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ABSTRACT 
 

AMANDA CHRISTINE MOAWAD: Drosophila Midline Development: The Role of 18-
Wheeler and an Optimized Protocol for Transcriptome Analysis  

(Under the direction of Stephen T. Crews) 
 

 The developing midline of Drosophila consists of diverse cell types that must migrate 

and differentiate appropriately to form a functional central nervous system. Despite the paucity 

of midline cells, much is unknown about how these cells migrate to their final locations and 

acquire fates. In a previous RNA-sequencing screen, we found that 18-Wheeler (18w), a Toll-

family receptor, is present in the midline during embryonic development. Fluorescence in situ 

hybridizations and genetic analyses revealed that 18w is expressed posteriorly in segments in the 

median neuroblast. 18w overexpression led to midline disorganization, while heterozygous 18w 

loss of function mutants showed no phenotype, indicating that one wild-type copy of 18w is 

sufficient to maintain function.  

 To further analyze midline gene expression, a protocol was optimized to dissociate cells 

from tissue for fluorescence-activated cell sorting. Isolated midline cells would subsequently 

undergo single-cell RNA-sequencing, revealing expression differences among cell types and 

allowing for transcriptome analysis. 
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CHAPTER ONE: 18-WHEELER AFFECTS EARLY MIDLINE DEVELOPMENT 

INTRODUCTION 

Cell migration during development 

Recent estimates suggest that the human brain contains a staggering 86 billion neurons, 

with an approximately equal number of non-neuronal cells such as glia (Azevedo et al., 2009). 

During embryogenesis, these cells must migrate to their appropriate locations in the brain, 

organize, and form connections in order to produce a functioning nervous system. Cell migration 

is a highly conserved, critical mechanism despite variations in cell types and lineages. Perturbing 

this elegantly choreographed system leads to aberrant cell migration, which has implications in 

cancer metastasis and some neurodevelopmental disorders (Casanova, 2014; Kurosaka & 

Kashina, 2008; Muraki & Tanigaki, 2015; Yamaguchi et al., 2005).  

 The fruit fly Drosophila melanogaster is an excellent model system for studying cell 

migration in the context of nervous system development since these processes are highly 

conserved and the fly is a versatile genetic tool. In addition, Drosophila embryo development as 

a whole is well characterized (Jennings 2011). Importantly, the Drosophila midline – an 

analogous structure to the vertebrate floor plate, which guides neuronal positioning and 

differentiation in an embryonic neural tube – is a coordinated system in which cells migrate and 

develop in distinctive patterns over time (Crews et al., 1992; Klämbt et al., 1991; Tessier-

Lavigne et al., 1988). Thus, we can use the fly midline to gain insight into cell migration during 

mammalian development. 
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Midline development is a well-characterized process in Drosophila  

Drosophila embryogenesis occurs over an approximately 17-hour period after egg laying 

(AEL), and is split into 17 morphologically distinct stages on the basis of the major 

developmental event occurring (neuronal differentiation or midline retraction, for instance). 

Midline cells are distinguished through expression of the transcription factor single-minded 

(sim), a required component for expression of midline-specific genes (Crews, 1998; Fontana & 

Crews, 2012; Wheeler et al., 2006). Figure 1, courtesy of Kearney et al., 2004, depicts the 

development of the Drosophila midline. Sim transcript is first found in the mesectodermal 

precursors of the midline around stage 5 (Crews, 1998). At stage 8-9 the midline is composed of 

an average of 16 cells per segment. Two hours later at stage 11, the first evidence of 

dorsal/ventral preference is observed when these cells cluster and form the midline primordium. 

By stage 13, these cells can be identified as midline glia (MG), neurons, and median neuroblasts 

(MNB). At this time the MG (all wrapper-positive) can further be defined as anterior MG 

(AMG) and posterior MG (PMG) on the basis of runt or engrailed (en) expression, respectively 

(Wheeler et al., 2006). AMG can also be identified via wrapper expression; thus, wrapper and en 

were used to divide segments into general anterior and posterior areas. Neurons - such as midline 

precursor neurons 1 and 3 (MP1, MP3), ventral unpaired median neurons (VUMs) and MNB - 

can be identified via differential gene expression (Wheeler et al., 2006). By stage 17, midline 

neurons and glia are matured and the embryo undergoes its next phase of life as a larva.  

Specific and coordinated migration underlies the proper development of the midline, and 

a prominent example of midline cell migration is that of the MG. The MG must migrate and 

ensheathe the axons crossing the midline to form the MG-axon scaffold and commissures. Not 

only must the MG wrap around the axon as it is crossing the midline, but the correct MG must 
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ensheathe it; PMG undergo programmed cell death during embryonic development and play no 

role in axon ensheathment (Crews, 2010). Mutations in midline genes that alter pattern formation 

can lead to fused axon commissures, missing anterior/posterior commissures, or even the lack of 

a commissure entirely (Klämbt et al., 1991). The spatiotemporal location of cells is important for 

the proper structure and development of the midline, thus migration has to be a carefully 

coordinated and regulated event.  

 
Drosophila Toll plays a developmental role and shares homology to human Toll-like 
Receptors 

 
Nobel laureates Christiane Nüsslein-Volhard and Eric Wieschaus first characterized the 

Toll (Tl) gene in the late 1970s through their large-scale screen to identify genes involved in 

embryogenesis. To do so, they generated random mutations in flies via ethyl methanesulfonate 

(EMS) and examined mutant embryos and larvae for morphological defects in patterning. Larvae 

with a mutation in Tl were completely dorsalized. After these initial screens, continued 

characterization of the effect of Tl on development was conducted. It was found that the ventrally 

localized proteolytic processing of Spätzle (Spz), the Toll receptor ligand, could activate the Toll 

pathway. Toll activation occurs in a gradient and initiates a signaling cascade, eventually leading 

to Dorsal nuclear entry. Thus, Dorsal protein is distributed in a concentration gradient along the 

dorsal-ventral axis of the early embryo, setting expression limits of zygotic regulatory genes, 

which initiate the differentiation of various tissues (Anderson et al., 1985a; Anderson et al., 

1985b, Morisalo & Anderson, 1995). Additionally, the Toll signaling pathway is involved in 

immunity, where the nuclear translocation of Dorsal-related immunity factor (Dif) results in the 

production of antimicrobial peptides (AMPs) (Valanne et al., 2011). 
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Figure 1: Schematic summary of CNS midline cell development. In all panels, a single segment is shown with 
anterior to the left. Embryonic stages are indicated by “s#”. (A) Mesectoderm ISN stage, ventral view. Two stripes 
of mesectodermal cells reside on either side of the mesoderm in the blastoderm embryo (stage 5). Dotted line 
indicates ventral midline of embryo. There are four cells/segment on each side. Arrows represent how the 
mesectodermal cells move together at the ventral midline during gastrulation (stage 6) as the mesoderm invaginates. 
(B) Mesectoderm anlage stage, ventral view. During the mesectoderm anlage stage (stages 7–8), the mesectodermal 
cells meet at the midline and then undergo a synchronous cell division, resulting in 16 cells per segment. (C) 
Midline primordium stage, ventral view. During the midline primordium stage, midline cells rearrange from a two-
cell wide planar array into a cell cluster. Midline cells within these clusters differ slightly in their dorsal/ventral 
positions. (D) Mature CNS midline cells, stage 13. Sagittal view, dorsal up. At stage 13, two populations of midline 
glial cells become evident. The anterior midline glia (AMG; open circles) are reduced by apoptosis but ultimately 
will ensheathe the commissures while all posterior midline glia (PMG; dotted circles) will undergo apoptosis. 
Midline neurons (shaded circles) occupy the space between and below the midline glia. Dotted lines separate the 
different cell groups. (E) Mature CNS midline cells, stage 16. Sagittal view, dorsal is up. The PMG have undergone 
apoptosis and are absent, whereas the AMG give rise to ~3 mature glia (G, open circles). Midline neurons have 
migrated to their final positions within the ganglion. Medial neurons include MP1 neurons (MP1, shaded circles) 
and the progeny of the MNB (Mnb, shaded circles). Ventral neurons include VUM motorneurons (Vm, black 
circles), VUM interneurons (Vi, black circles), and MP3 neurons (MP3, black circles). (F) Midline accessory cells 
shown in relation to midline neurons and glia (open circles). Two DM cells (dotted circles) lie atop the CNS near the 
midline channel, which is lined by six-channel glia (CG; hatched ovals). The two MM-CBG in each segment 
(shaded ovals) are closely associated with the ventral neurons. 
 

 

The first indication that Drosophila Toll (dToll) shared a structural homolog in mammals 

came from work by Nobuo Nomura. In 1994, Nomura and colleagues were the first to clone and 

identify a Toll-like receptor (TLR) present in humans by comparing the sequence of their clone 
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to a database (Nomura et al., 1994). A later study in 1997 by Medzhitov and colleagues showed 

that a human TLR could activate the nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB) pathway, like dToll. This provided the first evidence that human Toll also played a 

role in immune function, indicating functional homology with dToll (Medzhitov et al., 1997). 

These works demonstrate that dToll is both structurally and functionally homologous to human 

Toll, suggesting a conserved evolutionary pathway. 

 

Toll is involved in immune function 

Mammalian TLRs are mainly known for immunological roles and act as pattern 

recognition receptors (PRRs) in innate immunity (Beutler & Rietschel, 2003; Iwasaki & 

Medzhitov, 2004; Takeda & Akira, 2005), specifically through activation of the NF-κB pathway. 

In Drosophila, a Gram-positive or fungal infection can trigger an immune response by activating 

the Toll pathway, in which cleaved Spätzle binds to the receptor, initiating an intracellular signal 

cascade which ultimately results in Dif and Dorsal activating transcription of drosomycin and 

other antimicrobials (Silverman et al., 2009). This pathway is similar to the mammalian 

interleukin-1 receptor pathway (IL-1R), which also induces a signaling cascade leading to the 

nuclear entry of NF-κB (homologue is Dorsal) and mediation of the immune response 

(Medzhitov, 2001).  

Research within the past five years implicates a role for mammalian TLRs in tumor 

invasiveness and other central nervous system (CNS) pathologies (Carty & Bowie, 2011; Gooshe 

et al., 2014; Sarrazy et al., 2011; Trotta et al., 2014; Yoon et al., 2015). For instance, TLR4 is 

present in glioblastomas, and the activation of the TLR4 pathway led to increased cell 

proliferation. However, when activated with the Fas pathway - which escalates glioblastoma 
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pathogenicity and increases cell migration and proliferation when activated alone - cell migration 

and proliferation decreased (Sarrazy et al., 2011). The TLR4 pathway is able to modulate the 

proliferation and migration induced by the Fas pathway, as well as contribute to cell proliferation 

when activated. This suggests a role for TLR4 in regulating cell proliferation and migration, both 

in combination with other pathways and alone. Additionally, high TLR expression has been 

found in many cell types in the human CNS, and certain TLRs are proposed to play roles in CNS 

pathologies such as Alzheimer’s disease, multiple sclerosis, and stroke (Carty & Bowie, 2011).   

Thus, we can use the fly to address gaps in knowledge concerning the roles of certain TLRs in a 

developmental context, and elucidate cellular migration mechanisms. 

 

Toll belongs to a family of nine receptors in Drosophila 

The Drosophila Toll family consists of nine closely related members: Toll, 18w, and 

Toll-3 through Toll-9. All contain a putative transmembrane domain as well as an extracellular 

domain composed of leucine-rich repeats (LRRs), which is C- or N-flanked by cysteine-rich 

motifs (Figure 2) (Bilak et al., 2003). LRRs help provide a structural framework for the 

formation of protein-protein interactions, while the flanking cysteine-rich regions stabilize the 

LRR (Kobe & Kajava, 2001). The N-terminus (start of the protein, amino-terminus) is 

extracellular, while the C-terminus (end of the protein, carboxyl-terminus) is intracellular. Toll-9 

is the most structurally similar to mammalian TLRs in that it does not have an N-flanking 

cysteine-rich motif at the C-terminal end of the ectodomain (Bilak et al., 2003). Interestingly, 

Toll-9 is the only other family member besides Toll (and to a small extent, Toll-5) that can 

activate an immune response in Drosophila, shown in vitro (Ooi et al., 2002).   
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Studies indicate that the other Toll family members appear to play roles in development 

and other cellular processes. Most Toll family receptors are expressed at high levels during 

development in a variety of tissues undergoing cellular and morphogenetic movements and some 

are proposed to function as adhesion molecules (Eldon et al., 1994; Imler & Hoffmann, 2000; 

Kleve et al., 2006; Kolesnikov & Beckendorf, 2007). For instance, Toll-8, also known as Tollo, 

is necessary for the neural-specific induction of glycosylation in embryos, which may function in 

cellular communication during development (Seppo et al., 2003). Toll-8 also acts in combination 

with 18w and Toll-6 to direct polarity and cell rearrangements during convergent extension (Paré 

et al., 2014). In addition, Toll-6 and Toll-7 are expressed in the CNS and are required for 

locomotion, neuronal survival, and motor axon targeting (McIlroy et al., 2013). This suggests 

that the immunity role of Toll family members is the exception rather than the rule, since the 

majority of receptors are needed for proper embryonic development.   

 

Figure 2: Structure of Drosophila Toll. The ectodomain is comprised of LRRs flanked by cysteine-rich (CR) 
domains. The intracellular Toll/IL-1R (TIR) domain interacts with adaptor proteins after activation and signals 
through NF-κB-like molecules. The Toll family of receptors follows this structural pattern with the exception of 
Toll-9, which does not have an N-flanking CR domain at the C-terminal end of the ectoderm.  
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18-wheeler (18w) contributes to embryonic development and cellular movement 

18w (also known as Toll-2) is present in early embryonic development in a pattern 

reminiscent of segment polarity genes such as engrailed, and is frequently expressed in regions 

undergoing cell movement (Eldon et al., 1994). Most homozygous mutants die as larvae, 

although surviving adults typically display antenna, wing, and leg deformities. Since 18w is 

expressed in many tissues undergoing movement, it is probable that defective cell movements 

cause these appendage anomalies. Therefore, larvae likely die due to an accumulation of these 

morphogenetic movement defects (Eldon et al., 1994). As stated, the expression pattern of 18w 

resembles that of other segment polarity genes such as en and transcription factors Eve and Runt; 

these polarity genes are critical for the correct anteroposterior patterning of embryonic segments, 

and mutants for these genes show deletions in segment structures or other abnormalities (Patel et 

al., 1989). 18w may be playing a similar role. 

Regarding cellular movement, 18w has also been shown to regulate apical constriction of 

the salivary gland through the Rho-GTPase pathway, which is involved in many aspects of 

cytoskeletal dynamics and cell movement (Van Aelst & D’Souza-Schorey, 1997). Loss of 

function 18w mutants showed defects in the synchronicity of salivary gland invagination and 

positioning due to a failure of cells to migrate properly. Conversely, 18w overexpression causes 

an upregulation in Rho signaling, as observed by the two-fold increase in a marker of Rho 

signaling activation, phospho-Spaghetti squash (P-Sqh) (Kolesnikov & Beckendorf, 2007). 18w 

also plays a role in the migration of follicle cells in the Drosophila ovary, as females carrying an 

18w loss of function (LOF) mutant clone in their ovaries show delayed follicle cell migration. 

Furthermore, their eggs laid had structural and morphological defects; some eggs were even 

deflated (Kleve et al., 2006).  
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Additionally, 18w in combination with Toll-6 and Toll-8 regulates convergent extension 

in embryo development. Analysis of single, double, and triple mutants for these genes revealed 

that the more Toll receptors lost, the greater the occurrence of defects in tissue elongation, cell 

intercalation, and edge formation. However, embryos lacking 18w alone showed defects in edge 

formation, revealing that neither Toll-6 nor Toll-8 can be fully redundant in this process (Paré et 

al., 2014). 18w may also have a role as a cell adhesion molecule, as it promotes cell aggregation 

in vitro when expressed in Schneider 2 (S2) cells, which in their un-altered state are non-

adhesive (Eldon et al., 1994). This proposed role as an adhesion molecule however, needs more 

experimental evidence to confirm. 

Many examples are given indicating the involvement of 18w in cellular movement; 

however, it is unknown if this receptor is involved in cellular migration in the midline. The 

midline is a highly choreographed and well-documented developmental system, and perturbing 

18w function could reveal novel roles for the receptor in midline development. Further 

explorations of the mechanisms linking 18w signaling to dynamic cellular migration changes will 

provide insight into this highly conserved developmental process and may provide more 

understanding of neurodevelopmental diseases involving aberrant cellular migration.   
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METHODS AND MATERIALS 

Drosophila strains and genetics 

Drosophila strains used included: 18w (Δ7-35) (Eldon et al., 1994), CyO-ftz-lacZ (Roark et al., 

1995), sim-Gal4 (Xiao et al., 1996), and UAS-tau-GFP (Wheeler et al., 2006). 

Generation of fly strains 

18w (Δ7-35) was balanced with CyO, to generate 18w (Δ7-35)/CyO. These flies were crossed to 

STG on the third chromosome to generate 18w (Δ7-35)/CyO; STG/STG [18w (Δ7-35)/CyO; 

STG]. 18w (Δ7-35) was also balanced with CyO-ftz-lacZ, to generate 18w (Δ7-35)/CyO-ftz-lacZ. 

These flies were crossed to STG on the third chromosome to generate 18w (Δ7-35)/CyO-ftz-lacZ; 

STG/STG [18w (Δ7-35)/CyO-ftz-lacZ; STG]. 

Sources of cloned DNA for in situ hybridization 

cDNA clones from the Drosophila Gene Collection (Open Biosystems, versions 1.0 and 2.0) 

(Stapleton et al., 2002) were used to prepare digoxigenin-labeled or biotin-labeled in situ 

hybridization probes for en, gsb, odd, wrapper, wor, and zfh1. 18w was PCR-amplified from 

genomic DNA using a previously published gene-specific primer set incorporating the T7 

promoter sequence (5′-TGCAACTGCTCAATCTCACC-3′ and 5′-

taatacgactcactatagggagaTACTCCGACTCGATGCTGTG-3′) (Paré et al., 2014).  

In situ hybridization, immunostaining, and microscopy 

Embryo collections, in situ hybridization, immunostaining, and confocal imaging were 

performed as previously described (Kearney et al., 2004; Wheeler et al., 2006; Wheeler et al, 

2008). Primary antibodies used for staining were rabbit anti-β-galactosidase (Invitrogen) and 

mouse anti-Tau (Sigma). Alexa Fluor-conjugated secondary antibodies (Molecular Probes) were 

used as secondaries. The Tyramide Signal Amplification System (Perkin-Elmer) was also used 
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for some experiments depending on fluorescent signal strength. Flies ranging from stages 11 

through 16 of development were used for most experiments, and were methanol/formaldehyde-

fixed prior to use. All embryos were collected on grape juice plates streaked with fresh yeast 

paste and kept at -20°C until ready to use.  
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RESULTS 

Generation of antisense RNA probes for 18w 

In order to visualize 18w expression patterns in vivo, an antisense RNA probe was 

transcribed from genomic DNA (gDNA) using a gene-specific set of primers, which included the 

T7 promoter sequence at the 5’ end of the reverse primer, and T7 RNA polymerase. Typically, 

this probe would be prepared from the cDNA clone located in the Drosophila Genome 

Collection; however, this method was unsuccessful in that a labeled, antisense probe that 

recapitulated the known expression patterns of 18w could not be obtained. Thus, gDNA was 

isolated from both w1118 and sim-Gal4; UAS-τ-GFP (STG) flies, both of which have a wild-type 

copy of 18w. Once the gDNA was isolated, 18w was PCR-amplified with primers that 

incorporated the T7 promoter sequence into the PCR product. After purifying the PCR product, 

an in vitro transcription reaction was run using T7 RNA polymerase, which transcribes from the 

5’ to 3’ direction. The polymerase can also incorporate certain labels into the product, such as 

DIG or biotin in this specific case, which can be used for later detection experiments. This 

reaction produces a labeled antisense RNA probe that can bind mRNA (Figure 3A).  

 After the PCR amplification process, a small amount of product was run out on a 1% 

agarose gel to confirm that only one band was seen at approximately 3300 base pairs. Indeed, 

only one band was seen at the estimated size for both the w1118 and STG samples, suggesting that 

18w had been specifically amplified (Figure 3B). A higher concentration of PCR product was 

obtained in the STG sample, therefore it was used for in vitro transcription and labeling. After the 

transcription procedure both the biotin- and DIG-labeled probes were run out on a gel to ensure 

that RNA was made (Figure 3C).  
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Figure 3: Generated 18w RNA probes recapitulate the expression patterns seen in the BDGP in situ collection. (A) 
Schematic of 18w RNA probe generation through gDNA PCR amplification and in vitro transcription. (B) 18w was 
PCR amplified from w1118 and STG fly gDNA and the product was run out on a 1% agarose gel. Band sizes are 
approximately the appropriate length. (C) Generated probes were run out on a gel. RNA is present at the expected 
length for both DIG and biotin probes. (D-F) In situ hybridization of STG embryos at different developmental stages 
reveals similar expression patterns of 18w to established experiments. The 18w DIG probe was used and conjugated 
to Cy3 for visualization. Embryos are anterior forward, sagittal view. (D’-F’) BDGP alkaline phosphatase in situ 
experiments used as the reference for 18w expression. Embryos are anterior forward.  
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Embryos from early (stage 5) to late (stage 14) developmental stages were hybridized 

with biotin- and DIG-labeled probes specific to 18w, and compared to known 18w embryonic 

expression patterns from the Berkeley Drosophila Genome Project (BDGP) in situ database 

(Hammonds et al., 2013; Tomancak et al., 2002; Tomancak et al., 2007). Embryos from all 

developmental stages collected (not all stages shown, Figure 3D-F) exhibited similar expression 

patterns to similarly aged BDGP embryos (Figure 3D’-F’). Thus, the 18w probes transcribed can 

be used to successfully target 18w mRNA and characterize its expression in subsequent 

experiments.   

 

18w is present in the posterior of segments and expressed in median neuroblasts 

Prior research conducted in the lab includes a transcriptome analysis of 3.7sim-Gal4; 

UAS-mCD8.GFP flies using fluorescence activated cell sorting (FACS) to isolate midline cells at 

two different developmental periods (6-8 hours AEL and 14-16 hours AEL). The earlier stage 

represents the period when midline neurons are beginning to differentiate, while at the later 

stage, neurons and glia are mature and well-differentiated. The fly strain used the enhancer of 

sim to drive the expression of GFP specifically in the midline. The two midline cells samples 

were then processed for RNA sequencing. Data generated from these experiments were analyzed 

to identify distinctive traits of midline cell types, as well as to examine how these cells acquire 

their differentiated state (Fontana & Crews, 2012). Unpublished data from that study revealed 

elevated levels of 18w, as well as other Toll family receptors, in the midline at these two 

developmental time points (Table 1), corroborating their known roles in embryonic 

development.  
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Table 1: FACS purified midline cells at 6-8hr (stages 11/12) and 14-16hr (stage 16) AEL were purified and RNA-
sequenced. Expression levels are indicated by FPKM (fragments per kilobase of exon per million fragments 
mapped); a cutoff of 5.0 was used for transcript detection.  
 
 

The midline is composed of multiple cell types, including anterior/posterior midline glia, 

VUMs, and the MNB. In order to determine the precise spatial and temporal expression of 18w 

and the other Toll family members within the midline, embryos were stained using a 

combination of antibodies and antisense RNA probes for specific midline cell types (Table 2). 

Anterior and posterior midline cells were labeled using wrapper and en, respectively. In staining 

for 18w and Tl, I found that 18w is present in the posterior part of a segment, while Tl is present 

in the anterior of a segment, with little overlap between the two (Figure 4, and data not shown). 

These distinct expression patterns suggest a possible role for Tl and 18w in compartmentalization 

within the midline. As both are shown to play roles in cellular movement in other cell types in 

vivo, I propose that Tl and 18w may act to guide migrating midline cells to their final destinations 

within a segment (Paré et al., 2014; Wang et al., 2005). 

During mid-development (stages 11-12), 18w is expressed in the posterior portion of each 

segment. There is little to no co-localization with wrapper (midline glia), gsb (H-cell, H-cell sib, 

MP3), odd (MP1), or zfh1 (motor VUMs) (Figure 5A-C, E). However, 18w expression overlaps 

with wor, a marker of MNB (Figure 5D). During late development (stages 14-16), 18w 

expression is again observed in the posterior of segments and does not co-localize with wrapper, 

gsb, odd, or zfh1, but continues to overlap with wor expression in the MNB (Figure 5F-J). Thus, 

it appears that 18w is expressed specifically in the MNB.  

Toll Family Receptor FPKM 6-8 hr AEL FPKM 14-16 hr AEL 
Toll (Tl) 396.295 81.2687 
18w 107.828 5.02417 
Toll-6 55.1867 1.75523 
Toll-7 144.348 93.6888 
Tollo (Toll-8) 55.9107 74.1280 



	

16 

 

Midline cell gene expression 
All midline cells  sim MNB en, wor 
AMG runt, wrapper MP1; MP1 neurons lim3,odd 
H-cell gsb, ple, tup MP3 gsb 
H-cell sib CG13565, gsb, VGlut MP4-6 en 
iVUMs en, gad1 PMG en, mas, wrapper 

 
Table 2: Midline cells can be identified by their expression of certain genes using either RNA probes or antibodies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: 18w is expressed in the posterior of segments in stage 11 embryos. (A-A’’’)  FISH of STG embryos using 
18w (magenta) and wrapper (cyan) probes along with anti-tau (green) to visualize the midline. The same segment is 
depicted without midline staining (A’) to show 18w posterior and wrapper anterior expression more clearly. The 
segment is positioned anterior to the left, with the dashed white line serving as an approximate divider between 
anterior and posterior areas. (B-B’’’) FISH of STG embryos using 18w (magenta) and en (cyan) probes along with 
anti-tau (green) to visualize the midline. The same segment is depicted without midline staining (B’) to show the 
overlap of 18w and en expression in the posterior. The segment is positioned anterior to the left, with the dashed 
white line serving as an approximate divider between anterior and posterior areas. 
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Figure 5: 18w is expressed in the MNB during mid- to late-development. (A-E) FISH of STG stage 11-12 embryos 
using 18w (cyan) and other cell-specific marker (magenta) probes. Anti-tau (green) was used to visualize the 
midline. 18w and wor (D) appear to overlap. Segments are positioned anterior to the left at 40x magnification. White 
arrows point to cell-specific marker expression, and yellow arrows point to 18w expression. (A’-E’) The same 
segments from A-E are shown without midline staining to emphasize probe staining and localization. (F-J) FISH of 
STG stage 14-16 embryos using the same probes and color scheme as in A-E, with anti-tau (green) utilized to 
visualize the midline. Segments are positioned anterior to the left at 40x magnification. White arrows point to cell-
specific marker expression, while yellow arrows point to 18w expression. (F’-J’) The same segments from F-J are 
shown without midline staining to emphasize probe staining and localization.  
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Overexpression of 18w in the midline causes defects in midline structure 

Given the distinct posterior location of 18w in midline segments and the work of others 

which suggests 18w has roles in cell migration, I hypothesized that 18w may have a role in 

guiding midline cells to their correct locations within a segment during development. As such, a 

loss or gain of 18w expression may disrupt cell localization and migration in distinct ways. For 

example, overexpression of 18w in the midline may cause anterior cells to incorrectly migrate 

towards the posterior of a given segment, while loss of 18w may cause posterior cells to migrate 

anteriorally within a segment due to loss of positioning cues from 18w (Figure 6). 

In order to test this hypothesis, 18w was overexpressed in the midline using UAS-18w 

crossed to fly background STG, which drives the expression of GFP in all midline (sim-positive) 

cells. Using this system, 18w is expressed in every cell that expresses sim, namely, all midline 

cells. en was used as a posterior marker to assess cell positioning. UAS-18w was also crossed to 

w1118, which has the same genetic background as the STG strain, to ensure that any differences 

seen in midline development were due to the presence of 18w being overexpressed by sim-Gal4, 

and not to the genetic background of STG. Additionally, embryos from the cross sim-Gal4; UAS-

tau-GFP x w1118, served as the controls for the experiments described within this section. As 

another control, UAS-18w embryos were stained for 18w, en, and other markers listed in Table 

2, and no appreciable difference was noted between these embryos and STG embryos (data not 

shown). 

Compared to control embryos (sim-Gal4/+; UAS-tau-GFP/+) at comparable 

developmental stages (Figure 7A-B’’), embryos overexpressing 18w (sim-Gal4/UAS-18w; UAS-

tau-GFP/+) showed several notable differences (Figure 7C-F’’). In these mutant embryos, all 

sim expressing cells are expected to express tau-GFP, as well as overexpress 18w. However, tau 
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expression appeared lower in some midline cells (Figure 7C’, 7D’, 7E’, yellow arrows). Further, 

some segments expressed a “hole” in 18w overexpression that overlapped with the lowered tau 

expression (Figure 7C’’, 7D’’, 7E’’, pink arrows). In addition to the curious hole in 18w 

expression, some segments also revealed fusion defects (Figure 7E’, 7F’-F’’).  

 In several segments, some cells appeared to be fused together (Figure 7E’, yellow 

arrow). In extreme cases, segments appeared to be fused together (Figure 7F’-F’’, white 

arrows).  

Examining overall midline morphology, there appear to be differences between control 

and overexpression embryos when relatively stage-matched. Around stage 11, overall midline 

cells in the sim-Gal4/UAS-18w; UAS-tau-GFP/+ embryos appear to be disorganized and 

elongated compared to controls (compare Figure 7A-A’’ to 7C-D’’). Around stage 14, overall 

midline structure is disorganized, including improper fusion events between cells within and 

between segments (compare Figure 7B-B’’ to 7E-6F’’). The data presented show that 

overexpressing 18w affects midline morphology during development.  

 

  
 

Figure 6: Schematic	depicting	hypothesized	normal	expression	of	18w	(left),	overexpression	of	18w	(center)	
and	mutation	or	deletion	of	18w	(right).	The	circles	represent	cells,	and	the	dotted	line	represents	an	
approximate	boundary	between	the	anterior	and	posterior	of	a	segment.		 
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Figure 7: Overexpressing 18w leads to overall midline structure abnormalities relative to controls. (A-B’’) FISH of 
STG x w1118 stage 11 and 14 control embryos using 18w (cyan) and en (magenta) probes at 40x magnification. Anti-
tau (green) was used to visualize the midline. These probes and color scheme is used for the rest of the panels in this 
figure. A’ and B’ reveal midline structure only, while A’’ and B’’ show en and 18w expression. (C-C’’) FISH of 
UAS-18w x STG at stage 11. The yellow arrow in C’ points to a hole in tau expression, and the pink arrow in C’’ 
points to a hole in 18w expression. Midline morphology appears disorganized. (D-D’’) FISH of UAS-18w x STG at 
stage 12. The yellow arrow in D’ points to an area with less tau expression, that overlaps with the area of no 18w 
expression seen in D’’ (pink arrow). Midline morphology appears disorganized. (E-E’’) FISH of UAS-18w x STG at 
stage 14. The yellow arrow in E’ points to both a hole in tau expression and to what appears to be an improper cell 
fusing event. In E’’ the pink arrow points to an area with no 18w expression. Overall midline structure looks 
abnormal. (F-F’’) FISH of UAS-18w x STG at stage 14. The white arrow in F’ points to an apparent fusion between 
two segments. The white arrow in F’’ indicates the same event. Once again, overall midline structure appears 
disorganized compared to the stage-matched control.  
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Heterozygous mutants of 18w do not appear to cause overt defects in midline structure 

Since overexpression of 18w in the midline revealed structural abnormalities, I then 

investigated if complete/partial loss of function mutations of 18w would lead to defects in 

midline development. These experiments used the 18w (Δ7-35) line. The Δ7-35 mutant carries a 

large deletion of about 2.2kb, which removes about 1.7 kb of the open reading frame, resulting in 

a severe lack of function allele (Eldon et al., 1994). However, 18w transcript is still produced in 

these mutants. As a homozygous or trans-heterozygous mutation, it is sub-lethal. Death of these 

mutants occurs during larval development, with approximately 0.5% of mutant embryos 

surviving into early adulthood (Eldon et al., 1994).  

 Crosses within the 18w (Δ7-35)/CyO; STG strain produced embryos with the following 

genotypes and frequencies, based on Mendelian inheritance: 18w (Δ7-35)/18w (Δ7-35); STG 

(25%), and 18w (Δ7-35)/CyO; STG (50%), and CyO/CyO; STG (25%). The first genotype is a 

homozygous mutant, while the second is heterozygous and for these experiments served as the 

control genotype. The last genotype is lethal, since balancer chromosomes contain a lethal 

recessive allele. Thus, we would expect to see approximately 66% 18w (Δ7-35)/CyO; STG 

(heterozygous) embryos and 33% 18w (Δ7-35)/18w (Δ7-35); STG (mutant) embryos. In the 

approximately 300 embryos examined from crosses within this strain, none were convincingly 

negative for 18w staining (data not shown). This is expected, as previous work indicates that 

homozygous 18w (Δ7-35)/18w (Δ7-35) embryos produced a truncated transcript (Eldon et al, 

1994). Alternatively, the 18w (Δ7-35)/18w (Δ7-35) genotype could be lethal on our STG 

background. Further, there was no appreciable difference between wild-type STG and any of the 

embryos from the 18w (Δ7-35)/CyO; STG midline structures when stained with posterior marker 

en, glial marker wrapper, and anti-tau (Figure 8A-D). 
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The lack of a midline phenotype in any of the embryos from the 18w (Δ7-35)/CyO; STG 

strain suggests that loss of 18w does not visibly alter midline morphology, or that 18w (Δ7-

35)/18w (Δ7-35); STG is lethal. It is imperative to differentiate between these possibilities, which 

requires differentiation between 18w (Δ7-35)/CyO; STG (heterozygous) embryos and 18w (Δ7-

35)/18w (Δ7-35); STG (homozygous mutant) embryos. In order to distinguish heterozygous and 

homozygous mutants, the 18w (Δ7-35) line used was crossed to marked balancer CyO-ftz-lacZ, 

as well as to STG on the third chromosome. Ignoring the CyO-ftz-lacZ/CyO-ftz-lacZ genotype 

which is lethal, the two possible genotypes on the second chromosome are 18w (Δ7-35)/18w (Δ7-

35) or 18w (Δ7-35)/CyO-ftz-lacZ. A homozygous mutant will not stain for β-gal, whereas a 

heterozygous mutant will due to the marked balancer. Approximately 300 embryos were stained 

and analyzed for β-gal expression, and all were positive for β-gal. This means that all the 

embryos examined were heterozygous mutants for 18w (Δ7-35) (Figure 8E-F). Once again, no 

noticeable differences were observed in midline structure. It is possible that if more embryos 

were analyzed, a few homozygous mutants would be observed. However, these data suggest that 

18w (Δ7-35)/18w (Δ7-35); STG is lethal, and that a single wild-type copy of 18w is sufficient for 

processes regulating normal midline development and organization. 
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Figure 8: 18w heterozygous mutants do not appear to affect midline morphology. All embryos shown are anterior 
forward, sagittal view at 10x magnification. (A-B) FISH of STG control embryos at stage 11 and 12 using en 
(magenta), wrapper (cyan), and anti-Tau to visualize the midline (green). en stains the posterior of embryo segments 
while wrapper stains the midline glia. At this point in development glial staining is more prominent in the anterior 
of segments. (C-D) FISH of  18w (Δ7-35)/CyO; STG embryos at stages 12 and 15 using en (magenta), wrapper 
(cyan), and anti-Tau to visualize the midline (green). There are no overt differences in midline morphology relative 
to the control. (E-F) FISH of  18w (Δ7-35)/CyO-ftz-lacZ; STG embryos at stage 12 and 14 using β-gal to detect lacZ 
(magenta) and 18w (cyan). All embryos examined that had β-gal staining also stained positive for 18w, indicating 
that these embryos are heterozygous mutants. No differences in midline morphology compared to controls were 
noticed.  
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DISCUSSION 

The data presented in this chapter corroborate RNA-sequencing results (Fontana & 

Crews, 2012) by demonstrating that 18w is present in the midline during the developmental 

stages previously analyzed. I show that 18w is localized specifically to the posterior of 

embryonic segments in the midline and is also present in the MNB.  Midline neurons are 

generated in part by the asymmetric stem cell divisions of the MNB, which gives rise to five to 

eight GABAergic neurons during embryogenesis (Bossing & Technau, 1994; Truman et al., 

2004). During development, these cells do not simply differentiate and remain where they are; 

they must migrate to their final destination. Cell migration depends on cells recognizing both 

their position in the environment and their polarity, which may involve detecting gradients of 

signaling molecules directing the cell where and how to move. It is possible that 18w, 

specifically confined to the posterior of segments, provides guidance cues to MNB progeny to 

localize the newborn cells properly within the developing segment. 

The expression pattern of 18w resembles that of other segment polarity genes (Patel et al., 

1989), and 18w is shown to play roles in cell migration in multiple fly cell types, such as the 

follicle cell epithelium (Eldon et al., 1994; Kleve et al., 2006; Kolesnikov & Beckendorf, 2007). 

My data support a model where 18w plays a role in cell migration during embryogenesis, as 

overexpressing 18w specifically in the midline causes abnormalities in midline structure and cell 

localization, as also shown in this chapter. Furthermore, Tl and other Toll family receptors, 

including 18w, are proposed to act as adhesion molecules (Eldon et al., 1994; Imler & Hoffmann, 

2000; Kleve et al., 2006; Kolesnikov & Beckendorf, 2007). Thus, it is possible that 18w acts as 

an adhesion molecule to support migration in the midline.  



	

25 

When 18w is overexpressed in the midline using sim-Gal4, some cells and segments 

appeared to be improperly fused together, and the overall structure of the midline seemed 

disorganized. It is possible that the ubiquitous expression of 18w in the midline disrupts proper 

cell migration, since 18w cues are no longer restricted to the posterior regions of midline 

segments. As a result, the cells may not differentiate appropriately, instead differentiating into 

another cell type based on signals from its incorrect environment. Another interesting phenotype 

of the 18w overexpression embryos are the regions of reduced tau expression (both tau and 18w 

are transgenes driven by sim-Gal4 for overexpression in the midline). One possibility is that the 

disrupted midline cell development contributes to the low presence of tau expression from the 

UAS-tau-GFP transgene. It is also possible that STG is not fully driving the expression of 18w, 

and thus also not driving expression of tau-GFP in this experiment, which would explain the 

holes in expression seen for both tau-GFP and 18w. 

These data lend support to my hypothesis that 18w is acting as an adhesion molecule 

promoting migration in the midline. It would be interesting to repeat these experiments using 

different cell-specific markers to determine if 18w is affecting the positioning of specific midline 

cells. If 18w is promoting migration and it is overexpressed, cell mislocalization, perhaps 

towards the posterior of segments, is probable. Thus, typically anterior cells such as the AMG 

might end up positioned more posterior than expected. This would contribute to the general 

disorganized midline structure seen. Although more experiments are necessary to determine the 

mechanisms behind the midline disorganization and fusion events seen, the overexpression 

experiments provide the insight that 18w does have an effect on midline development.  

 A homozygous mutant for 18w (18w (Δ7-35)/18w (Δ7-35); STG/STG) was not observed 

in the loss of function (LOF) experiments performed, and thus I cannot determine if loss of 18w 
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in the midline alters midline development. There are several other LOF mutations of 18w 

available that can be used in combination with Δ7-35 to produce a LOF, potentially less lethal 

mutant. Although in experiments like this, pleiotropy is a concern. Any observed defects in the 

midline development of mutants where 18w is deleted throughout the entire embryo may be non-

cell autonomous. That is, defects in other cell types may have an indirect effect on the midline. 

Thus, it would take further experimentation to determine if any observed effects are directly 

caused by loss of 18w specifically in the midline.  

In order to evaluate the effect of 18w deletion on the midline, it is necessary to either 

generate a homozygous or transheterozygous mutant, which would assure 18w loss of function, 

or use the power of clustered regularly interspaced short palindromic repeats (CRISPR) to 

generate a mutant. A recent advancement in genome editing, CRISPR could be implemented to 

create an 18w mutant by targeting its midline enhancer region, potentially disrupting 18w only in 

the midline. This would remove any concerns about pleiotropy, and allow for the assessment of 

the effect of 18w LOF on midline development and cellular migration. In addition, CRISPR can 

be used to tag 18w with a fluorescent marker in vivo, which would allow for live imaging of the 

protein. This could provide exciting insight into the roles 18w has in midline cell migration, 

differentiation, and development.  

It is possible that there were subtle defects in midline development of the heterozygotes 

(18w (Δ7-35)/CyO;  STG/STG), however no appreciable differences were noticed between 

controls and these heterozygous mutants. Thus, it seems that one wild-type copy of 18w is 

sufficient to maintain proper midline organization and development through the stages analyzed. 

 The experiments presented in this chapter provide evidence that 18w is involved in 

midline development and future experiments were proposed that could provide knowledge 
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concerning the effect of 18w loss on the midline. Further analysis is required to determine how 

18w is acting to guide cell migration (is it acting as an adhesion molecule?), why it is expressed 

in the MNB, and how a loss of function mutant would affect midline structure. Elucidating the 

role 18w has to play in fly development may translate into knowledge about how the TLRs in 

humans contribute to both development and neurological disease, and may suggest new targets 

for therapy generation. Since the Toll family of receptors in flies is as a whole homologous to 

human TLRs, discovering new pathways and functions for these receptors in flies could shed 

light on novel roles and pathway involvement, or importantly, reveal druggable targets in 

humans for different disorders. For instance, since TLR4 can regulate proliferation and migration 

in glioblastoma induced by the Fas pathway as well as contributing to increased cell proliferation 

when activated, it would be insightful to study the mechanisms behind this further. Does TLR4 

activation go through a pathway that inhibits the Fas pathway? Does it produce a byproduct of 

activation that inhibits the Fas pathway? Answering these questions may lead to the discovery of 

novel druggable targets to reduce the pathogenicity and metastasis of glioblastoma. This is only 

the beginning. Since high TLR expression has been found in many cell types in the human CNS, 

gaining insight into how the receptors function outside of immunity would be highly informative 

and perhaps contribute to our understanding of neurological disease. The fly can be used to 

address these gaps in knowledge and contribute to our understanding of the multiple roles of this 

large family of receptors.  
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CHAPTER TWO: OPTIMIZATION OF A PROTOCOL TO USE FOR FACS AND 
SINGLE-CELL RNA SEQUENCING 

 
 
INTRODUCTION 
 
Neurogenesis is a critical aspect of development 

 Neurogenesis is the process by which neurons are generated from progenitors and 

multipotent, self-renewing neural stem cells (NSCs) throughout embryogenesis, and is critical 

for the proper development of the nervous system. Multiple signaling pathways, such as 

NOTCH, Wingless-related integration site (WNT), and Sonic Hedgehog (SHH) are required for 

newborn cells to properly differentiate and form the complex network of neuronal and glial 

populations in a mature brain (Jobe et al., 2012). During development, these cells must also 

migrate to their appropriate destinations, a process which is vital for the formation of the 

synaptic circuitry (Ghashghaei et al., 2007; Jobe et al., 2012). Defects in any of these processes 

can lead to severe developmental malformations such as schizencephaly (Spalice et al., 2009; 

Yakolev & Wadsworth, 1944), megalencephaly (Homem et al., 2015; Mirzaa & Poduri, 2014), 

and focal cortical dysplasias  (Barkovitch et al., 2012; Kabat & Król, 2012). These structural 

deficits in the brain are characterized by, respectively, abnormal clefts, overgrowth of the brain, 

and disorganization of the cortex. There are many common symptoms associated with these 

conditions, including seizures, and poor cognitive and motor function. In severe cases, the 

prognosis is poor and survival into adulthood is rare. Understanding how neurons and glial 

properly differentiate and migrate during development will provide insight into how these 

disorders manifest, and hopefully ways to treat them. 
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Elucidating basic nervous system development at a single-cell level is crucial to 

answering key questions about how and why developmental processes are altered. By 

sequencing single cells, new roles for single genes or combinations of genes in 

neurodevelopmental disorders may be discovered, which would contribute to the understanding 

of these disorders as a whole. Despite the advances in knowledge regarding embryonic 

neurogenesis, some general questions remain. For instance, how is it that so few seemingly 

identical progenitors can give rise to such neuronal and glial diversity? What are the genetic 

switches that decide a cell’s fate and ultimate destination in the brain? We may begin to find 

answers to these questions, as well as further define molecular mechanisms underlying 

embryonic neural development with the goal of developing therapies for certain 

neurodevelopmental disorders. 

 

The Drosophila midline comprises a diverse group of cells during development 

 Drosophila embryogenesis is well characterized and occurs over an approximately 17 

hour period after egg laying (AEL). During this time, the midline undergoes complex 

morphological changes, such as midline retraction, while cells are simultaneously differentiating 

into various subsets of neurons and glia. All midline cells are distinguished through expression 

of the transcription factor single-minded (sim), which is necessary for proper midline 

development and the expression of other midline-specific genes (Crews 1998; Fontana & Crews, 

2012; Wheeler et al., 2006). About 3.5 - 4.5 hours AEL the midline is composed of sixteen 

seemingly similar cells per segment; by the end of development around 17 hours AEL, these 

cells are mature neurons and can be identified via differential gene expression (Wheeler et al., 

2006) (Table 2). In the mature embryonic CNS, there are about 22 midline cells per segment, 
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which include: a dopaminergic H-cell interneuron and glutamatergic H-cell sib interneuron, two 

peptidergic MP1 neurons, three glutamatergic/octopaminergic mVUM motor neurons (innervate 

body wall muscles and the female reproductive system), and three GABAergic iVUM 

interneurons (Wheeler et al., 2006). This great diversity in neurons arises from a set of midline 

precursors (MPs), which each divide once during early development to generate two cells. MP1 

divides to give rise to the MP1 neurons. MP3 generates H-cell and H-cell sib. MP4 divides into 

an iVUM and mVUM, as do MP5 and MP6. These divisions produce iVUM4-6 and mVUM4-6 

(Wheeler et al., 2008). The MNB divides several times to generate approximately 8 neurons as 

progeny (Wheeler et al., 2006). As for midline glia (MG), there are two populations localized to 

either the anterior or posterior of embryonic segments (AMG and PMG, respectively). The PMG 

will undergo programmed cell death during late embryonic development; their roles in midline 

development are still unclear. The AMG will also undergo apoptosis, although there are 

survivors which ensheathe axon commissures (Fontana & Crews, 2012). Although all midline 

cells express sim as described, it is clear that considerable diversity exists in cell type, function, 

and fate.  

 

Midline cell gene expression 
All midline cells  sim MNB en, wor 
AMG runt, wrapper MP1; MP1 neurons lim3,odd 
H-cell gsb, ple, tup MP3 gsb 
H-cell sib CG13565, gsb, VGlut MP4-6 en 
iVUMs en, gad1 PMG en, mas, wrapper 

 
Table 2: Midline cells can be identified by their expression of certain genes using either RNA probes or antibodies.  
 

Previous methods to decipher the genetic differences between single cell types within the 

midline primarily relied on marking cells in fixed embryos using in situ hybridization and 
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antibody staining. While providing single-cell resolution, there are limits to the number of 

genetic markers which can be analyzed, making these procedures expensive and laborious. 

Further, these methods are limited in their ability to reveal novel genetic markers, which is 

largely accomplished through analysis of genetic mutants.  

However, FACS and scRNA-seq vastly revolutionized this process. With FACS, an 

entire population of cells can be isolated in a high-throughput manner, and these thousands of 

cells can be prepared for further analysis. Utilizing scRNA-seq to interrogate the cell population 

would generate massive amounts of transcriptome data and provide a more complete picture of 

what is expressed in a given cell and when. The combined use of these techniques greatly 

improve the chance of uncovering novel genes involved in development, without sacrificing 

resolution. By exploiting the inherent genetic differences in these cells using flow cytometry and 

single-cell RNA sequencing, a greater understanding of the dynamic midline transcriptome can 

emerge and perhaps elucidate homologous processes in human neural development.  

 

Fluorescence-activated cell sorting and RNA-sequencing are valuable tools for 
characterizing the transcriptome of heterogeneous cell populations 
 

Fluorescence-activated cell sorting (FACS) is a specialized flow cytometry technique that 

can sort a heterogeneous mixture of cells into distinct populations on the basis of the cells’ light 

scattering and fluorescent properties. Briefly, a single-cell suspension is prepared and loaded into 

a sorter. As cells emerge from the sorter, they pass single file across a small area illuminated by a 

laser beam, which detects the optical properties of the cells based on their measured 

fluorescence, scatter, and other preset criteria. A computer then converts the distinct optical 

properties of the cell into electrical pulses, thus providing a positive or negative charge to the 

isolated, single-cell droplets. The assigned charge deflects the droplet into the appropriate 
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collection tube (Herzenberg et al., 1976), thus isolating a cell population of interest from the 

original heterogeneous sample. 

A wide variety of fluorophores can be utilized to tag cells of interest. In order to use 

fluorescent tags, the fluorophores must be biologically inert, fluorescently intense, and, if using 

more than one, exhibit little spectral overlap (Baumgarth & Roederer, 2000). FACS sorting has 

been successfully used with fluorophores in Drosophila to purify embryonic cell populations 

(Cumberledge & Krasnow, 1994; Fontana & Crews, 2012), hemocytes (Tirouvanziam et al., 

2004), and follicle cells (Calvi & Lilly, 2004), among other populations. In these cases, it is 

typical to express GFP (or another fluorophore) in a tissue-specific manner using the UAS/Gal4 

system. It is also possible to sort lineages of neuroblasts from tissue; in one experiment, ase-

Gal4, a type I lineage specific marker, was used to drive the expression of nuclear GFP (UAS-

stingerGFP) specifically in neuroblasts and to a lesser extent, their progeny. Cells were then 

sorted based on their size (differentiated cells were smaller than neuroblasts) and GFP intensity 

(differentiated cells gave off less signal than neuroblasts). Subsequent RNA-seq provided 

transcriptome data about this previously elusive set of cells, and led to the discovery that 

Klumpfuss can regulate self-renewal in neural stem cells (Berger et al., 2012).  

Once a heterogeneous cell population is subdivided, it is possible to further characterize 

the sub-populations using techniques such as RNA-sequencing (RNA-seq). RNA-seq is a high 

throughput technology that takes advantage of next-generation sequencing to provide a snapshot 

of a cell population’s transcriptional profile, or transcriptome. In this procedure, mRNA is 

isolated by its poly-A tail and primed for production of complementary DNA (cDNA) with a 

reverse transcriptase and primers, which can be sequence specific, or oligodT primers (which 

recognize the polyA tails of all mRNAs). The resulting cDNA libraries are then prepared for 
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high-throughput sequencing. The reads generated from sequencing are subsequently analyzed 

and mapped to a reference genome or transcriptome (Wang et al., 2009). 

Taking the resolution of transcriptional analysis one step further is a recent advancement 

in sequencing technology called single-cell RNA sequencing (scRNA-seq), which can provide 

the expression profiles of individual cells within a population. This technology makes the 

characterization of a subpopulation of cells within a heterogeneous sample possible, thus 

providing a more detailed picture of the system as a whole (Wang et al., 2009). There are 

currently several different methods for isolating single cells, from micromanipulations to laser-

capture microdissection (LCM) to microfluidic technology (Shapiro et al., 2013; Zong et al., 

2012). As with any technique, there are benefits and limitations to each isolation method. For 

instance, a large benefit of LCM is that the spatial location of the cell sample is known, since 

tissue is selectively cut. However, it is low-throughput and may not be appropriate for 

subsequent transcriptome analysis, since it is difficult to capture all or most of a single cell 

without also collecting material from adjacent cells (Shapiro et al., 2013). Micromanipulations to 

isolate cells, such as through mouth pipetting or serial dilutions, are easy and inexpensive to 

perform. However, cells must be in suspension already, these techniques are low-throughput, and 

experimental error can be introduced through the misidentification of cells (Shapiro et al., 2013). 

Thus, the research question and subsequent experimental design must be considered carefully to 

ensure that the most suitable techniques are chosen prior to downstream sequencing. 

To further elucidate the transcriptional profile of individual midline cells, FACS was 

used in conjunction with the Fluidigm C1 Single-Cell Auto Prep System, which uses 

microfluidics technology to capture and process cells for sequencing. Essentially, a FACS-

isolated suspension of midline cells is washed over the C1 chip, which contains 96 wells to 
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capture single cells; these cells are then lysed, reverse transcribed, and amplified, all within the 

same capture chamber. A cDNA library can then be created and sequenced for each captured 

cell, revealing the expression profiles of individual cells, rather than a composite average (Egidio 

et al., 2014).  
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MATERIALS AND METHODS 

Drosophila strains and genetics 

The elav-Gal4;UAS-2xEGFP (elav>2xEGFP) strain generously donated by Daniel McKay at 

UNC-Chapel Hill was used for cell sorting experiments.  

 

Collection and dissociation of embryos for cell sorting 

elav>2xEGFP flies were bred in 6oz bottles containing cornmeal-based food at 25°C until 

approximately 50 bottles of flies were amassed. For embryo collections, about 1.5g of recently 

eclosed flies were transferred to cages and allowed to adapt for a few days. On collection days, 

100mm grape juice agar plates streaked with yeast paste were cleared of older embryos once in 

the morning. Embryos were then collected for 2 hours on fresh yeast-streaked, grape juice agar 

plates and allowed to age an additional 14-16 hours after egg laying (AEL) at 25°C. After 

verifying stages collected, the embryos were dechorionated with 100% bleach for one minute, 

and extensively rinsed with water before being transferred to a 35mL glass Dounce homogenizer 

filled with 1X phosphate-buffered saline (PBS)+0.1% Triton-X-100 and allowed to settle to the 

bottom. Once embryos were settled, PBS+0.1% Triton-X-100 was carefully poured off and 

replaced with “hemolymph-like” (HL) buffer (25mM KCl, 90mM NaCl, 4.8mM NaHCO3, 

80mM d-glc, 5mM Trehalose, 5mM L-Gln, 10mM HEPES, final pH to 6.9) + 5mM EDTA 

(Salmand et al., 2011). For stage 16-17 embryos, mechanical disruption was achieved using nine 

strokes with a loose pestle and one final stroke with the tight pestle in the Dounce homogenizer. 

The resulting cell suspension was gravity filtered through Miracloth into 15mL culture tubes, 

filled to 10mL with HL + 5mM EDTA buffer and centrifuged at 100 x g for 10 minutes at 4°C. 

All but the last 1mL of supernatant was pipetted off and used to resuspend the cells by gentle 
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pipetting. The suspension was re-filtered though a 41µm mesh filter into clean 15mL culture 

tubes, filled to 10mL with HL + 5mM EDTA buffer, and centrifuged again at 100 x g for 10 

minutes at 4°C. All but the last mL of supernatant was pipetted off and used to resuspend the 

cells, after which the suspension was filtered through a 20µm mesh filter. A 1mL aliquot of 

filtered suspension was reserved and stained with DAPI (1µL of 5mg/mL stock) to obtain a cell 

count with a hemacytometer. Based upon the cell counts, the remaining filtered cells were 

diluted in HL + 5mM EDTA buffer to 1x107 cells/mL density and transferred to 5mL round-

bottom polypropylene tube. At this point, cells were kept on ice in the dark for up to two hours 

until ready to sort. Before sorting, propidium iodide (PI) was added at a final concentration of 

1µg/mL to serve as a live-dead cell marker.  

 

Cell sorting 

Cell sorting occurred on the same day approximately an hour after embryo dissociation on the 

Beckman Coulter MoFlo cell sorter, housed at the Flow Cytometry Core Facility of the UNC-

Chapel Hill School of Medicine. Cell sorting was based on forward and side scatter properties, 

the presence of PI fluorescence which indicates dead and dying cells, and the intensity of GFP 

fluorescence. Using these properties for gating, cells were sorted into two receptacles containing 

either GFP+ midline cells or GFP- non-midline cells and placed on ice. After the sort, an aliquot 

of sorted cells was stained with DAPI and analyzed to verify the accuracy of the sorter.  

 

Statistical analysis 

The Student’s t-test was used for statistical analysis in the graphs presented.  
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RESULTS 

An optimized protocol for isolation of Drosophila midline cells for use with FACS and 
single-cell RNA sequencing 

The goal of this experiment was to optimize a protocol for the generation of single-cell 

suspensions of midline cells from Drosophila embryos. These midline suspensions could then be 

used for scRNA-seq, in order to create a complete, single-cell resolution, transcriptional profile 

of Drosophila midline development. Here, elav>2xEGFP fly embryos were dissociated and 

filtered to obtain live, single cell suspensions, which were run through a FACS sorter to separate 

midline cells (GFP+) from non-midline cells (GFP-). From that point, the live, purified 

population of midline cells could be used for sequencing and analysis of the transcriptome using 

microfluidic technology. 

The first step of this protocol is the isolation of live midline cells from embryos. In order 

to isolate midline cells using FACS, I used a fly line that employs the UAS-Gal4 system to drive 

the expression of enhanced GFP (EGFP) in all elav-positive cells (elav>2xEGFP). In later stages 

of embryo development (stages 14-16), elav is expressed in the mature midline and brain. 

Early versions of the original protocol for the dissociation of midline cells from embryos 

were not optimized for the formation of single-cell suspensions (Fontana & Crews, 2012). In 

these initial isolations, along with the presence of multi-cell clusters, many pieces of small and 

large cellular debris were present (defined as about <5µm and >5µm in diameter, respectively). 

Furthermore, many cells stained positive for propidium iodide (PI), indicating poor health or 

death. Finally, cell recovery was fairly low after performing all the filtering steps (conversation 

with Dr. Joseph Pearson, not published). All of these are concerns leading up to FACS sorting. If 

cells are clustered, even if they are GFP-positive, the sorter will discard the cells due to the larger 

size. Cellular debris can also interfere with sorting and prevent midline cells from being sorted 
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into the proper receptacle. Cells must also be alive and relatively healthy to undergo scRNA-seq. 

Although the chip used for subsequent sequencing only holds 96 cells, it is important to obtain 

several thousand, healthy cells to wash over the chip to increase the chances of capture. Thus, 

there was room for improvement in the protocol for cell dissociation. 

The optimized protocol described produces a final single cell suspension with more cells, 

less debris, as well as fewer clusters and dead cells. Using this protocol, cells were run through a 

FACS sorter and several thousand healthy midline cells were successfully sorted from all other 

cells, demonstrating that this protocol can perform the same function as well as and better than 

the last.  

Lowered trypsin and increased EDTA in dissociation buffer produces the fewest cell clusters  

Leaving cells too long in any sort of protease is not conducive to cell health. In the 

original protocol, the dissociation buffer used was 0.5% trypsin, 0.2% EDTA in 1X PBS, which 

reduces cell clustering at the cost of cell viability. In order to increase viability and maintain 

reduced cell clustering, I compared cell viability and clustering between a control buffer (HL), a 

trypsin-only buffer (0.25% trypsin), an EDTA-only buffer (5mM), and a collagenase-only buffer 

(1mg/mL). Trypsin is a serine-threonine protease chosen for its ability to resuspend adherent 

cells and dissociate cells from tissue. Collagenase cleaves peptide bonds in collagen, and was 

selected to use since it digests connective tissue. EDTA, which chelates calcium and magnesium 

ions that can inhibit trypsin activity, also inhibits cadherin attachment between cells, and was 

thus selected to test for its efficacy in dissociation. 

Aside from differences in dissociation buffers, cells were mechanically dissociated using 

the same methods described in the material and methods, and suspensions were analyzed for 

clusters using a hemocytometer. The buffer with the lowest number of cell clusters was the 
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EDTA-only buffer (5mM), followed by the trypsin buffer (0.25%) (Figure 9A). Compared to the 

1X trypsin and control cell suspension, there were more clusters present in the 1X collagenase 

suspension (Figure 9A). The difference between the control and EDTA samples was not 

significant, though there was a significant difference in clustering between the EDTA and 

collagenase samples (p<0.05). In each of the samples, PI was used to identify dead cells; the 

fewest dead cells were seen in the control and EDTA samples, which were not statistically 

different. Thus, 1X EDTA in HL buffer (HL + 5mM EDTA) is the superior dissociation buffer 

tested, as it produces fewer cell clusters than the proteases and cell health is preserved. 

 

Centrifuging at 100 x g for 10 minutes and pipetting off buffer is optimal for cell recovery 

Another issue that was addressed from the original isolation protocol is cell recovery 

after centrifugation. Previously, cells were centrifuged after dissociation at 300 x g for ten 

minutes, after which the supernatant was decanted off. However, if cells are not all pelleted, 

there is a chance of losing many when pouring off liquid. To determine cell loss in the 

supernatant after centrifugation, samples were taken from the top (10mL mark), middle (5mL 

mark) and bottom of the culture tube after centrifugation and cells were counted on a 

hemocytometer (Figure 9B). Four samples per trial were used: one sample spun at 300 x g for 10 

minutes, one sample spun at 300 x g for 20 minutes, one sample spun at 100 x g for 10 minutes, 

and one sample spun at 100 x g for 20 minutes. This trial was repeated four times. Centrifugation 

at a lower g was chosen as it should be gentler on the cells and cause less shearing, thus 

supporting cell health. However, a spin at 100 x g may not be sufficient to pellet all cells, so spin 

time was increased to 20 minutes, possibly resulting in fewer cells floating in the supernatant. It 

was found across trials that, although the majority of cells were localized to the bottom of the 
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tube after centrifugation, many cells were still floating in the top and middle of the sample 

regardless of spin time or velocity (Figure 9C). As a control to ensure that these cells are not 

prone to floating, a sample was spun down at 5000 x g for 10 minutes. As expected, virtually no 

cells were seen in the top or middle of the tube (data not shown). Comparing between the 10 and 

20 minute spins, there was no significant difference in cell count between 300 x g at 10 and 20 

minutes, or between 100 x g at 10 and 20 minutes. However, comparing spin velocities at 10 

minutes, 100 x g was more efficient at pelleting cells to the bottom of the tube than 300 x g 

(p<0.05). At 10 minutes, the sample spun at 100 x g contained significantly fewer cells at the top 

of the tube than the sample spun at 300 x g (p<0.01) (Figure 9C). Based on this data, the 

protocol was modified to use a spin velocity of 100 x g for 10 minutes. In addition, instead of 

decanting the supernatant, it would be carefully pipetted off until only a milliliter of supernatant 

remained. This way, cells floating just above the pelleted cells could be recovered.  

 

Filtering reduces the quantity of cellular debris present in samples 

The next issue to address was that of cellular debris. Although it is difficult to remove 

cellular debris entirely, it is ideal to have a high cell to debris ratio before FACS sorting. To 

determine the cell to debris ratio present after centrifugation, the amount of large and small 

debris (>5µm, and <5µm respectively) was quantified after one spin at 100 x g for 10 minutes. It 

was found that cellular debris outnumbered cells at the top, middle, and bottom of the tube 

(Figure 9D). In order to decrease cellular debris, cells were filtered through Miracloth, a rayon-

polyester filtration material, and 41µm and 21 µm mesh filters. Briefly, the procedure went as 

follows:  dissociation, Miracloth filtration, centrifugation, 41µm filtration, centrifugation, and 

lastly 20µm filtration.  
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Gravity filtration through Miracloth immediately after dissociation successfully 

decreased the amount of large debris seen before centrifugation (data not shown). Next, I 

assessed the ability of the 41µm and 20µm mesh filters to decrease cellular debris between 

rounds of washes and centrifugation. For this, resuspended cells were gravity filtered through a 

41µm mesh filter after the first wash and centrifugation, and then filtered again through a 20µm 

mesh filter after a second wash and centrifugation. Immediately after the first and second spins, a 

small aliquot of sample was taken to assess cell to debris ratio. After the first spin, a large 

amount of debris was present along with the cell pellet. Some cells and debris still lingered at the 

top and middle of the tube as well (Figure 9E). After a second spin, which was filtered through 

the 41µm mesh filter prior to centrifugation, considerably less debris was present at all points 

sampled. In addition, cell recovery after washing a second time was excellent and the ratio of 

cells:debris improved per 20nL sampled (Figure 9E). The data indicate that filtering before 

washing is beneficial for decreasing the amount of debris present, and that pipetting off the 

supernatant rather than decanting is aiding in cell recovery. The protocol was then modified to 

include all of the filtering steps detailed. To summarize the protocol: 

1. Dissociate cells from tissue in HL + 5mM EDTA 

2. Gravity filter through Miracloth 

3. Wash/centrifuge at 100 x g for 10 minutes 

4. Pipette off all but last mL of supernatant, gently pipette to resuspend pellet 

5. Gravity filter through 41µm mesh filter into clean tube 

6. Wash/centrifuge at 100 x g for 10 minutes 

7. Pipette off all but last mL of supernatant, gently pipette to resuspend pellet 

8. Gravity filter though 20µm mesh filter into clean tube 
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Two washes is sufficient for reducing debris and recovering cells 

Since performing two washes was helpful in reducing the amount of debris present, it 

was thought that perhaps additional washes could be even more beneficial. Up to four washes, at 

100 x g for 10 minutes, were conducted on samples and aliquots were taken from the bottom of 

the tube for counting. After the first spin, the same pattern is seen where the amount of debris 

present outnumbers the quantity of cells per 4nL (about 1:2.3 cells:debris) (Figure 9F). After the 

second wash, the ratio of cells:debris improves to about 1:1.4, supporting the results found 

previously (Figure 9F). However, after the third and fourth spins, cell recovery decreased 

without a proportional reduction in debris (about 1:4 and 1:2, respectively) (Figure 9F). The 

minimal decline in debris observed after more spins did not merit the continual loss of midline 

cells. Since more than two washes and centrifugation cycles is detrimental to total cell recovery, 

the protocol remained unchanged in that two washes and centrifugation cycles were used 

throughout the course of the protocol.  

 
The optimized protocol had a final sample with adequate healthy cell recovery, fewer debris 
pieces, and little cell clustering 
 

In order to determine the final proficiency of the protocol with the given changes, this 

procedure was run in its entirety using the findings from the optimization experiments, and the 

general time course of cell loss was plotted. Applying the changes to the protocol (summarized 

in Table 3), from beginning to end resulted in a cell recovery of approximately 30% (Figure 

9G). Further, few cells stained positive for PI, virtually no cells clustered, and the amount of 

debris in the final sample decreased (data not shown). In conclusion, the updated protocol 

produces a cell suspension suitable for running through a FACS sorter, thus ensuring that healthy 

midline cells can be isolated.  



	

48 

Summary of protocol optimization 
Dounce strokes 9X with loose pestle, then 1X with tight pestle 
Anti-clustering agent 5mM EDTA in HL buffer 
Filtration Miracloth, 41µm and 20 µm mesh filters 
Spin velocity 100 x g 
Spin times 10 minutes per wash 
Washes 2 
Supernatant Pipette off all but the last mL of supernatant after a wash 

 
Table 3: Summary of optimized protocol.  
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Figure 9: Quantification of different optimization parameters for tissue dissociation and obtaining a single cell 
suspension for FACS sorting. (A) The number of cell clusters per 4nL (y-axis) was counted for samples using a 
different anti-clustering agent (x-axis). The use of 1X EDTA in the dissociation buffer produced the fewest clusters 
observed between control, 1X trypsin, and 1X collagenase. Cells were counted on a hemocytomer and the number 
was averaged among 4nL squares. N=16 squares per sample,  p<0.05*. (B) Representation of top, middle, and 
bottom of a tube from which cell samples were taken for counting. The top indicates a sample taken from the 10mL 
mark, middle indicates a sample taken from the 5mL mark, and bottom refers to the last mL. (C) Number of cells 
counted (y-axis) at different spin velocities and times from the top, middle, and bottom of a sample tube (x-axis). 
Blue bars show data for the 300 x g for 10 minutes spin, red bars for 300 x g for 20 minutes spin, green bars for the 
100 x g for 10 minutes spin, and purple bars for the 100 x g for 20 minutes spin. Cells were still present in the top 
and middle of all samples after spinning, but the most cells per 4nL square were counted in the 100 x g sample spun 
for 10 minutes. N = 16 squares per sample, p<0.05*, p<0.01**, p<0.001***. (D) The quantity of cellular debris and 
cells (blue bar) was counted per 4nL at the top, middle, and bottom of the tube. Large debris (LD, red bar) was 
defined as debris larger than 5µm in diameter, while small debris (SD, green bar) was defined as debris smaller than 
5µm in diameter. After a single spin at 100 x g for 10 minutes, most debris was located at the bottom of the tube and 
the cell:debris ratio was not ideal. N= 16 squares per sample. (E) After a second spin at 100 x g for 10 minutes, the 
quantity of cellular debris and cells (blue bar) was counted per 4nL at the top, middle, and bottom of the tube. LD 
(red bar) and SD (green bar) were reduced overall after the second wash and the cell:debris ratio improved. N = 16 
squares per sample. (F) Additional washes were conducted to determine if debris could be decreased further without 
sacrificing cell recovery. Cells (blue bar), LD (red bar), and SD (green bar) were counted from the bottom of the 
tube after each wash. The third and fourth wash decreased the amount of cellular debris, but at the expense of cell 
recovery. Two washes were deemed optimal for both reducing debris and recovering an adequate amount of cells.  
N = 16 squares per sample. (G) General time course of cell loss throughout the tissue dissociation procedure 
following the optimized protocol. Pre-MC = pre-Miracloth filtering, post-MC = post-Miracloth filtering before 
washing, RS #1 = cell resuspension #1 after the first wash, 40F = post 41µm mesh filtering, RS #2 = cell 
resuspension #2 after the second wash, and 20F = post 20µm mesh filtering, which is the final suspension that would 
be taken to the FACS sorter. Approximately 30% of healthy cells were recovered from pre-MC to 20F.  
 
 

 

 

Midline cells were isolated from a single-cell suspension using FACS 

Using the optimized protocol, 16-18 hour old elav>2xEGFP embryos were dissociated 

and processed to obtain a single-cell suspension. The suspension was diluted to a density of 

1x107 cells/mL and kept on ice in the dark until ready to sort later that same day. PI was added 

immediately before sorting to serve as a live-dead marker. After gating for fluorescence from the 

control samples (w1118 with and without PI added, elav>2xEGFP without PI), the experimental 

sample (elav>2xEGFP with PI) was run through the Beckman Coulter MoFlo. For the first run, 

the machine was set to sort through 50,000 cells to isolate GFP-positive, PI-negative midline 

cells into a receptacle tube (Figure 10A-B). Approximately 2500 cells of interest were isolated. 
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Immediately following, the midline cells were sorted once again to verify enrichment and cell 

count. When set to the same parameters as the previously sorted cells, the MoFlo only recovered 

about 1600 cells, 700 of which were GFP-positive, PI-negative. The population was enriched for 

GFP-positive cells, as expected (Figure 10C). When an aliquot from the first GFP-positive sort 

and second GFP-positive re-sort was stained with DAPI and manually counted, it was found that 

the cell count was consistently about 10-15% of the count suggested by the sorter. All cells 

collected appeared relatively healthy. This is useful information to know before performing 

RNA-seq so enough cells can be isolated to ensure a successful experiment.  
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Figure 10: Midline cells were sorted from a heterogeneous 
population of cells using FACS. (A) Side scatter  (SS, 
proportional to cell granularity) versus forward scatter  (FS, 
correlates with cell size) was plotted for 50,000 cells. The cells 
within the polygon drawn are the cells that underwent further 
analysis. (B) Log of PI fluorescence versus log of GFP 
fluorescence for the cells within the gated population. The 
rectangle encloses GFP-positive, PI-negative midline cells. This 
is the population of cells that were isolated for a subsequent sort. 
(C) Log of PI fluorescence versus log of GFP fluorescence for the 
population of midline cells from (B) after a second sort. Although 
some cells died between runs (high PI fluorescence), many 
midline cells could be recovered (rectangle). This shows that the 
protocol optimized can be used to successfully perform a FACS 
experiment to isolate cell populations of interest.  
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DISCUSSION 

Single cell sequencing is a powerful tool with the potential to provide precise resolution 

into the dynamics of cellular processes at any given time. With this technology, we can pinpoint 

cellular differences and obtain a better understanding of how the cell functions within a given 

environment, such as the midline. Identifying these cellular differences and functions can lead to 

the elucidation of certain developmental processes, such as neuronal differentiation, and perhaps 

identify novel targets for the treatment of disorders.  In order to take advantage of this 

technology, it is necessary to use a protocol developed specifically for isolation of midline cells 

from Drosophila embryos. In this chapter, I describe the optimization of a protocol used to 

obtain the highest possible number of healthy cells in a single cell suspension with the lowest 

quantity of cellular debris, a situation ideal for subsequent FACS sorting. This protocol 

successfully isolates midline cells from non-midline cells, and acts as a proof of principle that 

live, healthy cells can be recovered for later RNA-seq and analysis.  

 The original protocol required optimizations to decrease cell clustering and cellular 

debris, while maintaining cell viability. Originally, trypsin-EDTA was used to break clusters of 

cells apart, and then neutralized with serum. However, incubating cells with trypsin for too long 

can damage cell membranes, endangering cell health, or possibly kill the cells, which is 

detrimental for FACS sorting. EDTA, a divalent cation chelator, is generally added to trypsin 

stocks as it reduces the presence of free Mg2+ and Ca2+, both of which inhibit trypsin activity. 

However, this reduced availability of calcium inhibits cadherin-mediated cell-cell adhesion. In 

summary, EDTA promotes activity of trypsin and decreases cell-cell adhesion, and thus provides 

a more gentle method for reducing cell clustering than actively cleaving proteins. This feature 

made it an attractive anti-clustering agent to use in the dissociation buffer. Indeed, most cells 
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appeared healthy after prolonged contact with EDTA. This eliminated the need for trypsin and 

the serum neutralization step, making the protocol more streamlined. Because live cells are 

needed for FACS sorting, this is ideal since as little time as possible should pass between tissue 

dissociation and sorting. 

Centrifugation allows for increased cell recovery, but high speeds risk isolation of 

cellular debris. The original protocol also called for centrifuging samples twice at 300 x g for 10 

minutes in order to wash cells. During optimization, I found that spinning cells for 20 minutes 

rather than 10 minutes made no significant difference in increased cell recovery, indicating that 

cells are moving towards the bottom of the tube within the first 10 minutes of spinning. Once 

again, the decreased wash time means the protocol can be completed quicker and cells can be 

sorted sooner. Further, spinning at 100 x g was as efficient at spinning at 300 x g in reference to 

cell recovery. In addition, fewer dead cells and generally less debris were seen in the 100 x g 

samples than in the 300 x g samples (data not shown). The increased debris and dead cell count 

observed in the 300 x g samples is likely due to greater cell shearing. In conclusion, the optimal 

wash time is 10 minutes while centrifuging at 100 x g.  

Cell filtration is used to remove larger pieces of cellular debris. The original protocol 

utilized a 41µm mesh filter after the first wash to manually push cells through the filter, thus 

isolating whole cells from larger pieces of debris. Forcing cells through a filter is stressful for 

cells, and may also contribute to the quantity of debris if cells break apart under the pressure or 

encounter a clog. To minimize the presence of large debris, which would cause clogs, Miracloth 

was used to gravity filter out large pieces of debris from the samples prior to the first wash. Thus, 

when the 41µm mesh filter was used after the first wash, cells flowed easily through with no 

need for applied manual pressure. This is presumably because the larger pieces of debris, which 
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may have normally clogged the 41µm filter, were removed before the wash. Following the 

second wash, cells were filtered through a mesh filter, and again, flowed easily through. 

Although cell recovery decreased after each filtering step, the amount of debris present was 

reduced and fewer dead cells were present at the end of the protocol. Overall, the preservation of 

cell health and reduction of cellular debris outweighed the small reduction in cell numbers, and 

so the Miracloth and 20µm filter were added to the protocol.  

 Washes served to remove cellular debris, but too many washes decrease live cell yields. 

The original protocol called for two washes and it was determined that two washes was sufficient 

for removing debris, as well as recovering as many cells as possible. The debris removed by 

performing an extra third or fourth wash was negligible, and there was a positive correlation 

between number of washes and cells lost. Thus, it was decided that the loss in cells was not 

worth the slight decrease seen in the amount of cellular debris, and so only two washes were 

utilized in the final protocol. 

 While many cells are pelleted after centrifugation, a percentage remains floating in the 

supernatant. As shown in Figure 9, there are actually cells present throughout the tube after 

spinning, especially towards the bottom just above the cell pellet. Originally, after each wash, the 

supernatant was decanted off, resulting in considerable cell loss. Carefully pipetting off all but 

the last milliliter and resuspending from that point saves these cells from being discarded and 

contributes to overall cell recovery. It is important to recover as many cells as possible, 

especially because the midline cell population is small relative to non-midline cells. The more 

cells obtained, the more midline cells can be isolated via FACS. Though more time-consuming 

than decanting, considerably more cells can be recovered for downstream analysis by pipetting 

off the supernatant, and so this step was added to the finalized protocol. 
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 The FACS data reveals that this protocol can yield a relatively healthy, pure population 

of midline cells from a heterogeneous cell suspension. However, one drawback is that less 

midline cells were recovered from a pure sample of previously sorted cells. However, this re-sort 

would not generally be performed during non-optimization procedures. In any case, there are 

several possibilities to explain the observed loss in midline cells. Optimally, when cells are 

sorted and immediately re-sorted, the expectation is that the majority of cells will be recovered 

with little cell death in between sorts. In this case, it is possible that between sorts, some GFP-

positive midline cells died, and thus pushed them past the gate for PI fluorescence, leading the 

sorter to discard them. It is also possible that some cells clustered together between runs, which 

would also lead the sorter to discard them. In addition, some cells may have stuck to the 

collection tube after the first sort and thus were never run through the second sort. This is not an 

exhaustive list of all possible reasons why the cell count was lower on the second run, and it may 

be difficult to determine the precise cause (or causes) of this occurrence. For instance, one could 

examine the original midline sort tube under a microscope to determine if cells are stuck to the 

side. One could also perform a time series of cell death; take small aliquots of sorted cells after a 

predetermined amount of time (every ten minutes, for example), and count the number of cells 

with PI fluorescence. This would provide some insight as to why the re-sort results in fewer 

midline cells. Although cells were lost between sorts (again, re-sorting is used to validate that a 

pure population can be collected and will likely not be performed before RNA-seq), it does 

reveal important information. Immediately after sorting, it is critical to count cells manually, 

assess cell health, and underestimate the quantity collected to ensure that a large enough 

population is collected for sequencing.  
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Although not performed here, the next step is to prepare the isolated midline cells for 

single-cell RNA-seq using the Fluidigm C1 system. Using the previous RNA-seq technology 

without single cell analysis, the transcriptome of the midline could be analyzed at any given 

developmental time period, and the identity and expression levels of activated genes could be 

determined. However, it is difficult to determine from this dataset exactly which cells in a 

population are expressing a given gene, because expression levels are averaged across the entire 

heterogeneous sample. For instance, wrapper is expressed in midline glia, but not neurons; 

RNA-seq would simply indicate that wrapper is expressed in the midline. Further analyses 

would be necessary to isolate specifically which cells are wrapper-positive. Thus, these RNA-

seq experiments only provide partial information about the molecular state of the system studied 

(Shapiro et al., 2013). Using scRNA-seq technology, the transcriptomes of individual midline 

cells can be analyzed and can reveal insight into differences between cell types as well as into 

the regulation of differentiating neurons and glia. This is by no means the limit. Using this 

optimized protocol, different midline cell types can be fluorescently tagged and isolated via 

FACS. This would allow for the purification and sequencing of subsets of midline neurons and 

glia. The knowledge gained from these experiments would contribute greatly to the 

understanding of the regulation of nervous system development, the factors underlying cell 

differentiation, and the differences between cell types.  

 Broadening this experiment, once the wild-type midline transcriptome has been 

thoroughly characterized, it would be interesting to sort cells from mutant flies to see if genes of 

interest (such as 18w, previous chapter) are affecting the regulation of midline development and 

how. For instance, if 18w is deleted, other genes may be up- or downregulated. This 

experimental design would allow for the rapid identification of multiple genes which could then 
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be studied further to determine a mechanism or pathway for 18w action. These experiments 

would contribute to the knowledge about nervous system development and might suggest new 

genes or pathways to target to develop therapies for neurodevelopmental disorders.  
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