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ABSTRACT 
 

CHRISTINE ELIZABETH HAJDIN: Insights into RNA structure by melding experiment 
and computation 

(Under the direction of Kevin Weeks) 
 

The ability of RNA to perform diverse cellular functions depends on its capability 

to form complex structures. Therefore, determining RNA structure is critical to 

understanding RNA function. Computational methods allow for quick determination of 

RNA structures, but are often prone to inaccuracies in their predictions.  A newly 

developed technology, known as SHAPE, can be used to probe RNA structure and 

identify nucleotides that are likely to be single stranded and base paired7.  This SHAPE 

data can be inputted into an RNA structure program to refine predictions.  Previous 

studies have shown that the incorporation of SHAPE data can increase the accuracy of 

prediction by over 30% compared to traditional mFold class algorithms26.  In this work, I 

utilize SHAPE technology to refine RNA predictions and solve new challenges. First, I 

create an algorithm, ShapeKnots, which incorporates SHAPE data and the prediction of 

pseudoknots.  Pseudoknots are relatively rare RNA structural motifs that have a tendency 

of occurring in functional regions, but, due to their complexity, are often eliminated from 

structural prediction.  Second, I utilize the ShapeKnots algorithm to identify pseudoknots 

in HIV-1 and test their role in viral replication.  Third, I develop a modified partition 

function calculation to identify the de novo accuracy of secondary structure predictions.  
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This allows end users to not only obtain a predicted structure, but also, to know the 

confidence of that prediction.  Fourth, I utilize SHAPE-directed folding to identify 

potential alternative structures in the ribosome.  Finally, I create a method to identify the 

accuracy of tertiary structure predictions.  This allows for a quantitative measurement of 

accuracy when comparing predicted tertiary structures with previously determined 

conventional structures. 
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1. Chapter 1: Introduction 

1.1 RNA structure and function 

Although ribonucleic acid (RNA) is often dismissed as a passive component of 

translation, RNA plays keys roles in viruses and cells. For example, viral RNAs, like the 

Human immunodeficiency virus type 1 (HIV-1) RNA, form important elements of 

structure essential for viral replication and transcription1. Riboswitch RNAs, like the 

thiamine pyrophosphate (TPP) riboswitch, regulate cellular function2-4 and ribosomal 

RNAs are critical to translation.  For instance the 16S and 23S rRNA found in E. coli 

form the main structural component of the ribosome and coordinate between the mRNA, 

the tRNA and the elongating amino acid chain5, 6.  

The ability of RNA to perform these multiple diverse functions depends on its 

capacity to form distinct structures.  Identifying these distinct RNA structures is critical 

to understanding and characterizing the role of RNA in cells and viruses.  

To date, the most accurate way of determining RNA structure is to use high-

resolution three-dimensional structural probing techniques like X-ray crystallography7-9.  

X-ray crystallography works by irradiating a crystalized RNA with beams of X-rays 

creating a series of diffraction patterns.  These diffraction patterns can be mathematically 

transformed into an electron density map that can be used to model RNA structures.  X-

ray crystallography has been successfully used to determine the structure of many RNAs, 
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like the signal recognition particle (SRP)10, lysine riboswitch11, and even the 16S rRNA 

12, 13. 

Despite the advancements of X-ray crystallography, it is not suitable for every 

RNA.  To accurately identify a tertiary structure, the RNA must be able to form a well-

ordered crystal. Without a well-ordered crystal, the diffraction data becomes ‘fuzzy’ and 

it is hard to model the electron density.   Crystallization, or the act of making an RNA 

crystal, is a difficult and time-consuming process.  Success depends on the specific RNA 

being tested, the concentration of different components in the solution, the pH, and the 

flexibility of the RNA. To aid in the crystallization process, and increase the stability of 

the RNA, high concentrations of proteins, ligands and other stabilizing elements are 

added. These conditions can perturb the RNA structure and shift it away from its lowest 

energy state which is adopted in solution13-15_  

1.2 Using computational algorithms to determine RNA structure  

Due to the disadvantages of traditional structure probing techniques, 

computational algorithms have been developed as a useful alternative for RNA structure 

determination. However, predicting the tertiary structure of an RNA directly from a linear 

sequence is a difficult challenge.  An important first step in this process is to determine 

the secondary structure.  

Minimization of free energy (MFE) is one of the most popular methods for 

secondary structure prediction.  Using previously established Turner energy rules; the 

algorithm folds a linear sequence of the RNA into potential structures16.  For RNA 

secondary structure prediction, free energy parameters for basic structural motifs are 

estimated or extrapolated from chemical melting experiments17. The energy associated 
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with all motifs in a structure is summed to identify the energy of a potential structure.  

The potential structures are then sorted by their energy and the “correct” structure is 

identified to be the lowest energy structure.  These MFE algorithms, classically called the 

mFold class of algorithms18, tend to work well for small RNAs, but suffer from 

inaccuracies due to incomplete energy rules and an inability to correctly rank structures 

with similar energies, (see Chapter 2) so do not work well for long or complicated RNAs. 

Heuristic algorithms work in a similar fashion to MFE algorithms, but attempt to 

redefine energy rules by supplementing additional constraints from known structures19, 20.  

These constraints are implemented into the program using a series of fit equations that are 

optimized against known RNAs. These algorithms tend to work well for small RNAs that 

can be accurately fit with a small number of equations and parameters. However, the 

complexity of large RNAs requires additional equations and constraints. Since the 

number of known large RNA structures is small and biased toward those that are stable 

enough for crystallography, it results in over-optimized fits to a few RNAs.  

Partition function algorithms use statistical characterizations of the equilibrium 

ensemble of RNA to determine secondary structures21, 22. They function by calculating 

the base pairing probability of each base pair combination in an RNA and then use this 

information to rank order potential structures.  Like traditional MFE algorithms, partition 

function algorithms employ classic rules from thermodynamics to assign probabilities. As 

in the MFE algorithm, this tends to work well for small RNAs, but is not accurate for 

larger RNAs.  

Co-variation algorithms provide yet another popular way of determining 

structure23. Co-variation measures the number of instances that base pairing ability is 
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maintained when bases in the pair are mutated. For example, if one serotype of a virus 

has a predicted CG base pair, co-variation would be observed if in another serotype there 

is an AU pair in the same relative position. When a large number of homologous 

sequences are known and there is great variability in the sequences, this method, can 

provide accurate RNA secondary structures.  Many structures have been solved by this 

method such as the 16S rRNA24, 25.  However, if there are not a large number of 

sequences known, few base pairs can be correctly identified. 

1.3 Using SHAPE data to refine structural predictions  

Previously, work demonstrated how incorporating experimental SHAPE data can 

help to improve the accuracy of computational algorithms26.  SHAPE allows for the 

differentiation of single-stranded and base-paired nucleotides27 (Figure 1.1).  The 

technique works by chemically foot-printing an RNA using a SHAPE reagent.  This 

molecule preferentially reacts with single-stranded nucleotides, creating bulky 2’-O-

adducts.  These adducts can be probed using a reverse transcriptase, which dissociates 

when it encounters the 2’-O-adduct.  This creates a series of cDNAs whose lengths 

correspond to the position of modification and whose abundance corresponds to the 

degree of modification.  These cDNAs are resolved using capillary electrophoresis and 

aligned to a sequencing ladder27. After integration, background subtraction from a no-

reagent control reaction, and further data processing the end result is a SHAPE reactivity 

profile (Figure 1.1).   

Since the SHAPE reagents preferentially react at single-stranded positions, the 

SHAPE reactivity can be used to inform base pairing. This can severely limit the  
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Figure 1.1: Overview of SHAPE mechanism 
A) Schematic of SHAPE reagent (1M7) reacting with RNA.  The SHAPE reagent 
preferentially reacts with single stranded nucleotides forming bulky 2’-O-adducts.  These 
adducts can be detected using capillary electrophoresis.    
B) After data processing, the SHAPE data can be viewed as a SHAPE reactivity profile. 
The profile plots the nucleotide sequence along the x-axis and the SHAPE reactivities 
along the y-axis.  The reactivates are colored so that very highly reactive nucleotides (> 
0.85) are colored red, highly reactivity orange (between 0.4 and 0.85), and lowly reactive 
(< 0.4) are colored black.  
C) When the SHAPE data is superimposed on an RNA structure, single stranded 
nucleotides are usually red or orange indicating highly flexible and base paired 
nucleotides are colored back, indicating highly constrained.  

 

 

(RNA) constrained

OH2’

(RNA) flexible

OH2’

2’-O-adduct

N

OO O

NO2

(RNA)

2' O
H
N

O

1M7

NO2

0

1.0

5 10 15 20 25

0.7

0.3

C C G
C G
U A
C G
C G
C G
G C
G C

U10

U G U
C G 30
G C
A U
G C
U

U

A
G
A

20

5'

3'

0

1.0

5 10 15 20 25 30

0.85

0.4

Highly Reactive 

Un-reactive 

A)

B) C)



 

6 

sampling space and increase the accuracy of prediction. When this method was 

incorporated into a secondary structure prediction algorithm, RNAstructure, and applied  

 to the 16S rRNA and 23S rRNA, the accuracy of the prediction of structure for these 

RNAs increased by more than 20% over a traditional mFold class algorithm 26. 

1.4 Challenges of prediction algorithms 

The RNAstructure algorithm provided a critical first step in refining traditional 

dynamic programming, but despite its advances, RNAstructure still had several 

deficiencies.  For instance, none of the traditional RNAstructure predictions allows for 

the prediction of pseudoknots.  Pseudoknots form when the loop region of a helix base 

pairs to another place in a RNA structure. Figure 1.2 shows the secondary structure of a 

simple pseudoknot on a traditional secondary structure plot and on a circleplot.  A 

circleplot plots the sequence of the RNA around the outside of the circle and base pairs as 

lines running through the circle.  Pseudoknots are easily identified on circleplots because 

they form a cross-hatching pattern.  Pseudoknot motifs are relatively rare, but often occur 

in key functional areas, such as the pseudoknot near the 5’ end of HIV-1 that allows for 

frame shifting28, and the central pseudoknot in the SAMI riboswitch29 necessary for 

ligand binding.  Because of their biological importance, there is a need to confidently 

identify pseudoknots in RNA secondary structures30, 31. 

Furthermore, although predictions with SHAPE data tend to be highly accurate, 

mistakes in the structure are hard to distinguish and identify.  It is not clear from the 

traditional version of the program which parts of the structures are most likely to be 

correct or incorrect.  Being able to identify mistakes is structural predictions can be as 

critical as the prediction.  Knowing that a structure prediction is highly accurate enables  
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Figure 1.2: Simple pseudoknot motif in RNA.   
On the left, the pseudoknot is shown on a traditional secondary structure plot.  On the 
right, the pseudoknot is shown on a circleplot.  Circleplots plot the sequence of the RNA 
around the circumference of the circle; lines running through the circle represent base 
pairs.  Pseudoknots are easy to identify because they create a cross hatching pattern.   
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key hypotheses to be made.  Conversely, identifying a poorly supported structure allows 

incorrect hypotheses to be avoided. Lastly, previous work has generally focused on using 

SHAPE data to understand secondary structure predictions.  To obtain a full 

understanding of RNA structure, we must eventually target tertiary structures.  

1.5 Research Overview 

In this work, I sought to modify current algorithms to increase prediction 

accuracy and better understand RNA structure.  My focus has been on finding techniques 

to include pseudoknots using SHAPE data in secondary structure predictions, and 

identifying methods to calculate the accuracy of structure predictions. 

 In Chapter 2, I discuss how we created a secondary structure prediction 

algorithm, ShapeKnots, which more accurately incorporates SHAPE reactivities and 

predicts pseudoknots.  By incorporating these features, I show that the accuracy of 

prediction increases 30% over classic mFold class algorithms to reach 94% accuracy.  In 

Chapter 3, I discuss how I can use the ShapeKnots algorithm to identify pseudoknots in 

HIV-1. I show that when tested in virio, these pseudoknots are critical to the replication 

of the HIV-1.  In Chapter 4, I discuss how I can determine the accuracy of secondary 

structure prediction by calculating the Shannon entropy from a modified partition 

function.   

Chapters 5 and 6 are devoted to tertiary structure modeling.  In Chapter 5, I 

examine an alternative structure of the 3’ minor domain of the 16S rRNA.  In particular, I 

use Discrete Molecule Dynamics (DMD)32 to identify whether or not the alternative 

structure is topologically consistent with the conventional 16S rRNA structure33 and with 

the X-ray crystallography electron density12.  Finally in Chapter 6, I discuss how we can 
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use the central limit theorem to identify a useful metric for categorizing the success of 

tertiary structure predictions.  This metric, denoted the “q value”, can be used to evaluate 

tertiary structure prediction quality.   

1.6 Perspective 

In this work, I utilize experimental and computational principles to refine RNA 

structure.  I show that with these refined technologies, I am able to increase the accuracy 

of structure prediction, identify unique motifs in HIV-1, better understand the accuracy of 

secondary structure predictions, apply information identified from SHAPE-directed 

secondary structure predictions to identify potential alternative structures and create a 

useful metric for determining the accuracy of tertiary structures.  It is my hope that the 

methods I present will be widely useful in refining highly accurate RNA structure models 

in the future.  
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2. Chapter 2: ShapeKnots: accurate RNA secondary structure 
predictions, including pseudoknots 

2.1 Introduction 

2.1.1 RNA structure and function.  

  RNA constitutes the central information conduit in biology1.  Information is 

encoded in an RNA molecule at two levels: in its primary sequence and in its ability to 

form higher-order secondary and tertiary structures.  Nearly all RNAs can fold to form 

some secondary structure and, in many RNAs, highly structured regions encode 

important regulatory motifs. Such structured regulatory elements can be comprised of 

canonical base pairs but may also feature specialized and distinctive RNA structures. 

Among the best characterized of these specialized structures are RNA pseudoknots. 

Pseudoknots are relatively rare but occur overwhelmingly in functionally important 

regions of RNA2-4.  For example, all of the large catalytic RNAs contain pseudoknots5, 6; 

roughly two-thirds of the known classes of riboswitches contain pseudoknots that appear 

to be essential for ligand binding and gene regulatory functions7; and pseudoknots occur 

prominently in the regulatory elements that viruses use to usurp cellular metabolism3.  

Pseudoknots are thus harbingers of biological function. An important and challenging 

goal is to identify these structures reliably. 
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2.1.2 Pseudoknots in RNA structure predictions.  

Pseudoknots are excluded from the most widely employed algorithms used to 

model RNA secondary structure 8. This exclusion is based on the challenge of  

incorporating the pseudoknot structure into the efficient dynamic programming algorithm 

used in the most popular secondary structure prediction approaches and because of the 

additional computational effort required. The prediction of lowest free energy structures 

with pseudoknots is NP-complete9, which means that lowest free energy structure cannot 

be solved as a function of sequence length in polynomial time.  In addition, allowing 

pseudoknots greatly increases the number of (incorrect) helices possible and tends to 

reduce secondary structure prediction accuracies, even for RNAs that include 

pseudoknots. Current algorithms also have high false positive rates for pseudoknot 

prediction, necessitating extensive follow-up testing and analysis of proposed structures. 

Pseudoknot prediction is challenging, in part, for the same reasons that RNA secondary 

structure prediction is difficult. First, energy models for loops are incomplete because 

they extrapolate from a limited set of experiments. Second, folding can be affected by 

kinetic, ligand-mediated, tertiary, and transient interactions that are difficult or 

impossible to glean from the sequence. Prediction is also difficult for a third reason 

unique to pseudoknots: Energy models for pseudoknot formation are generally 

incomplete because the factors governing their stability are not fully understood10-12. The 

result is that current algorithms that model pseudoknots predict the base pairs in the 

simplest pseudoknots (termed H-type, formed when bases in a loop region bind to a 

single-stranded region), when the beginning and end of the pseudoknotted structure is 

known, with accuracies of only about 75% 10. Secondary structure prediction is much less 
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accurate for full-length biological RNA sequences, with as few as 5% of known 

pseudoknotted pairs predicted correctly and with more false positive than correct 

pseudoknot predictions in some benchmarks 13. 

2.1.3 Using SHAPE data to probe RNA structure.  

The accuracy of secondary structure prediction is improved dramatically by 

including experimental information as restraints14, 15. SHAPE (selective 2'-hydroxyl 

acylation analyzed by primer extension) probing data has proven especially useful in 

yielding robust working models for RNA secondary structure 15, 16. In essence, inclusion 

of SHAPE information provides an experimental adjustment to the well-established, 

nearest neighbor model parameters17 for RNA folding. This adjustment is implemented as 

a simple pseudo-free energy change term, ∆G°SHAPE. SHAPE reactivities are 

approximately inversely proportional to the probability that a given nucleotide is base 

paired (high reactivities correspond to a low likelihood of being paired and vice versa) 

and the logarithm of a probability corresponds to an energy, in this case ∆G°SHAPE, which 

has the form: 

∆G°SHAPE = m ln [SHAPE + 1] + b (1) 

 The slope, m, corresponds to a penalty for base pairing that increases with the 

experimental SHAPE reactivity, and the intercept, b, reflects a favorable pseudo-free 

energy change term for base pairing at nucleotides with low SHAPE reactivities. These 

two parameters must be determined empirically.  This pseudo-free energy change 

approach yields high-quality secondary structure models for both short RNAs and those 

that are kilobases long15, 16.  
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 Our original SHAPE-directed algorithm did not allow for pseudoknotted base 

pairs15. Given the strong relationship between pseudoknots and functionally critical 

regions in RNA and the fact that it is impossible to know a priori whether an RNA 

contains a pseudoknot, this limitation severely restricts the accuracy and generality of 

experimentally-directed RNA structure analysis. Here, I describe a concise approach for 

applying SHAPE-directed RNA secondary structure modeling to include pseudoknots, in 

an algorithm I call ShapeKnots, and I show that the algorithm yields high quality 

structures for diverse RNA sequences.  

2.2 Results 

2.2.1 A challenging RNA test set.  

We developed the ShapeKnots algorithm using a test set of 16 non-pseudoknotted 

and pseudoknot-containing RNAs that were selected for their complex, and generally 

difficult to predict, structures (Table 2.1, top).  These RNAs included (i) five RNAs with 

lengths >300 nucleotides, both with and without pseudoknots; (ii) five riboswitch RNAs 

whose structures only form upon binding by specific ligands, for which thermodynamic 

rules are obligatorily incomplete; (iii) four RNAs with structures that are predicted 

especially poorly, with accuracies <60% using nearest-neighbor thermodynamic 

parameters; and (iv) three RNAs whose structures are probably modulated by protein 

binding.  SHAPE experiments were performed on each of the RNAs in the presence of 

ligand if applicable but in the absence of any protein. Each of the training set RNAs had 

SHAPE probing patterns that suggested these RNAs folded in solution into structures 

generally consistent with accepted secondary structure models based on either X-ray 

crystallography or comparative sequence analyses.   
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Table 2.1: Prediction accuracies as a function of algorithm and SHAPE information.  

Sensitivities (sens), positive predictive value (ppv), and their geometric average (geo) are 
shown for four test cases:  no pseudoknots allowed and no SHAPE data; no pseudoknots 
allowed and with SHAPE data (both by free energy minimization); pseudoknots allowed 
and no SHAPE data; and pseudoknots allowed and with SHAPE data (both using 
ShapeKnots). Complicating features are ligand (L) and protein (P) binding that are not 
accounted for in nearest-neighbor thermodynamic parameters.  Pseudoknot (PK) 
predictions are indicated with a checkmark (�) or X; a checkmark indicates that 
pseudoknots were predicted correctly and that there were no false-positive pseudoknot 
predictions. For the ribosomal RNAs (†), regions in which the SHAPE reactivities were 
clearly incompatible with the accepted structure, as described 18, were omitted from the 
sensitivity and ppv calculations; for the E. coli 16 rRNA, this included nucleotides 143-
220. The HIV-1 5' leader domain (§) was included as an example of pseudoknot 
prediction in a large RNA.  Because the accepted structure for this RNA is based on 
SHAPE-directed prediction 19, we did not include sensitivity and ppv for this RNA in the 
overall Average values; however, the pseudoknot was proven independently 20 and is 
included. 
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The structures of the 16 RNAs in the test set are predicted poorly by a conventional 

algorithm based on their sequences alone:  The average sensitivity (sens; fraction of base 

pairs in the accepted structure predicted correctly), positive predictive value (ppv, the 

fraction of predicted pairs that occur in the accepted structure), and geometric average of 

these metrics are 72, 78, and 74%, respectively (Table 2.1). 

In the process of developing this training set, we also analyzed two RNAs – 

RNase P RNA and the human signal recognition particle RNA – whose in vitro SHAPE 

reactivities were incompatible with the accepted structures for these RNAs.  I include 

prediction statistics for these RNAs at the bottom of Table 2.1, but do not use these to 

evaluate our SHAPE-directed modeling algorithm. 

2.2.2 A simple, robust model for pseudoknot formation.  

The favorable energetic contributions for forming the helices that comprise a 

pseudoknot are likely to be predicted accurately by the Turner nearest-neighbor model 17, 

21 when modified by the experimental ∆G°SHAPE term (Eqn. 1). In addition, pseudoknot 

formation must overcome an entropic penalty; these energetics are difficult to estimate. 

The most widely used models are complex and include a large number of constituent 

parameters11, 12. We adopted a simple approach to estimate the entropies based on three 

primary insights. First, any secondary structure prediction must ultimately be compatible 

with a specific, energetically favorable, three-dimensional fold in the RNA in which 

nucleotides that base pair in the pseudoknot are close in three-dimensional space. This 

fundamental close-in-space feature must also be recapitulated in secondary structure 

prediction.  
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We modeled RNA pseudoknots as the sum of simple distance features, or beads. 

There are exactly three possibilities for the structures that comprise a pseudoknot: single-

stranded nucleotides, nested helices, and in-line helices (Figure 2.1). Duplexes containing 

single nucleotide bulges are counted as a single helix. This model emphasizes structures 

rather than topologies and appears to be compatible with the vast majority of known 

pseudoknots. In essence, energetically favorable pseudoknots feature a small number of 

the single-stranded, nested helix, and in-line helix “beads.” To account for the number of 

constituent single-stranded (SS) nucleotides and nested (NE) helices (Figure 2.1), we 

adopted a simple polymer physics-based model 22.  The energetic penalty associated with 

each of these features is weighted by distances of e = 6.5 Å and f = 15 Å, the mean 

lengths of a single-stranded nucleotide and a nested helix element, respectively22 (Figure 

1). Finally, we created a penalty for in-line (IL) helices (Figure 2.1). The potential to 

form these structures is weighted by their end-to-end length (n) in the context of A-form 

helix geometry and the distribution of in-line helices in RNAs of known structure. The 

model for the entropic cost of pseudoknot formation, ∆G°PK, has two adjustable 

parameters, P1 and P2: 

 ∆G°PK = P1 ln (e2 SS + f 2 NE) + P2 ln ΣIL(n)(λn
2) (2) 

where λn is the penalty constant for in-line helices of length n (see Table 2.2). The first 

term penalizes formation of pseudoknots with long single-stranded regions and many 

nested helices, whereas the second term enforces an optimal geometry for in-line helices.  
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Figure 2.1: Overview of pseudoknot structure model and entropic penalty terms.   
Length features are incorporated into ∆G°PK as described in Eqn. 2. Energy penalties for 
single-stranded nucleotides and nested helices are based on a previously developed model 
22; the penalty for in-line helices was developed in this work. 
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____ 
 

Helix Length (n) pn (Å) qn λn = pn / qn 

_________________________________________________________________________ 
 

2 0 0.0000 0 

3 6.1 0.2546 24 

4 11.9 0.4975 24 

5 16.9 0.4962 34 

6 20.9 0.8795 24 

7 23.8 0.6869 35 

8 25.5 0.4430 58 

9 26.4 0.3217 82 

10 26.8 0.4104 65 

11 27.4 0.0519 527 

12 28.6 0.0117 2447 

13 30.9 0.0074 4199 

14 34.1 0.0052 6564 

15 38.0 0.0030 12540 

_________________________________________________________________________ 
 

Table 2.2: Energy penalty per in-line pseudoknotted helix of length n. 

pn is the end-to-end distance (in Å) between the C4' of the first and last nucleotide of an 
(in-line) helix of length n. The value qn was calculated in two steps.  First, for five classes 
of RNA – group I introns 24, 25, RNase P 26, SRP 27, tmRNA 28 and telomerase29 – we 
calculated the fraction of in-line helices of length n over the total number of 
pseudoknotted structures in each class of RNA.  Second, we averaged the fractions of 
length n across the five RNA classes. λn, the penalty constant for an in-line helix of 
length n, is the quotient of pn and qn. 
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2.2.3 RNA structure interrogation by SHAPE.   

Most RNAs were transcribed in vitro and contained short hairpin-containing 

structure cassettes at their 5’ and 3’ ends 23.  The 16S and 23S ribosomal RNAs were 

isolated from total E. coli RNA15. The transcribed RNAs were folded in a standard buffer 

with physiologically relevant ion concentrations (and saturating ligand concentrations for 

riboswitches) and treated with 1-methyl-7-nitroisatoic anhydride (1M7) 30.  Sites of 2'-O-

adduct formation were detected by primer extension using a previously described high-

throughput SHAPE approach31. SHAPE reactivities were normalized to place them on a 

scale from zero (unreactive) to ~1.5 (highly reactive).  In this work, we illustrate 

modeling results in the form of circle plots, which provide an unbiased way to visualize 

correct and incorrect base pairs.  The nucleotide sequence is arrayed on the outer circle:  

unreactive nucleotides (SHAPE reactivities < 0.4) are colored black, moderately reactive 

nucleotides (0.4 – 0.85) are yellow, and highly reactive nucleotides (> 0.85) are red. Base 

pairs are shown as arcs, colored by whether they are predicted correctly or not (Figure 

2.2). Pseudoknots correspond to helices whose arcs cross in the circle plot.  In general, 

there was a strong correspondence between SHAPE reactivities and the pattern of base 

pairing in the accepted structures.  Nucleotides that participate in canonical base pairs 

were generally unreactive; whereas nucleotides in loops, bulges, and other connecting 

regions were reactive (Figure 2.2). 

2.2.4 Algorithm and Parameter Determination.   

Our ShapeKnots algorithm has four underlying parameters: m and b used in 

calculation of ΔG°SHAPE and P1 and P2 used to calculate ΔG°PK from Eqns. 1 and 2, 

respectively.  The ΔG°SHAPE parameters, m and b, penalize or favor base pairs with high 
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Figure 2.2: Representative ShapeKnots structure prediction for the SAM I 
riboswitch.   

In all panels, base pair predictions are illustrated with colored lines: green, correctly 
predicted; red, missed base pair relative to the accepted 32 structure; purple, prediction of 
a pair not in the accepted structure. Left-hand panel shows predictions without SHAPE 
data. Center and right-hand panels show predictions made when SHAPE data were 
included, using circle plot and conventional representations, respectively. Sensitivity 
(sens) and ppv are listed for each structure.  SHAPE data are shown as colored nucleotide 
letters on a black, yellow, red scale for low, medium and high SHAPE reactivities, 
respectively. 
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and low SHAPE reactivities, respectively, are universal to all RNAs, and do not directly 

contribute to the entropic penalty for pseudoknot formation. These parameters can thus 

be fit independently of the ΔG°PK terms, P1 and P2. m and b were optimized using the 

seven RNAs in our dataset that do not contain pseudoknots.  To reduce over-optimization 

of these parameters, we used a leave-one-out jackknife approach33 to assess prediction 

sensitivities, ppv, and the geometric mean of these parameters at each grid point for seven 

quasi-independent data sets each containing six of the seven RNAs.  

Our algorithm for identification of pseudoknots follows the approach 

implemented in HotKnots10.  A two-stage refinement first finds stable helices using a 

dynamic programming algorithm that does not allow pseudoknots.  The second stage uses 

the same dynamic programming algorithm to predict structures for each stable helix 

found in stage one.  In stage two, structures are predicted such that nucleotides in the 

stable helix are forced to not pair.  These pairs are subsequently added back to the 

structure, and these helices can therefore be pseudoknotted.  This allows the prediction of 

up to one pseudoknot per run. Run times for the final ShapeKnots algorithm were less 

than 1 min for RNAs of fewer than 150 nts and ~90 min for the longest (530 nt) RNA 

(Table 2.3). 

The pseudoknot-specific parameters, P1 and P2, were fit using a jackknife 

approach incorporating data from all 16 RNAs in the training set. Parameters were 

optimized in three stages (see Methods). In this analysis, m = 1.8 and b = -0.6 kcal/mol 

yielded the most accurate secondary structure predictions (Figure 2.3). These parameters 

differ slightly from the values (m = 2.6 and b = -0.8 kcal/mol) determined previously 

using only E. coli 23S rRNA18.   
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Figure 2.3: Optimization of the ∆G°SHAPE and ∆G°PK parameters (in kcal/mol) by 
jackknifing.    

Each of the three panels shows a representative grid in which the M-box RNA was left 
out. Optimal parameters in each case are emphasized with a white box.  Each box in the 
grid represents the accuracy (calculated as the geometric mean of sens and ppv) for the 
test set at each slope and intercept for Steps 1 and 3, and each P1 and P2 value for Step 2. 
For clarity, only a subset of parameter optimizations is shown. 
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Table 2.3: ShapeKnots run times as a function of RNA length. 

________________________________________________________________________
____ 
 Folding time 
 __________________________
__ 
RNA Length (sec) (min) 
________________________________________________________________________
____ 
 

Pre-Q1 riboswitch, B. subtilis 34 0.05  < 1 
Telomerase pseudoknot, human 47 0.31  < 1 
tRNAAsp, yeast 75 2.48  < 1 
TPP riboswitch, E. coli 79 3.60  < 1 
SARS corona virus pseudoknot  82 2.50  < 1 
cyclic-di-GMP riboswitch, V. cholerae  97 4.70  < 1 
SAM I riboswitch, T. tengcongensis 118 7.63  < 1 
M-Box riboswitch, B. subtilis  154 24.2  < 1 
P546 domain, bI3 group I intron 155 14.2  < 1 
Lysine riboswitch, T. maritime 174 117  1.9 
Group I intron, Azoarcus sp. 214 212  3.5 
Hepatitis C virus IRES domain 336 900  15.0 
Group II intron, O. iheyensis  412 1840  30.7 
Group I Intron, T. thermophila 425 2530  42.2 
5' domain of 23S rRNA, E. col  511 4620  77.0 
5' domain of 16S rRNA, E. coli  530 5480  91.4 

 
________________________________________________________________________
____ 
 
Run times for test set RNAs based upon single processor (non-parallel) calculation using 
a Linux Server with a 2.93 GHz Intel Xeon (model X5679) processor and 48 GB memory 
per node. 
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We recommend use of these new values for RNA structure prediction both with and 

without pseudoknots. Applying ShapeKnots using these ∆G°SHAPE and ∆G°PK parameters 

yielded an average sensitivity for secondary structure prediction of 93% for the sixteen 

RNAs in the test set (Table 2.1). 

2.2.5 Extension to additional RNAs.   

We used ShapeKnots to model secondary structures for six RNAs that were not 

used to optimize the final algorithm.  Three RNAs – the adenine riboswitch, tRNAPhe, 

and E. coli 5S rRNA – were chosen because prior approaches using non-standard data 

analysis had suggested that they folded poorly with SHAPE data16. The other three RNAs 

– the fluoride riboswitch pseudoknot, 5' domain of the H. volcanii 16S rRNA, and the 5' 

pseudoknot leader of the HIV-1 RNA genome – adopt structures that are predicted poorly 

by conventional approaches.  Overall prediction sensitivities for these six RNAs were 

~95% (Table 1), and the pseudoknots in the HIV-1 and fluoride riboswitch RNAs 34-36 

were identified correctly 

2.3 Discussion 

Pseudoknots are relatively rare in large RNAs but are highly overrepresented in 

important functional regions2, 3, 6, 7. Despite their importance, the most commonly used 

RNA structure prediction algorithms do not permit pseudoknots because allowing 

pseudoknots both increases algorithmic complexity and the number of possible 

structures.  Current algorithms that allow pseudoknots recover only ~70% of the total 

accepted base pairs.  
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Table 2.4: Prediction accuracies for seven RNA folding algorithms (following page). 

A) Overall prediction accuracies. Accuracies are shown as percent sensitivity (sens) and 
positive predictive value (ppv), and allow pairing to be shifted by one position on one 
side of a pair 37. ShapeKnots, ProbKnot 13, and Fold (the standard RNAstructure 
algorithm) 38 were run both with and without SHAPE data.  Other included algorithms 
are DotKnot+KL and DotKnot-KL (KL indicates kissing loops) 39, 40, ipknot 41, 
pknotsRG-mfe 42, and HotKnots 12. Note that Fold does not allow pseudoknots. All 
algorithms were run using their default parameters. ShapeKnots, Fold and ProbKnot used 
m and b parameters (Eqn. 1) of 1.8 and -0.6 kcal/mol, respectively. 
B) Prediction accuracies for pseudoknotted base pairs only. Accuracies are evaluated 
using sensitivity and ppv, allowing for mis-pairing by one position on one side of a pair 
37. If both accepted and predicted structures contain no pseudoknot, sens and ppv are 
defined as 100%. If only the predicted structure contains a pseudoknot, sens and ppv are 
set to 0. A pseudoknotted pair is scored as correctly predicted only if there is at least one 
other correctly predicted pair with which it forms a pseudoknot. Fold is excluded because 
it does not allow prediction of pseudoknots. 
C) Reference structure statistics. PK Min is the minimum number of pairs required to 
break a pseudoknot 43. Total PK is the total number of pseudoknotted pairs in the 
accepted structure. 
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The prediction sensitivity for base pairs that specifically form pseudoknots varies by 

algorithm and benchmark RNAs but averages only 5-20%, with many false-positive 

predictions13 (Table 2.4).  Thus, the current generation of pseudoknot prediction 

algorithms is poorly suited for designing testable biological hypotheses.  

ShapeKnots combines an iterative pseudoknot discovery algorithm with 

experimental SHAPE information and a simple energy model for the entropic cost of 

pseudoknot formation. The pseudoknot penalty in ShapeKnots has only two adjustable 

parameters (Figure 2.1 and Eqn. 2) that limit formation of pseudoknots with long single-

stranded regions and many nested helices and that enforce an optimal geometry for in-

line helices.  ShapeKnots also allows incorporation of an experimental correction to 

standard free energy terms.  Including SHAPE data both limits the number of possible 

structures and provides information that accounts for hidden features that stabilize RNA 

folding, including the significant effects of metal ion and ligand binding. 

Our set of training structures was comprised of sixteen RNAs of known structure that 

ranged in length from 34 to 530 nucleotides; pseudoknots occur in nine of the sixteen 

RNAs. Prediction accuracies were consistently high (Table 2.1). ShapeKnots 

significantly outperformed currently available pseudoknot prediction algorithms and is 

the only algorithm to achieve >90% overall and pseudoknot-specific sensitivities with 

this test set (Table 2.4; see Methods for additional discussion). Both the specific 

pseudoknot energy penalty and use of SHAPE data contribute to the accuracy of the 

ShapeKnots approach.  It is likely that inclusion of SHAPE data will generally improve 

accuracies for pseudoknot prediction algorithms. 



 

31 

We summarize our modeling results by emphasizing four classes of RNA: (i) short 

pseudoknotted RNAs with structures that ShapeKnots predicts very accurately, (ii) large, 

challenging RNAs that ShapeKnots predicts with good accuracy, (iii) RNAs with high 

likelihood of being mischaracterized with false-positive or missed pseudoknots that 

ShapeKnots predicts accurately, and (iv) RNAs that interact with other molecules such as 

ligands, proteins, and metal ions that pose unique challenges. For most RNAs analyzed 

here, differences between models generated by ShapeKnots and currently accepted 

structures were minor and typically involved short-range interactions or base pairs at the 

ends of helices. In some cases, differences likely reflect thermodynamically accessible 

states at equilibrium in solution. 

2.3.2 Short pseudoknotted RNAs.   

The first class includes small RNAs that contain H-type pseudoknots: the pre-Q1 

riboswitch, human telomerase, the fluoride riboswitch, and a SARS corona virus domain.  

Because the most commonly used dynamic programming algorithms cannot predict base 

pairs in an H-type pseudoknot, prediction sensitivities using a conventional algorithm38 

were quite poor; in contrast, ShapeKnots yielded perfect or near-perfect predictions in 

each case (Figure 2.4). The only ShapeKnots-predicted base pairs that do not occur in the 

accepted structures involve sets of two or fewer base pairs located at the ends of 

individual helices in the fluoride riboswitch and SARS domain. These results suggest that 

ShapeKnots prediction of H-type pseudoknots in short RNAs is robust. 
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Figure 2.4: Summary of predictions for four H-type pseudoknots.   
Base pair predictions are illustrated as outlined in Figure 2.2; sensitivity (sens) and ppv 
are listed for each structure. Left- and right-hand columns show predictions for a 
conventional mfold-class algorithm versus ShapeKnots (with experimental SHAPE 
restraints). 
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2.3.1 Large, complex RNAs.   

The second class includes large RNAs that do not require ligands or protein co-

factors for correct folding.  Large RNAs pose a challenge to modeling algorithms due to 

the vast number of possible structures and due to the large number of structures with 

similar folding free energies changes.  For example, in the absence of experimental 

structure probing data, two representative RNAs, the Azoarcus group I intron and the 

hepatitis C virus IRES domain are predicted with sensitivities of 73 and 39%, 

respectively.  Mis-predictions occur primarily in two hairpin motifs in the Azoarcus RNA 

but span essentially the entire HCV IRES RNA (Figure 2.5). Inclusion of SHAPE data 

yielded near-perfect predictions in each case, including correct identification of the 

pseudoknot in each RNA (Figure 2.5).   

2.3.2 RNAs with difficult to predict pseudoknots.  

Within a given RNA sequence, several physically reasonable pseudoknots are 

often possible; for example, Figure 2.6 shows the SARS virus domain with two potential 

pseudoknotted helices are identified in purple and red. Conversely, as exemplified by the 

SAM I riboswitch, pseudoknots can be missed because the energy function does not 

distinguish small differences in stabilities of a pseudoknot-forming versus a more local 

helix (Figure 2.6). The experimental SHAPE-based correction correctly re-ranked the 

stabilities for the two possible helices located close to one another in topological space in 

the SARS and riboswitch RNAs, ultimately avoiding both false-positive and false-

negative pseudoknot predictions (Figure 2.6). 
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Figure 2.5: Prediction summaries for two large, pseudoknot-containing RNAs.   
Structural annotations are as described in Figure 2.2. 
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Figure 2.6: Representative examples in which ShapeKnots avoids false-positive 
(top) or false-negative (bottom) pseudoknot predictions.   

Left- and right-hand panels show the results of ShapeKnots predictions without and with 
SHAPE data, respectively.  The bold arrow in the left-hand panels emphasizes the 
replacement of an accepted (red) with an incorrect (purple) helix in the absence of data. 
Other structural annotations are as described in Figure 2.2. 
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2.3.1 RNAs that do not adopt their accepted structures.   

During our analysis of experimentally directed structure modeling, we examined 

two RNAs for which the in vitro SHAPE data were clearly incompatible with the 

accepted structure.  These RNAs were the signal recognition particle RNA and RNase P.  

In each case, the SHAPE-directed model using ShapeKnots provided a significant 

improvement relative to the pseudoknot-free lowest free energy predicted structure 

(Table 2.1).  Nonetheless, a large part of each structure was mis-predicted relative to the 

accepted structure.  In each case, nucleotides in some helices in the accepted structural 

model were reactive by SHAPE, suggesting that these helices do not form under the 

solution conditions used here for in vitro structure probing (Figure 2.7). There are several 

possible explanations for the observed discrepancies.  First, the conditions under which 

these RNAs were crystallized are different from the roughly physiological ion conditions 

used in SHAPE probing experiments.  The differences in conditions could cause the 

crystallographic structure to be different from that in solution or there may be structural 

inhomogeneity in solution. Second, both the RNase P and signal recognition particle 

RNAs function as RNA-protein complexes.  These proteins were not present during in 

vitro SHAPE experiments. 

2.3.2 Perspective.   

It is difficult to account for many factors that impact RNA secondary structure – 

including effects of metal ions, ligands, and protein binding – using a system based on 

thermodynamic or structural parameters.  For example, the M-Box and fluoride 

riboswitch RNAs undergo large conformational changes upon binding by Mg2+ or F– 

ions, respectively36, 44, and binding of ligands to the pre-Q1, TPP, cyclic-di-GMP, SAM,  
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Figure 2.7: Prediction summary for RNase P RNA.  

This RNA, along with the signal recognition particle RNA, does not appear to fold into 
its conventionally accepted structure based on in-solution SHAPE data.  Regions of 
strongest disagreement are highlighted as magnified letters. 
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and adenine riboswitches provides a large fraction of the total interactions that ultimately 

stabilize the accepted structure7. In addition, many of the RNA in our dataset contain base 

triple interactions, which are common in pseudoknots 45. With the inclusion of SHAPE 

data, the ShapeKnots approach does a good job of modeling these interactions (Table 

2.1). Other challenges to structure prediction are that some base pairs may only be stable 

in the presence of bound proteins and some RNAs, especially as exemplified by 

riboswitches 7, sample multiple conformations. Finally, in vitro refolding and probing 

protocols may not fully recapitulate the functional or in vivo structure. Our analyses of 

the signal recognition particle RNA and RNase P illustrate these challenges: Neither of 

these RNAs appears to fold stably to the accepted structure under solution conditions 

used in this work (Figure 2.7). These two RNAs are widely used to benchmark folding 

algorithms, even though they may only fold robustly to their accepted structures in the 

context of their native RNA-protein complexes. In this case, for the specific solution 

environment used here, the SHAPE-directed structures appear to be roughly "correct" but 

just not the expected ones. 

In the context of the diverse RNAs examined in this work, the ShapeKnots 

algorithm recovered 93% of accepted base pairs in well-folded RNAs (Table 2.1), 

significantly out-performing current algorithms.  Nonetheless, evaluation of ShapeKnots 

is currently restricted by challenges that impact the entire RNA structure modeling field16.  

There exist relatively few RNAs with non-trivial structures that are known at a high level 

of confidence.  The ShapeKnots energy penalty and search algorithm may require 

adjustment as new pseudoknot topologies are discovered.  RNAs that have been solved 

by crystallography have features that make them simultaneously both more and less 
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difficult to predict than more typical structures: They tend to contain a relatively high 

level of non-canonical and complex tertiary interactions (difficult to predict features), and 

they fold into structures with many stable base-paired regions (more readily predicted 

using thermodynamics-based algorithms).  In addition, the structures inferred from high-

resolution data may not represent the solution conformation of the purified RNAs. For 

RNAs in which the accepted structure is based on phylogenetic and in-solution evidence 

– as exemplified by the SARS virus and HCV IRES domains – ShapeKnots predictions 

may identify correct features missed in current accepted structures.  The approaches 

outlined in this work – use of simple models for base pairing and pseudoknot formation, 

including experimental corrections to thermodynamic parameters, and nuanced 

interpretation of differences between current accepted and modeled structures – 

represents a critical departure point for future accurate RNA secondary structure 

modeling. 

2.4 Experimental 

2.4.1 ShapeKnots algorithm.  

ShapeKnots predicts and ranks a set of low free energy, potentially pseudoknot-

containing structures. Two steps use dynamic programming algorithm calculations, using 

pseudoknot-free predictions, to first identify possible pseudoknotted helices and then fold 

the remaining sequence, possibly creating a pseudoknot. This approach is closely related 

to the HotKnots algorithm10. The following steps are performed: 

The dynamic programming algorithm is used to generate the pseudoknot-free 

minimum free energy structure, Smfe.  Smfe along with up to 99 low energy suboptimal 

structures are included in the final list of candidate structures, S. The folding free energy 
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change of a suboptimal structure must be within 20% of the ∆G° of Smfe, with no 

restrictions on how different suboptimal structures are from each other (a window size of 

zero). The algorithm is also used to generate an energy dot plot, indicating, for all 

nucleotides i and j, the lowest folding free energy possible for a structure containing the i-

j base pair. The ∆G° values are calculated using the current Turner nearest neighbor 

parameters 17, 21 but with the multi-branch loop per helix parameter value of -0.6 

kcal/mol46, 47. The SHAPE pseudo-free energy terms are incorporated into the dynamic 

programming algorithm for each paired nucleotide per base pair stack of an adjacent 

paired nucleotide15. 

A candidate pseudoknot helix list, H, along with the corresponding helix energies 

is generated from the energy dot plot. Helix Hi is accepted into H if it spans at least three 

base-pairs. For sequences longer than 100 nucleotides, Hi also has to occur in a structure 

with a ∆G° within 25% of the free energy of Smfe. The ∆G° of Hi is calculated as the sum 

of the nearest neighbor stacks and terminal AU/GU pair penalties21.  

The set of helices, H, is filtered in two steps. First, helices are compared to those 

in the minimum free energy structure. Helices are discarded if more than 50% of their 

nucleotides are base paired in Smfe. Second, to increase computational efficiency, H is 

trimmed to include a maximum of 100 of the most thermodynamically stable helices.  

For each Hi, a new set of structures, composed of the lowest free energy structure and up 

to 100 suboptimal structures, is generated by the dynamic programming algorithm, where 

all nucleotides in Hi are prohibited from pairing (forced single-stranded) 48. Suboptimal 

structures are chosen in the same way as in step 1. After these structures have been 

generated, base pairs from Hi are restored to the structures. The ∆G° of each structure is 
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incremented by the free energy of the corresponding helix Hi. All unique structures are 

added to S. 

For each structure in S that contains a pseudoknot, the entropic cost of pseudoknot 

formation is penalized by ∆G°PK (Eqn. 2). All pseudoknots require at least two helices, 

arranged such that at least part of the loop defined by one-helix base pairs to form a 

second helix. We define the nucleotides involved in a given pseudoknot as starting with 

the 5'-most nucleotide of the first helix and ending with the last nucleotide of any helix 

participating in the pseudoknot (nucleotides 1 and N in Figure 2.1). There are three 

possible classes of intervening structures that can be formed in a pseudoknotted structure. 

SS is the number of single-stranded nucleotides inside the pseudoknot, NE is the number 

of nested helices inside the pseudoknot, and IL(n) is the number of in-line helixes of 

length n base pairs. Before the intervening structures are calculated, the pseudoknot is 

preprocessed by filling single and tandem mismatches with base pairs and removing 

isolated pairs. Helices containing a single bulged nucleotide are counted as a single helix. 

The penalty for single-stranded and nested helices results from a simplified version of a 

polymer-theory model22, and the in-line penalty is unique to this work. The terms e, f, and 

λn (Eqn. 2) are penalty constants per single-stranded nucleotide, nested helix, and in-line 

helix of length n, respectively. Terms e and f scale the entropic penalty by the distance 

between the 4' carbons of neighboring unpaired nucleotides and across a single base pair, 

respectively 22. We penalize each in-line helix (which, by definition, includes the two that 

define the pseudoknot plus any other helices with this connectivity; Figure 2.1) by λn, an 

empirical parameter related to the likelihood that an in-line helix, of length n, comprises a 

pseudoknot.  λn is calculated as the C4'-to-C4' helix length, pn, divided by a frequency 
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factor, qn (Table 2.2).  The frequency factors were tabulated in two steps.  First, by 

counting the number of in-line helices of length n from five pseudoknot-containing 

structure classes – group I introns 49, 50, RNase P RNA 51, SRP RNA 52, tmRNA 53, and 

telomerase RNA 29 – and dividing by the total number of structures in each class.  

Second, by averaging the frequencies across the five RNA classes.  In-line helix 

frequencies P1 and P2 are constant energy parameters that include Boltzmann constants 

and temperature terms and must be determined empirically.  ΔG°PK is added to the total 

∆G° of each pseudoknot-containing structure.  

S is sorted based on total energy of structures. By default, the 20 lowest free 

energy structures are reported; the outputted structures are constrained using a Window 

parameter to ensure that they are sufficiently different from each other54.  To be included, 

a structure must contain at least Window base pairs that are more than Window 

nucleotides distant from pairs in lower free energy structures.  The default Window 

parameter is selected based on the sequence length, where a larger value is used on longer 

sequences.  Finally, a maximum percent energy difference parameter is used to ensure 

that no structures are included that are higher in folding free energy change than the 

specified percent difference from the lowest free energy structure; the default value is 

10%. 

Coaxial stacking of helices stabilizes pseudoknot formation and is included 

indirectly in the energy function.  First, the choice of helices for assembling pseudoknots 

from the initial dot plot is guided by inclusion of coaxial stacking in the dynamic 

programming algorithm. Second, separations between the helices enter the pseudoknot 

calculation as an increase in the number of single stranded nucleotides (SS, Eqn. 2), and 
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thus penalize the absence of coaxial stacking. The pseudo-free energy change approach 

developed here is broadly applicable and terms for incorporating additional structural 

information could readily be added. 

2.4.2 Parameterization of ∆G°SHAPE and ∆G°PK.   

Two pseudo-free energy change terms are used to direct folding. The first, 

∆G°SHAPE, functions to bias predictions toward helices supported by SHAPE data as 

described previously 15. The second, ∆G°PK, is the entropic cost of forming a pseudoknot.  

Four parameters (m, b, P1 and P2; Eqns. 1 and 2) are involved.  The values for these 

parameters were optimized using a set of RNAs selected for their complex, and generally 

difficult to predict, structures. RNAs and literature references to their accepted secondary 

structures are: Pre-Q1 riboswitch 55, 56, human telomerase RNA 57, tRNAAsp 58, TPP 

riboswitch 59, and SARS corona virus pseudoknot 60, di-cyclic-GMP riboswitch 61, M-Box 

riboswitch 44, bI3 group I intron P546 domain 62, SAM I riboswitch 63, Azoarcus group I 

intron 64, lysine riboswitch 65, HCV IRES domain 66, O. iheyensis group II intron 67, 

Tetrahymena group I intron 68, and 16S and 23S E. coli rRNAs 69. Parameters were fit 

using a three-step procedure (Figure 2.3). (i) m and b (Eqn. 1) were determined based on 

data from seven non-pseudoknotted RNAs using the original RNAstructure algorithm for 

predicting lowest free energy structures 15 that does not allow for pseudoknots.  (ii) P1 

and P2 were determined (Eqn. 2) using data from the complete set of 16 non-

pseudoknotted and pseudoknot-containing RNAs using the m and b values determined in 

step 1 using the ShapeKnots algorithm.  (iii) m and b were re-evaluated based on data 

from all 16 RNAs and the P1 and P2 terms identified in step 2 using ShapeKnots. The 

steps are described in detail below. 
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In step 1, m and b (Eqn. 1) were fit to seven non-pseudoknotted RNAs using the 

original RNAstructure free energy minimization algorithm that does not allow for 

pseudoknots.  The geometric means of the sensitivity and PPV relative to accepted 

structures for each RNA were calculated over a grid of m and b values (Figure 2.3).  

Values for m were varied from 0 to 4.0 and for b from -2.5 to 0 kcal/mol in increments of 

0.1 kcal/mol.  Typically, a range of m and b parameters gave optimal structure 

predictions for each RNA.  We used a jackknifing procedure 70 to identify the best 

parameters for all RNAs and to avoid over-fitting; in addition, the of RNAs in our dataset 

are highly diverse, which also reduces over-fitting. In this procedure, one RNA grid was 

removed from the set and the remaining six grids were averaged together.  This process 

was repeated such that each RNA was left out once.  The m and b parameters resulting in 

the top 1% highest geometric averages for each averaged grid were recorded. Three sets 

of m and b parameters were consistently optimal for each of the seven jackknifed grids: 

3.7 and -1.1, 2.7 and -0.8, and 1.7 and -0.6 (in kcal/mol), respectively (Figure 2.3).  All 

three sets of m and b values were evaluated in the next step. 

In the second step, P1 and P2 (Eqn. 2) were fit using data from the complete set 

of 16 non-pseudoknotted and pseudoknot-containing RNAs using the m and b values 

determined in Step 1. P1 and P2 were varied from 0 to 1.5 kcal/mol in increments of 

0.05. Jackknifing was performed as described in Step 1. Seven sets of parameters 

overlapped at points of highest accuracy for each of the 16 grids.  The average of these 

sets was 0.35 and 0.65 (in kcal/mol) for P1 and P2, respectively (Figure 2.3); these 

values were used in the following step. 
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In step 3, m and b for ∆G°SHAPE were re-fit using all 16 RNAs and the P1 and P2 

terms identified in Step 2. Grid searches were performed on all 16 RNAs, varying m and 

b in an approach analogous to that outlined in Step 1.  The jackknife procedure yielded 

values of 1.8 and -0.6 kcal/mol for m and b, respectively (Figure 2.3).  

2.4.3 SHAPE structure probing.   

RNAs were transcribed from DNA templates (Exiqon or IDT) and purified by 

denaturing electrophoresis31, with the exception of the ribosomal RNAs which were 

obtained from total E. coli or H. volcanii RNA. The ribosomal RNAs were obtained from 

E. coli or H. volcanii cells and were purified under non-denaturing conditions and fully 

deproteinized by treatment with proteinase K and extraction against phenol/chloroform 15.    

The 5' domains of the E. coli 16S and 23S rRNA were defined as positions 27-556 and 

15-525, respectively; and the H. volcanii the 16S rRNA 5’ domain was defined as 

positions 1-473. The pre-Q1, fluoride, adenine, TPP, SAM I, M-Box and lysine 

riboswitches, Azoarcus group I intron, hepatitis C virus IRES domain, and 5S rRNA were 

refolded in 100 mM HEPES (pH 8.0), 100 mM NaCl, and 10 mM MgCl2.  The 

telomerase pseudoknot, tRNAPhe, SARS corona virus pseudoknot, cyclic-di-GMP 

riboswitch, HIV-1 5' pseudoknot domain, T. thermophila group I intron, O. iheyensis 

group II intron, signal recognition particle RNA, and RNase P RNA were refolded in 50 

mM HEPES (pH 8.0), 200 mM potassium acetate (pH 8.0), and 3 mM MgCl2.  Data for 

the bI3 P546 domain were reported previously 62 [and was refolded in 40 mM MOPS (pH 

8.0) 80 mM potassium acetate, and 20 mM MgCl2]. For all riboswitch SHAPE 

experiments, reactions were supplemented with a concentration of 5 µM ligand, except 

the pre-Q1 riboswitch (4 µM ligand). After folding at 37 °C for 30 min, RNAs were 
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treated with 1M7 (in anhydrous DMSO)30 to a final concentration of 3 mM and allowed 

to react at 37 °C for 3 min. Concurrently, a no-reagent DMSO reaction was performed 

omitting 1M7. Frequencies of 2'-hydroxyl modification were identified by primer 

extension, resolved using capillary electrophoresis, and quantified using custom software 

71, 72. 

2.4.4 Parameterization of SHAPE data.   

After determining the inter-quartile range of the data, nucleotides whose 

reactivities were greater than 1.5 times interquartile range were taken to be outliers15; the 

maximum number of outliers was capped at 10% for RNAs >100 nts and 5% for RNAs 

<100 nts. SHAPE reactivities were then divided by the mean of the 10% most reactive 

non-outlier data, which ultimately placed reactivities on a scale spanning zero (no 

reactivity) to ~1.5.  

We now use and recommend a three-color scale for illustrating SHAPE data in 

which reactivities less than 0.4 are black, between 0.4 and 0.85 are yellow, and greater 

than 0.85 are red.  The 0.4 point represents the value at which the ∆G°SHAPE term (Eqn. 1) 

for base pairing transitions from favorable (negative) to unfavorable (positive) and 0.85 

represents a net thermodynamic penalty of 0.5 kcal/mol or 1.0 kcal/mol per internal 

dinucleotide stack. 

2.4.5 Comparison with other algorithms.   

We evaluated the importance of SHAPE data and the new penalty for pseudoknot 

formation (Eqn. 2) by performing additional benchmarks with the programs ProbKnot 13, 

DotKnot+KL and DotKnot-KL (where KL indicates whether kissing loops are included) 
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73, 74, ipknot 41, pknotsRG-mfe 75, and HotKnots 10, 12 (Table 2.4).  These programs are 

freely available and can be run locally. ProbKnot is capable of predicting structures 

restrained by SHAPE data, and it was therefore benchmarked with and without SHAPE 

data.  

The benchmarks demonstrate the importance of both the pseudoknot free energy 

change function (Eqn. 2) and the use of SHAPE data for accurate structure prediction, 

including pseudoknots (Table 2.4).  The overall accuracy, when SHAPE data are used, is 

highest for ShapeKnots, which is the only program that achieves greater than 90% 

average sensitivity and ppv with the RNAs evaluated in this work.  Without SHAPE data, 

Ipknot performs better than ShapeKnots, and both perform better than ProbKnot, 

DotKnot+KL, DotKnot-KL, pknotsRG-mfe, and HotKnots. 

With respect to predicting the specific base pairs involved in pseudoknot 

formation in our dataset, ShapeKnots with SHAPE data is the only program that obtains 

>90% sensitivity and ppv. DotKnot+KL performs best in the absence of SHAPE data at 

predicting known pseudoknots, and ShapeKnots results in the fewest false positive 

pseudoknots in the absence of SHAPE data (Table 2.4).  Interestingly, the overall 

accuracy of ProbKnot improved with SHAPE data, but the performance at predicting 

pseudoknots decreased when SHAPE data were included. ProbKnot relies on a partition 

function calculation over pseudoknot-free structures to identify the two helices that 

minimally define a pseudoknot.  SHAPE data cause the pseudoknot-free partition 

function to (too strongly) favor one of the two helices that define the pseudoknot. 
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2.4.6 Data and software availability.   

ShapeKnots is freely available as part of the RNAstructure software package at 

http://rna.urmc.rochester.edu.  All SHAPE datasets are available at 

http://www.chem.unc.edu/rna and at the SNRNASM community structure probing 

database 76.  
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3. Chapter 3: Identifying pseudoknots in HIV-1 genomic RNA 

3.1 Introduction 

3.1.1 Pseudoknots perform critical functions in viruses  

Folded RNAs contain many different structure motifs.  These motifs serve as 

building blocks for complex RNA architectures1 and allow the RNA molecules to 

perform multiple diverse functions. One such structure motif is called a pseudoknot.  

Pseudoknots form when the loop region of a hairpin base pairs to a region in the RNA 

molecule outside the hairpin.  Pseudoknots are relatively rare, but highly overrepresented 

in functionally critical motifs. This suggests that pseudoknots are often central 

components of functional RNA structures, making them attractive drug targets2, 3.   

In viruses, pseudoknots are frequently found in the highly structured regions in 

the 5’ and 3’ termini of the untranslated regions (UTR) where they carry out important 

functions4. For instance, a pseudoknot in the internal ribosome entry site (IRES) domain 

of hepatitis C virus (HCV) serves as a tRNA mimic and positions an initiation codon in 

the binding cleft of the 40S ribosome, allowing this virus to bypass cellular translational 

regulation5.  Another pseudoknot, near the 5’ end of human immunodeficiency virus type 

1 (HIV-1), is part of the frame-shifting motif that allows genomic RNA to be translated in 

more than one reading frame to create two unique proteins6.   

Pseudoknots tend to form in close proximity to key functional regions.  As a 

result, correct identification of the pseudoknots motif is fundamental to a structural and 
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functional understanding of RNA. To accurately predict RNA secondary structure, 

including pseudoknots, we developed an algorithm called ShapeKnots (see Chapter 2).  

ShapeKnots combines dynamic programming often used for prediction of RNA structures 

with experimental information and a simple energy model of the entropic cost of 

pseudoknot formation. Unlike other algorithms that attempt to predict pseudoknots, 

ShapeKnots has high prediction accuracy across a variety of RNA lengths and types 

including pseudoknotted and non-pseudoknotted RNAs. This robust performance and 

high degree of accuracy makes ShapeKnots an ideal tool to identify pseudoknots, and 

indications of important biological functions, in a broad range of RNAs. 

3.1.2 Using ShapeKnots to identify pseudoknots in HIV-1 

In this work, I used the ShapeKnots algorithm to predict the secondary structure 

and pseudoknot formation within the NL4-3 HIV-1 RNA genome.  By utilizing the 

ShapeKnots algorithm, I was able to identify three potential pseudoknots: pseudoknot 1 

(which forms over nucleotides 242-253, 257-261, 263-276, 339-343), pseudoknot 2 (977-

981, 986-1000, 1003-1007,1009-1014) and pseudoknot 3 (7249-7253, 7256-7260, 7275-

7279, 7318-7322, 7324-7328).  To determine whether or not these pseudoknots were 

likely to form and whether these structures were important in the viral life cycle, I tested 

these pseudoknots using three different techniques.  The first, called mutual information 

analysis7-9, determined the probability that nucleotides in the pseudoknot stems co-varied. 

Co-variation measures the number of instances that base pairing ability is maintained 

when bases in the pair are mutated10, 11. For example, if one lineage has a predicted CG 

base pair, co-variation would be observed if in another lineage there is an AU pair in the 

same relative position.  The second testing method involved binding a locked nucleic acid 
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(LNA) oligonucleotide12-14 to one side of the pseudoknotted helix. I then used the 

nucleotide-resolution chemical probing technique called SHAPE (for selective 2’ 

hydroxyl acylation analyzed by primer extension) to analyze the reactivities of the LNA-

bound RNA.  It was hypothesized that the bound LNA would disrupt helical 

interactions15 and that the SHAPE reactivities would increase on the other side of the 

helix. Finally, mutations were made in the predicted pseudoknotted helices and effects 

were probed using SHAPE and in virio studies.  As in the LNA binding studies, we 

expected the mutations to disrupt the pseudoknot resulting in changes in SHAPE 

reactivity.  We also expected that disrupting the pseudoknot would cause a decrease in 

viral infectivity.  

Identifying new pseudoknots in viruses can lead to a better understanding of viral 

structure.  Additionally, since pseudoknots tend to form in key functional regions, their 

identification can also lead to the identification of potential therapeutic targets.  In this 

work we chose to identify pseudoknots in HIV-1 because of its large complex structure 

and the previous identification of a pseudoknot at the 5’ end.  

3.2 Results 

3.2.1 Three pseudoknots identified by ShapeKnots algorithm 

Pseudoknots are important biological motifs that tend to be located in functionally 

important, structured regions of RNA.  Due to this tendency, discovery and 

characterization of pseudoknots is critical to understanding the function of an RNA.  In 

this work, we utilized the ShapeKnots algorithm to identify three pseudoknots in HIV-1. 

Two of the pseudoknots are near the 5’ end of the RNA, and the third occurs close to the 

3’ end of the env-coding region (Figure 3.1).  The circleplots also shown in Figure 3.1  
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Figure 3.1: Predicted pseudoknots in HIV-1.   
Circleplots of three potential pseudoknots in HIV-1 identified using ShapeKnots.  The 
sequence is plotted around the outside of the circle and arcs represent base pairs.  
Pseudoknots are easy to identify because they form a cross hatching pattern. In the lower 
part of the figure, a simple schematic of the HIV-1 genome and the locations of the three 
identified pseudoknots within the genome are shown. 
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indicate two regions of base pairing predicted to form in each pseudoknot.  In a 

circleplot, the sequence of the RNA is listed around the outside of a circle and the 

basepairs are indicated as arcs through the circle. Pseudoknots form when the loop region 

of a helix base pairs to another region in a structure and are easy to identify on circleplots 

because they form a cross hatching pattern. Color-coded SHAPE reactivities are super-

imposed on the nucleotides using a scale from ~0 to 1. The pseudoknots predicted to 

form in HIV-1 tend to be compact, forming through local RNA-RNA interactions.  The 

regions of predicted pseudoknots have low SHAPE reactivities, indicating that these 

nucleotides are likely base paired. 

3.2.2 Using mutual information to test for evolutionary support for pseudoknots 

 To test whether the pseudoknots identified with the ShapeKnots algorithm are 

likely to exist, I looked for evolutionary conservation and co-variation across HIV-1 

genomes.  Nucleotides are said to co-vary when base-pairing possibility is maintained 

despite mutation.  Mutual information relates co-variation to the probability that a given 

nucleotide i base pairs with a nucleotide j.  The mutual information is scaled from -1 to 1, 

where -1 indicates low probability that an i, j base pair combination exists and 1 indicates 

a high probability that the i, j base pair combination exists.  The distribution of the mutual 

information for all possible base pair combinations in HIV-1 is given in Figure 3.2.  This 

distribution is fit to a normal curve to identify the 75 and 90 percentiles.  These intervals 

represent the 25% and 10% most highly significant base pair combinations, respectively.  

The average mutual information for each pseudoknot is indicated by a purple line. The 

figure demonstrates that all of the averages fall within the top 25% of the possible base  
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Figure 3.2: Mutual information distribution for all base-pairing conformations in 
the HIV-1 genome.   

The 75% and 90% intervals are highlighted.  The averages of mutual information for 
each pseudoknot are shown in purple.  
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pair combinations for this RNA, indicating that these base pairs are significant and very 

likely form in folded HIV-1 RNA. 

3.2.3 LNA binding to potential pseudoknot motifs 

I then used an LNA binding technique to evaluate formation of two of the 

pseudoknots (pseudoknots 1 and pseudoknot 2). Due to experimental constraints, the 

pseudoknot near the 3’ end was not tested. LNAs are modified RNA oligonucleotides that 

contain a sugar-bridging modification that locks the sugar into a 3’ endo pucker.  LNAs 

form very stable duplexes with complementary RNA. Due to their low Kd values, LNAs 

can successfully compete with intramolecular RNA structure.  In this technique, I added 

an LNA complementary to one side of a potential pseudoknotted helix to a sample of 

HIV-1 RNA and performed SHAPE. Then I compared the bound to unbound reactivities 

in the predicted helix. I expected that the corresponding side of the LNA-bound helix 

would increase in SHAPE reactivity indicating that it had gone from a bound to an 

unbound state.  This method produced the expected increase in SHAPE reactivity for the 

two regions predicted to be part of pseudoknots near the 5’ end of the genome.  Figure 

3.3 shows the results of the LNA experiment evaluating the pseudoknot 2.  In the LNA 

bound case, the nucleotides of the corresponding side of the predicted pseudoknotted 

helix increased in reactivity. 

3.2.4 In virio mutants of HIV-1 pseudoknots 

To test the role of these pseudoknots in virio, we made single nucleotide 

mutations in our pseudoknotted helices and looked at the viral replication rates.   

 



 

62 

 

Figure 3.3: LNA binding confirms predicted HIV-1 pseudoknots.   
The bound and unbound SHAPE reactivity data is superimposed on the predicted 
pseudoknotted structure.  Highly reactive (>.85) nucleotides are colored in red, medium 
(.4-.85) orange and low (<.4) black.  When the LNA is bound (bound helix colored blue), 
the SHAPE reactivities in the complementary pseudoknot stem region increase.  In the 
lower part of the figure, the SHAPE reactivity traces for the bound (blue) and unbound 
(black) SHAPE data are shown.   
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Figure 3.4: Activities of HIV-1 mutants confirm importance of nucleotides in 
predicted pseudoknots.  

Mutations in the pseudoknotted helices are highlighted in pink on secondary structure 
diagrams. Other colors denote SHAPE reactivity in an analogous manner to Figure 3.3. 
Viral activities (measured as genome copies/mL) are shown for the SupT and H9 cell 
lines on the bottom for the following mutants: G261U (light pink), U341A (dark pink), 
G998U (blue), C1013A (green), U7327A (orange), G261U:U341A (purple), 
G998U:C1013A (yellow), and wild type (red).  
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Figure 3.4 shows the genome counts for point mutations made at G261U, U341A, 

G998U, C1013A, U7327A, G261U:U341A, and G998U:C1013A.  The single mutants 

were designed to be synonymous mutations that disrupted each side of the potential 

pseudoknotted helix without disrupting the protein coding sequence.  The double mutants 

were designed allow formation of the pseudoknotted helix. All single mutants resulted in 

a decrease in genome counts relative to the wild type.  The double mutants also showed a 

decrease in replication, indicating that even when the base-pairing pattern was 

complementary, the base pairs did not reform or reformed but they were not functional. It 

is possible that all mutations caused a switch in structure away from the wild-type 

functional structure or that the pseudoknotted helix was a false prediction. 

To detect changes in structure due to the mutations, we performed SHAPE on all 

of the mutants in virio. The SHAPE data suggested that both the single and double 

mutants disrupted the pseudoknotted helices.  An example of this is shown in Figure 3.5 

for pseudoknot 2.  The two single mutants had differences in SHAPE reactivity relative 

to the wild-type genomic RNA.  Additionally, the SHAPE reactivity for the double 

mutant indicated that the pseudoknotted structure did not reform.  We calculated the fold 

adopted by the pseudoknotted region using the ShapeKnots algorithm with input SHAPE 

data.  The predicted structures for pseudoknot 2 are shown in Figure 3.5. This analysis 

suggests that the pseudoknot is broken by the single mutations and does not reform with 

the double mutation. This would account for the low viral counts in the in virio study for 

both single and double mutants.  
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Figure 3.5: Effects of mutations on SHAPE reactivities.   
The SHAPE reactivity traces for the G998U, C1013A, and G998U:C1013A mutants 
verses the wildtype are shown on the right.  Nucleotide are colored by their SHAPE 
reactivity. Highly reactive (>.85) nucleotides are colored in red, medium (.4-.85) orange 
and low (<.4) black.  Base paired predicted in both the mutant and wildtype are shown in 
green, missing (in mutant) in red, and different (in mutant) in purple. 
The SHAPE-directed predictions of secondary structures of mutants are shown on the 
left. 
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3.3 Discussion 

In this work, I utilized the ShapeKnots algorithm to identify three pseudoknots in 

the HIV-1 genomic RNA. I then evaluated whether these pseudoknots form using mutual 

information analysis, LNA binding, and mutagenesis. Upon testing, I found that three of 

the identified pseudoknots showed high levels of co-variation, indicating evolutionary 

support for their existence.  I also saw changes in SHAPE reactivity compatible with the 

disruption of the pseudoknotted helix when an LNA was bound, suggesting the formation 

of the pseudoknots in vitro.   Finally mutations that should disrupt pseudoknot formation 

resulted in decreases in viral replication, indicating not only that the pseudoknots likely 

form but also play a functional role in the replication cycle of the virus.  

Two of the identified pseudoknots are predicted to form near the 5’ end of the 

HIV-1 RNA.  The 5’ end of the HIV-1 RNA is very highly structured and contains many 

important functional elements such as the tat responsive element (TAR) binding element, 

the 5’ poly A signal, and the primer binding site (PBS)16. One pseudoknot forms between 

nucleotides 242-253, 257-261, 263-276, and 339-343 (pseudoknot 1); this region 

encompasses the start of the protein coding sequencing (AUG start codon nucleotides 

335-338).  The structure of pseudoknots allows them to break and reform easily, making 

them ideal biological switches. We hypothesize that the pseudoknot at the beginning of 

the coding sequence acts as a method of translational control: turning on and off 

translation.  

Another pseudoknot appears to form between nucleotides 977-981, 986-1000, 

1003-1007,1009-1014 (pseudoknot 2) within the gag-pol gene.  The Gag protein provides 

the physical infrastructure of the virus; this gag gene encodes the viral capsid protein 
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p24, nucleocapsid proteins p6 and p7, and the matrix protein p1717.   The small compact 

nature of this pseudoknot suggests that it may slow translation.  Therefore we 

hypothesize that this pseudoknot may help to slow or even pause translation and to allow 

processing or folding of the proteins encoded by the gag gene.   

The third pseudoknot forms between nucleotides 7249-7253, 7256-7260, 7275-

7279, 7318-7322, and 7324-7328 (pseudoknot 3). This region is within the portions of the 

env gene that code for gp120 and gp41. These two proteins are processed from the 

primary translation product of the env gene, gp160.  We hypothesize that this pseudoknot 

serves to switch between these two protein-coding regions.  This pseudoknot may also 

provide interesting insight into the structure of the Rev response element (RRE). 

Previously, the RRE was thought to fold into a rigid, long stem structure,18, 19 but the 

formation of the pseudoknot would suggest that the RRE folds into a less rigid domain. 

The flexibility that would be provided by a pseudoknotted structure is consistent with the 

general idea that viruses do not fold into long helical structures but rather small base-

paired domains20-22. This flexibility might be important if the pseudoknot played a role in 

switching the coding sequence between gp120 and gp41.   

One reason that the structure of the RRE domain proposed here differs from 

previously proposed models may be that I considered the entire HIV-1 genome.  In the 

previous studies, the RNA was characterized by cutting the RRE at the base of the 

predicted stem and then folding the RNA. This fragment of RNA does not contain bases 

necessary for pseudoknot formation. Studies suggest that this type of “end folding” effect 

can cause significant structural rearrangements23.  Therefore, we hypothesize that the 

RRE does not form a long helical stem in the context of the full-length viral RNA. 
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3.3.1 Conclusion 

This work demonstrated that the ShapeKnots algorithm accurately identified three 

pseudoknots in HIV-1.  The presence of these pseudoknots was confirmed using a 

combination of computational and experimental studies.  The ability to identify 

pseudoknots is critical to understanding the function of RNA.  As known pseudoknots 

occur in motifs critical for biological function, this suggests that they can be used as 

effective drug targets.   In the future, the ShapeKnots algorithm can be used to identify 

pseudoknots in other viral genomes such as HCV, Dengue, and severe acute respiratory 

syndrome virus (SARS).  

3.4 Experimental 

3.4.1 SHAPE on HIV-1 RNA 

NL4-3 HIV-1 RNA was purified from virions as reported by Watts et al.18.  The 

extracted RNA was refolded in 50 mM HEPES (pH 8.0), 200 mM potassium acetate (pH 

8.0), and 3 mM MgCl2 and treated with 1M7 (50 mM) in DMSO or with DMSO as a 

control.  Locations of adducts were resolved using capillary electrophoresis as 

described24.  Data was processed using custom software25, and reactivities were scaled 

from ~0 to 1 using a boxplot normalization26.  

3.4.2 Identification of Pseudoknots 

The base-pairing pattern of HIV-1 RNA was calculated using the ShapeKnots 

algorithm (see Chapter 2) in 600-nucleotide sliding windows that were moved in 100-

nucleotide steps, resulting in overlapping 600-nucleotide windows.  Input parameters 

were as follows: m=1.8, b=-0.6, p1=0.35, p2=0.65, window size=0, max structure=100.  
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To be scored as legitimate, predicted pseudoknots were required to appear in more than 

one folding window and have low median SHAPE reactivity consistent with structured 

elements. 

3.4.3 Comparison of Mutual Information 

HIV-1 sequences were obtained from the Los Alamos HIV database27.  Mutual 

information for each possible nucleotide pairing in HIV-1 was calculated using MIFold8.  

Mutual information values were normalized to the degree of variation at each nucleotide.  

These normalized mutual information values were fit to a Gaussian curve and the 75% 

and 90% percentiles were computed.  The mutual information for each base pair in each 

possible pseudoknotted helix was compared to the 75% confidence value.  If the mutual 

information was below the 75% confidence value for all base pairs in a helix, that 

pseudoknotted helix was eliminated from consideration.  

3.4.4 Binding of LNAs 

To test if my proposed pseudoknots formed in vitro, a complementary LNA 

oligonucleotide was bound to one side of the pseudoknot helix, and SHAPE was 

performed.  Differences between the LNA-bound and unbound SHAPE reactivity profiles 

were calculated by subtracting reactivities corresponding to the bound state from those 

corresponding to the unbound state.  The statistical significance of these differences was 

determined by comparing the differences to a standard t-test.   

3.4.5 In Virio Mutants 

To test the existence and functionality of the pseudoknots in virio, point mutations 

were made: G261U, U341A, G998U, C1013A, and U7327A.  Additionally, the double 
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mutants G261U:U341A and G998U:C1013A were constructed as described in Gorelick 

et al.28.  These mutations were subsequently tested for growth using a virion associated 

reverse transcription assay in the culture media in H9 and Supt-1 cell lines. The amount 

of RNA genome copies for each cell line was determined by methods described in 

Gorelick et al.28.  
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4. Chapter 4: Using Shannon entropies to calculate the accuracy of 
secondary structure predictions 

4.1 Introduction  

4.1.1 Predicting accurate RNA structures is an important goal 

RNA molecules are involved in many fundamental cellular processes such as 

catalysis, transcription, translation, RNA splicing, and RNA editing1, 2.  These multiple 

functions are governed largely by the ability of an RNA to fold into complex secondary 

and tertiary structures3, 4.  To fully understand the function of RNA in cells and how these 

macromolecules regulate biological processes it is necessary to understand their 

structures.   

Computational folding algorithms provide an efficient method for determining 

RNA secondary structure by employing various methods including: statistical sampling, 

partition function folding, and free energy minimization (MFE)5-8. However, many of 

these traditional RNA folding algorithms suffer from two problems: incomplete and 

inaccurate energy rules and an inability to predict pseudoknots9.  Pseudoknots are 

relatively rare RNA structure motifs that have been identified in or near functional 

regions in a number of RNAs 10-12.  

To overcome these problems, we recently developed ShapeKnots, a dynamic 

programming algorithm that identifies potential structures by MFE.  It is one of the most 
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accurate prediction algorithms available and is able to refine structures with an average 

sensitivity of 94% (see Chapter 2). This represents a 20% increase over traditional mFold  

class algorithms.  The success of ShapeKnots can be attributed to its ability to (1) 

successfully allow and identify pseudoknotted base pairing and (2) incorporate 

experimental selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) data 

to refine incomplete energy models13.  Chapter 2 provides details on the development of 

and theory behind ShapeKnots.  

4.1.2 Identifying the mistakes in predicted structures 

Despite the significant advances of the ShapeKnots algorithm, for a few RNAs 

the accuracy as low as 66%. The lack of accuracy results from one of three problems: (1) 

Mistakes result from lack of base pairing at the ends of helices or from slightly shifted 

helices.  Most of the mistakes in the ShapeKnots test set and training set fall into this 

category (see Chapter 2).  Such mis-predictions do not change the overall structure of the 

RNA, are generally viewed as minor mistakes14 and only change the accuracy about 10%. 

(2) Most of the structure is correctly predicted, but one or two helices are incorrectly 

predicted.  For example, the E. coli 5S rRNA is predicted at a sensitivity of 85%; 

however, one of the main helices is not predicted correctly, significantly altering the 

structure (see Chapter 2).  (3) The RNA is severely mis-predicted.  RNAs with structure 

induced by protein or ligand interactions or that likely sample multiple conformations 

create large problems for RNA folding algorithms because most prediction algorithms 

can only consider one structural conformation at a time and do consider protein binding 

in folding. This causes RNAs, such the RNA components of RNase P and the human 
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signal recognition particle (SRP) RNA, to be severely mis-predicted (see Chapter 2).  The 

average accuracy of these two RNAs is only 66%.  

Despite these types of mistakes, ShapeKnots predictions give key insights into the 

likely conformation of a particular RNA. If we could somehow tell a priori which 

regions of the RNA are correctly or incorrectly predicted, we would know which parts of 

the structure to trust. For this reason, I developed a heuristic way to evaluate, at 

nucleotide resolution, the regions of the RNA that are likely predicted correctly.  

 One way to assess the confidence in the predicted fold is to use partition function 

calculations. The partition function describes the statistical properties of a system in 

thermodynamic equilibrium and allows for the calculation of base-pair probabilities5, 6, 15. 

The partition function incorporates both the nearest neighbor energy rules and the 

energies associated with base pairing. Most of the aggregate thermodynamic variables of 

the system, such as the total energy, free energy, entropy, and SHAPE reactivities, can be 

expressed in terms of the partition function or its derivatives5, 6, 15.  Partition function 

algorithms that are based on these calculations can provide a measure of confidence for 

MFE structure predictions; however, these algorithms often suffer from the same 

problems as their original mFold RNA prediction counterparts.  They are still built upon 

incomplete energy rules and often do not allow for pseudoknotted pairings5, 6, 15.  

In this chapter, I describe how we utilized the algorithmic advances that made the 

ShapeKnots algorithm possible to improve the partition function calculation.  To do this, 

we first expanded the experimental input of our energy function to include both 

traditional, 1M7, SHAPE16 and differential, NMIA and 1M6, SHAPE data17.  The 

differential data can be used to limit the number of possible structures17. Second, we 
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utilized the pseudoknot prediction capabilities of ShapeKnots.  The ShapeKnots 

algorithm identifies pseudoknots using a topological model for pseudoknot formation.  

This model estimates the three-dimensional distance over which the pseudoknot forms 

and then relates that distance to an entropic penalty for pseudoknot formation.   Finally, 

we calculated a Shannon entropy term, as introduced by Huynen et al.18, for each 

nucleotide, n, by summing the probabilities of all potential base-pairing partners for n.  

Since the Shannon entropy is calculated over all possible base-pairing partners, it allows 

global representation of secondary structure conformations without limitation to a single 

predicted structure (as is necessary when using a basic partition function calculation to 

identify accuracy).  

By incorporating these changes into the structure prediction algorithm, we were able 

to calculate the Shannon entropy across an RNA structure and identify regions of 

structure that are likely accurate and regions of low probably that are likely inaccurate.  

We also showed that the Shannon entropy and SHAPE data could be used to identify 

regions of an RNA that are likely to have multiple conformations.   

4.2 Results 

4.2.1 Identifying the accuracy of secondary structure prediction 

As described in this chapter, we sought to develop a useful method of determining 

the accuracy of structure prediction at nucleotide resolution.  To do this, we modified the 

energy function to incorporate both traditional 1M7 SHAPE16 and differential SHAPE17, 

pseudoknots, and offsets in helices.  This modified energy function was incorporated into 

a partition function calculation and used to sum the Shannon entropy for each nucleotide 

in an RNA. 
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In order to test the new algorithm, we used a test set of RNAs chosen to represent 

those RNAs with complex and generally difficult to predict structures.  These RNAs 

included (i) seven RNAs with pseudoknots, (ii) four RNAs with structures that are 

predicted especially poorly with accuracies <60% using nearest-neighbor thermodynamic 

parameters, and (iv) ten RNAs whose structures are modulated by protein and ligand 

binding.  

4.2.2 Calculating the partition function as a Shannon entropy 

The Shannon entropy for each nucleotide in an RNA sequence calculated by the 

equation: 

   Shannon entropy = 𝑃 ∗ log𝑃     (1) 

where P is the base pairing probability of each i, j base pair combination in the RNA.  

The lower the Shannon entropy the more likely the nucleotide is to exist in a single, 

highly probable conformation18. Unlike traditional partition function calculations, the 

Shannon entropy can identify both highly probable base pairing and single-stranded 

regions.  It identifies nucleotides when they have one highly probable base pairing 

partner and when all base pairing probabilities are low and the nucleotide is likely to be 

single stranded. Therefore, low Shannon entropy corresponds to high probability of a 

single conformation and provides a convenient way to visualize the data on a single scale. 

By calculating the probability as a Shannon entropy, we also allow for a global 

representation of the structure.  Traditional partition function calculations work by 

identifying the probability of a singular i, j base pair conformation.  When superimposing 

these partition function values onto a secondary structure, the partition function changes 

for each possible suboptimal structure.  Although this is helpful in some cases, this 
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technique requires a pre-identified secondary structure and cannot be used as a general 

measure to identify regions of RNA that are prone to structural inaccuracies.  In one 

suboptimal structure particular base pairs may be improbable, whereas in another 

suboptimal structure these same pairs may be highly probable.  The Shannon entropy 

sums over all possible base pair combinations, and thus it can identify regions of high and 

low probability that are not limited to a single RNA conformation.  An example of a 

global Shannon entropy calculation is shown in Figure 4.1.  Figure 4.1 shows the first 

2000 nucleotides in HIV-1 genome.  Low Shannon entropies (blue) are observed in 

regions with that have previously characterized structures: the trans-activation response 

element (TAR) and the dimer initiation site (DIS)19, 20. In contrast, higher Shannon 

entropies (black) correspond to more flexible regions of the RNA. 

4.2.3 Subdividing the Shannon entropy 

Although the Shannon entropy values are a useful metric for determining the 

probability of a structure, the raw Shannon entropy values are hard to interpret.  They 

scale based upon the length of the RNA and with the inclusion of SHAPE and differential 

data.  Therefore, we created a method for scaling the Shannon entropies, denoted here as 

scaled Shannon entropies. 

The scaled Shannon entropies were determined by fitting the Shannon entropy 

distributions for predictions with and without SHAPE data to a beta probability 

distribution21, 22 calculated using the following equation:    

    𝑃 = !!!!(!!!)!!!

!(!,!)
    (2) 

Here 𝛼 and 𝛽 are fit parameters determined to be .27 and 2.33, respectively. 
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Figure 4.1: Shannon entropies values over the HIV-1 genome.   

Shannon entropy values for the first 2000 nucleotides of the HIV-1  genome.  Shannon 
entropy values less than 0.1 are colored in blue.  Shannon entropies greater than 0.1 are 
colored in black.  Key functional elements are labeled: TAR, DIS, Frameshift element.  
The coding region for the 5’ UTR and gag/pol coding sequence is also highlighted.   
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Figure 4.2: Distribution of the Shannon entropies from no SHAPE and SHAPE 
directed predictions.   

The combined distribution for calculated Shannon entropies for the no SHAPE and 
SHAPE is shown in grey.  The x-axis represents the Shannon entropy values and the y-
axis represents the number of counts.  The Beta curve fit is shown in red. 
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The distribution of the Shannon entropies is shown in Figure 4.2. The Shannon entropy 

values were rescaled so that they matched the percentiles of the distribution.  For 

instance, a Shannon entropy value of 0.03, the mean, corresponds to 50%. Since the 

average sensitivity of an mFold class algorithm is ~73% and the average sensitivity of 

ShapeKnots is 94% (see Chapter 2), I choose cut off values at 60%, 75%, and 90%.  This 

range assumes that a majority of the Shannon entropies we study come from correctly 

predicted base pairs. 

In Figures 4.3-4.9 the scaled Shannon entropy values are superimposed around 

the outside of the circleplot (see Chapter 2) as colored stars.  Scaled Shannon entropy 

below 60% are colored black, those between 60 and 75% are dark blue, those between 75 

and 90% are light blue, and those between 90 and 100% are white.  Stars in dark blue and 

black indicate high Shannon entropy and poorly defined structures, whereas light blue 

and white stars indicate low Shannon entropy and highly defined structures.  By 

representing the Shannon entropy in this manner, it is easy to identify regions of the 

structure that have high and low probabilities.  

4.2.4 Offset Helices 

Nucleotide offsets occur frequently when predicting RNA structure23.  An offset 

occurs when a nucleotide is incorrectly predicted to base pair with a nearest neighbor of 

the correct nucleotide.  Nucleotide offsets can occur for single nucleotides, but usually 

occur for all nucleotides in a helix. When we examine these offset helices using 

alternative structure prediction techniques like X-ray crystallography, we generally see 

that both helices are compatible with the overall fold and topology of the RNA (see 

Chapter 5). This suggests that this shift in a helix up or down one nucleotide probably 
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does not affect the overall structure of an RNA and may just reflect a flexible region.  

Thus, both base pairing patterns are often deemed to be correct. However, since the 

partition function calculates the probability of each base pair partner individually, the 

accepted and the shifted helices are identified as low probability.  In other words, even 

though two helices are effectively the same structurally, the partition function treats them 

like competing structures and the resulting Shannon entropy is artificially high. To 

account for this local base pairing flexibility we replace the sum of each offset base pair 

with the sum of the probabilities of the two offset base pairs.   

An example of this type of calculation is shown in Figure 4.3.  In Figure 4.3A, the 

dot plot of the most probable base pairs of the TPP riboswitch is shown.  Helices are 

identified by groups of base pairs on diagonal lines. Although most of the probable base 

pairs occur in distinctive isolated helices, some helices appear in pairs: one member of 

the pair is correct, the other is offset.  For example, this occurs for the helix between 

nucleotides 6-9 and 38-40 (Figure 4.3B).    

The accepted base pairing pattern24 and the structure predicted for the TPP 

riboswitch by ShapeKnots are shown in Figure 4.3C-D. The scaled Shannon entropies are 

superimposed around the outside of the circle. The predicted structure (Figure 4.3C) 

includes two helices that have low Shannon entropies, but are nearly correctly predicted. 

In the dot plot (Figure 4.3A-B), these helices correspond to regions where two highly 

probable helices are next to one another.  We treat these two probable helices as a single 

structure by summing the probabilities for each nucleotide across both helices. When we 

do this, the Shannon entropy in this region decreases, which more accurately represents 

the pairing probabilities of these nucleotides (Figure 4.3D).  When this factor was  
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Figure 4.3: Identifying single nucleotide offsets in helices.   
A) The dot plot for the TPP riboswitch.  Both the x and y axis plot the sequence and base 
pairs are represented by dots on the plot.  The plot is limited to show only the most 
probable base pairs.  The base pairs are ranked by their probability from red (highly 
probable) to blue (lowly probable).  
B) Zoomed –in version of part A corresponding to the highlighted box in A.  The 
probabilities are shown for each nucleotide in decimal format.   
C-D) The correct24 and predicted structures of the TPP riboswitch for when the inline 
helix correction was not taken into account (left) and when it was taken into account 
(right).  Correctly predicted base pairs are shown in green, mis-predicted in purple, and 
missing in red.  The Shannon entropies are shown around the outside of the circle from 
black (low probability) to white (high probability).  The dotted lines in part D indicate 
where the helix has two high probable conformations and the Shannon entropies have 
been altered accordingly. 
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incorporated into our algorithm, there was a significant increase in the correlation 

between true low and high probability helices. 

4.2.5 Pseudoknot prediction 

Pseudoknots are traditionally excluded from RNA structure prediction algorithms 

due to their tendency to increase calculation time and decrease structurally accuracy.  

However, pseudoknots are key functional elements and therefore, the correct prediction 

of them is critical to understanding RNA biology10, 11, 25, 26.  Previously, we developed a 

method for identifying correct pseudoknots by RNA topology.  To incorporate 

pseudoknots into the partition function, pseudoknots were first identified using the 

entropic penalty term found in the ShapeKnots algorithm (see Chapter 2).  

 ∆G°PK = P1 ln (e2 SS + f 2 NE) + P2 ln ΣIL(n)(λn
2) (3) 

where P1 is 0.35 kcal/mol, P2 is 0.65 kcal/mol, and λn is the penalty constant for in-line 

helices of length n. The first term penalizes formation of pseudoknots with long single-

stranded regions and many nested helices, whereas the second term enforces an optimal 

geometry for in-line helices.  Once identified, the pseudoknot is incorporated into the 

partition function by breaking the pseudoknot into two sets of helices (Figure 4.4).  The 

first set considers the one pseudoknot helix that crosses the most base pairs. The second 

set considers all remaining pseudoknotted helices.  For each pseudoknot, the partition 

function is run twice, while holding out each set of pseudoknotted helices.  The final base 

probabilities are then calculated as the geometric average of each i. j base pair probability 

(see Experimental). 
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By incorporating pseudoknots into the partition function calculation, the 

probabilities more accurately identify regions of instability compared to traditional 

partition function that do not include pseudoknots. For example, Figure 4.4 shows the 

ShapeKnots predictions for the secondary structures, including pseudoknots, of the SAM 

I riboswitch27 and the Azoarcus group I intron28 compared to structures determined by 

crystallography.  In both cases, the predicted structure matches well with the accepted 

structure.  The left side of the figure shows the structures predicted and the Shannon 

entropies when pseudoknotting is not incorporated into the partition function. In these 

cases, the Shannon entropies are high around the pseudoknot.  These high entropies 

suggest that the pseudoknot is incorrect.  When the partition function includes the 

pseudoknot calculation (right side), the Shannon entropies are low for the entire RNA 

indicating that it is a high quality prediction.  

4.2.6 Incorporating differential SHAPE data  

Previous studies have demonstrated how incorporating 1M7 SHAPE data 

increases accuracy of RNA structure prediction algorithms13.  In this work, we 

incorporate a second SHAPE energy term called differential SHAPE.  Differential 

SHAPE is calculated by subtracting NMIA reactivity at each nucleotide from 1M6 

reactivity17.  NMIA and 1M6 have very different half-lives.  The difference in reactivity 

between these two reaction times provides structural information.  For instance, 

nucleotides that are more reactive to 1M6 than to NMIA tend to occur at the ends of 

helices and near tertiary interactions.  Conversely, nucleotides that are more reactive to 

NMIA than to 1M6 tend to be extremely flexible17.  By incorporating these data into our  
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Figure 4.4: Predicting Shannon entropies with pseudoknots.   
(A) Pseudoknot prediction method.  The pseudoknotted helices are grouped into two sets 
(see Experimental).  For each set, the corresponding nucleotides are held out (forced 
single stranded) and the Shannon entropies for the remaining nucleotides are calculated.  
On the left the pseudoknot in grey is held out, and the calculated Shannon entropies are 
super imposed.  In the middle, the process is repeated for the other pseudoknotted helix.  
Finally the two sets of Shannon entropies are combined (see Experimental) to produce 
the final structure.   
(B-C) The Shannon entropies of the SAMI riboswitch 27, and Azoarcus Group I28 
compared to the conventional crystal structures, both without(left) and with(right) the 
inclusion of pseudoknots.  Structural annotations that same as described in Figure 4.2. 

G
1

G G C U G U U
U
U 10
U
C
U
C
G
C
U
G

AC
20

UUUCAGCC
CA

30

A

C
A
C
A
A
A
A
A
A
40 A
G

U C
A G

C
47

*****************************
**

**
**
**
**
**
**

***
*G

1

G G C U G U U
U
U 10
U
C
U
C
G
C
U
G

AC
20

UUUCAGCC
CA

30

A

C
A
C
A
A
A
A
A
A
40 A
G

U C
A G

C
47

*

G
1

G G C U G U U
U
U 10
U
C
U
C
G
C
U
G

AC
20

UUUCAGCC
CA

30

A

C
A
C
A
A
A
A
A
A
40 A
G

U C
A G

C
47

A) Human Telomerase Pseudoknot motif

C
1

U CA U A U U U C
10
G A U G U GC C U U

20
G C G CC GG GA A

30
A CC A

C
G
C
A
A
G 40
G
G
A
U
G
G
U
G
U
C 50A

A
A
U
U
C
G
G
C
G 60A

A
A
C
C
U
A
A
G
C
70G
C
C
CGCCCGG

80
GCGUAUGGCA

90
ACGCCGAGCC

100

AAGCUUCGGC
110
GCCUGC

GCC
G
120
AUG

AA
GG

UG
U
13
0

AG
AG

AC

UA
GA14
0
CG

G
C
A
C
C
C
A
C15
0 C
U
A
A
G
G
C
A
A
A16
0 C
G
C
U
A
U
G
G
U
G17

0
A
A
G
G
C
A
U
A
G
U
18
0

C
C
A G

G G
A G

U G
19
0
G C

G A
A A

G U
C A
200

C A C
A A A

C C G G
210

A A U C
214

**********************************************************************************************************************
*****

***
***

***
**

**
**
**
**
**
**
**
**
**
**
**
**
**
**
* *
**
**
**
**
**
*

**
**
**
**

**
***
***

***
****

******
****C

1

U CA U A U U U C
10
G A U G U GC C U U

20
G C G CC GG GA A

30
A CC A

C
G
C
A
A
G 40
G
G
A
U
G
G
U
G
U
C 50A

A
A
U
U
C
G
G
C
G 60A

A
A
C
C
U
A
A
G
C
70G
C
C
CGCCCGG

80
GCGUAUGGCA

90
ACGCCGAGCC

100

AAGCUUCGGC
110
GCCUGC

GCC
G
120
AUG

AA
GG

UG
U
13
0

AG
AG

AC

UA
GA14
0
CG

G
C
A
C
C
C
A
C15
0 C
U
A
A
G
G
C
A
A
A16
0 C
G
C
U
A
U
G
G
U
G17

0
A
A
G
G
C
A
U
A
G
U
18
0

C
C
A G

G G
A G

U G
19
0
G C

G A
A A

G U
C A
200

C A C
A A A

C C G G
210

A A U C
214

**********************************************************************************************************************
*****

***
***

***
***

**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
* *
**
**
**
**
**
**
**
**
**
**
**

***
***
***

***
****

******
***

C) Azoarcus Group I Intron

U
1

U C U U A U C A A
10
G A G AA GC A GA

20
G
G
G
A
C
U
G
G
C
C 30C

G
A
C
G
A
A
G
C
U
40U
C
AGCAACCG

50
GUGUAAUGGC

60
GAUCAG

CCA
U
70
GA

CC
AA

GG
U
G

80
C
U
A
A
A
U
C
C
A
G90
C
A
A
G
C
U
C
G
A
A
10
0

C
A
G C

U U
G G

A A
110

G A
U A A

G A A
118

**********************************************************************
***
**

**
**
**
**
**
**
**
* *
**
**
**
**
**
**
**

***
***

*****
*

U
1

U C U U A U C A A
10
G A G AA GC A GA

20
G
G
G
A
C
U
G
G
C
C 30C

G
A
C
G
A
A
G
C
U
40U
C
AGCAACCG

50
GUGUAAUGGC

60

GAUCAG
CCA

U
70
GA

CC
AA

GG
U
G

80
C
U
A
A
A
U
C
C
A
G90
C
A
A
G
C
U
C
G
A
A
10
0

C
A
G C

U U
G G

A A
110

G A
U A A

G A A
118

**********************************************************************
***
**

**
**
**
**
**
**
**
* *
**
**
**
**
**
**
**

***
***

*****
*

B) SAM-I Riboswitch

Pseudoknots Excluded Pseudoknots Included



 

88 

Shannon entropy calculation, we can further refine the probabilities and more correctly 

distinguish which parts of the RNA are correct.  Figure 4.5 shows the predictions of the 

secondary structure of E. coli 5S rRNA29 incorporating no SHAPE data, SHAPE data 

obtained with 1M7, and SHAPE data obtained with 1M7 plus differential SHAPE.  

Without SHAPE data, a majority of the structure is mis-predicted (see Chapter 2).   

Shannon entropy values are high indicating that the confidence in the structure predicted 

is low.  The single helix that is correctly predicted has low Shannon entropies, shown in 

white.  When SHAPE data was incorporated, the prediction accuracy increased to 85% 

sensitivity, and the Shannon entropies decreased. The single mis-predicted helix has high 

Shannon entropy.  When the differential reactivity data was included, the prediction 

increased to nearly 100%, and most of the nucleotides have low Shannon entropies.  This 

indicates that the structure is most likely correctly predicted. This example shows us that 

1) use of SHAPE data increases accuracy of structure prediction and use of differential 

SHAPE data increases it even more and 2) regions that are predicted incorrectly 

compared to the accepted structure always have higher Shannon entropies than correctly 

predicted regions. 

4.3 Discussion 

Identifying the probability of accuracy of a structure allows for the differentiation 

between correctly predicted structures that can be used for future biological hypothesis 

and those that are not meaningful. In this work, we refined the partition function 

calculation to better differentiate between highly and lowly probable base pairs.  
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Figure 4.5: 5S E. coli no SHAPE, 1M7 and differential SHAPE 
5S E. coli NoSHAPE (left), SHAPE (middle) and differential(right)  predictions as 
compared to conventional crystal structure29 .  Structural annotation is the same as Figure 
4.2. 
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4.3.2 E. coli 16S and 23S rRNAs 

Figure 4.6 shows the comparison of the predicted structures versus secondary 

structures obtained from crystallographic data on the 16S and 23S rRNAs30-32. When the 

16S and 23S rRNAs were folded without SHAPE data and the calculated Shannon 

entropies were superimposed on the structures, the predictions correlate well with the 

Shannon entropies.  This means that mistakenly predicted nucleotides have high Shannon 

entropy and correctly predicted areas have low Shannon entropy.  

When 1M7 SHAPE data was incorporated into the ShapeKnots algorithm for 16S 

and 23S rRNAs, the accuracy of structure prediction increased from ~65% to 90% and 

from 75% to 88%, respectively (Figure 4.6). In the 23S rRNA SHAPE-based prediction, 

the accuracy of the structure improved, but four helices observed in the accepted structure 

are mis-predicted.  The Shannon entropies are high in these mis-predicted areas.    

In the SHAPE-directed 16S rRNA structure prediction, most of the structure is 

correctly predicted and has low Shannon entropy.  An exception is the region between 

nucleotides 117-193.  The Shannon entropies are relatively low for this region, indicating 

that the predicted 16S structure is highly probable.  This seems contradictory, but when 

we look closer at this region, the SHAPE reactivities match the predicted structure better 

than the accepted structure.  For instance, nucleotides 117-122 are single stranded in the 

accepted structure but were relatively unreactive to SHAPE reagent.  Previously, Deigan 

et al. used a similar SHAPE-directed folding approach to predict the 16S rRNA structure 

and saw the same alternative structure between nucleotides 117-12213.  They tested the 

structure with follow up experiments and showed that their predicted structure was likely 

to occur in vitro. The calculated Shannon entropies, therefore, support the conclusions  
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Figure 4.6: 16S and 23S rRNA no SHAPE and 1M7 SHAPE predictions and 
superimposed Shannon entropies 

No SHAPE (top) and SHAPE (bottom) directed predictions of the 16S(left) and 23S 
(right).  Structural annotations the same as Figure 4.2. 
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made by Deigan et al. and suggest that the SHAPE predicted structure is highly probable.  

This example shows that the Shannon entropies can identify regions of high and low 

probability and that we can use the Shannon entropies to identify structures in RNA that 

should be evaluated experimentally. 

4.3.3 Signal Recognition Particle 

The SHAPE-directed prediction of the SRP protein is shown in Figure 4.7 in 

comparison to the crystal structure33, 34 35.  The sensitivity for the prediction is very low. 

When 1M7 data were included, the sensitivity was 66%. When both 1M7 and differential 

SHAPE were used to direct the prediction, the sensitivity was only 45%. In particular, the 

region between 130-270 is entirely mis-predicted.  Despite the differences between the 

predicted and the accepted structure, the Shannon entropies are low, suggesting that the 

probability of the structure is high.  As in the 16S rRNA case, the SHAPE reactivities 

match the SHAPE-directed structure, but contradict the structure determined from X-ray 

crystallography33, 34. Therefore, again, the SHAPE data suggest that the RNA is not 

forming the same structure under probing conditions as it does upon crystallization.  

One hypothesis for this alternative structure is the difference in experimental 

conditions between crystallization and SHAPE.  In the crystal, several SRP proteins are 

bound to the RNA.  A schematic of the structure in the region between 140- 236 33 is 

shown in Figure 7C.  As three proteins bind in the region between 130-27033, 34, we 

hypothesized that these proteins cause a conformational change relative to the free RNA. 

To test this hypothesis I refolded the SRP RNA in the presence of proteins and 

repeated the SHAPE experiment. 
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Figure 4.7: Signal Recognition Particle 1M7 and differential SHAPE predictions  
A-B,D-E) SHAPE predicted structure for the SRP RNA versus the conventional 
structure35 33.  Protein free structures are shown on the top, while protein bound structures 
are shown on the bottom.  Traditional 1M7 SHAPE predictions are shown on the left and 
differential SHAPE is shown on the right.  
C) Portion of the SRP crystal structure highlighting bound protein regions35 33 
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The SHAPE-directed protein-bound structures are shown in Figure 4.7D and 4.7E. The 

sensitivity of the prediction increased to 93% for the 1M7 and 95% for the differential 

SHAPE.  The Shannon entropies of the majority of the nucleotides are low, indicating 

that the structure is highly probable.  However, the Shannon entropies are still relatively 

high around the region 160-220.  This is the region where the SRP-19 protein is bound 

and where SRP-54 and SRP-68/72 should bind35 33 (Figure 4.7C).  Since only SRP-19 

was used in this experiment, we expect that there may be some nucleotide flexibility and 

lower probability in this region due to these missing protein interactions.  This analysis 

demonstrates that the Shannon entropies can be used to determine highly probable 

structures and can even help to identify structure prone to conformational switches as 

proteins bind.    

4.3.4 Other small RNAs 

The Shannon entropy calculation was repeated for the no SHAPE, SHAPE, and 

differential SHAPE cases for all small (<100 nts) RNAs in our test set.  Examples of two 

small RNAs (the cyclic di-GMP and the adenine riboswitch) are shown in Figure 4.8. 

These RNAs tend to have well-defined structures that are accurately predicted even 

without the inclusion of SHAPE data with sensitivities for the cyclic di-GMP and adenine 

riboswitch of 85% and 100%, respectively, without SHAPE data.  The Shannon entropies 

for the cyclic di-GMP nucleotides correctly identify the mistakes within the structure 

relative to the accepted structure36.  The Shannon entropies are relatively high for the 

adenine riboswitch.  When 1M7 and differential SHAPE data were incorporated the 

accuracy was high and the Shannon entropies were lower.  This suggests 
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Figure 4.8: Shannon entropy calculations for small RNA predictions.   

The no SHAPE(top), 1M7(middle) and differential(bottom) SHAPE predictions for the 
Adenine riboswitch(right) and cyclic diGMP(left). Structural annotations are the same as 
Figure 4.2. 
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that the Shannon entropy calculation is robust, but without the inclusion of SHAPE data 

probabilities of structural predictions may be low. 

4.3.5 Other large RNAs 

Large RNAs often pose potential problems for RNA structure determination.  

Two sample predictions for large RNAs (the lysine riboswitch and a group I intron) are 

shown in Figure 4.9. The incorporation of SHAPE data increased the structural prediction 

accuracies and decreased the Shannon entropies for both.  However, in the case of the 

group I intron, incorporation of differential data caused mis-incorporation of a 

pseudoknot.  Due to the nature of differential reactivity, slow nucleotides tend to be more 

reactive around pseudoknots.  This is a potential flaw with the method.  Further studies 

will need to be done to identify whether or not differential reactivity is consistent with the 

prediction of pseudoknots. 

4.3.6 Conclusion  

Identifying the probability of accuracy of a structure allows researchers to 

distinguish between correctly predicted structures that can be used to make hypotheses 

regarding function and those that are not meaningful. In this work, we refined the 

partition function calculation to better differentiate between high and low probability 

base pairs.  

The ShapeKnots algorithm has drastically increased the accuracy of RNA 

secondary structure prediction, but the algorithm still has a range of accuracies between  
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Figure 4.9: Shannon entropy calculations for large RNA predictions.   

The no SHAPE(top), 1M7(middle) and differential(bottom) SHAPE predictions for the 
Lysine riboswitch(left) and Group I Intron(right). Structural annotations are the same as 
Figure 4.2. 
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66-100 %. In this work, I showed how we can utilize the Shannon entropy calculations to 

differentiate between regions in an RNA where there is high and low confidence in the 

structure predicted.  Although this does not directly improve the accuracy of RNA 

structure prediction, it tells us which parts of the predicted structure to trust. I show that 

we can use this to gain a greater understanding of the folding patterns of an RNA without 

a structure prediction and that we can use these values to identify the probability that a 

predicted structure is accurate.  I also show how we can utilize Shannon entropies and 

SHAPE data to identify regions in RNAs that can form different structures depending on 

solution conditions or the presence or absence of co-factors. In the future, this technique 

can be further used to identify the probability of structures or identify structures that have 

the potential to undergo a conformational switch. 

4.4 Experimental 

4.4.1 RNA preparation and SHAPE modification.   

The PreQ1 riboswitch, human telomerase RNA, TPP riboswitch, adenine 

riboswitch, cyclic diGMP, SAMI riboswitch, mBox riboswitch, P546, E. coli 5S rRNA, 

Azoarcus group I Intron, lysine riboswitch, RNase P RNA, Tetrahymena group I Intron, 

Oceanobacillis inheyensis group II Intron, 5’ domain of the 23S rRNA, the 5’ domain of 

the 16S rRNA, and the HIV-1 genome were purified as described in Chapter 2.  The 

purified RNAs were then folded in a standard buffer with physiologically relevant ion 

concentrations (as described in Chapter 2) and treated with 1M7.  The TPP riboswitch, 

cyclic diGMP, adenine riboswitch, 5S rRNA, Azoarcus group I Intron, lysine riboswitch, 

RNase P RNA, Tetrahymena group I intron, and O. inheyensis Group II intron RNAs 
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were also treated 1M6 and NMIA for 2 minutes and 30 minutes, respectively, in separate 

experiments.  Sites of 2'-O-adduct formation were detected by primer extension using a 

previously described high-throughput SHAPE approach16 and processed using custom 

software. SHAPE reactivities for 1M7, 1M6, and NMIA were normalized to place them 

on a scale from zero (unreactive) to ~1.5 (highly reactive) as described in Chapter 2. In 

Figures 3-9 the SHAPE data and SHAPE-predicted secondary structure are plotted on 

circle plots against the conventional accepted structure. The nucleotide sequence is 

arrayed on the outer circle:  unreactive nucleotides (SHAPE reactivities < 0.4) are colored 

black, moderately reactive nucleotides (0.4 – 0.85) are yellow, and highly reactive 

nucleotides (reactivities > 0.85) are red. 

4.4.2 Signal Recognition Particle Protein and RNA preparation and modification 

 SRP-19 protein was purified using the previously described methods37 and placed 

in protein dilution buffer (300 mM KOAc, 20 mM Hepes, pH 8, 5 mM MgCl2).  The 

RNA was made from linear transcripts as described in Chapter 2.  The protein and RNA 

were mixed in a 1:1 ratio in 1:5 volume then heated to 80 °C and snapped cooled.  The 

RNA-protein complex was then allowed to fold at 37 °C for 2-3 minutes. After folding, 

the complex modified using 1M7, 1M6, and NMIA 38 in separate reactions and the RNA 

was purified using a RNA cleanup kit (Biogen).  Sites of 2'-O-adduct formation were 

detected by primer extension as previously described16, 39 and were processed using 

custom software.  SHAPE reactivities were normalized as described above.  



 

100 

4.4.3 Shannon entropy calculation 

This is a heuristic method that allows for the differentiation of highly confident 

predicted structural features from low confidence features.  It is based upon the partition 

function calculation that is found in the RNA structure platform5, 6.  The processing steps 

of the modified algorithm are as follows: 

1) Pseudoknotted helices are generated using a method analogous to that found in 

the ShapeKnots algorithm (see Chapter 2). In this method, a candidate 

pseudoknot helix list, H, along with the corresponding helix energies is 

generated from the energy dot plot. Helix Hi is accepted into H if it spans at 

least three base-pairs and occurs in a structure with a ∆G° within 25% of the 

free energy of minimum free energy structure (Smfe), H is trimmed to include a 

maximum of 100 of the most thermodynamically stable helices.  

For each Hi, a new set of structures, composed of the lowest free energy 

structure and up to 100 suboptimal structures, is generated by the dynamic 

programming algorithm, where all nucleotides in Hi are prohibited from 

pairing (forced single-stranded)40. After these structures have been generated, 

base pairs from Hi are restored to the structures. The ∆G° of each structure is 

incremented by the free energy of the corresponding helix Hi. For each 

structure that contains a pseudoknot, the entropic cost of pseudoknot formation 

is penalized by ∆G°PK (Eqn. 3).  For pseudoknots in structures within the top 

10% of the Smfe, limited to no more than 100 structures, the pseudoknotted 

helices are added to a list of pseudoknots, P. 
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2) For each Pi in P, the pseudoknotted helices are grouped into two categories.  

The first represents the singular helix that once removed will abolish the 

pseudoknot (Pk).  When only two helices make up the pseudoknot, the longer 

of the two is identified.  If they are the same length the 5’ most pseudoknotted 

helix is identified. The second category represents all other helices that are part 

of the pseudoknot.  The partition function and Shannon entropy calculation is 

run twice for each pseudoknot.  First, the nucleotides within Pk is forced to be 

single stranded, and then all other helices involved in the pseudoknot are 

prohibited from pairing.  For each separate pseudoknot structure, the Shannon 

entropy is determined when its Pk is not prohibited from pairing.  For all base 

pairs not included in the pseudoknot, the entropy is defined as the geometric 

average of the two Shannon entropies.  This process is shown in Figure 4.3 for 

the human telomerase RNA. 

3) If two helices with greater than 10% probability41 are found within one 

nucleotide either direction, the probabilities of each base pair in the helix is 

replaced by the sum of the two probabilities. This accounts for the tendency of 

base pairs to slip by one nucleotide. 

4) SHAPE data is read into the program using the equation: 

  ∆𝐺!"#$% = 𝑚 ∗ ln SHAPE+ 1 + 𝑏   (4) 

Where m=1.8 and b=-0.6 (See optimization of m and b in Chapter 2) 

5) Differential SHAPE is read into the program using the equation42: 

   ∆𝐺Dif = 𝑚 ∗ DifferentialSHAPE   (5) 

Where m=2.1  
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6) The Shannon entropy is calculated as in (Eqn. 1). 

4.4.4   Color Distribution.  

To identify which Shannon entropies are low (indicating well-defined structure) 

and which entropies are high (indicating a less defined structure), we fit the Shannon 

entropies of the 16 RNAs in our test set to a beta distribution21, 22 (Eqn. 2).  The 60%, 

75%, and 90% intervals of the distribution were calculated.   
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5. Chapter 5: Testing Alternative 16S rRNA state 

5.1 Introduction 

5.1.1 RNA structure can be divided into three different levels 

RNA structure can be discussed on three different structural levels.  The primary 

structure is the nucleotide sequence of the RNA.  The secondary structure is defined by 

the base pairing patterns and provides a blue print for the RNA structure. The tertiary 

structure is the most complex: Tertiary interactions define the three-dimensional structure 

of an RNA. Although tertiary interactions can involve base pairing, these interactions are 

not usually seen in the secondary structure.  

5.1.2 Using X-ray crystallography to determine RNA structure 

One of the most common techniques for determining three-dimensional structures 

is X-ray crystallography. X-ray crystallography identifies structural features by 

measuring the diffraction pattern of electrons.  This diffraction pattern can then be 

mathematically transformed into an electron density map.  Finally, atoms are modeled 

within the electron density. X-ray crystallography can be a powerful technique, but it is 

not compatible with most RNAs.  For instance, molecules must be crystallized for 

analysis by X-ray crystallography.  Only rigid, well-ordered RNAs form crystals of 

sufficient quality for analysis. Since the accuracy of X-ray crystallography depends 
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heavily on the quality of the crystals, the wide range of crystal types formed by RNAs 

poses potential problems1, 2.  To stabilize the structure of flexible RNAs, high 

concentrations of metals, ligands, and proteins can be added to the RNA.  This limits the 

number of conformations the RNA can adopt but also represent conditions that vary 

greatly from biology.  Additionally, most crystallographic studies of large RNAs rely on 

assumptions regarding the RNA secondary structure to trace the general topology of the 

RNA3. This makes it easier to de-convolute electron density and identify a structure. If 

the assumed secondary structure determined based on co-variation analysis or another 

method is incorrect, it can significantly bias the structural prediction.   

5.1.3 Using SHAPE directed prediction to determine the structure of the 16S 
rRNA 

Previously, Deigan et al. attempted to recapitulate the secondary structure from 

the previously crystallized 16S rRNA4  (conventional structure) using SHAPE technology 

(for selective 2’ hydroxyl acylation analyzed by primer extension)5.  In this method, the 

RNA is treated with a small molecule SHAPE reagent that preferentially reacts with 

single-stranded nucleotides, and the reactivities of each nucleotide are determined.  By 

inputting SHAPE data into a folding algorithm, the number of possible structures is 

decreased and the accuracy of predictions is increased (see Chapter 2). The SHAPE-

directed structure (alternative structure) for the 16S rRNA is shown in Figure 5.1.  Most 

of the structure corresponds well with the conventional structure; however, there are 

some regions, including positions 140-220, 1064-1210, 946-1235, and 920-1410 that 

differ significantly.  In these regions, neither the predicted secondary structure nor the 

SHAPE data agree with the conventional model.  Conversely, the alternative structure 
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model matches well with the experimental data.  These data suggest that these regions are 

in a different conformation than the conventional model.   

To test the biological significance of these refolded regions and the validity of the 

SHAPE data, Deigan et al. performed two additional experiments5.  The first tested the 

structure of the region of nucleotides 140-220.  By binding DNA oligonucleotides to 

potential helices and looking for changes in SHAPE reactivity, Deigan et al. 

demonstrated that the SHAPE-directed structure occurred in vitro5.  The second 

experiment tested the region between 920-1410.  This region is near the tRNA binding 

site that is critical to the translation mechanics of the ribosome.  Without the binding of 

tRNA, the amino acids cannot be integrated into the protein sequence.  Since the 

alternative structure was determined without proteins or ligands bound, it is believed that 

differences between the alternative and the conventional structures may be due to the lack 

of critical ligands. To test this, the 16S rRNA was folded in the presence of tRNA, and 

the SHAPE experiment was repeated.  When the 16S rRNA was bound to tRNA, the 

SHAPE reactivities were more similar to the conventional structure than reactivities in 

the absence of tRNA.  This suggested that the alternative structure in this region might 

correspond to a lowest energy state of the RNA that forms before proteins and ligands 

bind.   

The formation of different structures with and without tRNA bound has 

significant implications on the possible mechanism of the 16S rRNA.  If the alternative 

structure identified by SHAPE-directed modeling is biologically relevant, it must fit 

within the general topology of the conventional model.  Since the proposed structure is 

quite different from the conventional structure, it may not be compatible with the overall 
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structure and mechanism of the ribosome.  To determine whether or not the proposed 

secondary structure of the 16S rRNA could be topologically compatible, I utilized 

Discrete Molecular Dynamics (DMD)6 to create a tertiary structure model of the 16S 

rRNA. I then compared this model to the published electron density to determine whether 

the SHAPE-based model was compatible with the X-ray crystallography data4.  

5.2 Results  

5.2.1 Alternative SHAPE directed prediction is different than conventional 
structure 

Previous work by Deigan et al. suggested that the SHAPE-directed structure 

model of the 16S rRNA had significant structural changes compared to the conventional 

model5. To test whether or not these structural differences were compatible with the 

general topology of the 16S rRNA, I utilized DMD6 to model the structures predicted 

based on SHAPE data into the electron density of the 16S rRNA4.   

5.2.2 Using modeling techniques to identify topology of alternative SHAPE 
directed structure 

I first analyzed two regions with limited differences: nucleotides 1064-1210 and 

946-1235.  The secondary structures and conventional and alternative tertiary structure 

are shown in Figures 5.1 and 5.2.  Only limited refolding and remodeling was necessary 

to fit the alternative models for these regions into the electron density. 
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Figure 5.1: SHAPE-directed secondary structure model of the 16S rRNA 
compared to the conventional model.   

Base pairs that are present in both models are shown as green lines connecting residues, 
those base pairs proposed based on the SHAPE-direct model are shown in purple, and 
base pairs present in the conventional model but not in the SHAPE-directed model are 
indicated with red.  The regions highlighted in this chapter are shown on the right.  The 
first is between nucleotides 920-1410, the second between 1064-1210, and the third 
between 946-1235.  
 



 

112 

 

Figure 5.2: SHAPE-directed structural models of small refolded regions  
Regions between nucleotides 1064-1210 (red) and 946-1235 (green).  The conventional 
structure is shown in grey.  
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Figure 5.3: The structure for the region between nucleotides 920-1410 predicted 
by DMD based on SHAPE data.  

The conventional structure is shown in grey.  The helices that differ are highlighted in 
blue (conventional) and orange (SHAPE-based model). 
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Figure 5.4: SHAPE-directed structure refined using PHENIX for the region 
between nucleotides 920-1410.  

The helices that differ are highlighted in blue (conventional) and orange (SHAPE-based 
model). The remainder of the structure has small difference between the 
conventional(light grey) and alternative (dark grey).  
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The region between 920-1410 differs significant between the two models.  I first modeled 

the secondary structure predicted based on SHAPE data using DMD.  This structure and 

conventional structure are shown in Figure 5.3. The general topologies of the two 

structures are nearly identical despite differences in base-pairing patterns.  The DMD 

model based on SHAPE data was inserted into the 16S rRNA electron density, further 

modified in Coot7, and finally refined using PHENIX8, 9.  The final alternative model of 

the 16S rRNA based on SHAPE data is compared to the crystallographic model shown in 

Figure 5.4.   This alternative model fits the same topology of the conventional structure 

and fits well with the electron density data determined from X-ray crystallography. 

5.3 Discussion 

SHAPE-directed studies suggested that the 16S rRNA secondary structure may 

differ from that proposed based on conventional co-variation analysis that was used to fit 

the electron density in the reported X-ray crystallography structure4, 10, 11 (Figure 5.1).  

Although most of the differences between the models are small and localized, the region 

from nucleotide 920 through nucleotide 1410 represents a significant change in folding.  

Despite the changes in base pairing interactions proposed based on SHAPE data, this 

work showed that the SHAPE-directed structure could form a compact tertiary structure 

that is consistent with topology of the conventional structure and the electron density data 

(Figure 5.4).  There are two possible explanations for the base pairing differences in the 

SHAPE-based model and the model proposed by Gutell et. al and crystallized by Dunkle  

et al4, 10, 11.   
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First, the fitting algorithm used to create the model based on X-ray 

crystallographic data is biased by the input secondary structure.  The conventional 

structure previously determined from co-variation was used to model the electron 

density10, 11.  It is not surprising that the crystal structure closely resembles the co-

variation model.  When the secondary structure based on SHAPE-directed modeling used 

as input to PHENIX8, 9 and the R-value was recalculated, the value was nearly analogous 

to that obtained with the conventional structure, suggesting that the SHAPE-directed 

secondary structure fits the X-ray diffraction data as well as the conventional secondary 

structure does.  

Second, the SHAPE-directed structure model was based on data collected in the absence 

of ligands or proteins.  In contrast, the 16S rRNA was crystallized in the presence of 

tRNA, proteins S2-S21, and mRNA4. We hypothesize that these multiple bound proteins 

and ligands caused the 16S rRNA to move away from its lowest energy state; whereas, 

the alternative SHAPE directed structure was probed alone in solution and represents the 

lowest energy state of the RNA. The tRNA binding study by Deigan et al, which study 

showed that when tRNA was bound, the SHAPE reactivities were more consistent with 

the conventional structure, further supports this hypothesis5. 

5.3.1 Conclusion 

In this work, we utilized the information determined from SHAPE probing of the 

16S rRNA to predict the tertiary structure of the molecule.  This worked showed that the 

SHAPE-directed model is compatible with the 16S rRNA topology and electron density4 

and that the ribosome might be in a different conformation when proteins are not bound.  

It also provided us with a unique perspective as to the accuracy of SHAPE-directed 
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predictions and their ability to provide alternative models for use in interpretation of X-

ray crystallographic data.  Lastly, this method demonstrated a unique way to utilize 

SHAPE data to probe both secondary and tertiary structures. In the future these methods 

can be used to identify other tertiary structures from SHAPE data.   

5.4 Experimental 

5.4.1 Performing SHAPE on 16S rRNA 

The 5' domains of the E. coli 16S rRNA was equilibrated in buffer [50 mM 

HEPES (pH 8.0), 200 mM potassium acetate (pH 8.0), 5 mM MgCl2] at 37 °C for 30 

minutes and treated with 1M712.  Frequencies of 2'-hydroxyl modification were identified 

by primer extension, resolved using capillary electrophoresis, and quantified using 

custom software13.  After determining the inter-quartile range of the data, nucleotides 

with reactivities greater than 1.5 times interquartile range were taken to be outliers5. 

SHAPE reactivities were then divided by the mean of the 10% most reactive non-outlier 

data, which ultimately placed reactivities on a scale from 0 (no reactivity) to ~1.5. All 

SHAPE datasets obtained in this work are available at the SNRNASM community 

structure probing database14. 

5.4.2 Folding using RNAstructure Fold: 

 Since pseudoknots could be ignored in this study, the 16S rRNA was folded 

using RNAstructure Fold5. The parameters m=2.6 and b=-0.8 were used for folding5.  
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5.4.3 Discrete Molecular Dynamics calculations: 

 The DMD algorithm models each nucleotide as three separate pseudo atoms: a 

sugar, a base, and a phosphate. Pair-wise interactions, including base pairing, base 

stacking, packing interactions, and electrostatic repulsion, were approximated using 

square-well potentials6.  For this model, base-pairing information determined from the 

RNAstructure prediction was loaded into the program.   

 The simulations began at a high temperature with the RNA strand in an extended 

linear conformation.  In the first step, the RNA was subjected to a folding phase designed 

to allow base pairs and local helical structure to form. Then, the RNA was cooled through 

automated steps as described in Lavender et al.15.  To select a representative structure, 

potential structures from the final step were subjected to hierarchical clustering as 

described in Gherghe et al.16.  Structures were binned by RMSD value into five clusters. 

The centroid of the cluster with the highest population was taken to be the representative 

structure. Refinements were performed on a Linux server (2.67 GHz with 48GB 

memory).    

5.4.4 Modeling: 

The initial model determined from DMD was corrected and improved in several 

rounds using automated restrained refinement with the program PHENIX8, 9 and 

interactive modeling with Coot7.  Source electron density files provided by the Cate Lab 

at the University of Berkeley4.  The DMD model was initially read into Coot and the 

phosphate backbone was fit to the electron density map.  Helices were built from the 

electron density.  The final model was analyzed using the program MolProbity17-19. 

  



 

119 

5.5 References 

1. Lu, J., Li, N.S., Sengupta, R.N. & Piccirilli, J.A. Synthesis and biochemical 
application of 2'-O-methyl-3'-thioguanosine as a probe to explore group I intron 
catalysis. Bioorg Med Chem 16, 5754-5760 (2008). 

2. Mooers, B.H. Crystallographic studies of DNA and RNA. Methods 47, 168-176 
(2009). 

3. Robertson, M.P., Chi, Y.I. & Scott, W.G. Solving novel RNA structures using 
only secondary structural fragments. Methods 52, 168-172 (2010). 

4. Dunkle, J.A. et al. Structures of the bacterial ribosome in classical and hybrid 
states of tRNA binding. Science 332, 981-984 (2011). 

5. Deigan, K.E., Li, T.W., Mathews, D.H. & Weeks, K.M. Accurate SHAPE-
directed RNA structure determination. Proc Natl Acad Sci U S A 106, 97-102 
(2009). 

6. Ding, F. et al. Ab initio RNA folding by discrete molecular dynamics: from 
structure prediction to folding mechanisms. Rna 14, 1164-1173 (2008). 

7. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of 
Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 (2010). 

8. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for 
macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-
221 (2010). 

9. Adams, P.D. et al. PHENIX: building new software for automated 
crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 
1948-1954 (2002). 

10. Gutell, R.R., Larsen, N. & Woese, C.R. Lessons from an evolving rRNA: 16S and 
23S rRNA structures from a comparative perspective. Microbiological reviews 
58, 10-26 (1994). 

11. Wu, J.C., Gardner, D.P., Ozer, S., Gutell, R.R. & Ren, P. Correlation of RNA 
secondary structure statistics with thermodynamic stability and applications to 
folding. J Mol Biol 391, 769-783 (2009). 

12. Mortimer, S.A. & Weeks, K.M. A fast-acting reagent for accurate analysis of 
RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129, 
4144-4145 (2007). 

13. Karabiber, F., McGinnis, J.L., Favorov, O.V. & Weeks, K.M. QuShape: rapid, 
accurate, and best-practices quantification of nucleic acid probing information, 
resolved by capillary electrophoresis. Rna 19, 63-73 (2013). 



 

120 

14. Rocca-Serra, P. et al. Sharing and archiving nucleic acid structure mapping data. 
Rna 17, 1204-1212 (2011). 

15. Lavender, C.A., Ding, F., Dokholyan, N.V. & Weeks, K.M. Robust and generic 
RNA modeling using inferred constraints: a structure for the hepatitis C virus 
IRES pseudoknot domain. Biochemistry 49, 4931-4933 (2010). 

16. Gherghe, C.M., Leonard, C.W., Ding, F., Dokholyan, N.V. & Weeks, K.M. 
Native-like RNA tertiary structures using a sequence-encoded cleavage agent and 
refinement by discrete molecular dynamics. J Am Chem Soc 131, 2541-2546 
(2009). 

17. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular 
crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21 (2010). 

18. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: 
structure validation and all-atom contact analysis for nucleic acids and their 
complexes. Nucleic Acids Res 32, W615-619 (2004). 

19. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for 
proteins and nucleic acids. Nucleic Acids Res 35, W375-383 (2007). 

 
 

 



 

121 
  

6. Chapter 6: Principles for understanding the accuracy of SHAPE-directed 
RNA structure modeling. 

6.1 Introduction 

6.1.1 RNA modeling may provide a useful alternative method for experimental 
techniques 

The universe of biologically important RNAs with true three-dimensional tertiary folds, 

mediated by long-range and higher-order interactions, is likely to be very large. However, only a 

small fraction of these structures have been characterized at high-resolution. Moreover, there 

exist many functionally important RNA states, including folding intermediates and elements 

containing flexible motifs, whose structures cannot be established by direct high-resolution 

structure determination approaches. Structure-function relationships for these RNAs can, in 

principle, be addressed by accurate three-dimensional RNA structure modeling. 

The field of RNA modeling is developing rapidly and many new ideas have been 

introduced for obtaining useful structures. Strategies for three-dimensional RNA structure 

prediction and modeling differ in whether they use all-atom or simplified representations of 

RNA structure, allow or require expert user intervention, facilitate incorporation of experimental 

information, or are designed for small versus large RNA motifs (reviewed in 1, 2). Ultimately, the 

goal of all modeling approaches is the same: to generate an accurate structural model that is 

useful for designing, testing, confirming, or rejecting chemical and biological hypotheses.  

RNA molecules are built up from just four nucleotide building blocks and form a single 

predominant secondary structure, the A-form RNA duplex.  Thus, RNA structure prediction 



 

122 

might be easier than for proteins3.  Even with these simplifying features, a given RNA can fold 

into a very large number of potential structures.  An RNA of N nucleotides can form roughly 

1.8N base paired secondary structures4 and a large number of tertiary folds.  

6.1.2 Identifying methods of determining the accuracy of RNA tertiary models 

The best way of summarizing the quality of an RNA structure model will vary depending 

on the prediction goals and methods.  The quality of a tertiary structure model at the level of its 

overall fold can be summarized in a simple way as the root mean square difference (RMSD) 

between predicted and accepted RNA structures over a representative sets of atoms, typically a 

ribose atom or the phosphate position. A strength of using the RMSD to characterize structure 

prediction is that this metric can be applied to both simplified and all-atom models. Other metrics 

are necessary to characterize the accuracy of local interactions.  For example, local base pairing 

and stacking interactions are sensitive to the all-atom RMSD, the global distance test (GDT, 

widely used to assess template-based models of protein structure) 5, 6, or the recently introduced 

interaction network fidelity (INF) which applies specifically to RNA 7.  The decision to focus on 

the global fold versus local interactions depends on the specific modeling objective.  For longer 

RNAs with long-range tertiary interactions, it currently remains a major challenge to predict the 

overall architecture correctly; whereas, predictions for small helical RNAs or of individual 

motifs within large RNAs can sometimes correctly identify many individual hydrogen bonding 

and base stacking interactions.   

In this work, we sought to develop an approach for characterizing algorithms designed to 

predict the overall architecture of relatively large RNA (50-200 nts), characterized by extensive 

long-range interactions that involve more than individual helices (for example, Figure 6.1A). We 

focus on metrics for assessing the global fold of an RNA at roughly "nucleotide resolution".  
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This is also the level of RNA structural information that is obtained from most biochemical 

experiments when applied to large RNAs.  This class of experiments includes chemical probing, 

through-space cleavage and crosslinking, and solution hydrodynamic measurements.  To this 

end, we address the magnitude of RMSD that constitutes a successful prediction, as opposed to 

models that are not significantly different from those expected by chance. Throughout this work, 

we will emphasize RMSDs calculated over all phosphate positions, although our conclusions are 

likely to apply to correlations calculated at any backbone position. 

6.1.3 Identifying variables that will effect the accuracy of prediction 

Success and failure for tertiary structure prediction are obvious at the extremes. For 

example, for an RNA of moderate size like the SAM-I riboswitch (94 nts) 8, a model with 4.5 Å 

RMSD relative to the crystallographically determined structure 9 clearly corresponds to a good 

prediction; whereas, a prediction at 18 Å RMSD is unlikely to be helpful in generating strong, 

testable biological hypotheses (Figs. 1A,C). At 13.2 Å RMSD, a model for this RNA clearly 

resembles the experimentally determined structure (Figure 6.1B). However, given the intrinsic 

rigidity of RNA helices and the limited number of nucleotide building blocks, it is not clear 

whether a model that differs from the accepted structure by 13.2 Å RMSD constitutes a 

successful prediction, especially if the secondary structure is used as a constraint during 

modeling. 

RNA chain length is an important variable in establishing the RMSD value that describes 

a non-random prediction. The range of RMSD values that correspond to similar RNA structures 

increases with chain length. For example, two RNAs with a 4.5 Å RMSD are similar if their 

lengths are 94 nts (Figure 6.1A),  
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Figure 6.1: Comparison of an accepted RNA structure with modeled tertiary structures 
as a function of RMSD similarity.   

The experimentally determined 9 and simulated structures of the SAM riboswitch (94 nts, 2gis) 
are shown as gray and colored backbones, respectively. 
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but are dissimilar if they comprise short base paired duplexes.  This feature is common to both 

protein 10, 11 and RNA structure prediction, but may be more pronounced with RNA for two 

reasons. First, structured RNAs tend to be more elongated and less globular compared to proteins 

of similar mass. Second, stacked helices comprise the major structural building block for RNA, 

are relatively rigid, and can span large linear dimensions. If a helix is modeled to be in roughly 

the right place but is angled relative to the correct orientation, this error can propagate to produce 

large RMSD values with modest degrees of angular deflection. 

A second criterion distinctive to RNA structure prediction is that the pattern of base 

pairing that comprises an RNA secondary structure is often known with perfect or near-perfect 

accuracy prior to three-dimensional modeling. Accurate RNA secondary structures can be 

obtained from comparative sequence analysis12-14 and experimentally-constrained prediction 15.  

Most RNA helices, including those that incorporate mismatched and non-canonical base pairs, 

will show good (< 2 Å RMSD) alignments if the structure is simply assumed to be A-form. For 

large RNAs, enforcement of native-like base pairing dramatically reduces the allowed 

conformational space. RMSD values for predicted structures should therefore be significantly 

smaller if information regarding base pair constraints is included in the modeling algorithm. 

In this work, I develop a framework for assessing the confidence that a predicted RNA 

tertiary structure is significantly different from a chance prediction. I generate a large number of 

decoy structures using replica exchange DMD and then calculate the magnitude of RMSD that 

indicates any two structures are more similar than two randomly generated, but still RNA-like, 

chains. I also establish an empirical power law relationship for mean RMSD as a function of 

chain length that makes it possible to define analytical expression for the confidence, and non-

randomness, of RNA structure prediction. 
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 imposed base pairing:                    –                                       +                    
 
 RNA PDB N <RMSD> σ RMSD <RMSD> σ RMSD 
  ID (nts) (Å)  p = 0.01 (Å)   p = 0.01 
 
 
Sarcin/ricin domain 1q9a 27 8.3 1.7 7.8 4.2 1.7 0.1 
Viral RNA pseudoknot  1l2x 28 12.4 1.7 8.2 2.7 0.8 0.1 
Vitamin B12 aptamer 1ddy 35 16.0 1.9 10.6 7.9 1.9 1.9 
4.5S RNA fragment 1duh 45 19.8 1.7 13.6 8.5 1.4 4.3 
SARS virus pseudoknot 1xjr 47 20.5 1.7 14.1 7.4 1.8 4.7 
Guanine riboswitch  1u8d 68 24.0 1.9 19.2 14.1 1.6 8.8 
tRNAAsp 2tra 75 24.7 1.7 20.7 18.7 1.7 10.0 
Thi-box riboswitch 3d2g 83 27.0 1.9 22.3 11.7 1.9 11.2 
SAM riboswitch 2gis 94 29.4 2.0 24.3 17.7 2.0 12.9 
SRP RNA 1z43 101 27.9 1.8 25.6 16.5 1.7 13.8 
glmS ribozyme  2gcs 125 35.4 2.0 29.4 24.0 2.0 16.9 
RNase P specificity domain 1nbs 155 38.6 2.1 33.6 24.5 1.8 20.3 
Tetrahymena P546 domain 1gid 158 36.5 1.8 34.1 25.3 1.8 20.7 
Lysine riboswitch 3dou 161 39.5 1.9 34.5 23.9 1.8 21.0 
 
 
Table 6.1: RNA targets with decoy structures generated by DMD 
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6.2 Results 

6.2.1 Selection of Target Structures.  

 RNA structures, ranging in size from 27 to 161 nts, were obtained from the RCSB 

structure database (Table 6.1). RNA structures were required to (i) be solved at a resolution of 

3.3 Å or better, (ii) have non-trivial higher-order tertiary interactions, defined as having close 

helix packing, long-range intrastrand interactions, or a pseudoknot, (iii) contain a single 

complete or nearly complete chain, and (iv) form a stable tertiary structure in the absence of 

protein binding. We excluded RNAs that form simple A-form helices or stem-loops or that form 

Y-shaped structures without significant long-range tertiary interactions. For RNAs with multiple 

structures, the example with the best resolution or that was most complete was selected. The 

RNA structures were also chosen to be distributed evenly over the 27-161 nt length range, given 

the examples available in the current RCSB database 16. 

6.2.2 Generation of Decoy Structures by DMD.  

Ideally, the quality of an RNA tertiary structure prediction would be determined by 

comparing the agreement between a predicted versus an experimentally determined model.  This 

similarity would then be compared to the differences observed between members of a diverse 

group of experimentally determined decoy structures of similar size. Unfortunately, even with 

the recent increase in high-resolution structures, there are still too few known RNA structures to 

serve as a statistically valid set of decoys in any given size range. 

I therefore used replica exchange DMD simulations 17 to generate decoy structures for 

representative RNAs. RNA decoys were generated by DMD using a coarse-grained model in 

which each nucleotide is represented as three pseudo-atoms corresponding to the phosphate, 
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sugar, and base moieties 17.  Interactions between pseudo-atoms include bonded, non-bonded, 

and loop entropy terms. This coarse-grained RNA model yields topologically reasonable RNA-

like folds for a large number of small RNAs 17 and for tRNA when constrained by pair-wise 

experimental information 18. Replica exchange DMD makes it possible to efficiently overcome 

energy barriers in a rugged energy landscape and to explore conformational space broadly while 

simultaneously maintaining conformational sampling in a regime that corresponds to a 

physically relevant free energy surface 19, 20. 

A priori knowledge of the secondary structure dramatically increases the correlation (and 

therefore reduces the RMSD) between simulated and experimentally determined structures. I 

therefore also generated decoy structures for each target RNA in which the DMD pseudo-atoms 

corresponding to the bases were constrained to pair. In all cases, I selected for compact decoy 

structures by requiring that the radius of gyration be within 1.2-fold of the native structure. 

6.2.3 Analysis of RNA Decoy Structures.  

To generate an ensemble of statistically significant and structurally reasonable decoy 

structures, the replica exchange DMD simulations must reach equilibrium in conformational 

sampling. I therefore evaluated whether the DMD ensembles generated from different starting 

states converged. I initiated simulations starting from two very different starting states, the 

experimentally determined native structure and a linear, extended, structure generated in silico 

for seven of the target RNAs (1q9a, 1l2x, 1xjr, 1u8d, 2gis, 1nbs, 1gid; Table 1). Both the pair-

wise RMSD distributions (Figure 6.2) and DMD energies (not shown) were nearly identical for 

simulations initiated from either the native or fully extended states.  This similarity in the final 

distribution of structures holds independent of whether the native pattern of base pairing is 

imposed during the simulation (Figure 6.2).  
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Figure 6.2: Replica exchange DMD simulations as a function of starting state and of 
enforcing native base pairing.  

Simulations were initiated either from the crystallographic structure or from a linear, extended 
state for the purine riboswitch (68 nts, 1u8d) 21. 
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Figure 6.3: Distributions of decoy structures.  
RNA decoy structures were stimulated using replica exchange DMD starting from fully extended 
linear structures either without or with constraints that enforce the native pattern of base pairing 
(solid gray lines). Distributions show good Gaussian-like behavior (dashed lines). RNAs shown 
are a viral RNA pseudoknot (28 nts), the purine riboswitch (68 nts), and the specificity domain 
of RNase P (155 nts) 21-24. 
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Thus, replica exchange DMD yields fully equilibrated sets of RNA decoy structures for RNAs as 

large as 160 nts. We then used replica exchange DMD to generate decoy structures for our 

complete set of RNAs (Table 6.1) and calculated RMSD values for all pair-wise combinations of 

decoy structures. Representative RMSD distributions for a viral RNA pseudoknot (28 nts), the 

purine riboswitch (68 nts), and the specificity domain of RNase P (155 nts) are shown in Figure 

6.3. These profiles have three critical features. First, the pair-wise RMSD distributions are 

Gaussian-like (compare solid and dashed lines, Figure 6.3). A Gaussian-like distribution in pair-

wise RMSD distribution is consistent with the Central Limit Theorem that holds that the sum of 

a large number of random variables (structures) should be normally distributed. Gaussian-like 

behavior also means that each distribution can be characterized by its mean RMSD value and a 

standard deviation. 

Second, mean RMSD values increase as a function of chain length (Figure 6.3, Table 

6.1). Hence, no single RMSD value represents a non-random prediction.  An RNA modeling 

algorithm must therefore produce structures with comparatively smaller RMSD values for short 

RNAs, if these structures are to be better than those expected by chance.   

Third, imposing the native pattern of base pairing has a large effect on the RMSD 

distributions.  Constraining structures to have native base pairing biases the distribution to 

smaller RMSD values by 4-15 Å, depending on RNA length (Figure 6.3, Table 6.1).  

6.2.4 A Power Law Relationship for the Radius of Gyration and Chain Length in RNA.   

Given the mean and standard distribution for each RMSD profile, I sought to determine a 

proper mathematical relationship between the mean, the chain length (N) and the RMSD (derived 

below). The mean RMSD for protein structure prediction is approximately proportional to the 

radius of gyration.  
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Figure 6.4: Dependence of radius of gyration on chain length for compact RNAs with 
higher-order tertiary structure interactions.  

Fits to the 0.33 and 0.60 exponents (but not to the 0.41 exponent) show systematic deviations 
from the points. 
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This relationship reflects that the distances between corresponding atoms in two structures scale 

with the overall dimensions of the macromolecule 11. I also expect that the mean RMSDs will 

scale in a similar way with chain length and the radius of gyration for RNA. I calculated the 

radius of gyration, Rg, for all of the RNAs in our target set (Table 6.1) plus a set of additional 

RNAs to more fully populate the Rg versus N curve (Figure 6.4).  The best fit gives: 

      Rg ~ 3.8 N0.41     (1) 

The key result is the exponent, 0.41, which lies between the values expected for a molecule 

composed of closely packed spheres (1/3) and for a self-avoiding chain (3/5) 25.  This exponent is 

different from a prior analysis that suggested Rg for RNA scales with an exponent of 0.33 26.  The 

earlier work did not filter simple helices of 25 nts or less and included the 16S and 23S ribosomal 

RNAs, which achieve their structures only as ribonucleoprotein complexes. Excluding these two 

sets of RNAs yields an exponent consistent with this work. 

Both Pearson's correlation coefficient and the non-parametric Wald-Wolfowitz test 

indicate that the 0.41 exponent better fits the Rg data than either of the other two limits (Figure 

6.4).  This result is intrinsically satisfying because it suggests that folded RNAs are more 

structured than random self-avoiding chains but do not fully maximize their packing density. 

This exponent is also slightly larger than the 0.33 value found for proteins 11, consistent with the 

less-globular structures of most RNAs relative to proteins of the same mass 27. 

6.3 Discussion 

 We have used DMD to calculate statistically significant sets of decoy structures for a 

representative set of RNAs.  These decoy structures correspond to compact, RNA-like, but 

largely incorrect, structures for each target RNA. Mean RMSD values increase with chain length, 

both when base pairing was allowed to vary or was constrained to correspond to that in the 
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accepted structure (Figure 6.5A).  In both cases, these distributions are well fit by a power law 

relationship, a N0.41 – b, where the exponent 0.41 is derived from Rg and N (Figure 6.4 & 6.7). 

Since the mean RMSD value defined by the empirical relationship with respect to RNA length 

should be positive, the RNA length should be N > Nc = (b/a)1/0.41. The critical length, Nc, is 

approximately 5.3 when no base-pair information is imposed during modeling and 16 Å when 

the base-pair constraints are enforced (a & b for a chance prediction are given in Figure 6.7). 

These values are sensible and correspond to the minimal lengths of RNA with significant 

secondary and tertiary structures. Mean RMSD values increase by roughly 5-fold as chain length 

increases from 27 to 160 nt.   

In contrast, the standard deviation in RMSD for each distribution is approximately 

constant at 1.8 Å (Figure 6.5B). It is not clear what physical property of RNA explains the 

relative constantness of the standard deviation in RMSD; interestingly, a similar behavior 

appears to hold for protein structure 11. 

 These distributions (Figure 6.5) represent a measure of the agreement between any two 

structure predictions for an RNA of a given size as expected by chance.  Although we generated 

these distributions based on a specific DMD model for the RNA decoy structures, we believe 

these relationships will be general because our DMD model captures the driving forces of RNA 

folding and is able to predict the native structures of many small RNAs from a large set of 

competitive decoys 17.  Moreover, the replica exchange simulation efficiently samples RNA 

conformational space, which is populated by many thermodynamically viable decoy structures 

with competitive base pairing and higher-order packing interactions. 

Using the empirical relationships for RMSD distribution as the function of RNA length 

(Figure 6.5), it is possible to create a scoring function for the significance of an RNA tertiary  
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Figure 6.5: Mean pair-wise RMSD as a function of RNA chain length.  
Decoy structures either constrained to form base pairs found in the experimentally determined 
native structure or allowed to form any energetically favorable set of base pairs are shown. Solid 
lines correspond to distributions expected for RNA-like, but chance, folds. Dashed lines indicate 
the RMSD cutoff corresponding to a prediction better than that expected by chance at the p < 
0.01 level. Lines indicate fits to the power law relationship <RMSD> ≈ a N0.41 – b; a and b 
values are given in Figure 7. The mean and standard deviation for each distribution are shown 
with symbols and error bars.  
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structure prediction given the chain length (N) and the RMSD relative to the accepted structure 

(Figure 6.7). This assessment of RNA tertiary structure prediction can be summarized as a p-

value. Smaller p-values correspond to more statistically significant predicted structures. The p-

value calculation provides a broad measure of prediction quality for RNAs between 35 and 160 

nts and can be used to evaluate predictions for both small and large RNAs and for algorithms 

that make use of prior information about base pairing versus those that predict all interactions de 

novo. The mean and standard deviation obtained for each distribution can also be used to 

calculate the RMSD between a known and predicted three-dimensional structure that 

corresponds to a predicted structure that differs from a random prediction at a chosen confidence 

level. We suggest that p < 0.01 represents a successful prediction (dashed lines, Figure 6.5A). 

Analytical expressions for the distributions corresponding to chance predictions and to 

successful predictions at the p < 0.01 level are given in Figure 6.7. 

Our laboratories are developing accurate and efficient methods for modeling complex 

RNA structures 15, 17, 18, 28, 29.  Many other laboratories are also making innovative contributions 

to the RNA modeling field 2, 30-34.  We undertook the present study in order to create a 

framework for benchmarking any RNA modeling algorithm. We illustrate the usefulness of the 

p-value approach outlined here by considering two studies that have focused on refining the 

tertiary fold of tRNA. 

For an RNA the size of yeast tRNAAsp (75 nts), a model should have an RMSD over all 

phosphate atoms of 10.0 Å or better to reach p ≤ 0.01. For comparison, RMSD values between 

tRNAAsp and two unrelated RNAs of similar size, the HDV and Thi-box RNAs, are 23 and 27 Å 

which correspond to the near-maximal p-value of 0.99; whereas, the free tRNAAsp and its 

protein-bound form superimpose with an RMSD of 6.5 Å (p-value = .00001) (Figure 6.6). 
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Figure 6.6: Use of p-values to benchmark RNA tertiary structure models.   

(A) Spheres represent p-values for seven models (indicated with Mx) of tRNAAsp (2tra, 37) 
based on experimentally-derived tertiary structure information, refined by DMD 18. Squares 
indicate p-values for three refinements of tRNA using a one-bead model for RNA and filtering 
by hydroxyl radical and SAXS data 2. For comparison, p-values for two unrelated RNAs of 
similar size, the HDV ribozyme (1vby, 76 nts) 38 and the Thi-box riboswitch (3d2g, 77 nts) 39 
plus tRNAAsp as it exists when bound by its synthetase (1asy) 40, are shown as horizontal bars. 
(B) Comparison of RMSD and GDT-TS values for the seven Mx tRNA models (open circles), 
plus the comparison between the 2tra and 1asy structures (filled circle). 
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Figure 6.7: Significance (p-value) analysis for RNA tertiary structure prediction. 

 
 
Relationship between <RMSD> and N (from Figure 5): 
 
 <RMSD> = a N(0.41) – b 
 
 imposed base pairing: –  + 
  –––––––––––––––– –––––––––––––––– 
 chance p < 0.01 chance p < 0.01 
 –––––– –––––– –––––– –––––– 
 where a = 6.4 6.4 5.1 5.1 
 
  b = 12.7 16.9 15.8 19.8 
 
Given N and the RMSD between predicted and accepted structures, m, the prediction 
significance (p-value) is: 
 

 p-value =  
2

)2/(1 Zerf+  

 

 where  Z =  m− < RMSD >
σm

 

 
 and σm ≈ 1.8 Å 
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In one approach, native-like tertiary structures for yeast tRNAAsp were obtained given only the 

sequence and using a combination of SHAPE chemistry 35, 36 and pair-wise constraints generated 

using a sequence-directed cleavage agent. This biochemical information was then refined using 

DMD 18. The cleavage agent was placed at nucleotide positions 4, 49 and 67 in tRNAAsp and 

structures were refined using the tertiary constraints provided by any one, two, or all three 

experiments for seven possible total refinements (summarized as spheres, Figure 6.6A). Of the 

seven refinements, five yielded models with p-values significantly lower than 0.01 (Figure 

6.6A). These refinements correspond to p-values of 2.0 × 10–5 to 2.0 × 10–3 (calculated given the 

correct pattern of base pairing as established by SHAPE). Two structures refined to RMSDs of 

~10.8 Å, corresponding to a p-value of 0.03, which represent fair predictions, but not equivalent 

to the p < 0.01 level. RNA 

In a second approach, tRNA was modeled by representing each nucleotide as a single 

bead centered at the C3' atom, enforcing base pairing, and filtering structures based on hydroxyl 

radical cleavage and SAXS data yielded models for E. coli tRNAPhe (76 nts) with RMSDs of 8.0, 

13.6 and 15.8 Å 2.  Although these RMSD values were calculated at the C3' position, comparison 

with the framework developed here is appropriate because RNA backbone atom positions are 

highly correlated (see Methods). These RMSD values correspond to p-values of .00023, 0.36 and 

0.80 (squares, Figure 6.6A). Overall, this analysis of two recent, and different, approaches for 

refining RNA structure models makes clear that experimentally-constrained modeling of 

complex RNA structures has substantial promise for refining structures to p-values ≤ 0.01, but 

that additional effort is required to reach this level consistently. 

An alternative to the RMSD, the global distance test (GDT) is a good indicator of 

similarity between two structures.  The GDT-TS (total score), as implemented in the LGA 



 

140 

program 5, has been widely used to rank protein models 6, 41 and, recently, to evaluate RNA 

structures 2, 7. LGA uses multiple alignments and calculates the largest set of atoms that deviate 

by less than a user-defined cutoff.  GDT scores span a uniform scale with zero equal to no 

similarity and 100 indicating near perfect agreement. It is not clear what GDT-TS score 

corresponds to a significant tertiary fold prediction for RNA.  We find that RMSD and GDT-TS 

are highly correlated (r2 = 0.86) for RNA models at medium resolution (open circles, Figure 

6.6B).  A GDT-TS value ≥35 indicates a strong prediction, with a p-value > 0.01 (as defined in 

Figure  6.7).  However, the GDT-TS increases rapidly as structures become highly similar.  This 

is exemplified in the comparison of free tRNAAsp with it synthetase-bound form.  Of the 75 

nucleotides that comprise these two structures, 70 positions have RMSDs less than 5. The 

remaining nucleotides have large variations, with RMSDs >10. This gives a GDT-TS of 51, 

whereas the overall RMSD is 6.5 (filled circle, Figure 6B). Thus, for very detailed analyses 

involving threading, homology modeling, or evaluating single site mutations, the GDT-TS is 

more discriminating. However, for evaluating RNA modeling at the level of the global fold, 

especially for RNAs with long-range tertiary interactions, the RMSD and GDT-TS are both good 

metrics for determining similarity. 

Returning to our original example, a 4.5 Å RMSD for an RNA of 94 nts using an 

algorithm that enforces native base pairing (Figure 1A) corresponds to a highly significant 

prediction (p-value ≤ 10–6). In contrast, a 18.2 Å RMSD (Figure 6.1C) is readily identified as a 

poor prediction by its p-value = 0.74. For an RNA of 94 nts, the 13.2 Å prediction falls at the p = 

0.016 level.  Inspection of the agreement between this structure and the accepted structure 

(Figure 6.1B) supports the view that this prediction lies near the lower limit at which the model 

might be useful for designing instructive biological hypotheses. We believe that p-value analysis 
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will prove broadly useful in ongoing efforts to benchmark and improve RNA tertiary structure 

prediction and modeling algorithms. 

6.4 Experimental 

6.4.1 Target RNAs and analysis of Power Law relationships for RNA.   

RNA structures were obtained from the RCSB structure database 16. For RNAs with 

multiple structures, the example with the best resolution or that was most complete was selected. 

If the U1A protein was present to facilitate crystallization 42, this protein component was 

removed. To establish a power law relationship between the radius of gyration and RNA length, 

we calculated the radius of gyration (Rg) for the structures in Table 1, plus the following (listed 

by PDB code): 1ato, 1nem, 2tob, 1q9a, 1l2x, 437d, 1eht, 1rnk, 1fmn, 1q8n, 1mme, 1xjr, 2qwy, 

3e5c, 1kh6, 2goz, 1u8d, 1y26, 1eov, 1tra, 1vby, 3d2g, 2hoj, 2gis, 1z43, 2gcs, 1nbs, 1gid, 2qbz, 

1u9s, 3djz, 1u6b, 1x8w, 3bwp, 2a64.  The radii of gyration were fit to Eqn. 1.  We used both 

Pearson's correlation coefficient, r, and the non-parametric Wald-Wolfowitz test to evaluate 

whether the best fit exponent of 0.41 is better than the limits for closely packed spheres (0.33) or 

a self-avoiding chain (0.60).  p-values for the latter two values were 0.0096 and 0.0003 which 

indicate statistically significant deviations; in contrast, the p-value for the 0.41 exponent was 

0.24, indicating no significant deviation from the proposed power law model. We also calculated 

the exponent for a complete dataset of all RNA structures in the RCSB database (as described by 

26).  The exponent over all deposited structures is 0.33, exactly as reported previously; however, 

if short (< 25 nt) and ribosomal RNAs are excluded and only single chain RNAs are considered, 

the exponent is 0.46. 
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6.4.2 Generation of RNA decoys by Replica Exchange DMD.  

 We used replica exchange DMD 17, 43 to explore RNA conformational space and 

generate statistically valid ensembles of decoy structures. Each RNA nucleotide is represented as 

three pseudo-atoms representing the phosphate, sugar, and base moieties 17.  Bonded terms 

included bond angles and dihedrals; non-bonded terms included base pairing, stacking, 

hydrophobic, and phosphate-phosphate repulsion interactions; an explicit term was included for 

loop entropy. Replica DMD simulations were performed in parallel over temperatures ranging 

from low (T = 0.20) to high (T = 0.24); this temperature range covers the folding temperatures of 

the coarse-grained RNA model 17. Replicas with neighboring temperature values were 

periodically [every 2000 time units (tu)] exchanged in a Metropolis manner. Temperatures were 

exchanged between two replicas, i and j, at temperatures Ti and Tj, and with energies Ei and Ej 

according to the exchange probability ρ, where ρ = 1 if ∆ = (1/kBTi - 1/kBTj)(Ej - Ei) ≤ 0, and ρ = 

exp(-∆), if ∆ > 0. Simulations were carried out for 800,000 tu, yielding 12,000 structures.  Decoy 

generation for a 150 nt RNA requires approximately 20 hrs on a single core equivalent Xenon 

CPU (2.3 GHz). Individual structures were accepted for pair-wise analysis subject to the 

following:  (i) simulations were allowed to equilibrate for 2000 frames to exclude structures that 

reflected residual memory of the starting state, (ii) frames were required to be different by 200 

steps to exclude correlated consecutive structures, and (iii) structures were required to be 

compact and have a radius of gyration that was within 1.2-fold of the accepted structure. 

6.4.3  Pair-wise RMSD and Gaussian Distribution calculations.   

The RMSD was calculated as: 
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where A is an arbitrary rotation matrix. The calculation was performed using the Kabsch 

algorithm 44 over all phosphate positions in each RNA. RMSD distributions were fit to a 

Gaussian curve, 

 y = A 

€ 

e
−(x−x0 )

2

2σ 2  (3) 

where A is the amplitude, x0 is the mean, and σ is the standard deviation. 

6.4.4 Effect of calculating RMSD values over other RNA atoms.  

I calculated RMSDs for free tRNAAsp (2tra) 37 relative to this tRNA as bound by the tRNA 

synthetase 40 (RNA molecule in 1asy).  RMSD values as a function of atom are: phosphate, 6.80 

Å; C3', 6.37 Å; C4', 6.66 Å; N1, 6.59 Å; N3, 6.68 Å; and over all atoms, 7.11 Å.  The single 

atom RMSD values are essentially identical; the all-atom value is larger by 0.3-0.6 Å. 

6.4.5  Calculation of Confidence Intervals.  

The p < 0.01 line in Figure 6.5 was calculated from a standard Z-score relationship.  For p < 

0.01, the RMSD value is obtained as: 

  RMSDp<0.01 = x0 – 1.8σ (4) 

The RNA prediction significance, or p-value, is also calculated from the Z-score, given a 

predicted structure that differs from an accepted structure by an RMSD of m: 

  

€ 

Z =
m− < RMSD >

σm

 (5) 

where <RMSD> is the expected RMSD obtained from the best-fit relationship in Figure 6.7 and 

is a function of chain length, N; σm is the standard deviation for decoy structures of length N 

(Figure 6.5). For predictions of RNAs with lengths ≥35 nts, this value is approximately constant 

at 1.8 Å. The statistical probability of obtaining a given RMSD value is estimated as the p-value: 
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where erf(x) is the standard Gauss error function and Z is given by Eqn. 5. A simplified summary 

of this calculation is provided in Figure 6.7.We provide a spreadsheet for calculating the RNA 

tertiary structure prediction significance p-value, given N and the RMSD between the predicted 

and accepted structure.  This calculation and source code are also available at the iFoldRNA 

server (http://iFoldRNA.dokhlab.org) 29. 
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