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ABSTRACT 
 

NANCY C. BAKER: Methods in Literature-based Drug Discovery 

(Under the direction of Bradley M. Hemminger) 

This dissertation work implemented two literature-based methods for predicting new 

therapeutic uses for drugs, or drug reprofiling (also known as drug repositioning or drug 

repurposing).  Both methods used data stored in ChemoText, a repository of MeSH terms 

extracted from Medline records and created and designed to support drug discovery 

algorithms.   

The first method was an implementation of Swanson’s ABC paradigm that used 

explicit connections between disease, protein, and chemical annotations to find implicit 

connections between drugs and disease that could be potential new therapeutic drug 

treatments.  The validation approach implemented in the ABC study divided the corpus into 

two segments based on a year cutoff.  The data in the earlier or baseline period was used to 

create the hypotheses, and the later period data was used to validate the hypotheses.  Ranking 

approaches were used to put the likeliest drug reprofiling candidates near the top of the 

hypothesis set.  The approaches were successful at reproducing Swanson’s link between 

magnesium and migraine and at identifying other significant reprofiled drugs.   
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The second literature-based discovery method used the patterns in side effect 

annotations to predict drug molecular activity, specifically 5-HT6 binding and dopamine 

antagonism.  Following a study design adopted from QSAR experiments, side effect 

information for chemicals with known activity was input as binary vectors into classification 

algorithms.  Models were trained on this data to predict the molecular activity.  When the 

best validated models were applied to a large set of chemicals in a virtual screening step, they 

successfully identified known 5-HT6 binders and dopamine antagonists based solely on side 

effect profiles.   

Both studies addressed research areas relevant to current drug discovery, and both 

studies incorporated rigorous validation steps.  For these reasons, the text mining methods 

presented here, in addition to the ChemoText repository, have the potential to be adopted in 

the computational drug discovery laboratory and integrated into existing toolsets.   
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1. RESEARCH GOALS AND BACKGROUND 

1.1 Research questions and their significance 

The biomedical literature is a rich source of information about the activity of drugs in 

biological systems.  This information, once extracted and stored in a usable format, could 

potentially guide researchers in their search for new safe and effective drug therapies.  It is 

therefore no surprise that text mining techniques are increasingly applied to the chemical 

literature to extract this important information.  But information extraction is only the first 

step.  For literature to be useful in drug discovery, terms pulled from the literature must be 

used as input to some drug discovery algorithm.  This dissertation investigates this second 

step in the process: what to do with the extracted information.  

 The broad research question motivating this work is: 

 How can information extracted from the biomedical literature be used in drug 

discovery?  

This work will approach the broad question by concentrating on two specific 

methodologies.  The research questions at the center of this dissertation are:  

1.  Can an extended and improved implementation of Swanson’s ABC 

paradigm be used to predict new uses for existing drugs?  

2. Can patterns in side effect annotations be used to predict a drug’s 

molecular activity? 
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These are significant questions because, if they can be answered in the affirmative, 

literature-based discovery may acquire an accepted place alongside the traditional methods 

employed in the computational drug discovery laboratory.  Currently few implementations of 

literature-based discovery are seen in day to day practice in the laboratory, despite the 

increasing interest in literature mining seen in recent years. 

Robust validation is key to acceptance.  It has been suggested that inadequate 

validation is one reason why Swanson’s ABC approach, introduced to great excitement over 

20 years ago, has received little notice outside the information science community (Bekhuis, 

2006; Torvik, Renear, Smalheiser, & Marshall, 2009).  In this research, therefore, validation 

will play a vital role, and one that should help foster greater acceptance from the drug 

research community. 

1.1.1 Motivation 

The discovery and development of new medicines is an expensive and high-risk 

endeavor.  It was recently estimated that for drugs that reached clinical trials between 1989 

and 2002, the average cost per drug was over $800 million (Adams & Brantner, 2006).  Even 

when a drug has been approved for marketing, there is no guarantee it will be a success.  

Many drugs are pulled from the market because of adverse side effects (Giacomini et al., 

2007).    

To address these challenges, researchers are increasingly making use of data and 

computational methods to learn as much as they can about a drug before it undergoes 

expensive laboratory or clinical testing.  This means analyzing data and looking for patterns 

that would allow prediction of chemical characteristics, both therapeutic and adverse.  
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Quantitative structure-activity relationship (QSAR) studies, for instance, are used to predict 

receptor binding, cellular transport, penetration of blood-brain barrier, and many types of 

toxicity.  Fortunately, the repositories of chemical data needed for these quantitative 

experiments are growing in number and in size.  The Molecular Libraries Initiative (NIH, 

2007), with PubChem as its central repository, has spurred extensive testing of compounds 

and the results are all publicly available.   

Increasingly, too, researchers are examining existing drugs to see if they can be 

reprofiled for a different indication.  The reprofiling of drugs (also called repositioning or 

repurposing) can offer lowered costs and risks to the drug developer (Bradley, 2005).  The 

safety profile of existing drugs is often well known, and expensive early stage animal studies 

may have already been performed, saving the expense of the studies and accelerating the 

development timeline.    

Repositories of laboratory-based data for drugs may be growing in size, but most of 

the information about drugs remains locked up in the chemical and biomedical literature.  For 

several hundred years, results from experiments with chemicals, drugs, and disease were 

reported only in the literature.  Drug researchers are beginning to understand that this 

information could contribute greatly to their understanding of drugs, not just by finding 

relevant articles or facts and reading them, but by turning the literature into data and using it 

as input into computational experiments.  In a manner similar to the methods used in the lab 

now, these experiments can predict activity or characteristics of drugs.  A prediction of drug 

activity or effect is often the first step in drug reprofiling.   
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Only existing drugs have a literature record.  This means that literature cannot be 

used to uncover a new chemical entity and predict its uses.  Literature can, however, be used 

to predict new things about existing drugs, including how they might be used therapeutically 

in a disease where they have not been tested, i.e., drug reprofiling.   

This dissertation research presents two literature-based drug discovery methods.  

Both methods use entities and relationships from the literature to predict new therapeutic 

uses for drugs.  Validation is a central component of the study designs.  The goal is to 

develop methods that can be integrated into the toolset already in use in the drug discovery 

laboratory.   

1.1.2 Pilot Study 

The Information Hierarchy or Information Pyramid is an important representation of 

learning and understanding in information science (Chaffey & Wood, 2005; Rowley, 2007).  

In this representation, data is depicted at the bottom, information in the middle, and 

knowledge at the top.  The depiction illustrates, among other things, how humans learn.  First 

we accumulate data, or the raw facts and observations about something.  Next we organize it 

so that any patterns found can provide information about the data collection.  Next we infer 

and reason from the information and conceptualize some tenets or generalizations that we 

can carry forward: this is knowledge.   

This dissertation work concentrates on the top level of the pyramid: knowledge 

discovery.  The essential prerequisite work in extracting the data and organizing it into 

information – the other two levels in the pyramid - were performed in a pilot study.  In that 

work, a repository or knowledgebase was constructed from MeSH ()()()()annotations 
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extracted from chemical and biomedical articles in PubMed (National Library of Medicine, 

2010).  The construction of this knowledgebase, called ChemoText, is described in Chapter 

2.  The pilot study also included an implementation of Swanson’s ABC drug discovery 

methods; Chapter 2 also contains the results from this study.    

1.2 Background  

In this section we will look at how researchers are using literature data to make 

predictions.  Before we examine methods to predict new things from the literature, we will 

look at the characteristics of the literature itself, including its historical development.  Then 

we will review how other researchers have processed the literature to change it from 

language into data.   

Drugs are chemicals.  For that reason we will concentrate on processing chemical 

literature, starting with a look at the history and characteristics of chemical literature that 

make it a unique challenge to process.  Drugs are chemicals that affect biological systems 

and the field of drug discovery sits at the intersection of biology and chemistry.  So while we 

will focus on small molecule chemicals important to drug discovery, as a part of our methods 

overview we will often find it illustrative to describe implementations of important literature 

mining methods in biology, particularly at the molecular level.   

The field of literature mining encompasses the steps, tools, and techniques to process 

the literature and find the relevant documents (Information Retrieval or IR), extract relevant 

facts (Information Extraction or IE), and learn new things from these facts (Text 

Mining/Knowledge Discovery).  These three subfields are interdependent.  Information 

extraction is often a first step in information retrieval.  Both information retrieval and 
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information extraction may be involved in finding and extracting the appropriate text and 

placing it into a data structure such as a database for later text mining. 

At this point, a word about terminology may be helpful to prevent confusion. 

Literature mining, text mining, knowledge discovery in text, and text data mining are all 

terms which have been used more or less synonymously.  In this dissertation we will adopt 

the terminology of Jensen et al. in which literature mining is used to describe the broad field 

which includes information extraction, information retrieval, and text mining (Jensen, Saric, 

& Bork, 2006).  Text mining will be used interchangeably with literature-based discovery.  

They both refer to discovering new things from terms extracted from the literature.   

1.2.1 Chemical and biomedical literature 

The need for chemists to communicate their work and to learn about the research of 

others has existed since the dawn of chemistry.  The early communication of chemical 

research in the 17th century took place primarily in private letters, pamphlets, and books.  The 

18th century saw the rise of scientific journals and periodicals, and much of the reporting of 

chemistry moved to these venues.  In France, Lavoisier started Annales de Chimie in 1789 

and in Germany in 1778, the Chemishes Journal was founded by Crell.  With the advances in 

science and technology in the 18th and early 19th century, more outlets for communication 

were needed.  Chemistry articles were included in the journals of the academies and learned 

societies such as the Philosophical Transactions of the Royal Society in Britain and 

Memoires de l’Academie des Sciences in France.  There were also a number of journals run 

by commercial publishing companies, but these did not experience the longevity and 

influence of the journals produced by the more stable societies, with a few titles such as 

Nature being the exception.  Later in the 19th century, societies devoted to chemistry began to 
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form and to start publishing their own journals.   The Chemical Society in Great Britain was 

the earliest such society, formed in 1841, and was followed by societies in other European 

countries, among them the Societe Chimique de France in 1857, the Deutsche Chemische 

Gesellschaft in Germany in 1867,  and the Russian Chemistry Society founded by Dmitrii 

Mendeleyev in 1868. (Cooke, 2004; Skolnik, 1982)   

The journals published a variety of literature.  Early publications were often 

proceedings of the organization’s meetings.  These proceedings included full text of some 

papers and abstracts of others.  It soon became apparent, however, that as the volume of 

publications grew worldwide, a way to summarize the publications in other journals home 

and abroad was of great value and interest, and, as a result, collections of abstracts soon 

appeared, first as sections in the regular periodicals, and later as separate volumes.  

Chemishes Zentralblatt, founded in 1830 in Germany, was one of the early publications 

dedicated to abstracts, primarily of German research (Cooke, 2004). 

In the United States, the American Chemical Society (ACS) was founded in 1876 and 

issued its first publication of meeting proceedings that year.  The publication, which 

eventually became the Journal of the American Chemical Society (JACS), included abstracts 

by 1897.  In 1907 a separate publication dedicated to abstracts, Chemical Abstracts, was 

started.  JACS has grown steadily since and has become one of the premier chemistry 

journals.  Chemical Abstracts grew quickly as well.  ACS started a division devoted to 

producing Chemical Abstracts that was eventually called Chemical Abstracting Service or 

CAS.  They expanded their scope of coverage to books, dissertations, patents, government 

reports and extended their reach to most of the countries doing important chemical research.  

The types of information gathered on a research article included bibliographic data (e.g., 



 

8 
 

author, journal, publication date, company) and a brief summary of the main findings of the 

article with an emphasis on chemicals, reactions, procedures and techniques (Skolnik, 1982).   

CAS developed indexing schemes that proved immensely influential.  The first was a 

subject index.  In 1911 they started a patent index, and in 1920 came out with the first 

formula index.  CAS developed their own nomenclature system that allowed them to index 

chemicals for efficient retrieval.  In the 1960’s they started to use computers and developed 

innovative computational methods to assist the indexing.  With the creation of the Registry 

System, they began to store the structure of a chemical in computer files and assign unique 

numbers to each.   This monumental effort took years, but as a result the CAS registry 

number became the most used chemical identifier worldwide.  (Flaxbart, 2007; Weisgerber, 

1997) 

Other competing and complementary services emerged over the years.  The Institute 

for Scientific Information (ISI), for instance, under the leadership of Eugene Garfield, 

developed the Current Contents and Index Chemicus (Garfield, 2001).  ISI had a slightly 

different focus from CAS.  They covered fewer journals over a broader scientific area and 

had a faster delivery time for their publications.  They also captured citations in articles.  

Citations proved to be important to chemists who wanted to try a particular reaction method, 

for instance, because they could search the literature using the “primordial reference” to find 

all papers that used that method, and trace the modifications and improvements over time 

(Garfield, 1985). 

The literature of medicine is also important background for this research.  For 

medicine we will focus on the development of the United States National Library of 
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Medicine.  In 1818 Joseph Lovell became the eighth Surgeon General in the U.S. Army 

medical department.  Lovell collected books, both for his own use and the use of his staff of 

medical personnel.  When he died in 1836, his books remained in the office and became the 

core of the official library of the Surgeon General.  The library grew, and by 1840 the 

collection was large enough that someone felt the need to list the 134 titles in a small 

notebook, the first catalog.  The Civil War brought rapid expansion to the Surgeon General’s 

office and to the collection.  In 1864 the new Surgeon General, William A. Hammond, 

oversaw the production of the first printed catalog.  It listed 2,100 volumes.  The real growth 

in the library, however, came when Surgeon General Joseph Barnes made John Shaw 

Billings his assistant in charge of the library, which they agreed should become a “National 

Medical Library”.  Billings energetically started collecting books and pamphlets, old and 

new, contacting physicians all over the country to send past copies of journals.  By 1875 the 

library was the largest medical library in the country. (Blake, 1980; Blake, 1986)  

Billings was no less energetic in organizing and cataloging the collection.  Here he 

had examples to follow.  Following the example of abstracting journals in Europe and 

particularly the bibliographies of J.D. Reuss and W. G. Ploucquet, Billings eventually created 

an index called Index-Catalogue that indexed books by title and author, journals by title, and 

journal articles by subject.  Because his library was the most comprehensive collection of 

medical literature in the country, the Index-Catalogue became the most extensive guide to 

medical literature available. (Blake, 1980; Blake, 1986) 

Keeping current was still a problem.  With years between the publication of each 

volume, a physician in need of current information had to refer to the European abstracting 

publications, the best of which were in German.  To fill this need, Billings worked with New 
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York publisher F. Leypoldt to produce a monthly subject guide to medical books and 

journals, which they called Index Medicus.  Though very successful, the Index Medicus 

struggled financially and for a time merged with a similar publication of the American 

Medical Association.  After a number of years of slow growth in the early part of the 20th 

century, the library grew rapidly during World War II and began to modernize its cataloging 

operations.  Microfilm, mechanization, and finally computerization have brought the library 

and the catalog efforts into the modern age.   

The computerization of a catalog yields a database.  Today the National Library of 

Medicine’s collection of citations, reaching back to the Civil War, is publicly available as the 

Medline database and can be freely searched through the PubMed web site (National Library 

of Medicine, 2008).  Medline covers medical and biomedical literature, primarily journals, 

including drug research, and, importantly, it is free; these qualities make it the most 

commonly used corpus for biomedical text mining.      

While the focus of PubMed remains bibliographic, CAS has broadened its functions.  

The CAS registry number has become such an important identifier for chemicals that the 

database has become a point of entry and control to the world of chemicals, as well as a 

bibliographic resource.  The centrality of CAS when discussing information in chemistry is 

hard to overestimate.  CAS is like a planet with an immense gravitational pull.   One is either 

going with the pull, or fighting it, but ignoring it is impossible.  Its gravitational pull affects 

this literature review in the following way.  Early and very substantial work in named entity 

recognition, information extraction, and information retrieval in chemistry was dominated by 

scientists at CAS (as well as ISI).  Later, as the field of bioinformatics developed, the 

preponderance of literature mining work was concentrated in molecular biology and on large 
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biological molecules - genes and proteins.  In more recent years, literature mining in 

chemistry has gained interest as scientists look to extract their own chemical information 

from the literature, in part to build their own repositories separate from CAS.  The recent 

work in literature mining draws on both the previous work in both chemistry and biology, 

and therefore the discussion of methods and applications in this review will include 

techniques and methods in both those fields.   

A very key difference in the literature of chemistry and the literature of biology is the 

role played by the structure of a molecule (Fugmann, 1985).  In the chemistry of small 

molecules such as drugs, the structure is central; in contrast, the biology of large chemical 

molecules such as proteins and DNA-encoding genes does not pivot on exact molecular 

structure.  The chemical structure of a DNA strand for Gene A, for instance, may vary 

between individuals or undergo mutations.  It is, however, still Gene A. (Location as well as 

chemical makeup is important for genes.)  By contrast, if a small molecule chemical B 

undergoes a structural change, it is no longer chemical B; it is now a different chemical, with 

a different name, and with perhaps dramatically different properties.  Because the precise 

structure is so vital, communication of that structure plays a role in information extraction 

and information retrieval, and adds new wrinkles to recognizing chemical entities in text, a 

necessary prelude to extracting them.   

The task of finding the entities of interest in the text is called named entity 

recognition (NER).  Before we can learn how computers recognize chemicals in the text, we 

must first discuss how scientists represent chemicals in their published work.   



 

 

Representation of chemicals in text

A chemical is a collection of atoms bonded together 

space.  The structure of a chemical makes it unique and gives it its physical and biological 

characteristics.  In written communication chemists portray this structure in a variety of 

ways.  Representative samples of the most common structures 

Table 1.1  Structural representation of chemicals
 Structure Representation 

Example 

1.  
HO2CCH(NH2)CH2C6H
 

2. 

 
3 

 

A publication reporting the synthesis of a new compo

likely contain a chemical structure diagram

chemical is referred to in the text, however, a name must be used.  

Every chemical has a unique, standardized name that can be used i

standard nomenclature system for chemicals is the IUPAC (

Applied Chemistry) standard 

component of the chemical structure has a corresponding syllable in the nomenclature.   The 

12 

Representation of chemicals in text 

A chemical is a collection of atoms bonded together and taking up thr

space.  The structure of a chemical makes it unique and gives it its physical and biological 

characteristics.  In written communication chemists portray this structure in a variety of 

ways.  Representative samples of the most common structures are listed in Table 1

Structural representation of chemicals 
Structure Representation Communication characteristics 

 

H5C9H8O4 
Chemical formula.  Specifies type and number of atoms but 
no information on 3D structure.  Computer can read but 
cannot translate to structure accurately.  Humans cannot get 
complete structural information. 

Chemical structure diagram. Very understandable to humans.  
Preferred mode of human – human written communication, 
however cannot be used to reference the molecule in a line of 
text or in the spoken word.  Computer can generate but not 
understand easily.   

 

Markush structure.  This structure indicates a family of 
molecules.  The letters can be replaced by a variety of 
substructures.  Used in patents to gain coverage on a variety 
of molecules with a similar core structure. 

A publication reporting the synthesis of a new compound or a chemical reaction 

a chemical structure diagram like the one in row 2 of Table 1.1

chemical is referred to in the text, however, a name must be used.   

a unique, standardized name that can be used in text.  The 

standard nomenclature system for chemicals is the IUPAC (International Union of Pure and 

ndard (IUPAC, 2009).  In this name, called the system

component of the chemical structure has a corresponding syllable in the nomenclature.   The 

and taking up three dimensional 

space.  The structure of a chemical makes it unique and gives it its physical and biological 

characteristics.  In written communication chemists portray this structure in a variety of 

n Table 1.1.   

 

pecifies type and number of atoms but 
Computer can read but 

not translate to structure accurately.  Humans cannot get 

Very understandable to humans.  
human written communication, 

however cannot be used to reference the molecule in a line of 
Computer can generate but not 

This structure indicates a family of 
molecules.  The letters can be replaced by a variety of 
substructures.  Used in patents to gain coverage on a variety 
of molecules with a similar core structure.  

or a chemical reaction will 

.1.  When the 

n text.  The 

Union of Pure and 

systematic name, each 

component of the chemical structure has a corresponding syllable in the nomenclature.   The 
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use of the systematic name results in an unambiguous translation of the structure into words 

(Gasteiger & Engel, 2003).   

The IUPAC name is long and cumbersome however, and most chemists, though they 

may use it to introduce a molecule, will often refer to the chemical by its common name.  

These names, also called trivial  or generic names, have their origins in history or in custom 

and are shorter and easier to read, write, and remember than IUPAC names.  In contrast to 

systematic names, they give little to no information about the structure of the chemical.  

Because of their widespread use, a place for trivial names has been included in the IUPAC 

standards.    A semi-systematic or semi-trivial name has elements of both, often a parent 

structure which is trivial, modified by a systematic prefix (Cooke-Fox, Kirby, & Rayner, 

1989a; Cooke-Fox, Kirby, & Rayner, 1989b; Cooke-Fox, Kirby, & Rayner, 1989c).   

Other commonly used chemical names are trade names.  These include the names of 

marketed pharmaceuticals, and, as a number of companies may market the same chemical 

under different trade names, the names for a chemical can mount up.  For instance, one 

chemical database contains 174 different names for aspirin (Williams, 2008). 

The author may not want to identify a chemical in a way that indicates its structure.  

This is often the case when researchers in the pharmaceutical industry are publishing findings 

but not ready to reveal the structure of a potential new drug.  In this case company codes are 

often used (Banville, 2006).  Chemicals are often referenced by their identifier or reference 

number in a repository or library.  CAS Registry Number and National Cancer Institute 

(NCI) numbers are common examples.  Table 1.2 contains examples of commonly used 

names.  
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Table 1.2  Examples of names used for chemicals 
Type Examples 
Systematic chemical names 2-amino-3-phenylpropanoic acid, 2-(acetyloxy)benzoic 

acid 
Trivial, common, generic names Phenylalanine, aspirin, methylphenidate, water 
Trade Names Ritalin, Concerta 
Organization/Company codes NCI455, BMS 181339-01, NSC125973 
Abbreviations AZT, DMS 

 

Computer-readable representations of chemicals 

Many software programs have been written that help scientists study molecules.  

These programs take a chemical as input or deliver chemical information as output.  A 

variety of ways have been developed to format a chemical structure so that it can be used by 

software.  A few representative ones are listed in Table 1.3.  While these are formats 

designed for computer use, some, such as SMILES, can be composed and understood by 

humans, although they are rarely the preferred format for human – human information 

exchange. 

Table 1.3  Representative computer readable structures 
Type Comments 
SMILES Line notation. A variation of the original SMILES creates unique structures. 
Molfile Connection table.  Originated by Molecular Design Limited (MDL). 
SDfile Connection table; used for exchanging multiple chemicals. 
InChI Line notation.  International Chemical Identifier. 
InChI key Binary form of InChI indentifier. 
PDB Protein Data Bank 3D conformation.   

 

SMILES strings and InChI identifiers are both line notations, compact forms of the 

chemical structure that can be stored in a line of text.  The InChI key is a fixed length, hashed 

representation of the InChI identifier, designed with the goal of making web searches faster 

than they were with the InChI string representation (Gasteiger & Engel, 2003).  Because they 
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are digital, they are not human-readable.  Table 1.4 shows the SMILES and InChI 

representations for phenylalanine. 

Table 1.4.  Representative line notations for phenylalanine 
SMILES string O=C(O)C(N)Cc1ccccc1 
InChI string InChI=1/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-5,8H,6,10H2,(H,11,12)  
InChI key COLNVLDHVKWLRT-UHFFFAOYAL 

 

Another general type of representation is connection tables.  Connection tables store 

the atoms and bonds of the molecule in tabular format.  Figure 1.1 contains an example. 

Figure 1.1 Molfile connection table for benzene. 
 
 

 

 

 

All of the different forms of chemical representation have their own purpose, 

advantages, and disadvantages, and all have many flavors as they are extended and improved 

(Gasteiger & Engel, 2003).   

These representations of chemicals will rarely be seen in the text of an article.  There 

is still compelling reason to include them in this background literature review.  A chemical 

name or identifier pulled from the text must generally be converted to one of the computer 

readable formats in order to use it as input to any software that performs computational 

routines on the molecules.  In addition, it is the hope of many chemists that in the future, 

benzene ACD/Labs0812062058 
  
  6  6  0  0  0  0  0  0  0  0  1 V2000 
    1.9050   -0.7932    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
    1.9050   -2.1232    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
    0.7531   -0.1282    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
    0.7531   -2.7882    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -0.3987   -0.7932    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -0.3987   -2.1232    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
  2  1  1  0  0  0  0 
  3  1  2  0  0  0  0 
  4  2  2  0  0  0  0 
  5  3  1  0  0  0  0 
  6  4  1  0  0  0  0 
  6  5  2  0  0  0  0 
 M  END 
 $$$$ 
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computer readable structures will be imbedded in the literature so that one can search the 

literature by structure.   

1.2.2 Information Extraction 

Information extraction (IE) concerns itself with finding the desired information in the 

text, extracting it, and (often) storing it in some kind of data structure for later use, either as 

input to text mining or as permanent storage, a way to make it available to others.  In this 

regard, it can be an important component in the construction of public repositories.   

Natural Language Processing  

Natural language processing (NLP) techniques play an important role in many IE 

applications.  Natural language processing is a set of computational tools employed to 

manipulate the text so that meaning can be extracted.   

Often NLP approaches begin with preprocessing steps to reduce the volume and 

dimensionality of the data.  A common first step is to tokenize the text, which means to break 

it into units called tokens, commonly words or punctuation.  Stop words, a set of words 

deemed beforehand to be without semantic significance (e.g., the, a, an, be, for, etc.) are 

generally eliminated (Manning & Schuetze, 1999).  

Stemming, another common technique to reduce volume and dimensionality, 

eliminates suffixes to create the stem form of each word.  Porter’s stemming algorithm is one 

of the earliest and the most commonly used (van Rijsbergen, Robertson, & Porter, 1980).  

After stemming, the words act, acted, acting would be reduced to the semantic essential: act.  

Through stemming, the meaning is to a great extent retained while data dimensionality is 

reduced.   
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NLP methods can be used to parse the sentence or analyze it to determine its 

grammatical structure.  Parsing can be performed at several levels (Shatkay & Feldman, 

2003).  Shallow parsing analyzes the sentence to find important parts such as the noun 

phrases and pull them out for further processing.  Deep parsing can yield more information 

about the meaning of the sentence but is more computationally expensive.  It turns out that 

significant sense can be extracted from text without parsing.  The bag-of-words approach 

treats each word the same and instead of drawing meaning from word order and sentence 

structure, infers meaning from associations of words.   

Named Entity Recognition 

A critical component of information extraction is entity recognition or named entity 

recognition (NER) (Jensen et al., 2006).  This task involves identifying the entities (genes, 

proteins, chemicals, etc.) of interest.  Once an entity is identified, it is tagged with a unique, 

standardized identifier in a step called normalization.   

Identification is fraught with difficulties because of the complex ways humans 

employ language to refer to things and people (Manning & Schuetze, 1999).  We saw in our 

earlier discussion of chemical names that chemistry is no exception.  Chemicals, particularly 

drugs, can accrue many synonyms.  Polysemy, where one word can have many meanings, is 

a problem as well.  Short forms such as abbreviations and acronyms can often be interpreted 

in many ways.  All these wrinkles in word usage present challenges to computer algorithms.     

The techniques for entity recognition can be divided into those that use external 

sources, such as dictionaries and lexicons, and those techniques that use only clues available 

in the text.  The clues in the text that lead to entity identification are actually very rich and 
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include the appearance of the word (morphology, upper case, lower case, patterns of letters, 

numbers, and symbols), syntax (part of speech), and the context of the word.  Dictionary-

based methods can be very effective, but face the challenge of needing continual updates to 

stay current (Jensen et al., 2006).  Often combinations of dictionary and text-based 

techniques are used to achieve the best results.   

In 1989, Hodge et al. were one of the first groups to recognize chemical names 

embedded in text (Hodge, 1989).  Their goal was to extract the name, decipher it, and assign 

the correct CAS number to it.  They tokenized the text, eliminated stopwords and 

punctuation.  Nonchemical words were flagged and subsequently ignored.  All remaining 

words were matched against a lexicon of chemical names.  The maximal matching string 

decided the match.  The CAS number stored with the matched chemical in the lexicon was 

indexed to the article.   

Chowdhury and Lynch extended NLP techniques to patents (Chowdhury, 1992a; 

Chowdhury, 1992b). They analyzed the patent sublanguage and found generic terms are 

often used in order to gain coverage on a family of chemicals, not just a specific chemical.  

They tokenized the text and processed the tokens using both morphological and dictionary 

approaches.     

While the aforementioned approaches rely on hand-crafted rules, many groups have 

implemented machine learning approaches.  While exact implementations vary, these 

methods involve composing a vector for each term.  The positions in the vector contain 

numeric values that indicate features of the term such as word length, number of digits, 

number of dashes, whether the term has a Greek symbol, etc.  A training corpus is used as 
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input to a classifier, such as Naïve Bayes or support vector machine (Chang, Schutze, & 

Altman, 2004). The advantage to machine learning is that the algorithms are not subject-area 

specific and therefore can be implemented in various fields.  Machine learning approaches 

have similarly been applied to disambiguating genes, proteins, and mRNA (e.g., 

(Hatzivassiloglou, Duboue, & Rzhetsky, 2001)) and to deciphering abbreviations in 

biomedical text (e.g., (Yu, Kim, Hatzivassiloglou, & Wilbur, 2007)).  

In 1999 Wilbur and colleagues from the National Library of Medicine (NLM) and 

National Center for Biotechnology Information (NCBI) compared three methods for 

identifying chemical names in text (Wilbur et al., 1999), with the goal of improving tools 

offered by the NLM such as MetaMap, which had historically showed weaker performance 

in chemistry than in other biomedical fields.  One was lexically-based and the other two were 

flavors of Bayesian methods.  The lexical method started with a list of chemical morphemes 

or name segments.  Words from the test corpus were analyzed to find segments that matched 

the chemical morphemes.  The algorithms matched the longest left most segment and moved 

across the word from left to right checking each segment.  This routine was designed to 

handle IUPAC nomenclature.  Trade names and generic names have no such regular 

construction and required handling by construction of their own morpheme dictionary and by 

lookup in NLM’s Medical Subject Heading (MeSH) database.  Regular expressions were 

also used to match patterns common in semi-systematic names.  For instance, 3’5’-

dichloromethotrexate could be recognized by pattern matching to the 3’5’ component and 

then lookup in MeSH would identify the remainder of the term.  All three methods produced 

satisfactory results, but one of the statistical methods slightly outperformed the others.  

Acronyms and abbreviations were a weak point for the lexical method.  
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Zimmermann, et al. modified their ProMiner literature mining system to work on 

chemicals (Zimmermann et al., 2005).  ProMiner was originally designed to identify genes 

and proteins.  Because the system was dictionary-based, they customized it for the chemical 

literature by developing a specialized dictionary of chemical terms drawn from MeSH and 

ChEBI (Degtyarenko et al., 2008).  The system performed well on trivial and generic names, 

but the long, complex IUPAC names with their braces and parentheses proved a challenge to 

their tokenizing algorithms.   

Translation of extracted entities 

A key step in entity extraction in chemistry is to translate the chemical name into 

structure or the tructure into name, and either into a unique identifier such as a CAS number 

or SMILES string.   

Early progress in automation of the translation process came in the 1960’s with the 

work of Eugene Garfield (Garfield, 1964).  He formulated a methodology to translate a 

systematic chemical name in the literature to its corresponding molecular formula.  Garfield 

built a dictionary of morphemes or name segments used in systematic names.  When given a 

word, his algorithm would search the dictionary for the morphemes in the name, and then 

decide whether the morphemes were indicating a structure formation or a structural 

modification. This algorithm was put to use when Garfield produced the Index Chemicus.     

In contrast to Garfield’s dictionary-based methods, Cooke-Fox et al. employed 

grammar-based techniques (Cooke-Fox, Kirby, & Rayner, 1989a; Cooke-Fox, Kirby, & 

Rayner, 1989b; Cooke-Fox, Kirby, & Rayner, 1989c).  They created a formal grammar for 



 

21 
 

the IUPAC nomenclature that allowed them to build structure diagrams from the names.  

They added routines to handle semi-systematic names and specialist nomenclature.   

In the 1970’s as a part of a comprehensive name editing system, Vander Stouw et al. 

developed parallel techniques for translating CAS nomenclature into structures in the form of 

atom-bond connection tables, the format used as input to the CAS registry system (Vander 

Stouw, Naznitsky, & Rush, 1967).  CAS nomenclature differs somewhat from IUPAC, and 

for a number of years linguistic methods applied to IUPAC were paralleled by researchers 

working in or closely with CAS.   

A number of projects have addressed the translation of the graphical representation of 

a chemical structure printed in a journal article into a computer readable format.  The CLiDE 

(Chemical Literature Data Extraction) project is the most extensive (Ibison et al., 1993).  

Started in 1990 at the University of Leeds under A. Peter Johnson, this project looked 

broadly at scientific articles and developed a methodology to understand the structure of the 

whole article and then to break it into pieces in three main steps.  First, they analyzed the 

article and identified its physical layout.  The program then processed and recognized each of 

the primitives or basic components.  From this information, the program was able to 

determine the logical layout, what component was what: introduction, body, structural image, 

etc.  Logical objects were associated with certain characteristics that were signals as to their 

type:  font (size, type, style such as bold), alignment (justified, centered, flush left or right), 

position, and relative alignment.  Once the software understands the document, the chemical 

structures are recognized and decomposed in a manner similar to the way the document was 

decomposed.  The pieces of the structural depiction are analyzed to find lines, wedges, and 

chemical name strings.  CLiDE produces a connection table which can then be used as input 



 

22 
 

to a chemical drawing program.  CLiDE is now maintained and distributed by SimBioSys, 

Inc. 

Kekule, a software package developed in the early 1990’s by McDaniel and Balmuth, 

has similar goals, but does not as broad a broad scope and focuses on structural images alone 

(McDaniel & Balmuth, 1992).  Kekule takes a scanned image and applies optical character 

recognition and rule-based logic to create connection tables that are then entered into a 

database.   

Gkoutos et al. shifted the focus from scanned journal articles to the web and argued 

the need for structures to be embedded in HTML as vector images (Gkoutos, Rzepa, Clark, 

Adjei, & Johal, 2003).  This format allowed attachment of metadata that could be read and 

interpreted by a computer.  They tested two already known programs for converting raster 

images to SVG (scalable vector graphics) and got promising results with simple chemicals.  

In a recent project Hattori and colleagues describe an application that mines patent 

applications to predict the key compounds (Hattori, Wakabayashi, & Tamaki, 2008).  A 

patent may list an extensive number of compounds that are structurally similar but often only 

one or two are key, or the most important to the patent seeker.  Medicinal chemists often 

have the job in industry to read the patents and discern the key compounds.  Hattori’s theory 

was that the listed compounds will cluster around the one or two key compounds.  They 

extracted the compound names from the patent text, converted them to structures, and 

measured and plotted the chemical similarity between them.  The plots showed definite 

clusters.  They achieved significant recall of key compounds by identifying the central point 

in the cluster and mapping it back to the molecule name.  
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Beyond chemical entity: properties 

The chemical entity, whether extracted as a name and translated into a structure, or 

vice-versa, is the desired outcome of many extraction projects.  Other researchers, however, 

see it as only the beginning of the extraction process.  Many researchers aim to extract 

reactions, chemical or physical properties, biological activity, or patent claims along with the 

chemical.   

Zamora and Blower developed a methodology to extract chemical reactions from the 

full text of ACS journal articles (Zamora & Blower, 1984a; Zamora & Blower, 1984b).  They 

closely analyzed paragraphs describing synthesis reactions from the Journal of Organic 

Chemistry and determined there was a very predictable pattern in the way reactions were 

reported.  Their routines examined the structure of the paragraph as well as the structure of 

each sentence to look for keywords and syntactic clues.  Their goal was to extract reactants, 

reagents, quantities, and conditions, including solvents, temperature, equipment used, time, 

etc. and to populate a data structure with the results.  

In their ChemXtreme application, Karthikeyan et al. mined the World Wide Web for 

very specific physical properties (Karthikeyan, Krishnan, Pandey, & Bender, 2006).  The 

process started by feeding a list of chemicals to the Google search API.  This Google routine 

retrieved all the URL addresses indexed to the selection terms and passed them to a client 

process that downloaded the pages and combed them for information fitting a set of 

templates or regular expressions.  Text matching the patterns was extracted and placed in a 

database.  A few of the physiochemical properties they extracted were LC50, LD50, melting 

point, freezing point, and density.    
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Murray-Rust and colleagues at Cambridge have created OSCAR (Townsend et al., 

2004), an extraction program with a variety of capabilities.  It not only recognized chemical 

names, but also found and extracted results from a wide variety of laboratory tests such as 

mass spectroscopy and NMR.  Their methods are lexical, but also include extensive use of 

pattern matching routines that take advantage of the highly structured reporting of lab results.   

Beyond chemical entity: relationships 

Another important goal of information extraction is to find relationships between 

entities: between genes to understand expression patterns, between proteins to build protein 

interaction networks, and in the realm of drug research, between genes and drugs, and drugs 

and disease.   

Two main processing approaches have been used to extract relationships from 

biomedical text: co-occurrence and NLP. Co-occurrence methods look for entities that appear 

together in sentences, titles, abstracts, or Medline records.  The underlying premise is that if 

two things are mentioned in proximity then they are likely related.  While generally a robust 

technique, co-occurrence based approaches suffer from two main weaknesses.  First, entities 

that are not related can indeed be co-mentioned.  Additionally, even if the entities are related, 

we gain no information on the nature of the relationship (Jensen et al., 2006).    

 NLP techniques can examine syntax and semantics and can both establish 

relationships with higher accuracy, and determine in many cases what kind of relationship 

exists.  To do the latter, they look for specific verbs such as inhibit, phosphorylate, activate 

(e.g., (Blaschke, Andrade, Ouzounis, & Valencia, 1999)), or identify patterns in the entity-

verb occurrences (e.g., (Rindflesch, Tanabe, Weinstein, & Hunter, 2000)).  NLP methods 
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have their disadvantages as well.  They are generally tailored to specific applications and 

therefore do not generalize well to other biomedical areas.  Because they depend on sentence 

structure, they do not perform well when finding relationships between sentences.  Co-

occurrence methods can find relationships beyond the sentence boundary and are often 

general enough to translate between specialties (Jensen et al., 2006).    

Rindflesch et al. use NLP techniques to extract very specific information about drugs 

from Medline abstracts: the interaction of drugs and genes in cancer cells (Rindflesch et al., 

2000).  They parsed the text and tagged parts of speech.  The identified noun phrases were 

matched against the UMLS Metathesaurus (Bodenreider, 2004) to find drug names.  The 

program identified cells and genes using knowledgebases in addition to contextual 

information.  The output of the application is a first order calculus statement expressing the 

drug/gene entities and their relationship.  The example below shows how the software 

captures the relationship between the cells (HAG/src3-1), the drug (CDDP) and the gene(v-

src). 

Original sentence:  “Compared with parental or mock-tranfected HAG-1 cells, v-

src-transfected HAG/src3-1 cells showed a 3.5-fold resistance to 

cisdiamminedichloroplatinum (CDDP).” 

Extracted relationship:  I_resistant(v-src,HAG/src3-1,CDDP)  

Future Directions 

The open science movement reflects a changing attitude toward the dissemination of 

information by scientists in many domains.  Led by a few far-sighted individuals, chemistry, 

too has started to embrace the tenets of open science, although the field still lags behind 
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biology and bioinformatics.  Peter Murray-Rust, Henry Rzepa, and others have promoted a 

vision of a Chemical Semantic Web (Murray-Rust, Rzepa, Tyrrell, & Zhang, 2004; Murray-

Rust, Rzepa, Stewart, & Zhang, 2005).  In this vision, the primary communication of 

chemical information would be journal articles published on the web with CML (Chemical 

Markup Language) (Gkoutos, Murray-Rust, Rzepa, & Wright, 2001; Murray-Rust & Rzepa, 

2001; Murray-Rust & Rzepa, 2003; Murray-Rust, Rzepa, Williamson, & Willighagen, 2004).  

The rigorous use of CML would make the articles machine understandable.  The authors use 

the term “datuments” to illustrate the combination of documents and data.  In these 

datuments, each mentioned chemical would be accompanied by a machine-understandable 

depiction of the structure (InChI string or connection table).   If this vision were realized, the 

sophisticated named entity recognition routines of the past would no longer be necessary.  

Chemical property data would be equally transparent.  The CML schema would ensure that 

each reported data element follow a particular structure and be expressed in a standard 

vocabulary.  Data types, data values and the associated limits can be checked and validated 

by the restriction expressed in the schema.  The data could be accompanied by metadata 

indicating quality, provenance, or key words for later retrieval.   

This vision would require the concerted effort and support of many chemists and the 

cooperation of far-sighted publishers.  While these forces are coalescing, Murray-Rust et al. 

argue that the most important intermediate step is that chemists make their data available at 

the time of publication.  Data, they point out, is not copyrightable, and for the most part 

publishers are not interested in publishing the complete data associated with an article, so 

they have nothing to lose.  Murray-Rust et al. recommend that authors submit their data to a 

public or institutional repository under the Open Access protocol.  This is not an outlandish 
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request.  In the bioinformatics field, authors have for years submitted protein and nucleic acid 

sequences to public repositories such as GenBank as a requirement of publication. 

While the techniques and technology have changed over the years, the motivation 

behind information retrieval and extraction in chemistry has fundamentally not changed: the 

need to answer questions about chemicals.   

1.2.3 Text Mining 

Text mining, another important subtask in literature mining, finds new knowledge in 

the literature.  It is often preceded by information retrieval and information extraction.  Often 

the extracted information is put into some sort of data structure to facilitate the mining 

activity.  

Text mining can enable the practitioner to take a bird’s eye view of the literature.  

This perspective allows connections to be made between facts in one document and facts in 

another.  The documents may have been written in different decades by people in different 

scientific disciplines, but through text mining the connections can be brought to light where 

they can be examined and evaluated.  This computer-assisted observation can reveal 

relationships that would have been difficult or prohibitively time consuming to find 

manually.  Text mining can also find patterns in large sets of data – in this regard text mining 

is closely akin to data mining.  The bird’s eye view can pick out correlations, associations, 

and trends not possible to see when examining documents individually.   

These two characteristics of literature – its rich connections and its patterns – have 

been used to discover new things, and, specifically, to find new therapeutic uses for drugs.  

Don Swanson pioneered the understanding of literature connections and their potential in 
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uncovering new knowledge (Swanson, 1990).  His literature-based discovery work and the 

work of the researchers who followed in his footsteps will be discussed in depth.  Before that 

discussion, however, we will look at the smaller body of work that uses patterns in side 

effects to predict new uses for drugs.   

Text mining and adverse events 

A drug can have both targeted, desired effects on an organism, and undesired effects, 

called side effects or adverse events.  Several research groups have shown that the array of 

side effects attributed to a drug can indicate what molecular interactions it has, particularly 

what receptors it binds.  Fliri et al. converted the side effects available through the CEREP 

Bioprint database (Krejsa et al., 2003) to create binary descriptor sets or side effect spectra 

(Fliri, Loging, Thadeio, & Volkmann, 2005).  They clustered the spectra and found that 

drugs with similar known molecular mechanisms had similar side effects.  They point out 

that understanding this relationship between molecular mechanisms and side effects may 

help drug developers avoid drug candidates with high risk for undesired effects.   

In a more recent study, Campillos et al. used side effect information to infer off-target 

binding (Campillos, Kuhn, Gavin, Jensen, & Bork, 2008).  They retrieved package insert text 

files from a variety of sources such as the FDA and manufacturers’ websites.  The section of 

the package inserts listing side effects was extracted and parsed.  Terms were matched 

against a dictionary they had assembled from the UMLS (National Library of Medicine, 

2006) and COSTART (Food and Drug Administration, 1989).  Presence or absence of each 

side effect was coded in a binary fashion.   They developed a side effect similarity measure 

and used it to make pairwise comparisons of each drug in their reference set to every other 

drug.  The measures were adjusted to account for very common side effects, very rare side 
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effects, and side effects with a high correlation (nausea and vomiting, for instance).  In 

addition to the side effect similarity measure, they calculated the structural similarity of each 

pair of drugs using the Tanimoto (Willett, Barnard, & Downs, 1998) method.  The known 

protein targets of each drug were downloaded from online databases including Matador 

(Gunther et al., 2008), DrugBank (Wishart et al., 2006), and PDSP Ki (Psychoactive Drug 

Screening Program database) (Roth, Lopez, Patel, & Kroeze, 2000).  They clustered the 

drugs by side effect similarity and structural similarity and looked for pairs which had a high 

side effect similarity but did not show significant structural similarity.  They wanted to 

reduce the weighting of pairs with structural similarity, a known predictor of similar 

biological activity.  They also eliminated pairs found to bind to the same proteins.  What 

remained were pairs of drugs with similar side effect profiles, but no other known indicators 

of similar molecular activity.  For instance, the Alzheimer’s treatment donepezil was found 

to have a very similar side effect profile to the antidepressant venlafaxine, but structurally 

they are diverse, and donepezil has not been known to bind to proteins associated with 

depression.  A protein binding assay performed by the authors showed donepezil to have 

affinity for the 5HTT receptor, a key receptor in depression treatment.  In total they identified 

261 drugs with possible novel targets.  They tested twenty drugs and found 13 of them active 

in in vitro binding assays.  The activity of nine of these was confirmed in cell assays, and the 

study resulted in two new patent applications.   

Literature-based discovery and Swanson 

Swanson, a researcher in information science, developed a methodology for 

literature-based discovery based on his observations of scientific literature (Swanson, 1990).   

He noted that the increasing specialization of scientists was paralleled by an increasing 
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specialization in scientific journals.  He described a situation where scientific domains no 

longer interacted through the reading and publishing of their literatures: researchers reading 

and publishing in one set of journals were not aware of articles in other journals.  The 

literatures become islands and, in Swanson’s terms, non-interactive.   This situation, 

according to Swanson, creates the potential for knowledge to go unconnected, relationships 

not recognized and inferences not made, a situation he termed undiscovered public 

knowledge.  Swanson demonstrated that these connections might be made using through 

literature mining.  Using his ABC literature-based methodology he made several discoveries, 

among them a connection between Reynaud’s disease and fish oil (Swanson, 1986) and the 

potential of magnesium to treat migraines (Swanson, 1988).  Swanson emphasized that 

literature-based methods only assisted with hypothesis generation or hypothesis support, and 

that any hypothesis derived from the literature, must, like any other, be substantiated by 

experimental science.   

Swanson’s ABC methodology starts with identifying a disease or condition of 

interest.  As an example we will consider migraine.  The term migraine becomes the C term.  

In the next step, the literature is searched for terms that co-occur with migraine.  These are 

the intermediary B terms and include, in the case of migraine, terms such as spreading 

cortical depression, vasoconstriction, and vasodilation. The B terms can be seen as terms for 

physiological conditions or states or processes that underlie the disease state.  In the next step 

potential treatments – the A terms – are identified by finding drug or chemicals associated 

with any of the B terms.  Next the C – A connection is tested and the only potential 

treatments retained for further examination are those that have not yet been explicitly linked 

to migraine. 
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The best hunting ground for finding this undiscovered knowledge is in what Swanson 

termed complementary but disjoint literatures.  Complementary but disjoint literatures have 

common areas or subjects that can provide rich opportunities for linkages.  The literature 

describing diseases for instance, can contain many descriptions of molecular or physiological 

phenomena that accompany the disease.  Drug researchers may quite independently write 

about molecular or physiological phenomena that are modulated by a particular drug.  No 

one may have thought to search the literature exhaustively for a link between the disease and 

drug.  A link is implied, however, if there is common ground, and a novel hypothesis could 

be in the making.  Finding an implicit connection between two things based on an 

examination of the explicit connections is the fundamental notion behind ABC. 

The ABC paradigm has two approaches, termed by Weeber et al. as open and closed 

(Weeber, Klein, de Jong-van den Berg, & Vos, 2001).  The open approach starts with a 

concept of interest such as a disease and proceeds through the steps described above.  The 

closed approach starts with a hypothesis (e.g., drug A treats disease C) and looks for B terms 

connected to both A and C that may support or explain the link from A to C.  

Although literature-based drug discovery has generally followed Swanson’s 

footsteps, the ABC method has been adapted and implemented in a variety of ways.  

Swanson himself in collaboration with Smalheiser extended and automated his methods in an 

application called Arrowsmith (Smalheiser & Swanson, 1998) and continued to find novel 

connections (Smalheiser & Swanson, 1996a; Smalheiser & Swanson, 1996b).  The 

subsequent implementations of the ABC method retain the essential technique of using 

explicit connections to find implicit connections, but creative and increasingly rigorous 
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enhancements have emerged.  The next section of this literature review will discuss the major 

themes in the adaptation of Swanson’s groundbreaking methodology.   

Paradigms  

Often the adaptations of Swanson’s ABC recast the paradigm in terms of other 

analytical models in order to take advantage of the properties and methods associated with 

those models.  The A, B, and C terms, for instance, may be depicted as nodes in a 

mathematical graph model and the relationships between them considered the edges.  Both 

Wren et al. (Wren, Bekeredjian, Stewart, Shohet, & Garner, 2004) and Narayanasamy et al. 

(Narayanasamy, Mukhopadhyay, Palakal, & Potter, 2004) employ this terminology.  In the 

development of their Transminer application, Narayanasamy and colleagues take advantage 

of graph terminology, properties, and visualization techniques.  Concepts extracted from the 

literature become nodes and known associations between concepts are identified by co-

occurrence in the literature and depicted as edges.  Moving along the edges from one node to 

another is termed traversing the graph.  Possible new associations are identified through 

transitivity, a property of graphs that maintains if A is related to B and B is related to C, then 

A is related to C.  Stated in this way, it is clear how effectively graph terminology not only 

describes Swanson’s ABC, but also extends it, as graphing can include many more than three 

nodes and transitive closure can posit an implicit relationship after transversal of many 

nodes.   

Similar to graph models, network models are useful in literature-based discovery.  

Seki and Mostafa employed a formal information retrieval model called the inference 

network (Seki & Mostafa, 2007).  The network they depict has nodes and edges, but has 

more inherent structure than the graph model of Narayanasamy.  The network’s nodes are 
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typed and arranged in layers according to type.  In the information retrieval context, top and 

bottom level nodes would represent the user query and the documents in the collection, 

respectively.  Intermediate nodes represent key words in the documents.  When they apply 

this model to searching for genes related to diseases, disease and genes take the outside 

positions and gene functions and disease phenotypes are represented by the intermediate 

nodes.  This depiction again is more extensive than the ABC paradigm of Swanson, but the 

principles of relating concepts and entities are the same.   

Corpora   

Researchers in literature-based discovery in biomedical science generally choose 

some part of Medline (National Library of Medicine, 2008) as a corpus.  Medline is the most 

comprehensive bibliographic source of biomedical literature.  It is also free.  Medline is 

compiled by the U.S. National Library of Medicine and includes articles from over 5,000 

journals.  As of this writing, it contains records for more than19.5 million articles.  Medline 

can be downloaded from the NLM and loaded into a local database for access or it can be 

accessed through the PubMed Entrez browser (Wheeler et al., 2008).  

Medline contains language structured in two distinct ways.  The title and abstract are 

in natural language, usually English.  The Medline record also contains the structured MeSH 

annotations attached to each record by indexers at the NLM.  These annotations are selected 

from a controlled vocabulary. 

Researchers who select title and abstract as their corpus often employ natural 

language processing (NLP) methods to turn the language into data.  Ahlers et al. use NLP to 

extract the semantic relationships from abstract text (Ahlers, Hristovski, Kilicoglu, & 
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Rindflesch, 2007) .  Lindsay and Gordon used the word tokens to create bigrams (two word 

combinations) and trigrams to use as their units of analysis (Lindsay & Gordon, 1999).  They 

based this choice on the observation that many medical concepts comprise more than one 

word.  In a similar vein, Weeber et al. mapped the tokens of the title and abstract to concepts 

in the Unified Medical Language System (UMLS), a thesaurus of medical terms provided by 

the NLM (Weeber et al., 2001).  Using the UMLS has another advantage: terms that map to 

its entries have medical significance.  Terms that do not map to the UMLS are more likely 

outside the medical domain and less likely to be of interest and therefore can be eliminated.   

MeSH terms are another corpus selected by many researchers in literature-based 

biomedical discovery.  The MeSH vocabulary has its own hierarchical ontology in the Trees 

database, but the MeSH terms are also a component of the UMLS.  This gives the researcher 

using MeSH the ability to sort and filter the MeSH terms.  Srinivasan (Srinivasan, 2004) 

bases her system on MeSH terms and uses their relationship to UMLS to help rank them.  

Yetisgen-Yildiz and Pratt similarly extract MeSH terms and then use the UMLS to filter 

them (Yetisgen-Yildiz & Pratt, 2006).  Hristovski et al. use MeSH and restrict their 

extraction to only MeSH headings that the annotators flagged as major headings (Hristovski, 

Stare, Peterlin, & Dzeroski, 2001).     

Data reduction and focus: relevance 

Once the data or units of analysis are gathered, a number of methodologies are 

employed for defining a relationship between data elements.  Co-occurrence is behind them 

all.   
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The sheer volume of articles in Medline means that whether natural language or 

MeSH is selected as a corpus, the combinatorics of connecting one concept to another will 

mount up and the volume of data will be large.  Many techniques are employed by 

researchers with the aim of finding those connections that are both interesting and significant.   

The task of finding what is interesting starts with the user.  In every implementation 

of literature-based discovery, the user specifies a starting point such as a disease.  Often the 

user controls other decisions beyond the starting direction.  In the work of Lindsay and 

Gordon (Lindsay & Gordon, 1999) and Weeber et al. (Weeber et al., 2003) the user plays a 

large role in making decisions about which intermediary terms will be investigated further.  

In (Weeber et al., 2003), the central role of the user-expert is demonstrated as the authors 

investigate novel therapeutic uses for thalidomide.  Their decisions to pursue one set of 

linkages over another based on prior knowledge is considered essential to the utility of the 

application.  In a recent paper by Petrič, et al. the researchers limit terms to the rarest ones, 

based on the idea that rarity may indicate novel and innovative information, and then they 

use subject area experts to select the intermediate terms linked to the rare terms (Petrič, 

Urbančič, Cestnik, & Macedoni-Lukšič, 2008).   

The UMLS concept types or concept groups are used to designate the domain and 

direction of the exploration in (R. N. Kostoff, Briggs, Solka, & Rushenberg, 2008; 

Srinivasan, 2004; Weeber et al., 2001; Yetisgen-Yildiz & Pratt, 2006).  In the LitLinker 

system of Yetisgen-Yildiz and Pratt, for instance, the user controls the domain and the 

direction of discovery by specifying the UMLS concept groups for the starting, linking, and 

target terms.  (In Swanson’s paradigm these are the C terms, B terms, and A terms.)  Through 

the software’s user interface, the user can designate a starting concept such as a disease, then 
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select the category such as physiological conditions as the linking or intermediary terms, and 

finally specify genes as the category for the target concepts.  Similarly in (Srinivasan, 2004) 

the user specifies what profiles are to be constructed and analyzed.   Wren et al. (2004) 

(Wren et al., 2004)start with the construction of a dictionary that contains only those terms 

they are interested in.  They pull diseases from OMIM (Hamosh, Scott, Amberger, Bocchini, 

& McKusick, 2005), genes from Locuslink (Pruitt, Katz, Sicotte, & Maglott, 2000) and 

chemical names from MeSH.  Terms outside their dictionary are ignored by their algorithms. 

By allowing the user to concentrate the literature extraction to terms that are 

interesting and relevant the volume of data is reduced considerably.  However, the resulting 

connections may still number in the thousands, and some mechanism to rank the results is a 

crucial part of most literature-based discovery implementations.  Through ranking the output, 

researchers attempt to put the most promising connections at the top.  Estimating the 

importance or significance of a connection is challenging and it has been approached in 

various ways.   

Yetisgen-Yildiz and Pratt (2006) rank the target (or C) terms in order of the number 

of linking (B) terms that connect the C term to the A term.  Then they apply a threshold level 

to eliminate low scoring terms.  Hristovski et al. (2001) have a pre-calculated set of 

association rules that establish the significance of a co-occurrence of two terms.  Each 

association has a support and confidence level that can be used both as a screening metric 

and a ranking metric for the final output.  Lindsay and Gordon (1999) use frequencies of 

terms.  They found relative frequencies perform best in ranking C terms.  Their frequency 

calculations rely on metrics commonly used in information retrieval such as tf*idf (token 

frequency * inverse document frequency).  Srinivasan (2004) computes weights for the 
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MeSH term profiles in the intermediate steps and the final list is ranked by combining these 

weights. 

Wren et al. (2004) calculate what they call the strength of the relationship between 

entities.  They rank the relationships they find against a random network of relationships to 

estimate the significance of the relationship.  Input requires the co-occurrence count. 

All literature-based discovery applications aim to produce hypotheses.  There is a 

wide variation in the extent to which the final list of hypotheses has been influenced more by 

user input or statistics.  In all implementations, the user selects the hypotheses deserving of 

further study.    

Validation and Evaluation 

Validation is a challenge for discovery systems because, if the system works, it is by 

definition finding something unknown (Yetisgen-Yildiz & Pratt, 2006).  The most common 

approach to validation has been to treat Swanson’s discoveries as the gold standard and 

reproduce them.  This approach is taken by (Lindsay & Gordon, 1999; Srinivasan, 2004; 

Weeber et al., 2001).   A key requirement to using a previous discovery as a gold standard is 

to limit the input data to a timeframe before the discovery was explicitly known and written 

about.   

A variation of this approach is to divide the corpus into two groups based on a pre-

selected date.  Hypothesis sets can be produced on the earlier baseline period and tested 

against the later period to see if the implicit connections derived from the earlier data are 

explicitly present in the second period.  Yetisgen-Yildiz and Pratt (2006) use this approach to 

test LitLinker.  They used the cutoff date January 1, 2004 and concentrated on finding 



 

38 
 

implicit relationships in three disease areas: Alzheimer’s disease, migraine, and 

schizophrenia.   Then they examined the literature between January 1, 2004 and September 

30, 2005 to ascertain how many of the identified implicit relationships became explicitly 

stated in the literature.  They measured their results using precision and recall and were able 

to track changes in precision and recall over time.  In a similar vein Hristovski et al. (2001) 

picked a baseline and test time frame and tracked connections in terms associated with ten 

different diseases.  They found they were quite good at finding future connections, but their 

hypothesis sets were too large to be useful, so they tested various thresholds to lower the 

number of hypotheses.   

In an experimental approach to validation, Wren et al. (2004) take advantage of their 

expertise as laboratory scientists and test their hypothesis that chlorpromazine can treat 

cardiac hypertrophy by conducting experiments on mouse models of the disease.  

Narayanasamy et al. both reproduce the magnesium-migraine connection, and, for their other 

cancer gene hypotheses, rely on the verification by experts in the field (Narayanasamy et al., 

2004).   

Because disparate methods have been used by authors to evaluate their literature-

based discovery systems there has been to date no way to compare the efficacy of 

applications.  In a very recent paper, Yetisgen-Yildiz and Pratt describe promising 

methodologies to remedy this situation (Yetisgen-Yildiz & Pratt, 2009).  They base their 

recommendation on four principles.  First, 1) the quality of all target terms or hypotheses 

should be evaluated, not just those that replicate the gold standard.  2) The evaluation of a 

system should be based on multiple experiments, not just one.  3) Evaluation should be 

independent of prior knowledge in order to avoid bias.  Many literature-based discovery 
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systems require a human expert to decide on which the intermediate or linking terms should 

be selected, a step open to bias if the expert knows the desired outcome of the experiment.  

Last 4), an evaluation method should allow valid comparison of different systems.   

Guided by these principles, Yetisgen-Yildiz and Pratt describe performance metrics 

that can be adopted by any researcher whose application produces a set of hypotheses upon 

which recall and precision can be calculated.  In essence these metrics go beyond measuring 

precision and recall for the complete set.  They recommend measuring precision and recall at 

increments on a ranked set to evaluate how effectively the ranking algorithms place the most 

important and relevant terms at the top.   

Future Directions 

In her recent review, Bekhuis discussed the progress in literature-based discovery 

since Swanson’s early work (Bekhuis, 2006).  Her comments are a good starting point to 

assess the progress in the field and important future directions.  She cites system appraisal as 

a problem for developers.  There are few choices for evaluation of systems because the 

yardsticks are few.  She implied that more known discoveries to use as gold standards would 

be an asset for researchers to validate their systems.  With the lack of agreed upon yardsticks, 

division of data into time periods is a good alternative, especially since the technique can be 

applied to any area of science.  Certainly the recommendations of Yetisgen-Yildiz and Pratt 

(2009), if implemented by future researchers, will go a long way toward satisfying Bekhuis’ 

concerns.   

Bekhuis also encourages developers of literature-based discovery systems to 

participate with research teams and work on substantive problems rather than methodological 
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problems.  This will help garner credibility to the field and gain the attention of the wider 

biomedical research community.  Bekhuis speculated about what why the research in 

literature-based discovery was so little known outside the field of information science.  

Biology has a solid foundation on experimental, empirical science.  The notion that 

experiments can be conducted on data alone, even when the data was collected by other 

researchers, is a difficult paradigm shift for many scientists.   

Concern for this hurdle has been discussed by others.  While there are still many 

scientists who are skeptical about experimenting on data, there are those advocating it and 

proposing new names for it.  Bray describes the shift between biology being a data-collection 

science to hypothesis-driven science where the hypotheses may be the result of reasoning 

from pre-existing data and those who make and test the hypotheses may not be those who 

wielded the pipette in the lab (Bray, 2001).  Blagosklonny and Pardee (Blagosklonny & 

Pardee, 2002) agree with Bray and emphasize that computational biology or conceptual 

biology, as they term it, is not a distinct type of science, but just has a different source for its 

data: information in databases.   

1.3  Conclusion 

Complete and accurate information is as critical to chemists as it is to practitioners in 

any other scientific field.  The landscape of chemical information is undergoing rapid and 

fundamental changes.  Central to this change is the move to publicly accessible information 

on the web.  Here the number of chemical entities is growing at a rapid rate, and the 

biological effects and activity resources are expanding to new areas.  This comprehensive 

and interconnected chemical information, founded as it is on rich data, should ensure that the 

rate of acquiring new knowledge will increase as well.    



 

 
 

2. PILOT STUDY 

2.1 Introduction 

This dissertation research was preceded by a pilot study with two goals.  The first 

goal was to build a repository or knowledgebase of terms extracted from the literature that 

represent the bioactivity and effect of the chemicals, particularly drugs.  It was hypothesized 

that this repository, called ChemoText, could be used in drug research to predict new uses for 

drugs.  The second goal of the pilot study was to test this hypothesis by implementing a 

version of Swanson’s ABC methodology.  This implementation would use the data in the 

ChemoText repository to find implicit links between entities and generate predictions for 

new uses for drugs - drug reprofiling.   

This dissertation work builds on the fundamental research conducted in the pilot 

study.  ChemoText is the source of data for the studies under both aims of this dissertation, 

and the first aim will extend the ABC study conducted in the pilot.  Section 2.2 outlines the 

steps taken to design and build ChemoText.  Section 2.3 presents the pilot implementation of 

the ABC methodology.   

2.2 Construction of ChemoText 

2.2.1 Corpus and Theory 

Text extraction requires a corpus. The corpus selected for this research was the 

annotation section of Medline records.  Medline (National Library of Medicine, 2008) is the 
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database of bibliographic information created and maintained by the National Library of 

Medicine (NLM).   

Medical Subject Headings (MeSH) are keywords added to Medline records by trained 

annotators at the National Library of Medicine in order to facilitate search and retrieval.  The 

annotators choose the terms that reflect the main points of the article from a controlled 

vocabulary.  The headings can be accompanied by subheadings or qualifiers.  These terms, 

also selected from a controlled vocabulary, reflect what aspect of the heading is under study.  

For example, an article that discusses the origins of Huntington Disease might be annotated 

with Huntington Disease/etiology.  A heading may be accompanied by several subheadings 

or none at all.   

When an article discusses chemicals, a Registry Number (RN) entry is included in 

Medline.  Although not strictly MeSH annotations, these lines are also extracted in the course 

of this project.  For brevity, both the RN and MeSH terms will be referred to collectively in 

this work as MeSH annotations.   

MeSH terms have been written about extensively, both with regard to their function 

in search and retrieval, as well as their usefulness in other database and computational 

applications (Bodenreider, 2008).  Funk and Reid looked at the quality of MeSH annotations 

using inter-annotator agreement as a measure of quality (Funk & Reid, 1983).  Kostoff et al. 

in (R. N. Kostoff, Block, Stump, & Pfeil, 2004) evaluated the information contents of MeSH 

and title to see if they approximated the information of the abstract.    

Advances in computational linguistics in tandem with the steep increase in journal 

articles have spurred research on replacing manual indexing with automatic methods, work 
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spearheaded by the National Library of Medicine (Aronson et al., 2000; Neveol, Zeng, & 

Bodenreider, 2006).  The goal of the work is to build software that can assign MeSH 

headings that result in retrieval performance equal (or better than) the current manual 

indexing. 

MeSH has been evaluated in the context of statistically-based information retrieval 

applications.  Rubin et al. compared the efficacy of several feature sets in computationally 

retrieving articles about pharmacogenomics and found that MeSH terms compared favorably 

in their discriminative power to terms extracted from the natural language of the abstract and 

title (Rubin, Thorn, Klein, & Altman, 2005).  This finding is similar to that of Chen et al., 

who compared disease-drug relationships extracted from full text of articles and clinical 

narratives to MeSH and UMLS annotations.  They concluded that the two sources produced 

consistent and complementary results (Chen, Hripcsak, Xu, Markatou, & Friedman, 2008). 

Of more relevance to this project, MeSH terms have been extracted by a number of 

developers to create a knowledgebase for biomedical applications.  Cimino and colleagues 

studied MeSH extensively and observed patterns they were then able to capitalize on in 

constructing an evidence-based medicine knowledgebase (Cimino & Barnett, 1993; 

Mendonca & Cimino, 2000).  His group’s observations of the relationship between MeSH 

headings and subheadings in a Medline record were built on and extended by researchers in 

literature-based discovery, e.g., (Hristovski, Friedman, Rindflesch, & Peterlin, 2006; 

Srinivasan, 2004).  

Cimino’s tactic was to look very closely at the headings and subheading co-

occurrence patterns in a limited domain, in this case clinical medicine, formalize them, and 
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then attach meaning to them.  Cimino and colleagues were able to do this semantic analysis 

and rule-building because they restricted their domain.  If they had attempted to observe 

patterns in the whole of Medline, important patterns may have been obscured.   

The more one restricts the domain, the more one can say about it.  This is the essence 

of the theory of sublanguage, the theory that explains why close study of a restricted domain 

yields patterns that can be exploited in computational linguistic methods (Harris, 2002).  The 

rationale behind the theory is that people who work in a specialized area develop language 

patterns to help them communicate effectively (Haas, 1997).  In the case of Cimino and 

colleagues, as in this research, the theory is being extended from natural language to 

annotations of natural language.   

The pilot project restricted the domain to articles (or annotations of articles) about 

chemicals.  The terms targeted for extraction were restricted as well, to annotations 

indicating chemical activity and effect.  It was hoped that this narrow focus would yield 

strong signals useful in drug research. 

2.2.2  Analysis and Design 

The analysis and design stages of development started with observing and recording 

the patterns in a small subset of articles.  Once the terms indicating chemical effect and 

activity were identified, algorithms were developed to extract them.  The algorithms were 

tested on the initial small test set and then implemented on the entire Medline corpus.   

The sublanguage observations in the pilot study were based on a sampling of 125 

randomly chosen articles about the chemical genistein.  Genistein is a chemical found in 

soybeans that has been studied for its connection to a number of diseases, particularly its 
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potential to treat cancer.  Just one chemical was chosen in order to get a well rounded view of 

the types of research a chemical undergoes.  A number of articles reported the results of in 

vitro experiments such as protein-binding assays and cell assays where the molecular activity 

of the drug is studied.  Studies on whole organisms were also present, both on animal models 

such as rabbits and in human clinical trials. 

The 125 sample Medline records were printed, read, and the MeSH terms were 

manually extracted, tabulated and compared to the contents of the abstract and title.  This 

dataset was termed the PMID125Set.      

The MeSH terms indicating biological activity became quickly apparent when the 

PMID125Set was examined.  They included protein annotations, disease annotations, and the 

group of biological effects identified by the drug effects annotations.   

On the molecular level, protein annotations stood out.  A protein is a large molecule 

constructed of amino acids.  The proteins in the human body are ubiquitous, and in addition 

to being vital structural elements, play many active roles in metabolism, signaling, growth 

and development.  Proteins are the targets of most drugs.  The goal of a drug is to bind to and 

modulate the activity of a protein, in order to suppress or enhance its activity.  A large body 

of research concentrates on studying the relationship between drugs and proteins.   

The PMID125Set contained 304 instances of protein annotations.  This represents 180 

unique names, many of which are protein family names (e.g., Kinases) rather than the name 

of individual proteins.  Ninety-five of the 125 articles had at least one protein annotation.  

The most commonly occurring entry was Protein Tyrosine Kinase with 15 appearances, 

followed by Receptors, Estrogen with 12 occurrences.  Several specific names like NF-kappa 
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B are included in the list, but so is the extremely general term Proteins. Table 2.1 shows the 

most commonly annotated proteins. 

Table 2.1 Top most common protein 
annotations in the PMID125Set 

 Table 2.2 Counts of top 5 
disease/condition annotations in 
PMID125Set 

Protein Name  Disease/Condition Count 
Protein-Tyrosine Kinases  Breast Neoplasms 18 
Receptors, Estrogen  Prostatic Neoplasms 7 
Cyclin-Dependent Kinase Inhibitor p21  Body Weight 6 
NF-kappa B  Adenocarcinoma 4 
Proliferating Cell Nuclear Antigen    
Tumor Necrosis Factor-alpha    
Caspase 3    
Caspases    
CF Transmembrane Conductance Regulator    
DNA Binding proteins    
Receptor, Epidermal Growth Factor    

 
Disease annotations were a significant indicator of drug activity.  Disease annotations 

were found in 69 of 125 articles (53.6%).  A total of 111 disease annotations were extracted, 

representing 57 unique diseases.  The most common disease annotation in the PMID125Set 

was Breast Neoplasms, one of the many forms of neoplasms mentioned in the articles.  Table 

2.2 lists the top four most frequently occurring diseases in the PMID125Set.   

The diseases were identified by looking up the headings in the MeSH Tree file.  This 

data source is a hierarchical ontology available from the NLM.  The category C contains 

diseases and conditions, signs, and symptoms such as Body Weight.  For brevity we will refer 

to this collection of terms as diseases.   

The articles with disease annotations fall into somewhat distinct categories.  Many of 

the articles state in their introductory remarks that genistein is known to have action against a 

particular disease (breast cancer, for instance) and, given that, the research of the paper 

endeavors to understand either how or why (mechanisms) and when (under what conditions).  
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Other articles start by discussing a molecular level activity genistein is known to have and 

then test the drug against a new disease for which this activity might prove fruitful.  In one 

article, for example, the researchers note that genistein has been shown in previous studies to 

have anti-inflammatory activity and then test whether this activity might extend to beneficial 

results in treating alopecia areata (hair loss) in the mouse model.   

In most cases the subject drug was under study as a treatment for the annotated 

disease.  In some cases however, the article reported that genistein caused a disease or had 

particular adverse effects.  The patterns in the annotations indicate to a great extent whether 

the drug treats or causes the disease.  For instance, when the subject drug was annotated with 

either adverse effects or toxicity, it was reported to cause the disease.  When the subject drug 

was annotated with therapeutic use or the disease was annotated with prevention & control, 

the drug is generally discussed as a treatment for the disease.  The combination of the drug 

annotation toxicity with the disease annotation chemically induced was a strong contextual 

marker for indicating the paper described the drug as causing the disease.  Other researchers 

have noted these patterns in pairs of annotations, e.g., (Mendonca & Cimino, 2000).  As an 

illustration, consider PMID 12132873.  In this study the authors fed mice special diets with 

varying amounts of genistein and daidzein.  They found that the incidence of vulvar 

carcinomas was associated with the amount of the drugs in the diet.  The relevant annotations 

for genistein were Genistein/*toxicity and Vulvar Neoplasms/*chemically induced/pathology.  

Patterns in the annotations were used to categorize and tag the disease terms into treat or 

cause categories.  Of the 111 disease annotations, 16 were tagged as cause, among them 

several forms of neoplasms. 
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The next area of the Medline record containing evidence of drug activity is the 

qualifier drug effects.  Drug effects annotations were found in 90 articles out of 125, with an 

average of 2.7 per article.  Two hundred forty-five separate headings associated with the 

effects were extracted, representing 152 unique annotations.  Table 2.3 lists the most 

commonly occurring headings paired with drug effects.  Cell Division tops the list with 21 

occurrences followed by Apoptosis with twelve.  

Table 2.3  Most common headings co-
occurring with drug effects annotations in 
PMID125Set 

 Table 2.4  Top occurring drug 
effects categories in PMID125Set 

MeSH Descriptor Count Pct  MeSH Descriptor Count Pct 

Cell Division 21 8.6%  Biological/Cell Phys. 
Phenomena, Immunity 

64 16% 

Apoptosis 12 4.9%  Physiological Processes 50 13% 

Endothelium, Vascular 5 2.0%  Genetic Processes 39 10% 

Uterus 5 2.0%  Cells 38 10% 

Gene Expression Reg., 
Neoplastic 

4 1.6%  Biochem.Phen., 
Metabolism, Nutrition 

22 6% 

Cell Cycle 4 1.6%  Urogenital System 19 5% 

Phosphorylation 4 1.6%  Tissues 17 4% 

  Amino Acids, Peptides, 
and Proteins 

16 4% 

 

The records were examined for false positives, records that code for drug effect but 

the article reports that the drug has no effect, and three such instances were found.  PMID 

16557470 is an example.  Genistein was investigated to see if it had an effect on cell 

proliferation and on mammary glands.  The study confirmed the latter but found no effect of 

genistein on cell proliferation.  Automated routines cannot discern these negative results at 

this time and will include these incorrect drug effects.  It is likely that so few false positives 

were found because negative results are not published at the same rate as positive results, 
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and, particularly with the comparative studies, the heading linked to drug effect is often 

general, indicating the direction of the research presented in the paper. 

To determine whether the drug effects describe drug activities from a wide spectrum 

of physiological levels, each drug effect annotation was looked up in the National Library of 

Medicine’s MeSH Tree file.  This file contains all the MeSH annotations arranged in a tree 

structure that allows one to travel from a given annotation to a higher node in the tree that 

represents a family or category to which the annotation belongs.  The effect Apoptosis 

(programmed cell death) for instance can be mapped to the more general term Cell 

Physiological Phenomena.  Table 2.4 contains the categories and the number and percentage 

of annotations falling into each, and shows that the entries are distributed among a number of 

physiological levels. 

The Medline record can list more than one chemical.  One or more of them may be 

the subject of the research, while other chemicals are peripheral, perhaps discussed or used in 

the experimental procedure, but not the central object of study.  In order to reduce the volume 

of data to remove incidental chemical annotations it was important to identify the chemicals 

that were the subjects of the article and then associate the activity terms only with the subject 

chemical(s).  A heuristic algorithm was developed that evaluated the MeSH subheadings or 

qualifiers occurring with the chemical annotations and identified the chemicals most likely to 

be the subjects.  The heuristic followed a rule-based stepwise procedure, a procedure 

developed based on the detailed analysis of the PMID125Set.  In this process, the annotations 

from each Medline record were examined to see if more than one chemical was annotated 

and identified as a major topic.  If only one chemical was found and major, it was tagged as 

the subject chemical.  If more than one chemical was identified as major, then the 
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subheadings or qualifiers of each were examined.  If the subheadings were the same for each 

of the chemicals, then they were all tagged as subjects.   

 

 

 

 

Preliminary analysis of the PMID125Set showed that certain subheadings were more 

commonly associated with subjects then other headings. Pharmacology, therapeutic use, and 

administration & dosage, for instance, are subheadings commonly annotated to the subject 

chemical, while the subheadings metabolism and biosynthesis are less common annotations 

for subject chemicals.  A hierarchy of subheadings was assembled, starting with those most 

commonly associated with subjects to those rarely seen associated with subjects.  (See Table 

2.5.) This hierarchy was used to compare the chemicals in the remainder of the records and 

tag those most likely to be subjects.  Only chemicals flagged as major in at least one of their 

subheadings are used as input to the algorithm.  If a subheading from level one was found, 

the associated chemical(s) were designated subjects.  Only if no chemical had a subheading 

from the first group did the algorithm look at subheadings from the second group.  If no 

chemicals have been identified annotated with subheadings from the first two groups, then 

chemicals tagged with a subheading from level 3 were tagged as subjects. 

Medline records with more than one subject are common.  Forty percent have more 

than one subject chemical, and the average number of subject chemicals per Medline record 

is 1.65.  In the next step of the processing each of the subject chemicals was associated with 

Table 2.5  Hierarchy of MeSH subheadings (qualifiers) when establishing 
subject chemicals 
Level MeSH subheadings  
1 Pharmacology OR Adverse Effects OR Therapeutic Use OR Administration 

& Dosage OR Toxicity OR Pharmacokinetics  
2 Any subheadings except Biosynthesis, Metabolism, Chemistry 

3 Biosynthesis OR Metabolism OR Chemistry 



 

 

the previously extracted activity 

annotations for one sample Medline record and the ChemoText database records produced 

from it.   

Figure 2.1 Sample Medline record with MeSH annotations and the resulting database 
records in ChemoText. 

 

 

 

 

 

 

 

 

2.2.3  Construction 

The 2008 baseline version of Medline was downloaded from the N

Medicine web site and used as the corpus for extraction routines.  

of over 500 zipped XML files.  Once the files were downloaded and expanded, the extract 

routines were run on each.  The extraction routines were written in Perl.  The data was loaded 

into a MySQL database and subsequent processin

steps are illustrated in Figure 2.2, and the 

in Figure 2.3.  The diagram shows the number of unique entities in each category as well as 

51 

ivity and effects terms.  Figure 2.1 below shows the MeSH 

annotations for one sample Medline record and the ChemoText database records produced 

Figure 2.1 Sample Medline record with MeSH annotations and the resulting database 

version of Medline was downloaded from the National Library of 

and used as the corpus for extraction routines.  The baseline files consist 

of over 500 zipped XML files.  Once the files were downloaded and expanded, the extract 

routines were run on each.  The extraction routines were written in Perl.  The data was loaded 

into a MySQL database and subsequent processing was performed in SQL.  The processing 

steps are illustrated in Figure 2.2, and the completed database depicted as a network is shown 

The diagram shows the number of unique entities in each category as well as 
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ChemoText.  The baseline file contained 16,880,015 records; 6,635,344 records had 

identified subject chemicals and were included in ChemoText.  

2.3  Drug Discovery Application

The potential of using ChemoText for drug discovery

of the pilot study.  The goal was to generate a list of 

explicitly to a particular disease through the literature.  Such a list or hypothesis set may 

contain chemicals important to drug research either as new treatments or as key chemicals in 

the physiology of the disease.  T

in Chapter 1) of Swanson (Swanson, 1988)
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the number of relationships between entities stored in the database, which was named 

The baseline file contained 16,880,015 records; 6,635,344 records had 

dentified subject chemicals and were included in ChemoText.   

2.3  Drug Discovery Application 

he potential of using ChemoText for drug discovery was explored in the next phase 

goal was to generate a list of chemicals linked implicitly but not 

explicitly to a particular disease through the literature.  Such a list or hypothesis set may 

contain chemicals important to drug research either as new treatments or as key chemicals in 

the physiology of the disease.  To generate the hypotheses, the ABC methodology

(Swanson, 1988) was adopted.   

Figure 2.2 (left) is an overview 
of ChemoText processing. 
  
Figure 2.3 (below) is a 
schematic view of the 
relationships in ChemoText.
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The baseline file contained 16,880,015 records; 6,635,344 records had 

 

was explored in the next phase 

chemicals linked implicitly but not 

explicitly to a particular disease through the literature.  Such a list or hypothesis set may 
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2.3.1 Methods 

The implementation of Swanson’s ABC paradigm using ChemoText incorporated 

several features that differentiate it from other implementations.  A critical design decision 

made at the onset was to limit the B terms (also called linking or intermediate terms) to 

protein annotations.  See Figure 2.4 below.  This limitation was applied not only to

the volume of data, but also because proteins are the agents behind most physiological 

processes and are therefore studied both by scientists researching disease and by scientists 

looking at drugs.  Because these very different groups of scientists

others’ work, there is a strong potential for finding undiscovered implicit relationships 

between drugs (A terms) and diseases (C terms) via proteins (B terms).  

Figure 2.4  On the left, Swanson’s ABC paradigm.  On the right
study: protein annotations only were used as the B terms.  

In order to facilitate validation of the results, the common 

methodology of identifying a 

post-cutoff set was adopted.  This segmentation meant that a hypothesis set could be 

constructed from the earlier set and then validated by looking at the results in the second, 

later set.  Because the study used migraine 

study was additionally able to attempt a reproduction of Swanson’s link between migraine 

and magnesium.   
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The implementation of Swanson’s ABC paradigm using ChemoText incorporated 

res that differentiate it from other implementations.  A critical design decision 

made at the onset was to limit the B terms (also called linking or intermediate terms) to 

protein annotations.  See Figure 2.4 below.  This limitation was applied not only to

the volume of data, but also because proteins are the agents behind most physiological 

processes and are therefore studied both by scientists researching disease and by scientists 

looking at drugs.  Because these very different groups of scientists may not be aware of each 

others’ work, there is a strong potential for finding undiscovered implicit relationships 

between drugs (A terms) and diseases (C terms) via proteins (B terms).   

Swanson’s ABC paradigm.  On the right the design 
study: protein annotations only were used as the B terms.   

In order to facilitate validation of the results, the common literature-based 

methodology of identifying a cutoff date and dividing the data into a pre-cutoff

cutoff set was adopted.  This segmentation meant that a hypothesis set could be 

constructed from the earlier set and then validated by looking at the results in the second, 

the study used migraine as the disease and 1985 as the cutoff year, the 

study was additionally able to attempt a reproduction of Swanson’s link between migraine 

The implementation of Swanson’s ABC paradigm using ChemoText incorporated 

res that differentiate it from other implementations.  A critical design decision 

made at the onset was to limit the B terms (also called linking or intermediate terms) to 

protein annotations.  See Figure 2.4 below.  This limitation was applied not only to reduce 

the volume of data, but also because proteins are the agents behind most physiological 

processes and are therefore studied both by scientists researching disease and by scientists 

may not be aware of each 

others’ work, there is a strong potential for finding undiscovered implicit relationships 

design for this 

 

based 

cutoff set and a 

cutoff set was adopted.  This segmentation meant that a hypothesis set could be 

constructed from the earlier set and then validated by looking at the results in the second, 

as the cutoff year, the 

study was additionally able to attempt a reproduction of Swanson’s link between migraine 
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The first article to directly connect magnesium to migraines was published in 1985.  

The routines were limited to evidence before that year for the baseline data.  The ChemoText 

database was queried for all articles published before 1985 in which migraine disorders, 

migraine with aura, or migraine without aura were included in the MeSH annotations.   

These were the C terms.  In the next step each protein annotation included in any of these 

articles was extracted.  This was the pool of proteins associated with migraine (B terms).  

This pool contained 131 proteins and included names for specific proteins as well as protein 

families (e.g., Receptors, Adrenergic).  The next step extracted any chemical that was 

identified as the subject of a study in which any of the migraine pool proteins was annotated.  

Chemical family names such as Amines or Lactones were programmatically eliminated to 

reduce the data volume and because this study seeks new uses for specific chemicals, not 

chemical families.  The resulting set of terms were the A terms.  The number of migraine 

pool proteins associated with each chemical was counted.  Any chemical from this list which 

already had a direct link to migraine was eliminated.   

The entire ChemoText database was examined to determine which chemicals 

predicted to have a link to migraine based on the evidence of the baseline period did indeed 

have literature evidence of a link by the test period.  The most common MeSH subheadings 

appearing with these chemicals when they were annotated with migraine were also extracted 

to help elucidate what kind of link emerged.  

2.3.2 Results  

The experiment produced a list of 4,725 chemicals potentially connected with 

migraine.  (See Table 2.6 Part A.)  We term this list the hypothesis set.  When the set was 
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ranked by protein count (Prot Ct), magnesium appeared near the top of the list at position 3.  

This closely reproduces Swanson’s discovery.   

Table 2.6  Comparison of baseline and test periods.  Ranked by protein count the top 12 
chemicals out of 4,725 that are predicted to have a connection to migraine based on their 
associations with migraine proteins before 1985.  Part A contains information available in 
ChemoText during the baseline period before 1985. Part B contains data extracted from 
ChemoText in the test period.    

A. Baseline Data: 1984 and before B. Test Data: After 1984 

Rank Chemical Name Prot Ct First Yr  
Article 

Ct Disease Qualifier Chemical Qualifier 
1 Sodium 104 2006 1 blood cerebrospinal fluid 
2 Zinc 93 0 0     
3 Magnesium 91 1985 39 blood blood 
4 Copper 88 1986 1 etiology adverse effects 
5 Corticosterone 86 0 0     
6 Prednisolone 84 2007 1 complications therapeutic use 
7 Cysteine 81 1994 3 radionuclide imaging analogs & derivatives 
8 Edetic Acid 80 1989 1 physiopathology admin & dosage 
9 Lead 79 0 0     
10 Colchicine 77 0 0     
11 Cyclic GMP 76 1995 4 physiopathology physiology 
12 Nicotine 75 1999 3 drug therapy adverse effects 

 

Many researchers have reproduced Swanson’s magnesium – migraine discovery; thus 

the results are not novel, but can be viewed as a method validation.  However, the design of 

ChemoText enabled an extension of this analysis in a novel direction.  For each chemical in 

the hypothesis set, the ChemoText database was searched for any link between the chemical 

and migraine after 1984.  These results were summarized and combined with the results from 

the baseline period.  Table 2.5 Part B contains these new columns: First Year (abbreviated 

First Yr, the first year an article appeared directly associating the chemical to migraine), 

Article Count (abbreviated Article Ct, the count of articles with this direct association) and 

the most common qualifiers or subheadings (based on occurrence counts) appearing in the 

annotations of the disease and the chemical with migraine (Disease Qualifier and Chemical 
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Qualifier).  Magnesium was first connected to migraine in 1985 and has had 39 articles since 

connecting it to migraine.  Both the most common disease qualifier and the most common 

chemical qualifier occurring in records in which migraine and magnesium occur together 

were blood, indicating the blood levels of magnesium are important in migraine.   

The set was examined to see what general observations could be made.  The set 

contains many types of chemicals.  Sodium, zinc, copper and magnesium are elements.  

Cysteine is an amino acid and cyclic GMP is a nucleotide.  Pharmaceuticals become more 

common as one scans down the list.  The disease and chemical qualifiers indicate that the 

connections between the chemicals and migraine were varied.  A number of chemicals were 

annotated indicating they treat migraine.  Some chemicals like copper apparently cause 

migraine, and some appear to be involved in the physiological mechanisms of migraine (e.g., 

cyclic GMP).   

The total set contained 154 chemicals that had no connection to migraine in the 

baseline period but developed a connection by 2007.  Among the top 12 chemicals, eight 

(66%) have developed links to migraine since 1984.  The Article Count element was adopted 

as a rough indicator of the significance of a chemical’s connection to migraine.  Magnesium 

has had 39 articles linking it to migraine since 1985 while copper has only one since its first 

connection in 1986.  Sodium has only one article linking it directly to migraine, but the 

article is recent therefore the connection is newly established and its significance as of today 

is understandably low. 
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Table 2.7  Baseline and test period results for valproic acid and nitric oxide. Ranked by 
protein count.  Sections of the output set containing valproic acid and nitric oxide, two 
chemicals with high article counts in the test period.  Part A contains information available in 
Medline during the baseline period before 1985. Part B contains data extracted from Medline 
records in the test period.    
A.  Baseline data: 1984 and before B.  Test Data: After 1984 

Rank Chemical Name Prot Ct First Yr  
Article 
Ct Disease Qualifier Chemical Qualifier 

103 Mannitol  44 0 0 
104 Penicillin G 43 0 0 
105 Valproic Acid 43 1988 83 drug therapy therapeutic use 
106 Deuterium 43 0 0 
107 Aluminum 42 0 0 
108 Orotic Acid 42 0 0 

… 0 0 
598 Quartz 11 0 0 
599 Nitric Oxide 11 1991 40 physiopathology physiology 
600 Orciprenaline 11 0 0 
601 Methaqualone 11 0 0 

 

Based on the article count metric, two chemicals, valproic acid and nitric oxide, 

warrant further discussion.  (See Table 2.7)  Valproic acid, found in position 105, has only 43 

migraine-related proteins.  The first article discussing its therapeutic use in migraine 

appeared in 1988 and by 2007, 83 articles linked valproic acid to migraine, twice as many as 

magnesium.  Valproic acid is an example of drug re-profiling.  It was used for many years as 

an anti-epileptic drug before being tried in migraine prophylaxis (Sorensen, 1988).  Valproic 

acid developed the strongest link to migraine based on the article count metric, yet it did not 

appear as high as magnesium in the hypothesis set based on baseline protein count.   

Nitric oxide appears relatively low in the list as well at position 599, linked to only 11 

proteins in common with the pool of migraine-linked proteins, but by 2007 it had 40 articles 

linking it to migraine, one more than magnesium.  Nitric oxide is an important signaling 



 

 

molecule in the body, and the qualifiers in the last two columns indicate that this chemical 

plays a role in the physiopathology of the disease

Precision and Recall 

Precision and recall were calculated using the following formulas.  

 Chemical Precision= 

Chemical Recall: (HS 

HS is the number of entries in the hypothesis set and 

gold standard chemicals, the chemicals 

GS chemicals are those that existed in the baseline period, and had no direct link 

during that period, but by the 

migraine.  There were 177 total 

chemicals were missed because they did not have proteins linked to them from the migraine 

protein pool.  In other words, the B 

intersection of the hypothesis set and the 

found by our experiments.  The variables used in the prediction of precision and recall are 

summarized in Figure 2.5. 

Figure 2.5   Explanation of 
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molecule in the body, and the qualifiers in the last two columns indicate that this chemical 

n the physiopathology of the disease.    

Precision and recall were calculated using the following formulas.   

Chemical Precision= (HS ∩ GS) / HS     and  

(HS ∩ GS) / GS          

HS is the number of entries in the hypothesis set and GS stands for the number of 

the chemicals that the experiment ideally should have predicted

chemicals are those that existed in the baseline period, and had no direct link 

, but by the end of the 1985-2007 test period had developed a direct link to 

There were 177 total GS chemicals; our routines found 154 of them. The 23 

chemicals were missed because they did not have proteins linked to them from the migraine 

protein pool.  In other words, the B – C connection did not pick up these chemicals.  

esis set and the GS chemicals gives the number of GS 

The variables used in the prediction of precision and recall are 
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 The results for recall and precision are as follows.   

Chemical Precision = 
���

����   = 0.033 = 3.3%  Chemical Recall =  
���
���  = 0.870 = 87.0% 

The recall results are high.  Selecting migraine drugs based on proteins identified 

87% of the future chemicals connected to migraine.  Our precision results, however, are 

weak.  Only 3.3% of the chemicals in the hypothesis set developed a connection to migraine 

after 1984. 

One likely reason for the low precision is that the 131 proteins connected to migraine 

include many protein families.  These annotations can be very general and therefore have the 

likelihood of being annotated with many chemicals.  For instance, Adenosine 

Triphosphatases and Peptide Hydrolases are two protein annotations from the migraine 

protein pool.  While these families certainly have a connection to migraine, they are so broad 

that they will have connections to many other diseases and chemicals.  As a result they will 

likely significantly increase the size of the hypothesis set with chemicals of little potential 

connection to migraine.  Not all protein families can be discounted, however.  Receptors, 

Serotonin is also a protein family, but it has a well-known importance to the physiology of 

migraine and should not be undervalued.  In future work we hope to develop other metrics 

that attribute a weight to the protein annotations that will reflect their importance to the 

disease being investigated.   

Increasing Precision 

The relationship between protein count and the strength of the connection of a 

chemical to migraine was investigated.  To reflect the importance of the connection between 

a chemical and migraine the article count metric was used.  This metric acts as a weighted 
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count, giving chemicals a weight equal to the number of publications connecting them with 

migraine. Counting co-occurrences to estimate relationship strength is a common technique 

in text mining (e.g., (Stapley & Benoit, 2000)).  Using article count, however, does have 

limitations.  It is a direct measure of publication activity, and publications may not always 

accurately reflect significance of a chemical as a potential treatment for a disease.  

Publication rates may increase, for instance, if a certain drug is suspected of having 

dangerous side effects.  Additionally, a chemical that has ten articles connecting it to 

migraine cannot be said to be ten times more important than a chemical with only one article.  

Despite these limitations the article count metric will be used as a rough indicator for the 

importance of a connection between a chemical and migraine.     

For a graphic understanding of these relationships between protein count (the number 

of proteins from the protein pool associated with the chemical in the baseline period), the 

hypothesis set chemicals and the gold standard chemicals, a bar chart was generated that 

grouped the hypothesis set by protein count ranges. (See Figure 2.6.)  For each protein count 

range, the following percentages were depicted as bars: the percentage of the hypothesis set, 

percentage of gold standard (GS) chemicals, and percentage of gold standard articles.  The 

graph shows that over 80% of the hypothesis set chemicals have fewer than 10 proteins 

linking them to migraine.  This large group has around 50% of the future linked chemicals.  

However, this group only has around 30% of the articles linking chemicals to migraine.  

Because so many chemicals in the hypothesis set had fewer than 10 proteins, a separate bar 

chart (Figure 2.7) was created to look at the 0-10 range in detail.  This graph shows that over 

40% of the chemicals in the hypothesis set had only one protein from the migraine protein 

pool.  This large group contained only 10% of the true migraine chemicals and less than 5% 
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of the migraine articles.  Eliminating this group of chemicals could improve precision 

without significantly degrading recall.   

To test this idea, precision and recall were recalculated as the chemicals with the 

lowest protein counts were consecutively eliminated.  The results are contained in Table 2.8.   

 

 

 

 

This table includes a new element: Article Recall.  To calculate this we used the 

following formula.   

  Article recall = (Found GS Articles) / (All GS Articles)     (2) 

We will illustrate this formula using the results from the entire hypothesis set.   

   Article recall = 552/(552 + 55) = .909 = 90.9% 

The numerator in this equation is the number of articles associated with the 154 

chemicals from our hypothesis set that did indeed develop a future link to migraine and are in 
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Figure 2.6  Bar chart showing 
percentages by protein count. HS – 
count of hypothesis set chemicals. GS is 
count of gold standard chemicals.  Art 
Ct is article count. 

Figure 2.7 Bar chart showing 
percentages for chemicals with 10 or 
fewer associated proteins. 
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the gold standard set.  The denominator is the number of articles for the gold standard 

chemicals in our hypothesis in addition to the 55 articles associated with the 23 chemicals 

that the routines did not find.  Article recall overall was 90.9%.  Article recall is higher than 

chemical recall because the chemicals we did find on average had more articles associated 

with them then the chemicals we did not find. 

Table 2.8  Precision and recall results as thresholds are applied 

Threshold 
Applied 

Hypothesis 
Set Count 

Found GS 
Chemicals 

Found 
GS 

Articles Precision Recall 
Article 
Recall 

none 4725 154 552 0.03 0.870 0.909 
protct > 1 2658 138 529 0.05 0.780 0.871 
protct > 2 1867 131 511 0.07 0.740 0.842 
protct > 3 1454 123 498 0.08 0.695 0.820 
protct > 4 1223 114 486 0.09 0.644 0.801 
protct > 5 1034 105 460 0.10 0.593 0.758 
protct > 6 888 93 424 0.10 0.525 0.699 
protct > 7 801 89 412 0.11 0.503 0.679 
protct > 8 739 86 406 0.12 0.486 0.669 
protct > 9 674 86 406 0.13 0.486 0.669 
protct > 10 617 82 399 0.13 0.463 0.657 

 

Table 2.8 records the change in precision and recall as protein count thresholds were 

applied to the hypothesis set.  The elimination of each group of chemicals caused an increase 

in precision and a decrease in recall.  By eliminating all chemicals with 10 or fewer proteins, 

the hypothesis set contains 617 chemicals.  Of these 82 or 13% are future linked.  While the 

chemical recall was decreased to 46.3%, the article recall only decreased to 65.7%, showing 

that the chemicals remaining had a more significant connection to migraine as measured by 

article count.  The three chemicals that eventually developed the strongest link to migraine 

(magnesium, nitric oxide, and valproic acid) are all included in the set of 617, although nitric 

oxide, with only 11 chemicals from the protein pool, was close to the cutoff.  Our results on 
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the whole compare favorably to other similar studies (Hristovski et al., 2001; Yetisgen-Yildiz 

& Pratt, 2006). 

2.3.2 Evaluation of pilot study and next steps 

The pilot study was successful in revealing both strengths and weaknesses of both 

ChemoText and the drug discovery application.  The ABC implementation using ChemoText 

was able to reproduce Swanson’s link between magnesium and migraine.     

The strategy of using proteins as the intermediate B terms was effective in creating a 

hypothesis set with high recall.  The reason for this likely lies in the central role proteins play 

in both disease and drug research.  The study of disease increasingly focuses on the 

physiology of the disease state at the molecular level, a level in which observations of 

proteins and their interaction with other molecules is central.  Drug research focuses on 

proteins as well, searching for drugs that modulate the behavior of proteins involved in the 

disease pathway.   

While recall was high, precision was low.  The technique of applying cutoffs to the 

protein counts improved precision, but still left large hypothesis sets.  Metrics other than 

protein count may be more effective in ranking the hypothesis set and putting the best 

candidates near the top.  There are many examples in the literature of rankings based on 

weighted counts of connecting terms that could yield better results.  This dissertation 

research will investigate other ranking approaches. 

When other metrics are explored in ranking the hypothesis set, there must be a way to 

evaluate the results of each ranking so that they can be rigorously compared to find the best.  

The methods outlined by Yetisgen-Yildiz and Pratt in a recent paper form the basis for such a 
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line of evaluation (Yetisgen-Yildiz & Pratt, 2009).  The methods involve calculating metrics 

that measure how well the ranking approach puts the relevant (i.e., future-linked or gold 

standard) entries toward the top of the ranked hypothesis set, where they are more likely to 

come to the notice of researchers.  The metrics are Precision@K, MAP, and 11-point average 

precision.  These metrics have been adopted from the field of information retrieval and are 

used to evaluate the performance of IR applications such as search engines.   

The goal of this dissertation is to produce text mining applications that could be 

adopted as tools in the computational drug research laboratory.  That will only happen if that 

application can be rigorously validated and the results comprehensively evaluated.  The new 

implementation of this ABC study will concentrate on developing these validation and 

evaluation components.   

 

  



 

 
 

3.  EXTENDED IMPLEMENTATION OF SWANSON’S ABC METHODS 

3.1 Introduction 

In this study the explicit connections between entities in the biomedical literature 

were used to identify implicit connections between biomedical entities.  These implied 

connections are potential new discoveries.  Specifically, the co-occurring annotations 

between diseases, proteins, and chemicals were examined to find implied connections 

between chemicals and disease, and therefore to predict new uses for existing drugs or drug 

reprofiling.   

This work extended the pilot study.   The pilot study implemented Swanson’s ABC 

paradigm using the MeSH annotations extracted from Medline records and stored in 

ChemoText.  In the pilot the most significant design strategy introduced was to limit the B 

intermediary terms to protein annotations.  This strategy was very effective and was retained 

for this research.  The reason for the success in using proteins as intermediary linking terms 

likely lies in the central role proteins play in both disease and drug research.  The study of 

disease increasingly focuses on the physiology of the disease state at the molecular level, a 

level in which observations of proteins and their interactions with other molecules are 

central.  Drug research focuses on proteins as well, searching for drugs that will modulate the 

behavior of proteins involved in the disease pathway.      

The validation approach used in the pilot study was also retained.  In that approach 

the corpus was divided into two sets by a cutoff year.  The data from the early time period 
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was used to create the discovery hypotheses and data from the later time period was used to 

validate the hypotheses.   

This study went beyond the pilot work in its scope.  Three diseases were included and 

three year cutoffs were applied to each.  New approaches were used to rank the hypothesis 

set and the rankings were evaluated using techniques adopted from the information retrieval 

field, techniques that evaluate how well the ranking places the most important or relevant 

chemicals at the top of the returned list.     

3.2  Overall Design 

The diseases chosen for this study were cystic fibrosis, psoriasis, and migraine.  

Migraine was chosen in order to reproduce and extend the pilot study.  Cystic fibrosis was 

selected because it is a very serious rare disease with few successful treatments.  Psoriasis 

provides a contrast to cystic fibrosis; it is common, not life-threatening, and there are many 

treatments, although no cures.  It was thought this group of diseases would provide an 

interesting diversity in the results.   

Three cutoff points were selected: 1984-1985, 1989-1990, and 1994-1995.  The 1984-

85 cutoff was chosen to reproduce the pilot study.  The 1989-1990 and 1994-1995 cutoffs 

were selected to see how the chemicals and treatments changed over time.  Each year cutoff 

partitioned the data into two sets.  The baseline set contained the data from any relevant 

article published in the baseline period, which is defined as any article in ChemoText with a 

publication year up to and including the first cutoff year (e.g., 1984).  The test set contains 

any article from the test period.  The test period includes all relevant articles published after 
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the baseline period (e.g., 1985 and after) through 2008.  Table 3.1 below contains details 

about each baseline and test period.   

Table 3.1  Description of baseline and test period construction.  In 
each case the baseline period starts with the earliest relevant article 
pulled from ChemoText before the year cutoff. 
Cut-off Baseline period 

ends with and 
includes year 

Test period starts 
with (and 
includes) year 

Test period 
ends 

1984-85 1984 1985 2008 
1989-90 1989 1990 2008 
1994-95 1994 1995 2008 

 

The combination of a disease and time period will be called a test run.  Each test run 

produced a hypothesis set, or a list of chemicals found to have an implicit connection to the 

disease in question.  The names for each test run and the datasets produced are listed in Table 

3.2.   

Table 3.2  Description of each test run and name of resulting hypothesis sets  
Disease Year cut-off Test run name Hypothesis set name 
Cystic Fibrosis 1984-1985 CF 1984-85 test run CF 1984-85 Set 
Cystic Fibrosis 1989-1990 CF 1989-89 test run CF 1989-90 Set 
Cystic Fibrosis 1994-1995 CF 1994-95 test run CF 1994-95 Set 
Psoriasis 1984-1985 Psoriasis 1984-85 test run Psoriasis 1984-85 Set 
Psoriasis 1989-1990 Psoriasis 1989-89 test run Psoriasis 1989-90 Set 
Psoriasis 1994-1995 Psoriasis 1994-95 test run Psoriasis 1994-95 Set 
Migraine 1984-1985 Migraine 1984-85 test run Migraine 1984-85 Set 
Migraine 1989-1990 Migraine 1989-89 test run Migraine 1989-90 Set 
Migraine 1994-1995 Migraine 1994-95 test run Migraine 1994-95 Set 

 

3.3  Methods 

A graphic representation of the method is presented in Figure 3.1.  For each test run 

(disease and year cutoff), the following steps were performed.  The ChemoText database was 

queried for any occurrence of the disease annotation with a protein annotation in any article 



 

 

published in the baseline period.  

Fibrosis and for psoriasis was 

migraine: Migraine Disorders, Migraine with Aura, 

resulting set of proteins was then cleaned by removing protein annotations identified 

beforehand as being too broad to be useful.  They represent large families of proteins that 

likely have members that play a role in most physiological processes and therefore most 

diseases.  They would therefore provide little specific information about a disease.

annotations include terms such as

proteins is included in Appendix 

Figure 3.1  Flowchart of method
divided into Baseline period and Test period.

The resulting list of proteins was termed the 

protein pool, ChemoText was again queried for co

chemical annotation in an article published in the baseline period.  The resulting dataset was 

summarized by adding up the number of proteins from the pool linked to each chemical and 
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published in the baseline period.  The disease annotation for cystic fibrosis was 

and for psoriasis was Psoriasis.  Three annotations were used in the case of 

Migraine Disorders, Migraine with Aura, and Migraine without Aura

resulting set of proteins was then cleaned by removing protein annotations identified 

nd as being too broad to be useful.  They represent large families of proteins that 

likely have members that play a role in most physiological processes and therefore most 

diseases.  They would therefore provide little specific information about a disease.

terms such as Proteins and Amino Acids.  The complete list of eliminated 

proteins is included in Appendix 1.  The same list was used for each test run.  

Figure 3.1  Flowchart of method.  Note that the ChemoText Knowledgebase is
divided into Baseline period and Test period. 

The resulting list of proteins was termed the protein pool.  For each protein in the 

ChemoText was again queried for co-occurrence between the protein and a 

article published in the baseline period.  The resulting dataset was 

summarized by adding up the number of proteins from the pool linked to each chemical and 

The disease annotation for cystic fibrosis was Cystic 

in the case of 

Migraine without Aura.  The 

resulting set of proteins was then cleaned by removing protein annotations identified 

nd as being too broad to be useful.  They represent large families of proteins that 

likely have members that play a role in most physiological processes and therefore most 

diseases.  They would therefore provide little specific information about a disease.  These 

.  The complete list of eliminated 

est run.   

.  Note that the ChemoText Knowledgebase is logically 

 

.  For each protein in the 

occurrence between the protein and a 

article published in the baseline period.  The resulting dataset was 

summarized by adding up the number of proteins from the pool linked to each chemical and 
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storing the total in a variable called Protein Count (ProtCt).  To reduce the number of entries 

and to try to find only the significant co-occurrences of protein and chemical, only those 

chemicals were chosen that were subject chemicals of the articles in question.  (The 

identification of the subject chemical was described in Chapter 2.)  Because this study targets 

specific drugs to reprofile, chemical families were eliminated from the results.  Examples of 

chemical families are Acids, Benzoflavones, and Hydrazines.   

It is important to note that this study is designed to focus on the classic drug type: a 

small organic molecule.  Protein-based therapies and solutions and mixtures are excluded 

from the hypothesis sets.   

The resulting set represented the list of chemicals connected through intermediary 

protein annotations to the disease.  In the next step those chemicals that already had in the 

baseline period an explicit or known relationship to the disease in the baseline period were 

eliminated and what remained was a set of chemicals with only an implicit connection to the 

disease.  To find the set of known connections, the baseline period was queried for co-

annotations of the chemical and the disease in the same article.  Again, because of the way 

ChemoText was constructed around subject chemicals, this step only looked for and 

identified articles in which the chemical was the subject of the article and co-annotated with 

the disease.  Chemicals found to have this connection were eliminated from the list.  The 

resulting set of chemicals was the hypothesis set(HS).  These chemicals were predicted to 

have a connection to the disease, either as a potential treatment, an endogenous chemical 

playing a role in the disease mechanism, or as a causative agent.     
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Next, ChemoText was queried for all the chemicals that represent those chemicals 

that should have been included in the hypothesis set.  This set includes any chemical that 

existed in the baseline period, had no direct connection to the disease (that is, was never a 

subject chemical in an article in which the disease was annotated), but did develop a direct 

connection in the test period (again, as a subject chemical in an article where the disease was 

annotated).  This set of chemicals was termed the gold standard (GS) set.   

The chemicals in the gold standard set were further described by adding columns that 

helped to illuminate the link between the chemical and the disease that developed.  The 

number of proteins linking it to the disease in the baseline period was added to the set 

(ProtCt).  The number of articles (Article Ct or ArtCt) linking the chemical to the disease in 

the test period was included as well.  (See Table 2.7 for an example.) Article count is a rough 

measure of how important the link was that eventually developed.  In addition, the most 

common disease subheadings or qualifiers and the most common chemical subheadings 

annotated with the drug and disease were also collected and appended to the chemical 

records. 

In the next step the hypothesis set was validated by checking to see which entries in 

the hypothesis set were also in the gold standard set.  This group of chemicals represents the 

true positive predictions and will be termed the found gold standard (FGS) chemicals. The 

following figure depicts the hypothesis set, the gold standard set, and the intersection of the 

two.   

 

 



 

 

Figure 3.2  Depiction of chem
definitions were used in the pilot study.

3.3.1  Calculation of precision and recall

Precision and recall were calculated using the following formulas.  

 Chemical Precision= 

 Chemical Recall: (HS 

HS is the number of entries in the hypothesis set

number of chemicals which develop

those that existed in the baseline period, and had no direct link to 

period, but by the end of the test period had developed a direct link to 

3.3.2  Calculation of ranking variables 

Each hypothesis set was initially ranked separately on thr

data elements retrieved in the baseline period.  The first variable was 

This is the total number of proteins from the protein pool that are co

chemical in the baseline period.  If two 

WtCOS (described below) was used as a secondary ranking value.

The next ranking approach, called 

with a protein profile similar to the disease protein profile, w
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Depiction of chemical sets and term definitions.  The same sets and 
definitions were used in the pilot study. 

3.3.1  Calculation of precision and recall 

Precision and recall were calculated using the following formulas.   

Chemical Precision= (HS ∩  GS) / HS    and  

(HS ∩  GS) / GS         

HS is the number of entries in the hypothesis set.  GS stands for gold standard, 

developed a link to the disease.  Gold standard chemicals are 

e baseline period, and had no direct link to the disease during that 

test period had developed a direct link to the disease

3.3.2  Calculation of ranking variables  

Each hypothesis set was initially ranked separately on three variables calculated with 

data elements retrieved in the baseline period.  The first variable was protein count

This is the total number of proteins from the protein pool that are co-annotated with the 

chemical in the baseline period.  If two chemicals have the same protein count, the value 

WtCOS (described below) was used as a secondary ranking value. 

The next ranking approach, called WtCOS, was devised to rank high the chemicals 

with a protein profile similar to the disease protein profile, where protein profile is defined as 

ical sets and term definitions.  The same sets and 

 

 (1) 

gold standard, the 

chemicals are 

the disease during that 

the disease.   

ee variables calculated with 

protein count (ProtCt). 

annotated with the 

chemicals have the same protein count, the value 

, was devised to rank high the chemicals 

here protein profile is defined as 
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the specific proteins and the relative number of articles associated with each.  To calculate 

WtCOS, the relationships between the disease and its proteins and the chemical and its 

proteins were represented as weighted vectors.  Each position in both the disease and 

chemical vector represented a protein.  To weight positions in the disease vector the number 

of articles linking the protein to the disease in question was totaled into a variable called LCF 

or local co-occurrence frequency.  The number of articles linking the protein to any disease 

was totaled into a variable called GCF or global co-occurrence frequency.  The LCF was 

divided by the GCF in a variable called DisLCFIGCF.  This number represented the 

proportion of articles linking the protein to the disease.   

The chemical vectors are weighted in a similar way.  The number of articles which 

link the protein to the chemical (LCF) is divided by the number of articles which link the 

protein to all chemicals (GCF) and placed in a variable called ChemLCFIGCF.  To compute 

WtCOS, the cosine of the two vectors is calculated by the following equation (Manning & 

Schuetze, 1999):  

 WtCOS �  cos��, �� �  ���
|�||�| �  ∑ ������ ��

�∑ ������� �∑ �������
                (2) 

 
where x = DisLCFIGCF and y = ChemLCFIGCF.  The chemicals with the vectors most 
similar to the disease vector will have the smallest value for WtCOS and will be ranked first.   
 

The WtProp metric looks only at the proteins annotated with each chemical.  It 

calculates  the percentage equal to the number of disease proteins annotated with the 

chemical divided by  all the proteins annotated with the chemical.  The protein count 

(number of proteins from the protein pool) was divided by the total number of proteins 

annotated with that chemical in the baseline period.  Because a simple proportion gives 

chemicals with few proteins the advantage, the proportion was multiplied again by the 
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protein count.  For instance chemicals with only one protein annotation that happened to 

come from the protein pool would always have the WtProp = 1 and appear at the top of the 

list.  To avoid this, the proportion was multiplied by the Prot Count again to weigh chemicals 

with more proteins.   If for instance a chemical is annotated with 50 proteins in the literature 

until 1985, for instance, and 20 of those have been annotated with migraine (migraine protein 

pool) then WtProp will be equal to 20/50 = .4 *20 = 8.0.  

 

WtProp = 
 !"# $"%&#

 !"#'(& )"#*+  * Prot Count              (3) 

  

WtProp is designed to identify chemicals that may not have many proteins annotated 

with them, but have proteins significant to the disease in question.   

The resulting rankings from each of the three ranking strategies were averaged.  Each 

hypothesis set was then ranked based on the average.  This rank was called Average Rank 

(AvgRank).  A random ranking (RandomRank) was also calculated in order to see whether 

the rankings performed better than chance.  Each entry in the hypothesis set was assigned a 

random number drawn from the set of numbers between 1 and n, where n is the number of 

entries in the set.  The set was then ranked on this random value.  The ranking approaches are 

summarized in Table 3.3.   
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Table 3.3 Summary of ranking approaches 
Ranking Approach Description 
ProtCt Count of protein pool members associated with chemical 
WtCOS Cosine similarity between the disease-protein vector and chemical-

protein vector 
WtProp Proportion of proteins that are related to the disease 
AvgRank The three above rankings are averaged, then the set is ranked on the 

average 
RandomRank A random number is assigned to each chemical in HS, then ranked 

on that number 
  

The five sets of ranking results were evaluated by three different methods that in 

different ways try to measure how well the ranking strategy puts the gold standard chemicals 

at the top of the list.  The first of these methods is the 11-point average interpolated 

precision.  For each of eleven standard recall levels (0, .1, .2, .3, etc.), that will be denoted as 

i, a variable called the interpolated precision is set to the maximum precision obtained for 

any recall level greater or equal to i.   

Precision at K measures performance by calculating precision at specified points in 

the hypothesis set.  If the K threshold values are 10, 20, 30, 40, 50 then precision will be 

calculated for the top 10 ranked entries in the hypothesis set, the top 20 ranked entries, the 

top 30 ranked entries, etc.  Precison@K is probably the most intuitive measure.  It answers 

the straightforward question, how many found gold standard chemicals were found in the top 

10, 20, 30, etc. entries of the list.   

MAP or mean average precision takes the precision value at each found gold standard 

chemical.  The precision values are averaged when the number of gold standard terms equals 

k, where k is 10, 20, 30, etc.     
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3.4  Results  

Record counts and overall precision and recall for each hypothesis set are recorded in 

Table 3.4.  In every one of the three diseases the number of proteins in the protein pool 

increased over each of the three cutoff points.  The hypothesis set counts increased similarly.  

Conversely, and not surprisingly, the number of gold standard chemicals decreased.  This 

trend was expected because the number of years from the cutoff into the future diminished 

with each time period.  The potential discoveries identified in 1984 have over 20 years to be 

realized, while those after 1994 have only 10 years.   

Table 3.4  Summary of precision and recall results from cystic fibrosis(CF), 
psoriasis, and migraine 
Disease Year 

Cutoff 
Prot 
Pool 

Count 

Hypothesis 
Set Count 

(HS) 

Found 
GS 

Chems 
 

Total 
Gold 

Standard 
(GS) 

Overall 
Precision 

(%) 

Overall 
Recall 
(%) 

 
CF 84-85 346 5,555 215 243 3.9 88.5 
CF 89-90 482 9,292 204 219 2.2 93.2 
CF 94-95 698 14,143 157 158 1.1 99.4 
Psoriasis 84-85 370 5,532 173 220 3.1 78.6 
Psoriasis 89-90 537 9,192 134 158 1.5 84.8 
Psoriasis 94-95 739 13,393 115 125 0.9 92.0 
Migraine 84-85 110 4,006 147 169 3.7 87.0 
Migraine 89-90 149 7,122 140 158 2.0 88.6 
Migraine 94-95 189 10,467 120 134 1.1 89.6 

 

The changes in precision over time reflect the strong growth in the number of entries 

in the hypothesis set and the simultaneous reduction of the gold standard chemicals, and 

consequently the gold standard chemicals that the routines were able to identify.  Precision 

declined by roughly a percentage point in all diseases from one time period to another.    
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Psoriasis recall in the 1984-85 test run was at 78.6%, the lowest of any test run for 

any disease.   The algorithm missed 47 chemicals.  They did not appear in the hypothesis set 

at all.  These chemicals were not found because they had no proteins co-annotated with them 

from the protein pool.  Although many of the missed chemicals had only a few articles 

linking them to psoriasis, one chemical 1 alpha,24-dihydroxyvitamin D3 had 46 articles 

linking it to psoriasis, making a significant omission.  This chemical is an analog of vitamin 

D.  In the 1989-90 period the recall was improved, with only 24 chemicals missed because 

they had no proteins annotated with them in common with the protein pool.  The most 

significant of them was ethyl fumarate with 14 articles.  By the 1994-95 test run the recall 

was at 92%.  Only 10 chemicals were missed; the most significant was cyclopamine with 

four articles.  

Recall, however, improved over time, particularly in the cases of psoriasis and cystic 

fibrosis.  Although recall did improve with migraine, it was less dramatic.  Why recall should 

improve is not entirely clear.  One can speculate that research has increasingly put focus on 

proteins, both the study of proteins in the etiology and physiology of disease as well as 

proteins as drug targets.  If this is true, then using proteins as the intermediary has become 

even more effective over time.   

Overall recall for migraine was on average lower that for psoriasis and cystic fibrosis.  

This may be because some drugs are tried on migraine by virtue of their primary indication, 

not because any basic research has led a researcher to investigate the proteins implicated in 

the drug’s activity.  Anti-convulsant drugs, for instance, are tried on migraine because a 

number of anti-convulsant drugs have already shown some efficacy against migraine.   
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The number of proteins in the migraine pool is considerably smaller than the number 

in the pools for the two other diseases in each of the test period cutoffs.  One can speculate 

that much of the focus in migraine has been on the specific receptors such as 5-HT1, which 

in the 1990’s were discovered to be key players in migraine.  The focus on 5-HT1 receptors 

may have worked to limit for a time basic research on other proteins involved in migraine.   

Ranking Evaluation 

The hypothesis sets are very large and the number of gold standard chemicals is very 

small.  This needle-in-a-haystack condition is most dramatic in the 1994-95 cystic fibrosis 

test run.  Only 157 chemicals out of 14,143 turned out to be gold standard.  Unless the 

ranking approaches perform very well at putting the gold standard chemicals near the top, 

there is little chance that this methodology will attract the attention of drug researchers.   

Table 3.5 contains the evaluation results of each of the ranking approaches applied to 

the cystic fibrosis hypothesis sets.  In each time period the rankings performed significantly 

better than random ranking.  The metrics ProtCt and AvgRank had the strongest results 

consistently over all three test runs while WtCOS performed the worst.  As with all the 

diseases studied, results were strongest in the 1984-85 runs and grew successively weaker, 

reflecting the shrinking window of time in the test period. 

The 11-point average precision approach divides the found gold standard chemicals 

into ten groups called recall levels.  The highest precision value within each recall level is 

reported.  Both AvgRank and the ProtCt rankings put gold standard or gold standard 

chemicals at the first position, so the value is the first column of each is 100%.  MAP@K 
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averages precision over the gold standard chemicals.  The precision of the first ten GS 

chemicals resulting from the AvgRank was the highest, followed by ProtCt.   

Precision@K gives the results that are the most intuitively easy to understand.  The 

first 7 out of 10 chemicals (70%) presented by the AvgRank approach were gold standard.  

Three and four of the first ten ranked by WtProp and ProtCt, respectively, made it to the top 

ten while none of the top ranked chemicals in the WtCOS approach were gold standard. 

Table 3.6 contains the ranking evaluation for psoriasis.  Each of the ranking methods 

showed strong performance in the 1984-85 psoriasis test runs and in all cases showed 

significantly better performance than random ranking.  The ProtCt and WtProp showed 

similar performance to those measures for cystic fibrosis, while surprisingly WtCOS 

performed considerably better for psoriasis than it did with CF in 1984-85 time period.  In 

later test runs, WtCOS was weaker.  As expected, performance deteriorated over the three 

time periods for psoriasis, but not as strongly for cystic fibrosis.  The WtProp and ProtCt 

ranking approaches showed a weaker performance in 1989-90 compared to 1984-85, but 

improved for the 1994-95 period, while WtCOS showed further decline in performance in the 

same period.  This likely indicates that proteins have become more central to disease and 

drug research through the study period.   

An evaluation of each ranking approach for migraine test runs are presented in Table 

3.7.  All ranking approaches performed well for migraine in the 1984-85 test runs.  The 

1989-90 runs WtCOS was strong while WtProp and ProtCt weakened, while in the 1989-90 

test runs WtCOS decreased significantly.  The ranking approaches performed significantly 

better than random rankings in all periods.  



 

 

Table 3.5 Ranking evaluation results for Cystic Fibrosis.  Highest ranks in each range are bolded. 
1984 – 1985 1989 – 1990 1994 - 1995 

Evaluation method :  11 Point Average Precision  (%) at 10%, 20%, 30%, 40%, 50% recall  
Ranking 
Approach 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 
WtCOS 17.1 16.4 14.9 14.4 11.2 8.6 9.0 9.4 8.9 7.9 8.9 7.1 5.4 5.5 5.6 
WtProp 50.0 37.9 28.3 24.5 20.3 40.0 31.2 28.4 21.8 15.8 30.0 27.4 17.7 14.0 12.4 
ProtCt 100.0 48.1 31.4 23.8 20.4 100.0 33.0 26.7 21.7 16.9 37.5 25.4 19.4 14.1 12.7 
AvgRank 100.0 37.5 30.7 24.2 18.6 100.0 35.7 25.5 20.2 15.5 66.7 26.1 18.3 12.9 10.8 
RandomRank 5.7 4.8 4.4 4.3 4.4 3.3 2.3 2.4 2.3 2.4 0.9 1.1 1.2 1.2 1.2 
Evaluation method:  MAP@K  (%)  where K = 10, 20, 30, 40, 50 gold standard terms found from top of ranking 
Ranking 
Approach 

K= 
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 

WtCOS 13.3 14.0 14.2 14.5 14.5 5.7 7.0 7.4 7.7 7.9 6.6 6.5 6.4 6.1 5.8 
WtProp 35.9 39.3 38.3 36.9 35.2 33.2 32.5 31.5 30.6 29.8 24.4 24.4 23.5 21.8 20.5 
ProtCt 47.9 50.2 48.8 45.8 42.8 53.7 48.4 42.8 40.0 37.2 32.1 28.9 27.1 24.6 22.6 
AvgRank 67.3 56.4 49.8 46.0 43.1 46.2 41.7 39.1 36.6 34.4 37.2 32.2 28.0 25.2 22.8 
RandomRank 4.4 4.2 4.3 4.3 4.3 2.5 2.4 2.3 2.3 2.3 0.6 0.8 0.9 0.9 0.9 
Evaluation method:  Precision@K  (%)  where K = 10, 20, 30, 40, 50 top ranked entries on hypothesis set 
Ranking 
Approach 

K= 
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 

WtCOS 0.0 10.0 13.3 12.5 14.0 0.0 5.0 3.3 2.5 2.0 0.0 0.0 3.3 2.5 2.0 
WtProp 30.0 25.0 46.7 40.0 40.0 20.0 35.0 36.7 32.5 30.0 20.0 30.0 26.7 20.0 24.0 
ProtCt 40.0 50.0 53.3 50.0 48.0 50.0 50.0 40.0 42.5 38.0 30.0 30.0 30.0 25.0 26.0 
AvgRank 70.0 55.0 43.3 42.5 40.0 40.0 40.0 43.3 35.0 36.0 20.0 35.0 33.3 30.0 26.0 
RandomRank 0.0 0.0 0.0 2.5 2.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 
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Table 3.6 Ranking evaluation results for Psoriasis.  Highest ranks in each range are bolded. 
1984 – 1985 1989 – 1990 1994 - 1995 

Evaluation method :  11 Point Average Precision  (%) at  10%, 20%, 30%, 40%, 50% recall  
Ranking 
Approach 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 
WtCOS 50.0 11.8 11.1 9.3 8.6 42.9 6.9 4.7 4.3 4.1 33.3 4.2 3.8 3.1 2.4 
WtProp 50.0 24.5 20.4 15.0 13.2 22.0 16.7 13.0 9.1 6.8 50.0 13.3 9.0 7.5 5.7 
ProtCt 50.0 26.6 20.9 16.0 13.7 50.0 18.1 13.6 9.6 7.0 50.0 13.3 7.9 7.0 5.8 
AvgRank 100.0 19.5 18.0 16.8 13.0 45.5 13.8 11.0 7.6 6.5 50.0 9.8 7.0 6.0 5.6 
RandomRank 6.7 4.5 3.7 3.6 3.5 9.1 1.8 1.8 1.6 1.6 1.2 0.9 0.9 0.9 1.0 
Evaluation method:  MAP@K  (%)  where K = 10, 20, 30, 40, 50 gold standard terms found from top of ranking 
Ranking 
Approach 

K= 
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 

WtCOS 38.9 27.5 22.0 19.4 17.7 16.0 11.4 9.6 8.3 7.5 17.1 10.6 8.3 7.0 6.1 
WtProp 45.3 35.4 31.2 28.5 26.7 19.1 18.1 16.9 15.4 14.1 27.7 19.9 16.1 14.0 12.4 
ProtCt 44.2 34.6 30.9 28.4 26.7 24.1 21.1 18.9 17.1 15.5 26.6 19.6 15.7 13.6 12.1 
AvgRank 50.2 39.1 32.2 28.8 26.6 27.8 21.6 18.1 16.3 14.6 17.9 13.2 11.0 9.7 8.9 
RandomRank 2.6 3.1 3.5 3.6 3.6 3.0 2.2 2.0 1.9 1.9 0.8 0.8 0.8 0.8 0.9 
Evaluation method:  Precision@K  (%)  where K = 10, 20, 30, 40, 50 top ranked entries on hypothesis set 
Ranking 
Approach 

K= 
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 

WtCOS 40.0 30.0 30.0 25.0 22.0 30.0 15.0 10.0 10.0 8.0 10.0 20.0 16.7 12.5 12.0 
WtProp 40.0 45.0 33.3 30.0 26.0 20.0 20.0 13.3 20.0 20.0 30.0 25.0 26.7 20.0 18.0 
ProtCt 40.0 40.0 30.0 27.5 26.0 20.0 20.0 20.0 15.0 16.0 20.0 30.0 20.0 15.0 14.0 
AvgRank 50.0 35.0 33.3 32.5 28.0 40.0 25.0 23.3 25.0 24.0 10.0 10.0 16.7 12.5 12.0 
RandomRank 0.0 5.0 3.3 2.5 2.0 0.0 5.0 3.3 5.0 4.0 0.0 0.0 0.0 0.0 0.0 
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Table 3.7 Ranking evaluation results for Migraine.  Highest ranks in each range are bolded. 
1984 – 1985 1989 – 1990 1994 - 1995 

Evaluation method :  11 Point Average Precision  (%) at  10%, 20%, 30%, 40%, 50% recall  
Ranking 
Approach 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 
WtCOS 100.0 19.4 14.3 14.2 11.8 50.0 11.0 8.6 8.3 6.6 11.5 5.3 5.3 5.3 4.8 
WtProp 37.2 32.7 30.6 20.3 18.0 42.9 25.7 21.3 18.8 13.5 40.0 20.3 15.3 10.3 7.9 
ProtCt 100.0 22.0 18.7 16.7 13.4 100.0 18.8 16.4 13.9 9.4 100.0 18.7 11.6 9.7 7.6 
AvgRank 50.0 27.5 25.6 20.1 13.4 100.0 24.3 19.4 12.3 9.8 100.0 12.0 10.6 9.5 7.2 
RandomRank 3.9 4.3 4.4 4.1 3.8 7.1 2.1 1.9 2.0 2.1 8.3 1.4 1.2 1.2 1.2 
Evaluation method:  MAP@K  (%)  where K = 10, 20, 30, 40, 50 gold standard terms found from top of ranking 
Ranking 
Approach 

K= 
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 

WtCOS 36.8 27.9 24.3 21.7 20.1 20.1 15.2 12.9 11.7 11.0 6.3 5.5 5.3 5.2 5.2 
ProtCt 66.3 45.8 37.3 32.5 29.5 42.3 29.5 25.3 22.7 21.0 36.9 27.2 21.9 18.9 16.8 
AvgRank 35.5 30.4 28.9 27.8 26.5 43.9 33.2 29.0 26.3 23.9 31.1 21.6 17.8 15.8 14.4 
RandomRank 3.0 3.3 3.5 3.7 3.8 4.0 3.1 2.7 2.5 2.4 2.2 1.7 1.5 1.4 1.4 
Evaluation method:  Precision@K  (%)  where K = 10, 20, 30, 40, 50 top ranked entries on hypothesis set 
Ranking 
Approach 

K = 
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 

WtCOS 30.0 25.0 16.7 20.0 18.0 30.0 20.0 13.3 12.5 14.0 0.0 5.0 10.0 7.5 6.0 
WtProp 30.0 35.0 33.3 35.0 32.0 40.0 40.0 33.3 30.0 28.0 40.0 30.0 23.3 20.0 22.0 
ProtCt 50.0 40.0 33.3 32.5 26.0 40.0 30.0 23.3 22.5 20.0 40.0 25.0 26.7 22.5 22.0 
AvgRank 30.0 25.0 26.7 25.0 26.0 40.0 25.0 23.3 22.5 20.0 20.0 10.0 10.0 15.0 16.0 
RandomRank 0.0 0.0 0.0 0.0 0.0 0.0 5.0 6.7 5.0 4.0 0.0 5.0 3.3 2.5 2.0 
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To get a picture of how the ranking strategies worked overall, the results were 

averaged over all three diseases and each of the three cutoff periods.   The averages are 

presented in Table 3.8 and Figure 3.3, 3.4, and 3.4 show the results graphically.  The WtProp 

ranking approach had the highest average results for recall levels over 10.  The ProtCt 

approach returned the highest average results measured by MAP@K, although WtProp and 

AvgRank were close behind.   The Precision@K results were also close with WtProp and 

ProtCt achieving the top results.   

Table 3.8  Average evaluation scores for each ranking approach.  Scores are 
averaged over all three diseases and the three cutoffs.   
Evaluation method: 11-Point Average Precision (%) at 10%, 20%, 30%, 
40%, 50% recall  
Ranking Approach 10% 20% 30% 40% 50% 
WtCOS 35.8 10.1 8.6 8.1 7.0 
WtProp 40.2 25.5 20.4 15.7 12.6 
ProtCt 76.4 24.9 18.5 14.7 11.9 
AvgRank 79.1 22.9 18.5 14.4 11.2 
RandomRank 5.1 2.6 2.4 2.4 2.4 
Evaluation method: MAP@K where K=10, 20, 30, 40, 50 gold standard 
terms found from top of ranking  
Ranking Approach K= 10 20 30 40 50 
WtCOS 17.9 14.0 12.3 11.3 10.6 
WtProp 31.6 28.8 26.7 24.9 23.4 
ProtCt 41.6 33.9 29.9 27.1 24.9 
AvgRank 39.7 32.2 28.2 25.8 23.9 
RandomRank 2.6 2.4 2.4 2.4 2.4 
Evaluation method: Precision@K (%) where K = 10, 20, 30, 40, 50 top 
ranked entries in hypothesis set 
Ranking Approach K= 10 20 30 40 50 
WtCOS 15.6 14.4 13.0 11.7 10.9 
WtProp 30.0 31.7 30.4 27.5 26.7 
ProtCt 36.7 35.0 30.7 28.1 26.2 
AvgRank 35.6 28.9 28.1 26.7 25.3 
RandomRank 0.0 2.2 1.8 1.9 1.8 
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Figure 3.3   Graph of average values for 11-Point Average Precision 
 

 
 

Figure 3.4  Graph of average values for MAP@K 

 

Figure 3.5 Graph of average values for Precision@K 

 

 

3.5 Discussion 

Before we move on to a discussion of each disease individually, we will look at the 

hypothesis sets in some detail and note characteristics shared by each of the sets.  See 
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Appendix 2, 3, and 4 for the first twenty records returned by each ranking in each test run.  In 

these tables, the found gold standard chemicals can be identified by the columns on the right 

with the white background.  The elements ArtCt (Article Count), FirstYr (first year of a 

direct connection between chemical and disease), and the subheadings are pulled from the 

test period.  The chemical and disease subheadings or qualifiers are the most commonly 

occurring ones when the disease and chemical are annotated together.   The columns in gray 

(chemical name and protein count) represent data from the baseline period; the white 

columns contain pulled from or calculated from data pulled from the test period. 

The hypothesis sets have some striking similarities.  First, most of the entries in the 

hypothesis set were not found in the gold standard set, meaning the routines did not find a 

direct link between the chemical and the disease in the test period, as it was predicted to.  

This is not surprising given the large hypothesis sets and the low number of gold standard 

chemicals in each.   

The entries in each set are a mixture of all kinds of chemicals.  They include potential 

drugs (exogenous) but also endogenous chemicals or those naturally found in the body.  

Endogenous chemicals include elements such as magnesium, zinc, and calcium.  These 

elements are important signaling chemicals.  Nucleic acids (e.g., Cyclic GMP) and steroids 

(e.g., estrone) are also apparent.    

The hypothesis sets are also diverse in the type of connections that evolve between 

the chemicals and the disease.  There are drugs which appear to have been tried in disease 

treatment.  This is evident through the disease and chemical qualifiers such as drug therapy 

and administration & dosage.  Other chemicals appear to play a role in the physiology or 
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etiology of the disease.  This is evidenced by the blood, physiopathology, and etiology 

qualifiers.  Endogenous molecules can often be recognized by the metabolism or biosynthesis 

subheadings.  The chemically induced qualifier indicates that a chemical appears to cause the 

disease.     

Our goal in this study is to find drugs that can be reprofiled for new therapeutic uses.  

We cannot evaluate reprofiling potential from just the ranking results, because the ranking 

results reflect the diverse ways a chemical can be connected to a disease.   

To evaluate reprofiling specifically, we will use two methods.  First, review articles 

will be identified and studied to find any examples of drug reprofiling.   The examples of 

reprofiling we will include in this discussion will be limited to those that could have picked 

up by this study:  drugs that existed before the cutoff, had no connection to the disease, and 

then developed a connection to the disease in one of the test periods.  We will then see if the 

reprofiled drugs are in the relevant hypothesis set and how highly they are ranked.   

Next we will use the article count metric to rank the found gold standard chemicals in 

each hypothesis set.  The article count is a rough indicator of how much publication attention 

a drug received and we will use it to find the most promising reprofiled drugs and then look 

to see how high the ranking approaches placed these drugs.   

Before we look at the details of each disease and its respective reprofiled therapies, 

background on the disease itself will be presented along with a description of the therapeutic 

strategies used to treat the disease.   
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3.5.1  Cystic Fibrosis 

Overview 

Cystic fibrosis (CF) is the most lethal genetic disease among Caucasians.  CF is 

caused by a mutation in the gene that encodes the cystic fibrosis transmembrane conductance 

regulator (CFTR) protein.  This protein play a number of important roles in the body and 

therefore a defective protein can adversely affect several organs, including lungs, pancreas, 

liver, and the reproductive organs.  The CF mutation in the CFTR causes a thickness in 

mucus, making normal clearing of the mucus difficult.  The buildup of mucus in turn impairs 

the function of the affected organ.  The lung manifestations are the most life-threatening.  

80% of deaths from CF result from pulmonary insufficiency (O'Sullivan & Freedman, 2009).  

Because the mucus is a host for bacteria, many CF patients develop chronic respiratory 

infections, exacerbating the already reduced pulmonary capacity.  Diabetes mellitus is a 

growing complication of cystic fibrosis.   

Drug therapies for CF target the manifestations of the CFTR deficiency in specific 

organs.  Therapies directed at the respiratory system try to improve the viscosity of the 

mucus to enable better clearing.  Antibiotics treat the chronic infections in the lungs.  

Because CF complications in the liver and pancreas impede the normal metabolism of food, 

diet therapy is critical in CF patients, including supplementing the diet with nutrients that are 

poorly absorbed (e.g., Vitamins K and D).  Complications such as diabetes must also be 

treated.  Newer therapies target the CFTR protein itself by attempting to rectify incorrect 

transcription or by activating the protein’s activity.  Gene therapy has received some 

attention, but clinical application of the therapies has so far been unsuccessful (O'Sullivan & 

Freedman, 2009).   
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Cystic fibrosis: reprofiled drugs 

We will approach our evaluation of reprofiling in two ways.  First we will examine 

two recent reviews of cystic fibrosis for current or potential therapies that represent re-

profiling of drugs and see whether the drugs reprofiled in practice have shown a presence in 

any of our three time period analyses.  Next we will look at the found gold standard 

chemicals to find reprofiled drugs that met with some success, or at least received some 

attention, as measured by the number of articles linking them in the test periods to cystic 

fibrosis.  This second step will allow us to give attention to drugs that may not be mentioned 

in the reviews but did at some time in the recent past receive attention from researchers in the 

form of publications.   

We must limit our examination to the chemicals which we could have predicted:  

chemicals that have a literature record in the baseline period, but no connection to CF, but 

then did develop a connection in the test period.  This means new chemicals entities (NCE) 

are generally outside our scope.   An NCE is a compound that has not yet been approved for 

any therapeutic indication therefore likely has little if any literature history.  Besides new 

chemical entities, as discussed previously, there are other drug therapies that by design do not 

make it into these results.  Protein therapies and solutions are two examples.  It is important 

to note these omissions in the case of cystic fibrosis.  Two important therapies for CF noted 

in both reviews are dornase alfa, a recombinant deoxyribonuclease (protein), and hypertonic 

saline solution.  Even if they were examples of re-profiling, they would not appear in the 

results reported here.  Endogenous chemicals and elements appear frequently on the 

hypothesis lists.  Although these substances may be of interest to some researchers, but 
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because the goal of this study is re-profiling of small molecule pharmaceuticals, we will not 

focus on endogenous molecules.   

In their review of cystic fibrosis, O’Sullivan and Freedman (O'Sullivan & Freedman, 

2009) describe the current treatment recommendations from the US Cystic Fibrosis 

Foundation for chronic pulmonary disease.  Two of these may be considered examples of re-

profiling.  Azithromycin belongs to the macrolide antibiotic family.  It appears to not only 

kill bacteria, but also stimulate anti-inflammatory activity.  In ChemoText it appeared first 

(as a subject drug) in 1987 and was first linked directly to CF in 1995.  In the 1989-90 

hypothesis sets Azithromycin was not ranked high.  The WtProp ranking put it highest at 

position 2895 out of 9,292 entries in the hypothesis set.  In the 1994-95 sets, it had moved up 

to position 710 out of 14,143.  While this is a large jump, this position may not have brought 

the drug to the attention of a researcher.   

Ibuprofen is a nonsteroidal anti-inflammatory drug that in long term studies slows 

down the deterioration of lung function (O'Sullivan & Freedman, 2009).  The first 

appearance of ibuprofen in ChemoText was 1968 and its first link to CF was in an article 

published in 1990.  In the 1984-85 study ibuprofen was ranked 357 out of 5,555 members of 

the hypothesis set and by 1989-90 it was ranked at 229 out of 9,292.  Again, it may not have 

been ranked high enough ever to garner a researcher’s attention.   

O’Sullivan and Freedman also reviewed the emerging therapies for cystic fibrosis.  

Genistein, a chemical found in soybeans, was being studied for its ability to modify CFTR 

activity.  Genistein’s first appearance as a subject drug in ChemoText was 1981.  In the 

1984-85 period it did not have any proteins in common with CF and did not make the 
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hypothesis set.  In the 1989-90 period it made the hypothesis set, but its highest ranking was 

1,783 out of 9,292.  By the 1994-95 period, genistein had moved all the way up to position 

66 on the AvgRank list out of 14,143 chemicals in the list.  Although genistein was not 

directly connected to the disease CF through disease and subject chemical annotations, 

genistein was explicitly studied for its affects on the CFTR using in vitro and animal models.  

Likely the researchers had the disease in mind and the potential of genistein to treat CF 

cannot really be regarded as a novel connection. 

In the second review, Frerichs and Smyth list mannitol as a promising treatment in 

Phase III trials (Frerichs & Smyth, 2009).  Mannitol is a diuretic that has appeared in the 

literature for many years, described primarily as a diagnostic aid to test renal function.  Its 

first appearance in ChemoText as a subject drug is 1949 and its first direct connection to 

cystic fibrosis appeared in 1993.  In this article however, an oral form of mannitol was used 

to help assess pancreatic dysfunction of children (Green, Austin, & Weaver, 1993).  The first 

pilot study appeared in 1999 (Robinson et al., 1999) testing the inhaled mannitol on cystic 

fibrosis patients.  In the lungs, mannitol helps move water across the lung surface and 

reduces mucus viscosity (Storey & Wald, 2008)  . An inhaled dosage form is now in Phase 

III trials for CF.  In the 1984-85 hypothesis set, mannitol was placed in position 107 by the 

WtProp ranking and in position 103 by the ProtCt ranking, and by the 1989-90 period 

mannitol had moved up to positions 95 and 98, respectively, where the drug might have been 

noticed by a drug researcher.   

Two other drugs being investigated for use in CF deserve mention: curcumin and 

miglustat.  Curcurmin, an extract of turmeric, has been proposed as a corrector of the protein 

misfolding that often accompanies the CFTR mutation (Frerichs & Smyth, 2009).  It was first 
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associated with CF in 2004.  Although tests on proteins showed some success, clinical Phase 

I trials have so far been negative.   In the 1994-95 test run, curcumin only had 24 proteins 

connecting it to CF.  It did not rank high by any measure, with the highest rank at position 

1000.  Miglustat first appears in PubMed in 1994 and only garners four proteins from the 

protein pool.  It is ranked very low.  These potential reprofiled drugs come a little too late to 

be picked up by our studies.  It would be interesting to see how high they would appear in 

later cutoff dates.   

Next, we will look for significant drugs by examining the gold standard output set for 

each test run presented in Appendices 5A, 5B, and 5C.  These tables are sorted by article 

count and should provide us with reprofiled drugs that, because of timing and other reasons, 

were not mentioned in the reviews.  The chemicals are listed in descending order of the 

number of articles that link each to cystic fibrosis in an attempt to put the most important 

gold standard chemicals at the top.  Because the lists are lengthy, only those chemicals with 

four or more articles are included.  The number of proteins, most common disease qualifier 

(DisQual) and chemical qualifier (ChemQual) are shown next.  At the right hand side are the 

four rankings produced by the study: WtCOS, ProtCt, WtProp, and AvgRank.  Selected 

chemicals from this list will be discussed.   

Several of the drugs already mentioned are evident (e.g., ibuprofen and mannitol).   

Although we will concentrate on drugs with the potential to be reprofiled, it will be noted 

briefly that many of the top ranked chemicals are endogenous substances such as nitric oxide, 

hydrogen peroxide, and uridine triphosphate.  The ranking routines were very good at 

ranking nitric oxide high in the 1994-95 period (at position 25 by the ProtCt approach) and 

putting hydrogen peroxide near the top in 1989-90 and 1994-95 (position 1 by the AvgRank 
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approach and position 4 by ProtCt, respectively).  The ranking routines also successfully put 

the nutrients taurine and carnitine near the top of several hypothesis sets.  The AvgRank for 

taurine in 1984-85 was position 47 while carnitine appeared at position 68.  It should also be 

noted that although taurine first appears in 1985 directly connected to CF, a derivative of 

taurine called taurocholic acid was directly connected to CF in 1982. 

Nitric oxide is high on the tables in Appendix 5 with 64 articles linking it to cystic 

fibrosis.  Nitric oxide was named Molecule of the Year in 1992, and the years preceding 

1992 and the years since have seen a dramatic increase in the research on nitric oxide 

(Gibaldi, 1993; Koshland, 1992).  This small but highly reactive endogenous molecule plays 

a signaling role in many physiological processes.  Drugs are being developed that can 

therapeutically modulate the activity of nitric oxide.  The first article directly linking nitric 

oxide to cystic fibrosis was published in 1995 and a total of 64 articles link the two by the 

end of the test period.  In the ABC analysis in 1984-85 (see Appendix 2A) nitric oxide was 

ranked best by ProtCt at position 905.  By 1989-90 it had risen to position 288 and by 1994-

95 it was ranked at position 25 by ProtCt.  The amount of basic research on the molecule 

caused the number of proteins from the CF protein pool associated with it to climb 

dramatically from 16 to 182, resulting in its jump in the rankings.  A similar increase in 

protein counts and in higher rankings will be seen with psoriasis and migraine.   

The top reprofiled drug on the 1984-85 list is Ciprofloxacin.  This antibiotic came 

onto the scene in 1983 and had only one protein linking it to CF in the 1984-85 period and 

therefore it ranked very low.  Its first connection to CF came in 1985.  It is likely that 

research physicians readily try new antibiotics on cystic fibrosis patients as the bacteria grow 

resistant to older forms.  Rifampin, another antibiotic, was ranked more highly by all of the 
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ranking approaches.  Rifampin is used in CF patients, but not as widely as Ciprofloxacin.  

Lithium, which ranked high on all approaches except for WtCOS, was tested on CF patients 

and found to have a detrimental effect, reducing the key measures of lung function and 

signaling researchers that CF patients with manic-depressive disease should not be treated 

with lithium or if they do take the drug, they should be monitored closely (Anbar et al., 

1990). 

Like mannitol, furosemide is a diuretic, promoting excretion of urine by the kidneys.  

Its connection with CF started when a furosemide-treated mouse was proposed as an animal 

model for the disease (Szeifert, Varga, Damjanovich, & Gomba, 1987).  In later studies it 

was examined for its ability to help CF patients improve kidney function.  Its diuretic and 

anti-inflammatory effects have also been thought to improve lung function in patients 

(Prandota, 2001).   

Forskolin is a plant extract with a number of properties.  It has been used to study the 

molecular level activity of the CFTR for a number of years and does seem to affect the 

chloride conductance by CFTR channels, although it does not yet seem to have been 

proposed as a CF treatment (Kerem, 2006).  It eventually has nine articles linking it to cystic 

fibrosis.  It was predicted at position 152 in the 1984-85 table, but had moved up to position 

69 in 1989-90.   

Ranitidine is a blocker of gastric H2 receptors.  It evidently improves the fat 

absorption in patients with cystic fibrosis (DiMagno, 2001).  Caffeine was ranked highly in 

three of the four approaches in the 1984-85 period.  Hepatic enzymes are often affected by 
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CF and administration of caffeine was shown to be useful diagnostic tool in measuring liver 

function in CF patients, specifically breakdown removal of caffeine by the liver.   

So far we have looked at the drugs the routines should have identified and put high on 

the ranked lists.  Next we will look at what the routines did rank high.  The first observation 

is one that has been mentioned before: a high percentage of endogenous chemicals including 

elements appear at the top portion of each list.  We will ignore these and focus on potential 

reprofiled drugs.   

In the 1984-85 test run, edetic acid appears in position 1 and 2 of the ProtCt and 

WtProp rankings, respectively.  Edetic acid is a chelating agent used in manufacturing of 

pharmaceuticals and in the preservation of food.  In 1985 edetic acid in combination with 

antimicrobials was tested in CF patients as a therapy for chronic lung infection but showed 

no signs of efficacy (Brown, Mellis, & Wood, 1985).In later studies edetic acid was used as a 

probe molecule to test intestinal permeability in CF patients  (Escobar et al., 1992) Dimethyl 

sulfoxide (high on all lists) and warfarin are other compounds used in testing cellular 

permeability and protein function.  Chloroquine was suggested as a treatment for lung 

inflammation seen in CF 2003 (Derleth, 2003).  In 2006 a cell based assay found that 

chloroquine, because it is a permeable weak base, was able to show some effect on TGF-

beta, anther protein involved in CF.     

An overview of the reprofiled chemicals discussed in this section is presented in 

Table 3.9 below.  
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Table 3.9  Cystic Fibrosis – selected reprofiled chemicals.  Best rank is the highest 
rank from any test run.  HS is hypothesis set.  ArtCt is the number of articles connecting 
the drug to the disease.   
Chemical Best rank /  

HS count 
Previous use / 
activity 

Status Art 
Ct 

Reprofiling 
type 

Azithromycin 710 / 14,143 Antibiotic  Recommended for chronic 
pulmonary disease 

40 Functional 

Ibuprofen 229 / 9,292 Anti-inflammatory  Slows deterioration of lung 
function 

27 Functional 

Genistein 66 / 14,143 Anticancer; CFTR 
activity 

Phase II showed efficacy 10 Molecular 
Functional 

Mannitol 95 /  9,292 Diuretic Ongoing clinical trials 
(2010) 

8 Functional 

Curcumin 1000 / 14,143 Spice; CFTR 
activity 

Phase I clinical trials 
negative 

13 Molecular 
Functional 

Ciprofloxacin 3,484 / 5,555 Antibiotic  In use 109 Functional 
Rifampin 49 / 5,555 Antibiotic Combination therapy 

effective in small trial 
6 Functional 

Lithium 9 / 9,292 Ion transport; 
psychosis 

In trials exacerbated CF 4 Molecular 
Functional 

Furosemide 20 /  5,555 Diuretic and anti-
inflammatory 

Seems to improve kidney 
function 

6 Functional 

Forskolin 69 / 9,292 CFTR activity Still basic research 9 Molecular 
Functional 

Ranitidine 29 / 9,292 Anti-ulcer; reduces 
acid 

Improves fat absorption 
and gastric emptying 

7 Functional 

Caffeine 31 / 5,555 Stimulant Diagnostic 4 Functional 
Edetic acid 1 / 5,555 Chelating agent  No effect in trials; 

diagnostic for intestinal 
permeability 

3 Functional? 

 

Cystic fibrosis summary 

Before leaving this examination of cystic fibrosis, it may be beneficial to step back 

and summarize what has been observed.  The most striking characteristic of the collection of 

drugs that develop a connection to CF is the wide variety of ways in which they are 

connected to the disease.  Although we did not encounter drugs that cause cystic fibrosis (as 

we likely will with migraine) we did find lithium exacerbated respiratory symptoms.  We did 

of course find many drugs that have been reprofiled to treat CF, but here, too, variety is a 

striking characteristic.  Drugs treat the myriad of manifestations of the broken CFTR protein 
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in a variety of organ systems, while some target the protein itself, and still others target the 

DNA mutation that causes the CFTR problem.  

Functional reprofiling is seen most commonly in cystic fibrosis. Researchers know 

what function a drug has on a tissue or organ and reason that the function would be beneficial 

in cystic fibrosis.  Mannitol, for instance, is a diuretic; it promotes fluid removal from tissues 

and was used extensively to increase kidney output.  Applied to lung tissue, mannitol has a 

parallel effect, moving fluid from the lungs to the mucus layer where it hydrates the mucus 

for easier clearance.   

We also saw cases of reprofiling based on knowledge of what the drug does at the 

molecular level and what parallel molecular mechanisms are at work in the disease state.  

This kind of reprofiling we will call molecular functional reprofiling.  In the case of cystic 

fibrosis, genistein, curcumin, and forskolin have been studied in vitro for their effects on the 

CFTR protein in hopes they can correct the protein malfunction.   

Other chemicals were reprofiled not to treat CF, but to probe, test, or measure 

physiological functions important to CF.  Warfarin has been used to test plasma clearance in 

CF patients compared to control to see if CF has affected the patient’s metabolism.  Similarly 

caffeine has been used to test hepatic function in CF patients.  Tests like this can be used as a 

diagnostic.  Caffeine levels too high or low can indicate that the organ (e.g., liver) has 

become affected by the disease.  Edetic acid is used as a probe to test intestinal permeability 

in CF patients.  Other chemicals create an in vitro or in vivo environment where therapies can 

be tested.  An example of this is furosemide: a study suggested giving furosemide to mice 

makes them a valid animal model for CF.  A number of other chemicals create the needed 
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environments (e.g., acidic, basic) to test other chemicals that may be useful in the treatment 

of CF.     

How might the landscape of chemicals associated with cystic fibrosis be different 

from that of other diseases?  Cystic fibrosis is a serious disease.  CF patients are chronically 

sick and experience deterioration of organ function over many years.  There are no truly 

successful therapies for CF and certainly no cures.  Drug re-profiling in CF may be different 

from other diseases.  We did not see, for instance, a case of observational or chance 

reprofiling, where a drug is noticed by chance to have an effect on a disease, and this 

observation is picked up and acted on by researchers.  This sort of serendipitous event is 

perhaps less likely in a chronic disease like CF than it would be in a disease like psoriasis, 

where any change in the disease state is readily visible.  As we have seen, functional 

reprofiling, taking a drug with known function and safety profile, and applying it to cystic 

fibrosis, is the most common approach.   

3.5.2  Psoriasis 

Overview 

Psoriasis is a common skin disease that is characterized by red, scaly patches called 

plaques.  The plaques are discrete areas of inflammation and excessive skin production.  

Although the etiology of psoriasis is unclear, it is thought to have origins in the immune 

system. (Levine & Gottlieb, 2009)   

The severity of psoriasis can range anywhere from mild to severe, depending on the 

location and coverage of the plaques.  Psoriasis has several forms as well, including plaque 
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psoriasis, (the most common), pustular, and guttate psoriasis.  Guttate psoriasis is associated 

with a streptococcal throat infection.   

The choice of treatment depends on the location and severity of the patches.  The first 

line of treatment generally is limited to topical applications such as corticosteroids, vitamin D 

derivatives, vitamin A derivatives, tar preparations, and anthralin, or combinations of these.  

These topicals work on several ways in the psoriatic skin.  Corticosteroids, for instance, 

reduce the inflammation, and vitamin D analogs work by suppressing the skin proliferation.   

Non-pharmaceutical products are also used; creams and emollients help to moisturize the 

skin and reduce the itching (Levine & Gottlieb, 2009; Naldi & Gambini, 2007).   

When topical remedies are ineffective or the disease is too widespread, systemic 

therapies are used.  Recent research in psoriasis has revealed that the immune system plays a 

major role in the disease pathway, so many of the systemic medications are directed at the 

immune system. (Sabat, Sterry, Philipp, & Wolk, 2007)  These treatments include small 

molecule drugs as well as the new protein-based biologicals.  Light therapy, often in 

combination with other therapies, is common.  Because there is no cure for psoriasis, patients 

often rotate through many therapies. 

Because psoriasis is so common and its manifestations are visible – and unpleasant - 

the disease has a long history of motivated and imaginative patients taking charge of their 

own treatment.  The National Psoriasis Foundation (National Psoriasis Foundation,2009) 

even hosts a web page called It Works for Me where patients can tell others of their personal 

treatment successes.  In addition to testimonials for prescription therapies, patients recount 
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their success with a variety of over-the-counter and home remedies such as Listerine, salt 

baths, olive oil, lime juice, and banana peels.    

Just as patients have re-directed household substances to gain relief from psoriasis, 

researchers have actively sought to reprofile drugs for use in the disease.  As more is learned 

about the physiology and etiology of the disease, the opportunities for reprofiling expand.  

For instance, since researchers learned that psoriasis involves the immune system, a number 

of immunomodulatory drugs have been studied in clinical trials. 

Psoriasis and reprofiled drugs 

In this section we will look beyond the quantitative measures and evaluate the results 

qualitatively to answer the question: how useful were the results.  The purpose is to see 

whether these results – had they been available early in the test periods – could have helped 

to accelerate the development of important treatment options for psoriasis.  Similarly to the 

evaluation of the CF results, we will first look at a recent review article and see if any of the 

reprofiled drugs discussed are in the hypothesis sets and where they are ranked.  Then we 

will look at the gold standard drugs that have significant numbers of articles linking them to 

psoriasis and see where the rankings put these drugs. 

A 2008 review by Halverstam and Lebwohl described nonstandard and off-label 

therapies for psoriasis (Halverstam & Lebwohl, 2008), including a number of reprofiled 

therapies.  We will limit our discussion to those drugs that could have been identified by the 

algorithms in this research:  small molecule drugs that existed in the baseline period with no 

direct link to psoriasis, but which did develop a link in the test period.  Three drugs reviewed 

met these criteria and made it into our hypothesis sets:  mycophenolate mofetil, sulfasalazine, 
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and paclitaxel.  The first two were examples of functional reprofiling, the third was an 

instance of observational reprofiling.    

Mycophenolate mofetil is an immunosuppressive drug that has been used to prevent 

organ rejection in transplant patients.  The drug is a form of mycophenolic acid, a drug that 

was tried on psoriasis patients but discontinued because of adverse events.  Mycophenolate 

mofetil demonstrated anti-inflammatory effects in addition to its immune system effects and 

had been used in other skin diseases.  In 1997 it was used successfully to treat a man with 

psoriasis.  This case study was followed by more trials with larger patient populations, and 

by the 1994-95 test period there were 20 articles linking this drug to psoriasis.  While the 

ranking algorithms did not rank it in the top 100, the WtCOS approach did put 

mycophenolate mofetil at position 543 out of 13,393 entries in the hypothesis set.     

The review also discusses sulfasalazine, a drug used to treat Crohn’s disease and 

ulcerative colitis.  While this drug’s mechanism of action is not entirely clear, it is thought to 

have anti-inflammatory activity through its interference of folate metabolism.  In double-

blinded randomized trial conducted in the early 1990’s, sulfasalzine was reported to improve 

psoriasis in a majority of patients (Halverstam & Lebwohl, 2008).  The WtProp ranking 

approach in the 1984-85 test runs put sulfasalazine at position 171 out of 5,532 entries in the 

hypothesis set.   

The review also included a discussion of paclitaxel in the treatment of psoriasis.  

Paclitaxel is a chemotherapeutic drug used in treating breast and ovarian cancer.  It had been 

observed in an early study of paclitaxel that patients on the drug experienced improvement of 

their psoriasis symptoms (Halverstam & Lebwohl, 2008).  On that basis, a small clinical trial 
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was conducted (Ehrlich et al., 2004).  All of the patients showed improvement and the drug 

was well tolerated by most of the patients.  The WtCOS ranking algorithm in 1989-90 ranked 

paclitaxel at position 66 out of 9,192 where it would likely have been noticed.  The authors 

note that for patients who suffer from both breast cancer and psoriasis, paclitaxel is a 

treatment to be considered.   

Next we will look at the gold standard chemicals, ranking them by article count and 

see what reprofiled chemicals the ABC algorithms were able to find.  Appendices 6A, 6B, 

and 6C list the most important gold standard chemicals by virtue of their article counts for 

each of the three cutoff year test runs.  Once again it is interesting to note that the lists 

contain endogenous molecules and elements as well as drugs, although there appear to be 

fewer endogenous substances and more drugs in these lists than in the same lists created for 

cystic fibrosis.     

The two top entries in Appendix 6A are analogs of vitamin D.  Calcitriol is the 

physiologically active form of vitamin D and cholecalciferol is a vitamin D analog.  Vitamin 

D fits somewhere in between endogenous and drug.  For many years Vitamin D and its 

various forms or analogs have been important treatments for psoriasis and are thought to 

suppress cell proliferation.  These two forms of vitamin D have received a lot of attention 

from researchers (353 articles for calcitriol) and even though they were also ranked high on 

the hypothesis set lists, they cannot be considered novel connections because the association 

between psoriasis and vitamin D is a longstanding one.   

In the 1984 time period the drug propylthiouracil appears high on each of the 

rankings, particularly AvgRank, where it appeared at position six.  Because propylthiouracil 
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was used for many years as a treatment for hyperthyroidism before being tested in psoriasis, 

it represents a good example of drug reprofiling.  In 1993 researchers reasoned that because 

the drug had immunomodulatory and free radical scavenging effects, they would try it as a 

psoriasis treatment in a small clinical trial.  It is an oral systemic with lower toxicity than 

other treatments of psoriasis and did show some benefit (Elias, Goodman, Liem, & Barr, 

1993).  Methimazole is a drug from the same family as propylthiouracil and is thought to 

have a similar mechanism of action.  Methimazole has also received attention for its potential 

to treat psoriasis.  Although the ABC ranking mechanism did not put it as high as 

propylthiouracil, it did achieve an average rank of 58 in 1984-85.   

Capsaicin appears high on the tables in Appendix 6 with 11 articles. The highest rank 

it acquired from the ABC analysis was 149 out of 5,532 in the 1984-85 test run.  Capsaicin is 

the active chemical in chili peppers and although known for its burning and irritant effects, 

has also been used as an anti-itch treatment (antipruritic).  It is thought that one of the 

mechanisms of capsaisin action is that it inhibits vasodilation.  With this knowledge, 

researchers reasoned that it might have useful activity in the cutaneous vascular changes 

caused by psoriasis (Bernstein, Parish, Rapaport, Rosenbaum, & Roenigk, 1986).  At least 

one double-blind controlled study demonstrated the efficacy of capsaicin, particularly in 

reducing the itch associated with the disease (Ellis et al., 1993).   

Ranitidine and psoriasis have an interesting history that can be traced by reviewing 

the seven articles linking it to psoriasis.  A 1991 article (Andersen, 1991) reports the 

worsening of a case of psoriasis for a patient taking ranitidine, a histamine H2 blocker used 

to treat gastrointestinal ulcers, while another article published the same year speculates there 

is reason to think ranitidine might treat psoriasis.  The reasoning is based on the knowledge 



 

102 
 

that histamine released from mast cells plays a role in psoriasis, and therefore blocking the 

histamine could improve the disease symptoms (Nielsen, Nielsen, & Georgsen, 1991). An 

open, prospective study of twenty patients had promising results (Kristensen et al., 1995).  

Most of the patients showed long term improvement.  In 1997 a larger study, blinded and 

placebo-controlled, produced contrary results, showing no significant difference between the 

control and treatment groups (Zonneveld et al., 1997).  Whether or not ranitidine is ever 

determined to have an effect on psoriasis, it was predicted in this study, and in 1989-90 

ranked at position 47 by the AvgRank method.   

The drug pentoxifylline has five articles connecting it to psoriasis in the 1994-95 

period and it was identified by the ABC algorithms and ranked very high, at position 20 on 

the 1994-95 test run WtProp ranking.  Pentoxifylline affects blood flow, platelet aggregation, 

and cell proliferation and has been investigated as a treatment for a wide variety of 

conditions.  In 1996 it was suggested as a potential treatment for psoriasis.  In vitro and in 

vivo studies demonstrated that it did inhibit skin cell proliferation (Omulecki, Broniarczyk-

Dyla, Zak-Prelich, & Choczaj-Kukula, 1996).  In 2006 the drug was tested in a placebo-

controlled clinical trial and, although it produced few side effects, it also showed little 

efficacy (Magela Magalhaes et al., 2006). 

Two antibiotics, rifampin and erythromycin, are listed in Appendix 6A and both were 

ranked in the top 100 by at least one ranking approach.  Rifampin was ranked high by every 

ranking approach, appearing at position one in the average rank.  Rifampin has been used to 

treat tuberculosis since the 1960’s and has also been used to treat other bacterial infections 

such as meningitis and leprosy.  In 1986 a preliminary report was published describing a 

study in which rifampin was used in combination therapy with either penicillin or 
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erythromycin in psoriasis associated with streptococcal carriage (Rosenberg et al., 1986).  

The rate of streptococcal carriage was reduced and the psoriasis markedly improved.  The 

subsequent studies of rifampin in monotherapy for psoriasis produced somewhat conflicting 

results, partly because researchers designed the studies around streptococcal-related 

psoriasis.  Further studies indicated that the antibiotic activity of rifampin was not the reason 

for its effects.  Instead, rifampin was shown to have immunomodulatory effects on the innate 

immune system (Tsankov & Grozdev, 2009).  The articles about rifampin and psoriasis 

continue up to 2009.  Although rifampin does not seem to have become a standard therapy 

for psoriasis, the research on its use in psoriasis continues.   

Erythromycin also appears on the 1984-85 list in Appendix 6A and it also received 

fairly high rankings from the algorithms, appearing at position 38 on the WtProp list.  The 

first article directly connecting erythromycin was the article noted above that described a 

study combining rifampin with either erythromycin or penicillin in guttate psoriasis, the kind 

of psoriasis that appears commonly when the patient has a streptococcal infection such as 

strep throat (Rosenberg et al., 1986).  Research in the ensuing years indicated that macrolide 

antibiotics such as erythromycin have anti-inflammatory effects.  In a 2007 study (Polat et 

al., 2007) showed a statistically significant improvement for patients taking erythromycin in 

addition to topical corticosteroids as compared to the group of patients using topical 

corticosteroids alone.  Curiously the patients in this study had psoriasis vulgaris, not guttate 

psoriasis.  A 2008 study indicated that erythromycin showed no significant efficacy in using 

erythromycin against guttate psoriasis (Dogan, Karabudak, & Harmanyeri, 2008).  The 

connection between erythromycin and psoriasis, similar to the rifampin and psoriasis, is still 

not clear but is receiving continued attention from the research community.   
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Like paclitaxel discussed earlier, tamoxifen is a treatment for breast cancer.  

Tamoxifen works by blocking estrogen.  Evidence for tamoxifen’s use in psoriasis started in 

a manner similar to paclitaxel: a woman treated for breast cancer with the drug experienced a 

clearance of psoriasis (Ferrari & Jirillo, 1996).  While several case studies have supported 

this claim, large scale clinical trials have not been carried out.  Tamoxifen ranked high at 

position 7 on 1994-95 WtProp ranking (Appendix 3C).   

A summary of the drugs reprofiled for psoriasis and discussed here is presented in 

Table 3.10.   

Table 3.10  Psoriasis – selected reprofiled chemicals. Best rank is the highest rank from 
any test run.  HS is hypothesis set.  ArtCt is the number of articles connecting the drug to 
the disease in the test period.   
Chemical Best rank/  

HS count 
Previous Use / 
Activity 

Status Art 
Ct 

Reprofiling 
 type 

Mycophenolate 
mofetil 

543 / 
13,393 

Immunosuppressive; 
transplant 

In use; recent clinical 
trials 

20 Functional 

Sulfasalazine 171 / 5,532 Crohn’s, Ulcerative 
Colitis\ anti-
inflammatory 

Good results in trials 13 Functional 

Paclitaxel 66 / 9,192 Breast cancer Effective in small trial  Observation
al 

Calcitriol 2 / 5,532 Vitamin In use 353 Class-based 
Cholecalciferol 9 / 5,532 Vitamin In use 41 Class-based 
Propylthiouracil 6 / 5,532 Antithyroid, 

antiproliferative,  
Immunomodulatory 

Good results in small 
trials 

16 Functional 

Methimazole 58 / 5532 Antithyroid, 
antiproliferative 

Good results in small 
trials 

7 Functional 

Capsaicin 149 / 5,532 Antipruritic, flavoring Reduced itch in trials 11 Functional 
Ranitidine 47 / 9,192 H2 Antagonist/anti-

ulcer 
No improvement 7 Molecular 

Functional 
Pentoxifylline 20 / 13,393 Antiproliferative, 

blood flow 
Showed no efficacy in 
trial 

5 Functional 

Rifampin 1 / 5,532 Antibiotic Unclear, still under study 6 Functional 
Erythromycin 38 / 5,532 Antibiotic No effect in 2008 trial 4 Functional 
Tamoxifen 7 / 13,393 Breast cancer Effective in case study 3 Observation

al 
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3.5.3  Migraine 

Overview 

Migraine is a chronic neurological disorder affecting nearly 12% of the adult 

population.  It is characterized by often debilitating headache, photophobia, nausea, and 

phonophobia.  Some migraines are accompanied or preceded by an aura.  The physiology of 

migraines is not completely understood, although in recent years enormous progess has been 

made in understanding the underlying mechanics of the disorder.  During a migraine attack, 

events in the neurological system trigger dilation of the meningeal blood vessels, which in 

turn causes pain and further disturbances of the nervous system.  Because the neural system 

affects the vascular system, migraine is often considered a neurovascular disorder (Bigal & 

Krymchantowski, 2006).   

Migraine therapies can be divided into two groups: those that prevent an attack and 

those that treat a migraine once it has begun, a strategy called acute therapy.  Acute therapies 

can further be categorized by whether they are migraine-specific or not.  Pain relief 

medications (aspirin, acetaminophen, opiates, etc.) are non-specific.  The acute therapies 

specific to migraine include ergotamine, dihydroergotamine, and the triptan drugs.  The 

triptan drugs, beginning with the launch of sumatriptan in 1991, represent the most 

significant introduction to the arsenal of drugs to treat migraine.  These drugs are 5-HT1B 

and 5-HT1D agonists, meaning that they bind and enhance the activity of these 5-HT1 

postsynaptic receptors, ultimately causing vasoconstriction.  Although highly effective in 

some patients, binding to the 5-HT1 receptors can also have negative cardiovascular effects.  

Triptans, for that reason, cannot be prescribed for anyone at risk for cardiac problems.  In 

addition, triptans do not work for everyone (Bigal & Krymchantowski, 2006).   
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Preventing migraines has proven more challenging than treating migraine attacks.  

The causes behind an onset of a migraine attack are multifactorial and vary from person to 

person.  Several classes of drugs have commonly been reprofiled in migraine prevention: 

anti-convulsants, beta-blockers, serotonin antagonists, anti-depressants, and calcium-channel 

blockers.  Given the side effect profiles of the drugs used in prevention, they are not 

recommended unless the patient has severely debilitating attacks (Bigal & Krymchantowski, 

2006).  New preventive strategies are sought.   

Migraine and reprofiled drugs 

In a 2006 review article discussing the emerging drugs for migraine, Bigal and 

colleagues included a number of potential new treatments.  Most of the treatments represent 

new chemical entities, but there are a few examples of potential drug reprofiling, of which 

only two could have been found by this ABC study.  One of those is the anticonvulsant 

zonisamide.  Like many anticonvulsants, zonisamide was identified as a possible treatment 

for the prevention of migraines.  It has been studied in two clinical trials with favorable 

results (Bigal & Krymchantowski, 2006).  Zonisamide appeared in the hypothesis sets for 

1989-90 and 1994-95 and had its first direct link to migraine in 2004.  It appeared very low 

in the 1989-90 set (position 2397 out of 7,122 entries) but by 1994 had risen to position 627 

out of 10,467 entries (Appendix 7).   

Because zonisamide is in a class of drugs commonly reprofiled for migraine, it would 

have likely received attention on that basis alone.  This type of reprofiling will be termed 

class-based reprofiling.   
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Another more unexpected example of reprofiling is capsaicin, the pepper extract that 

also saw reprofiling activity for psoriasis.  Capsaicin is known to activate the vanilloid 

receptors that reside on neurons.  Activation of vanilloid receptors is thought to desensitize 

the nerve fibers.  For this reason an intranasal form of capsaicin called civamide has been 

tested for efficacy against acute migraine in a small clinical trial.  Despite nasal burning and 

lacrimation, many of the patients experienced relief (Bigal & Krymchantowski, 2006).  

Capsaicin was predicted quite high on each test run.   The highest were position 34 in 1984-

85, 24 in 1989-90, and 21 in 1994-95.   

The 2006 review by Bigal et al. also mentioned a class of drugs under development 

that target nitric oxide synthase, the protein that produces endogenous nitric oxide.  Nitric 

oxide, in addition to its many other roles, is thought to be behind migraine etiology in some 

patients.  Physicians were alerted to this possibility when patients taking nitroglycerine for 

heart attacks experienced the onset of migraines.  Drugs that inhibit nitric oxide synthase are 

being investigated.  Most of these drugs are new chemical entities and therefore not included 

on any hypothesis set.  The molecule nitric oxide, however, is on the 1984-85 set and ranked 

by WtCOS at position 19 (Appendix 7A).  As mentioned previously, the explosion of 

investigations into nitric oxide leading up to and following its designation as molecule of the 

year likely plays a role in its ranking.   

In a 1999 review of nutritional and botanical approaches to migraine prevention, two 

endogenous substances are discussed which may be deficient in migraine patients: 

magnesium and melatonin (Sinclair, 1999).  Studies have shown that supplementing these 

substances can help reduce the severity and number of migraines.  Magnesium concentration 

in the body has an effect on several important proteins implicated in migraine pathogenesis, 
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including the serotonin receptor (also known as 5-HT receptor) and nitric oxide synthase.  

Magnesium has also been linked to reduction in vasospasm and platelet aggregation.  

Magnesium supplements as preventative treatment of migraine were studied in a number of 

clinical trials.  In a randomized, double-blind, placebo-controlled study of 81 patients, 

magnesium was shown to reduce the attack frequency by 41.6% as compared to the 15.8% in 

the control group (Peikert, Wilimzig, & Kohne-Volland, 1996).  Magnesium sulfate has been 

shown to be effective as an intravenous treatment for acute attacks (Bigal & 

Krymchantowski, 2006).   Magnesium and magnesium sulfate combined have had over 40 

articles connecting it to migraine.  All the 1984-85 ABC rankings placed magnesium high, 

with ProtCt at position 2 and AvgRank at position 11.   

Some migraine sufferers have imbalances in their endogenous melatonin levels.  

Although no large scale blinded and randomized trials have been conducted to study 

melatonin, a small open-label study was conducted on 22 children with a history of migraine.  

The subjects took 3 mg of melatonin before bed for three months.  Fourteen of the subjects 

reported significant reduction in migraine attacks and four reported no headaches at all 

during the study period (Miano et al., 2008).  The first year melatonin was directly connected 

to migraine in ChemoText was 1986.  In the Appendix 7A table, we can see that melatonin 

was ranked at position 34 out of 4,006.  The AvgRank and ProtCt rankings were also high.   

Next we will examine briefly the tables found in Appendices 7A, 7B, and 7C.  These 

tables list the drugs and endogenous molecules that over time accrued the most articles 

written about them and give visibility to reprofiled drugs not mentioned in the reviews.   
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Valproic acid has the highest article count in the 1984-85 table presented in Appendix 

7A.  Valproic acid is an example of class-based reprofiling.  It is an anticonvulsant, and like 

many in that class before it, was reprofiled for migraine.  Valproic acid has been a very 

successful reprofiling example.  Since 1988 when it was first tried in migraine prevention, it 

has accrued 88 articles connecting it to migraine.  The WtProp ranking approach put it at 

position 72 in the 1984-85 set, where it may have come to the notice of researchers, but it is 

likely that because it is an anticonvulsant it would have been suggested as a migraine 

treatment as a matter of course and would not have been studied any earlier had these results 

been available in 1984.  (Valproic acid appeared at position 105 in the pilot study hypothesis 

set ranked by protein count.)  

Similarly, many of the compounds found in Appendices 7A, 7B, and 7C are examples 

of class-based reprofiling.  Acetazolamide and lamotrigine are anticonvulsants; fluoxetine, 

moclobemide, and sertraline are antidepressants; butorphanol, ketorolac, and dipirone are 

analgesics.  Vomiting is common during migraines; droperidol and ondansetron are 

antiemetics.     

A summary of the drugs reprofiled for migraine and discussed here is presented in 

Table 3.11.   
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Table 3.11  Migraine – selected reprofiled chemicals.  Best rank is the highest rank from 
any test run.  HS is hypothesis set.  ArtCt is the number of articles connecting the drug to 
the disease.   
Chemical Best rank/ 

HS count 
Previous Use / Activity Status Art  

Ct 
Reprofiling 
 type 

Zonisamide 627 / 10,467 Anticonvulsant Trial successful 4 Class-based 
Capsaicin 21 / 10,467 Antipruritic, flavoring, activates 

vanilloid receptor 
Trial successful 12 Molecular 

Functional 
Nitric Oxide 19 / 4,006 Endogenous; NO synthase is 

target  
Inhibitors under 
development  

41 Molecular 
Functional 

Magnesium 2 / 4,006 Endogenous Used in 
prevention and 
acute treatment 

40 Molecular 
Functional 

Melatonin 34 / 4,006 Endogenous Trial showed 
efficacy 

15 Molecular 
Functional 

Valproic acid 72 / 4,006 Anticonvulsant In use 88 Class-based 

 

3.6  Conclusion 

In this chapter an implementation of Swanson’s ABC paradigm has been described 

and evaluated.  The evaluation was based on dividing the corpus into two parts by a cutoff 

year, running the experiment on the earlier data, and validating the results on the data drawn 

from the latter time period.  The goal was to use protein connections between drugs and 

diseases to predict new uses for existing drugs.   

The most important difference between this study and the pilot study was the addition 

of new ranking approaches and the evaluation of the rankings through the use of metrics 

devised to evaluate information retrieval applications.  Finding a ranking approach (or 

several approaches) that puts the most significant, relevant, true positives, gold standard 

entries near the top is critical, particularly in a list of returned entries that is numbered in the 

thousands.   

Each of the ranking approaches was able to put found gold-standard chemicals nearer 

the top of the list than a randomly ranked list.  In many cases the improvement over random 
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was 20-fold.  WtProp and ProtCt often had very similar results, but they each had instances 

when they performed better than the other.  WtCOS performed worst overall except for 

several striking instances – the 1984-85 psoriasis, where it put the drugs with the highest 

number of articles in the top 20 and 1984-85 migraine where nitric oxide was placed at 

position 19.  There is no obvious need to add another ranking approach.  Because they 

returned different sets of chemicals, one future strategy could be to merge the top drugs from 

each ranking approach.   

This study, like the pilot study, was able to put magnesium in a high position on the 

1984-1985 set using the ProtCt ranking approach.  This closely reproduces Swanson’s 

findings.    

The basis for establishing the implicit connections between drugs and disease was 

proteins.   The proteins in common between the drug and disease were the basis for putting a 

drug in the hypothesis set, and some aspect of the protein-disease relationship (e.g., articles 

in common) was used as input into the ranking mechanisms.  The strategy of putting proteins 

in this central position worked well.  There were drugs that did not make it into the 

hypothesis sets because they had no proteins in common with the protein pools, but they 

were few, and with a few exceptions, not very significant.  Many of the drugs missed by the 

analyses did in time develop links to the disease through protein annotations.  Had the 

analyses been done at more time intervals, these drugs would have likely been included in the 

hypothesis sets.   

The role of time in this study warrants further discussion.  The data upon which this 

study depended was pulled from the Medline 2009 baseline file.  Many articles, hundreds of 
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thousands in fact, have been published since the baseline file was loaded into ChemoText.  It 

is highly likely that more of the chemicals on the hypothesis set have now been associated 

with cystic fibrosis, psoriasis, or migraine.  It would certainly be interesting to rerun the 

experiment with new data on a regular basis.   

ChemoText has proved to be an effective data repository for storing and allowing the 

programmatic extraction of literature data for these experiments.  There are some caveats that 

must be declared when using ChemoText.  Every researcher who uses co-occurrence as a 

way to find explicit relationships between entities defines what they mean by co-occurrence.  

It can mean co-mention in an abstract, title, sentence, MeSH annotations, or something else 

entirely.  In this application, co-occurrence is based on the relationship between chemicals 

and disease and proteins when the chemical is identified in ChemoText as the subject 

chemical.  In most cases this design method worked well to reduce noise of incidental and 

insubstantial connections, although because it is a heuristic algorithm, it was not always 

correct.  But this feature was designed with drugs in mind and does not work as well to 

depict the relationships between endogenous molecules (including elements) and a disease.  

Endogenous substances can be annotated many times with a disease before they receive the 

focus and are deemed the subject chemical by the ChemoText algorithm.  The relationship of 

the element sodium to migraine is a good example.  Annotations of sodium appeared in many 

articles before the article published in 2006 that focuses on the sodium levels in the 

cerebrospinal fluid.  For that reason caution should be exercised before calling a connection 

between a chemical and a disease a novel one.  Connections such as these can also cause 

rankings to receive high evaluations by MAP, Precision@K, etc.  For this reason these 

evaluations will be used only to compare runs within this implementation and not to the ABC 
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implementations of other researchers.  Whatever the definition of a co-occurrence, every 

researcher must conduct extensive research in many sources before a literature connection is 

claimed to be a discovery.   

An unexpected result from this study has been the insight it has offered into drug 

reprofiling.  We have seen that there are several ways that a drug can be selected for its 

reprofiling potential.  Table 3.12 summarizes the reprofiling approaches we have seen in this 

study.   

Table 3.12  Summary of reprofiling approaches observed in this study 
Reprofiling 
approach 

Description Example 

Functional Known physiological function of a 
drug targeted to a different disease 

Mannitol known to have 
diuretic function on kidneys.  
Made into inhaled form to be 
used in CF patients to move 
water to lung surface. 

Molecular functional Molecular function of chemical known 
– matched to known or hypothesized 
disease mechanism 

Histamine thought to be 
involved in psoriasis.  
Histamine antagonist 
(ranitidine) tried. 

Class-based Certain classes of drugs regularly 
reprofiled in different indication 
because previously drugs in that class 
worked 

Anticonvulsants used in 
migraine prevention. 

Observational Researcher or patient notices 
improvement in one disease or 
condition when being treated by the 
drug for another condition 

Breast cancer patients showed 
improvement in psoriasis 
when being treated with 
paclitaxel. 

 

Functional reprofiling seems the most common approach.  Functional profiling starts 

with knowing what activity a drug has in one disease setting (anti-inflammatory, for instance) 

and translating that function to another disease.  Judging from the number of cases we have 

encountered in this study, functional reprofiling is applied often.   
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We have seen cases of molecular functional reprofiling.  This takes place when 

researchers establish the molecular activity of a drug and they also know the molecular 

mechanisms behind the disease.  They put these two lines of evidence together and 

hypothesize that the drug may treat the disease.     

We also saw examples of class-based reprofiling, where researchers reprofiled a drug 

because other drugs in the same class had previously been successfully reprofiled.  This was 

a commonly seen reprofiling approach in migraine prevention.      

Chance or observational reprofiling is less commonly seen than the other reprofiling 

approaches. In these instances a drug is studied or used for one indication and is by chance 

observed to treat another condition.  Chance reprofiling receives the most press because of 

the famous example of sildenafil (Viagra) (Bradley, 2005).  While this drug was in clinical 

trials for angina, male participants and the researchers noticed and appreciated the occurrence 

of penile erections shortly after taking the drug.  Sildenafil was reprofiled for male erectile 

dysfunction and has become a blockbuster.  In the studies described here we saw several (less 

famous) examples of observational reprofiling.   

The three diseases selected for this study proved highly informative about the varying 

approaches to drug reprofiling.  In many ways the diseases are very different.  Cystic fibrosis 

is a genetic disease that slowly causes loss of lung function and eventually - generally before 

the age of forty - the disease is fatal.  Although it is generally long-term and has a genetic 

component, psoriasis is irritating and uncomfortable, but rarely fatal.  Migraine is episodic, 

but when it strikes, it can be debilitating.  Both treatment of the migraine attack and 
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prevention are important aspects of the therapy.  The manifestations of CF develop slowly in 

internal organs; psoriasis shows itself on the skin.   

Despite these differences, researchers in each of these diseases have used reprofiling 

as a method to find new therapies, alongside the development of new chemical entities.  The 

examples of reprofiling we have seen were mostly functional reprofiling, based on 

knowledge of the disease and drug mechanism, and transferring that function from one 

disease to another.  We did see a few examples of observational reprofiling with psoriasis: 

both tamoxifen and paclitaxel were observed to improve psoriasis symptoms when they were 

administered to cancer patients.  Cystic fibrosis is likely less amenable to observational 

reprofiling because it works on the less visible parts of the body.   

Functional reprofiling in CF was seen in the transfer of diuretic action from kidneys 

to lungs in the cases of mannitol and furosemide.  Ranitidine was reprofiled to help improve 

fat absorption in patients whose cystic fibrosis had affected the function of their liver and 

pancreas.  Warfarin, caffeine, and edetic acid were reprofiled to test and measure the effect of 

the disease on organ function.  Although clinical research is always cautious, reprofiling in 

CF seemed more circumspect than in psoriasis, involving more preliminary in vitro studies to 

establish efficacy before clinical trials were undertaken.   

Psoriasis has a long and colorful history of reprofiling, both by patients and by 

medical professionals.  The knowledge that psoriasis is an immune system disorder spurred 

many experiments in reprofiling drugs with known immunomodulatory activity.  These 

included mycophenolate mofetil, propylthiouracil, and methimazole.  Capsaisin was 

reprofiled to target itching.  On the molecular level, researchers suspected that histamine 
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might play a part in the etiology of psoriasis and tried ranitidine, a histamine blocker.  Some 

attempts to reprofile do not follow a direct path.  Rifampin was tried on guttate psoriasis 

patients with the reasoning that it would reduce the bacterial load, but after positive results 

were obtained, more studies were done that determined the antibacterial action of rifampin 

played no role in its efficacy, leading researchers to suspect the drug had immunomodulatory 

effects.   Even when functional reprofiling fails, researchers can learn from their experiments.   

Migraine, too, has a solid history of reprofiling, particularly for preventative 

therapeutics, where class-based reprofiling is particularly common.  The same classes of 

drugs (e.g., anticonvulsants, beta-blockers, antidepressants) are routinely tried in migraine 

prevention.   

While we did see reprofiling for acute migraine in the case of capsaicin, reprofiling in 

general is not as important in the acute treatment of migraine as it was in psoriasis or CF.  

The success of the triptan drugs has been followed by intense research into the protein 

receptors involved in migraine and new chemical entities are being developed that target 

these receptors in different ways.  A number of new chemical entities were in development 

for their activity against nitric oxide synthase; although these compounds are too new to be 

picked up by this ABC study, nitric oxide was identified.   

Although the term reprofiling is not generally used in the context of vitamin and 

mineral supplements, we did see novel application of supplements.  Given the high ranking 

of both magnesium and melatonin in these results, it is possible that that literature 

connections can indicate what endogenous molecules should be examined in a disease 

context to see if their levels play a role in the disease onset.   
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Future Directions  

The question of how high on a ranked hypothesis set a drug should be in order to be 

noticed by researchers is a question with no absolute answer.  The answer depends heavily on 

the context these studies are performed in.  If the output of these analyses is to be examined 

manually by a researcher, then it is likely that only the top couple of hundred may ever be 

considered.   

The purpose of this research, however, is to determine whether this literature-based 

tool could fruitfully be used in a computational drug discovery laboratory as an additional 

tool to help understand the working of drugs and to find new therapies for disease.  Such 

laboratories employ many computer-based techniques to analyze drugs and have many 

resources to draw on.  In such a context, the limitations of manually analyzing the ABC 

output are less relevant.   

In the computational drug research lab, the commonly applied methods center on 

chemical structure and the relationship of that structure to molecular and clinical activity.  

Like the ABC study described here, some of the methods produce large lists of chemicals 

hypothesized to have therapeutic use in a particular disease.  The hypothesized drug 

candidates are tested in wet lab experiments such as protein binding assays.  This step is 

expensive and generally an effort is made to send to the lab only those drugs with a high 

likelihood of testing positive.   

It is desirable therefore to investigate other bodies of information that might 

strengthen or weaken the case of the compounds so that only the strongest candidates move 

to the wet lab.  The ABC analysis can play this role.  Results from the ABC analysis can be 
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used to eliminate some candidates or to increase the confidence in others.  Conversely, the 

ABC analysis could be used to generate hypothesis sets that are subsequently passed through 

screening routines using QSAR models for the second stage of hypothesis strengthening or 

elimination.   

This combination of ABC results and the results of another validated hypothesis-

generating tool may work synergistically to highlight the candidates most likely to succeed in 

the clinic.  Indeed, as drug research becomes more expensive and high risk, every line of 

evidence that can be brought to bear to identify and prioritize potential therapies should be 

explored.     

  



 

 
 

4.  PREDICTING DRUG MOLECULAR ACTIVITY FROM SIDE EFFECTS 

4.1 Introduction and Background 

In the last chapter the connections between biomedical entities present in the 

literature were used to predict new therapies for disease.  The goal of this study is to explore 

the possibility that patterns in the side effect profiles of drugs can predict their molecular 

activity.   

Determining the molecular activity of a drug can be another way to initiate drug 

reprofiling.  In the last chapter this type of reprofiling was termed molecular functional 

reprofiling.  It starts with observing the molecular level activity of a molecule and then 

combines that knowledge with the diseases that might benefit therapeutically from such 

molecular activity.  To take an example from the previous chapter, the triptan drugs so 

important in the acute treatment of migraine are all 5-HT1B/D agonists.  This means that 

they bind and enhance the work of the 5-HT1B and 5-HT1D receptors.   If a drug with 

previously untested activity at this receptor was found to bind to 5-HT1B and 5-HT1D in a 

laboratory experiment, then that drug might be a candidate for migraine therapy.  Often the 

complete picture of the molecular mechanisms of the action of a drug is unknown even when 

it has been used successfully to treat a disease.  The discovery that it binds to a protein 

related to a different disease may be a signal that it could be reprofiled.  Binding to an 

unexpected target is called off-target binding. 
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One of the main endeavors in a computational drug research laboratory is to predict 

the molecular activity of drugs.  Quantitative structure activity relationship (QSAR) 

techniques are commonly used to find elements in the chemical structure called descriptors 

that can be used in statistical algorithms in order to predict activity.  The study described in 

this chapter has the same goal as a QSAR experiment – to predict the molecular activity of 

drugs, and the experiments have a similar design.  Instead of chemical descriptors, however, 

these studies use side effect terms drawn from the literature as the basis for prediction. 

4.1.1 Previous Work 

Physicians and drug researchers have known for a long time that a relationship exists 

between the molecular activity of a drug and its clinical effects.  Serotonin syndrome, for 

instance, is the name given to a set of physical symptoms associated with long term use of 

drugs that have an effect on the serotonin receptors.    

One of the first computational studies to examine the relationship between side 

effects and molecular activity was conducted by Fliri, et al. (2005).  They looked at the 

relationship from a global perspective by examining data from protein binding assays 

alongside side effect information.  They found a strong correlation between binding patterns 

and side effect patterns. 

Campillos et al. (2008) used the relationships illustrated by Fliri in order to predict 

off-target binding.   They created side effect vectors by extracting adverse effect terms from 

drug package inserts and mapping the terms to a controlled vocabulary.  They then calculated 

a normalized pairwise vector similarity between each pair of drug in their set.  Because they 

were looking for off-target or unexpected binding, they eliminated pairs of drugs known to 
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bind to the same targets.  They also eliminated drugs that because of chemical structure 

similarity would have been likely to bind to the same targets.  Of the resulting 121 drugs with 

the highest similarity score, twenty were tested in in vitro binding assays.  Thirteen of these 

drugs bound to the predicted targets and subsequent cell assays were used to confirm nine 

drug-protein interactions.  From these strong results they filed two new patent applications.     

4.1.2  Data sources 

Molecular Activity 

There are two sources for molecular activity information used in this study.  First, 5-

HT6 binders and nonbinders will be extracted from the PDSP Ki database (Roth et al., 2000).  

This database is a resource supported by the National Institute of Mental Health Psychoactive 

Drug Screening Program.  PDSP Ki contains receptor binding results for psychoactive drugs 

and receptors involved in pathways important to the nervous system.  Some of the results 

stored in the database are established experimentally by the Roth lab and some are collected 

from the literature.   

The other source of molecular activity is the MeSH pharmaceutical action codes.  

These codes are assigned to chemicals by the indexers at the National Library of Medicine 

and are available online or from a file that can be downloaded from the MeSH web site.  

Examples of the types of pharmaceutical actions available through this resource are listed in 

Table 4.1.     
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Table 4.1 Sample MeSH Pharmaceutical Action records 
Pharmaceutical Action Chemical Name 
Adrenergic Agonists adrafinil 
Adrenergic Agonists Albuterol 
Adrenergic Agonists amidephrine 
Adrenergic Agonists amitraz 
Adrenergic Agonists anisodamine 
Adrenergic Agonists Apraclonidine 
Adrenergic alpha-Antagonists Phenoxybenzamine 
Adrenergic alpha-Antagonists Phentolamine 
Adrenergic alpha-Antagonists phenylpiperazine 
Adrenergic alpha-Antagonists Piperoxan 
Adrenergic alpha-Antagonists Prazosin 

 

The pharmaceutical action designations differ from the binding data stored in PDSP 

K i.  On one hand they are more informative.  They describe what kind of activity the drug 

has because of its binding, whether the binding blocks the normal action of the protein 

(antagonists) or enhances it (agonists).  On the other hand, the pharmaceutical action is less 

specific about which receptor is blocked or enhanced.  The code may designate Dopamine 

Agonist or Histamine Antagonist, but not give any information on which of several dopamine 

receptors D1, D2, D3 are enhanced, or which of the histamine receptors H1, H2, or H3.    

Side effect data 

Side effects are clinical manifestations of a drug treatment that are unplanned for or 

unexpected and often adverse.  Studies that infer molecular activity from side effect 

information are uncommon in drug research, likely because of the difficulty in establishing a 

corpus of side effect data.  Until very recently there was no publicly available resource with 

clinical effects data structured for use in computational experiments.  On the other hand, 

there are many sources of side effects recorded in textual format, including drug package 

inserts, web sites, and the biomedical literature.   
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Fliri et al. (2005) used a commercially available database called CEREP BioPrint to 

retrieve their side effect profiles.  Campillos et al. (2008) used text mining techniques to 

extract terms from package insert pdf files downloaded from various web sites.  Each 

package insert was put through a series of processing steps that extracted the side effects 

terms and mapped them to a standard vocabulary using the COSTART (Food and Drug 

Administration, 1989) data source.  In January of 2010 this data was made available to the 

public and it is now the only public source of side effect data for marketed drugs (Kuhn, 

Campillos, Letunic, Jensen, & Bork, 2010).   

Many articles published in the biomedical literature discuss the side effects of drugs.  

Some of these effects are included in the MeSH annotations and will therefore be extracted 

and stored in ChemoText.  As a result, ChemoText is also a source of side effect information.   

MeSH annotations of side effects or adverse effects can be differentiated from 

annotations of therapeutic effects by subheadings or qualifiers.  The subheadings such as 

adverse effects indicate that the effect is unwanted and probably adverse, what we are calling 

a side effect.  When these effects are identified and loaded into the ChemoText Disease 

Table, the field called TreatFlag is set to Cause.  The process by which the ChemoText 

processing identifies side effects is described is detailed in Chapter 2.   

For this study, a separate side effects table called CTSideEffects was created from the 

Disease Table.  This table was built by pulling all the records in the Disease Table with the 

Treat Flag equal to C (cause).  Two additional filters were applied to the records.  First, side 

effects were limited to those occurring in an article with only one subject drug.  In articles 

with more than one subject drug, such as comparative studies, it was impossible to tell which 
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of the drugs caused the effects.  For this reason these articles were omitted from this analysis.  

An additional filter was put on species to ensure that only studies performed on humans were 

included in CTSideEffects.  Drug effects annotations occurring in articles with an adverse 

event disease annotation were also extracted.    

The data in CTSideEffects was evaluated as a data source for this study in two ways.  

First, the side effects for specific drugs were examined and compared to the side effects 

described in that drug’s package insert, the document that could be considered the gold 

standard.  Second, counts of chemicals and their side effects were calculated in order to get 

an idea of the scope of CTSideEffects.    

The side effects in the package insert were manually compared to the side effects in 

CTSideEffects for several drugs.  The results for one of these drugs, risperidone, are shown 

in Table 4.2.  The left side of the table contains the side effects extracted from the Warnings 

and Precautions and Adverse Reactions section of the package insert for risperidone.  The 

right hand column contains the CTSideEffects annotation for risperidone which was thought 

to be the closest in meaning.  The MeSH Browser was used to look up terms and their 

meanings and possible synonyms.  The weakest correlations between terms from each source 

are indicated by italics.  For instance, Nausea could not be found in the CTSideEffects terms.  

Abdominal pain was found in CTSideEffects and it may be related to nausea.  The terms are 

not synonyms, however, and the weakness of this correlation is indicated by italics.  In 

parentheses is a PubMed ID from one of the articles in which the annotation was found.  

Note that often the language varies between the two sources even though the meaning is the 

same.   The package insert term Dysphagia and the MeSH term Deglutition Disorders both 
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mean having difficulty in swallowing, and the MeSH term Sialorrhea means Saliva 

Increased, the term seen in the package insert.  

Table 4.2  Concordance of side effects reported in the package insert vs. 
CTSideEffects for drug risperidone.  PMID is PubMed identifier for an 
example of an article annotated with that effect.  Italics indicate a MeSH 
annotation more weakly linked to the package insert term.  
 
Package Insert  CTSideEffects Entry (PMID) 

Cerebrovascular Events, incl. stroke  Stroke (12451085) 
Neuroleptic Malignant Syndrome  Neuroleptic Malignant Syndrome (15495506) 
Tardive dyskinesias  Dyskinesia, Drug-Induced (15363485) 
Hyperglycemia and diabetes mellitus  Hyperglycemia(16395845), Diabetes Mellitus  

(11526997 ) (Type 1 and 2)  
Hyperprolactinemia  Hyperprolactinemia (17519641) 
Orthostatic Hypotension  Hypotension, Orthostatic (9496415) 
Potential for cognitive and motor impairment  Parkinson Disease, secondary (8990067) 
Seizures   
Dysphagia  Deglutition Disorders  (14571332) 
Priapism  Priapism (12716256) 
Suicide   
Somnolence, Fatigue  Disorders of Excessive 

Somnolence(16965213), Fatigue(11757991) 
Appetite Increased  Appetite Regulation(17199131), 

Obesity(14961939), Weight Gain(18759643) 
Rhinitis  Respiration Disorders (15795553)  
Upper respiratory tract infection, cough  Cough(12717324), Dyspnea (10756565) 
Vomiting, Nausea, Dyspepsia  Abdominal pain(17984854) 
Urinary incontinence  Urinary incontinence(18387724) 
Saliva increased  Sialorrhea(11351120) 
Constipation   
Fever  Fever(17119106)  
Parkinsonism  Parkinson Disease, secondary (10087680) 
Dystonia  Dystonia(8862861) 
Abdominal pain  Abdominal pain (17984854) 
Anxiety   
Dry mouth   
Tremor  Tremor(10087680) 
Rash   

Akathisia  Akathisia, Drug-Induced (16013909) 

 

In general there was a high concordance between ChemoText side effects for 

risperidone and those in the package insert.  There were, however, examples of side effects 

occurring in one source but not the other.  Some package insert side effects (e.g., 
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Constipation, Rash, and Dry Mouth) were not found in ChemoText.  There were also 

annotations in ChemoText that were not found in the package insert.  Jaundice for instance 

was found annotated in CTSideEffects, but was not seen in the package insert.  While Rash 

(or the MeSH term Exanthema) was not found in CTSideEffects, several skin conditions 

were found: Erythema Multiforme, Pruritus, and Pemphigoid, Bullous.  Similarly, Rhinitis 

was not found in the MeSH annotations for Risperidone, although several annotations 

indicating an adverse effect on respiration were found, including Respiration Disorders and 

Respiration Insufficiency.  A search in PubMed (risperidone[majr] AND rhinitis) yielded 

several mentions in abstracts of risperidone causing rhinitis(e.g., PMID  15056514), but 

these connections between drug and disease did not make it into the annotations.   

The comparison of the package inserts to CTSideEffects brought to light some other 

characteristics of each data source.  The package insert will often contain information about 

the percentage of patients experiencing the side effect in both the test group and the control 

group.  MeSH annotations do not indicate side effect prevalence.  Some side effects are 

annotated many times with a drug, but it is difficult to know whether high occurrence rates 

indicate that the side effect occurs commonly or is a severe effect, both, or neither.   

While there is much similarity in the language used in package inserts, there is no 

enforced controlled vocabulary.  MeSH side effects are pulled from a controlled vocabulary.  

The MeSH vocabulary, however, often lacks the specificity of the package insert terms.  

While the package insert states Appetite Increased, the more general MeSH term states 

Appetite, Appetite Regulation, and Hunger.   These terms do not indicate whether these 

conditions are increased or decreased.  It is difficult to assess whether the lack of specificity 

poses a problem when analyzing the data.  Fliri and colleagues mapped specific side effects 
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to body systems, but they were still able to find a strong relationship between effects and 

binding.   

Because the CTSideEffects are drawn from literature annotations, they have some 

other inherent weaknesses.  Negative results are not annotated in a way to differentiate them 

from positive results.  The drug lisuride, for instance, was studied to see if it had the potential 

to cause cardiac myopathies.  It was found not to bind to the receptor responsible for cardiac 

myopathies.  Despite these negative findings, the annotations, and the resulting 

CTSideEffects entries, were the same as it would be if lisuride did cause cardiac myopathies.  

Negative findings such as this are not common, but they introduce an element of noise into 

the data.     

The indexers apparently annotate the most important or most discussed side effects, 

but do not document every side effect mentioned in the study.  The side effects therefore are 

not as exhaustive as side effects listed in the package insert.  Therefore, there are fewer 

records in ChemoText for drugs with relatively few side effects or relatively mild side 

effects. 

A global comparison of literature side effects to package inserts offers some 

interesting observations.  The scope of the literature is broader than the scope of the package 

inserts.  Any chemical that is the subject of an article will be included in PubMed 

annotations, whereas the package insert is a document prepared under a very specific set of 

circumstances - when a prescription drug is approved in the United States.  Approved 

prescription drugs comprise a small subset of the chemical space and are a subset of the drug 

space as well.  Investigational drugs, drugs pulled from the market, and drugs approved 
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outside the U.S. may not have a package insert, but they will very likely have a literature 

record.   

The CTSideEffects table has 4,393 chemicals with at least one side effect.  The 

number of side effects per drug varies greatly.  Most of the chemicals in CTSideEffects have 

only a handful of annotated side effects, while some have hundreds.  Ethanol has the most 

with 655, followed by methotrexate with 573.  A histogram of the side effect counts is seen 

below in Figure 4.1.  Approximately 1,100 chemicals have 15 side effects or more.   

Figure 4.1  Histogram of side effects per chemical in CTSideEffects 

 

4.2 Overall design 

The goal of this study is to investigate whether side effects are predictive of two 

different molecular activities: 5-HT6 receptor binding and dopamine antagonism.  5-HT6 is 

one of the many serotonin receptors.  (5-HT or 5-hydroxytryptamine is a synonym for 

serotonin.)  5-HT6 binders are thought to have potential in enhancing cognition deficits 

related to Alzheimers (Geldenhuys & Van der Schyf, 2009; Mitchell & Neumaier, 2005).  5-

HT6 binders were chosen because they were the subject of a recent QSAR study in the 

Molecular Modeling Laboratory at UNC (Hajjo, Fourches, Roth, & Tropsha, 2009).  
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Dopamine antagonists are typically used as anti

antidepressants.  Dopamine antagonists were chosen because there are a substantial number 

of dopamine antagonists identified in the MeSH Pharmaceutical Action file.  

The overall design of each experiment is depicted in Figure 4.2 below.  The 

terminology used in this chapter is defined in Table 4.4.  The three major steps in the process 

are 1) create the modeling datasets, 2) build statistical models that predict the molecular 

activity, and, 3) perform virtual screening of a large set of chemicals (screenin

identify potential chemicals with the desired activity (5

antagonists).      

Figure 4.2 Overall design of side effect prediction studies.

 

The modeling datasets consist of side effect vectors, one vector per drug.  The side 

effect data is extracted from the CTSideEffects table.  Each vector position corresponds to 

one side effect.  A 1 in the position indicates the drug has been annotated wit

effect; a zero indicates the drug has no record for that side effect in the table.  Each vector 

also contains the class variable.  For the 5

drug is a 5-HT6 binder or nonbinder and for the dopa

indicate whether or not the drug is a dopamine antagonist.  A simplified illustration of the 

modeling set construction is pictured in Table 4.3.  
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emetics, and 

antidepressants.  Dopamine antagonists were chosen because there are a substantial number 

of dopamine antagonists identified in the MeSH Pharmaceutical Action file.   

The overall design of each experiment is depicted in Figure 4.2 below.  The 

sed in this chapter is defined in Table 4.4.  The three major steps in the process 

are 1) create the modeling datasets, 2) build statistical models that predict the molecular 

activity, and, 3) perform virtual screening of a large set of chemicals (screening set) to 

HT6 binders or dopamine 

 

The modeling datasets consist of side effect vectors, one vector per drug.  The side 

effect data is extracted from the CTSideEffects table.  Each vector position corresponds to 

in the position indicates the drug has been annotated with that side 

effect; a zero indicates the drug has no record for that side effect in the table.  Each vector 

this variable will indicate whether the 

mine antagonism study the variable will 

indicate whether or not the drug is a dopamine antagonist.  A simplified illustration of the 
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Table 4.3  Illustration of side effect vectors in a modeling set.   
Each chemical is called an instance and each side effect is an attribute. 
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CLASS  

Chem 1  1  0  0  0  0  0  0  0  0  1  

Chem 2  0  0  1  1  1  1  1  1  1  0  

Chem 3  1  1  1  1  1  1  0  0  0  1  

Chem 4  0  0  0  0  1  1  0  1  1  1 

 

In the second step of the study the models will be built.  This step is broken into 

smaller substeps.  First, several classifiers and attribute selection algorithms are run against 

the modeling sets to find the combinations of classifiers and attribute selection methods that 

perform the best.  To perform this testing, 80% of the modeling set (the training set) will be 

used to train the classifier and the resulting model will be tested on the remaining 20% of the 

modeling set.  This procedure will be termed 80/20 validation.  The best performing 

combinations of classifier and attribute selection algorithm will be further validated by Y-

randomization and any weak performers will be eliminated.  The selected algorithms will be 

trained on the modeling set to produce the final models.  The Weka machine learning tool 

will be used for classification (Hall et al., 2009).    

The final models will be used in virtual screening.  The purpose of the virtual 

screening is to predict the molecular activity in chemicals where it is so far unknown.  If the 

models are robust this step may identify novel drug candidates.  In this step the models are 

run against a screening dataset.  This dataset contains side effect vectors of all the drugs from 
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CTSideEffects that were not included in a modeling set.  Each model is applied to the 

screening set and each chemical is predicted to be a binder (antagonist) or a nonbinder (not 

an antagonist).  The prediction is accompanied by a probability. 

Table 4.4  Selected terms used in this study. 
Term Meaning 
Class What is being predicted.  In this case either 5-HT6 binding or 

dopamine antagonism.   
Modeling set Set of chemicals (positive and negative instances) with known class 

variable. 
Instances The members of the modeling set.  In this case, chemicals with 

known class. 
Attributes The characteristics of the instances that are being analyzed to see if 

they predict the class, i.e., side effects.   
Training set All or some of the instances in the modeling set that are used in to 

train the classifier. 
Test set Some of the instances from the modeling set which are not used in 

training.  The model constructed from the training set is used against 
the test set to measure how well the model performs. 

Screening set Large pool of chemicals with unknown class for which the class will 
be predicted. 

Model A classifier algorithm and attribute selection algorithm trained on a 
dataset 

CTSideEffects 
table 

ChemoText table with MeSH annotations of disease extracted from 
articles where the TreatFlag=Cause. 

 

4.3 Methods 

4.3.1 Predicting 5-HT6 binding using side effects 

Step 1.  5-HT6 - Preparation of  Modeling Sets 

The PDSP database (version kidb100108) was downloaded in January, 2010 and 

searched for all drugs that have been tested against the serotonin 5-HT6 receptor.  In the 

cases where the PDSP chemical names did not match the MeSH names, a manual lookup step 

was necessary to map the names. For instance, the PDSP name Acetylsalicylic Acid was 
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mapped to the MeSH term Aspirin.  Many PDSP chemicals did not have entries in MeSH.  

Some are in early stages of drug development and do not have a literature record.  Several 

filters were applied to the PDSP data.  Only assays performed against human cloned proteins 

were included.  The Ki values for all entries meeting the filtering criteria were averaged.  

Drugs with average Ki values less than 10,000 nm were considered binders.  Drugs with Ki 

greater than or equal to 10,000 were considered nonbinders.  Sumatriptan was omitted 

because of conflicting results.   

In preliminary work, we found that setting a threshold for side effects improved the 

classification results.  This is likely because few side effects create a very sparse dataset and 

therefore are weak predictors.  All chemicals that had fewer than 15 side effects therefore 

were eliminated from the study.  Campillos et al. (2008), likely for similar reasons, applied a 

similar threshold to the side effect count when creating their vectors.  Twenty-nine 5-HT6 

binders and twenty nonbinders met the inclusion criteria.  The drugs are listed in Appendix 8.     

This set of drugs has two weaknesses as a classification dataset.  First, the number of 

binders is greater than the number of nonbinders.  This imbalance in classes will reduce the 

accuracy of the predictive models.  Because there are no more eligible instances of 

nonbinders in PDSP, random drugs were randomly drawn from CTSideEffects to augment 

the nonbinders.  To reduce the chances that these drugs were 5-HT6 binders, drugs known to 

bind to any of the serotonin receptors were omitted.  The second limitation of the dataset is 

that the PDSP drugs are biased toward psychoactive compounds and therefore not 

representative of the screening set.  Randomly pulling drugs from CTSideEffects will not 

eliminate this bias, but it may weaken its effects.  In three rounds, nine drugs were selected 

randomly and classed as nonbinders and added to the known binders and nonbinders.  The 
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resulting three datasets will be termed the 5HT6Set1, 5HT6Set2, and 5HT6Set3.  The 

composition of binders and nonbinders for each set is presented in Table 4.5.    Second, the 

PDSP drugs are likely biased toward psychoactive drugs and therefore not representative of 

the pool of drugs used in the screening step.     

Table 4.5  5-HT6 Binding : Composition of modeling sets.  Mapping refers to the step 
of mapping side effects to more general MeSH Tree node.  

Modeling 
Set 

Binder 
Count 

True non-
binder 
Count 

Presumed 
nonbinder 

Count Total 

Side effect 
count 
before 

cleanup / 
mapping 

Side effect 
count after 
cleanup /  
mapping 

5HT6Set1 29 20 9 58 1408 368 
5HT6Set2 29 20 9 58 1316 333 
5HT6Set3 29 20 9 58 1385 351 

 

The number of unique side effects in each modeling set was very large and would 

have yielded large, sparse vectors.  To reduce the dimensionality of the vectors that were 

produced, a subset of the side effects was mapped to a more general effect using the MeSH 

Tree file.  In addition, side effects only annotated with one or two of the drugs were removed 

because they would have little predictive power.  The 15 side effect threshold was applied to 

the set before these mapping and cleanup steps.   

The mapping to more general descriptors was carried out by programmatically 

looking up each side effect in the MeSH Tree file and mapping it to a higher (broader and 

more general) level in the tree.  The MeSH Tree file contains the MeSH annotation hierarchy 

and allows one to find annotations higher and lower on the tree.  If an annotation term was 

more specific than level 3 it was replaced by the descriptor at level 3.  (Level 3 is the way we 

will refer to the number of nodes, where a node is three digits separated by period.)   Table 



 

134 
 

4.6 illustrates how this summarization step changes the data using the example of the level 3 

node Bone Diseases, Infectious.  This table shows all the MeSH disease and condition 

annotations that were mapped to Bone Diseases, Infectious.   

In preliminary work we tried grouping the side effects at various levels.  We found 

that results were somewhat better if two categories of side effects, movement disorders and 

cardiovascular effects, were not mapped to a more general descriptor.  In both of these 

studies, therefore, annotations in these two categories were left at their original level of 

specificity.  These categories of side effects play a large role in the receptors studied and the 

specificity of the annotation was likely important.  Column 6 of Table 4.5 shows the number 

of side effects that were included in the set before the steps were taken to reduce the 

dimensionality.   The reduced number of side effects (and therefore the number of vector 

positions) for each modeling set is displayed in the last column.   

The drug side effect vectors were created.  In each position of the vector a 1 or a 0 

was entered indicating that the drug was or was not annotated to this side effect (or category 

of side effect).  Each vector also contained a class variable.   

Table 4.6  Illustration of side effect summary using MeSH Tree file 
hierarchy.  The annotations in column 2 were mapped to the higher level 
annotations in column 3 before creation of the side effect vector.     
MeSH Tree Category Annotated side effect Higher level 
C01.539.160.412 Osteitis Bone Diseases, Infectious 
C01.539.160.495 Osteomyelitis Bone Diseases, Infectious 
C01.539.160.595 Periostitis Bone Diseases, Infectious 
C01.539.160.762 Spondylitis Bone Diseases, Infectious 
C01.539.160.762.301 Discitis Bone Diseases, Infectious 
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Step 2.  5-HT6 - Model Creation  

The three modeling sets are very similar.  They differ only in the nine randomly 

selected nonbinders.  Because of these nonbinders, however, the predictive models created 

from them will perform differently on the virtual screening set.  It is not possible to know 

which of the randomly selected nonbinders are the most representative and therefore provides 

the best training data.  For that reason models were built on each of the three modeling sets 

for use in screening, and the prediction results were averaged.  It is hoped that this step 

compensatedfor any bias inherent in any one of the sets.  

The two major components of a model are the attribute selection algorithm and the 

classifier.  The Weka machine learning tool implements many different attribute selection 

algorithms and classifiers.  Two attribute selection algorithms and two classifiers showed 

strong performance in preliminary work and were evaluated on each modeling set.  These 

algorithms are described in Table 4.7. 

Table 4.7  Classifiers and attribute selection algorithms used in model 
building 
Classifiers 
Short Name Description 
NB Naïve Bayes 
Bagging Combines results from NB, Random Forest, and K-nearest 

neighbor(IBk) 
Attribute selection algorithms 
Short Name Description 
Subset CfsSubsetEval: Selects features or attributes that are correlated 

highly with the class, but are not highly correlated with each 
other 

Chi-squared Uses the chi-squared statistic to evaluate the importance of 
each attribute to the class.   
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The 12 models (combinations of attribute selection, classifier, and modeling set) were 

tested in 80/20 validation.  In this step the modeling sets were segmented.  Eighty percent or 

4/5 of the modeling set was randomly selected to train the classifier and build a model.  The 

model was used to predict the binding on the remaining 20 percent of the modeling set.  The 

exercise was repeated 50 times.  Sensitivity, specificity, and the correct classification rate 

(CCR), the average of sensitivity and specificity, and the standard deviation were calculated 

for each run.  The results are presented in Table 4.8.   

Sensitivity is calculated as follows:  

 True Positives  / (True Positives + False Negatives)   

Specificity is calculated as follows:  

  True Negatives / (True Negatives + False Positives) 

CCR or correct classification rate is the average of specificity and sensitivity:  

  (Sensitivity + Specificity)/2 

Six models (shown in bold) were selected from these 12 models from the first step.  

Many of the original models showed an imbalance of sensitivity and specificity.  The two 

best models for each modeling set were selected based on a high CCR and a balance between 

specificity and sensitivity.  Each of these was then validated further using Y-randomization.  

In this validation technique, a training set was built by extracting a random 80% of the 

modeling set and setting the class variable of these instances randomly to one or zero 

(representing bind and nobind).  This scrambled set was used to train the classifier and then 

the model was tested against the corresponding test set.  Sensitivity, specificity and CCR 
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were calculated.  Because a high CCR in Y-randomization indicates the model is weak, any 

model with a CCR greater than .60 was eliminated.  There were none which fit these criteria.  

Results from Y-randomization are in Table 4.9.   

Table 4.8 5-HT6 Binders : Results from 80/20 validation.  Descriptions of classifiers 
and attribute selection methods are in Table 4.7.  Models selected for use in virtual 
screening are in bold.   

Modeling 
Set Classifier 

Attribute 
Selection 

Sensitivity  
Avg 

Specificity 
 Avg 

CCR  
Avg 

CCR 
StdDev 

5HT6Set1 Bagging Chi-squared 0.78 0.76 0.77 0.13 
5HT6Set1 Bagging Subset 0.82 0.73 0.78 0.10 
5HT6Set1 NB Chi-squared 0.88 0.66 0.77 0.11 
5HT6Set1 NB Subset 0.78 0.74 0.76 0.10 
5HT6Set2 Bagging Chi-squared 0.83 0.74 0.79 0.11 
5HT6Set2 Bagging Subset 0.77 0.78 0.77 0.14 
5HT6Set2 NB Chi-squared 0.86 0.68 0.77 0.11 
5HT6Set2 NB Subset 0.69 0.79 0.74 0.12 
5HT6Set3 Bagging Chi-squared 0.87 0.77 0.82 0.11 
5HT6Set3 Bagging Subset 0.87 0.76 0.81 0.11 
5HT6Set3 NB Chi-squared 0.93 0.68 0.80 0.09 
5HT6Set3 NB Subset 0.83 0.78 0.80 0.13 

   

Table 4.9 5-HT6 Binders : Results from Y-randomization.  Descriptions of classifiers 
and attribute selection methods are in Table 4.7.  Good models will have low sensitivity, 
specificity, and CCR. 

Model 
Modeling 

Set Classifier 
Attribute 
Selection 

Sensivity 
Avg 

Specificity 
Avg 

CCR 
Avg 

5HT6Model1 5HT6Set1 Bagging Chi-squared 0.81 0.27 0.54 
5HT6Model2 5HT6Set1 Bagging Subset 0.44 0.60 0.52 
5HT6Model3 5HT6Set2 Bagging Chi-squared 0.25 0.32 0.28 
5HT6Model4 5HT6Set2 Bagging Subset 0.45 0.39 0.42 
5HT6Model5 5HT6Set3 Bagging Chi-squared 0.70 0.16 0.43 
5HT6Model6 5HT6Set3 Bagging Subset 0.71 0.44 0.58 
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Step 3.  5-HT6 - Virtual Screening 

Each of the six selected models was retrained on the entire modeling set and saved.  

A screening set was constructed by extracting any chemical from CTSideEffects that was not 

in a modeling set and had greater than 14 side effects.  Vectors were created for the screening 

set in a procedure similar to the modeling sets.  The screening set had 1,089 chemicals.   

The saved models were used to predict the binding of the chemicals in the screening 

set.  For each chemical a prediction (bind or no bind) was produced in addition to a 

probability measure.  Six sets of predictions were produced, one for each model.  The results 

were merged and the probabilities were averaged.   

4.3.2 Predicting dopamine antagonists using side effects 

Step 1.  Dopamine antagonists – Creation of modeling sets 

The methods used to predict dopamine antagonism were similar to those above, 

except in the construction of the modeling sets.  The known dopamine antagonists were 

identified by finding the MeSH chemicals with the pharmaceutical action Dopamine 

Antagonists.  Twenty-six drugs were identified that were dopamine antagonists and also met 

the side effect cutoff.  These drugs are listed in Appendix 9.   

Six modeling sets were constructed.  In each of the sets the 26 dopamine antagonists 

were used as the positive instances.  The assembly of the negative instances varied.  For three 

of the modeling sets the negative examples were pulled randomly from the pool of drugs in 

the CTSideEffects table.  It is being assumed because the drug is not designated as a 

dopamine antagonist that the drug indeed is not a dopamine antagonist.  Each of the first 

three sets had a different set of randomly selected instances assumed to be negative.   
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For the other three modeling sets, the negative instances were drawn from PDSP.  

Twenty-four to 26 drugs tested and determined to be nonbinders to any dopamine receptor 

were randomly chosen from the 34 drugs that were nonbinders and met the side effect count 

threshold of 15.  These modeling sets have the advantage of containing tested negatives.  If 

the drugs do not bind to dopamine they cannot be dopamine antagonists.  However, these sets 

also have the disadvantage of being skewed toward psychoactive drugs because they are 

drawn from PDSP.  It was hoped that having modeling sets with negatives instances drawn in 

various ways will give robust results when the predictions are combined in the virtual 

screening step. 

Table 4.10  Dopamine antagonists : Construction of modeling sets (DA=dopamine 
antagonists).  Mapping refers to the step of mapping side effects to more general MeSH 
Tree node. 

Set 
Name 

How were negative instances 
selected? 

True 
DA 

Count 

Negative 
Count 

(not DA) 

Side effect 
count 
before 

clean up / 
mapping 

Side 
effect 
count 
after 

clean up / 
mapping 

DASet1 Randomly from CTSideEffects 24 25 1,093 258 
DASet2 Randomly from CTSideEffects 24 24 944 223 
DASet3 Randomly from CTSideEffects 24 26 1,039 250 
DASet4 Randomly from PDSP dopamine 

non-binders 24 25 1,292 324 
DASet5 Randomly from PDSP dopamine 

non-binders 24 24 1,293 324 
DASet6 Randomly from PDSP dopamine 

non-binders 24 25 1,215 297 
 

Step 2.  Dopamine Antagonists – Creating models 

Each of the six modeling sets was trained with the bagging and Naïve Bayes 

classifiers in combination with each of the attribute selection algorithms.  Each model was 

tested in 50 iterations of 80/20 validation.  The sensitivity, specificity, CCR, and the standard 
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deviation of the CCR were calculated and averaged.  The averages are recorded in Table 

4.11.  The models with the high CCR results and a good balance between sensitivity and 

specificity were selected.  At least one model per modeling set was selected.  The selected 

models are in bold.   

 

Table 4.11  Dopamine Antagonists: Model performance in 80/20 validation.  
Selected models are in bold. 

Model Components Results 
Dataset Classifier Attribute 

Selection 
Average 
Sensitivity 

Average 
Specificity 

Average 
CCR 

StdDev 
CCR 

DASet1 Bagging Chi-
squared 0.88 0.88 0.88 0.11 

DASet1 Bagging Subset 0.83 0.86 0.85 0.13 
DASet1 NB Chi-squared 0.88 0.82 0.85 0.14 
DASet1 NB Subset 0.82 0.87 0.84 0.12 
DASet2 Bagging Chi-squared 0.96 0.93 0.94 0.08 
DASet2 Bagging Subset 0.99 1.00 0.99 0.04 
DASet2 NB Chi-squared 0.81 0.93 0.87 0.14 
DASet2 NB Subset 0.99 1.00 0.99 0.04 
DASet3 Bagging Chi-squared 0.91 0.88 0.89 0.10 
DASet3 Bagging Subset 0.85 0.88 0.86 0.09 
DASet3 NB Chi-squared 0.91 0.73 0.82 0.13 
DASet3 NB Subset 0.84 0.89 0.87 0.10 
DASet4 Bagging Chi-squared 0.92 0.74 0.83 0.10 
DASet4 Bagging Subset 0.90 0.80 0.85 0.10 
DASet4 NB Chi-squared 0.92 0.47 0.70 0.12 
DASet4 NB Subset 0.90 0.78 0.84 0.09 
DASet5 Bagging Chi-squared 0.93 0.70 0.82 0.11 
DASet5 Bagging Subset 0.92 0.75 0.83 0.12 
DASet5 NB Chi-squared 0.92 0.48 0.70 0.12 
DASet5 NB Subset 0.93 0.73 0.83 0.11 
DASet6 Bagging Chi-squared 0.93 0.79 0.86 0.11 
DASet6 Bagging Subset 0.94 0.84 0.89 0.09 
DASet6 NB Chi-squared 0.91 0.56 0.74 0.11 
DASet6 NB Subset 0.95 0.83 0.89 0.09 



 

141 
 

The six selected models were validated further using Y-randomization.  The results 

are displayed in Table 4.12 below.  All models passed this validation step and were used in 

the virtual screening.  

 

Step 3.  Dopamine Antagonists – Virtual Screening 

A virtual screening set was created from chemicals drawn from CTSideEffects that 

were not in any of the modeling sets and passed the side effect count threshold.  Each of the 

six selected models was run against the screening set.  The prediction and score from each 

run were stored and the average score from the six runs was calculated.    

4.4 Results  

4.4.1  5-HT6 Binding  

The 1089 chemicals in the 5-HT6 binder screening set were analyzed by each of the 

final models in order to predict whether the chemical was a 5-HT6 binder.  Forty-five (45) 

chemicals were predicted by all models to be 5-HT6 binders.  Five hundred and ninety-three 

(593) were predicted by all models to be nonbinders.  Two hundred eighty-three (283) 

chemicals had an average score greater than 0.5 and therefore are predicted binders overall.  

The drugs with the highest probability score are listed in Table 4.13 below.   

Table 4.12  Dopamine Antagonists: Y-randomization results on selected models. 
Model Dataset Classifier Attribute 

Selection 
Sensitivity 

Avg 
Specificity 

Avg 
CCR 
Avg 

DAModel1 DASet1 Bagging Chi-squared 0.75 0.20 0.47 
DAModel2 DASet2 NB Subset 0.82 0.17 0.49 
DAModel3 DASet3 Bagging Chi-squared 0.37 0.40 0.39 
DAModel4 DASet4 Bagging Subset 0.77 0.30 0.54 
DAModel5 DASet5 Bagging Subset 0.18 0.58 0.38 
DAModel6 DASet6 Bagging Subset 0.77 0.14 0.45 
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Table 4.13  5-HT6 Screening Results.  Chemicals predicted to be 5-HT6 binders with 
highest average probability.  Probability scores returned by each model are listed next to 
average. 
Chem Name Average 5-HT6 

Model1 
5-HT6 
Model2 

5-HT6 
Model3 

5-HT6 
Model4 

5-HT6 
Model5 

5-HT6 
Model6 

Mirtazapine 0.94 0.89 1.00 0.84 1.00 0.92 1.00 
Phenelzine 0.89 0.71 1.00 0.78 1.00 0.86 1.00 
Metoclopramide 0.86 0.81 0.94 0.75 1.00 0.75 0.93 
Reboxetine 0.86 0.82 0.98 0.65 0.89 0.90 0.94 
Bupropion 0.85 0.76 0.89 0.77 0.98 0.80 0.90 
Tiapride 0.83 0.68 0.98 0.69 0.96 0.70 0.97 
Sultopride 0.83 0.73 0.93 0.78 0.98 0.69 0.87 
Triazolam 0.83 0.71 0.93 0.77 0.94 0.75 0.88 
Clomipramine 0.83 0.81 0.71 0.77 0.96 0.82 0.91 
Sodium_Oxybate 0.83 0.71 0.98 0.67 0.89 0.79 0.94 
Sertraline 0.83 0.74 0.94 0.73 0.98 0.68 0.89 
Fluvoxamine 0.82 0.71 0.90 0.83 1.00 0.80 0.69 
Levodopa 0.82 0.77 0.97 0.79 0.98 0.65 0.76 
Domperidone 0.82 0.59 0.95 0.73 1.00 0.65 0.97 
Modafinil 0.81 0.68 0.98 0.62 0.89 0.76 0.94 
Apomorphine 0.81 0.74 0.88 0.73 0.93 0.77 0.80 
Citalopram 0.81 0.73 0.81 0.70 0.88 0.74 0.98 
Disulfiram 0.80 0.66 0.91 0.65 0.97 0.72 0.92 
Oxazepam 0.80 0.64 0.98 0.66 0.89 0.70 0.94 

 

These drugs all have some known molecular activity.  This established activity and its 

relationship to the predicted 5-HT6 binding activity is summarized in Table 4.14 and will be 

discussed briefly.  The web resources DrugBank (Wishart et al., 2008) and the MeSH 

browser were used to gather this information.   

 

 

 

 



 

 

Table 4.14  Known activities of high predicted potential 5
Chemical Name Description
Mirtazapine Analog of mianserin, a known 5
Phenelzine Monoamine oxidase inhibitor (MAOI)
Metoclopramide Serotonin (5
Reboxetine norepinephrine reuptake inhibitor
Bupropion Inhibits reuptake of norepinephrine, dopamine, and serotonin

Anti
Tiapride Dopamine antagonist
Sultopride Dopamine antagonist
Triazolam GABA neurotransmitter enhancement
Clomipramine Selective serotonin reuptake inhibitor(SSRI), norepinephrine 

reuptake inhibitor (NRI)
 

Mirtazapine appears at the top of the results list with an average probability of 0.94 of 

being a binder to the 5-HT6 receptor.  Mirtazapine has not been tested against 5

however, a close analog of the drug mianserin which is a known 5

Chemicals that have a high structural similarity often have similar molecular activity.  It is 

very likely therefore that the top predicted chemical is indeed a 5

Figure 4.3  Chemical structures of mirtazapine (left) and mi
a known 5-HT6 binder and mirtazapine is predicted to be one.  

 

The next highest ranked drug on the screening results is the antidepressant 

phenelzine.  It is known to be a monoamine oxidase inhibitor.  Monoamine oxidase br

down monoamines that are responsible for signaling.  Serotonin is one of the monamines.  

By inhibiting the oxidase, the the breakdown of serotonin is blocked, resulting in increased 
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Table 4.14  Known activities of high predicted potential 5-HT6 binders 
Description 
Analog of mianserin, a known 5-HT6 binder 
Monoamine oxidase inhibitor (MAOI) 
Serotonin (5-HT) antagonist  and dopamine antagonist
norepinephrine reuptake inhibitor (NRI) 
Inhibits reuptake of norepinephrine, dopamine, and serotonin
Anti-cholinergic activity 
Dopamine antagonist 
Dopamine antagonist 
GABA neurotransmitter enhancement 
Selective serotonin reuptake inhibitor(SSRI), norepinephrine 
reuptake inhibitor (NRI) 
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The next highest ranked drug on the screening results is the antidepressant 

phenelzine.  It is known to be a monoamine oxidase inhibitor.  Monoamine oxidase breaks 

down monoamines that are responsible for signaling.  Serotonin is one of the monamines.  

By inhibiting the oxidase, the the breakdown of serotonin is blocked, resulting in increased 
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levels of serotonin.  While we do not know if the prediction that phenelzine is a 5-HT6 

binder is correct, we do know that it has an effect on a serotonin pathway.     

Similarly, metoclopramide and bupropion are also known to have effects on the 

serotonin pathway.  Metoclopramide binds to and blocks at least one 5-HT (serotonin) 

receptor.  Bupropion inhibits the reuptake of serotonin into the neuron.   

Clomipramine has actually been tested in 5-HT6 binding assays that were completed 

after the build of the PDSP database used in this study.  The drug was indeed found to bind to 

5-HT6 with a nanomolar concentration of 112.  Clomipramine was predicted by this side 

effect study correctly.  Two other drugs that were tested positive as binders in later binding 

assays were also found by their average score in this study to be binders: nortriptyline and 

doxepin.  In the same batch of tests, however, two drugs were found to be actual binders to 5-

HT6 that were not predicted so by this study – raloxifene and tamoxifen.  The average 

probability for these two drugs was under 0.50.  A number of other drugs tested in this batch 

were not included in this study because they did not meet the side effect count threshold.  

Table 4.15 contains a summary of the results.   

Table 4.15  5-HT6 Binding results not included in PDSP and predicted 5-
HT6 binding from side effect profiles. 

Chemical Name Binding Assay Data 
Screening 
Prediction 

 
% Inhibition Ki(nM) Binder? 

Avg 
Probability 

Clomipramine 98.6 112 Yes 0.83 
Nortriptyline 99.1 214 Yes 0.71 
Doxepin 98.1 105 Yes 0.72 
Raloxifene 88.2 750 Yes 0.35 
Tamoxifen 91.1 1,041 Yes 0.42 
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4.4.2  Dopamine antagonists 

The 976 chemicals in the screening set were analyzed by each of the final models in 

order to predict whether the chemical was a dopamine antagonist.  Thirty-six (36) chemicals 

were predicted by all models to be dopamine antagonists.  Seven hundred and eight (708) 

were predicted by all models not to be dopamine antagonists.  Seventy-five (75) chemicals 

had an average score greater than 0.5 and therefore are predicted overall to be dopamine 

antagonists.  The top 14 (0.85 or greater) of the 36 chemicals predicted by all models to be 

dopamine antagonists are listed in table 4.16 below.  These 14 chemicals received the highest 

average probability.   

Table 4.16  Dopamine antagonist - predictions 

Chemical Name Avg 
DA 

Model1 
DA 

Model2 
DA 

Model3 
DA 

Model4 
DA 

Model5 
DA 

Model6 
Molindone 0.96 0.83 1.00 0.94 1.00 1.00 1.00 
Tetrabenazine 0.95 0.81 1.00 0.90 1.00 1.00 1.00 
Fluphenazine depot 0.95 0.76 1.00 0.93 1.00 1.00 1.00 
Cetirizine 0.92 0.81 1.00 0.80 1.00 0.90 1.00 
Trihexyphenidyl 0.90 0.68 1.00 0.79 0.96 1.00 1.00 
Benztropine 0.89 0.63 0.99 0.74 1.00 0.96 0.99 
Ziprasidone 0.88 0.84 1.00 0.80 0.80 1.00 0.86 
Potassium Cyanide 0.88 0.60 0.92 0.82 1.00 0.96 0.97 
Veralipride 0.87 0.79 1.00 0.85 0.80 0.95 0.84 
Pemoline 0.86 0.66 0.99 0.75 0.99 0.81 0.95 
Pirenzepine 0.85 0.74 1.00 0.75 1.00 0.63 0.97 
Diphenhydramine 0.85 0.58 0.96 0.83 0.81 0.94 0.97 
Bromazepam 0.85 0.52 0.92 0.72 1.00 0.96 0.97 
Sertraline 0.85 0.67 1.00 0.66 0.95 0.84 0.96 

 

According to DrugBank, molindone occupies dopamine receptor sites in the brain and 

decreases dopamine activity.  Although the site does not use the term antagonists, the terms it 

does use describe antagonist activity.  Molindone is a likely dopamine antagonist.   
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Tetrabenazine is used to treat movement disorders.  DrugBank reports that it works as 

an inhibitor of monamine transport (dopamine is also a monamine) and as such promotes the 

early degradation of dopamine.  This activity may have many of the same effects as a 

dopamine antagonist and it may be the reason this drug was predicted to be a dopamine 

antagonist with a fairly high probability.   

Ziprasidone is a known dopamine antagonist that was inadvertently omitted from the 

modeling set.  It was however in the screening set and identified correctly as a dopamine 

antagonist with a high probability. Fluphenazine depot is an analog of fluphenazine and 

veralipride is an analog of sulpiride.  Both of these drugs are known dopamine antagonists.  It 

is therefore likely that fluphenzine depot and veralipride are dopamine antagonists as well.   

On the other hand, there seems to be no connection between cetirizine and dopamine 

antagonism.  Cetirizine is a histamine H1 antagonist used in the treatment of rhinitis, 

urticaria, and asthma.  Curiously, the poison potassium cyanide causes movement problems 

as the poisoning progresses, and these effects are likely the reason the chemical scored 

highly. 

Both triheyxphenidyl and benztropine, while structurally dissimilar, are both M1 

muscarinic acetylcholine receptor antagonists used to treat the extrapyramidal symptoms of 

parkinsons disorders.  They are also both thought to increase the availability of dopamine.  

Their possible effect on the dopamine pathway in addition to their association with 

movement disorders may account for their relatively high average prediction scores.  The 

information for these drugs is summarized in Table 4.17.   
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Table 4.17  Predicted dopamine antagonists.  Information primarily taken from 
DrugBank and MeSH browser. 
Chemical Name Description of uses and known molecular activities 
Molindone Used to treat psychotic symptoms.  Known to occupy dopamine 

receptor sites and decrease dopamine activity.   
Tetrabenazine Used to treat movement disorders.  VMAT inhibitor which 

promotes early degradation of dopamine.   
Fluphenazine depot Analog of fluphenazine, a known dopamine antagonist 
Cetirizine Used in treatment of rhinitis and asthma.  Histamine 

H1antagonist.   
Trihexyphenidyl Used to treat extrapyramidal symptoms of parkinsons.  M1 

muscarinic acetylcholine receptor antagonist.  Also thought to 
increase availability of dopamine.  

  Benztropine Similar to trihexyphenidyl.  Used to treat extrapyramidal 
symptoms of parkinsons.  M1 muscarinic acetylcholine receptor 
antagonist.  Also thought to increase availability of dopamine. 

Ziprasidone Known dopamine antagonist. 
Potassium cyanide Poison.  Can cause movement disorders.   
Veralipride Analog of sulpiride, a known dopamine antagonist 

 

PDSP was examined to see if any of the top predicted dopamine antagonists (Table 

4.17) had been tested in dopamine binding assays.  Binding is a prerequisite to antagonism.  

Only molindone and ziprasidone had been tested.  Molindone was found to bind to the 

dopamine D2, D3, and D4 receptor subtypes.  Ziprasidone was found to bind to the dopamine 

D1, D2, D3, D4, and D5 receptor subtypes.     

4.5 Discussion 

The models for the dopamine antagonist study were strong.  The average sensitivity 

and specificity were 0.92 and 0.86 for the models selected for virtual screening and the 

average CCR was 0.89.  The dopamine antagonist datasets constructed with negative 

instances pulled from PDSP resulted in models with weaker sensitivity and specificity in the 

validation steps than the models created from datasets with negative instances randomly 
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selected from the CTSideEffects pool of chemicals.  This difference likely reflects the strong 

bias in the composition of PDSP toward drugs in specific psychoactive drug classes.   

Dopamine antagonists are known for the movement impairments associated with their 

use.  These side effects are termed extrapyramidal symptoms (EPS).  The range of symptoms 

includes the inability to start movement, called akinesia, as well as the inability to refrain 

from moving (akathesia or dyskinesia).  The EPS were reflected in the side effects chosen by 

the attribute selection algorithm in Weka to have the highest discriminatory power.  Five of 

the top ten side effects identified by the chi-squared attribute selection process were some 

type of movement and muscular disorders.  The right hand column of Table 4.18 contains an 

example taken from one of the selected dopamine antagonism models.   

Table 4.18  Sample of most discriminative 
side effects for the dopamine antagonism 
study.   
Dyskinesia Drug Induced 
Dystonia 
Movement Disorders 
Brain Diseases 
Muscle Rigidity 
Akathisia, Drug-induced 
Puerperal Disorders 
Stomatitis 
Gastroenteritis 
Salivary Gland Diseases 

  

In the 5-HT6 models, the accuracy varied as the negative instances were selected 

differently.  Overall, however, the accuracy of the 5-HT6 binding models was considerably 

lower than the accuracy of the dopamine antagonist models.  The average CCR of the final 

models was 0.79, as compared to 0.89, the average CCR for dopamine antagonist study.  The 

models with the best CCR were unbalanced, showing high sensitivity and low specificity.  
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The specificity results were less than 0.80 for all the selected models.  Low specificity 

indicates that the models were not strong in identifying negative instances.   

In the validation process there were 5-HT6 binders that were consistently 

misclassified.  Ketanserin was one of these drugs.  Ketanserin is highly promiscuous, binding 

to many receptors including several in the serotonin (5-HT) family, histamine H1, and the 

alpha-1 adrenergic receptor.  This promiscuity may be the cause of side effects that are 

unrelated to 5-HT6 and consequently may have weakened the modeling set.  In general, 

serotonin binding is known to be promiscuous (Roth et al., 2000).  The training set may have 

contained a number of other 5-HT6 binders that likely fall into this category and contributed 

to the weak performance of the classifier.   

Another likely contributor to the low prediction rate of the 5-HT6 models is that 

binding was predicted and not what happens after binding.  Binding can result in promoting 

the activity of the receptor or blocking the activity of the receptor.  These two actions can 

result in very different sets of downstream effects.  The modeling set for 5-HT6 may contain 

some agonists and some antagonists and the divergent side effect profiles may not contain 

enough common ground to produce good models for binding.    

The topmost ranking chemicals in Tables 4.13 do have a high likelihood of being 

predicted correctly as 5-HT6 binders.  We have seen that mirtazapine is a close chemical 

analog of a drug known to be a 5-HT6 binder and this relationship increases the chances that 

mirtazpine will be a binder.  Beyond the first few drugs, however, there may be other 

biological reasons for their high scores.  Each of these drugs has some known molecular 

functions that would influence the classification process.  The drug phenelzine, for instance, 
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is a known monoamine oxidase inhibitor.  This activity has a net effect of increasing 

serotonin levels.  While it may also be a 5-HT6 binder, its already known role in the 

serotonin pathway may be responsible for some of its side effects. 

Drugs that modulate serotonin receptors or serotonin levels can also affect dopamine 

levels (Di Giovanni, Di Matteo, Pierucci, & Esposito, 2008).  This pathway interaction or 

crosstalk between pathways may account for the overlap in side effects identified as 

significant by the attribute selection routines.   Movement disorders were significant side 

effects for both dopamine antagonists and 5-HT6 binders, although they were less significant 

for 5-HT6 binders.  Movement disorders represented two of the top ten side effects with the 

highest discriminatory power in one of the 5-HT6 models with attributes determined by chi-

squared (Table 4.19).  Movement disorders represent half of the top ten side effects in one 

representative dopamine antagonism run (Table 4.18).  Having movement disorders in 

common may be the reason that two known dopamine antagonists, tiapride and sultopride, 

were predicted with high probability to be 5-HT6 binders.  These drugs may indeed be 5-

HT6 binders, or the side effects arising from their dopamine antagonism may make them 

look like 5-HT6 binders.  

Table 4.19  Sample of most discriminative 
side effects for the 5-HT5 binding study.   
Behavioral Symptoms 
Gastrointestinal Hemorrhage 
Dystonia 
Dyskinesia, Drug-Induced 
Peptic Ulcer 
Skin Diseases, Vascular 
Hypersensitivity, Intermediate 
Sexual Dysfunction, Physiological 
Puerperal Disorders 
Arrhythmias, Cardiac 
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The drugs that were tested in a 5-HT6 binding assay after the download of PDSP 

(Table 4.15) provide an opportunity to check the screening results for these drugs.  All of the 

five drugs were true binders, but only three were identified as binders in the screening 

process.  Only one (clomipramine) was predicted with a high probability to be a binder.  

Tamoxifen and raloxifene were incorrectly predicted by this study to be nonbinders.  It is 

interesting that these two drugs showed the lowest affinity for the receptor and the lowest 

percent inhibition.  While this is an interesting observation, more cases need to be studied to 

see if binding affinity has any consistent relationship to side effects.   

ChemoText has been a robust source of side effect information for this study.  This 

repository has several advantages over a data source constructed from processing the text of 

package insert.  First, the coverage of the chemical space is significantly broader than 

package inserts.  Second, the MeSH side effects are publicly available in electronic format, 

making them easy to gather and access.  The collection of drugs and side effects will be 

updated automatically during the yearly update of ChemoText.   

Future Work 

The feasibility and benefit of combining the side effect annotations stored in 

ChemoText with side effects drawn from package inserts should be investigated.  It is 

possible that the side effects from package inserts will augment the ChemoText records.  

With better side effect coverage, more drugs may meet the side effect count threshold, 

making the modeling sets larger and the models potentially more robust.  Fortunately, a 

structured source of package insert side effects called SIDER (Kuhn et al., 2010) became 

available in early 2010.  This resource could facilitate combining side effects from the two 

sources.    
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The annotations that fall under the category of drug effects include many types of 

effects that are not related to adverse events.  Many studies, for instance, report on the 

cellular level effects of drugs (e.g., apoptosis, mitosis).  These effects could be used in 

addition to adverse effects to give the classifiers more attributes to choose from in the 

attribute selection process.   

Animal side effects can be explored as well.  Drugs undergo extensive animal testing 

before human trials and the side effects are reported in the literature.  The data on animal 

trials in ChemoText is extensive, but it is fragmented among various species.  It would have 

to be determined whether the data for each species should be considered separately or could 

be combined.   

Other sources of molecular activity data should be investigated.  There are many 

other public and commercial sources of binding and activity information that could 

potentially be used.  PubChem, for instance, as the central repository for the Molecular 

Libraries Roadmap Initiative, is a growing resource for many kinds of chemical assays.    

Other prediction methods may yield better results.  Campillos et al. (2008) used a 

similarity search approach in their study.  This approach may be better suited to the complex 

polypharmacology of psychoactive drugs in particular (Keiser et al., 2009).  Visualization 

tools and other machine learning software may provide additional insight into the side effect 

data. 

In several cases (e.g., mirtazapine) the methods predicted binding activity in 

chemicals that are structural analogs of known 5-HT6 binders.  We can be fairly sure in these 

cases that the predicted chemical is indeed a binder.  While this is a welcome validation of 
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these side effect based methods, these predictions are not useful in practical terms.  Structure-

based QSAR methods would have been able to identify these chemicals as binders.  We 

would like these new methods to predict binders in drugs whose structure is dissimilar to 

known binders and therefore the structure-based methods would be inadequate.  If the side 

effect methods can identify such drugs, then we have found a way to complement and 

enhance the QSAR methods in use in the lab.     

Campillos et al. (2008) had a similar goal and eliminated structurally similar 

chemicals from their prediction set using a structural similarity measure called the Tanimoto 

coefficient.  What remained were chemicals unexpectedly linked to binding through their 

side effects alone.  We could employ a similar technique in our future work.  The Tanimoto 

coefficient could be calculated between each predicted binder and each known binder in the 

modeling set.  Drugs with high similarity could be flagged and omitted from the results.  The 

remaining drugs would be those that only side effect data predict as binders.       

4.6 Conclusion 

The goal of this study was to develop a literature-based methodology to hypothesize 

new uses for drugs by predicting their molecular activity.  The molecular activity of a drug 

indicates how it might be reprofiled.  Dopamine antagonists are used as antipsychotics, anti-

emetics, and antidepressants.  5-HT6 binders are thought to have potential in treating 

Alzheimers.   

This study is the first of its kind.  No other researcher has constructed predictive 

models for receptor binding and antagonism from side effect annotations extracted from the 

biomedical literature.  It has necessarily been exploratory in nature.  
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The models constructed to predict dopamine antagonism performed better than the 5-

HT6 binding models in validation runs performed in Weka.  Although more experiments are 

needed to generalize from these results, it does make sense that side effect profiles would be 

more indicative of antagonism than simple binding.  Binding can result in two very different 

sets of effects, depending on whether the receptor activity is blocked or enhanced.   

Dopamine antagonists are well-known for their extrapyramidal side effects.  These 

prevalent and serious side effects likely helped the performance of the classifiers.  We did not 

directly test whether dopamine agonists could be reliably discriminated from dopamine 

antagonists.  This is a study planned for future work. 

The 5-HT6 prediction models produced results well above random in validation 

procedures and the drugs returned by the virtual screening step with the highest probabilities 

look like they may indeed be 5-HT6 binders.  Clomipramine, a drug tested after the 

publication of the version of the PDSP database used, was indeed found to be a binder with 

moderate affinity.  On the other hand, tamoxifen and raloxifene, also confirmed binders, 

were predicted to be nonbinders.     

The methods described here show promise in identifying drugs with specific 

molecular activity which could be the basis for reprofiling the drug for a new therapeutic 

indication.  In addition, the literature-based discovery methods introduced here have the 

potential of bringing new insight into the complexity of chemical and biological interactions 

in the human body.   

  



 

 
 

5.  CONCLUSION 

This dissertation research investigated two different literature-based discovery 

methodologies to determine their potential in identifying new uses for drugs, or drug 

reprofiling.  Both studies used data in the ChemoText knowledgebase and both included 

validation steps.   

The first method, referred to as ABC, took advantage of the rich literature 

connections between disease, proteins, and drugs to predict new uses for existing drugs.  The 

strategy of using protein annotations as the intermediary B terms was very effective in 

finding chemicals that developed links to the diseases under study.  The recall was very high.  

The reason for this likely lies in the central role proteins play in both disease and drug 

research.  The study of disease increasingly focuses on the physiology of the disease state at 

the protein level.  Drug research focuses on proteins as well, searching for drugs that will 

modulate the behavior of proteins involved in the disease pathway.   Although proteins may 

be in common between the two fields, the literatures may not always interact and the authors 

may not be totally aware of each others’ work, giving rise to potential undiscovered implicit 

relationships between chemicals and disease.   

The validation method used in the ABC study was based on dividing the corpus into 

two segments based on a year cutoff.  The earlier or baseline period was used to create the 

hypotheses and the later period was used to validate the hypotheses.  The large hypothesis 

sets and the small number of gold standard chemicals meant that although recall was high, 
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overall precision was very low.  Ranking the hypothesis sets is a way to compensate for low 

precision.  Rankings that effectively put the gold standard chemicals toward the top allow the 

practitioner to choose cutoffs that are likely to give the desired levels of precision and recall.  

The rankings in this study, particularly ProtCt and WtProp, turned out to be very robust.  The 

average precision for the top 50 chemicals ranked by the WtProp or ProtCt approach was 

over 26% (Table 3.8).  This represents more than a ten-fold improvement over the 2% 

precision of the random ranking.  

In practice, the acceptable levels of precision and recall (and sensitivity and 

specificity) are decided by the user based on what is to be done with the results.  If, for 

example, an expensive laboratory test were to be run on the top ten chemicals in a hypothesis 

set, then precision may be more important than recall; with high precision, the lab tests are 

more likely to return positive results.  The goal of this dissertation work, however, is to 

develop methods that can be used in coordination with the other computational methods in 

place in the drug discovery lab, methods like QSAR.  These other methods produce 

prediction sets as well.  The predictions from various lines of evidence can be combined or 

compared to arrive at a consensus prediction and the weakest candidates can be removed.  

Low precision ceases to be a significant problem when computational techniques such as 

these can be applied to reduce and strengthen the hypothesis set. 

While the ranking results were good, they did not provide specific information about 

reprofiling.  In order to evaluate the performance in identifying reprofiled drugs, actual 

examples of reprofiling were gleaned from review articles and compared to the results.  We 

were able to confirm that many drugs reprofiled in practice were ranked highly by at least 

one of the ranking approaches.  This step demonstrated a link between these results and 
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actual discovery.  Had the results been available in the baseline period, they may have indeed 

have accelerated the drug discovery process.   

The design of the study allowed the focus to move back and forth in time.  In the later 

test period the significance of an emergent link between a drug and a disease was measured 

by the article count, the number of articles in which the drug, as a subject chemical, was co-

annotated with the disease.  Article count proved a useful tool to measure the significance of 

a connection between the drug and the disease.   

This study was able to reproduce Swanson’s link between magnesium and the 

prevention of migraines.  In the 1984-85 time period magnesium was placed at position two 

in the ranking based on protein count.  Forty (40) articles were found in the test period to link 

magnesium to migraine.  Two other chemicals identified in the same time period developed 

an even stronger connection to migraine: nitric oxide and the anticonvulsant valproic acid.  

They were both ranked highly by at least one of the ranking approaches.  Despite all the 

literature-based discovery projects endeavoring to reproduce Swanson’s migraine-

magnesium connection, no one has identified the strong link between these chemicals and 

migraine.  (Swanson himself, however, noted the connection between epilepsy and migraine. 

(Swanson, 1988)) 

An unexpected result of this ABC study was the light it shed on the practice of drug 

reprofiling.  Discussion of reprofiling in the pharmaceutical literature is generally limited to a 

few well-known cases, such as sildenafil (Viagra) for erectile dysfunction and bupropion for 

smoking cessation.  In practice, at least for the diseases studied here, reprofiling was a 

common approach to finding new drug therapies.   
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There are many ways this methodology could be extended and enhanced.  The 

methods should be applied to a variety of other diseases in order to establish whether the 

methods can be extended successfully or if there are diseases where different strategies 

should be explored.   The role played by time in these studies is worthy of more attention.  

We saw definite trends in the growth of the protein pool, hypothesis sets, and gold standard 

terms over time.  Treating time as a variable and performing the same analyses with varying 

temporal cutoffs would help further address the robustness of the models and evaluation 

techniques, as well as provide fruitful insight into the role that time plays in the evolution of 

discoveries.   

The second study in this dissertation research used patterns in the side effect 

annotations of drugs to predict molecular activity.  This study was novel in several ways.  

Whereas other studies have used side effects from package inserts, this study uses side 

effects annotations pulled from Medline records and stored in ChemoText.  This study also 

focused on a particular molecular activity and trained and validated classifier models to 

predict that activity.  The validated models were used in virtual screening to predict 5-HT6 

binding and dopamine antagonism in a large library of chemicals where those activities were 

previously unknown.   

The side effect study was challenged by biological complexity of neurotransmitter 

pathways.  Dopamine and serotonin pathways intersect and interact with each other and 

therefore a drug working on one pathway may affect the other pathway.  The side effects 

may be the downstream effect of either one of the pathways.  Drug promiscuity also added a 

challenging complexity to the data.  Psychoactive drugs notoriously act on many receptors.  

Untangling the clinical effects from each receptor would likely require more sophisticated 
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techniques and significantly more data, including nontextual data such as chemical structure.  

Despite the challenges, the validation results were strong, particularly for the dopamine 

antagonist models, and the studies were able to identify examples of 5-HT6 binders and 

dopamine antagonists, respectively. 

Validation is an indispensible component of the research methods in the drug 

discovery laboratory.  For that reason, validation has been placed in a central position in the 

design of these studies.  The ABC study started with the validation and evaluation guideline 

set down by previous researchers (Yetisgen-Yildiz & Pratt, 2009) but also included a 

comparison to random ranking, as well as the evaluation of reprofiling through manual 

examination of review articles.  The design of the side effect study followed the design of 

QSAR experiments, and therefore adopted and adapted the stringent validation steps 

implemented in those studies.   

Historically, validation has not been a strong component of literature-based discovery 

methodologies.  This is unfortunate, because validation is essential.  Literature-based 

discovery is a tool, and with any tool, it is vital to know where to apply it: where it works and 

where it does not work.  Without the measuring stick provided by validation, researchers 

cannot be sure they have learned something from their experiments.  Any field of study needs 

these measures to move forward, and the lack of them may be the reason that the field of 

literature-based discovery has progressed more slowly than it should have.  The studies 

presented here demonstrate that literature-based methods can be validated just like methods 

based on laboratory data.  
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Through its distillation of a large body of chemical and disease research, ChemoText 

has proved itself to be a rich source of information for drug discovery.   There is no other 

repository that contains MeSH terms structured in a way to be useful in drug discovery 

algorithms.  ChemoText adds value to MeSH annotations with its routines that identify the 

subject chemical, in addition to the way it organizes and links the annotations.  The 

complexity and dynamic nature of the literature means that improving these routines will 

likely continue to be an ongoing activity.  In addition to maintenance and enhancements, 

there are also plans to make ChemoText publicly available.   

Future work should go beyond data improvements and methods development.  The 

end goal of this work is to discover new therapeutic uses for drugs.  To see that goal realized, 

these literature-based methods must be adopted in the computational drug discovery 

laboratory and put to use on real, substantive problems.  The question of how to integrate 

these methods with the toolset already in use in the lab remains the next significant 

challenge.   
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APPENDICES 

Appendix 1.  Proteins excluded from all protein pools  

(MeSH category D12- amino acids, peptides, and proteins) 
 

Protein Name 
Amino Acids 
Aminopeptidases 
Antibodies 
Antibodies, Monoclonal 
Antibodies, Viral 
Antilymphocyte Serum 
Autoantibodies 
Bacterial Proteins 
Caerulein 
Captopril 
Carrier Proteins 
Cytokines 
Dietary Proteins 
Enzyme Precursors 
Enzymes 
Fenclonine 
gamma-Globulins 
Gelatin 
Globulins 
Glycoproteins 
Hydrolases 
Immune Sera 
Immunoglobulins 
Isoantibodies 
Isoenzymes 
Lipoproteins 
Macroglobulins 
Mucoproteins 
Neoplasm Proteins 
Nerve Tissue Proteins 
Oligopeptides 
Papain 
Peptide Fragments 
Peptides 
Pituitary Hormones 
Placental Hormones 
Plant Proteins 
Pregnancy Proteins 
Protein Kinases 
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Protein Precursors 
Protein Subunits 
Proteins 
Proteoglycans 
Proteolipids 
Proteome 
Receptors, Cell Surface 
Receptors, Drug 
Receptors, Peptide 
Receptors, Virus 
Recombinant Proteins 
Recombinases 
Ribonucleases 
Serum Albumin, Bovine 
Transcription Factors 
Vasopressins 
Vegetable Proteins 
Viral Proteins 
Xenopus Proteins 
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Appendix 2.   Cystic Fibrosis: Top 20 chemicals returned by each ranking  

 
The columns with white background represent data from the Baseline Period.  The 

gray columns are drawn from the Test Period.  ProtCt is the count of proteins from the 

protein pool the chemical has annotated with it.  FirstYr is the first year the chemical appears 

as the subject chemical in an article that also has an annotation of the disease.  DisQual and 

ChemQual are the most common disease qualifiers (or subheadings) and chemical qualifiers 

(subheadings) appearing in the annotations when the chemical is annotated with the disease.   

Appendix 2A.  Cystic Fibrosis 1984-1985  
Ranked by ProtCt 

ChemName Protct FirstYr  ArtCt DisQual ChemQual 
Edetic Acid 173 1985 3 complications pharmacokinetics 
Cortisone 164 0 0     
Chlorpromazine 163 0 0     
Mercury 152 0 0     
Cycloheximide 148 0 0     
Lead 147 0 0     
Propranolol 145 1995 1   pharmacology 
Phenobarbital 144 1993 1 complications therapeutic use 
Cyclophosphamide 139 0 0     

Morphine 134 1986 3 complications 
administration & 
dosage 

Puromycin 132 0 0     
Lithium 131 1990 4 drug therapy therapeutic use 
Diethylstilbestrol 131 0 0     
Chloroquine 131 2003 2 blood pharmacology 
Cadmium 130 1994 1 genetics toxicity 
Indomethacin 129 0 0     
Dimethyl Sulfoxide 128 0 0     
Folic Acid 126 2006 1 drug therapy pharmacology 
Choline 124 2007 1 blood therapeutic use 
Tetradecanoylphorbol 
Acetate 122 1991 2 genetics pharmacology 
Ranked by WtProp   
Cortisone 164 0 0     
Edetic Acid 173 1985 3 complications pharmacokinetics 
Chlorpromazine 163 0 0     
Propranolol 145 1995 1   pharmacology 
Lead 147 0 0     
Mercury 152 0 0     
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Cyclophosphamide 139 0 0     
Puromycin 132 0 0     
Chloroquine 131 2003 2 blood pharmacology 
Phenytoin 122 0 0     
Indomethacin 129 0 0     
Vinblastine 112 0 0     
Cycloheximide 148 0 0     
Diethylstilbestrol 131 0 0     
Lithium 131 1990 4 drug therapy therapeutic use 
Gold 110 0 0     
Dimethyl Sulfoxide 128 0 0     
Formaldehyde 121 0 0     
Mercaptoethanol 109 1999 2 physiopathology   
Isoflurophate 99 0 0     
Ranked by WtCOS    
Clomiphene 38 0 0     
20-alpha-
Dihydroprogesterone 14 0 0     
ATP gamma-p-
azidoanilide 2 0 0     
Procainamide 51 0 0     
Idoxuridine 28 0 0     
Bromocriptine 67 0 0     
Ethyl Biscoumacetate 14 0 0     
Dicumarol 57 0 0     
Congo Red 25 0 0     
Echothiophate Iodide 13 0 0     
testosterone enanthate 6 0 0     
Warfarin 60 1993 2 metabolism pharmacokinetics 
Dihydrotachysterol 20 0 0     
Apomorphine 43 0 0     
Haloperidol 65 0 0     
cholesteryl linoleyl ether 5 0 0     
Molybdenum 53 2001 1 urine   
Metyrapone 50 0 0     
Carbimazole 15 0 0     
sodium thiocyanate 8 0 0     

Ranked by AvgRank      

Adenosine 119 1992 5 metabolism pharmacology 
Cortisone 164 0 0     
Hydrogen Peroxide 115 1998 10 metabolism metabolism 
Choline 124 2007 1 blood therapeutic use 
Dimethyl Sulfoxide 128 0 0     
Bromodeoxyuridine 80 0 0     
Silver 73 2007 1 drug therapy adverse effects 
Dopamine 113 1988 1 blood blood 
Folic Acid 126 2006 1 drug therapy pharmacology 
Tetradecanoylphorbol 
Acetate 122 1991 2 genetics pharmacology 
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Estrone 88 0 0     
Ethinyl Estradiol 109 1987 1 blood blood 
Nandrolone 71 0 0     
Niacin 73 0 0     
Lead 147 0 0     
Bromocriptine 67 0 0     

Lidocaine 72 2001 1 metabolism 
analogs & 
derivatives 

Pyridoxine 102 1996 1 metabolism analysis 
Clofibrate 98 0 0     
Furosemide 82 1987 6 metabolism toxicity 
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Appendix 2B.  Cystic Fibrosis 1989-1990  
Ranked by ProtCt 

ChemName Protct 
First
Yr ArtCt DisQual ChemQual 

Tetrad.Acetate 236 1991 2 genetics pharmacology 
Chlorpromazine 208 0 0     
Indomethacin 193 0 0     
Propranolol 189 1995 1   pharmacology 
Cycloheximide 187 0 0     
Cortisone 186 0 0     
Chloroquine 182 2003 2 blood pharmacology 
Phenobarbital 180 1993 1 complications therapeutic use 
Lithium 180 1990 4 drug therapy therapeutic use 
Lead 179 0 0     
Cyclophosphamide 179 0 0     
Cadmium 179 1994 1 genetics toxicity 
Mercury 178 0 0     
Dimethyl Sulfoxide 176 0 0     
Tretinoin 176 0 0     
Hydrogen Peroxide 167 1998 10 metabolism metabolism 
Adenosine 166 1992 5 metabolism pharmacology 
Diethylstilbestrol 164 0 0     
Methotrexate 163 2003 1 drug therapy therapeutic use 
Choline 160 2007 1 blood therapeutic use 
Ranked by WtProp   

Cortisone 186 0 0     
Chlorpromazine 208 0 0     
Indomethacin 193 0 0     
Chloroquine 182 2003 2 blood pharmacology 
Propranolol 189 1995 1   pharmacology 
Gold 155 0 0     
Lead 179 0 0     
Cyclophosphamide 179 0 0     
Tretinoin 176 0 0     
Dimethyl Sulfoxide 176 0 0     
Mercury 178 0 0     
Lithium 180 1990 4 drug therapy therapeutic use 
Tetra. Acetate 236 1991 2 genetics pharmacology 
Cycloheximide 187 0 0     
Vinblastine 135 0 0     
Diethylstilbestrol 164 0 0     
Cadmium 179 1994 1 genetics toxicity 
Phenytoin 153 0 0     
Choline 160 2007 1 blood therapeutic use 
Methotrexate 163 2003 1 drug therapy therapeutic use 
Ranked by WtCOS    

4-hydroxytamoxifen 14 0 0     
Tamoxifen 93 0 0     
N-Methylscopolamine 9 0 0     
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Metribolone 13 0 0     
triperiden 2 0 0     
Congo Red 34 0 0     
Bromocriptine 93 0 0     
20-alpha-
Dihydroprogesterone 15 0 0     
otenzepad 5 0 0     
Capsaicin 55 0 0     
Clomiphene 50 0 0     
Apomorphine 60 0 0     
Spiperone 15 0 0     
Quinuclidinyl Benzilate 11 0 0     
Dizocilpine Maleate 7 0 0     
ATP gamma-p-
azidoanilide 3 0 0     
Procainamide 65 0 0     
Haloperidol 86 0 0     
Idoxuridine 35 0 0     
Warfarin 71 1993 2 metabolism pharmacokinetics 
Ranked by AvgRank      

Hydrogen Peroxide 167 1998 10 metabolism metabolism 
Bromocriptine 93 0 0     
Tamoxifen 93 0 0     
Estrone 110 0 0     
Adenosine 166 1992 5 metabolism pharmacology 
Niacin 90 0 0     
Dimethyl Sulfoxide 176 0 0     

Lidocaine 95 2001 1 metabolism 
analogs & 
derivatives 

Clomiphene 50 0 0     
Haloperidol 86 0 0     
Folic Acid 141 2006 1 drug therapy pharmacology 
Guanosine Triphosphate 113 0 0     
Tetradecanoylphorbol 
Acetate 236 1991 2 genetics pharmacology 
Clonidine 82 0 0     
Dehydroepiandrosterone 85 0 0     
Pyridoxine 120 1996 1 metabolism analysis 
Deferoxamine 53 0 0     
Calcium, Dietary 53 2004 1 metabolism pharmacokinetics 
Procainamide 65 0 0     
Silver 94 2007 1 drug therapy adverse effects 
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Appendix 2C.  Cystic Fibrosis 1994-1995  
Ranked by ProtCt 

ChemName Protct 
First
Yr ArtCt DisQual ChemQual 

Tretinoin 295 0 0     
Cycloheximide 258 0 0     
Indomethacin 255 0 0     
Hydrogen Peroxide 249 1998 10 metabolism metabolism 
Chlorpromazine 249 0 0     
Dimethyl Sulfoxide 245 0 0     
Lead 243 0 0     
Methotrexate 242 2003 1 drug therapy therapeutic use 
Cyclophosphamide 241 0 0     
Propranolol 240 1995 1   pharmacology 
Mercury 237 0 0     
Doxorubicin 232 2001 2 genetics pharmacology 
Cisplatin 230 0 0     
Chloroquine 226 2003 2 blood pharmacology 
Diethylstilbestrol 216 0 0     
Platelet Activating 
Factor 208 1999 1 blood 

administration & 
dosage 

Cortisone 207 0 0     
Nicotine 198 0 0     
Nickel 195 0 0     
Formaldehyde 195 0 0     
Ranked by WtProp   

Chlorpromazine 249 0 0     
Indomethacin 255 0 0     
Lead 243 0 0     
Cyclophosphamide 241 0 0     
Propranolol 240 1995 1   pharmacology 
Cortisone 207 0 0     
Mercury 237 0 0     
Dimethyl Sulfoxide 245 0 0     
Cycloheximide 258 0 0     
Chloroquine 226 2003 2 blood pharmacology 
Methotrexate 242 2003 1 drug therapy therapeutic use 
Diethylstilbestrol 216 0 0     
Vinblastine 176 0 0     
Tretinoin 295 0 0     
Gold 181 0 0     
Hydrogen Peroxide 249 1998 10 metabolism metabolism 
Cisplatin 230 0 0     
Phenytoin 193 0 0     
Doxorubicin 232 2001 2 genetics pharmacology 
Choline 195 2007 1 blood therapeutic use 
Ranked by WtCOS    

Spiperone 25 0 0     
otenzepad 6 0 0     
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Tamoxifen 167 0 0     
Clomiphene 57 0 0     
Nafoxidine 22 0 0     
Congo Red 41 0 0     
Idazoxan 27 0 0     
CP 96345 24 0 0     
3-(2-carboxypiperazin-4-
yl)propyl-1-phosphonic 
acid 8 0 0     
5-(N-methyl-N-
isobutyl)amiloride 3 0 0     
Citalopram 14 0 0     
Pentostatin 32 0 0     
Dizocilpine Maleate 57 0 0     
Capsaicin 115 0 0     
tamoxifen aziridine 6 0 0     
N(6)-
cyclohexyladenosine 29 0 0     
Bromocriptine 120 0 0     
Ketanserin 45 0 0     
chrysarobin 7 0 0     
tricalcium phosphate 6 0 0     
Ranked by AvgRank      

Tamoxifen 167 0 0     
Pyridoxine 158 1996 1 metabolism analysis 
Chloroquine 226 2003 2 blood pharmacology 
Bromocriptine 120 0 0     
Dimethyl Sulfoxide 245 0 0     
Haloperidol 126 0 0     
Kainic Acid 139 0 0     
Capsaicin 115 0 0     
Lead 243 0 0     
Clonidine 115 0 0     
Hydroxyurea 106 0 0     
Molybdenum 112 2001 1 urine   
Vanadium 148 0 0     
Silver 116 2007 1 drug therapy adverse effects 
Dipyridamole 106 0 0     
Guanosine Triphosphate 163 0 0     

Uridine 119 2002 2 drug therapy 
analogs & 
derivatives 

Cadmium Chloride 106 0 0     
Naloxone 141 1995 1   pharmacology 

Lidocaine 133 2001 1 metabolism 
analogs & 
derivatives 
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Appendix 3.   Psoriasis:  Top 20 chemicals returned by each ranking  

The columns with white background represent data from the Baseline Period.  The 

gray columns are drawn from the Test Period.  ProtCt is the count of proteins from the 

protein pool the chemical has annotated with it.  FirstYr is the first year the chemical appears 

as the subject chemical in an article that also has an annotation of the disease.  DisQual and 

ChemQual are the most common disease qualifiers (or subheadings) and chemical qualifiers 

(subheadings) appearing in the annotations when the chemical is annotated with the disease.   

Appendix 3A.  Psoriasis 1984-1985  
Ranked by ProtCt 
ChemName Protct FirstYr  ArtCt DisQual ChemQual 
Estradiol 232 0 0     
Phenobarbital 160 1994 1 complications adverse effects 
Lead 147 0 0     
Tetra. Acetate 144 1989 1 blood pharmacology 
Cadmium 138 0 0     
Vitamin E 135 1988 5 blood blood 
Puromycin 134 0 0     
Glycerol 129 0 0     
Hydrogen Peroxide 127 1989 2 blood pharmacology 
Morphine 126 0 0     
Adenine 124 1999 1 complications   
Phenytoin 123 1985 1 complications adverse effects 
Formaldehyde 122 0 0     
Heme 119 0 0     
Mercaptoethanol 118 0 0     
Clofibrate 115 1991 1 drug therapy therapeutic use 
Ethinyl Estradiol 114 0 0     
Rifampin 110 1986 6 drug therapy therapeutic use 
Halothane 110 0 0     
Methylcholanthrene 109 0 0     
Ranked by WtProp   

Estradiol 232 0 0     
Lead 147 0 0     
Phenobarbital 160 1994 1 complications adverse effects 
Vitamin E 135 1988 5 blood blood 
Puromycin 134 0 0     
Tetradecanoylphorbol 
Acetate 144 1989 1 blood pharmacology 
Mercaptoethanol 118 0 0     
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Phenytoin 123 1985 1 complications adverse effects 
Cadmium 138 0 0     
Bromodeoxyuridine 104 0 0     
Rifampin 110 1986 6 drug therapy therapeutic use 
Ozone 94 2000 1 therapy adverse effects 
Carbon Tetrachloride 107 0 0     
Formaldehyde 122 0 0     
Halothane 110 0 0     
Hydrogen Peroxide 127 1989 2 blood pharmacology 
Adenine 124 1999 1 complications   
Glycerol 129 0 0     
Periodic Acid 95 0 0     
Clofibrate 115 1991 1 drug therapy therapeutic use 
Ranked by WtCOS    
Congo Red 26 0 0     

Calcitriol 48 1985 353 drug therapy 
analogs & 
derivatives 

Carbazilquinone 4 0 0     
Warfarin 67 1992 2 drug therapy therapeutic use 
Selenious Acid 20 0 0     
Metiamide 13 0 0     
Succinylcholine 41 2007 1 complications therapeutic use 
Metoclopramide 18 0 0     
Cholecalciferol 66 1986 41 drug therapy therapeutic use 
Danazol 46 0 0     
oxmetidine 5 0 0     
Yohimbine 13 1988 1 blood therapeutic use 
Acenocoumarol 19 0 0     
Phenindione 25 0 0     
Dextromoramide 2 0 0     
Carbimazole 16 0 0     
Glyburide 40 1987 1 pathology adverse effects 
Dimethadione 6 0 0     
Pregnenolone 44 0 0     
Famotidine 3 0 0     
Ranked by AvgRank      

Rifampin 110 1986 6 drug therapy therapeutic use 
Lead 147 0 0     
Hydrochloric Acid 85 0 0     
Ethinyl Estradiol 114 0 0     
Vitamin E 135 1988 5 blood blood 
Propylthiouracil 85 1993 16 drug therapy therapeutic use 
Phenobarbital 160 1994 1 complications adverse effects 
Bromodeoxyuridine 104 0 0     
Cholecalciferol 66 1986 41 drug therapy therapeutic use 
Cisplatin 76 0 0     
Warfarin 67 1992 2 drug therapy therapeutic use 
Formaldehyde 122 0 0     
Sodium Dodecyl Sulfate 88 0 0     
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Methylcholanthrene 109 0 0     
Puromycin 134 0 0     
Estriol 89 0 0     
Glycerol 129 0 0     
Adenine 124 1999 1 complications   
Ouabain 104 0 0     
Thiourea 90 0 0     
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Appendix 3B.  Psoriasis 1989-1990  
Ranked by ProtCt 
ChemName Protct FirstYr ArtCt DisQual ChemQual 
Estradiol 337 0 0     
Phenobarbital 202 1994 1 complications adverse effects 
Cadmium 197 0 0     
Lead 187 0 0     
Morphine 175 0 0     

Doxorubicin 167 2004 1 complications 
administration 
& dosage 

Formaldehyde 160 0 0     
Glycerol 155 0 0     
Puromycin 155 0 0     
Calcimycin 151 0 0     
Ethinyl Estradiol 150 0 0     
Adenine 150 1999 1 complications   
Mercaptoethanol 149 0 0     
Heme 143 0 0     
Aluminum 142 0 0     
Halothane 142 0 0     
Carbon Tetrachloride 141 0 0     
Cisplatin 140 0 0     
Putrescine 140 0 0     
Nicotine 139 2006 1 drug therapy pharmacology 
Ranked by WtProp   

Estradiol 337 0 0     
Lead 187 0 0     
Cadmium 197 0 0     
Mercaptoethanol 149 0 0     
Phenobarbital 202 1994 1 complications adverse effects 
Puromycin 155 0 0     
Formaldehyde 160 0 0     
Carbon Tetrachloride 141 0 0     
Asbestos 109 0 0     

Doxorubicin 167 2004 1 complications 
administration 
& dosage 

Ethinyl Estradiol 150 0 0     
Calcimycin 151 0 0     
Aluminum 142 0 0     
Halothane 142 0 0     
Glycerol 155 0 0     
Periodic Acid 114 0 0     
Morphine 175 0 0     
Ozone 121 2000 1 therapy adverse effects 
Deuterium 123 0 0     
Adenine 150 1999 1 complications   
Ranked by WtCOS    
Congo Red 32 0 0     
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Clomiphene 48 0 0     
Pregnenolone 53 0 0     
Succinylcholine 46 2007 1 complications therapeutic use 
Clorgyline 20 0 0     
Warfarin 78 1992 2 drug therapy therapeutic use 
Omeprazole 28 1993 1 complications therapeutic use 
Tolazamide 6 0 0     
Selegiline 15 0 0     
Ouabain 130 0 0     
Metiamide 14 0 0     
1-Methyl-4-phenyl-
1,2,3,6-
tetrahydropyridine 36 0 0     
Vitamin K 1 36 0 0     
15-Hydroxy-11 
alpha,9 alpha-
(epoxymethano)prosta-
5,13-dienoic Acid 18 0 0     
Promegestone 15 0 0     
SQ 29548 9 0 0     
lipid-associated sialic 
acid 3 0 0     
Hydrochloric Acid 95 0 0     
Carbazilquinone 6 0 0     
Mesterolone 8 0 0     
Ranked by AvgRank      

Lead 187 0 0     
Ouabain 130 0 0     
Cisplatin 140 0 0     
Cadmium 197 0 0     
Hydrochloric Acid 95 0 0     
Ethinyl Estradiol 150 0 0     
Phenobarbital 202 1994 1 complications adverse effects 
Adenine 150 1999 1 complications   
Propylthiouracil 108 1993 16 drug therapy therapeutic use 
Warfarin 78 1992 2 drug therapy therapeutic use 
Nicotine 139 2006 1 drug therapy pharmacology 
Silver 100 0 0     
Glycerol 155 0 0     
Danazol 72 0 0     
Estriol 107 0 0     
Carbon Tetrachloride 141 0 0     
Vincristine 109 0 0     
Methylcholanthrene 132 0 0     
Bromodeoxyuridine 120 0 0     
Carbachol 100 0 0     
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Appendix 3C.  Psoriasis 1994-95  
Ranked by ProtCt 

ChemName 
Prot 
Ct 

First 
Yr ArtCt DisQual ChemQual 

Estradiol 435 0 0     

Doxorubicin 259 2004 1 complications 
administration & 
dosage 

Cadmium 257 0 0     
Cisplatin 245 0 0     
Morphine 240 0 0     
Lead 236 0 0     
Calcimycin 232 0 0     
Formaldehyde 202 0 0     
Nitric Oxide 201 1997 15 metabolism biosynthesis 
Aluminum 198 0 0     
Nicotine 197 2006 1 drug therapy pharmacology 
Tamoxifen 193 1996 3 drug therapy therapeutic use 
Adenine 191 1999 1 complications   
Glycerol 185 0 0     
Butyric Acid 185 0 0     
Halothane 184 0 0     
Puromycin 183 0 0     
Carbon Tetrachloride 179 0 0     
Ozone 179 2000 1 therapy adverse effects 
Putrescine 179 0 0     
Ranked by WtProp   

Estradiol 435 0 0     

Doxorubicin 259 2004 1 complications 
administration & 
dosage 

Calcimycin 232 0 0     
Lead 236 0 0     
Cisplatin 245 0 0     
Cadmium 257 0 0     
Tamoxifen 193 1996 3 drug therapy therapeutic use 
Ozone 179 2000 1 therapy adverse effects 
Carbon Tetrachloride 179 0 0     
Morphine 240 0 0     
Aluminum 198 0 0     
Formaldehyde 202 0 0     
Mercaptoethanol 169 0 0     
Asbestos 137 0 0     
Puromycin 183 0 0     
Ethinyl Estradiol 177 0 0     
Halothane 184 0 0     
Nicotine 197 2006 1 drug therapy pharmacology 
Suramin 160 0 0     
Pentoxifylline 135 1996 5 drug therapy therapeutic use 
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Ranked by WtCOS    
Congo Red 37 0 0     
Cromakalim 27 0 0     
Losartan 25 2008 1 drug therapy adverse effects 
Clorgyline 23 0 0     
DPI 201-106 7 0 0     
Amiloride 107 0 0     
PD 123177 4 0 0     
Veratridine 37 0 0     
Tetraethylammonium 18 0 0     
Tetrodotoxin 77 0 0     
Succinylcholine 50 2007 1 complications therapeutic use 

Paclitaxel 73 2004 1 drug therapy 
administration & 
dosage 

Pregnenolone 75 0 0     
L 365260 16 0 0     
1-Methyl-4-phenyl-
1,2,3,6-
tetrahydropyridine 56 0 0     
SQ 29548 11 0 0     
vapiprost 6 0 0     
L 158809 3 0 0     
Tolazamide 6 0 0     

Sodium, Dietary 66 2004 2 drug therapy 
administration & 
dosage 

Ranked by AvgRank      

Cadmium 257 0 0     
Nitric Oxide 201 1997 15 metabolism biosynthesis 
Ouabain 156 0 0     
Lead 236 0 0     
Amiloride 107 0 0     
Carbon Tetrachloride 179 0 0     
Silver 120 0 0     
Morphine 240 0 0     
Cisplatin 245 0 0     
Hydrochloric Acid 102 0 0     
Cadmium Chloride 114 0 0     
Naloxone 134 0 0     
Ethinyl Estradiol 177 0 0     
Penicillin G 134 0 0     
Estriol 111 0 0     
Glycerol 185 0 0     
Dimethylnitrosamine 99 0 0     

Phosphorylcholine 83 2006 1 complications 
analogs & 
derivatives 

Kainic Acid 134 0 0     
Danazol 98 0 0     
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Appendix 4.  Migraine:  Top 20 chemicals returned by each ranking 

 
The columns with white background represent data from the Baseline Period.  The 

gray columns are drawn from the Test Period.  ProtCt is the count of proteins from the 

protein pool the chemical has annotated with it.  FirstYr is the first year the chemical appears 

as the subject chemical in an article that also has an annotation of the disease.  DisQual and 

ChemQual are the most common disease qualifiers (or subheadings) and chemical qualifiers 

(subheadings) appearing in the annotations when the chemical is annotated with the disease.   

Appendix 4A.  Migraine 1984-85   
Ranked by ProtCt 
ChemName Protct FirstYr ArtCt DisQual ChemQual 
Sodium 81 2006 1 blood cerebrospinal fluid 
Magnesium 74 1985 40 blood blood 
Zinc 74 0 0     
Copper 69 1986 1 etiology adverse effects 
Corticosterone 67 0 0     
Prednisolone 67 2007 1 complications therapeutic use 

Edetic Acid 66 1989 1 physiopathology 
administration & 
dosage 

Colchicine 65 0 0     
Lead 64 0 0     
Atropine 61 0 0     
Nicotine 61 1999 3 drug therapy adverse effects 
Bucladesine 60 0 0     
Cycloheximide 60 0 0     
Cyclic GMP 60 1995 4 physiopathology blood 
Manganese 59 0 0     

Iodine 55 1990 1 diagnosis 
administration & 
dosage 

Isoflurophate 55 0 0     
Nitrogen 55 0 0     
Mercury 54 0 0     
Halothane 54 0 0     
Ranked by WtProp   

Phenoxybenzamine 51 0 0     
Phentolamine 47 0 0     
Nicotine 61 1999 3 drug therapy adverse effects 
Atropine 61 0 0     
Isoflurophate 55 0 0     



 

178 
 

Guanethidine 36 0 0     
Prednisolone 67 2007 1 complications therapeutic use 
Desipramine 36 0 0     
Corticosterone 67 0 0     
Sodium 81 2006 1 blood cerebrospinal fluid 
Pilocarpine 38 0 0     
Thiopental 38 0 0     
Halothane 54 0 0     
Carbachol 44 0 0     
Lead 64 0 0     
Methylprednisolone 49 2000 3 therapy therapeutic use 
Apomorphine 37 1990 6 physiopathology pharmacology 

Ketamine 35 1995 2 drug therapy 
administration & 
dosage 

Baclofen 26 1990 3 drug therapy therapeutic use 
Mazindol 17 0 0     
Ranked by WtCOS   
Vitamin D 36 1994 1 drug therapy therapeutic use 
Ouabain 44 0 0     
Parathion 23 0 0     

Clomiphene 21 1992 2 
chemically 
induced adverse effects 

Iodine 55 1990 1 diagnosis 
administration & 
dosage 

Succinylcholine 20 0 0     
Nitromifene 8 0 0     
Carbimazole 7 0 0     
Dihydrotestosterone 35 0 0     
Phenformin 26 0 0     
Oxotremorine 16 0 0     
Propylthiouracil 42 0 0     
Mitoguazone 7 0 0     
Creatinine 43 0 0     
Carbon Monoxide 20 0 0     
Medroxyprogesterone 
17-Acetate 15 1997 1 drug therapy 

administration & 
dosage 

Quinuclidinyl 
Benzilate 10 0 0     
Ethambutol 5 0 0     
Nitric Oxide 7 1991 41 physiopathology blood 
Silver 25 0 0     
Ranked by AvgRank      

Corticosterone 67 0 0     
Sodium 81 2006 1 blood cerebrospinal fluid 
Atropine 61 0 0     

Iodine 55 1990 1 diagnosis 
administration & 
dosage 

Creatinine 43 0 0     
Prednisolone 67 2007 1 complications therapeutic use 
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Isoflurophate 55 0 0     
Propylthiouracil 42 0 0     
Phentolamine 47 0 0     
Ouabain 44 0 0     
Magnesium 74 1985 40 blood blood 
Apomorphine 37 1990 6 physiopathology pharmacology 
Zinc 74 0 0     
Pilocarpine 38 0 0     
Bilirubin 45 0 0     
Carbachol 44 0 0     
DDT 42 0 0     
Puromycin 49 0 0     
Calcimycin 45 0 0     
Cysteamine 38 0 0     
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Appendix 4B.  Migraine 1989-1990  
Ranked by ProtCt 
ChemName Protct FirstYr  ArtCt DisQual ChemQual 

Sodium 109 2006 1 blood 
cerebrospinal 
fluid 

Zinc 102 0 0     
Tetradecanoylphorbol 
Acetate 87 0 0     
Colchicine 87 0 0     
Prednisolone 85 2007 1 complications therapeutic use 
Nicotine 84 1999 3 drug therapy adverse effects 
Cyclic GMP 83 1995 4 physiopathology blood 
Corticosterone 83 0 0     
Bucladesine 83 0 0     
Atropine 82 0 0     
Lead 80 0 0     
Cycloheximide 79 0 0     
Manganese 77 0 0     

Cyclophosphamide 70 2001 1 etiology 
administration 
& dosage 

Iodine 69 1990 1 diagnosis 
administration 
& dosage 

Nitrogen 69 0 0     
Halothane 68 0 0     
Vitamin A 67 0 0     
Calcimycin 67 0 0     
Cadmium 67 0 0     
Ranked by WtProp   

Phenoxybenzamine 60 0 0     
Atropine 82 0 0     
Phentolamine 59 0 0     
Nicotine 84 1999 3 drug therapy adverse effects 
Guanethidine 45 0 0     

Sodium 109 2006 1 blood 
cerebrospinal 
fluid 

Prednisolone 85 2007 1 complications therapeutic use 
Isoflurophate 62 0 0     
Pilocarpine 51 0 0     
Cyclic GMP 83 1995 4 physiopathology blood 
Thiopental 47 0 0     
Colchicine 87 0 0     
Pentylenetetrazole 47 0 0     
Methylprednisolone 65 2000 3 therapy therapeutic use 

Ketamine 47 1995 2 drug therapy 
administration 
& dosage 

Carbachol 63 0 0     
Baclofen 38 1990 3 drug therapy therapeutic use 
Desoxycorticosterone 66 0 0     
Apomorphine 49 1990 6 physiopathology pharmacology 
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Lead 80 0 0     
Ranked by WtCOS ArtCt DisQual ChemQual 
Parathion 28 0 0     
Vitamin D 48 1994 1 drug therapy therapeutic use 
Quinuclidinyl Benzilate 12 0 0     
ethylcholine aziridinium 5 0 0     
Succinylcholine 24 0 0     
Oxotremorine 18 0 0     

Clomiphene 29 1992 2 
chemically 
induced adverse effects 

Dizocilpine Maleate 10 0 0     
Calcitriol 50 0 0     
Medroxyprogesterone 
17-Acetate 24 1997 1 drug therapy 

administration 
& dosage 

Ouabain 64 0 0     
Heme 45 0 0     
1,4-dihydropyridine 18 0 0     
W 7 15 0 0     

Iodine 69 1990 1 diagnosis 
administration 
& dosage 

Phenformin 32 0 0     
Gallamine Triethiodide 13 0 0     
BE 2254 6 0 0     
Dihydrotestosterone 52 0 0     
Methylcholanthrene 39 0 0     
Ranked by AvgRank      

Sodium 109 2006 1 blood 
cerebrospinal 
fluid 

Ouabain 64 0 0     

Iodine 69 1990 1 diagnosis 
administration 
& dosage 

Cyclic GMP 83 1995 4 physiopathology blood 
Atropine 82 0 0     
Creatinine 52 0 0     
Isoflurophate 62 0 0     
Zinc 102 0 0     
Apomorphine 49 1990 6 physiopathology pharmacology 
Aluminum 61 0 0     
Corticosterone 83 0 0     
Calcimycin 67 0 0     
Cysteamine 54 0 0     
Carbachol 63 0 0     
Vitamin D 48 1994 1 drug therapy therapeutic use 
Pilocarpine 51 0 0     
Dihydrotestosterone 52 0 0     
Phentolamine 59 0 0     
Hydrochloric Acid 49 0 0     
Thiourea 52 0 0     
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Appendix 4C.  Migraine 1994-1995  
Ranked by ProtCt 

ChemName 
Prot
Ct FirstYr  ArtCt  DisQual ChemQual 

Sodium 139 2006 1 blood 
cerebrospinal 
fluid 

Zinc 132 0 0     
Tetradecanoylphorbol 
Acetate 126 0 0     
Colchicine 114 0 0     
Bucladesine 112 0 0     
Nicotine 110 1999 3 drug therapy adverse effects 
Corticosterone 109 0 0     
Prednisolone 109 2007 1 complications therapeutic use 
Cyclic GMP 108 1995 4 physiopathology blood 
Cycloheximide 105 0 0     
Lead 105 0 0     
Cadmium 102 0 0     
Atropine 99 0 0     
Hydrogen Peroxide 96 0 0     
Calcimycin 95 0 0     
Manganese 95 0 0     
Halothane 94 0 0     

Cyclophosphamide 93 2001 1 etiology 
administration & 
dosage 

Tretinoin 91 0 0     
Forskolin 89 0 0     
Ranked by WtProp 
Atropine 99 0 0     
Phentolamine 73 0 0     
Phenoxybenzamine 65 0 0     
Thiopental 66 0 0     

Ketamine 72 1995 2 drug therapy 
administration & 
dosage 

Nicotine 110 1999 3 drug therapy adverse effects 
Guanethidine 54 0 0     
Colchicine 114 0 0     
Prednisolone 109 2007 1 complications therapeutic use 

Sodium 139 2006 1 blood 
cerebrospinal 
fluid 

Pentylenetetrazole 63 0 0     
Halothane 94 0 0     
Pilocarpine 66 0 0     
Isoflurophate 76 0 0     
Cyclic GMP 108 1995 4 physiopathology blood 
Methylprednisolone 87 2000 3 therapy therapeutic use 
Ouabain 84 0 0     
Lead 105 0 0     
Corticosterone 109 0 0     
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Potassium Chloride 85 0 0     
Ranked by WtCOS 
Quinuclidinyl Benzilate 15 0 0     
ethylcholine aziridinium 14 0 0     
1,4-dihydropyridine 26 0 0     
Parathion 33 0 0     
beta-Naphthoflavone 16 0 0     
Oxotremorine 28 0 0     
Hydrochlorothiazide 45 0 0     
(4-(m-
Chlorophenylcarbamoylox
y)-2-
butynyl)trimethylammoniu
m Chloride 10 0 0     
N(6)-cyclohexyladenosine 19 0 0     
Succinylcholine 28 0 0     
Promegestone 13 0 0     
Tolbutamide 53 0 0     
Ouabain 84 0 0     
CGP 12177 5 0 0     
W 7 26 0 0     
Sodium, Dietary 49 0 0     

Losartan 18 1995 1 
chemically 
induced   

Prostaglandins H 19 0 0     
BE 2254 10 0 0     
N(6)-cyclopentyladenosine 9 0 0     
Ranked by AvgRank      

Sodium 139 2006 1 blood 
cerebrospinal 
fluid 

Cyclic GMP 108 1995 4 physiopathology blood 
Ouabain 84 0 0     
Atropine 99 0 0     
Carbachol 81 0 0     
Calcimycin 95 0 0     
Isoflurophate 76 0 0     
Zinc 132 0 0     
Creatinine 62 0 0     
Forskolin 89 0 0     
Pilocarpine 66 0 0     
Aluminum 84 0 0     
Corticosterone 109 0 0     
Tolbutamide 53 0 0     
Kainic Acid 79 0 0     
Yohimbine 51 0 0     
Sodium, Dietary 49 0 0     
Hydrochloric Acid 55 0 0     
Amiloride 56 0 0     
Cadmium 102 0 0     
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Appendix 5.  Cystic Fibrosis:  Gold standard chemicals by highest article count 

 
This table shows what the ABC routines should have found and ranked high.  

Number 1 is the highest rank.  ArtCt is the number of articles that connect the chemical to the 

disease in the Test Period.  FirstYr is the first year the chemical (as subject chemical) is 

annotated with the disease.  ProtCt is the number of proteins from the disease protein pool 

that the chemical has annotated with it in the Baseline Period.  The four ranking 

methodologies are described in the text of Chapter 3.  The data in the columns shaded in gray 

are data elements derived from ChemoText in the Baseline period.  The columns with the 

white background are pulled from the Test Period.      

 
 

Appendix 5A.  Cystic Fibrosis 1984-1985 
Rankings (out of 5,555 chems 
in HS) 

ArtCt 
First 
Yr DisQual 

Prot 
Ct ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot
Ct 

109 1985 complications 1 Ciprofloxacin 4184 4160 3649 4290 
64 1995 metabolism 16 Nitric Oxide 905 1218 1175 645 
27 1990 drug therapy 27 Ibuprofen 602 1427 357 396 
22 1985 metabolism 91 Taurine 48 308 66 52 
21 1985 complications 7 Aztreonam 1405 1975 1034 1260 
13 1985 microbiology 10 Imipenem 851 1073 872 936 
11 1991 metabolism 6 Uridine Triphosphate 1646 1117 4030 1353 
11 1999 microbiology 14 4-Butyrolactone 1154 1956 991 731 
10 1991 drug therapy 10 Omeprazole 1015 1547 795 954 
10 1998 metabolism 115 Hydrogen Peroxide 3 70 43 24 
9 1996 blood 2 beta Carotene 3175 2808 4266 3009 
9 1992 metabolism 39 Forskolin 152 296 234 268 
8 1985 drug therapy 2 Cisapride 3144 3099 2600 3166 
8 1995 complications 3 Budesonide 1794 1612 1514 2106 
8 1993 drug therapy 71 Mannitol 390 1320 107 103 
7 1988 microbiology 4 Pyocyanine 1318 821 1699 1713 
7 1990 metabolism 30 Ranitidine 162 202 282 355 
6 1998 drug therapy 4 pamidronate 1149 468 1706 1689 
6 1985 metabolism 35 Lactic Acid 544 1308 412 301 
6 1989 blood 76 Carnitine 68 276 108 87 
6 1987 metabolism 82 Furosemide 20 156 57 74 
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6 1989 microbiology 93 Rifampin 126 597 58 49 
5 1999 complications 10 Megestrol Acetate 908 1211 873 940 
5 1987 blood 24 Malondialdehyde 597 1174 541 439 
5 1992 metabolism 119 Adenosine 1 50 48 23 
4 1985 metabolism 2 Cilastatin 2470 1915 2618 2679 
4 1997 therapy 8 Polyethyleneimine 1279 1136 1902 1106 
4 1986 complications 24 Talc 166 106 331 422 
4 2001 physiopathology 46 Glyburide 87 216 122 208 
4 1995 complications 54 Amphotericin B 102 234 209 158 
4 1988 metabolism 106 Caffeine 96 499 47 31 
4 1990 drug therapy 131 Lithium 32 293 15 12 

Appendix 5B. Cystic Fibrosis 1989-1990   
Rankings (out of 9,292 chems 
in HS) 

Art Ct 
First 
Yr DisQual 

Prot 
Ct ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot 
Ct 

64 1995 metabolism 40 Nitric Oxide 278 567 615 366 
40 1995 drug therapy 3 Azithromycin 4267 4910 2895 3867 
27 1990 drug therapy 50 Ibuprofen 295 1336 229 30 
17 1991 complications 1 Itraconazole 9288 6566 9287 6566 
14 1995 drug therapy 9 meropenem 1696 2648 1251 1525 
13 2004 drug therapy 5 Curcumin 2148 2363 1997 2334 
11 1991 metabolism 13 Uridine Triphosphate 1102 719 2521 1099 
11 1999 microbiology 22 4-Butyrolactone 917 1125 907 697 
10 1998 drug therapy 7 Genistein 1540 1032 2586 1783 
10 1991 drug therapy 34 Omeprazole 179 309 430 431 
10 1998 metabolism 167 Hydrogen Peroxide 1 94 23 50 
9 1996 blood 3 beta Carotene 4073 3572 6728 3541 
9 1992 metabolism 105 Forskolin 139 821 76 103 

8 1992 drug therapy 5 
1,3-dipropyl-8-
cyclopentylxanthine 2746 3385 2257 2436 

8 1995 complications 11 Budesonide 1019 726 1039 1278 
8 1993 drug therapy 92 Mannitol 610 1620 95 132 
7 1990 metabolism 64 Ranitidine 33 126 134 208 
6 2000 drug therapy 3 Clarithromycin 2186 699 3745 3135 
6 1998 drug therapy 9 pamidronate 349 803 1073 1466 
5 1992 drug therapy 2 benzamil 5207 4628 7105 4961 
5 1999 complications 15 Megestrol Acetate 699 301 805 981 
5 1992 metabolism 166 Adenosine 5 199 40 51 

4 1992 genetics 10 

8-((4-
chlorophenyl)thio)cy
clic-3',5'-AMP 1675 2409 1575 1413 

4 1997 therapy 16 Polyethyleneimine 784 218 1206 930 

4 2001 
physiopatholo
gy 67 Glyburide 71 339 125 199 

4 1995 complications 84 Amphotericin B 266 1225 131 156 
4 1990 drug therapy 180 Lithium 54 495 12 43 

Appendix 5C. Cystic Fibrosis 1994-1995  
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Rankings (out of 14,143 
entries in HS) 

ArtCt 
First 
Yr DisQual 

Protc
t ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot 
Ct 

64 1995 metabolism 182 Nitric Oxide 30 382 73 25 
40 1995 drug therapy 23 Azithromycin 1770 4308 710 1038 
14 1995 drug therapy 12 meropenem 1549 2264 1470 1760 
13 2004 drug therapy 24 Curcumin 1134 2360 1016 1000 
11 1999 microbiology 38 4-Butyrolactone 985 2477 852 586 
10 1998 drug therapy 66 Genistein 66 101 375 274 
10 1998 metabolism 249 Hydrogen Peroxide 21 365 16 4 
9 1997 genetics 2 4-phenylbutyric acid 5347 3884 5448 6573 
9 1996 blood 8 beta Carotene 2075 780 4432 2394 
8 2000 microbiology 2 homoserine lactone 8518 8414 7668 8454 
8 1995 complications 30 Budesonide 714 1446 767 764 
7 1997 surgery 127 Tacrolimus 197 1166 86 81 
6 1997 drug therapy 11 fluticasone 2443 3922 2103 1949 
6 2000 drug therapy 18 Clarithromycin 2516 5587 1190 1288 
6 1998 drug therapy 21 pamidronate 661 725 1006 1091 
5 1999 complications 22 Megestrol Acetate 786 1387 792 1061 

4 2001 blood 1 25-hydroxyvitamin D 9754 
1091

8 9505 
1097

7 
4 1997 drug therapy 9 salmeterol 2620 4223 1805 2298 
4 1997 therapy 27 Polyethyleneimine 700 1016 1065 862 

4 2001 
physiopatholo
gy 105 Glyburide 402 1803 94 130 

4 1995 complications 119 Amphotericin B 212 1188 90 97 
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Appendix 6.  Psoriasis: Gold standard chemicals by highest article count  

This table shows what the ABC routines should have found and ranked high.  

Number 1 is the highest rank.  ArtCt is the number of articles that connect the chemical to the 

disease in the Test Period.  FirstYr is the first year the chemical (as subject chemical) is 

annotated with the disease.  ProtCt is the number of proteins from the disease protein pool 

that the chemical has annotated with it in the Baseline Period.  The four ranking 

methodologies are described in the text of Chapter 3.  The data in the columns shaded in gray 

are data elements derived from ChemoText in the Baseline period.  The columns with the 

white background are pulled from the Test Period.           

 
 

Appendix 6A.  Psoriasis 1984-1985 
Rankings (out of 5,532 
entries in HS) 

ArtCt 
First 
Yr DisQual 

Prot 
Ct ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot
Ct 

353 1985 drug therapy 48 Calcitriol 30 2 173 141 
41 1986 drug therapy 66 Cholecalciferol 9 9 64 80 
16 1993 drug therapy 85 Propylthiouracil 6 44 40 47 
15 1997 metabolism 23 Nitric Oxide 233 255 551 379 
13 1987 drug therapy 36 Sulfasalazine 224 746 171 225 
12 1997 drug therapy 2 zinc pyrithione 2753 2391 2628 2777 
11 1986 drug therapy 16 Capsaicin 386 149 1014 525 
8 1987 drug therapy 1 Zidovudine 5102 5149 5092 5086 

7 1986 drug therapy 7 

Trimethoprim-
Sulfamethoxazole 
Combination 970 839 1444 1084 

7 1991 drug therapy 24 Ranitidine 164 178 408 363 
7 1993 drug therapy 49 Methimazole 58 260 106 138 

6 1985 drug therapy 9 

1-
hydroxycholecalci
ferol 373 78 666 878 

6 1985 blood 30 Malondialdehyde 340 932 278 291 
6 1986 drug therapy 110 Rifampin 1 24 11 18 
5 1996 drug therapy 26 Pentoxifylline 226 489 323 339 
5 1985 drug therapy 49 Thalidomide 40 133 104 137 
5 1988 blood 135 Vitamin E 5 97 4 6 

4 1988 
chemically 
induced 1 Terfenadine 5302 5320 5301 5469 
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4 1994 drug therapy 3 fludarabine 2273 1893 2765 2054 
4 1986 metabolism 8 Urocanic Acid 796 914 843 981 
4 1989 diagnosis 8 Amoxicillin 982 1043 1264 988 
4 1997 drug therapy 10 Minocycline 979 1634 726 854 
4 1985 drug therapy 17 Flurbiprofen 726 1453 545 521 
4 1994 drug therapy 22 Vidarabine 172 29 554 395 
4 1986 drug therapy 39 Sulfamethoxazole 152 516 167 202 
4 1993 drug therapy 46 Nifedipine 155 588 155 156 
4 1986 drug therapy 80 Erythromycin 82 515 38 58 

Appendix 6B.  Psoriasis 1989-1990    
Rankings (out of 9,192 
entries in HS) 

ArtCt 
First 
Yr DisQual 

Prot 
Ct ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot
Ct 

34 1990 drug therapy 1 
dimethyl 
fumarate 8448 7819 8432 7893 

16 1993 drug therapy 108 Propylthiouracil 9 109 37 50 
15 1997 metabolism 51 Nitric Oxide 123 359 292 202 
12 1997 drug therapy 3 zinc pyrithione 4040 4089 3954 3618 

9 1993 
chemically 
induced 6 terbinafine 2191 2561 2232 1986 

7 1990 drug therapy 2 maxacalcitol 5451 5414 5040 5423 
7 1991 drug therapy 56 Ranitidine 47 119 180 172 
7 1993 drug therapy 72 Methimazole 90 426 91 111 
5 1991 drug therapy 1 bimolane 6251 6611 5933 6611 

5 2004 
chemically 
induced 2 imiquimod 5114 4873 4482 5050 

5 1996 drug therapy 54 Pentoxifylline 271 1113 157 182 
4 1994 drug therapy 5 fludarabine 3045 3376 3645 2373 
4 1997 drug therapy 20 Minocycline 640 1433 570 688 
4 1994 drug therapy 36 Vidarabine 117 57 427 330 
4 1993 drug therapy 106 Nifedipine 744 2868 47 54 

Appendix 6C.  Psoriasis 1994-1995 
Rankings (out of 13,393 
entries in HS) 

ArtCt 
FirstY
r DisQual Protct ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot
Ct 

20 1997 drug therapy 14 
mycophenolate 
mofetil 635 543 1156 1389 

15 1997 metabolism 201 Nitric Oxide 2 29 28 9 
12 1997 drug therapy 3 zinc pyrithione 5830 5708 5990 5287 
11 1995 drug therapy 13 fluticasone 2487 4978 1422 1576 
6 1996 drug therapy 5 citraconic acid 5331 7612 3337 3667 
5 1995 drug therapy 4 liarozole 3285 3035 3156 3926 
5 2003 drug therapy 5 pioglitazone 4372 5240 4011 3543 

5 2004 
chemically 
induced 10 imiquimod 982 470 1796 1857 

5 2002 drug therapy 15 leflunomide 1338 2512 1209 1347 
5 1996 drug therapy 135 Pentoxifylline 346 1940 20 52 
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4 1997 drug therapy 42 Minocycline 621 2291 309 434 
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Appendix 7.  Migraine: Gold standard chemicals by highest article count 

 
This table shows what the ABC routines should have found and ranked high.  

Number 1 is the highest rank.  ArtCt is the number of articles that connect the chemical to the 

disease in the Test Period.  FirstYr is the first year the chemical (as subject chemical) is 

annotated with the disease.  ProtCt is the number of proteins from the disease protein pool 

that the chemical has annotated with it in the Baseline Period.  The four ranking 

methodologies are described in the text of Chapter 3.  The data in the columns shaded in gray 

are data elements derived from ChemoText in the Baseline period.  The columns with the 

white background are pulled from the Test Period.      

 

7A.  Migraine – Highest gold standard chemicals 1984-1985 order by descending Article 
Count (ArtCt).   

Rankings (out of 4,006 chems 
in HS) 

Art 
Ct 

First
Yr DisQual 

Prot
Ct ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot
Ct 

88 1988 drug therapy 32 Valproic Acid 129 369 72 111 
41 1991 physiopathology 7 Nitric Oxide 610 19 2231 638 
40 1985 blood 74 Magnesium 11 41 61 2 
19 1992 drug therapy 13 Fluoxetine 671 1701 121 395 
15 1986 drug therapy 37 Melatonin 48 193 34 76 
13 1992 drug therapy 25 Acetazolamide 148 257 195 169 
12 1995 drug therapy 20 Capsaicin 83 31 158 229 
11 1991 drug therapy 9 Butorphanol 676 1443 218 578 

10 1988 
chemically 
induced 6 

1-(3-
chlorophenyl)piper
azine 861 1588 314 818 

10 1989 drug therapy 33 Meperidine 130 424 26 105 
10 2001 drug therapy 8 Dipyrone 435 577 364 605 
9 1991 drug therapy 18 Magnesium Sulfate 144 85 272 256 
8 1989 drug therapy 6 Nicardipine 900 1253 792 799 
8 1997 drug therapy 15 Droperidol 200 372 105 330 
6 1990 physiopathology 37 Apomorphine 12 57 17 74 
5 1985 drug therapy 14 Mianserin 253 360 252 350 

5 1987 blood 21 
Platelet Activating 
Factor 374 877 268 224 
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5 1991 drug therapy 5 Buspirone 613 549 706 849 
5 1992 drug therapy 5 Piroxicam 955 834 1402 875 

5 1996 
prevention & 
control 2 iprazochrome 1888 2193 823 2161 

4 1986 drug therapy 20 Tamoxifen 187 134 402 230 
4 1987 drug therapy 21 Phenelzine 669 1865 119 226 
4 1992 drug therapy 4 Ketoprofen 1115 1532 692 1140 
4 1992 drug therapy 1 oxetorone 2535 2923 1878 2923 
4 1993 drug therapy 24 Diphenhydramine 108 222 111 180 
4 1995 physiopathology 60 Cyclic GMP 53 275 25 14 
4 1996 drug therapy 7 Acenocoumarol 535 184 1178 645 

4 1999 
chemically 
induced 2 Sertraline 1662 1872 918 1953 

4 2004 blood 20 Octopamine 188 342 188 238 
4 2004 blood 3 Synephrine 1642 1580 2352 1432 
4 2004 drug therapy 24 Fentanyl 180 471 74 183 
4 2005 drug therapy 2 Tramadol 1071 837 871 1616 

7B.  Migraine – Highest gold standard chemicals 1989-1990 order by descending Article 
Count (ArtCt).   

Rankings (out of 7,122 chems 
in HS) 

Art 
Ct 

First
Yr DisQual 

Prot
Ct ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot
Ct 

41 1991 physiopathology 25 Nitric Oxide 311 647 462 264 
19 1992 drug therapy 24 Fluoxetine 827 2563 28 284 
13 1992 drug therapy 31 Acetazolamide 183 469 184 195 
12 1995 drug therapy 47 Capsaicin 37 203 24 83 
11 1991 drug therapy 11 Butorphanol 821 1931 208 725 
10 2001 drug therapy 14 Dipyrone 344 559 394 519 
9 1991 drug therapy 24 Magnesium Sulfate 190 363 234 279 
8 1997 drug therapy 22 Droperidol 270 858 62 315 
6 1990 physiopathology 49 Apomorphine 9 49 19 69 
5 1991 drug therapy 13 Buspirone 439 934 267 583 
5 1992 drug therapy 10 Piroxicam 1098 1524 1597 776 
5 1993 drug therapy 1 Ketorolac 4674 3823 4373 3826 
5 1993 drug therapy 6 Moclobemide 1661 2828 825 1340 

5 1996 
prevention & 
control 2 iprazochrome 2907 3318 1493 3394 

5 1997 drug therapy 1 KB 2796 4655 3878 4355 3889 
4 1992 drug therapy 7 Ketoprofen 665 492 976 1020 
4 1992 drug therapy 1 oxetorone 3554 4204 2569 4160 

4 1993 
chemically 
induced 3 Ondansetron 2940 3518 2313 2518 

4 1993 drug therapy 31 Diphenhydramine 60 129 80 192 
4 1995 physiopathology 83 Cyclic GMP 4 47 10 7 
4 1996 drug therapy 9 Acenocoumarol 701 320 1713 813 

4 1999 
chemically 
induced 7 Sertraline 1149 1873 745 1110 

4 2004 blood 23 Octopamine 168 250 265 287 
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4 2004 blood 6 Synephrine 1573 2184 1587 1307 
4 2004 drug therapy 37 Fentanyl 137 477 64 139 
4 2004 drug therapy 2 zonisamide 2912 2396 4197 2910 
4 2005 drug therapy 7 Tramadol 1220 2501 272 1135 

7C.  Migraine – Highest gold standard chemicals 1994-1995 order by descending Article 
Count (ArtCt).   

Rankings (out of 10,467 
chems in HS) 

Art 
Ct 

First
Yr DisQual 

Prot
Ct ChemName 

Avg 
Rank 

Wt 
COS 

Wt 
Prop 

Prot
Ct 

12 1995 drug therapy 78 Capsaicin 29 239 21 42 
12 1997 drug therapy 8 lamotrigine 2201 3628 1751 1533 
10 2001 drug therapy 19 Dipyrone 304 404 400 593 
8 1997 drug therapy 26 Droperidol 303 895 105 395 
5 1995 drug therapy 1 dotarizine 6364 9261 5235 8883 

5 1996 
prevention & 
control 2 iprazochrome 3983 4238 2519 4704 

5 1997 drug therapy 6 KB 2796 913 570 1040 1798 

5 1998 
prevention & 
control 1 venlafaxine 5272 6398 4183 5902 

4 1995 physiopathology 108 Cyclic GMP 2 26 15 9 
4 1996 drug therapy 13 Acenocoumarol 737 759 1223 909 

4 1999 
chemically 
induced 9 Sertraline 1568 3207 629 1372 

4 2004 blood 30 Octopamine 179 351 244 314 
4 2004 blood 7 Synephrine 2125 3287 1724 1732 
4 2004 drug therapy 53 Fentanyl 81 334 37 123 
4 2004 drug therapy 11 zonisamide 627 730 721 1070 
4 2005 drug therapy 9 Tramadol 1203 2307 556 1349 
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Appendix 8.  5-HT6 binders and nonbinders used in the modeling sets 

Binders NonBinders 
olanzapine Ephedrine 
Fluphenazine Diclofenac 
Haloperidol Cocaine 
Ketanserin celecoxib 
duloxetine Aspirin 
Loxapine etoricoxib 
Lysergic Acid Diethylamide Ibuprofen 
Amitriptyline Ketorolac 
ziprasidone Methylphenidate 
Mianserin Naproxen 
Molindone nimesulide 
Cyproheptadine N-Methyl-3,4-methylenedioxyamphetamine 
Ergotamine Phenylpropanolamine 
norclozapine Piroxicam 
Methysergide pramipexol 
atomoxetine rofecoxib 
Chlorpromazine Rutin 
Pimozide Trazodone 
venlafaxine valdecoxib 
Amoxapine meloxicam 
Bromocriptine Ephedrine 
quetiapine Diclofenac 
Risperidone Cocaine 
Perphenazine celecoxib 
Clozapine Aspirin 
Thioridazine etoricoxib 
Thiothixene Ibuprofen 
aripiprazole Ketorolac 
Trifluoperazine Methylphenidate 
 Naproxen 
 nimesulide 
 N-Methyl-3,4-methylenedioxyamphetamine 
 Phenylpropanolamine 
 Piroxicam 
 pramipexol 
 rofecoxib 
 Rutin 
 Trazodone 
 valdecoxib 
 meloxicam 
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Appendix 9.  Dopamine Antagonists used in modeling sets 

 

 

 

 

 

 

 

  

Chemical Name 
Methotrimeprazine 
Tiapride 
Thiothixene 
Thioridazine 
Thiethylperazine 
Sulpiride 
Risperidone 
Prochlorperazine 
Pimozide 
Perphenazine 
Metoclopramide 
Trifluoperazine 
Loxapine 
Amoxapine 
Haloperidol 
Fluphenazine 
Flupenthixol 
Droperidol 
Domperidone 
Clopenthixol 
Chlorprothixene 
Chlorpromazine 
Benperidol 
Perazine 
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