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ABSTRACT 
 

KIMON DIVARIS: Exploring the genetic basis of chronic periodontitis: a genome-wide 
approach 

(Under the direction of Andrew F. Olshan) 
 
 

Chronic periodontitis (CP) is a common-complex oral disease that affects the 

majority of the adult population and is a major cause of tooth loss. The disease is 

characterized by an oral biofilm pathological shift that contributes to cascade of events 

leading to periodontal destruction. Factors modulating the establishment of a dysbiotic oral 

microbiome or affecting the host immunity and inflammatory response are promising 

preventive and therapeutic targets. Although a substantial genetic component of CP is 

theorized and numerous candidate-gene studies have been completed, to-date no whole-

genome association (GWA) studies have been performed.  

We performed a GWA analysis of CP in well-defined cohort of 4500 white subjects 

who were participants of the Atherosclerosis Risk In Communities study. Traits of interest 

were the three-level disease CDC/AAP classification (healthy/mild, moderate, severe CP) 

and a continuous extent of disease [proportion of sites exhibiting ≥3 mm attachment loss 

(EAL)] measure. Additionally, we examined three traits of high bacterial colonization 

defined as the highest quintile of the distribution of “red” and “orange” complex bacteria, 

and Aggregatibacter actinomycetemcomitans that were quantified using DNA-DNA 
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checkerboard hybridization in a subset of 1020 white study subjects. Genotyping was 

performed using the Affymetrix 6.0 platform. Imputation to 2.5million markers was based on 

HapMap II-CEU and a multiple-test corrected significance threshold was applied (P<5x10-8).  

We detected no genome-wide significant signals. However, we found suggestive 

evidence of association (P<5x10-6) for CP with ten loci including NPY, NIN, WNT5A for 

severe, NCR2, EMR1 for moderate CP, and TBX18, ETS1, DYNC2H1, TTC26 and ZC3HAV1 

for EAL. Additionally, thirteen loci including KCNK1, FBXO38,  IL33, RUNX2,  CAMTA1 

and VAMP3 provided suggestive signals of association (P<5x10-6) with the examined “high” 

bacterial colonization traits. The NPY (7p15) locus was replicated in an independent cohort 

of whites of European descent. These genome-wide scan results from a large well-defined 

cohort provide information on multiple candidate regions for interrogation in genetic studies 

of CP. Future investigations providing further replication of these findings may lead to an 

improved understanding of the complex nature of host-biofilm and -bacteria interactions that 

characterizes states of health and disease. 
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CHAPTER 1 

BACKGROUND 

A. Introduction 

Periodontitis, along with dental caries, is one of the two most common diseases of the 

oral cavity. It constitutes an inflammatory response to predominantly commensal oral 

bacteria. This relatively common chronic inflammatory disease is found in about 20% of the 

adult US population, is characterized by gingival pocket formation and clinical attachment 

loss, results in gradual destruction of periodontal tissues and tooth-supporting alveolar bone, 

and is considered the main cause of tooth loss among adults (1,2).  

B. Definition and Pathophysiology of chronic periodontitis 

1. Dental ecology- the host  

The composition and complexity of the oral ecology has recently re-emerged as a focus 

of research, with the investigation of the oral microbiome’s composition and significance 

gaining increased attention (3). It is commonly assumed that an oral ecosystem in 

harmonious symbiosis with its host will likely be associated with health (4). Departures from 

this equilibrium due to pathogenic ecological shifts, up-regulated host inflammatory/immune 

responses, or both, are characteristics of disease (5). In periodontitis, highly organized oral 

microbial biofilms (dental plaque) interact with a plethora of host-specific factors 
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(periodontal anatomy, oral hygiene, inflammatory response, and more) to result in tissue 

damage. Because tissue destruction appears to be a result of host responses to bacterial 

challenges rather than of the lytic effects of periodontal pathogens (6), the nature and extent 

of the microbiome-induced host response is considered an important determinant of the 

periodontitis phenotype. In fact, recent evidence indicates that autoimmune reactions may 

play role in the pathogenesis of the aggressive form of periodontitis (7) 

 

2. Dental ecology- the oral microbiome  

The “specific plaque” theory was articulated more than three decades ago, and 

emphasized the role of oral ecological shifts, essentially the bacterial insult in periodontitis 

(8, 9). In fact, Socransky summarized that in order for a pathogen to cause a disease the 

following conditions must be satisfied: 1) it must be a virulent type; 2) it must possess the 

chromosomal and extra-chromosomal genetic factors to initiate disease; 3) the host must be 

susceptible to the pathogen; 4) the pathogen must be in numbers sufficient to exceed the 

threshold for the host; 5) it must be located at the right place; 6) other bacterial species must 

foster, or at least not inhibit, the process; and 7) the local environment must be one which is 

conducive to the expression of the species' virulence properties (10). 

  The current state of knowledge with regard to the microbiology in periodontitis has 

not shifted from these core principles, as they were described in the 1970s and 1980s (11). 

The importance of the proliferating oral Gram-negative bacteria of the “orange” and the “red 

complex” is firmly established. Socransky in 1998 (12) defined these complexes as follows: 

“orange complex”: Prevotella intermedia (Pi), Campylobacter rectus (Cr), Fusobacterium 
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nucleatum (Fn) and Prevotella nigriscens (Pn). The “red complex” includes Porphyromonas 

gingivalis (Pg), Tannerella forsythia (Tf) and Treponema denticola (Td) (Figure 1). 

It is commonly agreed that periodontitis manifests as a response to predominantly 

commensal microbes, but some authors have argued that Pg and Aggregatibacter 

actinomycetemcomitans (Aa) which are important periodontal pathogens (13) should be 

considered exogenous (14, 15) although this is not well established in the literature. Although 

it is known that the aforementioned bacteria are organized in colonies or biofilms on the 

tooth surfaces, the dental plaque, the question of whether innate factors may facilitate or 

prevent such an infection and colonization is intriguing.  

Recent findings have added to our understanding of how periodontal pathogens harbor 

the oral cavity from early age, symbiose and get organized, and interact among themselves 

and with the host (16, 17). For example, it has been shown that Fn possesses the capacity to 

adhere to and invade oral epithelial cells (18).  Tf, a “red complex” pathogen, has been 

shown to possess a glycosylated S-layer, which is responsible for evading the bacterium’s 

recognition by the host immune system (19). 

Several lines of research have used the presence and colonization level of periodontal 

pathogens as a “refined” exposure of periodontitis (20, 21). Many investigations have used 

serum antibody levels (IgG) to periodontal pathogens as a measure of exposure and/or 

systemic response (17, 22-25). Fewer studies have used direct quantification methods to 

assess the counts of specific pathogens in the subgingival biofilms (microbial plaque) (21, 

26, 27). Interestingly, in a study of the association of periodontal conditions with carotid 

intima-media thickness (IMT), Desvarieux et al (21) reported that total periodontal microbial 
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counts and specifically periodontal pathogens were associated with IMT, whereas 

periodontitis (as classified by CDC) was not. Beck et al (28) suggested that particularly “red 

complex” bacteria may pose a potential risk for the development of systemic disorders. For 

example, a recent report suggested that Pg and Aa may be associated with the risk for pro-

thrombotic state (29), while Pg possesses properties known to be related to the pathogenesis 

of atherosclerosis (30). These investigations support the consideration of these specific 

microbial factors as a distinct exposure in investigations of periodontal, oral and systemic 

health, consistent with the paradigm of “periodontal medicine” (31, 32). 

Interestingly, novel studies have provided insights on the induction by 

periodontopathogenic bacteria of epigenetic changes such as DNA hypermethylation (33). 

Epigenetics is one of the most rapidly expanding fields in biology, and the study of 

epigenetic mechanisms as well as the characterization of the human methylome alterations in 

health and disease, are priorities in biomedical research (34). Further research on the role of 

epigenetics in periodontal disease is needed.  

 

3. Modifying factors 

Despite important advances in our understanding of periodontal diseases the determinants of 

the inflammatory host response are not completely understood. While periodontal pathogens 

are necessary but not sufficient for disease activity to occur (10), several lines of research 

examine factors affecting or modulating the type and extent of inflammation evoked by the 

periodontal pathogens (35).  

The fact that Diabetes Mellitus (DM) and severe periodontitis co-exist has been 

documented, and although a two-way relationship has been suggested (36, 37) causality has 
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not been demonstrated (38-40). While diabetic status modifies the host response to bacterial 

challenges and constitutes a risk factor for periodontitis, adequate glycemic control may be 

facilitated by controlling of an existing periodontal infection and inflammation (41). This has 

been demonstrated by a recent randomized controlled trial (42). It has been shown that 

although the periodontitis-DM relationship holds for both insulin-dependent and non-insulin 

dependent DM, it is more pronounced among patients with poorly controlled DM (43). 

Similar modifying effects have been shown for obesity (44). 

Another example of host response-modification is thought to be the case of oral viral 

infections, which have been gaining attention with regard to CP (45-48). Noteworthy, 

Contreras et al. (49) showed that herpesviruses infections in combination with subgingival 

bacterial presence may exert periodontopathogenic potential by modifying the local host 

response.  

Vitamin D has been reported as an important biological parameter with regard to the risk 

for periodontitis. Recently, Boggess et al. showed that the presence of moderate or severe 

periodontitis among pregnant women was associated with vitamin D insufficiency (50). 

Other lines of research indicate that innate antimicrobial factors such as lactoferrin, a salivary 

defense protein which is also secreted in gingival crevicular fluid during inflammation (51, 

52), are important in the modulation of periodontitis (53).  

Further elucidation of these biological interactions and pathway dissections can create 

new preventive and therapeutic opportunities for periodontitis. Moreover, mechanistic 

insights into the model of periodontitis may be key in understanding pathogenetic pathways 

relevant to other biologic conditions or chronic diseases, such as diabetes mellitus (DM) (37, 

54), cardiovascular disease (CVD) (55, 56) and cancer (57-60). 
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C. Classification of periodontal diseases 

The broad term of “periodontal disease” incorporates conditions other than periodontitis, 

such as gingivitis (61). The latter constitutes of an entirely reversible gingival inflammation 

(62) without periodontal destruction, and is typically diagnosed by bleeding upon periodontal 

probing (BOP). Although gingivitis had long been considered the entry-level stage of 

periodontitis and integral part of the disease continuum, this is not the case according to the 

current state of knowledge.  

With regard to periodontitis, classification to two main types of chronic (CP) and 

aggressive periodontitis (AgP) was proposed in 1999 (61). The diagnosis between 

“aggressive” and “chronic” disease is only possible by knowledge of the rate of periodontal 

tissue destruction, or indirectly, by the assessment of tissue destruction level disproportional 

to a patient’s age. This type of sub-type classification may be problematic both in clinical 

practice (63) and surveillance or population-based studies. Although these two sub-types 

share several features and may appear close in pathogenetic features (64) distinct 

classification between AgP and CP is possible and feasible (65). For example, the 

consideration of an “aggressive” disease type, which likely corresponds to a more genetically 

penetrant or phenotypically expressed characteristic, may be worthwhile in genetic studies. 

On the other hand, it has been recognized that AgP cases may often represent manifestations 

of systemic conditions that interfere with resistance to bacterial infections (61). More recent 

evidence indicated the presence of auto-antibodies against come collagen types in patients 

with AgP but not CP (7). This phenomenon could pose a threat to validity due to disease 

misclassification in studies of periodontitis. At any rate, the classification of periodontitis by 
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sub-type has been a difficult exercise for clinicians and scientists over the last decades, and 

has been subject to numerous changes (65). Nonetheless, to aid in the design and 

interpretation of high-quality population-based studies of periodontitis, an accurate disease 

classification based on precise case definitions is warranted. 

Chronic periodontitis (CP), previously known as “adult periodontitis” (61) is associated 

with irreversible periodontal tissue damage manifested by gradual periodontal attachment 

loss (Figure B). In order to establish the presence and quantify the extent and severity of 

periodontitis a number of clinical signs or measurements have been used: increased 

periodontal pocket depth (measured as probing depth - PD), loss of clinical attachment 

(CAL), alveolar bone loss (ABL) evidenced in radiographic examination, and bleeding upon 

probing (BOP) (65-68). Of those measurements, combined use of both CAL and PD has been 

recommended as the preferred approach in ascertaining the prevalence or progression of 

periodontitis in epidemiologic studies (66). Other attempts to quantify the extent and severity 

of the disease using the maximum amount of clinical information possible resulted in the 

introduction of the extent and severity scores, included in the Extent and Severity Index (ESI) 

by Carlos et al. in 1986 (69). Essentially, the ESI is represents the proportion of sites that 

exhibit disease expressed as a percent of pre-defined probing sites. Because extent and 

severity scores quantify the periodontal destruction as evidenced by the intraoral distribution 

of clinical measurements they can be regarded as an improvement over a categorical 

nosological model. However, these quantitative measures are also particularly vulnerable to 

bias due to tooth loss, even more so compared to more “crude” categorical disease models. 

For this reason, analytical approaches that consider extent scores typically include 

adjustments for tooth loss (70). 
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Because various researchers had not been using a universally accepted case definition of 

periodontitis, collaborative efforts in Europe and in the US were initiated to work towards 

agreement and convergence in the periodontitis case definition and disease progression 

standards. A European consensus was reached in the 5th European Workshop in 

Periodontology. This consensus statement was published in 2005 and recommended the use 

of a three-level (including health) disease case definition (71). Subsequently, in the US a 

joint workgroup that was initially commissioned in 2003 by the Centers for Disease Control 

and Prevention (CDC) and the American Academy of Periodontology (AAP) reviewed 

existing definitions and suggested another standard (66). Based on that work, an analogous 

three-level classification of periodontitis was proposed for use in population-based studies 

(Table 1.2). At the same time, Offenbacher (72) used a combination of clinical, microbial, 

inflammatory and host-response parameters to propose a five-level disease classification 

labeled BGI (Biofilm-Gingival Interface) that is defined by a combination of PD and BOP 

measurements. The BGI classification is considered a major improvement, because it reflects 

recent advances in our knowledge of the disease characteristics on both biological and 

clinical level taking into consideration the “biological systems model” (35). 

For the purposes of the present investigation we will use the CDC definition and 

classification of CP. Based on the age structure of the studied population it is assumed that 

all periodontitis cases are representing chronic types and not AP. Continuous extent scores 

(e.g. percent of sites exhibiting ≥4mm CAL) will be considered for exploratory analyses. 

The “CDC definition” of periodontitis uses the following taxonomy (Table 1.2):  

1. Severe periodontitis: two or more interproximal sites not on the same tooth with 

≥6 mm CAL and one or more interproximal sites with ≥5 mm PD;  
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2. Initial (moderate) periodontitis: two or more sites with 4 or 5mm CAL not on the 

same tooth;  

3. Health/Gingivitis : individuals not meeting the above criteria.  

 

D. Epidemiology of periodontal diseases 

1.  Prevalence and methodological issues 

Most estimates of periodontitis indicate that advanced adult periodontitis does not exceed 

a 10-15% prevalence in most populations (1, 73). Estimates from the US are typically 

derived from the National Health and Nutrition Surveys. In the latest NHANES survey it was 

reported that 12.8% of the adult population had periodontitis, when the disease was defined 

as one or more sites with CAL≥ 5 mm. The prevalence was at a substantially higher 43.8% if 

the disease was defined as one or more sites with CAL≥ 3mm, and this reflects the dramatic 

impact that classification criteria can have on the disease prevalence estimates (66). 

Moreover, the NHANES employed a partial-mouth examination protocol, essentially 

selecting a subset of teeth, and then sites within teeth to examine. The partial-mouth 

examination protocol, while providing gains in efficiency (maximum examination sites were 

42 sites per individual in the 2001-2004 NHANES versus a maximum of 168 theoretically at 

risk sites per person) was found to substantially underestimate the disease prevalence by as 

much as 60% relative to the true prevalence, as determined by a full mouth examination (74). 

The impact of tooth loss on periodontitis estimates is also an important methodological 

consideration, and was outlined in a previous section. A more detailed investigation and 

quantification of the impact of tooth loss in population-based studies of periodontitis is 

warranted.  
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2. Disease burden 

Although the initially reported estimate of approximately 20% prevalence of CP in 

the adult population in the US is considerable, this figure is likely higher for the 

methodological reasons outlined above. Moreover, most countries in the world do not have 

adequate surveillance systems in place to monitor CP (1, 2). Another consideration is that 

while care-seeking individuals will be diagnosed and subsequently treated for the disease, 

others with sporadic pattern of or no dental attendance will not receive treatment and may 

progress to substantial tooth loss at early ages. This phenomenon will increase estimates of 

edentulism. Moreover, the increasing potential for dentition retention in older ages, combined 

with an ageing population is expected to contribute to a continuously increasing prevalence 

of CP in the next decades unless large scale awareness campaigns or interventions are 

effectively implemented in communities. This population approach is warranted because 

significant disparities in the prevalence of periodontitis exist between age and racial groups, 

with individuals of African American and Hispanic ethnicity being disproportionally affected 

(75).  

A rapidly increasing number of reports associate CP with systemic conditions 

(cardiovascular disease, pregnancy outcomes, diabetes control, oxidative stress, etc), with the 

microbial load and the resultant inflammation being the likely mediators of these 

relationships (76-78). Although definitive evidence that links the treatment of CP with 

improved systemic health outcomes is limited, there are several plausible hypotheses and 

numerous research reports pointing towards this direction (79).  
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3. Impact on the quality of life 

The impact of periodontitis on quality of life has been well-documented (80-83). 

Periodontitis is commonly associated with increased impacts on daily activities, even after 

adjustment for socio-demographic and other clinical conditions, such as caries, tooth loss and 

prostheses (81). Noteworthy, patients under treatment maintenance were found to report less 

daily impacts on their oral health-related quality of life (OHRQoL) compared to newly 

diagnosed patients with CP (83). Of course tooth loss and edentulism, representing the end-

stage of CP are disabling conditions that are associated with severe and multi-level impacts 

(84, 85). Specifically in the US, reports based on NHANES data indicate that oral disease 

disproportionally impacts disadvantaged groups (86). Another recent report based on 

NHANES data concluded that periodontitis, and particularly the level of serum antibodies 

against Pg, was associated with cognitive impairment among older US adults (22).  

 

E. Risk factors for chronic periodontitis 

Although a plethora of risk factors has been reported to be associated with periodontitis, 

the importance of each factor remains unknown. In fact person-level factors, such as age and 

race have been shown to be important determinants of periodontal inflammation (35, 87). 

Oral hygiene has been the longest considered “traditional” risk factor for periodontitis (1, 

88). In fact, while gingivitis parallels the level of oral hygiene on a population-level, this is 

not the case with CP (75).  

Smoking has been found to be the major risk factor for both periodontitis and tooth loss 

(89-91). This is consistent with the well-documented biological effects of smoking on 

periodontal health (92-94). Noteworthy, a substantial proportion of over 40% of periodontitis 
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cases in the US are attributable to smoking based on NHANES III estimates (89); a finding 

with great public health relevance. Prospective studies have also confirmed the causative role 

of smoking in the progression of periodontitis, as evidenced by CAL (95). Evidence also 

exists that smoking modifies the sub-gingival microbial colonization pattern (96) with a 

mechanism that is consistent with the observation that among smokers there is “higher 

infectious burden with periodontal pathogens but less inflammation” (97).  

With regard to DM, numerous studies have shown that diabetics have a greater 

prevalence and extent of periodontal pockets (37, 41, 98, 99). Interestingly, it has been 

reported that inflammatory markers that are evident in periodontitis, were associated with 

incident type 2 DM (100). These findings emphasize the links between oral and systemic 

conditions and the need for a comprehensive consideration of such co-morbidities in the 

diagnosis and treatment of both conditions.  

To date, there is no consensus in the literature regarding the role of alcohol consumption 

as a risk factor for CP (101). A report from the Health Professionals Follow-up Study (HPSF) 

suggested a weak association (in the range of RR=1.2-1.3) but relied upon self-reports of 

periodontitis (102). Another investigation suggested that increased periodontitis risk may be 

conferred by alcohol consumption among individuals with certain polymorphisms of the 

ALDH2 gene (103). Despite the documented multi-level detrimental effects of alcohol, it is 

well established that alcohol also exhibits antimicrobial effects that can confer protection 

from the microbial-plaque diseases. Evidence of such a protective effect has been found in 

both in vitro (104) and clinical (105) investigations.  

Although some evidence suggests that dietary factors such as whole-grain and fiber 

intake may be associated with decreased risk of periodontitis (106) and nutrients such as 
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calcium (107) with decreased prevalence of the disease, most evidence indicates that 

impaired dental condition may be the cause of sub-optimal diet diversity and quality (108, 

109).  

Stress and other psychosocial factors such as coping skills and personality type have also 

been reported as risk factors for development or progression of periodontitis (110, 111). For 

example, in a study by Moss et al. (112), stress and depression traits were important risk 

factors for being a periodontitis case and manifesting disease progression, respectively.  

 

F. The genetic basis of chronic periodontitis 

1.  Early reports of familial segregation 

The genetic component of periodontitis was supported by early reports in the dental 

literature. These reports observed a familial aggregation of severe forms of the disease (113-

117). Other reports, such as the one by Chung et al. (118) who carried out a path analysis 

using data from 241 nuclear families, did not detect any important evidence of heritability. 

These authors instead suggested that common family environment may be a major 

determinant of periodontal health. Michalowicz (119) later suggested that, although other 

periodontal diseases such as gingivitis have a substantial behavioral etiologic component, 

most of the observed heritability in periodontitis is attributable to genetics. The realization of 

the fact that “genes do not function in a vacuum” and that it is unlikely that a “master gene” 

for periodontitis will be discovered (120) underlines the necessity to investigate periodontitis 

risk loci within the full spectrum of common genetic variation. 
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2. Twin studies 

An early report of a periodontitis study among twins was published by Ciancio (121) in 

1969; two more reports were published by Michalowicz in the early 1990s (122, 123). In 

1993 Corey et al. (124), published their investigation of self-reported periodontitis among 

twins. For their study they used a mailed survey among the members of a Virginia-based 

twin registry, and they reported concordance rates of 0.38 and 0.16 between monozygotic 

(MZ) and dizygotic (DZ) twins, respectively. The authors’ conclusion was that, based on 

their findings, genetic factors make an important contribution to the risk of adult-onset 

periodontitis. Subsequently, Michalowicz et al. in 2000 (119) improved the current state of 

knowledge by employing clinical examinations to diagnose periodontitis among 117 MZ and 

DZ pairs of adult twins. In interpreting their findings the authors estimated that periodontitis 

has approximately 50% heritability and thus concluded “approximately half of the variance 

in disease in the population is attributed to genetic variance”. A more recent but small 

investigation that was carried out among 10 pairs of MZ and 8 pairs of DZ twins (125) found 

a substantial amount of discordance in disease severity among the twins, with that 

discordance being greater among DZ pairs. The authors suggested that previous estimates of 

heritability may be exaggerated (125, 126).  

 

3. Candidate-gene studies 

A large number of publications have reported on the association of several gene 

polymorphisms with periodontitis. In these approaches the studied risk variants are thought 

to be associated with altered immune response to the bacterial insult and include, among 

other genes, the interleukin-1 (IL-1) (127), tumor necrosis factors (TNF) (128), matrix 
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metalloproteinases (129), estrogen (130) and vitamin D receptor (50). A summary of these 

findings is illustrated in Table 1.2. There have been very few candidate-gene investigations 

of CP among African Americans (131).  

Previous candidate gene studies have found evidence for an association between 

periodontitis risk and interleukin (IL) gene polymorphisms (particularly IL-1), Fcγ, TNF, and 

matrix metalloproteinsases (128, 131, 132). A recent study reported an association between 

periodontitis and variants in FAM5C (133). Other candidate-gene studies did not detect any 

strong associations between AgP or CP and selected polymorphisms, and suggested the use 

of haplotype or genome-wide analyses as potentially more fruitful strategies (134). 

Moreover, the largest and best-powered candidate-gene study that was carried out in a 

Caucasian population (135) did not detect any important association between the IL-1 cluster 

and AgP risk. In spite of the high risk of bias from very small studies in the field, most 

reviews suggest that the balance of published evidence favors a causative role of IL gene 

cluster polymorphisms with periodontitis (127, 136). Two such meta-analyses summarized 

the evidence of increased risk for CP conferred by IL-1 (137) and Fcγ receptor 

polymorphisms (138). Nikolopoulos et al. summarized 53 published studies and concluded 

that there was a statistically significant association of IL-1A and IL-1B polymorphisms with 

CP risk. Dimou et al. suggested that there is accumulating evidence and supporting biological 

plausibility linking the FcγRIIIB NA1/NA2 polymorphism with increased risk for both AgP 

and CP (138). Finally, one recent investigation reported an association of IL-6 polymorphism 

with colonization with Aa but not Pg, among Caucasian CP patients (139). 
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4. Genome-wide association evidence 

The opportunity to use whole-genome scans for the exploration of the association with 

various phenotypes was early recognized, in the era of family-based studies (140).  Because 

current knowledge, technologies, and methods employed in GWAS allow a satisfactory 

coverage of the common genetic variation (at least among white populations), this approach 

has gained great popularity (141, 142) for the study of common complex diseases. Although 

the initial impact of GWAS has been less dramatic than initially postulated (141, 143), they 

have provided an unprecedented amount of new information regarding the susceptibility for 

and the pathogenesis of many diseases.  

 Schaefer et al. (144) were the first to report a genome-wide association hit with 

periodontal disease. Specifically, these investigators also reported the existence of a shared 

risk susceptibility locus on 9p21.3 (rs1333048), for both AgP and coronary heart disease 

(145). This region was mapped to the sequence of the large antisense noncoding RNA 

ANRIL, which partly overlaps regulatory and coding sequences of CDKN2A/CDKN2B. This 

association was recently replicated in an independent case-control sample with 130 cases of 

AgP and 339 controls (146), where the authors suggested that the most plausible genetic 

model underlying the association between the identified SNPs and AgP is the multiplicative 

one. Further, the same group of investigators in another publication reported that an intronic 

SNP rs1537415 located in the glycosyltransferase gene GLT6D1 was associated with AgP. 

In that study, the rare G allele showed 10% enrichment in cases (total ~280 cases). The 

authors suggested that the rare allele was associated with reduction of the binding affinity of 

the zinc-finder transcription factor GATA-3, which could be important in the pathogenesis of 

AgP. 
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While these GWA investigations provide the first insights into the genome-wide evidence 

of risk loci for periodontitis, their small sample sizes limited their statistical power. 

Moreover, both studies examined cases of AgP which represents the most aggressive form of 

periodontitis, and is found in about 3% or less among various populations (147, 148).  

A recent review of published articles up to April 2009 on genetic polymorphisms 

associated with CP was published by Laine in 2010 (131). The authors noted that for their 

search strategy they used the keywords: Periodontitis, Periodontal disease in combination 

with the words: Genes, Mutation, or Polymorphism to identify articles written in the English 

language, employing a case-control design to study CP or adult periodontitis and reporting 

genotype distribution. The authors however did not provide an exact search string that could 

be replicated, information about which databases were searched and with what limits, the 

exact number of abstract and full-text articles identified from their searches, additional 

information for seeking additional articles, exclusions including removing duplicates, etc.  
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G. Tables 

 

Table 1.1 Clinical case definitions of Periodontitis proposed by the CDC working group 
for use in population-based surveillance of Periodontitis1 (2) 

 Clinical Definition 

Disease Category 

Clinical Attachment 
Level 

(CAL)  

Probing Depth 

(PD)  

Severe periodontitis 
≥2 interproximal sites2 

with CAL ≥ 6mm 
and 

≥1 interproximal site 
with PD ≥5mm 

 

Moderate 
periodontitis 

≥2 interproximal sites2 
with CAL ≥ 4mm 

or 
≥2 interproximal sites2 

with PD ≥5mm 
 

No or mild 
periodontitis 

Neither “moderate” nor 
“severe” periodontitis 

  
 

1: third molars are excluded 

2: not on the same tooth 
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Table 1.2. Overview of published genetic effects from candidate-gene case control 
studies of the risk of chronic periodontitis among Caucasians. 

   Number studies found: 

Gene Polymorphism Race 
Association 

with CP 
No association 

with CP 

IL1A 
IL1A -889 

(+4845) C>T 
Caucasian 1 11 

IL1B 
IL1B +3954 
(+3953) C>T 

Caucasian 4 12 

IL1RN 
IL1RN VNTR 
(+2018) C>T 

Caucasian 1 3 

TFNA 
TFNA (-367) 

G>A 
Caucasian 1 5 

IL6 
IL6 (-572) 

C>G 
Caucasian 1 2 

 
IL6 (-1363) 

G>T 
Caucasian 1 1 

IL10 
IL10 -819 (-
824) C>T 

Mixed (~80% 
Caucasians) 

2 4 

 
IL10 -592 (-
597) C>A 

Mixed & 
Caucasians 

4 4 

FcγRII α ΙΙα 131 Η>R Caucasian 
1 (among 

smokers only) 
4 

FcγRIIIb 
IIIb NA1> 

NA2 
Japanese 1 4 

VDR 
VDR Taq1 

T>C 
Caucasian 2 2 

CD14 
CD14 -260 

C>T 
Caucasian 2 6 

TLR4 
TLR4 

Thr399Ile 
Japanese 1 5 
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Figures 

Figure 1. Classification of microbial periodontal pathogens according to Socransky 1998 
(12) 
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CHAPTER 2 

SPECIFIC RESEARCH AIMS 

 

A. Rationale - the case for a GWAS of chronic periodontitis 

Exploring and unraveling the genetic basis of complex diseases has promise in aiding 

therapy, prevention and care for such diseases, and can ultimately lead to improved health 

outcomes (1, 2). The opportunity to use whole-genome scans for the exploration of the 

association with various phenotypes was early recognized, in the era of family-based studies 

(3).  Because current knowledge, technologies, and methods employed in GWAS allow a 

satisfactory coverage of the common genetic variation among whites (4), this approach has 

gained great popularity for the study of common complex diseases (5, 6). Although the 

impact of GWAS has been less dramatic than initially postulated (5, 7), they have generated 

an unprecedented amount of new information regarding the susceptibility for and the 

pathogenesis of many common complex diseases. Notably, a large number of nucleotide 

polymorphisms (SNPs) were found to be associated with a total of 165 traits and were 

reported in 951 published GWA studies through June 2011 (8).  

In the field of dentistry, thus far there have been limited applications of GWAS. 

Three small GWA investigations have reported genome-wide associations of loci with 

aggressive periodontitis (9-11) and two have reported on suggestive risk loci for dental caries 

(12, 13). These investigations were hampered by small sample size and other methodological 

issues such as clinical examination procedures, disease definition, and more. We propose to 
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add on to the existing knowledge basis and improve on these previous investigations by 

carrying out a GWA analysis of chronic periodontitis in the context of a well-defined cohort, 

using a moderately-sized sample of approximately 4600 white individuals for whom detailed 

socio-demographic, anthropometric, periodontal, medical, and behavior data have been 

collected (Specific Aim 1). As a supplement to this aim, we will conduct exploratory 

analyses of genome-wide [gene] x [environment] interactions, by considering SNP 

interactions with sex, smoking, and diabetes mellitus. 

With regard to microbial factors, the pathogenetic role of specific bacterial strains in 

periodontitis is well-established and has been characterized in detail. While there is a great 

diversity in the periodontal microbiome, few microorganisms have been directly implicated 

in the pathogenesis of periodontitis (14). It is well established that colonization with high 

amounts of “red complex” bacteria (Pi, Pg, Tf), as well as Aa, is more common in severe or 

aggressive forms of periodontitis. Pi causes periodontal tissue destruction by triggering the 

host immune response, inducing Prostaglandin E2 and increasing the expression of matrix 

metalloproteinases (15). Pg and Tf have been shown to be more common among cases with 

“refractory” periodontitis versus “treatment-responsive” or periodontally-healthy individuals 

(16). Tf, in particular, was recently shown to possess an external S-layer that likely is 

responsible for the attenuated host response to this pathogen (17). Moreover, periodontal 

pathogens have been associated with systemic morbidities such as CHD, and they have been 

used as a “refined” exposure in studies of oral-systemic health links over clinical 

classifications of periodontitis (18, 19). Thus, preventing or controlling oral ecological shifts 

towards pathogenic biofilms (proliferation of the “orange” or “red” complex) is critical. 

Moreover, it is intriguing to determine why some individuals harbor more or more 



33 

 

pathogenic periodontal bacteria, and to this end detect whether innate host factors are 

important. In this domain, one report of a positive association between an IL-6 

polymorphism and harboring of Aa was based on a small sample of forty Caucasian patients 

(20).  We will address this question by exploring whether there are genome-wide loci that are 

associated with increased susceptibility for colonization with CP-risk associated bacteria of 

the “red” and the “orange” complex, as well as Aa (Specific Aim 2). As an additional 

exploratory aim, due to the major role of Pg in the pathogenesis of CP (21), we will 

investigate risk loci for Pg colonization.  

 

B. SPECIFIC AIMS 

By performing the proposed genome-wide association analysis among the white ARIC 

study participants we aim: 

Specific Aim 1: To identify susceptibility loci for chronic periodontitis among a moderate-

sized sample of community-dwelling white adults using the CDC disease classification and a 

continuous measure of disease severity. 

As an addition to Specific Aim 1, we will explore for effect measure modification or gene x 

environment interactions of SNPs with sex, smoking and diabetes mellitus.  

Specific Aim 2: To identify susceptibility loci for colonization with periodontal 

microorganisms of the “orange” and “red” complex, and Aggregatibacter 

actinomycetemcominats. 
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As an additional exploratory step for Specific Aim 2 we will examine for risk loci for another 

individual pathogen, Porphyromonas gingivalis which is member of the “red” complex.
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CHAPTER 3 

RESEARCH METHODS 

 

A. The Atherosclerosis Risk in Communities (ARIC) study 

1. The ARIC study 

The ARIC is a National Heart, Lung, and Blood Institute (NHLB)-funded prospective 

epidemiologic study conducted in four U.S. communities (Jackson, Mississippi; Washington 

County, Maryland; suburban Minneapolis, Minneapolis; Forsyth County, North Carolina). 

The study was IRB-approved for every participating site, and all participants had given 

informed consent. ARIC was designed to investigate the etiology and natural history of 

atherosclerosis, the etiology of clinical atherosclerotic diseases, and variation in 

cardiovascular risk factors, medical care and disease by race, gender, location, and date (1). 

Within the context of ARIC, an NIDCR-funded ancillary dental study was carried out, the 

Dental ARIC. The Dental ARIC aims were to determine the prevalence, extent, and severity 

of periodontal conditions in the dentate ARIC population, and to describe the associations 

between those conditions and prevalent coronary heart disease, coronary artery IMT, 

presence of carotid artery lesions, and atherosclerosis risk factors (2).  
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2. Study population 

The ARIC Cohort Component began in 1987 and recruited a total of 15,792 community-

dwelling participants aged 45-64 sampled from a defined population in their communities (1, 

3). These participants were reexamined every three years with the first screen (baseline) 

occurring in 1987-89, the second in 1990-92, the third in 1993-95, and the fourth and last 

exam was in 1996-98. The Dental ARIC ancillary study took place during the fourth visit, 

between 1996 and 1998 among dentate ARIC subjects.  

From the initial recruitment of 15,792 participants 11,656 were seen in visit 4. Of 

those, 6797 underwent the periodontal examination. After exclusions for various reasons a 

final sample of 6017 subjects formed the Dental ARIC sample (2). There participants had 

mean age of 62 years (range 52-75), 21% had severe periodontitis when using the study 

protocol criteria (≥30% of sites with AL ≥3mm), 13% were diabetics and 44% were males. 

 

3. Dental data 

The Dental ARIC included a clinical oral examination, collection of gingival crevicular 

fluid, oral microbial plaque, and serum, as well as in-person interviews. Clinical 

measurements of PD and CAL were made on six sites on all teeth, and the number of missing 

teeth was recorded. For these measurements, very good accuracy and reproducibility is to be 

expected with trained and calibrated examiners (4-6), as was the case in ARIC. Studies have 

estimates that agreement between examiners for PD and CAL are within 1mm in 90% of the 

measurements taken (4, 7). In the Dental ARIC weighted kappa statistics ranged between 

0.76-0.86 indicating excellent agreement with a standard examiner and intraclass correlation 
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coefficients (ICC) ranged between 0.76-0.90 indicating excellent to outstanding agreement 

(2).  

Using the PD and CAL measurements and based the CDC/AAP criteria (Table 1.1), 

subjects were classified as having no disease, moderate or severe CP. Additionally, a 

continuous measure of disease severity or “extent” based on Carlos et al. (8) was defined as 

the proportion of sites exhibiting CAL ≥3mm. The distribution characteristics of these 

variables in the analytical sample overall and across strata of covariates are presented in 

Tables 3-7. Additional dental (time of and reason for last dental visit, tooth brushing 

frequency, oral hygiene practices) and anthropometric data (body mass index) were used for 

exploratory descriptive and bivariate analyses, and are presented in the Appendix. Details 

about the analytical strategy followed to analyze the CDC and the “extent” traits are 

presented as part of the analytical approach for Specific Aim 1. 

 

4. Microbiological data 

Microbiological data are available for a subset of approximately 1200 white participants 

(9). Samples of subgingival microbial plaque were obtained during the clinical examination. 

Subsequently, the levels of eight periodontal pathogens were determined by DNA-DNA 

checkerboard hybridization analysis, a technique initially described by Gunaratnam et al. 

(10) and Socransky et al. (11). The selection of these eight microbes was based on their 

reported and plausible implication in the pathogenesis of periodontitis (10-12). The method 

has a lowest detection threshold of 103-104 microbial counts, and has been shown to have 

good detection properties (10). Therefore, subgingival microbial counts were obtained for 

organisms of the “red” complex: Pg, Tf, and Td, the “orange” complex: Pi, Pn, Cr, Fn, as 
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well as Aa. Additional information about the analytical strategy with regard to the 

microbiological data is presented as part of the approach for Specific Aim 2.  

 

5. Covariates 

The ARIC study investigators have collected a comprehensive list of socio-demographic, 

behavior, anthropometric and biological measurements (clinical, laboratory, and other 

specialized tests). An extensive list of variables collected can be found on the ARIC website 

(http://www.cscc.unc.edu/aric/) and in previous publications (1). For the purposes of the 

GWA analyses we used the following ARIC study variables: examination center (modeled 

with two indicator variables), age (measured in years and modeled as a continuous variable) 

and sex (male or female). For exploratory “sensitivity” analyses we also used smoking 

(modeled as a three-level ordinal categorical variable were 0: never, 1: former, and 2: current 

smoker), and diabetic status (modeled as a dichotomous variable where 0: healthy and 1: 

fasting glucose levels of ≥126 mg/dL, non-fasting of ≥200 mg/dL, or pharmacological 

treatment for diabetes). To correct for population stratification (admixture) we included in all 

analyses ten principal components derived by the EIGENSTRAT method (see section 3.B.2).  

 

B. Genotyping, quality control and exclusions 

1. Genotyping and imputation 

In the study population, DNA was extracted from blood samples drawn from an 

antecubital vein into tubes containing serum separator gel. Blood samples were analyzed at a 

central ARIC laboratory in Houston, TX. Genotyping was performed with the Affymetrix 

Genome-Wide Human SNP Array 6.0 chip. The platform offers 906,600 markers for SNPs. 
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The rigorous quality control procedures included initial blind duplicate genotyping and 

identification/flagging of SNPs with kappa<0.95 and reconciliation of unintentional duplicate 

samples (17 duplicates and one triplicate). Imputation to 2.5million markers was performed 

using 669,450 SNPs and MACH v1.0.16 (http://www.sph.umich.edu/csg/abecasis/MaCH/ 

index.html), based on HapMap Phase II CEU build 36. The SNPs used for imputation were 

selected from 839,048 autosomal SNPs restricted to those with minor allele frequency 

(MAF)>0.01 (129,543 excluded), Hardy-Weinberg equilibrium (HWE) P>10-5 (12,432 

excluded) and call rate >95% (1,693 excluded). We used the following SNP exclusion 

criteria for further analyses: quality score <0.8 and missing data rate >10% after imputation, 

and MAF of <5%. 

2. Population stratification 

To obtain estimates of relatedness and population stratification a subset of 85,947 

“high quality” linkage-disequilibrium (LD)-pruned SNPs was selected. These SNPs met the 

following criteria among self-reported whites: MAF ≥0.1, call rate >99.5%, HWE P≥10-3, 

autosomal, with annotation in the platform annotation file, not labeled “AFFX” or 

“chromosome 0”, and not monomorphic. Using these SNPs identity-by-state (IBS) allele 

sharing distance (DST values) were computed using PLINK, as such: DST = IBS distance 

(IBS2 + 0.5*IBS1) / (n SNP pairs). First degree relative status was assigned to pairs of 

individuals with DST≥0.8 and second degree relatives were considered those with 0.763 

≤DST< 0.8. Among the white ARIC participants there were 380 pairs of first degree and 207 

pairs of second degree relatives identified. To minimize exclusions, related pairs were broken 

by iterative selection of individuals with most relatives using a custom program. 
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Population stratification was further evaluated with principal component (PC) 

analysis using the EIGENSTRAT approach (13) and the EIGENSOFT program (14). The 

above chosen set of LD-pruned SNPs was used for the computation of ten principal 

components. Genetic outliers were considered those that were further than 8 standard 

deviations (SD) away from any of the ten PCs over ten runs of PC computation. Based on 

DST and PC criteria there were 716 subjects flagged from removal from the analysis (206 as 

genetic outliers based on PCs and 16 based on average DST values (“too little IBS sharing” 

with the rest of the sample), 351 first degree relatives and 143 second degree relatives. All 

but ten second degree relatives (whose relatives were excluded as genetic outliers) were re-

entered in the dataset and were assigned PCs. After exclusion of 364 individuals (4%) there 

were 9349 whites who were included in the GWA analysis and of those, 4610 had 

periodontal phenotype data available as Dental ARIC participants. 

 

C. Analytical strategy 

Goldstein (15), Manolio (16), McCarthy (17) and Hirschorn (18) have summarized 

the key challenges in the analysis and interpretation of genome-wide data. We acknowledge 

the inherent limitations of GWAS, such as the low power to detect very small effects, and the 

consideration of common genetic variance for the detection of “single-polymorphism 

effects”. The problem of the “little variance explained” by the discovered SNPs for most 

diseases has led investigators to look for the “dark matter” of genetic effects in the so-called 

rare (<5% or <1%) variants (19); the study of the latter however, may be methodologically 

challenging unless whole-genome typing becomes more accessible, or when multi-stage (20) 

or novel, more powerful statistical methods (21) are implemented. However, GWAS are a 
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powerful discovery tool that has the potential to unveil previously unknown genetic risk loci 

and provide insights on novel mechanisms and pathways. Acknowledging the strengths and 

limitations of the GWA approach which simultaneously interrogates millions of SNPs across 

the genome, we embarked on this investigation with a “risk locus discovery” rather than an 

“effect estimation” approach.  

 

1. Analytical sample 

Primary analyses were conducted among the Dental ARIC white subjects with imputed 

data (‘freeze 3’ version of genomic dataset). After exclusions specified above (364 whites) 

and merging of the genetic and clinical datasets, our final analytical sample included 4610 

white individuals for whom clinical and genomic data were successfully matched. The 

analytical sample description for Specific Aim 1 is presented in Tables 3-7, and for Aim 2 in 

Tables 4-11. The distribution of the phenotype classification (CP status: CDC definition and 

extent of attachment loss: percent of sites with attachment loss of 3mm or greater) by the 

study covariates is also presented in Table 3. Participants’ mean age is 62 years (range 52-

75), 13% are diabetics and 44% are males. When Beck et al. used the CDC classification of 

periodontitis in a subset of ~5000 Dental ARIC participants, 42% were periodontally healthy, 

41% had initial periodontitis and 17% had ‘severe’ periodontitis (22). In our analytical 

sample, these proportions are virtually identical, 43 and 17% respectively. 

   

2. Analytical strategy for Specific aim 1 

The primary phenotype of interest to address our Specific aim 1 was chronic periodontitis as 

defined by CDC, a three-level categorical classification. The secondary phenotype was the 
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“extent” of attachment loss, a continuous measure that is expressed as the proportion of site 

with attachment loss of 3mm or greater. The following traits were defined and considered for 

the GWA analyses: 

1. Binary outcome: severe periodontitis (coded as 1) versus initial periodontitis or 

health (coded as 0). Statistical analysis will be based on a logistic regression model assuming 

multiplicative (log-additive) allelic effects.  

2. Binary outcome: moderate periodontitis (coded as 1) versus initial periodontitis or 

health (coded as 0). As above, statistical analysis will be based on a logistic regression model 

assuming multiplicative (log-additive) allelic effects.  

 3. Continuous outcome: “extent” or “severity” of periodontitis (proportion of sites 

with CAL≥3mm). An appropriate transformation of this measure (z-score, normal curve 

equivalent transformation of the “crude” proportion of sites) was performed prior to 

conducting the GWAS. Statistical analysis was based on a linear regression model assuming 

multiplicative (log-additive) allelic effects.  

 

“Minimally” adjusted models 

As noted in the general methods section, all models were adjusted for age, sex and 

population substructure/stratification. Adjustment for population substructure in the ARIC 

study has been based on principal component analysis. Although authors have argued that 

population stratification may not be a serious threat to the validity of GWAS results (23), 

adjustment for population ancestry has become standard practice (13). Therefore, the 

“minimal” genetic models include 10 principal components obtained by the statistical 

package EIGENSOFT (13, 14), as well as for sex and age. Additional terms adjusting for 
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examination center (two indicator variables) were entered in all models. For implementation 

in the context of the GWAS we used the probABEL package, which is part of the geneABEL 

suite (24).  

Interpretation of analysis results relied on the evidence that the data offer against the 

null hypothesis of no SNP (allelic) association with the traits of interest, and therefore was 

based on the associated P-values. When multiple SNPs emerged below the P-value threshold 

for prioritization (see following section on hypothesis testing), we presented the “top SNP” 

per locus, which was the one with the lowest P-value. The additional prioritized SNPs in the 

same locus were also presented, along with linkage disequilibrium metrics (R2 with the “top 

SNP” in the locus) obtained with the SNAP application (25). Moreover, effect estimates 

(odds ratios for the disease classification and betas for the “extent” trait), as well as ‘model-

predicted’ phenotypic estimates by genotype were also obtained and presented for the “top 

SNPs” in each locus.  

 

Hypothesis testing 

To determine genome-wide “significance” of the tested SNPs’ association with the 

examined phenotypes we considered a multiple-test correction. The Bonferroni has been 

most frequently used in published GWAS, it is commonly agreed however, that this approach 

is overly conservative. This issue is further discussed in the limitations part of the discussion 

section. After applying the multiple-test correction, assuming approximately a million 

independent tests, a genome-wide significance threshold of P<5x10-8 was set. We set 

another, less stringent threshold of P<5x10-6 for prioritizing SNPs for further investigation 

and locus exploration. 
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The FDR, as described by Storey and Tibshirani (26), an alternative method proposed 

to evaluate results from GWAS. In the FDR approach, a q value (instead of a p) is calculated 

as a measure of significance in terms of false discovery rate, versus false positive (in the p 

value setting). The interpretation of a q value can be thought as the proportion of significant 

findings (genome-wide “hits”) that turn out to be false positives, after replication/verification 

(26). Along these lines, Shi et al recently reported a simulation study based on a two-stage 

FDR approach and use of a least absolute shrinkage and selection operator (LASSO) 

regression to reduce false positives (27).  

 

Sensitivity analysis - exploratory “fully” adjusted models 

Using the accepted definition of a confounder (28), no confounding of the association 

SNP�phenotype is to be expected by “environmental” or “behavioral” variables. This is 

supported by the fact that, under standard assumptions, these covariates do not affect the 

distribution of SNPs in the source population. However, because factors such as smoking and 

diabetes are risk factors for CP, one may argue that GWAS-identified signals for CP could be 

in fact, signals marking risk loci for these “intermediate” characteristics. In that scenario, 

adjusting for smoking and diabetes would “sanitize” the GWAS results from these results. 

On the other hand, in cases of pleiotropy (implying a true common genetic cause or risk 

locus of two traits) this result would reflect a valid association. Investigators have proposed 

methods of adjustment for correlated phenotypes (29), but “non-adjusted” analyses remain 

the current standard of practice to-date. Another view in favor of “adjusted” genetic 

modeling supports that the variance reduction that results from such adjustments is favorable 
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in the GWA “discovery” attempt, because there remains “less variance to  be explained” by 

the genetic effects.  

Motivated by the above, we undertook a “sensitivity” analysis as an exploratory step 

that is presented in the Appendix of Chapter 4. In these supplemental analyses we employed 

smoking and diabetes-adjusted genetic models for the three traits examined in the first 

manuscript (severe and moderate CP, and “extent” of attachment loss). We compared ‘crude’ 

and ‘adjusted’ effect estimates for the prioritized SNPs, using an empirical 10% change-in-

estimate criterion for ‘notable’ effect estimate changes, similar to settings of confounding 

evaluation (30). Moreover, we inspected whether additional SNPs emerged below the 

threshold of genome-wide significance (P<5x10-8) or prioritization (P<5x10-6), due to the 

“available variance reduction” effect that was explained above.  

   

Exploratory assessment of effect measure modification- “gene x environment” 

interactions 

Genome-wide explorations of gene x environment interactions are not common. As 

noted in the general methods section, our study of approximately 4000 subjects was 

underpowered to detect interaction effects. However, we conducted exploratory evaluations 

of EMM by three variables: sex, smoking and diabetes. The rationale for the selection of 

these three factors is supported by the fact that they represent important and well-

documented risk factors for CP: the disease is substantially more common among males, 

smokers and diabetics. This is evident both in the literature, as well as our Dental ARIC 

study population. We used the “extent” of attachment loss trait for these exploratory 
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analyses, because it represents a cumulative and non-reversible measure of periodontal 

destruction among the teeth present in the oral cavity.  

EMM was evaluated on the multiplicative (log-additive) scale in the context of 

statistical interaction between SNPs and sex (binary variable), smoking (three-level variable) 

and diabetes (binary variable). Each interaction term was entered in one of three linear 

regression models that apart from age, sex, examination center and 10 PCs, included the risk 

factor main effect (i.e. smoking) and its interaction with the SNP (SNP*smoking). We 

conducted these analyses with the probABEL package, and considered evidence of EMM 

interaction term P-values of less than 10-5. This relatively high P-value threshold was chosen 

because interaction evaluations have traditionally low power. An alternative approach of 

EMM evaluation could have been stratified analyses (by sex, smoking and diabetes) followed 

by a between-strata homogeneity evaluation, which would also be subject to reduced power. 

We chose the statistical interaction approach over stratified analyses as a more efficient 

strategy. 

 

Annotation and visualization of GWA results 

Genome-wide significant and ‘prioritized’ SNPs (based on the P-value criteria that 

were set in the ‘hypothesis testing’ section) were annotated using the WGAViewer (31) and 

Snipper (http://csg.sph.umich.edu/boehnke/snipper/) programs. We explored and reported SNPs 

locations and their role (i.e. intronic or intergenic, representing a base pair change or a 

synonymous change, and more), as well as their physical distance (in Kb) from the two or 

three closest known genes. Additionally, in the Appendix we present associations of the 

prioritized SNPs with known expression quantitative loci (eQTL) (32), as well as their 



49 

 

interacting genes. This expression-association information was obtained from the Scan (33) 

database (http://www.scandb.org/newinterface/about.html) via the Snipper annotator. We 

report eQTL-gene associations found in lymphoblastoid cell lines (LCL) among central 

European (CEU) population samples and P≤10-4. 

Quantile-quantile (Q-Q) plots were generated to compare the calculated versus 

expected empirical distributions of the test statistics (-log10 P-values) and detect any 

substantial deviations that could indicate residual population stratification. For this purpose 

we evaluated the Lambda (λ) inflation coefficients’ proximity to 1. Manhattan plots were 

also used to display the summary of the genome-wide analysis results (-log10 P-values) by 

chromosomal location. The Matlab® program was used to display Q-Q plots, λ coefficients 

and Manhattan plots. To inspect genomic regions that appear associated with the examined 

phenotypes, we used LocusZoom® version 1.1 (34) and Haploview v.4.2 (35). With these 

applications we were able to plot selected SNPs on their physical chromosome locations, 

along with their corresponding –log10 P-values, nearby gene locations, linkage 

disequilibrium (LD) and recombination rate statistics based on HapMap II-CEU. For 

missense changes, prediction of the possible impact of amino acid substitutions on protein 

structure and function was assessed using the PolyPhen-2 application (36). We used the 

USCF/Encode genome browser (http://genome-preview.ucsc.edu/cgi-bin/hgTracks?db=hg19 

) to visualize these prioritized loci for genomic areas that may include functionally relevant 

features, such as open chromatin and DNase I hypersensitivity annotation. Additionally, 

crude visualizations of functional pathways or interaction networks that identified genes may 

be implicated were generated with the GeneMANIA application (37). The complete set of 
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software that we used for annotation, visualization and additional exploration of identified 

SNPs and loci is presented in Table 3.1. 

 

 Power calculations 

Several programs are available for power calculations in GWA studies (38). Because 

of its flexibility in enabling power calculations in the presence of G*E (gene by exposure) 

interactions, we used the QUANTO v. 1.2.4 program (http://hydra.usc.edu/GxE/). 

Typical effect sizes of new SNPs detected by GWAS have been reported to range 

between 1.1 and 1.3 (15). Using our sample size of ~4,000 individuals and an outcome 

prevalence of 17 or 60% (depending on the definition) for Specific Aim 1, we had 80% 

power to detect effects of odds ratio size ≥1.4 for minor allele frequencies (MAF) greater 

than 10%. As expected, we were less powered to detect interaction effects in the exploratory 

analyses, unless one assumes relative interaction effects of ≥1.8 magnitude. Illustrations of 

various iterations of effect sizes, outcome prevalence values, MAF and power are presented 

in the Appendix. 

 

3. Analytical strategy for Specific aim 2 

Counts of the eight periodontal pathogens were derived with a semi-quantitative method, 

“checkerboard” DNA-DNA hybridization (10, 11). This method was applied on plaque 

samples to measure the extent of sub-gingival colonization with: Prevotella intermedia 

[American Type Culture Collection (ATCC) 25611], Campylobacter rectus (ATCC 33238), 

Fusobacterium nucleatum (ATCC 10953), and Prevotella nigriscens (ATCC 33563) 

(belonging to the “orange” complex); Porphyromonas gingivalis (ATCC 33277), Tannerella 
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forsythia (ATCC 43037) and Treponema denticola (ATCC 35404) (“red” complex); and 

Aggregatibacter actinomycetemcomitans (ATCC 43718). In this method bacterial levels are 

expressed as counts relative to established microbial standards.  

Three dichotomous traits of “high” colonization with “red” and “orange” complex, and 

Aggregatibacter actinomycetemcomitans were considered for analytical purposes. The two 

composite phenotypes were derived by the summation of bacterial count for each species 

belonging to the “red” (n=3) and “orange” (n=4) group, as described above. Because 

Porphyromonas gingivalis is considered the major periodontal pathogen implicated in 

periodontitis in adult populations, we explored for additional risk loci using its “high” 

colonization phenotype defined as above, as a separate trait, in analyses that we present in the 

Appendix.  

Various approaches in defining the bacterial colonization profiles have been previously 

used, including summations of the absolute microbial counts (9), tertile-categorization (39), 

and five-level categorization of log10-transformed counts (40). To approach Specific Aim 2, 

we defined a “high” colonization trait as the top quintile (20%) of each trait’s distribution. 

The rationale for the selection of this phenotype is based on the fact that the “checkerboard” 

semi-quantitative method has a lower detection threshold of ~103-104 and reduced precision 

in the lower end of the distribution. For this reason, individuals with “high” bacterial 

colonization profile may be those with reduced or impaired host and at high risk for 

periodontal tissue destruction, thus the “high colonization cases” are a trait of interest. 

Additionally, selection of a smaller subset of individuals (i.e. top 5 or 10%) would reduce our 

already low power for the GWA analysis among the ~1000 subjects.  
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 Genetic models, annotation and visualization of results, power calculations 

Three logistic regression models assuming multiplicative (log-additive) genetic effects 

were employed to address Specific aim 2, one for each trait of interest: “high red” complex, 

“high orange” complex, and “high” Aa colonization. We used identical model specifications 

as in Aim 1, and included age, sex, examination center and 10 PCs as covariates. We 

followed identical post-analysis annotation and visualization procedures. The power analyses 

are presented in the Appendix. As noted in the Specific Aims section, we developed an 

additional fourth model to examine for risk loci for Pg as an exploratory step. Results of this 

analysis are presented in the Supplemental material of Chapter 5.  

 

C. Replication plan for GWA findings 

Replication of identified SNPs from any GWA study to other samples is a warranted 

validation step (17, 41). Some investigators have suggested that because replication efforts 

may fail to confirm even true associations when power considerations exist there is no reason 

for investigators to place unreasonably high expectations on replication studies (42). In spite 

of this, the field appears settled into routinely requesting replication of GWA findings. 

  Candidate replication datasets for the present GWA analysis will ideally include 

detailed ascertainment of chronic periodontitis based on the CDC taxonomy (or alternatively 

extent of attachment loss) using full-mouth six-sites per tooth periodontal examinations of an 

adequately sized sample of white subjects. The investigators’ team is actively seeking 

opportunities for collaboration and eventually replication of our findings. Replication of the 

microbiological findings (Specific Aim 2) appears less likely, but opportunities may arise in 

the future, as more investigators explore the host-oral microbiome interactions. Candidate 
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studies where a replication of our main findings could be performed if genotype data become 

available include the National Health And Nutrition Examination Survey (NHANES), the 

Health ABC study, and the Health Professionals Follow-up Study (HPFS). Meta-analysis of 

replicated results will be performed using the METAL program (43). 
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D. TABLE 
 
Table 3.1. Software applications used for the genome-wide association analysis, annotation and 
visualization of results. 

Program 
name 

(version) Functions Website 

Developer, 
year and 
citation 

GeneMANIA Gene network discovery and 
visualization 

http://www.genemania.org/ Mostafavi, 
2008 

Haploview 
(ver.4.2) 

Linkage disequilibrium (LD) 
and haplotype visualization and 

analysis 

http://www.broadinstitute.org/scientific
-

community/science/programs/medical-
and-population-

genetics/haploview/haploview 

Barrett, 
2005 

LocusZoom 
(ver.1.1) 

Regional association results 
plotting 

http://csg.sph.umich.edu/locuszoom/ Pruim, 2010 

METAL Meta-analysis of GWAS results http://genome.sph.umich.edu/wiki/ME
TAL_Program 

Willer, 
2010 

Polyphen 
(ver.2.1.0) 

Prediction of damaging 
missense mutations 

http://genetics.bwh.harvard.edu/pph2/i
ndex.shtml 

Adzhubei, 
2010 

PLINK Genome-wide association 
analysis package 

http://pngu.mgh.harvard.edu/~purcell/p
link/ 

Purcel, 
2007 

ProbABEL 
(ver.1.0.3) 

Genome-wide association 
analysis package for imputed 

data 

http://www.genabel.org/packages/Prob
ABEL 

Aulchenko, 
2010 

QUANTO 
(ver.1.2.4) 

Power and sample size 
calculation in the presence of 

gene x environment interactions 

http://hydra.usc.edu/GxE/ Gauderman, 
2006 

SNAP 
(ver.2.2) 

Identification of proxy SNPs 
and generation of LD plots 

http://www.broadinstitute.org/mpg/sna
p/index.php 

Johnson, 
2008 

Snipper 
(ver.1.2) 

SNPs annotation including 
nearby genes and expression 

quantitative loci 

http://csg.sph.umich.edu/boehnke/snip
per/ 

Welch, 
2010 

WGAViewer 
(ver.1.26l) 

GWAS result annotation 
package 

http://people.chgv.lsrc.duke.edu/~dg48
/WGAViewer/std.php 

Ge, 2008 



55 

 

E. REFERENCES 

1. The ARIC investigators. The Atherosclerosis Risk in Communities (ARIC) Study: 
design and objectives. Am J Epidemiol 1989;129:687-702. 

2. Beck JD, Elter JR, Heiss G, Couper D, Mauriello SM, Offenbacher S. Relationship of 
periodontal disease to carotid artery intima-media wall thickness: the atherosclerosis 
risk in communities (ARIC) study. Arterioscler Thromb Vasc Biol 2001;21:1816-22. 

3. White AD, Folsom AR, Chambless LE, et al. Community surveillance of coronary 
heart disease in the Atherosclerosis Risk in Communities (ARIC) Study: methods and 
initial two years' experience. J Clin Epidemiol 1996;49:223-33. 

4. Page RC, Eke PI. Case definitions for use in population-based surveillance of 
periodontitis. J Periodontol 2007;78:1387-99. 

5. Mombelli A. Clinical parameters: biological validity and clinical utility. Periodontol 
2000 2005;39:30-9.  

6. Alves Rde V, Machion L, Andia DC, Casati MZ, Sallum AW, Sallum EA. 
Reproducibility of clinical attachment level and probing depth of a manual probe and 
a computerized electronic probe. J Int Acad Periodontol 2005;7:27-30. 

7. Armitage GC. Manual periodontal probing in supportive periodontal treatment. 
Periodontol 2000 1996;12:33-9.  

8. Carlos JP, Wolfe MD, Kingman A. The extent and severity index: a simple method 
for use in epidemiologic studies of periodontal disease. J Clin Periodontol 
1986;13:500-5. 

9. Offenbacher S, Barros SP, Singer RE, Moss K, Williams RC, Beck JD. Periodontal 
disease at the biofilm-gingival interface. J Periodontol 2007 ;78:1911-25. 

10. Gunaratnam M, Smith GL, Socransky SS, Smith CM, Haffajee AD. Enumeration of 
subgingival species on primary isolation plates using colony lifts. Oral Microbiol 
Immunol 1992;7:14-8. 

11. Socransky SS, Smith C, Martin L, Paster BJ, Dewhirst FE, Levin AE. 
"Checkerboard" DNA-DNA hybridization. Biotechniques 1994;17:788-92. 

12. Van Winkelhoff AJ, Winkel EG. Microbiological diagnostics in periodontics: 
biological significance and clinical validity. Periodontol 2000 2005;39:40-52. 

13. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal 
components analysis corrects for stratification in genome-wide association studies. 
Nat Genet 2006;38:904-9. 



56 

 

14. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet 
2006;2:e190. 

15. Goldstein DB. Common genetic variation and human traits. N Engl J Med 
2009;360:1696-8. 

16. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex 
diseases. Nature 2009;461:747-53. 

17. McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for 
complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008;9:356-69. 

18. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and 
complex traits. Nat Rev Genet 2005;6:95-108. 

19. Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: A review of 
statistical methods and recommendations for their application. Am J Hum Genet 
2010;86:6-22.  

20. Feng T, Zhu X. Genome-wide searching of rare genetic variants in WTCCC data. 
Hum Genet 2010;128:269-80. 

21. Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for 
association studies involving rare variants. Nat Rev Genet 2010;11:773-85. 

22. Beck JD, Eke P, Heiss G, et al. Periodontal disease and coronary heart disease: a 
reappraisal of the exposure. Circulation 2005;112:19-24. 

23. Wacholder S, Rothman N, Caporaso N. Counterpoint: bias from population 
stratification is not a major threat to the validity of conclusions from epidemiological 
studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev 
2002;11:513-20. 

24. Aulchenko YS, Struchalin MV, van Duijn CM. ProbABEL package for genome-wide 
association analysis of imputed data. BMC Bioinformatics 2010;11:134. 

25. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI. 
SNAP: a web-based tool for identification and annotation of proxy SNPs using 
HapMap. Bioinformatics 2008;24:2938-9. 

26. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl 
Acad Sci U S A 2003;100:9440-5. 

27. Shi G, Boerwinkle E, Morrison AC, Gu CC, Chakravarti A, Rao DC. Mining gold 
dust under the genome wide significance level: a two-stage approach to analysis of 
GWAS. Genet Epidemiol 2011;35:111-8. 



57 

 

28. Greenland S, Rothman KJ. Introduction to stratified analysis. In: Rothman KJ, 
Greenland S, Lash TL. Modern epidemiology. New York: Lippincott, Williams and 
Wilkins, 2008:258-82. 

29. Vansteelandt S, Goetgeluk S, Lutz S, et al. On the adjustment for covariates in 
genetic association analysis: a novel, simple principle to infer direct causal effects. 
Genet Epidemiol 2009;33:394-405. 

30. Maldonado G, Greenland S. Simulation study of confounder-selection strategies. Am 
J Epidemiol 1993;138:923-36. 

31. Ge D, Zhang K, Need AC, et al. WGAViewer: software for genomic annotation of 
whole genome association studies. Genome Res 2008;18:640-643. 

32. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated 
SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. 
PLoS Genet 2010;6:e1000888. 

33. Gamazon ER, Zhang W, Konkashbaev A, et al. SCAN: SNP and copy number 
annotation. Bioinformatics 2010;26:259-62. 

34. Pruim RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome-
wide association scan results. Bioinformatics 2010;26:2336-7. 

35. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD 
and haplotype maps. Bioinformatics 2005;21:263-5. 

36. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting 
damaging missense mutations. Nat Methods 2010;7:248-9. 

37. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-
time multiple association network integration algorithm for predicting gene function. 
Genome Biol  2008;9 Suppl 1:S4. 

38. Knight J. A survey of current software for genetic power calculations. Hum 
Genomics 2004;1:225-7. 

39. Desvarieux M, Demmer RT, Rundek T, et al. Periodontal microbiota and carotid 
intima-media thickness: the Oral Infections and Vascular Disease Epidemiology 
Study (INVEST). Circulation 2005;111:576-82. 

40. Papapanou PN, Neiderud AM, Papadimitriou A, Sandros J, Dahlén G. 
"Checkerboard" assessments of periodontal microbiota and serum antibody 
responses: a case-control study. J Periodontol 2000;71:885-97. 

41. Ioannidis JP. Non-replication and inconsistency in the genome-wide association 
setting. Hum Hered 2007;64:203-13. 



58 

 

42. Liu YJ, Papasian CJ, Liu JF, Hamilton J, Deng HW. Is replication the gold standard 
for validating genome-wide association findings? PLoS One 2008;3:e4037. 

43. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics 2010;26:2190-1. 



59 

 

CHAPTER 4 

 

A. TITLE AND AUTHORS  

 

MANUSCRIPT #1: EXPLORING THE GENETIC BASIS OF CHRONIC 

PERIODONTITIS: A GENOME-WIDE APPROACH 

 

K. Divaris, K.L. Monda, K.E. North, A.F. Olshan, E.M. Lange, K. Moss, S.P. Barros, J.D. 

Beck, and S. Offenbacher 

 

 



60 

 

B. MANUSCRIPT #1 SUMMARY 

Chronic periodontitis (CP) is a common-complex oral disease that affects the majority of 

the adult population and is a major cause of tooth loss. Although a substantial genetic 

component of CP is theorized, to-date, no whole-genome association (GWA) analyses have 

been performed. We conducted a GWA analysis among 4610 white participants of the 

Atherosclerosis in Communities Study (mean age of 62 years). Traits of interest were the 

three-level CDC/AAP periodontitis classification (severe—17%, moderate—43%, healthy—

40%), and the continuous trait of “extent” of attachment loss (EAL; proportion of sites 

exhibiting ≥3mm attachment loss). Genotyping was performed with the Affymetrix 6.0 

platform and imputation to 2.5million markers was based on HapMap II-CEU. We used 

logistic genetic models for the examination of the “severe” and “moderate” CP, and a linear 

model for the EAL trait using a genome-wide significance threshold of P<5x10-8. No 

genome-wide significant association signals were noted. However, we found suggestive 

evidence of association (P<5x10-6) for seven loci including NIN, NPY, WNT5A for severe, 

NCR2, EMR1 for moderate, and TBX18, ETS1, DYNC2H1, TTC26 and ZC3HAV1 for EAL. 

These genome-wide association results from a large well-defined cohort provide information 

on multiple candidate regions for interrogation in future genetic studies of CP.  

 

Keywords: periodontitis, genome-wide association studies; oral health; dentistry; genetics;  
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C. INTRODUCTION 

Chronic periodontitis (CP) is a common-complex disease of the oral cavity that is 

characterized by an inflammatory response to commensal and pathogenic oral bacteria (1). 

This relatively common chronic inflammatory disease is found in about 20% of the adult US 

population, manifests with gingival pocket formation and clinical attachment loss (CAL), and 

results in gradual destruction of periodontal tissues and tooth-supporting alveolar bone. CP is 

considered the main cause of tooth loss among most adult populations worldwide (2). 

Moreover, a growing body of evidence has linked the disease with increased risk for 

systemic conditions including coronary heart disease (CHD) (3), pregnancy outcomes (4), 

poor diabetes control (5), and other conditions.  

 There are more than 450 species identified in the human microbiome (6), and 

although harboring of periodontal pathogens is virtually universal, only a small proportion of 

individuals develop the severe form of the disease. Risk factors for CP have been well-

studied and include smoking and diabetes mellitus (DM). In addition, age, race and obesity 

have also been shown to be important risk indicators (7). A genetic component of CP risk 

was supported by early reports of familial aggregation of severe forms of the disease (8), as 

well as twin studies (9), but the magnitude of risk conferred by genetics and the role of 

specific genes has been under debate.  

Recent candidate-gene studies for CP have focused on genes related to host immunity 

and inflammatory response, such as cytokines, cell-surface receptors, chemokines, enzymes 

and antigen recognition. Most of these studies have examined polymorphisms in the 

interleukin (IL)-1, IL-6, Fc gamma receptor (FcγR), tumor necrosis factor alpha (TNFα), 
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human vitamin D receptor (VDR), cluster of differentiation (CD)-14, matrix 

metalloproteinase (MMP)-1, toll-like receptor (TLR), cyclo-oxygenase-2 (COX-2), and C-

reactive protein (CRP) gene coding regions (10).  

 A recent genome-wide association (GWA) study of generalized aggressive 

periodontitis (gAgP) among a sample of whites of European descent identified associations 

with a susceptibility locus on 9p34.3 intronic to the glycosyltransferase 6 domain containing 

1 (GLT6D1) gene, as well as a shared susceptibility locus on 9p21.3 for both gAgP and CHD 

(11, 12). However, gAgP is a rare form of periodontitis, found in less than 1% of adults, and 

is a distinct entity from CP. To-date no GWA exploration has been performed for CP. To add 

to the knowledge base of the genetic etiology of CP, this study aims to investigate genetic 

risk loci for CP using a GWA approach in the context of a well-defined cohort. 

D. MATERIALS AND METHODS 

We conducted a GWA study among 4610 white participants of the Atherosclerosis Risk 

In Communities (ARIC) longitudinal cohort investigation (13). The ARIC is a longitudinal 

investigation of atherosclerosis, CVD risk factors and outcomes, which included a complete 

oral-dental examination between 1996 and 1998. As part of the Dental ARIC ancillary study, 

participants underwent complete periodontal examinations that recorded the number of 

missing teeth, probing depth, attachment loss and bleeding upon probing measurements at six 

sites per tooth, including third molars. Clinical examiners were trained and calibrated against 

a standard examiner, with corresponding kappas indicating excellent to outstanding level of 

agreement (14).  
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For the GWA analyses we used two traits, the Centers of Disease Control (CDC) and 

American Academy of Periodontology (AAP) consensus three-level classification and 

second, a continuous “extent” score of disease severity. The CDC/AAP classification uses 

CAL and PD criteria to define three CP categories as, healthy-mild, moderate and severe (15) 

(Supplemental Table 1). The “extent” of disease score was defined as the proportion of 

measured sites that exhibited CAL equal or greater than 3mm (16). The rationale for 

examining the continuous trait is supported by the fact that attachment loss is a non-

reversible marker of periodontal destruction, whereas the CDC/AAP taxonomy includes a PD 

criterion, which is potentially reversible. Additional covariates that we used for descriptive 

and exploratory ‘adjusted’ genetic models were smoking (measured as a three-level ordinal 

categorical variable: never, former and current), and diabetic status (fasting glucose levels of 

≥126 mg/dL, non-fasting of ≥200 mg/dL, or pharmacological treatment for diabetes). 

Genotyping was based on the Affymetrix Genome-Wide Human SNP Array 6.0 chip 

which offers 906,600 SNP markers. The platform offers 906,600 markers for SNPs. 

Following rigorous quality control procedures, imputation to 2.5million markers was 

performed using 669,450 SNPs and MACH v1.0.16 

(http://www.sph.umich.edu/csg/abecasis/MaCH/index.html), based on HapMap Phase II 

CEU build 36. Comprehensive descriptions of genotyping and imputation, quality control 

and population stratification procedures, are presented in the Appendix. 

Two analytical endpoints were considered for the main effects analysis of the present 

project: CDC/AAP CP disease classification and “extent” of disease (attachment loss). Two 

contrasts were considered for the first trait: moderate vs. mild/healthy and severe vs. 

mild/healthy. The rationale for considering these contrasts is that severe and moderate CP are 
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considered distinct forms rather than variable expressions or “natural progression” stages of 

the disease. These analyses relied upon logistic regression models where allele effects were 

considered multiplicative (log-additive). To investigate the continuous trait of attachment 

loss, the proportion of sites exhibiting ≥3mm CAL was Z-score transformed into a normal 

curve equivalent variable, and a linear genetic model was used. All models included age, sex, 

examination center and ten principal components from the EIGENSTRAT analysis as 

covariates. A correction for multiple comparisons was employed assuming 1 million 

independent tests resulting in a threshold of genome-wide statistical significance of P<5x10-8. 

Although variables such as smoking and DM are not likely confounders of the association 

between genetic polymorphisms and risk of CP, we developed a series of models adjusting 

for these variables, as a sensitivity analysis. For this step, the results of which are presented 

in the supplemental material, we used an arbitrary criterion of >10% change-in-estimate 

which is often used in confounding evaluation in epidemiologic studies (17). We used this 

criterion to inspect for “important” changes in estimate for the prioritized SNPs, and explored 

whether additional ones emerged below the P<5x10-6 threshold upon the resulting variance 

reduction.  

All genetic analyses were performed with the ProbABEL software (18). Post-analysis 

procedures included the generation of quantile-quantile (Q-Q) and Manhattan plots. A 

threshold of P<5x10-6 was set for prioritizing SNPs for further investigation. SNPs were 

annotated using WGAViewer ver.1.26l (19) and Snipper ver. 1.2 

(http://csg.sph.umich.edu/boehnke/snipper/), and regions were viewed using LocusZoom 

ver.1.1 (20) and Haploview ver.4.2 (21). We used additional online resources of the National 

Center for Biotechnology Information (NCBI- http://www.ncbi.nlm.nih.gov/). Reporting of 
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genes was based on the “ HUGO Gene Nomenclature” naming convention 

(www.genenames.org). 

E. RESULTS 

The descriptive characteristics of the Dental ARIC cohort participants that were included 

in this analysis are presented in Table4.1. Participants had a mean age of 62 years, with a 

balanced sex distribution. Twelve percent were current smokers, and eleven percent had DM. 

In terms of CDC/AAP periodontal diagnoses, these were severe—17%, moderate—43%, and 

healthy—40%. In the main analyses we found no genome-wide significant association 

signals. Of the total 2178777 examined SNPs, 26 had a P<5x10-6 and thus were prioritized 

for further investigation (Figures 4.1-3). Lambda variance inflation factors for the three traits 

were low, and ranged between 1.003 for attachment loss to 1.024 for severe CP (Figures 

4.10-12). The prioritized SNPs marked three loci as associated with moderate (6p21.1, 

19p13.3 and 10p15), three with severe CP (14.21, 7p15, and 3p21), and four loci with the 

continuous trait of attachment loss (6q15, 11q24, 11q22, and 7q34). 

A comprehensive annotation of the prioritized SNPs, as well as corresponding allele 

frequencies by trait is presented in Table 4.2. Visualizations of the corresponding loci, along 

with nearby genes and recombination rates are presented in Figure 4.4-9 and Supplemental 

Figures 4.13-18. For severe CP, the strongest (with respect to P-value) association in the 

14q21 locus was produced by rs12883458, intronic to NIN. The minor C allele showed a 4% 

enrichment among severe CP patients, and was associated with an OR=1.89, P=3.5x10-7.  In 

the 7p15 locus, the common allele of rs2521634 (47Kb from NPY) produced an OR=1.47, 

P=1.6x10-6. Similarly, the common G allele of rs11925054 in the 3p21 locus, adjacent to 
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WNT5A and ERC2 produced the strongest signal in the region, showing 4% enrichment 

among severe CP patients. With regard to moderate CP, the SNP with the lowest P-value in 

6p21.1 was rs7762544 (OR=1.41; P=1.1x10-7). This variant is 61Kb from NCR2, and its 

minor (risk) allele showed 5% enrichment among moderate CP patients compared to healthy 

participants. Rs3826782 which is intronic to EMR1 and 30Kb from VAV1 provided the 

strongest signal in that locus with OR=2.00 and P=4.0x10-6.  

With regard to attachment loss, several SNPs in LD with the top SNP rs17792917 

(177Kb from TBX18; P=1.8x10-6) were found in the 6q15 locus. Individuals with 2 copies of 

the rare (risk) T allele had more than 10% higher mean extent of attachment loss (22.7% vs. 

20.2%) compared to those with CC genotype. The 11q24 locus where rs10790919 

(P=1.9x10-6) provided the strongest signal was in an intergenic region (671Kb from ETS1 

and 787Kb from KIRREL3). Rs7120142 provided the lowest P-value in the 11q22 locus 

(P=3.9x10-6), and was located 67Kb from DYNC2H1 and 360Kb from PDGFD. Carriers of 2 

risk allele copies (rare allele T) had a substantially higher mean extent of attachment loss 

(25.0) compared to those with no risk allele copy (20.4). The 7q34 locus is a gene-rich area, 

where rs10500130 emerged as the top SNP (P=4.6x10-6), with the common C allele being the 

one associated with higher extent of attachment loss score. Rs10500130 was 3Kb from 

TTC26 and 21Kb from ZC3HAV1. Rs1537415 which was the “top hit” in a GWA of AgP 

(11) did not show an important association (P=0.5) with the any of our examined traits. 

F. DISCUSSION 

This manuscript presents results of the first genome-wide exploration for loci associated 

with the risk of CP. The study is limited by the sample size for a GWA, of about 4,000 
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subjects and the absence of a replication sample. The study strengths include a well-defined 

cohort with a detailed phenotypical characterization of CP, using full mouth periodontal 

examinations and the latest commonly accepted taxonomy of CP. The CDC/AAP 

classification has been used in epidemiologic studies and surveillance. Offenbacher and 

colleagues (22) introduced a refined CP classification characterizing the disease’s biological 

(versus clinical-only) phenotype that may be more useful when exploring genetic effects of a 

trait with underlying heterogeneity. Nonetheless, the results of the present investigation 

provide a wealth of new information on potential candidate genes and mechanistic pathway 

analyses that will require further exploration, replication and validation in future studies. In 

general, it can be anticipated that interrogations of the genetic etiology of CP will identify 

markers associated with defense molecules and pathways, as is the case with numerous 

candidate-gene approaches (10).  

Several promising loci and candidate genes were identified in the present analysis. 

NIN is a gene known to encode a protein that plays a role in centrosomal microtubule 

organization and anchoring, which have recently been recognized as elements of the T cell 

cytolytic response (23). Interestingly, a recent candidate-gene study by Olson and colleagues 

reported two of the “top hits” for severe CP in 14q21 of the present study (rs12893300 and 

rs1004832) as associated with breast cancer risk (24). NPY is a gene encoding a neuropeptide 

that is widely expressed in the central nervous system and has been suggested to function as 

an anxiolytic peptide that helps explain inter-individual variation in trait anxiety and 

resiliency to stress (25); a common risk factor for many diseases, including CP. Moreover, 

experimental evidence supports a role of WNT5A in the activation of MMP-2 and the 

regulation of inflammatory cytokine genes of macrophages (26). NCR2 is the gene in the 
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region with strongest signal for moderate CP. It appears to have an important role in both 

normal and pathological innate immune responses, and is selectively expressed by 

Interleukin 2-activated natural killer cells (27). EMR1, VAV1 and CELF2 have also been 

implicated in immune functions such as eosinophilic inflammation, T-cell and B-cell 

development and activation (28).  

With regard to the “extent” of disease trait, apart from two genes are adjacent to the 

locus 6q15 (TBX18 at 177kb and KIAA1009 at 300Kb), the top SNP is 1Kb upstream of the 

novel processed transcript RP1-90L14.1-001. Other promising loci and potential candidate 

genes include PDGFD in 11q22, TTC26 and ZC3HAV1 at 7q34. Wagsater and colleagues 

(29) reported that PDGFs play important roles in atherosclerosis by stimulating matrix 

metalloproteinase (MMP) activity and influencing monocyte migration. ZC3HAV1 encodes a 

zinc finger protein that is thought to prevent infection by retroviruses, possibly by directly 

interacting with viral RNA (30) 

The lack of an overlap of identified loci for the three examined traits is not surprising, 

and in fact verifies the rationale of examining these three phenotypes separately. Moderate 

and severe CP are considered largely distinct entities and include in their case definitions a 

reversible clinical marker (probing depth), while “extent” attachment loss is a cumulative and 

non-reversible marker of periodontal destruction. From a statistical standpoint, the lack of 

overlap is not surprising because small stochastic variations can have a big impact on the 

tails of the test statistic distribution. However, because these traits share a common 

pathogenetic underpinning, and in our analyses we used the same controls for both contrasts, 

some overlap in GWA signals should be anticipated. Explorations at lower P-value 

thresholds may reveal more “good signals” and common risk loci. As an example, in our 
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exploratory smoking and diabetes-adjusted analyses 4q21.3 emerged as a common risk locus 

for severe CP and attachment loss and may be a reflection of this overlap (Figure 4.19). 

It must be acknowledged that although GWAS have provided invaluable new 

information on the genetic basis for many disease and health outcomes, a large component of 

the disease variation remains to-date unexplained (31). The inability of GWAS to detect very 

small effect sizes and interrogate rare polymorphisms, gene x gene interactions and 

epigenetics are additional layers of unaddressed complexity. In our study, although no SNP 

reached the level of genome-wide statistical significance, several loci were nominally 

associated with substantial effect sizes and, if replicated, may offer promising avenues for 

further investigation and mechanistic studies.  

Further investigations providing replication of these findings and additional 

examination of specific associations may lead to an improved understanding of the 

pathogenesis of the disease, as well as novel preventive and therapeutic approaches.  
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G. TABLES 

Table 4.1 Distribution in the total sample and bivariate associations of periodontal diagnosis 
(CDC/AAP disease classification) and periodontal attachment loss (extent score: percent of 
sites with ≥3mm attachment loss) with sex, smoking and diabetic status among the white 
participants of the Dental ARIC study (n=4610). 

  
 

CDC/AAP Periodontitis classification  
Attachment loss 

(≥3mm) 

 

Total 

(n, column %) 

 Health-mild 

(n, row %) 

Moderate 

(n, row %) 

Severe 

(n, row %)  

Extent score1 
mean(SD); 
median2 

Total sample 4610 (100) 
 1864 (40) 1961 (43) 785 (17)  21.1 (21.2); 14  

Sex3,4  
 

     

Females 2415 (52)  1197 (50) 939 (39) 279 (12)  16.6 (18.2); 10  

Males 2195 (48)  667 (30) 1022 (47) 506 (23)  26.1 (23.2); 19  

Smoking status3,5  
 

     

Never smoker 2104 (47)  1055 (50) 817 (39) 232 (11)  15.0 (15.3); 10  

Former smoker 1876 (42)  633 (34) 870 (46) 373 (20)  24.1 (22.5); 17  

Current smoker 526 (12)  147 (28) 221 (42) 158 (30)  33.7 (27.7); 25  

Diabetic status3,4  
 

     

Healthy 4077 (89)  1704 (42) 1704 (42) 669 (16)  20.6 (20.9); 14  

Diabetes mellitus 527 (11)  158 (30) 254 (48) 115 (22)  25.4 (23.9); 18  

1: Third molars were included in the calculation of the extent of attachment loss trait 
2: Rounded to the closest integer 
3: Chi-square test of equivalence between strata of periodontitis P<0.05 
4: Median test of stratum-specific attachment loss estimates P<0.05 
5: Kruskal-Wallis test of stratum-specific attachment loss or covariate estimates P<0.05 
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Table 4.2. Genome-wide association analysis results of the CDC/AAP chronic periodontitis (CP) classification 
traits (severe CP vs. healthy and moderate CP vs. healthy) and extent of attachment loss trait (EAL-proportion 
of sites exhibiting attachment loss ≥3mm), among the white participants of the Dental ARIC study (n=4610). 
Single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF-HapMap II CEU) of ≥5% and 
associated P<5x10-6. The SNP with the lowest P-value per locus is presented; additional prioritized SNPs in 
each locus are presented in the footnote, along with corresponding R2 (based on 1000 genomes pilot 1 release) 
with the top SNPs. 

Chr. SNP 
Position  
Build36 ca1 nca2 

Risk allele 
frequency 
(HapMap 
II-CEU) 

Closest gene(s) and 
position or distance 

P value 
(beta) 

Risk allele 
frequency 
disease/ 
healthy 

Odds ratio 
(95% CI3) 

Severe CP        

14q214 rs12883458 50349129 C T [C] 0.104 NIN (Intronic) 
3.5x10-7 

(0.64) 
0.13/0.09 1.89 (1.48, 2.41) 

7p155 rs2521634 24344565 A G [G] 0.754 NPY (47Kb) 
1.6x10-6 

(0.39) 
0.80/0.74 1.47 (1.25, 1.73) 

3p216 rs11925054 55365926 G T [G] 0.865 
WNT5A (109Kb); 
ERC2 (151Kb) 

6.5x10-7 

(0.53) 
0.90/0.86 1.69 (1.37, 2.10) 

Moderate CP         

6p21.17 rs7762544 41487293 A G [G] 0.184 NCR2 (61Kb) 
1.1x10-7 

(0.34) 
0.21/0.16 1.41 (1.24, 1.60) 

19p13.38 rs3826782 6838736 A G [A] 0.070 
EMR1 (Intronic); 

VAV1 (30Kb) 
4.0x10-6 

(0.69) 
0.05/0.04 2.00 (1.48, 2.70) 

10p15 rs12260727 10378335 A G [G] 0.846 CELF2 (709Kb) 
6.0x10-7 

(0.43) 
0.89/0.85 1.54 (1.30, 1.82) 

 
  

Mean EAL9 (95% CI10) by genotype 
(number of risk allele copies) 

Extent of attachment loss (≥3mm)   0 copy 1 copy 2 copies 

6q1511 rs17792917 85323684 C T [T] 0.242 
TBX18 (177Kb); 

KIAA1009 (330Kb) 
1.8x10-6 

(1.92) 
20.2 

(19.4, 21.0) 
22.4 

(21.3, 23.4) 
22.7 

(20.0, 25.4) 

11q2412 rs10790919 127162281 A G [A] 0.788 
ETS1 (671Kb); 

KIRREL3 (787Kb) 
1.9x10-6 

(2.04) 
17.1 

(14.5, 19.5) 
19.9 

(18.9, 20.9) 
22.0 

(21.2, 22.8) 

11q2213 rs7120142 102922991 C T [T] 0.197 
DYNC2H1 (67Kb); 
PDGFD (360Kb) 

3.9x10-6 

(1.98) 
20.4 

(19.7, 21.2) 
22.0 

(20.9, 23.1) 
25.0 

(21.3, 28.7) 

7q34 rs10500130 138466453 A C [C] 0.889 
TTC26 (3Kb); 

ZC3HAV1 (21Kb) 
4.6x10-6 

(2.56) 
18.8 

(12.6, 25.0) 
19.0 

(17.7, 20.4) 
21.6 

(20.9, 22.3) 

1:coded allele 
2: non-coded allele 
3: confidence limits 
4: Additional SNPs in locus with P<5x10-6: rs1004832 (R2=1.00), rs8009874 (R2=0.84), rs12893300 (R2=0.49) 
5: Additional SNP in locus with P<5x10-6: rs11771124 (R2=1.00) 
6: Additional SNP in locus with P<5x10-6: rs503022 (R2=0.52) 
7: Additional SNPs in locus with P<5x10-6: rs9357360 (R2=0.89), rs1853406 (R2=0.89), rs1535582 (R2=0.33) 
8: Additional SNP in locus with P<5x10-6: rs12610529 (R2=0.79) 
9: Assuming a log-additive linear genetic model 
10: CL, confidence limits 
11: Additional SNPs in locus with P<5x10-6: rs9791329 (R2=0.58), rs11756650 (R2=0.96), rs7741380 (R2=0.60), rs4510639 (R2=0.67) 
12: Additional SNPs in locus with P<5x10-6: rs6590279 (R2=0.87), rs10893747 (R2=0.87) 
13: Additional SNP in locus with P<5x10-6: rs4440990 (R2=1.00) 
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H. FIGURES 

Figure 4.1 Manhattan plot of the genome-wide association analysis results for severe chronic 

periodontitis among the 4610 white dental ARIC participants.  
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Figure 4.2 Manhattan plot of the genome-wide association analysis results for moderate 

chronic periodontitis among the 4610 white dental ARIC participants. 
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Figure 4.3 Manhattan plot of the genome-wide association analysis results for extent of 

attachment loss (proportion of sites exhibiting ≥3mm attachment loss) among the 4610 white 

dental ARIC participants. 
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Figure 4.4 Visualization of the 14q21 locus that was marked by rs12883458 (P=3.5x10-7) for 

severe chronic periodontitis among the 4610 white participants of the Dental Atherosclerosis 

in Communities Study cohort. The vertical axis corresponds to each marker’s associated –

log10 P-value. The overlaid recombination rate plot and the color-coded pairwise linkage 

disequilibrium values with index SNPs were calculated based on HapMap II – CEU (human 

genome 18, build 36). 
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Figure 4.5 Visualization of the 19p13.3 locus that was marked by rs3826782 (P=4.0x10-6) 

for severe chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort. The vertical axis corresponds to each marker’s 

associated –log10 P-value. The overlaid recombination rate plot and the color-coded pairwise 

linkage disequilibrium values with index SNPs were calculated based on HapMap II – CEU 

(human genome 18, build 36). 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

Figure 4.6 Visualization of the 6p21.1 locus that was marked by rs7762544 (P=1.1x10-7) for 

severe chronic periodontitis among the 4610 white participants of the Dental Atherosclerosis 

in Communities Study cohort. The vertical axis corresponds to each marker’s associated –

log10 P-value. The overlaid recombination rate plot and the color-coded pairwise linkage 

disequilibrium values with index SNPs were calculated based on HapMap II – CEU (human 

genome 18, build 36). 
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Figure 4.7 Visualization of the 7p15 locus that was marked by rs2521634 (P=1.6x10-6) for 

severe chronic periodontitis among the 4610 white participants of the Dental Atherosclerosis 

in Communities Study cohort. The vertical axis corresponds to each marker’s associated –

log10 P-value. The overlaid recombination rate plot and the color-coded pairwise linkage 

disequilibrium values with index SNPs were calculated based on HapMap II – CEU (human 

genome 18, build 36). 
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Figure 4.8 Visualization of the 6q15 locus that was marked by rs17792917 (P=1.8x10-6) for 

extent of attachment loss (CAL; sites exhibiting CAL ≥3 mm) among the 4610 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure 4.9 Visualization of the 7q34 locus that was marked by rs10500130 (P=4.6x10-6) for 

extent of attachment loss (CAL; sites exhibiting CAL ≥3 mm) among the 4610 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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J. MANUSCRIPT #1 - SUPPLEMENTAL MATERIAL 

SUPPLEMENTAL MATERIALS AND METHODS 

Genotyping and imputation 

In the study population, DNA was extracted from blood samples drawn from an 

antecubital vein into tubes containing serum separator gel. Blood samples were analyzed at a 

central ARIC laboratory in Houston, TX. Genotyping was performed with the Affymetrix 

Genome-Wide Human SNP Array 6.0 chip. The platform offers 906,600 markers for SNPs. 

The rigorous quality control procedures included initial blind duplicate genotyping and 

identification/flagging of SNPs with kappa<0.95 and reconciliation of unintentional duplicate 

samples (17 duplicates and one triplicate). Imputation to 2.5million markers was performed 

using 669,450 SNPs and MACH v1.0.16 (http://www.sph.umich.edu/csg/abecasis/MaCH/ 

index.html), based on HapMap Phase II CEU build 36. The SNPs used for imputation were 

selected from 839,048 autosomal SNPs restricted to those with minor allele frequency 

(MAF)>0.01 (129,543 excluded), Hardy-Weinberg equilibrium (HWE) P>10-5 (12,432 

excluded) and call rate >95% (1,693 excluded). We used the following SNP exclusion 

criteria for further analyses: quality score <0.8 and missing data rate >10% after imputation, 

and MAF of <5%. 

Population stratification 

To obtain estimates of relatedness and population stratification a subset of 85,947 

“high quality” SNPs was selected. These SNPs met the following criteria among self-

reported whites: MAF ≥0.1, call rate >99.5%, HWE P≥10-3, autosomal, with annotation in 

the platform annotation file, not labeled “AFFX” or “chromosome 0”, and not monomorphic. 
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Using these SNPs identity-by-state (IBS) allele sharing distance (DST values) were 

computed using PLINK, as such: DST = IBS distance (IBS2 + 0.5*IBS1) / (n SNP pairs). 

First degree relative status was assigned to pairs of individuals with DST≥0.8 and second 

degree relatives were considered those with 0.763 ≤DST< 0.8. Among the white ARIC 

participants there were 380 pairs of first degree and 207 pairs of second degree relatives 

identified. To minimize exclusions, related pairs were broken by iterative selection of 

individuals with most relatives using a custom program. 

Population stratification was further evaluated with principal component (PC) 

analysis using the EIGENSTRAT method (1). The above chosen set of SNPs was used for 

the computation of ten principal components. Genetic outliers were considered those that 

were further than 8 standard deviations (SD) away from any of ten PCs over ten runs of PC 

computation. Based on DST and PC criteria there were 716 subjects flagged from removal 

from the analysis (206 as genetic outliers based on PCs and 16 based on average DST values 

(“too little IBS sharing” with the rest of the sample), 351 first degree relatives and 143 

second degree relatives. All but ten second degree relatives (whose relatives were excluded 

as genetic outliers) were re-entered in the dataset and were assigned PCs. After exclusion of 

364 individuals (4%) there were 9349 whites who were included in the GWA analysis and of 

those, 4610 had periodontal phenotype data available as Dental ARIC participants. 

 

SUPPLEMENTAL RESUTS 

Adjusted genetic models 
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Adjustment for smoking and diabetic status resulted in small (<10%) and predominantly 

upwards changes in odds ratios of the prioritized SNPs for the two disease classification traits 

(Supplemental Table S2). Noteworthy, the effect estimate of rs7762544 associated with 

moderate CP increased by 6% for a genome-wide significant adjusted OR=1.44 (P=3.8x10-8). 

Larger and exclusively downwards changes in effect size estimates were noted for the 

prioritized SNPs in the domain of attachment loss. These estimate attenuations ranged from 

11% for rs10500130 to 23% for rs7120142. Four additional loci emerged below the P<5x10-6 

threshold in the adjusted analyses, one of those common for severe CP and extent of 

attachment loss: moderate CP—[rs11615037, OR=1.33; Padj=4.4x10-6, in a region between 

CPM (98Kb) and CPSF6 (178Kb)]; severe CP—(rs10493998, OR=1.68; Padj=2.2x10-6, 90Kb 

from COL11A); extent of CP—(rs8006336, Padj=1.4x10-6 adjacent to RPS29 and PPIL5). 

Rs17006135, was intronic to SCD5, approximately 3Kb from the exon boundary, marking 

the 4q21.3 locus, and was associated with both severe CP (OR=1.82; Padj=4.4x10-6) and 

increased extent of attachment loss (Padj=8.2x10-7). 
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K.  SUPPLEMENTAL TABLES 

Table 4.3 Clinical case definitions of Periodontitis proposed by the CDC working group 
for use in population-based surveillance of Periodontitis1 (2) 

 Clinical Definition 

Disease Category 

Clinical Attachment 
Level 

(CAL)  

Probing Depth 

(PD)  

Severe periodontitis 
≥2 interproximal sites2 

with CAL ≥ 6mm 
and 

≥1 interproximal site 
with PD ≥5mm 

 

Moderate 
periodontitis 

≥2 interproximal sites2 
with CAL ≥ 4mm 

or 
≥2 interproximal sites2 

with PD ≥5mm 
 

No or mild 
periodontitis 

Neither “moderate” nor 
“severe” periodontitis 

  
 

1: third molars are excluded 

2: not on the same tooth 
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Table 4.4 Changes in estimate of top SNPs for the three chronic periodontitis traits after adjustment for smoking (never, former, 
current) and diabetic status (binary) among the white participants of the Dental ARIC study.  

Trait Chr. SNP 

RAF1 
Disease/ 
Healthy Crude estimates  Adjusted2 estimates  

Change in 
estimate3 
(percent) 

    OR/beta4 (95% CL) P value  OR/beta4 (95% CL5) P value   
Moderate vs. 
Healthy 

6p21.1 rs7762544 0.21/0.16 1.41 (1.24, 1.60) 1.1x10-7  1.44 (1.26, 1.63) 3.8x10-8  +6% 

 19p13.3 rs3826782 0.05/0.04 2.00 (1.48, 2.70) 4.0x10-6  2.09 (1.54, 2.84) 1.4x10-6  +7% 

 10p15 rs12260727 0.15/0.11 1.54 (1.30, 1.82) 6.0x10-7  1.51 (1.27, 1.79) 3.0x10-6  -4% 

Severe vs. 
Healthy 

14q21 rs12883458 0.13/0.09 1.89 (1.48, 2.41) 3.5x10-7  1.88 (1.46, 2.43) 1.1x10-6  -0.3% 

 7p15 rs2521634 0.80/0.74 1.47 (1.25, 1.73) 1.6x10-6  1.43 (1.21, 1.69) 2.6x10-5  -7% 

 3p21 rs11925054 0.90/0.86 1.69 (1.37, 2.10) 6.5x10-7  1.78 (1.42, 2.23) 2.6x10-7  +10% 

Extent of 
attachment loss 

6q15 rs17792917  1.92 (1.13, 2.71) 1.8x10-6  1.61 (0.84, 2.38) 4.1x10-5  -16% 

 11q24 rs10790919  2.04 (1.20, 2.88) 1.9x10-6  1.78 (0.96, 2.59) 1.9x10-5  -13% 

 11q22 rs7120142  1.98 (1.14, 2.83) 3.9x10-6  1.54 (0.71, 2.36) 2.5x10-4  -23% 

 7q34 rs10500130  2.56 (1.47, 3.66) 4.6x10-6  2.28 (1.21, 3.34) 2.8x10-5  -11% 

1: Risk allele frequency 
2: Adjusted for smoking (three-level categorical where 0: never, 1: former, 2: current smoker) and diabetic status (dichotomous variable where 0: healthy and 1: 
diabetic) 
3: Calculated as follows: change-in-estimate= [(|betaadjusted| - |betacrude|)  / |betacrude|] *100 
4: OR (odds ratios) are presented for the two binary periodontitis classification traits and beta coefficients for the continuous trait of attachment loss 
5: Confidence limits 

 

9
5 
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Table 4.5 Distribution of genotype (based on number of minor allele copies of SNPs with P<5x10-6) by phenotypic classification (three disease traits 
and mean “extent” of disease) among the Dental ARIC participants.  

   Healthy (%)  
Moderate chronic 
periodontitis (%)  

Severe chronic 
periodontitis (%)  

Mean extent of attachment loss 
(≥3mm) and (95% confidence limits) 

Minor allele copies (n)  0 (%) 1 (%) 2 (%)  0 (%) 1 (%) 2 (%)  0 (%) 1 (%) 2 (%)  0 (%) 1 (%) 2 (%) 
Chr. SNP                 

6p21.1 rs77625441,4  69.6 27.9 2.5  62.3 33.9 3.9  68.1 29.3 2.6  
20.9 (20.1, 

21.6) 
21.5 (20.4, 

22.7) 
22.4 (18.6, 

26.2) 

19p13.3 rs38267821,4  93.0 6.9 0.1  90.2 9.6 0.3  91.7 8.3 0.0  
21.1 (20.4, 

21.7) 
22.5 (20.3, 

24.7) 
16.1 (9.1, 

23.1) 

10p15 rs122607271  72.4 25.5 2.1  78.3 20.6 1.1  76.3 22.0 1.7  
21.5 (20.8, 

22.3) 
20.0 (18.7, 

21.3) 
17.1 (12.6, 

21.6) 

14q21 rs128834582,4  82.6 17.1 0.3  80.2 18.9 0.9  74.8 23.6 1.7  
20.7 (20.0, 

21.4) 
22.6 (21.2, 

24.1) 
25.6 (19.1, 

32.1) 

7p15 rs25216342,4  54.1 39.2 6.8  55.4 38.8 5.8  63.8 32.4 3.8  
21.6 (20.8, 

22.4) 
20.8 (19.8, 

21.8) 
18.6 (16.2, 

21.1) 

3p21 rs119250542  74.0 24.0 2.0  74.5 23.8 1.7  81.0 18.0 1.0  
21.7 (21.0, 

22.4) 
19.6 (18.4, 

20.8) 
16.8 (13.2, 

20.5) 

6q15 rs177929173,4  61.9 33.0 5.1  56.9 37.6 5.5  53.6 39.1 7.3  
20.2 (19.4, 

21.0) 
22.4 (21.3, 

23.4) 
22.7 (20.0, 

25.4) 

11q24 rs107909193  60.2 35.4 4.4  63.0 33.0 3.9  68.7 28.8 2.5  
22.0 (21.2, 

22.8) 
19.9 (18.9, 

20.9) 
17.1 (14.8, 

19.5) 

11q22 rs71201423,4  66.7 30.5 2.8  61.6 34.3 4.1  62.9 33.3 3.8  
20.4 (19.7, 

21.2) 
22.0 (20.9, 

23.1) 
25.0 (21.3, 

28.7) 

7q34 rs105001303  79.0 19.7 1.3  81.6 17.5 0.9  82.9 15.9 1.2  
18.8 (12.6, 

25.0) 
19.0 (17.7, 

20.4) 
21.6 (20.9, 

22.3) 
1: Associated P<5x10-6 for moderate CP 
2: Associated P<5x10-6 for severe CP 
3: Associated P<5x10-6 for extent of attachment loss 
4: The minor allele is the ‘risk allele’ for the corresponding trait 

 

9
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Table 4.6 Reported genes’ symbols [HUGO Gene Nomenclature Committee (HGNC) approved 
symbols], names and chromosomic locations.  
Gene symbol Gene name Location 

NCR2 Natural cytotoxicity triggering receptor 2 6p21.1 
EMR1 Egf-like module containing, mucin-like, hormone receptor-like 1 19p13.3 
VAV1 Vav 1 guanine nucleotide exchange factor 19p13.2 

CELF2 CUGBP, Elav-like family member 2 10p13 
NIN Ninein (GSK3B interacting protein) 14q21-q22 
NPY Neuropeptide Y 7p15.3 

WNT5A Wingless-type MMTV integration site family, member 5A 3p21-p14 
ERC2 ELKS/RAB6-interacting/CAST family member 2 3p14.3 
TBX18 T-box 18 6q14.1-q15 

KIAA1009 KIAA1009 14.3 
ETS1 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) 11q23.3 

KIRREL3 Kin of IRRE like 3 (Drosophila) 11q24 
DYNC2H1 Dynein, cytoplasmic 2, heavy chain 1 11q21-q22.1 
PDGFD Platelet derived growth factor D 11q22.3 
TTC26 Tetratricopeptide repeat domain 26 7q34 

ZC3HAV1 Zinc finger CCCH-type, antiviral 1 7q34 
CPM* Carboxypeptidase M 12q15 

CPSF6* Cleavage and polyadenylation specific factor 6, 68kDa 12q15 
COL11A1* Collagen, type XI, alpha 1 1p21 
RNPC3* RNA-binding region (RNP1, RRM) containing 3 1p21.1 
SCD5* Stearoyl-CoA desaturase 5 4q21.3 

SEC31A* SEC31 homolog A (S. cerevisiae) 4q21 
RPS29* Ribosomal protein S29 14q21.3 
LRR1* Leucine rich repeat protein 1 (PPIL5) 14q21.3 

*Genes adjacent to loci that emerged in adjusted analyses. 
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Table 4.7 Reported SNPs address according to the 1000 genomes (1000G) 
convention and proxy SNPs (R2>0.8 where available) based on 1000G pilot 1 
release. All SNPs were imputed based on HapMap II CEU with the exception of 
rs2521634 with was directly genotyped on the Affymetrix 6.0 platform. 

dbSNP 1000G Proxy SNPs (R2>0.8) 

rs7762544 6:41379315 rs1853406, rs9357360 

rs3826782 19:6887736 rs12610529 

rs12260727 10:10338329 rs12258450, rs7919833 

rs12883458 14:51279379 rs1004832 

rs2521634 7:24378040 
rs11771124, rs10487606, 

rs10487605 
rs11925054 3:55390886 rs5030221 

rs17792917 6:85266965 rs16874800 

rs10790919 11:127657071 rs6590279 

rs7120142 11:103417781 rs4440990 

rs10500130 7:138815913 rs126739052, rs120561433 

1: R2=0.40; 2: R2=0.46; 3: R2=0.43 
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Table 4.8 Reported SNPs as expression quantitative loci (eQTLs) and their association 
with gene expression (lymphoblastoid cell line-based expression) in populations of 
European descent with P<10-4 in the Scan database (http://www.scandb.org). 

dbSNP Gene symbol Gene name Locus P-value 

rs3826782 GPR113 
G protein-coupled 

receptor 113 
2p23.3 2x10-5 

rs11925054 TMEM5 
transmembrane protein 

5 
12q14.2 3x10-5 

 SLC20A2  
solute carrier family 20 
(phosphate transporter), 

member 2 
8p12-p11 8x10-5 

 RABEPK 
Rab9 effector protein 

with kelch motifs 
9q33.3 9x10-5 

rs17792917 ULK4 unc-51-like kinase 4 3p22.1 1x10-4 

 DUSP4 
dual specificity 
phosphatase 4 

8p12-p11 1x10-4 

 CLCF1 
cardiotrophin-like 
cytokine factor 1 

11q13.3 3x10-5 

 CLYBL citrate lyase beta like 13q32 2x10-5 

 TSC22D1 
TSC22 domain family, 

member 1 
13q14 9x10-6 

 TRAK1 
trafficking protein, 
kinesin binding 1 

3p22.1 1x10-4 

 DNMBP 
dynamin binding 

protein 
10q24.2 3x10-5 

 TNFRSF19 
tumor necrosis factor 
receptor superfamily, 

member 19 
13q12.11-q12.3 1x10-4 

 TBC1D8 
TBC1 domain family, 

member 8 
2q11.2 5x10-5 

 MNX1 
motor neuron and 

pancreas homeobox 1 
7q36 3x10-5 

 SLC43A2 
solute carrier family 43, 

member 2 
17p13.3 8x10-5 

 GOLGA8A 
golgin A8 family, 

member A 
15q11.2 7x10-5 

 GOLGA8B 
golgin A8 family, 

member B 
15q14 7x10-5 

 PLCL2 phospholipase C-like 2 3p24.3 5x10-5 

rs11615037 CENTA1/ ADAP1 
ArfGAP with dual PH 

domains 1 
7p22.3 1x10-4 
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L. SUPPLEMENTAL FIGURES 

Figure 4.10 Quantile-quantile plot of genome-wide association analysis results of severe 

chronic periodontitis among the 4610 white Dental ARIC participants. 
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Figure 4.11 Quantile-quantile plot of genome-wide association analysis results of moderate 

chronic periodontitis among the 4610 white Dental ARIC participants. 
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Figure 4.12 Quantile-quantile plot of genome-wide association analysis results of the extent 

of attachment loss trait (proportion of sites exhibiting ≥3 mm attachment loss) among the 

4610 white Dental ARIC participants. 
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Figure 4.13 Visualization of the 3p21 locus that was marked by rs11925054 (P=6.5x10-7) 

for severe chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort. The vertical axis corresponds to each 

marker’s associated –log10 P-value. The overlaid recombination rate plot and the color-

coded pairwise linkage disequilibrium values with index SNPs were calculated based on 

HapMap II – CEU (human genome 18, build 36). 
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Figure 4.14 Visualization of the 4q21.3 locus that was marked by rs17006135 

(P=1.8x10-5 and P=4.4x10-6 after adjustment for smoking and diabetic status) for severe 

chronic periodontitis among the 4610 white participants of the Dental Atherosclerosis in 

Communities Study cohort. The vertical axis corresponds to each marker’s associated –

log10 P-value. The overlaid recombination rate plot and the color-coded pairwise linkage 

disequilibrium values with index SNPs were calculated based on HapMap II – CEU 

(human genome 18, build 36). 
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Figure 4.15 Visualization of the 1p21.1 locus that was marked by rs10493998 

(P=9.2x10-6 and P=2.2x10-6 after adjustment for smoking and diabetic status) for severe 

chronic periodontitis among the 4610 white participants of the Dental Atherosclerosis in 

Communities Study cohort. The vertical axis corresponds to each marker’s associated –

log10 P-value. The overlaid recombination rate plot and the color-coded pairwise linkage 

disequilibrium values with index SNPs were calculated based on HapMap II – CEU 

(human genome 18, build 36). 
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Figure 4.16 Visualization of the 10p15 locus that was marked by rs12260727  

(P=6.0x10-7) for moderate chronic periodontitis among the 4610 white participants of the 

Dental Atherosclerosis in Communities Study cohort. The vertical axis corresponds to 

each marker’s associated –log10 P-value. The overlaid recombination rate plot and the 

color-coded pairwise linkage disequilibrium values with index SNPs were calculated 

based on HapMap II – CEU (human genome 18, build 36). 

 

 

 

 

 

 

 

 

 

 

 



101 

 

Figure 4.17 Visualization of the 12q15 locus that was marked by rs11615037  

(P=2.6x10-5 and P=4.4x10-6 after adjustment for smoking and diabetic status) for 

moderate chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort. The vertical axis corresponds to each 

marker’s associated –log10 P-value. The overlaid recombination rate plot and the color-

coded pairwise linkage disequilibrium values with index SNPs were calculated based on 

HapMap II – CEU (human genome 18, build 36). 
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Figure 4.18 Visualization of the 11q22 locus that was marked by rs7120142 (P=3.9x10-6) 

for severe chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort. The vertical axis corresponds to each 

marker’s associated –log10 P-value. The overlaid recombination rate plot and the color-

coded pairwise linkage disequilibrium values with index SNPs were calculated based on 

HapMap II – CEU (human genome 18, build 36). 
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Figure 4.19 Venn diagram representing genes adjacent to identified SNPs for the three 

chronic periodontitis traits. Genes with asterisk are associated with SNPs that emerged 

below the P<5x10-6 threshold in genetic models adjusted for smoking and diabetic status. 
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B. MANUSCRIPT #2 SUMMARY 

Periodontitis is characterized by an oral biofilm pathological shift that contributes to 

cascade of events leading to periodontal destruction. Host factors modulate the establishment 

of a dysbiotic oral microbiome, but to-date limited evidence exists with regard to associated 

genetic risk loci. We conducted a genome-wide association analysis (GWA) among 1020 

white participants enrolled in the Atherosclerosis in Communities Study cohort, for whom 

quantification of eight periodontal pathogens was performed using a “checkerboard” DNA 

hybridization technique. We examined three traits: “high red” and “high orange” bacterial 

complex, and “high” Aggregatibacter actinomycetemcomitans (Aa) colonization, with “high” 

being defined as the top quintile of each trait distribution. Genotyping was performed using 

the Affymetrix 6.0 platform. Imputation to 2.5million markers was based on HapMap II-

CEU and a multiple-test correction was applied (threshold of P<5x10-8). We detected no 

genome-wide significant signals. However, thirteen loci including KCNK1, FBXO38, 

UHRF2, IL33, RUNX2, TRPS1, CAMTA1 and VAMP3 provided suggestive evidence 

(P<5x10-6) of association with the measured traits. Further investigations providing 

replication of these findings and examination of specific associations may lead to an 

improved understanding of the complex nature of host-biofilm and -bacteria interactions that 

characterizes states of health and disease.  
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C. INTRODUCTION 

Despite advances in the science and practice of dentistry, periodontal diseases continue to 

affect adult populations worldwide. The understanding of the pathogenesis of CP has evolved 

through advances in biology, biochemistry, microbiology, immunology and genetics. Study 

of the composition and complexity of the oral ecology has recently re-emerged as a focus of 

research, with investigations of the oral microbiome gaining increased attention (1). To date, 

over 450 species have been identified in the human microbiome, and its diversity is greater 

than initially theorized (2, 3). In fact, while harboring of periodontal pathogens is virtually 

universal, only a small only proportion of individuals develop severe forms of CP. 

It is a common ground that an oral ecosystem in harmonious symbiosis with its host 

will likely be associated with health, whereas departure from this balance is characteristic of 

disease (4). Specific bacterial species that are implicated in CP have been identified, and in 

general are commensal and include gram-negative anaerobes. The degree or severity of the 

host response, which is a determinant of periodontal tissue destruction, has been found to be 

modulated by several local, systemic, and genetic factors. In this respect, the role of smoking 

and diabetes, as well as several single nucleotide polymorphisms (SNPs) in immune 

response-related genes such as interleukin (IL)-1, have been shown to alter the host response 

and impact the phenotype and clinical course of periodontitis (4,5).  

There is a large body of literature in candidate-gene studies investigating the genetics 

of host inflammatory response, inflammatory mediators and cytokines (5). One recent study 

found a positive association between an IL-6 polymorphism and harboring of 

Aggregatibacter actinomycetemcomitans (Aa), but that report was based on a small sample of 
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forty patients (6). No study to our knowledge has carried out a whole-genome investigation 

for genetic markers of host colonization with periodontal bacteria. To this end, and to add to 

the knowledge base of the genetic component of periodontitis, the aim of this study was to 

investigate susceptibility loci for colonization with sub-gingival pathogenic periodontal 

bacteria using a GWA analysis approach.  

D. MATERIALS AND METHODS 

Detailed descriptions of the study population, genotyping and imputation, quality 

control and population stratification procedures are included in the online Appendix. In brief, 

we conducted a GWA study among 1020 white participants of the Atherosclerosis Risk In 

Communities (ARIC) longitudinal cohort investigation (7). While ARIC is a study of 

atherosclerosis, CVD risk factors and outcomes, a complete oral-dental examination took 

place between 1996 and 1998 during the fourth ARIC visit. As part of the Dental ARIC, 

apart from a complete clinical examination, sub-gingival microbial plaque samples were 

collected for a subset of participants (8).  

The “checkerboard” DNA-DNA hybridization method (9) was used on plaque 

samples to measure the extent of sub-gingival colonization with eight periodontal pathogens: 

Prevotella intermedia [American Type Culture Collection (ATCC) 25611], Campylobacter 

rectus (ATCC 33238), Fusobacterium nucleatum (ATCC 10953), and Prevotella nigriscens 

(ATCC 33563) (belonging to the “orange” complex); Porphyromonas gingivalis (ATCC 

33277), Tannerella forsythia (ATCC 43037) and Treponema denticola (ATCC 35404) (“red” 

complex); and Aggregatibacter actinomycetemcomitans (ATCC 43718). In that method, 

bacterial levels are expressed as counts relative to established microbial standards. Three 

dichotomous traits of “high” colonization with “red” complex, “orange” complex, and 
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Aggregatibacter actinomycetemcomitans were considered for analytical purposes. The two 

composite phenotypes were derived by the summation of bacterial count for each species 

belonging to the “red” (n=3) and “orange” (n=4) group, as described above. Because 

Porphyromonas gingivalis is considered the major periodontal pathogen implicated in 

periodontitis in adult populations, we explored for additional risk loci using its “high” 

colonization phenotype defined as above, as a separate trait, in exploratory analyses that we 

present in the Appendix. Various approaches in defining the bacterial colonization profiles 

have been previously used, including summations of the absolute microbial counts (10), 

tertile-categorization (11), and five-level categorization of log10-transformed counts (12). 

For the present investigation, we defined a “high” colonization trait as the top quintile (20%) 

of each trait’s distribution. The rationale for the selection of this phenotype is based on the 

fact that the “checkerboard” semi-quantitative method has a lower detection threshold of 

~104 and reduced precision in the lower end of the distribution, whereas a individuals with 

“high” bacterial colonization profile may be those with reduced or impaired host and at high 

risk for periodontal tissue destruction.  

Participants’ DNA was extracted from blood samples drawn from an antecubital vein, 

and genotyping was performed with the Affymetrix Genome-Wide Human SNP Array 6.0 

chip. The platform offers 906,600 markers for SNPs. Following rigorous quality control 

procedures, imputation to 2.5million markers was performed using 669,450 SNPs and 

MACH v1.0.16 (http://www.sph.umich.edu/csg/abecasis/MaCH/index.html), based on 

HapMap Phase II CEU build 36. For analytical purposes, the dichotomous traits of “high 

colonization” phenotypes were entered in three logistic regression models assuming 

multiplicative (log-additive) allelic effects. The models included age, sex, examination center 
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and ten principal components from the population stratification analysis as covariates. A 

correction for multiple comparisons assuming 1 million independent tests was applied and a 

threshold of genome-wide statistical significance was set at P<5x10-8. An additional arbitrary 

threshold of P<5x10-6 was set to prioritize and investigate loci with suggestive evidence of 

association. All GWA analyses were performed with the ProbABEL software (13). SNP 

annotations were performed with WGAViewer ver.1.26l (14), Snipper ver.1.2 

(http://csg.sph.umich.edu/boehnke/snipper/), and loci visualizations with LocusZoom ver.1.1 

(15) and Haploview ver.4.2 (16). Reporting of genes was based on the “ HUGO Gene 

Nomenclature” naming convention (www.genenames.org). 

E. RESULTS 

The sample’s descriptive information is presented in Table 1. The participants had 

mean age of 63 years and approximately even gender distribution. “High” bacterial 

colonization profiles were found in all groups of periodontal diagnosis according to the CDC 

classification; however, the prevalence of “high red” colonization cases was more than 

double among participants with severe periodontitis compared to those with mild or no 

disease. Similar, but less pronounced associations were noted for “orange” complex and Aa. 

The bacterial counts of “high colonization cases” were [median (interquartile range); range)] 

“red” complex bacteria—[64725 (108516); 21943-3894605), “orange” complex bacteria—

[304155 (483373); 111926-1.5x107), and Aggregatibacter actinomycetemcomitans—[17309 

(20034); 7520-410713]. 

Of the 2178777 examined SNPs, none had P<5x10-8. However, 53 had a P<5x10-6 

and thus were prioritized for further investigation. Lambda inflation factors for three traits 
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were: “red”—1.040, “orange”—1.045 and Aa—1.032. The corresponding Q-Q plots are 

presented in Figure S1 in the Supplemental Material. Upon inspection of the prioritized 

SNPs, there were five loci that emerged for “red”, three loci for “orange” and five loci for Aa 

colonization (Figure 1). Of those, one locus on 1q42 was shared for the “red” complex and 

Aa. Graphical representations of the genomic areas adjacent to six of these loci are presented 

in Figure 2.  

The strongest signal with regard to “red” complex colonization (Table 1) was 

produced by rs11800854 in the 1q42 locus [P=2.8x10-7; OR=12.3 (95% CL=3.7, 41.3); MAF 

in HapMap-CEU (MAF-CEU): 0.067] in the promoter region (30Kb upstream) of KCNK1 

and adjacent to KIAA1804. The common [G] allele showed 3% enrichment among “high 

colonization cases” for both “red” complex and Aa. Another locus in chromosome 1p22 was 

marked by rs12032672 (P=9.6x10-7), ~500Kb upstream of PKN2.  Rs10043775, in LD with 

multiple markers in the 5q33 locus, represents a missense change in the FBXO38 gene 

(resulting in [Pro]�[Arg] substitution, predicted as ‘benign’ by PolyPhen-2) and provided 

the strongest signal in that locus (P=2.4x10-6), also adjacent to HTR4. A high LD area in 

9p24 including the UHRF2, GLDC, TPD52L3 and IL33 genes is marked by rs16924631 

[intronic to UHRF2; P=3.2x10-6; OR=2.29 (95% CL=1.61, 3.24); MAF-CEU: 0.275], of 

which the [C] risk allele showed almost 10% enrichment among “cases”. An intronic variant 

(rs10010758) of the TBC1D1 gene, adjacent (24Kb) to PTTG2 provided the strongest signal 

in the 4p14 locus [P=3.7x10-6; OR=1.91 (95% CL=1.25, 2.21)]. In the Appendix we present 

results of the exploratory analysis for Pg “high” colonization, which revealed three loci with 

P<5x10-6 including OTOF, C2Orf70, CIB4, DAB2IP, TTLL11 and AKNRD3.  
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The common allele of rs1932040 showed 9% enrichment and provided the strongest 

association signal with “high orange” bacterial colonization [P=1.3x10-6, OR=2.47 (95% 

CL=1.67, 3.65)], marking an intergenic area between RUNX2 and CLIC5 on the 6p21.1 

locus. A low recombination area on 8q23, adjacent to TSPS1 (1.3Mb) and CSMD3 (672Kb) 

is marked by multiple alleles, of which rs9942773 provided the strongest signal (P=1.9x10-6) 

and 10% enrichment among “cases”. A variant intronic to CAMTA1 [rs1616122; P=4.9x10-6; 

OR=1.85 (95% CL=1.41, 2.42)] marks the 1p36.2 locus.  

The 1q42 locus that was identified for “red” bacteria also provided the third strongest 

association signal for Aa [rs11800854; P=4.0x10-6; OR=8.12 (95% CL=2.73, 24.11)]. The 

common [T] allele of rs11621969 was also nominally associated with high Aa colonization 

(P=9.4x10-7) and was adjacent to FOS and JPD2 in 14q24. The rare [G] allele of rs1970525 

was more than twice as prevalent among “cases” (0.118 versus 0.054 among “non-cases”), 

provided the strongest signal in the 10q23 locus [P=3.8x10-6; OR=2.89 (95% CL=1.85, 4.52); 

MAF-CEU: 0.045)] , and represents a nonsense-mediated decay transcript variant in the 

GRID1 gene. Rs9287989 is adjacent to KIAA1715 (30Kb) and EVX2 (227Kb) and marks the 

2q31 locus (P=4.4x10-6). An intronic variant of ODZ2 (rs6885116) provided the strongest 

signal in the locus 5q35 [P=1.4x10-6; OR=2.57 (95% CL=1.76, 3.74); MAF-CEU: 0.084], 

showing 9% enrichment among “cases”. Rs1800795, that was found to be significantly 

associated with Aa colonization in the recent study of Nibali and colleagues (6) did not show 

any important association in this GWA scan [P=0.34, OR=1.12 (95% CL=0.88, 1.43)]. 
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F. DISCUSSION 

This study is the first report of a genome-wide association analysis investigating risk loci for 

colonization with pathogenic periodontal bacteria. Although limited by the sample size, this 

investigation explores a novel phenotype and benefits from a comprehensive quantitative 

phenotypical characterization. Upon replication or validation, these findings have the 

potential to unveil pathways and mechanisms that direct the host’s symbiosis with healthy 

microflora that if altered may predispose for states of disease. In fact, several of the risk loci 

identified in this study may offer promising leads for further exploration and mechanistic 

studies. 

The 1q42 locus and rs11800854, which emerged as a common risk marker for both “red” 

complex and Aa colonization is in the promoter region of KCNK1, a gene that encodes a 

potassium channel protein and has been linked to cardiac outcomes (17). The prioritized 

SNPs at the 9p24 locus marked an area with low recombination rate that includes the 

UHRF2, TPD52L3 and IL33 genes. IL33, as other members of the interleukin family, has 

important roles in immunity and inflammation and has been suggested to function as an 

“alarmin”, alerting the immune system to endogenous trauma such as physical stress or 

infection (18).  

RUNX2, a gene in the 6p21.1 locus that emerged due to the association of rs1932040 with 

“orange” complex colonization encodes a transcription factor that is essential for osteoblastic 

differentiation and skeletal morphogenesis. Mutations in this gene have been associated with 

the cleidocranial disorder syndrome, which has multiple and severe oral manifestations (19). 

Experimental evidence shows that RUNX2 is involved in the inhibition of MMP-13 
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expression, which appears to be involved in periodontitis, as well as osteoblastic and 

osteoclastic activity (20). Another locus that was identified as associated with “orange” 

colonization was 1p36.2 with the “top” SNP rs1616122 being intronic to the CAMTA1 gene. 

CAMTA1 has been reported as a candidate gene for type II diabetes risk (21). VAMP3 is 

adjacent (310Kb upstream) to the marked locus and may also be plausible gene candidate, as 

it has been shown to regulate podosome organization in macrophages, and thus mediate their 

adhesion, spreading and migration (22). 

With regard to association results with Aa “high” colonization, the strongest signal was 

produced by the 14q24 locus, where the FOS and JDP2 genes are located. FOS was recently 

reported as part of a novel mechanism of RANKL expression in T cells (23), which may 

constitute an important link with immune responses, as FOS levels have been shown to 

increase by lippopolysaccharide infusion in vivo (24). JDP2 (85Kb downstream of the top 

SNP of the 14q24 locus) is a transcription factor that has been associated with the 

maintenance of Epstein-Barr virus latency (25), which has been implicated in the 

pathogenesis of chronic periodontitis via inhibition of oral bacteria-induced macrophage 

activation and phagocytosis (26).  

Socransky (27) and other investigators have described how organisms such as Pg, 

Tannerella forsythia, Treponema denticola, Aa and other species found in dental plaque, 

organize themselves in complex communities collectively called “biofilm”, and interact with 

each other and with the host to result in different states of health and disease. While the 

presence of a highly organized biofilm appears a unique feature of dental plaque-induced 

diseases including caries and periodontitis, several other chronic conditions such as 

tuberculosis, rheumatic fever, syphilis, gastrointestinal ulcers and Lyme disease share a 
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bacterial colonization etiologic component (28). Consequently, an increased understanding of 

the genetic underpinning of interactions between the host and exogenous or symbiosing 

bacterial communities has the potential to advance the state of knowledge in periodontitis, 

but also other chronic inflammatory diseases (29).  

The findings of the present investigation, if replicated, have the potential to add to the 

knowledge base of oral microbiome, host-biofilm, host-bacteria interactions, and more. We 

acknowledge that the study of periodontal pathogen colonization phenotypes is rare and this 

limits the replication options of our findings. However, the consideration of specific 

microbial factors as a distinct exposure in investigations of periodontal, oral and systemic 

health is consistent with the paradigm of “periodontal medicine” and may provide novel 

insight in the oral-systemic diseases connection. Although the prevention and treatment of 

periodontitis is an obvious goal, the links of CP with of other systemic conditions and the 

“common theme” of pathogenic ecological shift in other diseases, provide opportunities for 

even greater impact.  
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G. TABLES 

Table 5.1 Distribution of subjects’ demographic characteristics and bacterial “high 
colonization” (defined as the top quintile of the distribution) profile (with “Red”, “Orange” 
complex, and Aggregatibacter actinomycetemcomitans) overall, and stratified by periodontal 
diagnosis (CDC/AAP classification) among the Dental ARIC study participants (n=1020) 

 Total  Healthy/mild  Moderate  Severe 

 

n (column %)  
n (column 

%) 
 n (column %)  n (column %) 

n (row %) 1020 (100)  416 (41)  415 (41)  189 (19) 

Sex        

Females 478 (47)  246 (59)  178 (43)  54 (29) 

Males 542 (53)  170 (41)  237 (57)  135 (71) 
Age (years; mean, standard 
deviation) 63.2 (5.7)  62.3 (5.5)  63.6 (5.7)  64.0 (5.9) 

“High” bacterial 
colonization (n, % of 
column) 

       

“Red” complex 203 (20)  58 (14)  84 (20)  61 (32) 

“Orange” complex 201 (20)  73 (18)  72 (17)  56 (30) 

A. actinomycetemcomitans 204 (20)  75 (18)  81 (20)  48 (25) 
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Table 5.2 Genome-wide association analysis results of the high colonization traits (highest quintile of the distribution versus 
the other four; quantified with DNA-DNA “checkerboard” hybridization) for “Red”, “Orange” complex and Aggregatibacter 
actinomycetemcomitans, among the white participants of the Dental ARIC study (n=1020). Single nucleotide 
polymorphisms (SNPs) with minor allele frequency (MAF-HapMap II CEU) of ≥5% and associated P<5x10-6. The SNP with 
the lowest P-value per locus is presented; additional prioritized SNPs in each locus are presented in the footnote, along with 
corresponding R2 (based on 1000 genomes pilot 1 release) with the top SNPs. 

Chr. SNP 
Position  
Build36 ca1 nca2 

MAF 
(HapMap 
II-CEU) 

Closest gene(s) and 
position or distance 

Risk allele 
frequency low/ 

high colonization P value 
Odds ratio 
(95% CL) 

“Red” complex        

1q42 rs118008543 231786607 A G [A] 0.068 KCNK1 (30Kb) [G] 0.947/0.978 2.8x10-7 12.3 (3.7, 41.3) 

1p22 rs12032672 88398224 A C [C] 0.350 PKN2 (524Kb) [C] 0.332/0.446 9.6x10-7 1.99 (1.50, 2.62) 

5q33 rs100437754 147785313 C T [C] 0.274 
FBXO38 (missense 

change)6 
/HTR4 (19Kb) 

[T] 0.703/0.791 2.4x10-6 2.06 (1.51, 2.83) 

9p24 rs169246315 6476308 C G [C] 0.142 
UHRF2 (non-coding 

transcript variant) 
/GLDC (46kb) 

[C] 0.122/0.219 3.2x10-6 2.29 (1.61, 3.24) 

4p14 rs10010758 37614913 C T [C] 0.275 
TBC1D1(intron 
variant)/ PTTG2 

(24Kb)7 
[C] 0.291/0.384 3.7x10-6 1.91 (1.45, 2.51) 

“Orange” complex        

6p21.1 rs19320408 45804766 A G [A] 0.142 
CLIC5 (169Kb)/ 
RUNX2 (178Kb) 

[G] 0.808/0.896 1.3x10-6 2.47 (1.67, 3.65) 

8q23 rs99427739 115190203 A C [C] 0.283 
CSMD3 (672Kb)/ 
TRPS1 (1.3Mb) 

[A] 0.703/0.803 1.9x10-6 2.07 (1.51, 2.82) 

1p36.2 rs1616122 7444172 C T [C] 0.482 
CAMTA1 (intron 
variant)/VAMP3 

(310Kb) 
[T] 0.506/0.624 4.9x10-6 1.85 (1.41, 2.42) 

“Aggregatibacter actinomycetemcomitans”     

14q24 rs11621969 74883781 C T [C] 0.167 
FOS (65Kb)/ JDP2 

(85Kb) 
[T] 0.789/0.885 9.4x10-7 2.46 (1.68, 3.62) 

10q23 rs197052510 87624904 C G [G] 0.045 

GRID1 (NMD12 
transcript variant) 
/MI346/ WAPAL 

(560Kb) 

[G] 0.054/0.118 3.8x10-6 2.89 (1.85, 4.52) 

1q42 rs1180085411 231786607 A G [A] 0.067 
KCNK1 (30Kb)/ 

KIAA1804 (199Kb) 
[G] 0.947/0.978 4.0x10-6 8.12 (2.73, 24.11) 

2q31 rs9287989 176425987 C T [T] 0.433 
KIAA1715 (73Kb)/ 

EVX2 (227Kb)/ 
EXTLP213 (10Kb) 

[C] 0.484/0.605 4.4x10-6 1.80 (1.39, 2.33) 

5q35 rs6885116 167576123 A G [G] 0.084 
ODZ2 (intron 

variant)/ WWC1 
(76Kb) 

[G] 0.078/0.169 1.4x10-6 2.57 (1.76, 3.74) 

1: coded allele 
2: non-coded allele 
3: Additional SNPs in locus with P<5x10-6: rs6682365 (R2=1.00) 
4: Additional SNP in locus with P<5x10-6: rs10068216 (R2=1.00), rs10072051 (R2=1.00), rs17108251 (R2=1.00), rs10044061 (R2=1.00), rs4349707 
(R2=1.00), rs10477376 (R2=1.00), rs9325095 (R2=1.00), rs10041283 (R2=1.00), rs9325097 (R2=0.87),  rs3734120 (R2=1.00), rs4574533 (R2=0.87),  
rs4274967 (R2=1.00), rs4274968 (R2=1.00), rs6884076 (R2=1.00), rs9325098 (R2=1.00) 
5: Additional SNP in locus with P<5x10-6: rs11795355 (R2=1.00), rs7876000 (R2=1.00), rs10975603 (R2=0.93), rs16924626 (R2=0.93), rs16924624 
(R2=1.00), rs10975605 (R2=0.93), rs10115883 (R2=0.93), rs10122116 (R2=0.93) 
6: T>C – Ser>Pro, 35b from the exon boundary 
7: R2=0.29 with rs6811863 which is a missense change in PTTG2: G>C – [Arg]�[Pro] 
8: Additional SNPs in locus with P<5x10-6: rs12525547(R2=0.93), rs9349326(R2=0.93), rs16873698(R2=0.93) 
9: Additional SNP in locus with P<5x10-6: rs10089040 (R2=1.00), rs9942776 (R2=1.00), rs10086149 (R2=1.00), rs7845243 (R2=0.87), rs10105817 
(R2=1.00), rs7006291 (R2=1.00), rs11779159 (R2=1.00), rs11783996 (R2=1.00), rs10098056 (R2=1.00), rs7018200 (R2=0.92) 
10: Additional SNPs in locus with P<5x10-6: rs4325261 (R2=1.00) 
11: Additional SNP in locus with P<5x10-6: rs6682365 (R2=1.00) 
12: nonsense-mediated decay 
13: EXTLP2 is a pseudogene 
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H. FIGURES 

Figure 5.1 Manhattan plot of the GWAS results (-log10 P-values of the ~2.5 million 

examined SNPs arranged by chromosome) for “high red” complex bacterial colonization 

among the 1020 white participants of the Dental ARIC Study cohort. 
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Figure 5.2 Manhattan plot of the GWAS results (-log10 P-values of the ~2.5 million 

examined SNPs arranged by chromosome) for “high orange” complex bacterial colonization 

among the 1020 white participants of the Dental ARIC Study cohort. 
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Figure 5.3 Manhattan plot of the GWAS results (-log10 P-values of the ~2.5 million 

examined SNPs arranged by chromosome) for “high” Aggregatibacter 

actinomycetemcomitans bacterial colonization among the 1020 white participants of the 

Dental ARIC Study cohort. 
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Figure 5.4 Visualization of the 1p22 locus that was marked by rs12032672 (P=9.6x10-7) 

for “high red” complex bacterial colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure 5.5 Visualization of the 5q33 locus that was marked by rs10043775 (P=2.4x10-6) 

for “high red” complex bacterial colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure 5.6 Visualization of the 9p24 locus that was marked by rs16924631 (P=3.2x10-6) 

for “high red” complex bacterial colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure 5.7 Visualization of the 4p14 locus that was marked by rs10010758 (P=3.7x10-6) 

for “high red” complex bacterial colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure 5.8 Visualization of the 1p36.2 locus that was marked by rs1616122 (P=4.9x10-6) 

for “high orange” complex bacterial colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure 5.9 Visualization of the 1q42 locus that was marked by rs11800854 (P=4.0x10-6) 

for “high” Aggregatibacter actinomycetemcomitans colonization among the subset of 

1020 white participants of the Dental Atherosclerosis in Communities Study cohort. The 

vertical axis corresponds to each marker’s associated –log10 P-value. The overlaid 

recombination rate plot and the color-coded pairwise linkage disequilibrium values with 

index SNPs were calculated based on HapMap II – CEU (human genome 18, build 36). 
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J. MANUSCRIPT #2- SUPPLEMENTAL MATERIAL 

SUPPLEMENTAL MATERIALS AND METHODS 

Study population 

The study sample consisted of participants of the Dental ARIC, an ancillary study of 

the Atherosclerosis Risk In Communities (ARIC) longitudinal cohort investigation (1). ARIC 

is a study of atherosclerosis, CVD risk factors and outcomes. The Dental ARIC, an ancillary 

study was undertaken between 1996 and 1998 during the ARIC visit 4. For the purposes of 

Dental ARIC a complete oral-dental examination was performed among 6979 subjects, 

whereas collection of gingival crevicular fluid and sub-gingival microbial plaque samples 

was undertaken for a subset of participants (2). Specifically, of the 6979 Dental ARIC 

participants, 1450 had microbial plaque samples collected (2-4). For the purposes of the 

present GWA study, we considered white subjects who had provided microbial plaque 

samples (n=1236) and were successfully matched with genotype data (n=1020). Additional 

information that was collected as part of ARIC visit 4 and was used for data presentation and 

analysis included the following variables: sex, age, CP diagnosis [Centers for Disease 

Control (CDC) and American Academy of Periodontology (AAP) three-level classification: 

health/mild, moderate, and severe disease] (5), smoking status (never, former, current), and 

DM (healthy or DM).  

Genotyping and imputation 

In the study population, DNA was extracted from blood samples drawn from an 

antecubital vein into tubes containing serum separator gel. Blood samples were analyzed at a 

central ARIC laboratory in Houston, TX. Genotyping was performed with the Affymetrix 
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Genome-Wide Human SNP Array 6.0 chip. The platform offers 906600 markers for SNPs. 

The rigorous quality control procedures included initial blind duplicate genotyping and 

identification/flagging of SNPs with kappa<0.95 and reconciliation of unintentional duplicate 

samples (17 duplicates and one triplicate). Imputation to 2.5 million markers was performed 

using 669450 SNPs and MACH v1.0.16 (http://www.sph.umich.edu/csg/abecasis/MaCH/ 

index.html), based on HapMap Phase II CEU build 36. The selected SNPs were selected 

from 839048 autosomal SNPs restricted to those with minor allele frequency (MAF)>0.01 

(129543 excluded), Hardy-Weinberg equilibrium (HWE) P>10-5 (12432 excluded) and call 

rate >95% (1693 excluded). After imputation, SNPs with a quality score <0.8 and missing 

data rate >10% were identified and flagged for removal, while only those with MAF of ≥5% 

were considered for analytical purposes. 

Population stratification 

To obtain estimates of relatedness and population stratification a subset of 85,947 

“high quality” SNPs was selected. These SNPs met the following criteria among self-

reported whites: MAF ≥0.1, call rate >99.5%, HWE P≥10-3, autosomal, with annotation in 

the platform annotation file, not labeled “AFFX” or “chromosome 0”, and not monomorphic. 

Using these SNPs identity-by-state (IBS) allele sharing distance (DST values) were 

computed using PLINK, as such: DST = IBS distance (IBS2 + 0.5*IBS1) / (n SNP pairs). 

First degree relative status was assigned to pairs of individuals with DST≥0.8 and second 

degree relatives were considered those with 0.763 ≤DST< 0.8. Among the Caucasian ARIC 

participants there were 380 pairs of first degree and 207 pairs of second degree relatives 

identified. To minimize exclusions, related pairs were broken by iterative selection of 

individuals with most relatives using a custom program. 
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Population stratification was further evaluated with principal component (PC) 

analysis using the EIGENSTRAT program (6). The above chosen set of SNPs was used for 

the computation of ten principal components. Genetic outliers were considered those that 

were further than 8 standard deviations (SD) away from any of ten PCs over ten runs of PC 

computation. Based on DST and PC criteria there were 716 subjects flagged from removal 

from the analysis (206 as genetic outliers based on PCs and 16 based on average DST values 

(“too little IBS sharing” with the rest of the sample), 351 first degree relatives and 143 

second degree relatives. All but ten second degree relatives (whose relatives were excluded 

as genetic outliers) were re-entered in the dataset and were assigned PCs. After exclusion of 

364 individuals (4%) there were 9349 Caucasians who were included in the GWA analysis 

and of those, 1020 had periodontal microbiological data available as Dental ARIC 

participants. 

SUPPLEMENTAL RESULTS REGARDING PORPHYROMONAS GINGIVALIS 

 We detected no genome-wide significant association signals with regard to Pg “high” 

colonization. However, six SNPs marking three loci emerged below the P<5x10-6 threshold 

and were prioritized for further investigation. Of those, rs10760187 in 9q33.2 provided the 

lowest P-value [P=4.5x10-7; OR=2.07 (95% CL=1.55, 2.76)], with the ‘risk’ [C] allele 

(HapMap II CEU MAF [T]: 0.514) showing 12% enrichment among subjects with “high” 

colonization. This SNP is in an intergenic area between DAB2IP (18Kb) and TTLL11 (18Kb) 

and in LD with several variants intronic to both genes. Rs1011108 [P=2.0x10-6; OR=1.79 

(95% CL=1.40, 2.27); MAF-CEU: [T] 0.374] is in a gene-dense locus at 2p23.3, 1Kb from 

OTOF, 3Kb from C2Orf70 and 18Kb from CIB4. In fact, the second prioritized SNP in this 

locus (rs1275992) is intronic to CIB4 and in linkage disequilibrium (R2=0.58, D’0.94) with 
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rs13002673 which represents a missense change in C2Orf70 resulting to a [Gln]�[His] 

substitution, predicted as ‘benign’ by PolyPhen-2. The third locus that was associated with 

Pg “high” colonization was marked by rs1360573 at 10p11.21 [P=1.5x10-6; OR=2.75 (95% 

CL=1.78, 4.26)]. The common “risk” allele [A] showed a 10% enrichment, and the closest 

gene is ANKRD30A (529Kb).  

SUPPLEMENTAL DISCUSSION REGARDING PORPHYROMONAS GINGIVALIS 

The examination of Pg colonization as a distinct trait is supported by the major role that this 

pathogen has in chronic periodontitis (7, 8). These exploratory analysis results, above and 

beyond those reported for “red” complex bacteria, can be considered as additional candidate 

regions that may be implicated in increased colonization with Pg and thus, higher risk for 

chronic periodontitis.  

With regard to genes in the 2p23.3 locus, CIB4 (KIP4) is known as calcium and 

integrin binding family member 4. Mutations in the OTOF (otoferlin) gene have been 

associated with non-syndromic types of deafness (9). No information is available on the role 

of C2Orf70.  Interestingly, the 9q33.3 locus that was marked by rs10760187 in our GWAS 

was also identified as associated with abdominal aortic aneurysm in a Northern European 

GWAS (10). This genomic area has also been reported to harbor important susceptibility 

variants associated with cleft lip/palate (11). One candidate gene in the 9q33.3 locus, 

DAB2IP, is also known as DAB2-interacting protein or AIP1. This gene is member of a 

family of regulators of extracellular stimuli that serve to maintain the homeostasis of cellular 

functions (12) and has been shown to be inactivated by methylation in prostate and breast 

cancer (13). TTLL11, another candidate gene in this locus, encodes a member of a large 
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family of proteins involved in the catalytic ligation of amino acids to tubulins or other 

substrates (14). Finally, the closest gene to the top SNP in the 21q22.3 locus was 

ANKRD30A, or ankyrin repeat domain-containing protein 30A. Reports have linked this gene 

and its protein (NY-BR-1) as a differentiation marker of the mammary gland, and thus as a 

potential diagnostic and immunotherapeutic aid for breast carcinomas (15, 16) with cancer. 

Moreover, a recent study found an association of a 3’UTR SNP of ANKRD30A with the 

human serum metabolic profile (17). 
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K.  SUPPLEMENTAL TABLE 

Table 5.3 Porphyromonas gingivalis “high” colonization (quantified with DNA “checkerboard” hybridization) 
GWA results among the white participants of the Dental ARIC study (n=1020). Single nucleotide polymorphisms 
(SNPs) with minor allele frequency (MAF-HapMap II CEU) of ≥5% and P<5x10-6. The SNP with the lowest P-
value per locus is presented; additional prioritized SNPs in each locus are presented in the footnote, along 
with corresponding R2 (based on 1000 genomes pilot 1 release) with the top SNPs. 

Chr. SNP 
Position  
Build36 ca1 nca2 

Risk allele 
frequency 
(HapMap 
II- CEU) 

Closest gene(s) 
and position or 
distance 

Risk allele 
frequency 
low/ 
high 
colonization P value 

Odds ratio 
 (95% CL3) 

2p23.3 rs10111084 26636125 C T [T] 0.374 
OTOF (1Kb); 
C2Orf70 (3Kb); 
CIB4 (21Kb) 

0.341/0.485 2.0x10-6 1.79 (1.40, 2.27) 

9q33.2 rs107601875 123605641 C T [C] 0.514 
DAB2IP (18Kb); 
TTLL11 (18Kb) 

0.498/0.618 4.5x10-7 2.07 (1.55, 2.76) 

10p11.21 rs1360573 36925927 A G [A] 0.759 
ANKRD30A (529 
Kb); FZD8 (956 
Kb) 

0.752/0.853 1.5x10-6 2.75 (1.78, 4.26) 

1: coded allele 
2: non-coded allele 
3: Confidence limits 
4: Additional SNP in locus with P<5x10-6: rs1275992  (R2=0.33), intronic to CIB4 and in linkage disequilibrium (R2=0.58, D’0.94) with 
rs13002673 which represents a missense change in C2Orf70 resulting to a [Gln]�[His] substitution 
5: Additional SNPs in locus with P<5x10-6: rs7849478 (R2=0.63), rs10985387 (R2=0.67) 
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Table 5.4 Reported SNPs as expression quantitative loci (eQTLs) and their association 
with gene expression (lymphoblastoid cell line-based expression) in populations of 
European descent with P<10-4 in the Scan database (http://www.scandb.org). 

dbSNP 
Gene 

symbol Gene name Locus 
P-

value 

rs10043775 
KIAA0515 
(PRRC2B) 

proline-rich coiled-coil 2B 9q34.13 6x10-5 

 CCDC57 coiled-coil domain containing 57 17q25.3 5x10-5 

rs1932040 MRPL15 mitochondrial ribosomal protein L15 
8q11.2-

q13 
9x10-5 

 EAF1 ELL associated factor 1 3p25.1 3x10-5 

 TAF5L 
TAF5-like RNA polymerase II, p300/CBP-
associated factor (PCAF)-associated factor, 

65kDa 

1q42.11
-q42.3 

8x10-5 

rs16924631 MED15 mediator complex subunit 15 22q11.2 10-4 

 PSMB7 
proteasome (prosome, macropain) subunit, 

beta type, 7 
9q34.11
-q34.12 

2x10-5 

 MVD mevalonate (diphospho) decarboxylase 16q24.3 10-4 
 MAN2A2 mannosidase, alpha, class 2A, member 2 15q25 9x10-6 

 DNMBP dynamin binding protein 
10q24.3

1 
6x10-5 

 PQLC1 PQ loop repeat containing 1 18q23 4x10-5 
 PRKCE protein kinase C, epsilon 2p21 3x10-6 

 NEK6 
NIMA (never in mitosis gene a)-related 

kinase 6 
9q33.3-
q34.11 

2x10-5 

 PREX1 
phosphatidylinositol-3,4,5-trisphosphate-

dependent Rac exchange factor 1 
20q13.1

3 
10-4 

rs1011108 TMEM2 transmembrane protein 2 9q21.13 3x10-5 
 LRRK1 leucine-rich repeat kinase 1 15q26.3 10-5 
 A4GALT alpha 1,4-galactosyltransferase 22q13.2 10-4 
 MTTP microsomal triglyceride transfer protein 4q24 5x10-5 
 MYO6 myosin VI 6q14.1 2x10-5 
 ASPH aspartate beta-hydroxylase 8q12.1 6x10-6 
 CNKSR3 CNKSR family member 3 6q25.2 9x10-5 

 F13A1 coagulation factor XIII, A1 polypeptide 
6p24.2-

p23 
4x10-5 

 RASSF6 
Ras association (RalGDS/AF-6) domain 

family member 6 
4q21.1 5x10-6 

 
LOC100129

069 
hypothetical protein LOC100129069 11q24.2 10-4 

 HNF4G hepatocyte nuclear factor 4, gamma 
8q21-
q22 

10-4 

 MLSTD1 fatty acyl CoA reductase 2 2p11.23 10-4 

 CHL1 
cell adhesion molecule with homology to 

L1CAM (close homolog of L1) 
3p26 6x10-5 

 PIP3-E interaction protein for cytohesin exchange 6q25.2 10-5 
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factors 1 
 HNF1B HNF1 homeobox B 17q12 3x10-5 

 SERPINB1 
serpin peptidase inhibitor, clade B 

(ovalbumin), member 1 
6p25 7x10-5 

 ESAM ribosomal protein L6 pseudogene 25 
12q21.3

1 
10-4 

 IL17RB interleukin 17 receptor B 3p21.1 10-4 

 CCDC64 coiled-coil domain containing 64 
12q24.2

3 
10-4 

 C14orf105 chromosome 14 open reading frame 105 14q22.2 2x10-5 
 C1orf161 mab-21-like 3 1p13.1 2x10-5 

 MMAA 
methylmalonic aciduria (cobalamin 

deficiency) cblA type 
4q31.1 5x10-5 

 C10orf137 mosome 10 open reading frame 137 10q26.2 6x10-5 
 ZNF503 zinc finger protein 503 10q22.3 5x10-5 
 ZNF44 zinc finger protein 44 19p13.2 10-4 
 CXorf21 chromosome X open reading frame 21 Xp21.3 6x10-5 
 PIR pirin (iron-binding nuclear protein) Xp22.31 2x10-5 
 MGC13057 chromosome 2 open reading frame 88 2q32.2 4x10-5 

 SERPINB9 
serpin peptidase inhibitor, clade B 

(ovalbumin), member 9 
6p25 2x10-5 

 
CCDC4 

(BEND4) 
BEN domain containing 4 4p13 3x10-5 

 SYNE2 spectrin repeat containing, nuclear envelope 2 
14q22.1
-q22.3 

8x10-5 

 BHLHB5 basic helix-loop-helix family, member e22 8q12.1 10-4 
 LRRK1 leucine-rich repeat kinase 1 15q26.3 4x10-6 

 GTF3C6 
general transcription factor IIIC, polypeptide 

6, alpha 35kDa 
6q21 7x10-5 

 PLA1A phospholipase A1 member A 
3q13.13
-q13.2 

2x10-5 

 WDR91 WD repeat domain 91 7q33 6x10-5 
 LIN7A lin-7 homolog A 12q21 9x10-6 
 MAGEF1 melanoma antigen family F, 1 3q13 10-4 
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SUPPLEMENTAL FIGURES 

Figure 5.10 Quantile-quantile plot of genome-wide association analysis results of “high red” 

complex bacterial colonization, among the 1020 Dental ARIC participants. 
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Figure 5.11 Quantile-quantile plot of genome-wide association analysis results of “high 

orange” complex bacterial colonization, among the 1020 Dental ARIC participants. 
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Figure 5.12 Quantile-quantile plot of genome-wide association analysis results of “high” 

Aggregatibacter actinomycetemcomitans colonization, among the 1020 Dental ARIC 

participants. 
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Figure 5.13 Visualization of the 2p23.3 locus that was marked by rs1011108 (P=2.0x10-6) 

for “high” Porphyromonas gingivalis colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure 5.14 Visualization of the 9q33.2 locus that was marked by rs10760187 (P=4.5x10-7) 

for “high” Porphyromonas gingivalis colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure 5.15 Visualization of the 10p11.21 locus that was marked by rs1360573 (P=1.5x10-6) 

for “high” Porphyromonas gingivalis colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort. The vertical axis 

corresponds to each marker’s associated –log10 P-value. The overlaid recombination rate 

plot and the color-coded pairwise linkage disequilibrium values with index SNPs were 

calculated based on HapMap II – CEU (human genome 18, build 36). 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

A. Summary of findings 

In our genome-wide analysis of chronic periodontitis (CP) in a well-defined 

cohort of approximately 4600 white subjects we detected no genome-wide significant 

signals. However, we found suggestive evidence of association (P<5x10-6) for CP 

with markers at ten loci including NPY, NIN, and WNT5A for severe CP, NCR2 and 

EMR1 for moderate CP, and TBX18, ETS1, DYNC2H1, TTC26 and ZC3HAV1 for the 

“extent” of attachment loss (EAL) trait. Several of these loci include candidate genes 

that are related to immune function and regulation, as well as neurological function. 

Noteworthy, four loci marked by rs3826782, rs11925054, rs17792917, rs11615037 

have been identified as expression quantitative trait loci (eQTL) on lymphoblastoid 

cell lines (LCL). Sensitivity analyses including smoking and diabetes-adjusted 

genetic models did not show any material impact on these results. However, in these 

adjusted analyses five additional loci including SCD5, RPS29, PPIL5, COL11A1, 

CPM and CPSF6 emerged below the P<5x10-6 threshold. The 4q21.3 (SCD5) locus 

was shared for severe CP and EAL, and the 6p21.1 (NCR2) locus reached genome-

wide significance for moderate CP (rs7762544; Padjusted= 3.8x10-8). The NPY (7p15) 

locus was replicated for severe CP in an independent sample of whites of European 

descent. We performed inverse-variance weighted meta-analysis for three loci that 
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revealed no evidence of effect heterogeneity between the two studies. Pooled odds 

ratios for these three loci were: 7p15 (NPY, rs2521634)—OR=1.49 (95% CI=1.28-

1.73), P=3.5x10-7; 19p13.3 (EMR1, rs3826782)—OR=2.01 (95% CI=1.52-2.65), 

P=8.2x10-7; 6p21.1 (NCR2, rs7762544)—OR=1.40 (95% CI=1.24-1.59), P=7.5x10-8. 

Our exploratory analyses of SNP interactions with sex, smoking and diabetes detected 

several interaction effects below an empirical P<10-5 threshold: 20 SNPs with sex, 17 

with diabetic status, and 12 with the three-level smoking categorization (never, 

former, current). 

In the GWA scan in a subset of approximately 1000 subjects for which 

periodontal microbiological data were available we detected associations with 

markers at thirteen loci including KCNK1, FBXO38, UHRF2, IL33, RUNX2, TRPS1, 

CAMTA1 and VAMP3 providing suggestive signals of association (P<5x10-6) with 

“high” bacterial colonization with “red” complex, “orange” complex, and 

Aggregatibacter actinomycetemcomitans (Aa). Exploratory analyses revealed three 

additional loci including OTOF, C2Orf70, CIB4, DAB2IP, TTLL11 and AKNRD3 

associated with Porphyromonas gingivalis (Pg) “high” colonization. Four of these 

loci marked by rs10043775, rs1932040, rs16924631 and rs1011108 were identified to 

be eQTLs on LCL. Two missense changes that were identified for “high” bacterial 

colonization traits (rs10043775, 5q33, FBXO38 gene [Pro]�[Arg] and rs13002673 

(in LD with the prioritized rs1011108), 2p23.3, C2Orf70 gene [Gln]�[His]) were 

predicted to be ‘benign’.  

These genome-wide scan results provide new information on multiple 

candidate regions for interrogation in genetic studies of CP. Further investigations 
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providing replication of these findings and examination of specific associations may 

lead to an improved understanding of the pathogenesis of CP as well as the complex 

nature of host-biofilm and -bacteria interactions that characterizes states of health and 

disease. 

 

B. Strengths 

1. Genome-wide association analysis approach 

The opportunity that GWAS provide for investigators to examine the association 

of currently more than a million DNA markers with a given phenotype without being 

limited by prior knowledge, known pathways or mechanistic hypotheses in their marker 

selection, is unique. It has been argued that most associations detected by GWAS 

represent new discoveries. This “unbiased” or “agnostic” (1) approach in examining the 

genetic component of various phenotypes facilitates identification of novel loci and thus, 

potential insights into new pathways or mechanisms of biological processes. The present 

study is the first report of a GWA analysis of CP to-date, and provides suggestive 

evidence of association for several genomic loci that may be promising leads for further 

genetic investigations.  

 

2. Phenotype characterization 

The value and quality of the Dental ARIC clinical examinations protocol is 

truly unique. It is known that clinical-periodontal examination data are accurate and 

reproducible when they are performed by trained and calibrated dental examiners, as 

was the case with Dental ARIC study. Recent reports (2) stress that national estimates 
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of CP prevalence may severely underestimate the true prevalence due to disease 

misclassification in the NHANES III and IV. The next NHANES oral-dental 

examinations will be performed for the first time following the “full-mouth six site 

per tooth” protocol used in the Dental ARIC study. As outlined in the introduction, 

numerous definitions and quantitative measures exist to capture the extent and 

severity of periodontitis (3), with each been subject to varying degrees of bias 

(measurement error, bias due to loss of severely affected teeth, and more). The use of 

the most widely accepted and consensus CDC/AAP classification of CP, in 

combination with a clinical examinations protocol of highest standard is a major 

strength of the proposed investigation. We considered a continuous and non-

reversible measure of periodontal destruction as an additional strength. 

The investigation of microbiological colonization phenotypes in addition to 

CP is offering additional insights into the factors facilitating or antagonizing the 

cascade of pathological oral ecological shifts that are characteristic of the disease. 

The oral microbial load of Gram-negative and anaerobic periodontal pathogens may 

be an independent risk factor for, or modifier of several systemic conditions (4-7), 

and its exploration adds value to this study. While periodontitis is a clinical 

manifestation of exaggerated immune response to predominantly commensal oral 

bacteria, investigating genetic factors associated with colonization and proliferation 

of these causative bacterial agents is a fundamental question.  
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3. Covariates and sensitivity analysis 

Because population stratification (“systematic” differences in ancestry 

between trait categories) can result in spurious GWA results, appropriate adjustment 

for population substructure was undertaken in all analyses, using 10 EIGENSTRAT-

derived principal components. Inspection of the quantile-quantile plots did not reveal 

any “early departure” of the observed versus expected P-values. Additionally, 

genomic inflation (lambda) factors for most analyses were generally low, below 

1.030. Our analyses also benefitted from the detailed measurement and consideration 

in sensitivity analyses of the well-documented risk factors or disease modifiers, 

smoking and diabetic status. Although no confounding is expected in the association 

between SNPs and the examined traits, the consideration of smoking history in the 

sensitivity analysis provides the opportunity to rule out the identification of risk loci 

for this risk factor, which has been shown to confer epigenetic changes (8, 9). 

Moreover, the inclusion of the diabetic status as a covariate in the sensitivity analysis 

is based on the fact that diabetes is associated with altered host response (10, 11) and 

increased susceptibility to bacterial infections (12). A sensitive definition of diabetes 

was used in the ARIC study, including fasting and non-fasting serum glucose levels, 

and pharmacological treatment for the disease.  

 

C. Limitations 

1. Phenotype characterization 

As noted previously, the use of the CDC/AAP definition of CP represents the 

most widely accepted standard for classifying the disease. While our clinical data and 
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case-definition used for CP are of the highest standards possible, the disease itself 

entails some unique methodological challenges. Although periodontitis is a defined as 

a disease at the “person- or oral cavity-level”, it is actually characterized by multiple-

attacks on the periodontal attachment of individual teeth (13). As it progresses, 

periodontitis leads to gradual periodontal tissue destruction, alveolar bone loss, and 

eventually tooth loss. For example, in a cross-sectional study of periodontal status in 

relation to age and tooth type it was found that incisor teeth were the most frequently 

affected by advanced disease, whereas molar teeth were most frequently missing (14). 

In “periodontal maintenance” studies, it has similarly been found that molar teeth are 

the most frequently extracted due to periodontal reasons (15). This constitutes a form 

of “censoring” of the most affected “diseased units”, the teeth. In this respect, CP can 

be a self-limiting disease on a tooth-level. This is also the case on a patient-level, as 

(considering the extreme scenario) an edentulous individual is not at risk to develop 

periodontitis. A consequence of this phenomenon is the observation that the 

prevalence, as well as extent and severity of CP in epidemiologic studies are likely 

biased downwards from tooth loss attributable to the disease. It has been recognized 

that variation in the criteria and case definitions used for the classification of CP has 

been a source of inconsistencies in the dental literature (16). Also, as outlined in the 

introduction, more quantitative measures exist to capture the extent and severity of 

periodontitis compared to “crude” classifications, such as the “extent” of attachment 

loss, which was employed in this study. It will be worthwhile for future studies to 

consider juxtaposing the present investigation’s findings to additional sensitivity 
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analyses using extent scores (e.g. ≥3mm CAL) as continuous variables for the GWA 

analyses, while adjusting for tooth loss. 

Another consideration is that periodontitis, when measured by clinical 

measures of PD and (mainly) CAL, essentially represents the cumulative history of 

periodontal tissue destruction and not necessarily active disease or infection. 

Capturing this cumulative impact on periodontal tissues may be beneficial when 

considering longitudinal effects or progression patterns of periodontitis that may be 

biologically admixed. While more biologically-relevant disease classifications have 

been developed, our independent consideration of the association of host genetic 

variants with the microbial biofilm composition represents an improvement over the 

study of CP diagnoses alone. Despite being limited by small sample size for a GWAS 

(approximately 1000 individuals with microbial level counts), we consider this 

approach as the first exploration of loci associated with the composition of the oral 

microbiome. However, we acknowledge that this discovery step is limited by the very 

low power to detect modest effects. Similarly, our GWAS was underpowered to 

detect interaction effects in this additional exploratory step.  

 

2. Genome-wide analysis approach 

Whole-genome sequencing for population-based studies is financially and 

resource-prohibitive with today’s state of technology. For this purpose, imputation 

methods for non-typed markers have been developed, and imputation has become a 

standard step in GWA studies (17). Imputing does introduce some uncertainty in the non-

typed allele frequencies, but publicly available programs for GWA analyses such as 



 

154 

 

probABEL (18) allow the use of “dosage files” including imputed SNPs. As denser 

mapping of the human genome is realized, opportunities to use a 1000 genomes-based 

(19) imputation of the ARIC genotyped data (up to 10 million markers) will be an 

important improvement to the current approach. 

A frequent criticism of the GWAS concerns the current state of very conservative 

criteria of (genome-wide) statistical significance that are necessary to reduce the false-

positive rate (1). The traditional Bonferroni correction is believed to be ultra-conservative 

due to the fact that SNPs are to some degree correlated, as the ~2.5 million association 

tests performed in imputed datasets are not truly independent from each other. This 

stringency may allow only for relatively strong associations to be discovered, while much 

“good signal” obtained by SNPs with modest or small effects goes without attention. This 

is compounded by the fact that many common complex traits are thought to be influenced 

by a large numbers of low-penetrance, small effect variants. Park et al. recently suggested 

that if these large numbers of low-penetrance variants is identified from sufficiently 

powered GWAS, together they could explain 20% or more of the known heritability of 

such traits (20). On the other hand, another concern with GWAS findings is related to the 

“winner’s curse” (21) which becomes evident when identified loci are not being 

replicated in external samples or are not reproduced in subsequent studies. For these 

reasons, the interpretation of GWAS findings is now proposed to become subject to 

different criteria (compared to “traditional” epidemiologic evidence) to assess their 

inferential potential. Based on these proposed “interim guidelines” (22), genome-wide 

evidence should be weighed in terms of amount of evidence, extent of replication and 
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protection from bias and thus classified in a three-level categorization as strong, moderate 

or weak evidence.  

Moreover, it is becoming increasingly evident that the variation detected by 

GWAS is only one dimension of the genetic basis of health and disease (23). For 

instance, the role of copy number polymorphisms (24),  rare alleles (25), epistatic effects 

(26) and that of the non-coding regions (27, 28) in the human genome are thought to be 

parts of the missing piece of the “missing heritability” (25). For example, Dickson and 

colleagues suggested that “synthetic genome-wide associations” can be detected from 

combinations of rare variants (29). In a recent review, Panagiotou and colleagues 

summarized the published evidence of genome-wide association for rare (<5%) variants 

and found that there are still few genome-wide significant rare variants, but suggested 

that a possible confluence of rare and common variants in the same loci is likely to be 

depended on the different ancestry references used (30). Bansal and colleagues, in a 

recent review provided recommendations with regard to analytical approaches that could 

potentially aid in the discovery of “rare variant” effects (31). 

Moreover, it is common ground that biological processes are best represented by 

“cycles” and the action of biological messengers is understood on “pathways”. Therefore, 

it may be overly simplistic to consider independent effects of SNPs when it is recognized 

that usually multi-molecular pathways, feedback loops and regulating mechanisms are 

functioning in tandem. For this reason, any opportunity to jointly evaluate the effect of 

multiple “functionally relevant” SNPs is appealing and is becoming more feasible with 

advances in GWA methods (32, 33). 
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Further, the study of epigenetic phenomena has opened a whole new chapter in 

research of the pathogenesis and therapeutics, by a joint consideration of genotype and 

environmental influences (34) that is not routinely considered in GWAS. Feinberg 

recently suggested that the consideration of epigenomics, the genome-scale study of 

epigenetics in the function of our genomic make-up will likely be equally important to 

our understanding of the relation between function and organ anatomy in humans (35). 

To place this in perspective of studies of CP, it has been shown that bacteria involved in 

periodontal infection are capable of inducing such epigenetic DNA alterations (36).  

 

3. Potential biases  

As explained in detail in the two previous sections, the phenotype characterization 

and limitations inherent to GWAS are two major potential sources of bias for this 

investigation. With regard to the CP phenotype, it is possible that the CDC 

classification is not sensitive or quantitative enough to capture the entire spectrum of 

disease expression. For example, using the CDC trait may be an inappropriate 

phenotype if one considers CP equally likely to develop due to a hyper-inflammatory 

host reaction or an immune-compromised state. Most likely, there are different 

genetic influences for these two types of host-response profile. To address this 

limitation, the consideration of biologically-refined classifications of CP such as the 

BGI may be indicated. 

 Another phenotype-related source of bias is the definition of the “high” 

bacterial colonization traits for our Specific Aim 2. It is known that the semi-

quantitative method of DNA-DNA “checkerboard” hybridization has a lower count 
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detection threshold of 103 to 104. On the other hand, experts agree that CP risk is 

“frankly elevated” at high count levels, in the range of 105 to 106. In our study we 

arbitrarily defined “high colonization cases” those who were in the highest quintile of 

the distribution for each bacterial trait. Using this approach we were able to retain an 

“adequate” proportion of 20% of subjects as cases, representing a “pragmatic” 

approach that allowed an analytically feasible contrast- defining a higher threshold 

would result in fewer “high colonization cases” and perhaps reduced power to detect 

GWA signals. Future studies should, however, explore the feasibility of different 

definitions of the “high colonization” traits. Moreover, although our summation of 

different bacteria into the “red” and “orange” complex groups is based solid 

biological and microbiological ground, it could still represent an over-simplification, 

because different micro-organisms possess different pathogenic and host interaction 

profiles. Therefore, it will be worthwhile for investigators to examine individual 

pathogen colonization profiles using a GWA approach.  

 With regard to the GWAS methodology, in brief, apart from our modest 

sample size for this type of investigation, there are three inherent biases. First, it is 

very likely that many “true association” signals are below the stringent threshold set 

for genome-wide significance or suggestive evidence of association. Second, due the 

low power of the study, it is also likely that the identified associations are 

overestimates of the true effect sizes of these loci. Third, our analysis of only 

common variants restricts our inference to common-only polymorphisms and ignores 

possibly rare (<5%) but large effect size SNPs. To address these biases future studies 
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need to be conducted replicating our findings, investigate for novel ones, and explore 

the role of rare variants. 

Tooth loss due to CP is also another important source of bias. An example would 

be a patient with severe CP that lost all his teeth and in this investigation was 

classified as edentulous and was excluded from the dental ARIC analytical sample; or 

another patient who had his “most severely” affected teeth extracted few weeks 

before the clinical examination, and was subsequently diagnosed with moderate or no 

CP instead of severe CP. An analytical approach quantifying this source of bias 

would include sensitivity analyses that either adjust the genetic models for tooth loss, 

or impute ‘likely CP diagnoses’ based on certain patterns of tooth loss that are found 

among CP patients. 

 

D. Potential impact and public health significance  

1.  Genetic discovery and applications 

The significance of any new discovery in health research is measured by its 

clinical relevance, potential for prevention and public health context (37). The 

unraveling of the genetic component of human traits and diseases has been challenged 

in terms of its potential for immediate public health benefits (38). The contrary can be 

argued, for instance, for pharmaceutical research, were new drugs or vaccines may 

have immediate and dramatic global public health benefits (39). In this respect, the 

central role of epidemiology as the “quarterback” of steering translational research 

into application and public health practice has been increasingly emphasized (40). 

Other authors stress the fact that still not enough attention or efforts are invested in 
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translating novel findings in a manner that can have meaningful impacts in public 

health (41). The findings of this study have the potential to offer insights into the 

pathogenesis of CP, providing possible therapeutic and preventive avenues, but also 

benefit the study of other pathological conditions that have a host-microbiome 

interaction or immunological underpinning. 

Despite the accelerated rates of gene discovery for common complex diseases, 

valid applications of GWAS findings in personalized health care are not yet evident 

(42, 43). Influences by the emerging “personalized medicine” market may subject 

individuals to unnecessary costs or even health risks (44); in this regard, the 

clinicians’ and investigators’ role in providing accurate and evidence-based 

counseling about the potential and the limitations of genetic testing, is critical 

However, regardless of immediate translational potential, discovery of gene variants 

associated with health or disease can lead to the discovery of previously unknown 

biological mechanisms and pathways. Intervening on the genetic makeup is not 

applicable to-date; however, development of drugs that could interact on these 

pathways is an important opportunity treatment and even prevention (vaccine 

development) of disease.  

 

2. Therapeutic avenues for periodontitis 

Despite the great strides in our understanding of the biology of periodontitis 

during the last decades, the therapeutic means available for CP have been long 

unchanged. Efforts in the prevention of CP and periodontal diseases in general have a 

strong behavioral component (45, 46), because meticulous oral hygiene, oral self-care 
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and dental attendance are the cornerstones of oral disease prevention. Periodontal 

therapy however, is needed for individuals who develop the disease, so that the supra- 

and sub-gingival microbial load can be reduced, the inflammatory response 

controlled, and the patient can maintain a periodontal health status via preventive 

efforts and a maintenance-recall protocol. Specifically, the maintenance of a 

microbial colonization profile that is host-compatible has been proposed as a 

“microbial treatment goal” for periodontal therapy (47) 

The use of mechanical means for the microbial load reduction (conventional 

or surgical periodontal therapy based on root scaling and planning) remains 

unchallenged for the treatment of periodontitis (48), while adjunctive antibiotic 

therapy is becoming more frequent in severe or refractory cases of periodontitis (49, 

50). The patterns of colonization by and proliferation of periodontal pathogens has 

been suggested to have a genetic (host) component (51), and this question was indeed 

interrogated in our study. Beyond that, the current stage of knowledge allows 

clinicians and investigators to expect that response to periodontal treatment varies 

greatly between individuals who harbor the same pathogenic microflora (52). The fact 

that non-uniform and often unsustainable results are to be expected by CP patients 

after treatment is a frequent observation (53), which has invited the exploration of 

individual susceptibility or treatment resistance biological markers.  

In medicine, the microbiological component and etiology of disease is well-

established and common sense. In dentistry, in spite of advances in oral microbiology 

and the increasing popularity of antimicrobial applications, the unexplored potential 

is immense (49). This is supported by a substantial variation in quantitative and 
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qualitative aspects of periodontal ecology between patients (54), and recent findings 

that link subgingival bacterial colonization profiles with gingival tissue gene 

expression (55). The incorporation of oral microbiology applications for the 

prevention and therapy of periodontitis, consistent with the “periodontal medicine” 

model, is likely to increase in the future (56-58). 

The introduction of antimicrobials (59-61) or anti-inflammatory drugs (61, 62) 

has showed varying but generally promising results. These reports indicate that 

combinations of conventional and pharmaceutical treatment regimes are likely to 

produce the most predictable treatment outcomes in selected cases. However, it 

would be optimal if individual characteristics of host response could be incorporated 

in diagnosis and therapy to optimize treatment responses. For example, identification 

from the present GWA of susceptibility loci and potential functional genetic variants 

can be used to determine whether adjunctive antimicrobial or anti-inflammatory 

therapy would be indicated for biological subtypes of periodontitis (63).  

Improvements in prevention of periodontitis would have significant and multi-

level implications in the oral health and related quality of life of a substantial 

proportion of the adult population, and may be more important as demographic 

effects increase the life expectancy and mean age worldwide (64). Prevention of CP 

will contribute to the reduction of edentulousness rates (65), which constitutes a 

frequent form of functional and psychosocial impairment. Such advances in 

prevention could indeed stem from a better understanding of the disease pathogenesis, 

progression, and treatment or from the development of new preventive strategies, 

such as the envisioned vaccine against periodontitis (66). Moreover, it will reduce the 
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disease-related somatic and psychological distress and co-morbidities, as well as the 

financial and time loss impact to systems and individuals, due to its treatment or 

sequelae. Additionally, prevention of periodontitis has substantial public health 

implications when its links with systemic health are considered (48). One major and 

direct benefit would be, for instance, improved glycaemic control among patients 

with type 2 diabetes (67).  

 

E. Replication of GWA results and relevance of identified loci 

As noted above, replication of results of genome-wide association studies has 

virtually become a standard requirement for reporting (22, 38). Although successful 

replication of GWA finding provides some level of additional “confidence” that the 

results do not represent spurious associations, non-replication does not always imply 

a “false alarm”. The “winner’s curse” phenomenon, representing novel findings’ 

failure to replicate in subsequent studies, as well as other methodological features of 

GWA studies such as stringent significance thresholds may be responsible for 

overestimation of the true underlying genetic effects (68). For this reason, GWAS are 

considered essentially “discovery attempts” (69, 70) and their results are subject to 

very conservative statistical criteria, as well as replication in independent samples.  

 

1. Replication of prioritized SNPs of chronic periodontitis 

The Health ABC dental cohort 

Replication of the current study’s findings was sought via collaboration with 

investigators of the Health Aging and Body Composition (ABC) study. The Health 
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ABC is a prospective study of well-functioning adults of ages 70-79 at baseline. 

White participants were recruited from a random sample of Medicare beneficiaries in 

the Pittsburgh, Pennsylvania, and Memphis, Tennessee. Eligibility criteria included 

age between 70 and 79, self-reported no difficulty of walking one-quarter mile or 

climbing 10 steps without resting, no difficulty performing basic activities of daily 

living, no reported need of an assistive walking device, and no active treatment for 

cancer (71). As part of the study year 2 and 3 follow-up clinical visits (1998-2000), a 

total of 1,133 white and African American participants were eligible and received 

complete dental and periodontal examinations. About two-thirds of this ancillary 

dental study’s participants were white. Among whites, 21% of men and 14% of 

women were diabetic. With regard to smoking history, proportions of current/former 

smokers among men and women were 5%/61%, and 5%/32%, respectively. 

Replication was based on this subset of approximately 750 Health ABC participants 

(~400 men and ~350 women) that were subsequently genotyped using the Illumina 

Human1M Duo platform.  

 

Replication of the dental ARIC GWA findings 

Replication was sought for our prioritized SNPs based on the genome-wide 

association P<5x10-6 threshold in ‘crude’ or ‘adjusted’ analyses. Fourteen SNPs met 

this threshold and therefore, effect estimates and P-values based derived from the 

Health ABC cohort GWAS were obtained. For these SNPs, the same coded and non-

coded alleles were genotyped in both GWAS (Table A15).  These estimates are 

presented in Tables A16 and A17. A same direction effect and a conventional P<0.05 
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threshold were set as for evidence of replication. Moreover, we took advantage of the 

opportunity to perform a meta-analysis of the reported effect estimates, as an 

additional approach in summarizing the effect of the reported risk loci (72). Meta-

analytical pooled odds ratios and P-values were obtained using the METAL program 

(73), using an inverse-variance weighting method (74). Summary estimates (pooled 

odds ratio) were obtained for SNPs that did not depart substantially from effect 

homogeneity between the two cohorts (defined as homogeneity X2 P<0.2).  

The summary of the replication findings is presented in the Appendix, in Tables 

A16-A18. Noteworthy, only one locus associated with severe CP (7p15, rs2521634) 

met the P<0.05 and same effect direction replication criteria. Additionally, one locus 

associated with moderate CP (19p13.3, rs3826782) neared replication (P=0.06) and 

another (6p21.1, rs7762544) showed a same direction effect with no evidence of 

heterogeneity. Therefore, summary estimates based on inverse-variance weighted 

meta-analysis are presented in Table A18. Pooled odds ratios and associated summary 

P-values for these three loci were: 7p15 (rs2521634)—OR=1.49 (95% CI=1.28-1.73), 

P=3.5x10-7; 19p13.3 (rs3826782)—OR=2.01 (95% CI=1.52-2.65), P=8.2x10-7; 

6p21.1 (rs7762544)—OR=1.40 (95% CI=1.24-1.59), P=7.5x10-8.  

Interestingly, one of these SNPs prioritized for severe CP (rs2521634) provided a 

replication signal also for moderate CP in Health ABC, whereas one moderate CP-

associated SNP in ARIC (rs3826782) provided a replication signal for severe CP in 

Health ABC. It is possible that these risk loci indeed confer risk for both types of CP. 

However, this observation warrants more investigation to clarify whether systematic 

differences between the two study samples may be responsible for this difference (i.e. 
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tooth loss and retention, or periodontal treatment levels that may result to different 

phenotypical expression). An alternative explanation may be that these 

polymorphisms actually confer protection against periodontal pathology, and 

therefore may be associated with “periodontal health” when studying the two CP 

traits.  

 

Relevance of identified and replicated loci 

Presentation and discussion of all prioritized loci for the CP, EAL and “high” 

bacterial colonization traits are presented in the discussion sections of and 

supplemental material of manuscripts 1 and 2 (Sections 4.F, 4.J, 5.F and 5.J). This 

section offers a more detailed presentation of one replicated locus for severe CP, at 

7p15. 

 

The NPY (7p15) locus 

This locus was marked by rs2521634, which was the top SNP in the region with 

P=1.6x10-6 and located 47Kb downstream of NPY. The latter is a gene encoding a 

neuropeptide that is widely expressed in the central nervous system and has been 

suggested to function as an anxiolytic peptide that helps explain inter-individual 

variation in trait anxiety and resiliency to stress (75). Several reports have associated 

a Leu�Pro substitution in the NPY gene with significantly elevated serum 

triglycerides and lipids among Northern European populations (76, 77). The SNP 

responsible for this missense change (rs16139, predicted as ‘benign’ by PolyPhen-2) 
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was 10Kb upstream of rs2521634 and not in linkage disequilibrium with it (D’=1.00; 

r2=0.01).  

An early immunohistological Swedish study among by Barr-Agholme and 

colleagues observed higher neuropeptide Y levels and sensory hyper-innervation in 

the gingival tissue of Down syndrome (DS) patients, attributing this finding to the 

gingival inflammatory reaction rather that DS itself (78). A 2004 critical review by 

Lundy and Linden (79) emphasized the role of the nervous system in the 

pathophysiology of peripheral inflammation, suggesting a neurogenic inflammatory 

component for periodontitis. These authors suggested that neurogenic inflammation is 

in fact a protective mechanism, with NPY having a pivotal role in the cascade of 

relevant chemical activities.  

A recent case-control study by Lundy and colleagues (80) provided experimental 

evidence consistent with this hypothesis. Elevated NPY levels were found in the 

gingival crevicular fluid of periodontitis compared to healthy sites. Additional 

evidence supports a role of the sympathetic nervous system and NPY in the 

modulation of periodontal inflammation and bone resorption (81, 82). Interestingly, 

inhibition of nerve growth factor (NGF), which is known to up-regulate 

neuropeptides in sensory neurons, via systemic anti-NGF was recently shown to be 

associated with reduced Interleukin 1beta and bone resorption in a rat periodontitis 

model (83). In sum, combined with our GWAS results, there is accumulating 

evidence pointing towards the role of the nervous system and neuropeptide 

messengers (with NPY being an obvious candidate one) across the axis of a 

“neurological inflammatory reflex” in the cascade of events that lead to periodontitis.  
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F. Future research directions 

1. Improvement over candidate-gene approaches 

Candidate-gene studies have been limited in their ability to identify risk loci 

or genes for common complex diseases. In general, candidate-gene approaches have 

had better results when studying “highly penetrant” diseases, where a “disease-gene” 

may exist. Successful candidate-gene studies are typically based on strong prior 

knowledge or mechanistic theory, as is the case of inflammatory mediator gene 

markers and cytokines in the context of inflammatory diseases, such as ulcerative 

colitis (84) and CP (85). In the case of CP in particular, such studies have focused on 

inflammatory mediator molecules and receptors such as the interleukin gene cluster. 

Despite the obvious relevance and replication of this finding across many candidate-

gene studies, it should be expected that multiple genes are implicated in the 

pathogenesis of CP, each conferring likely small to modest excess risk. Although 

previously reported candidate-gene study targets were not marked by strong signals in 

our GWAS we explored several loci that contain such candidate genes, including 

IL1A, IL1RN, IL6, TLR4, MMP2, GLT6D1, FCGR3A, and VDR with visualizations 

that are presented in Figures A30-A33. Moreover, we did identify few loci that were 

contained genes related to previous candidate-gene reports. For example, the 9p24 

locus was identified for “high red” complex bacterial colonization and included IL33. 

Additionally, one locus on chromosome 19 that was identified for severe CP 

contained a tumor necrosis family (TNFSF14) and a complement (C3) gene, which 

are well-documented immune- and periodontitis-related genes (86-90). One of the 
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prioritized loci on chromosome 6 (rs17792917) for the “extent” of attachment loss 

trait has been reported as an eQTL for another TNF-family gene on chromosome 13 

(TNFRSF19), which has been reported as a susceptibility locus for lung cancer (91) 

and vascular dementia (92). Finally, the risk locus on 2p23.3 that emerged for Pg 

“high” colonization is an eQTL for multiple genes including IL17RB on chromosome 

3. We anticipate that future candidate-gene studies will embark in testing and 

potentially replicating our GWA findings. 

 

2. Beyond genome-wide association analyses  

The analytical methods of GWAS data are constantly evolving, and may allow 

a future extension of the present analysis via implementation of novel methodologies. 

For example, despite the initial “agnostic” scan, there is an opportunity to prioritize 

candidate SNPs for analysis in the GWA context, when for instance epistatic effects 

are hypothesized or suspected (32, 93). Other examples of novel but not well-

established approaches include attempts to link prior knowledge (of validated 

polymorphisms) with analytical strategies (94), use of pathway-clustering analysis of 

genetic signals (95), efficient approaches to explore gene-gene and gene-environment 

interactions (96, 97), and the incorporation of expression quantitative trait loci 

(eQTL) with GWAS results (98, 99). 

It is becoming increasingly understood that major advances in our understanding 

of the genetic underpinning of human health and disease can be realized by efficient 

comprehensive, efficient and inexpensive interrogations of genomes, transcriptomes 

and interactomes (100). Next-generation sequencing studies (101-103) have recently 
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emerged and are promising in this respect, with exome sequencing investigations 

providing a high rate of novel findings (104, 105). A particular strength of whole-

exome sequencing studies is that they offer opportunities for both disease gene 

discovery as well as clinical diagnosis, as protein coding genes harbor the vast 

majority of large-effect disease-related mutations (106).  

Finally, several additional explorations of the data presented in this dissertation 

may offer novel insights in the study of CP. The consideration of gene expression 

modulation by proximal (cis) or distal (trans) eQTLs, as noted above (98, 99) can 

provide information that may be functionally relevant. For example, one of the three 

replicated loci, 19p13.3 (marked by rs3826782) has been reported as an eQTL for 

GPR113 (G-protein coupled receptor 113) on chromosome 2p23.3, which has 

functions on the neuropeptide signaling pathway as well as signal transducer activity; 

pathways relevant to the other prioritized locus on 7p15, where neuropeptide Y (NPY) 

is located. Moreover, GPR113 has been found to be particularly expressed intra-

orally, in the taste receptor cells (107).  

Moreover, examining larger sets of prioritized loci in ‘pathway analysis’ networks 

may reveal patterns of association that are otherwise difficult to detect by ‘single-

locus’ explorations. Examples of such exploratory visualizations of functional and 

physical interactions between genes that were identified from our analyses are 

presented in the Appendix Figures A28 and A29. Although these networks arguably 

contain a lot of “noise”, empirical inspection of represented functional pathways and 

physical interactions can be informative. In this network of interactions (figure A28), 

some of these well-represented pathways were collagen, protein phosphatase 2A 
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binding, extracellular matrix, positive regulation of transcription from RNA 

polymerase II promoter, epithelial to mesenchymal transition, platelet activation, Wnt 

receptor signaling pathway, cellular response to growth factor stimulus, regulation of 

fibroblast proliferation and positive regulation of kinase activity.  

 

3. Future studies 

As explained in the previous sections, the present study can be considered as a 

‘fist look’ into the genetic component of chronic periodontitis using a genome-wide 

association approach. Within the limitations of the analyses presented here, this work 

offers new information about candidate loci associated with CP. There is a large 

number of follow-up research and different avenues that can and should be followed 

after the conduct of a GWAS (108, 109). Future studies in this field are needed to 

replicate and validate these associations, discover new ones, elucidate their functional 

role and mechanistic pathways, determine their potential for diagnostic and 

therapeutic applications, and more.  

To be more specific, future GWAS examining the three-level CP 

classification are warranted to replicate the associations with loci that our study 

reported. Although GWAS of bacterial colonization profiles are harder to realize, 

replication of the high periodontal pathogen colonization findings will add to our 

understanding of the contribution of genetic factors to host-microbiome interactions. 

Because GWAS are generally under-powered to detect most small to modest genetic 

effects, future studies of equal size may discover new loci that did not meet the 

suggestive association threshold in our investigation. However, larger GWAS or 
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pooling of existing cohorts may be necessary to enable the detection of small effects 

and GxE or GxG interactions. Factors such as sex, smoking and diabetes should be 

strong candidates as ‘environmental exposures’ for these interaction analyses. We 

emphasize the need and importance of conducting GWAS in populations other than 

whites of European descent, as evidence of the genetic component of CP among 

populations of African, Asian and American descent are lacking. Such studies in 

diverse populations can provide insights about loci that were in fact identified in our 

study population of whites, or discover novel ones. 

Identifying the causal variant(s) in the loci that we report is also an important 

step that future studies should address (110). From our GWAS results it cannot be 

inferred that the SNPs that were identified tagging the prioritized loci are the causal 

variants. It is possible that non-genotyped and non-imputed, perhaps rare (<5%) 

variants are the risk-conferring ones. Fine-mapping represents one strategy that can 

be implemented in future studies seeking to identify the risk variants and causal 

alleles in these or other candidate loci for CP. However, some opportunities to 

interrogate the contribution of rare variants will emerge with the imputation of our 

existing genotype data using the ‘1000 genomes’ haplotypes, a strategy that will offer 

approximately 10 million markers for GWAS, including a substantial proportion of 

rare ones. It is not unrealistic to anticipate that these strategies will eventually be 

superseded by whole genome sequencing, which will become progressively less 

costly and time-consuming in the next decade.  

Subsequent experimental or association studies linking GWAS data with gene 

expression information can also provide information about the functional relevance 
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and candidate mechanistic pathways that the prioritized genes operate on. 

Experimental studies “knocking-out” the new candidate genes in animal models will 

be needed to clarify the role of GWAS discoveries. The use of microarrays to 

interrogate gene expression can also provide tissue-specific insights (111). As more 

data become available with regard to gene expression regulation by quantitative trait 

loci on multiple tissues, future studies may be able to annotate our findings to such 

cis- or trans-acting eQTLs (112). 

Future studies examining traits other than the three-level CDC disease 

taxonomy that we employed may offer additional insights into the genetic component 

of CP. Disease indicators or “proxies” are less valid in the ascertainment of cases, but 

they may be cost-effective and more feasible than gold-standard clinical 

examinations. It may be possible for indicators such as number of remaining teeth, 

radiographically measured alveolar bone loss, and self-reported diagnosis of CP to be 

obtained for population-based samples or existing cohorts with genotype data, thus 

enabling more GWAS of CP. 

Furthermore, genome-wide interrogations of endophenotypes, which represent 

physiologic indicators, biochemical assays, or other “intermediate” traits relevant to 

the disease under study (113, 114) may offer additional opportunities to examine the 

genetic influences for CP. These traits have the benefit of being ‘biologically 

proximal’ to the hypothesized genetic effects, whereas the phenotype expression of 

complex and polygenic diseases is likely to be the result of many genetic and non-

genetic, measured, un-measured and unobservable factors. The bacterial colonization 

profile that we examined as part of our Specific Aim 2 can be considered as an 
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endophenotype of CP. Others may include in vivo quantified inflammatory markers 

such as gingival crevicular fluid Interleukin levels, serum levels of antibodies to 

periodontal pathogens, markers of oxidative stress, and more. 

Extending the concept of the study of intermediate CP phenotypes, it can be 

argued that the identified or the still undiscovered risk loci for CP confer excess risk 

for conditions other than CP. Certain molecular functions and pathways may be 

common in the pathogenesis of a number of diseases. This is indicative of pleiotropy, 

which is the phenomenon of a single gene influencing multiple traits (115). Future 

studies can investigate common risk loci for CP and other, frequently associated 

conditions, such as diabetes and cardiovascular disease. Moreover, simultaneous 

examinations of a wide array of phenotypes for a given genotype, in the context of 

phenome-wide (116, 117) association studies (PheGWAS) are efficient strategies that 

are gaining popularity and may include CP in the future. 

Finally, incorporating the current GWAS findings into epidemiologic and 

clinical investigations will be an important “research translation” step. One can 

envisage how novel candidate genes can be considered in investigations of CP risk or 

treatment response. Genes or promoter regions in the candidate loci that we report, 

such as NPY, could be evaluated as CP risk indicators or prognostic markers CP 

treatment response, alone or in combination with genetic markers that are already 

being tested as such (i.e. the interleukin family gene cluster). The identification of a 

group of genetic markers that have a good combined positive predictive value could 

in the future be used in the design of genetic tests that would inform clinicians and 

patients of their CP risk or their likelihood to respond favorably to various therapeutic 
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options. Such investigations could evaluate for example whether CP patients who are 

carriers of certain genotype of NIN, EMR1, NPY, FBXO38, TBC1D1, CAMTA1 or 

GRID1 have better therapeutic results when treated with conventional-surgical, 

antimicrobial, or anti-inflammatory periodontal treatment, or combinations of these.  
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APPENDIX  

 
 

Table A1. Distribution in the total sample and bivariate associations of periodontal diagnosis (CDC 
classification) and periodontal attachment loss (extent score: percent of sites with ≥3mm attachment loss) with 
brushing and flossing frequency, dental attendance reason and frequency, and education level among the 
Caucasian participants of the Dental ARIC study, for whom clinical and genetic data were matched after 
exclusions (n=4,610) 

  
 

CDC Periodontitis classification  
Attachment loss 

(≥3mm) 

 

Total 

(n, column %) 

 Health-mild 

(n, row %) 

Moderate 

(n, row %) 

Severe 

(n, row %)  

Extent score* 
mean(SD); 

median† 

Total sample 4610 (100) 
 1864 (40) 1961 (43) 785 (17)  21.1 (21.2); 14  

Brushing 
frequency1,2 
(yesterday)  

 

     

One time or none 1350 (29)  482 (36) 592 (44) 276 (20)  24.0(23.6); 17 

Two or more 3239 (71)  1374 (42) 1361 (42) 504 (16)  19.9(20.1); 13 

Flossed last week1,2  
 

     

Did not floss 1464 (32)  506 (35) 641 (44) 317 (22)  26.1(24.4); 18 

Flossed one or more 
times 

3124 (68)  1349 (43) 1312 (42) 463 (15)  18.8(19.2); 13 

Dental visit reason1,2  
 

     

Regular visits 3809 (83)  1609 (42) 1612 (42) 588 (15)  19.1(19.2); 13 

Only when problem 780 (17)  247 (32) 341(44) 192 (25)  31.3(27.3); 23 

Last dental visit1,3        

<6 months ago 3174 (69)  1312 (41) 1333 (42) 529 (17)  19.8(19.8); 14 

6-24 months 1031 (22)  427 (41) 454 (44) 150 (14)  20.8(21.4); 14 

More than 2 years ago 381 (8)  117 (31) 163 (43) 101 (27)  32.9(28.0); 25 

Education level1,3  
 

     

Basic (0-11 years) 433 (9) 
 

136 (31) 195 (45) 102 (24)  30.5(27.4); 21 
Intermediate (12-15 

years) 2102 (56) 
 

838 (40) 904 (43) 360 (17)  21.4(21.3); 14 

Advanced (16+ years) 2069 (45) 
 

886 (43) 860 (42) 323 (16)  18.9(19.1); 13 
*third molars were included; †rounded to the closest integer; 1Chi-square test of equivalence between strata of 
periodontitis P<0.05; 2Median test of stratum-specific attachment loss estimates P<0.05; 3Kruskal-Wallis test 
of stratum-specific attachment loss or covariate estimates P<0.05 
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Table A2. Distribution in the total sample and bivariate associations of periodontal diagnosis (CDC 
classification) and periodontal attachment loss (extent score: percent of sites with ≥3mm attachment 
loss) with quintiles of age and BMI among the Caucasian participants of the Dental ARIC study, for 
whom clinical and genetic data were matched after exclusions (n=4,610) 

  
 

CDC Periodontitis classification  
Attachment 
loss (≥3mm) 

 

Total 

(n; median) 

 Health-mild 

(n, row %) 

Moderate 

(n, row %) 

Severe 

(n, row %)  

Extent score* 
mean(SD); 

median† 

Total sample 4610  1864 (40) 1961 (43) 785 (17)  21.1 (21.2); 14  

        
Age1,2 (years, 
quintiles; mean)        

Q1 (55.5) 1054; 56  504 (48) 403 (38) 147 (14)  20.0 (18.7); 11  

Q2 (59.5) 1026; 60  445 (43) 425 (41) 156 (15)  18.8 (19.2); 13  

Q3 (63.0) 724; 63  301 (42) 288 (40) 135 (19)  21.6 (21.9); 15  

Q4 (66.5) 890; 66  311 (35) 421 (47) 158 (18)  23.6 (23.0); 16  

Q5 (70.9) 916; 71  303 (33) 424 (46) 189 (21)  25.6 (22.8); 19  

        
BMI 1,2 (kg/cm2, 
quintiles; mean)        

Q1 (22.1) 922; 22.5  445 (48) 346 (38) 131 (14)  18.9 (20.6); 11  

Q2 (25.3) 922; 25.3  389 (42) 386 (42) 147 (16)  20.3 (20.7); 14 

Q3 (27.5) 919; 27.5  368 (40) 391 (43) 160 (17)  21.5 (21.6); 14  

Q4 (30.1) 923; 30.0  324 (35) 421 (46) 178 (19)  22.9 (22.0); 17  

Q5 (35.6) 918; 34.7  337 (37) 413 (45) 168 (18)  21.9 (21.1); 15  

*third molars were included; †rounded to the closest integer; 1Chi-square test of equivalence 
between strata of periodontitis P<0.05; 2Kruskal-Wallis test of stratum-specific attachment loss or 
covariate estimates P<0.05 
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Table A3. Distribution and bivariate associations of attachment loss (quintile-categorical and three-
level classification of extent score) with periodontal diagnosis (CDC classification) among the 
Caucasian participants of the Dental ARIC study, for whom clinical and genetic data were matched 
after exclusions (n=4,610) 

  
 

CDC Periodontitis classification  
Attachment 
loss (≥3mm) 

Attachment 
loss 

Total 

(n, column %) 

 Health-mild 

(n, row %) 

Moderate 

(n, row %) 

Severe 

(n, row %)  

Extent score* 
mean(SD); 

median† 

Total sample 4610  1864 (40) 1961 (43) 785 (17)  21.1 (21.2); 14 

Quintile-
categorical 

       

Q1 922  892 (97) 29 (3) 1 (0)  2.3 (1.5); 2 

Q2  929  634 (68) 291 (31) 4 (0)  7.6 (1.6); 8 

Q3  918  262 (29) 611 (67) 45 (5)  14.3 (2.3); 14 

Q4  944  61 (6) 622 (70) 221 (23)  25.1 (4.4); 25 

Q5  897  15 (2) 368 (41) 514 (57)  57.3 (19.2); 52 

3-level 
classification 

       

None-mild 
(<10%) 

1760 (38)  1480 (84) 276 (16) 4 (0)  4.7 (2.9); 5 

Moderate  
(10-<30%) 

1769 (38)  365 (21) 1197 (68) 207 (12)  18.0 (5.5); 17 

Severe  
(≥30%) 

1081 (23)  19 (2) 488 (45) 574 (53)  52.9 (20.0); 46 

*third molars were included; †rounded to the closest integer 
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Table A4. Median (interquartile range, IQR)  of sub-gingival microbial counts of eight periodontal pathogens obtained via 
DNA checkerboard immunoblotting among a subset of the Dental ARIC participants (n=1020) 
 P gingivalis T forsythia T denticola P intermedia P nigriscens C rectus F nucleatum A actinom. 

Total sample(n) 1020 1020 1017 1018 1020 1018 1012 1020 

 945 (3061) 1314 (4368) 2665 (9273) 4270 (15432) 3185 (12758) 2524 (19676) 5605 (32326) 2044 (5592) 

Sex         

Females 806 (2716) 1248 (4695) 2788 (9922) 3579 (15930) 3179 (12834) 2260 (10252) 5994 (30347) 1891 (5298) 

Males 1162 (3341) 1435 (4188) 2537 (8968) 5074 (15009) 3191 (12683) 2736 (11230) 5355 (32393) 2257 (5762) 

Smoking status         

Never  987 (2881) 1184 (4777) 2647 (9895) 4164 (18039) 3146 (14186) 2389 (10985) 5502 (39732) 2129 (6476) 

Past- light 1351 (3927) 1558 (4268) 3252 (8968) 5204 (15480) 3514 (13292) 3230 (13005) 7088 (33977) 2138 (5906) 

Past- heavy 725 (2470) 1116 (3732) 1869 (8043) 3200 (11721) 2567 (9438) 1827 (06974) 3811 (23385) 1651 (4309) 

Current- light 2358 (2935) 2671 (5696) 1718 (13022) 5417 (13724) 3216 (13207) 3375 (8652) 6696 (35865) 2491 (5933) 

Current– heavy 1003 (3082) 1318 (6286) 3503 (11592) 6858 (15881) 2726 (13957) 3649 (10491) 6950 (29101) 2250 (4306) 

Diabetic status         

Healthy 897 (2996) 1242 (4079) 2574 (9149) 4118 (14895) 2924 (12601) 2499 (10467) 5433 (28535) 2035 (5539) 

Diabetes mellitus 1305 (3229) 1849 (6770) 2980 (10907) 6031 (17418) 4595 (15681) 2707 (16178) 6853 (42203) 2398 (6474) 

Tooth loss         

0-9 lost teeth 862 (2658) 955 (3280) 2154 (8016) 3466 (13724) 2718 (10288) 1978 (8310) 4621 (26557) 1810 (4818) 

10-18 lost teeth 783 (3195) 1445 (5519) 2249 (10392) 3320 (16363) 3407 (14219) 2679 (12632) 5518 (32747) 1997 (5031) 

19-32 lost teeth 2247 (5848) 3556 (9088) 6192 (19980) 10486 (32331) 6021 (25088) 4947 (25396) 14486 (48825) 4185 (8360) 

No. teeth  
rho (95% CL) 

-0.20 
(-0.16, -0.4) 

-0.14 
(-0.20, -0.08) 

-0.11 
(-0.18, -0.6) 

-0.10 
(-0.16, -0.4) 

-0.08 
(-0.14, -0.02) 

-0.12 
(-0.19, -0.06) 

-0.10 
(-0.16, -0.04) 

-0.13 
(-0.19, -0.07) 

Age  
rho (95% CL) 

0.01 
(-0.05, 0.07) 

0.07 
(0.01, 0.13) 

0.02 
(-0.03, 0.08) 

0.01 
(-0.06, 0.07) 

0.04 
(-0.02, 0.10) 

0.04 
(-0.02,0.10) 

0.03 
(-0.03,0.10) 

0.03 
(-0.03, 0.09) 

BMI   
rho (95% CL) 

0.01 
(-0.05, 0.07) 

0.01 
(-0.06, 0.07) 

0.02 
(-0.04, 0.08) 

0.00 
(-0.07, 0.06) 

0.03 
(-0.03, 0.10) 

0.01 
(-0.05, 0.07) 

0.00 
(-0.06, 0.07) 

0.03 
(-0.03,0.09) 

         

 

 
 
 

1
9

8 
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Table A5. Median (interquartile range, IQR)  of sub-gingival microbial counts of eight periodontal pathogens obtained via 
DNA checkerboard immunoblotting among a subset of the Dental ARIC participants (n=1020) 
 P gingivalis T forsythia T denticola P intermedia P nigriscens C rectus F nucleatum A actinom. 

Total sample(n) 1020 1020 1017 1018 1020 1018 1012 1020 

 945 (3061) 1314 (4368) 2665 (9273) 4270 (15432) 3185 (12758) 2524 (19676) 5605 (32326) 2044 (5592) 

Brushing frequency 
(yesterday) 

        

One time or none 996 (3798) 1506 (5244) 3129 (10393) 4948 (17741) 3075 (18176) 2736 (12907) 7447 (40283) 2584 (6912) 

Two or more 904 (2838) 1277 (4109) 2330 (9112) 3977 (14675) 3216 (10557) 2324 (8879) 5048 (26681) 1882 (5004) 

Flossed last week         

Did not floss 1386 (3905) 1734 (6439) 3294 (11529) 6185 (21216) 4208 (18039) 3030 (14578) 7252 (42203) 2779 (6603) 

Flossed 1+ times 780 (2657) 1094 (3588) 2302 (8314) 3582 (13698) 2711 (10246) 2218 (8797) 4830 (26433) 1750 (5004) 

Dental visit reason         

Regular visits 876 (2817) 1143 (3581) 2203 (8226) 3733 (13696) 2827 (10342) 2246 (8377) 4811 (24388) 1876 (4852) 

Only when problem 1409 (5391) 2900 (10448) 4624 (19327) 8204 (32715) 6128 (24793) 4328 (26746) 10653 (73484) 3012 (8944) 

Last dental visit         

<6 months ago 908 (2880) 1164 (3573) 2183 (7841) 3624 (13697) 2637 (10246) 2231 (8310) 5048 (25670) 1822 (4816) 

6-24 months 666 (3086) 1295 (4939) 3355 (11840) 4713 (16502) 4662 (14860) 2618 (13005) 6080 (36723) 2204 (6916) 

2+ years ago 1633 (5947) 3497 (12599) 4875 (21366) 10334 (37253) 6654 (26833) 4112 (28367) 
10245 

(110673) 
4208 (10449) 

Education level         

Basic (0-11 years) 1719 (5961) 2680 (8607) 3616 (16033) 9248 (34555) 4911 (21757) 5424 (27103) 15088 (77493) 3945 (10016) 

Intermediate (12-15 
yrs) 

859 (2887) 1535 (4914) 3255 (9823) 3980 (14096) 3385 (12601) 2630 (10467) 6272 (38108) 2267 (5525) 

Advanced (16+ yrs) 910 (2990) 959 (3383) 1973 (8226) 3948 (13950) 2711 (9889) 2048 (8032) 3966 (21940) 1536 (4710) 

         

1
99 
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Table A6. Median (interquartile range, IQR) values of sub-gingival microbial counts 
of the “red” and “orange” complex pathogens, and total microbial load obtained via 
DNA checkerboard immunoblotting, in the total sample, stratified by sex, smoking and 
diabetic status and their association with age and BMI among the Caucasian 
participants of the Dental ARIC study, for whom clinical and genetic data were 
matched after exclusions (n=1020) 

 “Red” complex “Orange” complex Total microbial load 

Total sample 5676 (13629) 22668 (60169) 31640 (76343) 

n 1017 1009 1006 

Sex    

Females 5684 (13150) 22579 (60294) 31594 (73568) 

Males 5676 (14061) 22731 (60252) 32084 (82237) 

Smoking status    

Never  5604 (13100) 23437 (73000) 31186 (96592) 

Ever- light 6848 (12977) 25544 (69412) 35654 (83731) 

Ever- heavy 4591 (10733) 17750 (41055) 26584 (58326) 

Current- light 5540 (16016) 23990 (46456) 42370 (48097) 

Current– heavy 6500 (19215) 22071 (54349) 32580 (61111) 

Diabetic status    

Healthy 5539 (13169) 21728 (56399) 30766 (73756) 

Diabetes mellitus 7246 (20397) 26616 (84427) 34893 (107047) 

Tooth loss1    

0-9 lost teeth 4867 (12089) 18727 (48253) 27334 (63495) 

10-18 lost teeth 5770 (16539) 23813 (71346) 32668 (83626) 

19-32 lost teeth 11044 (25744) 34946 (143873) 49798 (222836) 

Age (rho, 95% CL) 0.05 (-0.01, 0.11) 0.02 (-0.04, 0.08) 0.03 (-0.04, 0.09) 

BMI  (rho, 95% CL) 0.01 (-0.05, 0.08) 0.01 (-0.05, 0.06) 0.01 (-0.06, 0.07) 

Number of natural teeth 
(rho, 95% CL) -0.14 (-0.20, -0.08) -0.13(-0.20, -0.07) -0.15 (-0.21, -0.09) 
1Kruskal-Wallis test of stratum-specific bacterial count estimates P<0.05 
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Table A7. Median (interquartile range, IQR) values of sub-gingival microbial counts 
of the “red” and “orange” complex pathogens, and total microbial load obtained via 
DNA checkerboard immunoblotting, in the total sample, stratified by brushing and 
flossing frequency, dental attendance frequency and reason, and education level among 
the Caucasian participants of the Dental ARIC study, for whom clinical and genetic 
data were matched after exclusions (n=1020) 

 “Red” complex “Orange” complex Total microbial load 

Total sample 5676 (13629) 22668 (60169) 31640 (76343) 

n 1017 1009 1006 

Brushing frequency 
(yesterday) 

   

One time or none 6352 (17930) 25038 (80044) 33245 (101539) 

Two or more 5518 (12998) 20464 (49853) 28904 (69526) 

Flossed last week1(total only)    

Did not floss 7244 (19794) 25883 (89482) 33900 (127185) 

Flossed one or more times 5444 (12521) 20006 (48350) 28182 (64442) 

Dental visit reason1    

Regular visits 5397 (12535) 20283 (45756) 29129 (61763) 

Only when problem 9289 (30032) 33660 (150830) 49084 (233372) 

Last dental visit2    

<6 months ago 5338 (12387) 20822 (45828) 28888 (62424) 

6-24 months 6251 (18396) 21441 (69189) 31233 (131809) 

More than 2 years ago 9525 (39649) 40110 (176897) 54380 (367130) 

Education level2    

Basic (0-11 years) 8709 (29505) 33695 (158940) 49798 (220499) 

Intermediate (12-15 years) 6356 (13756) 23504 (65055) 32477 (82767) 

Advanced (16+ years) 4935 (12199) 19120 (43498) 27929 (58540) 
1Median test of stratum-specific bacterial count estimates P<0.05; 2Kruskal-Wallis test of 
stratum-specific bacterial count estimates P<0.05 
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Table A8. Sample power calculation for SNP main effect among the ARIC cohort study 
whites. Assumptions are: MAF 0.1-0.5, estimated SNP effects of 1.1-1.6, and outcome 
prevalence 0.2 (severe periodontitis). 
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Table A9 Sample power calculation for SNP main effect among the ARIC cohort study 
whites. Assumptions are: MAF 0.1-0.5, estimated SNP effects of 1.2-1.6, and outcome 
prevalence 0.2 (highest quintile of bacterial colonization phenotypes). 
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Table A10. Sample power calculation for SNP*environment interaction among Caucasians. 
Assumptions are: MAF 0.1-0.5, estimated SNP effect of 1.4, environmental factor prevalence 
0.1 (current heavy smoking), interaction effect 1.2-2.0 and outcome prevalence 0.2 (severe 
periodontitis). 
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Table A11 Sample power calculation for SNP*environment interaction among Caucasians. 
Assumptions are: MAF 0.1-0.5, estimated SNP effect of 1.4, environmental factor prevalence 
0.5 (ever smoker), interaction effect 1.2-2.0 and outcome prevalence 0.2 (severe 
periodontitis). 
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Table A12 Sample power calculation for SNP main effect among African Americans. 
Assumptions are: MAF 0.1-0.5, estimated SNP effects of 1.3-1.7 and outcome prevalence 0.2 
(severe periodontitis). 
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Table A13. Results of SNP interactions (interaction term P<10-5) with sex, diabetes (binary) and smoking status (never, ever, current) in the 
GWA analysis of chronic periodontitis (“extent” of disease trait: proportion of sites exhibiting attachment loss ≥3 mm) among the white Dental 
ARIC participants (n=4610). 

SNP interaction with Sex  SNP interaction with Diabetes Mellitus  SNP interaction with Smoking 
C
hr SNP 

Position  
Build36 

Nearby gene 
(location) 

P 
value  

Ch
r SNP 

Position  
Build36 

Nearby gene 
(location) P value  

Chr
. SNP 

Position  
Build36 

Nearby gene 
(location) P value 

7 rs616939 152391164 ACTR3B (208Kb) 
1.4x10-

6 
 11 rs7107482 rs7107482 NAV2 (intronic) 1.1x10-7  19 rs8111486 16732705 NWD1 (intronic) 2.0x10-7 

1 rs1551110 105334285 
LOC100129138 

(913Kb) 
1.5x10-

6 
 3 rs1405597 rs1405597 

C3orf58 
(603Kb) 

2.4x10-7  2 rs1533528 199322315 SATB2 (520Kb) 4.2x10-7 

4 
rs1001956

9 
148166054 TTC19 (78Kb) 

2.0x10-

6 
 10 rs594612 rs594612 NRG3 (intronic) 3.3x10-7  12 rs17676308 51310951 

KRT73 (12Kb); 
KRT2 (14Kb) 1.4x10-6 

8 
rs1215581

9 
9610089 TNKS (intronic) 

2.3x10-

6 
 5 rs2160058 rs2160058 

ACTBL2 
(287Kb) 

3.8x10-7  7 rs850380 144771261 
TPK1 (607Kb); 

CNTNAP2 
(673Kb) 

2.2x10-6 

4 rs1372486 46864735 
GABRB1 
(intronic) 

2.5x10-

6 
 5 rs9327150 rs9327150 PRR16 (intronic) 1.4x10-6  2 rs1505839 139512322 NXPH2 (258Kb) 2.2x10-6 

12 rs4761973 50166536 SLC4A8 
2.6x10-

6 
 6 rs9461680 rs9461680 

HLA-C (3Kb); 
HCG27 (69Kb) 

1.4x10-6  12 rs12312201 15003845 
ARHGDIB 
(intronic) 2.9x10-6 

1 rs4659467 234987803 ACTN2 (intronic) 
3.0x10-

6 
 16 rs9302669 rs9302669 

MMP2 (56Kb); 
LPCAT2 (86Kb) 

3.4x10-6  2 rs17288217 175581131 
CHN1 (3Kb); 
ATF2 (66Kb) 4.5x10-6 

13 
rs1085126

1 
110767630 

C13orf16 (3Kb); 
ARHGEF7 (12Kb) 

3.3x10-

6 
 3 rs795346 rs795346 

TGFBR2 (5Kb); 
GADL1 (27Kb) 

3.4x10-6  18 rs10871635 64716612 
CCDC102B 
(intronic) 4.7x10-6 

8 rs2063794 78581773 PEX2 (506Kb) 
3.6x10-

6 
 2 rs7603311 rs7603311 

STON1-
GTF2A1L 

(38Kb); LHCGR 
(58Kb) 

3.6x10-6  2 rs16861555 14354512 
FAM84A 
(336Kb) 5.8x10-6 

12 
rs1050596

0 
25165034 CASC1 (intronic) 

4.8x10-

6 
 15 

rs1107353
4 

rs1107353
4 

LOC91948 
(470Kb) 

4.7x10-6  3 rs9817711 102371842 IMPG2 (56Kb) 6.5x10-6 
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DYNLRB2 
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6.1x10-
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 9 rs413553 rs413553 

PTPRD 
(intronic) 
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21 rs2834319 34278895 
ATP5O (69Kb); 
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6.4x10-

6 
 17 

rs1245076
4 

rs1245076
4 

LOC100499467 
(intronic) 

5.6x10-6        
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6 
 6 rs2814124 rs2814124 

MCART3P 
(1Kb); EYS 
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3 rs6767604 176063265 
NAALADL2 

(intronic) 
9.7x10-
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Table A14. Genome-wide association analysis results of the CDC/AAP chronic periodontitis (CP) 
classification traits (severe CP vs. healthy and moderate CP vs. healthy) and extent of attachment loss 
trait (EAL-proportion of sites exhibiting attachment loss ≥3mm), among the white participants of the 
Dental ARIC study (n=4610). Supplemental list of single nucleotide polymorphisms (SNPs) with 
minor allele frequency (MAF-HapMap II CEU) of ≥5% and that emerged below the P<5x10-6 in the 
“sensitivity” analysis that included logistic regression models adjusted for diabetes (binary variable) 
and smoking (never, former, current).  

Chr. SNP 
Position  
Build36 ca1 nca2 

Risk allele 
frequency 
(HapMap 
II- CEU) 

Closest gene(s) 
and position or 

distance 

Risk allele 
frequency 
“cases”/ 
healthy 

P value 
(adjusted) 3 

Odds ratio/beta 
(95% CI4; 
adjusted) 3 

Severe CP         

1p21.1 rs10493998 103500842 C T 0.120 
COL11A1 

(154Kb); RNPC3 
(340Kb) 

0.148/0.109 2.2x10-6 1.68 (1.36, 2.08) 

4q21.3 rs17006135 83836002 C T 0.071 
SCD5 (36Kb); 

SEC31A (123Kb) 
0.096/0.059 4.4x10-6 1.82 (1.41, 2.35) 

Moderate CP 
 

  
     

12q15 rs11615037 67741708 C G 0.276 
CPM (98Kb); 

CPSF6 (178Kb) 
0.281/0.244 4.4x10-6 1.33 (1.18, 1.51) 

EAL 
 

   
     

4q21.3 rs17006135 83836002 C T 0.071 
SCD5 (36Kb); 

SEC31A (123Kb) 
 8.2x10-7 3.15 (1.90, 4.41) 

14q21.3 rs8006336 48388426 A G 0.651 
RPS29 (726Kb); 
PPIL5 (747Kb) 

 1.4x10-6 1.68 (1.00, 2.36) 

1: coded allele 
2: non-coded allele 
3: based on logistic regression models that were adjusted for diabetes (binary) and smoking (never, former, current) 
4: Confidence interval 
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Table A15. Coded and non-coded alleles of prioritized SNPs for severe and moderate 
CP on the Affymetrix 6.0 (ARIC GWAS) and the Illumina Human 1M Duo (ver.3) 
(Health ABC GWAS) platforms. Pending verification by the Health ABC 
collaborating group. 
 

Affymetrix 6.0 
Illumina Human1M 

Duo Beadchip 
 

SNP 
Coded 
allele 

Non-coded 
allele 

Coded 
allele 

Non-coded 
allele 

Different 
strand 

(yes/no) 
rs12883458 C T C T No 
rs2521634 A G A G No 
rs11925054 G T G T No 
rs10493998 C T C T No 
rs17006135 C T C T No 
rs7762544 A G A G No 
rs3826782 A G A G No 
rs12260727 A G A G No 
rs11615037 C G C G No 
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Table A16. Genome-wide association replication results [SNPs prioritized based on a 
P<5x10-6 threshold in the dental ARIC (n=4610)] of severe and moderate CP in the Health 
ABC cohort. Reported estimates correspond to the ARIC cohort ‘risk’ allele effect on severe 
and moderate CP and EAL in the Health ABC cohort.  

 Severe CP Moderate CP EAL 

dbSNP P-value OR (95% CI) P-value OR (95% CI) P-value beta (95% CI) 

Severe CP       

rs128834581 0.25 0.65 (0.31, 1.34) 0.71 0.90 (0.51, 1.58) 0.56 -0.05 (-0.21, 0.11) 

rs2521634 0.05 1.65 (1.01, 2.69) 0.03 1.63 (1.06, 2.51) 0.53 0.04 (-0.08, 0.16) 

rs119250541 0.06 0.51 (0.25, 1.04) 0.05 0.53 (0.29, 0.98) 0.27 -0.08 (-0.22, 0.06) 

rs104939982 0.89 1.06 (0.52, 2.15) 0.34 1.31 (0.76, 1.31) 0.24 0.09 (-0.05, 0.23) 

rs170061351,2,3 0.03 0.43 (0.20, 0.90) 0.32 0.73 (0.40, 1.35) 0.39 -0.08 (-0.26, 0.26) 

Moderate CP       

rs7762544 0.34 1.30 (0.76, 2.20) 0.28 1.32 (0.81, 2.16) 0.77 0.02 (-0.10, 0.14) 

rs3826782 0.01 4.18 (1.66, 10.50) 0.06 2.08 (0.99, 4.37) 0.10 0.14 (-0.04, 0.32) 

rs122607271 0.29 1.39 (0.74, 2.60) 0.80 0.93 (0.55, 1.58) 0.11 -0.11 (-0.25, 0.03) 

rs116150371,2 0.37 0.78 (0.46, 1.32) 0.77 0.93 (0.61, 1.44) 0.81 0.02 (-0.10, 0.14) 

1 opposite direction effect; verification of coded SNP in Health ABC GWAS is pending 
2 SNPs that were prioritized based on the P<5x10-6 criterion in exploratory smoking- and diabetes-adjusted 
analysis 
3 rs17006135 marked a shared risk locus for severe CP and EAL in the Dental ARIC GWAS adjusted 
exploratory analysis 
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Table A17. Replication of GWAS results (P-values and effect estimates) of prioritized SNPs 
of the ARIC genome-wide association analysis (crude and exploratory smoking and diabetes-
adjusted analyses) in the Health ABC cohort. Reported effect estimates correspond to the 
‘risk’ allele in the ARIC cohort. 

 ARIC GWAS ARIC GWAS adjusted Health ABC 

dbSNP P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) 

Severe CP       

rs128834581 3.5x10-7 1.89 (1.48, 2.41) 1.1x10-6 1.88 (1.46, 2.43) 0.25 0.65 (0.31, 1.34) 

rs2521634 1.6x10-6 1.47 (1.25, 1.73) 2.6x10-5 1.43 (1.21, 1.69) 0.05 1.65 (1.01, 2.69) 

rs119250541 6.5x10-7 1.69 (1.37, 2.10) 2.6x10-7 1.78 (1.42, 2.23) 0.06 0.51 (0.25, 1.04) 

rs104939982 9.2x10-6 1.59 (1.30, 1.95) 2.2x10-6 1.68 (1.36, 2.08) 0.89 1.06 (0.52, 2.15) 

rs170061351,2,3 1.8x10-5 1.70 (1.34, 2.16) 4.4x10-6 1.82 (1.41, 2.35) 0.03 0.43 (0.20, 0.90) 

Moderate CP       

rs7762544 1.1x10-7 1.41 (1.24, 1.60) 3.8x10-8 1.44 (1.26, 1.63) 0.28 1.32 (0.81, 2.16) 

rs3826782 4.0x10-6 2.00 (1.48, 2.70) 1.4x10-6 2.09 (1.54, 2.84) 0.06 2.08 (0.99, 4.37) 

rs122607271 6.0x10-7 1.54 (1.30, 1.82) 3.0x10-6 1.51 (1.27, 1.79) 0.80 0.93 (0.55, 1.58) 

rs116150371,2 2.6x10-5 1.29 (1.15, 1.46) 4.4x10-6 1.33 (1.18, 1.51) 0.77 0.93 (0.61, 1.44) 

1 opposite direction effect; verification of coded SNP in Health ABC GWAS is pending 
2 SNPs that were prioritized based on the P<5x10-6 criterion in exploratory smoking- and diabetes-adjusted 
analysis 
3 rs17006135 marked a shared risk locus for severe CP and EAL in the Dental ARIC GWAS adjusted 
exploratory analysis 
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Table A18. Meta-analysis of GWAS results (meta-analysis P-values and effect estimates based on inverse variance 
weighting) of prioritized SNPs for severe and moderate CP in the ARIC and the Health ABC studies. Reported effect 
estimates correspond to the ‘risk’ allele in the ARIC cohort. Pooled estimates based on inverse-variance meta-analysis are 
presented for results that did not demonstrate substantial heterogeneity (homogeneity X2 P<0.2 criterion). 
 ARIC GWAS Health ABC Meta-analysis 

     Pooled estimates Heterogeneity assessment2 

dbSNP P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) 

Diff. 
directi

on I2 X2 P<0.2 

Severe CP           

rs12883458 3.5x10-7 1.89 (1.48, 2.41) 0.25 0.65 (0.31, 1.34)   * 86.6 7.5 * 

rs2521634 1.6x10-6 1.47 (1.25, 1.73) 0.05 1.65 (1.01, 2.69) 3.5x10-7 1.49 (1.28, 1.73)  0 0.2  

rs11925054 6.5x10-7 1.69 (1.37, 2.10) 0.06 0.51 (0.25, 1.04)   * 90.1 10.1 * 

rs104939981 9.2x10-6 1.59 (1.30, 1.95) 0.89 1.06 (0.52, 2.15)    48.7 2.0 * 

rs170061351 1.8x10-5 1.70 (1.34, 2.16) 0.03 0.43 (0.20, 0.90)   * 91.6 11.9 * 

Moderate CP       
    

rs7762544 1.1x10-7 1.41 (1.24, 1.60) 0.28 1.32 (0.81, 2.16) 7.5x10-8 1.40 (1.24, 1.59)  0 0.6  

rs3826782 4.0x10-6 2.00 (1.48, 2.70) 0.06 2.08 (0.99, 4.37) 8.2x10-7 2.01 (1.52, 2.65)  0 0.9  

rs12260727 6.0x10-7 1.54 (1.30, 1.82) 0.80 0.43 (0.20, 0.90)   * 67.7 3.1 * 

rs116150371 2.6x10-5 1.29 (1.15, 1.46) 0.77 0.93 (0.61, 1.44)   * 51.4 2.6 * 

1 SNPs that were prioritized based on the P<5x10-6 criterion in exploratory smoking- and diabetes-adjusted analysis in 
the ARIC cohort 
2 Asterisks (*) correspond to effects of different direction in the ARIC and Health ABC cohorts, and homogeneity X2 P-
values of less than 0.2 
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FIGURES 
 
Figure A1. Power calculation for severe CP among whites for MAF: 0.1-0.5. 
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Figure A2. Power calculation for the “high” bacterial colonization trait among whites 
for MAF: 0.1-0.5. 
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Figure A3. Power calculation for GxE interaction effects for severe CP, assuming 
‘exposure’ prevalence 0.5 and MAF: 0.1-0.5 among the dental ARIC whites. 
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Figure A4. Power calculation for GxE interaction effects for severe CP, assuming 
‘exposure’ prevalence 0.1 and MAF: 0.1-0.5 among the dental ARIC whites. 
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Figure A5. Density plot of average DST among the ARIC cohort study whites zoomed in the 

regions of DST cut-offs for related individuals (first degree DST ≥0.8, second degree 0.745 ≤ 

DST < 0.8). Red dots represent those 380 pairs of first degree and 207 pairs of second degree 

relatives. 
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Figure A6. Density plot of average DST among the ARIC cohort study whites. Red dots 

represent 16 genetic outliers based on average DST values. 
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Figure A.7 Scatter plot matrix of the ten principal components generated with the 

EIGENSTRAT program for the white ARIC cohort study genotyped participants. 

 

 

 

 

 



 

209 

 

Figure A.8 Catalogue of published GWA studies (n=951) through June 2011.  
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Figure A.9 Visualization of the 14q21 locus that was marked by rs12883458 (P=3.5x10-7) 
for severe chronic periodontitis among the 4610 white participants of the Dental 
Atherosclerosis in Communities Study cohort combined with a linkage disequilibrium plot 
generated with Haploview (based on 1000 genomes pilot 1 release haplotype data). 
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Figure A.10 Visualization of the 7p15 locus that was marked by rs2521634 (P=1.6x10-6) for 

severe chronic periodontitis among the 4610 white participants of the Dental Atherosclerosis 

in Communities Study cohort combined with a linkage disequilibrium plot generated with 

Haploview (based on 1000 genomes pilot 1 release haplotype data). 
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Figure A.11 Visualization of the 3p21 locus that was marked by rs11925054 (P=6.5x10-7) 

for severe chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort combined with a linkage disequilibrium plot 

generated with Haploview (based on 1000 genomes pilot 1 release haplotype data). 
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Figure A.12 Visualization of the 6p21.1 locus that was marked by rs7762544 (P=1.1x10-7) 

for severe chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort combined with a linkage disequilibrium plot 

generated with Haploview (based on 1000 genomes pilot 1 release haplotype data). 
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Figure A.13 Visualization of the 19p13.3 locus that was marked by rs3826782 (P=4.0x10-6) 
for severe chronic periodontitis among the 4610 white participants of the Dental 
Atherosclerosis in Communities Study cohort combined with a linkage disequilibrium plot 
generated with Haploview (based on 1000 genomes pilot 1 release haplotype data). 
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Figure A.14 Visualization of the 10p15 locus that was marked by rs12260727 (P=6.0x10-7) 

for moderate chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort combined with a linkage disequilibrium plot 

generated with Haploview (based on 1000 genomes pilot 1 release haplotype data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

216 

 

Figure A.15 Visualization of the 6q15 locus that was marked by rs17792917 (P=1.8x10-6) 

for severe chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort combined with a linkage disequilibrium plot 

generated with Haploview (based on 1000 genomes pilot 1 release haplotype data). 
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Figure A.16 Visualization of the 4q21.3 locus that was marked by rs17006135 (P=4.4x10-6 

after adjustment for smoking and diabetic status) for severe chronic periodontitis among the 

4610 white participants of the Dental Atherosclerosis in Communities Study cohort 

combined with a linkage disequilibrium plot generated with Haploview (based on 1000 

genomes pilot 1 release haplotype data). 
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Figure A.17 Visualization of the 11q22 locus that was marked by rs7120142 (P=3.9x10-6) 

for severe chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort combined with a linkage disequilibrium plot 

generated with Haploview (based on 1000 genomes pilot 1 release haplotype data). 
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Figure A.18 Visualization of the 7q34 locus that was marked by rs10500130 (P=4.6x10-6) 

for severe chronic periodontitis among the 4610 white participants of the Dental 

Atherosclerosis in Communities Study cohort combined with a linkage disequilibrium plot 

generated with Haploview (based on 1000 genomes pilot 1 release haplotype data). 
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Figure A.19 Visualization of the 1q42 locus that was marked by rs11800854 (P=4.0x10-6) 

for “high” Aggregatibacter actinomycetemcomitans colonization among the subset of 1020 

white participants of the Dental Atherosclerosis in Communities Study cohort combined with 

a linkage disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 

release haplotype data). 
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Figure A.20 Visualization of the 1p22 locus that was marked by rs12032672 (P=9.6x10-7) 

for “high red” complex bacterial colonization among the subset of 1020 white participants of 

the Dental Atherosclerosis in Communities Study cohort combined with a linkage 

disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 release 

haplotype data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

222 

 

Figure A.21 Visualization of the 5q33 locus that was marked by rs10043775 (P=2.4x10-6) 

for “high red” complex bacterial colonization among the subset of 1020 white participants of 

the Dental Atherosclerosis in Communities Study cohort combined with a linkage 

disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 release 

haplotype data). 
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Figure A.22 Visualization of the 9p24 locus that was marked by rs16924631 (P=3.2x10-6) 

for “high red” complex bacterial colonization among the subset of 1020 white participants of 

the Dental Atherosclerosis in Communities Study cohort combined with a linkage 

disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 release 

haplotype data). 
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Figure A.23 Visualization of the 4p14 locus that was marked by rs10010758 (P=3.7x10-6) 

for “high red” complex bacterial colonization among the subset of 1020 white participants of 

the Dental Atherosclerosis in Communities Study cohort combined with a linkage 

disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 release 

haplotype data). 
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Figure A.24 Visualization of the 1p36.2 locus that was marked by rs1616122 (P=4.9x10-6) 

for “high orange” complex bacterial colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort combined with a 

linkage disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 

release haplotype data). 
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Figure A.25 Visualization of the 1q42 locus that was marked by rs11800854 (P=4.0x10-6) 

for “high” Aggregatibacter actinomycetemcomitans colonization among the subset of 1020 

white participants of the Dental Atherosclerosis in Communities Study cohort combined with 

a linkage disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 

release haplotype data). 
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Figure A.26 Visualization of the 9q33.2 locus that was marked by rs10760187 (P=4.5x10-7) 

for “high” Porphyromonas gingivalis colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort combined with a 

linkage disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 

release haplotype data). 
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Figure A.27 Visualization of the 10p11.21 locus that was marked by rs1360573 (P=1.5x10-6) 

for “high” Porphyromonas gingivalis colonization among the subset of 1020 white 

participants of the Dental Atherosclerosis in Communities Study cohort combined with a 

linkage disequilibrium plot generated with Haploview (based on 1000 genomes pilot 1 

release haplotype data). 
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Figure A.28 Predicted network of associations [physical interactions (grey line), co-

expression (dark blue line), pathway (light blue line), shared protein domain (green line)] 

among genes of prioritized loci for the CP and the “high” bacterial traits in the Dental ARIC 

cohort. Grey lines represent co-expression and blue lines represent physical interactions. 
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Figure A.29 Predicted network of associations [physical interactions (grey line), co-

expression (dark blue line), pathway (light blue line), shared protein domain (green line)], 

generated with the GeneMANIA module) among genes of prioritized loci for the CP and the 

“high” bacterial traits in the Dental ARIC cohort, along with genes that have been previously 

reported to be associated with periodontitis.  
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Figure A.30 Visualization of GWA results for severe CP in the ARIC cohort for loci that 

have been previously associated with periodontitis (IL1A, IL1RN, TLR4, MMP2, GLT6D1, 

GCGR3A). The vertical axis corresponds to each marker’s associated –log10 P-value. The 

overlaid recombination rate plot and the color-coded pairwise linkage disequilibrium values 

with index SNPs were calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure A.31 Visualization of GWA results for moderate CP in the ARIC cohort for loci that 

have been previously associated with periodontitis (IL1A, IL1RN, TLR4, MMP2, GLT6D1, 

GCGR3A). The vertical axis corresponds to each marker’s associated –log10 P-value. The 

overlaid recombination rate plot and the color-coded pairwise linkage disequilibrium values 

with index SNPs were calculated based on HapMap II – CEU (human genome 18, build 36). 
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Figure A.32 Visualization of GWA results for the extent of attachment loss trait (proportion 

of sites exhibiting ≥3mm attachment loss) CP in the ARIC cohort for loci that have been 

previously associated with periodontitis (IL1A, IL1RN, TLR4, MMP2, GLT6D1, GCGR3A). 

The vertical axis corresponds to each marker’s associated –log10 P-value. The overlaid 

recombination rate plot and the color-coded pairwise linkage disequilibrium values with 

index SNPs were calculated based on HapMap II – CEU (human genome 18, build 36). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

234 

 

Figure A.33 Visualization of GWAS results in the IL6 (Interleukin 6) and VDR (vitamin D 

receptor) loci in the ARIC cohort for severe (left column) and moderate CP (right column). 

The vertical axis corresponds to each marker’s associated –log10 P-value. The overlaid 

recombination rate plot and the color-coded pairwise linkage disequilibrium values with 

index SNPs were calculated based on HapMap II – CEU (human genome 18, build 36). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

235 

 

Figure A.34 Visualization of the 6p21.1 locus (chr6:41,279,315-41,479,315; flanking 100Kb 

of rs7762544, which was prioritized for moderate CP) using the ENCODE/USCF browser 

and displaying enhancer/promoter associated regions and DNaseI hypersensitivity clusters.  
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Figure A.35 Visualization of the 19p13.3 locus (chr19:6,787,736-6,987,736; flanking 100Kb 
of rs3826782, which was prioritized for moderate CP) using the ENCODE/USCF browser 
and displaying enhancer/promoter associated regions and DNaseI hypersensitivity clusters. 
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Figure A.36 Visualization of the 10p15locus (chr10:10,238,329-10,438,329; flanking 100Kb 

of rs12260727, which was prioritized for moderate CP) using the ENCODE/USCF browser 

and displaying enhancer/promoter associated regions and DNaseI hypersensitivity clusters. 
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Figure A.37 Visualization of the 14q21 locus (chr14:51,179,379-51,379,379; flanking 
100Kb of rs12883458, which was prioritized for severe CP) using the ENCODE/USCF 
browser and displaying enhancer/promoter associated regions and DNaseI hypersensitivity 
clusters. 
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Figure A.38 Visualization of the 7p15 locus (chr7:24,278,040-24,478,040; flanking 100Kb 

of rs2521634, which was prioritized for severe CP) using the ENCODE/USCF browser and 

displaying enhancer/promoter associated regions and DNaseI hypersensitivity clusters. 
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Figure A.39 Visualization of the 3p21 locus (chr3:55,290,886-55,490,886; flanking 100Kb 

of rs11925054, which was prioritized for severe CP) using the ENCODE/USCF browser and 

displaying enhancer/promoter associated regions and DNaseI hypersensitivity clusters. 
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Figure A.40 Visualization of the 6q15 locus (chr6:85,166,965-85,366,965; flanking 100Kb 

of rs17792917, which was prioritized for the “extent” of attachment loss trait) using the 

ENCODE/USCF browser and displaying enhancer/promoter associated regions and DNaseI 

hypersensitivity clusters. 
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Figure A.41 Visualization of the 11q24 locus (chr11:127,557,071-127,757,071; flanking 

100Kb of rs10790919, which was prioritized for the “extent” of attachment loss trait) using 

the ENCODE/USCF browser and displaying enhancer/promoter associated regions and 

DNaseI hypersensitivity clusters. 
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Figure A.42 Visualization of the 11q22  locus (chr11:103,317,781-103,517,781; flanking 

100Kb of rs7120142, which was prioritized for the “extent” of attachment loss trait) using 

the ENCODE/USCF browser and displaying enhancer/promoter associated regions and 

DNaseI hypersensitivity clusters. 
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Figure A.43 Visualization of the 7q34 locus (chr7:138,715,913-138,915,913; flanking 

100Kb of rs10500130, which was prioritized for the “extent” of attachment loss trait) using 

the ENCODE/USCF browser and displaying enhancer/promoter associated regions and 

DNaseI hypersensitivity clusters. 
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