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Background: It has been speculated on theoretical grounds that biomarkers are superior surrogates for
chemical exposures to air samples in epidemiology studies.
Methods and Results: Biomarkers were classified according to their position in the exposure-disease
continuum—that is, parent compound, reactive intermediate, stable metabolite, macromolecular adduct,
or measure of cellular damage. Because airborne exposures and these different biomarkers are time series
that vary within and between persons in a population, they are all prone to measurement error effects
when used as surrogates for true chemical exposures. It was shown that the attenuation bias in the
estimated slope characterising a log exposure-log disease relation should decrease as the within- to
between-person variance ratio of a given set of air or biomarker measurements decreases. To gauge the
magnitudes of these variance ratios, a database of 12 077 repeated observations was constructed from
127 datasets, including air and biological measurements from either occupational or environmental
settings. The within- and between-person variance components (in log scale, after controlling for fixed
effects of time) and the corresponding variance ratios for each set of air and biomarker measurements
were estimated. It was shown that estimated variance ratios of biomarkers decreased in the order short
term (residence time (2 days) . intermediate term (2 days , residence time (2 months) . long term
biomarkers (residence time .2 months). Overall, biomarkers had smaller variance ratios than air
measurements, particularly in environmental settings. This suggests that a typical biomarker would provide
a less biasing surrogate for exposure than would a typical air measurement.
Conclusion: Epidemiologists are encouraged to consider the magnitudes of variance ratios, along with
other factors related to practicality and cost, in choosing among candidate surrogate measures of
exposure.

A
major goal of occupational and environmental epide-
miology is to establish quantitative relationships
between exposures to toxic chemicals and the asso-

ciated risks of disease. Most studies have considered airborne
exposures, where inhalation was the primary route of entry
of the contaminant into the body. Investigators collected air
samples to estimate concentrations inhaled by members of
occupational groups or by the general population. Steady
technological advances over the last 50 years have made it
possible to collect large numbers of air measurements and
thereby to reduce uncertainties in quantifying levels of
exposure. Although the anticipated gains in sample size have
not materialised,1 2 the technology currently exists to conduct
longitudinal studies of health effects from chemical expo-
sures.
Biological monitoring has been increasingly viewed as a

desirable alternative to air sampling for characterising
occupational and environmental exposures. (Here we use
the term ‘‘environmental exposures’’ to refer to chemical
exposures in indoor and outdoor settings not associated with
workplaces.) This technique utilises biological specimens,
especially breath, urine, and blood, to quantify levels of
contaminants or their products in the body.3 4 Biological
monitoring is theoretically desirable because it accounts for
all possible exposure routes (for example, inhalation, inges-
tion, and dermal contact), it covers unexpected or accidental
exposures, and it reflects interindividual differences in
uptake or genetic susceptibility.5–8

The endpoint of biological monitoring is often referred to
as a biomarker, defined by the US National Research Council
(NRC) as ‘‘… a change induced by a contaminant in the
biochemical or cellular components of a process, structure or
function that can be measured in a biological system’’.9 The
NRC divided biomarkers into three categories, namely,

biomarkers of exposure, of effect, and of susceptibility. Examples
of biomarkers of exposure include volatile organic com-
pounds in breath, heavy metals in blood or urine, urinary
metabolites of organic compounds, and adducts of genotoxic
chemicals with haemoglobin or albumin. Biomarkers of
effect represent early preclinical changes thought to be
related to health risk or damage. Examples include DNA
adducts of genotoxic chemicals, specific gene mutations such
as hypoxanthine-guanine phosphoribosyltransferase (HPRT),
changes in serum proteins indicative of altered metabolism
or function, and cytogenetic changes in peripheral lympho-
cytes, including chromosome aberrations and sister chroma-
tid exchanges (SCEs). Finally, biomarkers of susceptibility
relate to an individual’s inherited or acquired ability to
respond to a hazardous substance. Single nucleotide poly-
morphisms (SNPs) of important phase-I enzymes (generally
bioactivating enzymes such as cytochrome P450) and phase-
II enzymes (generally deactivating enzymes, such as glu-
tathione-S-transferases or epoxide hydrolases) are often
regarded as biomarkers of susceptibility.10

The relationship between exposure to a toxic substance and
the many possible biomarkers is shown in fig 1, using a
genotoxic carcinogen to illustrate the functional elements.11–13

Processes leading to chronic diseases other than cancer can
be described by similar schemes. The input to the model is
{Xij}, representing the time series of n discrete exposures to
the carcinogen (j=1, 2, …, n) (each averaged over time unit,
Dt), received by the ith person in a population. The
subsequent time series {Pij}, {Rij}, {Mij}, {(RY)ij} and {Dij}
represent the corresponding time series of biomarkers (to be
defined).
The chemical must first be absorbed into the body via

inhalation at rate k0i (designated as the uptake rate for the ith

person). In some instances, the substance is intrinsically
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electrophilic and capable of reacting with DNA and proteins.
However, most cancer causing chemicals must first be
metabolically activated to electrophiles. Thus, in fig 1, {Pij}
refers to the levels of the parent compound, while {Rij}
represents levels of the electrophile. The relative amounts of
Pij and Rij, at any time, depend on competing rates of passive
elimination of the parent compound (designated k1i, includ-
ing excretion in breath and urine), of metabolic bioactivation
of Pij to Rij (designated k2i), and of detoxification of Rij

(designated k3i) giving rise to a stable metabolite Mij,
excreted at rate k8i. A fraction of Rij reacts at rate k4i with
DNA to produce a DNA adduct (RY)ij, where Y represents a
DNA base. In fig 1, molecular damage is represented as the
series of adduct levels {(RY)ij}, at different times. Most cells
contain repair systems that remove DNA adducts and thereby
protect the tissue from long term damage. Thus, the amount
of (RY)ij depends on the relative rates of DNA adduction
(that is, k4i) and repair (designated k5i). Cellular damage is
represented by the series representing damaged cells {Dij},
which depends on the rates of cell damage (given by k6i), and
repair and/or cell turnover (at rate k7i). The magnitude of an
individual’s risk of cancer ultimately relates to the integration
of Dij over time, relative to some period of latency, and to his
or her susceptibility as determined by genetic, physiological,
metabolic, and lifestyle factors. Note that the rate constants
k0i – k8i are assumed to be constant for the ith individual but
to vary across the population.
In the context of the NRC’s definitions of biomarkers, {Pij},

{Rij} and {Mij} would be biomarkers of exposure, while
{(RY)ij} and {Dij} would be biomarkers of effect. Note that
biomarkers of susceptibility would be measures of the
variability of some rate constants (particularly k2i – k7i)
across the population (analogous to effect modifiers).
Progressing from left to right in fig 1, each successive

biomarker resides closer to the ultimate disease endpoint and
theoretically becomes a more relevant measure of exposure
for an epidemiological study than does the series of air levels
{Xij}. But, on the other hand, biological specimens can be
more difficult to obtain and analyse than air measurements;
and the particular time series of biomarker levels can be
highly autocorrelated when the sampling time interval is
shorter than the residence time of a biomarker, thereby
adding complexity to the collection and interpretation of
data. Also, in moving to the RY and D compartments,
biomarkers become increasingly non-specific and subject to
confounding by other agents. For example, N2-ethenogua-
nine, a DNA adduct, can be produced either by exposure to

ethylene or ethylene oxide, or by endogenous processes;14

likewise, chromosome aberrations can arise from a plethora
of chemical agents as well as from ionising radiation and
reactive oxygen species.15 16

Although the above classification offers certain insights
into the potential roles of biomarkers in the exposure-disease
continuum, it does not differentiate with regard to the
magnitudes of the key kinetic parameters that affect the
variation in biomarker levels over time—that is, the rate
constants k1i, k3i, k5i, k7i, and k8i, each with units of time21.
For example, the day-to-day fluctuations in levels of the
parent compound {Pij} would be much greater for a volatile
organic compound (large k1i) than for a heavy metal (small
k1i). To consider the role that the persistence of the
biomarker might play on its utility as a surrogate for
exposure, it is useful to determine the in vivo residence time
of each biomarker in the relevant compartment (that is, 1/k1i,
1/k3i, 1/k5i, 1/k7i, or 1/k8i in fig 1). Here we arbitrarily assign
biomarkers into three categories, namely, short term biomar-
kers with residence time (2 days, intermediate term biomarkers
with 2 days , residence time (2 months, and long term
biomarkers with residence time .2 months. Under this
classification scheme, short term biomarkers persist over
time scales of one day to one week, intermediate term
biomarkers over weeks to months, and long term biomarkers
over months to years.
Aside from theoretical and practical considerations regard-

ing the choice of air samples or biomarkers as surrogate
measures of exposure, both air and biomarker concentrations
vary within and between persons, thus giving rise to
measurement error effects that can bias the estimation of
exposure-response relationships. Indeed, the magnitudes of
attenuation bias can differ among a given set of candidate
biomarkers derived from the same chemical due to differ-
ences in residence time, specificity, etc. Thus, it is an open
question whether a particular biomarker would be a more or
less biasing surrogate for exposure than the corresponding air
measurements.
The purpose of the present study is to consider the biasing

potential of air and biomarker measurements in terms of
attenuation in the estimated slope of a hypothetical log
exposure-log response relationship. As will be shown, the
biasing potential of each measure—that is, {Xij}, {Pij}, {Rij},
{Mij} {(RY)ij}, or {Dij} in fig 1, relates to its within- and
between-person variance components. Thus, we compile data
from occupational and environmental studies that obtained
repeated measurements of both air and biological levels from
representative persons. Then, we estimate the within- and
between-person variance components of air and biological
measurements for each study population, after controlling
(when necessary) for particular fixed effects of time. Next,
we compare these estimated variance components for air
samples and for biomarkers classified by residence time
(short term, intermediate term, and long term). Finally, we
consider the biasing potential of each surrogate measure for
estimating a hypothetical exposure-response relationship and
comment on strategies for assessing exposures in epidemio-
logical studies.

METHODS
Compilation of the database
The database was compiled from published and unpublished
longitudinal studies involving air measurements and/or
biomarkers; these studies are summarised in Appendices A
and B, for environmental and occupational populations,
respectively (see OEM website: http://www.occenvmed.com/
supplemental). Because studies were dissimilar in terms of
numbers of subjects and numbers of measurements per

{Xij} {Pij}

Cell damage
k6i

EXPOSURE BURDEN DAMAGE
Adduction

k4i

Bioactivation
k2i

Uptake

Passive elimination
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k1i
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Repair and cell turnover

k5i

{Rij}

{Mij}

k3i

k8i

{Dij}
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Figure 1 Kinetic processes relating exposure to a carcinogen with
various biomarkers in an exposed population. Each process is
represented by a time series of levels (in brackets) observed in the ith

person after the jth time interval. {Xij} is the series of exposures, {Pij} is the
series of the parent compound in the body, {Rij} is the series of a reactive
carcinogen, {Mij} is the series of a stable metabolite, {(RY)ij} is the series
of a DNA adduct, and {Dij} is the series of damaged cells; k0i – k8i
represent rate constants for the various processes.
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subject, only studies having at least five subjects with at least
two repeated measurements per subject were included in the
database, and subjects with single measurements were
excluded. Particular attention was paid to data from studies
containing repeated measurements of both air levels and
biomarkers in a given population. However, due to the
paucity of longitudinal studies involving biomarkers, we
included some additional sets of biomarker data even when
there were no corresponding air measurements. Because
inhalation was the primary route of exposure in most studies,
personal-air or breathing-zone samples were used. Since we
were interested in exposures obtained during normal
circumstances, data collected in response to an accidental
release or other unusual exposure event were excluded. All
data were expressed in the same concentration units as in the
original studies. For reference, we point to the compilations
of air measurements by Kromhout and colleagues17 and
biomarker measurements by Symanski and Greeson.18 All
human data obtained from non-published sources had been
obtained with subjects’ informed consent under protocols
approved by the University of California, Berkeley and the
University of North Carolina.

Estimation of variance components
Between- and within-person variance components were
estimated using mixed-effects linear models, after natural
logarithmic transformation of the air or biomarker measure-
ments to achieve approximate normality and homogeneity of
variances, and after adjustment for particular time effects.
The following model was used:

for the jth of ni observations on the ith subject (i=1, 2, …, k;
j=1, 2, …, ni ; ni>2), where Xij is the (air or biomarker)
concentration, Yij is the natural logarithm of Xij, c0 is the
intercept, represents the fixed time effect (that is, for
season, weekday, or linear trend), bi is the random effect for
the ith person, and eij is the random-error effect for the jth

observation on the ith person. Here, bi , N(0, ), eij, N(0,
), {bi} independent of {eij}, and Cov(eij, eij’)= rj’ for all

j?j’. The variances and represent, respectively, the
between- and within-person variance components.
The estimates of and (designated as and ), are

compiled in Appendices C and D, for environmental and
occupational settings, respectively (see OEM website: http://
www.occenvmed.com/supplemental). Following Rappaport,12

fold-ranges of variation between- and within-persons were
also estimated, for illustration purposes, as the ratio of the
97.5th centile to the 2.5th centile of the appropriate lognormal
distribution (Xij for air measurements and Pij, Rij, (RY)ij, or
Dij for biomarker measurements); that is,

and denote the
estimated between-person fold-range and the estimated
within-person fold-range, respectively.

Covariance structures
Compound symmetry (CS) was adopted as the default
covariance-matrix structure to estimate and under
Model (1) using restricted maximum likelihood (REML).
Under CS, it is assumed that the subjects are independent of
one another and that the correlation between the jth and j9th

observations on the ith subject equals (the

intraclass correlation). However, in some situations, it
was anticipated that the correlation between measurements
from the same person would decrease as the number of
time intervals between observations increased. Such an

autocorrelation structure would be appropriate when Dt is
shorter than the residence time of the biomarker, as might be
common for intermediate and long term biomarkers. To
identify datasets containing significant autocorrelation, an
exponential (EXP) covariance structure was also considered,
based on the biomarker residence time, the intervals between
measurements, and the average number of repeated observa-
tions per person (ni>3). For an EXP covariance structure,
rjj9=exp (2w|tj2tj’|) for all j?j’, where tj and tj’ are the times
(the same for all subjects) at which the jth and j9th

measurements were taken. When measurements are taken
at the same equally space times for all subjects, then EXP
simplifies to the first-order autoregressive AR (1) covariance
structure, where with . Akaike’s informa-
tion criteria (AIC) and Schwarz’s Bayesian information
criterion (BIC) were used to compare CS and EXP under
Model (1) to choose an appropriate covariance structure; CS
was chosen unless both AIC and BIC were smaller for EXP
than for CS. Appendices C and D list all situations in which
EXP was used, rather than CS, to estimate variance
components (see OEM website: http://www.occenvmed.com/
supplemental).

Fixed time effects
Given a database consisting of studies ranging in duration
from days to years, it was not uncommon to observe
situations where average exposure levels changed system-
atically over time. We considered three types of time effects
via in Model (1), namely, seasonal effects (studies of at
least 6 months), weekday effects (studies of less than
6 months), and linear trends (all studies). Time effects were
identified graphically using scatter plots of the raw data, and
were then confirmed statistically via likelihood ratio tests
comparing Model (1) with and without the component.
If no significant time effects were found, variance compo-
nents were estimated after removing from Model (1).
To avoid overfitting the model, only a single time effect was
used.
If not explicitly specified in Model (1), a missing fixed time

effect would tend to exert its biasing influence by increasing
the estimate of and reducing the estimate of .19 To
gauge the magnitude of such biases on estimation of variance
components, whenever a significant time effect was
observed, Model (1) was applied to the dataset with and
without and the estimates of and were
compared.

Bias in estimating exposure-disease relationships
We designate the ratio of to as the variance ratio

. This variance ratio (l) can be used to evaluate
attenuation bias when estimating an exposure-disease
relationship, given that either air or biomarker levels are
used as surrogates for actual exposure levels.6 20 21 Consider
the simple situation where the underlying relationship
between the logarithm of the true mean exposure for the
ith person (based on air or biomarker levels) and the
logarithm of the expected value of a continuous health
outcome is a straight line with slope htrue (see Appendix E,
true regression model; OEM website: http://www.occenvmed.
com/supplemental). Suppose a sample of persons is randomly
selected from the population, each subject having n randomly
collected measures of exposure. If the average of these n
logged exposure measurements is used as a surrogate for the
true logged mean exposure level for the ith person (see
Appendix E, measurement error model), then the slope
parameter actually being estimated (namely, h*) is related to
htrue via the following equation:

752 Lin, Kupper, Rappaport

www.occenvmed.com

http://oem.bmj.com


where . From Equation (2), we see that

h* is less than htrue (that is, there is attenuation), with the
magnitude of the attenuation given by the expression on the
right side. We have previously considered a simpler case6 20

where rjj’ = 0 for all j and j’ (under CS), giving D=0 and the
well-known expression:22

In Appendix E, we consider the two special cases, rjj’=0
and , which correspond to the CS and AR(1)
covariance structures, respectively. From Equations (2) and
(3), we see that (for a fixed n) attenuation increases as the
variance ratio l increases, which suggests (at least for the
simple straight-line model on the log scale being considered
in Appendix E) that the exposure surrogate with the smallest
l should produce (on average) the least underestimation of
htrue. With this motivation, we use the estimated variance
ratio to compare air measurements with biomar-
kers for a given study (smaller is better), consistent with our
earlier work.6 Here, we denote the estimated ls for air and
biological monitoring as and respectively. We also
define as the ‘‘lambda ratio’’; when is less
than one, there is evidence that the biomarker would be a
better surrogate for exposure than air measurements and vice
versa.

Statistical methods
In addition to statistical analyses involving Model (1)
described above, analysis of variance (ANOVA) or non-
parametric Wilcoxon rank-sum tests (if the distributions
were skewed) were used to compare variance components
between air measurements and biomarkers. We used PROC
MIXED for longitudinal analyses with the SAS statistical
package version 8.02 (SAS Institute Inc., Cary, NC). The level
of significance of all tests was 0.05.

RESULTS
Description of the database
A total of 12 181 repeated observations from 132 data sets
were compiled from 22 studies covering a wide range of
pollutants (notably metals, organic compounds, and pesti-
cides) in both environmental and occupational settings
(Appendices A and B). The data are summarised in table 1,
which lists the numbers of air measurements, biomarker
measurements, and subjects, as well as the category of each
biomarker according to its type (kinetic compartment in fig 1)
and residence time. The numbers of biomarkers in our
database decreased from P (21), to M (12), to RY (7), to D
(3), to R (2). The database was also reasonably populated
with biomarkers in all three categories of residence time—
that is, short term (21), intermediate term (15), and long
term biomarkers (9). For some contaminants, more than one
biomarker was measured. After excluding 104 pre-shift
observations, the data used for analysis (12 077 observations)
included 50 air-exposure data sets (4623 observations) and
77 biomarker data sets (7454 observations).

Effects of time on estimation of variance components
Significant effects of time were found in approximately one
third (18 of 50) of air monitoring data sets and in
approximately half (36 of 77) of biomarker data sets
(Appendices C and D). One such effect is illustrated in
fig 2A, which shows a seasonal effect in levels of free styrene
glycol in blood (mg/ml) observed among reinforced plastics
workers during three surveys conducted 3–4 months apart
(unpublished data from a study described by Rappaport and
colleagues24). When Model (1) was fitted to the data without
a fixed seasonal effect, the residuals deviated from the
horizontal line representing zero (fig 2B). In contrast, when
Model (1) was fitted to the data with a fixed seasonal effect,
the residuals varied randomly about zero (fig 2C). The
estimated within- and between-person variance components
were potentially biased due to fitting Model (1) to the data
without a seasonal effect; that is, increased from 1.24 to
1.33 (+6.9%) and decreased from 0.595 to 0.562 (25.5%).
Table 2 summarises the contributions of time effects to

and in all datasets. If an important time effect was
wrongly excluded from Model (1), then typically increased
18.2% (median value) for air measurements and 25.4%
(median value) for biomarker measurements. Conversely, if
an important time effect was excluded from Model (1),
typically decreased by 11.3% (median value) for air measure-
ments and 4.1% (median value) for biomarkers.

Alternative covariance structure
Of all the studies in our database, only two produced
significantly better fits to Model (1) with an EXP (rather
than a CS) covariance structure, namely, DDE and trans-
nonachlor in blood,30 both long term biomarkers, and
inorganic lead and d-aminolevulinate in urine,26 both inter-
mediate term biomarkers (see Appendices C and D). This
suggests that CS is generally appropriate for applications of
Model (1) to air and biomarker measurements.

Between- and within-person variance components
The cumulative distributions of the estimated between- and
within-person variance components are shown in fig 3 in
terms of the corresponding fold ranges (that is, and

, respectively) for air measurements and biomarkers.
The difference between distributions of for air
measurements (median =7.4) and for biomarkers
(median =7.7) was not significant (Wilcoxon rank
sum test, p=0.54) (see fig 3A). Within-person variation was
much greater than between-person variation for both air
measurements (median =48.9) and biomarkers (med-
ian =17.4) (fig 3B). Also, the distribution of values of

for biomarkers was significantly smaller than that for
air measurements (Wilcoxon rank sum test, p,0.01). We
attribute this to the smoothing of exposure variability in the
human body, which increases with the residence time of the
biomarker.27 28 Indeed, median values of for biomar-
kers decreased in the order: short term (median=44.6) .

intermediate term (median=3.7) . long term (med-
ian=3.3).
Environmental exposures varied much more within per-

sons than occupational exposures for both air measurements
(environmental: median =104; occupational: median

=13.7) and biomarkers (environmental: median
=36.6; occupational: median =7.6). For com-

parison, table 3 also shows the cumulative distributions of
and estimated from occupational studies

involving air measurements, reported by Kromhout and
colleagues,17 and biomarkers, reported by Symanski and
Greeson.18 Neither the distribution nor the
distribution was found to significantly differ between our
database and those earlier compilations (data not shown).
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Overall, the databases show that the median value of
was greater than that of in a given setting for both air
measurements and biomarkers.

Bias in estimating exposure-disease relationships.
Potential bias in the estimation of the slope (htrue) of an
assumed straight line log exposure-log disease relationship
(see Appendix E) was evaluated by examining the estimated

variance ratio, (smaller is better). In general,
values of for biomarkers (median=1.04) were significantly
smaller than those for air measurements (median=2.40)
(Wilcoxon rank sum test, p=0.02). From this result, we infer
that using a biomarker as a surrogate exposure measure in a
typical study would tend to provide a less biased estimate of
the slope of a log exposure-log disease linear relationship
than would the use of air measurements.

Table 1 Descriptive characteristics of the database*

Air measurements
No. of
obs.

No. of
persons Biomarkers

No. of
obs.

No. of
persons

Biomarker classification

Kinetic
compartment� Residence time`

Metals
Chromium 90 9 Urinary chromium 110 9 P Intermediate
Mercury 592 16 Blood mercury 226 16 P Intermediate
Nickel 35 9 Blood nickel 38 4 P Intermediate

Urinary nickel 82 12 P Intermediate
Lead 287 51 Blood lead 387 79 P Intermediate

Urinary d-aminolevulinate 181 6 M Intermediate
Urinary lead 181 6 P Intermediate

Organic compounds
Benzene 592 216 Breath benzene 570 208 P Short
Chloroform 293 116 Breath chloroform 266 104 P Short
Ethylbenzene 301 120 Breath ethylbenzene 276 110 P Short
Ethylene oxide 47 13 Breath ethylene oxide 26 9 P Short

Blood ethylene oxide 24 9 P Short
Haemoglobin N-2-hydroxyethyl-valine 44 19 RY Long

Methylchloroform 301 120 Breath methylchloroform 275 109 P Short
Monoterpenes 39 10 Urinary verbenol 39 10 M Short
o-Xylene 301 120 Breath o-xylenes 278 110 P Short
Polycyclic aromatic hydrocarbons 40 10 Blood DNA adduct 40 10 RY Intermediate
p-Dichlorobenzene 160 80 Breath p-dichlorobenzene 134 67 P Short
Perchloroethylene 343 130 Breath perchloroethylene 311 120 P Short
Styrene/Styrene oxide 611/17 189/7 Breath styrene 427 136 P Short

Blood free styrene glycol 104 42 M Short
Blood styrene 172 55 P Short
Blood SO-Albumin adduct (a) 108 42 RY Intermediate
Blood SO-Albumin adduct (b) 108 42 RY Intermediate
Blood SO-DNA adduct (1) 48 24 RY Intermediate
Blood SO-DNA adduct (2) 48 24 RY Intermediate
Blood haemoglobin adduct 117 44 RY Long
Blood HPRT mutation frequency 22 5 D Long
Blood sister chromatid exchange 68 34 D Long
Urinary mandelic acid 78 23 M Short

Trichloroethylene 296 119 Breath trichloroethylene 268 106 P Short

Pesticides
Chlordane (cis and trans isomers) 32 9 Blood oxychlordane 89 32 R Intermediate
Chlorpyrifos 57 16 Urinary 3,5,6-trichloro-2-pyridinol 312 69 M Short
Dieldrin 11 3 Blood dieldrin 39 13 P Long
Heptachlor 51 14 Blood heptachlor epoxide 20 5 R Intermediate

Biomarker data only1
Organic compounds
Environmental tobacco smoking Urinary 1-hydroxypyrene 180 30 M Short

Urinary cotinine 48 21 M Short
Urinary NNAL-Gluc and NNAL 31 16 M Intermediate

Mixed organic compounds Blood sister chromatid exchange (HFC) 20 10 D Long

Pesticides
Atrazine Urinary atrazine mercapturate 314 69 M Short
Carbaryl Urinary 1-naphthol� 312 69 M Short
DDE Blood DDE 377 103 P Long
Hexachlorobenzene Blood hexachlorobenzene 314 72 P Long
Malathion Urinary malathion dicarboxylic acid 313 69 M Short
Polychlorinated biphenyls Blood polychlorinated biphenyls 60 30 P Long
Trans-nonachlor Blood trans-nonachlor 122 49 P Long

DDE, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene; DNA, deoxyribonucleic acid; HFC, high frequency cell; HPRT, hypoxanthine guanine phosphoribosyl
transferase; NNAL: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol; NNAL-Gluc, [4-(methylnitrosamino)-1-(3-pyridyl) but-1-yl]-beta-O-D-glucosiduronic acid; SO,
styrene oxide; SO-DNA(1), N2-(2-hydroxy-1-phenylethyl)-29-deoxyguanosine-3,5-biphosphate; SO-DNA (2), unidentified DNA adduct.23

*Five pre-shift datasets and three datasets containing unspecified categories of biomarkers were excluded from summary analysis. A total of 127 datasets and
12 077 observations were used for summary analysis.
�D, damaged cells; M, stable metabolite; P, parent compound (or procarcinogen); R, reactive intermediate; RY, reaction product between R and nucleophile Y (e.g.
DNA base).
`Residence time category: long, residence time .2 months; intermediate, 2 months >residence time .2 days; and short, residence time (2 days.
1Insufficient exposure data to estimate variance components.
�Urinary 1-naphthol is a non-specific metabolite of the pesticide carbaryl.
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Figure 4 shows the median and interquartile ranges of
for both air measurements and biomarkers, stratified by
exposure setting (fig 4A) and type of agent (fig 4B).
Biomarkers produced significantly smaller values of than
air measurements (Wilcoxon rank sum test) for environ-
mental exposures (p=0.01) (fig 4A) and for metal exposures
(p=0.03) (fig 4B). However, for pesticide exposures, air
measurements produced significantly smaller values than
did biomarker measurements (p=0.04) (fig 4B). Estimates
of are shown in fig 4C for measurements stratified by the
residence time of the biomarker. Here, a decreasing trend for

was observed for biomarkers in the order: short term .

intermediate term . long term, consistent with reductions in
noted previously.

The above comparisons were based on all studies in our
database, whether or not parallel measurements of air levels
and biomarkers were included in each investigation. To make
direct comparisons between air and biomarker measure-
ments in a given study, the estimated lambda ratio, ,
was investigated. Of the 54 data sets that provided parallel
measurements, almost two thirds (62%) had estimated
lambda ratios of less than one (median lambda ratio=0.46),
again providing evidence that biomarkers tend to provide less
biasing measures of exposure than air measurements. The
median and interquartile ranges of estimated lambda ratios
were also stratified and compared by exposure setting, type of
agent, and biomarker residence time as shown in fig 5.
Results here are generally consistent with those from fig 4,
with estimated lambda ratios less than one for environmental
settings (fig 5A) and for metals, but not for pesticides
(fig 5B). However, the estimated lambda ratios increased in
the order: intermediate term biomarkers , short term
biomarkers , long term biomarkers (fig 5C), which was
unanticipated based on the earlier comparisons of (see
fig 4C). This could reflect the relatively small numbers of
studies with parallel air and biomarker measurements and

the fact that the few long term biomarkers represented
(n=6) included several non-specific endpoints, such as
HPRT mutations and SCEs, that could have been influenced
by smoking, ionising radiation, and other types of expo-
sures.38

DISCUSSION
Our findings support the notion that biomarkers can offer a
desirable alternative to air sampling for assessing exposures
to chemicals. In addition to providing the oft-mentioned
theoretical advantages (accounting for all exposure routes
and interindividual differences and residing closer to the
disease process), biomarkers also tend to have smaller

variance ratios ( ), and, therefore, to be potentially

less biasing surrogate measures of exposure than air
measurements for studies of health effects. This particular
advantage of biomarkers has only been mentioned anecdo-
tally heretofore.6 20

If values of l are to be considered in designing a health
effects study, it is important that and be estimated
with minimal bias. For both air and biomarker measure-
ments, we found that time effects and the choice of
covariance structure could be important to the characterisa-
tion of these variance components. Excluding an important
fixed time effect had a greater impact on than on as
observed for other types of longitudinal data.39 This would
tend to increase values of for the candidate exposure
measures, making them appear worse than they actually are.
Regarding the choice of covariance structure, we found that
CS was appropriate for characterising and in virtually
all cases. However, CS assumes that repeated measurements
collected from a given person have the same correlation no
matter how far apart they are in time. Thus, investigators
should be aware of potential problems arising from the
timing of biomarker measurements relative to the residence
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time, particularly for intermediate and long term biomarkers,
or should use an EXP covariance structure.
We found that values of tended to be larger for

environmental exposures than for occupational exposures
regarding both air and biomarker measurements (fig 2B).
This indicates that members of the general public experience
greater ranges of pollutant levels in their everyday lives than
do workers in a given factory and job (as noted in Rappaport
and Kupper21), and may explain why biomarkers had
consistently smaller lambda ratios in environmental studies

than in occupational studies (fig 5A). Thus, biomonitoring
may be more advantageous in environmental settings than in
occupational settings.
Among biomarkers, we noticed a decreasing trend for in

the order: short term. intermediate term. long term due to
the likely smoothing of exposure variability related to slow
elimination of the biomarker (fig 4C). This suggests that
biomarkers with longer residence times would be preferred to
those with shorter residence times. That is, smaller numbers
of biomarker measurements per subject would be needed to

Table 2 Contribution of time effects to the estimated variance components

Time effect

Estimated within-person

variance component ( )
Estimated between-person variance

component ( )

Notes Ref.
Without
time effect

With
time
effect

%
change*

Without
time effect

With time
effect

%
change*

Air measurement
Benzene Season 0.707 0.626 12.9 0.263 0.262 0.4 29

Season 0.687 0.543 26.5 0.048 0.094 248.9 Los Angeles, CA 25
Chloroform Season 2.302 2.014 14.3 0.000 0.101 2100.0 Los Angeles, CA 25
Chlorpyrifos Season 0.261 0.220 18.6 1.920 1.972 22.6 30
Ethylbenzene Season 0.993 0.920 7.9 0.193 0.215 210.2 Los Angeles, CA 25
Methylchloroform Season 1.524 1.406 8.4 0.211 0.263 219.8 Los Angeles, CA 25
Monoterpene Season 0.677 0.577 17.3 0.325 0.216 50.5 Los Angeles, CA 25
o-Xylene Season 1.647 1.398 17.8 0.000 0.059 2100.0 Los Angeles, CA 25
Lead Season 0.279 0.207 34.8 0.022 0.024 28.3 30
p-Dichlorobenzene Season 2.240 1.647 36.0 0.422 0.725 241.8 Bayonne, NJ 25

Season 1.841 1.448 27.1 1.395 1.592 212.4 Los Angeles, CA 25
Perchloroethylene Season 1.730 1.455 18.9 0.046 0.136 266.2 Los Angeles, CA 25
Styrene Season 1.348 1.172 15.0 0.237 0.279 215.1 Los Angeles, CA 25
Styrene oxide Season 1.372 0.131 947.3 0.000 0.245 2100.0 24
Trichloroethylene Season 3.619 3.508 3.2 1.073 1.078 20.5 Los Angeles, CA 25
Mercury Weekday 0.268 0.256 4.7 0.051 0.052 21.9 31
Ethylene oxide Linear trend 1.256 0.742 69.3 0.000 0.000 2� 32
Styrene Linear trend 0.466 0.342 36.3 0.238 0.231 3.0 33

Biomarker
Breath benzene Season 0.779 0.655 18.9 0.310 0.370 216.2 29

Season 2.075 1.953 6.2 1.125 1.183 24.9 Los Angeles, CA 25
Breath chloroform Season 3.322 1.284 158.7 0.000 0.942 2100.0 Elizabeth, NJ 25
Breath ethylbenzene Season 1.386 1.040 33.3 0.738 0.931 220.7 Elizabeth, NJ 25

Season 1.436 1.195 20.2 0.868 0.921 25.8 Los Angeles, CA 25
Breath methylchloroform Season 2.383 1.315 81.2 0.751 1.358 244.7 Elizabeth, NJ 25

Season 1.402 1.192 17.6 0.695 0.805 213.7 Los Angeles, CA 25
Breath o-xylene Season 1.129 0.846 33.5 0.296 0.387 223.5 Los Angeles, CA 25
Breath p-dichlorobenzene Season 0.973 0.645 50.9 0.467 0.620 224.7 Elizabeth, NJ 25

Season 1.098 0.938 17.1 2.642 2.721 22.9 Los Angeles, CA 25
Breath perchloroethylene Season 0.714 0.557 28.2 0.430 0.545 221.1 Los Angeles, CA 25
Breath styrene Season 0.617 0.426 44.8 0.310 0.419 226.0 Bayonne, NJ 25

Season 1.363 0.898 51.8 0.000 0.246 2100.0 Elizabeth, NJ 25
Breath trichloroethylene Season 1.011 0.621 62.8 0.053 0.272 280.5 Bayonne, NJ 25

Season 1.919 1.670 14.9 0.715 0.784 28.8 Los Angeles, CA 25
Blood SO-albumin adduct (a) Season 1.041 0.796 30.8 0.000 0.000 2 24
Blood SO-albumin adduct (b) Season 0.444 0.388 14.4 0.007 0.027 274.1 24
Blood DDE Season 0.076 0.062 22.6 0.345 0.348 20.9 30
Blood SO-DNA adduct (1) Season 4.219 3.533 19.4 0.000 0.000 2 24
Blood SO-DNA adduct (2) Season 3.004 2.513 19.5 0.000 0.102 2100.0 24
Blood free styrene glycol Season 1.328 1.242 6.9 0.562 0.595 25.5 24
Blood haemoglobin adduct Season 0.317 0.269 17.8 0.000 0.000 2 24
Blood hexachlorobenzene Season 0.145 0.101 43.6 0.029 0.030 23.3 30
Blood lead Season 0.113 0.109 3.7 0.278 0.278 0.0 30
Blood styrene Season 1.666 1.484 12.3 1.708 1.692 0.9 24
Urinary 3,5,6-trichloro-2-pyridinol Season 0.406 0.361 12.5 0.149 0.147 1.4 30
Urinary atrazine mercapturate Season 0.164 0.160 2.5 0.154 0.153 0.7 30
Urinary malathion dicarboxylic acid Season 0.524 0.511 2.5 0.114 0.107 6.5 30
Blood mercury Weekday 0.029 0.028 3.6 0.119 0.119 0.0 31
Urinary 1-hydroxyprene Weekday 0.271 0.192 41.1 0.321 0.324 20.9 34
Urinary chromium Weekday 0.088 0.035 151.4 0.566 0.576 21.7 35

Weekday 0.107 0.040 167.5 0.617 0.630 22.1 36
Urinary nickel Weekday 0.428 0.243 76.1 0.180 0.242 225.6 37

Weekday 0.053 0.018 194.4 0.171 0.162 5.6 36
Breath ethylene oxide Linear trend 1.165 0.618 88.5 0.000 0.000 2 32
Blood ethylene oxide Linear trend 1.127 0.783 43.9 0.000 0.000 2 32

DDE, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene; DNA, deoxyribonucleic acid; SO, styrene oxide.
*(Variance component[without time effect] 2 Variance component[with time effect])6100/Variance component[with time effect]

�Undefined because denominator is zero; assigned a provisional value of zero when estimating the median of the distribution.
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help control for attenuation bias in an exposure-response
relationship (see Appendix E). For example, to estimate the
slope of the linear relationship between logged inorganic lead
exposure and some logged continuous health outcome, with
a bias no larger than 0.10, we use the data of Cope and
colleagues26 to estimate n. From equation (2), the number of
measurements per subject required for a given bias

can be determined as the smallest positive

integer n satisfying the inequality:
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( ) containing 95% of average exposure (and biomarker)
encountered by the population. (B) Estimated fold range ( )
containing 95% of average exposure (and biomarker) encountered by a
given person.

Table 3 Comparison of between- and within-person estimated fold ranges across studies and exposure settings

No. of
datasets No. of obs

No. of
persons Ref.Median

Interquartile
range Median

Interquartile
range

Environmental setting
Air (current study) 33 2901 1146 7.7 2.3243.4 104.4 48.92207
Biomarker (current study) 46 5286 1681 9.3 4.4233.2 36.6 4.8290.6
Occupational setting
Air (current study) 17 1722 237 7.0 3.6249.2 13.7 8.8227.3
Air (Kromhout et al) 165 13945 1569 4.0 2.0213.0 15.2 5.9270.3 17
Biomarker (current study) 31 2168 563 4.8 1.6210.8 7.6 2.5232.1
Biomarker (Symanksi and Greeson)� 91 3234 942 8.1 2.1230.2 5.0 2.5210.4 18

, estimated between-person fold range; , estimated within-person fold range.

�Pre-shift and mid-shift observations (persons) were excluded from 122 original data sets that included 4367 observations from 1155 persons.
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where . The minimum sample size was

estimated by substituting b=0.10 into equation (4), along
with the estimates of l (16.6 for inorganic lead exposure, and
0.654 for urinary lead, Appendix D) and r (zero for air lead
and 0.25 for urinary lead under AR(1)) for the corresponding
true parameters. This leads to estimated sample sizes of
n=10 measurements per subject for lead in urine and
n=150 measurements per subject for lead in air. There
should be little doubt in this case that the biomarker would
provide a better surrogate measure of exposure than air
measurements for investigating health effects in this
population, as has previously been argued in the context of
hazard control.40

The advantage noted above for intermediate and long term
biomarkers (relative to air measurements) will not generally
be realised for short term biomarkers, which reflect exposure
during the current or preceding day. In the study by
Rappaport and colleagues,26 for example, styrene in exhaled
air (a short term biomarker) was measured along with
styrene in air. Using data from that investigation, was 0.28
for air styrene and 0.99 for styrene in exhaled air (Appendix
D), and D was 0 in both cases. To achieve the desired goal of
b(0.1, from equation (4) we require n=3 measurements per

person for air styrene and n=9 measurements of styrene in
exhaled air. In this case, there is evidence that styrene in air
would be a better surrogate measure of exposure than styrene
in exhaled air.
Although the above calculations indicate that biomarkers

with longer residence times would generally be preferred to
those with shorter residence times, the specificity of
candidate biomarkers and the precision of assays can also
be important. Consider for example, the eight biomarkers
listed in Appendix D for styrene and styrene oxide. Values of

for these biomarkers increased in the following order:
blood styrene (0.770, two studies), breath styrene (0.989),
urinary mandelic acid (1.44, two studies), lymphocyte SCEs
(1.58) , lymphocyte HPRT mutation frequency (1.77) ,

blood styrene glycol (2.09) , blood SO-albumin adduct
(14.3) , SO-DNA adduct (24.7). The two smallest values of
were observed for short term biomarkers (styrene in blood
and breath) while the two largest values of were for
intermediate term biomarkers (albumin and DNA adducts of
SO). This can partially be explained by the imprecision of the
adduct assays; indeed, the coefficient of variation of the post-
labelling assay for the DNA adduct was about 200%.23

Our analyses did not permit inferences to be made about
the effects on variance ratios of important metabolising and
repair genes. However, it is reasonable to expect that
functional SNPs of these gene alleles would increase of
relevant biomarkers while having little affect on . Since air
levels should be independent of SNP status, the practical
effect of functional SNPs would be to preferentially decrease
variance ratios for biomarkers relative to air levels. This
would also reduce the biasing effect of such biomarkers as
surrogates for exposure.
Aside from the biasing potential of using air and biomarker

measurements as surrogates for true exposure levels, other
constraints could loom large, such as the difficulty of
repeatedly collecting blood specimens rather than air samples
from a population or the increased costs of biological
measurements compared to air measurements. Also, our
analyses implicitly assume that air represents the dominant
route of exposure to the toxic chemical. This will not always
be the case. For example, we found that air measurements of
pesticides produced significantly smaller values than did
biomarker measurements (fig 4B), suggesting that ingestion
and/or dermal contact were reflected by biomarkers in those
studies. Taking all factors into account, the optimal measure
of exposure for an epidemiology study depends not only on
variance ratios of the air and biomarker measurements
(smaller is better), but also on projected sample sizes (larger
is better), based on practical considerations and costs, and on
knowledge of the dominant route of exposure (if multiple
routes, biomarkers are better).
Finally, it is worth mentioning that studies that collect both

air measurements and biomarkers are particularly valuable
because they provide information with which to estimate the
rates of human uptake, elimination, and metabolism of toxic
chemicals. Given the paucity of human toxicokinetic data for
most contaminants, the quantification of such rates with
primary data from observational studies would be valuable.
When collected in longitudinal sampling designs, where
repeated exposure and air measurements are obtained from
representative persons, these data can also allow interindi-
vidual differences in uptake, etc to be estimated and
ultimately related to genetic, physiological, and lifestyle
factors (for example, see Rappaport and colleagues41).

Limitations of the study
Our analyses were limited in several important ways. First,
we were constrained by the relatively few studies that
provided longitudinal data of both air measurements and
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biomarkers from a given population and by the limited
numbers of measurements per subject in most investigations.
Small sample sizes particularly limited our ability to draw
clear conclusions in stratified comparisons (for example, for
biomarkers of pesticides and long term biomarkers). Second,
since most of our database was derived from secondary data,
it was only possible to examine the effects of a relatively
small number of covariates, such as occupational or
environmental sources of exposure, etc. Third, we focused
entirely on exposures to airborne contaminants, recognising
that other routes (dermal contact or ingestion) could have
produced significant contributions to biomarker levels in
some cases. Fourth, we considered biasing measurement
error effects only in the context of individual based studies
where air measurements or biomarkers were obtained from
each person in a sample and the logged continuous health
outcome was related to the logged individual mean measure
of exposure. The statistical issues in such an individual based
study are somewhat different from those in a group based
study, where the mean health outcome for each group is
compared with the corresponding group mean of the
exposure measure.42 And finally, we recognise that our
database was confined largely to published investigations of
biological monitoring. These studies could well have been
biased in favour of biomarkers that had previously been
shown to be useful, such as metals in blood and urine. If this
were the case, then we somewhat overstate the generally less
biasing advantage of biomarkers that we observed.

Conclusions
We identified consistently great variability in air levels and
biomarkers both between and within persons in a large number
of longitudinal studies of chemical exposure. We argue that the
air or biological measure with the smallest (within- to between-
person) variance ratio should be the optimal—that is, least
biasing surrogate for exposure in a study of health effects. We
present evidence that biomarkers tend to have smaller variance
ratios than air measurements. Epidemiologists should consider
the magnitudes of variance ratios of air measurements and
biomarkers as one criterion for selecting the optimal surrogate
for exposure in their studies.
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