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ABSTRACT

CHANGWON LIM. Statistical Theory and Robust Methodology for

Nonlinear Models with Application to Toxicology.

(Under the direction of Pranab K. Sen and Shyamal D. Peddada).

Nonlinear regression models are commonly used in dose-response studies, espe-

cially when researchers are interested in determining various toxicity characteristics

of a chemical or a drug. There are several issues one needs to pay attention to when

fitting nonlinear models for toxicology data, such as structure for the error variance

in the model and the presence of potential influential and outlying observations. In

this dissertation I developed robust statistical methods for analyzing nonlinear regres-

sion models, which are based on robust M-estimation and preliminary test estimation

(PTE) procedures.

In the first part of this research the M-estimation methods in heteroscedastic

nonlinear models are considered for two cases. In one case, the error variance is

proportional to some known function of mean response, while in the other case the

error variance is modeled as a polynomial function of dose. The asymptotic prop-

erties of the proposed M-procedures and the asymptotic efficiency of the proposed

M-estimators are provided. In the second part I consider PTE-based methodology

using M-methods for estimating the regression parameters. Based on the outcome

of the preliminary test, the proposed methodology determines the appropriate error

variance structure for the data and accordingly chooses the suitable estimation proce-

dure. Since the resulting methodology uses M-estimators, it is expected to be robust

to outliers and influential observations, although such issues have not been explored

in this dissertation. Consequently, one does not have to pre-specify the error struc-

ture for the variances not does the user have to perform model diagnostics to choose a
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method of estimation. Some asymptotic results will be given to obtain the asymptotic

covariance matrix of the PTE. Finally numerical studies are presented to illustrate

the methodology. The results of the numerical studies suggest that the PTE using

M-methods performs well and is robust to the error variance structure.
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Chapter 1

INTRODUCTION AND

LITERATURE REVIEW

1.1 Introduction

In 1978, the United States Congress established the National Toxicology Program

(NTP) in order to broaden and strengthen scientific knowledge about potentially

hazardous chemicals or compounds. The NTP’s two-year cancer bioassay consists of

exposing (both sexes of) rats and mice to various doses of chemical for two years and

studying the tumor incidence. During the past thirty years, the NTP evaluated about

540 different chemicals that humans are exposed to. However, it is widely acknowl-

edged that humans are exposed to several thousands of chemicals. Hence the NTP’s

cancer bioassay is slow and labor intensive. Furthermore, it is not always feasible

to gain mechanistic understanding of the chemicals using this bioassay. As a conse-

quence, in its roadmap for the 21st century, the NTP outlined a strategy to conduct

high throughput screening (HTS) assays using cell-lines and lower order animals such

as the C. elegans on thousands of chemicals at a time. These assays typically consist

of dose-response studies involving several dose groups (as many as 10 or more) and



fitting nonlinear regression models such as the Hill model for each chemical. Using

these models, the toxicologists determine various parameters regarding the toxicity

of a chemical.

Nonlinear regression models are commonly used in dose-response studies, espe-

cially when researchers are interested in determining various toxicity characteristics

of a chemical or a drug. For example toxicologists are often interested in estimat-

ing parameters such as the dose corresponding to 50% of maximum toxic response

(known as ED50), the “slope” of the dose toxicity curve, the maximum tolerated dose

(MTD), etc. (Velarde et al., 1999; Avalos et al., 2001; Pounds et al., 2004). The

usual strategy is to fit a nonlinear regression model such as the Hill model (Gaylor

and Aylward, 2004; Sand et al., 2004; Crofton et al., 2007) and estimate the param-

eters of the model using standard ordinary least squares estimation (OLSE). Using

these parameter estimates, other estimates of interest can be obtained such as the

benchmark doses (e.g., the relative ED01, the dose based on a change in the mean

response estimated to equal 1% of the estimated maximum change and BMD01, the

dose with an estimated excess risk of 1% of the animals in a low and/or high per-

centile among unexposed control animals) (Gaylor and Aylward, 2004; Sand et al.,

2004). Eventually, using these point estimates one may construct a suitable confi-

dence interval (e.g., LED01, a lower confidence limit of ED01 and BMDL01, the lower

95% confidence limit of BMD01) or perform a test of hypothesis (Nitcheva et al., 2005;

Piegorsch and West, 2005; Wu at al., 2006).

There are several issues one needs to pay attention to when fitting nonlinear mod-

els for toxicology data, such as structure for the error variance in the model and the

presence of potential influential and outlying observations. However, since thousands

nonlinear models need to be fitted, and is practically impossible to perform model

diagnostics for each nonlinear model, in this dissertation research we are concerned

with developing robust statistical methods for analyzing nonlinear regression models.
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In the context of nonlinear models, statistical inference on unknown parameters,

such as confidence interval estimation and testing of hypothesis, requires certain as-

sumptions regarding the nonlinear model and the distributional properties of the

random error associated with the model (Seber and Wild, 1989). One important

assumption is that the variability in the response variable Y is constant across dose

groups (known as homoscedasticity). If this assumption is violated, i.e., variance is

not constant across dose groups (heteroscedasticity), then OLSE based inferential

procedures may lead to confidence intervals that are subject to severe under or over

coverage and thus not attain the desired confidence levels. Similarly, tests based on

such procedures may not attain the desired nominal Type I error rate, and may be

either too conservative or too liberal (Carroll and Ruppert, 1988; Kutner et al, 2005).

Heteroscedasticity is rather common in many applications (Morris, Symanowicz, and

Sarangapani, 2002; Gaylor and Aylward, 2004; Barata et al., 2006). In the context

of dose-response modeling when variances were unequal, Morris, Symanowicz, and

Sarangapani (2002) logtransformed their data to stabilize the variance, while Gaylor

and Aylward (2004) estimated the variance to be proportional to a power of the mean

response and Barata et al. (2006) used the weighted least squares estimation (WLSE)

method with the weight proportional to the reciprocal of the variance.

The WLSE method is a procedure for estimating the regression parameters by min-

imizing the weighted error sum of squares where each weight determines how much

each observation in the data set influences the final parameter estimates. However,

since the weights are usually unknown in practice, they must be estimated. Thus,

a typical strategy to deal with the heteroscedastic error variances is to use the iter-

ated weighted least squares estimation (IWLSE) for estimating the parameters of the

nonlinear model and then perform standard asymptotic tests and obtain confidence

intervals for the desired parameters. The IWLSE method is an iterative procedure

where for each iteration the updated weights are used for the WLSE. Carroll and

3



Ruppert (1982) proved that the IWLSE with unknown variances is asymptotically

equivalent to the WLSE with known variances. Also, Carroll (1982) showed that even

though the variances are unknown, an estimate of the regression parameter can be

constructed which is asymptotically equivalent to the WLSE with known variances.

Later, Davidian and Carroll (1987) developed a general theory for variance function

estimation in heteroscedastic regression models. See Carroll and Ruppert (1988) for

details. Carroll, Wu, and Ruppert (1988) investigated the effect of estimating weights

for small-to-moderate sample sizes, and Shao (1992) developed asymptotic theory in

heteroscedastic nonlinear models. Also, Hoferkamp and Peddada (2002) proposed

an algorithm which iterates between the WLSE for the regression parameter and

the isotonic regression estimator for the variances under order restrictions on the er-

ror variances, and Wilcox and Keselman (2004) considered some robust regression

methods to achieve small standard errors when there is heteroscedasticity.

Recently, researchers have proposed tests for heteroscedasticity in regression mod-

els. Hoferkamp and Peddada (2001) studied the problem of testing for equality vari-

ances against ordered alternatives and proposed a test procedure which is unbiased

under certain conditions on the design matrices. Carapeto and Holt (2003) developed

a test based on the Goldfeld-Quandt methodology, which does not require further re-

gression process and hence can be applied to all types of regression models. Lin and

Wei (2003) also developed several score tests for nonlinear regression models based

on either introducing a variance function for the model or randomizing regression co-

efficients and variance parameters. You and Chen (2005) considered partially linear

regression models and developed a test procedure for heteroscedasticity based on an

estimator for the best L2-approximation of the variance function by a constant.

In practice one may not always know whether the data are homoscedastic or

heteroscedastic. It is well-known that procedures that are suitable for heteroscedastic

random errors are not likely to be robust to “nearly” homoscedastic data, where the
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error variances vary by less than 4-fold over the domain of the independent variable

(Jacquez, Mather, and Crawford, 1968). To illustrate this point, we simulated two

data sets from the Hill model with equal (Data 1) and unequal (Data 2) variances

and calculated the OLSE and the WLSE from each of the two data sets. The Hill

model, f(x,θ) = θ0 + θ1x
θ2/(θθ23 + xθ2), is a nonlinear regression model proposed by

Hill (1910), usually used to study in vivo concentration response relationships. In the

model:

• x: the dose.

• θ0: the intercept parameter, that is, the value of y at x = 0.

• θ1: the maximum effect of a drug (Emax), i.e., the asymptotic value of E(y)− θ0

as x goes to ∞.

• θ2: the slope parameter that reflects the steepness of the effect-concentration

curve. Geometrically, it is the slope of the tangent line at x = θ3.

• θ3: the sensitivity parameter, the drug concentration producing 50% of Emax

(ED50).

Figure 1.1 shows the two data sets and the estimated values using the OLSE and the

WLSE. In Table 1.1, when the data are generated from homoscedastic model (Data

1), the estimated standard errors of the WLSE for θ1 (Emax) and θ3 (ED50) are much

larger than the corresponding estimated standard errors of the OLSE. On the other

hand, the estimated standard errors of the OLSE for θ1 (Emax) and θ3 (ED50) are

much larger than the corresponding estimated standard errors of the WLSE when

the data are generated from heteroscedastic model (Data 2). Thus we see that a

method suitable for homoscedastic data may not be robust for heteroscedastic data

and vice versa.
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(a) Data 1 (b) Data 2

Figure 1.1: Model predictions by OLSE and WLSE methods vs data: plus sign and

solid line (OLSE); open triangles and dashed line (WLSE); open circles (data) for (a)

Data 1 and (b) Data 2.

Table 1.1: Estimates and Standard Errors for parameters of the models for Data 1

and 2 using OLSE and WLSE methods.

Parameter OLSE WLSE

True value Estimate S.E. Estimate S.E.

θ0 1 2.326 0.089 2.292 0.091

homoscedastic θ1 4 3.702 0.243 4.109 0.382

(Data 1) θ2 1.5 1.585 0.324 1.247 0.257

θ3 100 98.997 9.888 122.361 23.263

θ0 1 2.301 0.040 2.284 0.013

heteroscedastic θ1 4 4.175 0.864 4.496 0.240

(Data 2) θ2 1.5 1.541 0.442 1.377 0.062

θ3 100 106.152 33.676 120.161 10.154
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The above observation motivates us to consider a methodology that selects be-

tween the OLSE and the WLSE for a given data set. Preliminary test estimation

(PTE) procedures have been discussed extensively in the literature for such problems

over the last few decades (cf. Judge and Bock, 1978; Sen, 1986). The PTE is a pro-

cedure where the result of a statistical test determines which of the two estimators,

OLSE and WLSE, are used for estimating the regression parameters and the result-

ing estimator is called a preliminary test estimator. The PTE methodology has been

used in the literature to analyze two situations, one for estimating variances and the

other for estimating regression coefficients. In the first situation, it was assumed that

two independent estimators s2
1 and s2

2 of variances σ2
1 and σ2

2 for a linear regression

model are given together with prior information (in the form of a hypothesis) that

σ2
1 ≤ σ2

2. A preliminary F−test with s2
1/s

2
2 as a test statistic then determines whether

to use as an estimator for σ2
1 the “pooled” estimator

n1s21+n2s22
n1+n2

or just s2
1. The bias,

variance and the Mean Square Error (MSE) of the preliminary test estimator were

derived. Also, the expected value, variance and the MSE of the prelimiary test esti-

mator under a likelihood ratio test criteria were derived. See Judge and Bock (1978)

for details. Later, Sen (1986) has studied asymptotic distributional risks (i.e., the risk

by reference to the asymptotic distribution of an estimator) for the pre-test versions

of the maximum likelihood estimators.

Although researchers usually apply OLS and WLS methodologies to fit the data,

these methodologies are not robust against outliers or influential observations. There-

fore, the classical procedures are not very desirable and robust estimation procedures,

such as M-procedures, are better in this respect. Sanhueza (2000) has proposed M-

procedures in nonlinear regression models. The M-estimators were formulated along

the lines of generalized least squares procedures and studied in univariate nonlinear

models (see also Sanhueza and Sen, 2001, 2004) as well as nonlinear regression models

for repeated measurements (see also Sanhueza, Sen, and Levia, 2009).
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In this dissertation, we develop M-estimation and PTE-based methodologies for

nonlinear regression models as the robust statistical methodologies. We propose M-

estimation methods in heteroscedastic nonlinear models for two cases. In one case,

the error variance is propotional to some function of mean response, while in the other

case the error variance has a parametric linear form. The asymptotic properties of the

proposed M-procedures and the asymptotic efficiency of the proposed M-estimators

are studied. We then employ the proposed M-estimation methods together with the

PTE methodology. The proposed methodology is robust to outliers and influential

observations. Consequently, the user does not have to pre-specify the error structure

for the variances not does the user have to perform model diagnostics to choose a

method of estimation.

In the remaining sections of this chapter we present a review of the issues concerned

with nonlinear models, M-procedures for nonlinear models, and PTE. The literature

review in this chapter focuses mainly on three parts. In the first part, we review the

nonlinear models. We present the classical methods, such as OLS, WLS for estimating

parameters in these models. We consider the derivation of the covariance matrix and

the consistency of the estimators. In the second part, we discuss the M-procedures for

nonlinear models. We also mention the asymptotic properties of the M-procedures.

In the last part, we present the PTE.

In the last section of this chapter we provide a synopsis of the new work presented

in this dissertation.
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1.2 Literature Review

1.2.1 Nonlinear Regression Models

Let (xi, yi), i = 1, 2, . . . , n, be n observations from a fixed-effect nonlinear model

with a known functional form f. Then

yi = f(xi,θ) + εi, i = 1, 2, . . . , n, (1.1)

where E(εi) = 0, xi is a m× 1 vector, and θ is known to belong to Θ, a subset of <p.

The OLSE of θ, denoted by θ̂, minimizes the error sum of squares

So(θ) =
n∑
i=1

{yi − f(xi,θ)}2 (1.2)

over θ ∈ Θ, assuming the εi to be independently and identically distributed (i.i.d.)

with variance σ2. Note that, unlike the least squares estimation for linear models,

So(θ) may have several local minima in addition to the global minimum θ̂.

For most nonlinear models the normal equations cannot be solved analytically,

so that iterative methods are necessarily used. And most of the iterative methods

attempt to either approximate derivatives numerically or approximate So(θ) in the

neighborhood of θ(k), the value of θ in the kth iteration by a smooth function (Se-

ber and Wild, 1989). However, the normal equation may be a nonsmooth function

for some nonlinear models, in which case we cannot obtain a good estimate by the

iterative methods using those approximations. Instead, direct search methods do not

use those approximations, rather only function evaluations. Swann (1972) has sur-

veyed such methods well. Thus, we use the most successful of these algorithms, the

“simplex” algorithm (Nelder and Mead, 1965), which is simple and easy to program.

The errors in the original model could be additive, proportional, or multiplicative.
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Although it is usually assumed that the εi are i.i.d. N(0, σ2) in the model (1.1), there

is often little understanding of the stochastic nature of the model, particularly with

regard to the distribution and variance structure of the errors εi. Thus, the process to

examine nonnormality and variance heterogeneity should be continued until a model is

arrived at that appears adequate, and this final model is then used to make inferences

from the data.

The method of least squares does not require the assumption of normality. How-

ever, this method may not give good estimates if there is variance heterogeneity.

This heterogeneity can take two important forms: (a) Var(y) is proportional to some

function of E(y), and (b) Var(y) is proportional to some function of x (and possibly

θ).

Consider the same model as in (1.1) where the εi are independently distributed

as N(0, σ2(xi,θ)) and σ2(xi,θ) = σ2
0w(xi,θ). The weighted error sum of squares is

then

S(θ) =
n∑
i=1

{yi − f(xi,θ)}2

w(xi,θ)
.

If we can determine a specific form of w(xi,θ), then we can estimate θ by the following

iterative procedure:

(i) Obtain a starting value of θ by computing θ̂
(0)
, the OLSE of θ.

(ii) Calculate the w
(
xi, θ̂

(0)
)
.

(iii) Compute θ̂, the WLSE of θ.

(iv) Calculate a new value of w using the θ̂ as a starting value.

(v) Continue the above steps until the iterations converge.

The standard errors of the parameter estimates are derived using the delta method.

When each f(xi; θ) is differentiable with respect to θ, and θ̂ is in the interior of Θ,

10



θ̂ will satisfy

∂S(θ)

∂θ

∣∣∣∣
θ̂

= 0.

The above equation then leads to

∑
i

{
yi − f(xi, θ̂)

}
w(xi, θ̂)

∂f(xi,θ)

∂θ

∣∣∣∣
θ̂

= 0.

Hence

∑
i

{
f(xi, θ̂)− f(xi,θ)

}
w(xi, θ̂)

∂f(xi,θ)

∂θ

∣∣∣∣
θ̂

=
∑
i

εi

w(xi, θ̂)

∂f(xi,θ)

∂θ

∣∣∣∣
θ̂

However, by the linear Taylor expansion

f(xi, θ̂) = f(xi,θ) + (θ̂ − θ)t
∂f(xi,θ)

∂θ

∣∣∣∣
θ̂

+ op(‖θ̂ − θ‖),

and therefore,

∑
i

(θ̂ − θ)t

w(xi, θ̂)

∂f(xi,θ)

∂θ

∣∣∣∣
θ̂

∂f(xi,θ)

∂θ

∣∣∣∣
θ̂

+ op(‖θ̂ − θ‖) =
∑
i

εi

w(xi, θ̂)

∂f(xi,θ)

∂θ

∣∣∣∣
θ̂

,

where at is the transpose of a vector a. If we use the notation 1p = (1, . . . , 1)t,

ε = (ε1, ε2, . . . , εn)t,

V̂ = V̂ar(ε) = σ̂2
0 Diag

{
w(xi, θ̂)

}
= σ̂2

0 D̂,

and

F =
{
Fij
}

=

{
∂f(xi,θ)

∂θj

∣∣∣∣
θ̂

}
,

then,

(θ̂ − θ)t
(
Ft D̂−1F

)
+ op(‖θ̂ − θ‖)1p = εtD̂−1F.

11



Thus

(
Ft V̂−1F

)
(θ̂ − θ)(θ̂ − θ)t

(
Ft V̂−1F

)
+ op(‖θ̂ − θ‖)1p1pt = FtV̂−1εεtV̂−1F

or

(
Ft V̂−1F

)
V̂ar(θ̂)

(
Ft V̂−1F

)
+ o(‖θ̂ − θ‖)1p1pt = Ft V̂−1V̂ar(ε)V̂−1F = Ft V̂−1F,

and hence

V̂ar(θ̂) ≈
(
Ft V̂−1F

)−1
.

Now, from the model,

σ2
0 =

Var(εi)

w(xi,θ)
, i = 1, . . . , n.

Therefore, we can obtain the estimate of σ2
0 as follows:

σ̂2
0 =

1

n− p

n∑
i=1

(yi − f(xi, θ̂))2

w(xi, θ̂)
.

Suppose that we know the true value of θ, that is, θ0 and use the notation y =

(y1, . . . , yn)t, f(θ) = (f(x1,θ), . . . , f(xn,θ))t, D0 = Diag
{
w(xi,θ0)

}
, sn(θ) = [y −

f(θ)]tD−1
0 [y − f(θ)], and

F(θ) =
∂

∂θ
f(θ) =

{
∂f(xi,θ)

∂θj

}
.

Then, since y = f(θ0) +ε, and hence sn(θ) = [ε+ f(θ0)− f(θ)]tD−1
0 [ε+ f(θ0)− f(θ)],

∂

∂θ
sn(θ) = −2Ft(θ)D−1

0 [ε + f(θ0)− f(θ)]

∂2

∂θ∂θt
sn(θ) = −2

(
∂

∂θ
F(θ)

)
D−1

0 [ε + f(θ0)− f(θ)] + 2Ft(θ)D−1
0 F(θ).

12



Thus,

sn(θ̂) = (n− p)σ̂2
0; sn(θ0) = εtD−1

0 ε;

∂

∂θ
sn(θ0) = −2Ft(θ0)D

−1
0 ε;

∂2

∂θ∂θt
sn(θ0) = 2Ft(θ0)D

−1
0 F(θ0);

∂

∂θ
sn(θ̂n) = op(1);

∂2

∂θ∂θt
sn(θ̄n) =

∂2

∂θ∂θt
sn(θ0) + op(1),

where θ̄n = αθ0 + (1−α)θ̂n, 0 < α < 1. Note that limn→∞ θ̄n = limn→∞ θ̂n = θ0 a.s.

Then,

sn(θ0)− sn(θ̂n) =

(
∂

∂θ
sn(θ̂n)

)t
(θ0 − θ̂n) +

1

2
(θ0 − θ̂n)t

(
∂2

∂θ∂θ′
sn(θ̄n)

)
(θ0 − θ̂n)

= op(1) +
1

2
(θ0 − θ̂n)t

{
2F′(θ0)D

−1
0 F(θ0) + op(1)

}
(θ0 − θ̂n)

= (θ̂n − θ0)
t
{
F′(θ0)D

−1
0 F(θ0)

}
(θ̂n − θ0) + op(1),

And

∂

∂θ
sn(θ0) =

∂

∂θ
sn(θ̂n) +

∂2

∂θ∂θt
sn(θ̄n)(θ0 − θ̂n)

or

−2Ft(θ0)D
−1
0 ε = op(1) +

(
∂2

∂θ∂θ′
sn(θ0) + op(1)

)
(θ0 − θ̂n)

= 2
{
Ft(θ0)D

−1
0 F(θ0)

}
(θ0 − θ̂n) + op(1),

and hence,

θ̂n − θ0 =
{
Ft(θ0)D

−1
0 F(θ0)

}−1
Ft(θ0)D

−1
0 ε + op(1)

Therefore,

sn(θ0)− sn(θ̂n) = εtD−1
0 F(θ0)

{
Ft(θ0)D

−1
0 F(θ0)

}−1
Ft(θ0)D

−1
0 ε + op(1)

or

sn(θ̂n) = εt
[
In −D−1

0 F(θ0)
{
Ft(θ0)D

−1
0 F(θ0)

}−1
Ft(θ0)

]
D−1

0 ε + op(1).

13



Now,

E
[
εt
[
In −D−1

0 F(θ0)
{
Ft(θ0)D

−1
0 F(θ0)

}−1]
D−1

0 ε
]

= E
[
tr
(
εt
[
In −D−1

0 F(θ0)
{
Ft(θ0)D

−1
0 F(θ0)

}−1]
D−1

0 ε
)]

= E
[
tr
([

In −D−1
0 F(θ0)

{
Ft(θ0)D

−1
0 F(θ0)

}−1]
D−1

0 εεt
)]

= tr
([

In −D−1
0 F(θ0)

{
Ft(θ0)D

−1
0 F(θ0)

}−1]
D−1

0 E(εεt)
)

= tr
([

In −D−1
0 F(θ0)

{
Ft(θ0)D

−1
0 F(θ0)

}−1]
D−1

0 (σ2
0D0)

)
= σ2

0

{
tr(In)− tr

[
D−1

0 F(θ0)
{
Ft(θ0)D

−1
0 F(θ0)

}−1
Ft(θ0)

]}
= σ2

0

{
n− tr

[{
Ft(θ0)D

−1
0 F(θ0)

}−1
F(θ0)D

−1
0 F(θ0)

]}
= σ2

0

{
n− tr(Ip)

}
= σ2

0(n− p)

And, if we let R = op(1), limn→∞ P (|R| > ε) = 0, ∀ε > 0. Thus,

E|R| =

∫ ∞
0

P (|R| > 0)dP

=

∫ ∞
0

{
P (|R| > ε) + P (|R| < ε)

}
dP

=

∫ ∞
0

P (|R| > ε)dP +

∫ ∞
0

P (|R| < ε)dP

−→ 0 as ε→ 0 and n→∞,

and hence, 0 < |E(R)| < E|R| → 0 or E(R) = o(1). Therefore,

E(σ̂2
0(n− p)) = E(sn(θ̂n)) = σ2

0(n− p) + o(1) (Gallant, 1987).
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1.2.2 M-estimation Procedures in Nonlinear Regression Mod-

els

Classical methods of estimation, such as Least Squares (LS) and Maximum Likelihood

(ML) procedures in nonlinear regression usually give estimators which are usually

nonrobust to outliers or departures from the specified distribution of the response

variable. Thus, from consideration of robustness, the classical procedures are not

very desirable and robust estimation procedures, such as M-procedures, are better in

this context.

Sanhueza and Sen (2001) have proposed M-procedures for generalized nonlinear

models. For the model in (1.1), an M-estimator of θ are defined as the minimization:

θ̂n = Arg ·min

{
n∑
i=1

1

h
[
w(xi,θ)

]h2
(
yi − f(xi,θ)

)
: θ ∈ Θ ⊆ <p

}
(1.3)

where h(·) is a real valued function. Under the assumption of fixed variance func-

tion in the above equation and ψ(z) = (∂/∂z)h2(z), the estimating equation for the

minimization in the above equation is given by:

n∑
i=1

λ(xi, yi, θ̂n) = 0

where

λ(xi, yi,θ) =
1

h
[
w(xi,θ)

]ψ(yi − f(xi,θ)
)
fθ(xi,θ)

and fθ(xi,θ) = (∂/∂θ)f(xi,θ). It can be seen that choosing h(z) = z produces the LS

estimator and h(z) =
√
|z| produces the least absolute deviation (LAD) estimator. In

the coventional setup of robust methods (Huber, 1981; Hampel et al., 1986; Jureĉková

and Sen, 1996), bounded and monotone functions h(·) are commonly used; the so
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called Huber-score function corresponds to

h(z) =


1√
2
z, if |z| ≤ k

{k(|z| − k
2
)} 1

2 , if |z| > k

(1.4)

for suitable chosen k(0 < k <∞). Whenever the errors εi in (1.1) have a symmetric

distribution, we may choose k as a suitable percentile point of this law, such as the

90th or 95th percentile, and let h as in (1.4).

Under appropriated regularity conditions, the M-estimator as defined in (1.3) is

consistent and asymptotically normally distributed:

√
n(θ̂n − θ) −→ Np

(
0, γ−2σ−2

ψ Γ−1
1 (θ)Γ2(θ)Γ−1

1 (θ)
)
,

where for ε = y − f(x,θ), γ = Eψ′(ε), σ2
ψ = Eψ2(ε)/u(x), and

Γ1 = lim
n→∞

1

n

n∑
i=1

1

h[w(xi,θ)]
fθ(xi,θ)f tθ(xi,θ)

and

Γ2 = lim
n→∞

1

n

n∑
i=1

u(xi)

h2[w(xi,θ)]
fθ(xi,θ)f tθ(xi,θ)

are positive definite matrices.

Sanhueza and Sen (2001) have also proposed M-procedures for nonlinear regression

models where no assumption on the underlying distribution for the response variable

is made except the existence of the expected valude and variance of the response

variable. If we consider the nonlinear model

yi = f(xi,θ) + aiεi, i = 1, . . . , n (1.5)

where yij are the observable random variables (r.v.), xi = (x1i, x2i, . . . , xmi)
t are
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known regression constants, θ = (θ1, θ2, . . . , θp)
t is a vector of unknown parameters,

f(, ) is a nonlinear function of θ of specified form, the errors εij are assumed to be i.i.d

r.v.s with some distribution function which is defined on <, continuous and symmetric

about 0 and the ai(> 0) are known constant, possibly dependent on the xi. Then, an

M-estimator of θ are defined as the minimization:

θ̂n = Arg ·min

{
n∑
i=1

wnih
2
(
yi − f(xi,θ)

)
: θ ∈ Θ ⊆ <p

}
(1.6)

where

wni =
[
E(ψ2(yi − f(xi,θ)))

]−1
/

n∑
j=1

[
E(ψ2(yj − f(xj,θ)))

]−1
, j = 1, . . . , n.

Under certain regularity contions, they proved that the M-estimator is consistent and

asymptotically normally distributed. The reader is referred to Sanhueza and Sen

(2001, pp. 359–375).

1.2.3 Preliminary Test Estimation

In problems of statistical inference, the classical estimators of unknown parameters

are based exclusively on the sample data. Such estimators ignore any other kind

of non-sample prior information (NPI) in its definition. The notion of inclusion of

NPI to the estimation of parameters has been introduced to ‘improve’ the estimation

procedures. The natural expectation is that the use of additional information would

result in a better estimator. In some cases, this may be true, but in many other cases

the risk of worse consequences can not be ruled out.

The problem under consideration is then changed to the problems of statistical

inference in the presence of uncertain NPI. It is usual in the literature to treat such

uncertain NPI specified by a null hypothesis as a “nuisance parameter”. Then the
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uncertainty in the form of the “nuisance parameter” is eliminated by a so-called pre-

liminary test. Bancroft (1944, 1964, 1972) first addressed the problem, and proposed

the well-known PTE. Later, Kitagawa (1963), Han and Bancroft (1968), Saleh and

Han (1990), Ali and Saleh (1990), and Mahdi et al. (1998), contributed in the devel-

opment of the PTE methods under the normal theory. Furthermore, Saleh and Sen

(1978, 1985) published a series of articles in this area exploring the nonparametric

as well as the asymptotic theory based on the least square estimators. Bhoj and

Ahsanullah (1993, 1994) discussed the problem of estimation of conditional mean for

simple regression model.

The PTE methodologies have studied and applied actively even recent years.

Tabatabaey (1995), Kibria (1996), Khan and Saleh (1995, 1997, 2008), Khan (2000,

2005), Tabatabaey, Saleh and Kibria (2004a,b), and Arashi and Tabatabaey (2008) in-

vestigated the problem for a family of Student-t populations. Ahmed and Krzanowski

(2004) proposed new PTEs for the parameter vectors in a simple multivariate nor-

mal regression model and Chaubey and Sen (2004) discussed the PTE for mean of

an inverse Gaussian population. The PTE method was also employed to develop

inference tools for an effect size parameter in a paired experiment by Al-Kandari,

Buhamra and Ahmed (2005), and the relative performance of the PTE and shrinkage

estimators of the intercept parameter of linear regression model has been investigated

by Khan, Hoque and Saleh (2005). Furthermore, Kim and Saleh (2005) considered

the PTE methodologies in the problem of simultaneous estimation of the regression

parameters in a multiple regression model with measurement errors. Wan and Zou

(2003), and Wan, Zou, Ohtani (2006) considered the choice of critial values for the

PTE procedures based on the minimum risk criterion. Yunus and Khan (2007) pro-

posed a robust test statistic based on M-statistic to formulate the asymptotic power

functions for testing the intercept after pre-testing on slope and to carry out inves-

tigations on the asymptotic properties of this power function. And Baklizi (2008)
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considered the PTE based on the maximum likelihood estimator (MLE) of the pa-

rameter of the pareto distribution and obtained the optimal significance levels for

the PT using the minmax regret criterion. Baklizi and Ahmed (2008) proposed the

shrinkage PTE of the reliability function of the Weibull lifetime model to achieve

improved estimation performance. Kabir and Khan (2008) proposed p-value based

PTE based on the sample, NPI, p-value of an appropriate test for estimation of the

slope parameter of a simple regression model. Khan (2008) considered the shrinkage

PTE of the intercept parameters of two linear regression models with normal errors,

when it is a priori suspected that the two regression lines are parallel, but in doubt.

Menéndez, Pardo and Pardo (2008, 2009) considered the PTE of the parameters in

the generalized linear models with binary data.

Let us consider the simple linear model with slope β, and intercept θ, given by

Y = θ1n + βx + ε, (1.7)

where Y is an n × 1 vector of the observable r.v.s, x is an n × 1 vector of known

constants, 1n is an n× 1 vector of 1’s, and ε is an n× 1 vector of independent errors

such that ε ∼ Nn(0, σ2In) with In the identity matrix of order n.

The maximum likelihood estimator (MLE) of (θ, β)t in the model (1.7) is given as

 θ̃n

β̃n

 =

 Ȳ − β̃nx̄
1
Q

{
xtY − 1

n
(1tnx)(1tnY)

}
 , (1.8)

where

Q = xtx− 1

n
(1tnx)2. (1.9)

When it is suspected that the slope parameter β may be β0, since in practice the

NPI is uncertain, it is used to test the hypothesis H0 : β = β0 against the alternative
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H1 : β 6= β0 in order to eliminate the doubt on the prior information. Then we use

the likelihood ration (LR) test statistic

Tn =
(β̃n − β0)

2Q

s2
, (1.10)

which follows a noncentral F -distribution with (1,m = n − 2) degrees of freedom

(d.f.) and noncentrality parameter ∆2/2 where

s2 =
1

n− 2

(
Y − θ̃n1n − β̃nx

)t (
Y − θ̃n1n − β̃nx

)
(1.11)

is an unbiased estimator of the variance σ2 and

∆2 =
(β − β0)

2Q

σ2
. (1.12)

Under H0, Tn follows a central F -distribution, so at the significance level α we obtain

the critical value F1,m(α) from this distribution and reject H0 if Tn ≥ F1,m(α); oth-

erwise, we accept H0. As a result of this test, we choose the unrestricted estimator

(UE) θ̃n or the restricted estimator (RE) θ̂n based on the rejection or acceptance of

H0, where θ̂n is given by

θ̂n = Ȳ − β0x̄. (1.13)

Accordingly, we define the PTE as

θ̂PT
n = θ̂nI(Tn < F1,m(α)) + θ̃nI(Tn ≥ F1,m(α)), (1.14)

where I(A) is the indicator function of the set A. For more details, see Judge and Bock

(1978), Ahmed and Saleh (1988), Ahsanullah and Saleh (1972), and Saleh (2006).

Then, we compare the UE, RE, and PTE of θ with respect to the bias and the
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mean squared error (MSE), based on the following theorems (Saleh, 2006).

Theorem 1: The bias, b(·), and the quadratic bias B(·) expressions for θ̃n, θ̂n, and

θ̂PT
n are given as follows

(i) b(θ̃n) = 0, B(θ̃n) = 0,

(ii) b(θ̂n) = (β − β0)x̄, B(θ̂n) = (x̄2∆2)/Q,

(iii) b(θ̂PT
n ) = (β−β0)x̄G3,m(1

3
F1,m(α); ∆2), B(θ̂PT

n ) =
{
x̄2∆2G2

3,m(1
3
F1,m(α); ∆2)

}
/Q,

where Gm1,m2(·; ∆2) is the cdf of a noncentral F -distribution with (m1,m2) d.f. and

noncentrality parameter ∆2/2.

Theorem 2: The MSE expressions for θ̃n, θ̂n, and θ̂PT
n are given by

MSE(θ̃n) =
σ2

n

(
1 +

nx̄2

Q

)
, MSE(θ̂n) =

σ2

n

(
1 +

nx̄2

Q
∆2

)

and

MSE(θ̂PT
n ) =

σ2

n

(
1 +

nx̄2

Q

)
− σ2 x̄

2

Q
G3,m

(
1

3
F1,m(α); ∆2

)
+σ2 x̄

2

Q
∆2

{
2G3,m

(
1

3
F1,m(α); ∆2

)
−G5,m

(
1

5
F1,m(α); ∆2

)}
,

respectively.
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1.3 Synopsis of Research

In this research, we are primarily interested in the study of M-procedures for estimat-

ing the parameters in heteroscedastic nonlinear models and the PTE-based method-

ology for nonlinear regression models using M-estimation methods, as the robust

statistical methodologies.

In Chapter 2, we define M-estimators for the parameters in heteroscedastic nonlin-

ear models, in which case the error variance is assumed to be proportional to the mean

response. Under some regularity conditions, we derive the asymptotic distribution

of the M-estimators. we also show that even though the variances are unknown, an

M-estimate of the regression parameter can be constructed which is asymptotically

equivalent to the M-estimate with known variances. Then, we iilustrate examples

where we verify that the regularity conditions are satisfied for some situations.

In Chapter 3, we study M-procedures for estimating both the regression param-

eters and the parameters for variance in nonlinear models, where the log-variance of

the random error is assumed to be linear in the explanatory variable. We formulate

suitable M-estimators of the parameters in the model and study their asymptotic

distribution, including consistency, uniform asymptotic linearity, and normality.

In Chapter 4, we consider the PTE-based methodology for nonlinear regression

models using M-estimation methods. We propose the PTE procedures for estima-

tion the regression parameter in heteroscedastic nonlinear regression models when it

is suspected that the error variances are possibly homoscedastic. We derive some

asymptotic results to obtain the asymptotic covariance matrix of the PTE.

Numerical results are presented in Chapter 5 and 6 to illustrate the methodology.

Finally in Chapter 7 we propose some topics for further research.
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Chapter 2

M-METHODS IN

HETEROSCEDASTIC

NONLINEAR MODELS – I

2.1 Introduction

In this chapter, we discuss M-procedures in heteroscedastic nonlinear regression mod-

els. It may be seen as a different version of the M-procedures that Sanhueza and

Sen (2001) studied in the generalized nonlinear models. Here, the methodology and

asymptotic theory of the M-procedures are similar in nature to those in the general-

ized nonlinear model case. They used the function h, having the variance function

from the generalized nonlinear models as the argument, in the denominator of the

estimating equation. However, we generalize it so that instead of h we use a suit-

ably chosen function w (assumed to be known) in the denominator which has the

mean response as the argument, assuming that the variance is proportional to the

mean response. And also we show that even though the variances are unknown, an

M-estimate of the regression parameter can be constructed which is asymptotically



equivalent to the M-estimate with known variances.

In Section 2.2 we define the M-estimator for the parameter of interest in the het-

eroscedastic nonlinear model. We also present the notation and regularity conditions

necessary to derive the asymptotic results in this chapter. In Section 2.3 we develop

the asymptotic properties of the M-estimates. In Section 2.4 we illustrate examples

where we verify that the regularity conditions are satisfied for some situations.

Let

yij = f(xi,θ) + εij, i = 1, . . . , k, j = 1, . . . , ni (2.1)

where yij are the observable r.v.s of size n (=
∑
ni), xi = (x1i, x2i, . . . , xmi)

t are

known regression constants, θ = (θ1, θ2, . . . , θp)
t is a vector of unknown parameters,

f(, ) is a nonlinear function of θ of specified form; and the errors εij are assumed to

be independent r.v.s such that εij ∼ N(0, σ2
i ), i = 1, . . . , k, j = 1, . . . , ni. We assume

that σ2
i = σ2(f(xi,θ)) for i = 1, . . . , k.

2.2 Definitions and Regularity Conditions

We define an M-estimator of θ as the estimator that solves the following minimization

problem:

θ̂n = Argmin

{∑
i,j

1

w(f(xi,θ))
h2(yij − f(xi,θ)) : θ ∈ Θ ⊆ <p

}
(2.2)

where the functional form of w is assumed to be known, h(·) is a real valued function,

and Θ is a compact subset of <p. Let ψ(z) = (∂/∂z)h2(z), then the estimating

equation for the minimization problem (2.2) is given by:

∑
i,j

λ(xi, yij, θ̂n) = 0 (2.3)
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where

λ(xi, yij,θ) =
1

w(f(xi,θ))
ψ(yij − f(xi,θ))fθ(xi,θ) (2.4)

and fθ(xi,θ) = (∂/∂θ)f(xi,θ).

We make the following sets of regularity assumptions regarding (A) the score

function ψ, (B) the function f(·), and (C) the functions k1(·) and k2(·), where

k1(xi,θ) = 1/w(f(xi,θ)), (2.5)

and

k2(xi,θ) =
w′(f(xi,θ))

w2(f(xi,θ))
. (2.6)

[A1]:

ψ is nonconstant, absolutely continuous and differentiable with respect to θ.

[A2]: Let ε = Y − f(x,θ),

(i) Eψ2(ε) = σ2
ψu(x) <∞, and Eψ(ε) = 0

(ii) E|ψ′(ε)|1+δ <∞ for some 0 < δ ≤ 1, and Eψ′(ε) = γ ( 6= 0)

[A3]:

(i) limδ→0E
{

sup‖∆‖ ≤ δ
∣∣ψ(Y − f(x,θ + ∆))− ψ(Y − f(x,θ))

∣∣} = 0

(ii) limδ→0E
{

sup‖∆‖ ≤ δ
∣∣ψ′(Y − f(x,θ + ∆))− ψ′(Y − f(x,θ))

∣∣} = 0

[B1]:

f(x,θ) is continuous and twice differentiable with respect to θ ∈ Θ, where Θ is a

compact subset of <p.

[B2]:

(i) limn→∞
1
n
Γ1n(θ) = Γ1(θ), where

Γ1n(θ) =
∑
i,j

{
1

w(f(xi,θ))
fθ(xi,θ)f tθ(xi,θ)

}
,
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and Γ1(θ) is a positive definite matrix.

(ii) limn→∞
1
n
Γ2n(θ) = Γ2(θ), where

Γ2n(θ) =
∑
i,j

{
u(xi)

w2(f(xi,θ))
fθ(xi,θ)f tθ(xi,θ)

}
,

and Γ2(θ) is a positive definite matrix.

(iii) max
{

u(xi)
w2(f(xi,θ))

f tθ(xi,θ)(Γ2n(θ))−1fθ(xi,θ)
}
−→ 0, as n→∞

[B3]:

(i) limδ→0 sup‖∆‖≤δ

∣∣∣(∂/∂θj)f(x,θ + ∆)(∂/∂θl)f(x,θ + ∆)

− (∂/∂θj)f(x,θ)(∂/∂θl)f(x,θ)
∣∣∣ = 0 for j, l = 1, . . . , p

(ii) limδ→0 sup‖∆‖≤δ

∣∣∣(∂2/∂θj∂θl)f(x,θ + ∆) − (∂2/∂θj∂θl)f(x,θ)
∣∣∣ = 0 for j, l =

1, . . . , p

[C]:

(i) limδ→0 sup‖∆‖≤δ
∣∣k1(x,θ + ∆)− k1(x,θ)

∣∣ = 0, uniformly in x.

(ii) limδ→0 sup‖∆‖≤δ
∣∣k2(x,θ + ∆)− k2(x,θ)

∣∣ = 0, uniformly in x.

2.3 Asymptotic Results

First we present two lemmas.

Lemma 2.1. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λr(xi, yij,θ) be the rth element of the vector λ(xi, yij,θ) for r = 1, . . . , p. Then for

r = 1, . . . , p

sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tl

{
(∂/∂θl)λr

(
xi, yij,θ+

st√
n

)
−(∂/∂θl)λr(xi, yij,θ)

}∣∣∣∣ = op(1), (2.7)
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where

λr(xi, yij,θ) =
1

w(f(xi,θ))
ψ(yij − f(xi,θ))fθr(xi,θ), r = 1, . . . , p, (2.8)

and fθr(xi,θ) = (∂/∂θr)f(xi,θ).

Proof. For l, r = 1, . . . , p, by differentiating we get,

(∂/∂θl)λr(xi, yij,θ) = k1(xi,θ) {ψ(yij − f(xi,θ))(∂2/∂θr∂θl)f(xi,θ)

−ψ′(yij − f(xi,θ))fθr(xi,θ)fθl
(xi,θ)}

−k2(xi,θ)ψ(yij − f(xi,θ))fθr(xi,θ)fθl
(xi,θ),

(2.9)

and k1(xi,θ) and k2(xi,θ) are given in (2.5) and (2.6), respectively. Then,

sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tl

{
(∂/∂θl)λr

(
xi, yij,θ +

st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

}∣∣∣∣
≤ 1

n
C
∑
i,j

p∑
l=1

sup
‖t‖≤C

∣∣∣(∂/∂θl)λr(xi, yij,θ +
st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

∣∣∣,
and

sup
‖t‖≤C

∣∣∣(∂/∂θl)λr(xi, yij,θ +
st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

∣∣∣
≤ sup
‖t‖≤C

{∣∣∣k1

(
xi,θ +

st√
n

)
− k1(xi,θ)

∣∣∣∣∣∣ψ′(yij − f(xi,θ +
st√
n

))
fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)∣∣∣}
+ sup
‖t‖≤C

{∣∣∣ψ′(yij − f(xi,θ +
st√
n

))
− ψ′(yij − f(xi,θ))

∣∣∣∣∣∣k1(xi,θ)fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)∣∣∣}
+ sup
‖t‖≤C

{∣∣∣fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)
− fθr(xi,θ)fθl

(xi,θ)
∣∣∣

∣∣k1(xi,θ)ψ′(yij − f(xi,θ))
∣∣}
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+ sup
‖t‖≤C

{∣∣∣k1

(
xi,θ +

st√
n

)
− k1(xi,θ)

∣∣∣∣∣∣ψ(yij − f(xi,θ +
st√
n

))
(∂2/∂θr∂θl)f

(
xi,θ +

st√
n

)∣∣∣}
+ sup
‖t‖≤C

{∣∣∣ψ(yij − f(xi,θ +
st√
n

))
− ψ(yij − f(xi,θ))

∣∣∣∣∣∣k1(xi,θ)(∂2/∂θr∂θl)f
(
xi,θ +

st√
n

)∣∣∣}
+ sup
‖t‖≤C

{∣∣∣(∂2/∂θr∂θl)f
(
xi,θ +

st√
n

)
− (∂2/∂θr∂θl)f(xi,θ)

∣∣∣∣∣∣k1(xi,θ)ψ(yij − f(xi,θ))
∣∣∣}

+ sup
‖t‖≤C

{∣∣∣k2

(
xi,θ +

st√
n

)
− k2(xi,θ)

∣∣∣∣∣∣ψ(yij − f(xi,θ +
st√
n

))
fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)∣∣∣}
+ sup
‖t‖≤C

{∣∣∣ψ(yij − f(xi,θ +
st√
n

))
− ψ(yij − f(xi,θ))

∣∣∣∣∣∣k2(xi,θ)fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)∣∣∣}
+ sup
‖t‖≤C

{∣∣∣fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)
− fθr(xi,θ)fθl

(xi,θ)
∣∣∣

∣∣k2(xi,θ)ψ(yij − f(xi,θ))
∣∣}.

Then, by taking the expectation at both sides,

E

{
sup
‖t‖≤C

∣∣∣(∂/∂θl)λr(xi, yij,θ +
st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

∣∣∣}

≤ sup
‖t‖≤C

∣∣∣k1

(
xi,θ +

st√
n

)
− k1(xi,θ)

∣∣∣E{ sup
‖t‖≤C

∣∣∣ψ′(yij − f(xi,θ +
st√
n

))∣∣∣}
sup
‖t‖≤C

∣∣∣fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)∣∣∣
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+ E

{
sup
‖t‖≤C

∣∣∣ψ′(yij − f(xi,θ +
st√
n

))
− ψ′(yij − f(xi,θ))

∣∣∣}
sup
‖t‖≤C

∣∣∣k1(xi,θ)fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)∣∣∣
+ sup
‖t‖≤C

∣∣∣fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)
− fθr(xi,θ)fθl

(xi,θ)
∣∣∣

∣∣k1(xi,θ)
∣∣E{∣∣ψ′(yij − f(xi,θ))

∣∣}
+ sup
‖t‖≤C

∣∣∣k1

(
xi,θ +

st√
n

)
− k1(xi,θ)

∣∣∣E{ sup
‖t‖≤C

∣∣∣ψ(yij − f(xi,θ +
st√
n

))∣∣∣}
sup
‖t‖≤C

∣∣∣(∂2/∂θr∂θl)f
(
xi,θ +

st√
n

)∣∣∣
+ E

{
sup
‖t‖≤C

∣∣∣ψ(yij − f(xi,θ +
st√
n

))
− ψ(yij − f(xi,θ))

∣∣∣}
∣∣k1(xi,θ)

∣∣ sup
‖t‖≤C

∣∣∣(∂2/∂θr∂θl)f
(
xi,θ +

st√
n

)∣∣∣
+ sup
‖t‖≤C

∣∣∣(∂2/∂θr∂θl)f
(
xi,θ +

st√
n

)
− (∂2/∂θr∂θl)f(xi,θ)

∣∣∣
∣∣k1(xi,θ)

∣∣E{∣∣ψ(yij − f(xi,θ))
∣∣}

+ sup
‖t‖≤C

∣∣∣k2

(
xi,θ +

st√
n

)
− k2(xi,θ)

∣∣∣E{ sup
‖t‖≤C

∣∣∣ψ(yij − f(xi,θ +
st√
n

))∣∣∣}
sup
‖t‖≤C

∣∣∣fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)∣∣∣
+ E

{
sup
‖t‖≤C

∣∣∣ψ(yij − f(xi,θ +
st√
n

))
− ψ(yij − f(xi,θ))

∣∣∣} ∣∣k2(xi,θ)
∣∣

sup
‖t‖≤C

∣∣∣fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)∣∣∣
+ sup
‖t‖≤C

∣∣∣fθr

(
xi,θ +

st√
n

)
fθl

(
xi,θ +

st√
n

)
− fθr(xi,θ)fθl

(xi,θ)
∣∣∣

∣∣k2(xi,θ)
∣∣E{∣∣ψ(yij − f(xi,θ))

∣∣}.
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Thus, by conditions [A3] (i)-(ii), [B3] (i)-(ii), and [C] (i)-(ii), we have

E

{
sup
‖t‖≤C

∣∣∣(∂/∂θl)λr(xi, yij,θ +
st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

∣∣∣} −→ 0, ∀i, j,

and

E

[
sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tl

{
(∂/∂θl)λr

(
xi, yij,θ +

st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

}∣∣∣∣
]
−→ 0

Also,

Var

[
sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tl

{
(∂/∂θl)λr

(
xi, yij,θ +

st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

}∣∣∣∣
]

≤ C2

n2

∑
i,j

Var

{
p∑
l=1

sup
‖t‖≤C

∣∣∣(∂/∂θl)λr(xi, yij,θ +
st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

∣∣∣}
≤ C2K/n −→ 0.

Therefore, we have the result in (2.7).

Lemma 2.2. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λr(xi, yij,θ) be the rth element of the vector λ(xi, yij,θ) for r = 1, . . . , p. Then for

r = 1, . . . , p

sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tl(∂/∂θl)λr(xi, yij,θ)

+
γ

n

∑
i,j

p∑
l=1

tl
1

w(f(xi,θ))
fθr(xi,θ)fθl

(xi,θ)

∣∣∣∣ = op(1),

(2.10)

where λr(xi, yij,θ) is defined in (2.8).
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Proof. From (2.9), we have

sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tl(∂/∂θl)λr(xi, yij,θ) +
γ

n

∑
i,j

p∑
l=1

tl
1

w(f(xi,θ))
fθr(xi,θ)fθl

(xi,θ)

∣∣∣∣
= sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tlψ(yij − f(xi,θ))
{
k1(xi,θ)(∂2/∂θr∂θl)f(xi,θ)

− k2(xi,θ)fθr(xi,θ)fθl
(xi,θ)

}

− 1

n

∑
i,j

p∑
l=1

tlk1(xi,θ)
{
ψ′(yij − f(xi,θ))− γ

}
fθr(xi,θ)fθl

(xi,θ)
}∣∣∣∣

≤ C

p∑
l=1

∣∣∣∣ 1n∑
i,j

ψ(yij − f(xi,θ))
{
k1(xi,θ)(∂2/∂θr∂θl)f(xi,θ)

− k1(xi,θ)fθr(xi,θ)fθl
(xi,θ)

}∣∣∣∣
+ C

p∑
l=1

∣∣∣∣ 1n∑
i,j

k1(xi,θ)
{
ψ′(yij − f(xi,θ))− γ

}
fθr(xi,θ)fθl

(xi,θ)

∣∣∣∣
which by using the Markov WLLN and conditions [A2] (i)-(ii) yields:

1

n

∑
i,j

ψ(yij − f(xi,θ))
{
k1(xi,θ)(∂2/∂θr∂θl)f(xi,θ)− k1(xi,θ)fθr(xi,θ)fθl

(xi,θ)
}

= op(1)

and

1

n

∑
i,j

k1(xi,θ)
{
ψ′(yij − f(xi,θ))− γ

}
fθr(xi,θ)fθl

(xi,θ) = op(1).

Thus, we have the result in (2.10).

Now we shall prove the uniform asymptotic linearity of M-statistics.

Theorem 2.3. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold. Then

sup
‖t‖≤C

∥∥∥∥ 1√
n

∑
i,j

{λ(xi, yij,θ + n−
1
2 t)− λ(xi, yij,θ)}+

γ

n
Γ1n(θ)t

∥∥∥∥ = op(1) (2.11)
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as n→∞, where λ(xi, yij,θ) was defined in (2.4).

Proof. We consider the rth element of the vector λ(xi, yij,θ) denoted as (2.8). Then,

by using the first order term in the Taylor’s expansion, we have, for 0 < s < 1,

λr(xi, yij,θ + n−
1
2 t)− λr(xi, yij,θ)

=
1√
n

p∑
l=1

tl{(∂/∂θl)λr(xi, yij,θ)}

+
1√
n

p∑
l=1

tl

{
(∂/∂θl)λr

(
xi, yij,θ +

st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

}
.

And for r = 1, . . . , p we have

sup
‖t‖≤C

∣∣∣∣ 1√
n

∑
i,j

{
λr

(
xi, yij,θ +

t√
n

)
− λr(xi, yij,θ)

}
+
γ

n

∑
i,j

p∑
l=1

{
tl

1

w(f(xi,θ))
fθr(xi,θ)fθl

(xi,θ)
}∣∣∣∣

≤ sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tl

{
(∂/∂θl)λr

(
xi, yij,θ +

st√
n

)
− (∂/∂θl)λr(xi, yij,θ)

}∣∣∣∣
+ sup
‖t‖≤C

∣∣∣∣ 1n∑
i,j

p∑
l=1

tl(∂/∂θl)λr(xi, yij,θ)

+
γ

n

∑
i,j

p∑
l=1

{
tl

1

w(f(xi,θ))
fθr(xi,θ)fθl

(xi,θ)
}∣∣∣∣.

Therefore, from Lemma 2.1 and 2.2 we conclude that:

sup
‖t‖≤C

∣∣∣∣ 1√
n

∑
i,j

{
λr

(
xi, yij,θ +

t√
n

)
− λr(xi, yij,θ)

}
+
γ

n

∑
i,j

p∑
l=1

{
tl

1

w(f(xi,θ))
fθr(xi,θ)fθl

(xi,θ)
}∣∣∣∣ = op(1), r = 1, . . . , p.

We now prove the existence of a solution to (2.3) that is a
√
n-consistent estimator

of θ and admits an asymptotic representation.
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Theorem 2.4. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold. Then there

exists a sequence θ̂n of solutions of (2.3) such that:

√
n‖θ̂n − θ‖ = Op(1), (2.12)

θ̂n = θ +
1

nγ

( 1

n
Γ1n(θ)

)−1∑
i,j

λ(xi, yij,θ) + op(n
− 1

2 ) (2.13)

or
√
n(θ̂n − θ) =

1

γ

( 1

n
Γ1n(θ)

)−1 1√
n

∑
i,j

λ(xi, yij,θ) + op(1) (2.14)

Proof. From Theorem 2.3 we know that the following system of equations:

∑
i,j

λr(xi, yij,θ + n−
1
2 t) = 0

has a root tn that lies in ‖t‖ ≤ C with probability exceeding 1− ε for n ≥ n0. Then

θ̂n = θ + n−
1
2 tn is a solution of the equation (2.3) satisfying:

P (
√
n‖θ̂n − θ‖ ≤ C) ≥ 1− ε for n ≥ n0.

Inserting
√
n(θ̂n − θ) into t in (2.7), we have the expression in (2.13) or (2.14).

Theorem 2.5. Let the conditions [A1], [A2](i)-(ii), [B1], [B2] (i)-(ii) hold. Then

1√
n

∑
i,j

λ(xi, yij,θ) −→ Np

(
0, σ2

ψΓ2(θ)
)

as n→∞. (2.15)

Proof. Let

Z∗n = ηt
1√
n

∑
i,j

λ(xi, yij,θ), η ∈ <p,

33



then

Z∗n =
1√
n

∑
i,j

1

w(f(xi,θ))
ψ(yij − f(xi,θ))ηtfθ(xi,θ)

=
∑
i,j

cnijZij,

where

cnij =
σψ√
n

√
u(xi)

w(f(xi,θ))
ηtfθ(xi,θ),

and

Zij = ψ(yij − f(xi,θ))/(σψ
√
u(xi)).

Then by using the Hájek-S̆idak Central Limit Theorem, we show that Z∗n converges

in law to a normal distribution as n → ∞. In order to use this theorem we need to

verify that

max
i,j

c2nij/
∑
i,j

c2nij −→ 0,

as n→∞, which can be reformulated as requiring

sup
η∈<p

[
max
i,j

ηt
u(xi)

w2(f(xi,θ))
fθ(xi,θ)f tθ(xi,θ)η / ηtΓ2n(θ)η

]
−→ 0.

Now, in view of the Courant’s Theorem, we have that:

sup
η∈<p

[
ηt

u(xi)

w2(f(xi,θ))
fθ(xi,θ)f tθ(xi,θ)η / ηtΓ2n(θ)η

]
= ch1

{
u(xi)

w2(f(xi,θ))
fθ(xi,θ)f tθ(xi,θ)

(
Γ2n(θ)

)−1
}

=
u(xi)

w2(f(xi,θ))
f tθ(xi,θ)

(
Γ2n(θ)

)−1
fθ(xi,θ),

so this condition reduces to the condition [B2] (iii) (Noether’s condition). Thus, we

conclude that:

Z∗n/
(∑

i,j

c2nij
) 1

2 −→ N(0, 1) as n→∞
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and by using Cramer-Wold Theorem and condition [B2] (ii) we prove the expression

in (2.15).

Corollary 2.6. Let the conditions [A1]-[A3], [B1]-[B3] hold. Then

√
n(θ̂n − θ) −→ Np

(
0, γ−2σ2

ψΓ−1
1 (θ)Γ2(θ)Γ−1

1 (θ)
)

as n→∞. (2.16)

Proof. From Theorem 2.4 we have

√
n(θ̂n − θ) =

1

γ

( 1

n
Γ1n(θ)

)−1 1√
n

∑
i,j

λ(xi, yij,θ) + op(1)

Then from Theorem 2.5 and Slutsky’s Theorem we have the expression in (2.16).

Corollary 2.7. Let the conditions [A1]-[A3], [B1]-[B3] hold. Then

Γ̂−
1
2
√
n(θ̂n − θ) −→ Np(0, Ip) as n→∞, (2.17)

where

Γ̂ = γ̂−2σ̂2
ψ

( 1

n
Γ1n(θ̂n)

)−1( 1

n
Γ2n(θ̂n)

)( 1

n
Γ1n(θ̂n)

)−1

, (2.18)

and γ̂ and σ̂2
ψ are consistent estimators of γ and σ2

ψ, respectively.

Proof. Using (2.16) and Slutsky’s Theorem we have the expression in (2.17).

Corollary 2.8. Let the conditions [A1]-[A3], [B1]-[B3] hold. Then

n(θ̂n − θ)tΓ̂−1(θ̂n − θ) −→ χ2
p as n→∞. (2.19)

Proof. Using (2.17) and Cochran’s Theorem, we prove the expression in (2.19).

Theorem 2.9. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold. Then

√
n(θ̂

∗
n − θ̂n)

p−→ 0
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as n→∞, where θ̂
∗
n is an M-estimator defined as (2.2) with no assumption of fixed

variance function and obtained iteratively with updated variance function estimates.

Proof. From (2.13) we have

θ̂n = θ +
1

nγ

( 1

n
Γ1n(θ)

)−1∑
i,j

k1(xi,θ)ψ(εij)fθ(xi,θ) + op(n
− 1

2 ).

Also, θ̂
∗
n can be expressed as

θ̂
∗
n = θ +

1

nγ

( 1

n
Γ̂1n(θ)

)−1∑
i,j

k̂1(xi,θ)ψ(εij)fθ(xi,θ) + op(n
− 1

2 ),

where

Γ̂1n(θ) =
∑
i,j

k̂1(xi,θ)fθ(xi,θ)f tθ(xi,θ)

and k̂1(xi,θ) is an estimate of k1(xi,θ), possibly k1(xi, θ̂n).

Therefore, we may write:

θ̂
∗
n − θ̂n

=
1

nγ

{( 1

n
Γ̂1n(θ)

)−1

−
( 1

n
Γ1n(θ)

)−1
}∑

i,j

k̂1(xi,θ)ψ(εij)fθ(xi,θ)

+
1

nγ

( 1

n
Γ1n(θ)

)−1∑
i,j

{
k̂1(xi,θ)− k1(xi,θ)

}
ψ(εij)fθ(xi,θ) + op(n

− 1
2 )

=
1

nγ

{( 1

n
Γ̂1n(θ)

)−1

−
( 1

n
Γ1n(θ)

)−1
}∑

i,j

k1(xi,θ)ψ(εij)fθ(xi,θ)

+
1

nγ

{( 1

n
Γ̂1n(θ)

)−1

−
( 1

n
Γ1n(θ)

)−1
}∑

i,j

{
k̂1(xi,θ)− k1(xi,θ)

}
ψ(εij)fθ(xi,θ)

+
1

nγ

( 1

n
Γ1n(θ)

)−1∑
i,j

{
k̂1(xi,θ)− k1(xi,θ)

}
ψ(εij)fθ(xi,θ) + op(n

− 1
2 ). (2.20)
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The first term on the right hand side (r.h.s.) of (2.20) may be expressed as

1

nγ

{( 1

n
Γ̂1n(θ)

)−1

−
( 1

n
Γ1n(θ)

)−1
}{

nγ
( 1

n
Γ1n(θ)

)
(θ̂n − θ) + op(n

− 1
2 )

}

=

{( 1

n
Γ̂1n(θ)

)−1( 1

n
Γ1n(θ)

)
− In

}
(θ̂n − θ) + op(n

− 1
2 ) (2.21)

From (2.12), (2.21) is op(n
− 1

2 ) whenever
(

1
n
Γ̂1n(θ)

)−1( 1
n
Γ1n(θ)

)
− In = op(1), i.e., all

the charateristic roots of
(

1
n
Γ̂1n(θ)

)−1( 1
n
Γ1n(θ)

)
− In are op(1). Similarly, the second

term on the r.h.s. of (2.20) may be expressed as

{( 1

n
Γ̂1n(θ)

)−1( 1

n
Γ1n(θ)

)
− In

}
1

nγ

( 1

n
Γ1n(θ)

)−1

×
∑
i,j

k1(xi,θ)
{(
k1(xi,θ)

)−1
k̂1(xi,θ)− 1

}
ψ(εij)fθ(xi,θ)

(2.22)

Thus, if
(
k1(xi,θ)

)−1
k̂1(xi,θ)− 1 are all op(1) for i = 1, . . . , k, whereas all the chara-

teristic roots of
(

1
n
Γ̂1n(θ)

)−1( 1
n
Γ1n(θ)

)
−In are op(1), (2.22) is op(n

− 1
2 ). A very similar

treatment holds for the last term on the r.h.s. of (2.20). Thus, we conclude that

√
n(θ̂

∗
n − θ̂n)

p−→ 0

if

ch1

{( 1

n
Γ̂1n(θ)

)−1( 1

n
Γ1n(θ)

)}
− 1 = op(1) = chn

{( 1

n
Γ̂1n(θ)

)−1( 1

n
Γ1n(θ)

)}
− 1

(2.23)

and (
k1(xi,θ)

)−1
k̂1(xi,θ)− 1 = op(1) for i = 1, . . . , k. (2.24)

However, (2.23) and (2.24) are equvalent to k̂1(xi,θ) − k1(xi,θ) = op(1) for i =

1, . . . , k, which are guaranteed from the assumption [C] (i).
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2.4 Verification of the Conditions in Hill Model

In this section, we use L1-norm and the Huber function as h, L1-norm as w and f is

defined as

f(x,θ) = θ0 +
θ1x

θ2

θθ23 + xθ2
,

where θ = (θ0, θ1, θ2, θ3)
t. And we shall verify that those functions satisfy the regu-

larity conditions in the previous section in each case.

2.4.1 h : L1-norm and w : L1-norm

In this case, we have

h(z) = |z|
1
2 and w(z) = |z|.

Then, since ψ(z) = (∂/∂z)h2(z),

ψ(z) = sign(z) =


+1 z > 0

0 z = 0

−1 z < 0

[A1]: Clearly, ψ is not absolutely continuous. However, since only at z = 0 ψ is not

continuous and in our problem single point has probability zero, we may consider the

condition is still satisfied.

[A2]: ε = Y − f(x,θ) ∼ N(0, σ2
x)

(i) Eψ2(ε) = E(sign(ε))2 = 1 <∞, so σ2
ψ = 1 and u(x) = 1.

Eψ(ε) = Esign(ε) = (+1)P (ε > 0) + (−1)P (ε < 0) = 0.

(ii) Since ψ′(z) = 0 if z 6= 0 and not defined if z = 0, we compute Eψ′(ε) indirectly.
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For arbitrary small h > 0,

Eψ′(ε) ≈ h−1
∫ {

ψ(x+ h)− ψ(x)
}
f(x)dx

= h−1
{∫

ψ(x+ h)f(x)dx−
∫
ψ(x)f(x)dx

}
= h−1

{∫
ψ(x)f(x− h)dx−

∫
ψ(x)f(x)dx

}
= h−1

∫
ψ(x)

{
f(x− h)− f(x)

}
dx

≈
∫
ψ(x)

{
−f ′(x)

f(x)

}
f(x)dx,

where f is a density function of ε. Thus, if we have the assumption of finite

Fisher information, we can verify Eψ′(ε) = γ(6= 0). We can do similar job for

E|ψ′(ε)|1+δ for some 0 < δ ≤ 1.

[A3]:

(i) limδ→0E
{

sup||∆||≤δ
∣∣ψ(Y − f(x,θ + ∆))− ψ(Y − f(x,θ))

∣∣}
= limδ→0

[
sup||∆||≤δ

∣∣sign(Y − f(x,θ + ∆))− sign(0)
∣∣P(Y = f(x,θ)

)
+ sup||∆||≤δ

∣∣sign(Y − f(x,θ + ∆))− sign(Y − f(x,θ))
∣∣P(Y 6= f(x,θ)

)]
= 0

(ii) limδ→0E
{

sup||∆||≤δ
∣∣ψ′(Y − f(x,θ + ∆))− ψ′(Y − f(x,θ))

∣∣} = 0

[B1]: f(x,θ) = θ0 +
θ1x

θ2

θθ23 + xθ2
Obviously f is continous. Also,

∂f(x,θ)

∂θ
=

(
1,

xθ2

θθ23 + xθ2
,
θ1x

θ2θθ23 log(x/θ3)

(θθ23 + xθ2)2
,−θ1x

θ2θ2θ
θ2−1
3

(θθ23 + xθ2)2

)t

∂2f

∂θ2
0

=
∂2f

∂θ0∂θ1

=
∂2f

∂θ0∂θ2

=
∂2f

∂θ0∂θ3

=
∂2f

∂θ2
1

= 0

∂2f

∂θ1∂θ2

=
xθ2θθ23 log(x/θ3)

(θθ23 + xθ2)2

∂2f

∂θ1∂θ3

= − xθ2θ2θ
θ2−1
3

(θθ23 + xθ2)2

∂2f

∂θ2
2

=
θ1x

θ2θθ23 log(x/θ3)
2(θθ23 − xθ2)

(θθ23 + xθ2)3
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∂2f

∂θ2∂θ3

=
θ1x

θ2(θ2θ
θ2−1
3 log(x/θ3)− θθ2−1

3 )(θθ23 + xθ2)− 2θ1θ2x
θ2θ2θ2−1

3 log(x/θ3)

(θθ23 + xθ2)3

∂2f

∂θ2
3

=
−θ1x

θ2θ2(θ2 − 1)θθ2−2
3 (θθ23 + xθ2) + 2θ1θ

2
2x

θ2θ2θ2−2
3

(θθ23 + xθ2)3

Therefore, f is twice differentiable with respect to θ.

[B2]: It is natural in nonlinear regression models that we assume (i), (ii) and (iii)

here. Recall that

(i) limn→∞
1
n
Γ1n(θ) = Γ1(θ), where

Γ1n(θ) =
∑
i,j

{
1

w(f(xi,θ))
fθ(xi,θ)f tθ(xi,θ)

}
,

and Γ1(θ) is a positive definite matrix.

(ii) limn→∞
1
n
Γ2n(θ) = Γ2(θ), where

Γ2n(θ) =
∑
i,j

{
u(xi)

w2(f(xi,θ))
fθ(xi,θ)f tθ(xi,θ)

}
,

and Γ2(θ) is a positive definite matrix.

(iii) max
{

u(xi)
w2(f(xi,θ))

f tθ(xi,θ)(Γ2n(θ))−1fθ(xi,θ)
}
−→ 0, as n→∞

Here,

fθ(xi,θ)f tθ(xi,θ)

=



1
xθ2i

θθ23 + xθ2i

θ1x
θ2
i θ

θ2
3 log(xi/θ3)

(θθ23 + xθ2i )2
−θ1x

θ2
i θ2θ

θ2−1
3

(θθ23 + xθ2i )2

x2θ2
i

(θθ23 + xθ2i )2

θ1x
2θ2
i θθ23 log(xi/θ3)

(θθ23 + xθ2i )3
−θ1x

2θ2
i θ2θ

θ2−1
3

(θθ23 + xθ2i )3

symm.
θ2
1x

2θ2
i θ2θ2

3 log(xi/θ3)
2

(θθ23 + xθ2i )4
−θ

2
1x

2θ2
i θ2θ

2θ2−1
3 log(xi/θ3)

(θθ23 + xθ2i )4

θ2
1x

2θ2
i θ2

2θ
2θ2−2
3

(θθ23 + xθ2i )4


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Also, w(f(xi,θ)) = |f(xi,θ)| = f(xi,θ) and u(xi) = 1.

[B3]: (i) For j, l = 0,

(
∂

∂θ0

f(x,θ + ∆)

)2

−
(
∂

∂θ0

f(x,θ)

)2

= 1− 1 = 0

For j = 0 and l = 1,

(
∂

∂θ0

f(x,θ + ∆)

)(
∂

∂θ1

f(x,θ + ∆)

)
−
(
∂

∂θ0

f(x,θ)

)(
∂

∂θ1

f(x,θ)

)
=

∂

∂θ1

f(x,θ + ∆)− ∂

∂θ1

f(x,θ)

However, since f is twice differentiable, (∂/∂θ1)f(x,θ) is differentiable with respect

to θ. Thus, we have

lim
δ→0

sup
||∆||≤δ

∣∣∣∣ ∂∂θ1

f(x,θ + ∆)− ∂

∂θ1

f(x,θ)

∣∣∣∣ = 0.

Similarly, the assumptions are satisfied for j = 0; l = 2 and j = 0; l = 3. For j = 1

and l = 1, we define g(x,θ) as

g(x,θ) ≡
(
∂

∂θ1

f(x,θ)

)2

=
x2θ2

(θθ23 + xθ2)2
.

Then, similarly, since g is differentiable, the assumption is satisfied:

∂g

∂θ0

=
∂g

∂θ1

= 0

∂g

∂θ2

= 2x2θ2 log x(θθ23 + xθ2)−2 − 2x2θ2(θθ23 + xθ2)−3(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= −2x2θ2θ2θ
θ2−1
3

(θθ23 + xθ2)3
.
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For j = 1 and l = 2, Similarly,

g(x,θ) ≡
(
∂

∂θ1

f(x,θ)

)(
∂

∂θ2

f(x,θ)

)
=
θ1x

2θ2θθ23 log(x/θ3)

(θθ23 + xθ2)3

Then,

∂g

∂θ0

= 0
∂g

∂θ1

=
x2θ2θθ23 log(x/θ3)

(θθ23 + xθ2)3

∂g

∂θ2

= θ1x
2θ2θθ23 (log(x/θ3)(2 log x+ log θ3)(θ

θ2
3 + xθ2)−3

−3θ1x
2θ2θθ23 log(x/θ3)(θ

θ2
3 + xθ2)−4(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= θ1x
2θ2(θ2θ

θ2−1
3 log(x/θ3)− θθ2−1

3 )(θθ23 + xθ2)−3

−3θ1x
2θ2θθ23 log(x/θ3)(θ

θ2
3 + xθ2)−4θ2θ3

θ2−1

For j = 1 and l = 3,

g(x,θ) ≡
(
∂

∂θ1

f(x,θ)

)(
∂

∂θ3

f(x,θ)

)
= −θ1x

2θ2θ2θ
θ2−1
3

(θθ23 + xθ2)3

∂g

∂θ0

= 0
∂g

∂θ1

= − x
2θ2θ2θ

θ2−1
3

(θθ23 + xθ2)3

∂g

∂θ2

= −θ1θ
−1
3 (x2θ2θθ23 (2 log x+ log θ3)θ2 + x2θ2θθ23 )(θθ23 + xθ2)−3

+3θ1x
2θ2θ2θ

θ2−1
3 (θθ23 + xθ2)−4(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= −θ1x
2θ2θ2(θ2 − 1)θθ2−2

3 (θθ23 + xθ3)−3 + 3θ1x
2θ2θ2θ

θ2−1
3 (θθ23 + xθ2)−4θ2θ

θ2−1
3

For j, l = 2,

g(x,θ) ≡
(
∂

∂θ2

f(x,θ)

)2

=
θ2
1x

2θ2θ2θ2
3 log(x/θ3)

2

(θθ23 + xθ2)4

∂g

∂θ0

= 0
∂g

∂θ1

=
2θ1x

2θ2θ2θ2
3 log(x/θ3)

2

(θθ23 + xθ2)4
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∂g

∂θ2

= θ2
1 log(x/θ3)

2x2θ2θ2θ2
3 2(log x+ log θ3)(θ

θ2
3 + xθ2)−4

−4θ2
1x

2θ2θ2θ2
3 log(x/θ3)

2(θθ23 + xθ2)−5(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= θ2
1x

2θ2(2θ2θ
2θ2−1
3 log(x/θ3)

2 − 2θ2θ2−1
3 log(x/θ3))(θ

θ2
3 + xθ2)−4

−4θ2
1x

2θ2θ2θ2
3 log(x/θ3)

2(θθ23 + xθ2)−5θ2θ
θ2−1
3

For j = 2 and l = 3

g(x,θ) ≡
(
∂

∂θ2

f(x,θ)

)(
∂

∂θ3

f(x,θ)

)
= −θ1x

2θ2θ2θ
2θ2−1
3 log(x/θ3)

(θθ23 + xθ2)4

∂g

∂θ0

= 0
∂g

∂θ1

= −2θ1x
2θ2θ2θ

2θ2−1
3 log(x/θ3)

(θθ23 + xθ2)4

∂g

∂θ2

= −θ2
1 log(x/θ3)θ

−1
3 (x2θ2θ2θ

2θ2
3 2(log x+ log θ3) + x2θ2θ2θ2

3 )(θθ23 + xθ2)−4

+4θ2
1x

2θ2θ2θ
2θ2−1
3 log(x/θ3)(θ

θ2
3 + xθ2)−5(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= −θ2
1x

2θ2θ2((2θ2 − 1)θ2θ2−2
3 log(x/θ3)− θ2θ2−2

3 )(θθ23 + xθ2)−4

+4θ2
1x

2θ2θ2θ
2θ2−1
3 log(x/θ3)(θ

θ2
3 + xθ2)−5θ2θ

θ2−1
3

For j, l = 3,

g(x,θ) ≡
(
∂

∂θ3

f(x,θ)

)2

=
θ2
1x

2θ2θ2
2θ

2θ2−2
3

(θθ23 + xθ2)4

∂g

∂θ0

= 0
∂g

∂θ1

=
2θ1x

2θ2θ2
2θ

2θ2−2
3

(θθ23 + xθ2)4

∂g

∂θ2

= θ2
1θ
−2
3 (x2θ2θ2θ2

3 2(log x+ log θ3)θ
2
2 + x2θ2θ2θ2

3 2θ2)(θ
θ2
3 + xθ2)−4

−4θ2
1x

2θ2θ2
2θ

2θ2−2
3 (θθ23 + xθ2)−5(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= θ2
1x

2θ2θ2
2(2θ2 − 2)θ2θ2−3

3 (θθ23 + xθ2)−4 − 4θ2
1x

2θ2θ2
2θ

2θ2−2
3 (θθ23 + xθ2)−5θ2θ

θ2−1
3

(ii) For (j, l) = (0, 0), (0, 1), (0, 2), (0, 3), and (1, 1), since the derivatives are all zero,

the assumptions are satisfied. For j = 1 and l = 2, simialarly we define g(x,θ) as

g(x,θ) ≡ ∂2

∂θ1∂θ2

f(x,θ) =
xθ2θθ23 log(x/θ3)

(θθ23 + xθ2)2
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Then, since we have

∂g

∂θ0

=
∂g

∂θ1

= 0

∂g

∂θ2

= xθ2θθ23 (log x+ log θ3) log(x/θ3)(θ
θ2
3 + xθ2)−2

−2xθ2θθ23 log(x/θ3)(θ
θ2
3 + xθ2)−3(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= xθ2(θ2θ
θ2−1
3 log(x/θ3)− θθ2−1

3 )(θθ23 + xθ2)−2

−2xθ2θθ23 log(x/θ3)(θ
θ2
3 + xθ2)−3θ2θ

θ2−1
3 ,

the assumption is satisfied. For j = 1 and l = 3,

g(x,θ) ≡ ∂2

∂θ1∂θ3

f(x,θ) = − xθ2θ2θ
θ2−1
3

(θθ23 + xθ2)2

∂g

∂θ0

=
∂g

∂θ1

= 0

∂g

∂θ2

= −θθ2−1
3 (xθ2θ2 log x+ xθ2)(θθ23 + xθ2)−2

+2xθ2θ2θ
θ2−1
3 (θθ23 + xθ2)−3(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= −xθ2θ2(θ2 − 1)θθ2−2
3 (θθ23 + xθ2)−2 + 2xθ2θ2θ

θ2−1
3 (θθ23 + xθ2)−3θ2θ

θ2−1
3

For j, l = 2

g(x,θ) ≡ ∂2

∂θ2
2

f(x,θ) =
θ1x

θ2θθ23 log(x/θ3)
2(θθ23 − xθ2)

(θθ23 + xθ2)3

∂g

∂θ0

= 0
∂g

∂θ1

=
xθ2θθ23 log(x/θ3)

2(θθ23 − xθ2)
(θθ23 + xθ2)3

∂g

∂θ2

= θ1(log x− log θ3)
2(xθ2θθ23 (log x+ log θ3)(θ

θ2
3 − xθ2)

+xθ2θθ23 (θθ23 log θ3 − xθ2 log x))(θθ23 + xθ2)−3

−3θ1x
θ2θθ23 log(x/θ3)

2(θθ23 − xθ2)(θθ23 + xθ2)−4(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= θ1x
θ2(2 log(x/θ3)(−θ−1

3 )(θ2θ2
3 − xθ2θθ23 )

+ log(x/θ3)
2(2θ2θ

2θ2−1
3 − xθ2θ2θ

θ2−1
3 ))(θθ23 + xθ2)−3

−3θ1x
θ2θθ23 log(x/θ3)

2(θθ23 − xθ2)(θθ23 + xθ2)−4θ2θ
θ2−1
3
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For j = 2 and l = 3,

g(x,θ) ≡ ∂2

∂θ2∂θ3

f(x,θ) =
θ1x

θ2θθ2−1
3 (θ2 log(x/θ3)(θ

θ2
3 − xθ2)− (θθ23 + xθ2))

(θθ23 + xθ2)3

∂g

∂θ0

= 0
∂g

∂θ1

=
xθ2θθ2−1

3 (θ2 log(x/θ3)(θ
θ2
3 − xθ2)− (θθ23 + xθ2))

(θθ23 + xθ2)3

∂g

∂θ2

= θ1θ
−1
3 xθ2θθ23 (log x+ log θ3)(θ2 log(x/θ3)(θ

θ2
3 − xθ2)− (θθ23 + xθ2))

×(θθ23 + xθ2)−3 + θ1x
θ2θθ2−1

3 (log(x/θ3)(x
θ2 − θθ23 ) + θ2 log(x/θ3)

×(xθ2 log x− θθ23 log θ3)− (θθ23 log θ3 + xθ2 log x))(θθ23 + xθ2)−3

−3θ1x
θ2θθ2−1

3 (θ2 log(x/θ3)(x
θ2 − θθ23 )− (θθ23 + xθ2))

×(θθ23 + xθ2)−4(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= θ1x
θ2(θ2 − 1)θθ2−2

3 (θ2 log(x/θ3)(x
θ2 − θθ23 )− (θθ23 + xθ2))(θθ23 + xθ2)−3

+θ1x
θ2θθ2−1

3 (θ2(−θ−1
3 )(xθ2 − θθ23 )− θ2 log(x/θ3)θ2θ

θ2−1
3 − θ2θ

θ2−1
3 )(θθ23 + xθ2)−3

−3θ1x
θ2θθ2−1

3 (θ2 log(x/θ3)(x
θ2 − θθ23 )− (θθ23 + xθ2))(θθ23 + xθ2)−4θ2θ

θ2−1
3

For j, l = 3,

g(x,θ) ≡ ∂2

∂θ2
3

f(x,θ) =
θ1x

θ2θ2θ
θ2−2
3 ((θ2 + 1)θθ23 − (θ2 − 1)xθ2)

(θθ23 + xθ2)3

∂g

∂θ0

= 0
∂g

∂θ1

=
xθ2θ2θ

θ2−2
3 ((θ2 + 1)θθ23 − (θ2 − 1)xθ2)

(θθ23 + xθ2)3

∂g

∂θ2

= θ1θ
−2
3 xθ2θθ23 (log x+ log θ3)θ2((θ2 + 1)θθ23 − (θ2 − 1)xθ2)(θθ23 + xθ2)−3 + θ1x

θ2θθ2−2
3

×((2θ2 + 1)θθ23 + (θ2
2 + θ2)θ

θ2
3 log θ3 − (2θ2 − 1)xθ2 − (θ2

2 − θ2)x
θ2 log x)(θθ23 + xθ2)−3

−3θ1x
θ2θ2θ

θ2−2
3 ((θ2 + 1)θθ23 − (θ2 − 1)xθ2)(θθ23 + xθ2)−4(θθ23 log θ3 + xθ2 log x)

∂g

∂θ3

= θ1x
θ2θ2((θ2 + 1)(2θ2 − 2)θ2θ2−3

3 − (θ2 − 1)(θ2 − 2)xθ2θθ2−3
3 )(θθ23 + xθ2)−3

−3θ1x
θ2θ2θ

θ2−2
3 ((θ2 + 1)θθ23 − (θ2 − 1)xθ2)(θθ23 + xθ2)−4θ2θ

θ2−1
3
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[C]: (i) For k1(x,θ) =
1

w(f(x,θ))
where w(z) = |z|, since we have

∂

∂θ
k1(x,θ) = −w

′(f(x,θ))

w2(f(x,θ))

∂

∂θ
f(x,θ)

where w′(z) = sign(z), the assumption

lim
δ→0

sup
‖∆‖≤δ

∣∣k1(x,θ + ∆)− k1(x,θ)
∣∣ = 0, uniformly in x

is satisfied.

(ii) Similarly, for k2(x,θ) =
w′(f(x,θ))

w2(f(x,θ))
we have

∂

∂θ
k2(x,θ) =

{
w′′(f(x,θ))w−2(f(x,θ))− 2w′(f(x,θ))w−3(f(x,θ))

} ∂

∂θ
f(x,θ)

= −2w′(f(x,θ))w−3(f(x,θ))
∂

∂θ
f(x,θ).

where w′′(z) = 0 if z 6= 0, not defined if z = 0. Thus, the assumption

lim
δ→0

sup
‖∆‖≤δ

∣∣k2(x,θ + ∆)− k2(x,θ)
∣∣ = 0, uniformly in x

is satisfied.

2.4.2 h : Huber function and w : L1-norm

In this case, we have

h(z) =


1√
2
z |z| ≤ k0[

k0

(
|z| − 1

2
k0

)] 1
2

|z| > k0
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Then, since ψ(z) = (∂/∂z)h2(z),

ψ(z) =


z |z| ≤ k0

k0sign(z) |z| > k0

[A1]: Clearly, ψ is absolutely continuous.

[A2]: ε = Y − f(x,θ) ∼ N(0, σ2
x)

(i) Eψ2(ε) = E{ε2I(|ε| ≤ k0)}+ k2
0P (ε > k0) + (−k0)

2P (ε < −k0)

= E{ε2I(|ε| ≤ k0)}+ 2k2
0P (ε > k0) ≡ σ2

ψu(x) <∞ where σ2
ψ = 1.

Eψ(ε) = E{εI(|ε| ≤ k0)}+ k0P (ε > k0)− k0P (ε < −k0) = 0

(ii) ψ′(z) = 1 if |z| < k0, 0 if |z| > k0, and not defined if |z| = k0

E|ψ′(ε)|1+δ = P (|ε| < k0) <∞

Eψ′(ε) = P (|ε| < k0) = γ( 6= 0)

[A3]:

(i) limδ→0E
{

sup||∆||≤δ
∣∣ψ(Y − f(x,θ + ∆))− ψ(Y − f(x,θ))

∣∣}
= limδ→0E

[
sup||∆||≤δ

∣∣(Y − f(x,θ + ∆))− (Y − f(x,θ))
∣∣I(|Y − f(x,θ)| ≤ k0

)
+ sup||∆||≤δ |k0 − k0|I

(
Y − f(x,θ) > k0

)
+ sup||∆||≤δ | − k0 − (−k0)|I

(
Y − f(x,θ) < −k0

)]
= 0

(ii) limδ→0E
{

sup||∆||≤δ |1− 1|I
(
|Y − f(x,θ)| ≤ k0

)}
= 0

The verification of the assumptions [B1]-[B3] and [C] is the same as in the previous

example.
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Chapter 3

M-METHODS IN

HETEROSCEDASTIC

NONLINEAR MODELS – II

3.1 Introduction

In many applications it is reasonable to assume that the log-variance of the random

error of a nonlinear model is linear in dose. In this chapter we derive the M-estimator

of the regression parameter in a nonlinear model under this special heteroscedasticity

structure. In addition to being reasonable in practice this assumption keeps the

number of unknown parameters to a small number. In this chapter we obtain both

the ordinary M-estimator (OME) as well the weighted M-estimator (WME).

In Section 3.2 we define the M-estimator of both the regression parameters and the

parameters for variance. We also present the notation and regularity conditions. In

Section 3.3 we develop the asymptotic properties of the M-estimators. We introduce

first the uniform asymptotic linearity on M-statistics.



The following nonlinear regression model will be studied in this chapter:

yij = f(xi,θ) + εij, εij ∼ N(0, σ2
i ), i = 1, . . . , k, j = 1, . . . , ni,

∑k
i=1 ni = n, (3.1)

where εij are assumed to be independent and have the parametric variance, that is

log σi = ztiτ , yij are the observable r.v.s, xi are known regression constants, θ is

a p-vector of unknown regression parameters, f(, ) is a nonlinear function of θ of

specified form, zi = (zi1, . . . , ziq)
t are known vectors, possibly dependent on the xi,

τ = (τ1, . . . , τq)
t is a vector of unknown parameters.

3.2 Definitions and Regularity Conditions

The M-estimator of (θt, τ t)t is obtained by the following minimization problem:

 θ̂n

τ̂ n

 = Argmin

{∑
i,j

1

w(e2zt
iτ )
h2 (yij − f(xi,θ)) : θ ∈ Θ1 ⊆ <p, τ ∈ Θ2 ⊆ <q

}
(3.2)

If zi = 1 and τ = τ0 (q = 1), i = 1, . . . , k, then we get the OME of θ, while we

have the WME of θ by letting zi = (1, xi)
t and τ = (τ0, τ1)

t (q = 2), i = 1, . . . , k.

If we let fθ(xi,θ) = (∂/∂θ)f(xi,θ), and ψ(z) = (∂/∂z)h2(z), then the estimating

equation for the minimization in (3.2) is given by:

∑
i,j

λ(xi, yij, θ̂n, τ̂ n) = 0 (3.3)

where

λ(xi, yij,θ, τ ) =

 w1(zi, τ )ψ (yij − f(xi,θ)) fθ(xi,θ)

w2(zi, τ )h2 (yij − f(xi,θ)) zi

 , (3.4)
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w1(zi, τ ) =
1

w(e2zt
iτ )
, and w2(zi, τ ) =

2w′(e2zt
iτ )e2zt

iτ

w2(e2zt
iτ )

.

We make the following sets of regularity assumptions concenrning (A) the function

h2; the score function ψ, (B) the function f(·), and (C) the functions generated from

w(, ).

[A1]:

ψ is a nonconstant, odd function which is absolutely continuous and differentiable

with respect to θ.

[A2]: For i = 1, . . . , k,

(i) Eψ2(εi1) = σ2
ψi <∞, Eh2(εi1) = γ3i (6= 0), and Var(h2(εi1)) = σ2

hi <∞

(ii) E|ψ′(εi1)|1+δ <∞ for some 0 < δ ≤ 1, and Eψ′(εi1) = γ1i (6= 0)

[A3]: Let ε(θ) =
(
y − f(x,θ)

)
(i) limδ→0E

{
sup‖∆‖ ≤ δ

∣∣ψ(ε(θ + ∆))− ψ(ε(θ))
∣∣} = 0

(ii) limδ→0E
{

sup‖∆‖ ≤ δ
∣∣ψ′(ε(θ + ∆))− ψ′(ε(θ))

∣∣} = 0

(iii) limδ→0E
{

sup‖∆‖ ≤ δ
∣∣h2(ε(θ + ∆))− h2(ε(θ))

∣∣} = 0

[B1]:

f(x,θ) is continuous and twice differentiable with respect to θ ∈ Θ, where Θ is a

compact subset of <p.

[B2]:

(i) limn→∞
1
n
Γ1n(θ, τ ) = Γ1(θ, τ ), where

Γ1n(θ, τ ) =
k∑
i=1

niγ1iw1(zi, τ )fθ(xi,θ)f tθ(xi,θ).

(ii) limn→∞
1
n
Γ2n(θ, τ ) = Γ2(θ, τ ), where

Γ2n(θ, τ ) =
k∑
i=1

niγ3iw3(zi, τ )ziz
t
i,
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and

w3(zi, τ ) = −4[{w′′(e2zt
iτ )e2zt

iτ + w′(e2zt
iτ )}w(e2zt

iτ )− 2{w′(e2zt
iτ )}2]e2zt

iτ

w3(e2zt
iτ )

.

(iii) limn→∞
1
n
Γ31n(θ, τ ) = Γ31(θ, τ ), where

Γ31n(θ, τ ) =
k∑
i=1

niσ
2
ψiw

2
1(zi, τ )fθ(xi,θ)f tθ(xi,θ),

and Γ31(θ, τ ) a postive definite matrix.

(iv) limn→∞
1
n
Γ32n(θ, τ ) = Γ32(θ, τ ), where

Γ32n(θ, τ ) =
k∑
i=1

niσ
2
hiw

2
2(zi, τ )ziz

t
i,

and Γ32(θ, τ ) a postive definite matrix.

(v) maxi
{
niσ

2
ψiw

2
1(zi, τ )f tθ(xi,θ)(Γ31n(θ, τ ))−1fθ(xi,θ)

}
−→ 0, as n→∞.

(vi) maxi {niσ2
hiw

2
2(zi, τ )zti(Γ32n(θ, τ ))−1zi} −→ 0, as n→∞.

[B3]:

(i) limδ→0 sup‖∆‖≤δ

∣∣∣(∂/∂θj)f(x,θ + ∆)(∂/∂θk)f(x,θ + ∆)

− (∂/∂θj)f(x,θ)(∂/∂θk)f(x,θ)
∣∣∣ = 0 for j, l = 1, . . . , p

(ii) limδ→0 sup‖∆‖≤δ

∣∣∣(∂2/∂θj∂θk)f(x,θ + ∆) − (∂2/∂θj∂θk)f(x,θ)
∣∣∣ = 0 for j, l =

1, . . . , p

[C]:

(i) limδ→0 sup‖∆‖≤δ
∣∣w1(z, τ + ∆)− w1(z, τ )

∣∣ = 0, uniformly in z.

(ii) limδ→0 sup‖∆‖≤δ
∣∣w2(z, τ + ∆)− w2(z, τ )

∣∣ = 0, uniformly in z.

(iii) limδ→0 sup‖∆‖≤δ
∣∣w3(z, τ + ∆)− w3(z, τ )

∣∣ = 0, uniformly in z.
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3.3 Asymptotic Results

3.3.1 The Lemmas

The following lemmas are needed for proving the main results discussed in this chap-

ter.

Lemma 3.1. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λl(xi, yij,θ, τ ), defined in (3.4), be the lth element of the vector λ(xi, yij,θ, τ ) for

l = 1, . . . , p+ q. Then for l = 1, . . . , p

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr

{
(∂/∂θr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

}∣∣∣∣ = op(1).

(3.5)

where

λl(xi, yij,θ, τ ) = w1(zi, τ )ψ (yij − f(xi,θ)) fθl
(xi,θ), l = 1, . . . , p, (3.6)

and fθl
(xi,θ) = (∂/∂θl)f(xi,θ).

Proof. By the definition of derivative, we may write for r, l = 1, . . . , p

(∂/∂θr)λl(xi, yij,θ, τ )

= w1(zi, τ )ψ (yij − f(xi,θ)) (∂2/∂θl∂θr)f(xi,θ)

−w1(zi, τ )ψ′ (yij − f(xi,θ)) fθl
(xi,θ)fθr(xi,θ)

(3.7)
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Then,

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr

{
(∂/∂θr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

}∣∣∣∣
≤ 1

n
C1

∑
i,j

p∑
r=1

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂θr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

∣∣∣∣
and

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣(∂/∂θr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

∣∣∣∣∣
≤ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
ψ
(
yij − f

(
xi,θ +

ut√
n

))
(∂2/∂θl∂θr)f

(
xi,θ +

ut√
n

)
− w1(zi, τ )ψ (yij − f(xi,θ)) (∂2/∂θl∂θr)f(xi,θ)

∣∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
ψ′
(
yij − f

(
xi,θ +

ut√
n

))
fθl

(
xi,θ +

ut√
n

)
fθr

(
xi,θ +

ut√
n

)
− w1(zi, τ )ψ′ (yij − f(xi,θ)) fθl

(xi,θ)fθr(xi,θ)

∣∣∣∣∣
≤ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣∣ψ(yij − f(xi,θ +
ut√
n

))
− ψ

(
yij − f(xi,θ)

)∣∣∣∣∣
×

∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
(∂2/∂θl∂θr)f

(
xi,θ +

ut√
n

)∣∣∣∣∣
}

+ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
− w1(zi, τ )

∣∣∣∣∣
×

∣∣∣∣∣(∂2/∂θl∂θr)f
(
xi,θ +

ut√
n

)∣∣∣∣∣∣∣∣ψ(yij − f(xi,θ)
)∣∣∣}

53



+ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣∣(∂2/∂θl∂θr)f
(
xi,θ +

ut√
n

)
− (∂2/∂θl∂θr)f(xi,θ)

∣∣∣∣∣
×
∣∣∣w1(zi, τ )

∣∣∣∣∣∣ψ (yij − f(xi,θ))
∣∣∣}

+ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣∣ψ′(yij − f(xi,θ +
ut√
n

))
− ψ′

(
yij − f(xi,θ)

)∣∣∣∣∣
×

∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
fθl

(
xi,θ +

ut√
n

)
fθr

(
xi,θ +

ut√
n

)∣∣∣∣∣
}

+ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
− w1(zi, τ )

∣∣∣∣∣
×

∣∣∣∣∣fθl

(
xi,θ +

ut√
n

)
fθr

(
xi,θ +

ut√
n

)∣∣∣∣∣∣∣∣ψ′(yij − f(xi,θ))
∣∣∣}

+ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣∣fθl

(
xi,θ +

ut√
n

)
fθr

(
xi,θ +

ut√
n

)
− fθl

(xi,θ)fθr(xi,θ)

∣∣∣∣∣
×
∣∣∣w1(zi, τ )

∣∣∣∣∣∣ψ′ (yij − f(xi,θ))
∣∣∣}.

Then by taking expectations on both sides we get

E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂θr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

∣∣∣∣
}

≤ E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ψ(yij − f(xi,θ +
ut√
n

))
− ψ

(
yij − f(xi,θ)

)∣∣∣∣∣
}

× sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
(∂2/∂θl∂θr)f

(
xi,θ +

ut√
n

)∣∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
− w1(zi, τ )

∣∣∣∣∣
×

∣∣∣∣∣(∂2/∂θl∂θr)f
(
xi,θ +

ut√
n

)∣∣∣∣∣E
{∣∣∣ψ(yij − f(xi,θ)

)∣∣∣}
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+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣(∂2/∂θl∂θr)f
(
xi,θ +

ut√
n

)
− (∂2/∂θl∂θr)f(xi,θ)

∣∣∣∣∣
×
∣∣∣w1(zi, τ )

∣∣∣∣∣∣E{ψ (yij − f(xi,θ))
∣∣∣}

+E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ψ′(yij − f(xi,θ +
ut√
n

))
− ψ′

(
yij − f(xi,θ)

)∣∣∣∣∣
}

× sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
fθl

(
xi,θ +

ut√
n

)
fθr

(
xi,θ +

ut√
n

)∣∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣w1

(
zi, τ +

vs√
n

)
− w1(zi, τ )

∣∣∣∣∣
×

∣∣∣∣∣fθl

(
xi,θ +

ut√
n

)
fθr

(
xi,θ +

ut√
n

)∣∣∣∣∣E
{∣∣∣ψ′(yij − f(xi,θ))

∣∣∣}

+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣fθl

(
xi,θ +

ut√
n

)
fθr

(
xi,θ +

ut√
n

)
− fθl

(xi,θ)fθr(xi,θ)

∣∣∣∣∣
×
∣∣∣w1(zi, τ )

∣∣∣∣∣∣E{ψ′ (yij − f(xi,θ))
∣∣∣}.

Thus, by conditions [A3] (i)-(iv), [B3] (i)-(ii), and [C] (i)-(ii), we have that:

E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂θr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

∣∣∣∣
}

−→ 0, ∀i, j

and

E

[
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr

{
(∂/∂θr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

}∣∣∣∣
]
−→ 0.
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Also,

Var

[
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr

{
(∂/∂θr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

}∣∣∣∣
]

≤ C2
1

n2

∑
i,j

Var

{
p∑
r=1

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂θr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

∣∣∣∣∣
}

≤ C2
1K1/n −→ 0.

Therefore, we have (3.5).

Lemma 3.2. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λl(xi, yij,θ, τ ), defined in (3.4), be the lth element of the vector λ(xi, yij,θ, τ ) for

l = 1, . . . , p+ q. Then for l = 1, . . . , p

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr(∂/∂θr)λl(xi, yij,θ, τ )

+
1

n

∑
i,j

p∑
r=1

trγ1iw1(zi, τ )fθl
(xi,θ)fθr(xi,θ)

∣∣∣∣∣ = op(1),

(3.8)

where λl(xi, yij,θ, τ ) is defined in (3.6).

Proof. From (3.7), we have

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr(∂/∂θr)λl(xi, yij,θ, τ ) +
γ1

n

∑
i,j

p∑
r=1

tr
fθl

(xi,θ)fθr(xi,θ)

(ztiτ )2

∣∣∣∣∣
= sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

trw1(zi, τ )ψ (yij − f(xi,θ)) (∂2/∂θl∂θr)f(xi,θ)

− 1

n

∑
i,j

p∑
r=1

trw1(zi, τ ) {ψ′ (yij − f(xi,θ))− γ1i} fθl
(xi,θ)fθr(xi,θ)

∣∣∣∣∣
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≤ C1

p∑
r=1

∣∣∣∣∣ 1n∑
i,j

w1(zi, τ )ψ (yij − f(xi,θ)) (∂2/∂θl∂θr)f(xi,θ)

∣∣∣∣∣
+C1

p∑
r=1

∣∣∣∣∣ 1n∑
i,j

w1(zi, τ ) {ψ′ (yij − f(xi,θ))− γ1i} fθl
(xi,θ)fθr(xi,θ)

∣∣∣∣∣
which by using the Markov WLLN and conditions [A2] (i)-(ii) yields

1

n

∑
i,j

w1(zi, τ )ψ (yij − f(xi,θ)) (∂2/∂θl∂θr)f(xi,θ) = op(1)

and

1

n

∑
i,j

w1(zi, τ ) {ψ′ (yij − f(xi,θ))− γ1i} fθl
(xi,θ)fθr(xi,θ) = op(1).

Therefore, we have (3.8).

Lemma 3.3. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λl(xi, yij,θ, τ ), defined in (3.4), be the lth element of the vector λ(xi, yij,θ, τ ) for

l = 1, . . . , p+ q. Then for l = 1, . . . , p

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣ = op(1).

(3.9)

where λl(xi, yij,θ, τ ) is defined in (3.6).

Proof. By the definition of derivative, we may write for l = 1, . . . , p, r = 1, . . . , q,

(∂/∂τr)λl(xi, yij,θ, τ ) = −w2(zi, τ )ψ(yij − f(xi, τ ))fθl
(xi,θ)zir (3.10)
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Then,

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣
≤ 1

n
C2

∑
i,j

q∑
r=1

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
and

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
≤ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣w2

(
zi, τ +

vs√
n

)
ψ
(
yij − f

(
xi,θ +

ut√
n

))
fθl

(
xi,θ +

ut√
n

)
zir

− w2(zi, τ )ψ
(
yij − f(xi,θ)

)
fθl

(xi,θ)zir

∣∣∣∣∣
≤ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣ψ(yij − f(xi,θ +
ut√
n

))
− ψ (yij − f(xi,θ))

∣∣∣∣
×
∣∣∣∣w2

(
zi, τ +

vs√
n

)
fθl

(
xi,θ +

ut√
n

)
zir

∣∣∣∣}
+ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣w2

(
zi, τ +

vs√
n

)
− w2(zi, τ )

∣∣∣∣
×
∣∣∣∣fθl

(
xi,θ +

ut√
n

)
zir

∣∣∣∣ ∣∣∣ψ(yij − f(xi,θ))
∣∣∣}

+ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣fθl

(
xi,θ +

ut√
n

)
− fθl

(xi,θ)

∣∣∣∣ ∣∣∣w2(zi, τ )
∣∣∣∣∣∣ψ (yij − f(xi,θ))

∣∣∣}
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Then by taking expectations on both sides we get

E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
}

≤ E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣ψ(yij − f(xi,θ +
ut√
n

))
− ψ (yij − f(xi,θ))

∣∣∣∣
}

× sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣w2

(
zi, τ +

vs√
n

)
fθl

(
xi,θ +

ut√
n

)
zir

∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣w2

(
zi, τ +

vs√
n

)
− w2(zi, τ )

∣∣∣∣
×
∣∣∣∣fθl

(
xi,θ +

ut√
n

)
zir

∣∣∣∣
}
E
{∣∣∣ψ(yij − f(xi,θ))

∣∣∣}
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣fθl

(
xi,θ +

ut√
n

)
− fθl

(xi,θ)

∣∣∣∣ ∣∣∣w2(zi, τ )
∣∣∣E {∣∣∣ψ (yij − f(xi,θ))

∣∣∣}

Then, by conditions [A3] (i)-(iv), [B3] (i)-(ii), and [C] (i)-(ii), we have that

E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
}

−→ 0, ∀i, j

and

E

[
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣
]
−→ 0.
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Also,

Var

[
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣
]

≤ C2
2

n2

∑
i,j

Var

{
q∑
r=1

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
}

≤ C2
2K2/n −→ 0.

Therefore, we have (3.9).

Lemma 3.4. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λl(xi, yij,θ, τ ), defined in (3.4), be the lth element of the vector λ(xi, yij,θ, τ ) for

l = 1, . . . , p+ q. Then for l = 1, . . . , p

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr(∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣∣ = op(1). (3.11)

where λl(xi, yij,θ, τ ) is defined in (3.6).

Proof. From (3.10), we have

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr(∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣∣
= sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

srw2(zi, τ )ψ(yij − f(xi,θ))fθl
(xi,θ)zir

∣∣∣∣∣
= C2

q∑
r=1

∣∣∣∣∣ 1n∑
i,j

w2(zi, τ )ψ(yij − f(xi,θ))fθl
(xi,θ)zir

∣∣∣∣∣
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which by using the Markov WLLN and conditions [A2] (i)-(ii) yields

1

n

∑
i,j

w2(zi, τ )ψ(yij − f(xi,θ))fθl
(xi,θ)zir = op(1).

Therefore, we have (3.11).

Lemma 3.5. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λl(xi, yij,θ, τ ), defined in (3.4), be the lth element of the vector λ(xi, yij,θ, τ ) for

l = 1, . . . , p+ q. Then for l = p+ 1, . . . , p+ q

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr

{
(∂/∂θr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

}∣∣∣∣ = op(1).

(3.12)

where

λl(xi, yij,θ, τ ) = w2(zi, τ )h2(yij − f(xi,θ))zi,(l−p), l = p+ 1, . . . , p+ q. (3.13)

Proof. By the definition of derivative, we may write for r = 1, . . . , p, l = p+1, . . . , p+q,

(∂/∂θr)λl(xi, yij,θ, τ ) = −w2(zi, τ )ψ (yij − f(xi,θ)) fθr(xi,θ)zi,(l−p) (3.14)

Then since (3.14) is the same as (3.10), we can follow the proof of Lemma 3.3 to

obtain the result of (3.12).

Lemma 3.6. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λl(xi, yij,θ, τ ), defined in (3.4), be the lth element of the vector λ(xi, yij,θ, τ ) for

l = 1, . . . , p+ q. Then for l = p+ 1, . . . , p+ q

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr(∂/∂θr)λl(xi, yij,θ, τ )

∣∣∣∣∣ = op(1). (3.15)
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where λl(xi, yij,θ, τ ) is defined in (3.13).

Proof. From (3.14), we have

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr(∂/∂θr)λl(xi, yij,θ, τ )

∣∣∣∣∣
= sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

trw2(zi, τ )ψ (yij − f(xi,θ)) fθr(xi,θ)zi,(l−p)

∣∣∣∣∣
≤ C1

p∑
r=1

∣∣∣∣∣ 1n∑
i,j

w2(zi, τ )ψ (yij − f(xi,θ)) fθr(xi,θ)zi,(l−p)

∣∣∣∣∣
which by using the Markov WLLN and conditions [A2] (i)-(ii) yields

1

n

∑
i,j

w2(zi, τ )ψ (yij − f(xi,θ)) fθr(xi,θ)zi,(l−p) = op(1)

Therefore, we have the result in (3.15).

Lemma 3.7. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λl(xi, yij,θ, τ ), defined in (3.4), be the lth element of the vector λ(xi, yij,θ, τ ) for

l = 1, . . . , p+ q. Then for l = p+ 1, . . . , p+ q

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣ = op(1).

(3.16)

where λl(xi, yij,θ, τ ) is defined in (3.13).

Proof. By the definition of derivative, we may write for l = p+1, . . . , p+q, r = 1, . . . , q,

∂/∂τr)λl(xi, yij,θ, τ ) = w3(zi, τ )h2(yij − f(xi,θ))zi,(l−p)zir. (3.17)

62



Then,

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣
≤ 1

n
C2

∑
i,j

q∑
r=1

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
and

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
≤ sup
‖t‖≤C1,‖s‖≤C2

{∣∣∣∣h2
(
yij − f

(
xi,θ +

ut√
n

))
− h2(yij − f(xi,θ))

∣∣∣∣
×
∣∣∣∣w3

(
zi, τ +

vs√
n

)
zi,(l−p)zir

∣∣∣∣
}

+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣w3

(
zi, τ +

vs√
n

)
− w3(zi, τ )

∣∣∣∣ ∣∣zi,(l−p)zir∣∣∣∣∣h2(yij − f(xi,θ))
∣∣∣

Then by taking expectations on both sides we get

E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
}

≤ E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣h2
(
yij − f

(
xi,θ +

ut√
n

))
− h2(yij − f(xi,θ))

∣∣∣∣
}

× sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣w3

(
zi, τ +

vs√
n

)
zi,(l−p)zir

∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣w3

(
zi, τ +

vs√
n

)
− w3(zi, τ )

∣∣∣∣ ∣∣zi,(l−p)zir∣∣E {∣∣∣h2(yij − f(xi,θ))
∣∣∣}
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Then, by conditions [A3] (i)-(iv), [B3] (i)-(ii), and [C] (i)-(ii), we have that

E

{
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
}

−→ 0, ∀i, j

and

E

[
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣
]
−→ 0.

Also,

Var

[
sup

‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣
]

≤ C2
2

n2

∑
i,j

Var

{
q∑
r=1

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣(∂/∂τr)λl(xi, yij,θ +
ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣
}

≤ C2
2K2/n −→ 0.

Thus we have (3.16).

Lemma 3.8. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold and let

λl(xi, yij,θ, τ ), defined in (3.4), be the lth element of the vector λ(xi, yij,θ, τ ) for
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l = 1, . . . , p+ q. Then for l = p+ 1, . . . , p+ q

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr(∂/∂τr)λl(xi, yij,θ, τ )

+
1

n

∑
i,j

q∑
r=1

srγ3iw3(zi, τ )zi,(l−p)zir

∣∣∣∣∣ = op(1).

(3.18)

where λl(xi, yij,θ, τ ) is defined in (3.13).

Proof. From (3.17), we have

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr(∂/∂τr)λl(xi, yij,θ, τ ) +
1

n

∑
i,j

q∑
r=1

srγ3iw3(zi, τ )zi,(l−p)zir

∣∣∣∣∣
= sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

srw3(zi,θ)
{
h2(yij − f(xi,θ))− γ3i

}
zi,(l−p)zir

∣∣∣∣∣
≤ 2C2

q∑
r=1

∣∣∣∣∣ 1n∑
i,j

w3(zi,θ)
{
h2(yij − f(xi,θ))− γ3i

}
zi,(l−p)zir

∣∣∣∣∣
which by using the Markov WLLN and conditions [A2] (i)-(ii) yields

1

n

∑
i,j

w3(zi,θ)
{
h2(yij − f(xi,θ))− γ3i

}
zi,(l−p)zir = op(1).

Therefore, we have the result in (3.18).

3.3.2 The Main Results

In the following theorem we establish the asymptotic linearity of the M-statistics.

Theorem 3.9. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold. Then

sup
‖t‖≤C1,‖s‖≤C2

∥∥∥∥∥ 1√
n

∑
i,j

{
λ(xi, yij,θ + n−

1
2 t, τ + n−

1
2 s)− λ(xi, yij,θ, τ )

}
+

1

n

(
Γt

1n(θ, τ ),0t
)t

t +
1

n

(
0t,Γt

2n(θ, τ )
)t

s

∥∥∥∥ = op(1)

(3.19)
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as n→∞, where λ(xi, yij,θ, τ ) was defined in (3.4).

Proof. We consider the lth element of the vector λ(xi, yij,θ, τ ) denoted for

λl(xi, yij,θ, τ ) =


w1(zi, τ )ψ (yij − f(xi,θ)) fθl

(xi,θ), l = 1, . . . , p

w2(zi, τ )h2 (yij − f(xi,θ)) zi,(l−p), l = p+ 1, . . . , p+ q,

where fθl
(xi,θ) = (∂/∂θl)f(xi,θ).Using the first order term in the Taylor’s expansion,

we have for 0 < u, v < 1,

λl(xi, yij,θ + n−
1
2 t, τ + n−

1
2 s)− λl(xi, yij,θ, τ )

=
1√
n

p∑
r=1

tr
{

(∂/∂θr)λl(xi, yij,θ, τ )
}

+
1√
n

q∑
r=1

sr
{

(∂/∂τr)λl(xi, yij,θ, τ )
}

+
1√
n

p∑
r=1

tr

{
(∂/∂θr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

}
+

1√
n

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}
,

where for r = 1, . . . , p,

(∂/∂θr)λl(xi, yij,θ, τ )

=



w1(zi, τ )ψ (yij − f(xi,θ)) (∂2/∂θl∂θr)f(xi,θ)

−w1(zi, τ )ψ′ (yij − f(xi,θ)) fθl
(xi,θ)fθr(xi,θ), l = 1, . . . , p

−w2(zi, τ )ψ (yij − f(xi,θ)) fθr(xi,θ)zi,(l−p) l = p+ 1, . . . , p+ q,

and for r = 1, . . . , q,

(∂/∂τr)λl(xi, yij,θ, τ )

=


−w2(zi, τ )ψ (yij − f(xi,θ)) fθl

(xi,θ)zir l = 1, . . . , p

−w3(zi, τ )h2 (yij − f(xi,θ)) zi,(l−p)zir l = p+ 1, . . . , p+ q.
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Then, we have

(i) for l = 1, . . . , p,

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1√
n

∑
i,j

{
λl(xi, yij,θ + n−

1
2 t, τ + n−

1
2 s)− λl(xi, yij,θ, τ )

}
+

1

n

∑
i,j

p∑
r=1

trγ1iw1(xi, τ )fθl
(xi,θ)fθr(xi,θ)

∣∣∣∣∣
≤ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr

{
(∂/∂θr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

}∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr(∂/∂θr)λl(xi, yij,θ, τ )

+
1

n

∑
i,j

p∑
r=1

trγ1iw1(xi, τ )fθl
(xi,θ)fθr(xi,θ)

∣∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr(∂/∂τr)λl(xi, yij,θ, τ )

∣∣∣∣∣ .
Using Lemma 3.1 through 3.4 we deduce that for l = 1, . . . , p

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1√
n

∑
i,j

{
λl(xi, yij,θ + n−

1
2 t, τ + n−

1
2 s)− λl(xi, yij,θ, τ )

}
+

1

n

∑
i,j

p∑
r=1

trγ1iw1(xi, τ )fθl
(xi,θ)fθr(xi,θ)

∣∣∣∣∣ = op(1).

(3.20)
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(ii) for l = p+ 1, . . . , p+ q,

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1√
n

∑
i,j

{
λl(xi, yij,θ + n−

1
2 t, τ + n−

1
2 s)− λl(xi, yij,θ, τ )

}
+

1

n

∑
i,j

q∑
r=1

srγ3iw3(zi, τ )zi,(l−p)zir

∣∣∣∣∣
≤ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr

{
(∂/∂θr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂θr)λl(xi, yij,θ, τ )

}∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr

{
(∂/∂τr)λl

(
xi, yij,θ +

ut√
n
, τ +

vs√
n

)
− (∂/∂τr)λl(xi, yij,θ, τ )

}∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

p∑
r=1

tr(∂/∂θr)λl(xi, yij,θ, τ )

∣∣∣∣∣
+ sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1n∑
i,j

q∑
r=1

sr(∂/∂τr)λl(xi, yij,θ, τ ) +
1

n

∑
i,j

q∑
r=1

srγ3iw3(zi, τ )zi,(l−p)zir

∣∣∣∣∣ .
And, from Lemma 3.5 through 3.8 we conclude that for l = p+ 1, . . . , p+ q

sup
‖t‖≤C1,‖s‖≤C2

∣∣∣∣∣ 1√
n

∑
i,j

{
λl(xi, yij,θ + n−

1
2 t, τ + n−

1
2 s)− λl(xi, yij,θ, τ )

}
+

1

n

∑
i,j

q∑
r=1

srγ3iw3(zi, τ )zi,(l−p)zir

∣∣∣∣∣ = op(1).

(3.21)

Therefore, the result in (3.19) follows from both (3.20) and (3.21).

We now consider the following theorem which states an existence of a solution of

(3.3) that is a
√
n-consistent estimator of (θt, τ t)t and admits an asymptotic repre-

sentation.

Theorem 3.10. Let the conditions [A1]-[A3], [B1]-[B3], and [C] hold. Then there
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exists a sequence (θ̂
t

n, τ̂
t
n)t of solutions of (3.3) such that:

√
n

∥∥∥∥( θ̂n
τ̂ n

)
−
(

θ
τ

)∥∥∥∥ = Op(1), (3.22)

(
θ̂n
τ̂ n

)
=

(
θ
τ

)
+

1

n

(
1

n
Γ5n(θ, τ )

)−1∑
i,j

λ(xi, yij,θ, τ ) + op(n
− 1

2 ) (3.23)

or

√
n

(
θ̂n − θ
τ̂ n − τ

)
=

(
1

n
Γ5n(θ, τ )

)−1
1√
n

∑
i,j

λ(xi, yij,θ, τ ) + op(1), (3.24)

where

Γ5n(θ, τ ) =

 Γ1n(θ, τ ) 0

0 Γ2n(θ, τ )

 .

Proof. From Theorem 3.9 the following system of equations:

∑
i,j

λl(xi, yij,θ + n−
1
2 t, τ + n−

1
2 s) = 0

has a root (ttn, s
t
n)t that lies in ‖t‖ ≤ C1, ‖s‖ ≤ C2 with probability exceeding 1 − ε

for n ≥ n0. Then θ̂n = θ + n−
1
2 tn, τ̂ = τ + n−

1
2 sn is a solution of (3.3) satisfying:

P
(√

n‖θ̂n − θ‖ ≤ C1,
√
n‖τ̂ n − τ‖ ≤ C2

)
≥ 1− ε for n ≥ n0.

Substituting
√
n(θ̂n−θ) and

√
n(τ̂ n−τ ) into t and s, respectively in (3.19), we have

the expression in (3.23) and (3.24).

In the following theorem and corollaries we prove the asymptotic normality of the

M-estimator in (3.3).

69



Theorem 3.11. Let the conditions [A1], [A2], [B1], and [B2] hold. Then

1√
n

∑
i,j

{λ(xi, yij,θ, τ )− µ(zi, τ )} −→ Np+q (0,Γ3(θ, τ )) as n→∞. (3.25)

where µ(zi, τ ) = (0t, γ3iw2(zi, τ )zti)
t, and

Γ3(θ, τ ) =

 Γ31(θ, τ ) 0

0 Γ32(θ, τ )

 .

Proof. Consider the following linear combination

Z∗n = ηt
1√
n

∑
i,j

{λ(xi, yij,θ, τ )− µ(zi, τ )} ,

where η = (ηt1,η
t
2)
t and η1 ∈ <p; η2 ∈ <q. and have that:

Z∗n =
∑
i,j

1√
n

[
w1(zi, τ )ηt1fθ(xi,θ)ψ (yij − f(xi,θ))

+ w2(zi, τ )ηt2zi
{
h2 (yij − f(xi,θ))− γ3i

}]
=

∑
i,j

1√
n

(ci1Zij1 + ci2Zij2),

where ci1 = w1(zi, τ )ηt1fθ(xi,θ), ci2 = w2(zi, τ )ηt2zi, Zij1 = ψ(yij − f(xi,θ)), and

Zij2 = h2(yij − f(xi,θ))− γ3i. Then,

EZij1 = EZij2 = 0,

and

EZ2
ij1 = σ2

ψi; EZ2
ij2 = σ2

hi; EZij1Zij2 = 0.
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Therefore, if we let

Z∗n =
∑
i,j

cniZnij,

where

cni =
1√
n

{
ηtΓ4(xi,θ, τ )η

} 1
2 ;

Znij = (ci1Zij1 + ci2Zij2)/
{
ηtΓ4(xi,θ, τ )η

} 1
2 ,

and

Γ4(xi,θ, τ ) =

 σ2
ψiw

2
1(zi, τ )fθ(xi,θ)f tθ(xi,θ) 0

0 σ2
hiw

2
2(zi, τ )ziz

t
i

 ,

then by using the Hájek-S̆idak Central Limit Theorem, we can show that Z∗n converges

in law to a normal distribution as n → ∞. In order to use this theorem we need to

verify the regularity condition about cni, which is given by

max
i
nic

2
ni/

k∑
i=1

nic
2
ni −→ 0

as n→∞, and it can be reformulated by requiring that as n→∞,

sup
η∈<p+q

[
max
i
niη

tΓ4(xi,θ, τ )η / ηtΓ3n(θ, τ )η
]
−→ 0,

where

Γ3n(θ, τ ) =

 Γ31n(θ, τ ) 0

0 Γ32n(θ, τ )

 .
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However, in view of the Courant’s Theorem, we have that:

sup
η∈<p+q

[
niη

tΓ4(xi,θ, τ )η / ηtΓ3n(θ, τ )η
]

= ch1 (niΓ4(xi,θ, τ ),Γ3n(θ, τ ))

= δ1

= ch1(niΓ4(xi,θ, τ )Γ−1
3n (θ, τ ))

Here, δ1 ∈ < is the largest value of δ satisfying

det
(
niΓ4(xi,θ, τ )− δΓ3n(θ, τ )

)
= 0

det
(
niΓ4(xi,θ, τ )Γ−1

3n (θ, τ )− δI
)

det
(
Γ3n(θ, τ )

)
= 0

det
(
niΓ4(xi,θ, τ )Γ−1

3n (θ, τ )− δI
)

= 0.

Thus, δ1 is the same as the largest eigen value of niΓ4(xi,θ, τ )Γ−1
3n (θ, τ ). Also, since

we have

ch1(niΓ4(xi,θ, τ )Γ−1
3n (θ, τ ))

= max
i

{
niσ

2
ψiw

2
1(zi, τ )f tθ(xi,θ)Γ−1

31n(θ, τ )f tθ(xi,θ), niσ
2
hiw

2
2(zi, τ )ztiΓ

−1
32n(θ, τ )zi

}
,

the regularity condition is reduced to the condition [B2] (v)-(vi) (Noether’s condi-

tion). Hence, we conclude that:

Z∗n/
(∑

i,j

c2ni

) 1
2 −→ N(0, 1) as n→∞

and by using the Cramer-Wold Theorem and condition [B2] (v)-(vi) we prove the

expression (3.25).
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Corollary 3.12. Let the conditions [A1]-[A2], [B1]-[B3] hold. Then

√
n

(
θ̂n − θ

τ̂ n − τ − νn(θ, τ )

)
−→ Np+q

(
0,Γ−1

5 (θ, τ )Γ3(θ, τ )Γ−1
5 (θ, τ )

)
, (3.26)

where

νn(θ, τ ) =

(
1

n
Γ2n(θ, τ )

)−1

µ̄n(τ )

and

µ̄n(τ ) =
1

n

k∑
i=1

niγ3iw2(zi, τ )zi.

Proof. From Theorem 3.10 we have that:

√
n

(
θ̂n − θ
τ̂ n − τ

)
=

(
1

n
Γ5n(θ, τ )

)−1
1√
n

∑
i,j

λ(xi, yij,θ, τ ) + op(1).

Then from Theorem 3.11 and the Slutsky Theorem we have the expression in (3.26).

Corollary 3.13. Let the conditions [A1]-[A2], [B1]-[B3] hold. Then

Γ̂−
1
2
√
n

(
θ̂n − θ

τ̂ n − τ − νn(θ, τ )

)
−→ Np+q(0, Ip+q), (3.27)

where

Γ̂ =

(
1

n
Γ̂5n

(
θ̂n, τ̂ n

))−1(
1

n
Γ̂3n

(
θ̂n, τ̂ n

))( 1

n
Γ̂5n

(
θ̂n, τ̂ n

))−1

. (3.28)

Proof. Using (3.26) and the Slustsky Theorem we have the expression in (3.27).
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Chapter 4

PTE PROCEDURES IN

NONLINEAR REGRESSION

MODELS

4.1 Introduction

In this chapter we introduce the PTE procedures for nonlinear regression models using

WME and OME. We consider the problem of estimating the regression parameter

in heteroscedastic nonlinear regression models when it is suspected that the error

variances are possibly homoscedastic.

In Section 4.2 we introduce the heteroscedastic nonlinear model that we consider,

and the M-estimation method. The PTE procedures using M-estimation methods are

defined in Section 4.3. In Section 4.4, we derive some asymtptotic results to obtain

the asymptotic covariance matrix of the PTE.



4.2 PTE Using M-estimation in Nonlinear models

4.2.1 Model and Estimation

Suppose that (xi, yij), i = 1, 2, . . . , k, j = 1, . . . , ni, are n (=
∑
ni) observations

from a fixed-effects nonlinear model with a known functional form f. Then,

yij = f(xi; θ) + εij, εij ∼ N(0, σ2
i ), i = 1, . . . , k, j = 1, . . . , ni, (4.1)

where εij are assumed to be independent and θ is known to belong to Θ, a subset of

<p. Here, we shall assume that all x values are the same in group i, i = 1, 2, . . . , k

since it is common model setup in dose-response studies, so that k is meant to be

dose groups. The OME of θ, denoted by θ̃n, minimizes

So(θ) =
∑
i,j

h2 (yij − f(xi,θ)) , (4.2)

assuming σ2
1 = σ2

2 = · · · = σ2
k. However, if the homoscedasticity assumption is not

true, then we assume that log σi = τ0 + τ1xi for i = 1, . . . , k. Under this assumption,

the WME of θ, denoted by θ̂n, minimizes

Sw(θ) =
∑
i,j

1

w(σ̂2
i )
h2 (yij − f(xi; θ)) , (4.3)

where the functional form of w is known and σ̂i = exp(τ̂0n + τ̂1nxi). Here, τ̂0n and

τ̂1n are estimates of τ0 and τ1, respectively, and the detailed estimation procedure is

given in the next section.
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4.2.2 Preliminary Test Estimation

We now develop PTE-based methodology which naturally calibrates between ho-

moscedasticity and heteroscedasticity. Since in toxicological studies the variability

in the observed data often increases as the dose level increases and we parametrize

the error variance using a simple linear form in the model (4.1), the error variance

structure of the model is expressed as the following hypotheses in a preliminary test:

H0 : τ1 = 0,

H1 : τ1 > 0.

If the sample variance within ith group is given by

s2
i =

1

ni − 1

ni∑
j=1

(yij − ȳi)2, (4.4)

for i = 1, . . . , k, then from the model (4.1), we have

(ni − 1)s2
i /σ

2
i ∼ χ2

ni−1. (4.5)

Hence, by the definition of the chi-square distribution and the CLT,

{
(ni − 1)s2

i /σ
2
i − (ni − 1)

}
/
√

2(ni − 1) −→ N(0, 1) as ni →∞, (4.6)

or √
ni − 1

2
(s2
i − σ2

i ) −→ N(0, σ4
i ). (4.7)

By performing log-transformation, we have

√
2(ni − 1)(log si − log σi) −→ N(0, 1) as ni →∞. (4.8)
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From the above result for the asymptotic distribution of log si, we can obtain the

estimate of τ = (τ0, τ1)
t, τ̂ n = (τ̂0n, τ̂1n)t, by minimizing

S(τ ) =
k∑
i=1

(ni − 1)(log si − τ0 − τ1xi)2 (4.9)

Then,

τ̂ n = (ZtWZ)−1ZtWLs, and Var(τ̂ n) =
1

2
(ZtWZ)−1 (4.10)

where

Z =


1 x1

...
...

1 xk

 ,

W = diag.{n1 − 1, . . . , nk − 1}, and Ls = (log s1, . . . , log sk)
t. Especially,

τ̂1n =

∑k
i=1(ni − 1)(xi − x̄) log si∑k

i=1(xi − x̄)2
(4.11)

and

Var(τ̂1n) =
1

2

{
k∑
i=1

(xi − x̄)2

}−1

, (4.12)

where

x̄ =
1

n− k

k∑
i=1

(ni − 1)xi.

Thus, we have the test statistic Zn as follows:

Zn = τ̂1n/
√

Var(τ̂1n). (4.13)

Under the null hypothesis, Zn has the standard normal distribution asymptotically.
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Then, the preliminary test estimator is defined as

θ̂
PT

n = θ̃nI(Zn ≤ zα) + θ̂nI(Zn > zα), (4.14)

where zα is the critical value of the standard normal distribution having probability

1−α, α is the significance level of the preliminary test, and I(A) denotes an indicator

function of the set A. Then, equivalently, we have

θ̂
PT

n =

 θ̃n if Zn ≤ zα

θ̂n if Zn > zα.

4.2.3 Asymptotic Results

Since the PTE is defined as a weighted average of the OME and the WME, the

asymptotic joint distribution of the OME, WME and the test statistic needs to be

studied in order to obtain asymptotic properties of the PTE. In order to derive the

asymptotic joint distribution, we need to have the uniform asymptotic linearity on

the OME and the WME.

We have the estimating equation for the minimization in (4.3) given by

∑
i,j

λw(xi, yij, θ̂n) = 0, (4.15)

where

λw(xi, yij,θ) =
1

w(σ̂2
i )
ψ(yij − f(xi,θ))fθ(xi,θ), (4.16)

and ψ and fθ(xi,θ) are defined in Chapter 2.

First we make the following regularity conditions which are similar with ones in

Chapter 2.
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[A1]:

ψ is a nonconstant odd function which is absolutely continuous and differentiable

with respect to θ.

[A2]: for i = 1, . . . , k,

(i) Eψ2(εi1) = σ2
ψ1i <∞, and Eψ2(εi1)ε

2
i1 = σ2

ψ2i <∞

(ii) E|ψ′(εi1)|1+δ <∞ for some 0 < δ ≤ 1, and Eψ′(εi1) = γ1i, and Eψ′(εi1)ε
2
i1 = γ2i.

[A3]:

(i) limδ→0E
{

sup‖∆‖ ≤ δ
∣∣ψ(Y − f(x,θ + ∆))− ψ(Y − f(x,θ))

∣∣} = 0

(ii) limδ→0E
{

sup‖∆‖ ≤ δ
∣∣ψ′(Y − f(x,θ + ∆))− ψ′(Y − f(x,θ))

∣∣} = 0

[B1]:

f(x,θ) is continuous and twice differentiable with respect to θ ∈ Θ, where Θ is a

compact subset of <p.

[B2]:

(i) limn→∞
1
n
Γ1n(θ) = Γ1(θ), where

Γ1n(θ) =
k∑
i=1

niγ1i

{
1− cii

ni

(
γ2i

σ2
i γ1i

− 1

)
w1(σ

2
i )−

k∑
i1=1

c2ii1
ni1

w1(σ
2
i )

+2
k∑

i1=1

c2ii1
ni1

w2
1(σ2

i )

}
fθ(xi,θ)f tθ(xi,θ)

w(σ2
i )

,

cii1 = (ni1 − 1)zti(Z
tWZ)−1zi1 , zi = (1, xi)

t, and w1(z) = zw′(z)/w(z).

(ii) limn→∞
1
n
Γ2n(θ) = Γ2(θ), where

Γ2n(θ) =
k∑
i=1

niσ
2
ψ1i

{
1− 2cii

ni

(
σ2
ψ2i

σ2
i σ

2
ψ1i

− 1

)
w1(σ

2
i )− 2

k∑
i1=1

c2ii1
ni1

w1(σ
2
i )

+6
k∑

i1=1

c2ii1
ni1

w2
1(σ2

i )

}
fθ(xi,θ)f tθ(xi,θ)

w2(σ2
i )

,

and Γ2(θ) is a positive definite matrix.
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(iii) limn→∞
1
n
Γ3n(θ) = Γ3(θ), where

Γ3n(θ) =
k∑
i=1

niγ1ifθ(xi,θ)f tθ(xi,θ).

(iv) limn→∞
1
n
Γ4n(θ) = Γ4(θ), where

Γ4n(θ) =
k∑
i=1

niσ
2
ψ1ifθ(xi,θ)f tθ(xi,θ),

and Γ4(θ) is a positive definite matrix.

(v) maxi ch1

{
niG1(xi,θ)

(
G2n(θ)

)−1
}
−→ 0, as n→∞, where

G1(xi,θ) =


G11 G12 0

G12 G22 0

0 0 g33

 ,

G11 =
σ2
ψ1i

w2(σ2
i )

{
1− 2cii

ni

(
σ2
ψ2i

σ2
i σ

2
ψ1i

− 1

)
w1(σ

2
i )− 2

k∑
i1=1

c2ii1
ni1

w1(σ
2
i )

+6
k∑

i1=1

c2ii1
ni1

w2
1(σ2

i )

}
fθ(xi,θ)fθ(xi,θ)t,

G12 =
σ2
ψ1i

w(σ2
i )

{
1− cii

ni

(
σ2
ψ2i

σ2
i σ

2
ψ1i

− 1

)
w1(σ

2
i )−

k∑
i1=1

c2ii1
ni1

w1(σ
2
i )

+2
k∑

i1=1

c2ii1
ni1

w2
1(σ2

i )

}
fθ(xi,θ)fθ(xi,θ)t,

G22 = σ2
ψ1ifθ(xi,θ)fθ(xi,θ)t, and g33 =

2n2w2
i2

n2
i

.

80



(vi) limn→∞
1
n
G2n(θ) = G2(θ), where

G2n(θ) =


Γ2n(θ) Γ5n(θ) 0

Γ5n(θ) Γ2n(θ) 0

0 0 2n2

k∑
i=1

w2
i2

ni
,



Γ5n(θ) =
k∑
i=1

niσ
2
ψ1i

{
1− cii

ni

(
σ2
ψ2i

σ2
i σ

2
ψ1i

− 1

)
w1(σ

2
i )−

k∑
i1=1

c2ii1
ni1

w1(σ
2
i )

+2
k∑

i1=1

c2ii1
ni1

w2
1(σ2

i )

}
fθ(xi,θ)fθ(xi,θ)t

w(σ2
i )

,

and G2(θ) is a positive definite matrix.

[B3]:

(i) limδ→0 sup‖∆‖≤δ

∣∣∣(∂/∂θj)f(x,θ + ∆)(∂/∂θl)f(x,θ + ∆)

− (∂/∂θj)f(x,θ)(∂/∂θl)f(x,θ)
∣∣∣ = 0 for j, l = 1, . . . , p

(ii) limδ→0 sup‖∆‖≤δ

∣∣∣(∂2/∂θj∂θl)f(x,θ + ∆) − (∂2/∂θj∂θl)f(x,θ)
∣∣∣ = 0 for j, l =

1, . . . , p

Now we shall prove the uniform asymptotic linearity on the WME given in the

following theorem.

Theorem 4.1. Let the conditions [A1]-[A3], and [B1]-[B3] hold. Then

sup
‖t‖≤C

∥∥∥∥ 1√
n

∑
i,j

{λw(xi, yij,θ + n−
1
2 t)− λw(xi, yij,θ)}+

1

n
Γ1n(θ)t

∥∥∥∥ = op(1) (4.17)

as n→∞.

Proof. The sample variance within group, s2
i defined in (4.4) is a U-statistic with
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f(x1, x2) = (x1 − x2)
2/2, which can be expressed as

s2
i =

1

2

(
ni
2

)−1 ∑∑
1 ≤ j < j1 ≤ ni

(εij − εij1)2 (4.18)

Then, by the asymptotic property of U-statistic,

s2
i − σ2

i =
2

ni

ni∑
j=1

{
h1(εij)− σ2

i

}
+Op

( 1

ni

)
,

=
1

ni

ni∑
j=1

(ε2ij − σ2
i ) +Op

( 1

ni

)
,

(4.19)

where

h1(εij) = E

[
1

2
(εij − εij1)2

∣∣∣ εij] =
1

2
(εij + σ2

i ).

Thus, we have

log si − log σi = log

{
1 +

s2
i − σ2

i

σ2
i

}
=

s2
i − σ2

i

2σ2
i

+Op

( 1

ni

)
=

1

2σ2
i

1

ni

ni∑
j=1

(ε2ij − σ2
i ) +Op

( 1

ni

)
,

(4.20)

and hence,

τ̂ n = (ZtWZ)−1ZtWLs

=
k∑
i=1

wi log si

=
k∑
i=1

wi

{
log σi + (log si − log σi)

}
= τ +

k∑
i=1

wi

2σ2
i

1

ni

ni∑
j=1

(ε2ij − σ2
i ) +Op

( 1

n

)
,

(4.21)
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where wi = (ni − 1)(ZtWZ)−1zi. Now, if we define

un =
√
n(τ̂ n − τ ) =

√
n

2

∑
i,j

wi

niσ2
i

(ε2ij − σ2
i ) + op(1), (4.22)

then

σ̂2
i

σ2
i

=
exp(2ztiτ̂ n)

exp(2ztiτ )
= exp

{
2zti(τ̂ n−τ )

}
= 1 +

2√
n

ztiun + +
2

n
(ztiun)2 + op

( 1

n

)
, (4.23)

w(σ̂2
i ) = w

(
σ2
i

σ̂2
i

σ2
i

)
= w

(
σ2
i +

2√
n

ztiunσ
2
i +

2

n
(ztiun)2σ2

i + op

( 1

n

))
= w(σ2

i ) +

{
2√
n

ztiun +
2

n
(ztiun)2

}
σ2
iw
′(σ2

i ) + op

( 1

n

)
,

(4.24)

and hence,

1

w(σ̂2
i )

=
1

w(σ2
i )

[
1−

{
2√
n

ztiun +
2

n
(ztiun)2

}
w1(σ

2
i ) +

4

n
(ztiun)2w2

1(σ2
i ) + op

( 1

n

)]
(4.25)

Therefore,

Eψ
(
yij − f(xi,θ)

) 1

w(σ̂2
i )

= 0, (4.26)

and since

Eψ′(εij)
2√
n

ztiun =
cii
niσ2

i

(γ2i − σ2
i γ1i) (4.27)

and

Eψ′(εij)
2

n
(ztiun)2

=
2

n

n

4

{
γ1i

(∑
i1 6=i

ni1∑
j1=1

c2ii1
n2
i1
σ4
i1

(2σ4
i1

) +
k∑

i1=1

∑
j1 6=j

c2ii1
n2
i1
σ4
i1

(2σ4
i1

)

−
∑
i1 6=i

∑
j1 6=j

c2ii1
n2
i1
σ4
i1

(2σ4
i1

)

)
+ o
( 1

n

)}

= γ1i

k∑
i1=1

c2ii1
ni1

+ o
( 1

n

)
,

(4.28)
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Eψ′
(
yij − f(xi,θ)

) 1

w(σ̂2
i )

=
γ1i

w(σ2
i )

{
1− cii

ni

(
γ2i

σ2
i γ1i

− 1

)
w1(σ

2
i )−

k∑
i1=1

c2ii1
ni1

w1(σ
2
i ) + 2

k∑
i1=1

c2ii1
ni1

w2
1(σ2

i )

}
+ o
( 1

n

)
(4.29)

We can prove this theorem with exactly the same method used in Theorem 2.3,

and obtain (4.17) from (4.26) and (4.29).

From (4.17), we obtain the following asymptotic representation of θ̂n similarly as

in Theorem 2.4:

√
n(θ̂n − θ) =

(
1

n
Γ1n(θ)

)−1
1√
n

∑
i,j

ψ
(
yij − f(xi,θ)

)fθ(xi,θ)

w(σ̂2
i )

+ op(1) (4.30)

We now consider the OME and have the estimating equation for the minimization

in (4.2) given by ∑
i,j

λo(xi, yij, θ̃n) = 0, (4.31)

where

λo(xi, yij,θ) = ψ(yij − f(xi,θ))fθ(xi,θ). (4.32)

Then, similarly, we have the uniform asymptotic linearity on the OME:

sup
‖t‖≤C

∥∥∥∥ 1√
n

∑
i,j

{λo(xi, yij,θ + n−
1
2 t)− λo(xi, yij,θ)}+

1

n
Γ3n(θ)t

∥∥∥∥ = op(1), (4.33)

and hence we obtain the follwing asymptotic representation of θ̃n:

√
n(θ̃n − θ) =

(
1

n
Γ3n(θ)

)−1
1√
n

∑
i,j

ψ
(
yij − f(xi,θ)

)
fθ(xi,θ) + op(1) (4.34)

Now we shall prove the asymptotic normality of (θ̂
t

n, θ̃
t

n, τ̂1n)t.
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Theorem 4.2. Let the conditions [A1]-[A3], and [B1]-[B3] hold. Then

1√
n

∑
i,j

λ∗(xi, yij,θ) −→ N2p+1(0,G2(θ)) as n→∞, (4.35)

where

λ∗(xi, yij,θ) =
(
λtw(xi, yij,θ), λto(xi, yij,θ),

nwi2
niσ2

i

(ε2ij − σ2
i )
)t
,

and wi2 is the second element of wi.

Proof. We consider an arbitrary linear compound:

Z∗n = ηt
1√
n

∑
i,j

λ∗(xi, yij,θ),

where η = (ηt1,η
t
2, η3)

t and η1,η2 ∈ <p; η ∈ <. And we have that:

Z∗n =
∑
i,j

1√
n

{
ηt1fθ(xi,θ)ψ(yij − f(xi,θ))

1

w(σ̂2
i )

+ ηt2fθ(xi,θ)ψ(yij − f(xi,θ))

+
nη3wi2
niσ2

i

(ε2ij − σ2
i )

}
=
∑
i,j

1√
n

(
ci1Zij1 + ci2Zij2 + ci3Zij3

)
,

where ci1 = ηt1fθ(xi,θ), ci2 = ηt2fθ(xi,θ), ci3 = nη3wi2

niσ2
i
, Zij1 = ψ(yij − f(xi,θ)) 1

w(σ̂2
i )
,

Zij2 = ψ(yij − f(xi,θ)), and Zij3 = ε2ij − σ2
i . Then,

EZij1 = EZij2 = EZij3 = 0,

EZ2
ij2 = σ2

ψ1i; EZ2
ij3 = 2σ4

i ;
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since

(
1

w(σ̂2
i )

)2

=
1

w2(σ2
i )

[
1− 2

{
2√
n

ztiun +
2

n
(ztiun)2

}
w1(σ

2
i )

+
12

n
(ztiun)2w2

1(σ2
i ) + op

( 1

n

)]
,

if we compute similarly as in (4.27) and (4.28),

EZ2
ij1 =

σ2
ψ1i

w2(σ2
i )

{
1− 2cii

ni

(
σ2
ψ2i

σ2
i σ

2
ψ1i

− 1

)
w1(σ

2
i )− 2

k∑
i1=1

c2ii1
ni1

w1(σ
2
i )

+6
k∑

i1=1

c2ii1
ni1

w2
1(σ2

i )

}
+ o
( 1

n

)
,

(4.36)

and EZij1Zij3 = EZij2Zij3 = 0;

EZij1Zij2 =
σ2
ψ1i

w(σ2
i )

{
1− cii

ni

(
σ2
ψ2i

σ2
i σ

2
ψ1i

− 1

)
w1(σ

2
i )−

k∑
i1=1

c2ii1
ni1

w1(σ
2
i )

+2
k∑

i1=1

c2ii1
ni1

w2
1(σ2

i )

}
+ o
( 1

n

)

Therefore, if we let

Z∗n =
∑
i,j

cniZnij, (4.37)

where

cni =
1√
n

{
ηtG1(xi,θ)η

} 1
2 , (4.38)

and

Znij =
(
ci1Zij1 + ci2Zij2 + ci3Zij3

)
/
{
ηtG1(xi,θ)η

} 1
2 , (4.39)

then

EZnij = 0 and Var(Znij) = 1 + o
( 1

n

)
.

Then by using the Hájek-S̆idak Central Limit Theorem, we can show that Z∗n
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converges in law to a normal distribution as n→∞. In order to use this theorem we

need to verify the regularity condition about cnij, which is given by

max
i
nic

2
ni/
∑
i

nic
2
ni −→ 0.

However, since ∑
i

nic
2
ni =

1

n
ηtG2n(θ)η,

this condition is reduced to the condition [B2] (v) similarly in Theorme 2.5. Thus,

we conclude that

Z∗n/
( k∑
i=1

nic
2
ni

) 1
2 −→ N(0, 1) as n→∞

and by using the Cramer-Wold Theorem we prove the expression in (4.35)

Corollary 4.3. Let the conditions [A1]-[A3], and [B1]-[B3] hold. Then,

√
n
(
β̂n − β

)
−→ N2p+1(0,G(θ)) as n→∞, (4.40)

where

β =
(
θt,θt, τ1

)t
, β̂n =

(
θ̂
t

n, θ̃
t

n, τ̂1n
)t
,

G(θ) = G−1
3 (θ)G2(θ)G−1

3 (θ),

and

G3(θ) =


Γ1(θ) 0 0

0 Γ3(θ) 0

0 0 2

 .
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Proof. From (4.22), (4.30), and (4.34), we have that:

√
n
(
β̂n − β

)
= G−1

3n (θ)
1√
n

∑
i,j

λ∗(xi, yij,θ) + op(1),

where

G3n(θ) =


1
n
Γ1n(θ) 0 0

0 1
n
Γ3n(θ) 0

0 0 2

 .

Then from Theorem 4.2 and the Slutsky Theorem we have the expression in (4.40).

From the result of the asymptotic joint distribution of θ̂n, θ̃n, τ̂1n, the asymptotic

covariance matrix of the PTE can be obtained.

Corollary 4.4. Let the conditions [A1]-[A3], and [B1]-[B3] hold. Then,

E

[
n
(
θ̂

PT

n − θ
)(

θ̂
PT

n − θ
)t]

= Φ

(
zα −

τ1√
Var(τ̂1n)

)(
1

n
Γ3n(θ)

)−1(
1

n
Γ4n(θ)

)(
1

n
Γ3n(θ)

)−1

+

{
1− Φ

(
zα −

τ1√
Var(τ̂1n)

)}(
1

n
Γ1n(θ)

)−1(
1

n
Γ2n(θ)

)(
1

n
Γ1n(θ)

)−1

,

(4.41)

where Φ is the cdf of the standard normal random variable.
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Proof. From (4.14), we have, for arbitrary x ∈ <p,

P
{√

n
(
θ̂

PT

n − θ
)
≤ x

}
= P

{√
n
(
θ̃n − θ

)
≤ x, Zn ≤ zα

}
+ P

{√
n
(
θ̂n − θ

)
≤ x, Zn > zα

}
= P

{√
n
(
θ̃n − θ

)
≤ x

}
P
{√

n (τ̂1n − τ1) ≤
√
n (zα − τ1)

}
+P

{√
n
(
θ̂n − θ

)
≤ x

}
P
{√

n (τ̂1n − τ1) >
√
n (zα − τ1)

}
= Φ

(
zα −

τ1√
Var(τ̂1n)

)
P
{√

n
(
θ̃n − θ

)
≤ x

}
+

{
1− Φ

(
zα −

τ1√
Var(τ̂1n)

)}
P
{√

n
(
θ̂n − θ

)
≤ x

}
.

(4.42)

Then from (4.40),

E

[
n
(
θ̂

PT

n − θ
)(

θ̂
PT

n − θ̂
)t]

= Φ

(
zα −

τ1√
Var(τ̂1n)

)
E
[
n
(
θ̃n − θ

)]

+

{
1− Φ

(
zα −

τ1√
Var(τ̂1n)

)}
E
[
n
(
θ̂n − θ

)]
,

(4.43)

and since from (4.40),

E

[
n
(
θ̃n − θ

)(
θ̃n − θ

)t]
=

(
1

n
Γ3n(θ)

)−1(
1

n
Γ4n(θ)

)(
1

n
Γ3n(θ)

)−1

(4.44)

and

E

[
n
(
θ̂n − θ

)(
θ̂n − θ

)t]
=

(
1

n
Γ1n(θ)

)−1(
1

n
Γ2n(θ)

)(
1

n
Γ1n(θ)

)−1

, (4.45)

we have the expression in (4.41).
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Chapter 5

SIMULATION STUDY

5.1 Introduction

The theory and methodology developed in the previous chapters can be applied to

many nonlinear models. We illustrate the PTE procedure proposed in Chapter 4 for

homoscedastic and heteroscedastic data.

We divide this chapter in two parts. In Section 5.2, we illustrate OME, WME

and PTE methodologies using simulated data sets. In that section we demonstrate

how PTE chooses the appropriate method without costing too much in terms of the

standard error of the estimates. We compare the performance of OME, WME and

PTE in Section 5.3 using a simulation study.



5.2 Illustration of PTE using Simulated Data

We generated three data sets using the Hill model,

yij = f(xi,θ) + εij = θ0 +
θ1x

θ2
i

θθ23 + xθ2i
+ εij, i = 1, . . . , 8, j = 1, . . . , 4. (5.1)

We set xi having the values of 0, 1, 3, 10, 30, 100, 400, 600, and (θ0, θ1, θ2, θ3) = (1, 4, 1.5, 100).

The error variances are as follows:

Data 1: εij ∼ N(0, e−4), i = 1, . . . , 8, j = 1, . . . , 4,

Data 2: εij ∼ N(0, e−6+0.01xi), i = 1, . . . , 8, j = 1, . . . , 4,

Data 3: εij ∼ N(0, 0.01f 2(xi; θ)), i = 1, . . . , 8, j = 1, . . . , 4.

(5.2)

Thus in the case of Data 1 and Data 2, the error variance model described in Chapter

4 are correct. However, in the case of Data 3 the error variance model of Chapter

4 is incorrect. Using Data 3, we evaluated the robustness of the proposed PTE

methodology to mis-specified variance structure.

The results of OME, WME and PTE estimates (and their standard errors) for the

three data sets are summarized in Table 5.1. As expected, for Data 1 the standard

errors of OME were smaller than those of WME. Furthermore OME and WME were

substantially different. PTE automatically selects OME and the standard errors of

PTE were much less than those of WME. Similarly, as expected, the converse is true

in the case of heteroscedastic data (Data 2 and Data 3).

Note that if the data are homoscedastic then the “correct” choice of estimator

is OME, whereas for heteroscedastic data (Data 2), the “correct” choice is WME.

However in a practical setting, for a given data set, one does not know a priori

whether the data are homoscedastic or heteroscedastic. In all three data sets, PTE

automatically chooses the “correct” estimation procedure (OME or WME) while
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Table 5.1: Estimate and Standard Error for parameters of the models for Data 1, 2

and 3 using OME, WME and PTE methods.

OME WME PTE

Estimate S.E. Estimate S.E. Estimate S.E.

θ0 2.326 0.089 2.292 0.091 2.326 0.089

Data 1 θ1 3.702 0.243 4.109 0.382 3.702 0.251

(homo.) θ2 1.585 0.324 1.247 0.257 1.585 0.321

θ3 98.997 9.888 122.361 23.263 98.997 10.952

θ0 2.301 0.040 2.284 0.013 2.284 0.013

Data 2 θ1 4.175 0.864 4.496 0.240 4.496 0.250

(hetero.) θ2 1.541 0.442 1.377 0.062 1.377 0.073

θ3 106.152 33.676 120.161 10.154 120.161 10.515

θ0 2.255 0.108 2.280 0.085 2.280 0.090

Data 3 θ1 4.487 1.167 4.137 0.400 4.137 0.630

(hetero.) θ2 1.082 0.324 1.225 0.247 1.225 0.264

θ3 121.974 64.695 102.845 19.331 102.845 33.560

keeping the standard error as small as that of the “correct” estimation procedure.
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5.3 Comparison of OME, WME and PTE

Three data sets are generated from (5.1) and (5.2) with the total sample size of

40, and the same values of xi and θ. Using 10,000 simulation runs, we compared

OME, WME and PTE in terms of three standard criteria: (1) mean squared error

(MSE) of individual parameters as well as all parameters simultaneously, (2) the

coverage probabilities of 95% confidence intervals of individual parameters as well

as the simultaneous confidence ellipsoid defined below, and (3) the size of the 95%

confidence regions. The 100(1− α)% confidence region for the parameter vector θ is

defined as

(θ̂ − θ)t
[
V̂ar(θ̂)

]−1
(θ̂ − θ) ≤ pFp,n−p(α),

where θ̂ is the point estimator and V̂ar(θ̂) is the appropriate variance estimator.

We also consider the total MSE of the model based on the data sets generated

from (5.1) and the following error structure:

εij ∼ N(0, e−4+τ1xi), i = 1, . . . , 8, j = 1, . . . , 5.

Total MSEs are computed based on 1,000 simulation runs using OME, WME and

PTE with various values of τ1.

5.3.1 Mean Squared Error (MSE)

Table 5.2 shows the results of the simulation. When data are generated from ho-

moscedastic model, the estimated MSE of OME for θ3 (ED50) is smaller than that of

WME and the estimated MSE of PTE is slightly larger than that of OME. On the

other hand, when data are heteroscedastic, the estimated MSEs of WME are much

smaller than those of OME and the estimated MSEs of the PTE are exactly same as

those of WME (Data 2), or slightly larger than those of WME (Data 3). Therefore,
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Table 5.2: The estimated MSE for parameters of the models for Data 1, 2 and 3 using

OME, WME and PTE methods (n = 40; 10,000 simulations).

OME WME PTE

θ0 0.001 0.001 0.001

Data 1 θ1 0.017 0.019 0.017

(homo.) θ2 0.017 0.017 0.017

θ3 45.891 49.984 46.166

Total 45.926 50.021 46.201

θ0 0.0008 0.0002 0.0002

Data 2 θ1 0.535 0.069 0.069

(hetero.) θ2 0.063 0.006 0.006

θ3 1922 87.571 87.571

Total 1922 87.645 87.645

θ0 0.0041 0.0038 0.0039

Data 3 θ1 0.308 0.234 0.247

(hetero.) θ2 0.138 0.110 0.115

θ3 1510 1016 1073

Total 1510 1017 1073
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Table 5.3: The estimated total MSE of the models with various values of τ1 using

OME, WME and PTE methods (n = 40; 1,000 simulations).

100τ1 OME WME PTE

0 45.91 48.62 46.17

0.01 56.44 60.27 56.44

0.05 63.59 62.09 62.15

0.08 76.80 73.38 74.51

0.10 81.43 71.21 74.20

0.15 130.63 96.47 100.48

0.18 154.80 89.30 93.09

0.20 299.77 123.72 131.58

0.30 2060.17 203.94 204.36

0.50 3474.84 958.65 958.65

we see that the choice between OME and WME may affect the estimation result

seriously and PTE improves the performance of parameter estimation.

From Table 5.3 we can see that as τ1 increases, the total MSE increases in all

cases using OME, WME and PTE methods. However, when τ1 is 0 or very close to 0,

i.e., for (almost) homoscedastic data, the total MSEs of OME are smaller than those

of WME, and the total MSEs of PTE are slightly larger than those of OME. On the

other hand, as τ1 gets larger, the total MSEs of OME get much larger than those

of WME, and the total MSEs of PTE are now slightly larger than those of WME.

Also, it is seen that the difference between the total MSEs of WME and PTE gets

decreased to 0 by increasing τ1. Figure 5.1 also shows this result.
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Figure 5.1: Plot of total MSE against τ1 using OME (solid line), WME (dashed line),

and PTE (dotted line).

5.3.2 Coverage Probability

The results in Table 5.4 show that all three methods are subject to under-coverage

for homoscedastic as well as heteroscedastic data (except for OME of θ0 for Data 2).

However, as with the MSE, the coverage probability of PTE was closer to that of

OME for homoscedastic data and closer to that of WME for heteroscedastic data.

5.3.3 Length of CI

From Table 5.5, we can see that for homoscedastic data, the length of 95% CIs for

parameters are all quite similar using the OME, WME and PTE methods. However,

for Data 2 (heteroscedastic data) WME has much shorter CIs than OME, and the
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Table 5.4: Coverage probability for parameters of the models for Data 1, 2 and 3

using OME, WME and PTE methods. Nominal coverage probability = 0.95 (n = 40;

10,000 simulations).

OME WME PTE

θ0 0.932 0.919 0.931

Data 1 θ1 0.935 0.916 0.933

(homo.) θ2 0.924 0.904 0.921

θ3 0.919 0.908 0.918

θ0 + θ1 0.934 0.914 0.933

θ0 0.958 0.939 0.946

Data 2 θ1 0.915 0.886 0.897

(hetero.) θ2 0.922 0.927 0.944

θ3 0.907 0.896 0.911

θ0 + θ1 0.917 0.884 0.895

θ0 0.938 0.928 0.930

Data 3 θ1 0.930 0.919 0.924

(hetero.) θ2 0.934 0.912 0.916

θ3 0.902 0.884 0.888

θ0 + θ1 0.929 0.916 0.922

lengths of CI for PTE are very similar with the corresponding ones for WME. For

Data 3, which is heteroscedastic, the lengths of CI are shorter using WME than OME,

and PTE are between the two.
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Table 5.5: Length of 95% CI for parameters of the models for Data 1, 2 and 3 using

OME, WME and PTE methods (n = 40; 10,000 simulations).

OME WME PTE

θ0 0.067 0.064 0.067

Data 1 θ1 0.246 0.235 0.245

(homo.) θ2 0.240 0.230 0.238

θ3 12.274 11.907 12.231

θ0 + θ1 0.215 0.205 0.214

θ0 0.056 0.027 0.027

Data 2 θ1 1.291 0.446 0.475

(hetero.) θ2 0.499 0.142 0.153

θ3 70.423 16.166 18.863

θ0 + θ1 1.247 0.440 0.468

θ0 0.125 0.116 0.117

Data 3 θ1 0.984 0.835 0.866

(hetero.) θ2 0.687 0.566 0.595

θ3 64.566 50.028 53.817

θ0 + θ1 0.934 0.794 0.824

5.3.4 Simultaneous Confidence Region

We compute the coverage probability and the volume of the ellipsoid using the three

estimation methods for various total sample sizes. The homoscedastic data (Data

1) are used and the total sample size are taken to be 24, 40, 104, 152, and 200.

Simulation results are based on 1,000 simulation runs, except for n = 40 (10,000 runs

for n = 40,).
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Table 5.6: Coverage probability and the volume of the ellipsoid for Data 1 using OME,

WME and PTE methods. Nominal coverage probability = 0.95 (1,000 simulations

except for n = 40).

n OME WME PTE

24
Cov. Prob. 0.755 0.684 0.747

Volume 0.755 0.621 0.739

40
Cov. Prob. 0.845 0.813 0.843

Volume 0.281 0.246 0.277

104
Cov. Prob. 0.903 0.895 0.902

Volume 0.044 0.041 0.044

152
Cov. Prob. 0.938 0.930 0.936

Volume 0.020 0.019 0.020

200
Cov. Prob. 0.934 0.934 0.933

Volume 0.012 0.012 0.012

The results of simulation are summarized in Table 5.6. All methods suffer from

severe under coverage for smaller sample sizes and the convergence is rather slow.

Even at n = 200 the coverage probability is still smaller then 0.95 for all methods.

From a practical poin of view, researchers are interested in “rectagular regions” rather

than ellipses. So using Bonferroni adjusted simultaneous confidence intervals, we not

only derive simultaneous confidence intervals that are easy to interpret by researchers,

but we also attain close to nominal values.
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Chapter 6

REAL DATA APPLICATION

6.1 Description of the Data

In this chapter we apply the PTE methodology proposed in Chapter 4 to several data

sets from a toxicological study that was designed to examine the relationship between

concentrations of Hexavalent Chromium (CrVI), as sodium dichromate dihydrate, in

drinking water and accumulation of total chromium in tissue for three species (rats,

mice, and guinea pigs) (NTP, 2007).

Groups of four Fischer 344 rats, four B6C3F1 mice, and four Hartley guinea pigs

were randomly assigned to one of six concentrations of sodium dichromate dihydrate

in their drinking water. All animals were between 6 and 10 weeks in age. Control

groups were given water without added sodium dichromate dihydrate. The dose

concentrations were 0, 2.87, 8.62, 28.7, 86.2, 287, and 862 mg sodium dichromate

dihyrate/L (to yield 0, 1, 3, 10, 30, 100, and 300 mg chromium/L). When animals

were sacrificed, total chromium concentrations in blood, kidneys, and femurs were

measured.



6.2 Analysis and Results

The Hill model in Chapter 5 is used for fitting the data, where x is dose concentration,

ranged from 0 to 300 and y is total chromium concentration. We illustrate the

proposed methodology using the following three data sets where we model chromium

concentration (y):

• Data 1: in blood for guinea pig,

• Data 2: in kidney for guinea pig,

• Data 3: in blood for rat.

We have 7 values of x and 4 observations at each x except for x = 30 for Data 1

and 2; x = 0 for Data 3 (3 observations at x = 30 for Data 1 and 2; 3 observations

at x = 0 for Data 3), so that the total sample size is 27. For each of the data sets

we estimate the parameters and their standard errors using the OME, WME, and

PTE methods. the LSE methods are also used, which we can compare with the M-

estimation methods. The results are summarized in Table 6.1 and 6.2, and the data

and the fitted curve using the M-estimation and LSE methods for Data 1, 2 and 3

are plotted in Figure 6.1, 6.2 and 6.3, respectively.

First of all, from Table 6.1 and 6.2, we can see that the results from both the

M-estimation and LSE methods are almost the same each other, which suggests that

there may be no outliers or influential observations in Data 1, 2 and 3. Figure 6.1,

6.2 and 6.3 also show the same result, so that the fitted curves from both the M-

estimation and LSE methods look no difference.

From Figure 6.1 and Table 6.1, we see that Data 1 appear to be heteroscedas-

tic, and the point estimates dramatically differ between OME and WME. Also the

estimated standard errors of WME are much smaller than those of OME, and the

standard errors of PTE are very similar to those of WME.
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Table 6.1: Estimate and Standard Error for parameters of the models for Chromium

data using OME, WME and PTE methods.

OME WME PTE

Estimate S.E. Estimate S.E. Estimate S.E.

Data 1

θ0 0.134 0.018 0.141 0.011 0.141 0.011

θ1 2.620 1.060 1.995 0.500 1.995 0.501

θ2 1.244 0.343 1.468 0.198 1.468 0.198

θ3 100.766 70.396 65.254 26.304 65.254 26.372

Data 2

θ0 0.119 0.033 0.120 0.012 0.120 0.012

θ1 3.272 0.911 3.166 0.648 3.166 0.649

θ2 1.506 0.632 1.542 0.267 1.542 0.269

θ3 71.118 41.699 67.698 24.188 67.698 24.263

Data 3

θ0 0.108 0.009 0.111 0.008 0.111 0.008

θ1 0.751 0.113 0.643 0.062 0.643 0.086

θ2 0.988 0.174 1.128 0.159 1.128 0.165

θ3 95.859 33.666 68.453 14.715 68.453 24.202

On the other hand, although Data 2 also appear to be heteroscedastic (Figure

6.2), the point estimates are almost the same for OME and WME. However, the

standard errors are very different between the two, and the standard errors of PTE

are closer to those of WME.

For Data 3, Figure 6.3 shows that the data might be homoscedastic. However,

since the point estimates and the standard errors are quite different between the OME

and WME, it is important to decide correctly which of the two is optimal. PTE selects

WME and the standard errors of the PTE lie between those of OME and WME.
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Table 6.2: Estimate and Standard Error for parameters of the models for Chromium

data using OLSE, WLSE and PTE methods.

OLSE WLSE PTE

Estimate S.E. Estimate S.E. Estimate S.E.

Data 1

θ0 0.134 0.018 0.141 0.011 0.141 0.011

θ1 2.620 1.060 1.995 0.500 1.995 0.500

θ2 1.244 0.343 1.469 0.198 1.469 0.198

θ3 100.736 70.374 65.238 26.293 65.238 26.362

Data 2

θ0 0.119 0.033 0.120 0.012 0.120 0.012

θ1 3.272 0.911 3.166 0.648 3.166 0.649

θ2 1.506 0.632 1.542 0.268 1.542 0.270

θ3 71.117 41.705 67.704 24.200 67.704 24.275

Data 3

θ0 0.108 0.009 0.111 0.008 0.111 0.008

θ1 0.751 0.113 0.643 0.062 0.643 0.086

θ2 0.988 0.174 1.128 0.159 1.128 0.165

θ3 95.863 33.665 68.444 14.712 68.444 24.201
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(a) M-estimation (b) LSE

Figure 6.1: Chromium concentration in blood for guinea pig (Data 1) using (a)

M-estimation methods: plus sign and solid line (OME); triangles and dashed line

(WME); circles (data); (b) LSE methods: plus sign and solid line (OLSE); triangles

and dashed line (WLSE); circles (data).

(a) M-estimation (b) LSE

Figure 6.2: Chromium concentration in kidney for guinea pig (Data 2) using (a)

M-estimation methods: plus sign and solid line (OME); triangles and dashed line

(WME); circles (data); (b) LSE methods: plus sign and solid line (OLSE); triangles

and dashed line (WLSE); circles (data).
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(a) M-estimation (b) LSE

Figure 6.3: Chromium concentration in blood for rat (Data 3) using (a) M-estimation

methods: plus sign and solid line (OME); triangles and dashed line (WME); circles

(data); (b) LSE methods: plus sign and solid line (OLSE); triangles and dashed line

(WLSE); circles (data).
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Chapter 7

CONCLUDING REMARKS AND

FUTURE RESEARCH PLAN

In this dissertation, M-estimation and PTE based methodology has been developed

for analyzing nonlinear models that are possibly subject to heteroscedastic variance

structure. The methodology proposed here would allow researchers to use estimation

procedures that are robust to both potential influential or outlying observations and

the error variance structure in nonlinear models. Although the methodology has been

developed under the assumption of monotone increasing error variance, it can easily

be modified to other patterns of the error variance.

The PTE-based methodology has been proposed by incorporating the M-estimation

procedures. Since the M-estimation methods are well-known to be robust against

potential outliers and influential observations, we have not evaluated in this disserta-

tion the robustness of the proposed methodology in this aspect. Thus, further work

is planned in the immediate future for evaluating the robustness of the methodology

by simulation studies using various data sets generated from contaminated normal

distribution.

In the weighted M-estimation method, the estimators for the variance parameters



are based on the fact that the individual sample variance has the chi-square distribu-

tion when the errors are normally distributed. And these estimators are valid when

the number of observation at each dose level is at least 2. Motivated by the above

observation and some practical applications, I like to explore at least three different

extensions to the research presented in my dissertation.

Firstly, in toxicological studies such as HTS assays, there might be data sets

where the number of observations at each dose level may be small, even 1. For

such data sets the theory and methodology developed in this dissertation may not

be appropriate. When the number of observation at each dose level is 1, one natural

method to estimate the variance at each dose level is to use the residuals obtained

from OME for the regression parameters. However, they are not robust to possible

heteroscedasticity. Therefore, further work needs to be done for developing alternative

estimation methods for the variance parameters with small samples.

Secondly, since the sample variance is not robust to outliers, one may consider the

Gini’s mean difference as an alternative for estimating the variance parameters. The

Gini’s mean difference is defined as the sample mean absolute deviation. Since it is a

U-statistic and hence the associated asymptotic theory can be exploited.

Thirdly, the theory and methodology developed in this dissertation rely on the

assumption that the errors are normally distributed. Specifically, the normality as-

sumption is required for estimating the variance parameters in the log-linear model.

Such an assumption needs not be true in practice. Hence I like to develop suitable

alternate methodology that relaxes this assumption.

Another important part of the proposed PTE methodology is to model het-

eroscedasticity log-linearly. Although we have evaluated from simulation studies the

robustness of the proposed method when the model is not valid, it is still possible

that the method is not very efficient for some data sets since the model is a first

order approximation. Hence, further work is planned in the immediate future for
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investigating the robustness of the proposed method in various types of data sets.

Also, one might want to study the relationship between the complexity of the model

for the error variance and the efficiency of the proposed method.

Another extension of this research is to derive PTE-based methodology that ac-

counts for not only variance structure for the error but also model mis-specification.

In many practical situations, a researcher may believe that the intercept of the Hill

model is zero. However, this may depend upon the bioassay and may not be true for

all data sets. The presence or the absence of the intercept parameter may drastically

impact the estimation of the remaining parameters of the model. So it would be

useful from a practical point of view to develop a PTE-based methodology to select

the suitable model and estimate the parameters.

The theory and methodology developed in my dissertation lends itself to various

possible extensions. In the near future we would extend the methodology to nonlinear

mixed effect models and to physiologically based pharmacokinetic (PBPK) models.

PBPK models are mathematical characterizations which describe how a chemical is

absorbed, distributed, metabolized and eliminated in various parts of the body, such

as blood, liver, kidney, etc. This approach is often used for understanding mechanism

of action of various chemicals. Thus they play an important role in drug development

by pharmaceuticals and for risk assessment by regulatory agencies such as the EPA

and FDA. A PBPK model consists of a system of differential equations. Solution

to PBPK models requires estimation of several parameters, some of which are de-

termined using nonlinear regression models and others are obtained from published

literature. However, issues such as structure for the error variance in the model and

the presence of potential outliers or influential observations, require the development

of robust statistical methods for analyzing the PBPK models. Furthermore, since re-

peated measurements are obtained on some of the compartments of a PBPK model,

such as, blood, urine and feces, robust statistical methods for mixed effects models
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would play an important role in analyzing these data. Also, since a PBPK model

consists of several compartments, new methods will be needed for simultaneous esti-

mation of parameters from all the compartments.
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