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Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic
changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an
African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a
xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not
present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary
tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large
deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and
structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary
tumours may arise from a minority of cells within the primary tumour.

Basal-like breast cancer is characterized by the absence of oestrogen
receptor (ER) expression, the lack of ERBB2 gene amplification, and a
high mitotic index. The consequent absence of approved targeted
therapy options and frequently poor response to standard chemo-
therapy often result in a rapidly fatal clinical course. The disease also
accounts for an elevated percentage of breast cancers in patients with
African ancestry1. Clinical progress has been limited by a poor under-
standing of the genetic events responsible for this tumour subtype
and by limited preclinical models to study the disease. Because basal-
like breast cancer has a highly unstable genome, a key question is
whether the fatal metastatic process is driven by mutations that occur
after the tumour cells arrive at the distant site, or whether the primary
tumour generates cells with a complete repertoire of somatic muta-
tions required for metastatic growth. The rapid advancement of
next-generation sequencing technologies allows comprehensive
characterization of genomic changes, facilitating the comparison of
multiple samples taken from the same patient to address the genetic
basis for tumour progression and metastasis.

Case presentation and previous characterization of samples

A 44-year-old African-American woman was diagnosed with an
ERBB2-negative and ER-negative inflammatory breast cancer. She

was treated with neoadjuvant dose-dense chemotherapy2, but signifi-
cant residual tumour was present in the breast and axillary lymph
nodes at mastectomy. This indicated chemotherapy resistance and
she subsequently underwent radiation therapy. Eight months later
she developed a cerebellar metastasis and, despite resection, rapidly
succumbed to widely disseminated disease. A transplantable human-
in-mouse (HIM) xenograft tumour line was generated from a sample
of her primary tumour biopsied before treatment3. The xenograft in
the mammary fat pad was locally invasive and produced metastatic
deposits in lymph nodes and ovaries. Informed consent for full
genome sequencing was obtained and DNA samples were prepared
from her peripheral blood, primary tumour, brain metastasis and an
early passage xenograft (harvested 101 days after initial engrafting
into the mouse host). Application of the PAM50 intrinsic subtype
algorithm identified the primary tumour, brain metastasis and xeno-
graft line as basal-like subtype, with high risk of relapse (ROR)
scores4.

Sequence coverage and mutation analysis

Using a paired-end sequencing strategy, we generated 130.7, 124.9,
111.8 and 149.2 billion base pairs of sequence data from genomic
DNA derived from blood, primary tumour, brain metastasis and
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xenograft samples, respectively, with corresponding haploid coverages
of 38.83, 29.03, 32.03 and 23.83 (Supplementary Table 1). These
genome-wide coverages were assessed by comparing single nucleotide
variants (SNVs) detected by MAQ5 with single nucleotide polymor-
phisms (SNPs) genotyped using Illumina 1M duo arrays for all tissues
excluding the xenograft. Array data from the metastasis were used as a
surrogate for monitoring the xenograft SNP coverage and confirmed
bi-allelic detection of 98.27%, 96.79%, 96.17% and 88.77% of the
heterozygous array SNPs in the normal, primary tumour, metastasis
and xenograft sequence data sets, respectively (Supplementary Table 1).

The process for selecting somatic mutations is shown in Sup-
plementary Table 2 and is detailed in Supplementary Information.
Putative somatic SNVs and indels that overlap with coding
sequences, splice sites and RNA genes were included as ‘tier 1’. We
combined tier 1 sites identified in all three tumour samples and
obtained deep read count data for all four samples from Illumina
and/or 454 platforms (Supplementary Information). On the basis of
pathology review, the tumour cellularity estimates were 70% for the
primary tumour and 90% for both the brain metastasis and xeno-
graft. Using these estimates, we calculated the tumour read counts by
proportionally removing the counts derived from the normal tissue
reads from the counts obtained from primary tumour and metastasis
reads (Supplementary Table 3a). Using the Illumina platform, we
also generated 15.6 Gb (4.43 haploid coverage) of sequence data
for the NOD/SCID mouse genome used as the host for the xenograft
line. The mapping rates of NOD/SCID data to human and mouse
C57BL/6 reference sequences were 3.17% and 95.85%, respectively.
As the non-malignant contamination in xenograft is largely from
murine cells (which do not significantly affect read mapping), no
correction was applied for the xenograft data. Adjusted tumour read
counts were used to calculate mutant allele frequencies. Somatic
changes were validated by comparing mutant allele frequencies in
the three tumour genomes against the germline DNA sample, com-
bined with a manual review of ABI 3730 data from PCR products
(Supplementary Information).

A total of 50 somatic sites, including 28 missense, 11 silent, 2 splice
site, 1 RNA, 1 nonsense, 4 insertions and 3 deletions, were validated
in at least one of the three tumour genomes. Of coding point muta-
tions, the observed nonsynonymous/synonymous ratio of 2.64:1
(29:11) is not significantly different from that expected by chance6

(P 5 0.51), indicating that the majority of coding mutations do not
confer a selective advantage to the basal tumour. This is similar to the
nonsynonymous/synonymous ratio reported in the small-cell lung
cancer cell line NCI-H2097, but higher than the ratio reported in the
melanoma cell line COLO-8298.

Mutation spectrum in basal breast tumour

We investigated the spectrum of DNA sequence changes in this basal
tumour and found that 55% (22 out of 40) of coding point mutations
represent CNGRTNA transitions. A similar frequency of CNGRTNA

transitions (56% (18 out of 32)) was observed in a lobular breast
tumour recently reported9 (Fig. 1a). In addition, 15% (6 out of 40)
of coding point mutations representing CNGRANT transversions were
detected in the basal tumour, but none was found in the lobular
tumour. The statistical significance of these observations should be
explored with the comparative analysis of a larger number of basal and
lobular breast tumours. Moreover, the observed CNGRTNA transition
frequency is notably higher than those observed in a previous breast
cancer study10 (P 5 0.027; Fig. 1b). A set of extremely high-confidence
tier 1–4 mutations (somatic score .55 and average mapping quality
.79) was used to explore the genome-wide mutation spectrum. We
found that mutations at ANT bases are significantly expanded in the
genome-wide set compared to the coding mutations, especially for
ANTRGNC transitions (P 5 0.0065). This is consistent with the higher
ANT content in non-coding sequences than in coding sequences.
Comparison to the whole-genome mutation spectrum reported for
the melanoma cell line (COLO-829)8 and a small-cell lung cancer cell
line (NCI-H209)7 indicates that the tumour genome under study
shows no sign of tobacco or ultraviolet influence. We then compared
the fraction of the three classes of guanine mutations occurring at CpG
dinucleotides in primary tumour, brain metastasis and xenograft and
found that the frequencies of GRA mutations are 27.54%, 27.60% and
28.05% in each respective tumour, significantly higher than both the
genome average of 4.45% (P , 10210) and the frequency reported in
NCI-H209 (P , 10210; Fig. 1c).

Distribution of mutations among tumours
Common mutations detected in three tumour genomes. Of the 50
validated point mutations and small indels, 48 are detectable in all
three tumours. We performed a statistical enrichment test that takes
the variations of different platforms, experiments and primer pairs
into consideration (Supplementary Information). These 48 sites con-
sist of 20 sites with relatively comparable frequencies across tumours,
26 sites significantly enriched (false discovery rate (FDR) # 0.05) in
the metastasis and/or xenograft, and two sites with significant enrich-
ment (FDR # 0.05) in the primary tumour (Fig. 2 and Table 1). The
affected genes and the likely consequences of these mutations are
summarized in Table 1 and Supplementary Table 3b.
Mutations with comparable frequencies in three tumours. We
detected a JAK2 mutation (I166T), residing in the FERM domain,
which is different from the previously reported activating mutations
in myeloproliferative diseases, often found in the pseudokinase
domain11. Screening of an additional 116 breast tumours identified
another mutation (R1122P) in the kinase domain of JAK2 from a
luminal B-type breast cancer. A splice site mutation (e8-1) was found
in IRAK2. We performed a polymerase chain reaction with reverse
transcription (RT–PCR) experiment using RNAs from the brain meta-
stasis and xenograft and found that the first 30 nucleotides of exon 8
(IRAK2, NM_001570) were skipped and an internal exonic AG site was
used as a splice acceptor, resulting in an in-frame deletion. A missense
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Figure 1 | Mutational signatures in the basal breast tumour. a, Fraction of
mutations in each of the transition and transversion categories in the
metastasis of a lobular breast tumour9, the metastasis of the basal breast
tumour under study, and the 11 breast tumours reported previously29 from
which 1,104 coding mutations identified in the discovery set were used in the

analysis. b, Fraction of mutations in each of the transition and transversion
categories in 43 tier 1 mutations and 3,204 tier 1–4 mutations in the
metastasis under study. c, Fraction of guanine mutations at CpGs in primary
tumour, metastasis, xenograft and NCI-H209 as reported previously7.
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mutation (A401S) in CSMD1 was found in all three tumours. Loss of
CSMD1 expression is associated with poor survival in invasive ductal
breast carcinoma12 and it is frequently deleted in colorectal adenocarci-
noma and head/neck carcinomas13. We also identified three missense
(E608K, T1456R, and Q2204R) and one nonsense (Q3005*) mutations
in CSMD1 in four breast cancers out of 116 screened. A binomial test
shows that CSMD1 is significantly mutated in breast cancer (P 5 0.022
and FDR 5 0.197; Supplementary Table 4).
Mutations highly enriched in metastasis and/or xenograft. A mis-
sense mutation (A681E) in NRK, a protein kinase involved in activ-
ating JNK, was found to be present in all three tumours, but at 8- and
13-fold increased allele frequencies in the metastasis and xenograft,
respectively (Fig. 2 and Table 1). Two somatic mutations (S424C and
Q521*) in NRK have been previously reported in breast cancer14. The
missense mutation (P461L) identified in the carboxy terminus of
MAP3K8 was present at a roughly sixfold increase in the xenograft
compared to the primary tumour. C-terminal truncation of
MAP3K8 has been shown to activate this oncogenic kinase15,16, rais-
ing the possibility that this C-terminal substitution (P461L) is an
activating mutation.

Another missense mutation (K1017N) in PTPRJ, a protein tyro-
sine phosphatase, had a mutant allele frequency of 32% in the meta-
stasis and 57% in the xenograft compared with just 1.3% in the
primary tumour. This K1017N mutation in PTPRJ is among the most
highly enriched mutations in both the metastasis (FDR 5 0.00035)
and xenograft (FDR 5 0.00022). The mutation site is in the juxta-
membrane domain (a basic residue motif) and is in close proximity
to the tyrosine-protein phosphatase domain (amino acids 1041–
1298). Reference 17 reported that the PTPRJ charged peptide (amino
acids 1013–1024) is responsible for interaction with its substrates,
such as ERK1/2. The K1017N mutation found in the basal tumour
and the K1016A mutation described in ref. 17 both change a basic
residue to a neutral residue, indicating that these two mutations may
be functionally similar. A missense mutation (F299V) in WWTR1,
assigned as deleterious by SIFT18, was detected at 28% mutant allele
frequency in metastasis, but only at 7% and 10% in primary tumour
and xenograft, respectively (Fig. 2 and Table 1). WWTR1, a 14-3-3
binding protein with a PDZ binding motif, has been shown to modu-
late mesenchymal stem cell differentiation19. Overexpression of
WWTR1 has also been implicated in promoting the migration, inva-
sion and tumorigenesis of breast cancer cells20.

Another point mutation (R258Q) was identified in CHGB (chro-
mogranin B) encoding a tyrosine-sulphated secretory protein. A SNP
at the same position was reported to dbSNP in January 2009 for a
Yoruba sample. It was also assigned as a germline site in another
African-American with breast cancer when we genotyped this muta-
tion in 112 additional primary tumours and 73 metastatic tumours of
various expression classes (Supplementary Information). To investi-
gate this variant further, 84 cancer-free African-American women
with an average age of 71.2 years (low risk for developing breast
cancer) and 38 early-onset African-American breast cancer patients
with an average age of 35.6 years were genotyped. The results indi-
cated that 8 out of 84 controls and 3 out of 38 cases carried the variant
allele, indicating that this variant is unlikely to be a breast cancer
susceptibility allele.

Three validated indels were enriched in the metastasis and/or
xenograft. One was the 1-bp insertion in exon 4 of the TP53 gene,
which creates a frameshift mutation (Q167fs) in the DNA binding
domain and results in a truncated protein. We found the TP53 muta-
tion to be significantly enriched in the xenograft, whereas it was
present at a relatively constant frequency in primary tumour and
metastasis (Fig. 2 and Table 1).
Mutations enriched in the primary tumour. A nonsense mutation
(Q2222*) in MYCBP2 and a missense mutation (E576K) in TGFBI,
both found in all three tumours, had higher mutant allele frequencies
in the primary tumour (88% for MYCBP2 and 89% for TGFBI) than
in the metastasis (44% for MYCBP2 and 38% for TGFBI) or the
xenograft (37% for MYCBP2 and 18% for TGFBI) (Fig. 2 and
Table 1).
De novo mutations identified in the metastasis. Two de novo muta-
tions were discovered in the metastatic tumour, neither of which was
detected in the primary or xenograft tumour genomes. One was a
missense mutation (T708I) in SNED1, with a mutant allele frequency
of 37%; the other was a silent mutation (N2483) in FLNC with a mutant
allele frequency of 18% (Fig. 2 and Table 1). Because the xenograft line,
without these two mutations, exhibits metastatic lesions in ovarian,
lymphoid and subcutaneous tissue (data not shown), it is unlikely that
these mutated genes are essential to the metastatic process.

Elevated copy number alterations in metastasis and xenograft

The cnvHMM algorithm (K.C., X.S., E.R.M., L.D. and R.K.W.,
unpublished) was applied to the aligned sequence reads to detect
regions of copy number alterations in all three tumours. Using
pathology-based purity estimates for the primary tumour and brain
metastasis, we calculated the read depth contributed from the
tumour cells alone and then computed the copy number for all
genomic positions. Read depth correction was not applied to the
xenograft, as stated earlier. We subsequently compared the copy
number data from all three tumours with those from peripheral
blood, to identify genomic segments with significant copy num-
ber alterations (CNAs) (Supplementary Information). A total of
516.5 Mb, 640.4 Mb and 754.5 Mb were amplified, whereas
342.5 Mb, 383.1 Mb and 562.5 Mb were deleted, in primary tumour,
metastasis and xenograft, respectively (Supplementary Table 5–7).
Moreover, 96.11% and 93.98% of CNA sequences in the primary
tumour were also found in CNA segments in the metastasis and
xenograft, respectively, indicating that most primary tumour CNAs
are preserved during disease progression and engraftment. On the
other hand, only 80.65% of metastasis and 61.29% of xenograft CNA
sequences overlap with primary tumour CNAs. Furthermore, 155
regions with focal copy number segments (#2 Mb) were detected
in the primary tumour, but only 101 and 97 regions in the metastasis
and xenograft (Supplementary Tables 8–10). Our result also
shows that 111 (average span 5 745,183 bp) and 99 (average
span 5 799,395 bp) focal copy number segments (#2Mbp) in the
primary tumour overlap with broader copy number segments in
the metastasis (average span 5 2,245,546 bp) and xenograft (average
span 5 3,565,456 bp), indicating possible expansion of primary focal
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Figure 2 | Mutant allele frequency from deep read count data. The mutant
allele frequency of each somatic mutation is shown. Mutations were
validated using both 454 and Illumina sequencing. Each bar represents the
average of the frequency yielded by the two technologies for a single primer
pair and the error bars represent the standard deviation. Data were
considered only if there were at least 200 reads from Illumina sequencing
and at least 20 reads from 454 sequencing. If no error bar exists, then data
were only available from a single sequencing platform.
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regions or selection of new adjacent events during disease progres-
sion and in the mouse host. Sequence depth-based copy number
analysis shows overall the highest concordance with other platforms,
including the array CGH and Illumina SNP array, and also provided
the highest concordance of copy number (correlation coefficients:
0.89–0.97) between primary tumour, metastasis and xenograft
(Supplementary Table 11).

Common and unique structural variations in three tumours

We used BreakDancer21 to detect structural variants in sequencing
data from paired end libraries (Supplementary Table 12) and applied
a set of thresholds to identify putative somatic structural events.
Deletions, insertions and inversions. Breakpoint-containing con-
tigs from the three tumour samples that were not present in the
matched normal genome were successfully assembled for 137 dele-
tions, 15 insertions and 38 inversions using the TIGRA assembler
(L.C., K.C., J.W.W., E.R.M., R.K.W., L.D. and G.M.W., un-
published), suggesting that they were putative somatic events. We
then re-mapped individual reads to these assembled contigs to screen

out germline structural variants and to confirm somatic structural
variants (Supplementary Information), resulting in the detection of
59 deletions and 18 inversions. PCR primers were designed success-
fully to validate 73 out of 77 putative structural variant events and the
resulting amplicons were sequenced by either the Roche 454 or ABI
3730 platform. Subsequently, 28 deletions and 6 inversions were
validated as somatic events (Table 2). Among them, a 46,462-bp
heterozygous deletion in FBXW7 removes the last 10 exons and a
portion of the first exon of NM_018315, probably inactivating
FBXW7. FBXW7 targets cyclin E and mTOR for ubiquitin-mediated
degradation22,23. Numerous cancer-associated mutations in FBXW7
have been previously reported, and loss of FBXW7 function causes
chromosomal instability and tumorigenesis24. Two overlapping dele-
tions (538,467 bp and 515,465 bp in length) on chromosome 5,
affecting CTNNA1 along with LRRTM2, MATR3, SNORA74A and
SIL1, were also validated. This result is consistent with the detection
of a focal copy number deletion encompassing this region in both
metastasis (copy number 5 0.65) and xenograft (copy number 5 0.03)
(Fig. 3 and Supplementary Tables 9 and 10). Careful examination of

Table 1 | Summary of point mutations and small indels

Chr Start Allele change Gene Amino acid change Mutant allele frequency (%) Copy number Enrichment FDR

N T M X T M X M:T X:T

1 26062702 G.A PAQR7 p.A72 0.17 5.78 34.55 13.70 2 2 2 9.00310
24

0.011

1 26646672 G.A DHDDS p.R159H 0.14 21.12 40.24 88.29 2 2 2 5.73310
25

2.46310
25

1 43684654 G.A KIAA0467 p.G2119R 0.13 7.00 40.02 84.84 2 2 2 0.001 5.98310
25

1 45068225 C.G PTCH2 p.W293S 0.02 13.70 36.03 43.61 2 2 2 0.085 0.381

1 152723308 delGCAACTTTTCATT SHE p.LPFKG476in_frame_delW 0.19 19.28 21.33 7.69 4.61 5.34 6.92 0.820 0.065

1 226395989 C.A GUK1 p.P11Q 0.01 36.29 33.12 40.17 3.66 3.96 4.64 0.374 0.365

1 242935580 A.T PPPDE1 p.T151S 0.12 3.39 48.57 11.47 3.45 3.71 4.38 0.012 0.063

2 24994872 G.A ADCY3 p.H163 0.06 7.10 37.49 48.71 3.17 3.24 3.78 0.007 0.029

2 56273320 delG CCDC85A p.E161fs 0.16 1.71 17.11 28.78 2.9 3.24 3.34 0.002 0.006

2 197349569 G.C GTF3C3 p.R474G 0.11 29.42 37.75 11.08 1.4 1.31 1.24 0.316 0.065

2 229835724 C.T PID1 p.S14 0.11 8.95 38.89 66.13 2 2 1.36 0.001 0.166

2 241641282 C.T SNED1 p.T708I 0.04 0.32 36.52 2.30 2 2 2 1.58310
24

0.719

3 10236363 G.T IRAK2 e8-1 0.38 48.37 52.69 53.33 2 2 2 0.156 0.762

3 139505123 G.A TXNDC6 p.R221W 0.29 39.50 58.62 15.81 2 2 2 0.039 0.012

3 150728323 A.C WWTR1 p.F299V 0.03 6.87 28.14 9.53 2 2 2 1.43310
24

0.020

4 40051165 C.A CHRNA9 p.D437E 0.10 28.38 36.82 90.26 2 2 2 0.073 9.67310
25

4 40134827 delG RBM47 p.I280fs 0.05 8.62 79.15 79.74 2 2 2 0.030 0.124

4 82232630 C.T PRKG2 p.R709 0.11 6.99 82.99 91.51 2 2 2 0.083 0.094

5 135422725 G.A TGFBI p.E576K 0.17 89.09 37.58 18.45 2 2 2 3.34310
26

3.23310
25

5 169466048 C.T FOXI1 p.S170F 0.15 69.28 78.33 93.61 2 2 2 0.473 0.009

7 100463999 G.C MUC17 p.S861T 1.69 9.22 1.46 14.43 2 2.76 4.04 0.073 0.816

7 128284099 C.T FLNC p.N2483 0.11 0.17 18.21 0.16 2.54 2.8 2.93 0.002 0.193

7 148400407 G.A ZNF786 p.F130 0.13 13.61 62.86 81.04 2.51 2.85 3.54 3.01310
24

3.23310
25

8 3232441 C.A CSMD1 p.A409S 0.04 29.75 54.22 65.18 2 2 2 0.355 0.141

8 8477326 C.T ENSG00000222487 NULL 0.11 9.61 28.43 13.74 2 2 2.67 0.120 0.787

9 5040714 T.C JAK2 p.I166T 0.09 61.63 21.93 47.40 2.83 2.67 2.84 0.246 0.999

9 107137789 G.A SLC44A1 p.A132T 0.08 2.59 76.14 85.31 2 1.29 1.19 1.43310
24

1.05310
24

10 14603968 C.T FAM107B p.R237Q 2.65 13.53 63.25 97.88 3.7 4.04 4.76 3.29310
26

8.54310
28

10 30789749 C.T MAP3K8 p.P461L 0.11 13.33 31.72 77.47 3.44 3.71 4.21 0.002 9.67310
25

10 79240899 G.A DLG5 p.D1474 0.07 32.94 76.10 74.72 2 2 2 6.12310
25

0.011

11 12496610 insATGGAG PARVA p.338in_frame_insDG 0.00 1.41 10.75 10.58 2 2 2 0.347 0.365

11 48128224 A.T PTPRJ p.K1017N 0.20 1.25 32.08 57.23 2 2 2.99 3.48310
24

2.20310
24

11 102687902 G.A DYNC2H1 p.R3867Q 0.06 12.81 25.78 15.69 2 2 2 0.002 0.023

12 31122692 T.G DDX11 p.V33G 0.02 44.35 40.39 57.88 1.49 1.37 1.24 0.316 0.386

13 76628331 G.A MYCBP2 p.Q2222* 0.10 87.84 43.76 36.95 2 2 2 0.004 0.003

13 100688137 A.T NALCN p.D468E 0.16 18.60 87.66 1.65 2 2.74 2.92 0.004 0.216

14 19285546 G.T OR4Q3 p.L40 0.22 36.94 40.31 32.28 2 2 2 0.313 0.107

16 66569387 T.G DPEP3 p.R262S 0.84 45.61 39.43 76.59 2 2.9 3.02 0.293 6.93310
24

16 82828230 C.A KCNG4 p.G121 0.04 4.15 26.82 69.89 2.43 3.09 3.49 0.083 0.259

17 7519157 insG TP53 p.Q167fs 4.61 79.40 62.62 97.96 2 2 2 0.085 0.003

17 32904736 C.T TADA2L p.R339W 0.12 17.49 59.92 79.47 2 2 2 0.002 0.002

19 12363315 G.A ZNF799 p.H299 0.17 2.05 26.23 11.81 2 2 3.06 0.062 0.618

19 16006577 insA ENSG00000167459 p.I38fs 4.82 26.53 48.47 37.74 2 2 3.06 0.286 0.809

20 5851563 G.A CHGB p.R258Q 0.14 35.64 45.50 54.87 2.57 2.86 3.64 0.057 0.005

21 45015744 G.A UBE2G2 p.I158 0.12 21.57 26.72 20.89 2 2 2 0.522 0.728

X 15731812 C.G ZRSR2 p.A95G 1.01 64.01 58.66 72.08 2.51 2.77 2.99 0.137 0.969

X 43893087 C.G EFHC2 e15-1 0.01 9.88 23.15 7.35 2 2.68 2.82 0.114 0.381

X 46318872 insA CHST7 p.T188fs 0.19 3.67 54.36 38.84 2 2.68 2.82 0.073 0.058

X 105040331 C.A NRK p.A681E 0.12 4.08 30.84 52.45 2 2 2 0.085 0.017

X 129374039 A.G RBMX2 p.K169E 0.30 11.88 38.36 69.46 2 2.65 2.77 0.002 0.003

Gene sets from Ensembl build 54 and GenBank (downloaded in May 2009) were used for annotation of mutations. Enrichment FDR represents the false discovery rate of the significance of the
variant frequency change between the two samples. M, metastasis; N, peripheral blood; T, primary tumour; X, xenograft.
*Nonsense mutation.
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this region in the aligned sequence reads for the primary tumour
confirms the existence of copy number deletion. Loss of CTNNA1
was shown to result in global loss of cell adhesion in human breast
cancer cells25 and increased in vitro tumorigenic characteristics26, indi-
cating that this bi-allelic deletion has functional importance. A
109,563-bp heterozygous deletion on chromosome 8 was assembled
and validated in all three tumours. This event removed three exons of
NRG1, which encodes a peptide growth factor that binds to ERBB3 and
ERBB4. Notably, a 26,919-bp deletion in MECR was only identified,
assembled and validated in the metastasis, suggesting its de novo nature
in this sample.
Translocations. Of the 112 assembled putative translocations, 34
passed manual review using Pairoscope graphs (D.E.L., C.C.H.,
E.R.M., L.D. and R.K.W., unpublished), and 19 with an assembly
score greater than our experimentally supported cutoff of 10 were
included in Supplementary Table 13. Seven translocations were
experimentally validated (Table 2). One validated translocation
t(4;9)(188855443;139022258), assembled in all three tumours,
involved a long terminal repeat (LTR) from the ERVL-MaLR family
on chromosome 4 and ABCA2 on chromosome 9. The translocation
removes the final exon of the ABCA2 gene (NM_001606). Two
other validated translocations, identified in all three tumours, are
t(1;2)(245548338;64855172) and t(2;6)(64855607;144243116) (Sup-
plementary Fig. 1). Noticeably, the breakpoints on chromosome 2 for
these two translocations are only separated by 393 bp in a TcMar-Tigger
repeat. The chromosome 1 breakpoint of t(1;2)(245548338;64855172)
is in intron 5 of NM_032752 in ZNF496. We expect the translation of
ZNF496 to continue through exon 5 into intron 5 due to lack of a
splice acceptor site. On the other hand, t(2;6)(64855565;144243116)

involves FAM164B on chromosome 6 and the translocation contig
retains three exons of XM_928657. We have also validated
t(1:6)(245548342;144243110) (not detected by BreakDancer), the
breakpoints of which are only 4 bp and 6 bp away from the breakpoints
identified on chromosomes 1 and 6 for t(1;2)(245548338;64855172)
and t(2;6)(64855607;144243116), respectively (Supplementary Fig. 1).
This translocation is found in both the primary tumour and the meta-
stasis, but apparently is lost in the xenograft (Supplementary Fig. 1 and
Fig. 4). Sequencing of two PCR products generated using two primer
pairs from chromosomes 1 and 6 demonstrated the presence of two
forms of genomic fusion: one includes chromosomes 1 and 6 and the
other includes chromosomes 1, 2 and 6. The former is only present in
the primary tumour and the metastasis.

Discussion

Our comprehensive analysis of this sample set identified 50 novel
somatic point mutations and small indels in coding sequences, RNA
genes and splice sites as well as 28 large deletions, 6 inversions and 7
translocations. In terms of functional annotation, a hierarchy can be
suggested. The first level includes somatic changes likely to be func-
tional, such as the small indel in TP53, the large heterozygous dele-
tion in FBXW7 and the bi-allelic deletion in CTNNA1. The second
level consists of nonsynonymous mutations in genes previously
noted to be targeted for somatic mutation in cancer or found to be
recurrently mutated in this study, although the exact mutations are
novel and their functional importance requires further investigation
(JAK2, PTCH2, CSMD1 and NRK). The third level contains muta-
tions known to be related to signal transduction in the malignant cells
and/or found to be enriched during disease progression (MAP3K8,

Table 2 | Validated structural variations

Type Tumour
source

Chromosome A Breakpoint A Orientation A Chromosome B Breakpoint B Orientation B Event size
(bp)

Gene

Translocation T,M,X 1 245548334 Minus 2 64855174 Plus – ZNF496

Translocation T,M 1 245548342 Plus 6 144243130 Plus – ZNF496, C6orf94

Translocation T,M,X 2 64855565 Plus 6 144243118 Minus – C6orf94

Translocation T,M,X 2 165126335 Plus 16 4537866 Plus – GRB14

Translocation T,M,X 4 188855443 Plus 9 139022260 Plus – ABCA2

Translocation T,M,X 12 10874022 Plus 14 99382256 Minus – EML1

Translocation T,M 19 17188977 Minus 3 188010735 Plus – USE1

Inversion T,M,X 1 35703682 – 1 35732148 – 28,465 KIAA0319L
Inversion T,M,X 1 95919529 – 1 95920940 – 1,410 –
Inversion T,M,X 1 204459097 – 1 204461297 – 2,200 –
Inversion T,M,X 1 204459547 – 1 204460581 – 1,033 –
Inversion T,M,X 4 177886041 – 4 177890171 – 4,129 VEGFC
Inversion T,M,X 19 17800861 – 19 17801858 – 996 JAK3

Deletion M 1 29389213 – 1 29416133 – 26,919 MECR
Deletion T,M,X 1 76496719 – 1 76496797 – 79 ST6GALNAC3

Deletion T,M,X 1 88291885 – 1 88292292 – 406 –
Deletion T,M,X 2 18629189 – 2 19196656 – 567,466 NT5C1B
Deletion T,M,X 2 64853205 – 2 65010694 – 157,488 –
Deletion T,M,X 2 128745303 – 2 128898612 – 153,308 HS6ST1

Deletion T,M,X 4 1203395 – 4 1265560 – 62,164 CTBP1

Deletion T,M,X 4 135737399 – 4 135738718 – 1,318 –
Deletion T,M,X 4 147221480 – 4 147294628 – 73,147 AK057233

Deletion T,M,X 4 153446894 – 4 153493357 – 46,462 FBXW7

Deletion T,M,X 5 15572469 – 5 15572649 – 179 FBXL7

Deletion T,M,X 5 130743604 – 5 130743718 – 113 CDC42SE2

Deletion T,M,X 5 138131495 – 5 138669963 – 538,467 CTNNA1, LRRTM2, MATR3, SNORA74A, SIL1

Deletion T,M,X 5 138141753 – 5 138657219 – 515,465 CTNNA1, LRRTM2, MATR3, SNORA74A, SIL1

Deletion T,M,X 6 39689264 – 6 39689652 – 387 KIF6

Deletion T,M,X 7 999743 – 7 999984 – 240 –
Deletion T,M,X 7 135419232 – 7 135419453 – 220 –
Deletion T,M,X 8 32597100 – 8 32706664 – 109,563 NRG1

Deletion T,M,X 8 116552846 – 8 116634665 – 81,818 TRPS1

Deletion T,M,X 8 136595795 – 8 136596285 – 489 KHDRBS3

Deletion T,M,X 9 2746534 – 9 2746735 – 200 –
Deletion T,M,X 10 77142378 – 10 77142881 – 502 C10orf11

Deletion T,M,X 11 115974418 – 11 115974688 – 269 –
Deletion T,M,X 11 125479377 – 11 125479744 – 366 –
Deletion T,M,X 17 24451601 – 17 24475255 – 23,653 MYO18A
Deletion T,M,X 17 73733446 – 17 73733547 – 100 BIRC5

Deletion T,M,X 18 46765510 – 18 46768017 – 2,507 ELAC1

Deletion T,M,X X 149511547 – X 149548642 – 37,094 MTM1

M, metastasis; T, primary tumour; X, xenograft.
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PTPRJ and WWTR1). The final level, by far the largest group, awaits
the acquisition of new data. Analysis of germline variants for over 500
classic tumour suppressor genes and oncogenes27 identified a large
number of SNPs, none of which was an unequivocal hereditary breast
cancer susceptibility allele (data not shown).

The wide range of mutant allele frequencies suggests considerable
genetic heterogeneity in the cellular population at the primary site. The
mutation frequency range narrowed in brain metastasis and xenograft,
indicating that the metastatic and transplantation processes selected
for cells carrying a distinct subset of the primary tumour mutation
repertoire. The overlap between the mutation frequency changes seen
in the metastatic and xenograft samples argues that cellular selection
during xenograft formation is similar to that during metastasis.
Moreover, it suggests that the changes were not therapy-related, as
the xenograft was established before any treatment. GO annotation
of enriched mutations suggests that transcription factor activity is
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Figure 3 | Two overlapping CTNNA1 deletions on chromosome 5 in three
tumours. A graph of sequence depths, read pairs and genes in a 638,468-bp
region containing two overlapping deletions. The top four panels display the
read depths at each base, and the reads within the region whose mates
mapped at an abnormal distance are displayed as blue bars, with matched
pairs connected by arcs. Two different shades of blue indicate the two
separate allelic deletion events (538,467 bp and 515,465 bp in length). The
bottom panel displays genes annotated in this genomic region.
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Figure 4 | Circos plots for the primary tumour, metastasis and xenograft
genomes. a–c, Circos30 plots display the validated tier 1 somatic mutations,
DNA copy number and validated structural rearrangements in the primary
tumour (a), metastasis (b) and xenograft (c). Mutations enriched in the
primary tumour are labelled in red in panel a; mutations enriched in the
metastasis or xenograft are in red in panels b and c. Mutations and the large
deletion unique to the metastasis are in blue (b). Translocations only present
in primary tumour and metastasis are in green. All shared events are in black.
The copy number difference between the tumour and normal is shown (scale:
24 to 4). No purity-based copy number corrections were used for plotting.
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possibly selected for in the xenograft (Supplementary Table 14). In
contrast to our observation of only two new tier 1 mutations at the
metastatic site, sequencing of an indolent metastatic lobular breast
tumour showed that the great majority of the mutations detected were
completely novel when compared to the primary tumour9. However, in
this instance, the metastatic process evolved over 9 years, as opposed to
less than 1 year in the case we describe here. Another difference relative
to the lobular cancer genome, where no structural variants were vali-
dated, was that paired-end sequencing detected 41 structural variations
within this basal-like tumour genome. Our study of a primary tumour–
metastasis–xenograft trio therefore demonstrates that, although addi-
tional somatic mutations, copy number alterations and structural
variations do occur during the clinical course of the disease, most of
the original mutations and structural variants present in the primary
tumour are propagated. The preservation of all primary mutations in
the xenograft suggests that early passage xenograft lines are valid for
functional and therapeutic studies. However, the altered mutation fre-
quency and elevated degree of copy number alterations suggest caution
when interpreting the results of such experiments.

The first completed basal-like breast cancer genome is highly com-
plex, as would be anticipated for a tumour type associated with
chromosomal instability and DNA repair defects. Indeed, this cancer
genome, in comparison with the two AML (acute myeloid leukemia)
cases published recently27,28, revealed a 3–4-fold increase in high-
confidence SNVs genome-wide, suggesting a much greater back-
ground mutation rate. Future studies should extend our analysis
approach of primary, metastatic and normal tissue trios and include
affected individuals with diverse geographic origins to produce a
complete catalogue of recurrent somatic and inherited variants
associated with the development of this common malignancy.

METHODS SUMMARY
Illumina reads from peripheral blood, primary tumour, metastasis and xenograft

were aligned to NCBI build36 using MAQ5 and coverage levels were defined by

comparison of SNPs identified by Illumina 1M duo arrays to SNVs called by

MAQ. Somatic mutations were identified using our in-house programs

glfSomatic and a modified version of the Samtools indel caller (http://samtools.

sourceforge.net/). Putative variants were manually reviewed and then validated
by Illumina, 3730 or 454 sequencing. Structural variations were identified using

BreakDancer21, manually reviewed and validated by a combination of localized

Illumina read assembly, PCR and either 3730 or 454 sequencing. A complete

description of the materials and methods used to generate this data set and

results is provided in the Supplementary Information.
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