
Efficient, Scalable Traffic and Compressible Fluid

Simulations Using Hyperbolic Models

Jason Douglas Sewall

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2011

Approved by:

Ming C. Lin, Advisor

Dinesh Manocha, Reader

Jatin Chhugani, Reader

Anselmo Lastra, Reader

Sorin Mitran, Reader

c© 2011

Jason Douglas Sewall

ALL RIGHTS RESERVED

ii

Abstract

Jason Douglas Sewall: Efficient, Scalable Traffic and Compressible Fluid
Simulations Using Hyperbolic Models.
(Under the direction of Ming C. Lin.)

This thesis presents novel techniques for efficiently animating compressible fluids and

traffic flow to improve virtual worlds. I introduce simulation methods that recreate the

motion of coupled gas and elastic bodies, shockwaves in compressible gases, and traffic

flows on road networks. These can all be described with mathematical models classified

as hyperbolic — models with bounded speeds of information propagation. This leads

to parallel computational schemes with very local access patterns. I demonstrate how

these models can lead to techniques for physically plausible animations that are efficient

and scalable on multi-processor architectures.

Animations of gas dynamics, from curling smoke to sonic booms, are visually exciting.

Existing computational models of fluids in computer graphics are unsuitable for properly

describing compressible gas flows — I present a method based on a truly compressible

model of gas to simulate two-way coupling between gases and elastic bodies on simplicial

meshes that can handle large-scale simulation domains in a fast and scalable manner.

Computational models of fluids used so far in graphics are inappropriate for describ-

ing supersonic gas dynamics because they assume the presence of smooth solutions.

I present a technique for the simulation of explosive gas phenomena that addresses

the challenges found in animation — namely stability, efficiency, and generality. I also

demonstrate how this method is able to achieve near-linear scaling on modern many-core

architectures.

Automobile traffic is ubiquitous in modern life; I present a traffic animation technique

that uses a hyperbolic continuum model for traffic dynamics and a discrete represen-

tation that allows visual depiction and fine control. I demonstrate how this approach

outperforms agent-based models for traffic simulation.

Additionally, I couple discrete agent-based vehicle simulation to continuum traffic.

My hybrid technique captures the interaction between arbitrarily arranged regions of a

road network and dynamically transitions between the two models. I present an analysis

iii

of the impact my hybrid technique on the ability of simulation to mimic real-world

vehicle trajectory data.

The methods presented in this dissertation use hyperbolic models for natural and

man-made phenomena to open new possibilities for the efficient creation of physically-

based animations.

iv

Dedication

This work is dedicated to the Apple IIe computer in my Uncle Fred and Aunt

Joanne’s den; thanks for all the Robot Odysseys. . .

v

Acknowledgments

I would like to thank all of the many people who helped make this thesis possible.

Foremost, my advisor, Ming Lin, who has supported my work through all of these years

and helped me, sometimes gently and sometimes firmly, sort through the good ideas and

the bad. I also owe a great debt to all of my committee members: Jatin Chhugani for his

incisive mind and expertise on modern architectures, Anselmo Lastra for always asking

the right questions, Dinesh Manocha for pushing me to keep striving for the bigger and

better, and Sorin Mitran for making sure that the math checked out (and for helping me

find the remainder when it didn’t). Without the encouragement — and yes, criticism

— from these people, I shudder to think of the state of this thesis.

The word ‘I’ appears frequently in this thesis, but my numerous collaborators and

coauthors have my heartfelt thanks for their help in wrangling the code and pushing

the pixels: Paul Mecklenburg, Georgi Tsankov, Nico Galoppo, Paul Merrell, and David

Wilkie.

I also owe a great debt to my office-mates over the years: Jeff Schoner, Nikunj

Raghuvanshi, Anish Chandak, Liangjun Zhang, and Rahul Narain, for always being

there to try to make sense of something I drew on the whiteboard.

Those who I have been fortunate to call friend these past six years are too many to

list here, but they are friends indeed for always sharing a laugh and for making sure

that I left Sitterson at intervals to recall the outside world that I have striven so hard

to recreate within those walls.

To my parents and grandparents, my gratitude knows no bounds; no matter how far

afield I have gone from their own experiences, they have encouraged and supported me

to do what I love.

Finally, surely the endless hours in the lab and the frantic deadlines would have

burned me out of school if it were not for my dear wife Sarah, who has been a SIGGRAPH

widow many more times than she deserves.

vi

Table of Contents

List of Tables . xiii

List of Figures . xviii

List of Algorithms . xix

1 Introduction . 1

1.1 Dynamic systems and differential equations 2

1.2 Hyperbolic models . 4

1.2.1 Hyberbolic models and trends in computer architecture 5

1.2.2 Conservation laws . 7

1.2.3 Hyperbolicity in Conservation Laws 8

1.2.4 Hyperbolic problems in animation 9

1.3 Thesis statement . 10

1.4 Main results . 10

1.5 Organization . 15

2 Fast Fluid Simulation Using Residual Distribution Schemes 16

2.1 Introduction . 16

2.1.1 Main results . 17

2.1.2 Organization . 18

2.2 Previous Work . 18

2.2.1 Computational Fluid Dynamics in Graphics 18

2.2.2 Residual Distribution Schemes . 20

vii

2.2.3 Simulating Elasticity in Graphics 20

2.3 Residual Distribution Schemes in Flow Simulations 20

2.3.1 Overview of fluid solver . 21

2.3.2 Residual distribution schemes . 23

2.3.3 The system N -scheme . 24

2.3.4 Discretization of the Euler equations in 3D 24

2.3.5 Solution procedure . 27

2.3.6 Parallel application of RDS . 27

2.4 Fluid-Solid Interaction . 29

2.4.1 Overview . 29

2.4.2 Elasticity Simulation . 30

2.4.3 Fluid-Structure Coupling . 31

2.4.4 Adaptive, Semi-Regular Simplicial Meshes 32

2.4.5 Mesh movement . 33

2.5 Implementation and Results . 35

2.5.1 Benchmarks and performance . 35

2.5.2 Scaling . 36

2.6 Summary and Conclusion . 37

2.6.1 Limitations . 38

2.6.2 Future work . 39

3 Visual Simulation of Shockwaves . 41

3.1 Introduction . 41

3.2 Previous Work . 43

3.3 Method . 45

3.3.1 Conservation laws . 45

viii

3.3.2 The finite volume method . 46

3.3.3 The Riemann problem . 47

3.3.4 The Euler equations . 51

3.3.5 Fluid-object interaction . 57

3.4 Parallelization . 59

3.4.1 Initial parallelization . 60

3.4.2 GPU parallelism . 61

3.4.3 Many-core hardware considerations 66

3.4.4 Domain decomposition . 69

3.5 Results . 72

3.5.1 Applications . 73

3.5.2 Rendering . 76

3.5.3 Timings . 77

3.5.4 Parallelization . 79

3.6 Conclusion . 80

3.6.1 Limitations . 81

3.6.2 Future work . 82

4 Visual Continuum Traffic Simulation 84

4.1 Introduction . 84

4.2 Related work . 86

4.3 Method . 88

4.3.1 Overview . 88

4.3.2 Representation of road networks 89

4.3.3 Numerical traffic simulation with gas-like laws 91

4.3.4 Visual representation of vehicles 103

ix

4.3.5 Lane changes and merges . 105

4.4 Results . 107

4.4.1 Examples . 107

4.4.2 Comparison with agent-based simulation 108

4.4.3 Scaling of parallel implementation 110

4.5 Conclusion . 111

4.5.1 Limitations and future work . 112

5 Hybrid Traffic Simulation . 113

5.1 Introduction . 113

5.2 Related Work . 115

5.2.1 Adaptive Simulations . 115

5.2.2 Traffic Networks and Road Representations 115

5.3 Method . 117

5.3.1 Overview . 117

5.3.2 Road networks . 117

5.3.3 Overview of simulation methodology 120

5.3.4 Continuum traffic simulation . 121

5.3.5 Microscopic simulation . 123

5.3.6 Car-following model . 123

5.4 Transitioning between continuum and agent-based models 128

5.4.1 Conversion of microscopic regions to macroscopic through averaging128

5.4.2 Conversion of macroscopic regions to microscopic through Poisson
instantiation . 130

5.4.3 Coupling . 138

5.4.4 Simulation region selection and refinement 143

x

5.5 Results . 149

5.5.1 Benchmarks . 149

5.5.2 Performance . 151

5.5.3 Comparison with real-world data 153

5.6 Conclusion . 170

5.6.1 Limitations . 170

5.6.2 Future work . 171

6 Discussion . 173

6.1 Summary of results . 173

6.2 Limitations . 174

6.2.1 Future work . 175

A Residual distribution details . 177

A.1 Conservative → primitive variable transformation matrix 177

A.2 Roe average . 178

A.3 K Matrix Decomposition Cases . 179

A.4 Inflow/outflow splitting, case 2, 3 inflow matrices 179

B The Aw-Rascle-Zhang system . 181

B.1 The system of equations . 181

B.2 Waves and speeds . 182

B.2.1 Eigenvalues (Speeds) . 182

B.2.2 Eigenvectors (Waves) . 184

B.2.3 Field classification . 185

B.2.4 Riemann invariants . 187

B.3 Riemann problem . 189

B.3.1 Intermediate state . 189

xi

B.3.2 Classification of solutions . 190

C Processing GIS Data . 202

C.1 Geometric Data . 202

C.2 Non-geometric Data . 202

C.2.1 Desired Output . 203

C.2.2 Processing . 203

D Parallel Traffic Simulation . 207

E Arc Roads . 209

E.1 Preliminaries . 209

E.2 Construction of arc roads from polylines 210

E.2.1 Arc formulation . 210

E.2.2 Fitting the ri . 216

E.2.3 Length of a smoothed polyline . 223

E.2.4 Offset polylines . 224

E.2.5 Discrete approximations of smooth polylines 225

Bibliography . 228

xii

List of Tables

2.1 Runtime performance for each benchmark 39

2.2 Performance scaling of residual distribution schemes for the Euler equa-
tions over the Skyscraper scene on an SGI Altix cluster. 39

3.1 Demonstrative timings of the simulation method 79

5.1 Flux sequence comparison results . 169

xiii

List of Figures

1.1 In Google Earth, Hollywood Boulevard is a ‘ghost town’; without ani-
mations of natural and man-made phenomena such as traffic, the world
seems lifeless . 2

1.2 Representative operator support for 3 classes of PDEs 4
(a) Hyperbolic . 4
(b) Parabolic . 4
(c) Elliptic . 4

1.3 A 1-dimensional conservation law and fluxes 8

1.4 Compressible fluid/solid body interaction 10
(a) . 10
(b) . 10
(c) . 10

1.5 Visual shockwave simulation . 11
(a) . 11
(b) . 11
(c) . 11

1.6 Continuum traffic simulation adapted for visual applications 13
(a) . 13
(b) . 13
(c) . 13

1.7 A hybrid technique for traffic simulation 14
(a) . 14
(b) . 14
(c) . 14

2.1 The structure of the simulation system 30

2.2 An elastic body and enveloping mesh’s rest and deformed states 34
(a) An elastic body and enveloping mesh at rest 34
(b) An elastic body and enveloping mesh under deformation 34

2.3 Simulated flows rocking a suspension bridge. 36

2.4 Skyscrapers in a whirlwind (9, 088 tetrahedra) 37

xiv

2.5 Twisting Space Station (25, 129 tetrahedra) 38

3.1 Tower (without cap) blown apart by internal blast 58

3.2 Tower (with cap) blown apart by internal blast 59

3.3 Computation of Riemann solutions and solution updates done in a pass
are divided among threads . 61

3.4 Comparative timings for CUDA and serial implementations. 64
(a) 2d . 64
(b) 3d . 64

3.5 Speedup of CUDA over serial implementation. 65

3.6 Decomposition of a 643 grid into 12 tiles: 2× 3× 2 70

3.7 A mushroom cloud generated by my method 73

3.8 A stack of rigid bodies knocked over by a shock 74

3.9 A bow shock and turbulence formed by the passage of a supersonic bullet 75

3.10 An explosion in a confined space . 76

3.11 Rigid body-fluid interaction . 77
(a) . 77
(b) . 77
(c) . 77

3.12 Vortex shedding from a shock interacting with wedge 77

3.13 The initial moments of the “Trinity test” — the first atomic bomb 78

3.14 Comparison of pressure in blast reflection/diffraction scenario 79
(a) Results from Yngve et al.; simulation on a 1013 grid 79
(b) My method on a 603 grid . 79

3.15 A näıve parallelization scheme scales poorly with the number of threads . 80

3.16 Scaling of the initial version of the tiled parallelization. Memoization of
Riemann solutions leads to bandwidth saturation for large numbers of
processors. 81

3.17 Scaling of the revised version of the tiled parallelization. The reduction
in bandwidth requirements greatly improves scaling. 82

xv

4.1 A bird’s-eye view of animated traffic . 85

4.2 A schematic of a Riemann problem; the up-axis represents both time
and Q. Here, an intermediate state Qm arising between Ql and Qr. To
compute the flux between these cells, Q0 must be determined. 98

4.3 A flyover of a freeway . 108

4.4 A freeway in a city . 109

4.5 Vehicles exiting a freeway . 110

4.6 Comparison of performance scaling of agent-based SUMO (red, top) vs.
my simulator (blue, bottom) as the number of cars increases. 111

5.1 Scenes of traffic generated with my hybrid technique 113
(a) Interactive 3D visualization of urban traffic 113
(b) Augmenting a satellite image with real-time traffic 113

5.2 A polyline and derived arc road . 119
(a) Polyline road geometry (from the TIGER R© database

[U.S. Census Bureau, 2010] via OpenStreetMap
[OpenStreetMap community, 2010]) 119

(b) An arc road derived from the above polyline. The orange arcs show
the center and radius of each arc used to give the road its smooth
appearance. 119

5.3 Terms in car-following acceleration computation equation 127

5.4 The car support function D (x) for a series of cars with front bumpers at
x = 10, 16, and 30. 129

5.5 Plot of 1
l
ρk for a lane and its integral. Exponentially-distributed random

variables are mapped to the y-axis and used to locate the x-value of an
event (vehicle). 135

5.6 The results of running Instantiate-Vehicles() on a continuum lane;
green vertical lines represent vehicle positions. 137

5.7 Region operations . 143
(a) Overlapping regions . 143
(b) Ordered regions (L, [a, b)) < (L, [b, c)) 143
(c) Adjacent regions . 143
(d) Merging and splitting regions . 143
(e) Divvying regions . 143

xvi

5.8 A city scene filled with traffic simulated with my technique 150
(a) A low-angle view . 150
(b) A top-down view . 150

5.9 A sequence of images illustrating simulation region refinement. (a): Ini-
tially, the whole road network is simulated with agent-based techniques.
(b)-(d): Later, only roads whose bounding box intersects the yellow box
are simulated with agent-based techniques — continuum techniques are
used elsewhere. The averaging and instantiation methods of Sections 5.4.1
and 5.4.2 handle changes due to the movement of the rectangle, while the
coupling techniques described in Section 5.4.3 seamlessly integrate the
dynamics of different simulation regimes. 152
(a) . 152
(b) . 152
(c) . 152
(d) . 152

5.10 Performance of all-continuum simulation, my hybrid technique, and
wholly agent-based simulation for various densities on a road network
with 181 km of roads . 153

5.11 Section of Highway 101 near Los Angeles. The black rectangle indicates
the region where the NGSIM project has recorded trajectories. The red
lines (the interval AD) denote the clipped region used in this compari-
son, while the blue lines (interval BC) denote the macroscopic simulation
region used in the hybrid simulation test. 154

5.12 NGSIM US-101 dataset . 156
(a) Scatter plot of position samples . 156
(b) Scatter plot of position samples (detail) 156
(c) Trajectories . 156
(d) Trajectories (detail) . 156

5.13 Validation results, histogram width 15 162
(a) Crossings at x = 429 . 162
(b) Crossings at x = 440 . 163
(c) Crossings at x = 474 . 164
(d) Crossings at x = 497 . 165
(e) Crossings at x = 542 . 166
(f) Crossings at x = 598 . 167
(g) Crossings at x = 620 . 168

B.1 Case 1 in the ARZ Riemann problem . 193

B.2 Case 2 in the ARZ Riemann problem . 198

xvii

B.3 Case 3 in the ARZ Riemann problem . 200

C.1 The intersections are classified as ramps, in purple, highways, in green,
or street lights, in red. 204

E.1 Polylines . 210
(a) A polyline P . 210
(b) PS: A ‘smoothed’ version of the polyline P 210
(c) The polyline P and the circles defining PS 210

E.2 Quantities defining an arc i corresponding to interior point pi; the orien-
tation vector oi is coming out of the page. 211

E.3 The interior point pi with backward vector −vi−1 and forward vector vi.
bi is the unit bisector of these vectors . 214

E.4 A ‘fattened’ smoothed polyline; the original smoothed polyline PS as
computed above is drawn in black. The blue lines represent the same
shape offset to either side by an equal distance. 225

E.5 Discrete approximations of smoothed polylines 226
(a) A polyline approximation of a smoothed polyline PS 226
(b) A triangle mesh approximation of a ‘fattened’ smoothed polyline PS 226

xviii

List of Algorithms

2.1 Euler-RDS . 28

2.2 Parallel-Euler-RDS . 28

5.1 Locate-Leader . 125

5.2 Instantiate-Vehicles . 136

E.1 Radius-Balance . 218

E.2 Alpha-Assign . 219

xix

Chapter 1

Introduction

Computers have a tremendous ability to let us experience virtual worlds, from the

sometimes abstract — like today’s ubiquitous social networks — to those more grounded

in the physical world, such as film productions, games, and tools like Google Earth,

Second Life, and Microsoft’s Live Maps. Realism plays an important part in these

more “tangible” virtual worlds; we would like to see trees sway in the breeze, water to

splash and ripple, and clouds to drift overhead. In addition to these familiar natural

phenomena, we also wish to see evidence of people — as we walk down the streets of a

synthetic city, we expect to be confronted by thronging crowds and the crawl of urban

traffic. Virtual worlds that lack these hallmarks of our daily lives are conspicuously

uncanny; Figure 1.1 shows a screenshot from Google Earth that contains motionless

geometry and images from the real world.

Bringing these features to the computer is not straightforward. There are demanding

expectations, as we want the world around us to behave reasonably even if given unrea-

sonable input and domains to operate in, and there are stringent resource requirements,

as the computer is already taxed by communication, rendering, and competing simula-

tion tasks. Even if we have a good understanding of the physics of a phenomena, it is a

challenge to reproduce a virtual environment that satisfies these opposing requirements

of performance and realism.

This dissertation proposes new techniques for the creation of animations of three

Figure 1.1: In Google Earth, Hollywood Boulevard is a ‘ghost town’; without anima-
tions of natural and man-made phenomena such as traffic, the world seems lifeless

natural phenomena for virtual worlds, specifically compressible gas phenomena — in-

cluding fluid/solid interactions, shockwaves, and traffic flow on large networks. I explore

a common thread that runs through these simulation problems — their ability to be ex-

pressed via nonlinear hyperbolic models — and demonstrate that this can be exploited

to achieve efficient and scalable solutions that are realistic.

1.1 Dynamic systems and differential equations

Many incredibly complex phenomena can be described with remarkably compact mathe-

matical formulas. In particular, partial differential equations have impressive descriptive

power — these equations (or systems of equations) relate various partial derivatives of

quantities; together with boundary conditions and frequently, initial conditions, these

describe how a particular phenomena behaves.

2

Some examples of particularly simple, ‘archetypal’ partial differential equations

(PDEs):

Advection Motion of a wave in q in with speed κ:

qtt − κ∇2q = 0 (1.1)

Heat Diffusion of a quantity q (with diffusion factor κ):

qt − κ∇2q = 0 (1.2)

Laplace Potential field of a quantity q:

∇2q = 0 (1.3)

In each of these, q is a scalar quantity and subscripts denote partial differentiation.

Equations (1.1) and (1.2) have qt in them; problems formulated with this type of equation

require boundary conditions and initial conditions — these are initial value boundary

problems. Equation (1.3) has no time component; problems formulated with these

equations need just boundary values — boundary value problems.

These simple equations often admit analytic solutions for certain boundary condi-

tions, but real-world phenomena are typically described by more complicated equations

— Equations (1.1), (1.2), (1.3) combined together in some fashion, often with yet other

components. Many of the most important natural phenomena are described by non-

linear systems of equations. Initial boundary-value and boundary-value problems for

many nonlinear systems of equations admit closed-form solutions for only the simplest

configurations. Indeed, a major open problem — one of the million-dollar ‘Millennium

Prizes’ offered by the Clay Mathematics Institute — is simply to prove or disprove the

3

existence of solutions to the Navier-Stokes equations of fluid dynamics in 3-dimensions.

In the absence of closed-form solutions, numerical methods allow us solve complicated

PDEs — these too are challenging to handle efficiently and correctly. This thesis focuses

on using characteristics of certain types of PDEs to achieve efficient results for visual

applications.

1.2 Hyperbolic models

With the ongoing move in computing towards commodity parallel hardware, techniques

that can effectively take advantage of parallel hardware are becoming essential. Hy-

perbolic partial differential equations (PDEs) are characterized by the finite support of

their operators; other classes of PDEs have infinite support and thus require, at one level

or another, that each element of a spatial discretization communicate with each other

element of the discretization at every iteration of the simulation. In contrast, hyperbolic

PDEs require only local information to update the solution at each point — essentially,

all information in a hyperbolic PDE travels with a finite speed. The spatially small

operators naturally associated with these problems minimize communication, and can

be leveraged to achieve a high level of parallelism. Figures 1.2a, 1.2b, and 1.2c show

domain

in
flu

en
ce

Hyperbolic operator support
(e.g. qtt −∇2q = 0)

(a) Hyperbolic

domain

in
flu

en
ce

Parabolic operator support
(e.g. qt −∇2q = 0)

(b) Parabolic

domain

in
flu

en
ce

Elliptic operator support
(e.g. ∇2q = 0)

(c) Elliptic

Figure 1.2: Representative operator support for 3 classes of PDEs

4

representative operator support for common classes of PDEs — these correspond to the

example equations in Equations (1.1), (1.2), (1.3), respectively.

Additionally, many phenomena are naturally expressed with hyperbolic systems;

there are situations where familiar equations and numerical schemes have been adopted

for ease of implementation and analysis. These can be dramatically improved in quality

of results (in addition to scalabiltiy and efficiency) by using the more natural expression

of the phenomena as a hyperbolic system.

1.2.1 Hyberbolic models and trends in computer architecture

As mentioned above, hyperbolic models have limited regions of dependency for each

point in the domain, which limits the amount of communication necessary when com-

puting their solutions. This is a useful property in any computational context, but it is

particularly relevant in the context of modern developments in computation. Computa-

tional power has steadily increased; the prediction of ‘Moore’s Law’ — that the number

of transistors in CPUs will double every 18 months — has continued to hold. Translat-

ing transistors to performance is not straightforward, however, and these benefits have

come in a number of different forms;

Increasing clock speeds Throughout the 1980s, 1990s, and the early 2000s, processor

manufacturers were able to steadily increase CPU clock speeds from the single-

digit megahertz range to the multi-gigahertz one. Voltage and heat limitations

proved themselves to be barriers to this process, and the increase in clock speeds

stopped around four gigahertz in the mid-2000s. This type of improvement is

easily realized by most software; the processor simply executes instructions more

quickly.

Architectural improvements Processor manufacturers have been able to deliver

higher throughput in many applications through sophisticated techniques for

5

instruction-level parallelism — notably out-of-order execution, pipelined execu-

tion, and multiple arithmetic units. These improvements are also fairly transpar-

ent to software, by effectively increasing the number of ‘in flight’ instructions that

can be executed by the processor at once.

Data- and thread-level parallelism The most recent trend in using additional tran-

sistors to deliver performance has been in parallelism. Data-level parallelism —

in particular, single-instruction, multiple-data units — provide a dramatic perfor-

mance improvement in certain applications for a modest amount of processor die

area. Thread-level parallelism allows the CPU to run multiple processes and/or

‘threads’ of execution at once; processor manufacturers place multiple ‘cores’ on

a die, each with their own instruction register files, arithmetic units, and instruc-

tion counters. These types of performance require specialized programming and

software; data-level parallelism usually requires careful layout of data and special

instructions to be utilized effectively, and thread-level parallelism requires algo-

rithms to be rewritten and careful attention paid to synchronization and race

conditions.

The above discussion of trends in computer performance and architecture does not

take storage into account. Any meaningful computation has inputs and outputs, and

must read data from memory and write data back out, and the speed with which this

data can be accessed — more precisely, the latency and bandwidth — is tremendously

important to computation. The overall throughput of high-performance processors can

be limited by the performance of the memory system associated with it, and memory

performance has not kept pace with the rapid rise in computing power.

To mitigate the effects of processors exceeding the performance of their associated

memory, processors operate with a memory hierarchy — a series of caches of decreasing

latency and capacity that sit ever closer to the processor. The result is that large

problems are typically broken up into smaller ‘working sets’ to take advantage of these

6

small areas of high-speed memory. The specifics vary for different models, but in multi-

core CPUs, at least one level of the memory hierarchy is partitioned and private to each

core.

As the number of cores in a CPU increases, it becomes increasingly difficult to

keep these different, partitioned levels of the memory hierarchy coherent and to move

data between them. Communication-intensive methods — such as elliptic or parabolic

methods that need all-to-all communication to find solutions — are greatly penalized by

these limitations, which continue to grow as larger numbers of cores are added to CPUs

and architectural changes improve processor performance. Hyperbolic methods, with

their limited regions of dependence, enable small working sets based on local regions

of the simulation domain that are able to take advantage of CPU performance while

minimizing communication.

1.2.2 Conservation laws

The phenomena examined in this thesis are governed by systems that can be written as

conservation laws ; that is, equations of the form:

∂q

∂t
(x, t) +∇ · F(q(x, t),x, t) = 0 (1.4)

Here x is position in space, t time, q the vector of unknowns (such as density, momentum,

and energy) and F the vector-valued flux function that characterizes the system.

Equation (1.4) has a simple, intuitive interpretation: given any connected subset V of

the domain governed by such an equation, the total value of q in V does not change over

time except for what passes through the boundary ∂V ; the quantities represented by q

are conserved. In fact, Equation (1.4) tells us precisely the flux through the boundary

∂V at a time t: F(q(x, t),x, t) ∀x ∈ ∂V . See Figure 1.3 for a visual depiction of this

for a 1-dimensional problem.

7

Figure 1.3: A 1-dimensional conservation law and fluxes

Formally, the above statement is substantiated by the divergence theorem; see Lev-

eque [Leveque, 2002] for a lucid discussion of conservation laws.

1.2.3 Hyperbolicity in Conservation Laws

It is the flux function F in Equation (1.4) that characterizes the system; problems like

passive advection and linear acoustics have flux functions that are linear in q, whereas

the equations governing compressible fluid flow and traffic dynamics have nonlinear

functions F. The flux function also determines the classification of the system; for

simplicity, if one assumes a 1D conservation law of the form

∂q

∂t
(x, t) +

∂F

∂x
(q(x, t)) = 0 (1.5)

then this can manipulated, without loss of generality, to:

∂q

∂t
(x, t) +

[
∂Fi

∂qj

]
(q(x, t))

∂q

∂x
(x, t) = 0 (1.6)

which is called the quasi-linearization of the system. The matrix
[
∂Fi
∂qj

]
is the Jacobian

JF of F; the system is called hyperbolic if the eigenvectors of the matrix form a basis

of the space of q for all ‘physical’ values of q. Briefly, said eigenvalues correspond

to the speeds of propagation in the system — for these speeds to correspond to finite

8

propagation, the corresponding eigenvalues must be real (c.f. [Leveque, 2002]).

1.2.4 Hyperbolic problems in animation

In developing this thesis, I have identified a number of problems in graphics and sim-

ulation to which hyperbolic equations can be applied to achieve superior results and

efficiency:

1. Fluid and rigid body interaction: Use of incompressible Navier-Stokes for

compressible phenomena: it has been common practice in graphics to use solvers

for the familiar incompressible Navier-Stokes equations for fluid simulation of all

types, including compressible fluids such as air. This allows large simulation time

steps but is difficult to parallelize and precludes compressible phenomena. Addi-

tionally, coupling an implicit solver with suspended solid objects can be challenging

due to the differences in simulation methodology.

2. Shockwave propagation: Methods have been developed for high-energy gas

and explosion simulations that use näıve numerical techniques like finite difference

or require circuitous modifications to the base equations and numerical scheme

to function. Such methods suffer from numerical difficulties, a limited range of

phenomena, and difficulty to parallelize.

3. Traffic simulation: The use of strictly discrete techniques for traffic simulation

eschews opportunities to gain efficiency from macro-scale behaviors, while purely

continuum methods are unable to account for individual vehicles in a satisfying

way.

This thesis addresses these problems using hyperbolic models that achieve a broad range

of physically-based phenomena while enhancing their performance and scalability.

9

1.3 Thesis statement

My thesis statement is as follows:

Physically-based animations of compressible flows, including fluids and traffic, may

be synthesized efficiently and scalably with numerical methods based on hyperbolic models.

To support this thesis, I present four methods; two dealing with different regimes of

compressible gas flow and two approaches for creating animations of large-scale traffic

simulations.

1.4 Main results

Fluid/elastic simulation on simplicial meshes

(a) (b) (c)

Figure 1.4: Compressible fluid/solid body interaction

The visually compelling details of fluid motion are often best experienced through

their interaction with solid objects; consider the bobbing of a buoy in the swells, the

flapping of a flag in the wind, the turbulent wake of a boat, and the curling of smoke

out of a chimney. Such phenomena are desirable for visual applications, and yet, in the

case of compressible fluids, little attention in graphics has been devoted to the efficient

handling of their coupled motion with solid bodies. In Chapter 2, I describe a method

for the animation of coupled gases and elastic bodies; this technique facilitates the

10

simulation of compressible fluids and bodies in large domains. I have adapted residual

distribution schemes [Roe, 1982] to the problems of generating visual compressible fluid

flow and present how it may be bidirectionally coupled to other physics modules such

as elastic bodies, and I show performance scalability of this technique on multi-core

systems. The main results of this are:

• Demonstration of the applicability of Roe’s residual distribution schemes to ani-

mation of gas flow.

• Animation of coupled compressible gas simulation and deformable-body simula-

tions.

• Demonstration of the scalability of the method on many-core architectures.

These results were published in [Sewall et al., 2007]; see Figure 1.4.

Shockwave-handling gas simulation

(a) (b) (c)

Figure 1.5: Visual shockwave simulation

High-energy phenomena like explosions, sonic booms, and the effects of blast waves

are common special effects in summer blockbusters, and yet little attention has been

devoted on the subject of simulating shockwaves for visual applications. These high-

speed, dramatic discontinuities are at the heart of the phenomena many visual effects

11

shots strive to capture, but such effects have usually been realized through artist inter-

vention.

To handle the numerically difficult but visually exciting phenomena associated with

trans- and super-sonic fluid flow, I have developed a technique for the animation of fluids

featuring physically-based shockwaves, sonic booms, and blast waves. I show how this

method addresses the needs of animation problems by demonstrating a wide variety of

phenomena, including coupled rigid body motion. Furthermore, I show how the method

may be effectively parallelized on modern parallel CPUs and GPUs. This material is

presented at length in Chapter 3; the primary results are:

• Demonstration of superior quality over previous methods along with increased

efficiency.

• A simple, flexible technique for handling the interaction of shocks and large num-

bers of rigid bodies.

• Performance scaling through a cache-aware parallelization scheme for many-core

architectures.

• Parallelization scheme for modern GPU architectures.

These results were published in [Sewall et al., 2008] and [Sewall et al., 2009]. See Fig-

ure 1.5 for example images from this work.

Visual continuum traffic simulation

Automobile traffic is a defining feature of modern life; techniques for simulating traffic

flows have the potential to make road networks more efficient and safe by predicting con-

gestion and hazardous conditions. Despite the role traffic plays in our daily lives, little

work has been done one efficient methods of traffic simulation for visual applications.

12

(a) (b) (c)

Figure 1.6: Continuum traffic simulation adapted for visual applications

To generate animations of traffic flow, I have developed a technique that leverages

efficient continuum models of traffic to drive discrete components suitable for interactive

visualization. Additionally, these discrete elements (conceptually, ‘car particles’, which

I call carticles) are able to affect the underlying simulation in specific ways to produce

a wider range of features of vehicle motion. I show how this method scales on parallel

architectures and its superior performance to strictly agent-based simulation methods

for traffic. This material is found in Chapter 4; the main results therein are:

• A low-overhead method for visual representation of continuum traffic flows.

• Expanded analysis and augmentation of the Aw-Rascle-Zhang system of equations

to handle real-world traffic scenarios.

• Demonstration of superiority over agent-based methods for large numbers of ve-

hicles.

• Scalability on multi-core architectures.

These results were published in [Sewall et al., 2010b]; see Figure 1.6 for some visuals

from this technique.

13

(a) (b) (c)

Figure 1.7: A hybrid technique for traffic simulation

Hybrid traffic simulation

While the aforementioned visual continuum traffic simulation is useful for animation

large amounts of traffic, there are limitations to the continuum approach of traffic sim-

ulation, even when coupled with my ‘carticles’; in particular, there is a range of het-

erogeneous behavior that agent-based traffic simulation techniques allow. In Chapter 5,

I present my general technique for coupled continuum and discrete traffic simulations;

the road network is partitioned into an arbitrary arrangement of simulation regions, and

each region undergoes either continuum or discrete simulation. To account of dynamic

flow transitions at interfaces, I introduce flux capacitors. To convert regions from one

type of simulation to another, I present a novel vehicle instantiation process.

I demonstrate how this coupling framework can be used to drive a hybrid traffic

simulation technique that shares the strengths of continuum and discrete techniques,

and I show its ability to match real-world traffic flow data. The main results of this

section are:

• A hybrid simulation technique capable of dynamically-varying regions of simula-

tion regimes.

• A novel process for instantiating discrete vehicles from continuum data.

• Methods for the conversion of flow between regimes.

• Validation comparison with real-world trajectory data.

14

See Figure 1.7 for example images from this technique.

1.5 Organization

The rest of the thesis is organized as follows: Chapter 2 presents a method for com-

pressible fluid simulation coupled with elastic bodies. Chapter 3 presents my work on

animations of shockwaves, and Chapter 4 describes my work on animating traffic using

continuum models of traffic. Chapter 5 discusses my hybrid method for coupling discrete

and continuum simulations, and Chapter 6 presents a summary of my contributions and

a discussion of future work.

This thesis has several appendices; Appendix A discusses some details of residual

distribution schemes, Appendix B presents my expanded analysis of the Aw-Rascle-

Zhang model, Appendix C discusses how I extract road networks from publicly-available

road data, Appendix D discusses my parallelization scheme for traffic simulation, and

Appendix E discusses my smoothed geometric representation for roads.

15

Chapter 2

Fast Fluid Simulation Using Residual

Distribution Schemes

2.1 Introduction

Fluid phenomena play important roles in everyday life — as blowing winds, jet streams,

chemical dispersion, granular flows, ocean waves and currents, and so on. Although

these phenomena are commonplace, they are fascinating, visually and physically, for the

effects they produce. Mathematical models that describe them properly are nonlinear

and lead to computational simulation processes that are very complex and challenging

to perform efficiently; the intricate interplay of essential processes such as convection,

diffusion, turbulence, surface tension, and their interaction with rigid and deformable

solids demands careful attention to stability, temporal and spatial scales, and domain

representations.

In this chapter, I present an efficient method for physically-based animation of fluids

that is also suitable for capturing fluid interaction with elastic solids at large scales of

space. The two-way interaction of fluids and elastic bodies is unpredictable and visually

interesting. I have developed a simple and efficient method for fluid simulation that also

can capture these large-scale fluid phenomena and interaction in complex scenes.

2.1.1 Main results

I have investigated the applicability of Residual Distribution Schemes (RDS) for

physically-based animation of fluids, that may also interact with solids. These schemes

were initially introduced in computational fluid mechanics by [Roe, 1987] as genuinely

multidimensional methods for solving PDEs. Residual distribution schemes have not

been considered for use in computer graphics, but they exhibit a number of attractive

properties:

• They are inherently parallel. The scheme is organized as a loop over computational

cells. Each computational cell sends updates to nodal values. The process allows

massive parallelization.

• Users can balance accuracy versus cost. In a basic form the schemes are first order

in space and time. Higher-order accuracy can be imposed locally or overall by

either carrying out multiple iterations over the cells or by higher-order (and more

costly) interpolation of physical variables in a single cell.

Furthermore, RDS is capable of describing multi-physics applications. Different phys-

ical laws can be defined in each cell; although I have not exploited this property in

this chapter, it is an attractive property in when selecting appropriate mathematical

formulations.

In this technique, I use an unstructured, adaptive tetrahedral mesh to represent the

computational domain and effectively capture boundary conditions. I demonstrate this

system on large-scale environments under high-energy forces — a strong wind rocking a

bridge, skyscrapers bowing and twisting on a windy day, and a space station deforming

in a flow of solar particles.

17

2.1.2 Organization

The rest of this chapter is organized as follows: Section 2.2 presents a brief review

of related work, Section 2.3 presents the theory behind RDS and the model in detail,

Section 2.4 describes how our fluid simulation method is coupled with deformable body

dynamics, followed by a presentation of results in Section 2.5. I discuss some limitations

of our approach and conclude with a discussion of potential future research directions

in Section 2.6.

2.2 Previous Work

In this section, I briefly discuss related work in computational fluid dynamics, residual

distribution schemes, and modeling of deformable solids.

2.2.1 Computational Fluid Dynamics in Graphics

Realistic animation of fluids has been a topic of considerable interest in computer

graphics. Among the first work on visual simulation of fluid dynamics was that of

[Foster and Metaxas, 1996], in which finite-difference methods were used to simulate

free-surface flows modeled by the full 3D Navier-Stokes system of equations. Stam

addressed the standard timestep restrictions due to CFL conditions in his pioneering

work “Stable Fluids” [Stam, 1999], introducing semi-Lagrangian advection to the graph-

ics community and applying the incompressible Navier-Stokes equations to the problem.

This work has made robust animation of realistic fluid phenomena possible and popular.

Numerous enhancements, such as particle level set methods for modeling free surfaces,

followed in [Foster and Fedkiw, 2001]. I refer the readers to the detailed surveys in

[Shi and Yu, 2005, Song et al., 2005, Bridson, 2008].

More recently, there has been an increasing desire to model fluid-structure interaction

to achieve still more complex visual effects. [Genevaux et al., 2003] presented impressive

18

results with a method for fluid interacting with objects represented as particles and

[Carlson et al., 2004] described an efficient and elegant method for modeling two-way

coupling of fluid and rigid bodies using a finite-difference framework with the Distributed

Lagrange Multiplier method. Their approach achieves beautiful results, but is mainly

designed to handle the interaction of fluid with rigid bodies. [Guenelman et al., 2005]

describe how to handle the interaction of infinitely thin shells with fluids.

Fluid dynamics on irregular grids with finite-volume discretization was introduced

around the same time by several authors [Feldman et al., 2005, Elcott et al., 2007,

Wendt et al., 2007]. Subsequent work by [Klingner et al., 2006] models fluid inter-

action with moving boundary conditions by re-meshing the domain at each time

step and projecting the field variables from the old mesh to the new. Later work

[Chentanez et al., 2006, Chentanez et al., 2007] extends the approach of Klingner et

al. to handle the coupled simulation of fluids and elastic bodies with an implicit re-

formulation of the associated equations, and [Batty et al., 2007] augment the hybrid

particle-grid approach of [Zhu and Bridson, 2005] with a variational coupling of rigid

body kinetics to the pressure correction step frequently used to simulate incompressible

fluids.

Relatively little work in computer graphics has utilized the Euler equations — that

is, the compressible, inviscid simplification of the Navier-Stokes system of equations

— all of the aforementioned methods from the graphics community are based on an

incompressible simplification of the equations.

Work done by [Müller et al., 2003] and [Adams et al., 2007] on particle-based fluid

with the Smooth Particle Hydrodynamics (SPH) method strives to represent incom-

pressible flow. The natural tendency of the space between particles to expand and

collapse suggests potential future application to compressible phenomena.

19

2.2.2 Residual Distribution Schemes

Residual distribution schemes (RDS) were first presented in [Roe, 1982] and subse-

quently developed in [Roe, 1987, Struijs et al., 1991] for the Euler equations. Their

applicability to hyperbolic systems of partial differential equations has led to their

adoption in the aeronautics community, but RDS have also been adapted to solve other

classes of equations, including incompressible Navier-Stokes [van der Weide et al., 1999].

A thorough review of this area was recently presented by [Abgrall, 2006]. Despite their

popularity in the aeronautics community, RDS have hitherto not been investigated for

computer graphics.

2.2.3 Simulating Elasticity in Graphics

The modeling of deformable bodies have been heavily studied in computer graph-

ics for more than three decades. I refer the readers to the recent survey for more

detail [Nealen et al., 2006, Gibson and Mirtich, 1997]. In this chapter, I model de-

formable objects with linear elasticity using a Galerkin finite-element formulation

(c.f. [Hughes, 2000]).

2.3 Residual Distribution Schemes in Flow Simula-

tions

I begin this section with an overview of the method, then describe how the equations of

fluid dynamics may be solved with residual distribution schemes.

I solve Euler’s equations of compressible, inviscid fluid dynamics with Roe’s residual

distribution schemes (RDS) [Roe, 1987]. These are simple, narrow stencils applied to an

unstructured grid for the solution of hyperbolic systems of partial differential equations.

The residual of the governing equation is calculated over each simplicial element and

20

distributed to each adjacent vertex (which I also refer to as nodes) every time step,

then the accumulated residual contributed to each vertex is integrated in time and

the procedure is repeated. The solution for each simplex in the computational grid is

essentially independent for a given time step, affording a highly parallel solution; this

proves to be very efficient at solving the expensive Euler equations of gas dynamics.

2.3.1 Overview of fluid solver

The system described by the Euler equations is a simplification of the general Navier-

Stokes equations of fluid dynamics where the fluid is assumed to be compressible and

inviscid. In terms of conservative variables, the system is as follows:

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ ((ρu) u) +∇p = 0

∂ε

∂t
+∇ · (u (ε+ p)) = 0

(2.1)

Here ρ is density, u the velocity vector, p pressure, and ε the total energy. For simplicity

and efficiency, typical visual simulations of gaseous phenomena, such as air and the

transport of smoke, further simplify Equation (2.1) to be incompressible, i.e. to assume

ρ is constant in space and time and introduce the zero-divergence condition ∇ · u = 0

often used for models of water. While the resulting inviscid, incompressible system

does not correctly model many physical phenomena, for low levels of energy, noticeable

compression is unlikely to occur and the results are physically plausible.

The introduction of the divergence-free condition has far-reaching ramifications on

the character of the system and how it can be efficiently solved. The Euler equations

(Equation (2.1)) form a strictly hyperbolic system of PDEs, while the imposition of the

divergence-free condition adds an elliptical character to the system.

Put simply, the unmodified Euler equations model the propagation of perturbations

21

at finite speeds (the speed of sound, to be specific) — they guarantee that perturbations

will be local in a given time interval. Certain perturbations in the system with the

zero-divergence condition travel with infinite speed; a change in one part of the spatial

domain can instantaneously affect all other parts of the domain.

The Euler equations (Equation (2.1)) are naturally amenable to local solution sten-

cils, while the zero-divergence condition mandates the global pressure projection step

used in many contemporary fluid simulation methods. Residual Distribution Schemes

(RDS) were developed by [Roe, 1987] to take advantage of the hyperbolic character

of the Euler equations; independent stencils are applied at each simplex at each time

step. The spatial dependency of the method is minimal and it is well-suited to parallel

computation.

Consider a slightly idealized example of driving a car in traffic, where what you do

depends entirely on the car ahead of you. If the car ahead slows, you too must slow

and if the car ahead of you accelerates, you too must accelerate. There is always a

delay involved — you must first observe the change in acceleration of the car in front of

you before you adjust your own. The effect of this latency can be great with distance;

consider a ‘column’ of cars stopped at an intersection. When the light turns green, the

first car accelerates, then the second car, and so forth. Cars approaching the back of

this ‘column’ must slow down even while the cars at the front are accelerating. This is

roughly analogous to a compressible system, where the space between cars is variable.

If were to impose a fixed length between all cars (an ‘incompressible system’), there

can be no delay between changes in velocity (i.e. acceleration) of adjacent cars; their

velocity must be uniform and change uniformly. Thus, information about changes in

velocity must be passed through the system instantaneously.

The implication is that cars in ‘compressible’ traffic have local behavior — their be-

havior is governed entirely by the car ahead of them — while the cars in ‘incompressible’

traffic accelerate based on the state of the entire system. It should be clear that the

22

former type of system is more amenable to parallelization than the latter.

2.3.2 Residual distribution schemes

RDS apply to conservation laws of the form

qt +∇ · F(q) = 0 (2.2)

with unknown vector q and vector flux function F.

The discretization of Equation (2.2)) used in RDS takes the form

qn+1
i = qni +

∆t

Vi

∑
T

βiTΦT (2.3)

for a simplex T , where qni is the solution vector at node i at time n, ∆t the timestep used,

Vi the dual volume associated with node i, ΦT the vector of fluctuation (or residual)

values of the equations over T , and βiT weights specifying how ΦT is distributed to the

nodes of T .

The fluctuation ΦT is given by

ΦT = −
∫
VT

∇ · F(q) dV = −
∮
ST

F(q) · n dS (2.4)

over simplex T ’s volume VT and surface ST . Since q varies linearly over each simplex

T , Equation (2.4) simplifies to

ΦT = −VT ∂F

∂q
· ∇q = −

∑
i∈T

Kiqi (2.5)

with

Ki =
1

2D

∂F

∂q
· ni =

1

2D
A · ni (2.6)

where D is the spatial dimension of the system, and ni is the inward scaled normal of

23

the face opposite node i in the simplex. The matrix A represents a problem-specific

Jacobian of the quasilinear form of the equations; this concept is explained in greater

detail in [Abgrall, 2006].

2.3.3 The system N-scheme

The vectors βi of coefficients describe how the fluctuation ΦT is distributed per simplex;

specific variants of RDS have different procedures for computing these coefficients. I

use the N -scheme (N for ‘narrow’), which is the simplest such scheme that enforces

upwinding, preserves linearity, and is monotonic. For a system, it is as follows:

βiT =
γiT
ΦT

,
∑
j∈T

γjT = ΦT , (2.7)

(∑
j∈T

K+
j

)
γiT = K+

i

∑
j∈T

[
K−j

(
qni − qnj

)]
. (2.8)

Here K+ and K− are products of the diagonalization of K

K = RΛR−1 = R(Λ+ + Λ−)R−1 = K+ + K− (2.9)

with Λ+ containing the positive eigenvalues of K and Λ− the negative.

2.3.4 Discretization of the Euler equations in 3D

The Euler equations (Equation (2.1)) can be written as a conservation law (Equa-

tion (2.2)):

q =

[
ρ l m n ε

]T
(2.10)

l = ρu, m = ρv, n = ρw (2.11)

24

(u, v, w) are the components of velocity. In 3D, Equation (2.2) has the form qt +

fx(q) + gy(qz) + hz(q) = 0. The flux functions for the Euler equations f(q), g(q), h(q)

are defined as:

f =



l

p+ l2/ρ

lm/ρ

l n/ρ

l(p+ ε)

ρ


g =



m

ml/ρ

p+m2/ρ

mn/ρ

m(p+ ε)

ρ


h =



n

nl/ρ

nm/ρ

p+ n2/ρ

n(p+ ε)

ρ


(2.12)

2.3.4.1 Similarity transformations

Analytical expressions of the fluid eigenmodes are desirable, but these difficult to obtain

from the Euler equations in conservation form (Equation (2.1)). These can be trans-

formed to the primitive variables Q = (ρ, u, v, w, p)T of the Euler equations through the

differential relationship:

∂q

∂Q
= M,

∂Q

∂q
= M−1 (2.13)

(M is given in Equation (A.1) in Appendix A) The primitive variable equations are of

the form

Qt + FQ∇Q = 0 (2.14)

so I obtain the relationship between Jacobians

FQ = M−1FqM, Fq = MFQM−1 (2.15)

I assume wave solutions of the form

Q = R exp i (k · x− λt) (2.16)

25

with eigenvectors k, eigenvalues λ, and R the right eigenvector matrix from Equa-

tion (2.9). This leads to the eigenproblem

(FQk) R =
[
M−1(Fqk)M

]
R = λR (2.17)

2.3.4.2 Primitive variable eigensystem

The structure of solutions is given by the eigensystem for the matrix K = FQk,

K =



V · k kxρ kyρ kzρ 0

0 V · k 0 0 kx/ρ

0 0 V · k 0 ky/ρ

0 0 0 V · k kz/ρ

0 kxa kya kza V · k


(2.18)

with V = 〈u, v, w〉.
The matrix varies over a computational simplex as a result of the linear variation

of the flow variables; to establish a single set of eigenmodes upon which to base an

upwinding procedure (as in Section 2.3.3), I must choose an appropriate reference state

for the flow variables. It can be shown [Roe, 1987] that the Roe average is the proper

choice to ensure discrete conservation, a property crucial to shock capturing. In the

following, assume that all flow variables are evaluated at the Roe average (given in

Equation (A.7) of Appendix A). The eigenvalues are

λ+ = (v · k + c) > λ = v · k > (v · k− c) = λ− (2.19)

26

with λ having an algebraic multiplicity of 3, and the right eigenvector matrix is

R =



ρ 1 0 0 ρ

kxc 0 −ky 0 −kxc
kyc 0 kx −kz −kyc
kzc 0 0 ky −kzc
c2ρ 0 0 0 c2ρ


(2.20)

2.3.4.3 K-matrix decomposition

Let ni be the unit normal vector to face i pointing into the simplex. The eigenmodes

computed above must be classified as inflowing and outflowing; this is needed for proper

upwinding of the scheme. The four potential cases are enumerated in Appendix A.

2.3.5 Solution procedure

Each simplex T has four nodes, and a vector of unknowns for the conservative Euler

equations q is stored at each of these nodes. The fluctuation over a simplex T at a given

time step is calculated and split according to the pseudocode given in Algorithm 2.1.

2.3.6 Parallel application of RDS

Residual distribution schemes are straightforward to parallelize; the pseudocode in Al-

gorithm 2.2 describes the procedure for a full solve of the Euler equations in parallel

(each for statement can be applied in parallel over its iterates). The subroutines in

Algorithm 2.2 are defined as follows.

ClearAccumulator(n) Clears the q accumulator at node n

EulerRDS(T) Computes the fluctuation over simplex T according to Algo-

rithm 2.1; returns q updates for T adjacent nodes.

27

Algorithm 2.1 Euler-RDS

Euler-RDS(T)

1 for each node i ∈ IncidentNodes(T)
2 // As in Section 2.3.4.1
3 Qi = PrimitiveVariables(qi)
4 // Roe parametrization
5 Zi =

√
ρi 〈1, ui, vi, wi, Hi〉

6 // Compute Roe average (See Appendix A)

7 Z̄ =
P
i Z̄i
4

8 for each node i ∈ IncidentNodes(T)
9 // As in Equation (2.19)

10 Λi = Eigenvalues(z̄, ni)
11 // As in Section 2.3.4.3
12 (K+

i , K−i) = KMatrixDecomp(Λi z̄, ni)
13 // Compute reference inflow state Q̄
14 Q̄ = (

∑
i K
−
i)−1(

∑
i K
−
i Qi)

15 Φi = K+
i (Qi − Q̄)

16 // M from Appendix Equation (A.1)
17 return MΦi

RDS for the Euler equations

Algorithm 2.2 Parallel-Euler-RDS

Parallel-Euler-RDS()

1 for each node n ∈ LeafFluidNodes
2 ClearAccumulator(n)
3 // implicit barrier
4 for each simplex T ∈ LeafFluidCells
5 NodeUpdates = Euler-RDS(T)
6 for each node n ∈ IncidentNodes(T)
7 AtomicInc(n,NodeUpdates [n])
8 // implicit barrier
9 for each node n ∈ LeafFluidNodes

10 TimeIntegrate(n)

Parallel procedure for solving the Euler equations

28

IncidentNodes(T) as in Section 2.3.5

AtomicInc(n,NodeUpdate) Atomically adds NodeUpdate to the accumulator at

node n

TimeIntegrate(n) Multiplies the quantity in the accumulator of node n by

∆t/Vn and adds it to n’s solution vector

2.4 Fluid-Solid Interaction

One of the complex and interesting fluid phenomena is interaction with deformable

solids. To test the suitability of our simulation method in modeling such visual effects,

I will next describe a preliminary system that uses my fluid simulation method based

on residual distribution schemes (RDS) and couples it together with the commonly used

finite element methods (FEM) for modeling deformable bodies.

2.4.1 Overview

This system is composed of several modules working in unison: a fluid solver based

on RDS, an elastic solver using a standard FEM formulation, mesh management utili-

ties, and other numerical methods and geometric operations binding these components

together. Figure 2.1 provides an overview of the system and the interaction between

these components. My method solves Euler’s equations of compressible, inviscid fluid

dynamics with Roe’s residual distribution schemes [Roe, 1987] as described above. The

elastic solver is a Galerkin formulation of the equations of linear elasticity commonly

used in computer graphics; the solution is implicitly integrated in time for stability and

the method yields a sparse, symmetric, positive-definite system of equations efficiently

handled by iterative solvers.

This technique uses adaptive mesh refinement to focus computational resources on

29

Pressure Integration

Refinement/Coarsening

Fluid Solve

RDSClear Integration

Input Mesh

Elastic Solve

Kinetic FEM

Mesh Movement

Static FEM

Figure 2.1: The structure of the simulation system

the areas of the simulation most interesting from a standpoint of both visual and dy-

namic effects. These modules are combined together with a facility for the coupling of

the two dynamical systems and an effective method for the updating movement of the

computational domain.

2.4.2 Elasticity Simulation

The elastic bodies in this system are modeled with the equations of linear elasticity; I

use a Galerkin finite element method (FEM) formulation as described in [Hughes, 2000,

Nealen et al., 2006] to build the stiffness matrix K for elastic bodies at rest state; this

is used to construct the following system for the displacement ∆x of each node in the

30

body:

M∆ẍ + K∆x = F (2.21)

where M is a diagonal matrix of the mass associated with the dual volume around

each node, K the linear elastic stiffness matrix as above, and F the forces acting on

each node. This method employs a backward Euler temporal discretization as per

[Baraff and Witkin, 1998] to obtain:

(
M + ∆t2K

)
∆v = ∆tFext −∆tK∆x−∆t2K∆vn (2.22)

∆vn+1 = vn + ∆v (2.23)

∆xn+1 = ∆xn + ∆tvn+1 (2.24)

The left-hand side of Equation (2.22) is a symmetric, positive-definite matrix; its sparsity

and block structure is such that each compressed row with can be stored with the

associated elastic domain node. I use the conjugate gradient method [Shewchuk, 1994]

to solve for the velocity vn+1 and apply Equations (2.23) and (2.24) for the resulting

displacement.

2.4.3 Fluid-Structure Coupling

As mentioned previously, I split the solution of the system in time, advancing the fluid

in time, then the elasticity. Between these separate solution stages, I propagate the

necessary information across domains in the form of boundary conditions. This method

is considerably simpler to formulate and solve than an implicitly coupled system as in

[Chentanez et al., 2006] and allows the individual solvers to be changed independently.

The force due to pressure on a given surface S is simply:

FS =

∫
S

pn dS (2.25)

31

where p is the pressure along the surface, and n the surface normal oriented toward the

interior of the body under pressure. In this simulation, Equation (2.25) is integrated

over the dual area on the surface of the fluid-solid interface surrounding each node. For

simplicity’s sake, I assume that the pressure p is constant over this area; the formula for

the force fi due to the pressure on node i with dual surface area Ai and incident faces

enumerated by j is then:

Fi = Aini
1

|j|
∑
j

pj (2.26)

The effect of a solid body’s motion on the surrounding fluid is obtained by simply setting

the fluid velocity of each node on the fluid-structure boundary to be the velocity of the

body at the point.

2.4.4 Adaptive, Semi-Regular Simplicial Meshes

I use unstructured simplicial meshes to represent the fluid and elastic domains and have

developed a robust and efficient method for managing the geometric and simulation data

used in the numerical methods.

I provide a coarse initial mesh with minimal boundary information and subdivide

the mesh as needed to efficiently and accurately represent the solution; the refinement

criteria for this process can range from geometric predicates to more sophisticated,

domain-specific approaches based on the solution state during simulation. Currently, I

only refine cells to enforce volume constraints, but I am investigating schemes based on

solution configurations.

2.4.4.1 Splitting Scheme

For a given simplex, this subdivision scheme uses the midpoints of each edge along

with the original vertices as the vertices of the child simplices. For triangles, I pro-

duce 4 similar triangles of 1
4

th
the area of the original, and for tetrahedra, I produce 4

32

similar tetrahedra incident on each of the original vertices, leaving an octahedron with

the new edge-midpoint vertices as its vertices. I further divide this octahedron into 4

tetrahedrons; each of these children are 1
8

th
the volume of their parent tetrahedron.

2.4.4.2 Representation

The adaptive mesh cannot guarantee on the order in which the simplices and vertices

(which I call cells and nodes respectively, to emphasize their role in the solution of a

physical system) are created. Thus, for efficiency’s sake, I explicitly track each face and

edge in addition to cells and nodes to facilitate the quick location of child nodes and

incident faces, edges, and cells. An additional advantage of this practice is that it is

able to efficiently and directly operate on each of these computational elements without

having to locate them by searching incidence information and deal with the inevitable

multiplicity of reference.

2.4.5 Mesh movement

One difficulty in coupling fluid and solid dynamics lies with the way they are typically

formulated; the most popular equations describing the behavior of fluids are Eulerian

formulations, while elasticity is most naturally described with a Lagrangian formulation.

If not carefully handled, difficulty will arise in solving the fluid equations as cells are

inverted and become co-located by the changing boundary conditions.

To reconcile these opposing models, the simulation adapts the fluid mesh to capture

the moving boundary conditions due to the motion of solid bodies. The motion of the

actual fluid-solid interface is completely described by the displacements ∆x of the solid

body; it remains to determine how to best move the internal fluid nodes to maintain

correct meshes. This step is achieved by treating the mesh itself as an elastic body and

solving for the node displacements of the internal fluid nodes with a steady formulation

33

of elasticity. This can be obtained by solving the simple system:

K∆x = 0 (2.27)

The displacements of the solid body (see Section 2.4.2) and the domain boundaries pro-

vide Dirichlet-type boundary conditions for Equation (2.27)), yielding a system that

can be efficiently solved via the method of conjugate gradients. Figure 2.2 demonstrates

this mesh movement scheme for a simple 2D configuration. There are situations where

this approach does not work well. In particular, topological changes in the fluid domain

would require more sophisticated mesh management; one very viable fix for this prob-

lem would be to re-mesh the domain whenever deformations become severe enough to

invaldidate tetrahedra, as in [Klingner et al., 2006].

(a) An elastic body and enveloping mesh at rest (b) An elastic body and enveloping mesh under de-
formation

Figure 2.2: An elastic body and enveloping mesh’s rest and deformed states

34

2.5 Implementation and Results

My mesh management and simulation code was developed in C++ and the multi-

threaded components parallelized with OpenMP (see [OpenMP ARB, 2005]). The tetra-

hedral meshes were generated using the Tetgen package (see [Si, 2004]). I performed

modeling and animation with Blender [Blender Foundation, 2007], and rendering was

performed with a combination of Blender and the open-source RenderMan-like renderer,

Pixie [Arikan, 2010].

2.5.1 Benchmarks and performance

I have tested and applied this method to a number of challenging problems with appli-

cations in computer animation: (a) air current speeding past an iconic bridge, rocking

it back and forth, (b) wind buffeting a skyscraper, causing it to bend and twist, and (c)

a flow of solar particles passing over a space station suspended high above the Earth.

The numbers of tetrahedra listed are for the input meshes given to the solver.

Bridge The first benchmark scene is shown in Figure 2.3. The bridge and the fluid

domain are composed of 31, 478 tetrhedral elements.

Skyscrapers In the skyscrapers benchmark as shown in Figure 2.4, the buildings and

the fluid domain are composed of 9, 088 tetrahedral elements.

Space Station For the space station benchmark in Figure 2.5, the space station and

the fluid domain are composed of 25,129 tetrahedral elements.

Table 2.1 shows the runtime performance achieved by my prototype implementation on

the three benchmarks. The timings were collected on a Pentium D 3.4GHz processor

with 2 GB of RAM. The fluid simulation using RDS runs in real time. The dominating

computational cost in our simulator is due to FEM simulation of deformable solids.

35

Figure 2.3: Simulated flows rocking a suspension bridge.

2.5.2 Scaling

To demonstrate the scalability of RDS, I have implemented this algorithm (as described

in Algorithm 2.2) with the parallization facilities provided by OpenMP. This model of

parallel computing is well-suited to the multi-core, shared-memory architectures com-

monly available on desktop workstations and laptops. It will also be directly applicable

to many-core architectures. This method achieves respectable scaling for up to 8 pro-

cessors on the skyscraper model (see Table 2.2).

36

Figure 2.4: Skyscrapers in a whirlwind (9, 088 tetrahedra)

2.6 Summary and Conclusion

I have introduced residual distribution schemes (RDS) to computer graphics as method

for efficiently simulating high-energy fluids on modern architectures. I demonstrate that

RDS are computationally attractive in several regards; they can effectively model multi-

physics phenomena, such as two-way coupling between fluids and solids. It offers a

natural balance between efficiency and accuracy. The method also takes advantage of

adaptive mesh refinement to focus computational efforts on areas of visual and phys-

ical significance. Therefore, it is able to deform the computational domain and avoid

37

Figure 2.5: Twisting Space Station (25, 129 tetrahedra)

inaccuracies due to inverted computational cells.

2.6.1 Limitations

This method has some limitations. The mesh adaptation scheme assumes limited solid

movement and would require re-meshing to handle arbitrary object motion (in particu-

lar, topological changes to the computational volume). The N-type residual distribution

scheme I use is linear and thus suffers from diffusion; this could be addressed with a

non-linear scheme such as Low-Diffusion Advection (LDA) and Positive-Streamwise In-

variant (PSI) schemes (see [Abgrall, 2006]).

38

Scene # cells secs/frame

Fluid Solid Total
Bridge 31k 0.6 5.73 6.36
Skyscrapers 9k 0.15 4.77 4.92
Space station 25k 0.46 14.53 14.99

Table 2.1: Runtime performance for each benchmark

Processors Frames/second
1 11.22
2 21.25
4 32.37
8 47.39

Table 2.2: Performance scaling of residual distribution schemes for the Euler equations
over the Skyscraper scene on an SGI Altix cluster.

2.6.2 Future work

There are a number of directions for future work. Mesh deformation and adaptation

methods could benefit from some refinement, and I would like to investigate multiple

splitting schemes and more advanced criteria for performing the splits. I would also like

to investigate alternatives to remeshing gross deformations in the computational mesh.

There are many options for future work with residual distribution schemes; I would

like to combine them with a Poisson solver to allow for the simulation of incompressible

fluid, and I would like to investigate higher-order and less diffusive distribution schemes,

such as the LDA and PSI methods described in the aeronautics community. I am

currently investigating the potential application of RDS to the equations of elasticity

for a more integrated approach to fluid-solid interaction, and would be interesting to

investigate different time integration schemes for RDS as well.

Due to the inherent parallelism of RDS, I also plan to implement parts of the al-

gorithm on GPUs and future many-core architectures, as well as other new commodity

parallel architectures, to exploit RDS’ computational properties and further improve its

39

overall performance. I hope to achieve at one to two orders of performance gain, making

this method interactive on desktop workstations or mobile platforms.

In the next chapter, I present my technique for the simulation of compressible gases

with shockwaves.

40

Chapter 3

Visual Simulation of Shockwaves

3.1 Introduction

Recent developments in simulating natural phenomena have made it possible to in-

corporate stunning, realistic animations of complex natural scenes filled with flowing,

bubbling, and burning fluids. Computer-animated and live-action films alike have made

great use of these advances in modeling to recreate familiar and interesting effects.

Notably, little investigation has been made on how to properly capture shocks and

propagate discontinuities in visual simulation. These remarkable phenomena give rise

to dramatic events such as explosions, turbulent flows, and sonic booms. Such effects

are common in films and are notoriously difficult to handle with numerical methods.

Additionally, many state-of-the-art simulation techniques do not fully take advantage

of the kind of new, powerful hardware that is emerging; these algorithms are often not

designed to handle large domains efficiently and many that are based on specially sim-

plified formulations often are not applicable to phenomena occurring at large spatial

scales.

This chapter discusses a method for efficient simulations of nonlinear, compressible

gas dynamics and describes how it may be best utilized to generate visually interest-

ing, plausible animations. Many natural phenomena are nonlinear but can often be

reasonably approximated through linearization; one example is the linear formulation

of elasticity that is commonly used in graphics-targeted simulation. The equations of

fluid motion are not generally suitable for linearization — waves crashing on the beach,

curling smoke, and surging shockwaves all arise from the nonlinear characteristics of

the system. To solve these highly nonlinear equations in a reasonable amount of time,

numerical methods typically discretize simplifications of the true equations that still

capture the nonlinearity of the system.

Furthermore, shocks that arise in problems of gas dynamics themselves present a

numerical challenge; a shock is a region of rapid spatial variation in a small interval that

propagates with tremendous speed — the blast wave that emanates from an explosion

or the bow shock that forms around a supersonic projectile are some examples of these

phenomena. These have a striking effect on the fluid motion but are very difficult to

simulate properly with traditional numerical methods; the scale of motion one would

like to capture (namely the space the shock traverses) is at odds with the need to

represent the shock itself. Many numerical techniques behave poorly or fail completely

in the presence of discontinuous solutions — to simulate shocks with such methods, the

resolution of the discretization must be high enough for the shock to appear as a smooth

transition, and thus can be prohibitively expensive to compute.

Physically correct methods for shockwave modeling focus less on conventional met-

rics of accuracy (such as order of convergence) and emphasize the ability to propagate

discontinuities stably and with minimal diffusion. Specifically, techniques based on the

finite volume method (FVM) have been developed that handle discontinuities well and

allow for relatively coarse grids to capture shock behavior. The method presented here,

through judicious simplification and application, adapts and improves the efficiency of

a class of FVM techniques designed to capture shocks on coarse grids efficiently.

I have demonstrated the application of this method for generating animations of

complex fluid motion, including chambered explosions, nuclear detonations, and the

turbulence and bow shock around a supersonic projectile (see Figures 3.7, 3.8, 3.9).

42

The method is also able to describe the interaction of coupled fluids and objects; I

demonstrate shockwaves knocking over stacked objects and blowing a brick house to

pieces, as well as the effects of an explosion within a tower of heavy blocks. My method is

able to considerably reduce the computational complexity of these highly complex effects

to the level comparable to existing fluid animation techniques in graphical simulation.

Furthermore, while a näıve parallelization of our method achieves only mediocre

scalability, it is possible to achieve much better scaling with a more carefully constructed

parallelization scheme. I have explored the components of such a near-optimal scheme

and its application to the shared-memory, multi-core architectures that are becoming

commonplace. The essential locality of the numerical schemes used in this method

allows parallel performance far greater than that typical of methods for fluid simulation

in graphics.

3.2 Previous Work

I use the finite volume method to describe compressible fluid dynamics; this follows

the based Reconstruct-Evolve-Average paradigm established by [Godunov, 1959]. This

has received much attention from the aeronautics community, and I use numerical Rie-

mann solvers based on the work of [Roe, 1981], [van Leer, 1977], and others. For a

superb introduction to the topic of the finite volume method and Riemann solvers,

see [Leveque, 2002].

The problem of describing the evolution of shocks — known as “shock capturing” —

has been addressed from a variety of directions. My work follows the vein of Riemann-

solver based approaches that strive to treat areas with and without shocks with the same

numerical technique. Another family of approaches, generally known as front-tracking

methods, uses standard solvers in areas away from shocks and explicitly models shocks

as evolving surfaces in the domain. Front-tracking approaches have been successful, but

43

are extremely complicated for two- and three-dimensional simulations and have difficulty

handling situations where multiple shocks interact. The survey of [Fedkiw et al., 2003]

gives a good overview of the topic.

I have summarized much of the related work in graphics in Section 2.2; as mentioned,

relatively little work in computer graphics has utilized the Euler equations, choosing in-

stead to model their effects either through more general equations, greatly simplified

models, or models of similar complexity that have been modified to achieve certain

effects. [Yngve et al., 2000] use the full Navier-Stokes equations in their method that

animates explosions and their secondary effects. [Feldman et al., 2003] simulate com-

bustive phenomena based on an incompressible model of flow with additional density

tracers, and [Selle et al., 2005] present an approach that generates what they describe

as “rolling explosions”. Like Feldman et al., they use an incompressible model of fluid,

which precludes the presence of shocks. My approach aims to model phenomena similar

to those addressed by [Yngve et al., 2000]. The greater fidelity and higher efficiency

afforded by this method opens up a wide range of new applications of these phenomena

to visual effects.

There has been some work on simulating the effects of blast waves through analytical

models of blast propagation. [Mazarak et al., 1999] used an expanding ball to determine

forces on bodies to fracture or propel them. [Neff and Fiume, 1999] use similar analytic

models of blast waves to fracture objects and are unable to generate the aforementioned

effects of shock dynamics. These approaches are typically quite fast, but their extremely

simple model of blast dynamics does not allow for the effects of shock-object interaction

— notably reflection and vortex shedding — nor do they have the ability to visualize

the blast itself.

44

3.3 Method

The key challenge is to simulate shockwave and compressible gas dynamics by designing a

practical numerical method that can stably handle moving boundary conditions in three-

dimensional space and is efficient enough to be used in a visual simulation production

pipeline. I present a basic introduction to the finite volume method and refer the readers

to [Leveque, 2002] for more detail.

3.3.1 Conservation laws

The method seeks solutions to the Euler equations of gas dynamics. These equations

form a hyperbolic conservation law, the general, three dimensional form of which is:

qt + F(q)x + G(q)y + H(q)z = 0 (3.1)

where subscripts indicate partial differentiation.

Here q is the vector of unknowns and F, G, and H are vector-valued flux functions

specific to each conservation law. A conservation law states that a quantity of unknowns

q over an arbitrary domain S changes in time due only to the flux across the boundary

∂S of the domain.

3.3.1.1 Integral form

The derivatives found in partial differential equations such as Equation (3.1) are not

defined around discontinuities; to capture them properly, I use an integral form of the

equations.

In one dimension, consider an interval [a, b]; the change in q over that interval is due

to the flux at a and the flux at b. More formally,

d

dt

∫ b

a

q(x, t) dx = F(q(a, t))− F(q(b, t)) (3.2)

45

where F is a flux function such as F, G, or H from Equation (3.1) and I follow the

convention that ‘positive flux’ is left-going and ‘negative flux’ right-going.

3.3.2 The finite volume method

The finite volume method (FVM) on regular grids follows directly from Equation (3.2);

the presentation here is for scalar equations in one dimension with scalar unknowns q

and scalar fluxes f , but the formulae for systems of equations in multiple dimensions

are straightforward extensions of these.

The spatial interval [a, b] is discretized into m intervals (“cells”) of equal size ∆x =

b−a
m

. For each time tn, the m quantities Qn
i are defined as the average value of q over

the cell:

Qn
i =

1

∆x

∫ χri

χli

q (x, tn) dx (3.3)

where χli = a+ i∆x, and χri = χli + ∆x are the positions of the cell boundaries. Observe

that χri−1 = χli. I will also occasionally refer to these boundary positions with half-index

increments; for example, the flux at χli is Fi− 1
2
.

I apply Equation (3.2) to each of the intervals i

d

dt

∫ χri

χli

q(x, t) dx = f
(
q
(
χli, t

))− f(q(χri , t)) (3.4)

and integrate Equation (3.4) from tn to tn+1

∫ χri

χli

q (x, tn+1) dx−
∫ χri

χli

q (x, tn) dx =

∫ tn+1

tn

f
(
q
(
χli, t

))− f(q(χri , t)) dt (3.5)

Observe that we can substitute Equation (3.3) if we divide Equation (3.5) by ∆x.

Qn+1
i −Qn

i =
1

∆x

∫ tn+1

tn

f
(
q
(
χli, t

))− f(q(χri , t)) dt (3.6)

46

The right-hand side of this equation is a flux difference that cannot generally be eval-

uated exactly; I approximate the integrals with averages over the cell interfaces from

[tn, tn+1]:

F n
χli
≈ 1

∆t

∫ tn+1

tn

f
(
q
(
χli, t

))
dt (3.7)

Substituting Equation (3.7) into Equation (3.6), one obtains the most basic FVM update

scheme (Equation (3.8)):

Qn+1
i = Qn

i −
∆t

∆x

(
F n
χli
− F n

χri

)
(3.8)

This scheme is first-order and is subject to the numerical viscosity typical of first-order

methods. Second-order schemes such as Law-Wendroff [Lax and Wendroff, 1960] can

be employed with comparable computation effort; I complement this with a flux lim-

iter, which minimizes diffusive and dispersive artifacts. I have used the MC limiter

of [van Leer, 1977] in the method presented here.

3.3.3 The Riemann problem

According to Equation (3.7), the flux at Fi− 1
2

is dependent on the state Qi− 1
2

at the

interface between Qi−1 and Qi over the interval (tn, tn+1); thus one must determine the

value at this interface as it evolves in time. Qi here is the vector version of the discrete

unknowns first introduced in 3.3.2. Given the initial data:

Q(x, 0) =

 Ql, x < 0

Qr, x ≥ 0
(3.9)

I wish to solve for Q(x, t) for t > 0 subject to the governing equations. This formulation

is known as the Riemann problem; the resulting Q(0, t) obtained can then be used to

compute the flux at the cell interface.

Numerical methods based on Riemann solvers can often succeed where other meth-

47

ods fail because their solution is achieved through analysis of the governing equations.

Whereas many techniques are developed through the mechanical application of numer-

ical stencils to the terms of an equation, Riemann solvers inherently incorporate more

information about the equation in their formulation.

3.3.3.1 Riemann problem for linear systems

Consider linear, constant-coefficient (but not necessary scalar) hyperbolic conservation

laws, i.e. Equation (3.1) where the flux function F takes the form F(q) = Aq, where A

is a flux matrix. (Assume that the other flux functions G, and H are of the same form).

Such a system of order n can be diagonalized into n decoupled equations Q+
t +ΛQ+

x =

0, where Q+ = R−1Q. Here R is the matrix of right eigenvectors of A, and Λ is a

diagonal matrix of the eigenvalues of A satisfying A = RΛR−1.

The solution to the Riemann problem for these equations is given by n weighted

eigenvectors Wi = αiri (also known as waves) propagating with speeds λi, the corre-

sponding eigenvalues.

The waves Wi are determined by projecting the jump in the initial states ∆Q =

Qr −Ql onto the space formed by the eigenvectors of the system:

∑
i

Wi =
∑
i

αiri = ∆Q

Ra = ∆Q (3.10)

a = R−1∆Q (3.11)

where a = [α0, α1, . . . , αn−1]T

The waves define k intermediate states Q∗i = Ql +
∑i

j=0 Wj, and the solution to the

48

Riemann problem is therefore the piecewise-constant function

Q(x, t) =



Ql, x < λ1t

...
...

Q∗i , λit < x ≤ λi+1t

...
...

Qr, x ≥ λnt

(3.12)

3.3.3.2 The Riemann problem for nonlinear systems

For nonlinear systems such as the Euler equations, the wave structure of the solution

is much more complicated and costly to compute — typically, iterative root-finding

methods must be employed at each cell interface to determine the intermediate states

Q∗i .

However, it is often possible to obtain good results by approximately solving the

Riemann problem; through linearizations of the flux evaluated at carefully chosen states,

one can obtain solutions that fit Equation (3.12). Such approximate Riemann solvers

must be used with care, as they can often produce non-physical solutions. I discuss the

applicability of these solvers and how these undesirable conditions can be addressed in

Section 3.3.4.1.

3.3.3.3 Upwinding flux splitting

The basic FVM Equation (3.8) update scheme developed in Section 3.3.2 is not able

to stably handle hyperbolic systems; it needs to be modified to obey the principle of

upwinding. One must take care to ensure that waves traveling in the positive direction

use information from the negative direction.

Rather than use Equation (3.8) to compute cell updates, I employ a scheme

Qn+1
i = Qn

i −
∆t

∆x

(
F n+
χri

+ F n−
χli

)
(3.13)

49

where F n−
χri

is the part of the flux F n
χri

traveling in the negative direction and F n+
χri

the

part traveling in the positive direction.

The waves Wi and speeds λi from the solution to a Riemann problem at χri is then

F n−
χri

=

j∑
c=0

λcWc F n+
χri

=
k∑
c=j

λcWc (3.14)

Where . . . < λj < 0 < λj+1 < . . .; waves traveling with negative speeds are added to

F n− while those traveling with positive speed are added to F n+.

3.3.3.4 Solution procedure

Given cell values Qn for time tn, a timestep is performed as follows to compute Qn+1:

1. For each interface between cells, compute the wavespeeds λi and fluxes F n
i by

solving the Riemann problem at that interface (described in Section 3.3.4.2)

2. Find the wavespeed with largest magnitude from |λi| to compute timestep length

∆t as described in Section 3.3.4.4.

3. For each cell i, advance to next time Qn+1 using the fluxes F n at its neighboring

interfaces χli, χ
r
i using Equation (3.13).

For three-dimensional problems (see Section 3.3.4.4), one must compute three fluxes

for each cell in the domain; solving the Riemann problems in step 1 becomes the com-

putational bottleneck for non-trivial systems of equations. While expensive to obtain,

carefully calculated fluxes are the key to handling discontinuous solutions on a coarse

grid. Next, I describe what the Riemann problem is and how it can be used to compute

flux between cells.

50

3.3.4 The Euler equations

I are interested in studying the motion of a compressible gas; the natural choice is

the Euler system of equations. The simplification of Navier-Stokes that omits viscous

terms results in this nonlinear hyperbolic system of conservation laws. The omission

of viscosity is a reasonable one to make for many physical problems in gas dynamics,

just as the incompressible simplification of Navier-Stokes frequently used in graphics is

reasonable for liquid simulation.

The Euler equations in conservation form (see Equation (3.1)) are

q =



ρ

ρu

ρv

ρw

E


, F(q) =



ρu

ρu2 + p

ρuv

ρuw

(E + p)u



G(q) =



ρv

ρvu

ρv2 + p

ρvw

(E + p)v


, H(q) =



ρw

ρwu

ρwv

ρw2 + p

(E + p)w


(3.15)

Here ρ is density, u, v, and w the components of velocity, p the pressure, and E the

total energy. An additional equation of state completes the system

E =
p

γ − 1
+
ρ

2

(
u2 + v2 + w2

)
(3.16)

where γ is the adiabatic exponent of the fluid — typically 1.4 for air. It should be noted

that for solutions to be physically valid, ρ, p, and E must all be strictly greater than

zero.

51

3.3.4.1 Approximate Riemann solutions

As discussed in Section 3.3.3.2, computing the exact solution to the Riemann problem

for nonlinear systems such as the Euler equations is prohibitively expensive for practical

problems. Suitably approximated solutions to the Riemann problem are often able to

achieve acceptable results for a fraction of the cost of solving them exactly.

To apply the method for solving Riemann problems for linear systems presented in

Section 3.3.3.1 to nonlinear problems; one desires a matrix A such that A approximates

F′(Q); here F′(Q) is the Jacobian of F as seen in the quasilinear form of the conservation

law. This is simply the chain rule applied to (3.1): Qt − F(Q)x = Qt − F′(Q)Qx = 0.

In a seminal paper, [Roe, 1981] presented a simple method for approximating F′(Q)

that preserves important conditions of the system, and it is this method that I have

adapted for this solver. Roe’s method uses a flux matrix A that is F′(Q̄) evaluated at

a specially chosen state Q̄ given Ql and Qr — this state has come to be known as the

Roe average state.

Eigenvectors and eigenvalues of the flux Jacobian The eigenvectors of the Ja-

cobian F′(Q) give the waves necessary to compute the intermediate states as in Sec-

tion 3.3.3.1, and its eigenvalues give the characteristic speeds λi with which these waves

propagate. The eigenvalues of the flux Jacobian F′ as computed from (3.15) are:

λ0...4 = (u− c, u, u, u, u+ c) (3.17)

52

and the corresponding eigenvectors are:

r1 =



1

u− c
v

w

H − uc


r2 =



1

u

v

w

1
2
(u2 + v2 + w2)



r3 =



0

0

1

0

v


r4 =



0

0

0

1

w


r4 =



1

u+ c

v

w

H + uc


(3.18)

Here c =
√

γp
ρ

is the speed of sound and H = E+p
ρ

the total specific enthalpy. I have

given only the eigenvalues and eigenvectors for F′, but those for the Jacobians of the

other flux functions G′ and H′ have similar structure.

Roe average state Given Ql = [ρl, ul, vl, wl, El] and Qr = [ρr, ur, vr, wr, Er], the Roe

average is

Q̄ =
[
ρ̄, ū, v̄, w̄, H̄

]T
ρ̄ = ρl+ρr

2
(3.19)

ū =

√
ρ
l
ul +

√
ρ
r
ur√

ρ
l
+
√
ρ
r

v̄ =
√
ρ
l
vl+
√
ρ
r
vr√

ρ
l
+
√
ρ
r

(3.20)

w̄ =

√
ρ
l
wl +

√
ρ
r
wr√

ρ
l
+
√
ρ
r

H̄ =
El+pl√

ρl
+Er+pr√

ρr√
ρ
l
+
√
ρ
r

(3.21)

The specific variables shown here (in contrast to the conservative variables given in

(3.15)) appear because they are precisely what is necessary to evaluate the eigenvalues

Equation (3.17) and eigenvectors Equation (3.18) and obtain the waves and speeds for

a given Riemann problem.

53

This average state has attractive properties when considering the structure of the

Riemann problem; were I to choose a simple arithmetic average of the quantities at Ql

and Qr, the resulting eigenvectors may fail to be distinct and the solution would fail

entirely. The criteria behind this particular choice of average are explained in detail

in [Roe, 1981] and [Leveque, 2002]; other linearizations are possible — Roe’s enforces

conservation and exactly captures single discontinuities.

Enforcing physicality Using the Roe average state (Equation (3.19)) to approxi-

mately solve the Riemann problem is significantly faster then computing the exact solu-

tion to the Riemann problem, but the solver is known to generate nonphysical states for

certain inputs Ql and Qr — in particular, rarefactions can be improperly represented as

discontinuities. While the exact solution to the Riemann problem could be computed to

obtain the physically valid intermediate state, this is unnecessary and overly expensive

for visual simulation. When the approximate Riemann solver produces invalid states, I

apply slight corrections to enforce physicality. I clamp ρ and p to be no less than 0.05

— in the case of p, this entails adjusting E according to Equation (3.16).

For example, the fluid-rigid body simulations illustrated in Figures 3.8, 3.11, 3.1,

and 3.2 demonstrate plausible motion, and would not be possible using a simple ap-

proximate Riemann solver without these corrections.

3.3.4.2 Riemann solver for Euler equations

I have developed the theory of Riemann solvers for the Euler equations sufficiently to

present the procedure for computing the Riemann solution at an interface given left and

right states Ql and Qr:

1. Compute Roe average Q̄ using Equation (3.19)

2. Make Q̄ physically valid if needed, as per Section 3.3.4.1

3. Compute wavespeeds λi using Equation (3.17)

54

4. Compute eigenvectors ri using Equation (3.18)

5. Project ∆Q onto the eigenspace by computing the wave coefficients αi and waves

Wi using Equation (3.11)

6. Compute left and right fluctuations F n± using Equation (3.14)

3.3.4.3 Boundary conditions

Boundary conditions are applied where needed through modified Riemann solvers; these

do not solve for the flux at an interface due to two adjacent cells; I compute a ‘ghost’

intermediate state at the interface to determine these fluxes. In practice, I have found

three types of boundary conditions useful:

Free-slip: This common boundary condition simply states that the component of

flow normal to the interface is zero. I obtain this by modifying the Roe average

Equation (3.19) used in the cell to have zero velocity in the component normal to

the boundary; thus ū on a free-slip boundary normal to the x-direction is set to

zero. Other components of the intermediate state Q̄ are simply treated as though

Ql were equal to Qr.

Velocity: This is a generalization of free-slip boundary conditions; rather than enforce

zero velocity along an interface, some user-specified velocity is imposed as the in-

termediate component of velocity in the appropriate direction. Other components

are treated as though the two adjacent cells were identical except for the energy E;

given an imposed velocity ū and the same component of velocity in the adjacent

cell ur, the velocity in the ghost cell is ul = 2ū(ū− ur). Due to this difference in

velocity, the energy in the ghost cell is not equal to its neighbor and is adjusted

with Equation (3.16).

Absorbing: It is often desirable to perform simulations where outgoing waves are

simply absorbed rather than reflected; the computational domain behaves as if it

55

were suspended in an infinite passive medium. At these interfaces, the fluxes in

the Riemann problem are simply set to zero.

3.3.4.4 Dimensional splitting

The discussion so far has been limited to one dimension — the Equations (3.15) are

three-dimensional, but the solution procedure in Section 3.3.3.4 performs updates in

only a single dimension.

To solve three-dimensional problems, this method performs dimensional splitting. To

advance from time tn to tn+1, the technique makes sub-step “passes” of a one-dimensional

solver in each direction — first using the flux function F along x for all rows of constant

y and z, then using G along y for all rows of constant x and z, and finally using H along

z for all rows of constant x and y.

This approach allows the application of the one-dimensional techniques previously

described here in a straightforward manner; however, I must address how best to choose

the timestep to take over the three passes.

Choosing a timestep The timestep size ∆t that the method is able to take while ad-

vancing the solution with Equation (3.8) is limited by the maximum characteristic speed

λmax from Equation (3.17) in the solution being updated, as per the Courant-Friedrichs-

Lewy (CFL) condition [Courant et al., 1928]. For simulation in a single dimension, the

procedure in Section 3.3.3.4 works perfectly — the solution to all Riemann problems in

the domain is computed, which gives the maximum characteristic speed, which is then

used to compute the timestep ∆t = ∆x
λmax

. With dimensional splitting, it is not possible

to compute the maximum speed in dimension y prior to advancing the solution in x

with some previously chosen ∆t; the maximum speed in y depends on the results of the

x-pass and is not generally equal to the λmax from the x pass.

There are several ways to address this problem — for example, I could adopt a guess-

56

and-check approach of estimating a timestep, advancing the solution with it, checking

to see if it satisfies the CFL condition based on the maximum speed of the next level,

and rewinding the whole computation if not, but this would be prohibitively expensive.

I take the very simple approach of always advancing the solution in a dimension with

the largest timestep that satisfies the CFL condition in that dimension. This method

clearly has effects on the solution; effectively, the grid is ‘warped’ over a timestep based

on the ratios of maximum speeds in each dimension. However, I have found these

effects to be negligible in the simulations I have run, even in cases where the flow (and

therefore λmax) is highly biased along a single dimension (see for example Figures 3.8, 3.9,

and 3.11).

This approach has an advantage over other methods and is particularly desirable for

visual simulation; each dimension is advanced according to the chosen CFL number of

the simulation. No dimension is forced to take a timestep at a low CFL number because

of other, higher speed dimensions. This technique helps reduce the numerical artifacts

that frequently plague visual simulations of natural phenomena.

3.3.5 Fluid-object interaction

I achieve bidirectional coupling through voxelization (as in [Carlson et al., 2004] and

[Batty et al., 2007]). The technique presented here uses simple modifications to the

Riemann solvers on boundary interfaces to affect the interaction; this is an explicit

scheme that is simple and efficient.

To capture the objects’ effect on the fluid, I use the aforementioned free-slip mod-

ification to the Riemann solver along the boundary (in Section 3.3.4.3). This solver

ensures that incoming waves are reflected off of solid bodies and enables effects like

those seen in Figures 3.1, 3.2, 3.8, 3.10, and 3.11; these demonstrate the effects of the

solids in the scene on the flow.

The force exerted by the fluid on the objects is obtained by multiplying the pressures

57

Figure 3.1: Tower (without cap) blown apart by internal blast

at each incident cell by the interface’s normal direction and applying the resulting force

to the object. This simple technique is responsible for the forces buffeting the objects

in Figures 3.1, 3.2, 3.8, and 3.11.

Any rigid body simulator is suitable for use with this method; I have used the

Bullet collision and dynamics engine [Game Physics Simulation, 2010] because of its

completeness and availability. Voxelization is achieved with a simple custom tool based

on triangle-grid intersections.

Considerable work [Carlson et al., 2004, Chentanez et al., 2006, Batty et al., 2007]

has been done to achieve stable fluid-solid interactions in the past, but these methods

have focused on the interaction of rigid and deformable bodies with incompressible fluids.

Stability problems frequently arise in such situations because of the differing needs of the

58

Figure 3.2: Tower (with cap) blown apart by internal blast

rigid body dynamics and the fluid simulator; the implicit solver for incompressible fluid

simulation generally takes large timesteps, which can result in a loosely-coupled, unstable

simulation when rigid bodies are handled näıvely. This method naturally takes many

small, inexpensive timesteps to advance the solution; this allows tighter communication

between the rigid body and fluid simulators and results in a more stable interaction.

3.4 Parallelization

The vast majority of the computation time in the algorithm described in Section 3.3.3.4,

is spent in two kernels; the computation of solutions to the many Riemann problems

across the grid (as described in Section 3.3.4.2) and the application of these Riemann so-

59

lutions to the cells of the grid to advance to the next timestep (see Equation (3.13)). Each

of these kernels is executed once per dimensional pass (as described in Section 3.3.4.4.)

The computation of Riemann solutions is essentially independent across all cell inter-

faces along the current dimension. The two cells adjacent to a given interface determine

the fluxes and speeds that comprise the Riemann solution at that interface.

The update procedure is similarly data-parallel across each grid cell; to update a cell,

I need only the global timestep being used for this dimensional pass (computed as per

Section 3.3.4.4) and the Riemann solutions corresponding to the two interfaces shared

with the cell’s neighbors along the current dimension.

One therefore expects to achieve significant performance scaling from a paralleliza-

tion of these kernels across the grid. As I shall show, there are a great number of factors

to take into consideration when developing an effective parallel computation scheme.

3.4.1 Initial parallelization

The two computation kernels described above are parallel across each interface and grid

cell, respectively, but the number of these generally exceeds the number of processors

available by several orders of magnitude, so it is reasonable to assign groups of these

computations to each processor.

An obvious way of doing this is to group ‘rows’ of computation — for both kernels,

one can consider the computation performed on the interfaces or cells along each row of

the current pass as a single task. These tasks may then themselves be partitioned among

the available processors; Figure 3.3 depicts this scheme. This scheme is exceedingly

simple to implement atop an existing serial implementation but scales poorly, achieving

about 8x scaling on 16 processors. Figure 3.15 shows the scaling results for this scheme.

At first, the poor behavior of this approach may seem surprising, since it has many of

the hallmarks of a good parallel algorithm. There is no explicit communication between

threads, only synchronization barriers at the end of each kernel. The threads execute

60

Figure 3.3: Computation of Riemann solutions and solution updates done in a pass
are divided among threads

nearly identical code paths on equally-sized portions of the grid; one can therefore be

confident that each thread performs a similar amount of work in each kernel. Addition-

ally, the algorithm is compute-intensive — the Riemann solution kernel performs over

400 floating-point operations per interface, so concerns over bandwidth are mitigated.

The reason why this approach scales poorly becomes apparent when one considers

the memory hierarchy of modern computer architecture and multi-core processor layout;

after taking the memory layout into account, a superior parallelization scheme can be

achieved.

3.4.2 GPU parallelism

The power of highly parallel commodity Graphics Processing Units (GPUs) has led many

researchers to develop specialized implementations on these stream processor architec-

tures in what is called General Purpose GPU programming, or GPGPU. The parallel

algorithm outlined in Section 3.4.1 performs moderately well on small-scale modern

shared-memory architectures; it certainly is a reasonable candidate for investigation

on GPUs. In the following section, I present my strategy for implementing my shock

simulation on moderns GPUs, discuss details and ramifications of implementation, and

61

present results on performance.

3.4.2.1 Implementation with CUDA

The very first programmable GPUs lacked high-level programming environments

and had stringent limitations in code size (a significant barrier in for many com-

putation problems). Before long, GPU-specific programming languages were de-

veloped — chief among them Nvidia’s Cg [Mark et al., 2003], ATI and Microsoft’s

HLSL [Peeper and Mitchell, 2003], and OpenGL’s GLSL [Kessenich et al., 2009] —

which greatly simplified the process by which these increasingly complex specialty pro-

cessors were programmed. These languages were primarily aimed at facilitiating graphics

programming, and the computing environment still posed significant challenges to truly

general purpose computing on GPUs.

More recently, more general platforms have emerged that aim to furnish the user with

enough abstraction from the hardware to be a truly general solution. I chose Nvidia’s

CUDA [CUDA, 2009] platform because of its well-established position and stability.

CUDA’s general computing model is based upon multiple blocks of threads. The

threads in a block have access to some limited shared memory and are executed on a

single processor unit; threads in a block can also be synchronized together.

A kernel is executed by specifying Bn, the number of blocks, and Tn, the number of

threads in each block. The shared memory for each block is allocated at execution time

and is valid over the lifetime of the kernel. Furthermore, there is no inter-block synchro-

nization mechanism; only that all blocks have finished computation when a kernel has

finished executing.

The current hardware supported by CUDA introduced some hard limits and strong

guidelines to the way an algorithm is parallelized. The 8800 series has 16 processors

with 16k of local storage space — since each block runs on a single processor, it is wise

to have at least 16 blocks per kernel execution. Furthermore, each processor is able to

62

execute 32 threads concurrently, so one would do well to have at least 32 threads per

block per kernel as well.

A block is assigned to each row in the grid along which a Riemann pass is to be

performed, and divide that row into at least 32 threads. A reduction is performed to

determine the global maximum in parallel across the threads in a block and then across

all blocks. A dimensional pass is finished by performing the update pass in the same

manner as the Riemann pass, with a block assigned to each row and 32 threads assigned

to each block.

In the Riemann and update passes, the interfaces and cells along a given row in a

block are divided evenly among the threads. In general, I avoid contention in reads;

each thread in a block works sequentially on its portion, and thus the overlaps (where

thread n− 1’s last cell is the same as thread n’s first cell) are taken care of.

I have implemented both absorbing and zero-velocity boundary conditions for the

solution; this is simply achieved by using a modified Riemann solver at the boundary

cells. I did not implement internal boundary conditions (due to walls or objects inside

the fluid domain); while this would be a relatively simple thing to do, it is likely to

cause thread divergence within a block and significantly degrade performance. The

“best-case” speedup is of greater importance, and thus I focused on that.

Unfortunately, a fundamental limitation of CUDA prevents the mapping of this

algorithm to the hardware as I would like to. Modern graphics cards do not have a true

bidirectional cache like a modern CPU; each processor instead has a small amount of

local memory that acts as a manual cache for individual blocks to use.

In my algorithm, I compute a row of Riemann solutions per block and perform a

reduction on these solutions to obtain the ∆t necessary to combine with the Riemann

solutions to advance the solution along each such row. Aside from the reduction, the

Riemann solution computed in a block is completely local; it is only used to advance

the solution along the same row after ∆t has been computed.

63

Ideally, one would compute the per-row Riemann solutions in each blocks’ shared

memory, perform the reduction, and use the stored Riemann solution to update the

solution, all without the need to write to global memory. However, CUDA’s architecture

prevents inter-block communication without clearing out each blocks’ shared memory,

since this is deallocated after kernels exit. Instead, each block must write its Riemann

solution to the global memory space and read it back during the update pass.

Given that this “local compute, global reduce, local update” paradigm is a fairly

common one in parallel programming, it is surprising that is not better supported by

CUDA.

3.4.2.2 GPU results

16 32 64 128 256 512
grid cells in one dimension

1

10

100

1000

10000

100000

si
m

ul
at

io
n

fr
am

es
/s

ec
on

d

Performance comparison of CUDA and serial implementations (2D)

CUDA (8800 GTX)
CPU (Core 2 2.4GHz)

(a) 2d

8 16 32 64 128
grid cells in one dimension

0.01

0.1

1

10

100

1000

si
m

ul
at

io
n

fr
am

es
/s

ec
on

d

Performance comparison of CUDA and serial implementations (3D)

CUDA (8800 GTX)
CPU (Core 2 2.4GHz)

(b) 3d

Figure 3.4: Comparative timings for CUDA and serial implementations.

The results of this implementation are shown in figure 3.4; the CUDA implemen-

tation’s relative speed over the serial implementation is shown in figure 3.5. The low

relative performance of CUDA for the 163 grid is understandable, since I am not able

to fill each block with the full 32 threads needed to utilize all of the hardware. The

spike at 323 is likely due to the the 16k shared memory that is allocated each block.

The average speedup is about 4x, largely owing to a limitation in CUDA’s memory

64

8 16 32 64 128 256 512
grid cells in one dimension

0

1

2

3

4

5

6

7

8

9

10

11

12
Fa

ct
or

 o
f C

UD
A

im
pr

ov
em

en
t o

ve
r s

er
ia

l

CUDA improvement over serial at different dimensions

3D
2D

Figure 3.5: Speedup of CUDA over serial implementation.

model that prevents utilization of shared memory properly. My initial parallel scheme,

implemented in OpenMP, achieves as much as 9–10x on a 16-core machines.. The trade-

offs between these approaches is an interesting one; while the extension of the serial

version to the OpenMP version was nearly zero-effort, one could argue that a 16-core

computer is hardly commodity hardware. The CUDA implementation was consider-

ably more work than the OpenMP, but runs well on mid-range graphics hardware —

while machines with more than 4 processors are still beyond mainstream computing, a

modestly powerful GPU can be found on many commodity machines.

It is interesting to consider how performance might change on newer graphics cards;

the Nvidia GTX 480 and GTX 580 products feature Nvidia’s GF100 architecture, which

introduces several performance-enhancing features — most notably, a greater number

65

of stream processors and a true cache. While many applications have benefited from

these changes, I predict that the same issue that dogs the GPU performance shown here

would affect these newer chips as well. The CUDA compute model precludes lightweight

synchronization and prevents us from effectively storing intermediate results. As a

result, the computation is heavily bandwidth bound and would see little benefit from

the architectural improvements in the latest Nvidia GPU products.

3.4.3 Many-core hardware considerations

Modern processors — specifically, those found in commodity desktop and laptop com-

puters — utilize a hierarchical memory layout, with several levels of cache between the

processor and main memory. The latency of cache memory is typically an order of mag-

nitude faster than that of main memory; multiple transactions with a given memory

location can be greatly sped up if the contents of said memory can be kept in the cache.

Performance-minded implementations of important algorithms — such as the linear

algebra operations found in the Automatically Tuned Linear Algebra Software (AT-

LAS) [Whaley et al., 2001] package and the fast Fourier transforms found in the Fastest

Fourier Transform in the West (FFTW) [Frigo and Johnson, 2005] library — are de-

signed with CPU caches in mind, carefully blocking access patterns to maximize the

effects of the cache’s fast memory.

A serial implementation of this algorithm can be designed to traverse memory in a

“cache-friendly” manner, but cannot be blocked in the same manner as some matrix

operations. Ideally, the memory accesses during a timestep could be partitioned such

that a portion of the grid is loaded into the cache and all operations necessary for

that partition during the timestep would be performed before moving on to the next

partition. The multi-pass nature of our algorithm requires that the method traverse the

grid multiple times — for each dimensional pass, once to compute the solutions to the

Riemann problems and determine the maximum speed, and again to apply the updates

66

to the grid.

However, an implementation on a parallel system will typically have much more cache

available, albeit divided up among the various processors in the system. To effectively

take advantage of the capabilities of a multi-core system it is therefore essential that

one takes the various caches available into account.

The cache structure found in multi-core computers is quite intricate and can vary

greatly from system to system. For example, Intel’s Pentium D processor featured two

cores, each with a separate 1MB L2 cache, while Intel’s Core 2 Duo processor’s two cores

share a single 4MB L2 cache. The system upon which I performed the parallelization

benchmarks has four sockets, each with an Intel Xeon processor — these processors are

in turn composed of four cores and two 2MB L2 caches, with each cache shared by two

of the cores.

Consider how the initial parallelization scheme presented in Section 3.4.1 behaves

with a mind to memory access and cache behavior. For any single dimensional pass,

each thread is assigned a disjoint portion of the grid to work with; assuming (for the

moment) suitably aligned data, it is safe to say that no two threads will try to read or

write the same location in memory.

However, each dimensional pass divides the grid up differently — for x, groups of

rows of constant y and z, for y, groups rows of constant x and z, and for z groups of rows

of constant y and z. This means that the portion of the grid assigned to each thread

changes for each dimensional pass; in between each pass, all of the changes written by

the pass’s update kernel must be flushed out of all caches and exchanged. What initially

looked like a moderately memory-intensive algorithm turns out to require tremendous

amounts of bandwidth to satisfy the constantly-changing mapping of data to threads.

67

3.4.3.1 Cache lines and alignment

The above discussion of the effects of the system’s caches on the initial parallelization is

itself simplified; to fully appreciate the subtleties of caches and how they affect a parallel

program’s performance, one must consider how caches are filled.

Caches always fetch and store contiguous groups of memory of fixed length in quanta

known as cache lines. The size of a cache line varies with architecture; the Xeon proces-

sors in the 16-core machine used for the parallelization benchmarks use 64-byte cache

lines.

Every address in memory maps to exactly one cache line and a transaction with an

address will result in the cache line to which it belongs being read into the cache. This

has the ramification that certain memory access patterns can be very inefficient; access

with strides greater than a cache line, for example, can result in wasted bandwidth and

cache use.

Parallel programs are subject to a more subtle issue due to cache lines: false shar-

ing. Consider a situation in which a region of memory is partitioned among multiple

threads, such as the partitioning of groups of rows in my initial parallelization scheme.

Depending on how the memory is partitioned and its alignment with respect to cache

line boundaries, it is possible for multiple threads to be assigned the same cache line.

If these threads are writing to these shared cache lines, a considerable amount of band-

width and time is consumed as the cache line is read, written to and flushed by one

thread after another.

False sharing can be prevented by ensuring that no two threads are reading and

writing the same cache line; this is typically accomplished by ensuring that data struc-

tures are allocated along cache line boundaries and that shared portions of memory are

padded appropriately.

68

3.4.3.2 Processor affinities

I have heretofore used the terms threads and processors interchangeably, assuming that

each thread in the parallelization runs on a single processor for the entirety of its lifetime.

In fact, operating systems are free to assign threads to any processor and migrate them

to other processors during runtime.

Thread migration can result in a significant performance penalty for an algorithm

designed to maximize the benefits of cache locality. Fortunately, most modern operating

systems support the assignment of affinity masks to threads, which enumerate the set

of processors the thread may execute on. Through this mechanism, I am able to request

that each thread to run on a specific processor and therefore ameliorate the effects of

thread migration.

The initial approach to parallelization described in Section 3.4.1 does not scale well.

Considering the effects of cache contention that occurs between dimensional passes and

the likelihood of false sharing, the poor performance is understandable. With the limi-

tations of this inferior scheme in mind, I will now describe a new parallelization scheme

that performs much better.

3.4.4 Domain decomposition

Given a grid of dimension l×m× n and a number of processors p, split the grid into p

rectilinear tiles using planes in x, y, and z. Note that I am presenting this algorithm in

three dimensions, but is easily applied to two-dimensional problems.

The exact arrangement of the tiles depends on the factors of p, but it is desirable for

each tile to represent an equal amount of work along each dimension. For example, given

a 64×64×64 grid and 12 processors, the simulation might decompose the problem into

2×3×2 tiles, with 8 tiles of dimension 32×21×32 and 4 tiles of dimension 32×22×32 (see

Figure 3.6). Within each tile, the solution is updated according to the serial algorithm

described in Section 3.3.3.4 except:

69

{21

{21

{22

{32

{32 {32

{32

Figure 3.6: Decomposition of a 643 grid into 12 tiles: 2× 3× 2

• Step 1 and step 3 are each computed within synchronization barriers across all

threads.

• In each dimensional pass, step 2 computes ∆t based on the largest speed found in

all tiles and the resulting ∆t is used in step 3 in each tile.

• The Riemann problems computed at interior boundaries — that is, those bound-

aries shared by adjacent tiles — must take into account the cells of the adjacent

tiles. Boundaries that tiles share with the original grid are computed as described

in Section 3.3.4.3.

To properly handle the computation of Riemann problems at interior boundaries, one

needs to make the values of the cells along the boundary shared with each adjacent

tile available. For each tile, for each adjacent tile (with which it necessarily shares an

internal boundary), a buffer is maintained into which a copy of the necessary cells is

written directly before the data is needed for the associated Riemann solution pass.

Then, rather than computing a special simplified variant of the Riemann problem based

on the boundary condition as in the standard algorithm, values from the appropriate

70

neighbor buffer are used.

During the neighbor-update step for a dimensional pass, each tile copies the necessary

values from its down grid data to the appropriate buffers belonging to its neighbors. Note

that it may be tempting to eliminate the need for these buffers by simply have a tile

read the data directly from a appropriate neighbor tile’s grid, but doing so risks false

sharing behavior and wasted bandwidth.

Indeed, rather than share one global grid data structure as in the initial scheme, i

eliminate the possibility of false sharing by having each tile allocate its own grid, suitably

aligned and padded so as to share no cache lines with other tiles’ data. This slightly

complicates the output of grid data, as each tile must carefully copy its own portion of

the aggregate grid to the output location.

The results of this scheme are shown in Figure 3.16; the scaling has improved slightly

for small grid sizes, but is slightly worse than the initial scheme for larger grid sizes.

One more optimization is necessary to achieve the desired scaling. A decrease in

scaling for large grid sizes suggests that the method is bandwidth limited; for these

large grid sizes, each tile’s portion of the grid no longer fits in cache, and the increased

accesses to main memory begins to saturate the bus for large numbers of processors.

3.4.4.1 Reducing memory usage

To reduce the bandwidth requirements of the algorithm and improve scalability, the

working set associate with each tile must be reduced. The original solution procedure

as described in Section 3.3.3.4 computes the full Riemann solution at each interfaces in

step 1, uses the computed speed to determine ∆t in step 2, and saves the computed

fluxes for the updates in step 3.

This memoization saves computation but consumes a considerable amount of band-

width; the full Riemann solution for an interface of the 3-dimensional Euler equations

contains 5 waves (which are vectors of 5 values) and 5 speeds, whereas a single cell of the

71

grid has only a single vector of 5 values (see Equations (3.17) and (2.19)). Since there

are roughly the same number of interfaces where these Riemann solutions are stored

as there are actual cells, saving the solution to all of the Riemann solutions in a pass

requires 6 times the storage of the grid alone.

This algorithm can be modified to instead compute just the maximum speeds at

each interface in step 1 and compute the full Riemann solutions as they are needed to

advance the solution in step 3. There is a net increase in actual computation, since I

am computing a significant portion of the Riemann solution at each interface in step 1

just to determine the maximum speeds, but the expected reduction in bandwidth can

greatly improve the scaling of the algorithm.

As demonstrated in Figure 3.17, the scaling is now very close to linear for the larger

problem sizes. The 323 grid does not scale as well because the relative overhead of

copying data during the neighbor-update as compared to the work done computing the

solution is larger for a smaller grid.

The dip in performance in the 323 grid for 14 threads is due to the factors being 2

and 7; the grid cannot be divided evenly among 7 tiles in one dimension, thus there are

6 tiles with a dimension along one axis of 4 while the remaining has a dimension of 9.

This disparity in workload size is particularly exaggerated at the small grid size.

3.5 Results

I have implemented and tested this algorithm on several challenging scenarios. In this

section, I first show some demonstrations of the algorithm, then describe our rendering

methods, and finally discuss timing.

72

Figure 3.7: A mushroom cloud generated by my method

3.5.1 Applications

I have constructed a number of scenarios that demonstrate the ability of this method

to simulate visually interesting phenomena. The first segment of supplementary video

is a two-dimensional simulation demonstrating vortex shedding — a traveling shock

crosses a sharp obstacle and a powerful vortex forms in its wake. Further reflections

of the shocks create new vortices which combine and travel around the domain; this

scenario is also shown in Figure 3.12. Figure 3.7 shows a mushroom cloud formed in

the aftermath of a nuclear explosion; a low-density, high-temperature region left by the

expanding shock is forced upwards by the pressure gradient caused by gravity; as it

rises, the region expands and curls downward, forming a distinctive mushroom shape.

73

Figure 3.8: A stack of rigid bodies knocked over by a shock

Figure 3.8 demonstrates the method’s ability to interact with moving boundary

conditions; the stack of rigid bodies in this scene are bidirectionally coupled to the fluid.

A traveling shock topples them, reflects off a nearby wall, and rebounds on the objects,

throwing them away. The bodies’ force upon the fluid creates vorticial patterns in the

gas.

Figure 3.9 shows a 2D slice of a 3D simulation of a projectile traveling faster than the

speed of sound. The bow shock ahead of the body is typical of this type of rounded object

and the rarefaction region behind the projectile creates a twisting trail of turbulence.

Figure 3.1 and Figure 3.2 are similar; in each, a cylindrical tower of 600 bricks is

toppled by an explosion from within. Figure 3.1 has no cap; the explosion forces nearly

all of the air out of the cylinder as it bursts out of the top. The low-pressure area formed

inside the cylinder causes it to collapse in upon itself while the force of the explosion

74

Figure 3.9: A bow shock and turbulence formed by the passage of a supersonic bullet

venting from the top of the structure send bricks flying. Figure 3.2 has a very heavy cap

atop it; the explosive force cannot escape so easily and is partially reflected back into

the structure, forcing a hole in the base and blowing out bricks near the top.

Figure 3.10 shows an explosion occurring in an enclosed area; the force of the ex-

plosion forces air through the small openings in the chamber and creates high-density,

turbulent tendrils.

Figure 3.11 shows a series of frames from a simulation where a “house” made of 480

concrete bricks is struck by a powerful shock, causing the bricks to fly in all directions.

The bricks shape and reflect the shock as it propagates through the scene.

Figure 3.13 is a visual recreation of the first moments of the detonation of the first

nuclear bomb ‘Trinity’. The glossy “bubble” around the explosion is the expanding

shockfront; the heat at the interface is such that light traveling through the region is

dramatically refracted. Inside the shock, dust and flame are rising with a bright glow.

75

Figure 3.10: An explosion in a confined space

3.5.2 Rendering

The 3D demonstrations were modeled in Blender [Blender Foundation, 2007] and ren-

dered with the V-Ray raytracer [Chaos Group, 2010]; the visualization of fluid effects

in 3D were handled by a Monte Carlo volume raytracer plug-in for V-Ray. Atmospheric

scattering was not used; these renders use ρ as advected by the fluid for the emissive

and absorbing factors for the volume tracer, with color determined by a linear mapping

of ρ into a blackbody colormap. The 2D demonstrations were rendered with a simple

custom 2D plotting tool; those using a monochrome colormap demonstrate our method’s

preservation of sharp shock features through a schlieren plot — namely,
√|∇ρ|. The

term schlieren refers to a particular type of image formed by the passage of light through

inhomogeneous media that causes shadows to appear in areas of high inhomogeneity;

see [Settles, 2001] for more detail.

76

(a) (b) (c)

Figure 3.11: Rigid body-fluid interaction

Figure 3.12: Vortex shedding from a shock interacting with wedge

3.5.3 Timings

Performance data is listed in Table. 3.1; these timings were collected on a 2GHz Core

2 laptop. Memory usage is linear in the number of grid cells — each demonstration

fits within 500MB of memory. These timings are all for a single thread of computation;

parallelization results were discussed in Section 3.4.

Direct comparisons with previous works are difficult to produce because little or no

timing information is available for these papers. Figure 3.14(a) (included, with permis-

sion, from [Yngve et al., 2000]) shows a 2D slice of a 1013 simulation of a shockwave

77

Figure 3.13: The initial moments of the “Trinity test” — the first atomic bomb

interacting with a stationary wall; they reported a simulation time of ‘overnight’. I

reproduced this simulation with the method presented here; for a 1013 grid, I recorded

a total simulation time of 15 minutes. Conservatively estimating that a single core of

our hardware is nearly 7 times faster and that ‘overnight’ is about 10 hours, the serial

version of our method is at least 6 times faster than theirs at equivalent resolutions, and

our simulation contains more visual detail. To demonstrate the ability of this method

to produce detailed results at coarse resolutions, I performed the same simulation on

a 603 grid (see Figure 3.14(b); this took less than 2 minutes (roughly 45x faster) and

the generated results exhibit more detail than the results computed on a 1013 grid

using [Yngve et al., 2000] (shown in Figure 3.14(a)).

78

Table 3.1: Demonstrative timings of the simulation method

Scene resolution sim. fps avg. ∆t sim. time
Blast chamber 120×80×120 1.56 1.4e-4 s 16.25 min
Rigids w/ refl. 60×60×100 0.779 2.5e-4 s 29.93 min
Tower (top) 60×80×60 1.14 7.2e-4 s 30.21 min
Trinity 200×75×200 0.102 2.9e-5 s 32.88 min
Tower (no top) 60×100×60 0.939 6.8e-4 s 51.74 min
Mush. cloud 120×100×120 0.243 2.4e-2 s 57.74 min
House 100×100×100 0.310 4.6e-5 s 58.35 min
Projectile 250×100×100 0.191 1.0e-5 s 191.5 min

Timings showing grid resolution, simulation frames per second, average simulation
timestep, and the total computation time needed for the entire simulation run.

(a) Results from Yngve et al.; simulation on a
1013 grid

(b) My method on a 603 grid

Figure 3.14: Comparison of pressure in blast reflection/diffraction scenario

3.5.4 Parallelization

Figures 3.15, 3.16, 3.17 demonstrate the scaling for the various parallel schemes described

in Section 3.4. These timings were collected on system with four Intel Xeon X7350 quad-

core processors running at 2.93GHz; the system runs Microsoft Windows Server 2003

(64-bit) and has 16GB of physical memory.

79

1 2 4 6 8 10 12 14 16
threads

2

4

6

8

10

12

14

16
sp

ee
du

p
ov

er
1

th
re

ad

Scaling — 3d naı̈ve scheme

323

643

1283

2563

Figure 3.15: A näıve parallelization scheme scales poorly with the number of threads

3.6 Conclusion

I have presented a method for efficient simulations of supersonic flows in compressible,

inviscid fluids that is based on the finite volume method. I have demonstrated the ability

of this method to capture the behavior of shocks and to handle complex, bidirectional

object-shock interactions stably. I have also demonstrated an effective parallelization

scheme based on architectural considerations that achieves near-linear scaling on modern

multi-core architectures.

80

1 2 4 6 8 10 12 14 16
threads

2

4

6

8

10

12

14

16
sp

ee
du

p
ov

er
1

th
re

ad

Scaling — 3d tiling w/ intermed.

323

643

1283

2563

Figure 3.16: Scaling of the initial version of the tiled parallelization. Memoization of
Riemann solutions leads to bandwidth saturation for large numbers of processors.

3.6.1 Limitations

Hyperbolic systems of equations (i.e. the compressible, inviscid Euler equations sim-

ulated here) are subject to the CFL condition as a requirement for convergence and

stability. The unconditionally stable solvers popular for incompressible fluid dynamics

are subject to the CFL condition for convergence, but not stability — indeed, the con-

vention seems to take the CFL condition as a “guideline” and use CFL numbers upwards

of 5.

My technique performs well at simulating truly hyperbolic phenomena such as com-

pressible, inviscid fluid dynamics, but cannot handle nearly incompressible phenomena

(e.g. liquids) as efficiently as those simulations currently used in computer graphics.

81

1 2 4 6 8 10 12 14 16
threads

2

4

6

8

10

12

14

16
sp

ee
du

p
ov

er
1

th
re

ad

Scaling — 3d tiling w/o intermed.

323

643

1283

2563

Figure 3.17: Scaling of the revised version of the tiled parallelization. The reduction
in bandwidth requirements greatly improves scaling.

This fundamental limitation is due to the choice of equations — the actual propaga-

tion of acoustic waves so important to compressible fluids has a negligible effect on

incompressible fluids.

3.6.2 Future work

There are a number of promising areas for future work. Many natural phenomena give

rise to shocks — of particular interest to graphics are hydraulic jumps in the Saint-

Venant (or shallow water) equations.

The tiled parallelization scheme I employ scales very well compared to a näıve parallel

decomposition, but there is potential for further improvement with a nuanced investi-

82

gation of further cache effects, operating system scaling, and processor layout. I also

would like to investigate the extension of this method to new parallel architectures, such

as Intel’s Larrabee, IBM’s Cell, next-generation graphics cards leveraging OpenCL and

CUDA.

In the next section, I present my technique for generating visual traffic flows using

a compressible fluid-like model of vehicle motion.

83

Chapter 4

Visual Continuum Traffic Simulation

4.1 Introduction

As the world’s population continues to grow, traffic management is becoming one of the

growing challenges for many cities and towns across the globe. Increasing attention has

been devoted to modeling, simulation, and visualization of traffic flows to investigate

causes of traffic congestion and accidents, to study the effectiveness of roadside hardware,

signs and other barriers, to formulate improved policies and guidelines related to traffic

regulation, and to assist urban development and design of highway and road systems.

In addition, with increasing volumes of traffic data and related software tools capable of

visualizing urban scenes (such as Google Maps and Virtual Earth), there is a growing

need to add realistic street traffic in virtual worlds for virtual tourism, feature animation,

special effects, traffic monitoring, and many other applications.

There exists a vast amount of literature on modeling and simulation of traffic flows,

with existing traffic simulation techniques generally focusing on either agent-based mi-

croscopic or continuum-based macroscopic models. However, little attention has been

paid to the possibility of extending macroscopic models to produce detailed 3D an-

imations and visualization of traffic flows. In this chapter, I present a fast method

for efficient simulations of large-scale, real-world networks of traffic using continuum

dynamics that maintains discrete vehicle information to display each vehicle. The con-

Figure 4.1: A bird’s-eye view of animated traffic

tinuum approach describes realistic behavior and is efficient — it is able to describe

the movement of many vehicles with a single computational cell — while individual

vehicle information facilitates visual representation and allows per-vehicle information

to influence the large-scale simulation. This technique produces detailed, interactive

animations of enormous traffic flows on a wide variety of road types, including urban

streets, multi-lane highways, and winding rural roads at more than 100x faster than real

time.

My approach extends a per-lane flow model to a continuum, multi-lane traffic flow

model by introducing a novel model of lane changes and using a discrete visual repre-

sentation for each vehicle. I compare my technique’s efficiency with that of agent-based

85

methods, and demonstrate how this simulation technique is able to effectively utilize

the processing power of many-core shared memory architectures for scalable simulation.

Figure 4.1 shows a snapshot image of the highway traffic in an urban scene simulated

by this continuum model.

4.2 Related work

While much recent work on physical simulation in graphics has focused on natu-

ral phenomena such as fluids and deformable objects, there is growing interest in

the efficient simulation of man-made phenomena; since the influential ‘boids’ model

of [Reynolds, 1987] proposed a framework for the simulation of multiple intelligent

agents, a large body of work has since appeared in the area of crowd dynamics, cov-

ering important sub-problems ranging from motion planning and collision avoidance

techniques to behavioral models (see a recent survey [Pettré et al., 2008] for more de-

tail). There has been comparatively little investigation in computer graphics on vehicle

and traffic simulation; the method this chapter was published as [Sewall et al., 2010b],

and interest on synthesizing vehicle motion using algorithmic robotics techniques

[Go et al., 2005, Sewall et al., 2010a] has been growing.

The growing ubiquity of vehicle traffic in everyday life has generated considerable

interest in models of traffic behavior, and in the last 60 years, a large body of research

in the area has appeared. The problem of traffic simulation — given a road network, a

behavior model, and initial car states, how the traffic in the system evolves — has been

extensively studied outside of the graphics community. Most of the existing methods

are typically designed to explore specific phenomena, such as jams and unsteady, “stop-

and-go patterns” of traffic, or to evaluate network configurations to aid in real-world

traffic engineering.

Most work on traffic simulation and modeling is found in civil engineering and urban

86

planning, and numerous techniques for effective simulation of traffic flows have been de-

veloped to address issues associated with road design, road construction and evaluation,

as well as intersection signal planning, training, and forensics. There are three broad

classes of traffic simulation techniques: the agent-based microscopic and continuum-

based macroscopic techniques as mentioned in Sec. 5.1 as well as kinetic mesoscopic

techniques based on Boltzmann-like statistical mechanics.

[Gerlough, 1955] introduced agent-based simulation; later work by [Newell, 1961],

[Algers et al., 1997], and [Helbing, 2001] incorporated further features of traffic flows

into the ‘car-following’ model. [Nagel and Schreckenberg, 1992] describe how to handle

agent-based traffic simulation through a cellular automata.

The equations for macroscopic traffic flow were independently discovered by

[Lighthill and Whitham, 1955] and [Richards, 1956] based on observed similarities be-

tween one-dimensional compressible gas dynamics and the way traffic flows along a lane.

The resulting so-called ‘LWR’ equation is a scalar, nonlinear partial differential equation

describing the motion of traffic in terms of density, i.e. ‘cars per lane’. Because the LWR

equation is a scalar equation for density, the velocity of traffic at any point is given by

an equation of state; all traffic at a given density necessarily has the same velocity.

To achieve a more complete model of traffic where velocity does not depend wholly

on density, [Payne, 1971] and [Whitham, 1974] proposed a 2-variable model, also known

as the ‘Payne-Whitham’ or ‘PW’ model, based more directly on the Euler equations of

gas dynamics. This was later shown to have incorrect behavior by [Daganzo, 1995], who

pointed out that the isotropy of gas dynamics was not compatible with traffic dynamics.

More recently, [Aw and Rascle, 2000] and [Zhang, 2002] independently proposed a

2-variable model of traffic flow with correct anisotropic behavior. [Lebacque et al., 2007]

noted that the two models could easily be unified through a change of variables, and

dubbed the system the ‘Aw-Rascle-Zhang’ (‘AWR’) system of equations.

Mesoscopic methods were was pioneered by [Prigogine and Andrews, 1960] and im-

87

proved upon by [Nelson et al., 1997], [Shvetsov and Helbing, 1999] and others.

4.3 Method

In this section, I describe my data structures and method for the simulation of traffic

flow in detail.

4.3.1 Overview

I simulate traffic on a network of roads; each road has one or more lanes and is connected

to other roads through intersections and interchanges. See Section 4.3.2 for details on

how I represent these networks, and how they may be synthesized or adapted from

real-world data.

The simulation describes the flow of traffic through a system of nonlinear hyper-

bolic conservation laws that represent traffic as a continuum along lanes. Many sys-

tems of equations have been developed to describe the flow of traffic with varying de-

grees of completeness. I use the model recently proposed by [Aw and Rascle, 2000]

and [Zhang, 2002], which I refer to as the Aw-Rascle-Zhang (ARZ) model, follow-

ing [Lebacque et al., 2007]. This equation is described in Section 4.3.3.3.

To obtain a numerical solution to the ARZ equations, I use a Finite Volume Method

(FVM) spatial discretization combined with a Riemann solver to determine the fluxes

between adjacent computational cells. See Section 4.3.3.1 for details on the FVM and

how it applies to conservations laws like the ARZ equations, and see Section 4.3.3.4 for

a description of the Riemann solver.

The ARZ equations describe the motion of traffic along individual lanes; to handle

merges and lane changes, my solution combines continuum-level dynamics with the

discrete car information. I describe this representation in detail in Section 4.3.5.

The continuum approach to traffic simulation has numerous advantages in efficiency

88

and robustness; however, to display the motion of traffic for visualization and animation

purposes, I introduce “car particles”, or carticles that represent the individual cars in

the flow of traffic. These carticles are moved along by the underlying continuum flow,

and can play decision-making roles in parts of the simulation — particularly in regards

to lane changes and merges. Section 4.3.4 describes these in detail.

Finally, while this method is efficient enough to simulate heavy volumes of traffic

on large networks on a single processor, it is simple to parallelize and scales well on

multi-core machines so as to make massive-scale simulations possible. I describe how

this method can be implemented to further benefit from parallel systems in Appendix D.

4.3.1.1 Basic solution procedure

This technique simulates traffic by taking repeated time steps of a solver that computes

the dynamics of traffic motion at instants in time. For a given timestep, the solver

operates as follows:

1. Solve the ARZ equations along each lane, taking into account boundary informa-

tion.

2. Initiate and advance lane changes

3. Advance carticles according to the solution in each lane

4. Apply relaxation of relative velocity

5. Update network state

These steps will be explained in greater detail below.

4.3.2 Representation of road networks

The simulation operates in the domain of road networks, and the fidelity and realism

of the results it is capable of generating clearly depends on the quality and detail of

89

the network. In this section, I present a robust data structure for representing a road

network suitable for simulation.

4.3.2.1 Features of road networks

Road networks can be arbitrarily complicated; it takes only a moment to consider that in

addition to information about lanes and intersections, one could also have descriptions

of road quality and conditions, information about driveways and parking spaces along

the road, and a host of other types of data.

This method currently handles multi-lane road segments with variable speed limits,

and as such, my data structure is designed to efficiently store and answer queries about

such information. However, other types of information can be easily included in the

structure.

Roads A road network could be described as a collection of roads and intersections —

roads have some spatial description of the path they take, a number of lanes, and they

stop and end at other roads. However, such a näıve description fails to properly capture

many features desired in a road network; how should one describe a highway interchange,

where several lanes split off from roads, take a curving path, and join another road? For

this reason, the data structure treats roads simply as descriptions of spatial information;

here, each road provides a sequence of connected lines that describes its path in space.

Lanes I have chosen the lane to be the atomic data type in the data structure. This

is motivated by their relationship to roads and other lanes — in that a single lane may

belong to many roads and be adjacent to many different lanes along its length — but

also by simulation methodology. Since I solve the ARZ equations for the flow of traffic

along each lane, it is desirable from an efficiency standpoint to have lanes as long and

unbroken as possible, to minimize the need to handle special-case boundary conditions.

Each lane is parametrized by its length in space to the unit interval, and properties

90

of the lane — such as speedlimit, the road to which it belongs and obtains its spatial

description from, and the other lanes it may be adjacent to — are mapped to this

parametric interval.

This parametrization of lane properties is motivated by the need for various queries

during simulation. While advancing the solution along each lane, for example, it use

essential to know what the speed limit is in the current cell, and if it differs from that

in the next. Similarly, when merging traffic, one needs to know which lanes (if any) are

to the left and to the right of the current position along a lane.

4.3.3 Numerical traffic simulation with gas-like laws

This technique simulates the flow of traffic along lanes with a numerical discretization

of a hyperbolic conservation law. This is a class of partial differential equations com-

monly associated with physical laws and with gas dynamics in particular. The basis

for the traffic flow simulation used here, the so-called Aw-Rascle-Zhang (ARZ) model

([Aw and Rascle, 2000, Zhang, 2002]), is one such law that is closely related to the hy-

perbolic systems of equations that describe gas dynamics.

4.3.3.1 Conservation laws & the finite volume method

The ARZ model is a conservation law; it fits the general model

qt + f(q)x = 0 (4.1)

where subscripts denote differentiation, q is a vector-valued quantity of unknowns, and

f (q) is a vector-valued function of the unknowns. The choice of f (known as the flux

function) uniquely characterizes the dynamics of the system. Solutions to Equation (4.1)

may be readily discretized with the Finite Volume Method (FVM) of numerical dis-

cretization. Taking the integral of Equation (4.1) in space over some arbitrary interval

91

x ∈ [a, b]:

∫ b

a

qt dx+

∫ b

a

f(q)x dx = 0

=
d

dt

∫ b

a

q dx+ f(q (b))− f(q (a)) (4.2)

Now divide Equation (4.2) by (b − a) = ∆x and discretize q into quantities Qi repre-

senting the average of q over [a, b]:

d

dt

1

b− a
∫ b

a

q dx+
1

b− a [f(q (b))− f(q (a))] = 0

=
d

dt
Qi +

1

∆x
[f(q (b))− f(q (a))] (4.3)

Equation (4.3) can be discretized in time with a simple Euler scheme and manipulated

to obtain the FVM update scheme:

Qn+1
i −Qn

i

∆t
+

1

∆x
[f(q (b))− f(q (a))] = 0

Qn+1
i = Qn

i −
∆t

∆x
[f(q (b))− f(q (a))] (4.4)

Here Qn
i = Qi (t

n) and ∆t = tn+1 − tn. More information on hyperbolic conservation

laws and the FVM can be found in [Leveque, 2002].

Flux calculations Equation (4.4) is a straightforward update scheme; what remains

to be computed are the quantities f(q (b)) and f(q (a)) — that is, the flux that occurs

at the boundaries between cells. This can be difficult for nonlinear f (such as that found

in the ARZ system of equations) and accounts for the bulk of the computation in the

numerical scheme. The problem of determining these fluxes is termed the Riemann

problem, and I discuss how its solution for the ARZ model in Section 4.3.3.4.

92

Computation of ∆x for each lane Each lane j in simulation is divided into a

number of discrete cells of equal length ∆xj. ∆xj varies only slightly from lane to lane;

when preparing the simulation, the user suggests a “target” ∆x that all lanes should

have, and for each lane j of length Lj, the number of cells in the lane Nj and the related

cell length ∆xj are determined as follows:

Nj =

⌊
Lj
∆x

⌋
, ∆xj =

Lj
Nj

(4.5)

This ensures that all cells in a given lane have the same length. So long as all lanes are

at least ∆x in length, it is ensured that ∆xj >
∆x
2
∀j. In general, the guide ∆x should

be greater than the length of the longest vehicle in the simulation (see Section 4.3.4).

Timestep restrictions ∆t in Equation (4.4) must be chosen to satisfy the Courant-

Friedrichs-Lewy (CFL) condition for the integration to be stable. According to this

condition, (described in more detail in [Courant et al., 1928]), the follow must hold:

∆t < min
j

(
∆xj
λmaxj

)
(4.6)

With the minimum taken over all lanes j. λmaxj is the maximum speed in lane j at the

current timelevel; these speeds are determined while solving the Riemann problem at

each interface — for the system of equations used in this technique, Equations (4.13)

and (4.14). This has ramifications on how to choose to apply Equation (4.4); since

the same ∆t must be used to integrate each cell, we must compute all speeds λ before

integrating any cells.

It should be noted that obeying the CFL condition does not mandate that simulation

timesteps be smaller than what would be desired for display. For example: in a network

with a maximum speed of 100 km/s, λmax will not exceed 27.7̄ m/s; this gives ∆t <

0.0036s/m∆x. In a simulation, the user are free to choose any ∆x — generally, this is

93

a multiple of car lengths. Even for a the smallest ∆x I have used in my experiments —

9m (2 × 4.5m), this gives ∆t < 0.324s, which is on par with the frame rate desired for

most conventional visualization techniques.

4.3.3.2 Numerical update procedure

Given cell values Qn at time tn for all lanes j, I compute Qn+1 as follows:

1. At each interface between cells, compute the speeds λi and fluxes F n
i by solving

the Riemann problem at that interface (described in Section 4.3.3.4)

2. Find the speed with largest magnitude and compute timestep length ∆t as de-

scribed in Section 4.3.3.1.

3. For each cell i, advance to next time Qn+1 using Equation (4.4) and the fluxes

from step 1.

4.3.3.3 Aw-Rascle-Zhang model

The ARZ model ([Aw and Rascle, 2000, Zhang, 2002]) can be written as a conservation

law of the form

qt + f (q)x = 0, q =

ρ
y

 , f (q) =

ρu
yu

 (4.7)

Here ρ is the density of traffic, i.e. “cars per car length”, u is the velocity of traffic, and

y the “relative flow” of traffic.

y, ρ, and u are related by the equation:

y (ρ, u) = ρ (u− ueq (ρ)) (4.8)

where ueq (ρ) is the “equilibrium velocity” for ρ. There is a single criterion on ueq that

94

must be satisfied (see Equation B.31) on this function; the following is suitable for most

types of traffic:

ueq (ρ) = umax (1− ργ) (4.9)

where γ > 0. The first derivative of Equation (4.9) is significant as well:

u′eq (ρ) = −umaxγρ
γ−1 (4.10)

In the above equations, umax is the speed limit of the road. Using Equations (4.8)

and (4.9), we can write u in terms of y and ρ:

u (ρ, y) =
y

ρ
+ ueq (ρ) (4.11)

In what follows, I shall interchangeably use ueq (ρ) and ueq as well as u (ρ, y) and u.

4.3.3.4 Basic Riemann problem for the ARZ model

To compute fluxes such as f(q (b)) and f(q (a)) in Equation (4.4), one must be able to

determine the value of q between the piecewise-constant states in adjacent cells.

Given initial constant states ql for x < 0 and qr for x > 0 (with components which I

term ρl, yl, and ul and ρr, yr, and ur, respectively), what happens for t > 0? In the case

of the ARZ model, there are several distinct possibilities. Depending on the relative

values of ql and qr, we expect the solution to consist of two or more distinct “regions”

of self-similar solutions traveling with varying speeds. The following discussion expands

upon the analysis in [Aw and Rascle, 2000].

Waves and speeds The eigenstructure of the Jacobian of the flux function defined in

Equation (4.7) is the key to determining the speeds in the system (for Equation (4.6))

95

and the structure for the Riemann problem; said Jacobian is

Jf =

ueq + ρu′eq 1

yu′eq − y2

ρ2
2y
ρ

+ ueq

 (4.12)

The eigenvalues of Equation (4.12) are:

λ0 = u+ ρu′eq (4.13)

λ1 = u (4.14)

with corresponding eigenvectors

r0 =

1

y
ρ

 (4.15)

and

r1 =

 1

y
ρ
− ρu′eq

 (4.16)

Field classification One can regard the pairs of eigenvalues and eigenvectors as dis-

tinct ‘families’ of solution fields — solutions associated with λ0 and r0 are referred to

as the ‘0-family’ of solutions, and those associated with λ1 and r1 as the ‘1-family’ of

solutions.

While the ARZ equations (Equation (4.7)) are clearly nonlinear, different familiar

may exhibit different characteristics — some linear, some nonlinear. By classifying

these fields as either genuinely nonlinear or linearly degenerate, it is possible to obtain

information about the types of solutions to expect. For more detail on how this clas-

sification is performed, see Appendix B. For this system, the first family of solutions

(those associated with λ0 and r0) is genuinely nonlinear — the related waves deform

96

with propagation. The second family of solutions (λ0 and r0) is linearly degenerate and

behaves as a linear system might.

Riemann invariants In the same spirit of the field classifications discussed above,

one can determine what quantities are preserved across each solution family; ql and

qr are connected through an unknown intermediate state qm and these invariants help

determine this intermediate state. A quantity ωi is a Riemann invariant for the i-family

of solutions if it satisfies the following equation:

∇ωi · ri = 0 (4.17)

The invariant for the first wave (corresponding to λ0 and r0) can be computed by

substituting Equation (4.15) into Equation (4.17):

ω0 =
y

ρ
= u− ueq (4.18)

The 1-family is linearly degenerate, so Equation (4.18) is clearly satisfied by Equa-

tion (B.33):

ω1 = λ1 = u (4.19)

The 0-family invariant looks similar to Equation (4.8); intuitively, one can say that

this ‘equilibrium velocity’ is conserved across waves from the first family. The 1-family

invariant simply states that the velocity u does not change across waves of the second

family.

Intermediate state To compute the left- and right-going fluctuations so that states

can be integrated in time, the value of q0 must be computed — that is to say, the value

of q at x = 0 for t > 0, given ql and qr. In general, q0 can be ql, qr, or the intermediate

value qm. The left state ql and the intermediate state qm are separated by the line

97

Figure 4.2: A schematic of a Riemann problem; the up-axis represents both time and
Q. Here, an intermediate state Qm arising between Ql and Qr. To compute the flux
between these cells, Q0 must be determined.

x = λ0t, and qm and qr are separated by the line x = λ1t. For the ARZ model under

consideration, λ1 = ur > 0 and therefore q0 cannot be qr. It remains to determine if

q0 is ql or qm, and if qm, what the value of qm along x = 0 is. The fact that ω0 from

Equation (4.18) and ω1 from Equation (4.19) are conserved across the 0- and 1-families

can be used to solve for qm:

ρm =

(
ργl +

ul − ur
umax

) 1
γ

(4.20)

um = ur (4.21)

4.3.3.5 Structure of the Riemann problem

For qm to exist, the speeds of the system (Equations (4.13) and (4.14)) must be distinct.

This occurs when ρl > 0; in this case, there are three distinct regions of the solution: ql

for x ≤ λ0t, qm for λ0 <
x
t
< λ1, and qr for x ≥ λ1t. In the case where ρl = 0, λ0 = λ1

and qm vanishes. I shall deal with cases where ρl = 0 or ρr = 0 separately below.

98

In Section 4.3.3.4, it is established that the 0-family solutions are always shock or

rarefaction waves. To determine which, one must consider the 0-family speeds λ0l and

λ0m on either side of the nonlinear wave:

λ0l = ul − umaxγρ
γ
l (4.22)

λ0m = ur − umaxγρ
γ
l + γ (ur − ul) (4.23)

When λ0l < λ0m, the solution is a rarefaction, and when λ0l > λ0m, the solution is a

shock. From Equations (4.22) and (4.23):

λ0l > λ0m ⇔ ul > um (4.24)

Classification of solutions One can identify 6 distinct conditions on the states ql

and qr that determine the structure of the solution of any Riemann problem in the

system. The derivation of these cases is discussed at length in Appendix B.

4.3.3.6 Inhomogeneous Riemann problem

The above discussion on the solution to the Riemann problem for the ARZ system of

equations has assumed that umax remains constant in space — i.e. that the speedlimit

on either side of the interface is the same.

Clearly speedlimits vary from road to road and change even along a single lane, and

the effects of these variations in speedlimits have discernible effects on traffic flow. At

a decrease in speedlimit, one expects traffic to slow and increase in density, while an

increase in speedlimit might cause traffic to accelerate and rarefy.

Whereas the solution to the Riemann problem developed above is a homogenous

Riemann problem, when speedlimits on either side of a cell interface differ, the inhomo-

geneous Riemann problem must be solved.

99

Formally, given initial constant states ql (subject to the speedlimit umaxl) for x < 0

and qr for x > 0 (subject to speedlimit umaxr), what happens for t > 0? Solutions

should follow the same basic structure of the homogeneous Riemann problem described

previously, but rather than have a single intermediate state qm emerge between ql and

qr, there may be as many as two intermediate states divided at x = 0 by the jump in

umax. I term these states qml and qmr.

Supply and demand [Lebacque, 1996] presented the concepts of supply and demand

as tools for solving inhomogeneous Riemann problems for the older LWR model of traffic

flow, and later [Lebacque et al., 2005] extended their application to the ARZ model.

In the context of an (inhomogeneous) Riemmann problem, supply represents the

available flow of traffic from the left (i.e. the flow associated with ql) while demand

represents the capacity for flow on the right (associated with qr). The key to using

these concepts to handle inhomogeneous Riemann problems is to select the lesser of

these two quantities to determine the intermediate states.

I follow the method presented by Lebacque, which uses these concepts to solve for

qml and qmr; see [Lebacque et al., 2005] for the details of their approach.

4.3.3.7 Relaxation of ‘relative flow’

I have hitherto discussed the ARZ equations as homogeneous conservation laws (not to

be confused with the homogeneous Riemann problem) — they fit the form of the conser-

vation law shown in Equation (4.1) with the right-hand side of the equation as 0. This

ensures that each primitive variable ρ and y is conserved in the system. Such a property

is useful when describing natural phenomena, since most such equations are derived from

conservation principles themselves. In my case, while ρ should certainly be conserved

in regular traffic (cars chouldn’t appear or disappear spontaneously), it may be desir-

able to relax the conservation of relative flow y. As discussed in [Aw and Rascle, 2000],

100

conserving this quantity leads to an unnatural dependence on initial conditions; vehi-

cles with no traffic ahead of them (such as situations found in Case 5 above) will not

accelerate beyond a quantity related to their initial value of y.

To correct this, Aw and Rascle suggest adding a small relaxation term to the right-

hand side of Equation (4.7). Rather than have the two quantities equal to the zero

vector [0 0]T, scaled quantity − y
ρτ

= ueq−u
τ

can be added to the right-hand side of the

second equation. Here τ is a time constant (typically greater than 1) representing the

propensity for acceleration in the system. The modified ARZ system then becomes:

ρ+ ρu = 0

y + yu = ueq − u (4.25)

The first equation is unchanged, while the second encourages the velocity of traffic to

slowly increase towards the speed limit.

Although the underlying equations have been modified, the previously presented

method for the solution of the Riemann problem remains unchanged. To account for

the new system shown in Equation (4.25), a relaxation step is taken after performing the

integration shown in Equation (4.4). The quantity obtained from that update (Qn+1) I

instead label Qn+1∗ and the following is applied:

yn+1 = yn+1∗ −∆t
un+1
eq
∗ − un+1∗

τ
(4.26)

Note that the equation for ρ remains unchanged.

4.3.3.8 Lane-end boundary conditions

Each lane necessarily has a start and beginning, and to properly integrate the solution

at the first and last cells in each lane as per Equation (4.4), the flux at these boundaries

must be integrated. Here, I enumerate the various configurations of lane start and end

101

types, and how flux is computed for each of these. At the end of lane that does not flow

into another (and conversely, at the start of a lane that is not downstream of another),

the user may wish to impose ‘no-flow’ boundary conditions; lacking either a ql or a qr,

the simulation must solve a ‘one-sided’ Riemann problem. The two simplest (and most

useful) are:

Stopped outflow When a lane’s end boundary dictates that no traffic flows out of

the network, a 1-wave of increasing density and decreasing velocity travels backwards

through the lane. The one-sided Riemann solver for this case is identical to case 1 above

with ur = 0. Substituting this into Equations (4.20) and (4.21):

ρm =

(
ργl +

ul
umax

) 1
γ

(4.27)

um = 0 (4.28)

λs ≤ 0 and therefore q0 = qm (see from Appendix B). (In the degenerate case where

λs = 0, ql = qm = [0 0]T)

‘Starvation’ inflow In the case where no traffic is flowing into a network, there is no

1-wave, and the 2-wave simply propagates to the left — the numerical flux is obtained

through a Riemann solver similar to that used for case 4 above. Certainly λ1 = ur ≥ 0,

and as there is no wave from the 1-family, we know that q0 = ql = [0, 0]T

Network boundaries It is technically very simple to construct a network that has no

external boundaries — where no lane flows out of the network, nor does any lane receive

traffic from outside the network — but such a network is not very realistic. Generally, it

is desirable to simulate a network that is ultimately a subset of a larger traffic network.

There are any number of conditions the user may wish to impose on these boundaries,

and they differ for inflow and outflow conditions.

102

For lanes that start at a boundary (inflow conditions), one will generally wish to pre-

scribe some type of upstream traffic, possibly in a time-dependent manner. This traffic

is imposed by doing a full Riemann solve using the approach described in Section 4.3.3.4

with the right state qr the first computation cell of the relevant lane, and a given ql that

describes the type of flow entering the network. The case where no external traffic en-

ters the lane is simply a special case of this approach. This corresponds to the so-called

‘Dirichlet’ type boundary condition from the partial differential equation literature.

Lanes with an end point at a boundary require some outflow condition. Dirichlet

boundary condition may be imposed here, just as with the inflow case; one could, for

example, impose a high-density, low-velocity condition that captures the behavior of an

out-of-network traffic jam, or we could have a zero-density (and implicitly, high-velocity)

condition to represent an empty road. For outflow, it will also sometimes make sense

to impose a ‘Neumann’ type boundary condition where we specify a certain flux at the

boundary directly. In his case, we will almost always wish to specify that the flux is

zero; this represents an ‘absorbing’ boundary that causes no waves to travel backwards

through the simulation. To effect this condition, we can proceed with a full Riemann

solution with ql = qr, or equivalently (and more cheaply) simply omit the f (q (a)) term

in Equation (4.4).

4.3.4 Visual representation of vehicles

I use a discrete, particle like representation of vehicles for graphical rendering called

“carticles”. These primarily serve to provide a visual representation of traffic, but also

play a role in deciding when to begin lane changes (see Section 4.3.5). Each lane i has

an associated set of carticles Ci = {c0, c1, c2 . . .}; each carticle in turn has a minimal

amount of state associated with it:

Position — the parametric position s ∈ [0, 1] of the rear axle of the carticle along the

lane.

103

Lane change state — an enumerant that signifies that the carticle is changing lanes

and if so, which direction (left or right) the change is in.

Lane change progress — a scalar sm ∈ [0, 1] representing the progress of the carticle’s

current lane change — 0 signifies that the carticle has not begun to turn while 1

represents a carticle that has completed its lane change.

Vehicle type — an enumerant representing the type of vehicle of the carticle. Cur-

rently, this simulation technique only uses information about the length of each

vehicle type and position of the rear axle relative to the overall length.

4.3.4.1 Carticle motion

The parametric position of each carticle j (sj) in the system is advanced at each simu-

lation step via the simple ODE:

s′j(t) =
ulane(sj(t), t)

Llane

(4.29)

Here ulane(sj(t), t) represents the velocity field of the lane to which carticle j belongs

(defined in Equation (4.11)) and Llane the length of said lane. Since the evaluation of

the right-hand side of Equation (4.29) consists of inexpensive interpolation of discrete

data, explicit 4th order Runge-Kutta is used to integrate each carticle’s position. When

sj is greater than 1 — and thus has traveled beyond the end of the lane — the carticle

is either removed from the simulation altogether (in the case of an external boundary

condition) or “pass” it to the next lane and adjust sj appropriately.

4.3.4.2 Carticles at the continuum level

Carticles represent the positions of vehicles, but in order to have the underlying con-

tinuum simulation reflect the position of these vehicles, the simulation must “seed” the

discrete cells along each lane with the appropriate density and velocities of each carticle.

104

When all ∆xj (see Section 4.3.3.1) are greater than the length of any vehicle type,

it is certain that the interval associated with each carticle overlaps no more than 2 grid

cells. The quantity ρ stored at each grid cell is interpreted as “cars per car length” (as

described in Section 4.3.3.3); thus, for each cell i a carticle j with velocity uj overlaps,

the updated density (ρ′i) and velocity (u′i) are computed at i from their original values

[ρi, ui]
T and the contribution of j:

∆ρi =
oi,j

∆xlane

ρ′i = ρi + ∆ρi (4.30)

u′i =
ρiui + ∆ρiuj

ρ′i
(4.31)

Here oi,j is the length (in real, not parametric space) that the carticle j overlaps cell i.

4.3.5 Lane changes and merges

This method handles the movement of vehicles from one lane to another (interchangeably

called a lane change or a merge) using a combination of information from carticles and

the density/flow data from the continuum model.

This method arises from the following observations:

• A lane change generally takes place on a longer timescale than a single simulation

step.

• Once a vehicle begins a lane change, it continues to move into the other lane until

the lane change is finished.

Based on these observations, initiate lane changes are initiated on a per-carticle basis.

When certain conditions described below are met, a carticle will be marked as being

in a either a left or right lane change and the simulation will account for the lateral

movement of that carticle and the underlying flux between lanes.

105

Starting a lane change Lane changes are initiated based on some simple rules that

are used to compute a signed merge factor that ultimately determines if a vehicle will

change lanes.

At a vehicle’s position along a lane, there are as many as two adjacent lanes to move

to, but it is required that the adjacency on each side continues for a long enough distance

forward to make the lane change possible, given the vehicle’s current velocity.

Additionally, no vehicles may lie in the potential path of the lane change; the tech-

nique searches for carticles in the cells in the immediate vicinity of the cell that neighbors

the lane-change candidate. If any vehicles are present with trajectories would overlap the

potential lane change path in the next timestep, the path is removed from consideration.

Finally, if there is at least one suitable adjacent lane, the desirability of changing

lanes is determined — the aforementioned merge factor. Vehicles change lanes to ensure

a certain path is taken (i.e. to be able to make certain turns or take exit ramps), to move

into faster traffic, and for a variety of other reasons. This technique does not account

for the long-term intent of each vehicle, so lane changes for routing make little sense in

this context.

A lane change is made based on the perceived increase in velocity attainable; if the

traffic ahead of a vehicle is moving much more slowly than the traffic in a neighboring

lane, change to that faster lane is attractive.

The following formula is applied to each adjacent lane k ∈ {l, r} to determine the

merge factor mk:

mk =
uadjk

uahd

(4.32)

Here uadjk is the continuum velocity in the cell in the adjacent lane k that neighbors the

candidate vehicle and uahd the velocity in the cell ahead of the candidate vehicle.

If there is more than one candidate lane being considered, the lane with the largest

merge factor is selected. Now if this ultimate merge factor exceeds a threshold — I

found 1.1 worked well in my experiments — a lane change is initiated.

106

4.3.5.1 Lane changes at the continuum level

As I have discussed, lane changes are initiated at the carticle level and must be carried

to completion. Furthermore, a lane change will generally require several simulation

steps to perform. The transition of the vehicle at the (continuum) dynamics level must

be accounted for to properly reflect effects of the lane change, but a straightforward

transfer of the density and velocity corresponding to the vehicle over the course of the

lane change is not sufficient.

A vehicle peforming a lane change effectively occupies a space in both lanes simul-

taneously — its motion dictates the behavior of traffic behind it in both the lane it

is leaving and the one it is entering. For this reason, once a vehicle begins to switch

lanes, its density is duplicated and velocity information in the adjacent cell and proceed

with the simulation until the lane change has completed, at which point the density and

velocity representing the vehicle in the lane it left is removed. This violates conservation

for a brief period of time, but the ultimate result is a superior description of the effects

of a lane change and density after the lane change is the same as it was beforehand. I

describe how to convert carticles to their corresponding continuum-level information in

Section 4.3.4.

4.4 Results

4.4.1 Examples

I have tested my technique on a number of synthetic road networks, and on a large

‘clover-leaf’ intersection; see Figures 4.1, 4.3, 4.4, and 4.5 for visual depiction. Figure 4.1

shows an overview of a ‘cloverleaf’ freeway interchange. Figures 4.3 and 4.4 show scenes

from traffic traveling along a freeway, and Figure 4.5 shows traffic flowing near an offramp

on a highway system.

107

Figure 4.3: A flyover of a freeway

4.4.2 Comparison with agent-based simulation

To get better understanding of the performance of this technique as compared to a

microscopic, agent-based simulation method, I have timed simulations using my tech-

nique and a popular, state-of-the-art traffic simulator for a variety of scenarios. The

Simulation of Urban MObility (SUMO) project [SUMO, 2009] is an open-source traffic

simulation package originating from the Centre for Applied Informatics at the Uni-

versity of Cologne and the Institute of Transport Research at the German Aerospace

Centre. SUMO is based on a microscopic car-following model of traffic flow, and one

would therefore expect its performance to be linear in the number of vehicles in the

simulation.

The road network description format for each simulator varies greatly, so I chose

108

Figure 4.4: A freeway in a city

a simple simulation network as the basis for comparison to ensure that my simulator

and SUMO would be operating on precisely the same input. The network is a 6-lane

straight stretch of freeway 10km long. I provided input data to each simulation as series

of vehicles entering the network; each scenario ran for a constant period of time but

varied in the number of vehicles emitted over the interval. The result of this simulation

is shown in Figure 4.6. Note that as there is no parallel implementation of SUMO

available, I performed timings for both simulators on a single processor.

One observes nearly linear performance in the number of cars for SUMO for scenarios

with a small number of cars, but a dramatic drop in performance as the number of cars

increases. In contrast, my simulator maintains a nearly linear performance over all

109

Figure 4.5: Vehicles exiting a freeway

ranges of inputs, but with a larger constant overhead than SUMO for a small number

of cars. The qualitative results here are roughly what one would expect: SUMO should

have some cost per vehicle being simulated, resulting in performance linear in the number

of vehicles in the simulator; while my technique has a constant cost associated with the

total network size, regardless of the number of vehicles, as well as a much smaller added

cost per vehicle in the network.

4.4.3 Scaling of parallel implementation

Numeric techniques based on hyperbolic equations are frequently very amenable to par-

allel computation; the majority of the work done in this method involves solving the

Riemann problem at each cell, and this can be done independently for each interface

110

0 20000 40000 60000 80000 100000 120000 140000
total number of cars

0

2000

4000

6000

8000

10000

12000

14000
to

ta
l t

im
e

(s
ec

on
ds

)
of vehicles versus sim. time

SUMO
Continuum

Figure 4.6: Comparison of performance scaling of agent-based SUMO (red, top) vs.
my simulator (blue, bottom) as the number of cars increases.

between cells. In practice, it makes sense to divide the work into coarser tasks involving

multiple lanes. Detailed discussion of how this technique has been parallelized can be

found in Appendix D; an initial parallelization has produced sub-linear but encouraging

parallelism — approximately 5x on a 4-core Intel i7 architecture (with SIMT).

4.5 Conclusion

I have presented a method for the generation of realistic traffic animations. The method

is based on continuum dynamics with a facility to extract discrete results. I have reported

preliminary results on parallelization and demonstrated this method’s ability to generate

traffic on large, real-world road networks.

111

4.5.1 Limitations and future work

This technique can handle a wide variety of traffic conditions, but is still limited in the

scope of traffic-related phenomena that it can handle. Vehicle collisions, road conditions,

and weather, and the distinctions of the vast array of vehicle types and driver types are

not currently considered in my prototype system.

112

Chapter 5

Hybrid Traffic Simulation

5.1 Introduction

With automobile traffic ubiquitous in developed nations and on the rise in developing

ones, traffic simulation techniques such those found in Chapter 4 are of great use in

analyzing road usage and for generating visual representations of traffic flow for virtual

environments.

However, there are certain limitations of purely continuum (or macroscopic) ap-

proaches such as that described in Chapter 4; their greatest strength — the ability to

describe the motion of many vehicles with a paucity of computational cells — demands

that vehicles behave with largely aggregate behavior.

(a) Interactive 3D visualization of urban traffic (b) Augmenting a satellite image with real-time
traffic

Figure 5.1: Scenes of traffic generated with my hybrid technique

In many situations, it is desirable to have individual vehicles act individually; a user

may wish to simulate certain drivers with more aggressive or timid behaviors, or to have

some vehicles to travel specific routes. Continuum models make this type of behavior

difficult to achieve and augmentations directly made to macroscopic methods are likely

to concede the very efficiency that makes them useful to begin with.

Agent-based traffic simulations (known alternately as microscopic methods) deter-

mine the motion of each vehicle individually through a series of rules. These rules are

easy to vary on an agent-to-agent basis; thus microscopic simulation techniques are

well-suited to vehicles with inhomogeneous governing behaviors.

Microscopic simulation techniques can capture individualistic vehicle behavior while

macroscopic simulations maximize efficiency; this method uses a hybrid simulation tech-

nique that takes advantage of these complimentary features. I combine the continuum

traffic approach described in Chapter 4 with a conventional agent-based traffic simula-

tor, allowing for certain areas of the road network to be handled by the macroscopic

simulator and others by the microscopic.

This chapter introduces a multi-method simulation technique that combines the

strengths of two classes of traffic simulation to achieve flexible, interactive, high-fidelity

simulation on large road networks. I describe my methods for handling the transfer

of vehicles between continuum and discrete simulation areas and discuss how the con-

stituent simulation components are adapted to handle this transition. I demonstrate the

variety of traffic flows my method can produce and analyze its performance on modern

architectures, and measure its ability to match real-world traffic flow with a validation

comparison.

114

5.2 Related Work

The state of the art in traffic simulation, in both the engineering and graphics commu-

nities, is reviewed in Section 4.2; here I review some related work on hybrid techniques

and road network representations.

5.2.1 Adaptive Simulations

One of the goals for the hybrid technique discussed in this chapter is a method that

is able to dynamically trade simulation detail or features for performance. Such tech-

niques have been investigated in graphics for other types of simulation; in particular, the

work of [O’Brien et al., 2001] demonstrated automatic level-of-detail refinement for par-

ticles systems to achieve large-scale, realistic simulations. [Redon et al., 2005] present a

technique for performant articulated-body simulation based on adaptive joint behavior.

The technique presented in this chapter can be considered a form of adaptive simulation;

rather than modify levels of refinement in the simulation — i.e., using coarser spatial

representations — my technique changes the actual type of simulation to a very different

class.

5.2.2 Traffic Networks and Road Representations

Traffic networks are complex entities; while polygons and line segments in the plane typ-

ically form adequate domains for crowd simulation, and surface geometry with computa-

tional grids is suitable for most physically-based simulations, traffic simulation presents

unique challenges in representing and acquiring simulation domains. A natural choice

for domains for traffic simulation is to use real-world networks; digital representations

of real-world networks are widely available in the form of connected polylines. Procedu-

ral cities and roads are attractive candidates for domains for many graphical problems;

recent work by [Galin et al., 2010] and [Chen et al., 2008], among others, has enabled

115

the generation of detailed, realistic urban layout and roads.

Numerous spatial representations of curves have been developed over the years —

too many to begin to enumerate here. I chose the ‘arc road’ representation presented in

this chapter (and Appendix E) based on a number of reasons:

• Smooth appearance and resemblance to real roads

• Ease of extension from widely available polyline data

• Connection to vehicle kinematics

• Thrift of computation, definition, and representation

[van den Berg and Overmars, 2007] proposed a model of roadmaps for robotics using

connected clothoid curves. However, while their choice of representation is based solely

on the need to generate vehicle motion, for the purposes of my work, the representa-

tion must also be suitable for the generation of road surfaces, which are not necessarily

clothoids. Additionally, clothoid curves are expensive to compute — requiring the eval-

uation of Fresnel integrals — whereas our relies solely on coordinate frames and sines

and cosines.

[Nieuwenhuisen et al., 2004] use circular arcs, as we do, to represent curves, but as in

[van den Berg and Overmars, 2007], they are used to smooth the corners of roadmaps

for motion planning. Furthermore, neither of these techniques have been investigated

for the case of extracting ribbon-like surfaces, as we do (in Section E.2.5), nor is there

an established technique for fitting them to multi-segment, non-planar polylines such as

that I present in Section E.2.2.1.

116

5.3 Method

5.3.1 Overview

In this section, I briefly discuss the data structures used in the simulation and proceed

with a description of our hybrid simulation technique.

5.3.2 Road networks

The hybrid technique’s simulation domains are based on those described in Section 4.3.2;

this method requires the same detailed road network data structure that provides

parametrized information about adjacency, road shapes, and speed limits as well as

network boundary conditions. The lane-based approach this representation espouses

works well with both the microscopic and macroscopic simulation components, as many

of their computations are carried out in units of single lanes.

The following describes enhancements to the road network data structure and how

they relate to this hybrid simulation technique; in particular, it introduces a new repre-

sentation for spatial curves ideal for traffic simulation.

5.3.2.1 Intersections

In my data structure, an intersection is where more than two lanes meet and traffic is

able to transition between them. Signaled intersections simply have a sequence of states

that enumerate what each lane incident on the intersection does; some pairs of lanes

may be connected, and others stopped. Each state can have a duration (in the case of

a timed signal) or be triggered by the presence of vehicles at an incoming lane.

5.3.2.2 Arc roads

This hybrid simulation technique uses an augmented representation of road geometry.

While the simulation technique described in Chapter 4, as well as most digital maps, use

117

polylines (C0 series of line segments) to represent road shapes, this generally leads to

visible artifacts in the motion of vehicles along these roads; the sudden change in direc-

tion between segments (due to the discontinuous derivative of non-degenerate polylines)

produces jerky turning motions in vehicles, particularly at sharp turns. The näıve so-

lution to this problem is to simply refine the approximation of the underlying smooth

curve with more straight line segments. While this can give acceptable results in certain

cases, it leads to a proliferation of data points, which requires more resources to handle.

Furthermore, barring extreme levels of refinement, the C0 nature of the representation

is still observable. It should also be noted that there is no clear method by which to

use polylines in 3 dimensions to describe vehicle motion with consistent orientation.

Figure 5.2a shows a polyline-based road imported from GIS data. I propose arc roads,

which consist of alternating straight line segments and circular arcs. This representation

has numerous advantages over polylines:

• The curve is C1.

• Useful and well-defined in 3 dimensions.

• Straightforward to derive from existing polyline data.

• Admits a simple parametrization.

• A consistent Frenet frame is available at each point.

• Computationally-efficient evaluation of position and orientations.

• Allows for much smoother animations of vehicle motion.

Figure 5.2b shows an exemplary arc road derived from the polyline shown in Figure 5.2a.

A detailed description and analysis of arc roads can be found in Appendix E.

118

(a) Polyline road geometry (from the TIGER R© database [U.S. Census Bureau, 2010] via
OpenStreetMap [OpenStreetMap community, 2010])

(b) An arc road derived from the above polyline. The orange arcs show the center and radius
of each arc used to give the road its smooth appearance.

Figure 5.2: A polyline and derived arc road

119

5.3.3 Overview of simulation methodology

My method of hybrid traffic simulation combines the strengths of both macroscopic

and microscopic techniques to be both efficient and flexible. At any given point in

simulation, the road network consists of mutually exclusive regions of two types; one

where a continuum technique is used to describe vehicle movement and another where

a discrete, agent-based technique for simulation dynamics is applied. These regions are

not necessarily connected nor static; one may pick either technique to govern a given

part of the network based on what the user wishes to observe, the current volume and

velocity of traffic in the network, or to enforce certain types of desired behavior.

Terminology I use the terms upstream and downstream to refer to relative directions

— against and with the flow of traffic, respectively. From a technical standpoint, certain

waves do indeed travel against the flow of traffic, in which case the meanings could be

reversed, but I shall never intend this interpretation.

Continuum and macroscopic shall be used interchangeably to refer to the continu-

ous simulation regime and associated regions of the network; discrete and microscopic

similarly refer to the other, agent-based regime and regions. Clearly even the ‘contin-

uous’ type of simulation is ultimately realized through discrete cells, but I shall avoid

confusing these terms.

Hybrid technique A key component of my hybrid simulation technique is how the

two different types of simulation are coupled together; continuum traffic expects a

density-like quantity of cars per car length with a velocity component, while discrete

simulation is carried out with the explicit position and velocity of each vehicle in the

network. The partitioning of the network allows for an arbitrary number of interface

points where the two types of simulation must be coupled and vehicles under one regime

must be passed to the other.

120

This technique for describing the flow of traffic requires a road network with suitably-

defined boundary conditions and an initial state for any vehicles that begin the simula-

tion in the network. I then proceed by taking discrete time steps of varying length ∆t,

wherein the state of traffic is considered and integrated forward in time.

A time step of this technique goes as follows:

Step 1 — Advance continuum regions:

(a) Determine the rate of traffic flows (depending on both the density and velocity

of traffic), also known as flux, between each adjacent cell.

(b) Compute the minimum timestep, ∆t, using the maximum speed from each

cell solution in (a).

(c) Integrate each cell using the ‘flux’ solution from Step 1a and ∆t from Step

1b.

Step 2 — Update flux capacitors (see Section 5.4.3.1) and add discrete cars as needed.

Step 3 — Advance agent-based regions (using the same ∆t computed in Step 1b).

Step 4 — Aggregate all discrete vehicles (Section 5.4.1) that flow into a continuum region.

In other words, I separately advance the continuum and agent-based simulations,

while we manage the transition of vehicles between the different simulation regimes.

Below, I describe the basic simulation techniques used in Step 1 and Step 3. Later,

in Section 5.4, I present my main contributions — techniques for converting between

different types of simulation.

5.3.4 Continuum traffic simulation

The continuum regime of this simulation uses the technique described in Chapter 4;

briefly, each lane is divided into discrete computational cells that represent the two

121

conserved quantities q = [ρ, y]T from the Aw-Rascle-Zhang system of equations (Equa-

tion (4.7)). The solution is then advanced in discrete timesteps with explicit integration

of split fluxes obtained through our Riemann solver (see Section 4.3.3 for more details).

The continuum components of the network are advanced in Step 1 of the procedure

in Section 5.3.3 — before the microscopic simulation components are handled. This is

to ensure that the timestep ∆t used in the each component is the largest stable timestep

achievable. The macroscopic simulation component has more stringent stability require-

ments than the micro component; by performing the macro update prior to the micro,

I use the ∆t computed in Step 1b of the list in Section 5.3.3 in the later microscopic

update performed in Step 3 of the same list.

It is worth keeping in mind that while our choice of timestep for the continuum

component is restricted for stability reasons, said restriction is hardly stringent in most

contexts; the discussion in Section 4.3.3.1 makes the point that the typical timestep for

the usual simulation context is on par with the 1
30

s frame length found in most anima-

tion scenarios. Indeed, depending on the order of integrator used in the microscopic

simulation component, it is possible that the foremost concern will be the accuracy of

this integration.

The important distinction between the method presented in the previous chapter

and the continuum simulation component under discussion is the non-trivial problem of

instantiating discrete vehicles (suitable for use in display or for the discrete simulation

component). I discuss my solution to this problem in Section 5.4.3.1.

5.3.4.1 Simulation data structure

The data structure needed for continuum simulation is the same as that used in Chap-

ter 4; to each lane j, I associate a regular 1-dimensional grid of length N j of unknowns

Qj
i =

[
ρji , y

j
i

]T
, i ∈ [0, N j − 1]. The method also stores a grid with each lane a regular

1-dimensional grid of N j − 1 Riemann solutions that are populated during Step 1a and

122

used to update the Qj
i during Step 1c. See Section 4.3.3.1 for information on how N j

for each lane is computed.

5.3.5 Microscopic simulation

The regions of the traffic network under the microscopic regime are handled by an

agent-based ‘car-following’ method adapted from the work of [Treiber et al., 2000]. Es-

sentially, at each timestep, each vehicle chooses some acceleration based on the distance

to the vehicle ahead of it and their relative velocity. This acceleration is used to update

the vehicle’s velocity, which is then used to update the vehicle’s position. Care must

be taken to ensure the vehicles behave correctly at intersections, but this approach is

straightforward and reasonably efficient.

5.3.6 Car-following model

Most microscopic simulations are based on these car-following models, wherein each

vehicle computes its acceleration for the next timestep. The acceleration value is chosen

to satisfy several conditions:

Collision avoidance A vehicle should not run into the vehicle ahead of it.

Acceleration limitations The ability of a vehicle to increase or decrease its speed is

limited.

Preferred velocity Each vehicle has a ‘preferred’ velocity, usually related to the con-

ditions of the road and driver behavior, that the vehicle should try to achieve.

The notion of a car-following model as outlined above requires that each vehicle know

only the position and velocity of the vehicle directly ahead of it to compute its accelera-

tion for a time step. In the following paragraphs, I discuss how each vehicle determines

what vehicle lies ahead of it, and how I compute acceleration given this information.

123

5.3.6.1 Simulation data structure

To keep track of the state of the vehicles in each lane j in the micro regime, I maintain a

list Cj (of cardinality V j) in increasing order of the parametric position of each vehicle

i = 0, 1, . . . , Cj − 1 in the lane. Vehicles entering the lane are naturally inserted into

the front of the list, while vehicles that flow out of the lane are removed from the back.

5.3.6.2 Locating leaders

Fundamental to the operation of the car-following model is the ability for a given ve-

hicle to determine the velocity of and distance to the vehicle ahead of it (its leader).

The algorithm for locating the leader for a given car, Locate-Leader, is given in

Algorithm 5.1.

I also define an interaction limit distance dmax on the order of 50–1000 meters beyond

which the leader has no effect on the behavior of the follower. If, in the search for the

leader, dmax is exceeded, the searched search is terminated and ignore car-following

effects in the acceleration computation (described shortly in Section 5.3.6.3).

The algorithm for finding a leader works as follows; when a vehicle is not the last

in the lane, the next vehicle is trivial to compute from the data structure described in

Section 5.3.6.1; the leader of vehicle i < Cj − 1 in lane j is simply vehicle i+ 1.

If a vehicle is the last in the lane, consider the next logical leader: if the lane ends

at a stopped intersection, a virtual vehicle with zero velocity is created, positioned such

that its rear bumper corresponds to the end of the lane; if the lane flows freely into

another, the first vehicle in that lane (found with the First-Car procedure, which

trivially returns the first car in the list CL) is used. Should a lane contain no vehicles,

the process is repeated recursively until dmax is exceeded or a leader encountered.

There is one more consideration in this process; if the search for a leader comes

upon a lane in the macroscopic simulation regime, a mechanism for reporting the first

(if any) vehicle in the lane is needed. My solution uses the instantiation mechanism

124

Algorithm 5.1 Locate-Leader

Locate-Leader(L, c)

// L — a lane, c — the car in L to search from.
1 if c .nextcar // If there is a car after c in L. . .
2 return c .nextcar // return it.
3 elseif L .next // If lane flows onto another. . .
4 return Locate-Leader-Sub(L .next ,L . length) // search in that lane.
5 else // This lane stops at a (stopped) intersection or is a dead-end. . .
6 return Virtual-Car(0,L . length) // return ‘virtual’ stopped car.

Locate-Leader-Sub(L, dcurr)

// L — a lane, dcurr — accumulated distance in search.
1 if dcurr ≥ dmax // If the search exceeded dmax. . .
2 return ∅ // return nothing.
3 elseif !Empty(L) // If L has cars. . .
4 return First-Car(L) // return the first car.
5 elseif L .next
6 return Locate-Leader-Sub(L .next , dcurr + L . length)
7 else
8 return Virtual-Car(0, dcurr + L . length)

The Locate-Leader and Locate-Leader-Sub procedures used to find the leader
of a given car.

125

developed to couple macroscopic simulations to microscopic ones, and it is discussed in

Section 5.4.3.2.

5.3.6.3 Acceleration computation

At each timestep, vehicles undergoing microscopic simulation must choose how to ac-

celerate to avoid collision with the vehicle ahead of them while continuing to travel at a

pace that is reasonable given the conditions (i.e., the speedlimit of the road, behavioral

factors associated with the driver or vehicle). The following formula for the acceleration

of vehicle i being led by vehicle j is from [Treiber et al., 2000]:

ai = amax
i

1−
(

vi

vpref
i

)δ

−
(
smin (vi, vj)

si

)2
 (5.1)

The terms in the equation are explained as follows:

• amax
i is the maximum forward acceleration vehicle i is capable of.

• vi is the current velocity of vehicle i.

• vpref
i the preferred velocity of vehicle i (perhaps based on the speedlimit of the

current lane).

• δ a positive integer affecting the weight the vehicles preferred velocity has on its

acceleration (a value of δ = 4 is suggested by [Treiber et al., 2000]).

• si the distance between the ith and the next vehicle in the lane (vehicle j).

Figure 5.3 depicts these quantities graphically. smin is relation that returns the minimum

acceptable distance between two vehicles based on their velocities; I use the formula

given in [Treiber et al., 2000]:

smin (vi, vj) = s0
i + s1

i

√
vi
v0
i

+ Tivi +
vi (vj − vi)

2
√
amax
i bpref

i

(5.2)

126

Figure 5.3: Terms in car-following acceleration computation equation

Here, s0
i , s

1
i , Ti, and bpref

i are parameters specific to the driver/vehicle model being used

representing ‘jam distances’, ‘safe headway time’, and ‘preferred braking acceleration’.

Equation (5.1) represents two distinct factors; a positive or negative acceleration

based on the ratio of a vehicle’s current velocity vi to its preferred velocity vpref
i (the

first two terms inside the outermost parenthetical) and a zero or negative acceleration

based on the ratio of the vehicle’s minimum braking distance and actual distance to the

vehicle ahead of it.

5.3.6.4 Lane changes

While the lane following model handles traffic within a single lane, real traffic networks

contain highways and arterial roads with numerous lanes, and real drivers change lanes

to avoid slower moving vehicles. To simulate this behavior, I use a method based in part

on [Kesting et al., 2007] and on the method presented in 4.3.5. I use the underlying car-

following model to calculate what the gain in acceleration, ∆a, is needed for a vehicles

cmerging to change lanes. If this ∆a is greater than a threshold value, the car will

attempt to change lanes if it is safe to do so. This safety check is done by finding

the car cfollow that would be behind cmerging if it changed lanes. If the deceleration of

cfollow after cmerging changes lanes is less than a factor polite ∈ [0, 1] times the maximum

deceleration, then the lane change is considered safe. Finally, to preserve the dynamics

of the microscopic simulation, the car is considered to be its current lane and the lane

it is merging into throughout the merge.

127

5.4 Transitioning between continuum and agent-

based models

To take advantage of agent-based and continuum simulation, we introduce a hybrid,

multi-method technique that divides the road network into multiple disjoint (and not

necessarily connected) regions — each region is governed by either agent-based simula-

tion or continuum simulation.

These regions in our simulation are dynamic; we can adaptively change the simu-

lation method in a region as needed to observe certain phenomena, meet performance

requirements, or to acquiesce to user input. To achieve this, we must be able to convert

discrete vehicles from agent-based simulation lanes into the aggregate format necessary

for continuum simulation, and we must be able to introduce discrete vehicles corre-

sponding to the distribution of density in continuum data.

Sections 5.4.1 and 5.4.2 establish the fundamentals of the conversion process, and

described how whole regions are converted from one regime to the other. Later, in

Section 5.4.3, we present how traffic flowing from one region into another is handled.

5.4.1 Conversion of microscopic regions to macroscopic

through averaging

Vehicle support functions It is straightforward to compute a continuum representa-

tion from a list of discrete vehicles; the Qk = [ρk, yk]
T stored for macroscopic simulation

are averaged quantities. For each discrete vehicle Ci with front-bumper position pi,

length li, and velocity vi, define a boxcar-like support function as follows:

Si (x) = H (x− pi + li)−H (x− pi) (5.3)

128

where H (x) is the Heaviside function. The support of all n vehicles is then given by

the sum:

D (x) =
n−1∑

0

Si(x) (5.4)

An exemplary plot of this function is depicted in Figure 5.4. Assume, without loss of

0 5 10 15 20 25 30 35 40
x (m)

−3

0

3

∑ n−
1

0
S
i

Summed car support functions

Figure 5.4: The car support function D (x) for a series of cars with front bumpers at
x = 10, 16, and 30.

generality, that the continuum cells are uniformly spaced by ∆x; then the ρk for each

cell of the continuum is:

ρk =
1

∆x

∫ (k+1)∆x

k∆x

D (x) dx (5.5)

Given n vehicles to discretize. The velocity uk is

uk =
1

∆x
∫ (k+1)∆x

k∆x
D (x) dx

∫ (k+1)∆x

k∆x

n−1∑
0

viSi dx =
1

∆x2ρk

∫ (k+1)∆x

k∆x

n−1∑
0

viSi dx (5.6)

To compute the primitive-variable quantity yk for each cell, I simply apply Equa-

tion (4.8).

Averaging algorithm In practice, the Qk can be computed in an efficient manner

— linear in the number of cars n — by iterating over each vehicle Ci, i ∈ [0, n− 1]. For

each i, I compute the intersection of the nonzero portions of Si with the continuum grid

and apply Equations (5.5), (5.6), and (4.8). So long as ∆x = Ω(li)∀li, each vehicle will

cover a constant number of grid cells and the averaging process is O(n).

129

5.4.2 Conversion of macroscopic regions to microscopic

through Poisson instantiation

The process of initializing a microscopic region given a macroscopic one is much more

complicated than the reverse, described in Section 5.4.1. This is necessarily so; while

microscopic to macroscopic conversion effects a decrease in information, macroscopic to

microscopic requires that the information in the system somehow increase. I propose

a method inspired by the kinetic theory of gases and Poisson processes that delivers

suitable results while remaining simple and efficient.

5.4.2.1 Poisson processes

The Poisson process is a stochastic procedure used to model occurrences (‘arrival times’)

of independent events t0, t1, t2,. . .. The number of events occurring in a given time

interval is modeled by the Poisson distribution, which has the following probability

mass function (pmf):

p(η, λ) =
e−λλη

η!
(5.7)

where x ∈ Z[0,∞) is the number of events observed and λ a rate parameter specifying

the number of expected occurrences per time interval; essentially, Equation (5.7) gives

the probability that exactly η events occur in over some time interval.

I use a Poisson-like process to determine the location of discrete vehicles in a con-

tinuum region given the piecewise-constant density cells ρk that comprise the unknowns

in that region. Rather than determining how discrete events are distributed in time,

I model where discrete vehicles are distributed in space — specifically, how they are

specified along the 1-dimensional space of the region.

130

5.4.2.2 Generating events in a homogeneous Poisson process

There are a number of techniques for generating events in a Poisson process; I shall

briefly introduce the general principles and present an efficient technique tailored to this

problem.

To begin with, it can be shown [Devroye, 1986] that the time between events ti, t+1

in a homogeneous Poisson process satisfy an exponential distribution with probability

density function (pdf):

p(x) = λe−λx (5.8)

Precisely, Equation (5.8) gives the probability, for each x ∈ R[0,∞), that x = ti+1 − ti
— the time successive events in the process. So a simple algorithm for generating the

iith event in a (homogeneous) Poisson process is to generate a random variable V from

an exponential distribution and set ti = V + ti−1, where I define the base case t−1 = 0.

Exponential random variables V can be efficiently generated through the inversion

process; that is, uniform random variables U are combined with the inverted cumulative

density function (cdf) of the exponential distribution:

c(x) =

∫ x

0

p(t) dt

=

∫ x

0

λe−λt dt

= −e−λt∣∣x
0

= 1− e−λx (5.9)

Setting this equal to a uniform random variable U and solving for x, we get an

131

exponentially-distributed random variable:

U = 1− e−λx

1− U = e−λx

− ln 1− U
λ

= − lnU

λ
= x (5.10)

Here I have replaced 1− U by U , since they are identically distributed.

5.4.2.3 Generating events in an inhomogeneous Poisson process

To properly account for the continuum data ρk in the lane, it is desirable to model an

inhomogeneous Poisson process — that is, where the λ in Equations (5.8) and (5.9) is

no longer constant. Indeed, it is desirable to have λ (x) = 1
l
ρ (x), where l reflects a

representative car length; this scaling converts ρ (x) from cars per car length to cars per

meter (i.e., to the spatial units of x).

Probability density function Above, I described how to generate successive events

in a homogeneous Poisson process. To capture the variation in ρ that generally occurs

in a continuum lane, the distribution of the separation between successive events is no

longer described by Equation (5.8), but by the following pdf [Devroye, 1986] reflecting

the inhomogeneous case:

p (x) = λ (τ + x) e−(Λ(τ+x)−Λ(τ)) (5.11)

Here τ is the time of the last event and Λ (x) =
∫ x

0
λ(t) dt.

Cumulative density function To extend the technique presented above for gener-

ating events in a homogeneous Poisson processes to the inhomogeneous case, I compute

132

the cdf:

c(x) =

∫ x

0

p(t) dt

=

∫ x

0

λ (τ + t) e−(Λ(τ+t)−Λ(τ)) dt

= −e−(Λ(τ+t)−Λ(τ))
∣∣∣x
0

= 1− e−(Λ(τ+x)−Λ(τ)) (5.12)

Here I have assumed that lim
x→∞

Λ(x) =∞.

Inversion As with the homogeneous case, I invert the cdf to achieve the formula for

generating exponentially-distributed random variables the match the given λ (x):

U = 1− e−(Λ(τ+x)−Λ(τ))

1− U = e−(Λ(τ+x)−Λ(τ))

− ln (1− U) = Λ (τ + x)− Λ (τ)

Λ (τ)− lnU = Λ (τ + x)

Λ−1 (Λ (τ)− lnU)− τ = x

Recall that the above equation gives the separation time between two events with the

first occurring at τ ; in general, I am interested in the actual time of the new event rather

than this difference:

τi = Λ−1 (Λ (τi−1)− lnU) (5.13)

Events in an inhomogeneous Poisson process can be generated with rate function λ (x)

provided one can compute Λ (x) and Λ−1 (ν). For general λ (x), this may require nu-

merical methods for integration and inversion — computations that may be expen-

sive and prone to issues of numerical stability. In these cases, the thinning method

133

[Lewis and Shedler, 1979] may be applied with success; this technique uses a secondary

rate function µ (x) > λ (x) to which the above inversion process may be applied and

then uses a rejection-like process to select only the random variables that satisfy the

process with rate function λ (x).

Because the rate function λ (x) = 1
l
ρ (x) is actually given by discrete cells ρk, our

rate function is piecewise-constant — its integral Λ (x) and integral inverse Λ−1 (ν) are

simple to compute. I will shortly give an efficient algorithm for computing the positions

of discrete vehicles given a continuum region with a piecewise-constant density function

ρ (x) = ρk; first I establish details of the integral and integral inverse of a piecewise-

constant function.

5.4.2.4 Integral and inverted integral of continuum densities

Given a continuum region with n discrete cells Qk = [ρk, yk]
T , k ∈ Z[0, n − 1] (where

each cell is ∆x in length):

Λ (s) =

∫ s

0

1

l
ρ (x) dx

=
1

l
∆x

i−1∑
k=0

ρk +
1

l

∫ s

i∆x

ρ (x) dx

=
1

l

(
∆x

i−1∑
k=0

ρk + ρi (s− i∆x)

)
(5.14)

where i = sup{j ∈ Z[0, n]|∆j < s}; i.e., the index of the cell ‘containing’ s (or one past

the last grid cell, if s ≥ ∆xn). I restrict s ≥ 0 and define ρ(t) = 0 for t ≥ ∆xn, and also

that ρn = 0. See Figure 5.5 for a plot of λ (x) and Λ (x).

To use Equation (5.13) to generate events that correspond to the density ρ in a

continuum region, one must invert Λ from Equation (5.14).

134

0 10 20 30 40 50 60
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
C

ar
s

pe
rm

et
er

/to
ta

lc
ar

s
Lane density/instantiation rate and integral

Λ(x) =
∫ x

0 λ(s)d s

λ(x) = 1
lρ(x)

Figure 5.5: Plot of 1
l
ρk for a lane and its integral. Exponentially-distributed random

variables are mapped to the y-axis and used to locate the x-value of an event (vehicle).

Asymptotic behavior Consider this Λ (x); in Equation (5.12), I assumed that

lim
x→∞

Λ(x) = ∞. This is important because the argument to Λ−1 in Equation (5.13)

takes its value in the range (0,∞), so the domain of Λ−1 (ν) ought to match. However,

for the Λ (x) in Equation (5.14), lim
x→∞

Λ(x) = 1
l
∆x
∑n−1

k=0 ρk 6=∞ — this is because each

continuum lane has finite length and obviously contains a finite number of vehicles. In

our technique, when Λ (τ) − lnU > 1
l
∆x
∑n−1

k=0 ρk in Equation (5.13) (as it must even-

tually, given that the events (vehicles) have strictly increasing value), I simply stop the

instantiation process; this is the termination condition.

Montonicity Finally, while the Λ (x) in Equation (5.14) is monotone (because 1
l
ρk ≥

0∀k), it is not strictly increasing — Λ−1 (ν) is not well defined in the traditional sense.

However, given the application, this issue is easily dealt with. A ‘flat’ spot on Λ (x)

135

corresponds to one or more adjacent cells i+ 0, i+ 1, . . . , i+m (i,m ≥ 0 and i+m < n)

where ρi = 0; conceptually, no vehicles should be instantiated here. Whenever X =

{Λ−1 (ν)} for any ν has cardinality |X| > 1, define x = sup X = ∆x (i+m+ 1).

5.4.2.5 Discrete car instantiation algorithm

The process for generating discrete cars given n cells of density ρk, k ∈ Z[0, n− 1] with

spacing ∆x is based on Equations (5.13) and (5.14); given a previous vehicle position

pi−1 and a uniformly distributed random variable U , add − lnU to the integrated rate

Λ (pi−1) and look up the x value of this sum in Λ−1; this gives pi. When a value that

exceeds the inverse integral Λ−1 is generated, the length of the region has been exceeded

and the process terminates. The algorithm for this process is given in Algorithm 5.2;

Algorithm 5.2 Instantiate-Vehicles

Instantiate-Vehicles(ρ[n],∆x)

// ρ[n] — an array of n density values, ∆x — the length of each grid cell
1 p = []
2 Λlast, i , σ = 0
3 while true
4 U = Uniform-Random-Number((0, 1])
5 Λlast = Λlast − lnU
6 while i < n and σ + 1

l
ρ[i]∆x < Λlast

7 σ = σ + 1
l
ρ[i]∆x

8 i = i + 1

9 pcand = (Λlast−σ)
1
l
ρ[i]

+ i∆x

10 if pcand > n∆x
11 return p
12 p = p + [pcand]

An algorithm for vehicle instantiation from continuum data

it is based on several observations on the nature of Equations (5.13) and (5.14). First,

note that the τ in Λ (τ) in Equation (5.13) is the argument to Λ−1 from the previous

event — Λ (Λ−1 (Λ (τi−1)− lnUi−1)) = Λ (τi−1) − lnUi−1. The result of this is that one

never needs to explicitly compute Λ (τ); it was computed in the previous iteration (in

136

0 500 1000 1500 2000
x (m)

0.0

0.2

0.4

0.6

0.8

1.0
C

ar
s

pe
rm

et
er

Lane density and instantiated cars

vehicle location

λ(x) = 1
l ρ(x)

Figure 5.6: The results of running Instantiate-Vehicles() on a continuum lane;
green vertical lines represent vehicle positions.

the base case, from Equation (5.14) ensures that Λ (0) = 0). A similar algorithm for

generating samples is presented in [Knuth, 1997].

Furthermore, instantiated vehicles have strictly increasing x values. This is a general

property of Poisson processes, and it is readily confirmed by the fact that − lnU > 0

and that Λ (τ) is monotone and increasing. This simplifies the computation of each

Λ−1, since each Λlast will take its value as i∆x < Λ−1 (Λlast) < ∞, where i is index of

the grid cell the last instantiation occurred in. Figure 5.6 shows the result of running

Instantiate-Vehicles on a continuum lane.

Analysis The performance of Instantiate-Vehicles is O(n + k), where n is the

number of grid cells in the continuum region and k is then number of instantiated

vehicles. The outer while loop spanning lines 3–12 in Algorithm 5.2 is clearly executed

k times, and the inner loop spanning lines 6–8 will iterate no more than n times in the

course of the entire execution of Instantiate-Vehicles.

It remains to bound the value of k for a call of Instantiate-Vehicles; this is a

137

randomized algorithm and k may theoretically be arbitrarily large (although subject to

some upper bound based on floating-point arithmetic). A conservative expected value

can be established as follows: consider the case where ρ[n] is such that ρ[i] = 1 ∀i ∈
Z[0, n−1) — clearly an upper bound on any real continuum region. Then λ (τ) = 1

l
, and

since the expected value for a homogeneous exponential distribution with rate parameter

λ is 1
λ
, the average is an instantiated vehicle every l meters — bumper-to-bumper traffic

that precisely matches saturation of density. The total expected number of vehicles k is

then n∆x
l

, which itself is O(n). Given that the estimate for k just developed is an upper

bound, the expected runtime of Instantiate-Vehicles is O(n).

5.4.3 Coupling

The interfaces between the continuum and discrete regions that are found in the net-

works can be characterized in two ways: continuum flowing into discrete, and discrete

flowing in to continuum. The method must account for how ‘upstream’ regions affect

the ‘downstream’ regions they flow into, and vise versa.

However, traffic is an isotropic phenomena — vehicles are strongly biased towards

moving forward — and these two configurations must be dealt with separately: vehicles

passing from one regime to another must be converted to the representation used in

the destination regime, and the flow of traffic in each region must affect the region that

precedes it.

The processes described in Sections 5.4.1 and 5.4.2 describe how one can instanta-

neously convert one type of region to the other, but part of the challenge here is that

conversion must be performed dynamically. As I shall show, much of the previously de-

veloped material will be useful, but key modifications must be made to properly describe

the transfer of vehicles.

In Section 5.4.3.1, discusses the continuum-to-discrete configuration; I introduce ‘flux

capacitors’ to convert continuum flow to discrete agents and show how the downstream

138

discrete traffic is made to influence the upstream continuum. Section 5.4.3.2 describes

the discrete-to-continuum arrangement: how I adapt the car averaging procedure from

Section 5.4.1 to handle discrete vehicles that flow into macroscopic regions, and how

discrete vehicles determine their behavior from the continuum they flow into.

5.4.3.1 Flux capacitors

Given two adjacent cells in a continuum lane, the methods described in Chapter 4 are

used to solve the Riemann problem at the interface between these two cells; doing so

computes the value of the unknowns at the interface: q0. Substituting this into f from

Equation (4.7) gives the flux between the cells. When a continuum lane flows into a

discrete one, flux can be used to convert density flowing out of the continuum region

into discrete vehicles entering the microscopic lane, and to imbue these vehicles with

velocity.

Outflow boundary conditions To compute the flux at the outflow boundary of a

continuum region — which is used to create discrete vehicles leaving the region — I

use a ‘virtual’ cell of continuum data based on vehicles near the start of the adjoining

microscopic region. Precisely, temporary cell of length ∆x is created at the start of

the microscopic region and apply Equations (5.5) and (5.6) from Section 5.4.1. This

temporary cell is used for qr when solving the Riemann problem at the end of the

continuum lane, and the resulting flux is used to send discrete vehicles into the following

microscopic region.

Accumulating density In the dimensionless interval between the end of a continuum

region and the start of a discrete one, I monitor the flux of vehicles and accumulate

density until a sufficient quantity has been retained that a vehicle can be emitted — I

call this a flux capacitor. Formally, the accumulated cars Vtot at a flux capacitor at time

139

t is given by the following:

Vtot =

∫ t

0

ρ0(τ)u0(τ)

l
dτ (5.15)

where ρ0u0 is the ρ-component of the flux of the intermediate state as computed in

the Riemann problem (computed from q0 = [ρ0, y0]T, found as per Section 4.3.3.4, and

substituted into f of Equation (4.7)). l is vehicle length; this term is necessary to scale

the integrand from cars per car length (ρ) times meters per second (u) to cars per second.

Because q0 is considered to be constant during a timestep, Equation (5.15) simplifies

to:

Vtot =
n−2∑
i=0

∫ ti+1

ti

ρ0(τ)u0(τ)

l
dτ =

1

l

n−2∑
i=0

ρ0(ti)u0(ti) (ti+1 − ti) (5.16)

given a (nonuniform) sequence of n distinct timesteps [t0 = 0, t1, . . . , tn−1].

Incremental flux accumulation Of course, rather than simply count their number,

I wish to introduce these ‘accumulated’ vehicles as they occur. To this end, I maintain

a Vacc that is updated each at the end of each timestep ti by

∆Vacc =
1

l
ρ0(ti)u0(ti) (ti+1 − ti) (5.17)

Then, if Vacc ≥ 1, emit a vehicle and set Vacc = {Vacc}, where {x} is the sawtooth

function {x} = x− bxc.
This vehicle begins with its rearmost point (the rear bumper) aligned with the start

of the macroscopic lane, and its velocity is set to be u0 during the timestep of the interval

wherein the vehicle was emitted.

Preventing multiple-vehicle emission The procedure above does not account for

situations where ∆Vacc > 1; in this case, the method may be obligated to emit multiple

vehicles in a single timestep. To do so, it is necessary to emit the vehicles at some

reasonable distance from one another, and this brings of issue of locality — one or more

140

of the emitted vehicles would start well into the microscopic region, and it is difficult to

ensure that there is sufficient space to avoid overlapping vehicles.

It is necessary to have ∆Vacc ≤ 1; to get a better idea of this value, Equation (5.17)

can be simplified using what is known about ti+1−ti = ∆ti, which is computed according

to Equation (4.6). ∆ti is the smallest ratio of the cell spacing ∆x to the maximum speed

λmax across all lanes; and u0 ≤ λmax, because u is a wave speed (See Equation 4.14).

Putting it all together results in following rough upper bound for ∆Vacc:

∆Vacc ≤ ∆x

l
ρ0(ti) (5.18)

This has an intuitive explanation; ∆x/l is the number of cars that can possibly fit in

a cell in the current region, and ρ0 is how ‘full’ of vehicles such a cell is. Given that

∆x >> l in general (the cell spacing is approximately some multiple of the vehicle length

l), ∆Vacc is certainly not restricted to be ≤ 1.

To ensure that no more than one vehicle may be emitted per flux capacitor in a

timestep, I add an additional restriction to that given in Equation (4.6):

∆t < min
j∈L,k∈FC

{
∆xj
λmaxj

,
l

∆xkρ0,ku0,k

}
(5.19)

where L is the set of all continuum lanes and FC is the set of all flux capacitors.

In practice, the additional restriction imposed on ∆t in Equation (5.19) will rarely

result in a ∆t smaller than that produced by from the conventional stability requirements

given in Equation (4.6); there is a relationship between ρ0 and u0 given by Equation (4.9)

that limits the maximum flux ρu that can be achieved for a given γ.

5.4.3.2 Flow averaging

The previous discussion on ‘flux capacitors’ describes how to translate the flow from

a continuum region into discrete vehicles that may be used for microscopic simulation,

141

and how to account for the downstream microscopic region’s effect on the upstream

continuum region Now, I describe the converse: how vehicles in discrete regions that

flow into continuum regions may be converted into the appropriate macroscopic quan-

tities, and how the state of this continuum region can be accounted for in the upstream

microscopic region.

Finding leaders in continuum regions I have discussed how a vehicle at the end of

a discrete lane locates the leading vehicle that dictates its acceleration in Section 5.3.6.2.

Should one encounter a continuum lane in the search, a suitable distance and velocity

must be provided — the qualities of a hypothetical leading vehicle. This mechanism will

allow microscopic regions that flow into continuum ones to account for the downstream

dynamics.

I use the vehicle instantiation procedure described in Section 5.4.2.5, except that it

now terminates after finding just one vehicle This vehicle’s velocity is determined by the

continuum data at its location, and it is position and velocity are reported back as per

the algorithm described in Section 5.3.6.2.

Not that this vehicle is not persistent; one simply uses the instantiation algorithm

to determine the position and velocity of the first vehicle in the lane, report it to the

leader-locating algorithm, and discard the temporary vehicle’s information.

Transfer of discrete vehicles into continuum regions When discrete regions flow

into continuum ones, one must convert discrete vehicles into continuum data as they pass

into the new regime. I achieve this in a similar fashion to how I account for downstream

discrete vehicles affect the outflow of continuum regions in Section 5.4.3.1.

A single ‘virtual’ grid cell at the end of the microscopic region is filled according to

the averaging procedure in Section 5.4.1; this is then used as the left grid cell qr when

solving the Riemann problem associated the start of the continuum lane.

When the motion of a vehicle carries it from a discrete region to a continuum one,

142

(a) Overlapping regions (b) Ordered regions (L, [a, b)) <
(L, [b, c))

(c) Adjacent regions

(d) Merging and splitting regions

(e) Divvying regions

Figure 5.7: Region operations

simply remove it from the simulation; the vehicle is already accounted for in the contin-

uum representation and flux computation just described.

5.4.4 Simulation region selection and refinement

So far, I have discussed how I simulate traffic flow with disparate continuum and discrete

methods and how the various disjoint simulation regions can be coupled to each other.

I now present how these regions are chosen and evolve throughout a simulation.

Model distinctions Recall that the motivation for this simulation technique, dis-

cussed in Section 5.1, is that the two simulation techniques are complimentary. Micro-

scopic simulation allows for easy visualization of individual vehicles and makes simula-

tion of an inhomogeneous collection of vehicles simple, while macroscopic can be vastly

more efficient (see Figure 4.6, for example).

5.4.4.1 Characterization of regions

I have frequently discussed simulations as occurring in ‘regions’, which may invoke im-

ages of meandering polygons or winding, closed curves. In fact, given that the simulation

143

domain is a network of (one-dimensional) lanes, and that handle boundary conditions

must be handled on a per-lane basis (to properly account for the dynamic states of in-

tersections, among other reasons), regions are simple linear intervals along lanes. These

may well be defined as the intersection of the network with a more complicated region

of the plane, but the mechanics of this technique is agnostic of these higher-level details.

Each region can be described as a tuple (L, [a, b)), where L indicates one of the lanes

in the network and [a, b) a half-open subinterval of [0, 1) that represents the parametric

range of L that the region covers. This simple description helps defines some simple

concepts and operations with tuples, which I list here and depict visually in Figure 5.7:

Overlap Two regions (L, [a, b)) and (R, [c, d)) overlap iff L = R and [a, b)∩ [c, d) is not

empty. See Figure 5.7(a).

Order We say that the pair of regions (L, [a, b)), (R, [c, d)) is ordered (L, [a, b)) <

(R, [c, d)) iff L = R, they do not overlap, and a < b ≤ c < d. Example shown in

Figure 5.7(b).

Adjacency A pair of regions (L, [a, b)), (R, [c, d)) is adjacent iff L = R and b = c; see

Figure 5.7(c). Clearly such an adjacent pair of regions is in order as (L, [a, b)) <

(R, [c, d)).

Merge We can merge an adjacent pair of regions (L, [a, b)), (L, [b, c)); this results in

the single region (L, [a, c)). Shown, along with its inverse, in Figure 5.7(d).

Split A region (L, [a, b)) can be split into an adjacent pair of regions (L, [a, c)), (L, [c, b))

for any c ∈ (a, b). This is the inverse of the aforementioned merge operation; see

Figure 5.7(d). We can use this operation recursively to break a region into any

number of sub-regions.

Divvy Given an adjacent pair of regions (L, [a, b)), (L, [b, d)), we can divvy them, en-

larging one and shrinking the other. We choose any c ∈ (a, d) and end up with

144

the adjacent pair of resized regions (L, [a, c)), (L, [c, d)). Were we to allow c = a

or c = d and discard the degenerate region, this can be viewed as a generalization

of the merge operation. See Figure 5.7(e) for an example.

Each simulation type has a set of these region tuples associated with it; I label these

sets C (for the continuum regime) and D (for the discrete regime). I require that no

two regions in C ∪D overlap, that C ∩D = ∅, and that C ∪D completely cover the road

network.

Basic constraints on regions For practical reasons, I impose certain requirements

on the minimum length of these regions in real space. The parametric length b− a for a

given region (L, [a, b)) can be mapped to spatial length given the length of the lane |L|;
for obvious reasons, I require that this spatial region length (b − a)|L| be greater than

the length of a vehicle l.

For a region (L, [a, b)) in C, I am more stringent and require that a = j∆xL/|L|
and b = k∆xL/|L| j, k ∈ N, j < k — the region must begin and end on (distinct)

computational cell boundaries. With this, it is unnecessary to deal with fractional grid

cells in the continuum solvers, and additionally ensures that (b− a)|L| ≥ ∆xL >> l.

These are merely general lower bounds on the lengths of regions; in practice, one will

generally wish for continuum regions to cover many grid cells to maximize the efficiency

gain of continuum simulation.

Mechanism The operations and material above deals with geometric and topographic

changes to regions, but there is an obvious further considerations to be made; one must

be able to move regions between C and D — that is, convert the simulation type of a

region. I have shown how the simulation data is converted in Sections 5.4.1 and 5.4.2;

this is the convert operation, which uses these techniques to change continuum regions

to discrete ones, and vise versa.

145

One can transition between any two configurations N = (C,D) and N ′ = (C ′,D′)
through successive applications of these merge, split, divvy, and convert operations.

5.4.4.2 Criteria

I have described above in Section 5.4.3 how two distinct simulation methodologies for

traffic simulation can be coupled to one another. This is desirable because one is then

able to take advantage the generally complimentary nature of these two simulation

regimes.

Recall that continuum techniques can efficiently handle both large and dense areas

of networks at the expense of being coarse-grained and incapable of describing truly

individual vehicles, whereas agent-based simulators are highly customizeable and flexible

but are typically slower than continuum methods.

There are numerous criteria one may wish to consider when choosing which portions

of the network should be simulated with macroscopic or microscopic techniques. Here,

we discuss some of the qualities that make a hybrid technique desirable and present such

criteria may be used to select which portions of the network will undergo various modes

of simulation.

Spatial When concerned with visualizing vehicles in the network, one must consider

what areas of the network are visible and ensure that only microscopic simulation is used

there — recall that there is no ‘carticle’ mechanism for capturing discrete vehicles in

continuum areas as in Chapter 4, and therefore no time-coherent way to depict discrete

vehicles given the density in a continuum region.

To this end, I force the visible portion of the network to be covered by microscopic

regions in my simulations. Considering the largely planar character of road networks,

the visible portion of the network can range from a rectangular area associated with an

overhead ‘bird’s-eye’ view to a trapezoid associated with a view frustum. To properly

146

handle secondary light transmission effects such as reflection and refraction, the visible

portion of the network can grow to be noncompact and arbitrarily complex, but the

difficulty there lies in visibility calculations.

Performance Based on the performance needs of the simulation, regions that are

particularly expensive to compute in one regime can be converted to the opposing.

More formally, every region can be assigned an estimated computational cost of the

form:

wT (r) = αT |r|+ βTC
r (5.20)

where r is a region, |r| the region’s length, and Cr the number of vehicles in that region.

αT and βT are weights associated with the computational regimes T = {macro,micro}.
These can be determined empirically during computation; based on what the know

of the two regimes, at least αmacro >> βmacro and βmicro >> αmicro. Given a pair of

weights wmacro(r) and wmicro(r) for each r and a computational ‘budget’, we can assign

convert regions using an inexpensive partitioning scheme, such as a greedy algorithm or

polynomial approximation to the minimum makespan problem (see Appendix D for a

brief discussion of such a scheme).

Equation (5.20) is certainly just an estimate of the cost of simulating a region with a

particular regime and a simple one at that; if more detailed information on the expense

of computation is available — perhaps with regard to the movement of traffic and the

associated future costs — such information can be incorporated in the model. What I

have demonstrated here aims to strike a balance between utility and simplicity; a very

complicated weight function could itself expensive to evaluate and work contrary to our

performance-minded goals.

Feature-capturing Another useful class of criteria arises from the desire to capture

specific features and types of flow with the simulation technique. An example of this is

147

when one wishes to track the movement of a specific vehicle or group of vehicles through

the network. Because the macroscopic regime aggregates the behavior of vehicles, were

a specific vehicle to be absorbed into the continuum regime, either through the transfer

process described in Section 5.4.3.2 or the region conversion process described in Sec-

tion 5.4.3.2, the specific information associated with that vehicle would lost. Similarly,

should we wish to capture the behavior of inhomogeneous vehicles, we must resort to

the microscopic model, which allows varied vehicle behavior.

To effect this, any regions containing such features must not be converted, and

furthermore, whenever such a feature of interest is about to transition into a region

governed by the other (unsuitable) regime, that downstream region must be converted

to the upstream regime.

Additionally, there are times when we wish to satisfy certain numerical conditions

governing the nature of the simulation itself. For example, in the kinetic theory of gases,

there is a dimensionless quantity known as the Knudsen number that can be used to

classify fluid behavior as a function of the fluid state itself and the scale of observation.

Precisely, the Knudsen number is given by

Kn =
λ

L
(5.21)

where λ is the mean free path of a particle and L the characteristic length scale of the

problem. The prevailing in wisdom gas simulation is that continuum models are valid in

the range Kn < 0.01, statistical models are valid when Kn < 0.1, and discrete models

are valid at all scales; see [Hirschfelder et al., 1964] for details.

A rigorous investigation of the applicability of the Knudsen number to continuum

traffic simulation has not been performed, but should the user wish to ensure that the

above scheme is satisfied, it is straightforward to compute the Knudsen number for

each lane and enforce those that have sufficiently large Knudsen numbers to obey the

148

microscopic regime.

5.5 Results

5.5.1 Benchmarks

I have demonstrated my hybrid technique for interactive visual simulation of large-scale

traffic on the following scenarios:

Virtual downtown of a metropolitan area I recreated a ‘virtual downtown’ based

on the “The Grid” sequence in Godfrey Reggio’s film Koyaanisqatsi [Reggio, 1982]; a

particular shot in this film shows traffic moving along a busy city street, punctuated by

the rhythmic cycling of traffic signals and cross-traffic. This scene is located 52 minutes,

3 seconds into the theatrical release of the film, and can be viewed on YouTube: http:

//www.youtube.com/watch?v=Sps6C9u7ras#t=0h52m03s. A still of my animation can

be seen in Figure 5.1.

Augmented satellite street maps One of my impetuses for this work was to be able

to interactively visualize real-world traffic simulated using live traffic data to augment

online virtual worlds, such as Google Earth, Microsoft Virtual Earth, or Second Life, or

to enhance mobile geographic information systems, such as car navigation systems for

PDAs or on-vehicle GPS systems.

In Figure 2.3, I show some example road networks created using my in-house geo-

metric modeling system, which are then used as the simulation domain in my real-time

visual simulation of metropolitan-scale traffic — typically at scales of tens of thousands

of vehicles. The models illustrated here were created using GIS data from the Open

Street Map website. My hybrid technique is able to recreate real-time traffic flows and

individual vehicle motion on complex, metropolitan-scale road networks, which can then

be visualized atop aerial imagery.

149

http://www.youtube.com/watch?v=Sps6C9u7ras#t=0h52m03s
http://www.youtube.com/watch?v=Sps6C9u7ras#t=0h52m03s

(a) A low-angle view

(b) A top-down view

Figure 5.8: A city scene filled with traffic simulated with my technique

150

Figures 5.9(a)–(d) and the corresponding sequence in the accompanying video show

dynamic region refinement based on the movement of a ‘region of interest’ — a yellow

rectangle. Typically, this region of interest would be the visible portion of the scene,

allowing my technique to perform simulation in the off-camera areas without incurring

the expense of agent-based simulation everywhere.

Although this concept of augmented street maps bears close resemblance to some

features in the work by [Kim et al., 2009], their approach to augment aerial earth maps

with traffic information requires setting up many video cameras closely located on free-

ways in order to reproduce the spatial extent and aerial coverage of traffic visualization

that I am able to recreate here. With my approach, commonly available live traffic data

from sparsely located cameras or merely cheap in-road sensors (e.g. inductive loops)

would be sufficient to initialize my simulation method for real-time traffic visualization.

The two approaches are, however, complimentary; and my work can be easily integrated

into their overall Augmented Reality framework.

5.5.2 Performance

One of key objectives for this work is to facilitate the cooperative use of disparate simu-

lation strategies — agent-based and continuum traffic simulation — in a traffic network

for extensive metropolitan areas. There are numerous reasons that this is desirable: con-

tinuum techniques have performance advantages over agent-based simulations in many

situations — their computational cost is proportional to size of the network, not to the

traffic therein. Furthermore, the limited and regular memory access patterns of contin-

uum algorithms are much more amenable to scalable parallelism than those found in

agent-based algorithms.

Figure 5.10 shows the performance of single-thread agent-based, continuum simula-

tion, and my hybrid technique where for a city road network with a variety of vehicle

densities. Purely continuum simulation outperforms purely agent-based by 2.4x-9.2x and

151

(a) (b)

(c) (d)

Figure 5.9: A sequence of images illustrating simulation region refinement. (a): Ini-
tially, the whole road network is simulated with agent-based techniques. (b)-(d): Later,
only roads whose bounding box intersects the yellow box are simulated with agent-based
techniques — continuum techniques are used elsewhere. The averaging and instantia-
tion methods of Sections 5.4.1 and 5.4.2 handle changes due to the movement of the
rectangle, while the coupling techniques described in Section 5.4.3 seamlessly integrate
the dynamics of different simulation regimes.

152

low density med. density high density
Density of vehicles

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
T
im

e
 (

s)
 f

o
r

o
n
e
 s

e
co

n
d
 o

f
si

m
u
la

ti
o
n

Performance of multi-method simulation (181 km network)

all continuum

multi-method

all agent-based

Figure 5.10: Performance of all-continuum simulation, my hybrid technique, and
wholly agent-based simulation for various densities on a road network with 181 km
of roads

my hybrid scheme (in this case, a constant 10% of the road network is simulated with

agent-based, and the rest with continuum) is 1.5x-4.4x faster than pure agent-based.

These results were collected on an Intel Core i7 980X ‘Westmere’ processor running at

3.33GHz.

5.5.3 Comparison with real-world data

It is useful to understand how the traffic motion produced by the method described

in this chapter compares to the motion of real-world traffic. However, this comparison

must be performed with deliberation and care, as there are numerous subtleties at play.

Here, I explain the type of real-world data that is available, discuss the deficiencies

153

A B C
D

Figure 5.11: Section of Highway 101 near Los Angeles. The black rectangle indicates
the region where the NGSIM project has recorded trajectories. The red lines (the interval
AD) denote the clipped region used in this comparison, while the blue lines (interval
BC) denote the macroscopic simulation region used in the hybrid simulation test.

therein as well as the limitations of my method in the presence of real-world data, and

present my methodology and results for comparing my simulation technique with said

real-world data.

5.5.3.1 The NGSIM project

Despite the ubiquity of traffic in the real world, data suitable for comparison with

simulation techniques can be hard to find. Data must be collected for reasonably long

periods of time — several minutes at the very least — and correspondingly large spatial

scales. It is challenging to set up sensors for these scales, and the problem is made all

the more difficult the necessity of obtaining accurate and precise measurements.

Fortunately, reasonably high-quality data has been made available by the Next-

Generation Simulation project (NGSIM) [Alexiadis et al., 2007]. This is a joint project

between the Federal Highway Administration and a number of partners created to pro-

vide useful data to serve the needs of the simulation common. The data provided is

per-vehicle trajectory information for relatively short segments of major highways in

California.

Data format The NGSIM highway data is organized as a series of time entries each

specifying the position, the magnitude of velocity, and the magnitude of acceleration of

154

a given vehicle, among other quantities. A unique identification number associated with

each frame is given to identify which vehicle the data describes. Curiously, each frame

also specifies the length and width of the vehicle, as well as a discrete ‘type’ specifying

if the vehicle is a motorcycle, truck, or passenger car. For for the data sets I have

examined, these remained (blessedly) constant. Each frame also identifies a discrete

‘lane number’ that the vehicle is traveling in.

All data is given at 10 frames per second, and this is aligned globally — the position

of each vehicle in the system is updated every 1
10th s of a second of a global clock. The

data for each highway is broken up into several 15-minute intervals. Position information

is given in feet to a precision of three digits, while velocity and acceleration data is given

to a precision of two digits.

Figure 5.11 shows the layout of a section of highway 101 near Los Angeles; Fig-

ure 5.12 visualizes the data in for a segment of US-101 in Los Angeles, CA: Figures 5.12a

and 5.12b shows each spatial sample in the dataset colored by lane — some quantization

is apparent in the data. Figures 5.12c and 5.12d show the actual trajectories for each

vehicle plotted in a variety of colors.

Issues It is very useful to have the NGSIM data, although it presents several challenges

as well. First, from a validation standpoint, a notion of the accuracy of the measurements

in the data would be useful. Unfortunately, no such estimate is given. Additionally, while

the given spatial precision of three digits in feet is more than enough, the frame rate of

10 frames per second is quite poor for highway traffic. As mentioned in Section 5.3.4,

the timestep required for simulation can easily be 1
30th of a second.

Furthermore, the format of the acceleration and velocity data — as scalar magnitudes

rather than vector data — is somewhat limiting, since vehicles changing lanes and

merging have non-trivial velocity and acceleration vectors.

Finally, while the black box in Figure 5.11 shows the region where the NGSIM project

155

(a) Scatter plot of
position samples

(b) Scatter plot of
position samples

(detail)

(c) Trajectories (d) Trajectories
(detail)

Figure 5.12: NGSIM US-101 dataset

156

recorded data, not all vehicle trajectories begin or end where the box actually intersects

the highway; some start as much as 30 meters from the beginning of the highway. In

order to perform a meaningful comparison, it is necessary to clip all trajectories to the

smallest region of the highway where there is data for all vehicles, which somewhat

reduces the total amount of trajectory data to work with.

5.5.3.2 Methodology

As discussed previously in Section 5.5.3.1, there is real-world data readily available for

comparison with simulation techniques, albeit with some deficiencies. Here, I discuss my

approach to achieving a meaningful comparison of the results of my simulation technique

and real-world data.

Comparison strategies Numerous approaches to validation are taken in the simu-

lation community; these are often developed based on the quality and completeness of

real-world data with which to form a comparison. Given a timeseries of real-world data

{η0, η1, η2, . . .}, the most straightforward approach is to initialize the simulator with some

initial condition {η0} and generate the simulated successor states {η′0 = η0, η
′
1, η
′
2, . . .}.

Such a simple scheme falls prey to a number of complications, ranging from gran-

ularity and measurement error in the initial data set to known deficiencies with the

simulation technique. Additionally, many classes of phenomena are highly chaotic —

even small perturbations in the initial conditions are greatly magnified in successive

time steps. Such phenomena is exceedingly difficult to directly compare in a meaningful

fashion.

Often, specific qualities of phenomena are tested; simple initial conditions are chosen

that are expected to evince certain characteristic features of phenomena — for example,

the ‘lid-driven cavity’ for fluid dynamics described by [Burggraf, 1966], or ‘arching’

behavior in crowd dynamics (see [Guy et al., 2010]).

157

For agent simulation techniques, such as traffic or crowd simulation, direct trajectory

comparisons are usually not performed due to the chaotic nature of the phenomena.

Rather, comparisons of averaged velocity and traffic volume over time are common, as

in [Treiber et al., 2000]. A cross-sectional region of the road is designated as a ‘detector’

and the number of vehicles crossing said region are counted along with their average

velocities over a series of non-overlapping time spans. It is also sometimes useful to

measure the total flux of vehicles — the product of the average velocities for all vehicles

and the total number of vehicles over an interval. In fact, this is the only quantity

that can be directly extracted from macroscopic simulation; the corresponding results

in Section 5.5.3.3 plot flux in addition to the other primitive quantities.

Measuring effectiveness of coupling The hybrid simulation technique presented

in this chapter consists of both microscopic and macroscopic traffic simulation coupled

together through a mechanism described in Section 5.4.3.

The extent that the base simulation methods — microscopic and macroscopic — are

able to match the real-world data gives a baseline for comparison. Combining these with

my hybrid technique will have some effect on the quality of this match — this change

indicates the effect the hybrid method has on a basic simulation.

To gauge its effect on the ability of the underlying simulation methods to match

real-world input, I have performed three separate simulations, each of which is compared

against the real-world data.

Microscopic Pure agent-based simulation is carried out on a section of highway cor-

responding to the domain of the real-world data — AD in Figure 5.11. Vehicles

are introduced to the simulation according to the time in which the enter the

corresponding section of the real highway, with the appropriate lane and velocity

information. Detectors spaced along the highway — as described above — record

crossing times and velocities for the simulated agents (vehicles), which are then

158

accumulated over short intervals.

Macroscopic The same area of highway used for agent-based simulation in the previ-

ous simulation is instead used for continuum simulation. Vehicles are introduced

as densities and velocities in the appropriate lanes according to the crossing times.

Similarly, detectors are employed to compare results against real-world data. How-

ever, while agent-based and the real-world trajectory data lend themselves to direct

computation of vehicle crossings, the nature of macroscopic simulation dictates

that we measure the flux of vehicles across detectors — that is, f = ρu. Averaged

over intervals, this may be meaningfully compared against the product of crossing

densities and velocities from trajectory data.

Hybrid The highway segment used for the simulations above is now divided into three

segments — a microscopic region including the incoming boundary, an adjacent

macroscopic region that occupies the central potion of the highway segment, and

an abutting additional microscopic region that includes the outgoing boundary

— respectively, AB, BC, and CD in Figure 5.11. Vehicles are introduced to the

first region just as in the microscopic simulation setup, and my hybrid technique

converts vehicles into the neighboring macroscopic region, where they eventually

are converted back into discrete vehicles in the succeeding microscopic region. A

detector in this final region records crossing times and velocities as in the above

microscopic setup.

Boundary conditions Simply supplying initial conditions to a simulator is generally

not sufficient if one hopes to achieve a meaningful comparison; we must consider what

forces outside the simulation are affecting it. The shape of the highway certainly has an

effect; thankfully this is fairly clear from the original data and easily accommodated in

the simulation techniques being examined.

Of larger concern is the traffic that is not present in the real-world trajectory data;

159

the NGSIM data provided is simply a snapshot of real traffic on a highway — there is

necessarily a beginning and an end, and in particular, the leading vehicles in the provided

data are behaving according, to some extent, on the behavior of vehicles unknown to us

— vehicles that occupy the highway at the start of the simulation, or vehicles further

‘down’ the highway than the domain captures. It is important to somehow capture

the effect of these vehicles on the simulation; in both the agent-based and macroscopic

simulation techniques examined in this thesis, vehicles with unlimited headway — no

vehicles ahead of them — will simply accelerate until they reach their maximum velocity;

generally, the speedlimit of the road.

To account for these unknown leading vehicles, I simply set the velocity of the leading

vehicle in each lane in the simulation (leading computational cells, in a macroscopic

simulation) to the velocity of the leading vehicle of the corresponding lane in the real-

world data.

5.5.3.3 Comparison results

The histograms from the above simulations/real-world data are found in Figures 5.13(a)–

(g). Interpretations of these plots follow:

Microscopic Overall, the microscopic simulation matches the NGSIM data quite well;

for x = 429 (Figure 5.13(a)), we expect all quantities to match quite well because

we are close to the incoming boundary condition. Detectors further down the

highway (x = 440–542; Figures 5.13(b)–(e)) continue to match the vehicle count

well, but it is evident that the microscopic simulation technique we are using has

a tendency to aggressively adjust vehicles to their preferred velocity. The final

two detectors (x = 598 and x = 620; Figures 5.13(f) and 5.13(g)) again match

velocity well as we approach the outgoing boundary condition, where we impose

the outgoing velocity of the leading vehicle from the NGSIM data. In these final

stages, we see some time shifts in features we identify from the NGSIM data.

160

These can be attributed to the differing preceding velocity values.

Macroscopic The results of the macroscopic simulation are fluxes. As with microscopic

we see good matches for the initial detectors and drift accumulating further down

the highway. However, despite shifts in overall magnitude and phase, the overall

patterns remain, showing that the primary features of the flow are preserved —

in particular, the trough in flux that occurs around t = 800 at all detectors is

preserved.

Hybrid Because of the final leg of the hybrid validation scheme is microscopic, we have

data for the number of cars, velocity, and flux for the final detector (x = 620,

Figure 5.13(g)). Velocity matches quite well as with the pure microscopic case

on account of the outgoing boundary condition. The vehicle counts demonstrate

the same features as those found in the original NGSIM data, albeit with slight

variations in magnitude.

Sequence comparison Computing the number of vehicles and average velocities for

the real-world data and results of the corresponding simulation results in two sets of

timeseries data — number of cars, average velocity, and flux for both real-world and

simulation. Examining these visually can be illuminating, but we would like a more

quantitative way of comparing these data. A standard infinity– or 2– norm might seem

an obvious choice, but these will rather harshly penalize noisy and time-shifted data.

As discussed in [Chen et al., 2005] and [Morse and Patel, 2007], suitably modified string

distance metrics such as longest common subsequence and edit distance are very useful

when comparing timeseries.

As the name implies, given two sequences R and S — not necessarily of the same

length — longest common subsequence (LCSS) reports the length of the largest subse-

quence they share. By normalizing this subsequence length by the length of the shorter

161

0 200 400 600 800 1000
10

15

20

25

30

35

40

45

#
of

ca
rs

0 200 400 600 800 1000
2
4
6
8

10
12
14
16
18

av
g.

ve
lo

ci
ty

(m
/s

)

0 200 400 600 800 1000
time (s)

0
100
200
300
400
500
600
700
800

#
ca

rs
×

av
g.

ve
l.

(m
/s

)

Micro simulator
Macro simulator
NG Data

Crossings at x = 429.0 over 15.0 s periods

(a) Crossings at x = 429

Figure 5.13: Validation results, histogram width 15

162

0 200 400 600 800 1000
10

15

20

25

30

35

40

45

#
of

ca
rs

0 200 400 600 800 1000
2
4
6
8

10
12
14
16
18

av
g.

ve
lo

ci
ty

(m
/s

)

0 200 400 600 800 1000
time (s)

0
100
200
300
400
500
600
700
800

#
ca

rs
×

av
g.

ve
l.

(m
/s

)

Micro simulator
Macro simulator
NG Data

Crossings at x = 440.0 over 15.0 s periods

(b) Crossings at x = 440

Figure 5.13: Validation results, histogram width 15

163

0 200 400 600 800 1000
15

20

25

30

35

40

45

#
of

ca
rs

0 200 400 600 800 1000
4
6
8

10
12
14
16
18
20

av
g.

ve
lo

ci
ty

(m
/s

)

0 200 400 600 800 1000
time (s)

0
100
200
300
400
500
600
700
800

#
ca

rs
×

av
g.

ve
l.

(m
/s

)

Micro simulator
Macro simulator
NG Data

Crossings at x = 474.0 over 15.0 s periods

(c) Crossings at x = 474

Figure 5.13: Validation results, histogram width 15

164

0 200 400 600 800 1000
15

20

25

30

35

40

45

#
of

ca
rs

0 200 400 600 800 1000
4
6
8

10
12
14
16
18
20

av
g.

ve
lo

ci
ty

(m
/s

)

0 200 400 600 800 1000
time (s)

0
100
200
300
400
500
600
700
800

#
ca

rs
×

av
g.

ve
l.

(m
/s

)

Micro simulator
Macro simulator
NG Data

Crossings at x = 497.0 over 15.0 s periods

(d) Crossings at x = 497

Figure 5.13: Validation results, histogram width 15

165

0 200 400 600 800 1000
0
5

10
15
20
25
30
35
40
45

#
of

ca
rs

0 200 400 600 800 1000
4
6
8

10
12
14
16
18
20

av
g.

ve
lo

ci
ty

(m
/s

)

0 200 400 600 800 1000
time (s)

0
100
200
300
400
500
600
700
800
900

#
ca

rs
×

av
g.

ve
l.

(m
/s

)

Micro simulator
Macro simulator
NG Data

Crossings at x = 542.0 over 15.0 s periods

(e) Crossings at x = 542

Figure 5.13: Validation results, histogram width 15

166

0 200 400 600 800 1000
0
5

10
15
20
25
30
35
40
45

#
of

ca
rs

0 200 400 600 800 1000
4
6
8

10
12
14
16
18
20

av
g.

ve
lo

ci
ty

(m
/s

)

0 200 400 600 800 1000
time (s)

0
100
200
300
400
500
600
700
800
900

#
ca

rs
×

av
g.

ve
l.

(m
/s

)

Micro simulator
Macro simulator
NG Data

Crossings at x = 598.0 over 15.0 s periods

(f) Crossings at x = 598

Figure 5.13: Validation results, histogram width 15

167

0 200 400 600 800 1000
0
5

10
15
20
25
30
35
40
45

#
of

ca
rs

0 200 400 600 800 1000
0

5

10

15

20

25

av
g.

ve
lo

ci
ty

(m
/s

)

0 200 400 600 800 1000
time (s)

0
100
200
300
400
500
600
700
800
900

#
ca

rs
×

av
g.

ve
l.

(m
/s

)

Micro simulator
Hybrid simulator
Macro simulator
NG Data

Crossings at x = 620.0 over 15.0 s periods

(g) Crossings at x = 620

Figure 5.13: Validation results, histogram width 15

168

x metric micro macro hybrid

429
flux LCSS 0.833 0.850
flux EDR 0.900 0.870

440
flux LCSS 0.783 0.850
flux EDR 0.858 0.862

474
flux LCSS 0.533 0.800
flux EDR 0.675 0.813

497
flux LCSS 0.533 0.800
flux EDR 0.700 0.813

542
flux LCSS 0.475 0.672
flux EDR 0.680 0.750

598
flux LCSS 0.836 0.607
flux EDR 0.877 0.710

620
flux LCSS 0.934 0.541 0.820
flux EDR 0.951 0.685 0.861

Table 5.1: Flux sequence comparison results

of R and S; we can assign a ‘score’, or distance, to the similarity of two sequences.

Numerous techniques fit into the aegis of edit distance; the common theme is scoring

the similarity of R and S by the ‘effort’ required to transform one to the other. Varieties

of edit distance are distinguished by how they define the weight of transformations —

[Chen et al., 2005] propose ‘edit distance with real penalties’ (EDR).

These algorithms typically operate on sequences consisting of elements from a finite

set — for example, Latin characters in a string. When dealing with sequences of real

numbers (velocity and flux in this case), [Morse and Patel, 2007] suggest identifying two

real numbers x ∈ R and y ∈ S as ‘equal’ in the LCSS or EDR sense when |x− y| < ε =

σmin/2, where σmin is the lesser of the standard deviations of R and S.

For each of the simulation types (microscopic, macroscopic, hybrid), I have compared

the resulting flux timeseries with the corresponding NGSIM data — see Table 5.5.3.3.

As the data in the x = 620 row shows, my hybrid simulation technique only slightly

decreases the score for micro simulation.

169

5.6 Conclusion

I have introduced a technique for hybrid traffic simulation that combines the strengths of

continuum-level macroscopic and discrete-level microscopic traffic simulations method-

ologies.

The hybrid traffic simulation is built on the continuum traffic simulation technique

discussed in Chapter 4 and a state-of-the-art agent-based technique; the different regimes

govern mutually exclusive dynamic regions of the domain road network. The two mech-

anisms are coupled together with a flow averaging scheme for microscopic to continuum

connections and a novel instantiation scheme I call ‘flux capacitors’ for continuum to

discrete interactions.

I also introduce a new method for instantiating discrete vehicles according to an

underlying continuum representation based on inhomogeneous Poisson processes; this is

used, along with a car averaging procedure, to convert regions in of one simulation type

to the other, allowing for dynamic regions. I propose several criteria for region deter-

mination based on user-dictated needs — these broadly cover problems of visualization,

performance, and feature preservation.

I demonstrate how this method can be used to simulate traffic on large-scale rural and

urban networks with dynamically changing simulation regime regions, I have performed

comparisons of microscopic and macroscopic simulations with real-world data, measured

the effect of my hybrid coupling technique on the efficacy of these techniques, and shown

it to be small.

5.6.1 Limitations

There are limits to the way regions are defined in this method; in particular, while

the technique is capable of lane changes, these may only occur between regions in the

same regime. I currently do not have a scheme for instantiation from macroscopic to

170

microscopic regimes as it applies to merging vehicles. While a mechanism for effecting

this transition is conceivable, it suffers from the problem of the macroscopic regime being

unable to consider information in adjacent lanes; this could result colliding vehicles.

The continuum to discrete instantiation process is not guaranteed to conserve cars.

Like the underlying Poisson process it is based on, the scheme is stochastic and is only

expected — in the statistical sense — to produce a number of vehicles equal to the

corresponding integral of density. For large flows, this is not a significant problem, but

for sparsely-populated regions, the effect is more noticeable. One potential workaround

is to apply a rejection-type approach to the instantiation process and simply re-run the

procedure until the expected number of vehicles is emitted. Like all rejection processes,

this is potentially expensive.

The Poisson process used to model arrival times assumes that vehicles arrive inde-

pendently of one another. This assumption can be improved upon with a more sophis-

ticated model that takes into account the effect of dependence between vehicles; the

general algorithms and techniques presented in this chapter would still apply, but the

more sophisticated distribution could be used to predict arrival times.

5.6.2 Future work

I have looked at how this hybrid coupling mechanism can be applied to a specific con-

tinuum model and a specific agent-based scheme; many such schemes exist. It would be

illuminating to see how this scheme can be applied to other such models and evaluate

its generality.

Much work on traffic simulation has been on well-behaved drivers carefully avoid

collisions. In truth, real drivers make errors every day, and automobile accidents are an

often-tragic feature of our lives — I hope to investigate how this hybrid technique can

be used to simulate behavior where collisions do occur, to better capture the real-world

character of automobile traffic and potentially assist study of accident causes on large

171

scales.

Furthermore, preliminary results have shown that aspects of the hybrid technique are

highly parallel; I hope to develop the technique to effectively utilize today’s many-core

parallel architectures and tomorrow’s nascent parallel hardware.

Finally, this approach has many promising avenues for future work. In particular,

while I have only investigated how my coupling technique may be applied to two models

for simulating and visualizing traffic flows, I would like to examine if the coupling tech-

nique may also be applicable to other domains, such as crowd simulations. In addition,

it would be interesting to explore using my technique for real-time traffic prediction

to examine how the behaviors of individual vehicles at the arterial street level affect

the overall traffic flows on freeways; this would be useful to calculate better routing for

individual vehicles and more effective remediation for traffic congestion.

In the next and final chapter, I summarize my contributions and present general

limitations and avenues for future work.

172

Chapter 6

Discussion

In this dissertation, I have presented techniques for generating animations of compress-

ible gas flow as well as automobile traffic motion on large road networks. These tech-

niques take advantage of hyperbolic models to describe underlying phenomena, in order

to achieve a broad range of results. I demonstrate their scalability on modern paral-

lel computer architectures and show that physics-based animations of these complex

phenomenon can be synthesized efficiently.

6.1 Summary of results

I have adapted residual distribution schemes (RDS) to computer graphics as a method

for efficiently simulating compressible fluids on modern architectures. I demonstrate

that RDS are computationally attractive for animation in several regards – for example,

they can effectively model multi-physics phenomena, such as two-way coupling between

fluids and solids. They offer a natural balance between efficiency and accuracy, and the

method also takes advantage of adaptive mesh refinement to focus computational efforts

on areas of visual and physical significance, and are able to deform the computational

domain and avoid inaccuracies due to inverted computational cells.

I described a method for efficiently generating animations of supersonic flows in com-

pressible, inviscid fluids. I have demonstrated the ability of this method to capture the

behavior of shocks and to handle complex, bidirectional object-shock interactions sta-

bly. I have also demonstrated an effective parallelization scheme based on architectural

considerations that achieves near-linear scaling on modern multi-core architectures.

I presented a method for the generation of realistic traffic animations based on contin-

uum dynamics with my own ‘carticles’ that enable the visualization of discrete vehicles.

I have demonstrated this method’s ability to generate traffic on large, real-world road

networks, and shown that its performance for large numbers of vehicles greatly exceeds

that of agent-based methods.

Finally, I presented a technique that combines the strengths of continuum and dis-

crete traffic simulation techniques through a novel coupling scheme that can dynamically

transition vehicles’ representations between regimes, as well as convert large swaths of

road networks between the two simulation methodologies. I suggest several criteria that

may be used to guide the selection of regimes for various portions of the road network;

these criteria focus on visualization, performance, and preservation of features.

6.2 Limitations

I discuss the limitations of each method in detail its corresponding chapter; here I

address limitations common to my general approach. While I have demonstrated the

strengths of applying hyperbolic method to animation and simulation problems, it is

important to understand the limitations and boundaries of these techniques.

A hyperbolic model can be developed for most physical phenomena, but there are

cases when the benefits of such a model are outweighed by other considerations. For

example, in nearly all graphics applications, light propagation is assumed to occur in-

stantaneously — cf. the rendering equation [Kajiya, 1986], which is elliptic. Of course,

the speed of light is well-known and finite, but for most applications, the temporal and

spatial scales of observation are such that infinite-speed propagation is a reasonable

174

assumption. A similar example (although less extreme) is the incompressible model

of fluids popular in graphics; the elliptic divergence-free condition ∇ · x = 0 found in

the incompressible formulation of Navier-Stokes is quite reasonable for liquids at scales

consistent with human experience; a hyperbolic method applied to such a problem may

have to take unreasonably small time steps to successfully describe the evolution of such

a system.

As the material in Chapter 5 touches upon, there are times when a technique based

on a continuum — be it hyperbolic or not — may not be suitable. While the extension

of the theory behind the Knudsen number to traffic is somewhat nebulous, it has a clear

place in compressible gas flow; indeed, it is the phenomena that inspired the development

of said number! It is not clear if methods for the animation of highly rarefied gases —

when the Knudsen number for a compressible fluid exceeds 0.01 — are of great interest,

but if so, the material in Chapters 2 and 3 will need a hybrid model with a coupling

scheme similar in spirit to that presented in Chapter 5.

6.2.1 Future work

There are a number of exciting areas of future work based on this thesis. While many

specific ideas are enumerated in each chapter with the associated material, here I list

some areas of future work that apply to the general thesis.

There are many phenomena in the real world we would like to see brought to virtual

ones; an interesting direction for future work is the investigation of the applicability

of this thesis to other classes of phenomena. Elasticity — particularly the nonlinear

plastic regime thereof — is potentially a good candidate for this type of approach.

The Saint Venant, or ‘shallow water’ equations have a natural hyperbolic form that is

potentially amenable to this approach, and while incompressible fluids are listed above

as potentially unfeasible candidates for the methodology presented in this thesis, it

is possible that either by eschewing true incompressiblity or examining large scales, a

175

hyperbolic approach would suit the needs of certain problems in animation.

This thesis has explored the possibilities of realizing hyperbolic models on modern

parallel architectures, but the computing landscape continues to change. It would be

very interesting to examine how the methods presented in this thesis map to the various

architectures on the near horizon. In particular, the detailed discussion of the parallel

shockwave simulator in Section 3.4 examines the effects of the memory hierarchy assume

a uniform memory model. As manufacturers introduce commodity architectures with

non-uniform memory access (NUMA), many previous assumptions of data management

based on uniformity will break down.

Furthermore, while the focus of parallelization in this thesis has been on thread-

level parallelization (or a similar abstraction, in the case of GPUs), current and future

architectures — such as Intel’s Sandy Bridge and Many Integrated Core (MIC, alter-

nately known as Larrabee or Knights Ferry) — are making wide single-instruction,

multiple-data (SIMD) architectures available to the user and open exciting possibilities

for data-level parallelism.

176

Appendix A

Residual distribution details

A.1 Conservative → primitive variable transforma-

tion matrix

M =
∂q

∂Q
=



1 0 0 0 0

u ρ 0 0 0

v 0 ρ 0 0

w 0 0 ρ 0

V2/2 ρu ρv ρw 1/γs


(A.1)

with V2 = u2 + v2 + w2, γs = γ − 1 (M−1 is easily computed analytically).

The primitive variable Euler equations are

Qt + FQ · ∇Q = f (A.2)

with the Jacobian components FQ = Aex +Bey + Cez

A =



u ρ 0 0 0

0 u 0 0
1

ρ

0 0 u 0 0

0 0 0 u 0

0 a 0 0 u


(A.3)

177

B =



v 0 ρ 0 0

0 v 0 0 0

0 0 v 0
1

ρ

0 0 0 v 0

0 0 a 0 v


(A.4)

C =



w 0 0 ρ 0

0 w 0 0 0

0 0 w 0 0

0 0 0 w
1

ρ

0 0 0 a w


(A.5)

with

a =

[
p

ρ
− ρ

(
∂e

∂ρ

)
p

](
∂e

∂p

)−1

ρ

= γp (A.6)

the last equality being valid for a perfect gas.

A.2 Roe average

The Roe average for the Euler equations is a weighted average of the vertex velocities

(uR, vR, wR) and enthalpy hR, the quantities that appear in the eigenmodes. The weights

are defined by the square root of the vertex density.

uR =

∑5
i=1

√
ρiui∑5

i=1

√
ρi

, (A.7)

with similar expressions for the other variables.

178

A.3 K Matrix Decomposition Cases

1. (v · ni + c) > v · ni > (v · ni − c) > 0. All eigenvalues are positive indicating

inflow of all wave modes. The splitting is trivial: K+
i = Ki, K−i = 0.

2. (v · ni + c) > v · ni > 0 ≥ (v · ni − c). We have K+
i = K+

2i with K+
2i given in

Appendix Equation (A.8) and K−i = Ki −K+
i .

3. (v · ni + c) > 0 ≥ v · ni > (v · ni − c). We have K+
i = K+

3i with K+
3i given in

Appendix Equation (A.13) and K−i = Ki −K+
i .

4. 0 ≥ (v · ni + c) > v · ni > (v · ni − c). All eigenvalues are negative indicating

outflow of all wave modes: K+
i = 0, K−i = Ki.

A.4 Inflow/outflow splitting, case 2, 3 inflow matri-

ces

K+
2i = [k

(1)
2i k

(2)
2i k

(3)
2i k

(4)
2i k

(5)
2i] (A.8)

k
(1)
2i = [v · ni 0 0 0 0]T (A.9)[

k
(2)
2i k

(3)
2i k

(4)
2i

]
= (A.10)

1
2



ρnixλ+/c ρniyλ+/c ρnizλ+/c

2Vni − n2
ixλ− −nixniyλ− −nixnizλ−

−nixniyλ− 2Vni − n2
iyλ− −niynizλ−

−nixnizλ− −niynizλ− 2Vni − n2
izλ−

cρnixλ+ cρniyλ+ cρnizniyλ+


(A.11)

k
(5)
2i =

[
− λ−

2c2

nixλ+

2ρc

niyλ+

2ρc

nizλ+

2ρc

λ+

2

]
(A.12)

179

K+
3i =

λ+

2



0
ρnix
c

ρniy
c

ρniz
c

1

c2

0 n2
ix nixniy nixniz

nix
cρ

0 nixniy n2
iy niyniz

niy
cρ

0 nixniz niyniz n2
iz

niz
cρ

0 cρnix cρniy cρniz 1


(A.13)

180

Appendix B

The Aw-Rascle-Zhang system

In this appendix, I give an expanded analysis of the Aw-Rascle-Zhang system of equa-

tions used for macroscopic traffic simulation in Chapters 4 and 5. In the interest of flow

and clear exposition, some material from earlier chapters is repeated here.

B.1 The system of equations

The ARZ model can be written as a conservation law of the form

q + f (q)x = 0,

where q =

ρ
y

 and f (q) =

ρu
yu

 (B.1)

Here ρ is the density of traffic, i.e. “cars per car length”, u is the velocity of traffic, and

y the “relative flow” of traffic.

y, ρ, and u are related by the equation:

y (ρ, u) = ρ (u− ueq (ρ)) (B.2)

where ueq (ρ) is the “equilibrium velocity” for ρ. There is a single criterion on ueq that

must be satisfied (see Section B.2.3.1) on this function; the following works well:

ueq (ρ) = umax (1− ργ) (B.3)

181

where γ > 0. The first derivative of Equation (B.3) is significant as well:

u′eq (ρ) = −umaxγρ
γ−1 (B.4)

In the above equations, umax is the speed limit of the road. Using Equations (B.2)

and (B.3), one can write u in terms of y and ρ:

u (ρ, y) =
y

ρ
+ ueq (ρ) (B.5)

In what follows, I shall interchangeably use ueq (ρ) and ueq as well as u (ρ, y) and u.

B.2 Waves and speeds

The eigenstructure of the Jacobian of the flux matrix f (q) from Equation (B.1) reveals

the fundamental waves of the system and their speeds.

Jf =

∂ (ρu)
∂ ρ

∂ (ρu)
∂ y

∂ (yu)
∂ ρ

∂ (yu)
∂ y

 =

 ∂ (y+ρueq)

∂ ρ

∂ (y+ρueq)

∂ y

∂

„
y2

ρ
+yueq

«
∂ ρ

∂

„
y2

ρ
+yueq

«
∂ y

 =

ueq + ρu′eq 1

yu′eq − y2

ρ2
2y
ρ

+ ueq

 (B.6)

B.2.1 Eigenvalues (Speeds)

The eigenvalues of Equation (B.6) are given by the characteristic polynomial

λ2 − (A+D)λ+ AD −BC = 0 (B.7)

Where A, B, C, and D are the elements of Jf :

Jf =

ueq + ρu′eq 1

yu′eq − y2

ρ2
2y
ρ

+ ueq

 =

A B

C D

 (B.8)

182

The solution to Equation (B.7) is given by the quadratic equation:

λ0, λ1 =
A+D ±

√
(A+D)2 − 4 (AD −BC)

2
(B.9)

To compute the above, the following is needed:

A+D = ρu′eq + 2ueq +
2y

ρ
= ρu′eq + 2u (B.10)

(A+D)2 = ρ2u′2eq + 4u2
eq + 4

y2

ρ2
+ 4ρuequ

′
eq + 4yu′eq + 8

yueq

ρ
(B.11)

4 (AD −BC) = 4
(
ueq + ρu′eq

)(
2
y

ρ
+ ueq

)
− 4

(
yu′eq −

y2

ρ2

)
(B.12)

= 8
yueq

ρ
+ 4u2

eq + 4yu′eq + 4ρuequ
′
eq + 4

y2

ρ2

(A+B)2 − 4 (AD −BC) = ρ2u′2eq (B.13)

Substituting Equations (B.10) and (B.13) into Equation (B.9):

λ0, λ1 =
ρu′eq + 2u± ρu′eq

2
(B.14)

λ0 = u+ ρu′eq (B.15)

λ1 = u (B.16)

If one chooses a strictly decreasing ueq (as per Equation (B.3)), then u′eq < 0 (see

Equation (B.4)) and the following holds:

u+ ρu′eq = λ0 ≤ λ1 = u (B.17)

Equation (B.17) is a strict inequality only in the nonphysical state ρ = 0.

183

B.2.2 Eigenvectors (Waves)

The shape of the propagating waves is given by the eigenvectors, which can be deter-

mined by the eigenvalues λi

Jfri = λiri (B.18)

We can combine Equation (B.18) with λ0 (from Equation (B.15)) to obtain the corre-

sponding eigenvector r0ueq + ρu′eq 1

yu′eq − y2

ρ2
2y
ρ

+ ueq


r0

0

r1
0

 =
(
u+ ρu′eq

)r0
0

r1
0

 (B.19)

Writing Equation (B.19) out:

(
ueq + ρu′eq

)
r0

0 + r1
0 =

(
u+ ρu′eq

)
r0

0 (B.20)(
yu′eq −

y2

ρ2

)
r0

0 +

(
2
y

ρ
+ ueq

)
r1

0 =
(
u+ ρu′eq

)
r1

0 (B.21)

We can solve Equation (B.20) for r1
0 to obtain:

r1
0 = (u− ueq) r0

0 (B.22)

Thus, the eigenvector corresponding to λ0 is:

r0 =

 1

u− ueq

 =

1

y
ρ

 (B.23)

184

We can similarly combine Equation (B.18) with λ1 (from Equation (B.16)) to obtain

the corresponding eigenvector r1ueq + ρu′eq 1

yu′eq − y2

ρ2
2y
ρ

+ ueq


r0

1

r1
1

 = u

r0
1

r1
1

 (B.24)

Writing Equation (B.24) out:

(
ueq + ρu′eq

)
r0

1 + r1
1 = ur0

1 (B.25)(
yu′eq −

y2

ρ2

)
r0

1 +

(
2
y

ρ
+ ueq

)
r1

1 = ur1
1 (B.26)

Now one can use Equation (B.25) and get:

r1
1 =

(
u− ueq − ρu′eq

)
r0

1 (B.27)

Now the eigenvector corresponding to λ1 can be computed:

r1 =

 1

u− ueq − ρu′eq

 =

 1

y
ρ
− ρu′eq

 (B.28)

B.2.3 Field classification

We can classify each of the two waves as genuinely nonlinear or linearly degenerate with

the following formula:

∇λi · ri (B.29)

If the quantity in Equation (B.29) is zero, one calls the wave i linearly degenerate — that

is to say, it behaves as the waves in a linear equation and propagates without changing

shape. Otherwise, the wave is termed genuinely nonlinear — it manifests as shocks or

rarefactions.

185

B.2.3.1 First family of waves

For λ0 and r0:

∇λ0 =

〈
∂
(
u+ ρu′eq

)
∂ ρ

,
∂
(
u+ ρu′eq

)
∂ y

〉
=

〈
∂
(
y
ρ

+ ueq + ρu′eq

)
∂ ρ

,
∂
(
y
ρ

+ ueq + ρu′eq

)
∂ y

〉

=

〈
− y

ρ2
+ 2u′eq + ρu′′eq,

1

ρ

〉
(B.30)

We can substitute Equations (B.30) and (B.23) into Equation (B.29):

∇λ0 · r0 =

〈
− y

ρ2
+ 2u′eq + ρu′′eq,

1

ρ

〉
·
〈

1,
y

ρ

〉
= − y

ρ2
+ 2u′eq + ρu′′eq +

y

ρ2

= 2u′eq + ρu′′eq (B.31)

So long as ueq is such that the quantity in Equation (B.31) 6= 0, the first family of waves

is genuinely nonlinear. Solutions of genuinely nonlinear families are either shocks or

rarefactions.

B.2.3.2 Second family of waves

For λ1 and r1:

∇λ1 =

〈
∂ u

∂ ρ
,
∂ u

∂ y

〉
=

〈
∂
(
y
ρ

+ ueq

)
∂ ρ

,
∂
(
y
ρ

+ ueq

)
∂ y

〉
=

〈
− y

ρ2
+ u′eq,

1

ρ

〉
(B.32)

186

Equations (B.32) and (B.28) can be substituted into Equation (B.29):

∇λ1 · r1 =

〈
− y

ρ2
+ u′eq,

1

ρ

〉
·
〈

1,
y

ρ
− ρu′eq

〉
= − y

ρ2
+ ueq +

y

ρ2
− ueq

= 0 (B.33)

The second family of waves is linearly degenerate; solutions associated with this family

are simple contact discontinuities — jumps in the solution that propagate as waves in

linear phenomena.

B.2.4 Riemann invariants

Any quantity ωi is invariant across wave i if it satisfies the following equation:

∇ωi · ri = 0 (B.34)

B.2.4.1 First family of waves

The invariant for the first wave (corresponding to λ0 and r0) can be computed by first

substituting Equation (B.23) into Equation (B.34):

〈
∂ ω0

∂ ρ
,
∂ ω0

∂ y

〉
·
〈

1,
y

ρ

〉
=
∂ ω0

∂ ρ
+
∂ ω0

∂ y

y

ρ
= 0 (B.35)

187

Equation (B.35) is a partial differential equation that can be solved with separation of

variables. Assuming a solution of the form ω0 = G (ρ)H (y):

∂ ω0

∂ ρ
+
∂ ω0

∂ y

y

ρ
= 0

∂ (G (ρ)H (y))

∂ ρ
ρ+

∂ (G (ρ)H (y))

∂ y
y = 0

G′ (ρ)H (y) ρ+G (ρ)H ′ (y) y = 0

G′ (ρ)

G (ρ)
ρ+

H ′ (y)

H (y)
y = 0 (B.36)

The two terms on the left hand-side of Equation (B.36) can now be written as ODEs

and solved with standard techniques

G′ (ρ)

G (ρ)
ρ = k

H ′ (y)

H (y)
y = −k

G′ (ρ)

G (ρ)
=
k

ρ

H ′ (y)

H (y)
=
−k
y

G (ρ) = ρk H (y) = y−k

Then ω0 = G (ρ)H (y) = ρky−k for any k; one can choose k = −1 and obtain

ω0 =
y

ρ
= u− ueq (B.37)

B.2.4.2 Second family of waves

The second family of waves is linearly degenerate, as shown in Section B.2.3.2; λ1 already

satisfies Equation (B.34) (see Equation (B.33)). Thus,

ω1 = λ1 = u (B.38)

188

B.3 Riemann problem

Given initial constant states ql (with components which I term ρl, yl, and ul and ρr, yr,

and ur, respectively) for x < 0 and qr for x > 0, what happens for t > 0? In the case of

the Aw-Rascle-Zhang model, there are several distinct possibilities. To begin with, the

speeds of the system (Equations (B.15) and (B.16)) are distinct for ρl > 0; in this case,

there are three distinct regions of the solution: ql for x ≤ λ0t, qm for λ0 <
x
t
< λ1, and

qr for x ≥ λ1t. In the case where ρl = 0, λ0 = λ1 and qm vanishes. I deal with cases

where ρl = 0 or ρr = 0 separately below.

B.3.1 Intermediate state

To compute the left- and right-going fluctuations in the update scheme, one needs to

compute the value of q0 — that is to say, the value of q at x = 0 for t > 0, given ql

and qr. In general, q0 can be ql, qr, or qm. For the ARZ model under consideration,

λ1 = ur > 0 and therefore q0 cannot be qr. It is left to determine if q0 is ql or qm, and if

qm what the value of qm along x = 0 is.

Since ω0 = u − ueq is conserved across the 0-wave connecting ql and qm and that

ω1 = u is conserved across the 1-wave connecting qm and qr, the following holds:

ul − ueq (ρl) = um − ueq (ρm) (B.39)

and

um = ur (B.40)

189

Substituting Equation (B.40) into Equation (B.39):

ul − ueq (ρl) = ur − ueq (ρm)

ul − ur − ueq (ρl) = −ueq (ρm)

ur − ul + ueq (ρl) = ueq (ρm)

ur − ul + umax (1− ργl) = umax (1− ργm)

ur − ul
umax

− ργl = −ργm

ργl +
ul − ur
umax

= ργm (B.41)(
ργl +

ul − ur
umax

) 1
γ

= ρm (B.42)

B.3.1.1 Existence of solutions

Clearly, the manipulations in Equation (B.42) are only valid for arbitrary γ when ρm > 0.

The quantity on the left hand side of Equation (B.41) must be > 0; from this, the

following condition for ρm to exist can be derived:

ργl +
ul − ur
umax

> 0

umaxρ
γ
l + ul − ur > 0

umaxρ
γ
l + ul > ur (B.43)

B.3.2 Classification of solutions

The speeds (λ0l, λ0m) associated with the first family are (using Equations (B.15) and

(B.42)):

λ0l = ul − umaxγρ
γ
l (B.44)

190

λ0m = um − umaxγρ
γ
m

= ur − umaxγ

(
ργl +

ul − ur
umax

)
= ur − umaxγρ

γ
l + γ (ur − ul) (B.45)

When λ0l < λ0m, the solution is a rarefaction, and when λ0l > λ0m, the solution is a

shock. This reduces to the following:

λ0l > λ0m

ul − umaxγρ
γ
l > ur + γ (ur − ul)− umaxγρ

γ
l

0 > ur − ul + γ (ur − ul)

0 > (1 + γ) (ur − ul)

ul > ur

So

λ0l > λ0m ⇐⇒ ul > ur (B.46)

For physical inputs to the Riemann problem (that is to say ρl > 0 and ρr > 0), four

distinct types of solutions can be identified, based on ql and qr:

Case 0 ur = ul

This is a degenerate case, but bears consideration since the assumptions in the

remaining cases are based on strict inequalities. In this case, Equation (B.42)

predicts ρm = ρl, so qm = ql. Clearly, there is no wave in the 0-family; the usual

contact discontinuity in the 1-family remains.

191

B.3.2.1 qo for case 0

Since qm = ql,

qo = ql (B.47)

regardless of the sign of λ0l.

Case 1 ur < ul

As per Equation (B.46), the characteristics in the 0-family are colliding and a

shock appears in the 0-family. The shock represents in increase in density (because

ρm > ρl; see Fig. B.1) and a decrease in velocity (because ur < ul). The 1-family

has a contact discontinuity in ρ as always.

B.3.2.2 Shock speed

In general, a shock’s speed is given by:

λs =
f (q+)− f (q−)

q+ − q−
(B.48)

Here I have slightly abused notion and divided two vectors; what I mean to say by

this is that the equation is valid for each component of the vector. For the ARZ

model, this gives the following:

λs =
ρ+u+ − ρ−u−
ρ+ − ρ− =

y+u+ − y−u−
y+ − y− (B.49)

And in this context, ρ+ = ρm, u+ = um = ur, ρ− = ρl, and u− = ul; therefore:

λs =
ρmum − ρlul
ρm − ρl (B.50)

192

B.3.2.3 qo for case 1

Following the above discussion, q0 for case 1 depends on the sign of Equa-

tion (B.50):

q0 =


ql λs ≥ 0,

qm λs < 0

(B.51)

0.0 0.2 0.4 0.6 0.8 1.0ρ
0.0

0.2

0.4

0.6

0.8

1.0

u ql

qrqm

Case 1
0-Invariant
1-Invariant

Figure B.1: Case 1 in the ARZ Riemann problem

Case 2 ur − umaxρ
γ
l < ul < ur

This case satisfies Equation (B.43), so ρm > 0. Since ul < ur, Equation (B.46)

predicts a rarefaction wave in the 0-family. The 1-family is a contact discontinuity,

as always. The intermediate density ρm is less than ρl (see Fig. B.2).

B.3.2.4 Centered Rarefactions

Rarefactions represent regions of smooth variation and cannot be described with

a single speed. λol and λom (see Equations (B.44) and (B.45)) determine if the

193

rarefaction is to the left or right of qo (in which case q0 is qm or ql, respectively)

or if qo is inside the rarefaction. If this is the case, it is a centered or transonic

rarefaction; some extra work must be to determine what the structure of the

rarefaction is and specifically evaluate it at x = 0.

Following [Leveque, 2002], q in a centered rarefaction is given by the following

system of differential equations:

q̃′ (ξ) =
rp (q̃ (ξ))

∇λp (q̃ (ξ)) · rp (q̃ (ξ))
(B.52)

with boundary conditions

ξ0 = λ0l q̃ (ξ0) = ql

ξ1 = λ0m q̃ (ξ1) = qr

(B.53)

for p = 0, 1 are the various solution families. For p = 0, the denominator of Equa-

tion (B.52) is Equation (B.31), and ro is given by Equation (B.23). Substituting

these into Equation (B.52):

q̃′ (ξ) =
1

2ũ′eq + ρ̃ũ′′eq

 1

ũ− ũeq

 (B.54)

where ũeq, ũ, and ρ̃ are all functions of ξ. The denominator above can be expanded

as follows:

2ũ′eq + ρ̃ũ′′eq = −2umaxγρ̃
γ−1 − umaxρ̃γ (γ − 1) ρ̃γ−2

= −2umaxγρ̃
γ−1 − umaxγ (γ − 1) ρ̃γ−1

= − (2 + (γ − 1)) γumaxρ̃
γ−1

= −γ (γ + 1)umaxρ̃
γ−1 (B.55)

194

Equation (B.55) can be substituted into Equation (B.52) to obtain the following

ODEs:

ρ̃′ =
−1

γ (γ + 1)umaxρ̃γ−1
(B.56)

and

ỹ′ =
ũeq − ũ

γ (γ + 1)umaxρ̃γ−1
(B.57)

Solution for ρ̃ Equation (B.56) is solved using standard techniques:

d ρ̃

d ξ
=

−1

γ (γ + 1)umaxρ̃γ−1

ρ̃γ−1d ρ̃ =
−d ξ

γ (γ + 1)umax∫
ρ̃γ−1d ρ̃ =

∫ −d ξ
γ (γ + 1)umax

ρ̃γ

γ
+ Cρ =

−ξ
γ (γ + 1)umax

+ Cξ

ρ̃γ =
−ξ + C

(γ + 1)umax

ρ̃ =

(−ξ + C

(γ + 1)umax

) 1
γ

(B.58)

A C must be found that satisfies Equation (B.58) subject to Equation (B.53); that

is:

ρ̃ (λ0l) =

(−λ0l + C

(γ + 1)umax

) 1
γ

= ρl (B.59)

and

ρ̃ (λ0m) =

(−λ0m + C

(γ + 1)umax

) 1
γ

= ρm (B.60)

195

The above equations can be expanded to find C; for Equation (B.59), we have

(using Equation (B.44)):

(−λ0l + C

(γ + 1)umax

) 1
γ

= ρl

umaxγρ
γ
l − ul + C

(γ + 1)umax

= ργl

umaxγρ
γ
l − ul + C = (γ + 1)umaxρ

γ
l

γumaxρ
γ
l − ul + C = γumaxρ

γ
l + umaxρ

γ
l

C = ul + umaxρ
γ
l (B.61)

And for Equation (B.60), we have (using Equation (B.45)):

(−λ0m + C

(γ + 1)umax

) 1
γ

= ρm

umaxγρ
γ
l − γ (ur − ul)− ur + C

(γ + 1)umax

= ργl +
ul − ur
umax

umaxγρ
γ
l + γ (ul − ur)− ur + C = umax (γ + 1)

(
ργl +

ul − ur
umax

)
umaxγρ

γ
l + γ (ul − ur)− ur + C = (γ + 1) (umaxρ

γ
l + ul − ur)

γumaxρ
γ
l + γ (ul − ur)− ur + C = γumaxρ

γ
l + γ (ul − ur) + umaxρ

γ
l + ul − ur

C = ul + umaxρ
γ
l (B.62)

Clearly Equations (B.61) and (B.62) are in agreement. Thus, the structure of a

rarefaction wave given left and right states ql and qm is:

ρ̃ (ξ) =

(
ul + umaxρ

γ
l − ξ

(γ + 1)umax

) 1
γ

(B.63)

196

In the context of determining q0 in the Riemann problem, we wish to evaluate

Equation (B.63) at ξ = 0:

ρ̃ (0) =

(
ul + umaxρ

γ
l

(γ + 1)umax

) 1
γ

(B.64)

Solution for ỹ Rather than solve Equation (B.57) directly, ũ (and therefore,

with ρ̃ from Equation (B.63), ỹ) can be determined using ρ̃ and the Riemann

invarient ωo from Equation (B.37), which must hold across the rarefaction.

ul − ueq (ρl) = ũ (ξ)− ueq (ρ̃ (ξ)) (B.65)

ul − ueq (ρl) = ũ (ξ)− umax (1− ρ̃ (ξ)γ) (B.66)

ul − ueq (ρl) = ũ (ξ)− umax

(
1− ul + umaxρ

γ
l − ξ

(γ + 1)umax

)
(B.67)

ũ (ξ) = ul − ueq (ρl) + umax

(
1− ul + umaxρ

γ
l − ξ

(γ + 1)umax

)
(B.68)

ũ (ξ) = ul − umax (1− ργl) + umax − ul + umaxρ
γ
l − ξ

γ + 1
(B.69)

ũ (ξ) = ul + umaxρ
γ
l −

ul + umaxρ
γ
l − ξ

γ + 1
(B.70)

ũ (ξ) =
(γ + 1) (ul + umaxρ

γ
l)− (ul + umaxρ

γ
l) + ξ

γ + 1
(B.71)

ũ (ξ) =
γ (ul + umaxρ

γ
l) + ξ

γ + 1
(B.72)

As with ρ̃, in the context of determining q0 in the Riemann problem, we wish to

evaluate Equation (B.72) at ξ = 0:

ũ (0) =
γ

γ + 1
(ul + umaxρ

γ
l) (B.73)

197

0.0 0.2 0.4 0.6 0.8 1.0ρ
0.0

0.2

0.4

0.6

0.8

1.0

u

ql

qrqm

Case 2
0-Invariant
1-Invariant

Figure B.2: Case 2 in the ARZ Riemann problem

B.3.2.5 q0 for case 2

For case 2, q0 depends on the signs of both Equation (B.44) and Equation (B.45):

q0 =


ql λ0l ≥ 0

qm λ0m ≤ 0

q̃ (0, ql, qm) λ0l < 0 and λ0m > 0

(B.74)

Here q̃ corresponds to the centered rarefaction state described above in Sec-

tion B.3.2.4.

Case 3 ul ≤ ur − umaxρ
γ
l

Now Equation (B.42) cannot be evaluted; the density of the intermediate state ρm

is 0 (see Fig. B.3).

So ρm = 0; to observe the Riemann invariants ω0 and ω1 from Section B.2.4, um

198

is given by the following (starting with Equation (B.39)):

ul − ueq (ρl) = um − ueq (0)

ul − umax (1− ργl) + umax = um

ul + umaxρ
γ
l = um (B.75)

and

λ0m = um − ρu′eq (ρm)

= ul + umaxρ
γ
l (B.76)

In this case, λ0l = ul − umaxγρ
γ
l < λ0m = ul + umaxρ

γ
l ; ql and qm are connected

through a rarefaction wave. Now there is a jump in both ρ and u to get to qr; this

can be imagined as a fictitious velocity wave where um = ul + umaxρ
γ
l jumps to ur

followed by the usual 1-wave — a contact discontinuity in ρ from ρm = 0 to ρr.

The rarefaction wave discussed above will be centered if λ0l < 0 (since λ0m > 0).

In this case, the same approach used for Case 2 applies (see Section B.3.2.4).

However, while the analysis of the boundary conditions for the integrated equation

Equation (B.58) is valid for ρl, in Equation (B.59), a specific definition of qm

with um = ur and ρm > 0 given by Equation (B.42) was considered; revisiting

Equation (B.60) for the new qm shows if the previous choice of C = ul + umaxρ
γ
l is

still valid.

(−λ0m + C

(γ + 1)umax

) 1
γ

= ρm(− (ul + umaxρ
γ
l) + C

(γ + 1)umax

) 1
γ

= 0

C = ul + umaxρ
γ
l (B.77)

199

This is consistent with the C determined by Equation (B.61), so it remains to

use Equation (B.64) and Equation (B.73) for q0. Regardless of qm, the value of qo

depends on the sign of λ0l (just as with case 2).

B.3.2.6 q0 for case 3

q0 for this case is identical to that of case 2, except that the possibility of q0 = qm

can be eliminated, since λ0m > 0:

q0 =


ql λ0l ≥ 0

q̃ (0, ql, qm) λ0l < 0

(B.78)

0.0 0.2 0.4 0.6 0.8 1.0ρ
0.0

0.2

0.4

0.6

0.8

1.0

u

ql

qr

Case 3
0-Invariant
1-Invariant

Figure B.3: Case 3 in the ARZ Riemann problem

For robustness and realism, it is desirable to properly handle the absence of traffic (i.e.

when ρl or ρr are 0). In fact, since u is not well-defined for ρ = 0, there are only two

cases for problems involving “vacuum” states, and they can be treated as sub-cases of

case 3:

200

Case 4 ρl = 0, ρr > 0 Clearly, the absence of traffic on the left should have no effect

the traffic on the right (drivers in front will not change their behavior if there are

no cars behind them); no qm reasonably exists. There are no waves of the first

family; the usual contact discontinuity in the second family remains.

B.3.2.7 qo for case 4

q0 = ql =

0

0

 (B.79)

Case 5 ρl > 0, ρr = 0 This case is treated the same way as the first family of waves in

case 3; we expect a rarefaction wave to appear. There is no jump in ρ, however,

so no wave from the second family appears.

B.3.2.8 q0 for case 5

qo for this case is identical to case 3 (see Equation (B.78)).

201

Appendix C

Processing GIS Data

C.1 Geometric Data

GIS road network data contains geometric information for roads. The roads that GIS

data describes can differ from the everyday usage of the word. Here, each road is a

list of points that may or may not correspond uniquely to a real-world road. Often

many of these road segments are required to define one real road. There is topological

information present in the network in the form of road intersections. These are not

described explicitly; they are only present in that road segments will start or stop at

the same points. Again, there is no one-to-one mapping between these intersections

and those seen on real roads. The reason for this is that, in the GIS file, roads do not

cross each other. If the real roads cross each other, then the GIS roads will meet at an

intersection, and two new roads will be created. If one of the roads is a highway, however,

the intersection created would not correspond to a real intersection: there could be an

overpass or something similar. Further information present in the geometric data is

the direction the road is defined in. This is particularly important for roads that are

one-way, as often the direction in which the road is defined is the only specification of

its direction.

C.2 Non-geometric Data

The GIS road network data is accompanied by a database file, in DBF format. The

specific data that are included varies from dataset to dataset. However, often, the data

202

will include fields for road class, road name, speed limit, one-way, number of lanes, and

other data.

C.2.1 Desired Output

The processed GIS data needs to be in the format discussed above for the simulation to

proceed. This process focuses primarily on creating the topological information needed

for the simulation, which the geometric information, such as where the road and inter-

section boundaries are can be created in a post-processing step

C.2.2 Processing

Intersections First, some region of roads of interest is chosen. Then the intersections

between the roads are determined, and the membership data – including which roads are

incoming and outgoing based on the direction their geometric data — is defined. These

intersections are then classified based on their member roads, as shown in Figure C.1. If

an intersection has at least one ramp, it is classified as a ramp intersection. Otherwise,

if it has at least one highway, it is classified as a highway intersection. All other inter-

sections are left as the default class. The intersections of type ramp and highway are

deleted, and the reads crossing at those points are joined. If the names of the roads are

available, then the roads are joined based on the names. If the names are not available,

the roads are joined based on the similarity of their orientations. Joining roads consists

of 1) combining their endpoint intersection memberships, 2) combining their geometries,

and 3) updating the intersection membership information.

Geometric Modifications The road geometry needs to be modified: GIS data does

not account for low level details such as intersection geometry. Therefore, roads that

meet at intersections need to be pulled back. This can be done by scaling the final

segment of each road connected to an intersection by a constant amount. Doing so

203

Figure C.1: The intersections are classified as ramps, in purple, highways, in green, or
street lights, in red.

204

preserves the road orientation. However, this approach is complicated by the fact that

roads do not approach intersections from the same angle. A constant scaling can be

conservative for roads that approach each other at a small angle. A solution to this is

to base the scaling factor on the reciprocal of the approach angles.

Ramps change road geometry further. It is desirable that ramps will follow alongside

the highway for a period of time to allow realistic merging on and off. To account for this,

the highway segment can be added prior to the ramp in the ramp’s geometry. Finally,

the road geometry must be modified to account for overpasses. Overpasses are present

in the highway class of intersections. However, there is not a one-to-one relationship

between overpasses and these intersections. For example, a divided highway crossed

by a street would have two highway type intersections but one overpass. To account

for this, all highway intersections within some distance can be joined and considered

one. This will not account for the most complicated overpass structures — ones with

multiple highways and levels. The geometry of an overpass can be thought of as like a

plateau. The incoming roads need to ramp up to the level of the overpass, cross it, and

then ramp down to street level. This geometric modification can be defined using two

circles centered at the origin at the overpass. The first indicates when the road starts

ascending, the second when it crests. Due to the sparseness of GIS data, it is usually

necessary to add points at the intersections of the road and the two circles.

Lanes and Adjacencies It is also necessary to define the structure of lanes within

the roads and their adjacencies. For the most part, this is trivial: each road has a

number of lanes based on its class, these lanes are all adjacent to each other, and they

run the length of the road. This is complicated for the ramp case, however. The ramp’s

lane is always a member of the ramp, but it is adjacent to the highway along a specific

interval. This interval must be defined both in terms of its position on the ramp and on

the highway.

205

These intervals are described as follows: for ramps, the adjacency interval appears

either at the end or the beginning of the ramp, depending on whether it is an offramp

or an onramp. The length of the interval is the length of the segment from the highway

that was added to the ramp geometry. For the highway, its interval starts at the point

of the ramp class intersection and lasts the length of the segment of the highway added

to the ramp.

Intersections The intersections that were not classed as highways or ramps will be

defined as street light controlled intersections. These lights have a number of states

describing which input lanes can flow to which output lanes. Based on the road in-

tersection membership and lane data that was previously calculated, the states can be

defined as every legal pairing of lanes from each member road.

206

Appendix D

Parallel Traffic Simulation

One advantage of this approach is the ease with which it may made to take advantage

of parallel hardware. In theory, the computation of each flux through the solution of the

Riemann problem (i.e. Section 4.3.3.4) is independent. Likewise, the given these fluxes,

the time integration of the unknowns (see Equation (4.4)) is independent at each cell,

and so too is the advection of each carticle as described in Section 4.3.4.

In practice, this is too fine a granularity to be useful, so I choose the handle the

advancement of the solution along each lane as a task. I partition all lanes among the

available processors and the various kernels mentioned above — the computation of

fluxes, integration of the continuum equations, and the advection of the carticles — are

all applied in parallel.

The amount of work performed in each lane is directly proportional to the number

of cells in that lane, and thus the length (Equation (4.5) ensures that the number of

cells in each lane is proportional to its length). To ensure that the workload assigned

to each processor is roughly equal, I perform the partitioning of lanes in such a way as

to have the number of cells assigned to each processor be as even as possible. Since the

number and lengths of lanes can be safely be assumed to be constant throughout the

simulation, this can be computed as a static partition.

The problem of jobs of varying length among multiple processors so as to minimize

the total processing time is known as the makespan. This is an NP-complete problem

that is closely related to the more familiar bin-packing problem. While it has been proven

that there are no fully polynomial approximation algorithms for these techniques, there

are (1+ ε) polynomial approximation algorithms that are suitable for the static problem

207

(c.f. [Hochbaum and Shmoys, 1987].)

The parallelization scheme outlined above works well for computing flow along lane.

The amount of communication between lanes is a constant amount of data — the com-

putation of fluxes at boundaries only requires the last grid cell of the incoming lane and

the first grid cell of the outgoing one. Very little memory is shared and the effect of the

computer’s memory hierarchy is limited, and this is the scheme that I currently use in

my implementation.

In the presence of lane changes, where lanes may be adjacent for a period proportional

to their length, lanes may have greater communication needs. This makespan-based par-

titioning scheme fails to account for adjacencies and could suffer from latency problems

due to increased bandwidth and memory hierarchy issues, and the task of producing a

partitioning that considers adjacency information in addition to lane length to achieve

maximum throughput is a promising problem I hope to explore in future work.

208

Appendix E

Arc Roads

E.1 Preliminaries

We have an ordered sequence P of n points:

P := (p0, p1, . . . , pn−2, pn−1) (E.1)

These points define a (not necessary planar) polyline with n − 1 segments such as

that in Figure E.1a. Assume that there are no two points adjacent in the sequence that

are equal, and that there are no three adjacent points that are colinear; clearly these

adjacent repeated points or the interior points in a colinear sequence can be eliminated

without modifying the line’s shape.

We wish to ‘smooth’ this polyline to something like what is shown in Figure E.1b,

which I shall refer to as PS. We construct PS by replacing the region around each interior

point pi, i ∈ Z [1, n− 2] of P with a circular arc and retaining the exterior points p0 and

pn−1.

Each of these circular arcs can be characterized by a center ci, radius ri, orientation

oi, start radius direction si, and angle φi; see Figure E.2.

209

p0

p1

p2

p3

p4

(a) A polyline P (b) PS : A ‘smoothed’ version of the polyline
P

r1
c1

r2

c2

r3

c3

(c) The polyline P and the circles defining PS

Figure E.1: Polylines

E.2 Construction of arc roads from polylines

E.2.1 Arc formulation

As mentioned above, each arc is defined by a center ci, a radius ri, orientation oi, start

radius vector si, and angle φi. Each arc i corresponds to an interior point pi, and I

require it to be tangent to pi−1pi and pipi+1. See Figures E.1c and E.2; the full circles

corresponding to each arc are shown.

To help describe each arc i, I introduce the following quantities derived from the

210

Figure E.2: Quantities defining an arc i corresponding to interior point pi; the orien-
tation vector oi is coming out of the page.

polyline P :

vi = pi+1 − pi (E.2)

their lengths:

Li = |vi| (E.3)

and the associated unit vectors:

ni =
vi
Li

=
vi
|vi| (E.4)

We shall frequently refer to −ni−1 = pi−1−pi
|pi−1−pi| . We also refer to the normal of the plane

containing the circle:

oi = −ni−1 × ni (E.5)

At certain times, it is useful to construct a matrix Fi that is the frame defined by ni,

211

si, and oi:

Fi =

[
ni si oi

]
(E.6)

The matrix Hi representing the homogeneous transform of translation to the arc center

ci along with the frame is defined as follows:

Hi =

 ni si oi ci

0 1

 (E.7)

E.2.1.1 Tangent points

The projections of ci−pi onto −ni−1 and onto ni have equal length αi; then the tangent

points of the circle on −vi−1 and vi are:

(ci − pi) proj − ni−1 + ci = −αini−1 + ci (E.8)

(ci − pi) proj ni + ci = αini + ci (E.9)

E.2.1.2 Radius vectors

We are also interested in the (negative) radius vectors from these points to the center

ci:

r−i = −risi = ci − (−αni−1 + pi) = ci + (αni−1 − pi) = rini−1 × oi (E.10)

r+
i = ci − (αni + pi) = rini × oi (E.11)

Obviously, since ni−1 and ni are perpendicular to oi (see Equation (E.5)),
∣∣r−i ∣∣ =

∣∣r+
i

∣∣ =

ri.

212

E.2.1.3 The center

The center ci can be determined by combining Equations (E.10), (E.11) and (E.8),

(E.9):

ci = pi − αini−1 + r−i (E.12)

= pi + αini + r+
i (E.13)

We can also write ci in terms of the unit bisector bi:

ci = pi +
√
r2
i + α2

ibi (E.14)

Where bi is of course given by:

bi =
ni + ni−1

|ni − ni−1| (E.15)

See Fig. E.3 for a visual depiction of these quantities.

E.2.1.4 Angles

From Figure E.3, we know:

cosφi = r−i · r+
i (E.16)

cos 2θi = −ni−1 · ni (E.17)

213

pi

−vi−1

−ni−1

vi
ni

bi

θi

θi

−αini−1

r−i

αini

r+
i

ci

π − θi
π − θi

Figure E.3: The interior point pi with backward vector −vi−1 and forward vector vi.
bi is the unit bisector of these vectors

Combining Equations (E.16) and (E.17), we get the following equation for the angle φi

of each arc:

φi = 2 (π − θi)

= 2π − arccos−ni−1 · ni
= 2π − (arccos ni−1 · ni − π)

= π − arccos ni−1 · ni (E.18)

214

E.2.1.5 Relating ri and αi

Say we are given a triple of points pi−1, pi, pi+1 to which we wish to fit an arc. Of

the quantities that characterize an arc listed in Section E.1, the orientation oi, angle φi

depend solely on the normals ni−1 and ni; see Equations (E.5) and (E.18). The center

ci and start radius vector si depend on these normals and the radius ri.

To fit an arc to an interior point i, we must choose an appropriate radius to complete

the definition. The obvious lower bound condition is ri > 0; as upper bound, each radius

depends on the geometry of the triple of points about pi. To remain tangent to both

pi−1pi and pipi+1, we must be certain that the points of tangency −αini−1 and αini are

on those segments. This translates to the following:

αi ≤ min {Li−1, Li} (E.19)

To put this limit in terms of ri, we need a formula relating ri, and αi. From inspection

of Fig. E.3, we can see that:

ri = αi tan θi (E.20)

We know from trigonometry that

tan θ =

√
1− cos 2θ

1 + cos 2θ
(E.21)

We can combine Equation (E.20) with Equation (E.21) to obtain

ri = αi

√
1− cos 2θi
1 + cos 2θi

(E.22)

215

Finally, we can substitute Equation (E.17) into Equation (E.22), and obtain

ri = αi

√
1− ni · −ni−1

1 + ni · −ni−1

= αi

√
1 + ni · ni−1

1− ni · ni−1

(E.23)

Then the limits on ri subject to the following:

ri ∈
(

0,min {Li−1, Li}
√

1 + ni · ni−1

1− ni · ni−1

]

E.2.2 Fitting the ri

In Section E.2.1, I developed the tools to compute an arc for each interior point of a

polyline P given a radius ri for each.

Given an arbitrary polyline P , it is desirable to automatically select the ri to complete

the definition of a smoothed polyline PS. A reasonable goal is to pick the ri such that

the quantity

min
i∈[1,n−2]

ri (E.24)

is maximal over all valid configurations of ri; this helps minimize the ‘sharpness’ of each

corner.

We must consider what values of ri are valid configurations. The bounds on αi given

in Equation (E.19) are valid for a given triple of points, but when we are concerned with

the αi for all of the interior points of P , we must consider that the Li between interior

points pi−1 and pi are in contention, i.e.

αi + αi+1 ≤ Li (E.25)

where again we set α0 = αn−1 = 0.

216

E.2.2.1 Fitting algorithm

I have developed a recursive algorithm for selecting the ri for each arc given a polyline

P that satisfies Equation (E.24). Briefly, we iterate over all of the segments pipi+1, i ∈
[0, n − 2] and consider how large a radius it is possible to assign to the arcs i, i + 1 at

either end of the segment i; we take the smallest such segment (and associated radius)

and assign this radius to the associated arcs. This process is repeated until each interior

point has been assigned a radius value.

A key component of the algorithm is how one considers how large a radius can be

assigned to the arcs at either end of a segment i; we wish to ‘balance’ the radii of the

arcs at either end of the segments such that ri = ri+1. This leads to:

ri = ri+1 = αifi = αi+1fi+1 (E.26)

Where I have used Equation (E.23) and we introduce the convenience

fi =

√
1 + ni · ni−1

1− ni · ni−1

(E.27)

Combining Equations (E.26) and (E.25), we compute:

Li − αi ≥ αi+1 =
αifi
fi+1

Li − αi ≥ αifi
fi+1

Li ≥ αifi
fi+1

+ αi

Li ≥ αi
fi
fi+1

+ 1

Li ≥ αi
fi + fi+1

fi+1

Lifi+1

fi + fi+1

≥ αi (E.28)

217

This gives (invoking Equation (E.25) again):

αi = min

{
Li−1 − αi−1,

Lifi+1

fi + fi+1

}
(E.29)

αi+1 = min {Li+1 − αi+2, Li − αi} (E.30)

Since it is natural to define α0 = αn = 0, Equation (E.29) is not considered when i = 0;

nor is Equation (E.30) when i = n− 1. Algorithm E.1 gives pseudocode for this radius-

balancing procedure. The rest of the algorithm is given in detail in Algorithm E.2; the

Algorithm E.1 Radius-Balance

Radius-Balance(i)

1 αa = min
{
Li−1,

Lifi+1

fi+fi+1

}
2 αb = min {Li+1, Li − αa}
3 return αa, αb, max{fiαa, fi+1αb}

The Radius-Balance returns the radius that balances the radii on either end
segment i.

procedure Alpha-Assign is invoked with s = 0 and e = n − 1 (with A the array of

αi, with A[0] = A[n − 1] = 0); the ri are easily computed after Alpha-Assign com-

pletes using Equation (E.23). Both Radius-Balance and Alpha-Assign implicitly

make use of (but do not modify) quantities associated with the polyline P : Li from

Equation (E.3) and fi from Equation (E.27).

E.2.2.2 Optimality of radii-selection algorithm

The algorithm described above in Section E.2.2.1 aims to maximize Equation (E.24).

Here I informally demonstrate that the resulting assignment of ri makes the value of

Equation (E.24) as large as possible given the shape of the input polyline P .

Consider that Alpha-Assign has been run on a polyline P . Now consider the set

218

Algorithm E.2 Alpha-Assign

Alpha-Assign(A, s , e)

// A — array of n α values, s — start segment index, e — end segment index + 1
1 rmin, imin = ∞, e // Initialize min. radius, index of min. index
2 if s + 1 ≥ e // Return if interval is length zero
3 return
4 αb = min {Ls − A[s], Ls+1}
5 rcurrent = max{fsA[s], fs+1αb} // Radius at initial segment
6 if rcurrent < rmin

7 rmin, imin = rcurrent, s
8 αlow, αhigh = A[s], αb

9 for i = s + 1 to e − 2 // Radii for internal segments
10 αa, αb, rcurrent = Radius-Balance(i)
11 if rcurrent < rmin

12 rmin, imin = rcurrent, i
13 αlow, αhigh = αa , αb

14 αa = min {Le−2, Le−1 − A[e]}
15 rcurrent = max {fe−1αa, feA[e]} // Radius at final segment
16 if rcurrent < rmin

17 rmin, imin = rcurrent, e − 1
18 αlow, αhigh = αa ,A[e]
19 A[imin] = αlow // Assign alphas at ends of selected segment
20 A[imin + 1] = αhigh

21 Alpha-Assign(A, s , imin) // Recur on lower segments
22 Alpha-Assign(A, imin + 1 , e) // Recur on higher segments

The Alpha-Assign procedure assigning radii based on a polyline P

219

of radii Rmin that have the smallest value of radius rmin, namely:

ri = rmin, ∀i ∈ Rmin (E.31)

ri > rmin, ∀i ∈ [1, n− 2]/Rmin (E.32)

To increase the value of Equation (E.24), one must increase the value of rmin — i.e

increase ri, ∀i ∈ Rmin.

Now recall how Alpha-Assign works; each call examines the unassigned A in its

range and finds the largest radius that could be assigned to each. Then the arc that

has the smallest such ‘largest’ radius is assigned to. Thus the radii assigned (indirectly,

through the A[i]) in a call must be equal to or greater than that assigned in its caller,

and so on up to the top-level call. Then the value of the radius computed in the top-

level call to Alpha-Assign is rmin; to show that the computed rmin cannot be improved

upon, it is sufficient to show that the two arcs assigned to (one if imin = s or e − 1) in

the top-level call to Alpha-Assign cannot have their radii increased.

Boundary case First consider the case where imin = s = 0 (since this the top-level

invocation, s = 0). Then in Line 4 of Alpha-Assign, know we must have chosen

αb = L0 − A[0] = L0 (E.33)

(recall that A[0] = 0). Otherwise, that would mean

L0 − A[0] = L0 > L1 (E.34)

220

This would lead to rcurrent having been assigned f1L1 at Line 5. But then when i = 1

and invoke Radius-Balance(1) on Line 10,

αa = min

{
L0,

L1f2

f1 + f2

}
=

L1f2

f1 + f2

(E.35)

in Line 1 of Radius-Balance because f2/ (f1 + f2) < 1 and L0 > L1 (from Equa-

tion (E.34)). Then we would have replaced rcurrent = f1L1 from Line 5 with rcurrent =

f1L1f2/ (f1 + f2) at Line 11, and we would not have chosen imin = 0. Thus, by con-

tradiction, if imin = 0 in the first call to Alpha-Assign, we know that A[1] = L0 and

r1 = f1L0 = rmin.

So A[1] = α1 = L0 and rmin = r1 = f1L0; then the condition in Equation (E.25)

dictates that we cannot increase α1. Neither, in that case, can we increase rmin. A

similar argument can be made in the case where imin = e− 1 = n− 2.

General case I shall move on to demonstrating that when 0 < imin < n− 2, neither

of the assigned A[imin] and A[imin + 1] (nor their associated radii) may be increased.

I shall do this by demonstrating that rimin
= rimin+1 = rmin and that A[imin]+A[imin +

1] = Limax ; then there is no way to increase either of rimin
or rimin+1 without decreasing

the other, and thus rmin must hold.

Consider imax ∈ [1, n−3] from the top-level invocation of Alpha-Assign; the associ-

ated αa and αb must have been computed via Radius-Balance(i) on Line 10. I contend

that Line 1 in Radius-Balance(i) must have computed αa = min
{
Li−1,

Lifi+1

fi+fi+1

}
=

Lifi+1

fi+fi+1
.

If it had not, then it would have computed αa = Li−1 and we would know that

Li−1 <
Lifi+1

fi + fi+1

(E.36)

221

Furthermore, we know that Radius-Balance would have returned some Q such that

rcurrent = Q ≥ fiLi−1 (E.37)

as computed on its Line 3. Now consider what the computation for i − 1 must have

looked like; if i > 1, then we have

αa = min

{
Li−2,

Li−1fi
fi−1 + fi

}
(E.38)

αb = min {Li, Li−1 − αa} (E.39)

These equations are from Lines 1 and 2 of a call to Radius-Balance (i− 1). By

combining Equations (E.36) and (E.39), it can be deduced that αb = Li−1−αa, regardless

of the value of αa. Then, in Line 3, the radius for i− 1 is

rcurrent = max {fi−1αa, fi (Li−1 − αa)} (E.40)

In fact, we know

fi−1αa ≤ fi (Li−1 − αa) (E.41)

because αa is given by Equation (E.38) — if αa = Li−1fi
fi−1+fi

, then we know by Equa-

tions (E.26) (E.29), and (E.30) that fi1αa = fi (Li−1 − αa). On the other hand, if

αa = Li−2, then by Equation (E.38), Li−2 ≤ Li−1fi
fi−1+fi

; thus Equation (E.41) must be true.

So we know that the radius computed in Equation (E.40) for i− 1 is fi (Li−1 − αa).
Regardless of which value we select for αa in Equation (E.38), this radius is obviously less

than the Q from Equation (E.37) that we computed for the segment i that is supposed

to be imin. Thus choosing anything but αa = Lifi+1

fi+fi+1
in Line 1 in Radius-Balance(i)

results in a contradiction.

In fact, this last discussion particularly demonstrated that contradiction under the

222

assumption that i > 1. Having i = 1 (i = 0 was already covered in the discussion of

boundary cases above) results in slightly different Equations (E.38) and (E.39), but the

contradiction develops on similar grounds.

On the way to show that rimin
= rimin+1 = rmin and A[imin] + A[imin + 1] = Limax (as

must be done to demonstrate that we cannot increase rmin), we have just shown that

Line 1 in Radius-Balance(i) computed αa = Lifi+1

fi+fi+1
. When we compute αb in Line 2

of Radius-Balance(i), we have

αb = min

{
Li+1, Li − Lifi+1

fi + fi+1

}
(E.42)

It is straightforward to show that Li+1 ≥ Li − Lifi+1

fi+fi+1
using a process similar to the

one just used to show αa = Lifi+1

fi+fi+1
; with that condition, clearly αimin

+ αimin+1 = Li

and rimin
= fimin

αimin
= rimin+1 = fimin+1αimin+1 = rmin. Since neither αimin

nor αimin+1

can be increased without decreasing the other, and because the radii are equal in size,

the minimum radius computed in the top-level call to Alpha-Assign cannot be made

larger; it is the maximum value possible for Equation (E.24).

E.2.3 Length of a smoothed polyline

It is useful to consider the length of a smoothed polyline PS. This will be the sum of

the circumference of each arc ai plus the length of the straight line segments connected

consecutive arcs and the segments connecting p0 to arc 1 and arc n− 2 to pn−1.

The length wi of an arc i given by the standard formula:

wi = 2πri
φi
2π

= riφi (E.43)

The length si of a segment connecting two consecutive arcs i and i + 1 is simply the

223

length of the original line from pi to pi+1 (Li) minus the αi and αi+1 of arcs i and i+ 1:

si = |pi+1 − pi| − (αi+1 + αi) = Li − (αi+1 + αi) (E.44)

Defining α0 = αn−1 = 0 as usual, we can use Equation (E.44) for the beginning/end

segments as well.

For nondegenerate PS (i.e. with n > 2), we have:

L (PS) =
n−2∑
i=1

riφi +
n−2∑
i=0

si

=
n−2∑
i=1

riφi +
n−2∑
i=0

Li − (αi+1 − αi)

=
n−2∑
i=1

riφi + L (P)−
n−2∑
i=0

αi+1 −
n−2∑
i=0

αi

= L (P) +
n−2∑
i=1

riφi −
n−1∑
i=1

αi −
n−2∑
i=0

αi

= L (P) +
n−2∑
i=1

riφi − 2
n−2∑
i=1

αi − α0 − αn−1

= L (P) +
n−2∑
i=1

riφi − 2αi (E.45)

E.2.4 Offset polylines

So far, given a planar polyline P and an ri for each interior point pi, we can compute

the smoothed polyline PS by computing the associated arcs for each interior point of P

using the equations in Section E.2.1; we can even compute the ri automatically in such

a way as to minimize curvature using the algorithm presented in Section E.2.2.1.

Suppose that we wish to compute a new smoothed polyline P ′S that has the property

that at every point, the nearest point on PS is exactly distance d away. That is, P ′S

is ‘offset’ from PS to one side by a signed distance d; see Fig. E.4. I have used the

convention that d > 0 refers to a ‘right’ offset (the lower blue line in Fig. E.4) and d < 0

224

to a ‘left’ offset (the upper blue line in the same figure). The new arcs i corresponding

Figure E.4: A ‘fattened’ smoothed polyline; the original smoothed polyline PS as
computed above is drawn in black. The blue lines represent the same shape offset to
either side by an equal distance.

to P ′S (with signed offset d) can be derived from PS by replacing each ri with ri + d.

New endpoints p′0 and p′n−1 must be established for this line; a reasonable definition

is use the plane of the first and last arcs to choose a perpendicular suitable for placing

these offset endpoints.

p′0 = p0 + d(n0 × o1) (E.46)

p′n−1 = pn−1 + d(nn−2 × on−1 (E.47)

E.2.5 Discrete approximations of smooth polylines

To visually depict a smoothed polyline PS, we may wish to compute a discrete repre-

sentation.

E.2.5.1 Polylines

One obvious way to do this is by approximating the shape by a series of lines — that

is to say, a new polyline P ∗. See Figure E.5a. Each arc i must simply be approximated

with an sequence Γi of qi ∈ Z>1 points, and these points connected. Then the sequence

225

(a) A polyline approximation of a smoothed
polyline PS

(b) A triangle mesh approximation of a ‘fat-
tened’ smoothed polyline PS

Figure E.5: Discrete approximations of smoothed polylines

of m = 2 +
∑n−2

i=1 qi points in P ∗ is simply:

P ∗S =
(
p0,Γ

0
1, . . . ,Γ

q1−1
1 , . . . ,Γ0

n−2, . . . ,Γ
qn−2−1
n−2 , pn−1

)
(E.48)

Each Γi is generated by rotating and scaling the frame Fi (from Equation (E.6)) of each

arc incrementally and translating by the center ci:

Γji = ci + riFi

[
cos tj, sin tj, 0

]T
, j ∈ Z[0, qi − 1] (E.49)

Here the tj are the elements of a sequence [0, φi/(qi − 1), 2φi/(qi − 1), . . . , φi] of length

qi.

E.2.5.2 Triangle meshes

A surface representation of a smoothed polygon can be easily computed from a pair of

offset polygons (computed as in Sec. E.2.4). f Given a smoothed polygon PS and two

smooth polygons offset from PS, order the polygons by offset so that we have a ‘left’

smoothed polygon P l
S with a lesser offset than the ‘right’ smoothed polygon P r

S .

Now we can use any constrained triangulation technique to compute a planar triangle

226

mesh with P l
S and P r

S as the boundaries; see Figure E.5b.

227

Bibliography

[Abgrall, 2006] Abgrall, R. (2006). Residual distribution schemes: current status and
future trends. Computers and Fluids, 35(7):641–669. 20, 24, 38

[Adams et al., 2007] Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. (2007). Adap-
tively sampled particle fluids. In ACM SIGGRAPH ’07, page 48, New York, NY,
USA. ACM. 19

[Alexiadis et al., 2007] Alexiadis, V., Colyar, J., and Halkias, J. (2007). A model en-
deavor. Technical Report Publication Number: FHWA-HRT-2007-002, U.S. Depart-
ment of Transportation Federal Highway Administration. http://www.fhwa.dot.

gov/publications/publicroads/07jan/01.cfm. 154

[Algers et al., 1997] Algers, S., Bernauer, E., Boero, M., Breheret, L., Taranto, C. D.,
Dougherty, M., Fox, K., and Gabard, J. F. (1997). SMARTEST project: Review of
micro-simulation models. EU project No: RO-97-SC, 1059. 87

[Arikan, 2010] Arikan, O. (2010). Pixie. 35

[Aw and Rascle, 2000] Aw, A. and Rascle, M. (2000). Resurrection of “second order”
models of traffic flow. SIAM journal on applied mathematics, 60:916–938. 87, 88, 91,
94, 95, 100

[Baraff and Witkin, 1998] Baraff, D. and Witkin, A. (1998). Large steps in cloth simu-
lation. In SIGGRAPH ’98: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 43–54, New York, NY, USA. ACM Press.
31

[Batty et al., 2007] Batty, C., Bertails, F., and Bridson, R. (2007). A fast variational
framework for accurate solid-fluid coupling. In ACM SIGGRAPH ’07. 19, 57, 58

[Blender Foundation, 2007] Blender Foundation (2007). Blender 2.45. http://www.

blender.org/. 35, 76

[Bridson, 2008] Bridson, R. (2008). Fluid Simulation for Computer Graphics. AK Peters
Ltd. 18

[Burggraf, 1966] Burggraf, O. (1966). Analytical and numerical studies of the structure
of steady separated flows. Journal of Fluid Mechanics, 24(01):113–151. 157

[Carlson et al., 2004] Carlson, M., Mucha, P. J., and Turk, G. (2004). Rigid fluid: ani-
mating the interplay between rigid bodies and fluid. ACM Trans. Graph., 23(3):377–
384. 19, 57, 58

[Chaos Group, 2010] Chaos Group (2010). V-Ray. http://www.chaosgroup.com/en/

2/vray.html. 76

228

http://www.fhwa.dot.gov/publications/publicroads/07jan/01.cfm
http://www.fhwa.dot.gov/publications/publicroads/07jan/01.cfm
http://www.blender.org/
http://www.blender.org/
http://www.chaosgroup.com/en/2/vray.html
http://www.chaosgroup.com/en/2/vray.html

[Chen et al., 2008] Chen, G., Esch, G., Wonka, P., Mueller, P., and Zhang, E. (2008).
Interactive procedural street modeling. In SIGGRAPH 2008, New York, NY, USA.
ACM. 115

[Chen et al., 2005] Chen, L., Özsu, M., and Oria, V. (2005). Robust and fast similarity
search for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 491–502. ACM. 161, 169

[Chentanez et al., 2007] Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F.,
and Shewchuk, J. R. (2007). Liquid simulation on lattice-based tetrahedral meshes.
In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 219–228, Aire-la-Ville, Switzerland, Switzerland. Euro-
graphics Association. 19

[Chentanez et al., 2006] Chentanez, N., Goktekin, T. G., Feldman, B. E., and O’Brien,
J. F. (2006). Simultaneous coupling of fluids and deformable bodies. In SCA ’06:
Proeedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer an-
imation, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co. 19, 31,
58

[Courant et al., 1928] Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die par-
tiellen differenzengleichungen der mathematischen physik. Mathematische Annalen,
100(1):32–74. 56, 93

[Daganzo, 1995] Daganzo, C. (1995). Requiem for second-order fluid approximations of
traffic flow. Transportation Research Part B, 29(4):277–286. 87

[Devroye, 1986] Devroye, L. (1986). Non-Uniform Random Variate Generatiom.
Springer-Verlag. 131, 132

[Elcott et al., 2007] Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M.
(2007). Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph., 26(1):4.
19

[Fedkiw et al., 2003] Fedkiw, R., Sapiro, G., and Shu, C. (2003). Shock capturing, level
sets, and PDE based methods in computer vision and image processing: a review of
Oshers contributions. Journal of Computational Physics, 185(2):309–341. 44

[Feldman et al., 2003] Feldman, B. E., O’Brien, J. F., and Arikan, O. (2003). Animating
suspended particle explosions. In ACM SIGGRAPH ’03, pages 708–715, New York,
NY, USA. ACM. 44

[Feldman et al., 2005] Feldman, B. E., O’Brien, J. F., and Klingner, B. M. (2005). An-
imating gases with hybrid meshes. In ACM SIGGRAPH ’05, pages 904–909, New
York, NY, USA. ACM Press. 19

[Foster and Fedkiw, 2001] Foster, N. and Fedkiw, R. (2001). Practical animation of
liquids. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer

229

graphics and interactive techniques, pages 23–30, New York, NY, USA. ACM Press.
18

[Foster and Metaxas, 1996] Foster, N. and Metaxas, D. (1996). Realistic animation of
liquids. Graph. Models Image Process., 58(5):471–483. 18

[Frigo and Johnson, 2005] Frigo, M. and Johnson, S. G. (2005). The design and im-
plementation of FFTW3. Proceedings of the IEEE, 93(2):216–231. Special Issue on
“Program Generation, Optimization, and Platform Adaptation”. 66

[Galin et al., 2010] Galin, E., Peytavie, A., Maréchal, N., and Guérin, E. (2010). Proce-
dural generation of roads. In Eurographics 2010, Aire-la-Ville, Switzerland, Switzer-
land. Eurographics Association, Eurographics Association. 115

[Game Physics Simulation, 2010] Game Physics Simulation (2010). Bullet Physics Li-
brary. http://www.bulletphysics.com/. 58

[Genevaux et al., 2003] Genevaux, O., Habibi, A., and Dischler, J.-M. (2003). Simulat-
ing fluid-solid interaction. In Proc. Graphics Interface ’03. 18

[Gerlough, 1955] Gerlough, D. L. (1955). Simulation of freeway traffic on a general-
purpose discrete variable computer. PhD thesis, UCLA. 87

[Gibson and Mirtich, 1997] Gibson, S. F. F. and Mirtich, B. (1997). A survey of de-
formable modeling in computer graphics. Technical Report TR1997-019, Mitsubishi
Electronic Research Labratories. 20

[Go et al., 2005] Go, J., Vu, T., and Kuffner, J. (2005). Autonomous behaviors for
interactive vehicle animations. In International Journal of Graphical Models. 86

[Godunov, 1959] Godunov, S. K. (1959). A difference scheme for numerical solution of
discontinuous solution of hydrodynamic equations. Math. Sbornik, (47):271–306. 43

[Guenelman et al., 2005] Guenelman, E., Selle, A., Losasso, F., and Fedkiw, R. (2005).
Coupling water and smoke to thin deformable and rigid shells. In ACM SIGGRAPH
’05, pages 973–981, New York, NY, USA. ACM Press. 19

[Guy et al., 2010] Guy, S., Chhugani, J., Curtis, S., Dubey, P., Lin, M. C., and
Manocha, D. (2010). PLEdestrians: A Least-Effort Approach to Crowd Simulation.
In Eurographics/ACM SIGGRAPH Symposium on Computer Animation. 157

[Helbing, 2001] Helbing, D. (2001). Traffic and related self-driven many-particle sys-
tems. Reviews of Modern Physics, 73(4):1067–1141. 87

[Hirschfelder et al., 1964] Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B. (1964). The
Molecular Theory of Gases and Liquids. Wiley-Interscience, revised edition edition.
148

230

http://www.bulletphysics.com/

[Hochbaum and Shmoys, 1987] Hochbaum, D. S. and Shmoys, D. B. (1987). Using dual
approximation algorithms for scheduling problems: Theoretical and practical results.
Journal of the ACM, 34(1):144–162. 208

[Hughes, 2000] Hughes, T. J. R. (2000). The Finite Element Method—Linear Static and
Dynamic Finite Element Analysis. Dover Publishers, New York, NY. 20, 30

[Kajiya, 1986] Kajiya, J. T. (1986). The rendering equation. In SIGGRAPH 1986,
pages 143–150. 174

[Kessenich et al., 2009] Kessenich, J., Baldwin, D., and Rost, R. (2009). The OpenGL c©

Shading Language. The Kronos Group, 1.1 edition. http://www.opengl.org/

registry/doc/GLSLangSpec.1.50.09.pdf. 62

[Kesting et al., 2007] Kesting, A., Treiber, M., and Helbing, D. (2007). General lane-
changing model MOBIL for car-following models. Transportation Research Record:
Journal of the Transportation Research Board, 1999(-1):86–94. 127

[Kim et al., 2009] Kim, K., Oh, S., Lee, J., and Essa, I. (2009). Augmenting aerial
earth maps with dynamic information. In IEEE International Symposium on Mixed
and Augmented Reality. 151

[Klingner et al., 2006] Klingner, B. M., Feldman, B. E., Chentanez, N., and O’Brien,
J. F. (2006). Fluid animation with dynamic meshes. In ACM SIGGRAPH ’06, pages
820–825, New York, NY, USA. ACM Press. 19, 34

[Knuth, 1997] Knuth, D. (1997). The Art of Computer Programming, volume 2, chap-
ter 3, pages 142–148. Addison-Wesley, 3rd edition. 137

[Lax and Wendroff, 1960] Lax, P. and Wendroff, B. (1960). Systems of conservation
laws. Comm. Pure Appl. Math, 13(2):217–237. 47

[Lebacque et al., 2007] Lebacque, J., Mammar, S., and Haj-Salem, H. (2007). The Aw–
Rascle and Zhangs model: Vacuum problems, existence and regularity of the solutions
of the Riemann problem. Transportation Research Part B, 41(7):710–721. 87, 88

[Lebacque, 1996] Lebacque, J.-P. (1996). The godunov scheme and what it means for
first order traffic flow. In Lesort, J., editor, Transportation and Traffic Theory, pages
647–677. ISTTT, Elsevier. 100

[Lebacque et al., 2005] Lebacque, J.-P., Haj-Salem, H., and Mammar, S. (2005). Second
order traffic flow modeling: supply-demand analysis of the inhomogeneous Riemann
problem and of boundary conditions. In 10th EURO Working Group Transportation
Meeting, Poznan, Poland. EURO Working Group on Transportation. 100

[Leveque, 2002] Leveque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems.
Cambgridge University Press, New York. 8, 9, 43, 45, 54, 92, 194

231

http://www.opengl.org/registry/doc/GLSLangSpec.1.50.09.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.1.50.09.pdf

[Lewis and Shedler, 1979] Lewis, P. A. W. and Shedler, G. S. (1979). Simulation of
nonhomogeneous poisson processes by thinning. Naval Research Logistics Quaterly,
26:403–413. 134

[Lighthill and Whitham, 1955] Lighthill, M. J. and Whitham, G. B. (1955). On kine-
matic waves. ii. a theory of traffic flow on long crowded roads. Proceedings of the
Royal Society of London, A229(1178):317–345. 87

[Mark et al., 2003] Mark, W. R., Glanville, R. S., Akeley, K., and Kilgard, M. J. (2003).
Cg: a system for programming graphics hardware in a c-like language. In SIGGRAPH
’03: ACM SIGGRAPH 2003 Papers, pages 896–907, New York, NY, USA. ACM. 62

[Mazarak et al., 1999] Mazarak, O., Martins, C., and Amanatides, J. (1999). Animating
exploding objects. In Proc. Graphics Interface ’99, pages 211–218, Wellesley, MA,
USA. AK Peters. 44

[Morse and Patel, 2007] Morse, M. and Patel, J. (2007). An efficient and accurate
method for evaluating time series similarity. In Proceedings of the 2007 ACM SIG-
MOD international conference on Management of data, pages 569–580. ACM. 161,
169

[Müller et al., 2003] Müller, M., Charypar, D., and Gross, M. (2003). Particle-based
fluid simulation for interactive applications. In SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 154–159,
Aire-la-Ville, Switzerland, Switzerland. Eurographics Association. 19

[Nagel and Schreckenberg, 1992] Nagel, K. and Schreckenberg, M. (1992). A cellular
automaton model for freeway traffic. Journal de Physique I, 2(12):2221–2229. 87

[Nealen et al., 2006] Nealen, A., Muller, M., Keiser, R., Boxerman, E., and Carlson,
M. (2006). Physically based deformable models in computer graphics. Computer
Graphics Forum, 25(4):809–836. 20, 30

[Neff and Fiume, 1999] Neff, M. and Fiume, F. (1999). A visual model for blast waves
and fracture. In Proc. Graphics Interface ’99, pages 193–202, Wellesley, MA, USA.
AK Peters. 44

[Nelson et al., 1997] Nelson, P., Bui, D., and Sopasakis, A. (1997). A novel traffic stream
model deriving from a bimodal kinetic equilibrium. In Proceedings of the 1997 IFAC
meeting, Chania, Greece, pages 799–804. 88

[Newell, 1961] Newell, G. (1961). Nonlinear effects in the dynamics of car following.
Operations Research, 9(2):209–229. 87

[Nieuwenhuisen et al., 2004] Nieuwenhuisen, D., Kamphuis, A., Mooijekind, M., and
Overmars, M. (2004). Automatic construction of roadmaps for path planning in
games. In Proceedings of the International Conferefence on Computer Games, Arti-
ficial Intelligence, Design and Education, pages 285–292. 116

232

[O’Brien et al., 2001] O’Brien, D., Fisher, S., and Lin, M. C. (2001). Automatic simpli-
fication of particle system dynamics. In Computer Animation, pages 210–218. 115

[OpenMP ARB, 2005] OpenMP ARB (2005). OpenMP Version 2.5 Specification. http:
//www.openmp.org/drupal/mp-documents/spec25.pdf. 35

[OpenStreetMap community, 2010] OpenStreetMap community (2010). Open-
StreetMap. http://www.openstreetmap.org/. xvi, 119

[Payne, 1971] Payne, H. J. (1971). Models of freeway traffic and control. Mathematical
Models of Public Systems, 1:51–60. Part of the Simulation Councils Proceeding Series.
87

[Peeper and Mitchell, 2003] Peeper, C. and Mitchell, J. L. (2003). Introduction to the
DirectX c© 9 High Level Shading Language. Microsoft Corporation and ATI Research.
http://ati.amd.com/developer/ShaderX2_IntroductionToHLSL.pdf. 62

[Pettré et al., 2008] Pettré, J., Kallmann, M., and Lin, M. C. (2008). Motion planning
and autonomy for virtual humans. In ACM SIGGRAPH 2008 classes, pages 1–31. 86

[Prigogine and Andrews, 1960] Prigogine, I. and Andrews, F. C. (1960). A Boltzmann-
like approach for traffic flow. Operations Research, 8(789). 87

[Redon et al., 2005] Redon, S., Galoppo, N., and Lin, M. C. (2005). Adaptive dynamics
of articulated bodies. In ACM SIGGRAPH 2005 Papers, page 945. 115

[Reggio, 1982] Reggio, G. (1982). Koyaanisqatsi. Film. MGM Studios. 149

[Reynolds, 1987] Reynolds, C. (1987). Flocks, herds and schools: A distributed behav-
ioral model. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, pages 25–34. ACM New York, NY, USA. 86

[Richards, 1956] Richards, P. I. (1956). Shock waves on the highway. Operations Re-
search, 4(1):42–51. 87

[Roe, 1981] Roe, P. (1981). Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes. Journal of Computational Physics, 43:357. 43, 52, 54

[Roe, 1982] Roe, P. L. (1982). Fluctuation and signals: A framework for numerical
evolution problems. In Proceedings of IMA Conference on Numerical Methods for
Fluid Dynamics, pages 219–257, London. Academic Press. 11, 20

[Roe, 1987] Roe, P. L. (1987). Linear advection schemes on triangular meshes. Technical
Report 8720, Cranfield Institute of Technology. 17, 20, 22, 26, 29

[Selle et al., 2005] Selle, A., Rasmussen, N., and Fedkiw, R. (2005). A vortex particle
method for smoke, water and explosions. In ACM SIGGRAPH ’05, pages 910–914.
44

233

http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.openstreetmap.org/
http://ati.amd.com/developer/ShaderX2_IntroductionToHLSL.pdf

[Settles, 2001] Settles, G. S. (2001). Schlieren and shadowgraph techniques: Visualizing
phenomena in transparent media. Springer-Verlag. 76

[Sewall et al., 2008] Sewall, J., Galoppo, N., Tsankov, G., and Lin, M. C. (2008). Vi-
sual simulation of shockwaves. In ACM SIGGRAPH/Eurographics Symposium on
Computer Animation 2008, pages 19–28, Aire-la-Ville, Switzerland, Switzerland. Eu-
rographics Association. 12

[Sewall et al., 2009] Sewall, J., Galoppo, N., Tsankov, G., and Lin, M. C. (2009). Visual
simulation of shockwaves. Graphical Models, 71(4):126–138. 12

[Sewall et al., 2007] Sewall, J., Mecklenburg, P., Mitran, S., and Lin, M. (2007). Fast
fluid simulation using residual distribution schemes. In Eurographics Workshop on
Natural Phenomena 2007, pages 47–54, Aire-la-Ville, Switzerland, Switzerland. Eu-
rographics Association. 11

[Sewall et al., 2010a] Sewall, J., van den Berg, J., Lin, M., and Manocha, D. (2010a).
Virtualized traffic: Reconstructing traffic flows from discrete spatio-temporal data.
To appear in IEEE Transactions on Visualization and Computer Graphics. 86

[Sewall et al., 2010b] Sewall, J., Wilkie, D., Merrell, P., and Lin, M. C. (2010b). Con-
tinuum traffic simulation. In Eurographics 2010. 13, 86

[Shewchuk, 1994] Shewchuk, J. (1994). An introduction to the conjugate gradient
method without the agonizing pain. http://www.cs.cmu.edu/~jrs/jrspapers.

html#cg. 31

[Shi and Yu, 2005] Shi, L. and Yu, Y. (2005). Controllable smoke animation with guid-
ing objects. ACM Trans. Graph., 24(1):140–164. 18

[Shvetsov and Helbing, 1999] Shvetsov, V. and Helbing, D. (1999). Macroscopic dynam-
ics of multilane traffic. Physical Review E, 59(6):6328–6339. 88

[Si, 2004] Si, H. (2004). Tetgen, a quality tetrahedral mesh generator and three-
dimensional delaunay triangulator, v1.3 user’s manual. Technical Report 9, Weier-
strauss Institute for Applied Analysis and Stochastics. 35

[Song et al., 2005] Song, O.-Y., Shin, H., and Ko, H.-S. (2005). Stable but nondissipa-
tive water. ACM Trans. Graph., 24(1):81–97. 18

[Stam, 1999] Stam, J. (1999). Stable fluids. In Rockwood, A., editor, SIGGRAPH
1999, Computer Graphics Proceedings, pages 121–128, Los Angeles. Addison Wesley
Longman. 18

[Struijs et al., 1991] Struijs, R., Deconinck, H., and Roe, P. L. (1991). Flucuations
splitting schemes for the 2d euler equations. VKI LS, 1991-01. 20

[Treiber et al., 2000] Treiber, M., Hennecke, A., and Helbing, D. (2000). Congested
traffic states in empirical observations and microscopic simulations. Physical Review
E, 62(2):1805–1824. 123, 126, 158

234

http://www.cs.cmu.edu/~jrs/jrspapers.html#cg
http://www.cs.cmu.edu/~jrs/jrspapers.html#cg

[CUDA, 2009] CUDA (2009). NVIDIA CUDA Reference Manual. Nvidia Corpora-
tion, 2.3 edition. http://developer.download.nvidia.com/compute/cuda/2_3/

toolkit/docs/CUDA_Reference_Manual_2.3.pdf. 62

[SUMO, 2009] SUMO (2009). SUMO — Simulation of Urban MObility. http://sumo.
sourceforge.net/index.shtml. 108

[U.S. Census Bureau, 2010] U.S. Census Bureau (2010). TIGER/Line R©. http://www.

census.gov/geo/www/tiger/. xvi, 119

[van den Berg and Overmars, 2007] van den Berg, J. and Overmars, M. (2007). Kin-
odynamic motion planning on roadmaps in dynamic environments. In Proceedings
of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4253–4258, San Diego, CA. 116

[van der Weide et al., 1999] van der Weide, E., Deconnick, H., Issman, E., and De-
grez, G. (1999). A parallel, implicit, multi-dimensional upwind, residual distribution
method for the navier-stokes equations on unstructured grids. Computational Me-
chanics, 23:199–208. 20

[van Leer, 1977] van Leer, B. (1977). Towards the ultimate conservative difference
scheme IV: A new approach to numerical convection. Journal of Computational
Physics, 23:276. 43, 47

[Wendt et al., 2007] Wendt, J., Baxter, W., Oguz, I., and Lin, M. (2007). Finite-volume
flow simulations in arbitrary domains. Graphical Models, 69(1):19–32. 19

[Whaley et al., 2001] Whaley, R. C., Petitet, A., and Dongarra, J. J. (2001). Automated
empirical optimization of software and the ATLAS project. Parallel Computing, 27(1–
2):3–35. Also available as University of Tennessee LAPACK Working Note #147,
UT-CS-00-448, 2000 www.netlib.org/lapack/lawns/lawn147.ps. 66

[Whitham, 1974] Whitham, G. B. (1974). Linear and nonlinear waves. John Wiley and
Sons, New York, New York. 87

[Yngve et al., 2000] Yngve, G. D., O’Brien, J. F., and Hodgins, J. K. (2000). Animat-
ing explosions. In ACM SIGGRAPH ’00, pages 29–36, New York, NY, USA. ACM
Press/Addison-Wesley Publishing Co. 44, 77, 78

[Zhang, 2002] Zhang, H. (2002). A non-equilibrium traffic model devoid of gas-like
behavior. Transportation Research Part B, 36(3):275–290. 87, 88, 91, 94

[Zhu and Bridson, 2005] Zhu, Y. and Bridson, R. (2005). Animating sand as a fluid. In
ACM SIGGRAPH ’05, pages 965–972, New York, NY, USA. ACM Press. 19

235

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/CUDA_Reference_Manual_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/CUDA_Reference_Manual_2.3.pdf
http://sumo.sourceforge.net/index.shtml
http://sumo.sourceforge.net/index.shtml
http://www.census.gov/geo/www/tiger/
http://www.census.gov/geo/www/tiger/
www.netlib.org/lapack/lawns/lawn147.ps

