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Abstract
We compared the accuracy of haplotype inferences at a 6 Mb region on chromosome 7 where
significant linkage between a brain oscillation phenotype and a cholinergic muscarinic receptor gene
was previously reported. Individual haplotype assignments and haplotype frequencies were
estimated using 5, 10, and 14 consecutive Illumina single-nucleotide polymorphisms (SNPs) within
the 1-LOD unit support interval of the chromosome 7 linkage peak. Initially, haplotypes were
constructed incorporating phase information provided by relatives using the pedigree analysis
package MERLIN. Population-based haplotypes were inferred using the haplotype estimation
software HAPLO.STATS and PHASE, using unrelated individuals.

The 14 SNPs within this region exhibited markedly low linkage disequilibrium, and the average D'
estimate between SNPs was 0.18 (range: 0.01–0.97). In comparison to the family-based haplotypes
calculated in MERLIN, the computational inferences of individual haplotype assignments were most
accurate when considering 5 consecutive SNPs, but decayed dramatically when considering 10 or
14 SNPs in both PHASE and HAPLO.STATS. When comparing the two haplotype inference
methods, both PHASE and HAPLO.STATS performed poorly. These analyses underscore the
difficulties of haplotype estimation in the presence of low linkage disequilibrium and stress the
importance of careful consideration of confidence measures when using estimated haplotype
frequencies and individual assignments in biomedical research.

Background
The advent of inexpensive high-throughput single-nucleo-
tide polymorphism (SNP) genotyping [1,2] and very
recent bioinformatic and statistical advances [3] now
facilitate genome-wide SNP association analyses in large
samples of individuals. Risch and Merikangas [2] argue
that association analyses are more powerful for the detec-
tion of common variants that affect common disease.
Others note that it is easier to recruit unrelated individuals

than to collect the large numbers of pedigrees required for
successful linkage studies [4]. However, very high marker
densities are required for whole-genome association stud-
ies in large outbred populations, with estimates ranging
from 200,000 to one million markers needed to achieve a
reasonable likelihood of detecting an association [1,5].

The International HapMap Project [5] was initiated to
define haplotype patterns across the genome, with the
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goal of developing a map of non-redundant tagSNPs. Tag-
SNPs allow the identification of unique haplotypes while
genotyping a fewer number of total SNPs for association
analyses. However, the true density of the marker map
needed is debated, with recent studies suggesting a more
complex haplotype architecture of genes across the
human genome than was previously suggested [6].

In this study we assessed the accuracy of computational
inferences of individual haplotypes and haplotype fre-
quencies at a region on chromosome 7 where Jones et al.
[7] detected significant linkage to a target case frontal
theta band visual evoked brain oscillation phenotype in
Collaborative Study of the Genetics of Alcoholism
(COGA) participants. Haplotypes were estimated using
pedigree information in MERLIN and compared to popu-
lation-based haplotypes using several combinations of
the 14 SNPs identified under the 1-LOD unit support
interval and haplotype estimation algorithms in PHASE
and HAPLO.STATS.

Methods
COGA began in 1989 to elucidate genetic mechanisms
that influence susceptibility to alcohol abuse, alcohol
dependence, and related phenotypes [8]. The COGA data-
set provided for Genetic Analysis Workshop 14 (GAW14)
includes 1,026 non-Hispanic White family members from
91 pedigrees (ranging in size 5–32 individuals) collected
from 6 United States sites. Additionally, individuals were
genotyped for 4,763 Illumina SNPs spread across the
genome.

SNP selection
We selected the 14 SNPS from the cleaned Illumina SNP
dataset (rs1464798, rs880290, rs1476640, rs1859646,
rs768055, rs17229, rs940864, rs727714, rs969356,
rs1860482, rs2056553, rs700273, rs802200, rs850545)
that were within the 1-LOD unit support interval (6 Mb)
for the quantitative trait locus (QTL) on chromosome 7
initially reported by Jones et al. [7]. Three groupings of
SNPs were initially examined; the first 5 SNPs
(rs1464798, rs880290, rs1476640, rs768055,
rs1859646), the first 10 SNPs (rs1464798, rs880290,
rs1476640, rs768055, rs1859646, rs17229, rs940864,
rs727714, rs969356, rs2056553) and all 14 SNPs. This
grouping of 5, 10, and 14 SNPs was chosen to examine the
impact of the number of SNPs on haplotype estimation,
while roughly dividing the sample in thirds.

Statistical methods
Individual haplotypes were first determined using all
related individuals with the pedigree analysis package
MERLIN and the -best option, which provides haplotypes
corresponding to the most likely pattern of gene flow
within a pedigree [9]. Four families (n = 21 individuals)
also had members removed to comply with MERLIN ped-
igree size restrictions.

To examine population level statistics, we selected 1 indi-
vidual with complete SNP data for the 14 SNPs from each
of the 91 families. We determined both the amount of
linkage disequilibrium (LD) between SNPs and Hardy-
Weinberg equilibrium using the computer program HAP-
LOVIEW [10]. We used PHASE [11] and HAPLO.STATS
[12] to generate population-based haplotypes, using
unrelated individuals. PHASE employs a Bayesian
method of haplotype reconstruction and uses Gibbs sam-
pling to obtain an approximate sample from the posterior
distribution of Pr(haplotype|genotype) [13].
HAPLO.STATS uses the expectation-maximization algo-
rithm and progressively inserts batches of loci into haplo-
types.

Haplotype accuracy measures

Excoffier and Slatkin [14] proposed IF and IH, where IF is a

metric of agreement between family-based and popula-
tion-based haplotypes and is given by

. pek and ptk represent the popula-

tion-based and family-based frequencies for the kth haplo-
type and h is the number of possible haplotypes. IH

compares the number of population-based haplotypes to
the number of actual haplotypes and ranges from 0 to 1
(total correspondence between estimated and family-
based haplotypes) and is defined as IH = 2(mtrue - mmissed) /
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LD structure of 14 Illumina SNPs within the 1-LOD unit drop support interval for the QTL on chromosome 7 initially reported by Jones et al. [7]Figure 1
LD structure of 14 Illumina SNPs within the 1-LOD unit drop 
support interval for the QTL on chromosome 7 initially 
reported by Jones et al. [7].
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mtrue + mest, where mtrue represents the number of actual

haplotypes, mest is the number of population-based haplo-

types, and mmissed corresponds to the number of family-

based haplotypes that were not inferred. To assess individ-
ual haplotype inference we also calculated an overall error
rate, defined as the proportion of individuals whose pop-
ulation-based haplotype differed from the true haplotype.

Results
All 14 SNPs were in Hardy-Weinberg equilibrium, with
minor allele frequencies ranging from 0.269–0.473. The
SNPs exhibited markedly low LD, as the average D' (Fig-

ure 1) and R2 estimates between the SNPs were 0.18
(range: 0.01–0.97) and 0.04 (range: 0–0.64), respectively.
Eleven individuals (12%) had haplotypes with at least 1
SNP for which phase could not be determined using MER-
LIN and were excluded from all subsequent analyses.

Table 1 reports the distribution of haplotype and the
respective frequencies, as calculated in MERLIN using the
5, 10, and 14 SNPs. Four haplotypes had frequencies
greater than 10%, 12 had frequencies greater than 1%,
and 2 had frequencies less than 1%.

Table 1: Frequency of population-based and family-based haplotypes using 14 Illumina SNPs with low LD

5-SNP Haplotype Frequencies

Haplotype MERLIN PHASE HAPLO.STATS

22212 0.2188 0.225 0.2375
12212 0.1375 0.1438 0.1438
22121 0.125 0.0688 0.075
12121 0.1125 0.1563 0.1625
11121 0.0813 0.0938 0.0875
21121 0.0688 0.0688 0.0625
21212 0.05 0.075 0.0625
11212 0.0438 0.0063 0.0063
22222 0.0438 0.0438 0.0438
11222 0.0188 0.0313 0.0313
12222 0.0188 - -
21211 0.0188 - 0.0188
22211 0.0188 0.0438 0.025
12122 0.0125 - -
12211 0.0125 - -
22221 0.0125 0.0188 0.0188
12221 0.0063 - -
22111 0.0063 0.0063 -
22122 -a 0.0125 0.0125
11221 - 0.0063 0.0063
21111 - - 0.0063

a -, not applicable.

Table 2: Accuracy of population-based haplotype estimates in 5-SNP, 10-SNP, and 14-SNP haplotypes.

# SNPs incorporated Algorithm IH IF Overall error rate

5 SNPs PHASE 0.788 0.837 0.275
HAPLO.STATS 0.765 0.850 0.287

10 SNPs PHASE 0.525 0.465 0.687
HAPLO.STATS 0.361 0.293 0.855

14 SNPs PHASE 0.225 0.189 0.900
HAPLO.STATS 0.136 0.092 0.950

Truncated at 5th SNP
10 SNPs PHASE 0.882 0.856 0.200

HAPLO.STATS 0.811 0.881 0.262
14 SNPs PHASE 0.857 0.875 0.237

HAPLO.STATS 0.703 0.850 0.337
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Accuracy of haplotype estimation
The accuracy of haplotype estimation when incorporating
5 consecutive SNPs was assessed by comparing true hap-
lotype frequencies calculated in MERLIN against popula-
tion-based haplotype frequencies estimated by PHASE
and HAPLO.STATS (Table 1). Although estimated haplo-
type frequencies exhibited moderate levels of accuracy for
haplotypes with high frequencies, both programs missed
rare haplotypes and specified incorrect haplotypes.

We also quantified the accuracy of the haplotype frequen-
cies and the agreement between individual family-based
and population-based haplotype estimates across the 5-
SNP, 10-SNP, and 14-SNP haplotypes (Table 2). When
making haplotype inferences using 5 consecutive SNPs
(average D' = 0.408), both PHASE and HAPLO.STATS per-
formed similarly, with overall error rates of 0.275 and
0.287, respectively. To determine the importance of the
underlying LD structure, we also chose 5 SNPs
(rs1464798, rs880290, rs17229, rs2056553, rs1860482)
with generally low D' values (average D' = 0.085). The
overall error rate increased to 0.56 when inferring haplo-
types in PHASE using the SNP set with lower D' values.

When the number of SNPs analyzed was increased to 10
and 14, PHASE appeared to perform slightly better than
HAPLO.STATS, as indicated by higher IH and IF estimates.
However, with this number of SNPs both programs esti-
mated haplotypes with substantial inaccuracy.

We also were interested to determine if the inclusion of
additional SNPs influenced haplotype inference of a sub-
set. Thus, the 10- and 14-SNP haplotypes were truncated
at the fifth SNPs and accuracy was assessed (Table 2).
PHASE generally outperformed HAPLO.STATS. Of inter-
est, the 5-SNP haplotype demonstrating the lowest overall
error rate was observed for haplotypes in the 10-SNP set
truncated at the fifth SNP for both PHASE and
HAPLO.STATS. This may reflect the fact that the addi-
tional SNPs are in some degree of LD with the first 5 SNPs.
However, the reduction in the overall error rate appears to
be ultimately offset as SNPs that are further away are
incorporated.

Discussion
In this paper, we compared family-based and population-
based individual haplotype estimates over a 6 Mb region
corresponding to the linkage signal previously reported by
Jones et al. [7]. Individual haplotype inferences calculated
in PHASE and HAPLO.STATS were most accurate when
considering 5 consecutive SNPs, but decayed dramatically
when evaluating 10 or 14 SNPs. These findings are con-
cordant with those of Xu et al. [15] and Adkins et al. [16],
who demonstrated that the accuracy of computational
haplotype inference improves as the magnitude of LD

among sites increases. However, our data demonstrate
high levels of inaccuracy, most likely reflecting the low LD
structure of the region examined.

When comparing the two haplotype inference methods,
both PHASE and HAPLO.STATS performed similarly,
although PHASE slightly outperformed HAPLO.STATS.
These findings are in agreement with previous studies
comparing various methods of haplotype assignment and
haplotype frequency estimation, which have consistently
shown similar levels of accuracy and consistency across
software packages and computational methods [15-18].
However, our study is the first to evaluate HAPLO.STATS.

Although the decay of efficiency in haplotype estimation
is most likely due to the increasing number of possible
haplotypes, these results are important considering the
availability of 100,000 SNP panels (both from Affymetrix
and Illumina). Thus, more investigators will face the chal-
lenge of creating haplotypes from large SNP sets. Our
results suggest that haplotypes estimated from popula-
tion-based data should be interpreted with caution. Even
though many features of haplotype inference are found to
be consistent from one dataset to the next, it is not yet
clear how general these tendencies will prove to be in the
context of very low LD (e.g., how robust to variation in LD
structure from one dataset to another, or what size SNP
blocks appears optimal), and future research is warranted.

While both programs had high levels of inaccuracy, statis-
tical measures of confidence, such as a posterior probabil-
ity estimate for each individual haplotype, are provided.
For example, in the 5-SNP haplotypes estimated in
PHASE, the incorrectly specified haplotypes had a mean
posterior probability estimate of 0.52 (range: 0.34–0.66).
Clearly, such uncertainty in haplotype assignment should
be incorporated into subsequent statistical analyses incor-
porating these haplotypes. Unfortunately, such practices
do not routinely appear in the literature.

Conclusion
Both haplotype estimation packages performed similarly
and poorly when 5, 10, and 14 SNP sets were considered,
although PHASE slightly outperformed HAPLO.STATS.
Thus, our findings underscore the difficulties of computa-
tional haplotype inference under less-than-ideal condi-
tions (linkage region with low LD) and stress the
importance of careful consideration of confidence meas-
ures when employing estimated haplotypes in biomedical
research. Further, the definition of haplotype blocks
should be considered carefully on a case-by-case basis,
with careful attention to the number of underlying sites
and the pattern of LD.
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