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ABSTRACT

ABHISHEK PAL MAJUMDER: LONG TIME ASYMPTOTICS OF SOME
WEAKLY INTERACTING PARTICLE SYSTEMS AND HIGHER ORDER

ASYMPTOTICS OF GENERALIZED FIDUCIAL DISTRIBUTION
(Under the direction of Amarjit S. Budhiraja and Jan H. Hannig)

In probability and statistics limit theorems are some of the fundamental tools that rig-

orously justify a proposed approximation procedure. However, typically such results fail to

explain how good is the approximation. In order to answer such a question in a precise quan-

titative way one needs to develop the notion of convergence rates in terms of either higher

order asymptotics or non-asymptotic bounds. In this dissertation, two different problems are

studied with a focus on quantitative convergence rates.

In first part, we consider a weakly interacting particle system in discrete time, approx-

imating a nonlinear dynamical system. We deduce a uniform in time concentration bound

for the Wasserstein-1 distance of the empirical measure of the particles and the law of the

corresponding deterministic nonlinear Markov process that is obtained through taking the

particle limit. Many authors have looked at similar formulations but under a restrictive com-

pactness assumption on the particle domain. Here we work in a setting where particles take

values in a non-compact domain and study several time asymptotics and large particle limit

properties of the system. We establish uniform in time propagation of chaos along with a

rate of convergence and also uniform in time concentration estimates. We also study another

discrete time system that models active chemotaxis of particles which move preferentially
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towards higher chemical concentration and themselves release chemicals into the medium

dynamically modify the chemical field. Long time behavior of this system is studied.

Second part of the dissertation is focused on higher order asymptotics of Generalized

Fiducial inference. It is a relevant inferential procedure in standard parametric inference

where no prior information of unknown parameter is available in practice. Traditionally in

Bayesian paradigm, people propose posterior distribution based on the non-informative priors

but imposition of any prior measure on parameter space is contrary to the “no-information”

belief (according to Fisher’s philosophy). Generalized Fiducial inference is one such remedy

in this context where the proposed distribution on the parameter space is only based on the

data generating equation. In this part of dissertation we established a higher order expansion

of the asymptotic coverage of one-sided Fiducial quantile. We also studied further and found

out the space of desired transformations in certain examples, under which the transformed

data generating equation yields first order matching Fiducial distribution.
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Chapter1
INTRODUCTION

The dissertation consists of two parts. First part is concerned with some problems in

weakly interacting particle systems while second part of the dissertation is focused on higher

order asymptotic properties of Generalized Fiducial Inference.

In recent years there has been a significant research activity aimed towards understanding

the dynamics of the collective behavior of a group of interacting similarly behaving agents/

particles. Motivation for such problems comes from various examples of self-organizing

systems in biological, physical and social sciences. These include, problems of opinion dy-

namics [46], chemotaxis [15], self organized networks [56], large communication systems

[49], swarm robotics [69], etc. For additional references we refer the reader to [70] and refer-

ences therein. One of the basic challenges is to understand how a large group of autonomous

agents with decentralized local interactions gives rise to a coherent behavior.

A commonly studied mathematical formulation of such a system of particles is given in

terms of a Markov process whose transition probabilities depend on the empirical process

associated with the particle states. Starting from the work of Sznitman [74] there has been

an extensive body of work that studies law of large number behavior (Propagation of Chaos),

central limit theory (normal fluctuations from the mean) and large deviation principles for

such Markovian systems. All of these results concern the behavior of the system over a finite



time horizon. In many applications the time asymptotic behavior of the system is of central

concern. For example, stability of a communication system, steady state aggregation and self

organization in biological and chemical systems, long term consensus formation mechanisms

in opinion dynamics modeling, particle based approximation methods for invariant measures,

all rely on a careful analysis of the time asymptotic behavior of such systems. Understanding

such long time properties is the focus of first part of this dissertation. Specifically the goal of

this dissertation is to study several time asymptotic problems for certain families of weakly

interacting Markov processes. These problems include, uniform in time law of large number

results and uniform in time polynomial and exponential concentration bounds. We consider

here a mean field type interaction among the particles. General features of these particle sys-

tems include exchangeability under suitable assumptions on initial exchangeability and noise

models. Thus the empirical measure of the particle states is a natural summary statistic of

the system. There are two types of asymptotics considered here: particle limit (N →∞) and

time limit (n → ∞). Starting point of this work will be to identify the nonlinear dynamical

system that is obtained as the formal particle limit (N → ∞) of the occupation measure at

every fixed time point. This nonlinear dynamical system can be viewed as the Kolmogorov

forward equation for a nonlinear Markov process. We give conditions on the model param-

eters that ensure stability of the nonlinear system. Next uniform in time convergence of the

particle system to the nonlinear system is established along with the the existence of a unique

fixed point under some natural integrability assumptions.

One of the main objectives of this dissertation is to quantify the convergence rates in

terms of concentration bounds. To see the basic question of interest let LN be the empirical
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distribution ofN iid samples {Yi}{i=1,...,N} from distribution µ on a Polish space S. We know

from the well known theorem of Varadarajan (1958) [77] that LN converges to µ weakly,

almost surely. An equivalent statement is β(LN , µ) → 0 almost surely where β(·, ·) is the

bounded Lipschitz metric (metrizing the weak topology) onP(S) (the space of all probability

measures on S). It is natural to seek a non asymptotic bound for P (β(LN , µ) > ε) in order

to see how fast β(LN , µ) converges to 0.

One can consider other metrics on the space of probability measures, one such choice be-

ing the Wasserstein metric. For µ, ν ∈ Pp(Rd) := {µ :
∫
Rd |x|

pµ(dx) <∞} the Wasserstein

distance metric of order p ≥ 1 is defined

Wp(µ, ν) :=
[

inf
X,Y

E|X − Y |p
] 1
p

where the infimum is taken over all Rd valued random variables X, Y defined on a common

probability space where the marginals of X, Y are respectively µ and ν. In our work we will

be interested in giving uniform in time concentration estimates for supn≥0 P
[
W1(µNn , µn) >

ε
]

where µn is the law of the nonlinear Markov process obtained as the particle limit of µNn :=

1
N

∑N
i=1 δXi,N

n
which is the occupation measure of the states of N particles {X i,N

n }i=1,...,N at

time instant n.

Finding sharp concentration bounds for P (Wp(LN , µ) > ε) is a classical problem that is

central in probability, statistics, combinatorics and informatics with a number of applications:

(see Bolley-Guillin-Villani [14], Boissard [11]). Below we will review some basic results and
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techniques that have been used to obtain concentration bounds forWP (LN , µ) in the classical

iid setting. One of the key result is due to Boissard which is given in Chapter 2 as Theorem

2.4.1.

Suppose µ, ν ∈ P(Rd), the relative entropy of ν with respect to µ is defined as

R(ν‖µ) =



∫
Rd

(
log dν

dµ

)
dν when ν � µ,

∞ otherwise.

One major ingredient in proving Boissard’s result is the Transportation inequality (in short

TI).

Definition 1.0.1. Let α : [0,∞) → R be a convex, increasing left-continuous function such

that α(0) = 0. We say µ ∈ P(Rd) satisfies a α(T ) transportation inequality if for all

ν̃ ∈ P(Rd)

α(W1(µ, ν̃)) ≤ R(ν̃‖µ). (1.0.1)

Applications of transportation inequality include exponential concentration estimate of

µ{d(x,A) > ε} (where d(x,A) is the distance from x to set A) Marton [65],[66]. A seminal

contribution of Djellout, Guilin, Wu [29] was to prove the equivalence of the transportation

inequalities with the finiteness of exponential moments of various orders. Similar results

were also derived in [13] which we use in Chapter 2. In the following section we give a

sketch of the proof of concentration bound for P (W1(LN , µ) > ε) as done in [11] to see how

4



TI is used.

1.1 Sketch of the bound for P (W1(LN , µ) > ε) :

We begin by illustrating a few steps and combine all of them in Step 4.

1. Following proposition can be proved by using the representation formula of R(ν‖µ)

along with Kantorovich-Rubenstein duality of Wasserstein-1 metric[48] or alterna-

tively using large deviation techniques [47].

Proposition 1.1.1. If µ is a measure that satisfies α(T ) inequality for some convex

α(·) then for any f ∈ Lip1(Rd) (the space of all Lipschitz functions with Lipschitz

norm bounded by 1), one has for all λ > 0

∫
eλ(f−

∫
fdµ)dµ ≤ eα

�(λ)

where α�(λ) := supx>0{λx− α(x)} (the monotone conjugate of α(·)).

Using this proposition:

µ[f −
∫
fdµ > ε] ≤ e−λε.Eeλ(f−

∫
fdµ)

≤ e−(λε−α�(λ)). (1.1.1)

Now optimizing the right hand side bound in (1.1.1) with respect to λ gives (since
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α��(·) = α(·)):

µ[f −
∫
fdµ > ε] ≤ e−α(ε). (1.1.2)

2. Next we extend this idea to get a concentration bound for a product measure µ⊗n

instead of µ. For this we need a tensorization idea which will be illustrated in this step.

Denote

d⊕N({xi}i=1,...,N , {yi}i=1,...,N) :=
N∑
i=1

d(xi, yi)

where d(xi, yi) is the component-wise Euclidean distance in Rd. From Kantorovich-

Rubenstein duality principle it can be seen that

W1(LN , µ) = sup
f∈Lip

1
(Rd)

[
1

N

N∑
i=1

f(Yi)−
∫
fdµ

]
. (1.1.3)

Note that the function (x1, . . . , xN) −→W1( 1
N

∑N
i=1 δxi , µ) is a Lipschitz function on

(Rd)N with Lipschitz constant 1
N

with respect to the distance metric d⊕N .

3. Now we will state the following tensorization lemma which states a transportation

inequality of product measures.

Lemma 1. If µ1, µ2 ∈ P(Rd) follow TI with functions α1 and α2 respectively; then

the product measure will also follow TI on the space of product measure with function

α12α2(t) := inf{α1(t1) + α2(t2) : t1 + t2 = t}. That is

α12α2(W∗1 (µ1 ⊗ µ2, ν)) ≤ R(ν | µ1 ⊗ µ2) ∀ν = (ν1, ν2), νi ∈ P(Rd)
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whereW∗1 (µ1 ⊗ µ2, ν) is defined with respect to the distance d⊕2.

In general, for N ≥ 1, and functions α1(·), . . . , αN(·) in definition 1.0.1, we define

α12 . . .2αN(t) = inf{α1(t1) + α2(t2) + . . .+ αN(t2) : t1 + t2 + . . .+ tN = t}.

Since {Yi}i=1,...,N are iid from the measure µ, from convexity of α(·) it follows:

α2N(t) := α2α . . .2α = Nα(
t

N
). (1.1.4)

4. µ⊗N satisfies TI with function α2N(.) and with the distance metric d⊕N . Now if f is a

Lipschitz functional on (Rd)N , then from (1.1.2) the concentration under product law

µ⊗N can be written as

µ⊗N [f −
∫
fdµ > ε] ≤ e

−α2N ( ε
‖f‖1

)
.

The following concentration bound forW1(LN , µ) now follows from the above obser-

vation where ‖f‖1 is the Lipschitz norm of f

P [W1(LN , µ)− EW1(LN , µ) > ε] ≤ e−Nα(ε). (1.1.5)

Boissard [11] using Orlicz-norm inequality gives a representation of EW1(LN , µ)

from which the inequality in (1.1.5) can be used to yield an exponential bound for

P (W1(LN , µ) > t). This result will be used in our study of weakly interacting particle
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systems in chapter 2 (See Theorem 2.4.1).

1.2 Connection to Our Problem and Other Questions:

The sketch given in Section 1.1 essentially uses the independence of {Yi}i=1,...,n which

fails to hold for the particle system {X i,N
n : i = 1, . . . , N}n≥0 considered in our work.

However, as will be shown in Chapter 2 one can still apply the result of Boissard (i.e.

Theorem 2.4.1), using a coupling technique. In fact we show that under suitable condi-

tion; one can give uniform in time n exponential and polynomial concentration bounds for

supn≥0 P
[
W1(µNn , µn) > ε

]
.

This uniform in time concentration result implies that theW1 distance between µNn and

the unique fixed point (denoted by µ∞) of the nonlinear system converges to zero as n→∞

and N →∞ in any order. This result is key in developing particle based numerical schemes

for approximating the fixed point of the evolution equation. Such a result can also be used for

performance evaluation. Given a “cost function” ψ : Rd → R with suitable continuity and

integrability properties the above result says that the cost per unit time, per particle measured

as 1
Nn

∑N
i=1

∑n
m=1 ψ(X i,N

m ) can be well approximated by
∫
ψ(x)µ∞(dx) for large values of

n,N , thus the latter quantity can be taken as a measure of performance for a large system

over a long time interval. We also show that for each N , there is unique invariant measure

ΠN
∞ of the N -particle dynamics with integrable first moment and this sequence of measures

is µ∞-chaotic, namely as N →∞, the projection of ΠN
∞ on the first k-coordinates converges

to µ⊗k∞ for every k ≥ 1. This propagation of chaos property all the way to n = ∞ crucially

relies on the uniform in time convergence of µNn to µ∞. Such a result is important since it
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says that the steady state of a N -dimensional fully coupled Markovian system has a simple

approximate description in terms of a product measure when N is large.

As noted earlier, this dissertation is divided into two parts. The first part consists of Chap-

ter 2 and 3 and studies long time properties of large weakly interacting particles. The terms

IP and WIPS are used as abbreviations for “Intereacting Partcles” and “Weakly Interacting

Particle Systems” respectively. An outline of this part is as follows.

1.3 Outline of Part 1

• In Chapter 2, we study a discrete time version of a general Vlasov-McKean process

given as a solution of a stochastic differential equation of the form

dX(t) = [−BX(t) + f(X(t), µ(t))]dt+ h(X(t), µ(t))dW (t) (1.3.1)

where µ(t) := L(X(t)) (i.e. the probability distribution of X(t)) and analyze the long

time behavior of a N -particle weakly interacting Markov process associated with this

system. In a setting where the state space of the particles is compact such questions

have been studied in previous works, however for the case of an unbounded state space

very few results are available. Under suitable assumptions on the problem data we

study several time asymptotic properties of the N -particle system and the associated

nonlinear Markov chain. In particular we show that the evolution equation for the law

of the nonlinear Markov chain has a unique fixed point and starting from an arbitrary

initial condition convergence to the fixed point occurs at an exponential rate. The

empirical measure µNn of the N -particles at time n is shown to converge to the law
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µn of the nonlinear Markov process at time n, in the Wasserstein-1 distance, in L1,

as N → ∞, uniformly in n. Several consequences of this uniform convergence are

studied, including the interchangeability of the limits n → ∞ and N → ∞ and the

propagation of chaos property at n = ∞. Rate of convergence of µNn to µn is studied

by establishing uniform in time polynomial and exponential probability concentration

estimates. This work has been accepted for publication in Stochastic Analysis and

Applications.

• In Chapter 3, a system of N particles in discrete time that models active chemotaxis is

introduced. This model is motivated by the following system of equations in continu-

ous time that have been proposed in bio-physics literature to describe cellular transport

mechanisms that are governed by a potential field and where the cells themselves dy-

namically influence the field through their aggregated inputs. ∀i = 1, . . . , N

dXi(t) = [−AXi(t) +∇h(t,Xi(t))]dt+ dWi(t), Xi(0) = xi ∈ Rd

∂

∂x
h(t, x) = −αh(t, x) +D4 h(t, x) +

β

N

N∑
i=1

g(Xi(t), x). (1.3.2)

where h(0, ·) = h(·) for some function h(·). HereWi(t), i = 1, . . . , N are independent

Brownian motions that drive the state process Xi of the N interacting particles. The

interaction between the particles arises indirectly through the underlying potential field

hwhich changes continuously according to a diffusion equation and through the aggre-

gated input of the N particles. Diffusion of the chemical in the medium is captured by

the Laplacian in (1.3.2) and the constant α > 0 models the rate of decay or the dissipa-

10



tion of the chemical. Contribution of the agents to the chemical concentration field is

given through the last term in the equation. The function g captures the agent response

rules and can be used to model a wide range of phenomenon [70]. We introduce a dis-

crete time analogue of the above system and study the N -particle weakly interacting

Markov process associated with it. Analogous long time asymptotic properties as for

the model in chapter 2, are studied.
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We now describe the work in the second part of this dissertation. The philosophy of Gen-

eralized Fiducial Inference evolved from extended motivation of Fisher’s fiducial argument.

Fisher could not accept the Bayes/ Laplace postulate for the non-informative prior. He argued

that

“Not knowing the chance of mutually exclusive events and knowing the chance to be

equal are two quite different states of knowledge”[73].

He only approved the usage of Bayes’ theorem for the case of informative priors since

imposing any measure on the parameter space is contrary to “no-information” assumption.

But his proposal created some serious controversies once his contemporaries realized that this

approach often led to procedures that were not exact in frequentist sense and did not possess

other properties claimed by him. In a complete manner [51] gives a list of all references

regarding this and subsequent Fiducial approaches.

Much after Fisher, in context of generalized confidence interval Tsui, Weerahandi [76],

[80] suggested a new approach for constructing hypothesis testing using the concept of gen-

eralized P-values. Hannig, Iyer and Patterson [53] made a direct connection between fiducial

intervals and generalized confidence intervals and proved asymptotic frequentist correctness

of such intervals. These ideas took a general shape in [51] through applications in various

parametric model formulations which is now termed as Generalized Fiducial Inference

(in short GFI). From Fisher [31], [32] one of the goals of Fiducial inference have been to

formulate a clear and definite principle that would guide a statistician to a unique fiducial dis-

tribution. GFI does not have such aim and quite different from that perspective. It treats the

12



techniques as a tool in order to propose a distribution on the parameter space when no prior

information is available and uses this distribution to propose useful statistical procedures like

uncertainty quantification, or approximate confidence interval, etc.

Suppose X = G(U, θ) is the structural equation through which the data have been gener-

ated (under the randomness of U whose distribution doesn’t involve unknown parameter θ).

Generalizing Fisher’s philosophy, after observing X = x, the Fiducial distribution P G(·) of

θ is formally defined as the distribution of the solution θ in x = G(U, θ) given it exists. That

definition can be further generalized as the distribution of the weak limit (as ε ↓ 0) of the

following random quantity

arg inf
θ

∥∥x−G(U∗, θ)
∥∥∣∣∣∣ {inf

θ

∥∥x−G(U∗, θ)
∥∥ ≤ ε

}
(1.3.3)

conditioned on the event
{

infθ
∥∥x−G(U∗, θ)

∥∥ ≤ ε
}

that solution of θ exists in ε neigh-

borhood of x. The ε → 0 weak limit in (1.3.3) is considered as the Generalized Fiducial

Distribution (in short GFD) of θ. Now using
∥∥ · ∥∥ = L∞ norm in (1.3.3), applying increas-

ing precision asymptotics Hannig[52] showed that the distribution of the unique weak limit

has a density of the following form

fG(θ|X) =
fX
(
x
∣∣θ) Jn(X, θ)∫

R fX
(
x
∣∣θ′) Jn(X, θ′)dθ′

, (1.3.4)

where Jn(X, θ) is the Jacobian defined in (4.1.7) of Chapter 4 which is unique up to pro-

portional scale. Note that however it might look like a posterior distribution with a data

13



dependent prior proportional to Jn(X, θ) technically the derivation doesn’t involve Bayes’

Theorem.

The Generalized Fiducial Distribution enjoys a number of properties like parametrization

invariance, consistency (asymptotically attains the weak limit with a technique similar to

Bernstein-Von Misses Theorem) etc. One typical non-uniqueness problem persists due to

different choices of the data generating equations and different norms (here we exclusively

worked with L∞ norm). In order to remove the first problem partially we wanted to propose

an efficient data generating equation where the fiducial distribution satisfies some desired

higher order asymptotic properties.

This part of the dissertation consists of only chapter 4.

1.4 Outline of Chapter 4

In this chapter we study frequentist property of the Fiducial quantile with an exploration

of higher order asymptotics. Let J(θ0, θ) be the limit of the Jacobian Jn(X, θ) after suitably

scaled. Let θ̂n, I(θ) be the maximum likelihood of θ and the Fisher information respectively.

Denote ∂
∂θ
Jn(X, θ)

∣∣∣
θ=θ̂n

and ∂
∂θ
J(θ0, θ)

∣∣∣
θ=θ̂n

by J (1)
n (X, θ̂n) and J (1)(θ0, θ̂n) respectively. Un-

der some general conditions, we established a higher order expansion of frequentist coverage

of the fiducial quantile. Despite similarities of 1st and 2nd order probability matching terms

with Bayesian contexts starting from the third order terms there exist significant differences

14



due to the presence of the following random quantities

W (i)
n (X) :=

√
n

(
J

(1)
n (X, θ̂n)

Jn(X, θ̂n)
− J (1)(θ0, θ̂n)

J(θ0, θ̂n)

)

which appear in the expansion of Fiducial quantile as an additive term. The remaining deriva-

tion follows by using Shrinkage method. Under a number of regularity assumptions the main

result regarding the frequentist coverage of the fiducial quantile θ1−α(G,X, n) of order (1−α)

follows:

Pθ0

[
θ0 ≤ θ1−α(G,X, n)

]
−
(
1− α

)
=

c1,α∆1√
n

+
c2,α∆2

n
+ o

(
1

n

)
, where

∆1 = I
− 1

2
θ0

∂
∂θ
J(θ0, θ)

J(θ0, θ0)

∣∣∣∣
θ0

+
∂I
− 1

2
θ

∂θ

∣∣∣∣
θ0

,

∆2 =
I
− 1

2
θ0

zαg2

[
a1(θ0)− a0(θ0)g1

g2

]
+

1

6

∂

∂θ

{
I−2
θ J(θ0, θ)Eθ

[
l(3)(θ | X)

]} ∣∣∣∣∣
θ0

−1

2

∂2

∂θ2
J(θ0, θ)I

−1
θ

∣∣∣∣∣
θ0

(1.4.1)

and for some constants c1,α = φ(zα), c2,α = zαφ(zα). In (1.4.1) zα is a (1 − α)th quantile

of normal distribution and a1(θ0), a2(θ0) are expected scaled fluctuations of the Jacobian

Jn(X, θ0) and its derivative J (1)
n (X, θ0) respectively under true θ0. Eventually we found the

transformation A(·) that yields the first order exact (i.e. ∆1 = 0) fiducial distribution for

those pathological cases (Scaled normal family, correlation coefficient in bivariate normal

model etc).
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Chapter2
LONG TIME ASYMPTOTICS OF SOME WIPS

2.1 Introduction

Stochastic dynamical systems that model the evolution of a large collection of weakly

interacting particles have long been studied in statistical mechanics (cf. [55; 74] and refer-

ences therein). In recent years such models have been considered in many other application

areas as well, some examples include, chemical and biological systems( e.g. biological ag-

gregation, chemotactic response dynamics [40; 70; 72]), mathematical finance (e.g. mean

field games [17; 50], default clustering in large portfolios [45]), social sciences (e.g. opinion

dynamics models [22; 46]), communication systems [1; 44; 49] etc. Most of the existing

work considers behavior of systems over a finite time horizon. Here we are interested in the

time asymptotic properties. Such behavior for special families of weakly interacting particle

systems has been considered by several authors. In [27] the authors give general sufficient

conditions for a family of discrete time systems for uniform in time exponential probability

concentration estimates to hold. These conditions formulated in terms of Dobrushin’s coef-

ficient are not very restrictive when the state space of the particles is compact, however they

are hard to verify for settings with an unbounded state space. In [15] a discrete time model

with a compact state space for chemotactic cell response dynamics was studied. Several time

asymptotic results, including uniform in time law of large numbers, exponential stability of

the associated nonlinear Markov process and uniform in time convergence of a particle based



simulation scheme are established. For the setting of an unbounded state space and in con-

tinuous time, there have been several recent interesting works on granular media equations

[14; 19; 58] which establish uniform in time propagation of chaos, time uniform convergence

of simulation schemes and uniform in time exponential concentration estimates.

In current work we study a family of interacting particle systems with an unbounded state

space in discrete time. Although the form of the nonlinearity can be quite general, we require

its contribution to the dynamics to be suitably small. The weakly interacting system and the

corresponding nonlinear Markov process we consider evolves in Rd and is described in terms

of a stochastic evolution equation of the following form. Denoting by X i
n ≡ X i,N

n the state

of the i-th particle (i = 1, . . . , N) at time instant n, the evolution is given as

X i
n+1 = AX i

n + δf(X i
n, µ

N
n , ε

i
n+1) + g(εin+1), i = 1, .., N, n ∈ N0 (2.1.1)

Here µNn := 1
N

∑N
i=1 δXi

n
is the empirical measure of the particle values at time instant n, A

is a d × d matrix, δ is a small parameter, {εin, i = 1, ..., N, n ≥ 1} is an i.i.d array of Rm

valued random variables with common probability law θ and f : Rd×P(Rd)×Rm → Rd, g :

Rm → Rd are measurable functions, where P(Rd) denotes the space of probability measures

on Rd. Also, {X i
0, i = 1, ..., N} are taken to be exchangeable with common distribution µ0.

As will be seen in Section 2.3, the following nonlinear Markov chain will correspond to the

N →∞ limit of (2.1.1).

Xn+1 = AXn + δf(Xn, µn, εn+1) + g(εn+1), L(Xn) = µn, n ∈ N0. (2.1.2)
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where throughout we denote by L(X) the probability distribution of a random variable X

with values in some Polish space S. Stochastic evolution equations as in (2.1.1) can be used

to model many different systems with a large number of dynamic interacting particles. De-

pending on the application, {X i
n} can represent internal states of a collection of financial

firms, physical states of biological entities, opinions in a group of peers, loads on links in

a communication network, etc. Stochastic systems in (2.1.1) can also be viewed as discrete

time approximations for many stochastic differential equation models for weakly interacting

particles. Under conditions on f, g, θ, δ and A we study several long time properties of the

N -particle system and the associated nonlinear Markov chain. The stochastic dynamical sys-

tem (2.1.1) can be regarded as a perturbation of a linear stable stochastic dynamical system

with a small interaction term and our results give explicit range of values of the perturbation

parameter δ for which the weakly interacting system has many desirable long time properties.

We are particularly interested in approximating the distribution of Xn by the empirical mea-

sure µNn of the particle system, uniformly in n, with explicit uniform concentration bounds.

Such results are particularly useful for developing simulation methods for approximating the

steady state distribution of mean field models such as in (2.1.2). We note here that we view

the systems (2.1.1)–(2.1.2) in two different ways. One is where N is not too large and the

N -particle system is used to obtain a simulation based approximation to the nonlinear system

(2.1.2) and the second is when the physical system of interest is (2.1.1) but N is too large to

allow for a tractable analysis and one instead uses (2.1.2) as a simplified approximate model.

In other words, we use the nonlinear system (2.1.2) as an intermediate model to approximate

the properties of the physical system (2.1.1) with a large N by those of a simulated system
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with a numerically tractable number of particles.

Our starting point is the evolution equation for the law of the nonlinear Markov chain

given in (2.2.2). We show in Proposition 2.3.2 that under conditions, that include a Lipschitz

property of f with the Wasserstein-1(W1) distance on the space of probability measures (As-

sumptions 1 and 2), contractivity of A (Assumption 3) and δ being sufficiently small, (2.2.2)

has a unique fixed point and starting from an arbitrary initial condition convergence to the

fixed point occurs at an exponential rate. Using this result we next argue in Theorem 2.3.1

that under an additional integrability condition (Assumption 4), as N → ∞, the empirical

measure µNn of the N -particles at time n converges to the law µn of the nonlinear Markov

process at time n, in the W1 distance, in L1, uniformly in n. We next study the rate of this

uniform convergence by developing suitable probability concentration estimates. Such re-

sults are useful for constructing uniform in time confidence intervals for various quantities

of interest. The first result (Theorem 2.3.2), under an assumption of polynomial moments on

the initial data and noise sequence (Assumption 4) establishes a corresponding uniform in

time polynomial concentration bound. The proof relies on an idea of restricting measures to

a compact set and estimates on metric entropy introduced in [14] (see also [79]). The basic

idea is to first obtain a concentration bound for the W1 distance between the truncated law

and its corresponding empirical law in a compact ball of radius R along with an estimate on

the contribution from the region outside the ball and finally optimize suitably over R. The

last two results are concerned with exponential concentration. These impose much stronger

integrability conditions on the problem data (Assumption 5). The first considers the setting

where the initial random variables form a general exchangeable sequence and gives a con-
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centration bound with an exponential decay rate ofN
1
d+2 . The second result uses exponential

concentration estimates for empirical measures of i.i.d. sequences based on transportation

inequalities from [11; 13] (see also [13; 14; 29; 47; 48]) and considers the setting where the

initial data is i.i.d. In this case the concentration bound gives an exponential decay rate of

order N . As noted earlier, in continuous time, results analogous to those in this chapter for

the specific setting of McKean-Vlasov diffusions in a convex potential have been obtained

in many papers, however to the best of our knowledge there is no current work that covers

the discrete stochastic dynamical system setting with an unbounded state space of the form

considered here.

The following notation will be used in this work. Rd will denote the d dimensional

Euclidean space with the usual Euclidean norm |.|. The set of natural numbers (resp. whole

numbers) is denoted by N (resp. N0). Cardinality of a finite set S is denoted by |S|. For

a measurable space S, P(S) denotes the space of all probability measures on S. For x ∈

Rd, δx is the Dirac delta measure on Rd that puts a unit mass at location x. The space

of real valued bounded measurable functions on S is denoted as BM(S). Borel σ field

on a metric space will be denoted as B(S). Cb(S) denotes the space of all bounded and

continuous functions f : S → R. The supremum norm of a function f : S → R is ‖f‖∞ =

supx∈S |f(x)|. When S is a metric space, the Lipschitz seminorm of f is defined by ‖f‖1 =

supx 6=y
|f(x)−f(y)|
d(x,y)

where d is the metric on the space S. For a bounded Lipschitz function

f on S we define ‖f‖BL := ‖f‖1 + ‖f‖∞. Lip1(S) (resp. BL1(S) ) denotes the class

of Lipschitz (resp. bounded Lipschitz) functions f : S → R with ‖f‖1 (resp. ‖f‖BL)

bounded by 1. Occasionally we will suppress S from the notation and write Lip1 and BL1
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when clear from the context. For a Polish space S, P(S) is equipped with the topology

of weak convergence. A convenient metric metrizing this topology on P(S) is given as

β(µ, γ) = sup{|
∫
fdµ−

∫
fdγ| : ‖f‖BL1 ≤ 1} for µ, γ ∈ P(S). For a signed measure γ on

Rd, we define 〈f, γ〉 :=
∫
fdγ whenever the integral makes sense. Let P1(Rd) be the space

of µ ∈ P(Rd) such that

‖µ‖1 :=

∫
|x|dµ(x) <∞.

The spaceP1(Rd) will be equipped with the Wasserstein-1 distance that is defined as follows:

W1(µ0, γ0) := inf
X,Y

E|X − Y |

where the infimum is taken over all Rd valued random variables X,Y defined on a com-

mon probability space and where the marginals of X, Y are respectively µ0 and γ0. From

Kantorovich-Rubenstein duality (cf. [79]) one sees the Wasserstein-1 is same as

W1(µ0, γ0) = sup
f∈Lip1(Rd)

|〈f, µ0 − γ0〉|. (2.1.3)

For a signed measure µ on (S,B(S)), the total variation norm of µ is defined as |µ|TV :=

sup‖f‖∞≤1〈f, µ〉. Convergence in distribution of a sequence {Xn}n≥1 of S valued random

variable to X will be written as Xn ⇒ X .

A finite collection {Y1, Y2, . . . , YN} of S valued random variables is called exchangeable

if

L(Y1, Y2, . . . , YN) = L(Yπ(1), Yπ(2), . . . , Yπ(N))
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for every permutation π on the N symbols {1, 2, . . . , N}. Let {Y N
i , i = 1, .., N}N≥1 be

a collection of S valued random variables, such that for every N , {Y N
1 , Y N

2 , . . . , Y N
N } is

exchangeable. Let νN = L(Y N
1 , Y N

2 , . . . , Y N
N ). The sequence {νN}N≥1 is called ν -chaotic

(cf. [74]) for a ν ∈ P(S), if for any k ≥ 1, f1, f2, . . . , fk ∈ Cb(S), one has

lim
N→∞

〈f1 ⊗ f2 ⊗ ...⊗ fk ⊗ 1...⊗ 1, νN〉 =
k∏
i=1

〈fi, ν〉. (2.1.4)

Denoting the marginal distribution on first k coordinates of νN by νkN , equation (2.1.4)

says that, for every k ≥ 1, νkN → ν⊗k.

2.2 Model Description

Recall the system of N interacting particles in Rd introduced in (2.1.1). Throughout we

will assume that {X i
0, i = 1, ..., N} is exchangeable with common distribution µ0 where

µ0 ∈ P1(Rd). Assumptions on f, θ, δ and A will be introduced shortly. Note that in the

notation we have suppressed the dependence of the sequence {X i
n} on N . Given ρ ∈ P(Rd)

define a transition probability kernel P ρ : Rd × B(Rd)→ [0, 1] as

P ρ(x,C) =

∫
Rm

1[Ax+δf(x,ρ,z)+g(z)∈C]θ(dz), (x,C) ∈ Rd × B(Rd).

With an abuse of notation we will also denote by P ρ the map from BM(Rd) to itself, defined

as

P ρφ(x) =

∫
Rd
φ(y)P ρ(x, dy), φ ∈ BM(Rd), x ∈ Rd.
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For µ ∈ P(Rd), let µP ρ ∈ P(Rd) be defined as

µP ρ(C) =

∫
Rd
P ρ(x,C)µ(dx), C ∈ B(Rd).

Note that µP ρ = L(AX + δf(X, ρ, ε) + g(ε)) when L(X, ε) = µ⊗ θ.

Under Assumptions 1 and 2 introduced in the next section it will follow that, for ρ, µ ∈

P1(Rd), µP ρ ∈ P1(Rd) as well. Under these conditions, one can define Ψ : P1(Rd) →

P1(Rd) as

Ψ(µ) = µP µ. (2.2.1)

Then the evolution of the law of the nonlinear Markov chain given in (2.1.2) is given by the

equation

µn+1 = Ψ(µn), n ∈ N0. (2.2.2)

Using the above notation we see that ((X1
n, ..., X

N
n ), µNn ) is a (Rd)N×P1(Rd) valued discrete

time Markov chain defined recursively as follows. Let Xk(N) ≡ (X1
k , X

2
k , . . . , X

N
k ) and let

F0 = σ{X0(N)}. Then, for k ≥ 1



P (Xk(N) ∈ C|FNk−1) =
⊗N

j=1(δXj
k−1
P µNk−1)(C) ∀C ∈ B(Rd)N

µNk = 1
N

∑N
i=1 δXi

k

FNk = σ{Xk(N)} ∨ FNk−1.

23



2.3 Main Results

Recall that {X i
0, i = 1, ..., N} is assumed to be exchangeable with common distribution

µ0 where µ0 ∈ P1(Rd). We now introduce our assumptions on the nonlinearity.

Assumption 1. There is a measurable mapD : Rm → R+ such that
∫
D(z)θ(dz) = σ <∞,

and

sup
x1 6=x2,µ1 6=µ2,x1,x2∈Rd,µ1,µ2∈P1(Rd)

|f(x1, µ1, z)− f(x2, µ2, z)|
|x1 − x2|+W1(µ1, µ2)

≤ D(z), for all z ∈ Rm.

(2.3.1)

Note that the Assumption 1 implies that

sup
(x,µ)∈Rd×P1(Rd)

|f(x, µ, z)| ≤ (|x|+ ‖µ‖1)D(z) +D1(z), z ∈ Rm (2.3.2)

where D1(z) := |f(0, δ0, z)|. We impose the following condition on D1 and g.

Assumption 2.
∫
D1(z)θ(dz) = c0 <∞,

∫
|g(z)|θ(dz) = c̃0 <∞.

Remark 1. 1. One simple example of f that corresponds to the setting of stochastic dif-

ference equations is given as:

f(x, µ, z) = f1(x, µ) + f2(x, µ)z, (x, µ, z) ∈ Rd × P1(Rd)× Rm

where f1 and f2 are Lipschitz in (x, µ) and
∫
|z|θ(dz) <∞.
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2. Suppose f0 : Rd×Rd×Rm → R is such that for (xi, yi, z) ∈ Rd×Rd×Rm, i = 1, 2

|f0(x1, y1, z)− f0(x2, y2, z)| ≤ D(z)(|x1 − x2|+ |y1 − y2|),

then f(x, µ, z) =
∫
f0(x, y, z)µ(dy) satisfies the Lipschitz property in (2.3.1). More

generally, suppose f0 : Rd × (Rd)p × Rm → R is Lipschitz in the first p + 1 vari-

ables with the Lipschitz parameter Dp(·) given as a function of the last variable. Then

f(x, µ, z) =
∫
f(x, y1, . . . yp, z)µ

⊗p(y1, . . . , yp) satisfies the Lipschitz property (2.3.1)

with D(z) = pDp(z).

We first present a law of large numbers for µNn as N → ∞. The proof is standard but

we include it here for completeness. Note that under Assumptions 1 and 2, µn ∈ P1(Rd)

for all n ∈ N0. Observing that ν 7→ W1(ν, µn) is a continuous map from the Polish space

(P1(Rd),W1) to R+ and that µNn is a P1(Rd) valued random variable, we see that

W1(µNn , µn) = sup
ψ∈Lip1

|〈ψ, µNn − µn〉|

is a nonnegative random variable.

Proposition 2.3.1. Suppose Assumptions 1 and 2 hold and suppose that EW1(µN0 , µ0) → 0

as N →∞. Then, as N →∞,

EW1(µNn , µn)→ 0 (2.3.3)

for all n ≥ 0.
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Remark 2. Note that Proposition 2.3.1 says that for all n ≥ 0

lim
N→∞

E sup
ψ∈Lip1

|〈ψ, µNn − µn〉| = 0,

which in particular implies that µNn → µn in probability, in P(Rd) (with the topology of weak

convergence) as N →∞.

Next we state a “propagation of chaos” result which is an immediate consequence of

Remark 5 and exchangeability of of {X i
n}Ni=1.

Corollary 2.3.1. Suppose Assumptions 1 and 2 hold. Then for any k ≥ 1 and n ∈ N0,

L(X1
n, X

2
n, ..., X

k
n) −→ (L(Xn))

⊗
k as N →∞.

For a d× d matrix B we denote its norm by ‖B‖, i.e. ‖B‖ = supx∈Rd\{0}
|Bx|
|x| .

Assumption 3. ‖A‖ < 1.

A measure µ∗ ∈ P1(Rd) is called a fixed point for the evolution equation in (2.1.2), if

µ∗ = Ψ(µ∗). Let a0 = 1−‖A‖
2σ

.

Proposition 2.3.2. Suppose Assumptions 1,2 and 3 hold and that δ ∈ (0, a0). Then there

exists a unique fixed point µ∞ of equation (2.2.2). Furthermore, denoting for γ ∈ P1(Rd),

Ψn(γ) = Ψ ◦Ψ... ◦Ψ︸ ︷︷ ︸
n times

(γ), we have

lim sup
n→∞

1

n
logW1(Ψn(γ), µ∞) < 0,

namely Ψn(γ) converges to µ∞ as n→∞, at an exponential rate.
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Next, we study uniform in time (i.e n) convergence of µNn to µn as the number of particles

N →∞. For this, we will strengthen Assumptions 1 and 2 as follows.

Assumption 4. For some α > 0

E|X i
0|1+α <∞,

∫
D(z)1+αθ(dz) = σ1(α) <∞∫

(D1(z))1+αθ(dz) = c1(α) <∞,
∫
|g(z)|1+αθ(dz) = c̃1(α) <∞.

Theorem 2.3.1. Suppose that Assumptions 3 and 4 hold. Also suppose that δ ∈ (0, a0). Then

1. Given ε > 0, there exist N0(ε), n0(ε) ∈ N such that

EW1(µNn , µn) < ε whenever n ≥ n0(ε), N ≥ N0(ε).

2. SupposeEW1(µN0 , µ0)→ 0 asN →∞. Then supn≥1EW1(µNn , µn)→ 0 asN →∞.

Corollary 2.3.2. Suppose Assumptions 3 and 4 hold and suppose δ ∈ (0, a0). Then

lim sup
N→∞

lim sup
n→∞

EW1(µNn , µ∞) = lim sup
n→∞

lim sup
N→∞

EW1(µNn , µ∞) = 0. (2.3.4)

The interchangeability of the limits given in Corollary 4.2.1 allows one to characterize

the large N limit of the steady state behavior of the particle system.

Proposition 2.3.3. Suppose Assumptions 1, 2 and 3 hold and suppose δ ∈ (0, a0). Then

for every N ∈ N, the Markov chain {Xn(N)}n≥0 has a unique invariant measure ΠN
∞ that
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satisfies
∫

(Rd)N
|x| ΠN

∞(dx) <∞. Suppose in addition Assumption 4 holds. Then ΠN
∞ is µ∞-

chaotic, where µ∞ is as in Proposition 2.3.2.

Theorem 2.3.1 gives conditions under whichW1(µNn , µn) converges to 0 as N → ∞, in

L1, uniformly in n. The next three theorems show that under additional conditions, one can

provide concentration bounds uniformly in nwhich give estimates on the rate of convergence.

Recall the measure µ0 introduced at the beginning of Section 3.2.

With α, σ1(α) defined in Assumption 4 and ω as in Assumption 3, let

a ≡ a(α) :=
4−α − ‖A‖(1+α)

2σ1(α)
. (2.3.5)

Theorem 2.3.2. Suppose Assumptions 3 and 4 holds. Fix γ0 ∈ (0, a0) and suppose that

δ ∈ (0,min{a
1

1+α , (a0−γ0)}). Let ϑ = 1−2σγ0

‖A‖+2δσ
. Then there existsN0 ∈ N0 and C1 ∈ (0,∞)

such that for all ε > 0, and for all n ≥ 0,

P (W1(µNn , µn) > ε) ≤ P (W1(µN0 , µ0) > 2σγ0ϑ
nε) + C1ε

−(1+α)N−
α
d+2 ,

for all N > N0

(
max

{
1, log+ ε

}) d+2
d .

Remark 3. 1. Since δ < a0− γ0, we have that ϑ > 1 and so the above theorem gives the

following uniform concentration estimate:

sup
n≥1

P (W1(µNn , µn) > ε) ≤ P (W1(µN0 , µ0) > 2σγ0ε) + C1ε
−(1+α)N−

α
d+2 ,

for all N > N0

(
max

{
1, log+ ε

}) d+2
d .
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2. Under additional conditions on {X i,N
0 } one can give concentration bounds for the first

term on the right side of the above inequality. For example, when {X i,N
0 }Ni=1 are i.i.d.

such concentration bounds can be found in Theorem 2.7 of [14]. Also, although not

pursued here, the bound obtained in Theorem 2.3.2 can be used to give an alternative

proof of Theorem 2.3.1(2).

Next we obtain exponential concentration bounds. The bounds depend in particular on

our assumptions on the initial condition. Our first result (Theorem 2.3.3) treats the case

where the initial random vector has a general exchangeable distribution while the second

result (Theorem 2.3.4) considers a more restrictive setting where the initial random vector is

i.i.d. In the second case the probabilities will decay exponentially in N whereas in the first

case the exponent will be some dimensional dependent power of N .

We start with our main assumption for Theorem 2.3.3.

Assumption 5. (i) For some M ∈ (1,∞), D(x) ≤M for θ a.e. x ∈ Rm.

(ii) There exists α ∈ (0,∞) such that
∫
eα|x|µ0(dx) <∞ and

∫
eα(D1(z)+|g(z)|)θ(dz) <∞.

Theorem 2.3.3. Suppose that Assumptions 3 and 5 hold. Fix γ0 ∈ (0, a0) and suppose that

δ ∈ [0,min{a0 − γ0,
1−‖A‖

2M
}). Then there exists N0 ∈ N and C1 ∈ (0,∞) such that for all

ε > 0

P [W1(µNn , µn) > ε] ≤ P [W1(µN0 , µ0) > 2σγ0ϑ
nε] + e−C1εN1/d+2

,

for all n ≥ 0, N ≥ N0 max{(1
ε

log+ 1
ε
)d+2, ε(d+2)/(d−1)}, if d > 1; and

P [W1(µNn , µn) > ε] ≤ P [W1(µN0 , µ0) > 2σγ0ϑ
nε] + e−C1(ε∧1)N1/d+2

,
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for all n ≥ 0, N ≥ N0 max{(1
ε

log+ 1
ε
)d+2, 1}, if d = 1. Here ϑ ∈ (1,∞) is as in Theorem

2.3.2.

We note that the bounds in Theorems 2.3.2 and 2.3.3 depend on the dimension parameter

d. It will be interesting to see if one can obtain useful dimension independent bounds under

the conditions of these theorems. The following result shows that such bounds can be ob-

tained in the case where the initial distribution of the N particles is i.i.d. The proof relies on

various estimates from [11; 13].

Theorem 2.3.4. Suppose that {X i,N
0 }i=1,..,N are i.i.d. with common distribution µ0 for

each N . Suppose that Assumptions 3 and 5 hold. Fix γ ∈ (0, 1 − ‖A‖). Suppose that

δ ∈
[
0, 1−‖A‖−γ

2M

)
. Then there exist N0, a1, a2 ∈ (0,∞) and a nonincreasing function

ς1 : (0,∞)→ (0,∞) such that ς1(t) ↓ 0 as t ↑ ∞ and for all ε > 0 and N ≥ N0ς1(ε)

sup
n≥0

P [W1(µNn , µn) > ε] ≤ a1e
−Na2(ε2∧ε)

Remark 4. 1. One can describe the function ς1 in the above theorem explicitly. Define

for γ ∈ (0, 1), mγ : (0,∞)→ (0,∞) as mγ(t) = γt
δM

, where M is as in Assumption 5.

Then

ς1(t) = max

{
1,

log C0
mγ(t)

m2
γ(t)

,
log C0

γt

γ2t2
,

1

t2
,
1

t

}
,

where C0
t is defined by the right side of (2.4.49) with ζ replaced by ζ0 where ζ0 is as in

Corollary 11.

30



2. If Assumption 5 is strengthened to
∫
eα(D1(z)+|g(z)|)2

θ(dz) < ∞ for some α > 0 then

one can strengthen the conclusion of Theorem 2.3.4 as follows: For δ sufficiently small

there exist N0, a1, a2 ∈ (0,∞) and a nonincreasing function ς2 : (0,∞) → (0,∞)

such that ς2(t) ↓ 0 as t ↑ ∞ and for all ε > 0 and N ≥ N0ς2(ε)

sup
n≥0

P [W1(µNn , µn) > ε] ≤ a1e
−Na2ε2 .

2.4 Proofs

In this section we present the proofs of our main results that were presented in Section

2.3. We begin with some preliminary moment estimates.

2.4.1 Moment Bounds

The following elementary lemma will be used several times in our analysis.

Lemma 2. Suppose Assumptions 1 and 2 hold. Then, for every n ≥ 1,

Mn := sup
N≥1

max
1≤i≤N

E|X i
n| <∞.

In addition, if Assumption 3 holds and δ ∈ (0, a0) then supn≥1Mn <∞.

Proof. We will only prove the second statement in the lemma. Proof of the first statement

is similar. Note that, for n ≥ 1 and i = 1, .., N

X i
n = AX i

n−1 + δf(X i
n−1, µ

N
n−1, ε

i
n) + g(εin).
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Thus

|X i
n| ≤ ‖A‖ |X i

n−1|+ δD(εin)[|X i
n−1|+ ‖µNn−1‖1] + δD1(εin) + |g(εin|. (2.4.1)

From exchangeability of {Xk
n−1, k = 1, ..., N} it follows that

E‖µNn−1‖1 = E[

∫
|x|dµNn−1] = E

1

N

N∑
k=1

|Xk
n−1| = E|X1

n−1|.

Taking expectation in (2.4.1) and using independence between εin and {Xj
n−1}Nj=1, we have

E|X i
n| ≤ (‖A‖+ 2δσ)E|X i

n−1|+ δc0 + c̃0. (2.4.2)

The assumption on δ implies that γ := ‖A‖+2δσ ∈ (0, 1). A recursive application of (2.4.2)

now shows that

E|X i
n| ≤ γnE|X i

0|+
δc0 + c̃0

1− γ
.

The result follows.

Recall the map Ψ defined in (2.2.1). The following lemma is a key ingredient in our

truncation arguments.

Lemma 3. Under Assumptions 1 and 2, for every ε > 0 and n ≥ 1, there exists a compact

set Kε,n ∈ B(Rd) such that

sup
N≥1

E

{∫
Kc
ε,n

|x|
(
µNn (dx) + Ψ(µNn−1)(dx)

)}
< ε.
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Proof. Note that for any non-negative φ : Rd → R,

E

∫
φ(x)µNn (dx) =

1

N

N∑
k=1

Eφ(Xk
n) = Eφ(X1

n). (2.4.3)

Also, letting fδ = δf + g, by a conditioning argument we see that for any non-negative

φ : Rd → R

E

∫
φ(x)Ψ(µNn )(dx) =

1

N

N∑
i=1

E(E(〈φ, δXi
n
P µNn 〉 | Fn))

=
1

N

N∑
i=1

Eφ
(
AX i

n + fδ(X
i
n, µ

N
n , ε

i
n+1)

)
=

1

N

N∑
i=1

Eφ(X i
n+1) = Eφ(X1

n+1). (2.4.4)

In view of the above observations it now suffices to show that

the family {X i,N
n , i = 1, ..., N ;N ≥ 1} is uniformly integrable for every n ≥ 0. (2.4.5)

We will prove (3.4.18) by induction on n. Once more we suppress N from the super-script.

Clearly by our assumptions {X i
0, i = 1, ..., N ;N ≥ 1} is uniformly integrable. Now suppose

that the statement (3.4.18) holds for some n. Note that

|X i
n+1| ≤ ‖A‖ |X i

n|+ δD(εin+1)[|X i
n|+ ‖µNn ‖1] + δD1(εin+1) + |g(εin+1)|

= ‖A‖ |X i
n|+ δD(εin+1)[|X i

n|+
1

N

N∑
i=1

|X i
n|] + δD1(εin+1) + |g(εin+1)|.(2.4.6)
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From exchangeability it follows 1
N

∑N
i=1 |X i

n| = E[|X i
n| | GNn ], where GNn = σ{ 1

N

∑N
i=1 δXi

n
}.

Combining this with the induction hypothesis that {X i
n, i = 1, ..., N ;N ≥ 1} is uniformly

integrable, we see that { 1
N

∑N
i=1 |X i

n|, N ≥ 1} is uniformly integrable. Here we have used

the fact that if {Zα, α ∈ Γ1} is a uniformly integrable family and {Hβ, β ∈ Γ2} is a collection

of σ-fields where Γ1,Γ2 are arbitrary index sets, then {E(Zα | Hβ), (α, β) ∈ Γ1 × Γ2} is a

uniformly integrable family. Also from Assumptions 1 and 2 the families {D(εin+1); i ≥ 1},

{D1(εin+1); i ≥ 1} and {g(εin+1); i ≥ 1} are uniformly integrable. These observations along

with independence between {εin+1, i = 1, .., N} and {X i
n : i = 1, ..., N ;N ≥ 1} yield that

the family {|X i
n| : i = 1, ..., N ;N ≥ 1} is uniformly integrable. The result follows.

2.4.2 Proof of Proposition 2.3.1

We now proceed to the proof of Proposition 2.3.1. We will argue via induction on n ≥ 0.

By assumption (1) holds for n = 0. Assume now that it holds for some n > 0 . Note that,

W1(µNn+1, µn+1) ≤ W1(µNn+1, µ
N
n P

µNn ) +W1(µNn P
µNn , µNn P

µn)

+W1(µNn P
µn , µn+1). (2.4.7)

Consider the last term in (3.4.27). Using Assumption 1 we see that if φ is Lipschitz then

P µnφ is Lipschitz and ‖P µnφ‖1 ≤ (‖A‖+ δσ)‖φ‖1. Thus, almost surely

sup
φ∈Lip1

|〈φ, µNn P µn − µn+1〉| = sup
φ∈Lip1

|〈P µnφ, µNn − µn〉|

≤ (‖A‖+ δσ) sup
g∈Lip1

|〈g, µNn − µn〉| .
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Taking expectations we obtain,

EW1(µNn P
µn , µn+1) ≤ (‖A‖+ δσ)EW1(µNn , µn). (2.4.8)

Consider now the second term in (3.4.27). Using Assumption 1 again, we have,

sup
φ∈Lip1

|〈φ, µNn P µNn − µNn P µn〉| ≤ 1

N

N∑
i=1

∫ [
|φ(AX i

n + fδ(X
i
n, µ

N
n , ξ))

− φ(AX i
n + fδ(X

i
n, µn, ξ))|

]
θ(dξ)

≤ δσW1(µNn , µn).

Taking expectations we get

EW1(µNn P
µNn , µNn P

µn) = E sup
φ∈Lip1(Rd)

|〈φ, µNn P µNn − µNn P µn〉|

≤ δσEW1(µNn , µn). (2.4.9)

Now we consider the first term of the right hand side of (3.4.27). We will use Lemma 4.7.1.

Fix ε > 0 and let Kε be a compact set in Rd such that

sup
N≥1

E

{∫
Kc
ε

|x|(µNn+1(dx) + Ψ(µNn )(dx))

}
< ε.
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Let Lip0
1(Rd) := {ψ ∈ Lip1(Rd) : ψ(0) = 0}. Then,

E sup
φ∈Lip1(Rd)

|〈φ, µNn+1 − µNn P µNn 〉| = E sup
φ∈Lip01(Rd)

|〈φ, µNn+1 − µNn P µNn 〉|

≤ E sup
φ∈Lip01(Rd)

|〈φ.1Kε , µNn+1 − µNn P µNn 〉|+ ε. (2.4.10)

We will now apply Lemma A.1.1 in the Appendix. Note that for any φ ∈ Lip0
1(Rd), supx∈Kε |φ(x)| ≤

diam(Kε) := mε.

Thus with notation as in Lemma A.1.1

sup
φ∈Lip01(Rd)

|〈φ.1Kε , µNn+1 − µNn P µNn 〉| ≤ max
φ∈Fεmε,1 (Kε)

|〈φ, µNn+1 − µNn P µNn 〉|+ 2ε. (2.4.11)

Here Fεmε,1(Kε) is as given in Lemma A.1.1 and we have denoted the restrictions of µNn+1 and

µNn P
µn to Kε by the same symbols. Using the above inequality in (3.4.29), we obtain

EW1(µNn+1, µ
N
n P

µNn ) ≤
∑

φ∈Fεmε,1 (Kε)

E|〈φ, µNn+1 − µNn P µNn 〉|+ 3ε.

Using Lemma A.1.2 we see that the first term on the right hand side can be bounded by

2mε|Fεmε,1 (Kε)|
√
N

. Combining this estimate with (3.4.27), (3.4.34) and (2.4.9) we now have

EW1(µNn+1, µn+1) ≤ (‖A‖+ 2δσ)EW1(µNn , µn) +
2mε|Fεmε,1(Kε)|√

N
+ 3ε. (2.4.12)
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Sending N →∞ in (3.4.31) and using induction hypothesis, we have

lim sup
N→∞

EW1(µNn+1, µn+1) ≤ 3ε.

Since ε > 0 is arbitrary, the result follows.

2.4.3 Proof of Proposition 2.3.2

In this section we study the asymptotics of the deterministic dynamical system (2.2.2).

We begin with the following estimate.

Lemma 4. Under Assumptions 1,2 and 3

W1(Ψn(µ0),Ψn(γ0)) ≤ (‖A‖+ 2δσ)nW1(µ0, γ0)

for any choice of µ0, γ0 ∈ P1(Rd).

Proof. Given µ0, γ0 ∈ P1(Rd), let C(µ0, γ0) = {µ ∈ P1(Rd × Rd) | µ0(·) = µ(· ×

Rd), γ0(·) = µ(Rd × ·)}. Fix µ ∈ C(µ0, γ0) and let (X0, Y0) be Rd × Rd valued random

variables with distribution µ. Also, let {εn}n≥1 be an iid sequence of random variables with

common law θ independent of (X0, Y0). Define for n ≥ 0,

Xn+1 = AXn + δf(Xn, µn, εn+1) + g(εn+1),

Yn+1 = AYn + δf(Yn, γn, εn+1) + g(εn+1)

where µn = L(Xn) and γn = L(Yn). Then clearly µn = Ψn(µ0), γn = Ψn(γ0). For n ≥ 0,
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denote βn =W1(µn, γn), αn = E|Xn − Yn|. Then

βn+1 = sup
φ∈Lip1

{|
∫
φdµn+1 −

∫
φdγn+1|}

= sup
φ∈Lip1

{|Eφ(Xn+1)− Eφ(Yn+1)|}

≤ E|Xn+1 − Yn+1| = αn+1. (2.4.13)

Also,

αn+1 ≤ ‖A‖E|Xn − Yn|+ δE|f(Xn, µn, εn+1)− f(Yn, γn, εn+1)|

≤ ‖A‖E|Xn − Yn|+ δσ(E|Xn − Yn|+W1(µn, γn))

= (‖A‖+ δσ)αn + δσβn,

≤ (‖A‖+ 2δσ)αn (2.4.14)

where the second inequality in the display follows from Assumptions 1 and 3. Combining

(2.4.13) and (2.4.14) we have

βn+1 ≤ (‖A‖+ 2δσ)n+1E|X0 − Y0|

= (‖A‖+ 2δσ)n+1

∫
|x− y|µ(dxdy).

We now have, on taking infimum on the right hand side of the above display over all µ ∈

C(µ0, γ0), that βn+1 ≤ (‖A‖+ 2δσ)n+1β0. The result follows.

We can now complete the proof of Proposition 2.3.2. Observe that under our assumption
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on δ, χ := ‖A‖+ 2δσ ∈ (0, 1). The first part of the proposition now follows from Lemma 4

and Banach’s fixed point theorem. Furthermore

W1(Ψn(µ), µ∞) =W1(Ψn(µ),Ψn(µ∞)) ≤ χnW1(µ, µ∞). (2.4.15)

Second part of the proposition is now immediate.

2.4.4 Proof of Theorem 2.3.1

In this section we show that the empirical measure µNn is suitably close to the law µn of

Xn for large n and N . As an immediate consequence we obtain that if µN0 converges to µ0

then µNn conerges to µn, as N → ∞, uniformly in n. We start with the following moment

bound.

Lemma 5. Suppose that Assumptions 3 and 4 hold and suppose that δ ∈ (0, a(α)
1

1+α ) where

a(·) is as in (2.3.5). Then supN≥1 supn≥1E|X1,N
n |1+α <∞.

Proof. Using Assumption 3 and (2.3.2)

|X i
n+1| ≤ ‖A‖|X i

n|+ δ|D(εNn+1)|
(
|X i

n|+ |µNn |
)

+ δD1(εNn+1) + |g(εNn+1)|.

Taking expectations on both sides and applying Holder’s inequality, we have, from Assump-

tion 4

E|X i
n+1|1+α ≤ 4α‖A‖(1+α)E|X i

n|1+α + 4αδ(1+α)σ1[E|X i
n|1+α + E|µNn |1+α] + 4αc̄1(α)

≤ 4α‖A‖(1+α)E|X i
n|1+α + 4αδ(1+α)σ1[2E|X i

n|1+α] + 4αc̄1(α) (2.4.16)
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where the last line in the display follows from Jensen’s inequality: E|µNn |1+α =

E|
∫
|x|µNn (dx)|1+α ≤ E|

∫
|x|1+αµNn (dx)| = E|X i

n|1+α and c̄1(α) = 2α(c1(α) + c̃1(α))

where c1(α), c̃1(α) are as in Assumption 4.

Note that under our condition on δ

κ1 ≡ 4α[‖A‖1+α + 2δ(1+α)σ1] < 1.

Thus

sup
n≥1

E|X i
n|1+α ≤ κ1E|X i

0|1+α +
κ2

1− κ1

, (2.4.17)

where κ2 = 4αc̄1(α). The result follows.

We now complete the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. We will use the decomposition

µNn − µn =
n∑
k=1

[Ψn−k(µNk )−Ψn−k.Ψ(µNk−1)] + [Ψn(µN0 )−Ψn(µ0)].

Similar decompositions have been used in previous works on interacting particle systems (cf.

[25; 26]). It then follows using Lemma 4 that with χ = (‖A‖+ 2δσ), almost surely

W1(µNn , µn) ≤
n∑
k=1

W1(Ψn−k(µNk ),Ψn−k(Ψ(µNk−1))) +W1(Ψn(µN0 ),Ψn(µ0))

≤
n∑
k=1

χn−k W1(µNk ,Ψ(µNk−1)) + χnW1(µN0 , µ0). (2.4.18)
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Taking expectations,

EW1(µNn , µn) ≤
n∑
k=1

χn−k EW1(µNk ,Ψ(µNk−1)) + χn EW1(µN0 , µ0).

Since a(α0)1/(1+α0) → a0 as α0 → 0 and δ ∈ (0, a0), we can find α0 ∈ (0, α) such that

δ ∈ (0, a(α0)1/(1+α0)). From Lemma 5 we then have that supN≥1 supn≥1E|X1
n|1+α0 < ∞

and consequently the family {X i
n, i = 1, ..., N,N ≥ 1, n ≥ 1} is uniformly integrable.

Similar to the proof of Corollary 4.7.1 (cf. the argument below (2.4.6)) using (3.4.16) and

(3.4.17) it follows that, for some compact Kε ⊆ Rd

sup
N≥1

sup
n≥1

E

∫
Kc
ε

|x| [µNn (dx) + Ψ(µNn−1)(dx)] < ε. (2.4.19)

Now for every k ≥ 1

EW1(µNk ,Ψ(µNk−1)) = E sup
f∈Lip01(Rd)

|〈f, µNk −Ψ(µNk−1)〉|

≤ E sup
f∈Lip01(Rd)

|〈f.1Kε , µNk −Ψ(µNk−1)〉|+ ε,

when Lip0
1(Rd) is as introduced above (3.4.29). Applying Lemmas A.1.1 and A.1.2 as in the

proof of Proposition 2.3.1 we now see that

EW1(µNk ,Ψ(µNk−1)) ≤ |Fεmε,1(Kε)|
2mε√
N

+ 3ε,
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where mε = diam(Kε). Thus

EW1(µNn , µn) ≤
n∑
k=1

χn−k {|Fεmε,1(Kε)|
2mε√
N

+ 3ε}+ χnEW1(µN0 , µ0)

≤ {|Fεmε,1(Kε)|
2mε√
N

+ 2ε} 1

1− χ
+ χn EW1(µN0 , µ0). (2.4.20)

Given ε > 0, choose ε sufficiently small and N0 sufficiently large such that ∀N ≥ N0

{|Fεmε,1(Kε)|
2mε√
N

+ 2ε} 1

1− χ
≤ ε

2
.

Choose n0 large enough so that ∀n ≥ n0, 2χn ‖µ0‖1 <
ε
2
. Combining the above estimates

we have ∀N ≥ N0, and n ≥ n0 EW1(µNn , µn) ≤ ε. This proves the first part of the theorem.

Second part is immediate from the first part and Proposition 2.3.1.

Corollary 4.2.1 is an immediate consequence of Theorem 2.3.1.

2.4.5 Proof of Corollary 4.2.1

Note that

EW1(µNn , µ∞) ≤ EW1(µNn , µn) +W1(µn, µ∞).

Combining this with (2.4.20) we have

EW1(µNn , µ∞) ≤
(
|Fεmε,1(Kε)|

2mε√
N

+ 2ε

)
1

1− χ
+ χn EW1(µN0 , µ0) +W1(µn, µ∞).
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The result now follows on using Proposition 2.3.2.

We now consider invariant measures of the Markov chain {Xk(N)}k∈N0 .

2.4.6 Proof of Proposition 2.3.3

For N ≥ 1 and n ∈ N0, define ΠN
n ∈ P((Rd)N) as

〈φ,ΠN
n 〉 =

1

n

n∑
j=1

Eφ(X1,N
j , ..., XN,N

j ), φ ∈ BM((Rd)N) (2.4.21)

where {X i,N
j , j ∈ N0, i = 1, .., N} are as defined in (2.1.1).

From Lemma 19 it folows that, for each N ≥ 1, the sequence {ΠN
n , n ≥ 1} is relatively

compact and using Assumption 1 it is easy to see that any limit point ΠN
∞ of ΠN

n (as n→∞)

is an invariant measure of the Markov chain {Xn(N)}n≥0 and from Lemma 19 it satisfies∫
(Rd)N

|x| ΠN
∞(dx) <∞. Uniqueness of an invariant measure can be proved by the following

simple coupling argument (see for example [12]): Suppose ΠN
∞, Π̃N

∞ are two invariant mea-

sures that satisfy
∫

(Rd)N
|x| ΠN

∞(dx) < ∞,
∫

(Rd)N
|x| Π̃N

∞(dx) < ∞. Let X0(N) = (X i
0)Ni=1

and X̃0(N) = (X̃ i
0)Ni=1 with probability laws ΠN

∞ and Π̃N
∞ respectively be given on a com-

mon probability space on which is also given an i.i.d. array of Rm valued random variables

{εin, i = 1, . . . , N, n ≥ 1} that is independent of (X0(N), X̃0(N)) with common probability

43



law θ. Let, for i = 1, . . . n, n ∈ N0

X i
n+1 = AX i

n + fδ(X
i
n, µ

N
n , ε

i
n+1), µNn =

1

N

N∑
i=1

δXi
n

X̃ i
n+1 = AX̃ i

n + fδ(X̃
i
n, µ̃

N
n , ε

i
n+1), µ̃Nn =

1

N

N∑
i=1

δX̃i
n
,

where recall fδ = δf + g. Using the independence of the noise sequence and Assumption 1

we have

E|X i
n+1 − X̃ i

n+1| ≤ (‖A‖+ δσ)E|X i
n − X̃ i

n|+ δσ
1

N

N∑
j=1

E|Xj
n − X̃j

n|.

Letting ‖Xn+1(N)− X̃n+1(N)‖ =
∑N

i=1 |X i
n+1 − X̃ i

n+1|, we have

E‖Xn+1(N)− X̃n+1(N)‖ ≤ (‖A‖+ 2δσ)E‖Xn+1(N)− X̃n+1(N)‖.

Since δ ∈ (0, a0), ‖A‖+2δσ = η ∈ (0, 1). Also, since ΠN
∞ and Π̃N

∞ are invariant distributions,

for every n ∈ N0, Xn+1(N) = (X i
n+1)Ni=1 is distributed as ΠN

∞ and X̃n+1(N) = (X̃ i
n+1)Ni=1 is

distributed as Π̃N
∞. Thus Xn+1(N) and X̃n+1(N) define a coupling of random variables with

laws ΠN
∞ and Π̃N

∞ respectively. From (2.1.3) we then have

W1(ΠN
∞, Π̃

N
∞) ≤ E‖Xn+1(N)− X̃n+1(N)‖ → 0, as n→∞.

Thus ΠN
∞ = Π̃N

∞ which proves the uniqueness of an invariant measure with an integrable first
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moment and that, as n→∞,

ΠN
n → ΠN

∞. (2.4.22)

This proves the first part of the proposition.

Define rN : (Rd)N → P(Rd) as

rN(x1, ...xN) =
1

N

N∑
i=1

δxi , (x1, · · ·xN) ∈ (Rd)N .

Let νNn = ΠN
n ◦ r−1

N and νN∞ = ΠN
∞ ◦ r−1

N . In order to prove that ΠN
∞ is µ∞-chaotic, it suffices

to argue that (cf. [74])

νN∞ → δµ∞ in P(P(Rd)), as N →∞. (2.4.23)

We first argue that as n→∞

νNn → νN∞ in P(P(Rd)). (2.4.24)

It suffices to show that 〈F, νNn 〉 → 〈F, νN∞〉 for any continuous and bounded function F :

P(Rd)→ R. But this is immediate on observing that

〈F, νNn 〉 = 〈F ◦ rN ,ΠN
n 〉, 〈F, νN∞〉 = 〈F ◦ rN ,ΠN

∞〉,

the continuity of the map rN and the weak convergence of ΠN
n to ΠN

∞. Next, for any ψ ∈
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BL1(P(Rd))

|〈ψ, νNn 〉 − 〈ψ, δµ∞〉| = |
1

n

n∑
j=1

Eψ(µNj )− ψ(µ∞)| ≤ 1

n

n∑
j=1

EW1(µNj , µ∞).

Fix ε > 0. For every N ∈ N there exists n0(N) ∈ N such that for all n ≥ n0(N)

EW1(µNn , µ∞) ≤ lim sup
n→∞

EW1(µNn , µ∞) + ε.

Thus for all n,N ∈ N

|〈ψ, νNn 〉 − 〈ψ, δµ∞〉| ≤
n0(N)

n
max

1≤j≤n0(N)
EW1(µNj , µ∞) + lim sup

n→∞
EW1(µNn , µ∞) + ε.

(2.4.25)

Finally

lim sup
N→∞

|〈ψ, νN∞〉 − 〈ψ, δµ∞〉| = lim sup
N→∞

lim
n→∞

|〈ψ, νNn 〉 − 〈ψ, δµ∞〉|

≤ lim sup
N→∞

lim sup
n→∞

EW1(µNn , µ∞) + ε

≤ε,

where the first equality is from (3.4.90), the second uses (3.4.91) and the third is a conse-

quence of Corollary 4.2.1. Since ε > 0 is arbitrary, we have (3.4.89) and the result fol-

lows.
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2.4.7 Proof of Theorem 2.3.2

We will first develop a concentration bound for W1(µNn ,Ψ(µNn−1)) for each fixed n and

then combine it with the estimate in (2.4.18) in order to obtain the desired result. The first

step is carried out in the lemma below, the proof of which is given in Section 2.4.7.

Lemma 6. Suppose Assumptions 3 and 4 hold. Then, there exist a1, a2, a3 ∈ (0,∞) such

that for all ε, R > 0 and n ∈ N,

P [W1(µNn ,Ψ(µNn−1)) > ε] ≤ a3

(
e−a2

Nε2

R2 +
R−α

ε

)

for all N ≥ max{1, a1(R
ε
)d+2}.

We now complete the proof of Theorem 2.3.2 using the lemma.

Proof of Theorem 2.3.2

We will make use of (2.4.18). Recall that χ = ‖A‖ + 2δσ and by our assumption χ ∈

(0, 1). Let γ = 2σγ0. Note that γ < 1− ‖A‖. Then

P [W1(µNn , µn) > ε] ≤ P [∪ni=1{χn−iW1(µNi ,Ψ(µNi−1)) > γ(1− γ)n−iε} ∪

{χnW1(µN0 , µ0) > γ(1− γ)nε}]

≤
n∑
i=1

P [W1(µNi ,Ψ(µNi−1)) > γ(
1− γ
χ

)n−iε]

+ P [W1(µN0 , µ0) > γ(
1− γ
χ

)nε]. (2.4.26)
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Let β = γε. Note that ϑ = 1−γ
χ

and from our choice of δ, ϑ > 1. Therefore

N ≥ a1(
R

β
)d+2 ∨ 1 implies N ≥ a1(

R

βϑn
)d+2 ∨ 1 for all n ∈ N0.

Thus from Lemma 6, for all N ≥ a1(R
β

)d+2 ∨ 1 and k = 1, · · · , n

P [W1(µNk ,Ψ(µNk−1)) > βϑn−k] ≤ a3

(
e−a2

Nβ2ϑ2(n−k)

R2 +
R−α

βϑn−k

)
.

Using the above estimate in (3.4.99)

P [W1(µNn , µn) > ε] ≤a3

n−1∑
i=0

(
e−a2

Nβ2ϑ2i

R2 +
R−α

βϑi

)
+ P [W1(µN0 , µ0) > γε]

≤a3

∞∑
i=0

e−a2
Nβ2ϑ2i

R2 +
a3R

−αϑ

β(ϑ− 1)
+ P [W1(µN0 , µ0) > γε]. (2.4.27)

Since ϑ > 1 we can find m0 = m0(ϑ) ∈ N such that

ϑ2i ≥ iϑ2 ∀i ≥ m0(ϑ).

Thus

∞∑
i=0

e−a2
Nβ2ϑ2i

R2 =

m0(ϑ)∑
i=1

e−a2
Nβ2ϑ2i

R2 +
∞∑

m0(ϑ)+1

e−a2
Nβ2ϑ2i

R2

≤ m0(ϑ)e−a2
Nβ2ϑ2

R2 +
∞∑

i=m0(ϑ)+1

(e−a2
Nβ2ϑ2

R2 )i

≤ [m0(ϑ) +
1

1− e−a2
Nβ2ϑ2

R2

]e−a2
Nβ2ϑ2

R2 . (2.4.28)
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Now for fixed N ≥ 1 choose R = γεN1/d+2

a
1/d+2
1

. Then (2.4.28) holds for all such N,R. Let

N0 ≥ 1 be large enough so that for all N ≥ N0

1− e−a2a
2
d+2
1 ϑ2N

d
d+2

> 1/2. (2.4.29)

Then letting

a4 = a3(m0(ϑ) + 2), a5 = a2a
2
d+2

1 ϑ2, a6 =
ϑ

ϑ− 1
a3a

α
d+2

1 γ−(α+1),

we have for all N ≥ N0

P [W1(µNn , µn) > ε] ≤ a4e
−a5N

d
d+2

+ a6ε
−(α+1)N−

α
d+2 + P [W1(µN0 , µ0) > γε].

Choose N1 ≥ N0 such that for all N ≥ N1, N
d
d+2 ≥ 2α

a5(d+2)
logN . Also let a7 = 2(1+α)

a5
.

Then for all N ≥ max(N1, (a7 log+ ε)(d+2)/d)

P [W1(µNn , µn) > ε] ≤ (a4 + a6)ε−(α+1)N−
α
d+2 + P [W1(µN0 , µ0) > γε].

The result follows.

Proof of Lemma 6.

We now complete the proof of Lemma 6. The proof uses certain truncation ideas from

[14]. Fix ε > 0. For µ ∈ P(Rd), R > 0 and ν0 ∈ P(BR(0)), where BR(0) = {x ∈ Rd :
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|x| ≤ R}, define µR ∈ P(BR(0)) as

µR(A) =
µ(A)

µ(BR(0))
1{µ(BR(0))6=0} + ν0(A)1{µ(BR(0))=0}, A ∈ B(BR(0)).

For N, n ∈ N and R > 0, let Ψ(R)(µNn−1) := 1
N

∑N
i=1(δXi,N

n−1
P µNn−1)R.

Let {Y i
n}Ni=1 be BR(0) valued random variables which, conditionally on FNn−1 are mutu-

ally independent and also independent of {X i,N
n }Ni=1, and

P (Y i
n ∈ A | FNn−1) = (δXi,N

n−1
P µNn−1)R(A), A ∈ B(BR(0)).

Define

Zi
n =


X i,N
n when |X i,N

n | ≤ R,

Y i
n otherwise .

It is easily checked that P (Y i
n ∈ A | FNn−1) = P (Zi

n ∈ A | FNn−1) for all A and conditionally

on FNn−1, {Zi
n}Ni=1 are mutually independent. Define µNn,R := 1

N

∑N
i=1 δZin . Using triangle

inequality we have

W1(µNn ,Ψ(µNn−1)) ≤ W1(Ψ(R)(µNn−1),Ψ(µNn−1)) +W1(Ψ(R)(µNn−1), µNn,R)

+W1(µNn , µ
N
n,R).+W1(µNn , µ

N
n,R). (2.4.30)

Consider first the middle term on the right side of (2.4.30). Recall Lip0
1(BR(0)) = {ψ ∈
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Lip1(BR(0)) : ψ(0) = 0}. Then

W1(Ψ(R)(µNn−1), µNn,R) = sup
ψ∈Lip01(BR(0))

|〈ψ, 1

N

N∑
i=1

(δXi,N
n−1
P µNn−1)R −

1

N

N∑
i=1

δZin〉|

= sup
ψ∈Lip01(BR(0))

∣∣∣∣∣ 1

N

N∑
i=1

(
ψ(Zi

n)− 〈ψ, (δXi,N
n−1
P µNn−1)R〉

)∣∣∣∣∣
= sup

ψ∈Lip01(BR(0))

| 1
N

N∑
i=1

Zψ
i,n|

where Zψ
i,n = ψ(Zi

n)−〈ψ, (δXi,N
n−1
P µNn−1)R〉. From Lemma A.1.1(a) there exists a finite subset

F
ε
4
R,1(BR(0)) of Lip0

1(BR(0)) such that

sup
ψ∈Lip01(BR(0))

| 1
N

N∑
i=1

Zψ
i,n| ≤ max

ψ∈F
ε
4
R,1(BR(0))

| 1
N

N∑
i=1

Zψ
i,n|+

ε

2
. (2.4.31)

Thus

P [W1(Ψ(R)(µNn−1), µNn,R) > ε] ≤ E

 P
 max
ψ∈F

ε
4
R,1(BR(0))

| 1
N

N∑
i=1

Zψ
i,n| >

ε

2
| FNn−1


≤ E

∑
ψ∈F

ε
4
R,1(BR(0))

P

[
| 1
N

N∑
i=1

Zψ
i,n| >

ε

2

∣∣FNn−1

]
.(2.4.32)

Since ψ ∈ Lip0
1(BR(0)), |Zψ

i,n| ≤ 2R. So by the Azuma - Hoeffding inequality the upper-

51



bound of P [W1(Ψ(R)(µNn−1), µNn,R) > ε] is

≤ |F
ε
4
R,1(BR(0))| max

ψ∈F
ε
2
R,1(BR(0))

E

(
P [| 1

N

N∑
i=1

Zψ
i,n| >

ε

2

∣∣FNn−1]

)

≤ |F
ε
4
R,1(BR(0))|2e−

Nε2

32R2

≤ 2 |F
ε
4
R,1([−R,R]d)|e−

Nε2

32R2 . (2.4.33)

From Lemma A.1.1(b) we have the following estimate

P [W1(Ψ(R)(µNn−1), µNn,R) > ε] ≤ max

{
2,

16R

3ε
(2
√
d+ 1)3[ 8R

ε
(
√
d+1)]d

}
e−

Nε2

32R2 .

Thus there exist k1, k2 ∈ (0,∞) such that for all n,N ∈ N, R > 0, ε > 0

P [W1(Ψ(R)(µNn−1), µNn,R) > ε] ≤ k2[ek1(R/ε)d ∨ 1]e−
Nε2

32R2 . (2.4.34)

For the first term in the right hand side of (2.4.30) we make use of the observation that if

for i = 1, · · ·N , U i, V i are Rd valued random variables distributed according to λiU , λ
i
V

respectively then

W1(
1

N

N∑
i=1

λiU ,
1

N

N∑
i=1

λiV ) ≤ 1

N

N∑
i=1

E|U i − V i|.
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Thus

W1(Ψ(R)(µNn−1),Ψ(µNn−1)) = W1(
1

N

N∑
i=1

(δXi,N
n−1
P µNn−1)R,

1

N

N∑
i=1

δXi,N
n−1
P µNn−1)

≤ 1

N

N∑
i=1

E[|X i,N
n − Zi

n| | FNn−1].

Using the definition of {Zi
n} we see

1

N

N∑
i=1

E[|X i,N
n − Zi

n| | FNn−1] =
1

N

N∑
i=1

E[|X i,N
n − Y i

n|1|Xi,N
n |>R | F

N
n−1]

≤ 2

N

N∑
i=1

E[|X i,N
n |1|Xi,N

n |>R | F
N
n−1] (2.4.35)

From (2.4.17) we have that Bα
n := E|X i,N

n |1+α satisfies

Bα
n ≤ κ1E|X i,N

0 |1+α +
κ2

1− κ1

= B(α).

Thus

P [W1(Ψ(R)(µNn−1),Ψ(µNn−1)) > ε] ≤ 1

ε
E

1

N

N∑
i=1

E[|X i,N
n − Y i

n|1|Xi,N
n |>R | F

N
n−1]

≤ 2

ε
E{|X i,N

n |1|Xi,N
n |>R}

≤ 2R−α

ε
Bα
n ≤

2R−α

ε
B(α). (2.4.36)

53



The third term in (2.4.30) can be treated similarly. Indeed, note that

W1(µNn , µ
N
n,R) ≤ 1

N

N∑
i=1

|X i,N
n − Zi

n| =
1

N

N∑
i=1

|X i,N
n − Y n

i |1|Xi,N
n |>R.

Thus using the bound for the right side of the first line in (2.4.36) we have that

P (W1(µNn , µ
N
n,R) > ε) ≤1

ε
E

1

N

N∑
i=1

E[|X i,N
n − Y n

i |1|Xi,N
n |>R | F

N
n−1]

≤2R−α

ε
B(α). (2.4.37)

Using (2.4.34), (2.4.36) and (2.4.37) in (2.4.30) we have

P [W1(µNn ,Ψ(µNn−1)) > ε] ≤ k2[ek1(3R/ε)d ∨ 1]e−
Nε2

288R2 +
12R−α

ε
B(α).

Letting k3 = 3d · 576k1, k4 = 1/576 and k5 = max{k2, 12B(α)}, we have that

P [W1(µNn ,Ψ(µNn−1)) > ε] ≤ k5

(
e−

k4Nε
2

R2 +
R−α

ε

)

for all N ≥ max{1, k3(R
ε
)d+2}. This completes the proof of the lemma.

2.4.8 Proof of Theorem 2.3.3

We will proceed as in Section 2.4.7 by first first giving a concentration bound for

W1(µNn ,Ψ(µNn−1))
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for each fixed n and then combining it with (2.4.18) in order to obtain a uniform in n estimate.

We begin by observing that from Assumption 5 it follows that there is a α0 ∈ (0, α] and

c2 ∈ (0,∞) such that for all α1 ∈ [0, α0]

E1(α1) :=

∫
eα1(D1(z)+|g1(z)|)θ(dz) ≤ ec2α1 (2.4.38)

Lemma 7. Suppose Assumptions 3 and 5 hold. Let γ0 be as in Theorem 2.3.3. Then for all

δ ∈ [0,min{a0 − γ0,
1−‖A‖

2M
}) and α1 ∈ [0, α0]

sup
n≥0

sup
N≥1

Eeα1|X1,N
n | <∞.

Proof. Note that for n ≥ 1

|X i,N
n | ≤ ‖A‖|X

i,N
n−1|+ δM

(
|X i,N

n−1|+ ‖µNn−1‖1

)
+ (δD1(εin) + |g1(εin)|).

Taking expectations, for all α1 ∈ [0, α0]

Eeα1|Xi,N
n | ≤ E exp

{
α1

(
‖A‖|X i,N

n−1|+ δM
(
|X i,N

n−1|+ ‖µNn−1‖1

)
+ (δD1(εin) + |g1(εin)|)

)}
≤ E1(α1)E exp

{
α1

(
‖A‖|X i,N

n−1|+ δM
(
|X i,N

n−1|+ ‖µNn−1‖1

))}
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Holder’s inequality with p = (‖A‖+ 2δM)/(‖A‖+ δM) and q = (‖A‖+ 2δM)/δM gives

E exp
{
α1

(
‖A‖|X i,N

n−1|+ δM
(
|X i,N

n−1|+ ‖µNn−1‖1

))}
≤
(
E exp

{
α1(‖A‖+ 2δM)|X i,N

n−1|
})1/p (

E exp
{
α1(‖A‖+ 2δM)‖µNn−1‖1

})1/q
.

From Jensen’s inequality and exchangeability

E exp
{
α1(‖A‖+ 2δM)‖µNn−1‖1

}
≤ 1

N

N∑
i=1

E exp
{
α1(‖A‖+ 2δM)|X i,N

n−1|
}

= E exp
{
α1(‖A‖+ 2δM)|X i,N

n−1|
}
.

Using this inequality in the previous display and recalling 1/p+ 1/q = 1 we have

Eeα1|Xi,N
n | ≤ E1(α1)E exp

{
α1(‖A‖+ 2δM)|X i,N

n−1|
}
.

Thus for all α1 ∈ [0, α0]

fn(α1) := E exp{α1|X i,N
n |} ≤ E1(α1)fn−1(α1κ1),

where by our assumption κ1 = ‖A‖+ 2δM ∈ (0, 1). Iterating the above inequality we have

for all n ≥ 1

fn(α1) ≤ f0(α1)
n−1∏
j=0

E1(α1κ
j
1) ≤ f0(α1)ec2α1

∑n−1
j=0 κ

j
1 ≤ f0(α1)ec2α1/(1−κ1)
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where the second inequality is a consequence of (2.4.38). The result follows.

The following lemma is proved in a manner similar to Lemma 6 so only a sketch is

provided.

Lemma 8. There exist ã1, ã2, ã3 ∈ (0,∞) and, for each α1 ∈ [0, α0), B̃(α1) ∈ [0,∞) such

that for all ε, R > 0 and n ∈ N,

P [W1(µNn ,Ψ(µNn−1)) > ε] ≤ ã3

(
e−ã2

Nε2

R2 + B̃(α1)
e−α1R

ε

)

for all N ≥ max{1, ã1(R
ε
)d+2}.

Proof. From Lemma 7 we have that for α1 ∈ [0, α0]

sup
n≥0

sup
N≥1

max
{1≤i≤N}

Eeα|X
i,N
n | <∞. (2.4.39)

Next, as in the proof of Lemma 6, we will use (2.4.30). For the middle term on the right side

of (2.4.30) we use the same bound as in (2.4.34). Now consider the first term in (2.4.30).

From (2.4.35) we have that

P [W1(Ψ(µNn−1),Ψ(µNn−1)R) > ε] ≤ 2

ε
E
(
|X1,N

n |1|X1,N
n |>R

)
. (2.4.40)

From (2.4.39) it follows that for every α1 ∈ [0, α0)

sup
n≥0

sup
N≥1

max
{1≤i≤N}

E
(
|X i,N

n |eα1|Xi,N
n |
)

= B̃(α1) <∞.
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Applying Markov’s inequality we now have for α1 ∈ [0, α0)

P [W1(Ψ(µNn−1),Ψ(µNn−1)R) > ε] ≤ 2

ε
e−α1RB̃(α1). (2.4.41)

The third term in (2.4.30) is bounded similarly. Indeed, as in (2.4.37) we get for α1 ∈ [0, α)

P [W1(µNn , µ
N
n,R) > ε] ≤ 2

ε
e−α1RB̃(α1). (2.4.42)

Using (2.4.34), (2.4.41) and (2.4.42) in (2.4.30) we now have for α1 ∈ [0, α0)

P [W1(µNn ,Ψ(µNn−1)) > ε] ≤ k2[ek1(3R/ε)d ∨ 1]e−
Nε2

288R2 +
12e−α1R

ε
B̃(α1).

Thus with k3, k4 as in the proof of Lemma 6 and k5 = max{k2, 12} we have

P [W1(µNn ,Ψ(µNn−1)) > ε] ≤ k5

(
e−

k4Nε
2

R2 + B̃(α1)
e−α1R

ε

)

for all N ≥ max{1, k3(R
ε
)d+2}. The result follows.

We now complete the proof of Theorem 2.3.3.
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Proof of Theorem 2.3.3.

Fix α1 ∈ [0, α0). Following the steps in the proof of (2.4.27), with ϑ, β as in Theorem

2.3.2, we have from Lemma 8, for all N ≥ ã1(R
β

)d+2 ∨ 1 and k = 1, · · · , n

P [W1(µNn , µn) > ε] ≤ ã3

∞∑
i=0

e−ã2
Nβ2ϑ2i

R2 +
ã3B̃(α1)e−α1Rϑ

β(ϑ− 1)
+ P [W1(µN0 , µ0) > γϑnε].

(2.4.43)

As before for fixed N ≥ 1 choose R = γεN1/d+2

ã
1/d+2
1

. Then (2.4.28) holds for all such N,R with

a2 replaced by ã2. Let N0 ≥ 1 be large enough so that for all N ≥ N0, (2.4.29) holds with

(a1, a2) replaced by (ã1, ã2). Then letting

ã4 = ã3(m0(ϑ) + 2), ã5 = ã2ã
2
d+2

1 ϑ2, ã6 =
ã3ϑ

γ(ϑ− 1)
B̃(α1), ã7 =

α1γ

ã
1/d+2
1

,

we have for all N ≥ N0

P [W1(µNn , µn) > ε] ≤ ã4e
−ã5N

d
d+2

+ ã6ε
−1 exp(−ã7εN

1
d+2 ) + P [W1(µN0 , µ0) > γϑnε].

Note that ε−1 exp(−ã7εN
1
d+2 ) < exp(− ã7

2
εN

1
d+2 ) if N >

(
2
ã7

)d+2

(1
ε

log+ 1
ε
)d+2.

Consider now the case d > 1. Then, taking L1 = max{( 2
ã7

)d+2, N0}, L2 = ã4 + ã6,

L3 = min{ã5, ã7/2}, we have for all N ≥ L1 max{(1
ε

log+ 1
ε
)d+2, ε(d+2)/(d−1)}

P [W1(µNn , µn) > ε] ≤ L2e
−L3εN1/d+2

+ P [W1(µN0 , µ0) > γϑnε].
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This proves the theorem for the case d > 1. Finally for d = 1, with the same choice of

L1, L2, L3, we have for all N ≥ L1 max{(1
ε

log+ 1
ε
)d+2, 1}

P [W1(µNn , µn) > ε] ≤ L2e
−L3(ε∧1)N1/d+2

.

The result follows.

2.4.9 Proof of Theorem 2.3.4.

In order to prove the theorem we will introduce an auxiliary sequence {Y i,N
n , i = 1, · · ·N}n≥0

such that for each n, {Y i,N
n }Ni=1 are i.i.d. We will then employ results from [11] and [13] in

order to give a uniform (in k) concentration bound for W1(ηNk , µk), where ηNk is the em-

pirical measure 1
N

∑N
k=1 δY i,Nk

. Finally we will obtain the desired concentration estimate on

W1(µNk , µk) by making use of Lemma 9 below. We begin by introducing our auxiliary sys-

tem.

An Auxiliary System.

Consider the collection of Rd valued random variables {Y i,N
n , i = 1, ..., N}n≥0 defined

as follows.

Y i,N
n+1 = AY i,N

n + fδ(Y
i,N
n , µn, ε

i
n+1), n ≥ 0

Y i,N
0 = X i,N

0 . (2.4.44)

Note that for each n, {Y i,N
n }Ni=1 are i.i.d. In fact, since L({X i,N

0 }i=1,...N) = µ⊗N0 , we have

L({Y i,N
n }i=1,...N) = µ⊗Nn . Let ηNn := 1

N

∑N
i=1 δY i,Nn . The following lemma will give a useful

60



relation betweenW1(ηNn , µn) andW1(µNn , µn).

Lemma 9. Suppose Assumptions 3 and 5 hold. Let χ2 = ‖A‖+ 2δM . Then for every n ≥ 0

and N ≥ 1

W1(µNn+1, µn+1) ≤ W1(ηNn+1, µn+1) + δM

n∑
k=0

χn−k2 W1(ηNk , µk). (2.4.45)

Proof. Since by Assumption 5 D(ε) ≤M , we have for each i = 1, ..., N

|X i,N
n+1 − Y

i,N
n+1| ≤ ‖A‖|X i,N

n − Y i,N
n |+ δM{|X i,N

n − Y i,N
n |+W1(µNn , µn)}

= (‖A‖+ δM)|X i,N
n − Y i,N

n |+ δMW1(µNn , µn)

Thus

|X i,N
n+1 − Y

i,N
n+1| ≤ δM

n∑
k=0

(‖A‖+ δM)n−kW1(µNk , µk). (2.4.46)

Now note that

W1(ηNn+1, µ
N
n+1) ≤ 1

N

N∑
i=1

|X i,N
n+1 − Y

i,N
n+1| ≤ δM

n∑
k=0

(‖A‖+ δM)n−kW1(µNk , µk).

Using triangle inequality

W1(ηNn+1, µ
N
n+1) ≤ δM

n∑
k=0

(‖A‖+ δM)n−kW1(ηNk , µ
N
k ) +

δM
n∑
k=0

(‖A‖+ δM)n−kW1(ηNk , µk).
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Applying Lemma A.1.3 with

an = χ−n1 W1(ηNn , µ
N
n ), bn =

δM

χ1

n−1∑
k=0

χ−k1 W1(ηNk , µk), cn =
δM

χ1

, n ≥ 0

where χ1 := ‖A‖+ δM , we have

χ
−(n+1)
1 W1(ηNn+1, µ

N
n+1) ≤ bn+1 +

n∑
k=0

(
δM

χ1

)2

k−1∑
i=0

χ−i1 W1(ηNi , µi)

(
1 +

δM

χ1

)n−k
= bn+1 +

n∑
i=0

n∑
k=i+1

(
δM

χ1

)2(1 +
δM

χ1

)n−kχ−i1 W1(ηNi , µi)

= bn+1 +
n∑
i=0

(
δM

χ1

)2χ−i1 .W1(ηNi , µi)
n−i−1∑
m=0

(1 +
δM

χ1

)m

= bn+1 +
n∑
i=0

(
δM

χ1

)χ−i1 W1(ηNi , µi)[(1 +
δM

χ1

)n−i − 1] .(2.4.47)

Simplifying (3.4.108) one gets

W1(ηNn+1, µ
N
n+1) ≤ δM

n∑
k=0

χn−k1 W1(ηNk , µk) +
n∑
k=0

δMχn−k1 W1(ηNk , µk)[(1 +
δM

χ1

)n−k − 1]

= δM
n∑
k=0

(χ1 + δM)n−kW1(ηNk , µk).

The result now follows by an application of triangle inequality.

Proof of Theorem 2.3.4 is based on certain results from [11] and [13] which we sum-

marize in this section. Define ` : [0,∞) → [0,∞) as `(x) = x log x − x + 1. With the

definition of “ν satisfies Transportation inequality α(T ) ” defined in (1.0.1), the following

result is established in [11].
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Theorem 2.4.1. (Boissard [11]) Suppose that ν ∈ P(Rd) satisfies a α(T ) inequality and

suppose that there is ζ > 0 such that
∫
Rd e

ζ|x|ν(dx) ≤ 2. Let LN = 1
N

∑N
i=1 δZi where Zi are

i.i.d. with common distribution ν. Then for t > 0

P (W1(LN , ν) ≥ t) ≤ exp

{
−Nα(

t

2
− Γ(Ct, N))

}
,

where

Γ(Ct, N)) = inf
λ>0

{
1

λ
log Ct +Nα∗(

λ

N
)

}
, (2.4.48)

α∗ : R→ [0,∞) is defined as

α∗(s) = sup
t≥0
{st− α(t)}1[0,∞)(s), s ∈ R,

Ct = 2

(
1 + ψ(

32

ζt
)

)
2cd(ψ( 32

ζt
))d , (2.4.49)

ψ(x) = x log(2`(x)), x ≥ 0 and cd is a positive scaler depending only on d.

The following result is from [13].

Theorem 2.4.2. Let ν ∈ P(Rd). Suppose that
∫
Rd e

α0|x|dν(x) < ∞ for some α0 > 0. Then

ν satisfies α(T ) inequality with

α(t) =

(√
t

C
+

1

4
− 1

2

)2

, t ≥ 0 (2.4.50)
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for any

C > 2 inf
x0∈Rd,α̃>0

1

α̃

(
3

2
+ log

∫
Rd
eα̃|x−x0|dν(x)

)
.

Exponential Integrability.

Transportation inequalities presented in Introduction require exponential integrability of

the underlying measure. In this section we show that under Assumption 5 the desired inte-

grability properties hold.

Lemma 10. Suppose that Assumption 5 holds and that δ ∈ (0, 1−‖A‖
2M

). Then κ1 = (‖A‖ +

2δM) ∈ (0, 1) and for all α1 ∈ [0, α0]

sup
n≥0

∫
Rd
eα1|x|µn(dx) ≤ (

∫
eα1|x|µ0(dx)) exp

{
c2α1

1− κ1

}
.

Proof. The property that κ1 ∈ (0, 1) is an immediate consequence of assumptions on δ.

Let fn(α1) :=
∫
eα1|x|µn(dx).

From (2.4.1) and the condition D(ε) ≤M we have

|Xn+1| ≤ ‖A‖|Xn|+ δM(|Xn|+ ‖µn‖1) + δD1(εn+1) + |g(εn+1)|. (2.4.51)

Using Holder’s inequality and taking exponentials we get

fn+1(α1) = Eeα1|Xn+1| ≤ Eeα1[‖A‖|Xn|+δM(|Xn|+‖µn‖1)+δD1(εn+1)+|g(εn+1)|]

= E1(α1)Eeα1(‖A‖+δM)|Xn|+δM‖µn‖1 . (2.4.52)
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Applying Jensen’s inequality again to the function x 7→ exp{α1δMx} and observing ‖µn‖1 ≤

E|Xn| we have

fn+1(α1) ≤ E1(α1)E[eα1(‖A‖+δM)|Xn|]E[eα1δM |Xn|]. (2.4.53)

Note that for any two non-decreasing, non-negative functions f, g on R and any µ ∈ P(R),

∫
f(x)g(x)µ(dx) ≥

∫
f(x)µ(dx)

∫
g(y)µ(dy).

Using this inequality in the above display yields the following recursion

fn+1(α1) ≤ E1(α1)E[eα1(‖A‖+2δM)|Xn|] = E1(α1)fn(α1κ1).

Iterating the above inequality we have, for all n ≥ 0,

fn+1(α1) ≤ f0(α1)
n∏
j=0

E1(α1κ
j
1).

Thus using (2.4.38) we see

fn+1(α1) ≤ f0(α1)
n∏
j=0

exp{c2(α1κ
j
1)} ≤ f0(α1) exp{c2α1

∞∑
j=0

κj1}.

The result follows.
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2.4.10 Uniform Concentration Bounds for {ηNn }.

In this section we will give, using results of Theorem 2.4.1 and 2.4.9, uniform concentra-

tion bounds for {ηNn }n≥1 as N →∞.

Lemma 11. Suppose that Assumption 5 holds and δ ∈ (0, 1−‖A‖
2M

). Then the following hold.

(1) There exists a ζ0 ∈ (0,∞) such that

sup
n∈N0

∫
Rd
eζ0|x|µn(dx) ≤ 2 (2.4.54)

and for all n ∈ N0, µn satisfies a α(T ) inequality with α as in (2.4.50) and with

C ≥ C0 = 2
√

2
1

ζ0

(
3

2
+ log 2

)
.

(2) For all t > 0 and n ∈ N0

P (W1(ηNn , µn) ≥ t) ≤ exp

{
−Nα0(

t

2
− Γ0(C0

t , N))

}
,

where α0 is defined by the right side in (2.4.50) with C replaced with C0, Γ0 is defined

by the right side of (2.4.48) with α∗ replaced by α∗0 and C0
t is as in (2.4.49) with ζ

replaced with ζ0.
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(3) There exist N1 ∈ N and L1 ∈ (0,∞) such that for all t ∈ [C0

2
,∞), n ∈ N0 and N ≥ N1

P (W1(ηNn , µn) ≥ t) ≤ exp(−L1Nt).

(4) There exist L2, L3 ∈ (0,∞) such that for all t ∈ (0, C0

2
] and all N ≥ L3

log Ct
t2

.

P (W1(ηNn , µn) ≥ t) ≤ exp(−L2Nt
2).

Proof. (1) Suppose that the statement in (2.4.54) fails to hold for any ζ0 > 0. Then there

exist sequences nk ↑ ∞ and ζk ↓ 0 such that

∫
Rd
eζk|x|µnk(dx) > 2. (2.4.55)

From Lemma 10 it follows that {µnk , k ≥ 1} is tight. Suppose along a further subsequence

µnk converges to some measure µ0. Then sending k →∞ along this subsequence in (2.4.55)

and using Lemma 10 once again we arrive at a contradiction. This proves the first statement

in (1). The second statement in (1) is an immediate consequence of Theorem 2.4.2.

(2) This is immediate from part (1) and Theorem 2.4.1.
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(3) It is easy to check that for all t > 0, N ∈ N (see proof of Corollary 2.5 in [11])

Γ0(C0
t , N) ≤ C0(

1 + N
log C0

t

)1/2

− 1

.

Thus recalling the expression for C0
t in (2.4.49) we see that limN→∞ supt≥C0/2 Γ0(C0

t , N) =

0. Choose N1 ∈ N such that for all N ≥ N1 and t ≥ C0/2

Γ0(C0
t , N) ≤ C0

8
≤ t

4
.

Then for all N ≥ N1 and t ≥ C0/2

α0

(
t

2
− Γ0(C0

t , N)

)
≥1

4

(
(1 +

t

C0

)1/2 − 1

)2

≥ 1

16

(t/C0)2

(1 + t/C0)
≥ t

48C0

,

where the second inequality follows on using the inequality

√
1 + x− 1 ≥ x

2
√

1 + x
, x ≥ 0. (2.4.56)

Combining this with (2) completes the proof of (3).

(4) From the proof of Corollary 2.5 of [11] it follows that for t ≤ C0/2

P (W1(ηNn , µn) ≥ t) ≤ A(N, t) exp
(
−B1Nt

2
)

(2.4.57)

where A(N, t) = exp

(
NB2

((1+N/ log C0
t )1/2−1)

2

)
, B1 = (

√
2− 1)2/(2C2

1) and B2 = 4(
√

2− 1)2.
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From (2.4.56) note that if N > log C0
t

(
(1 +N/ log C0

t )
1/2 − 1

)2 ≥ N

8 log C0
t

.

Thus for all such N, t, A(N, t) ≤ exp(8B2 log C0
t ). Thus if additionally N ≥ 16B2

B1

log C0
t

t2
, the

right side of (2.4.57) is bounded above by exp(−B1Nt
2/2). The result follows.

Proof of Theorem 2.3.4.

In this section we complete the proof of Theorem 2.3.4.

Fix γ ∈ (0, 1− ‖A‖). From (3.4.101), for any ε > 0,

P [W1(µNn , µn) > ε] ≤ P [W1(ηNn , µn) > γε] +
n−1∑
i=0

P [W1(ηNi , µi) ≥
γε

δM
(
1− γ
χ2

)n−i]

= P [W1(ηNn , µn) > γε] +
n∑
i=1

P [W1(ηNn−i, µn−i) ≥
γε

δM
ϑi]

≡ T1 + T2, (2.4.58)

where ϑ = 1−γ
χ2

, which, in view of our assumption on δ, is strictly larger than 1. Let iε =

max{i ≥ 0 : εγ
δM
ϑi < C0

2
}. Then

T2 =
iε∑
i=1

P [W1(ηNn−i, µn−i) ≥
γε

δM
ϑi] +

n∑
i=iε+1

P [W1(ηNn−i, µn−i) ≥
γε

δM
ϑi].

Note that since ϑ > 1 and t 7→ C0
t

t2
is non-increasing, N ≥ L3

log C0
mγ (ε)

m2
γ(ε)

implies N ≥

L3

log C0
mγ (εϑi)

m2
γ(εϑi)

for all i ≥ 0 where mγ is as introduced in Remark 4. Therefore from Lemma
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11(4), for all such N

iε∑
i=1

P [W1(ηNn−i, µn−i) ≥
γε

δM
ϑi] ≤

iε∑
i=1

exp{−L2Nm
2
γ(εϑ

i)}.

Also, from Lemma 11(3), for all N ≥ N1,

n∑
i=iε+1

P [W1(ηNn−i, µn−i) ≥
γε

δM
ϑi] ≤

n∑
i=iε+1

exp{−L1Nmγ(εϑ
i)}.

Combining these estimates and letting N2 = max{N1, L3} and ς̃1(t) = max{1,
log C0

mγ (t)

m2
γ(t)
},

we have for all N ≥ N2ς̃1(ε)

T2 ≤ 2
∞∑
i=1

exp
{
−L4N(ε2 ∧ ε)ϑi

}
,

where L4 = min{L2
γ2

M2 , L1
γ
M
}. Let k0 ∈ N be such that for all k ≥ k0, ϑk ≥ k. Then

T2 ≤ 2k0 exp
{
−L4N(ε2 ∧ ε)

}
+ 2

exp {−L4N(ε2 ∧ ε)}
1− exp {−L4N(ε2 ∧ ε)}

.

Noting that 1 − exp {−L4N(ε2 ∧ ε)} ≥ 1/2 whenever N ≥ log 2
L4

( 1
ε2
∨ 1

ε
), we see that with

ς∗1 (t) = max{1,
log C0

mγ (t)

m2
γ(t)

, 1
t2
, 1
t
} and N3 = max{N1, L3,

log 2
L4
}

T2 ≤ 2(k0 + 2) exp
{
−L4N(ε2 ∧ ε)

}
for all N ≥ N3ς

∗
1 (ε). (2.4.59)
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Also from Lemma 11, for all N ≥ N3 max{1, log C0
γε

γ2ε2
}

T1 ≤ exp
{
−L5N(ε2 ∧ ε)

}
, (2.4.60)

where L5 = min{γ2L2, γL1}. Using (2.4.59) and (2.4.60) in (3.4.109) we now get the de-

sired result with a1 = 2(k0+2)+1, a2 = min{L4, L5},N0 = N3 and ς1(t) = max{ς∗1 (t),
log C0

γt

γ2t2
}.
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Chapter3
AN IP MODEL FOR ACTIVE CHEMOTAXIS

3.1 Introduction

In contrast to chapter 2 here we will study long time asymptotics of another particle

system where interactions among agents with other components of system are more involved.

We consider the following model, variations of which have been proposed (see [15],[69]

and references therein) for a number of different phenomena in social sciences, biological

systems and self organized networks. For each i = 1, . . . , N Xi(0) = xi ∈ Rd and for a

function h(·, ·) such that h(0, ·) = h(·),

dXi(t) =

[
− (I − A)Xi(t) +∇h(t,Xi(t)) +

1

n

n∑
j=1,j 6=i

K
(
Xi(t), Xj(t)

)]
dt

+dWi(t),

∂

∂t
h(t, x) = −αh(t, x) +D4 h(t, x) +

β

N

N∑
i=1

g(Xi(t), x). (3.1.1)

Here Wi, i = 1, . . . , N are independent Brownian motions that drive the state process

Xi of the N interacting particles. The interaction between the particles arises directly from

the evolution equation (3.1.1) and indirectly through the underlying potential field h which

changes continuously according to a diffusion equation and through the aggregated input of

the N particles. One example of such an interaction is in chemotaxis where cells preferen-



tially move towards a higher chemical concentration and themselves release chemicals into

the medium, in response to the local information on the environment, thus modifying the

potential field dynamically over time. In this context, h(t, x) represents the concentration of

a chemical at time t and location x. Diffusion of the chemical in the medium is captured by

the Laplacian in (3.1.1) and the constant α > 0 models the rate of decay or dissipation of the

chemical. The first equation in (3.1.1) describes the motion of a particle in terms of diffusion

process with a drift consisting of three terms. The first term models a restoring force towards

the origin where origin represents the natural rest state of the particles. The second term is

the gradient of the chemical concentration and captures the fact that particles tend to move

particularly towards regions of higher chemical concentration. Finally the third term captures

the interaction (e.g attraction or repulsion) between the particles which is represented by the

kernel K(·, ·). Note that K = 0 corresponds to the case (1.3.2)l. Contribution of the agents

to the chemical concentration field is given through the last term in the second equation. The

function g captures the agent response rules and can be used to model a wide range of phe-

nomenon [70]. Similar models where the particles follow a chemical gradient and themselves

actively modify the chemical field, have been proposed for movement of Leukocytes, gliding

paths of Myxobacteria (See [41], [16] and references therein) and formation of ant trails etc.

However even very basic questions for this continuous time model, such as well posedness,

largeN limit behavior of fixed t > 0, and characterization of the nonlinear dynamical system

are not very well understood. A precise mathematical treatment of (3.1.1) presents signifi-

cant technical obstacles and existing results in literature are limited to simulation and formal

asymptotic approximation of the system. In [15] the authors considered a discrete time model
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which captures some of the key features of the dynamics in (3.1.1) and studied several long

time properties of the system. One aspect that greatly simplified the analysis of [15] is that

the state space of the particles is taken to be a compact set in Rd. However this requirement

is restrictive and may be unnatural for the time scales at which the particle evolution is being

modeled. In [69] authors had considered a number of variations of (3.1.1). The theoretical

properties obtained in this work on the long time behavior of the particle system can be also

applied for such systems with some minor modifications.

We now give a general description of the N - particle system that gives a discrete time

approximation of the mechanism outlined above. The space of real valued bounded measur-

able functions on S is denoted as BM(S). Borel σ field on a metric space will be denoted

as B(S). Cb(S) denotes the space of all bounded and continuous functions f : S → R. For a

measurable space S, P(S) denotes the space of all probability measures on S. For k ∈ N, let

Pk(Rd) be the space of µ ∈ P(Rd) such that

‖µ‖k :=

(∫
|x|kdµ(x)

) 1
k

<∞.

Consider a system ofN interacting particles that evolve in Rd governed by a random dynamic

chemical field according to the following discrete time stochastic evolution equation given

on some probability space (Ω,F, P ). Suppose that the chemical field at time instant n is

given by a nonnegative C1 (i.e continuously differentiable) real function on Rd satisfying∫
Rd η(x)dx = 1. Then, given that particle state at time instant n is x and the empirical
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measure of the particle states at time n is µ, the particle state X+ at time (n+ 1) is given as

X+ = Ax+ δf(∇η(x), µ, x, ε) +B(ε), (3.1.2)

where A is a d × d matrix, δ is a small parameter, ε is a Rm valued random variable with

probability law θ and f : Rd × P(Rd) × Rd × Rm −→ Rd is a measurable function. Here

we consider a somewhat more general form of dependence of the particle evolution on the

concentration profile than the additive form that appears in (3.1.1). Additional assumptions

onA, θ, f will be introduced shortly. Nonlinearity (modeled by f andB) of the system can be

very general and as described below. Denote by X i
n ≡ X i,N

n (a Rd valued random variable)

the state of the i-th particle (i = 1, . . . , N) and by ηNn the chemical concentration field at

time instant n. Let µNn := 1
N

∑N
i=1 δXi

n
be the empirical measure of the particle values at time

instant n. The stochastic evaluation equation for the N -particle system is given as

X i
n+1 = AX i

n + δf(∇ηNn (X i
n), µNn , X

i
n, ε

i
n+1) +B(εin+1). (3.1.3)

for i = 1, . . . , N, n ∈ N0. In (3.1.3) {εin, i = 1, ..., N, n ≥ 1} is an i.i.d array of Rm valued

random variables with common probability law θ. Here {X i
0, i = 1, ..., N} are assumed to

be exchangeable with common distribution µ0 where µ0 ∈ P1(Rd). Note that in the notation

we have suppressed the dependence of the sequence {X i
n} on N .

We now describe the evolution of the chemical field approximating the second equation

in (3.1.1) and its interaction with the particle system. A transition probability kernel on S is
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a map P : S × B(S) → [0, 1] such that P (x, ·) ∈ P(S) ∀x ∈ S and for each A ∈ B(S),

P (·, A) ∈ BM(S). Given the concentration profile at time n is a C1 probability density

function η on Rd and the empirical measure of the state of N -particles at time instant n is µ,

the concentration probability density η+ at time (n+ 1) is given by the relation

η+(y) =

∫
Rd
η(x)Rα

µ(x, y)l(dx) (3.1.4)

where l denotes the Lebesgue measure on Rd, andRα
µ(x, y) is the Radon-Nikodym derivative

of the transition probability kernel with respect to the Lebesgue measure l(dy) on Rd. The

kernel Rα
µ is given as follows. Let P and P ′ betwo transition probability kernels on Rd. For

µ ∈ P(Rd) and α ∈ (0, 1) define the transition probability kernel Rα
µ on Rd as

Rα
µ(x,C) := (1− α)P (x,C) + αµP ′(C), x ∈ Rd, C ∈ B(Rd).

Here P represents the background diffusion of the chemical concentration while δxP ′ cap-

tures the contribution to the field by a particle with location x. The parameter α gives a

convenient way for combining the contribution from the background diffusion and the indi-

vidual particles. For each x ∈ Rd, both P (x, ·) and P ′(x, ·) are assumed to be absolutely

continuous with respect to Lebesgue measure and throughout this chapter we will denote

the corresponding Radon-Nykodim derivatives with the same notations P (x, ·) and P ′(x, ·)

respectively. Additional properties of P and P ′ will be specified shortly. The evolution
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equation for the chemical field is then given as

ηNn+1(y) =

∫
Rd
ηNn (x)Rα

µNn
(x, y)l(dx). (3.1.5)

In contrast to the model studied in Chapter 2 the situation here is somewhat more in-

volved. Note that {Xn(N)}n≥0 := (X1,N
n , X2,N

n , . . . , XN,N
n )n≥0 is not a Markov process and

in order to get a Markovian state descriptor one needs to consider {Xn(N), ηNn }n≥0 which is

a discrete time Markov chain with values in (Rd)N × P(Rd).

We will show that as N → ∞, (µNn , η
N
n )n∈N0 converges to a deterministic nonlinear dy-

namical system (µn, ηn)n∈N0 . Under conditions on f, g, θ, δ, A and smoothness parameters

of densities of transition kernels P, P ′ we study several long time asymptotic properties of

the N -particle system and the corresponding nonlinear limit dynamical system. The stochas-

tic dynamical system (3.1.3) - (3.1.5) can be regarded as a perturbation of a linear stable

stochastic dynamical system with a small interaction term and our results give explicit range

of values of the perturbation parameter δ, α for which the weakly interacting system has de-

sirable long time properties. Stochastic systems in (3.1.3)-(3.1.5) can be viewed as discrete

time approximations of many stochastic differential equation models for weakly interacting

particles.

The gradient of a real differentiable function f on Rd denoted by ∇f is defined as the d

dimensional vector field∇f := ( ∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xd
)′. For a function f : Rd × Rm → R

∇xf(x, y) :=

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xd

)′
.
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The function∇yf(x, y) is defined similarly. Absolute continuity of a measure µ with respect

to a measure ν will be denoted by µ � ν. We will denote the Radon-Nikodym derivative of

µ with respect to ν by dµ
dν

. For f ∈ BM(S) and a transition probability kernel P on S, define

Pf ∈ BM(S) as Pf(·) =
∫
S
f(y)P (·, dy). For any closed subset B ∈ S, and µ ∈ P(B),

define µP ∈ P(S) as µP (A) =
∫
B
P (x,A)µ(dx). For a matrix B the usual operator norm

is denoted by ‖B‖.

3.2 Description of Nonlinear System:

We now describe the nonlinear dynamical system obtained on taking the limitN →∞ of

(µNn , η
N
n ). Given aC1 density function ρ on Rd and µ ∈ P(Rd), define a transition probability

kernel Qρ,µ on Rd as

Qρ,µ(x,C) =

∫
Rm

1{Ax+δf(∇ρ(x),µ,x,z)+B(z)∈C}θ(dz), (x,C) ∈ Rd × B(Rd).

With an abuse of notation we will also denote by Qρ,µ the map from BM(Rd) to itself,

defined as

Qρ,µφ(x) =

∫
Rd
φ(y)Qρ,µ(x, dy), φ ∈ BM(Rd), x ∈ Rd.

For µ, µ1 ∈ P(Rd), let µQρ,µ1 ∈ P(Rd) be defined as

µQρ,µ1(C) =

∫
Rd
Qρ,µ1(x,C)µ(dx), C ∈ B(Rd). (3.2.1)

Note that µQρ,µ1 = L
(
AX + δf(∇ρ(X), µ1, X, ε) +B(ε)

)
where L(X, ε) = µ ⊗ θ.

DefineP∗1 (Rd) := {µ ∈ P1(Rd) : µ� l, dµ
dl

is continuously differentiable and ‖∇dµ
dl
‖1 <
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∞}. For notational simplicity we will identify an element in P∗1 (Rd) with its density and

denote both by the same symbol. Define the map Ψ : P(Rd) × P∗1 (Rd) → P(Rd) × P(Rd)

as

Ψ(µ, η) = (µQη,µ, ηRα
µ), (µ, η) ∈ P(Rd)× P∗1 (Rd). (3.2.2)

Under suitable assumptions (which will be introduced in Section 3.3) it will follow that for

every (µ, η) ∈ P1(Rd) × P∗1 (Rd), η+ defined by (3.1.4) is in P∗1 (Rd) and µQη,µ defined by

(3.2.1) is in P1(Rd). Thus (under those assumptions) Ψ is a map from P1(Rd) × P∗1 (Rd)

to itself. Using the above notation we see that {(X1
n, . . . , X

N
n ), µNn , η

N
n }n≥0 is a (Rd)N ×

P1(Rd) × P∗1 (Rd) valued discrete time Markov chain defined recursively as follows. Let

Xk(N) ≡ (X1
k , X

2
k , ..., X

N
k ), and ηN0 be the initial chemical field which is a random element

of P∗1 (Rd). Let F0 = σ{X0(N), ηN0 }. Then, for k ≥ 1



P (Xk(N) ∈ C|FNk−1) =
⊗N

i=1(δXj
k−1
QηNk−1,µ

N
k−1)(C) ∀C ∈ B(RdN),

µNk = 1
N

∑N
i=1 δXi

k
,

ηNk = ηNk−1R
α
µNk−1

,

FNk = σ{ηNk , Xk(N)} ∨ FNk−1.

(3.2.3)

We will call this particle system as IPS1. We next describe a nonlinear dynamical system

which is the formal Vlasov-McKean limit of the above system, as N →∞. Given (µ0, η0) ∈
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P1(Rd)× P∗1 (Rd) define a sequence {(µn, ηn)}n≥0 in P1(Rd)× P∗1 (Rd) as

µn+1 = µnQ
ηn,µn , ηn+1 = ηnR

α
µn , n ≥ 0. (3.2.4)

Using (3.2.2) the above evolution can be represented as

(µn+1, ηn+1) = Ψ(µn, ηn), n ∈ N0. (3.2.5)

As in Chapter 2 the starting point of our investigation on long time asymptotics of the above

interacting particle system will be to study the stability properties of (3.2.4). We identify

η, η′ ∈ P(Rd) that are equal a.e under the Lebesgue measure on Rd.

From a computational point of view we are primarily interested in approximating (µn, ηn)

by (µNn , η
N
n ) uniformly in time parameter n, with explicit uniform concentration bounds.

Such results are particularly useful for developing simulation methods for approximating the

steady state distribution of the mean field models such as in (3.2.4). We note here that we

view the systems (3.1.3)-(3.1.5) and (3.2.4) in two different ways. One is where N is not

too large and the N -particle system is used to obtain a simulation based approximation to

the invariant measure of the nonlinear system (3.2.2) and the second is when the physical

system of interest is (3.1.3),(3.1.5) but N is too large to allow for a tractable analysis and one

instead uses (3.2.4) as a simplified approximate model. In other words, we use the nonlinear

system (3.2.4) as an intermediate model to approximate the properties of the physical system

(3.1.3) with a large N by those of a simulated system with a numerically tractable number of

particles.
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The third equation in (3.2.3) makes the simulation of IPS1 numerically challenging. In

section 3.3 we will introduce another particle system referred to as IPS2 which also gives an

asymptotically consistent approximation of (3.2.4) and is computationally more tractable. We

show in Theorem 1 that under conditions that include a Lipschitz property of f (Assumptions

6 and 7), smoothness assumptions on the transition kernels of the background diffusion of the

chemical medium (Assumption 9) the Wasserstein-1(W1) distance between the occupation

measure of the particles along with the chemical medium (µNn , η
N
n ) and (µn, ηn) converges

to 0, for every time instant n. Under an additional condition on the contractivity of A and

δ, α being sufficiently small we show that the nonlinear system (3.2.5) has a unique fixed

point and starting from an arbitrary initial condition, convergence to the fixed point occurs

at a geometric rate. Using these results we next argue in Theorem 3.3.2 that under some

integrability conditions (Assumption 12-13), as N → ∞, the empirical occupation measure

of the N -particles and density of the chemical medium at time instant n, namely (µNn , η
N
n )

converges to (µn, ηn) in the W1 distance, in L1, uniformly in n. This result in particular

shows that theW1 distance between (µNn , η
N
n ) and the unique fixed point (µ∞, η∞) of (3.2.5)

converges to zero as n→∞ and N →∞ in any order. We next show that for each N , there

is unique invariant measure ΘN
∞ of the N -particle dynamics with integrable first moment and

this sequence of measures is µ∞-chaotic, namely as N → ∞, the projection of ΘN
∞ on the

first k-coordinates converges to µ⊗k∞ for every k ≥ 1. This propagation of chaos property

all the way to n = ∞ crucially relies on the uniform in time convergence of (µNn , η
N
n ) to

(µ∞, η∞). Such a result is important since it says that the steady state of a N -dimensional

fully coupled Markovian system has a simple approximate description in terms of a product
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measure when N is large. This result is key in developing particle based numerical schemes

for approximating the fixed point of the evolution equation (3.2.5). Next we present some

uniform in time concentration bounds ofW1(µNn , µn) +W1(ηNn , ηn). Proof is very similar to

that of Theorem 3.8 of Chapter 2 so we only provide a sketch.

3.3 Main Results:

We now introduce our main assumptions on the problem data. Recall that {X i
0, i =

1, . . . N} is assumed to be exchangeable with common distribution µ0. We assume further

(µ0, η0) ∈ P1(Rd) × P∗1 (Rd). For a d × d matrix B we denote its norm by ‖B‖, i.e. ‖B‖ =

supx∈Rd\{0}
|Bx|
|x| .

Assumption 6. The error distribution θ is such that
∫
A1(z)θ(dz) := σ ∈ (0,∞) where

A1(ε) := sup
{x1,x2,y1,y2∈Rd,µ1,µ2∈P1(Rd):(x1,y1,µ1)6=(x2,y2,µ2)}

|f(y1, µ1, x1, ε)− f(y2, µ2, x2, ε)|
|x1 − x2|+ |y1 − y2|+W1(µ1, µ2)

.(3.3.1)

It follows from (3.3.1) that ∀x, y ∈ Rd, µ ∈ P1(Rd),

|f(y, µ, x, ε)| ≤ (|y|+ ‖µ‖1 + |x|)A1(ε) + A2(ε) (3.3.2)

where A2(ε) := f(0, 0, ε).

Recall the function B : Rm → Rd introduced in (4.1.10).

Assumption 7. The error distribution θ is such that

∫
Rm

(
A2(z) + |B(z)|

)
θ(dz) <∞.
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Assumption 8. ηN0 (the density function) is a Lipschitz function on Rd and ηN0 ∈ P∗1 (Rd) .

Assumptions 9 and 10 on the kernels P and P ′ hold quite generally. In particular, they

are satisfied for Gaussian kernels.

Assumption 9. There exist l∇P ∈ (0, 1] and l∇P ′ ∈ (0,∞) such that for all x, y, x′, y′ ∈ Rd

|∇yP (x, y)−∇yP (x′, y′)| ≤ l∇P (|y − y′|+ |x− x′|) (3.3.3)

|∇yP
′(x, y)−∇yP

′(x′, y′)| ≤ l∇P ′(|y − y′|+ |x− x′|). (3.3.4)

Furthermore

sup
x∈Rd
{|∇yP (x, 0)| ∨ |∇yP

′(x, 0)|} <∞. (3.3.5)

Using the Lipschitz property in (3.3.3) and the growth condition (3.3.5) one has the linear

growth property for some M∇
P ∈ (0,∞)

supx∈Rd |∇yP (x, y)| ≤M∇
P (1 + |y|). (3.3.6)

A similar inequality holds for P ′ from (3.3.4) with M∇
P ′ ∈ (0,∞).

Denote (1− α)l∇P + αl∇P ′ by l∇,αPP ′ .

Assumption 10. For every f ∈ Lip1(Rd), Pf and P ′f are also Lipschitz and

sup
f∈Lip1(Rd)

sup
x 6=y∈Rd

Pf(x)− Pf(y)

|x− y|
:= l(P ) <∞
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Also l(P ′) defined as above for P ′ is finite.

Assumption 11. Both P (x, ·) and P ′(x, ·) are such that for any compact set K ⊂ Rd, the

families of probability measures {P (x, ·) : x ∈ K} and {P ′(x, ·) : x ∈ K} are both

uniformly integrable.

Let max{l(P ), l(P ′)} = lPP ′ .

Remark 5. Assumption 10 is satisfied if P, P ′ are given as follows. For any f ∈ Cb(Rd), let

Pf(·) := Ef(g1(·, ε1)), P ′f(·) := Ef(g2(·, ε2)) (3.3.7)

where ε1, ε2 are Rm valued random variables and ε1, ε2 and g1, g2 : Rd × Rm → Rd are

maps with following properties:

E(G1(ε1)) ≤ l(P ) and E(G2(ε2)) ≤ l(P ′), (3.3.8)

where

G1(y) := sup
x1 6=x2

g1(x1, y)− g1(x2, y)

|x1 − x2|
and G2(y) := sup

x1 6=x2

g2(x1, y)− g2(x2, y)

|x1 − x2|
.(3.3.9)

Simulation of the system (3.2.3) is numerically intractable due to the step that involves

the updating of ηNn−1 to ηNn . This requires computing the integral in (3.1.4) which, since Rα
µ

is a mixture of two transition kernels, over time leads to an explosion of terms in the mixture

that need to be updated. An approach (proposed in [15]) that addresses this difficulty is,
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instead of directly updating ηNn−1, to use the empirical distribution of the observations drawn

independently from ηNn−1. This leads to the following particle system

Denote X̄0(N) by (X̄1,N
0 , . . . , X̄N,N

0 ) a sample of size N from µ0. Let M ∈ N. The new

particle scheme will be described as a family (X̄k(N), µ̄Nk , η̄
M
k )k∈N0 of (Rd)N × P(Rd) ×

P∗(Rd) valued random elements on some probability space defined recursively as follows.

Set X̄0(N) = (X̄1,N
0 , . . . , X̄N,N

0 ), η̄M0 = η0, F̄M,N
0 = σ(X̄N(0)). For k ≥ 1



µ̄Nk = 1
N

∑N
i=1 δX̄i

k
,

P (X̄k(N) ∈ C|FM,N
k−1 ) =

⊗N
i=1(δX̄j

k−1
Qη̄Mk−1,µ̄

N
k−1)(C) ∀C ∈ B(Rd)N ,

η̄Mk = (1− α)(SM(η̄Mk−1)P ) + αµ̄Nk−1P
′,

F̄M,N
k = σ{η̄Mk , X̄k(N)} ∨ F̄M,N

k−1

(3.3.10)

where SM(η̄Mk−1) is the random measure defined as 1
M

∑M
i=1 δY i,Mk−1

where {Y i,M
k−1 }i=1,...,M con-

ditionally on F̄M,N
k−1 , areM i.i.d distributed according to η̄Mk−1.We will call this particle system

as IPS2. We remark that our notation is not accurate since both the quantities µ̄Nk , η̄
M
k depend

on M,N. The superscripts only describe the number of particles/samples used in the pro-

cedure to combine them. Note that like IPS1, here (X̄k(N), η̄Mk )k≥0 is not a Markov chain

on (Rd)N × P∗1 (Rd) anymore. Rather (X̄N(k), η̄Mk , S
M(η̄Mk ))k≥0 is a discrete time Markov

chain on (Rd)N × P∗1 (Rd)× P1(Rd).

For any random variable Z we denote E
[
Z
∣∣FM,N

k

]
by EM,N

k

[
Z
]
. The following result

shows that the particle systems in (3.2.3) and (3.3.10) approximate the dynamical system in

(3.2.4) as N (respectively min{M,N}) becomes large.
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Theorem 1. Suppose Assumptions 6,7,9 and 10 hold.

1. Consider the particle system IPS1 in (3.1.3 - 3.1.5). Suppose the sampling of the ex-

changeable datapointsX0(N) ≡ (X1
0 , X

2
0 , . . . , X

N
0 ) is exchangeable and {L(X0(N))}N∈N

is µ0- chaotic. Suppose EW1(ηN0 , η0)→ 0 as N →∞. Then, as N →∞

E
[
W1(µNn , µn) +W1(ηNn , ηn)

]
→ 0 (3.3.11)

for all n ≥ 0 where µn, ηn are as in (3.2.4).

2. Consider the second particle system IPS2. Suppose that in addition Assumption 11

holds. Suppose the sampling of the exchangeable datapoints X̄0(N) ≡ (X̄1
0 , X̄

2
0 , . . . , X̄

N
0 )

is exchangeable and {L(X̄0(N))}N∈N is µ0- chaotic. Then as min{N,M} → ∞

E
[
W1(µ̄Nn , µn) +W1(η̄Mn , ηn)

]
→ 0 (3.3.12)

for all n ≥ 0.

As a consequence of Theorem 1, we have a finite time propagation of chaos result of the

following form. Let νNn = L(X1,N
n , X2,N

n , . . . , XN,N
n ).

Corollary 3.3.1. Under Assumptions as in Theorem 1 the family {νNn }N≥1 is µn chaotic for

every n ≥ 1.

As noted in introduction, the primary goal is to study long time properties of (3.1.3) and

the non-linear dynamical system (3.2.4). Main contributions of the work are as follows. First
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we will identify the range of values of modeling parameters that leads to stability of the

system. Secondly, we will give non-asymptotic bounds on convergence rates of the parti-

cle system to the deterministic nonlinear dynamics that are uniform in time and study their

consequences for the steady state behavior.

Theorem 3.3.1. Suppose Assumptions (6) - (10) hold. Then there exist ω0, α0, δ0 ∈ (0, 1)

such that whenever ‖A‖ < ω0, α ∈ (0, α0), and δ ∈ (0, δ0), the map Ψ defined in (3.2.2) has

a unique fixed point (µ∞, η∞) in P1(Rd)× P∗1 (Rd).

We now provide a result that will strengthen the convergence in (3.3.11) to uniform con-

vergence over all n ∈ N and also give rates of convergence. For this result we will need the

following additional conditions.

Assumption 12. For some τ > 0,

µ0 ∈ P1+τ (Rd),

∫
A1(z)1+τθ(dz) := σ1(τ) <∞∫ (

A2(z) + |B(z)|
)1+τ

θ(dz) := σ2(τ) <∞. (3.3.13)

We need to impose the following condition on P, P ′ for uniform in time convergence.

Assumption 13. For some 〈|x|1+τ , η0〉 <∞. There existmτ (P ) andmτ (P
′) in R+ such that

following holds for all x ∈ Rd

∫
Rd
|y|1+τP (x, dy) ≤ mτ (P )

(
1 + |x|1+τ

)
, and

∫
Rd
|y|1+τP ′(x, dy) ≤ mτ (P

′)
(
1 + |x|1+τ

)
.
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Now we state a generalization of the Theorem 1, which gives the convergence rate of

E
{
W1(µ̄Nn , µn) +W1(η̄Mn , ηn)

}
→ 0

uniformly over all n ≥ 0 in a nonasymptotic manner.

Recall l∇P , l
∇
P ′ introduced in Assumption 8. For α ∈ (0, 1), let l∇,αPP ′ = (1 − α)l∇P + αl∇P ′ .

With the notations of Assumption 6 we define

a0 :=
1− ‖A‖
σ(2 + l∇,αPP ′)

.

For (µn, ηn), (µ′n, η
′
n) ∈ P1(Rd) × P∗1 (Rd) define the following distance on P1(Rd) ×

P∗1 (Rd)

W1((µn, ηn), (µ′n, η
′
n)) :=W1(µn, µ

′
n) +W1(ηn, η

′
n).

Theorem 3.3.2. Consider the particle system IPS2. Suppose Assumptions (6)-(10) and As-

sumptions (12),(13) hold for some τ > 0. Let N1 := min{M,N}. Also assume δ ∈

(0, a0), (1− α)mτ (P ) < 1 and

max
{(
‖A‖+δσ(2+ l∇,αPP ′)+αl(P ′)

)
, (1−α)l(P )

}
+δσmax

{
αl∇P ′ , (1−α)l∇P

}
< 1, .

Then there exists θ < 1, and a ∈ (0,∞) such that for each n ≥ 0,

EW1

(
(µ̄Nn , η̄

M
n ), (µn, ηn)

)
− aθnEW1

(
(µ̄N0 , η̄

M
0 ), (µ0, η0)

)
≤ b(N1, τ, d),
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where

b(N1, τ, d) = C



N
−max{ 1

2
, τ
1+τ
}

1 if d = 1, τ 6= 1,

N
− 1

2
1 logN1 if d = 1, τ = 1,

N
− 1

2
1 logN1 +N

− τ
1+τ

1 if d = 2, τ 6= 1,

N
− 1

2
1 (logN1)2 if d = 2, τ = 1,

N
−max{ 1

d
, τ
1+τ
}

1 if d > 2, τ 6= 1
d−1

,

N
− 1
d

1 logN1 if d > 2, τ = 1
d−1

,

.(3.3.14)

and the value of the constant C will vary for each of the cases.

Remark 6. For the particle system in (3.2.3) similar results hold N1 replaced by N . For

IPS2 if L(X̄0(N)) is µ0 -chaotic then one can show EW1(µ̄N0 , µ0) → 0 as N → ∞ and

recall that η̄M0 = η0. it follows from Theorem 3.3.2

sup
n≥0

EW1

(
(µ̄Nn , η̄

M
n ), (µn, ηn)

)
→ 0

as min {N,M} → ∞. Similarly for the paticle system in (3.2.3) , if EW1(ηN0 , η0) → 0 as

N →∞, and L(X0(N)) is µ0 -chaotic then following holds

sup
n≥0

EW1

(
(µNn , η

N
n ), (µn, ηn)

)
→ 0

as N →∞.
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One consequence of Theorems 3.3.1 and 3.3.2 will be the following interchange of limit

result.

Corollary 3.3.2. Under conditions of Theorem 3.3.2

lim sup
min {N,M}→∞

lim sup
n→∞

EW1((µ̄Nn , η̄
M
n ), (µ∞, η∞))

= lim sup
n→∞

lim sup
min {N,M}→∞

EW1((µ̄Nn , η̄
M
n ), (µ∞, η∞))

= 0. (3.3.15)

Suppose Assumptions of Theorem 3.3.2 hold and let (µ∞, η∞) be the fixed point of

the map Ψ of (3.2.5). We are interested in establishing a propagation of chaos result for

n = ∞. Recall for IPS2, S
M(η̄Mn ) is the random measure defined as 1

M

∑M
i=1 δY i,Mn where

{Y i,M
n }i=1,...,M conditionally on FM,N

n , are M i.i.d distributed Rd valued random variables

with law η̄Mk−1. Denote Yn(M) := (Y 1,M
n , . . . , Y M,M

n ).

Theorem 3.3.3. Consider the second particle system IPS2. Suppose Assumptions 6,7,9,10

hold and suppose further

δ ∈ (0, a0), and
∞∑
i=0

(1− α)i
∫
Rd
|y|P ′P i(0, dy) <∞,

max
{(
‖A‖+ δσ(2 + l∇,αPP ′) + αl(P ′)

)
, (1− α)l(P )

}
+ δσmax

{
αl∇P ′ , (1− α)l∇P

}
< 1.

Then for every N,M ≥ 1, the Markov process
(
X̄N(n), η̄Mn , S

M(η̄Mn )
)
n≥0

on (Rd)N ×

P∗1 (Rd) × P (Rd) has a unique invariant measure ΘN,M
∞ if following holds Let Θ1,N,M

∞ be

the marginal distribution on (Rd)N of the first co-ordinate of ΘN,M
∞ . Suppose additionally
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Assumption 8 and Assumption 12,13 hold and for some τ > 0

(1− α)mτ (P ) < 1.

Then Θ1,N,M
∞ is µ∞- chaotic as min{M,N} → 0, where µ∞ is defined in Theorem 3.3.1.

Remark 7. A similar version also holds for the particle system in (3.2.3).

3.3.1 Concentration Bounds:

In this section we will give concentration bounds of (µ̄Nn , η̄
N
n ) to (µn, ηn), inW1 metric,

that are uniform in n. We established two different types of concentration bounds. The first

result considers a setting where initiallly the particles have a general exchangeable distri-

bution where as the second considers a more restrictive setting where the initial law of the

particles is iid. We will need the following additional assumptions.

Assumption 14. (i) For some K ∈ (1,∞), A1(x) ≤ K for θ a.e. x ∈ Rm.

(ii) There exists α ∈ (0,∞) such that
∫
eα|x|µ0(dx) < ∞ and there exists α(δ) ∈ (0, α)

such that ∫
Rm

eα(δ)
(
A2(z)+

|B(z)|
δ

)
θ(dz) <∞.

With τ, σ1(τ) defined above in Assumption 12 let

a(τ) :=
4−τ − ‖A‖1+τ

σ1(τ)
[
1 + (1 + l∇,αPP ′)

1+τ
] . (3.3.16)

Theorem 3.3.4. (Polynomial Concentration) Let N1 = min{M,N}. Suppose Assumptions
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(6)-(10) and Assumptions (12),(13) hold for some τ > 0. Suppose that δ ∈ (0, a(τ)
1

1+τ ), (1−

α)mτ (P ) < 1 and

max
{(
‖A‖+ δσ(2 + l∇,αPP ′) + αl(P ′)

)
, (1− α)l(P )

}
+

δσmax
{
αl∇P ′ , (1− α)l∇P

}
< 1. (3.3.17)

Then there exits ν > 1, γ ∈ (0, 1), N0 ∈ N0 and C1 ∈ (0,∞) such that for all ε > 0, and for

all n ≥ 0,

P (W1((µNn , η
M
n ), (µn, ηn) > ε) ≤ P (W1((µN0 , η

M
0 ), (µ0, η0)) > γνnε) + C1ε

−(1+α)N
− τ
d+2

1 ,

for all N1 > N0

(
max

{
1, log+ ε

}) d+2
d .

Remark 8. 1. Similar concentration bounds hold for the particle system IPS1.

2. Note that ν > 1. Under the conditions of Theorem 3.3.4(a) the following uniform in

time concentration estimate holds.

sup
n≥1

P (W1((µNn , η
M
n ), (µn, ηn) > ε) ≤ P (W1((µN0 , η

M
0 ), (µ0, η0)) > γε)+C1ε

−(1+α)N
− τ
d+2

1 ,

for allN1 > N0

(
max

{
1, log+ ε

}) d+2
d . Same thing will also hold for Theorem 3.3.4(b).

Note that the bounds in Theorems 3.3.4 depend on the state dimension. The following

result shows that where initial locations of N particles are i.i.d and under additional condi-

tions on the parameters in a restricted setting one can obtain dimension independent bounds
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for d > 2.

Theorem 3.3.5. Consider the particle system IPS1 with initial condition ηN0 ≡ η0. Suppose

that {X i,N
0 }i=1,...,N are i.i.d. with common distribution µ0 for each N . Let

C
α(1)
PP ′ :=

max{‖A‖+ δK(1 + l∇,αPP ′), αl
∇
P ′ , (1− α)l(P )}∣∣‖A‖+ δK(1 + l∇,αPP ′)−max{αl∇P ′ , (1− α)l(P )}

∣∣
C1 := δK max{1, (1− α)l∇P αl(P

′)}Cα(1)
PP ′ , (3.3.18)

χ1 := δK max{‖A‖+ δK(1 + l∇,αPP ′), αl
∇
P ′ , (1− α)l(P )}+ C1. (3.3.19)

Suppose that Assumptions 6,9,10 and 14 hold with conditions χ1 ∈ (0, 1), δ ∈
[
0, 1−‖A‖

(2+l
∇, α

δ
PP ′ )K

)
and α1 <

α(δ)
δ

. Then there exist a1, a2, a
′
1, a
′
2, a
′′
1, a
′′
2 ∈ (0,∞) and N0, N1, N2 for all ε > 0

such that

sup
n≥0

P [W1(µNn , µn) > ε] ≤



a1e
−Na2(ε2∧ε)1{d=1} N ≥ N1 max{1

ε
, 1
ε2
},

a′1e
−Na′2

((
ε

log(2+ 1
ε )

)2

∧ε
)
1{d=2} N ≥ N2 max{1

ε
,
(

log(2+ 1
ε

)

ε

)2

},

a′′1e
−Na′′2 (εd∧ε)1{d>2} N ≥ N3 max{1

ε
, 1
εd
}.

Remark 9. 1. If Assumption 14 is strengthened to
∫
e
α(δ)

(
A2

1(z)+
|B(z)|)2

δ2

)
θ(dz) < ∞ for

some α(δ) > 0 then one can strengthen the conclusion of Theorem 3.3.5 as follows:

For δ, α sufficiently small there exist N0, a1, a2 ∈ (0,∞) and a nonincreasing function

ς2 : (0,∞)→ (0,∞) such that ς2(t) ↓ 0 as t ↑ ∞ and for all ε > 0 and N ≥ N0ς2(ε)

sup
n≥0

P [W1(µNn , µn) > ε] ≤ a1e
−Na2ε2 .
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2. Theorem 3.3.5 treats the system for IPS1. For IPS2 we would need to estiate in addition

W1

(
SM(η̄Mn−1), η̄Mn−1

)
. However obtaining useful concentration bound for this term

appears to be a hard problem and is not addressed here.

3.4 Proofs :

The following two elementary lemmas give a basic moment bound that will be used in

the proofs. We denote the function f(·, ·, ·, x) + B(x)
δ

by fδ(·, ·, ·, x).

Lemma 12. For an interacting particle system illustrated in (3.1.3) and (3.1.5),

1. Suppose Assumptions 6, 7 and 9 hold. Then, for every n ≥ 1, Mn = supN≥1E|X i
n| <

∞. Moreover if a0 > 0 then for δ ∈ (0, a0) we have supn≥1Mn <∞.

2. Suppose in addition Assumption 12 holds for some τ > 0, a(τ) > 0, and suppose

δ ∈ (0, a(τ)
1

1+τ ). Then

sup
N≥1

sup
n≥1

E|X i
n|1+τ <∞,

where in limit a(τ)
1

1+τ → a0 as τ → 0+.

Remark 10. The same bounds for supn supN,M≥1E|X̄ i
n+1| and supn supN,M≥1E|X̄ i

n+1|1+τ

also hold for IPS2 under same conditions in part (a) and (b) similarly.

Proof of Lemma 12

1. We prove the second statement. Proof of the first statement is similar. For each n ≥ 1

and i = 1, . . . , N, applying Assumption 6 on particle system in (3.1.3) with definitions
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of A1(·) and A2(·)

|X i
n+1| ≤ ‖A‖|X i

n|+ δA1(εin+1)[|∇ηNn (X i
n)|+ ‖µNn ‖1 + |X i

n|] + δA2(εin+1)

+|B(εin+1)|.

Now by Assumption 9 using DCT one has

∇ηn+1(y) =

∫
Rd
ηn(x)[∇yR

α
µn(x, y)]dx (3.4.1)

for every y since from (3.3.6) supx∈Rd |∇yR
α
µn(x, y)| ≤ l∇,αPP ′ |y| + supx∈Rd

(
(1 −

α)|∇yP (x, 0)| + α|∇yP
′(x, 0)|

)
. Applying the same condition followed by the in-

equality |∇ηn+1(y)| ≤
∫
Rd ηn(x)|∇yR

α
µn(x, y)|dx, one has

|∇ηn(y)| ≤ l∇,αPP ′ |y|+ cαPP ′ . (3.4.2)

Also note by exchangeability E‖µNn ‖1 = E
∫
|x|µNn (dx) = E|X i

n|. Taking expec-

tation in (3.4.1) and using (3.4.2) and independence between εin+1 and {Xj
n}Nj=1, one

has

E|X i
n+1| ≤

(
‖A‖+ δσ

(
2 + l∇,αPP ′

))
E|X i

n|+ δ[σc∇,αPP ′ + σ2(δ)]. (3.4.3)

The assumption on δ implies that γ := ‖A‖ + δσ
(

2 + l∇,αPP ′

)
∈ (0, 1). A recursion on

(3.4.3) will give Mn ≤ γnE|X i
0|+

δ[σc∇,α
PP ′+σ2]

1−γ , from which the result follows.
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2. By Holder’s inequality for any three nonnegative real numbers a1, a2, a3, a4

(a1 + a2 + a3 + a4)1+τ ≤ 4τ (a1+τ
1 + a1+τ

2 + a1+τ
3 + a1+τ

4 ). (3.4.4)

Starting with (3.4.1), applying (3.4.4), we have

|X i
n+1|1+τ ≤ 4τ

[
‖A‖(1+τ)|X i

n|1+τ +
(
δA1(εin+1)[1 + l∇,αPP ′ ]|X

i
n|
)1+τ

+
(
δA1(εin+1)‖µNn ‖1

)1+τ
+ δ1+τ

[
A1(εin+1).cαPP ′ + A2(εin+1) +

|B(εin+1)|
δ

]1+τ
]
.

For any convex function φ(·), applying Jensen’s inequality one gets φ(‖µNn ‖1) ≤∫
|φ(x)|µNn (dx) = 1

N

∑N
i=1 |φ(X i

n)|. Using φ(x) = x1+τ , after taking expectation one

gets following recursive equation for E|X i
n+1|1+τ ,

E|X i
n+1|1+τ ≤ 4τ

[
‖A‖(1+τ) + δ1+τσ1(τ)

[
(1 + l∇,αPP ′)

1+τ + 1
]]
E|X i

n|1+τ

+δ1+τ8τ
[
σ1(τ)cτPP ′ + σ2(δ, τ)

]
.

Note that for our condition on δ, κ1 := 4τ
[
‖A‖(1+τ) + δ1+τσ1(τ)

[
(1 + l∇,αPP ′)

1+τ +

1
]]
< 1. Thus

sup
n≥1

E|X i
n|1+τ ≤ κn1E|X i

0|1+τ +
δ1+τ8τ

[
σ1(τ)cτPP ′ + σ2(δ, τ)

]
1− κ1

. (3.4.5)

�
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Lemma 13. Suppose Assumptions 6,7,9 and 10 hold.

1. Consider the particle system IPS1. Then, for every n ≥ 1,

〈|x|, ηn〉 <∞, sup
N≥1

E
〈
|x|, ηNn

〉
<∞. (3.4.6)

Moreover if a0 > 0 holds, then under conditions

δ ∈ (0, a0) , and
∞∑
i=0

(1− α)i
∫
Rd
|y|P ′P i(0, dy) <∞, (3.4.7)

one has supn≥1 〈|x|, ηn〉 <∞.

Additionally suppose supN≥1E
〈
|x|, ηN0

〉
<∞. Then

sup
n≥1

sup
N≥1

E
〈
|x|, ηNn

〉
<∞.

2. Suppose in addition Assumption 12,13 hold for some τ > 0, a(τ) > 0 and suppose δ ∈

(0, a(τ)
1

1+τ ). Then with condition (1−α)mτ (P ) < 1 one has supn≥1 〈|x|1+τ , ηn〉 <∞.

Additionally suppose supN≥1E
〈
|x|1+τ , ηN0

〉
<∞ Then supn≥1 supN≥1E

〈
|x|1+τ , ηNn

〉
<

∞, where in limit a(τ)
1

1+τ → a0 as τ → 0+.

Corollary 3.4.1. For IPS2 same conclusion about η̄Mn holds as ηNn in first particle system

specified in Lemma 13 under same set of conditions on δ, α. Note that η̄M0 = η0, so we don’t

need to assume anything about the initial sampling scheme like supM≥1E
〈
|x|, η̄M0

〉
< ∞

(or supM≥1E
〈
|x|1+τ , η̄M0

〉
< ∞) since they automatically hold for η0 ∈ P∗1 (Rd) (or η0 ∈
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P∗1+τ (Rd)) respectively.

Proof of Lemma 13

We will start with the second part of part (a) of the lemma. First part will follow similarly.

We will show if η0 ∈ P∗1 (Rd) then ηn ∈ P1(Rd) for all n ≥ 1. Note that

ηk+1 =
k∑
i=0

[
α(1− α)iµk−iP

′P i
]

+ (1− α)k+1η0P
k+1. (3.4.8)

From Assumption 10, it is obvious that P ′P if is l(P ′)l(P )i Lipschitz if f is a 1-Lipschitz

function. It implies |P ′P if(x)−P ′P if(0)| ≤ l(P ′)l(P )i|x| for any f ∈ Lip1(Rd). Since |x|

is 1-Lipschitz, one has

P ′P i|x| ≤ l(P ′)l(P )i|x|+
∫
Rd
|y|P ′P i(0, dy).

Using this inequality one has from (3.4.8)

〈|x|, ηk+1〉 =
k∑
i=0

[α(1− α)i
〈
|x|, µk−iP ′P i

〉
] + (1− α)k+1

〈
|x|, η0P

k+1
〉

≤
k∑
i=0

[α(1− α)i
〈
l(P ′)l(P )i|x|, µk−i

〉
] + α

∞∑
i=0

(1− α)i
∫
Rd
|y|P ′P i(0, dy)

+[(1− α)l(P )]k+1 〈|x|, η0〉

≤ αl(P ′)

{
sup
n∈N
〈|x|, µn〉

} k∑
i=0

[(1− α)l(P )]i + α

∞∑
i=0

(1− α)i
∫
Rd
|y|P ′P i(0, dy)

+[(1− α)l(P )]k+1 〈|x|, η0〉 . (3.4.9)
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By Assumption 10, l(P ) ≤ 1, implies (1 − α)l(P ) < 1. From similar derivation done in

Lemma 12, one has supn∈N 〈|x|, µn〉 < ∞ if δ ∈ (0, a0). The result follows using all the

conditions

sup
k∈N
〈|x|, ηk〉 <∞.

For E
〈
|x|, ηNk

〉
note that for any function f,

〈
f, ηNk+1

〉
=

k∑
i=0

[
α(1− α)i

〈
f, µNk−iP

′P i
〉]

+ (1− α)k+1
〈
f, ηN0 P

k+1
〉
. (3.4.10)

From Lemma 12 supn≥0 supN≥1E
〈
|x|, µNn

〉
< ∞ for δ ∈ (0, a0). Putting f(x) = |x|,

then expanding
〈
|x|, ηNn

〉
similarly like (3.4.9) after taking expectation one gets a similar

bound and finiteness of supn supN≥1E
〈
|x|, ηNn

〉
follows from that.

�

Proof of Lemma 13(b): From (3.4.8),

〈
ηk+1, |x|1+τ

〉
=

k∑
i=0

[
α(1− α)i

〈
µk−iP

′P i, |x|1+τ
〉]

+ (1− α)k+1
〈
η0P

k+1, |x|1+τ
〉
.(3.4.11)

From Assumption 13 we get the following recursion for ai := 〈µP ′P i, |x|1+τ 〉 for any mea-

sure µ ∈ P1+τ (Rd)

ai =
〈
µP ′P i−1, P |x|1+τ

〉
≤ mτ (P )(1 + ai−1) (3.4.12)

since P |x|1+τ ≤ mτ (P )(1+|x|1+τ ) from Assumption 13. Using the fact a0 := 〈µ, P ′|x|1+τ 〉 ≤
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mτ (P
′)(1 + 〈µ, |x|1+τ 〉), we finally have

〈
ηk+1, |x|1+τ

〉
≤ α

k∑
i=0

(1− α)i
[
mτ (P )

mi
τ (P )− 1

mτ (P )− 1
+mτ (P

′)liτ (P )
[
1 +

〈
|x|1+τ , µk−i

〉 ]]
+(1− α)k+1

[
mτ (P )

lk+1
τ (P )− 1

mτ (P )− 1
+mk+1

τ (P )
〈
η0, |x|1+τ

〉 ]
. (3.4.13)

Under condition δ ∈ (0, a(τ)
1

1+τ ) and (1 − α)mτ (P ) < 1 one gets supn 〈ηn, |x|1+τ 〉 < ∞.

Similarly the same bound can be derived for supn supN≥1E
〈
|x|1+τ , ηNn

〉
under the same set

of conditions.

�

Proof of Corollary 3.4.1

To prove the Corollary about η̄Mn , define the random operator SM ◦ P acting on the

probability measure µ on Rd : µ(SM ◦ P ) = (SM(µ))P. Note the following recursive

form of η̄Mn :

η̄Mk+1 =
k∑
i=0

[
α(1− α)iµ̄Nk−iP

′(SM ◦ P )i
]

+ (1− α)k+1η0(SM ◦ P )k+1. (3.4.14)

Note that for any function f one has

E
〈
µ(SM ◦ P ), f

〉
= E

〈
SM(µ), Pf

〉
= 〈µ, Pf〉 = 〈µP, f〉 .

Now by expanding µ(SM ◦ P )k one gets,

µ(SM ◦ P )k =
[
µ(SM ◦ P )k−1

]
(SM ◦ P ) = SM(µ(SM ◦ P )k−1)P.
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Taking expectation one has

E
〈
µ(SM ◦ P )k, f

〉
= E

〈
SM

(
µ(SM ◦ P )k−1

)
P, f

〉
= E

〈
SM

(
µ(SM ◦ P )k−1

)
, Pf

〉
= E

〈
µ(SM ◦ P )k−1, Pf

〉
= E

〈
µ(SM ◦ P )k−1P, f

〉
.

Continuing this calculation k−1 times one has E
〈
µ(SM ◦ P )k, f

〉
=
〈
µP k, f

〉
which leads

to the following expression

E
〈
µ̄Nk−iP

′(SM ◦ P )i, f
〉

= EE

[〈
µ̄Nk−iP

′(SM ◦ P )i, f
〉 ∣∣∣∣FM,N

k−i

]
= E

[〈
µ̄Nk−iP

′P i, f
〉]

= E
[〈
µ̄Nk−i, P

′P if
〉]
. (3.4.15)

The corollary is proved by observing (3.4.15). The same bound holds for both E
〈
η̄Mn , f

〉
,

E
〈
ηNn , f

〉
because of the similarity of bounds of E

〈
f, µNn

〉
, and E

〈
f, µ̄Nn

〉
for f(x) =

|x|, |x|1+τ , eα|x|
p which follows from Remark 10.

�

3.4.1 Proof of Theorem 1

We will prove part (b) of the theorem. Part (a) will follow similarly. We will start with

the following lemma.

Lemma 14. 1. Under Assumptions 6,7,9, for every ε > 0 and n ≥ 1, there exists a

compact set Kε,n ∈ B(Rd) such that

sup
M,N≥1

E

{∫
Kc
ε,n

|x|
(
µNn (dx) + µNn−1Q

η̄Mn−1,µ
N
n−1(dx)

)}
< ε.
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2. Suppose Assumptions 6,7,9,10,11 hold. Then for every ε > 0 and k ≥ 1, there exists a

compact set Kε,k ∈ B(Rd) such that

sup
M,N≥1

E
〈
|x|.1Kk,ε , SM(η̄Mk ) + η̄Mk

〉
< ε.

Proof: Note that for any non-negative φ : Rd → R,

E

∫
φ(x)µNn (dx) =

1

N

N∑
k=1

Eφ(Xk
n) = Eφ(X1

n), (3.4.16)

E

∫
φ(x)µNn−1Q

η̄Mn−1,µ
N
n−1(dx) =

1

N

N∑
i=1

E(E(〈φ, δXi
n
Qη̄Mn−1,µ

N
n−1〉 | Fn))

=
1

N

N∑
i=1

Eφ
(
AX i

n + δfδ(X
i
n, µ

N
n ,∇ηNn (X i

n), εin+1)
)

=
1

N

N∑
i=1

Eφ(X i
n+1) = Eφ(X1

n+1). (3.4.17)

To get the desired result from above equalities it suffices to show that

the family {X i,N
n , i = 1, ..., N ;M,N ≥ 1} is uniformly integrable for every n ≥ 0.(3.4.18)

We will prove (3.4.18) by induction on n. Once more we suppress N from the super-script.

Clearly by our assumptions {X i
0, i = 1, ..., N ;N ≥ 1} is uniformly integrable. Now suppose
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that the Statement (3.4.18) holds for some n. Note that from (3.4.1) and (3.4.2)

|X i
n+1| ≤ ‖A‖|X i

n|+ δA1(εin+1)[|∇ηNn (X i
n)|+ ‖µNn ‖1 + |X i

n|] + δA2(εin+1) + |B(εin+1)|.

≤ ‖A‖|X i
n|+ δA1(εin+1)[‖µNn ‖1 + (1 + l∇,αPP ′)|X

i
n|] + δA2(εin+1) + |B(εin+1)|

+δcαPP ′A1(εin+1)

≤ ‖A‖|X i
n|+ δA1(εin+1)[

1

N

N∑
i=1

|X i
n|+ (1 + l∇,αPP ′)|X

i
n|] + δA2(εin+1) + |B(εin+1)|

+δcαPP ′A1(εin+1)

From Assumptions 6 and 7 the families {A1(εin+1); i ≥ 1}, {A2(εin+1); i ≥ 1} {B2(εin+1) are

uniformly integrable. Now by exchangeability, 1
N

∑N
i=1 |X i

n| = E
[
|X i

n|
∣∣∣σ( 1

N

∑N
i=1 δXi

n

)]
.

If {Xα : α ∈ Γ1} is uniformly integrable, and {σβ, β ∈ Γ2} is a collection of σ- fields

where Γ1,Γ2 are arbitrary index sets, then {E(Xα|σβ), (α, β) ∈ Γ1 × Γ2} is also a uni-

formly integrable family. It follows that { 1
N

∑N
i=1 |X i

N |, N ≥ 1} is a uniformly integrable

family from induction hypothesis. Using (3.4.18) again along with independence between

{εin+1, i = 1, . . . , N} and {X i
n : i = 1, . . . , N ;N ≥ 1} yield that the family {|X i

n+1| : i =

1, . . . , N ;N ≥ 1} is uniformly integrable. The result follows. �

Proof of Lemma 14(b): Note that SM(η̄Mk ) = 1
M

∑M
i=1 δY i,Mk

where {Y i,M
k }Mi=1

∣∣∣∣FM,N
k are

i.i.d from η̄Mk . So for any non-negative function φ we have

E〈φ, SM(η̄Mk )〉 = E
1

M

M∑
i=1

φ(Y i,M
k ) = EE

[
1

M

M∑
i=1

φ(Y i,M
k )

∣∣FM,N
k

]
= EE

[
φ(Y i,M

k )
∣∣FM,N

k

]
= Eφ(Y i,M

k ) = E〈φ, η̄Mk 〉. (3.4.19)
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We will prove the result if we can show the family

{Y i,M
k , i = 1, . . . ,M ;M,N ≥ 1} is uniformly integrable for every k ≥ 0. (3.4.20)

We will prove (3.4.20) through induction on k. For k = 0, the result follows trivially since

{Y i,M
0 , i = 1, . . . ,M ;M ≥ 1} are i.i.d from η0. Suppose it holds for k = n. We will show

that both,

{SM(η̄Mn )P : M,N ≥ 1} and {µ̄Nn P ′ : N ≥ 1} are uniformly integrable

families of probability measures. (3.4.21)

Then from the structure η̄Mn+1 = (1−α)SM(η̄Mn )P+αµ̄Nn P, it is evident that {η̄Mn+1 : M,N ≥

1} is uniform integrable which equivalently implies {Y i,M
n+1 : i = 1, . . . ,M ;M,N ≥ 1} is

UI too. On proving the first assertion in (3.4.21), note that due to the exchangeability of

{Y i,M
n : i = 1, . . . ,M}, one has

SM(η̄Mn )P = E

[
δY 1,M

n
P

∣∣∣∣σ
(

1

M

M∑
i=1

δY i,Mn

)]
. (3.4.22)

We know that if {Zα, α ∈ Γ1} is a uniformly integrable family and {Hβ, β ∈ Γ2} is a

collection of σ-fields where Γ1,Γ2 are arbitrary index sets, then {E(Zα | Hβ), (α, β) ∈ Γ1×

Γ2} is a uniformly integrable family. So from (3.4.22) it suffices to prove that {δY i,Mn P : i =

1, . . . ,M ;M,N ≥ 1} is uniformly integrable. Define a function fk(.) such that, fk(x) = 0,

if |x| ∈ [0, k
2
] and fk(x) = |x|, if |x| ≥ k and linear in between range. Then by construction
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fk(.) is Lipschitz with coefficient 2 and x.1{|x|>k} ≤ fk(x) for all x ∈ Rd. By Assumption

11 we have that {P (z, .) : z ∈ K} is uniformly integrable. So taking the compact set

K = {|x| ≤ k} assuming Y i,M
n has unconditional law mn

i for all i = 1, . . . ,M, the quantity

∫
|z|>L

∫
y.1{Kc}P (z, dy)mn

i (dz) ≤
∫
|z|>L

[fk(y)P (z, dy)]mn
i (dz)

≤
∫
|z|>L

[|Pfk(0)|+ 2l(P )|z|]mn
i (dz) (3.4.23)

≤ Pfk(0)

∫
|z|>L

mn
i (dz) + 2l(P )

∫
|z|>L
|z|mn

i (dz). (3.4.24)

The display in (3.4.23) follows from Assumption 10 and using Lipschitz property of fk.After

taking supremum in the set {i = 1, . . . ,M ;M,N ≥ 1} in both sides of (3.4.24), second part

of R.H.S goes to 0, as L→∞ by induction hypothesis. About the first part Pfk(0) goes to 0

as k →∞ by D.C.T since (
∫
|y|P (0, dy) <∞) and also

∫
|z|>Lm

n
i (dz) converges to 0 (as L

goes to∞) due to the tightness of {mn
i : i = 1, . . . ,M ;M,N ≥ 1} which also follows from

induction hypothesis. The second assertion that {µ̄Nn P ′ : N ≥ 1} is uniformly integrable

follows similarly through induction.

�

We will proceed to the main proof via induction on n ∈ N for the quantity

E
[
W1(µ̄Nn , µn) +W1(η̄Nn , ηn)

]
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. For n = 0, we will first show that EW1(µ̄N0 , µ0)→ 0 as N →∞. From [74] we have

(X̄1
0 , X̄

2
0 , . . . , X̄

N
0 ) is µ0-chaotic ⇔ µ̄N0 converges weakly to µ0 in probability

⇔ β(µ̄N0 , µ0)
p→ 0. (3.4.25)

From Lemma 14 one can constructK0,ε compact ball containing 0, so thatE
〈
|x|.1Kc

0,ε
, µ̄N0

〉
<

ε
2

and
〈
|x|.1Kc

0,ε
, µ0

〉
< ε

2
hold. So using the fact for any f ∈ Lip1(Rd) with f(0) = 0, one

has |f(x)| ≤ |x|.

EW1(µ̄N0 , µ0) = E sup
f∈Lip

1
(Rd)

|
〈
f, µ̄N0 − µ0

〉
| = E sup

f∈Lip
1
(Rd),f(0)=0

|
〈
f, µ̄N0 − µ0

〉
|

≤ E sup
f∈Lip

1
(Rd),f(0)=0

|
〈
f1K0,ε , µ̄

N
0 − µ0

〉
|+ E

〈
|x|1Kc

0,ε
, µ̄N0

〉
+
〈
|x|.1Kc

0,ε
, µ0

〉
≤ diam(K0,ε)Eβ(µ̄N0 , µ0) + ε. (3.4.26)

In last display we used the fact that supx∈K0,ε
|f(x)| ≤ diam(K0,ε). Note that β(µ̄N0 , µ0) is

bounded by 2 (so Uniformly Integrable) and β(µ̄N0 , µ0)
p→ 0 implies Eβ(µN0 , µ0) → 0 as

N →∞ proving the assertion (3.3.12) for n = 0. Suppose it holds for n ≤ k. We start with

the following triangular inequality

W1(µ̄Nk+1, µk+1) ≤ W1(µ̄Nk+1, µ̄
N
k Q

η̄Nk ,µ̄
N
k ) +W1(µ̄Nk Q

η̄Nk ,µ̄
N
k , µ̄Nk Q

ηk,µ̄
N
k )

+W1(µ̄Nk Q
ηk,µ̄

N
k , µk+1). (3.4.27)

Consider the third term of (3.4.27). From the general calculations follwed by (3.4.45)-
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(3.4.47), we have the following estimate,

W1(µ̄Nk Q
ηk,µ̄

N
k , µkQ

ηk,µk) ≤
(
‖A‖+ δσ(2 + l∇,αPP ′)

)
W1(µ̄Nk , µk). (3.4.28)

Now we consider the first term of the right hand side of (3.4.27). We will use Lemma

14(a). Fix ε > 0 and let Kε be a compact set in Rd such that

sup
N≥1

E

{∫
Kc
ε

|x|(µ̄Nk+1(dx) + µ̄Nk Q
η̄Nk ,µ̄

N
k (dx))

}
< ε.

Let Lip0
1(Rd) := {f ∈ Lip1(Rd) : f(0) = 0}. Then,

E sup
φ∈Lip

1
(Rd)

|〈φ, µ̄Nk+1 − µ̄Nk Qη̄Nk ,µ̄
N
k 〉| = E sup

φ∈Lip0

1
(Rd)

|〈φ, µ̄Nk+1 − µ̄Nk Qη̄Nk ,µ̄
N
k 〉|

≤ E sup
φ∈Lip0

1
(Rd)

|〈φ.1Kε , µ̄Nk+1 − µ̄Nk Qη̄Nk ,µ̄
N
k 〉|+ ε. (3.4.29)

We will now apply Lemma A.1.1 in the Appendix. Note that for any φ ∈ Lip0
1(Rd),

sup
x∈Kε
|φ(x)| ≤ diam(Kε) := mε.

Thus with notation as in Lemma A.1.1

sup
φ∈Lip0

1
(Rd)

|〈φ.1Kε , µ̄Nk+1 − µ̄Nk Qη̄Nk ,µ̄
N
k 〉| ≤ max

φ∈Fεmε,1 (Kε)
|〈φ, µ̄Nk+1 − µ̄Nk Qη̄Nk ,µ̄

N
k 〉|

+2ε. (3.4.30)
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where we have denoted the restrictions of µ̄Nk+1 and µ̄Nk Q
η̄Nk to Kε by the same symbols.

Using the above inequality in (3.4.29), we obtain

EW1(µ̄Nk+1, µ̄
N
k Q

η̄Nk ,µ̄
N
k ) ≤

∑
φ∈Fεmε,1 (Kε)

E|〈φ, µ̄Nk+1 − µ̄Nk Qη̄Nk ,µ̄
N
k 〉|+ 3ε. (3.4.31)

Using Lemma A.1.2 we see that the first term on the right hand side can be bounded by

2mε|Fεmε,1 (Kε)|
√
N

.

Consider the second term of R.H.S of (3.4.27). From Assumption 9 applying DCT one

has

∇η̄Nk (y) = (1− α)

∫
SM(η̄Nk−1)(dx)∇yP (x, y) + α

∫
µ̄Nk (dx)∇yP

′(x, y),(3.4.32)

∇ηk(y) = (1− α)

∫
ηk−1(dx)∇+ α

∫
µk(dx)∇yP

′(x, y). (3.4.33)

Suppose X̄k is a random variable conditioned on FM,N
k is distributed with law µ̄Nk . Then

almost surelyW1(µ̄Nk Q
η̄Nk ,µ̄

N
k , µ̄Nk Q

ηk,µ̄
N
k ) is

≤ sup
g∈Lip

1
(Rd)

EM,N
k

[∣∣∣∣g(AX̄k + δfδ(∇η̄Nk (X̄k), µ̄
N
k , X̄k, ε))

−g(AX̄k + δfδ(∇ηk(X̄k), µ̄
N
k , X̄k, ε))

∣∣∣∣] ≤ δσEM,N
k

[∣∣∇η̄Nk (X̄k)−∇ηk(X̄k)
∣∣]

≤ δσ(1− α)

∫ ∣∣∣∣ ∫ {SM(η̄Mk )− ηk
}

(dx).∇yP (x, y)

∣∣∣∣µ̄Nk (dy)

+δσα

∫ ∣∣∣∣ ∫ {µ̄Nk − µk} (dx).∇yP
′(x, y)

∣∣∣∣µ̄Nk (dy)

≤ δσ(1− α)l∇PW1(SM(η̄Mk ), ηk) + δσαl∇P ′W1(µ̄Nk , µk). (3.4.34)

108



(3.4.34) follows by using Assumption 9. About the first term in (3.4.34) note that from

triangular inequality,

EW1(SM(η̄Mk ), ηk) ≤ EW1(SM(η̄Mk ), η̄Mk ) + EW1(η̄Mk , ηk). (3.4.35)

The first term in (3.4.35) can be written as

EW1(SM(η̄Mk ), η̄Mk ) ≤ E sup
f∈Lip0

1
(Rd)

|
〈
f.1Kk,ε , S

M(η̄Mk )− η̄Mk
〉
|

+E
〈
|x|.1Kc

k,ε
, SM(η̄Mk )

〉
+ E

〈
|x|.1Kc

k,ε
, η̄Mk

〉
. (3.4.36)

By Lemma 14(b), for a specified ε > 0, one can construct a compact set Kk,ε containing 0

such that,

sup
M,N≥1

E
〈
|x|.1Kk,ε , SM(η̄Mk ) + η̄Mk

〉
< ε.

Denote mk,ε = diam(Kk,ε). Using Lemma A.1.1 we have the L.H.S of (3.4.36)

EEM,N
k

[
sup

φ∈Lip0
1(Rd)

|
〈
φ.1Kk,ε , S

M(η̄Mk )− η̄Mk
〉
|
]

+ ε ≤

EEM,N
k

[
max

φ∈Fεmk,ε,1 (Kk,ε)
|
〈
φ, SM(η̄Mk )− η̄Mk

〉
|
]

+ 2ε

where (3.4.36) follows from similar arguments used in (3.4.31). Note that the Lemma 14 also

suggests the compact set Kk,ε is non-random, which only depends on k and ε only. So from
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the display above we have

EEM,N
k

[ ∑
φ∈Fεmk,ε,1 (Kk,ε)

|
〈
φ, SM(η̄Mk )− η̄Mk

〉
|
]

+ 2ε ≤

∑
φ∈Fεmk,ε,1 (Kk,ε)

E|
〈
φ, SM(η̄Mk )− η̄Mk

〉
| + 2ε (3.4.37)

Using Lemma A.1.2 we get the final bound of the first term in RHS of (3.4.37) as
2mk,ε|Fεmk,ε,1 (Kk,ε)|

√
M

.

Combining this estimate with (3.4.28),(3.4.31) and (3.4.34) we now have

EW1(µ̄Nk+1, µk+1) ≤
(
‖A‖+ δσ(2 + l∇PP ′) + δσαl∇P ′

)
EW1(µ̄Nk , µk)

+δσ(1− α)l∇PEW1(η̄Mk , ηk) +
2δσ(1− α)l∇Pmk,ε|F εmk,ε,1(Kk,ε)|√

M
+

2mε|F εmε,1(Kε)|√
N

+
(
3 + 2δσ(1− α)l∇P

)
ε. (3.4.38)

For the term EW1(η̄Mk+1, ηk+1), we start with the following recursive form

η̄Mk+1 − ηk+1 = (1− α)
[
SM(η̄Mk )− η̄Mk

]
P + (1− α)

[
η̄Mk − ηk

]
P

+α
[
µ̄Nk − µk

]
P ′ (3.4.39)

which leads to the following inequality

W1(η̄Mk+1, ηk+1) ≤ (1− α)l(P )W1(SM(η̄Mk ), η̄Mk ) + (1− α)l(P )W1(η̄Mk , ηk)

+αl(P ′)W1(µ̄Nk , µk). (3.4.40)
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Using earlier estimates one has the final estimate for

EW1(η̄Mk+1, ηk+1) ≤ 2(1− α)l(P )
mk,ε|F εmk,ε,1(Kk,ε)|√

M
+ (1− α)l(P )W1(η̄Mk , ηk)

+αl(P ′)W1(µ̄Nk , µk) + 2(1− α)l(P )ε. (3.4.41)

Adding (3.4.38) and (3.4.41), using induction hypothesis and sending M,N →∞ we have

EW1(µ̄Nk+1, µk+1) + EW1(η̄Mk+1, ηk+1) ≤
(
3 + 2δσ(1− α)l∇P + 2(1− α)l(P )

)
ε.

Since ε > 0 arbitrary, the result follows.

Part (a) can be proved similarly. The change will come from the structural difference

of η̄Nk and ηNk because of the change in the updating kernel. So the term coming from the

quantity SM(η̄Mk )− η̄Mk will not appear here. Hence we get the following final estimate

E
[
W1(µNk+1, µk+1) +W1(ηNk+1, ηk+1)

]
≤
[
‖A‖+ δσ(2 + l∇PP ′) + δσαl∇P ′

+αl(P ′)

]
EW1(µNk , µk) +

[
δσ(1− α)l∇P + (1− α)l(P )

]
EW1(ηMk , ηk)

+3ε+
2mε|F εmε,1(Kε)|√

N

from which the result follows by induction.

�

3.4.2 Proof of Theorem 3.3.1

We will start with the following lemma and then prove the Theorem 3.3.1 using it.
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Lemma 15. Let µ0, µ
′
0 ∈ P1(Rd) and η0, η

′
0 ∈ P∗1 (Rd). Suppose Assumptions 6,7, 9 and 10

hold. Then the transformation Ψ : P1(Rd)× P∗1 (Rd)→ P1(Rd)× P∗1 (Rd) is well defined if

following hold

δ < a0 and
∞∑
i=0

(1− α)i
∫
Rd
|y|P ′P i(0, dy) <∞. (3.4.42)

Moreover if Assumptions 9,8 and 10 hold along with the following condition:

max
{(
‖A‖+ δσ(2 + l∇,αPP ′) + αl(P ′)

)
, (1− α)l(P )

}
+δσmax

{
αl∇P ′ , (1− α)l∇P

}
< 1, (3.4.43)

then there exists a θ ∈ (0, 1) and a constant a1 ∈ (0,∞) such that for any n ∈ N,

W1

(
Ψn(µ0, η0),Ψn(µ′0, η

′
0)
)
≤ a1θ

n.

Remark 11. Condition (3.4.43) implies the first condition of (3.4.42).

Proof of Lemma 19

For fixed µ0, µ
′
0 ∈ P1(Rd) and η0, η

′
0 ∈ P∗1 (Rd) define the following quantities for n ≥ 1

(µn, ηn) = Ψn(µ0, η0), (µ′n, η
′
n) = Ψn(µ′0, η

′
0) and Ψ0 = I.

First we will show that under transformation Ψ the (µn, νn) ∈ P1(Rd)×P∗1 (Rd) for (µ0, ν0) ∈

P1(Rd)×P∗1 (Rd), so that the quantityW1(µn, µ
′
n) +W1(νn, ν

′
n) is well defined. Note that ,
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if δ ∈ (0, a0), then γ = ‖A‖+ δσ
(

2 + l∇,αPP ′

)
∈ (0, 1), implying

〈|x|, µn〉 ≤ γn 〈|x|, µ0〉+
δ[σc∇,αPP ′ + σ2]

1− γ
,

which follows similarly from the proof of Lemma 12(a). It means if δ ∈ (0, a0) and

〈|x|, µ0〉 < ∞ hold, then µn ∈ P1(Rd) for all n ≥ 1. Under conditions in (3.4.42) one also

has supn>0 〈|x|, ηn〉 <∞ for all n ∈ N. One has ∇ηn+1(y) =
∫
Rd ηn(x)[∇yR

α
µn(x, y)]dx by

Assumption 9 using DCT. From that condition it follows that for any n ≥ 1, ‖∇ηn(·)‖1 <

(1− α)l∇P + αl∇P ′ = l∇,αPP ′ <∞ showing ηn ∈ P∗1 (Rd) for all n > 0 if η0 ∈ P∗1 (Rd).

Now we will go back to the proof of the second part of the lemma regarding the con-

traction part. Assume n ≥ 2. The first term of W1((µn, ηn), (µ′n, η
′
n)) can be expressed

as

W1(µn, µ
′
n) =W1(µn−1Q

ηn−1,µn−1 , µ′n−1Q
η′n−1,µ

′
n−1) ≤ W1(µn−1Q

ηn−1,µn−1 , µ′n−1Q
ηn−1,µ′n−1)

+ W1(µ′n−1Q
ηn−1,µ′n−1 , µ′n−1Q

η′n−1,µ
′
n−1)

=: T1 + T2. (3.4.44)

T1 = W1(µn−1Q
ηn−1,µn−1 , µ′n−1Q

ηn−1,µ′n−1) ≤ inf
{X,Y :L(X,Y )=(µn−1,µ′n−1),X,Y⊥ε}

E
∣∣A(X − Y )

+δ[fδ(∇ηn−1(X), µn−1, X, ε)− fδ(∇ηn−1(Y ), µ′n−1, Y, ε)]
∣∣

≤ inf
{X∼µn−1,Y∼µ′n−1}

{
(‖A‖+ δσ)E|X − Y |+ δσE|∇ηn−1(X)−∇ηn−1(Y )|

}
+δσW1(µn−1, µ

′
n−1) (3.4.45)
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The last inequality (3.4.45) follows from Assumption 6. As a consequence of Assumption 9

from (3.4.1) it follows that

|∇ηn+1(X)−∇ηn+1(Y )| ≤
∫
Rd
ηn(x)|∇yR

α
µn(x,X)−∇yR

α
µn(x, Y )|dx

≤ (1− α)

∫
Rd
ηn(x)|∇yP (x,X)−∇yP (x, Y )|dx

+α|∇yµnP
′(X)−∇yµnP

′(Y )|

≤ l∇,αPP ′ |X − Y |. (3.4.46)

With that estimate, taking infimum at R.H.S of (3.4.46) with all possible couplings of (X, Y )

with marginals respectively µn−1 and µ′n−1, one gets

T1 =W1

(
µn−1Q

ηn−1,µn−1 , µ′n−1Q
ηn−1,µ′n−1

)
≤
(
‖A‖+ δσ(2 + l∇,αPP ′)

)
W1(µn−1, µ

′
n−1).(3.4.47)

Let X be a Rd valued random variable with law µ′n−1. Now about the term T2,

T2 = W1

(
µ′n−1Q

ηn−1,µ′n−1 , µ′n−1Q
η′n−1,µ

′
n−1
)

≤ sup
g∈Lip

1
(Rd)

E

∣∣∣∣g(AX + δfδ(∇ηn−1(X), µ′n−1, X, ε))−

g(AX + δfδ(∇η′n−1(X), µ′n−1, X, ε))

∣∣∣∣
≤ δσE

∣∣∇ηn−1(X)−∇η′n−1(X)
∣∣ .
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Now expanding
∣∣∇ηn−1(X)−∇η′n−1(X)

∣∣ from (3.4.1)

T2 ≤ δσE

∣∣∣∣∫
Rd
ηn−2(x)(∇yR

α
µn−2

(x,X))dx−
∫
Rd
η′n−2(x)(∇yR

α
µ′n−2

(x,X))dx

∣∣∣∣
≤ αδσ

∫
Rd
ηn−2(x)E

∣∣∇yµn−2P
′(X)−∇yµ

′
n−2P

′(X)
∣∣ dx

+(1− α)δσE

∣∣∣∣∫
Rd
∇yP (x,X)(ηn−2(x)− η′n−2(x))dx

∣∣∣∣
=: T

(1)
2 + T

(2)
2 (3.4.48)

Note that

T
(1)
2 := αδσ

∫
Rd
ηn−2(x)

∫
Rd
µ′n−1(dz)

∣∣∣∣ ∫
Rd

(
µn−2(dy)∇yP

′(y, z)−]

µ′n−2(dy)∇yP
′(y, z)

)∣∣∣∣dx (3.4.49)

Since from Assumption 9 ∇yP
′(x̃, x) is a Lipschitz function with coefficient l∇P ′ , the first

integrand in (3.4.49) will be bounded by l∇P ′ .W1(µn−2, µ
′
n−2) which gives

T
(1)
2 ≤ αδσl∇P ′W1(µn−2, µ

′
n−2). (3.4.50)

Now using Assumption 8 the second term T
(2)
2 gives similarly

T
(2)
2 = (1− α)δσE

∣∣∣∣∫
Rd
∇yP (x,X)(ηn−2(x)− η′n−2(x))dx

∣∣∣∣
≤ (1− α)δσ

∫
Rd

∣∣∣∣∫
Rd
∇yP (x, y){ηn−2(x)− η′n−2(x)}dx

∣∣∣∣µ′n−1(dy)

≤ (1− α)δσl∇PW1(ηn−2, η
′
n−2). (3.4.51)
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Using the Assumption 10 we have

W1(ηn, η
′
n) ≤ (1− α)l(P )W1(ηn−1, η

′
n−1) + αl(P ′)W1(µn−1, µ

′
n−1) (3.4.52)

Combining (3.4.50),(3.4.51) and (3.4.52) we have the following recursion for n ≥ 2,

W1(µn, µ
′
n) +W1(ηn, η

′
n) ≤

(
‖A‖+ δσ(2 + l∇,αPP ′)

)
W1(µn−1, µ

′
n−1)

+αδσl∇P ′W1(µn−2, µ
′
n−2) + αl(P ′).W1(µn−1, µ

′
n−1) + (1− α)δσl∇PW1(ηn−2, η

′
n−2)

+ (1− α)l(P )W1(ηn−1, η
′
n−1). (3.4.53)

Define a sequence an :=W1(µn, µ
′
n) +W1(ηn, η

′
n), for n ≥ 2 and and first two terms we set

them to be

a0 :=W1(µ0, µ
′
0) +W1(η0, η

′
0), a1 :=W1(µ1, µ

′
1) +W1(η1, η

′
1)

which are well defined for µ0, µ
′
0 ∈ P1(Rd) and η0, η

′
0 ∈ P∗1 (Rd). Then from (3.4.53) and de-

noting c1 := max
{((
‖A‖+ δσ(2 + l∇,αPP ′)

)
+ αl(P ′)

)
, (1− α)l(P )

}
, c2 := δσmax

{
αl∇P ′ , (1−

α)l∇P
}

following holds

an ≤ c1an−1 + c2an−2 (3.4.54)
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for n ≥ 2. Given (ω, δ, α) if there exists a θ ∈ (0, 1) for which the following inequality holds

c1

θ
+
c2

θ2
≤ 1, (3.4.55)

then denoting λ = c2
θ
, we have

an ≤
[
θ

(
1− λ

θ

)]
an−1 + θλan−2 ⇔ an + λan−1 ≤ θ(an−1 + λan−2).

Existence of a solution θ ∈ (0, 1) satisfying (3.4.55) is valid under c1 + c2 < 1 which is

equivalent to the condition

max
{((
‖A‖+ δσ(2 + l∇,αPP ′)

)
+ αl(P ′)

)
, (1− α)l(P )

}
+δσmax

{
αl∇P ′ , (1− α)l∇P

}
< 1 (3.4.56)

in (3.4.43) satisfied by (δ, α, ‖A‖). From (3.4.56) it follows

an ≤ an + λan−1 ≤ θn−1[a1 + λa0]

for n ≥ 2. Since

W1(η1, η
′
1) = W1(η0R

α
µ0
, η′0R

α
µ′0

) ≤ (1− α)l(P )W1(η0, η
′
0) + αl(P ′)W1(µ0, µ

′
0),

W1(µ1, µ
′
1) = W1(µ0Q

η0,µ0 , µ′0Q
η′0,µ

′
0) ≤ W1(µ0Q

η0,µ0 , µ′0Q
η0,µ′0) +W1(µ′0Q

η0,µ′0 , µ′0Q
η′0,µ

′
0)

≤
(
‖A‖+ δσ(2 + l∇PP ′)

)
W1(µ0, µ

′
0) + δσE |∇η0(X)−∇η′0(X)|
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where X ∼ µ′0. Final estimate for an is

an ≤ θn−1

[(
max

{(
‖A‖+ δσ(2 + l∇,αPP ′) + αl(P ′)

)
, (1− α)l(P )

}
+ λ
)
a0

+δσE |∇η0(X)−∇η′0(X)|
]
. (3.4.57)

Since X ∼ µ′0 ∈ P1(Rd) and ∇η0,∇η′0 have linear growth (since η0, η
′
0 ∈ P∗1 (Rd)), the

second term inside the bracket is finite. A general formula can be observed for an

W1(Ψn(µ0, η0),Ψn(µ′0, η
′
0)) ≤ θn

[
aW1((µ0, η0), (µ′0, η

′
0))

+bW1(µ′0Q
η0,µ′0 , µ′0Q

η′0,µ
′
0)

]
(3.4.58)

where

a =
max

{(
‖A‖+ δσ(2 + l∇,αPP ′) + αl(P ′)

)
, (1− α)l(P )

}
+ λ

θ
, b =

1

θ
.

Observe that the quantity inside the bracket of RHS of (3.4.58) is finite for µ0, µ
′
0 ∈ P1(Rd)

and η0, η
′
0 ∈ P∗1 (Rd). Hence proved the lemma.

�

We now complete the proof of the theorem. Given l(PP ′) < 1 from Assumption (10),

one can always find (ω0, α0, δ0) ∈ (0, 1)× (0, 1)× (0, 1) for which (3.4.56) holds under

‖A‖ < ω0, α < α0, δ < δ0.
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For existence we need to show that under W1 ((·, ·), (·, ·)) distance P1(Rd) × P∗1 (Rd) is

complete. From Lemma 19 one can choose (ω, α, δ) such that (3.4.43) holds. It follows

that using the θ from that lemma the sequence {Ψn(µ0, η0)}∞n≥1 is a cauchy sequence in

P1(Rd) × P1(Rd) which is a complete metric space under W1 ((·, ·), (·, ·)) . So there exists

a (µ∞, η∞) ∈ P1(Rd) × P1(Rd) such that Ψn(µ0, η0) → (µ∞, η∞) as n → ∞. Our as-

sertion for existence will be proved if we prove η∞ ∈ P∗1 (Rd). Given the initial conditon

‖∇η0(x)‖1 < ∞, we will always have from (3.4.1) ‖∇ηk(x)‖1 < ∞ ∀ k > 1. Note that

for η0 ∈ P∗1 (Rd), one has ηk ∈ P∗1 (Rd) for all k. This implies η∞ ∈ P∗1 (Rd). So

(µ∞, η∞) ∈ P1(Rd)× P∗1 (Rd).

Observe further for θ ∈ (0, 1) in (3.4.58) of Lemma 19

W1

(
Ψn(µ0, η0), (µ∞, η∞)

)
= W1

(
Ψn(µ0, η0),Ψn(µ∞, η∞)

)
≤ θn

[
aW1

(
(µ0, η0), (µ∞, η∞)

)
+ bW1(µ∞Q

η0,µ∞ , µ∞Q
η∞,µ∞)

]
. (3.4.59)

Uniqueness of fixed points follows immediately from (3.4.59).

�

3.4.3 Proof of Theorem 3.3.2

We will prove part (b) of the theorem. Part (a) will follow similarly. We need to prove

the following Lemma first.

Lemma 16. Consider the second particle system IPS2. Suppose all the conditions of Theorem
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3.3.2 hold. Denote N1 = min {N,M}. Then there exist a constant C ∈ (0,∞) such that the

upper-bound b(τ, d) of the quantity supk≥1EW1

(
(µ̄Nk , η̄

M
k ),Ψ(µ̄Nk−1, η̄

M
k−1)

)
can be given as

b(N1, τ, d) as defined in Theorem 3.3.2. The constant C will vary for different cases.

Proof of Lemma 16

We start with the fact that

EW1

(
(µ̄Nk , η̄

M
k ),Ψ(µ̄Nk−1, η̄

M
k−1)

)
= EW1(µ̄Nk , µ̄

N
k−1Q

η̄Mk−1,µ̄
N
k−1) + EW1(η̄Mk , η̄

M
k−1R

α
µ̄Nk−1

)

≤ EW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1) + (1− α)EW1(SM(η̄Mk−1), η̄Mk−1)

= EW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1) + (1− α)E

[
EW1(SM(η̄Mk−1), η̄Mk−1)

∣∣FM,N
k−1

]
. (3.4.60)

In order to bound both terms in (3.4.60) we borrow the following formulation from [33]

about the convergence rate of empirical distribution of iid random variables to its common

distribution, where the key idea of bounding Wasserstein distance came from the constructive

quantization context [24]. A similar idea was also developed in Boissard’s work [11]. We

will maintain the same notation used in [33]. Let Pl be the natural partition of (−1, 1]d into

2dl translations of (−2−l, 2−l]d. Define a sequence of sets {Bn}n≥0 such that B0 := (−1, 1]d

and, for n ≥ 1, Bn := (−2n, 2n]d \ (−2n−1, 2n−1]d. For a set F ⊂ Rd denote the set 2nF

as {2nx : x ∈ F}. For any two probability measures µ and ν, combining Lemma 5 and 6 of

[33] one has the following inequality for the Wasserstein-1 distance,

W1(µ, ν) ≤ 3C.2(1+ d
2

)
∑
n≥0

2n
∑
l≥0

2−l
∑
F∈Pl

[µ(2nF ∩Bn)− ν(2nF ∩Bn)] , (3.4.61)
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where C is a constant depends only on d. We denote ai,M,N
k := δX̄i

k
− δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1 . It fol-

lows that µ̄Nk − µ̄Nk−1Q
η̄Mk−1,µ̄

N
k−1 = 1

N

∑N
i=1 a

i,M,N
k . Note that on conditioned upon FM,N

k−1 , the

family of signed measures {ai,M,N
k }i=1,...,M is an independent class of measures while uncon-

ditionally they are just identical. Using the fact that for any setA ∈ B(Rd), δX̄i
k
(A)

∣∣∣∣FM,N
k−1 ∼

Bernoulli(δX̄i
k−1
Qη̄Mk−1,µ̄

N
k−1(A)), we have

E

[(
ai,M,N
k (A)

)2
∣∣∣∣FM,N

k−1

]
= δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1(A)

[
1− δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1(A)

]
≤ δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1(A) (3.4.62)

which implies the unconditional expectation

E
[(
ai,M,N
k (A)

)2] ≤ P
[
X̄ i
k−1 + δfδ(∇η̄Mk−1, µ̄

N
k−1, X̄

i
k−1, ε

N
k ) ∈ A

]
.

Using all these we have

E
∣∣∣µ̄Nk (A)− µ̄Nk−1Q

η̄Mk−1,µ̄
N
k−1(A)

∣∣∣2 = E

∣∣∣∣ 1

N

N∑
i=1

ai,M,N
k (A)

∣∣∣∣2 ≤ E
[
ai,M,N
k (A)

]2

N

≤
P
[
X̄ i
k−1 + δfδ(∇η̄Mk−1, µ̄

N
k−1, X̄

i
k−1, ε

N
k ) ∈ A

]
N

=
E
[
δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1(A)

]
N

.

Using these with Cauchy-Schwarz inequality one gets following bound

E
∣∣∣µ̄Nk (A)− µ̄Nk−1Q

η̄Mk−1,µ̄
N
k−1(A)

∣∣∣ ≤ min

{√E
[
δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1(A)

]
N

,

2E
[
δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1(A)

]}
(3.4.63)
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where second term inside the bracket of RHS of (3.4.63) follows trivially. Denoting the

whole constant in R.H.S of (3.4.61) as Cd, we have

EW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1) ≤ Cd

∑
n≥0

2n
∑
l≥0

2−lE
∑
F∈Pl

[
µ̄Nk (2nF ∩Bn)−

µ̄Nk−1Q
η̄Mk−1,µ̄

N
k−1(2nF ∩Bn)

]
(3.4.64)

Note that #Pl = 2dl. Using Cauchy-Schwarz inequality with (3.4.63) and Jensen’s inequality

E
√
X ≤

√
EX for non-negative random variable X , the last sum E

∑
F∈Pl

[
µ̄Nk (2nF ∩

Bn)− µ̄Nk−1Q
η̄Mk−1,µ̄

N
k−1(2nF ∩Bn)

]
in the R.H.S of (3.4.64) can be bounded by

≤ min

{
2
dl
2

[E[δX̄i
k−1
Qη̄Mk−1,µ̄

N
k−1(Bn)

]
N

] 1
2

, 2E
[
δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1(Bn)

]}
. (3.4.65)

Now using Remark 10 along with Lemma 12, if δ ∈ (0, a(τ)) the quantity

supn≥0 supM,N≥1E|X̄ i
n|1+τ := b(τ) <∞, one has by Chebyshev inequality for n ≥ 1,

sup
k≥1

E
[
δX̄i

k−1
Qη̄Mk−1,µ̄

N
k−1(Bn)

]
≤ sup

k≥1
P [|X̄ i

k| > 2(n−1)] ≤ b(τ)

2(1+τ)(n−1)
= b(τ)2−(1+τ)(n−1).

Note that a(τ)
1

1+τ → a0 as τ → 0 and δ ∈ (0, a0), we can find τ0 ∈ (0, a(τ)) such that

δ ∈ (0, a(τ0)
1

1+τ0 ). So the bound in (3.4.64) can be restated as

sup
k≥1

EW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1) ≤ Cd

∑
n≥0

2n
∑
l≥0

2−l min

{
2
dl
2

√
b(τ)2−(1+τ)(n−1)

N
,

2b(τ)2−(1+τ)(n−1)

}
≤ C ′d

∑
n≥0

2n
∑
l≥0

2−l min

{
2
dl
2

2−
(1+τ)n

2

√
N

, 2−(1+τ)n

}
.(3.4.66)
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where b(τ) is just a constant and the last display is obtained by accumulating upper bounds of

all the constants to C ′d. Now proceeding exactly like step 1 to step 4 of the proof of Theorem

1 (for p = 1, q = 1 + τ ) in [33] one gets the following bounds

sup
k≥1

EW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1) = C



N−max{ 1
2
, τ
1+τ
} if d = 1, τ 6= 1,

N−
1
2 log(1 +N) +N−

τ
1+τ if d = 2, τ 6= 1,

N−max{ 1
d
, τ
1+τ
} if d > 2, τ 6= 1

d−1
.

Now we will fill the gaps for each of the three special cases τ = 1, τ = 1 and τ = 1
d−1

of three regimes respectively d = 1, d = 2 and d > 2. We note that one can generalize the

choice of lN,ε done in step 1 of Theorem 1 of [33] where lN,ε could be taken as
1
2

log(εN)

d log 2
∨ 0

instead of log(2+εN)
d log 2

though it doesn’t change the conclusion of the main theorem. After step

1 with p = 1, q = 1 + τ, ε = 2−(1+τ)n one will get

∑
l≥0

2−l min

{
2
dl
2

√
ε

N
, ε

}
= C



min{ε,
(
ε
N

) 1
2} if d = 1,

min{ε,
(
ε
N

) 1
2 [log(εN) ∨ 0]} if d = 2,

min{ε, ε (εN)−
1
d} if d > 2,

where the constant C will vary from case to cases. Suppose d = 1. From (3.4.66) for general

τ > 0 one has

sup
k≥1

EW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1) ≤ C ′d

∑
n≥0

2n min

{
2−(1+τ)n,

(
2−(1+τ)n

N

) 1
2
}
.(3.4.67)
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Note that for n ≥ nN,τ := logN
(1+τ) log 2

, one has 2−(1+τ)n ≤
(

2−(1+τ)n

N

) 1
2
. So for τ = 1,

∑
n≥0

2n min

{
2−2n,

(
2−2n

N

) 1
2
}
≤

∑
n<nN,1

2n
(

2−2n

N

) 1
2

+
∑

n≥nN,1

2−n

= nN,1N
− 1

2 + C2−nN,1 = N−
1
2

logN

2 log 2
+ CN−

1
2 . (3.4.68)

For d = 2, from (3.4.66) for general τ > 0 one has

sup
k≥1

EW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1) ≤ C ′d

∑
n≥0

2n min

{
2−(1+τ)n,

(
2−(1+τ)n

N

) 1
2

×

[
log
(
2−(1+τ)nN

)
∨ 0
]}
.

For τ = 1, ε = 2−2n. Note that if n < n
(2)
N := log4N − log2 (logN) , then one has

ε = 2−2n >

(
2−2n

N

) 1
2 [

log
(
2−2nN

)
∨ 0
]
.

∑
n≥0

2n min

{
2−2n,

(
2−2n

N

[
log
(
2−2nN

)
∨ 0
]) 1

2

}

≤
∑
n<n

(2)
N

2n
(

2−2n

N

) 1
2 [

log
(
2−2nN

)
∨ 0
]

+
∑
n≥n(2)

N

2−n ≤ n
(2)
N

[log (N) ∨ 0]

N
1
2

+ C2−n
(2)
N

≤ C1N
− 1

2

[
(logN)2 − logN log2(logN)

]
+ C2

logN√
N

. (3.4.69)

By proceeding similarly, for all non regular cases we will end up getting the following
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results (the constant C will vary from case to cases):

sup
k≥1

EW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1) = C



N−
1
2 logN +N−

1
2 if d = 1, τ = 1,

(logN)2

N
1
2

if d = 2, τ = 1,

log2N

N
1
d

+N−
1
d if d > 2, τ = 1

d−1
.

Now about the second term of (3.4.60) using (3.4.61), the upperbound ofEW1(SM(η̄Mk−1)η̄Mk−1)

is

3C2(1+ d
2

)
∑
n≥0

2n
∑
l≥0

2−lE
∑
F∈Pl

[
SM(η̄Mk−1)(2nF ∩Bn)− η̄Mk−1(2nF ∩Bn)

]
. (3.4.70)

By Cauchy Schwarz inequality and using Jensen inequalityE
√
X ≤

√
EX for a nonnegative

random variable X, one gets the upperbound of

E

[∑
F∈Pl

[
SM(η̄Mk−1)(2nF ∩Bn)− η̄Mk−1(2nF ∩Bn)

] ∣∣∣∣FM,N
k−1

]

≤ 2
dl
2

[ ∑
F∈Pl

E
[( 1

M

M∑
i=1

δY i,Mk−1
(2nF ∩Bn)− η̄Mk−1(2nF ∩Bn)

)2∣∣FM,N
k−1

]] 1
2

.(3.4.71)

Using similar argument used in (3.4.62) the R.H.S of (3.4.71) will be less than

2
dl
2

[∑
F∈Pl η̄

M
k−1(2nF ∩Bn)

(
1− η̄Mk−1(2nF ∩Bn)

)
M

] 1
2

≤ 2
dl
2

[
η̄Mk−1(Bn)

M

] 1
2

≤ 2
dl
2

[
η̄Mk−1(x : |x| > 2n−1)

M

] 1
2

≤ 2
dl
2

[〈|x|1+τ , η̄Mk−1

〉
2−(n−1)(1+τ)

M

] 1
2

. (3.4.72)
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Finally using Jensen inequality E
√
X ≤

√
EX, and from Corollary 3.4.1 followed by

Lemma 13(b) denoting c(τ) := supk≥1 supM≥1E
〈
|x|1+τ , η̄Mk−1

〉
one gets

sup
k≥1

E
∑
F∈Pl

[
SM(η̄Mk−1)(2nF ∩Bn)− η̄Mk−1(2nF ∩Bn)

]
≤

2
dl
2 sup
k≥1

E

[〈|x|1+τ , η̄Mk−1

〉
2−(n−1)(1+τ)

M

] 1
2

≤ 2
dl
2 sup
k≥1

[
E
〈
|x|1+τ , η̄Mk−1

〉
2−(n−1)(1+τ)

M

] 1
2

≤ 2
dl
2

[
supk≥1E

〈
|x|1+τ , η̄Mk−1

〉
2−(n−1)(1+τ)

M

] 1
2

≤ 2
dl
2

[
c(τ)2−(n−1)(1+τ)

M

] 1
2

.

Hence the conclusion about the upper bound of EW1(SM(η̄Mk−1), η̄Mk−1) will be similar to the

first term of (3.4.60). It will be a function of the sample size of the concentration gradient M

in place ofN in the bound ofEW1(µ̄Nk , µ̄
N
k−1Q

η̄Mk−1,µ̄
N
k−1). Combining this with the conclusion

about the first term of (3.4.60) we can state the bound in terms of N1 = min{M,N} and the

result of Lemma 16 will follow.

�

Now we will complete the theorem. Observe the following identity

(µ̄Nn , η̄
M
n )− (µn, ηn) =

n∑
i=1

[
Ψ(n−i)(µ̄Ni , η̄

M
i )−Ψ(n−i) ◦Ψ(µ̄Ni−1, η̄

M
i−1)

]
+
[
Ψn(µ̄N0 , η̄

M
0 )−Ψn(µ0, η0)

]
.
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Using Triangular inequality and Lemma 19 following holds

W1

(
(µ̄Nn , η̄

M
n ), (µ̄n, η̄n)

)
≤

n∑
i=1

W1

(
Ψ(n−i)(µ̄Ni , η̄

M
i ),Ψ(n−i) ◦Ψ(µ̄Ni−1, η̄

M
i−1)
)

+W1

(
Ψn(µ̄N0 , η̄

M
0 ),Ψn(µ0, η0)

)
≤

n∑
i=1

θn−i
[
aW1

(
(µ̄Ni , η̄

M
i ),Ψ(µ̄Ni−1, η̄

M
i−1)
)

+

bW1

(
µ̄

(i−1)
M,N Q

η̄Mi ,µ̄
(i−1)
M,N , µ̄

(i−1)
M,N Q

η̄Mi−1R
α

µ̄N
i−1

,µ̄
(i−1)
M,N

)]
+θn

[
aW1

(
(µ̄N0 , η̄

M
0 ), (µ0, η0)

)
+ bW1(µ0Q

η̄M0 ,µ0 , µ0Q
η0,µ0)

]
(3.4.73)

where (3.4.73) follows from (3.4.58) with specified constants a and b and

µ̄
(i−1)
M,N := µ̄Ni−1Q

η̄Mi−1,µ̄
N
i−1 . Let XM,N

i be a random variable, conditioned on FM,N
i−1 , sampled

from µ̄
(i−1)
M,N . We have

W1

(
µ̄

(i−1)
M,N Q

η̄Mi ,µ̄
(i−1)
M,N , µ̄

(i−1)
M,N Q

η̄Mi−1R
α

µ̄N
i−1

,µ̄
(i−1)
M,N

)
≤ sup

g∈Lip
1
(Rd)

E

∣∣∣∣g(AXM,N
i + δfδ(∇η̄Mi , µ̄

(i−1)
M,N , X

M,N
i , ε))− g(AXM,N

i

+δfδ(∇(η̄Mi−1R
α
µ̄Ni−1

), µ̄
(i−1)
M,N , X

M,N
i , ε))

∣∣∣∣
≤ δσE

[∣∣∣∇η̄Mi (XM,N
i )−∇η̄Mi−1R

α
µ̄Ni−1

(XM,N
i )

∣∣∣ ∣∣FM,N
i−1

]
= (1− α)

∫ ∣∣∣∣ ∫ [SM(η̄Mi−1)− η̄Mi−1

]
(dx)∇yP (x, y)

∣∣∣∣(µ̄Ni−1Q
η̄Mi−1)(dy)

≤ l∇P (1− α)W1

(
SM(η̄Mi−1), η̄Mi−1

)
. (3.4.74)
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Last display follows from Assumption 9. Since η̄M0 = η0, one has

W1(µ0Q
η̄M0 ,µ0 , µ0Q

η0,µ0) = 0. (3.4.75)

Combining the results (3.4.74),(3.4.75), with (3.4.73) we get for each n,

EW1

(
(µ̄Nn , η̄

M
n ), (µn, ηn)

)
≤ a

1− θ
sup
k≥1

EW1

(
(µ̄Nk , η̄

M
k ),Ψ(µ̄Nk−1, η̄

M
k−1)

)
+
bl∇P (1− α)

1− θ
sup
k≥1

EW1

(
SM(η̄Mk−1), η̄Mk−1

)
+ aθnEW1

(
(µ̄N0 , η̄

M
0 ), (µ0, η0)

)
. (3.4.76)

Using Lemma 16 the result follows.

�

3.4.4 Proof of Corollary 4.7.1:

Using triangular inequality and from (3.4.58) one gets

EW1

(
(µ̄Nn , η̄

M
n ), (µ∞, η∞)

)
≤ W1

(
(µn, ηn), (µ∞, η∞)

)
+ EW1

(
(µ̄Nn , η̄

M
n ), (µn, ηn)

)
≤ θn

[
aW1((µ0, η0), (µ∞, η∞)) + bW1(µ0Q

η0 , µ0Q
η∞)

]
+EW1

(
(µ̄Nn , η̄

M
n ), (µn, ηn)

)
. (3.4.77)

Combining this with (3.4.76) we get

EW1

(
(µ̄Nn , η̄

M
n ), (µ∞, η∞)

)
≤ θn

[
aW1((µ0, η0), (µ∞, η∞)) + bW1(µ0Q

η0 , µ0Q
η∞)

]
+

a

1− θ
sup
k≥1

EW1

(
(µ̄Nk , η̄

M
k ),Ψ(µ̄Nk−1, η̄

M
k−1)

)
+
bl∇P (1− α)

1− θ
sup
k≥1

EW1

(
SM(η̄Mk−1), η̄Mk−1

)
.
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The result is obvious after using Lemma 16.

�

3.4.5 Proof of Theorem 3.3.3:

Fix N and M . Define ΘN,M
n ∈ P((Rd)N × P∗1 (Rd)× P (Rd)) as

〈φ,ΘN,M
n 〉 =

1

n

n∑
j=1

Eφ
(
X̄j(N), ηMj , S

M(ηMj )
)
, (3.4.78)

for φ ∈ BM
(
(Rd)N × P∗1 (Rd

)
× P (Rd)), N ≥ 1,M ≥ 1 and n ∈ N0 where

{(X̄j(N), η̄Mj , S
M(η̄Mj )), j ∈ N0, i = 1, . . . , N}

are as defined in the context of IPS2. Note that (Rd)N × P∗1 (Rd) × P (Rd) is a complete

separable metric space with metric d((x, µ1, µ3), (y, µ2, µ4)) := ‖x − y‖ + 1
2
W1(µ1, µ2) +

1
2
W1

(
µ3, µ4

)
where ‖x‖ := 1

N

∑N
i=1 |xi| for x = (x1, . . . , xN) ∈ (Rd)N . From Lemma 12

and 13 it follows that, for eachN,M ≥ 1, the sequence {ΘN,M
n , n ≥ 1} is relatively compact

(By Prohorov’s Theorem) and using Assumption 6 it is easy to see that any limit point ΘN,M
∞

of ΘN,M
n (as n→∞) is an invariant measure of the Markov chain {Xn(N), η̄Mn , S

M(η̄Mn )}n≥0

and from Lemma 12 it satisfies
∫

(Rd)N×P∗1 (Rd)×P(Rd)
|x| ΘN,M

∞ (dx) <∞ (Taking the norm of

the product space as |(x, y, z)| = ‖x‖+ 1
2
‖y‖1 + 1

2
‖z‖1 where (x, y, z) ∈ (Rd)N ×P∗1 (Rd)×

P (Rd) ). Uniqueness of invariant measure can be proved by the following simple coupling
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argument (see Chapter 2): Suppose ΘN,M
∞ , Θ̃N,M

∞ are two invariant measures that satisfy

∫
(Rd)N×P∗1 (Rd)×P(Rd)

|x| ΘN,M
∞ (dx) <∞,

∫
(Rd)N×P∗1 (Rd)×P(Rd)

|x|Θ̃N,M
∞ (dx) <∞

.

Let
(
X0(N), ηM0 , S

M(ηM0 )
)

and
(
X̃0(N), η̃M0 , S

M(η̃M0 )
)

with probability laws ΘN,M
∞ and

Θ̃N,M
∞ respectively be given on a common probability space under same noise sequence (i.e

in which an i.i.d. array of Rm valued random variables {εin, i = 1, . . . , N, n ≥ 1} are defined

that is independent of (X0(N), ηM0 , X̃0(N), η̃M0 ) with common probability law θ) and the

evolution equations are following.

X i
n+1 = AX i

n + δfδ(X
i
n,∇ηMn (X i

n), µNn , ε
i
n+1), ηMk = (1− α)(SM(ηMk−1)P ) + αµNk−1P

′,

X̃ i
n+1 = AX̃ i

n + δfδ(X̃
i
n,∇η̃Mn (X̃ i

n), µ̃Nn , ε
i
n+1), η̃Mk = (1− α)(SM(η̃Mk−1)P ) + αµ̃Nk−1P

′,

where recall fδ(·, ·, ·, x) = f(·, ·, ·, x) + B(x)
δ

and µNn = 1
N

∑N
i=1 δXi

n
, µ̃Nn = 1

N

∑N
i=1 δX̃i

n
.

Note that

W1

( 1

N

N∑
i=1

δXi ,
1

N

N∑
i=1

δYi
)
≤ 1

N

N∑
i=1

|Xi − Yi| (3.4.79)

for any two arrays {Xi}Ni=1 and {Yi}Ni=1. Using the independence of the noise sequence along
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with (3.4.79) and Assumption 6 we have

E|X i
n+1 − X̃ i

n+1| ≤ (‖A‖+ δσ)E|X i
n − X̃ i

n|+ δσ
1

N

N∑
j=1

E|Xj
n − X̃j

n|

+δσE|∇ηMn (X i
n)−∇η̃Mn (X̃ i

n)|. (3.4.80)

Now applying Assumption 9 (doing similar calculations as in (3.4.48),(3.4.50),(3.4.51)) fol-

lowing inequality holds

E|∇ηMn (X i
n)−∇η̃Mn (X̃ i

n)| ≤ E|∇ηMn (X i
n)−∇ηMn (X̃ i

n)|

+E|∇ηMn (X̃ i
n)−∇η̃Mn (X̃ i

n)| (3.4.81)

≤ l∇pp′E|X i
n − X̃ i

n|+ αl∇P ′EW1

(
µNn−1, µ̃

N
n−1

)
+(1− α)l∇PEW1

(
SM(ηMn−1), SM(η̃Mn−1)

)
.

Note that (3.4.79) implies

E
[
W1(SM(ηMk−1), SM(η̃Mk−1))

∣∣FM,N
k−1

]
≤ W1(ηMk−1, η̃

M
k−1) (3.4.82)

from which following holds from (3.4.81)

E|∇ηMn (X i
n)−∇η̃Mn (X̃ i

n)| ≤ l∇pp′E|X i
n − X̃ i

n|+ αl∇P ′E|X i
n−1 − X̃ i

n−1|

+(1− α)l∇PEW1

(
ηMn−1, η̃

M
n−1

)
. (3.4.83)
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We also have

W1

(
ηMn+1, η̃

M
n+1

)
≤ (1− α)l(P )W1

(
SM(ηMn ), SM(η̃Mn )

)
+ αl(P ′)W1

(
µNn , µ̃

N
n

)
(3.4.84)

and after taking expectation

EW1

(
ηMn+1, η̃

M
n+1

)
≤ (1− α)l(P )EW1

(
ηMn , η̃

M
n

)
+ αl(P ′)E|X i

n − X̃ i
n|. (3.4.85)

Letting A(M,N)
n+1 := 1

N

∑N
i=1 |X i

n+1 − X̃ i
n+1|+W1

(
ηMn+1, η̃

M
n+1

)
, we have the following recur-

sion relation for EA(M,N)
n in n combining (3.4.80),(3.4.83) and (3.4.85)

EA
(M,N)
n+1 ≤ max

{(
‖A‖+ δσ(2 + l∇,αPP ′) + αl(P ′)

)
, (1− α)l(P )

}
EA(M,N)

n

+δσmax{(1− α)l∇P , αl
∇
P ′}EA

(M,N)
n−1 (3.4.86)

which is the same recursion as in (3.4.54). Now for the chosen δ, α satisfying (3.4.56) there

exists a θ ∈ (0, 1) such that

EA(M,N)
n ≤ θn−1[EA

(M,N)
0 + EA

(M,N)
1 ]. (3.4.87)

Also, since ΘN,M
∞ and Θ̃N,M

∞ are invariant distributions, for every n ∈ N0,(
Xn+1(N), ηMn+1, S

M(ηMn+1)
)

is distributed as ΘN,M
∞ and

(
X̃n+1(N), η̃Mn+1, S

M(η̃Mn+1)
)

is dis-

tributed as Θ̃M,N
∞ . Thus

(Xn+1(N), ηMn+1, S
M(ηMn+1)) and

(
X̃n+1(N), η̃Mn+1, S

M(η̃Mn+1)
)

define a coupling of random
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variables with laws ΘN,M
∞ and Θ̃N,M

∞ respectively. From (3.4.87) we then have

W1(ΘN,M
∞ , Θ̃M,N

∞ ) ≤ Ed
(
(Xn(N), ηMn , S

M(ηMn )), (X̃n(N), η̃Mn , S
M(η̃Mn ))

)
≤ EAM,N

n → 0,

as n→∞. So there exists a unique invariant measure ΘN,M
∞ ∈ P1

(
(Rd)N×P∗1 (Rd)×P(Rd)

)
for this Markov chain and, as n→∞,

ΘN,M
n → ΘN,M

∞ . (3.4.88)

This proves the first part of the theorem. Denote ΘN,M
∞

(
·,P∗1 (Rd),P(Rd)

)
by Θ1,N,M

∞ and

ΘN,M
n

(
·,P∗1 (Rd),P(Rd)

)
by Θ1,N,M

n .

Define rN : (Rd)N → P(Rd) as

rN(x1, . . . , xN) =
1

N

N∑
i=1

δxi , (x1, . . . xN) ∈ (Rd)N .

Let νN,Mn = Θ1,N,M
n ◦ r−1

N and νN,M∞ = Θ1,N,M
∞ ◦ r−1

N . In order to prove that Θ1,N,M
∞ is

µ∞-chaotic, it suffices to argue that (cf. [74])

νN,M∞ → δµ∞ in P(P(Rd)), as N,M →∞. (3.4.89)

We first argue that as n→∞

νN,Mn → νN,M∞ in P(P(Rd)). (3.4.90)
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It suffices to show that 〈F, νN,Mn 〉 → 〈F, νN,M∞ 〉 for any continuous and bounded function

F : P(Rd)→ R. But this is immediate on observing that

〈F, νN,Mn 〉 = 〈F ◦ rN ,Θ1,N,M
n 〉, 〈F, νN,M∞ 〉 = 〈F ◦ rN ,Θ1,N,M

∞ 〉,

the continuity of the map rN and the weak convergence of ΘN,M
n to ΘN,M

∞ . Next, for any

f ∈ BL1(P(Rd))

∣∣∣〈f, νN,Mn 〉 − 〈f, δµ∞〉
∣∣∣ =

∣∣∣ 1
n

n∑
j=1

Ef(µ̄Nj )− f(µ∞)
∣∣∣ ≤ 1

n

n∑
j=1

EW1(µ̄Nj , µ∞).

Fix ε > 0. For every N,M ∈ N there exists n0(N,M) ∈ N such that for all n ≥ n0(N,M)

EW1(µ̄Nn , µ∞) ≤ lim sup
n→∞

EW1(µ̄Nn , µ∞) + ε.

Thus for all n,N,M ∈ N

|〈f, νN,Mn 〉−〈f, δµ∞〉| ≤
n0(N,M)

n
max

1≤j≤n0(N,M)
EW1(µ̄Nj , µ∞)+lim sup

n→∞
EW1(µ̄Nn , µ∞)+ε.

(3.4.91)
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Finally

lim sup
N,M→∞

|〈f, νN,M∞ 〉 − 〈f, δµ∞〉| = lim sup
min {N,M}→∞

lim
n→∞

|〈f, νN,Mn 〉 − 〈f, δµ∞〉|

≤ lim sup
min {N,M}→∞

lim sup
n→∞

EW1(µ̄Nn , µ∞) + ε

≤ε,

where the first equality is from (3.4.90), the second uses (3.4.91) and the third is a conse-

quence of Corollary 4.7.1. Since ε > 0 is arbitrary, we have (3.4.89) and the result follows.

�

3.4.6 Proof of Concentration bounds:

Proof of Theorem 3.3.4:

We start with the following lemma where we establish a concentration bound for

W1

(
(µ̄Nn , η̄

M
n ),Ψ(µ̄Nn−1, η̄

M
n−1)

)

for each fixed time n ∈ N and then combine it with the estimate in (3.4.73) in order to get

the desired result.

Lemma 17. Let N1 = min{M,N}. Suppose Assumptions (6)-(9) and Assumptions (12),(13)

hold for some τ > 0, a(τ) > 0. Suppose that δ ∈ (0, a(τ)
1

1+τ ), and (1−α)mτ (P ) < 1. Then

there exist
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a1, a2, a3, a
′
1, a
′
2, a
′
3 ∈ (0,∞) such that for all ε, R > 0, n ∈ N, andN1 ≥ max{1, a1(R

ε
)d+2}.

P [W1

(
(µ̄Nn , η̄

M
n ),Ψ(µ̄Nn−1, η̄

M
n−1)

)
> ε] ≤ a3

(
e−a2

N1ε
2

R2 +
R−τ

ε

)
, (3.4.92)

P [W1

(
SM(η̄Mn−1), η̄Mn−1

)
> ε] ≤ a′3

(
e−a

′
2
N1ε

2

R2 +
R−τ

ε

)
. (3.4.93)

Proof of Lemma 17

Second concentration bound will follow by proceeding as Lemma 4.5 of Chapter 2. The

proof relies on an idea of restricting measures to a compact set and estimates on metric

entropy [14] (see also [79]). The basic idea is to first obtain a concentration bound for the

W1 distance between the truncated law and its corresponding empirical law in a compact ball

of radius R and getting a tail estimate from Lemma 13 and Corollary 3.4.1 after conditioning

by FM,N
n−1 . With the notations (for example µR is the truncated measure of µ restricted on a

ball BR(0) of R radius) introduced in Lemma 4.5 of [? ] we sketch the proof of the second

bound. With that notation the truncated version of η̄Mn−1 is denoted by η̄Mn−1,R. Suppoe {Y i,M
n−1 :

i = 1, . . . ,M} are iid from η̄Mn−1 conditioned on FM,N
n−1 . where {ZM,R

i : i = 1, . . . ,M} are

iid from η̄Mn−1,R conditioned under FM,N
n−1 . Define

X i,M
n−1 =


Y i,M
n−1 when |Y i,M

n−1 | ≤ R,

Zi,M
n−1 otherwise .

Note that P (X i,M
n−1 ∈ A | FM,N

n−1 ) = P (Zi,M
n−1 ∈ A | FM,N

n−1 ). Denote SM(η̄Mn−1,R) :=

1
M

∑M
i=1 δXi,M

n−1
. Now denoting a(1 + τ) := supn≥0 supM,N E

〈
|x|1+τ , η̄Mn

〉
, from (3.4.79)
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we have

P
[
W1(SM(η̄Mn−1,R), SM(η̄Mn−1)) >

ε

3

]
≤ 3

E[W1(SM(η̄Mn−1,R), SM(η̄Mn−1))]

ε

≤ 3

ε
EE
[
|X i,M

n−1 − Y
i,M
n−1 |

∣∣FM,N
n−1

]
=

3

ε
EE
[
|Zi,M

n−1 − Y
i,M
n−1 |1|Y i,Mn−1 |>R

∣∣FM,N
n−1

]
≤ 6

ε
EE
[
|Y i,M
n−1 |1|Y i,Mn−1 |>R

∣∣FM,N
n−1

]
≤ 6a(1 + τ)

R−τ

ε
. (3.4.94)

Now using Azuma Hoeffding inequality as done in display (4.35) of Lemma 4.5 in Chap-

ter 2 one has

P
[
W1(SM(η̄Mn−1,R), η̄Mn−1,R) >

ε

3

]
≤ max

{
2,

16R

ε
(2
√
d+ 1)3[ 8R

ε
(
√
d+1)]d

}
e−

Mε2

288R2 .(3.4.95)

From the definition of η̄Mn−1,R

P
[
W1(η̄Mn−1, η̄

M
n−1,R) ≥ ε

3

]
≤ 6

ε
E
[
|Y i,M
n−1 |1|Y i,Mn−1 |>R

]
≤ 3a(1 + τ)

R−τ

ε
. (3.4.96)

Using triangular inequality

W1(SM(η̄Mn−1), η̄Mn−1) ≤ W1(SM(η̄Mn−1,R), SM(η̄Mn−1)) +W1(SM(η̄Mn−1,R), η̄Mn−1,R)

+W1(η̄Mn−1, η̄
M
n−1,R)

combining (3.4.94),(3.4.95) and (3.4.96) the result (3.4.93) will follow.
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The first one (3.4.92) follows by noting that

P
[
W1

(
(µ̄Nn , η̄

M
n ),Ψ(µ̄Nn−1, η̄

M
n−1)

)
> ε
]
≤ P

[
W1

(
µ̄Nn , µ̄

N
n−1Q

µ̄Nn−1,η̄
M
n−1
)
>
ε

2

]
(3.4.97)

+P

[
W1

(
SM(η̄Mn−1), η̄Mn−1

)
>

ε

2(1− α)l(P )

]
.

Proceeding like Lemma 4.5 of Chapter 2 the bound for the first term in RHS of (3.4.97) can

be established.

Proof of Theorem 3.3.4(a)

Combining (3.4.73),(3.4.74) and (3.4.75) it follows that

W1

(
(µ̄Nn , η̄

M
n ), (µn, ηn)

)
≤

n∑
i=1

θn−i
[
aW1

(
(µ̄Ni , η̄

M
i ),Ψ(µ̄Ni−1, η̄

M
i−1)
)

+bl∇P (1− α)W1

(
SM(η̄Mi−1), η̄Mi−1

) ]
+ aθnW1

(
(µ̄N0 , η̄

M
0 ), (µ0, η0)

)
. (3.4.98)

Denoting c1 := max
{((
‖A‖+ δσ(2 + l∇,αPP ′)

)
+ αl(P ′)

)
, (1− α)l(P )

}
, c2 := δσmax

{
αl∇P ′ , (1−

α)l∇P
}

define the function g0(·) as

g0(γ) := c2 + (1− γ)c1 − (1− γ)2.

Since g0(0) = c2 + c1− 1 < 0 (from the assumption), g0(1) = c2 > 0 and g(·) is continuous.
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So there exists a γ > 0 such that g0(γ) < 0 or equivalently

c1

1− γ
+

c2

(1− γ)2
< 1.

So there exists a θ ∈ (0, 1 − γ) such that statement of Lemma 19 holds. Now using that

γ from (3.4.98) one has

P
[
W1

(
(µ̄Nn , η̄

M
n ), (µn, ηn)

)
> ε
]
≤ P

[ n⋃
i=1

{
aθn−iW1

(
(µ̄Ni , η̄

M
i ),Ψ(µ̄Ni−1, η̄

M
i−1)
)
>

γ

2
(1− γ)n−iε

}
n⋃
i=1

{
bl∇P (1− α)θn−iW1

(
SM(η̄Mi−1), η̄Mi−1

)
>
γ

2
(1− γ)n−iε

} n⋃
i=1

{
θnW1

(
(µ̄N0 , η̄

M
0 ), (µ0, η0)

)
> γ(1− γ)nε

}]
≤

n∑
i=1

P
[
W1

(
(µ̄Ni , η̄

M
i ),Ψ(µ̄Ni−1, η̄

M
i−1)
)
>
γε

2a

(1− γ
θ

)n−i]
+

n∑
i=1

P
[
W1

(
SM(η̄Mi−1), η̄Mi−1

)
>

γε

2bl∇P (1− α)

(1− γ
θ

)n−i]
+P
[
W1

(
(µ̄N0 , η̄

M
0 ), (µ0, η0)

)
> γε

(1− γ
θ

)n]
.

Let β1 = γε
2a
, β2 = γε

2bl∇P (1−α)
β3 = γε. Note that ν :=

(
1−γ
θ

)
> 1, from our choice of γ.

Therefore denoting β := min{β1, β2}, N1 ≥ a1

(
R
β

)d+2

∨1 implies N1 ≥ a1

(
R
βνn

)d+2

∨1
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for all n ∈ N0 and a consequence of Lemma 17 gives

P
[
W1

(
(µ̄Nn , η̄

M
n ), (µn, ηn)

)
> ε
]
≤

n∑
i=1

P
[
W1

(
(µ̄Ni , η̄

M
i ),Ψ(µ̄Ni−1, η̄

M
i−1)
)
> β1ν

n−i]
+

n∑
i=1

P
[
W1

(
SM(η̄Mi−1), η̄Mi−1

)
> β2ν

n−i]+ P
[
W1

(
(µ̄N0 , η̄

M
0 ), (µ0, η0)

)
> β3ν

n
]
(3.4.99)

≤ a3

n∑
i=1

(
e−a2

N1β
2ν2i

R2 +
R−τ

βνi

)
+ a′3

n∑
i=1

(
e−a

′
2
N1β

2ν2i

R2 +
R−τ

βνi

)
+P
[
W1

(
(µ̄N0 , η̄

M
0 ), (µ0, η0)

)
> β3ν

n
]
.

Now proceeding similarly like the proof of Theorem 3.7 of Chapter 2 through optimizing the

value of R the conclusion will follow.

3.4.7 Proof of Theorem 3.3.5

We will start by introducing a coupling. Consider a system of Rd valued auxiliary random

variables {Y i,N
n , i = 1, . . . , N}n≥0 defined as follows.

Y i,N
n+1 = AY i,N

n + δf(∇ηn(Y i,N
n ), µn, Y

i,N
n , εin+1) +B(εin+1), i = 1, . . . , N, n ∈ N0.

ηn+1 = ηnR
α
µn ,

Y i,N
0 = X i,N

0 . (3.4.100)

Now for each n ∈ N, {Y i,N
n , i = 1, . . . , N} is a set of Rd valued iid random variables under

initial assumption L({X i,N
0 }i=1,...,N) = µ⊗N0 . Suppose ζNn := 1

N

∑N
i=1 δY i,Nn . The following

Lemma will make a connection between ζNn and µNn .
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Lemma 18. (Coupling with the auxiliary system) Suppose Assumptions 6,9,10 and 14 hold.

Then for every n ≥ 0 and N ≥ 1, with the C1, and χ1 defined in (3.3.18),(3.3.19)

W1(µNn+1, µn+1) ≤ W1(ζNn+1, µn+1) + C1

n∑
k=0

χn−k1 W1(ζNk , µk). (3.4.101)

Proof. Since by Assumption 6 and A1(ε) ≤ K, we have for each j = 1, . . . , N

|Xj
n+1 − Y

j,N
n+1| ≤ ‖A‖|Xj

n − Y j,N
n |+ δK

{
|∇ηNn (Xj,N

n )−∇ηn(Y j,N
n )|+ |Xj,N

n − Y j,N
n |

+W1(µNn , µn)
}

Using the calculations in (3.4.46),(3.4.48),(3.4.49) and (3.4.51)

|∇ηNn (Xj,N
n )−∇ηn(Y j,N

n )| ≤ |∇ηNn (Xj,N
n )−∇ηNn (Y j,N

n )|

+|∇ηNn (Y j,N
n )−∇ηn(Y j,N

n )|

≤ l∇,αPP ′ |X
j
n − Y j,N

n |+ (1− α)l∇PW1(ηNn−1, ηn−1) + αl∇P ′W1(µNn−1, µn−1)

Thus

|Xj,N
n+1 − Y

j,N
n+1| ≤

[
‖A‖+ δK(1 + l∇,αPP ′)

]
|Xj

n − Y j,N
n |+ δK

[
W1(µNn , µn)

+(1− α)l∇PW1(ηNn−1, ηn−1) + αl∇P ′W1(µNn−1, µn−1)

]
(3.4.102)
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Using (3.4.102) as the recursion on ajn+1 := |Xj,N
n+1 − Y

j,N
n+1| with aj0 = 0, we get

ajn+1 ≤ δK

n∑
k=1

[
‖A‖+ δK(1 + l∇,αPP ′)

]n−k[W1(µNk , µk) + (1− α)l∇PW1(ηNk−1, ηk−1)

+αl∇P ′W1(µNk−1, µk−1)

]
. (3.4.103)

Denote ‖A‖+ δK(1 + l∇,αPP ′) by χ. Observe that

W1(ηNn−1, ηn−1) = (1− α)l(P )W1(ηNn−2, ηn−2) + αl(P ′)W1(µNn−2, µn−2). (3.4.104)

Denote the quantity in the third bracket of RHS of (3.4.103) by bk. Using (3.4.104) and

ηN0 = η0 we have

bk = W1(µNk , µk) + (1− α)l∇PW1(ηNk−1, ηk−1) + αl∇P ′W1(µNk−1, µk−1)

= W1(µNk , µk) + (1− α)l∇P αl(P
′)
k−2∑
i=0

[(1− α)l(P )]k−2−iW1(µNi , µi)

+αl∇P ′W1(µNk−1, µk−1)

≤ c4

k∑
i=0

ck−i5 W1(µNi , µi). (3.4.105)

where c4 := max{1, (1 − α)l∇P αl(P
′)} and c5 := max{αl∇P ′ , (1 − α)l(P )}. Thus from

(3.4.103) we have

ajn+1 ≤ δKc4

n∑
k=0

χn−k
k∑
i=0

ck−i5 W1(µNi , µi). (3.4.106)
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Now applying Lemma A.1.4 we have

ajn+1 ≤ δKc4

n∑
i=0

W1(µNi , µi)

[
χn+1−i − cn+1−i

5

χ− c5

]
≤ δKc7

n∑
i=0

χn+1−i
2 W1(µNi , µi) (3.4.107)

where χ2 := max{χ, c5} and c7 := c4
|χ−c5| . Note that from (3.4.79) we have for all n ≥ 0,

W1(ζNn , µ
N
n ) ≤ 1

N

N∑
j=1

ajn.

Combining the result above and using triangle inequality in (3.4.107)

W1(ζNn+1, µ
N
n+1) ≤ δKc7

n∑
k=0

χn+1−k
2 W1(ζNk , µ

N
k ) + δKc7

n∑
k=0

χn+1−k
2 W1(ζNk , µk).

Applying Lemma A.1.3 with

an = χ−n2 W1(ζNn , µ
N
n ), bn = δKc7

n−1∑
k=0

χ−k2 W1(ηNk , µk), pn = δKc7, n ≥ 0.
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We have

χ
−(n+1)
2 W1(ζNn+1, µ

N
n+1) ≤ bn+1 +

n∑
k=0

(δKc7)2

k−1∑
i=0

χ−i2 W1(ζNi , µi) (1 + δKc7)n−k

= bn+1 +
n∑
i=0

n∑
k=i+1

(δKc7)2(1 + δKc7)n−kχ−i2 W1(ζNi , µi)

= bn+1 +
n∑
i=0

(δKc7)2χ−i2 .W1(ζNi , µi)
n−i−1∑
m=0

(1 + δKc7)m

= bn+1 +
n∑
i=0

(δKc7)χ−i2 W1(ζNi , µi)[(1 + δKc7)n−i − 1].(3.4.108)

Simplifying (3.4.108) one gets

W1(ζNn+1, µ
N
n+1) ≤ δKc7

n∑
k=0

χn+1−k
2 W1(ζNk , µk)

+
n∑
k=0

(δKc7)χn+1−k
2 W1(ζNk , µk)[(1 + δKc7)n−k − 1]

=
n∑
k=0

(δKc7)χn+1−k
2 W1(ζNk , µk)(1 + δKc7)n−k.

= δKc7χ2

n∑
k=0

(χ2 + δKc7χ2)n−kW1(ζNk , µk).

Note that δKc7χ2 = C1 and χ2 + C1 = χ1 as defined in (3.3.18) and (3.3.19) respectively.

Thus we have

W1(ζNn+1, µ
N
n+1) ≤ C1

n∑
k=0

χn−k1 W1(ζNk , µk).

The result now follows by an application of triangle inequality.
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Proof of Theorem 3.3.5

Since χ1 < 1. So we can find γ > 0 such that χ1 < 1 − γ. Taking that γ, we have

ν1 := 1−γ
χ1

> 1. For any ε > 0, From Lemma 3.3.5

P [W1(µNn , µn) > ε] ≤ P [W1(ζNn , µn) > γε]

+
n−1∑
i=0

P [C1χ
n−1−i
1 W1(ζNi , µi) ≥ γε(1− γ)n−i]

= P [W1(ζNn , µn) > γε] +
n∑
i=1

P [W1(ζNn−i, µn−i) ≥
γεχ1

C1

νi] (3.4.109)

= P [W1(ζNn , µn) > γε] +
iε∑
i=1

P [W1(ζNn−i, µn−i) ≥
γχ1ε

C1

νi]

+
n∑

i=iε+1

P [W1(ζNn−i, µn−i) ≥
γχ1ε

C1

νi],

where iε := max{i ≥ 0 : γχ1ε
C1

νi < 1}. Note that for δ ∈
[
0, 1−‖A‖

(2+l∇,α
PP ′ )K

)
, and α1 ∈ (0, α(δ)

δ
),

using similar version of Lemma 10 of Chapter 2, we have supn≥0

〈
eα1|x|,µn

〉
< ∞. That

implies from the statement of Theorem 2 of [33] that for all N > 0,

P [W1(ζNn , µn) ≥ ε] ≤ a(N, ε)1{ε≤1} + b(N, ε).

where a(N, ε) = e−cNε
2
1{d=1} + e

−cN
(

ε

log(2+ 1
ε )

)2

1{d=2} + e−cNε
d
1{d>2} and b(N, ε) = e−cNε.

In order to prove (3.3.20) we will prove only for one case d > 2. Rest will follow similarly.

There exists C ′1, C
′
2, C

′
3
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n∑
i=iε+1

P [W1(ζNn−i, µn−i) ≥
γχ1ε

C1

νi] ≤
n∑

i=iε+1

b(N,
γχ1ε

C1

νi) ≤
n∑

i=iε+1

e−C
′
1εNν

i

(3.4.110)

iε∑
i=1

P [W1(ζNn−i, µn−i) ≥
γχ1ε

C1

νi] ≤
iε∑
i=1

a(N,
γχ1ε

C1

νi) ≤
iε∑
i=1

e−C
′
2N(ενi)d

≤
iε∑
i=1

e−C
′
2Nε

dνi (3.4.111)

P [W1(ζNn , µn) > γε] ≤ e−C
′
3Nε

d∧ε (3.4.112)

Suppose k0 such that νi ≥ k0i for all i ≥ 1. Combining (3.4.110),(3.4.111),(3.4.112) we

have for all N > 1 and a′′2 = k0 min{C ′1, C ′2, C ′3}.

sup
n
P [W1(µNn , µn) > ε] ≤

∞∑
i=0

e−a
′′
2Niε

d∧ε ≤ e−a
′′
2Nε

d∧ε

1− e−a′′2Nεd∧ε
. (3.4.113)

Now there exists N3 := − 1
a′′2

log(1− 1
a′′1

) such that N ≥ N3 max{1
ε
, 1
εd
} we have

sup
n
P [W1(µNn , µn) > ε] ≤ a′′1e

−a′′2Nεd∧ε.
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Chapter4
HIGHER ORDER ASYMPTOTICS OF GFI

4.1 Introduction

This chapter renders application of higher order asymptotics to Fiducial based inferential

techniques. In last decades there had been a surge of parallel endeavors in modern modi-

fications of fiducial inference. These approaches are well known under a common name:

“Distributional inference”. Main emphasis for these approaches was defining inferentially

meaningful probability statements about subsets of the parameter space without the need for

subjective prior information. They include the “Dempster Shafer theory” (Dempster [28];

Edlefsen, Liu and Dempster [30]) and its relatively recent extension called inferential models

(Martin, Zhang and Liu [64]; Zhang and Liu [83]; Martin and Liu [63], [61], [62]). There is

another rigorous framework available called Objective Bayesian inference that aims at find-

ing nonsubjective model based priors. An example of a recent breakthrough in this area is the

modern development of reference priors (Berger, [4]; Berger and Sun [7]; Berger, Bernardo

and Sun [5],[6]; Bayarri et al. [3]). Another related approach is based on higher order like-

lihood expansions and implied data dependent priors (Fraser, Fraser and Staicu [34]; Fraser

[35],[36]; Fraser and Naderi [37]; Fraser et al. [38]; Fraser, Reid and Wong [39]). A differ-

ent frequentist approach namely confidence distributions looks at the problem of obtaining

an inferentially meaningful distribution on the parameter space (Xie and Singh [81]). Re-



cently an interesting work (Taraldsen and Lindqvist [75]) showing how some simple fiducial

distributions that are not Bayesian posteriors naturally arises within the decision theoretical

framework.

Arguably, Generalized Fiducial Inference has been on the forefront of the modern fidu-

cial revival. The strengths and limitations of the fiducial approach are starting to be better

understood; see especially Hannig [51], [52]. In particular, the asymptotic exactness of fidu-

cial confidence sets, under fairly general conditions, was established in Hannig [52]; Hannig,

Iyer and Patterson [53]; Sonderegger and Hannig [71].

Main aim of this chapter is to further study exactness property of the Fiducial quantile

in frequentist sense for uni-parameter cases with exploration of higher order asymptotics.

From a different point of view it can be seen as a prudent way of selecting a data generating

equation (to be defined shortly) so that the non-uniqueness issue of proposing Generalized

Fiducial Distribution (in short GFD) can be reduced partially. To start with we address what

we mean by GFD.

Denote the parameter space by Θ. Let the data X be a S valued random variable. It starts

by expressing a relationship between the parameter and the data through a deterministic

function G : M×Θ→ S which we call by data generating equation (in short DGE):

X = G(U, θ) (4.1.1)

where U is a M valued random variable whose distribution doesn’t depend on θ. The distri-
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bution of the data X is determined by U via the structural equation (4.1.1). That is one can

generate X by generating U and plugging it into the data generating equation.

For example for one sample of N(θ, 1) the data generating structural equation is

G(U, θ) = θ + Φ−1(U)

where Φ(.) cumulative Normal distribution function and U ∼ U(0, 1). One can always find

(4.1.1) by following construction. For a realization x0 := (x1, x2, . . . xn) of X where X ∼

Fθ(·) for Fθ being a distribution function on Rn with θ ∈ Θ being the unknown parameter

denote the conditonal distributions of first, second and n-th co-ordinate (sequentially given

the rest) by Fθ,X1(·), Fθ,X2|X1(·), and Fθ,Xn|(X1,X2,...,Xn−1)(·) respectively. Then (4.1.1) can be

written as

x1 = F−1
θ,X1

(U1)

x2 = F−1

θ,X2

∣∣{X1=x1}
(U2)

xn = F−1

θ,Xn

∣∣{(X1,X2,...,Xn−1)=(x1,x2,...xn−1)}
(Un) (4.1.2)

where (U1, U2, . . . , Un) iid copies of Uniform (0, 1) random variables. Note that in above il-

lustration changing the order of the variables (X1, . . . , Xn) will give different data generating

equations unless X1, X2, . . . , Xn are independent.

After observing x0, given U, define the inverse image Qx0(U) in the parameter space
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from the data generating equation as

Qx0(U) := {θ : G(U, θ) = x0}.

after observing X = x0, fiducial approach instructs us to deduce a distribution for θ from the

randomness of U via the structural equation (i.e., generate U? and invert the structural equa-

tion solving for θ = Qx0(U?)). Now in order to remove the possibility of non-existence of

solution for some U∗, we will discard that value, i.e, condition the distribution Qx0(U) given

the fact the solution always exists (i.e Qx0(U) 6= ∅). As explained, the Fiducial distribution

of θ given observed x0 should be heuristically (hence ill defined) the following conditional

distribution

Qx0(U∗)

∣∣∣∣ {Qx0(U∗) 6= ∅} . (4.1.3)

Immediately three relevant questions arise regarding the non-uniquenesses of Generalized

Fiducial distribution (4.1.3):

• The choice among multiple solutions: It arises if the inverse image Qx0(U∗) has

more than one element for U∗ and observed x0. This problems mainly occur in dis-

crete distributions (See [52]) which we did not consider in this article. Moreover in

asymptotic regime all those choices will lead to the same distribution limit.

• Borel Paradox: Another important problem regarding computing the conditional prob-

ability in (4.1.3) arises when the conditioning event {Qx0(U∗) 6= ∅} has measure
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0. For example, suppose one observes X = x0 := (x1, . . . , xn)′ where Xn×1 ∼

Nn(θ.1n×1, In×n) for Θ = R. Note that, considering the simple data generating equa-

tion X = θ + Un×1 where U ∼ Nn(0, In), the inverse image

Qx0(U∗) = (x1 − U∗1 ).1{U∗2−U∗1 =x2−x1,U∗3−U∗1 =x3−x1,...,U∗n−U∗1 =xn−x1}

and the set {Qx0(U∗) 6= ∅} has probability 0 (n − 1 dimensional manifold in n di-

mensional space). In that case the conditional probability distribution may not remain

unique which in literature is termed as the Borel paradox.

This problem can also be removed by defining the GFD as the distribution of the weak

limit of the following quantity (in the display) conditioned on the event{
infθ

∥∥x0 −G(U∗, θ)
∥∥ ≤ ε

}
as ε ↓ 0.

arg inf
θ

∥∥x0 −G(U∗, θ)
∥∥∣∣∣∣ {inf

θ

∥∥x0 −G(U∗, θ)
∥∥ ≤ ε

}
. (4.1.4)

Let’s assume that for each fixed θ ∈ Θ the function G(·, θ) is one-to-one and continu-

ously differentiable denoting the inverse by G−1(x, θ). If we use L∞ norm as ‖ · ‖ in

the definition of 4.1.4, from Theorem 3.1 of [52] it follows that the unique weak limit

is a distribution on Θ with density

fG
(
θ
∣∣x0 = {X1, X2, . . . , Xn}

)
=

fX
(
x0

∣∣θ) Jn(x0, θ)∫
R fX

(
x0

∣∣θ′) Jn(x0, θ′)dθ′
, (4.1.5)
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where the Jacobian Jn(x, θ) is defined as

Jn(x, θ) :∝
∑

i=(i1,...,ip)

∣∣∣∣∣∣det

(
d

dθ
G(u, θ)

∣∣∣∣
u=G−1(x,θ)

)
(i)

∣∣∣∣∣∣ (4.1.6)

when θ is p dimensional. A(i) denotes the p × p submtrix consisting of ith selection

of rows of A. Let X = (X1, . . . , Xn). In the uniparameter (p = 1) case, the Jacobian

becomes

Jn(X, θ) ∝
n∑
i=1

∣∣∣∣∣ ∂∂θG(Ui, θ)

∣∣∣∣
Ui=G

−1(Xi,θ)

∣∣∣∣∣. (4.1.7)

In what follows by Fiducial distribution (or density) we will mean the distribution(or

density) of θ defined in (4.1.4). Denote the probability distribution on Θ induced by

the data generating equation G in (4.1.1) by P G(·) whose density is (4.1.5).

As an example consider X is a sample of n iid observations from Scaled Normal family

N(µ, µq), µ ∈ R+ := Θ. The simplest data generating equation comes from the relation

X = G(U, θ) := µ+µ
q
2U, where U = (U1, U2, . . . , Un) is an array of n i.i.d N(0, 1) random

variables. Since d
dµ
G(Ui, µ) = 1 + q

2
µq/2−1Ui, then plugging in Ui = xi−µ

µq/2
, one gets the

Jacobian in (4.1.6)

J(x, µ) ∝
n∑
i=1

∣∣∣∣∣ ∂∂µG(Ui, µ)

∣∣∣∣
Ui=G

−1(Xi,µ)

∣∣∣∣∣ =
n∑
i=1

∣∣∣∣1 +
q(Xi − µ)

2µ

∣∣∣∣ (4.1.8)

giving the GFD as specified in (4.1.5).

In context of non-informative prior for any one-to-one function φ(.), inference of θ given
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X and inference of φ(θ) given X should not be different since the ideal non-informative prior

should not impose any extra information on Θ [73]. Just like Posterior distribution of Jef-

frey’s prior, Generalized Fiducial distribution of θ exhibits this parametrization invariance

property. For some one-one function φ suppose η = φ(θ). The Fiducial distributions of θ and

η denoted respectively as r and r̃ follow

∫
A

r(θ)dθ =

∫
φ−1(A)

r̃(η)dη

and it follows trivially from the definition (4.1.4).

Choice of L∞ norm in (4.1.4) can be intuitively justified from natural discretization point

of view. That is for the observed x one can think a box (an interval for each dimension)

around it, in order to get a θ ∈
{
θ : infθ

∥∥x0 −G(U∗, θ)
∥∥ ≤ ε

}
. Also another reason is

independence among the dimensions which helps in the calculation.

4.1.1 The Choice of Structural Equations:

Note that changing norm in (4.1.4) leads to different fiducial distributions [52]. Now we

illustrate another issue of non-uniqueness arising from different choices of data generating

equation G(U, θ). Let X = (X1, . . . , Xn) be n iid realizations from a distribution F (· | θ)

with density f(·
∣∣θ) parametrized by one dimensional parameter θ ∈ Θ := R where the true

parameter value is θ0. Suppose T (.) is a smooth, one to one transformation and there exists

a weight function w(x) such that T (x) :=
∫

(−∞,x]
w(y)dy. Now instead of considering the

data generating equation X = G(U, θ) let’s consider Y := T (X) = T ◦ G(U, θ). Then

using ‖ · ‖ = L∞ norm in (4.1.4), from (4.1.5) the density of fiducial distribution of θ given
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Y := (Y1, Y2, . . . , Yn) = (T (X1), T (X2), . . . , T (Xn)) := B(X) will be

fG(θ
∣∣Y = y) =

fY
(
y
∣∣θ) Jn(y, θ)∫

Θ
fY
(
y
∣∣θ′) Jn(y, θ′)dθ′

=

∏n
i=1 f

(
T−1(yi)

∣∣θ) ∣∣(T−1)′(yi)
∣∣J(y, θ)∫

Θ

∏n
i=1 f

(
T−1(yi)

∣∣θ) ∣∣(T−1)′(yi)
∣∣J(y, θ′)dθ′

=

∏n
i=1 f

(
xi
∣∣θ) J (B(x), θ)∫

Θ

∏n
i=1 f

(
xi
∣∣θ′) J(B(x), θ′)dθ′

(4.1.9)

where using (4.1.7)) and the chain rule, resulting Jacobian J(B(X), θ) will be proportional

to

n∑
i=1

∣∣∣∣∣ ∂∂θT ◦G(Ui, θ)

∣∣∣∣
Ui=G

−1(Xi,θ)

∣∣∣∣∣ =
n∑
i=1

∣∣∣∣∣
[
T ′(G(Ui, θ))

∂

∂θ
G(Ui, θ)

] ∣∣∣∣
Ui=G

−1(Xi,θ)

∣∣∣∣∣
=

n∑
i=1

∣∣∣∣∣w(Xi)
∂

∂θ
G(Ui, θ)

∣∣∣∣
Ui=G

−1(Xi,θ)

∣∣∣∣∣. (4.1.10)

the weight function w(.) in the Jacobian. Note that (4.1.9) comes from last expression

of fG(θ
∣∣Y) where (T−1)′(yi) cancels out from both numerator and denominator which is

possible since |(T−1)′(Y )| is almost surely assumed to be non zero. Intuitively fiducial dis-

tribution changes due to the deformation of the x space through the transformation T along

with change in the conditional event infθ

∥∥∥∥T (x)−T ◦G(U∗, θ)

∥∥∥∥ ≤ ε in the definition (4.1.4).

Note that given F (·, θ) being the distribution function with density f(·, θ), the following

illustration by chain rule yields

∂

∂θ
G(U, θ)

∣∣∣∣
{U=G−1(X,θ)}

=
∂

∂θ
X =

1
dF (X,θ)
dX

∂

∂θ
F (X, θ) =

∂F (X,θ)
∂θ

f(X, θ)
. (4.1.11)
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Under the transformation T (·) =
∫

(−∞,·] w(y)dy the transformed Jacobian in (4.1.10) can be

expressed as

Jn(T (X), θ) ∝
n∑
i=1

∣∣∣∣w(Xi)
∂Fi(Xi,θ)

∂θ

f(Xi, θ)

∣∣∣∣. (4.1.12)

So we see, if we consider different data generating equation as a smooth and one-one

transformation of the original structural equation it only brings a weight w(.) in the Jaco-

bian part. The question of interest is, what is an “ideal” transformation T (.) for which the

Fiducial distribution enjoys some “desirable” properties. By desirability we mean a data

generating structural equation under which the Fiducial distribution is “exact” in a frequentist

sense.

Structure of this work follows with initially giving an ideal recipe of Fiducial distribution

for a special case when some strong monotonicity conditions of the structural equation are

satisfied. In the absence of those conditions, we define a criteria through higher order asymp-

totics. Throughout this article we considered || · || = L∞ norm in the definition of (4.1.4)

and the main contention of this article is to get the ideal transformation T (.) under which the

data generating equation “T (X) = T ◦ G(U, θ)” will give first order probability matching

Fiducial distribution (to be defined in (4.3.1) ). Then we will conclude this article illustrating

with some illustrations with their empirical behaviors in small sample situations.

4.2 Why Fisher Might Have Thought Fiducial Distribution Exact?

Fisher developed [31] the Fiducial idea based on the minimal sufficient statistics. Under

the same motivation we state the following theorem considering GS(U, θ) as the data gen-
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erating equation for a one dimensional minimal sufficient statistics S. Denote the inverse

image Qs(u) = {θ : s = GS(u, θ)}. To study the properties of the generalized fiducial

distribution based on (4.2.4) we need to study the conditional distribution of

Qs(U) | {Qs(U) 6= ∅}

where as for S having a continuous distribution on R, the conditioning event will be of

measure 1 so one can ignore that.

Theorem 2. Let us assume that for all U, the function GS(u, θ) is non-decreasing in θ and

for all u and θ we have Q(s,u) 6= ∅. Then the inverse image Q(s,u) is an interval with

bounds Q−s (u) ≤ Q+
s (u). Additionally, for any s0 and θ0 the bounds satisfy P (Q+

s0
(u) ≤

θ0) = 1 − limε↓0 FS(s0, θ0 + ε) and P (Q−s0 ≤ θ0) = 1 − limε↓0 FS(s0 − ε, θ0). Finally if for

all θ0 and s0 the Pθ0(S = s0) = FS(s0, θ0)− limε↓0 FS(s0 − ε, θ0) = 0 then the cdf FS(s, θ)

is continuous in θ, Q+
s0

(U) = Q−s0(U) with probability one, and

P (Qs0(U) ≤ θ0) = 1− FS(s0, θ0). (4.2.1)

Proof of Theorem 2: The fact that Q(s,u) is an interval follows by monotonicity. Con-

sider an iid sample U1, . . . ,Un. By SLLN we have

P (Q+(s0,U) < θ0) = lim
n→∞

1

n

n∑
i=1

I{Q+(s0,Ui)<θ0} = lim
n→∞

1

n

n∑
i=1

I{GS(Ui,θ0)>s0}

= 1− FS(s0, θ0), (4.2.2)
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where the second equality follows from monotonicity of GS . The rest of the computation

follows. Similarly

P (Q−(s0,U) > θ0) = lim
n→∞

1

n

n∑
i=1

I{Q−(s0,Ui)>θ0} = lim
n→∞

1

n

n∑
i=1

I{GS(Ui,θ0)<s0}

= lim
ε↓0

FS(s0 − ε, θ0). (4.2.3)

Finally, if limε↓0 FS(s0, θ0 + ε)−FS(s0, θ0) < 0 then Pθ0(S = s0) > 0. The rest of the proof

follows by simple comparison. �

Remark 12. IfGS(u, θ) is non-increasing in θ then one has limε↓0 FS(s0, θ0+ε)−FS(s0, θ0) ≥

0.

Now we will generalize Theorem 2 beyond the existence of 1-dimensional sufficient

statistics under the following assumption:

Assumption 15. Let us consider a data generating equation X = G(U, θ). Assume that

there exists a one-one C1 transformation (S(X), A(X)) on n dimensional X, such that S(X)

is one dimensional and A(X) is a vector of ancillary statistics (of θ) of (n− 1) dimensions.

From definition of ancillary statistics the derivative ∂
∂θ
A(G(U, θ)) = 0. After the trans-

formation (S,A) on the initial data generating equation X = G(U, θ), the new one can be

written as

s = GS(U, θ) := S ◦G(U, θ), and a = GA(U, θ) := A ◦G(U, θ). (4.2.4)
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Thus by using the chain rule and some simple calculus the Jacobian based on (4.2.4) is

J((S,A)(X), θ) =

∣∣∣∣∣
n∑
i=1

dS(X)

dXi

dGi(U, θ)

dθ

∣∣∣∣
U=G−1(X,θ)

∣∣∣∣∣+ 0. (4.2.5)

This means the weight we can consider is w(xi) = dS(X)
dXi

. Here U is a random variable

or vector with a known distribution independent of the parameter θ ∈ R. Denote the CDF

of S(X) and the conditional distribution of S(X) | {A(X) = a} by FS(·, θ) and FS|a(·, θ)

respectively. Note that the fiducial density of θ given {(S,A)(X)} is proportional to

J((S,A)(X), θ)f(X, θ) ∝ J((S,A)(X), θ)fS|A(s, θ) (4.2.6)

since fA(a, θ) does not depend on θ. Let GS|a := GS(u, θ)
∣∣∣
{u:GA(u,θ)=a}

and Ua is a realiza-

tion of the conditional distribution U | {A(X) = a}.

Corollary 4.2.1. Suppose Assumption 15 and all conditions under which cdf FS(s, θ) is

continuous in θ hold. Suppose GS(u, θ) is non-decreasing in θ and for all u and θ. Then the

generalized fiducial inference based on the data generating equation

S = GS|a(Ua, θ)

is exact.

Proof. From (4.2.5) and (4.2.6) the Corollary will follow from Theorem 2 if we can show

that the GFD computed from (s, a) = (GS(U, θ), GA(U, θ)), is same as s = GS|a(Ua, θ).
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Note that

{
u : s = GS(u, θ), a = A ◦G(u, θ)

}
= {u : s = GS|a(u, θ)}. (4.2.7)

Now we will show that the Jacobian based on RHS of (4.2.7) and is same as J((S(X), a)), θ).

A consequence of (4.2.7) is

∂

∂θ
GS|a(Ua, θ)

∣∣∣
Ua=G−1

S|a(s,θ)
=

∂

∂θ
GS(U, θ)

∣∣∣
U=G−1

S (s,θ),a=A◦G(U,θ)

= S ′(X)
∂

∂θ
G(U, θ)

∣∣∣
U=G−1(X,θ),A(X)=a

= J((S(X), a)), θ).

Since GS(u, θ) is non-decreasing in θ for all u, so will be GS|a(u, θ). As a consequence of

the Theorem 2 we notice that the generalized fiducial inference is not affected by the choice

of the data generating equation GS|a. Moreover if the distribution of S is continuous, then

the inference based on S(X) conditional on the manifold {A(X) = a} has exact frequentist

properties. This can be seen from (4.2.1) and the fact that if S conditioned on A(X) = a has

been generated using θ0 then 1 − FS|a(S, θ0) ∼ U(0, 1). Consequently all one sided CI will

have stated coverage. �

4.2.1 Examples:

Here we will judge a few examples of univariate Fiducial distribution and it’s exactness.

1. Location family: If X = (Xi, . . . , Xn) iid from distribution Pθ with density function

is f(x, θ) = f(x− θ), x ∈ R,Θ = R where f(·) is a probability density function, the

159



following one-one transformation

T : X→ (X̄n, (X1 − X̄n, . . . , Xn−1 − X̄n)) := (S(X), A(X))

is one-one and C1. By the corollarry we have the Generalized Fiducial distribution

based on S(X) | A(X) is exact. For Scale family (with density function is f(x, θ) =

1
θ
f(x

θ
), x ∈ R,Θ = R+ where f(.) is any probability density function) using the fol-

lowing one-one transformation

T1 : X→
(
X̃n,

(
X1

X̃n

, . . . ,
Xn−1

X̃n

))
:= (S1(X), A1(X))

where X̃n = Geometric mean of X, one can conclude that the fiducial distribution

based on X̃n conditional on A1(X) is exact. For examples, consider Pθ = U(θ, θ+ 1),

Pθ = Cauchy with location parameter µ, or Pθ = Cauchy with scale parameter σ etc.

2. Exponential Family: Consider the natural parametrization fX(X|η) = h(X)eηS(X)−A1(η)

of exponential family with ne parameter η. Since S(X) is complete sufficient of η, by

Basu’s Theorem S(X) and A(X) := X | {S(X) = s} are independent (since A(X)

ancillary for η) implying the Fiducial distribution based on S(X) unconditionally will

attain exactness from Corollary 4.2.1. A further generalization is following: For a one

parameter exponential family, with parameter η suppose the density

fX(x|η) = h(x).eηS(x)−A1(η)
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where S(x) is a smooth sufficient statistic for η ∈ Θ, and the support of the density

(denoted as domain(X)) doesn’t depend on η. Now in order to impose monotonicity

condition of Theorem 2 “GS(u, θ) is monotone in θ for all u” (or equivalently F (x, η)

in η) we see

∂F (x, η)

∂η
=

∫
dom(X)∩(−∞,x]

(S(y)− A′1(η))fX(y|η)dy = Eη[S(X)1{X≤x}]

−A′1(η)F (x, η)

should not alter its sign in Θ for every x. So the weight w(·) = S ′(·) will lead to exact

fiducial quantile under following conditions:

• if S(x) is smooth, and

• if Eη[S(X)1{X≤x}]− A′1(η)F (x, η) doesn’t change its sign.

First we take the instance of Gamma(θ, 1), (θ ∈ R+) family with the density func-

tion fθ(x) = e−xxθ−1

Γ(θ)
.1{x>0}. As evident from the density structure the minimal suffi-

cient statistics logX is smooth and one-one in R+. The quantity Eθ
[
logX.1{X≤x}

]
−

Γ′(θ).Pθ (X ≤ x) doesn’t change sign in θ for all x > 0. Using the weight w(x) = 1
x

one will get a fiducial distribution which is exact.

A very similar results on exponential family were also derived in [78]. Following table

accounts some other examples under the same umbrella, for which the Generalized

Fiducial distribution based on S(X) is exact.
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Family: Pθ, θ ∈ Θ := R+ ∂F (x,θ)
∂θ

(maintains sign in θ) S ′(X)

Exponental (with mean θ) −xe−xθ Constant

Weibull with scale θ (with known k)

density: fθ(x) = k
θ
(x
θ
)k−1e−(x

θ
)k1{x≥0} −xke−

xk

θk Xk−1

Pareto with fα(x) = θxθm
xθ+1 1{x≥xm}

(xm known) − log
(

x
xm

)(
x
xm

)−θ
1
X

In the remaining part we will present a few examples where Fiducial distribution is not

exact.

3. Scaled normal family: N(µ, µq) (µ ∈ R+ := Θ, q > 0 known). Exactness for case

q = 2 corresponds to the scale family of Example (A). For q 6= 2, since the minimal

sufficient statistics S(X) = (
∑
Xi,
∑
X2
i ) is 2 dimensional so will be GS(U, θ). Here

conclusion of Corollary 4.2.1 will not hold, since one cannot have (n− 1) dimensional

ancillary statistics vector A(X) for which (S(X), A(X)) is one-one function on X.

For sample size n > 1,we calculated that the fiducial distribution based on the simplest

data generating equation in (4.1.8). Two more choices are

J2(x, µ) =

∣∣∣∣1 +
q(x̄− µ)

2µ

∣∣∣∣+
qsn
2µ

, and J3(x, µ) = 2x̄n

∣∣∣∣1 +
q(x̄− µ)

2µ

∣∣∣∣+
q2s2

n

µ
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which are based on the following data generating equations respectively:

(X̄n, Sn) =

(
µ+ µq/2Z, µq/2

(
U

n− 1

)1/2
)
, and

(X̄2
nsgn(X̄n), qS2

n) =

(
(µ+ µq/2Z)2sgn(µ+ µq/2Z), qµq

U

n− 1

)
(4.2.8)

where L(Z,U) = N(0, 1
n
)⊗χ2

n−1 and sgn(x) = 1[x>0]−1[x<0]. Calculation of J3(x, µ)

is possible almost surely since measure of non-differentiability of G3(u, µ) in µ (due

to sgn(x)) is 0.

4. Correlation coefficient ρ ∈ Θ := (−1, 1) of a Bivariate normal model: Suppose

(X1, Y1), . . . , (Xn, Yn) be i.i.d. N


0

0

 ,

1 ρ

ρ 1


. Goal is to find the Generalized Fidu-

cial distribution of ρ. Here we will propose a few data generating structural equations:

Simple Proposal: Taking the simplest data generating equation:

(Xi, Yi) = (U, ρU +
√

1− ρ2V )

where L(U, V ) = N(0, 1)⊗N(0, 1) or X, Y flipped.

J (1)
n ((X,Y), ρ) =

∑n
i=1 |Xi − ρYi|+ |ρXi − Yi|

n(1− ρ2)
.

Other proposals: We will construct the data generating equations based on the min-

imal sufficient statistics. Denote V1 := 1
2n

∑n
i=1(Xi + Yi)

2 = (1 + ρ)U1, V2 :=
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1
2n

∑n
i=1(Xi − Yi)2, where L(U1, U2) = χ2

n

n
⊗ χ2

n

n
. With the data generating equations

(V1, V2) = ((1 + ρ)U1, (1− ρ)U2) and(
1

V1

,
1

V2

)
=

(
1

(1 + ρ)U1

,
1

(1− ρ)U2

)
(4.2.9)

from (4.1.7) one has

J (2)
n ((X,Y), ρ) =

V1

1 + ρ
+

V2

1− ρ
and J (3)

n ((X,Y), ρ) =
1

V1(1 + ρ)
+

1

V2(1− ρ)
.

In order to choose the better data generating equation among the proposed ones, we

will decide the criteria in the next section.

4.3 Probability Matching Data Generating Equation:

Recall for any two sequences {an}n≥1, {bn}n≥1 we denote an = O(bn) if lim supn→∞
an
bn
<

∞, and an = o(bn) if limn→∞
an
bn
→ 0. We define Gs as the Probability Matching Data

Generating Equation of order s ∈ N if

Pθ0
[
θ0 < θ1−α(X,Gs)

]
= P Gs(θ < θ1−α(X,Gs) | X) + o(n−

s
2 ) (4.3.1)

where θ1−α(X,Gs) is the upper (1−α)-th quantile of the Generalized Fiducial Distribution

Distribution P Gs(· | X). In other words it characterizes the corresponding data generating

equation, so that the frequentist coverage of the (1−α)-th Fiducial quantile matches (1−α)

upto rate o(n−
s
2 ).

We plan to guide our choice of DGE based on frequentist coverage. Why? It gives
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the information how exactly one sided quantile estimator of GFD behaves asymptotically

in frequentist sense. For illustration, suppose we had generated m batches of n (fixed) i.i.d

samples from the original distribution F (.|θ0). With each batch of n samples one computes

the Fiducial (1 − α)-th quantile. Then we find how many times out of m, θ0 is less than

the values of those quantiles. Asymptotically as m → ∞, that proportion will converge to

Pθ0 [θ0 < θ1−α(X)] which should be “close” to (1−α). In fact as n→∞ from [51] following

holds

lim
n→∞

Pθ0
[
θ0 < θ1−α(X)

]
= 1− α

which is (4.3.1) for s = 0. A stronger result would be finding an asymptotic (as n → ∞)

expansion of Pθ0 [θ0 < θ1−α(X)] and finding conditions under which the coefficients of first

few order terms will be 0 (getting (4.3.1) for larger s > 0). That is the purpose of this

probability matching idea.

Secondly in Bayesian paradigm, probability matching prior based approach had been

relevant [73] in context of judging superiority of non-informative priors. In fact one criteria

for calling a prior noninformative is if (1− α)th posterior regions have frequentist coverage

equal (approximately or very close) to (1 − α). The interpretation is how least the specified

prior influences (giving information about the parameter space) in quantile (or other dis-

tribution based estimator) from its “ideal” coverage or how least informative it is for the

inference of the parameter. An ideal non-informative prior should match all order terms at

the true parameter value but constructing it non-parametrically is an open challenge. In GFI,

the challenge is translated into finding the data generating equation for which the fiducial
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quantile has the exact ideal coverage (i.e least influence on the parameter space). Similar to

Bayesian paradigm achieving exactness is immensely hard (though it is possible to get that

for univariate cases under certain monotonicity conditions imposed, just seen in section 2)

but first and second order terms are relatively easier to analyze which we will describe now.

4.3.1 Regularity Assumptions:

Here we consider one dimensional parameter space Θ containing true θ0. Define l(θ |

Xi) = log f(Xi, θ) as the log-likelihood of θ given one sample pointXi. Denote l(m)(θ | X1)

as the m-th derivative of the log likelihood function l(θ | X1) with respect to θ. De-

fine Ln(θ) := 1
n

∑n
i=1 l(θ|Xi) as the likelihood of θ given X (which is scaled by 1

n
) and

c := − 1
n

∑n
i=1

∂2l(θ|Xi)
∂θ2 . We denote the quantity

√
nc(θ − θ̂n) by y. Note that c = L

(2)
n (θ̂n),

and define a = L
(3)
n (θ̂), a4 = L

(4)
n (θ̂), where θ̂ is the maximum likelihood estimate of

θ0 (or any solution of L′n(θ) = 0). Denote
√
nc(θ − θ̂n) by y whose Fiducial expansion

will be needed for asymptotic analysis. From now on φ(x) will denote the density of the

Gaussian distribution function (i.e 1√
2πe
e−

x2

2 ). For sake of generality from this section on-

wards by Jn(X, θ) we denote any Jacobian that appears in the Generalized Fiducial dis-

tribution driven by the corresponding data generating equation G. For m ≥ 1, we denote

∂Jn(X,θ)
∂θ

∣∣
θ=θ̂n

, ∂
2Jn(X,θ)
∂θ2

∣∣
θ=θ̂n

,∂
mJn(X,θ)
∂θm

∣∣
θ=θ̂n

by J ′n(X, θ̂n), J ′′n(X, θ̂n), and J (m)
n (X, θ̂n) respec-

tively. We know by virtue of SLLN pointwise for each θ, m-th derivative (w.r.t θ) of the

simple Jacobian J (m)
n (X, θ) in (4.1.7) scaled by 1

n
converges to J (m)(θ0, θ) :=

∂mEθ0 [J(X,θ)]
∂θm

almost surely as n→∞.

Assumption 16. These Assumptions are essential for proving asymptotic normality of θ̂n and

here we need a stronger version to ensure a valid higher order likelihood expansion.
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1. The distribution F (·|θ) are distinct for θ ∈ Θ.

2. The set {x : f(x|θ) > 0} is independent of the choice of θ.

3. The data X = {X1, . . . , Xn} are iid with probability density f(x|θ).

4. There exists m ≥ 1, such that in a neighborhood B(θ0, δ) of the true value θ0, all

possible (m+ 3) ordered partial derivatives ∂m+3f(x|θ)
∂θm+3 exist. For all i = 1, . . . ,m+ 2;

the quantities Eθ0l
(i)(θ0|Xi) are all finite.

5. There exists a function M(x) such that

sup
θ∈B(θ0,δ)

∣∣ ∂(m+3)

∂θ(m+3)
log f(x | θ)

∣∣ ≤M(x) and Eθ0M(X) <∞.

6. The information I(θ) is positive for all θ ∈ B(θ0, δ)

Under the Assumption 16 with m = 2 one has the following expansion ( Consequence of

Taylor’s theorem). We have for some θ′ ∈ (θ̂n, θ̂n + y√
nc

),

n[Ln(θ̂n +
y√
nc

)− Ln(θ̂n)] = −y
2

2
+

1

6

y3L
(3)
n (θ̂n)
√
nc

3
2

+
1

24

y4

nc2
L(4)
n (θ̂n) +

1

120

y5

n3/2c2
L(5)
n (θ′)

:= −y
2

2
+Rn(θ̂n) +

1

120

y5

n3/2c2
L(5)
n (θ′), (4.3.2)

where Rn(θ) := 1
6
y3L

(3)
n (θ)
√
nc

3
2

+ 1
24

y4

nc2
L

(4)
n (θ). Following assumptions are needed to control the

tail of the numerator of the fiducial distribution.

Assumption 17. Assume
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1. for any δ > 0, there exists an ε > 0 such that

Pθ0

{
sup

θ∈B(θ0,δ)c
[Ln(θ)− Ln(θ0)] ≤ −ε

}
→ 1 as n→∞.

2. Let x = (x1, . . . , xn). There exists s ∈ N, such that Jn(x, θ) =
∑n

i=1 Ji(x, θ), where

Ji(x, θ) satisfies

sup
i=1,...,n

n−s
∫
R
Ji(x, θ̂n +

y√
nc

)f(xi, θ̂n +
y√
nc

)dy < ∞ a.s Pθ0 .

3. The density f satisfies the following property: There exists a constant c ∈ [0, 1)

inf
θ∈B(θ0,δ)c

mini=1,...,n log f(Xi, θ)

n[Ln(θ)− Ln(θ0)]

Pθ0−−→ c. (4.3.3)

Remark 13. 1. Assumption 17(b) can be verified with s = 0 for the simple Jacobian

structure of the form in (4.1.12) by taking Ji(x, θ) :=

∣∣∣∣w(xi)
∂Fi(xi,θ)

∂θ

f(xi,θ)

∣∣∣∣. Since

∫
R
Ji(X, θ)f(Xi, θ)dθ =

∣∣w(Xi)
∣∣ [Fi(Xi,∞)− Fi(Xi,−∞)] <∞ a.s Pθ0 .

Note that any polynomial exponent of n can replace the condition“ns for some s > 0.”

2. IfX1, X2, . . . , Xn are iid realizations from density f(·|θ0) then both the numerator and

denominator of the left hand side of (4.3.3) converge to −∞ with rate −C1 log n and

−C2n respectively. So in that case Assumption 17(c) is strongly implied by c = 0 if C1

C2

is uniformly bounded for n ≥ 1.
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Next is a very crucial Assumption about the Jacobian Jn(X, θ) which gives further con-

ditions on the data generating equation.

Assumption 18. There exists a function J(·, ·) : Θ × Θ → R with its i-th derivative with

respect to second argument ∂iJ(θ1,θ)
∂iθ

, denoted by J (i)(θ1, θ) (where J (0)(θ1, θ) := J(θ1, θ));

such that following conditions hold.

1. There exists m ≥ 1, such that for each i = 0, . . . ,m + 1 the Jacobian J
(i)
n (X, θ),

satisfies

sup
θ∈B(θ0,δ)

∣∣∣∣J (i)
n (X, θ)− J (i)(θ0, θ)

∣∣∣∣→ 0 a.s. Pθ0 . (4.3.4)

Namely a uniform convergence result holds over a neighborhood of true parameter

value θ0 for each i = 0, . . . ,m+ 1 uniformly as n→∞.

2. The function J(·, θ) doesn’t vanish in θ ∈ B(θ0, δ) for any δ > 0.

3. For i = 0, . . . ,m+ 1 the quantities

√
n
[
J (i)
n (X, θ̂n)− J (i)(θ0, θ̂n)

]
= OPθ0

(1). (4.3.5)

Remark 14. Following comments are on Assumption 18:

1. In (4.3.4) a difference from Bayesian paradigm is the extra (Assumption 18 for i =

(m + 1)th order) smoothness condition for data dependent Jn(X, θ) which is needed

to apply the uniform law of large number in a neighborhood of θ0.
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2. Assumption 18(a) holds for the simple Jacobian in (4.1.12) if following are satisfied

for each i = 0, . . . ,m+ 1 :

(a) For each x, J (i)(x, ·) is continuous in θ ∈ [θ0 − δ, θ0 + δ].

(b) For each θ ∈ [θ0 − δ, θ0 + δ], J (i)(·, θ) is a strictly positive measurable function

of x.

(c) There exists a δ > 0 such that,

Eθ0

(
sup

θ∈B(θ0,δ)

∣∣∣∣J (i)(X1, θ)

∣∣∣∣
)
<∞.

This follows from Wald’s theorem.

In contrast to Probability matching prior framework [23] main difference comes from the

fact that here the Jacobian Jn(X, θ) has a data dependent U−statistics type (functional of

empirical distribution) structure than a simple prior function of the parameter. In order to

analyze the exapnsion of Jn(X, θ), the basic ingredient will be Taylor’s theorem:

We have for some θ′ ∈ (θ̂n, θ̂n + y√
nc

),

Jn(X, θ̂n +
y√
nc

) = Jn(X, θ̂n) + J ′n(X, θ̂n)
y√
nc

+ J ′′n(X, θ̂n)
y2

2nc
+ J ′′′n (X, θ′)

y3

6(nc)3/2

= Jn(X, θ̂n)

[
1 +

J ′n(X, θ̂n)

Jn(X, θ̂n)

y√
nc

+
J ′′n(X, θ̂n)

Jn(X, θ̂n)

y2

2nc
+
J ′′′n (X, θ′)
Jn(X, θ̂n)

y3

6(nc)3/2

]

= Jn(X, θ̂n)

[
1 +

J ′(θ0, θ̂n)

J(θ0, θ̂n)

y√
nc

+
1

n

(
W(1)

n (X)
y√
c

+
J ′′(θ0, θ̂n)

J(θ0, θ̂n)

y2

2c

)]

+
Jn(X, θ̂n)

n3/2

(
W(2)

n (X)
y2

2c
+
J ′′′n (X, θ′)
Jn(X, θ̂n)

y3

6(c)3/2

)
(4.3.6)
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where W(m)
n (X) :=

√
n
(
J

(m)
n (X,θ̂n)

Jn(X,θ̂n)
− J(m)(θ0,θ̂n)

J(θ0,θ̂n)

)
for m ≥ 1.

In higher order expansion of Pθ0 [θ0 ≤ θ(1−α)(X,G)] the main difference of GFD from “

Probability matching prior” framework comes from the presence of the terms W(m)
n (X) for

m ≥ 1. We gave here an explicit proof of the expansion (4.7.10) which comes by making

a product of (4.3.6) and (4.3.2) as it was outlined in Bayesian context [42] Chapter 5, from

equations (5.4b),(5.4c) to (5.4f). Following assumptions are necessary for existence of the

second order term.

Assumption 19. There exists m ≥ 0, for which following hold:

1. Integrability Condition: For i = 0, . . . ,m and any δ > 0, one has for all θ ∈ Θ

Eθ

[
n
[
J (i)
n (X, θ̂n)− J (i)(θ, θ̂n)

]2
]

= O(1)

where the finite constant may depend on θ.

2. For i = 0, . . . ,m There exist continuous functions ai(.) such that

ai(θ) := lim
n→∞

Eθ
√
n
[
J (i)
n (X, θ̂n)− J (i)(θ, θ̂n)

]
. (4.3.7)

3. For i = 0, . . . ,m the functions J (i)(θ0, ·) are locally Lipschitz.

Now we will state the main result for first and second order terms in expansion of

P
θ0

[
θ0 ≤ θ1−α(G,X)

]
. Define the terms g1 := J ′(θ0, θ0), g2 := J(θ0, θ0) where J ′(θ0, θ0) =

∂J(θ0,θ)
∂θ

∣∣
θ=θ0

. Let zα is (1− α)-th quantile of Normal distribution.

171



Theorem 3. Suppose Assumptions 16,17,18,19 hold with m = 2. Following expansion holds

for all θ0 ∈ Θ and for some constants (given α) c1 := φ(zα), c2 := zαφ(zα) (depends only

on θ0)

P
θ0

[
θ0 ≤ θ1−α(G,X, n)

]
=

(
1− α

)
+
c1∆1(G)√

n
+
c2∆2(G)

n
+ o

(
1

n

)
, where

∆1(G) =

[
I
− 1

2
θ0

∂
∂θ
J(θ0, θ)

J(θ0, θ0)
+
∂I
− 1

2
θ

∂θ

]∣∣∣∣∣
θ=θ0

, (4.3.8)

∆2(G) =
I
− 1

2
θ0

zαg2

[
a1(θ0)− a0(θ0)g1

g2

]
+

[
1

6

∂

∂θ

{
I−2
θ J(θ0, θ)Eθ

[
l(3)(θ | X)

]}
−1

2

∂2

∂θ2
J(θ0, θ)I

−1
θ

]∣∣∣∣∣
θ=θ0

. (4.3.9)

Remark 15. Following are some remarks on Assumption 19 and extention to higher order

terms:

1. Assumption 19(a) is stronger than Assumption 18(c). We mentioned the latter to em-

phasis on the fact that it is sufficient for only first order term.

2. Note that in all situations where X is a collection of n random samples, usually we

have
[
a1(θ0)
zα
− a2(θ0)g1

zαg2

]
= 0 because of the symmetricity reason. Note that ∆1(G)

and the second term of ∆2(G) are both first and second order terms for the asymptotic

expansion of Pθ0 [θ0 ≤ θ1−α(π,X)] where θ1−α(π,X) is the (1−α)th Posterior quantile

172



based on the prior :

π(·) ∝ J(θ0, ·) where θ0 is the true parameter value.

3. Higher order terms: In general we have J(θ0, θ) to be limn→∞Eθ0Jn(X, θ), implying

ai(θ0) will be 0 for i = 0, 1. But in Theorem 3 we kept it general since data generating

structural equation is not-unique. So conditions for the first two order terms really will

not differ from the conditions in probability matching priors. We did not pursue here

explicitly, but under Assumptions 16-19 suppose further following two assumptions

hold with m = 3:

(a) For i = 0, . . . ,m and any δ > 0, one has for all θ ∈ Θ

lim
n→∞

n
3
2Eθ

[[
J (i)
n (X, θ̂n)− J (i)(θ, θ̂n)

]3
]
<∞

where the finite constants may depend on θ.

(b) Define the following quantities:

a
(1)
i (θ0) := lim

n→∞
nEθ0

[
J (i)
n (X, θ̂n)− J (i)(θ0, θ̂n)

]2

,

a
()
0,1(θ0) := lim

n→∞
nEθ0

[
Jn(X, θ̂n)− J (θ0, θ̂n)

] [
J (1)
n (X, θ̂n)− J (1)(θ0, θ̂n)

]
.
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Then analogue to the Theorem 3 a third order representation holds:

Pθ0

[
θ0 ≤ θ1−α(G,X, n)

]
−
(
1− α

)
=
c1∆1(G)√

n
+
c2∆2(G)

n
+
c3∆3(G)

n3/2
,

+o

(
1

n3/2

)
where ∆3(G) =

[
a

(1)
i (θ0)g1

g2
3

−
a

()
0,1(θ0)

g2

]
+ I

− 1
2

θ0

[
a1(θ0)

z
− a2(θ0)g1

zg2

]
+

{
Third order Probability matching prior term with priorJ(θ0, θ) at θ = θ0

}
.

This extra additive quantity
(
a

(1)
i (θ0)g1

g2
3
− a

()
0,1(θ0)

g2

)
in the display above will come due

to the following Taylor’s expansion of T1

T2
around g1

g2
where T1 := J ′n(X, θ̂n), T2 :=

Jn(X, θ̂n) and their corresponding limits g1 := J ′(θ0, θ0), g2 := J(θ0, θ0)

T1

T2

=
g1

g2

+ (T1 − g1)
1

g2

− (T2 − g2)
g1

g2
2

+

(
(T2 − g2)2 g1

g3
2

− (T1 − g1)× (4.3.10)

(T2 − g2)
1

g2

)
+O

((
(T1 − g1)

∂

∂x1

+ (T2 − g2)
∂

∂x2

)3(
x1

x2

)∣∣∣∣∣
x1∈(T1,g1),x2∈(T2,g2)

)

It implies that after taking expectation

Eθ0
[
W (1)
n (X)

]
=

(
a1(θ0)

g2

− a0(θ0)g1

g2
2

)
+

1√
n

[
a

(1)
i (θ0)g1

g2
3

−
a

()
0,1(θ0)

g2

]
+O

(
1

n

)
. (4.3.11)

keeping an extra order term. Note that for simple data generating equation J(θ0, θ) =

Eθ0Jn(X, θ), along with the empirical structure Jn(X, θ) = 1
n

∑n
i=1 J(Xi, θ) then one
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gets

[
a

(1)
i (θ0)g1

g2
3

−
a

()
0,1(θ0)

g2

]
=

[
V arθ0(J(X1, θ))g1

g2
3

− Covθ0(J(X1, θ), J
′(X1, θ))

g2

]∣∣∣∣
θ=θ0

which appears as an extra in the third order term. The difference of Fiducial cases will

be different from Bayesian paradigm likewise in the further order of terms, starting

from 3rd order due to the presence of {W (m)
n (X),m ≥ 1} and their respective higher

order expansions.

Corollary 4.3.1. Under Assumptions 16,17,18 with m = 1, G1 will be the first order Proba-

bility Matching Generating Equation if ∆1(G1) = 0.

Under Assumptions 16,17,18,19 withm = 2, G2 will be the Second order Probability Match-

ing Generating Equation if ∆1(G2) = 0, and ∆2(G2) = 0.

4.4 Recipe For Perfect DGE For s = 1, 2 in (4.3.1)

Main contention of this section is to provide proper guidelines so that for any one pa-

rameter family so that the space of transformations can be identified for which the desired

matching properties are satisfied. By “perfect” we mean those data generating equations for

which one can obtain both s = 1, 2 th matching Fiducial distribution. In this section we

discuss one such technique that is motivated by a few examples of exponential family.

1. Find minimal sufficient statistics (S1, S2, . . . , Sm) of θ. From the point of view of com-

puting GFD the choice (S1, S2, . . . , Sm) would be better if they are independent of

each other (which are possible for exponential families).
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2. Find any function g : Rm → Rm, that satisfies the conditions of Corollary 4.3.1.

Now we will apply this recipe on some examples where the dimension of minimal sufficient

statistics is strictly greater than dimension of the parameter. We will work on two examples

of N
((

0

0

)
,

(
1 ρ

ρ 1

))
and N(µ, µq) for µ > 0. Suppose

A := {Space of all C1 and one-one transformations from S to S}.

One possible representation of transformation would be

A(S1, S2) := (A1(S1), A2(S2)) (4.4.1)

where both A1(·), A2(·) ∈ A. Now for computational advantage or because of simplicity

instead of (4.4.1) one may use the following transformation

A(S1, S2) = (A1(S1)g1(S1), A2(S2)g2(S2)) (4.4.2)

where g1(·), g2(·) be two functions on S such that

Pθ0 [g′1(S1) 6= 0, g′2(S2) 6= 0] = O(e−an) for any constant a > 0

and both ofA1(·)g1(·), A2(·)g2(·) ∈ A. From Corollary 4.3.1 we define the set of transforma-

tions A(·, ·) yielding first and second order probability matching data generating equations
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respectively as:

A(1)
G = {A ∈ AG : ∆1(G) = 0}, A(2)

G = {A ∈ AG : ∆1(G) = 0,∆2(G) = 0}.

We will describe the class A(1)
G in examples of N

((
0

0

)
,

(
1 ρ

ρ 1

))
and N(µ, µq) for µ > 0.

1. Since for N
((

0

0

)
,

(
1 ρ

ρ 1

))
the generating equation of minimal-sufficient statistics is

(S1, S2) =

(
1

n

n∑
i=1

(Xi + Yi)
2,

1

n

n∑
i=1

(Xi − Yi)2

)
=
(
(1 + ρ)U1, (1− ρ)U2

)
.

For general A := (A1, A2) ∈ AG, the Jacobian for (A1(S1), A2(S2)) =
(
A1((1 +

ρ)U1), A2((1− ρ)U2

)
) will be (after taking mod) JAn (X, ρ) = A′1(S1) S1

1+ρ
+A′2(S2) S2

1−ρ

converges to JA(ρ0 , ρ) := A′1(1 +ρ0)
1+ρ0

1+ρ
+A′2(1−ρ0)

1−ρ0

1−ρ as sample size goes to∞.

as sample size (n) goes to ∞. Now before using Theorem 3 to find A(1)
GA
(1)
GA
(1)
G we should

verify Assumption 18. Note that

JAn (X, ρ̂n)− JA(ρ0 , ρ̂n) = [A′1(S1)− A′1(1 + ρ0)]
S1

1 + ρ̂n

+A′1(1 + ρ0)

[
S1 − (1 + ρ0)

1 + ρ̂n

]
+ [A′2(S2)− A′2(1− ρ0)]

S2

1− ρ̂n

+
A′2(1− ρ0)

1− ρ̂n
[S2 − (1− ρ0)]
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and

JA(1)
n (X, ρ)− JA(1)(ρ0 , ρ) = [A′1(S1)− A′1(1 + ρ0)]

S1

1 + ρ̂n
+ A′1(1 + ρ0)×[

S1 − (1 + ρ0)

1 + ρ̂n

]
+ [A′2(S2)− A′2(1− ρ0)]

S2

1− ρ̂n
+
A′2(1− ρ0)

1− ρ̂n
[S2 − (1− ρ0)].

Since S1, S2 both converge to (1 + ρ0), (1 − ρ0) respectively; using smoothness of

A1, A2 by applying Delta method and Slutsky’s theorem one can show that
√
n[JAn (X, ρ̂n)−

JA(ρ0 , ρ̂n)]
(
similarly for

√
n(J

A(1)
n (X, ρ)− JA(1)(ρ0 , ρ))

)
is O

Pρ0
(1).

The first order class follows by equating ∆1(G) = 0, which is equivalent of saying

∂
∂ρ
JA(ρ0 , ρ)

JA(ρ0 , ρ0)

∣∣∣∣∣
ρ=ρ0

=
1

2

I ′ρ0

Iρ0

.

Note that
∂
∂ρ
JA(ρ0 ,ρ)

JA(ρ0 ,ρ0 )

∣∣∣∣∣
ρ0

=

(1+ρ0 )−(1−ρ0 )

[
A′1(1+ρ0 )

A′2(1−ρ0 )

]
(1−ρ2

0
)

(
1+

[
A′1(1+ρ0 )

A′2(1−ρ0 )

]) , equating that with 1
2

I′ρ0
Iρ0

=
3ρ0+ρ3

0

(1−ρ2
0
)(1+ρ2

0
)
,

will give the following characterization of the first order matching class:

A(1)
GA
(1)
GA
(1)
G =

{
A :=

(
A1(·), A2(·)

)
∈ AG : A′1(1 +ρρρ) = A′2(1−ρρρ).

(1− ρρρ)2

(1 + ρρρ)2
,

for |ρρρ| < 1

}
. (4.4.3)

The second proposal in (4.2.9) A = (A1, A2) such that A1(x) = A2(x) = 1
x
, belongs

to the classA(1)
GA
(1)
GA
(1)
G hence it is first order matching.

Now to judge Assumption 19 in order to ensure second order term we need to find the
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asymptotic limit of Eρ0

√
n[J

A(i)
n (X, ρ̂n) − JA(i)(ρ0 , ρ̂n)] and we need to check finite-

ness of Eρ0

[
n[J

A(i)
n (X, ρ̂n) − JA(i)(ρ0 , ρ̂n)]2

]
. Note that for i = 0, 1 each of the four

terms of
√
n[J

A(i)
n (X, ρ̂n) − JA(i)(ρ0 , ρ̂n)] by Slutsky’s theorem converges to normal

with mean zero. Since S1 is chi-square so using its exponential concentration property

one can prove uniform integrability of each of those terms. So Eρ0

√
n[J

A(i)
n (X, ρ̂n) −

JA(i)(ρ0 , ρ̂n)] asymptotically will converge to the mean of its weak limit which is

0. In order to characterize the second order class A(2)
G we need to compute the

secnd order term from (4.3.9). Note that the first term of ∆2(G) is 0 since both

of a1(ρ0) = 0, a2(ρ0) = 0. Now denoting Mρ = Eρ[l
(3)(θ|X)] and using using

∂
∂θ
J(θ0,θ)

J(θ0,θ0)

∣∣
θ0

= 1
2

I′θ0
Iθ0

followed by ∆1(G) = 0 we have

∆2(G) =

[
1

6

∂

∂θ

{
I−2
θ J(θ0, θ)Mθ

}
− 1

2

∂2

∂θ2
J(θ0, θ)I

−1
θ

]∣∣∣∣
θ=θ0

(4.4.4)

=
J(θ0, θ0)

2

[
1

3

d

dθ

[
I−2
θ Mθ

]∣∣∣∣∣
θ=θ0

+
1

6
I−3
θ0
Mθ0I

′
θ0
− 1

J(θ0, θ0)

∂2

∂θ2

[
J(θ0, θ)I

−1
θ

]∣∣∣∣∣
θ0

]
.

After simplifying inside the bracket of RHS of (4.4.4) and using Mρ = −2I ′ρ we will

get following

−
I−1
θ0

J(θ0, θ0)

∂2

∂θ2

[
J(θ0, θ)

]∣∣∣∣∣
θ0

− 1

2
(I ′θ0)2I−3

θ0
+

2

3
I ′′θ0I

−2
θ0

+
1

3

d

dθ

[
I−2
θ Mθ

]∣∣∣∣∣
θ=θ0

+
1

6
I−3
θ0
Mθ0I

′
θ0

(4.4.5)

Note that 1
JA(ρ0 ,ρ0 )

∂2

∂ρ2

[
JA(ρ0 , ρ)

]∣∣∣∣∣
ρ=ρ0

=

2

[
A′1(1+ρ0)

(1+ρ0)2
+
A′2(1−ρ0)

(1−ρ0)2

]
A′1(1+ρ0)+A′2(1−ρ0)

=

2
(1+ρ0 )2

[
A′1(1+ρ0 )

A′2(1−ρ0 )
+

(1+ρ0 )2

(1−ρ0 )2

]
1+

[
A′1(1+ρ0 )

A′2(1−ρ0 )

]
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which is again a function of
[
A′1(1+ρ0 )

A′2(1−ρ0 )

]
. It implies that for A ∈ A(1)

GA
(1)
GA
(1)
G , the value for

A′1(1+ρ0 )

A′2(1−ρ0 )
=

(1−ρ0 )2

(1+ρ0 )2 so the value of 1
JA(ρ0 ,ρ0 )

∂2

∂ρ2

[
JA(ρ0 , ρ)

]∣∣∣∣∣
ρ=ρ0

is automatically fixed.

But in this case putting Mρ := −2I ′ρ, So for any A ∈ A(1)
GA
(1)
GA
(1)
G , we have the second order

term is identically

∆2(G) = 0. (4.4.6)

So we have

Pρ0

[
ρ0 ≤ ρ1−α(GA,X, n)

]
−
(
1− α

)
= o

(
1

n

)
. (4.4.7)

2. Similarly for N(µ, µq) for q > 0(known) and µ > 0, the data generating equation is

(S1, S2) = (X̄n, Sn) :=

(
µ+ µq/2Z, µq/2

(
U

n− 1

)1/2)
.

If one has an element A ∈ AG, the structure of the Jacobian will be

JAn (X, µ) = A′1(X̄n)
∣∣∣1 + q(X̄n−µ)

2µ

∣∣∣+ A′2(Sn) qSn
2µ

JA(µ0, µ) that converges to

JA(µ0, µ) := A′1(µ0)

∣∣∣∣1 +
q(µ0 − µ)

2µ

∣∣∣∣+
q

2
A′2(µ

q
2
0 )
µ
q
2
0

µ
.

By similar techniques used in Bivariate normal contexts one can verify Assumptions

18 and 19 satisfied by the Jacobian JAn (X, µ). Using JA(µ0, µ) in the equation ∆1 = 0,
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one has the following characterization

A(1)
G =

{
A = (A1,A2) ∈ AG : A′2(x

q
2 ) = A′1(x)qx

q
2
−1, for x > 0

}

which is clearly satisfied by our third choice (4.2.8) A1(x) = x2, A2(y) = qy2.

So for any A ∈ A(1)
GA
(1)
GA
(1)
G , the asymptotic coverage will be

Pµ0

[
µ0 ≤ µ1−α(GA,X, n)

]
−
(
1− α

)
=

c2∆2(G)

n
+ o

(
1

n

)
(4.4.8)

where ∆2(G) can be found from (4.3.9).

4.5 Small Sample Simulation:

In this section we will demonstrate some simulation results to understand small sam-

ple implication of our work. In particular we chose The Basu’s famous Bivariate normal

N


0

0

 ,

1 ρ

ρ 1


 model for inference of ρ. We considered three Fiducial distributions in Ex-

ample 4 respectively based on the simple data generating equation, DGE based on minimal

sufficient statistic, and one candidate of the first order probability matching with transforma-

tion A1(x) = A2(x) = 1
x

on two dimensional minimal sufficient statistics. In addition we

also considered Jefrey based Posterior distribution and the second order probability matching

data-dependent prior proposed by [68]. Note that in proposal of [68] one needs a MLE of ρ

that cannot be computed in closed form from the likelihood (only tractable through numerical

iterations that increases the computation time). So we used 1
n

∑n
i=1XiYi instead and since

1
n

∑n
i=1 XiYi − ρ ∼ N(0, ρ

2+1
n

), so this substitution will not make any difference except for

181



a set with probability O(e−an) for some a > 0.

For a dataset x, let

ρα(x, J1), ρα(x, J2), ρα(x, J3), ρα(x, Jeff), ρα(x, B2)

denote α-th quantiles of simple fiducial distribution, Fiducial distribution based on Minimal

sufficient statistics, First order probability matching fiducial distribution, Jeffreys’ Posterior,

second order matching posterior by respectively. We considered following order of quantiles

α = (0.05, 0.15, 0.3, 0.5, 0.7, 0.8, 0.95) and sample size n = 2, 3, 4, 5, 10, 25, 100.

For each n and α, each cell of Table 4.1 - 4.5 exhibits simulated frequentist cover-

age of (−1, ρα(x, J1)], (−1, ρα(x, J2)], (−1, ρα(x, J3)], (−1, ρα(x, Jeff)], (−1, ρα(x, B2)] re-

spectively from top to bottom each based on 5000 iterations while each table the data are

generated from true value

ρ0 = (0.05, 0.3, 0.5, 0.7, 0.9).

Observe that we considered only positive ρ0 since by symmetry coverage of the lower interval

for true ρ0 will be same as the coverage of the upper interval with true −ρ0.

We observe that posterior of second order probability matching prior works uniformly

well while the data generating equation of Minimal sufficient statistics is quite poor. Rel-

atively first order matching Fiducial distribution works notably well for the α close to 0.5.

Also note zα is close to 0 if α is close to 0.5 and in such cases the last two quanitities of the

second order term will be close 0 as they are multiplied by zα. From the result it also appears
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that for small sample size empirical coverage of second order matching Fiducial distribution

is smaller than actual order of the quantile (hence liberal) while the second order Bayesian

is very sharp. We realize that it is due to the first quantity of the second order term while

a1(θ0), a2(θ0) is attained at n → ∞ but for small sample (like n ≤ 5) that approximation is

very crude adding negative values to the empirical coverage.

4.6 Conclusion and Open questions:

The study of non-informative priors and related variants of distributional inference has a

long history and perhaps the best conclusion was made by Kass,Wasserman in [54]:

“. . . research on priors chosen by formal rules are serious and may not be dismissed

lightly: When sample sizes are small (relative the number of parameters being estimated),

it is dangerous to put faith in any default solution; but when asymptotics take over, Jeffreys

rules and their variants remain reasonable choices.”

Here we found few other variants of probability distributions (GFD) on Θ which are

(when they are not exact) as good as the posterior distribution from Jeffrey’s prior (satis-

fying invariance, and at least first order matching) and also they came from the Fiducial

framework. We never explored here but there is a possibility of getting a second order

matching Fiducial distribution too when there is a set of three minimal suffcient statistics

for the unknown parameter and simplifying first and second order term will give us two

equations over unknowns A′2(x)

A′1(x)
and A′3(x)

A′1(x)
. Solving them may give a set of transformations

of the form A(x, y, z) = (A1(x), A2(y), A3(z)). One possible example would be the family
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Table 4.1: Coverage for finite sample simulation for Bivariate normal
with ρ0= 0.05

ρ0= 0.05 α=0.05 α=0.15 α=0.3 α=0.5 α=0.7 α=0.8 α=0.95

n=2

0.0164 0.0804 0.2326 0.4808 0.7434 0.8498 0.9818
0.0058 0.0376 0.1604 0.4638 0.8064 0.9018 0.9924
0.1080 0.2166 0.3550 0.4942 0.6380 0.7126 0.8960
0.0726 0.1654 0.3126 0.4906 0.6762 0.7642 0.9352
0.0682 0.1480 0.2960 0.4866 0.6974 0.7866 0.9422

n=3

0.0238 0.1072 0.2616 0.4956 0.7370 0.8314 0.9702
0.0116 0.0682 0.2174 0.4834 0.7646 0.8616 0.9842
0.0948 0.2024 0.3504 0.5050 0.6694 0.7398 0.9052
0.0672 0.1652 0.3202 0.5020 0.6962 0.7770 0.9368
0.0584 0.1512 0.2994 0.4982 0.7144 0.7960 0.9414

n=4

0.0294 0.1128 0.2722 0.4906 0.7152 0.8256 0.9668
0.0170 0.0872 0.2392 0.4816 0.7296 0.8456 0.9782
0.0780 0.1960 0.3428 0.5002 0.6610 0.7480 0.9134
0.0604 0.1652 0.3170 0.4976 0.6846 0.7780 0.9364
0.0558 0.1530 0.2998 0.4946 0.7010 0.7972 0.9442

n=5

0.0304 0.1168 0.2720 0.5008 0.7100 0.8178 0.9644
0.0212 0.0950 0.2498 0.4936 0.7218 0.8324 0.9738
0.0742 0.1800 0.3254 0.5108 0.6630 0.7648 0.9184
0.0584 0.1588 0.3052 0.5072 0.6802 0.7876 0.9400
0.0522 0.1462 0.2924 0.5042 0.6958 0.8014 0.9470

n=10

0.0472 0.1460 0.2888 0.4868 0.7000 0.8004 0.9512
0.0438 0.1390 0.2814 0.4830 0.7006 0.8026 0.9532
0.0580 0.1624 0.3022 0.4904 0.6930 0.7888 0.9424
0.0546 0.1572 0.2994 0.4902 0.6972 0.7924 0.9464
0.0524 0.1534 0.2952 0.4890 0.6998 0.7986 0.9484

n=25

0.0442 0.1358 0.2788 0.4720 0.6846 0.7870 0.9426
0.0348 0.1134 0.2488 0.4338 0.6514 0.7648 0.9362
0.0548 0.1498 0.3038 0.4964 0.7042 0.7986 0.9438
0.0536 0.1470 0.3010 0.4938 0.7044 0.7988 0.9450
0.0536 0.1456 0.3000 0.4946 0.7048 0.8010 0.9470

n=100

0.0428 0.1548 0.2926 0.5068 0.6874 0.8026 0.9488
0.0418 0.1526 0.2892 0.5042 0.6864 0.8024 0.9494
0.0460 0.1584 0.2978 0.5084 0.6864 0.8004 0.9462
0.0450 0.1578 0.2970 0.5082 0.6866 0.8012 0.9472
0.0442 0.1566 0.2956 0.5080 0.6884 0.8030 0.9484
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Table 4.2: Coverage for finite sample simulation for Bivariate normal
with ρ0= 0.3

ρ0= 0.3 n=2 n=3 n=4 n=5 n=10 n=25 n=100

α=0.05

0.0088 0.0176 0.0246 0.0246 0.0374 0.0422 0.0482
0.0014 0.0052 0.0094 0.0112 0.0268 0.0374 0.0466
0.0858 0.0700 0.0682 0.0674 0.0600 0.0530 0.0534
0.0638 0.0522 0.0568 0.0560 0.0554 0.0514 0.0528
0.0596 0.0484 0.0550 0.0526 0.0522 0.0494 0.0516

α=0.15

0.0610 0.0862 0.0984 0.1118 0.1246 0.1336 0.1510
0.0170 0.0392 0.0608 0.0790 0.0968 0.1184 0.1438
0.2136 0.1946 0.1836 0.1812 0.1656 0.1522 0.1570
0.1688 0.1578 0.1610 0.1636 0.1538 0.1490 0.1574
0.1622 0.1504 0. 1500 0.1590 0.1504 0.1464 0.1562

α=0.3

0.1966 0.2306 0.2350 0.2476 0.2724 0.2818 0.2892
0.0942 0.1644 0.1802 0.2004 0.2332 0.2616 0.2792
0.3658 0.3492 0.3262 0.3274 0.3176 0.3054 0.2990
0.3128 0.3126 0.2980 0.3042 0.3054 0.3020 0.2982
0.2964 0.3002 0.2872 0.2946 0.3014 0.2996 0.2978

α=0.5

0.4458 0.4476 0.4504 0.4604 0.4604 0.4826 0.4950
0.3488 0.3930 0.3964 0.4162 0.4300 0.4616 0.4840
0.5168 0.5112 0.4986 0.5104 0.4912 0.4996 0.5056
0.4992 0.4956 0.4886 0.4988 0.4846 0.4978 0.5050
0.4918 0.4878 0.4838 0.4912 0.4814 0.4972 0.5054

α=0.8

0.8320 0.8048 0.7936 0.7932 0.7836 0.7894 0.7904
0.8552 0.8072 0.7914 0.7860 0.7718 0.7804 0.7812
0.7430 0.7458 0.7596 0.7644 0.7802 0.7934 0.7956
0.7816 0.7718 0.7774 0.7818 0.7884 0.7964 0.7970
0.8046 0.7918 0.7920 0.7924 0.7950 0.7992 0.7982

α=0.95

0.9742 0.9648 0.9532 0.9528 0.9520 0.9482 0.9478
0.9832 0.9748 0.9610 0.9576 0.9526 0.9466 0.9452
0.8904 0.9072 0.9166 0.9206 0.9382 0.9458 0.9484
0.9326 0.9350 0.9360 0.9356 0.9466 0.9482 0.9488
0.9428 0.9446 0.9422 0.9448 0.9518 0.9520 0.9498

Pθ :=

{
N

((
θ

θ

)
, θ2

(
1 θ

θ 1

))
for θ ∈ (−1, 1)

}
where three dimensional minimal suffi-
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Table 4.3: Coverage for finite sample simulation for Bivariate normal
with ρ0= 0.5

ρ0= 0.5 α=0.05 α=0.15 α=0.3 α=0.5 α=0.7 α=0.8 α=0.95

n=2

0.0058 0.0452 0.1764 0.3996 0.6668 0.7874 0.9566
0.0010 0.0060 0.0512 0.2446 0.6198 0.7806 0.9648
0.0712 0.1936 0.3512 0.5116 0.6710 0.7402 0.8912
0.0526 0.1578 0.3098 0.4802 0.6780 0.7654 0.9270
0.0514 0.1526 0.3048 0.4770 0.6780 0.7786 0.9386

n=3

0.0106 0.0734 0.2014 0.4236 0.6464 0.7750 0.9556
0.0020 0.0230 0.1090 0.3152 0.5944 0.7514 0.9570
0.0666 0.1786 0.3374 0.5096 0.6703 0.7698 0.9150
0.0544 0.1558 0.3058 0.4872 0.6686 0.7714 0.9354
0.0534 0.1526 0.2962 0.4830 0.6724 0.7792 0.9454

n=4

0.0210 0.0896 0.2258 0.4332 0.6566 0.7746 0.9474
0.0054 0.0370 0.1444 0.3502 0.6072 0.7472 0.9488
0.0646 0.1664 0.3224 0.5082 0.6806 0.7742 0.9198
0.0558 0.1476 0.2988 0.4880 0.6792 0.7796 0.9350
0.0552 0.1454 0.2924 0.4868 0.6808 0.7862 0.9432

n=5

0.0236 0.1016 0.2360 0.4266 0.6686 0.7720 0.9478
0.0094 0.0534 0.1640 0.3554 0.6254 0.7424 0.9472
0.0578 0.1706 0.3194 0.4944 0.6940 0.7772 0.9306
0.0528 0.1576 0.2978 0.4828 0.6914 0.7836 0.9432
0.0520 0.1530 0.2964 0.4788 0.6944 0.7868 0.9492

n=10

0.0326 0.1180 0.2642 0.4676 0.6654 0.7744 0.9378
0.0210 0.0850 0.2052 0.4130 0.6266 0.7460 0.9320
0.0484 0.1486 0.3158 0.5104 0.6868 0.7898 0.9344
0.0466 0.1430 0.3056 0.5044 0.6858 0.7912 0.9374
0.0458 0.1428 0.3054 0.5044 0.6864 0.7932 0.9418

n=25

0.0442 0.1358 0.2788 0.4720 0.6846 0.7870 0.9426
0.0348 0.1134 0.2488 0.4338 0.6514 0.7648 0.9362
0.0548 0.1498 0.3038 0.4964 0.7042 0.7986 0.9438
0.0536 0.1470 0.3010 0.4938 0.7044 0.7988 0.9450
0.0536 0.1456 0.3000 0.4946 0.7048 0.8010 0.9470

n=100

0.0474 0.1486 0.2830 0.4924 0.6954 0.8018 0.9464
0.0428 0.1366 0.2680 0.4772 0.6784 0.7896 0.9428
0.0502 0.1556 0.2944 0.5046 0.7024 0.8108 0.9478
0.0498 0.1552 0.2942 0.5044 0.7024 0.8110 0.9486
0.0496 0.1552 0.2940 0.5046 0.7032 0.8114 0.9490
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Table 4.4: Coverage for finite sample simulation for Bivariate normal
with ρ0= 0.7

ρ0= 0.7 α=0.05 α=0.15 α=0.3 α=0.5 α=0.7 α=0.8 α=0.95

n=2

0.0046 0.0440 0.1506 0.3824 0.6284 0.7518 0.9502
0.0000 0.0014 0.0208 0.1578 0.5104 0.6966 0.9456
0.0568 0.1824 0.3186 0.5164 0.6788 0.7576 0.9068
0.0490 0.1556 0.2848 0.4884 0.6696 0.7652 0.9316
0.0474 0.1544 0.2832 0.4884 0.6742 0.7710 0.9406

n=3

0.0154 0.0756 0.1868 0.4152 0.6296 0.7636 0.9372
0.0008 0.0132 0.0684 0.2620 0.5312 0.6958 0.9258
0.0528 0.1636 0.3014 0.5086 0.6836 0.7862 0.9188
0.0474 0.1484 0.2800 0.4894 0.6718 0.7860 0.9322
0.0476 0.1482 0.2810 0.4934 0.6750 0.7910 0.9376

n=4

0.0186 0.0964 0.2248 0.4178 0.6404 0.7550 0.9392
0.0034 0.0276 0.1178 0.2936 0.5448 0.6894 0.9290
0.0558 0.1656 0.3106 0.4978 0.6930 0.7818 0.9320
0.0496 0.1580 0.2956 0.4826 0.6836 0.7804 0.9386
0.0504 0.1584 0.2970 0.4852 0.6830 0.7840 0.9436

n=5

0.0256 0.1006 0.2372 0.4366 0.6548 0.7614 0.9436
0.0066 0.0454 0.1388 0.3176 0.5678 0.7054 0.9298
0.0480 0.1508 0.3132 0.5034 0.7036 0.7896 0.9408
0.0458 0.1432 0.3022 0.4948 0.6974 0.7886 0.9440
0.0456 0.1442 0.3020 0.4952 0.7000 0.7918 0.9486

n=10

0.0390 0.1282 0.2596 0.4598 0.6650 0.7752 0.9384
0.0208 0.0822 0.2018 0.3860 0.6078 0.7282 0.9218
0.0554 0.1532 0.2982 0.4990 0.6924 0.7972 0.9428
0.0546 0.1514 0.2940 0.4960 0.6910 0.7956 0.9440
0.0544 0.1524 0.2954 0.4984 0.6944 0.7962 0.9464

n=25

0.0414 0.1432 0.2746 0.4854 0.6896 0.7868 0.9526
0.0326 0.1178 0.2348 0.4382 0.6446 0.7560 0.9414
0.0470 0.1548 0.2954 0.5074 0.7058 0.8008 0.9560
0.0470 0.1546 0.2944 0.5068 0.7062 0.8002 0.9562
0.0472 0.1546 0.2942 0.5068 0.7072 0.8018 0.9570

n=100

0.0466 0.1418 0.2928 0.4848 0.6928 0.7896 0.9532
0.0402 0.1288 0.2734 0.4624 0.6702 0.7732 0.9472
0.0498 0.1474 0.2988 0.4932 0.7002 0.7962 0.9546
0.0498 0.1474 0.2988 0.4934 0.7002 0.7966 0.9548
0.0498 0.1472 0.2992 0.4940 0.7008 0.7972 0.9552
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Table 4.5: Coverage for finite sample simulation for Bivariate normal
with ρ0= 0.9

ρ0= 0.9 α=0.05 α=0.15 α=0.3 α=0.5 α=0.7 α=0.8 α=0.95

n=2

0.0026 0.044 0.1626 0.37066 0.596 0.732 0.936
0.00 0.000 0.0046 0.05266 0.3406 0.547 0.920

0.0466 0.1546 0.3166 0.51066 0.6840 0.780 0.942
0.0420 0.1373 0.2920 0.48866 0.6653 0.771 0.942
0.0433 0.1420 0.2986 0.49666 0.6720 0.775 0.941

n=3

0.0253 0.1020 0.2233 0.4206 0.6326 0.7593 0.9313
0.0006 0.0046 0.0573 0.2120 0.4553 0.6166 0.8846
0.0600 0.1620 0.3046 0.4960 0.6900 0.8040 0.9433
0.0586 0.1553 0.2960 0.4880 0.6833 0.7980 0.9440
0.0593 0.1580 0.3000 0.4926 0.6853 0.8013 0.9480

n=4

0.0273 0.12260 0.23800 0.47330 0.66460 0.75260 0.94460
0.0040 0.03266 0.08933 0.29400 0.50733 0.64866 0.91466
0.0533 0.15660 0.29400 0.52200 0.70260 0.78660 0.95200
0.0526 0.15330 0.29000 0.51800 0.69730 0.78260 0.95130
0.0533 0.15530 0.29200 0.52066 0.70460 0.78600 0.95260

n=5

0.02600 0.1226 0.2660 0.4726 0.6766 0.7640 0.946
0.00466 0.0500 0.1446 0.3266 0.5513 0.6573 0.9176
0.04330 0.1540 0.3020 0.5060 0.7060 0.7913 0.9526
0.04260 0.1533 0.3007 0.5026 0.7026 0.7886 0.9523
0.04460 0.1546 0.3026 0.5060 0.7060 0.7926 0.953

n=10

0.0360 0.1440 0.2853 0.4780 0.6713 0.7960 0.9430
0.0140 0.0880 0.2060 0.3826 0.5830 0.7300 0.9170
0.0413 0.1513 0.3020 0.4893 0.6853 0.8086 0.9453
0.0418 0.1515 0.3013 0.4886 0.6846 0.8073 0.9453
0.0406 0.1526 0.3030 0.4906 0.6860 0.8080 0.9460

n=25

0.0546 0.1260 0.2880 0.4846 0.7080 0.7940 0.9453
0.0346 0.0913 0.2326 0.4280 0.6650 0.7520 0.9326
0.0560 0.1273 0.2940 0.4890 0.7126 0.7986 0.9486
0.0562 0.1270 0.2940 0.4890 0.7126 0.7986 0.9486
0.0559 0.1270 0.2940 0.4893 0.7130 0.7980 0.9486

n=100

0.0540 0.1506 0.3033 0.5080 0.6840 0.8040 0.9450
0.0473 0.1306 0.2820 0.4853 0.6620 0.7913 0.9366
0.0560 0.1513 0.3073 0.5106 0.6866 0.8060 0.9460
0.0560 0.1513 0.3073 0.5106 0.6860 0.8060 0.9460
0.0560 0.1506 0.3073 0.5106 0.6860 0.8073 0.9460

188



cient statistics for θ can be taken as

(S1, S2, S3) =

(
X̄ + Ȳ ,

1

n

n∑
i=1

(Xi − Yi)2,
1

n

n∑
i=1

(Xi + Yi − X̄ − Ȳ )2

)
.

There is a possibility of getting general results on higher order matching generating equations

but they will be case specific and basic ideas are similar. Following are some other open

questions related to the extension of the idea of higher order asymptotics as well as the

choice of norms:

1. Different Choices of norm in (1.3.3): One of the essential ingredients in our work

was the derivation of (1.3.4) with L∞ norm through increasing precision asymptotics.

In (1.3.3) choosing L∞ is also very intuitive and a lot easier to handle to get the distri-

bution of the weak limit (as ε ↓ 0). A natural extension would be to find the structure

of Jacobian for the L2 norm which is proved to be

√
det

((
d

dθ
G(u, θ)

)′(
d

dθ
G(u, θ)

))∣∣∣∣∣
u=G−1(X,θ)

.

So once we have a good handle on that we will be able to generalize the probability

matching criteria for fiducial distributions defined under general norm structures (Lp

for 2 < p <∞) in (1.3.3).

2. Non-regular cases: When the true distribution is supported on (a(θ), b(θ)) with |a′(θ)| ≤

|b′(θ)| (for example U(θ, θ2) for θ > 1) then the condition “{x : f(x | θ) > 0} doesn’t

depend on θ” of Theorem 3, gets violated and the expansion of the fiducial distribution
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will not converge to Normal distribution anymore. For U(a(θ), b(θ)) the fiducial dis-

tribution of θ on the basis of n iid observations (under assumption both a(θ) and b(θ)

are increasing and continuous in θ) is

f(θ | X) ∝ a′(θ)− a(θ)[log b(θ)]′ + X̄n[log b(θ)]′

b(θ)n
.1{a(θ)−b(θ)<X(1), a(θ)+b(θ)>X(n)}

where (X(1), X(n)) = (minX,maxX), X̄n = mean(X). Even in probability matching

prior context under a more restrictive condition, we have seen there is only second order

terms present [43] in the frequentist coverage of the posterior quantile of n(θ− θ̂n). We

expect a similar result to hold in Fiducial context but with a change that should come

from the term (W
(1)
n (X))2.

3. Multi-parameter context: Proving analogue version of Theorem 3 in multi parameter

cases where there is only one parameter of interest and rest are nuisance is more in-

volved. Generally the Jacobian becomes a U-Statistics. Since higher order expansion

of fiducial quantile requires convergence of fluctuation of scaled Jacobian (like As-

sumption 19), deriving concentration properties of U-Statistics (that the Jacobian for

multiparameter case resembles) is essential in that context which is very challenging.

4.7 Proof of Theorem 3:

We prove Theorem 3 with a number of steps. First we prove a lemma on the expansion

of the fiducial density and then we will give an asymptotic expansion of the Fiducial quantile

in Corollary 4.7.1. After that in order to get the frequentist coverage of the quantile with the

obtained expression from Corollary 4.7.1, we will proceed with Shrinkage method. Follow
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the definition of W(m)
n (X) from (4.3.6). In order to lessen notational burden we denote

K(θ0,X, y) :=

[
1 +

J ′(θ0, θ̂n)

J(θ0, θ̂n)

y√
nc

+
1

n

(
W(1)

n (X)
y√
c

+
J ′′(θ0, θ̂n)

J(θ0, θ̂n)

y2

2c

)]
.

Lemma 19. Suppose Assumptions 16,17,18 hold with m = 2. Following quantity is

IR := n

∫
R

∣∣∣∣∣Jn(X, θ̂n +
y√
nc

)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)] −

Jn(X, θ̂n)e−
y2

2

(
1 +Rn(θ̂n) +

Rn(θ̂n)2

2

)
K(θ0,X, y)

∣∣∣∣∣dy = oPθ0 (1). (4.7.1)

Proof of Lemma 19: We will proceed traditionally by breaking the integral in three

disjoint regions. Denoting IR as the integral appeared in the left hand side of the Lemma, we

have

IR ≤ IA1 + IA2 + IA3 (4.7.2)

where A1 = {y : |y| < C log
√
n}, A2 = {y : C log

√
n ≤ |y| ≤ δ

√
n}, A3 = {y : |y| >

δ
√
n}. The choice of C, δ will be specified later. The third term of (4.7.2) can be written as

IA3 ≤ I1
A3

+ I2
A3

where

I1
A3

= n

∫
A3

Jn(X, θ̂n +
y√
nc

)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)]

dy,

I2
A3

= n

∫
A3

Jn(X, θ̂n)e−
y2

2

(
1 +Rn(θ̂n) +

Rn(θ̂n)2

2

)
K(θ0,X, y)dy.
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Expanding I1
A3
, one gets

I1
A3

= n
n∑
i=1

∫
A3

J(Xi, θ̂n +
y√
nc

)f(Xi, θ̂n +
y√
nc

)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)]−log f(Xi,θ̂n+ y√

nc
)
dy

= n

n∑
i=1

∫
A3

J(Xi, θ̂n +
y√
nc

)f(Xi, θ̂n +
y√
nc

)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)]

[
1−

log f(Xi,θ̂n+
y√
nc

)

n[Ln(θ̂n+
y√
nc

)−Ln(θ̂n)]

]
dy

≤ n2 sup
x∈Rn

sup
i=1,...,n

∫
A3

J(Xi, θ̂n +
y√
nc

)f(Xi, θ̂n +
y√
nc

)×

e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)]

[
1−

log f(Xi,θ̂n+
y√
nc

)

n[Ln(θ̂n+
y√
nc

)−Ln(θ̂n)]

]
dy

Notice that from Assumption 17(b) Pθ0 almost surely n−s
∫
R J(Xi, θ̂n + y√

nc
)f(Xi, θ̂n +

y√
nc

)dy < ∞. Now by Assumption 17 one has the exponential term to decay as e−n(1−c)ε

in probability and that term multiplied with n will also goes to 0 in probability. Rest will

follow by dominated convergence theorem. For I2
A3

we have Jn(X, θ̂n) →P J(θ0, θ0) from

Assumption 18. The multiplicative parts are the integrals
∫
A3
yαe−y

2
dy for α = 0, 1, 2 which

under A3 decays exponentially to 0 resulting the Pθ0 limit of the second term 0.

Now consider IA1 . Denote 1
120

y5

n3/2c2
L

(5)
n (θ′) by Mn. The first integral in region A1, can

be expanded as IA1 ≤ I1
A1

+ I2
A1

where

I1
A1

:= n

∫
A1

Jn(X, θ̂n +
y√
nc

)e−
y2

2

∣∣∣eRn(θ̂n)+Mn − 1−Rn(θ̂n)− Rn(θ̂n)2

2

∣∣∣dy and

I2
A1

:= n

∫
A1

I(X, n, y)e−
y2

2

(
1 +Rn(θ̂n) +

Rn(θ̂n)2

2

)
dy.

given I(X, n, y) :=
∣∣Jn(X, θ̂n + y√

nc
) − Jn(X, θ̂n)K(θ0,X, y)

∣∣. Note that under A1, the
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quantity n
(
Mn + M2

n

2
+Rn(θ̂n)Mn

)
= Op(

(log
√
n)5

√
n

) . Also L
(5)
n (θ′) is Op(1) for θ′ ∈

(θ0 − δ, θ0 + δ) along with L(3)
n (θ̂n) and L(4)

n (θ̂n). Since Rn + Mn is Op(
log3(

√
n)√

n
). Using

the inequality

ex − 1− x− x2

2
≤ x3

6(1− x
4
)

for x ∈ (0, 4)

the first term of (4.7.3) can be written as

I1
A1
≤ n

∫
A1

Jn(X, θ̂n +
y√
nc

)e−
y2

2

∣∣∣eRn+Mn − 1− (Rn +Mn)− (Rn +Mn)2

2

∣∣∣dy
+ n

∫
A1

Jn(X, θ̂n +
y√
nc

)e−
y2

2

(
Mn +

M2
n

2
+Rn(θ̂n)Mn

)
dy

≤ n

∫
A1

Jn(X, θ̂n +
y√
nc

)e−
y2

2

∣∣∣ (Rn +Mn)3

6(1− (Rn+Mn)
4

)

∣∣∣dy
+Op(

(log
√
n)5

√
n

) sup
y∈A1

Jn(X, θ̂n +
y√
nc

).

Now supy∈A1
n(Rn + Mn)3 ≤ supy∈A1

y9
√
n

max [L
(5)
n (θ′)

c
3
2

, L
(3)
n (θ̂n)
c2

] ≤ log(
√
n)9

√
n

Op(1). So we

have

I1
A1
≤ sup

y∈A1

Jn(X, θ̂n +
y√
nc

)
[
Op

(
log(
√
n)9

√
n

)∫
A1

e−
y2

2 dy +Op(
(log
√
n)5

√
n

)
]
. (4.7.3)

Since θ̂n → θ0 a.s, under A1, we have (θ̂n, θ̂n + y√
nc

) ⊂ (θ0 − δ, θ0 + δ) with Pθ0

probability 1. We have almost surely supy∈A1
Jn(X, θ̂n + y√

nc
) ≤ supθ′∈(θ0−δ,θ0+δ) Jn(X, θ′).

From Assumption 18 one has almost surely

I1
A1
≤ sup

θ′∈(θ0−δ,θ0+δ)

Jn(X, θ′)
[
Op

(
log(
√
n)9

√
n

)∫
A1

e−
y2

2 dy +Op(
(log
√
n)5

√
n

)
]
.
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Now using Wald’s theorem one has supθ′∈(θ0−δ,θ0+δ) |Jn(X, θ′)− J(θ0, θ
′)| →a.s 0, resulting

the following statement almost surely

I1
A1
≤ sup

θ′∈(θ0−δ,θ0+δ)

J(θ0, θ
′)
[
Op

(
log(
√
n)9

√
n

)∫
A1

e−
y2

2 dy +Op(
(log
√
n)5

√
n

)
]
.

which is opθ0 (1). Now from (4.3.6) the second term of IA1

I2
A1

:= n

∫
A1

I(X, n, y)e−
y2

2 (1 +Rn)dy

≤ sup
θ′∈(θ̂n,θ̂n+ y√

nc
)

Jn(X, θ̂n)

∫
A1

1

n1/2

(
W(2)

n (X)
y2

2c
+
J ′′′n (X, θ′)
Jn(X, θ̂n)

y3

6(c)3/2

)
×

e−
y2

2 (1 +Rn(θ̂n))dy.

Again similarly using almost sure convergence of the event (θ̂n, θ̂n+ y√
nc

) ⊂ (θ0−δ, θ0+δ)

and Assumption 18 on J ′′′n (X, θ′) we get I2
A1

is of oPθ0 (1).

Next consider the integral IA2 , that can bounded above by IA2 ≤ I1
A2

+ I2
A2

where

I1
A2

:= n

∫
A2

Jn(X, θ̂n +
y√
nc

)e−
y2

2
+Rn+Mndy,

I2
A2

:= n

∫
A2

Jn(X, θ̂n)e−
y2

2

(
1 +Rn(θ̂n) +

Rn(θ̂n)2

2

)
K(θ0,X, y)dy.

Consider the term I2
A2

. Note that under A2 for n ≥ e4, (log
√
n)2 > log n and also using the
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fact |y|√
n
< δ the quantity

Rn(θ̂n) ≤ 1

6
δ3n

L
(3)
n (θ̂n)

c3/2
+

1

24
δ4n

L
(4)
n (θ̂n)

c2
= OPθ0

(n)

resulting
(

1 +Rn(θ̂n) + Rn(θ̂n)2

2

)
isOPθ0

(n2). Also from Assumption 18 the remaining term

Jn(X, θ̂n)K(θ0,X, y) is OPθ0
(1). So the upper bound of the second integral I2

A2
is bounded

by

OPθ0
(n3)Jn(X, θ̂n)

[
1 +

J ′(θ0, θ̂n)

J(θ0, θ̂n)

δ√
c

+
1

n

(
W(1)

n (X)
δ
√
n√
c

+
J ′′(θ0, θ̂n)

J(θ0, θ̂n)

nδ2

2c

)]
.e−

C2

2
logn

[
δ
√
n− C log

√
n
]

= OPθ0
(n

7
2
−C

2

2 ) (4.7.4)

which goes to 0 in probability if we choose C >
√

7. This result is due to convergence of

Jn(X, θ̂n), J ′n(X, θ̂n) respectively to J(θ0, θ0), J ′(θ0, θ0) which is validated from Assumption

18. Now considering the first term of the integral (4.7.4) we have |y|√
n
< δ, We have under A2

|Rn(θ̂n)| ≤ 1

6

δy2L
(3)
n (θ̂n)

c
3
2

+
1

24
δ2y2L

(4)
n (θ̂n)

c2
,

|Mn| =
1

120

y5

n3/2c2
L(5)
n (θ′) ≤ 1

120

y2δ3

c2
L(5)
n (θ′) (4.7.5)

and since under A2 the quantities supθ′∈(θ̂n,θ̂n+ y√
nc

) L
(4)
n (θ′),L

(4)
n (θ̂n)
c2

and L
(3)
n (θ̂n)

c3/2
are Op(1),
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given a small ε > 0 one can always choose a δ so that we can get

Pθ0
{
− y2

2
+Rn(θ̂n) +Mn < −

y2

4
, ∀y ∈ A2

}
> 1− ε for n > n0. (4.7.6)

So with probability greater than 1− ε

n

∫
A2

Jn(X, θ̂n +
y√
nc

)e−
y2

2
+Rn+Mndy ≤ sup

y∈A2

Jn(X, θ̂n +
y√
nc

) n

∫
A2

e−
y2

4 dy

→a.s 0 as n→∞. (4.7.7)

The last line follows from the fact underA2, (θ̂n, θ̂n+ y√
nc

) ⊂ (θ0−δ, θ0 +δ) almost surely

and then by applying Assumption 18, supy∈A2
Jn(X, θ̂n + y√

nc
) ≤ supθ∈(θ0−δ,θ0+δ) J(θ0, θ)

asymptotically almost surely. The integral will converge to 0 as n→∞ by choosing a bigger

C. Choice of δ will be specified by (4.7.6) given a small ε > 0.

�

Now it’s obvious to conclude from Lemma 19 that for any A ∈ B(R)

∫
A

e−
y2

2

(
1 +Rn(θ̂n) +

Rn(θ̂n)2

2

)
K(θ0,X, y)dy (4.7.8)

=

∫
A

e−
y2

2

[
1 +

1√
n

(
A1y + A3y

3
)

+
1

n

(
A2y

2 + A4y
4 + A6y

6 +W (1)
n

y√
c

)]
dy

+op
θ0

(
1

n

)
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where

A1 := c−
1
2
J ′(θ0, θ̂n)

J(θ0, θ̂n)
, A2 :=

1

2
c−1J

′′(θ0, θ̂n)

J(θ0, θ̂n)
, A3 :=

1

6
c−

3
2a, A4 := A1A3 +

1

24
c−2a4,

A6 :=
1

2
A2

3.

(4.7.8) follows from the fact that all higher order terms will accumulate in opθ0 ( 1
n
). For an

illustration taking just one cross-product term of second term of Rn(θ̂n) and A1y√
n
, one has

1

24

y4

nc2
L(4)
n (θ̂n)

A1y√
n

=
1

24

A1y
5

n
√
nc2

L(4)
n (θ̂n)1{|y|≤logn} +

1

24

A1y
5

n
√
nc2

L(4)
n (θ̂n)1{|y|>logn}.

Since Rn(θ̂n).A1 is OPθ0
(1)

∫
R
e−

y2

2 Rn(θ̂n)
A1y√
n
dy =

L
(4)
n (θ̂n)A1

24c2n
3
2

∫
|y|≤logn

y5e−
y2

2 dy +
L

(4)
n A1

24c2n
3
2

∫
|y|>logn

y5e−
y2

2 dy

≤ OPθ0

(
(log n)5

n
3
2

)
+
L

(4)
n A1

24c2n
3
2

∫
|y|>logn

y5e−
y2

2 dy (4.7.9)

Since Gamma distribution is exponentially tailed, whole R.H.S of (4.7.9) is of oPθ0 ( 1
n
).

Now note that the formula for r-th (even) central moment of standard normal distribution

EXr := (r − 1)(r − 3) . . . 1. Dividing the quantity Jn(X, θ̂n + y√
nc

)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)]

with the expansion of the denominator
∫
R Jn(X, θ̂n + y√

nc
)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)]

dy, one has

the asymptotic expansion of the fiducial density (upto second order in terms of expansion
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with respect to 1√
n

) of y

fG(y | X) = φ(y)

(
1 +

1√
n

(
A1y + A3y

3
)

+
1

n

(
A2(y2 − 1) + A4(y4 − 3) + A6(y6 − 15)

+ W (1)
n (X)

y√
c

))
+ op

θ0

(
1

n

)
(4.7.10)

where φ(.) is the density function of the normal distribution. From (4.7.8) we get (4.7.10)

using the power series expansion 1
1+x

=
∑∞

i=1(−1)ixi given |x| < 1 on first two ordered

terms.

Remark 16. The conclusion (4.7.10) will remain unchanged if W (1)
n (X) is replaced by a

random variable Ŵ (1)
n (X) that is σ(X) measurable with the property

Pθ0

[
W (1)
n (X) 6= Ŵ (1)

n (X)
]

= e−cn for some c > 0.

It is because the quantity
(
W

(1)
n (X)− Ŵ (1)

n (X)
)

multiplied with any polynomial term of n

will remain OPθ0
(e−cn) so that doesn’t hamper in any specific polynomial order terms.

Recall the classical orthogonal Hermite polynomials {Hn(x)}n≥1 which is defined as

Hn(x) = (−1)ne
x2

2

[
dn

dxn
e−

x2

2

]
.

First few Hermite polynomials are

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = y5 − 10y3 + 15y, H6(x) = y6 − 15y4 + 45y2 − 15.
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Following properties hold where φ(x) is the density of normal distribution: For all a ∈

R,∀n ≥ 2

∫ a

−∞
H1(y)φ(y)dy = −φ(a) and

∫ a

−∞
Hn(y)φ(y)dy = −Hn−1(a)φ(a) . (4.7.11)

Expressing (4.7.10) with each coefficient in terms of Hermite polynomials we get,

fG(y) = φ(y)

(
1 +

1√
n

(G1H1(y) +G3H3(y)) +
1

n

(
G2H2(y) +G4H4(y)

+ G6H6(y) +W (1)
n

H1(y)√
c

))
+ op

θ0

(
1

n

)
(4.7.12)

where

G1 := A1 + 3A3, G2 = A2 + 6A4 + 45A6, G3 := A3, G4 = A4 + 15A6 G6 = A6.

Define further

β1 := G1 +G3.H2(z),

β2 := 2zβ1G3 −
1

2
β2

1z +G2H1(z) +G4H3(z) +G6H5(z) +
W

(1)
n (X)√
c

(4.7.13)

This following illustration is similar with Theorem 2.3.1 of [23] which gives asymptotic

expansion of (1− α)-th fiducial quantile.

Corollary 4.7.1. Denote θ(1−α)(X,G) := θ̂ + (nc)−
1
2 (z + n−

1
2β1 + n−1β2). Suppose As-

sumptions (A1)-(A5) of asymptotic normality of likelihood expansion, along with Assumption
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16,17 18 with m = 1 hold. Then we have

P G
[
θ ≤ θ(1−α)(X,G)

∣∣∣∣X] = 1− α + op
θ0

(n−1). (4.7.14)

Proof of Corollary 4.7.1:

The concerned quantity

P G
[
θ ≤ θ(1−α)(X,G)

∣∣∣∣X] = P

[
θ ≤ θ̂ + (nc)−

1
2

{
z + n−

1
2β1 + n−1β2

} ∣∣∣∣X]
= P

[
y ≤ z + n−

1
2β1 + n−1β2

∣∣∣∣X]
=

∫ z+n−
1
2 β1+n−1β2

−∞
φ(y)

[
1 +

1√
n

(G1H1(y) +G3H3(y))

]
dy

+
1

n

∫ z+n−
1
2 β1+n−1β2

−∞
φ(y)

[(
G2H2(y) +G4H4(y) +G6H6(y) +W (1)

n

H1(y)√
c

)]
dy

+op(n
−1).

Using the properties of Hermite polynomials on (4.7.11) one easily gets

P G
[
θ ≤ θ(1−α)(F,X, n)

∣∣X] = Φ(z + n−
1
2β1 + n−1β2) (4.7.15)

−n−
1
2 .φ(z + n−

1
2β)

[
G1 +G3H2(z + n−

1
2β1)

]
− n−1φ(z)×[

G2H1(z) +G4H3(z) +G6H5(z)

+
W

(1)
n (X)√
c

]
+ op(n

−1).

Using Taylor’s expansions of Φ(x), φ(x) and accumulating the higher order terms into op(n−1),
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the RHS of (4.7.15) is simplified to

P G
[
θ ≤ θ(1−α)(X,G)

∣∣X] = Φ(z) + n−
1
2φ(z) {β1 −G1 −G3H2(z)}

+ n−1φ(z)

[
β2 − 2zβ1G3 −

1

2
β2

1z + β1z

{
G1 +G3H2(z)

}
−G2H1(z)

−G4H3(z)−G6H5(z)− W
(1)
n (X)√
c

]
+ op(n

−1) = 1− α + op(n
−1) (4.7.16)

where (4.7.16) follows from the definitions of β1 and β2. Corollary 4.7.1 follows from that.

�

Higher order asymptotics in context of Probability matching prior is an old topic and well

documented in [23].

The idea of Shrinkage method was essentially originated from [10] in context of estab-

lishing higher order asymptotics of Bertlett test statistics. In general it is used to find an

expansion of Eθ0 [g(X, θ)] for any function g(X, θ) (in our case g(X, θ) := 1{θ≤θ(1−α)(X,G)}).

Some relevant works on probability matching data dependent prior were done in [67], [68]

but data dependence is either coming from moments or the maximum likelihood estimator. In

comparison to that here the term W
(1)
n (X) is much like a ratio estimator where its higher or-

der expansion is interestingly critical for the terms after first order which makes the following

calculation relevant. In order to implement Shrinkage method one formulates an auxiliary

prior π̄ with properties that it is proper, supported on a compact set, having true θ0 in its

interior. It vanishes on the boundary of the support while taking strictly positive values in the

interior. It also satisfies all the conditions Bm (m = 1, 2) in [10] ensuring smoothness of π̄

,and log π̄ and and its derivatives near the boundary of the support. Basic steps of Shrinkage
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method (for upto second order) are following:

1. Step 1: Start with an auxiliary prior π̄ with a compact support ⊆ H containing θ0 as

an interior point. We will find the expansion of Eπ̄(g(X, θ)|X) upto oPθ0 ( 1
n
).

2. Step 2: Under the assumption that the X = (X1, X2, X3 . . . , Xn) generated from F (· |

θ) we compute : λ(θ) := EθE
π̄(g(X, θ)|X) upto o( 1

n
).

3. Step 3: Compute
∫
λ(θ)π̄(dθ) when π̄ ; δθ0(.). The final quantity after taking the

weak limit leads to the required expansion of Eθ0 (g(X, θθ0)) upto o( 1
n
).

Proposition 4.7.1. Note if one observes T (X) := Eπ̄(g(X, θ) | X) for an integrable function

T (X) (with respect to Pθ for θ ∈ (θ0 − δ, θ0 + δ) for some δ > 0) after Step 1 of Shrinkage

method, Step 2 and Step 3 virtually compute Eθ0T (X). Since λ(θ) = EθT (X), through

Dominated Convergence Theorem and a consequence of the weak limit gives

lim
π̄;δθ0 (·)

∫
Eθ [T (X)] π̄(dθ).

A good illustration on how Shrinkage method works is given at Chapter 1 of [23].

The conditions Bm in [10] ensures the existence of a set S which contains data X with

probability Pθ, (1 − op(n
−1)) for θ ∈ a compact set K. For ensuring second order term

we need to just assume B2 for the auxiliary prior π̄(·) containing true θ0 in interior. All the

following calculation of the Shrinkage method is a consequence of those assumptions in B2.

We will complete the remaining by implementing Shrinkage method which is more or less

regular:
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1. Step 1: We will construct a prior π̄ with aforementioned smoothness properties and

with a compact support with θ0 being an interior point. Now define the following

quantities

Ḡ1 := Ā1 + 3Ā3, Ḡ2 = Ā2 + 6Ā4 + 45Ā6, Ḡ3 := Ā3, Ḡ4 = Ā4 + 15Ā6,

Ḡ6 = Ā6

where

Ā1 := c−
1
2
π̄′(θ̂n)

π̄(θ̂n)
, Ā2 :=

1

2
c−1 π̄

′′(θ̂n)

π̄(θ̂n)
, Ā3 := A3, Ā4 := Ā1Ā3 +

1

24
c−2a4,

Ā6 := A6.

By proceeding similarly like Lemma 19 or from [42], one gets a similar posterior

expansion of π̄(y
∣∣X) := π̄(θ̂n + y√

nc
)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)] like following display,

∫
R

∣∣∣∣∣π̄(θ̂n +
y√
nc

)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)] − π̄(θ̂n)e−

y2

2

(
1 +

π̄′(θ̂n)

π̄(θ̂n)

y√
nc

+
1

n

π̄′′(θ̂n)

π̄(θ̂n)

y2

2c

)
(

1 +Rn(θ̂n) +
Rn(θ̂n)2

2

)∣∣∣∣∣dy = oPθ0

(
1

n

)
.

So, f π̄(θ | X) =
π̄(θ)en[Ln(θ)−Ln(θ̂n)]∫
π̄(θ)en[Ln(θ)−Ln(θ̂n)]dθ

=
π̄(θ̂n + y√

nc
)e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)]∫

π̄(θ̂n + y√
nc

))e
n[Ln(θ̂n+ y√

nc
)−Ln(θ̂n)]

dy
.
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Using the above expression of “auxiliary” posterior density of y =
√
nc(θ − θ̂n),

f π̄(y | X) = φ(y)

(
1 +

1√
n

(
Ḡ1H1(y) + Ḡ3H3(y)

)
+

1

n

(
Ḡ2H2(y) + Ḡ4H4(y)

+Ḡ6H6(y)

))
+ op

θ0
(n−1). (4.7.17)

Using the expansion one can write P π̄
[
θ ≤ θ(1−α)(X,G)

∣∣X] as

P

[
θ ≤ θ̂ + (nc)−

1
2

{
z + n−

1
2β1 + n−1β2

} ∣∣∣∣X] = P π̄

[
y ≤ z + n−

1
2β1 + n−1β2

∣∣∣∣X]
=

∫ z+n−
1
2 β1+n−1β2

−∞
φ(y)

[
1 +

1√
n

(
Ḡ1H1(y) + Ḡ3H3(y)

)]
dy

+
1

n

∫ z+n−
1
2 β1+n−1β2

−∞
φ(y)

[(
Ḡ2H2(y) + Ḡ4H4(y) + Ḡ6H6(y)

)]
dy + op(n

−1)

Working similarly like (4.7.15)-(4.7.16) we have

P π̄
[
θ ≤ θ(1−α)(F,X, n)

∣∣X]
= Φ(z) + n−

1
2φ(z)

{
β1 − Ḡ1 − Ḡ3H2(z)

}
+ n−1φ(z)

[
β2 − 2zβ1Ḡ3

−1

2
β2

1z + β1z
{
Ḡ1 + Ḡ3H2(z)

}
− Ḡ2H1(z)− Ḡ4H3(z)− Ḡ6H5(z)

]
+ op(n

−1)

= 1− α + n−
1
2φ(z)

{
G1 − Ḡ1

}
+ n−1φ(z)

{
β1z

[
Ḡ1 −G1

]
+
[
G2 − Ḡ2

]
H1(z)

+
[
G4 − Ḡ4

]
H3(z) +

W
(1)
n (X)√
c

}
+ op(n

−1). (4.7.18)
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After inputing the values we have

P π̄
[
θ ≤ θ(1−α)(F,X, n)

∣∣X]
= 1− α + n−

1
2φ(z)c−

1
2

{
J ′(θ0, θ̂n)

J(θ0, θ̂n)
− π̄′(θ̂n)

π̄(θ̂n)
+ a(2)

n (θ, θ̂n)

}

+n−1φ(z)z

{(
c−1J

′(θ0, θ̂n)

J(θ0, θ̂n)
− 1

6
c−2l′′′(θ̂n)

)(
π̄′(θ̂n)

π̄(θ̂n)
− J ′(θ0, θ̂n)

J(θ0, θ̂n)

)
+

1

2
c−1

[
J ′′(θ0, θ̂n)

J(θ0, θ̂n)
− π̄′′(θ̂n)

π̄(θ̂n)

]}
+ n−1φ(z)

a1
n(X, θ)√

c
+ op

θ0
(n−1). (4.7.19)

where (4.7.19) is obtained after a number of simplifications (putting values of the data

dependent constants) and using following decomposition of W(1)
n (X) in (4.7.18).

W(1)
n (X) :=

√
n

(
J

(1)
n (X, θ̂n)

Jn(X, θ̂n)
− J (1)(θ0, θ̂n)

J(θ0, θ̂n)

)

=
√
n

(
J

(1)
n (X, θ̂n)

Jn(X, θ̂n)
− J (1)(θ, θ̂n)

J(θ, θ̂n)

)
+
√
n

(
J (1)(θ, θ̂n)

J(θ, θ̂n)
− J (1)(θ0, θ̂n)

J(θ0, θ̂n)

)
=: a1

n(X, θ) +
√
na(2)

n (θ, θ̂n) (defining the first and second term)(4.7.20)

where each of these terms will be analyzed in next step.

2. Step 2: We will now compute the asymptotic value of λ(θ) = EθP
π̄(θ ≤ θ(1−α)(X,G)|X).

Note that asymptotically a(2)
n (θ, θ̂n) converges to a(2)(θ) := J(1)(θ,θ)

J(θ,θ)
− J(1)(θ0,θ)

J(θ0,θ)
, under

true θ which becomes a(2)(θ0) = 0 when θ = θ0. We will treat a1
n(X, θ) by expanding

that term. We take the facility of choosing auxiliary π̄(·) in a way such that the ex-

pression (4.7.19) holds for all data points in a compact set S̄ in R that has Pθ of order

(1− o(n−1)) uniformly for all θ ∈ K, where K is the compact domain of π̄. Under the
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assumption that the limits exist and the existence of the set S × K is ensured by the

condition Bm satisfied by π̄ for m = 2 in [10]. From (4.7.19)

λ(θ) := Eθ

{
P π̄
[
θ ≤ θ(1−α)(X,G)

∣∣∣X]} = 1− α + n−
1
2φ(z)I

− 1
2

θ

{
J ′(θ0, θ)

J(θ0, θ)

− π̄′(θ)

π̄(θ)
+ a(2)(θ)

}
+ n−1φ(z)z

{(
I−1
θ

J ′(θ0, θ)

J(θ0, θ)
− 1

6
I−2
θ Mθ

)(
π̄′(θ)

π̄(θ)

− J ′(θ0, θ)

J(θ0, θ)

)
+

1

2
I−1
θ

[
J ′′(θ0, θ)

J(θ0, θ)
− π̄′′(θ)

π̄(θ)

]}
+ n−1φ(z)

Eθ [a1
n(X, θ)]√
Iθ

+o(n−1) (4.7.21)

where Mθ := El(3)(θ|X). By Assumption ai(·) is a continuous function, so in a com-

pact domain(π̄) containing θ0 it will always exist. It is a consequence of the Corollary

4.7.1 but we need to show the integrability of Eθ [a1
n(X, θ)] in θ ∈ domain(π̄). In the

following we will give an expansion ofEθ [a1
n(X, θ)] in terms of ai(θ0), J(θ0, θ), J

′(θ0, θ).

Now by Assumption 17-19 we have ai(·) continuous function in Θ = R. Since also

J(·, θ) won’t vanish is θ ∈ (θ0− δ, θ+ δ) one can always find a compact neighborhood

of θ0 where the quantity n → ∞ Eθ [a1
n(X, θ)] will remain bounded. We will take

that compact neighborhood as the domain(π̄).

Now we will prove the higher order expansion of the quantity Eθ [a1
n(X, θ)]. Note that

by Taylor’s expansion on the function f(x, y) = x
y

at the point (T1, T2) around (g1, g2),
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we have for some (g∗1, g
∗
2) ∈ (T1, g1)× (T2, g2)

T1

T2

=
g1,θ

g2,θ

+ (T1 − g1,θ)
1

g2,θ

− (T2 − g2,θ)
g1,θ

g2
2,θ

+ (T2 − g2,θ)
2
g∗1,θ
g∗32,θ

+(T1 − g1,θ)(T2 − g2,θ)
1

g∗2,θ
.

That yields
√
n[T1

T2
− g1,θ

g2,θ
] =

√
n(T1 − g1,θ)

1
g2,θ
−
√
n(T2 − g2,θ)

g1,θ

g2
2,θ

+
√
n(T2 −

g2,θ)[(T2− g2,θ)
g∗1,θ
g∗32,θ
− (T1− g1,θ)

1
g∗2

]. Now choosing T1 := J ′n(X, θ̂n), T2 := Jn(X, θ̂n)

and their corresponding limits g1,θ := J ′(θ, θ), g2,θ := J(θ, θ) one gets a1
n(X, θ)

is OPθ(1). Last statement is a consequence of Slutsky’s theorem and the Assump-

tion 19. Note that
g∗1,θ
g∗32,θ

, 1
g∗2,θ

are OPθ0
(1) which follows from the fact g∗1

Pθ0−−→ g1,θ,

g∗2,θ
Pθ−→ g2,θ, and then using continuity theorem one has

g∗1,θ
g∗32,θ

=
g1,θ

g3
2,θ

+ oPθ (1), 1
g∗2,θ

=

1
g2,θ

+ oP
θ
(1) since g2 6= 0. From Slutsky’s theorem the residual term

√
n(T2 −

g2)[(T2− g2)
g∗1,θ
g∗32,θ
− (T1− g1,θ)

1
g∗2,θ

] will be opθ (1). Our conclusion that Eθ [a1
n(X, θ)] =

a1(θ)
g2,θ
− a2(θ)g1

g2
2,θ

+ o(1), will follow if we provide an additional detail on the expected

residual term:

Eθ

[√
n(T2 − g2)

[
(T2 − g2)

g∗1
g∗32

− (T1 − g1)
1

g∗2

]]
→ 0 (4.7.22)

for all θ ∈ domain(π̄). Note that

(T1 − g1) = (J ′n(X, θ̂n)− J ′(θ, θ̂n)) + ((J ′(θ, θ̂n)− J ′(θ, θ)) (4.7.23)

(T2 − g2) = (Jn(X, θ̂n)− J(θ, θ̂n)) + ((J(θ, θ̂n)− J(θ, θ)). (4.7.24)
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Second term after scaling with
√
n, along with the lipschitz property of J(θ, ·) from

Assumption 19(c) will give finiteness of the quantity nEθ
[
(J(θ, θ̂n)− J(θ, θ)

]2

<∞

(from the asymptotic expansion of MLE θ̂n under true value θ). Along with that and

Assumption 19(a) one gets nEθ [T1 − g1]2 < ∞ and nEθ [T2 − g2]2 < ∞ will follow

similarly. Note that these results imply that the set {(T1, T2) : |T1 − g1| < ε, |T2 −

g2| < ε} denoted by An,ε has probability Pθ of order (1 − OP
θ
( 1
n
)). Since g2 is away

from 0, fixing ε ∈ (0, g2) we can work with g∗1
g∗32
.1An,ε ,

1
g∗2
.1An,ε in place of g∗1

g∗32
, 1
g∗2

in

the expansion of a1
n(X, θ) in (4.7.19) for θ = θ0, since the residual term (that is non

zero with probability oP
θ0

( 1√
n

) will be accumulated in the oP
θ0

( 1√
n
) term. Now note∣∣∣∣ g∗1g∗32

.1An,ε

∣∣∣∣ < g1+ε
(g2−ε)3 ,

∣∣∣∣ 1
g∗2
.1An,ε

∣∣∣∣ < 1
g2−ε

a.s.Using these along with nEθ [T1 − g1]2 <

∞, nEθ [T2 − g2]2 <∞, (4.7.22) will follow by breaking and analyzing each of the

two terms.

3. Step 3: The last step comes from computing
∫
λ(θ)π̄(dθ) when π̄(θ) → δθ0(θ). Note

that if α(θ) := 1
6
I−2
θ Mθ − I−1

θ
J ′(θ0,θ)
J(θ0,θ)

, it follows from (4.7.21) that

λ(θ) = 1− α + n−
1
2φ(z)I

− 1
2

θ

{
J ′(θ0, θ)

J(θ0, θ)
− π̄′(θ)

π̄(θ)
+ a(2)(θ)

}
+n−1φ(z)z

{
α(θ)

(
J ′(θ0, θ)

J(θ0, θ)
− π̄′(θ)

π̄(θ)

)
+

1

2
I−1
θ

[
J ′′(θ0, θ)

J(θ0, θ)
− π̄′′(θ)

π̄(θ)

]}
+n−1φ(z)

Eθ [a1
n(X, θ)]√
Iθ

+ o(n−1). (4.7.25)
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From properties of distribution theory one has if π̄(θ)→ δθ0(θ), then

∫
f(θ).π̄(dθ)→ f(θ0),

∫
f(θ).

π̄(m)(dθ)

π̄(θ)
→ (−1)mf (m)(θ0)

where for the second result f is an m-times differentiable at a neighborhood of θ = θ0.

Note that a(2)(θ0) = 0. So after taking the weak limit of
∫
λ(θ)π̄(θ) as π̄(θ)→ δθ0(θ),

one has

Pθ0
[
θ0 ≤ θ(1−α)(X,G)

]
= 1− α +

φ(zα)∆1(θ0)

n
1
2

+
φ(zα)zα∆2(θ0)

n
+ o(n−1)

where

∆1(θ0) = I
− 1

2
θ0

∂
∂θ
J(θ0, θ)

J(θ0, θ0)

∣∣∣∣
θ0

+
∂I
− 1

2
θ

∂θ

∣∣∣∣
θ0

,

∆2(θ0) =

{(
α′(θ) + α(θ)

J ′(θ0, θ)

J(θ0, θ)

)
+

1

2
I−1
θ

J ′′(θ0, θ)

J(θ0, θ)
− d2

dθ2

[
1

2
I−1
θ

]}∣∣∣∣∣
θ0

+
Eθ0 [a1

n(X, θ0)]

zα
√
Iθ0

(4.7.26)

Eθ0 [a1
n(X, θ0)] = a1(θ0)

g2
− a2(θ0)g1

g2
2

+ o(1) Note that First term of ∆2(θ0) in (4.7.26)

(
α′(θ) + α(θ)

J ′(θ0, θ)

J(θ0, θ)

)
+

1

2
I−1
θ

J ′′(θ0, θ)

J(θ0, θ)
− d2

dθ2

[
1

2
I−1
θ

]
=

1

J(θ0, θ)

[
d

dθ
[α(θ)J(θ0,θ)]

]
+

1

2
J(θ0, θ)

−1 d

dθ

{
I−1
θ J ′(θ0, θ)− J(θ0, θ)

( d
dθ
I−1
θ

)}
= J(θ0, θ)

−1

[
d

dθ

{
α(θ)J(θ0, θ) +

1

2
I−1
θ J ′(θ0, θ)−

1

2
J(θ0, θ)

d

dθ
[I−1
θ ]

}]
(4.7.27)
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Using definition of α(θ) the R.H.S of (4.7.27) becomes

J(θ0, θ)
−1

[
d

dθ

{
1

6
I−2
θ MθJ(θ0, θ)−

1

2
I−1
θ J ′(θ0, θ)−

1

2
J(θ0, θ)

d

dθ
[I−1
θ ]

}]
= J(θ0, θ)

−1

[
d

dθ

{
1

6
I−2
θ MθJ(θ0, θ)−

d

dθ

[
1

2
I−1
θ J(θ0, θ)

]}]
(4.7.28)

Combining two estimates from (4.7.26) and (4.7.28) with taking the limit at θ = θ0 one

gets the second order term and the conclusion of the theorem follows.

�
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APPENDIXA

A.1 Auxiliary results

Lemma A.1.1. (a) For a compact set K in Rd let Fa,b(K) be the space of functions ψ : K →

R such that supx∈K |ψ(x)| ≤ a and |ψ(x)− ψ(y)| ≤ b|x− y| for all x, y ∈ K. Then for any

ε > 0 there is a finite subset Fεa,b(K) of Fa,b(K) such that for any signed measure µ

sup
ψ∈Fa,b(K)

|〈ψ, µ〉| ≤ max
g∈Fεa,b(K)

|〈g, µ〉|+ ε|µ|TV .

(b) If K = [−R,R]d for some R > 0, then FεR,1(K) can be chosen such that

|FεR,1(K)| ≤ max

{
2(2
√
d+ 1)

3

R

ε
3[ 2R

ε
(
√
d+1)]d , 1

}
.

The next lemma is straightforward.

Lemma A.1.2. Let P : Rd × B(Rd) → [0, 1] be a transition probability kernel. Fix N ≥ 1

and let y1, y2, ..., yN ∈ Rd. Let X1, X2, ..., XN be independent random variables such that

L(Xi) = δyiP. Let f ∈ BM(Rd) and let mN
0 = 1

N

∑N
i=1 δyi , m

N
1 = 1

N

∑N
i=1 δXi . Then

E|〈ψ,mN
1 −mN

0 P 〉| ≤
2‖ψ‖∞√

N
.

The following is a discrete version of Gronwall’s lemma.



Lemma A.1.3. Let {ai}∞i=0, {bi}∞i=0, {ci}∞i=0 be non-negative sequences. Suppose that

an ≤ bn +
n−1∑
k=0

ckak for all n ≥ 0.

Then

an ≤ bn +
n−1∑
k=0

[
ckbk

(
n−1∏
j=k+1

(1 + cj)

)]
for all n ≥ 0.

Lemma A.1.4. For any a, b > 0 and {Ci}i≥0 be a nonnegative sequence of elements, then

for all n ≥ 0
n∑
k=0

an−k
k∑
i=0

bk−iCi =
n∑
i=0

Ci

[
an+1−i − bn+1−i

a− b

]
.
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[5] James O Berger, José M Bernardo, and Dongchu Sun. The formal definition of reference
priors. Annals of Statistics, pages 905–938, 2009.

[6] James O Berger, Jose M Bernardo, and Dongchu Sun. Objective priors for discrete
parameter spaces. Journal of the American Statistical Association, 107(498):636–
648, 2012.

[7] James O Berger and Dongchu Sun. Objective priors for the bivariate normal model.
Annals of Statistics, pages 963–982, 2008.

[8] Dario Benedetto, Emanuele Caglioti, and Mario Pulvirenti. A kinetic equation for gran-
ular media. RAIRO-M2AN Modelisation Math et Analyse Numerique-Mathem Mod-
ell Numerical Analysis, 31(5):615–642, 1997.

[9] Dario Benedetto, Emanuelle Caglioti, José A Carrillo, and Mario Pulvirenti. A non-
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