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ABSTRACT

ABHISHEK PAL MAJUMDER: LONG TIME ASYMPTOTICS OF SOME
WEAKLY INTERACTING PARTICLE SYSTEMS AND HIGHER ORDER
ASYMPTOTICS OF GENERALIZED FIDUCIAL DISTRIBUTION
(Under the direction of Amarjit S. Budhiraja and Jan H. Hannig)

In probability and statistics limit theorems are some of the fundamental tools that rig-
orously justify a proposed approximation procedure. However, typically such results fail to
explain how good is the approximation. In order to answer such a question in a precise quan-
titative way one needs to develop the notion of convergence rates in terms of either higher
order asymptotics or non-asymptotic bounds. In this dissertation, two different problems are
studied with a focus on quantitative convergence rates.

In first part, we consider a weakly interacting particle system in discrete time, approx-
imating a nonlinear dynamical system. We deduce a uniform in time concentration bound
for the Wasserstein-1 distance of the empirical measure of the particles and the law of the
corresponding deterministic nonlinear Markov process that is obtained through taking the
particle limit. Many authors have looked at similar formulations but under a restrictive com-
pactness assumption on the particle domain. Here we work in a setting where particles take
values in a non-compact domain and study several time asymptotics and large particle limit
properties of the system. We establish uniform in time propagation of chaos along with a
rate of convergence and also uniform in time concentration estimates. We also study another

discrete time system that models active chemotaxis of particles which move preferentially
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towards higher chemical concentration and themselves release chemicals into the medium
dynamically modify the chemical field. Long time behavior of this system is studied.
Second part of the dissertation is focused on higher order asymptotics of Generalized
Fiducial inference. It is a relevant inferential procedure in standard parametric inference
where no prior information of unknown parameter is available in practice. Traditionally in
Bayesian paradigm, people propose posterior distribution based on the non-informative priors
but imposition of any prior measure on parameter space is contrary to the “no-information”
belief (according to Fisher’s philosophy). Generalized Fiducial inference is one such remedy
in this context where the proposed distribution on the parameter space is only based on the
data generating equation. In this part of dissertation we established a higher order expansion
of the asymptotic coverage of one-sided Fiducial quantile. We also studied further and found
out the space of desired transformations in certain examples, under which the transformed

data generating equation yields first order matching Fiducial distribution.
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Chapterl
INTRODUCTION

The dissertation consists of two parts. First part is concerned with some problems in
weakly interacting particle systems while second part of the dissertation is focused on higher

order asymptotic properties of Generalized Fiducial Inference.

In recent years there has been a significant research activity aimed towards understanding
the dynamics of the collective behavior of a group of interacting similarly behaving agents/
particles. Motivation for such problems comes from various examples of self-organizing
systems in biological, physical and social sciences. These include, problems of opinion dy-
namics [46], chemotaxis [15], self organized networks [56], large communication systems
[49], swarm robotics [69], etc. For additional references we refer the reader to [70] and refer-
ences therein. One of the basic challenges is to understand how a large group of autonomous

agents with decentralized local interactions gives rise to a coherent behavior.

A commonly studied mathematical formulation of such a system of particles is given in
terms of a Markov process whose transition probabilities depend on the empirical process
associated with the particle states. Starting from the work of Sznitman [74] there has been
an extensive body of work that studies law of large number behavior (Propagation of Chaos),
central limit theory (normal fluctuations from the mean) and large deviation principles for

such Markovian systems. All of these results concern the behavior of the system over a finite



time horizon. In many applications the time asymptotic behavior of the system is of central
concern. For example, stability of a communication system, steady state aggregation and self
organization in biological and chemical systems, long term consensus formation mechanisms
in opinion dynamics modeling, particle based approximation methods for invariant measures,
all rely on a careful analysis of the time asymptotic behavior of such systems. Understanding
such long time properties is the focus of first part of this dissertation. Specifically the goal of
this dissertation is to study several time asymptotic problems for certain families of weakly
interacting Markov processes. These problems include, uniform in time law of large number
results and uniform in time polynomial and exponential concentration bounds. We consider
here a mean field type interaction among the particles. General features of these particle sys-
tems include exchangeability under suitable assumptions on initial exchangeability and noise
models. Thus the empirical measure of the particle states is a natural summary statistic of
the system. There are two types of asymptotics considered here: particle limit (N — o) and
time limit (n — o0). Starting point of this work will be to identify the nonlinear dynamical
system that is obtained as the formal particle limit (N — oo) of the occupation measure at
every fixed time point. This nonlinear dynamical system can be viewed as the Kolmogorov
forward equation for a nonlinear Markov process. We give conditions on the model param-
eters that ensure stability of the nonlinear system. Next uniform in time convergence of the
particle system to the nonlinear system is established along with the the existence of a unique

fixed point under some natural integrability assumptions.

One of the main objectives of this dissertation is to quantify the convergence rates in

terms of concentration bounds. To see the basic question of interest let Ly be the empirical



-----

from the well known theorem of Varadarajan (1958) [77] that Ly converges to i weakly,
almost surely. An equivalent statement is §(Ly, 1) — 0 almost surely where (-, ) is the
bounded Lipschitz metric (metrizing the weak topology) on P(.5) (the space of all probability
measures on S). It is natural to seek a non asymptotic bound for P(8(Ly, 1) > €) in order

to see how fast 5(Ly, pt) converges to 0.

One can consider other metrics on the space of probability measures, one such choice be-
ing the Wasserstein metric. For p1, v € P,(R?) := {1 : [pu [2|Pp(dz) < oo} the Wasserstein

distance metric of order p > 1 is defined
. nf EIX — Y|P 5
Wp(% V)= b(n)f/ | | }

where the infimum is taken over all R? valued random variables X, Y defined on a common
probability space where the marginals of X, Y are respectively i and v. In our work we will
be interested in giving uniform in time concentration estimates for sup,,~, P [Wl (1 ) >
5] where /1, is the law of the nonlinear Markov process obtained as the particle limit of ;2 :=
% Zf\i ; 0xi.v which is the occupation measure of the states of IV particles {XNY

time instant n.

Finding sharp concentration bounds for P(W,(Ly, it) > ¢) is a classical problem that is
central in probability, statistics, combinatorics and informatics with a number of applications:

(see Bolley-Guillin-Villani [14], Boissard [11]). Below we will review some basic results and



techniques that have been used to obtain concentration bounds for Wp (L, 1) in the classical
iid setting. One of the key result is due to Boissard which is given in Chapter 2 as Theorem
24.1.

Suppose u, v € P(R?), the relative entropy of v with respect to i is defined as

;

Jra (log g—;) dv  when v < p,
R(v||p) =

00 otherwise.

One major ingredient in proving Boissard’s result is the Transportation inequality (in short

TI).

Definition 1.0.1. Let v : [0,00) — R be a convex, increasing left-continuous function such
that o(0) = 0. We say p € P(RY) satisfies a oT) transportation inequality if for all

v € P(RY)

aWi(pu, 7)) < R(7|p). (1.0.1)

Applications of transportation inequality include exponential concentration estimate of
pf{d(z, A) > e} (where d(z, A) is the distance from x to set A) Marton [65],[66]. A seminal
contribution of Djellout, Guilin, Wu [29] was to prove the equivalence of the transportation
inequalities with the finiteness of exponential moments of various orders. Similar results
were also derived in [13] which we use in Chapter 2. In the following section we give a

sketch of the proof of concentration bound for P(W; (L, i) > ¢) as done in [11] to see how



TI is used.

1.1 Sketch of the bound for POV, (Ly, i) > ¢€) :

We begin by illustrating a few steps and combine all of them in Step 4.

1. Following proposition can be proved by using the representation formula of R(v||u)
along with Kantorovich-Rubenstein duality of Wasserstein-1 metric[48] or alterna-

tively using large deviation techniques [47].

Proposition 1.1.1. If 1 is a measure that satisfies «(T) inequality for some convex
a(-) then for any f € Lip,(R?) (the space of all Lipschitz functions with Lipschitz

norm bounded by 1), one has for all A\ > 0

/ NS i) gy < )

where a®(\) := sup,o{A\x — a(x)} (the monotone conjugate of a(-)).

Using this proposition:

,u[f—/fd,u >e] < e Eer I

e~ (Ae=a®(), (1.1.1)

IN

Now optimizing the right hand side bound in (1.1.1) with respect to A gives (since



a®?() = a(")):
u[f—/fdu>s] < e, (1.1.2)

. Next we extend this idea to get a concentration bound for a product measure p®"
instead of p. For this we need a tensorization idea which will be illustrated in this step.

Denote
N

=1
where d(x;,y;) is the component-wise Euclidean distance in R?. From Kantorovich-

Rubenstein duality principle it can be seen that

N
1
Wi(Ly,p) = sup [NZﬂYi) —/fdu]. (1.1.3)
feLip, (rd) i=1
Note that the function (z1, ..., zx) — Wi(% S 8., 1) is a Lipschitz function on

(R*)N with Lipschitz constant 1 with respect to the distance metric d*".

. Now we will state the following tensorization lemma which states a transportation

inequality of product measures.

Lemma 1. If juy, iz € P(RY) follow TI with functions o and oy respectively; then
the product measure will also follow TI on the space of product measure with function

a10aq(t) := inf{ay(t1) + aalte) : t1 + to = t}. That is

arBas(Wy (11 © pig,v)) < R(v | iy © pa) Vv = (11, 1), v € P(RY)



where Wi (1 ® po, v) is defined with respect to the distance d2.

In general, for N > 1, and functions a4 (), ..., ay(+) in definition 1.0.1, we define
Oélm . DaN(t) = inf{al(tl) + Oég(tg) + ...+ OéN<t2) . tl + tQ + ...+ tN = t}

Since {Y;};=1.. n are iid from the measure 1, from convexity of «(-) it follows:

.....

t
a™(t) := aba...0a = Nof

) (1.1.4)

. n®N satisfies TI with function o™ (.) and with the distance metric d®". Now if f is a
Lipschitz functional on (R?)", then from (1.1.2) the concentration under product law

pu®N can be written as

PN f - /fdu > e < e ),

The following concentration bound for W; (L, +) now follows from the above obser-

vation where || f||; is the Lipschitz norm of f

PWi(Ly, ) — EWy(Ly,p) >¢] < e Vel (1.1.5)

Boissard [11] using Orlicz-norm inequality gives a representation of EW,;(Ly, 1)
from which the inequality in (1.1.5) can be used to yield an exponential bound for

PW;(Ly, ) > t). This result will be used in our study of weakly interacting particle



systems in chapter 2 (See Theorem 2.4.1).

1.2 Connection to Our Problem and Other Questions:

The sketch given in Section 1.1 essentially uses the independence of {Y;};—; ., which
fails to hold for the particle system {X>Y : i = 1,...,N},>( considered in our work.
However, as will be shown in Chapter 2 one can still apply the result of Boissard (i.e.
Theorem 2.4.1), using a coupling technique. In fact we show that under suitable condi-

tion; one can give uniform in time n exponential and polynomial concentration bounds for

Supp> P[Wl (Nﬁl, ﬂ'n) > 5} :

This uniform in time concentration result implies that the W, distance between 12 and
the unique fixed point (denoted by /i.) of the nonlinear system converges to zero as n. — 0o
and N — oo in any order. This result is key in developing particle based numerical schemes
for approximating the fixed point of the evolution equation. Such a result can also be used for
performance evaluation. Given a “cost function” ¢/ : R? — R with suitable continuity and
integrability properties the above result says that the cost per unit time, per particle measured
as - > S (XN can be well approximated by [ t(2)jie0(da) for large values of
n, N, thus the latter quantity can be taken as a measure of performance for a large system
over a long time interval. We also show that for each NNV, there is unique invariant measure
1Y of the N-particle dynamics with integrable first moment and this sequence of measures
is f100-chaotic, namely as N — oo, the projection of IIY on the first k-coordinates converges
to uZ* for every k > 1. This propagation of chaos property all the way to n = oo crucially

relies on the uniform in time convergence of uY to jis.. Such a result is important since it



says that the steady state of a N-dimensional fully coupled Markovian system has a simple

approximate description in terms of a product measure when NN is large.

As noted earlier, this dissertation is divided into two parts. The first part consists of Chap-
ter 2 and 3 and studies long time properties of large weakly interacting particles. The terms
IP and WIPS are used as abbreviations for “Intereacting Partcles” and “Weakly Interacting
Particle Systems” respectively. An outline of this part is as follows.

1.3 Outline of Part 1
e In Chapter 2, we study a discrete time version of a general Vlasov-McKean process

given as a solution of a stochastic differential equation of the form

AX () = [~ BX(t) + FX(1), pu(t)]dt + h(X (W), p()dW(K)  (13.D)

where p(t) := L£(X(¢)) (i.e. the probability distribution of X (¢)) and analyze the long
time behavior of a /V-particle weakly interacting Markov process associated with this
system. In a setting where the state space of the particles is compact such questions
have been studied in previous works, however for the case of an unbounded state space
very few results are available. Under suitable assumptions on the problem data we
study several time asymptotic properties of the N-particle system and the associated
nonlinear Markov chain. In particular we show that the evolution equation for the law
of the nonlinear Markov chain has a unique fixed point and starting from an arbitrary
initial condition convergence to the fixed point occurs at an exponential rate. The

empirical measure ¥ of the N-particles at time n is shown to converge to the law



W, of the nonlinear Markov process at time n, in the Wasserstein-1 distance, in L',
as N — oo, uniformly in n. Several consequences of this uniform convergence are
studied, including the interchangeability of the limits n — oo and N — oo and the
propagation of chaos property at n = co. Rate of convergence of 1 to p,, is studied
by establishing uniform in time polynomial and exponential probability concentration
estimates. This work has been accepted for publication in Stochastic Analysis and

Applications.

In Chapter 3, a system of /V particles in discrete time that models active chemotaxis is
introduced. This model is motivated by the following system of equations in continu-
ous time that have been proposed in bio-physics literature to describe cellular transport
mechanisms that are governed by a potential field and where the cells themselves dy-

namically influence the field through their aggregated inputs. Vi = 1,..., N

dX;(t) = [-AX;(t) + Vh(t, X;(1)]dt +dWi(t), Xi(0) = z; € R?
%h(zﬁ, r) = —ah(t,z)+ D Ah(t,x)+ %;g()(i(t), x). (1.3.2)

where h(0, -) = h(-) for some function h(-). Here W;(t),i = 1,..., N are independent
Brownian motions that drive the state process X; of the /V interacting particles. The
interaction between the particles arises indirectly through the underlying potential field
h which changes continuously according to a diffusion equation and through the aggre-
gated input of the /V particles. Diffusion of the chemical in the medium is captured by

the Laplacian in (1.3.2) and the constant o > 0 models the rate of decay or the dissipa-

10



tion of the chemical. Contribution of the agents to the chemical concentration field is
given through the last term in the equation. The function g captures the agent response
rules and can be used to model a wide range of phenomenon [70]. We introduce a dis-
crete time analogue of the above system and study the /V-particle weakly interacting
Markov process associated with it. Analogous long time asymptotic properties as for

the model in chapter 2, are studied.

11



We now describe the work in the second part of this dissertation. The philosophy of Gen-
eralized Fiducial Inference evolved from extended motivation of Fisher’s fiducial argument.
Fisher could not accept the Bayes/ Laplace postulate for the non-informative prior. He argued

that

“Not knowing the chance of mutually exclusive events and knowing the chance to be

equal are two quite different states of knowledge”[73].

He only approved the usage of Bayes’ theorem for the case of informative priors since
imposing any measure on the parameter space is contrary to “no-information” assumption.
But his proposal created some serious controversies once his contemporaries realized that this
approach often led to procedures that were not exact in frequentist sense and did not possess
other properties claimed by him. In a complete manner [51] gives a list of all references

regarding this and subsequent Fiducial approaches.

Much after Fisher, in context of generalized confidence interval Tsui, Weerahandi [76],
[80] suggested a new approach for constructing hypothesis testing using the concept of gen-
eralized P-values. Hannig, Iyer and Patterson [53] made a direct connection between fiducial
intervals and generalized confidence intervals and proved asymptotic frequentist correctness
of such intervals. These ideas took a general shape in [51] through applications in various
parametric model formulations which is now termed as Generalized Fiducial Inference
(in short GFI). From Fisher [31], [32] one of the goals of Fiducial inference have been to
formulate a clear and definite principle that would guide a statistician to a unique fiducial dis-

tribution. GFI does not have such aim and quite different from that perspective. It treats the

12



techniques as a tool in order to propose a distribution on the parameter space when no prior
information is available and uses this distribution to propose useful statistical procedures like

uncertainty quantification, or approximate confidence interval, etc.

Suppose X = G(U, 0) is the structural equation through which the data have been gener-
ated (under the randomness of U whose distribution doesn’t involve unknown parameter 6).
Generalizing Fisher’s philosophy, after observing X = x, the Fiducial distribution P9(-) of
6 is formally defined as the distribution of the solution 6 in x = G(U, #) given it exists. That
definition can be further generalized as the distribution of the weak limit (as € | 0) of the

following random quantity
arg inf [[x — G(U", 9)\}’ {inf |x - GU.0) <} (1.3.3)

conditioned on the event {infy ||x — G(U*,6)|| < €} that solution of 6 exists in € neigh-
borhood of x. The ¢ — 0 weak limit in (1.3.3) is considered as the Generalized Fiducial
Distribution (in short GFD) of §. Now using || . H = Lo, norm in (1.3.3), applying increas-
ing precision asymptotics Hannig[52] showed that the distribution of the unique weak limit

has a density of the following form

fx (x]6) Ju(X,0)

fEO%) = Jo fe (x[07) (X, 0)der”

(1.3.4)

where J, (X, 0) is the Jacobian defined in (4.1.7) of Chapter 4 which is unique up to pro-

portional scale. Note that however it might look like a posterior distribution with a data

13



dependent prior proportional to J, (X, 6) technically the derivation doesn’t involve Bayes’

Theorem.

The Generalized Fiducial Distribution enjoys a number of properties like parametrization
invariance, consistency (asymptotically attains the weak limit with a technique similar to
Bernstein-Von Misses Theorem) etc. One typical non-uniqueness problem persists due to
different choices of the data generating equations and different norms (here we exclusively
worked with L., norm). In order to remove the first problem partially we wanted to propose
an efficient data generating equation where the fiducial distribution satisfies some desired

higher order asymptotic properties.

This part of the dissertation consists of only chapter 4.

1.4 Outline of Chapter 4

In this chapter we study frequentist property of the Fiducial quantile with an exploration
of higher order asymptotics. Let .J (6, ) be the limit of the Jacobian .J,,(X, #) after suitably
scaled. Let 0,,, | (0) be the maximum likelihood of # and the Fisher information respectively.

Denote Z.J,(X, 6) oi and 2.J (6o, 9) . by Jﬁl)(x, 0,) and J@ (6,, ,,) respectively. Un-

der some general conditions, we established a higher order expansion of frequentist coverage
of the fiducial quantile. Despite similarities of 1st and 2nd order probability matching terms

with Bayesian contexts starting from the third order terms there exist significant differences

14



due to the presence of the following random quantities

~

. (1) %) (1) A
WT(Lz) (X) - \/ﬁ JIn (X7A9n) J (90, Qn)
Jn(X, 0,) J (6o, 0,)

which appear in the expansion of Fiducial quantile as an additive term. The remaining deriva-
tion follows by using Shrinkage method. Under a number of regularity assumptions the main
result regarding the frequentist coverage of the fiducial quantile ' ~%(G, X, n) of order (1—«/)

follows:

_ Cq aAl Co QAQ 1
< 11—« — > > —
Py, |6y <6 (Q,X,n)] (1 a) = + p +o(n>, where

N s 1 CA G0 I
° J<907 60) 0o 89 0o
19_0% ao(0o) g1 10 .
- - =1 ®)
= Zag2 {al(eo) Jo T 6 00 {1,2J(60,0)Ep [1)(6 | X)]} 0
10 )
“aap 0 O ; (14.1)

and for some constants ¢1 o, = ¢(24), 2.0 = ZaP(24). In (1.4.1) 2, is a (1 — «)th quantile
of normal distribution and a;(6y), as(6y) are expected scaled fluctuations of the Jacobian
Jn(X, 6p) and its derivative J,Sl)(X, 6y) respectively under true 6. Eventually we found the
transformation A(-) that yields the first order exact (i.e. A; = 0) fiducial distribution for
those pathological cases (Scaled normal family, correlation coefficient in bivariate normal

model etc).
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Chapter2
LONG TIME ASYMPTOTICS OF SOME WIPS

2.1 Introduction

Stochastic dynamical systems that model the evolution of a large collection of weakly
interacting particles have long been studied in statistical mechanics (cf. [55; 74] and refer-
ences therein). In recent years such models have been considered in many other application
areas as well, some examples include, chemical and biological systems( e.g. biological ag-
gregation, chemotactic response dynamics [40; 70; 72]), mathematical finance (e.g. mean
field games [17; 50], default clustering in large portfolios [45]), social sciences (e.g. opinion
dynamics models [22; 46]), communication systems [1; 44; 49] etc. Most of the existing
work considers behavior of systems over a finite time horizon. Here we are interested in the
time asymptotic properties. Such behavior for special families of weakly interacting particle
systems has been considered by several authors. In [27] the authors give general sufficient
conditions for a family of discrete time systems for uniform in time exponential probability
concentration estimates to hold. These conditions formulated in terms of Dobrushin’s coef-
ficient are not very restrictive when the state space of the particles is compact, however they
are hard to verify for settings with an unbounded state space. In [15] a discrete time model
with a compact state space for chemotactic cell response dynamics was studied. Several time
asymptotic results, including uniform in time law of large numbers, exponential stability of

the associated nonlinear Markov process and uniform in time convergence of a particle based



simulation scheme are established. For the setting of an unbounded state space and in con-
tinuous time, there have been several recent interesting works on granular media equations
[14; 19; 58] which establish uniform in time propagation of chaos, time uniform convergence
of simulation schemes and uniform in time exponential concentration estimates.

In current work we study a family of interacting particle systems with an unbounded state
space in discrete time. Although the form of the nonlinearity can be quite general, we require
its contribution to the dynamics to be suitably small. The weakly interacting system and the
corresponding nonlinear Markov process we consider evolves in R? and is described in terms
of a stochastic evolution equation of the following form. Denoting by X! = X% the state

of the i-th particle (i = 1, ..., N) at time instant n, the evolution is given as

v = AX)Hf(X) )+ g€ ), i=1,.,N, neNy (2.1.1)

Here pY := % Zf\il dx: is the empirical measure of the particle values at time instant n, A
is a d x d matrix, J is a small parameter, {¢: i = 1,..., N, n > 1} is an i.i.d array of R™
valued random variables with common probability law § and f : R?x P(R4) x R™ — R4, g :
R™ — R? are measurable functions, where P(IR%) denotes the space of probability measures
on R¢. Also, {X},i=1,..., N} are taken to be exchangeable with common distribution .
As will be seen in Section 2.3, the following nonlinear Markov chain will correspond to the

N — oo limit of (2.1.1).

Xnp1 = AX,, + 5f(Xn7 Mo s €n+1) + g<€n+1)a £<Xn) = Hn, 1 € Np. (2.1.2)
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where throughout we denote by £(X) the probability distribution of a random variable X
with values in some Polish space S. Stochastic evolution equations as in (2.1.1) can be used
to model many different systems with a large number of dynamic interacting particles. De-
pending on the application, { X’} can represent internal states of a collection of financial
firms, physical states of biological entities, opinions in a group of peers, loads on links in
a communication network, etc. Stochastic systems in (2.1.1) can also be viewed as discrete
time approximations for many stochastic differential equation models for weakly interacting
particles. Under conditions on f, g,6, and A we study several long time properties of the
N-particle system and the associated nonlinear Markov chain. The stochastic dynamical sys-
tem (2.1.1) can be regarded as a perturbation of a linear stable stochastic dynamical system
with a small interaction term and our results give explicit range of values of the perturbation
parameter ¢ for which the weakly interacting system has many desirable long time properties.
We are particularly interested in approximating the distribution of X, by the empirical mea-
sure Y of the particle system, uniformly in n, with explicit uniform concentration bounds.
Such results are particularly useful for developing simulation methods for approximating the
steady state distribution of mean field models such as in (2.1.2). We note here that we view
the systems (2.1.1)—(2.1.2) in two different ways. One is where NV is not too large and the
N-particle system is used to obtain a simulation based approximation to the nonlinear system
(2.1.2) and the second is when the physical system of interest is (2.1.1) but /V is too large to
allow for a tractable analysis and one instead uses (2.1.2) as a simplified approximate model.
In other words, we use the nonlinear system (2.1.2) as an intermediate model to approximate

the properties of the physical system (2.1.1) with a large N by those of a simulated system
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with a numerically tractable number of particles.

Our starting point is the evolution equation for the law of the nonlinear Markov chain
given in (2.2.2). We show in Proposition 2.3.2 that under conditions, that include a Lipschitz
property of f with the Wasserstein-1()V;) distance on the space of probability measures (As-
sumptions 1 and 2), contractivity of A (Assumption 3) and ¢ being sufficiently small, (2.2.2)
has a unique fixed point and starting from an arbitrary initial condition convergence to the
fixed point occurs at an exponential rate. Using this result we next argue in Theorem 2.3.1
that under an additional integrability condition (Assumption 4), as N — oo, the empirical
measure £) of the N-particles at time n converges to the law i, of the nonlinear Markov
process at time n, in the W, distance, in L', uniformly in n. We next study the rate of this
uniform convergence by developing suitable probability concentration estimates. Such re-
sults are useful for constructing uniform in time confidence intervals for various quantities
of interest. The first result (Theorem 2.3.2), under an assumption of polynomial moments on
the initial data and noise sequence (Assumption 4) establishes a corresponding uniform in
time polynomial concentration bound. The proof relies on an idea of restricting measures to
a compact set and estimates on metric entropy introduced in [14] (see also [79]). The basic
idea is to first obtain a concentration bound for the V; distance between the truncated law
and its corresponding empirical law in a compact ball of radius R along with an estimate on
the contribution from the region outside the ball and finally optimize suitably over R. The
last two results are concerned with exponential concentration. These impose much stronger
integrability conditions on the problem data (Assumption 5). The first considers the setting

where the initial random variables form a general exchangeable sequence and gives a con-
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centration bound with an exponential decay rate of NV a2, The second result uses exponential
concentration estimates for empirical measures of 1.i.d. sequences based on transportation
inequalities from [11; 13] (see also [13; 14; 29; 47; 48]) and considers the setting where the
initial data is i.i.d. In this case the concentration bound gives an exponential decay rate of
order V. As noted earlier, in continuous time, results analogous to those in this chapter for
the specific setting of McKean-Vlasov diffusions in a convex potential have been obtained
in many papers, however to the best of our knowledge there is no current work that covers
the discrete stochastic dynamical system setting with an unbounded state space of the form
considered here.

The following notation will be used in this work. R? will denote the d dimensional
Euclidean space with the usual Euclidean norm |.|. The set of natural numbers (resp. whole
numbers) is denoted by N (resp. Ny). Cardinality of a finite set S is denoted by |S|. For
a measurable space S, P(S) denotes the space of all probability measures on S. For x €
R?, §, is the Dirac delta measure on R that puts a unit mass at location z. The space
of real valued bounded measurable functions on S is denoted as BM(S). Borel o field
on a metric space will be denoted as B(S). C,(S) denotes the space of all bounded and
continuous functions f : S — R. The supremum norm of a function f : S — Ris || f||c =
SUp,cg | f(x)|. When S is a metric space, the Lipschitz seminorm of f is defined by || f||; =
SUp,.z, W where d is the metric on the space S. For a bounded Lipschitz function
f on S we define || f|lgr = || fll1 + ||fllo- Lip;(S) (resp. BLy(S) ) denotes the class
of Lipschitz (resp. bounded Lipschitz) functions f : S — R with ||f]|; (resp. ||f||BL)

bounded by 1. Occasionally we will suppress S from the notation and write Lip, and BL,
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when clear from the context. For a Polish space S, P(S) is equipped with the topology
of weak convergence. A convenient metric metrizing this topology on P(S) is given as
B(u,v) =sup{| [ fdu— [ fdy|: ||fllsr, <1} forp,v € P(S). For a signed measure v on
RY, we define (f,~) := [ fdvy whenever the integral makes sense. Let P; (R?) be the space

of i € P(R?) such that

mm:/mmm<m.

The space P; (R?) will be equipped with the Wasserstein-1 distance that is defined as follows:
Wi(o; v0) == inf E|X —Y]

where the infimum is taken over all R? valued random variables X,Y defined on a com-
mon probability space and where the marginals of X, Y are respectively 1o and 7. From

Kantorovich-Rubenstein duality (cf. [79]) one sees the Wasserstein-1 is same as

Wi(po, ) = sup  [{f, o — 0)l- (2.1.3)
fELipy (RT)

For a signed measure i on (S, B(.5)), the total variation norm of 1 is defined as |u|ry =
sup| fj..<1(f, 1). Convergence in distribution of a sequence { X, },>1 of S valued random
variable to X will be written as X,, = X.

A finite collection {Y7, Y5, ..., Yy} of S valued random variables is called exchangeable
if

E(YDY% s 7YN) - E(Yﬂ(1)7y7r(2)7 s 7Y7T(N))
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for every permutation 7 on the N symbols {1,2,..., N}. Let {Y;V,i = 1,.., N}x>1 be
a collection of S valued random variables, such that for every N, {YV, Y,V ... Y} is
exchangeable. Let vy = L(YN, Y, ... YY). The sequence {vy}xn>1 is called v -chaotic

(cf. [74]) forav € P(S), if forany k > 1, f1, fa, ..., fr € Cu(S), one has

k
(iRf®.0frdl.®1,vy) :H<fi;7/>- (2.1.4)

=1

lim
N—oco

Denoting the marginal distribution on first & coordinates of vy by /%, equation (2.1.4)
says that, for every k > 1, vk, — v®*,
2.2 Model Description

Recall the system of NV interacting particles in R? introduced in (2.1.1). Throughout we
will assume that {X¢,i = 1,..., N} is exchangeable with common distribution ;1o where
po € Pi(R?). Assumptions on f,6,5 and A will be introduced shortly. Note that in the
notation we have suppressed the dependence of the sequence { X!} on N. Given p € P(R?)

define a transition probability kernel P? : R? x B(RY) — [0,1] as

Pp(l’, C) = /]R 1[Am+5f(x7p7z)+g(z)ec]G(dz), (x, C) € Rd X B(Rd)

With an abuse of notation we will also denote by P? the map from BM (R%) to itself, defined
as

PPo(z) = | ou)P’(x.dy), ¢ € BMR'),z R
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For p € P(R?), let uP? € P(R?) be defined as
pP(C) = [ Pa Conlda), C € BRY,
Rd

Note that uP? = L(AX + df(X, p,€) + g(€)) when L(X,¢) = p® 6.

Under Assumptions 1 and 2 introduced in the next section it will follow that, for p, u €
Pi(RY), uPP € Pi(RY) as well. Under these conditions, one can define ¥ : P;(RY) —
P1(R?) as

V() = pP*. (2.2.1)

Then the evolution of the law of the nonlinear Markov chain given in (2.1.2) is given by the

equation
fins1 = Y(n), n € N. (2.2.2)

Using the above notation we see that (X!, ..., XN uV)isa (R?)N x P;(R?) valued discrete
time Markov chain defined recursively as follows. Let X;(N) = (X}, X2,..., X}') and let

Fo = 0{Xo(N)}. Then, for k > 1

j=1

P(Xy(N) € CIFY,) = @)L (05 P'-1)(C) VC € BRYN

N
\ i = %21:1 5X]i

\f,ﬁv = o{Xp(N)} v FN ..
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2.3 Main Results
Recall that {Xé, i =1,...,N} is assumed to be exchangeable with common distribution

Lo where pg € Py (Rd). We now introduce our assumptions on the nonlinearity.

Assumption 1. There is a measurable map D : R™ — R such that [ D(z)0(dz) = 0 < oo,

and

| f (21, g, 2) = f(22, pa, 2)]

sup < D(z), forall z € R™.
T1FT2, 1 Fp2,21,22ERY i1 pp €P1 (RY) ‘xl - x2’ + W (Ml; Mz)
(2.3.1)
Note that the Assumption 1 implies that
sup \f(x, 1, 2)| < (lz] + ||ullh)D(2) + Di(2), z € R™ (2.3.2)

(z,1) ERI X Py (RE)

where D;(z) := | f(0, do, z)|. We impose the following condition on D; and g.
Assumption 2. [ D;(2)0(dz) = ¢y < 0o, [ |g9(2)|0(dz) = ¢ < oo.

Remark 1. 1. One simple example of f that corresponds to the setting of stochastic dif-

ference equations is given as:

f(x,,u,z) = fl(xmu’) + f2<JZ,M)Z, (m,,u, Z) S Rd X Pl(Rd) x R™

where fy and fy are Lipschitz in (x, 1) and [ |z]0(dz) < oc.

24



2. Suppose fy : R x RY x R™ — R is such that for (x;,y;, 2) € RT X RIx R™, i = 1,2

| fo(z1,91,2) = fo(z2, Yo, 2)| < D(2)(|71 — 22| + 11 — w2l),

then f(x,p,z) = [ fo(z,y,2)u(dy) satisfies the Lipschitz property in (2.3.1). More
generally, suppose fy : R? x (RY)P x R™ — R is Lipschitz in the first p + 1 vari-
ables with the Lipschitz parameter D,(-) given as a function of the last variable. Then
flz pw,2) = [ flx,y1, - Yp, 2)®P (Y1, - . ., yp) satisfies the Lipschitz property (2.3.1)

with D(z) = pD,(2).
We first present a law of large numbers for p)Y as N — co. The proof is standard but
we include it here for completeness. Note that under Assumptions 1 and 2, y,, € P;(R%)

for all n € Ny. Observing that v — W (v, u,,) is a continuous map from the Polish space

(P1(RY), Wy) to R, and that Y is a P; (R?) valued random variable, we see that

Wl(:U’nNnun) = Ssup ‘<w7:u7]:[_/1%>|

1 ELipy

is a nonnegative random variable.

Proposition 2.3.1. Suppose Assumptions I and 2 hold and suppose that EW; (ul), p1o) — 0

as N — oo. Then, as N — o0,

EWy (1), ptn) — 0 (2.3.3)

foralln > 0.
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Remark 2. Note that Proposition 2.3.1 says that for all n > 0

im E sup [(¢, 1 — pa)| =0,

1
N—o0 WELp,

which in particular implies that 1Y — p,, in probability, in P(R?) (with the topology of weak

convergence) as N — oo.

Next we state a “propagation of chaos” result which is an immediate consequence of

Remark 5 and exchangeability of of { X!}V ,.

Corollary 2.3.1. Suppose Assumptions 1 and 2 hold. Then for any k > 1 and n € Ny,

LOXE X2 . X — (L£(X,)®% as N — .

For a d x d matrix B we denote its norm by || B[, i.e. || B|| = sup,ega (0 |Ba

ol
Assumption 3. || A]| < 1.

A measure p* € Py (R?) is called a fixed point for the evolution equation in (2.1.2), if

p=U(u*). Let ag = 172‘(‘:1“.

Proposition 2.3.2. Suppose Assumptions 1,2 and 3 hold and that § € (0,ay). Then there

exists a unique fixed point Ji., of equation (2.2.2). Furthermore, denoting for v € Py(R?),

U () =WoW...o U(y), we have

n times

1
lim sup " log Wi (W"(7), pes) <0,

n—oo

namely V" () converges to i, as n — 0o, at an exponential rate.
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Next, we study uniform in time (i.e n) convergence of 12 to y1,, as the number of particles

N — oo. For this, we will strengthen Assumptions 1 and 2 as follows.

Assumption 4. For some o > 0

E| X" < oo, /D(z)1+°‘9(dz) =0(a) <

/(Dl(z))Ha@(dz) =) < o0, /|g(z)|1+a0(dz) = ¢ () < o0.

Theorem 2.3.1. Suppose that Assumptions 3 and 4 hold. Also suppose that § € (0, ap). Then

1. Given ¢ > 0, there exist Ny(c),no(¢) € N such that

EWi (Y pn) < e whenever n > ng(e), N > Ny(e).

2. Suppose EW, (1), j10) — 0 as N — co. Then sup,,>; EWy(ul, pi) = 0 as N — oo.

Corollary 2.3.2. Suppose Assumptions 3 and 4 hold and suppose 6 € (0, ag). Then

lim sup lim sup EW; (12, f1o0) = lim sup lim sup EW; (11 | poe) = 0. (2.3.4)

N—o00 n—oo n—o0 N—oo

The interchangeability of the limits given in Corollary 4.2.1 allows one to characterize

the large NV limit of the steady state behavior of the particle system.

Proposition 2.3.3. Suppose Assumptions 1, 2 and 3 hold and suppose § € (0,aq). Then

for every N € N, the Markov chain {X,,(N)},>o has a unique invariant measure 11Y that
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satisfies f(Rd) v |z| TIY (dz) < oo. Suppose in addition Assumption 4 holds. Then T1Y is jio.-

chaotic, where i, is as in Proposition 2.3.2.

Theorem 2.3.1 gives conditions under which W (12, u1,,) converges to 0 as N — oo, in
L', uniformly in n. The next three theorems show that under additional conditions, one can
provide concentration bounds uniformly in n which give estimates on the rate of convergence.
Recall the measure /i introduced at the beginning of Section 3.2.

With «, 01 («) defined in Assumption 4 and w as in Assumption 3, let

4o ||A||(1+a)

201 (0) (2.3.5)

a=ala):=

Theorem 2.3.2. Suppose Assumptions 3 and 4 holds. Fix vy € (0,a0) and suppose that

J € (0, min{al%a, (ap—"0)})- Let 9 = Wﬁ. Then there exists Ny € Ny and C € (0, 00)

such that for all ¢ > 0, and for all n > 0,

POV 1) > €) < POV (g, o) > 20709™) + Cre N7,

d+2
d

forall N > N, (max {1,log+€})

Remark 3. 1. Since 6 < ag — vy, we have that v > 1 and so the above theorem gives the

Jfollowing uniform concentration estimate:

sup POV (i), pin) > €) < POV (), o) > 2070¢) + Cre” TIN5,

n>1
d+2
forall N > N (max{l,log+5}) 4
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2. Under additional conditions on {Xé’N} one can give concentration bounds for the first
term on the right side of the above inequality. For example, when {Xé’N}ﬁ\il are i.i.d.
such concentration bounds can be found in Theorem 2.7 of [14]. Also, although not
pursued here, the bound obtained in Theorem 2.3.2 can be used to give an alternative

proof of Theorem 2.3.1(2).

Next we obtain exponential concentration bounds. The bounds depend in particular on
our assumptions on the initial condition. Our first result (Theorem 2.3.3) treats the case
where the initial random vector has a general exchangeable distribution while the second
result (Theorem 2.3.4) considers a more restrictive setting where the initial random vector is
1.1.d. In the second case the probabilities will decay exponentially in /N whereas in the first
case the exponent will be some dimensional dependent power of N.

We start with our main assumption for Theorem 2.3.3.
Assumption 5. (i) For some M € (1,00), D(x) < M for 0 a.e. x € R™.
(ii) There exists o € (0,00) such that [ e*®lug(dz) < oo and [ e*P1HHIEN(dz) < oco.

Theorem 2.3.3. Suppose that Assumptions 3 and 5 hold. Fix vy € (0, ay) and suppose that

d € [0, min{ag — o, % ). Then there exists Ny € N and Cy € (0,00) such that for all

e>0

PWi(py s pin) > €] < PIWi (g s o) > 207709"e] + g CreNteE

foralln >0, N > Nomax{(%log" )2 e@+2/(4=V} ifd > 1; and

P, i) > €] < PIWa(b, j1o) > 20y00"e] 4 e~ CHEADNYEE,
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foralln >0, N > Nomax{(log" 1)*2 1}, ifd = 1. Here ¥ € (1,00) is as in Theorem

2.3.2.

We note that the bounds in Theorems 2.3.2 and 2.3.3 depend on the dimension parameter
d. It will be interesting to see if one can obtain useful dimension independent bounds under
the conditions of these theorems. The following result shows that such bounds can be ob-
tained in the case where the initial distribution of the N particles is i.i.d. The proof relies on

various estimates from [11; 13].

Theorem 2.3.4. Suppose that {Xé’N}Z-:L”,N are Li.d. with common distribution g for
each N. Suppose that Assumptions 3 and 5 hold. Fix v € (0,1 — ||A||). Suppose that
oM

0 € [O, m) . Then there exist Ny, a1,a2 € (0,00) and a nonincreasing function

61 :(0,00) = (0,00) such that ¢, (t) | 0 as t 1 oo and for all ¢ > 0 and N > Nys; ()

sup PP (1, i) > €] < ageNa2(E%09)

n>0

Remark 4. 1. One can describe the function < in the above theorem explicitly. Define
for~ € (0,1), m, : (0,00) — (0,00) as m,(t) = 557, where M is as in Assumption 5.

Then

0
¢1(t) = max {1 log me(t) log Cgt 11 }
) 2 )

m2(t) T A2 27t

where C} is defined by the right side of (2.4.49) with ( replaced by (y where ( is as in

Corollary 11.

30



2. If Assumption 5 is strengthened to | e (P1@HIED* O (dz) < oo for some o > 0 then
one can strengthen the conclusion of Theorem 2.3.4 as follows: For § sufficiently small
there exist Ny, a1,as € (0,00) and a nonincreasing function ¢ : (0,00) — (0, 00)

such that &(t) L 0 ast 1 oo and forall e > 0 and N > Ny (e)

sup PPy (1Y, ) > €] < age Vo2,
n>0

2.4 Proofs

In this section we present the proofs of our main results that were presented in Section
2.3. We begin with some preliminary moment estimates.
2.4.1 Moment Bounds

The following elementary lemma will be used several times in our analysis.

Lemma 2. Suppose Assumptions I and 2 hold. Then, for every n > 1,

M, = sup max F|X,| < occ.
N>1 1<i<N

In addition, if Assumption 3 holds and § € (0, ay) then sup, ., M, < cc.

Proof. We will only prove the second statement in the lemma. Proof of the first statement

is similar. Note that, forn > land:i=1,.., N

Xi=AXD 4 6f (XL, N e+ g(éh).
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Thus
|| < NANX 3|+ 0D ()Xl + llm s l] +0D1(e) + lglen]. 24.0)
From exchangeability of {X* | k= 1,..., N} it follows that
Bl ol = B Jeldi ) = By Z| Ll = BIX
Taking expectation in (2.4.1) and using independence between ¢, and { X? 1} j=1, We have
E|X < (| Al| + 200)E| X! _,| + dco + Co. (2.4.2)

The assumption on § implies that v := || A|| +2do € (0, 1). A recursive application of (2.4.2)

now shows that

560 + C[)
1-—

BIX,| <" EI1XG| +

The result follows. U
Recall the map W defined in (2.2.1). The following lemma is a key ingredient in our

truncation arguments.

Lemma 3. Under Assumptions I and 2, for every ¢ > 0 and n > 1, there exists a compact

set K., € B(R?) such that

N2>1

sup { / Jal (1 (do) + \Ifwff_l)(dx))} <e.
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Proof. Note that for any non-negative ¢ : R? — R,

N _ 1 ~ k\ 1
B [ olando) = > BOCX) = Eo(X,) (243)

=1

Also, letting fs = df + g, by a conditioning argument we see that for any non-negative

¢RI R

E(E((¢,0x; P') | F))

=z =

E / o)W (i) (dx) =

1

-
Il

E¢ (AX; + f&(XZw Mﬁa eiH—l))

I
2|~

1

-
I

E¢(X1iz+1> = E¢(X711+1)- (2.4.4)

I
=z~

i=1

In view of the above observations it now suffices to show that
the family { X" i =1,..., N; N > 1} is uniformly integrable for every n > 0. (2.4.5)

We will prove (3.4.18) by induction on n. Once more we suppress N from the super-script.
Clearly by our assumptions { X/, = 1,..., N; N > 1} is uniformly integrable. Now suppose

that the statement (3.4.18) holds for some n. Note that

[ Xl < AT+ 0D (e DIXG]+ Nl 1] + 0D1(ey0) + g (en )|

N
) ) . 1 ) ) .
= [AlX5] +0D(e )| Xl + & > X011+ 0D1(eh 1) + lg(er41)(2:4.6)
=1
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From exchangeability it follows & >°% | | X! | = E[|X}| | GY], where G = o{& SN 6x: 1}
Combining this with the induction hypothesis that {X’ i = 1,..., N; N > 1} is uniformly
integrable, we see that { SN |Xi|, N > 1} is uniformly integrable. Here we have used
the fact that if { Z,,, & € T'1 } is a uniformly integrable family and {#, 5 € I'2} is a collection
of o-fields where I'y, I'y are arbitrary index sets, then {E£(Z, | Hp), (a, ) € Iy x I'z} is a
uniformly integrable family. Also from Assumptions 1 and 2 the families {D(¢/,, ); ¢ > 1},
{D1(€l,);i > 1} and {g(€!,,);¢ > 1} are uniformly integrable. These observations along
with independence between {¢!,,,,i = 1,.., N} and {X} : i = 1,..., N; N > 1} yield that
the family {|X’|:4=1,..., N; N > 1} is uniformly integrable. The result follows. O
2.4.2 Proof of Proposition 2.3.1

We now proceed to the proof of Proposition 2.3.1. We will argue via induction on n > 0.
By assumption (1) holds for n = 0. Assume now that it holds for some n > 0 . Note that,

Wi 1 piner) < Wy, i PP) -+ Wi () Pl Pre)

n

Wi () PP 1), (2.4.7)

Consider the last term in (3.4.27). Using Assumption 1 we see that if ¢ is Lipschitz then

Pt is Lipschitz and || P*2¢[|; < (||A|| + d0)||¢[|1. Thus, almost surely

sup [(¢, iy P'" — piny1)| = sup [(P*" ¢, ) — pin)|
@ELipy @ELipy
< (Al + 60) sup [{g, ) — pn)|
g€Lipy
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Taking expectations we obtain,
EW, (1Y P 1) < (J|A|| + 00) EWL (1Y 1) (2.4.8)

Consider now the second term in (3.4.27). Using Assumption 1 again, we have,

PELipy

N 1 & . ,
sup (0. P =Py < 13 [ 100X 4 (X €)
=1

— O(AX, + f5(X,,, 1, €)1 0(dE)

IN

SoWh (i) s fin)-

Taking expectations we get

EWi(u) Py PP) = B sup |(, uh P — ) P
PELipy (RY)

< SoEW (i), pin). (2.4.9)

Now we consider the first term of the right hand side of (3.4.27). We will use Lemma 4.7.1.

Fix € > 0 and let K, be a compact set in R? such that

awr{ [ el er) + W) | <

N>1
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Let Lip)(R?) := {¢ € Lip,(R?) : 1(0) = 0}. Then,

n N
E sup (gl = p ) =B sup (6 py — ) P
octin (R gevn) (RY)

<E sup [(plx,phyy —pl P+ (24.10)
PeLip) (R9)

We will now apply Lemma A.1.1 in the Appendix. Note that for any ¢ € Lip)(R?), sup,cx_ |¢(z)| <

diam(K,) := m..

Thus with notation as in Lemma A.1.1

N N
sup (@ Lre. iy — pn PP S max (@, gy — iy PP 26 (24.11)
peLip? (RY) PeFs,, | (Ke)

Here F, (K.)is as given in Lemma A.1.1 and we have denoted the restrictions of 1., ; and

p Prn to K, by the same symbols. Using the above inequality in (3.4.29), we obtain

N N
EWI(M£LV+1aMnNP#n> < Z E|<¢7ﬂﬁf+1 — iy PP)| + Be.

GEFs, | (Ko)

Using Lemma A.1.2 we see that the first term on the right hand side can be bounded by

Me Frfn Ke .. . . .
% Combining this estimate with (3.4.27), (3.4.34) and (2.4.9) we now have
2mE|F$n5,1 (K6)|

EW (s pns1) < (JA] 4 260) EWL (1Y 1) + + 3e. (24.12)

VN
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Sending N — oo in (3.4.31) and using induction hypothesis, we have

limsup EW (1171, fin11) < 3e.

N—oo

Since € > 0 1s arbitrary, the result follows. [
2.4.3 Proof of Proposition 2.3.2

In this section we study the asymptotics of the deterministic dynamical system (2.2.2).

We begin with the following estimate.

Lemma 4. Under Assumptions 1,2 and 3

W (V" (10), ¥ (70)) < ([[A]l + 250)" Wi (120, 0)

for any choice of iy, v0 € P1(R?).

Proof. Given jig,7 € P1(R?), let C(po,v0) = {1 € Pi(R x RY) | po(+) = p(- x
R, vo(-) = p(R? x )}. Fix 1 € C(uo,v0) and let (Xo, Yy) be R? x R? valued random
variables with distribution . Also, let {¢,},>1 be an iid sequence of random variables with

common law 6 independent of (X, Yy). Define for n > 0,

Xn+1 - AXn + 5f<Xn7 Hn, 6n+1) + g(en—l—l)a

Yop1 = AY, + 5f(Yn7 Tns En—i-l) + g(€n+1>

where 1, = £(X,,) and ~,, = L(Y,,). Then clearly 1, = V" (ug), vn = ¥Y"(75). Forn > 0,
% g yu Ho), Y i
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denote B3, = Wi (fin, Yn), n = E| X, — Y,|. Then

Bonr = sup{| [ ddpns - / by}

PELipy

= sup {‘E¢<Xn+1) - E¢(Yn+1>|}

PELipy

< Bl Xyt — Yosr| = g (2.4.13)

Also,

IN

Ont1 HAHE|Xn - Yn’ + 5E|f(Xn7 s €n+1) - f(Yn77na 5n+1)’
< [JA[E|Xn — Ya| 4+ 00 (E|X — Ya| + Wi(tn, T0))
= (Al + d0)an + 605y,

< (|A]l +260), (2.4.14)

where the second inequality in the display follows from Assumptions 1 and 3. Combining

(2.4.13) and (2.4.14) we have

B < (1Al +200)" " E| Xy — Yy

= (|l A] + 260)"" / & — ylp(dady).

We now have, on taking infimum on the right hand side of the above display over all ;1 €
C(t0,70)s that 8,41 < (JJA|| + 200)™ ! By. The result follows. O

We can now complete the proof of Proposition 2.3.2. Observe that under our assumption
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ond, x := ||A]| + 2d0 € (0,1). The first part of the proposition now follows from Lemma 4

and Banach’s fixed point theorem. Furthermore

WL (U™ (1), o) = Wi (W™ (1), U™ (1100)) < X" Wi (1, o) (2.4.15)

Second part of the proposition is now immediate. ]
2.4.4 Proof of Theorem 2.3.1

In this section we show that the empirical measure ;2 is suitably close to the law y,, of
X, for large n and N. As an immediate consequence we obtain that if z2’ converges to y

then pY conerges to fi,, as N — oo, uniformly in n. We start with the following moment

bound.

Lemma 5. Suppose that Assumptions 3 and 4 hold and suppose that § € (0, a(a)l%a) where

a(-) is as in (2.3.5). Then supy, sup,»; B| XN | < oo.

Proof. Using Assumption 3 and (2.3.2)

Xl < AN+ 01D )] (X0 + 1 1) + D1 (en'1) + g (ensa) -

Taking expectations on both sides and applying Holder’s inequality, we have, from Assump-

tion 4

E|X " < 4 A BIX T 4 4060 Vo [BIX T+ Bl [T + 4% (a)

< A% AT EIXE e 4 4260505 2B X Y] 449G, (@) (2.4.16)
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where the last line in the display follows from Jensen’s inequality: E|u)) [T =

E| [ x|l (dz)|*T> < B| [ |z|" ou (dz)| = BE|Xi* and ¢ (a) = 2%(c1(a) + é(a))

where ¢ (), ¢;(a) are as in Assumption 4.

Note that under our condition on §

k= 4V AP + 200 0] < 1.

Thus

sup B| X! "M <k B| XA + e

9
n>1 1—r

where ko = 4°¢;(«). The result follows.

We now complete the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. We will use the decomposition

n

= i =Y [ () = U ()] A [ () — " (o))
k=1

(2.4.17)

Similar decompositions have been used in previous works on interacting particle systems (cf.

[25; 26]). It then follows using Lemma 4 that with y = (||A|| + 2d0), almost surely

Wi s pm) <Y W (), O R (0 () + W (8™ (1), W7 (o)

k=1

< D XM T ) + X WA (g o).
k=1
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Taking expectations,

n

EW(i i) <Y X" EWL(Y, O () + X EWa(g) o)
k=1

Since a(ap)/1+0) — agas ap — 0 and § € (0,a0), we can find oy € (0, ) such that
§ € (0,a(ag)/***0)). From Lemma 5 we then have that sup -, sup,>; E|X}['T* < oo
and consequently the family {X! i = 1,..,N,N > 1,n > 1} is uniformly integrable.
Similar to the proof of Corollary 4.7.1 (cf. the argument below (2.4.6)) using (3.4.16) and

(3.4.17) it follows that, for some compact K, C R?

sup supE/ 2| [ (dx) + U (pd ))(dx)] < e (2.4.19)
Ke

N>1n>1

Now for every k > 1

EWl(M]kVa‘I’WkN—l)) = FE sup ’<f,M]kV_\I'(MkN—1)>‘
feLp?d(RY)

< E sup [(flx.,pmp — V(g )| +e
fevip (R9)

when Lip! (R?) is as introduced above (3.4.29). Applying Lemmas A.1.1 and A.1.2 as in the

proof of Proposition 2.3.1 we now see that

2m,

VN

EWi (i, W (1)) < [, 0 (Kol == + 3¢,
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where m, = diam(K,). Thus

n

2m
EWi( i) < Y X" FAIFS, (K| ==
o VN

+ 3¢} + X"EWi (1, o)

< AR, 1 (KO

2m 1
S+ 2} —— X" EWL (1l o). (2.4.20
\/N }1 — X X 1(MO MO) ( )

Given € > 0, choose € sufficiently small and N, sufficiently large such that VN > N

+ 2¢} ! <
6—
1—x

{1, 1 (o))

DN ™

2m,
vN
Choose ng large enough so that Vn > ng, 2x" ||pol|1 < 5. Combining the above estimates

we have VN > Ny, and n > ng EW; (u, j1,,) < e. This proves the first part of the theorem.

Second part is immediate from the first part and Proposition 2.3.1. [

Corollary 4.2.1 is an immediate consequence of Theorem 2.3.1.

2.4.5 Proof of Corollary 4.2.1

Note that

Combining this with (2.4.20) we have

2me. 1 n
EWl(:u'r]anuOO) < (|F:n€,1(Ke)|\/N + 26) —X +X EWl(M(J)Vv/LO) + Wl(unmuoo)'
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The result now follows on using Proposition 2.3.2. [

We now consider invariant measures of the Markov chain { X (V) }ren, -
2.4.6 Proof of Proposition 2.3.3

For N > 1 and n € Ny, define IIY € P((RY)N) as

Oy = L3 EBe(XMY, XYY ge BM(RYY)  (2421)
7j=1

n-

where { X", j € No,i = 1,.., N} are as defined in (2.1.1).

From Lemma 19 it folows that, for each N > 1, the sequence {IIY n > 1} is relatively
compact and using Assumption 1 it is easy to see that any limit point [T1Y of IIV (as n — 00)
is an invariant measure of the Markov chain {X,,(/V)},>o and from Lemma 19 it satisfies
i) (RN |z| TIY (dx) < oo. Uniqueness of an invariant measure can be proved by the following
simple coupling argument (see for example [12]): Suppose I1%, f[évo are two invariant mea-
sures that satisfy f(Rd)N lz| TTY (dz) < oo, f(]Rd)N |z| TIN (dz) < oo. Let Xo(N) = (XN,
and X,(N) = (X?)N, with probability laws ITY and ITY respectively be given on a com-
mon probability space on which is also given an i.i.d. array of R valued random variables

{¢' i=1,...,N,n > 1} that is independent of (Xo(N), Xo(NN)) with common probability

n’
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law 0. Let,forz =1,...n,n € Ny

% % % N i N
Xn—l—l = AXn + f5(Xn’/J“n ) 6%—0—1)? Ky = N Zzl 5X7Zz
. 5 . 1 X
Xo = AX, + F5(X0, iy €nt1)s fin = N Z(SX?;’

where recall f; = 6 f + g. Using the independence of the noise sequence and Assumption 1

we have

N
: . L 1 L
ElXp = Xpal < (Al + 00) EIX, — X | + 00 > EIX) - X))

Jj=1

Letting | X, (N) — X1 (V)] = S, [0y — Koy, we have
B[ Xotr(N) = Xpn (V] < (1A]] + 200) EJ X1 (V) = Kia (V)]

Since § € (0, aq), | Al|[+200 = n € (0,1). Also, since ITY and TTY are invariant distributions,
for every n € Ny, X, 11(N) = (X7, )N, is distributed as TIY and X,,,1(N) = (X, )N, is
distributed as ITY . Thus X,,,;(N) and X,, () define a coupling of random variables with

laws ITY and ITY respectively. From (2.1.3) we then have

Wi (MY TIY) < B|| X1 (N) = X1 (N)]| = 0, asn — oo.

Thus ITY = f[]OVO which proves the uniqueness of an invariant measure with an integrable first
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moment and that, as n — oo,
oy — v, (2.4.22)

This proves the first part of the proposition.

Define ry : (RY)Y — P(RY) as

N
1
rn (T, an) = NZ wo (1,0 2y) € (RO,

LetvY = 1Y ory! and ¥ = TIY o' In order to prove that TT¥ is 11,-chaotic, it suffices

to argue that (cf. [74])

o0

v — 6, in P(P(RY), as N — oc. (2.4.23)

We first argue that as n — oo

v v in P(P(RY). (2.4.24)
It suffices to show that (F,vY) — (F,vY) for any continuous and bounded function F :

P(R?) — R. But this is immediate on observing that

(F,uly = (Fory, TINY, (F, ) = (Fory,IIY),

the continuity of the map ry and the weak convergence of 1T to TIY. Next, for any ¢/ €
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BLi(P(R%))

1 — ] —
(10, ) — (0, 0} | = IEZEM%V) — (o) < EZEWM;V,MOO)-
j=1 j=1

Fix € > 0. For every N € N there exists ny(/N) € N such that for all n > ng(N)

EWy (1) poo) < limsup EW3 (1)), 1) + €.

n—o0

Thus for alln, N € N

no(N .
o) max  EWi (), pioo) + limsup EW (1), o) + €.
n 1<j<no(N) n—00

|<¢7VTJLV> - <¢75Hoo>| S

(2.4.25)

Finally

lim sup (v, vag) — (¥, 0, )| =limsup lim [(), 1) — (¥, ..

N—oo N—o0

< lim sup lim sup EW (1)), pioe) + €

N—oo n—o00

<e

Y

where the first equality is from (3.4.90), the second uses (3.4.91) and the third is a conse-
quence of Corollary 4.2.1. Since € > 0 is arbitrary, we have (3.4.89) and the result fol-

lows. ]
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2.4.7 Proof of Theorem 2.3.2
We will first develop a concentration bound for Wi (1, W(ulY ) for each fixed n and
then combine it with the estimate in (2.4.18) in order to obtain the desired result. The first

step is carried out in the lemma below, the proof of which is given in Section 2.4.7.

Lemma 6. Suppose Assumptions 3 and 4 hold. Then, there exist a1, as,a3 € (0,00) such

that foralle, R > 0 and n € N,

N N _apNe2 RTY
PWi (i, V(1)) > €] < ag|e @R + .

forall N > max{1, a;(£)*}.

We now complete the proof of Theorem 2.3.2 using the lemma.
Proof of Theorem 2.3.2
We will make use of (2.4.18). Recall that y = ||A|| + 2d0 and by our assumption x €

(0,1). Let v = 207. Note that v < 1 — || A||. Then

P (' pin) > €] < PIUL X" W', W (it y) > (1= )" e} U

XWilug's o) > (1 = y)"e}]

IN

> POV () > v<1‘77>w]

1 —
+ P, o) > 7(77)“5]. (2.4.26)
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Let 8 = ~e. Note that ¢ = 1777 and from our choice of d, ¥ > 1. Therefore

R R
N > a1(5)d+2 V 1 implies N > al(W)dJr2 V 1 for all n € Nj.

Thus from Lemma 6, for all N > (11(%)‘“r2 Viandk=1,---,n

“a N62192("_k) R*a
PIW (g, W (ppy)) > 89" %] < as (6 o +W)

Using the above estimate in (3.4.99)

NBQﬁQi —«

n—1
s R
P () pin) > €] <ag ) (e s BW) + PIWi (g, po) > e
i=0

oo oy Nﬁ22192i a3R—o¢19 N
<as ; e RZ  + m + P[Wl (NO ,/Lo) > ’)/8]. (2.4.27)

Since ¥ > 1 we can find my = mg(¢) € N such that

9 >0 Vi > mg(0).

Thus
mo (¥ )
o0 o, NE29? o _, NB29% 0 o NE20%
E e 2 R2 = e TR + E e 27 R2
=0 i=1 mo(9)+1
o0
_ NB%9? _ Np29?
< mo(P)e” R + E (e m )
i=mg(9¥)+1
1 Np2o2
—ay
< [mo(¥) + e (2.4.28)
l—e ™ w2
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Now for fixed N > 1 choose R = 2N " Then (2.4.28) holds for all such N, R. Let
aq

Ny > 1 be large enough so that for all N > N

+‘sx.

1— e—agad+ 92Nd

> 1/2. (2.4.29)

Then letting

ay = az(mo(V) +2), a5 = a2a1+2 V%, ag = ——aga? O,

¥ —1

we have for all N > N,
L [e]
P (i, 1) > €] < age™ N + age” @ TINTTE + PIW (i), o) > el

logN Also let a7 = Alta)

as

Choose N; > N, such that for all N > Ny, Nd+2 > (d+2

Then for all N > max(Ny, (a7 log™ €)(@+2)/4)
PV (s pn) > €] < (aa + ag)e “TINTT2 + PIWi (g, 1) > el.

The result follows. ]
Proof of Lemma 6.

We now complete the proof of Lemma 6. The proof uses certain truncation ideas from

[14]. Fix e > 0. For p € P(RY), R > 0 and vy € P(Bg(0)), where B(0) = {z € R? :

49



|z| < R}, define pur € P(Br(0)) as

(A
i A) = 4 )))1{M(BR(0))¢0} +vo(A)u@ro)=0y, A € BBr(0)).

1(Br(0

For N,n € Nand R > 0,1et W () i= £ 307 (8 i PPn-t)p.
Let {Y )}, be Br(0) valued random variables which, conditionally on F.¥ ; are mutu-

ally independent and also independent of { X%V} | "and
P(Y,; € A| F)Ly) = (e P'21)p(A), A € B(BR(0)).

Define
XuN when | X5V < R,

Yi otherwise .

n
\

It is easily checked that P(Y! € A | FV ) = P(Z. € A| FY~ ) for all A and conditionally
on FN |, {Zi N | are mutually independent. Define ,un R= N ZZ 1 0zi. Using triangle

inequality we have

Wi (e, W (1)) S LB ()3, W (pd 1) + WU (), il )

AWy s ki) + Wil i ). (2.4.30)

Consider first the middle term on the right side of (2.4.30). Recall Lip!(Bz(0)) = {¢ €
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Lip,(Bg(0)) : ¢2(0) = 0}. Then

1 N 1
Wi () i) = swp [, = > (Oxiw Plomt)p — = " 6)
’ peLip) (Br(0)) NZZ1 i szl
N
= s (02 = (0 O P)R))
v Br(0)) | NV ; o
1 N
P
= sup = Z
verdBr0) NV ;

where Z;f’n = P(Z8) — (1, (5Xfiivl Ptn1) ). From Lemma A.1.1(a) there exists a finite subset

F},, (Br(0)) of Lip)(Bx(0)) such that

N N
1 1 £
( (]
sup | — E Zi < max |+ E Zial+ . (2.4.31)
on V3 ) Vo 2

’L/)GLip?(IBR ¢6F§71(BR(0)

Thus

N
1 €
PR ) i) > S B P max G320 > 5 | R

YeF 4 | (Br(0)

1 & c
<E ), PVN;Z%|>§IF,§V_1 (2.4.32)

beFL | (BR(0))

Since ¢ € Lip!(Bx(0)), |an] < 2R. So by the Azuma - Hoeffding inequality the upper-
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bound of PIWy (W) (), ul ) > €] is

< |F14%,1(BR(O))| max < |_Zzw | > 1])
YEFZ | (BR(0))
£ Ne?
< [Fri(Br(0))|2e 52
€ Ne2
< 2[F},([-R,R]%)|e”%r. (2.4.33)

From Lemma A.1.1(b) we have the following estimate

16R 2
PV ), ) > 6] < max {2, 0 VA4 D EVEI L
' €
Thus there exist k1, k2 € (0,00) such that foralln, N € N, R > 0, >0

PV (), 1l ) > €] < kol B/ v 1]e w2, (2.4.34)

For the first term in the right hand side of (2.4.30) we make use of the observation that if
fori = 1,---N, U, V* are R? valued random variables distributed according to A}, \i,

respectively then

Wi(— Z)\ ZX <—ZE|UZ Vil

=1
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Thus

Wl(qj(R)(Mg—l)"I/(/ﬁnN—ﬂ) =
1
N <

Using the definition of {Z' } we see

N

1 % 7

= SEIXY - Z | L) =
=1

IN
=]
‘Mz I

@
Il
—

From (2.4.17) we have that B :=

By < mBE|IXgN |4 —— =

Thus

PIW(UB (1)), W (pd)) > €]

IN

IN

EMZ 2|H

N
E X'LNP“"IR, E 5X1N.Pun1

i=1

E(X3Y = Z] | Bl

N
Z (XN = Vil o o | Fily]

==

B[ X521 (2.4.35)

(XN >R | Fail

B|XEN|1Fe gatisfies

K2
B(a).
- ()

N

11 ; i
EEN ZEHXTLJV - Yn‘l\Xi’NbR ‘ ‘Frjbv—l]

i=1
2 i, N
EE{‘XrJ ’1|Xf;N|>R}
2R~ 2R™“

B® < B(a). (2.4.36)

g £
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The third term in (2.4.30) can be treated similarly. Indeed, note that

N N
Wl(“ﬁ?ﬂi\[,R) < N § |Xn7N - Zn| - N E :|Xn’N - Yz |1|XfL'N|>R'
=1 i=1

Thus using the bound for the right side of the first line in (2.4.36) we have that

N
i=1

2R™¢
€

<

B(a). (2.4.37)

Using (2.4.34), (2.4.36) and (2.4.37) in (2.4.30) we have

12R™
€

E2
PN, Ui ))) > &] < kol BRI 1] a1+ B(a).

Letting k3 = 3¢ - 576k, ky = 1/576 and ks = max{ko, 12B(a)}, we have that

7k4N52 R_Oé
P[Wl(ug’qj(ur]:{—l)) > 5] < k5 (6 RZ2 + 5 )

for all N > max{1, k3(£)?*2}. This completes the proof of the lemma. O
2.4.8 Proof of Theorem 2.3.3

We will proceed as in Section 2.4.7 by first first giving a concentration bound for

Wi (', W (1))
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for each fixed n and then combining it with (2.4.18) in order to obtain a uniform in n estimate.
We begin by observing that from Assumption 5 it follows that there is a oy € (0, ] and

c2 € (0, 00) such that for all oy € [0, ay]
&) = / et P1@HR @D () < g2 (2.4.38)

Lemma 7. Suppose Assumptions 3 and 5 hold. Let v, be as in Theorem 2.3.3. Then for all

d € [0, min{ay — 7o, %}) and o € [0, ap)

a1 | X2

sup sup Fe
n>0 N>1

< 0.
Proof. Note that forn > 1
XN < NANXEN T+ oM (1G5 + 16501 ) + (6D (E5) + lga(=2))).
Taking expectations, for all a; € [0, ]

B < Bexp {ar (IANXN] + M (105 + 1611 ) + (0D1(es) + ar (D) }

< & (ay)FEexp {041 (HAH]X,ZLJ,VJ +oM <|X;Livl| + ||N1]j—1’|1>>}
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Holder’s inequality with p = (|| A|| 4+ 26M)/(||A|| + 6 M) and q = (|| A|| + 20M) /0 M gives

Bexp {ay (141132 + M (1% + 101 ) }

i 1/p 1
< (Bexp {ar(A] + 200X} (Bexp {aa(lAll + 2601111 }) .
From Jensen’s inequality and exchangeability

N
1 i
Bexp {aa(|All +260) 151} < — D Bexp {an(llA] + 20015}
=1

= Eexp {an(|lAl| + 20| X2 |}
Using this inequality in the previous display and recalling 1/p + 1/q = 1 we have
Eei ™l < E(ar)Eexp {Oél(HAH + 25M)’X2i\[1|} :
Thus for all «; € [0, ayp]
falon) == Eexp{on] X[} < Ei(n) fu-r(aarir),

where by our assumption k, = [|A|| +20M € (0, 1). Iterating the above inequality we have

foralln > 1
n—1 . L
falon) < folon) [] Ex(aar]) < folan)e Zizo ™ < fo(ay)ecz/0m)
=0
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where the second inequality is a consequence of (2.4.38). The result follows. [
The following lemma is proved in a manner similar to Lemma 6 so only a sketch is

provided.

Lemma 8. There exist iy, sy, ds € (0,00) and, for each oy € [0, 0q), B(ay) € [0,00) such

that forall e, R > 0 and n € N,

N N ~ _go N2 e~k
P[Wl<lun7\11(:un—1>> > 5] < as|e R? —|—B<C\41) €

forall N > max{1,a,(%)*}.

Proof. From Lemma 7 we have that for oy € [0, oy

sup sup max BeolXi™l < oo, (2.4.39)

n>0 N>1 {1<i<N}

Next, as in the proof of Lemma 6, we will use (2.4.30). For the middle term on the right side
of (2.4.30) we use the same bound as in (2.4.34). Now consider the first term in (2.4.30).

From (2.4.35) we have that
2
POV (W (1) W (_n)r) > €] < 2B (\XA’NHM,NDR) . (2440
From (2.4.39) it follows that for every o € [0, ap)

. i,N ~
supsup max F (|X;’N|ea1‘x" |> = B(ay) < o0.
n>0 N>1 {1<i<N}
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Applying Markov’s inequality we now have for a; € [0, )

2 .
PV (W () (i )n) > €] < Ze R B(ay), @441

The third term in (2.4.30) is bounded similarly. Indeed, as in (2.4.37) we get for o € [0, o)

PW(pl), il ) > €] < Zem ™ B(ay). (2.4.42)

(LI )

Using (2.4.34), (2.4.41) and (2.4.42) in (2.4.30) we now have for o € [0, o)

POV () (il 1)) > €] < kol CRA" v 1]emmie +

Thus with ks, k4 as in the proof of Lemma 6 and k5 = max{ks, 12} we have

_k4Ns2 - e—alR
P W) > 2] < s (&5 4 Bla) )

forall N > max{1, ks(£)*"2}. The result follows. O

We now complete the proof of Theorem 2.3.3.
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Proof of Theorem 2.3.3.
Fix ag € [0, o). Following the steps in the proof of (2.4.27), with ¥, 5 as in Theorem

2.3.2, we have from Lemma 8, for all N > dl(%)d+2 Viandk=1,---,n

T+ P () 10) > 7).

= N2 agB(ag)e iy
POV ) > o] < g 3 e 4 BB
[Wl(lun ,,LL ) > 5] — a3 — € R + /8('19 _ 1)

(2.4.43)

6N1/d+2

As before for fixed N > 1 choose R = 5,75~ Then (2.4.28) holds for all such N, R with
ay
a, replaced by as. Let Ny > 1 be large enough so that for all N > N, (2.4.29) holds with

(a1, ay) replaced by (@, az). Then letting

2
d4 = (~13<m0(’£9) + 2), C~L5 = dgdd+2192, EL@ = —B(al), C~L7 = —777 5,
1 1@ —1) e

we have for all N > N,

d
d+2

PV (Y 1) > €] < Gae™™N ™ e exp(—areN#2) + PIW (i, jio) > y0"e).

) d+2
Note that =1 exp(—a;e N7 ) < exp(—%sN%ﬁ) if N > (%) (£log* 1)d+2,
Consider now the case d > 1. Then, taking L; = max{(Z)%"2 Ny}, Ly = a4 + as,

ar

L3 = min{as, a7/2}, we have for all N > Ly max{(%log™ 1)#2 g(d+2)/(a=1)}

PV 1n) > €] < Loe 24N 4 PIWL (', 1) > v97].
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This proves the theorem for the case d > 1. Finally for d = 1, with the same choice of

L1, Ly, L, we have forall N 2 L mas{(!log™ 1)**2,1)
P[Wl(uiv,un) > 5] < LQG—L:s(E/\l)Nl/CHQ.

The result follows. O
2.4.9 Proof of Theorem 2.3.4.

In order to prove the theorem we will introduce an auxiliary sequence {Y,*" i =1,--- N},>0
such that for each n, {Y,*V 1} are i.i.d. We will then employ results from [11] and [13] in
order to give a uniform (in k) concentration bound for W (n}, u1.), where ni is the em-
pirical measure % fozl 5Yki,N. Finally we will obtain the desired concentration estimate on
Wi (pdY, py) by making use of Lemma 9 below. We begin by introducing our auxiliary sys-
tem.

An Auxiliary System.
Consider the collection of R¢ valued random variables {Y,*" i = 1,..., N},>¢ defined

as follows.

Yé’ﬁ - Asz’N + f&(Yrr?Na Hn, E;—i—l)a n 2 0

ot = Xt (2.4.44)

Note that for each n, {Y"N}N are i.i.d. In fact, since L({X" Vo1 n) = pS™, we have

LEYINYy n) = p@N Letnl = L3N dyi.x. The following lemma will give a useful
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relation between Wi (02, 11,) and Wy (12, p1,,).

Lemma 9. Suppose Assumptions 3 and 5 hold. Let x5 = || Al| + 26 M. Then for everyn > 0

and N > 1

Wi s 1) < Wiy, ) + 5MZX§_ICW1(771]€V,M)~ (2.4.45)
k=0

Proof. Since by Assumption 5 D(e) < M, we have foreachi =1,..., N

XEN =Yl < HANXEY = YN 4 SM{| XY = Vi + W (el )}

= ([l + oM XN = Yo + GMWa () i)

Thus

X5 = VL < oM (AN + 0M)™ Wi () ). (2.4.46)
k=0

Now note that

N n

1 % ) n—

WilnYor i) < 5 00 X0 = Y| < 6M Y (IA] + 6M)" W (ul jue):
=1 k=0

Using triangle inequality

Wi s kinn) < OMY (JA] + M) Wi, wi)) +
k=0

OM Y (A + 0M)" Wi, )

k=0
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Applying Lemma A.1.3 with

—n N N oM — —k
=X1"Wiln, s b ), b = — X1 Wl(nk k), p=——, n >0
X1 375 X1

where x; := || 4| + I M, we have

(n 5M . SM\"*
X3 I ) < b + Z le Wi(nl, i) <1 + —)

X1 X1
5M OM ..«
= bp1 + Z Z L+ —)"""xy Wa(nf, i)
=0 k=i+1 X1
n—i—1
i oM ..
= bni1 + Z(_>2X1 Wi, i) Z (1+ z)
i m=0
oM.,
= busa + Z SN+ S @44
1
Simplifying (3.4.108) one gets
N N N oM
Wiy i) < 5MZX Wiy, ) + ZéMx Wi ) (14 =) = 1)
= 5MZ(X1 +OM)" W (Y ).
k=0
The result now follows by an application of triangle inequality. ]

Proof of Theorem 2.3.4 is based on certain results from [11] and [13] which we sum-
marize in this section. Define ¢ : [0,00) — [0,00) as {(z) = xlogx — x + 1. With the
definition of “v satisfies Transportation inequality «(7") ” defined in (1.0.1), the following

result is established in [11].

62



Theorem 2.4.1. (Boissard [11]) Suppose that v € P(R?) satisfies a oT) inequality and
suppose that there is ¢ > 0 such that [, el (dr) < 2. Let Ly = % Zf\il 0z, where Z; are

i.i.d. with common distribution v. Then fort > 0
t
POV (L) 2 ) < exp { ~Na(F - T ) }.

where

! A
I'(C, N)) = }\I;E{Xlogct—kNoz (N)}’ (2.4.48)

a* : R — [0, 00) is defined as

a*(s) = sup{st — a(t)}1p,«)(s), s € R,
>0

‘ w

o

Y(x) = xlog(2l(x)), x > 0 and ¢y is a positive scaler depending only on d.
The following result is from [13].

Theorem 2.4.2. Let v € P(R?). Suppose that [, e*"ldv(z) < oo for some ag > 0. Then

v satisfies o(T ) inequality with

2
a(t):( t+1—1> >0 (2.4.50)
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for any
: 173 a|z—1x0]
C>2 inf —(=+log|[ e oldv(z) ) .
zo€R4,a>0 O \ 2 Rd

Exponential Integrability.

Transportation inequalities presented in Introduction require exponential integrability of

the underlying measure. In this section we show that under Assumption 5 the desired inte-

grability properties hold.

. —|lA
Lemma 10. Suppose that Assumption 5 holds and that 6 € (0, %) Then 1 = (|| Al +

20M) € (0, 1) and for all oy € |0, av)

sup [ el (de) < ([ e () exp{ 20 } |

n>0 1—ry

Proof. The property that x; € (0, 1) is an immediate consequence of assumptions on .
Let f,(ay) := [ ey, (dz).

From (2.4.1) and the condition D(e) < M we have
[ Xna| < [JA[[IXn| + M (IXnl + lunll) + 0D1(ens1) + |g(ensa)l. (2.4.51)
Using Holder’s inequality and taking exponentials we get
fog1(ay) = BeXnil - < peotllAlXal+OM(IXal+lunl1)+0D1 (ens1)+Hg(ens 1)1

= 81(al)Eeal(||A||+5M)\Xn\'i“sMHlthl. (2.4.52)
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Applying Jensen’s inequality again to the function = — exp{ a0 Mx} and observing ||z, || <

FE|X,| we have
fosi(on) < &E(aq)E[erUAIHMIXA) proeidMIXal] (2.4.53)
Note that for any two non-decreasing, non-negative functions f, g on R and any p € P(R),
[ r@stomtan) > [ rwntao) [ owta).
Using this inequality in the above display yields the following recursion
Frnr(ar) < E(ay) Bl IAIRRMIIR] = €, (ay) £ (1),
Iterating the above inequality we have, for all n > 0,
far1(an) < folan) ﬁogl(alfi]i)-
j=

Thus using (2.4.38) we see

Fari(ar) < fo(en) [ [ expfea(anrd)} < fo(on) exp{eaon Y wi}.

Jj=0 J=0

The result follows. ]
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2.4.10 Uniform Concentration Bounds for {n" }.
In this section we will give, using results of Theorem 2.4.1 and 2.4.9, uniform concentra-

tion bounds for {n)'},>1 as N — oo.

Lemma 11. Suppose that Assumption 5 holds and 6 € (0, IE‘JIV’?” ). Then the following hold.

(1) There exists a ¢y € (0, 00) such that

sup / el (dx) < 2 (2.4.54)
R4

neNp

and for all n € Ny, p,, satisfies a o(T ) inequality with o as in (2.4.50) and with
1 /3
C>Co=2v2—(Z+1log2).
Go \2

(2) Forallt > 0 andn € N

POV ) 2 0) < exp { Vool - Tule ) |

where « is defined by the right side in (2.4.50) with C replaced with Cy, I is defined
by the right side of (2.4.48) with o* replaced by of, and C} is as in (2.4.49) with

replaced with (.
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(3) There exist Ny € Nand L, € (0, 00) such that for all t € @,oo ,n € Noand N > N;
2

PO (1), pin) > t) < exp(—LyNt).

(4) There exist Ly, Ly € (0, 00) such that for all t € (0, 2] and all N > L3"%%.

POVA(n), pin) > ) < exp(—LaNt?).

Proof. (1) Suppose that the statement in (2.4.54) fails to hold for any ¢, > 0. Then there

exist sequences ny 1 oo and (x J 0 such that

/ Skl (dx) > 2. (2.4.55)
R4

From Lemma 10 it follows that {y,,, k > 1} is tight. Suppose along a further subsequence
[Ln, converges to some measure /io. Then sending £ — oo along this subsequence in (2.4.55)
and using Lemma 10 once again we arrive at a contradiction. This proves the first statement

in (1). The second statement in (1) is an immediate consequence of Theorem 2.4.2.

(2) This is immediate from part (1) and Theorem 2.4.1.
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(3) It is easy to check that for all ¢ > 0, N &€ N (see proof of Corollary 2.5 in [11])

Co
[o(CY,N) < Y R
(1 + log];VC?> -1

Thus recalling the expression for C{ in (2.4.49) we see that limy_, o SUP;> ¢, /2 [o(CY),N) =

0. Choose N; € N such that for all N > Ny and t > C/2

Fo(C?,N) <

Then forall N > Ny and t > Cj/2

t 0 1 t 1 21 (H/Cy)? t
— _ >_ — — > >
a0 (2 FO(C“N)> =1 <<1+ o)) 2 16 (1 +¢/Cy) = 48Cy

where the second inequality follows on using the inequality

xXr
Vitz—1>—— " 2>0. 2.4.56
W (2.456)

Combining this with (2) completes the proof of (3).

(4) From the proof of Corollary 2.5 of [11] it follows that for ¢ < Cj/2

POy, ptn) > 1) < AN, t) exp (—BN#*) (2.4.57)

where A(N,t) = exp (((1+N/lé\g[]g§)1/2—1)2) ,B1 = (vV2-1)?/(2C?) and B, = 4(v/2 — 1)
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From (2.4.56) note that if N > log C?

N
8logCy”

((1+ N/logC)"? —1)" >

Thus for all such N, ¢, A(N,t) < exp(8B;logC}). Thus if additionally N > 852 927 the

2

right side of (2.4.57) is bounded above by exp(—B; Nt?/2). The result follows. O
Proof of Theorem 2.3.4.
In this section we complete the proof of Theorem 2.3.4.

Fix v € (0,1 — ||A]|). From (3.4.101), for any £ > 0,

n—1
Ve 1 - Y \n—i
P[Wl(:ur]ya,un) > 8] < P[Wl(ny{y7ﬂn) > 75] +Z [Wl(m :/Lz) - §M( Y2 ) ]
i=0
= P N n) > P N n—i _7*91
V(0 pn) > 7e] + Z:; VA i) 2 50
= T+ Ty, (2.4.58)
where ¥ = X2 , which, in view of our assumption on ¢, is strictly larger than 1. Let ¢

max{i > 0: sL9" < <2}. Then

iE

_ N e z Ve i
- ZP[Wl(nn—ihun*l) ftl (5M19 Z Wl nn i Mn— l) fl (SMﬁ]

=1 =1 +1

. 0 0gCo . .
Note that since ¥ > 1 and ¢t — f—; is non-increasing, N > L3 (;)( implies N >
’Y

gC) i . . . .
L;;#f;)ﬁ) for all 7 > 0 where m, is as introduced in Remark 4. Therefore from Lemma
Yy
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11(4), for all such NV

2 POV i) 2 0] < Zexp{ LyNm3 (')}

Also, from Lemma 11(3), for all N > Ny,

n . v . |
i;l P[Wl(nn—iuﬂn—z> 5M19 ] Z;—H eXp{—Llew(gﬁ )}

0
log Cm'y(t)

Combining these estimates and letting N, = max{/Ny, L3} and & (t) = max{l, — ORRL
2

we have for all N > Ny (e)

T, <2 Z exp {—L4N(52 A 5)19’} ,

i=1

where L, = min{LQA”J—Z, Ly57}. Let ky € N be such that for all & > k, Y% > k. Then

exp{—LsN(e* Ne)}

Ty < 2kgexp {—LaN(e* Ne)} + . exp{—LsN(e? ne)}

Noting that 1 — exp {—LyN(e* Ac)} > 1/2 whenever N > ©£2(4

% V1), we see that with

g CO
my(t) 1 1 log 2
- )32 z} and N3 Il'laX{N17L3, }

Gi(t) = max{l 20

Ty < 2(ko + 2) exp {—LsN(e* Ae)} forall N > Nsqi(e). (2.4.59)
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Also from Lemma 11, for all N > N3 max{1, logcga}

7282

Ty <exp{—LsN(s* Ne)}, (2.4.60)

where Ls = min{y?Ly,vL;}. Using (2.4.59) and (2.4.60) in (3.4.109) we now get the de-
sired result with a; = 2(ko+2)+1, aa = min{ Ly, L5}, Ny = N3 and ¢; () = max{s;(¢), bﬁ—fﬁf .

]
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Chapter3
AN IP MODEL FOR ACTIVE CHEMOTAXIS

3.1 Introduction

In contrast to chapter 2 here we will study long time asymptotics of another particle
system where interactions among agents with other components of system are more involved.
We consider the following model, variations of which have been proposed (see [15],[69]
and references therein) for a number of different phenomena in social sciences, biological
systems and self organized networks. For eachi = 1,..., N X;(0) = x; € R and for a

function A(-, -) such that (0, ) = A(-),

1 n
dXi(t) = | —(I—AX,(t)+ Vh(t, Xi(t) + = Y K(X;(t),X;(t))]|dt
"o
+dWi(t),
) B
o5 h(ta) = —ah(t.x) + D Ah(tw) + ;g(xi(t), x). (3.1.1)
Here W;,7 = 1,..., N are independent Brownian motions that drive the state process

X, of the N interacting particles. The interaction between the particles arises directly from
the evolution equation (3.1.1) and indirectly through the underlying potential field & which
changes continuously according to a diffusion equation and through the aggregated input of

the IV particles. One example of such an interaction is in chemotaxis where cells preferen-



tially move towards a higher chemical concentration and themselves release chemicals into
the medium, in response to the local information on the environment, thus modifying the
potential field dynamically over time. In this context, h(t, x) represents the concentration of
a chemical at time ¢ and location z. Diffusion of the chemical in the medium is captured by
the Laplacian in (3.1.1) and the constant o > 0 models the rate of decay or dissipation of the
chemical. The first equation in (3.1.1) describes the motion of a particle in terms of diffusion
process with a drift consisting of three terms. The first term models a restoring force towards
the origin where origin represents the natural rest state of the particles. The second term is
the gradient of the chemical concentration and captures the fact that particles tend to move
particularly towards regions of higher chemical concentration. Finally the third term captures
the interaction (e.g attraction or repulsion) between the particles which is represented by the
kernel K (-,-). Note that X' = 0 corresponds to the case (1.3.2)l. Contribution of the agents
to the chemical concentration field is given through the last term in the second equation. The
function g captures the agent response rules and can be used to model a wide range of phe-
nomenon [70]. Similar models where the particles follow a chemical gradient and themselves
actively modify the chemical field, have been proposed for movement of Leukocytes, gliding
paths of Myxobacteria (See [41], [16] and references therein) and formation of ant trails etc.
However even very basic questions for this continuous time model, such as well posedness,
large IV limit behavior of fixed ¢ > 0, and characterization of the nonlinear dynamical system
are not very well understood. A precise mathematical treatment of (3.1.1) presents signifi-
cant technical obstacles and existing results in literature are limited to simulation and formal

asymptotic approximation of the system. In [15] the authors considered a discrete time model
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which captures some of the key features of the dynamics in (3.1.1) and studied several long
time properties of the system. One aspect that greatly simplified the analysis of [15] is that
the state space of the particles is taken to be a compact set in R%. However this requirement
is restrictive and may be unnatural for the time scales at which the particle evolution is being
modeled. In [69] authors had considered a number of variations of (3.1.1). The theoretical
properties obtained in this work on the long time behavior of the particle system can be also

applied for such systems with some minor modifications.

We now give a general description of the N- particle system that gives a discrete time
approximation of the mechanism outlined above. The space of real valued bounded measur-
able functions on S is denoted as BM (.S). Borel ¢ field on a metric space will be denoted
as B(.5). Cp(S) denotes the space of all bounded and continuous functions f : S — R. For a
measurable space S, P(S) denotes the space of all probability measures on S. For k € N, let

Py.(R?) be the space of ;1 € P(R?) such that

Il = ([ |ac|'%z;t<a:>)'i <o

Consider a system of N interacting particles that evolve in R¢ governed by a random dynamic
chemical field according to the following discrete time stochastic evolution equation given
on some probability space (£2,F, P). Suppose that the chemical field at time instant n is
given by a nonnegative C'* (i.e continuously differentiable) real function on R? satisfying

fRd n(x)dx = 1. Then, given that particle state at time instant n is = and the empirical
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measure of the particle states at time n is y, the particle state Xt at time (n + 1) is given as

Xt = Az +5f(Vn(z), p, z,€) + Ble), (3.1.2)

where A is a d X d matrix, J is a small parameter, ¢ is a R™ valued random variable with
probability law 6 and f : R? x P(RY) x R? x R™ — R? is a measurable function. Here
we consider a somewhat more general form of dependence of the particle evolution on the
concentration profile than the additive form that appears in (3.1.1). Additional assumptions
on A, 0, f will be introduced shortly. Nonlinearity (modeled by f and B) of the system can be
very general and as described below. Denote by X! = X" (a R? valued random variable)
the state of the i-th particle (i = 1,..., N) and by " the chemical concentration field at
time instant n. Let pi) 1= Zf\; dx: be the empirical measure of the particle values at time

instant n. The stochastic evaluation equation for the N-particle system is given as

Xopr = AX, 40V (X)), Xy €41) + Bleyy). (3.1.3)

fori=1,....N, ne Ny In(3.1.3){¢!,i=1,..,N, n>1}isani.idarray of R™ valued
random variables with common probability law 6. Here {X},7 = 1,..., N} are assumed to
be exchangeable with common distribution 1o where 11y € P;(R?). Note that in the notation
we have suppressed the dependence of the sequence { X } on N.

We now describe the evolution of the chemical field approximating the second equation

in (3.1.1) and its interaction with the particle system. A transition probability kernel on S is
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amap P : S x B(S) — [0,1] such that P(x,-) € P(S) Vz € S and for each A € B(95),
P(-,A) € BM(S). Given the concentration profile at time n is a C'' probability density
function 17 on R? and the empirical measure of the state of N-particles at time instant n is j,

the concentration probability density 7™ at time (n + 1) is given by the relation

1) = [ @Ryl i) (.14

where [ denotes the Lebesgue measure on R?, and R (,y) is the Radon-Nikodym derivative
of the transition probability kernel with respect to the Lebesgue measure [(dy) on R%. The
kernel R} is given as follows. Let P and P’ betwo transition probability kernels on R?. For

1€ P(R?) and a € (0,1) define the transition probability kernel RY on R” as
o N d d
R (x,C) = (1 —a)P(z,C) + auP'(C), z € R C € B(RY).

Here P represents the background diffusion of the chemical concentration while 0, P’ cap-
tures the contribution to the field by a particle with location x. The parameter o gives a
convenient way for combining the contribution from the background diffusion and the indi-
vidual particles. For each z € R¢ both P(x,-) and P’'(z,-) are assumed to be absolutely
continuous with respect to Lebesgue measure and throughout this chapter we will denote
the corresponding Radon-Nykodim derivatives with the same notations P(z,-) and P'(z,-)

respectively. Additional properties of P and P’ will be specified shortly. The evolution
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equation for the chemical field is then given as

M (y) = /R () B (2, )1 (de). (3.1.5)

In contrast to the model studied in Chapter 2 the situation here is somewhat more in-
volved. Note that {X,,(N)},>0 := (XIN, X2V . XVN) 4 is not a Markov process and
in order to get a Markovian state descriptor one needs to consider { X,,(N), nX },,>0 which is

a discrete time Markov chain with values in (R?)" x P(R9).

We will show that as N — oo, (u, n)),cn, converges to a deterministic nonlinear dy-
namical system (tt,, 7, )nen,. Under conditions on f, g, 6,5, A and smoothness parameters
of densities of transition kernels P, P’ we study several long time asymptotic properties of
the /V-particle system and the corresponding nonlinear limit dynamical system. The stochas-
tic dynamical system (3.1.3) - (3.1.5) can be regarded as a perturbation of a linear stable
stochastic dynamical system with a small interaction term and our results give explicit range
of values of the perturbation parameter o, « for which the weakly interacting system has de-
sirable long time properties. Stochastic systems in (3.1.3)-(3.1.5) can be viewed as discrete
time approximations of many stochastic differential equation models for weakly interacting
particles.

The gradient of a real differentiable function f on R? denoted by V f is defined as the d

dimensional vector field V f := (57’1, %7 e aa—gg;)’. For a function f : R? x R™ — R

of of of >/

Oxy Oxy’ 7 Oxy

Vaof(z,y) = (
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The function V, f(x, y) is defined similarly. Absolute continuity of a measure ¢ with respect
to a measure v will be denoted by ;1 < v. We will denote the Radon-Nikodym derivative of
1 with respect to v by %' For f € BM(S) and a transition probability kernel P on S, define
Pf e BM(S)as Pf(-) = [, f(y)P(-,dy). For any closed subset B € S, and 1 € P(B),
define 1P € P(S) as uP(A) = [, P(x, A)p(dx). For a matrix B the usual operator norm
is denoted by || B||.
3.2 Description of Nonlinear System:

We now describe the nonlinear dynamical system obtained on taking the limit N — oo of
(1, nN). Given a C! density function p on R? and i € P(R?), define a transition probability

kernel Q”* on R? as

Q" (x,C) = / L Aats £ (Vp(a)z,2)+B(z)ecy0(d2), (z,C) € R? x B(RY).

RrRm

With an abuse of notation we will also denote by Q** the map from BM (R?) to itself,

defined as

Qola) = | o)Q (. dy), 6 € BM(RY),x € B

For j1, ity € P(RY), let u@Q?* € P(R?) be defined as
pQrt(C) = | Q"M (x,O)ul(dz), C € BR?). (3.2.1)
Rd

Note that Q" = E(AX +0f(Vp(X), 1, X, €) + B(e)) where L(X,e) = p ® 0.

Define P;(R?) := {u € Pi(R?) : pu < I, % is continuously differentiable and || V% ||; <
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oo}. For notational simplicity we will identify an element in P;(R¢) with its density and
denote both by the same symbol. Define the map ¥ : P(R?) x P;(R?) — P(R?) x P(R?)

as

U(p,n) = Q™ nR3),  (n,m) € PRY) x P{(R?). (3.2.2)

Under suitable assumptions (which will be introduced in Section 3.3) it will follow that for
every (11,n) € Pi(R?) x P;(R%), nt defined by (3.1.4) is in P;(R?) and pQ™* defined by
(3.2.1) is in P;(R?). Thus (under those assumptions) ¥ is a map from P;(R?) x Pj(R?)
to itself. Using the above notation we see that {(X} ..., XN) uN nN}, oo is a (RY)N x
P1(R?) x Py (R?) valued discrete time Markov chain defined recursively as follows. Let
Xi(N) = (X}, X7, ..., X}Y), and ) be the initial chemical field which is a random element

of P;(RY). Let Fo = o{Xo(N),nd'}. Then, for k > 1

(

P(Xi(N) € CIF))) = ®@Li(8x;  QU-1#5-1)(C) VO € BR™),

uiy = % vaﬂ 5X,i=
(3.2.3)

N _ N «
M —771@—1RMN )
k—1

Fi = o{nd, Xe(N)} v FL,.
\

We will call this particle system as [PS;. We next describe a nonlinear dynamical system

which is the formal Vlasov-McKean limit of the above system, as N — oo. Given (pg, 7o) €
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P1(R?) x P;(R?) define a sequence {(fin, M) tnso in Pi(R?) x Py (RY) as

Hnt+1 = Iunan#n7 Th+1 = ﬁnRzn, n > 0. (3.2.4)

Using (3.2.2) the above evolution can be represented as

(Mn+17 77n+1) = \P(Nm ﬁn), n € Np. (3.2.5)

As in Chapter 2 the starting point of our investigation on long time asymptotics of the above
interacting particle system will be to study the stability properties of (3.2.4). We identify
n,n" € P(R?) that are equal a.e under the Lebesgue measure on R

From a computational point of view we are primarily interested in approximating (t,,, 7,,)
by (¢, 1Y) uniformly in time parameter n, with explicit uniform concentration bounds.
Such results are particularly useful for developing simulation methods for approximating the
steady state distribution of the mean field models such as in (3.2.4). We note here that we
view the systems (3.1.3)-(3.1.5) and (3.2.4) in two different ways. One is where N is not
too large and the N-particle system is used to obtain a simulation based approximation to
the invariant measure of the nonlinear system (3.2.2) and the second is when the physical
system of interest is (3.1.3),(3.1.5) but N is too large to allow for a tractable analysis and one
instead uses (3.2.4) as a simplified approximate model. In other words, we use the nonlinear
system (3.2.4) as an intermediate model to approximate the properties of the physical system
(3.1.3) with a large N by those of a simulated system with a numerically tractable number of

particles.
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The third equation in (3.2.3) makes the simulation of IIPS; numerically challenging. In
section 3.3 we will introduce another particle system referred to as [IPS, which also gives an
asymptotically consistent approximation of (3.2.4) and is computationally more tractable. We
show in Theorem 1 that under conditions that include a Lipschitz property of f (Assumptions
6 and 7), smoothness assumptions on the transition kernels of the background diffusion of the
chemical medium (Assumption 9) the Wasserstein-1()V;) distance between the occupation
measure of the particles along with the chemical medium (Y, nY) and (u,,, 7,,) converges
to 0, for every time instant n. Under an additional condition on the contractivity of A and
J, a being sufficiently small we show that the nonlinear system (3.2.5) has a unique fixed
point and starting from an arbitrary initial condition, convergence to the fixed point occurs
at a geometric rate. Using these results we next argue in Theorem 3.3.2 that under some
integrability conditions (Assumption 12-13), as N — oo, the empirical occupation measure
of the N-particles and density of the chemical medium at time instant n, namely (u\, n)
converges to (fi,,7,) in the W, distance, in L', uniformly in n. This result in particular
shows that the W, distance between (12, ") and the unique fixed point (fioo, 70) Of (3.2.5)
converges to zero as n — oo and N — oo in any order. We next show that for each /N, there
is unique invariant measure ©X of the N-particle dynamics with integrable first moment and
this sequence of measures is ji.-chaotic, namely as N — oo, the projection of ©% on the
first k-coordinates converges to u&* for every k& > 1. This propagation of chaos property
all the way to n = oo crucially relies on the uniform in time convergence of (u¥, 1Y) to
(Koo, o). Such a result is important since it says that the steady state of a N-dimensional

fully coupled Markovian system has a simple approximate description in terms of a product
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measure when N is large. This result is key in developing particle based numerical schemes
for approximating the fixed point of the evolution equation (3.2.5). Next we present some
uniform in time concentration bounds of W (1, 1) + Wi (nY, m,,). Proof is very similar to

that of Theorem 3.8 of Chapter 2 so we only provide a sketch.

3.3 Main Results:

We now introduce our main assumptions on the problem data. Recall that {X},: =
1,... N} is assumed to be exchangeable with common distribution 1io. We assume further
(0, m0) € P1(R?) x P;(RY). For a d x d matrix B we denote its norm by || B||, i.e. || B|| =

| Bz|

SupxeRd\{O} W

Assumption 6. The error distribution 0 is such that [ A;(2)0(dz) := o € (0, 00) where

Ay(e€) = sup |f(y1, pa, 1, €) —f(y27ﬂ27$276)|,3.3'1)

{z1,72,y1,y2ER® 11,2 €P1 (RY):(21,y1,11) #(T2,y2,12) } |ZE1 - I2| + ‘yl - y2| + Wl (:ulv MQ)

It follows from (3.3.1) that Vz,y € R u € P (RY),

[f (Y, s, )] < (lyl + [l + [2]) Av(e) + Az(e) (3.3.2)

where As(€) == f(0,0,¢€).
Recall the function B : R™ — R introduced in (4.1.10).

Assumption 7. The error distribution 0 is such that

/m (A=) +B(2)])0(d2) < oo
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Assumption 8. 7}’ (the density function) is a Lipschitz function on R? and n}) € P;(R?).

Assumptions 9 and 10 on the kernels P and P’ hold quite generally. In particular, they

are satisfied for Gaussian kernels.

Assumption 9. There exist | € (0,1] and Iy, € (0, 00) such that for all x,y, ',y € R?

VyP(x,y) = VP, y)| < Ip(ly—y]+ |z —2']) (3.3.3)
IV, P (v,y) — VP (2 y) < 5(ly =]+ |z —2). (3.3.4)
Furthermore
sup{|VyP(x, 0)] Vv |VyP’(x, 0)]} < 0. (3.3.5)
zERI

Using the Lipschitz property in (3.3.3) and the growth condition (3.3.5) one has the linear

growth property for some My € (0, 00)

SUPpera|Vy Pz, y)| < MY (1+ |y]). (3.3.6)

A similar inequality holds for P’ from (3.3.4) with My, € (0, c0).

Denote (1 — a)I¥ + aly, by [}5.

Assumption 10. For every f € Lip,(R?), Pf and P'f are also Lipschitz and

sup  sup Pi(@) = PI(y) =1[(P) <0

fELip1 (RY) z£ycRe |$ - ?/|
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Also I(P') defined as above for P' is finite.

Assumption 11. Both P(x,-) and P'(z,-) are such that for any compact set K C RY, the
families of probability measures {P(x,-) : v € K} and {P'(z,-) : x € K} are both

uniformly integrable.
Let max{l(P),l(P")} = lpp.

Remark 5. Assumption 10 is satisfied if P, P' are given as follows. For any f € Cy(R?), let

Pf() = Ef(91(, 1)), P'f(-) == Ef(g(,€2)) (3.3.7)

where €1, €5 are R™ valued random variables and €1, €5 and gy, g> : R x R™ — R? are

maps with following properties:

where
Gily) == sup 91(z1,y) — g1(22, ) and  Ga(y) == sup 92(71,y) — 92($2,y).(3.3'9)
T1#T2 |331 - x2’ T1F£T2 |ZL‘1 - ‘T2|

Simulation of the system (3.2.3) is numerically intractable due to the step that involves
the updating of ¥, to Y. This requires computing the integral in (3.1.4) which, since R
is a mixture of two transition kernels, over time leads to an explosion of terms in the mixture

that need to be updated. An approach (proposed in [15]) that addresses this difficulty is,
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instead of directly updating 72, to use the empirical distribution of the observations drawn
independently from 72, . This leads to the following particle system

Denote Xo(N) by (X", ..., X)) a sample of size N from y. Let M € N. The new
particle scheme will be described as a family (X (N), i, 1M )ren, of (RO x P(RY) x
P*(R?) valued random elements on some probability space defined recursively as follows.

Set Xo(N) = (X2V, . XNNY M = o, FMN = (X N(0)). For k > 1

=N _ 1N ¢
My, —NZ¢:15X;€,

P(Xi(N) € C|FIY) = @, (65; QTr70)(C) VO € BRY)Y,

(3.3.10)
' = (1= ) (SM(R1)P) + o’ P,
| A = ot X(N)) v FLY
where S (7! ) is the random measure defined as -7 M 5YI:,M where {Y"™,_; i con-

ditionally on ]:",?f fv , are M i.i.d distributed according to 7737 . We will call this particle system
as TPS,. We remark that our notation is not accurate since both the quantities /i)' , 7 depend
on M, N. The superscripts only describe the number of particles/samples used in the pro-
cedure to combine them. Note that like IPS;, here (X (N), 7 )50 is not a Markov chain
on (RH)N x Py(R?) anymore. Rather (X (k), 7}, SM(7M))r>o is a discrete time Markov
chain on (RN x Py(RY) x P, (R?).

For any random variable Z we denote E[Z|F;""] by E.""[Z]. The following result
shows that the particle systems in (3.2.3) and (3.3.10) approximate the dynamical system in

(3.2.4) as N (respectively min{ M, N'}) becomes large.
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Theorem 1. Suppose Assumptions 6,7,9 and 10 hold.

1. Consider the particle system IPS; in (3.1.3 - 3.1.5). Suppose the sampling of the ex-
changeable datapoints Xo(N) = (X¢, X2, ..., X}') is exchangeable and { L(Xo(N))} nen

is po- chaotic. Suppose EWy(n¥,no) — 0 as N — oo. Then, as N — 0o

E Wi, ) + Wi(n) )] — 0 3.3.11)

for all n > 0 where (i,,n, are as in (3.2.4).

2. Consider the second particle system [PS,. Suppose that in addition Assumption 11
holds. Suppose the sampling of the exchangeable datapoints Xo(N) = (X3, X2,..., X})

is exchangeable and {L(Xo(N))} nen is po- chaotic. Then as min{N, M} — oo

E (i), ) + Wi )] — 0 (3.3.12)

foralln > 0.

As a consequence of Theorem 1, we have a finite time propagation of chaos result of the

following form. Let v\ = L(XN X2N - XNNY

Corollary 3.3.1. Under Assumptions as in Theorem 1 the family {v } 1 is pi,, chaotic for

everyn > 1.

As noted in introduction, the primary goal is to study long time properties of (3.1.3) and

the non-linear dynamical system (3.2.4). Main contributions of the work are as follows. First
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we will identify the range of values of modeling parameters that leads to stability of the
system. Secondly, we will give non-asymptotic bounds on convergence rates of the parti-
cle system to the deterministic nonlinear dynamics that are uniform in time and study their

consequences for the steady state behavior.

Theorem 3.3.1. Suppose Assumptions (6) - (10) hold. Then there exist wy, g, 0y € (0,1)
such that whenever || Al| < wo, « € (0, ), and 6 € (0,6), the map V defined in (3.2.2) has

a unique fixed point (Jiso, 1) in P1(RY) x P (RY).

We now provide a result that will strengthen the convergence in (3.3.11) to uniform con-
vergence over all n € N and also give rates of convergence. For this result we will need the

following additional conditions.

Assumption 12. For some 7 > 0,

o € Pron(RY), / Ay (2)H70(d2) = o4 (7) < 00

/<A2(2)+|B(Z)|>1+79(d2’) — 0y(7) < 0. (3.3.13)

We need to impose the following condition on P, P’ for uniform in time convergence.

Assumption 13. For some {|z|'*7 1) < oo. There exist m_(P) and m,(P") in R™ such that

following holds for all x € R?

/d ly|" " P(x,dy) < m.(P) (1+ |z|'*7), and /d ly|"T P (z, dy) < m (P') (1+ |z|7).
R R
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Now we state a generalization of the Theorem 1, which gives the convergence rate of

E{Wi(ih , ) + W@ )} — 0

uniformly over all n» > 0 in a nonasymptotic manner.
Recall I}, 1%, introduced in Assumption 8. For o € (0,1), let [}5% = (1 — a)I¥ + aly,.

With the notations of Assumption 6 we define

1Al
o(2+1pp)

For (fin,nn), (1, 1,) € Pi(R?) x Py (RY) define the following distance on P;(R?) x
Pi(RY)

Wi (ks ) (R, 1)) = Wi ) + Wi (1, 1),

Theorem 3.3.2. Consider the particle system IPS,. Suppose Assumptions (6)-(10) and As-
sumptions (12),(13) hold for some T > 0. Let Ny := min{M, N}. Also assume § €

(0,a0), (1 —a)m,(P)<1and
max { <\|A|| +o0(2+152) +al(P')) (1 —a)l(P)} + 60 max {ol), (1—a)l¥} < 1,
Then there exists 0 < 1, and a € (0, 00) such that for each n > 0,

EWl (<ﬂ7]2[777711\4)7 (ann)) - a’enEwl ((:D’E])V7ﬁ(]]w)7 (MO?IUO)) < b(NlaTy d),
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where

Ny e i d=1,7#1,
N; ?log Ny if d=1,71=1,
_1 T
N, ?log Ny + Ny 7 if  d=2,7#1,
b(Ny,7,d) =C (3.3.14)
N; ?(log N1)? if  d=271=1,
meax{é,p%_} if d>2,7#
1 ) d—1>
_1
N; “log Ny if d>2,7’zﬁ,

and the value of the constant C' will vary for each of the cases.

Remark 6. For the particle system in (3.2.3) similar results hold N, replaced by N. For
IPS, if L(Xo(N)) is po -chaotic then one can show EW, (i}, jio) — 0 as N — oo and

recall that }! = n,. it follows from Theorem 3.3.2

sup EW, ((ﬂnNa 2", (fin, Wn)) —0

n>0

as min {N, M} — oco. Similarly for the paticle system in (3.2.3) , if EW;(n),m0) — 0 as

N — o0, and L(Xo(N)) is ug -chaotic then following holds

sup EWy (1, ), (fns 1)) — 0

n>0

as N — oo.
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One consequence of Theorems 3.3.1 and 3.3.2 will be the following interchange of limit

result.

Corollary 3.3.2. Under conditions of Theorem 3.3.2

limsup limsup EW; (1), 757, (ftoos 1))

min {N,M}—oco0 n—0c0

= limsup limsup EWi (@), 70"), (Koo, o))

n—00  min{N,M}—oc0

= 0. (3.3.15)

Suppose Assumptions of Theorem 3.3.2 hold and let (1,7 ) be the fixed point of
the map ¥ of (3.2.5). We are interested in establishing a propagation of chaos result for
n = oco. Recall for IPS,, S (7)) is the random measure defined as - >, dyi.mr Where
{YsM3y,_, .y conditionally on FMY “are M i.i.d distributed R? valued random variables

-----

with law 73 |. Denote Y,, (M) = (Y,IM ... Y, MAM),

Theorem 3.3.3. Consider the second particle system 1PSy. Suppose Assumptions 6,7,9,10

hold and suppose further

5e(0,a)), and 2(1—a)i/ Y| P'P(0, dy) < oo,
=0 R?

max { (HAH + o2+ 1N5) + al(P’)), (1- a)l(P)} + domax {all, (1 — a)IY} < 1.

Then for every N,M > 1, the Markov process (X" (n),n)', S™(n)1)) ., on (RH)N x
P;(RY) x P(R?) has a unique invariant measure ©YM if following holds Let OLNM be

the marginal distribution on (RN of the first co-ordinate of ©YM. Suppose additionally
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Assumption 8 and Assumption 12,13 hold and for some 7 > 0
(1—-a)ym_(P) < 1.

Then OLNM s 1.~ chaotic as min{ M, N} — 0, where i, is defined in Theorem 3.3.1.
Remark 7. A similar version also holds for the particle system in (3.2.3).

3.3.1 Concentration Bounds:

In this section we will give concentration bounds of (Y, 72) to (pin, nn), in Wy metric,
that are uniform in n. We established two different types of concentration bounds. The first
result considers a setting where initiallly the particles have a general exchangeable distri-
bution where as the second considers a more restrictive setting where the initial law of the

particles is iid. We will need the following additional assumptions.
Assumption 14. (i) For some K € (1,00), Ai(x) < K forf a.e. v € R™.

(ii) There exists o € (0,00) such that [ e**lug(dr) < oo and there exists a(d) € (0, )

such that

/ RO (A2(2)+@)0(dz) < 0.

With 7, 0y (7) defined above in Assumption 12 let

47T — ||AH1+T
o1(T) [1 +(1+ ZZ}SZ,)HT} '

a(t) :== (3.3.16)

Theorem 3.3.4. (Polynomial Concentration) Let Ny = min{M, N }. Suppose Assumptions
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1

(6)-(10) and Assumptions (12),(13) hold for some T > 0. Suppose that 6 € (0,a(T)™ ), (1 —

a)m,(P) < 1and

max { (||A|| +d0(2 + lZﬁ,) + O‘Z(Pl)>’ (1- Q)Z(P>} +

domax {aly, (1 —a)ly} < 1. (3.3.17)

Then there exits v > 1,v € (0,1), Ny € Ny and C; € (0, 00) such that for all € > 0, and for

alln >0,

POV 12", (ptns i) > €) < POVL((pd s md"), (pos mo)) > yv"e) + Cre™HOIN 742

a42
d

for all Ny > Ny (max {1,log" ¢})
Remark 8. 1. Similar concentration bounds hold for the particle system IPS;.

2. Note that v > 1. Under the conditions of Theorem 3.3.4(a) the following uniform in

time concentration estimate holds.

sup POV (1, m2"), (ptns 1) > €) < POVL((pd s md"), (pos mo)) > ve)+Cre UFI N, T2

n>1

a+2
d

2
forall Ny > N (maX {1, log™ 5}) . Same thing will also hold for Theorem 3.3.4(b).

Note that the bounds in Theorems 3.3.4 depend on the state dimension. The following
result shows that where initial locations of N particles are i.i.d and under additional condi-

tions on the parameters in a restricted setting one can obtain dimension independent bounds
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for d > 2.

Theorem 3.3.5. Consider the particle system TPS; with initial condition n} = ny. Suppose

that {XS’N}z‘:l,...,N are L.i.d. with common distribution i for each N. Let

coty _ max{|JA]l + 0K (1+155), olf, (1 — )l(P)}
re Al + 0K (1 +1p5) — max{al}, (1 — a)l(P)}]
C; = SKmax{l,(1 - a)¥al(P)}Co) (3.3.18)
x1 = SKmax{||A| +6K(1+Ipp), alp, (1 —a)l(P)} +Ci. (3.3.19)

Suppose that Assumptions 6,9, 10 and 14 hold with conditions x; € (0,1), 0 € [0, %)

2+, 0K

and oy < @. Then there exist ay, as, ay, ay, ay,ay € (0,00) and Ny, N1, Ny for all € > 0

such that

.

ale*N”(EQAE)l{dzl} N > Nymax{z, %},

2
_Na! e o 14\ 2
sup P[Wl(,unN,,un) > 6] S a’le N 2((]0g(2+%)) AE) 1{d:2} N > N2 max{%’ (1 g(2+;)> },

n>0 €

_ 1 (~d
allem Nz oy N > Nymax{Z, &}

\

a(d) [ A2(2)+ 1 BED?
Remark 9. 1. If Assumption 14 is strengthened to [ e ( )( s )

0(dz) < oo for
some () > 0 then one can strengthen the conclusion of Theorem 3.3.5 as follows:

For 0, « sufficiently small there exist Ny, aq, as € (0,00) and a nonincreasing function

G : (0,00) = (0, 00) such that 3(t) L 0 as t 1T oo and for all e > 0 and N > Ny (e)

sup PPy (1, ) > €] < age N2,
n>0
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2. Theorem 3.3.5 treats the system for [IPS,. For IPS, we would need to estiate in addition
Wi (SM (M), ™M 1) . However obtaining useful concentration bound for this term

appears to be a hard problem and is not addressed here.

3.4 Proofs:

The following two elementary lemmas give a basic moment bound that will be used in

the proofs. We denote the function f(-,-, -, z) + @ by fs(-, -, -, x).
Lemma 12. For an interacting particle system illustrated in (3.1.3) and (3.1.5),

1. Suppose Assumptions 6, 7 and 9 hold. Then, for everyn > 1, M, = supy>, EIX!| <

00. Moreover if ag > 0 then for 6 € (0,ag) we have  sup,,~; M,, < oo.

2. Suppose in addition Assumption 12 holds for some T > 0,a(7) > 0, and suppose

5 € (0,a(7)T). Then

sup sup E| X" |17

N>1n>1

< 00,
1
where in limit a(7) T — ag as T — 07.

Remark 10. The same bounds for sup,, supy yr>1 E| X\, | and sup,, supy y=1 E| X} 4|7

also hold for TIPS, under same conditions in part (a) and (b) similarly.

Proof of Lemma 12
1. We prove the second statement. Proof of the first statement is similar. For each n > 1

and: = 1,..., N, applying Assumption 6 on particle system in (3.1.3) with definitions
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of A;(+) and Ay(+)

Xl S NANXG] + 04 ) IV ()] + [l Il + 101 + 0A2(€5,44)

+B(6 )l

Now by Assumption 9 using DCT one has

Vi (y) = /R )V, R, )l (34.1)

for every y since from (3.3.6) sup,cga |V, RS (2,y)] < Lo [yl + supgepa (1 —
)|V, P(z,0)| + a|V,P'(z,0)|). Applying the same condition followed by the in-

equality [V1,41(y)| < Joa n(2)| VRS (2, y)|dz, one has

Vi (y)| < lPP’ ly| + cppr- (3.4.2)

Also note by exchangeability E|jp |1 = E [ ||l (dx) = E|X}|. Taking expec-
tation in (3.4.1) and using (3.4.2) and independence between €, and { X7} j=1, One

has
V,«a i V,a
EIXi,,| < (HAH +d0 (2 + zPP,) )E]Xn] +olocts +02(8)).  (3.4.3)

The assumption on ¢ implies that vy := || A|| + do (2 + lpp,> € (0,1). A recursion on

(3.4.3) will give M,, < "E|X}| + #jﬂ from which the result follows.
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2. By Holder’s inequality for any three nonnegative real numbers a4, as, as, as

(ay +ay +az+a)™ <47(a;7" + a3t + a3t +ayt). (3.4.4)

Starting with (3.4.1), applying (3.4.4), we have

. o\ L+
X[ <47 AL 4 (641 (e )1+ RS1XG)

147 T i o i |B(6; )‘ Ltr
+ (FAs(€) e [h) ot [Ar(€,11)-chp + Azl 1) + - 5+1 ] .

For any convex function ¢(-), applying Jensen’s inequality one gets ¢(||ul|1) <
[ ()| (de) = £ 32N 1¢(X7)|. Using ¢(x) = x'*7, after taking expectation one

gets following recursive equation for E| X" ,|'*7,

E|X [T < 4TI 4 6 Tou (1) [(1+ 1pp) T+ 1]1E|X£|”T

+o1HT8T [Ul(T)c}P, + 02(0, 7'):| :

Note that for our condition on 4, Ky =47 {HAH(HT) + 8oy (1) [(L+ 1) +

1} < 1. Thus

6178 (01 () Cppr + 02(6, 7))
1— K1 .

sup E| X! YT < kTE|XMT + (3.4.5)
n>1
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Lemma 13. Suppose Assumptions 6,7,9 and 10 hold.

1. Consider the particle system IPS,. Then, for everyn > 1,

(], ) < o0, sthiEﬂxl,nﬁ) < 0. (3.4.6)

Moreover if ag > 0 holds, then under conditions

o0

§ € (0,ao), and 2(1 - oz)i/ ly|P'P*(0, dy) < oo, (3.4.7)
Rd

1=0

one has sup, >, (|z|, n,) < oco.

Additionally suppose sup y~, E (|z|, ) ) < co. Then

sup sup E (|z|,n) ) < cc.
n>1 N>1
2. Suppose in addition Assumption 12,13 hold for some T > 0, a(7) > 0 and suppose 6 €
(0, a(7‘)1+%). Then with condition (1—a)m.(P) < 1 one has sup,,>, (|z|"*7,n,) < 0o
Additionally suppose sup y~, E (2|77, n’) < oo Thensup,,~, supys, E (|z|'T7, ) <

00, where in limit a(T) 7™ — ag as T — 07.

Corollary 3.4.1. For IPS, same conclusion about 7 holds as nY in first particle system
specified in Lemma 13 under same set of conditions on §, o. Note that )’ = 1, so we don’t
need to assume anything about the initial sampling scheme like sup,,~, £/ <|x|, ot > < 00

(or sup sy E (|77, 7)") < oo) since they automatically hold for ny € Pj(R?) (or ny €
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Pr. . (RY)) respectively.

Proof of Lemma 13
We will start with the second part of part (a) of the lemma. First part will follow similarly.

We will show if 1y € P;(R?) then n,, € P1(R?) for all n > 1. Note that

k

Neg1 = Z [a(1 = a) i P'PT] + (1 — o)+l PE+. (3.4.8)
i=0

From Assumption 10, it is obvious that P’ P’ f is [(P')I(P)" Lipschitz if f is a 1-Lipschitz
function. It implies |P' P! f(x) — P'Pf(0)| < I(P")I(P)|z| for any f € Lip,(R?). Since |z|

is 1-Lipschitz, one has
P'P'|lz| < I(P)I(P)|z| +/ ly| P P'(0, dy).
Rd

Using this inequality one has from (3.4.8)

(2], 1) = Z[ a(l —a) (|z], pe—i P'P")] + (1 = @) (Ja|, no P**)

< Sl - o) PP el + 031 = [ slP'P(0.dy
(1 = )l(P)* (|2],m0)

< al(P) {sup 2|, pin }Z (1 —a)I(P)] + ozZ(l — a)i/]Rd ly|P'P'(0, dy)
(1 = a)I(P)M (|, m0) - (34.9)
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By Assumption 10, [(P) < 1, implies (1 — «)l(P) < 1. From similar derivation done in
Lemma 12, one has sup,,cy (||, ptn) < 00 if 6 € (0, ap). The result follows using all the

conditions

sup {|x|, nr) < oo.
keN

For E (|z|,ny) note that for any function f,

(fimir) = Z (1= ) (f, i P'PY] + (1 — ) (f,n7 P (3.4.10)

From Lemma 12 sup,,»osupy>, E (|z|, pl ) < oo for 6 € (0, ao). Putting f(z) = |z,
then expanding <\x| M, > similarly like (3.4.9) after taking expectation one gets a similar
bound and finiteness of sup, supy~; £ (|z|,n2") follows from that.

OJ

Proof of Lemma 13(b): From (3.4.8),

(g1, |27y = Z (1= a) (i PP |27 + (1 — o) (PP |2 H7(.4.11)

From Assumption 13 we get the following recursion for a; := (uP’'P*, |z|'*7) for any mea-

sure i € Py, (RY)

= (uP' P Pla|™7) <m (P)(1+a;—1) (3.4.12)

since P|z|"*™ < m.(P)(1+|z|*™) from Assumption 13. Using the fact ag := (p, P'|z|'T7) <
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m.(P)(1+ (i, |z|**7)), we finally have

k i . ‘
(nenslal) < 0301 ) o (P (PP 1+ (ol )|
+(1 — )" {mT(P) f:((]f))__ll + mEH(P) (o, |;c|1+7>} (3.4.13)

Under condition § € (0, CL(T)H%) and (1 — a)m,(P) < 1 one gets sup,, (N, |z|**7) < oc.
Similarly the same bound can be derived for sup,, supy~; £ <\x!1+T, nN > under the same set

of conditions.

O
Proof of Corollary 3.4.1

To prove the Corollary about 72/, define the random operator S* o P acting on the
probability measure pz on R? :  ;(S™ o P) = (SM(u))P. Note the following recursive

form of 7M:

k
Mo =D [a(1 =)' P'(SM o P)] + (1 — ) l(SM o PYMH. (3.4.14)

1=0

Note that for any function f one has

E(u(S" o P), f) = E(S"(n), Pf) = (u, Pf) = (uP, f).

Now by expanding j(S™ o P)* one gets,

u(S™ o PYF = [u(S™ o PYF 1 (S o P) = SM(pu(S™ o PYFHP.
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Taking expectation one has

E(u(SM o P)* £y = E{(SM(u(SM o P)*" ") P, f)y = E{(S™ (u(S" o P)*"1) , Pf)

= E{(uSY o P)*"' Pf)=E{(u(S" o P)*'P, f).

Continuing this calculation £ — 1 times one has F < w(SMo Pk, f > = <qu, f > which leads

to the following expression

E (i i P'(SMo P),f) = EE|{m_P'(S"oP),[)

7]

= E[{p_ PP, f)] =E[{jn_, P’P'f)]. (3.4.15)

The corollary is proved by observing (3.4.15). The same bound holds for both £ <77£4 f >,
E(n, f) because of the similarity of bounds of E (f,ul), and E (f, i) for f(z) =
||, |2[**7, e®l#I” which follows from Remark 10.

OJ
3.4.1 Proof of Theorem 1

We will prove part (b) of the theorem. Part (a) will follow similarly. We will start with

the following lemma.

Lemma 14.  [. Under Assumptions 6,7,9, for every ¢ > 0 and n > 1, there exists a

compact set K. ,, € B(R?) such that

sup E {/ 2l (45 (da) + M%Q"y—l’“’ly—l(dx))} <e
M,N>1 S
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2. Suppose Assumptions 6,7,9,10,11 hold. Then for every ¢ > 0 and k > 1, there exists a

compact set K. ;. € B(R?) such that

sup B (|z].1g, ., SM(m") + ") <e.
M,N>1

Proof: Note that for any non-negative ¢ : R — R,

E¢(Xy) = Eo(Xy), (3.4.16)

=]~
WE

B [ ola)n(do) ~

B
Il
—

E(E((¢,0x; QM-1#11) | F))

=

@
Il
—

E / () QP (dr) =

B (AX? + 6 f5(X0, uN, VN (XE),é 1))

I
2|~

1

o
I

E¢(X} 1) = Eo(Xp ). (3.4.17)

I
2|~

1

)

To get the desired result from above equalities it suffices to show that

the family { X" i = 1,..., N; M, N > 1} is uniformly integrable for every n > (0(3.4.18)

We will prove (3.4.18) by induction on n. Once more we suppress N from the super-script.

Clearly by our assumptions { X{,i = 1,..., N; N > 1} is uniformly integrable. Now suppose
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that the Statement (3.4.18) holds for some n. Note that from (3.4.1) and (3.4.2)

(Xl < TANXG] + 0 A (6, )TV ()] [l [l + 1G]+ 6As(eh1) + [B(e )

< AKX+ 84 ) Nl + (1 EF)XE 4 6Aa(el ) + [B(ehy)]
106k A(c )
N
[ ) 1 7 V,a 7 7 )
< AN+ 8 (6 )5 D0 IXE + (L IR X + 6 Aalel ) + | Blehsn)
=1

+50%P’A1(62+1)

From Assumptions 6 and 7 the families {A; (¢!, );i > 1}, {Aa(el1);4 > 1} {Ba(é, ) are

(A5 o))

If {X, : @ € I'1} is uniformly integrable, and {03, 5 € I's} is a collection of o- fields

uniformly integrable. Now by exchangeability, + > | |X}| = E [|X}1|

where I'y, Iy are arbitrary index sets, then {E(X,|03), (a, ) € I'y x I'y} is also a uni-
formly integrable family. It follows that {+ SV IX%], N > 1} is a uniformly integrable
family from induction hypothesis. Using (3.4.18) again along with independence between
{ei 1i=1,...,N}and {X} :4=1,...,N; N > 1} yield that the family {| X} ,| : i =
1,...,N; N > 1} is uniformly integrable. The result follows. [J

Proof of Lemma 14(b): Note that SM (M) = L M, Oy:r Where (VMM A FYN are

i.i.d from 7727 So for any non-negative function ¢ we have

M
Blo.SM(l) = B> 607 = BB
=1

1 o
Yool
=1

= EE (") FM] = Bo(iM) = E(,i).  (3.4.19)
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We will prove the result if we can show the family

{Y;’M,i =1,...,M;M,N > 1} isuniformly integrable for every k& > 0. (3.4.20)

We will prove (3.4.20) through induction on k. For k£ = 0, the result follows trivially since
{ygM i=1,...,M; M > 1} are i.i.d from 7. Suppose it holds for k = n. We will show

that both,

{(SM(MYP:M,N>1} and {pYP :N >1} areuniformly integrable

families of probability measures. (3.4.21)

Then from the structure 7% | = (1—a)SM (7)") P +apl) P, itis evident that {772, : M, N >
1} is uniform integrable which equivalently implies {Y,;""] : i = 1,...,M; M, N > 1} is

UI too. On proving the first assertion in (3.4.21), note that due to the exchangeability of

{yiM . j=1,..., M}, one has

SM@M)P = E |8, P|o

< Z Oy M>] . (3.4.22)

We know that if {Z,,a € I'i} is a uniformly integrable family and {#Hg, 3 € I'2} is a
collection of o-fields where I'y, I'; are arbitrary index sets, then { E(Z, | Hp), (o, ) € I'; X
['5} is a uniformly integrable family. So from (3.4.22) it suffices to prove that {5YT7;',]VIP D=
1,...,M; M, N > 1} is uniformly integrable. Define a function f(.) such that, f(x) = 0,

if |z| € [0,%] and fy(x) = |z, if |z| > k and linear in between range. Then by construction
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fx(.) is Lipschitz with coefficient 2 and 2.1~k < fi(z) for all z € R?. By Assumption
11 we have that {P(z,.) : z € K} is uniformly integrable. So taking the compact set

K = {|z| < k} assuming Y,*™ has unconditional law m? for all i = 1,. .., M, the quantity

/|>L/y.1{Kc}P(z,dy)m?(dz) < /|>L [fk(y>P(Z,dy)] m?(dz)

IN

/| RO+ 21P) ] midz) (3423

< P£.(0 mi(dz 2U(P zlm?(dz). 3.4.24
_fk<>/ ndz) + <>/|Z|>L||Z<> (3.4.24)

|z|>L

The display in (3.4.23) follows from Assumption 10 and using Lipschitz property of f;. After
taking supremum in the set {¢ = 1,..., M; M, N > 1} in both sides of (3.4.24), second part
of R.H.S goes to 0, as L — oo by induction hypothesis. About the first part P f;(0) goes to 0
as k — oo by D.C.T since ([ |y|P(0, dy) < o) and also f‘Z|>L m?(dz) converges to 0 (as L
goes to 0o0) due to the tightness of {m[ : i = 1,..., M; M, N > 1} which also follows from
induction hypothesis. The second assertion that {zY P’ : N > 1} is uniformly integrable
follows similarly through induction.
0J

We will proceed to the main proof via induction on n € N for the quantity

E DY s ptn) + Wa (5 00)]
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. For n = 0, we will first show that EW, (,aév , o) — 0as N — oo. From [74] we have

(Xa,X2,..., X{) is po-chaotic < [i) converges weakly to /1 in probability

& By, o) = 0. (3.4.25)

From Lemma 14 one can construct K . compact ball containing 0, so that £ <|x! dre s iy > <

5 and <|x|.1K3€, u0> < £ hold. So using the fact for any f € Lip, (R?) with f(0) = 0, one

has [ f(z)| < ||
EWi(fig o) = E - sup  [(f, iy —po)| =E  sup | (f, 115 — ho) |
felip, (r?) fellip, (R?),f(0)=0
< B sw (g = o) |+ B (lefl, i) + (lzl i, o)
fellip, (R?),f(0)=0
< diam(Ko)EB(d, po) + €. (3.4.26)

In last display we used the fact that sup,c g, _|f(2)| < diam(Kj.). Note that 3 (', o) is
bounded by 2 (so Uniformly Integrable) and B(fil, pio) = 0 implies EB(ul, p1o) — 0 as
N — oo proving the assertion (3.3.12) for n = 0. Suppose it holds for n < k. We start with

the following triangular inequality

Wi (s 1) < Wl(ﬂﬁl,ﬂi;vQﬁg’ﬂg) WL (Y QTR N Qi

AW (Y QR ug41). (3.4.27)

Consider the third term of (3.4.27). From the general calculations follwed by (3.4.45)-
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(3.4.47), we have the following estimate,
Wi (Y QU | 1y, Qi) < <||A|| 4 o024 ZZ;",)) WY, 1) (3.4.28)

Now we consider the first term of the right hand side of (3.4.27). We will use Lemma

14(a). Fix € > 0 and let K, be a compact set in R? such that

sup B { [ el o) + Qi <da:>>} <e
K¢

N>1

Let Lip)(R?) := {f € Lip,(R?) : f(0) = 0}. Then,

_ _ =N =N B _ N N
E  sup  [g, gy — iy QET) =B sup {9, iRy — jiy Q)]
¢€Llp1(Rd) ¢€Lip(1)(Rd)

<E  sup (k. ey — I Q)| + e (3.4.29)
seLip) (r)

We will now apply Lemma A.1.1 in the Appendix. Note that for any ¢ € Lip](R),

sup |¢(x)| < diam(K,) := m,.
reK,

Thus with notation as in Lemma A.1.1

_ _ alN N _ _ =N =N
sup (¢ Lo firr — iy QTN < max (6 i — iy Q)
geLip, (r) e, (Ke

+2e. (3.4.30)
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where we have denoted the restrictions of fiy,; and fij Q" to K. by the same symbols.

Using the above inequality in (3.4.29), we obtain

EWi(ipyy, iR Q) < Y B, iy — iy Q7P| + 3e. (34.31)
PEF T, 1 (Ke)

Using Lemma A.1.2 we see that the first term on the right hand side can be bounded by

2me| FL,, | (Ko
VN

Consider the second term of R.H.S of (3.4.27). From Assumption 9 applying DCT one

has

Vir(y) = (1-a) / SM( ) () Vy Pz, y) + o | iy (d)V, P'(, y)(3.4.32)

Vne(y) = (1—a)/nk_l(dx)v—{—a/uk(dx)VyP/(:v,y). (3.4.33)

Suppose X}, is a random variable conditioned on F;"" is distributed with law Y. Then
almost surely Wi (Y Q7 A% | ilN Q7' ) is

< sup E;]gv[’N { g(AXy, + 8 f5(Vip (Xy), iy s X €))

geLip, (r4)

—g(AXy + 0 f5(V(Xp), i, X, €))

} < o BN (| Vi (Xx) — V(X))

< doti=a) [| [0 - m} (@) 9, Pt
+ioa [ \ [ At =} @0).9, ) )
< So(1—a)igWi(SM ("), nk) + Soal p Wh(fay , i) (3.4.34)

108



(3.4.34) follows by using Assumption 9. About the first term in (3.4.34) note that from

triangular inequality,

EWL (SM (1), ne) < EWL(SM ("), it + EWi (2, ). (3.4.35)

The first term in (3.4.35) can be written as

EW(SYM(m"), i) < E - sup [ (fl,, SM ) — ') |
fFeLip) (rd)
+E (lol-1xg, S @) + B (Jel a7 ) (3.4.36)

By Lemma 14(b), for a specified € > 0, one can construct a compact set K, . containing 0
such that,

sup E (|z].1k, ., SY () + ") <e.
M,N>1

Denote my, . = diam(Kj ). Using Lemma A.1.1 we have the L.H.S of (3.4.36)

EE%N[ sup |<¢-1Kk,e,SM<ﬁ£4)—ﬁé”>l}+ss
peLip (RY)

EEM,N M —M _ —M 2
k |:¢€fﬁLI:la1X(Kk,e)‘<¢’S (M) = ) || +2¢

where (3.4.36) follows from similar arguments used in (3.4.31). Note that the Lemma 14 also

suggests the compact set K, . is non-random, which only depends on £ and € only. So from
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the display above we have

EE;i”’N[ > e SMa) =gy | +26 <

PEFS, (Kk,e)

Mk .e,1
Y Ele,SMm) -my + 2 (3.4.37)
(be}—fnk,e,l(KkvE)

k,él]:wenk’e’l (Kk,e)‘

2m,
Using Lemma A.1.2 we get the final bound of the first term in RHS of (3.4.37) as Tt

Combining this estimate with (3.4.28),(3.4.31) and (3.4.34) we now have

EWi(figsrs i) < (1Al 4 602+ Ipp) + doaly) EWi (i, i)

200 (1 — a)lpmye|Fr, (Kol 2me|Fy, (Ko
Vil TN

+ (34 200(1 — a)lp) e. (3.4.38)

+o0 (1 — )L EW (2 i) +

For the term EW, (ﬁ,ﬁl, Mk+1), we start with the following recursive form

T — M = (L —a) [SY() = | P+ (1 —a) [7)" —m] P

+o [y — ] P’ (3.4.39)

which leads to the following inequality

WL (T 1, M) < (L= a)l(PYWA(SM (), ) + (1 — )L (PYWa (T me)

+al(PYWh(iy s ). (3.4.40)
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Using earlier estimates one has the final estimate for

mk,e‘ffnk’e,l(Kk,e)‘
VM
+al (PYWL (Y, i) + 2(1 — a)l(P)e. (3.4.41)

EWI(ﬁ%—lank—&-l) < 2(1—a)l(P) +(1- Oé)l(P)Wl(ﬁ;%m)

Adding (3.4.38) and (3.4.41), using induction hypothesis and sending M, N — oo we have

EWL (i1 tkn) + EWL(i g k) < (34200 (1 — a)lp +2(1 — a)l(P)) e.

Since € > 0 arbitrary, the result follows.
Part (a) can be proved similarly. The change will come from the structural difference
of 77/ and 1}’ because of the change in the updating kernel. So the term coming from the

quantity SM (M) — 7 will not appear here. Hence we get the following final estimate

E (s i) + Winiers )] < AN+ 002 + 15 p0) + doaly,

+al(P")| EWi (1), ) + [60(1 — )l + (1 — a)l(P)] EWh (", i)

2m| F¢
+3e + e

VN

(£

from which the result follows by induction.
OJ
3.4.2 Proof of Theorem 3.3.1

We will start with the following lemma and then prove the Theorem 3.3.1 using it.
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Lemma 15. Let g, pfy € P1(R?) and ng,n}y € P;(RY). Suppose Assumptions 6,7, 9 and 10
hold. Then the transformation V : P;(R?) x P;(R?) — P1(R?) x P;(RY) is well defined if

following hold

[e.9]

§<ay and » (1 —a)i/ ly|P'P(0, dy) < oc. (3.4.42)
R4

1=0

Moreover if Assumptions 9,8 and 10 hold along with the following condition:

max { <||AH +oo(2+1Y8) + al(P’)), (1- a)l(P)}

+domax {aly, (1 — )y} <1, (3.4.43)
then there exists a 0 € (0, 1) and a constant a; € (0, 00) such that for any n € N,

Wl (\pn(,u(b 770)7 \I]n(/%]? 776)) < alen-

Remark 11. Condition (3.4.43) implies the first condition of (3.4.42).

Proof of Lemma 19

For fixed ji0, ity € P1(RY) and 1, 0, € P;(RY) define the following quantities for n > 1

(fns ) = W™ (10, M0), (1. m) = 9™ (pg, 1) and W0 = 1.

First we will show that under transformation W the (fi,,, v,,) € P;(R%) x P; (R?) for (j19, 1) €

P1(RY) x P (R?), so that the quantity Wi (i, p1l,) + Wi (vn, v/,) is well defined. Note that ,
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if 5 € (0, ap), then v = || A|| + o0 (2 + ZZ;“,) € (0,1), implying

Slocys + o9

< n
<’$‘7,un>—7 <’$‘7U0>+ 1_,}/

Y

which follows similarly from the proof of Lemma 12(a). It means if § € (0,a0) and
(||, o) < oo hold, then g, € P;(R?) for all n > 1. Under conditions in (3.4.42) one also
has sup,,- (||, 7,) < oo forall n € N. One has V1,41(y) = [ (2)[Vy RS (x,y)]dx by
Assumption 9 using DCT. From that condition it follows that for any n > 1, ||Vn,(-)|1 <
(1 =)l +aly =135 < oo showing 1, € PF(R?) for all n > 0 if g € P;(RY).

Now we will go back to the proof of the second part of the lemma regarding the con-
traction part. Assume n > 2. The first term of Wy ((fin, mn), (14,,7,)) can be expressed

as

Wi (fins 1) = Wl(un_lan,l,unﬂ’M;_lQng,puLl) < Wi (ftn_ Q1 M;_lQﬂn—hM%—l)
W QU Q)

= T+ Ts. (3.4.44)

Tv = Wi(ppaQM1Frt, il QU= 1Hn1) < inf E|AX -Y
1 1 (1@ fin 1 @ )_{nyzc(x’y):(un_l7%_1)%&6} | A( )

+5[f5(V77n—1(X)7 Hn—1, Xa 6) - f5(vnn—1(y)> M%—u K E)H

IN

inf {14+ 00)EIX = Y|+ 60 B[V a (X) = Vs (V)}

{X~pn—1,Y~pl

+00W (fn—1, ty 1) (3.4.45)
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The last inequality (3.4.45) follows from Assumption 6. As a consequence of Assumption 9

from (3.4.1) it follows that

Vi (X) = Va0 < [ ()5, (0. X) = B, Ry, (oY) lds
< (1- a)/ N (2)|VyP(x, X) = V,P(z,Y)|dz
R4
+O‘|Vy:unP/(X) - vyﬂnP,(Y”

< IYSIX =Y. (3.4.46)

With that estimate, taking infimum at R.H.S of (3.4.46) with all possible couplings of (X,Y")

with marginals respectively p,,—, and !, ,, one gets
Ty = Wi (tna Q41 gty Q=1 ) < (Al + 00(2 + L)) Wi (-1, 11, 34.47)

Let X be a R valued random variable with law z/, ;. Now about the term 75,

/ 7 !
T, = Wl(,u;ann_l’M”*laM;_1Qn"*1#"71)

IN

sup  Elg(AX + 0fs(Vnu_1(X),ul, 1, X €)) —
geLip, (r?)

GAX 40 f5(Vn, (X)), 1, X, €))

IA

50F |V 1(X) = Vi, (X))

114



Now expanding |V7,,_1(X) — Vi,,_;(X)| from (3.4.1)

1, < 0B [ ns)(VR;, (o X))o~ [ o @)V, R (e X))
Rd R
< 0450/ N—2(2)E |Vypn—oP (X) = Vyut,_oP'(X)| d
Rd
+(1—a)doE| [ VP, X)(nn-2(x) = m,_5(x))dz
R4
= 7" 47 (3.4.48)
Note that

/Rd (N"Q(dy)vyp (y,2)—]

dz (3.4.49)

1) = ado [ nao) [ st
Rd Rd

u;_2<dy>vyp'<y,z>)

Since from Assumption 9 V,P’(Z, z) is a Lipschitz function with coefficient [}, the first

integrand in (3.4.49) will be bounded by %, W\ (1,2, 11,_5) which gives

T < adolY Wy (Jina, 1), (3.4.50)

)

Now using Assumption 8 the second term T2(2 gives similarly

T = (1-a)éoE RdvyP(x,X)(nH(:c)—n;ﬂ(fv))dfv
< (1-a)o / d / VP (@ y){a-2(x) = (@) o | (dy)
< (1= a)dalg Wi (-2, 1_s).- (3.4.51)
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Using the Assumption 10 we have

Wi (1, 1) < (1= )l (YW1, 1) + A (PO (1, 41, 1)  (3.4.52)

Combining (3.4.50),(3.4.51) and (3.4.52) we have the following recursion for n > 2,

Wi, 1) +Wilme,m,) < (LAl + 602 + 17 5) Wh(ttn—1, 11, )
+Oé(50l§/W1 (Nn—2> M;hz) + al<P/)'W1(Mn—17 :u;fl) + (1 - Oé)(;O'lXWl (nn—27 77;%2)

+ (1= ) (PYWi (D1, 7p_y)- (3.4.53)

Define a sequence a,, := W (tn, pl,) + Wi(nn,1,,), for n > 2 and and first two terms we set

them to be

ao 1= Wa(po, io) + Wi (o, o), ar = Walp, i) + Wi, 1)

which are well defined for 11, pfy, € P1(R) and ng, 1, € P;(R?). Then from (3.4.53) and de-
noting ¢; := max { ((HAH +60(2+1p5) + al(P’)) ,(1— a)l(P)}, ¢y := domax {aly,, (1—

a)ly } following holds

an < C1Qp_1 + Coly_o (3.4.54)
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forn > 2. Given (w, §, «v) if there exists a § € (0, 1) for which the following inequality holds

a2y (3.4.55)

then denoting A = %, we have

ay < [0 (1 — %)} 1+ 0ha, 2 & apt+Aa1 < O(an_1+ Aa,_2).

Existence of a solution 6 € (0, 1) satisfying (3.4.55) is valid under ¢; + ¢o < 1 which is

equivalent to the condition

max { (4]l + do/(2 + 7)) + al(P)). (1 - a)i(P) }

+domax {aly, (1 —a)ly} <1 (3.4.56)
in (3.4.43) satisfied by (d, «, || A||). From (3.4.56) it follows
an < an + Aan_1 < 0" ag + Aag)

for n > 2. Since

Wilm,m) = WilnoRg,,moRy) < (1 — a)l(P)Wi(no, my) + d(P)Wi (o, 1),

Wi(pa, ph) = Wi(pQ™*H, 1pQ"0) < Wi (1@, Qo) + Wi (1pQ™ ", 1y Qo)

< (Al + 602 + %) ) Wilpto, ) + 80 B [i(X) = V(X))
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where X ~ . Final estimate for a,, is

a, <"1 l(max { <||AH + 002+ 1) + al(P')), (1-— a)l(P)} + )\)ao

0 E |Vio(X) — Vi (X)) } . (3.4.57)

Since X ~ pj € Pi(R?) and Vo, Vi, have linear growth (since 19,75, € P;(R?)), the

second term inside the bracket is finite. A general formula can be observed for a,,

Wi (U™ (110, 10), B (11, 10)) < 0" | aWi((10,m0) (140> M0))

+OWL (pp QM+, u{)Q%’”ﬁ)} (3.4.58)

where

o { <||A|| +oo(2+1Y8) + al(P’)), (1- a)Z(P)} S

0

1
7

Observe that the quantity inside the bracket of RHS of (3.4.58) is finite for p, iy, € P2 (Rd)
and 1, 75, € P;(R?). Hence proved the lemma.

O

We now complete the proof of the theorem. Given [(PP’) < 1 from Assumption (10),

one can always find (wo, g, dg) € (0,1) x (0,1) x (0, 1) for which (3.4.56) holds under

HA” < Wy, o<, 0 < 50.

118



For existence we need to show that under W ((+,), (-, -)) distance P;(R?) x P;(R?) is
complete. From Lemma 19 one can choose (w, a, ) such that (3.4.43) holds. It follows
that using the 6 from that lemma the sequence {W"(1,70)}5%; is a cauchy sequence in
P1(RY) x Py (R?) which is a complete metric space under W, ((, ), (,-)) . So there exists
a (foo, Noo) € P1(R?) x P, (R?) such that W™ (g, 1m0) — (fhoo, Neo) a8 7 — 0o. Our as-
sertion for existence will be proved if we prove 7., € Pj(R?). Given the initial conditon
IVno(z)]]1 < oo, we will always have from (3.4.1) ||Vn(z)|1 < oo V k> 1. Note that

for ny € P;(RY), one has 7, € P;(R?) for all k. This implies 7., € P;(R?). So

(Itoos Moo ) € P1(RY) x PF(RY).

Observe further for 6 € (0, 1) in (3.4.58) of Lemma 19

Wl(‘l’n(ﬂo,ﬁo)a(ﬂoovﬁoo)) - Wl(‘yn(uoyﬂo)a‘l’n(ﬂwnw»

< 0" [aWh (110, m0), (Hoos M)+ OV (11se@QH>, p1oc Q)] (3.4.59)

Uniqueness of fixed points follows immediately from (3.4.59).
0J
3.4.3 Proof of Theorem 3.3.2
We will prove part (b) of the theorem. Part (a) will follow similarly. We need to prove

the following Lemma first.

Lemma 16. Consider the second particle system [PS,. Suppose all the conditions of Theorem
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3.3.2 hold. Denote Ny = min { N, M }. Then there exist a constant C' € (0, 00) such that the
upper-bound b(7, d) of the quantity sup~, EW, (i) , ), U (fin_y, Ta’,)) can be given as

b(Ny,T,d) as defined in Theorem 3.3.2. The constant C will vary for different cases.

Proof of Lemma 16

We start with the fact that

N _ _ N _ M =N v o
EWL (%), Y (F_y, Tely)) = EWA(R gy QT 70) + EWL(A ity Ry )
N M =N _ B
< EWA(, iy QU)o+ (1= a) EWA(SM (7L0), Tk )

— EWL(EY, 5, QMLm) 4 (1 — )E [EWl(SM(ﬁ,i‘{l), ﬁ,ﬁ{l)]f,ﬁ’{v] : (3.4.60)

In order to bound both terms in (3.4.60) we borrow the following formulation from [33]
about the convergence rate of empirical distribution of iid random variables to its common
distribution, where the key idea of bounding Wasserstein distance came from the constructive
quantization context [24]. A similar idea was also developed in Boissard’s work [11]. We
will maintain the same notation used in [33]. Let 7, be the natural partition of (—1, 1]d into
27 translations of (—27!,27!]%. Define a sequence of sets { B, },,>o such that By := (-1, 1]¢
and, forn > 1, B, := (=2",2"]¢\ (=271 2"7!4. For a set ' C R? denote the set 2"F
as {2"x : x € F'}. For any two probability measures p and v, combining Lemma 5 and 6 of

[33] one has the following inequality for the Wasserstein-1 distance,

Wip,v) <3C.2049 3 90 N 07! S™ [u(2"F N B,) — v(2"F N B,)],  (34.61)

n>0 >0 FeP,
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where (' is a constant depends only on d. We denote a;;’M’N =9 Xi— 4] X;_lQﬁ’]@\{l’ﬁkNﬂ. It fol-

lows that i — i | Q1M1 = ~ SV ai™™ Note that on conditioned upon Fi1" | the

.....

ditionally they are just identical. Using the fact that for any set A € B(R9), & % (A4) ]-",?{ fV ~
Bernoulli(é)gliilQﬁly—l’ﬁkN—l (A)), we have
, 2 VI V.
B[ () [RA] = s @) [1- 05y @i ()
< Oy QA (3.4.62)

which implies the unconditional expectation

E[(a2M7N(A))2] S P[X]:‘—l + 5f5(vﬁljc‘{1>ﬂ]kv—1a Xli—lv Ejkv) € A} .

= N - N

Using these with Cauchy-Schwarz inequality one gets following bound

E [5@71@77%1415_1 (A)]
N )

2K [5@71@2’7%1#?—1(14)] } (3.4.63)
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where second term inside the bracket of RHS of (3.4.63) follows trivially. Denoting the

whole constant in R.H.S of (3.4.61) as C,, we have

EW(, i, Q7)< Gy 2" 27BN [mY(2'F N By) -
n>0 >0 FeP,
_N ﬁ]l\/[ ﬂN n
fip_QUrF1(2"F N B,)]  (3.4.64)

Note that #P, = 2%, Using Cauchy-Schwarz inequality with (3.4.63) and Jensen’s inequality
EvVX < VEX for non-negative random variable X , the last sum F > Fep, [ﬂ{cv (2"F N

B,) — A QU1 (27 F N B,,)] in the R.H.S of (3.4.64) can be bounded by

. E[(SX}C 1Qﬁ]€/l_17ﬁkN_l(Bn)} 2 M nN
< min {2dl{ — } ,2F [5;2,@_162”’9*1’“#1(3”)} } (3.4.65)

Now using Remark 10 along with Lemma 12, if § € (0, a(7)) the quantity

SUP,,>0 SUp . v B XL = b(7) < oo, one has by Chebyshev inequality for n > 1,

o il < o-D) < _ U)o enme
sup 2 a5, Q717 1(Bn)] < sup PN > 207Y) < iy = b2 _

Note that a(T)l'%T — apas T — 0and § € (0,a9), we can find 7y € (0,a(7)) such that

J € (0, a(To)ﬁ). So the bound in (3.4.64) can be restated as

b(7)2-(+7) =D
N Y

sup EWi (i, il QM #0) - < CdZTZ?’min{ﬂ\/
= n>0 >0
7(1+7')n

2
c Z 2" Z 2" min {2‘? \/NQ : 2‘(1”)"(},4.66)

n>0 >0

IN

2b(7_)2—(1+7')(n—1) }
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where b(7) is just a constant and the last display is obtained by accumulating upper bounds of
all the constants to C”,. Now proceeding exactly like step 1 to step 4 of the proof of Theorem

1 (forp =1,9 =1+ 7) in [33] one gets the following bounds

(
N medyrE) it d=1,7#1,
B _ M =N -
ilill) EWi (), iy, Q=1 #-1) = C' { -4 log(14+ N)+ N1+ if d=2,7#1,
Nl s if  d>2,7#
\
Now we will fill the gaps for each of the three special cases 7 = 1,7 = l and 7 =

d—1
of three regimes respectively d = 1,d = 2 and d > 2. We note that one can generalize the

% log(eN)

choice of /. done in step 1 of Theorem 1 of [33] where Iy . could be taken as Tlog? VO
instead of % though it doesn’t change the conclusion of the main theorem. After step

lwithp=1,¢=147,¢ =2"0+" one will get

min{e, (£)°} it d=1,
ZQilmin 2% [ b =C c\z ; —
N’ min{e, ()2 [log(eN) v 0]} if d=2,
1>0
min{e, € (eN) "} if d>2,

\

where the constant C' will vary from case to cases. Suppose d = 1. From (3.4.66) for general

7 > ( one has

sup BV, (Y, . Qo)

c Z 2" min

n>0

27(1+T)n %
{2“*””,( ¥ ) }{3.4.67)
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9—(1+7)n

1
Note that for n > ny , 1= %, one has 2147 < (T) * SoforT = 1,

semfen(5)) s £o() D

n>0 n<ny,1 n>nN 1

log N
— o N4 — N-32%8Y L on-d (3.4.68)
’ 2log2

For d = 2, from (3.4.66) for general 7 > 0 one has

B ) 27(1+T) 2
sup EW, (), il @) < CéZQ"mi“{T(HT)n’( N ) g

k>1 n>0

[log (20477 N) v 0] }

For 7 = 1, ¢ = 272", Note that if n < nN :=log, N — log, (log N) , then one has

—2n 2—2n 2 —2n
e=2""> N [log(Q N)\/O}.

ZQ”mln{Q 2n (2N [log (272"N) vo])é}

n>0
1
(27 2 Com Y o) [log (N) V 0] @
< > o2 ( 7 ) log (272"N) v O] + > 2 gnEV)THJz N
n<n(2) n>n(2>
N N
< CyNz [(log N)? — log N log,(log N)] + C, log N (3.4.69)
= 2 \/N e

By proceeding similarly, for all non regular cases we will end up getting the following
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results (the constant C' will vary from case to cases):

N-zlogN+N-2 if d=1r71=1,

sup EWi Ty, i Q- 1#-1) = C'{ (logN)? it d=27-=1
k>1 N2
gl 4 N-a if  d>2,7=-1.
\ Nd

Now about the second term of (3.4.60) using (3.4.61), the upperbound of EW; (SM (7 )i )

1S

3C20+2 N N o R ST [SM () (2" F N B,) — i, (2"F N B,)] . (3.4.70)

n>0 >0 Fepy

By Cauchy Schwarz inequality and using Jensen inequality F+/X < +/EX for a nonnegative

random variable X, one gets the upperbound of

E| > [SYL)@F 0 B,) — Ly (2"F N By))

Fep,

ko’iV]

[un

M 1
< 2% { 3 E[(% Y 0 n(2"F 0 B,) = iy (2°F 0 Bn))Qlf,y’fV]} "(34.71)
i=1

Fep;

Using similar argument used in (3.4.62) the R.H.S of (3.4.71) will be less than

g8 [Zren WL (2"F 0 By) (1 -1, (2°F 1 Bn>>} oot [n%(Bn)} '
- M

L T = —(n— T L
24 [ﬁ%_wm o] > 2“*)}2 . [<|a:|1+ L) 2D T
Y |

IN

(3.4.72)
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Finally using Jensen inequality Fv X < +/EX, and from Corollary 3.4.1 followed by

Lemma 13(b) denoting ¢(7) := sup,>; supy;y E (|27, 727, ) one gets

sup B Y [SY () (2" F N B,) — 4 (2"F N B,)] <
k=1 Fep;

[<|x|1+r, 771]3{1> 2(n1)(1+7'):| 3

2% sup F/
k>1

M

q] —\n= 7732 T = n— A
o sup lE<|x’1+T,7],]€V[1>2 (n—1)(1+ )} 2 <ot |:Supk;>1E<|:L‘|1+ M 1>2 D(1+7)
k>1 M = Wi

—(n—1)(1+7)7 5
o c(1)2 2'
M

IA

Hence the conclusion about the upper bound of EW; (S (7}1,), 7~,) will be similar to the
first term of (3.4.60). It will be a function of the sample size of the concentration gradient M/
in place of IV in the bound of EW, (i, ilY_,Q7F-17%1). Combining this with the conclusion
about the first term of (3.4.60) we can state the bound in terms of NV; = min{M, N'} and the
result of Lemma 16 will follow.

O

Now we will complete the theorem. Observe the following identity

n

(BN, ) = (s ) = {\Iﬂ”‘“(ufv,n%—\If”‘“o\lf(uiv_l,n%l)
1

1=

+ \Ijn ,Uo 7770 - ‘1’"(/10,770)]
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Using Triangular inequality and Lemma 19 following holds

Wi (371" )s (s 7))

< Zm M), e o W, ) + Wa (U (g i), O (105 0))

< Y o {awl (), Oty mty) +

=1
—M (i—1)
FM g1 (1) 771‘713 N sHaL N
4%} (,u Qn’ R s BN Q -t

0" (W (7 (10.70)) + Wi (0@ 7. proQ)| (3.4.73)

where (3.4.73) follows from (3.4.58) with specified constants a and b and

[Lg\i{&) = Qm bR Let XM* be a random variable, conditioned on F;";", sampled

_(i—1
from ,ug\} N). We have
M pa —(i—1)
(i—1) 7! M( Do _(i—1) A1 N PN
Wy (ﬂ']\/[NQ MNa,uMJvQ Fim1

< s E‘g(AXiM’NMfa(Vm D XM ) g AXMN
geLipl(Rd)

+3fs(V (L Rex ), B XY €)

< 008 [|Vr(XM) = Vil Rgy (X2 |FY]
= - ] [ 1) — ] @9, P | @ )
< A= ayWw (SM@M),a) . (3.4.74)
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Last display follows from Assumption 9. Since 73}/ = 1, one has

Wi (1@ 40, 11Q™H0) = 0. (3.4.75)

Combining the results (3.4.74),(3.4.75), with (3.4.73) we get for each n,

sup EWI ((/jl]cva ﬁljgw)’ \Ij(ﬂ;fv—la ﬁli\{l))

) B a
EW, (377, (s 1)) < 5 S

by (1 —a
MEL = up s (50, ) + a0 W () (o) . 3476)

Using Lemma 16 the result follows.
OJ

3.4.4 Proof of Corollary 4.7.1:

Using triangular inequality and from (3.4.58) one gets

EWr (BY72), (1100, 1100)) < Wi ((Hns 1) (foos T100)) + EWr (BN, 720), (1 )
S " CLWl((,UO, 7](])7 (/1/007 7]00)) + le (/’LOQT]07 MUQWOO>

FEWL (72, (om0 - (3477

Combining this with (3.4.76) we get

EWl ((ﬂfzva 772/1)7 (MMa 7loo)) < 0" an((,uoa 770)7 (/Loo, 7700)) + le(MOva MOQT]OC)

blY (1 — «
P( ) sup EW; (SM(ﬁlje\{1>7ﬁ£4—l) :

+ B
1-6 k>1

a _ _ _ _
sup EWr (1, "), W (1. 1)) +
1-— 0 k>1
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The result is obvious after using Lemma 16.
O
3.4.5 Proof of Theorem 3.3.3:

Fix N and M. Define O € P((RY)Y x Pf(R?) x P(R?)) as
N,M RS o M oM M
(0.00Y) = =3 Bo(X;(N), ", sY ("), (3.4.78)
j=1
for p € BM((RY)N x P;(R?) x P(R?)), N >1,M >1andn € Ny where
{5 (), 5", 8%(7;")), j € Noyi=1,..., N}

are as defined in the context of IPS,. Note that (RY)Y x P;(R?) x P(R?) is a complete
separable metric space with metric d((x, p1, 3), (Y, pi2, p1a)) == ||x — y|| + Wi (pa, p12) +
Wi (s, p1a) where ||z := L 320 || for & = (21,...,2x) € (RY)Y. From Lemma 12
and 13 it follows that, for each N, M > 1, the sequence {©Y-M n > 1} is relatively compact
(By Prohorov’s Theorem) and using Assumption 6 it is easy to see that any limit point ©2-M
of ©NM (as n — 00) is an invariant measure of the Markov chain { X,,(N), 72, SM(7M)},.50

and from Lemma 12 it satisfies [, ) || ©5 (dz) < oo (Taking the norm of

Nx P (RY)xP(R?
the product space as |(z, y, 2)| = [|z| + 3|yl + 3 ]|z]ls where (z,y, 2) € (RN x Pf(R?) x

P(R4) ). Uniqueness of invariant measure can be proved by the following simple coupling
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O©N-M are two invariant measures that satisfy

argument (see Chapter 2): Suppose ©YM

lz| M (dx) < oo, 12|ONM (dg) < oo

/(Rd)Nfo(Rd)xP(]Rd) /(R‘i)NXP{(Rd)XP(Rd)

Let (Xo(N),m3!, SM(nd")) and (Xo(N), 73", SM(73")) with probability laws O and
C:)éVO’M respectively be given on a common probability space under same noise sequence (i.e
in which an i.i.d. array of R™ valued random variables {¢: i = 1,..., N,n > 1} are defined
that is independent of (Xo(N),nd, Xo(N),7") with common probability law #) and the

evolution equations are following.

X:ﬁl = AX] + 0 fs( X5, V' (X0), pl, Z+1) ' = (1 —a)(SMm )P) + apy P,

Xi = AXEL+0fs(XL, Vil (X0), ml e ), iy = (1 —a)(SM (@) P) + ajip P

where recall fé('a K '7'T) = f('fa ',I) + @ and :uflv = %Zi\il 5X%7/17]y = %Zf\il 6)2}1

Note that

1 & 1 & 1 X
Wl(ﬁz@%ﬁ E Oy) < N E | X — Y]] (3.4.79)
=1 i=1 i=1

for any two arrays { X;}¥, and {Y;}¥,. Using the independence of the noise sequence along
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with (3.4.79) and Assumption 6 we have

N
i i i 1 j o j
EIX o — Xl < (||A||+50)E\Xn—Xn|+50NZE|X£L—X%\

J=1

+0oE|VpM (X)) — Vi (X)) (3.4.80)

n

Now applying Assumption 9 (doing similar calculations as in (3.4.48),(3.4.50),(3.4.51)) fol-

lowing inequality holds

BV, (X,,) = Vi (X))] < B[V (X) — Vi (X)]

+E|VM (X)) — vk (X)) (3.4.81)
< I EIX) — XL+ ol EWy (b, b))

(1 — I EWL (SM (), M @),
Note that (3.4.79) implies
EW(SM (i), S| Fe ] < Walnily, aily) (3.4.82)
from which following holds from (3.4.81)

E|Vn,!(X;) = ViR (X)) < Gy EIX, = Xo| + alp BIX,_ — X, |

n

+(1— ) lp EWL (01, it ). (3.4.83)
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We also have
Wi (k1 7ing1) < (1= a)l(PYW(S™ ("), SM (7)) + al(P YW (), /1) (3:4.84)

and after taking expectation

EWi(nM ik ) < (1= a)l(PYEWL(n) 7)) + al(P)E| X — X7|. (3.4.85)

Letting ALY = LSV X — X |+ W (M, M ), we have the following recur-

sion relation for EAS™) in n combining (3.4.80),(3.4.83) and (3.4.85)

EAMN < max { (HAH + o024+ 1Y5) + al(P’)), (1— a)z(P)}EAgMM

460 max{(1 — a)ly, alg,}EAff\f’lN) (3.4.86)

which is the same recursion as in (3.4.54). Now for the chosen 9§, « satisfying (3.4.56) there

exists a # € (0, 1) such that
BAMN < g p AN 4 pAPN). (3.4.87)

Also, since ©YM and ©N:M are invariant distributions, for every n € Ny,
(X1 (N), M, SM (M 1)) is distributed as O and (X411 (N), 72, SM (7M. ) is dis-
tributed as ©-N . Thus

(X1 (N),m2y, SM (M 1)) and (X1 (N), 72, SM(7M,)) define a coupling of random
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variables with laws O™ and ©Y-M respectively. From (3.4.87) we then have

Wi (OM OMNY < Ed((X,(N), i, SM (A1), (Xn(N), 72, SM(7A))) < EAMN — 0,

n

asn — co. So there exists a unique invariant measure ©:M € P; (RY)N x P;(R?) x P(R?))

for this Markov chain and, as n — oo,
oMM _ @NAM, (3.4.88)

This proves the first part of the theorem. Denote O3 (-, P;(R?), P(R?)) by O and
O (P (), PIRL) by 05

Define ry : (R9)Y — P(R?) as

1
TN(Ilj...,ZL'N):NZ(Sx“ (ZL‘l,...I'N)G(Rd)N.

NM _ QLNM .1 NM _ QLNM -1 LNM
Let v, = ©, ory and v, oM = ©9" ory . In order to prove that O is

llso-Chaotic, it suffices to argue that (cf. [74])
M 5, in P(P(RY), as N, M — oc. (3.4.89)
We first argue that as n — oo

yM N in P(P(RY)). (3.4.90)
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It suffices to show that (F,vY-M) — (F, v¥:M) for any continuous and bounded function

F : P(RY) — R. But this is immediate on observing that
(B M) = (Fory, 05"Y), (FvlM) = (Fory, 027Y),

' n ? 700

the continuity of the map ry and the weak convergence of ©YM to ©NM Next, for any

f € BLi(P(R?))
1 < _ 1 < _
Foh™) = (£, 00d| = | SO ESE) = flise)| <= 7 EWA(EY pec).
j=1 j=1
Fix € > 0. For every N, M € N there exists no(N, M) € N such that for all n > ng (N, M)

EWL (Y pio) < limsup EWL (), p10) + €.

n—oo
Thus for all n, N, M € N
N,M no(N> M) _N . _N
[(Fovn ™) = (s )| < g lax EWL (I, proc) 1 sup EW (fi, f100) €.

(3.4.91)
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Finally

limsup |[(f, v2M) — (f,6,.) = limsup  lim |[(f,2"M) — (f,0,.)]

N,M— o0 min {N,M}—00 "7

< limsup limsup EW) (B, piso) + €

min {N,M}—oc0 n—00

<e

)

where the first equality is from (3.4.90), the second uses (3.4.91) and the third is a conse-

quence of Corollary 4.7.1. Since ¢ > 0 is arbitrary, we have (3.4.89) and the result follows.
0J

3.4.6 Proof of Concentration bounds:

Proof of Theorem 3.3.4:

We start with the following lemma where we establish a concentration bound for

Wl ((ﬂi\[a 777]2/[)7 \Ij(ﬁqjmv—lv ﬁiw—l))

for each fixed time n € N and then combine it with the estimate in (3.4.73) in order to get

the desired result.

Lemma 17. Let Ny = min{M, N'}. Suppose Assumptions (6)-(9) and Assumptions (12),(13)
hold for some T > 0, a(1) > 0. Suppose that 6 € (0, CL(T)H%), and (1 —a)m,(P) < 1. Then

there exist
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ai, ag, as, ay, ay, ay € (0,00) such that foralle, R > 0,n € N, and N, > max{l,al(g)d”}.

&2 R—7

POV (s 12") W=y mala)) > €] < as (e“”NfiQ +— ) (3.4.92)
, 2 RfT

Py (SM0)L), mly) > el < ah <e‘“2Né?+ - ) (3.4.93)

Proof of Lemma 17

Second concentration bound will follow by proceeding as Lemma 4.5 of Chapter 2. The
proof relies on an idea of restricting measures to a compact set and estimates on metric
entropy [14] (see also [79]). The basic idea is to first obtain a concentration bound for the
W distance between the truncated law and its corresponding empirical law in a compact ball
of radius R and getting a tail estimate from Lemma 13 and Corollary 3.4.1 after conditioning
by ]—"ﬁ{v . With the notations (for example j 5 is the truncated measure of 4 restricted on a
ball B:(0) of R radius) introduced in Lemma 4.5 of [? ] we sketch the proof of the second
bound. With that notation the truncated version of 7}/ , is denoted by 712!, .. Suppoe {Y;""} :
i=1,...,M} are iid from 7/ | conditioned on F"N. where {Z"" :i =1,... M} are

.. _ . M.N
iid from 7 |  conditioned under F,,”;". Define

;

VM when |V < R,

. '
zZn otherwise .

Note that P(X;" € A | F)0Y) = Pz € A | F)UY). Denote SM(7M, 1) =

Ly dyin. Now denoting a(1 + 7) := sup, supy y B (Jo|77, 7). from (3.4.79)
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we have

PIWSM i, ), S () > 5] < 2 Onmin) 570

3 €
3 i i 3 i, i, :
<SEBE(IXH -VAIRS] = SEB[Z5 = Vil ql R0
6 WMy M,N R™"
< EEE[|Yn_1\1‘Yz%|>R|}"n_1 ] < 6a(l+7) — (3.4.94)

Now using Azuma Hoeffding inequality as done in display (4.35) of Lemma 4.5 in Chap-

ter 2 one has
M/ -M M E 16R [@(\/:i"rl)}d _ Me2
PW(SM(@RM p) i R) > g] < max 2,7(2\/E+ 1)30% e~ 3s57(3.4.95)

From the definition of ﬁﬁy_ LR

—T

_ _ g 6 i R
P[Wl(n%1>7hjy_1,3) > g] < gEUYn%H\yﬁ{pR} <3a(l+7) -

(3.4.96)

Using triangular inequality

Wi (SM @), i) < Wi(SM (s k), SM (M) + Wa(SM (M3 k) Tty k)

Wi, 77%1,}2)

combining (3.4.94),(3.4.95) and (3.4.96) the result (3.4.93) will follow.
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The first one (3.4.92) follows by noting that

P (EY 7)) W () > €] < P[W(ay, i, Q7 ) > 2] (3.4.97)

€

TP IW(SY ) m) > sy |

Proceeding like Lemma 4.5 of Chapter 2 the bound for the first term in RHS of (3.4.97) can

be established.

Proof of Theorem 3.3.4(a)

Combining (3.4.73),(3.4.74) and (3.4.75) it follows that

Wl ((ﬂg’ﬁ%)’ (Mnﬂ?n)) < Zgn Z|:a)/vl vavnzM% (/’Lz]\il?ﬁz]\fl))

+blp (L — o)Wy (SM™ (@), 5) } + a0 Wi (5,107, (10, m0)) - (3.4.98)

Denoting ¢; := max { <(||AH +d0(2 + lPP,)) + al(P’)> (1 — a)l(P)}, ¢y := domax {al},, (1-

@)l } define the function go(-) as

go(7) 1= &2+ (1= 7)er = (1= )2

Since go(0) = ¢2 +¢; — 1 < 0 (from the assumption), go(1) = ¢2 > 0 and ¢(-) is continuous.
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So there exists a v > 0 such that go(y) < 0 or equivalently

So there exists a @ € (0,1 — ) such that statement of Lemma 19 holds. Now using that

v from (3.4.98) one has

*U

W (70, (o)) > ] < P {00 W (G020, w( ) >

i=1

(1—7y)" e}

b |2

C =

1

.
I

{E (=)0 Wi ($Y(0).0) > S = e LW (5 "), (0. )

>y-arel] < Y PN A, Y a) > EED T+

1

> POV (@) 1) > g T

+P[Wh (1,57, (105 10) ) > 75(1 ; 7)n].

Let 1 = 25, o = W‘i_a) Bs = ve. Note that v := (452) > 1, from our choice of 7.

7
d+2
R

d+2
Therefore denoting 5 := min{ 31, 52}, N1 > a; (%) V 1 implies Ny > al(

139



for all n € Ny and a consequence of Lemma 17 gives

n

PIW (@Y7, (o)) > €] < 30 P ((RY ), W@, 72) > B~

+ D P (M) ait) > B+ P W ()" (10, m0)) > Bav"(3.4.99)
=1

n . _ n . _
_ap N RTT , g M RTT
< a3 E e R+ —— | +ag e TR 4 ——
- % : (%
1=

+P Wi (1, ") (10, m0)) > Bav™].

Now proceeding similarly like the proof of Theorem 3.7 of Chapter 2 through optimizing the

value of R the conclusion will follow.

3.4.7 Proof of Theorem 3.3.5
We will start by introducing a coupling. Consider a system of R? valued auxiliary random

variables {Y*V i =1,..., N},>( defined as follows.

YoN = AYIN £ 5 f(Vn, (YN, YN € )+ Bl L), i=1,...,N, neN,
Mnt1 = %Rﬁn,

D ¢ (3.4.100)

Now foreachn € N,  {Y®V i =1,..., N}isasetof R valued iid random variables under

initial assumption L({X;™ }imin) = pu§™. Suppose ¢ = L SN dyi.v. The following

-----

Lemma will make a connection between ¢V and p2.
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Lemma 18. (Coupling with the auxiliary system) Suppose Assumptions 6,9,10 and 14 hold.

Then for everyn > 0 and N > 1, with the C'y, and X defined in (3.3.18),(3.3.19)

Wi 1 1) < WGy tingn) + CL DY X WY ). (3.4.101)

k=0

Proof. Since by Assumption 6 and A;(¢) < K, we have foreachj =1,..., N

X = YA < JAINXE = YN 4+ S { [V (XGN) = Vi (V)| + XY = VY|

Using the calculations in (3.4.46),(3.4.48),(3.4.49) and (3.4.51)

IV (XY) = V()] < [ (XY) = W (V)
T (YY) = T, (07

< llz’;/ngL - Ynj’N| + (1 - O‘)lgwl(m]@vfh 7ln—1) + al}zlwl(/'[/g*:l? /vbn—l)
Thus

XN N < [IIAH+5K(1+ZZ}5)}|X£—Y£’NI+5K{W1(uf,,v,un)

+(1 = Q) IEWi () ) + 2l g Wh (i, unl)} (3.4.102)
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Using (3.4.102) as the recursion on a? , , := | X7 — Y7| with a) = 0, we get

@ < 0K YA+ 0K+ )] {Wl(uiv,uk) + (1= ) IEWi (01, k1)
k=1

+alp Wi (ph M,H)} . (3.4.103)
Denote || A|| + 6K (1 4 [3)5) by x. Observe that
Wiy 1) = (1= @)l (PYWh (133, Nln—2) + (P YW (i, fin—2).  (3.4.104)

Denote the quantity in the third bracket of RHS of (3.4.103) by b;. Using (3.4.104) and

ny = no we have

b = Wilpg k) + (1= )Wy, 1) + ol B W (i 1)

k—2
= Wil i) + (1= @)lpal(P') Y [(1= a)l(P)* Wi (il )
=0
+ad gL (R s r—1)
k
< e ) Wil ). (3.4.105)

=0

where ¢; := max{l, (1 — a)lpal(P")} and ¢5 = max{aly, (1 — a)l(P)}. Thus from

(3.4.103) we have

n k
@y < O0Kea Y X" BTl ). (3.4.106)
k=0 =0
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Now applying Lemma A.1.4 we have

) n N Xn+1fi _ CgH—l—i
pyy < 5KC4ZWI(N2‘ 7:U’i)|: ]

i=0 X6
< 0Ker y xyTTWael ) (3.4.107)
=0
where x» := max{y, cs} and ¢; := ‘Xf‘%‘ . Note that from (3.4.79) we have for all n > 0,
L
N N j
Wl( n 7#71) S szlagl

Combining the result above and using triangle inequality in (3.4.107)

Wi(GNoa insr) < 6Ker Y xaT WY, i) + 0K er Y s WG i)
k=0 k=0

Applying Lemma A.1.3 with

n—1

(p = Xz_nwl(gjyaﬂg)7 b, = 5KC7ZXQ_RW1(77;J€V,M€), Pn = 0Kcz, n > 0.
k=0
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We have

k—1
I ) < n+l+z 0Ker) Y xa WY, ) (14 6Ker)"™

=0

= byt + Z Z (6K c)*(1 4 0K er)" *xg Wi (CN, i)
1=0 k=i+1

n—i—1

= n+1+Z5KC7 X2 WY ) Z (1+6Kcr)™

m=0

= by + Z(éK@)X;in(QN ) [(1+ 0K er)" ™ 34.108)

1=0

Simplifying (3.4.108) one gets

Wi (Gt tingr) < 5KC7ZX§+17]€W1(C1£V’/~%)
k=0

+ > (OKe) s WG ) (14 0K )" — 1]

n

— Z((SK@)XSH”“Wl(C,ﬁV, ) (1 + 0K er)"F
k=0

= 0Kcrxe Z(Xz + 5K erxa)" " Wi (¢, )
=0

Note that 0 Kc;xo = C and xo + C} = X7 as defined in (3.3.18) and (3.3.19) respectively.

Thus we have

Wi 1hiy) < Y X WG, ).

k=0

The result now follows by an application of triangle inequality. ]
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Proof of Theorem 3.3.5

Since y; < 1. So we can find v > 0 such that y; < 1 — ~. Taking that v, we have

vy = 1;—17 > 1. For any € > 0, From Lemma 3.3.5

Py s 1) > €] < PIVI(GY s 1) > €]

n—1
+ > PO TGN ) = ye(1 = )"
=0
N - N YEX1
= PG 1) > e + Y PIWI(CY o pini) > =07 (3.4.109)
i=1 G

ie e
= PIVIGY ) > el + 30 PIVIGY i) 2 S5
1=1

- TX1E
+ D PG ) 2 5,

i—iet1 1

L ~ . axie i 1Al a(9)
where i. := max{i > 0 : vt < 1}. Note that for § € [0, m), and a; € (0, 7),
using similar version of Lemma 10 of Chapter 2, we have sup,,- <e°‘1|m|’“"> < o0. That

implies from the statement of Theorem 2 of [33] that for all N > 0,

PG n) > €] < a(N,€)1ge<ay + b(N, €).

2
—eN(—=
where a(N,e) = e~V 15y +e (1Og<2+%>) Lamgy + e N 11400y and b(N, g) = eNe.
In order to prove (3.3.20) we will prove only for one case d > 2. Rest will follow similarly.

There exists C7, C, C',
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n n n

> P ) 2 ] < 3T BN EEY) < 3T e N3.4110)
z‘—z‘e+1 1 i—io+1 1 i=io+1
TX1E = TYX1€ & —C!N(ev?)d
ZPWl nz?/’[’n ’l)— Cl V] S Z (N Cl )Sze CQN( )
=1 =1
<) e (3.4.111)
=1
PIWI(CY, 1) > 7e] < e CaNetne (3.4.112)

Suppose kg such that ¥ > kyi for all i > 1. Combining (3.4.110),(3.4.111),(3.4.112) we

have for all N > 1 and a3 = ko min{C7, C}, C%}.

sup P (), pn) > €] < g;e—agNiad/\a < %. (3.4.113)
Now there exists N3 := —aig log(1 — ai,l,) such that N > Nymax{Z, &} we have
sup P (i, ) > €] < affe Soahethe,
]
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Chapter4
HIGHER ORDER ASYMPTOTICS OF GFI

4.1 Introduction

This chapter renders application of higher order asymptotics to Fiducial based inferential
techniques. In last decades there had been a surge of parallel endeavors in modern modi-
fications of fiducial inference. These approaches are well known under a common name:
“Distributional inference”. Main emphasis for these approaches was defining inferentially
meaningful probability statements about subsets of the parameter space without the need for
subjective prior information. They include the “Dempster Shafer theory” (Dempster [28];
Edlefsen, Liu and Dempster [30]) and its relatively recent extension called inferential models
(Martin, Zhang and Liu [64]; Zhang and Liu [83]; Martin and Liu [63], [61], [62]). There is
another rigorous framework available called Objective Bayesian inference that aims at find-
ing nonsubjective model based priors. An example of a recent breakthrough in this area is the
modern development of reference priors (Berger, [4]; Berger and Sun [7]; Berger, Bernardo
and Sun [5],[6]; Bayarri et al. [3]). Another related approach is based on higher order like-
lihood expansions and implied data dependent priors (Fraser, Fraser and Staicu [34]; Fraser
[35],[36]; Fraser and Naderi [37]; Fraser et al. [38]; Fraser, Reid and Wong [39]). A differ-
ent frequentist approach namely confidence distributions looks at the problem of obtaining

an inferentially meaningful distribution on the parameter space (Xie and Singh [81]). Re-



cently an interesting work (Taraldsen and Lindqvist [75]) showing how some simple fiducial
distributions that are not Bayesian posteriors naturally arises within the decision theoretical

framework.

Arguably, Generalized Fiducial Inference has been on the forefront of the modern fidu-
cial revival. The strengths and limitations of the fiducial approach are starting to be better
understood; see especially Hannig [51], [52]. In particular, the asymptotic exactness of fidu-
cial confidence sets, under fairly general conditions, was established in Hannig [52]; Hannig,

Iyer and Patterson [53]; Sonderegger and Hannig [71].

Main aim of this chapter is to further study exactness property of the Fiducial quantile
in frequentist sense for uni-parameter cases with exploration of higher order asymptotics.
From a different point of view it can be seen as a prudent way of selecting a data generating
equation (to be defined shortly) so that the non-uniqueness issue of proposing Generalized
Fiducial Distribution (in short GFD) can be reduced partially. To start with we address what
we mean by GFD.

Denote the parameter space by O. Let the data X be a S valued random variable. It starts
by expressing a relationship between the parameter and the data through a deterministic

function G : M x © — S which we call by data generating equation (in short DGE):

X = G(U,0) (4.1.1)

where U is a M valued random variable whose distribution doesn’t depend on 6. The distri-
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bution of the data X is determined by U via the structural equation (4.1.1). That is one can
generate X by generating U and plugging it into the data generating equation.

For example for one sample of N (6, 1) the data generating structural equation is

G(U,0) =0+ 0\ (U)

where ®(.) cumulative Normal distribution function and U ~ U(0, 1). One can always find
(4.1.1) by following construction. For a realization xo := (z1, Z2, ... z,) of X where X ~
Fy(-) for Fy being a distribution function on R™ with # € © being the unknown parameter
denote the conditonal distributions of first, second and n-th co-ordinate (sequentially given

the rest) by Fy x, (-), Fo,x,/x, (+), and Fy x,,|(x,,Xs,....x,,_1) (+) respectively. Then (4.1.1) can be

written as

Ty = Fej)1<1(U1)

Ty = F7! U.

2 e,xzj{xlle}( 2)
r, = F7! U, 4.1.2
G,Xn|{(X1,X2 ..... anl):(xl,xg,...xnfl)}< ) ( )

where (Uy, U, ..., U,) iid copies of Uniform (0, 1) random variables. Note that in above il-
lustration changing the order of the variables (X7, ..., X,,) will give different data generating
equations unless X7, X, ..., X, are independent.

After observing xo, given U, define the inverse image (Qx,(U) in the parameter space
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from the data generating equation as

Qx,(U) :={0:G(U,0) =x¢}.

after observing X = X, fiducial approach instructs us to deduce a distribution for § from the
randomness of U via the structural equation (i.e., generate U* and invert the structural equa-
tion solving for 6 = Qx,(U*)). Now in order to remove the possibility of non-existence of
solution for some U*, we will discard that value, i.e, condition the distribution Q«,(U) given
the fact the solution always exists (i.e Qx,(U) # 0). As explained, the Fiducial distribution
of 6 given observed x; should be heuristically (hence ill defined) the following conditional

distribution

Qo (U7) [ {@xo (UT) # 0} (4.1.3)

Immediately three relevant questions arise regarding the non-uniquenesses of Generalized

Fiducial distribution (4.1.3):

e The choice among multiple solutions: It arises if the inverse image (Qx,(U™*) has
more than one element for U* and observed xq. This problems mainly occur in dis-
crete distributions (See [52]) which we did not consider in this article. Moreover in

asymptotic regime all those choices will lead to the same distribution limit.

e Borel Paradox: Another important problem regarding computing the conditional prob-

ability in (4.1.3) arises when the conditioning event {Qyx,(U*) # 0} has measure
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" where X,,x1 ~

0. For example, suppose one observes X = xq := (21,...,2,)
N, (0.1,41,1,,%,) for © = R. Note that, considering the simple data generating equa-

tion X = 6 + U,,«; where U ~ N,,(0, I,,), the inverse image

and the set {Q,(U*) # 0} has probability 0 (n — 1 dimensional manifold in n di-
mensional space). In that case the conditional probability distribution may not remain

unique which in literature is termed as the Borel paradox.

This problem can also be removed by defining the GFD as the distribution of the weak
limit of the following quantity (in the display) conditioned on the event

{inf, HXO — G(U*,H)H <e}asel 0.
arginf [[xo — G(U", 9)”‘ {inf |x0 — G(U",0)]| < ¢} . (4.1.4)

Let’s assume that for each fixed § € © the function G(-, #) is one-to-one and continu-
ously differentiable denoting the inverse by G~'(z,6). If we use L., norm as || - || in
the definition of 4.1.4, from Theorem 3.1 of [52] it follows that the unique weak limit

is a distribution on © with density

19 (8]%0 — (X1, X, .., Xo}) = 32 X0l0) Jn(x0.0)

T Tt o) e,y
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where the Jacobian J,,(x, 6) is defined as

d
. et [ L s 4.1.6
Jn(xu ) X Z . ) ) <d9 (u’ ) u_c"'l(x’e)> () ( )

when 0 is p dimensional. A(;) denotes the p X p submtrix consisting of ith selection
of rows of A. Let X = (X1,...,X,,). In the uniparameter (p = 1) case, the Jacobian

becomes

0
550 U:0) 4.1.7)

I (X, 0) i
i—1

U=G=1(X;,0)

In what follows by Fiducial distribution (or density) we will mean the distribution(or
density) of  defined in (4.1.4). Denote the probability distribution on © induced by

the data generating equation G in (4.1.1) by P9(-) whose density is (4.1.5).

As an example consider X is a sample of n iid observations from Scaled Normal family
N(p,p9),p € RT := ©. The simplest data generating equation comes from the relation
X = G(U,0) := pu+ p2U, where U = (Uy, Uy, ..., U,) is an array of n i.i.d N (0, 1) random
variables. Since %G(Ui,u) = 1+ 2p9/271U;, then plugging in U; = 7k, one gets the

Jacobian in (4.1.6)

n

J(x, 1) ocz

=1

9w ) (4.1.8)

op

Us=G—1(X;,m)

giving the GFD as specified in (4.1.5).

In context of non-informative prior for any one-to-one function ¢(.), inference of 6 given
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X and inference of ¢(#) given X should not be different since the ideal non-informative prior
should not impose any extra information on © [73]. Just like Posterior distribution of Jef-
frey’s prior, Generalized Fiducial distribution of # exhibits this parametrization invariance
property. For some one-one function ¢ suppose 7 = ¢(f). The Fiducial distributions of ¢ and

71 denoted respectively as r and 7 follow

| rioyio - /¢ BRCL

and it follows trivially from the definition (4.1.4).

Choice of L., norm in (4.1.4) can be intuitively justified from natural discretization point
of view. That is for the observed x one can think a box (an interval for each dimension)
around it, in order to get a § € {6 :infy on — G(U*, G)H < €} . Also another reason is
independence among the dimensions which helps in the calculation.

4.1.1 The Choice of Structural Equations:

Note that changing norm in (4.1.4) leads to different fiducial distributions [52]. Now we
illustrate another issue of non-uniqueness arising from different choices of data generating
equation G(U, 0). Let X = (X3,...,X,,) be n iid realizations from a distribution F'(- | 6)
with density f(- ‘«9) parametrized by one dimensional parameter € © := R where the true
parameter value is 0. Suppose 7'(.) is a smooth, one to one transformation and there exists
a weight function w(x) such that 7'(z) := [ (—ooa] w(y)dy. Now instead of considering the
data generating equation X = G(U,6) let’s consider Y := T(X) = T o G(U, ). Then

using || - || = Lo norm in (4.1.4), from (4.1.5) the density of fiducial distribution of 6 given
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C?s
=
oS
=
Na)
N
N
<
<
=
BN

)
Jo ILy £ (T2 (ya)|6) [(T=1) (va)| I (v, 0")do"

I 4.1.9)
7 1.

19)
f@ 1= lf(Xlw/)

where using (4.1.7)) and the chain rule, resulting Jacobian .J(B(X), ) will be proportional

to

3

0

—TOG Ul,e) %

G(U, e)]

Z

=1

- Y| [rew

@
Il
—

U;=G~1(X;,0) U;=G~1(X;,0)

0

w(Xi)%

G(U;,9) (4.1.10)

M-

s
Il
—

U;=G—1(x;,0)

the weight function w(.) in the Jacobian. Note that (4.1.9) comes from last expression
of f9(0|Y) where (T!)(y;) cancels out from both numerator and denominator which is
possible since |(7!)/(Y)]| is almost surely assumed to be non zero. Intuitively fiducial dis-

tribution changes due to the deformation of the x space through the transformation 7" along

with change in the conditional event infy ||7'(x) — T o G(U*, 0) H < € in the definition (4.1.4).
Note that given F'(-, #) being the distribution function with density f(-, ), the following

illustration by chain rule yields

G i 1 9 orix o)
—G(U,0) - S X=— _F(X,0) = . 4111)
a0 weexey 000 D g F(X,0)
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Under the transformation 7°(-) = [ (—o0.] w(y)dy the transformed Jacobian in (4.1.10) can be

expressed as

aF (XZ,H)

Xl,e)

Tl Z

=1

(4.1.12)

So we see, if we consider different data generating equation as a smooth and one-one
transformation of the original structural equation it only brings a weight w(.) in the Jaco-
bian part. The question of interest is, what is an “ideal” transformation T'(.) for which the
Fiducial distribution enjoys some “desirable” properties. By desirability we mean a data
generating structural equation under which the Fiducial distribution is “exact” in a frequentist
sense.

Structure of this work follows with initially giving an ideal recipe of Fiducial distribution
for a special case when some strong monotonicity conditions of the structural equation are
satisfied. In the absence of those conditions, we define a criteria through higher order asymp-
totics. Throughout this article we considered || - || = Lo, norm in the definition of (4.1.4)
and the main contention of this article is to get the ideal transformation 7°(.) under which the
data generating equation “T'(X) = T o G(U, 0)” will give first order probability matching
Fiducial distribution (to be defined in (4.3.1) ). Then we will conclude this article illustrating
with some illustrations with their empirical behaviors in small sample situations.

4.2 Why Fisher Might Have Thought Fiducial Distribution Exact?
Fisher developed [31] the Fiducial idea based on the minimal sufficient statistics. Under

the same motivation we state the following theorem considering Gs(U, 6) as the data gen-
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erating equation for a one dimensional minimal sufficient statistics S. Denote the inverse
image Qs(u) = {0 : s = Gg(u,0)}. To study the properties of the generalized fiducial

distribution based on (4.2.4) we need to study the conditional distribution of

Qs(U) [ {Qs(U) # 0}

where as for S having a continuous distribution on R, the conditioning event will be of

measure 1 so one can ignore that.

Theorem 2. Let us assume that for all U, the function Gs(u,0) is non-decreasing in 0 and
for all u and 0 we have Q(s,u) # 0. Then the inverse image (s, u) is an interval with
bounds QQ; (u) < Q¥ (u). Additionally, for any s, and 0, the bounds satisfy P(Qt (u) <
0o) = 1 —lim¢o Fs(s0,00 + €) and P(Q;, < 0y) = 1 — lim.o Fs(so — €,00). Finally if for
all By and s the Py, (S = so) = Fs(s0,60) — limejo Fs(so — €,6p) = O then the cdf Fs(s,0)

is continuous in 0, Q7 (U) = Q; (U) with probability one, and
P(Qs,(U) < 6y) =1 — Fs(s0,060). 4.2.1)

Proof of Theorem 2: The fact that ()(s, u) is an interval follows by monotonicity. Con-

sider an iid sample Uy, ..., U,,. By SLLN we have

RS RS
P(Q+($0,U) < 90) = lim — ZI{Q+(807U2')<90} = lim — ZI{GS(Ui,90)>SO}
i=1 =1

n—oo N, n—oo N,

= ]_ — FS(S(), 90), (422)
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where the second equality follows from monotonicity of Gg. The rest of the computation

follows. Similarly

1l 1L
P(Q_(So, U) > 90) = nh_g)lo E Z [{Q—(SO,Ui)>90} = nll_)I?glo E Z [{GS(U¢,90)<80}
i=1 =1
= ligl Fs(so —€,0p). (4.2.3)

Finally, if lim. o Fs(so, 00 + €) — Fs(s0,60) < 0 then Py, (S = sp) > 0. The rest of the proof

follows by simple comparison. []

Remark 12. If Gs(u, 0) is non-increasing in 0 then one has lim o Fs(so, 6p+€)—Fs(so, 00) >

0.

Now we will generalize Theorem 2 beyond the existence of 1-dimensional sufficient

statistics under the following assumption:

Assumption 15. Let us consider a data generating equation X = G(U, ). Assume that
there exists a one-one C' transformation (S(X), A(X)) on n dimensional X, such that S(X)

is one dimensional and A(X) is a vector of ancillary statistics (of 0) of (n — 1) dimensions.

From definition of ancillary statistics the derivative % A(G(U, )) = 0. After the trans-
formation (S, A) on the initial data generating equation X = G(U, 6), the new one can be

written as

s=Gg(U,0):=SoG(U,0), and a=Gu(U,0):=A0oG(U,0). (4.2.4)
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Thus by using the chain rule and some simple calculus the Jacobian based on (4.2.4) is

"L dS(X) dG;(U, )

J((S, A)(X),0) = X, do

+0. (4.2.5)

i—1 U=G-1(X,0)

dS(X)

— - Here U is a random variable
1

This means the weight we can consider is w(x;) =
or vector with a known distribution independent of the parameter # € R. Denote the CDF
of S(X) and the conditional distribution of S(X) | {A(X) = a} by Fs(-,6) and Fg4(-, )

respectively. Note that the fiducial density of 6 given {(S, A)(X)} is proportional to

J((5, A)(X), 0) f(X, 0) oc J((5, A)(X),0) [s)a(s, 0) (4.2.6)

since f4(a,f) does not depend on 6. Let Ggj := Gg(u,0) (s Ga ()2} and U, is a realiza-
u: G (u,0)=a

tion of the conditional distribution U | {A(X) = a}.

Corollary 4.2.1. Suppose Assumption 15 and all conditions under which cdf Fs(s,0) is
continuous in 0 hold. Suppose Gs(u,0) is non-decreasing in 0 and for all u and 6. Then the

generalized fiducial inference based on the data generating equation

S = Gg1a(Ua, 0)

Is exact.

Proof. From (4.2.5) and (4.2.6) the Corollary will follow from Theorem 2 if we can show

that the GFD computed from (s,a) = (Gs(U,0),GA(U,0)), is same as s = Ggja(Ua,0).
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Note that

{u:s=Gs(u,0),a=A0G(u,0)} ={u:s=Ggalu,b)}. 4.2.7)

Now we will show that the Jacobian based on RHS of (4.2.7) and is same as J((S(X), a)), 0).

A consequence of (4.2.7) is

0 0
—Ggja(Uy, 0 = —Gg(U,0
00 sta )Uazaglla(s,e) 060 s )‘U:Gsl(s,e),a:AoG(Uﬂ)
0
= 'X)=G(U,0
( )86’ (v, )U:Gfl(x,e),A(X):a

= J((S(X)7a))78)

Since G's(u, f) is non-decreasing in ¢ for all u, so will be G'gja(u, ). As a consequence of
the Theorem 2 we notice that the generalized fiducial inference is not affected by the choice
of the data generating equation Ggja. Moreover if the distribution of S is continuous, then
the inference based on S(X) conditional on the manifold {A(X) = a} has exact frequentist
properties. This can be seen from (4.2.1) and the fact that if S conditioned on A(X) = a has
been generated using 6 then 1 — Fg|,(S,6y) ~ U(0, 1). Consequently all one sided CI will

have stated coverage. [ ]

4.2.1 Examples:

Here we will judge a few examples of univariate Fiducial distribution and it’s exactness.

1. Location family: If X = (X, ..., X,,) iid from distribution P, with density function

is f(x,0) = f(r —6),z € R,© = R where f(-) is a probability density function, the
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following one-one transformation

T:X = (X, (X) = Ky ooy Xt — X)) = (S(X), A(X))

is one-one and C'. By the corollarry we have the Generalized Fiducial distribution
based on S(X) | A(X) is exact. For Scale family (with density function is f(z,0) =
5f(%),z € R,© = R where f(.) is any probability density function) using the fol-

lowing one-one transformation

where Xn = Geometric mean of X, one can conclude that the fiducial distribution
based on X, conditional on A, (X) is exact. For examples, consider Py = U (0,0 + 1),

Py = Cauchy with location parameter j, or Py = Cauchy with scale parameter o etc.

. Exponential Family: Consider the natural parametrization fx (X|n) = h(X)em&) =41
of exponential family with ne parameter 7. Since S(X) is complete sufficient of 7, by
Basu’s Theorem S(X) and A(X) := X | {S(X) = s} are independent (since A(X)
ancillary for n) implying the Fiducial distribution based on S(X) unconditionally will
attain exactness from Corollary 4.2.1. A further generalization is following: For a one

parameter exponential family, with parameter 7 suppose the density

fx(zn) = h(x).ens(m)*f‘l(n)
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where S(x) is a smooth sufficient statistic for n € ©, and the support of the density
(denoted as domain(.X)) doesn’t depend on 7. Now in order to impose monotonicity
condition of Theorem 2 “Gs(u, 0) is monotone in 6 for all v” (or equivalently F'(z,n)

in 77) we see

OF(z,n) _ S() — A () f (ol = ELIS(O L ne
(S = )l = (X))

—AL(n)F(x,m)

should not alter its sign in © for every z. So the weight w(-) = S’(-) will lead to exact

fiducial quantile under following conditions:

e if S(z) is smooth, and

o if F,[S(X)1ix<qs] — A1(n)F (z,n) doesn’t change its sign.

First we take the instance of Gamma(6,1),(f € R™) family with the density func-
tion fy(x) = %.1{@0}. As evident from the density structure the minimal suffi-
cient statistics log X is smooth and one-one in R*. The quantity E, [log X1 ng}] —

I'(0).Py (X < x) doesn’t change sign in 0 for all z > 0. Using the weight w(z) = 1

one will get a fiducial distribution which is exact.

A very similar results on exponential family were also derived in [78]. Following table
accounts some other examples under the same umbrella, for which the Generalized

Fiducial distribution based on S(X) is exact.
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Family: Py, 60 € O :=R" % (maintains sign in ) S'(X)
Exponental (with mean 6) —xe” s Constant
Weibull with scale 6 (with known k)
density: fo(z) = 5(Z)" e~ 1150 ke Xht
Pareto with f,(z) = g;”—z’;l{zzmm}
(z,, known) ~log <%> (%) -0 %

In the remaining part we will present a few examples where Fiducial distribution is not

exact.

. Scaled normal family: N (u, u?) (u € RT := 0, ¢ > 0 known). Exactness for case
q = 2 corresponds to the scale family of Example (A). For ¢ # 2, since the minimal
sufficient statistics S(X) = (3. X;, Y. X?) is 2 dimensional so will be Gg(U, ). Here
conclusion of Corollary 4.2.1 will not hold, since one cannot have (n — 1) dimensional

ancillary statistics vector A(X) for which (5(X), A(X)) is one-one function on X.

For sample size n > 1, we calculated that the fiducial distribution based on the simplest

data generating equation in (4.1.8). Two more choices are

, and  J3(x,p) =2z,

M'+&
L
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which are based on the following data generating equations respectively:

n—1

1/2
(X, Sn) = <u+/ﬂ/22,u‘”2 (L) ) and

_ _ U
(X2sgn(X,),452) = (w+uq/22>2sgn<u+m/22>,qm 1) (42.8)

n —

where £(Z,U) = N(0, 2)®x2_; and sgn(z) = 1jz50) — ljz<0). Calculation of J5(x, 12)
is possible almost surely since measure of non-differentiability of G3(u, 1) in p (due

to sgn(x)) is 0.
4. Correlation coefficient p € © := (—1, 1) of a Bivariate normal model: Suppose

(X1,Y1),..., (X, Y,) be iid. N((O) : (1 ")) Goal is to find the Generalized Fidu-
p

0 1

cial distribution of p. Here we will propose a few data generating structural equations:

Simple Proposal: Taking the simplest data generating equation:

(X3, Yy) = (U, pU + /1 = p?V)

where L(U,V) = N(0,1) ® N(0,1) or X, Y flipped.

S 1K= ¥+ JoX, — Yi|

TO((X,Y), p) = R

Other proposals: We will construct the data generating equations based on the min-

imal sufficient statistics. Denote Vi = 5-> " (X; + Y;)?2 = (1 + p)U;, Vo =
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2
n

S

LS (X — V)2, where L(Uy, Us) = X2 @ X

. With the data generating equations

3|

(V1,V2) = ((1+p)Us, (1 =p)l3)  and

1 1 1 1
- — 429
<VV> (<1+p>U1’<1—p>U2) (429

from (4.1.7) one has

1 1

i = +
Vill+p)  Va(l—p)

%
TN, p) = o+, and JP(EY),p)

In order to choose the better data generating equation among the proposed ones, we

will decide the criteria in the next section.

4.3 Probability Matching Data Generating Equation:

Recall for any two sequences {a, },,>1, {bn }n>1 we denote a,, = O(by,) if limsup,,_, o, 3= <

o0, and a,, = o(by,) if lim,_,, 2= — 0. We define G as the Probability Matching Data

bn

Generating Equation of order s € N if

Py, [0 < 0'7(X,G,)] = P9 (0 < 0 *(X,Gy) | X) + o(n"2) (4.3.1)

where 0'7%(X G,) is the upper (1 — «)-th quantile of the Generalized Fiducial Distribution

Distribution P9 (- | X). In other words it characterizes the corresponding data generating

equation, so that the frequentist coverage of the (1 — a)-th Fiducial quantile matches (1 — «)

upto rate o(n "2 ).

We plan to guide our choice of DGE based on frequentist coverage. Why? It gives
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the information how exactly one sided quantile estimator of GFD behaves asymptotically
in frequentist sense. For illustration, suppose we had generated m batches of n (fixed) i.i.d
samples from the original distribution F'(.|0). With each batch of n samples one computes
the Fiducial (1 — «)-th quantile. Then we find how many times out of m, 6 is less than
the values of those quantiles. Asymptotically as m — oo, that proportion will converge to
Py, [00 < 6'~%(X)] which should be “close” to (1—«). In fact as n — oo from [51] following
holds

lim Py, [l <0 *(X)] =1-a

n—o0

which is (4.3.1) for s = 0. A stronger result would be finding an asymptotic (as n — 00)
expansion of Py, [0y < 6'7*(X)] and finding conditions under which the coefficients of first
few order terms will be 0 (getting (4.3.1) for larger s > 0). That is the purpose of this
probability matching idea.

Secondly in Bayesian paradigm, probability matching prior based approach had been
relevant [73] in context of judging superiority of non-informative priors. In fact one criteria
for calling a prior noninformative is if (1 — «)th posterior regions have frequentist coverage
equal (approximately or very close) to (1 — «). The interpretation is how least the specified
prior influences (giving information about the parameter space) in quantile (or other dis-
tribution based estimator) from its “ideal” coverage or how least informative it is for the
inference of the parameter. An ideal non-informative prior should match all order terms at
the true parameter value but constructing it non-parametrically is an open challenge. In GFI,

the challenge is translated into finding the data generating equation for which the fiducial
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quantile has the exact ideal coverage (i.e least influence on the parameter space). Similar to
Bayesian paradigm achieving exactness is immensely hard (though it is possible to get that
for univariate cases under certain monotonicity conditions imposed, just seen in section 2)
but first and second order terms are relatively easier to analyze which we will describe now.
4.3.1 Regularity Assumptions:

Here we consider one dimensional parameter space © containing true 6,. Define /(¢ |
X;) = log f(X;, 0) as the log-likelihood of # given one sample point X;. Denote [™ (0 | X;)
as the m-th derivative of the log likelihood function I(# | X;) with respect to 6. De-
fine L,,(6) := 37", 1(0]X;) as the likelihood of 6 given X (which is scaled by <) and

—= > e l(gZLX We denote the quantity \/nc(6 — 6,,) by y. Note that ¢ = Lg)(én),
and define a = LS’)(GA), ag = L7(14)(9A), where 6 is the maximum likelihood estimate of
6 (or any solution of L/ (§) = 0). Denote /nc(f — 6,,) by y whose Fiducial expansion
will be needed for asymptotic analysis. From now on ¢(x) will denote the density of the
Gaussian distribution function (i.e ﬁe‘é). For sake of generality from this section on-

wards by J,(X,#0) we denote any Jacobian that appears in the Generalized Fiducial dis-

tribution driven by the corresponding data generating equation G. For m > 1, we denote

8Jn X0 92J,(X,0) O™ Jn(X,0 A A m A
|6 On’ 802 ‘6 b’ aegn ) 9—o, DY J(X,0,),J)(X,0,),and J4 )(X, 0,,) respec-

tively. We know by virtue of SLLN pointwise for each #, m-th derivative (w.r.t #) of the

O™ Egy [J(X.0)]

simple Jacobian Jém)(X, 0) in (4.1.7) scaled by 1 converges to J™ (6, 0) := e

almost surely as n — oo.

Assumption 16. These Assumptions are essential for proving asymptotic normality of 0,, and

here we need a stronger version to ensure a valid higher order likelihood expansion.
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1. The distribution F(-|0) are distinct for 6 € ©.

2. The set {x : f(x|0) > 0} is independent of the choice of 0.

3. The data X = {X;, ..., X,,} are iid with probability density f(z|0).

4. There exists m > 1, such that in a neighborhood B(6y,0) of the true value 0, all

possible (m + 3) ordered partial derivatives % exist. Foralli =1,... m+2;
the quantities Eq,1% (09| X;) are all finite.
5. There exists a function M (x) such that
a(m+3)
sup }Wlogf(x | 9)| < M(xz) and EyM(X) < occ.

0eB(6p,0)

6. The information I(0) is positive for all 0 € B(6y, )

Under the Assumption 16 with m = 2 one has the following expansion ( Consequence of

~

Taylor’s theorem). We have for some ¢’ € (én, 0, + %),

=

(3) 4
i Y ; Y 1PV Ly y

Ln(0n + —=) — Lo (0,)] = —=—LW(0 S
illalbn+ Jg) = Lal6o) 276 met T adnatn O g el (@)
- v + Ro(6,) + Ly—5L<5>(9’) (4.3.2)

' 2 " 120322 ’ o

®)
where R, (0) := 6% = ijQL( )(6). Following assumptions are needed to control the

tail of the numerator of the fiducial distribution.

Assumption 17. Assume
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1. forany 6 > 0, there exists an € > 0 such that
0€B(6o,0)°

Py, { sup  [Ln(0) — L,(6p)] < —6} —1 as n— oo.

2. Let x = (x1,...,%y). There exists s € N, such that J,(x,0) = >_""_| Ji(x,0), where

Ji(x, 0) satisfies
—s A Y A Y
sup n /Ji(x,0n+—)f(:vi,9n+—)dy < 00 a.s Py,.
' R

3. The density f satisfies the following property: There exists a constant ¢ € [0, 1)

. mini:l ) IOg f(X“ 9) Po,
il S C. 4.3.3
9eBlb0.5)  [Ln(0) — Ln(00)] ¢ (+3-9

Remark 13. /. Assumption 17(b) can be verified with s = 0 for the simple Jacobian

OF; (4,0)
structure of the form in (4.1.12) by taking J;(x,0) := ‘w(xl)ﬁ . Since

/RJi(X, 0)F(X1,0)d0 = |w(X,)| [Fi(Xi, 00) — Fi(Xs,—00)] <00 as P,

Note that any polynomial exponent of n can replace the condition“n® for some s > 0.”

2. If X1, Xs, ..., X, areiid realizations from density f(-|0y) then both the numerator and
denominator of the left hand side of (4.3.3) converge to —oo with rate —C' logn and
—Cyn respectively. So in that case Assumption 17(c) is strongly implied by ¢ = 0 if g—;

is uniformly bounded for n > 1.
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Next is a very crucial Assumption about the Jacobian J, (X, ) which gives further con-

ditions on the data generating equation.

Assumption 18. There exists a function J(-,-) : © x © — R with its i-th derivative with

respect to second argument 8”;?91’9), denoted by JV(0,,0) (where J)(0,,0) = J(01,0));

such that following conditions hold.

1. There exists m > 1, such that for each i = 0,...,m + 1 the Jacobian g (X,0),

satisfies

sup  |JO(X,0) — JD(00,0)| =0  as. Py, (4.3.4)
9eB(00,8)

Namely a uniform convergence result holds over a neighborhood of true parameter
value 0 for each i = 0, ..., m + 1 uniformly as n — oo.
2. The function J(-,0) doesn’t vanish in 0 € B(6,,0) for any 6 > 0.

3. Fori=0,...,m+ 1 the quantities
Vi [TOX,00) = TD60,62)] = On, (1), (43.5)

Remark 14. Following comments are on Assumption 18:

1. In (4.3.4) a difference from Bayesian paradigm is the extra (Assumption 18 for i =
(m + 1)th order) smoothness condition for data dependent J,,(X,0) which is needed

to apply the uniform law of large number in a neighborhood of 0.
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2. Assumption 18(a) holds for the simple Jacobian in (4.1.12) if following are satisfied
foreachit=20,..., m+1:
(a) For each x, J9(z,-) is continuous in 6 € [0y — 6,0y + 0].

(b) Foreach 0 € [0y — 6,00 + 0], J(-,0) is a strictly positive measurable function
of x.

(c) There exists a 0 > 0 such that,

E90< sup J(i)(Xl,Q)D < 00.
0€B(6o,0)

This follows from Wald’s theorem.

In contrast to Probability matching prior framework [23] main difference comes from the
fact that here the Jacobian J, (X, @) has a data dependent U —statistics type (functional of
empirical distribution) structure than a simple prior function of the parameter. In order to

analyze the exapnsion of J,, (X, #), the basic ingredient will be Taylor’s theorem:

D>

We have for some ¢’ € (0,0, + \/ﬁ)’

2 3
Sy ; AN nx oY 4 gy — Y
Tn(X, 00+ L) = J.(X,6,) + J.(X, 6,) = Ta(X, bn) 5 — + J(X, 0 )6(n6)3/2

ol X))y X0 2 T
— + = 372
X 6,y 2nc " Jo(X, 6,) 6(nc)

R i / N 1 1 N 2
= J,(X,6,) 1+ML+_ W(l)(x)i+wy_
n Ve (6, 6,) 2¢

0/) y3
~ 4.3.6
) ) (4.3.6)
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where W\ (X) := \/n (JZ&XQ?’;) - Ji;;ffg;i“) form > 1.

In higher order expansion of Py [0y < 0(1=*)(X, G)] the main difference of GFD from “
Probability matching prior” framework comes from the presence of the terms wi™ (X) for
m > 1. We gave here an explicit proof of the expansion (4.7.10) which comes by making
a product of (4.3.6) and (4.3.2) as it was outlined in Bayesian context [42] Chapter 5, from

equations (5.4b),(5.4c) to (5.4f). Following assumptions are necessary for existence of the

second order term.
Assumption 19. There exists m > 0, for which following hold:

1. Integrability Condition: Fori = 0,...,m and any d > 0, one has for all 6 € ©

where the finite constant may depend on 0.

2. Fori=0,...,m There exist continuous functions a;(.) such that
a;(0) == lim Epv/n |J9(X,6,) — JD(6.6,)] . (4.3.7)
n—oo

3. Fori=0,...,m the functions J® (6, -) are locally Lipschitz.

Now we will state the main result for first and second order terms in expansion of

P, [00 < 0'*(G,X)]. Define the terms gy := .J'(6o,60), g2 := J (6o, 6) where J' (6o, ) =

dJ (00,0

50 ) | oo, L€t Za is (1 — a)-th quantile of Normal distribution.
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Theorem 3. Suppose Assumptions 16,17,18,19 hold with m = 2. Following expansion holds
for all 0y € © and for some constants (given o) ¢; := ¢(24),Ca := 2aP(2a) (depends only

on by)

P, leo <67G,X n)} = (1—a)+ le/lﬁ(g) + C2A;(g) —|—0<%), where

12 7(00,6)  OIF
_ 2 00 ) 0
A(G) = ll (60, 00) + 39} : (4.3.8)
6=0¢

Ny(G) = b’ a1(6o) — aof0)g] {1 2J(60,0)Ep [1P(8 | X)]}
2 Zagg 1\Y0 s 689 0 0

1 0?

~5 g3 (00 0) 1y ] (4.3.9)

0=0o

Remark 15. Following are some remarks on Assumption 19 and extention to higher order

terms:

1. Assumption 19(a) is stronger than Assumption 18(c). We mentioned the latter to em-

phasis on the fact that it is sufficient for only first order term.

2. Note that in all situations where X is a collection of n random samples, usually we

have {alz(z()) - azz(z(;)zgl} = 0 because of the symmetricity reason. Note that A{(G)

and the second term of Ao(G) are both first and second order terms for the asymptotic

expansion of Py, [0y < 6"~ (m, X)]| where 0'~(m, X) is the (1—«)th Posterior quantile
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based on the prior :

() o< J(by,-) where 0y is the true parameter value.

3. Higher order terms: In general we have J(0y,0) to be lim,,_, o, Ey, J,(X,0), implying
a;(0o) will be 0 for i = 0, 1. But in Theorem 3 we kept it general since data generating
structural equation is not-unique. So conditions for the first two order terms really will
not differ from the conditions in probability matching priors. We did not pursue here
explicitly, but under Assumptions 16-19 suppose further following two assumptions

hold with m = 3:

(a) Fori =0,...,mandany > 0, one has for all € ©

where the finite constants may depend on 6.

(b) Define the following quantities:

, A . ~ 2
a(6) = Tim nEy, [P, 6,) = O (00,0,)]
adh(60) = Tim nEy, [J,(X,0) = J (60, 0,)] [V (X,0,) = T (60,6,)]
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Then analogue to the Theorem 3 a third order representation holds:

c1Aq(G) n c202(G) n c3A3(G)

Jn n 32

GEI)(90)91 B a(()),1(90)} n Iﬁé {%(90) _ a2(90)g1}
2 0o

g3 92 Z32

Py, [90 <6"°(G.X, n)} —(1-a) =

—1—0(#) where A3(G) = {

+{Thira’ order Probability matching prior term with priorJ(0y,0) at 0 = 6, }

oD @)g1  afi(8)

g3 g2

This extra additive quantity ( ) in the display above will come due

to the following Taylor’s expansion of % around Z—; where Ty = J! (X, én)7T2 =

Jo(X, 0,)) and their corresponding limits g := J'(6y,00), g2 := J (0, 0)

i g 1 9 291
0 + (T - 91); — (T - 92)9—5 +{ (12— g2) i (1 = g1) x (4.3.10)

o) ol )

z1€(T1,91),w2€(T2,92)

It implies that after taking expectation

g [WIV(X)] = (al(eo)_%(@o)gl) L L |:az('1)(90)91 _aé),l(‘)o)}

92 93 Vn 93 92

+0 <l> (4.3.11)

n

keeping an extra order term. Note that for simple data generating equation J(6y,0) =

Ep,Jn(X,0), along with the empirical structure J,,(X,0) = L 3" | J(X;,0) then one
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gets

o (0o)gn a&wo)} _ [Vare)o(J(Xl,e))gl ~ Coug,(J(X1,0), J’(Xlﬁ))]

93 92 93 9>

0=06q

which appears as an extra in the third order term. The difference of Fiducial cases will
be different from Bayesian paradigm likewise in the further order of terms, starting
from 3rd order due to the presence of {Wém) (X),m > 1} and their respective higher

order expansions.

Corollary 4.3.1. Under Assumptions 16,17,18 with m = 1, Gy will be the first order Proba-
bility Matching Generating Equation if A1(Gy) =0.
Under Assumptions 16,17,18,19 with m = 2, G, will be the Second order Probability Match-

ing Generating Equation if A1(G2) =0, and Ay(Gs) =0.

4.4 Recipe For Perfect DGE For s = 1,2 in (4.3.1)

Main contention of this section is to provide proper guidelines so that for any one pa-
rameter family so that the space of transformations can be identified for which the desired
matching properties are satisfied. By “perfect” we mean those data generating equations for
which one can obtain both s = 1,2 th matching Fiducial distribution. In this section we

discuss one such technique that is motivated by a few examples of exponential family.

1. Find minimal sufficient statistics (S1,Ss, ..., Sm) of 0. From the point of view of com-
puting GFD the choice (S1,Ss,...,Sn) would be better if they are independent of

each other (which are possible for exponential families).
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2. Find any function g : R™ — R™, that satisfies the conditions of Corollary 4.3.1.

Now we will apply this recipe on some examples where the dimension of minimal sufficient

statistics is strictly greater than dimension of the parameter. We will work on two examples

ofN(<0> , (1 p)) and N (u, u) for 1 > 0. Suppose
0 P 1

A := {Space of all C" and one-one transformations from S to S}.
One possible representation of transformation would be
A(Sl,SQ) = (Al(Sl),AQ(SQ)) (441)

where both A;(+), A2(-) € A. Now for computational advantage or because of simplicity

instead of (4.4.1) one may use the following transformation
A(51,52) = (A1(S1)g1(51), A2(52)92(52)) (4.4.2)
where g1 (-), g2(+) be two functions on S such that
Py, [91(S1) # 0, g5(S2) # 0] = O(e™™)  for any constant a > 0

and both of A;(-)g1(-), A2(-)ga(+) € A. From Corollary 4.3.1 we define the set of transforma-

tions A(-, ) yielding first and second order probability matching data generating equations
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respectively as:
AP ={Aec Ag: A(G) =0}, AP ={Ac Ag:A:(G)=0,A,(G) =0}

We will describe the class A(gl) in examples of NV ( <0> ) (1
0

P

p)) and N (u, u?) for p > 0.

1

1. Since for N ( (0> , (1 p) > the generating equation of minimal-sufficient statistics is
0 P 1

(S1,52) = ( Z (X; +Y;)? Z(XZ_Y;V) = ((1+p)U1,(1—p)U2).

=1

For general A := (A;, A;) € Ag, the Jacobian for (4;(5)), A2(S2)) = (Ai((1 +

p)U1), As((1— p)Us)) will be (after taking mod) JA(X, p) = A7 (1) 3L + Al (Sg)ls—

1+p

converges to J4(p,, p) 1= A’1(1+p0)1;:f£ F AL (1 —p,) —% as sample size goes to 0o

as sample size (n) goes to co. Now before using Theorem 3 to find .Af}l) we should

verify Assumption 18. Note that

A~ A~ / !/ S
T, pu) = T4 (pos ) = [A41(S1) = AL+ po)l
/ Si—(1 +p / / S
+ A1 (1 + po) {%}LO)} + [A5(52) — A5(1 = po)] 1 —2,5”
AL(1 —
+21<_—/350)[52 — (1= po)]
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and

S
TiO (X, p) = T4 Wy, p) = [AY(S1) = A1+ po)] +1ﬁ + AL (1+ po) X
Sl — (1 + ,0[)) , Y, . SQ AIQ(l - pO) . .
B s - aga - w2 LA 1),

Since S7, S, both converge to (1 + pg), (1 — po) respectively; using smoothness of

Ay, Ay by applying Delta method and Slutsky’s theorem one can show that v/n[J} (X, p,,)—
JA(pys )] (similarly for /(2D (X, p) = JAD (p,. 9))) is O,, (1).
The first order class follows by equating A;(G) = 0, which is equivalent of saying

554 (P )
APy o) |
p=p

_ 14,
21,

0

Al (1+pg)
c (1+po)_(1_po) /1 — 0
(%,JA(po:p) Az(1=pg) . . 1 1;70 3p0 +Pg
Note that 22— = , equating that with 5 2 = ———0—
J4(pg-pg) AL (14p0) 21y, (1=p3)(1+p3)
p A=p2) | 1+ | 70
0 0 AL (1-pg)

will give the following characterization of the first order matching class:

o [ o o, (1—p)*
AP — {A = (00 Aa0) € g+ AL1L+p) = AL =)

for |p| < 1}. (4.4.3)

The second proposal in (4.2.9) A = (A, Ay) such that A;(z) = As(z) = I, belongs

to the class A(gl) hence it is first order matching.

Now to judge Assumption 19 in order to ensure second order term we need to find the
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asymptotic limit of £, \/n [ @) (X, p) — JAD(p,, pn)] and we need to check finite-
ness of £, |n n[Ji ® (X, pn) — JAD(p,, pn)]?|. Note that for i = 0,1 each of the four
terms of \/E[Jf @ (X, pn) — JAD(p,, pn)] by Slutsky’s theorem converges to normal
with mean zero. Since S; is chi-square so using its exponential concentration property
one can prove uniform integrability of each of those terms. So E, v/n[J A )( Pn) —
JA@(p. | pn)] asymptotically will converge to the mean of its weak limit which is
0. In order to characterize the second order class A(gz) we need to compute the
secnd order term from (4.3.9). Note that the first term of Ay(G) is 0 since both

of al(po) = 0, ax(po) = 0. Now denoting M, = E,[I®®(0]X)] and using using

J(60,0) }
J(90 00) 169

= %I—O followed by A;(G) = 0 we have

1 0?
Ay(G) = {6 5 {1,27(60,0) My} — 2802J(80,0)I }

C J(60,600)[1d [,
- 2 3 db Ty~ Mo

(4.4.4)

After simplifying inside the bracket of RHS of (4.4.4) and using M, = —2I we will

0=0¢

B YA N S il Y
6 fo 700500 70y, 0,) 062 |7V

)

get following

]9_1 62 1 /I \271-3 2 " r—2 1 d —2
o mw{mg,m} - 5(100) 1y, +§]eo]90 + §@{I€ Me}
’ 0o 0=00
1. .
510 Moo I, 4.4.5)
A’1<1+po>+A’2<1—po> 2 A’l(1+p0>+<1+p0)2
N h 1 92 JA (1+p0)2 " (1-p0)? B (Ttp)2 | Ah(T=pg) " (1-py)2
ote that T (pg-pg) OP% (poa P) AT p0)+ AL (1—p0) o
P=po 1+ A,;(l_pg)
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1

which is again a function of [AII(HP 0)} . It implies that for A € Af_;), the value for

Ay(1—py)

Al 1+ 1— 2 2 . .
1(teo) — U=P0) 6 the value of mg—pz [JA(pO, p)} is automatically fixed.

A,Q(lfpo) - (1+p0)2

p=p0
But in this case putting M, := —2I, So for any A € .A,(;l), we have the second order
term is identically
Ay(G) =0. (4.4.6)
So we have
< 11—« 1
Pﬂo Py < pNGa, X n)| — (l—a) = o{ ). 4.4.7)

. Similarly for N(u, u?) for ¢ > O(known) and p > 0, the data generating equation is

n—1

1/2
(51, 92) = (Xy, Sn) = <M 12z, 1 (L) )

If one has an element A € Ag, the structure of the Jacobian will be

T, ) = AY(X)

1+ q(%—‘u_“) + A’Q(Sn)% JA (110, j¢) that converges to

T4 (110, 1) = Ai(po)

=[S

Qo — )| q ., , ¢
1 REOZ AT T g2
R ‘+ S A (15)

By similar techniques used in Bivariate normal contexts one can verify Assumptions

18 and 19 satisfied by the Jacobian J*'(X, 11). Using J4 (11, i) in the equation A; = 0,
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one has the following characterization
A = {A = (A1, A)) € Ag: Aj(x?) = A5 (x)qxi L, forz > 0}

which is clearly satisfied by our third choice (4.2.8) A;(x) = x?, A»(y) = qy>.

So forany A € Ag), the asymptotic coverage will be

P iy < (G0 Xom)| = (1—0a) = A—(QH(%) (4438)

Ho n

where A, (G) can be found from (4.3.9).

4.5 Small Sample Simulation:

In this section we will demonstrate some simulation results to understand small sam-
ple implication of our work. In particular we chose The Basu’s famous Bivariate normal
N((Z) : (1 f )) model for inference of p. We considered three Fiducial distributions in Ex-

p
ample 4 respectively based on the simple data generating equation, DGE based on minimal
sufficient statistic, and one candidate of the first order probability matching with transforma-
tion A;(z) = As(z) = 1 on two dimensional minimal sufficient statistics. In addition we
also considered Jefrey based Posterior distribution and the second order probability matching
data-dependent prior proposed by [68]. Note that in proposal of [68] one needs a MLE of p
that cannot be computed in closed form from the likelihood (only tractable through numerical

iterations that increases the computation time). So we used % Z?:l X,Y; instead and since

Ly XiY; — p ~ N(0, #), so this substitution will not make any difference except for
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a set with probability O(e~*") for some a > 0.

For a dataset x, let

pa(X7 Jl)? pa(x7 ‘]2)7 pa<X7 J3)7 pa(xa Jeff)7 pa(xu BQ)

denote a-th quantiles of simple fiducial distribution, Fiducial distribution based on Minimal
sufficient statistics, First order probability matching fiducial distribution, Jeffreys’ Posterior,
second order matching posterior by respectively. We considered following order of quantiles
a = (0.05,0.15,0.3,0.5,0.7,0.8,0.95) and sample size n = 2, 3,4, 5, 10, 25, 100.

For each n and «, each cell of Table 4.1 - 4.5 exhibits simulated frequentist cover-
age of (=1, p*(x, )], (=1, p*(x, J2)], (=1, p(x, J5)), (=1, p*(x, Jeff)], (=1, p*(x, By)] re-
spectively from top to bottom each based on 5000 iterations while each table the data are
generated from true value

po = (0.05,0.3,0.5,0.7,0.9).

Observe that we considered only positive py since by symmetry coverage of the lower interval

for true py will be same as the coverage of the upper interval with true —p.

We observe that posterior of second order probability matching prior works uniformly
well while the data generating equation of Minimal sufficient statistics is quite poor. Rel-
atively first order matching Fiducial distribution works notably well for the « close to 0.5.
Also note z, is close to 0 if « is close to 0.5 and in such cases the last two quanitities of the

second order term will be close 0 as they are multiplied by z,. From the result it also appears
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that for small sample size empirical coverage of second order matching Fiducial distribution
is smaller than actual order of the quantile (hence liberal) while the second order Bayesian
is very sharp. We realize that it is due to the first quantity of the second order term while
a1(6y), az(bp) is attained at n — oo but for small sample (like n < 5) that approximation is

very crude adding negative values to the empirical coverage.

4.6 Conclusion and Open questions:

The study of non-informative priors and related variants of distributional inference has a

long history and perhaps the best conclusion was made by Kass,Wasserman in [54]:
“... research on priors chosen by formal rules are serious and may not be dismissed
lightly: When sample sizes are small (relative the number of parameters being estimated),
it is dangerous to put faith in any default solution; but when asymptotics take over, Jeffreys
rules and their variants remain reasonable choices.”

Here we found few other variants of probability distributions (GFD) on © which are
(when they are not exact) as good as the posterior distribution from Jeffrey’s prior (satis-
fying invariance, and at least first order matching) and also they came from the Fiducial
framework. We never explored here but there is a possibility of getting a second order

matching Fiducial distribution too when there is a set of three minimal suffcient statistics

for the unknown parameter and simplifying first and second order term will give us two

A5 (z)
Aq (@)

and j?% Solving them may give a set of transformations

equations over unknowns

of the form A(x,y, z) = (A1(z), Aa(y), A3(2)). One possible example would be the family
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Table 4.1: Coverage for finite sample simulation for Bivariate normal
with po= 0.05
[ po=0.05 a=0.05 a=0.15 a=03 «a=0.5 o=0.7 «o=0.8 a=0.95 |

0.0164 0.0804 0.2326 0.4808 0.7434 0.8498 0.9818
0.0058 0.0376 0.1604 0.4638 0.8064 0.9018 0.9924
n=2 0.1080 0.2166 0.3550 0.4942 0.6380 0.7126 0.8960
0.0726 0.1654 0.3126 0.4906 0.6762 0.7642 0.9352
0.0682 0.1480 0.2960 0.4866 0.6974 0.7866 0.9422
0.0238 0.1072 0.2616 0.4956 0.7370 0.8314 0.9702
0.0116 0.0682 0.2174 0.4834 0.7646 0.8616 0.9842
n=3 0.0948 0.2024 0.3504 0.5050 0.6694 0.7398 0.9052
0.0672 0.1652 0.3202 0.5020 0.6962 0.7770 0.9368
0.0584 0.1512 0.2994 0.4982 0.7144 0.7960 0.9414
0.0294 0.1128 0.2722 0.4906 0.7152 0.8256 0.9668
0.0170 0.0872 0.2392 0.4816 0.7296 0.8456 0.9782
n= 0.0780 0.1960 0.3428 0.5002 0.6610 0.7480 0.9134
0.0604 0.1652 0.3170 0.4976 0.6846 0.7780 0.9364
0.0558 0.1530 0.2998 0.4946 0.7010 0.7972 0.9442
0.0304 0.1168 0.2720 0.5008 0.7100 0.8178 0.9644
0.0212 0.0950 0.2498 0.4936 0.7218 0.8324 0.9738
n=5 0.0742 0.1800 0.3254 0.5108 0.6630 0.7648 0.9184
0.0584 0.1588 0.3052 0.5072 0.6802 0.7876 0.9400
0.0522 0.1462 0.2924 0.5042 0.6958 0.8014 0.9470
0.0472 0.1460 0.2888 0.4868 0.7000 0.8004 0.9512
0.0438 0.1390 0.2814 0.4830 0.7006 0.8026 0.9532
n=10 0.0580 0.1624 0.3022 0.4904 0.6930 0.7888 0.9424
0.0546 0.1572 0.2994 0.4902 0.6972 0.7924 0.9464
0.0524 0.1534 0.2952 0.4890 0.6998 0.7986 0.9484
0.0442 0.1358 0.2788 0.4720 0.6846 0.7870 0.9426
0.0348 0.1134 0.2488 0.4338 0.6514 0.7648 0.9362
n=25 0.0548 0.1498 0.3038 0.4964 0.7042 0.7986 0.9438
0.0536 0.1470 0.3010 0.4938 0.7044 0.7988 0.9450
0.0536 0.1456 0.3000 0.4946 0.7048 0.8010 0.9470
0.0428 0.1548 0.2926 0.5068 0.6874 0.8026 0.9488
0.0418 0.1526 0.2892 0.5042 0.6864 0.8024 0.9494
n=100 0.0460 0.1584 0.2978 0.5084 0.6864 0.8004 0.9462
0.0450 0.1578 0.2970 0.5082 0.6866 0.8012 0.9472
0.0442 0.1566 0.2956 0.5080 0.6884 0.8030 0.9484
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Table 4.2: Coverage for finite sample simulation for Bivariate normal
with pp=0.3

H po=03 n=2 n=3 n=4 n=5 n=10 n=25 n=100 H
0.0088 0.0176 0.0246 0.0246 0.0374 0.0422 0.0482
0.0014 0.0052 0.0094 0.0112 0.0268 0.0374 0.0466
a=0.05 0.0858 0.0700 0.0682 0.0674 0.0600 0.0530 0.0534
0.0638 0.0522 0.0568 0.0560 0.0554 0.0514 0.0528
0.0596 0.0484 0.0550 0.0526 0.0522 0.0494 0.0516
0.0610 0.0862 0.0984 0.1118 0.1246 0.1336 0.1510
0.0170 0.0392 0.0608 0.0790 0.0968 0.1184 0.1438
a=0.15 0.2136 0.1946 0.1836 0.1812 0.1656 0.1522 0.1570
0.1688 0.1578 0.1610 0.1636 0.1538 0.1490 0.1574
0.1622 0.1504 0. 1500 0.1590 0.1504 0.1464 0.1562
0.1966 0.2306 0.2350 0.2476 0.2724 0.2818 0.2892
0.0942 0.1644 0.1802 0.2004 0.2332 0.2616 0.2792
a=0.3 03658 0.3492 0.3262 0.3274 0.3176 0.3054 0.2990
0.3128 0.3126 0.2980 0.3042 0.3054 0.3020 0.2982
0.2964 0.3002 0.2872 0.2946 0.3014 0.2996 0.2978
0.4458 0.4476 0.4504 0.4604 0.4604 0.4826 0.4950
0.3488 0.3930 0.3964 0.4162 0.4300 0.4616 0.4840
a=0.5 0.5168 0.5112 0.4986 0.5104 0.4912 0.4996 0.5056
0.4992 0.4956 0.4886 0.4988 0.4846 0.4978 0.5050
0.4918 0.4878 0.4838 0.4912 0.4814 0.4972 0.5054
0.8320 0.8048 0.7936 0.7932 0.7836 0.7894 0.7904
0.8552 0.8072 0.7914 0.7860 0.7718 0.7804 0.7812
a=0.8 0.7430 0.7458 0.7596 0.7644 0.7802 0.7934 0.7956
0.7816 0.7718 0.7774 0.7818 0.7884 0.7964 0.7970
0.8046 0.7918 0.7920 0.7924 0.7950 0.7992 0.7982
0.9742 0.9648 0.9532 0.9528 0.9520 0.9482 0.9478
0.9832 0.9748 09610 0.9576 0.9526 0.9466 0.9452
a=0.95 0.8904 0.9072 09166 0.9206 0.9382 0.9458 0.9484
0.9326 0.9350 0.9360 0.9356 0.9466 0.9482 0.9488
0.9428 0.9446 0.9422 0.9448 0.9518 0.9520 0.9498

Py = {N ( (9) , 62 (1 0)) for 6 € (-1, 1)} where three dimensional minimal suffi-
6 6

1
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Table 4.3: Coverage for finite sample simulation for Bivariate normal

with pp= 0.5

H po=0.5

a=0.05

a=0.15

a=0.3

a=0.5

a=0.7

a=0.8

a=0.95

n=2

0.0058
0.0010
0.0712
0.0526
0.0514

0.0452
0.0060
0.1936
0.1578
0.1526

0.1764
0.0512
0.3512
0.3098
0.3048

0.3996
0.2446
0.5116
0.4802
0.4770

0.6668
0.6198
0.6710
0.6780
0.6780

0.7874
0.7806
0.7402
0.7654
0.7786

0.9566
0.9648
0.8912
0.9270
0.9386

n=3

0.0106
0.0020
0.0666
0.0544
0.0534

0.0734
0.0230
0.1786
0.1558
0.1526

0.2014
0.1090
0.3374
0.3058
0.2962

0.4236
0.3152
0.5096
0.4872
0.4830

0.6464
0.5944
0.6703
0.6686
0.6724

0.7750
0.7514
0.7698
0.7714
0.7792

0.9556
0.9570
0.9150
0.9354
0.9454

n=4

0.0210
0.0054
0.0646
0.0558
0.0552

0.0896
0.0370
0.1664
0.1476
0.1454

0.2258
0.1444
0.3224
0.2988
0.2924

0.4332
0.3502
0.5082
0.4880
0.4868

0.6566
0.6072
0.6806
0.6792
0.6808

0.7746
0.7472
0.7742
0.7796
0.7862

0.9474
0.9488
0.9198
0.9350
0.9432

n=>5

0.0236
0.0094
0.0578
0.0528
0.0520

0.1016
0.0534
0.1706
0.1576
0.1530

0.2360
0.1640
0.3194
0.2978
0.2964

0.4266
0.3554
0.4944
0.4828
0.4788

0.6686
0.6254
0.6940
0.6914
0.6944

0.7720
0.7424
0.7772
0.7836
0.7868

0.9478
0.9472
0.9306
0.9432
0.9492

n=10

0.0326
0.0210
0.0484
0.0466
0.0458

0.1180
0.0850
0.1486
0.1430
0.1428

0.2642
0.2052
0.3158
0.3056
0.3054

0.4676
0.4130
0.5104
0.5044
0.5044

0.6654
0.6266
0.6868
0.6858
0.6864

0.7744
0.7460
0.7898
0.7912
0.7932

0.9378
0.9320
0.9344
0.9374
0.9418

n=25

0.0442
0.0348
0.0548
0.0536
0.0536

0.1358
0.1134
0.1498
0.1470
0.1456

0.2788
0.2488
0.3038
0.3010
0.3000

0.4720
0.4338
0.4964
0.4938
0.4946

0.6846
0.6514
0.7042
0.7044
0.7048

0.7870
0.7648
0.7986
0.7988
0.8010

0.9426
0.9362
0.9438
0.9450
0.9470

n=100

0.0474
0.0428
0.0502
0.0498
0.0496

0.1486
0.1366
0.1556
0.1552
0.1552

0.2830
0.2680
0.2944
0.2942
0.2940

0.4924
0.4772
0.5046
0.5044
0.5046

0.6954
0.6784
0.7024
0.7024
0.7032

0.8018
0.7896
0.8108
0.8110
0.8114

0.9464
0.9428
0.9478
0.9486
0.9490
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Table 4.4: Coverage for finite sample simulation for Bivariate normal

with po= 0.7

| po=0.7 a=0.05 a=0.15 a=03 «o=0.5 o=0.7 a=0.8 «a=0.95 |
0.0046 0.0440 0.1506 0.3824 0.6284 0.7518 0.9502
0.0000 0.0014 0.0208 0.1578 0.5104 0.6966 0.9456

n=2  0.0568 0.1824 0.3186 0.5164 0.6788 0.7576 0.9068
0.0490 0.1556 0.2848 0.4884 0.6696 0.7652 0.9316
0.0474 0.1544 0.2832 0.4884 0.6742 0.7710 0.9406
0.0154 0.0756 0.1868 0.4152 0.6296 0.7636 0.9372
0.0008 0.0132 0.0684 0.2620 0.5312 0.6958 0.9258

n=3  0.0528 0.1636 0.3014 0.5086 0.6836 0.7862 0.9188
0.0474 0.1484 0.2800 0.4894 0.6718 0.7860 0.9322
0.0476  0.1482 0.2810 0.4934 0.6750 0.7910 0.9376
0.0186 0.0964 0.2248 0.4178 0.6404 0.7550 0.9392
0.0034 0.0276 0.1178 0.2936 0.5448 0.6894 0.9290

n= 0.0558 0.1656 0.3106 0.4978 0.6930 0.7818 0.9320
0.0496 0.1580 0.2956 0.4826 0.6836 0.7804 0.9386
0.0504 0.1584 0.2970 0.4852 0.6830 0.7840 0.9436
0.0256 0.1006 0.2372 0.4366 0.6548 0.7614 0.9436
0.0066 0.0454 0.1388 0.3176 0.5678 0.7054 0.9298

n=5  0.0480 0.1508 0.3132 0.5034 0.7036 0.7896 0.9408
0.0458 0.1432 0.3022 0.4948 0.6974 0.7886 0.9440
0.0456  0.1442 0.3020 0.4952 0.7000 0.7918 0.9486
0.0390 0.1282 0.2596 0.4598 0.6650 0.7752 0.9384
0.0208 0.0822 0.2018 0.3860 0.6078 0.7282 0.9218

n=10  0.0554 0.1532 0.2982 0.4990 0.6924 0.7972 0.9428
0.0546 0.1514 0.2940 0.4960 0.6910 0.7956 0.9440
0.0544 0.1524 0.2954 0.4984 0.6944 0.7962 0.9464
0.0414 0.1432 0.2746 0.4854 0.6896 0.7868 0.9526
0.0326 0.1178 0.2348 0.4382 0.6446 0.7560 0.9414

n=25  0.0470 0.1548 0.2954 0.5074 0.7058 0.8008 0.9560
0.0470 0.1546 0.2944 0.5068 0.7062 0.8002 0.9562
0.0472  0.1546 0.2942 0.5068 0.7072 0.8018 0.9570
0.0466 0.1418 0.2928 0.4848 0.6928 0.7896 0.9532
0.0402 0.1288 0.2734 0.4624 0.6702 0.7732 0.9472
n=100 0.0498 0.1474 0.2988 0.4932 0.7002 0.7962 0.9546
0.0498 0.1474 0.2988 0.4934 0.7002 0.7966 0.9548
0.0498 0.1472 0.2992 0.4940 0.7008 0.7972 0.9552
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Table 4.5: Coverage for finite sample simulation for Bivariate normal

with po=0.9

[ P0=09 a=0.05 a=0.15 a=03 a=0.5 a=0.7 a=08 a=0.95 |
0.0026  0.044  0.1626 0.37066 0.596  0.732  0.936

0.00 0.000  0.0046 0.05266 0.3406  0.547  0.920

n=2  0.0466 0.1546 03166 0.51066 0.6840  0.780  0.942
0.0420  0.1373  0.2920 0.48866 0.6653  0.771  0.942

0.0433  0.1420  0.2986 0.49666 0.6720  0.775  0.941

0.0253  0.1020 0.2233 04206 0.6326  0.7593  0.9313

0.0006  0.0046  0.0573  0.2120 0.4553  0.6166  0.8846

n=3  0.0600 0.1620 03046 0.4960 0.6900 0.8040  0.9433
0.0586  0.1553  0.2960 0.4880  0.6833  0.7980  0.9440

0.0593  0.1580 0.3000 0.4926  0.6853  0.8013  0.9480

0.0273  0.12260 0.23800 0.47330 0.66460 0.75260 0.94460

0.0040  0.03266 0.08933 0.29400 0.50733 0.64866 0.91466

n= 0.0533  0.15660 0.29400 0.52200 0.70260 0.78660 0.95200
0.0526  0.15330 0.29000 0.51800 0.69730 0.78260 0.95130

0.0533  0.15530 0.29200 0.52066 0.70460 0.78600 0.95260
0.02600 0.1226  0.2660 0.4726  0.6766  0.7640  0.946
0.00466 0.0500  0.1446 03266 0.5513  0.6573  0.9176

n=5  0.04330 0.1540 03020 0.5060 0.7060 0.7913  0.9526
0.04260 0.1533 03007 0.5026  0.7026  0.7886  0.9523
0.04460 0.1546  0.3026  0.5060  0.7060  0.7926  0.953
0.0360 0.1440 0.2853 04780 0.6713  0.7960  0.9430

0.0140  0.0880 0.2060 0.3826  0.5830 0.7300  0.9170

n=10  0.0413 0.1513 0.3020 0.4893  0.6853 0.8086  0.9453
0.0418  0.1515 0.3013 0.4886 0.6846  0.8073  0.9453

0.0406  0.1526  0.3030  0.4906  0.6860  0.8080  0.9460

0.0546 0.1260 0.2880 0.4846  0.7080 0.7940  0.9453

0.0346  0.0913 02326 04280 0.6650  0.7520  0.9326

n=25  0.0560 0.1273  0.2940 04890 0.7126  0.7986  0.9486
0.0562  0.1270  0.2940 0.4890 0.7126  0.7986  0.9486

0.0559  0.1270  0.2940  0.4893  0.7130  0.7980  0.9486

0.0540  0.1506 0.3033  0.5080 0.6840 0.8040  0.9450

0.0473  0.1306  0.2820 0.4853  0.6620  0.7913  0.9366

n=100 0.0560 0.1513 0.3073 05106 0.6866 0.8060  0.9460
0.0560  0.1513  0.3073  0.5106 0.6860  0.8060  0.9460

0.0560  0.1506  0.3073  0.5106  0.6860  0.8073  0.9460
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cient statistics for 6 can be taken as

(17 iS5 x vyl Y XV
(81)827‘93) - <X+Y7 n ZZI(XZ Y;) 7nZ(X’L +}/; X Y) > .

i= i=1

There is a possibility of getting general results on higher order matching generating equations
but they will be case specific and basic ideas are similar. Following are some other open
questions related to the extension of the idea of higher order asymptotics as well as the

choice of norms:

1. Different Choices of norm in (1.3.3): One of the essential ingredients in our work
was the derivation of (1.3.4) with L., norm through increasing precision asymptotics.
In (1.3.3) choosing L is also very intuitive and a lot easier to handle to get the distri-
bution of the weak limit (as € | 0). A natural extension would be to find the structure

of Jacobian for the L, norm which is proved to be

\/det ((%Gm,e))/(d%e(u, 0)) )

So once we have a good handle on that we will be able to generalize the probability

u=G-1(X,0)

matching criteria for fiducial distributions defined under general norm structures (L,

for 2 < p < o0) in (1.3.3).

2. Non-regular cases: When the true distribution is supported on (a (), b(9)) with |a’(0)| <
' (6)| (for example U (6, 6%) for 6 > 1) then the condition “{z : f(z | ) > 0} doesn’t

depend on 6" of Theorem 3, gets violated and the expansion of the fiducial distribution
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will not converge to Normal distribution anymore. For U(a(f),b(f)) the fiducial dis-
tribution of 6 on the basis of n iid observations (under assumption both a(#) and b(0)
are increasing and continuous in 6) is

a'(6) — a(8)[log b(9)]' + X, [log b(6)]'
f(0]X) o b(6)" -1{a(6)—b(9)<X(1), a(0)+b(6)>X (n)}

where (X (1), X(»)) = (min X, maxX), X,, = mean(X). Even in probability matching
prior context under a more restrictive condition, we have seen there is only second order
terms present [43] in the frequentist coverage of the posterior quantile of n (6 — én). We
expect a similar result to hold in Fiducial context but with a change that should come

from the term (W" (X))2.

. Multi-parameter context: Proving analogue version of Theorem 3 in multi parameter
cases where there is only one parameter of interest and rest are nuisance is more in-
volved. Generally the Jacobian becomes a U-Statistics. Since higher order expansion
of fiducial quantile requires convergence of fluctuation of scaled Jacobian (like As-
sumption 19), deriving concentration properties of U-Statistics (that the Jacobian for

multiparameter case resembles) is essential in that context which is very challenging.

4.7 Proof of Theorem 3:

We prove Theorem 3 with a number of steps. First we prove a lemma on the expansion

of the fiducial density and then we will give an asymptotic expansion of the Fiducial quantile

in Corollary 4.7.1. After that in order to get the frequentist coverage of the quantile with the

obtained expression from Corollary 4.7.1, we will proceed with Shrinkage method. Follow
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the definition of W™ (X) from (4.3.6). In order to lessen notational burden we denote

K(907 X7 y) =

/ 2 " 2 2
(0o, 0,) Vne — n Ve J(6o,0,) 2¢

Lemma 19. Suppose Assumptions 16,17,18 hold with m = 2. Following quantity is
(X, By, + —LyenlEnOnt )= Ln@n]

Ip =
® "A e

N i N n An2
{mxwef0+&wm+5%l)M%xw

dy = op, (1). 4.7.1)

Proof of Lemma 19: We will proceed traditionally by breaking the integral in three
disjoint regions. Denoting I as the integral appeared in the left hand side of the Lemma, we

have
Ip < Iay + Lo, + 4, 4.7.2)

where A; = {y : |y| < Clogy/n}, Ay = {y : Clogy/n < |y| < dv/n}, A3 ={y : |y| >
d+/n}. The choice of C, will be specified later. The third term of (4.7.2) can be written as

Iy, < I}, + I3, where

A y n[LvL(67L+ ) Ln(én)]
I, = n/ Jo(X, 0, —) e dy,
As A /

L, = n/ To(X,0,)e
As

VR

R R, (0,)?
1+ Ru(6,) + %) K (00, X, y)dy.
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Expanding I, , one gets

N y N y n[Ln(én‘i‘L)_Ln(én)]_log f(Xuén‘f'L)
I = § J(Xi, 0, + ——=)f(Xs,0, + —— Ve vne! d

| leef(X;, 9n+r) ]
Ln 9n+ Ln 6"n.
(L (Bn+ )= Ln(Fn)] dy

5 ) i Y
<n?sup sup / J(X;, 0, + —)f(X;,0,+ —) x
sup swe f (X, O + —=) f(Xi, O + —=)
) log (% 0+ )
e”[L"w”JW%)_L”(Q")] [1_ [Ln(én+\;‘iﬁ)—g(én)]i|d

Notice that from Assumption 17(b) Py, almost surely n~* fR J(X;, 0, + \/Zch> f(X:,0, +
\/Lnfc)dy < o0. Now by Assumption 17 one has the exponential term to decay as e "(1=9¢
in probability and that term multiplied with n will also goes to 0 in probability. Rest will
follow by dominated convergence theorem. For I3, we have J, (X, 0,) =% J(60o,0,) from
Assumption 18. The multiplicative parts are the integrals [ As yae*yz dy for o = 0, 1, 2 which

under A; decays exponentially to 0 resulting the P, limit of the second term 0.

LY (8’ ) by M,,. The first integral in region A;, can

Now consider /4,. Denote —- 120 3/2

be expanded as [4, < Iy + I3, where

R,(0,)?
2

dy and

eRn(én)'f'Mn _ 1 _ Rn(én) _

7L = A Y _
4, = n | Ju(X 0, + Je 2
Ay

2 A m én 2
I, = n/ I(X,n,y)e" = <1 + R, (0n) + ¥> dy.
Ay

=) — (X, 0,)K (0o, X, y)|. Note that under A, the
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—~

E/UN) - Also LY (@) is O,(1) for 6 €

. 2 A
quantity n (Mn + % + Rn(Hn)Mn> = O,

(6 — 0,6y + 6) along with LY () and LYY (8,,). Since R, + M, is Op(logi/(ﬁ\/ﬁ)). Using

the inequality

the first term of (4.7.3) can be written as

M. 2
eR”JrM”—l—(Rn—i—Mn)—Md

Iih < n/ Jn(Xuén+ Y )6_% Y
Aq

Vv nc
2

N Y 42 Mn A
X ——e z | M, + —= M
+ n/AlJn( ,9n+\/%)e ( nt + R, (6,) n>dy

- y 2| (R.+M,)?
Jn X; en - — 2 ‘
n/A Ot x/nc)e 6(1 — Bnt i)y
(log y/n)° y

O, (= Jn(X, 0, + —=).
YO O Ot )

IN

g 1@
Now sup,c, n(Rn + M,)? < sup,cy, % max [ #) In (On)) < log(y/)® O,(1). So we

c2 ¢

have

1 A Yy log(v/n)” 2 (log \/n)3
I, < ysgj)l I (X, 0, + \/n_c> [Op (T) /Al e 2dy+ Op(—\/ﬁ ). (4.7.3)

Since 0, — 0y a.s, under A;, we have (6,0, + =) C (6o — 0,00 + 0) with Py,

probability 1. We have almost surely sup,c 4, Jn(X, 0, + =) < SUDyre(gy—5.0045) In(X, 0).

From Assumption 18 one has almost surely

10g(\/ﬁ)9) / _2 (log v/n)®
IL < su J (X, 00 ( e”z2dy + O,(————)]|.
WS, B0 (TR [ E e 0= )
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Now using Wald’s theorem one has supg:¢ g, 6,+5) |-/n (X, 0') — J (60, 6')| —* 0, resulting

the following statement almost surely

I, < sup  J(0o,0") [Op (%)/ e_y;dy+0p(W) .

9’6(90—6,904—5)

which is op, (1). Now from (4.3.6) the second term of 14,

2
o= oo [ 1Gn)e 0 Ry
Ay
5 1 vy X)) Y
< sup JR(X,HR)/ W<W'7(12)(§<§)2——|— ) 602 X
0/€(0n bnt =) IRL ¢ J(X,6,)0(c

e~ (1 + Ry (0,,))dy.

Again similarly using almost sure convergence of the event (6,,, 6, + =) C (Bo—0, 60+9)

and Assumption 18 on J;"(X, 0) we get I3, is of op, (1).

Next consider the integral 4,, that can bounded above by 14, < I + I3, where

. 2
L, = n/ T(X, 0, + —L=)e~ 5 HintMa gy
Az

e

I3, = n/ Jo(X,0,)e” 7
Ao

A Rn én 2
1+ R,(0,)+ (2 ) )K(GO,X,y)dy.

VR

Consider the term I7,. Note that under A, for n > e, (log \/n)? > logn and also using the
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fact 1L

n < 0 the quantity

; Ly LP6,) 1, L6
Rn<9n) S 6(5 n 03/2 ﬂ(g TLT = Op90 (TL)

resulting (1 + R, (én) + M) is Op, (n?). Also from Assumption 18 the remaining term

Jo(X,0,)K (0, X, y) is Op,, (1). So the upper bound of the second integral I3, is bounded

by
A J'(60,6,) &
Op, (n*)J,(X,6, [ +——
Poy (1) T (X, O) 907 | Ve
1 5y/n J"(6o,0 P
+ — Wi + ’ 7 logn [6y/n —Clo
n( ( )ﬁ (60,0, ) vn gv/n]
— Op, (Wi F) (4.7.4)

which goes to 0 in probability if we choose C' > /7. This result is due to convergence of
Jn(X,0,), J (X, 0,) respectively to .J (6, 6), J'(6y, 0y) which is validated from Assumption

18. Now considering the first term of the integral (4.7.4) we have % < 0, We have under A,

. 1602L90,) 1, LY (6,)
R,(0,)] < -2 4 5%
‘ ( )| — 6 C% + 24 y 02 9
1 9P 1 %5
M| = — Loy < —Z 1Oy 4.7.
[ M 120 n3/2¢27" (7) < 120 2 " () (4.7.5)

O
and since under A, the quantities supy.c, 4, ) () L %) and LT;3§2’L) are Op(1),
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given a small € > 0 one can always choose a J so that we can get

2 2

P{ - % + Ro(6,) + M, < —yz, Vye Ayl >1—¢ for n>ny  (47.6)

So with probability greater than 1 — €

n/ Jo(X, 0, + Y Je~ Tt Mugy < qup Jn(X,én—i—L) n/ e~ Tdy
A2 A2

The last line follows from the fact under Ay,  (6,,, 0, +—%) C (6, — 6, 6+ &) almost surely

Yy
vne

and then by applying Assumption 18, sup,c 4, Jn (X, 0, + =) < SUPye(,—5.00+0) I (60, 0)
asymptotically almost surely. The integral will converge to 0 as n — oo by choosing a bigger
C'. Choice of ¢ will be specified by (4.7.6) given a small € > 0.

O

Now it’s obvious to conclude from Lemma 19 that for any A € B(R)

9 R N \2
/ e T (1 + R, (6,) + Rn(zan) ) K (6o, X, y)dy (4.7.8)
A

u? 1 1
= /A€_2 |} + % (Aly + A3y3) + ﬁ (A2y2 + A4y4 + A6y6 + Wél)%)} dy
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where

(4.7.8) follows from the fact that all higher order terms will accumulate in oy, ( ). For an

illustration taking just one cross-product term of second term of Rn(é ) and A”’ , one has

1 94 L@ Ay 1 Aly A 1 A1y A
(6 >\/ﬁ 24n\/_02 n (On)Lgyi<iogm) + 57 2471\/_02 n (On)L{jy>105m)

Since Ry, (0,).A1 is Op, (1)

2 A L6, A 2 LA 2
/e2Rn(9n)—1ydy = L4, 1/ ye Tdy+ i/ yle T dy
R \/ﬁ 24c%n2 ly|<logn 24c2n2 ly|>logn

logn)®\ LPA
< Op, (<0g?) )+ ; / ye T dy (4.7.9)
0 nz 24c2n2 ly|>logn

Since Gamma distribution is exponentially tailed, whole R.H.S of (4.7.9) is of OPQO(%>.

Now note that the formula for r-th (even) central moment of standard normal distribution

EX" := (r —1)(r — 3)...1. Dividing the quantity J,(X, 0, + \/Lnfc)e"[L"(é”JrJ%)_L"(é")]

n[Ln (On+—2=)—Ln(8

with the expansion of the denominator fR (X, 6 + f) Vne dy, one has

the asymptotic expansion of the fiducial density (upto second order in terms of expansion
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with respect to \/iﬁ) of y

fewX) = o) (1 + Ln (A + Asy®) + %(Amf — 1)+ Au(y* — 3) + A (y° — 15)

+ Wp(x)%)) + 0y, (%) (4.7.10)

where ¢(.) is the density function of the normal distribution. From (4.7.8) we get (4.7.10)

using the power series expansion 14%3: = > 2, (=1)z" given |z| < 1 on first two ordered

terms.

Remark 16. The conclusion (4.7.10) will remain unchanged if Wél)(X) is replaced by a

random variable W, (X) that is 0(X) measurable with the property

n

Py, [W(l)(X) # /VIZ(LI) (X)} =e " forsomec>0.

It is because the quantity (Wél) (X) — Wi (X)) multiplied with any polynomial term of n

will remain O Pa, (e~") so that doesn’t hamper in any specific polynomial order terms.

Recall the classical orthogonal Hermite polynomials { H,,(x)},>; which is defined as

Ho(z) = (—=1)e [d—ne—f} |

dz™

First few Hermite polynomials are

Ho(z) =1, Hi(z)==x2, Hy(x)=2>—-1, Hsx)=2"—32, Hyz)=2"—62"+3,

Hs(z) = y° — 10y° + 15y, Hg(z) = y® — 15y* + 45¢* — 15.
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Following properties hold where ¢(x) is the density of normal distribution: For all a €

R,Vn > 2

[ meay=—otw) aa [ H@owdy = ~Ho@ola) - @110

Expressing (4.7.10) with each coefficient in terms of Hermite polynomials we get,

foly) = o(y) (1 + % (G1H1(y) + G3Hs(y)) + %(Gsz(y) + G4Hy(y)
N ) M1(y) o (L

where
Gl = Al + 3/43, Gg = A2 + 6144 + 45A6, Gg = Ag, G4 = A4 + 15A6 GG = AG.
Define further

61 = G1+G3.HQ(Z),

WiV (x)

1
ﬂg = QZﬂng — 55%2 + G2H1(Z) + G4H3(Z) + GGHE)(Z) + \/E

(4.7.13)

This following illustration is similar with Theorem 2.3.1 of [23] which gives asymptotic

expansion of (1 — «)-th fiducial quantile.

Corollary 4.7.1. Denote 01~ (X,G) := 0 + (nc)"2(z + n"2; + n~'B,). Suppose As-

sumptions (A )-(As) of asymptotic normality of likelihood expansion, along with Assumption
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16,17 18 with m = 1 hold. Then we have
P9 [9 < - (X, g)‘x} =1l-a+o, (n7) (4.7.14)

Proof of Corollary 4.7.1:

The concerned quantity

(SIS

Pe {9 < UK, g)‘x} =P [9 <0+ (ne)”

|

{z 2B + n_lﬁg} ‘X}

= P {y <z4n 2B +n B

z+n7%ﬂ1+n_162 1
- [ o) |1+ = (G 0) + Gatta) | ay
1

1 z4n" 2 B14+n"1B; H
+- / o (y) KGQHQ(y) + G4H,(y) + GeHgly) + WY \1/(;/))] dy
+o,(n7h).

Using the properties of Hermite polynomials on (4.7.11) one easily gets
P9[0 <60 (F,X,n)|X] = ®(z +n 26 +n'f,) (4.7.15)

_n*%.ﬁb(z + niéﬁ) |:G1 + GsHy(z + 717%51) - nil(ﬁ(z) X

[Gng(z) + G4H3(z) + GeHs(2)

wi(x
)

7 } +o0,(n7h).

Using Taylor’s expansions of ®(z), ¢(z) and accumulating the higher order terms into o,(n 1),
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the RHS of (4.7.15) is simplified to

P9[0 <9I(X,G)|X] = @(2) + n 26(2) {H1 — G1 — G3Ha(2)}

+ n'o(2)| B2 — 226:1Gs — %5%Z + 512{G1 + G3H2(Z)} — GoHi(2)

i

—G4H3<Z) — G6H5<Z> — \/E

+o,(n ) =1—a+o,(n") (4.7.16)

where (4.7.16) follows from the definitions of 3; and (5. Corollary 4.7.1 follows from that.
O

Higher order asymptotics in context of Probability matching prior is an old topic and well
documented in [23].

The idea of Shrinkage method was essentially originated from [10] in context of estab-
lishing higher order asymptotics of Bertlett test statistics. In general it is used to find an
expansion of Fy, [g(X;, 0)] for any function g(X, #) (in our case g(X, 0) = 1ip<pa-a)(x.g)})-
Some relevant works on probability matching data dependent prior were done in [67], [68]
but data dependence is either coming from moments or the maximum likelihood estimator. In
comparison to that here the term Wil (X) is much like a ratio estimator where its higher or-
der expansion is interestingly critical for the terms after first order which makes the following
calculation relevant. In order to implement Shrinkage method one formulates an auxiliary
prior ™ with properties that it is proper, supported on a compact set, having true 6, in its
interior. It vanishes on the boundary of the support while taking strictly positive values in the
interior. It also satisfies all the conditions B,,, (m = 1,2) in [10] ensuring smoothness of 7

,and log 7 and and its derivatives near the boundary of the support. Basic steps of Shrinkage
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method (for upto second order) are following:

1. Step 1: Start with an auxiliary prior 7 with a compact support C H containing 6, as

an interior point. We will find the expansion of £7(¢(X, #)|X) upto op,_ (1).

2. Step 2: Under the assumption that the X = (X7, X5, X3..., X,,) generated from F'(- |

0) we compute : A(0) := EyE™(g(X, 0)|X) upto o(2).

3. Step 3: Compute [ A\(0)7(df) when 7 ~» dy,(.). The final quantity after taking the

weak limit leads to the required expansion of Ey, (9(X, 65,)) upto o(=).

Proposition 4.7.1. Note if one observes T'(X) := E=(g(X, 0) | X) for an integrable function
T (X) (with respect to Py for 0 € (0y — 0,0y + ) for some § > 0) after Step 1 of Shrinkage
method, Step 2 and Step 3 virtually compute Ey,/T(X). Since \(0) = EyT(X), through
Dominated Convergence Theorem and a consequence of the weak limit gives

lim | Ep [T(X)]7(d6).

7?'\”500 ()

A good illustration on how Shrinkage method works is given at Chapter 1 of [23].

The conditions B,, in [10] ensures the existence of a set .S which contains data X with
probability P, (1 — 0,(n™!)) for § € a compact set K. For ensuring second order term
we need to just assume By for the auxiliary prior 7() containing true 6, in interior. All the
following calculation of the Shrinkage method is a consequence of those assumptions in Bs.
We will complete the remaining by implementing Shrinkage method which is more or less

regular:
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1. Step 1: We will construct a prior 7 with aforementioned smoothness properties and
with a compact support with 6§, being an interior point. Now define the following

quantities

Gl = Al + 31213, GQ == AQ + 6A4 + 45A6, Gg = Ag, é4 == A4 + 15A6,

where
o aw@6) o 1 76, T
A= _ Ay == _ As = A Ay = AA —
1 Cc 2 ﬁ(9n> s 2 26 7_]_(0”) s 3 3, 4 1Az + 240 aq,
/_16 = A6

By proceeding similarly like Lemma 19 or from [42], one gets a similar posterior

expansion of 7 (y|X) := 7(f, + V%)e”[L”(é“ﬁ)‘L"(é”” like following display,
. (Bt VL (G S 7 (6, 17" (6,
/ (0, + L )nnlot F) LGl Gy~ LTy 170y
R vne 7(0,) vnc  n x(6,)
. R, (0,,) 1
<1+Rn(9n)—|— 5 dy = op,, -
j —(N ”[Ln(énﬁ‘i)—lfn(én)]
) — (0)enLn (6)Ln(61)] 70, + —L)e Ve
So,  frO]X)= T( )en[L O-LalO)lg) —— Lo O+ =)~ Ln(Br)] 5
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~

Using the above expression of “auxiliary” posterior density of y = \/nc(6 — 0,,),

Ty X) = oy (1 + —= (G1Hi(y) + G3Hs(y)) + % (Gsz(y) + G4Hy(y)

1
NG

+G6H6(y)>) + 0p,, (n1). 4.7.17)

Using the expansion one can write P* [ < 0" (X, G) ‘X] as

N

P [‘9 <0+ (ne)” {Z + n_%ﬁl + n_152} ‘X} =P [y <z+ n_%/Bl +n By

A

- /_:n%,81+n—152 ¢(y) [1 + % (G1Hy(y) + Ggﬂg(y))l dy

1 24n" % By +n1B, B B
1 / o(y) [(CoHoly) + GaHaly) + GoHi(y))] dy + op(n™)

nJ_x

Working similarly like (4.7.15)-(4.7.16) we have

P70 < 0" (F X, n)|X]
= B(2) +n2¢(z2) {81 — Gi1 — G3Ha(2)} + n~'¢(z) {/62 — 22/,G5
_%B%z -+ Blz {Gl + GgHQ(Z)} — GQHl(Z) — G4H3(Z) — GGH5(Z):| + OP(n_l)

= 1—a+ n_%qb(z) {Gl - Gl} + n_lgb(z){ﬁlz [Gl - Gl} + [GQ — GQ} Hl(z)

M (X)
\/E

+ [Gy — G4] Hs(z) + } + op(n7t). (4.7.18)
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After inputing the values we have

where (4.7.19) is obtained after a number of simplifications (putting values of the data

dependent constants) and using following decomposition of Wi (X) in (4.7.18).

JVX,0,) TV (6y,6,)

(1) = /n AN 2
W, (X) \/_<Jn(X:9n) J(00,6,) )

(1) A W(p Mg o (1) )
) \/E<Jn (X,6,) J (G,Gn)>+\/ﬁ<J (6,6,) J (90,6n>>

~

J.(X,0,)  J(6,0,) J(0.6,) J (60, 6,)
= a (X,0) +vna®(0,0,) (defining the first and second term)(4.7.20)

where each of these terms will be analyzed in next step.

2. Step 2: We will now compute the asymptotic value of \(f) = EyP™(0 < 01~ (X, G)| X).

Note that asymptotically a@(@, 0,,) converges to a?(f) := J?ggeéf ) _ Jf,l()e(f%)e ) under

true & which becomes a® (6y) = 0 when 0 = 6. We will treat a} (X, §) by expanding
that term. We take the facility of choosing auxiliary 7(-) in a way such that the ex-
pression (4.7.19) holds for all data points in a compact set S in R that has P, of order

(1—o(n™')) uniformly for all # € K, where K is the compact domain of 7. Under the
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assumption that the limits exist and the existence of the set S x K is ensured by the

condition B,, satisfied by 7 for m = 2 in [10]. From (4.7.19)

\6) = By { Pt [0 < 000 x,6)[x] } =1 0+ nto()r, { J'(00,9)

#6) | L (006 1, ) (R0)
- T@)*“()(Q)}M ¢<Z>Z{<[9 J00.0) 60 M

J' (0o, 9)) n %[_1 {J”(GO, 6) 7?”(0)} } N n_1¢(z)E9 [al(X,0)]

J (69, 0) o 1 J(60,0)  w(0)

+o(n™t) (4.7.21)

where M, := EI®)(0|X). By Assumption a;(-) is a continuous function, so in a com-
pact domain(7) containing 6, it will always exist. It is a consequence of the Corollary
4.7.1 but we need to show the integrability of Ey [a (X, 0)] in § € domain(7). In the
following we will give an expansion of Ejy [a} (X, 8)] in terms of a;(6y), J (6o, 8), J' (60, ).
Now by Assumption 17-19 we have «;(-) continuous function in © = R. Since also
J(+,0) won’t vanish is 6 € (0, — 0,0+ §) one can always find a compact neighborhood
of 6y where the quantity n — oo Fj [a} (X, )] will remain bounded. We will take

that compact neighborhood as the domain(7).

Now we will prove the higher order expansion of the quantity Ey [al (X, #)]. Note that

by Taylor’s expansion on the function f(xz,y) = ¥ at the point (71, 73) around (g1, g2),
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we have for some (g7, g3) € (T1,91) X (Ts, g2)

Ty gie 1 g1,0 5910

="+ (T —g10)— — (T2 — g2.0) =5~ + (T2 — g2.0) =

Ty gap 92,0 95,9 92,39
1

+(Th — g1,0) (T2 — g20) :
G+2,0

That ylelds \/ﬁ[—Q — Z;—’Z] = \/E(Tl — gl,g>$ — \/E(TQ — 92,9)%—’; -+ \/ﬁ(TQ —
g2.0)[(To — gw) — (T1 — g10) 7. Now choosing Ty = J;,(X, 6,,), Ty := Ju(X, 0,
and their corresponding limits gy 9 = J'(6,0),929 = J(6,60) one gets a}(X,0)

is Op,(1). Last statement is a consequence of Slutsky’s theorem and the Assump-

1

*2,

P
are Op, (1) which follows from the fact g SN 91,0,

g7 g
Y Lo, g2,0, and then using continuity theorem one has —103 = ng‘g + op, (1), ﬁ =
2,0 *

—— +op,(1) since gy # 0. From Slutsky’s theorem the residual term Vn(Ty —

929

g2)[(To — gg)zi;—’f —(Th — o, 9) ] will be 0,, (1). Our conclusion that Ey [al (X, )] =
2,0

aglg—(i) — g( Jor 4 o(1), will follow if we provide an additional detail on the expected
’ 2,0

residual term:

Ey [\/ﬁ(T2 — ) {(T2 — %) 553 (T = g1) 2 ” 50 (4.7.22)

2 gx2

for all § € domain(7). Note that

(Tv—g1) = (Jo(X,0,) = J'(0,0,)) + (J'(0,0,) — J'(0,0)) (4.7.23)

(Ty—g) = (Ju(X,0,) = J(0,0,)) + ((J(0,0,) — J(6,0)). (4.7.24)
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Second term after scaling with /n, along with the lipschitz property of J(6,-) from
Assumption 19(c) will give finiteness of the quantity nEy | (J(6,6,) — J (0, 9)] i < 00
(from the asymptotic expansion of MLE 6,, under true value 6). Along with that and
Assumption 19(a) one gets nFy [T1 — g1]> < oo and nEy [T — gs]”> < oo will follow
similarly. Note that these results imply that the set {(71,7%) : |71 — g1| < €,|T> —
92| < €} denoted by A, . has probability Py of order (1 — Op, (+)). Since g, is away
91 1

— in
9537 Gx2

from 0, fixing € € (0, g2) we can work with :%.1,4“ " g%-lAn . in place of
2 ’ * ’
the expansion of a’ (X, 0) in (4.7.19) for & = 6, since the residual term (that is non

zero with probability op, (\/%7) will be accumulated in the op, (\/Lﬁ) term. Now note
0 0

1
gx2

< 1
Go—

2

< gi1te

[CR=ER a.s. Using these along with nFy [T} — ¢1]° <
2

g*
*13 ~1An,e ‘1An,e

92

oo, nEy[Ty — g2]2 < 00, (4.7.22) will follow by breaking and analyzing each of the

two terms.

. Step 3: The last step comes from computing | \(0)7(df) when 7(6) — dg,(6). Note

that if () := 1, My — I, 'S80 it follows from (4.7.21) that

AO) = 1—a+n ngﬁ(z)le_% {?((00;)760)) — :((g)) +a(2)(«9)}
X T(00,0) 7O\ 1 _,[J(6,0) 7'(6)
o ¢<Z>Z{a(9><ﬂw> - ﬁ<e>)+§f [on,e) - ﬁ<9>]}
+n1o(2) H[G\;%g’e)] +o(n™h). (4.7.25)
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From properties of distribution theory one has if 7(6) — dy, (@), then

[ 100 > 6. [ 16) o

where for the second result f is an m-times differentiable at a neighborhood of 6 = 6.

AL

Note that a® () = 0. So after taking the weak limit of [ A(6)7(6) as 7(6) — 54, (),

one has

P90 [90 S ‘9(1704)(X7 g)} = 1l—a+ gb(zoc)All(eO) gb(za)Z;xLAQ(QO) +0(n 1)
nz
where
18I0 0)| o,
falbo) = I, J(0o,60) | 00 |g,
_ /(8079) 1 —1‘]”(0076) d_2 1 -1
auw) = (@ +a@ a2 )+ 35500 | ]}
By [a,(X, 00)]
4.7.2
o (4.7.26)

Eg, [al(X, 6p)] = @) _ @20)a1 4 ;1) Note that First term of Ay(6) in (4.7.26)

g2 g3

1 J"(60,0) d2[1 1
( 0+ 5675 )+ 3% s ‘%{5”
d

- ( >{ 0)600)] | + 3760.0) 35 152760.6) = 7600) (15 |

d , 1 i
= 000 | a®)6000) + 515000 - a0 i @
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Using definition of «(6) the R.H.S of (4.7.27) becomes

d (1 1 , 1 d
J(0y,0)7! [@{616_2M9J(90, 0) — 51;%] (6o, 0) — 5J(eo, 9)@[19 1]}]
d (1 d[1
= J(0y,0)7" {@{EJGWQJ(QO, 0) — o [5191J(90, 0)} H (4.7.28)

Combining two estimates from (4.7.26) and (4.7.28) with taking the limit at § = 6, one

gets the second order term and the conclusion of the theorem follows.

OJ
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APPENDIXA

A.1 Auxiliary results
Lemma A.1.1. (a) For a compact set K inR¢ let F,, ,(K) be the space of functions ¢ : K —
R such that sup,c i |Y(x)| < aand |(z) —Y(y)| < blx —y| forall x,y € K. Then for any

€ > 0 there is a finite subset F;, ,(K) of F, ,(K) such that for any signed measure i

sup  [(Y, p)| < max (g, )| + €|p|rv.
YEF, 5 (K) g€eFg 1 (K)

(b) If K = [—R, R]¢ for some R > 0, then % 1 (K) can be chosen such that

€

22Vd+1) R
F%1(K)| < max {%_3[25(\/@1)][17 1} '

The next lemma is straightforward.

Lemma A.1.2. Let P : R? x B(RY) — [0, 1] be a transition probability kernel. Fix N > 1
and let y1,vs, ..., yn € R% Let X1, Xy, ..., Xy be independent random variables such that

L(X;) =0,P. Let f € BM (R?) and let m{} = % Zf\il Oys» my = % ZZ]\LI dx,. Then

2(|Y]loo
Bl(w.md — i p)| < 20

The following is a discrete version of Gronwall’s lemma.



Lemma A.1.3. Let {a;}32, {b;}2,, {ci}32, be non-negative sequences. Suppose that

n—1

a, <b,+ chak foralln > 0.
k=0

Then

foralln > 0.

n—1
n <bn+ Y
k=0

Ckbk < h (1 +Cj)>

j=k+1

Lemma A.1.4. For any a,b > 0 and {C;};>0 be a nonnegative sequence of elements, then

foralln > 0

a—>

n k n
Z anfk Z bkszZ _ Z C’L
=0 1=0

k=0

=i _ bn+1—i]
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