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ABSTRACT 

JAMES S. MCGINLEY: Evaluating Current Practices in Measuring and Modeling 

Adolescent Alcohol Frequency Data 

(Under the direction of Patrick Curran) 

 

Substance use is a significant health risk behavior from both developmental and 

public health perspectives. In recent years, there has been substantial growth in the 

theoretical conceptualization of pathways to substance use during adolescence. However, in 

order to test these developmental theories researchers must be able to validly measure and 

model substance use. This project evaluated the current standard practices in measuring and 

modeling adolescent alcohol frequency data. Using a simulation study and empirical 

demonstration, I investigated the degree to which the quantitative characteristics of ordinal 

measures and ordinal scoring approaches impact researchers’ ability to draw valid inferences 

from standard linear models. My results showed that ordinal alcohol frequency measures 

interacted with scoring approaches to substantially reduce statistical power and led to 

different patterns of effects. There was no clearly superior ordinal scoring approach and, in 

some conditions, the performance of scoring approaches depended on which measure was 

used.
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Evaluating Current Practices in Measuring and Modeling Adolescent Alcohol 

Frequency Data 

Adolescent substance use is a widespread concern in the United States. The 

Monitoring the Future (MTF) study, a national school-based survey, found that in 2009, 

36.6% of 8
th

 graders, 59.1% of 10
th

 graders, and 72.3% of 12
th

 graders reported drinking 

alcohol at least once in their lifetime and 17.4% of 8
th

 graders, 38.6% of 10
th

 graders, and 

56.5% of 12
th

 graders reported getting drunk at least once in their lifetime (Johnston, 

O’Malley, Bachman, & Schulenberg, 2009). In 2001 alone, it was estimated that underage 

drinking cost the United States 61 billion dollars (Miller, Levy, Spicer, & Taylor, 2006). 

More concerning are the non-monetary consequences of adolescent substance use. In the 

short-term, adolescent substance use is associated with morbidity, driving accidents, risky 

sexual behavior, and even death (USDHHS, 2007). There is also evidence that substance use 

in adolescence has negative long-term biological effects such as disruptions in 

neuropsychological development and performance (Tapert, Caldwell, & Burke, 2005) and 

female pubertal development (Emanuele, Wezeman, & Emanuele, 2002). Several studies 

have found a relationship between adolescent substance use and lower educational 

attainment, difficulties transitioning from adolescence into young adulthood (Hussong & 

Chassin, 2002), and psychological problems in adulthood (Trim, Meehan, King, & Chassin, 

2007). Clearly, adolescent substance use is a significant public health concern. 

Recently, there has been tremendous growth in the theoretical conceptualization and 

empirical evaluation of pathways to substance use during adolescence. These theoretical 

models of adolescent substance use range from broader deviance proneness, biological, and 

internalizing models to more complex integrative models (e.g., Scheier, 2010; Schulenberg & 
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Maslowsky, 2009). Deviance proneness models, which operate off the tenet that substance 

use occurs along with the development of general conduct problems, and biological models, 

which posit that adolescents with family histories of drug abuse and dependence are at 

greater risk for substance use, have been well supported by prior research (Chassin, Hussong, 

& Beltran, 2009; Chassin, Presson, Pitts, & Sherman, 2000). On the other hand, empirical 

tests of the relationship between internalizing symptomatology and the etiology of substance 

use in adolescence remain inconclusive with some studies reporting a significant association 

between them (Chassin, Pillow, Curran, Molina, & Barrera, 1993; Cooper, Frone, Russell, & 

Mudar, 1995), while others have failed to find such a link (Hallfors, Waller, Bauer, Ford, & 

Halpern, 2005; Hussong, Curran, & Chassin, 1998). This tremendous growth in adolescent 

substance use research over the past decade and a half needs to continue well into the future. 

However, in order to empirically evaluate any of these theories, researchers must be 

able to validly and reliably measure and model the substance use outcomes of interest. 

Substance use measures examine alcohol or other drugs such as marijuana, cocaine, and 

heroin. Dimensions of substance use commonly examined include abuse, dependence, 

consequences, and frequency and quantity of use. It has been well documented that many 

adolescent substance use measures lack sufficient psychometric properties (Leccese & 

Waldron, 1994). In part, this psychometric deficiency is caused by the complex nature of 

adolescent substance use measurement. For instance, it is difficult to determine the reliability 

and validity of instruments that assess multiple substances (e.g., alcohol, cigarettes, 

marijuana, heroin, etc.) and dimensions (e.g., abuse, dependence, quantity/frequency). 

Although methods for assessing these different substances share much in common, my 
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project focused strictly on frequency of alcohol use. The issues studied in this project are 

expected to generalize to other substances. 

Measuring Alcohol Use 

Over the past half-century, numerous alcohol use measures have been proposed, most 

of which can be classified into one of three categories: daily drinking, lifetime drinking, and 

quantity-frequency measures. First, daily drinking measures assess daily alcohol 

consumption for a specified time period (e.g., Sobell and Sobell’s (2000) Alcohol Timeline 

Followback (TLFB) and Miller and Del Boca’s (1994) Form 90). Advantages of these 

measures are that they provide more precise estimates of drinking than other techniques and 

they may be used to distinguish specific drinking patterns such as weekend drinking or types 

of drinkers (e.g., heavy episodic drinkers). Disadvantages include that they can take a great 

deal of time to complete and it can be difficult for participants to recall their exact alcohol 

consumption for days in the distant past (Sobell & Sobell, 1995). Second, lifetime drinking 

measures require that participants recall typical drinking patterns from adolescence through 

the present, providing a developmental overview of alcohol use (e.g., Skinner and Sheu’s 

(1982) Lifetime Drinking History). These instruments face substantial criticism because they 

rely heavily on long-term retrospective recall and they lack precision (Skinner and Allen 

1982). These measures are also time consuming and can be burdensome to complete. Third, 

and possibly most widely used, are quantity-frequency (QF) measures, which gather data on 

typical alcohol consumption. Participants are asked a question about their typical rate of 

alcohol consumption, frequency (F), and a question about their average quantity per drinking 

occasion (Q). The responses of two questions are multiplied together (e.g., QxF) to provide 

an estimate of the total volume consumed.  
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Researchers often choose to utilize either the quantity per drinking day or frequency 

of alcohol use independently to test specific research hypotheses. Quantity-frequency 

measures offer several practical advantages such as short administration time, easy 

computations, intuitive meaning, and researchers can use quantity or frequency measures 

separately to test unique effects involving alcohol use. However, these methods have been 

criticized on a variety of grounds including the underestimation of true alcohol consumption, 

as well as the omission of important information about variability in alcohol consumption 

patterns (Dawson & Room, 2000; Ivis, Bondy, & Adlaf, 1997; Sobell & Sobell, 1995).  

In this project, I focused on frequency of alcohol use because it is widely used in 

applied research and the findings likely generalize to similar types of substance use 

measures. By definition, alcohol frequency data are counts because participants report on the 

number of days in which they drank alcohol over a given timeframe. Despite this fact, most 

researchers provide binned ordinal response categories for frequency of alcohol use (e.g., 1-3 

times a month, 1 time per week, etc.) rather than leaving responses open-ended because it 

lessens participant burden and errors in cognitive recall (Ivis et al., 1997). To help 

standardize these measures, the National Council on Alcohol Abuse and Alcoholism 

established and recommended sets of alcohol consumption questions, totaling between 3 and 

6 questions (NIAAA, 2003). An example of a frequency item modified for a past 30 day 

timeframe is displayed in the first column of Table 1. Importantly, the committee 

recommended using binned ordinal response categories. 

Previous psychometric research has focused on evaluating alcohol frequency 

measures from a traditional validity (convergent, divergent, predictive, etc.) and reliability 

(test-retest, internal consistency, etc.) perspective, but there is a dearth of research 
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investigating how these alcohol frequency measures perform when testing theories of 

adolescent alcohol use with misspecified statistical models (e.g., fitting linear models to 

ordinal data). Even if an alcohol measure has strong traditional psychometric support, it can 

still produce invalid tests of substantive theories in commonly used statistical models.  

For example, consider if there was a true effect of age on frequency of alcohol use 

such that older adolescents, on average, drank more frequently than younger adolescents. 

Two researchers may measure frequency of alcohol in the same participants using two 

different measures; one with five point scales the other with a 12 point scale, assuming 

perfect reliability from the reporter. Although both of these measures show strong traditional 

psychometrics properties and the same statistical model is fitted to the data, one model may 

find a significant age effect while the other does not because of a reduction in statistical 

power moving from 12 categories to five categories (MacCallum, Zhang, Preacher, & 

Rucker, 2002; Taylor, West, & Aiken, 2006). For another example, assume alcohol 

frequency is measured with two seven point scales with response categories characterized by 

different bin sizes. A model fitted to the data derived from one of the seven point scales 

could produce a significant age effect while the age effect turns out to be non-significant 

using the other seven point scale. This discrepancy has the potential to occur in practice 

because different binning methods may produce different relationships between a set of 

covariates and the outcome. These two inconsistences exemplify invalidity in testing 

substantive theory using statistical models because the different patterns of effects are due to 

the alcohol measures. 
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Current Practices in Modeling Alcohol Frequency Data 

The standard practice in adolescent substance use research is to test theoretical 

models by treating an ordinal alcohol frequency outcome as continuous in a linear statistical 

method (A few recent examples of this are Dogan, Stockdale, Widaman, and Conger, 2010; 

Rice, Milburn, & Monro, 2011; Patrick & Schulenberg, 2011). These linear models are not 

ideal from a statistical standpoint, but researchers use this strategy because alternative 

statistical models are not well studied or readily available (Curran & Willoughby, 2003). 

Furthermore, closer examination of the distributional properties and generalized model 

techniques for discrete alcohol frequency data helps to clarify why standard linear models are 

so widely utilized by alcohol researchers. Through briefly exploring the Generalized Linear 

Model (GLM) framework, I will provide insights as to why using ordinal alcohol frequency 

data in traditional linear models can lead to invalid tests of substantive theory. 

Distributions of Alcohol Frequency Data 

Alcohol researchers frequently treat ordinal alcohol frequency data as continuous in 

linear models. In doing so, they inherently assume that the ordinal outcome follows the 

probability density function (pdf) for the normal distribution 
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The parameters  and 2 are the mean and standard deviation. Figure 1 shows the standard 

normal distribution with 0   and 2 1  . This pdf shows that alcohol frequency cannot be 

normal because it implies that values range from negative infinity to positive infinity on a 

continuous scale. The underlying goal of alcohol frequency measures is to gather a count of 

the number of days in a given timeframe that an adolescent consumed alcohol. Alcohol 
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frequency counts are characterized by a large proportion of non-alcohol users, also known as 

zero-inflation in the statistics literature. For this reason, alcohol frequency counts likely 

conform to a negative binomial distribution rather than the more familiar Poisson distribution 

because its added dispersion parameter allows for much more flexibility. The probability 

mass function (pmf) for the negative binomial distribution can be expressed as 
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where the distribution has mean of  and a variance of ))/1(1(   . Figure 1 show the 

negative binomial distribution with 2   and .8  . A dual process, zero-inflated negative 

binomial (ZINB) process is a second viable option for characterizing adolescent alcohol 

frequency data. The ZINB probability function can be expressed as 
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where   is the probability of zero counts and the function g(.) represents counts drawn from 

the negative binomial distribution as described in Eq. 2. Figure 1 shows the ZINB 

distribution after adding an excess zero probability 42. to negative binomial distribution 

described above. This probability function for the ZINB implies that zeros are generated 

from two sources: (1) the inflated zeros probability (e.g., structural zeros) and (2) the 

expected zeros from a negative binomial distribution (e.g., sampling zeros).  

 However, most adolescent alcohol studies collect frequency data using ordinal scales 

with many response categories. This inherent process of binning raw alcohol frequency 

counts makes it difficult to identify the underlying distribution because it is clearly no longer 

a count variable and ordinal models with a large number of response categories are often 

intractable. For example, Figure 2 shows how the ZINB distribution from Figure 1 is affected 
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after binning the counts into ordinal categories based on NIAAA scale from Table 1. This 

binning process makes the selection and implementation of an appropriate statistical method 

for validly testing theoretical hypotheses of adolescent alcohol use challenging for applied 

research. 

Clearly, there is a disconnect between the distributions associated with the underlying 

count of days using alcohol (Equations 2 and 3) and what researchers often assume in 

statistical models (Equation 1). This incongruity is worsened by the process of binning 

frequency counts in ordinal categories. By briefly exploring the GLM, I will highlight why 

adolescent alcohol researchers often use linear models for ordinal alcohol frequency data and 

form the foundation for describing how linear models fit to ordinal data can lead to invalid 

statistical inferences. 

Generalized Linear Model (GLM) and Alcohol Frequency Data 

 The GLM offers a unifying modeling framework that subsumes traditional continuous 

linear models with various models for discrete outcomes. The GLM operates on three 

components: (1) Stochastic Component - this is commonly thought of as the error structure of 

response distribution, (2) Systematic Component - this is how the predictors affect the 

outcome that is transformed through the specified link function (e.g., Xβθ  ), and (3) Link 

Function –this connects the Stochastic Component with the Systematic Component (e.g. 

Xβθμ )(g ). I will next lay out how the GLM encompasses continuous and discrete 

outcomes. 

 By fitting standard linear models to alcohol frequency data, adolescent alcohol 

researchers connect their set of linear predictors (e.g., the systematic component) to the 

expected value of the specific exponential form through the identity link function, 
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)4(Xβμ   

where X is an n x p matrix of covariates,β is p x 1 vector of regression coefficients, and the 

outcome follows a normal distribution (e.g., multiple regression, ANOVA). However, if 

researchers were fitting models to the underlying count of the number of data of alcohol use, 

they would likely use a logarithmic link function such that
    

                                                        
)5()log( Xβμ   

where X is an n x p matrix of covariates,β is p x 1 vector of regression coefficients, and the 

outcome follows a negative binomial distribution. The ZINB model may also be useful for 

modeling adolescent alcohol data. The ZINB model is a two-component mixture model 

combining a point mass at zero with a negative binomial distribution. Zeros arise from two 

sources, the probability of excess zeros and the zeros naturally occurring in the NB 

distribution. The mean models for the ZINB model can be expressed as 

                                                   )6()exp()1(0 Xβμ    

where X is an n x p matrix of covariates,β is p x 1 vector of regression coefficients for the 

count process, and the outcome follows a negative binomial distribution. The unobserved 

probability of excess zeros  is modeled with a binomial GLM with a logit link as 

                                                     )7()(logit Zγ  

Z is an n x q matrix of covariates,  is q x 1 vector of regression coefficients for the zero 

process, and the outcome follows a binomial distribution. Alcohol researchers rarely collect 

frequency data as open-ended counts, so we can consider a basic ordinal model: the 

proportional odds model which is defined as 

                                 )8(1,...,1,)]|([logit  JjajYP j xβx  
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The outcome is now modeled as cumulative logits, which are simply logits of cumulative 

probabilities for the j response categories. Each cumulative logit has its own intercept 

expressed as j and the model implies the same effect,β , for each logit (this is the 

“proportional odds” assumption). The outcome is assumed to follow a multinomial 

distribution. These models are quite complex and have strong assumptions, which are often 

unfeasible for alcohol frequency data. For instance, a frequency scale with 10 response 

categories would need to have 9 intercepts. This is precisely why applied researchers fit 

linear models such as described in Equation 4 to ordinal alcohol frequency data. 

 There are stark differences between the models expressed in Equations 4 through 8. 

Fitting the negative binomial model is often not an option because alcohol frequency counts 

are seldom collected by researchers. Although the utilization of linear statistical models to 

ordinal alcohol frequency data is often defensible from a practicality standpoint, these 

models are highly susceptible to producing invalid statistical inferences. The factors 

producing these invalid inferences can again be tied to the GLM framework. 

Alcohol Frequency and Validity of Inferences 

Two factors are critical in drawing valid inferences from models testing theories of 

adolescent alcohol use. The first factor consists of the specific characteristics of alcohol 

frequency measures. These characteristics include the number of response categories and 

range of drinking occasions represented within each ordinal category (e.g., Does each 

category represent equal range of drinking occasions or does the range of drinking occasions 

increase as the category number increases such as the measures in Table 1). The second 

factor pertains to how scores are assigned to the ordinal data so that they can be fitted in 

standard linear models. Adolescent alcohol use researchers often use one of two scoring 
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approaches: category numbers and the midpoint value within each ordinal category. In 

practice, both of these factors vary in adolescent alcohol use applications and there is 

currently no gold standard alcohol frequency measure or scoring approach. Often times, 

researchers do not even report the characteristics of a measure or how they scored the ordinal 

alcohol variable. In my project, I will empirically examine whether or not these two factors 

are critical for validly testing theories of adolescent alcohol use.  

Characteristics of Alcohol Frequency Measures 

 The quantitative elements of alcohol frequency measures are the number of ordinal 

response categories and the method of binning the underlying days of alcohol use counts into 

ordinal response categories. While prior quantitative research suggests that a larger number 

of response categories should be better suited for testing models of adolescent alcohol use 

than fewer categories because researchers lose less information (Taylor, West, & Aiken, 

2006), it is unclear how the method of binning underlying counts into ordinal categories 

affects statistical inferences. It is plausible that the number of categories may interact with 

binning strategies such that the effect of the number of ordinal categories on the validity of 

results generated from statistical models depends on how the response categories are binned. 

Quantitative researchers refer to the process of binning an underlying continuous or 

count quantitative variable into a smaller number of ordered categories as coarse 

categorization (Taylor, West, & Aiken, 2006). Several studies have shown that coarse 

categorization can be problematic from a quantitative standpoint. For instance, MacCallum, 

Zhang, Preacher, and Rucker (2002) detailed the statistical repercussions caused by 

dichotomization (e.g., performing a median split) such as loss of power and effect size, 

reduction in reliability, and the possible introduction of spurious effects. Similarly, Taylor, 
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West, and Aiken (2006) expanded this work to show that coarsely categorized ordinal 

outcomes lead to a loss of power in logistic, ordinal logistic, and probit regression. Findings 

from this study suggest that, typically, more categories that have a rectangular distribution 

are better than fewer categories that are skewed. However, this study assumed that 

underlying these categories was a normal continuous variable. 

Far less information exists about the statistical implications of binning counts into a 

series of unequally spaced ordinal responses, which is the case for alcohol frequency 

measures. Note that for the NIAAA alcohol frequency question, moving from the zero 

category to the one category is not the same as moving from the three category to the four 

category. As previously stated, alcohol researchers use ordinal measures with unequal 

categories to minimize errors in cognitive recall. However, the implications of using these 

measures with standard linear models are currently unclear. It appears that binning alcohol 

frequency counts into categories may act as pseudo data transformation. Consider the popular 

logarithmic transformation for use in linear models, which converts multiplicative 

relationships to additive relationships and consequentially transforms exponential trends to 

linear trends. Log transformations are popular with negative binomial distributed data (see 

Equations 2 and 3) because they pull outlying data from a positively skewed distribution 

closer to the bulk of the data. Examining the NIAAA alcohol frequency item in Table 1, by 

binning the frequency counts into increasingly larger categories, the larger outlying counts 

are being pulled in closer to the rest of the data if the categories numbers are used as scores. 

This idea of logarithmically transforming frequency counts is also consistent with how the 

underlying count data would be handled in the GLM. 
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 Equation 5 displays the negative binomial model. Notice that the appropriate 

nonlinear link function is the logarithmic link. The regression coefficients can be interpreted 

in terms of changes in the transformed mean response in the study population, and their 

relation to the set of covariates. From a statistical standpoint, it appears that a strategy that 

bins alcohol frequency counts in increasingly larger categories that mirror the logarithmic 

transformation should be best for linear modeling (assuming one uses the category number as 

the alcohol frequency scores). However, in practice, there is no widely accepted method for 

defining alcohol frequency categories. Most researchers do not report the response scales of 

their alcohol frequency measures in academic journals so the extent to which measures vary 

in practice is unknown. Prior research in statistics has shown that applying different data 

transformations to the same data can indeed lead to different patterns of statistical 

significance and inaccurate predictions (Adams, 1991; O’Hara & Kotze, 2010). Extending 

this finding to adolescent alcohol use, it is expected that the more these alcohol measures 

vary in their binning approaches (e.g., the more the pseudo data transformations differ), the 

more likely researchers are to observe invalid patterns of effects caused solely by 

measurement. 

Scoring Approaches for Alcohol Frequency Data 

 In the field of adolescent alcohol use, there are two primary methods for creating 

alcohol frequency scores based on ordinal measures. The first scoring method uses the 

category number. For example, using the NIAAA frequency measure in Table 1, the scores 

to be used in the linear statistical models would be the integers ranging from zero to seven. 

The second method for scoring is to use the median frequency value within each category. 

The median approach involves taking mid-value within each category. Using the NIAAA 



 

14 
  

frequency measure, the scores would be 0, 1, 2.5, 4.5, 7.5, and so on. Although the 

differences between these scoring methods appear trivial, they have the ability to seriously 

impact the validity of hypothesis tests concerning adolescent alcohol use. These scoring 

approaches for ordinal data have yet to be systematically studied in the context of adolescent 

alcohol use. 

 From a statistical viewpoint, the category number scoring approach appears 

advantageous to the median approach. As previously described, many ordinal alcohol 

frequency measures functionally work as a data transformation that helps to linearize the 

relationship between a set of predictors and the alcohol frequency outcome. This is consistent 

with the logarithmic link model expressed in Equation 5. Conversely, the median approach 

takes the ordinal alcohol frequency response and converts it back to a metric similar to the 

underlying frequency count (e.g., Equations 2 and 3). In doing so, it likely introduces a 

nonlinear relationship between the set of predictors and the alcohol frequency outcome and 

applying linear statistics models to these median scores worsens the degree of model 

misspecification, which can seriously affect the reliability and validity of tests of substantive 

theory (Long, 1997). Relating this back to the GLM, this is akin to fitting negative binomial 

distributed data (e.g., Equation 2) with the linear model expressed in Equation 4. This fact 

about median scores in adolescent alcohol use research goes widely unnoticed or, worse, is 

misunderstood. For example, a large epidemiological study of adolescent drunkenness by 

Kuntsche et. al (2011) states that “midpoints of categories were used to create a linear 

measure”. This statement is in direct contrast to what is actually occurring from a statistical 

standpoint. Clearly, there is strong rationale for using the category numbers for scores in 

linear models. However, the current recommendation from the field of biostatistics is to use 
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median scores (Agresti, 2002). Prior research has yet to rigorously study how these ordinal 

scoring approaches impact our ability to test theories of adolescent substance use. 

Summary 

 Adolescent substance use is a significant public health concern. Over the past half 

century, many measures of adolescent alcohol use have been developed, but perhaps the most 

widespread are quantity-frequency measures. My project focused on frequency of alcohol use 

measures. The vast majority of frequency measures assess alcohol use using ordinal response 

categories. However, prior research has not investigated the impact of using these ordinal 

measures in standard linear models. Statistical theory suggests that there is a difference 

between the distributional assumptions of standard linear models and characteristics of 

alcohol frequency data. This difference has a strong potential to affect the validity of 

inferences drawn from statistical tests of substantive theory. Two factors that may impact the 

validity of inferences are the characteristics of alcohol frequency measures (e.g., number of 

response categories and binning method) and the scoring method (category number or 

median value). It is currently unclear which combination of measurement characteristics and 

scoring method is optimal for adolescent alcohol use research. 

My project used a simulation study and an empirical demonstration to evaluate the 

current measurement and modeling practices used in cross-sectional adolescent alcohol 

research. In my project, three core hypotheses were tested. First, there should be an 

interactive effect between the alcohol frequency measure and the scoring approach. More 

precisely, I expected that alcohol measures with few response categories that are defined to 

be dissimilar to the logarithmic transformation should be more sensitive to scoring 

approaches, especially category scores, compared to measures with more response categories 
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that are binned similarly to the logarithmic transformation. Second, the validity of statistical 

inferences should depend on the quantitative characteristics of the alcohol frequency 

measures. There should be a general tendency for alcohol measures with few response 

categories that are defined to be different from the logarithmic transformation to perform 

poorer than alcohol measures with more response categories that closely follow the 

logarithmic transformation, regardless of the scoring approach. Third, the validity of 

inferences drawn from statistic tests of substantive hypotheses should depend on the scoring 

approach used. Generally, I expected that category number scores should outperform the 

median scoring approach for scales with a reasonable number of categories that are defined 

similar to a log transformation (this trend should not hold for measures with few poorer 

defined response categories).  
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Method 

The simulation study was a four-step process starting with generating count data from 

a ZINB model. Then, these data were binned into a series of ordinal alcohol measures and 

scored with multiple ordinal scoring approaches. After scoring, I fitted linear regression 

models to each of the measure-by-scoring combinations and evaluated the results of the 

simulation in terms of the proportion of significant effects, Type I and II errors, and 

percentage of different patterns of effects. 

 A similar analytic process was applied to empirical data from the National 

Longitudinal Survey of Youth (NLSY97). Again, I binned the open-ended count data into 

ordinal alcohol frequency scales and scored the ordinal data. The scored ordinal data were 

then fitted with linear regression models so that each of the measure-by-scoring combinations 

could be evaluated in terms of proportion of significant effects and percentage of different 

patterns of effects. 

Simulation Study 

My simulation study had four steps. First, count data were generated from known 

population models. Second, the count data from Step 1 were binned in categories according 

to the prescribed ordinal alcohol frequency measures. Third, the ordinal data from Step 2 

were scored according to the prescribed scoring methods. Fourth, standard linear regression 

models were fitted to the scored data from Step 3. 

Step 1: Data Generation 

 To be consistent with commonly observed distributions of adolescent alcohol 

frequency data for a past 30 day timeframe, the underlying count data were generated from a 

ZINB distribution in which the count process was conditioned on two predictors, one binary 
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and one continuous. This was accomplished using Equations 6 and 7 presented earlier. The 

zero-process of the model (Equation 7) was not conditioned on covariates and did not vary 

across conditions. The zero-process was generated to have a probability of  = .43. The 

count process for the four effect size conditions were generated as follows: 
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In these conditions, I generated x1i as a binary predictor and x2i as a continuous 

predictor. In all conditions, the dispersion parameter was generated as 8. . Combining the 

zero and count processes, the ZINB mean model can be expressed as in Equation 6. First, the 

binary predictor x1i had a medium effect size and the continuous predictor x2i had no effect. 

This effect for x1i was equal to group 1 having a mean of about 2.42 and group 2 having a 

mean of 1.22. Second, the binary predictor x1i had a small effect size and the continuous 

predictor x2i had no effect. This effect for x1i was equal to group 1 having a mean of about 

1.97 and group 2 having a mean of 1.22. Third, the binary predictor x1i had no effect and the 

continuous predictor x2i had a medium effect. This effect for x2i was equal to about 1.16 when 
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x2i was at the mean and 1.86 when x2i was one standard deviation above the mean. Fourth, the 

binary predictor x1i had no effect and the continuous predictor x2i had a small effect. This 

effect for x2i was equal to about 1.16 when x2i is at the mean and 1.56 when x2i was one 

standard deviation above the mean. Medium and small effects were defined as an empirical 

power of .8 and .5 with an n=250 based on fitting the population generating ZINB model to 

the count data. These generating values were motivated by the NLSY. The means, proportion 

of zeros, and shape of the generated data were generally aligned with these empirical data. 

 The simulation had a single sample size, n=250, because sample size was not 

expected to be influential beyond what is normally expected (e.g., statistical power). Each of 

the four data generation conditions were replicated 500 times resulting in a total of 2000 

generated datasets. Figure 3 shows the marginal distribution of the simulated outcome for all 

500 replications from Condition 1. Because counts had to be between 0-30, I recoded any 

counts greater than 30 to missing. This affected a very small percentage of the generated data 

( > 99.5% of the generated data generated across all of the conditions had counts between 0-

30). 

Step 2: Alcohol Measures 

 The underlying counts generated in each of the 2000 dataset produced in Step 1 were 

next binned into ordinal categories to conform to four alcohol frequency measures. The first 

measure had eight categories and was based on NIAAA recommendations. The second 

measure had five categories that were defined to be dissimilar to the log transformation. The 

third measure had eleven categories that were consistent with what is commonly observed in 

practice. These measures are displayed in Table 1. 
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Although there are already many different alcohol frequency scales, I also explored 

whether it was possible to draw on statistics (e.g., GLM theory) to improve ordinal frequency 

measures for use in standard linear models. This experimental fourth measure was a seven 

category measure that I created based on a logarithmic transformation. More specifically, I 

created the 7 categories by dividing the maximum log(day+1) by 7 and creating cutoffs based 

on increments of that magnitude (See Table 2). For instance, 3.43 divided by 7 is .49, so I 

created bins using a .49 cutoff for the log(days+1). 

Step 3: Scoring Approaches 

 Three scoring approaches were applied to the ordinal data produced in Step 2. The 

first two scoring approaches used were the category numbers and median values within each 

category. The third scoring approach was an experimental approach I propose that draws on 

the logarithmic transformation. This approach simply takes the log of the median value 

within each category plus one (e.g., log(median+1)). I derived this experimental scoring 

method as an attempt to optimize the performance of ordinal scores in standard linear models 

using statistical theory. 

Step 4: Model Fitting 

 To be consistent with applied research, standard linear regression models were fitted 

to the ordinal data scored in Step 3. Linear regression models were fitted to data using SAS 

PROC REG. Using Equation 4, the mean model can be expressed as 
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In this equation, x1i was the binary predictor and x2i was the continuous predictor and the 

ordinal outcome was assumed to follow a normal distribution. I also fitted the population 
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generating ZINB model to the count data using SAS PROC COUNTREG to validate data 

generation. 

Simulation Evaluation 

 I used a series of meta-models to test for the potential interaction of measure-by-

scoring approaches and the measure and score main effects. The meta-models were eight 

separate GEE models with logit link functions, binomial response distributions, and 

exchangeable correlation structures (4 effect size conditions by 2 predictors) fitted to binary 

outcome of Type II error (e.g., 0=No Type II error, 1=Type II error). I used GEE models to 

account for the correlations among scale-by-scoring combinations fitted the same underlying 

count data (the same general pattern of results were obtained using random effects 

models).The eight models had a total of 6,000 observations because for each of the 500 

replications there were 12 lines of data representing the various measure-by-scoring 

approaches. I created reference codes for measures and scoring approaches to formally test 

for the main effects and their interaction. These meta-models were used only to test for 

omnibus scale-by-scoring effects or scoring and measure main effects when the interaction 

was non-significant. This was accomplished with Wald test statistics. I did not use any model 

implied probabilities or odds ratios to evaluate the simulation. 

Because there was not a direct correspondence between the generating ZINB models 

and the multiple linear regression models fitted to the ordinal data, I was not able to evaluate 

the simulation with standard methods such as raw and standardized bias, root mean squared 

error, and effect sizes. I could not examine the parameter estimates across the multiple 

regression models because the alcohol frequency outcomes were on different metrics due to 
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the different ordinal alcohol measures and scoring approaches. Given these conditions, I 

evaluated my simulation using three criterion.  

First, I examined differences in the proportions of significant effects obtained when 

using the ordinal data and standard regression models compared to the counts fitted to 

population generating ZINB model. For additional comparison information, I also calculated 

the standardized regression coefficients for the multiple linear regression models fitted to the 

ordinal data. I did not do this for the population generating ZINB model because there were 

not satisfactory computational methods. Second, I examined Type I and II error rates and 

odds ratios for the various measure-by-scoring approaches compared to the population 

generating ZINB models. Third, I calculated the proportion of the generated datasets that 

produced different patterns of effects due to measures and scoring approaches despite having 

the same underlying count data. For example, assuming the same underlying data and alcohol 

frequency measure, if x1 was significant using the category number scoring approach but not 

using median scoring approach, I labeled this as a “different pattern of effects”. 

Simulation Summary 

 To summarize, 2,000 datasets containing count data were generated (500 replications 

per condition; n=250). For each of the 2,000 data sets, four alcohol frequency measures were 

used to bin the counts into ordinal data. Then, the ordinal data were scored using three 

approaches and linear regression models were fitted to the data. Thus, for each of the 2,000 

simulated data sets, 12 models were fitted to all of the measure-by-scoring approach 

combinations (4 measures times 3 scoring approaches). Also, for comparison, the 2,000 

ZINB models were fitted to the underlying count data. 
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Empirical Demonstration 

About the NLSY 

 I employed an empirical demonstration to determine if standard linear models fitted 

to ordinal alcohol frequency data can lead to different substantive results in practice. I used 

repeated random samples instead of working with a single dataset as is typically done in 

empirical demonstrations because I wanted to work with a sample size that is reflective of 

those commonly observed in adolescent alcohol use studies. The study that I used for this 

demonstration had a very large sample size of almost 9,000 adolescents and young adults. 

Using repeated random sampling allowed me to specify a much smaller sample size (n=250) 

so that my findings would generalize to a broader audience and there was not excessive 

statistical power. Even without knowing the population generating model, repeated random 

sampling allowed me to describe my empirical demonstration in terms of proportion of 

significant effects and the proportion of datasets that had inconsistent patterns of effects 

caused by measures and scoring approaches.  

Data for the empirical demonstration came from the first round of data collection for 

the NLSY (NLSY97). The NLSY was selected because, unlike most studies, they collected 

count data for alcohol frequency, which is necessary for my evaluation strategy. Briefly, the 

NLSY collected extensive information on several domains including educational 

experiences, employment data, delinquent behavior, alcohol and drug use, sexual activity, 

youth's relationships with parents, contact with absent parents, marital and fertility histories, 

dating, onset of puberty, training, participation in government assistance programs, 

expectations, and time use.  

 The first round of data collection consisted of a nationally representative sample of 
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8,984 participants ranging in age from 12 to 18 years old. The sample was 51% male and the 

Race/Ethnicity breakdown was 51.9% Non-black/non-Hispanic, 26% Black, 21.2% Hispanic 

or Latino, and 0.9% Mixed Race/Ethnicity. 

Study Subsample 

 For the purposes of my project, a subsample was created. The subsample consisted of 

4,442 14-16 year old adolescents (51.9% male; 33.2% 14 year olds, 34.1%15 year olds, 

32.7% 16 year olds; 35.1% minority). There were very few 12 and 13 year olds (1.3% of the 

initial sample) and the NLSY did not collect relevant items concerning maternal monitoring 

for participants that were older than 16 years old so these ages were dropped. Additionally, 

because this demonstration used standard linear regression models for the analyses, 

participants that had missing data on any variables used for the analyses were dropped so that 

there was a common sample size across all models (11% of the 14-16 year old adolescents 

were dropped because they were missing on at least one covariate).  

Measures 

Alcohol Frequency 

 Alcohol frequency was a single open ended item, “During the last 30 days, on how 

many days did you have one or more drinks of an alcoholic beverage?”. The responses were 

discrete counts ranging from 0-30. 

Maternal Monitoring 

 Maternal monitoring was a composite consisting of the mean of three items: “How 

much does she (mother) know about your close friends, that is, who they are?”, “How much 

does she (mother) know about your close friends' parents, that is, who they are?”, and “How 

much does she (mother) know about whom you are with when you are not at home?”. The 
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items had a five point likert response scale: 0=”Know Nothing”, 1=”Knows Just A Little”, 

2=”Knows Some Things”, 3=”Knows Most Things”, 4=”Knows Everything”. The items had 

a Cronbach’s alpha of .72. 

Analytic Strategy 

 The analytic strategy for this empirical demonstration was the same as the simulation 

with the exception of Step 1. For the empirical demonstration Step 1 involved taking 1000 

random samples of n=250 with replacement from the total subsample of n=4,442. The 1,000 

unique datasets subsequently went through Steps 2-4 from the simulation strategy. Figure 4 

shows the marginal distribution of alcohol frequency counts for the whole subsample of 

n=4,442. The linear regression model based on Equation 4 fitted to the data was  
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For comparison purposes, I fitted a negative binomial (NB) model with the same 

predictors to the count data, see Equation 5. The NB model provided what should be a more 

appropriate standard for evaluating the linear regression models fitted to the ordinal alcohol 

frequency data. I fitted NB models instead of the ZINB models because many of the 1,000 

randomly sampled datasets appeared to be consistent with the NB distribution. In these cases, 

the fitted ZINB models often led to seemingly unstable estimates and convergence 

difficulties. Given this, I decided to use the more stable NB models for comparison. 

Evaluating the Empirical Demonstration 

The central goal of this empirical demonstration was to evaluate whether different 

alcohol frequency measures and scoring approaches may cause researchers to draw invalid 
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inferences from linear statistical models. First, I calculated the different proportions of 

significant effects caused by measures and scoring approaches. I also provided the 

standardized regression coefficients for the predictor effects in the linear regression model. 

The results produced from the linear regression models fitted to the ordinal data were 

compared among each other and to the NB model fitted to the counts. Second, I calculated 

the proportions of the generated datasets that had different patterns of effects caused by 

measures and scoring approaches despite having the same underlying count data. These 

proportions only considered patterns of effects from the linear regression models fitted to the 

ordinal alcohol frequency data (did not consider the patterns of effects produced by the NB 

models fitted to the counts). 

 In sum, the goals of this study were to evaluate the impact of ordinal measures and 

scoring approaches on our ability to draw valid inferences from linear statistical models. The 

simulation study provided a highly controlled environment with known population 

generating models so that I could test my proposed research hypotheses. The empirical 

demonstration extended my simulation study so that I could assess how well the simulation 

results translated to real data. Taken together, these two components provided a holistic 

approach for rigorously testing the potential influence of ordinal measures and scores on 

researchers’ tests of theoretical models of adolescent alcohol use. 
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Results 

First, I will present results from the simulation study. I used omnibus Wald tests from 

the GEE meta-models to assess whether or not there was scale-by-scoring approach 

interaction effect (and main effects of scale and scoring, if the interaction was non-

significant) on the probability of making Type I and II errors. To untangle the interaction 

effects, I examined various outcomes including the proportions of Type I and II errors, odds 

ratios for making Type I and II errors compared the population generating ZINB model, 

standardized regression coefficients from the linear regression models, and percentages of 

different patterns of effects. Second, I will present results from the empirical demonstration. 

Again, I used omnibus Wald tests from the GEE meta-models to generally assess whether or 

not there was scale-by-scoring approach interaction effect (and main effects of scale and 

scoring, if the interaction was non-significant) on the probability finding significant effects. I 

examined the proportions of significant effects, odds ratios for finding significant effects 

compared the NB models, standardized regression coefficients for the linear regression 

models, and percentages of different patterns of effects. 

Simulation Study 

Recovery of Population Generating Values 

 Table 3 shows the recovery of the population generating values by the ZINB models. 

The ZINB models showed fair recovery of the parameter estimates across all four effect size 

conditions. For example, the mean dispersion parameter (α, which is equivalent to 
 

 
 ), 

intercept, x1, and x2 estimates over the 500 replications each fell within .05 of the population 

generating values across all conditions. The mean of the parameter estimates for the inflated 

zero portion of the model was downwardly biased. The parameter was generated to be -.3, 
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but had average estimates of -.44 in condition 1 (binary predictor, x1, had a medium effect),   

-.75 in condition 2 (binary predictor, x1, had a small effect), -.73 in condition 3 (continuous 

predictor, x2, had a medium effect), and -1.09 in condition 4 (continuous predictor, x2, had a 

medium effect) across the 500 replications. Although the mean point estimate for the inflated 

zero parameter was biased across conditions, the standard errors were large. This reflected 

imprecision in the estimates and this is consistent with research that has suggested that parts 

of these models, including point estimates, can be sensitive to smaller sample sizes (Ghosh, 

Mukhopadhyay, & Lu, 2006). 

Hypothesis 1: Scale-by-Scoring Approach Interaction 

First, I evaluated my hypothesis that there would be a scale-by-scoring approach 

interaction effect on the inferences drawn from linear statistical models. The meta-models 

described earlier in the Methods section consistently showed a significant scale-by-scoring 

approach interaction on the probability of Type II errors across the four effect size conditions 

(for x1: condition 1 χ
2
(6)=56.94 , condition 2 χ

2
(6)=27.18 ; x2: condition 3 χ

2
(6)=56.56, 

condition 4 χ
2
(6)=35.73; p<.0001 for all tests). To help understand these interactions, I 

examined outcomes based on the raw data from simulation results, not the parameter 

estimates from the GEE meta-models. Table 4 through Table 7 display the proportion of 

significant effects, proportion of Type I and II errors, odds ratios for Type I and II errors for 

the scale-by-scoring combinations compared to the population generating ZINB models, and 

the standardized regression coefficients across the four effect size conditions. 

Results showed that the five point measure interacted with scoring approaches 

differently than the other three measures. For example, the eight point NIAAA-motivated, 

eleven point, and seven point experimental log scales had a clear pattern of median scores 
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(e.g., Condition 1: 8pt NIAAA  29%; 11pt 29% ; 7pt log 31%) producing a reduced 

percentage of Type II errors compared to category number scores (e.g., Condition 1: 8pt 

NIAAA  40%; 11pt  36%; 7pt log 41%), which had reduced percentage compared to log 

median scores (e.g., Condition 1: 8pt NIAAA 44%; 11pt 43%; 7pt log 44%). However, this 

pattern in the scoring approaches did not hold for the five point measure. The percentage of 

Type II errors using the log median scoring approach (Condition 1: 48%) was slightly less 

than those for the category number (Condition 1: 51%).  

Another way I conceptualized this interaction was by examining how the scoring 

approaches depended on measures. Results indicated that category scores were more 

influenced by measures than median and log median scores. More specifically, category 

number scores that were used with the five point scale led to more Type II errors relative to 

the other measures than median and log scores. For instance, the difference in Type II errors 

for category number scores applied to the five point scale versus the eleven point scale 

(Condition 1: 51% vs. 36%) was three times larger than the difference between these scales 

for median (34% vs. 29%) and log median scores (Condition 1: 48% vs. 43%). This general 

trend holds across all conditions for non-zero effects. The impact of the scale-by-scoring 

approach interaction was relative to the designated effect size (e.g., the discrepancies in Type 

II error rates for the “small” effect were reduced by roughly one-half). The proportion of 

significant effects and standardized regression coefficients from Tables 4 through 7 reiterated 

these findings except they had an inverse relationship with Type II errors. Higher Type II 

error rates corresponded with a lower proportion of significant effect and smaller 

standardized regression coefficients. 
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The meta-models did not find effects of scoring approaches, measures, or their 

interaction on the Type I error rate across the conditions (for all models p > .05). Tables 4 

through 7 show that there were no clear differences in the proportion of Type I errors across 

the various measure-by-scoring approach combinations. Type I error rates were consistently 

around .03-.05 across conditions. I also tested whether the scale-by-scoring combination 

could potential induce a spurious interaction between x1 and x2. Results did not support the 

existence of this interaction in any conditions. 

Hypothesis 2 and 3: General Effects of Scoring and Measures 

Beyond the complexities addressed with the interactive effect of scoring approaches 

and measures, there were three general trends in the simulation results. First, median scores 

outperformed other scoring approaches with regard to Type II error rates and, by necessity, 

proportion of significant effects. For example, in condition 1, the percentage of significant 

effects for x1 for the four scales were higher using median scores (8pt NIAAA 71%; 5pt scale 

66%; 11pt scale 71%; 8pt log scale 69%) than log median and category number scores (8pt 

NIAAA 56%, 60%; 5pt scale 52%, .49%; 11pt scale 57%, 64%; 7pt log scale 56%, 59%). 

Second, as stated earlier, category number scores outperformed log median scores on all 

measures except the five point measure (Condition 1: Category Numbers Type II errors: 8pt 

NIAAA  40%; 11pt  36%; 7pt log 41%; Log Median Type II Errors: 8pt NIAAA 44%; 11pt 

43%; 7pt log 44%). Third, the five point measure was consistently outperformed by the other 

measures (e.g., Condition 1: 5pt scale with log median scores Type II errors: 48%; other 

scales with log median scores: 43-44%). In sum, these results indicated that both measures 

and scoring approaches impacted statistical power. 
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Measures and Scores Leading to Different Patterns of Effects 

I evaluated how scores interacted with measures to impact the validity of inferences 

by identifying whether different scores led to different patterns of effects using the same 

measure. For example, consider a case in which the eight point NIAAA measure with median 

scores was used and there was significant effect of x1 and no significant effect of x2. Then, 

given the same underlying data and eight point NIAAA measure, category scores were 

applied and there were no significant effects of x1 or x2. This was identified as a “different 

pattern of effects”. Table 8 shows that in condition 1 and 3, across the four measures between 

19-24% had different patterns of effects caused by scoring approaches. In condition 2 and 4, 

across the measures 15-20% had different patterns of effect caused by scoring. These results 

indicated that different patterns of effects were often caused by scoring approaches. In all 

conditions, the five point scale had a slightly higher proportion of inconsistent patterns of 

effects compared to the other scales. 

Similarly, I evaluated the effect of measures on the validity of inferences by 

identifying whether different measures led to different patterns of effects using the same 

scoring technique. For instance, consider a case in which the median scores were applied to 

the eight point NIAAA measures and there was significant effect of x1 and a no significant 

effect of x2. Then, given the same underlying data and median scores were applied to the five 

point measure, but there were no significant effects of x1 or x2. This was considered a 

“different pattern of effects”. I found that across all conditions, different patterns of effects 

occurred often when using the category number and median scoring approaches (see Table 

9). Results indicated that about 17-18% of the models from conditions 1and 3 and about 18-

20% of the models from conditions 2 and 4 led to different patterns of effects due to 
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measures. Different patterns of effects due to measures occurred less frequently using the log 

transformation scoring approach (8%-9%). 

 In sum, this simulation study showed that there was an interaction between scores and 

measures that led to increased Type II errors. The five point scale depended on scoring in a 

fundamentally different way than the other scales. More specifically, the five point scale 

performed worst with category scores whereas this was not the case for the other scales. 

There was a general trend of median scores outperforming category scores and category 

scores outperforming log median scores. Additionally, the five point measure was 

consistently outperformed by the other measures across the scoring approaches. My 

simulation showed that measures and scores often created different patterns of effects. In 

sum, these results suggested that scales and scoring approaches likely impact adolescent 

substance researchers’ ability to test theoretical models through the reduction of statistical 

power and changes in patterns of effects.  

Empirical Demonstration 

I used empirical data from the NLSY to further evaluate my hypothesis that there 

should be a scale-by-scoring approach interaction effect of the inferences drawn from linear 

statistical models. The omnibus Wald tests from GEE meta-models described earlier found 

significant scale-by-scoring approach interactions on the log odds of obtaining a significant 

effects for each of the four predictors (age: χ
2
(6)=46.00 , minority: χ

2
(6)=77.38 , p<.0001; 

maternal monitoring: χ
2
(6)=20.46, p<.001). The interaction effect for gender was significant, 

but its magnitude appeared smaller given the high statistical power (χ
2
(6)=16.71, p<.05).  

Since all of the interactions were significant, I examined potential differences across the 

measure-by-scoring approach combinations for all predictors.  
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Table 10 displays the proportion of significant effects, odds ratios for obtaining a 

significant effect for the scale-by-scoring combinations compared to the NB model fitted to 

the counts, and standardized regression coefficients. These outcomes were based on the 

empirical results, not the estimated GEE meta-models. For the age and minority effects, the 

scale-by-scoring approach interaction was driven by a dependency between the five point 

scale and median scores. For instance, across the eight point NIAAA, eleven point, and seven 

point log scales there was a general trend of median scores resulting in a smaller proportion 

of significant effects of age than category and log median scores (i.e., for the 11 point scale: 

log median 47% and category number 48% vs. median scores 39%). However, the five point 

scales had systematically lower proportion significant and the difference between the 

proportions for category and log median scores versus median scores was smaller (log 

median and category number 40% vs. median scores 37%).   

For the minority effect, this interaction manifested itself in a slightly different way. 

Across the eight point NIAAA, five point scale, and seven point log measures, the log 

median and category scores had comparable proportions of significant effects (around 59% to 

62%). However, using the five point scale, the proportion significant effects was higher using 

median scores compared to the other measures (five point scale 45% vs. other scales 39% to 

42%). It was also interesting that many of the scale-by-score combinations had a higher 

proportion of significant effects compared to the negative binomial model fitted to the 

counts. For instance, log median scores applied to the eight point NIAAA measures had a 

substantially larger proportion of significant effects than the negative binomial model (62% 

vs. 52%). This scenario could not be more rigorously examined to determine how measures 
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and scores impact Type I and II errors because the population generating model was 

unknown.  

I was not able to make conclusive statements about the effects of scoring and scales 

on the gender predictor because of the small effect size (proportion significant 5-8% across 

measures-by-score combinations). The maternal monitoring predictor appeared to be more 

consistent with a main effect of scoring on the proportion significant effects. More 

specifically, across all measures, median scores had a smaller proportion of significant 

effects compared to log median and category number scales (39-40% vs. 48-52%). Setting 

aside the specific complexities addressed with the interactive effect of scoring approaches 

and measures, there was a general trend of median scores having a lower proportion of 

significant effects compared to other scoring approaches. Log median scores and category 

scores performed quite similarly across the predictors. 

I examined how frequently different scoring approaches led to a different pattern of 

effects using the same alcohol frequency measure. This process was similar to that outlined 

in the simulation study. For instance, if the eight point NIAAA measure with median scores 

was used and there was significant effect of age and maternal monitoring but with category 

scores there was only a significant age effect, this was considered a “different pattern of 

effects”. Different scoring approaches applied to the same measures and data frequently 

caused different patterns of effects; 48% of the models using the eight point NIAAA 

measure, 41% of using the five point measure, 51% using the eleven point measure, and 45% 

of seven point log median measure. I also computed how frequently different measures led to 

a different pattern of effects using the same scoring approach. Results indicated that 

measures caused high proportion of different patterns of effects; 46% of category number 
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scores, 48% of median scores, and 35% of log median. Taken together, these results showed 

that the patterns of significance for the covariates varied substantially depending on what 

measures and scoring approaches were used. 

Summary of Results 

In sum, both the simulation study and empirical evaluation showed that scales and 

measures interacted to impact inferences drawn from linear models. Results suggested that 

the five point scale were more sensitive to scoring than the other three scales. Also, in both 

the simulation study and empirical demonstration, the five point scale almost always had the 

lowest proportion of significant effects compared to the other scales. However, the patterns 

of Type II errors, proportions of significant effects, and standardized regression coefficients 

suggested that the general impact of scores were markedly different in the simulation study 

compared to the empirical demonstration. Most notably, median scores performed best in the 

in simulation study whereas they appeared to perform the worst in the empirical 

demonstration (e.g., lower proportion of significant effects, lower standardized regression 

coefficients). These findings highlighted that even though scores depend on measures, this 

dependency likely is not the same across research settings. 
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Discussion 

I used a comprehensive simulation study and an empirical demonstration to test my 

set of theoretically generated research hypotheses concerning the effect of ordinal alcohol 

measures and ordinal scoring approaches on our ability to draw valid inferences from linear 

statistical models. The results of my project provided support for my three research 

hypotheses. 

Results from the simulation study and empirical demonstration suggested that 

measures and scoring approaches interacted to influence inferences drawn from linear 

statistical models. In the simulation, category number scores performed worse using the five 

point scale with response categories defined to be dissimilar to a log transformation 

compared to if category numbers were applied to the other three scales. The five point scale 

also had a general tendency to produce lower proportions of significant effects and larger 

Type II error rates compared to the other scales. Results suggested that it is not only the 

number of response categories, but also how counts are binned into categories, that impacted 

the performance of alcohol frequency measures. Although median scores had the lowest 

proportion of Type II errors in all conditions of the simulation study, the empirical 

demonstration showed that median scores led to the smaller proportion of significant effects 

compared to the other scoring approaches. In both the simulation and empirical 

demonstration, applying different scoring approaches to the same underlying data frequently 

led to different patterns of effects. There was also evidence suggesting that using different 

scales with same underlying data and scoring approaches can often lead to different effects. I 

will briefly examine each of my research hypotheses.  
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Hypothesis 1: Scale-by-Scoring Approach Interaction 

 I hypothesized that ordinal alcohol measures and scoring approaches would have an 

interactive effect on the validity of results obtained from linear models. I predicted that the 

five point scale should be more influenced by scoring approaches than the other measures 

because there were fewer response categories and the categories were not closely reflective 

of the log transformation. Results from my project supported this hypothesis. In the 

simulation, I found that with the five point scale category number scores performed the worst 

whereas log median scores were the worst with the other scales (e.g., highest Type II error 

rates). Category number scores applied to the five point measure was by far the worst scale-

by-scoring approach combination used in the simulation study. For example, in condition 1, 

51% of the models fitted with category scores applied to the five point scale led to Type II 

errors compared to 29% using median scores applied to the 11 point measure. Results from 

the empirical demonstration indicated that this scale-by-scoring approach interaction may 

manifest itself in a slightly different way. For instance, the age effect showed that the 

discrepancy in the proportion of significant effects between category numbers and log 

median scores versus median scores was less for five point scale than for any of the other 

three scales. 

 Statistical theory explains this scale-by-scoring approach interaction effect. Scoring 

approaches are inherently dependent on the ordinal measures (e.g., category numbers are 

based on the ordinal bins of measures) and if an ordinal measure does not effectively 

transform the underlying alcohol frequency counts, the relationships among a set of 

covariates and outcome will not be effectively captured in standard linear models. Because 

the five point measure had fewer response categories that were poorly binned, the 
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relationships among the covariates and the alcohol frequency outcome were likely not 

linearized as well as with the other three ordinal alcohol scales. Moreover, because category 

numbers scores are highly dependent on the category bin sizes, I expected that their 

performance would be more affected by the poorly defined response categories. This 

dependency between scoring and how alcohol frequency counts are binned into ordinal 

categories has not been identified previously in the adolescent alcohol use literature. To my 

knowledge, this is the first study to explicitly examine how ordinal scales and scoring 

approaches interact in linear statistical models. 

Hypothesis 2:  Effect of Scoring 

Beyond the scale-by-scoring interaction effect, I hypothesized that category and log 

median scores should generally outperform median scores (except with the five point 

measure) because they are better suited for linearizing the relationships among the covariates 

and ordinal alcohol frequency outcome. I found that ordinal scoring approaches applied to 

binned counts have a large effect on our ability to draw valid inferences from linear statistical 

models. I was unable to define a clear optimal scoring approach that was robust across the 

simulation study and empirical demonstration. In the simulation study, the median scoring 

approach outperformed the category number and log median scoring approaches (e.g., higher 

proportion of significant effects, lower Type II error rates, and highest standardized 

regression coefficients) across the four conditions.  

Even though I did not hypothesize that the median would outperform the other 

scoring approaches, there have been similar findings highlighted in the field of biostatistics 

with linear trend tests. For example, in assessing the relationship between maternal drinking 

and congenital malformation, Graubard and Korn (1987) showed that by using median scores 
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there was a highly significant association whereas the ordinal category scores led to a non-

significant association. Findings like this have caused biostatisticians to recommend 

assigning scores that are reflective of true distance between categories such as median values 

(Agresti, 2002). However, supporting my original hypothesis, the results from the empirical 

demonstration are in direct evidence of the median approach being outperformed by the 

category number and log median approaches (e.g., lower proportion of significant effects and 

smaller standardized regression coefficients). This trend cannot be verified because I did not 

know the population generating model for the empirical data. However, these findings have 

led me to believe that other characteristics of adolescent alcohol data not considered in this 

project such as different underlying distributions (e.g., zero-inflated negative binomial, 

negative binomial, and censored negative binomial) may interact with scoring approaches to 

affect the results produced in these models.  

Another important finding in both the simulation study and empirical demonstration 

was that, given the same underlying count data and alcohol frequency measure, different 

scoring approaches frequently produced differing patterns of effects. This finding reaffirms 

related research on different patterns of statistical significance due to ordinal scoring from 

other fields such as Graubard and Korn (1987). Taken together, these findings showed that 

ordinal scoring methods play an integral role in testing theoretical models of adolescent 

substance use using linear models. 

Hypothesis 3: Effect of Measures 

I hypothesized that there should be a general tendency for the five point scale to 

perform worse than the other three scales. Results from this project showed that ordinal 

alcohol measures can impact the substantive inferences drawn from linear statistical models. 
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In my simulation study, all four of the alcohol frequency scales showed high Type II error 

rates across all conditions, indicating that standard alcohol measures failed to find effects that 

truly exist. However, the ordinal scales did not frequently lead to Type I errors. Although the 

differences among the scales were not always large, the five category scale consistently 

performed the poorest (e.g., lowest proportion of significant effects, highest Type II error 

rate, smallest standardized regression coefficients) while the other three alcohol frequency 

scales performed comparable across the four effect size conditions.  

The poorer performance of the five category scale in relation to the other scales was 

expected for two reasons based on prior research (e.g., MacCallum, et. al, 2002; Taylor, 

West, & Aiken, 2006). First, the five point scale had the fewest response categories, which is 

associated with an assortment of negative statistical consequences such as reduced statistical 

power and effect sizes. Second, the five categories deviated from a viable transformation 

(e.g., log transformation) more than the other three measures. The impact of how counts were 

binned is consistent with what Generalized Linear Model theory suggested (e.g., count 

outcome are often modeled with a log link function; McCullagh, & Nelder, 1989). The seven 

point log, eight point NIAAA, and 11 point measures likely performed the same because they 

each had a moderate to large number of reasonably defined response categories (e.g., bin size 

increased as the response category got higher).  

I also found that applying different scales to the same underlying count data 

frequently led to different patterns of effects. These findings should not be surprising 

because, in many ways, binning acts like a data transformation (albeit a poor and 

unsystematic one). Prior quantitative work has clearly illustrated that performing data 

transformations on outcome variables can easily impact statistical significance (Adams, 
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1991). My study was the first to generalize these findings to a process of binning underlying 

counts into ordinal categories in the context of adolescent alcohol use. 

Implications and Recommendations for Applied Research 

My findings have several implications for applied research. The results showed that 

measures and ordinal scoring approaches can sometimes interact in unpredictable ways to 

influence the researchers’ ability to validly test substantive hypotheses. My study was the 

first to explicitly show that the performance of alcohol frequency measures depends not only 

on the number of categories, but also how the open ended alcohol frequency counts are 

binned. My study was also the first to empirically examine the strong influence of scoring on 

substantive findings. I clearly demonstrated that both measure and scoring approach can 

substantially lower statistical power. Equally concerning is the idea that a researcher can 

have one data set and apply multiple scoring approaches, yet come to completely different 

substantive interpretations. There was no conclusive evidence that measures and scores lead 

to increased Type I errors, but that does not mean it cannot happen in practice. For example, 

in the empirical demonstration, the minority effect actually had a higher proportion of 

significant effects using linear models fitted to ordinal data than the negative binomial model 

fitted to the counts. This trend suggested that elevated Type I errors may arise in practice. 

Given these results, I expect that existing published and unpublished research likely 

has been affected by these differences in scores and measures. These factors may have 

caused researchers to fail to uncover or replicate true effects. Currently, few researchers 

report details on their ordinal alcohol measures or how they scored the ordinal data, which 

makes it difficult to evaluate the potential impact of these factors. Ordinal scores applied to 

binned counts presents an additional concern because researchers can collect alcohol 
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frequency data on a single ordinal scale and knowingly, or unknowingly, change their 

findings solely because of how the alcohol frequency data are scored. This type of risk is 

typically nonexistent with ordinal alcohol measures because the categories are usually 

defined on a survey a priori.  

Based on the findings of this study, I offer four recommendations for adolescent 

alcohol use researchers. First, it is vital that methodological work like I have conducted in 

this project be disseminated so that researchers can become aware that the quantitative 

characteristics of alcohol measures and ordinal scoring approaches can cause substantively 

different model results. Second, researchers should strongly consider collecting open-ended 

count data and modeling the counts with appropriate nonlinear models (e.g., Poisson, 

Negative Binomial, Zero-inflated regression models). Collecting open-ended count data may 

result in unreliable measurements because of errors in cognitive recall. However, I believe 

that benefits of being able to fit the appropriate GLM to the count data and bypassing the 

issues that I have identified with fitting standard linear models to ordinal data likely outweigh 

the potential costs. I recognize that this recommendation of collecting count data has yet to 

be rigorously evaluated and many applied researchers will likely continue to follow the 

standard practice of fitting linear models to ordinal data. My third recommendation for these 

researchers is to use an ordinal measure with at least seven categories that are defined to be 

similar to a log transformation (e.g., increasing bin sizes as categories increase). There is 

likely no added benefit to having an excessively large number of categories. In fact, having 

too many categories could make defining the response categories difficult and cause 

sparseness in the upper categories.  
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Finally, to minimize the negative impact of scoring approaches on linear models, I 

recommend doing a two-step sensitivity evaluation. First, researchers should perform a 

thorough exploration of their data using graphical and descriptive techniques with different 

ordinal scoring approaches. Descriptive explorations should involve examining the basic 

properties of the alcohol frequency data independently (e.g., mean, standard deviations, tests 

of distributions) and conditional on covariates (e.g., correlations, conditional means). 

Graphical explorations such as scatter plots fitted with smoothed curves and other 

visualization of functional form are essential to ensuring that ordinal scoring approaches are 

not inducing nonlinear relationships between the covariates and the outcome (median scores 

and scores based on poorly defined measures should be of greatest risk for this). Researchers 

should fit multiple models to different ordinal scores to assess sensitivity. If results are the 

same across these models, researchers can feel confident in their pattern of results under the 

assumption that all of the models are not consistent and wrong. If the results differ, 

researchers should refer back to the data exploration from step 1 and consider what pattern of 

effects is most consistent with substantive theory so that they can make the best decision 

possible. Researchers should always inform the reader of their scoring method, define the 

response categories of their measures, and note if their findings are sensitive to different 

scoring approaches. 

Limitations and Future Directions 

 Clearly, the results from my study cannot be generalized to all cases. Several factors 

were not investigated in my simulation such as alternative population distributions (e.g., 

standard Poisson/Negative Binomial, censored Poisson/Negative Binomial, and Zero-inflated 

Poisson), alcohol frequency measures, and scoring approaches. My empirical demonstration 
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showed the impact of measures and scores results using existing data, but there was no way 

to know which scoring method and measure was best because the population generating 

model was unknown. Findings from my project cannot be generalized directly to the 

longitudinal setting because scores and measures likely interact in more complicated ways to 

impact our ability to accurately test theoretical models of adolescent alcohol use over time. I 

did not include a condition where I fit the ordinal alcohol frequency data with ordinal 

statistical models in my project. This is not standard practice in applied research and I 

currently cannot comment on the performance of these types of statistical models for 

adolescent substance use data. 

 Future directions include extending this cross sectional work more broadly to other 

constructs that are captured through ordinal measures representing binned counts. For 

example, a few logical extensions would be to other drugs (e.g., marijuana, cigarettes, and 

cocaine), number of delinquent behaviors, number of depressive episodes, and number of 

stressful life events. Most substance use measures operate exactly the same as alcohol 

frequency measures by binning counts into a smaller number of ordinal categories. I expect 

that these findings will generalize well to other alcohol measures (e.g., frequency of binge 

drinking, quantity of use, frequency of drunkenness) and substances (e.g., marijuana, 

cocaine, prescription drugs), but this needs to be confirmed. It is possible that these various 

dimensions of substance use have completely different underlying distributions (e.g., 

Poisson, Negative Binomial, Zero-inflated), which may impact how ordinal measures and 

scoring approaches function in standard linear models. The current project should be 

extended longitudinally to help understand how these measures and scoring approaches 

operate in statistical tests of more complex theoretical models.   
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Possibly the most important direction is determining whether or not researchers 

should collect adolescent substance use data on an ordinal scale. Ordinal measures may help 

to eliminate some unreliability in participants’ recall of the actual count of the number of 

days they have used alcohol, but it is unclear if this assumed improvement in reliability 

offsets the statistical consequences of fitting linear models to ordinal data (e.g., increased 

Type II errors). Future studies should clarify whether or not collecting more unreliable count 

data that can be modeled in appropriate nonlinear statistical models has added benefits over 

the current standard practices in measuring and model adolescent substance use data. 

Currently, the field of adolescent substance use has failed to fully capitalize on several recent 

advances in nonlinear statistical models for count data such as Poisson, Negative Binomial, 

and various techniques for Zero-inflated data. These novel nonlinear methods have the 

potential to improve our ability to draw accurate inferences from statistical models, while at 

the same time increase the breadth of hypotheses that can be formally tested compared to 

current practices. However, in order to capitalize on the flexibility of these innovative 

models, we must first justify that the collection of count data over more commonly collected 

ordinal data. 

Conclusion 

 In sum, my project has added to the existing quantitative literature in areas such as 

coarse categorization and ordinal scoring approaches in three ways. First, several researchers 

have found that coarsely categorizing data leads to statistical consequences such as decreased 

power (MacCallum et. al, 2002; Taylor, West, & Aiken, 2006), but my study was the first to 

generalize this research to underlying counts binned into ordinal categories. Second, although 

prior research has shown that ordinal scoring approaches can make a substantial difference in 
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the results obtained from linear statistical methods (e.g., Graubard and Korn , 1987), my 

study explicitly compared multiple methods and showed that scores depend on measures and 

likely other unknown factors (e.g., underlying distributions). Existing advice on ordinal 

scores from the field of biostatistics recommends using median scores (Agresti, 2002), but 

my study suggested that median scores may not always be the best choice for all research 

settings. Third, my study outlined how measures and scoring approaches can interact in 

complicated ways. For instance, category scores applied to the five point scale with poorly 

defined ordinal categories led to far more Type II errors than category scores applied to any 

of the other three measures. Moreover, pairing different score-by-measure combinations on 

the same underlying data will often lead to researcher drawing substantively different 

inferences from linear models. Taken together, these findings clearly showed that measures 

and ordinal scoring approaches have the ability to affect adolescent alcohol researchers’ 

ability to build a cumulative science through rigorous tests of substantive theory.  
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Table 1. 

Four alcohol frequency scales for a past 30 day time frame 

How many days in the past 30 days have you had one or more 

drinks? 

8 Point NIAAA 

Scale 

5 Point 

Scale 

11 Point 

Scale 

7 Point Log 

Scale 

   7.  28-30 days 

   6.  18-27 days 

   5.  10-17 days 

   4.  6-9 days 

   3.  4-5 days 

   2.  2-3 days 

   1.  1 days 

   0.  0 days  

   4.  24-30 days 

   3.  16-23 days 

   2.  6-15 days 

   1.  1-5 days 

   0.  0 days 

10.  25-30 days 

   9.  20-24 days 

   8.  15-19 days 

   7.  11-14 days 

   6.  8-10 days   

   5.  6-7 days 

   4.  4-5 days 

   3.  3 days 

   2.  2 days 

   1.  1 day 

   0.  0 days  

 

   6.  19-30 days 

   5.  11-18 days 

   4.  7-10 days 

   3.  4-6 days 

   2.  2-3 days 

   1.  1 days 

   0.  0 days  
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Table 2. 

Experimental seven point measure based on the log transformation. 

 C1 C2 C3 C4 C5 C6 

Days 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Log(day+1) 0 .70 1.10 1.39 1.61 1.79 1.95 2.08 2.20 2.30 2.40 2.48 2.56 2.63 2.71 2.77 

 C6 (cont.) C7  

Days 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  

Log(day+1) 2.83 2.89 2.94 3.00 3.04 3.09 3.14 3.18 3.22 3.26 3.30 3.33 3.37 3.40 3.43  
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Table 3. 

Recovery of population generating values from simulation. 

 Condition 1 Condition 2 Condition 3 Condition 4 

 
Population 

Generating 

Simulation 

Est.(se) 

Population 

Generating 

Simulation 

Est.(se) 

Population 

Generating 

Simulation 

Est.(se) 

Population 

Generating 

Simulation 

Est.(se) 

α 1.25 1.23(.53) 1.25 1.25(.66) 1.25 1.24(.69) 1.25 1.30(.75) 

  -0.30 -0.44(1.36) -0.30 -0.75(3.00) -0.30 -0.73(2.86) -0.30 -1.09(3.91) 

β0 (intercept) 0.75 0.72(.22) 0.75 0.75(.25) 0.75 0.72(.27) 0.75 0.71(.28) 

β1 (x1) 0.70 0.67(.25) 0.49 0.47(.25) 0.00 0.03(.26) 0.00 0.01(.25) 

β1 (x2) 0.00 0.00(.12) 0.00 0.01(.11) 0.34 0.33(.12) 0.23 0.23(.12) 

Note: There were 500 replications per condition 
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Table 4.  

Simulation Condition 1: Proportion of significant effects, Type I and II Errors, ORs, and standardized regression coefficients 

   x1 x2 

Condition Scale Scoring 
Proportion 

Sig.(sd) 

Type II 

Errors (sd) 

OR 

Type II  

Error 

Std. β(sd) 
Type I 

Errors(sd) 

OR 

Type I  

Error 

Std.  

β(sd) 

1 

x1: Medium Effect 

x2: No Effect 

500 Replications 

8pt. NIAAA 

Category # 0.60(.49) 0.40(.49) 2.22 0.15(.07) 0.05(.21) 0.96 0(.07) 

Median 0.71(.46) 0.29(.46) 1.41 0.16(.06) 0.05(.21) 1.00 0(.07) 

Log Median 0.56(.50) 0.44(.50) 2.70 0.14(.07) 0.05(.21) 1.00 0(.07) 

5pt. Scale 

Category # 0.49(.50) 0.51(.50) 3.55 0.13(.07) 0.05(.22) 1.09 0(.07) 

Median 0.66(.47) 0.34(.47) 1.71 0.16(.06) 0.04(.20) 0.87 0(.07) 

Log Median 0.52(.50) 0.48(.50) 3.08 0.13(.07) 0.05(.22) 1.04 0(.07) 

11pt. Scale 

Category # 0.64(.48) 0.36(.48) 1.90 0.15(.06) 0.05(.21) 1.00 0(.07) 

Median 0.71(.46) 0.29(.46) 1.40 0.16(.06) 0.05(.22) 1.04 0(.07) 

Log Median 0.57(.50) 0.43(.50) 2.55 0.14(.07) 0.05(.22) 1.09 0(.07) 

7pt. Log Scale 

Category # 0.59(.49) 0.41(.49) 2.35 0.14(.07) 0.05(.21) 0.96 0(.07) 

Median 0.69(.46) 0.31(.46) 1.49 0.16(.06) 0.05(.21) 1.00 0(.07) 

Log Median 0.56(.50) 0.44(.50) 2.66 0.14(.07) 0.05(.22) 1.09 0(.07) 

True ZINB 0.77(.42) 0.23(.42) - - 0.05(.21) - - 

Note: Odds ratios for Type I and II errors are in comparison to the true ZINB.
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Table 5.  

Simulation Condition 2: Proportion of significant effects, Type I and II errors, ORs, and standardized regression coefficients 

   x1 x2 

Condition Scale Scoring 
Proportion 

Sig.(sd) 

Type II 

Errors (sd) 

OR 

Type II  

Error 

Std.  

β(sd) 

Type I 

Errors(sd) 

OR 

Type I  

Error 

Std.  

β(sd) 

2 

x1: Small Effect 

x2: No Effect 

500 Replications  

8pt. NIAAA 

Category # 0.33(.47) 0.67(.47) 1.82 0.10(.07) 0.06(.24) 1.30 0(.07) 

Median 0.39(.49) 0.61(.49) 1.41 0.12(.06) 0.05(.21) 0.96 0(.07) 

Log Median 0.30(.46) 0.70(.46) 2.05 0.10(.07) 0.07(.25) 1.39 0(.07) 

5pt Scale 

Category # 0.28(.45) 0.72(.45) 2.26 0.09(.07) 0.07(.26) 1.47 0(.07) 

Median 0.35(.48) 0.65(.48) 1.62 0.11(.06) 0.05(.21) 0.96 0(.07) 

Log Median 0.31(.46) 0.69(.46) 1.96 0.09(.07) 0.07(.26) 1.47 0(.07) 

11pt Scale 

Category # 0.35(.48) 0.65(.48) 1.65 0.11(.07) 0.06(.24) 1.30 0(.07) 

Median 0.40(.49) 0.60(.49) 1.35 0.12(.06) 0.05(.22) 1.00 0(.07) 

Log Median 0.30(.46) 0.70(.46) 2.03 0.10(.07) 0.07(.25) 1.39 0(.07) 

7pt Log Scale 

Category # 0.34(.47) 0.66(.47) 1.75 0.10(.07) 0.06(.23) 1.13 0(.07) 

Median 0.39(.49) 0.61(.49) 1.41 0.12(.06) 0.05(.21) 0.96 0(.07) 

Log Median 0.31(.46) 0.69(.46) 1.96 0.10(.07) 0.06(.24) 1.26 0(.07) 

True ZINB 0.47(.50) 0.53(.50) - - 0.05(.22) - - 

Note: Odds ratios for Type I and II errors are in comparison to the true ZINB
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Table 6.  

Simulation Condition 3: Proportion of significant effects, Type I and II errors, and standardized regression coefficients 

   x1 x2 

Condition Scale Model 
Type I  

Errors(sd) 

OR 

Type I  

Error 

Std. 

 β(sd) 

Proportion 

Sig.(sd) 

Type II 

Errors(sd) 

OR 

Type I  

Error 

Std. 

β(sd) 

3 

x1: No Effect 

x2: Medium Effect 

500 Replications 

8pt. NIAAA 

Category # 0.04(.20) 0.62 0(.07) 0.62(.48) 0.38(.48) 2.19 0.15(.07) 

Median 0.05(.21) 0.71 0(.07) 0.72(.45) 0.28(.45) 1.41 0.17(.07) 

Log Median 0.04(.21) 0.65 0(.07) 0.58(.49) 0.42(.49) 2.61 0.14(.07) 

5pt Scale 

Category # 0.04(.21) 0.65 0(.07) 0.53(.50) 0.47(.50) 3.24 0.13(.07) 

Median 0.04(.20) 0.62 0(.07) 0.69(.46) 0.31(.46) 1.66 0.16(.07) 

Log Median 0.04(.20) 0.59 0(.07) 0.56(.50) 0.44(.50) 2.83 0.14(.07) 

11pt Scale 

Category # 0.04(.20) 0.59 0(.07) 0.66(.47) 0.34(.47) 1.85 0.16(.07) 

Median 0.05(.21) 0.68 0(.07) 0.73(.44) 0.27(.44) 1.32 0.17(.07) 

Log Median 0.04(.21) 0.65 0(.07) 0.58(.49) 0.42(.49) 2.61 0.14(.07) 

7pt Log Scale 

Category # 0.04(.20) 0.62 0(.07) 0.61(.49) 0.39(.49) 2.28 0.15(.07) 

Median 0.04(.21) 0.65 0(.07) 0.71(.45) 0.29(.45) 1.48 0.17(.07) 

Log Median 0.04(.20) 0.62 0(.07) 0.58(.49) 0.42(.49) 2.63 0.14(.07) 

True ZINB 0.07(.25) - - 0.78(.41) 0.22(.41) - . . 

Note: Odds ratios for Type I and II errors are in comparison to the true ZINB 
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Table 7.  

Simulation Condition 4: Proportion of significant effects, Type I and II errors, and standardized regression coefficients 

   x1 x2 

Condition Scale Model 
Type I 

Errors(sd) 

OR 

Type I  

Error 

Std.  

β(sd) 

Proportion 

Sig.(sd) 

Type II 

Errors(sd) 

OR 

Type II  

Error 

Std. 

β(sd) 

4 

x1: No Effect 

x2: Small Effect 

500 Replications  

8pt. NIAAA 

Category # 0.05(.22) 1.00 0(.07) 0.38(.49) 0.62(.49) 1.58 0.11(.07) 

Median 0.05(.21) 0.88 0(.07) 0.45(.50) 0.55(.50) 1.21 0.12(.07) 

Log Median 0.05(.22) 1.00 0(.07) 0.35(.48) 0.65(.48) 1.81 0.10(.07) 

5pt Scale 

Category # 0.06(.23) 1.08 0(.07) 0.31(.46) 0.69(.46) 2.23 0.10(.07) 

Median 0.05(.23) 1.04 0(.07) 0.40(.49) 0.60(.49) 1.50 0.12(.07) 

Log Median 0.06(.24) 1.16 0(.07) 0.34(.47) 0.66(.47) 1.91 0.10(.07) 

11pt Scale 

Category # 0.05(.23) 1.04 0(.07) 0.41(.49) 0.59(.49) 1.43 0.11(.07) 

Median 0.05(.22) 0.96 0(.07) 0.45(.50) 0.55(.50) 1.20 0.12(.07) 

Log Median 0.05(.22) 1.00 0(.07) 0.36(.48) 0.64(.48) 1.75 0.11(.07) 

7pt Log 

Scale 

Category # 0.06(.23) 1.08 0(.07) 0.37(.48) 0.63(.48) 1.66 0.11(.07) 

Median 0.05(.21) 0.92 0(.07) 0.44(.50) 0.56(.50) 1.24 0.12(.07) 

Log Median 0.05(.22) 0.96 0(.07) 0.35(.48) 0.65(.48) 1.83 0.10(.07) 

True ZINB 0.05(.22) 
- - 

0.50(.50) 0.50(.50) 
- - 

- 

Note: Odds ratios for Type I and II errors are in comparison to the true ZINB 
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Table 8.  

Simulation: Percent of different patterns effect caused by scoring across measures 

Condition Scale 
% with Different 

Pattern of Effects 

1 

8pt. NIAAA 20.4 

5pt. 23.4 

12pt. 19.2 

7pt. Log 19.6 

2 

8pt. NIAAA 18.4 

5pt. 19.8 

12pt. 19.4 

7pt. Log 16.0 

3 

8pt. NIAAA 22.8 

5pt. 23.8 

12pt. 21.6 

7pt. Log 21.4 

4 

8pt. NIAAA 16.8 

5pt. 19.4 

12pt. 16.8 

7pt. Log 15.2 
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Table 9. 

Simulation: Percent of different patterns effect caused by scale across scoring approaches 

Condition Scoring Approach 
% with Different 

Pattern of Effects 

1 

Category Number 18.2 

Median 17.0 

Log Median 8.8 

2 

Category Number 13.8 

Median 20.6 

Log Median 8.2 

3 

Category Number 19.0 

Median 18.2 

Log Median 8.0 

4 

Category Number 16.4 

Median 19.4 

Log Median 9.2 
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Table 10.  

Empirical Demonstration: Proportion of significant effects, OR compared to NB model, and standardized regression coefficients 

  Age Effect Minority Male Maternal Monitoring 

Scale Model 
Prop. 

Sig.(sd) 
OR 

Std. 

β(sd) 

Prop. 

Sig.(sd) 
OR 

Std. 

β(sd) 

Prop. 

Sig.(sd) 
OR 

Std. 

β(sd) 

Prop. 

Sig.(sd) 
OR 

Std. 

β(sd) 

8pt. NIAAA 

Category # 0.47(.50) 0.77 0.12(.06) 0.59(.49) 1.37 -0.13(.06) 0.08(.26) 0.95 -0.02(.06) 0.50(.50) 0.81 -0.13(.06) 

Median 0.40(.49) 0.57 0.11(.06) 0.42(.49) 0.67 -0.11(.06) 0.05(.22) 0.60 -0.01(.06) 0.39(.49) 0.51 -0.11(.06) 

Log Median 0.46(.50) 0.74 0.12(.06) 0.62(.49) 1.50 -0.14(.06) 0.07(.26) 0.90 -0.03(.06) 0.52(.50) 0.85 -0.13(.06) 

5pt. Scale 

Category # 0.40(.49) 0.57 0.11(.06) 0.59(.49) 1.35 -0.14(.06) 0.08(.27) 1.04 -0.03(.06) 0.50(.50) 0.81 -0.13(.06) 

Median 0.37(.48) 0.51 0.10(.06) 0.45(.50) 0.78 -0.11(.06) 0.06(.23) 0.68 -0.02(.06) 0.40(.49) 0.54 -0.11(.06) 

Log Median 0.40(.49) 0.57 0.11(.06) 0.59(.49) 1.36 -0.14(.06) 0.08(.28) 1.07 -0.03(.06) 0.51(.50) 0.83 -0.13(.06) 

11pt. Scale 

Category # 0.47(.50) 0.77 0.12(.06) 0.53(.50) 1.05 -0.13(.06) 0.06(.24) 0.78 -0.02(.06) 0.48(.50) 0.75 -0.12(.06) 

Median 0.39(.49) 0.55 0.11(.06) 0.39(.49) 0.59 -0.10(.06) 0.05(.22) 0.60 -0.01(.06) 0.39(.49) 0.51 -0.11(.07) 

Log Median 0.48(.50) 0.79 0.12(.06) 0.60(.49) 1.43 -0.14(.06) 0.08(.27) 0.99 -0.03(.06) 0.52(.50) 0.87 -0.13(.06) 

7pt. Log Scale 

Category # 0.47(.50) 0.76 0.12(.06) 0.60(.49) 1.41 -0.13(.06) 0.07(.25) 0.85 -0.02(.06) 0.50(.50) 0.81 -0.13(.06) 

Median 0.42(.49) 0.63 0.11(.06) 0.42(.49) 0.67 -0.11(.06) 0.05(.22) 0.64 -0.01(.06) 0.40(.49) 0.54 -0.11(.06) 

Log Median 0.46(.50) 0.73 0.12(.06) 0.62(.49) 1.50 -0.14(.06) 0.08(.27) 0.96 -0.03(.06) 0.52(.50) 0.88 -0.13(.06) 

 NB 0.54(.50) - - 0.52(.50) - - 0.08(.27) - - 0.56(.50) - - 

Note: Results are over 1,000 random sample of n=250. Odds ratios are in comparison  

           to the negative binomial models
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Figure 1. Histograms for normal, negative binomial, and zero-inflated negative binomial distribution
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Figure 2. Histograms for ZINB counts and NIAAA ordinal scale. Counts above 30 were truncated for this illustration (~1.5%)
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Figure 3. Simulation Study, Condition 1: Marginal distribution of counts. 
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Figure 4. Empirical Demonstration: Marginal distribution of alcohol frequency counts
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