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Overview of Chapters 
Philip Chester Cooley

CHAPTER 1

Introduction
The objective of this book is to describe procedures for analyzing genome-wide 
association studies (GWAS). Some of the material is unpublished and contains 
commentary and unpublished research; other material (Chapters 4 through 7) 
has been published previously. Each previously published chapter investigates 
a different genomics model, but all focus on identifying the strengths and 
limitations of various statistical procedures that have been applied to different 
GWAS scenarios.

The distinction between genotype and phenotype was initially presented 
by the Danish botanist, plant physiologist, and geneticist Wilhelm Johannsen 
in a book he published in 1905, The Elements of Heredity. He distinguished 
between the genotype of the organism (it is hereditary) and the ways in which 
its heredity is demonstrated in phenotypes, or physical characteristics. This 
distinction was an outgrowth of Johannsen’s experiments concerning heritable 
variation in plants.1

Today, it is understood that the process leading from genes to proteins that 
ultimately establish phenotypes is complex. Most proteins are the products 
of multiple genes. Whether a protein is an enzyme, receptor, or hormone, 
it functions in a specific environment that includes external factors like 
temperature, rainfall, the amount of sunlight available, and nutrition, as well as 
internal factors that can include other hormones, enzymes, and other proteins. 

Further, biochemical pathways are not always linear; they can have multiple 
positive and negative feedback loops and may involve multiple steps and the 
products of hundreds of genes. In summary, the evolutionary forces producing 
a phenotype may often involve many genes and can be influenced by a variety 
of specific environmental factors.
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The Human Genome Project
The Human Genome Project (HGP) was an international scientific project 
with the goals of determining the sequence of chemical base pairs that make 
up human DNA and of identifying all of the physical and functional genes 
of the human genome. The HGP produced the first complete sequences of 
individual human genomes. As of 2012, thousands of human genomes had 
been completely sequenced, and many more had been mapped at lower levels 
of resolution. The resulting data have been used worldwide in biomedical 
science, anthropology, forensics, and other branches of science. With the 
mapping of the human genome near completion, researchers expected that 
subsequent genomic studies would lead to advances in our understanding of 
human evolution, and advances in many subfields of biology, particularly the 
diagnosis and treatment of many diseases.

To that end, researchers have worked to identify genes that constitute 
biomarkers using a combination of high-throughput experimental and 
bioinformatics approaches; nevertheless, the identification of biological 
functions of the protein and RNA products of DNA has only just begun. 
Recent results suggest that most of the vast quantities of noncoding DNA 
within the genome have biochemical activities that include regulating gene 
expression, organizing chromosome architecture, and producing signals that 
control epigenetic inheritance.2

A major aim of the HGP was to determine the functions of genes. 
Researchers believed that once the complete genome sequence was developed, 
interpreting the sequence by comparing the intermediate messenger RNA and 
protein products would be straightforward and ultimately would identify the 
genetic factors that influence important phenotypes such as predisposition to 
certain diseases. The simple rationale behind GWAS is that if certain genetic 
variations are more frequent in persons with a given disease, the variations are 
said to be “associated” with the disease. The associated genetic variations serve 
as pointers to regions of the human genome that may be involved in causing 
the disease.

Genome-Wide Association Studies
GWAS compare the DNA of two groups of participants: subjects with the 
phenotype of interest (cases, or persons with a particular disease) and 
similar subjects without the phenotype (controls). Each subject provides a 
sample of DNA, from which millions of genetic variants are read using single 
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polymorphism (SNP) arrays. If one type of the variant (one allele, i.e., the “wild-
type” allele) is more frequent in people with the disease, the SNP is said to be 
associated with the disease. The associated SNPs are then considered to mark a 
region of the human genome that influences the risk of the phenotype. Also, in 
contrast to methods which specifically test one or a few genetic regions, GWAS 
investigate the entire genome. The approach is therefore said to be non–candidate 
driven, in contrast to gene-specific candidate-driven studies. GWAS identify tag 
SNPs, which are defined as representative SNPs in a region of the genome with 
high linkage disequilibrium and other variants in DNA associated with a disease. 
Tag SNPs in isolation cannot specify which genes cause the phenotype.

The first successful GWAS investigated age-related macular degeneration 
and was published in 2005.3 This study found two SNPs that had significantly 
altered allele frequency when compared with healthy controls. As of 2015, The 
Catalog of Published Genome-Wide Association Studies contained more than 
2,141 catalog entries, 1,856 publications and 12,874 implicated SNPs.4 Prior to 
the introduction of GWAS, the major method of investigation was via genetic 
linkage studies in families. This approach was useful for identifying single-gene 
disorders, many of which appear in the comprehensive compendium of human 
genes and genetic phenotypes, the Online Mendelian Inheritance in Man 
(OMIM) database.5 

However, for both common and complex diseases, the results of genetic 
linkage studies have been hard to reproduce.6,7 In contrast, GWAS seek 
to identify whether the allele of a genetic variant is found more often than 
expected in individuals with the phenotype of interest. The statistical methods 
used in GWAS are based on traditional approaches, and early calculations of 
statistical power indicated that GWAS could be better than linkage studies at 
detecting weak genetic effects.8 

In addition to a simple conceptual framework, the proliferation of GWAS 
has also been driven by improvements in sequencing methods, reduced 
computational costs, and the advent of biobanks, which are repositories of 
human genetic material that greatly reduce the cost and difficulty of collecting 
sufficient numbers of biological specimens for study.9,10 The development of 
rapid genome-level sequencing techniques also permits researchers to assess 
methods to mine this information to identify genetic associations with disease 
and ultimately determine the biological basis of disease patterns. Knowing the 
coding sequences of every nucleotide in an organism has permitted researchers 
to study the collective influence of all genes simultaneously and their role in 
structuring organism traits, including specific diseases.
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With improving genotyping technologies and the exponentially growing 
number of available markers, case-control GWAS have become a key tool for 
investigating complex diseases. To accommodate GWAS methods, researchers 
have developed new procedures to ensure data quality, interpret GWAS 
findings, and provide computationally tractable approaches when performing 
hundreds of thousands of individual tests. 

The promise of GWAS was anticipated in many quarters of the scientific 
community.11 A 2007 fact sheet released by the National Human Genome 
Research Institute, in the early days of GWAS, raised expectations that 
personalized medicine, including individual risk prediction, disease 
prevention, and specific treatment, was just around the corner. “With the 
first GWAS published in 2005, … health professionals will be able to use such 
tools to provide patients with individualized information about their risks of 
developing certain diseases … to tailor prevention programs to each person’s 
unique genetic makeup … to select the treatments most likely to be effective 
and least likely to cause adverse reactions… .”12 However, a number of critics of 
GWAS argue that these expectations have not been met.13

GWAS: Useful or Misleading?
The overly high expectations were created in part because the early GWAS 
success predicting age-related macular degeneration with a complement factor 
H polymorphism was extreme, with an odds ratio (OR) of approximately 7.* 
In contrast, most GWAS implemented after that success involved variants 
conferring small effects, indicated by ORs slightly larger than 1.

Although medical science is still far from the GWAS-based personalized 
medicine promised in the National Human Genome Research Institute 2007 
fact sheet, at least three important considerations fuel legitimate hope that 
genetics will become integral to a form of medicine more specifically tailored 
to individual patients.11 First, important discoveries have already changed 
medical practice and resulted in medical policy codes for some treatments. For 
example, in the field of pharmacogenomics, researchers have already begun 
using genetic testing to determine patients’ dosage of warfarin.

Second, genetic interaction studies are starting to provide useful data. For 
example, researchers discovered that high-density lipoprotein cholesterol levels 

*	 The OR is a measure of is a measure of association between an exposure and an outcome. The 
OR represents the odds that an outcome will occur given a particular exposure, compared to the 
odds of the outcome occurring in the absence of that exposure.
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(HDL-C), one of the most important risk factors for coronary heart disease, 
are significantly influenced by the interplay of multiple genes linked to GWAS 
and involved gene-gene interaction effects.14 

Third, GWAS are based on common variants (i.e., tag SNPs) that are 
frequently in linkage disequilibrium with the actual causative variant, which 
in turn may be associated with larger effect sizes than the common variant 
included in the GWAS. For instance, fine mapping of loci associated with 
low-density lipoprotein cholesterol (LDL-C) identified a rare nonsynonymous 
variant gene that explained 5 times more of the contributed variance than the 
initial GWAS finding. In this context, whole genome sequence data has the 
potential to be a more accurate and powerful tool than SNPs to elucidate the 
relationship between genetics and (common) diseases. However, even high-
resolution genetic variation will only explain a fraction of the heritability of 
human diseases and traits. Thus, we are still searching for potential uses for 
genetics in medical science beyond using simple genetics with gene-gene and 
gene-environment interactions and identifying epigenetic effects as important 
but complex targets.

Missing Heritability
Heritability is a genetic measure that identifies the observable differences in a 
trait due to genetic factors between individuals within a population. Factors 
including genetics, environment and random chance can all contribute to the 
variation between individuals in their phenotypes.15 Heritability is a dynamic 
measurement that identifies the fraction of phenotype variability that can be 
attributed to genetic variation. The term “missing heritability” refers to the 
low percentage of information about the overall genetic component and risk 
of common diseases gleaned from GWAS. Common variants account for only 
a small proportion of genetic components, and the missing heritability lies in 
the huge class of rare genetic variants that GWAS do not see. Variants that are 
primary drivers of disease are relatively rare in the human population. 

Variants confer risk of disease, and natural selection acts against variants so 
that they do not become too prevalent. Therefore, the issue of so-called missing 
heritability becomes moot. We did not interrogate the whole genome; we 
interrogated the common variants that pass through the filter of natural selection. 
Many diseases, but not all, will involve rare variants not detected by GWAS.16

Autoimmune diseases may be an exception to this thinking. Some variants 
that are major risk factors appear more commonly in the general population; 
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for example, variants selected in response to infectious agents that have 
consequences for autoimmune diseases.17

The inability of GWAS to replicate markers in this and other instances was 
a major concern, and in a set of New England Journal of Medicine articles three 
authors offer alternative opinions regarding the progress that GWAS methods 
have made to date. Hirshhorn argued that the main goal of these studies is not 
the prediction of genetic risks but rather the discovery of biological pathways 
underlying polygenic diseases and traits.18 Goldstein countered that the 
genetic burden of common diseases must be carried mainly by large numbers 
of rare variants.19 He also suggested that most GWAS produced too many 
associations with very small overall contributions toward explaining disease 
risk—too many to provide any useful biologic insights. Kraft and colleagues 
support the notion that the GWAS approach predicts that “many, rather than 
few, variant risk alleles are responsible for the majority of the inherited risk 
of each common disease. It is possible that these initial GWAS have identified 
only the strongest associations, with many more genes still to be identified.”20 

Organization of the Book

Chapter 2: Genome Wide Association Data: Where Are the Standards?
Chapter 2 is a previously unpublished manuscript based on an internal study 
directed by Philip Cooley. Study participants included Huaqin Pan (RTI), Paul 
S. Levy (deceased), Maureen K. Bunger (formerly of RTI), and Laxminarayana 
Ganapathi (RTI Health Solutions).

We began our explorations into GWAS by applying statistical methods to 
real genetic (SNP) data. We used standard statistical approaches that appear in 
both GWAS and non-GWAS literature. The main objective of this venture was 
to see if we could assess the performance of different statistical methods used 
in a GWAS context. There have been many notable instances in which GWAS 
provided inconsistent results and there have been a number of studies have 
not been replicable. This has led to a question about the validity of the GWAS 
approach. For example, in 2008, the online listing A Catalog of Published 
Genome-Wide Association Studies identified a total of 8 amyotrophic lateral 
sclerosis (ALS) GWAS.4 Each of these 8 studies identified candidate ALS 
markers (or alternatively no markers), but none of the studies could replicate 
the results of the other studies. As of 2015, the number of ALS GWAS has 
grown to 16 studies that use a variety of international data and have identified 
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some possible genes linking ALS to genetic causes. By and large, no consistent 
markers have been universally accepted as ALS genetic markers. 

We obtained the SNP data for the initial ALS study appearing in the 
literature21 and attempted to replicate some of the published results in 
order to test statistical methods in genomics.21 We identified seven distinct 
methods that have been or could be applied in GWAS studies. We also used 
the method that Schymick et al. used to obtain their results. At the time we 
performed these analyses, we were unaware of any comprehensive studies that 
compared the performance of the different methods in the context of GWAS, 
and we wanted to determine whether standards could be developed. Using 
a previously conducted study would allow us to assess the performance of 
specific statistical methods by using the study results as a yardstick by which to 
measure the accuracy of our results. 

What we learned from this effort is that either many of the algorithms 
used in the literature in a GWAS context assume an additive gene model or 
are agnostic with respect to the form of inheritance. We also documented 
the inability of the ALS studies to replicate results—part of the problem with 
reproducing results is that ALS studies rely on having ALS patients as a study 
population, which means that the original sample sizes were relatively small 
due to circumstance. We were able to replicate the Schymick et al. study 
results using the method they chose to measure associations—the classic 
epidemiology case-control method that uses the Pearson χ2 test to text how 
likely it is that an observed distribution of data fits with the distribution that is 
expected if the variables are independent. However, our assessment indicated 
that the reported results depended to an unknown degree on the statistical 
method used to make the predictions. This suggested that the algorithms 
selected could influence predictive outcome and further demonstrated the 
need for developing GWAS standards.

In summary, the absence of both methodological standards and a process 
for evaluating the statistical methods used in predicting associations between 
genes and phenotypes suggested to us that we could examine these missing 
elements more effectively by using simulation methods. Accordingly, we 
created simulated data that were linked to known outcomes which therefore 
constituted a “truth set.” The simulated data could be analyzed using different 
statistical methods, and we could assess each method’s predictive properties, 
which could potentially reveal some or all of this missing information. 
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Chapter 3: Creating the Synthetic Gene Data
Chapter 3 describes the generic data generation process we used for the 
research described in Chapters 4 through 7. We used our simulated data in an 
effort to exploit a process with a known outcome to identify those traits that 
affect GWAS outcomes. These investigations took the form of (1) generating a 
database of synthetic genes that incorporated a number of dynamic properties 
that were varied for the explicit purpose of developing a “truth set” (i.e., a 
database of known outcomes); (2) testing a number of statistical models 
and competing algorithms that were developed to predict associations; and 
(3) creating a compendium of outcomes that linked gene properties to statistical 
model performance. This virtual gene resource enabled the power performance 
of different single-gene statistical methods to be measured and recorded. 
Consequently, this chapter describes the simulation model that generated the 
synthetic SNP data for all subsequent assessments represented in this book.

Chapter 4: Genetic Inheritance and Genome-Wide Association Statistical Test 
Performance Using Simulated Data
Chapter 4 is based on a study that was published previously.22 This chapter 
focuses on single-gene models and the statistical methods that effectively 
predict associations in a GWAS context. Here, we demonstrate that the choice 
of a statistical method can affect the power profiles of GWAS predictions. 
The initial step in a GWAS is to apply univariate statistical tests for each SNP 
marker in the data set. Applying the tests is methodologically straightforward. 
SNP-based tests are used to assess the likelihood of an association. In the 
simulation-generated gene data, the probability of the occurrence of the 
phenotype is regulated by an exogenously specified risk value that is a function 
of the genotype. This allows the “strength” of the genotype-phenotype signal to 
be controlled and power outcomes to be counted. Standard methods (e.g., χ2 
tests, logistic regressions) are commonly used in single-locus tests. In general, 
the GWAS approach is a brute force method that scans the entire genome to 
determine which genes demonstrate an association using a stringent threshold 
level to compensate for the problem of multiple comparisons. The problem of 
multiple test comparisons arises because as the number of tests (hypotheses) 
increases, the likelihood of witnessing a rare event increases. Often the mode 
of genetic inheritance (MOI) is assumed to be additive, which implies that the 
allele causes the phenotype risk rather than the genotype. 
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Our simulation studies confirmed the results of others23 that the gene 
model or MOI was a major influence on statistical power. This was no surprise 
and it is well known that associations involving recessive MOI SNPs are much 
more difficult to detect than other MOI types. Gene traits that influence 
prediction accuracy had also been reported in other studies.24,25 They 
demonstrated how the phenotype MOI assumption was a major influence on 
association prediction accuracy. 

We compared the power profiles of GWAS using a number of statistical 
methods, including two that combine MOI-specific methods into multiple 
test measures. Because most GWAS investigations have not determined the 
specific gene model operating, many assume an additive model. Given that 
most models cited in OMIM are either dominant or recessive gene models, we 
investigated composite methods that did not make an additive assumption; 
rather, they used three component tests with three distinct MOI properties 
(dominant, recessive, and additive). We then compared the performance 
(from a statistical power perspective) of the composite tests as contrasted with 
methods that either assume a specific MOI gene model or are agnostic with 
respect to MOI. By combining recessive, additive, and dominant individual 
tests, we determined that if the MOI is not known, then a composite test 
is more likely to make a correct association prediction. In that sense, it 
constitutes a more powerful test and could have significant advantages with 
respect to single test procedures. 

Our findings did not provide a specific answer about which statistical 
method is best. The best method depends on the MOI gene model associated 
with the phenotype (diagnosis) in question and how common the traits are 
that associate with the phenotype. However, our results do indicate that the 
common additive assumption that the MOI of the locus is associated with the 
diagnosis can have adverse consequences. It indicated that researchers should 
consider a multitest procedure that combines the results of individual MOI-
based core tests as a statistical method for conducting the initial screen in a 
GWAS. The process for combining the core tests into a single operational test 
can occur in a number of ways. We identify two: the Bonferroni procedure 
and the MAX procedure, each of which produces very similar statistical power 
profiles.26,27 This was a surprising result because the Bonferroni procedure 
was based on combining χ2 tests and assumed that the tests were mutually 
independent when they clearly are not, whereas the MAX procedure used 
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normal distribution tests and adjusted for the covariance properties between 
individual tests. 

In summary, the focus of this chapter is on single-gene statistical methods 
that predict associations in a GWAS context. We used simulation methods to 
learn that there is no single, most powerful method. If the properties of the 
gene model are not known, the most powerful approach is a composite test 
that uses a recessive-dominant-additive composite model. We also found that 
regardless of whether the MOI is known or not, there always exists a method 
that outperforms (in a statistical power context) the Pearson χ2 test. 

Chapter 5: The Influence of Errors Inherent in GWAS in Relation to Single-
Gene Models
Chapter 5 is based on a study that was published elsewhere.28 This chapter 
describes our investigation of the effects of errors in both genotype and 
phenotype misclassifications. The central objective is to assess the impact that 
these errors have on the additional sample size required to achieve a specific 
power threshold, which for this study is set to 80 percent. Usually, GWAS 
are conducted assuming that the study measurements are error free. This 
chapter discusses the assembled evidence challenging that assumption and the 
examples we used to assess the consequence of those assumptions. 

We simulated the effects of genotype errors by intentionally mislabeling the 
genotype X percent of the time, where X is an exogenously provided model 
parameter. It was our assumption that genotype errors due to incorrect chip 
assignments affect both genotypes by incorrectly switching the designation of 
the disease versus nondisease genotype. We used a similar approach to process 
phenotype errors that are assumed to affect disease diagnosis. In this process, 
the simulation data will be recoded to simulate a diagnosis switch from a 
positive to a negative outcome and vice versa Y percent of the time, where Y 
is also an exogenously provided user parameter. In general, we assumed that 
the value of X was less than 1 percent. We posed a much higher value for Y 
because estimates in the literature report disease misdiagnoses could be as 
high as 29 percent.29 These features allowed us to assess the individual or 
combination of genotype and phenotype error levels and their statistical power 
consequences. Studies of genotype error have led to a number of investigations 
in the statistical genetics literature that we review in Chapter 5. Although the 
accuracy of the genotyping process has improved, errors still occur. 



	 Overview of Chapters	 11

Phenotypic misclassification errors are also a source of bias and can 
reduce the power of detecting a statistical association between a phenotype 
and a specific allele.30,31 To help provide insight into the influence of 
simultaneous genotype and diagnosis errors affecting the accuracy of the 
phenotype measure in a GWAS, we ran simulations with synthetically 
generated data. We focused on assessing how statistical power was affected 
by the influence of these frequently overlooked sources of errors in GWAS. 
Our simulations demonstrated that genotype (even at low error rates) and 
phenotype (diagnosis) errors produce substantial power losses for all MOIs, 
with significant power losses for recessive MOIs. Because GWAS involving 
recessive loci have additional power requirements relative to other MOI types, 
researchers need to address these requirements in developing appropriate 
sample sizes for their studies.

In summary, this chapter identifies the significant role that epigenetics 
effects and diagnosis misclassifications can play in designing tests with realistic 
power levels. 

Chapter 6: Conducting GWAS Epistasis Scenarios
Chapter 6 is based on a study that was published previously.32 This chapter 
presents the results of our investigations of analyzing epistatic scenarios in 
GWAS. We used a qualitative association model to assess the statistical models 
that reliably predict associations between a qualitative phenotype (i.e., a 
disease diagnosis) and a pair of interacting genes. We employ the concept of 
relative risk, which is the ratio of the probability of a positive diagnosis given 
a mutated genotype divided by the probability with no risk present. We used 
a simulation approach to generate synthetic data corresponding to a variety of 
possible epistatic models (EMs). Our method took into account the strength of 
association, disease prevalence in nonrisk populations, and most importantly, 
the inheritance patterns of the pair of epistatic genes. We analyzed the 
simulated gene data to assess how these individual factors influenced statistical 
power in the context of GWAS.

The results indicated that the most powerful statistical methods for predicting 
associations between phenotypes and genotypes in epistatic scenarios are 
statistical models that simultaneously test for associations involving both 
interacting loci. This has significant computational implications. The number 
of single SNP evaluations is as large as 1,000,000 sets of calculations. The 
number of SNPs pairs is approximately 5 × 1011 calculations. This result is not 
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surprising and has been reported by others. An additional significance of our 
study is that it incorporates new statistical methods as part of the comparison 
analysis. We also documented the extent to which single-gene models fail to 
predict associations involving interacting genes with phenotypes constructed 
to be associated with low risk. Also, each gene MOI affects the ability to 
identify the association, which further confounds the GWAS methodology.

Chapter 7: Assessing Gene-Environment Interactions in GWAS: Statistical 
Approaches
Chapter 7 is based on a study that was previously published by RTI Press.33 
Environmental influencing factors on GWAS are described in Chapter 7. 
Classical statistical tests derived from case-control experiments can be used 
to determine if two loci associate in a GWAS context. But this model depends 
on a narrow range of environmental submodel formulations. In this scenario, 
logistic regression models are versatile approaches because they are able to 
examine main effects, pairwise interaction assumptions, or both. One early 
study investigating gene-gene interactions showed that explicitly modeling 
interactions between loci for GWAS with hundreds of thousands of markers is 
computationally feasible.34 In this chapter, we also show that simple methods 
explicitly considering interactions can actually achieve reasonably high power 
with realistic sample sizes under different interaction models with some 
marginal effects, even after adjusting for multiple testing using the Bonferroni 
correction. 

In this chapter, we also focus on low-effect/rare-variant loci with low 
relative risks of association with disease diagnosis. The overarching goal 
is to identify which statistical methods best identify genotype-phenotype 
associations when environmental effects also influence the association. 
Detecting such associations is particularly difficult for genetic variants 
with modest impacts on risk. Consequently, our experiments specifically 
investigated scenarios involving low-risk genetic variants and assessed whether 
environmental influences with varied levels of risk could be a source of the 
“missing heritability” observed using single-gene models.35 Not surprisingly, 
our investigations demonstrated that the best statistical method (with respect 
to statistical power) depends on whether there are interactions between the 
genotype and environmental factors as well as how well the specified statistical 
model matches the environmental effect associated with the phenotype.
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Chapter 8: Polygene Methods in GWAS
Chapter 8 proposes a novel strategy for studying the association between large 
sets of SNP predictors and groups of correlated phenotypes (i.e., outcomes). 
These data commonly arise in GWAS, in which associations with a large number 
of qualitative and quantitative phenotypes are investigated using hundreds of 
thousands of genetic markers. Our strategy is formulated within the linear–log 
linear models, a framework suited to the analysis of qualitative trait responses.

Our approach is based on the assumption that single-locus models do not 
detect all of the markers that are part of the phenotype pathway. In Chapter 6, 
we showed that for a given locus, single-locus tests are not as effective as 
two-locus tests. Despite these empirical arguments, which are based on 
computational considerations, single-gene models remain the core method 
for detecting associations in a GWAS context. Accordingly, our general 
strategy is to make an initial pass against all usable SNP autosomes and 
apply a significance threshold to identify highly significant SNP-phenotype 
associations, known as stage 1 SNPs. The second step statistically combines 
the stage 1 SNPs with all original autosome SNPs to identify significant SNP 
pairs that are phenotype-associated. This step uses a test for significance that is 
conditional on the stage 1 SNP. We then propose to continue this process for 
triple SNPs, quadruple SNPs, and so on until the combination of loci produces 
no new SNP-phenotype associations. This process is analogous to a stepwise 
regression process, in which networks of SNPs are combined stage by stage 
until no new SNPs exceed the significance threshold.

Chapter 9: Conclusions
Our final chapter discusses statistical power properties in the GWAS context 
and offers guidance on selecting “best methods.” Our early concerns with the 
absence of standards led us to develop a synthetic gene database that recorded 
known outcomes between synthetic phenotypes and genotype networks 
provides a mechanism that was not possible using real genomics data. The 
creation of this database enabled an evaluation of different statistical models 
and methods specifically because the prediction outcomes were known and 
statistical power profiles could be estimated. We also investigated methods 
that examine combinations of genes acting in concert either with other 
genes or environmental factors. Our assessments indicated that often single-
gene models will fail to identify markers in many types of gene-gene, gene-
environment networks.
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We also developed a general polygene test (Chapter 8) that builds up a 
network of SNPs that link to a single phenotype. A reliable single-gene model 
is still necessary to identify a starting SNP in the polygene process. However, 
during this initial pass, the inheritance properties of the genes to which the 
SNPs belong are predicted with high reliability. We then use the inheritance 
properties of the SNPs in the step-by-step association process. Knowing the 
inheritance improves the performance with respect to the statistical power of 
our polygene process.
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Genome-Wide Association Data: 
Where Are the Standards? 

Philip Chester Cooley

CHAPTER 2

Introduction
In this chapter we assess the predictive strength of a number of classical 
statistical methods by applying them to a publically available set of 
amyotrophic lateral sclerosis (ALS) data reported in a paper by Schymick 
and colleagues (2007).1 We used these methods in the context of a single 
locus genome wide association study (GWAS) experiment. The methods 
are compared and the degree of similarity/dissimilarity between them is 
empirically measured to determine if a combination of methods is more 
predictive of phenotype genotype associations than a single method. All of the 
methods in our assessment are single nucleotide polymorphism (SNP) based. 

There are three types of ALS: classic sporadic, familial, and the Mariana 
Island forms. Classic ALS accounts for 90 to 95 percent of ALS patients in the 
United States and is called “sporadic” because it cannot be traced to ancestors 
with the illness.2 The literature identifies variations and mutations in many 
Mendelian loci and genes that potentially cause different forms and subtypes 
of ALS, indicating that many complex and diverse molecular mechanisms are 
involved in ALS pathogenesis. These genes include SOD1, ALS2, SETX, and 
VAPB for familial ALS, and VEGF, ANG, HFE, SMN, and PON1 for sporadic 
ALS. Research has also reported that the inheritance pattern varies with the 
type of ALS, including autosomal dominant, autosomal recessive, X-linked 
dominant and maternal through mitochondrial genes.3-5 

Despite these complexities, ALS researchers have intensified their 
investigations of sporadic ALS. Researchers are applying the GWAS approach, 
looking for genes that increase susceptibility to sporadic ALS. By 2008 when 
the authors’ investigations began, seven teams had reported results from ALS-
based GWAS,6-12 but none had highlighted genes already under suspicion, 
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and each team had reported a different set of ALS markers. Subsequently, eight 
additional studies13-20 have been reported in the literature. These results have 
led to conjectures that using the GWAS method to search for ALS genes may 
have to accommodate a spectrum of genes, each of which contribute to ALS 
in some unknown manner. The failure of the different studies to replicate each 
other’s results also suggests that GWAS may be inconsistently implemented, or 
population admixtures are obscuring the findings. 

The first GWAS for ALS found no SNPs significantly associated with the 
disease.1 However, published studies that followed implicated several different 
ALS genetic markers. For example, Dunckley and colleagues6 identified an 
SNP located in the FLJ10986 gene. This study consisted of 1,152 patients 
diagnosed with sporadic ALS and 1,297 controls. The initial discovery was 
made on analysis done on 386 cases and 547 controls, all of whom were of 
European descent and older than 65. A residual sample of 766 cases and 750 
controls, as well as a subsample of the data identified in the Schymick study, 
were used to replicate the discovery analysis.6 A third ALS study reported that 
the inositol 1, 4, 5-triphosphate receptor 2 (ITPR2) marker was associated 
with ALS. This study pooled three European populations with 1,337 ALS 
patients and 1,356 controls.7 A fourth study (by the same team as the third 
study) identified an SNP in the dipeptidyl-peptidase 6 (DPP6) gene that was 
strongly associated with ALS susceptibility.8 However, the ITPR2 marker was 
no longer significant. A fifth study examined an Irish population, which was 
augmented with a Dutch and a US population consisting of 958 ALS cases 
and 932 controls, and confirmed an association with the DPP6 marker.21 
However, a sixth study sought to confirm the DPP6 marker finding by 
examining the Irish ALS cohort data and augmenting it with a Polish cohort. 
Cronin and colleagues,21 reported that their analysis of the combined cohorts 
that consisted of 1,267 cases and 1,336 controls was unable to identify any 
associations including the previously reported DPP6 marker.21 A seventh 
study, performed by Chiò et al.,9 used a two-stage analysis that consisted 
of 553 cases and 2,338 controls: it identified two new markers, but markers 
mentioned previously, including DPP6. 

Our initial assessment concluded that clear and definitive disease 
associations from these seven significant ALS studies was lacking and 
suggested difficulties of using GWAS approaches for complex diseases like 
ALS. Consequently, we made the decision at that time to pursue simulation-
based studies with known outcomes in an effort to explore the possibility of 
developing standard procedures for conducting GWAS. 
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Subsequent to our decision to pursue simulation methods to assess GWAS-
appropriate methods, nine additional ALS related GWAS were identified in the 
literature. Blauw et al.10 investigated the role of copy number variants (CNVs) 
as a source of genetic variation for 406 ALS cases and 406 controls and were 
unable to identify a locus associated with sporadic ALS. Another study by 
Landers et al.22 implicated the KIFAP3 gene that was associated with increased 
survival in sporadic ALS. An additional GWAS by van Es et al.23 used two 
cohorts to implicate an SNP (rs12608932) located in the UNC13A gene. This 
gene is known to code proteins that are presynaptic proteins found in central 
and neuromuscular synapses that regulate the release of neurotransmitters, 
peptides, and hormones. This same study also showed genome-wide 
significance for two additional SNPs located in chromosome 9p21. A GWAS 
by Laaksovirta et al.24 was able to confirm that genes on chromosome 9p21 
and suggested that it could be a major cause of familial ALS in a Finnish 
population. A further study by Shatunov et al.25 provided additional evidence 
that two SNPs in a locus on chromosome 9p21 were associated with ALS. The 
International Consortium on Amyotrophic Lateral Sclerosis26 conducted a 
meta-analysis of ALS samples consisting of 4,243 ALS cases and 5,112 controls 
from 13 European and US cohorts and provided additional evidence for the 
loci on UNC13A and chromosome 9p21. However, a study by Daoud et al.27 
could not confirm this result in a relatively small population (285 cases and 
285 controls) of French ALS subjects. As a result of increased incidence of ALS 
in US veterans, Kwee et al.28 conducted a GWAS of ALS outcome and survival 
time in a sample of US veterans. They report no SNPs reached genome-wide 
significance in the discovery phase for either phenotype. A final GWAS 
by Deng et al.29 on a Chinese population reported finding two additional 
susceptibility loci that were not reported in other studies. 

Methods 
Our study assessed the statistical methods that have appeared in the GWAS 
literature and included a number of established methods used by the cited 
studies. We applied each of these methods to the ALS data of Schymick and 
colleagues1 and provide a method of comparing their relative performance. 

The Schymick et al. (2007) ALS data set
This SNP data was produced by the Laboratory of Neurogenetics of the 
intramural program of the National Institute on Aging (NIA), National 
Institutes of Health (NIH). The genotyping was performed using the Illumina 
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Infinium assay humanhap550. Infinium assays assess haplotype tagging SNPs 
based upon Phase I+II of the International HapMap Project. The genotype 
data we used in this study consists of 555,352 SNPs from 276 ALS patients and 
271 neurologically normal controls. These data are publicly available to the 
scientific community.1

The Statistical Tests
In a simple GWAS analysis, we rely on individual statistical tests of each typed 
SNP to identify potential associations. For any of the statistical methods 
considered for measuring associations, we can represent the sample genotype 
data or the sample allele data in a contingency array stratified by cases and 
controls. Under a null hypothesis of no association with the phenotype, we 
expect no difference between the frequencies across cases and controls. In 
general, this is the strategy behind all of the statistical methods considered. 
However, the methods make different operational assumptions that produce 
very different measures of association. 

Testing a person’s DNA for more than half a million SNPs will produce 
many spurious associations. For example, if there were no actual associations, 
500,000 independent tests using a p<.0001 criterion would be expected to 
identify 50 candidate genes. Statistical methods can correct for this, but they 
can also obscure real associations and produce both false positive and false 
negative associations. For this study, we are using the data generated by the 
Illumina 550K chip, which has an SNP about every 5 kb. Also, loci near each 
other might not be mutually independent. The general strategy for protecting 
against type I errors is by setting a stringent statistical significance threshold. 

Each locus is screened to establish if there is sufficient information to apply 
the statistical procedures. The method we used is based on the procedure 
defined by Zeggini and colleagues.30 SNPs are considered eligible if the minor 
allele frequency (MAF) exceeds 1 percent in both cases and controls. These 
restrictions help protect against computational difficulties caused by data 
sparseness in our statistical calculations. Another purpose of any eligibility test 
is to determine if there is sufficient representation of all genotypes to perform 
an accurate statistical test. 

We investigated a number of statistical tests to use in our assessment 
including the following.

The Case-Control Genotype Method, Based on the Pearson χ2 Test. This classic 
test is used in many epidemiological studies. The procedure constructs a 2 × 3 
genotype table (case control by the three genotypes) that uses a Pearson χ2 test 
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with 2 degrees of freedom to test the hypothesis that the cases and controls are 
from the same distribution. Under the null hypothesis of no association with 
disease, we expect the relative genotype frequencies to be the same in cases and 
controls. These types of methods are commonly used in the GWAS context. A 
case-control study uses the odds ratio to estimate the relative risk and assumes 
that the disease under study has a low incidence. When the risk ratio is the 
parameter of interest, the assumption of rarity is needed for the odds ratio to 
be a consistent estimator.31,32 This method was used in the original Schymick 
study.

Normal Approximation to Fisher’s Exact Test—Dominant and Recessive Models. The 
null hypothesis behind Fisher’s test is that the rows (phenotype) and columns 
(genotypes) are unrelated. The test calculates an exact probability value for the 
relationship between three dichotomous variables, as found in a 2 × 3 table. 
When N (the number of subjects) is large, the exact form of the Fisher test is 
difficult to calculate. Therefore, a normal approximation is used. Because the 
test estimates the probability of a given genotype using the marginal values and 
assumes the probability is from a normal curve, an autosomal recessive and 
dominant version of the test is easily implemented. We used both forms in our 
assessment, listed as Fis-D and Fis-R in Table 2.1.

Logistic Regression Linear and Categorical Model Tests. The logistic regression 
test (Log-A) assumes an additive mode of phenotype inheritance and regresses 
case control outcomes using the number of minor alleles as the dependent 
variable. In the Log-A test, the null hypothesis β1 = 0 is used to test if the 
number of alleles associates with the phenotype variable.33 

Table 2.1. Correlation values for eight statistical tests based on unadjusted p-values

Test 
Name Fis-D Pea Tr-A All Fis-R Tr-D Log-A Tr-R

Fis-D 1.0 -.0472 -.0544 -.0535 0.2215 -.0947 -.0551 -.0041

Pea -.0472 1.0 0.4861 0.4832 -.0651 0.4818 0.4874 0.4793

Tr-A -.0544 0.4861 1.0 0.9843 -.0105 0.5294 0.9973 0.0821

All -.0535 0.4832 0.9843 1.0 -.0104 0.5269 0.9834 0.0811

Fis-R 0.2215 -.0651 -.0105 -.0104 1.0 -.0026 -.0107 -.1677

Tr-D -.0947 0.4818 0.5294 0.5269 -.0026 1.0 0.5299 0.0020

Log-A -.0551 0.4874 0.9973 0.9834 -.0107 0.5299 1.0 0.0822

Tr-R -.0041 0.4793 0.0821 0.0811 -.1677 0.0020 0.0822 1.0

Fis-D = Fisher dominant test; Pea = Pearson χ2 test; Tr-A = trend additive test; All = allelic test; Fis-R = Fisher 
recessive test; Tr-D = trend dominant test; Log-A = logistic linear test; Tr-R = trend recessive.
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Cochran-Armitage Trend Tests: Recessive, Additive, and Dominant Models. The 
classical Cochran-Armitage test assumes an additive mode of inheritance 
(MOI) and is typically used in categorical data analysis when some categories 
are ordered. The test is sensitive to the linearity between phenotype and 
genotype variables and detects trends that would not be noticed by other 
tests.34 It also uses weights applied to each genotype variable to generalize the 
method. For example, a weight of 0.0, X, or 1.0 (where 0 ≥ X ≤ 1) can be used 
to assume different MOI assumptions: recessive (X = 0), additive (X = .5) or 
dominant (X = 1) locus. The method is discussed by Zheng and Gastwirth.35 
We use all three test assumptions in our assessment and identify them as Tr-R, 
Tr-A, and Tr-D, respectively, in Table 2.1. 

Allele Test. This is a commonly used test for association in a 2 × 2 
contingency table, in which cases and controls are classified as carriers of the 
minor, risk-carrying allele. This is a 1 degree of freedom (1df) test that assumes 
dominance on a single allele. This test constructs a 2 × 2 allele table (case 
control by the two alleles) and uses a Pearson χ2 (CHI2) test (1df) to test the 
hypothesis that the cases and controls are from the same distribution.32

Results
A fundamental question this study seeks to address is “which method should 
investigators use to assess candidate associations?” No one has yet answered 
this question. One obvious partial answer is that it depends on the gene 
behavior, as well as a number of other biological factors yet to be determined. 
Consequently, if we assume an additive gene model, then the likelihood of 
establishing the association between genotype and phenotype will be nearly 
the same whether or not one uses any of the three additive-based tests. 

Test Performance 
In an attempt to address the question above, we created a 2 × 3 table of counts 
of case-control subjects by genotype counts for each locus. We then added 
the marginal values and provided the necessary information to apply the 
eligibility criteria to eliminate loci with low minor genotype representation. 
The data provides information on 555,352 loci, of which 538,234 are autosome 
loci. Applying a standard quality control method described by Zeggini et al.30 
to the autosome loci identifies 55,304 loci (10 percent) that were screened 
ineligible and not considered in the analysis due to low minor genotype 
representation. Table 2.1 presents the 8 × 8 matrix of Pearson product-moment 
correlation coefficients for all possible pairs of the eight statistical tests. Note 
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that the statistical tests differ in the MOI assumption and therefore should 
provide different results. However, Table 2.1 indicates that although some of 
the MOI-based tests (i.e., the additive tests) produce consistent results, the 
dominant based tests (Tr-D and Fis-D: correlation coefficient = -.0947), and 
the recessive based tests (Tr-R and Fis-R correlation coefficient = -.1677) are 
not correlated. The Pearson test is MOI agnostic and would be expected to 
overlap with the other tests, and although they both capture 48 percent of the 
correlation space represented by many of the other tests, they have only a small 
negative correlation with both of the Fisher tests. Thus, Table 2.1 illustrates that 
all of the tests historically used in GWAS incorporate different assumptions 
and consequently have differences in the way they measure association. Based 
on results presented here, we assert that if the MOI characteristics of the 
associated loci are unknown, then researchers should consider multiple tests 
treated in a nonhierarchal manner. 

In addition, Table 2.1 suggests a correlation between the three tests (Tr-A, 
Log-A, and All) that assume additive MOI properties. This suggests that no 
additional predictive power for measuring associations is derived from using 
more than one of these three tests; that weak correlation between the two tests 
(Tr-R and Fis-R) that assume recessive MOI properties and weak negative 
correlation between the Fisher dominant MOI test (Fis-D) and all of the other 
tests except the Fisher recessive MOI test (Fis-R), which implies that these tests 
measure a dimension that is different from all of the other tests. 

Marker Assessment
This section compares our results directly to those of Schymick and colleagues1 
and indirectly to other results reported in the literature.

Schymick et al. (2007). The Schymick and colleagues study1 reports using 
six association tests: the genotypic test, two versions of the trend test (the 
dominant and additive tests), a recessive model test, an allele-based test, and 
a three-marker haplotype-association test. We included their five-loci-based 
tests in the tests we ran. 

We applied the Pearson test, the recessive version of the trend test, and the 
additive version of the logistic regression test to the same data. A summary 
of these results is presented in Table 2.2 below. It compares the top 34 SNPs 
reported by Schymick and colleagues1 with our results. We found that all 34 
were positive at the e-4 level of significance based on the Pearson test but that 
none were significant at the 10-7 level. Also, 13 of the SNPs were positive at the 
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Table 2.2. Comparison between the results of our study and the Schymick et al. study

SNP ID Chrom.$ Location Gene Pea Tr-R Log-A

rs4363506 10q26.13 129164493 Intergenic <.000001 <.005 <.000001

rs16984239 2p24 18097927 Intergenic <.00001 X <.00001

rs12680546 8q24.2 136940921 Intergenic <.0001 X <.001

rs6013382 20q13.2 50136040 ZFP64 <.00001 X <.01

rs2782931 9q31.3 113890011 SUSD1 <.00001 <.0001 X

rs11099864 4q31.3 154112804 KIAA1727 <.00001 <.0005 X

rs332389 3p14.1 $66493904 SLC25A26 <.0001 <.01 X

rs4964213 12q23.3 106274907 BTBD11 <.0001 <.0001 <.0001

rs10765118 10q26.13 129175173 Intergenic <0001 <.00001 <.0001

rs3733242 4q21.1 77894529 SHROOM3 <.0001 <.00001 <.0001

rs1037666 1q43 238425108 FMN2 <.0001 X <.001

rs1436918 15q14 32724213 LOC390569 <.0001 <.0001 X

rs4552942 8q24.2 136943505 Intergenic <.0001 X <.001

rs852801 1p32.2 58094497 DAB1 <.0001 <.00001 <.001

rs852802 1p32.2 58096531 DAB1 <.0001 <.00001 <.001

rs7250467 19q12 33261241 LOC727771 <.0001 <.0001 <.0001

rs10830099 10q26 129174355 Intergenic <.0001 <.0001 < 0001

rs10459680 15q26 91482474 Intergenic <.0001 X <.001

rs1752784 9q22.32 96217647 HIATL1 <.0001 <.00001 <.01

rs1202824 1p32.2 58121593 DAB1 <.0001 X <.01

 rs5014235  5q14.1 77245417 Intergenic  <.0001  <.01  <.0001

rs7201419 16q23.3 81887480 CDH13 <.0001 <.0001 <.01

rs11933187 4q31.3 175446507 KIAA1717 <.0001 <.0001 <.001

rs10773543 12q24.32 127489679 TMEM132C <.0001 X <.001

rs7976059 12q13 50537539 Intergenic <.0001 <.0001 <.001

rs9608416 22q12.1 24441018 ADRBK2  <.0001 <.01 X

rs2220999 12q12 40422035 Intergenic  <.0001 <.01 <.0001

rs12632457 3p24 27995556 Intergenic  <.0001 <.01 <.0001

rs2272519 2p24 18575231 Intergenic <.0001 <.05 X

rs2289599 5q14.1 77243905 Intergenic  <.0001 <.05 <.0001

rs4478530 8p12 31517686 Intergenic <.0001 <.05 X

rs130110 22q13.32 47470399 FAM19A5  <.0001 X <.0001

rs9510982 13q12 23451861 Intergenic  <.0001 <.0001 X

rs2767584 6p21 156964439 Intergenic  <.0001 X X

Total < e-4 34 13 12

Fis-D = Fisher dominant test; Pea = Pearson χ2 test; Tr-A = trend additive test; All = allelic test; Fis-R = Fisher 
recessive test; Tr-D = trend dominant test; Log-A = logistic linear test; Tr-R = trend recessive.

$Chromosome location of single nucleotide polymorphism (SNP).

Some data from Schymick et al.1
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10-4 criteria according to the Trend-R test and 12 were positive according to 
the Logistic-A test. 

Thus, 12 of 34 association tests at the e-4 level overlap between the MOI-
agnostic Pearson test and both the recessive Tr-R test and the Log-A test. We 
can therefore replicate the Schymick et al. results but only if we use the Pearson 
test, which is commonly used for GWAS. The Trend-A test is equally popular. 
However, if another MOI-specific test had been used instead, we could not 
have replicated the results.  

Other ALS GWAS. The year we first investigated the Schymick et al.1 ALS 
GWAS study, there were seven other GWAS also published on ALS. These 
studies were Dunckley et al.6; van Es et al.7,8; Blauw et al.10; Cronin et al.11,12; 
and Chiò et al.9 The focus of the Blauw et al.10 study was unique. It investigated 
copy number variations, and the reported results were negative. We examined 
the top markers reported in the remaining six studies and summarize that 
information in Table 2.3. The DPP6 marker first identified by van Es et al.8 
is worth mentioning because it was also reported in one of the Cronin et al. 
studies.11

Table 2.3. Association test results of SNPs identified as significant in other studies

Study SNP ID Chr Gene
p-value 

reported
p-value this 

study

Dunckley6 rs6700125 1 FLJ10986 1.8 10-5 3.1 10-3

Dunckley6 rs6690993 1 FLJ10986 2.0 10-4 NA

van Es7 rs2306677 12 ITPR2 7.0 10-4 X

van Es,8 Cronin11 rs10260404 7 DPP6 5.04 10-8 7.4 10-4

Chio9 rs2708909 7 SUNC1 6.98 10-7 4.5 10-3

Chio9 rs2708851 7 Intergenic 1.16 10-6 9.5 10-3

NA = SNP not included on chip; X = not significant at any level; SNP = single nucleotide polymorphism.

The results summarized in Table 2.3 identify a p-value < 10-3 for one of 
the markers reported in other studies; however, all of the five others are less 
significant. At this threshold, we are unable to replicate any other reported 
results and therefore must hypothesize that the collective ALS studies have 
identified no predisposing biological markers. We also performed a linkage 
disequilibrium (LD) analysis of all SNPs in Table 2.3 to identify any other SNP 
close to the index SNP in column 2 (i.e., < 200kb of the index SNP) with high 
LD. We were unable to identify any.
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Finally, we examined the PON1 gene that was reported to be associated 
with sporadic ALS in genetic studies by more than one study. 36,37 All tested 
nonsignificant. 

Conclusions
We used publicly available data that contained 276 cases and 271 controls. 
This sample is very underpowered, with many SNPs containing few disease 
alleles. The SNP coverage may also have been insufficiently dense. Although 
the SNPs on the chip are tag SNPs that were selected to represent all the 
genes in a comprehensive manner, the selection may not have included all the 
potential markers for a specific disease. Other explanations are that the sample 
of individuals was too heterogeneous, resulting in the study populations with 
distinct disease penetrance traits; the strength on the association was too 
weak to be detected; errors in the data perturbed the measurements; or the 
phenotype definition differed across studies. Novel statistical methods cannot 
overcome the problems inherent in poor quality data containing too few 
subjects, or data that uses a poorly defined phenotype (i.e., an ALS diagnosis).

We found that different statistical tests varied significantly in estimating 
the test association measurement, implying that GWAS results depend on the 
chosen statistical method. We also find that there is no compelling standard 
that establishes which statistical methods investigators should use in the 
context of GWAS with unknown MOI properties. Although GWAS have 
used and reported findings for a number of different tests, most tests have 
unique properties and consequently can prescribe a different candidate set of 
phenotype SNP associations. In general, the p-value threshold is Bonferroni 
corrected to a very small value, which encourages high type II error rates.38 

GWAS hold substantial promise, but for many phenotypes, the path 
forward is complicated for many reasons not yet understood. The replicability 
of results in some but not all studies suggests that researchers should present 
any and all conclusions with caution. Identifying associations solely on the 
basis of extreme p-values is likely to be misleading because an extreme p-value 
alone does not identify the underlying biological mechanism that produces the 
association. Furthermore, the rate of missing genotype measures suggests that 
the genotype data contains an unknown number of errors (e.g., in the case of 
ALS, obtaining an accurate diagnosis is notoriously difficult). Accurate error 
rates are important components for assessing statistical power properties, and 
their absence will lead to underpowered GWAS.
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Creating the Synthetic Gene Data 
Philip Chester Cooley

CHAPTER 3

Overview
We used simulation methods to compensate for the absence of both methodo­
logical standards and a process for evaluating the statistical methods used in 
predicting associations between genes and phenotypes. This required creating a 
synthetic gene database of simulated data linked to known association outcomes 
constituting a “truth set.” Using these data, we analyzed the simulated data 
using candidate statistical methods for the purpose of assessing each method’s 
predictive properties in the context of an experimental setting that we create.

Our method for generating the synthetic marker data is based on Mendelian 
concepts of inheritance and epidemiological concepts of relative risk (RR), 
which is the ratio of the probability of an event occurring in an exposed group 
to the probability of the event occurring in a comparison, nonexposed group. 
For example, nonsmokers who inhale secondhand smoke may be more likely to 
develop lung cancer than nonsmokers who have not been exposed. Individuals 
also have genetic inheritance elements that include autosomal dominant and 
autosomal recessive patterns conforming to single-gene inheritance effects. We 
also incorporate additive and multiplicative inheritance patterns to represent 
the actions of multifactorial inheritance processes.

We used a study by Iles to represent the contrast between a formal 
disease diagnosis that stems from genetic causes and the concept of disease 
penetrance.1 Penetrance in genetics is the proportion of individuals carrying 
a particular variation of a gene (allele or genotype) that also express an 
associated trait. We designate a as the risk allele, and A as the allele without 
risk. Generating the synthetic gene data set was facilitated by defining the 
relationships between penetrance and relative risk for different MOI categories.

This chapter describes a generic process to generate genotype-phenotype 
data that we use in Chapters 4 through 8. All of the chapters use a version of 
the data generation process that is derived from this generic process, but there 
can be differences in detail that depend of the technical content of the chapter.
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The Data Generation Process
Specifically the steps were:

1.	 Preload the details that define the factor combinations for each MOI 
category. The factors are specified in Table 3.1.

Table 3.1. Factors that define a synthetic gene data file

Factor Symbol Number of factors

Sample size N NCC

Penetrance P NP

Phenotype error rate Perr NY

Genotype error rate Gerr NX

Relative genetic risk Φ NGR

Relative environmental risk Π NER

2.	 Draw a genotype distribution at random from the master set of genotype 
distributions obtained from real distribution data (i.e., the study by 
Schymick et al.2). At this stage, Chan et al. recommends that a minor 
allele frequency (MAF) threshold not be applied.3 They argue that filtering 
MAFs out of the process because of low frequencies or to maintain Hardy–
Weinberg equilibrium (HWE) deviation has little effect on the overall false 
positive rate and in some cases, filtering MAF only serves to exclude SNPs. 
This step effectively selects a specific genotype distribution (at random) 
from the master distribution.

3.	 Use Table 3.2 to assign a case (1) or a control (0) based on the selected 
genetic relative risk (Φ), penetrance (P) and MOI category. This step 
converts the Φ ratio value into the probability that the case occurs for the 
MOI gene model of interest. This process is represented by the following 
logic that was derived from Iles1:

Major Homozygote (AA). Assume that the AA genotype is selected. The 
probability of a case given this selection is equal to the disease penetrance P, 
or  ΨAA = P.

Minor Homozygote (aa): Liability Increasing Allele. Assume the aa genotype is 
selected. The genetic relative risk (Ψaa) can be expressed as a ratio of two 



	 Creating the Synthetic Gene Data	 33

probabilities: the probability of a case for a minor homozygote divided by 
the probability of a case for a major homozygote, or

	 Ψaa = Prob(case/aa) / Prob(case/AA) = x/P.	 (3.1)

From (3.1) the probability of a case given the minor genotype = x = 

	 Ψaa × P,	 (3.2)

where Ψaa = one of the assigned risk factors and P is one of the assigned 
penetrance factors. 

Heterozygote (aA). Assume the aA genotype is selected. By the same 
argument, the phenotype risk given a heterozygote is:

	 ΨaA = Prob(case/aA) / Prob(case/AA) = y/P.	 (3.3)

By the same argument, the risk of a case given the heterozygote is 

	 y = ΨaA × P,	 (3.4)

where ΨaA = one of the assigned risk factors and P is one of the assigned 
penetrance factors.

Using the estimate of x and y, assign a case or control at random 
using the four different MOI models in conjunction with equations 
(3.2) and (3.4) and Table 3.2. We assigned cases in proportion to x (y) 
and controls in proportion to 1- x (1-y) for the minor homozygote 
(heterozygote) genotypes respectively. For the MOI models that assume 
an elevated risk from the minor and the hetero genotypes, we would 
expect a higher proportion of cases to be more easily identified via the 
statistical procedures. The specification of risk depends on specific and 
unknown disease mechanisms. A relative risk of 1.7 is considered strong 
and is associated with positive replication,4 and a risk of 1.3 is considered 
by Ziegler et al.5 to be a realistic assumption for complex diseases. In 
summary, individuals are either assigned as cases or controls according to 
the probabilities given in Table 3.2.

4.	 Systematically select subjects. If the subject is a case (control), change its 
phenotype designation to a control (case) at a rate determined by Perr.

5.	 Systematically select subjects. If the genotype is a disease (nondisease) allele 
change the allele to a nondisease allele (disease) allele at a rate determined 
by Gerr.
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6.	 Continue with the previously described process until n1 cases and n2 
controls (N = n1 + n2) are generated (note that n1 and n2, are not required 
to be equal). 

7.	 Apply a set of statistical methods to predict associations and record the 
results. 

8.	 Generate NR (typically NR = 1,000) replicate experiments for each factor 
combination.

9.	 Analyze the data.

Table 3.2. Relative risk assumptions, by mode of inheritance 

Major homozygote Minor homozygote Heterozygote

Inheritance model
ΨAA Ψaa = 

Pr(case/aa)
Pr(case/AA)

ΨAa = 
Pr(case/aA)
Pr(case/AA)

Recessive 1 Φ 1

Dominant 1 Φ Φ

Additive 1 2 × Φ-1 Φ

Multiplicative 1 Φ × Φ Φ

Source: Iles.1

•	 Ψaa is the relative risk of homozygous minor to homozygous major.

•	 ΨaA is the relative risk of heterozygote to homozygous major.

Figure 3.1 presents a flow description of the data generation process.
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Figure 3.1. Schema of data-generation process

No Yes

Loop

Penetrance = p = Pr (Case/AA) = Low, Med, High
Number of cases = N1
Number of controls = N2
Phenotype error rates = Perr
Genotype error rates = Gerr
Risk rates = φ

Compute master genotype distributions for each SNP
G = number of wild type alleles

Select a G: Genotype distribution

Select a genotype value g = (0,1,2) at random from G

With g, p,  φ, MOI Compute case (1) or control (0) 
using Table 2

Alter genotype from error rate (0 to 1, 1 to 2, 2 to 0)

Record database entry

Completed loops?  End 

Preload factor values

Low, Med, High
Low, Med, High
Low, Med, High
Low, Med, High
Low, Med, High
Low, Med, High

Loop 
components:

P
MOI
N1
N1

Perr
Gerr

Φ
Replicates

MOI G = 0 (AA) G = 2 (aa) G = 1 (Aa)

ΨAA
Ψaa

 
=

 

Pr(case/aa)
Pr(case/AA)

ΨAa
 
=

 

Pr(case/aA)
Pr(case/AA)

R 1 Φ 1
D 1 Φ Φ
A 1 2 × Φ-1 Φ
M 1 Φ × Φ Φ

AA = major genotype; Aa = heterozygote genotype; aa = minor genotype; MOI = mode of inheritance.
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Computational Requirements
Note that the number of unique entity combinations being simulated (NS) as 
described by the data generation process (see Table 3.1) is:

	 NS = NP × NX × NY × NGR × NER. 	 (3.5)

Each of the NS combinations of traits consists of N cases + controls, and 
each unique combination is replicated NR times. Thus, if the each trait of 
interest had three risk levels (high, medium, and low) and if NR = 1,000, 
the number of unique experimental combinations would equal 35 = 243, 
the number of replicate simulations = 243,000, and the number of entries in 
the database = 2.43 × 105 × N. Depending on the value of N, the number of 
hours of computations required by this process can vary from 2 to 80, and the 
database entries from 2.43 × 108 (N = 1,000) to 2.43 × 1011 (N = 100,000). Note 
the space requirement on the later assumption is approximately 10 terabytes.
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CHAPTER 4

Overview
Choosing a particular statistical method for a study significantly affects 
the power profiles of genome-wide association study (GWAS) predictions. 
Previous simulation studies of a single synthetic phenotype marker 
determined that the gene model or mode of inheritance (MOI) was a major 
influence on power. In this chapter, we compare the power profiles of GWAS 
statistical methods, ones that combine MOI specific methods into multiple 
test scenarios, against individual methods that may or may not assume an 
MOI gene model consistent with the marker that predicts the association. 
Combining recessive, additive, and dominant individual tests are combined 
and used with either the Bonferroni correction method or the MAX test2 
with respect to single-test GWAS-based methods. If the gene model behind 
the associated phenotype is not known, a multiple test procedure could have 
significant advantages compared to single test procedures. 

We found that the best statistical method for a study depends on the MOI 
gene model associated with the phenotype (diagnosis) in question. Our results 
also indicate that a common assumption that the MOI of the locus associated 
with the diagnosis is additive will have adverse prediction consequences if the 
assumption is incorrect. 

Chapter 4 is based on a study that was published in the Journal of Proteomics & Bioinformatics.1 
Copyright: © 2010 Cooley P, et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited. Chapter 3 of 
the current publication describes the generation of the synthetic gene database. This section was 
removed from Chapter 4. The analysis of the gene data has not changed.



38 	 Chapter 4

Overall, our results indicate that researchers should consider a statistical 
methodology that combines the results of individual MOI-based core tests for 
conducting the initial screen in a GWAS. The core tests can be combined into 
a single operational test in a number of ways. We identify two: the Bonferroni 
procedure and the MAX procedure, each of which produce very similar 
statistical power profiles. 

Introduction
In this chapter, we examine the statistical methods used to perform GWAS. 
GWAS usually apply univariate statistical tests to each gene marker or single 
nucleotide polymorphism (SNP) as an initial step. This SNP based test is 
statistically straightforward and the testing is done with standard methods 
(e.g., χ2 tests, regression) that have been studied outside of the GWAS context. 
A paper by Kuo & Feingold3 described the most commonly used methods, and 
the authors note the use of a compound procedure that combines two or more 
statistical tests.

The literature also contains a number of papers that compare statistical 
power among subsets of these methods.4,5 However, the question of which 
method is best suited to univariate scanning in a GWAS remains an open issue. 
The choice of method depends on the match between the true genetic model 
underpinning the association and the type of model assumed by the method. 

To investigate further, we used a multiple test procedure that combined the 
most promising of the methods identified in the literature and applied them 
to a set of synthetic marker data with known properties (the Schymick et al. 
data set introduced in Chapter 2).6 Our goal was to identify marker properties 
that could be linked to optimal methods (with reference to statistical power) 
for predicting associations in GWAS. We know from prior studies that the 
statistical procedure a researcher chooses influences GWAS prediction 
accuracy and that there are specific properties of the underlying markers that 
determine the optimization of the procedure choice.3 

We also included the important properties that influence the association 
prediction accuracy into our synthetic marker data via a Monte Carlo 
simulation process, and we link the properties to the influencing marker to 
study their individual and collective contributions to association prediction. 
A synthetic marker data set allows us to assess the performance of different 
statistical methods in a GWAS context. We applied a number of statistical 
methods to the simulated data and used their statistical power profiles to 
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evaluate the performance of the methods. We also quantified the relationships 
between locus traits and prediction accuracy. 

This chapter identifies a number of these properties and quantifies the 
loss in power if studies use nonoptimal methods. Similar results have been 
reported in earlier studies.4,5 Both studies reinforce the view that the major 
influence on prediction accuracy is the gene model of the locus associated with 
the diagnosis. 

We were particularly interested in assessing the consequences of applying 
a statistical method that assumes an inherent additive mode of inheritance 
(MOI) property to nonadditive SNP data. Our motivation for this was twofold. 
First, the additive MOI model is commonly employed in GWAS; and second, 
the answer to the question: “what statistical methods should be used to 
conduct GWAS?” does not have a definitive answer. The best method typically 
depends on what MOI gene model has been associated with the associated 
diagnosis. 

Our results show the major factors that influence association predictions. 
They also indicate that a strategy based on predicting associations using 
multiple statistical methods can be more accurate; much more accurate if 
the governing marker is recessive, than those that assume a single, additive 
mode. The multiple test procedure we developed and propose here combines 
recessive, additive and dominant MOI-optimal statistical methods, all of 
which are derived from the well-known Cochran-Armitage (CA) test. We also 
examined different procedures for combining the tests.  

Methods
We examined the accuracy of association detection by generating synthetic 
data with properties that are known to influence statistical power. We used 
a Monte Carlo process to generate the data from a set of random variables 
described in Chapter 3. The main purpose of the synthetic data from Schymick 
et al.6 is to act as a “truth set” to assess the performance of commonly used 
statistical methods used in a GWAS context. Please see Chapter 3 for the 
description of how the data were generated.

The simulated data set that was generated had the following characteristics:

•	 The proportion of cases (controls) that are major homozygotes = 50.3 (63.0) 
percent.

•	 The proportion of cases (controls) that are heterozygotes = 39.2 (31.3) 
percent.
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•	 The proportion of cases (controls) that are minor homozygotes = 10.5 (5.7) 
percent.

•	 With MOI distribution:
–	 recessive = 25 percent,
–	 dominant = 25 percent,
–	 additive = 25 percent, and
–	 multiplicative = 25 percent.

We acknowledge that this distribution of MOI traits does not represent 
how inheritance traits are distributed in humans. The Online Mendelian 
Inheritance in Man (OMIM)7 provides the best source of information on the 
MOI distribution (Table 4.1). However, OMIM is disproportionally populated 
by genes linked to single Mendelian disorders. Therefore, genes associated with 
multifactorial disorders are under-represented in OMIM. Because polygene 
influences are assumed to be a major source of additive and multiplicative 
SNP behavior, the distribution in Table 4.1 is likely biased. Accordingly, we 
populated SNPs in our data with equal MOI representation and acknowledge 
that it does not represent the true distribution.

Table 4.1. Distribution of genes in Online Mendelian Inheritance in Man, by mode of 
inheritance (MOI)

MOI Frequency

Autosomal Dominant 3,805

Autosomal Additive 12

Autosomal Multiplicative 21

Autosomal Recessive 3,775

The three optimal MOI specific methods are the three variations of the 
CA trend test described in Zheng and Gastwirth.8 We also included a fourth, 
commonly used individual method, the 2-degrees-of-freedom (2df) genotype 
association test. Using the notation in Table 4.2 to define the 2 × 3 table of 
case-control counts stratified by genotype, a one-tailed test statistic (T2(x)) for 
the three variations of the CA trend methods is defined as:

	 T2(x) = n
[Σ0,1,2  { xi (s ri -  r si)}]2

.
[r s (Σ0,1,2  n {xi xi ni } – {Σ0,1,2  (xi ni)2 })]

	 (4.1)
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The values represented in equations (4.1) and (4.2) are shown in Table 4.2, 
and the value of xi defines the specific test x0 = 0, x2 = 1 and x1 = {0 – recessive, 
.5 – additive, 1 – dominant).

Table 4.2. Terms defined in equations (4.1) and (4.2) 

AA Aa aa Total

Case r0 r1 r2 R

Control s0 s1 s2 S

Total n0 n1 n2 N

AA = major genotype; Aa = heterozygote genotype; aa = minor genotype.

Under the null hypothesis of no association, T2(x) has an asymptomatic 
χ2 distribution with 1 degree of freedom. Please note that the power of the 
trend tests may be affected by the variance estimator used. In particular, the 
usual method of combining both cases and controls is not an asymptotically 
unbiased estimator of the null variance when the alternative is true. The 
authors note that at least two different estimates of the null variance are 
available, which are consistent under both the null and alternative hypotheses. 
In our calculations, we use a one-sided test.

As an alternative to equation (4.1), it is also possible to use a normally 
distributed test statistic, per Li et al.2:

	 N(x) = n1/2 [Σ0,1,2  { xi (s ri -  r si)}] .
[r s (n Σ0,1,2 {xi xi ni} – [Σ0,1,2  {xi ni}2]1/2)]

	 (4.2)

Under the null hypothesis of no association, N(x) has an asymptotic normal 
distribution N(0,1), which suggests a one-tailed test because the synthetic data 
assumes that the minor allele conveys the risk of phenotype.

We used eight sample size assumptions with equal numbers of cases and 
controls to perform our analysis, with N defined as the number of cases: = 100, 
250, 500, 1,000, 2,000, 4,000, 8,000, or 9,500. We estimate statistical power by 
statistical method and N using a significance threshold of α = 10-7. In a GWAS, 
researchers usually perform a single marker analysis as a starting point to 
identify SNPs for additional and more comprehensive analysis. This initial pass 
creates a large number of statistical tests as well as a high potential for false-
positive predictions, which has caused researchers to perceive the need for a 
very low threshold. Accordingly, some studies have used type I threshold levels 
on the order of 10-7. 9-11 



42 	 Chapter 4

The multitest statistical methods we used in our comparisons are:

1.	 The Bonferroni (BON) method, shown in Holm,12 which is a simple form 
of the Bonferroni correction results which uses n methods to test for an 
association outcome. The correction involves dividing the alpha level by n. 
For example, if the association of a given SNP involves using three different 
statistical methods, the corrected alpha level (α) would be α/3. This would 
ensure that the overall chance of making a Type I error is still less than α.

2.	 The MAX method from Li et al.2 that departs from the Bonferroni method. 
Bonferroni assumes that the individual tests are mutually independent; 
while Li et al. assume that the individual tests are correlated and incorporate 
an approximation to the joint distributions.

Results: Statistical Method Assessment 
Table 4.3 presents power estimates by statistical methods and sample size and 
is based on a fixed alpha threshold (α = 10-7). All tests are one-sided, and the 
tests included in this table are:

•	 The additive Χ2 version of the CA (CA-A) test, which was the best method 
for both additive and multiplicative gene models but was not particularly 
effective when applied to recessive MOI data

•	 The Bonferroni test (BON), which combines the Χ2 version of the recessive, 
additive, and dominant MOI specific tests (CA-R, CA-A, CA-D) and 
improves on the test performance of the three individual tests when the MOI 
gene model is not known

•	 The MAX test due to Li et al.,2 which combines the normal version of the 
CA-R, CA-A, and CA-D tests to improve on the test performance of the 
three individual tests if the MOI gene model is not known

•	 The dominant Χ2 version of the CA test (CA-D), which was the best method 
for the dominant gene models

•	 The recessive Χ2 version of the CA test (CA-R), which was the best method 
for recessive gene models but the least effective when applied to nonrecessive 
MOI data

•	 The 2df genotype test (2df-g), which is never an optimal method for any of 
the scenarios we examined; in every scenario, a more powerful alternative 
can be identified (see Table 4.3)
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Table 4.3. Power results, by statistical method and number of cases: additive mode of 
inheritance data

N CA-A BON MAX CA-D CA-R 2df-G

100 2.26* 1.73 1.91** 0.62 0.46 0.00

250 13.47* 12.22 12.25** 9.46 5.56 2.41

500 30.00* 28.12** 28.06 24.19 12.63 10.48

1,000 49.91* 48.31** 48.26 45.72 25.11 25.21

2,000 68.80* 67.40** 67.31 64.72 41.08 46.35

4,000 83.00* 81.86 81.94** 80.25 58.24 65.96

8,000 94.30* 93.69 93.72** 92.58 72.36 80.52

9,500 96.07* 95.63** 95.46 95.01 75.66 83.90

2df-G = 2-degrees-of-freedom genotype association test; BON = Bonferroni test; CA-A = autosomal additive 
Cochran-Armitage test; CA-D = autosomal dominant Cochran-Armitage test; CA-R = autosomal recessive 
Cochran-Armitage test; MAX = MAX combined test.

* Best power score	 ** Second best power score

Our results indicate that the best method in terms of statistical power is 
CA-A, but that little is lost if the BON or MAX method is used instead. Also 
there is little difference between the BON and MAX methods. Similarly, the 
results in Tables 4.4, 4.5, and 4.6 indicate that the best method in terms of 
statistical power for identifying dominant MOI loci is CA-D, and CA-R for 
recessive MOI loci. For multiplicative MOI loci, the best method is CA-A. 
In all four scenarios, little is lost if the MAX or BON method is used as a 
replacement. 

Table 4.4. Power results, by statistical method: dominant mode of inheritance gene data

N CA-A BON MAX CA-D CA-R 2df-G

100 0.05 0.07 0.40** 0.13* 0.00 0.00

250 2.09 2.94** 2.88 3.79* 0.00 0.00

500 12.89 15.01 15.02** 16.52* 0.01 1.21

1,000 32.75 34.75 34.84** 36.94* 0.19 12.79

2,000 54.80 56.33 56.55** 57.97* 2.42 32.75

4,000 71.01 73.48** 73.46 74.90* 11.24 54.50

8,000 85.15 86.95 87.18** 88.09* 26.71 71.98

9,500 88.27 90.15** 90.10 91.23* 31.55 76.39

2df-G = 2-degrees-of-freedom genotype association test; BON = Bonferroni test; CA-A = autosomal additive 
Cochran-Armitage test; CA-D = autosomal dominant Cochran-Armitage test; CA-R = autosomal recessive 
Cochran-Armitage test; MAX = MAX combined test.

* Best power score 	 ** Second best power score
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Table 4.5. Power results, by statistical method: recessive mode of inheritance gene data 

N CA-A BON MAX CA-D CA-R 2df-G

100 0.00 0.00 0.38** 0.00 0.00* 0.00

250 0.02 0.11 0.68** 0.00 0.19* 0.00

500 0.42 1.70 1.77** 0.00 2.11* 0.01

1,000 2.71 7.88 7.89** 0.01 8.95* 1.04

2,000 9.97 19.91 19.99** 0.13 21.40* 6.50

4,000 21.84 34.29 34.39** 1.50 35.95* 18.45

8,000 34.94 49.35 49.67** 7.17 51.01* 33.14

9,500 38.04 53.07 53.11** 9.32 54.62* 36.73

2df-G = 2-degrees-of-freedom genotype association test; BON = Bonferroni test; CA-A = autosomal additive 
Cochran-Armitage test; CA-D = autosomal dominant Cochran-Armitage test; CA-R = autosomal recessive 
Cochran-Armitage test; MAX = MAX combined test.

* Best power score 	 ** Second best power score

Table 4.6. Power results, by statistical method: multiplicative mode of inheritance 
gene data

N CA-A BON MAX CA-D CA-R 2df-G

100 4.00* 3.35 3.67** 0.98 1.65 0.01

250 17.16* 15.60 15.71** 11.07 8.82 4.74

500 35.65* 33.81** 33.77 27.25 19.4 12.50

1,000 53.84* 52.08** 51.78 48.11 33.65 30.72

2,000 71.59* 70.31** 70.27 66.44 49.68 50.69

4,000 85.12* 84.03** 83.96 81.40 64.32 67.66

8,000 95.10* 94.58** 94.58** 93.36 77.30 82.84

9,500 96.36* 95.99 96.08** 95.30 80.27 86.42

2df-G = 2-degrees-of-freedom genotype association test; BON = Bonferroni test; CA-A = autosomal additive 
Cochran-Armitage test; CA-D = autosomal dominant Cochran-Armitage test; CA-R = autosomal recessive 
Cochran-Armitage test; MAX = MAX combined test.

* Best power score 	 ** Second best power score

However, regardless of MOI, power is lost if we use the CA-A method. Many 
researchers use an additive model as the initial GWAS pass. What if the locus in 
question is recessive or dominant? Table 4.7 indicates that although the CA-A 
method is the optimal choice (by as much as 2 percent), if the MOI of the locus 
is additive or multiplicative, there is a risk of more than 2 percent power loss 
if the locus MOI is dominant and as much as 15 percent loss if the MOI of the 
locus is recessive.
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Table 4.7. Power results, by CA-A and MAX methods, for different MOI gene models

N CA-A (D) MAX 
Loss using 

CA-A CA-A  (R) MAX  
Loss using 

CA-A 

100 0.05 0.40 .35 0.00 0.38 .38

250 1.45 2.88 1.43 0.02 0.68 .66

500 12.89 15.02 2.13 0.42 1.77 1.35

1,000 32.75 34.84 2.09 2.71 7.89 5.18

2,000 54.80 56.55 1.75 9.97 19.99 10.02

4,000 71.01 73.46 2.45 21.84 34.39 13.55

8,000 85.15 87.18 2.03 34.94 49.67 14.73

9,500 88.27 90.10 1.83 38.04 53.11 15.07

CA-A (D) = Cochran-Armitage method, additive model version applied to dominant mode of inheritance 
(MOI) single nucleotide polymorphism (SNP) data; CA-A (R) = Cochran-Armitage method, additive model 
version applied to recessive MOI SNP data; MAX = MAX combined test.

If we knew the distribution of the MOI property, we could assess the overall 
risk of using an additive method such as CA-A for GWAS. However, without 
a reliable estimate, researchers should exercise caution and apply a procedure 
that limits the risk of incorrectly assessing the MOI inherent to the locus-
inducing diagnosis. 

Discussion
In the literature, many statistical methods that have been used to perform 
GWAS assume a MOI specific hypothesis. Our results confirm the work of 
many others.9 In the context of a single-marker scenario, the best method 
for predicting associations in recessive SNPs is the CA-R method; the best 
method for dominant MOI SNPs is the CA-D method; and the best method 
for additive and multiplicative SNPs is the CA-A method. 

We also show that the 2df genotype method used in many studies—for 
example, the method used by Schymick et al.6—is never optimal because there 
are always other methods that provide greater statistical power. This statement 
holds regardless of whether the MOI is known a priori or not. We also show 
that in the context of a general method to use in the initial GWAS pass, 
researchers may encounter adverse consequences if, for example, the MOI of 
the operating locus is not consistent with the assumption employed by the 
statistical method used. Therefore, 2df appears to be inappropriate to use for 
GWAS under any circumstances.
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Consequently, we examined the possibility of employing an alternative 
procedure that incorporates the three core tests defined above into two 
multitest procedures: BON, a Bonferroni corrected procedure, and the MAX 
test procedure developed by Li et al.2 Both methods are a composite of three 
separate tests (additive, dominant, and recessive models). These procedures 
are opposites in that they assume different underlying distributions of the test 
statistics. The MAX method assumes that the three tests have dependencies 
that can be accounted for, whereas the Bonferroni method assumes that the 
three tests are mutually independent. We note that despite these differences, 
the two methods produce very similar power profiles.

We generated our results using 1,000 replicates per parameter combination. 
Our standard error estimate of power varies from .262 to .315. Consequently, 
our 95 percent confidence interval around the mean will be approximately 
plus or minus .019. Although we recognize that a larger number of replicates 
will improve power precision, we believe that our conclusion would remain 
as stated.  

In summary, our results lead us to recommend that researchers use a 
statistical methodology that combines the results of individual MOI-based 
core tests as a statistical method for conducting GWAS rather than a 2df test. 
Combining individual methods and comparing the individual and combined 
results may help identify the MOI character of the gene. The actual process of 
combining the core tests into a single operational test can be done in a number 
of ways, all of which produce very similar statistical power profiles. 
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The Influence of Errors Inherent in 
Genome-Wide Association Studies (GWAS) 

in Relation to Single-Gene Models 
Philip Chester Cooley, Robert F. Clark, and Grier Page

CHAPTER 5

Overview  
The influence of genotype and diagnosis errors present in genome-wide 
association studies (GWAS) was assessed by analyzing a synthetic gene data 
set incorporating factors known to influence association measurement. Monte 
Carlo methods were used to generate the synthetic gene data that incorporated 
factors that influenced including gene inheritance, relative risk levels, disease 
penetrance, genotype distribution, sample size, as well as the two error factors 
that are the focus of this study. The resulting data set provides a truth set for 
assessing statistical method performance and association sensitivity. 

Our results quantify the relationship between genotype and diagnosis 
error measures and statistical power loss. The connection between these 
relationships are understood, but we document their extent. Our results also 
demonstrate that for low-risk nonrecessive loci, sample sizes in the range of 
1,000 to 2,000 cases will achieve 80 percent power thresholds for type-I error 
levels of 10-8, even with realistic genotype and phenotype error assumptions. 
Nevertheless, increasing sample size is a viable method of compensating for 
power loss caused by genotype and diagnosis errors. Our estimates indicate 
that sample sizes should be increased by 20 to 40 percent, depending on the 
gene inheritance model assumed. 

Chapter 5 is based on a study that was published in the Journal of Proteomics & Bioinformatics.1 
Copyright: © 2011 Cooley P, et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited. Chapter 3 of 
the current publication describes the generation of the synthetic gene database. This section was 
removed from Chapter 5. The analysis of the gene data has not changed. 
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Introduction
More than 2,306 human GWAS have examined more than 1,000 diseases 
and traits and found more than 1,200 single nucleotide polymorphism (SNP) 
associations.2 With improved genotyping technologies and the growing 
number of available markers, case-control GWAS have become a key tool 
for investigating complex diseases. Because GWAS have become a standard 
primary investigative tool, researchers need to be aware of how errors 
influence their studies and how to overcome or compensate for them. The 
initial step in a GWAS is to apply univariate statistical tests for each SNP in 
the data set. Applying the tests is statistically straightforward and uses several 
standard approaches (e.g., χ2 tests, regression methods). 

Studies on the consequences of genotype error have led to a modest number 
of investigations in the statistical genetics literature. Gordon and colleagues 
investigated the effects of three published models of genotyping errors on the 
2df genotype χ2 test.3 In another study, Gordon and colleagues described a 
statistical power calculator (PAWE-3D) that produces power and sample size 
calculations that can support study designs for GWAS and compute power 
and/or sample size requirements for a specified significance level.4 Zheng 
and Tian, as well as Edwards and colleagues contributed to the development 
of PAWE.5,6 Gordon and colleagues further analyzed the influence of both 
random phenotype and genotype misclassification errors on statistical power 
contrasting the Cochran-Armitage additive test (CA-A) with the 2-degrees-of-
freedom (2df) genotype test and concluded that the CA-A is more powerful.7

Ahn and colleagues addressed the effect of different types of genotyping 
errors on statistical power in GWAS.8 Although their prior work focused on 
non-differential genotype error rates, this study considered errors in each 
of the three bi-allelic genotypes differentially. The methods were based on 
a Taylor-series expansion of a noncentrality parameter of the asymptotic 
distribution of the trend test. In a follow-up study, Ahn and colleagues 
extended their work by developing a closed form analytic procedure for both 
the 2df genotype and the CA-A tests.9 They reported that misclassifying the 
heterozygote genotype is particularly detrimental when using the Cochran-
Armitage recessive trend test (CA-R) on data from a recessive mode of 
inheritance (MOI) model.

Although the accuracy of the genotyping process has improved, data 
errors still occur. Hao and colleagues reported an overall 0.5 percent error 
rate imputation process, but they also reported a 2 percent error rate in 
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underrepresented subpopulations.10 Miclaus and colleagues examined 
genotype calling algorithms on HapMap samples and found that different 
algorithms can produce genotyping errors that influence downstream 
genotype calls.11 They reported a 2 to 3 percent error estimate attributable to 
the genotype-calling algorithm. Laurie and colleagues estimated genotyping 
error rates from duplicate sample discordance rates from addiction and lung 
cancer projects genotyped on Illumina Human1Mv1_c and HumanHap550-
2v3_b arrays by the Center for Inherited Disease Research.12 The investigators 
calculated genotyping error rates on the order of 10-4, which corresponds to 
mean completion call rates of 99.7 and 99.8 percent, respectively, for the two 
projects. If study samples are not duplicated, as in the type-2 diabetes project, 
but with multiple replicates of the HapMap control sample, discordant rates of 
1-4 × 10-3 lead to completion rates of 99.6 to 99.7 percent.

Phenotypic misclassification errors are also a source of bias and can reduce 
the power to detect a statistical association between a phenotype and a specific 
allele.13,14 Edwards and colleagues presented a quantification of the effect 
of phenotypic error on power and sample size calculations for case-control 
genetic association studies between a marker locus and a disease phenotype.6 
Their process is specific to the standard case-control method used commonly 
in epidemiology, from which they develop a process that quantifies power 
loss and minimum sample size requirements in the presence of phenotypic 
errors. Barendse described the effect of investigator measurement-error 
on the phenotypes—the error was significant when looking at quantitative 
traits.14 When the traits were coded as affected or unaffected, the error effect 
sizably decreased (from 14.5 to 5.3 percent). For many diseases, the interrater 
agreement for disease diagnosis can be quite low. For example, the sensitivity 
and specificity of predeath Alzheimer’s diagnosis with most post mortem 
autopsies can be as low as 0.83 and 0.84 respectively.15 

Gene traits that influence prediction accuracy have been also reported 
in other studies. For example, Sasieni’s work as well as that of Freidlin and 
colleagues has demonstrated that the phenotype MOI model was a major 
influence on association prediction accuracy.16,17 

To provide additional insight into the influence of genotype and diagnosis 
errors affecting the accuracy of the phenotype measure in a GWAS, we ran 
simulations with synthetically generated data. We focused on assessing 
the impact on statistical power caused by the influence of these two often-
overlooked errors. Our simulations demonstrated that genotype (even at low 
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error rates) and phenotype (diagnosis) errors produce substantial power losses 
for all MOIs, with significant power losses for recessive MOIs. Because GWAS 
involving recessive loci have additional power requirements relative to other 
MOI types, researchers need to address these requirements in developing 
appropriate sample sizes for their studies.

Methods
Our approach is based entirely on a simulation framework. Chapter 3 
describes in detail the data generation method that was used to produce our 
synthetic data and how we used these data to assess the influence of errors on 
statistical power loss. 

We developed our assessments by analyzing a data set of synthetic gene data 
that incorporates factors that we know influence association measurements in 
GWAS. These include phenotypic errors (i.e., those caused by improper disease 
diagnosis) and genotype errors (e.g., those caused by incorrect genotype 
calls). We employed Monte Carlo methods to generate simulated gene data 
that we analyzed to assess the influence of the individual factors on statistical 
power in the context of GWAS. There are two advantages to using simulated 
data. First, the association-affecting factors are isolated and can be linked to 
the affecting locus. Second, we can choose any specific statistical method to 
perform the association assessment. The simulated data set provides a truth 
set for assessing the role of statistical methods on association sensitivity and 
highlights the particular role of errors in disease diagnosis and incorrect 
genotype assignments.

Results

Data Set Summary
Using the methods described in Chapter 3, we generated a synthetic gene 
simulated data set with the following characteristics:

•	 The proportion of cases (controls) that are major homozygotes = 50.3 (63.0) 
percent.

•	 The proportion of cases (controls) that are heterozygotes = 39.2 (31.3) percent.

•	 The proportion of cases (controls) that are minor homozygotes = 10.5 (5.7) 
percent.

•	 With MOI distribution:
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–	 recessive = 25 percent,
–	 dominant = 25 percent,
–	 additive = 25 percent, and
–	 multiplicative = 25 percent.

Although this distribution of MOI traits does not represent a “true” 
distribution, we currently know of no accurate way to obtain such a 
distribution. Consequently, although we gave each of the four MOI traits equal 
representation in the simulated data, we confined our examinations to within-
MOI assessments.

Factor Assessment
To check the influence of the factors (relative risk, penetrance, MOI, genotype 
error rates, phenotype error rates) built into the data for each experiment, we 
fitted the three distinct models to the four MOI subsets of the data: that is, 
if the index i represents the ith (of 12) experiments, where the model can be 
described as:

	 -log10(pi) = �β0 + β1×ni + β2×dpi + β3×ErrPi + β4×ErrGi +  
β5× Φi + β6×Gi� (5.1)

With a single exception, the signs of the estimated phenotype error term 
(β3) and genotype error term (β4) coefficients were consistent and the 
magnitudes of the estimated coefficients similar. All estimates were significant 
at the 10-7 level, suggesting that the factors incorporated in the simulated data 
are all significant. 

Error Analyses 
To simulate the association estimation process in a GWAS experiment, we 
applied three variations of the Cochran-Armitage (CA) trend test to each of 
the 1,000 replicates of the 3,456 possible data subsets. Each of the variations of 
the CA tests used a distinct genotype score vector: [0,0,1] for recessive, [0,0.5,1] 
for additive and [0,1,1] for dominant. We applied each of the tests to all of the 
replicates in each of the data subsets. This process allowed us to show that the 
optimal strategy for maximizing statistical power is MOI specific. This strategy 
posits that the recessive version (CA-R) be used to estimate associations 
involving recessive loci data, the dominant version (CA-D) for the dominant 
loci data, and the additive version (CA-A) for both additive and multiplicative 
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loci data. This strategy is cited by others for single-gene models.18 Cooley and 
colleagues provided a similar assessment and identified a multiple test strategy 
that combines the three tests into an overall score that has merit if the MOI of 
the causative loci is not known.19 For the assessment in this study, we assumed 
that the MOI is known and selected the best statistical method to measure the 
association. Consequently, our results tended to be optimistic.

Error rates of 0, 2, and 5 percent are incorporated into the simulated data 
for the phenotype and 0, .5, and 1 percent for the genotype. Our approach 
combines the three risk levels (mean risk = 1.3), three penetrance levels 
(mean penetrance = 0.4), and groups the data into a “with error” (mean 
phenotype error = 3.5 percent, and mean genotype error 0.75 percent) and 
“without error” strata. Also, we also stratified the analysis by MOI. Figures 
5.1a through 5.4b identify the four MOI-specific results. Each figure includes 
a 0.75 percent genotype error curve, a 3.5 percent phenotype error curve, a 
curve that includes both error sources, and a curve generated without either 
source of error. Figure 5.1 presents the recessive loci analysis. The impact of a 
0.75 percent average genotype error rate and a 3.5 percent average diagnosis 
error rate with respect to power loss for recessive loci is nontrivial. However 
each profile exhibits distinct behavior. The effect of the phenotype error 
increases with N and peaks at N = 4,000 cases, whereas the genotype error 
effect is constant across all N. Also observed at the peak is a genotype impact 
of 6.04 percent power loss per 1.0 percent genotype error and a power loss 
of 3.03 percent power loss per 1.0 percent phenotype error. Note that with 
α < 10-8 as the significance threshold, an 80 percent power target is far from 
being realized even with N = 5,000 cases and controls.

Figures 5.2, 5.3, and 5.4 present the error effects of the dominant, additive, 
and multiplicative loci respectively. All three figures indicate that power 
loss is nontrivial for the MOI categories they represent but that the effect is 
substantially less than recessive modes. 

The pattern of the power profile for dominant loci is in sharp contrast to 
the recessive loci profile. The diagnosis error pattern is constant across N for 
dominant loci—the recessive loci show an increasing pattern. The genotype 
patterns are also different. As N increases, the power differences decline for the 
dominant loci, whereas the patterns are constant for recessive loci. 

The additive and the multiplicative loci show similar error profiles. The 
impact of a 3.5 percent diagnosis error and the impact of a 0.75 percent 
genotype error have a similar quantitative impact. Both have a declining power 
loss as N increases. 
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Figure 5.1a. The impact of genotype and diagnosis errors on power: 
recessive loci
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Figure 5.1b. Power loss: total, genotype, and diagnosis: recessive loci
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Figure 5.2a. The impact of genotype and diagnosis errors on power: 
dominant loci
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Figure 5.2b. Power loss: total, genotype, and diagnosis: dominant loci
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Figure 5.3a. The impact of genotype and diagnosis errors on power: 
additive loci
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Figure 5.3b. Power loss: total, genotype, and diagnosis: additive loci
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Figure 5.4a. The impact of genotype and diagnosis errors on power: 
multiplicative loci
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Figure 5.4b. Power loss: total, genotype, and diagnosis: multiplicative loci
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In summary, the four figures indicate that the genotype error versus the 
diagnosis errors effects vary by MOI. For the recessive MOI, a 3.5 percent 
diagnosis error has a larger impact than a 0.75 percent genotype error. This 
result is reversed in the dominant MOI scenarios (Figure 2). The additive and 
the multiplicative MOI scenarios represented in Figures 3 and 4 indicate that 
a 0.75 percent genotype error is comparable in effect to a 3.5 percent diagnosis 
error with respect to power loss. 

These results are summarized in Table 5.1, which displays the power loss 
for the smallest sample size (N = 500 cases) and the largest sample size (N = 
5,000 cases). For example, row R (recessive) of Table 5.1 illustrates that error 
loss due to genotype errors at N = 500 and N = 5,000 is flat, but that error loss 
due to diagnosis error increases dramatically from N = 500 to N = 5,000 and 
dominates the total error profile. The power loss pattern changes for the other 
three MOIs where error loss patterns for both genotype and diagnosis sources 
decline from N = 500 to N = 5,000.  

Table 5.1. Maximum power loss due to genotype or diagnosis error

Genotype Errors Diagnosis Errors Both Errors

MOI N = 500 N = 5,000 N = 500 N = 5,000 N = 500 N = 5,000

R 3.86 3.96 3.11 9.98 5.23 13.45

D 5.23 3.43 1.21 1.06 6.46 3.26

A 4.57 1.27 1.97 1.36 6.51 2.69

M 4.09 0.98 1.81 1.40 5.58 2.35

A = additive; D = dominant; MOI = mode of inheritance; M = multiplicative; R = recessive.

We also examined the simultaneous influence of relative risk and error 
effects on statistical power. As above, we analyzed our data set using all three 
penetrance levels (mean penetrance = 0.4), but we also stratified the curves 
by the low- (1.15), medium- (1.3) and high-risk (1.45) categories. Figure 5.5 
displays the combined (genotype plus diagnosis) error effects for the three risk 
categories using the CA-A method applied to the additive MOI data. Similar 
curves can be generated for the dominant and multiplicative scenarios. This 
figure suggests that, for additive inheritance scenarios, researchers can predict 
associations in the context of GWAS with a type-I error threshold of α < 10-8 
and still achieve a power level greater than 80 percent. This statement applies 
to low-risk loci even when diagnosis errors are 3.5 percent and genotype errors 
are 0.75 percent. 
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Figure 5.5. Genotype error: recessive mode of inheritance, by risk level 
and N
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Figure 5.6. Phenotype error: recessive mode of inheritance, by risk level 
and N
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Figure 5.6 shows the same results for the recessive scenario. In this recessive 
scenario, the likelihood of achieving an 80 percent power level is low and is 
only possible for high-risk loci in the absence of genotype and diagnosis error 
with a sample size N larger than attempted by our simulation experiments. 

Summary/Discussion
We examined the influence of genotype and diagnosis errors that affect the 
accuracy of association predictions in a GWAS and focused on assessing the 
effect on statistical power loss caused by the influence of these two sources 
of error. Our findings are MOI specific and indicate that both sources of 
error can adversely affect power levels. This outcome is more pronounced 
for recessive MOI and low-risk loci, which is common knowledge. What our 
study shows is that the error magnitude depends on a variety of factors in 
addition to MOI, especially relative risk and sample size; our study quantifies 
this magnitude and indicates the significance of this impact. This loss can be 
compensated for by increasing sample sizes. Gordon and colleagues reported 
that a 1 percent increase in genotype error rates requires an increase in sample 
size of 2 to 8 percent, which they also noted depends on the MOI scenario.3 
Our estimates are much higher than those reported by Gordon and colleagues 
and are based on achieving a power threshold of 80 percent. Using the additive 
model, results at N = 1,000 (assuming no genotype errors) exceeds the 80 
percent threshold (80.6 percent). Introducing a 1 percent genotype error, 
power drops to 75 percent. An additional 405 cases are needed to compensate 
for this loss to restore an 80.6 percent power level, which is a 40.5 percent 
increase in sample size. Please note that we are not suggesting that 1 percent 
error is standard operating procedure. In fact, genotype errors are improving 
with the introduction of each new technology,and currently are likely less than 
0.5 percent. Table 5.2 presents these results for all MOIs for both genotype and 
diagnosis errors. 

Table 5.2. Percent sample size increase to restore power caused by a 1 percent 
genotype or diagnosis error

MOI Genotype percentage Diagnosis percentage 

R 57.2 35.9

D 40.1 19.7

A 40.5 20.9

M 40.2 18.9

A = additive; D = dominant; MOI = mode of inheritance; M = multiplicative; R = recessive.
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In summary, our results quantify the relationship between genotype and 
diagnosis error measures and statistical power loss. These relationships are 
understood, but we document their extent. Our results also assume that 
we know the MOI of the locus being analyzed; therefore, our results will 
understate the true power loss and the compensating sample size increases. 
Our results also demonstrate that for low-risk nonrecessive loci, sample sizes 
in the range of 1,000–2,000 cases will achieve 80 percent power thresholds for 
type–I error levels of 10-8  even with realistic genotype and phenotype error 
assumptions. 

However, the recessive loci model remains problematic. Desirable power 
thresholds for moderate risk levels can only be realized with sample sizes in the 
tens of thousands, further complicated by accounting for power loss as a result 
of genotype and diagnosis errors. 
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CHAPTER 6

Overview  	
In general, genome-wide association studies (GWAS) apply univariate 
statistical tests to each gene marker or single nucleotide polymorphism (SNP) 
as an initial step. This SNP-based test is statistically straightforward, and the 
core tests for assessing the associations are standard methods (e.g., χ2 tests, 
regression) that have been studied outside of the GWAS context. Kuo and 
Feingold describe the most commonly used statistical methods that are applied 
to GWAS.2 All tests cited in the chapter are single-locus tests. If the genetic 
inheritance properties are not known, we recommend combining two or more 
statistical tests.3 In many cases, the SNPs associated with a disease are not 
located in a region of DNA that codes for a protein. Instead, they are located 
in the large noncoding regions between genes or in intron sequences, which 
are edited out of mRNAs prior to translation to proteins. These regions are 
presumably sequences of DNA that modify gene expression, but usually their 
functions are unknown.4

The popularity of the GWAS approach belies its simplicity and obscures the 
important issue of whether a single-gene model can illuminate the biosynthetic 
pathways of a phenotype. In the path leading from gene to trait, factors such 
as epigenetics, alternate splicing, gene expression levels, and protein-folding 

Chapter 6 is based on a study that was published in the Journal of Proteomics & Bioinformatics.1 
Copyright: © 2012 Cooley P, et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited. Minor text 
edits were made to the this chapter. The analysis of the gene data has not changed.



66 	 Chapter 6

processes create a great deal of complexity. Qualitative trait analysis, which 
is the GWAS model most commonly reported in the literature, ignores these 
factors. As of mid-2015, more than 2,300 human GWAS have examined 
more than 210 diseases and traits and have reported more than 1,200 SNP 
associations.5 Most of these GWAS employed a single-gene model that 
assumes that each locus acts independently of the others. 

Many researchers believe that complex diseases involve multiple genes and 
their interactions.6,7 Although GWAS have had some success in identifying 
genetic variants underlying complex diseases, most existing studies are based 
on limited single-locus approaches, which detect SNPs based on their marginal 
associations with a qualitative disease diagnosis.

Classical statistical tests derived from case-control experiments involving 
two loci that use a Pearson χ2 test or logistic regression are commonly used 
as single-locus tests for GWAS and can be used in searching for pairwise 
interactions. Marchini and colleagues showed that explicitly modeling 
interactions between loci for GWAS with hundreds of thousands of markers 
is computationally feasible.8 They also showed that simple methods that 
explicitly consider interactions can actually achieve reasonably high power 
with realistic sample sizes under different interaction models with some 
marginal effects, even after adjusting for multiple testing using the Bonferroni 
correction. However, the genotype-phenotype scenarios addressed in a study 
by Marchini et al. had substantially larger effects than those that we examine 
here.8 Specifically, we focus on low-effect loci—those with low relative risk of 
association with disease diagnosis—because the evidence suggests they are 
common.9 We also focus on theoretical examples of epistasis that are affected 
by the mode of inheritance without assuming an additive inheritance model. 

An overarching goal of this study was to review the evidence of whether 
statistical methods based on single-gene models can effectively identify 
genotype-phenotype associations for multigene processes. Detecting such 
associations is particularly difficult for genetic variants with modest impacts 
on risk. Consequently, our experiments specifically investigated scenarios 
involving low-risk genetic variants and assessed whether multigene scenarios 
could be a source of the “missing heritability” observed using single-gene 
models.10 We also examined the impact of two recent studies that collaborated 
in the development of novel tests for measuring interaction between two 
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linked (in epistasis) or unlinked loci.11,12 These studies purport to have higher 
powers to detect interaction than classical logistic regression models. 

Our investigations demonstrate that for low-effect loci, single-gene models 
of association fail to identify many associations because the interacting locus 
masks the effect on the index locus. For the scenarios we tested, our results 
also support assessments by Wu and colleagues and Ueki and colleagues that 
analytical methods that assume statistical interactions between loci are more 
powerful than single-loci models. 

In this chapter, we will refer to markers as “loci,” but more broadly, they 
could also be viewed as genes, SNPs, or haplotypes. 

Epistasis Analysis 
One way to extend the single-gene model to accommodate multiple genes 
involves studying gene pairs and their epistatic relationships. Epistasis analysis 
is the genetic methodology used to identify which genes act in a particular 
cellular process or pathway and to establish an order-of-function map that 
reflects the sequence in which those genes act. The analysis typically involves 
determining for a pair of genes whether the phenotype of a double mutant 
resembles that of a single mutant or whether it is a novel phenotype. Knowing 
what type of pathway is being investigated can help establish the type of 
relationship between the two genes. 

Two types of pathways can be defined: substrate-dependent and switch-
regulatory. Substrate-dependent pathways consist of a specific series of positive 
reactions, each of which involves some gene product (e.g., an enzyme) acting 
on a substrate produced in the previous step in the pathway and ultimately 
producing some final outcome. Switch-regulatory pathways consist of genes 
encoding negative or positive regulatory factors that alternate between “on” 
and “off ” states depending upon upstream signaling events, thereby affecting 
some downstream response. Because substrate-dependent pathways comprise 
only positive factors whereas switch-regulatory pathways can comprise both 
positive and negative factors, interpreting results from epistatic studies is 
typically less complex for substrate-dependent pathways. Therefore, for the 
sake of simplicity, this analysis focuses on substrate-dependent pathways.

A number of studies argue that interacting loci may be the norm and not 
the exception. For example, Templeton and colleagues report that experience 
has revealed that most complex traits depend on more than one locus.13 Their 
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study focuses on how often interactions among the loci play a significant role 
in the mapping from genotype to phenotype, given that the phenotype is 
influenced by two or more loci. They discuss a number of candidate scenarios, 
including coronary artery disease, in which the ApoE gene has been shown 
to affect males and females differently. Even the reported Mendelian trait 
sickle-cell anemia is commonly presented as a single nucleotide trait. A study 
by Gilbert-Diamond and colleagues indicates that gene-gene interactions 
(epistasis) are a significant complicating factor in the search for disease 
susceptibility genes.14 

Objective
This chapter investigates epistatic interactions in a GWAS context using a 
qualitative association model. The purpose of this exercise is to determine 
the statistical methods and models that reliably predict associations between 
a qualitative phenotype (specifically, a disease diagnosis, coded as “case,” 
for a positive diagnosis, or “control,” for a negative diagnosis) and a pair of 
interacting genes. As with our other work, we use the concept of relative risk, 
the ratio of the probability of a positive diagnosis given a specific genotype and 
epistatic model (EM) divided by the probability with no risk present (i.e., P). 
The value of P is specified exogenously.

Methods
We employed a Monte Carlo–based simulation method to generate synthetic 
data corresponding to a variety of possible epistatic models for substrate-
dependent pathways. The method takes into account factors known to 
influence association measurements in GWAS, including the relative risk 
of association, disease prevalence in nonrisk populations, inheritance 
properties of the simulated loci, and most important, the epistatic relationship 
of the simulated loci. We then analyzed the simulated gene data to assess 
the influence of these individual factors on statistical power in the context 
of GWAS. There were two advantages to using simulated data. First, the 
association-affecting factors were isolated and could be linked to the affecting 
locus. Second, we could choose any specific statistical method to perform the 
association assessment. 
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Epistatic Models of Inheritance
Table 6.1 defines four possible EMs for substrate-dependent pathways, as 
described in the literature.15 Let gene1 and gene2 be distinct genes with varying 
genotypes that affect the production of a common gene product, P, ultimately 
influencing a phenotype (diagnosis of disease). Mutation of gene1 results in 
a level of expression X of P and a relative risk Φa of exhibiting the disease 
phenotype. Similarly, mutation of gene2 results in a level of expression Y of 
P and a relative risk Φb of exhibiting the disease phenotype. The phenotype 
of the gene1gene2 double mutant varies according to the EM. If gene1 acts 
upstream of gene2 in the pathway leading to P (EM 1), the double mutant 
exhibits the phenotype of the gene1 single mutant (gene1 is epistatic to gene2). 
Conversely, if gene2 acts upstream of gene1 in the pathway leading to P (EM 2), 
the double mutant exhibits the phenotype of the gene2 single mutant (gene2 
is epistatic to gene1). If gene1 and gene2 function in parallel pathways leading 
to P (EM 3), the double mutant exhibits a novel, more extreme level of P 
expression, Z, with associated relative risk Φab. Finally, if gene1 and gene2 act at 
the same step in the pathway leading to P (EM 4), the observed phenotype can 
be either one of the phenotypes of the single mutants or a novel phenotype.

Table 6.1. Epistatic models for substrate-dependent pathways

Phenotype of 
gene1 single 

mutation

Phenotype of 
gene2 single 

mutation

Phenotype of 
gene1gene2 

double mutation

Model 1
gene1  
gene2 

→ →
X (Φa) Y (Φb) X (Φa)

Model 2
gene2  
gene1 

→ →
X (Φa) Y (Φb) Y (Φb)

Model 3

gene1 
→ 

gene2 
→

X (Φa) Y (Φb) Z (Φab)

Model 4
gene1,  
gene2 

→
X (Φa) Y (Φb)

X (Φa),  
Y (Φb), or  

Z (Φab)



70 	 Chapter 6

To simulate the EM scenarios in Table 6.1 in terms of the contributing 
locus genotypes, we referred to classical genetics material found in Klug and 
Cummings.16 In each of the models, there are either two or three possible 
phenotypes. In our scenarios, there are only two phenotypes (a positive or 
negative diagnosis), but the risk of a diagnosis depends on the specific pairings 
of the genotypes. Table 6.2 outlines the expected risks associated with each 
possible combination of the wild-type (A and B) and mutant (a and b) alleles of 
gene1 and gene2 for EM1, taking into account the mode of inheritance acting at 
each locus. Because EM2 complements EM1, and EM3 and EM4 are subsumed 
by EM1, we limited our analysis to EM1. We used Table 6.2 to generate 
synthetic data sets representing the various scenarios and then examined our 
ability to link (associate) the phenotypes with the contributing genotypes. 

Table 6.2. Epistatic model 1 depicted in terms of risk associated with various 
genotype combinations

MOI

gene1 D D R R

gene2 D R D R

gene1 gene2 Risk (¥) Risk (¥) Risk (¥) Risk (¥)

AA BB 1 1 1 1

AA Bb Φb 1 Φb 1

AA bB Φb 1 Φb 1

AA bb Φb Φb Φb Φb

Aa BB Φa Φa 1 1

Aa Bb Φa Φa Φb 1

Aa bB Φa Φa Φb 1

Aa bb Φa Φa Φb Φb

aA BB Φa Φa 1 1

aA Bb Φa Φa Φb 1

aA bB Φa Φa Φb 1

aA bb Φa Φa Φb Φb

aa BB Φa Φa Φa Φa

aa Bb Φa Φa Φa Φa

aa bB Φa Φa Φa Φa

aa bb Φa Φa Φa Φa

MOI = mode of inheritance.
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Generation of Epistatic Synthetic SNP Data
The data generation method we used applies only to autosomal genes. 
Furthermore, because our simulation process assumed epistatic behaviors 
involving two interacting loci, we expect that the findings would apply to genes 
exhibiting these types of interactions. We began generating data by considering 
disease penetrance. We define P as the prevalence of a specific trait due to 
nongenetic factors. We designate a as the risk allele and A as the allele without 
risk for gene1. Similarly, we designate b as the risk allele and B as the allele 
without risk for gene2. Following the procedure of Iles,17 we can then define 
the risk of disease as the ratio of the probability of a case given a and/or b 
divided by the probability of a case given no risk allele, which is P: 

	 Ψ = Pr(case /a, b) / P .	 (6.1) 

Generating the synthetic data set was straightforward, using the 
relationships between P and risk for the different epistatic categories. Initially, 
we assigned values to the following variables:

•	 n = the target number of cases and controls in a given experiment;

•	 P = the disease prevalence in subjects without genetic risk of a diagnosis;

•	 Φa , Φb = the relative risks (1.10, 1.15); and 

•	 G = {g1, g2, g3}, a set of genotype distributions obtained from actual SNP 
data.18

Our general strategy was to randomly select a genotype and assign a relative 
risk (Φa, Φb) based on Table 6.2. Using the prevalence (P) assumption, we then 
assigned a case or control code (1, 0). A detailed description of the process 
follows:

1.	 Using the master genotype distribution G, draw at random a genotype (g1, 
g2 or g3) for gene1.

2.	 Repeat this process for gene2; that is, draw at random a genotype (g1, g2 or 
g3) for gene2.

3.	 Using Table 6.2, select the risk value ¥ of a case for the epistatic model being 
considered.

4.	 Based on ¥ and P, define the probability of a case to be 

	 x = ¥ × P .	 (6.2) 
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5.	 Using the estimate of x from equation (6.2), assign a case (0) or control 
(1) designation at random. Note that using the 12 different EM/MOI 
combinations outlined in Table 6.2 for EMs 1–3, cases should be linked to 
both genetic loci, and this association should be identifiable via appropriate 
statistical procedures. Disease risk depends on specific and unknown 
disease mechanisms. A relative risk of 1.7 is considered strong and is 
associated with positive replication.19 However, a risk of 1.3 is considered to 
be a realistic assumption for complex diseases.20 However, many instances 
of risk < 1.1 are reported in the literature. We limited our focus to a relative 
risk range of 1.10 to 1.25 and were particularly interested in cases with low 
relative risk. Note that implicit in equation (6.2) is a definition of prevalence 
as the proportion of cases that are present where no genetic risk is assumed. 

6.	 Continue the process until n1 cases and n2 controls have been generated 
(note that in this example n1 = n2, but the procedure can be tailored to 
specific n1/n2 targets). 

Statistical Models
Using the assumptions presented in Table 6.2, we generated 1,000 replicates 
of genotypic and phenotypic data for each MOI pair for EM 1 using different 
sample sizes and risks. We then investigated the power of different statistical 
models to detect genotype-phenotype associations. We analyzed models that 
test each gene independently for association with the phenotype and models 
that test pairs of genes with and without interaction terms for association. 

Single-Gene Methods: Cochran-Armitage Trend Test. The Cochran-Armitage 
(CA) trend test is often used as a genotype-based test for case-control genetic 
association studies, as described by Purcell and colleagues.21 More generally, 
it is used in categorical data analysis to detect the presence of an association 
between a variable with two categories (e.g., a diagnosis) and a variable with k 
categories (e.g., a genotype). The CA trend test modifies the chi-square test to 
incorporate a suspected ordering in the effects of the k categories of the second 
variable. For example, one could order the number of mutated alleles as “zero,” 
“one,” and “two” and conjecture that the allele effect will not become smaller as 
the dose increases.

As described by Zheng and Gastwirth, the CA trend test has three flavors: 
dominant (CA-D), recessive (CA-R), and additive (CA-A).22 Using the 
notation in Table 6.3 below to define the 2 × 3 table of case-control counts 
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stratified by genotype, a test statistic (T2(x)) for the three variations of the CA 
trend methods can be defined as:

	 T2(x) =
n [Σ0,1,2 {xi (s ri - r si)}]2

.
[r s (Σ0,1,2 n {xi xi ni } – {Σ0,1,2 (xi ni)2 })]

	 (6.3)

The variables ri, si and ni in equation (6.3) are defined in Table 6.3. The 
variable xi represents the specific test, namely x0 = 0, x2 = 1 and x1 = .5.

Table 6.3. Terms defined in equation (6.2)

AA Aa aa Total

Case r0 r1 r2 R

Control s0 s1 s2 S

Total n0 n1 n2 N

AA = major genotype; Aa = heterozygote genotype; aa = minor genotype.

Under the null hypothesis of no association, T2(x) has an asymptomatic χ2 
distribution with 1 degree of freedom. We applied the above test to both gene1 
and gene2.

Two-Gene Models: Pearson Test. The two-gene, case-control test is derived 
from the classical case-control test of epidemiology described by Jewell.23 
As with all of the tests, this test compares subjects who have a condition (the 
“cases”) with subjects who do not have the condition but are otherwise similar 
(the “controls”). As in the CA test described previously, the Pearson χ2 test is 
used in categorical data analysis when testing for the presence of an association 
between a variable with two categories (e.g., a positive or negative diagnosis) 
and two variables with k categories (e.g., three genotypes). For this test, the 
columns are the nine combinations of genotypes and the rows are the two case-
control designations. The central idea is to compute the theoretical frequencies 
for all 18 cells from the marginal totals and then test for statistically significant 
differences between the theoretical and observed frequencies. This test also 
uses a χ2 test with (nr – 1) × (nc – 1) = 8 degrees of freedom.

Two-Gene Models: The Method of Wu et al., as Refined by Ueki et al. Wu et al. 
developed two novel statistics, refined by Ueki et al., designed to test 
interactions between linked or unlinked loci without including the influence 
of main effects.11,12 
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Results
This study investigated the effect that polygene interactions have on association 
predictions in a GWAS context. We used statistical models that appear in 
the literature to generate predictions. Some of the models were single-gene, 
inheritance-specific models; that is, they assumed that a single additive or 
recessive or dominant gene produced the diagnosis. Other models were 
inheritance agnostic and assumed that a pair of interacting genes produced the 
diagnosis. To implement this investigation, we fixed the risk of the upstream 
gene of EM1, gene1, to a low but detectable 1.10 risk level. Simultaneously, we 
varied the risk on the downstream gene, gene2, from 1.00 (no risk) to 1.20, 
a level that is twice as high as the risk of gene1. Note that a no-risk gene is 
inconsistent with the purpose of Table 6.2, which identifies the interactions 
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between two genes; however, we use this scenario to describe an endpoint in 
our assessment. 

Table 6.4 presents a power analysis for gene1 of the simulated EM1 data 
using six different statistical tests when the downstream gene has no risk of 
disease (the single-gene scenario). The first three columns correspond to 
three different versions of the single-gene CA test with different inheritance 
assumptions: additive (CA-A), dominant (CA-D), or recessive (CA-R). Each 
test was applied to both the upstream and the downstream gene. The last three 
columns of Table 6.4 present the results for the two-gene tests.

Table 6.4. Model comparisons for EM 1, N = 12,500, P=.4, Φa = 1.10, Φb = 1.00

MOIs/stat 
model

CA-A 
gene1

CA-D 
gene1

CA-R 
gene1 CC TIH linked

TIH 
unlinked

D-D 59.34 73.63 0.00 50.40 0.00 0.30

D-R 59.35 73.40 0.05 51.70 0.00 0.30

R-D 9.05 0.00 23.70 9.05 0.00 0.20

R-R 7.65 0.00 23.30 9.20 0.05 27.15

CA-A = Cochran-Armitage additive test; CA-D = Cochran-Armitage dominant test; CA-R = Cochran-
Armitage recessive test; CC = case-control association test ; MOI = mode of inheritance.

Table 6.4 indicates the following results:

•	 Single-gene tests work better (from a statistical power perspective) than two-
gene tests for single-gene scenarios (i.e., low risk of disease for gene1, no risk 
for gene2), because the additional degrees of freedom used by the two-gene 
test provide no benefit when there is no additional risk of disease from the 
second interacting gene.

•	 In general, the MOI of the upstream gene determines which test is optimal 
(optimal values are bolded in red) with the dominant version of the CA test 
being optimal for dominant genes and the recessive version of the CA test 
being optimal for recessive genes. Accordingly, the commonly used additive 
CA test (CA-A) is never optimal unless the MOI of the gene is additive.3

•	 Unexpectedly, when both genes are recessive, the unlinked refined test is 
optimal,12 although the risk of the second locus is null. 

In contrast, Table 6.5 presents the results for the case in which the risk from 
the downstream gene is twice the risk of the upstream gene. 
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Table 6.5. Model comparisons for EM 1, N = 12,500, P=.4, Φa = 1.10, Φb = 1.20

MOIs/stat 
model

CA-A 
gene1

CA-D 
gene1

CA-R 
gene1 CC

TIH 
unlinked TIH linked

D-D 0.20 0.45 0.00 80.87 96.56 93.31

D-R 25.45 38.15 0.00 68.65 63.05 53.35

R-D 0.00 0.00 0.00 99.95 61.90 49.50

R-R 1.65 0.05 8.35 81.75 27.30 27.25

CA-A = Cochran-Armitage additive test; CA-D = Cochran-Armitage dominant test; CA-R = Cochran-
Armitage recessive test; CC == case-control association test ; MOI = mode of inheritance.

Table 6.5 indicates the following results: 

•	 The Pearson two-gene test is optimal for all MOI submodels of the EM1 
model, except when both genes are dominant. In this case, the unlinked 
refined Wu et al. test is optimal.

•	 The risk conveyed by gene2 has apparently masked the contribution of 
gene1 and the power to predict an association between gene1 and diagnosis 
using single-gene models is very low, below 3 percent in all cases except 
submodel D-R, where it is below 30 percent. This finding suggests that gene1 
is unlikely to be associated with a diagnosis using single-gene models. 

Figure 6.1 provides estimates of the statistical power (y-axis) to predict 
association between gene1 and diagnosis given different risk values for gene2 
(x-axis) for the dominant submodels (D-D and D-R) for EM1. The results 
presented in Figure 6.1 correspond to the best single-locus and two-locus tests. 
Note that the risk value for gene1 is fixed (1.10). Figure 6.2 presents the same 
information for the recessive submodels (R-D and R-R). Both Figures 6.1 and 
6.2 identify the crossover risk, which is the risk value at which the single-gene 
(optimal model) and the two-gene model have the same power. 

These figures suggest that beyond a risk value of 1.05–1.12 (depending 
on the MOI), single-gene tests are no longer as effective (from a power 
perspective) as two-gene tests. Furthermore, the power of two-gene tests 
improves as the risk of the downstream gene increases, whereas the power of 
single-gene tests progressively declines as the risk from gene2 increases. 

We repeated the same analysis for EM 1 with the downstream gene (gene2) 
risk fixed at 1.1. This time we varied the risk levels of gene1 and applied the 
single-gene tests to gene2. Table 6.6 presents the results when the risk from the 
upstream gene is null. Again we acknowledge that a no-risk gene is inconsistent 
with the purpose of Table 6.2, but this scenario describes an endpoint. 



	 Conducting Genome-Wide Association Studies (GWAS): Epistasis Scenarios	 77

Figure 6.1. Dominant gene1 analysis: D-D crossover risk = 1.07, D-R 
crossover risk = 1.12
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Figure 6.2. Recessive gene1 analysis: R-D crossover risk = 1.05, R-R 
crossover risk = 1.07
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Surprisingly, the results indicate that single-gene tests do not universally 
perform better (in a power sense) than the two-gene tests, even when there is 
no risk of diagnosis from gene1. Specifically, if gene1 is recessive, the single-
gene tests do as well as or better than the 8df χ2 two-gene tests, but if gene1 is 
dominant, the two-gene unlinked refined Wu et al.12 outperforms the single-
gene tests.

Table 6.6. Model comparisons for EM 1, N = 12,500, P=.4, Φa = 1.00, Φb = 1.10

MOIs/ 
stat model

CA-A 
gene2

CA-D 
gene2

CA-R 
gene2 CC

TIH 
unlinked TIH linked

D D 1.85 3.55 0.10 32.12 37.57 26.75

D R 0.10 0.00 0.65 1.15 11.10 8.45

R D 41.20 56.15 0.00 52.60 11.65 8.05

R R 4.20 0.00 14.65 8.10 3.95 23.90

CA-A = Cochran-Armitage additive test; CA-D = Cochran-Armitage dominant test; CA-R = Cochran-
Armitage recessive test; CC = ;case-control association test; MOI = mode of inheritance.

Table 6.7 presents the results for the case in which the risk from the 
upstream gene is twice the risk of the downstream gene and demonstrates that 
the two-locus, case-control test outperforms all single-gene tests and both of 
the refined Wu et al.12 tests in this scenario. 

Table 6.7. Model comparisons for EM 1, N = 12,500, P=.4, Φa = 1.20, Φb = 1.10

MOIs/ 
stat model

CA-A 
gene2

CA-D 
gene2

CA-R 
gene2 CC

TIH 
unlinked TIH linked

D D 2.00 4.40 0.10 95.36 38.22 26.70

D R 5.00 0.00 0.55 100.0 11.15 8.05

R D 42.90 57.80 0.00 83.50 11.45 9.50

R R 3.70 0.05 14.00 83.80 3.60 25.90

CA-A = Cochran-Armitage additive test; CA-D = Cochran-Armitage dominant test; CA-R = Cochran-
Armitage recessive test; CC = = case-control association test ; MOI = mode of inheritance.

Figure 6.3 provides estimates of the power (y-axis) to detect association 
between gene2 and disease diagnosis given different risk values for gene1 [1.0 
(no risk) to 1.20 (double the risk of gene1)]. Note that the risk of gene2 is fixed 
at 1.10. Figure 6.3 presents the results for the dominant gene2 submodels (D-D 
and R-D). Figure 6.4 presents the results for the recessive gene2 submodels 
(D-R and R-R). 
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Figure 6.3. Dominant gene2 analysis: D-D crossover risk = 1.0, R-D 
crossover risk = 1.12
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Figure 6.4. Recessive gene2 analysis: R-D crossover risk = 1.05, R-R 
crossover risk = 1.07
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Figure 6.3 and 6.4 are consistent with the results from Figures 6.1 and 6.2 
and further suggest that beyond risk value = 1.05, single-gene tests are no 
longer as effective from a power perspective as two-gene tests. Furthermore, 
the power of two-gene tests improves as the risk of the downstream gene 
increases. This is exactly the opposite of the scenario for single-gene tests, 
which decline in power as the risk of the downstream gene increases.

Discussion
Our investigation of epistatic scenarios involving low-risk loci indicates that 
for a given locus, single-locus tests are not as effective as two-locus tests for 
predicting associations if the risk value for a second interacting locus exceeds 
1.05–1.12 (the crossover risk value varies depending on the genetic inheritance 
properties of the pair of loci). In general, the power of two-locus tests to detect 
associations improves as the risk value of the second locus increases, whereas 
the power of single-locus tests progressively declines. Disturbingly, for certain 
inheritance models and risk values, a true association between a locus and 
phenotype can be entirely masked by a second interacting locus when using 
single-locus tests. These finding are not unexpected and are consistent with 
previous findings reported by others.6,24,25 However, single-gene models 
continue to be used as the core methods for detecting associations in a GWAS 
context. Our study is significant in that it provides a more exact estimate of the 
risk scenarios in which single-locus models are inferior.

Comparing the performance of the three different two-locus tests evaluated 
in this study, in most cases for EM1, the two-locus, case-control Pearson test is 
optimal. In certain scenarios (i.e., when both genes have a dominant MOI), the 
unlinked Wu et al. test (in which cases and controls are included) as refined 
by Ueki et al. is optimal.11,12 This finding is somewhat surprising given that 
the modified Wu et al. test measures interaction effects exclusively, whereas 
the two-locus, case-control test includes main effects for both loci as well as 
interaction effects.

Despite the widespread recognition that single-locus tests are likely to be 
inferior to multilocus tests for GWAS of many diseases and phenotypes, an 
unresolved issue is how to construct a computationally practical test that takes 
into account interactions and enhances the detection of associations between 
a specific locus and the phenotype of interest. Wang and colleagues conducted 
an empirical comparison of five epistatic interaction detection methods, 
including a number of two-pass methods.26 They indicate that each of the five 
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methods demonstrates unique utilities, but no single method is optimal, being 
simultaneously the most powerful and the most scalable and having the lowest 
type-1 error rate in every setting. When users want powerful results and are 
not concerned with computation cost, Wang and colleagues cite Zhang and 
colleagues’ TEAM method as the best-performing algorithm.26,27 However, 
researchers should note that even when limiting the number of interacting 
genes to two, n × (n – 1) / 2 association calculations are required. For n = 
500,000–1,000,000, the computational requirements of such an analysis are 
daunting but readily parallelizable.
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Genome-Wide Association Studies (GWAS): 

Statistical Approaches
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CHAPTER 7

Overview  
In this chapter, we address a scenario that uses synthetic genotype case-
control data that are influenced by environmental factors in the context of a 
genome-wide association studies (GWAS). The precise way the environmental 
influence contributes to a given phenotype is typically unknown. Therefore, 
our study evaluates how to approach a GWAS that may have an environmental 
component. Specifically, we assess different statistical models in the context of 
a GWAS to make association predictions when the form of the environmental 
influence is questionable. We used a simulation approach to generate 
synthetic data corresponding to a variety of possible environmental-genetic 
models, including a “main effects only” model as well as a “main effects with 
interactions” model. Our method takes into account the strength of the 
association between phenotype and both genotype and environmental factors, 
but we focus on low-risk genetic and environmental risks that necessitate 
using large sample sizes (N = 10,000 and 200,000) to predict associations with 
high levels of confidence. We also simulated different Mendelian gene models, 
and we analyzed how the collection of factors influences statistical power in 
the context of a GWAS. Using simulated data provides a “truth set” of known 
outcomes such that the association-affecting factors can be unambiguously 
determined. We also test different statistical methods to determine their 
performance properties. Our results suggest that the chances of predicting an 
association in a GWAS is reduced if an environmental effect is present and 
the statistical model does not adjust for that effect. This is especially true if the 

Chapter 7 is based on a study that was published in the RTI Press.1 Minor text edits were made to 
this chapter. The analysis of the gene data has not changed.
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environmental effect and genetic marker do not have an interaction effect. The 
functional form of the statistical model also matters. The more accurately the 
form of the environmental influence is portrayed by the statistical model, the 
more accurate the prediction will be. Finally, even with very large samples sizes, 
association predictions involving recessive markers with low risk can be poor. 

Introduction
In recent years, scientists and researchers have increasingly used GWAS to 
unravel the genetic factors that influence important phenotypes such as disease 
presence and predisposition. The hypothesis GWAS follows is that if genetic 
variations are more frequent in people with a given disease, the variations 
are likely associated with the disease. In general, GWAS apply univariate 
statistical tests to each gene marker or single nucleotide polymorphism (SNP) 
as an initial step. This SNP-based test is statistically straightforward, and the 
core tests for assessing the associations are standard methods (e.g., χ2 tests, 
regression) that have been studied outside of and within the GWAS context. 
Kuo & Feingold describe the most commonly used statistical methods applied 
to GWAS.2 All the tests they cite are single-locus tests. 

The popularity of the GWAS approach is testimony to its simplicity; 
however, it obscures the important issue of whether a single-gene model 
is conducive to unraveling the workings of the biosynthetic pathways of a 
phenotype. In the preceding chapter, we demonstrate that if two genes are in 
epistasis the likelihood of identifying the weaker (in terms of risk) of the two is 
diminished if a single-gene model is used in this context. We would anticipate 
a similar finding involving genes and environmental interactions namely that 
the risk weaker effect would be dominated by the stronger effect. 

Researchers can use classical statistical tests derived from case-control 
experiments to determine whether two loci associate in a GWAS context. Both 
a Pearson χ2 test and tests involving logistic regression can be used to examine 
for pair-wise interaction assumptions. 

In this study, we focused on low-effect loci with low relative risks of 
association with disease diagnosis, because the evidence suggests these are 
common.3 Most GWAS report only small changes in disease risk (1.1 to 1.5). 
It has also been reported that relative risks underestimate the true risk and the 
corresponding effect size.4

Note that this chapter does not assess the multilocus scenario, which is the 
focus of Chapter 8. Nor does it account for the scenario involving multiple 
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loci that are tested simultaneously. This scenario, also discussed in Chapter 8, 
requires an adjustment to the p-value threshold via a Bonferroni correction.5 
This simple procedure (dividing the p-value threshold by the number of test) 
assumes statistical independence between tests which is not true. Hence the 
correction represents an “overcorrection,” leading to higher-than-necessary 
type II error rates. We note that the correction does not affect our type I or 
type II assessment because all of our examples have been generated with 
positive genetic associations (even if some of these associations are very 
difficult to detect). Thus, all scenarios are associated, and the issue is whether 
that association can be detected and the statistical procedures that perform 
most effectively. 

The word “risk” can have a variety of meanings. In an environmental 
context, it means a hazard based on an exposure to a chemical or pollutant 
such as tobacco smoke. In another context, risk is interpreted more narrowly 
to mean the probability of an adverse consequence (e.g., an adverse event 
such as a disease). The term “environmental risk” in this study is used broadly; 
we define it as any process that contributes to a disease diagnosis that is not 
genetic in origin. For example, environmental risks can represent exposure to 
chemicals or pollutants—or a subject’s age. 

Our overarching goal was to identify which statistical methods best identify 
genotype-phenotype associations when environmental effects also influence 
the association. Detecting such associations is particularly difficult for 
genetic variants with modest impacts on risk. Consequently, our experiments 
specifically investigated scenarios involving low-risk genetic variants and 
assessed whether environmental influences with varied levels of risk could 
be a source of the “missing heritability” observed using single-gene models.6 
Not surprisingly, our investigations demonstrated that the best statistical 
method (with respect to statistical power) depends on whether there are 
interactions between the genotype and environmental factors and how well the 
specified statistical model matches the environmental effect associated with 
the phenotype. In summary, the simulated data set provides a truth set for 
assessing the sensitivity of the effect of the statistical method and the predicted 
association. Establishing the genotype-to-phenotype connections without 
using a simulation approach is difficult to impossible. Although our study 
results demonstrate a number of obvious “truths,” a number of unexpected 
results may lead researchers to more powerful statistical approaches that can 
establish the validity of the simulation approach.
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Background
Many complex diseases (e.g., diabetes, asthma, cancer) are affected in part by 
interactions between genes and environmental factors. However, investigators 
conducting GWAS typically do not investigate the influence of environmental 
factors as part of the GWAS process. 

There have been several notable exceptions. For example, a study by Terry 
and colleagues showed a significant interaction between smoking status and 
the specific gene for lung cancer.7 Another study, by Stern and colleagues 
found smoking status to be an effect modifier of the association between 
a codon and the risk of bladder cancer.8 Understanding the relationship 
between genetic polymorphisms and environmental exposures can greatly aid 
investigators in detecting high-risk subgroups in the population and provide 
better insight into pathway mechanisms for complex diseases. 

Current GWAS methods are designed to detect main effects, that is, direct 
associations of an SNP or clusters of SNPs with disease.9,10 In the context of 
complex diseases, examining main effects only could miss important genetic 
variants specific to subgroups of the population.

Gene-Gene Interaction Studies
Lichtenstein and colleagues studied twins and sought to connect hereditary 
factors to the causes of sporadic cancer.11 The study assessed the risks of 
cancer at 28 anatomical sites for twin children of a parent who has cancer. 
Statistical modeling was used to estimate the relative importance of heritable 
and environmental factors in causing cancer at 11 of those sites. A major 
finding was that inherited genetic factors make a minor contribution to 
susceptibility for most types of neoplasms, indicating that the environment 
plays the principal role in causing sporadic cancer. The relatively large effect 
of heritability in cancer at a few sites (such as prostate and colorectal cancer) 
suggests major gaps in our knowledge of the genetics of cancer.

Another large study, by Pearce and colleagues that also focused on cancer 
attempted to link several well-established environmental risk factors for 
ovarian cancer and the results of a recent GWAS that identified six variants 
that influence disease risk.12 They pooled data from 14 ovarian cancer case-
control studies, and then conducted stratified analyses of each environmental 
risk factor to evaluate the presence of interactions for all histological 
subtypes. They fit a multivariate model to examine the association between 
all environmental risk factors and genetic risk score on ovarian cancer risk. 
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The results indicated no strong statistical evidence of interaction between the 
six SNPs or genetic risk score and the environmental risk factors on ovarian 
cancer risk. 

A large bladder cancer study reported by Rothman and colleagues 
demonstrated interactions due to smoking using a logistic regression (LR) 
adjusted for age.13 This study coded the genotype variable as a count of minor 
alleles conforming to our Models 1, 2, and 3 described here. Lindstrom and 
colleagues, in a study involving prostate cancer, found no contribution from a 
number of environmental factors.14 This study used a number of LR models 
similar to those we used in our analysis. Another study by Yu and colleagues 
developed a Bayesian framework to investigate the influence of multiple loci 
simultaneously on disease risk.15 Yu and colleagues’ “full” model consisted of 
a standard LR model that treats the genotype variable as a categorical variable 
and specifies a main effect with interactions model.

Patel and colleagues used GWAS to examine type 2 diabetes, a second 
disease with a strong interplay between environmental and genetic factors.16 
Genetic loci discovered through GWAS in this and other studies explained 
only a small portion of the disease risk variance; some of the unexplained risk 
was likely due to gene-environment interactions. The study suggested that 
the adverse effect of several type 2 diabetes loci may be abolished or at least 
attenuated by higher physical activity levels or healthy lifestyle, whereas low 
physical activity and the typical Western diet may augment it. This study used 
data from two surveys from the Centers for Disease Control and Prevention’s 
National Health and Nutrition Examination Survey (NHANES). They used a 
GWAS to screen 18 genetic loci and type 2 diabetes for statistical interactions 
that were associated with disease. They describe their investigation as an 
environment-wide association study (EWAS), and they used data sets from 
four cohorts from the NHANES. Because the four cohorts were analyzed 
individually, the number of environmental factors varied among them.

The models used by Patel and colleagues were logistic regression examples 
that were adjusted for age, sex, body mass index, and race.16 The results 
identified eight potential disease gene–environmental factor interactions. One 
interaction (trans-β-carotene) was particularly significant. The per–risk-allele 
effect sizes, after adjusting for age, sex, body mass index, and race for subjects 
with low trans-β-carotene levels, were 40 percent greater than the marginal 
genetic effect size of the SNP. They also found a strong interaction between an 
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SNP and a nutrient found in corn oil, which conveyed a 20 percent higher risk 
than the SNP alone did. 

A study by Murcray and colleagues performed a general methodological 
study that focused on identifying SNPs that demonstrate heterogeneity 
between subgroups defined by some environmental exposure.17 They 
describe a two-step approach for detecting loci involved in gene-environment 
interactions that is performed independently of any initial scans for 
main effects. They expanded on the traditional test for gene-environment 
interaction in a case-control study by incorporating a preliminary screening 
step constructed to efficiently use all available information in the data. They 
claim that their two-step approach is more powerful than the standard 
test of interaction across a wide range of models and consequently is more 
robust to changes in environmental exposure and minor allele frequency 
than the traditional one-step test for identifying highly significant SNPs. The 
difficulty with most methods, including theirs, is that it is not a “data mining” 
method. The specific environmental factor and the form of that factor have 
to be established prior to analysis. This has proven to be a difficulty with our 
methods as well. The specific environmental factor or factors to include in the 
model greatly affect the power of the tests. Specifically, researchers should use 
some combination of the literature and/or data mining activities to establish 
the form of the environmental effect model (step function or linear) on the 
logistic scale. 

A study by Cornelis and colleagues provides a comparative study of 
several logistic regression–based tests of gene-environment (G-E) and G × E 
interactions.18 All seven methods compared in their paper assumed a log-
additive mode-of-inheritance model for each SNP. This differs from our 
methods, in which the mode of inheritance was agnostic. Cornelius et al. do 
not identify a preference for any of the seven methods and instead indicate that 
preference would depend on the goal of the study. They also explored methods 
investigating environment effects only in subjects with a positive phenotype 
case (i.e., case-only studies). 

Finally, Kraft and colleagues performed a study, which was similar in 
content to the Cornelius and colleagues study in that it also focused on log-
additive gene models, that formulated a likelihood ratio test of association 
between disease and locus with the possibility that the genetic effect may be 
modified by an environmental factor.19 The specific environment model they 
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investigated was similar to one of the experiments examined in our study—
namely, a chemical spill—because it was an all-or-nothing type of exposure. 

In summary, all of the methods cited previously use logistic regression 
models. This is a result of the flexibility of that approach with respect to 
treating multiple genetic, environmental, and interaction variables as 
simultaneous effects. Also, all of the studies attempted to characterize how 
the environmental effects influenced the association outcome. In general, the 
effects could be characterized as single environmental exposures that triggered 
the risk of association immediately, or as a single risk that accumulated as the 
subject aged. Because each of these two types of risks could depend (or not) on 
a genetic predisposition, we decided to investigate these four categories of risk 
as separate possibilities. Because our study uses synthetic gene-environmental 
data with specified (known) risk, we are able to characterize data mining 
strategies in terms of their statistical power.

Methods

Overview
We simulated genetic and environmental interactions in a GWAS context using 
a qualitative association framework to determine which statistical methods 
and models reliably predict associations between a qualitative phenotype 
(specifically, a disease diagnosis, coded as “case” for a positive diagnosis or 
“control” for a negative diagnosis) and a gene paired with an environmental 
influence. As with our previous work, the concept of relative risk is the basis 
for this investigation.20 We define the genetic relative risk (Φ) of a wild-type 
genotype to be the ratio of the probability of a positive diagnosis given an 
occurrence of a (wild-type) genotype divided by the probability of disease in 
the absence of the disease genotype. We also define the environmental risk (Π) 
as the ratio of the probability of a positive diagnosis given an exposure divided 
by the probability of a positive diagnosis in unexposed subjects. The values of 
Φ and Π are specified exogenously and vary from low-risk to not-so-low-risk. 

We generated 1,000 replicates of simulation data that depended on the two 
risk values (Φ and Π) for each of three gene models using a standard Bernoulli 
process and analyzed them in terms of the observed power profiles for a low 
alpha error (α ≤ 10-8). The distribution of the number of alleles per genotype 
was randomized across replicates and was based on real data from the study by 
Schymick and colleagues used in previous chapters.21 We biased the risk levels 
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to the low end of the risk continuum because these are more difficult scenarios 
and are typical of what has been observed in the literature.3 To support these 
low risk levels, we fixed our sample size to N = 10,000 (5,000 cases and 5,000 
controls) and N = 200,000 (100,000 cases and 100,000 controls) to determine 
whether it is possible to measure associations in low-risk, recessive inheritance 
scenarios. Other studies have used smaller values (N = 6,000) for comparable 
investigations.13

Generating the Synthetic SNP Data
We derived our data generation method from a study by Iles and Mendelian 
concepts of inheritance.22 We specifically incorporated autosomal dominant, 
recessive, and additive inheritance patterns into the data. These data also 
depend on factors known to influence association measurements in the context 
of GWAS. Our simulation process assumes Mendelian-type inheritance 
patterns. 

“Penetrance” was defined as the proportion of individuals without the risk 
allele who have a definable trait (phenotype). In other words, penetrance was a 
genotype-specific probability of being affected with the trait. We designated a 
as the risk allele and A as the allele without risk. Generating the synthetic data 
set using the relationships between penetrance and risk for different mode of 
inheritance (MOI) categories was straightforward; Chapter 3 and Cooley and 
colleagues provide additional detail.23 

Initially, we supply as input data the following variables: 

•	 n = the target number of cases and controls in a given experiment,

•	 P = the disease penetrance,

•	 Φ = the genotype relative risk (1.10, 1.15, 1.20), 

•	 Π = the environmental relative risk, and

•	 the distribution of genotypes, which were drawn at random from a master 
set of genotype distributions obtained from real SNP data.23 

In screening samples from the master set of genotype distributions, Chan 
and colleagues recommend that a minor allele frequency (MAF) threshold 
not be applied as a filter.24 They argue that filtering MAFs out of the process 
because of low frequencies or to maintain Hardy–Weinberg equilibrium 
deviation has little effect on the overall false positive rate and, in some cases, 
filtering MAFs excludes SNPs. The effect of this step is to select a specific 
genotype distribution at random from the master distribution.
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From the selected relative risk (Φ), penetrance (P), and MOI assumptions, 
we used the formulas in Table 7.1 to assign a case (1) or control code (0). This 
step converts the relative risk ratio (Φ) into the probability of a case (disease), 
given the MOI gene model assumed. 

Table 7.1. Relative risk assumptions, by mode of inheritance

Inheritance 
model

Major homozygote 
risk 
ΨAA

Minor homozygote risk 
             Pr(case/aa) Ψaa = ____________ 

             Pr(case/AA)

Heterozygote risk 
             Pr(case/aA) ΨAa = ____________ 
             Pr(case/AA)

Recessive 1 Φ 1

Dominant 1 Φ Φ

Additive 1 2 × Φ − 1 Φ

Multiplicative 1 Φ × Φ Φ

Pr = probability. Φ = genetic inheritance risk.

Source: Iles (2002).22

This genotype-specific process can be represented by the following logic:

•	 Major homozygote (AA)

	 If the AA (nondisease) genotype is selected, the probability of a case equals 
the disease penetrance, Pj.

•	 Minor homozygote (aa)

	 Ψaa is the exogenous risk and represents the ratio of two probabilities: the 
probability of a case for a minor homozygote divided by the probability (Pr) 
of a case for a major homozygote. In other words, 

		  Ψaa = Pr(case/aa) / Pr(case/AA) = x/Pj.	�  (7.1)

	 Thus, the probability of a case given the minor genotype is

 		  x = Ψaa × Pj.	�  (7.2)

•	 Heterozygote (aA)

	 By the same argument, the phenotype risk given a heterozygote is

		  ΨaA = Pr(case/aA) / Pr(case/AA) = y/Pj.� (7.3)

	 Thus, the risk of a case given the heterozygote genotype is 

		  y = ΨaA × Pj,� (7.4)

	 where ΨaA is the assumed risk factor and Pj is the assumed penetrance. 
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Implicit in equations (7.1) through (7.4) is a consistent definition of 
penetrance defined as the proportion of cases that are present in the major 
genotype AA. 

Using the estimate of x from equation (7.2) and y from equation (7.4), 
we specified a subject as a case (1) or control (0) at random using the four 
different MOI models from Table 7.1. For the MOI models that assume an 
elevated risk from the minor and the heterozygote genotypes, we would 
expect a higher proportion of cases to be more easily identified via the 
statistical procedures. Specifying risk depends on known and unknown disease 
mechanisms. Some consider a relative risk of 1.7 high and a risk of 1.3 to be a 
more realistic assumption for complex diseases.25,26 We limited our focus to 
relative risks in the range of 1.1 to 1.2. 

Note that we assigned cases and controls so that there would be no 
possibility for the introduction of bias. We chose to ignore errors in both 
genotype and the phenotype measurements, which in a real experiment 
could be a source of bias (we examined both sources of error in an earlier 
study20). This process continued until we created n1 cases and n2 controls. We 
then applied a set of statistical methods (identified subsequently) to predict 
associations, and recorded and tracked the results. For each set of unique 
factor combinations (i.e., penetrance, sample sizes, relative risk levels, and 
MOI categories), we generated 1,000 replicate experiments.

Exogenously, we specified the genetic inheritance (GI) relative risk of 
disease as 1.10, 1.15, and 1.20 and defined it in the overview as the ratio of the 
probability of a disease diagnosis for subjects, dividing the wild-type gene by 
the probability of disease, based on all genetic and nongenetic causes. We also 
defined a second relative risk component based on a specific environmental 
exposure (EE). We defined this ratio as the probability of a disease given the 
EE divided by the probability of a diagnosis given no EE. In discussion of these 
experiments, we use the notation Φ to represent GI and Π to represent EE. 

The form of the EE relative risk can be specified using a variety of 
assumptions. In all scenarios, the genetic risk is first used to determine the 
phenotype status (case or control). Then the environmental risk calculation 
determines whether the phenotype status is altered from control to case 
according to the EE assumptions. We assume that the form of the EE 
effect is not known but that the specific variable is known. In the following 
experiments, we use E = age as a proxy for the different assumed forms of 
exposure, and we assign E a value obtained from a uniform distribution of 



	 Assessing Gene-Environment Interactions in Genome-Wide Association Studies	 95

30 to 70. The value of E controls the EE risk according to different experiment 
designs. The main objective of this assessment is to identify whether one 
statistical model outperforms all other models and how much variation occurs 
across the different experiments. 

For all experiments, we used the GI as described previously.

Experiment 1—The Main Effects Model. For the first experiment, half of 
the population (selected at random and assigned 50 < E < 71) incurred an 
EE relative risk (Π). The assigned risk value was 1.10, 1.20, 1.30, or 1.40. The 
other half of the population (assigned 29 < E < 51) incurred no risk (Π = 1.0). 
Thus, Experiment 1 simulates a fixed EE. When the determinant risk variable, 
E, exceeds a threshold, a positive diagnosis is more likely to occur. This is 
identified as the fixed risk, main effects, no interaction model. 

Experiment 2—The Interaction Effects Model. For the second scenario, 
again half of the population (selected at random and assigned 50 < E < 71) 
incurred an EE relative risk (Π). This risk value was 1.10, 1.20, 1.30, or 1.40, 
but only if the subject also had a wild-type allele (i.e., a heterozygote or minor 
homozygote genotype). The other component of the population (50 < E < 71 
and genotype = AA) incurred no EE risk (Π = 1.0). Experiment 2 also 
simulates a fixed EE but only if the genotype contains a wild-type allele. This is 
identified as the fixed-risk, main effect with interaction model. 

Experiment 3—The Main Effects Log-Linear Risk Model. For the third 
scenario, the entire population (randomly assigned 30 ≤ E ≤ 70) incurred an 
EE relative risk (Π) which was related to E in the following manner: 

y = (E – 30)/40. 
Π = Xy (X to the y power), where X = {1.10, 1.20, 1.30, 1.40).
Experiment 3 simulates a log-linear variable risk model, with larger values of 

E conveying additional risk levels. As in Experiment 1, there is no interaction 
between the GI and EE risks. 

Experiment 4—The Interaction Effects Log-Linear Risk Model. The fourth 
scenario is the same as the third scenario, but the risk applies only if the 
subject has a wild-type allele. 

Experiment 4 simulates a variable-risk scenario with larger values of E 
conveying higher risk levels—but only if the genotype contains a wild-type 
allele. This is the log-linear variable risk main effect with genotype interaction 
model. 
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For each experiment type, we varied the gene model to determine the 
relative power differences across model specification. Overall, Experiment 1 
data have a step function relationship to EE and no interaction or difference 
in slopes (or EE step heights) across the three genotypes. In contrast, the 
Experiment 2 data has a step function relationship with EE where the aa and 
aA genotypes have the same slope (step height) but different intercepts. The 
AA genotype relationship to the EE is flat or has zero slope (no step up). In 
Experiment 3, the relationship to EE is log-linear, with equal slopes for all 
three genotypes. Finally, in Experiment 4, the relationship to EE is log-linear; 
the aa and aA genotypes have the same slope but different intercepts; and the 
AA genotype relationship to the EE is flat, or has zero slope.

Statistical Models
All models tested assumed a logistic regression (LR) specification. This form is 
commonly used in association studies involving environmental interactions.21

Table 7.2 shows the variables used in the different models. 

Table 7.2. Descriptions of variables used in the logistic regression models

Variable category Name Form Values

Genotype G Continuous 0, 1, 2

Genotype g1, g2 Categorical 0, 1

Environmental E Continuous 30–70

Environmental e1 Categorical 0, 1

Interaction g1 × E Mixed 0, 30–70

Interaction g1 × e1, g2 × e1 Categorical 0, 1

Notes: G = the number of wild-type alleles for the genotype (0, 1, 2).

g1 = 1 if the subject’s genotype is a heterozygote, otherwise g1 = 0. 

g2 = 1 if the subject’s genotype is a minor or wild homozygote, otherwise g2 = 0. 

E = a variate from a uniform distribution (30–70) that suggests it is an age. 

e1 = an indicator variable set to 0 if E < 50. Otherwise e1 = 1.

The difference between the experiments is straightforward. For subjects 
younger than 50 years old, there is no risk from environmental exposure 
(i.e., the relative risk = 1.0) in Experiments 1 and 2; subjects older than 50 
have an environmental exposure (i.e., the risk is greater than 1.0). However, 
in Experiment 2, only subjects aged 50 or older who have a wild-type allele 
are assumed to have the assigned risk. The main discriminator between 
Experiments 1 and 3 (and Experiments 2 and 4) is the risk characterization. For 
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Experiments 1 and 2, the risk is intended to be an all-or-nothing process akin 
to a toxic exposure that occurs sometime after the subject reaches age 50. For 
Experiments 3 and 4, the risk due to an environmental exposure is present in all 
subjects and increases as age increases. Table 7.3 summarizes the experiments.

Table 7.3. Experiment description

Experiment Risk type
Scenario 
description Exposure action

1 Fixed EE Chemical exposure Risk applies to half of the 
population

2 Fixed EE with 
interaction

Chemical exposure 
affects genotype

Risk applies to the half of the 
population who have the wild-
type allele

3 Variable EE Advancing age Risk applies to half of the 
population and increases with age

4 Variable 
EE with 
interaction

Advancing age 
affects genotype

Risk applies to the half of the 
population who have the wild-
type allele, and risk increases with 
age

EE = environmental exposure.

We used three specific statistical models to assess the data generated by the 
four experiments. Each assumed an intercept term and had the following form: 

•	 Model 1 is a logistic regression model with a single variable genotype (G) 
main effect (2df). This is a candidate model if no environmental exposure 
were suspected. 

•	 Model 2 is a logistic regression mixed main effects and interaction model 
(g1, g2, E, g1 × E, g2 × E) (6df). This is a fully specified model that assumes 
that the environmental exposure is a continuous variable.

•	 Model 3 is also a logistic regression mixed main effects and interaction 
model (g1, g2, e1, g1 × e1, g2 × e1) (6df). This is the fully specified 
categorical model and assumes that the environmental exposure has a 
specific (all-or-nothing) categorical variable form.

Table 7.4 summarizes the specific regression models we used in this study. 
Note that we initially compared six models. Two were gene-only models—a 1df 
(log-additive test) and a 2df test—and four were main effects plus interaction 
models. We had two environmental exposure specifications (E and e1) and two 
genetic inheritance specifications (G and g1, g2). From the six initial models, 



98 	 Chapter 7

we selected the three models that dominated the other three: M-1, M-2, and 
M-3. We dropped the other three models (M-1a, M-2a, and M-3a) from our 
assessment.

Table 7.4. Statistical models assessed

Model Main effects Interactions df Test statistic

M-1 G NA 1 LLH[log(α, G)] – LLH[log(α)] 

M-1a g1, g2 NA 2 LLH[log(α, g1, g2)] – 
LLH[log(α)] 

M-2 g1, g2, E g1 × E, g2 × E 5 LLH[log(α, g1, g2, E, g1*E, 
g2*E)] – LLH[log(α)] 

M-2a G, E G × E 3 LLH[log(α, G, E, G × E)] – 
LLH[log(α)]

M-3 g1, g2, e1 g1 × e1, g2 × e1 5 LLH[log(α, g1, g2, e1, g1*e1, 
g2*e1)] – LLH[log(α)]

M-3a G, e1 G × e1 3 LLH[log(α, G, e1, G × e1)] – 
LLH[log(α)]

df = degrees of freedom; NA = not applicable; LLH = log-likelihood. α = the logit scale intercept for the line 
relating environmental exposure (EE) to the log-odds risk among those subjects with the nondisease 
genotype AA.

Notes: G = the number of wild-type alleles for the genotype(0, 1, 2).

g1 = 1 if the subject’s genotype is a heterozygote, otherwise g1 = 0. 

g2 = 1 if the subject’s genotype is a minor or wild homozygote, otherwise g2 = 0. 

E = age, 30–70.

The test statistics we used in our analyses are defined as the difference 
between two log-likelihood (LLH) statistics. The first is specific to the model 
used, and the second is based on a model with only the intercept term. 

Results

Association Analysis
In this section, we describe the power profiles that result by applying the 
models described in Table 7.4 to the data generated according to the four 
different experiments in Table 7.3. We focus on detecting the associations 
between the combined genotype-environmental factors on phenotype 
outcome (disease diagnosis). We assess the importance of model specification 
in predicting the presence of association with a phenotype of interest and to 
what degree the gene model and genotype environment interactions influence 
power. In the following section on genotype associations, we assess the role 
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of the genotype alone in predicting association while controlling for the 
environmental influence. 

Note that in calculating all power results in this section, we assumed that 
the Type I error rate was 10-8. However, because all combined environmental 
exposure and genetic inheritance risk values are greater than 1.0 in all of our 
experiments, only Type II errors were possible. 

Table 7.5 shows the data generated using the protocol for Experiment 1. 
Note that for this and all subsequent tables in this section, the highest power 
value for each risk profile within the three MOI categories is bolded to highlight 
the optimal model. For each genetic inheritance (GI) risk level (Φ) there is an 
environmental exposure (EE) risk level (Π) equal to 1.0, indicating no EE risk. 

Table 7.5. Power values, by statistical model, Φ, and Π: Experiment 1—all gene 
models

Φ Π

Additive Dominant Recessive

M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3

1.10 1.00 .002 .004 .004 .000 .004 .004 .000 .000 .000

1.10 1.05 .002 .016 .022 .000 .040 .044 .000 .000 .000

1.10 1.10 .000 .160 .316 .000 .214 .354 .000 .050 .122

1.10 1.15 .002 .654 .882 .000 .728 .924 .000 .488 .810

1.10 1.20 .006 .986 1.00 .000 .992 1.00 .000 .968 1.00

1.15 1.00 .024 .046 .042 .000 .028 .024 .000 .000 .000

1.15 1.05 .028 .102 .138 .000 .082 .102 .000 .000 .000

1.15 1.10 .042 .378 .538 .000 .336 .468 .000 .038 .144

1.15 1.15 .052 .838 .948 .000 .832 .954 .000 .528 .806

1.15 1.20 .064 .996 1.00 .000 .994 1.00 .000 .958 .998

1.20 1.00 .246 .210 .206 .004 .100 .104 .000 .000 .000

1.20 1.05 .274 .308 .338 .002 .214 .240 .000 .002 .004

1.20 1.10 .308 .630 .746 .006 .552 .684 .000 .054 .142

1.20 1.15 .350 .908 .982 .016 .912 .972 .002 .586 .852

1.20 1.20 .394 .996 1.00 .028 .994 1.00 .004 .972 .998

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Table 7.4 defines the statistical models (M-1, M-2, and M-3).

Figure 7.1 shows the data generated using the protocol for Experiment 1 
for the additive gene model. Figure 7.1 includes the optimal model (M-3, 
identified by the boldfaced cells in Table 7.5) and the model that does not 
include an EE variable in its specification (M-1). The results presented in 
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Table 7.5 and Figure 7.1 indicate that there is little difference in performance 
between models when the risk of EE is not present. 

 
Figure 7.1. Power curves, by statistical model, Φ, and Π: Experiment 1—
additive gene model

Relative risk combination (upper number = Φ; lower number = Π)
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Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Table 7.4 defines the statistical models (M-1 and M-3).

The results that Figure 7.1 and Table 7.5 show indicate the following:

•	 The power profile of M-1 is substantially less than that of models M-2 and 
M-3. M-1 represents a typical single-locus method used in a GWAS that 
ignores environmental influences. We conclude that not including an EE 
reduces the likelihood of the locus being associated with the phenotype. 

•	 M-3 is the most powerful of the three models. This is expected because the 
Experiment 1 protocol should generate data consistent with the M-3 model 
formulation. 

•	 The difference between the profiles of M-2 and M-3 is a result of the 
manner used to characterize the EE functional form. Because the data were 
generated in a manner compatible with the e1 variable used in M-3, that 
model generated more accurate power predictions.

Note that in the full M-3, the overall intercept is the log of the intercept 
for the line that relates EE to the log-odds risk among those subjects with the 
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nondisease genotype AA. The coefficient associated with the g1 main effect is 
testing for the difference between intercepts for the subjects with genotype aA 
and those with genotype AA. Similarly, the g2 main effect coefficient is testing 
for the difference between the intercepts for subjects with the aa genotype and 
those with the AA genotype. 

The EE main effect coefficient is the height of the step in the step function 
relating EE to log-odds-risk for subjects with the AA genotype, and it, 
therefore, tests for a common EE step height across all three genotypes. The 
g1 × E interaction coefficient is the difference between the step heights for 
the aA subjects and the AA subjects. Similarly, the g2 × E coefficient is the 
difference between the step heights for the aa subjects and the AA subjects. 
Because the AA, aA, and aa step heights/slopes associated with the EE 
environmental effect are all equal in Experiments 1 and 3, only the common 
main effect (ME) associated with EE contributes to association prediction in 
those data sets, and the interaction terms are superfluous. 

Table 7.6 and Figure 7.2 show the results of applying the three models 
that Table 7.4 describes to the data generated according to the Experiment 2 
protocol (see Table 7.3). The results from Experiment 2 indicate the following:

•	 Although M-1 does not adjust for EE, the observed (relatively) high power 
profiles for high EE risk levels suggest that the GI-EE interaction effect is 
embedded in the M-1 power values, and the high power profiles are credited 
as a genotype main effect. 

•	 As in Experiment 1, M-3 outperforms all other models because the variable 
e1 properly characterizes EE behavior. This clearly demonstrates the value 
of preprocessing (i.e., mining) the data before committing to a specific 
association model.

Table 7.7 and Figure 7.3 show the results of applying the three statistical 
models described in Table 7.4 to the data generated according to the 
Experiment 3 protocol (see Table 7.3). The results from Experiment 3 indicate 
the following: 
•	 M-1 consistently performs below M-2 and M-3, indicating that not 

including an EE term limits the association assessment. 

•	 In general, model M-2 produces better power profiles than M-3. This is 
expected given that the EE incremental risk is linearly related to the log of 
EE. Thus, model M-2 is more consistent with the protocol used to generate 
the data in Experiment 3.
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Table 7.6. Power values, by statistical model, Φ, and Π: Experiment 2—all gene models

Φ Π

Additive Dominant Recessive

M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3

1.10 1.00 .002 .004 .004 .000 .004 .004 .000 .000 .000

1.10 1.05 .012 .086 .106 .000 .086 .094 .000 .000 .002

1.10 1.10 .114 .394 .462 .010 .408 .442 .002 .072 .116

1.10 1.15 .340 .702 .744 .078 .690 .738 .022 .376 .462

1.10 1.20 .640 .856 .914 .318 .844 .896 .104 .642 .714

1.15 1.00 .024 .046 .042 .000 .028 .024 .000 .000 .000

1.15 1.05 .166 .258 .290 .006 .212 .222 .000 .000 .004

1.15 1.10 .478 .634 .676 .082 .570 .590 .002 .090 .126

1.15 1.15 .710 .808 .832 .380 .846 .872 .082 .398 .464

1.15 1.20 .880 .952 .968 .730 .934 .954 .230 .654 .740

1.20 1.00 .246 .210 .206 .004 .100 .104 .000 .000 .000

1.20 1.05 .544 .518 .520 .084 .404 .426 .008 .002 .006

1.20 1.10 .760 .776 .784 .336 .752 .784 .052 .120 .162

1.20 1.15 .918 .926 .936 .736 .920 .944 .184 .418 .496

1.20 1.20 .978 .990 .996 .916 .984 .986 .345 .640 .725

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Table 7.4 defines the statistical models (M-1, M-2, and M-3).

Figure 7.2. Power curves, by statistical model, Φ, and Π: Experiment 2—
additive gene model

Relative risk combination (upper number = Φ; lower number = Π)

St
at

is
tic

al
 p

ow
er

Model M-2

Model M-1
0.0

0.2

0.4

0.6

0.8

1.0
M-3

M-1

1.20
1.20

1.20
1.15

1.20
1.10

1.20
1.05

1.20
1.00

1.15
1.20

1.15
1.15

1.15
1.10

1.15
1.05

1.15
1.00

1.10
1.20

1.10
1.15

1.10
1.10

1.10
1.05

1.10
1.00

Model M-1 Model M-3

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Table 7.4 defines the statistical models (M-1 and M-3).
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Table 7.7. Power values, by statistical model, Φ, and Π: Experiment 3—all gene models

Φ Π

Additive Dominant Recessive

M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3

1.10 1.00 .002 .000 .004 .000 .006 .004 .000 .000 .000

1.10 1.05 .002 .008 .006 .000 .014 .014 .000 .000 .000

1.10 1.10 .002 .034 .030 .000 .044 .030 .004 .004 .000

1.10 1.15 .002 .152 .096 .000 .190 .120 .062 .024 .018

1.10 1.20 .004 .472 .296 .000 .500 .260 .258 .228 .066

1.15 1.00 .024 .036 .042 .000 .034 .024 .000 .000 .000

1.15 1.05 .030 .068 .058 .000 .048 .052 .000 .000 .000

1.15 1.10 .040 .152 .106 .000 .162 .118 .002 .002 .002

1.15 1.15 .046 .390 .278 .000 .384 .302 .048 .034 .012

1.15 1.20 .052 .650 .524 .000 .670 .508 .308 .278 .074

1.20 1.00 .246 .174 .206 .004 .114 .104 .000 .000 .000

1.20 1.05 .270 .274 .250 .002 .166 .150 .000 .000 .000

1.20 1.10 .286 .402 .376 .002 .344 .260 .004 .002 .002

1.20 1.15 .348 .658 .548 .012 .520 .490 .098 .058 .032

1.20 1.20 .378 .862 .718 .024 .796 .660 .299 .289 .107

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Table 7.4 defines the statistical models (M-1, M-2, and M-3).

Figure 7.3. Power curves, by statistical model, Φ, and Π: Experiment 3—
additive gene model
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Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Table 7.4 defines the statistical models (M-1 and M-2).
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Table 7.8 and Figure 7.4 show the results for Experiment 4. They indicate 
the results of applying the three models described in Table 7.4 to the data 
generated according to the Experiment 4 protocol (see Table 7.3). 

Table 7.8. Power values, by statistical model, Φ, and Π: Experiment 4—all gene models

Φ Π

Additive Dominant Recessive

M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3

1.10 1.00 .002 .006 .004 .000 .006 .004 .000 .000 .000

1.10 1.05 .008 .054 .006 .000 .068 .054 .000 .000 .002

1.10 1.10 .078 .236 .030 .006 .284 .226 .002 .014 .008

1.10 1.15 .220 .478 .096 .048 .500 .476 .008 .110 .078

1.10 1.20 .510 .672 .678 .148 .624 .632 .046 .314 .294

1.15 1.00 .024 .074 .042 .000 .046 .024 .000 .000 .000

1.15 1.05 .118 .208 .164 .002 .162 .130 .000 .000 .000

1.15 1.10 .384 .514 .476 .040 .454 .410 .000 .018 .016

1.15 1.15 .618 .688 .658 .232 .698 .684 .046 .162 .132

1.15 1.20 .820 .830 .838 .570 .802 .792 .144 .354 .328

1.20 1.00 .246 .250 .206 .004 .138 .104 .000 .000 .000

1.20 1.05 .464 .466 .406 .046 .354 .290 .004 .002 .000

1.20 1.10 .714 .714 .692 .222 .642 .624 .026 .040 .022

1.20 1.15 .892 .876 .864 .622 .816 .824 .136 .216 .170

1.20 1.20 .954 .940 .944 .848 .916 .930 .257 .317 .343

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Table 7.4 defines the statistical models (M-1, M-2, and M-3).

Table 7.8 and Figure 7.4 show results that indicate the following:

•	 Consistent with Experiment 2’s results, model M-1 does not adjust for 
EE, but because of the influence of GI-EE interaction effects, M-1 displays 
higher power profiles for large EE risk levels. 

•	 As in Experiment 3, M-2 outperforms M-3 because it better characterizes 
the EE by using the variable E (age) and further demonstrates the value 
of preprocessing (i.e., mining) the data before committing to a specific 
association model. 

•	 In the presence of GI-EE interaction effects, the genetic-only model (M-1) 
performs better than anticipated.
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Figure 7.4. Power curves, by statistical model, Φ, and Π: Experiment 4—
additive gene model

Relative risk combination (upper number = Φ; lower number = Π)
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Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Table 7.4 defines the statistical models (M-1 and M-2).

Genotype Associations
The analysis in the previous section focused exclusively on composite associa-
tions—that is, whether a specific gene plus an environmental factor associates 
with a phenotype. As we noted earlier, our main interest was separating main 
genetic effects from environmental effects and their interactions. To accomplish 
this, we defined a total effect test (TOT) that adjusts for EE where

	 TOT = LLH [log (α, g1, g2, e1, g1 × e1, g2 × e1)] – LLH [log (α, e1)]	 (7.5)

is the test we applied to the data generated by Experiment 1 and 2 protocols, and

	 TOT = LLH [log (α, g1, g2, E, g1 × E, g2 × E)] – LLH [log (α, E)]	 (7.5a)

is the test that we applied to the data generated by Experiment 3 and 4 protocols.
TOT is the association test that measures genetic effects (main and inter

active) and is adjusted for the environmental effect.27 TOT simultaneously 
measures whether the aA and aa intercepts are different from the AA intercept 
and whether the aA and aa slopes are nonzero, given that the AA slope on EE 
is zero. This test was used to test for association from all causes. 
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We also define two additional tests for genotype-environment interactions, 
INT, as follows:

INT = LLH [log (α, e1, g1, g2, g1 × e1, g2 × e1)] – LLH [log (α, e1, g1, g2)]	(7.6)

and

INT = LLH [log (α, E, g1, g2, g1 × E, g2 × E)] – LLH [log (α, E, g1, g2)].	 (7.6a)

The INT test subtracts the main effects for g1, g2, and EE from the TOT and 
tests whether the EE steps (or slopes) for the aA and aa genotypes are different 
from the corresponding EE step (slope) for genotype AA.

The final test measures the influence of the genetic main effects (ME). 

	 ME = LLH [log (α, e1, g1, g2)] – LLH [log (α, e1)]	 (7.7)

is the test applied to the data generated by Experiments 1 and 2 protocols and

	 ME = LLH [log (α, E, g1, g2)] – LLH [log (α, E)]	 (7.7a)

is the corresponding test for data from Experiments 3 and 4 protocols.
The ME tests check whether the estimated aA and aa intercepts differ from 

the AA intercept, conditioned on the EE step sizes (e1 in experiments 1and 2) 
or the EE slopes (E in experiments 3 and 4) being equal for all three genotypes. 

Note that for Experiments 2 and 4, both the AA step (coefficient of e1) and 
slope (coefficient of E) on EE are zero, and therefore the coefficient for the EE 
main effect (assuming that the M-3 is operating) is estimating zero; the two 
interaction columns are estimating the aA step/slope minus zero and the aa 
step/slope minus zero, respectively. 

Typically, these three tests would be applied sequentially: TOT followed 
by INT, then ME. Assessing whether an interactive or noninteractive genetic 
association is obtained would depend on the result of the preceding test. 

For example, if TOT is nonsignificant, the process stops, and we conclude that 
there is no connection between the genetic locus and the phenotype. Otherwise, 
we would apply the INT test. If INT was significant, we could conclude that 
the locus and the phenotype are significantly related, with the caveat that the 
strength of the genotype effect varies by the EE risk level. The ME test would 
only be applied if the TOT is significant and INT test is not significant. In this 
case, the ME test would be applied to affirm that the genetic and environmental 
effects are operating independently of each other and to assert that a common 
genotype main effect exists that applies to all EE levels. Tables 7.9 through 7.13 
show the results of running the three tests (TOT, INT, and ME).
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Table 7.9. Total effects test (TOT) power values, by risk profile, Φ, and Π—all 
experiments and gene models, N = 200,000

Φ Π

Experiment 1 Experiment 2 Experiment 3 Experiment 4

TOT^ 
Rec

TOT^ 
Dom

TOT^ 
Add

TOT^ 
Rec

TOT^ 
Dom

TOT^ 
Add

TOT* 
Rec

TOT* 
Dom

TOT* 
Add

TOT* 
Rec

TOT* 
Dom

TOT* 
Add

1.10 1.00 .319 .601 .574 .319 .601 .574 .328 .573 .538 .328 .573 .538

1.10 1.05 .328 .602 .612 .523 .777 .827 .340 .619 .608 .719 .958 .968

1.10 1.10 .343 .604 .577 .806 .949 .953 .377 .636 .596 .990 1.00 1.00

1.10 1.15 .344 .613 .625 .958 .994 .999 .408 .684 .662 1.00 1.00 1.00

1.10 1.20 .358 .622 .637 .993 .999 1.00 .492 .709 .704 1.00 1.00 1.00

1.15 1.00 .341 .725 .739 .341 .725 .739 .336 .725 .713 .336 .725 .713

1.15 1.05 .363 .745 .769 .534 .918 .919 .367 .750 .766 .764 .995 .997

1.15 1.10 .375 .770 .773 .837 .986 .993 .427 .796 .828 .992 1.00 1.00

1.15 1.15 .358 .751 .776 .934 .999 1.00 .480 .832 .870 1.00 1.00 1.00

1.15 1.20 .351 .775 .787 .995 .999 1.00 .487 .861 .893 1.00 1.00 1.00

1.20 1.00 .444 .889 .915 .444 .889 .915 .439 .851 .904 .439 .851 .904

1.20 1.05 .456 .900 .918 .631 .986 .982 .490 .912 .950 .809 1.00 .999

1.20 1.10 .477 .897 .943 .854 .998 1.00 .514 .949 .949 .995 1.00 1.00

1.20 1.15 .471 .917 .935 .973 1.00 1.00 .594 .946 .975 1.00 1.00 1.00

1.20 1.20 .514 .925 .945 .996 1.00 1.00 .632 .961 .986 1.00 1.00 1.00

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level; TOT = total effects test; 
gene models: Rec = recessive, Dom = dominant, Add = additive.

Note: ^ = TOT from equation 5; * = TOT from equation 5a; α ≤ 10-8.

Consider that every replicate in every cell produced by the simulation 
experiments is designed to generate a genotype-phenotype association (albeit 
at low risk). Some of these replicates influenced by an EE also contribute 
toward association. However, in a perfect statistical world, all are generated to 
predict an association with the phenotype. The fact that they do not indicates 
the limitations of the GWAS process.

In addition, Table 7.9 suggests the following: 

•	 Association detection involving recessive genes is difficult to identify and 
accordingly requires a larger sample size than we used in our experiments.

•	 Scenarios involving gene-environment interactions (Experiments 2 and 4) 
greatly influence whether genetic influences can be detected by a gene-only 
model.
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•	 The type of EE process influences the ability to detect an association, 
whether the effect is caused by a chemical-type exposure (Experiments 1 
and 2) or by aging (Experiments 3 and 4). 

Table 7.10 presents the results of applying the INT test to all experiments 
and all gene models. Not shown are the results for Experiments 1 and 3, 
which generated data without interaction effects. They estimate no interaction 
between GI and EE (as they should), so those results are not shown. Note that 
the Type 1 α thresholds in Table 7.11 for generating power estimates for all 
cells are ≤10-2.

Table 7.10. Genotype-environment interactions (INT) power values, by risk profile 
(Φ and Π)—all experiments and gene models, N = 10,000

Φ Π

Experiment 2 Experiment 4

INT^  
Rec

INT^ 
Dom

INT^ 
Add

INT*  
Rec

INT* 
Dom

INT* 
Add

1.10 1.00 .319 .601 .574 .319 .601 .574

1.10 1.05 .328 .602 .612 .523 .777 .827

1.10 1.10 .343 .604 .577 .806 .949 .953

1.10 1.15 .344 .613 .625 .958 .994 .999

1.10 1.20 .358 .622 .637 .993 .999 1.00

1.15 1.00 .341 .725 .739 .341 .725 .739

1.15 1.05 .363 .745 .769 .534 .918 .919

1.15 1.10 .375 .770 .773 .837 .986 .993

1.15 1.15 .358 .751 .776 .934 .999 1.00

1.15 1.20 .351 .775 .787 .995 .999 1.00

1.20 1.00 .444 .889 .915 .444 .889 .915

1.20 1.05 .456 .900 .918 .631 .986 .982

1.20 1.10 .477 .897 .943 .854 .998 1.00

1.20 1.15 .471 .917 .935 .973 1.00 1.00

1.20 1.20 .514 .925 .945 .996 1.00 1.00

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level; INT = genotype-
environment interactions; gene models: Rec = recessive, Dom = dominant, Add = additive.

Note: ^ = INT from equation 6; * = INT from equation 6a; α ≤ 10-2.

Table 7.10 reaffirms the results of Table 7.9:
•	 Power values for recessive genes are very low and accordingly were more 

difficult to identify than other gene models.
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•	 Gene-environment interactions influence association outcomes. This is 
evidenced by all cells of the no-interaction experiments (Experiments 1 
and 3) having power values <.004.

•	 The type of EE process influences the detection of an association, whether 
the effect is due to an exposure (Experiments 1 and 2) or is due to an aging 
mechanism (Experiments 3 and 4).

•	 Interaction effects achieve significant levels in Experiment 2 for risk values 
of EE ≥ 1.2 only.

Table 7.11. Main effects (ME) power values, by risk profile (Φ and Π)—all gene models, 
N = 10,000

Φ Π

Experiment 1 Experiment 3

ME^  
Rec

ME^ 
Dom

ME^ 
Add

ME*  
Rec

ME* 
Dom

ME*  
Add

1.10 1.00 .123 .463 .434 .139 .450 .417

1.10 1.05 .131 .478 .476 .156 .479 .437

1.10 1.10 .138 .491 .459 .138 .476 .399

1.10 1.15 .138 .523 .500 .149 .498 .478

1.10 1.20 .154 .507 .495 .167 .506 .487

1.15 1.00 .153 .626 .628 .147 .608 .585

1.15 1.05 .179 .642 .664 .146 .619 .659

1.15 1.10 .193 .676 .660 .177 .654 .675

1.15 1.15 .163 .670 .670 .191 .653 .675

1.15 1.20 .171 .668 .682 .182 .676 .695

1.20 1.00 .204 .805 .850 .239 .755 .834

1.20 1.05 .244 .824 .850 .236 .807 .861

1.20 1.10 .250 .829 .887 .239 .817 .866

1.20 1.15 .264 .840 .873 .274 .816 .867

1.20 1.20 .315 .854 .893 .268 .830 .878

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level; ME = main effects; gene 
models: Rec = recessive, Dom = dominant, Add = additive.

Note:^ = ME from equation 7; * = ME from equation 7a; α ≤ 10-2.

Table 7.11 presents the results of the ME test for Experiments 1 and 3. ME 
results for Experiments 2 and 4 are not shown because they were generated 
by a protocol that produced EE and GI interactions, and if the INT test 
demonstrated significance (as it should have), the ME tests would have been 
unnecessary. In all cases, the alpha threshold was set to 10-2.
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Table 7.11 reaffirms the results of Tables 7.9 and 7.10: 

•	 Associations involving recessive genes are more difficult to identify.

•	 Gene-environment interactions influence association outcomes.

•	 The type of process influences the detection of an association, as shown by 
differences between power values for exposure mechanisms such as those 
resembling chemical spills (Experiments 1 and 2) and those recognizing 
aging mechanisms (Experiments 3 and 4).

•	 Main effects are only considered significant for larger risk values of genetic 
inheritance (those with a risk of 1.2 or greater).

Note that the power threshold values are set to low (α ≤ 10-2) for the 
interaction and ME tables. To investigate the effect of a very large N, we 
repeated the simulation process with N =200,000 and reduced the threshold to 
(α ≤ 10-8). Tables 7.12 and 7.13 present the results.

Table 7.12. Genotype-environment interactions (INT) power values, by risk profile (Φ 
and Π)—all gene models, N = 200,000

Φ Π

Experiment 2 Experiment 4

INT^  
Rec

INT^ 
Dom

INT* 
Add

INT*  
Rec

INT* 
Dom

INT* 
Add

1.10 1.00 .00 .00 .00 .00 .00 .00

1.10 1.05 .00 .00 .03 .00 .00 .00

1.10 1.10 .75 .77 .88 .35 .50 .56

1.10 1.15 1.0 1.0 1.0 1.0 1.0 1.0

1.10 1.20 1.0 1.0 1.0 1.0 1.0 1.0

1.15 1.00 .00 .00 .00 .00 .00 .00

1.15 1.05 .00 .01 .03 .00 .00 .01

1.15 1.10 .78 .86 .91 .44 .52 .60

1.15 1.15 1.0 1.0 1.0 .96 1.0 1.0

1.15 1.20 1.0 1.0 1.0 1.0 1.0 1.0

1.20 1.00 .00 .00 .00 .00 .00 .00

1.20 1.05 .01 .04 .05 .00 .00 .00

1.20 1.10 .75 .92 .96 .45 .65 .74

1.20 1.15 .99 1.0 1.0 1.0 1.0 1.0

1.20 1.20 1.0 1.0 1.0 1.0 1.0 1.0

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level; INT = genotype-
environment interactions; gene models: Rec = recessive, Dom = dominant, Add = additive.

Note: ^ = INT from equation 6; * = INT from equation 6a; α ≤ 10-8.
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The results shown in Table 7.12 suggest that the GI-EE interactions are 
very sensitive to low EE levels (Π < 1.10). They also accurately characterize an 
interaction power value of zero when Π = 1.00, (i.e., no EE risk).

Table 7.13. Main effects (ME) power values, by risk profile (Φ and Π)—all gene models, 
N = 200,000

Φ Π

Experiment 1 Experiment 3

ME^  
Rec

ME^ 
Dom

ME^ 
Add

ME*  
Rec

ME* 
Dom

ME*  
Add

1.10 1.00 .68 .68 .68 .68 .68 .68

1.10 1.05 .67 .70 .73 .70 .70 .73

1.10 1.10 .65 .75 .68 .75 .75 .68

1.10 1.15 .65 .68 .72 .68 .68 .71

1.10 1.20 .77 .81 .69 .78 .79 .68

1.15 1.00 .60 .88 .94 .60 .88 .94

1.15 1.05 .65 .84 .92 .67 .85 .92

1.15 1.10 .61 .84 .92 .61 .84 .92

1.15 1.15 .75 .92 .97 .75 .92 .96

1.15 1.20 .65 .87 .94 .66 .85 .94

1.20 1.00 .75 1.0 1.0 .75 1.0 1.0

1.20 1.05 .73 1.0 1.0 .75 1.0 1.0

1.20 1.10 .81 1.0 1.0 .80 1.0 1.0

1.20 1.15 .81 1.0 1.0 .81 1.0 1.0

1.20 1.20 .85 1.0 1.0 .85 1.0 1.0

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level; ME = main effects; gene 
models: Rec = recessive, Dom = dominant, Add = additive.

Note:^ = ME from equation 7; * = ME from equation 7a; α ≤ 10-8.

These results suggest that for very large studies it is possible to predict 
positive associations between recessive genes linked to phenotypes with low to 
moderate risk. 

Conclusions
In summary, the chances of predicting an association in a GWAS are reduced if 
an environmental effect is present and the statistical model does not adjust for 
it. This is especially true if the environmental effect and genetic marker do not 
have an interaction effect. The functional form of the model also matters. The 
more accurately the form of the environmental influence is portrayed by the 
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statistical model, the more accurate the prediction will be. Even with very large 
sample sizes, association predictions involving recessive markers are low.

This study focused on one important methodological step involved in 
conducting a GWAS: selecting a statistical method and a supporting model 
that reliably predict associations. This study does not address the broader issue 
of the supporting experimental design that employs the statistical methods as 
part of an overall solution strategy. Those combined issues and their mutual 
interconnections are described by Cordell.28

The specific scenarios we address here involve genetic associations that 
have environmental influences. Our assumption is that the environmental 
influence that contributes to a given phenotype is in question and the precise 
form of that influence is unknown. A separate analysis to characterize the 
functional form to proxy the mechanism behind the environmental exposure 
is required. These approaches should focus on case-only data similar to the 
methods described in the Cornelis and colleagues study.18 These approaches 
involve investigating different environmentally related functional relationships 
between the suspected environmental influence and the phenotype in the 
cases-only subpopulation. For example, if gene effects and environmental 
effects are independently significant with respect to disease prevalence, a 
polynomial model could be used to characterize the relationship between 
environmental effects and the log-odds of disease prevalence. This would 
allow us to test whether the nonlinear parameterization would be required 
to characterize the environmental effect. Alternatively, if the environmental 
effect has multiple levels such as age, researchers could investigate a cubic 
polynomial to assess whether the effect stayed low initially then rose at some 
point and flattened out toward the end of the environmental effects range. 
If this analysis suggests an appropriate polynomial level for environmental 
effects, researchers should also investigate a similar assessment using the gene-
environment interaction variable.

We have used this simulation scenario in previous studies. We reviewed 
single-gene models and evaluated a wide class of statistical methods.23 Our 
results indicated that researchers should consider a multitest procedure that 
combines individual gene-based (dominant, recessive, additive) core tests as a 
composite statistical method for conducting the initial screen in a GWAS. The 
tests can be combined into a single operational test in a number of ways. Two 
such tests are Holm’s Bonferroni procedure and the MAX procedure described 
by Li and colleagues.29,30 Of course, if the gene model under investigation is 
known, a single test that assumes the implied inheritance form is better than 
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a combined test. For this study, all patterns across gene models are consistent 
and only vary by degree.

In Chapter 5, we have also evaluated the effect of phenotype errors that 
resulted from inaccurate diagnoses and genotype errors that resulted from 
gene-chip errors or occurrences of DNA methylation altering gene expression 
that associate a wild-type gene with the wrong phenotype outcome.20 Our 
results quantify the relationship between genotype and diagnosis error 
measures and sample size to achieve a .80 statistical power level. Our results 
also demonstrate that researchers should not underestimate the need to 
increase sample size to compensate for power loss due to the presence of 
genotype and diagnosis errors. 

In Chapter 6, we also investigated epistatic scenarios involving two genes.31 
The results showed that the most powerful statistical methods for predicting 
associations between phenotypes and genotypes in epistatic scenarios are 
statistical models that simultaneously test for associations involving both 
interacting loci. This is consistent with the results we present here. This result 
is not surprising and has been reported by others. We reported that if two 
genes contribute to a phenotype, the weaker gene will be obscured by the 
stronger gene and often will not be identified as a contributor to the phenotype 
when a single-gene model is used. Again, this result is similar to showing 
that the effect of an environmental exposure can obscure the influence of a 
genotype-phenotype association if the model does not account for the GI and 
the EE simultaneously. In this sense, two-gene models (or alternatively a gene-
environment model) produce better predictions of association than single-
gene models do. 

We acknowledge that our results could possibly depend on the particular 
experiments we devised to investigate how the statistical models performed. In 
light of this, we are reviewing other scenarios to establish the robustness of our 
findings. Nevertheless, establishing the genotype-to-phenotype connections 
without using a simulation approach is limited. 

For the gene-environment interaction scenarios addressed here, the results 
across all gene models lead us to conclude that using a composite test that 
supports distinct underlying statistical models—that is, a “main effects–only” 
model and a “main effects with interactions” model—is likely to be more 
effective than single-model tests. This result does not depend on the gene 
model and thus differs from the single-gene and epistatic scenarios, in which 
each different gene model assumption (i.e., recessive, dominant, or additive) 
requires representation in the composite test.20,29
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Polygene Methods in 
Genome-Wide Association Studies (GWAS)

Philip Chester Cooley and Ralph E. Folsom

CHAPTER 8

Overview  
The hope that the Human Genome Project would pave the way to detect 
associations between genetic markers and common diseases such as heart 
disease, diabetes, auto-immune diseases, and psychiatric disorders has not 
achieved expectations.1 Genome-wide association studies (GWAS) have been 
the dominant tool used in the exploration of the genome to determine the 
associations between genomic regions and complex traits in the population. 
There are two ways to improve the GWAS process. The first is to improve the 
quality of the data; the next generation of sequence data will provide greater 
genomic coverage and will soon be available to the scientific community. The 
second is by improving the computational process. Issues such as multiple 
testing and the influence of external (nondisease) variables that confound 
experimental results limit the interpretability of the statistical results. 
This chapter examines the utility of a computation process that considers 
multiple markers that simultaneously associate with a phenotypic trait. This 
computational process builds a single nucleotide polymorphism (SNP) 
network using a stepwise association method that proceeds in stages adding a 
single SNP at each stage until no further additions are called for.

Initially, the model used in a GWAS consisted of a series of single-locus 
statistical tests, examining each SNP independently for association to the 
phenotype. In Chapter 4, we examined this single-gene model and showed 
that, if the mode of inheritance (MOI) model—whether genes are dominant, 
recessive, additive, or multiplicative—is unknown, then a Cochran-Armitage 
composite (CA-C) test, which pools the possibility of three MOI outcomes into 

This chapter has not been published elsewhere.
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a single test, is the most powerful single-gene model test. We also showed that 
the classical case-control method of epidemiology (an MOI-agnostic test) will 
never be as powerful as the CA-C test.

Because most GWAS assume that the phenotype and the genotype data are 
error free, we examined the consequences of this assumption in Chapter 5 and 
found that adherence to the assumption forecasts sample size requirements too 
small to achieve reliable association predictions and undermines replication 
across studies. 

Because genes do not always act as single triggers but act in concert with 
other genes, polygene analysis is an important methodology that represents the 
next step forward if GWAS are to remain a viable exploratory tool. Single-gene 
GWAS have detected associations with numerous diseases but explain little 
about disease heritability. Polygenic models assume that thousands of genetic 
variants could impact the phenotype. For example, in humans, height, skin 
color, eye color, and weight are all phenotypes linked to polygenes. 

Chapter 6 discusses epistatic effects in association studies. We describe a 
simple polygene method: two-gene models that have been designed to act in 
ways that depend on the pair of MOIs and how the pair are positioned relative 
to each other. We show that in contrast to the single-gene model, two-gene 
models that are MOI agnostic (i.e., the two-gene case-control model) are 
more powerful than either single-gene models or models that treat gene-gene 
interactions only.

Chapter 7 uses a similar approach as that discussed in Chapter 6, but we 
replace one of the genes with a variable representing an external environmental 
influence such as a chemical exposure or the effects of aging. We show that 
detection of the genetic marker is more likely to occur if the external process is 
represented in the statistical model even if the characterization is inaccurate. 

This chapter also builds on the work of previous chapters by confronting the 
issue of how to process general polygene models with an unknown number of 
significant traits. We propose stepwise polygene analysis as a new strategy for 
studying the association between large sets of SNP predictors and groups of 
correlated phenotypes (i.e., outcomes). These data commonly arise in GWAS, 
in which associations with a large number of qualitative and quantitative 
phenotypes are investigated using hundreds of thousands of genetic markers. 
Our strategy uses the log linear-logistic model framework suited to analyzing 
qualitative trait responses. In the two-gene epistatic scenario, we showed 
that single-locus models do not detect all of the markers that are part of 
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the phenotype pathway. Other studies have also reported this finding.2 
However, from a combinatorial perspective, polygene models can create an 
overwhelming number of comparisons when using more than two loci. A 
number of methods exist that have developed approaches to examine all-
possible two-locus combinations.3,4 However, the computational requirements 
of these approaches is daunting.

Chapter 8 defines a new polygene approach: a multistep process that is 
analogous to a stepwise association process. A major new contribution is 
that the initial stage of our process examines all usable SNP autosomes using 
the CA-C test—which, as we showed in Chapter 4, is the most powerful of 
the conventional tests used to predict associations in GWAS5—to predict 
each SNP’s genetic inheritance properties. The accuracy of these inheritance 
predictions determine the effectiveness of the method because this assumption 
is used to estimate the type of wild-type alleles for each loci. Subsequent stages 
statistically combine the SNPs from previous stages and examine whether any 
of the unassigned SNPs are associated with the phenotype based on the SNPs 
from previous stages. Because each stage builds on the previous one, we refer 
to this method as the “stepwise association method,” and we use it to predict 
polygene networks for a given phenotype. 

To test the method, we generated sets of simulated data described in the 
“Generating SNP Data” section. These data sets consist of SNP (genotype) 
data for each subject and an associated phenotype (case-control) measure. 
The interclass correlation of the genotype data is controlled to determine 
how strongly the different SNPs resemble each other, and each SNP has a 
designated MOI and risk level. Using a combination of SNP and genotype 
information, we estimate the value that each SNP contributes to the probability 
of a case and use Monte Carlo methods to assign a case-control measure. 
Collectively, this constitutes a “truth set” of known outcomes and the factors 
that affect genotype-phenotype association.6

Hence, we can assess the performance of each method to predict known 
outcomes. In general, our results suggest that the process is effective for main 
effect and interaction SNPs with modest effects, as measured by their odds 
ratios (ORs), but variables with small effects present a challenge that will be 
difficult to overcome even with very large sample sizes.
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Background
In the past 7 years, GWAS have been the most widely used tool in genetic 
research. Yet over this period, the tools of our research efforts have failed to 
unravel the complete biological architecture of genetic diseases.7 Researchers 
have learned from the myriad GWAS conducted during the past few years 
that the biggest effect sizes for associations between genes and phenotypes are 
much smaller than anticipated. For example, in a genome-wide meta-analysis 
of intelligence quotient (IQ) involving nearly 18,000 children, the largest 
effect size accounted for only 0.2 percent of the variance.8 This suggests that, 
in general, smaller effects will be barely detectable in GWAS and extremely 
difficult to replicate. However, this finding conflicts with hundreds of candidate 
gene and gene-environment interaction studies that find significant effects 
using modest sample sizes. The finding also implies that many of the reported 
markers are false positives that cannot be replicated, although some journals 
now require that candidate gene papers include an independent replication.9

Identifying additional loci of small effect can be partially accomplished 
by meta-analysis of multiple GWAS using stringent significance thresholds. 
Furthermore, it is unlikely that GWAS will ever be powered to identify the 
full spectrum of small effects. Several recent analytical approaches have 
been developed to test whether common variants of extremely small effect 
size could be combined to explain phenotype variation. This approach was 
successfully applied to the schizophrenia gene SCZ. A polygene small-effect 
SNP model explained approximately 35 percent of disease diagnosis variance 
of an estimated total of 80 percent.10 In a second example, Yang and colleagues 
estimated that 67 percent of the heritability of human height could be 
explained by a polygenic model.11 Although both models fail to estimate total 
heritability, the models do account for far more than that of known, validated 
associations. However, these approaches are limited because they are unable 
to identify the proportion that each marker contributes to trait variation: the 
marginal effects contributed by each variable are impossible to estimate using 
models with many genetic variables.12 Nevertheless, a polygenic analysis 
defines a large set of variants with an unknown subset that affects phenotype. 
Together, these represent the true underlying biology. 

Performing polygenic analysis to understand the genetic basis of complex 
traits leads to a systems biology perspective in which many perturbations of a 
complex network contribute to the outcome of a complex trait phenotype. The 
complexity is difficult or impossible to disentangle on a per variant basis. To 
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establish the biology of the complex trait directly, researchers need a systems 
genetics approach in which large sets of genetic variants and/or genes are 
analyzed in an integrated way and incorporate functional data.13

Disease-Scoring Methods
Disease-scoring methods are one such approach that researchers have 
explored. Combining multiple genetic markers into a single score that predicts 
disease risk is a relatively new approach for associating SNPs with disease 
in the context of GWAS. This approach has shown that some diseases have 
a strong genetic basis, even if few actual genes have been identified. Disease 
scoring has also revealed a common genetic basis for distinct diseases. The 
scoring approach has been used to obtain evidence of genetic effects when no 
single markers are significant, establish a common genetic basis for related 
disorders, and construct risk prediction models. Published studies have 
demonstrated that significant associations of polygenic scores have occurred 
only in well-powered studies and that useful levels of prediction may occur 
when predictors are estimated from very large samples, up to an order of 
magnitude greater than any currently available. This suggests the need for 
studies to use larger sample sizes.14

Many geneticists believe that better polygenic scoring methods will be 
developed. Quantitative genetic techniques that estimate heritability using 
DNA suggest that about half of the heritability can be detected using the 
common SNPs that are currently genotyped on commercially available DNA 
arrays, given sufficiently large samples.15 Economic improvements in whole-
genome sequencing will make it cost-effective to identify DNA sequence 
variation of every kind throughout the genome.7

Studying environment effects is more difficult than studying genes because, 
as Cooley and colleagues have shown, the environment is more complex than 
DNA with its genotype 0,1,2 designation code.16 However, environmental 
research likely could capitalize on the advances in whole-genome technology 
to identify biomarkers of environmental influence and therefore help detect 
genetic associations.7

Statistical Approaches to Polygene Analysis
Although disease scoring is one viable approach to polygene analysis, this 
chapter focuses on using statistical analyses to approach the problem. In an 
earlier study of epistatic loci, we showed that for a given locus, single-locus 
tests are not as effective as two-locus tests for predicting associations if the risk 
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value for a second interacting locus exceeds a relative risk of 1.05–1.12.1 The 
crossover risk value varies, depending on the genetic inheritance properties of 
the pair of interacting loci. In general, the power of two-locus tests to detect 
associations improves as the risk value of the second locus increases, whereas 
the power of single-locus tests progressively declines. 

For certain inheritance models and risk values, a true association between 
a locus and phenotype can be masked by a second interacting locus when 
using single-locus tests. However, these findings are not unexpected and 
are consistent with the findings of others.17-19 We also note that a study of 
ALS subjects identified SNPs that, when paired with other SNPs, became 
significant markers of ALS, although there were no indications of association 
using single-gene models.20 Thus, some markers can only be identified if they 
are paired with other markers within a polygene network that is part of the 
phenotype’s biological pathway.*  

Multilocus analyses are not as straightforward as conducting single-
locus tests and present numerous computational, statistical, and logistical 
challenges.21 Examining all pairwise combinations of SNPs using gene 
chips that generate 500,000 to 1,000,000 SNPs is currently computationally 
infeasible. One approach to this issue is to preprocess the SNPs’ set to 
eliminate redundant SNPs. A way to accomplish this is to select a set of results 
from a single-SNP analysis based on an arbitrary significance threshold and 
exhaustively evaluate interactions in that subset. We incorporate this approach 
into our stepwise polygene analysis method but acknowledge that selecting 
SNPs to analyze based on main effects will prevent certain multilocus models 
from being detected where the heritability is concentrated in the interaction 
rather than in the main effects. 

Our stepwise polygene analysis approach looks for a main effect at Stage 1 
but also considers the possibility of interactions. The benefit of our method 
is that it performs an unbiased analysis for interactions within the selected 
set of SNPs. It is also far more computationally and statistically tractable than 
analyzing all possible combinations of markers. 

Bush and colleagues describe another strategy: restricting examination of 
SNP combinations to those that fall within an established biological context, 

*	We use the term “biological pathway” to represent the biological reactions and the interaction 
network in a cell where each reaction is identified with its enzyme, which in turn is coded by 
certain genes. Some of the most common biological pathways are involved in metabolism, 
regulating gene expression, and transmitting signals. Pathway analysis plays a key role in the 
advanced studies of genomics.
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such as a biochemical pathway or a protein family.22 Because both these 
techniques rely on electronic repositories of structured biomedical knowledge, 
they use a tool that generates SNP-SNP combinations with a statistical method 
that evaluates combinations in the GWAS data set. For example, the Biofilter 
approach uses public data sources in conjunction with logistic regression and 
multifactor dimensionality reduction methods.23 Similarly, the INTERSNP 
tool for genome-wide interaction analysis (GWIA) of case-control SNP 
data and quantitative traits selects SNPs for joint analysis using a priori 
information. Sources of information to define meaningful strategies are based 
on statistical evidence (e.g., single-marker association studies computed from 
different data sources). INTERSNP uses logistic regression and contingency 
table approaches to assess SNP-SNP interaction models.24

Cooley and colleagues examined the performance of three different 
two-locus tests.25 In most scenarios, the two-locus, case-control 8-degree of 
freedom (df ) Pearson test was the most powerful. In certain scenarios (i.e., 
when both genes have a dominant MOI), the unlinked, cases-only version of 
the Wu and colleagues test as refined by Ueki and colleagues was optimal. The 
version of the Ueki test in which cases and controls are included was never 
optimal.26,27 These findings are not surprising because Wu and colleagues’ 
modified test measures interaction effects exclusively, whereas the two-locus, 
case-control test includes main effects for both loci as well as interaction 
effects.

One unresolved issue is how to construct a computationally practical test 
that takes into account interactions and enhances the detection of associations 
between a specific locus and the phenotype of interest. As mentioned 
previously, Wang and colleagues conducted an empirical comparison of five 
epistatic interaction detection methods, which examines all combinations of 
two-gene methods.3 Each of the five methods demonstrated unique utilities, 
but no single method was simultaneously the most powerful and the most 
scalable and had the lowest type-1 error rate in every setting. When users 
want powerful results and are not concerned with computation cost, Wang 
and colleagues cite the TEAM method of Zhang and colleagues as having 
the highest performing algorithm.3,4 However, researchers should note that 
even limiting the number of interacting genes to two requires n × (n - 1) / 2 
association calculations. For n = 500,000–1,000,000, the computational 
requirements are daunting but readily parallelizable.
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Methods

The Stepwise Algorithm 
Our method proceeds in stages. At each stage, we add an unassigned SNP 
to the network unless the test score is below the significance threshold. The 
first step (Stage 1) makes an initial pass against all usable SNP autosomes to 
identify the most highly significant SNP-phenotype association. The second 
stage statistically combines the Stage 1 SNP with all original autosome SNPs 
to identify the most significant SNP pair associated with the phenotype. This 
stage uses a test for significance that is conditional on the Stage 1 SNP. We 
then continue this process for triple SNPs, quadruple SNPs, and so on until 
combining the loci produces no new SNP-phenotype associations. This process 
is analogous to a stepwise regression process, in which networks of SNPs are 
connected stage by stage until no new SNPs can be identified. Our process is 
not an exhaustive polygene analysis, but it does assume that at least one loci 
associated with the phenotype can be identified via a single-gene model. 

Step 1 Details. The initial pass uses the CA-C test to examine all SNP 
autosomes and apply a restrictive significance threshold to identify the most 
highly significant SNP-phenotype association, known as the Stage 1 SNP. 

The single-locus model used in Stage 1 is based on the CA-C test that used 
an MOI agnostic model that combined the three versions (recessive, dominant, 
and additive) of the classical CA-C method into a single test. Our previous 
results indicate a multitest procedure that combines the results of individual 
MOI-based tests is an effective method for initially filtering a GWAS. Note 
that the CA-C method can be used to predict the SNP-specific MOIs. 
Consequently, the first stage not only selects the Stage 1 SNP, it also tags all 
other SNPs with an MOI, which is then used to predict ensuing stage-specific 
SNPs. 

Ensuing Steps. Stage i (i = 2,3,4, …) is defined as progressively adding one 
SNP, if appropriate, into the process; the stages advance until it is no longer 
possible to add SNPs and advance. Stage i applies a model of all of the Stage i-1 
SNPs and computes a test score. Stage i (i > 0), i-1 SNPs have been associated 
with the phenotype and are assumed to be part of the SNP/phenotype 
network. We then systematically add remaining unassigned SNPs to the set of 
stage i-1 SNPs and compute a new test score. The test score is defined as twice 
the difference between the natural log of the likelihood including the Stage i 
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SNP and the natural log of the likelihood including only the Stage i-1 SNPs. 
This test score has approximately a χ2 distribution with one degree of freedom 
if the log odds ratio for the Stage i SNP is actually 0.

Note that the test used to identify the Stage i (i>1) SNP uses a logistic 
regression (LR) approach and the construction of the test depends on the 
stage. A log likelihood (LLH) criteria is used to estimate the LR parameters 
and measure whether the Stage i SNP sufficiently differentiates between cases 
and controls given the set of Stage i-1 SNPs at a specified significance level T. 

Formally, for si to be a candidate SNP at Stage i, it must satisfy: 

	 ti = LLH[si / s1 , s2 , …, si-1 ] ≥ T for i = 2,3,4, … N,  	 (8.1)

where s1 ≠ s2 ≠ … ≠ si-1. If more than one SNP satisfies equation (8.1), 
si is defined as the SNP with the largest value of ti. If ti < T the process is 
terminated at the i-1 stage. Also note that T will be Bonferroni corrected at 
each stage in the process to account for the multiple number of tests carried 
out for each stage.

To summarize, the process begins with the best single SNP and continues 
for SNP pairs, triple SNPs, quadruple SNPs, and so forth, until the process 
is unable to identify any new SNPs to add to the network. At Stage i, a test of 
significance is used that is conditional on the prior selected set of SNPs. The 
process continues to define a networks of SNPs that are connected stage by 
stage, until no new SNPs can be identified. 

Generating SNP Data
To assess the method we propose, we first had to generate a synthetic set of 
SNP data. There are a number of features that characterize these data that also 
characterize real-life properties of SNP data:

1.	 The SNP inheritance properties

2.	 The distribution of genotype alleles

3.	 The correlation between SNP pairs (as a linkage disequilibrium measure)

4.	 The contributions of the individual SNPs toward their association with the 
phenotype 

We discuss each of these properties in subsequent sections. Note that 
alternative methods to generate data are presented in the Appendix to this 
chapter. 
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Mode of Inheritance. There are two main properties of genetic inheritance 
formulated by Mendel: the principle of segregation and the principle of 
independent assortment. In segregation, for any particular trait, the pair of 
alleles of each parent separate and only one allele passes from each parent on 
to an offspring. In independent assortment, different pairs of alleles are passed 
to offspring independently of each other. This principle indicates why the 
human inheritance of a particular eye color does not increase or decrease the 
likelihood of having six fingers on each hand, for example. This is because the 
genes for independently assorted traits are located on different chromosomes. 
The Online Mendelian Inheritance in Man (OMIM)28 provides the best source 
of information on the MOI distribution (see Table 8.1). However, OMIM is 
disproportionally populated by genes linked to single Mendelian disorders, 
and genes associated with multifactorial disorders are underrepresented. 
Because polygene influences are assumed to be a major source of additive and 
multiplicative SNP behavior, the distribution in Table 8.1 is likely biased. 

Table 8.1. Distribution of genes in Online Mendelian Inheritance in Man, by mode of 
inheritance (MOI)

MOI Frequency

Autosomal Dominant 3,805

Autosomal Additive 12

Autosomal Multiplicative 21

Autosomal Recessive 3,775

Genotype Distributions. The genotype distribution data we used in this study 
was first described by Schymick et al.6 It consists of 555,352 SNPs from 276 
ALS patients and 271 neurologically normal controls. These data are publicly 
available to the scientific community and were produced by the Laboratory of 
Neurogenetics of the intramural program of the National Institute on Aging 
(NIA), National Institutes of Health (NIH). The genotyping was performed using 
the Illumina Infinium assay humanhap550. Infinium assays assess haplotype 
tagging SNPs based upon Phases I+II of the International HapMap Project.

Linkage Disequilibrium (LD). LD is a property of SNP pairs that describes the 
degree to which an allele of one SNP is inherited (correlated) with an allele 
of another SNP. The concept of LD was developed by population geneticists 
in an attempt to describe changes in genetic variation within a population. 
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According to the theory, recombination events occur within a family. This 
effect is amplified through generations, and in a population of fixed size 
undergoing random mating, repeated random recombination events will 
eventually produce linkage equilibrium/independence. Linkage between 
markers on a population scale is referred to as “linkage disequilibrium.”

In other words, LD is the nonrandom association of alleles at two or more 
loci that descend from single, ancestral chromosomes. It is also a measurement 
of distance between SNP locations and represents the combination of alleles in 
a population more often or less often than would be expected from a random 
draw. The degree of LD depends on the difference between observed allelic 
frequencies and those expected from a homogenous, randomly distributed 
model.29 Linkage equilibrium occurs in populations in which combinations of 
alleles or genotypes can be found in the expected proportions.30

However, biology is not the only factor at play with respect to LD 
measurements. Humans tend to associate with other humans who have similar 
genetic characteristics. Studies have shown that populations tend to stratify 
according to nonrandom mating patterns in which subjects with similar 
genotypes and/or phenotypes mate more frequently than would be expected 
under a random mating pattern. For example, it is common for individuals of 
similar body size to mate. Evidence for this process has been reported from 
the National Longitudinal Study of Adolescent Health.31 One feature of this 
study tested genetic similarity between friends. Using friendship networks 
clusters of genotypes demonstrated genotype positive correlation (homophily) 
and negative correlation (heterophily). These results were replicated in an 
independent sample from the Framingham Heart Study. These unique results 
suggest that association tests should take into account the fact that human 
genes are influenced by the humans of their social networks.

A natural way to measure LD is by the correlation coefficient.29 
Characterizing LD structure is useful for designing genetic association 
studies because we can control for genetically homogeneous populations 
and their influence on population-specific parameters. However, in reality, a 
study sample can be genetically heterogeneous with substructure even if the 
recruiting criterion requires a specific ethnic group. 

In this study, we specify the degree of correlation (using the product 
moment or Pearson correlation coefficient) between each SNP pair during the 
generation of the SNP database as a measure of LD.



128 	 Chapter 8

Designating the Case-Control Assignments. The final procedure in creating 
the SNP data set uses the SNP data (with the appropriate LD genomic spacing) 
and the SNP odds ratio (ODDS) data to determine the case (1) control (0) 
designation codes that are used to predict association. In Table 8.2, we present 
three examples of data we will use to test our method. 

We assume that these three examples are real gene networks that are known 
with certainty. Our goal is to examine the genotype data that describe these 
networks to assess method performance. To accomplish this, we will create 
data sets that reproduce the specifications that define the networks. These 
specifications include the MOI, which we limit to dominant, recessive, and 
additive; sample size (N); the LD characteristics; and the ODDS relative to 
the penetrance odds. If P0 is the disease penetrance probability, then the 
penetrance odds is P0/(1-P0)=exp(B0). If P1 is the probability of disease when 
a given dominant MOI SNP (SNP1) has one or two wild-type alleles, then P1/
(1-P1)=exp(B0+B1) is the disease odds with the addition of SNP1. The SNP1 
ODDS divided by the penetrance odds or the SNP-1 odds ratio (relative to the 
penetrance odds) is therefore exp(B1). 

By knowing these specifications, we can reverse-engineer a data set that 
replicates (with varying degrees of certainty) the starting specifications. This 
approach thus generates replicates with varying degrees of goodness of fit. We 
specify the total number of replicates to calculate and then store the best-fitting 
replicates as the data to analyze, because their LR coefficients best conform to 
the specifications and serve to represent the method’s average performance 
over a large number of replicated samples of the specified size.

Example 1 consists of 7 high-risk SNPs (ODDS > 1.2), 4 low-risk SNPs 
(ODDS > 1.0 & ODDS < 1.2), and 4 no-risk SNPs (ODDS = 1.0). The 
penetrance is .25. There are 5 recessive SNPs, and 10 dominant SNPs.

Example 2 is identical to Example 1, except it includes two additional effects 
that both represent interactions. The first is the interaction between SNPs 3 
and 6. The second represents the interaction between SNPs 1 and 9. All four 
SNPs that compromise the interaction terms have positive main effects.

Example 3 comprises three SNPs with ODDS = 1.10, three no-risk SNPs, 
and nine SNPs with risks between 1.01 and 1.05. This example is designed to 
test the feasibility of performing association studies with low-effect SNPS, and 
thus will require a much larger sample size to detect an effect.

In summary, the X (design) matrix consists of genotype data that contains 
an LD structure specified exogenously. We use these data, in conjunction with 
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the MOI and the ODDS parameters, to determine the probability of a case. 
Using a random number compared with the case probability, we assign the 
case-control designation vector Z and the number of subjects N, which we also 
specify exogenously and use to determine the number of rows in X and Z, as 
Table 8.2 shows.

Table 8.2. SNP data set design data—three examples
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Intercept B0
# -1.386 .25 -1.386 .25 -0.916 .40

SNP1 D B1 .2231 1.25 .2231 1.25 .0010 1.01

SNP2 R B2 .0 1.00 .0 1.00 .0953 1.10

3 D B3 .3365 1.40 .3365 1.40 .0953 1.10

4 D B4 .0953 1.10 .0953 1.10 .0010 1.01

5 R B5 .4055 1.50 .4055 1.50 .0 1.00

6 D B6 .1823 1.20 .1823 1.20 .0488 1.05

7 D B7 .1397 1.15 .1397 1.15 .0392 1.04

8 R B8 .0 1.00 .0 1.00 .0953 1.10

9 R B9 .2852 1.33 .2852 1.33 .0488 1.05

10 R B10 .0953 1.10 .0953 1.10 .0198 1.02

11 R B11 .2231 1.25 .2231 1.25 .0010 1.01

12 D B12 .3001 1.35 .3001 1.35 .0392 1.04

13 D B13 .0953 1.10 .0953 1.10 .0 1.00

14 R B14 .0 1.00 .0 1.00 .0 1.00

15 D B15 .0 1.00 .0 1.00 .0296 1.03

SNP1 × SNP9 I B16 X X .2523 1.30 X X

SNP3 × SNP4 I B17 X X .1823 1.20 X X

MOI = mode of inheritance; ODDS = SNP odds ratios; SNP= single nucleotide polymorphism. 
#B0 = log odds of penetrance.

We assign a constant genomic distance between SNP pairs as measured by the 
Pearson correlation coefficient, R. We begin by selecting SNP1 at random from 
the Schymick et al.6 distribution of SNPs. We define D as the genomic distance, 
which will be reflected in R. We then select D percent of the SNP1 genotypes and 
assign them to SNP2; the remaining 1-D percent are selected at random. This 
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process performs the same calculations with SNP2 and SNP3, and so forth. Thus, 
the genomic distance between SNP1 and SNP2 will be approximately D and the 
genomic distance between SNP1 and SNP3 will be D squared. 

Completion of this step generates a design matrix, X, consisting of genotype 
values (0,1,2). The next step, which calculates the case-control designation 
proceeds according to the following steps:

1.	 Given that the Xijs are = {0,1,2}F, define a set of variables Yijs derived from 
the Xijs in the following way:

a.	 If Xij = 2 and j is a recessive SNP, Yij = 1 otherwise Yij = 0.
b.	 If Xij > 0 and j is a dominant SNP, Yij = 1 otherwise Yij = 0.
c.	 Ignore (for the time being) additive and multiplicative SNPs.

2.	 Calculate the case score Wi = B0 + SUM (Bj × Yij) for the ith subject.

3.	 Convert the score into a probability pi = exp(Wi) / (1.0+exp(Wi) for the ith 
subject (pi is the predicted probability of a case).

4.	 Use pi to generate Zi .the designation of the case-control value i.e. if random 
number (0–1) < pi Zi = 1 otherwise Zi = 0. 

5.	 After the Z vector is generated, determine whether the calculation of the 
Bjs are sufficiently close to the parameters in Table 8.2 that were used to 
generate the data set by performing a logistic regression of the generated 
data to see how well the estimated coefficients reproduce the values in Table 
8.2. 

6.	 Generate a measure of “fit closeness” with respect to the estimated Bis 
relative to the parameters in Table 8.2 and save the corresponding design 
matrix with the closeness measures. This will generate a number of 
replicates that exhibit closeness scores, with the last one having the best 
overall correspondence. 

At this point in the process we have generated an X matrix and a 
companion Y matrix, which indicates whether the genotype has a wild-type 
allele. We also generated a vector Z that accounts for the collective ODDS 
of the SNPS. Furthermore, the process has been checked by estimating the 
coefficients (i.e., step 5 above) of the logistic regression model for a number of 
replicates. We save only the replicates that match original ODDS specifications 
for future analysis, which in our case will be to assess how the proposed 
method performs.
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Results

Model Comparisons and MOI Predictions
The first example illustrates the approach using genotype data consisting of 
SNP pairs that are paired at rates D = 0.0, 0.2, and 0.4. We assume that the 
15 SNPs have risk levels that are consistent with those that Table 8.2 presents. 
We then use two LR models to apply our method. The first model uses the 
0,1,2 genotype codes as the independent variable codes. The second model 
uses the MOI predictions to stratify the genotype data into wild-type and non–
wild-type allele. We will refer to each step as a stage.

The Stage 1 MOI predictions are shown in Table 8.3. The missed predictions 
predominate for those SNPs with low ODDS values and for LD = .4. For 
example, with ODDS > 1.0, the missed predictions occur twice in the LD = .0 
column (SNPs 10 and 13), once in the LD = .2 column (SNP 6) and three times 
in the LD = .4 column (SNPs 5, 7, 11). 

Table 8.3. Stage 1 summary

SNP ODDS MOI—Actual

MOI—
Predicted 

LD = .0

MOI—
Predicted 

LD = .2

MOI—
Predicted 

LD = .4

1 1.25 D D D D

2 1.00 R R D D

3 1.40 D D D D

4 1.10 D D D D

5 1.50 R R R A

6 1.20 D D A D

7 1.15 D D D A

8 1.00 R D A A

9 1.33 R R R R

10 1.10 R A R R

11 1.25 R R R A

12 1.35 D D D D

13 1.10 D A D D

14 1.00 R D A D

15 1.00 D R D A

SNP = single nucleotide polymorphism; ODDS = SNP odds ratios; MOI = mode of inheritance; LD = linkage 
disequilibrium; N = 10,000. 

Note:  Missed predictions are shown in boldface.
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Having predicted MOIs reasonably accurately, the question remains: is there 
value in using this information to predict associations? Figures 8.1A, 8.1B, 
and 8.1C compare the two models for each LD level. The three figures display 
the log of the test p-value scores by stage. The log values of the corrected .05 
and .01 threshold levels are also included on each figure. They make a clear 
case that Model 2, which uses the MOI information to map the three genotype 
values to the two allele levels, is more powerful than Model 1, which treats the 
genotype levels as a single variable. Both models use the LR framework. In 
each of the figures, the p-value of the Model 2 (orange) is less than the p-value 
of Model 1 (blue). 

Table 8.4 translates the p-value measures in the figures into a performance 
measure describing the composition of the network. This table summarizes the 
overall performance by model for each LD level. For example, the comparison 
for LD = .2 indicates that at the .01 (.05) threshold, Model 1 missed 6 (3) SNPs 
(of 11 SNPs with ODDS > 1.0) and associated 5 (8) correctly. By comparison, 
Model 2 predicted correctly 10 (9) SNPs at the .01 (.05) significance level and 
missed 1 (2). 

Figure 8.1a. Model comparison for LD = 0.0 SNP data
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Figure 8.1b. Model comparison for LD = 0.2 SNP data
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log(.05) = .05 corrected confidence threshold; log(.01) = .01 corrected confidence threshold.

Figure 8.1c. Model performance comparison for LD = 0.4 SNP data
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Table 8.4. Prediction accuracy results, by model and LD criteria

Criteria\LD .0 .0 .2 .2 .4 .4

Model 1 2 1 2 1 2

Correct at .01 8 8 5 9 7 7

Correct at .05 8 8 8 10 8 10

Missed at .01 3 3 6 2 4 4

Missed at .05 3 3 3 1 3 0

ODDs ≤ .01 missed at .01 4 4 3 3 2 1

ODDS ≤ .01 missed at .05 3 3 2 0 2 0

LD = linkage disequilibrium; ODDS = SNP odds ratios; SNP = single nucleotide polymorphism; N = 10,000. 

The results of Table 8.4 and Figures 8.1A through 8.1C suggest collectively 
that differences exist between statistical models and that Model 2 outperforms 
Model 1. Also, with the subject size N at 10,000, the predictive accuracy of 
both models appears unreliable for those SNPs with an effect size measured by 
ODDS ≤ 1.10. 

Models With Interactions
Our investigation of interaction effects used Example 2, as defined in Table 8.2. 
Example 2 is the same as Example 1, with two additional interactions terms. 
SNP1 and SNP9 form an interaction with ODDS = 1.30, and SNP3 and SNP 
form an interaction with ODDS = 1.2. SNP9 is recessive; therefore, we would 
anticipate that this interaction term would be more difficult to detect than the 
interaction involving SNPs 3 and 4, which are both dominant SNPs. 

The first task is to build a data set that conforms to the Example 2 
specifications. We do this for each of the three SNP intercorrelation effects that 
varied from .0 to .2 to .4. Table 8.5 shows the build results.

The results shown in Table 8.5 are based on assigning N = 10,000, running 
1,000 replicates, and selecting the run that best fits the specification from the 
1,000 replicates. In reconstructing the data, fitting the specifications is not an 
exact process and even small deviations could influence the accuracy of the 
association prediction phase. However, we controlled this by adding replicates 
and we generated sufficient replicates to demonstrate that the method’s 
performance is consistently applied. The LD = .0 and .2 runs do not identify 
one main effect SNP (with an ODDS < .10) and both interactions (type II 
errors). For the LD = .4 run, the MOI of SNP 5 was inaccurately predicted as 
an additive SNP. 
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Table 8.5. Build results for interaction example (Example 2) by LD levels = 0.0, 0.2, and 0.4

SNP ODDS MOI

Corr =.0 
ODDS 

reconstructed

Corr = .2 
ODDS 

reconstructed

Corr = .4 
ODDS 

reconstructed

1 1.25 D 1.26 1.29 1.23

2 1.00 R .96 .99 1.02

3 1.40 D 1.41 1.42 1.40

4 1.10 D 1.13 1.16 1.03

5 1.50 R 1.48 1.55 1.52

6 1.20 D 1.24 1.24 1.19

7 1.15 D 1.15 1.15 1.16

8 1.00 R 1.02 .98 .97

9 1.33 R 1.33 1.35 1.36

10 1.10 R 1.10 1.11 1.09

11 1.25 R 1.20 1.25 1.30

12 1.35 D 1.34 1.37 1.38

13 1.10 D 1.12 1.08 1.11

14 1.00 R .97 1.00 .97

15 1.00 D 1.00 1.02 1.03

1 × 9 1.30 D × R 1.31 1.27 1.26

3 × 4 1.20 D × D 1.18 1.24 1.19

Correct Calls 10 10 8

Missed SNP 10 & 
Interactions

SNP 13 & 
Interactions

SNPs 5,11,13 & 
Interactions

SNP = single nucleotide polymorphism; ODDS = SNP odds ratios; MOI = mode of inheritance.

Overall, these errors contributed to the exclusion of SNP5 as a member 
of the network. The central question is “can the interactions be predicted for 
larger sample sizes?” Figure 8.2 results partially address this issue by graphing 
the log of the p-value scores by algorithm stages as a function of N (i.e., N = 
10,000, 20,000, 30,000 ,and 40,000).

Table 8.6 summarizes the results of Figure 8.2 for N = 40,000 subjects. An 
N = 40,000 is sufficient to predict all SNPs with ODDS > 1.00. Only one of the 
two interactions was predicted to associate with the phenotype. The interaction 
involving recessive SNP9 was undetected. 
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Figure 8.2. Influence on sample size N on model performance
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Table 8.6. Results by stage: correlated SNP pairs LD = .200

Stage ODDS MOI SNP
LD = .20 
p-value

1 1.40 D 3 -269.2

2 1.35 D 12 -132.3

3 1.33 R 9 -116.2

4 1.50 R 5 -100.6

5 1.25 D 1 -69.02

6 1.20 D 6 -50.95

7 1.10 D 4 -33.88

8 1.25 R 11 -31.83

9 1.15 D 7 -26.31

10 1.10 D 13 -15.49

11 1.20 D × D 3 × 4 -10.20

12 1.10 R 10 -6.135

ODDS = SNP odds ratios; MOI = mode of inheritance; SNP = single nucleotide polymorphism; LD = linkage 
disequilibrium; N = 40,000, note all significant at the .01 (Bonferroni-corrected) level. Only the SNP1 by 
SNP9 interaction was not detected. All SNPs with ODDs = 1.00 were not associated (correctly).
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The results of Figure 8.2 and Table 8.6 suggest that more than N = 10,000 
samples are needed before the interaction is detected. However, one of the 
interaction terms involving the recessive SNP (SNP9) was undetected even 
with an N = 40,000. 

Detecting Low-Effect SNPs
Table 8.7 presents results using Example 2. The results are intended to examine 
the sample-size requirement for Model 2 with SNP data that has low levels of 
risk. Recall that the Example 2 network consists of three SNPs with ODDS = 
1.10, three no-risk SNPs, and nine SNPs with risks between 1.01 and 1.05. We 
expanded our sample to 300,000 to detect the low-level effects contained in 
the example. 

Table 8.7. Results of low-effect genes by stage and correlated SNP pairs LD = .200 for 
Model 2
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1 1.10 D 3 -43.45 1.10 D 3 -59.77 1.10 D 3 -115.0

2 1.05 D 2 -18.16 1.04 D 7 -31.03 1.10 R 8 -75.33

3 1.05 R 7 -15.39 1.10 R 8 -24.94 1.10 R 2 -43.84

4 1.10 R 8 -10.77 1.10 R 2 -21.03 1.05 D 6 -37.24

5 1.10 R 6 -8.504 1.05 R 9 -13.72 1.04 D 12 -24.97

6 - - - - 1.05 D 6 -12.98 1.05 R 9 -23.39

7 - - - - 1.04 D 12 -11.35 1.03 D 15 -10.42

8 - - - - 1.03 D 15 -7.835 1.04 D 7 -9.722

9 - - - - - - - - 1.01 D 4 -6.457

Missed 1.04 D 4 -5.854  1.01 R 11 -5.101 1.02 R 10 -1.740

“” 1.03 D 9 -3.677 1.02 R 10 -1.740 1.01 D 1 -1.274

“” 1.04 D  12 -3.614 1.01 D 1 -1.274 1.00 R 5 -.8376

“”  1.02  R 15 -2.412 1.00 R 5 -.8376 1.00 D 13 -.80

“” 1.01 D  1 -2.046 1.00 D 13 -.8067 1.01 D 4 -.5392

“” 1.00 D 10 -1.729 1.01 D 4 -.5392 1.00 R 14 -.1960

“” 1.01 R 14 -1.488 1.00 R 14 -.1960 - - - -

“” 1.01 D  11 -1.246 - - - - - - - -

“” 1.00 R 13 -1.062 - - - - - - - -

“” 1.00 R  5 -.3823 - - - - - - - -

ODDS = SNP odds ratios; MOI = mode of inheritance; SNP = single nucleotide polymorphism.
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As Table 8.7 indicates, increasing N affects the performance of the stepwise 
algorithm. For N = 100,000, the algorithm identifies five significant loci at the 
.01 corrected significance level. For N = 200,000, eight loci are identified, and 
for N = 400,000, nine significant loci are identified. Overall, the method missed 
seven small-effect loci when N = 100,000, four loci when N = 200,000, and 
three loci when N = 400,000. 

Table 8.7 also demonstrates that a very large N is necessary to detect very 
low risk levels (<1.03), especially if the SNP is recessive. Also, much of the 
N = 400,000 model advantage occurs at its higher stages, which suggests that 
even models with larger Ns may still be ineffective for low-risk loci. 

Overall, these results suggest there is little value in extending N to levels 
higher than 400,000. 

Discussion
This study has demonstrated that creating a set of synthetic genes with known 
properties that can be analyzed in the context of GWAS experiments is 
possible and informative. Because the properties of the genes are determined, 
and it is possible to establish exploratory protocols that define computational 
best practices. At least seven other similar approaches have been reported 
in the literature; however, the creation process we used in these experiments 
controls for LD, sample size, MOI, the single locus main effect risks, and the 
interaction loci risks, which other similar approaches do not. 

Our synthetic gene procedure is designed to examine the properties of 
defining a network of genes that link to a single phenotype. The method for 
establishing this gene network is straightforward. It proceeds in stages and 
uses logistic regression methods at each stage except Stage 1. Each stage uses 
a maximum likelihood ratio test to identify the optimal locus to include in 
the network, given the loci that have accumulated in the network in prior 
stages. The Stage 1 calculation comprises the composite test that uses the three 
variations of the Cochran-Armitage test. Each variation assumes one of three 
MOIs and permits an estimate of the individual loci MOI. The MOI prediction 
is then used in subsequent stages to improve statistical power. 

The results indicate that 

•	 a network of SNPs that links to a given phenotype can be identified if (and 
only if) the study size is sufficient; 

•	 interaction effects can be addressed in this process but may require a larger 
N in their detection; 
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•	 the statistical power of the method may be sensitive to the level of LD; and 

•	 a network consisting of very low-effect loci can be predicted accurately if the 
study size, N, is sufficient, but the study size needed is far larger than that 
employed by traditional GWAS. For example, to detect very low-effect SNPs, 
we used N = 400,000. This is well beyond what is conceived as practical, but 
future research and improvements might make it possible. 

Many polygene methods seek to investigate a large number of SNP 
combinations. These approaches are computationally demanding and often 
impractical to implement. Even with widespread recognition that single-locus 
tests are likely to be inferior to multilocus tests for GWAS of many diseases 
and phenotypes, an unresolved issue is how to construct a computationally 
practical test that takes into account interactions and enhances the detection of 
associations between multiple loci and the phenotype of interest. 

The main value of our study is that it proposes computations that are 
practical and straightforward and require less computational effort than those 
reviewed by others.3 Furthermore, our simulation studies suggest that if the 
associations are real, they can be found with properly powered studies. An 
additional feature of our study is that as part of the Stage 1 SNP selection, the 
prediction defines the inheritance properties of all SNPs, which our simulation 
experiments have shown to be accurate and can be used to improve the 
reliability of ensuing stage predictions.

Appendix: DNA Simulator Tools
A number of different coalescent simulators that generate simulated DNA 
fragments for different evolutionary models are discussed in the literature 
that differ from the approach we describe in the main text. These applications 
simulate different standard neutral evolutionary models with recombination, 
variable population size, and migration. They also allow for spatial and 
temporal environmental heterogeneity. Carvajal-Rodríguez provide a 
comprehensive description of many of these models.32 The most recent and 
one of the most versatile models is not included in his analysis. GWAsimulator 
is a program that simulates genotype data for SNP chips that are used in 
GWAS.33 It creates whole genome case-control or population samples. It also 
can simulate specific genomic regions. For case-control data, the program can 
be linked to sample cases and controls according to a user-specified multilocus 
disease model. The program requires phased data as input, and the simulated 
data will have similar LD patterns as the input data.
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A second program worth mentioning is GENOME.34 It simulates a wider 
range of scenarios including recombination hotspots. As well as whole genome 
data. In addition to features of standard coalescent simulators, the program 
allows for recombination rates to vary along the genome and for flexible 
population histories. The program and C++ source code are available online at 
http://www.sph.umich.edu/csg/liang/genome/. 
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Conclusions and Recommendations 
Philip Chester Cooley

CHAPTER 9

Purpose of the Manuscript
Our explorations into genome-wide association studies (GWAS) led us to 
believe that a number of governing principles were absent from the manner in 
which GWAS were conducted. The descriptions of methods that researchers 
have provided in the literature commonly assumed an additive inheritance 
model or were agnostic with respect to an inheritance model assumption. 
Furthermore, there were many examples in which GWAS provided 
inconsistent results and researchers could not replicate study findings. Our 
own experiences investigating GWAS indicated that different statistical 
methods assuming specific inheritance properties also produced different 
association results. Because the inheritance properties are generally not 
known a priori, we favored a statistical model that was agnostic with respect to 
inheritance, and we turned to simulation studies to confirm our beliefs. 

We chose simulation because we noted the absence of both methodological 
standards and a process for evaluating statistical methods used in predicting 
associations between genes and phenotypes. We believed that that we could 
examine these missing elements more effectively with a simulation approach. 
Accordingly, we created a simulated data set of virtual genes that were linked 
to known outcomes. These data constituted a “truth set.” We analyzed the 
simulated data using different statistical methods and used it to assess each 
method’s predictive properties. This process revealed a number of principles 
described subsequently.  
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Summary of the Methodology
We developed a database of synthetic/virtual genetic loci. We assigned 
Mendelian inheritance properties to those loci and connected different 
combinations/networks of loci to virtual phenotypes. The phenotypes were 
qualitative traits intended to represent the positive or negative diagnoses of 
specific diseases. We also introduced errors into the recording of the genotypes 
and the assignment of diagnoses, and we simulated the strength of the 
genotype to phenotype signal via a relative risk process. For each inheritance, 
error, and relative-risk setting combination, we assigned a targeted number of 
cases and controls to include in an experimental GWAS design. The number 
of cases was varied in an effort to encapsulate a statistical power region 
containing the value of 0.8. 

Having generated these data, we then applied a number of distinct GWAS 
statistical methods and models that were germane to the specific GWAS, and 
we used them to predict an association. We replicated each unique GWAS 
design by statistical prediction model 1,000 times.

Each database entry, including performance measures, was catalogued 
with respect to the individual data entries and the properties that we used 
to generate GWAS data. An analysis of these measures across the replicates 
permitted performance assessment of the different statistical methods to 
predict genotype-to-phenotype associations. 

Our experiments were not limited to genetic mechanisms. We also 
generated database entries that incorporated environmental influences into the 
GWAS experimental designs that were used to simulate different mechanisms 
such as aging and chemical exposure.

We also investigated loci that depended on the properties of other loci to 
produce phenotypic elevated risk levels. The effect of one gene that depends on 
the presence of one or more “modifier genes” is known as epistasis, and others 
have shown that epistatic mutations have different effects in combination than 
individually because of interactions between genes or within them that lead to 
nonadditive effects.1

By design, every entry contained in the database was produced with a 
positive genetic association risk. The risks were varied between 1.01 and 1.50 
and were kept small by design to test the sensitivity of the statistical models. To 
assess method performance, we applied many different and varied statistical 
methods to determine which class of models exhibited the best power 
properties. Because all entries had a positive risk, each and every method 
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should have predicted an association. Statistical power was determined by 
computing the percentage of positive predictions across the 1,000 replicates. 
Graphing the power profiles as a function of GWAS subject participants 
enabled us to estimate the number of subjects required to achieve a specific 
power goal and also illustrated how errors in the data, signal strength, 
environment, and polygene behaviors affected model predictions.

Findings and Recommendations
The analysis described previously has led us to formulate the following 
assertions:

•	 Developing a synthetic gene database that recorded known outcomes 
between synthetic phenotypes and genotype networks provides a 
mechanism that was not possible using real genomics data. Of course it has 
been asserted that real data and data generated by simulation experiments 
may not have the same qualities (i.e., real data will contain more noise than 
simulated data). Our response was to provide a mechanism that generates 
data that includes a level of noise that can be specified a priori. 

•	 The creation of this database enabled an evaluation of different statistical 
models and methods specifically because the prediction outcomes were 
known and statistical power profiles could be estimated. 

•	 Methods that treat combinations of genes acting in concert either with other 
genes or environmental factors are important investigations in a GWAS 
context because a single-gene model will fail to identify markers in many 
types of gene-gene, and gene-environment networks.

•	 In response to this principle, we proposed a general polygene test (Chapter 8) 
that is based on a procedure that accepts (or not) a positive association of 
the n+1 SNP given the presence of a set of n previously confirmed SNPs. In 
the absence of a test that considers the combined effect of multiple genes, the 
association process will be dominated/obscured by the strongest (dominant) 
associated locus. 

•	 A reliable single-gene model is still necessary to identify a starting point/
filter in a polygene process, but the influence of the inheritance properties 
of the locus should be considered in the selection of the statistical model. 
There can be a substantial power loss if the inheritance property of the loci 
is assumed to be additive (or log-odds additive), and the locus is dominant 
(which results in a modest power loss) or recessive (which results in a 
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substantial power loss). Of course, if the gene model is additive, a model that 
assumes additive behavior is optimal with respect to power loss.

•	 Making an informed assessment of the inheritance properties of the locus 
is possible. Applying multiple tests that each assume a distinct inheritance 
property and selecting  the property that produces the lowest p-value is one 
possibility. Knowing the inheritance will improve the performance of the 
polygene process.

•	 If we assume error-free phenotype data, we may need to supplement 
the number of case/control subjects to achieve desired power targets 
(substantially, if the locus is recessive). Adding noise to both phenotype and 
genotype measures is informative in this context.

•	 The GWAS process is exploratory in nature, and various tools, such as odds 
ratio confidence regions and pseudo R-squared (R2) measures, are useful to 
the exploration. However, odds ratio confidence regions and pseudo R2 are 
limited to logistic regression model explorations. 

•	 It is possible to use the public databases that link SNPs to genes to diseases/
conditions and to develop interesting and plausible explanations of 
genotype-phenotype linkages. In our experience, computing cell counts 
often exposes potential biases due to low frequency of disease alleles. 

Future Directions
GWAS have identified many new genetic risk factors for a number of 
common human diseases, but much work remains to be done and can only be 
accomplished by using new approaches. Furthermore, new technologies are 
coming, such as whole-genome sequencing, which will replace the 1 million 
SNP chip data with the entire genomic sequence of 3 billion nucleotides. 

This will have a huge impact on data storage, manipulation, quality control, 
and data analysis processes. New computer science and bioinformatics tools 
will be needed, and cloud operations will become the new infrastructure. 
Also, high-throughput technologies for measuring the transcriptome, the 
proteome, the environment, and the whole-genome sequences will become 
standard operating procedures. New phenotypes from the development of new 
technologies such as neuroimaging will also become available and add to the 
level of complexity. 



	 Conclusions and Recommendations	 147

In this environment, unravelling genotype-phenotype relationships for the 
purpose of improving health care will expand. Integrating these varied and 
complex biomedical data and findings is the future of human genetics.
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This groundbreaking work uses a simulated data set to evaluate new analytic 

methods in genome-wide association studies (GWAS). The human genome 

is very complex, and the effect of a genetic variant depends on many factors 

including where the gene is expressed, when it is expressed, how it interacts 

with other genes that themselves may harbor variants, and the effect of 

the environment. GWAS have identified many new genetic risk factors for a 

number of common human diseases, but much work remains to be done and 

can only be accomplished by using new approaches. The role of this book is to 

help jump-start the investigation of such new approaches.  Identifying which 

computational strategy is best suited for investigating a specific aspect of 

genomics is a daunting task. Using simulated data to evaluate new analytic 

methods provides a “truth set” against which to assess methods’ predictive 

properties. In this book, Cooley and colleagues use simulated data to test a 

variety of analytic methods, starting with single-gene models and progressing to 

more complex polygene and gene-by-environment scenarios. The methods that 

Cooley and colleagues use are straightforward, easily applied, and thoroughly 

documented.
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