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ABSTRACT 
 

Victoria Brings Bartsch: Characterization of Diacylglycerol Kinases Eta and Iota in Itch, Pain, 
And Psychopathological Behavior in Mice 

(Under the direction of Mark J. Zylka) 
 

Diacylglycerol kinases (DGK) control diverse signaling functions. Expression of the iota 

and eta isoforms of DGK (Dgki and Dgkh, respectively) are enriched in mouse neuronal tissues. 

By overexpressing Dgki and Dgkh in HEK293 cells, we found that Dgki and Dgkh enhanced G-

protein-coupled receptor signaling and phosphorylated diacylglycerol and monoacylglycerol. We 

acquired a Dgki-knockout mouse and generated a Dgkh-knockout mouse and a double 

Dgki/Dgkh knockout (dKO) mouse. Using the Dgki-/-, Dgkh-/-, and dKO mice, we elucidated the 

role of Dgki and Dgkh in regulating behaviors associated with the neuronal tissues in which they 

are expressed. 

Dgki and Dgkh are highly expressed in small-diameter dorsal root ganglia (DRG) 

neurons, which detect pruritogenic (itch-causing) and algogenic (pain-causing) stimuli.  

We found that in vivo sensitivity to histamine—but not other pruritogens—was enhanced in male 

and female Dgki-/- mice, but was attenuated in Dgkh-/- males. Interestingly, dKO mice 

phenocopied the histamine sensitivity of the Dgki-/- mice. In contrast, baseline pain sensitivity 

and pain sensitization post-injury were equivalent between wild type (WT) and Dgki-/-, Dgkh-/-, or 

dKO mice. Even though diacylglycerol and monoacylglycerol kinase activity was reduced in 

DRGs from Dgkh-/- and dKO mice, in vitro signaling induced by pruritogens and algogens in 

DRG neurons was unaffected by Dgki or Dgkh deletion.  

Genome-wide association studies linked DGKH and DGKI to mood disorders, and both 

genes are expressed throughout the brain. dKO mice—but not Dgki-/- or Dgkh-/- mice—showed 
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behavioral signs of anxiety and mania. Dgki-/- and dKO males showed hyperactivity and 

hyperexploratory behavior, as well. In addition to the psychopathological phenotypes, dKO 

females demonstrated deficits in maternal care. Fewer than 30% of newborn pups raised by 

dKO females survived to weaning; however, 85% of pups born from dKO dams survived when 

fostered by WT dams. Pups raised by dKO dams had smaller milk spots and reduced weight, 

indicative of impaired nursing. Together, our research suggests that Dgki and Dgkh regulate 

behavioral responses to histamine, without affecting responses to other pruritogens or 

algogens, and that combined deletion of Dgkh and Dgki disrupts mood-disorder-related 

phenotypes and impairs maternal behavior in the early postpartum period. 
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CHAPTER 1: INTRODUCTION TO DIACYLGLYCEROL KINASES (DGKs) 

 

DGK is an important regulator of lipid signaling 

Diacylglycerol kinase (DGK) plays an important role in mammalian physiology by altering 

the activity of the substrate diacylglycerol (DAG) and other effectors that control cellular 

functions [1-3]. Stimulation of G-protein-coupled receptors (GPCRs) and receptor tyrosine 

kinases (RTKs) leads to activation of phospholipase C (PLC), which cleaves PIP2 to produce 

DAG. DGK phosphorylates DAG, converting it into phosphatidic acid (PA). Both DAG and PA 

affect the activity of a number of downstream targets [4]. For example, DAG’s effectors include 

C1-domain-containing proteins (e.g. PKC [5] and chimaerins [6]) and TRPV1 [7], and PA’s 

effectors include PIP5K [8] and mTOR [9]. By regulating the balance between two important 

lipid signaling mediators, DGK is poised to impart a large effect on multiple signaling cascades, 

with major implications for mammalian biology. Kinases represent the largest class of druggable 

targets in the human genome [10, 11]. Therefore, defining how phosphorylation of DAG 

regulates lipid levels, modulates cell signaling, and alters physiology may reveal an attractive 

candidate for pharmacological treatments. 

 

DGK represents a diverse family of enzymes 

There are ten different DGK genes in the murine and human genomes [1]. All have C1 

domains and catalytic domains, although for some the catalytic region is split in two. Each DGK 

also has unique motifs, such as calcium-binding EF-hands or phosphoinositide-binding 

pleckstrin homology (PH) domains. Many of the DGK genes have alternative splice variants, 

creating additional diversity in this group of enzymes [4]. Variations in structure govern the 
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subcellular localization of DGK, the effect the DGK has on signaling, and how the function of the 

DGK can be regulated [2, 4]. DGK isoforms also have variations in their tissue distribution [3]. 

They are found in most tissues in the body, where they contribute to normal functions. Many 

tissues also have upregulated DGK expression in pathological conditions, such as cancer. 

The unique domain structures and diverse tissue distribution enable DGKs to regulate 

several aspects of mammalian physiology. Dgka (alpha) and Dgkz (zeta) regulate immune 

function through their expression in T lymphocytes, promoting T cell anergy [12-16]. Dgke 

(epsilon) and Dgkz in cardiomyocytes are both protective against cardiac hypertrophy and 

dysfunction [17, 18]. A majority of research on DGK isoforms has focused on their role in 

different forms of cancer. DGKA, DGKD (delta), or DGKH (eta) depletion reduced growth in lung 

cancer cells  [19-21], and reducing DGKZ expression attenuated invasiveness of colon, 

prostate, and breast cancer cells [22]. DGKA or Dgki (iota) depletion inhibited skin tumor growth 

[19, 23]. Additionally, epigenetic silencing of DGKG (gamma) is increased in colorectal cancer 

cells [24]. 

 

DGK regulates neuronal functions 

All ten mammalian Dgk genes are expressed in the brain, each with a distinct regional 

expression pattern [25, 26]. Many have been implicated in the regulation of neuron physiology 

and mouse behavior [25-28]. Dgkb (beta) deletion and Dgkz knockdown were found to reduce 

spine formation and maintenance, respectively, and Dgkk (kappa) knockdown reduced spine 

maturation and stability [29-31]. Dgkb, Dgkz, Dgki, and Dgkk have all been shown to regulate 

synaptic plasticity [31-34]. Alterations in Dgkb, Dgkz, Dgke, or Dgkk coincided with differences 

in lipid levels in various neuronal tissues [31, 34-36]. On the behavioral level, seizure 

susceptibility was enhanced by Dgkd knockdown and Dgkb knockout [37, 38] and reduced by 

Dgke loss [35]. Dgkb-/- and Dgkh-/- male mice showed neurological phenotypes including 

hyperactivity and reduced depression [29, 39], while Dgkk-deficient mice showed Fragile X 
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syndrome-like social deficits and stereotypic behaviors [31]. Therefore, changing the balance of 

lipids in this network by targeting various Dgk genes appears to influence neurophysiology. 

 

Dgki (iota) and Dgkh (eta) 

The work presented in this dissertation focuses on the iota and eta isoforms of DGK 

(Dgki and Dgkh), which are primarily expressed in neuronal tissues (data presented in Chapter 

2). These isoforms piqued our interest due to their high expression in dorsal root ganglia (DRG), 

a sensory organ relevant to our lab’s work on itch and pain physiology. Dgki and Dgkh are also 

expressed in the brain, and DGKH and DGKI have been linked to mental and cognitive 

disorders, including schizophrenia, bipolar disorder, depression, and attention deficit 

hyperactivity disorder [40-44]. However, little was known about how they contribute to disease 

or even how they regulate neuronal function. Through this research we have developed a better 

understanding of the molecular functions of Dgki and Dgkh and have demonstrated the role of 

Dgki and Dgkh in behaviors associated with the neuronal tissues in which they are expressed. 
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CHAPTER 2: CHARACTERIZATION OF DGKI AND DGKH MOLECULAR FUNCTION AND 
KNOCKOUT MOUSE DEVELOPMENT 

 

INTRODUCTION 

DGKs have diverse signaling functions 

As a result of their diversity in structure, DGK isoforms affect signaling in many different 

ways. DGKs largely affect signaling by metabolizing DAG, decreasing its signaling. DAG 

produced downstream of Gαq-protein-coupled receptor (Gαq-GPCR) or RTK activation activates 

protein kinase C (PKC) [5]. By decreasing DAG signaling, DGK can attenuate PKC activity, 

which in turn can alter the PKC-dependent functions downstream of both Gαq-GPCRs and 

RTKs. For example, overexpressing Dgke, Dgkz, or Dgkh decreased Gαq-GPCR-stimulated 

PKC activity [17, 18, 45]. Similarly, PKC activity and phosphorylation and inactivation of EGFR 

were decreased by DGKQ (theta) expression and increased by Dgkd loss [46, 47].  

In addition to affecting downstream activation of PKC by DAG, DGKs can directly 

interact with non-lipid signaling molecules, including Ras GTPases and their regulators. DGKH 

facilitated C-Raf/B-Raf heterodimerization to enhance EGF-stimulated ERK signaling in HeLa 

cells [48]. DGKG interacted with β2-chimaerin, enhancing its activation and its suppression of 

Rac1 induced by EGF in fibroblasts [49], whereas DGKZ interacted with active Rac1 itself in a 

neuroblastoma cell line [50]. Dgka and Dgkz inhibited RasGRP1, leading to decreased Ras 

signaling in T cells [12-16], whereas Dgki inhibited RasGRP3, leading to increased Ras 

signaling (via Rap1 inhibition) in fibroblasts [23].  

All of these modifications in signaling lead to changes in cellular function. Therefore, we 

aimed to characterize the molecular functions of Dgki and Dgkh in order to understand how they 

might affect the cellular functions of the tissues in which they are expressed. Previously, we 
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found that Dgkh enhances Gαq-GPCR signaling in a PKC-dependent fashion [45]. Through the 

work presented in this chapter, we determined how Dgki affects GPCR signaling, investigated 

the substrate-specific kinase functions of Dgki and Dgkh, and developed tools to study these 

two kinases in vivo. 

 

RESULTS 

Dgki and Dgkh enhance Gαq-GPCR-stimulated calcium activity  

The cleavage of PIP2 after receptor-mediated PLC activation produces IP3 and DAG. IP3 

induces the release of calcium from intracellular stores. The degree to which receptor activation 

affects signaling within a cell can be measured by monitoring calcium activity following receptor 

stimulation. By overexpressing Dgkh in HEK293 cells and stimulating GPCR activity, we 

previously found that Dgkh prolongs GPCR signaling by decreasing the activation of PKC by 

DAG. This, in turn, diminishes the rate at which PKC phosphorylates and desensitizes the 

receptor [45]. We also demonstrated that Dgki enhances GPCR-stimulated calcium activity to 

the same degree as Dgkh in this HEK293 cell paradigm (Figure 2.1).  

 

Dgki and Dgkh phosphorylate multiple acylglycerol substrates 

Because Dgki and Dgkh are expressed in many of the same tissues despite their 

redundant functions as diacylglycerol kinases, we explored the possibility that they might differ 

in their substrate preferences (i.e. one Dgk could prefer DAG species with saturated fatty acid 

chains, while the other prefers unsaturated). There is precedence for this, as DGKE shows 

stearoyl arachidonoyl substrate specificity [51]. Activation of effectors of DAG, such as PKC, 

depends on the acyl chain composition of DAG [52, 53]. Therefore, the substrate specificity of a 

Dgk isoform could have major implications for which signaling pathways Dgki and Dgkh may 

regulate. 
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To characterize the degree to which these DGKs phosphorylate various substrates, we 

utilize a radioactivity-based kinase activity assay [45]. In this assay, protein lysates from 

HEK293 cells transfected with one of five constructs (RFP-Dgki or RFP-Dgkh; the kinase-dead 

version of either enzyme, RFP-Dgki G431D or RFP-Dgkh G389D; or an RFP control) were 

combined in a reaction with ATP labeled with 32P in the gamma phosphate, and the amount of 

32P-labeled product was measured (Figure 2.2A). The phosphorylation of each substrate by 

lysates expressing RFP-Dgki or RFP-Dgki G431D (Figure 2.2B) or RFP-Dgkh or RFP-Dgkh 

G389D (Figure 2.2C) was normalized to the phosphorylation of that substrate by RFP. 

Statistical significance was then tested between RFP-Dgki and RFP-Dgki G431D and between 

RFP-Dgkh and RFP-Dgkh G389D. 

We used four different biologically-relevant DAG substrates that varied in acyl chain 

length and degree of saturation, including 16:0-18:1 (1-palmitoyl-2-oleoyl-glycerol), 18:1-18:1 

(1,2-dioleoyl-glycerol), 18:0-20:4 (1-stearoyl-2-arachidonoyl-glycerol), and 18:0-22:6 (1-stearoyl-

2-docosahexaenoyl-glycerol) [54]. Both Dgki and Dgkh showed significantly more 

phosphorylation of one or more DAG species than their kinase-dead counterparts (Figure 2.2B-

C; 1,2-DAG). We found that Dgki showed greater kinase activity than Dgkh on all DAGs tested. 

All five constructs were tested simultaneously, so the responses of Dgki and Dgkh can be 

compared, even though they are shown on different graphs. 

While exploring substrate differences between Dgki and Dgkh, our attention turned to 

monoacylglycerol (MAG) as potential substrates. Monoacylglycerol kinases were purified from 

swine and bovine brains [55, 56], but there has been no further characterization of these 

kinases in nearly 30 years. Both MAGs and DAGs have fatty acid acyl chains, which DGKs bind 

to, and are phosphorylated at the 3rd position in glycerol to yield lysophosphatidic acid (LPA) 

and PA, respectively (Figure 2.2A). We hypothesized that Dgki and Dgkh could serve as 

kinases for MAGs. Using MAG substrates with different acyl chain position on glycerol (2nd or 1st 
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position in glycerol) or composition (oleoyl [18:1] or arachidonoyl [20:4]), we found that Dgki and 

Dgkh could both use MAG as a kinase substrate (Figure 2.2B-C).  

 

Deletion of Dgki and/or Dgkh in mice disrupts DGKI and/or DGKH expression in neuronal 

tissues 

Genetically-engineered mice lacking expression of Dgki and/or Dgkh are valuable tools 

we used to determine how these lipid kinases modulate various signaling pathways and how 

that may translate to differences in pruriception, nociception, and psychopathological behaviors. 

A Dgki-knockout mouse was developed by another team of researchers [23]. They found 

that Dgki normally enhances Ras activation, and in the absence of Dgki, Ras signaling is 

reduced. Activation of the Ras-Raf-MEK-ERK pathway is a mediator of receptor tyrosine kinase 

signaling in nociceptive neurons, leading to their sensitization [57]. Other scientists 

demonstrated that metabotropic glutamate receptor-dependent long-term depression (mGluR-

LTD) was dampened in hippocampal slices from neonatal (two weeks post-birth) Dgki-/- mice 

[32]. This impaired mGluR-LTD was dependent on increased PKC activation. This effect on 

signaling mediated by a Gαq-GPCR holds promise for the hope of inhibiting Dgki to attenuate 

GPCR activity. Despite this in vitro phenotype, the only behavioral difference observed was a 

slight latency to habituate to a novel environment. They found no change in learning, anxiety, or 

motor behaviors. The lack of an overt phenotype makes this mouse an attractive model for 

studying pain sensitivity, as some of the behaviors that could possibly confound the results if 

aberrant are shown to be normal in these mice.  

We acquired sperm from the Dgki-/- mice and generated mice using in vitro fertilization in 

collaboration with the Mutant Mouse Regional Resource Core at the University of North Carolina 

at Chapel Hill (UNC-CH). The mice were on a mixed background of C57BL/6 and 129; to correct 

for any background-strain-dependent effects, we backcrossed these mice to C57BL/6 for 5 
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generations. We confirmed absence of DGKI protein in the DRG, spinal cord, and brain of male 

and female mice (Figure 2.3). 

We generated a Dgkh-knockout mice using CRISPR-Cas9 technology [58] in 

collaboration with the Animal Models Core at UNC-CH. A guide RNA was designed to insert a 

three-frame stop cassette into exon 9 (Figure 2.4A-B). We targeted exon 9 to prevent any 

portion of the first catalytic domain from being produced, while attempting to avoid having 

potential translational start sites between the inserted stop cassette and the catalytic domain to 

cause disruption of all known transcripts of Dgkh. In the founder mice produced from 

microinjections of the guide RNA, the mutant Dgkh alleles were cloned and sequenced to 

demonstrate successful integration of the stop cassette in exon 9 (Figure 2.4C). The genotypes 

of the Dgkh mutant mice were confirmed using PCR amplification of the Dgkh allele and 

digestion with KpnI (Figure 2.4D). We confirmed the absence of DGKH protein in DRG, spinal 

cord, and cortex tissue in male and female Dgkh-/- mice (Figure 2.4). 

To address the potential for compensations in Dgki and Dgkh expression, we examined 

protein levels of DGKH in WT and Dgki-/- mice and protein levels of DGKI in WT and Dgkh-/- 

mice. We found no differences in protein levels between mouse lines in DRG, spinal cord, or 

cortex tissue (Figure 2.5). Therefore, neither DGKI nor DGKH expression increases in the 

absence of the other. 

To account for the potential of redundancy in Dgki and Dgkh functions in vivo, we 

crossed the Dgki-/- and Dgkh-/- mice to generate a double knockout (dKO) mouse. We also 

confirmed absence of DGKI and DGKH in various neuronal tissues of these mice (Figure 2.6). 

 

DISCUSSION 

The in vitro analyses using HEK293 cells overexpressing Dgki and Dgkh provided 

valuable insight into the molecular functions of these enzymes. We found that both Dgki and 

Dgkh enhance Gαq-GPCR-stimulated calcium signaling. Additionally, we showed that Dgki and 
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Dgkh phosphorylate both DAG and MAG lipids. Finally, we developed Dgki-/-, Dgkh-/-, and dKO 

mice that enabled us to study these kinases on the cellular and behavioral levels, as presented 

in subsequent chapters.  

 

Kinase function vs. signaling function 

We have demonstrated that Dgki and Dgkh are effective kinases for multiple acylglycerol 

substrates, and both kinases are able to enhance Gαq-GPCR signaling. Our lab previously 

showed that Dgkh’s kinase function was required for the increased calcium activity post-Gαq-

GPCR stimulation [45]. Interestingly, the kinase assay experiments presented here showed that 

Dgki was a stronger kinase than Dgkh for all substrates tested, however the effect on Gαq-

GPCR calcium signaling was similar between Dgki- and Dgkh-overexpressing cells. Thus, the 

kinase function may not represent all of the roles Dgki or Dgkh play in modulating GPCR 

signaling. Indeed, others found that a kinase-dead mutant of DGKH enhanced EGF-induced 

ERK signaling by acting as a substrate for B-Raf and C-Raf [48]. This dual functioning of Dgkh 

as both a diacylglycerol kinase and a substrate is not uncommon for this kinase family. For 

example, Dgkg prevents lamellipodia formation in a kinase-dependent fashion [49, 59] but 

enhances filopodia-like process formation in kinase-independent fashion [59]. Therefore, the 

kinase function or substrate function of Dgki and Dgkh may both be important factors in 

regulating cellular functions.  

 

Kinase function is dependent on cellular environment 

Others have recently shown that DGK isoforms overexpressed in COS-7 cells can 

phosphorylate MAG [60]. However, they found that kinase activity on MAG substrates by DGKH 

was only about 8% of the kinase activity on DAG substrates, and DGKI had no MAG kinase 

activity at all. While the use of mouse vs. human Dgk constructs likely contributed to differences 

in our results, it may also be the case that Dgk kinase function is highly dependent on the 
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cellular environment. Indeed, some Dgk isoforms have shown very different functions in 

different tissues, and even affect the same signaling pathway in opposite directions in different 

tissues. For example, even though they inhibit Ras activity in T cells [12, 13, 15], Dgka and 

Dgkz enhance Ras-Raf-MEK-ERK signaling in liver cancer [19] or heart cells [17], respectively. 

This suggests that in order to analyze the most important functions of Dgki and Dgkh, they need 

to be analyzed in situ, in the tissues in which they are expressed. The knockout mice provided a 

tool to study these kinases in the tissues in which they are endogenously expressed, both 

looking at the in vitro function of these tissues and analyzing the behaviors associated with the 

neuronal tissues in which they are expressed.  

 

METHODS 

Molecular biology 

The mouse Dgkh and Dgkh G389D constructs in the pcDNA3.1(+) vector with N-terminal 

red fluorescent protein (RFP) tags described in [45] were used in this study. The mouse Dgki 

was generated by JrGang Cheng in the pcDNA3.1(+) vector with an N-terminal RFP tag, based 

on Gene ID 320127. The RFP-Dgki G431D mutant was generated with polymerase chain 

reaction (PCR)-directed mutagenesis.  

 

HEK293 cell culture 

HEK293 cell culturing, plating, and transfection were performed similar to [45]. HEK293 

cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, 11995-065, Gibco, Grand 

Island, New York) supplemented with 10% fetal bovine serum (10437-010, Gibco) and 100 

U/mL penicillin/streptomycin (15140, Gibco). For calcium imaging assays, glass-bottom MatTek 

dishes (product info, MatTek Corporation, Ashland, Massachusetts) were plated with 300,000 

cells each. For kinase activity assays, 6-well plates (Corning, Corning, New York) were plated 

with 450,000 cells each. The glass bottoms of the MatTek dishes and the bottoms of the 6-well 
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plates were precoated with 1 mg/mL poly-D-lysine (P7886, Sigma, St. Louis, Missouri). The 

following day, each dish or well of HEK293 cells was transfected with 500 ng of RFP, RFP-Dgki, 

RFP-Dgki G431D, RFP-Dgkh, or RFP-Dgkh G389D and 500 ng of pcDNA3.1(+) using 

Lipofectamine (18324012, Invitrogen, Carlsbad, California) with Plus Reagent (11514015, 

Invitrogen) in DMEM supplemented with antibiotics for 4 hours. Transfection medium was then 

replaced with DMEM supplemented with serum and antibiotics. Cells were kept a 37°C 

incubator with 5% CO2 and used for assays within 24 hours. 

 

HEK293 calcium imaging 

Similar to previous work [45], on the day of imaging cells were washed 2 times with 

assay buffer: Hanks’ balanced salt solution (14025-126, Gibco; 140 mg/L CaCl2, 100 mg/L 

MgCl2-6H2O, 100 mg/L MgSO4-7H2O, 400 mg/L KCl, 60 mg/L KH2PO4, 350 mg/L NaHCO3, 8 

g/L NaCl, 48 mg/L Na2HPO4, 1 g/L D-glucose) supplemented with 2.4 g/L HEPES, 2 g/L D-

glucose, and 0.1% w/v fatty acid–free BSA (A6003, Sigma), at pH 7.3. Cell were then incubated 

with 2 μM Fura-2, AM (F1221, Invitrogen) in 0.02% Pluronic F-127 (P-3000MP, Invitrogen) in 

assay buffer for 1 h at room temperature (approximately 23°C). Cells were washed 3 times with 

assay buffer, then maintained at room temperature for 30 min before imaging.  

Assays were performed on an Eclipse Ti microscope (Nikon, Tokyo, Japan) with a CFI 

Plan Fluor 20x objective (Nikon) and a DG-4 light source (Sutter, Novato, California). To image 

Fura-2, cells were alternately excited for 500 ms at 340 nm and for 250 ms at 380 nm, and 

emission was measured at 510 nm. Cells were recorded using a Clara DR-328G-C01-SIL CCD 

camera (Andor, Belfast, United Kingdon) and NIS Elements imaging software (Nikon).  

Assay buffer was changed directly before imaging. An image was taken in the RFP 

channel to identify which cells were expressing the RFP-tagged construct. Baseline Fura-2 

ratios were collected for 40 s, then assay buffer was removed an agonist was added manually 
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as quickly as possible. Imaging continued for 3 min. The agonist used was 10 μM 

carbamoylcholine chloride (carbachol; C4382, Sigma) in assay buffer. 

For analysis, we calculated the Fura-2 ratio (ratio of the emission following excitation at 

340 nm/380 nm) for all cells that had RFP expression. We excluded cells that had high baseline 

Fura-2 ratios (>0.6) or failed to respond to agonist (did not reach ratio of at least 0.8 during 

carbachol exposure). To normalize to baseline, the 30 s of Fura-2 ratios measured immediately 

preceding agonist exposure were averaged for a given cell, and that average was subtracted 

from each data point for that cell throughout the whole assay period. Area-under-the-curve 

(AUC) values were calculated on a cell-by-cell basis, using the baseline-normalized values, for 

the 3-min period of agonist exposure. RFP-transfected HEK293 cells were tested each day, 

along with HEK293 cells transfected with RFP-Dgki and/or RFP-Dgkh, alternating dishes in a 

random order. The data presented here included the responses of 104 RFP-transfected cells, 

85 RFP-Dgki-transfected cells, and 67 RFP-Dgkh-transfected cells. 

 

HEK293 kinase activity assay 

Kinase activity was measured similar to previous work [45]. HEK293 cells plated into 6-

well plates and transfected with one of five constructs (RFP-Dgki; RFP-Dgkh; the kinase-dead 

version of either enzyme, RFP-Dgki G431D or RFP-Dgkh G389D; or an RFP control) were 

washed with ice-cold PBS. We then added 200 μL of kinase assay lysis buffer (50 mM Tris pH 

7.4, 150 mM NaCl, 1 mM EDTA pH 8.0, 1% v/v Triton-X100, 1 mM phenylmethanesulfonyl 

fluoride, 1 mM sodium deoxycholate, 1× cOmplete Mini EDTA-free Protease Inhibitor Cocktail 

[4693159001, Roche, Basel, Switzerland], 1x phosphatase inhibitor cocktail 2 [P5726, Sigma]) 

to each well. After 10 min on ice, cells were scraped into lysis buffer and transferred to a 

microcentrifuge tube. Following sonication on ice for 10 s, lysates were centrifuged at 10,000 × 

g at 4°C for 10 min to separate the debris. Lysates were kept on ice (never frozen) until use in 

the kinase activity assay the same day. 
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The diacylglycerol substrates used were 1-palmitoyl-2-oleoyl-glycerol (16:0-18:1; 

800815C, Avanti Polar Lipids, Alabaster, Alabama), 1,2-dioleoyl-glycerol (18:1-18:1; 800811C, 

Avanti), 1-stearoyl-2-arachidonoyl-glycerol (18:0-20:4; 800818C, Avanti), and 1-stearoyl-2-

docosahexaenoyl-glycerol (18:0-22:6; 800819C, Avanti). The monoacylglycerol substrates used 

were 1-oleoyl-glycerol (18:1; M7765, Sigma), 2-oleoyl-glycerol (18:1; M2787, Sigma), and 2-

arachidonoyl-glycerol (20:4; 870450O, Avanti). Lipids in chloroform were transferred to a glass 

tube, and the chloroform was evaporated under a gentle stream of nitrogen gas. Lipids were 

resuspended in sodium deoxycholate and mixed with kinase assay buffer. The final 

concentrations of the components of the kinase assay buffer were: 50 mM Tris-HCl pH 7.4, 100 

mM NaCl, 20 mM NaF, 10 mM MgCl2, 1 mM DTT, 1 mM EDTA, and 1 mM sodium 

deoxycholate. Each 50-μL reaction had 10 μL of cell lysate, 25 nmol of lipid, and 1 mM ATP (50 

uCi [γ-32P]-ATP; NEG035C005MC, Perkin Elmer, Waltham, Massachusetts). The reaction was 

initiated by addition of lysate. After 10 min at 30°C, the reaction was stopped by adding 25 μL of 

12 N HCl then 750 μL butanol-saturated water. 

Lipid extraction was performed by mixing 500 μL butanol into the sample and spinning at 

1,000 × g at room temperature for 5 min. 425 μL of the upper organic phase was washed with 

500 μL butanol-saturated water. Following another spin, 300 μL of the organic phase was again 

washed with 500 μL of butanol saturated-water. Following a final spin, 250 μL of the organic 

phase was mixed with 2 ml of ScintiSafe Econo 2 scintillation fluid (SX21-5, Thermo Fisher 

Scientific, Waltham, Massachusetts) in a scintillation vial (03-341-72A, Thermo Fisher) and 

counted on a Wallac Rackbeta 1209 liquid scintillation counter (LKB Instruments, Mount 

Waverley, Victoria, Australia) with counts per minute (CPM) as the readout. 

After performing the kinase assay, the lysates were run on a western stained for RFP 

and β-actin. Blotting for RFP confirmed expression of the transfected construct. Blotting for β-

actin allowed us to determine the relative protein concentration in each sample. All samples 

tested on a given day were run on the same western; the intensity of the ACTB band for each 
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sample was quantified using ImageJ image analysis software (NIH, Bethesda, MD), and the 

intensity relative to RFP’s ACTB band was calculated. The CPM of each sample was 

normalized to the relative ACTB intensity of that sample, as a way of normalizing to protein level 

of the sample. For data analysis, the phosphorylation of each substrate by lysates expressing 

RFP-Dgk constructs was normalized to the phosphorylation of that substrate by RFP. Statistical 

significance was then tested between RFP-Dgki and RFP-Dgki G431D and between RFP-Dgkh 

and RFP-Dgkh G389D. All five constructs were tested in each experiment (although different 

lipid species were tested each day), so the responses of Dgki and Dgkh can be compared, even 

though they are shown on different graphs. 

 

Mice 

All procedures used in this study were approved by the Institutional Animal Care and 

Use Committee at the University of North Carolina at Chapel Hill. Mice were maintained on a 12 

h:12 h light:dark cycle and given food (Teklad 2020X, Envigo, Huntingdon, United Kingdom) and 

water ad libitum. Mice were group housed with 3 to 5 mice per cage. Cages had Bed-o’Cobs 

bedding (Andersons Lab Bedding, Maumee, Ohio). Modifications in housing and bedding and 

specific methods related to mating and behavior are presented in the subsequent chapters. 

Because of the deficits in maternal care by dKO dams (discussed in Chapter 4), all dKO mice 

used in behavioral studies were raised by WT foster moms. 

 

Dgki-knockout mice 

We acquired a Dgki-/- mouse line described previously [23], which was on a mixed 129 

and C57BL/6 background. All data presented here from both the Dgki-/- and dKO lines were 

from mice that were backcrossed with C57BL/6J mice for at least five generations. 
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Dgkh-knockout mice 

We generated a Dgkh-knockout mouse using CRISPR/Cas9 technology [58]. To arrest 

translation at the start of the first catalytic domain of DGKH, we designed a guide RNA 

(GTGTTCGTCAACTCTAAGAGTGG) and a homology-directed repair donor template 

(TTTCGTTCTGTGTCAGCCCCCTCTTGGTGTTCGTCAACTCTAAATAAAGGTACCTAGGATA

AATAGAGTGGAGATAATCAGGGAGTGAAGTTCCTTCGTCGCTTTAAA) to insert a three-

frame stop cassette (bold) and KpnI site (bold underlined) in exon 9 of Dgkh. Pronuclear 

injections of the guide RNA and donor template produced founder mice from which we cloned 

and sequenced Dgkh alleles to demonstrate successful integration of the stop cassette. Dgkh-/- 

mice present no gross anatomical or overt motor phenotypes.  

 

Genotyping 

We performed PCR with genomic DNA isolated from tail clips to confirm genotypes of 

our mice. A region of Dgkh containing exon 9 was amplified using primers 5’-

GCAGATACTGAACCGTTTAGCCAG-3’ and 5’-CGCATGAGAGCAACAAAGATGTC-3’, on a 

PCR cycle that consisted of 35 rounds of 15 s of denaturing at 95°C, 15 s of annealing at 55°C, 

and 60 s of extending at 72°C. The products of this reaction were PCR purified and digested 

with KpnI (R0142, New England BioLabs, Ipswich, Massachusetts). Dgki was analyzed as 

described previously [23]. A forward primer of 5'- AGGATGGTCCAGGAATGGCTTC -3' was 

combined with reverse primers 5'-AGGTGAGTGAGGCCAACTAGGC-3' (to amplify WT Dgki) 

and 5'-GAGGGAAGCGTCTACCTACTGG -3' (to amplify mutant Dgki). The PCR cycle 

consisted of 35 rounds of 30 s of denaturing at 95°C, 90 s of annealing at 65°C, and 90 s of 

extending at 72°C. KpnI-digested Dgkh PCR products and Dgki PCR products were run on 2% 

agarose gels containing SybrSafe (S33102, Invitrogen). 
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Neuronal tissue protein isolation 

Frontal cortex, spinal cord, and DRG tissue was dissected (in that order) from 4-week-

old WT and Dgki-/- male and female mice, 2- to 3-month-old WT and Dgkh-/- male and female 

mice, and 5-month-old WT and dKO female mice. Tissues were rinsed in ice-cold PBS (9 g/L 

NaCl, 795 mg/L Na2HPO4-7H2O, 144 mg/L KH2PO4, pH7.4) then placed in ice-cold lysis buffer 

(50 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA pH 8.0, 1% v/v Triton-X100, 1 mM 

phenylmethanesulfonyl fluoride, 1 mM sodium deoxycholate, 1× cOmplete Mini EDTA-free 

Protease Inhibitor Cocktail [4693159001, Roche]) for 10 min. Following sonication on ice for 10 

s, lysates were centrifuged at 10,000 × g at 4°C for 15 min to separate the debris.  

 

Western blotting 

Protein (30 µg) from each lysate was combined with sample buffer (125 mM Tris-HCl pH 

6.8, 40% v/v glycerol, 2% v/v SDS, 0.02% w/v bromophenol blue 10%, v/v β-mercaptoethanol 

[161-0710, Bio-Rad, Hercules, California]) and separated on a 4-20% SDS/PAGE gel (456-

1094, Bio-Rad) in a running buffer of 25 mM Tris, 192 mM glycine, 1% v/v SDS, pH 8.3. Protein 

was then transferred to a 0.2 μm nitrocellulose membrane (1620095, Bio-Rad) in a transfer 

buffer of 25 mM Tris, 192 mM glycine, 20% v/v methanol, pH 8.3. Following 1 h of blocking in a 

solution of 5% w/v milk (170-6404, Bio-Rad) in tris-buffered saline with Tween 20 (TBST; 100 

mM Tris pH 7.5, 165 mM NaCl, 0.1% v/v Tween 20) at room temperature, membranes were 

incubated overnight at 4°C with primary antibodies (details below) in a solution of 5% w/v bovine 

serum albumin (BSA; A3912, Sigma) in TBST. Blots were probed with secondary antibodies of 

1:10,000 IRDye 680RD-conjugated goat anti-mouse (925-68070, LI-COR Biosciences, Lincoln, 

Nebraska) and 1:10,000 IRDye 800RD-conjugated donkey anti-rabbit (926-32213, LI-COR) in 

5% w/v milk in TBST for 2 h at room temperature. Blots were washed with TBST between each 

step. Blots were imaged on a LI-COR Odyssey system. 
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 The primary antibodies used for the HEK293 kinase activity assay were for β-actin 

(1:3,000 mouse anti-ACTB, ab6276, Abcam, Cambridge, United Kingdom) and RFP (1:3,000 

rabbit anti-RFP, R10367, Invitrogen). The primary antibodies used to validate the Dgki-/- and 

Dgkh-/- mice were for β-actin (1:3,000 mouse anti-ACTB, ab6276, Abcam) and either DGKH 

(1:1,000 rabbit anti-DGKH, HPA040355, Sigma) or DGKI (1:1,000 rabbit anti-DGKI, LS-

C118721, Lifespan Biosciences, Seattle, Washington) in a solution of 5% w/v bovine serum 

albumin (A3912, Sigma) in TBST.  

 

Statistics 

Data were analyzed with Prism version 7.04 (GraphPad Software Inc., La Jolla, 

California). Two-tailed t-tests with Welch’s correction were used to test for significance for all 

comparisons in this chapter: AUC of carbachol-induced calcium responses of HEK293 cells 

overexpressing RFP-Dgki or RFP-Dgkh versus cells overexpressing RFP; normalized CPM 

values of HEK293 cells overexpressing RFP-Dgki or RFP-Dgkh versus cells overexpressing 

their kinase dead counterparts; levels of DGKH protein in WT versus Dgki-/- DRG tissue western 

blots and levels of DGKI protein in WT versus Dgkh-/- tissue western blots.  
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FIGURES 

 

 
Figure 2.1. Overexpression of Dgki and Dgkh enhances Gαq-GPCR-induced calcium 
activity. A) Calcium mobilization induced by 10 μm carbachol, a Gαq-GPCR agonist, is 
prolonged by overexpression of RFP-Dgki or RFP-Dgkh in HEK293 cells. B) Area under the 
curve (AUC) of responses in (A). Data represent mean ± SEM. ****p<0.0001 vs. RFP. 
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Figure 2.2. Dgki and Dgkh phosphorylate multiple DAG and MAG substrates. A) A kinase 
reaction combining an acylglycerol substrate (either DAG, with 2 acyl chains, or MAG, with 1 
acyl chain), 32P-labeled ATP, and a cell lysate yielded a lipid (PA from DAG, LPA from MAG) 
phosphorylated with 32P. B,C) Counts per minute, CPM, of 32P-PA or 32P-LPA produced when 
the indicated lipid substrates were combined with lysates from HEK293 cells overexpressing 
RFP-Dgki or RFP-Dgki G431D (B) or RFP-Dgkh or RFP-Dgkh G389D (C), relative to the CPM 
of reactions with lysates from HEK293 cells overexpressing RFP (gray line in B and C). All CPM 
values were normalized to the protein level of the sample before the relative difference from the 
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RFP was calculated. Data represent mean ± SEM. Number of samples indicated on graphs; the 
N for the kinase dead construct for each substrate was the same as the N for the catalytically 
active construct for that substrate. *p<0.05, **p<0.01 vs. kinase-dead mutant. 
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Figure 2.3. Deletion of Dgki in mice causes loss of DGKI in neuronal tissues. 
Immunoblotting with lysates from female and male WT and Dgki-/- mouse DRG (A), spinal cord 
(B), and cortex (C) shows that genetic deletion of Dgki eliminates the DGKI protein. ACTB=β-
actin. 
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Figure 2.4. Generation of Dgkh-knockout mice using CRISPR-Cas9. A) Integration of a 
STOP cassette arrests translation at the start of the first catalytic domain of DGKH. PH = 
pleckstrin homology. C1 = cysteine-rich (diacylglycerol-binding). SAM = sterile alpha motif. B) 
The 22-base-pair cassette (red), containing a STOP codon and KpnI restriction site, was 
inserted into Exon 9 of the Dgkh gene, as confirmed by sequencing in (C). D) PCR amplification 
of tail DNA and digestion with KpnI. Without KpnI digestion, the amplified fragment from the 
Dgkh-/- allele is 628 bp. E-G) Western blot using 30 μg of protein isolated from DRG (E), spinal 
cord (F), and cerebral cortices (G) of WT and Dgkh-/- male and female mice. 
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Figure 2.5. Expression of neither DGKI nor DGKH is upregulated in the others’ absence. 
Quantification of western blots of protein from DRG, spinal cord, and cortical tissue 
demonstrates that DGKH protein levels are equal in WT and Dgki-/- tissues (A) and DGKI protein 
levels are equal in WT and Dgkh-/- tissues (B). Data represent mean ± SEM. 
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Figure 2.6. Deletion of Dgki and Dgkh in dKO mice causes loss of both DGKI and DGKH 
in neuronal tissues. Immunoblotting with lysates from female WT, Dgki-/-, Dgkh-/-, and dKO 
mouse DRG (A), spinal cord (B), and cortex (C) shows that genetic deletion of Dgki and/or Dgkh 
eliminates the DGKI and/or DGKH protein, respectively. 
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CHAPTER 3: DGKI AND DGKH REGULATE HISTAMINE-INDUCED ITCH WITHOUT 
ALTERING DRG FUNCTION IN MICE 

 

INTRODUCTION 

Primary afferent DRG neurons mediate itch and pain sensation and sensitization 

The societal burden of chronic pain, which affects nearly one third of American adults, is 

substantial [61]. The economic impact is estimated to be at $600 billion annually, when 

accounting for health care costs and lost productivity due to patients’ inability to work. Estimates 

of the consequences of chronic pain on society are likely to be inaccurately low, as pain is a 

symptom of other chronic diseases, such as ulcerative colitis [62], and frequently predisposes 

patients to other conditions, such as depression [63]. Medications available to treat chronic pain 

come with harmful side effects [64] or lack the ability to reduce pain with high efficacy [65]. 

Similarly, chronic itch (pruritus) is notoriously difficult to manage, often causing patients to 

develop skin lesions from excessive scratching [66]. Antihistamines comprise the majority of 

available itch medications; while effective against allergen-induced itch, they do not treat other 

pathological itch conditions [67, 68]. Expanding knowledge of nociceptive (pain-sensing) and 

pruriceptive (itch-sensing) signaling may reveal better targets for future pharmacological 

therapies.  

The primary sensory neurons whose cell bodies cluster in the dorsal root ganglia (DRG) 

innervate peripheral tissues and send projections to the dorsal horn of the spinal cord, where 

signals are transmitted to the brain. Pruritogenic (itch-causing) compounds released by immune 

cells activate itch fibers of the DRG that innervate the skin. While this activation enables 

recognition of allergens, many patients suffer from aberrant, unprovoked activity of itch fibers, 

leading to extreme scratching behavior [67]. Similarly, algogenic (pain-causing) compounds 
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released following nerve or tissue injury can both activate and sensitize peripheral pain fibers of 

the DRG [69]. This sensitization leads to increased responsiveness to painful stimuli 

(hyperalgesia) and sensitivity to previously innocuous stimuli (allodynia). Unfortunately, in some 

cases these neurons remain sensitized even after the injury has healed, or demonstrate this 

sensitivity without any injury, leaving the patients in a state of chronic pain [70].  

DRG neurons are the primary responders to pruritogenic and algogenic stimuli, and their 

dysfunction contributes to chronic pain and itch. Subsets of itch- and pain-specific DRG neurons 

and their accompanying molecular markers have been identified [67, 71, 72]. However, despite 

being distinct sensations, nociceptive and pruriceptive neuron populations widely overlap, and 

pain and itch activate many of the same receptors [73-75]. Characterizing mechanisms of pain 

and itch processing in DRG neurons could lead to advancements in understanding and treating 

both conditions.  

 

DAG and MAG are important signaling lipids in DRG neurons 

Algogenic and pruritogenic stimuli induce the release of signaling mediators from 

immune cells, injured tissue, and primary afferent fibers that contribute towards activating and 

sensitizing DRG neurons. Algogens commonly activate Gαq-GPCRs or transient receptor 

potential (TRP) channels [69, 76, 77], and many pruritogens activate Gαq-GPCRs that signal 

through TRP channels [68, 78]. Some receptors are involved in both nociception and 

pruriception, such as TRPV1 (transient receptor potential vanilloid 1), which signals both 

thermal pain and histamine-dependent itch [75]. Molecules that regulate signaling from these 

receptors would be compelling new targets for pain and itch medications.  

Gαq-GPCR activation in DRG neurons produces diacylglycerol (DAG) [77]. Removal of 

the acyl chain in the sn-1 position of DAG produces sn-2-monoacylglycerol (MAG) [79]. When 

the sn-2 acyl chain is arachidonoyl, the MAG produced is 2-arachidonoylglycerol (2-AG). DAG 

and 2-AG are important lipid signaling molecules that can regulate DRG activity (Figure 3.1). 
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DAG activates PKC [5], which phosphorylates GPCRs and TRP channels linked to itch and pain 

[45, 80]. Phosphorylation by PKC desensitizes Gαq-GPCRs [81], terminating their signaling, but 

sensitizes TRPV1 [80], lowering its threshold for activation. By regulating the activation of PKC 

by altering DAG levels, DGK has the potential to modulate activity of many receptor families. 

Further, both DAG and 2-AG can directly manipulate the activity of receptors themselves. 2-AG 

is an endogenous agonist for inhibitory cannabinoid receptors (e.g. CB1) [82]. DAG and 2-AG 

are partial agonists for TRPV1 [7, 83].  

 

Dgki and Dgkh may alter itch and/or pain signaling 

Decreasing activity of lipases that act on DAG and MAG alters neuronal lipid levels and 

attenuates pain signaling [84-86]. Therefore, changing the levels of lipids in this network can 

control somatosensory responses. As shown in the previous chapter (Figure 2.2B-C), DAG and 

MAG levels can also be altered through phosphorylation by Dgki or Dgkh, converting them into 

PA and LPA, respectively, and terminating their signaling. In addition to phosphorylating DAG 

and MAG, Dgki and Dgkh interact with mediators of the Ras-Raf-MEK-ERK pathway, 

modulating the effects of RTK activation [20, 23, 48]. Altering this signaling pathway also affects 

pain signaling [57]. Therefore, Dgki and Dgkh have the potential to impact somatosensory 

signaling by controlling the phosphorylation of DAG and MAG and/or by regulating the function 

of other signaling mediators in the DRG. Here, we have characterized the roles of Dgki and 

Dgkh in DRG function and sensory behavior. 

 

RESULTS 

Dgki and Dgkh are highly expressed in itch- and pain-sensing DRG neurons 

Of the ten mammalian Dgk genes [1], Dgkh/DGKH is one of the most highly expressed 

in both mouse and human DRG [87]. Additionally, among the tissues that express Dgkh and 

Dgki in mice, the neuronal tissue in which they are most highly expressed is the DRG (Table 
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3.1) [88]. This suggests that these two Dgk genes play important roles in regulating the function 

of peripheral sensory neurons. Whereas others have examined the role of Dgki and Dgkh in the 

brain [32, 39], no one has yet looked at the function of either kinase in the DRG.  

Single-cell RNA-sequencing of mouse DRG has shown that Dgki and Dgkh are enriched 

in the subclasses of DRG neurons that express genes important for pruriception and 

nociception, whereas Dgki and Dgkh expression is low in other subclasses, including those 

expressing genes involved in sensing light touch [89]. DRG neuron subclasses can generally be 

distinguished based on size; itch- and pain-sensing neuronal cell bodies typically have small 

diameters [69]. Immunostaining of mouse DRG revealed that DGKI is expressed in small 

diameter neurons (Figure 3.2A-B). Additionally, DGKI localizes to the cytoplasm, suggesting a 

role in signaling following receptor activation. In situ hybridization demonstrates this same 

distribution of RNA for each Dgk isoform based on cell size (Dgkh in Figure 3.2C, Dgki in [90]). 

Others who examined localization of Dgkb, Dgkg, Dgke, Dgkz, and Dgki in rat DRG likewise 

found Dgki to be the only one with expression specific to the cytoplasm of small-diameter 

neurons [90]. Taken together, the gene and protein expression data support the hypothesis that 

Dgki and Dgkh may mediate signaling involved in pruriception and nociception.  

 

Sensory behavior is disrupted by deletion of Dgki and/or Dgkh in mice 

Using the Dgki-/-, Dgkh-/-, and dKO mice presented in the previous chapter, we aimed to 

determine how Dgk lost manifests in altered somatosensory processing in vivo. Behavioral 

assays were used to determine sensitivity to pruritogenic and algogenic stimuli in these mice, 

relative to wild type (WT) mice. Investigating differences in behavior related to somatosensation 

helped us understand the potential for Dgk modulation as a method for treating itch and pain. 
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Deletion of Dgki and/or Dgkh primarily affects scratching responses to histamine 

Male and female mice of WT, Dgki-/-, Dgkh-/-, and dKO genotypes were assayed for their 

scratching responses to injections of the pruritogens histamine, chloroquine, or β-alanine. 

Histamine is released by mast cells after allergen exposure and is a target of many antipruritic 

drugs [67, 74]. Chloroquine is an anti-malaria drug that causes severe pruritis in black Africans 

that contributes to low patient compliance [78]. β-alanine is a supplement commonly taken by 

body builders to regulate muscular pH levels that causes a minor itch side effect [91]. 

Histamine caused significantly greater scratching responses in both male and female 

Dgki-/- mice relative to their WT counterparts, especially in the first 5 minutes after injection 

(Figure 3.3A-B). Chloroquine induced slightly more scratching in Dgki-/- females than WT 

females, but did not differentially affect males based on genotype (Figure 3.3C-D). β-alanine 

elicited scratching behavior equally in Dgki-/- and WT animals (Figure 3.3E-F).  

Contrary to the effect of Dgki loss, Dgkh loss caused increased histamine-induced 

scratching, although the effect was specific to male mice in the first 15 minutes after injection 

(Figure 3.4A-B). Similar to the effect of Dgki loss, Dgkh loss caused slightly more scratching in 

response to chloroquine in female, but not male, mice (Figure 3.4C-D). Additionally, the 

scratching behavior elicited by β-alanine was unaffected by Dgkh expression in male or female 

mice (Figure 3.4E-F).  

Histamine caused significantly greater scratching responses in both male and female 

dKO mice relative to their WT counterparts, with differences peaking in the first 5 minutes post-

injection (Figure 3.5A-B). Neither chloroquine (Figure 3.5C-D) nor β-alanine (Figure 3.5E-F) 

elicited differential scratching behavior between WT and dKO mice of either sex.  

Overall, the greatest differences in in vivo pruritogen responses were seen in the Dgki-/- 

and dKO animals’ enhanced scratching behavior immediately following histamine injection. 

Interestingly, the greatest impact of Dgkh loss was seen in the males’ decreased scratching in 
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the first 15 minutes following histamine injection. The phenotype of the mice lacking both Dgki 

and Dgkh more closely resembled the phenotype of the Dgki-/- mice. 

 

Acute pain sensitivity is slightly altered in Dgkh-/- and dKO mice 

To determine if acute pain was altered in these mice, we tested responses to thermal 

and mechanical stimuli applied to the tail (Figure 3.6A-D, Figure 3.7A-D, Figure 3.8A-D) and the 

hindpaw (Figure 3.6E-G, Figure 3.7E-G, Figure 3.8E-G) of WT, Dgki-/-, Dgkh-/-, and dKO male 

and female mice. To examine thermal sensitivity in the tail, we measured the latency for a 

mouse to flick its tail after immersing it in a 75% ethanol solution cooled to -10°C [92] or a water 

bath heated to 46.5°C or 49°C [93]. To examine thermal sensitivity in the hindpaw, we 

measured the latency for a mouse to withdraw its hindpaw following applications of heat via 

placement on a 55°C hot plate [94] or cold via dry ice application in the cold plantar assay [95]. 

To examine sensitivity to painful mechanical stimulation in the tail, we measured the latency for 

a mouse to attempt to remove a small clothespin attached to the distal tip of tail [96]. To 

examine sensitivity to innocuous mechanical stimulation in the hindpaw, we assessed the 

frequency of response to a light touch with a “fluffed out” cotton swab brushed across the 

hindpaw [97]. The latter assay was used to determine if Dgki and/or Dgkh loss affected large-

diameter, low-threshold mechanosensory neurons of the DRG, whereas the other assays were 

meant to probe the function of the small-diameter, nociceptive DRG neurons.  

Sensitivity to noxious (Figure 3.6A, Figure 3.7A, Figure 3.8A) or innocuous (Figure 3.6E, 

Figure 3.7E, Figure 3.8E) mechanical stimuli was unaffected by deletion of Dgki and/or Dgkh in 

either sex. Loss of Dgki had no effect on responses to painful cold (Figure 3.6B,F) or painful hot 

(Figure 3.6C-D,G) stimuli. However, thermal pain sensitivity was altered in sex- and modality-

dependent ways in Dgkh-/- and dKO mice. Interestingly, Dgkh-/- females had decreased 

sensitivity to immersion of the tail in 49°C, but not 46.5°C, water, as shown by in increased 

withdrawal latency (Figure 3.7C-D), yet they had increased sensitivity to exposure of the 
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hindpaws to a 55°C hot plate (Figure 3.7G). Loss of Dgkh had no effect on responses to painful 

cold stimuli (Figure 3.7B,F). The dKO mice also demonstrated some small but statistically 

significant differences in acute pain sensitivity in the hindpaw: dKO females had decreased 

sensitivity to cold stimuli and dKO males had increased sensitivity to heat (Figure 3.8F-G). 

Simultaneous deletion of Dgki and Dgkh had no effect on tail responses to thermal stimuli 

(Figure 3.8B-D). While the effect sizes in these pain assays were small, the differences were 

statistically significant. 

 

Sensitization and recovery following inflammatory injury is unchanged in the absence of 

Dgki and/or Dgkh 

Although baseline pain sensitivity was not strongly disrupted in the Dgki-/-, Dgkh-/-, and 

dKO animals, we hypothesized that Dgki and/or Dgkh loss may alter sensitization to nerve or 

tissue injury. We analyzed responses to the complete Freund’s adjuvant (CFA) model of 

inflammatory injury [98]. We used the electronic von Frey assay [99], in which we measured the 

force taken to cause a mouse to withdraw its hindpaw, to demonstrate changes in mechanical 

sensitivity. We used the Hargreaves assay [100], in which we measured the latency to withdraw 

the hindpaw from a focused beam of light, to demonstrate changes in thermal sensitivity. In 

addition to measuring the baseline responses to these stimuli, the change in responses 

following injury were measured. 

In these experiments, the Dgki-/- and Dgkh-/- males and their simultaneously-tested WT 

male counterparts failed to sensitize to von Frey stimulation post-CFA; therefore, in the absence 

of proper controls, only the Hargreaves responses are shown for Dgki-/- and Dgkh-/- males 

(Figure 3.9A, Figure 3.10A). The WT and dKO males did show sensitization to von Frey post-

CFA, so those data are shown in Figure 3.11C in addition to their Hargreaves responses in 

Figure 3.11A. Both Hargreaves and von Frey response are shown for Dgki-/-, Dgkh-/-, and dKO 

females (Figure 3.9B-C, Figure 3.10B-C, Figure 3.11B,D). 
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Overall, expression of Dgki and/or Dgkh did not influence how hypersensitive the 

ipsilateral paws became to heat in the Hargreaves assay following CFA injection (Figure 3.9A, 

Figure 3.10A, Figure 3.11A-B). Likewise, there was little difference in the recovery to baseline 

heat sensitivity levels; however, while the dKO males did recover in the 7-day period, they did 

not recover to the same levels as WT males (Figure 3.11A). Additionally, there were no 

differences between genotypes in the level of sensitization to mechanical stimulation that 

developed after CFA injection, nor were there differences in the recovery from this sensitization 

in either the Dgki-/-, Dgkh-/-, or dKO females (Figure 3.9C, Figure 3.10C, Figure 3.11D) or the 

dKO males (Figure 3.11C). For mice of both sexes, the responses of the contralateral paw to 

thermal or mechanical stimuli did not vary significantly over time and did not differ based on 

genotype. 

 

Sensitization following neuropathic injury is unaffected by Dgki deletion 

We analyzed responses to the spared nerve injury (SNI) model of neuropathic injury 

[101, 102], using the filamentous von Frey assay [103] to demonstrate changes in sensitivity to 

a range of mechanical stimuli in male (Figure 3.12A-D) and females (Figure 3.12E-H) WT and 

Dgki-/- mice. Here, we show responses of the ipsilateral and contralateral paws to a range of von 

Frey filaments of different forces at baseline (Figure 3.12A,E) and Days 1 (Figure 3.12B,F), 7 

(Figure 3.12C,G), and 14 (Figure 3.12D,H) post-surgery. Apart from a small increase in the 

response rate of the ipsilateral paw to a force of 0.692 g in Dgki-/- males on Day 14, the overall 

degree of sensitization did not differ between WT and Dgki-/- mice in either sex. There were no 

differences between ipsilateral and contralateral paws at baseline, and no changes in responses 

from the contralateral paw over time. 
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Signaling in mouse DRG neurons is unaltered in absence of Dgki and/or Dgkh 

Nociceptors are flooded with a diverse milieu of signaling mediators in response to injury 

or exposure to pruritogenic stimuli, activating multiple classes of receptors. In gain-of-function 

studies, we showed that Dgki or Dgkh overexpression enhances Gαq-GPCR signaling (Figure 

2.1). Work done by others demonstrated that reducing Dgki or Dgkh expression decreases Ras-

MAPK signaling [20, 23, 48]. Therefore, Dgki and Dgkh are in a position to regulate responses 

after activation of multiple receptor types. We characterized how these pathways are affected in 

the absence of Dgki or Dgkh in order to contribute to a better understanding of how DRG 

neurons regulate responses to pruriceptive and nociceptive mediators.  

 

Deletion of Dgki or Dgkh does not alter in vitro calcium responses to pruritogens or 

algogens in DRG neurons  

Using cultured WT, Dgki-/-, and Dgkh-/- DRG neurons loaded with a fluorescent 

ratiometric calcium dye, we measured changes in intracellular calcium concentrations induced 

by stimulation of receptors involved in itch and pain signaling. The agonists used to stimulate 

DRG neurons for these experiments were histamine, capsaicin, lysophophatidic acid (LPA), or 

uridine triphosphate (UTP). Histamine activates the H1 receptor on sensory neurons to induce 

itch responses [74]. Capsaicin is the chemical ligand for the ion channel TRPV1 (transient 

receptor potential vanilloid 1), an important receptor for itch and pain signaling [74, 104]. LPA 

acts on LPA receptors and induces nociception in peripheral neurons [105, 106]. UTP binds to 

P2Y receptors and activates and sensitizes small-diameter DRG neurons [107, 108]. We used 

histamine because of the in vivo scratching phenotypes we observed in response to histamine 

injection (Figure 3.3, Figure 3.4, Figure 3.5). We used capsaicin, LPA, and UTP for algogens 

because their receptors are expressed in a relatively high percentage of rodent DRG neurons 

[107, 109, 110]. 
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Because Dgki and Dgkh are highly expressed in DRG neurons, we hypothesized that 

the altered responses to histamine in vivo were caused by altered signaling activity in DRG 

neurons. Despite enhancing scratching responses to histamine injection in vivo (Figure 3.3A-B), 

Dgki loss had no effect on calcium responses to histamine in cultured DRG neurons (Figure 

3.13A-B). Despite decreasing scratching responses to histamine injection in vivo (Figure 3.4A-

B), Dgkh loss had no effect on calcium responses to histamine in cultured DRG neurons (Figure 

3.14A-B). Based on the lack of differential responses to painful stimuli in vivo, we were not 

surprised to see neither Dgki-/- nor Dgkh-/- neurons did not respond differently from WT after 

exposure to the algogenic compounds capsaicin, LPA, or UTP (Figure 3.13C-H, Figure 3.14C-

H). 

In addition to the magnitude of the response (represented by area under the curve of the 

agonist responses), the response rate—the proportion of healthy neurons responding to the 

agonist—was similar between WT and Dgki-/- and between WT and Dgkh-/- neurons for all four 

agonists tested (Figure 3.15). 

 

Neither Dgki nor Dgkh deletion alters NGF-induced ERK signaling in mouse DRG 

The ligands stimulating afferent nociceptors after injury also include peptides and 

neurotrophic factors, such as nerve growth factor (NGF), that activate receptor tyrosine kinases. 

NGF activates the TrkA receptor on DRG neurons, which is involved in pain signaling and 

sensitization [111]. Both Dgki and Dgkh have been shown to positively regulate Ras activity 

downstream of activation of epidermal growth factor receptors (EGFR, a receptor tyrosine 

kinase activated by EGF) in other cell types, though via different mechanisms from each other. 

Dgkh enhances associate of B-Raf and C-Raf [48], while Dgki inhibits RasGRP3 to attenuate 

Rap1 activation and enable Ras activation [23]. Deletion of either Dgk isoform has the potential 

to desensitize TrkA by increasing PKC activation by DAG, but both isoforms also have 
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alternative mechanisms of modulating RTK signaling that could be attenuated by DGK 

inhibition. 

Because Dgki and Dgkh positively regulate Ras-MAPK signaling downstream of RTK 

activation, we measured activity of this pathway by measuring ERK phosphorylation following 

NGF exposure to determine if this signaling pathway is regulated by Dgki and Dgkh in mouse 

DRGs (Figure 3.16). NGF induced slightly less ERK phosphorylation after 5 minutes in DRGs 

from Dgki-/- mice relative to DRGs from WT mice (Figure 3.16B). However, because the Dgki-/- 

DRGs had lower baseline ERK phosphorylation, the increase in ERK phosphorylation after 5 

minutes was comparable between the two genotypes (185% for WT, 187% for Dgki-/-). NGF-

induced ERK phosphorylation was not affected by Dgkh expression in DRGs (Figure 3.16D). 

 

Dgki-/-, Dgkh-/-, and dKO DRG lysates phosphorylate DAG and/or MAG substrates less 

than WT DRG lysates 

To characterize the degree to which Dgk loss alters the phosphorylation of various 

substrates in the DRG, we again used a radioactivity-based kinase assay, as in Figure 2.2A. 

Here, instead of using lysates from HEK293 cells overexpressing Dgk constructs, we used 

lysates from DRGs dissected from mice lacking Dgki and/or Dgki. Protein was isolated from WT, 

Dgki-/-, Dgkh-/-, and dKO mouse DRG tissue. Lysates were combined in a reaction with 32P-

labeled ATP and DAG or MAG substrates, and the amount of 32P-phosphorylated PA or LPA 

produced was measured (Figure 3.17). We used the DAG substrates 16:0-18:1 (1-palmitoyl-2-

oleoyl-glycerol) and 18:0-20:4 (1-stearoyl-2-arachidonoyl-glycerol), which are the two most 

prevalent DAG species in rodent peripheral nerves [54]. We also tested the MAG species 20:4 

(2-AG) and 18:1 (2-oleoyl-glycerol). 

Dgki loss had a little-to-no impact on the phosphorylation of DAG or MAG substrates by 

DRG lysates, resulting in a less than 20% reduction in kinase activity relative to WT DRG 

lysates. On the other hand, DRG lysates lacking Dgkh expression (both Dgkh-/- and dKO 
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genotypes) had significantly reduced phosphorylation of all four lipid substrates tested. Despite 

the small effect of deleting Dgki alone, the combined deletion of Dgki and Dgkh had a greater 

impact that deleting Dgkh alone. 

 

DISCUSSION 

Summary of sensory behavior and DRG activity phenotypes  

We sought to determine how Dgki and/or Dgkh loss in mice manifests in altered 

somatosensory processing, combining itch and pain behavior assays and analyses of DRG 

function. A summary of the phenotypes seen in the Dgki-/-, Dgkh-/-, and dKO mice in the in vivo 

itch assays, the in vivo baseline pain sensitivity assays, and the in vitro DRG kinase assay are 

shown in Table 3.2. Not included in the table are the results of experiments in which none of the 

mouse models showed major differences from WT mice, including the in vivo inflammatory and 

neuropathic injury models, the in vitro DRG calcium signaling, and the in vitro ERK 

phosphorylation assays. The baseline pain sensitivity summary tables shows the responses to 

the stimuli presented in Figure 3.6, Figure 3.7, and Figure 3.8, as well as the baseline 

responses to the von Frey and Hargreaves stimuli used to demonstrate sensitization to CFA. 

The summary table is a heat map indicating how significantly each mouse differed from WT 

mice and in which direction (greater or smaller in vivo sensitivity or in vitro activity than WT). 

Note that the intensity of the color for the itch results represents the 5-min period with the peak 

difference from WT, which may not have been seen throughout the 30-min assay; see Figure 

3.3, Figure 3.4, Figure 3.5 for more detailed data. 

The most significant behavior phenotypes were seen in the itch assays (Table 3.2A). 

Dgki deletion significantly enhanced scratching responses to histamine. Dgkh deletion 

significantly attenuated scratching responses to histamine in males. Simultaneous deletion of 

Dgki and Dgkh in the dKO mouse phenocopied the Dgki-knockout. Small differences in 

chloroquine sensitivity were observed in single Dgk-knockout females, in the same direction as 
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histamine: increased in Dgki-/- mice and decreased in Dgkh-/- mice (although the histamine 

sensitivity in Dgkh-/- mice was male-specific). However, the fact that chloroquine sensitivity was 

not disturbed in the dKO mice suggests that, unlike with histamine sensitivity, neither Dgki or 

Dgkh loss affects chloroquine sensitivity strongly enough to persist in the absence of the other. 

Of the 48 comparisons of baseline pain sensitivity (3 mouse models × 2 sexes × 8 pain 

tests), there were 4 comparisons in which there was a sex- and genotype-dependent different 

between one of our mouse models and WT mice (Table 3.2B). However, no pattern of effects 

was seen. Dgkh-/- females showed both increased and decreased sensitivity to heat (though at 

different stimulations sites: hindpaw and tail, respectively). Further, Dgkh-/- females did not differ 

from WT females in their sensitivity to other heat stimuli applied to those same sites (55°C hot 

plate and 46.5°C tail immersion, respectively). Additionally, the phenotypes seen in Dgkh-/- 

females were not seen in the dKO females, suggesting that the absence of Dgkh expression 

does not sufficiently cause these differences. The pain sensitivity phenotypes seen in the dKO 

mice were likewise without a pattern: females had decreased cold sensitivity, and males had 

increased heat sensitivity, both of which were not seen in all tests of that modality. Overall, the 

baseline pain assays showed that deletion of Dgkh, with or without concurrent Dgki deletion, 

had minor effects on acute pain sensitivity. 

Even though overexpressed Dgki had greater kinase activity than Dgkh in the HEK293 

cell paradigm (Figure 2.2B-C), we found that Dgkh loss had a much larger impact on 

acylglycerol phosphorylation than Dgki loss in mouse DRG (Figure 3.17). Even in the absence 

of both Dgki and Dgkh, the dKO DRG lysates still had over 50% of WT levels of kinase activity 

for all substrates tested (Table 3.2C). Therefore, other Dgk genes expressed in mouse DRG 

likely play a role in phosphorylating DAG and MAG in this tissue. 
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Dgki deletion enhances in vivo histamine sensitivity but does not alter in vitro DRG 

neuron functions 

The effect of Dgki loss on noxious somatosensory behavior was mostly specific to 

histamine-induced itch, as there were no alterations in baseline pain or pain sensitization in 

Dgki-/- animals. Additionally, our data suggest that enhanced responses to histamine in vivo 

following Dgki deletion is not mediated by DRG neurons. Histamine signaling in DRG neurons 

requires coupling of histamine receptors to the ion channel TRPV1 [74]. Not only do Dgki-/- 

neurons respond normally to histamine, but they also have normal responses to the TRPV1 

ligand capsaicin. Thus, Dgki loss does not appear to affect the function of either receptor 

involved in histamine response in DRG neurons, when using calcium influx as the readout.  

Other measures of DRG function not directly related to histamine responses indicate that 

the function of this tissue is not greatly affected in other ways. We observed slight reductions in 

NGF-induced ERK phosphorylation (Figure 3.16B) and DAG kinase activity (Figure 3.17) in 

Dgki-/- DRG samples, but the effect sizes were very small. Additionally, these assays would 

suggest that Dgki-/- DRG function is reduced, which would oppose the hypothesis that the in vivo 

hypersensitivity to histamine seen in these animals was a result of increased DRG activity. 

Further, there was a lack of significant changes in response to chloroquine, β-alanine, and 

various algogenic stimuli in vivo, all of which involve the DRG in mediating their effects. 

Therefore, it stands to reason that the enhanced histamine sensitivity in Dgki-/- mice is mediated 

by cells other than DRG neurons. 

The only tissue in which Dgki is expressed more highly than in the DRG is in mast cells 

(Table 3.1A) [88]. In response to allergen exposure mast cells release histamine, which 

activates receptors on nearby sensory neurons [74]. Recent research has shown that mast cells 

can respond to histamine themselves, as well. Mast cells can chemotax toward histamine, and 

histamine can induce calcium signaling and degranulation [112, 113]. Interestingly, other Dgk 

isoforms have been shown to affect mast cell function. Dgkz loss decreases FcεRI-induced 
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degranulation in bone marrow-derived mast cells but increases cytokine production [114]. 

Additionally, knockdown of Dgkg reduces degranulation in RBL-2H3 cells, a histamine-

releasing, mast-cell-like line [115]. Because the mechanisms by which mast cells response to 

histamine are not yet known, it is difficult to hypothesize what mechanism could be altered by 

Dgki loss. That being said, it would still be worth investigating the role of Dgki in functions of 

these immune cells as a future direction of this study.  

 

Dgkh deletion reduces in vivo histamine responses and in vitro DRG kinase activity but 

not in vitro DRG signaling 

  The phenotypes of the Dgkh-/- male mice most closely resemble our hypothesis how 

Dgk loss might affect sensory signaling. Because Gαq-GPCR signaling is activated by Dgkh 

overexpression in HEK293 cells and by algogenic and pruritogenic stimuli in DRG neurons, we 

expected Dgkh loss to decrease activation of DRG neurons by noxious stimuli. Indeed, 

scratching induced by histamine was significantly reduced in Dgkh-/- males relative to WT males. 

Histamine activates a Gαq-GPCR that that signals to PKC [116], a mechanism we expected 

Dgkh to regulate. However, there were also many sensory phenotypes that were not perturbed, 

including mechanical pain, which is partially driven by GPCR signaling [71]. 

Additionally, DAG and MAG phosphorylation by DRG lysates was significantly reduced 

by the loss of Dgkh, which also matched our hypothesis. However, none of the signaling 

functions analyzed in Dgkh-null DRGs differed from WT, including calcium activity in response 

to histamine receptor activation. This was unexpected, as the effect on Gαq-GPCR signaling 

resulting from Dgkh overexpression in HEK293 cells was dependent on Dgkh’s kinase activity 

[45]. The kinase activity assay was performed using DRGs dissected from both male and 

female mice; Dgkh loss decreased DAG and MAG kinase activity equally in male and female 

DRG lysates (data not shown). Because Dgkh-/- males had decreased histamine sensitivity and 
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females did not, this suggests that histamine sensitivity was not linked to kinase activity in the 

DRG.  

Thus, even though some phenotypes of the Dgkh-/- mice support our original 

hypotheses, the disruption of DRG kinase activity and, subsequently, Gαq-GPCR signaling may 

not be the mechanism by which Dgkh deletion affects somatosensation in mice. Many of the 

same arguments against a DRG-dependent mechanism that I presented for Dgki also apply to 

Dgkh. In vitro DRG calcium and ERK signaling pathways are not affected in the knockout mice, 

and there are no major disruptions in baseline pain responses. However, the presence of a pain 

phenotype would do more to argue for a DRG-dependent mechanism than the lack of a pain 

phenotype would do to argue against a DRG mechanism for itch sensitivity. While itch-sensing 

DRG neurons respond to algogenic stimuli, far more DRG fibers are involved in pain than itch 

[75], so disrupting itch fibers would only affect a small population of pain fibers. Whereas the 

expression patterns of Dgki implicate mast cells in Dgki-dependent histamine sensitivity, the 

expression patterns of Dgkh do not suggest an alternative tissue that may drive Dgkh-

dependent histamine itch. However, many neuronal subtypes have been shown to regulate 

histamine-induced itch, included inhibitory BHLHB5+ and excitatory TR4+ interneurons of the 

spinal cord [117, 118]. There are many potential avenues for further investigation to determine 

how Dgkh deletion alters histamine sensitivity.  

 

dKO mice have enhanced in vivo histamine sensitivity and decreased in vitro DRG kinase 

activity 

 Interestingly, both Dgk isoforms affected in vivo responses to histamine more than other 

pruritogens, and did so in opposite directions of each other; histamine-induced scratching was 

enhanced by Dgki loss and reduced by Dgkh loss. Both female and male dKO mice 

phenocopied the Dgki-knockout’s histamine hypersensitivity. However, DRG lysates from the 
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dKO mice phenocopied the decreased DAG and MAG phosphorylation seen in Dgkh-knockout 

DRG lysates.  

Pairing the results from the in vivo histamine assay and the in vitro DRG kinase activity 

assay gives support to two hypotheses about the single Dgk knockout mice. First, it suggests 

Dgki loss could enhance histamine scratching in a non-DRG-dependent way. Even though dKO 

DRG lysates had lower kinase activity than Dgki-/- DRG lysates, the in vivo histamine phenotype 

was not stronger in dKO mice. This suggests that the reduction in kinase activity in the DRG is 

not directly correlated to the increased in vivo histamine response. Second, it suggests that 

reduced histamine scratching in the Dgkh-/- mice is not caused by reduced kinase activity in the 

DRG. Because DAG and MAG phosphorylation by DRG lysates was reduced far more by the 

loss of Dgkh than Dgki, and Dgkh deletion reduced histamine-induced scratching, one could be 

tempted to conclude that DAG/MAG kinase activity in the DRG may be required for histamine 

response (in male mice at least). However, like the Dgkh-/- males, dKO mice have decreased 

lipid phosphorylation, but they also have increased scratching in response to histamine. 

Therefore, decreased DRG kinase activity caused by Dgkh deletion is not sufficient to impair in 

vivo histamine sensitivity, and the presence of Dgkh is not necessary for in vivo histamine 

response.  

 

Connections between pain and itch 

As mentioned in the introduction to this chapter, many of the same receptors and the 

same cells are used to signal both itch and pain. Therefore, the results of the pain assays can 

help us identify and exclude potential mechanisms by which the itch phenotypes arise. For 

example, activation of the histamine receptor H1R causes opening of the heat-sensitive TRPV1 

channel [75]. Heat responses were not altered in the Dgki-/- or Dgkh-/- mice, which suggests that 

their histamine-related phenotypes were not caused by disrupted TRPV1 function. Similarly, 

DRG neurons that express the β-alanine receptor, Mrgprd (Mas-related GPR D), mediate 



42 
 

mechanical pain [71]. dKO mice showed a slight hyperresponsiveness to β-alanine in vivo. 

However, because dKO mice did not also show increased mechanical sensitivity, we 

hypothesize that the β-alanine phenotype was not caused by increased excitability of the 

Mrgprd+ neuronal population.  

Our hypotheses on mechanism may also be informed by the ways that itch and pain 

interact on the physiological level. Scratching is perceived as a painful stimulus that overrides 

the itch signal [67]. However, patients with atopic dermatitis (a chronic pruritus disorder) 

become sensitized to itch such that even algogenic stimuli are interpreted as pruritogenic [73, 

119]; not only does scratching fail to inhibit itch, but the scratching itself enhances the itch 

sensation. However, our behavioral tests appear to exclude this mechanism as an explanation 

of the Dgk mutant mouse scratching behaviors. If our Dgki-/- or dKO mice were unable to 

suppress histamine-induced itch via pain (scratching), we would expect to see one of two things 

in the pain assays. The first would be a reduction in pain sensitivity. Because pain suppresses 

itch, if there is reduced pain signaling, then that would allow for increased itch. Although there 

was reduced kinase activity in the DRG (a primarily pain-sensing organ), the in vivo responses 

to algogens were normal. The second would be a scratching response when exposed to an 

algogenic stimulus. If the pain fibers were sensitized to itch, as is the case in atopic dermatitis 

patients, painful stimuli would become pruritogenic. Unfortunately, we did not note scratching 

behaviors when performing these assays. Additionally, it is difficult to distinguish pain and itch 

responses behaviors with the sensory assays we used: mice would lick their hindpaw whether 

they were feeling either pain or itch. As a future direction, we could determine if algogenic 

stimuli induce scratching by utilizing an assay that can distinguish between a mouse’s 

responses to pain and itch [120]. In this assay, algogens or pruritogens are injected in the 

cheek, which they scratch when they feel itch but wipe with the back of the paw when they feel 

pain. 
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In addition to looking at overlaps in itch and pain pathology, we can get an idea of the 

potential mechanism of altered histamine sensitivity by reflecting on the cells and circuits that 

are unique to itch or pain. For example, histamine-sensitive DRG neurons do not respond to 

mechanical stimuli [74]. Therefore, if the Dgk mutant mice had alterations in mechanical pain, 

this would argue against the hypothesis that histamine hypersensitivity was caused by a 

hyperexcitability of the histamine-sensitive neuronal population in Dgki-/- and dKO mice. 

In general, the presence of a pain phenotype would be better at suggesting a 

mechanism for itch than the absence of a pain phenotype would be at excluding a mechanism. 

Nevertheless, seeing only minor pain phenotypes in our Dgk mice gives us confidence that the 

disruptions in sensory biology in these mice were specific to itch. This is an interesting 

contribution to the debate of whether itch and pain can truly be separated [68, 75, 121]. 

However, more work will need to be done to identify the mechanisms by which Dgki or Dgkh 

deletion alters histamine sensitivity. 

 

METHODS 

Analysis of microarray data 

The Dgki and Dgkh expression profile data were generated previously by others and 

was accessed through BioGPS (dataset “GeneAtlas MOE430, gcrma” and probe sets 

1439986_at, 1457213_a_at, and 1459906_at) [88, 122, 123]. For this study, expression level for 

each tissue was normalized to the median expression level for all tissues, and averages were 

calculated of duplicate samples. The expression levels were ranked highest to lowest, and the 

10 tissues with the highest expression are shown here. 
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Mice 

See: “Mice” under METHODS from Chapter 2. During the spared nerve injury (SNI) 

experiments, the bedding was 1/8-inch diameter (8B, Andersons Lab Bedding). During all other 

experiments, the bedding was 1/4-inch diameter (4B, Andersons Lab Bedding).  

 

Immunohistochemistry 

Histology was performed by Bonnie Taylor-Blake as previously published [124]. After 

euthanasia, lumbar DRGs were dissected from a 7-week-old wild type (WT) male mouse (for 

DGKI staining) or a 5-week-old WT male mouse (for DGKH staining) and placed into 4% 

paraformaldehyde (PFA) in 0.1 M phosphate buffer (13.8 g/L Na2HPO4-H2O, 26.8 g/L Na2HPO4-

7H2O, pH 7.4) on ice. After 4 hours in 4% PFA at 4°C, DRGs were moved to 30% sucrose for 

cryoprotection overnight at room temperature. DRGs were then embedded in Tissue-Tek O.C.T. 

Compound (4583, Sakura Finetek, Torrance, California). Sections of 20 μm thickness were 

collected onto SuperFrost Plus glass slides (12-550-15, Thermo Fisher) and stored at -20°C 

until staining. After hydrating sections with PBS and washing with a solution of tris buffered 

saline with Triton X-100 (TBSTX; 0.05 M Tris, 2.7% w/v NaCl, 0.3% v/v Triton-X 100, pH 7.6), 

sections were blocked in a buffer of 10% normal donkey serum (S30, Millipore, Burlington, 

Massachusetts) in TBSTX (NDS/TBSTX) for 1 h at room temperature. Sections were then 

incubated in primary antibodies for NeuN (1:300 mouse anti-NeuN, MAB377, Millipore) and 

either DGKI (1:1,000 rabbit anti-DGKI, LS-C118721, Lifespan Biosciences) or DGKH (1:1,000 

rabbit anti-DGKH, HPA040355, Sigma) in NDS/TBSTX overnight at room temperature. The next 

day, sections were blocked with NDS/TBSTX for 1 h before incubating in a secondary antibody 

solution of 1:200 Alexa Fluor 568-conjugated goat anti-mouse IgG1 (A21124, Invitrogen) and 

1:200 Alexa Fluor 488-conjugated goat anti-rabbit (A11008, Invitrogen) in NDS/TBSTX for 2 h at 

room temperature. Sections were rinsed with TBSTX between each step. Coverslips were 

added directly to slides with FluoroGel mounting medium (17985-10, Electron Microscopy 
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Sciences, Hatfield, Pennsylvania). Imaging was performed on a Zeiss LSM 510 confocal laser 

scanning microscope. 

 

In situ hybridization 

Lumbar DRGs were dissected from a 4-month-old WT male, and in situ hybridization 

(ISH) was performed by Megumi Aita using a probe targeting a 873-bp fragment of mouse 

Dgkh. 

 

Sensory Behavior 

All behavior assays were performed on 2- to 4-month-old mice during the light phase of 

the light:dark cycle. For each assay, mice within each cohort were tested in a random order that 

varied between days. After testing each mouse for itch or baseline pain responses, they were 

kept separate from the mice that had not yet been tested in that assay, to avoid empathetic pain 

responses [125]. For all behavior assays, the experimenters were blinded to the genotype. 

Sensory behaviors assays were performed in a mesh platform apparatus or a glass 

platform apparatus, except for the tail immersion and clothespin assays. The mesh platform 

apparatus consisted of a 28 × 46 cm sheet of stainless-steel mesh elevated 28 cm from the 

bench surface. Mice were placed on top of the mesh platform, and each mouse was enclosed in 

an individual 9 × 9 × 11 cm 5-sided transparent plastic box. For the glass platform apparatus, 

we used an 86 × 35 cm pane of 0.6 cm thick glass elevated 21 cm from the bench. Mice were 

placed in square acrylic enclosures of 13 cm height that were separated with dividers into 4 

equally-sized 10 × 10 cm chambers. Lids of the acrylic chambers had 3-cm-diameter holes, 

covered with copper wire mesh to prevent escape. 

Itch, cold plantar, and Hargreaves assays were tested in the glass platform apparatus. 

Cotton swab and filamentous von Frey assays were tested in the mesh platform apparatus. 
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Mice were acclimated to these apparatuses for 2 hours per day for at least 5 days prior to 

testing. On the day of testing itch responses, mice were acclimated to test chambers for 30 min 

prior to injection, and only one animal was tested at a time. On the day of testing cotton swab, 

cold plantar, Hargreaves, and von Frey, mice were acclimated to the test chamber for 1 h prior 

to testing, and all mice in the cohort were tested together.  

 

Itch assay 

We used an acute scratching assay to test itch responses to histamine, chloroquine, and 

β-alanine in WT, Dgki-/-, Dgkh-/-, and dKO male and female mice. Following a 30-min acclimation 

period, mice were injected with 50 μL of pruritogen that was dissolved in 0.9% w/v NaCl, made 

fresh on the day of testing, and kept on ice throughout the day. The 50 μL injection contained 

500 μg β-alanine (A9920, Sigma), 500 μg histamine (H7250, Sigma), or 200 μg chloroquine 

(C6628, Sigma). After injecting a pruritogen subcutaneously at the nape of the neck using a 13-

mm 30-gauge needle (305106, BD, Franklin Lakes, New Jersey) attached to a 50-μL glass 

syringe (Model 705, Hamilton, Reno, Nevada), we counted scratching bouts at the site of 

injection performed by each mouse in 5-minute intervals over 30 minutes. All three pruritogens 

were tested in each mouse. Each cohort was tested on β-alanine and given at least 48 hours to 

recover. Each cohort was then tested on histamine or chloroquine (alternating for each cohort) 

and given 72 hours to recover. 

WT and Dgki-/- males and females were tested in two cohorts. The first cohort had 10 

mice each of WT males, Dgki-/- males, WT females, and Dgki-/- females; the second cohort had 

12 WT males, 11 Dgki-/- males, 10 WT females, and 8 Dgki-/- females. WT and Dgkh-/- males and 

females were tested in three cohorts. The first cohort had 5 WT males, 4 Dgkh-/- males, 4 WT 

females, and 5 Dgkh-/- females and were only tested for histamine; the second cohort had 10 

WT males, 10 Dgkh-/- males, 11 WT females, and 9 Dgkh-/- females; the third cohort had 8 WT 

males and 7 Dgkh-/- males. WT and dKO males and females were tested in two cohorts. The 
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first cohort had 4 WT males, 4 dKO males, 7 WT females, and 7 dKO females; the second 

cohort had 8 WT males, 8 dKO males, 3 WT females, and 3 dKO females. The same effects 

were found in each cohort of a given genotype individually, so we combined the data from those 

cohorts. 

 

Acute pain sensitivity assays 

Mice were tested on each baseline pain assay at least twice, on separate days, and the 

responses for an individual animal were averaged. Mice were given at least one hour to recover 

after each test. In a single day, mice were tested on 2 to 5 baseline pain assays. The assays 

were run in a random order that varied between days. 

Tail immersion – To measure thermal sensitivity [92, 93], a 75% ethanol solution was 

cooled to -10°C or a water bath was heated to 46.5°C or 49°C. Each mouse was gently 

wrapped in a towel and inverted, submerging approximately half of the tail, and the latency for 

the mouse to flick their tail was measured. Without a response, tails were removed from -10°C 

after 60 s, 46.5°C after 40 s, and 49°C after 20 s.  

Clothespin – To measure mechanical sensitivity [96], we measured the latency for a 

mouse to attempt to remove a 2.5-cm long clothespin (3438, Bazic Products, Los Angeles, 

California) attached to the tail, approximately 1 cm from the distal tip. Assays were performed in 

an empty 17 × 28 × 12.5 cm plastic cage (Allentown Caging, Allentown, New Jersey) with no lid. 

The time for a mouse to bite or attempt to remove the clothespin was measured. The clothespin 

was removed as soon as the mouse responded, or after 20 s if there was no response. 

Cotton swab – To determine if Dgki loss affects large-diameter, low-threshold 

mechanosensory neurons of the DRG [97], we assessed responses to a light touch via a “fluffed 

out” cotton swab brushed across the hindpaw. The cotton swab was brushed from heel to toe, 

and any movement of the paw was counted as a response. Each paw was tested 5 times (total 

of 10 tests per mouse). After testing each paw once for each animal, the mice were given 10 



48 
 

min to settle before testing again. We alternated starting testing on either the left or right 

hindpaw. 

Cold plantar – To examine sensitivity to cold, we measured withdrawal latency to 

applications of dry ice to the hindpaw [95]. Dry ice was packed into a 3-mL syringe (209657, 

BD) modified to expose a 0.8-cm-diameter cross section and pressed against the glass directly 

under the hindpaw. Without a response, the stimulus was removed after 20 s. Each hindpaw 

was tested two to three times, with at least 30 min rest between tests on a single paw. We 

alternated starting testing on either the left or right hindpaw. 

Hot plate – To examine sensitivity to heat, we measured latency to respond to 

placement of the mouse onto a 55°C hot plate [94], using a Hot Plate Analgesia Meter (Series 8 

Model 29, IITC Life Science Inc., Woodland Hills, California). Mice were placed on the surface 

of the hot plate, within an acrylic cylinder with an inner diameter of 10 cm and a height of 15.4 

cm. The latency to demonstrate a painful response (licking or rapidly flicking either hindpaw or 

jumping) was timed. The mouse was removed from the plate after responding, or after 30 s if 

there was no response. 

Hargreaves – To examine sensitivity to heat, we measured withdrawal latency to 

applications of heat via a focused beam of light to the hindpaw [100], using an infrared 

radiometer (72-6703, Harvard Apparatus, Holliston, Massachusetts) light source set to an 

intensity of 30 mW/cm2. Without a response, the stimulus was removed after 20 s. Each 

hindpaw was tested two to three times, with at least 30 min rest between tests on a single paw. 

We alternated starting testing on either the left or right hindpaw. 

Filamentous von Frey – To examine mechanical pain, we used von Frey filaments. 

Pressure is applied to the plantar surface of the hindpaw using a long, thin filament until either 

the filament bends or the mouse withdraws its paw [103]. Eight filaments with bend thresholds 

of 0.407, 0.692, 1.2, 1.5, 2.04, 3.63, 5.5, and 8.5 g (Research Designs Inc.) were tested, in that 

order. Each filament was tested five times on each hindpaw (alternating left and right for each 
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test). The percentage of total hindpaw withdrawals (out of 10) was calculated to assess 

sensitivity to mechanical stimuli. Mice were allowed to rest for at least 2 minutes between tests 

of an individual filament and a minimum of 15 minutes between filaments to ensure withdrawals 

were due to mechanical nociception rather than overstimulation.  

Electronic von Frey – To examine mechanical pain, we used an electronic von Frey 

anesthesiometer (Model 2390, IITC Life Science Inc.) consisting of a rigid filament is attached to 

a pressure transducer [99]. The filament is pressed against the plantar surface of the hindpaw 

until the filament bends or the mouse withdraws its paw. The maximum force applied to the paw 

is recorded by the anesthesiometer. Each hindpaw was tested two to three times, with at least 2 

min rest between tests on a single paw. 

  

Chronic pain models 

Inflammatory injury – We modeled inflammatory sensitization by injecting 30 μL of 

complete Freund’s adjuvant (CFA; 855828, MP Biomedicals, Santa Ana, California) into the 

plantar surface of the left hindpaw, using a 13-mm 27-gauge needle (305109, BD) attached to a 

50-μL glass syringe (Model 705, Hamilton) [98, 102]. Responses of both the ipsilateral and 

contralateral hindpaws to heat in the Hargreaves test were measured at baseline (0 to 3 days 

prior to CFA injection) and on Days 1, 2, 3, 4, and 7 after CFA injection. Observation days were 

chosen to observe development of and recovery from CFA-induced inflammatory sensitization. 

WT and Dgki-/- males and females were tested in one cohort of 10 mice each of WT males, 

Dgki-/- males, WT females, and Dgki-/- females. In this cohort, the females were tested on Day 5 

instead of Day 4. WT and Dgkh-/- males and females were tested in two cohorts. The first cohort 

had 8 WT males, 7 Dgkh-/- males, 11 WT females, and 8 Dgkh-/- females and were only tested 

for histamine; the second cohort had 6 each of WT females and Dgkh-/- females. WT and dKO 

males and females were tested in three cohorts. The first cohort had 6 WT males, 5 dKO males, 

7 WT females, and 7 dKO females; the second cohort had 9 WT males, 9 dKO males, 3 WT 
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females, and 3 dKO females. The third cohort had 7 each of WT males and dKO males. The 

same effects were found in each cohort of a given genotype individually, so we combined the 

data from those cohorts. 

Neuropathic injury – Neuropathic sensitization was induced using the spared nerve 

injury (SNI) model of neuropathic pain, in which two of the three major branches of the sciatic 

nerve are ligated and transected while the third is left intact [101]. Animals were anesthetized 

via isoflurane insufflation. Once unconscious (confirmed by toe pinch reflex), hair was removed 

from the left hindleg before being stabilized via surgical pins (tissue was not pierced). The 

incision site was cleaned with three alternating washes of chlorohexidine and iodine solution. A 

2-cm incision was made through the skin at the mid-thigh level. The biceps and semitendinosus 

muscles were gently teased apart using forceps, exposing the sciatic nerve. The peroneal and 

sural nerves were tightly ligated with 6-0 silk suture while the tibial nerve was left intact. The 

ligated nerves were then transected distal to the ligature and 2 mm of each branch distal to the 

nerve stump were removed to confirm complete transection. The muscles were repositioned 

back over the nerve and the skin wound closed via surgical clips. The animals were then placed 

in a cage on a heating pad until they woke before being returned to their home cage. Total time 

unconscious was approximately 20 minutes. Animals were monitored daily to ensure the wound 

remained sealed and clean. Surgical clips were removed 6 days post-surgery. Responses of 

both the ipsilateral and contralateral hindpaws to mechanical stimulation in the filamentous von 

Frey assay were tested at baseline (1 to 3 days prior to SNI surgery), and Days 1, 7, and 14 

after surgery. Due to the length of time of each surgery, the 40 total mice were tested in 4 

cohorts. The first cohort had 7 WT and 6 Dgki-/- males, the second had 5 WT and 5 Dgki-/- 

males, the third had 5 WT and 3 Dgki-/- females, and the fourth had 5 WT and 4 Dgki-/- females. 
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Primary DRG neuron culture 

Similar to previous work [124], DRGs were dissected from 4- to 8-week-old male and 

female WT, Dgki-/-, or Dgkh-/- mice and placed into a 1.5-mL microcentrifuge tube containing 1 

mL of calcium- and magnesium-free Hank’s balanced salt solution (HBSS; 14175-145, Gibco; 

400 mg/L KCl, 60 mg/L KH2PO4, 350 mg/L NaHCO3, 8 g/L NaCl, 48 mg/L Na2HPO4, 1 g/L D-

glucose) on ice. After a quick spin, HBSS was gently removed and replaced with 1 mL of a 

solution of 2 mg/mL collagenase (CLS1, Worthington Biochemical, Lakewood, New Jersey) and 

5 mg/mL dispase (17105-041, Gibco) in HBSS. The tube was placed in a 37°C water bath for 30 

min, inverting every 5 min. At 20 min, DRGs were triturated with a flame-polished glass Pasteur 

pipette, then returned to the water bath. At 30 min, the 1-mL DRG suspension was mixed with 1 

mL of 37°C supplemented media containing Neurobasal A (10888, Gibco), 0.5% B-27 (17504, 

Gibco), 100 U/mL penicillin/streptomycin (15140, Gibco), 2 mM L-glutamine (25030, Gibco), 50 

ng/mL glial derived neurotrophic factor (GF030, Millipore), and 25 ng/mL nerve growth factor 

(01-125, Millipore). The 2-mL DRG suspension was triturated with a fresh Pasteur pipette and 

placed on a pre-moistened 70 μm filter (22-363-548, Thermo Fisher). The filtrate was spun at 

1000 × g for 5 min at room temperature. The supernatant was carefully removed, and the pellet 

was resuspended in 37°C supplemented media with a fresh Pasteur pipette. For the ERK 

assays, the supplemented media did not contain growth factors.  

For calcium imaging assays, neurons were plated onto 12-mm diameter coverslips 

(354087, Corning) that were precoated with 1 mg/mL poly-D-lysine (P7886, Sigma) and 10 

μg/mL laminin (L2020, Sigma), prewarmed to 37°C, and each placed in a well of a 24-well plate. 

Using a pipette with a plastic tip, 90 μL of the cell suspension was plated onto each coverslip, 7-

12 coverslips/mouse. After 1-2 h, 410 μL of 37°C supplemented media was added to each well. 

For the ERK phosphorylation assays, neurons were plated into a 12-well plate precoated with 

poly-D-lysine and laminin and prewarmed to 37°C. Using a pipette with a plastic tip, 500 μL of 



52 
 

the cell suspension was plated into each well, 6 wells/mouse. DRGs from WT and knockout 

mice were plated on the same 12-well plate. 

Cells were kept a 37°C incubator with 5% CO2 and used for assays within 24 hours. For 

each preparation, DRGs from one WT and one Dgki-/- or Dgkh-/- mouse (age- and sex-matched) 

were dissected and cultured concurrently and were plated at equal densities. 

 

DRG calcium imaging 

Prior to imaging, neurons were washed and loaded with Fura-2, AM in the same manner 

as described in the methods of the previous chapter for HEK293 cell calcium imaging. The 

same imaging equipment was used, except for coverslips were placed in a chamber (Model RC-

26GLP, Warner Instruments, Hamden, Connecticut) mounted on microscope stage adapter. 

The same excitation/emission parameters were used for imaging, except for there was no use 

of the RFP channel. Instead of manually changing the buffers, the coverslips were perfused with 

30°C buffers (heated with SH-27B inline heater, Warner Instruments) at a flow rate of 4.2 

mL/min (using a Minipuls 3 Peristaltic Pump, Gilson, Middleton, Wisconsin). After collecting 90 s 

of baseline Fura-2 ratios while perfusing with assay buffer, cells were perfused with agonist for 

90 s, followed by assay buffer for 120 s, then 100 mM KCl for 30 s to test for neuron health. 

Agonists and 100 mM KCl solutions were made with assay buffer. 

For analysis, we calculated the Fura-2 ratio (ratio of the emission following excitation at 

340 nm/380 nm). We excluded cells that had high baseline Fura-2 ratios (>1.0) or failed to 

respond to KCl (did not reach ratio of at least 1.0 during KCl exposure). To normalize to 

baseline, the 60 s of Fura-2 ratios measured immediately preceding agonist exposure were 

averaged for a given cell, and that average was subtracted from each data point for that cell 

throughout the whole assay period. Only cells that responded to agonist (had a minimum 

increase in Fura-2 ratio of 0.1 over baseline average for 2 consecutive time points during period 

of agonist exposure) were included in our analyses. Area-under-the-curve (AUC) values were 
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calculated on a cell-by-cell basis, using the baseline-normalized values, for the 90-s period of 

agonist exposure. 

DRG cultures from one WT and one Dgki-/- or Dgkh-/- mouse were tested each day, 

alternating coverslips in a random order. For histamine, we used 1 male and 2 female mice 

each for WT and Dgki-/- (6 mice total) and 2 males and 1 female each for WT and Dgkh-/-. For 

capsaicin, we used 2 males each for WT and Dgki-/- and 1 male each for WT and Dgkh-/-. For 

LPA, we used 2 males and 1 female each for WT and Dgki-/- and 2 males and 1 female each for 

WT and Dgkh-/-. For UTP, we used 4 males each for WT and Dgki-/- and 1 male each for WT and 

Dgkh-/-. Results from mice of both sexes were combined for each genotype (WT samples tested 

concurrently with Dgki-/- samples were combined, and WT samples tested with Dgkh-/- samples 

were combined). The number of healthy neurons and the numbers of neurons responding to 

agonist that we analyzed are indicated in Figure 3.15.  

 

DRG ERK phosphorylation assay 

ERK phosphorylation induced by nerve growth factor (NGF) in cultured DRG neurons 

was tested similarly to [126]. For testing Dgki-/- DRG neurons, cultures were prepared from 2 

WT and 2 Dgki-/- 6-week-old males, dissected and cultured concurrently. For testing Dgkh-/- 

DRG neurons, cultures were prepared from 2 WT and 2 Dgkh-/- 4-week-old males, dissected 

and cultured concurrently. Before plating, neurons from the 2 mice of the same genotype were 

combined before plating into 12 wells. For the ERK assay, we used the same supplemented 

media as was used for DRG culturing (no growth factors). On the day of the assay, media was 

removed and replaced with 500 μL of 37°C supplemented media containing no NGF (baseline) 

or containing 100 ng/mL NGF (01-125, Millipore). Cells were incubated in NGF for 2, 5, or 10 

min. Cells were incubated in the baseline control for 5 min. Cells were immediately washed with 

ice-cold HBSS (see “Primary DRG neuron culture” above). We removed the HBSS, added 100 

μL of lysis buffer to each well, and froze plate at -80°C.  
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The next day, the plate was thawed and cells were scraped into lysis buffer (same as 

kinase assay lysis buffer above), and the contents of each well were collected into individual 

microcentrifuge tubes. Following sonication on ice for 10 s, lysates were centrifuged at 10,000 × 

g at 4°C for 15 min to separate the debris. Protein (20 µg) was run on duplicate westerns, 

following the same protocol from Chapter 2 above, using the following primary antibodies: 

1:3,000 mouse anti-ACTB (ab6276, Abcam) and either 1:1,000 rabbit anti-ERK1/2 (4695S, Cell 

Signaling Technology, Danvers, Massachusetts) or 1:1,000 rabbit anti-phosphorylated-ERK1/2 

(4370S, Cell Signaling Technology). 

For each test day (Dgki-/- or Dgkh-/-) there were triplicates of the 8 genotype × NGF 

conditions; we ran 3 pairs of westerns, each with 1 of the 3 triplicate samples of the 8 

conditions. To quantify ERK phosphorylation, the intensity of both ERK1/2 bands for each 

sample were quantified together, as were both p-ERK1/2 bands for each sample. The ERK1/2 

and p-ERK1/2 intensities were normalized to the actin band on the respective blot. The ratio of 

[(p-ERK1/2 / ACTB) / (ERK1/2 / ACTB)] was calculated to represent the amount of ERK 

phosphorylation in each sample. 

 

DRG kinase activity assay 

Assay was performed similarly to the HEK293 kinase activity assay protocol described in 

the methods of the previous chapter. Instead of HEK293 cells, we used protein isolated from 

DRGs that were dissected from 1- to 5-month-old WT, Dgki-/-, Dgkh-/-, and dKO male and female 

mice (age- and sex-matched on the day of testing). DRGs were dissected into HBSS (recipe 

under “Primary DRG neuron culture” above) on ice. Following DRG dissection, HBSS was 

removed, protein was isolated, and lysates were immediately used in the kinase assay. 
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Statistics 

Data were analyzed with GraphPad Prism version 7.04. WT vs. mutant (Dgki-/-, Dgkh-/-, 

and dKO) responses (by sex) in all baseline pain assays were tested for significance using two-

tailed t-tests with Welch’s correction, as were WT vs. mutant AUC responses in calcium activity 

assays and WT vs. mutant ERK phosphorylation. For each sex, scratching responses to 

pruritogens, von Frey or Hargreaves responses in the CFA model, and von Frey responses in 

the SNI model were compared between WT and mutant using Sidak's multiple comparisons 

tests used for pairwise comparisons within each 5-min time bin (pruritogens), day (CFA), or 

filament (SNI) within two-way repeated measures analysis of variance (ANOVA) tests.  
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FIGURES 

 
 
Figure 3.1. Diacylglycerol (DAG) and 2-arachidonoylglycerol (2-AG) regulate signaling in 
DRG neurons. DAG and 2-AG modulate activity of important secondary messengers and 
receptors. DGKI and DGKH terminate DAG and 2-AG signaling via phosphorylation. Green 
pathways promote itch/pain, orange pathways inhibit itch/pain. 
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A   B  
Tissue Relative Dgki 

expression  Tissue Relative Dgkh 
expression 

Mast cells 27.02  Dorsal root ganglia 95.62 
Dorsal root ganglia 12.59  Testis 31.46 

Dorsal striatum 8.74  Pituitary 9.53 
Olfactory bulb 3.75  Hippocampus 9.27 

Nucleus accumbens 3.52  Large intestine 8.06 
Hippocampus 3.44  Nucleus accumbens 6.59 

Spinal cord 3.10  Dorsal striatum 6.38 
Cerebral cortex 3.05  Macrophage, bone marrow 6.19 

Natural killer cells 2.82  Cebrebral cortex 6.17 
Amygdala 2.22  Lung 4.66 

 
Table 3.1. Expression of Dgki and Dgkh in mouse tissues. Microarray data reveal the 
murine tissues with the highest expression levels of Dgki (A) or Dgkh (B). 
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Figure 3.2. DGKH and DGKI are enriched in small-diameter DRG neurons. A-B) Protein 
immunohistochemical staining shows that DGKH (A) or DGKI (B) expression is cytoplasmic and 
is higher in small-diameter (arrowheads) than in large-diameter (arrows) mouse DRG neurons. 
C) In situ hybridization shows that Dgkh RNA has a similar expression pattern to DGKH protein. 
Scale bar = 20 μm. 
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Figure 3.3. Loss of Dgki enhances histamine-induced scratching in male and female 
mice. An acute scratching assay was used to test itch responses in Dgki-/- mice following an 
injection of 500 ug histamine (A-B), 200 ug chloroquine (C-D), or 500 ug β-alanine (E-F) in WT 
and Dgki-/- male (A,C,E) and female (B,D,F) mice in 5-min intervals for 30 min. Data represent 
mean ± SEM. Number of mice for all assays indicated on graphs in (A) and (B). p< *0.05, 
**0.01, ****0.0001 vs. WT at individual time point. 
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Figure 3.4. Loss of Dgkh reduces histamine-induced scratching in male mice. An acute 
scratching assay was used to test itch responses in Dgkh-/- mice following an injection of 500 ug 
histamine (A-B), 200 ug chloroquine (C-D), or 500 ug β-alanine (E-F) in WT and Dgkh-/- male 
(A,C,E) and female (B,D,F) mice in 5-min intervals for 30 min. Data represent mean ± SEM. 
Number of mice for all assays indicated on graphs in (A) and (B). p< *0.05, ***0.001 vs. WT at 
individual time point. 
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Figure 3.5. Loss of both Dgki and Dgkh enhances histamine-induced scratching in male 
and female mice. An acute scratching assay was used to test itch responses in dKO mice 
following an injection of 500 ug histamine (A-B), 200 ug chloroquine (C-D), or 500 ug β-alanine 
(E-F) in WT and dKO male (A,C,E) and female (B,D,F) mice in 5-min intervals for 30 min. Data 
represent mean ± SEM. Number of mice for all assays indicated on graphs in (A) and (B). p< 
*0.05, ***0.001, ****0.0001 vs. WT at individual time point. 
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Figure 3.6. Loss of Dgki does not alter acute pain sensitivity in mice. A) The latency to respond to a small clothespin attached to 
the tail. B-D) The latency to respond to immersion of the tail in a bath set to a temperature of -10°C (B), 46.5°C (C), or 49°C (D). E) 
The rate of response to a light touch with a fluffed-out cotton swab. F-H) The latency to withdraw the hindpaw from an application of 
dry ice (F). Latency to lick hindpaw or jump after placement on a 55°C hot plate (G). Data represent mean ± SEM. Number of mice 
indicated on graphs. 
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Figure 3.7. Loss of Dgkh alters some acute pain sensitivity metrics in mice. A) The latency to respond to a small clothespin 
attached to the tail. B-D) The latency to respond to immersion of the tail in a bath set to a temperature of -10°C (B), 46.5°C (C), or 
49°C (D). E) The rate of response to a light touch with a fluffed-out cotton swab. F-H) The latency to withdraw the hindpaw from an 
application of dry ice (F). Latency to lick hindpaw or jump after placement on a 55°C hot plate (G). Data represent mean ± SEM. 
Number of mice indicated on graphs. **p<0.01 vs. WT. 
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Figure 3.8. Loss of both Dgki and Dgkh alters some acute pain sensitivity metrics in mice. A) The latency to respond to a small 
clothespin attached to the tail. B-D) The latency to respond to immersion of the tail in a bath set to a temperature of -10°C (B), 46.5°C 
(C), or 49°C (D). E) The rate of response to a light touch with a fluffed-out cotton swab. F-H) The latency to withdraw the hindpaw 
from an application of dry ice (F). Latency to lick hindpaw or jump after placement on a 55°C hot plate (G). Data represent mean ± 
SEM. Number of mice indicated on graphs. *p<0.05 vs. WT. 
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Figure 3.9. Loss of Dgki does not alter sensitization or recovery in the CFA model of 
chronic inflammatory pain. A-B) Withdrawal latencies to heat in the Hargreaves assay for 1 
week following injection of CFA into the plantar surface of the hindpaw in male (A) and female 
(B) mice. C) Threshold of withdrawal from an electronic von Frey filament pressed to the plantar 
surface of the hindpaw in female mice. Data represent mean ± SEM. Number of mice indicated 
on graphs in (A) and (B). 
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Figure 3.10. Loss of Dgkh does not alter sensitization or recovery in the CFA model of 
chronic inflammatory pain. A-B) Withdrawal latencies to heat in the Hargreaves assay for 1 
week following injection of CFA into the plantar surface of the hindpaw in male (A) and female 
(B) mice. C) Threshold of withdrawal from an electronic von Frey filament pressed to the plantar 
surface of the hindpaw in female mice. Data represent mean ± SEM. Number of mice indicated 
on graphs in (A) and (B). 
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Figure 3.11. Loss of both Dgki and Dgkh in dKO mice does not alter sensitization or 
recovery in the CFA model of chronic inflammatory pain. A-B) Withdrawal latencies to heat 
in the Hargreaves assay for 1 week following injection of CFA into the plantar surface of the 
hindpaw in male (A) and female (B) mice. C) Threshold of withdrawal from an electronic von 
Frey filament pressed to the plantar surface of the hindpaw in female mice. Data represent 
mean ± SEM. Number of mice indicated on graphs. *p<0.05 vs. WT at individual time point in 
ipsilateral paw. 
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Figure 3.12. Loss of Dgki does not alter sensitization in the SNI model of chronic 
neuropathic pain. Response rates to von Frey filaments of the indicated forces pressed into 
the plantar surface of the hindpaw in male (A-D) and female (E-H) WT and Dgki-/- mice at 
baseline (A,E) and 1 (B,F), 7 (C,G), and 14 (D,H) days after SNI. Data represent mean ± SEM. 
Number of mice indicated on graphs in (A) and (E). *p<0.05 vs. WT at individual time point in 
ipsilateral paw. 
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Figure 3.13. In vitro calcium responses to pruritogenic or algogenic agonists in cultured 
mouse DRG neurons are unchanged after Dgki loss. Calcium activity of DRG neurons 
dissected and cultured from WT and Dgki-/- mice in response to 100 μM histamine (A,B), 1 μM 
capsaicin (C,D), 10 μM LPA (E,F), or 100 μM UTP (G,H). Each experiment ended with exposure 
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to 100 mM KCl to ensure neuron health. Average calcium responses in WT and Dgki-/- DRG 
neurons over time are shown in (A), (C), (E), and (G). The AUC for the 90 s of agonist exposure 
was calculated for each neuron, plotted in (B), (D), (F), and (H). Data represent mean ± SEM. 
Number of neurons indicated on graphs in (A), (C), (E), and (G). 
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Figure 3.14. In vitro calcium responses to pruritogenic or algogenic agonists in cultured 
mouse DRG neurons are unchanged after Dgkh loss. Calcium activity of DRG neurons 
dissected and cultured from WT and Dgkh-/- mice in response to 100 μM histamine (A,B), 1 μM 
capsaicin (C,D), 10 μM LPA (E,F), or 100 μM UTP (G,H). Each experiment ended with exposure 
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to 100 mM KCl to ensure neuron health. Average calcium responses in WT and Dgkh-/- DRG 
neurons over time are shown in (A), (C), (E), and (G). The AUC for the 90 s of agonist exposure 
was calculated for each neuron, plotted in (B), (D), (F), and (H). Data represent mean ± SEM. 
Number of neurons indicated on graphs in (A), (C), (E), and (G). 
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Figure 3.15. Response rate of mouse DRG neurons to pruritogens and algogens is not 
changed by deletion of Dgki or Dgkh. Of all healthy neurons (neurons responding to KCl), the 
proportion of neurons responding to the indicated agonists (same as Figure 3.13Figure 3.14) did 
not vary between WT and Dgki-/- (A) or between WT and Dgkh-/- (B) DRG cultures. On each bar, 
the top number indicates the number of neurons responding to the agonist and the bottom 
number indicates the total number of healthy neurons. 
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Figure 3.16. NGF-induced ERK phosphorylation in cultured DRG neurons is slightly 
diminished by loss of Dgki, but not Dgkh. DRG neurons cultured from WT or Dgki-/- (A-B) or 
WT or Dgkh-/- (C-D) mice were stimulated with NGF for 0, 2, 5, or 10 min and ERK 
phosphorylation was measured. A,C) Western blots show the presence of phosphorylated ERK 
(pERK1/2) and total ERK (ERK1/2) in protein isolated from NGF-stimulated DRG cultures. Ratio 
of pERK1/2 to total ERK1/2 was quantified for each time point, as shown in (B) and (D). Data 
represent mean ± SEM. N = 3 for each time point. *p<0.05 vs. WT at same time point. 

  



 

76 
 

 
 
Figure 3.17. Phosphorylation of DAG and MAG substrates by DRG lysates is reduced in 
the absence of Dgki and/or Dgkh. CPM of 32P-PA or 32P-LPA produced when the indicated 
lipid substrates were combined in a reaction (see Figure 2.2A) with lysates from Dgki-/-, Dgkh-/-, 
or dKO DRGs, relative to the CPM of reactions with WT DRG lysates (gray line). All CPM values 
were normalized to the protein level of the sample before the relative difference from the RFP 
was calculated. Data represent mean ± SEM. Number of samples indicated on graph. *p<0.05, 
**p<0.01, ***p<0.001 vs. WT for indicated substrate. 
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 p<0.01 
 p<0.05 
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response 
than WT 

 p<0.05 
 p<0.01 
 p<0.001 
 p<0.0001 

 
Table 3.2. Summary of sensory phenotypes in Dgk model mice relative to WT mice. 
A) Subcutaneous injection of pruritogenic compounds in the back induced differential scratching 
responses in Dgk mouse models. The color intensity of each cell coordinates to the 5-min bin 
which had the greatest difference from WT over 30 min. B) Applications of noxious cold, noxious 
heat, or noxious mechanical stimuli on the tail or hindpaw of Dgk model mice induced slightly 
different responses relative to WT mice. C) DRG lysates from Dgk mouse models had 
decreased phosphorylation of DAG and/or MAG substrates in vitro relative to WT DRG lysates. 
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CHAPTER 4: DGKI AND DGKH REGULATE MATERNAL CARE AND 
PSYCHOPATHOLOGICAL BEHAVIORS IN MICE 

 

INTRODUCTION 

Psychiatric disorders 

Psychiatric disorders can severely impair affect, energy, cognition, and quality of life. 

These include mood disorders, such as anxiety and bipolar disorder (BPD), as well as cognitive 

disorders, such as attention deficit hyperactivity disorder (ADHD). Each condition is defined by 

unique features, but many also have overlapping symptoms and pathologies. Patients with 

depression suffer from anhedonia and severe fatigue [127], and those with BPD endure 

additional manic episodes of impulsivity, irritability, and goal-directed and risk-taking behaviors 

[128-131]. ADHD also features impulsivity, along with hyperactivity and an inability to focus 

[132]. Anxiety imparts both fatigue and an enduring sense of nervousness and fear [133], and 

schizophrenia can cripple patients with hallucinations, delusions, and catatonia [134]. About 3-

15% of the world’s population will suffer from one of these conditions in their lifetime [131, 132, 

135, 136]. Therefore, understanding the psychopathology behind these diseases could have 

major implications for treating millions of patients with mental health conditions. 

Many psychiatric disorders are highly hereditary. Heritability rates for depression and 

anxiety are around 35% [127, 133] and for BPD, ADHD, and schizophrenia are as high as 70-

85% [132, 134, 137]. Because genetics are strongly causative of these conditions, research on 

the genes that contribute to them will greatly improve our understanding of these diseases. 

Medications have been developed that can manage symptoms in many but not all patients [127, 

133, 138-141]. Characterizing the underlying biology of psychiatric disorders by studying the 

genes implicated in their pathology will lead to additional treatments.  
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DGKI and DGKH in mood disorders 

DGKI and DGKH are linked to multiple psychiatric disorders. Genome-wide association 

studies (GWAS) have linked mutations in DGKI to schizophrenia  [42-44] and bipolar disorder 

[44]. GWAS have linked mutations in DGKH to bipolar disorder [40, 41, 142-144], schizophrenia 

[142], depression [41], and ADHD [41]. Additionally, high DGKH RNA expression was found in 

postmortem brain tissue of BPD patients relative to healthy controls [145], and patients with 

BPD risk mutations in DGKH had higher levels of circulating DGKH. 

Recently, researchers examined the function of Dgkh in male mice [39]. Overall, they 

found that Dgkh-knockout males displayed mania-like behaviors that could be reversed with 

lithium, a common treatment for BPD [146]. Using Dgki-knockout mice [23], others found that 

Dgki loss caused no changes in learning, anxiety, or motor phenotypes other than a slightly 

diminished habituation to an open field [32]. Note that the sex of the mice in this latter study was 

not indicated. 

As discussed in the introduction to Chapter 3, Dgk isoforms contribute strongly to 

neuronal function and neurological behaviors. A splice variant of DGKB was linked to BPD 

[147], and Dgkb-knockout mice show psychopathological phenotypes, including hyperactivity 

and decreased anxiety [29]. Therefore, genes identified in BPD patients are strong predictors of 

mood disorder symptoms in mammals, and genetically-engineered mice with Dgk deletions can 

be used to model neurological diseases. Here, we aimed to demonstrate the role of Dgkh and 

Dgki in mouse behaviors associated with aberrant psychopathology. 

 

Maternal behavior 

While maintaining our mouse colony, we noticed that the offspring of dKO female mice 

had poor survival rates due to deficits in dKO dams’ nurturing abilities. In addition to being 

important for survival, maternal care influences the development of mood-disorder-related 
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symptoms—particularly anxiety, fear, and hyperactivity—in the adult offspring in rodents and 

humans [148-152]. Therefore, maternal behavior is incredibly important to mental health. 

Whereas the effect of poor maternal care on the young is well-appreciated, what causes female 

rodents to become poor care providers is understudied.  

Important factors in the development of nurturing behaviors in rodents have neurological 

components. The neurohormone oxytocin controls the onset of many aspects of maternal care 

(e.g. milk ejection, sensory responses to offspring) [153], and the medial preoptic area of the 

hypothalamus has been shown to be critical for the initiation and maintenance of maternal 

behaviors [154]. Additionally, prenatal stress (a psychological stimulus) strongly predicts poor 

maternal care in rodents and humans [155, 156]. As part of the efforts to understand the role of 

Dgkh and Dgki in neurological behaviors, we investigated the nurturing behaviors and survival 

outcomes of dKO mothers and their litters. 

 

RESULTS 

dKO mice exhibit decreased immobility in the forced swim test (FST) 

Given the genetic linkage of DGKH and DGKI to mood disorders in humans, we tested 

WT, Dgkh-/-, Dgki-/-, and dKO mice (both female and male) with neuropsychiatric disorder-

related behavioral assays. To model depression or mania [157, 158], activity was monitored in 

the forced swim test (FST), in which a mouse is placed into a large cylinder of water and time 

spent immobile (as opposed to actively swimming) is measured. In this assay, both female and 

male dKO mice showed decreased immobility relative to WT mice (Figure 4.1), which is typically 

interpreted as mania [157]. Neither Dgkh-/- nor Dgki-/- females differed from WT females. 

However, the Dgkh-/- males showed increased immobility relative to WT male mice, suggesting 

a slight depression-like phenotype.  
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dKO mice prefer the closed arms in the elevated plus maze (EPM) 

The elevated plus maze (EPM) was used to test for anxiety-like behavior [159]. In this 

test, we measured how much time mice spent in the protective closed arms versus the aversive 

open arms of an EPM (Figure 4.2). Deletion of Dgkh or Dgki alone had no effect on behavior in 

this assay in either sex. However, females and males lacking both Dgkh and Dgki spent 

significantly more time in the closed arms of the maze, considered a model of anxiety. Notably, 

the dKO males showed a preference for the protective closed arms of the maze, but not an 

avoidance of the aversive open arms. 

 

Loss of Dgkh and/or Dgki affects behavior in an open field in males but not females 

To test for exploratory behavior and activity levels [160], we monitored behavior of mice 

in an open field. We measured parameters of general activity (total horizontal distance covered 

and number of beam breaks from vertical movements) and of activity in the aversive center of 

the open field (distance covered and time spent in the center). When the behavior of the 

females was monitored in the open field test, none of the three genetic mouse models showed 

differences in activity relative to WT females (Figure 4.3A-F). However, when the males were 

monitored, we found that both Dgki-/- and dKO males were more active than their WT 

counterparts, in both horizontal and vertical activity metrics (Figure 4.4Error! Reference source 

not found.A-F). Additionally, in females the activity in the center of the open field did not 

significantly differ with genotype, in either distance or time (Figure 4.3G-E). However, in males 

the Dgkh-/-, Dgki-/-, and dKO mice showed enhanced activity in the center of the open field for at 

least one metric (Figure 4.4G-E). 

 

Loss of Dgkh and/or Dgki in mice does not alter responses to startling acoustic stimuli 

Deficits in prepulse inhibition (PPI) are used to model sensorimotor gating, a symptom of 

schizophrenia [161]. We found that responses to a startling acoustic tone of 120 dB (called the 
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acoustic startle response, or ASR) did not differ based on genotype in either sex (Figure 4.5A-

B), nor did the inhibition of the startle response when paired with a softer prepulse tone of 

varying loudness (Figure 4.5C-D).  

 

Poor survival rates of offspring raised by dKO mothers 

While maintaining colonies of WT, Dgkh-/-, Dgki-/-, and dKO mice, we noticed a 

significantly diminished survival rate of litters raised by dKO females. Offspring of dKO mothers 

showed a significant decrease in survival within the first two days after birth (Figure 4.6A). Pups 

raised by WT mothers had a survival rate of 87.1%, whereas dKO-raised pups had a 29.5% 

survival rate. To evaluate the relative contribution of each Dgk gene to this phenotype, we 

examined survival rates of litters born from mothers of each genotype (Figure 4.6B). When 

raised by WT females, an average of 85.5% of the litter survived to weaning age, whereas dKO-

raised litters had an average survival rate of 25.1%. At 72.1% average survival, litters raised by 

Dgkh-/- did not significantly differ from WT litters. At 54.0%, litters raised by Dgki-/- mothers fared 

slightly worse than those raised by WT dams, but the difference was most pronounced when 

both Dgkh and Dgki were deleted (dKO).  

 

dKO dams show signs of deficient postnatal care 

To determine if the poor survival rate was due to deficiencies in prenatal development or 

postnatal care, we fostered pups from dKO dams to recently postpartum WT dams. When 

fostered to a WT mother, an average of 83.9% of dKO-born pups survived (dKO Fostered; 

Figure 4.6B), which was a significant improvement over dKO-raised litters. These data suggest 

dKO-born pups can nurse and grow normally when under the care of a WT mother. Moreover, 

the normal litter size at birth (Figure 4.6C) ruled out the possibility that pup survival was 

impaired prenatally.  
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The severity of the survival phenotype was not dependent on the genotype of the pup, 

whether the dKO dam was a new or experienced mother, the age of the mother, or the size of 

the litter (Figure 4.6D-G). 

 

dKO mothers show variable pup retrieval behavior 

Since our data suggested poor pup survival was due to deficient maternal care, we next 

assayed an array of maternal behaviors. From observing their cages, we found that WT and 

dKO females both made protective nests, with tall sides and top coverings that fully enveloped 

both the dam and the litter (Figure 4.7A-B). In addition to making decent nests, mothers need to 

be able to retrieve pups that have strayed from the nest. In an assay of this maternal behavior, 

the latency to retrieve three stray pups was tested in WT and dKO moms on the day of (P0) or 

the day after (P1) birth of a new litter (Figure 4.7C). The average latency to return stray pups to 

the nest was higher in dKO dams at P0 (not significant) relative to WT (263.9 and 123.9 s, 

respectively) but was skewed by a subset of dKO mothers that failed to retrieve any pups during 

the entire 900-s assay period. Of the 14 P0 litters assayed with dKO mothers, 11 successfully 

retrieved all 3 pups (78.6%), compared to a success rate of 96.0% (24 out of 25) in trials with 

WT mothers (Figure 4.7D). All dams retrieved all three pups at P1 (Figure 4.7D), with 

comparable latencies between WT and dKO dams (Figure 4.7C).  

 

Newborn offspring consume less milk when reared by dKO female mice  

The protective nests built by WT and dKO females prevented the observation of nursing 

behavior directly, so we monitored the presence of milk spots in the pups to determine if the 

pups were consuming milk. Due to their transparent skin, milk in the stomach of newborn mice 

can be seen as a white spot on the abdomen. At P0, on average only 43.8% of pups from dKO-

born litters had visible milks spots, compared to litters from WT dams with an average of 78.0% 

(Figure 4.7E). All dKO-raised pups had milk spots at P2, likely explaining why dKO pups that 
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survived to P2 then survived to weaning. Moreover, the presence of milk spots ruled out the 

possibility that dKO females were unable to produce milk. 

 

Offspring of dKO mothers gain weight slowly in early postnatal period 

The impact of insufficient nursing was seen in the average weight of mice raised by dKO 

mothers (Figure 4.7F). Pups raised by dKO dams weighed significantly less than those raised 

by WT dams at P0 (1.24 g and 1.38 g, respectively), P1 (1.29 g and 1.43 g), and P2 (1.43 g and 

1.62 g). The differences between dKO and WT pup weights began to decrease at P3 (1.77 g 

and 1.99 g, respectively) and P4 (2.28 g and 2.51 g). From P5 to P21 (typical weaning age) 

there were no significant differences in offspring weight based on maternal genotype (partial 

data shown). The improvement in weight was preceded by the presence of milk spots at P2 

(Figure 4.7E) and coincided with a decrease in lethality (Figure 4.6A). 

 

DISCUSSION 

Summary of behavioral assays 

Here, we show that global loss of both Dgkh and Dgki in female mice causes anxiety 

and mania-like behaviors—phenotypes not seen from loss of Dgkh or Dgki alone. These 

behavioral phenotypes were paired with a significant deficit in early maternal care. The 

behaviors analyzed in all three genetic mouse models are summarized in Table 4.1A. For the 

dKO females, the lack of changes in general activity in the open field (Figure 4.3A-F) supports 

the conclusion that the increased activity in the FST (Figure 4.1A) was indicative of mania, not 

hyperactivity [162]. Additionally, the normal center behavior in the open field (Figure 4.3G-E) 

suggests that the phenotype of the dKO females in the EPM (Figure 4.2A) represented anxiety 

and not simply hypo-exploratory behavior [163]. 

We also observed differences from WT in how the male dKO mice behaved in the FST 

and EPM assays. However, unlike in the dKO females, we found additional aberrant behaviors 
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through the open field test. Interestingly, deletion of Dgkh or Dgki alone was sufficient to cause 

some of these phenotypes. The behaviors analyzed in the males are summarized in Table 4.1B. 

The preference for the protective closed arms of the EPM, as shown by the dKO males, is 

typically interpreted as anxiety (Figure 4.2B). Center behavior in the open field is analogous to 

EPM open-arm behavior; anxious mice will avoid the aversive center of the open field. 

Therefore, it was surprising to see that the dKO males actually had increases in time spent and 

distance traveled in the center of the open field (Figure 4.4G-E). Pairing the results of both the 

EPM and open field assays informs our interpretation of the dKO male behavior. Whereas dKO 

males showed a preference for the protective closed arms of the EPM, they actually did not 

avoid the open arms; they spent just as much time in the open arms as WT males. (Mice were 

able to stay in the middle of the plus maze, which was scored as neither closed or open arm 

time.)  

In neither female nor male mice of any Dgk-mutant genotype were there changes in 

ASR or PPI responses. This suggests that startle reflexes and sensorimotor gating are not 

dependent on Dgkh and/or Dgki expression in mice, and exclude the interpretation that these 

mice have broad cognitive deficits [164]. 

 

Sex differences in psychopathological behavior 

In the assays of psychopathological behavior in mice, there were two obvious 

differences between males and females. First, the dKO males, but not the females, showed 

increased activity and decreased center avoidance in the open field. Second, the Dgkh-/- and 

Dgki-/- females had no variations from WT females in their behavior, but the Dgki-/- males 

phenocopied the dKO males’ variations from WT in the open field. Interestingly, these two 

differences are connected: all the phenotypes that were aberrant in dKO males but not in dKO 

females were also aberrant in the Dgki-/- males. Therefore, the sex difference in open field can 
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be attributed to how Dgki deletion affects males differently from females, not necessarily how 

double Dgkh/Dgki deletion affects males differently. 

Even in the assays where dKO females and males had the same results, there is 

potentially for the result to represent two different types of behavior. For example, both female 

and male dKO mice spent more time in the closed arms of the EPM (Figure 4.2); however, they 

may have behaved differently while they were in the closed arms (we were not able to see them 

in the closed arms). If the mice stayed in the corner, huddled against the tall, protective walls, 

this would represent an anxious phenotype. On the other hand, if the mice roamed up and down 

the long arms or engaged in frequent rearing behavior, this would represent a hyperactive or 

exploratory phenotype. 

Both female and male dKO mice had decreased immobility time in the FST, as well 

(Figure 4.1). Females had normal behavior in other tests of activity, so we interpreted this as 

mania-like behavior. However, the dKO males had enhanced activity in both the FST and the 

open field. Therefore, in the dKO males, decreased immobility in the FST and the increases in 

horizontal distance covered, vertical movements, and center distance in the open field together 

paint a picture of a mouse that is hyperactive and hyperexploratory.  

Detailed explorations of the molecular, cellular, and circuit-based mechanisms for these 

phenotypes are great future directions of this study. The many potential mechanisms that may 

be regulating these behaviors are discussed below. 

 

Potential signaling pathways contributing to psychopathological behavior in dKO mice 

Dgkh and Dgki are known to regulate multiple signaling pathways that have been linked 

to the phenotypes we uncovered. Activation of Gαq-GPCRs induces calcium release and 

production of DAG, together leading to neuronal activity [25, 165]. We previously found that 

overexpression of Dgkh prolongs Gαq-GPCR-stimulated calcium mobilization by attenuating the 

activation of PKC [45]. Using hippocampal slices from neonatal (2-week-old) Dgki-knockout 
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mice, others found that mGluR-LTD was dampened; although, they did not find this effect in 

adult tissue [32]. Impaired mGluR-LTD (a Gαq-GPCR-dependent process) in the Dgki-/- mouse 

tissue required increased PKC activation, suggesting a mechanism analogous to that which we 

previously showed for Dgkh. In addition to negatively regulating PKC, both Dgkh and Dgki were 

found to positively regulate ERK signaling [20, 23, 48].  

Disruptions in PKC and ERK activity have frequently been implicated in mood disorders. 

Increased PKC activity has been shown in mouse models of mania and anxiety [166, 167] and 

in bipolar manic patients [168], and PKC-null (Prkcg-/- and Prkce-/-) mice demonstrate reduced 

anxiety [169, 170]. ERK dysfunction leads to poor maternal care and mania- and anxiety-like 

behavior in rodents [171-173]. Mood stabilizers that manage mania in human patients can 

decrease PKC activity [168] or increase ERK signaling [174] in neurons. Thus, loss of Dgkh and 

Dgki has the potential to affect behavior by enhancing PKC activity and/or attenuating ERK 

activity.  

PKC and ERK have many signaling targets that could contribute to impaired behavior in 

dKO mice. PKC modulates the function of GABAA and 5-HT2A receptors [175, 176], both of 

which regulate maternal behavior [177, 178] and anxiety [179, 180]. Altered PKC or ERK 

function resulting from Dgkh and Dgki loss may induce behavioral changes by modulating 

phosphorylation of GSK3β [181, 182], an enzyme implicated in the pathology of multiple mood 

disorders [183]. Indeed, other researchers found that phosphorylation (i.e. inactivation) of 

GSK3β was decreased in brains of their Dgkh-/- male mice (a different mutant than the Dgkh-/- 

mice used in this study), which showed manic behaviors [39].  

However, it is difficult to link increased PKC activity or decreased ERK activity to the 

hyperactivity phenotype of the Dgki-/- and dKO male mice. ADHD treatments (amphetamines) 

enhance dopamine signaling by inhibiting the dopamine transporter (DAT), enabling dopamine 

to remain in the synapse [184]. Similarly, PKC activation leads to DAT internalization, thus 

inhibiting its function [185]. Whereas mice lacking ERK1 showed increased locomotion in the 
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open field test, their hyperactivity did not diminish with amphetamine treatment, suggesting they 

are not a model of ADHD [174]. Further investigations are needed to determine which signaling 

pathways are disrupted in the brains of dKO mice. 

 

Brain regions that may mediate aberrant behaviors in dKO mice 

Based on gene expression data from the Allen Brain Atlas [186], Dgkh and Dgki have 

highly overlapping regional expression patterns in the brain [25]. The high degree of overlap of 

Dgkh and Dgki expression presents the potential for compensation, which could account for why 

phenotypes were detected only when both genes were deleted. Dgkh and Dgki expression are 

enriched in the cerebral cortex, hippocampus, and striatum [25, 187]. Human and animal 

studies connect the pathology of both mania and anxiety to cortical and hippocampal function 

[141, 188-192], whereas striatal function has been implicated in the regulation of nurturing 

behaviors in rodents [154, 193, 194].  

Disruptions in functions performed by the medial prefrontal cortex (mPFC), including 

decision-making and mood regulation, are primary symptoms of anxiety [188]. The connection 

between anxiety and mPFC dysfunction is bidirectional: mPFC lesions in rats induce anxiety-like 

behaviors [189], and anxiogenic treatments impair mPFC activity [190]. Ventral hippocampal 

function has a role in anxiety, as well [191]; however, Dgkh and Dgki are highly expressed in the 

dorsal hippocampus. In a study of bipolar disorder patients, decreases in frontal cortical volume 

and thickness were seen only in bipolar patients who experienced manic episodes over the six-

year observation period [192]. Many mouse models of mania show shifts from excitatory to 

inhibitory synaptic function in the hippocampus or the cortex [141]. Mood stabilizers that 

effectively treat manic symptoms target hippocampal, cortical, and/or striatal excitability [141]. 

Male children with ADHD showed hypoactivation of the PFC segments during tests of motor 

response inhibition and cognitive flexibility, tasks which are challenging for ADHD patients [195]. 
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Others found altered activation in both the PFC and the striatum during attentional tasks, and in 

most cases ADHD medications were able to reverse these alterations [196]. 

The preoptic area of the hypothalamus is a critical nucleus for expression of maternal 

behavior in rodents. In particular, preoptic area projections to the substantia nigra and the 

ventral tegmental area mediate various nurturing phenotypes [154]. It is likely that the substantia 

nigra and ventral tegmental area control maternal behavior through their inputs into the striatum, 

as dopaminergic activity in both the dorsal and ventral striatum impacts nurturing [193, 194].  

 

Connections between psychopathological phenotypes and maternal care 

Given the known links between different brain regions and the phenotypes we have 

shown here, it is possible that Dgkh and Dgki loss could affect mood by altering hippocampal 

and cortical activity, while their effects on maternal behavior may arise in the striatum. 

Alternatively, other mouse models of deficient maternal behavior have likewise shown comorbid 

psychological phenotypes, suggesting potential overlap in the pathology behind these 

behaviors. Mice lacking the δ subunit of GABAA receptors showed poor maternal care, anxiety, 

and depression [177]. Mice with loss of ephrin-A5 or central nervous system-specific ERK2 

deletion had decreased nurturing behaviors and anxiety [171, 197], and mice bred for low 

anxiety were less maternal than their high-anxiety counterparts [198]. While these studies show 

variability in the phenotypes in each mouse model, they demonstrate that aberrant mood-related 

behaviors commonly coincide with disrupted maternal behavior in mice.  

Extensive research has demonstrated that receiving poor maternal care as a young 

rodent increases the likelihood of developing anxiety-like behaviors as an adult [148-151, 199]. 

However, the influence of a rodent’s anxiety on its ability to provide maternal care is 

underappreciated. One possible explanation of the poor survival of dKO-raised litters is that 

dKO females have exaggerated responses to stressful situations, including the presence of new 

pups in the cage, which cause them to neglect their offspring. From our observations of milk 
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spots, we found that pups raised by dKO mothers were receiving less milk (Figure 4.7E). It is 

unclear whether this is due to the moms failing to assist their pups in nursing or due to dKO 

females leaving the nest in response to stressful disturbances. During the pup retrieval assay, 

as well as while working with dKO females in the animal housing facility, we noticed that dKO 

females would dart around the cage, rear frequently, and not settle down like WT females, 

especially after opening or disturbing the cage. And, during the pup retrieval assay, the dKO 

females that failed to return all three pups to the nest (Figure 4.7D) displayed this manic-like 

exploratory behavior for the entire testing period. We speculate that this manic-like behavior 

might make it difficult for newborn pups to nurse, and hence could contribute to poor pup 

survival.  

Parturition can induce depression and anxiety in mice and humans [177, 200, 201] and 

frequently exacerbates symptoms in patients with prepartum mood disorders [202]. Indeed, dKO 

mice appear to be predisposed to these deficits, as signs of mania and anxiety were observed 

in virgin dKO females. The disturbances in both mood phenotypes and in maternal behaviors, 

especially in the early postpartum period, suggest that Dgki and Dgkh may be interesting targets 

to investigate for their role in parturition-linked affective disorders.  

 

METHODS 

Mice 

See: “Mice” under METHODS from Chapter 2. 

 

Maternal behavior 

For maternal behavior experiments, timed matings were set up in the evening within 2 

hours of the start of the dark cycle, using one male mouse and one or two female mice per 

breeding cage. The male mouse was separated from the female mice after 48 or 72 hours. 

Female mice were single-housed at least one week prior to giving birth. Pup retrieval 
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experiments and observations of pup survival, weight, and milk spots were conducted in the 

evening within 3 hours of the start of the dark cycle. When handling pre-weanling mice, care 

was taken to rub gloves with used bedding from the home cage before touching the animals, 

particularly when removing pups for weighing or testing in the retrieval assay.  

 

Fostering 

Within an hour after the birth of the last pup from dKO female litters, the dKO dam was 

removed and replaced with a foster WT dam. Foster WT dams had given birth to a litter no more 

than seven days prior to being used for fostering. The 8 litters came from 7 different dKO 

mothers and were fostered with 8 different foster dams. 

 

Pup retrieval 

To examine pup retrieval [171, 203, 204], in a cage with a dam and her litter, the pups 

were removed from the home cage and kept warm on a SpaceGel heating pad (Braintree 

Scientific, Braintree, Massachusetts). With the nest in one corner of the home cage, one pup 

was placed in each of the three remaining corners. The mother was then placed in the cage at 

the site of the nest, and her latency to retrieve each pup and place them in the nest was timed. 

This assay was only performed when litters had at least three live pups. Mothers were tested on 

the day of or day after birth of the litter. After 15 min, all pups were returned to the nest by the 

experimenter. At P0, 22 WT mothers were assay with 25 litters, and 12 dKO mothers were 

assayed with 14 litters. At P1, 18 WT mothers were assay with 21 litters, and 8 dKO mothers 

were assayed with 9 litters. No mother was tested with more than 2 of her litters. 

 

Psychopathological behavior 

For the elevated plus maze, open field, forced swim test, and acoustic startle and 

prepulse inhibition experiments (tested in that order), we tested 2- to 4-month-old virgin female 
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or male mice during the light phase of their light:dark cycle. Mice were given at least 48 hours to 

recover after the elevated plus maze and open field assays, and at least one week to recover 

after the forced swim test. Because of the large number of animals required, the three genetic 

models (Dgkh-/-, Dgki-/-, and dKO) were tested in separate cohorts, each with an age-matched 

wild type (WT) cohort.  

For the female assays, 15 WT mice were tested with 16 Dgki-/- mice; 14 WT mice were 

tested with 14 Dgkh-/- mice; and 19 WT mice were tested with 19 dKO mice (only 14 mice of 

each genotype from the dKO cohort were tested in the acoustic startle and prepulse inhibition 

experiments). For the male assays, 13 WT mice were tested with 13 Dgki-/- mice; 13 WT mice 

were tested with 12 Dgkh-/- mice; and 12 WT mice were tested with 13 dKO mice (only 5 WT 

and 3 dKO mice from the dKO cohort were tested in the acoustic startle and prepulse inhibition 

experiments). For each of these assays, outliers were identified using the interquartile range 

(IQR = Q3 – Q1). Any data points that were 1.5×IQR below Q1 or 1.5×IQR above Q3 were 

excluded. 

 

Forced swim test 

To model depression or mania [157, 158], activity was monitored in the forced swim test. 

Mice were placed into a 28 cm tall cylinder of 20 cm diameter filled to approximately 15 cm with 

24-26°C water for 6 min. Activity was video recorded. The time spent immobile during the final 4 

min in the chamber was tracked and scored using EthoVision XT 7.0 software (Noldus 

Information Technology, Leesburg, Virginia). Floating without actively swimming was counted as 

immobility. Animals were monitored during the experiment period to ensure their head stayed 

above the water. 
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Elevated plus maze 

To model anxiety-like behavior [159], mice were placed into the 7.5 cm2 center of a 52 

cm high elevated plus maze, the two closed and two open arms of which are each 30 cm long 

and 7.5 cm wide. The height of the walls of the closed arms was 20 cm, and the lip surrounding 

the open arms was 1.5 cm high. Activity of the freely-exploring mouse was monitored by a 

human observer for 5 min. Time spent in the closed or open arms or the center of the maze was 

measured. Entry into the center or any arm was scored when three of the animal’s paws 

crossed the threshold between each area. 

 

Open field 

To test for exploratory behavior and activity levels [160], mice were monitored in a 40 

cm2 open field of 28 cm depth, enclosed in a box with a light above the open field, for 60 min. 

Activity was analyzed using the VersaMax animal activity monitoring system (AccuScan 

Instruments, Columbus, Ohio) to determine total distance moved in the entire arena and total 

distance moved in the 25 cm x 25 cm center region, binned in 5-min segments.  

 

Acoustic startle response and prepulse inhibition 

To assess sensorimotor gating and startle reflex in these mice [164, 205],_ENREF_41 

mice were placed into an acrylic tube (7 cm long x 3.75 cm inner diameter) that was paired with 

a piezoelectric transducer that measured flinch responses. The tube and transducer were 

housed in a 29 cm3 sound-attenuating chamber with a light, fan, and speaker. Responses to a 

40-ms, 120-dB acoustic stimulus were measured, alone or with a 20-ms prepulse tone played 

100 ms preceding the 120-dB stimulus. Following a 5-min acclimation to the startle chamber, 

testing sessions were 10 min and consisted of 42 randomized trials, 6 trials each of the 

following 7 conditions: 1) no acoustic stimulus, 2) 120-dB startle tone alone, or 3) prepulse tone 

of 74, 78, 82, 86, or 90 dB followed by the 120-dB startle tone. The startle response was 
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measured and analyzed with SR-LAB startle response system apparatus and software (San 

Diego Instruments, San Diego, California). The degree to which the prepulse tone inhibited the 

startle response to the 120-dB tone was calculated as: 100 – [(response to startle stimulus post-

prepulse)/(response to startle stimulus alone) × 100]. Mouse weights were measured at the end 

of the session; however, neither Dgkh-/-, Dgki-/-, nor dKO mice differed in weight from their 

simultaneously-tested WT cohort, so we did not adjust the startle responses for weight in our 

analyses. 

 

Statistics 

After processing by the software programs mentioned above, data were analyzed with 

GraphPad Prism version 7.04. Survival curves of WT and dKO pups were compared with a log-

rank (Mantel-Cox) test. The proportion of mothers retrieving all three pups was compared 

between genotypes with a binomial test. Total distance and center distance traveled in the open 

field were compared between WT and other genotypes using two-way repeated measures 

analysis of variance (ANOVA), with Sidak's multiple comparisons tests used for pairwise 

comparisons within 5-min time bins. All other assays were tested for significance using two-

tailed t-tests with Welch’s correction to compare WT and Dgkh-/-, Dgki-/-, or dKO, or to compare 

dKO and dKO Fostered, in the case of litter survival.  
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FIGURES 

 
 
Figure 4.1. dKO mice show decreased immobility in the forced swim test (FST). In the 
FST, female (A) or male (B) mice were placed in a large cylinder of water for six minutes. Time 
spent immobile (i.e. not swimming) was measured for the final four minutes. Data represent 
mean ± SEM. Number of mice indicated on graphs. p< **0.01, ***0.001, ****0.0001 vs. WT. 
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Figure 4.2. dKO mice spend more time in the closed arms of the elevated plus maze 
(EPM). Time that female (A) or male (B) mice spent in the closed or open arms of an EPM was 
measured in a five-minute period. Data represent mean ± SEM. Number of mice indicated on 
graphs. p< **0.01, ***0.001 vs. WT. 
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Figure 4.3. Locomotion and center behavior in an open field were unaffected by Dgkh 
and/or Dgki loss in female mice. In the 60-minute test, the total distance covered (A-C), 
vertical activity (D-F), distance covered in the center (G-I), and time spent in the center (L-J) of 
an open field were tracked for WT and Dgkh-/- (A,D,G,L), Dgki-/- (B,E,H,K), or dKO (C,F,I,J) 
female mice. Data represent mean ± SEM. Number of mice indicated in graphs.  
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Figure 4.4. Locomotion and center behavior in an open field were enhanced by Dgki 
deletion, with or with Dgkh deletion, in male mice. In the 60-minute test, the total distance 
covered (A-C), vertical activity (D-F), distance covered in the center (G-I), and time spent in the 
center (L-J) of an open field were tracked for WT and Dgkh-/- (A,D,G,L), Dgki-/- (B,E,H,K), or 
dKO (C,F,I,J) male mice. Data represent mean ± SEM. Number of mice indicated in graphs. p< 
*0.05, **0.01, ***0.001, ****0.0001 vs. WT at individual time point.  
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Figure 4.5. Deletion of Dgkh and/or Dgki does not alter responses or habituation to 
acoustic startle tone in mice. A-B) Acoustic startle response (ASR) to a 120-decibel (dB) tone 
in female (A) and male (B) mice. C-D) The prepulse inhibition (PPI) representing the % 
decrease in ASR shown in (A) and (B) when the 120-dB tone was preceded by a non-startling 
tone of 74, 78, 82, 86, or 90 dB in female (C) and male (D) mice. Data represent mean ± SEM. 
Same mice were used in (A) and (C) and in (B) and (D); number of mice indicated on graphs in 
(A) and (B).  
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Figure 4.6. Poor survival of offspring raised by dKO females. A) Survival rate of pups born from dKO dams was significantly 
reduced after birth relative to those born from WT dams. B) The average proportion of each litter that survived to weaning was 
dependent on genotype of the mother. dKO fostered = litters born from dKO dams fostered with recently postpartum WT dams. C) 
Litter size on the day of birth based on the genotype of the mother. D-G) Litter survival rate of dKO-born litters based on the 
genotype of the pup (D), the number of previous litters the dam had given birth to (E), the age of the dam (F), or the size of the litter 
at birth (G). Number of pups indicated on graph in (A). Number of litters indicated on graphs in (B-G). Bars in (B-E) represent mean ± 
SEM. p < **0.01, ****0.0001, comparison indicated with bars. 
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Figure 4.7. dKO females show deficits in nurturing. A-B) Representative nests by WT (A) and dKO (B) dams. Each nest contains 
a dam and her litter. C) Time taken to retrieve the first pup and all three pups in the pup retrieval assay, based on the genotype of the 
mother. D) Percentage of mothers, tested in (C), that retrieved all three pups to the nest. E) Percentage of a litter with a milk spot 
present, shown by genotype of the mother. F) Weight of pups raised by WT or dKO mothers. Number of litters indicated on graphs in 
(D-E). Number of pups indicated on graph in (F). Bars in (C), (E), and (F) represent mean ± SEM. p < *0.05, **0.01, ***0.001, 
****0.0001, comparison indicated with bars. 
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 A B 
 Females Males 

Phenotype Dgkh-/- Dgki-/- dKO Dgkh-/- Dgki-/- dKO 
FST: Immobility = = ↓**** ↑** = ↓**** 

EPM: Closed arm time = = ↑*** = = ↑** 
EPM: Open arm time = = ↓** = = = 

Open field: Total distance = = = = ↑*** ↑*** 
Open field: Center distance = = = ↑**** ↑**** ↑** 

ASR = = = = = = 
PPI = = = = = = 

Offspring survival = ↓** ↓****    
 
Table 4.1. Summary of psychopathological behavior tests in Dgkh-/-, Dgki-/-, and dKO 
female and male mice. Response of female (A) or male (B) Dgkh-/-, Dgki-/-, and dKO mice in 
each assay relative to WT mice of the respective sex. Arrows indicate the direction of the 
change from WT. Asterisks indicate the p-value of the difference from WT. “=” symbolizes no 
difference from WT. For the open field, the 5-min period in which the difference from WT was 
most significant over the 60-min period is represented. This may not represent the behavior 
over the entire 60-min period. p < **0.01, ***0.001, ****0.0001 vs WT. 
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CHAPTER 5: CONCLUSIONS 
 
Important findings 

Building on our previous findings showing that overexpression of Dgkh enhances Gαq-

GPCR signaling, we found that overexpression of Dgki has the same effect on Gαq-GPCR-

stimulated calcium activity. Additionally, we discovered that overexpression of Dgkh or Dgki 

enhances phosphorylation of both DAG and MAG substrates, revealing a previously-unknown 

function of DGKs in lipid metabolism. We developed knockout mice lacking Dgki and/or Dgkh to 

study these kinases in vivo. Whereas there was no increase in expression levels of either DGK 

isoform in the others absence, Dgki and Dgkh appeared to compensate for each other 

functionally in some cases.  

While others have identified the expression of Dgk isoforms in rodent peripheral sensory 

neurons [90], this study was the first to examine the role of any Dgk isoform in itch or pain 

behavior. Here, we have demonstrated that Dgki negatively regulates behavioral responses to 

histamine in male and female mice, as loss of Dgki significantly enhances histamine-induced 

scratching. Conversely, Dgkh acts in the opposite direction, as loss of Dgkh reduces histamine-

induced scratching in males. Dgkh deletion in reduced both DAG and MAG phosphorylation in 

DRG tissue. dKO mice lacking both Dgki and Dgkh phenocopied the Dgki-/- animals’ in vivo 

histamine sensitivity and the Dgkh-/- animals’ DRG kinase activity. Further experiments are 

needed to determine the mechanisms by which Dgki and Dgkh may function to regulate 

responses to histamine.  

In exploring the role of Dgki and Dgkh in neurological behaviors, we found that dKO 

mothers showed poor nurturing behavior, evidenced by fewer milk spots, reduced weight, and 

impaired survival of dKO-raised litters. Additionally, we observed that dKO females—but not 
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Dgkh-/- or Dgki-/- females—showed mania- and anxiety-like behaviors, without disrupting 

baseline activity, exploration, startle reflexes, or sensorimotor gating. dKO males showed 

hyperactivity and hyperexploratory behavior, with some of these phenotypes presenting in the 

Dgki-/- and Dgkh-/- male mice, as well. Our research shows that Dgkh and Dgki have functional 

compensation in each other’s absence, perhaps due to the high degree of overlapping 

expression. These results should be investigated further to understand the mechanism of by 

which loss of these genes induces deficits in maternal care and psychopathological behavior.  

 

Connecting molecular, sensory, and psychopathological phenotypes 

Our research on the molecular functions of Dgki and Dgkh (Chapter 2) informed the 

design some of our in vivo experiments. For example, having found that overexpressed Dgki 

and Dgkh modulated Gαq-GPCR activity, when studying sensory signaling in the Dgk mutant 

mice (Chapter 3) we included stimuli that activate Gαq-GPCR signaling (e.g. histamine) in our 

analyses. Our molecular findings also helped us understand some of the aberrant phenotypes 

we observed in our Dgk mutant mice. For example, when we observed psychopathological 

behavior in our dKO mice (Chapter 4), we hypothesized that PKC or ERK signaling may be 

disrupted in dKO mouse brains, as Dgki and Dgkh were shown to control these signaling 

pathways in vitro. 

In addition to coupling the molecular studies in Chapter 2 with the subsequent behavioral 

studies, we can also compare the data on cellular functions analyzed by overexpressing Dgki or 

Dgkh in HEK293 cells (Chapter 2) versus deleting Dgki or Dgkh in DRGs (Chapter 3). In 

Chapter 2, we showed that when overexpressed in HEK293 cells, Dgki phosphorylated DAG 

and MAG substrates more than Dgkh (Figure 2.2B-C). However, when analyzing Dgki or Dgkh 

in mouse DRG in Chapter 3, we found that Dgkh loss had a much larger impact on acylglycerol 

phosphorylation (Figure 3.17). Further, our lab had previously shown that Dgkh kinase activity is 

required for overexpressed Dgkh to enhance Gαq-GPCR signaling [45]. However, when Dgkh 
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was deleted in DRGs, we found that kinase activity in DRGs was reduced, but Gαq-GPCR 

signaling was not affected. These experiments underscore the importance of analyzing the 

molecular behavior of proteins in the tissues in which they are endogenously expressed.  

Whereas the molecular experiments done in HEK293 cells did not fully translate to 

mouse neurons, it is more likely that Dgk function is comparable between mouse neuron 

subtypes (i.e. between DRG and cortex). Understanding the molecular, cellular, and/or 

physiological underpinnings of the sensory phenotypes would be helpful in developing 

hypotheses about the mechanisms involved in psychopathological behavior of Dgk mutant mice, 

and vice versa. 

 

Future directions 

Molecular experiments 

Previously, our lab generated a series of truncated Dgkh constructs, yielding DGKH 

mutants with different functional domains truncated from the N- and/or C-termini. 

Overexpressing these truncated constructs revealed how each protein domain controls kinase 

activity and Gαq-GPCR signaling activity [45]. For example, DAG phosphorylation and Gαq-

GPCR-stimulated calcium activity were enhanced by the loss of the PH domain but were 

attenuated by the loss of both the PH and C1 domains. It would be useful to do a similar 

analysis of the protein domains of DGKI, as the functional domains greatly differ from DGKH [4]. 

Understanding the roles of the functional domains of both proteins may explain why disrupting 

Dgki or Dgkh genes has different effects on mammalian biology. A long-term goal of this 

research is to develop treatments for itch and the psychopathological behaviors controlled by 

Dgki and Dgkh. Identifying the protein segments to manipulate to increase or decrease DGKH 

or DGKI activity would be useful for creating future pharmacological treatments. 
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Sensory experiments 

Our investigation into Dgki and Dgkh began because of their enriched expression in 

mouse DRG (Table 3.1), an important sensory organ. Through our studies, we discovered 

critical roles for Dgki and Dgkh in regulating histamine behavioral responses in mice. In our 

corresponding studies of DRG function in vitro, we were surprised to see that Dgki and Dgkh 

loss had minor influences on kinase activity and no effect on either GPCR- or TRP-stimulated 

calcium activity or RTK-stimulated ERK phosphorylation. Thus far, our data reject the 

hypothesis that the in vivo histamine phenotypes seen in Dgki-/- and Dgkh-/- mice are mediated 

by the DRG. However, there are other readouts of DRG function that could be investigated in 

future experiments. For example, electrophysiological excitability of rodent DRG neurons is 

enhanced by injury, leading to increased firing in response to a histamine-containing 

inflammatory cocktail [206]. Dgki deletion may likewise enhanced mouse DRG neuron 

excitability, contributing to the immediately-elevated scratching response to histamine injection 

in vivo.  

As mentioned in the discussion of Chapter 3, there is the potential for mast cells to 

cause the altered histamine sensitivity in the Dgki-/- mice. The involvement of mast cells in Dgki-

dependent histamine itch behaviors could be tested by monitoring histamine-induced scratching 

in Dgki+/+ and Dgki-/- mast-cell-deficient mice. Also, the functions of primary mast cells from WT 

and Dgki-/- mice could be analyzed in vitro by examining mast cell infiltration, degranulation, 

and/or calcium mobilization in response to histamine exposure. 

Among the neuronal tissues in which Dgkh and Dgki are expressed, the DRG has the 

highest expression levels. However, among the Dgk genes that are expressed in the DRG, 

Dgkz is more highly expressed than either Dgkh or Dgki in both mouse and human [87]. Dgkd 

and Dgkq are also found at higher levels than Dgki in the DRG. In our kinase activity assay, we 

found that loss of both Dgkh and Dgki only reduced DAG and MAG phosphorylation in the DRG 
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by about 50% (Figure 3.17). Therefore, it would be worth investigating the role that other Dgk 

isoforms may be playing in DRG neuron function and sensory behaviors. 

 

Psychopathological experiments 

Mania is a complex condition, characterized by disruptions in mood, energy, or sleep 

and engagement in impulsive behaviors [129]. We found that dKO females showed one sign of 

mania: decreased immobility in the FST, representing increased goal-directed activity. However, 

we cannot suggest that this mouse is a true model of mania without testing additional facets of 

this condition. To further explore mania-like behaviors in dKO mice, we could assess reward-

seeking behavior, sleep patterns, aggression, and hypersexuality; these characteristics are 

disrupted in human mania patients, and these behaviors can be assessed in mice [207-209].  

Because deficient maternal care of pups is known to impair mood-related behaviors in 

adulthood [148-151, 199], the dKO mice used in the psychopathological behavior studies were 

raised by WT foster moms. Having characterized the neurological behaviors caused by deletion 

of Dgki and Dgkh, it would now be interesting to determine how poor maternal care in the 

neonatal period would affect dKO pups compared to WT pups. Likewise, now that we have 

determined how deletion of Dgki and Dgkh manifests in behavioral abnormalities in virgin 

females, it would be interesting to examine the postpartum phenotypes of dKO females. 

Parturition can exacerbate mood-related disorders in humans [202], and may do so in dKO 

female mice, as well. This would also have implications for our understanding of the pathology 

behind their maternal behavior deficits. Differences in pre- and post-partum psychopathological 

behaviors in dKO mice would suggest that parturition alters behavior in dKO females, which 

may explain why their nurturing behaviors are impaired in the first few days after the birth of a 

new litter. In Chapter 4, I discussed the potential for mood-related phenotypes to cause the 

deficient nurturing phenotype in the dKO females, as well as the potential for these phenotypes 

to arise by independent mechanisms. This could be tested in the mice by treating pregnant dKO 
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dams with a pregnancy-safe dose of a mood stabilizer (e.g. lithium) and observing whether this 

improves their ability to care for their young. 

Further studies are also needed to discover the signaling mechanisms by which Dgki 

and Dgkh loss lead to anxious and/or hyperactive behavior. Both Dgkh-/- and Dgkb-/- male mice 

developed by other researchers showed signs of mania and/or hyperactivity that were reversed 

with lithium treatment [29, 39]. Phosphorylation of GSK3β was reduced in cortices of both 

mouse models. Because our Dgki-/-, Dgkh-/-, and dKO mice also showed altered mood-related 

phenotypes following Dgk deletion, it is possible that GSK3β phosphorylation may also be 

reduced in the brains of our mouse models.  

 

Lingering questions 

In the discussion of each chapter, I have suggested potential mechanisms that could 

explain the phenotypes we observed from loss of Dgki and/or Dgkh in mice. In this chapter, I 

have added additional hypotheses that connect the findings of multiple chapters and have 

proposed experiments to test those hypotheses. Developing a more detailed understanding of 

how Dgki and Dgkh regulate mammalian biology may help to answer some of the following 

remaining questions. 

 

Why do dKO mice resemble the Dgki-/- mice in some behavioral assays rather than the 

Dgkh-/- mice?  

In many tests performed with our three mouse models, using either the animals or their 

tissues, only one of the single Dgk-knockout mice differed from WT. For these cases, loss of 

Dgkh or Dgki was sufficient to affect behavior, and thus the mice lacking both Dgki and Dgkh 

phenocopied the affected single knockout mouse. However, in tests of in vivo histamine 

sensitivity, Dgki-/- and Dgkh-/- both differed from WT in opposite directions, but the dKO mice 

resembled the Dgki-/- mice. Histamine-induced scratching was increased in Dgki-/- mice and 
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decreased in Dgkh-/- mice, and was increased in dKO mice. Comparing the many phenotypes 

that differ between the three mouse models helped us speculate how the individual Dgk genes 

may regulate somatosensation (discussed in Chapter 3 above). However, why the Dgki-/- 

phenotype masks the Dgkh-/- phenotype in the dKO mice remains to be determined. 

 

Do the sensory and psychopathological phenotypes have a common pathology? 

The expression of Dgki and Dgkh in a wide range of neuronal tissues leads to the 

knockout mice having many neurological phenotypes, including disruptions in histamine-induced 

itch, mood regulation, and maternal behaviors. The connections between mood phenotypes and 

maternal behaviors were discussed in Chapter 4 above, but it would also be interesting to 

explore the potential connections between these phenotypes and itch. For example, does 

histamine hypersensitivity in dKO females contribute to reduced nursing behaviors? Certainly, 

we need to keep in mind all the phenotypes observed in the Dgk mutant mice in determining 

how to modulate one particular phenotype. For example, treating histamine-induced itch by 

enhancing Dgki function may influence psychopathological behaviors in males. In addition to 

being an interesting thought experiment, the potential overlaps in the development of itch- and 

mood-related symptoms may have clinical relevance. 

 

Why are there sex differences in the effects of Dgk deletion in mice? 

In many tests of sensory and psychopathological behavior, males were more sensitive to 

Dgki or Dgkh loss than females. Dgkh loss only affected in vivo histamine response in the males 

(Figure 3.4). Dgkh or Dgki loss only affected exploratory behavior and/or activity levels in the 

open field test in males (Figure 4.4). DGKI and DGKH protein levels are not higher in neuronal 

tissues of WT males versus females (see westerns in Figure 2.3 and Figure 2.4E-G, 

quantification not shown) and, thus, would not explain why Dgkh/Dgki disruption have a greater 
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impact on males. Once we identify the mechanism by which Dgki or Dgkh loss disrupts mouse 

behavior, we will be able to probe differences in those systems between males and females.  

 

Why does our Dgkh-/- mouse behave differently from the Dgkh-/- mouse created by other 

researchers? 

To analyze the role of Dgkh in mammalian biology, we developed a Dgkh-/- mouse using 

CRISPR-Cas9 technology to disrupt the Dgkh gene at exon 9 (Figure 2.4). Researchers in the 

lab of Fumio Sakane recently developed a Dgkh-/- mouse using traditional homologous 

recombination methods targeting exon 6 [39]. In the FST, used as an assay of depression- and 

mania-like behavior, we found that our Dgkh-/- male mice showed increased immobility relative 

to WT male mice, suggesting a slight depression-like phenotype (Figure 4.1). The Dgkh-/- 

mutant mouse generated by the Sakane lab was tested on the tail suspension assay, which is 

analogous to the FST. In this assay, mice are suspended upside-down by their tails and 

immobility time is measured. The Sakane lab’s Dgkh-/- males showed decreased immobility 

relative to WT in this assay [39]. Additionally, the Sakane lab found that their Dgkh-knockout 

males spent more time in the open arms of the EPM than WT males, whereas we found that our 

Dgkh-/- males did not differ from WT males in the EPM (Figure 4.2). However, we both 

demonstrated that our respective Dgkh mutant males showed increased activity in the center of 

the open field (Figure 4.4G). Mouse behavior varies greatly depending on factors including the 

testing environment, the experimenter, the time of day, and the housing conditions [125, 210-

214]. These two Dgkh mutant models were tested in different environments, and these 

variations in testing conditions likely evoked variable phenotypes in the mice.  

 

Broad implications 

As discussed above, our findings have implications for the treatment of histamine-

induced itch, anxiety, mania, hyperactivity, and parturition-associated mood disorders. Dgki and 
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Dgkh have also be implicated in biological pathways not covered by our study. Dgki has a 

potential link to alcoholism, as Dgki RNA expression is 25% higher in the brains of alcohol-

accepting rats relative to alcohol-avoiding rats [187]. Inhibition of DGKI decreased epithelial 

sodium channel (ENaC) activity and rescued aberrant functions of lung cells from human cystic 

fibrosis patients [215]. DGKI methylation was increased in human hepatocellular carcinoma 

samples [216] and was associated with decreased survival and poor treatment response in 

glioblastoma patients [217, 218]. Additionally, DGKH was detected in human lung cancer cell 

lines and lung tissue in a mouse with EGFR-mutant lung cancer [20]. 

We showed that Dgki and Dgkh can modulate Gαq-GPCR signaling and lipid 

phosphorylation in the context of overexpression in HEK293 cells, but they have different effects 

on molecular activity in mouse neurons. Therefore, researchers studying Dgki and Dgkh in other 

contexts should focus their analyses of the molecular functions of these kinases on their 

tissue/cell type of interest. However, while our HEK293 findings did not translate to mouse 

DRG, the effects we found of Dgki and Dgkh on signaling in HEK293 cells may still translate 

well to other cells types.  

Overall, our research reveals the potential of Dgki and Dgkh to mediate histamine-

dependent itch and mood-related behaviors. Further research will help us understand the 

molecular functions of Dgki and Dgkh by defining how they affect receptor signaling and 

modulate phosphorylation of DAG and/or MAG in order to alter behavior. Characterizing these 

functions may help identify future therapies for patients with chronic allergen-mediated itch and 

patients with mental health disorders, including those whose symptoms present during the 

postpartum period. 
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APPENDIX: ANALYSIS OF LIPIDS IN DKO NEURONAL TISSUE VIA MASS 
SPECTROMETRY 

 

INTRODUCTION 

As presented in the introduction to Chapter 3, DAG and MAG are important signaling 

lipids that can regulate DRG neuron activity. DAG and 2-AG are able to regulated pathways that 

inhibit or enhance itch and pain signaling (Figure 3.1). DAG activates PKC [5], which 

phosphorylates pain and itch receptors [45, 80], desensitizing Gαq-GPCRs [81] and sensitizing 

TRPV1 [80]. DAG and 2-AG are partial agonists for TRPV1 [7, 83], and 2-AG is a full agonist for 

CB1 [82]. 

Decreasing the metabolism of DAG by inhibiting a DAG lipase attenuates pain signaling 

[84]. Increasing 2-AG levels by inhibiting its metabolism into either arachidonic acid (AA; by 

blocking monoacylglycerol lipase) [219] and prostaglandins (PG; by blocking cyclooxygenase-2) 

[220] can provide analgesia. Both AA and PG are pronociceptive agents [220, 221]. It is unclear 

whether elevating endogenous 2-AG alone is sufficient to relieve pain or if it is also necessary to 

block production of these proalgesic metabolites. Overall, previous research suggests that 

changing the levels of lipids in this network can control somatosensory responses. Disruption of 

DAG lipase and MAG lipase functions also impact lipid metabolism in the brain [86, 222], 

although the behavioral implications are not yet fully appreciated. DAG and MAG levels can also 

be altered through phosphorylation, which converts them into PA and LPA, both of which have 

been implicated in the regulation of sensory signaling [8, 106, 223, 224].  

Not only can Dgki and Dgkh regulate the activity of various signaling molecules, but they 

may also alter the balance of signaling lipids in the DRG and the brain. In the DRG kinase 

activity assay, deletion of Dgkh reduced phosphorylation of all DAG and MAG substrates tested 

(Figure 3.17). Therefore, metabolism of acylglycerols is reduced in the absence of Dgkh, and 

levels of these lipids may be altered in neuronal tissues of dKO mice. We aimed to delineate 

how this lipid balance was regulated in neurons lacking Dgki and Dgkh expression, with the goal 
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of understanding the pathology underlying the somatosensory and psychopathological 

phenotypes observed in dKO mice.  

 

RESULTS 

We collaborated with the NIH West Coast Metabolomics Center to identify and quantify 

the lipid components in DRG and cortical tissue from dKO mice using mass spectrometry. Our 

goal was to use this technology to determine how the levels of various lipids change in neurons 

of the brain and the DRG in the absence of Dgki and Dgkh, including DAG and MAG species, 

PA and LPA, as well as 2-AG and its metabolites. Experts at the NIH West Coast Metabolomics 

Center analyzed DRG and cortex samples from WT and dKO male and female mice via liquid 

chromatography coupled with mass spectrometry [225]. Details of this analysis are described in 

the Methods below. For each tissue (cortex and DRG) and each ionization mode (positive and 

negative), the fold change (dKO/WT) for each lipid was calculated, as was the significance of 

that change. The results are shown in Figure 0.1. Lipids whose identity is unknown are 

formatted with numbers representing “retention time_m/z.”  

 

DISCUSSION 

The lipid profiles in both the DRG and the brain were disrupted by deletion of Dgki and 

Dgkh, with several lipids showing significant up- or down-regulation in dKO tissues relative to 

WT. The data presented here show genotype-specific changes for both sexes combined. Some 

significantly-altered lipids were specific to male or female tissue (data not shown), but most of 

the lipids shown to significantly differ from WT in Figure 0.1 were altered in both sexes. Of the 

identifiable lipids marked as hits, the only pattern that emerges is a disruption in triglyceride 

balance in the DRG (Figure 0.1A); however, triglycerides are both up- and down-regulated in 

dKO DRG tissue. 
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One obvious feature of the lipids marked as “hits” in Figure 0.1 is that the identity of many 

lipids are unknown (labeled as "#.##_###.##" representing "retention time_m/z"). The identity of 

a lipid cannot be confirmed as a “known” without evidence of the matching experimental mass 

spectrum. Even with the availability of mass spectrum databases, a small fraction of known 

chemicals have experimental mass spectra [226], and in silico modeling does not always 

accurately predict mass spectroscopy results [227]. With many of our top hits being unknowns, 

our data cannot yet tell us which lipids are disrupted in dKO neuronal tissue; however, as more 

unknowns become knowns in the future, we will be able to reanalyze these data sets. 

 

METHODS 

DRG and right front cortex tissue was dissected from twenty 2- to 3-month-old mice: five 

each of WT male, dKO male, WT female, and dKO female. Tissues were placed in 

microcentrifuge tubes with no buffer and frozen at -80°C. Within 48 hours, samples were 

shipped to the NIH West Coast Metabolomics Center (Davis, California), where lipids were 

extracted and processed for mass spectrometry. Metabolites were separated with ultra-high-

pressure liquid chromatography. Electrospray ionization was performed in both positive and 

negative mode; both were used, as each method yields variation in the metabolites captured. 

Metabolites were detected with quadrupole time-of-flight mass spectrometry. Spectral profiles, 

retention times, and mass-to-charge ratios (m/z) were compared to databases of known lipids to 

identify lipids in our samples, and peak intensities were quantified. For analysis of the data, 

males and females were combined within each genotype. The dKO/WT fold change was 

calculated for each lipid, and the significance of that change was calculated via Student’s t-test, 

using the MetaBox online platform for analysis of metabolomics data [228].  

  



 

115 
 

FIGURES 

 
 
Figure 0.1. Top hits of mass spectrometry analysis comparing lipid levels in WT and dKO 
mouse neuronal tissue. Volcano plots indicate the magnitude (fold change) and significance 
(p-value) of lipids whose levels differed between WT and dKO DRG (A,B) and cortex (C,D) 
when positive (A,C) or negative (B,D) ionization was used. All lipids with a p-value lower than 
0.01 and a fold change of ± 25% (dotted lines) are shown in red and are labeled. 
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