10 0.050 0.050 0.058 0.058
β11 0.027 0.027 0.035 0.034
β12 0.051 0.050 0.071 0.071

1000 β13 0.034 0.034 0.034 0.034
β20 0.049 0.049 0.057 0.057
β21 0.023 0.023 0.030 0.030
β22 0.040 0.040 0.063 0.062
β23 0.023 0.024 0.024 0.024
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Table 3.4: Type I errors of β11 and β21 from MBZIP and MZIP models based on Wald type
tests, based on data generated from the MBZIP model with 10,000 replications.

Sample Size
Data

Generation
Parameter MBZIP MZIP

β11 0.060 0.055
100 Case 1 β21 0.060 0.063

β11 0.062 0.058
Case 2 β21 0.058 0.063

β11 0.052 0.051
200 Case 1 β21 0.053 0.058

β11 0.053 0.052
Case 2 β21 0.054 0.058

β11 0.048 0.051
500 Case 1 β21 0.054 0.051

β11 0.051 0.047
Case 2 β21 0.052 0.054

β11 0.050 0.047
1000 Case 1 β21 0.054 0.054

β11 0.049 0.050
Case 2 β21 0.051 0.057

*Case 1: data generated by setting β11 = 0 or β21 = 0.
*Case 2: data generated by setting β11 = β21 = 0.
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Table 3.5: Parameter estimates and standard errors for the NC FMR data based on MBZIP
and MZIP models.

MBZIP MZIP
Variable Parameter Estimate SE Estimate SE
Marginal mean model for dmfs

Intercept β10 1.189 0.170 1.468 0.178
Years β11 -0.058 0.068 -0.084 0.079
African Amer. β12 -0.369 0.079 -0.464 0.090
Other race β13 -0.789 0.186 -0.974 0.213
Brushing freq. β14 0.019 0.050 -0.017 0.055
Fam. income β15 -0.170 0.017 -0.213 0.019
Dental home β16 0.348 0.085 0.359 0.093
No access β17 0.371 0.063 0.426 0.071
Age β18 -0.099 0.041 -0.120 0.048
Age-sq β19 -0.013 0.013 -0.044 0.015
Age-cu β110 -0.013 0.007 -0.019 0.009
Sealants β111 0.865 0.068 0.954 0.074
Marginal mean model for DMFS

Intercept β20 0.220 0.361 -0.253 0.473
Years β21 -0.013 0.108 -0.076 0.140
African Amer. β22 -0.243 0.158 -0.104 0.199
Other race β23 -0.548 0.291 0.529 0.273
Brushing freq. β24 -0.224 0.102 -0.290 0.142
Fam. income β25 -0.154 0.030 -0.092 0.040
Dental home β26 0.411 0.185 0.767 0.236
No access β27 0.213 0.143 0.362 0.180
Age β28 0.304 0.074 0.563 0.100
Age-sq β29 -0.232 0.047 -0.055 0.053
Age-cu β210 0.033 0.016 -0.015 0.019
Sealants β211 0.660 0.124 0.170 0.155
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Table 3.6: Continued: parameter estimates and standard errors for the NC FMR data based
on MBZIP and MZIP models.

MBZIP MZIP
Variable Parameter Estimate SE Estimate SE
Estimates for nuisance parameters in the MBZIP model

ζ0 -0.465 0.195
γ00 0.033 0.483
γ01 0.038 0.148
γ02 0.531 0.227
γ03 1.911 0.302
γ04 -0.069 0.124
γ05 0.429 0.040
γ06 -0.411 0.192
γ07 -0.513 0.169
γ08 0.039 0.085
γ09 -0.021 0.032
γ010 0.042 0.014
γ011 -1.602 0.150
γ10 0.247 0.140
γ20 -0.613 0.163
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CHAPTER 4: MARGINALIZED ZERO-INFLATED POISSON MODELS WITH
MISSING COVARIATES

4.1 Introduction

Counts collected in many applications often contain higher frequencies of zeros than as-

sumed by the Poisson distribution. For example, in dental caries studies among schoolchil-

dren, counts of decayed, missing and �lled tooth surfaces (dmfs) are typically zero for

disproportionately high numbers of children (Lewsey and Thompson, 2004; Mwalili et al.,

2008; Preisser et al., 2012; Long et al., 2014; Divaris et al., 2012; Albert et al., 2014). Be-

cause of the inadequacy of Poisson models in such situations, `zero-in�ated' or `excess zero'

counts are often modeled with latent variables de�ning membership into one of two un-

observed populations. Zero-in�ated Poisson (ZIP) regression is the most common of such

methods and assumes that zero counts arise either from a `non−susceptible' or `perfect' pop-

ulation that gives only zeros or from a `susceptible', `imperfect' population that produces

both zero and positive counts according to a Poisson distribution (Lambert, 1992; Mullahy,

1986; Preisser et al., 2012; Long et al., 2014). ZIP has become a popular model for zero-

in�ated data after Lambert (1992) described the data generating process and applied it to

defects in manufacturing processes. ZIP models commonly specify regression parameters

for the probability of being from the `non-susceptible' population and for the mean of the

assumed Poisson distribution using the logit and the log links respectively.

Although zero-in�ated Poisson regression provides �exible modeling of counts with ex-

cess zeros, the resulting parameter estimates do not have direct interpretations for the

overall population mean count. The limitations of ZIP models have been noted for the
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lack of regression coe�cients having population-wide interpretations and for relying on hy-

pothetical populations that may not be of interest to investigators (Preisser et al., 2012;

Albert et al., 2014; Long et al., 2014). In the dental caries example, while one set of ZIP

parameters describes the probability that a child is from a non-susceptible, caries-free latent

population, the other set of parameters explains the mean caries counts of children from a

caries susceptible latent population (Preisser et al., 2012). When interest is in estimating

the e�ects of covariates on the overall mean caries count, regression coe�cients obtained

from such models can only be used through indirect methods using post-modeling calcula-

tions. In addition, ZIP model parameters are often inconvenient to use to estimate other

important population parameters such as incidence density ratios (Long et al., 2014).

In order to estimate exposure e�ects on the overall population mean and allow for

population-wide inferences, Long et al.(2014) propose marginalized zero-in�ated Poisson

(MZIP) models for independent responses, where regression parameters are estimated for

the marginal mean by using maximum likelihood methods. While both ZIP and MZIP

models de�ne regression parameters for the probability of being from the `non-susceptible'

population, unlike ZIP, the second set of regression parameters in MZIP are linked directly

to the overall population mean. Long et al.(2014) discuss parameter estimation methods

for MZIP as well as their application in modeling counts of unprotected intercourse acts,

and Preisser et al.(2016) describe marginalized models for counts with zero-in�ated negative

binomial distributions. Todem et al.(2016) estimate the e�ects of covariates on the marginal

mean by using latent model formulations as well as by specifying regression parameters for

the marginal mean.

While much of the statistical literature on zero-in�ated data modeling treats covariates

and outcomes as fully observed, missing data are a common occurrence in practice. In

the absence of appropriate statistical software and methods to deal with incomplete data,

modeling is typically done by using only cases with complete covariate and outcome data

(Ibrahim et al., 2005). However, this approach, known as complete case (CC) analysis, is
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valid only when missingness is independent of any observed and unobserved data. Even

when CC analysis is valid, estimates can be ine�cient when too many observations are

missing (Ibrahim et al., 2005). For problems where covariates are missing with ignorable

missingness and their conditional distribution is log-concave, Ibrahim et al.(1999) propose

a Monte Carlo EM (Wei and Tanner, 1990) algorithm to perform estimation. Although the

method can be adapted to ZIP regression with missing covariates, it is not directly applicable

to marginalized zero-in�ated models because the corresponding conditional densities may

not be written as products of log-concave distributions. This paper extends the work of

Ibrahim, Chen and Lipsitz (1999) to MZIP models with missing covariates and fully observed

outcomes.

A motivation for the paper comes from a study carried out to evaluate the caries pre-

ventive e�ects of a school-based �uoride mouthrinse program among North Carolina (NC)

schoolchildren (Divaris et al., 2012). Because of missing covariate values in the study, MZIP

models with complete case analysis discard data from a high proportion of children. Sec-

tions 4.2 and 4.3 review zero-in�ated Poisson and marginalized zero-in�ated Poisson models

respectively. Section 4.4 describes Monte Carlo EM (MCEM) methods for MZIP models

with missing covariates. Section 4.5 presents simulation studies that compare results from

the proposed method with those from complete case analysis. Section 4.6 applies the new

method to the NC schoolchildren data, and compares the results with complete case analysis

and multiple imputation. We conclude with a discussion in Section 4.7.

4.2 Zero-in�ated Poisson Models

Zero-in�ated Poisson models assume that counts emanate either from a `susceptible'

population that gives zero and positive counts according to a Poisson distribution, or from

a `non-susceptible' population, which produces additional zeros (Lambert, 1992; Long et al.,

2014). Thus, while a subject with a positive count is considered as belonging to the `sus-

ceptible' population, individuals with zero counts may belong to either of the two latent
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populations. Accordingly, a random count variable from the ith subject, Yi, takes zero or

positive values as

Pr(Yi = k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψi + (1 − ψi) exp(−µi), k = 0

(1 − ψi)
exp(−µi)µki

k! , k = 1,2, ...
(4.65)

where ψi is the probability of being from the `non-susceptible' population and µi is the

Poisson mean corresponding to the `susceptible' population (Long et al., 2014). It can be

seen from equation (4.65) that ZIP reduces to the standard Poisson model when ψi = 0.

The probability of membership in the non-susceptible population, ψi, and the mean µi of

the Poisson part, are modeled as functions of covariates by using the logit and the log links

as

logit(ψi) = z′iγ and log(µi) = x′iβ, (4.66)

where zi and xi are q × 1 and p × 1 vectors of covariates for the ith subject, and γ =

(γ1, γ2, . . . , γq)′ and β = (β1, β2, . . . , βp)′ are regression parameters. For n independent ob-

servations, the ZIP likelihood function is

L(β,γ∣y) =
n

∏
i=1
{1 + ez′iγ}−1 {ez′iγ + e− exp(x′iβ)}I(yi=0) {e

− exp(x′iβ)ex
′
iβ

yi!
}
I(yi>0)

(4.67)

In equation (4.67), y is the vector of count outcomes, and I(T ) takes the value 1 if T is true

and takes zero, otherwise. While interpretations of parameters γ and β pertain to the two

latent populations, the overall, marginal mean response, νi = E(yi∣zi,xi), for the ith subject

could be estimated from the ZIP model by

νi =
ex
′
iβ

1 + ez′iγ
. (4.68)

However, the quanti�cation of the relationship between covariates and the marginal mean

with suitable variance estimates may be di�cult for many analysts in practice, and indeed
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many authors avoid making inferences on the marginal mean response or do so in error

(Preisser et al., 2012). In addition, when interest is in determining whether the e�ects of

an exposure on νi are homogeneous across the levels of covariates, ZIP models usually do

not provide the desired estimates (Long et al., 2014).

4.3 Marginalized ZIP Models

In order to allow direct inferences about the overall population from which zero-in�ated

counts are drawn, the MZIP model (Long et al., 2014) links regression parameters directly to

the marginal mean νi, while employing another set of parameters to model the probability

of being excess zero (i.e., ψi). For the ith observation, MZIP relates νi and ψi with the

independent variables as :

logit(ψi) = z′iγ and log(νi) = x′iα. (4.69)

In equation (4.69), ψi and γ have the same interpretation as in ZIP, and α = (α1, α2, ..., αp)′

is a vector of regression parameters for νi having interpretations as log incidence density

ratios for the entire sampled population. The mean µi of the Poisson part of ZIP and the

overall mean νi are related by equation (4.68), and the MZIP likelihood function is obtained

by replacing µi by
νi

1−ψi
in the ZIP likelihood in equation (4.67). Thus, for n independent

subjects, the log-likelihood function from the marginalized ZIP model is

ℓ(γ,α∣y) = −
n

∑
i=1

log(1 + ez′iγ) +
n

∑
i=1
I(yi = 0) log {ez

′
iγ + e−(1+exp(z′iγ)) exp(x′iα)}

+
n

∑
i=1
I(yi > 0){ − (1 + ez

′
iγ)ex′iα + yi log(1 + ez

′
iγ) + yix′iα − log yi!}.

Long et al.(2014) employ quasi-Newton optimization methods for complete data to obtain

parameter estimates. The variance covariance matrix of the parameters is obtained by
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inverting the expected information matrix. For the case in which the counts are over-

dispersed relative to ZIP, robust standard errors are estimated.

4.4 Monte-Carlo EM for Missing Covariates

The EM algorithm (Dempster, Laird and Rubin, 1977) has been an important method

of estimation for models with incomplete data. Estimation involves iterations between

the expectation and maximization steps; while the expectation or E-step of an iteration

computes the expected value of the complete data log-likelihood conditional on the observed

data and current parameter values, the maximization or M-step of EM maximizes the

expected log-likelihood. Because the E-step is di�cult to compute in many applications,

the Monte Carlo EM algorithm (MCEM) of Wei and Tanner (1990) is often used to estimate

the expected log-likelihood. MCEM computes the expected log-likelihood numerically by

using Monte Carlo samples from the conditional distributions of the unobserved variables.

Ibrahim, Chen and Lipsitz (1999) apply MCEM for missing covariates in parametric models

by generating samples using the Gibbs sampler with adaptive rejection sampling (ARS)

(Gilks and Wild, 1992). The ARS algorithm requires the conditional distribution of missing

covariates to be log-concave, and the method of Ibrahim, Chen and Lipsitz (1999) can be

applied to any settings where the log-concavity criterion is met. In the case of MZIP models,

because the conditional distribution of the count outcome is not log-concave, conditional

distributions of missing covariates generally fail to be log-concave. We extend the Monte

Carlo EM approach to MZIP models with missing covariates, where missingness is ignorable

and the count outcome is fully observed.

Suppose that y′ = (y1, y2, . . . , yn) is a vector of independent zero-in�ated count outcomes

from n subjects, and let z′i = (zi1, zi2, . . . , ziq) and x′i = (xi1, xi2, . . . , xip) be the covariate

vectors in the MZIP model in equation (4.69). Because the linear predictors for the logit

of ψi and the logarithm of νi typically contain one or more common covariates, zi and xi

can be expressed as zi = (z̃′i,w′i)′ and xi = (x̃′i,w′i)′, where wi represents covariates common
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to zi and xi, while z̃i and x̃i denote covariates exclusive to zi and xi respectively. In the

sense that covariates are partially missing for some subjects, the vector u′i = (z̃′i,w′i, x̃′i) of k

distinct covariates from the ith subject can also be written as in Ibrahim, Chen and Lipsitz

(1999) as: ui = (uobsi ,umisi ) with uobsi and umisi representing the observed and the missing

parts of ui respectively. Using these notations, the observed data vector for the ith subject

is (yi,u′obsi , r′i)′, where r′i = (ri1, ri2, . . . , rik) is a vector of missingness indicators for the k

covariates and

rij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if the jth component of ui is observed,

0, otherwise.
(4.70)

When covariate values are missing at random (MAR) (Little and Rubin, 2002), the

conditional distribution of ri given the data is a function only of the observed data and not

depend on any missing values, i.e.,

Pr(ri∣yi,uobsi ,umisi ,ϕ)∝ Pr(ri∣yi,uobsi ,ϕ),

where ϕ is a vector of parameters. In addition, when ϕ is distinct from the parameters in

the joint distribution of (yi,ui), missingness is ignorable (Ibrahim et al., 1999, 2005) and

estimation can be done using the likelihood

L(ξ,α,γ∣y,uobs,umis) =
n

∏
i=1
Pr(yi∣uobsi ,umisi ,α,γ)Pr(umisi ∣uobsi ,ξ) (4.71)

=
n

∏
i=1
Li(ξ,α,γ∣yi,uobsi ,umisi ),

where α and γ are the regression parameters in equation (4.69), ξ is a vector of parameters

in the joint distribution of the missing covariates, and uobs and umis are the observed and

the missing parts of covariates over all the n observations. Note that the conditional dis-

tributions Pr(umisi ∣uobsi ,ξ) are used in equation (4.71) because the joint distribution of the
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covariates is proportional to the distribution of the missing covariates conditional on the ob-

served covariates. From equation (4.71), the complete data log-likelihood ℓ(θ∣y,uobs,umis)

can be written as:

ℓ(θ∣y,uobs,umis) =
n

∑
i=1
ℓ(η∣yi;uobsi ,umisi ) +

n

∑
i=1
ℓ(ξ∣umisi ;uobsi ) (4.72)

where, θ′ = (α′,γ′,ξ′), η′ = (α′,γ′), ℓ(η∣yi;uobsi ,umisi ) = log(Pr(yi∣uobsi ,umisi ,η)), and

ℓ(ξ∣umisi ;uobsi ) = log(Pr(umisi ∣uobsi ,ξ)).

The observed data log-likelihood is obtained by integrating (summing) ℓ(θ∣y,uobs,

umis) over the domain of the missing covariates. However, direct estimation from the

observed log-likelihood is di�cult because the integral involves the conditional distribution

of the MZIP outcome variable. An alternative method of estimation in such situations

has been the EM algorithm, where, in the E-step, the expected value of the observed log-

likelihood is estimated conditional on current parameter estimates and the observed data,

and maximization is performed on the estimated log-likelihood. If the vector of parameter

estimates at iteration t is θ(t), in the (t + 1)th iteration, corresponding to the ith subject,

the E step of EM computes,

Qi(θ∣θ(t)) = E(ℓ(θ∣yi,uobsi ,umisi )∣yi,uobsi ,θ(t)) (4.73)

Had the expectation in equation (4.73) been easily obtained, the M-step of EM would have

maximized Q(θ∣θ(t)) = ∑ni=1Qi(θ∣θ(t)) to obtain the parameter estimates at iteration (t+1).

However, because such expectations are di�cult to compute for MZIP models, as in Ibrahim

et al.(1999), we estimate the E-step using MCEM. At iteration t + 1, MCEM estimates

Qi(θ∣θ(t)) using Monte-Carlo samples of size, say s, from the conditional distribution of

the missing covariates given yi, uobsi and the current parameter estimates, θ(t) by (Ibrahim

et al., 1999),
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Qi(θ∣θ(t)) =
1

s

s

∑
j=1
ℓ(θ∣yi,dij,uobsi )

where di1,di2,, . . . ,dis are vectors of samples from the conditional distribution of the miss-

ing covariates. After iteration t, the conditional distribution of the missing continuous

covariates, Pr(umisi ∣yi,uobsi ,θ(t)), can be written as,

Pr(umisi ∣yi,uobsi ,θ(t)) =
Pr(yi∣uobsi ,η(t))Pr(umisi ∣uobsi ,ξ(t))´

Pr(yi∣uobsi ,η(t))Pr(umisi ∣uobsi ,ξ(t))dumisi

. (4.74)

For missing covariate problems in MZIP models, and in general for models where the log-

concavity condition is not met, the adaptive rejection metropolis sampling (ARMS) algo-

rithm of Gilks, Best and Tan (1995) allows sampling from the conditional distributions

of the covariates in equation (4.74). ARMS is an extension of ARS for distributions that

are not log-concave, and we employ the algorithm to generate Monte Carlo samples from

conditional distributions of missing covariates in MZIP models.

Given the maximum likelihood estimates θ̂ from MCEM, the observed information ma-

trix I(θ̂) is obtained (Wei and Tanner, 1990; Ibrahim et al., 1999; Louis, 1982) by using

Monte Carlo samples di1,di2,, . . . ,dis as

I(θ̂) = −
n

∑
i=1

1

s

s

∑
j=1

∂2ℓ(θ∣yi,dij,uobsi )
∂θ2

∣(θ=θ̂) (4.75)

−
n

∑
i=1

1

s

s

∑
j=1

∂ℓ(θ∣yi,dij,uobsi )
∂θ

⎧⎪⎪⎨⎪⎪⎩

∂ℓ(θ∣yi,dij,uobsi )
∂θ

⎫⎪⎪⎬⎪⎪⎭

′

∣(θ=θ̂)

+
n

∑
i=1

⎧⎪⎪⎨⎪⎪⎩

1

s

s

∑
j=1

∂ℓ(θ∣yi,dij,uobsi )
∂θ

⎫⎪⎪⎬⎪⎪⎭

⎧⎪⎪⎨⎪⎪⎩

1

s

s

∑
j=1

∂ℓ(θ∣yi,dij,uobsi )
∂θ

⎫⎪⎪⎬⎪⎪⎭

′

∣(θ=θ̂)

Standard errors of parameter estimates are calculated by

se(θ̂) =
√
diagonal[I(θ̂)−1]. (4.76)
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4.5 Simulation Studies

Simulations were carried out to assess the performance of the MCEM method relative

to CC analysis for MZIP models involving one and two missing covariates. Complete case

analysis provides a practical reference given that it is the standard method in practice. In

the �rst set of simulations, samples of sizes n = 250, n = 500 and n = 1000 zero-in�ated

counts were generated from equation (4.65), with µi = νi/(1 − ψi) and (ψi, νi) de�ned by

logit(ψi) = γ0 + γ1xi1 + γ2xi2

log(νi) = α0 + α1xi1 + α2xi2 (4.77)

where (γ0, γ1, γ2) = (1,−1,1), (α0, α1, α2) = (1,−1,1), xi2 ∼ N(τ, σ2) with τ = 0.25 and σ2 = 1,

xi1 ∼ N(ω0 +ω1xi2, κ2) with ω0 = 1 , ω1 = 1 and κ2 = 1. Covariate xi2 was fully observed, and

missing data were generated for xi1 with the missingness mechanism depending only on

the fully observed variables yi and xi2 (i.e., xi1 is MAR). Denote the vector of missingness

indicators for xi1 by ri such that ri = 1 when xi1 is observed and ri = 0 when xi1 is missing.

The probability that xi1 is missing (i.e, Pr(ri = 0)) was estimated from the logistic model

logit(Pr(ri = 0)) = ϕ0 + ϕ1yi + ϕ2xi2, (4.78)

with (ϕ0, ϕ1, ϕ2) = (0.5,1,−1). Linear regression was used to model the missing covariate as

a function of the observed covariate.

For each of the three sample sizes, simulations were performed using 500 replications.

The number of Monte-Carlo samples within each iteration of EM was 1000. The mean

percentages of missing values for the simulations with sample sizes 250, 500 and 1000 were

respectively 34.4%, 34.5% and 34.5%.

The second set of simulations involve MZIP models with three covariates, two of which
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are missing at random. Speci�cally, the count yi was generated from the model

logit(ψi) = γ0 + γ1xi1 + γ2xi2 + γ3xi3

log(νi) = α0 + α1xi1 + α2xi2 + +α2xi3, (4.79)

with (γ0, γ1, γ2, γ3) = (0.5,−0.5,−0.5,0.5), (α0, α1, α2, α3) = (0.5,−0.5, −0.5,0.5), xi3 ∼

Exponential(λ) with λ = 1, xi2 ∼ N(µ2, σ2
2) with µ2 = 0, σ2

2 = 1, and xi1 ∼ N(ω0 +ω1xi2, κ2)

with ω0= 0.5, ω1 = −0.5, and κ2 = 1. Variable xi3 was fully observed and missing values

were generated for xi1 and xi2 with missingness probabilities that are dependent on the

fully observed variables yi and xi3. If ri1 and ri2, take values of 1 when xi1 and xi2 are

observed, missing data were generated based on the models

logit(Pr(ri1 = 0)) = ϕ01 + ϕ11yi + ϕ21xi3

logit(Pr(ri2 = 0)) = ϕ02 + ϕ12yi + ϕ22xi3. (4.80)

The missing covariates were modeled by using their true distributions and simulations

were performed under two di�erent scenarios for the missing data probabilities in equa-

tion (4.80). In Senario 1, the parameters were speci�ed as (ϕ01, ϕ11, ϕ21) = (−0.25,0.25,−2)

, (ϕ02, ϕ12, ϕ22) = (0.25,−0.25,−2), and under Scenario 2, (ϕ01, ϕ11, ϕ21) = (−2,−1,1) and

(ϕ02, ϕ12, ϕ22) = (−1,−1,−1).

In both simulation scenarios, the sample size was 1000 and 500 replications were used.

The number of Monte-Carlo samples used within each iteration of EM was 1000. The min-

imum and the maximum percentages of observations with at least one missing covariate in

Scenario 1 were respectively 36.2 and 45.6 with a mean of 41.0. For Scenario 1, percentages

of observations missing x1 and x2 range from 22.9 to 30.7 and from 17.0 to 24.7 respectively.

The minimum and the maximum percentages of observations with at least one missing co-

variate in Scenario 2 were 26.6 and 34.2 respectively with a mean of 30.1. Tables 1 and 2
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show percent relative biases, simulation standard deviations, average standard errors of the

estimated parameters, and mean squared errors (MSE) from MCEM and CC analyses. It

can be seen from the two tables that percent relative biases and MSEs of estimates from

MCEM are uniformly smaller than those from the CC analysis. In Table 1, MCEM tends

to give estimated standard errors with small bias when the simulation standard deviation

is used as the true standard deviation, whereas CC analysis underestimates the standard

errors for γ1 and γ2. However, both methods provide estimated standard errors with little

biases for the parameters in the marginal mean model, which are the parameters of primary

interest.

4.6 Application to a School-based Fluoride Mouthrinse Program

The methods developed in this article are illustrated using data collected to assess the

caries preventive e�ects of a school-based �uoride mouthrinse program (FMR) in North

Carolina (NC) schools. The data were obtained from the 2003-04 NC Oral Health Survey

and involve 1363 children in grades from 1 to 5. The main exposure variable is the parent-

reported number of years of participation in the FMR program (years) and the number of

decayed and �lled primary teeth (dfs) is an outcome variable of interest. Previous analysis

was based only on 677 children who had complete covariate and outcome data. In this

paper, we consider 1094 children with complete data on the outcome, race, age, and several

dental care variables but with missing information on years of participation and family

income. Of the 1094 children, 191 (17.5%) had only years missing, 180 (16.5%) had only

income missing and 46 (4.20%) children had both years and income missing. Based on prior
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work by Divaris et al (2012), we used linear predictors of the following form:

logit(ψi) = γ0 + γ1xi1 + γ2xi2 + γ3xi3 + γ4xi4 + γ5xi5 + γ6xi6 (4.81)

+ γ7xi7 + γ8xi8 + γ9xi9 + γ10xi10 + γ11xi11

log(νi) = α0 + α1xi1 + α2xi2 + α3xi3 + α4xi4 + α5xi5 + α6xi6

+ α7xi7 + α8xi8 + α9xi9 + α10xi10 + α11xi11,

where ψi is the probability that the ith child came from a caries free population, νi is the

marginal mean caries count, xi1 is years divided by 3, xi2 is a binary indicator of whether

the child is African American (1=yes, 0 =no), xi3 is a binary indicator of whether the child

is of other non-Caucasian race (1=yes, 0 =no), xi4 is the child's brushing frequency (1=

less than once a day, 2= once a day & 3= more than once a day), xi5 is family income in $

10,000, xi6 is an indicator for availability of established dental home (1=yes, 0=no), xi7 is

an indicator for availability of dental care when needed (1=yes, 0=no), xi8, xi9 and xi10 are

respectively age centered at the mean, its square and cubic values, and xi11 is an indicator

for whether the child had sealants (1=yes, 0=no).

To apply the MCEM method to the data, the joint probability function of the two

missing covariates was written as a product of two univariate exponential densities. As

the values of years and income are non-negative and the corresponding observed data are

skewed, exponential distributions seem to be appropriate to model the two missing covari-

ates. Conditional on income and �ve of the observed covariates, the value of years from the

ith subject was assumed to have an exponential distribution with rate λi1, where

λi1 = exp(ξ01 + ξ11xi2 + ξ21xi3 + ξ31xi5 + ξ41xi6 + ξ51xi7 + ξ61xi8) (4.82)

Similarly, income was modeled using the exponential distribution with the rate parameter
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λ5i depending on observed covariates as

λi5 = exp(ξ01 + ξ11xi2 + ξ21xi3 + ξ41xi6 + ξ51xi7 + ξ61xi8) (4.83)

Based on the two exponential models and following Lipsitz and Ibrahim (1996), the

joint distribution of the missing covariates years (xi1) and income (xi5) was obtained using

equation (4.84).

Pr(xi1, xi5∣xi5,xoi, λi1, λi5) = Pr(xi1∣xi5, λi1, λi5)Pr(xi5∣λi5) (4.84)

= λi1e−λi1xi1λi5e−λi5xi5

where λi1 and λi1 are functions of the �ve non-missing covariate as in equations (4.82) and

(4.83).

Estimates from complete case analysis were used as starting values of the EM algorithm

and s = 500Monte-Carlo samples were used within each EM iteration. For comparison, mul-

tiple imputation was performed by using SAS software (SAS Institute, 2015) and employing

fully conditional speci�cations for the missing covariates. The conditional speci�cations in-

volve a linear regression of variable years on income and the observed covariates in equation

(4.82), and a linear regression of income on the covariates used in equation (4.83). The

number of imputations was s = 20 and the predictive mean matching method was used to

impute values.

Table 3 shows parameter estimates and the corresponding standard errors from MCEM,

multiple imputation and CC analysis. There is little di�erence between the MCEM and

CC estimates of years in the marginal mean model, and most of the other covariates in the

model also have similar estimates under the two approaches. A major di�erence between

the MCEM and CC analysis is that in the zero-in�ation model the two methods provide

estimates of opposite signs for years and age. For these covariates, MCEM and multiple
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imputation provide estimates of the same signs. Based on the MCEM analysis, the incidence

rate ratio for the overall e�ect of three years participation in the fmr program is estimated

as exp(-0.099)=0.906 with 95% CI (0.753, 1.089). Thus, conditional on covariates, the mean

caries count νi for a child in the overall population with three years participation in the

fmr program is approximately 90.6% of the mean caries count of a child with zero years of

participation. In contrast, based on the CC analysis, the incidence rate ratio for the overall

e�ect of three years participation in the FMR program is estimated as exp(-0.084)= 0.919

with 95% CI (0.789, 1.071). However, the results from both MCEM and CC methods show

that there was no statistically signi�cant treatment e�ect as evidenced by the inclusion of

1.0 in the con�dence intervals of IDR.
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4.7 Discussion

Marginalized zero in�ated Poisson models allow direct inferences about exposure ef-

fects on the overall population average of a count outcome with excess zeros. Extending

the method of Ibrahim et al.(1999), this article has presented a Monte Carlo EM based

method to analyze MZIP data when one or more covariates are missing at random and the

count outcome is fully observed. The method can also be applied to problems where the

conditional distributions of covariates are not log-concave. The proposed method uses adap-

tive rejection metropolis algorithm with Gibbs sampling to generate Monte Carlo samples

from conditional distributions of missing covariates. While previously proposed approaches

to model missing covariate data generate samples using adaptive rejection sampling, such

methods are limited to models where the conditional distributions of the missing covariates

are log-concave.

Simulations performed using various sample sizes and models with one and two missing

covariates showed that results from the MCEM method have smaller mean squared errors

compared to those from complete case analysis. In addition, percent relative biases of

parameter estimates from the MCEM method were generally smaller than those obtained

from CC analysis. The MCEM method was also demonstrated using real data obtained

from a sample of North Carolina schoolchildren, where the resulting estimates generally

had smaller standard errors than estimates obtained from CC analysis. A limitation of the

proposed method is that one has to specify a distribution for the missing covariates and that

the validity of estimates is dependent on the suitability of the assumed distribution. Since

misspeci�cation of the covariate distribution can introduce new biases in the estimates of

MZIP models, special attention should be given to modeling the covariates (Ibrahim et al.,

1999; Ibrahim et al., 2005). As a way of dealing with the problem, sensitivity analysis

has been suggested to check the robustness of parameter estimates under various covariate
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distributions. Multiple imputation would provide an alternative approach to missing co-

variates in the MZIP. In its application to the FMR data, multiple imputation gave similar

results as MCEM.
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Figure 4.1: Distribution of dmfs counts from 1094 children grades 1 to 5 participating in a
school-based �uoride mouthrinse program.

84



Table 4.1: Simulation results for scenario with two covariates, where one is potentially missing: comparison of MCEM and
CC models based on 500 replications with sample sizes 250, 500 and 1000.

MCEM Complete Case
S Size Par Percent Rel. Bias Sim. Std Mean SE MSE Percent Rel. Bias Sim. Std Mean SE MSE

α0 -0.734 0.185 0.184 0.034 34.594 0.171 0.165 0.149
α1 1.241 0.149 0.151 0.022 7.848 0.142 0.139 0.026

250 α2 0.697 0.174 0.184 0.030 25.794 0.171 0.169 0.096
γ0 0.215 0.232 0.232 0.054 -52.701 0.251 0.239 0.340
γ1 1.136 0.215 0.211 0.046 4.797 0.244 0.189 0.062
γ2 1.474 0.254 0.258 0.065 -26.464 0.297 0.254 0.158
α0 -1.325 0.132 0.130 0.018 34.298 0.122 0.116 0.133
α1 -0.291 0.107 0.106 0.012 6.622 0.103 0.098 0.015

500 α2 -0.212 0.128 0.128 0.016 24.731 0.123 0.119 0.076
γ0 0.831 0.161 0.162 0.026 -52.337 0.173 0.167 0.304
γ1 1.280 0.144 0.139 0.021 4.090 0.162 0.129 0.028
γ2 1.428 0.173 0.172 0.030 -24.874 0.200 0.174 0.102
α0 -1.241 0.094 0.091 0.009 34.276 0.086 0.082 0.125
α1 -0.546 0.076 0.075 0.006 6.291 0.072 0.069 0.009

1000 α2 -0.458 0.090 0.091 0.008 24.583 0.084 0.084 0.067
γ0 1.068 0.115 0.114 0.013 -51.964 0.119 0.118 0.284
γ1 1.340 0.098 0.094 0.010 4.129 0.109 0.089 0.014
γ2 1.410 0.118 0.118 0.014 -24.426 0.128 0.121 0.076
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Table 4.2: Simulation results for scenario with three covariates, where two are potentially missing: comparison of MCEM and
CC models based on 500 replications with sample size 1000 for two missing data scenarios.

MCEM Complete Case
Par Percent Rel. Bias Sim. Std Mean SE. MSE Percent Rel. Bias Sim. Std Mean SE. MSE
Scenario 1: Mean= 41.0 % of observations missing at least one covariate value

α0 0.084 0.092 0.088 0.008 -87.617 0.156 0.157 0.216
α1 1.514 0.070 0.066 0.005 -65.266 0.084 0.090 0.113
α2 2.177 0.073 0.072 0.005 -64.870 0.094 0.099 0.114
α3 1.296 0.079 0.075 0.006 -38.260 0.108 0.110 0.048
γ0 2.742 0.123 0.115 0.015 83.230 0.193 0.173 0.210
γ1 8.946 0.100 0.088 0.012 74.417 0.108 0.101 0.150
γ2 6.218 0.099 0.095 0.011 74.367 0.121 0.111 0.153
γ3 2.722 0.094 0.088 0.009 47.921 0.130 0.115 0.074
Scenario 2: Mean= 30.1% of observations missing at least one covariate value

α0 -1.386 0.087 0.084 0.008 35.325 0.084 0.080 0.038
α1 -1.348 0.060 0.059 0.004 8.155 0.056 0.054 0.005
α2 0.086 0.062 0.065 0.004 9.079 0.058 0.059 0.005
α3 -1.065 0.071 0.070 0.005 35.487 0.074 0.068 0.037
γ0 1.164 0.110 0.106 0.012 -66.442 0.122 0.115 0.125
γ1 1.682 0.073 0.073 0.005 2.066 0.077 0.073 0.006
γ2 0.243 0.075 0.079 0.006 1.120 0.080 0.081 0.007
γ3 1.264 0.080 0.080 0.006 -36.649 0.097 0.089 0.043
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Table 4.3: MZIP estimates and standard errors for the NC FMR data from MCEM, multiple
imputation and complete case analyses.

MCEM Multiple Imputation Complete Case
Variable Estimate SE Estimate SE Estimate SE
Marginal mean model

Intercept 1.726 0.144 1.680 0.164 1.468 0.166
Years -0.099 0.094 -0.015 0.106 -0.084 0.078
African American -0.451 0.073 -0.380 0.082 -0.464 0.080
Other race -0.598 0.178 -0.622 0.191 -0.974 0.268
Brushing freq. -0.095 0.046 -0.106 0.051 -0.017 0.054
Fam. income -0.196 0.016 -0.153 0.020 -0.213 0.018
Dental home 0.307 0.078 0.254 0.084 0.359 0.089
No access 0.316 0.070 0.273 0.078 0.426 0.069
Age -0.035 0.045 -0.026 0.047 -0.120 0.046
Age-sq -0.037 0.014 -0.024 0.014 -0.044 0.014
Age-cu -0.033 0.009 -0.035 0.009 -0.019 0.009
Sealants 0.771 0.052 0.675 0.073 0.954 0.072
Zero-in�ation model

Intercept -1.707 0.347 -1.128 0.365 -1.229 0.402
Years -0.010 0.164 -0.056 0.147 0.138 0.154
African American 0.687 0.154 0.401 0.169 0.711 0.172
Other race 1.300 0.277 1.157 0.286 1.875 0.418
Brushing freq. 0.196 0.098 0.207 0.109 0.063 0.126
Fam. income 0.440 0.028 0.259 0.042 0.428 0.036
Dental home -0.148 0.148 -0.009 0.165 -0.276 0.201
No access -0.041 0.151 -0.056 0.165 -0.472 0.178
Age -0.071 0.076 -0.120 0.082 0.105 0.088
Age-sq 0.026 0.026 -0.010 0.026 0.053 0.029
Age-cu 0.062 0.013 0.066 0.014 0.035 0.016
Sealants -1.290 0.099 -1.030 0.142 -1.434 0.144
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CHAPTER 5: CONCLUSION

While mixture models such as zero-in�ated Poisson regression provide a �exibile platform

to �t highly dispersed count data, estimates from these models do not have straightforward

interpretations in describing the overall e�ects of explanatory variables on population-wide

parameters. When interest is to make inferences about the marginal mean of the sampled

population, indirect methods of parameter estimation such as the use of post-modeling

transformations are often needed to make use of regression coe�cients obtained from mix-

ture models. However, these transformations may be di�cult for some analysis to carry

out, and may not always yield desired estimates. In the analysis of zero-in�ated counts, the

importance of models with marginally interpretable parameters has long been recognized

(Lambert, 1992; Böhning et al., 1999; Preisser et al., 2012; Albert et al., 2014; Long et al.,

2014), and the estimation of such parameters has gotten some attention in recent years.

For counts with excess zeros, marginalized zero-in�ated Poisson (Long et al., 2014) and

negative binomial (Preisser et al., 2016) models allow for the estimation of overall exposure

e�ects on the marginal mean in the population. Coe�cients from these models have direct

interpretations in describing the marginal mean, and can easily be employed to estimate

incidence density ratios and other population-wide parameters.

In the second chapter of this dissertation, we proposed marginalized models for overdis-

persed counts based on two-component non-degenerate mixture distributions. To estimate

the e�ects of exposure variables on the overall population mean count, we specify regression

parameters directly to the marginal mean and perform maximum likelihood estimation.

The models provide estimates that directly quantify the e�ects of exposure variables on the

overall population mean, and extend the family of two-part marginalized regression models
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for overdispersed count outcomes by providing alternatives to marginalized zero-in�ated

Poisson and negative binomial models. In addition to mixtures containing a degenerate

at-zero and a Poisson or a negative binomial distributions on which existing marginalized

zero-in�ated models are based, the proposed method assumes other plausible mixture distri-

butions for zero-in�ated counts. Simulations indicate that when the true model is speci�ed,

each of the proposed marginalized mixture models provides smaller biases, Type I errors

close to the nominal level and better con�dence interval coverages compared to the other

marginalized models considered. The applications of the models are demonstrated in a

clinical trial aimed at comparing the anti-caries e�cacy of three toothpaste formulations

in children. Future research could extend the marginalized mixture models to allow the

mixing probabilities to depend on covariates as well as to accommodate longitudinal data,

for example, by inclusion of random e�ects as in Long et al.(2015).

In the third chapter of the dissertation, we developed a joint marginalized model for

two correlated counts with zero-in�ation. The model speci�es regression coe�cients to the

marginal means of the two outcomes and provides estimates that allow for direct inferences

about the overall population. The new model extends univariate marginalized models by

accommodating two correlated outcomes, and modi�es existing bivariate models for zero-

in�ated counts by directly estimating overall covariate e�ects in the population. Finite

sample properties of the marginalized model estimates are examined in simulation studies.

The model is further applied to dental caries data. While we performed estimation by direct

maximization of the likelihood function with carefully selected starting values, applications

of Bayesian methods or the EM algorithm could provide alternative estimation methods.

Future research could also extend the model to handle three or more correlated outcomes

with zero-in�ation. Another possible extension could be the modeling of repeated or longi-

tudinal data in problems where the bivariate zero-in�ated outcome is measured repeatedly

for each sampling unit.

Finally, building upon the work of Ibrahim et al.(1999), we proposed an estimation
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method for marginalized zero-in�ated Poisson models for problems where covariates are

missing at random. The method employs Monte Carlo EM algorithms (Wei and Tan-

ner,1990) and estimates the E step of EM based on samples generated from the conditional

distributions of the missing covariates. The method was illustrated and compared with mul-

tiple imputation and complete case analysis by using simulations and dental data collected

to estimate the caries preventive e�ects of a school-based �uoride mouthrinse program. Fu-

ture research could extend the method to MZINB models or seek to handle missing response

data in addition to missing covariates.
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