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ABSTRACT  

Andy Koltun: Evaluation of Six Chromogenic Diagnostic Culture Media for a One Health ESBL E. coli 
Indicator System for Global AMR Surveillance 

(Under the direction of Mark Sobsey) 

 

To facilitate multisectoral antimicrobial resistance (AMR) surveillance, the World Health 

Organization (WHO) has proposed an integrated culture-based surveillance methodology for direct 

quantification of extended-spectrum- -̡lactam resistant (ESBL) Escherichia coli (E-Ec) in environmental 

ƘƻǘǎǇƻǘǎ ŀƴŘ ŦƻǊ ŘŜǘŜŎǘƛƻƴ ƛƴ ƻǘƘŜǊ ΨhƴŜ IŜŀƭǘƘΩ ƘƻǘǎǇƻǘǎΦ ²Ŝ evaluated six candidate ESBL-selective 

agar media for E-Ec detection and quantification, quantification of E-Ec as a proportion of total E. coli, 

and presumptive identification and characterization of E-Ec in raw sewage, poultry waste, and urban 

surface water analyses. E-Ec quantification used standard membrane filtration (surface water) and 

spread plating (other samples) methods. MALDI-TOF and VITEK analȅǎŜǎ ǾŜǊƛŦƛŜŘ ƛǎƻƭŀǘŜǎΩ ƛŘŜƴǘƛǘȅ ŀƴŘ 

AMR profiles. Results showed Tryptone Bile Glucoronic (TBX) medium was most sensitive for E-Ec 

quantification overall (though not significantly so) and significantly more accurate in presumptively 

identifying and characterizing isolates. These findings support adoption of this AMR indicator system 

using TBX to provide integrated, accurate AMR surveillance methods globally. 
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CHAPTER 1: INTRODUCTION 

 The global misuse and abuse of antimicrobials in clinical, veterinary and agricultural settings has 

encouraged the rise of antimicrobial resistance (AMR). As preventative and curative treatments lose 

potency, AMR has threatened to erase the health and economic advances made by antimicrobial 

chemotherapies over the last century. While the estimates of the negative health impacts of AMR are 

limited, AMR is currently estimated conservatively to be responsible for 700,000 deaths per year 

globally, a number that could skyrocket to 10 million deaths per year by 2050. Moreover, economic 

projections suggest that, across all sectors globally, AMR will cause GDP losses of between 2-3.5% 

between now and 2050 (compared to a timeline between the present day and 2050 without AMR-

attributable economic losses)1,2.  

 Recognizing the AMR threat to human health and prosperity, the international scientific and 

policy communities have agreed to make combating AMR a top priority. While involving many non-

governmental organizations, national governments, and supranational organizations, this response has 

been prominently coordinated under the aegis of the World Health Organization (WHO) and ratified by 

the World Health Assembly in 2014 under the Global Action Plan on Antimicrobial Resistance (GAP). The 

GAP acknowledged several critical knowledge deficits about the state of AMR globally, including 

information on the magnitude and spatial variation of AMR pathogens, plus data on the development 

and spread of resistance through humans, animals, and the environment. Addressing these knowledge 

gaps through robust surveillance is imperative for the development and deployment of policies, tools, 

treatments and practices to combat AMR. Recognizing the resulting need for improved AMR surveillance 

and lamenting a lack of international consensus on a surveillance plan, the GAP sought to galvanize 
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action toward a global set of integrated, harmonized methods for the monitoring and surveillance of 

AMR1.  

 Following that call, in 2015 WHO published the Global Antimicrobial Surveillance System 

(GLASS), a manual for implementing a suite of recommended AMR surveillance approaches ς from 

specimen collection to reporting structures and data management at the national level3. In related and 

parallel initiatives, the WHO Advisory Group on the Integrated Surveillance of Antimicrobial Resistance 

(AGISAR), has worked since 2009 to advance and integrate needed AMR surveillance approaches across 

multiple sectors, initially focusing on foodborne and zoonotic AMR in the nexus between human health, 

animal health, and livestock production4.  

While both GLASS and the initial AGISAR framework represent significant advances in AMR 

surveillance policy, they rely on complex methodologies for monitoring the resistance traits of many 

pathogens to multiple classes of antibiotics. These requirements make these schemes unfeasible and/or 

unsustainable in the lower- and middle-income countries (LMICs) where AMR issues are more severe 

and less manageable. Moreover, these surveillance schemes have historically under-appreciated the 

role of the environment in promoting AMR evolution, proliferation and spread 5. At its sixth meeting in 

2015, AGISAR acknowledged these shortcomings and recommended the development of a simpler 

surveillance program with robust, LMICs-accessible methods that could be integrated and harmonized 

across human, animal, and environmental health (the so-ŎŀƭƭŜŘ άhƴŜ IŜŀƭǘƘέ όhIύύ ǎŜŎǘƻǊǎΦ !ǘ ƛǘǎ тth 

meeting in November 2016, AGISAR came to agree on an integrated microbiological-epidemiological OH 

surveillance protocol centered around the detection of extended-spectrum-‍-lactamase-producing 

Escherichia coli (ESBL E. coli, E-Ec) in OH sample matrices, given the high trans-sectoral prevalence and 

burden of disease associated with E. coli resistant to 3rd-generation cephalosporins and other clinically 
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or agriculturally relevant ‍-lactam antibiotics4ς7. This surveillance protocol and its development became 

colloquially known as the Tricycle Project.  

A main objective for the Tricycle Project was to develop materials and methods for a protocol 

that could simply and accurately detect E-Ec in AMR-relevant settings across all OH sample types8. A key 

question unresolved at this prƻƧŜŎǘΩǎ ƛƴŎŜǇǘƛƻƴ ōŜŎŀƳŜ ǿƘƛŎƘ ŎǳƭǘǳǊŜ-based media selective for ESBL E. 

coli and ESBL non-E. coli coliforms would prove most effective and advantageous. To that end, this 

project examined a set of six candidate, mostly clinical chromogenic agar mediaς thrŜŜ ΨƎŜƴŜǊƛŎΩ ƳŜŘƛŀ 

formulated in-laboratory as well as three proprietary media ς by evaluating their relative performances 

in the direct detection, quantification, purification, and isolation of ESBL E. coli and other ESBL non-E. 

coli coliforms from representative Tricycle Project environmental sample matrices in Chapel Hill, NC, 

USA. Specifically, evaluations relied on comparisons of the detection and enumeration of ESBL-E. 

coli/non-E. coli coliforms and the relative proportion of these ESBL/‍-lactam resistant target bacteria 

relative to all E. coli and non-E. coli coliforms in a series of repeated analysis of samples of surface water, 

wastewater, and poultry waste using these candidate ESBL media and their corresponding non-ESBL 

ΨōŀǎŜƭƛƴŜΩ ŀƴǘƛōƛƻǘƛŎ-free media over a period of one year. The extent of detection and occurrence of 

these target ESBL E. coli and non-E. coli coliforms by the candidate media and their accuracy and 

reliability in presumptively identifying target bacterial isolates and then further confirming and 

characterizing their identities and ESBL antimicrobial resistance properties was determined using both 

phenotypic and also molecular analyses. 
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

 

          This section reviews the current scientific literature to describe the historical and current state of 

AMR detection methods, and then discusses the need for and development of a standardized, One 

Health, culture-based global surveillance system - centered around the detection of ESBL Escherichia coli 

- for the detection of AMR in diverse and interrelated settings. As such, this section intentionally omits 

any extensive discussion of: a comparative discussion of different AMR surveillance schemes; the 

molecular biology underpinnings of AMRΤ ƳƻƭŜŎǳƭŀǊ ŀƴŘ ƻǘƘŜǊ άƴŜȄǘ-ƎŜƴŜǊŀǘƛƻƴέ !aw ŘŜǘŜŎǘƛƻƴ 

methods which may not be globally accessible; and discussion of resistant pathogens which are highly 

concerning but either limited in prevalence or in their relevance to a One Health surveillance framework 

(e.g., multidrug-resistant Mycobacterium tuberculosis, fluconazole-resistant Candida albicans).     

Practice and Policies of AMR Detection/Diagnostics and AST 

 

An antibiotic is any chemical substance produced by microbes predominantly to destroy, or 

ƛƴƘƛōƛǘ ǘƘŜ ƎǊƻǿǘƘ ƻŦΣ ŎƻƳǇŜǘƛƴƎ ƳƛŎǊƻōŜǎΦ ¢Ƙƛǎ ŀŎǘ ƻŦ ΨŀƴǘƛōƛƻǎƛǎΩ Ƙŀǎ ōŜŜƴ ǇǊŜǎŜƴǘ ǎƛƴŎŜ ǘƛƳŜ 

immemorial among environmental microbes, promoting the evolution of antibiotic resistance, i.e., the 

reduced susceptibility of an organism to antibiotics9. Unsurprisingly, then, antibiotics and their 

concomitant resistance in environmental bacteria far predate the modern age of antimicrobial therapy. 

This has been demonstrated by the discovery of bacteria resistant to multiple classes of clinically 

important antibiotics  in areas isolated from any anthropogenic activity10ς12.  

While the natural history of AMR extends back eons, human efforts to detect this resistance are 

much more recent, hailing back to the methodologies of Pasteur, Koch, Erlich, and Fleming in the late 
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1800s and early-to-mid 1940s13. Soon, the advent of minimum inhibitory concentrations (MICs), the 

lowest possible inhibitory concentration of an antibiotic, represented a further milestone in the 

development of confirmatory antimicrobial susceptibility testing (AST) and the surveillance of 

antimicrobial resistance more broadly14,15. The development of MICs led to the advancement of 

άōǊŜŀƪǇƻƛƴǘέ ǘŜŎƘƴƛǉǳŜǎ ŦƻǊ ŎƭŀǎǎƛŦȅƛƴƎ ōŀŎǘŜǊƛŀƭ ǊŜǎƛǎǘŀƴŎŜ ǇƘŜƴƻǘȅǇŜǎ ōȅ ǘƘŜƛǊ ƎǊƻǿǘƘ ŎƻƳǇŀǊŜŘ ǘƻ 

established reference MIC values16ς18, a practice that is still in effect today. Breakpoints have 

encouraged the standardization and harmonization of these reference values under supervisory 

organizations, namely CLSI and EUCAST13. 

These organizations have been forced to revise breakpoint concentrations for antimicrobials as 

exponential increases in antimicrobial consumption for clinical and other uses has created sufficient 

selective pressure for resistance19,20Φ Lƴ ŀƴŘ ōŜȅƻƴŘ ǘƘƛǎ άƳƻǾƛƴƎ ǘŀǊƎŜǘέ ƻŦ ŜǾƻƭǾƛƴƎ ǊŜǎƛǎǘŀƴŎŜ and the 

need for revising breakpoint values, several other challenges exist with these standardized MIC AST 

methods. For example, certain semi-quantitative AST methods (such as agar disk diffusion) may not be 

amenable to reinterpretation should breakpoints change15. Moreover, small test populations may skew 

MIC values21. Institutionally, discordance in diagnosis and treatment can occur when transitioning from 

CLSI vs EUCAST standards or vice versa, even within the same health system22,23. 

Despite their adoption beyond the clinical sphere, clinically defined breakpoint AST methods are 

inherently limited in their application. Clinical methods measure resistance gene expression under 

tightly controlled growth conditions but are often inappropriate outside of the clinical sphere24. In 

contrast, there is a lack of standardized methodology for the surveillance of AMR in non-clinical 

άƘƻǘǎǇƻǘǎΣέ ǘƘƻǎŜ ǎŜǘǘƛƴƎǎ ǿƛǘƘ ŀ ƘƛƎƘ ǇǊŜǾŀƭŜƴŎŜ ŀƴŘ ŜȄŎƘŀƴƎŜ ƻŦ ǊŜǎƛǎǘŀƴŎŜ ǘǊŀƛǘǎ ŦǳǊǘƘŜǊƛƴƎ ǘƘŜƛǊ ǊŀǇƛŘ 

global transmission to other settings25. Such hotspots may include hospitals, wastewater treatment 

plants, pharmaceutical plant wastewater, and aquaculture and livestock facilities26,27. Alternatives to 

clinical breakpoint definitions have been proposed. One is an epidemiological definition of resistance to 
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enable monitoring of how bacteria develop reduced susceptibility to a specific drug. In this scheme, 

resistance is classified according to άŜǇƛŘŜƳƛƻƭƻƎƛŎŀƭ ŎǳǘƻŦŦ ǾŀƭǳŜǎέ όECOFFs) which are derived from the 

normal distribution of MICs in a given bacterial species 24,28. While still subject to skew, an 

ŜǇƛŘŜƳƛƻƭƻƎƛŎŀƭ ǊŜǎƛǎǘŀƴŎŜ ŘŜŦƛƴƛǘƛƻƴΩǎ ŘŜǊƛǾŀǘƛƻƴ ŦǊƻƳ ǘƘŜ ƻǾŜǊŀƭƭ ōŀŎǘŜǊƛŀƭ ǇƻǇǳƭŀǘƛƻƴΩǎ aL/ 

distribution helps to address resistance more accurately across different settings.  

Methodologies for the surveillance of AMR have also recently advanced. Driven by a need for 

quick detection of resistant pathogens in clinical and other settings, rapid AMR detection methods have 

developed to detect ARB to complement AST testing29. Molecular methods especially have transformed 

AMR detection and surveillance, informing and enriching the scientific understanding of a resistome, 

that collection of genetic elements having evolved and transferred between microbes that enable 

resistance. At the same time, the imperfect and often uncertain correlation between molecular 

detection of ARGs and phenotypically detected resistance underscores the continued need for 

phenotypic culture-based testing for AMR, including AST methods. These phenomena are still being 

explained by continued resistome study30,31. 

Culture-based methods have several other advantages for AMR detection. Culture-based 

methods easily enable the characterization of multidrug resistance in a way that highly targeted 

molecular methods may not. Additionally, culture-based methods allow researchers or diagnosticians to 

study bacterial responses to specific antibiotic concentrations, a useful feature when detecting 

intermediate resistance traits32ς34.  

AMR Hotspots and Cross-Sector Fate and Transport 

 

 The lack of a consistent methodology for AMR surveillance across clinical and non-clinical 

settings is more than a merely academic matter.  By improperly handling our water, wastes, and 

foodstuffs, modern human activity can encourage AMR hotspots, further promoting the spread of 

resistant disease35Φ !ǘ ǇǊŜǎŜƴǘΣ ƻƴƭȅ мл҈ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ ǿŀǎǘŜǿŀǘŜǊ ƎŜƴŜǊŀǘŜŘ ŦǊƻƳ ŀƴȅ ŀƴǘƘǊƻǇƻƎŜƴƛŎ 
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activity is discharged with treatment into surface waters36. This scarcity of adequate sanitation globally 

suggests the massive loading of ARGs and ARBs into surface waters, not to mention a massive burden of 

diarrheal disease37,38.  

In addition to inadequate sanitation for AMR environmental sources, the well-documented and 

staggering overuse and misuse of antimicrobials across clinical, agricultural, and community settings 

globally ς and the selective pressure that this overuse and misuse provides, especially in discharged 

wastes ς also contributes to the increasing threat of hotspot-driven AMR transmission37,39ς41. This 

antimicrobial abuse and excess has effects ranging far beyond the facilities in which it occurs. In fact, the 

density of antimicrobial consumption and pollution of untreated wastes containing antimicrobials and 

ARGs represents an ecological issue. Widespread antimicrobial use has been shown to be a prominent 

determinant for the evolution of AMR even outside settings where antimicrobials have been used42,43. 

tǳǘ ŀƴƻǘƘŜǊ ǿŀȅΣ ŀƴǘƛƳƛŎǊƻōƛŀƭǎ ŀǊŜ άǎƻŎƛŜǘŀƭ ŘǊǳƎǎέ ōȅ ǾƛǊǘǳŜ ƻŦ ǘƘŜƛǊ ǳƴƛǉǳŜ ƛƳǇŀŎǘ ƻƴ ǘƘŜ ŜŎƻƭƻƎȅ ƻŦ 

resistance. For example, researchers found that rates of ARB carriage in individuals correlated more 

strongly with community antimicrobial consumption and population density than with personal 

antimicrobial consumption43ς45. 

Within communities, the clinical domain remains a prominent driver of AMR. Modern 

ƳŜŘƛŎƛƴŜΩǎ ŜƳǇƘŀǎƛǎ ƻƴ ƘƛƎƘƭȅ ŎŜƴǘǊŀƭƛȊŜŘ ŀƴŘ ŀƎƎǊŜǎǎƛǾŜ ǘǊŜŀǘƳŜƴǘ ǿƛǘƘƛƴ ƘƻǎǇƛǘŀƭ ǎŜǘǘƛƴƎǎ ŜƴƎŜƴŘŜǊs 

both a reliance on therapeutic and prophylactic antimicrobial prescription, on one hand, and the spread 

of resistant infectious diseases on the other. Even in outpatient settings, a reliance on empirical 

diagnosis and the prescription of broad-spectrum antibiotics have facilitated AMR disease. As a result, 

clinically isolated ARBs have increased in prevalence over time, although better epidemiological 

surveillance and improved clinical antimicrobial stewardship has recently somewhat slowed or even 

reversed this trend for certain resistant infections46. Nonetheless, clinical resistance trends mandate 

urgency.  
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Agriculture may constitute an even larger driver of AMR than clinical operations. Agricultural 

settings, most especially livestock operations, consume a large minority or even a majority of total 

antimicrobial consumption in many countries globally, for therapeutic, prophylactic, and growth-

promoting purposes. There is mounting evidence that widespread non-therapeutic antimicrobial usage 

in livestock operations has been a main contributor to the global rise in antimicrobial resistance37,47. 

Aquaculture facilities present another agricultural hotspot and source for introduction of ARBs and ARGs 

to humans and the environment37.  To wit, the carriage rate of Enterobacteriaceae and other bacteria 

resistant to extended-spectrum beta lactams (ESBLs) - a vitally important class of antimicrobials both 

clinically and agriculturally - is increasing in farm animals, especially poultry48. It is important to note 

that ESBLs are typically not used for livestock growth promotion purposes but may nonetheless find 

prophylactic, metaphylactic, or therapeutic usage on farms49ς51, all of which may contribute to this 

increasing carriage rate of ESBLs. Concurrently, while antimicrobial growth promoters are typically not 

used therapeutically for humans or animals, the use of similar drugs may promote cross-resistance to 

clinically important antibiotics. For example, the use of avoparcin, a glycopeptide antibiotic as a poultry 

growth-promoter may encourage cross resistance to vancomycin, another glycopeptide antibiotic that is 

vitally important clinically50. Moreover, other common antibiotics used to treat human disease, such as 

ǘŜǘǊŀŎȅŎƭƛƴŜǎ ŀƴŘ ǎǳƭŦƻƴŀƳƛŘŜǎΣ ŀǊŜ ŀƭǎƻ ǳǎŜŘ ŀǘ ǾŀǊƛƻǳǎ Ǉƻƛƴǘǎ ƛƴ ŀƴƛƳŀƭǎΩ ƭƛŦŜ ŎȅŎƭŜǎ51. Thus, both 

directly and by promotion of cross-resistance, antimicrobial consumption in animals may create 

selective pressure for resistance to clinically relevant antibiotics.  

Environmental media represent further potential AMR hotspots and play a key role in mediating 

resistance. The discharge of human or animal wastes into the environment a) allows the conveyance of 

extant ARBs and ARGs, and b)allows the convergence of commensal/pathogenic enteric bacteria and 

environmental bacteria, which may harbor ARGs and άǇŀǎǎέ ǘƘŜƳ ŀƭƻƴƎ ǘƻ Ǝǳǘ ŦƭƻǊŀΣ ǇǊƻƳƻǘƛƴƎ ŦǳǊǘƘŜǊ 

resistance52. For example, there is some evidence to suggest that qnr quinolone resistance genes in 
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pathogenic Enterobacteriaceae may have emerged from waterborne species in the natural environment 

53.  

Thus, water especially represents a potent vehicle for the dissemination and amplification of 

resistance via selective pressure and horizontal gene transfer of ARGs26,43. These dynamics are especially 

pertinent within urban water systems54. For example, in insufficiently managed municipal water systems 

carrying New Delhi metallo-‍-lactamase 1 (NDM-1) genes, researchers found that resistance to multiple 

classes of antibiotics, including second-line carbapenem ‍-lactam antimicrobials, can be rapidly 

transmitted at once25,55.  

Wastewater effluents comprise another considerable environmental AMR hotspot56. 

Wastewater effluents contain antimicrobial concentrations ranging from nanograms per liter up to 

milligrams per liter (i.e., considerably higher than MIC values), depending on the facility discharging 

these wastes35. These wastes get discharged downstream into surface waters and near or even into 

fields with animal manures57. Even at low antimicrobial concentrations, these wastewater effluents can 

provide pressure for the natural selection of resistance both in situ and in receiving waters and nearby 

areas56. However, certain intensive facilities ς namely hospitals and drug manufacturers ς have much 

higher antimicrobial concentrations58, thus creating even greater selective pressure for the development 

of AMR. Beyond selecting for AMR, wastewater effluents ς especially from municipal and hospital 

facilities ς also convey high quantities of resistant gut flora into the environment. To reiterate, this 

transport increases the risks for human and animal colonization or infection with ARBs and enables the 

exchange of resistance between gut flora and environmental bacteria59ς61. More recently, evidence has 

suggested that wastewater treatment plants themselves may promote the evolution or dissemination of 

AMR, although evidence is still mixed and the exact mechanisms for the selection of resistance in 

treatment plants remain somewhat unclear62,63. 
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Beyond individual domains, AMR hotspots have the potential to transmit and amplify resistance 

both within and across settings. Improper waste management practices encourage the spread of AMR 

between agricultural, clinical, and environmental settings. For example, runoff from the land application 

of manure on farms into surface waters represents a significant introduction of ARGs into the 

environment64. Elsewhere, prophylactic antibiotic provision in livestock and residual resistant bacteria 

from farms left on foodstuffs both represent significant determinants of clinically relevant resistant 

infection in humans65ς67. Similarly, enteric organisms harboring determinants for resistance in clinically 

relevant disease may be passed on from livestock to humans via food handlers68. And, as established 

above, clinical wastes can support environmental reservoirs of AMR that have the potential for further 

spread and potential human or other animal exposures. 

Moving toward a Simple, Standardized One Health AMR Surveillance System 

 

Because AMR hotspots create and contribute to an interconnected One Health system 

promoting the rapid and far-reaching spread of AMR, managing these hotspots should be a top policy 

concern25,43,69. However, there is a paucity of international standards or guidelines to regulate the 

management, treatment, and disposal of wastes. Where management practices have been 

recommended, they are often not implemented or practiced. Exacerbating matters, the lack of global 

ŀƴŘ ǎǘŀƴŘŀǊŘƛȊŜŘ ǎǳǊǾŜƛƭƭŀƴŎŜ Řŀǘŀ ŎƻƴǎǘǊŀƛƴǎ ǘƘŜ ƛƴǘŜǊƴŀǘƛƻƴŀƭ ŎƻƳƳǳƴƛǘȅΩǎ ŀōƛƭƛǘȅ ǘƻ ŀŘŘǊŜǎǎ ǘƘŜǎŜ 

issues. As such, building surveillance and laboratory capacity through the creation and adoption of 

standard, reliable, and rapid tests is vital. WHO acknowledges that any such surveillance system must be 

supported beyond just the human health sectors70. 

Addressing this need, WHO has established an Advisory Group on the Integrated Surveillance of 

Antimicrobial Resistance (AGISAR), to counsel member states in designing integrated AMR surveillance 

efforts that incorporated monitoring of clinical, zoonotic, and foodborne AMR. Additionally, WHO has 

crafted its own Global Antimicrobial Resistance Surveillance System (GLASS) to promote standardized 
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global AMR surveillance. As of 2017, 31 countries had fully enrolled in GLASS, focusing on surveillance of 

ŀ ǎŜǘ ƻŦ ΨǇǊƛƻǊƛǘȅ ǇŀǘƘƻƎŜƴǎΩ ŘŜŜƳŜŘ Ƴƻǎǘ ƘŀȊŀǊŘƻǳǎ ǘƻ ƘǳƳŀƴ ƘŜŀƭǘƘΦ !ǎ ƻŦ ȅŜǘΣ ƘƻǿŜǾŜǊΣ 

environmental surveillance efforts have not advanced much beyond a preliminary, modest set of 

sophisticated metagenomics efforts. Currently, no standardized functional environmental AMR 

surveillance system has been established. As a result, these programs remain incomprehensive5,38,71ς73. 

Furthermore, while these programs and commitments are crucial in in implementing integrated AMR 

surveillance globally, they largely rely on complex methods and surveillance of specific pathogens and 

classes of AMR. AMR is indeed a complex issue spanning many infectious diseases and modes of 

resistance; however, similarly complex monitoring would be onerous, difficult to coordinate and 

implement, and unfeasible for low- and middle-income countries5.  

These surveillance and methodological gaps and challenges, combined with the ecological 

dynamics of AMR across different settings, necessitate a truly trans-sectoral and unifying surveillance 

framework and method. Here, a One Health (OH) framework has proven particularly useful for 

combining human, animal, and environmental health into a more comprehensive and laterally 

integrated concept of AMR issues and how to address them74. The OH inclusion of environmental 

surveillance is a particularly notable improvement upon previous WHO surveillance programs, as the 

complexity of the environmental resistome and the human and animal health impacts of environmental 

exposure to ARBs are both critical knowledge gaps, though environmental pollution is understood to be 

a key influence on the sources, occurrence, and spread of AMR71,75,76.  

Standardizing and operationalizing a so-ŎŀƭƭŜŘ άhƴŜ aŜǘƘƻŘέ όhaύ culture-based approach is 

also critical for coordinating surveillance efforts globally. An OM approach enables the compatibility of 

MIC data and other resistance classification information across laboratory type, time, and country. An 

OM approach also ensures external validity for resistance detection interpretation, as AMR detection 

methods and interpretation are closely linked. Furthermore, OM provides the basis for quality control in 
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data collection on pathogens and zoonotic and commensal ARBs. Ultimately, this quality control ensures 

that health professionals across all domains are receiving valid susceptibility data with which to make 

antimicrobial prescription decisions and maintain good antimicrobial stewardship77.  

With this in mind, at the 6th AGISAR meeting in 2015, members proposed a broader One Health 

framework - incorporating clinical, agricultural, and environmental domains - with a simpler, standard 

surveillance program which could reduce surveillance, ideally, to a reproducible and simple culture-

based method for monitoring a single organism and type of resistance across settings. The advancement 

of this program with the specification of a target AMR bacterium and a proposed set of culture-based 

monitoring methods developed in a workshop held at the 7th AGISAR meeting in 2016 came to be known 

as the Tricycle AMR Surveillance Project. The project is so named for its concern for the inter-related 

dissemination of resistance between its three identified domains (human/clinical, animal/agricultural, 

and environmental) as a One Health issueΦ !ǘ ǘƘŜ ŎŜƴǘŜǊ ƻŦ ǘƘŜ ¢ǊƛŎȅŎƭŜ tǊƻƧŜŎǘ ƛǎ !DL{!wΩǎ 

recommendation of ESBL-resistant Escherichia coli (E-Ec) as the ARB indicator bacterium of choice5.  E. 

coli makes a convenient indicator bacterium because of its association with fecal pollution and its 

established use as a fecal indicator of microbial contamination more generally78. Additionally, the choice 

of resistance type reflects the importance of ESBL antimicrobials to both human and animal health and 

their presence across a variety of settings internationally, as well as the considerable contribution of E-

Ec infections to the global burden of AMR enteric and systemic infectious disease79,80. Finally, E-Ec 

prevalence rates have been shown to decrease following increased antimicrobial stewardship efforts, 

suggesting that prevalence of this indicator will be important for monitoring antimicrobial stewardship 

implementation efforts5.   

Focus on a single AMR indicator eases the implementation of a harmonized, trans-sector 

surveillance scheme, but it is important to acknowledge that this choice restricts the complexity, 

richness and spread of data collection on AMR globally. The Tricycle Project also stipulates that 
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resistance data should be reported by country and year, only allowing limited granularity in monitoring 

AMR both temporally and spatially. This same lack of granularity also hinders the quantitative and causal 

inference of the effects of AMR in one domain on the prevalence of AMR in another domain5.  

Furthermore, even after the initial AGISAR recommendations, the question of the specific media 

used for a standardized, harmonized, culture-based rapid detection method was left open, pending 

further investigation of alternative culture methods and media7.  

This question of standardized methods within the Tricycle Project reflects the incomplete 

standardization of culture-based ESBL Enterobacteriaceae detection methods within the public health 

field as a whole. Currently, the greatest level of standardization for culture-based ESBL 

Enterobacteriaceae detection is in the clinical/infection prevention and control spheres. These standards 

largely describe methods to detect for ESBL resistance among Enterobacteriaceae that have already 

been isolated by other means, rather than describing direct detection methods. These standards may 

also require different protocols for phenotypic confirmation testing of ESBL production depending on 

ǘƘŜ ƛǎƻƭŀǘŜΩǎ ƛŘŜƴǘƛǘȅΦ !ǎ ŀ ǊŜǎǳƭǘΣ ǘƘŜǎŜ ƳŜǘƘƻŘǎ Ŏŀƴ ōŜ ŎǳƳōŜǊǎƻƳŜ ŀƴŘ ǘƛƳŜ-intensive, especially for 

resource-constrained laboratories.  

Once bacteria of interest have been initially detected and isolated in specimens of interest by 

other means, the EUCAST Detection of Resistance Mechanisms guidelines recommend initial broth/agar 

microdilution or disk diffusion AST to assess isolate ESBL resistance to either cefpodoxime or cefotaxime 

and ceftazidime. Resistant isolates are then speciated and subjected to phenotypic confirmatory testing 

for ESBL production by culturing isolates with a reference ESBL antibiotic in the presence and absence of 

clavulanic acid, an ESBL inhibitor. Specific methods for this phenotypic ESBL production confirmatory 

testing depend on the species of the isolate examined81. Similarly, CLSI guidelines recommend the use of 

broth microdilution or disk diffusion AST to test resistance to at least one and preferably multiple 

reference ESBL antibiotics. Resistant isolates should be confirmed as ESBL producing via a similar 
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method as in EUCAST, by culture with cefotaxime and ceftazidime in the presence and absence of 

clavulanic acid. Unlike in EUCAST, CLSI ESBL production confirmatory testing does not require 

speciation18,82. As with EUCAST and CLSI, ISO recommends specimen isolation before testing for 

antimicrobial susceptibility using microdilution methods83Φ ²ƛǘƘ ǘƘŀǘ ǎŀƛŘΣ ǘƘŜ ƭŀǎǘ ŘŜŎŀŘŜΩǎ ŀŘǾŜƴǘ ƻŦ 

ΨǊŀǇƛŘΩ ŎǳƭǘǳǊŜ-based ESBL Enterobacteriaceae detection agar media that can provide presumptive 

organism identification and presumptive ESBL resistance characterization within 24 hours has provided 

an attractive one-step alternative to standardized ESBL detection methods29,84. These rapid detection 

methods have made their way into common use within clinical research and surveillance85,86. 

¢ƘŜ ŀƎǊƛŎǳƭǘǳǊŀƭΣ ŦƻƻŘ ǎŀŦŜǘȅΣ ŀƴŘ ŜƴǾƛǊƻƴƳŜƴǘŀƭ ǎŜŎǘƻǊǎΩ ǊŜǇƻǊǘŜŘ ŎǳƭǘǳǊŜ-based ESBL 

Enterobacteriaceae detection methods largely follow these same EUCAST-, ISO-, or CLSI-standardized 

methods48,87,88. However, the use of the aforementioned selective chromogenic culture media is 

increasingly seen in agricultural and environmental ESBL Enterobacteriaceae research as well89ς91. These 

ǊŜǎŜŀǊŎƘ ŀǇǇƭƛŎŀǘƛƻƴǎ ǎǘƛƭƭ ǊŜǉǳƛǊŜ ƛǎƻƭŀǘŜǎΩ ǊŜǎƛǎǘŀƴŎŜ ǇǊƻŦƛƭŜǎ ǘƻ ōŜ ǾŜǊƛŦƛŜŘ ōȅ ǎǘŀƴŘŀǊŘƛȊŜŘ !{¢ 

methods as described above. However, the capability to presumptively screen directly for ESBL 

Enterobacteriaceae in diverse sample types is an advantage in ease and throughput that should be 

recognized with standardized methodology.  

It is regrettable, then, that a lack of standardization exists for these rapid culture-based ESBL 

Enterobacteriaceae detection methods across the One Health milieu. This project seeks to address that 

ƎŀǇ ōȅ ŜǾŀƭǳŀǘƛƴƎ ǘƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ƻŦ ƳǳƭǘƛǇƭŜ ΨŎŀƴŘƛŘŀǘŜΩ ǊŀǇƛŘ ǎŜƭŜŎǘƛǾŜ 9{.[ 9ƴǘŜǊƻōŀŎǘŜǊƛŀŎŜŀŜ 

media for use with standardized methods for ESBL E. coli detection within environmental and 

agricultural OH sample types for the purposes of the Tricycle Project AMR surveillance system. Notably, 

distinct from for other OH AMR surveillance uses, the Tricycle Project requires that culture-based ESBL 

detection media used for environmental surveillance be able to quantify and isolate ESBL E. coli as well 
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as estimate the proportion of E. coli that are ESBL by means of simultaneous quantification on ESBL and 

non-ESBL analog media.  

This project evaluates these candidate media for these performance requirements. More 

specifically, the ideal ESBL Enterobacteriaceae surveillance medium would have high initial sensitivity in 

detecting and quantifying target ESBL indicator organisms so as to provide a conservative estimate of 

the magnitude and prevalence of the ESBL hazard in the sample type analyzed. This ideal medium would 

also perform accurately and in a user-friendly manner by virtue of its high specificity, inhibiting non-

target organisms and clearly differentiating primary (ESBL E. coli) from secondary (non-E. coli coliforms) 

target organisms. This specificity would both allow for rapid and easy detection of indicator organisms of 

interest (but no non-target organisms), as required for environmental AMR surveillance, as well as 

highly accurate purification and isolation of bacterial isolates of interest for further analysis, as is needed 

in all One Health sectors but especially for human and animal health diagnostic needs. Additionally, the 

ideal medium would be robust, withstanding different settings, skill levels, and sample types to produce 

consistent results. Lastly, this ideal medium would be accessible in a wide range of laboratories and 

public health surveillance offices cheaply and rapidly.  
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CHAPTER 3: OBJECTIVES AND EXPERIMENTAL DESIGN 

Objectives 

 

1. Descriptively and analytically compare the performance in quantification of six candidate ESBL 

antimicrobial-containing bacteriological culture agar media by subjecting these media to 

repeated analysis of various One Health-relevant environmental sample types: raw sewage 

influent at a municipal wastewater treatment plant; surface waters up- and downstream of a 

ƳǳƴƛŎƛǇŀƭƛǘȅ ŀƴŘ ƘȅŘǊƻƭƻƎƛŎŀƭƭȅ ŎƻƴƴŜŎǘŜŘ ǘƻ ǘƘŜ ŀōƻǾŜ ƳǳƴƛŎƛǇŀƭ ǿŀǎǘŜǿŀǘŜǊ ǘǊŜŀǘƳŜƴǘ ǇƭŀƴǘΩǎ 

final treated effluent; uncontained poultry manure from a free-range community poultry farm; 

and poultry litter from an industry-standard broiler chicken farm. 

2. 5ŜǎŎǊƛǇǘƛǾŜƭȅ ŀƴŘ ŀƴŀƭȅǘƛŎŀƭƭȅ ŎƻƳǇŀǊŜ ǘƘŜ ŀŦƻǊŜƳŜƴǘƛƻƴŜŘ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀΩǎ ŘƛŀƎƴƻǎǘƛŎ 

performance in presumptively identifying target organisms (primarily ESBL E. coli) and in 

presumptively characterizing target organisms as ESBL-resistant when used for analyses on the 

aforementioned sample types. 

3. Quantify and further analyze the concentrations and proportions of ESBL fecal indicator bacteria 

in the aforementioned sample types, and compare these findings between sample types ς 

namely, between upstream vs. downstream surface water and between community-held farm 

poultry manure vs. conventional farm broiler litter. 
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Experimental Design 

 

 To properly evaluate candidate culture-ōŀǎŜŘ ƳŜŘƛŀΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƛƴ ŀƴ 9{.[ E. coli-based, One 

Health-oriented monitoring system, use of these media for analyzing One Health-relevant 

environmental sample types was deemed necessary. As such, the experimental design for this project 

relies on parallel analyses of sample types based on those proposed in the WHO-AGISAR E-Ec Tricycle 

!aw {ǳǊǾŜƛƭƭŀƴŎŜ tǊƻƧŜŎǘΩǎ ƳƻƴƛǘƻǊƛƴƎ ŀƴŘ ǎǳǊǾŜƛƭƭŀƴŎŜ Ǉƭŀƴ5Φ .ǊƛŜŦƭȅΣ ǘƘŜ ¢ǊƛŎȅŎƭŜ tǊƻƧŜŎǘΩǎ Ψ{ǳǊǾŜƛƭƭŀƴŎŜ 

ƛƴ ǘƘŜ ŜƴǾƛǊƻƴƳŜƴǘΩ ǿƻǊƪ Ǉƭŀƴ ǊŜŎƻƳƳŜƴŘǎ ǘŀǊƎŜǘƛƴƎ ŦƻǳǊ ǎŀƳǇƭŜ ǘȅǇŜǎ ǿƘƛŎƘ ƘŀǊōƻǊΣ potentially 

amplify, and potentially convey resistance to other One Health sectors: municipal wastewater, live 

animal (especially poultry) market wastewater, and surface waters upstream and downstream of 

municipal waste discharge points. Municipal and live market wastewaters were selected for their 

important role as contributors of human and animal waste into the environment. Surface water samples 

were selected for their relevance in environmental transmission/potential amplification of AMR and 

ǘƘŜƛǊ ǳǘƛƭƛǘȅ ƛƴ ŀǎǎŜǎǎƛƴƎ ǘƘŜ ƛƳǇŀŎǘ ƻŦ ŀ ƳǳƴƛŎƛǇŀƭƛǘȅΩǎ ŎƻƴǘǊƛōǳǘƛƻƴǎ ǘƻ ŜƴǾƛǊƻƴƳŜƴǘŀƭ !aw ǊŜǎŜǊǾƻƛǊǎΦ  

For this project, municipal wastewater and surface water samples were easily obtainable and 

were collected for analysis. Live market waste was not accessible due to a lack of registered and/or 

cooperating live markets in North Carolina and the surrounding states. Abattoir wastewater ς as a 

plausible proxy to live market wastewater ς was considered, but again no cooperating facilities could be 

located in the area. Poultry cecal samples, another alternative, proved difficult to obtain within the 

project timeline. Ultimately, poultry manure from a free-range community-held farm and broiler pen 

litter from an industry-standard farm were selected as alternative sample types of poultry agriculture 

fecal wastes that are One Health-relevant and linked hydrologically, through biological vectors, or 

otherwise to the spread of AMR in the environment. 
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With sample types identified, the research project was designed for all candidate media to be 

used in parallel for the comparison of their initial quantification of E-Ec and other target organisms. 

Several non-antibiotic-ŎƻƴǘŀƛƴƛƴƎ ŀƴŀƭƻƎǳŜǎ ƻŦ ŎŜǊǘŀƛƴ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀ όΨōŀǎŜƭƛƴŜ ƳŜŘƛŀΩύ ǿŜǊŜ ŀƭǎƻ ǘƻ 

be used in these parallel analyses so that comparisons could be made of the ability of different media to 

quantify presumptive ESBL resistance proportions relative to total E. coli. After initial quantification, 

ESBL target organisms would be selected, purified, and isolated from each candidate medium and then 

ǎǳōƧŜŎǘŜŘ ǘƻ ŎƻƴŦƛǊƳŀǘƻǊȅ ōƛƻŎƘŜƳƛŎŀƭ ƻǊ ǇƘŜƴƻǘȅǇƛŎ ŀƴŀƭȅǎŜǎ ǎƻ ǘƘŀǘ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƛƴ 

accurately identifying target organism species and ESBL resistance could be compared.  
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CHAPTER 4: METHODS AND MATERIALS 

 

Introduction 

 

This methodological study focused on the adaptation and comparison of several candidate 

clinical and environmental culture-based media for use in a simple antimicrobial resistant bacteria (ARB) 

monitoring method across a variety of setting and sample types. These media were assessed for their 

performance in the detection and enumeration of target gram-negative fecal indicator bacteria 

belonging to the Enterobacteriaceae family displaying extended-spectrum-‍-lactam resistance (ESBL) in 

hotspot environmental samples of wastewater, wastewater-impacted surface waters, and poultry 

farming wastes. Table 1 gives an overview of the project elements and bacteriological culture media 

examined in this study, target organisms, sampling sites, and analysis strategies for quantifying and 

characterizing resulting assay data and bacterial isolates. 
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Table 1. Summary of Project Elements: Culture Media, Target Organisms, Environmental Samples and Analytical Methods 

Bacteriologic Culture Media 

CHROMagar™ ESBL  Commercial chromogenic medium for the clinical detection of 
Gram-negative bacteria producing ESBL in stools and urine. 
Evaluated for environmental use  

HiMedia™ HiChrome ESBL  Commercial chromogenic environmental and food safety medium 
for selective detection, differentiation, enumeration of ESBL-
producing Enterobacteriaceae  

Liofilchem™ Chromatic ESBL  Commercial chromogenic medium for the detection of Gram-
negative ESBL-producing bacteria  

Tryptone 
Bile Glucoronic Agar (TBX) +/-  Cefotaxime   

Chromogenic medium for the selective detection and enumeration 
of Gram-negative fecal indicator bacteria in the Enterobacteriaceae 
family in environmental waters and foodstuffs. Modified by 
addition of cefotaxime, a generic 3rd-generation cephalosporin and 
broad-ǎǇŜŎǘǊǳƳ ʲ-lactam, for the detection of ESBL-producing 
Gram-negative coliform bacteria (including E. coli). Both Tryptone 
Bile Glucoronic Agar with cefotaxime (candidate ESBL medium) and 
Tryptone Bile Glucoronic Agar without Cefotaxime (baseline E. 
coli/coliform medium) were used simultaneously.  

 

MacConkey +/- Cefotaxime, +/- X-Gluc  Clinical diagnostic culture medium used for selective isolation and 
differentiation of lactose-fermenting and lactose non-fermenting 
Gram-negative enteric bacilli. Modified by addition of cefotaxime 
for detection of ESBL-producing Gram-negative enteric bacilli, and 
by addition of X-Gluc for direct chromogenic detection of E. 
coli. MacConkey (baseline E. coli/coliform medium); MacConkey 
with Cefotaxime (candidate ESBL E. coli/coliform medium); 
MacConkey with X-Gluc (baseline E. coli/coliform medium); and 
MacConkey with Cefotaxime and X-Gluc (candidate ESBL E. 
coli/coliform medium) were used simultaneously. 

 

Target Organisms 

Primary: ESBL-resistant E. coli  Secondary: ESBL-resistant non-E. coli coliforms; 
total E. coli; total non-E. coli coliforms 

Environmental Sampling Sites  

Municipal Raw Sewage  Surface Water Impacted by 
Sewage Effluent Up- and 
Down-Stream of Municipal 
Area 

Free-range poultry 
manure 

Conventional Broiler 
Chicken Pen Litter 

Analysis 

Quantitative Analysis  

  

Comparisons were made between generic candidate ESBL and 
corresponding baseline non-ESBL generic media to detect and 
quantify E. coli and/or coliforms in the different sample 
environmental matrices (Objective 1). Concentrations and 
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Sampling Sites  

 

Studies focused on the following environmentally-relevant samples from two nearby urban 

areas, specifically the Chapel Hill-Carrboro metropolitan area in Orange County, NC and the Raleigh 

metropolitan area of Wake County, NC 

1. agricultural samples, namely poultry farm wastes of both fresh chicken manure from a free-range 

antibiotic-free farm (located in Carrboro, Orange County, NC) and broiler pen litter from an industry-

standard demonstration farm near North Carolina State University in Raleigh, Wake County, NC. 

2. Municipal sewage influent samples were collected at the Orange Water and Sewer Authority 

(OWASA) municipal wastewater treatment plant (WWTP) in Chapel Hill-Carrboro, NC. 

3. Surface water samples were collected up- and down-stream of the Chapel Hill-Carrboro 

municipalities and its wastewater treatment plant. The water and wastewater sampling sites are 

located in Chapel Hill, NC, and are hydrologically connected. Surface water samples were drawn 

from Morgan Creek, the receiving water into which the treated final effluent of the WWTP 

discharges.  

Municipal Sewage  
 

Samples of municipal raw sewage were collected periodically from the Orange Water and Sewer 

Authority (OWASA) at Mason Farm Wastewater Treatment Plant in Chapel Hill, NC. OWASA has a 

sewerage network serving some 100,000 people in Orange County along 324 miles of gravity-flow 

proportions of presumptive ESBL E. coli of the total E. coli in the 
environmental samples were calculated from colony counts scored 
on their respective media.  

Confirmation of Antimicrobial Resistance 
Profile and Isolate Identity   

For representative purified bacterial isolates originally detected on 
ESBL media, reduced susceptibility to Extended- -̡lactams 
(Cefpodoxime) and ESBL production was evaluated via Vitek2. 
Matrix-assisted laser desorption / ionization time of flight mass 
spectrometry, and MALDI-TOF MS was used for definitive species 
confirmation analysis.  
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piping. The plant averages 8 million gallons of wastewater per day with a peak capacity of 14.5 million 

gallons per day.   

Influent wastewater flows into the Mason Farm WWTP, where large grit and debris are removed 

with a bar screen before further treatment by physical, biological and chemical treatment processes. 

Raw sewage samples are collected just past the point of the bar screen and before the treatment 

processes. 

Morgan Creek  

 

Morgan Creek is 17 miles long, originating in headwaters located in a rural area outside of 

the developed town of Chapel Hill and then traversing the town, including passing by the Mason Farm 

WWTP. The Morgan Creek downstream surface water sampling site was located several hundred meters 

downstream of the treated final effluent discharge point of the WWTP.  The upstream surface water 

sampling site was located on an isolated bend of the creek north-west of Chapel Hill and Carrboro city 

limits, in a rural area near Jo Mac Rd. 

Smallholder Free Range Chicken Farm 

 

 The farm used for poultry manure sampling is a community farm in Carrboro, NC, using 

traditional farming techniques. This free-range antibiotic-free farm is within the same watershed system 

as the municipal wastewater service area and the surface water samples from Morgan Creek. Manure 

was collected in open-air pens onsite. Broiler chickens are kept in loosely fenced in areas, 10-20 

chickens/area, and rotated around. Broiler chickens were predominantly a Rhode Island Red breed and 

roughly 6 mo. old at time of collection.  

Conventional Industrial Demonstration Chicken Farm 

 

 The industrial type farm used for poultry waste sampling is the academic experimental and 

demonstration farm of North Carolina State University, off Lake Wheeler Road in Raleigh, North 
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/ŀǊƻƭƛƴŀΦ .ǊƻƛƭŜǊ ŎƘƛŎƪŜƴǎ ŀǊŜ ƪŜǇǘ ƛƴ ŀǇǇǊƻȄƛƳŀǘŜƭȅ мллΩ Ȅ нлΩ ǇŜƴǎ ŦƛƭƭŜŘ ǿƛǘƘ ǎǘŀƴŘŀǊŘ ƭƛǘǘŜǊΣ ǿƘƛŎƘ ǿŀǎ 

poultry waste sample collected. Chickens are fed an industry-standard diet. Broiler litter was contained 

and managed on-site.   

Project Timeline  

 

Sample collection occurred between January 2017 and March 2018. In all sampling events, 

samples were collected and processed to determine presence and concentrations and then obtain 

representative bacterial isolates of presumptive ESBL-E. coli and other ESBL coliforms as well as non-

ESBL E. coli and coliforms. Initial sampling focused on raw sewage and downstream surface water 

sampling and quantitative analysis plus confirmatory testing, through spring 2017. From summer 

through fall 2017, samples of raw sewage, upstream and downstream surface waters, and free-range 

chicken waste samples were collected and processed to determine target bacteria presence and 

concentrations and to obtain representative ESBL isolates for confirmatory analyses. In winter-early 

spring 2018, access was obtained to sample broiler litter for quantitative analysis of target bacteria and 

obtaining bacteria isolates for further characterization. Finally, in spring 2018, a last round of 

confirmatory analysis of presumptive ESBL isolates was conducted on isolates obtained from 

experiments involving all sample types.  

Protocol and Analysis Schedule  

 

The protocol, analysis schedule and an overview of methods used to evaluate 

candidate culture media for the proposed culture-based detection and enumeration of ESBL-E. coli  as 

well as ESBL non-E. coli coliforms, and also all E. coli and coliforms  in water and wastewater samples is 

shown below in Table 2.     
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Table 2. Method Protocol Summary by Day 

Day  Objective  

Day 1  Overview of Media (and Sources), Diluent and Cryopreservatives and Use Methods:  

CHROMagar ESBLϰ (CHROMagar),  HiCrome ESBLϰ  (HiMedia), Chromatic ESBLϰ 
(Liofilchem), MacConkey agar medium (Remel), Tryptone Bile Glucuronic (TBX) agar 

medium (HiMedia), Tryptic Soy Agar (Difco), Phosphate-buffered Saline, 1X Trypticase Soy 
Broth (Difco), and 60% Glycerol aqueous solution (Fisher Scientific) 

 

Day 2  Sample Collection, Transport, and Storage (raw sewage samples stored 24h before 
analysis)  

Direct, One-Step Membrane Filter Method for analysis of surface water samples on all 
agar media  

Direct Spread Plating Method for analysis of raw sewage samples on all agar media)  

Day 3  Bacteria Colony Identification and Enumeration on all membrane filter/spread plate 
media   

Presumptive Positive Bacteria Colony Selection and Initial Streak Plate Isolation and 
purification on candidate ESBL Agar Media: candidate media 

(CHROMagarϰ ESBL, HiMediaϰ HiCrome ESBL, Liofilchemϰ Chromatic ESBL, MacConkey 
with cefotaxime, MacConkey with cefotaxime and X-Gluc, Tryptone Bile Glucoronic with 

cefotaxime)   

Day 4  Second Step Colony Streak Plate Purification of presumptive positive bacteria Isolates on 
candidate ESBL Agar Media  

Day 5  Third Step Colony Streak Plate Purification of presumptive positive bacteria on tryptic soy 
agar (TSA)  

Day 6  TSB Culture Isolate Supplementation with glycerol for frozen storage  

Confirmatory species identification and antimicrobial resistance analysis  

 

Media Preparation  

 

All culture media and stock solutions were sterilized and prepared following manufacturer 

instructions and procedures defined in Standard Methods for the Examination of Water and 

Wastewater92. Sterile, molten agar media were tempered to 55oC in a water bath prior to plate pouring. 

In a laminar flow hood disinfected with 70% ethanol solution, agar medium plates were prepared using 



25 

an electricity powered mechanical pipette gun and a sterile, polystyrene pipette. Molten agar was 

dispensed into plates at 25 mL per 100x15mm plate and 5 mL per 60x15mm plate, before letting the 

agar solidify and dry. After 10-30 minutes solidifying and drying, agar plates were inverted and stored at 

4oC for 18 hours ς for a minimum of 18 hours and a maximum of 3 weeks before use.   

 Sample Collection, Transport, and Storage  

 

In general, post-collection, samples were stored at 4oC and analyzed within 48 hours. 

All sampling was done using disposable or reusable equipment, including gloves, bottles, and coolers 

that were sterilized post-transport for their disposal or future reuse.  

All surface water and wastewater samples were collected as grab samples in sterilized 

polypropylene bottles and transported in a chilled insulated cooler to the laboratory. Raw sewage grab 

samples were collected by OWASA staff. Surface water samples were collected in the field by UNC 

project staff. No composite samples of sewage or water were collected over the course of the project to 

date.  

For poultry manure samples, a composite of 5-7 droppings was collected by project staff at the 

farm and transported via cold chain to the laboratory. Post-collection, 5 g fecal matter was combined 

with 50 mL sterile phosphate-buffered saline (PBS), vortexed, and diluted serially 10-fold for analysis. 

For broiler litter samples, farm staff collected ~1 L litter in recently inhabited areas. Samples 

were then transported to the laboratory within the hour; a cold chain could not be used because of the 

size of the sample. After measuring out 5 g litter into 250 mL PBS, sample preparation followed 

according to Lu et al. Briefly, processing consisted of low-speed centrifugation, collection of the 

supernatant, followed by high-speed centrifugation and dissolution of the pellet in 3 mL PBS for use in 

spread plating analysis93. 
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 Direct, One-Step Membrane Filter Method  

 

Membrane filtration methods are modified from Standard Methods 9222B and applied in the 

detection and enumeration of target organisms in surface water samples94. Given the low 

concentrations of E. coli and particularly ESBL-E. coli in the surface water of interest, all surface water 

samples were filtered undiluted.  

 Before samples were analyzed, the workspace was disinfected with a 70% ethanol solution. 

Samples were then brought out from 4oC storage and placed at the workspace. Aseptic technique was 

practiced through the entirety of the assay, using sterile bottles, pipettes, flasks, filters, and forceps. A 

vacuum-connected sterile filter flask plus filter funnel assembly (base and filter funnel) comprised the 

filtration apparatus used for the experiment. Sterilized forceps dipped in alcohol and flamed off were 

used to apply a sterile 0.45 um pore size, 47 mm-diameter cellulose filter (Millipore HA) on the filter 

support base. Once the filter funnel is attached to the support base with the membrane filter in place, 

100 mL of the sample was pipetted onto the filter and vacuumed through the apparatus. The interior of 

the filter was rinsed with phosphate buffer to wash any residual sample onto the filter. The membrane 

was removed aseptically from the base and transferred (grid-side up) onto a 60x15 mm plate of one of 

the agar media tested. For each medium, samples were filtered in triplicate at undiluted concentration. 

Once completed, agar medium plates with membrane filters were then inverted and incubated at 37oC 

for 18-24 hours.   

Direct Spread Plating Method  

 

Spread plating methods are modified from Standard Methods 9215C and applied in the 

detection and enumeration of target organisms in municipal sewage and amended poultry manure and 

chicken litter samples92. Spread plating was used as a preferred alternative to membrane filtration for 

raw sewage samples, given ǎǇǊŜŀŘ ǇƭŀǘƛƴƎΩǎ expected decreased propensity to produce crowded plates 
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or plates that are too-numerous-to-count, by spreading 0.1 mL sample volumes onto a 100 mm 

diameter plate rather than filtering onto a 47 mm diameter filter. Three 100 x 15 mm plates of each 

medium used for analysis were allowed to come to room temperature. Each plate was labeled with type 

of medium, sample type applied, and dilution. Using a sterile P200 micropipetter and a sterile 1-200 µL 

micropipette tip, 100 µL of the appropriate sample and dilution was drawn up and dispensed onto a 

plate of the appropriate medium. Used micropipette tips were then discarded. Using a sterile 

inoculum spreader, the sample was distributed over the surface of the plate until uniform and dry. (A 

turntable was used if desired.) Used cell spreaders were then discarded. A plate of non-antibiotic 

medium (e.g., MacConkey agar without additives) was also plated with 100 µL of the phosphate buffer 

diluent and spread to act as a negative control. Plates were inverted and incubated at 37oC for 16-24 

hours.   

Serial dilutions 

 

After disinfecting the workspace with 70% ethanol solution, samples (raw sewage) were 

removed from 4oC storage and placed at the work bench. Samples were then diluted serially 10-fold 

using phosphate buffer to obtain countable colonies. Table 3 lists the typical dilutions for each sample 

site and medium. Sterile bottles and pipettes were used to make each dilution. Raw sewage samples 

were prepared in three 10-fold dilutions in an effort to account for variability in bacterial loads from one 

sampling period to the next. All other samples were plated in triplicate at the same dilution.  

The intent of the plating procedures was to avoid confluent colony growth for the purpose of 

obtaining isolated colonies as well as preventing the occurrence of crowded or too-numerous-to-count 

colonies on plates. The dilutions made were specific to each medium and sample type, with more 

dilution for samples with higher bacteria concentrations and fewer dilutions for samples expected to 
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have lower bacterial concentrations and plated on antibiotic media (e.g., surface water samples plated 

on ESBL agar media).   

Table 3. Typical Sample Dilutions Used for Spread Plate and Membrane Filtration Analysis by Sample Site and Candidate or 
Baseline Culture Medium 

Sample Site  OWASA Raw 
Sewage  

Morgan Creek, 
Upstream/Downstream 

Poultry 
Manure and 
Litter 

Tryptone Bile Glucoronic  10-1, 10-2, 10-3  100 (triplicate) 10-1 (triplicate) 
Tryptone 
Bile Glucoronic with 
Cefotaxime  

100, 10-1, 10-2  100 (triplicate) 10-3 (triplicate) 

CHROMagarTM ESBL  100, 10-1, 10-2  100 (triplicate) 10-3 (triplicate) 
HiMediaTM HiChrome ESBL  100, 10-1, 10-2  100 (triplicate) 10-3 (triplicate) 
LiofilchemTM Chromatic 
ESBL  

100, 10-1, 10-2  100 (triplicate) 10-3 (triplicate) 

MacConkey  10-2, 10-3, 10-4  100 (triplicate) 10-1 (triplicate) 
MacConkey with 
cefotaxime  

100, 10-1, 10-2  100 (triplicate) 10-3 (triplicate) 

MacConkey with X-
Gluc and Cefotaxime  

100, 10-1, 10-2  100 (triplicate) 10-3 (triplicate) 

MacConkey with X-Gluc   10-1, 10-2, 10-3  100 (triplicate) 10-1 (triplicate) 

Counting and Analysis of Bacterial Colonies  

 

Colony Visualization and Enumeration 

  

After incubation, colonies on the membranes or spread plates were observed and counted for 

those having the desired color and appearance. Numbers of colonies as colony forming units (CFUs) for 

presumptive target microorganisms were totaled for each plate and recorded as discrete counts 

according to colony color guides provided by the manufacturer. Colony plate counts for each 

target microorganism, sample type, medium and dilution were then used to calculate target bacteria 

concentrations in samples as CFU/100 mL.   

Interpretation of colony identity was primarily on the basis of color; however, other colony 

characteristics such as transparency, shape, and sheen were included when discriminating between 

ŎƻƭƻƴƛŜǎ ƻŦ ǎƛƳƛƭŀǊ ƳƻǊǇƘƻƭƻƎȅ ǘƘŀǘ ŘƛŘ ƴƻǘ ŎƻǊǊŜǎǇƻƴŘ ǇŜǊŦŜŎǘƭȅ ǘƻ ƳŀƴǳŦŀŎǘǳǊŜǊǎΩ ŎƻƭƻǊ ƎǳƛŘŜǎΦ   
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Bacteria Concentration (CFU/100 mL for water/wastewater samples, CFU/g for poultry wastes)  

 

 For each culture medium, sample presumptive target organism concentrations were calculated 

from counts of colonies with the anticipated appearance. Each sample and agar medium was plated on 

average at 3 dilutions for raw sewage samples, and at 1 dilution in triplicate for all other samples. Too 

numerous to count (TNTC) was set at 250 colonies per plate. Given the low concentrations of ESBL-

resistant target bacteria in water and poultry manure samples, no lower limit was established for colony 

counts. 

Calculation of colony forming unit (CFU) concentration varied slightly by sample type. For raw 

sewage samples, CFU/100 mL concentrations were calculated by taking the arithmetic mean of total 

colony counts from all countable plates, dividing by the sample volume plated, and multiplying by 100 to 

normalize to CFU/100 mL. For surface water samples, 100 mL undiluted sample was filtered for each 

plate, so calculating CFU/100 mL simply required taking the arithmetic mean of colony counts from all 

countable plates. For poultry manure and poultry litter samples, CFU/g feces/litter was calculated by 

taking the arithmetic mean of colony counts from all countable plates, normalizing from the sample 

volume plated to the entire sample volume, and dividing by the mass of feces/litter in the amended 

sample. For the purposes of graphing poultry waste E-Ec concentration values on a semi-logarithmic 

plot, all null values were replaced with a less-than-lower-detection-limit value of 0.1 to achieve a real-

number for log-transformed concentrations. (All such graphs are labeled accordingly to notify the reader 

of this manipulation.) 

Frequency of E-Ec detection data was derived from sample E-Ec concentrations. Here, plate 

count data were dichotomized so that any sample E-Ec concentration of >0 CFU/100 mL or >0 CFU/g was 

counted as a detection for that medium on that sample matrix. Sample concentrations of 0 were 

dichotomized as non-detections.   
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For all concentrations, estimated upper and lower 95% confidence limits were calculated 

according to the Poisson distribution by adding/subtracting two times the square root of the arithmetic 

mean colony counts from that same mean value.  

Calculations for Proportions of Presumptive Antimicrobial Resistant Bacteria 

 

 The proportions of presumptive ESBL indicator bacteria were calculated by dividing the 

individual mean presumptive ESBL bacteria concentration of the sample obtained by plating on the 

candidate ESBL medium (e.g., TBX with cefotaxime) by the individual mean total target bacteria 

concentration obtained by plating on the corresponding base medium (e.g., TBX without cefotaxime). 

The arithmetic mean of these weekly proportion values was reported as the overall mean proportion of 

target bacteria which were determined to be ESBL resistant. This calculation was performed on parallel 

assays ς same sample type, same corresponding candidate and baseline media, same target organisms. 

These data were also base-мл ƭƻƎŀǊƛǘƘƳƛŎŀƭƭȅ ǘǊŀƴǎŦƻǊƳŜŘ όάƭƻƎ мл-ǘǊŀƴǎŦƻǊƳŜŘέύ ǘƻ ŜƴŀōƭŜ ǇŀǊŀƳŜǘǊƛŎ 

statistical testing (see below). This involved dividing the sample log-10 transformed candidate medium 

E-Ec concentration by the log-10 transformed baseline media total E. coli concentration, then taking the 

absolute value of that fraction (to avoid negative proportions). In instances of E-Ec non-detection (i.e., 

the E-Ec concentration equaled 0 CFU/100 mL or 0 CFU/g), null values were replaced with less-than-

lower-detection-limit values of 0.1 to achieve a real-number log-transformed value. (All relevant tables 

are labeled accordingly to notify the reader of this manipulation.) 

Average, Standard Error, and Confidence Interval Calculations 

 

 Averages were calculated to measure the central tendencies of presumptive concentrations and 

proportions of target indicator bacteria. Standard errors for week-over-week mean concentration values 

were calculated by taking the square root of the sample variance over the number of samples, 
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Ȣ Presumptive ESBL-resistant bacteria proportions (p) were calculated similarly, using Ȣ For all 

above sample types and analyses, 95% confidence intervals were calculated by taking 1.96*standard 

error plus or minus the average. 

Normality Determination 

 

 Preceding further statistical analysis, an evaluation of data normality was performed using a 

Shapiro Wilk test in GraphPad Prism. Plate count and proportion data for all samples were tested both 

as raw data and log-10 transformed data. Normality testing determined that log-10 transformed raw 

sewage plate counts were normally distributed, as were log 10-transformed proportions of presumptive 

ESBL resistance for all settings. Parametric methods were used to analyze these data. For all other 

sample matrices and data types, Shapiro-Wilk tests indicated that data were neither normal nor log-

normal. Nonparametric tests were used for statistical analyses of these data. 

ANOVA Analyses 

 

Analysis of variance (ANOVA) tests are an efficient and powerful family of methods for 

statistically comparing several like parameters at once. Various post-tests exist in concert with ANOVA 

tests to statistically compare two of the total groups being analyzed. Ordinary one-way ANOVA with 

SiŘŀƪΩǎ multiple comparisons post-tests  - each essentially a paired t-test - were used to compare week-

over-week log 10-transformed mean E-Ec concentrations for raw sewage. ANOVA was also used to 

compare log 10-transformed proportions of presumptive ESBL resistance among E. coli in a given sample 

type for all candidate/baseline media pairs. ANOVA with {ƛŘŀƪΩǎ multiple comparisons was further used 

to compare candidate media diagnostic statistics for presumptive E. coli identification, non-E. coli 

coliform identification, and ESBL resistance characterization. Where multiple candidate media across 

two sample types were compared, a two-ǿŀȅ !bh±! ǿƛǘƘ {ƛŘŀƪΩǎ ƳǳƭǘƛǇƭŜ ŎƻƳǇŀǊƛǎƻƴǎ Ǉƻǎǘ-tests was 

performed to compare both of these factors.  
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Unpaired t-Test 

 

Unpaired t-tests rely on approximately parametric distributions of data to assess the significance 

of differences between two means. Here, an unpaired t-test was used to compare differences between 

mean ESBL E. coli concentrations for all candidate media between community farm poultry manure and 

conventional farm broiler litter. Mean E-Ec concentrations for all candidate media were grouped into 

sets by sample type, log 10-transformed to achieve normality, and subjected to an unpaired t-test with 

an equivalent variance assumption in GraphPad Prism.  

Fisher’s Exact Test 

 

CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ƛǎ ŀ ǎǘŀǘƛǎǘƛŎŀƭ ŀƴŀƭȅǎƛǎ ǳǎŜŘ ŦƻǊ ŎƻƳǇǳǘƛƴƎ ǘƘŜ ƭƛƪŜƭƛƘƻƻŘ ƻŦ ǘǿƻ ŦŀŎǘƻǊǎ ƛƴ ŀ 

2x2 contingency table being independent, similar to a chi-squared test but more adept and precise at 

ƘŀƴŘƭƛƴƎ ǎƳŀƭƭ ǎŀƳǇƭŜǎΦ IŜǊŜΣ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘǎ ǿŜǊŜ used to see if the frequency of E-Ec detection 

varied between candidate media for a given sample type, or if frequency of E-Ec detection varied for a 

ƎƛǾŜƴ ƳŜŘƛǳƳ ƻǊ ŀƭƭ ƳŜŘƛŀ ŎƻƭƭŜŎǘƛǾŜƭȅ ōŜǘǿŜŜƴ ǘǿƻ ǎŀƳǇƭŜ ǘȅǇŜǎΦ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘǎ ǿŜǊŜ ŀƭǎƻ ǳǎŜŘ ǘƻ 

see if candidate media presumptive E. coli and non-E. coli coliform identification was associated with an 

ƛǎƻƭŀǘŜǎΩ ŀŎǘǳŀƭ E. coli/non-E. coli coliform identity. 

Selection, Purification, and Isolation of Colonies 

 

 To purify and isolate selected ESBL target indicator bacterial colonies from membrane filter and 

spread plates, selected colonies were picked and streaked onto like agar media and incubated at 37oC 

for 18-24 hours in two successive purification steps. In detail: first, well-isolated single colonies with the 

morphology expected of target organisms were selected from the membrane filter/spread plate with a 

sterile wooden applicator stick and aseptically streaked onto 100 mm x 15 mm plates of the like ESBL 

medium. A maximum of 5 colonies (for expediency but representativeness) were selected per target 

organism for each sample, with 1-2 colonies streaked for isolation per plate as resources allowed. After 
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incubation of the first streaked plate, another purification streak was performed by selecting a single, 

representative colony per plate and re-streaking it for isolation on the same medium. After this second 

incubation, a single, representative colony per plate was re-streaked for isolation on a 100 mm x 15 mm 

tryptic soy agar (TSA) plate. Following incubation on TSA, well isolated colonies were submitted 

immediately for confirmatory testing, as schedule and resources allowed, or enriched into 

alphanumerically labeled cryotubes containing 1 mL aliquots of a ½ tryptic soy broth, ½ 60% glycerol 

broth. These aliquots were incubated at 37oC for 18-24 hours, organized into boxes, and frozen at -80oC 

for future confirmatory analysis.  

Bacterial Isolate Revival and Re-purification 

 

 When opportunity arose to submit stored and frozen bacterial isolates for confirmatory testing, 

the revival and re-purification of these isolates was found necessary.  

 Frozen isolate aliquots were removed from the -80oC freezer and brought to room temperature. 

Each isolate was then aseptically streaked onto a fresh 100 mm x 15 mm TSA plate using sterile 10 ‘L 

loops and incubated overnight at 37oC. If the resulting culture displayed multiple morphologies, or if the 

culture was known to be impure, this TSA-grown culture was then streaked to purity on the candidate 

ESBL medium from which it was initially isolated, following the procedure for purification streaking 

outlined above. Colony morphologies were noted and recorded, and an isolated colony of the target 

organism was then aseptically streaked onto TSA. Revived, pure isolates were then submitted for 

confirmatory analysis.  

Identity Confirmation via MALDI-TOF MS 

 

 Matrix-assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF 

MS) is a so-ŎŀƭƭŜŘ ΨǎƻŦǘΩ ƛƻƴƛȊŀǘƛƻƴ ǇǊƻŎŜǎǎ ŦƻǊ ŀǘƻƳƛȊƛƴƎ ŀƴŘ ŀƴŀƭȅȊƛƴƎ ōƛƻƳƻƭŜŎǳƭŜǎΣ ƛƴŎƭǳŘƛƴƎ ǊŀǇƛŘ 

species identification95,96. Those successfully revived and pure bacterial isolates were subjected to 
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MALDI-TOF MS in partnership with the Clinical Microbiology Laboratory at North Carolina State 

¦ƴƛǾŜǊǎƛǘȅΩǎ /ƻƭƭŜƎŜ ƻŦ ±ŜǘŜǊƛƴŀǊȅ aŜŘƛŎƛƴŜ όb/{¦ύΦ ¢Ƙƛǎ ŀƴŀƭȅǎƛǎ ŀƭƭƻǿŜŘ ŎƻƴŦƛǊƳŀǘƛƻƴ ƻŦ ǘƘŜ 

presumptive identities as genus and species of bacterial isolates cultured from samples analyzed on 

candidate ESBL media. 

 Selected isolates were purified ς and/or revived and purified ς as aforementioned, streaking on 

TSA and incubating overnight for 18-24 hours at 37oC. These cultures were then transported using a cold 

chain to the staff of the Clinical Microbiology Lab. There, staff performed MALDI-TOF MS on the fresh 

colonies using an approved bioMérieux instrument and manufacturer-recommended methods for direct 

colony spotting. A colony was selected for each isolate and, using a sterile toothpick, smeared on a 

MALDI-TOF MS plate. The inoculated plate was then irradiated with a pulsating laser so as to desorb and 

ionize biomolecules of the selected colony. Ionized biomolecules were accelerated into a flight tube, 

deflected with a magnetic field, and separated by mass and charge. The mass to charge ratio in each 

sample was then compared against a digital library of biomolecules associated with different species to 

identify the species of each isolate. 

Antimicrobial Susceptibility Testing by VITEK 2 Analysis 

 

 Concurrent with MALDI-TOF MS analysis, presumptively ESBL-resistant colonies were subjected 

to antimicrobial susceptibility testing via the VITEK 2 (bioMérieux) test system. This automated system 

evaluates susceptibility to cefpodoxime (a representative ESBL antimicrobial recommended for ESBL 

resistance screening81) and imipenem (a representative carbapenem ‍-lactam antimicrobial), and it 

additionally assesses extended-spectrum-‍-lactamase production in selected isolates.  

tŀǊǘƴŜǊƛƴƎ ǎǘŀŦŦ ŀǘ b/{¦Ωǎ /ƭƛƴƛŎŀƭ aƛŎǊƻōƛology Lab performed the VITEK 2 analysis, picking 

colonies off submitted TSA plates and smearing them on a VITEK 2 AST card with a sterile toothpick. The 

AST card contained wells pre-loaded with MICs of the reference antimicrobials and ς when loaded into 
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the VITEK system ς these wells were inoculated and incubated. The system contained an optical scanner 

to judge the growth of isolates in the presence of MIC values of the reference antimicrobials compared 

to a reference database with CLSI and EUCAST MIC cutoffs. The results were then use to classify isolates 

as resistant, intermediately resistant, or susceptible to the antimicrobials used. 

ESBL production was analyzed with a test panel with wells containing several cephalosporin ‍-

lactam antimicrobials, both with and without clavulanic acid, a known extended-spectrum-‍-lactamase 

inhibitor. Concurrent with the above analysis, these wells were inoculated and then measured for 

bacterial growth by an optical scanner. The system assessed isolates as extended-spectrum-‍-

lactamase-producing or not by the proportional reduction in growth in wells containing both 

cephalosporin and clavulanic acid compared to growth in wells containing just the cephalosporin 
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CHAPTER 5: RESULTS 

 

Raw sewage 

This section reports the sample and mean E-Ec concentrations, the proportions of presumptive 

ESBL resistance among all E. coli, and the diagnostic accuracy in isolate presumptive identification and 

characterization as determined by analyses with candidate media for 10 municipal sewage sampling 

events over 9 months, between January 2017 and October 2017. Sampling events were not scheduled at 

regular intervals. (All raw sewage sampling event dates may be found in Table 47. ESBL E. coli 

concentrations, in CFU/100 mL, in raw sewage for all candidate and baseline media by sampling week. 

Figure 1 shows a box-and-whisker plot of the spread in E-Ec concentrations in raw sewage, with 

2.5th -97.5th percentile whiskers, as determined by all candidate media. Central tendencies and minimum 

and maximum values may be found in Table 4. Individual sample E-Ec concentrations in raw sewage are 

shown for each medium in descending concentration in Figure 2. HE and MC media were consistently 

the most E-Ec-sensitive media, while LE and MCX media were consistently the least sensitive in 

quantifying E-Ec from raw sewage (cf. Figure 2). Judging by the highest and lowest mean and maximum 

E-Ec concentrations, HE medium was the most sensitive in quantifying raw sewage E-Ec, with mean and 

maximum concentrations of 2.20E+06 CFU/100 mL and and 1.57E+07 CFU/100 mL, respectively. LE 

medium was the least sensitive, with mean and maximum concentrations of 9.42E+04 CFU/100 mL and 

2.13E+05 CFU/100 mL, respectively (cf. Table 4). As defined by median and minimum E-Ec 

concentrations, however, MC medium quantified raw sewage E-Ec most sensitively, with median and 

minimum concentrations of 6.23E+05 CFU/100 mL and 9.50E+04 CFU/100 mL, respectively. MCX 

medium quantified E-Ec least sensitively, with median and minimum concentrations of 3.50E+04 
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CFU/100 mL and 1.60E+04 CFU/100 mL. Of the remaining candidate media, CE medium gave higher 

mean, median, minimum, and maximum E-Ec concentrations than BC medium.  
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Figure 1.Box-and-whisker plot of the distribution of concentrations, in CFU/100 mL, of ESBL E. coli in raw sewage, as determined 
by all candidate media (n=10 samples). Whiskers denote the 2.5-97.5 percentile range. A semi-log graph is used for scale. 

Table 4. Arithmetic mean (with standard deviation), median, minimum, and maximum ESBL E. coli concentrations in raw sewage 
for all candidate media over the course of 10 sampling events. 

Medium Mean [E-Ec] (SD) (CFU/100 
mL) 

Median [E-Ec] 
(CFU/100 mL) 

Minimum [E-Ec] 
(CFU/100 mL) 

Maximum [E-Ec] 
(CFU/100 mL) 

BC 1.56E+05 (1.07E+05)  1.35E+05  2.47E+04 3.57E+05 

CE 2.43E+05 (1.07E+05) 1.97E+05 2.57E+04 7.47E+05 

HE 2.20E+06 (4.46E+05) 4.43E+05 5.60E+04 1.57E+07 

LE 9.42E+04 (6.03E+04) 8.45E+04 2.10E+04 2.13E+05 

MC 7.57E+05 (6.30E+05) 6.23E+05 9.50E+04 2.46E+06 

MCX 3.45E+05 (8.36E+05) 3.50E+04 1.60E+04 2.84E+06 
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Figure 2. Individual sampling week concentrations, in CFU/100 mL, of ESBL E. coli in raw sewage as determined by all candidate 
media. A semi-log graph is used for scale. 

Further exploring differences in media sensitivity for raw sewage E-Ec quantification, a one-way 

ANOVA test was performed to compare the log 10-transformed concentrations of E-Ec detected in raw 

sewage by all candidate media (Table 5). The results from this statistical test suggest statistically 

significant differences (p<0.001) between candidate media. Following the ANOVA test, SidakΩǎ multiple 

comparisons post-tests were run to compare each pair of candidate media individually (Table 6). Post-

test results indicated that the following pairs of candidate media yielded statistically significantly 

different (p<0.05) E-Ec concentrations in raw sewage: HE and LE media; HE and MCX media; LE and MC 

media; and MC and MCX media. BC and HE media, and BC and MC media, were statistically significantly 

different at p<0.10 but not p<0.05. All other media pair differences in mean E-Ec concentrations were 

not significant.  

 



39 

Table 5. Results of ANOVA test comparing the matched week-over-week mean concentrations of ESBL E. coli in raw sewage as 
detected by all candidate media 

Sample Type Statistic of 
Comparison 

F Statistic ANOVA p-value 
(p<0.05 is significant) 

Raw sewage Log10-transformed 
mean E-Ec 

Concentration 

6.677 <0.0001 

 

Table 6. Results of {ƛŘŀƪΩǎ multiple comparisons post-tests comparing the matched concentrations of ESBL E. coli in raw sewage 
as detected by all candidate media pairs. A gold-shaded cell indicates the result is statistically significant at p<0.05. 

Medium 1 Medium 2 Sample Type 
p-value (p<0.05 
is significant) 

Log10(Mean) 
Difference (raw 

data) 
BC CE 

Raw sewage 
 
 
 
 
 
 

0.9998 -0.181 
BC HE 0.0659 -0.675 
BC LE 0.9993 0.199 
BC MC 0.0599 -0.683 
BC MCX 0.9892 0.259 
CE HE 0.4103 -0.494 
CE LE 0.7982 0.38 
CE MC 0.3850 -0.502 
CE MCX 0.5968 0.44 
HE LE 0.0049 0.874 
HE MC >0.9999 -0.008 
HE MCX 0.0021 0.934 
LE MC 0.0044 -0.882 
LE MCX >0.9999 0.06 
MC MCX 0.0019 0.942 

 

To define the detected concentrations of E-Ec as a proportion of total E. coli in raw sewage, 

quantification of samples was performed in parallel on baseline (i.e., non-antibiotic) versions of BC, MC, 

and MCX media. Arithmetic mean proportions of presumptive ESBL resistance among all E. coli varied 

between media pairs. BC/B (i.e., TBX) media detected the highest proportion of presumptively resistant 

E. coli, at 6.64%, while MC/M (i.e., cefotaxime-amended MacConkey without the X-Gluc chromogen) 

presumptively detected a nearly two order of magnitude lower proportion of ESBL resistance (0.08%) in 

E. coli. MCX/MX (i.e., cefotaxime- and X-Gluc-amended MacConkey) media reported a mean ESBL 

resistance proportion in between, at 1.73% (Figure 3). To see if these mean proportions of 
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presumptive ESBL resistance in E. coli in raw sewage varied by media pair, the numerator and 

denominator data were individually log 10-transformed (to achieve normality) and a one-way ANOVA 

was performed. Results of this ANOVA test were not significant at p<0.05 (Table 7). Post-hoc SidakΩǎ 

multiple comparisons tests also indicated that all mean log 10-transformed ESBL resistance proportions 

were insignificantly different from one another (Table 8). 

 

 

 

 

 

 

 

 

Table 7. Results of ANOVA comparing the mean log-transformed proportions of ESBL resistance among E. coli in raw sewage, as 
determined by candidate/baseline media pairs 

Sample Type Statistic of 
Comparison 

F Statistic ANOVA p-value 
(p<0.05 is significant) 

Raw sewage Log10-transformed 
presumptively ESBL 

resistant proportion of 
detected E. coli 

0.2306 0.7956 

Table 8. {ƛŘŀƪΩǎ multiple comparisons post-tests results for candidate/baseline media pairs' differences in quantifying the 
proportions of presumptive ESBL resistance in raw sewage E. coli 

Medium Pair 1 Medium Pair 2 Sample Type 
p-value (p<0.05 

is significant) 

Log10-Transformed 

Proportion 

Difference (Raw 

data) 

BC/B MC/M 

Raw sewage 

0.8777 0.029 

BC/B MCX/MX 0.9167 0.013 

MC/M MCX/MX 0.9167 -0.016 

 

Per Objective 2, the study aimed to assess the performance of candidate media in correctly 

identifying, purifying, and isolating the target ESBL indicator bacteria (i.e., E-Ec, ESBL non-E. coli 

coliforms), based on a total of 185 presumptive isolates. To assess whether the presumptively identified 

Figure 3. Presumptively ESBL Resistant Proportions of Total E. coli in Raw Sewage as Quantified by Candidate and Baseline 
Media 
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indicator bacterial isolate classifications were predictive of their actual identity (as identified by MALDI-

TOF MS speciation and VITEK AST confirmatory data) ŦƻǊ ŀƭƭ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀΣ ŀ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǿŀǎ 

used. The results indicated that presumptive raw sewage isolate identification (dichotomized as E. 

coli/non-E. coli) was statistically significantly (p<0.0001) predictive of actual bacterial identity (Table 9). 

Diagnostic statistics with 95% confidence intervals are listed in Table 10 for collective performance of 

candidate media in presumptively identifying raw sewage isolates as E. coli/non-E. coli. Collectively, all 

media correctly presumptively identified actual E-Ec isolates as E. coli with 91.67% sensitivity. All 

candidate media correctly identified non-E. coli as non-E. coli with 66.42% specificity. Of all 90 

presumptive E-Ec isolates, 44 were confirmed as E. coli, for a positive predictive value (PPV) of 48.89%. 

Of all 95 presumptive non-E-Ec isolates, 91 were confirmed as non-E-Ec, for a negative predictive value 

(NPV) of 95.79%. Analyzing the proportion of true detects plus true non-detects, the overall diagnostic 

efficiency (ODE) for all media in raw sewage analyses was 72.97%.  

5ƛŀƎƴƻǎǘƛŎ ǇŜǊŦƻǊƳŀƴŎŜ ǎǘŀǘǎ ŦƻǊ ƛƴŘƛǾƛŘǳŀƭ ƳŜŘƛŀΩǎ ŎƻǊǊŜŎǘ identification of raw sewage E. coli is 

listed in Table 10. BC, HE, and MCX media gave presumptive E. coli identification that was statistically 

ǎƛƎƴƛŦƛŎŀƴǘƭȅ ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ƛǎƻƭŀǘŜǎΩ ŀŎǘǳŀƭ E. coli/non-E. coli identity. CE, HE, and MCX media had the 

highest sensitivity at 1.000, while MC medium had the lowest at 0.3333. BC medium had the highest 

specificity (1.000), while MC medium had the lowest (0.5000). BC medium also had the highest PPV 

(1.000), and CE medium had the lowest PPV (0.06667). CE, HE, and MCX all had the highest NPV 

(NPV=1.000), while MC medium had the lowest NPV (0.7143). BC medium had the highest overall 

diagnostic efficiency (ODE=0.9773), while CE medium had the lowest ODE (0.5750).  

Table 9. Contingency Table of E. coli speciation in raw sewage by all candidate media, plus Fisher's exact test significance and 
select diagnostic performance statistics for correct identification of bacterial isolates 

Data 

analyzed 

Confirmed E. 

coli 

Confirmed 

non-E. coli 

Total p-value 

(<0.05 

significant) 

Sensitivity 

[95% CI] 

0.9167 [0.8045, 

0.9671] 

Presumptive 

E. coli 

44 46 90 <0.0001 Specificity 

[95% CI] 

0.6642 [0.5816, 

0.7379] 

Presumptive 

non-E. coli 

4 91 95 PPV [95% CI] 0.4889 [0.3882, 

0.5905] 

Total 48 137 185 NPV [95% CI] 0.9579 [0.8967, 

0.9835] 

ODE [95% CI] 0.7297 [0.6657, 

0.7937] 

  



42 

Table 10. Results of Fisher's exact test for independence of presumptive and confirmed raw sewage E. coli isolate identity, plus 
diagnostic performance statistics, for each candidate medium. Statistically significant p-values (p<0.05) are highlighted in gold. 

Medium 

No 

Confirmed 

Isolates 

Fisher’s 

exact test 

p-value 

(p<0.05 is 

significant) 

Sensitivity 

[95% CI] 

Specificity 

[95% CI] 

PPV 

[95% CI] 

NPV 

[95% CI] 

ODE 

[95% CI] 

BC 

 

39 

 

<0.0001 

 

 

0.9524 

[0.8856, 

1.000] 

 

1.000 

[1.000, 

1.000] 

1.000 

[1.000, 

1.000] 

 

0.9474 
[0.8773, 

1.000] 

0.9773 

[0.9333, 

1.000] 

CE 33 0.4545 

1.000 

[0.05129, 

1.000] 

0.5625 

[0.3933, 

0.7183] 

0.06667 

[0.00342

, 0.2982] 

1.000 

[0.8241, 

1.000] 

0.5750 

[0.4218, 

0.7282] 

HE 27 0.0058 

1.000 

[0.6457, 

1.000] 

0.6500 

[0.4329, 

0.8188] 

0.5000 

[0.2680, 

0.7320] 

1.000 

[0.7719, 

1.000] 

0.7632 

[0.6280, 

0.8983] 

LE 47 0.1710 

0.8000 

[0.3755, 

0.9897] 

0.5714 

[0.4221, 

0.7088] 

0.1818 

[0.07307

, 0.3852] 

0.9600 

[0.8046, 

0.9979] 

0.5957 

[0.4554, 

0.7360] 

MC 13 >0.9999 

0.3333 

[0.0171, 

0.8815] 

0.5000 

[0.2366, 

0.7634] 

0.1667 

[0.00854

9, 0.5635 

0.7143 

[0.3589, 

0.9492] 

0.5789 

[0.3569, 

0.8010] 

MCX 26 <0.0001 

1.000 

[0.7412, 

1.000] 

0.8667 

[0.6212, 

0.9763] 

0.8462 

[0.5777, 

0.9727] 

1.000 

[0.7719, 

1.000] 

0.9394 

[0.8580, 

1.000] 

 

Candidate media performance for non-E. coli coliform όάŎƻƭƛŦƻǊƳέύ speciation, both collectively 

and individually, was somewhat worse than for E. coli in Ǌŀǿ ǎŜǿŀƎŜΦ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǊŜǎǳƭǘǎ ŀƴŘ 

diagnostic statistics for 185 isolates from all media collectively are displayed in Table 11. Overall, 

CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǊŜǎǳƭǘǎ ƛƴŘƛŎŀǘŜ ǘƘŀǘ ǇǊŜǎǳƳǇǘƛǾŜ coliform/non-coliform identity was only borderline 

significantly associated with confirmed coliform/non-coliform identity. Collectively, media correctly 

presumptively identified confirmed coliforms with 62.26% sensitivity and correctly identified confirmed 

non-coliforms with 53.03% specificity. Out of all presumptive coliforms, candidate media collectively 

accurately predicted their identity with a 34.74% PPV, and these media correctly identified presumptive 
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non-coliforms with a 77.78% NPV. The overall diagnostic efficiency for all media in detecting coliforms 

vs. non-coliforms was 55.67%. 

For individual media, only BC medium gave presumptive coliform identities significantly 

associated with their confirmed identities (Table 12). BC medium also had the highest sensitivity (100%, 

tied with LE medium), specificity (74.07%), PPV (63.16%), NPV (100%, tied 

with LE medium), and overall diagnostic efficiency (82.05%). HE medium had the lowest sensitivity 

(33.33%) and PPV (15.38%), while LE medium had the lowest specificity (28.57%) and 

ODE (39.39%) despite having the highest sensitivity and NPV (each 100%). MC medium had the lowest 

NPV (50.00%). 

Table 11. Contingency Table of non-E. coli coliform speciation in raw sewage by all candidate media, plus Fisher's exact test 
significance and select diagnostic performance statistics for correct identification of bacterial isolates 

Data 

analyzed 

Confirmed 

coliforms 

Confirmed 

non-

coliforms 

Total p-value 

(<0.05 

significant) 

Sensitivity 

[95% CI] 

0.6226 [0.4881, 

0.7406] 

Presumptive 

coliforms 

33 62 95 

 

0.0737 Specificity 

[95% CI] 

0.5303 [0.4455, 

0.6134] 

Presumptive 

non-

coliforms 

20 70 90 PPV [95% CI] 0.3474 [0.2592, 

0.4474] 

Total 53 132 185 NPV [95% CI] 0.7778 [0.6815, 

0.8513] 

ODE [95% CI] 0.5567 [0.4852, 

0.6283] 
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Table 12. Results of Fisher's exact test for independence of presumptive and confirmed raw sewage non-E. coli coliform isolate 
identity, plus diagnostic performance statistics, for each candidate medium. Statistically significant p-values (p<0.05) are 
highlighted in gold. 

Medium 

No 

Confirmed 

Isolates 

Fisher’s 

exact test 

p-value 

(p<0.05 is 

significant) 

Sensitivity 

[95% CI] 

Specificity 

[95% CI] 

PPV 

[95% CI] 

NPV 

[95% CI] 

ODE 

[95% CI] 

BC 

 

39 

 

<0.0001 

 

0.9524 

[0.8855, 

1.000] 

0.7407 

[0.5532, 

0.8683] 

0.6316 

[0.4104, 

0.8085] 

1.000 

[0.8389, 

1.000] 

0.8205 

[0.7001, 

0.9410] 

CE 33 0.2419 

0.7500 

[0.4093, 

0.9556] 

0.5200 

[0.3350, 

0.6997] 

0.3333 

[0.1628, 

0.5625] 

0.8667 

[0.6212, 

0.9763] 

0.5758 

[0.4071, 

0.7444] 

HE 27 0.6483 

0.3333 

[0.05923, 

0.7000] 

0.4762 

[0.2834, 

0.6763] 

0.1538 

[0.02734

, 0.4223] 

0.7143 

[0.4535, 

0.8828] 

0.4444 

[0.2570, 

0.6319] 

LE 33 0.3023 

1.000 

[0.5655, 

1.000] 

0.2857 

[0.1525, 

0.4706] 

0.2000 

[0.08861

,0.3913] 

1.000 

[0.6756, 

1.000] 

0.3939 

[0.2272, 

0.5000] 

MC 15 >0.9999 

0.5000 

[0.2152, 

0.7848] 

0.5714 

[0.2505, 

0.8418] 

0.5714 

[0.2505, 

0.8418] 

0.5000 

[0.2152, 

0.7848] 

0.5333 

[0.2809, 

0.6667] 

MCX 26 0.6447 

0.6667 

[0.3000, 

0.9408] 

0.5500 

[0.3421, 

0.7418] 

0.3077 

[0.1268, 

0.5763] 

0.8462 

[0.5777, 

0.9727] 

0.5769 

[0.3870, 

0.7688] 

 

 

Upstream surface water (Morgan Creek Upstream) 

 

This section reports the sample and mean E-Ec concentrations, the frequency of sample 

positivity, proportions of presumptive ESBL resistance among all E. coli, and the diagnostic accuracy in 

isolate presumptive identification and characterization as determined by analyses with candidate media 

for 6 upstream surface water sampling events sampling events over 7 months, between April 2017 and 

November 2017. Sampling events were not scheduled at regular intervals. (All upstream surface water 

sampling event dates and raw concentrations by medium may be found in Table 49.) Note that for the 
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commercial candidate media (CE, HE, and LE media), too few isolates could be analyzed by confirmatory 

analyses to provide all diagnostic statistics.  

For all candidate media, multiple samples out of 6 total yielded E-Ec concentrations of 0 

CFU/100 mL. The number of samples with E-Ec non-detections by candidate media is displayed in Table 

13. MCX medium detected E-Ec in samples with the greatest frequency (4 out of 6 samples), and BC 

medium detected E-Ec with the second greatest frequency (2 out of 6 samples). All other media 

detected E-Ec in only 1 out of 6 samples. Quantitatively, concentrations of E-Ec were generally low 

(Figure 4, Table 14). All media shared a median (and minimum) E-Ec concentration of 0 CFU/100 mL. As 

determined by having the highest mean E-Ec concentration, BC medium was the most sensitive; 

however, MC and MCX media detected the highest maximum concentrations. Judging by mean and 

maximum values, CE medium was the least sensitive in E-Ec enumeration. Individual E-Ec concentration 

values are displayed in descending order for each candidate medium in Figure 5. All candidate media 

detected E-Ec concentrations of <2 CFU/100 mL in the majority of samples.  

Because upstream surface water gave uniformly low E-Ec concentrations and gave non-detects 

in some samplesΣ ŀ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǿŀǎ ǇŜǊŦƻǊƳŜŘ ǘƻ ǎŜŜ ƛŦ ǎƛƎƴƛŦƛŎŀƴǘ ŘƛŦŦŜǊŜƴŎŜǎ existed in 

ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀΩǎ ŦǊŜǉǳŜƴŎȅ ƻŦ ŘŜǘŜŎǘƛƻƴ όTable 13ύΦ ¢ƘŜ ǊŜǎǳƭǘǎ ƻŦ ǘƘƛǎ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǿŜǊŜ ƴƻǘ 

significant at p<0.05, suggesting that all candidate media detected E-Ec with comparable frequency in 

upstream surface water. 

 To investigate why E-Ec detection was infrequent and why E-Ec titers were low, baseline media 

were used to analyze upstream surface water samples and quantify total (i.e., ESBL resistant and non-

resistant) mean E. coli concentrations (Figure 6). Depending on the baseline medium used, total E. coli 
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mean concentrations ranged between 150-225 CFU/100 mL. None of the baseline media failed to detect 

E. coli in any of the samples. 

Table 13. Number of samples with detected ESBL E. coli (>0 CFU/100 mL) in upstream surface water for all candidate media, plus 
the results of a Fisher's exact test for differences between candidate media. 

Morgan Creek Upstream Detection Frequency 
Medium # Samples Detecting E-Ec # Samples Not 

Detecting E-Ec 
Fisher's exact test p-

value (p<0.05 is 
significant) 

BC 2 4 0.4233 
CE 1 5 
HE 1 5 
LE 1 5 
MC 1 5 
MCX 4 2 
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Figure 4. Week-over-week arithmetic mean ESBL E. coli concentrations (in CFU/100 mL) in Morgan Creek upstream surface 
water, as determined by all candidate media. Error bars denote standard error of the mean. All E-Ec non-detects were 
incorporated into mean calculations as concentrations of 0 CFU/100 mL. Number of samples by candidate medium detecting >0 
CFU/100 mL ESBL E. coli are displayed next to the medium name in the legend. 
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Table 14. Arithmetic mean (with standard deviation), median, minimum, and maximum ESBL E. coli concentrations in upstream 
surface water for all candidate media over the course of 6 sampling events. 

Medium Mean [E-Ec] (SD) (CFU/100 
mL) 

Median [E-Ec] 
(CFU/100 mL) 

Minimum [E-Ec] 
(CFU/100 mL) 

Maximum [E-Ec] 
(CFU/100 mL) 

BC 1.83 (3.87) 0.000 0.000 9.67 

CE 0.111 (0.272) 0.000 0.000 0.667 

HE 0.667 (1.63) 0.000 0.000 4.00 

LE 0.278 (0.680) 0.000 0.000 1.67 

MC 1.72 (4.22) 0.000 0.000 10.3 

MCX 1.28 (2.08) 0.000 0.000 10.3 
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Figure 5. Individual sampling week concentrations, in CFU/100 mL, of ESBL E. coli in upstream surface water as determined by all 
candidate media. Number of samples by candidate medium detecting >0 CFU/100 mL ESBL E. coli are displayed next to the 
medium name in the legend. All E-Ec non-detects are displayed as concentrations of 0 CFU/100 mL 
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Figure 6. Arithmetic mean concentrations of total E. coli in upstream surface water as determined by quantification with non-
antibiotic 'baseline' media over 6 sampling events. 

   

 

To determine the prevalence of ESBL resistance among E. coli in upstream surface water, 

indicator bacteria concentrations from parallel analyses on select candidate E-Ec media and 

corresponding baseline media were compared (Figure 7). All candidate/baseline media pairs detected 

approximately 1% of all E. coli as presumptively ESBL resistant. BC/B media gave the highest proportion 

of resistance, at 1.23%; MCX/MX media gave the next highest presumptive ESBL resistance proportion, 

at 0.86% of all E. coli; MC/M gave the lowest proportion of resistance, at 0.77% of all E. coli detected in 

upstream surface water. Subsequently, after log 10 transforming these proportions (as described for 

raw sewage), an ANOVA test was performed to check for statistically significant differences in these 

proportions. The results of this ANOVA test were not significant, a fact confirmed by {ƛŘŀƪΩǎ multiple 

comparisons post-tests between dual candidate/baseline media pairs (Tables 15 and 16). 
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Table 15. Results of ANOVA comparing the mean log 10-transformed proportions of ESBL resistance among E. coli in upstream 
surface water, as determined by candidate/baseline media pairs. Note that, for the purposes of log transformation, all ESBL E. 
coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 for this analysis only. 

Sample Type Statistic of 
Comparison 

F Statistic ANOVA p-value 
(p<0.05 is significant) 

Upstream surface 
water 

Log10-transformed 
presumptively ESBL 
resistant proportion of 
detected E. coli 

0.6959 0.5140 

 

 

 

 

 

 
Table 16. {ƛŘŀƪΩǎ multiple comparisons post-tests results for candidate/baseline media pairs' differences in quantifying the 
proportions of presumptive ESBL resistance in upstream surface water E. coli. Note that, for the purposes of log transformation, 
all ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 for this analysis 
only. 

Medium Pair 1 Medium Pair 2 Sample Type p-value (p<0.05 

is significant) 

Log10-Transformed 

Proportion 

Difference (Raw 

data) 

BC/B MC/M Upstream 

surface water 

0.8936 -0.104 

BC/B MCX/MX 0.9383 0.08469 

MC/M MCX/MX 0.5902 0.1887 

 

To examine collective accuracy of the candidate media in presumptively identifying E. coli, a 

ŎƻƴǘƛƴƎŜƴŎȅ ǘŀōƭŜ ǿŀǎ ŎƻƴǎǘǊǳŎǘŜŘ ŀƴŘ ŀ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǇŜǊŦƻǊƳŜŘ ǘƻ ǎŜŜ ƛŦ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀ 

ǇǊŜǎǳƳǇǘƛǾŜ ƛŘŜƴǘƛǘƛŜǎ ǿŜǊŜ ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ƛǎƻƭŀǘŜǎΩ ŎƻƴŦƛǊƳŜŘ ƛŘŜƴǘƛǘƛŜǎΦ ¢ƘŜ ǊŜǎǳƭǘǎ ƻŦ ǘƘƛǎ ǘest 

indicated that presumptive and confirmed E. coli/non-E. coli identities were in fact significantly 

Figure 7. Proportions of upstream surface water E. coli which are presumptively resistant, as quantified by candidate/baseline 
media pairs. All E-Ec non-detects were included in calculations as concentrations of 0 CFU/100 mL. 
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associated at p<0.05 (Table 17). Collectively, all media presumptively identified E. coli with 75% 

sensitivity and 100% specificity, as determined by MALDI-TOF MS speciation data. Speciation results 

from all media collectively gave a 100% PPV, a 95% NPV, and a 95.65% ODE. Diagnostic performance 

statistics are listed for individual media in Table 18. Only for MCX medium were presumptive and 

confirmed identities statistically associated. BC and MCX media had the highest sensitivity at 100%,  

while MC medium had the lowest at 0%. All media performed with 100% specificity. BC and MCX media 

identified E. coli with 100% PPV. All media except MC identified E. coli with 100% NPV and ODE; MC 

medium performed with 83.33% NPV and ODE.  
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Table 17. Contingency Table of E. coli speciation in upstream surface water by all candidate media, plus Fisher's exact test 
significance and select diagnostic performance statistics for correct identification of bacterial isolates 

Data 

analyzed 

Confirmed E. 

coli 

Confirmed 

non-E. coli 

Total p-value 

(<0.05 

significant) 

Sensitivity 

[95% CI] 

0.7500 [0.3006, 

0.9872] 

Presumptive 

E. coli 3 0 3 

0.0023 Specificity 

[95% CI] 

1.000 [0.8318, 

1.000] 

Presumptive 

non-E. coli 1 19 20 

PPV [95% CI] 1.000 [0.4385, 

1.000] 

Total 

4 19 23 

NPV [95% CI] 0.9500 [0.7639, 

0.9974] 

ODE [95% CI] 0.9565 [0.8732, 

1.000] 

 

 

Table 18. Results of Fisher's exact test for independence of presumptive and confirmed upstream surface water E. coli identity, 
plus diagnostic performance statistics, for each candidate medium. Significant p-values are highlighted in gold. 

Medi

um 

No 

Confir

med 

Isolate

s 

Fisher’s 

exact test 

p-value 

(p<0.05 is 

significant

) 

Sensitivity 

[95% CI] 

Specificity 

[95% CI] 

PPV 

[95% 

CI] 

NPV 

[95% CI] 

ODE [95% CI] 

BC 4 0.2500 1.000 [0.06129, 

1.000] 
1.000 

[0.4385, 

1.000] 

1.000 

[0.0512

9, 

1.000] 

1.000 

[0.4385, 

1.000] 

1.000 [0.5101, 

1.000] 

CE 4 >0.9999 - 1.000 

[0.5101,1.0

00] 

- 1.000 

[0.5101,

1.000] 

1.000 

[0.5101,1.000] 

HE 2 >0.9999 - 1.000 

[0.1777,1.0

00] 

- 1.000 

[0.1777,

1.000] 

1.000 

[0.1777,1.000] 

LE 0 - - - - - - 

MC 6 >0.9999 0.0000 [0.0000, 

0.9487] 

1.000 

[0.5655, 

1.000] 

- 0.8333 

[0.4365, 

0.9915] 

1.000 [0.5655, 

1.000] 

MCX 7 0.0476 1.000 [0.1777, 

1.000] 

1.000 

[0.5655, 

1.000] 

1.000 

[0.1777

, 1.000] 

1.000 

[0.5655, 

1.000] 

1.000 [0.6457, 

1.000] 
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The collective performance of the candidate media in presumptively identifying non-E. coli 

coliforms was generally quite low, except for correctly identifying non-coliforms as such. Collectively, 

presumptive and confirmed coliform/non-coliform identities were not significantly associated according 

ǘƻ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǊŜǎǳƭǘǎ όTable 19). Collectively, media performed with 100% sensitivity and 13.64% 

specificity. Analyzing collectively the accuracy of media presumptive identities, media gave a 5.00% PPV 

and a 100% NPV. The overall diagnostic efficiency was 100%.  

None of the individual media showed significant association between presumptive and 

confirmed coliform/non-coliform identities (Table 20). MC medium gave the highest sensitivity (100%); 

all other sensitivities were incalculable given too few confirmatory results. MCX medium gave the 

highest specificity (28.57%); CE, HE, and MC media all had 0% specificity. MC medium performed with 

the highest PPV (16.67%); all other media for which data existed performed with 0% PPV. BC and MCX 

media had the highest NPV and ODE values (100%). All other media NPVs could not be calculated. CE, 

HE, and MC media all performed with ODE values of 0%.  
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Table 19. Contingency Table of non-E. coli coliform speciation in upstream surface water by all candidate media, plus Fisher's 
exact test significance and select diagnostic performance statistics for correct identification of bacterial isolates 

Data 

analyzed 

Confirmed 

coliforms 

Confirmed 

non-

coliforms 

Total p-value 

(<0.05 

significant) 

Sensitivity 

[95% CI] 

1.000 [0.05129, 

1.000] 

Presumptive 

coliforms 1 19 20 

>0.9999 Specificity 

[95% CI] 

0.1364 [0.04749, 

0.3333] 

Presumptive 

non-

coliforms 0 3 3 

PPV [95% CI] 0.05000 [0.02565, 

0.2361] 

Total 

1 22 23 

NPV [95% CI] 1.000 [0.4385, 

1.000] 

ODE [95% CI] 1.000 [0.5101, 

1.000] 
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Table 20. Results of Fisher's exact test for independence of presumptive and confirmed upstream surface water non-E. coli 
coliform identity, plus diagnostic performance statistics, for each candidate medium. Significant p-values are highlighted in 
gold. 

Mediu

m 

No 

Confirme

d Isolates 

Fisher’s 

exact test 

p-value 

(p<0.05 is 

significant

) 

Sensitivity [95% 

CI] 

Specificit

y [95% 

CI] 

PPV [95% CI] NPV 

[95% CI] 

ODE 

[95% CI] 

BC 4 >0.9999 - 0.2500 

[0.01282, 

0.6994] 

0.000 

[0.000,0.5615

] 

1.000 

[0.06129

, 1.000] 

1.000 

[0.06129

, 1.000] 

CE 4 >0.9999 - 0.000 

[0.000, 

0.4899] 

0.000 [0.000, 

0.4899] 

- 0.000 

[0.000, 

0.4899] 

HE 2 >0.9999 - 0.000 

[0.000, 

0.8233] 

0.000 [0.000, 

0.8233] 

- 0.000 

[0.000, 

0.8233] 

LE 0 - - - - - - 

MC 6 >0.9999 1.000 [0.05129, 

1.000] 

0.000 

[0.000, 

0.4345] 

0.1667 

[0.008549, 

0.5635] 

- 0.000 

[0.000, 

0.4345] 

MCX 7 >0.9999 - 0.2857 

[0.05077, 

0.6411] 

0.000 [0.000, 

0.4345] 

1.000 

[0.1777, 

1.000] 

1.000 

[0.1777, 

1.000] 

 

Downstream surface water (Morgan Creek Downstream) 

 

This section reports the sample and mean E-Ec concentrations and the proportions of 

presumptive ESBL resistance among all E. coli as determined by analyses with candidate media for 6 

downstream surface water sampling events over 8 months, between February 2017 and October 2017. 

Sampling events were not scheduled at regular intervals. (All downstream surface water sampling event 

dates and concentrations by medium may be found in Table 51.) Note that for all candidate media, too 

few isolates could be analyzed by confirmatory analyses to provide any diagnostic statistics.  
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For all candidate media, at least one sample yielded E-Ec concentrations of 0 CFU/100 mL. The 

number of samples with E-Ec non-detections by candidate media is displayed in Table 21. CE medium 

detected E-Ec with the greatest frequency (5/6 samples detecting E-Ec), while LE medium detected E-Ec 

with the least frequency (2/6 samples detecting E-Ec). Quantitatively, as in upstream surface water 

samples, E-Ec concentrations were low, typically <10 CFU/100 mL. Figure 8 shows the arithmetic mean 

concentrations, in CFU/100 mL, of E-Ec in downstream surface water from six non-consecutive analyses 

on candidate media. Central tendencies and minimum and maximum values for E-Ec concentrations for 

each medium are displayed in Table 22. With the lowest mean, median, and maximum concentrations, 

LE was the least sensitive medium in detecting downstream surface water E-Ec. HE medium gave the 

highest mean E-Ec concentration, while CE medium gave the highest median E-Ec concentration and BC 

medium gave the highest maximum concentration. All media shared a minimum E-Ec concentration of 0 

CFU/100 mL. Individual sample concentrations by rank order concentration (i.e., maximum to minimum 

individual sample E-Ec concentrations) and medium are displayed in Figure 9.  

Because all candidate media gave low E-Ec concentrations and failed to detect E-Ec in at least 

one downstream surface water sample, ŀ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǿŀǎ ǇŜǊŦƻǊƳŜŘ ǘƻ ŎƻƳǇŀǊŜ ǘƘŜ ŦǊŜǉǳŜƴŎȅ 

of non-detection for all candidate media (Table 21). ¢ƘŜ ǊŜǎǳƭǘ ƻŦ ǘƘƛǎ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǿŀǎ ƴƻǘ 

significant at p<0.05, suggesting that all media detected E-Ec with statistically comparable frequency. As 

a comparison for the low E-Ec titers quantified by all candidate media, total E. coli concentrations in 

downstream surface water were quantified by parallel analyses with baseline media (Figure 10). All 

baseline media detected E-Ec in all downstream surface water samples and quantified mean E-Ec 

concentrations between 100-200 CFU/100 mL.  
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Table 21. Number of samples with detected ESBL E. coli (>0 CFU/100 mL) in downstream surface water for all candidate media, 
plus the results of a Fisher's exact test for differences between candidate media. 

Morgan Creek Downstream Detection Frequency 
Medium # Samples Detecting E-Ec # Samples Not 

Detecting E-Ec 
Fisher's exact test p-

value (p<0.05 is 
significant) 

BC 4 2 0.7436 
CE 5 1 
HE 3 3 
LE 2 4 
MC 4 2 
MCX 3 3 
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Figure 8. Week-over-week arithmetic mean ESBL E. coli concentrations, in CFU/100 mL, in downstream surface water, as 
determined by all candidate media. Error bars denote standard error of the mean. All E-Ec non-detects were incorporated into 
mean calculations as concentrations of 0 CFU/100 mL.  The fraction of samples by candidate medium with E-Ec 
concentrations >0 CFU/100 mL are displayed in the legend next to the medium name. 

Table 22. Arithmetic mean (with standard deviation), median, minimum, and maximum ESBL E. coli concentrations in 
downstream surface water for all candidate media over the course of 6 sampling events.  

Medium Mean [E-Ec] (SD) (CFU/100 
mL) 

Median [E-Ec] 
(CFU/100 mL) 

Minimum [E-Ec] 
(CFU/100 mL) 

Maximum [E-Ec] 
(CFU/100 mL) 

BC 7.61 (18.2) 0.333 0.000 44.7 

CE 2.67 (3.45) 1.67 0.000 9.33 

HE 8.00 (14.5) 0.167 0.000 36.0 

LE 0.611 (1.08) 0.000 0.000 2.67 

MC 1.67 (1.84) 1.17 0.000 4.00 

MCX 1.72 (3.30) 0.167 0.000 8.33 
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Figure 9. Individual sampling week concentrations, in CFU/100 mL, of ESBL E. coli in downstream surface water as determined by 
all candidate media. All E-Ec non-detects are displayed as concentrations of 0 CFU/100 mL. The fraction of samples by candidate 
medium with E-Ec concentrations >0 CFU/100 mL are displayed in the legend next to the medium name. A segmented Y-axis is 
used for scale. 
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Figure 10. Arithmetic mean concentrations of total E. coli in downstream surface water as determined by quantification with 
non-antibiotic baseline media over 6 sampling events. 

To determine the prevalence of ESBL resistance among E. coli in downstream surface water, 

indicator bacteria concentrations from parallel analyses on select candidate E-Ec media and 

corresponding baseline media were compared (Figure 11). All candidate/baseline media pairs reported 

proportions of presumptive ESBL resistance among downstream surface water E. coli at rates of roughly 

1-4%. MC/M candidate/baseline media gave the highest proportion of resistance, at 4.11%, while 
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MCX/MX and BC/B media pairs gave somewhat lower but more similar estimates, at 1.26% and 1.48% of 

total E. coli, respectively. To see if these media pairs gave significantly different ESBL resistance 

proportions, an ANOVA test was performed on the log 10-transformed proportion data, as with previous 

sample types. The results of this ANOVA test indicated no significant differences (at p<0.05) between 

ǘƘŜǎŜ ǇŀƛǊǎ ƻŦ ƳŜŘƛŀΩǎ ŜǎǘƛƳŀǘŜŘ ǇǊƻǇƻǊǘƛƻƴǎ ƻŦ 9{.[ ǊŜǎƛǎǘŀƴŎŜ in downstream surface water E. coli 

(Table 23). {ƛŘŀƪΩǎ multiple comparisons post-tests also gave no significant differences between pairs of 

candidate/baseline media pairs (Table 24). 

 

 

 

 

 

 

 

 

Table 23.  Results of an ANOVA comparing the mean log-transformed proportions of ESBL resistance among E. coli in 
downstream surface water, as determined by candidate/baseline media pairs. For the purposes of log-transformation, all E-Ec 
non-detects were given a less-than-lower-detection limit of 0.1 before log transforming and conducting the analysis.  

Sample Type Statistic of 
Comparison 

F Statistic ANOVA test p-value 
(p<0.05 is significant) 

Downstream surface 
water 

Log 10 -transformed 
presumptively ESBL 
resistant proportion of 
detected E. coli  

0.4273 0.6600 

 

 

 

 

 

 

 
 

Figure 11. Presumptively ESBL resistant proportions of total E. coli in downstream surface water as quantified by candidate and 
baseline media. All E-Ec non-detects were included in calculations as concentrations of 0 CFU/100 mL.  
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Table 24. {ƛŘŀƪΩǎ multiple comparisons post-tests results for candidate/baseline media pairs' differences in quantifying the 
proportions of log-transformed presumptive ESBL resistance in downstream surface water E. coli. Note that, for the purposes of 
log transformation, all ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 
for this analysis only. 

Medium Pair 1 Medium Pair 2 Sample Type p-value (p<0.05 

is significant) 

Log 10-transformed 

Proportion 

Difference (Raw 

Data) 

BC/B MC/M Upstream 

surface water 

0.8555 -0.1437 

BC/B MCX/MX 0.7906 -0.1677 

MC/M MCX/MX 0.9991 -0.024 

 

Comparing Morgan Creek Upstream vs Downstream surface water 

 

Per Objective 3, this section compares by candidate media the frequencies of E-Ec detection, 

mean E-Ec concentrations, and proportions of ESBL resistance among E. coli in upstream versus 

downstream surface waters. Because all media failed to detect E-Ec in at least one downstream surface 

ǿŀǘŜǊ ǎŀƳǇƭŜ ŀƴŘ ƛƴ ƳǳƭǘƛǇƭŜ ǳǇǎǘǊŜŀƳ ǎǳǊŦŀŎŜ ǿŀǘŜǊ ǾŀƭǳŜǎΣ ŀ ǎŜǘ ƻŦ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘǎ ǿŀǎ ǇŜǊŦƻǊƳŜŘ 

to compare the frequency of E-Ec detection for each sample type, both for a given medium and for all 

media collectively (Table 25). Results suggest that media detected E-Ec with statistically comparable 

frequency in both upstream and downstream surface waters.  

Comparing these sample types quantitatively, Figure 12 displays mean E-Ec concentrations by 

candidate medium for both surface water samples. (Differences in upstream minus downstream mean 

E-Ec concentrations for each candidate medium can be found in Table 26).  With the exception of MC 

medium, all candidate media detected higher E-Ec concentrations in downstream surface water. The 

differences in mean E-Ec concentration between sample types were small (<6 CFU/100 mL) for all 

media; however, given the low concentrations of E-Ec, these differences represented a large proportion 

of the mean values for each medium and sample type. For all media except MC and MCX, the difference 

between upstream and downstream mean E-Ec concentrations was greater than the upstream mean 

values.  
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Table 25. Results of CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘǎΣ ŦƻǊ ŜŀŎƘ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛǳƳ ŀƴŘ ŦƻǊ ŀƭƭ ƳŜŘƛŀ ŎƻƭƭŜŎǘƛǾŜƭȅΣ ŎƻƳǇŀǊƛƴƎ ŦǊŜǉǳŜƴŎȅ ƻŦ 9{.[ 
E. coli detection in upstream vs downstream surface water 

Sample Types Statistic for Comparison 
 

Upstream vs Downstream 
Surface Water 

Frequency of E-Ec detection 

Medium P-value (p<0.05 is significant) 
BC 0.5671 
CE 0.2424 
HE >0.9999 
LE >0.9999 
MC 0.5455 
MCX 0.5671 

All Media 0.2196 
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Figure 12. ESBL E. coli week-over-week mean concentrations from upstream and downstream surface water for all candidate 
media. Error bars represent standard error of the mean. E-Ec non-detects were incorporated in mean calculations as 
concentrations of 0 CFU/100 mL.  
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Table 26. Upstream surface water mean E-Ec concentrations minus downstream surface water mean E-Ec concentrations for 
each candidate medium. 

Medium 
Upstream minus Downstream Surface Water 

Mean E-Ec Concentration (CFU/100 mL) 
BC -5.78 
CE -2.56 
HE -7.33 
LE -0.333 
MC 0.0055 
MCX -0.444 

 

Another comparison of interest was the difference in the proportions of ESBL resistance among 

all E. coli in upstream vs downstream surface water, as determined by log 10-transforming proportions 

of ESBL resistance determined by the aforementioned candidate/baseline media pairs. An ANOVA 

analysis with post-tests was carried out to see if, for a given pair of media, upstream and downstream 

surface water samples gave differing ESBL resistance proportions. The results of this analysis show that 

the sample type did not significantly affect the proportions of ESBL resistance among E. coli at p<0.05. 

{ƛŘŀƪΩǎ Ǉost-test multiple comparisons also indicated that, for each set of media, differences in the 

prevalence of ESBL resistance were not significantly different between samples (Table 27). 
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Table 27. Results of ANOVA and multiple comparison post-tests for evaluating differences in log-transformed E. coli ESBL 
resistance prevalence between upstream and downstream surface water. Note that, for the purposes of log transformation, all 
ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 for this analysis. 

Sample Types Statistic for 
Comparison 

ANOVA: % 
Variation 

P-value (p<0.05 is significant) 

Upstream vs Downstream 
Surface Water 

Log 10-
transformed 

presumptively 
ESBL resistant 
proportion of 

detected E. coli 

7.669% 0.1191 

   
Medium Upstream Minus Downstream 

E. coli that are ESBL-Resistant 
(log 10%) 

P-value (p<0.05 is significant) 

BC/B 15.64% 0.6322 
MC/M 17.92% 0.5262 

MCX/MX 0.06907% 0.9567 
 

Community (smallholder) farm poultry manure 

 

This section describes and analyzes for candidate media their E-Ec detection frequency, 

quantified E-Ec concentrations, and quantified proportions of ESBL resistance among all E. coli in 3 

community farm poultry manure sampling events over 5 months, between June 2017 and November 

2017.   

As with surface water analyses, all candidate media failed to detect E-Ec in at least one poultry 

manure sample. The number of samples with E-Ec non-detects for each candidate medium is shown in 

Table 28. ¢ƻ ŜǾŀƭǳŀǘŜ ŘƛŦŦŜǊŜƴŎŜǎ ƛƴ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀΩǎ ŦǊŜǉǳŜncy of E-Ec detection from poultry 

ƳŀƴǳǊŜΣ ŀ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǿŀǎ ǇŜǊŦƻǊƳŜŘ όTable 28ύΦ ¢ƘŜ ǊŜǎǳƭǘǎ ƻŦ ǘƘƛǎ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǿŜǊŜ ƴƻǘ 

ǎƛƎƴƛŦƛŎŀƴǘΣ ǎǳƎƎŜǎǘƛƴƎ ǘƘŀǘ ƴƻ ǎƛƎƴƛŦƛŎŀƴǘ ŘƛŦŦŜǊŜƴŎŜǎ ŜȄƛǎǘŜŘ ƛƴ ƳŜŘƛŀΩǎ ŦǊŜǉǳŜƴŎȅ ƻŦ 9-Ec detection 

within this matrix. 

Figure 13 shows arithmetic week-over-week mean concentrations, in CFU/g fresh feces, of E-Ec 

in wet poultry manure from three non-consecutive analyses on candidate media. Central tendencies and 

minimum and maximum E-Ec concentration values are available for all media in Table 29. All candidate 
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media shared a minimum E-Ec concentration of 0 CFU/g. BC medium had the highest maximum E-Ec 

concentration and the highest mean E-Ec concentration among all media. CE medium had the highest 

median E-Ec concentration of all candidate media. LE, MC, and MCX shared the lowest mean, median, 

maximum, and minimum concentrations (all values of 0 CFU/g). Individual sampling week 

concentrations for each candidate medium are displayed in Figure 14. (Full concentration data by 

medium and sampling week can be found in Table 53.) 

As a comparison to the low E-Ec detection frequencies and concentrations found in community 

farm poultry manure, parallel analyses were run on the same samples with baseline media to quantify 

total E. coli concentrations. Mean total E. coli concentrations are shown by baseline medium in Figure 

15. Total E. coli concentrations ranged between 106-107 CFU/g, and E. coli were detected in all samples. 

Table 28. Number of samples with detected ESBL E. coli (>0 CFU/g fresh manure) in community farm poultry manure for all 
candidate media, plus the results of a Fisher's exact test for differences between candidate media. 

Community Farm Poultry Manure Detection Frequency 

Medium # Samples Detecting 
E-Ec 

# Samples Not Detecting E-Ec Fisher's exact test p-value 
(p<0.05 is significant) 

BC 1 2 0.1753 

CE 2 1 

HE 2 1 

LE 0 3 

MC 0 3 

MCX 0 3 
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Figure 13. Week-over-week mean ESBL E. coli concentrations, in CFU/g,  in community farm poultry manure as detected by all 
candidate media. Error bars denote standard error of the mean. For scale, a semi-log plot is used. Note that, for the purposes of 
log transformation, all ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 
for this graph. 

Table 29. Arithmetic mean (with standard deviation), median, minimum, and maximum ESBL E. coli concentrations in 
community farm poultry manure for all candidate media over the course of 3 sampling events. 

Medium Mean [E-Ec] (SD) (CFU/100 
mL) 

Median [E-Ec] 
(CFU/100 mL) 

Minimum [E-Ec] 
(CFU/100 mL) 

Maximum [E-Ec] 
(CFU/100 mL) 

BC 6.00E+04 (1.04E+05) 0.000 0.000 1.80E+05 
CE 2.67E+03 (3.53E+03) 1.33E+03 0.000 6.67E+03 

HE 3.80E+04 (6.52E+04) 6.67E+02 0.000 1.13E+05 
LE 0.000 0.000 0.000 0.000 
MC 0.000 0.000 0.000 0.000 
MCX 0.000 0.000 0.000 0.000 
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Figure 14. Individual sampling week mean concentrations, in CFU/g, of ESBL E. coli in community farm poultry manure as 
determined by all candidate media. A semi-log graph is used for scale. Note that, for the purposes of log transformation, all ESBL 
E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 for this graph. 
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Figure 15. Arithmetic mean concentrations of total E. coli in community farm poultry manure as determined by quantification 
with non-antibiotic baseline media over 3 sampling events. 

The anomalously high maximum E-Ec concentration on BC medium notably influenced the 

proportions of BC/B media-detected E. coli that were presumptively ESBL-resistant (Figure 16). 

Proportions values from later BC/B sample calculations, as well as from all values on MC/M and 

MCX/MX media pairs, indicate that 0% of E. coli ŎŀǇǘǳǊŜŘ ŦǊƻƳ ǘƘƛǎ ŦŀǊƳΩǎ poultry manure were 

presumptively resistant. To compare for these media pairs their reported ESBL resistance proportions 
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analytically, an ANOVA with {ƛŘŀƪΩǎ multiple comparisons post-tests was performed. Both the ANOVA 

and post-test results indicated that all 3 candidate/baseline media pairs gave statistically comparable 

proportions (at p<0.05) of ESBL resistance among community farm poultry manure E. coli (Tables 30 and 

31).  

 

 

 

 

 

Figure 16. Proportions of detected E. coli in community farm poultry manure that were presumptively ESBL resistant. Note that 
the proportion reported by BC/B media pair is entirely driven by one anomalously high E-Ec concentration on BC medium. 

Table 30. Results of ANOVA comparing the mean log 10-transformed proportions of ESBL resistance among E. coli in community 
farm poultry manure, as determined by candidate/baseline media pairs. Note that, for the purposes of log transformation, all 
ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 for this analysis. 

Sample Type Statistic of 
Comparison 

F Statistic ANOVA p-value 
(p<0.05 is significant) 

Community farm 
poultry manure 

Log 10-transformed 
presumptively ESBL 

resistant proportion of 
detected E. coli 

0.8446 0.4751 

 

Table 31. {ƛŘŀƪΩǎ multiple comparisons post-tests results for candidate/baseline media pairs' differences in quantifying the log 
10-transformed proportions of presumptive ESBL resistance in community farm poultry manure E. coli. Note that, for the 
purposes of log transformation, all ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit 
value of 0.1 for this analysis. 

Medium Pair 1 Medium Pair 2 Sample Type p-value (p<0.05 

is significant) 

Log 10-transformed 

proportion 

difference (Raw 

data) 

BC/B MC/M Community farm 

poultry manure 

0.6738 0.2574 

BC/B MCX/MX 0.6506 0.2669 

MC/M MCX/MX >0.9999 0.009501 
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Conventional farm broiler pen litter 

 

 This section describes and analyzes for candidate media their E-Ec detection frequency, 

quantified E-Ec concentrations, and quantified proportions of ESBL resistance among all E. coli in 3 

conventional farm broiler litter sampling events over 2 months, between February 2018 and March 

2018.  

As with poultry manure samples, all candidate media failed to detect E-Ec in at least one broiler 

litter sample. The number of samples with E-Ec non-detects for each candidate medium is displayed in 

Table 32. To compare the frequency of broiler litter E-9Ŏ ŘŜǘŜŎǘƛƻƴ ōȅ ƳŜŘƛǳƳΣ ŀ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǿŀǎ 

performed. The results of this test were not significant, indicating that all media performed comparably 

in detecting broiler litter E-Ec (Table 32). 

Despite the occurrence of E-Ec non-detection in a given sample for all candidate media, all 

candidate media also detected >1.00E+03 CFU/g E-Ec in at least one sample. Furthermore, BC, MC, and 

MCX candidate media detected >1.00E+04 CFU/g E-Ec in two samples. These high sample 

concentrations considerably raised the mean E-Ec concentration quantified by each candidate medium. 

Figure 17 shows week-over-week mean concentrations, in CFU/g, of E-Ec in broiler chicken pen litter 

from an industry-standard farm, as detected by all candidate media. Central tendencies and minimum 

and maximum values for E-Ec concentrations quantified by all candidate media can be found in Table 

33. All candidate media shared a minimum individual-sample E-Ec concentration of 0 CFU/g. BC medium 

had the highest maximum individual-sample E-Ec concentration, while CE medium had the lowest. 

Individual-sample E-Ec concentration values are displayed by rank order concentration (i.e., highest 

concentration to lowest) and culture medium in Figure 18. (All individual sample concentrations by 

culture medium and sampling week can be found in  
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Table 55.) 

As a comparison to E-Ec concentrations, parallel analyses were performed to detect total E. coli 

from these samples using baseline media. Mean total E. coli concentrations were between 105-106 

CFU/g, depending on baseline medium (Figure 19). All media detected E. coli in all samples. 

Table 32. Number of samples with detected ESBL E. coli (>0 CFU/g fresh manure) in conventional farm broiler litter for all 
candidate media, plus the results of a Fisher's exact test for differences between candidate media. 

Conventional Farm Broiler Litter Detection Frequency 

Medium # Samples Detecting E-Ec # Samples Not 
Detecting E-Ec 

Fisher's exact test p-value 
(p<0.05 is significant) 

BC 2 1 >0.9999 

CE 1 2 

HE 2 1 

LE 1 2 

MC 2 1 

MCX 2 1 
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Figure 17 Week-over-week mean ESBL E. coli concentrations, in CFU/g, in conventional broiler chicken pen litter as detected by 
all candidate media. Error bars denote standard error of the mean. A semi-log graph is used for scale. All E-Ec non-detects were 
incorporated into mean calculations as concentrations of 0 CFU/100 mL.  
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Table 33. Arithmetic mean (with standard deviation), median, minimum, and maximum ESBL E. coli concentrations in 
community farm poultry manure for all candidate media over the course of 3 sampling events. 

Medium Mean [E-Ec] (SD) (CFU/100 
mL) 

Median [E-Ec] 
(CFU/100 mL) 

Minimum [E-Ec] 
(CFU/100 mL) 

Maximum [E-Ec] 
(CFU/100 mL) 

BC 6.26E+04 (6.99E+04) 4.97E+04 0.000 1.38E+05 
CE 8.90E+02 (1.54E+03) 0.000E00 0.000 2.67E+03 

HE 4.88E+03 (5.17E+03) 4.33E+03 0.000 1.03E+04 
LE 1.22E+03 (2.12E+03) 0.000E00 0.000 3.67E+03 
MC 3.88E+04 (3.55E+04) 4.67E+04 0.000 6.97E+04 
MCX 1.42E+04 (1.49E+04) 1.30E+04 0.000 2.97E+04 
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Figure 18. Individual sampling week mean concentrations, in CFU/g, of ESBL E. coli in conventional broiler chicken pen litter as 
determined by all candidate media. A semi-log plot is used for scale. To accommodate a semi-log plot, all E-Ec non-detects were 
assigned a less-than-lower-detection-limit value of 0.1. 
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Figure 19. Arithmetic mean total E. coli concentrations in conventional farm broiler litter as determined by baseline media over 3 
sampling events. 

Figure 20 shows the proportions of presumptive ESBL resistance among broiler litter E. coli, as 

detected by candidate/baseline media pairs. MCX/MX candidate/baseline media gave the highest 

proportion of ESBL resistance, at 14.81%. BC/B and MC/M media both detected much lower ESBL 

resistance proportions, at 2.47% and 1.93%, respectively. To see if significant differences existed 

ōŜǘǿŜŜƴ ŜŀŎƘ ƳŜŘƛŀ ǇŀƛǊΩǎ ǊŜǇƻǊǘŜŘ 9{.[ ǊŜǎƛǎǘŀƴŎŜ ǇǊƻǇƻǊǘƛƻƴǎΣ ŀƴ !bh±! ǿƛǘƘ {ƛŘŀƪΩǎ multiple 

comparisons post-tests was performed to compare the log 10-transformed proportions. Both tests 

indicated that no significant differences existed between these media in ESBL resistance proportions at 

p<0.05 (Tables 34 and 35).  
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Table 34. Results of ANOVA comparing the log 10-transformed mean proportions of ESBL resistance among E. coli in 
conventional broiler chicken pen litter, as determined by candidate/baseline media pairs. Note that, for the purposes of log 
transformation, all ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 for 
this analysis. 

Sample Type Statistic of 
Comparison 

F Statistic ANOVA p-value 
(p<0.05 is significant) 

Conventional broiler 
chicken pen litter 

Log 10-transformed 
presumptively ESBL 

resistant proportion of 
detected E. coli 

0.0338 0.9969 

 

Table 35. {ƛŘŀƪΩǎ multiple comparisons post-tests results for candidate/baseline media pairs' differences in quantifying the log-
transformed proportions of presumptive ESBL resistance in conventional broiler chicken pen litter E. coli. Note that, for the 
purposes of log transformation, all ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit 
value of 0.1 for this analysis. 

Medium Pair 1 Medium Pair 2 Sample Type p-value (p<0.05 

is significant) 

Log 10-

transformed 

proportion 

differences 

(Raw data) 

BC/B MC/M Conventional 

farm broiler pen 

litter 

0.9959 -0.06667 

BC/B MCX/MX 0.9942 -0.07493 

MC/M MCX/MX >0.9999 -0.008259 

 

Comparing community farm poultry manure vs conventional farm broiler chicken pen litter 

 

Per Objective 3, this section compares for candidate media the frequencies of E-Ec detection, 

mean E-Ec concentrations, and proportions of ESBL resistance among E. coli in community farm poultry 
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Figure 20. Presumptively ESBL resistant proportions of total E. coli in conventional broiler pen chicken litter as quantified by 
candidate and baseline media. All E-Ec non-detects were incorporated into calculations as concentrations of 0 CFU/100 mL.  
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manure versus conventional farm broiler litter. Because all media failed to detect E-Ec in at least one 

sample of each poultry waste sample typeΣ ŀ ǎŜǘ ƻŦ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘǎ ǿŀǎ ǇŜǊŦƻǊƳŜŘ ǘƻ ŎƻƳǇŀǊŜ ǘƘŜ 

frequency of E-Ec detection for each sample type, both for a given medium and for all media collectively 

(Table 36). Results suggest that media detected E-Ec with statistically comparable frequency in poultry 

waste samples from both farms.  

Figure 21 shows mean E-Ec values for each candidate medium for both community farm poultry 

manure and conventional broiler chicken pen litter sample types. Differences in mean concentrations 

are shown by candidate medium in Table 37. Four of the six candidate media detected higher E-Ec 

concentrations in conventional farm broiler litter than in community farm poultry manure. MC medium 

had the highest difference in mean E-Ec concentration (3.88E+04 CFU/g) between sample types, while 

LE medium had the lowest difference (1.22E+03 CFU/g). To see whether, collectively, mean E-Ec 

concentrations in poultry manure differed significantly from mean concentrations in broiler litter, a two-

sample t-test was performed on the seǘǎ ƻŦ ƳŜŘƛŀΩǎ ƭƻƎ-transformed mean E-Ec concentrations for each 

sample types (Table 38). The results of this test were significant at p<0.1 but not p<0.05, suggesting 

there is not sufficient evidence to conclude significant differences exist in the concentration of E-Ec in 

poultry manure vs. broiler litter.   
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Table 36. Results of CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘǎΣ ŦƻǊ ŜŀŎƘ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛǳƳ ŀƴŘ ŦƻǊ ŀƭƭ ƳŜŘƛŀ ŎƻƭƭŜŎǘƛǾŜƭȅΣ ŎƻƳǇŀǊƛƴƎ ŦǊŜǉǳŜƴŎȅ ƻŦ 9{.[ 
E. coli detection in community farm poultry manure vs. conventional farm broiler litter. 

Sample Types Statistic for Comparison 
 

Community farm poultry manure vs. 
conventional farm broiler litter 

Frequency of E-Ec detection 

Medium P-value (p<0.05 is significant) 
BC >0.9999 
CE >0.9999 
HE >0.9999 
LE >0.9999 
MC 0.4000 
MCX 0.4000 

All Media 0.1756 
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Figure 21. ESBL E. coli week-over-week mean concentrations from community farm poultry manure and conventional farm 
broiler litter for all candidate media. Error bars represent standard error of the mean. All E-Ec non-detects were included in 
mean calculations as concentrations of 0 CFU/g. Note that for the community farm samples, LE, MC, and MCX media gave mean 
E-Ec concentrations of 0 CFU/g. 
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Table 37. Broiler litter mean E-Ec concentrations minus poultry manure mean E-Ec concentrations, in CFU/g, for each candidate 
medium. 

Medium 
Broiler Litter minus Poultry Manure Mean E-Ec 

Concentration (CFU/g) 
BC 2.56E+03  
CE -1.78E+03 
HE -3.31E+04 
LE 1.22E+03 
MC 3.88E+04 
MCX 1.42E+04 

 

Table 38. Unpaired t-test of collective mean ESBL E. coli concentrations in community farm poultry manure vs. conventional farm 
broiler litter (n=3 samples of community farm poultry manure and n=3 samples of conventional farm broiler litter). 

Sample Type Statistic of 
Comparison 

t Statistic, degrees of 
freedom 

t-test p-value (p<0.05 
is significant) 

Community farm 
poultry manure vs. 
conventional farm 

broiler litter  

Log 10-transformed 
concentration of 

detected ESBL E. coli 

1.931, 10 0.0823 

 

 

Another point of comparison was the difference in the proportions of ESBL resistance among E. 

coli in each sample type for a given pair of media. To analyze these data, an ANOVA with {ƛŘŀƪΩǎ multiple 

comparisons post-tests was performed on the log 10-transformed proportions. The ANOVA results 

suggest that significant differences did exist in candidate/baseline media pair-determined proportions of 

ESBL resistance among E. coli in community farm poultry manure vs. conventional farm broiler litter. 

IƻǿŜǾŜǊΣ {ƛŘŀƪΩǎ ƳǳƭǘƛǇƭŜ ŎƻƳǇŀǊƛǎƻƴǎ Ǉƻǎǘ-tests show that no two pair of media pairs gave significantly 

different log 10-transformed proportions at p<0.05, although MCX/MX log 10-transformed proportions 

were significantly different at p<0.10 (Table 39).  
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Table 39. Results of ANOVA and multiple comparison post-tests for evaluating differences in E. coli ESBL resistance prevalence 
between community farm poultry manure and conventional broiler chicken pen litter. Note that, for the purposes of log 
transformation, all ESBL E. coli concentrations of 0 CFU/100 mL were assigned a less-than-lower-detection-limit value of 0.1 for 
this analysis. Significant p-values are highlighted in gold. 

Sample Types Statistic for 
Comparison 

ANOVA: % 
Variation 

P-value (p<0.05 is significant) 

Community farm poultry 
manure vs conventional broiler 

pen chicken litter 

Log 10-
Transformed 
proportion of 
all E. coli that 

are 
presumptively 
ESBL resistant 

31.95% 0.0301 

   
Medium Poultry Manure minus Broiler 

Litter E. coli that are ESBL-
Resistant (log 10 %) 

P-value (p<0.05 is significant) 

BC/B -14.83 0.9115 
MC/M -28.30 0.6872 

MCX/MX -71.41 0.0731 
 

Summary of ESBL E. coli Concentrations and Presumptive ESBL Resistance Proportions by Candidate 

Medium and Sample Type 

 

Figure 22 shows a summary of mean E-Ec concentrations for each candidate medium and each 

sample type. Detected mean E-Ec concentrations varied considerably between culture media, with 

differences between media varying by sample type. However, for the majority of sample types 

(upstream surface water and both poultry waste samples), BC medium was the most sensitive in 

enumerating E-Ec from the sample matrix. HE medium was the most sensitive at enumerating E-Ec from 

downstream surface waters and from raw sewage. By rank order of mean E-Ec concentrations across all 

sample types, BC medium was the most sensitive and HE medium the second-most sensitive. Which 

medium was least sensitive in enumerating E-Ec from a given sample type was more variable. By 

summed rank order, LE medium was the least sensitive in detecting and enumerating E-Ec from all 

sample matrices (Table 40).  
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Figure 22. Week-over-week mean ESBL E. coli concentrations (in CFU/100 mL for water samples and CFU/g for poultry waste 
samples) for each medium and sample type. A semi-log graph is used for scale. To accommodate this semi-log plot,, all mean 
ESBL E. coli concentrations of 0 CFU/100 mL or 0 CFU/g were assigned a less-than-lower-detection-limit value of 0.1. 

Table 40. Rank order of mean ESBL E. coli concentrations given by candidate media for a given sample type and overall. '1'  
indicates the corresponding candidate culture medium gave the highest ESBL E. coli concentration for that given sample type 
(or, in the right-most column, overall). Sums tabulated the rank order of mean concentrations for a given medium within a given 
sample type; this sum is then ranked to give the overall medium rank order. 

 
Morgan Creek 
Upstream 

Morgan Creek 
Downstream 

Poultry 
Manure 

Broiler 
Litter 

Raw 
Sewage 

Sum Rank (Most 
to Least 
Sensitive) 

BC 1 2 1 1 5 10 1 BC 
CE 6 3 3 6 4 22 5 CE 
HE 4 1 2 4 1 12 2 HE 
LE 5 6 4 5 6 26 6 LE 
MC 2 5 4 2 2 15 3 MC 
MCX 3 4 4 3 3 17 4 MCX 

 

Confirmatory analyses by candidate medium 

 

Per Objective 2, a main research goal concerned the comparison of different candidate media 

for diagnostic performance in presumptively identifying E. coli and presumptively characterizing ESBL 

resistance for isolates from all sample types. As such, confirmatory speciation (MALDI-TOF MS) and AST 
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(VITEK) data were used to calculate diagnostic statistics for the presumptive speciation of E. coli 

(namely, sensitivity, specificity, PPV, NPV, and overall diagnostic efficiency) and for the presumptive 

characterization of ESBL resistance. Diagnostic statistics for presumptive ESBL resistance 

characterization included cefpodoxime ‍-lactam resistance PPV and ESBL production PPV. To compare 

these statistics, ANOVA analyses with multiple comparisons post-tests were performed. (Speciation and 

ESBL resistance characterization data for each submitted isolate can be found in Table 57.) 

Candidate media performed with significant differences (at p<0.05) in accurately presumptively 

identifying E. coli (Figure 23, Tables 41 and 42; significant differences between candidate media 

diagnostic statistics are noted in Table 42). CE, HE, and MCX media had the highest sensitivity at 1.000, 

with BC and LE media sensitivities also relatively high at 0.9565 and 0.8000, respectively.  MC medium 

had the lowest sensitivity at 0.2500. Comparing specificities, BC and MCX candidate media were highest 

at 1.000 and 0.9000, respectively, with the remaining media specificities appreciably lower, between 

0.5641 (CE medium) and 0.7097 (HE medium). Inter-media variability for PPV was much higher. BC and 

MCX media had relatively high PPV values at 1.000 and 0.8667, respectively, while HE medium had a 

much lower PPV (0.4375) and the other candidate media PPVs lower still (CE = 0.05556; LE = 0.1818; MC 

= 0.1667). NPV values were less variable between media. All candidate media except MC had NPVs 

between 0.9545 (BC) and 1 (CE, HE, MCX); MC medium had a NPV of 0.7692. Comparing overall 

diagnostic efficiencies, BC medium was highest at 1.000 and MCX medium next highest at 0.9394. The 

remaining candidate media diagnostic efficiency values were lower, with HE at 0.7632 and LE at 0.5957, 

MC at 0.5789, and CE at 0.5750. 

.  
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Figure 23. Diagnostic accuracy of presumptive E. coli identification for each candidate medium. Error bars represent standard 
error of the mean. The number of isolates by candidate medium is displayed alongside the medium name in the legend. 
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Table 41. Fisher's exact test significance plus presumptive E. coli identification diagnostic statistics for each candidate medium 
ƻƴ ƛǎƻƭŀǘŜǎ ŦǊƻƳ ŀƭƭ ǎŀƳǇƭŜ ǘȅǇŜǎΦ {ǘŀǘƛǎǘƛŎŀƭƭȅ ǎƛƎƴƛŦƛŎŀƴǘ όǇғлΦлрύ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǊŜǎǳƭǘǎ ŀǊŜ ƘƛƎƘƭƛƎƘǘŜŘ ƛƴ ƎƻƭŘ. 

 Presumptive E. coli Identification  
Me-
dium 

Fisher’s exact 
test p-value 
(p<0.05 
significant) 

Sensitivity 
[95% CI] 

Specificity 
[95% CI] 

PPV [95% 
CI] 

NPV [95% 
CI] 

ODE [95% 
CI]  

BC <0.0001 0.9565 
[0.7901, 
0.9978] 

1.000 
[0.8454, 
1.000] 

1.000 
[0.8513, 
1.000] 

0.9545 
[0.7820, 
0.9977] 

0.9773 
[0.9332, 
1.000] 

CE 0.4500 1.000 
[0.05129, 
1.000] 

0.5641 
[0.4098, 
0.7070] 

0.05556 
[0.00285, 
0.2576] 

1.000 
[0.8513, 
1.000] 

0.5750 
[0.4218, 
0.7282] 

HE 0.0009 1.000 
[0.6457, 
1.000] 

0.7097 
[0.5341, 
0.8390] 

0.4375 
[0.2310, 
0.6682] 

1.000 
[0.8513, 
1.000] 

0.7632 
[0.6280, 
0.8983] 

LE 0.1710 0.8000 
[0.3755, 
0.9897] 

0.5714 
[0.4221, 
0.7088] 

0.1818 
[0.07307, 
0.3852] 

0.9600 
[0.8046, 
0.9979] 

0.5957 
[0.4554, 
0.7360] 

MC >0.9999 0.2500 
[0.01282, 
0.6994] 

0.6667 
[0.4171, 
0.8482] 

0.1667 
[0.008549, 
0.5635] 

0.7692 
[0.4974, 
0.9182] 

0.5789 
[0.3569, 
0.8010] 

MCX <0.0001 1.000 
[0.7719, 
1.000] 

0.9000 
[0.6990, 
0.9822] 

0.8667 
[0.6212, 
0.9763] 

1.000 
[0.8241, 
1.000] 

0.9394 
[0.8580, 
1.000] 
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Table 42. P-values of differences in candidate media's E. coli identification diagnostic statistics from analyses on all sample 
types. Statistically significant (p<0.05) p-values are highlighted in gold.  

Presumptive E. coli Identification 

Medium 1 Medium 2 Sensitivity 
P-value 

(p<0.05 is 
significant) 

 

Specificity 
P-value  

PPV P-
value 

ἚἜἤ P-
value 

ODE P-
value 

BC CE >0.9999 <0.0001 <0.0001 >0.9999 <0.0001 

BC HE >0.9999 0.0023 <0.0001 >0.9999 0.0744 

BC LE 0.3739 <0.0001 <0.0001 >0.9999 <0.0001 

BC MC <0.0001 0.0067 <0.0001 0.5410 0.0004 

BC MCX >0.9999 0.9700 0.7708 >0.9999 >0.9999 

CE HE >0.9999 0.6216 <0.0001 >0.9999 0.2172 

CE LE 0.1017 >0.9999 0.7535 >0.9999 >0.9999 

CE MC <0.0001 0.9936 0.9861 0.2208 >0.9999 

CE MCX >0.9999 0.0006 <0.0001 >0.9999 0.0001 

HE LE 0.1131 0.6436 0.0104 >0.9999 0.3294 

HE MC <0.0001 >0.9999 0.0763 0.2317 0.5894 

HE MCX >0.9999 0.2679 <0.0001 >0.9999 0.3859 

LE MC <0.0001 0.9962 >0.9999 0.4759 >0.9999 

LE MCX 0.1503 0.0004 <0.0001 >0.9999 0.0002 

MC MCX <0.0001 0.2500 <0.0001 0.2653 0.0044 

 

Candidate media also performed with significant differences in identifying non-E. coli coliforms, 

generally with lower accuracy than for presumptive E. coli identification (Figure 24, Tables 43 and 44; 

significant differences between candidate media diagnostic statistics are found in Table 44). For all 

diagnostic statistics, most media performed with low to moderate accuracy (25-тр҈ύΦ tŜǊ CƛǎƘŜǊΩǎ ŜȄŀŎǘ 

test results, only BC medium gave presumptive coliform/non-coliform identification that was 

significantly associated with actual identities of isolates. BC and MCX media had the highest presumptive 

coliform identification sensitivities at 100% and 66.67%, respectively. BC medium was significantly more 

sensitive than all other non-MCX media, and MCX medium was significantly more sensitive than HE and 

LE media. Specificities were lower and less variable. The specificity of BC medium was significantly 
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higher than that of either LE or MC media; no other significant differences occurred. PPVs were also 

typically low (most <50%), with BC medium (68.75%) significantly higher than all except MC medium 

(38.45%). NPVs were generally higher (most >50%). BC medium (100.0%) had a significantly higher NPV 

than all except MCX media (86.67%). MC medium had a significantly lower NPV (33.33%) at p<0.05 than 

all other media except LE (63.64%), with which NPV differences were borderline significant (p=0.0613). 

Comparing overall diagnostic efficiencies, BC (77.27%) was significantly more accurate at p<0.05 than all 

media except MCX medium (51.52%); however, the ODE of BC medium was significantly higher than 

that of MCX medium at p<0.10 (p=0.0594). No other significant differences occurred.  
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Figure 24. Diagnostic accuracy of presumptive non-E. coli coliform identification for each candidate medium. Error bars 
represent standard error of the mean. The number of isolates by candidate medium is displayed alongside the medium name in 
the legend. 
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Table 43. Fisher's exact test significance plus presumptive non-E. coli coliform identification diagnostic statistics for each 
ŎŀƴŘƛŘŀǘŜ ƳŜŘƛǳƳ ƻƴ ƛǎƻƭŀǘŜǎ ŦǊƻƳ ŀƭƭ ǎŀƳǇƭŜ ǘȅǇŜǎΦ {ǘŀǘƛǎǘƛŎŀƭƭȅ ǎƛƎƴƛŦƛŎŀƴǘ όǇғлΦлрύ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘest results are highlighted in 
gold. 

 Presumptive non-E. coli Coliform Identification 

Me-
dium 

Fisher’s exact 
test p-value 

(p<0.05 
significant) 

Sensitivity 
[95% CI] 

Specificity 
[95% CI] 

PPV [95% 
CI] 

NPV [95% 
CI] 

ODE [95% 
CI] 

BC <0.0001 
1.000 

[0.7575, 
1.000] 

0.6875 
[0.5143, 
0.8205] 

0.5455 
[0.3466, 
0.7308] 

1.000 
[0.8513, 
1.000] 

0.7727 
[0.6489, 
0.8966] 

CE >0.9999 
0.5455 

[0.2801, 
0.7873] 

0.4483 
[0.2841, 
0.6245] 

0.2727 
[0.1315, 
0.4815] 

0.7222 
[0.4913, 
0.8750] 

0.4750 
[0.3202, 
0.6230] 

HE 0.3944 
0.2857 

[0.05077, 
0.5411] 

0.4583 
[0.2789, 
0.6493] 

0.1333 
[0.02369, 
0.3788] 

0.6875 
[0.4440, 
0.8584] 

0.4194 
[0.2456, 
0.5931] 

LE 0.3279 
0.3845 

[0.1771, 
0.6448] 

0.4116 
[0.2637, 
0.5778] 

0.2000 
[0.08861, 
0.3913] 

0.6364 
[0.4295, 
0.8027] 

0.4043 
[0.2640, 
0.5446] 

MC 0.3498 
0.5556 

[0.2667, 
0.8112] 

0.2000 
[0.03654, 
0.5093] 

0.3845 
[0.1771, 
0.6448] 

0.3333 
[0.05923, 
0.7000] 

0.3684 
[0.1515, 
0.5853] 

MCX 0.6648 
0.6667 

[0.3000, 
0.9408] 

0.4815 
[0.3074, 
0.6601] 

0.2222 
[0.09001, 
0.4521] 

0.8667 
[0.6212, 
0.9763] 

0.5152 
[0.3446, 
0.6857] 
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Table 44. P-values of differences in candidate media's non-E. coli coliform identification diagnostic statistics from analyses on all 
sample types. Statistically significant (p<0.05) p-values are highlighted in gold.  

Presumptive non-E. coli Coliform Identification 

Medium 1 Medium 2 Sensitivity 
P-value 

(p<0.05 is 
significant) 

 

Specificity 
P-value  

PPV P-
value 

ἚἜἤ P-
value 

ODE P-
value 

BC CE <0.0001 0.0694 0.0207 0.0162 0.0070 
BC HE <0.0001 0.1626 <0.0001 0.0095 0.0016 
BC LE <0.0001 0.0109 0.0004 0.0001 <0.0001 
BC MC 0.0005 <0.0001 0.8849 <0.0001 0.0024 
BC MCX 0.0031 0.2720 0.0048 0.8918 0.0594 
CE HE 0.0786 >0.9999 0.8819 >0.9999 >0.9999 
CE LE 0.5789 >0.9999 0.9993 0.9957 0.9995 
CE MC >0.9999 0.2862 0.9954 0.0051 0.9973 
CE MCX 0.9513 >0.9999 >0.9999 0.8348 >0.9999 
HE LE 0.9914 >0.9999 0.9999 >0.9999 >0.9999 
HE MC 0.2303 0.2938 0.3295 0.0260 >0.9999 
HE MCX 0.0014 >0.9999 0.9988 0.6407 0.9972 
LE MC 0.8139 0.4998 0.7155 0.0613 >0.9999 
LE MCX 0.0213 0.9998 >0.9999 0.1267 0.9706 
MC MCX 0.9971 0.1682 0.9060 <0.0001 0.9580 

 

In contrast with presumptive speciation comparisons, candidate media mostly performed 

statistically comparably (at p<0.05) in accurately presumptively characterizing bacteria as ESBL resistant 

(Figure 25, Tables 45 and 46; significant differences between candidate media diagnostic statistics are 

noted in Table 46). Comparing candidate media for proportions of presumptively resistant isolates 

which were confirmed as resistant to cefpodoxime (an ESBL antimicrobial), all candidate media 

characterized isolates as resistant with >70% accuracy. BC medium had the highest ESBL resistance PPV 

at 0.9545, with LE medium second-highest at 0.9362. MCX, CE, HE, and MC media all had similar PPVs at 

0.8485, 0.8000, 0.7742, and 0.7368, respectively. No significant differences existed at p<0.05 between 

candidate media ESBL resistance PPVs. Candidate media performed with lower and more variable 
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accuracy in characterizing isolates as resistant which actually expressed ESBL beta-lactamase resistance 

genes. BC medium had the highest ESBL production PPV at 0.5000, with MCX medium at 0.3636 and MC 

medium at 0.3158. HE and LE medium gave comparable ESBL production PPVs at 0.2581 and 0.2340, 

respectively, and CE had the lowest PPV at 0.1000. Only BC and MCX media had ESBL production PPVs 

that were significantly higher than that of another candidate medium (cf. Table 45). 
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Figure 25. Positive predictive values of presumptive ESBL resistance characterization, as defined by confirmed cefpodoxime ‍-
lactam resistance and confirmed extended-spectrum-‍-lactamase production, by candidate medium. Error bars represent 
standard error of the mean. The number of isolates for each candidate medium is displayed alongside the medium name in the 
legend. 
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Table 45. Presumptive ESBL characterization diagnostic statistics, with 95% confidence interval limits, for each candidate 
medium on isolates from all sample types.  

ESBL Resistance Characterization 
Medium ESBL Resistance PPV [95% CI] ESBL Production PPV [95% 

CI] 

BC 0.9545 [0.8930, 1.000] 0.5000 [0.3523, 0.6477] 

CE 0.8000 [0.6760, 0.9240] 0.1000 [0.007029, 0.1930] 

HE 0.7742 [0.6270, 0.9214] 0.2581 [0.1042, 0.4121] 

LE 0.9362 [0.8663, 1.000] 0.2340 [0.1130, 0.3551] 

MC 0.7368 [0.5388, 0.9348] 0.3158 [0.1068, 0.5248] 

MCX 0.8485 [0.7262, 0.9708] 0.3636 [0.1995, 0.5278] 

 
Table 46. P-values of differences in candidate ƳŜŘƛŀΩǎ ESBL resistance characterization diagnostic statistics from analyses on all 
sample types. Statistically significant (p<0.05) p-values are highlighted in gold.  

Presumptive ESBL Resistance Characterization 

Medium 1 Medium 2 
 ♫-Lactam Resistance 

PPV 
ESBL Production PPV 

BC CE 0.6586 <0.0001 
BC HE 0.4268 0.0727 
BC LE >0.9999 0.0169 
BC MC 0.4714 0.7348 
BC MCX 0.9826 0.8721 
CE HE >0.9999 0.6793 
CE LE 0.8070 0.8240 
CE MC >0.9999 0.5114 
CE MCX >0.9999 0.0582 
HE LE 0.5817 >0.9999 
HE MC >0.9999 >0.9999 
HE MCX 0.9997 0.9877 
LE MC 0.6022 0.9998 
LE MCX 0.9970 0.9005 
MC MCX 0.9969 >0.9999 
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CHAPTER 6: DISCUSSION 

 

Overview 

 

This project represents the first known evaluation of both commercial and generic chromogenic 

ESBL culture media for the detection and quantification of ESBL E. coli, plus the quantification of 

presumptive ESBL resistance among E. coli, in multiple One Health-relevant sample matrices across 

agricultural and environmental settings. Previous studies have compared multiple culture-based media 

for direct ESBL detection for use with a single sample type, typically in the clinical sector84,97 Of these 

studies, several compared commercial media (including CHROMagar ESBL and comparable proprietary 

media) and ESBL antibiotic-supplemented generic MacConkey media for their sensitivity and PPV in 

detecting ESBL Enterobacteriaceae from clinical isolates. These studies provide conflicting results about 

the PPVs of commercial vs. MacConkey-based media: Huang et al. reporting MacConkey isolated ESBL 

Enterobacteriaceae from clinical specimens with a greater PPV than commercial media, and Paniagua et 

al. reported the opposite98,99. Overall, studies commonly reported ESBL detection PPVs below 50% 

across all detection media used97. In this study, the majority of generic candidate media ς TBX with 

cefotaxime and MacConkey with cefotaxime and X-Gluc ςperformed with superior accuracy in detecting 

ESBL Enterobacteriaceae compared to commercial candidate media. These results were consistent in 

analyses across several diverse sample types. The results of this study enrich these previously 

established results by providing an expanded comparison of commercial vs. generic media performance 

in presumptive ESBL Enterobacteriaceae identification and resistance characterization across a larger 

and more distinct set of OH-relevant sample matrices. Additionally, this project allows a richer 

comparison of not just the relative performance of these media in ESBL Enterobacteriaceae detection 
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but also quantification of ESBL Enterobacteriaceae concentrations and of the proportion of ESBL 

resistance among all Enterobacteriaceae. These are quantitative outcomes for environmental AMR 

surveillance of the WHO Tricycle Project. As such, this study sheds light on the application and 

performance of culture-based media for rapid ESBL Enterobacteriaceae detection in a more 

comprehensive way than multiple other studies.  

These results also inform the Tricycle Project in regard to recently finalized changes to the E-Ec 

indicator system methodology, which was decided on part-way through the project timeline. Initial 

AGISAR Tricycle Project studies recognized the superior performance of generic ESBL culture media in 

detecting E-Ec across OH settings. Those studies also reported the greater specificity in ESBL detection of 

media supplemented with 4 ug/mL cefotaxime (unpublished work), AGISAR has recommended adoption 

of MacConkey agar supplemented with cefotaxime (MC medium) for use in the Tricycle Project as a 

standardized, harmonized method for direct E-Ec detection. (These recommendations also identify TBX 

with 4 ug/mL cefotaxime as a secondary option.) The selection of MacConkey agar as the first-choice 

medium owes to the availability, appropriateness and familiarity of MacConkey agar for clinical and 

veterinary microbiology analysts. Here, the results of this study showed that MC medium performed 

with variable sensitivity from one sample type to another relative to other media, and that MC medium 

was average or worse at presumptively identifying and characterizing ESBL isolates from raw sewage 

and surface water samples. In short, MC medium performed worse than multiple other media for 

environmental AMR surveillance analyses. However, confirmatory analyses were not possible for ESBL 

isolates which had been isolated from poultry farm waste matrices. As such, the results here do not 

necessarily contradict the recommendation of MC medium as a superior culture medium for clinical and 

veterinary AMR surveillance, but rather suggest that MC medium works less well in environmental E-Ec 

surveillance than multiple other chromogenic ESBL culture media, namely TBX agar supplemented with 

cefotaxime and MacConkey agar supplemented with both cefotaxime and X-Gluc.   
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¢Ƙƛǎ ŘƛǾŜǊƎŜƴŎŜ ƛƴ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀΩǎ ǊŜƭŀǘƛǾŜ ǇŜǊŦƻǊƳŀƴŎŜ ŘŜǇŜƴŘƛƴƎ ƻƴ ǘƘŜ ǘȅǇŜ ƻŦ ǎŀƳǇƭŜǎ 

being analyzed points to the sector-specific requirements for microbiological culture media more 

generally. A diagnostic medium intended for human or veterinary clinical use may require detection of a 

wider range of target organisms, necessitating a medium that is less selective and/or more differential, 

differentiating target organisms by their unique enzymatic activity or by relevant phenotypic 

characteristics (e.g., lactose fermentation, motility, hemolysis, etc.).  

In contrast, an environmental or food safety microbiological culture medium more often 

requires detecting one or a few target organisms from a microbially diverse sample matrix with hard-to-

replicate growth conditions. Additionally, unlike clinical detection media, these media may also be used 

for the quantification of target organisms. As a result, environmental and food safety media may require 

ƳŀȄƛƳǳƳ ǇǊƻŘǳŎǘƛǾƛǘȅ ǘƻ ΨǊŜŎƻǾŜǊΩ ŀǎ ƳǳŎƘ ƻŦ ǘƘŜ ǘŀǊƎŜǘ ƻǊƎŀƴƛǎƳόǎύ ŀǎ ǇƻǎǎƛōƭŜ ŦǊƻƳ ǘƘŜ ǎŀƳǇƭŜ ǿƘƛƭŜ 

more tightly selecting against the growth of any non-target organisms. These selective agents may 

include inorganic salts, dyes, surfactants, and antibiotics100.  

In this project, the formulations of the candidate media likely had considerable impact on their 

differences in performance. Of the candidate media evaluated here for environmental AMR surveillance, 

all rely on ESBL antibiotics to exclude non-‍-lactam resistant organisms. TBX and MacConkey 

incorporated 1 mg/L cefotaxime and HiCrome ESBL incorporated 10 mg/L ESBL antibiotics ς 3 mg/L each 

ceftazidime and cefotaxime and 2 mg/L each ceftriaxone and aztreonam. Neither CHROMagar ESBL nor 

Chromatic ESBL specified the identities or concentrations of their proprietary ESBL antibiotic 

ǎǳǇǇƭŜƳŜƴǘǎΤ ŀǎ ǎǳŎƘΣ ŀ Ŧǳƭƭ ŎƻƳǇŀǊƛǎƻƴ ƻŦ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀΩǎ ŘƛŦŦŜǊŜƴŎŜǎ in presumptive ESBL resistance 

characterization based on their formulations is not possible. However, it is worth noting briefly that 

HiCrome ESBL was not significantly more accurate at presumptively characterizing ESBL isolates despite 

its much higher concentrations of ESBL antibiotics. 
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The TBX and MacConkey media also explicitly incorporated 1.500 g/L bile salts to inhibit Gram-

positive organisms. The MacConkey media used also contained 1 mg/L crystal violet, which has anti-

Gram-positive bacteria activity. (The other media may have included other selective agents but did not 

explicitly specify as such.)101 The incorporation of bile salts into TBX and MacConkey media have 

increased their ease of use and potentially even their diagnostic accuracy in presumptive organism 

identification compared to the commercial media used; even though the vast majority of falsely 

presumptively identified isolates were Gram-negative organisms, the greater selectivity of media with 

these selective agents may have made for easily readable plates with fewer background organisms or 

confluent colonies, enabling more accurate presumptive identification in a general way. Additionally, 

TBX and MacConkey with cefotaxime and X-Gluc may have also had an appreciable advantage in both 

initial E-Ec detection/quantification and presumptive E. coli identification based on their chromogen 

mix. These media allowed E. coli colony morphologies that more strongly contrasted from the 

morphologies of non-E. coli coliforms or non-target organisms.  Lastly, note that crystal violet has slight 

anti-E. coli activity102, which may partially explain the reduced sensitivity of MacConkey media in initial 

E. coli detection and quantification compared to certain other candidate media.  

By Objective 

 

Objective 1: the results from the statistical tests comparing the performance of these candidate 

media in detecting and quantifying E-Ec and other ESBL target organisms suggest few statistically 

significant differences. Apart from four statistically significant differences in analyzing raw sewage E-Ec, 

all candidate media were found to be statistically comparable for quantification of E-Ec in all sample 

types. (HiCrome ESBL (HE) and MacConkey with cefotaxime (MC) media both detected significantly 

higher concentrations than either of MacConkey with cefotaxime and X-Gluc (MCX) or Chromatic ESBL 

(LE) media.) Likewise, for each sample matrix in which E-Ec non-detection was common, all media 

detected E-Ec with statistically comparable frequency. Moreover, both for a given candidate medium 
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and for all candidate media collectively, results from one surface water sample to another or from one 

poultry waste sample to another, did not significantly affect the frequency of E-Ec detection. These data 

generally support the validation of all candidate media for detection and enumeration of E-Ec in these 

environmental sample types given their comparable performance to CE and MC agars, which are ESBL 

selective culture media previously validated for use in environmental sample types91,103. 

While these media generally performed comparably in detecting and quantifying E-Ec, it is 

worth noting that the relative differences in E-Ec concentrations between candidate media were 

somewhat consistent across sample types. For example, CE and LE media were generally the least 

sensitive in detecting E-Ec regardless of the sample matrix analyzed. With that said, the sensitivity of BC 

medium is an exception here. While BC medium gave the highest or second-highest E-Ec concentrations 

in both surface water and both agricultural waste analyses, it gave the second-lowest E-Ec 

concentrations in raw sewage analyses. This discrepancy may owe to observer error linked to the high 

ŎƻƴŎŜƴǘǊŀǘƛƻƴǎ ƛƴ Ǌŀǿ ǎŜǿŀƎŜ ƻŦ άŦŀƭǎŜ ŎƻƎƴŀǘŜέ 9ƴǘŜǊƻōŀŎǘŜǊƛŀŎŜŀŜ ƎŜƴŜǊŀ όŜΦƎΦΣ Aeromonas spp.104) 

which produce false positive results on commercial chromogenic media105 (i.e., CE, HE, and LE media). 

Given that the specificity of BC medium in raw sewage E. coli identification was significantly higher than 

that of any other medium (cf. Table 6), it follows that BC-determined E-Ec concentrations would be 

lower relative to other candidate media for raw sewage (in which false cognate Enterobacteriaceae 

would artificially inflate E-Ec counts) but higher for other sample types (where such false cognate 

bacteria existed in lower concentrations relative to raw sewage105,106). 

This discrepancy above points to statistically significant differences in the diagnostic accuracy of 

these media in identifying E. coli from the analyzed sample types (Objective 2). Only three media ς BC, 

HE, and MCX media ς ƎŀǾŜ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǊŜǎǳƭǘǎ ƛƴŘƛŎŀǘƛƴƎ ǘƘŀǘ ƳŜŘƛǳƳ-determined presumptive E. 

coli/non-E. coli identification was associated with the actual identity of the isolates. These tests indicate 

that only these media are somewhat accurate overall in presumptively identifying E. coli. Of these, only 
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ƻƴŜ ƳŜŘƛǳƳ ό./ύ ƎŀǾŜ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ ǊŜǎǳƭǘǎ ƛƴŘƛŎŀǘƛƴƎ ŀŎŎǳǊŀŎȅ ƛƴ ǇǊŜǎǳƳǇǘƛǾŜƭȅ ƛŘŜƴǘƛŦȅƛƴƎ ƴƻƴ-E. 

coli coliforms (Klebsiella spp., Enterobacter spp., Serratia spp., Citrobacter sppΦΤ άY9{/έ). 

 However, additional statistical analyses allowed more direct comparisons and gave a more 

detailed picture of presumptive identification accuracy across culture media. Most candidate media 

performed with statistically comparable, moderate-to-high (i.e., >75%) sensitivity in identifying E-Ec 

across sample types. Most media performed with comparable sensitivity to other selective chromogenic 

ESBL E. coli/coliform culture media29. E. coli identification NPVs were similarly high and statistically 

comparable for all candidate media, similar to previously reported negative predictive values for 

comparable media29.  MC medium served as an exception to these generalizations, displaying 

significantly lower sensitivity and NPV in presumptive E. coli identification compared to the other 

candidate media. 

Candidate media specificities and PPVs varied between the different culture media. BC medium 

identified E. coli with significantly greater specificity than all media except MCX. MCX medium was 

significantly more specific than CE and LE media. Concerning PPVs, BC and MCX media detected E. coli 

with significantly higher PPVs than all other media. Of these, HE medium had a significantly higher PPV 

than CE and LE medium at p<0.05, and a nearly significantly higher PPV than MC medium (p=0.0763). 

For most media, specificity and PPV values were appreciably lower than those found in the literature for 

comparable media used to identify E. coli from clinical isolates. Low specificities are likely attributable to 

observer error compounded by the similar morphologies of different Enterobacteriaceae and other 

background organisms on these media in the environmental samples analyzed. (For example, red E. coli 

and red-haloed Aeromonas hydrophila colonies look substantially similar on CE medium immediately 

post-incubation.) Genetic or phenotypic variability in environmental strains of E. coli compared to 

isogenic clinical strainsς e.g., variability in ‍-glucoronidase enzyme levels affecting environmental-strain 

E. coli pigmentation and thus ease of detection and differentiation ς could also partially explain lower 
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specificities. In contrast, because predictive values are influenced by the prevalence of E. coli in the 

sample type analyzed, low PPVs may be a consequence of a lower prevalence of E. coli in environmental 

samples as compared to clinical samples. However, as Gazin et al. note, lower and variable PPVs (39-

74%) were seen in these media for detection of E. coli from clinical isolates29, suggesting that low 

predictive value also may be somewhat characteristic of these candidate media, independently of the 

sample analyzed. 

Comparing the overall diagnostic efficiency of each medium as a summary of its accuracy in 

identifying E. coli, BC and MCX media were comparably accurate. These two media were significantly 

more accurate than other media except HE medium. (The diagnostic efficiency of BC medium was higher 

than that of HE medium at p<0.10 but not p<0.05.) These results suggest that BC and MCX media are the 

most accurate of the candidate media studied in identifying E. coli from surface waters, municipal 

wastewater, and wastes from representative types of poultry farms. This superior accuracy is likely 

attributable to the formulation ƻŦ ǘƘŜǎŜ ƳŜŘƛŀΩǎ ŘƛŦŦŜǊŜƴǘƛŀǘƛƴƎ ŎƘǊƻƳƻƎŜƴǎ ŀƴŘ ǘƘǳǎ ǘƘŜ ƎǊŜŀǘŜǊ 

distinctiveness of E. coli vs. non-E. coli coliform and non-coliform colony morphologies. Additionally, BC 

and MCX media (as well as MC medium), in contrast to the commercial candidate media, are formulated 

with bile salts to inhibit the growth of Gram-positive organisms, which may reduce the accuracy of 

presumptive target organism identification and/or characterization if these Gram-positive species 

display morphologies insufficiently differentiable from target organism morphologies. As previously 

mentioned, observer error frequently occurred when using CE, HE, LE, and MC media, as non-E. coli 

colonies could commonly resemble E. coli. 

Briefly, concerning confirmatory data on presumptive non-E. coli coliforms, BC medium was 

again generally significantly more accurate than all media except MCX, which was typically second-most 

accurate. Generally, candidate media performed worse across all parameters (except PPV) at 

presumptively identifying non-E. coli coliforms than at identifying E. coli. These results conflict 
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somewhat with Gazin et al. The authors also reported a comparable ESBL Enterobacteriaceae-selective 

medium presumptively identifying KESC coliforms with worse specificity than for identifying E. coli; 

however, KESC coliforms were identified with greater sensitivity29. One reason for a medium identifying 

KESC coliforms less accurately than E. coli may be that coliform colony morphologies more closely 

resemble background colony morphologies than E. coli morphologies do for most of these media.    

Smaller differences existed in the ability of candidate media to presumptively characterize 

isolates as ESBL-resistant. All candidate media performed statistically comparably and with moderate-

to-high PPVs (73-95%) in characterizing isolates which were confirmed as resistant to cefpodoxime, a 

representative ESBL antimicrobial. For all candidate media, less than 50% of presumptively ESBL-

resistant isolates were confirmed to produce extended-spectrum-‍-lactamase enzymes. BC medium 

detected ESBL-producing isolates with greater accuracy than CE, HE, and LE media. MCX medium 

detected ESBL-producing isolates more accurately than CE medium. No other significant differences 

occurred.  

Explanations for these findings are not immediately apparent. While accuracy in detecting ESBL 

production was much lower than expected given the high accuracy in detecting confirmed ‍-lactam 

resistance, selective culture-based media detecting confirmed ESBL-producing isolates with <50% PPV 

was also reported in Grohs et al.84 As for the discrepancy between media in predicting ESBL producing 

isolates, one hypothesis comes from the fact that class A ‍-lactamases (those detected by confirmatory 

testing here) are most common among Enterobacteriaceae107. The greater accuracy of BC and MCX 

media in species identification may prevent the erroneous identification as ESBL E. coli/coliforms for 

isolates which are actually non-Enterobacteriaceae producing non-class A ‍-lactamases or which 

possess intrinsic resistance to ESBL antimicrobials.  

In summary, most media achieved analyses on environmental samples with a high sensitivity 

and high NPV in identifying E. coli. All media performed with a moderate-to-high PPV in presumptively 
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characterizing isolates as resistant to ESBL antimicrobials. However, most media performed with <75% 

specificity and <50% PPV in identifying E. coli and non-E. coli coliforms, and presumptive coliform 

identification sensitivities and NPVs were also generally <50%. Additionally, all media performed with 

<50% PPV in identifying ESBL-producing isolates. Compared to other candidate media, BC and, to a 

lesser extent, MCX media presumptively identified E. coli and non-E. coli coliforms with significantly 

superior specificity and PPV and characterized ESBL-producing isolates with significantly higher PPV than 

the other candidate media tested. For these reasons, BC and MCX media should be considered the most 

accurate media for detecting E-Ec and other ESBL coliforms in environmental samples.  

While a decision on which of these media to use within a global surveillance scheme as outlined 

by the Tricycle Project ƴŜŎŜǎǎŀǊƛƭȅ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ ƳŜŘƛǳƳΩǎ ǘŜŎƘƴƛŎŀƭ ǇŜǊŦƻǊƳŀƴŎŜΣ their accessibility 

and financial factors should also be considered. All candidate media require supplementation with ESBL 

antimicrobials (and, for MCX medium, a polar aprotic solution of X-Gluc) after autoclaving. As such, use 

of these media necessitates an autoclave, a cold chain for antimicrobial agents, and sterile reagent 

water (and polar aprotic solvents, for MCX medium) in addition to the provided media and 

corresponding powdered supplements. Access to these materials and capabilities may not be possible in 

microbiology labs in the lowest-resource settings, limiting the feasibility of all of these media and, by 

extension, the Tricycle Project surveillance scheme.  With that said, differences in accessibility do exist 

ǘƻ ŘƛŦŦŜǊŜƴǘƛŀǘŜ ǘƘŜǎŜ ŎŀƴŘƛŘŀǘŜ ƳŜŘƛŀΦ ./Σ a/Σ ŀƴŘ a/· άƎŜƴŜǊƛŎέ ƳŜŘƛŀ are widespread and 

comparably inexpensive base selective media (TBX and MacConkey, respectively) and require only a 

generic, widespread, inexpensive cefotaxime salt for their antimicrobial supplements. (The addition of 

supplemental X-Gluc and a polar aprotic solvent somewhat limits the accessibility of MCX medium.) In 

contrast, CE, HE, and LE commercial candidate media all depend on proprietary antimicrobial 

supplements, which complicates access in labs where materials supply chains are infrequent or 

insufficient.  (Proprietary supplements also raise the question of to which ESBL antimicrobials are 
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detected isolates resistant?) In addition, commercial culture media and supplements (approximately 

$35-$170/L prepared medium) are considerably more expensive than those for the generic media ($11-

$24/L prepared medium)101. Thus, taking into account technical performance together with accessibility 

and cost factors, BC and, to a lesser extent, MCX media are the most reliable, user-friendly, and 

accessible candidate media for a Tricycle Project surveillance scheme. 

Evaluations of these candidate ESBL-selective chromogenic media also yielded informative 

details about E-Ec concentrations and prevalence among all E. coli within multiple environmental sample 

types (Objective 3). Candidate media reported a mean E-Ec concentration in raw sewage of 105-106 

CFU/100 mL, and a proportion of ESBL resistance between 0.08-6.64%. These E-Ec concentrations were 

consistent with literature values, although the reported prevalence of ESBL resistance is higher than has 

been noted in other urban wastewater influents108,109. The inputs of wastewater from a large clinical 

hospital complex into this wastewater network may account for a higher prevalence of ESBL resistance 

within the sewage matrix, as has been described elsewhere in the literature110.  

Upstream and downstream surface water mean E-Ec concentrations were much lower (0-10 

CFU/100 mL) than in raw sewage, and non-detection of E-Ec in such a sample was common. Differences 

in E-Ec concentrations and presumptive proportions of ESBL resistance among E. coli between upstream 

and downstream surface waters were insignificant. These findings were consistent with the literature on 

surface water E-Ec occurrence and concentrations109. However, while the proportions of ESBL resistance 

among upstream E. coli (0.40-0.67%) matched literature values, proportions of ESBL resistance in 

downstream E. coli were appreciably though not significantly higher. Reasons for this difference are 

uncertain, although wastewater effluent loading of E-Ec has been linked to increased prevalence of E-Ec 

without increased E-Ec concentrations in downstream receiving waters compared to the same receiving 

water upstream of the wastewater discharge point108.  
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Community farm poultry manure E-Ec presence and concentrations ranged considerably 

depending on candidate medium, from 0-105 CFU/g fresh manure. Half of all candidate media quantified 

mean E-Ec concentrations of 0 CFU/g. Furthermore, two media pairs reported 0.00% presumptive ESBL 

resistance among detected E-Ec; although the third pair of media detected 30% presumptively resistant 

colonies, this estimate would also have been 0.00% if not skewed by a single anomalously high sample 

E-Ec concentration on BC medium. Thus, where E-Ec concentrations and proportions were higher than 

null, this was driven by contrastingly high single-sample values. In a similar study detecting E-Ec from a 

variety of poultry farm environments in the Netherlands, Blaak et al. found geometric mean E-Ec 

concentrations of 102 CFU/g free-range laying hen feces, within the lower range of mean E-Ec 

concentrations detected here. Also, 78% of samples tested positive for E-Ec, appreciably higher than in 

this project. Blaak et al. also noted that presumptive E-Ec concentrations were less than 0.01% of the 

total E. coli concentration in this sample matrix90. Thus, while the proportions of presumptive ESBL 

resistance among free-range layer feces E. coli detected here were quite variable, they were also 

somewhat consistent with previously published values. 

In broiler pen litter, mean E-Ec concentrations varied by media between 103-105 CFU/g, and 

presumptive E-Ec concentrations were detected at between 2-15% the concentrations of total E. coli. 

These concentrations and proportions of presumptive ESBL resistance are both considerably higher than 

those noted for broiler pen dust in Blaak et al. (102 CFU/g and 0.78%, respectively). However, in that 

study, 100% of samples tested E-Ec positive, considerably higher than in this study. 

As in Blaak at el., the findings here suggest that E-Ec concentrations were insignificantly 

different at p<0.05 ς though there were significant differences at p<0.1 - between the two farm waste 

sample types, with E-Ec more prevalent (though insignificantly so) among all E. coli in broiler litter vs. 

free-range poultry manure90.  
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Additional Methods Considerations 

 

Overall, the majority of sample types (with the exception of raw sewage) were defined by 

infrequent detection of E-Ec and generally low proportions of E-Ec as a share of total E. coli. In contrast, 

total E. coli concentrations were considerably higher, and growth of non-ESBL Enterobacteriaceae 

background organisms was common. Given that these findings were typically consistent across 

candidate media, these results not only describe the infrequent presence of ESBL resistance among E. 

coli in these matrices but suggest the need to maximize both the sensitivity and selectivity of the 

methods ς not just the candidate culture media - used to detect them. One possible modification is to 

include a pre-enrichment step to improve ESBL Enterobacteriaceae detection sensitivity. By incubating 

aliquots of the collected samples in a nutrient medium containing ceftazidime and cefotaxime before 

detecting target bacteria using CHROMagar ESBL, Schauss et al. were able to improve the sensitivity and 

productivity of ESBL Enterobacteriaceae detection in agricultural and environmental wastes111. This 

improvement in productivity is especially important given the high prevalence of so-ŎŀƭƭŜŘ ΨǾƛŀōƭŜ ōǳǘ 

not ŎǳƭǘǳǊŀōƭŜΩ ōŀŎǘŜǊƛŀ ǿƘƛŎƘΣ ŘǳŜ ǘƻ ŀ ǾŀǊƛŜǘȅ ƻŦ ōƛƻǘƛŎ ŀƴŘ ŀōƛƻǘƛŎ ŦŀŎǘƻǊǎ όŜΦƎΦΣ oxygen or antibiotic-

associated stress, temperature, nutrient availability, co-culturing), grow in the environment but not in 

laboratory conditions112. On the other hand, it is important to note that this would add an additional 18-

24 ƘƻǳǊǎ ǘƻ ǘƘŜ ¢ǊƛŎȅŎƭŜ tǊƻƧŜŎǘΩǎ ǇǊƻǇƻǎŜŘ ǎǳǊǾŜƛƭƭŀƴŎŜ ǎŎƘŜƳŜΣ ŀ ǎŎƘŜƳŜ ǘƘŀǘ ƛǎ ŎǳǊǊŜƴǘƭȅ ƛƴǘŜƴŘŜŘ ǘƻ 

be rapid and άƻƴŜ-ǎǘŜǇΦέ The improved sensitivity of detection associated with a pre-enrichment step 

would have to be considered against the additional time costs in the AMR surveillance context. 

Additionally, Schauss et al. noted that pre-enrichment also amplified the detection of non-target 

organisms111, potentially to the detriment of presumptive target ESBL organism identification. 

 Another possible modification, meant to exclude non-target organisms, is to increase the 

incubating temperature part-way through the incubation period. Here, a uniform incubation 

temperature of 37oC was used to allow sufficient growth of the target non-E. coli coliforms, which do 
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not grow as well at higher enteric environment ǘŜƳǇŜǊŀǘǳǊŜǎ ŀǎ ǘƘƻǎŜ ΨŦŜŎŀƭ ŎƻƭƛŦƻǊƳΩ ōŀŎǘŜǊƛŀ ƳƻǊŜ 

closely associated with fecal contamination113. In ǎƛƳƛƭŀǊ ǎǘǳŘƛŜǎ ƳŜŀƴǘ ǘƻ ƛƴŦƻǊƳ ǘƘŜ ¢ǊƛŎȅŎƭŜ tǊƻƧŜŎǘΩǎ 

methods development, Schmitt et al. plated their samples and incubated at 37oC for 6 hours before 

increasing to 44.5oC for another 12-18 hours, thus allowing growth of non-E. coli coliforms while also 

limiting growth of non-target organisms to improve selectivity (unpublished work). Given the high rate 

of non-target organisms falsely presumptively identified as E. coli or other coliforms, higher incubation 

temperatures may improve diagnostic accuracy. LƴŎƻǊǇƻǊŀǘƛƻƴ ƻŦ ǘƘƛǎ Ψǘǿƻ-ǎǘŜǇΩ ƛƴŎǳōŀǘƛƻƴ ǎƘƻǳƭŘ ōŜ 

considered depending on resource/personnel availability in cooperating facilities.  

Limitations 

 

Several limitations did exist in this study. Due to complications and limits in funding the 

confirmatory testing of bacterial isolates, a reduced number of presumptive isolates could be analyzed 

ŦƻǊ ǎǇŜŎƛŀǘƛƻƴ ŀƴŘ ǊŜǎƛǎǘŀƴŎŜ ǘŜǎǘƛƴƎΦ ¢Ƙƛǎ ǿŜŀƪŜƴŜŘ ǘƘŜ ǇƻǿŜǊ ƻŦ ŜǾŀƭǳŀǘƛƻƴǎ ƻŦ ƳŜŘƛŀΩǎ ŀŎŎǳǊŀŎȅ ƛƴ 

identifying E-Ec and other ESBL coliforms from certain sample types, most especially broiler litter 

samples but also free-range poultry manure and downstream surface water. Additionally, delays 

associated with the transfers of funds for confirmatory testing necessitated the freezing, revival, and 

serial sub-culturing of isolates. Given the project timeline and the variability between candidate media 

in the rate of isolation of representative presumptive isolates, isolates for certain candidate media were 

likely stored for longer or revived and re-cultured more often than for isolates from other candidate 

media. These processes may have encouraged a loss of resistance traits unevenly between isolates 

isolated from the different candidate media114, compromising the reliability and uniformity of data 

describing how accurately media characterized presumptively resistant isolates.  

Furthermore, presumptive and confirmatory characterization of ESBL resistance relied on 

growth on medium containing one ESBL antibiotic (cefotaxime) followed cefpodoxime AST and a 

phenotypic clavulanic acid inhibition test. To be sure, these tests are expedient and crucially 
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informative, given their phenotypic characterization of resistance. However, given the existence of now 

more than 200 sub-classifications of beta-lactamases, these tests risk both false positives and false 

negatives.82 Presumptive ESBL resistance characterization with cefotaxime-supplemented culture 

medium may introduce some bias, as cefotaxime is consistently susceptible to CTX-M ‍-lactamases but 

less consistently susceptible to other ESBLs derived from THM or SHV ‍-lactamases. Similarly, 

ceftazidime (a comparable 3rd generation cephalosporin alternative to cefotaxime) is less consistently 

susceptible to hydrolysis from CTX-M ESBLs 115,116. As a result, reliance on a generic culture-based 

medium supplemented with a single ESBL antibiotic risks failing to detect a variety of ESBLs carried by 

target organisms. The VITEK confirmatory ESBL resistance characterization methods are also imperfectly 

accurate. For example, the use of cefpodoxime to screen for ‍-lactam resistance allows high sensitivity 

for detecting a wide range of ESBLs but also a relatively high proportion of false-positives115. Moreover, 

E. coli and Klebsiella pneumoniae isolates which lack ESBLs but overproduce SHV-1 ARGs may produce 

false-positive results in VITEK ESBL screening117,118.   Clavulanic acid inhibition ESBL screening can also fail 

to detect certain classes of ‍-lactamases119,120. As a result, confirmatory AST procedures were less than 

perfectly accurate in assessing ESBL and other ‍-lactamase resistance.  

The inexperience and limited proficiency of the research analysts in distinguishing colony 

identities, together with a reliance on imperfectly specific ‍-D-glucuronide and ‍-D-galactoside 

chromogens, also represented a significant limitation. As noted previously, observations of subtle 

differences in the commercial chromogenic media is required to, for example, distinguish between an E. 

coli colony confluent with an Enterobacter isolate vs an Acinetobacter baumannii colony. Moreover, in 

sample matrices where non-coliform bacteria are present in high numbers relative to E. coli and coliform 

concentrations, the ɼ-D-galactosidase and ‍-D-glucuronidase activity ƻŦ ǘƘŜǎŜ ΨōŀŎƪƎǊƻǳƴŘΩ ōŀŎǘŜǊƛŀ can 

interfere with the rapid detection of E. coli and other coliforms based exclusively on colony morphology. 

Furthermore, environmental strains of E. coli and non-E. coli coliforms may possess differences in ɼ-D-
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glucuronidase and ‍-D-galactosidaseΣ ŀƭǘŜǊƛƴƎ ǘƘŜǎŜ ŎƻƭƻƴƛŜǎΩ ƳƻǊǇƘƻƭƻƎƛŜǎ ŦǊƻƳ ǘƘƻǎŜ ƛŘŜƴǘƛŦƛŜŘ ōȅ 

product guides and seen with QA/QC control strains. These different morphologies complicate the 

identification of target organisms. Due to these factors, candidate media, especially the commercial 

media, which displayed a more varied range of target colony morphologies, were observed to give lower 

accuracy in presumptively identifying colonies than might be found in other, more experienced labs. 

These limitations illustrate the need for sufficient microbiological training for laboratories looking to 

adopt one of these media for a One Health environmental AMR surveillance method. Additionally, 

further quality assurance methods for colony identification and characterization should be used to 

supplement the reliance on the appearance of target colonies provided by candidate media 

chromogens. 

Sample size and timing was another limitation. Sample sizes were limited, particularly for 

poultry wastes, in large part due to challenges and delays in obtaining access to cooperating farms (after 

access to sampling at wet markets and abattoirs had been pursued and consistently denied). As a result, 

sample sizes for these matrices are limited, hampering the power of related analyses. While the primary 

objectives of this project concerned comparisons of the performance of the candidate direct ESBL 

Enterobacteriaceae detection culture media within this context, the limited power of comparisons 

between sample sizes was a considerable constraint. Assuming trends in E-Ec prevalence and 

concentration differences between sample types were to hold, additional significant differences 

between sample types may have resulted. Judging by results of significance tests that were significant at 

p<0.1 but not p<0.05, one might expect that increased statistical power might lead to a significant 

difference in the proportions of ESBL resistance in upstream vs downstream surface water E. coli, as well 

as differences in the log-transformed E-Ec concentrations in poultry manure vs. broiler litter. 

Additionally, sampling schedule limitations meant that upstream/downstream surface water and 

municipal wastewater samples could not sampled to temporally link the transport of these waters 
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throughout their shared hydrological network. Temporal linkage of samples would have allowed for a 

more highly controlled comparison of upstream vs downstream surface water E-Ec concentrations and 

ESBL prevalence (and the effect that treated sewage discharge has in the presence, concentrations and 

characteristics of these target AMR bacteria). 

Future Work 

 

 There are several opportunities for additional work to both address the limitations of this 

research and advance new discoveries. More repeated analyses, for poultry waste and surface water 

sample types especially, would lend additional power to indicate either comparability or significant 

differences between initial quantification and presumptive identification using these media and further 

characterization of isolated target organisms.  

In addition, there is a need to incorporate more representative, agriculturally-impacted 

environmental samples, as the poultry waste samples collected here were limited in their comparability 

to the live animal market wastewater matrix that the Tricycle Project recommends surveilling. The 

incorporation of live market wastewater, abattoir wastewater, or another similar source of livestock-

associated wastewater samples would more closely mimic the real-world usage of these culture media 

for E-Ec OH surveillance. 

As mentioned above, the Tricycle Project has indicated that the two recommended media 

should be supplemented with cefotaxime at 4 ug/mL, in contrast to the 1 ug/mL concentrations for the 

candidate media used here and chosen before that recommendation was made. To more accurately 

represent these ESBL media according to the recommended guidelines, analyses of these sample types 

should be repeated with generic media supplemented with 4 ug/mL cefotaxime. By focusing on a much 

smaller set of candidate culture media at two antibiotic concentrations, a more rigorous evaluation of 

the performance of these media may be undertaken. These media and methods evaluations may follow 
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ŀ ǎǘŀƴŘŀǊŘƛȊŜŘ ƎǳƛŘŜƭƛƴŜΣ ǎǳŎƘ ŀǎ ǘƘŜ ¦{ CƻƻŘ ŀƴŘ 5ǊǳƎ !ŘƳƛƴƛǎǘǊŀǘƛƻƴΩǎ DǳƛŘŜƭƛƴŜǎ ŦƻǊ ǘƘŜ ±ŀƭƛŘŀǘƛƻƴ ƻŦ 

Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds121. Additional statistical 

analyses, such as Bland-Altman analysis, may be used to more accurately and robustly relate differences 

in the performance of these media within this standardized comparison122. 

Furthermore, a stated goal of this project was to compare the ability of candidate media to 

quantify E-Ec as a proportion of total E. coli as quantified by the corresponding non-antibiotic version of 

said medium. For expediency and due to cost constraints, this work evaluated the generic media but not 

the commercial media in this regard. In the future, commercial candidate media could be evaluated for 

their ability to quantify proportions of presumptive ESBL resistance among E. coli by conducting parallel 

analyses with commercial non-ESBL media from the same manufacturer, such as CHROMagar 

Orientation in parallel with CHROMagar ESBL or even the same commercial ESBL E. coli/coliform media 

with the antibiotics not added.  

Lastly, while some of the candidate media here are more accessible in resource-limited settings 

than others, all require potentially prohibitively expensive and difficult to sustain cold chains and 

heating capacities such as incubators, waterbaths and autoclaves for their preparation. To address this, 

a future iteration of this project should explore alternative formulations of the recommended 

MacConkey and TBX agar media that do not need autoclaving or even antibiotic refrigeration for their 

preparation. Pectin-based gelling media instead of the equivalent agar media are one potential 

alternative, given their ability to solidify at much lower (ambient) temperatures and atmospheric 

pressures. These alternative formulations should be validated for use in initial quantification and 

presumptive identification and characterization of target organisms from these and other OH sample 

types.  
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CHAPTER 7: CONCLUSION 

 

This work represents one of the first systematic evaluations of candidate culture-based media 

for the recently proposed Tricycle AMR Surveillance Project for integrated and harmonized direct ESBL 

E. coli detection using consistent methods and culture media across samples from multiple One Health 

settings. Key findings are summarized below by objective: 

Objective 1:  

 -HiCrome ESBL and MacConkey with cefotaxime media were more sensitive in 

quantifying municipal wastewater ESBL E. coli than either [ƛƻŦƛƭŎƘŜƳϰ Chromatic ESBL or MacConkey 

with cefotaxime and X-Gluc medium. Otherwise, all candidate media were comparably sensitive in 

quantifying wastewater ESBL E. coli. 

 -In surface waters and poultry waste samples, all candidate media detected ESBL E. coli 

with comparable frequency. All candidate media showed no significant differences in frequency of 

detection when moving from one surface water sample to another or one poultry waste to another. 

 -For all sample types, all candidate/baseline media pairs gave proportions of 

presumptively ESBL resistant E. coli that were statistically comparable.  

Objective 2:  
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 -TBX with cefotaxime was significantly more accurate than other media in presumptively 

identifying and characterizing ESBL E. coli and non-E. coli coliforms from all sample types analyzed and 

confirmed by biochemical or phenotypical analyses. MacConkey with cefotaxime and X-Gluc was also 

significantly more accurate than many of the other candidate media tested in identifying and 

characterizing ESBL target organisms, though it was less accurate than TBX. 

Objective 3:  

 -ESBL E. coli were present in municipal sewage at concentrations of 105-106 CFU/100 mL. 

ESBL E. coli were typically present in municipal sewage at approximately 2-7% the concentration of total 

E. coli. 

 -In surface water samples, ESBL E. coli were typically present at concentrations <10 

CFU/100 mL, and often 0 CFU/100 mL for a given sample. Proportions of ESBL E. coli ranged from 1 to 

4% and did not vary significantly upstream vs. downstream of the treated municipal wastewater effluent 

discharge point. 

 -In poultry waste samples, ESBL E. coli concentrations ranged from 0-105 CFU/g. Again, 

non-detection of ESBL E. coli was common in a given sample. ESBL E. coli represented from 0 to 30% of 

all E. coli in these samples, though that higher limit may be anomalous. Proportions of ESBL resistance 

were insignificantly different between the two poultry waste samples analyzed, a model industrial farm 

and a model independent organic farm. 

Ultimately, there are many factors to consider when deciding which agar medium is the best for 

identifying and quantifying ESBL E. coli in wastewater, surface waters, and animal agriculture fecal 

wastes. The results of these experiments and analyses suggest that TBX agar medium supplemented 

with cefotaxime is the best option for AMR surveillance methods in these and other One Health settings. 

This determination is based on TBX giving sensitive initial presumptive detection and quantification of 

ESBL E. coli across sample types, combined with its superior confirmatory identification and 
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characterization of ESBL E. coli and non-E. coli coliforms and its relatively high accessibility. MacConkey 

agar variants may also be a suitable choice depending on the predominant sample matrices to be 

analyzed, the proficiency of the analysts conducting AMR analysis, and the resource constraints of the 

entity supporting the surveillance activity. 
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APPENDIX 1: WEEKLY SAMPLING CONCENTRATIONS AND PROPORTIONS OF PRESUMPTIVE ESBL 

RESISTANCE BY SAMPLE TYPE AND MEDIUM/MEDIA PAIR 

 

Table 47. ESBL E. coli concentrations, in CFU/100 mL, in raw sewage for all candidate and baseline media by sampling week. 

Sampling 
Week 

B BC CE HE LE M MC MCX MX 

1.19.17 7.27E+05 2.47E+04 2.40E+05 4.46E+05 9.67E+04 7.60E+06 9.50E+04 2.07E+04 6.33E+05 

02.01.17 1.84E+06 7.13E+04 1.90E+05 6.88E+05 1.27E+05 6.33E+06 2.46E+06 1.80E+04 1.00E+05 

02.08.17 8.60E+05 7.20E+04 2.57E+04 4.40E+05 1.66E+05 5.17E+06 1.05E+06 1.60E+04 7.67E+04 

4.04.17 2.69E+06 4.07E+04 5.87E+04 1.25E+05 6.10E+04 2.37E+07 8.07E+05 1.97E+04 2.92E+06 

 07.13.17 4.83E+05 1.59E+05 7.47E+05 6.28E+05 2.13E+05 1.20E+07 8.23E+05 1.00E+05 1.69E+06 

07.25.17 1.25E+06 2.72E+05 1.98E+05 2.67E+05 2.10E+04 8.03E+06 4.86E+05 2.54E+05 1.20E+05 

08.26.17 3.68E+06 1.11E+05 1.59E+05 1.57E+07 7.23E+04 6.25E+07 7.12E+05 3.87E+04 6.97E+05 

09.22.17 1.25E+06 2.72E+05 1.98E+05 2.67E+05 2.10E+04 9.30E+09 5.34E+05 2.84E+06 1.88E+08 

10.03.17 3.69E+06 3.57E+05 4.23E+05 5.60E+04 1.21E+05 4.66E+07 3.05E+05 1.05E+05 3.07E+06 

10.05.17 6.98E+06 1.77E+05 1.96E+05 3.39E+06 4.13E+04 6.73E+06 2.99E+05 3.13E+04 2.04E+06 

 
 
 
Table 48. Proportions of presumptive ESBL resistance among E. coli in raw sewage, as determined by candidate/baseline media 
pairs, for all sampling weeks. 

Sampling Week MC/M BC/B MCX/MX 

1.19.17 1.25% 3.39% 3.26% 

02.01.17 38.8% 3.88% 18.0% 

02.08.17 20.3% 8.37% 20.9% 

4.04.17 3.41% 1.51% 0.67% 

07.13.17 6.88% 33.0% 5.93% 

07.25.17 6.05% 21.7% 212% 

08.26.17 1.14% 3.02% 5.55% 

09.22.17 0.00574% 21.7% 1.51% 

10.03.17 0.65% 9.68% 3.42% 

10.05.17 4.44% 2.54% 1.53% 
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Table 49.  ESBL E. coli concentrations, in CFU/100 mL, in upstream surface water for all candidate and baseline media by 
sampling week. 

Sampling Week B BC CE HE LE M MC MCX MX 

04.07.17 500 9.67 0.667 4 1.67 500. 10.3 5.33 500. 

06.01.17 29.3 0.000 0.000 0.000 0.000 173 0.000 0.000 0.000 

06.09.17 43.7 0.000 0.000 0.000 0.000 172 0.000 0.333 58.3 

06.21.17 44.7 0.000 0.000 0.000 0.000 196 0.000 0.333 42.0 

07.21.17 152 0.000 0.000 0.000 0.000 123 0.000 0.000 145 

11.02.17 124 1.33 0.000 0.000 0.000 181 0.000 1.67 121 

 

Table 50. Proportions of presumptive ESBL resistance among E. coli in upstream surface water, as determined by 
candidate/baseline media pairs, for all sampling weeks. 

Sampling Week MC/M BC/B MCX/MX 

04.07.17 2.07% 1.93% 1.07% 

06.01.17 0.00% 0.00% 0.00% 

06.09.17 0.00% 0.00% 0.57% 

06.21.17 0.00% 0.00% 0.79% 

07.21.17 0.00% 0.00% 0.00% 

11.02.17 0.00% 1.08% 1.37% 

 

Table 51. ESBL E. coli concentrations, in CFU/100 mL, in downstream surface water for all candidate and baseline media by 
sampling week. 

Sampling 
Week 

B BC CE HE LE M MC MCX MX 

02.17.17 190. 0.000 0.000 0.000 0.000 100. 0.000 0.000 122 

02.22.17 98.7 0.333 1.33 36.0 0.000 18.3 2.00 0.000 8.00 

03.01.17 83.3 0.333 2.00 0.333 0.000 31.3 3.67 1.67 36.3 

03.10.17 228 0.000 0.333 0.000 1.00 26.7 0.333 0.333 31.0 

04.07.17 102 0.333 3.00 0.000 0.000 10.0 0.000 0.000 68.3 

10.26.17 573. 44.7 9.33 11.7 2.67 500. 4.00 8.33 441 
 

Table 52. Proportions of presumptive ESBL resistance among E. coli in downstream surface water, as determined by 
candidate/baseline media pairs, for all sampling weeks. 

Sampling Week MC/M BC/B MCX/MX 

02.17.17 0.000% 0.000% 0.000% 

02.22.17 10.9% 0.338% 0.000% 
03.01.17 11.7% 0.400% 4.59 
03.10.17 1.25% 0.000% 1.08% 
04.07.17 0.00% 3.27% 0.00% 
10.26.17 0.800% 7.79% 1.89% 
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Table 53. ESBL E. coli concentrations, in CFU/g, in community farm poultry manure for all candidate and baseline media by 
sampling week. 

Sampling 
Week 

B BC CE HE LE M MC MCX MX 

06.21.17 
2.00E+

05 
1.80E+

05 
6.67E+

03 
1.13E+0

5 
0.000E

00 
2.00E+0

5 
0.000E

00 
0.000E

00 
1.61E+

06 

07.06.17 
2.50E+

07 
0.000E

00 
1.33E+

03 
6.67E+0

2 
0.000E

00 
2.00E+0

6 
0.000E

00 
0.000E

00 
2.03E+

06 

11.8.17 
1.87E+

07 
0.000E

00 
0.000E

00 
0.000E

00 
0.000E

00 
8.23E+0

6 
0.000E

00 
0.000E

00 
8.97E+

06 

 

Table 54. Proportions of presumptive ESBL resistance among E. coli in community farm poultry manure, as determined by 
candidate/baseline media pairs, for all sampling weeks. 

Sampling 
Week 

MC/M BC/B MCX/MX 

06.21.17 0.000% 90.0% 0.000% 

07.06.17 0.000% 0.000% 0.000% 

11.08.17 0.000% 0.000% 0.000% 

 
 
 
Table 55. ESBL E. coli concentrations, in CFU/g, in conventional farm broiler pen litter for all candidate and baseline media by 
sampling week. Note that data is not available for the concentration of total E. coli as quantified by MX medium for the 03.21.18 
sample. This 03.21.18 data was excluded frƻƳ ŀƭƭ ŎƻƴŎŜƴǘǊŀǘƛƻƴǎ ƎǊŀǇƘǎ ŀƴŘ ŀƴŀƭȅǎŜǎ ƛƴǾƻƭǾƛƴƎ a· ƳŜŘƛǳƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƻƴ 
broiler litter.   

Sampling 
Week 

B BC CE HE LE M MC MCX MX 

02.21.18 
(1) 

7.21E+
06 

1.38E+
05 

2.67E+
03 

1.03E+
04 

3.67E+
03 

5.49E+
06 

6.97E+
04 

2.97E+
04 6.67E+04 

02.21.18 
(2) 

9.03E+
05 

4.97E+
04 

0.00E+
00 

4.33E+
03 

0.00E+
00 

4.37E+
04 

4.67E+
04 

1.30E+
04 1.25E+05 

03.21.18 
7.03E+

05 

0.00E+
00 

0.00E+
00 

0.00E
+00 

0.00E+
00 

5.03E+
05 

0.00E+
00 

0.00E+
00 

Data not 
available 
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Table 56. Proportions of presumptive ESBL resistance among E. coli in conventional farm broiler pen litter, as determined by 
candidate/baseline media pairs, for all sampling weeks. Note that data on MCX/MX-determined proportions of presumptive 
ESBL resistance was not available for the 11.08.17 due to a lack of materials. As such, 11.08.17 data was excluded from all 
proportions calculations for this media pair on this sample type. 

Sampling 
Week 

MC/M BC/B MCX/MX 

06.21.17 
1.27% 1.91% 44.5% 

07.06.17 107% 5.50% 10.4% 
11.08.17 

0.000% 0.000% 
Data not 
available 
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APPENDIX 2: SPECIATION AND ANTIMICROBIAL RESISTANCE PROFILE DATA FOR ISOLATED TARGET 

AND NON-TARGET ORGANISMS ACROSS ALL SAMPLE TYPES 

 

Table 57.Results of MALDI-TOF MS speciation and VITEK 2 antimicrobial resistance characterization analyses for all isolates. 
Isolates were assayed for resistance to cefpodoxime, following EUCAST AST standards, and select isolates were analyzed for 
9{.[ ǇǊƻŘǳŎǘƛƻƴΦ bƻǘŜ ŀōōǊŜǾƛŀǘƛƻƴǎΥ CL.ҐΩŦŜŎŀƭ ƛƴŘƛŎŀǘƻǊ ōŀŎǘŜǊƛǳƳΩΤ a{ L5 Ґ Ψa![5L-TOF MS-ŘŜǘŜǊƳƛƴŜŘ ǎǇŜŎƛŜǎ ƛŘŜƴǘƛǘȅΩΤ aL/ 
Ґ ΨƳƛƴƛƳǳƳ ƛƴƘƛōƛǘƻǊȅ ŎƻƴŎŜƴǘǊŀǘƛƻƴΩΤ {ҐΩ{ǳǎŎŜǇǘƛōƭŜΩΤ L Ґ ΨLƴǘŜǊƳŜŘƛŀǘŜΩΤ w Ґ ΨwŜǎƛǎǘŀƴǘΩΤ  a5Ґ ΨaƻǊƎŀƴ /ǊŜŜƪ 5ƻǿƴǎǘǊŜŀƳΩΤ a¦ 
Ґ ΨaƻǊƎŀƴ /ǊŜŜƪ ¦ǇǎǘǊŜŀƳΩΤ w{ Ґ Ψwŀǿ ǎŜǿŀƎŜΩΤ 9/ Ґ Ψ9ǎŎƘŜǊƛŎƘƛŀ ŎƻƭƛΩΤ ¢/ Ґ Ψƴƻƴ-9Φ Ŏƻƭƛ ǘƻǘŀƭ ŎƻƭƛŦƻǊƳΩΤ th{ҐΩ9{.[ ǇǊƻŘǳŎƛƴƎΩΤ 
b9D Ґ Ψ9{.[ ƴƻƴ-ǇǊƻŘǳŎƛƴƎΩ 

Sample 
Name 

Medi
um 

Sam
ple 
Type 

Presump
tive FIB 

Specim
en # 

Rec'd MS ID Cefpodoxi
me 

ESBL 

       
MIC S/

I/
R 

MIC 

BC MD EC 
3 

BC MD EC 3 3/8/201
7 

Escherichia coli >=8 R NEG 

BC MU EC 
11 

BC MU EC 11 11/10/2
017 

Escherichia coli >=8 R NEG 

BC MU TC 
18 

BC MU TC 18 11/10/2
017 

Acinetobacter 
baumanii complex 

>=8 R 
 

BC MU TC 
19 

BC MU TC 19 11/10/2
017 

Acinetobacter 
baumanii complex 

>=8 R 
 

BC MU TC 
20 

BC MU TC 20 11/10/2
017 

Acinetobacter 
baumanii complex 

>=8 R 
 

BC RS EC 
35 

BC RS EC 35 9/28/20
17 

Escherichia coli >=8 R NEG 

BC RS EC 
36 

BC RS EC 36 9/28/20
17 

Escherichia coli >=8 R POS 

BC RS EC 
37 

BC RS EC 37 9/28/20
17 

Escherichia coli >=8 R POS 

BC RS EC 
38 

BC RS EC 38 9/28/20
17 

Escherichia coli >=8 R NEG 

BC RS EC 
39 

BC RS EC 39 9/28/20
17 

Escherichia coli >=8 R NEG 

BC RS EC 
40 

BC RS EC 40 10/6/20
17 

Escherichia coli >=8 R POS 

BC RS EC 
41 

BC RS EC 41 10/6/20
17 

Escherichia coli >=8 R NEG 

BC RS EC 
42 

BC RS EC 42 10/6/20
17 

Escherichia coli >=8 R POS 

BC RS EC 
43 

BC RS EC 43 10/6/20
17 

Escherichia coli >=8 R POS 

BC RS EC 
44 

BC RS EC 44 10/6/20
17 

Escherichia coli >=8 R POS 
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BC RS EC 
45 

BC RS EC 45 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS EC 
46 

BC RS EC 46 11/10/2
017 

Escherichia coli >=8 R NEG 

BC RS EC 
47 

BC RS EC 47 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS EC 
48 

BC RS EC 48 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS EC 
49 

BC RS EC 49 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS EC 
A 

BC RS EC A 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS EC 
B 

BC RS EC B 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS EC 
C 

BC RS EC C 11/10/2
017 

Escherichia coli >=8 R NEG 

BC RS EC 
D 

BC RS EC D 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS EC E BC RS EC E 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS TC 
34 

BC RS TC 34 9/28/20
17 

Klebsiella 
pneumoniae 

>=8 R POS 

BC RS TC 
35 

BC RS TC 35 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

BC RS TC 
36 

BC RS TC 36 9/28/20
17 

Acinetobacter 
baumanii complex 

>=8 R 
 

BC RS TC 
37 

BC RS TC 37 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

BC RS TC 
38 

BC RS TC 38 9/28/20
17 

Aeromonas 
hydrophila/caviae 

4 I 
 

BC RS TC 
39 

BC RS TC 39 10/6/20
17 

Klebsiella 
pneumoniae 

>=8 R NEG 

BC RS TC 
40 

BC RS TC 40 10/6/20
17 

Klebsiella 
pneumoniae 

>=8 R NEG 

BC RS TC 
41 

BC RS TC 41 10/6/20
17 

Klebsiella 
pneumoniae 

>=8 R POS 

BC RS TC 
42 

BC RS TC 42 10/6/20
17 

Klebsiella 
pneumoniae 

>=8 R POS 

BC RS TC 
43 

BC RS TC 43 10/6/20
17 

Klebsiella oxytoca >=8 R NEG 

BC RS TC 
44 

BC RS TC 44 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

BC RS TC 
45 

BC RS TC 45 11/10/2
017 

Enterobacter 
cloacae/asburiae 

>=8 R 
 

BC RS TC 
47 

BC RS TC 47 11/10/2
017 

Klebsiella oxytoca >=8 R NEG 



112 

BC RS TC 
48 

BC RS TC 48 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

BC RS TC 
A 

BC RS TC A 11/10/2
017 

Raoultella 
ornitholytica 

>=8 R 
 

BC RS TC 
B 

BC RS TC B 11/10/2
017 

Pseudomonas 
fluorescens 

1 S 
 

BC RS TC 
C 

BC RS TC C 11/10/2
017 

Escherichia coli >=8 R POS 

BC RS TC 
D 

BC RS TC D 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

BC RS TC E BC RS TC E 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

CE MD EC 
1  

CE MD EC 1  3/8/201
7 

Citrobacter freundii >=8 R 
 

CE MD EC 
2 

CE MD EC 2 3/8/201
7 

Citrobacter 
werkmanii 

>=8 R 
 

CE MD EC 
3 

CE MD EC 3 3/8/201
7 

Citrobacter freundii >=8 R 
 

CE MU TC 
10 

CE MU TC 10 11/10/2
017 

Cedecea neteri >=8 R 
 

CE MU TC 
11 

CE MU TC 11 11/10/2
017 

No id on MS       

CE MU TC 
8 

CE MU TC 8 11/10/2
017 

Cedecea neteri 4 I 
 

CE MU TC 
9 

CE MU TC 9 11/10/2
017 

Cedecea neteri >=8 R 
 

CE RS EC 
30 

CE RS EC 30 9/28/20
17 

Aeromonas sobria 1 S 
 

CE RS EC 
31 

CE RS EC 31 9/28/20
17 

Escherichia coli >=8 R POS 

CE RS EC 
32 

CE RS EC 32 9/28/20
17 

Aeromonas sobria >=8 R 
 

CE RS EC 
33 

CE RS EC 33 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS EC 
34 

CE RS EC 34 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS EC 
35 

CE RS EC 35 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS EC 
36 

CE RS EC 36 10/6/20
17 

Citrobacter spp >=8 R 
 

CE RS EC 
38 

CE RS EC 38 11/10/2
017 

Micrococcus 
luteus/lylae 

      

CE RS EC 
39 

CE RS EC 39 11/10/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS EC 
41 

CE RS EC 41 11/10/2
017 

Citrobacter freundii >=8 R 
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CE RS EC 
42 

CE RS EC 42 11/10/2
017 

Aeromonas spp <=0.2
5 

S 
 

CE RS EC 1 CE RS EC 1 1/31/20
17 

Aeromonas 
hydrophila/caviae 

4 I 
 

CE RS EC 2 CE RS EC 2 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS EC 4 CE RS EC 4 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS EC 5 CE RS EC 5 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 
41 

CE RS TC 41 9/28/20
17 

Klebsiella 
pneumoniae 

>=8 R POS 

CE RS TC 
42 

CE RS TC 42 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 
43 

CE RS TC 43 9/28/20
17 

Enterobacter 
cloacae/asburiae 

>=8 R 
 

CE RS TC 
44 

CE RS TC 44 9/28/20
17 

Enterobacter 
cloacae/asburiae 

>=8 R 
 

CE RS TC 
45 

CE RS TC 45 9/28/20
17 

Klebsiella 
pneumoniae 

>=8 R POS 

CE RS TC 
46 

CE RS TC 46 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 
47 

CE RS TC 47 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 
48 

CE RS TC 48 10/6/20
17 

Klebsiella oxytoca >=8 R POS 

CE RS TC 
49 

CE RS TC 49 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 
50 

CE RS TC 50 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 
52 

CE RS TC 52 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R NEG 

CE RS TC 
54 

CE RS TC 54 11/10/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 
55 

CE RS TC 55 11/10/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 1 CE RS TC 1 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 2 CE RS TC 2 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 3 CE RS TC 3 1/31/20
17 

Aeromonas 
hydrophila/caviae 

1 S 
 

CE RS TC 4 CE RS TC 4 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

CE RS TC 5 CE RS TC 5 1/31/20
17 

Aeromonas 
hydrophila/caviae 

0.5 S 
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HE MD EC 
3 

HE MD EC 3 3/8/201
7 

Citrobacter freundii 2 S 
 

HE MD EC 
5 

HE MD EC 5 3/8/201
7 

Aeromonas 
hydrophila/caviae 

2 S 
 

HE MU TC 
5 

HE MU TC 5 11/10/2
017 

No id on MS       

HE MU TC 
6 

HE MU TC 6 11/10/2
017 

No id on MS       

HE RS EC 
29 

HE RS EC 29 11/10/2
017 

Escherichia coli >=8 R POS 

HE RS EC 
30 

HE RS EC 30 11/10/2
017 

Escherichia coli >=8 R POS 

HE RS EC 
36 

HE RS EC 36 9/28/20
17 

Citrobacter 
werkmanii 

>=8 R 
 

HE RS EC 
37 

HE RS EC 37 9/28/20
17 

Escherichia coli >=8 R POS 

HE RS EC 
38 

HE RS EC 38 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS EC 
39 

HE RS EC 39 9/28/20
17 

Citrobacter farmeri >=8 R 
 

HE RS EC 
40 

HE RS EC 40 9/28/20
17 

Escherichia coli >=8 R POS 

HE RS EC 
41 

HE RS EC 41 10/6/20
17 

Citrobacter spp >=8 R 
 

HE RS EC 
42 

HE RS EC 42 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS EC 
43 

HE RS EC 43 10/6/20
17 

Escherichia coli >=8 R POS 

HE RS EC 
44 

HE RS EC 44 10/6/20
17 

Escherichia coli >=8 R POS 

HE RS EC 
45 

HE RS EC 45 10/6/20
17 

Escherichia coli >=8 R POS 

HE RS EC 
1 

HE RS EC 1 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS EC 
2 

HE RS EC 2 1/31/20
17 

Enterobacter 
cloacae/asburiae 

>=8 R 
 

HE RS TC 
36 

HE RS TC 36 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS TC 
37 

HE RS TC 37 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS TC 
38 

HE RS TC 38 9/28/20
17 

Enterobacter 
cloacae/asburiae 

>=8 R 
 

HE RS TC 
39 

HE RS TC 39 9/28/20
17 

Klebsiella 
pneumoniae 

>=8 R POS 

HE RS TC 
40 

HE RS TC 40 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
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HE RS TC 
41 

HE RS TC 41 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS TC 
42 

HE RS TC 42 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS TC 
43 

HE RS TC 43 10/6/20
17 

Aeromonas 
hydrophila/caviae 

4 I 
 

HE RS TC 
44 

HE RS TC 44 10/6/20
17 

Enterococcus hirae 
   

HE RS TC 
45 

HE RS TC 45 10/6/20
17 

Enterococcus hirae 
   

HE RS TC 
1 

HE RS TC 1 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS TC 
2 

HE RS TC 2 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

HE RS TC 
3 

HE RS TC 3 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS EC 
26 

LE RS EC 26 11/10/2
017 

Stenotrophomonas 
maltophilia 

   

LE RS EC 
28 

LE RS EC 28 11/10/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS EC 
29 

LE RS EC 29 11/10/2
017 

Escherichia coli >=8 R POS 

LE RS EC 
31 

LE RS EC 31 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS EC 
32 

LE RS EC 32 9/28/20
17 

Aeromonas 
hydrophila/caviae 

1 S 
 

LE RS EC 
33 

LE RS EC 33 9/28/20
17 

Aeromonas 
hydrophila/caviae 

2 S 
 

LE RS EC 
34 

LE RS EC 34 9/28/20
17 

Citrobacter freundii  >=8 R 
 

LE RS EC 
35 

LE RS EC 35 9/28/20
17 

Citrobacter 
werkmanii 

>=8 R 
 

LE RS EC 
36 

LE RS EC 36 10/6/20
17 

Citrobacter freundii >=8 R 
 

LE RS EC 
37 

LE RS EC 37 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS EC 
38 

LE RS EC 38 10/6/20
17 

Escherichia coli >=8 R POS 

LE RS EC 
39 

LE RS EC 39 10/6/20
17 

Escherichia coli >=8 R POS 

LE RS EC 
40 

LE RS EC 40 10/6/20
17 

Escherichia coli >=8 R POS 

LE RS EC 
41 

LE RS EC 41 10/13/2
017 

Citrobacter freundii >=8 R 
 

LE RS EC 
42 

LE RS EC 42 10/13/2
017 

Enterobacter 
asburiae/cloacae 

>=8 R 
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LE RS EC 
43 

LE RS EC 43 10/13/2
017 

Enterobacter 
asburiae/cloacae 

>=8 R 
 

LE RS EC 
44 

LE RS EC 44 10/13/2
017 

Citrobacter freundii >=8 R 
 

LE RS EC1 LE RS EC 
 

1/31/20
17 

Citrobacter freundii >=8 R 
 

LE RS EC2 LE RS EC 
 

1/31/20
17 

Klebsiella oxytoca >=8 R POS 

LE RS EC3 LE RS EC 
 

1/31/20
17 

Citrobacter braakii >=8 R 
 

LE RS EC4 LE RS EC 
 

1/31/20
17 

Enterobacter 
cloacae/asburiae 

>=8 R 
 

LE RS EC5 LE RS EC 
 

1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
32 

LE RS TC 32 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

LE RS TC 
33 

LE RS TC 33 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

LE RS TC 
34 

LE RS TC 34 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

LE RS TC 
35 

LE RS TC 35 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

LE RS TC 
36 

LE RS TC 36 11/10/2
017 

Escherichia coli >=8 R POS 

LE RS TC 
37 

LE RS TC 37 9/28/20
17 

Klebsiella 
pneumoniae 

>=8 R POS 

LE RS TC 
38 

LE RS TC 38 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
39 

LE RS TC 39 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
40 

LE RS TC 40 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
41 

LE RS TC 41 9/28/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
42 

LE RS TC 42 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
43 

LE RS TC 43 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
44 

LE RS TC 44 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
45 

LE RS TC 45 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
46 

LE RS TC 46 10/6/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
47 

LE RS TC 47 10/13/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
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LE RS TC 
48 

LE RS TC 48 10/13/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
49 

LE RS TC 49 10/13/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
50 

LE RS TC 50 10/13/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 
51 

LE RS TC 51 10/13/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 1 LE RS TC 1 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 2 LE RS TC 2 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 3 LE RS TC 3 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 4 LE RS TC 4 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

LE RS TC 5 LE RS TC 5 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

MC MU 
TC 10 

MC MU TC 10 11/10/2
017 

No id on MS       

MC MU 
TC 11 

MC MU TC 11 11/10/2
017 

Enterobacter 
aerogenes 

>=8 R 
 

MC MU 
TC 12 

MC MU TC 12 11/10/2
017 

No id on MS       

MC MU 
TC 13 

MC MU TC 13 11/10/2
017 

No id on MS       

MC MU 
TC 14 

MC MU TC 14 11/10/2
017 

Staphylococcus 
capitis 

      

MC MU 
TC 15 

MC MU TC 15 11/10/2
017 

Escherichia coli >=8 R NEG 

MC RS EC 
11 

MC RS EC 11 11/10/2
017 

Micrococcus 
luteus/lylae 

      

MC RS EC 
26 

MC RS EC 26 10/13/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

MC RS EC 
27 

MC RS EC 27 10/13/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

MC RS EC 
28 

MC RS EC 28 10/13/2
017 

Escherichia coli >=8 R POS 

MC RS EC 
29 

MC RS EC 29 10/13/2
017 

Citrobacter freundii >=8 R 
 

MC RS EC 
30 

MC RS EC 30 10/13/2
017 

Citrobacter freundii >=8 R 
 

MC RS TC 
11 

MC RS TC 11 11/10/2
017 

Raoultella 
ornitholytica 

>=8 R 
 

MC RS TC 
12 

MC RS TC 12 11/10/2
017 

Klebsiella oxytoca >=8 R POS 
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MC RS TC 
13 

MC RS TC 13 11/10/2
017 

Escherichia coli >=8 R NEG 

MC RS TC 
14 

MC RS TC 14 11/10/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

MC RS TC 
15 

MC RS TC 15 11/10/2
017 

Escherichia coli >=8 R NEG 

MC RS TC 
26 

MC RS TC 26 10/13/2
017 

Citrobacter spp >=8 R 
 

MC RS TC 
27 

MC RS TC 27 10/13/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

MCX MU 
EC 1 

MCX MU EC 1 11/10/2
017 

Escherichia coli >=8 R NEG 

MCX MU 
EC 2 

MCX MU EC 2 11/10/2
017 

Escherichia coli >=8 R NEG 

MCX MU 
TC 21 

MCX MU TC 21 11/10/2
017 

No id on MS       

MCX MU 
TC 22 

MCX MU TC 22 11/10/2
017 

No id on MS       

MCX MU 
TC 23 

MCX MU TC 23 11/10/2
017 

No id on MS       

MCX MU 
TC 24 

MCX MU TC 24 11/10/2
017 

No id on MS       

MCX MU 
TC 25 

MCX MU TC 25 11/10/2
017 

No id on MS       

MCX RS 
EC 26 

MCX RS EC 26 11/10/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 27 

MCX RS EC 27 11/10/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 28 

MCX RS EC 28 11/10/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 29 

MCX RS EC 29 11/10/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 30 

MCX RS EC 30 11/10/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 46 

MCX RS EC 46 10/13/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 47 

MCX RS EC 47 10/13/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 48 

MCX RS EC 48 10/13/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 49 

MCX RS EC 49 10/13/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 50 

MCX RS EC 50 10/13/2
017 

Escherichia coli >=8 R POS 

MCX RS 
EC 1 

MCX RS EC 1 1/31/20
17 

Enterobacter 
cloacae/asburiae 

>=8 R 
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MCX RS 
EC 2 

MCX RS EC 2 1/31/20
17 

Escherichia coli >=8 R POS 

MCX RS 
EC 3 

MCX RS EC 3 1/31/20
17 

Citrobacter freundii >=8 R 
 

MCX RS 
TC 28 

MCX RS TC 28 10/13/2
017 

Enterobacter 
asburiae/cloacae 

>=8 R 
 

MCX RS 
TC 29 

MCX RS TC 29 10/13/2
017 

Pseudomonas 
putida 

>=8 R 
 

MCX RS 
TC 30 

MCX RS TC 30 10/13/2
017 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

MCX RS 
TC 46 

MCX RS TC 46 10/13/2
017 

Citrobacter freundii >=8 R 
 

MCX RS 
TC 47 

MCX RS TC 47 10/13/2
017 

Acinetobacter 
baumanii complex 

>=8 R 
 

MCX RS 
TC 48 

MCX RS TC 48 10/13/2
017 

Klebsiella 
pneumoniae 

>=8 R POS 

MCX RS 
TC 49 

MCX RS TC 49 10/13/2
017 

Klebsiella 
pneumoniae 

>=8 R NEG 

MCX RS 
TC 50 

MCX RS TC 50 10/13/2
017 

Klebsiella 
pneumoniae 

>=8 R NEG 

MCX RS 
TC 1 

MCX RS TC 1 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

MCX RS 
TC 2 

MCX RS TC 2 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

MCX RS 
TC 3 

MCX RS TC 3 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

MCX RS 
TC 4 

MCX RS TC 4 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
 

MCX RS 
TC 5 

MCX RS TC 5 1/31/20
17 

Aeromonas 
hydrophila/caviae 

>=8 R 
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