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Abstract

ERIC T. LOFGREN: Mathematical Modeling of Clostridium difficile
Transmission in Healthcare Settings
(Under the direction of Dr. David ]. Weber)

Clostridium difficile is a frequent source of healthcare-associated infection,
especially among patients on antibiotics or proton pump inhibitors (PPIs). The rate
of C. difficile infection (CDI) has been steadily rising since 2000 and now represents
a major burden on the healthcare system in terms of both morbidity and mortality.
However, despite its public health importance, there are few mathematical models
of C. difficile which might be used to evaluate our current evidence base or new

control measures.

Three different data sources were analyzed to provide parameters for a
mathematical model: a cohort of incident CDI cases in the Duke Infection Control
Outreach Network (DICON), a hospital-level surveillance time series, also from
DICON, and inpatient records from UNC Healthcare, all from 7/1/2009 to
12/31/2010. Using estimates from these data, as well as from the literature, a pair

of compartmental transmission models, one deterministic and the other stochastic,
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were created to evaluate the potential effect of the use of fecal transplantation as a

treatment to prevent CDI.

The analysis of the cohort of incident cases suggested that ICU patients
experience a greater burden of mortality while infected with C. difficile and have
longer lengths of stay and times until death, suggesting this population as one of
special interest. Two interventions were simulated using the stochastic model: the
use of fecal transplantation to treat CDI and prevent recurrent cases and the use of
fecal transplantation after treatment with antibiotics or PPIs to prevent the
development of CDI. Simulation results showed that treating patients with CDI was
effective in preventing recurrence but not in reducing the overall number of
incident cases of CDI. Transplantation after treatment with antibiotics or PPIs had
no effect on preventing recurrence and a statistically significant reduction in

incident cases that did not reach clinical significance.

These results suggest that routine fecal transplantation for patients with CDI
may be an effective treatment to prevent recurrence. Mathematical models such as
the one described in this dissertation are powerful tools to evaluate potential
interventions, suggest new directions for study, and understand the dynamics of

infection on a population level.
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Chapter 1: Background and Specific Aims

Clostridium difficile is a frequent source of healthcare-associated infection
(HAI), especially among patients on prolonged antibiotic treatment regimens or
other conditions involving the disruption of normal gut flora. C. difficile is the most
commonly recognized etiological agent for healthcare-associated diarrhea, and
consequences of infection range from uncomplicated diarrhea to colitis and death.
C. difficile infection (CDI) is also a problem of growing importance. The appearance
and spread of a relatively rare strain identified as group BI by restriction
endonuclease analysis, ribotype 027 by polymerase chain reaction, and North
American pulse-field gel electrophoresis type 1 - often abbreviated as BI/NAP1/027
in Canada and soon after the U.S. and Europe, beginning in 2000 has been associated
with a marked increase in CDI cases in these areas. The BI/NAP1/027 strain is
characterized by a high mortality rate, which may be the result of increased

virulence, increased antibiotic resistance, or both1-3.

Rates of CDI-related hospitalizations and fatalities have been steadily rising
(Figure 1-1). In a recent report*, CDI eclipsed methicillin-resistant Staphylococcus
aureus (MRSA) as the leading source of HAIs within the Duke Infection Control

Outreach Network (DICON) group of hospitals. While a later study from the same



group of hospitals (Moehring et al, unpublished) found no evidence of a continued

increase in the 2009 to 2010 period, infection rates remain elevated.

Beyond the burden of morbidity and mortality, CDI represents a significant
drain on the healthcare resources of the United States and abroad. In 2009, there
were an estimated 336,565 cases in the United States based on discharge data from
the Nationwide Inpatient Sample (NIS) from the Healthcare Cost and Utilization
Project (HCUP), Agency for Healthcare Research and Quality. Recent estimates place
the cost of a single C. difficile infection at $2,000 per case for mild and
uncomplicated cases to upwards of $90,000 in the most severe cases>%, with an

estimated total burden on the U.S. healthcare system of over $500,000,000.

Many problems in hospital infection control are difficult to study empirically,
for both practical and methodological reasons. As the purpose of a hospital is to
treat, rather than study, patients, interventions to halt the spread of an infection are
not done in a stepwise fashion, trying each potential intervention in turn. Instead,
they are often deployed as a “bundle” of interventions, and once the spread of
infection has been eliminated or lessened, we are left only with knowing that some

component or components of that bundle were successful.

Compounding this practical problem are two serious violations of normal
statistical assumptions, and as such conventional observational methods. First,
patients cannot be considered statistically independent from one another. They are
correlated by a number of factors, including the staff they are treated by, the ward

and even hospital they are in. Second, the exposure status of one patient is not
2



independent of the disease status of another - indeed an infected patient acts as the

source of exposure for a currently uninfected patient (dependent happenings).

These problems may be addressed with the use of mathematical models,
which model the theoretical process by which infection is translated from one
patient to another. These serve as virtual, quantitative environments within which
controlled, repeatable experiments can be conducted. However, these models are
not without their own assumptions. This dissertation seeks to compose a rigorous
mathematical model of C. difficile transmission within a healthcare setting and
provide a systematic evaluation of some of those assumptions within the context of

hospital infection control.

Aim 1: The elucidation of the parameter estimates governing models of C.

difficile transmission.

Aim 1a: Estimation of incidence, time until death and time until discharge
from cohort and surveillance time-series data obtained from the Duke

Infection Control Outreach Network (DICON).

Aim 1b: Estimation of non-CDI specific parameters, such as the overall time
until discharge, proportion of admissions with active CDI and exposure to
CDI-risk factors such as proton pump inhibitors (PPIs) and fluoroquinolones
from administrative data obtained from the Carolina Data Warehouse for

Health.



Rationale: In order to comprehensively compare different model types, a set of
validly estimated parameters that will be used throughout the analysis must first be
obtained. This aim provides as many parameter estimates as possible using modern

epidemiological methods.

Aim 2: Comparison of parameter estimation methods and sources of between-

and within-model sources of uncertainty.

Aim 2a. Comparison of the estimates obtained from fitting a deterministic
compartmental model to an incidence time series to an approach directly
linking an incidence estimate from a regression model to the corresponding

parameter within the mathematical model.

Aim 2b. Comparing the results of a deterministic compartmental model with
the parameters obtained in Aims 1 and 2a to an identically parameterized

stochastic compartmental model.

Rationale: Traditionally, the estimation of transmission parameters is done from
within a mathematical model itself, fitting a parameter or group of parameters using
a method such as least-squares or maximum likelihood. However, it is possible, at
least in principle, to “back in” to a model parameter directly from incidence
estimates. This aim seeks to compare these two techniques, and evaluate the
possibility of leveraging multiple incidence estimates from a number of sites,

studies, meta-analyses etc. to provide a more robust parameter estimate.



This aim also seeks to explore issues around parameter uncertainty. In order
for a deterministic model fit to a time series to be an appropriate representation of a
stochastic process, the deterministic results themselves must be a good
approximation of the most common outcomes of the stochastic process. By fitting an
identically parameterized stochastic model, we may evaluate how well this

assumption holds.

Aim 3: Application of dynamic transmission models to hospital infection
control practice, assessing the impact of colonized/active CDI cases admitted
from the community, hand washing compliance and other variables of interest

to infection control on the modeled transmission of C. difficile.

Rationale: While Aim 1 and 2 seek to establish a robust model of C. difficile
transmission with carefully considered assumptions, the purpose of Aim 3 is to
apply this model to public health practice. Several major questions in infection
control, such as to what extent approaching 100% hand hygiene compliance might
effect transmission within the hospital, what role asymptomatic carriers of C.
difficile play in transmission, etc. can be addressed using this model, providing
possible mechanistic explanations for findings from observational studies or

suggesting new directions for inquiry.
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Figure 1-1. Discharge rate for C. difficile-associated disease per 1,000 hospital

discharges, 1997-2009. Data from weighted national estimates from HCUP
Nationwide Inpatient Sample (NIS).



Chapter 2: The Use of Mathematical Models to Study
Healthcare-associated Infection

Hospitals are inherently difficult settings in which to conduct observational
research, which complicates the study of healthcare-associated infections. Because
patients are treated by the same set of doctors, nurses and other healthcare
personnel (HCP) and share the same environment, the assumption of independence
between patients that underlies many traditional statistical methods is
questionable. Healthcare-associated infections are also a clear case of the problem
of “dependent happenings” — when the exposure status of one individual is
dependent on the disease status of those around them. Patients with HAIs shed
infectious material into the environment, contaminate HCP hands, and transmit
infections directly as they come into contact with other patients. Finally, as research
is of secondary concern when compared to patient care, much of the observational
research that is done is based on examining a “bundle” 7 or collection of
interventions all tried simultaneously to arrest an epidemic within a hospital. While
useful, these studies can only demonstrate that one or more components of the

bundle were successful, not highlight the role of any one intervention.



Mathematical models are ideal for addressing these challenges. Designed to
capture the dynamics of a system - like a hospital - as a whole, they are unburdened
by assumptions of independence between patients by explicitly modeling how
patients interact with one another. In doing so, they extend the empirical evidence
we do have from observations based on individuals to ask research questions about
the system as a whole. Mathematical models also provide a means to examine a
system under the effects of multiple interventions, such as a hospital using a
prevention bundle, and evaluate the effect of each intervention in turn?®, or in

combination, in a repeatable, quantitative environment.

Model Structure and Composition

Mathematical models, at their core, are an attempt to quantitatively describe
the way in which a system under study - such as the transmission of disease within
a hospital - works. For any one research question, there are potentially infinite ways
to describe a system with varying levels of complexity, different sets of assumptions,
and exploring different facets of the underlying processes that drive what we
observe in the real world. A few commonly used types of models are discussed

below.

Deterministic Compartmental Models

Deterministic compartmental models are by far the most commonly used
models in mathematical epidemiology today. Patients are grouped into a series of

health states known as compartments with the rates that govern the transition



between these compartments known as parameters, which are often denoted by a
Greek letter. For example, the simplest model used in mathematical epidemiology is
the so-called “SI” model, where patients are grouped into one of two compartments
- either susceptible (S) or infectious (I). Movement between these two
compartments is governed by the parameter 3 (“beta”), the product of the rate of
contact between individuals and the probability that that contact will result in
successful transmission from a infected individual to a susceptible one. The
collection of compartments and the parameters associated them are expressed as a
system of ordinary differential equations, one for each compartment as they change

over time. For example, for the SI model described above:

% — _BsI

g (Eq. 1)
= =BSI

dt ﬁ

These types of models have been extensively used in the epidemiological literature
since the work of Kermack and McKendrick?, though they were more recently

popularized by Anderson and May!0.11,

The use of these models in the study of HAIs is somewhat more recent,
reflecting the emergence of pathogens such as MRSA and C. difficile as major threats
to public health (e.g. 12-14). Most are single-ward adaptations of the Ross-Macdonald
model, a model originally developed for malaria control research>. These models

assume that disease acquisition is the result of indirect interaction with HCP



“vectors” carrying infection from an infected patient to a susceptible patient (Figure

2-1).

In their most basic form, these models represent both the HCP and patient
populations as two compartments - one for members of each group who are not yet
colonized or contaminated (depending on which pathogen is being modeled) and
one for those who are. Transmission occurs when a contaminated/colonized
member of one group comes into contact with an uncontaminated/colonized
member of the other group. The reasons for using this particular form are myriad.
The analogy between HCPs and vectors is intuitive and easy to understand, the
model - and extensions of it — have proven remarkable flexible in describing a
variety of disease systems, and the equations that make up the Ross-Macdonald
model are extensively studied and analytically tractable, allowing for results based
purely on the mathematical properties of the system, rather than on any particular

combination of parameter values.

These models do, however, have several major assumptions and limitations
inherent to them that may threaten their validity. First, they assume uniform,
random contact between compartments that interact with one another - for
example, that all HCPs see all patients. While it is possible to segment the population
into more and more refined compartments to address this assumption (e.g. splitting
HCP compartments into compartments for nurses, residents, medical students,
technicians, etc.), this is extremely cumbersome mathematically after a small
number of such divisions, and the assumption remains true within a given

10



interaction between two compartments. Extending the example used previously,
even if medical students only see a particular group of patients, the contact between
them is uniform and random. Second, these models assume strictly patient-to-HCP-
to-patient transmission, without a role for indirect transmission through the
environment, which may play a substantial role in the transmission of many
healthcare-associated infections!®. Third, these models are memory-less - they do
not follow the course of individual patients moving through the model, but rather
model the behavior of the population within each compartment as a group. This
means that while you can track outcomes such as how many infections occur, how
many HCPs have transient hand contamination, etc. you cannot say which
individuals have these outcomes. Beyond this, these types of models allow for non-
integer numbers of individuals in each compartment; it is perfectly possible to have
0.20 infected patients, regardless of the biological plausibility of such a scenario.
Finally, these models are purely deterministic - there is no mechanism to account
for probability and randomness within the system. While in large populations these
deterministic results might be considered the “average” outcome of the underlying
stochastic reality of the real world, for small populations this assumption is
problematic, making deterministic models frequently inappropriate for use in

settings like the modeling of infection transmission within a single ward or hospital.

Stochastic Compartmental Models

Adopting the same compartmental framework, but allowing for the effects of
randomness is a logical and relatively straightforward extension of the deterministic
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compartmental model. There are a number of ways to accomplish this. Perhaps the
most accessable is the use of an “event-driven approach”. Instead of modeling the
movement of the population between compartments at very small time increments,
as the deterministic model does, this approach instead uses the same baseline rates
as the deterministic model to probabilistically generate a list of events and when
they occur, adjusting the numbers in each compartment accordingly. For example,
this approach might determine that at time t = 5, a susceptible patient is infected.
Thus, when the simulation reaches t = 5, the population of the susceptible
compartment is reduced by one, and the infected compartment increased by one.
This approach has the two-fold advantage of incorporating randomness in the
system and forcing compartment populations to be integer-valued, better reflecting
the nature of reality!’. One well-known algorithm for implementing such a
stochastic model is Gillespie’s Direct Method!8. This method works by calculating
the time until the next event based on the cumulative rates of all possible events in
the model, converting each of these rates into probabilities, and then randomly
selecting one of these possibilities using a random number generator. This process

is then repeated through time until the simulation comes to an end.

The use of such a stochastic approach has several key features. In small
populations, random fluctuations may play an important role - for example, while a
deterministic model may predict 0.20 infected patients, a stochastic model must
express the infected patient population as either one or zero, and if that number is

zero, infection transmission becomes impossible. This process is known as
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stochastic extinction, and it plays a major role in the dynamics of infection within
small populations. However, purely mathematical analysis of the system becomes
somewhat more difficult. As a single simulation of the system represents only one
potential probabilistic outcome out of many, it is necessary to run many simulations
of the same model. This increases the amount of computation time necessary to
obtain results and necessitates statistical analysis to analyze results rather than
being able to rely purely on mathematical results. Additionally, while stochastic
compartmental models address some of the assumptions behind their deterministic
cousins, they share the assumption of random mixing between compartments, and
transmission from person-to-person (or patient-to-HCP-to-patient in the case of

healthcare-associated infections).

Network and Agent-based Models

Addressing the assumptions shared by both forms of compartmental model
requires the adoption of considerably more computationally sophisticated models.
As these models are not the focus of this dissertation, they will be discussed only

briefly.

Network models explicitly model individuals and the interactions between
them, lifting the assumption of random mixing. Individuals within the model have
specific health states very similar to those in compartment-based models -
susceptible, infected, etc. Disease transmission takes place not through the random
encounters between infected and susceptible individuals, but across the links

between them. These models have a number of strengths - they are especially useful
13



for examining research questions about how contact between individuals effects
disease transmission. For example, the effect of individuals preferentially forming
links based one who that person knows!? or the impact of dividing HCP into teams
that see only specific patients or other cohorting strategies20. Unlike compartmental
models, they are not “memory-less” - they can, and indeed must, model individual
patients as unique entities. This allows for the potential to include patient covariates
such as age, race or gender to modify their disease risk, and modeling individuals
allows for the analysis of the population in a way that is directly analogous to a real-
world population, allowing them to be analyzed and interpreted as virtual cohorts
21, This individual-level modeling also allows for the introduction of sophisticated
forms of stochasticity, such as alterations in mixing patterns, and parameters arising

from complex probability distributions that elude compartmental models.

These strengths do however have drawbacks. The mathematics behind the
dynamics of infection across a network are complex, usually necessitating
simulation-based implementations that, compared to compartmental models, are
more difficult to program and more computationally intensive. Beyond the
complexity of their implementation, these models also have somewhat more
burdensome data requirements. In addition to parameters detailing the natural
history of the disease, researchers must also specify the contact patterns between
individuals. Empirically obtained network data is relatively rare and difficult to
collect??, and while artificially generated networks that follow certain empirically-

derived distributions (e.g.23) may be used in place of direct data, this only replaces
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the random mixing assumption of compartmental models with a more refined
assumption about how individuals interact, rather than avoiding the assumption
completely. Finally, these models generally are meant to model person-to-person
transmission, though it is possible to model environmental transmission by the links
between individuals representing shared contact with the same environment, rather
than direct contact. However, this type of abstraction does not model the

environment itself, only the shared use of it.

Perhaps the most flexible type of model is an agent-based model, where
individuals are modeled within an environment, with their behaviors and
interactions governed by a set of rules. These rules can be extremely complex, based
on the agent’s environment, current health status, the status of those around them,
etc. (e.g. 24), or quite simple. For example, rules allowing random mixing which
allows agent-based models to act as an individual-based implementation of a
compartmental model system. Agent-based models share many of the same
strengths with network-models, arising from the representation of individuals
within the model as discrete entities, while also allowing for the direct modeling of
individuals within their environment, more complex behavioral patterns, etc. This
flexibility comes at the cost of even higher computational complexity than network
models and greater requirements for data from which to derive parameter values to

describe an ever more complex system.
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Meta-Population Models

Meta-population models are extensions of the any of the models described
above. A meta-population model breaks up a larger population, such as an entire
healthcare system (e.g.2>26) into individual hospitals and long term care facilities, or
a single hospital into its constituent wards, modeling the movement of individuals
both within the smaller sub-models and between them. These types of models are
best thought of as a collection of smaller models, with the corresponding

assumptions, strengths and weaknesses that accompany them.

Modeling C. difficile Transmission

The current literature on the modeling of C. difficile is relatively sparse, even
when compared to other HAIs such as MRSA, which has thus far dominated the
mathematical modeling literature as concerns hospital infections (e.g. 132°-30 among
others. A selection of the models that do exist is discussed below and summarized in

Table 2-1.

Starr and colleagues argue in two separate papers31:32 that a mathematical
modeling approach is needed to understand the dynamics of C. difficile, citing the
lack of independence between a given patient’s level of exposure and the number of
infected patients present in a hospital. The earlier of the two papers3! outlines a
model of C. difficile transmission that is entirely patient centric, possessing five
compartments to describe a patient’s health state: “Resistant, uncolonized” for

patients who are uncolonized with the organism and who possess some resistance
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to colonization - for example patients with healthy gut flora, “Resistant, colonized”
for patients who, despite having resistant traits have become colonized with C.
difficile, “Susceptible, uncolonized” for patients who, while not yet colonized are at
elevated risk for such an event, “Susceptible, colonized” for those higher risk
patients who have become colonized, and “Toxin-positive diarrhea” for those who
have developed clinically evident disease. This early paper does not however
actually attempt to model the disease process itself - rather, it suggests using a
mathematical modeling and population-level approach more as a conceptual basis
from which to consider infection control measures for C. difficile and recognizes that

the effect of any intervention will depend on the context in which it is attempted.

The later paper3? implements this model using a Markov Chain Monte Carlo-
based implementation in an attempt to capture both the stochasticity inherent to
small-population outbreaks and to draw inferences about so-called “hidden states”
within the model, notably patient health states that are not normally observed, such
as pre-clinical colonization status. The paper is notably lacking in mathematical
detail, though the authors present an important result: environmental
contamination alone is capable of driving small ( <4 patients) sporadic outbreaks,
but the larger outbreaks seen in many hospital settings also require some person-
to-person transmission process. It should be noted that the “environment” in this
model appears to be modeled as a constant, fixed “infective pressure” on patients,
and does not change based on the number of infected patients in the ward. Given

that environmental contamination arises from patients shedding C. difficile into the
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environment, this assumption seems problematic. Additionally, there is no account
for incoming prevalent infected or colonized cases from the community, which may

play an important role in seeding wards that would otherwise be free of infection33.

A more recent model by Starr et al.3* uses a similar approach with
considerable more methodological detail examines a number of potential infection
control strategies. Building off a 390 patient, two-ward hospital data set, the authors
find that interventions that influence patient susceptibility to C. difficile (i.e.
antibiotic stewardship) are considerably more effective at reducing infection
compared to environmental decontamination strategy or strategies that interrupt
transmission. Again however, several caveats to this finding are needed. The
environment is, again, modeled as a constant background colonization pressure,
rather than a dynamic source of transmission that varies with the number of sick
patients within the ward. Finally, despite having different patient compartments for
patients not on antibiotics and on antibiotics, the MCMC algorithm estimated an
essentially identical posterior transition rate from immune to susceptible to C.
difficile (0.012 (95% Credible Interval: 0.00081, 0.01670) for patients not on
antibiotics and 0.013 (95% CI: 0.0078, 0.020) for patients on antibiotics), and from
there models these patients as identical. These findings are contrary to the generally
accepted clinical evidence that antibiotic exposure puts one at increased risk for

developing C. difficile3>.

Grima et al.3¢ examine the use of non-antibiotic treatments for C. difficile,
such as fecal transplant or currently-unsuccessful use of tolevamer as a substitute
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for therapy with vancomycin or other antibiotics. However, the focus of their model
is not C. difficile, but rather on the impact a reduction in the number of antibiotics
used to treat the disease would have on the prevalence of other antibiotic resistant
organisms, such as vancomycin-resistant enterococci (VRE). The authors find that a
decrease in antibiotics for the treatment of C. difficile results in a lower rate of
subsequent colonization with VRE. The model however has some serious
shortcomings. The model is deterministic, which makes it difficult to distinguish if
the differences between model scenarios would manifest in a noticeably different
clinical experience. Beyond this, the model assumes that neither VRE nor C. difficile
can be acquired in patients not on antibiotics, thus positing that the use of non-
antibiotic treatments for C. difficile completely interrupt transmission in all
circumstances - an extremely strong assumption. Finally, because the model is
focused on VRE, clinically relevant outcomes for CDI patients, such as recurrence,

are ignored.

Finally, a model of C. difficile transmission in a hospital by Lanzas et al3”
represents a model closest in form to the compartmental models detailed in later
chapters. The model treats patients as being in one of five states - resistant (not at
risk of C. difficile colonization), susceptible (susceptible to colonization having been
treated with antibiotics), asymptomatically colonized with protection (colonized,
but not progressing to CDI), asymptomatically colonized without protection
(colonized and progressing to CDI) and diseased. The actual transmission is

abstracted away, making the modeling of HCP-oriented interventions difficult to
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implement. Building from parameter estimates in the literature and a hospital-level
data set, and using both deterministic and stochastic implementations of the model],
the authors explore which parameters are influential in determining the basic
reproductive number (Ro) for the model - a measure of how many secondary
infections will arise from a single primary infection and other measures of influence
parameter values have on model outcomes. They found, in contrast to Starr et al.34,
that parameters governing transmission had a much greater impact on overall rates
of colonization and disease compared to those governing susceptibility. The authors
suggest this may have been because the widespread use of antibiotics in the model
eliminated the progression from resistant to susceptible as a meaningful rate-

limiting step in the transmission process.

Further Directions

The mathematical modeling landscape for C. difficile is relatively
undeveloped, despite the disease’s considerable burden on the healthcare system.
There have been few if any attempts to actively model clinical interventions. Rather,
current models have predominantly sought to describe the infection process
mathematically and quantify which parameters most influence the model - a useful
process to identify targets for intervention, but one step removed from actual
clinical impact. Despite growing evidence for the role surface contamination plays in
the transmission of C. difficile®3839, little modeling has been done focusing on the
role of the environment. Those models that do consider the role of environmental
contamination abstract it to be a constant background colonization risk -
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understandable given the difficult compartmental models have in directly modeling
environmental contamination. This abstraction does however ignore the fact that
that, just as in person-to-person transmission, environmentally mediated
transmission is a dynamic process. A patient’s exposure to environmental sources of
transmission is a function of the number of other infected patients proximate to the
patient in both space and time, rather than a constant background exposure. These
types of models will be necessary in the future to both fully model the role of the
environment in the transmission of C. difficile and to model interventions on the

environment itself, such as disinfection and cleaning.

v
U > H

u, G
4

Figure 2-1. Flow diagram for Ross-Macdonald-style healthcare-associated infection
model. Healthcare personnel are denoted as either uncolonized/contaminated (Us)
or colonized/contaminated (H). Similarly, patients are shown as either
uncolonized/contaminated (Up) or colonized/contaminated (Cp). Solid arrows
indicate available paths to move between compartments, while dashed arrows
indicate pathways of disease transmission.
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Table 2-1. Key Mathematical Modeling Papers Focusing on Healthcare-Associated
Clostridium difficile Transmission.

Author  Journal Model Type Key Findings

(Year)

Starretal.  Lancet Compartmental None (Conceptual framework).

(1997)

Starretal. Clinical Microbiology = Compartmental Different outbreak signatures are

(2001) and Infection (Stochastic -MCMC) obtained for different types of
transmission (environmental,
person-to-person, etc.).

Starr etal.  Journal of Hospital Compartmental Patient susceptibility is more

(2008) Infection (Stochastic -MCMC) important for infection than
transmission rates.

Lanzaset Infection Controland  Compartmental Transmission rates dominate

al. (2011)  Hospital (Deterministic and infection process; patient

Epidemiology Stochastic - Gillespie) susceptibility parameters play a

relatively minor role.

Grima et Computational and Compartmental Use of non-antibiotic treatments for

al. (2012) Mathematical (Deterministic) C. difficile reduces rates of VRE.

Methods in Medicine
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Chapter 3: Data Sources

The data for this study comes from three sources, each covering a different
aspect of C. difficile transmission. The data from these sources, as well as estimates
from the literature, inform the parameter estimates used in the mathematical model

described in later chapters.
Individual level C. difficile cohort

A cohort of 609 patients over 18 years of age was drawn from patients in 28
hospitals within the DICON network with incident, hospital-onset, healthcare
facility-associated CD], as defined by the CDC surveillance criteria*® between

7/1/2009 and 12/31/2010 (Figure 3-1).

This data set included patient admission, discharge, laboratory-based
diagnosis times, outcomes including death and discharge, and patient demographics
and whether or not the case arose while the patient was in an intensive care unit
(ICU). These data are used to quantify and describe the outcomes of individual
patients once they develop CDI, such as their average length of stay, all-cause case

fatality rates, etc.



Hospital level C. difficile surveillance

The patient-level CDI cohort is supplemented by a weekly surveillance time-
series of 31 hospitals within the DICON network, consisting of the overall number of
hospital-onset, healthcare facility-associated cases over the same time period of
7/1/2009 to 12/31/2010. In addition to the overall burden in terms of number of
cases, this data set includes patient-day denominators for the hospital overall and
within the ICU specifically, as well as whether or not the hospital was using
polymerase chain reaction (PCR) or non-molecular diagnostic tests to diagnose
cases. In total, this surveillance time series consisted of 1805 CDI cases over
4,038,447 patient days, 344,471 of which were within the ICU. This data set’s
primary utility is in describing the overall incidence of CDI within a hospital. As
some parameters in the model are unknown, and the model largely based on
disparate information sources, it is useful to verify that the burden of disease as
seen in the model corresponds, at least roughly, to the burden of disease

experienced by actual hospitals.

Non-CDI Patient data

The datasets above describe, at varying levels of aggregation, the experience
of CDI patients within the DICON hospitals. However, a mathematical model of C.
difficile transmission requires information about the disposition of presently
healthy patients within the hospital - how they are prescribed drugs that put them
at risk for CDI, admissions and discharge rates, etc. A data set of billing records for

all inpatients within the UNC Healthcare System was obtained for patients admitted
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between 7/1/2009 and 12/31/2010. This data set contained the records of 42,093
patients, 452 of which were in the ICU, and included demographic information,
admission and discharge times, complaints present on admission, and flags for

prescriptions that might place a patient at risk for the development of CDI (Table 3-

1).
Admission Discharge
Time —| 48 hrs | 4 Weeks 8 Weeks |_>
Surveillance * HO-HCFA CO-HCFA Indeterminate CA-CDAD
Definition

Figure 3-1. CDC/NHSN timeline-based C. difficile surveillance definitions. C. difficile
infections are divided into one of four categories: Healthcare Facility Onset-
Healthcare Facility Associated (HO-HCFA), Community Onset-Healthcare Facility
Associated (CO-HCFA), Indeterminate or Community Associated (CA-CDAD) cases
based on the time of onset of disease. Patients developing CDI within 48 hours of
admission are considered CO-HCFA if they had a previous discharge from a
healthcare facility within 4 weeks, CA-CDAD otherwise.

Table 3-1. Drug Prescriptions for UNC Healthcare System Inpatients Identified as
High-Risk for Development of Clostridium difficile Infection

Brand Name Generic Drug Name Type

Ciloxan Ciprofloxacin Fluoroquinolone

Cipro Ciprofloxacin Fluoroquinolone
Floxin Ofloxacin Fluoroquinolone
Levaquin Levofloxacin Fluoroquinolone
Nexium Esomeprazole Magnesium Proton Pump Inhibitor
Noroxin Norfloxacin Fluoroquinolone
Ofloxacin Ofloxacin Fluoroquinolone
Omeprazole Omeprazole Proton Pump Inhibitor
Prevacid Lansoprazole Proton Pump Inhibitor
Prilosec Omeprazole Proton Pump Inhibitor
Protonix Pantoprazole Sodium Proton Pump Inhibitor
Vigamox Moxifloxacin Fluoroquinolone
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Chapter 4: Estimating All-Cause Mortality and Length of
Stay in Incident, Healthcare Facility-associated Clostridium
difficile Cases Using Parametric Mixture Models

Introduction

Clostridium difficile infection (CDI) is a rapidly increasing cause of healthcare-
associated infections (HAI). Discharge data from the Healthcare Cost and Utilization
Project Nationwide Inpatient Sample demonstrated that approximately 336,000
cases of CDI occur annually in the US#1. This number of cases would cost
approximately $500 million per year>®. In contrast to other HAI, CDI incidence has

actually increased despite prevention efforts in the US, Canada and Europe*.

The design and analysis of interventions to control C. difficile is complicated
by the setting in which infection takes place. Hospitalized patients are often non-
independent, single intervention studies are rare and difficult to conduct, and
infected patients act as a source of exposure for other patients, in addition to having
their own outcomes. In this kind of environment, mathematical and cost-
effectiveness models are widely used, and hospital policy set on scarce data. There is

a need for unbiased epidemiological estimates of patient outcomes, including length



of stay, all-cause mortality, and other estimates that quantify the experience of a

patient suffering from CDI.

Quantifying these outcomes presents a three-fold problem. First, infection
events cannot be considered independent, necessitating analytic techniques that
account for clustering within a hospital. Second, to facilitate the use of these
estimates in mathematical models, cost-effectiveness research, and other
applications, rates or hazards must be directly estimated. Finally, patients may
experience several mutually exclusive outcomes (such as death or discharge from
the hospital). To address this final problem competing risks approaches must be
employed. Conventional competing risk analysis (i.e., a cause-specific survival
model) estimates the time to one outcome, while treating the other outcomes as
censored*2. These estimates address a particular question; namely, in the case of
death versus discharge from a hospital, they estimate the time until death if no one
were ever discharged or the time until discharge if no one ever died while in the
hospital. While in some settings this approach might be acceptable or even
desirable, in the case of CDI we wish to estimate the time until death given the
observed levels of discharge, and the time until discharge given the observed levels

of mortality.

In this study we describe an application of parametric mixture survival
models to estimate two survival outcomes and address the problems enumerated
above. We model the relative survival times of death from any cause and discharge
between patients in the intensive care unit (ICU) and those in the general hospital
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population from a multi-hospital cohort of CDI patients. In addition to the relative
survival times between those patient groups, we also estimate the proportion that
die while in the hospital for ICU patients and non-ICU patients and the odds ratio for

those proportions.

Materials and Methods

Study Population

We used a cohort of 609 adult (>18 years of age) incident cases of CDI admitted
between 7/1/2009 and 12/31/2010 obtained from infection control surveillance
data from 28 hospitals within the Duke Infection Control Outreach Network, a group
of hospitals that shares infection control expertise and data in the southeastern
United States*3. The maximum number of cases from a single hospital was 74, the
minimum 1, and the median number of cases per hospital was 13. All cases were
hospital onset, healthcare facility-associated, as defined by the CDC’s surveillance
guidelines*?. Specifically, cases must have arisen more than 48 hours after

admission.

Survival Times and Outcomes

The study had two competing, mutually exclusive outcomes of interest: death
from any cause and hospital discharge within 180 days. The origin of time at risk
was defined as the date of a positive test for C. difficile. The event time was given as
the date of discharge from the hospital or date of death. The single patient with an

event time greater than 180 days was censored at 180 days, and the 12 patients
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with an unknown event time were considered interval censored from 12 hours after
diagnosis to 180 days after diagnosis. Patients with identical diagnosis and

discharge dates were assumed to spend 12 hours in the hospital.

Exposure Definition and Covariate Selection

Patient ICU status was determined at the time of diagnosis of CDI. Patients were
either in the hospital’s ICU at the time of their infection and thus exposed or were
not, and are unexposed, regardless of whether or not their treatment subsequently

ended or involved the ICU.

Inverse probability weights were used to control for confounding by patient
characteristics measured at hospital admission#4. Using such weights, rather than
regression adjustment, allows estimated curves to represent the marginal survival,
rather than survival conditional on covariates*>. Variables considered for inclusion
in the model were patient age, whether or not they were on dialysis, if the patient
had been hospitalized within 12 weeks prior to admission, if that prior admission
had been in the same institution as the current admission, if the patient had been
previously diagnosed with C. difficile, the patient’s gender and race, source of
admission (where the patient was prior to admission), which medical specialty was
primarily responsible for the patient (i.e. medicine, surgery, obstetrics/gynecology,
etc.), if the patient had been discharged from any hospital within the past year, and
whether the CDI case was a new episode, a recurrent episode, or a continuation per

CDC definitions.
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Potential confounders were included in the weighting model if they were
marginally associated (p<0.20) with either death or discharge using a Weibull or
log-normal parametric survival model, respectively. A quadratic term for the sole
continuous variable (age at admission) and bivariate interactions that marginally
improved model fit as evaluated by a likelihood ratio rest (p<0.20) were included.
Multiple imputation was used to handle missing covariate values, which resulted in
119 cases with at least one missing variable. Thirty imputations were based on a
multivariate normal model including all variables used in the substantive analysis,
including outcomes. Imputations were combined using Rubin’s canonical variance

estimator46.

Parametric Mixture Model

We modeled time to death and time to discharge as a mixed survival function,
Sp(t) and Sn(t) respectively, where Sp(t) + Sn(t) = 1 at t = oo, indicating all patients
having experienced one of the two outcomes of interest. These two functions, as
well as the proportion of patients who died () and who were discharged (1- )
give a probability that an event time T taking place at T<tof P(T < t) = = [1-Sp(t)] +
(1- 7)[1-Sn(t)]- Details on the theory and implementation of this type of model have
been previously published?’. Briefly, these functions can be estimated using

maximum likelihood methods, with the likelihood of a given individual i expressed

as follows (Equation 2):

30



L =7, £, )P X [70,(S, (1) = Syt DI X[ 78,) fy ()10 X
[(1= 7 )(Sy (1) = 8, DI X[7S (0)+ (1= 7)S (1)) ™

Where fp(t) and fn(t) are the probability density functions for death and

discharge, 0 and ¢ are indicators for death = 1 and discharge =1,and ¢ and 7

are indicators for interval censored times for death and discharge. For interval
censored observations, ti1 and t;z indicate the two times bracketing the censored
interval, where ti1 < tiz and in this study specifically, ti = 0.5 and ¢z = 180 days.
Weighting is incorporated by multiplying the natural log of L; by individual i’s

weight.

The survival functions used in the mixture model may be any parametric
functions. Previous studies have used exponential*8, log-normal#°, and generalized
gamma survival functions®9, differing functions for each outcome*’, and non-
parametric extensions of the Kaplan-Meier method®1, among others. In this study, a
Weibull function for death and a log-normal function for discharge were used. This
choice mirrored the best fitting parametric models used in the single outcome

models discussed below, and in the confounder selection process.

Robust standard errors with clustering by hospital were calculated to
account for non-independence between patients in the same hospital. From this
model, five main estimates are obtained: The ratios of the mean survival times for
death (RTp) and discharge (RTn) between the ICU cases and non-ICU cases, the

proportions who died in hospital for the ICU cases and non-ICU cases ( z1and o,
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respectively) and the odds ratio of the mixing proportions (OR _), which provides a

relative measure of mortality between the ICU groups.

For comparison purposes, the cohort was also analyzed using conventional
competing risks analysis, with each outcome modeled independently and patients
experiencing the other event being considered censored at their event time. A
parametric Weibull survival model was used to model time until death, and a log-
normal survival model used to model discharge. As with the mixture model, robust
standard errors were used to account for non-independence arising from clustering

by hospital. All analysis was done using SAS 9.2 (SAS Institute, Cary, NC).

Results

The characteristics of the ICU and non-ICU patient populations are
summarized in Table 4-1. There were 160 (26.2%) ICU patients and 449 (73.7%)
non-ICU patients. In the ICU population, 42 patients (26.3%) died, while in the non-
ICU population 43 patients (9.6%) died. The remaining patients were discharged
from the hospital. Figure 4-1 provides a graphical depiction of the distribution of

exposures, outcomes and survival times in a 20% random sample of the cohort.

Several factors were at least moderately associated with one of the two
outcomes, including the patient’s age, gender and race, along with the source of
admission, whether or not they were a surgical patient, if the patient was on
dialysis, and whether or not this was a new case of CDI (in contrast to a continuing

or recurrent case) (Table 4-2). Interactions between patient’s race and gender, age,

32



whether or not this was a new CDI case, and dialysis status, between patient’s
gender and both surgical and dialysis status and between admission source and
patient age and dialysis status were also found to result in moderately superior

model fit for the outcome specific models.

Parametric Survival Models

Using a conventional competing risks approach, the relative time to death for the
ICU versus non-ICU populations, RTp was 0.65 (95% CI: 0.36, 1.17), suggesting that
ICU patients died marginally more swiftly than their counterparts in the general
hospital population. Concurrently, the relative time until discharge, RTny was 2.30
(1.66, 3.18), reflecting longer lengths of stay within the exposed population (Figure

4-2).

The mixing proportion in the ICU population (m1) was 0.28 while the mixing
proportion in the non-ICU population (1) was 0.10. The odds ratio of the mixing
proportions (ORx) was 3.38 (95% CI: 1.84, 6.19), capturing the substantially higher
burden of mortality in ICU patients compared to those in the general hospital
population. Comparing the mean event times between ICU and non-ICU patients,
RTp was 1.97 (95% CI: 0.96, 4.01) and RTn was 1.88 (95% CI: 1.40, 2.51) (Figure 4-

3).

The robust standard errors typically resulted in a slight inflation of a
parameter’s uncertainty and performed similarly to standard errors obtained using

a nonparametric bootstrap method (not shown). Compared to the multiply imputed
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data used in the primary analysis, estimates using complete cases were less precise

and resulted in considerably different effect estimates (Table 4-3).

These estimates, in contrast to those from the conventional models described
above, indicate that despite the higher severity of illness that might reasonably be
assumed in patients admitted to the ICU, they experience longer times to both death
and discharge than patients in the general hospital population. The differences in

estimates between the two models are summarized in Table 4-4.

Discussion

The purpose of this study was to examine the outcomes experienced by patients
with CDI as a mixture of two simultaneously occurring survival processes, rather
than as two disjoint events. We believe that this approach captures the actual
disposition of patients within the hospital in a more realistic fashion. The use of a
weighted, parametric mixture model allows for the estimation and prediction of
survival times, produces marginal effect estimates and covariate adjusted survival
curves and is free from the proportional hazards assumption. This assumption is
however exchanged for the necessity of correctly specifying the underlying

distribution of event times as well as proportional survival times.

This method also illustrates the potential for incorrect estimation in
conventional survival analysis when both outcomes are of interest for informing
prevention efforts. The conventional competing risks model found a reduced time

until death for ICU patients. In essence, this method conflates the proportion of
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patients who died with the time with which it took them to die. In our study, the
mixture approach separates these two processes into two separately estimated
parameters. In doing so, our study suggests that while ICU patients may experience
a greater burden of mortality, their survival times appear longer. The conventionally
estimated RTp of 0.65 (95% CI: 0.36, 1.17) is not only on the other side of the null
from the RTp estimated in the mixture model, 1.97 (0.96, 4.01), but does not include
the mixture model’s point estimate within its 95% confidence interval. The origin of
this difference is in the survival functions estimated by the two methods. The
conventional method forces the survival functions for both outcomes to equal zero
at t = oo, whereas the mixture approach only forces the functions to equal the mixing
proportion of their respective outcomes at t = 00, a less stringent requirement. By
treating patients who did not experience the outcome as censored, the conventional
approach also pushes the estimated survival functions out toward the tail of their
distribution. This difference in the shape of the survival curves manifests itself as
drastically different survival probabilities. For example, the probability of death at
90 days is 0.275 for ICU and 0.014 for non-ICU patients in the mixture model, and
0.765 for ICU and 0.622 for non-ICU patients using a conventional approach. These
differences in the estimated survival functions are the source of the disparate
estimates of RTp and RTw. The potential downstream effects of such a difference in
the estimated survival times on administrative decisions, mathematical or cost-

effectiveness models, etc. are significant.
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Focusing on the results of the parametric mixture model, this study
demonstrated that ICU patients infected with C. difficile experience both longer
times until death and longer overall lengths of stay post-infection, as well as
experiencing a burden of mortality three times that of their non-ICU peers. The
study estimates suggest that ICUs demand additional resources and attention from
an invention prevention perspective, despite C. difficile being a hospital-wide
problem, unlike HAIs associated with a particular device or procedure. The ICU has
a proportionately large volume of adverse outcomes, and ICU patients longer length
of stay may contribute more to the contamination of the hospital environment and
have implications for impacting in-hospital transmission of CDI. Patients have been
shown to shed C. difficile into the environment continuously after infection, even
after their symptoms have subsided>2. Because of their longer time within the
hospital, ICU patients have increased opportunities to shed C. difficile spores into the
environment. Whether this higher individual-level potential for shedding is
outweighed by the considerably larger number of spore-shedding patients within
the general hospital population who are hospitalized for shorter time periods

warrants further examination.

This study has several limitations. Though the surveillance data used has
information on whether or not a given patient died within the hospital, it cannot
necessarily be assumed that these deaths were attributable to C. difficile, either
solely or as part of a constellation of ailments. Rather than an estimation of the

impact of CDI on patient mortality, this study is instead an estimation of the
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patient’s potential impact on the hospital’s environment during their infection, until
it is interrupted favorably by a discharge from the hospital or unfavorably by the
patient’s death. While less patient-centric than many studies, these types of
estimates are crucial for the study and prevention of hospital acquired infections,
where patients are not only important in the prevention of their own adverse

outcomes, but represent sources of infection risk to future patients.

Additionally, as patients who have been discharged from the hospital may
experience a recurrent infection and die, be treated outside the DICON network, or
be readmitted into a DICON hospital with a different exposure status than their
original infection, some outcome misclassification may have occurred. These
limitations are however inherent to the difficult task of conducting observational
studies within a hospital setting and occur regardless of what analytical methods

are used.

Our approach, which allows for the separate estimation of the timing of an
event and the frequency with which it occurs, provides a more nuanced view of the
outcomes experienced by CDI patients. As interest in healthcare associated infection
prevention increases, so too does the need for more sophisticated analytic
techniques to reflect the complexity surrounding patients, providers, and the

environment of a healthcare facility.
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Table 4-1. Baseline Characteristics of 609 Incident Clostridium difficile Infection
Cases Within the DICON Hospital Network, Southeastern USA, 2009-2010.

ICU Non-ICU
Variable N % Mean N % Mean
(SD) (SD)

Age (Years) 66.99 (14.33) 70.04 (15.20)
Dialysis

Yes 21 131 37 8.2

No 135 84.4 407 90.7

Missing 4 2.5 5 1.1
Gender

Female 66 413 218 48.6

Male 83 519 187 41.7

Missing 11 69 44 98
Admission Source

Home 99 619 290 64.6

Nursing Home 27 16.9 99 221

Hospital 20 125 10 2.2

Other 13 8.1 45 10.0

Missing 1 0.6 5 1.1
New CDI Episode

Yes 156 97.5 440 98.0

Nod 4 2.5 9 2.0

Missing 0 0 0 0
Race

White 83 519 241 53.7

Black 58 363 108 24.1

Other 3 1.9 11 25

Missing 16 10.0 89 198
Surgical Patient

Yes 8 5.0 36 8.0

No 139 86.9 361 80.4

Missing 13 8.1 52 11.6

Abbreviations: SD, standard deviation; ICU, intensive care unit. DICON, Duke Infection Control
Outreach Network; CDI, C. difficile infection..
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Figure 4-1. Diagram of survival times and outcomes for a 20% random sample of a
cohort of 609 incident Clostridium difficile Infection cases within the DICON hospital
network, Southeastern USA, 2009-2010. Dark lines indicate ICU cases, while lighter
grey lines indicate non-ICU cases. Dotted lines cases with unknown outcome times,
treated as censored from t = 0.5 to t = 180 days. Lines terminating in diamonds
indicate patients that died.
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Table 4-2. Association Between Patient-level Covariates and Time Until Death or
Discharge in a Cohort of 609 Incident Clostridium difficile Infection Cases Within the
DICON Hospital Network, Southeastern USA, 2009-2010.

Death Discharge
Variable RTp 95%CI  Pvalue* RTn  95%CI  Pvalue*
Age (Years) 0.98 0.96,0.99 0.005 1.00 0.99,1.01 0.89
Dialysis 0.98 0.16
Yes 1.01 0.54,1.89 0.78 0.56,1.10
No ref ref
Gender
Female 0.98 0.62,1.55 0.79 0.64,0.96
Male ref ref
Admission Source 0.93 0.026
Home 091 041,2.04 0.99 0.70,1.39
Nursing Home 091 0.37,2.45 097 0.66,1.42
Hospital 1.08 0.36.3.29 2.00 1.16,3.45
Other ref ref
New CDI Episode 0.66 0.072
Yes 1.30 0.41,4.14 0.77 0.53,1.12
Nod ref ref
Race 0.11 0.89
White 0.65 0.16, 2.64 0.85 0.44,1.64
Black 1.04 0.24,4.46 0.87 0.44,1.70
Other ref ref
Surgical Patient 0.47 0.17
Yes 1.52 0.49,4.67 0.77 0.53,1.12
No ref ref

Abbreviations: RTp, relative difference in mean time until death; RTy, relative difference in mean
time until discharge; CI, confidence interval; DICON, Duke Infection Control Outreach Network; CDI,
C. difficile infection.

*Chi-square test of the overall effect of the variable on time to death or discharge
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Figure 4-2. Cause-specific parametric survival curves for time until death (A) and
time until discharge (B) by [CU-exposure status in a cohort of 609 incident
Clostridium difficile Infection cases within the DICON hospital network, Southeastern
USA, 2009-2010.
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Figure 4-3. Times to death and discharge estimated using parametric mixture
models in a cohort of 609 incident Clostridium difficile Infection cases within the
DICON hospital network, Southeastern USA, 2009-2010. Black lines denote ICU
patients, while grey lines denote non-ICU patients. Solid lines are 1 minus the
survival function for death, and dashed lines are the survival function for discharge.

Table 4-3. Difference in Estimates from Multiple-Imputation versus Complete Cases
Analysis for Time Until Death, Discharge, and Mixing Odds Ratio Comparing ICU
patients to non-ICU Patients From a Cohort of 609 Incident Clostridum difficile
Infection Cases Within the DICON Hospital Network, Southeastern USA, 2009-2010.

Model RTD 95% CI RTN 95% CI M1 o ORn 95% CI

Complete Case* 1.27 0.59,2.74 2.03 1.36,3.05 0.25 0.10 294 1.18,7.33
Multiple Imputation® 1.97 0.96,4.01 1.88 1.40,2.51 0.28 0.10 3.38 1.84,6.19

Abbreviations: RTp, relative difference in mean time until death; RTy, relative difference in mean
time until discharge; Ry, odds ratio of mixing proportions in the ICU and non-ICU patient population;
Cl, confidence interval; DICON, Duke Infection Control Outreach Network; CD], C. difficile infection.
*Adjusted for patient’s age, gender and race, location prior to admission, whether or not patient was
a surgical patient or on dialysis, and if this was a new CDI episode.
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Table 4-4. Estimates Obtained for Time Until Death, Discharge, and Mixing Odds
Ratio Comparing ICU patients to non-ICU Patients From a Cohort of 609 Incident

Clostridum difficile Infection Cases Within the DICON Hospital Network,

Southeastern USA, 2009-2010.

Model RTp 959% CI RTn 959% CI 1 Tlo ORr 959% CI
Cause-Specific 0.72 039,135 245 1.86,3.25 - - - -

(Crude)

Cause-Specific 0.65 0.36,1.17 230 1.66,3.18 - - - -
(Adjusted)”

Mixture Model 2.24 1.25,4.02 2.01 1.50,2.69 0.26 0.10 3.36 1.85,6.11
(Crude)

Mixture Model 1.97 096,4.01 188 1.40,251 0.28 0.10 3.38 1.84,6.19
(Adjusted)”

Abbreviations: RTp, relative difference in mean time until death; RTy, relative difference in mean
time until discharge; Ry, odds ratio of mixing proportions in the ICU and non-ICU patient population;
Cl, confidence interval; DICON, Duke Infection Control Outreach Network; CD], C. difficile infection.
*Adjusted for patient’s age, gender and race, location prior to admission, whether or not patient was
a surgical patient or on dialysis, and if this was a new CDI episode.
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Chapter 5: A Mathematical Model to Evaluate the Routine
Use of Fecal Transplantation to Prevent Incident and
Recurrent Clostridium difficile Infection

Introduction

Clostridium difficile is a frequent source of healthcare-associated infection
(HAI), especially among patients receiving treatment regimens involving
antibiotics35 or proton pump inhibitors (PPIs)>354, or with other conditions
involving the disruption of normal gut flora. The rate of C. difficile infection (CDI) in
the United States has been steadily rising since 2000, causing an estimated 336,565
cases in the United States in 200941, In some healthcare facilities, CDI has eclipsed
methicillin-resistant Staphylococcus aureus as the leading source of HAls*. Of special
concern is the development of recurrent CDI, which may be a complicated, long-
term condition typified by repeated bouts of severe diarrhea that involves

treatment with antibiotics such as oral vancomycin, fidaxomicin or metronidazole3>.

Because altering the indigenous flora of the intestinal tract causes CDI, there
has been an interest in recolonizing the intestinal tract with introduced donor
bacteria obtained from either healthy donor stool>>56 or synthesized as a pure
culture®’. This procedure, referred to as fecal microbiota transplantation (FMT),

restores the bacterial ecology that typically keeps C. difficile in check. Both



uncontrolled case reports>%57 and a small clinical trial>> have shown encouraging

results; however FMT is still largely reserved for specialized intervention in difficult
or refractory cases. Further, the implications of routine intestinal recolonization as a
standard course of treatment for the prevention of recurrent or incident CDI has not

been widely explored.

Mathematical models are ideal for studying such hypothetical scenarios.
They can provide a repeatable, quantitative environment with which to evaluate
evidence, guide policy creation, discover critical thresholds upon which the success
of interventions may depend, and suggest new directions for observational studies
and clinical trials. These strengths are difficult or impossible to duplicate with
empirical research within a hospital. Critically, one patient’s outcome influences
another’s exposure, which violates traditional statistical assumptions of
independence. Finally, mathematical models are capable of scaling up the
independent, individual level observations that emerge from clinical research up to
the population level. In this way, we may study how these individuals interact with
one another and influence the transmission process without a risk to patient safety.

In order to evaluate the impact of routine intestinal flora recolonization in
patients with CDI, we developed a mathematical model describing the transmission
of C. difficile within an intensive care unit (ICU), with the capability to test the
impact of FMT for prevention of recurrent C. difficile or initial infection due to in-

hospital transmission.
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Methods

Data Sources

Hospital data was obtained from three separate sources, all consisting of
patient records between 7/1/2009 and 12/31/2010. The first dataset was a cohort
of 609 adult patients with incident CDI was extracted from prospectively collected
HAI surveillance data from 28 community hospitals in the Duke Infection Control
Outreach Network (DICON). This data set included admission, discharge and
diagnosis times, and outcomes including death and discharge, and patient
demographics. The second data set included weekly surveillance time-series from
31 DICON-affiliated hospitals within the DICON network, consisting of the overall
number of hospital-onset, healthcare facility associated CDI cases as defined by CDC
surveillance criteria*?, patient-day denominator data for the hospital as a whole
hospital patient-day denominator data, ICU patient-days, and whether the hospital
was using a non-molecular diagnostic test or a diagnostic test based on polymerase
chain reaction (PCR). In total, these series consist of 1805 cases and 344,471 ICU
patient-days. Finally, a third data set included hospital billing records for 452
inpatients discharged from the ICU within the UNC Healthcare System, consisting of
discharge times, orders for drugs that place patients are risk for CDI such as PPIs or

fluoroquinolones, coded diagnoses present on admission and demographics.
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Transmission Model

The transmission of C. difficile through an intensive care unit was modeled as a
series of compartments representing patient health and treatment states (Figure 5-
1). Healthcare personnel (HCP) were modeled as being either Uncontaminated (Us)
or Contaminated (H), representing hands or gloves contaminated by vegetative C.
difficile or spores. Patients could be in one of six compartments. Compartment Up
represented uncolonized patients who were not on high-risk medications for CD],
and Ua represented uncolonized patients who were on high-risk medications.
Similarly, Cp and Ca represented low- and high-risk patients who were previously
exposed to the organism. Compartment D represented patients who have developed
CDI. Finally, some of the scenarios we considered had an additional compartment,
Ct, which represented patients under prophylactic treatment using FMT to prevent

an initial infection.

The interactions and transitions between these compartments are governed

by a series of eight differential equations (Eq 3):
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du U U U U

dtS :lH_pO-PCPWS_pO-DDWS_pGACA Ws_pGPCTWS
cil—[j=poPCP%+p0'DD—S+p0'ACA—S+p0'PCT—S—LH

du, H

% :—pt//UPN—OPUP+vUP(9P(UP+C,,)+9A(UA+CA+CT)+§D+7/D)
du, H

7 :—pt//UAN—GAUA+vUA(6P(UP+CP)+9A(UA+CA+CT)+CD+7/D)
dc, H

" :pt//UPﬁ—KCP—OPCP+vCP(9P(UP+CP)+9A(UA+CA+CT)+CD+3/D)
dcC, H

” :pl//UAN—q)CA—KTCA—GACA+ch(9P(UP+C,,)+9A(UA+CA+CT)+§D+}/D)
dcC

dtT =¢C, —xC, -6,C;

dD
EZK‘(CP+CT)+K‘L'CA—Z_:D+VD(9P(UP+CP)+9A(UA+CA+CT)+CD+3/D)

—n(-omD-ypod-mD-y(1-2)1-w0)D-y(1-x)0D
M=U,+U,+C,+C,+C,+D
N=U+H+U,+U,+C,+C,+C,+D

The definitions and values of the parameters in this model are detailed in a later

section.

Patients were admitted into Up, Ua, Cp, Ca or D. Colonized patients (Cp and Ca)
and patients with CDI (D) shed infectious material that may contaminate hands of
HCP, and uncontaminated patients (Up and Ua) are subsequently colonized when
cared for by HCP with contaminated hands. HCP could decontaminate their hands
by washing them after contact with either the patient or the environment

immediately surrounding them.
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As there is evidence of a surface contamination component to C. difficile
transmission!®, contacts between patients and HCP were modeled as direct care
tasks, which could involve contact with the patient’s environment as well as physical
interaction between the patient and HCP. Once colonized, patients could progress to
CDI (Cx to D). All patients were eventually discharged from the hospital. Three
possible outcomes were tracked for patients with CDI - death, a healthy discharge,

and a discharge that resulted in the development of recurrent CDI.

The model made several simplifying assumptions. First, all HCP were
assumed to interact with all patients within the ICU, and patients were assumed not
to interact with each other. It is not known whether disruption of intestinal flora
places patients at greater risk for developing CDI once colonized or at greater risk of
colonization and thus subsequent infection>85%, Therefore, colonization once
exposed to C. difficile and development of infection after colonization is treated as a
single process within the model. Additionally, we assumed that patients who were
placed on antibiotics or PPIs were prescribed those medications immediately on
arrival into the ICU. Additionally, we assumed that the medication-induced
disruption of the normal gut flora was immediate and lasted beyond the
discontinuation of treatment. This effectively meant that once a patient became high
risk, they remained so unless an active intervention (such as FMT) was made to

recolonize their intestinal tract.
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Parameterization and Model Calibration

The transmission model was parameterized using a combination of estimates
from the literature and the data sets discussed above. Specific values, and the
sources they are derived from, are described in Table 5-1 below. A more detailed

discussion of parameterization may be found in Appendix A.

The underlying hazard of developing CDI for low-risk patients was estimated by
fitting a deterministic version of the mathematical model above to the DICON
surveillance time series. Because the case counts were not ICU-specific, the
proportion of all reported cases in the time series data that arise within the ICU was
assumed to be equal to the proportion of cases within the DICON cohort data that
arose in the ICU. Hospitals that did not report individual level data within the cohort
were assigned the proportion of the hospital with the closest number of total

patient-days.

Based on prior research indicating a 56% increase in the number of reported
cases within these hospitals that switched from non-molecular to PCR diagnostic
tests®9, weeks where non-molecular tests were in use had their case numbers
inflated by 1.56. These adjusted time series were then used to calculate an expected
weekly rate for a twelve-bed ICU (the size of ICU used in this model) and a
corresponding estimate of cumulative incidence over the one and a half years the
surveillance data was collected. The cumulative incidence curves for each hospital
were then averaged and weighted by the total number of ICU patient-days per

hospital. This weighted average cumulative incidence curve was used as an estimate
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of a “typical” level of infection for the modeled ICU. The cumulative incidence
produced by the mathematical model was then fit to this weighted curve using least-
squares regression to obtain an estimate of the hazard of developing CDI in

colonized, low-risk patients.

Simulations

The mathematical model described above was applied to a single twelve-bed
ICU consisting of single patient rooms with four registered nurses and a single
intensivist, based on average size and staffing information and best-practice
guidelines for ICUs72-74, Admissions were fixed to be equal to discharges to maintain
a steady patient population. Several different potential treatment regimens were
considered (Table 5-2). First, we created a baseline scenario, modeling no routine
use of fecal transplantation. Second, we modeled a series of scenarios depicting the
systematic use of FMT after CDI in order to prevent recurrent cases, treating 20, 40,
60, 80 and 100 percent of cases. Third, we modeled a series of scenarios examining
the use of FMT prophylactically to prevent incident infections, treating
contaminated high-risk (Ca) patients immediately after the conclusion of their
treatment regimen, moving them to a new, low-risk category (Cr). These scenarios
considered treating 20, 40, 60, 80 and 100 percent of all high-risk patients or just
those patients on fluoroquinolone antibiotics. Finally, both the second and third
treatment strategies used in combination, treating with FMT patients both post-CDI

and post-high risk medication.
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Deterministic models do not fully capture the transmission dynamics of small
populations, such as the experience of a single, 12-bed ICU. Therefore, each of the
treatment scenarios described above were modeled using 1,000 stochastic
simulations of the equation system by means of Gillespie’s Direct Method!8. This
approach converts the deterministic rates of the differential equation model into
probabilities, and then repeatedly simulates the movement of individuals within the
system over time based on these probabilities. The effect of this is two-fold. First,
individuals within the models are treated as discrete units - no fractions of patients
exist in compartments. Second, because individuals are treated as discrete units and
the model becomes probabilistic, variations due to random chance may arise. While
in large population models the differences between these two approaches are small,
in small populations this variability plays an important role in understanding the

disease dynamics in the real world.

As a consequence of simulating this system as a random Monte Carlo process,
it is possible for the patient population to “die out” when enough discharged
patients are not replaced to reduce the patient population to zero, or for the patient
population size to grow larger than 12 patients. These outcomes, while unrealistic,
are important for understanding the level of possible variability inherent in the

model system. The simulations were run over a one-year timespan.

Two primary outcomes were tracked in all scenarios: the number of incident
infections and the number of infections that develop into recurrent cases. Note that
in many simulations we expected the number of recurrent cases to be higher than
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the number of incident infections. The model handled both incident infections that
arise in the ICU and prevalent infections on admission, both of which could develop
into recurrence. The results of stochastic models are frequently non-normally
distributed, differences between treatment groups were analyzed with non-
parametric Kruskal-Wallis tests. Simulations were written in Python, and all

statistical analysis was performed in R.

Results

The median, 25t and 75t percentile number of recurrent and incident cases
for all modeled scenarios are reported in Table 5-2. The baseline, no-intervention
model produced results similar to the known epidemiology of CDI. Infection rates
were low, but periodic outbreaks of C. difficile occurred, as did periods of no
infection. Despite high levels of patient colonization and sustained transmission of C.
difficile within the ICU, hand contamination of HCP was rare and short lived. An
example showing the development of a typical simulation over time is shown in

Figure 5-2.

The impact of FMT in different proportions of post-CDI patients to prevent
recurrence is shown in Figure 5-3. The treatment resulted in a statistically
significant (p<0.001) difference in the number of recurrences among the different
treatment groups. The median number of recurring cases ranged from 2
(Interquartile Range (IQR)=6) for no treatment to a median of 0 (IRQ=1) when
100% of patients were treated. Treatment did not result in a significant difference in

the number of incident infections, regardless of what proportion was treated
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(p=0.35). The median number of incident cases was 0 for all scenarios (IQR=1), save

the 80% treatment level which had an IQR of 2.

The results of treating patients prophylactically after discontinuation of
antibiotic therapy or PPIs had similar results. Figure 5-4 shows the results of the
latter scenario for the different proportions of treatment. Neither approach resulted
in a statistically significant difference in recurrence, regardless of the proportion
treated (p=0.47 and 0.97 respectively); all scenarios had a median number of

recurrent cases of 2.

The difference in incident infections was statistically significant when the
treatment group was limited to patients receiving only antibiotics over all levels of
treatment (p=0.004) but not antibiotics, PPIs or both (p=0.09). In both treatment
scenarios however, this difference did not result in tangibly different model
outcomes from a clinical perspective. In scenarios treating only patients on
antibiotics, all treatment levels had a median of 0 incident cases (IQR=1).
Simulations with 0% treatment did have a higher maximum number of incident
cases (N=16) than models treating 20% to 100% of cases (N =10, 13, 11, 10, 14
respectively). Similar patterns were seen for simulations treating patients on both

antibiotics and PPIs (not shown).

Combining both prophylactic treatment and post-infection treatment
protocols resulted in a statistically significant difference in recurrent cases over the
proportion of patients treated (p<0.001). The median number of recurring cases

ranged from 2 (IQR=6) for no treatment to a median of 0 (IQR=1) when all patients
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were treated. This strategy also resulted in a statistically significant difference in
incident infections (p=0.007), though as with the purely prophylactic scenarios, this
difference did not manifest in a change in median incidence, as all treatment levels
had a median number of cases of 0 (IQR=1). However, the no treatment scenario had
a higher maximum number of incident cases (N=16) compared to treatment levels

of 20%-100% (N=11, 7,9, 11, 9 respectively). These results are shown in Figure 5-5.

Discussion

Our unique study using mathematical modeling found that the widespread
use of FMT resulted in a marked reduction in discharges that would go on to
develop into recurrent cases. Importantly, this reduction was seen in all modeled
scenarios ranging from relatively low levels of treatment (20% of patients) to very
high levels of treatment (100% of patients) with no apparent threshold effect. This
widespread evidence of a positive effect suggests that these results should be robust
not only to varying levels of treatment, but also to lower levels of efficacy, as the two

are mathematically equivalent.

Unsurprising, as post-CDI treatment to prevent recurrent cases is an entirely
post-infection process, the modeled intervention had very little impact on incident,
hospital-acquired infections. Some secondary effects may be seen if fecal
transplantation becomes a regularly used treatment, by way of a reduced number of
recurrent cases resulting in fewer admissions with prevalent recurring C. difficile.
Capturing this phenomenon would require modeling not only a single ward but an

entire local healthcare system, which is beyond the scope of this study.
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The evidence for a positive effect of using FMT after high-risk medications to
prevent incident infection is less apparent. While treating patients on antibiotics or
both antibiotics and proton-pump inhibitors resulted in statistically significant or
nearly significant results at an alpha equals 0.05 level, these results appear to have
little tangible clinical impact on the number of incident infections and no impact on
the occurrence of recurrent infections. There is also very little evidence for a
synergistic effect between the two treatment strategies. Scenarios that explored the
use of post-CDI and post-high risk medication FMT simultaneously were very
similar to that of post-CDI FMT alone. Taken as a whole, these results indicate that
routine use of fecal transplantation represents a promising tool to prevent
complicated, recurring episodes of C. difficile, but techniques to recolonize the
intestinal tract alone will be insufficient to contain the spread of C. difficile within a

healthcare system.

This study is not without limitations. Many of the states within the model,
such as whether or not a patient has come into contact with C. difficile, are not
regularly observed within hospitals, and thus some of the outcomes of the model
cannot be directly verified. As with all mathematical models, the results of the study
are dependent on the assumptions about the natural history of C. difficile infection
and the values of the parameters used. The purpose of this study, however, is not to
provide precise predictions of future levels of infection, but rather to examine the

overall impact of fecal transplantation as a routine treatment option when dealing
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with C. difficile. Within this scope, the model structure and parameter estimates

represent the state-of-the-art knowledge of in-hospital C. difficile transmission.

This study represents, to the best of our knowledge, the first use of a
mathematical model to quantify the potential effects of fecal transplantation for the
treatment and prevention of CDI. These types of models represent a useful method
for evaluating the potential impact of new treatment approaches in areas of limited
clinical and empirical evidence. Our results suggest that routine intestinal
recolonization is a powerful tool for the prevention of recurrent infection. When
combined with other infection control measures such as improved surface
disinfection and antibiotic stewardship, fecal transplant has great potential to
produce a substantial reduction in the burden of C. difficile, especially in reducing

highly morbid and difficult to manage recurrent infections.
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Figure 5-1. Schematic representation of the compartmental flow of a mathematical
model of the use of fecal transplantation to prevent incident and recurrent C.
difficile. Inset indicates the potential routes of bacterial contamination between
patients and healthcare workers, while grey arrows indicate the movements within
the model influenced by the simulated intervention. HCPs are classed as
uncontaminated (Us) or contaminated (H), and patients into low-risk, uncolonized
(Up), low-risk, colonized (Cp), high-risk, uncolonized (Ua), patients with CDI (D) and

patients undergoing FMT (Cr).
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Table 5-1. Parameters for a Mathematical Model of the Use of Fecal Transplantation
to Prevent Clostridium difficile Infection and Recurrence

Symbol Description Value (Units) Source
L Handwashing Rate 9.365 hand washes or 61-63
glove changes per hour
o] Contact rate between patients and 4.244 direct care tasks 64
HCP per patient per hour
Oi Probability a healthcare provider’s Low Risk: 0.35, High 33,52,59,65,66
hands are contaminated by contact Risk: 0.35
with a patient of type i Active Infections: 0.50
\ 4 Probability of transmission from a 0.90* 33
contaminated HCP hands to a
uncontaminated patient’s skin
0; Discharge rate for an uninfected High Risk: 1/ 12.006 UNC Healthcare

patient of type i

days
Low Risk: 1/ 3.318 days

Billing Data

Hourly probability of death for a
patient with an active C. difficile
infection

0.000625

DICON Cohort
Data

Y Hourly probability of discharge fora | 0.00188 DICON Cohort
patient with an active C. difficile Data
infection

Vi Proportion of admitted patients who | Cp: 0.00447, Ca: 0.0155, UNC Healthcare
are of patient type i Up: 0.209, Ua: 0.727, D: Billing Data, 3537

0.044

K Hazard of developing CDI in low-risk, | 0.000268 DICON
contaminated patients Surveillance Data

T Relative Risk of developing CDI due 3.37 53,59,67
to high-risk treatment

(0] Probability of receiving post- Antibiotics-only: 0.0011 | UNC Healthcare
treatment fecal transplant to prevent | Antibiotics & PPIs: Billing Data, 68-71
incident infection or recurrence 0.00169

X Percent of eligible patients receiving | 0 - 100 (varies by
fecal transplant scenario)

w Probability of a discharged patient 0.30 54
developing recurrence

n Probability of fecal transplant in 0.938 55
moving patient to low-risk category

Abbreviations: CD], C. difficile infection, HCP, Healthcare Personnel; PPI, Proton Pump Inhibitor;

DICON, Duke Infection Control Outreach Network, UNC, University of North Carolina

*Assumed to be highly efficient based on general agreement between skin sampling and hand culture
methods, indicating a minimal loss of contamination between contamination from a patient skin site
to deposition on another surface.
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Table 5-2. Patient Outcomes from a Mathematical Model of the Use of Fecal
Transplantation to Prevent Clostridium difficile Infection and Recurrence in a
Simulated 12-bed ICU Over One Year.

Scenario Percent Median Recurrence p-value* Median Incidence p-value*
Treated (25t & 75t (25th & 75th
Percentiles) Percentiles)
Baseline 0% 2(0,6) 0(0,1)
Post-Infection 20% 1(0,4.25) <0.001 0(0,1) 0.35
40% 1(0,4) 0(0,1)
60% 1(0,3) 0(0,1)
80% 0(0,2) 0(0,2)
100% 0(0,1) 0(0,1)
Prophylactic 20% 2(0,5) 0.47 0(0,1) 0.004
(Antibiotics) 40% 2(0,6) 0(0,1)
60% 2(0,5) 0(0,1)
80% 2(0,6) 0(0,1)
100% 1(0,5) 0(0,1)
Prophylactic 20% 2(0,6) 0.97 0(0,1) 0.09
(Antibioticsand  40% 2(0,6) 0(0,1)
PPIs) 60% 2(0,6) 0(0,1)
80% 2(0,7) 0(0,1)
100% 2(0,6) 0(0,1)
Combined 20% 1(0,6) <0.001 0(0,1) 0.007
40% 1(0,5) 0(0,1)
60% 1(0,3) 0(0,1)
80% 0(0,2) 0(0,1)
100% 0(0,1) 0(0,1)

Abbreviations: PPI, Proton Pump Inhibitor
*Kruskal-Wallis one-way analysis of variance test
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Figure 5-2. A single stochastic realization of a mathematical model of the use of
fecal transplantation to prevent incident and recurrent C. difficile. The top panel
shows the level of hand contamination in healthcare workers over a 24 hour period,
while the bottom two panels depict the number of patients and their current health
state over a one-year period.
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Figure 5-4. Simulated recurrent and incident cases of C. difficile under six levels of
post-high risk medication FMT to prevent the development of infection and
recurrence among patients on antibiotics or proton pump inhibitors. All simulation
outcomes are show, with the results summarized with box-and-whisker plots
depicting the median, 25t and 75t percentiles, and 1.5 times the interquartile
range.
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Chapter 6: Conclusions and Future Directions

This dissertation has explored the use of mathematical models to study the
transmission of C. difficile in healthcare settings by combining mathematical and
computational methods with modern observational epidemiology. The two should
be thought of as mutually reinforcing disciplines, interacting with one another in a
continual cycle of research, rather than viewing one as a lesser substitute when the
other is untenable for a specific question. Mathematical models help organize and
formalize the present state of knowledge about a disease system, discovering areas
where there is currently an absence of empirical data. Empirical studies, in turn,
provide unbiased parameters for mathematical models that can then be used to

extend the results of those same studies into new and unexplored areas.

To accomplish this, parameters for a mathematical model were estimated
using parametric mixture models from a cohort of CDI cases from the DICON
hospital network (Aim 1a) and parametric accelerated failure time models from
inpatient billing data from UNC Healthcare (Aim 1b), as well as estimates from the
literature and fitting a deterministic compartmental model to DICON surveillance
data (Aim 2a). From these parameters, identically formulated deterministic and

stochastic compartmental models (Aim 2b) were used to examine the potential



impact of FMT as a routine treatment for the prevention of either incident or

recurrent CDI (Aim 3).

Key Findings

Parametric Mixture Models for CDI Outcomes

The parametric mixture models used in Chapter 4 represent a method for
handling mutually exclusive competing risks that disentangles the time until an
event occurs and the frequency with which it occurs. Using a cohort of 609 incident,
healthcare-associated CDI cases, we estimate that the all-cause case mortality rate
for ICU patients was 28% for cases in the ICU, compared to 10% for cases outside
the ICU (OR = 3.38 (95% CI: 1.84, 6.19)). Compared to patients not in the ICU, CDI
patients in the ICU experienced longer times until death (RTp = 1.97 (95% CI: 0.96,
4.01)) and longer times until discharge (RTn = 1.88 (95% CI: 1.40, 2.51). This is in
contrast to the conventional cause-specific approach to modeling competing risks,
which overestimated the difference in time until discharge (RTn = 2.30 (95% CI:
1.66, 3.18)) and not only underestimated the difference in time until death, but
estimated it on the other side of the null, suggesting ICU patients had a shorter -
though not statistically significant - time until death (RTp = 0.65 (95% CI: 0.36,

1.17)).

These results have importance both from an infection control and
epidemiological methods standpoint. Patients within the ICU experience longer

times until both death and discharge and experience a higher burden of mortality.
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As a result, despite their relatively small numbers, they represent a population of
concern for the prevention of CDI, despite CDI being often thought of as a hospital-
wide problem. Beyond the higher frequency of negative outcomes, patients who
remain in the hospital longer have a greater opportunity to shed infectious material
into the environment and to contaminate the hands of HCP that care for them. From
a methodological perspective, these findings suggest that in some circumstances
cause-specific models, which conflate the time until an event occurs and frequency

with which it occurs may lead to errant estimates.

Mathematical Models of Routine Fecal Transplantation

Using the parameters obtained from the DICON cohort and surveillance data,
as well as UNC Healthcare billing data and estimates from the literature, a
compartmental model of C. difficile transmission within an ICU was developed. This
model explored the impact of using fecal transplantation to restore the intestinal
flora of patients who had undergone flora-disrupting treatments involving
antibiotics or proton pump inhibitors. Two different potential interventions were
simulated: the regular use of FMT to treat CDI cases to prevent recurrence, and the
use of FMT as a post-treatment prophylactic to prevent the development of CDI for
patients at the end of course of antibiotics or PPIs. Over a number of modeled
scenarios, the model consistently found that post-CDI fecal transplantation has a
positive, statistically significant impact on the number of recurrences but no impact
on incident cases. The evidence for the use of FMT as a prophylactic measure to
prevent the development of CDI is somewhat less definitive. Prophylactic treatment
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did not result in a decrease in recurrence, and while it did result in a borderline
significant decrease in incident cases, this difference did not manifest in a decrease

that would meaningfully impact clinical care.

Strengths and Limitations

This dissertation represents a fusion of observational epidemiology and
mathematical modeling, and is the first study we are aware of which uses these two
techniques to examine the use of routine fecal transplantation for the prevention of
incident or recurrent CDI. It provides a “best of both worlds” approach, using
modern observational methods to provide robust, unbiased parameter estimates for
the mathematical model and using the mathematical model in turn to extend the
results of the limited observational evidence available for the clinical impact of fecal

transplantation and to suggest new directions for empirical research.

As with all studies, this dissertation has limitations. While extensive effort
went in to insuring the parameter estimates obtained from observation data were
unbiased, there is the potential for residual confounding and unknown
misclassification is ever present. Additionally, because of the nature of C. difficile as
a healthcare-associated infection for which hospitals are not reimbursed by
insurance or CMS, there is no single source of data that follows the whole cohort of
hospital inpatients from admission to discharge. As such, a working picture of an
intensive care unit must be assembled from disparate sources and then be assumed
to be capable of being meaningfully melded together into a single coherent model.

The similarity of the two sources of data, both major healthcare systems in the
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Southeastern USA over the same time period is intended to minimize the effect of
this merging of data, but it is possible that the parameters arising from one data
source reflect a different local “reality” of C. difficile transmission compared to those
arising from the other. Finally, the mathematical model used in this dissertation is
subject to the assumptions outlined in Chapter 2 and is only valid insofar as those
assumptions are not violated. These limitations are however, as much a call for
further research as they are caveats about the present findings. This dissertation
reflects the most current knowledge of C. difficile, derived from an extensive review
of both the mathematical modeling and clinical literatures, as well as the analysis of
several datasets using modern epidemiological methods. The modeling results
within it are not meant to be exact predictions of case counts, but rather a first
attempt at quantifying the impact of adopting a novel treatment as the standard of

care for C. difficile, and within this more limited intention, are as robust as possible.

Future Research

Several avenues of continued research present themselves based on the
results of this dissertation. Many of the limitations of the current mathematical
model lie in the assumptions arising from its compartmental model formulation. As
much as this is a challenge to the present model, it is an opportunity for future
research, as the findings of this model can evaluated using more sophisticated
models that reflect a more realistic process of mixing between patients and HCPs as

well as environmental contamination.
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The purpose of such an evaluation is two-fold. First, it allows for a
progressively more robust examination of a clinically relevant problem, providing
better and more realistic predictions of the impact of fecal transplantation as a
routine therapeutic option. Second, the sequential examination of the same research
question, using largely the same parameters but with progressively more
sophisticated model forms represents a relatively poorly explored area of research:
sensitivity analysis not of a particular parameter or parameters, but of model

structure as a whole.

Mathematical models are descriptions of the dynamics of a system, a
representation of how we believe an infection process to work. Even with perfect
parameter values, the choices a researcher makes in how to represent this system
have a major impact on the outcomes of the model. Despite this, much of the current
focus in the sensitivity analysis of mathematical models is focused on the variation
of particular parameters while keeping the more fundamental structure of the
model constant. Extending sensitivity analysis to questions of model structure
would benefit the field not only by evaluating the robustness of certain results to
changes in model type, but also in an increased understanding of what types of
questions require more sophisticated model types such as network or agent-based
models and what types are adequately addressed with more approachable

implementations.

Finally, mathematical models are flexible tools, and even for a system as well
studied as C. difficile there are a wealth of questions that lend themselves well to
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modeling and can be examined with small modifications to the same basic model
structure. Some examples of these questions might be the potential impact of new
surface decontamination procedures, the role of staffing levels and ICU design
(closed vs. open ICUs), and novel therapies for the treatment or prevention of C.
difficile, among others. As many of these questions involve the dynamic interaction
of patients, HCP and the environment that elude statistical techniques, mathematical
models will play a critical role in eventually understanding their respective impact

on the spread of a pathogen of serious and growing public health concern.
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Appendix: Model Parameterization

What follows is a more detailed look at the parameter values used in the
mathematical model described in Chapter 5. Such a description would distract from

the overall message of that chapter, but may be of interest to the reader.
Discharge Rates

Rates of death and discharge for CDI cases were obtained using estimates from
Chapter 4. The length of stay for non-CDI patients was determined using parametric
survival models using a technique similar to that discussed in Chapter 4, but for a
single outcome using the subsample of ICU patients from the UNC Healthcare
inpatient billing data set. By default, the rates in a Gillespie Direct Method-based
stochastic model result in exponentially distributed waiting times, with a single rate
parameter A equal to the reciprocal of the average time until death, discharge, etc.
An alternate formulation however, using n compartments for each transition
between health states allows the waiting times to take the form of a gamma
distribution with the shape parameter k = n and a scale parameter 0 = the average
time until death, discharge, etc. 75. Because many of best fitting parametric survival
models were not exponential, but rather log-normally distributed, it may be
necessary to use the more flexible gamma distribution to provide simulated waiting
times comparable to those obtained from data. However, as a gamma distribution is
not a survival distribution generally supported in available software, a gamma

distribution cannot be fit directly.
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Instead, a gamma distribution approximating a log normal distribution with
parameters P and O was obtained by minimizing the Kullback-Leibler divergence,
an information theoretic measure of the difference between two probability
distributions 7. Each log-normal survival curve obtained from the accelerated
failure time models was approximated by a gamma distribution meant to minimize
K-L divergence, with k constrained to be a positive, non-zero integer (necessary for
implementation as a series of compartments). Weibull distributed survival times
were refit as exponentially distributed survival times for the purposes of model
parameterization. Comparisons of the empirically estimated density functions and
survival curves to their approximated counterparts are shown in Figures A1 - A4.
All approximated gamma distributions had k =1, which reduces to an exponential
distribution, confirming the default assumptions of the Gillespie implementation as

justified.

The estimated length of stay for high risk, non-CDI patients was 12.006 days,
while for low-risk patients it was 3.318 days, which translate to hourly rates of
0.00347 and 0.0126 respectively. The rate of discharge for patients with CDI is a
combination of the probability of being safely discharged from the hospital and the
time it takes to be discharged. Based on the estimates in Chapter 4, it is estimated
that patients have a 72.15% chance of being discharged, with a mean time until
discharge of 15.768 days. Similarly, patients with CDI have a 27.85% chance of

dying while in the hospital, with a mean time until death of 18.66 days. Combining
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the two, we obtain an hourly probability of death for CDI patients of 0.000625 and

an hourly probability of discharge of 0.00188.

Contact Rate

The contact rate between patients and HCP was estimated from studies using
the ‘Work Observation Method by Activity Timing’ (WOMBAT) method. These
studies can estimate the number of patient care tasks a HCP engages in per hour
that involve direct contact with the patient or their immediate environment. The
estimates used in the model described in Chapter 5 are obtained from a study of the
time use patterns of 100 Canadian critical care HCP ¢4 Based on additional data
provided by Ballermann and colleagues, this study estimates that nurses perform
11.92 direct care tasks per hour and doctors perform 3.253 direct care tasks per
hour. Combined with the staffing levels described in the model and assuming
random mixing and a uniform care load between patients, this results in 4.244
direct care tasks per patient per hour. As these tasks include all tasks related to
direct patient care, including those that do not involve touching the patient, they
represent an attempt to capture HCP interaction with the potentially contaminated

physical environment as well, within the limitations of a compartmental model.

Handwashing Rate

The rate of hand washing is a composite of the number of times a hand
washing opportunity presents itself to a HCP (after all direct care tasks involving the

patient or their environment), a rate of compliance, and a rate at which washing
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ones hands successful rids them of C. difficile contamination. The first two are
obtained from the per HCP contact rate discussed above and a study of hand hygiene

compliance within Duke Hospital®!.

Typically in studies of the efficacy of a cleaning product against microbial
contamination (such as hand washing agents), the results are reported in terms of a
log1o reduction in overall colony forming units (CFU) between the pre-wash and
post-wash surfaces. Based on estimates of the efficacy of the mechanical agitation
from a water-only wash (0.76 logio reduction) (Edmonds et al., In Press), along with
one for soap that had already been previously adjusted for the effect of water to
obtain the reduction due solely to the introduction of soap (0.90 logio reduction)®?
we obtain a combined 1.66 log1o reduction in bacterial load. For models directly
modeling the surface, this reduction estimate can be used in this form. However, for
the compartmental models discussed in Chapter 5, this estimate must be converted

to a percent-efficacy.

Based on an initial estimated bacterial load of 3.20 log1o CFU on worker
hands, the corresponding 1.66 log1o reduction results in ~1.54 logio CFU remaining,
a 97.8% reduction in the overall number of CFUs. This conversion makes the
assumption that bacterial load is independent of the probability of infection - that is
that an HCP’s hands are either clean or not, and that the corresponding reduction in
bacterial load translates well to a probability that a HCP’s hands are below the
contamination level necessary for efficient transmission. As there is little evidence
regarding the infectious dose of C. difficile, the accuracy of this assumption is
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difficult to verify. However, the generally accepted efficacy of soap and water
washes as the primary means of hand decontamination in the case of C. difficile
lends some credence to the high efficacy estimate produced with this method, and
the influence of this assumption on the model’s results is straightforward to

examine using sensitivity analysis.

Probability of contamination of staff hands by colonized patient of type i

There is ample evidence that C. difficile can be found contaminating the
hands of HCP after contact with a colonized or infected patients or the surrounding
environment. A number of studies performed by Donskey and colleagues have
directly examined the rate of acquisition of C. difficile spores on HCP hands after
contact with contaminated skin sites3352.6566_ While relatively small studies, they
consistently report a ~50% contamination rate on gloved hands after contact with
patients with active CDI. The estimation of the contamination rate for asymptomatic
carrier patients is somewhat more difficult. In a study comparing asymptomatic
carriers to patients with active CDI, Riggs et al.33 report a skin contamination rate by
swabbing sample sites of 61% vs. 78%. Based on the finding from the same paper
that 57% of the patients with contaminated skin sites passed that contamination
onto gloved hands, we can estimate a 35% chance of hand contamination on gloved
hands from touching the skin of an asymptomatic carrier. No data could be found
examining the contamination rates for asymptomatic carriers with high risk factors

for developing CDI such as exposure to antibiotics or PPIs, and as such both types of
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patient, once colonized, are assumed to be equally capable of shedding spores onto

their skin and the surrounding environment.

Probability of contamination of staff hands by colonized patient of type i

In contrast to the probability that a patient shedding C. difficile spores
contaminates a HCP’s hands, the probability that contact with a contaminated HCP
results in the colonization of a previously colonized patient is less well studied.
Generally speaking however, it appears from studies estimating the bacterial
burden arising from touching a shedding patient’s skin by pressing a gloved hand
first to the patient and then to a culture plate33 that gloved hands are a very efficient
medium for passing C. difficile from one receptive surface to the next, and thus we
assume at least transient skin colonization to be very likely when a contaminated

HCP comes in contact with an uncolonized patient.

Duration of High Risk Treatment

The duration of treatment for patients on fluoroquinolones was assumed to
be 7 days, in line with treatment guidelines for a number of different potential
diseases, including skin and soft tissue infections, sexually transmitted infections

and community-acquired pneumonias®8-70.77,

The duration of treatment for the use of PPIs for gastric acid suppression is a
somewhat more challenging task - treatment for various diseases using PPIs range
from a single dose to multiple months or years of intermittent use. The duration of

treatment with PPIs was assumed to be 4 weeks - the minimum length of treatment

77



for a number of diseases including gastroesophageal reflux disease, the healing of
duodenal ulcers and NSAID-related gastric ulcers, although twice as long as the
maximum recommended course for the eradication of H. pylori in conjunction with a
course of antibiotics’1.78-80, Note that this time is considerably higher than the
average length of stay for patients, hence the assumption within the model that,
when combined with the time it would take for intestinal flora to recover, that once
a patient’s flora have been disrupted, they remain disrupted for the duration of their
stay. However, it is still important to estimate this parameter, as it is used in several
of the fecal transplantation scenarios - patients are treated prophylactically

immediately after the conclusion of their course of antibiotics or PPIs.

To reflect the mix of patients taking one or both drugs, the overall duration of
treatment is the weighted average of the two drug-specific treatment durations.
Patients being treated with both types of drugs were assumed to be in the high-risk
category for the longer of the two treatments (i.e. patients on both a
fluoroquinolone and a PPI are assumed to be in the high risk category for 4 weeks).
Within the ICU patient population in the UNC Healthcare inpatient, 14.38% of
patients had an order for a fluoroquinolone drug alone, 29.20% for a PPI alone and
34.07% for the two in combination. Using the treatment durations above, we thus

obtain a weighted average of high-risk treatment duration of 24.66 days.

Proportion of Admitted Patients Who Are Of Patient Type i

The proportion of patients admitted into the D compartment, representing

patients with CDI was determined to be 0.044, based on the proportion of patients
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in the ICU who had C. difficile colitis entered as complaint present on admission in

the UNC Healthcare inpatient billing data.

Based on the inpatient billing data and the assumption that patients are
prescribed antibiotics or PPIs immediately upon admission to the ICU, the estimated
proportion of high-risk patients is 0.7765. Based on estimates that ~ 2% of the
community carries C. difficile as part of their commensal gut bacteria, this results in
the following admission proportions for each patient type: Cp = 0.00447, Ca =

0.01553, Up =10.209196, Ua = 0.726804.

Relative Risk of CDI for Patients on Fluoroquinolone and PPIs

While many models assume that patients not on antibiotics or PPIs are
incapable of developing CDI, the model in Chapter 5 assumes that they are instead at
a significantly lower risk of developing CDI. Based on a number of meta-
analyses>35967, we obtain relative risks (RR) of 1.74 for PPIs alone and 3.40 for
fluoroquinolone alone. Assuming the two are additive on the log-scale, this yields a
relative risk for patients on both drugs of 5.92. Using the same proportions as used
to determine average treatment duration, the log weighted average RR for a patient
in the high risk category is 1.215. Exponentiating this weighted average RR results

in an RR for high-risk patients of 3.37.

Hazard of Developing CDI in Low-Risk Patients

The model presented in Chapter 5 had a single unknown parameter for

which no values could be found in the literature - the hazard of developing CDI in
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patients who are not in the typical risk categories, such as those on antibiotics or
PPIs. In order to obtain a value of this parameter that results in a level of infection
comparable to that of the experience of a “real life” hospital, the model was fit to the
DICON surveillance time series. As described in Chapter 5, rather than fitting the
parameter (k) to each hospital series and then attempting to pool those estimates, k
was fit to a single time series of the weighted average cumulative incidence of CDI
for the entire data set. The best fitting value of k was found by minimizing the sum
of squared errors between the time series and the predicted cumulative incidence
produced by a deterministic implementation of the model using an adaptive mesh
refinement to find a best fitting value. The fit between the data and the best fitting

value of k is shown in Figure A-5.

Probability of a Discharged Patient Developing Recurrence

Estimates of the proportion of patients who go on to develop recurrence vary
widely in the literature. One meta-analysis suggested that recurrence could occur in
10% to 40% of cases®*, citing previous studies on the topic. The model is
parameterized with a value on the higher end of this range (0.30). Because it is
applied to all scenarios, the specific value of this parameter, as long as itis in a
reasonable range, should not effect the results of the modeled scenarios in relation
to each other. However, if recurrence is considerably more rare, it may be more
difficult to detect a significant difference between scenarios, as model realizations
with zero recurrent cases will become more frequent. However it is settings where
recurrence is more common that it is a pressing clinical concern and where interest
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in preventative interventions is more active, hence the selection of a parameter on

the higher end of the range.

Probability of Fecal Transplant in Moving Patient to Low-Risk Category

The efficacy of fecal transplant was estimated based on the percentage of
patients enrolled in a recent clinical trial who were cured without relapse after one
or more infusion of donor feces>>. We assume a similar efficacy in our model, where
93.8% of patients are cured without relapse after having their intestinal flora

restored.
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Figure A-1. Comparison of density functions and survival curves for an empirically
estimated log-normal length of stay for high-risk patients without CDI and a
corresponding approximate gamma distribution.
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Figure A-2. Comparison of density functions and survival curves for an empirically
estimated log-normal length of stay for low-risk patients without CDI and a
corresponding approximate gamma distribution.
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Figure A-3. Comparison of density functions and survival curves for an empirically
estimated log-normal time until discharge for patients with CDI and a
corresponding approximate gamma distribution.
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Figure A-4. Comparison of density functions and survival curves for an empirically
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exponential fit.

85



Empirical Data o
---- Model Fit 20

2.5
I
AS

15 2.0
Y
Y

AY

Cumulative CDI Cases
1.0
\
AY
AY

0.5
A

0.0
|

T T T T T T T
0 20 40 60 80 100 120

Weeks

Figure A-5. Comparison of weekly weighted cumulative CDI incidence time series
from 31 hospitals in the Duke Infection Control Outreach Network, and the
predicted cumulative incidence obtained by fitting a deterministic model of C.
difficile transmission to this data

86



References

1. McDonald LG, Killgore GE, Thompson A, et al. An epidemic, toxin gene-variant
strain of Clostridium difficile. N. Engl. J. Med. 2005;353(23):2433-2441.

2. Bartlett ]G, Per]l TM. The New Clostridium difficile— What Does It Mean? N. Engl. J.
Med. 2005;353(23):2503-2505.

3. Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi-institutional
outbreak of Clostridium difficile-associated diarrhea with high morbidity and
mortality. N. Engl. ]. Med. 2005;353(23):2442-2449.

4. Miller BA, Chen LF, Sexton D], Anderson DJ. Comparison of the burdens of
hospital-onset, healthcare facility-associated Clostridium difficile Infection and of
healthcare-associated infection due to methicillin-resistant Staphylococcus aureus
in community hospitals. Infect. Control Hosp. Epidemiol. 2011;32(4):387-390.

5. Ghantoji SS, Sail K, Lairson DR, DuPont HL, Garey KW. Economic healthcare costs

of Clostridium difficile infection: a systematic review. J. Hosp. Infect.
2010;74(4):309-318.

6. McGlone SM, Bailey RR, Zimmer SM, et al. The economic burden of Clostridium
difficile. Clin. Microbiol. and Infect. 2011; 18(3):282-289

7.]Jain R, Kralovic SM, Evans ME. Veterans Affairs initiative to prevent methicillin-
resistant Staphylococcus aureus infections. N. Engl. J. Med. 2011; 264(15): 1419-
1430

8. Gurieva T, Bootsma M. Successful Veterans Affairs initiative to prevent

methicillin-resistant Staphylococcus aureus infections revisited. Clin. Infect. Dis.
2012; 54(11): 1618-1620

9. Kermack W, McKendrick A. A Contribution to the Mathematical Theory of
Epidemics. Proc. R. Soc. London A. 1927;115(772):700-721.

10. Anderson RM, May RM. Population biology of infectious diseases: Part I. Nature.
1979; 280: 361-367.

11. May RM, Anderson RM. Population biology of infectious diseases: Part II. Nature.
1979; 280: 445-461.

12. Austin D], Anderson RM. Studies of antibiotic resistance within the patient,

hospitals and the community using simple mathematical models. Philos. Trans. R.
Soc. Lond., B, Biol. Sci. 1999;354(1384):721-738.

87



13. Lipsitch M, Bergstrom CT, Levin BR. The epidemiology of antibiotic resistance in
hospitals: paradoxes and prescriptions. PNAS. 2000;97(4):1938-1943.

14. Sébille V, Chevret S, Valleron AJ. Modeling the spread of resistant nosocomial
pathogens in an intensive-care unit. Infect. Control Hosp. Epidemiol. 1997;18(2):84-
92.

15. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, macdonald,
and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS
Pathog. 2012; 8(4)

16. Weber D, Rutala W, Miller M, Huslage K. Role of hospital surfaces in the
transmission of emerging health care-associated pathogens: Norovirus, Clostridium
difficile, and Acinetobacter species. Am. J. Infect. Control. 2010; 38(5) S25-S33

17. Bartlett MS. Deterministic and Stochastic Models for Recurrent Epidemics. In:
Neyman ], ed. Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability. Berkeley and Los Angeles: University of California Press;
1956:81-108.

18. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 1977;81(25):2340-2361.

19. Fefferman N, Ng K. How disease models in static networks can fail to
approximate disease in dynamic networks. Phys. Rev. E. 2007;76(3):31919.

20.Ueno T, Masuda N. Controlling nosocomial infection based on structure of
hospital social networks. J. Theor. Biol. 2008;254(3):655-666.

21. Christley R, Pinchbeck G. Infection in social networks: using network analysis to
identify high-risk individuals. Am. J. Epidemiol. 2005; 162(10): 1024-1031

22. Morris M. Overview of Network Survey Designs. In: Morris M, ed. Network
Epidemiology. Oxford University Press; 2004:8-21.

23. Curtis DE, Kanade G, Pemmaraju SV. Analysis of hospital health-care worker
contact networks. 5t UK Social Networks Conference. July 3-5, London.

24. Lee BY, Brown ST, Cooley P, et al. Simulating school closure strategies to mitigate
an influenza epidemic. J Public Health Manag. Pract. 2010;16(3):252-261.

25. Lee BY, McGlone SM, Wong KF, et al. Modeling the spread of methicillin-resistant
Staphylococcus aureus (MRSA) outbreaks throughout the hospitals in Orange
County, California. Infect. Control Hosp. Epidemiol. 2011;32(6):562-572.

88



26. Smith DL, Dushoff ], Perencevich EN, Harris AD, Levin SA. Persistent colonization

and the spread of antibiotic resistance in nosocomial pathogens: resistance is a
regional problem. PNAS. 2004;101(10):3709-3714.

27.Raboud ], Saskin R, Simor A, et al. Modeling Transmission of Methicillin-
Resistant Staphylococcus aureusAmong Patients Admitted to a Hospital. Infect.
Control Hosp. Epidemiol. 2005;26(7):607-615.

28. McBryde ES, Pettitt AN, McElwain DLS. A stochastic mathematical model of
methicillin resistant Staphylococcus aureus transmission in an intensive care unit:
predicting the impact of interventions. J. Theor. Biol. 2007;245(3):470-481.

29. D'Agata EMC, Magal P, Olivier D, Ruan S, Webb GF. Modeling antibiotic resistance
in hospitals: the impact of minimizing treatment duration. J. Theor. Biol.
2007;249(3):487-499.

30. Perencevich EN. Deconstructing the Veterans Affairs MRSA prevention bundle.
Clin. Infect. Dis. 2012;54(11):1621-1623.

31. Starr JM, Rogers TR, Impallomeni M. Hospital-acquired Clostridium difficile
diarrhoea and herd immunity. Lancet. 1997;349(9049):426-428.

32. Starr JM, Campbell A. Mathematical modeling of Clostridium difficile infection.
Clin. Microbiol. Infect. 2001;7(8):432-437.

33. Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RLP, Donskey C].
Asymptomatic Carriers Are a Potential Source for Transmission of Epidemic and
Nonepidemic Clostridium difficile Strains among Long-Term Care Facility Residents.
Clin. Infect. Dis. 2007;45(8):992-998.

34. Starr JM, Campbell A, Renshaw E, Poxton IR, Gibson GJ. Spatio-temporal
stochastic modelling of Clostridium difficile. J. Hosp. Infect. 2009;71(1):49-56.

35. Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for
Clostridium difficile infection in adults: 2010 update by the society for healthcare
epidemiology of America (SHEA) and the infectious diseases society of America
(IDSA). Infect. Control Hosp. Epidemiol. 2010;31(5):431-455.

36. Grima DT, Webb GF, D'Agata EMC. Mathematical model of the impact of a
nonantibiotic treatment for Clostridium difficile on the endemic prevalence of

vancomycin-resistant enterococci in a hospital setting. Comput. Math Methods Med.
2012.

37. Lanzas C, Dubberke ER, Lu Z, Reske KA, Grohn YT. Epidemiological model for
Clostridium difficile transmission in healthcare settings. Infect. Control Hosp.
Epidemiol. 2011;32(6):553-561.

89



38. Shaughnessy MK, Micielli RL, DePestel DD, et al. Evaluation of hospital room
assignment and acquisition of Clostridium difficile infection. Infect. Control Hosp.
Epidemiol. 2011;32(3):201-206.

39. Hacek DM, Ogle AM, Fisher A, Robicsek A, Peterson LR. Significant impact of
terminal room cleaning with bleach on reducing nosocomial Clostridium difficile.
Am ] Infect Control. 2010;38(5):350-353.

40. McDonald LC, Coignard B, Dubberke E, et al. Recommendations for surveillance
of Clostridium difficile-associated disease. Infect. Control Hosp. Epidemiol.
2007;28(2):140-145.

41. HCUPnet. Agency for Healthcare Research and Quality; 2006. Available at:
http://hcupnet.ahrq.gov/. Accessed September 17, 2012.

42. Lau B, Cole SR. Competing risk regression models for epidemiologic data. Am. J.
Epidemiol. 2009; 170(2): 244-256.

43. Anderson DJ, Miller BA, Chen LF, et al. The network approach for prevention of
healthcare-associated infections: long-term effect of participation in the Duke
Infection Control Outreach Network. Infect. Control Hosp. Epidemiol.
2011;32(4):315-322.

44. Cole SR, Hernan MA. Constructing inverse probability weights for marginal
structural models. Am. J. Epidemiol.2008;168(6):656-664.

45. Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights.
Comput. Methods Programs Biomed. 2004;75(1):45-49.

46. Little RJA, Rubin DB. The Analysis of Social Science Data with Missing Values.
Sociol Method Res. 1989;18(2-3):292-326.

47. Lau B, Cole SR, Gange S]. Parametric mixture models to evaluate and summarize
hazard ratios in the presence of competing risks with time-dependent hazards and
delayed entry. Stat. Med. 2011;30(6):654-665.

48. Cox DR. The analysis of exponentially distributed life-times with two types of
failure. J. R. Stat. Ser. B Stat. Methodol. 1959; 21(2):411-421

49. Cole SR, Li R, Anastos K, et al. Accounting for leadtime in cohort studies:
evaluating when to initiate HIV therapies. Stat. Med. 2004;23(21):3351-3363.

50. Checkley W, Brower RG, Mufioz A, NIH Acute Respiratory Distress Syndrome

Network Investigators. Inference for mutually exclusive competing events through a
mixture of generalized gamma distributions. Epidemiology. 2010;21(4):557-565.

90



51. Ghani AC, Donnelly CA, Cox DR, et al. Methods for estimating the case fatality
ratio for a novel, emerging infectious disease. Am. J. Epidemiol. 2005;162(5):479-
486.

52. Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey C]. Persistence of
skin contamination and environmental shedding of Clostridium difficile during and
after treatment of C. difficile infection. Infect. Control Hosp. Epidemiol.
2010;31(1):21-27.

53. Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of
Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-
analysis. Am. J. Gastroenterol. 2012;107(7):1011-10109.

54. Garey KW, Sethi S, Yadav Y, DuPont HL. Meta-analysis to assess risk factors for
recurrent Clostridium difficile infection. J. of Hosp. Infect. 2008; 70(4): 298-304.

55.van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for
recurrent Clostridium difficile. N. Engl. J. Med. 2013;368(5):407-415.

56.You DM, Franzos MA, Holman RP. Successful treatment of fulminant Clostridium
difficile infection with fecal bacteriotherapy. Ann. Intern. Med. 2008;148(8):632-
633.

57. Petrof EO, Gloor GB, Vanner SJ, Weese S]. Stool substitute transplant therapy for
the eradication of Clostridium difficile infection:“RePOOPulating”the gut.
Microbiome. 2013; 1(3).

58. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new
developments in epidemiology and pathogenesis. Nature Reviews Microbiology.
2009;7(7):526-536.

59. Owens RC, Donskey CJ], Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated
risk factors for Clostridium difficile infection. Clin. Infect. Dis. 2008;46(S1):S19-31.

60. Moehring RW, Lofgren ET, Obure ], Anderson DJ. Impact of Switch to Polymerase
Chain Reaction (PCR) in Rate of C. difficile Infection (CDI): Multicenter Before-After
Study using a Semi-Parametric Interrupted Time Series Model. In: Abstracts of
IDWeek 2012; October 2-6, 2012;San Diego, CA. Abstract 36149.

61. Chen LF, Carriker C, Staheli R, et al. Observing and Improving Hand Hygiene
Compliance: Implementation and Refinement of an Electronic-Assisted Direct-
Observer Hand Hygiene Audit Program. Infect. Control Hosp. Epidemiol. 2012;34(2):
207-210.

62. Oughton MT, Loo VG, Dendukuri N, Fenn S, Libman MD. Hand hygiene with soap
and water is superior to alcohol rub and antiseptic wipes for removal of Clostridium
difficile. Infect. Control Hosp. Epidemiol. 2009;30(10):939-944.

91



63.]Jabbar U, Leischner |, Kasper D, et al. Effectiveness of alcohol-based hand rubs
for removal of Clostridium difficile spores from hands. Infect Control Hosp Epidemiol.
2010;31(6):565-570.

64. Ballermann MA, Shaw NT, Mayes DC, Gibney RTN, Westbrook JI. Validation of the
Work Observation Method By Activity Timing (WOMBAT) method of conducting
time-motion observations in critical care settings: an observational study. BMC Med
Inform. Decis. Mak. 2011;11:32.

65. Guerrero DM, Nerandzic MM, Jury LA, Jinno S, Chang S, Donskey CJ]. Acquisition
of spores on gloved hands after contact with the skin of patients with Clostridium
difficile infection and with environmental surfaces in their rooms. Am J Infect
Control. 2012;40(6):556-558.

66. Bobulsky GS, Al-Nassir WN, Riggs MM, Sethi AK, Donskey CJ. Clostridium difficile
Skin Contamination in Patients with C. difficile-Associated Disease. Clin. Infect. Dis.
2008;46(3):447-450.

67.Pépin ], Saheb N, Coulombe MA. Emergence of fluoroquinolones as the
predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study
during an epidemic in Quebec. Clin. Infect. Dis. 2005; 41(9): 1254-1260.

68. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of
America/American Thoracic Society Consensus Guidelines on the Management of
Community-Acquired Pneumonia in Adults. Clin. Infect. Dis.2007;44(S2):S27-S72.

69. Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer A], Stamm WE. Guidelines
for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute

pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin. Infect.
Dis.1999;29(4):745-758.

70. Giordano P, Weber K, Gesin G, Kubert J. Skin and skin structure infections:
treatment with newer generation fluoroquinolones. Ther. Clin. Risk Manag.
2007;3(2):309-317.

71. Vanderhoff BT, Tahboub RM. Proton pump inhibitors: an update. Am Fam
Physician. 2002;66(2):273-280.

72. Kane RL, Shamliyan TA, Mueller C, Duval S, Wilt T]. The Association of Registered
Nurse Staffing Levels and Patient Outcomes. Med. Care. 2007;45(12):1195-1204.

73. Ward NS, Read R, Afessa B, Kahn JM. Perceived effects of attending physician
workload in academic medical intensive care units: a national survey of training
program directors. Crit. Care Med. 2012;40(2):400-405.

74. Thompson DR, Hamilton DK, Cadenhead CD, et al. Guidelines for intensive care
unit design*. Crit. Care Med. 2012;40(5):1586-1600.

92



75. Lloyd AL. Sensitivity of Model-Based Epidemiological Parameter Estimation to
Model Assumptions. Mathematical and Statistical Estimation Approaches in
Epidemiology. 2009.

76. Bernardo JM. Approximations in statistics from a decision-theoretical viewpoint.
In: Viertl R, ed. Probability and Bayesian Statistics.1987:53-60.

77. Centers for Disease Control and Prevention. Sexually Transmitted Diseases
Treatment Guidelines, 2010. MMWR Morbid Mortal Wkly Rep. 2010;59(RR-12):1-
116.

78. Pharmaceuticals A. PRILOSEC Prescribing Information. 2012:1-12.
79. Pharmaceuticals T. PREVACID Prescribing Information. 1012:1-28.

80. Eisai Inc. ACIPHEX Prescribing Information. 2012:1-15.

93



