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ABSTRACT 

Hao Wu: Spatial Regulation of Exocytosis by Rho Family Small GTPases 

in Saccharomyces cerevisiae 

(Under the direction of Patrick Brennwald) 

 

Polarized exocytosis is a fundamental cellular process which mediates the delivery of 

intracellular lipids and proteins to the plasma membrane and secreted to the extracellular 

compartment. In budding yeast Saccharomyces cerevisiae, the Rho family small GTPases are 

important regulators of exocytosis. However, the precise mechanism by which they regulate 

exocytosis is not well understood. Earlier work from our laboratory suggested that Rho3 and 

Cdc42 have direct roles in exocytosis during different stages of the cell cycle. Here we 

present evidence that the functional specificity of Rho3 and Cdc42 is determined by two 

elements at the N terminus of Rho3.This region contains elements thatare important for the 

localization of Rho3 and the interaction with the exocyst component Exo70. We show that 

Exo70 has the biochemical and genetic properties expected of a direct effector for both Rho3 

and Cdc42. Surprisingly we find that C-terminal prenylation of these GTPases both promotes 

the interaction and influences the sites of binding within Exo70. We identified gain-of-

function mutants in EXO70 that potently suppress mutants in RHO3 and CDC42 defective 

for exocytic function.  Taken together, these data suggests that Exo70 is the common 
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downstream effector for both Rho3 and Cdc42. The localization of the Rho3 and Cdc42 and 

their interaction with the Exo70 component of the exocyst are the key determinants for their 

functional specificity in regulating exocytosis.   
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CHAPTER ONE 

The Function of the Exocyst during Polarized Exocytosis 
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Polarized exocytosis is a fundamental cellular process by which intracellular lipid and 

protein contents get delivered to target membranes and secreted to the extracellular 

compartment. In budding yeast Saccharomyces cerevisiae, polarized exocytosis involves 

three distinctive steps: delivery of the post-Golgi vesicles towards the target membrane along 

actin cables; docking of secretory vesicles at the plasma membrane, and the fusion of 

vesicles with the plasma membrane.  

Many proteins or protein complexes have been reported to regulate exocytosis. These 

include Rab small GTPases and the type V myosin Myo2 for vesicle delivery, the exocyst 

complex for vesicle tethering at the plasma membrane; Rho family small GTPases for the 

local activation of the exocyst complex; and the SNARE complex for membrane fusion. This 

chapter mainly focuses on the function of the exocyst complex in regulating exocytosis, 

including the discovery and localization of the exocyst, the structure of the exocyst 

components, the protein-protein interactions within the exocyst components as well as its 

communication with the SNARE complex.  

Discovery and characterization of the Late Secretory Mutants and the 

Exocyst complex  

The original discovery of the components of the exocyst complex can be traced back 

to a genetic screen in Saccharomyces cerevisiae three decades ago (Novick and Schekman, 

1979; Novick et al., 1980). This screen identified 23 complementation groups of temperature 

sensitive mutants defective in the secretory pathway, ten of which function during Golgi to 

cell surface transport before membrane fusion (Novick et al., 1980; Novick et al., 1981).   
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These ten genes were classified as  ‘late-acting’ secretory genes, including SEC1, SEC2, 

SEC3, SEC4, SEC5, SEC6, SEC8, SEC9, SEC10 and SEC15(Novick et al., 1981). Sec1 was 

found to regulate the SNARE protein interactions during membrane fusion (Scott et al., 2004; 

Togneri et al., 2006). Sec4 is a Rab family small GTPase that interacts with the type V 

myosin Myo2 to mediate vesicle transport (Salminen and Novick, 1987; Govindan et al., 

1995; Wagner et al., 2002). Sec2 is the exchange factor for Sec4 and is thought to recruit 

Sec4 on post-Golgi vesicles (Walch-Solimena et al., 1997). Sec9 is the t-SNARE in yeast 

and is thought to form a ternary complex with Sec4 and Sro7 to promote vesicle docking and 

membrane fusion (Brennwald et al., 1994; Grosshans et al., 2006). The remaining six late-

acting SEC genes were later found to be components of a multisubunit protein complex, the 

exocyst.   

The first indication that a subset of the late SEC gene products might belong to a 

common high molecular mass complex came from the characterization of Sec15. Analysis by 

differential centrifugation of a wild type strain revealed that approximately 23% of Sec15 

was associated with the plasma membrane and the remaining fraction was associated with a 

19.5S soluble particle (Bowser and Novick, 1991). Using a c-myc-tagged Sec8 strain, the 

Novick group discovered that Sec6 and Sec8 co-exist with Sec15 in this high molecular mass 

complex which contains eight polypeptides (Bowser et al., 1992; TerBush and Novick, 1995). 

This complex was rather stable in wild type cells, but became very unstable when isolated 

from sec3-2, sec5-24, sec6-4, sec10-2 and sec15-1 mutants. This suggested that SEC3, SEC5, 

and SEC10 could be part of the eight subunit protein complex. Biochemical analysis of the 

purified complex from a detergent yeast lysate confirmed that SEC3, SEC5, and SEC10 were 



4 
 
 

indeed components of the complex and also revealed another component, EXO70.  This 

seven protein complex was named the exocyst since all of the components were required for 

exocytosis in yeast cells (TerBush et al., 1996). The remaining component, EXO84, was 

initially identified from mammalian cells. Using rat Sec6 and ratSec8 antibody, Hsu et al 

purified the mammalian exocyst complex from rat brain lysates which contain the 

mammalian homolog of the seven yeast exocyst component, and an additional protein Exo84. 

The yeast Exo84 was then identified via a database search using the mammalian Exo84 

sequence. Temperature sensitive alleles of Exo84 accumulated post-Golgi vesicles and 

displayed secretory defects, suggesting that Exo84 was also critical for exocytosis (TerBush 

et al., 1996; Guo et al., 1999a).  

Localization of the exocyst complex 

In yeast, all components of the exocyst complex are localized at the bud tip where the 

most active secretion occurs during early bud growth (TerBush and Novick, 1995; Finger and 

Novick, 1998). The localization of two components of the exocyst complex, Sec15 and Sec3, 

has been particularly interesting. The first attempt to analyze the localization of Sec15 was 

problematic due to the low level of Sec15 in the cell. To determine the localization of Sec15, 

Salminen et al overexpressed Sec15 behind a galactose inducible promoter. The result was 

quite striking in that Sec15 formed concentrated clusters in the bud or adjacent to an 

emerging bud.  Electron microscopy suggested that these bright clusters corresponded to 

clusters of post-Golgi vesicles. Further analysis of this clustering phenotype indicated that 

the vesicle clusters would form only when functional Sec2 and Sec4 were present in the cells. 

This observation positioned Sec15 downstream of the Rab GTPase Sec4, and provided an 
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important genetic evidence that the exocyst complex function as an effector for Sec4 during 

the vesicle tethering process (Salminen and Novick, 1989).  

The localization of Sec3 was first studied using GFP-Sec3 in cells where the 

endogenous Sec3 was still present. Fluorescence microscopy suggested that Sec3-GFP 

protein localized at the bud tip during bud emergence and early bud growth. The Sec3-GFP 

became less concentrated as the bud enlarged, and was localized at the mother-bud neck 

region before cytokinesis. While the localization of Sec4 and other components of the 

exocyst complex required a functional secretory pathway, the localization of Sec3-GFP did 

not depend on the secretory pathway or a functional actin cytoskeleton. This observation 

suggested that Sec3 can stably associate with the plasma membrane and help the other 

components of the exocyst to assemble at sites of vesicle docking and fusion (Finger and 

Novick, 1998).  

Some aspects of these observations were later called into question. Using an affinity 

purified polyclonal antibody against endogenous Sec3, Roumanie et al demonstrated that in 

mutants defective in actin polarity (tpm2Δ, tpm1-2) and in mutants blocked in the secretory 

pathway, Sec3 was indeed depolarized upon shifting to restrictive conditions (Roumanie et 

al., 2005). Localization studies using GFP-tagged Sec3 integrated in the chromosome also 

revealed that the Sec3 localization in the cell required a functional secretory pathway. These 

data indicated that Sec3 is not the spatial landmark for the exocyst component and there must 

be another mechanism by which the exocyst assembles and anchors at the plasma membrane 

(Songer and Munson, 2009).  
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Recent studies showed that Sec3 and Exo70 directly interact with PI (4, 5) P2 

(phosphotidylinositol 4, 5-biphosphate) at the plasma membrane.  Sequence analysis of 

Exo70 revealed evolutionarily conserved, positively charged residues at the D domain of 

Exo70 which were clustered as a positively charged surface patch in the C terminus of the 

Exo70 structure (He et al., 2007b).  These charged residues were responsible for interacting 

with PI(4,5)P2 at the plasma membrane. Exo70 and other components of the exocyst complex 

failed to associate with the plasma membrane in mutants where the PI(4,5)P2 synthesis was 

reduced at the restrictive temperature, suggesting that the interaction with PI(4,5)P2 is 

important in mediating the membrane targeting of the exocyst. Sec3 interacts with PI(4,5)P2 

through a polybasic region at its N terminus (Zhang et al., 2008). Simultaneous disruption of 

PI (4,5)P2 interaction with both Exo70 and Sec3 resulted in mislocalization of the exocyst 

complex, and lead to severe defect in secretion or cell lethality. These observations suggested 

that Sec3 and Exo70 function together to maintain the exocyst complex at the plasma 

membrane (He et al., 2007b; Zhang et al., 2008).  

Based on the sequence and structural similarity between yeast and mammalian Exo70, 

Liu et al identified conserved basic residues in mammalian Exo70 at the C terminus. Like 

yeast Exo70, mutations of these basic residues in mammalian Exo70 also disrupted the 

interaction with PI(4,5)P2 at the plasma membrane and blocked exocytosis(Liu et al., 2007). 

However, the N terminus of Sec3 is not conserved between yeast and mammalian cells. 

Either there is another mechanism by which the mammalian Sec3 can attach to the plasma 

membrane, (possibly through interaction with Exo70), or there might be a positively charge 

patch at other regions of Sec3 that is responsible for interaction with the plasma membrane.  
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Exocyst components talk to each other 

Early research using coimmunoprecipitation experiments have provided links 

between components of the exocyst complex. For example, in the sec10-2 mutant, Sec15 was 

absent when myc tagged Sec8 was used to precipitate the complex, suggesting that Sec15 

might associate with the exocyst complex through Sec10. In the sec5-24 mutant, three 

components were absent (Sec5, Sec10, and Sec15) and the levels of two components were 

significantly reduced (Sec3 and Exo70) (TerBush and Novick, 1995), which potentially 

placed Sec5 at the center of the complex.  These observations raised the question of whether 

there is a core protein in the complex that all the other components are attached to or is it that 

every component connects with each other to maintain the integrity of the complex?  If the 

exocyst complex has an active and an inactive conformation, is the internal organization of 

the exocyst different in each state? To better understand these questions, it would be 

necessary to understand the protein-protein interaction within the exocyst complex.  

Using coimmunoprecipitation and yeast two hybrid assays, Guo et al identified five 

pairs of potential interactions between several components of the complex, Sec6-Sec8, Sec5-

Exo70, Sec10-Sec15, Sec5-Sec6, and Sec5-Sec3 (Guo et al., 1999b).  Dong et al performed 

pull-down experiments both with full length Exo70 and different domains of Exo70 and 

showed that Sec6, Sec8, Sec10, and Exo84 directly interact with Exo70. Interestingly, the 

interaction between Sec8, Sec10 and Exo84 all require full length Exo70, while Sec6 can 

interact with Exo70 as long as domain C is present. More recent research using HMM 

(Hidden Markov Model) modeling identified a domain of Sec10 (residues 145-827) that was 

soluble, properly folded and functionally important(Croteau et al., 2009). Using this domain 
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of Sec10, Croteau et al  performed in vitro binding experiments and showed that Sec10 

directly interact with Sec6, Exo70 and the C domain of Exo84.  

Based on the known interactions within the yeast exocyst complex, shown in Figure 1, 

there could be an order of function within the exocyst complex. Sec15 interacts with Sec4 on 

the vesicles and Sec10 in the exocyst, which positions Sec15 as a bridge between the exocyst 

and the secretory vesicles. Exo70 and Sec3 interact with PI(4,5)P2 at the plasma membrane, 

which provide a connection between the plasma membrane and the exocyst.  Besides the 

interaction within the exocyst, Sec6 was also found to interact with the t-SNARE Sec9 at the 

plasma membrane. This observation suggested that Sec6 could potentially function in a 

similar manner as Sec3 and Exo70 in anchoring the exocyst complex at the plasma 

membrane. Since Sec8, Sec10 and Exo84 interact with Exo70 only when the full length 

protein is present, one can imagine these three components pack on the enlongated rod 

structure of Exo70 and help ‘pull’ the vesicle close to the plasma membrane during vesicle 

tethering. The structure analysis of Exo70 and several other components of the exocyst will 

be discussed in more details later.   
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Figure 1: A Model for Interactions between Exocyst Subunits 

Proteins labeled with oval shaped pills are components of the exocyst complex. Sec3 and 
Exo70 (shown in yellow) interact with PIP2 on the plasma membrane and maintain the 
exocyst at the plasma membrane. Sec6 directly interacts with t-SNARE Sec9, while Exo84 
associate with Sec9 through interacting with Sro7.  Proteins associates with Sec9 are labeled 
in green. Sec15 directly interact with Rab GTPase Sec4 (orange) on post-Golgi vesicles (dark 
blue). Rho family small GTPases (dark pink) regulate the exocyst complex by interacting 
with Sec3 and Exo70 component of the complex. The interactions within the exocyst 
complex are marked with solid black lines. The interaction of Sro7 with Sec4 and Sec9 
represents a parallel pathway with the exocyst complex during vesicle tethering event. This 
pathway is marked by solid red line. The regulation of the exocyst complex by Rho or Rab 
family small GTPases is labeled with blue solid lines.  

References: Guo, et al, 1999b; Dong, et al, 2006; Croteau, et al, 2009; Grosshans, et al, 2006; 
Lehman, et al, 1999; Sivaram, et al, 2005; Zhang et al, 2005.  
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The exocyst talks to the SNARE complex 

Assembly of the SNARE complex between the v-SNARE Snc and the t-SNARE Sso 

and Sec9 is a tightly regulated process.  In sec4-8 and sec2-41 mutants the SNARE complex 

failed to assemble due to the defects in vesicle transport (Grote and Novick, 1999). In several 

mutants in the exocyst components, sec5-24, sec6-4, sec8-9 and sec15-1, the SNARE 

complex also failed to assemble, suggesting that the SNARE assembly event functions after 

exocyst assembly and vesicle tethering (Grote et al., 2000) . Moreover, overexpressing Sec9 

can strongly suppress several mutants in the exocyst complex, suggesting that there is a 

genetic correlation between the exocyst and the SNARE complex (Lehman et al., 1999).  

The first connection between the exocyst and the SNARE complex came from the 

analysis the function of Exo84 in secretion. Although there was no direct interaction between 

Exo84 and Sec9, Zhang et al was able to detect a relatively high affinity interaction between 

Exo84 and Sro7, which is the yeast homolog of lethal giant larvae protein and was known to 

interact with the t-SNARE Sec9 (Lehman et al., 1999; Zhang et al., 2005b).  

Using GST pull-down and gel filtration chromatography, the Munson group observed 

that Sec6 specifically bound to plasma membrane t-SNARE Sec9 (Sivaram et al., 2005), 

which provided a direct interaction between the exocyst complex and the SNARE complex. 

Songer et al later identified novel mutations in the conserved surface patch of Sec6. Unlike 

conventional sec mutants in which the exocyst complex was disassembled, the novel sec6 

mutants contained an intact exocyst complex at the restrictive temperature (Songer and 



11 
 
 

Munson, 2009), suggesting Sec6 plays an important role in anchoring the exocyst complex at 

the plasma membrane.  

The structure of the Exocyst complex 

The structures of four exocyst components have been solved: the C terminal  domain 

of yeast Exo84 (residues 523-753)(Dong et al., 2005), the C terminal domain of Drosophila 

Sec15 (residues 382-699)(Wu et al., 2005), and the C terminal domain of yeast Sec6 

(residues 411-805)(Sivaram et al., 2006), and nearly full length of both yeast  Exo70(residues 

67-623)and mouse Exo70 (residues 85-653)(Dong et al., 2005; Hamburger et al., 2006; 

Moore et al., 2007). Although the subunits of the four exocyst components share very low 

sequence similarity (<10%), the overall structures of the known components are remarkably 

similar in their helical bundle structure. The structural similarity between the exocyst 

components leads to a prediction that the helical bundles pack together to form elongated rod 

structures (Munson and Novick, 2006). This prediction is consistent with the ‘Y’ shaped 

structure observed in electron micrographs of the purified mammalian exocyst complex (Hsu 

et al., 1998).  

Since the structures of both yeast Exo70 and mouse Exo70 are available in nearly full 

length, the comparison between these two structures and their functional implications 

deserves further discussion. The overall structure of Exo70 is well conserved despite of the 

relatively low sequence similarity (12% identity and 35% similarity) between the two species 

(Moore et al., 2007).Yeast Exo70 and mammalian Exo70 both interact with Rho family small 

GTPases. Domain truncation studies positioned the interaction site of Rho3 with the C 



12 
 
 

domain of yeast Exo70 whereas TC10 was reported to interact with the N terminus (domain 

A) of mammalian Exo70 (Inoue et al., 2003). However, the study identifying the interaction 

between yeast Exo70 and Rho3 utilized recombinant Rho3 purified from bacterial lysate. 

Recent studies from our laboratory showed that the interaction between Rho3 and Exo70 

requires prenylation of Rho3. Therefore, the mapping result obtained from bacterial lysate 

could not truly represent the interaction between these two proteins. Using GST pull-down 

assay from yeast lysate, we found that the domain C could not be the only binding site on 

Exo70 in that Exo70 deleted for this domain was still able to interaction with Rho3. Further 

studies using Rho3 from yeast lysate would help identifying the additional binding sites on 

Exo70.  

The structure for the rest of the exocyst components encountered technical difficulties 

due to the lack of soluble proteins. Croteau et al recently used computational HMM (Hidden 

Markov Model) modeling to predict structural similarities between all of the exocyst 

components (Croteau et al., 2009). More importantly, this method helped to identify a 

structural domain of Sec10 that was soluble, properly folded and was predicted to contain 

helical bundle structures. The HMM computational modeling will be a useful tool to predict 

structure domains of other exocyst components and help to generate reagents to solve the 

crystal structure (Croteau et al., 2009). Ultimately, understanding the structure of the 

individual components, combined with the structural based mutagenesis, will help 

determining the structure of the exocyst in its active or inactive state, and eventually lead to 

elucidating the role of the exocyst in polarized exocytosis. 
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ABSTRACT 

Temporal and spatial regulation of membrane trafficking events is critical to both membrane 

identity and overall cell polarity.  Small GTPases of the Rab, Ral, and Rho families have 

been implicated as important regulators of vesicle docking and fusion events.  In this review 

we focus on how these GTPases interact with the exocyst complex, a multisubunit tethering 

complex involved in the regulation of cell surface transport and cell polarity. The Rab and 

Ral GTPases are thought to function in exocyst assembly and vesicle tethering processes 

whereas the Rho family GTPases appear to function in the local activation of the exocyst 

complex to facilitate downstream vesicle fusion events. The localized activation of the 

exocyst by Rho GTPases is likely to play an important role in spatial regulation of exocytosis. 
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INTRODUCTION 

The ability of cells to direct specific membrane and protein components to defined 

places on the cell surface is fundamental to the establishment and maintenance of cell 

polarity.  The mechanism by which proteins and lipids are delivered to the cell surface is 

through transport, docking and fusion of secretory vesicles with the plasma membrane.  In 

polarized cells, the location of these transport events is highly regulated but the precise 

mechanism of regulation is still poorly understood.  A protein complex, whose function 

appears to be closely linked to polarized cell surface delivery events in a number of cell types, 

is known as the exocyst complex.  This complex has been reported to be involved in the 

tethering, docking and fusion of post-Golgi vesicles with the plasma membrane. It is 

composed of eight subunits, which are conserved from yeast to mammalian cells:  Sec3, Sec5, 

Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84.  Recent structural studies have suggested that 

these proteins are primarily composed of structurally similar helical bundles which appear to 

associate through an extensive network of interactions within the complex (Hamburger et al., 

2006; Munson and Novick, 2006).  The exocyst complex also appears to be distantly related 

to vesicle tethering complexes that function at other stages of membrane trafficking such as 

the COG and GARP complexes (Whyte and Munro, 2001; Conibear et al., 2003). Although it 

is clear that the exocyst complex plays an important role in regulating exocytosis, little is 

known about the mechanism by which it functions in promoting exocytosis or cell polarity.  

Information from a number of model systems has demonstrated that the exocyst complex is 

regulated by a number of small GTPases.  In this review, we will focus on how Rab, Ral, and 
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Rho small GTPases regulate exocytosis through regulation of both the localization and 

function of the exocyst complex on the plasma membrane. 

RabGTPases: Conserved Regulators of Vesicle Tethering to Target 

Membranes 

Rab proteins are one of the most abundant families within the Ras superfamily of 

small GTPases. There are 11 Rab proteins in yeast and more than 60 in mammalian 

cells(Barrowman and Novick, 2003). Rab proteins have been reported to regulate different 

membrane trafficking and signaling pathways through their interaction with various effectors. 

Like other small GTPases in the Ras superfamily, Rab proteins cycle between a GTP bound 

active form and a GDP bound inactive form(Pfeffer, 1994) and  interact with downstream 

effectors through their active conformation. Sec4 is a Rab family small GTPase in the yeast 

Saccharomyces cerevisiae, that was first identified in a screen for mutants with secretory 

defects (Novick et al., 1980). The sec4-8 mutant, which contains a substitution of glycine to 

aspartic acid at position 147, was shown to accumulate post Golgi vesicles by electron 

microscopy and by invertase secretion assay(Salminen and Novick, 1987). 

Immunofluorescence and subcellular fractionation experiments demonstrated that Sec4 

resides on secretory vesicles as well as on the plasma membrane(Goud et al., 1988). Genetic 

and cell biological evidence demonstrated that duplication of Sec4 suppressed the loss of 

Sec15 function and that the polarized localization pattern of the Sec15 protein was lost in 

sec4-8 mutants(Salminen and Novick, 1989), suggesting that Sec15 might represent an 

effector of Sec4. However, the first evidence that Sec15 might encode a direct downstream 

target of Sec4, came in the late 90s when researchers(Guo et al., 1999b) found that Sec4 
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interacted with the Sec15 component of the exocyst component using a yeast two-hybrid 

assay.  Importantly, this interaction appeared to be GTP-dependent in that mutant alleles of 

Sec4 predicted to be in the GDP form failed to interact, while GTP-locked mutants show a 

significant increase in interaction as measured in the two-hybrid system.  This interaction 

was supported by immunoprecipitation experiments which demonstrated that, following 

chemical cross-linking, Sec4 could be co-immunoprecipitated with Sec15.  Further analysis 

using mutant forms of Sec4 suggested that this interaction was specific to Sec4 but not to 

other closely related yeast Rab proteins, such as Ypt1 and Ypt51. Making chimeric proteins 

between the effector domain of Sec4 and Ypt1 suggested that the effector domain is 

responsible for interacting with Sec15, as Sec4 with the effector domain of Ypt1 failed to 

interact with Sec15(Guo et al., 1999b). 

Recently it was reported that the yeast lethal giant larvae (lgl) family protein Sro7 

may represent a second direct effector for Sec4 (Grosshans et al., 2006)Sro7 was previously 

identified as a binding partner for the plasma membrane t-SNARE, Sec9, and loss of this 

protein and its paralog, Sro77, resulted in severe post-Golgi secretory defects similar to those 

seen in sec4 and sec9 mutant cells(Lehman et al., 1999). Consistent with the idea that Sro7 

may act in parallel to the exocyst as an effector downstream of Sec4 [12], overexpression of 

Sro7 suppresses defects associated both with mutations in the exocyst components (Lehman 

et al., 1999)and in Sec4(Lehman et al., 1999; Zhang et al., 2005a; Grosshans et al., 2006).  

Biochemical experiments support the notion that Sro7 may be a direct effector of Sec4 in that 

purified Sro7 was found to bind specifically to Sec4 preloaded with GTP, but not to Sec4 

preloaded with GDP.  Further characterization of the interaction of the t-SNARE, Sec9, with 
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Sro7 suggested that this was likely to be a highly regulated and transient event in vivo.  In 

particular the interaction with the essential SNAP-25 domain of Sec9 was found to be 

stimulated by release of an autoinhibitory interaction within the Sro7 protein(Hattendorf et 

al., 2007).   This led to the model that Sro7 may regulate SNARE assembly events in 

response to an upstream binding event, which would trigger the localized presentation of the 

Sec9 SNARE domain to its cognate t- and v-SNAREs.  If, in fact, Sec4 is part of this “trigger” 

then it would help to coordinate the timing of the SNARE assembly with the arrival of the 

Sec4-bound vesicle.   Two other proteins involved in polarized exocytosis in yeast, the 

Exo84 component of the exocyst, and the type V myosin, Myo2, have also been shown to 

interact with Sro7 and may contribute to the final “triggering” of Sro7-dependent SNARE 

assembly(Gangar et al., 2005; Zhang et al., 2005a).   

More recently a homologous interaction between Rab11 and mammalian Sec15 has been 

described (Zhang et al., 2004; Wu et al., 2005).  This supports the idea that Rab GTPase 

regulation of exocyst function during tethering is likely to represent an ancestral and 

therefore central regulatory interaction (Figure 2). 
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Figure 2. Alignment of Mammalian and Yeast Exocyst Subunits which Interact with 
Rho, Ral, and Rab small GTPases 
Regions of each subunit conserved between yeast and mammals are colored in yellow.  
Regions lacking obvious sequence similarity are labeled as blue in mammalian cells and red 
in yeast.   

Ral GTPases: Metazoan Regulators of Exocyst Assembly 

Ral GTPases are evolutionarily relatively recent additions to the small GTPase family 

found only in animal cells(Camonis and White, 2005).  They have been implicated in the 

regulation of a diverse array of cellular processes, including oncogenic transformation, 

endocytosis(Jullien-Flores et al., 2000) and actin-cytoskeleton dynamics(Ohta et al., 1999; 

Moskalenko et al., 2002). Ral proteins have also been shown to associate with secretory 
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granules and synaptic vesicles(Vitale et al., 2005). Recently, it was reported that Ral small 

GTPases directly interact with components of the exocyst complex, Exo84 and Sec5, which, 

in mammalian cells, have been implicated in the targeting of Golgi-derived vesicles to the 

basolateral membrane of polarized epithelial cells and to the growth cones of differentiating 

PC12 cells(Jin et al., 2005). 

Sec5 as an effector for Ral small GTPases was first identified in a yeast two hybrid 

screen searching for novel downstream targets using an activated form of RalA as bait. An 

effector domain mutation of RalA, which fails to interact with Sec5, results in mis-sorting of 

basolateral membrane proteins (for example the EGF Receptor) to the apical surface of 

polarized epithelial cells(Moskalenko et al., 2002), indicating that RalA is required for 

appropriate basolateral membrane protein targeting. RalA interacts with Sec5 in a GTP 

dependent manner, and truncation studies indicated that the N terminal domain (1-120 amino 

acids) of Sec5 is necessary for interacting with RalA.  The effector domain mutant of 

RalA72L49E, which does not interact with Sec5 and Exo84, fails to promote delivery of E 

cadherin to the basolateral surface of MDCK cells. This suggests that exocyst binding is 

critical for the RalA GTPase to promote exocytic function. Interestingly, another Ral effector 

mutant RalA72L49N, which retains the ability to bind to Sec5 and Exo84, also fails to 

enhance basolateral membrane delivery, suggesting that exocyst binding is necessary but not 

sufficient for RalA to enhance secretion (Shipitsin and Feig, 2004).  Knockdown of RalA by 

siRNA, resulted in disassembly or destabilization of the exocyst complex, suggesting that Ral 

might regulate exocytosis by facilitating the proper assembly of the exocyst complex (Figure 

3). Overexpression of the constitutively active Ral (Ral23V) results in mislocalization of 
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basolateral membrane proteins, suggesting that Ral function also requires the cycling 

between the GTP-bound state and the GDP-bound state. However, studies using another form 

Ral, RalA72L, predicted to be “locked” in the active GTP-bound state, found this mutant had 

enhanced trafficking to the basolateral membrane.   It is not clear if these different results are 

due to differences in the RalA mutants used or differences in the basolateral trafficking 

assays. Exo84 is another effector of RalA which was identified through a similar two hybrid 

screen with the activated form of RalA as bait. Structural analysis of the RalA-Exo84 

interaction indicated that the binding site on Exo84 was located at residues 228-234, which 

represents a conserved motif AxxNx(K/R)D, retained in all metazoan members of the Exo84 

family(Jin et al., 2005). 

RalB shares 88% identity to RalA in its first 162 amino acids. Although both proteins 

contain binding sequences for the exocyst components within this region, activated RalB 

binds to the exocyst components much less efficiently than active RalA. In addition to the 

difference in binding to the exocyst components, RalA and RalB also display distinct 

localization pattern due to the C-terminal variable domain. Immunofluorescence studies in 

MDCK cells suggested that RalA is predominantly localized on the plasma membrane at the 

cell-cell junctions with diffuse punctuate staining throughout the cytoplasm.  Antibody 

staining of RalA72L induced MDCK cells not only have increased staining pattern of on the 

plasma membrane, but also reveal intense perinuclear staining. This perinuclear staining 

disappeared when the effector domain mutants (RalA72L49N, or RalA72L49E) were 

introduced to the cell, suggesting that this staining pattern is likely to be functionally relevant 

to the role of RalA in basolateral trafficking.  RalB, on the other hand, has a denser punctuate 
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intracellular staining pattern and little RalB is observed on the plasma membrane. This 

difference in the localization pattern is consistent with the observation that RalA but not 

RalB is important for basolateral membrane targeting in polarized epithelial cells (Shipitsin 

and Feig, 2004).  

In addition to its role in regulating polarized membrane trafficking in epithelial cells, 

a more recent study discovered a role for the interaction between RalA and the exocyst 

complex in insulin-dependent Glut4 translocation in adipocytes. To identify proteins that 

might be involved in vesicle: exocyst recognition, researchers screened for vesicle localized 

GTPases in adipocytes by pull-down experiments.  RalA, but not RalB, Arf6 or Rab11 

specifically precipitated the exocyst components, including Sec5, Sec8, Exo84, and Exo70 in 

a GTP dependent manner in both 3T3L1 adipocytes and primary mouse adipocytes(Chen et 

al., 2007). RalA is activated upon insulin stimulation in a dose dependent manner. 

Overexpression of the dominant negative (GDP-mutant) form of RalA blocked the insulin 

stimulated Glut4 translocation as well as its subsequent fusion with the plasma membrane, 

suggesting that RalA plays an important role in Glut4 trafficking. In adipocytes, RalA was 

also found to be associated with the unconventional myosin, Myo1c, suggesting Ral may 

play a role in recruiting a vesicle motor as well as docking the Glut4-containing vesicles to 

the membrane by allowing formation of a stable tethering complex(Chen et al., 2007). 

Rho GTPases: Yeast as a Model for Polarity 

The Rho family of small GTPases are regulators of many biological processes including cell 

polarization, morphogenesis, cell growth and development(Symons and Rusk, 2003). The 
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function of the Rho family small GTPases in spatial regulation of exocytosis has been most 

extensively examined in the yeast, Saccharomyces cerevisae. Yeast is an excellent model for 

studying polarized secretion due to the highly polarized nature of its pattern of growth and 

the extensive genetic and cell biological tools available to analyze membrane trafficking and 

cytoskeletal structures within these cells(Brennwald and Rossi, 2007).  Yeast has six Rho 

proteins, Rho1-5 and Cdc42. Among these six proteins, Rho1, Rho3 and Cdc42 have been 

most carefully studied and have each been implicated in regulation of polarized exocytosis. 

Rho1: Important for the Localization of the Sec3 Component of the Exocyst Complex 

     The Rho1GTPaseis essential to many biological processes in yeast and has been 

suggested to regulate a variety of downstream effectors, including protein kinase C, 

PKC1(Nonaka et al., 1995; Helliwell et al., 1998), the formin family protein, Bni1(Tolliday 

et al., 2002), and the cell wall beta glucan synthases, Fks1 and Fks2(Mazur and Baginsky, 

1996). Studies in different rho1 mutants revealed that Rho1 has an important role in 

regulating the localization of the Sec3 component of the exocyst complex(Guo et al., 2001).  

This was found to be due to a GTP dependent interaction between Rho1 and the non-

essential N terminal domain of Sec3 (Figure 2). However, in strains where the sole source of 

Sec3 lacked the N-terminal Rho1 interaction domain, the remaining exocyst subunits were 

found to be polarized normally and secretion was also normal(Guo et al., 2001; Roumanie et 

al., 2005).  This demonstrates that the remaining components of the exocyst complex must be 

polarized by a distinct pathway which is independent of both the N-terminal domain of Sec3 

and Rho1.  While this interaction is not essential, Sec3 mutants lacking this domain exhibit 

synthetic genetic interactions with a secretory deficient allele of Cdc42 and other late acting 
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secretory mutants (Roumanie et al., 2005).  This is consistent with the notion that this 

domain of Sec3 functions to increase the local concentration of Sec3 at sites of growth, 

although significantly lower amounts are sufficient to promote full secretory function under 

most circumstances.   

Rho3: A Direct Regulator of Exocytosis 

    The first evidence for the participation of a Rho GTPase in exocytic function came from 

two genetic screens.  The first screen focused on genes which, when overexpressed, rescued 

the extremely slow growth phenotype associated with loss of Rho3 (Matsui and Toh-e, 1992; 

Matsui and Toh, 1992).  This screen isolated a number of genes including BEM1, CDC42, 

and two genes later identified as coding for the yeast Rab GTPase, SEC4 and its effector, 

SRO7(Matsui and Toh-e, 1992; Matsui and Toh, 1992; Imai et al., 1996).   A second screen 

identified RHO3 itself as a potent suppressor of a cold-sensitive allele in SEC4 (Brennwald et 

al., 1994; Adamo et al., 1999).  Further characterization demonstrated that Rho3 was the 

only one of the five RHO genes in yeast that could function as a suppressor for the sec4-P48 

mutant (Adamo et al., 1999). Rho3 also showed significant level of suppression of both the 

sec15-1 and the sec8-9 mutants, both of which are components of the exocyst, suggesting 

that Rho3 plays an important role in regulating exocytosis through the exocyst complex. 

Analysis of a cold-sensitive effector domain mutant of Rho3, rho3-V51, was 

particularly informative (Adamo et al., 1999). This mutant demonstrated a profound 

secretory defect and accumulation of post-Golgi vesicles following a shift to the restrictive 

temperature.  However, unlike other rho3 mutants examined, the polarization of the actin 

cytoskeleton was found to be normal at both permissive and non-permissive conditions. This 
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was the first evidence for a direct role for Rho3 in exocytosis independent of the cytoskeleton.  

Biochemical and yeast-two hybrid analysis demonstrated that the rho3-V51 mutation blocked 

the ability of otherwise activated forms of Rho3 to bind to the Exo70 subunit of the exocyst.  

This suggests that Exo70 may be the immediate target of Rho3 regulation of exocytic 

function.  However, unlike the effect of Rho1 on Sec3 localization, this mutation was found 

to exert its effects on exocytosis independent of any detectable effects on Exo70 or exocyst 

localization (Roumanie et al., 2005). 

Cdc42: A Cell Cycle-Specific Regulator of Exocytosis 

Cdc42 is a member of the Rho GTPase family that that plays an important role in 

coordinating a number of events necessary for polarized growth in yeast cells (Park and Bi, 

2007).The identification of a novel temperature sensitive mutant, cdc42-6, led to the 

characterization of a new role for Cdc42 function in exocytosis (Adamo et al., 2001).   This 

mutant displays properties that are distinct from previously described alleles of Cdc42 in that 

both actin polarity and budding appeared relatively normal.  Genetic analysis demonstrated 

that cdc42-6 was likely to be defective for a pathway closely linked to that of rho3-

V51asboth mutants were suppressed by a common set of genes including SEC4, SRO7, and 

SEC9.  In addition, high copy CDC42 was found to suppress rho3 mutant growth defects, as 

RHO3 was found to suppress cdc42-6 growth defects suggesting these two Rho GTPases 

likely function to regulate a common effector pathway.  Furthermore, the synthetic lethality 

observed in crosses of the cdc42-6 and rho3-V51 mutants provided strong evidence that the 

effector pathways of these two GTPases functionally overlap. 
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 Analysis of the secretory capacity of thecdc42-6 mutant revealed a severe defect in 

the secretion of Bgl2, an abundant periplasmic enzyme involved in cell wall remodeling, as 

well as the accumulation of 80-100 nm post-Golgi vesicles by electronic microscopy.  

Interestingly, this mutant showed no defect in secretion of invertase—which is thought to be 

carried by a separate class of vesicles from that used to transport Bgl2 to the cell surface 

(Harsay and Bretscher, 1995).  Surprisingly, electron microscopy studies on cdc42-6 cells 

demonstrated that only cells with small buds were found to accumulate post-Golgi vesicles, 

while larger budded cells showed no abnormal numbers of vesicles.  Consistent with the idea 

that the exocytic defect in the cdc42-6 mutant is specifically associated with early bud 

emergence, Bgl2 secretory defects were found to mirror the time of appearance of small buds 

when secretion assays were conducted on synchronized populations of cells. Similarly to 

rho3-V51, the cdc42-6 mutation was found to exert its effects on exocytosis independent of 

any detectable effects on Exo70 or exocyst localization (Adamo et al., 2001; Roumanie et al., 

2005). 

TC10:  A Cdc42 Family GTPase Involved in Glucose Transporter Trafficking 

Insulin stimulation results in a dramatic translocation of the GLUT4 protein to the 

plasma membrane via a dynamic membrane trafficking system, including vesicle sorting, 

budding, trafficking, tethering, docking and fusion of the GLUT4 containing post-Golgi 

vesicles. Extensive efforts have been made to identify the mechanism by which plasma 

membrane translocation of GLUT4 occurs upon insulin stimulation. Recently, it has been 

reported that the Rho family small GTPase TC10 plays a critical role in regulating this 

signaling pathway. To search for potential effectors of TC10 that have a role in insulin-



31 
 
 

stimulated glucose transport, researchers screened a yeast two hybrid cDNA library derived 

from 3T3L1 adipocytes with a constitutively active (GTP) form of human TC10alpha(Inoue 

et al., 2003). From this screen, they identified Exo70 as a potential downstream target for 

TC10. This interaction is specific to the GTP-bound form of TC10 and it is not observed with 

GTP-bound forms of other small GTPases such as Rac and Cdc42. A dominant negative 

form of Exo70 blocked the effects of insulin on Glut4 transport to the surface in 3T3 L1 

adipocytes (Inoue et al., 2003).  Interestingly, dominant negative TC10 in the presence of 

insulin results in Glut4-containing vesicles appearing close to the cell surface.  This suggests 

that the function of TC10 and the exocyst on Glut4 surface transport is at the level of Glut4 

vesicle fusion rather than delivery or docking events (see Figure 3) (Inoue et al., 2003). 

Rho/Cdc42 Regulation of the Exocyst is Distinct from Rab Regulation. 

While many GTPases appear to work as signal transduction agents, other GTPases 

are thought to act to control the specificity and timing of macromolecular recognition events.  

Examples of the latter include Elongation Factor Tu (Bourne, 1988; Kaziro et al., 1991; 

Rodnina et al., 1995) and the SRP/SRP receptor complexes(Shan et al., 2007).  In the latter 

two examples, GTP hydrolysis and cycling through the GDP-bound, nucleotide-free, and 

GTP-bound states are critical for these GTPases to carry out their biological function 

(Rodnina et al., 1995; Shan et al., 2007).  In contrast, GTPases which function as signal-

transducers are able to do so without any need for GTP hydrolysis per se.  A simple test of 

this distinction is to examine the effect of GTP-hydrolysis deficient mutants on the biological 

activity of the protein.  Such mutations are predicted to lead to heightened activity or gain-of-
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function effects on signaling GTPases but are expected to lead to loss-of-function effects on 

cycling or non-signaling GTPases.  

 Extension of this analysis to Rab and Rho GTPase function in exocytosis leads to 

some interesting differences in behavior—even in situations where the target “effector” 

complex is shared by these different GTPases.  Hydrolysis mutant forms of the yeast Rab, 

Sec4, are known to enhance the interaction with the Sec15 component of the exocyst. 

However, when introduced as the sole source of Sec4, the mutant behaves as a recessive loss-

of-function allele, which is cold-sensitive and lethal when combined with other late-acting 

secretory mutants (Walworth et al., 1992).  Similar recessive loss-of-function phenotypes 

were observed with a GTP-hydrolysis mutant in Ypt1, a Rab involved in ER-to-Golgi 

transport (Richardson et al., 1998).  In contrast GTP hydrolysis deficient forms of Rho3 

which stimulate the interaction with the Exo70 component of the exocyst are fully functional 

as the only source of Rho3 and behave as gain-of-function alleles strongly suppressing a 

number of late-acting secretory mutants(Roumanie et al., 2005).  Similarly, GTP hydrolysis-

deficient forms of Cdc42 also appear to be functional in promoting secretory function when 

expressed at low levels—although they are toxic to other pathways when expressed at higher 

levels (Roumanie et al., 2005).  Taken together these data implicate Rho3/Cdc42 regulation 

of the exocyst as a pathway similar to other signaling GTPases such as Ras, while the 

function of Sec4 in regulating the exocyst is similar to recognition/cycling GTPases such as 

the SRP or EFTu. 
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Figure 3:A three step model for vesicle docking, exocyst activation and vesicle fusion 
regulated by small GTPases. 

(A) The initial vesicle docking or tethering event is regulated by Rab and Ral GTPases 
perhaps by promoting exocyst assembly.  The association of particular exocyst subunits with 
the vesicle or plasma membrane in this cartoon is speculative.  There is evidence that exocyst 
assembly is regulated by Ral and this function, like that of Rab GTPases, is first required for 
vesicle tethering rather than fusion(Moskalenko et al., 2003).  FRAP studies in yeast have 
suggested that all of the exocyst subunits except Sec3 are likely to be delivered to sites of 
polarized growth through vesicle-mediated events(Boyd et al., 2004)(B) This is followed by 
local activation of the exocyst complex by Rho3/Cdc42/TC10 family GTPases in their active 
GTP-bound state. Exocyst activation results in a stimulation of downstream fusion activity, 
very likely by promoting assembly of active t-SNARE heterodimers. (C) The presence of 
active t-SNARE dimers would result in SNARE-mediated fusion of the secretory vesicles at 
the site of exocyst activation. 
 

The Exocyst as a Landmark or an Activated Machine? Local Activation vs. 

Local Recruitment Models 

 Signaling GTPases regulate their effectors by one of two general mechanisms.  The 

first mechanism involves regulation of the subcellular location of the downstream effector.  

In this mode the binding of the GTPase to its effector helps to localize and concentrate the 

effector at a particular place within the cell.  This may then stimulate a signaling event by 

placing the effector within close proximity to its downstream signaling partner.  A good 
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example of this mode of GTPase function is the Ras GTPase helps to promote oncogenic 

transformation through GTP-dependent interaction with the Raf kinase. The initial activation 

event in the Ras-Raf pathway involves recruitment of Raf kinase from the cytosol to the 

plasma membrane by membrane-bound Ras (Leevers et al., 1994; Stokoe et al., 1994). This 

initial recruitment event then propagates other subsequent activation and signaling events 

(Mineo et al., 1997) by placing activated Raf kinase in close proximity to its both its 

activator Ras, and downstream targets in the MAP kinase cascade to promote sustained 

activation and signaling (Morrison and Davis, 2003; Raman et al., 2007). 

A second mechanism of regulation by signaling GTPases involves regulation of 

activity rather than the location of the downstream effector.  In this mode, the binding of the 

GTPase to the effector induces a conformational change which either directly or indirectly 

stimulates an associated enzymatic activity.  A good example of direct regulation is the 

Formin family of actin nucleating enzymes which normally resides in an inactive 

“autoinhibited” conformation due to the association of the DID and DAD domains within the 

protein (Goode and Eck, 2007; Lu et al., 2007) (see Figure 4).  The closed conformation is 

inactive due to the inaccessibility of the catalytic domain to its substrate (actin monomers) in 

this structure.  The binding of the Cdc42/Rho to the RBD domain adjacent to the DID 

domain disrupts the inhibitory interaction resulting in an opening of the structure and 

allowing its associated catalytic activity to be “active”. 
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Figure 4:A model for activation of the exocyst complex by Rho family GTPases. 

(A).Domain organization and molecular regulation of formins.  In the absence of Rho GTP, 
formins are maintained in an inactive state by an autoinhibitory interaction between the DAD 
and DID domains, which is relieved by association of an active, GTP-bound Rho GTPases 
with the GBD domain. This interaction allows DID to adopt a structural conformation that 
induces release of the DAD domain, and leads to the activation of the formin protein.(B) 
Domain organization and model for molecular regulation of Exo70 and the exocyst complex 
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by Rho GTPase. The D domain of Exo70 interacts with phospholipids containing PI(4,5)P2 
and the C domain is necessary for the interaction with Rho family small GTPases. In the 
absence of Rho GTP, Exo70 along with other components of the exocyst complex, remain in 
the inactive or basal activity state. Upon interaction of Exo70 with Rho GTP, Exo70 adopts 
an alternate conformation which leads to the activation of the exocyst complex.  The 
activation in this case could be the result of disrupting an inhibitor interaction between Exo70 
and another subunit of the exocyst complex or a direct change in the conformation of Exo70 
itself, which then leads to a change in the overall structure of the complex. 
______________________________________________________________ 
 

 
There are aspects of Rho regulation of the exocyst in yeast which fit each of these 

models.   An example of the first would be the recruitment of the yeast Sec3 by binding of its 

N-terminus to Rho1(Guo et al., 2001) (and to a lesser degree Cdc42(Zhang et al., 2001)).   

While this interaction is not necessary for the function of Sec3 in promoting efficient 

exocytosis and growth (Guo et al., 2001; Roumanie et al., 2005), it is important for allowing 

Sec3 to efficiently localize to sites of polarized growth.  Thus the interaction of the N-

terminus of Sec3 with Rho1 is an example of Rho regulation by recruitment, similar to the 

Ras/Raf example. 

 In contrast to the Rho1/Sec3 model described above, regulation of exocytosis by 

Rho3 and Cdc42 appears to be independent of any effect on the localization of the exocytic 

machinery.   The analysis of the loss of function mutantsrho3-V51 and cdc42-6clearly 

demonstrate that these GTPases have a direct and critical regulatory function on this process 

(Adamo et al., 1999; Adamo et al., 2001; Roumanie et al., 2005).  A simple explanation for 

these results is that Rho3 and Cdc42 regulation is through localized activation of the exocytic 

apparatus (likely through the Exo70 component of the exocyst—see below).  This activation 

can be imagined to be a slight variation from the “relief of autoinihibition” mechanism used 

by Rho GTPases to modulate effector function of the formins, ROCK/Ste20 kinases, and 
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WASP (Prehoda et al., 2000; Higgs and Pollard, 2001).  The major difference is that Exo70 

appears to function primarily as part of a larger multiprotein complex.  In this way, the 

inhibitory interactions disrupted by Rho GTPase binding might disrupt a protein: protein 

interaction within the exocyst complex rather than within the Exo70 protein itself (see 

Figure 4).  The result of the binding, however, would be quite similar:  the exocyst would go 

from being in a form that has basal function to an “activated” complex which would support 

increased rates of docking and fusion events while in this state.  In this view the exocyst 

complex functions not as a static scaffold for allowing vesicles to dock with the plasma 

membrane, but rather as a quite dynamic machine with real catalytic function that can be 

modulated to control the rate at which vesicle docking and fusion with a specific site in the 

membrane can occur. 

Consistent with the model that the Rho proteins are mostly responsible for activating 

the exocyst at the site of polarized growth but not localizing the exocyst complex, there are 

new results showing that the interaction between the exocyst components and phospholipids 

might be important for mediating the targeting of the exocyst to the plasma membrane. Both 

Exo70 and Sec3 have been shown to interact with phospholipids (He et al., 2007b; Zhang et 

al., 2008). However, the interactions are mediated through two different domains. Sec3 

interacts with PI4,5P through its N terminus (Zhang et al., 2008), whereasExo70 interacts 

with PI4,5P through the C terminal domain (He et al., 2007b), which is the most conservative 

domain on Exo70 in different species (Liu et al., 2007). The interactions with Rho family 

small GTPases and with phospholipids are both required for proper localization and final 

activation of the exocyst complex(He et al., 2007b; Liu et al., 2007; Zhang et al., 2008).  
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What more precisely might this machine be catalyzing?  There are many possibilities 

for this but an attractive target for this catalysis may be the formation of active t-SNARE 

complexes on the plasma membrane.  It is likely that the vast majority of t-SNAREs are 

present on the plasma membrane in an uncomplexed form (Brennwald et al., 1994; Grote et 

al., 2000).  Biochemical and kinetic analyses have also made it clear that the formation of the 

t-SNARE dimers of Sec9 and Sso1/2 is likely to be an extremely slow and inefficient process 

(Rossi et al., 1997; Nicholson et al., 1998).  However, evidence for stable interactions 

between intact exocyst complex and SNARE proteins has not been detected (Brennwald et 

al., 1994).  Recently, it was found that recombinant forms of the Sec6 protein, in the absence 

of the other exocyst subunits, show high affinity interactions with the t-SNARE, 

Sec9(Sivaram et al., 2005).   This suggests the possibility that within the exocyst complex, 

Sec6 may transiently interact with the Sec9 as a means of regulating t-SNARE assembly and 

vesicle fusion.  This transient interaction with Sec9 would be regulated by the functional 

state of the exocyst complex which may involve both Rho/Cdc42 “throttling” as well as a 

requirement for Sec4-GTP binding and release as the final triggering event.  Clearly an 

important area for future work will be to clarify the molecular mechanism of how exocyst 

activation is transmitted onto the downstream SNARE-dependent fusion events. 

Concluding Remarks 

Work over the last decade has shown small GTPases to be critical regulators of both cell 

polarity and membrane trafficking events in the cell. The multisubunit protein complex 

known as the exocyst complex has turned out to be an important target for coordination of 

trafficking and cell polarization decisions.   A number of different subunits of the exocyst 
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have evolved mechanisms by which regulatory signals from small GTPases act on specific 

aspects of exocyst function.  These signals appear to directed at one of two stages of exocyst 

activity.  The first point of regulation is in the vesicle tethering or docking stage where the 

exocyst helps to proof-read the correct vesicle target membrane combination.  The second 

stage is the vesicle fusion reaction where the exocyst appears likely to regulate localized 

SNARE assembly.  By acting at these two steps, members of the Rab, Ral, and Rho GTPase 

families are able to regulate the fidelity of these events at the same time they modulate the 

temporal and spatial nature of cell surface delivery. Future work will help to unravel the 

details of how these regulatory interactions act mechanistically to spatially and temporally 

regulate exocytosis is both and unpolarized cells.  
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ABSTRACT 

 The Rho3 and Cdc42 members of the Rho GTPase family are important regulators of 

exocytosis in yeast.  However, the precise mechanism by which they regulate this process is 

controversial.  Here we present evidence that the Exo70 component of the exocyst complex 

is a direct effector of both Rho3 and Cdc42.  We identify gain-of-function mutants in EXO70 

that potently suppress mutants in RHO3 and CDC42 defective for exocytic function.  We 

show that Exo70 has the biochemical properties expected of a direct effector for both Rho3 

and Cdc42.  Surprisingly, we find that C-terminal prenylation of these GTPases both 

promotes the interaction and influences the sites of binding within Exo70.  Finally, we 

demonstrate that the phenotypes associated with novel loss-of-function mutants in EXO70, 

are entirely consistent with Exo70 as an effector for both Rho3 and Cdc42 function in 

secretion.  These data suggests that interaction with the Exo70 component of the exocyst is a 

key event in spatial regulation of exocytosis by Rho GTPases. 
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INTRODUCTION 

The ability of eukaryotic cells to grow asymmetrically relies on the delivery of lipids 

and proteins to specific sites on the cell surface. This delivery is largely mediated by the 

docking and fusion of secretory vesicles with a precisely demarcated region of the plasma 

membrane. The budding yeast Saccharomyces cerevisiae undergoes polarized growth 

throughout its cell cycle, which makes it an attractive model for studying the regulation of 

polarized exocytosis and its role in overall cell polarity.  An important factor in targeting of 

secretory vesicles to the plasma membrane is an evolutionary conserved eight-subunit protein 

complex, known as the exocyst complex, which is composed of Sec3, Sec5, Sec6, Sec8, 

Sec10, Sec15, Exo70 and Exo84 (for review, see (Hsu et al., 2004; Munson and Novick, 

2006; Wu et al., 2008).   

Both Rab and Rho family small GTPases have been shown to be the upstream 

regulators of exocyst function in vesicle docking and fusion. The Rab family small GTPase, 

Sec4, directly interacts with the Sec15 subunit of the exocyst and it is this interaction that is 

thought to help link the exocyst complex to the vesicle during docking (Guo et al., 1999b).  

The Rho family small GTPases are also important regulators of polarized exocytosis in yeast. 

Previous studies have shown that specific conditional mutations in Rho3 or Cdc42 results in 

actin-independent defects in exocytosis (Adamo et al., 1999; Adamo et al., 2001). While 

Rho3 and Cdc42 appear to have partially overlapping functions, they are also individually 

required for polarized exocytosis; loss of function in each GTPase shows a specific set of 

phenotypes when their secretory function is impaired.  The secretory defective mutant form 

of Cdc42, cdc42-6, accumulates post-Golgi vesicles only during bud emergence (i.e. small 
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budded cells) and displays a pronounced defect in secretion of Bgl2 but not in secretion of 

invertase.  In contrast, the secretory defective form of Rho3, rho3-V51, accumulates post-

Golgi vesicles throughout the cell cycle and has pronounced defects in secretion of both Bgl2 

and invertase pathways.  

Exo70 has been implicated as a possible effector for Rho3 based on its ability to 

interact with Rho3 in a GTP-dependent manner (Robinson et al., 1999), and the fact that the 

interaction of Rho3 with Exo70 is blocked by the presence of the rho3-V51 effector domain 

mutation (Adamo et al., 1999).  Interestingly, recent studies have identified exo70 mutant 

alleles, exo70-35 and exo70-38, that demonstrate a small-bud specific and Bgl2-specific 

secretion defect, phenotypes that are remarkably similar to that of cdc42-6. These results 

could suggest a role for Exo70 as a target for Cdc42 during exocytosis, however a physical 

interaction between activated recombinant Cdc42 and Exo70 was not detected (He et al., 

2007a).  

The recent determination of the crystal structure of Exo70 proteins from yeast and 

mice revealed a conserved rod structure with four domains arranged sequentially from the N 

to the C terminus (Dong et al., 2005; Hamburger et al., 2006; Moore et al., 2007). Structural 

similarity also appears to exist between the C-terminal domain of Exo70 and other members 

of the exocyst complex (Dong et al., 2005; Munson and Novick, 2006; Sivaram et al., 2006). 

However, despite the conservation in overall structure of yeast and mammalian Exo70, the 

site of interaction with Rho family GTPases appeared to be quite distinct.  While 

recombinant Rho3 was found to bind primarily through interactions within domain C of yeast 
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Exo70, the site of interaction between the mouse Cdc42 homolog TC10 and mouse Exo70 

was mapped to the N-terminal AB domains (Chiang et al., 2001).  

Recent work has called into question the role of Exo70 as an effector of Rho3 

function in exocytosis.  Examination of two alleles in EXO70 suggested that Exo70 function 

was required only in small budded cells (He et al., 2007a), in contrast to studies on Rho3 

demonstrating exocytic defects in both small and large budded yeast (Adamo et al., 1999; 

Adamo et al., 2001).  More importantly, mutants or deletions in Exo70 predicted to block the 

interaction with Rho3 in vitro, showed little to no effect on growth or secretory function of 

EXO70 (He et al., 2007b; Hutagalung et al., 2009). Taken together these results suggested 

that Exo70 was unlikely to be the effector for Rho3 function in exocytosis. 

In the current study we report a combination of genetic and biochemical examinations 

to determine the possible role of Exo70 as a target of Rho3 and Cdc42 function in exocytosis. 

First, we describe the isolation of dominant gain-of-function alleles of EXO70 which strongly 

suppress the loss of either Rho3 or Cdc42 function in the exocytic pathway. Second, we 

describe a biochemical assay utilizing post-translationally modified forms of Rho3 and 

Cdc42 to demonstrate that Exo70 has the biochemical properties of a direct effector for both 

of these GTPases. Interestingly, we found that C-terminally prenylated forms of Rho3 and 

Cdc42 are able to interact with Exo70 in a manner that is structurally distinct from that of 

unmodified recombinant Rho3. Finally, we describe the isolation of novel recessive alleles of 

EXO70 which demonstrates that the spectrum of phenotypes associated with Exo70 loss of 

function is in strong agreement with its role as an effector for both Cdc42 and Rho3 function 

in polarized exocytosis.  
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MATERIALS AND METHODS 

Yeast Strains, Reagents, and Genetic Techniques 

Cells were grown in YPD media containing 1% bacto-yeast extract, 2% bacto-

peptone, and 2% glucose. The components of the media were from Fisher Scientific. For all 

assays performed, 25°C was the permissive temperature, whereas 14°C and 37oC were used 

as the restrictive temperatures. Sorbital, sodium azide (NaN3), N-ethylmaleimide (NEM), β-

mercaptoethanol, o-dianasidine, glucose oxidase, peroxidase, Triton X-100, NP40, and HIS-

Select® Nickel Affinity Gel were obtained from Sigma Chemical (St. Louis, MO). 

Zymolyase (100T) was from Seikagaku (Tokyo, Japan). BSA, yeast nitrogen base, raffinose 

galactose and 5-Fluoroorotic Acid were from US Biologicals (Swampscott, MA). 

Glutathione sepharose beads and protein A beads are from Amershan Biosciences. GTPγS 

and GDP are from Roche-Applied-Science. Secondary antibodies for Odyssey Imaging 

system are from LI-COR Biosciences and Molecular Probes. Rabbit anti-mouse antibody is 

from Jackson ImmunoResearch. Formaldehyde (37%), gluteraldehyde, and Spurr’s resin 

were from Electron Microscopy Sciences (Ft. Washington, PA). The TNT in vitro translation 

system for PCR products are from Promega. L-[35S] methione is from Perkin Elmer. 

Mevalonic acid is from Sigma. The bead beater for making yeast lysate is from Biospec 

Products. Transformations for suppression analysis were performed using the lithium acetate 

method described in Guthrie and Fink (1991). Strain crossing, tetrad dissection, diploid 

sporulation, and mating-type determination were performed as described by Guthrie and Fink 

(1991).  
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Dominant suppressor screen for Exo70 dominant mutants:  

The EXO70 dominant mutants in this study were generated by Error-prone PCR as 

described below.  50 ng digested vector and 3 μl PCR reaction were transformed into the 

RHO3 plasmid shuffle strain (rho3Δ::LEU2;his3-Δ200, ura3-52;leu2-3,112; pRS316-

RHO3,URA3,CEN,) and the cdc42-6 strain (BY648 α, cdc42-6, leu2,3-112; ura3-52). CEN 

HIS3 vector was used for RHO3 plasmid shuffle strain, and CEN URA3 vector was used for 

cdc42-6 strain. Transformants were first grown on selective media for two days, and then 

replica plated onto 5FOA plates at 30oC for the RHO3 plasmid shuffle strain and YPD plates 

at 32oC for cdc42-6 mutant strain. Colonies from the restrictive conditions were grown in 

liquid media for plasmid recovery. The plasmids were retransformed into RHO3 plasmid 

shuffle strain and cdc42-6 mutant strain to confirm that the plasmids were responsible for the 

gain of function phenotype. From 6030 transformants from the RHO3 plasmid shuffle strain, 

we isolated three plasmids that suppressed the rho3Δ at 30oC. From 5660 transformants in 

the cdc42-6 strain, we isolated 38 plasmids that had the ability to suppress the temperature 

sensitivity of the cdc42-6 mutant at 32oC.  

Isolation of novel Exo70 mutants by random mutagenesis  

The EXO70 mutants isolated in this study were generated by GeneMorph II Random 

Mutagenesis Kit (Stratagene). 50ng plasmid pRS315 Exo70 was used as a template for PCR 

reaction performed under conditions that produce 0-4.5 mutations/kb (low frequency of 

mutagenesis) according to the manufacturers protocol.  Oligonucleotide primers were 

designed to generate mutagenized PCR products containing the EXO70 open reading frame 

flanked by 629 bp of 5’ and 295bp of 3’ sequence. The EXO70 gap repair vector (BB1673) 
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was digested with BamHI and XbaI. 50 ng digested vector were co transformed with 3 μl 

PCR product into EXO70 plasmid shuffle strain(BY861: exo70Δ::HIS3;his3-Δ200, ura3-

52;leu2-3,112; pRS316-EXO70,URA3,CEN). Transformants that repaired the gapped plasmid 

by homologous recombination were selected at 30oC on SD plates for two days. 

Transformants that could lose the wild type plasmid pRS316 Exo70 were selected by replica 

plating onto synthetic minimal media containing 5FOA while simultaneously selecting for 

the temperature sensitivity by incubation of replica plates at 37oC, 25oC, 17oC, and 14oC.  

From 10396 colonies, 40 colonies exhibited temperature sensitivity and 57 colonies 

exhibited cold sensitivity. Plasmids from these colonies were isolated and transformed back 

into the original EXO70 plasmid shuffle strain (BY861) to confirm that the plasmids were 

responsible for the temperature sensitivity and cold sensitivity. One plasmid was found to 

give rise to a cold sensitive phenotype (exo70-188) and one plasmid was found to have a 

temperature sensitive phenotype (exo70-113).   Sequence analysis demonstrated that the 

cold-sensitive mutant, exo70-188, contained three mutations S305G, T523P, and L621I.   

Analysis of the temperature-sensitive allele, exo70-113, contained two mutations: N79K and 

incorporation of a stop codon at Y327 leading to truncation of the C-terminal half of the 

predicted protein. 

Genetic analysis of mutants 

To study the phenotypes of exo70-188 and exo70-113 alleles as the only copy of 

Exo70, the constructs were integrated into the chromosome of the diploid strain BY841 (a/α; 

exo70Δ::HIS3/EXO70; his3Δ200/his3Δ200; ura3-52/ura3-52; leu2-3,112/leu2-3,112) at the 

EXO70 locus. Transformants were sporulated and tetrads were dissected with the use of a 
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micromanipulator on YPD plates. The plates were grown at 25°C and the haploid progeny 

were analyzed for the presence of the mutants (scored as KanR), the absence of the wild-type 

EXO70 (scored as his3Δ200), viability, and conditional growth defects.  

Electron Microscopy 

The exo70-188 and exo70-113 mutants were grown overnight to mid-log phase in 

YPD media. Half of the cultures were shifted to restrictive temperature for various time 

periods. The exo70-188 mutant was shifted to a 14oC water bath shaker for nine hours, while 

the exo70-113 mutant was shift to 37oC water bath shaker for 1.5 hours. Shifted and 

unshifted cells were processed as previously described (Adamo et al., 1999). 

Invertase assay and Bgl2 assay 

The EXO70, exo70-188, exo70-113, rho3-V51, and sec6-4 cells were grown overnight 

to mid-log phase at 25°C in YPD liquid media. For the cold sensitive strains exo70-188 and 

rho3-v51, the cells were pre-shifted to the restrictive temperature of 14°C for 1 hour. After 

the pre-shift, one sample was taken as T0 and the rest of the cells were shifted to pre-chilled 

YP media containing 0.1% glucose for 9 hours. Samples after the temperature shift were 

collected as Tfinal. For temperature sensitive alleles exo70-113 and sec6-4, the cells were 

directly shifted to warm YP media containing 0.1% glucose for 1.5 hours at 37oC. Samples 

collected before and after the temperature shift were collected as T0 and Tfinal respectively.  

After the temperature shift, the cells were spheroplasted and the internal and external 

fractions were separated. Samples were processed as described previously (Adamo et al., 

1999; Lehman et al., 1999). The percentage of internal invertase accumulation is calculated 

by: Δinternal / (Δ internal + Δ external). 
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To analyze the accumulation of Bgl2 enzyme, cells were grown in YPD media 

overnight to mid-log phase. The exo70-188 mutant cells were then shifted to a 14oC water 

bath shaker for 10 hours. The exo70-113 mutant cells were shifted to 37oC water bath shaker 

for 2 hours. The cells were spheroplasted, and the internal and external fractions were 

separated. Samples were boiled with 6x sample buffer for 5 minutes at 95oC. Internal and 

external samples were then subjected to SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) gel, transferred to nitrocellulose, and blotted with affinity purified anti-Bgl2 antibody 

at a dilution of 1:100. Quantification of the western blots was analyzed by Odyssey Infrared 

Imaging system.  

Construction of pGEX-6His vector and protein expression, purification, and 

quantification 

The pGEX6p1 vector was digested with NotI and SalI. An additional PreScission enzyme site 

and a 6-histidine tag were generated by fusion PCR reaction and introduced into the NotI and 

SalI sites of pGEX6p1 to create pGEX-6P6H (pB1579). The resulting plasmid contained an 

N terminal GST tag, and a C terminal 6xHis tag flanking the polylinker and was used to 

create the following GST-fusion constructs: GST-Sec9 (aa 402-651), GST-Ste20 (aa 314-

432), GST-Exo70 (aa 1-623), GST-Exo70-1521, GST-Exo70-DC. GST-Sec4 (1-211), GST-

Rho1 (aa1-205), GST-Rho2 (aa1-188), GST-Rho3 (aa1-227), GST-Rho4 (aa1-287), and 

GST-Cdc42 (aa1-187) were subcloned into pGEX-6p-1 vector. All constructs were 

confirmed by sequencing and protein expression was performed in Escherichia coli BL21 

cells. Cells were grown at 37°C in Terrific broth medium to an OD599 2.0-2.5. Cells were 

shifted to 25°C and protein expression was induced with 0.1 μM IPTG for 3 hours at 25oC. 
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To maximize protein solubility, GST-Exo70-ΔC was induced at 22oC for 4 hours. Cells were 

pelleted and frozen at -80 °C until lysis. 

6xHis-tag purification was performed by binding the bacteria lysate to HIS-Select® Nickel 

Affinity Gel (Sigma), and then eluting with 500 mM imidazole. The 6xHistidine eluates were 

then incubated with glutathione Sepharose beads at 4oC for one hour, and the beads were 

washed with wash buffer (20 mM Tris pH7.5, 120 mM NaCl, and 1% Tween 20) to remove 

unbound proteins. Protein concentration was determined by comparison to purified protein 

standards after SDS-PAGE and Coomassie Blue staining. Quantification of Coomassie Blue 

stained gels was performed by Odyssey Infrared Imaging System (LiCor).  

In vitro binding assays 

Glutathione beads carrying GST,GST-Rho1-4, GST-Cdc42 were washed with 20 mM 

Tris-HCl, pH 7.5, 150 mM NaCl, and 1 mM DTT and were incubated in 20 mM Tris, pH 7.5, 

150 mM NaCl, 5 mM EDTA, and 1 mM DTT in the presence of 100 μM GTPγS for 

30minutes at 25oC. MgCl2 was added to a final concentration of 25 mM and incubated 30 

min at 25oC. Binding assays were performed in binding buffer (20 mM Tris-HCl, pH 7.4, 

150 mM NaCl, 5 mM MgCl2, 1 mM DTT, and 0.5% Triton X-100). The final concentrations 

of GST, GST-Rho1-4, and GST-Cdc42 in the binding reactions were 2 μM. Samples were 

incubated at 4oC for 2 hours. The beads were washed five times with binding buffer, and 

boiled with 85 μl sample buffer at 95oC for 5 min. Samples were subjected to SDS PAGE and 

autoradiography.  
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Generation of yeast cell lysate 

RHO3L74, RHO3N30, CDC42L61, CDC42N17, RHO1L68 were amplified by PCR 

reaction and subcloned behind the GAL1 promoter in a LEU2 integrating vector (BB24, 

pRS305 with GAL1 promoter). The vector was linearized by digesting with BstXI restriction 

enzyme and transformed into a Gal+ strain BY17 (a; GAL1; leu2-3,112; ura3-52). Yeast 

strains were first grown in YP 3% raffinose overnight at 30oC to mid-log phase of OD 1-1.5. 

The small GTPases were induced by adding final concentration of 1% galactose for two more 

doublings (four hours) at 30oC. Cells were pelleted by centrifugation at 5000 rpm for 5 

minutes and washed with ddH2O. Pellets were immediately frozen on dry ice. Frozen pellets 

were lysed with a bead beater from Biospec products. The optimal wet weight for the small 

chamber was 5-6 grams. The pellet was beaten for 1 minute followed by a 3 minutes pause 

for five cycles. Lysate was then subjected to centrifugation for 10 min at 17,000xg, followed 

by ultracentrifugation at 100,000xg for 30minutes. The protein concentration of the lysate 

was measured by a Bradford assay. Each lysate was normalized to about 25 mg/ml total 

protein concentration and frozen on dry ice. 

GST pull-down from yeast cell lysate 

All recombinant proteins were present at a final concentration of 3 μM. Cell lysates 

were prepared for GST pulldown experiments as described above and incubated with each 

fusion protein bound to glutathione sepharose beads for 1.5 hours at 4oC. The beads were 

washed five times with lysis buffer (20 mM tris-HCl pH 7.5, 120 mM NaCl, 10 mM MgCl2, 

1% Tween 20, 1 mM DTT), and boiled at 95oC for 5 minutes. Samples were subjected to 

SDS-PAGE gel, and analyzed by immunoblotting with Rho1, Rho3, and Cdc42 monoclonal 
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antibody. Quantification of western blots was performed with Odyssey infrared imaging 

system.  

In vitro prenylation assay 

The coding sequence of Rho3 was amplified by PCR reaction using standard PCR 

conditions. A common TNT-T7 primer was designed especially for in vitro 

transcription/translation, which contains a promoter and a Kozak consensus sequence 

(GCATGGATCCTAATACGACTC ACTATA GGA CAA CAG CCA CCA TGG GA). 10 

μl rabbit reticulocyte lysate, 0.5μl [S35] methionine, and approximately 200 ng amplified 

DNA (7μl PCR reaction) were first incubated at 30oC for 1.5 hours, and 5 mM mevalonic 

acid was added to the reaction for 6 hours. The mevalonic acid was prepared as described 

previously (Hancock, 1995). At the end of the in vitro translation and prenylation reaction, 

75μl binding buffer (20 mM Tris-HCl pH7.5, 120mM NaCl, 10mM MgCl2, 1% Tween 20, 

1mM DTT) was added to each translation mix and incubated with 15μl GST-Sec9, GST-

Exo70 or GST-Ste20 for 2 hours at 4oC. The beads were washed five times with binding 

buffer and boiled with 85 μl sample buffer at 95oC for 5 min. Samples were subjected to 

SDS-PAGE and the gels were quantitated with Storm Phosphorimager with ImageQuant 

softerware (Molecular Dynamics). 

Immunoprecipitation of the exocyst complex 

Strains containing dominant mutants of Exo70 as the only source of Exo70 were 

grown to mid log phase in SC media at 30oC and shift to YPD rich media for 1.5 hours. 300 

OD units of cells were pelleted and washed with cold 10:20:20 buffer (10mM Tris, pH7.5, 
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20mMNaN3 and 20mMNaF). Pellets were resuspended in lysis buffer (20mM Pipes pH6.8, 

120mM NaCl, 1mM EDTA, and 1mM DTT). Cells were lysed by bead beating in lysis buffer 

and extracted by adding 5X extraction buffer (20mM Pipes pH6.8, 120mM NaCl, 1mM 

EDTA, 1%NP40, and 1mM DTT). Lysates were cleared by centrifugation at 14000rpm for 9 

minutes and normalized for total protein concentration by Bradford Assay. The supernatants 

were added to prewashed protein beads for 30 minutes on ice to reduce non specific binding 

and then spun for 5 minutes at 14000rpm. Input samples were collected, and the remaining 

lysate was placed in fresh eppendorf tubes in the presence of 9E10 monoclonal anti-myc 

antibody. Samples were incubated on ice for 45 minutes, and then add 2μl rabbit anti-mouse 

antibody followed by incubation on ice for another 30 minutes. Lysate-antibody mix was 

then added to fresh, prewashed protein A beads for 60 minutes on ice. Samples were washed 

five times with wash buffer (20mM Pipes pH6.8, 120mM NaCl, 1mM EDTA, and 1% NP40) 

and boiled at 95oC for five minutes with 2X sample buffer. Input and bound fractions were 

analyzed by SDS-PAGE gels and western blotting. Quantitation of western blots was 

performed by Odyssey Infrared Imaging System.  
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RESULTS 

Isolation of Dominant Gain-of-Function Alleles of EXO70 

We have previously suggested a model for localized stimulation of exocytosis by the 

GTP-bound forms of Rho3 and Cdc42.  For Rho3, we proposed this activation would involve 

interaction with the Exo70 subunit of the exocyst complex, while the effector for Cdc42 was 

unknown (Roumanie et al., 2005; Wu et al., 2008). Using other Rho-effectors such as 

formins, WASP, or PAK kinases, as a model, one might expect that downstream activation 

would involve “relief of autoinhibition”—i.e. that binding of Rho3-GTP to the Exo70 subunit 

of the exocyst would activate this complex by blocking inhibitory interactions between 

Exo70 and other components of the complex—thus re-organizing the complex into a more 

active form (Wu et al., 2008).  A prediction of this model is that mutations in Exo70 that 

block or perturb inhibitory interactions of Exo70 within the exocyst should act as “activated” 

or gain-of-function alleles and would behave genetically as dominant-suppressors of loss of 

Rho3 function.  Furthermore, if Rho3 and Cdc42 share a common pathway in regulating 

exocyst function then mutants that suppress loss of Rho3 function in exocytosis should also 

suppress loss of Cdc42 function in exocytosis.  

To test these predictions, we performed two independent screens to look for dominant 

suppressing forms of EXO70.  One screen made use of the rho3Δ mutant, which is sensitive 

to increased gene dosage of several components of the exocytic apparatus (Matsui and Toh, 

1992; Imai et al., 1996; Lehman et al., 1999).  The other screen made use of the cdc42-6 

mutant that has a highly allele-specific defect in exocytosis which genetically overlaps with 
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that of Rho3 (Adamo et al., 2001).  EXO70 was randomly mutagenized by PCR 

amplification and introduced into the mutant yeast strains by co-transformation with a gap-

repair plasmid containing the flanking sequences of the EXO70 gene (see Materials and 

Methods). Approximately 6000 transformants were assayed from each strain and 

approximately 45 plasmids containing dominant suppressing forms of EXO70 were isolated 

from both screens.  Our initial work focused on the 41 strongest suppressors. When we 

examined the strongest 16 EXO70 dominant suppressors isolated from the cdc42-6 screen in 

the rho3Δstrain, we found that they also strongly suppressed (Figure 5).  When we examined 

the ability of the 3 strongest EXO70 dominant suppressors isolated from the rho3Δ screen to 

suppress cdc42-6 we found that all but one of these also strongly suppressed cdc42-6 (Figure 

5).  We also examined all 16 mutants in rho3Δ, rho4Δand found they all strongly suppressed 

(Figure 5) .  Therefore each of these two genetic screens appeared to be selecting for mutants 

in EXO70 with similar properties.  The ability of these suppressors to potently suppress 

growth defects associated with both rho3 and cdc42 loss-of-function strongly supports the 

idea that Exo70 is a functionally important downstream target of regulation by both of these 

Rho GTPases. 
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Figure 5:Cross suppression of EXO70 dominant suppressors isolated from cdc42-6 or 
rho3Δ screens. 

(A) The dominant suppressors of EXO70 isolated from rho3Δ screen (EXO70-10, EXO70-15, 
EXO70-25) and cdc42-6 screen (EXO70-41, EXO70-42, EXO70-48, EXO70-54, EXO70-56, 
EXO70-57, EXO70-58, EXO70-59, EXO70-66, EXO70-67, EXO70-68,EXO70-70, EXO70-71, 
EXO70-74, EXO70-80 and EXO70-81) were transformed into a RHO3 plasmid shuffle strain 
and a cdc42-6 strain on CEN plasmids. The growth of three independent transformants is 
shown for each EXO70 mutant following transformation into each Rho mutant strain as seen 
in Figure 6B.  (B) The dominant suppressors of EXO70 from rho3Δ screen and cdc42-6 
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screen (see Figure 5A) were transformed into rho3Δ, rho4Δ strain. The growth of three 
independent transformants is shown for each EXO70 mutant as described in Figure 5B. 
___________________________________________________________________ 
 

Sequence analysis of 41 of the strongest suppressors identified an average of 5-8 

coding sequence changes per dominant suppressing allele. This was not unexpected, as the 

predicted frequency of mutations for the amplifying conditions used was 1-2 bp changes/kb. 

To identify specific amino acid substitutions linked to the suppression activity, we scanned 

the mutant sequences for missense mutations that appeared in two or more of the suppressing 

plasmids. This identified 10 single residue mutations as candidate residues to confer 

dominant suppression on Exo70.  These mutations were then prepared as single residue 

changes and tested for dominant suppression in rho3Δ or cdc42-6 (Figure 6).   
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Figure 6:Dominant mutations of EXO70 are able to suppress rho3Δ and cdc42-6 mutant 

(A) The structure of S. cerevisiae Exo70 (residues 62-623) is in a transparent surface 
representation with mutant residues in a space-filing model.  The domains are labeled A 
through D from the N terminus to the C terminus. The arrows point to the residues involved 
in Exo70 gain of function mutations.  Residues colored in blue represent highly conserved 
residues, residues colored in yellow represent residues conserved only within fungi, while 
residues colored in pink represent variable residues.  Three residues, I114, G388, and N479 
are buried within the structure, while the remaining seven mutations are surface exposed 
residues. The image was generated using the PDB file 2B1E. (B) The gain-of-function 
mutations of EXO70 are capable of suppressing a rho3Δ and the cdc42-6 mutant at the 
restrictive temperature. Dominant mutants of EXO70 were transformed into a RHO3 plasmid 
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shuffle strain and a cdc42-6 strain on CEN plasmids.  The growth of three independent 
transformants is shown for each EXO70 mutant in both mutant strains under restrictive 
conditions. (C) The EXO70 dominant mutations can function as the sole copy of Exo70 in 
the cell. The dominant mutations were introduced into the EXO70 plasmid shuffle strain on a 
CEN-LEU2 plasmid. Three individual colonies were picked to show the growth of each 
EXO70 mutant under restrictive conditions when the plasmid containing wild type EXO70-
URA3 was lost by counter-selection on 5FOA plates. (D) EXO70 dominant mutants express 
similar amounts of Exo70 compared to wild type cells. Whole cell lysate were made from the 
strains containing Exo70 gain of function mutants as the only source of EXO70 in the cell. 
The lysates were subjected to SDS-PAGE analysis, and blotted with anti-Myo2 and anti-
Exo70 antibodies. 

The placement of the dominant gain-of-function mutations in the crystal structure of 

yeast Exo70 revealed a number of possible sites of regulation.  Three residues, I114, G388, 

and N479 are buried within the structure.  The other seven mutations are all surface exposed 

residues. Charged residues at the D domain form two patches, D541 and E547 form one 

patch, and E557, K564, R623 form another patch. N479 and G388 are located at the interface 

of domain B and domain C, which potentially cause rearrangements of the two domains 

relative to each other within the structure of Exo70.  An alignment of Exo70 protein 

sequences from yeast, mouse, worm, and fly is shown in the Figure 7.  The site of each 

dominant suppressing mutation is indicated on the alignment along with the overall 

conservation of each residue.  As can be seen in Figure 7, six of the dominant suppressing 

mutations occur in highly conserved residues (I114, N479, D541, E547, E557, and K564) —

four of which reside in a single helix (H17) within the Exo70 crystal structure—suggesting 

this may be a “hot spot” for activation of the exocyst by Exo70.   Taken together, however, 

the results of this screen overall suggest that there are likely to be multiple, structurally 

distinct mechanisms by which EXO70 gain of function can be achieved. 
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Figure 7: Conservation of Dominant gain-of Function Mutations in Exo70 

An alignment of EXO70 in four species, M. musculus (MOUSE), D. melanogaster 
(DROme), C.elegans (CAEel) and S. cerevisiae (YEAST), was constructed according to the 
structural alignment of Moore et al. 2007. Residue numbers above the alignment point to the 
yeast EXO70 and are indicated at the end of each line of the sequence alignment. Arrows 
point to the sites of the dominant mutations in EXO70. The bar graph indicates the degree of 
conservation within the four species. Sequence coloring is based on amino acid type: 
hydrophobic (cyan), aromatic (blue), basic (orange), acidic (purple), polar (green), proline 
(yellow), and glycine (tan).  
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One possible mechanism for activation of the exocyst complex by the gain-of-

function mutants is by effecting the assembly or disassembly of individual subunits of the 

complex. To determine if this was the case, we examined the assembly state of the exocyst 

complex in the presence of the EXO70 gain-of-function alleles as the sole source of Exo70 in 

the cell. We immunoprecipated wild-type and mutant exocyst complexes using strains 

containing a C-terminally myc-tagged form of SEC8 (Sec8-myc) and anti-myc antibody 

coated beads (TerBush and Novick, 1995), and assayed for the presence of the other exocyst 

subunits by quantitative western blot analysis. As can be seen in Figure 8, all six of the gain-

of-function alleles of EXO70 examined resulted in nearly identical amounts of exocyst 

subunits being co-precipitated with Sec8-myc.  An exception was the EXO70-E557K allele 

which had a small (~25%) reduction in the mutant Exo70 protein co-precipitated with the 

complex. However, this appears to mirror a similar small reduction in the overall steady state 

amounts of this protein in the EXO70-E557K cells rather than an effect on assembly or 

disassembly of the complex. Since the activation of the exocyst complex with these gain-of-

function mutants appears to mimic the effect of Rho3/Cdc42 activation, this data suggests 

that assembly and/or disassembly of the complex is unlikely to be the central means of 

regulation by Rho3 and Cdc42 GTPases. 
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Figure 8: Dominant Mutations in Exo70 do not Affect the Assembly of the Exocyst 
Complex 

(A) Analysis of coimmunoprecipitation of exocyst subunits in EXO70 dominant mutant 
strains.  A single copy of C-terminal myc–tagged Sec8 (SEC8-MYC) was introduced by 
integrative transformation into strains containing dominant mutants of EXO70 (on CEN 
plasmid) as the only source of Exo70 in the cell. Cells were grown, lysed, and subjected to 
native immunoprecipations with myc antibody to analyze the integrity of the exocyst 
complex (see Materials and Methods for details).  12 % of total lysate and 10% of myc 
immunoprecipitate were loaded on SDS-PAGE gel for western blot analysis with 
antibodies against each exocyst components. (B) Quantitation of western blots described 
in A performed by Odyssey Infrared Imaging system. The top panel shows quantitation of 
each individual subunit in the Sec8 Myc immunoprecipitation organized by strain. The 
bottom panel shows comparison of wild type and each gain of function strain organized 
by individual subunit. Error bars represent standard deviation of four independent 
experiments.  
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The GTP-Bound Forms of Rho3 and Cdc42, Produced in Yeast, Interact with Exo70 

The dominant suppressor analysis described above suggests that Exo70 is likely to be 

a critical downstream target of both Rho3 and Cdc42 regulation of exocytosis. However, 

work using recombinant forms of these GTPases produced in E.coli is inconsistent with this 

notion. First, recombinant Cdc42-GTP fails to show any detectable interaction with Exo70 

(Figure 9A) (He et al., 2007a).  Recombinant Rho3 does interact with Exo70 in a GTP-

dependent and effector domain-dependent fashion (Figure 9A and Figure 9B) but with 

relatively low affinity (Hamburger et al., 2006). Second, mutations or deletions in Exo70 

which severely diminish this interaction in vitro fail to recapitulate growth or secretory 

defects associated with either the rho3-V51 or cdc42-6 cells (He et al., 2007b; Hutagalung et 

al., 2009).  Since nearly all small GTPases are subjected to post-translational modifications 

which do not occur following expression in E.coli, we sought to determine if we could detect 

an interaction following their overexpression in yeast. To determine the nucleotide 

dependence of this interaction, we made use of mutant forms of Rho3 and Cdc42 which are 

predicted to “lock” the GTPases in the either the GTP-bound conformation (Rho3-L74, 

Cdc42-L61) or GDP-bound conformation (Rho3-N30, or Cdc42-N17).  The nucleotide-

locked forms of each GTPase were overexpressed (approximately 20-fold) using an inducible 

GAL1/10 promoter and the induced cells were used to make detergent lysates (see materials 

and methods).  These lysates were then used in binding experiments with purified full-length 

Exo70 fused to GST or various control GST fusion proteins.  A GST-fusion containing the 

C-terminal CRIB domain of the Ste20 protein was included as a positive control for Cdc42. 

As can be seen in Figure 9C, both the GTP-locked forms of Rho3 and Cdc42, Rho3-L74 and 
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Cdc42-L61, are specifically pulled down by GST-Exo70 and this binding is nearly 

completely lost in lysates overexpressing the GDP-mutant forms of Rho3 and Cdc42, Rho3-

N30 and Cdc42-N17. In contrast to Rho3 and Cdc42, no binding to Exo70 was detected with 

lysates overexpressing GTP-locked Rho1, indicating that the interaction with Exo70 is 

specific to Rho3 and Cdc42. 

Since specific mutations in the effector domain of Rho3 and Cdc42 have been 

described (rho3-V51 and cdc42-6) which strongly interfere with the function of these 

GTPases in promoting exocytosis (Adamo et al., 1999; Adamo et al., 2001), we examined 

the effects of these mutations on binding to Exo70. The effector mutations were incorporated 

in the context of a GTP-locked form of the GTPases and overexpressed as described above.  

As can be seen in Figure 9 D, the presence of the V51 mutation causes a severe defect in 

binding to Exo70. The cdc42-6 mutant contains a cluster of three mutations (L29, V31, H32) 

in the effector domain which are critical to the temperature-sensitive defect in exocytosis 

(Adamo et al., 2001).  The inclusion of these mutations in the context of a GTP-locked form 

of Cdc42, causes a significant loss of binding to GST-Exo70 (Figure 9D).  Therefore the 

Exo70 binding with Rho3 and Cdc42 from yeast lysates presented here shows clear 

specificity, nucleotide-dependence, and effector domain sensitivity expected for a bona fide 

assay for GTPase: effector interaction. 

Prenylation of Rho3 and Cdc42 is an Important Determinant for Binding to Exo70 

 One possible explanation for the results described above is that a eukaryotic-specific 

post-translational modification such as prenylation of the C-terminal CAAX might be 

required for binding with Cdc42 and Exo70. We therefore produced lysates of GTP-locked 
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forms of Cdc42 and Rho3 with a mutation at the C-terminal Cysteine (in the CAAX motifs) 

and monitored the effect on binding to recombinant effector proteins. The results are shown 

in Figure 10. As expected the CAAX (C188A) mutation had no effect on binding of Cdc42-

L61 to GST-Ste20. In contrast, a dramatic loss of binding to Exo70 was observed for Cdc42-

L61, A188 suggesting that C-terminal prenylation of Cdc42 is a pre-requisite for binding. 

Interestingly, we found that mutation of the CAAX motif of activated Rho3 (L74,A228) also 

resulted in a dramatic loss of binding to GST-Exo70, suggesting that the binding detected 

with recombinant Rho3 reflects only a residual level of interaction with the modified protein. 
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Figure 9:Exo70 binding to Rho GTPases in E.coli or Yeast 

(A) Yeast Rho GTPases (Rho1-4, and Cdc42) were expressed, purified from bacteria as GST 
fusion proteins, and immobilized on glutathione sepharose beads. The beads were preloaded 
with GTP, and bound to radiolabeled in vitro translated full length Exo70 and the CRIB 
domain of Ste20.  Input represents 1% binding. (B) The V51 mutation in the effector domain 
of Rho3 (Rho3V51) abolishes the interaction between Rho3 and Exo70 in vitro.  
Recombinant GST-Rho3 and GST-Rho3V 51 were purified from bacteria and the 



73 
 
 

immobilized GST fusion protein was preloaded with GTPγS or GDP.  Input represents 1% 
binding. (C) Exo70 interacts with GTP-locked Rho3 and Cdc42 obtained from a yeast lysate. 
GST fusion proteins were purified from bacteria and immobilized on glutathione sepharose 
beads. GTP or GDP locked forms of small GTPases were expressed behind a galactose 
inducible promoter in yeast. Lysates obtained from these strains were used in the binding 
experiments (See Material and Methods). The input represents 2.5% binding. Bound material 
was analyzed by western blot using monoclonal anti-Rho3, anti-Rho1 and anti-Cdc42 
antibodies.  Because of the extremely strong binding to Ste20 binding reactions with Cdc42-
L61 (but not Rho3, Rho1) were diluted 20 fold prior to loading to improve quantitation and 
avoid obscuring the adjacent lanes. (D) The interaction between Exo70 and Rho3/Cdc42 
obtained from yeast is sensitive to mutations in the effector domain of the two GTPases. The 
rho3V51, L74 and cdc42-6 effector domain mutations (cdc42-L29, V31, H32, L61) were 
expressed behind a galactose inducible promoter in yeast. Lysates generated from the 
overexpressing yeast strains were subjected to binding experiments as described above. (E) 
Bar graphs represent quantitation of the blots using the Odyssey Infrared Imaging system. 
Data were analyzed by two-tail student’s t test with error bars representing standard deviation 
from four independent experiments.  
 
 

To further examine the apparent requirement for CAAX prenylation in the interaction 

between these Rho GTPases and Exo70, we made use of rabbit reticulocyte lysates, which 

have been shown to be active in prenylating CAAX motifs in vitro (Hancock, 1995).  We 

examined whether we could detect prenylation of either yeast GTPase following in vitro 

translation. When Rho3-L61 (GTP) or Rho3-N30 (GDP) were translated in reticulocyte 

lysates and further incubated for 6 hours, a faster migrating form of the protein appeared over 

time. When activated Rho3 containing a mutation of the critical Cysteine (C228) in the 

CAAX motif was used, the faster migrating form failed to appear (Figure 10B).  The addition 

of mevalonic acid--a metabolic precursor of both farnesyl and geranylgeranyl moieties used 

to modify CAAX motifs--has been shown to stimulate both types of prenylation in 

reticulocyte lysates. As can be seen from Figure 10B, the addition of mevalonic acid to the 

reaction following translation results in a dramatic increase in the conversion of Rho3-L74 
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and Rho3-N30 proteins to the faster migrating form but has no effect on the Rho3-L74, A226 

mutant lacking the prenylation acceptor cysteine. 

 We examined the ability of in vitro prenylated Rho3 from reticulocyte lysates to bind 

to GST-Exo70 under conditions similar to that used for the yeast lysate binding studies 

described above. The results show that in vitro prenylated Rho3-L61 (GTP-locked) binds 

well to the GST-Exo70, whereas prenylated Rho3-N30 (GDP form) fails to bind (Figure 10 

C). Importantly, only very weak binding is seen when unprenylated but activated Rho3-

L61,A226 is present.  Unlike Rho3, we were unable to detect a cysteine-dependent mobility 

shift in a parallel set of translations with Cdc42 translated in the reticulocyte system.  

However when we examined the binding of translations of activated Cdc42 (Cdc42L61) in 

the presence or absence of mevalonate and the presence or absence of the C-terminal cysteine 

we find that, binding to Exo70 is dependent on GTP, the addition of mevalonate, and the 

CAAX box.  This provides strong evidence that, like Rho3, prenylation of Cdc42 CAAX 

motif is required for interaction with Exo70 in this system. Taken together with the binding 

assays using GTPases from yeast lysates, these data clearly demonstrate that prenylation of 

Rho3 and Cdc42 is an important determinate in promoting the binding between these Rho 

GTPase and Exo70. 
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Figure 10:Prenylation of Rho3 and Cdc42 Promotes the GTP-dependent interaction 
with Exo70. 

(A) The interaction between Exo70 and the two Rho GTPases, Rho3 and Cdc42, from yeast 
lysate is dependent on C-terminal prenylation. Activated forms of Rho3 and Cdc42 
(Rho3L74, Cdc42L61) containing a cysteine-to-alanine mutation in the CAAX box (Rho3-
L74, A228, and Cdc42-L61, A188) were overexpressed in yeast.  Lysates were prepared in 
parallel for these mutants and for the activated GTPases containing the intact CAAX motif 
(Rho3-L74 and Cdc42-L61) and used in binding experiments (see Materials and Methods). 
Ste20 binding assays with Cdc42 (but not Rho3) were diluted 20 fold prior to loading.  As 
expected Ste20 binding was unaffected by the prenylation site mutation.  Bar graphs 
represent quantitation of binding experiment with error bars representing standard deviation 
of three independent experiments.  Coomassie Blue staining of the GST-fusion proteins used 
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in the experiment is shown below the quantitation. (B) In vitro prenylation of Rho3 results in 
a change in mobility and is stimulated by addition of mevalonic acid to reticulocyte lysate.  
Rho3 was in vitro translated in rabbit reticulocyte lysates (see Materials and Methods) and 
then subjected to extended incubation (for the time shown) in the presence or absence of 
mevalonic acid (+/-MVA).   The appearance of a faster migrating species appears during the 
extended incubation and is strongly stimulated by the addition of mevalonic acid and is 
abolished by mutation of the CAAX box cysteine 228 to alanine.  (C) The interaction 
between Exo70 and Rho3 and Cdc42 produced in reticulocyte lysastes is dependent on C-
terminal prenylation.  Immoblized GST fusion proteins were incubated with prenylated Rho3 
or Cdc42 obtained from the in vitro translation described in Materials and Methods.  Input 
lanes for Rho3 binding experiments represent signal equivalent to 2.5% binding.  Input lane 
for Cdc42 binding experiments represent signal equivalent to 10% binding. The Cdc42-N17 
binding experiment was exposed to film twice as long as the other experiments due to lower 
efficiency of translation for this mutant. 
 
 
 

Binding of Prenylated Rho3 and Cdc42 to Exo70 is Not Dependent on the C-Domain 

 Previous studies to map the site of Rho3 interaction within Exo70 depended largely 

on the use of recombinant (i.e. unprenylated) forms of Rho3. These studies identified an 

important role for domain C of Exo70 in mediating the interaction with recombinant Rho3. 

Either mutations in, or deletion of domain C of Exo70 result in dramatic loss of binding to 

Rho3 (Dong et al., 2005; He et al., 2007b; Hutagalung et al., 2009).  To determine if 

prenylated Rho3 and Cdc42 were similarly dependent on the Exo70 C-domain for their 

interaction, we made use of two mutant forms of Exo70, Exo70-1521 and Exo70-ΔC. Exo70-

1521 has a combination of 6 alanine substitutions in surface exposed residues within the C-

domain which block binding to recombinant Rho3 (He et al., 2007b) and Exo70-ΔC mutant 

contains a replacement of the entire C domain with an eight residue flexible linker 

(Hutagalung et al., 2009).  We compared the binding of these two forms of Exo70 fused to 

GST to equivalent amounts of wild-type full-length Exo70 using the Rho GTPases produced 
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in yeast lysates. Remarkably, we found that both GST-Exo70-1521 and GST-Exo70-ΔC 

mutant proteins showed binding activity to yeast Rho3-L74 and Cdc42-L61 that was 

indistinguishable from that of wild-type Exo70 (Figure 11 B).  As before this binding was 

highly dependent on the activation status of the Rho3 and Cdc42. We repeated these binding 

assays using the in vitro translated/in vitro prenylated Rho3 protein. Using the in vitro 

modified Rho3 we see a small loss of binding activity to the GST-Exo70-1521 and GST-

Exo70-ΔC mutant proteins, but both mutants demonstrate very clear binding which is highly 

dependent on both the activation (i.e. GTP) and prenylation status of Rho3. Therefore both of 

these assays reveal that Exo70 is able to interact with Rho GTPases in a manner which does 

not depend on the C-domain and that the prenylation state of these GTPases appears to be 

critical in revealing this mode of interaction. It is worth noting that mammalian TC10 

GTPase (produced in NIH 3T3 cells and hence likely prenylated) also has been shown to 

interact with mammalian Exo70 in a fashion that does not depend of the C-domain (Chiang 

et al., 2001).  
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Figure 11:Binding of Prenylated Rho3 and Cdc42 to Exo70 Does Not Depend on 
Domain C. 

(A) Schematics of the Exo70-1521 mutation and a domain C deletion. (B) Mutations in or a 
deletion of Exo70 domain C does not significantly affect the interaction between Exo70 and 
Rho3 or Cdc42 produced in yeast. Yeast lysates from cells overexpressing GTP or GDP 
locked Rho3 and Cdc42 were incubated with immobilized GST fusion proteins at different 
concentrations. Binding experiments were performed as described in Materials and Methods. 
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Graphs represent quantitation of the binding with error bars representing standard deviation 
of three independent experiments. (C) Mutations in or a deletion of Exo70 domain C does 
not significantly affect the interaction between Exo70 and Rho3 or Cdc42 prenylated in vitro 
following translation in reticulocyte lysates. Immobilized GST proteins were incubated with 
prenylated Rho3 and Cdc42 obtained from the in vitro translation as described in Materials 
and Methods. Input lanes for Rho3 binding experiments represent signal equivalent to 2.5% 
binding.  Input lane for Cdc42 binding experiments represent signal equivalent to 10% 
binding. The Cdc42-N17 binding experiment was exposed to film twice as long as the other 
experiments due to lower efficiency of translation for this mutant. Shown below is 
Coomassie blue staining of the GST fusion proteins used for binding and bar graphs 
representing quantitation of the binding with error bars representing standard deviation of 
three independent experiments.  
__________________________________________________________________________ 

 

Isolation of Novel Conditional-Lethal Alleles of EXO70 

 A previous screen for mutants in EXO70 resulted in the identification of two alleles, 

exo70-38 and exo70-35, with unusual phenotypes nearly identical to those described for 

cdc42-6 (He et al., 2007a).  Like cdc42-6 mutants, exo70-38 and exo70-35, exhibit defects in 

secretion of Bgl2 but not invertase and show accumulation of post-Golgi vesicles in small, 

but not large budded cells.  Invertase and Bgl2 are thought to be delivered to the cell surface 

through two distinct populations of post-Golgi vesicles, and both populations are blocked by 

all of the original 10 late sec mutants (Harsay and Bretscher, 1995).  The remarkable 

similarity of the unusual phenotypes of the exo70-38 and exo70-35 mutants with the cdc42-6 

mutant gives strong in vivo support for the notion that Exo70 is a direct effector of Cdc42 

function in exocytosis, as suggested by the dominant suppressor and biochemical interaction 

studies described above.  However, the phenotypes associated with the exo70-38 and exo70-

35 mutants are not consistent with the model that Exo70 is a downstream effector of the 

Rho3 GTPase. The rho3-V51 mutant has significantly more expansive secretory defects than 
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seen in these two mutants.  Specifically, the rho3-V51 mutant shows pronounced defects in 

both invertase and Bgl2 secretion and accumulates post-Golgi vesicles in both small and 

large budded cells.  Since these phenotypes are at odds with the genetic and biochemical 

studies described above linking Exo70 as a downstream effector of both GTPases, we 

postulated that the exo70-38 and exo70-35 mutants might represent hypomorphic alleles of 

EXO70, defective in transmitting Cdc42 function but still permissive for promoting Rho3 

function.  To test this idea we set out to identify and characterize novel conditional-lethal 

alleles in EXO70 and describe the loss-of-function phentoypes associated with them.  

 To identify additional alleles of EXO70 with recessive conditional growth defects, we 

screened a library of random PCR-generated exo70 mutants using a plasmid shuffle strategy 

(see materials and methods). Following growth on 5-FOA media at 25oC (to evict the EXO70 

plasmid and reveal possible recessive phenotypes), 57 independent colonies were identified 

that exhibited low-temperature sensitive growth at 14oC (cs-) and 40 colonies were identified 

that exhibited high temperature sensitive (ts-) growth. Following recovery of the mutant 

plasmids from these strains and re-transformation into the exo70Δ/CEN-URA3-EXO70 

plasmid shuffle strain, we identified one plasmid containing a cold-sensitive allele (exo70-

188), and one plasmid containing a temperature-sensitive allele (exo70-113).  These alleles 

(as well as wild-type EXO70 control) were then integrated at the EXO70 locus by replacing a 

disruption in a heterozygous diploid. Following sporulation and tetrad dissection, the pattern 

of spores showing conditional growth was seen to be tightly linked to the newly introduced 

allele. Thus the phenotypes of the integrated alleles were similar to that of the original 

plasmid-borne mutants.  These integrated mutant strains were then used for all the 
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subsequent analyses of the growth and secretion phenotypes associated with these new alleles 

of exo70. 

 
Figure 12: Characterization of a novel cold-sensitive mutant exo70-188. 

(A) Growth properties of the cold sensitive mutant, exo70-188 at permissive and non-
permissive temperatures.  Wild type EXO70 and exo70-188 mutant alleles were integrated at 
the EXO70 locus. Ten fold serial dilutions of yeast cells were grown on YPD plates at the 
indicated temperatures. (B) The exo70-188 mutant is defective in secretion of the periplasmic 
enzyme invertase.  Invertase assays were conducted on cells shifted to low glucose media at 
the permissive temperature (25oC) for 2 hours or the restrictive temperature (14oC) for 9 
hours. The graph shows the percentage of internal invertase at 25oC and 14oC in each strain 
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analyzed. The error bars represent standard deviation of five independent experiments. 
(C)The exo70-188 is defective in Bgl2 secretion.  Bgl2 assays were performed on cells kept 
at permissive temperature or shifted to restrictive temperature for 9 hours.  The percent 
distribution of Bgl2 was determined by immunoblot analysis using affinity-purified Bgl2 
antibody. The graph depicts the percentage of Bgl2 protein that remains internal in EXO70, 
exo70-188, and rho3-V51 strains. Quantitations were performed by Odyssey Infrared 
Imaging system. Error bars represent standard deviation of four independent experiments. (D) 
The exo70-188 mutant accumulates post-Golgi vesicles in both large budded cells and small 
budded cells. The exo70-188 mutant cells kept at the permissive temperature or shifted to 
restrictive temperature for 9 hours were fixed and processed for electron microscopy. 
Examples of both small (<1 μm) and large-budded (1 μm or greater) cells are shown. Cells 
were scored for number of vesicles accumulated throughout the cell and bar graphs show the 
percentage of small budded or large budded cells containing different number of vesicles. 
Scale bar,2 μm.  (E)  Overall post-Golgi vesicle accumulation was determined for EM 
sections by scoring cells greater than 3 um in diameter (irrespective of bud or bud size) for 
80-100 nm vesicles.  For each condition micrographs were divided into three groups 
representing 20-25 cells each to determine the standard deviation in this assay. 
 

 We examined the exo70-188cs- allele for its ability to secrete invertase and Bgl2 at 

permissive temperature (25oC) and following a 9 hr shift to the non-permissive conditions 

(14oC).  A wild-type EXO70 and cold-sensitive rho3-V51 strain were assayed in parallel as 

negative and positive controls for cold-sensitive secretory defects. As can be seen in Figure 

12B and C, the exo70-188 mutant shows pronounced invertase and Bgl2 secretion defects at 

14oC (relative to EXO70) and both the magnitude and temperature dependence of these 

secretory effects are remarkably similar to that seen in rho3-V51 cells (Roumanie et al., 

2005).  When exo70-188 cells were shifted to 14oC and then examined by thin section 

electron microscopy, a highly penetrant (>80% of cells) and dramatic (>75 vesicles/cell on 

average) accumulation of 80-100 nm post-Golgi vesicles was apparent (Figure 12D and 

Figure 12E). As we had seen previously with rho3-V51, and consistent with the secretion 

data, a lower—and less penetrant—level of vesicle accumulation was observed in exo70-188 
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mutants grown at the permissive temperatures (Figure 12D and Figure 12E).  To determine if 

there was an effect of the stage of the cell cycle on vesicle accumulation in this mutant we 

compared the vesicle accumulation in cells with small (<1 uM diameter) buds compared to 

larger (>1 uM diameter) buds, as we have previously with cdc42-6 and exo70-38.  The 

results, shown in Figure 12D clearly demonstrate that both large and small budded exo70-188 

cells have a similar high-degree of penetrance and vesicle accumulation at both permissive 

and non-permissive temperatures.   

The temperature-sensitive exo70-113 mutant was characterized in a similar fashion 

except that cells were shifted to 37oC for 2 hr to examine the effect of temperature-shift on 

exocytic function.  An isogenic wild-type EXO70 and sec6-4 mutant were examined in 

parallel as controls. As can be seen in Figure 13B and Figure 13C, the exo70-113ts- mutant 

shows pronounced invertase and Bgl2 secretion defects following a shift to 37oC and when 

examined by thin section electron microscopy, a highly penetrant (>80% of cells) and strong 

(>80 vesicles/cell on average) accumulation of 80-100 nm post-Golgi vesicles was apparent 

in both large and small budded cells (Figure 13 D and Figure 13 E). Taken together our 

analysis of these two new alleles demonstrates that Exo70 function is required for all the 

secretory functions seen with other late-acting sec genes including secretion of both the Bgl2 

and the invertase class of vesicles, and exocytosis in early bud emergence as well as in later 

stages of bud growth. These observations are important to the present study because they 

demonstrate that the spectrum of phenoytpes associated with loss-of Exo70 function is 

entirely consistent with Exo70 being a downstream effector of both Cdc42 and Rho3 

function in exocytosis. 
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Figure 13:Characterization of a novel temperature sensitive mutant exo70-113. 

(A) Growth defect of a novel temperature sensitive mutant exo70-113. Wild type EXO70 and 
exo70-113 alleles were integrated at the EXO70 locus. Ten fold serial dilutions of yeast cells 
were grown on YPD plates at the indicated temperatures. (B) The exo70-113 mutant is 
defective in secretion of the periplasmic enzyme invertase. Invertase assays were performed 
on cells after a 2 hour shift to low glucose media at permissive (25oC) or a 1.5 hour shift to 
restrictive temperature (37oC). The graph shows the percentage of internal invertase in the 
strains analyzed. The error bars represent standard deviation of four independent experiments. 
(C) exo70-113 is defective in Bgl2 secretion. Bgl2 assays were performed on cells kept at 
permissive temperature or shifted to the restrictive temperature of 37oC for 2 hours. The 
percent distribution of Bgl2 was determined by immunoblot analysis using affinity-purified 
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Bgl2 antibody. The graph depicts the percentage of Bgl2 protein that remains internal in 
EXO70, exo70-113, and sec6-4 strains. Quantitations were performed by Odyssey Infrared 
Imaging system. Error bars represent standard deviation of four independent experiments. (D) 
exo70-113 mutant accumulates post-Golgi vesicles in both large budded cells and small 
budded cells. exo70-113 mutant cells kept at the permissive temperature or shifted to 
restrictive temperature for 2 hours were fixed and processed for electron microscopy. 
Examples of both small (<1 μm) and large-budded (1 μm or greater) cells are shown. Cells 
were scored for number of vesicles accumulated throughout the cell and bar graphs show the 
percentage of small budded or large budded cells containing different number of vesicles. 
Scale bar, 2 μm. (E) Overall post-Golgi vesicle accumulation was determined for EM 
sections by scoring cells greater than 3 um in diameter (irrespective of bud or bud size) for 
80-100 nm vesicles. 
 
 

DISCUSSION 

 We have previously characterized a role for Cdc42 and Rho3 as positive regulators of 

exocytosis and found that this role was independent of polarization of both the actin 

cytoskeleton and of the exocyst complex (Roumanie, et al. 2005).  We suggested a model 

where these GTPases would work by locally increasing the activity (or throughput) of the 

exocytic apparatus at sites occupied by GTP-bound Rho/Cdc42 proteins (Roumanie et al., 

2005; Wu et al., 2008). However, the precise effector pathway by which such a mechanism 

would take place was either unknown—in the case for Cdc42—or highly controversial—in 

the case of Rho3.  In this report we provide three independent lines of evidence which 

strongly supports this model of regulation, and demonstrates that the Exo70 component of 

the exocyst complex represents a critical and direct effector for both Rho3 and Cdc42 

function in spatial regulation of exocytosis.  

A number of studies have been carried out to investigate the interaction of Exo70 and 

Rho family GTPases in yeast and mammalian cells. However, despite the fact that both yeast 
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and mammalian Exo70 have been reported to bind Rho family GTPases and the overall 

structural similarity between yeast and mammalian Exo70 proteins is very high throughout 

their length, the sites of interaction reported for the GTPases appeared to be quite distinct.  

Studies using tagged-TC10 in transfected mammalian cells identified a region within 

domains A and B in mouse Exo70 as the major site of binding, while studies using 

recombinant Rho3 have identified a binding site within domain C as the major binding site 

for the yeast Exo70 protein (Dong et al., 2005; He et al., 2007b; Hutagalung et al., 2009). To 

make matters more difficult, mutations or deletions in Exo70 which block recombinant Rho3 

binding had little or no effect on growth or secretion of yeast cells containing these mutant 

exo70 alleles as the sole source of Exo70 in the cell (He et al., 2007b; Hutagalung et al., 

2009).  Finally, phenotypic analysis of two conditional alleles of exo70, showed exocytic 

phenotypes that were remarkably similar to that of cdc42-6, but very distinct from that of 

rho3-V51 (He et al., 2007a). However, despite the similarity in phenotypes with the Cdc42 

mutant, biochemical analyses failed to show any detectable interaction between Exo70 and 

recombinant GTP-bound forms of Cdc42 (He et al., 2007a). Collectively these results 

appeared to be entirely incompatible with the notion that Exo70 was a direct effector of 

Cdc42 or Rho3 in yeast.  Moreover, the ability of Exo70 family members to interact with 

Rho GTPases is highly conserved in yeast and mammals, suggesting that structurally 

divergent mechanisms had evolved into interactions with completely distinct regions of the 

yeast and mammalian Exo70 proteins.  

A key finding to unraveling these apparently contradictory observations was the use 

of post-translationally modified forms of Rho3 and Cdc42 in our Exo70 binding studies, a 
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strategy similar to that used to map the TC10 interaction with mammalian Exo70. In 

particular, we found that mutation of the cysteine present in the C-terminal CAAX motif of 

either Cdc42 or Rho3 resulted in a dramatic loss of interaction with Exo70. Since this 

modification does not occur in bacterially-produced forms of these GTPases, the absence of 

this modification is likely responsible for the dramatic differences seen in the binding assays 

described here from those described previously.  Furthermore, since the mapping of the 

binding of the Cdc42 homolog TC10 to mouse Exo70 made use of a mammalian expression 

system (hence prenylated TC10), this may explain the apparent distinction in the site of 

binding between the yeast and mammalian forms of Exo70. Further mapping of the Rho GTP 

binding site in both yeast and mammalian Exo70 will be necessary to determine how 

structurally similar these binding events are. Since Rho3 and Cdc42 are predicted to be 

prenylated with different prenyl moities—Rho3 with farnesyl and Cdc42 with 

geranlygeranyl—we think it unlikely that the prenyl groups themselves are part of the 

effector interaction. Rather we suggest that the presence of the prenyl group is likely to affect 

presentation of the GTP-bound Rho protein to Exo70 in the context of the detergent micelles 

present in the binding assays. This may reflect the nature of the interaction which likely 

occurs in close proximity to the membrane in vivo, since both Exo70 and the GTPase have C-

terminal membrane targeting motifs.  A role for prenylation in effector binding is unusual but 

not unprecedented. Ohya and colleagues (Inoue et al., 1999) demonstrated that the physical 

interaction of Rho1 with its effector Fks1 was highly dependent on the C-terminal 

geranylgeranylation. It remains to be seen if other Rho effector relationships depend on 

prenylation, as this is it not a feature which is commonly examined. 
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What does “activation” of the exocyst by Rho GTPases do to regulate exocytosis? In 

its simplest form this activation would involve an increase in the rate of vesicle docking and 

fusion at a specific place on the plasma membrane demarcated by the GTP-bound form of 

Cdc42 and/or Rho3. Since the loss of function mutants in cdc42 and rho3, fail to show a 

detectable effect on polarization of Sec4 or exocyst subunits to sites of polarized growth, and 

the mutants are strongly suppressed by increased levels of the t-SNARE Sec9, we favor the 

model that these GTPases act through the exocyst to increase localized SNARE assembly 

leading to more rapid vesicle fusion. The details of how this activation mechanism works 

remain to be elucidated. However since dominant alleles of Exo70 described here, act as 

though they are “constitutively active” forms of Exo70—they will be valuable tools in 

helping to understand the nature of this activation. For example, all of the gain-of-function 

mutants appear to have similarly fully assembled exocyst complex, suggesting that assembly 

and/or disassembly of the complex is unlikely to represent the major mode of regulation by 

these GTPases.   

 In addition to Exo70, Sec3--another component of the exocyst complex--has been 

proposed to be an effector in regulating polarized growth downstream of the Rho1 and Cdc42 

GTPases (Guo et al., 2001; Zhang et al., 2008; Hutagalung et al., 2009).  However, it is 

unlikely that Sec3 is the principal effector for Cdc42 function in exocytosis.   First, deletion 

of the N-terminal Rho-binding domain of Sec3 is non-essential and has no detectable impact 

on polarized growth or secretion at any temperature, while the cdc42-6 mutant results in a 

severe temperature-sensitive growth and secretion defect.  Second, we have previously 

shown that deletion of the Sec3 N-terminal domain results in a synthetic lethal phenotype 
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when combined with the cdc42-6 mutant, which strongly suggests that this domain of Sec3 

has an important role that acts in parallel (perhaps through Rho1 signaling) with Cdc42 

signaling through Exo70 (Roumanie et al., 2005; Zhang et al., 2008; Hutagalung et al., 2009).   

In agreement with the idea that the Cdc42-Exo70 pathway functions in parallel with a Sec3-

Rho pathway, several groups have shown synthetic lethality between sec3-ΔNT and several 

EXO70 loss-of-function mutants (Zhang et al., 2008; Hutagalong et al., 2009).  It also 

important to note that while the Exo70 effector activity appears to be regulated by both Rho3 

and Cdc42 but not Rho1, the N-terminus of Sec3 has been reported to interact with both 

Rho1 and Cdc42 but not Rho3. Therefore this process appears to be regulated by a complex 

network of partially overlapping Rho GTPase/effector relationships which may provide 

increased robustness to the overall spatial regulation of polarized exocytosis.  
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Table 1: Yeast Strains used in Chapter Three 

Strain Genotype Reference 
BY582 MATa  rho3Δ::LEU2  rho3-V51::URA3  his3-Δ200 Adamo et al, 1999 
BY944 MAT a rho3Δ::LEU2  rho3-V51::URA3  his3-Δ200  ura3-200 Adamo et al, 1999 
BY1051 MATa Gal+ leu2-3,112  LEU2::RHOL74  P.Brennwald Collection 
BY1052 MATa Gal+ leu2-3,112   LEU2::rho3N30 P.Brennwald Collection 
BY1054 MATa Gal+ leu2-3,112  LEU2::CDC42L61 P.Brennwald Collection 
BY1055 MATa Gal+ leu2-3,112  LEU2::cdc42N17 P.Brennwald Collection 
BY2132 MATa Gal+ leu2-3,112  LEU2::RHO1L68 This study 
BY2142 MATa Gal+ leu2-3,112  LEU2::cdc42L29, V31, H32,L61 This study 
BY2227 MATa Gal+ leu2-3,112  LEU2:: rho3V51QL This study 
BY2228 MATa Gal+ leu2-3,112  LEU2::cdc42QLC188A This study 
BY2229 MATa Gal+ leu2-3,112  LEU2:: rho3QLC228A This study 
BY2198 MATα EXO70::KanMX6 his3-Δ200  leu2-3,112  ura3-52 This study 
BY2130 MATa exo70-188cs::KanMX6  his3-Δ200  leu2-3,112  ura3-52 This study 
BY2136 MATa exo70-113ts::KanMX6  his3-Δ200  leu2-3,112  ura3-52 This study 
BY2277 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70 This study 
BY2278 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70I114F This study 
BY2279 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70E126V This study 
BY2280 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70G388R This study 
BY2281 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70N479K This study 
BY2282 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70I486N This study 
BY2283 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70D533N This study 
BY2284 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70D541Y This study 
BY2285 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70E543K This study 
BY2286 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70E557K This study 
BY2287 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70K564E This study 
BY2288 MATa exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70R623I This study 
BY2296 MATa SEC8-3XMyc::URA3  exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70 This study 
BY2297 MATa SEC8-3XMyc::URA3  exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70G388R This study 
BY2299 MATa SEC8-3XMyc::URA3  exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70E557K This study 
BY2300 MATa SEC8-3XMyc::URA3  exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70K564E This study 
BY2302 MATa SEC8-3XMyc::URA3  exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70I114F This study 
BY2303 MATa SEC8-3XMyc::URA3  exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70E126V This study 
BY2304 MATa SEC8-3XMyc::URA3  exo70Δ::HIS3  ura3-52  his3-Δ200  leu2-3,112  pRS315-EXO70I486N This study 
NY17 MATa ura3-52  sec6-4 P.Novick Collection 
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Table 2: Plasmids used in Chapter Three 

Strain Host Description 
BB1701 DH5α pRS315 EXO70 
BB1622 DH5α pRS315 EXO70I114F 
BB1623 DH5α pRS315 EXO70E126V 
BB1624 DH5α pRS315 EXO70G388R 
BB1625 DH5α pRS315 EXO70N479K 
BB1627 DH5α pRS315 EXO70D541Y 
BB1628 DH5α pRS315 EXO70E547K 
BB1629 DH5α pRS315 EXO70E557K 
BB1801 DH5α pRS315 EXO70K564E 
BB1630 DH5α pRS315 EXO70R623I 
BB1614 DH5α pRS313 EXO70E126V 
BB1615 DH5α pRS313 EXO70G388R 
BB1616 DH5α pRS313 EXO70N479K 
BB1618 DH5α pRS313 EXO70D541Y 
BB1619 DH5α pRS313 EXO70E547K 
BB1620 DH5α pRS313 EXO70E557K 
BB1621 DH5α pRS313 EXO70R623I 
BB1702 DH5α pRS315 exo-188 
BB1704 DH5α pRS315 exo-113 
BB1579 DH5α pGEX6P1PH (N terminal GST tag and C terminal 6 His tag) 
BB1587 BL21 pGEX6P1PH EXO70 

BB1709 BL21 
pGEX6P1PH EXO70-1521 
(E443A,R444A,K445A,E488A,K489A,E491A) 

BB1828 BL21 pGEX6P1PH EXO70-ΔC (aa 346-515 is deleted) 
BB1814 BL21 pGEX6P1PH STE20 (aa314-432) 
BB442 BL21 pGEX4T1 Sec9 (aa402-651) 
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CHAPTER FOUR 

The N-terminus of Rho3 Determines its Function and 
Localization during Exocytosis 
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ABSTRACT 

The Rho family small GTPases are important regulators in many cellular events such 

as polarized exocytosis and actin cytoskeleton. In yeast Saccharomyces cerevisiae, Rho3 and 

Cdc42 play important roles in regulating exocytosis which are independent from their roles 

in actin polarity. Studies on mutant alleles of Rho3 and Cdc42 suggested that while Cdc42 

functions during bud emergence and early bud growth, Rho3 functions throughout the cell 

cycle. Consistent with its function in the early stages of the cell cycle, Cdc42 localization is 

concentrated at the bud tip where active secretion occurs. However, the localization of Rho3 

and the functional specificity of Rho3 have not been clearly described. Using a novel 

monoclonal antibody for Rho3, we find that Rho3 has a distinctive localization pattern 

compared to that of Cdc42. While Cdc42 is concentrated at the bud tip where active secretion 

occurs, Rho3 localizes at the periphery of the plasma membrane. Studies on the chimeric 

proteins between Rho3 and Cdc42 suggested that the N terminus of Rho3 is necessary and 

sufficient for its function and localization in the cell. Further analysis of the Rho3 N terminus 

revealed two elements that are important for its function. A cysteine residue at position five 

is palmitoylated and dictates the Rho3 plasma membrane localization. The N terminus also 

contains a pair of basic residues (arginine and lysine) at positions 17, 18 that are required for 

interacting with the downstream target Exo70. The distinctive plasma membrane localization 

together with the stronger interaction with Exo70 specifies Rho3 function in exocytosis.  
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INTRODUCTION 

In eukaryotic cells, exocytosis is a fundamental process that mediates the secretion of 

intracellular protein contents to the extracellular compartment. In Saccharomyces cerevisiae, 

polarized exocytosis is tightly regulated by a number of gene products to ensure proper 

delivery of newly synthesized membrane protein and lipids to specific domains of the plasma 

membrane. These gene products include the type V myosin Myo2 for vesicle 

transport(Schott et al., 1999), the exocyst complex for vesicle tethering(TerBush and Novick, 

1995), Rho family small GTPases for activation of the exocytic machinery (Roumanie et al., 

2005) and the SNARE complex mediating membrane fusion.  

The exocyst complex is a multisubunit protein complex composed of Sec3, Sec5, 

Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84 (TerBush et al., 1996). Early work from a 

number of laboratories demonstrated that components of the exocyst complex function as 

downstream effectors for members of the Rho family small GTPases in regulating exocytosis. 

There are five Rho family small GTPases in yeast, Rho1-4, and Cdc42. Studies from our 

laboratory demonstrated that Rho3 and Cdc42 have direct roles in regulating exocytosis. A 

cold sensitive mutant of Rho3, rho3-V51, displayed severe growth and secretion defect, but 

the actin polarity remained intact at restrictive conditions (Adamo et al., 1999). In addition to 

the rho3-V51 mutant, we also identified a temperature sensitive mutant in Cdc42, cdc42-6. 

Analysis of the secretory function of the cdc42-6 revealed Bgl2 secretion defects and 

accumulation of post-Golgi vesicles (Adamo et al., 2001). Like rho3-V51, the actin 

cytoskeleton in cdc42-6 is normally polarized, suggesting that the function of Rho3 and 

Cdc42in exocytosis is separate from their roles in regulating actin polarity.  
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Further analysis of the rho3-V51 and the cdc42-6 mutants revealed several common 

features. First, the exocyst subunits Sec3, Sec8 and Exo70 are highly polarized in both 

mutants, suggesting that the function of Rho3 and Cdc42 in secretion is through allosteric 

activation rather than recruitment of the exocytic machinery (Roumanie et al., 2005). Second, 

genetic analysis suggested that the pathway by which Cdc42 regulates secretion is closely 

linked to that of Rho3. The rho3-V51 and the cdc42-6 mutants can both be suppressed by 

SEC4, SRO7, and SEC9, all of which are essential components of the exocytic machinery 

(Adamo et al., 2001). The shared suppressors and the synthetic lethality between cdc42-6 and 

rho3-V51 mutants provided strong genetic evidence that Rho3 and Cdc42 have overlapping 

functions in exocytosis. Recent work from our laboratory provided the first direct evidence 

that Exo70 interact with both Rho3 and Cdc42 from yeast lysate. This interaction is GTP 

dependent and is only detectable when both GTPases are fully prenylated (Wu et al, 20009).  

Although Rho3 and Cdc42 share a common effector and have overlapping functions, 

there are different characteristics in how these two proteins regulate exocytosis in yeast. 

Analysis of the secretory machinery revealed that while rho3-V51 is defective in invertase 

and Bgl2 secretion, cdc42-6 mutant is only defective in Bgl2 secretion (Adamo et al., 1999; 

Adamo et al., 2001). Invertase and Bgl2 are carried by two classes of vesicles with different 

density and distinctive enriched cargo (Harsay and Schekman, 2002). This cargo specific 

phenotype suggested that Rho3 and Cdc42 might affect different branches of the exocytic 

pathway. Another distinctive aspect is that rho3-V51 and cdc42-6 mutants accumulated post-

Golgi vesicles during different stages of the cell cycle. Electron microscopy showed that the 

rho3-V51 mutant displayed an equivalent accumulation of post-Golgi vesicles throughout the 
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cell cycle, whereas the accumulation of post-Golgi vesicles in cdc42-6 is only restricted to 

small budded cells. These data demonstrated that although both GTPases can function during 

bud emergence and early bud growth, only Rho3 is required for later bud growth.   

Sequence alignment of Rho3 and Cdc42 revealed that Rho3 has a long N-terminal 

extension, which contains a palmitoylation motif  (Roth et al., 2006). This is a unique feature 

for Rho3 because most Rho family small GTPases are palmitoylated at their C terminus next 

to the CAAX domain (Wennerberg and Der, 2004). Cdc42 has a polybasic domain at its C 

terminus, which is a common membrane targeting signal via the electrostatic interactions 

with phospholipids at the plasma membrane. However, the Rho3 C terminus does not contain 

a polybasic domain. Furthermore, the CAAX motif of Rho3 is farnesylated instead of being 

geranylgeranylated as seen in Cdc42. Farnesyl chains contains 15 carbons, which does not 

penetrate into the membrane as deep as geranylgeranyl chains. This leads to the idea that 

palmitoylation might help localize Rho3 at the plasma membrane.  

To understand how Rho3 and Cdc42 carry out both distinctive and shared functions, 

we sought to identify regions of each protein that are responsible for their functional 

specificity by constructing chimeric proteins between the two small GTPases based on these 

apparent differences. Here, we report that Rho3 has a very distinctive localization pattern 

compared to that of Cdc42. While Cdc42 concentrates at the bud tip where active secretion 

occurs, Rho3 displayed a more dispersed localization around the periphery of the cell. The 

function and localization of Rho3 is critically dependent on the N terminus region of this 

protein.  Addition of this domain onto Cdc42 increased the affinity of its interaction with 
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Exo70, and created a chimeric protein that functions and localizes as both Rho3 and Cdc42. 

Dissecting the N terminus of Rho3 revealed two functionally important elements. The 

cysteine residue is important for its localization, and the arginine and lysine at the 17, 18 

position are important for interacting with the downstream effector Exo70. The synergistic 

regulation of localization and downstream effector interaction determines the specificity by 

which Rho3 and Cdc42 regulate polarized exocytosis.  

MATERIAL AND METHODS 

Yeast Strains, Reagents, and Genetic Techniques 

Cells were grown in YPD media containing 1% bacto-yeast extract, 2% bacto-

peptone, and 2% glucose. The components of the media were from Fisher Scientific. Sorbital, 

sodium azide (NaN3), Sodium Flouride (NaF), Ethanolamine, β-mercaptoethanol, Triton X-

100, and HIS-Select® Nickel Affinity Gel were obtained from Sigma Chemical (St. Louis, 

MO). Zymolyase (100T) was from Seikagaku (Tokyo, Japan). 10% Tween-20 was from 

BioRad. DTT, BSA, yeast nitrogen base, raffinose galactose and 5-Fluoroorotic Acid were 

from US Biologicals (Swampscott, MA). Glutathione sepharose beads were from Amershan 

Biosciences. Secondary antibodies for Odyssey Imaging system were from LI-COR 

Biosciences and Molecular Probes. Secondary antibodies for immunofluorescene are from 

Jackson ImmunoResearch. Formaldehyde (37%) was from Electron Microscopy Sciences (Ft. 

Washington, PA). FluorSave Reagent (mounting media) was from Calbiochem. Slides for 

Immunofluorescence are from Carlson Scientific, Inc. The bead beater for making yeast 
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lysate was from Biospec Products. Transformations for suppression analysis were performed 

using the lithium acetate method described in Guthrie and Fink (1991).  

Construction of chimeras 

Chimeric genes were constructed by overlapping PCR reaction and verified by DNA 

sequencing (Horton et al., 1989; Yon and Fried, 1989). Primers and templates used are listed 

in Table 3 

Protein purification and quantification 

The pGEX-6P6H (pB1579) was constructed as described previously. This vector was 

used to create the following GST-fusion constructs: GST-Sec9 (aa 402-651) and GST-Exo70 

(aa 1-623). All constructs were confirmed by sequencing and protein expression was 

performed in Escherichia coli BL21 cells. Cells were grown at 37°C in Terrific broth 

medium to an OD599 2.0-2.5. Cells were shifted to 25°C and protein expression was induced 

with 0.1 μM IPTG for 3 hours at 25oC.  

6xHis-tag purification was performed by binding the bacteria lysate to HIS-Select® 

Nickel Affinity Gel (Sigma), and then eluting with 500 mM imidazole. The 6xHistidine 

eluates were then incubated with glutathione Sepharose beads at 4oC for one hour, and the 

beads were washed with wash buffer (20 mM Tris pH7.5, 120 mM NaCl, and 1% Tween 20) 

to remove unbound proteins. Protein concentration was determined by comparison to purified 

protein standards after SDS-PAGE and Coomassie Blue staining. Quantification of 

Coomassie Blue stained gels was performed by Odyssey Infrared Imaging System (LiCor).  
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Generation of yeast cell lysate 

RHO3L74, rho3-NTC42L61 , rho3-L74A17,18 CDC42L61, CDC42NTR3L74 were 

amplified by PCR reaction and subcloned behind the GAL1 promoter in a LEU2 integrating 

vector (BB24, pRS305 with GAL1 promoter). The vector was linearized by digesting with 

BstXI restriction enzyme and transformed into a Gal+ strain BY17 (a; GAL1; leu2-3,112; 

ura3-52). Yeast strains were first grown in YP with 3% raffinose overnight at 30oC to mid-

log phase of OD 1-1.5, and incuced with a final concentration of 1% galactose for two 

additional doublings (four hours) at 30oC. Cells were pelleted by centrifugation at 5000 rpm 

for 5 minutes and washed with ddH2O. Pellets were immediately frozen on dry ice. Frozen 

pellets were lysed with lysis buffer using a bead beater from Biospec products. The optimal 

wet weight for the small chamber was 5-6 grams. The pellet was beaten for 1 minute 

followed by a 3 minutes pause for five cycles. Lysate was then subjected to centrifugation for 

10 min at 17,000xg, followed by ultracentrifugation at 100,000xg for 30minutes. The protein 

concentration of the lysate was measured by a Bradford assay. Each lysate was normalized to 

about 25 mg/ml total protein concentration and frozen on dry ice. 

GST pull-down from yeast cell lysate 

All recombinant proteins were present at a final concentration of 3μM. Cell lysates 

were prepared for GST pulldown experiments as described above and incubated with each 

fusion protein bound to glutathione sepharose beads for 1.5 hours at 4oC. The beads were 

washed five times with lysis buffer (20 mM tris-HCl pH7.5, 120 mM NaCl, 10 mM MgCl2, 1% 

Tween 20, 1 mM DTT), and boiled at 95oC for 5 minutes. Samples were subjected to SDS-
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PAGE analysis and blotted with Rho3 and Cdc42 monoclonal antibodies. Quantification of 

western blots was performed with Odyssey infrared imaging system.  

Immunofluorescence 

Cells were grown overnight to mid-log phase and fixed immediately with 37% 

formaldehyde. Fixed cells were spheroplasted, permeabilized with 0.5% SDS, and affixed to 

the slides as described previously (Brennwald and Novick, 1993, Roumanie et al, 2005). 

Rho3 mAb at a 1:10 dilution and affinity-purified polyclonal Cdc42 at a 1:75 dilution were 

incubated for 90 minutes.  The secondary antibodies used were FITC-conjugated goat anti–

rabbit at 1:75 dilution for detection of Cdc42 and Rhodamine Red-X-AffiniPure goat anti-

mouse IgG at 1:75 dilution for detection of Rho3. Stained cells were viewed on a microscope 

(model E600; Nikon) equipped with a 512X512 back illuminated frame-transfer charge 

coupled device camera (Princeton Instruments) and Metamorph software (Universal Imaging 

Corp.).  

Subcellular fractionation 

Cells containing RHO3, rho3-NTC42, RHO3-A3,4, RHO3-A5, and rho3-A17,18 were 

grown overnight in selective media, harvested, and grown in rich media for 2 hours. 

Approximately 200 OD599 were washed with 10/20/20 buffer (10 mM Tris, pH 7.5, 20mM 

NaN3, and 20mM NaF) and spheroplasted in 7.2 ml of spheroplast buffer (0.1 M Tris, 10 mM 

azide, 1.2 M sorbitol, and 21 mM β-mercaptoethanol with 0.1mg/ml Zymolyase 100T) for 30 

min at 37oC. The spheroplasts were lysed in 5 ml of ice-cold triethanolamine (TEA)/sorbitol 

(10 mM TEA, pH 7.2, and 0.8 M sorbitol) with a protease inhibitor cocktail (1 mg/ml each of 

leupeptin, aprotinin, antipain, 0.5mM PMSF, 20mM Pepstatin and 2 mM 4-(2-aminoethyl) 
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benzenesulfonyl fluoride) and spun at 450 g for 3 min in a cold centrifuge to remove 

unbroken cells. The lysates were spun at 31,000 g for 20 min at 4oC in a Sorvall centrifuge 

tube to separate supernatant and pellet fraction. All pellets were normalized to the volume of 

the supernatant fractions. Equal volume of total, supernatant and pellet fraction were boiled 

in SDS sample buffer, run on a 15% SDS–polyacrylamide gel, and blotted with polyclonal 

Sso1/2 antibody (1:2000), monoclonal Rho3 antibody (1:200) or Cdc42 antibody (1:250). 

Quantification of western blots was performed with Odyssey infrared imaging system.  

RESULT 

Rho3 and Cdc42 have Distinct Localization Patterns on the Plasma Membrane  

 The function of Cdc42 in polarized growth is thought to be closely tied to its highly 

polarized pattern of localization on the plasma membrane.  Consistent with this notion we 

have previously shown that Cdc42 mutants defective in exocytic function, demonstrate this 

defect only during early bud emergence when the localization of Cdc42 is highly polarized 

and not at later stages of bud growth.  In contrast secretory defective mutants in the Rho3 

GTPase, demonstrate defects throughout bud growth.  However the intracellular localization 

of Rho3 has not been described.  We have isolated a new monoclonal antibody to Rho3 

which we have used in double-labeling experiments to examine the pattern of localization 

compared to that of Cdc42.   The results, shown in Figure 14, demonstrate a surprisingly 

distinct staining pattern. In stark contrast to the tightly polarized localization of Cdc42, Rho3 

localizes along most of the plasma membrane and only slightly more abundant in the buds 

and bud-proximal portion of the mother cell plasma membrane.  This led us to hypothesize 
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that the distinct plasma membrane localization patterns for these two GTPases might be 

linked to their distinct functions in promoting polarized growth during different stages of bud 

growth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Localization of Rho3 and Cdc42 were examined by immunofluorescence microscopy. Each 
cell was double-labelled with monoclonal Rho3 antibody (red pseudo color) and affinity 
purified polyclonal Cdc42 antibody (green pseudo color) in a RHO3 plasmid shuffle strain. 
Cells containing rho3Δ are used as a negative control for the specificity for Rho3 monoclonal 
antibody (both images in the bottom of the 5th column).  Cells were grown in SC-URA media 
overnight at 25oC, shifted to YPD media for 2 hours and processed for immunofluorescence 
microscopy as described in Material and Methods.  Scale bar 2μm.  

Figure 14: Localization of Rho3 and Cdc42 
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To test this model, we created chimeric forms of the two GTPases to identify the 

region(s) required for the distinct functions and localization in the cell. Surprisingly, we 

found that our initial set of chimeras that exchanged a small region (20 residues of Rho3 and 

6 residues of Cdc42) at the extreme N-termini of the two proteins resulted in rather dramatic 

consequence to both the function and localization of these two GTPases. We examined the 

functional consequences of these chimeras expressed behind either the CDC42 or RHO3 

promoter present on a low-copy CEN plasmid.  The ability of each chimera to complement a 

deletion in the chromosomal copy of RHO3 or CDC42 was assessed using a plasmid shuffle 

assay (see materials and methods).  The results of the complementation show that the N-

terminus of Rho3 is critical for its function (Figure 15B).  Rho3 lost its N terminus no longer 

functions as Rho3 in the cell, suggesting that the N terminus of Rho3 is required for its 

function. Surprisingly, addition of this region onto Cdc42 converts Cdc42 into a chimeric 

protein, Cdc42-NTR3 that completely complements the loss of Rho3 in the cell. Interestingly, 

the ability of the Cdc42-NTR3 chimera to act as the sole source of Rho3 does not result in a 

diminution of its ability to act as Cdc42. The Cdc42-NTR3 chimera shows no detectable loss-

of-function as the sole source of Cdc42 as it can completely complement the cdc42Δ.   

Expression levels of the chimeras were nearly identical to their non-chimeric genes (on CEN 

plasmids), suggesting that the switch of function phenotype was not due to the elevated 

protein levels in the cell. Identical results were obtained for all constructs whether expressed 

behind the CDC42 or RHO3 promoter. 
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 We then examined the effect of the N-terminal exchange on the localization of the 

chimeric GTPases using the same Rho3 and Cdc42 antibodies as mentioned in Figure 14. 

Since the Rho3 and Cdc42 antibodies react with the C terminal portion of each GTPases, this 

allows us to probe the localization of each chimera as the only source of Rho3 or Cdc42 in 

the cell. When we examined the staining pattern of Cdc42-NTR3 chimera as the sole source of 

Cdc42 in the cell, we found a striking change in the staining pattern observed with the Cdc42 

antibody.  The staining pattern, seen in Figure 15C, is very similar to that of Rho3, although 

a significant number of cells with small or incipient buds also demonstrated a “Cdc42-like” 

staining pattern (Figure 15C).  When the Rho3-NTC42 chimera was analyzed, we found the 

normal Rho3 pattern of plasma membrane staining was lost and only diffuse cytoplasmic 

staining was observed.  Taken together this suggested that the Rho3 N-terminus is an 

important determinate for localization—both in dictating the pattern of localization as well as 

recruitment of the Rho GTPase to the plasma membrane. Importantly the ability of the N-

terminus to affect both the function and localization of the associated GTPase gives strong 

support to the model that localization pattern is critical to the function of these two GTPases 

in the cell. 
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Figure 15:The N terminus of Rho3 is necessary and sufficient for its function and localization.
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(A) Schematic representations of RHO3, RHO3 with the N terminus of CDC42 (rho3-NTC42), 
CDC42, and CDC42 with the N terminus of RHO3 (CDC42-NTR3). (B) RHO3, rho3-
NTC42,CDC42,  and CDC42-NTR3 were transformed into a RHO3 plasmid shuffle strain or a 
CDC42 plasmid shuffle strain on a CEN HIS3 plasmid. The growth of three independent 
colonies was shown under restrictive conditions where the wild type RHO3-URA3 or the 
CDC42-URA3 plasmid was lost by counter selection on 5FOA plates. (C) Whole cell lysates 
were prepared in strains with CDC42 or CDC42-NTR3 as the only source for CDC42 and 
strains with RHO3 or rho3-NTC42 as the only source for RHO3. Lysates were subjected to 
SDS-PAGE analysis and blotted with Cdc42 or Rho3 monoclonal antibodies.  Since rho3-
NTC42 cannot function as the only copy of RHO3 in the cell, the gain-of-function chimera 
CDC42-NTR3 was introduced into the cell to maintain its viability. (D) Cells containing 
RHO3, rho3-NTC42, CDC42, and CDC42-NTR3 were grown at 25oC, fixed and process for 
immunofluorescence. Monoclonal antibody against Rho3 and affinity purified polyclonal 
antibody against Cdc42 were used as described in materials and methods. The yeast strain 
(BY2235) contains rho3Δ complemented by CDC42-NTR3 as a control for the specificity of 
the Rho3 monoclonal antibody. Scale bar, 2μm. 

The Rho3 N-terminus Encodes Multiple Specificity Determinants 

 To further dissect the mechanism by which the N-terminus of Rho3 affected the 

function and localization of the protein, we carried out an extensive mutagenesis of this 

domain and examined the effect on localization and function both in the context of the 

Cdc42-NTR3 chimera as well as in wild-type Rho3. The functional studies shown in Figure 

16B, demonstrate a requirement for a cysteine at position 5, and two adjacent residues at 

positions 3, 4 in the ability of this domain to affect a switch of function phenotype in the 

context of Cdc42-NTR3 chimera. The cysteine residue at position five has previously been 

shown to be palmitoylated (Roth et al., 2006). Consistent with this notion, we find that 

mutations at this position result in loss of plasma membrane staining and the protein is 

largely lost from the membrane pellet fraction following cell fractionation (Figure 16E).  The 

effect of the A3, 4 residues appears to have a similar effect on localization and fractionation 

(Figure 16E) and therefore may be a component of the recognition sequence used by the 

palmitoyl transferase.  
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 We next examined the effect of the palmitoylation site mutations on the ability of the 

N-terminus of Rho3 to affect the localization pattern of the Cdc42-NTR3 chimera.  

Interestingly, we found the cysteine to alanine mutation in this chimera resulted in a 

complete loss of Rho3-like staining pattern and instead revealed a staining pattern identical 

to seen for wild-type Cdc42. Thus palmitoylation of the N-terminus appears to be critical 

signal in re-directing the pattern of localization to the dispersed pattern seen for Rho3.    

  Surprisingly, while loss of palmitoylation was required for the switch of function 

phenoytpe, it was dispensible for function in the context of wild-type Rho3.   Although these 

mutations resulted in a significantly more soluble protein (as judged by fluorescence and 

fractionation), presumably enough Rho3 is associated with the membrane to provide the 

minimal requirements for Rho3 signaling.    
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Figure 16:The N terminus of Rho3 contains two elements that are important for its 
function and localization. 

(A) Single residues or a group of residues are mutated to alanine at the N terminus of Rho3. 
Mutations were depicted with color boxes.  (B) CDC42, and RHO3, CDC42-NTR3 with the 
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corresponding N terminal mutants were transformed into a RHO3 plasmid shuffle strain on a 
CEN HIS3 plasmid. The ability of the mutants to complement rho3Δwere analyzed on 5FOA 
plates when the original RHO3-URA3 plasmid was lost . (C) CDC42, CDC42-NTR3, CDC42-
NTR3 A3,4, CDC42-NTR3 A5, and CDC42-NTR3A17,18, were first transformed in to a CDC42 
plasmid shuffle strain and then grown on 5FOA plates to evict the original CDC42 plasmid. 
Immunofluorescence was performed using anti-Cdc42 polyclonal antibody as described in 
materials and methods. (D) Yeast cells containing RHO3, rho3-NTC42 , RHO3-A3,4, RHO3-
A5, and rho3-A17,18 on CEN-HIS3 plasmids were grown to midlog phase at 25oC, fixed and 
processed for immunofluorescence. Monoclonal antibody against Rho3 was used at 1: 10 
dilution.  Scale bar: 2μm. (E) Yeast cells containing RHO3, rho3-NTC42 , RHO3-A3,4, 
RHO3-A5, and rho3-A17,18 as the only source of RHO3 were grown at 25oC, spheroplasted, 
lysed and spun at  31,000 g to separate the cytosolic and the membrane fraction. Equal 
volume of total cell lysates (total), supernatant (S31) and pellet (P31) were subjected to SDS-
PAGE analysis and blotted with Rho3 monoclonal antibody. rho3-NTC42  (BY2486) and 
rho3-A17,18 (BY2487)stains contain a CDC42-NTR3 on a CEN-URA3 plasmid to maintain 
the viability of the cell.  

 
The requirement for palmitoylation of the Rho3 N-terminus in the context of the 

Cdc42-NTR3 chimera, allowed us to ask which member(s) of the DHHC family of 

palmitoyltransferases were important for converting Cdc42-NTR3 chimera into a protein 

capable of functioning as Rho3.  To test this we constructed strains containing deletions of 

each of the 7 DHHC family members in the context of the RHO3 plasmid shuffle strain. We 

then examined the effect of loss of each palmitoyltransferase on the ability of the Cdc42-

NTR3 chimera to complement the rho3Δ.   Suprisingly, we found that loss of Erf2, the 

palmitoyltransferase previously suggested to be the major palmitoyltransferase for Rho3 

(Roth et al., 2006), had only a modest effect on the ability of the chimera to act as the sole 

source of Rho3.  Another transferase, Pfa4, also showed a similar mild but detectable effect 

on complementation.   Interestingly, the Akr1 transferase, demonstrated the strongest 

effect—as loss of this DHHC family member completely blocked the ability of the Cdc42-

NTR3 to complement.  The other four DHHC family members showed no detectable effect 
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on complementation in this assay (Figure 17).  Taken together this data suggests the 

involvement of two new palmitoyltransferases, Akr1 and Pfa4, in the palmitoylation of the 

N-terminus of Rho3 and that multiple DHHC family palmitoyltransferases are likely to act 

on the Rho3 N-terminus. 

 

 

Figure 17: The effect of palmitoytransferase deletion on the ability of Cdc42-NTR3 to 
function as Rho3 

RHO3, CDC42 and CDC42-NTR3 were constructed on CEN HIS3 plasmids and transformed 
into RHO3 plasmid shuffle strains where individual palmitoytransferase was deleted. The 
ability of CDC42-NTR3 to function as the only source of Rho3 was analyzed on 5FOA plates 
where the wild type RHO3-URA3 plasmid was lost.  

 

The N-terminal region of Rho3 and Cdc42 determines the Strength of Binding to Exo70 

A second important element in the Rho3 N-terminus was identified by mutation of a 

pair of basic residues at positions 17 and 18.  When these residues were replaced with alanine 

in either the context of Rho3 or the Cdc42-NTR3 chimera, the ability of either gene to rescue 

the loss of rho3Δ in the cell was completely lost.  When we examined the effect of this 

mutation on the localization of Rho3 or Cdc42-NTR3, we found the mutant proteins localized 

similar to the un-mutated form of the proteins (Figure 16C, D), although there was a slight 
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reduction in the amount of Rho3 protein associated with the membrane pellets by 

fractionation (Figure 16E).   The strong loss of function phenotypes associated with 

mutations at these residues suggested they may play a role in the interaction of Rho3 with an 

upstream or downstream component of its signaling.  Work from our laboratory has 

demonstrated that Exo70 is a critical downstream effector for both Rho3 and Cdc42 signaling 

to the exocytic apparatus (Wu et al., 2009).  We have shown that prenylated Rho3 and Cdc42 

bind to Exo70 in a manner that is both GTP and effector domain dependent.  We made use of 

this binding assay to examine the effects of the A17, 18 mutations on the ability of GTP-

locked Rho3 (Rho3-L74) to bind to the effector protein Exo70.  The results, shown in Figure 

18A, demonstrate that Exo70 binding to GTP-bound Rho3 is almost completely lost in the 

presence of these mutations.  By modeling the structure of Rho3 (based on the existing 

structure of Cdc42) it is apparent that Rho3 residues 17,18 are likely to be in very close 

proximity to the effector domain in the active GTP-bound form of the protein.   Therefore 

these residues may represent a binding surface recognized by Exo70 in its discrimination of 

the GTP-bound forms of Rho3.   

The results above suggested that in addition to the function of the N-terminus of Rho3 

in determining its unique localization pattern, this region likely has a role in providing 

elements involved in binding to the downstream effector Exo70. We therefore examined the 

effect of exchanging the N-termini of Rho3 and Cdc42 on the binding to Exo70. The results, 

shown in Figure 18B, demonstrate that the Rho3 N-terminus promotes the interaction with 

Exo70 relative to that of the homologous region of Cdc42.  In particular the binding of GTP-

locked Rho3-NTC42 is significantly reduced relative to that of Rho3, and the binding of GTP-
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locked Cdc42 is significantly improved by the presence of the Rho3 N-terminus. To examine 

the effect of these regions on the relative affinity of each GTPase for Exo70 we performed 

equilibrium binding assays over a large range of concentrations of recombinant Exo70. The 

extent of interaction with GTP-locked forms of Rho3, Cdc42 and each of the N-terminal 

chimeras was monitored by quantitative western blot analysis as shown in Figure 18C. The 

binding results were used to estimate the EC50—a measure of the apparent affinity observed 

between each GTPase and Exo70 in this assay. The analysis of EC50 demonstrates that 

overall Rho3 has a significantly higher affinity for Exo70 than Cdc42 (7μM vs. over 300 

μM), and that in both cases the presence of the N-terminus of Rho3 significantly increases 

the affinity for Exo70. This suggests that stronger binding of the Rho3 GTPase to Exo70, 

along with the ability to attain the proper pattern of localization on the plasma membrane, are 

critical determinants in specifying Rho3 function in promoting polarized exocytosis.  
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Figure 18: N terminus of Rho3 determines the affinity of the interaction between Rho3 
and Exo70. 

(A) GST-Sec9 and GST-Exo70 were purified from bacteria and immobilized on glutathione 
sepharose beads. GTP locked forms of Rho3, Cdc42, the gain-of function chimera Cdc42-
NTR3  and the loss of function chimera rho3-NTC42 were expressed behind a galactose 
inducible promoter in yeast. Lysates obtained from these strains were used in the binding 
experiments. The input represents 1% binding. The bar graph on the right panel represents 
the quantitation of the western blots using the Odyssey Infrared Imaging system. Data were 
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analyzed by two-tail student’s t test with error bars representing standard deviation from five 
independent experiments. (B) Yeast lysates overexpressing GTP bound Rho3 or Rho3-A17, 
18 were expressed behind a galactose inducible promoter. The binding experiments were 
performed as described in above.  The bar graph on the right panel represents the quantitation 
of the western blot. Data were analyzed by two tail student t- test with error bars representing 
standard deviation from four independent experiments. (C) Lysate was incubated with 
increasing concentration of GST-Exo70 as indicated above the blot. Samples were subjected 
to western blot analysis using monoclonal antibodies against Rho3 or Cdc42. The predicted 
EC50 is indicated on the right panel.  

DISCUSSION 

Localization of members of the Rho GTPase family is thought to play an important 

role in their cellular functions.  Here we demonstrate that the plasma membrane localization 

pattern of the Rho3 GTPase is distinct from the highly polarized localization pattern 

observed for Cdc42.   Using chimeric forms of Rho3 and Cdc42 we demonstrate that the N-

terminal domain of Rho3 plays a critical role in determining this pattern of localization and 

that palmitoylation at a N-terminal cysteine is required for adopting this pattern.   The precise 

mechanism by which palmitoylation of Rho3 is linked to this pattern of plasma membrane 

localization is presently unknown.  However it is likely a DHHC-family 

palmitoyltransferases play a role.  Previous studies implicated the Erf2 palmitoyltransferase 

in modification of Rho3 however significant levels of palmitoylation remained in the absence 

of this enzyme (Roth et al., 2006).  We have found that deletion of the gene encoding this 

enzyme has no effect on the switch-of-function property associated of the Cdc42-NTR3 

chimera.  Therefore other palmitoyltransferases may play a role in determining the dispersed 

plasma membrane localazation pattern seen for Rho3.  Our genetic results suggest that Akr1 

enzyme is likely to play an especially important role in the localization of Rho3 as this 

DHHC family member is essential for ability of the Cdc42-NTR3 chimera to function as Rho3. 
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 In contrast to the consistently dispersed pattern of localization found for Rho3, Cdc42 

is tightly polarized to bud tips during bud emergence but this polarized staining is lost as the 

bud enlarges.  This pattern of localization appears to require a distinct set of signals from that 

of Rho3 that are likely to reside in the C-terminal portion of the protein.  In addition to C-

terminal prenylation (CAAX) signal a stretch of five basic residues, known as a poly basic 

region is present at the C-terminus of Cdc42.  The pattern of localization observed for Cdc42 

closely mirrors the pattern observed for many proteins which ride to the plasma membrane 

along with polarized delivery of post-Golgi secretory vesicles.   This list includes Sec4, Sec2, 

Myo2, and most of the subunits of the exocyst complex.  Consistent with this notion Cdc42 

has been suggested to itself be associated with post-Golgi secretory vesicles during cell 

fractionation (Wedlich-Soldner et al., 2003) and its polarized localization is rapidly lost with 

a block in polarized secretion (Irazoqui et al., 2003) (Zhang et al., 2001) The switch of 

function chimera, Cdc42-NTR3, appears to have the ability to adopt both Rho3-like and 

Cdc42-like patterns of localization.   This suggests that the pathways that mediate these two 

localization patterns operate independently of each other.    The effects of the palmitoylation 

site mutation on the localization of Cdc42-NTR3 support this view—as we see the loss of 

Rho3 localization has no effect on the ability of this protein to demonstrate normal Cdc42 

localization.  Preliminary experiments to examine the effect of secretory blocks on the ability 

of Rho3 and Cdc42-NTR3 to adopt the Rho3-like localization pattern also support this view. 

 In addition to giving insight into two distinct mechanisms for localization of 

Rho/Cdc42 GTPases, this work demonstrates the importance of effector binding to the 

specific function of these two GTPases in the cell.  This is particularly evident for Rho3—
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which appears to have evolved a relatively high affinity means for interacting with the Exo70 

component of the exocyst.  Rho3 plays a critical role in secretion in larger budded cells 

where the exocyst complex is significantly less concentrated than its highly polarized pattern 

in emerging buds.  Therefore the local concentrations in which Rho3 must engage its target 

are likely to be considerably more dilute at this point in bud growth than during the highly 

polarized exocytic delivery that occurs during bud emergence.  In contrast Cdc42, appears to 

have evolved a lower affinity means of interacting with Exo70 which might have evolved to 

match the very high local concentrations of the both Cdc42 and the exocyst during bud 

emergence.  This lower affinity interaction between Cdc42 and Exo70 does not appear to be 

required, as we find no evidence of polarity or cell shape problems in cells when the higher 

affinity Cdc42-NTR3 construct is present as the sole source of Cdc42 (unpublished 

observation).   For Rho3 however this is not the case, as we find that the Cdc42-NTR3(A17.18) 

mutant that is able to properly localized as Rho3, but can not function –likely due to a 

reduced affinity of the GTPase for Exo70.   Therefore localization of a functional Rho 

GTPase, alone, is not sufficient to provide Rho3 function. 

 Taken together it is clear that the N-terminus of Rho3 plays a very important role in 

regulating its specific function in the cell.  Remarkably it does this by both specifying a 

dispersed unpolarized pattern of localization on the plasma membrane as well as by 

modulating the avidity of binding to the downstream effector.  Both properties of the N-

terminus appear to play a particularly important role in how Rho3 regulates vesicle docking 

and fusion at specific stages of bud growth.  As the bud emerges, a concentrated patch of 

Cdc42 and Exocyst complex helps to promote a high flux of exocytosis at highly polarized 
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bud tips.  As the bud enlarges, both Cdc42 and exocyst polarization are lost and Rho3 is left 

as the primary regulator of exocyst-dependent docking and fusion events.  
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Table 3: Primers used to Construct Chimeric Proteins 

Primer Function Sequence (5’-3’) 

C42-BamHI Cdc42 5’ end BamHI site GCATCAGGATCCTTTTTAAAAAAAGTTGCATTATTTC 

C42-SaII Cdc42 3’ end SalI site GCATCTGTC GACTGGTA G GACTC GC AAATGTC GC 

C42-F3 Cdc42/Rho3 junction to amplify the N 
terminus of Cdc42 

GAAAGAAAGATC GTTGTTGTC GGTGATGGTGC 

C42-F4 Cdc42/Rho3 junction to amplify the 
Cdc42 without its N terminus 

GTC GC C CAAAATAACACA CTTTAGC GTTTGCATTTTG 

R3-BglII Rho3 5’ end BglII site GACTCCAGATCTGGAGTAAGCGAAACTCAAATTGA 

R3-SalI Rho 3’ end SalI site GCATTCGTCGACGCACATGCTGGAGGGGAAAGAAC 

R3-F3 Rho3/Cdc42 junction to amplify the N 
terminus of Rho3 

GCAAACGCTAAAGTGTGTTATTTTGGGCGACGGTGCCT 

R3-F4 Rho3/Cdc42 junction to amplify the 
Rho3 without its N terminus 

AACAGCACCATCACCGACAACAACGATCTTTCTTTCGATC 
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Table 4: Yeast Strains used in Chapter Four 

Strain Genotype Reference 

BY1426 MATa rho3Δ::LEU2;ura3-52;his3-Δ200;leu2-3,112;+pRS36RHO3 P.Brennwald Collection 

BY1595 MATa rho3Δ::LEU2; ura3-52;his3-Δ200; leu2-3,112+pRS313 RHO3 this study 

BY1689 MATa rho3Δ::LEU2; leu2-3,112; ura3-52; his3-Δ200; +pRS313RHO3C5A this study 

BY1718 MATa rho3Δ::LEU2; leu2-3,112; ura3-52; his3-Δ200; +pRS313RHO3A3,4 this study 

BY1807 MATa cdc42Δ::HIS3; ura3-52; leu2-3,112; +pRS316CDC42 P.Brennwald Collection 

BY1846 MATa cdc42Δ::HIS3;ura3-52; his3-Δ200;leu2-3,112;+pRS315CDC42NTR3A3,4 this study 

BY2232 MATa cdc42Δ::HIS3;ura3-52;his3-Δ200;leu2-3,112;+pRS315-CDC42-NTRho3A17,18 this study 

BY2233 MATa cdc42Δ::HIS3;ura3-52;his3-Δ200;leu2-3,112;+pRS315-CDC42-NTRho3C5A this study 

BY2234 MATa cdc42Δ::HIS3;ura3-52;his3-Δ200;leu2-3,112;+pRS315-CDC42-NTRho3 this study 

BY2236 MATa cdc42Δ::HIS3;ura3-52;his3-Δ200;leu2-3,112;+pRS315-CDC42 this study 

BY2486 MATa rho3Δ::LEU2;ura3-52;his3-Δ200;leu2-3,112;+pRS313 rho3-NTC42+pRS316 CDC42-NTR3 this study 

BY2487 MATa rho3Δ::LEU2;ura3-52;his3-Δ200;leu2-3,112;+pRS313 rho3-A17,18+pRS316 CDC42-NTR3 this study 
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Table 5: Bacterial Strains used in Chapter Four 

 
Strain Host Description 
BB442 BL21 pGEX4T1 SEC9 (aa402-651) 
BB1366 DH5α pRS313 RHO3 
BB1367 DH5α pRS313 CDC42 
BB1368 DH5α pRS313 rho3-NTC42 
BB1516 XL1-blue pRS313 RHO3-Q2 
BB1590 DH5α pRS313 RHO3-A3,4 
BB1515 XL1-blue pRS313 RHO3-A5 
BB1521 DH5α pRS313 rho3-A7-11 
BB1592 DH5α pRS313 RHO3-A12-15 
BB1591 DH5α pRS313 rho3-A16-19 
BB1691 DH5α pRS313 rho3-A17-18 
BB1369 DH5α pRS313 CDC42-NTR3 
BB1483 DH5α pRS315 CDC42-NTR3 
BB1522 DH5α pRS313 CDC42-NTR3Q2 
BB1523 DH5α pRS313 CDC42-NTR3A5 
BB1524 DH5α pRS313 CDC42-NTR3A7-11 
BB1532 DH5α pRS315 CDC42-NTR3Q2 
BB1533 DH5α pRS315 CDC42-NTR3A5 
BB1534 DH5α pRS315 CDC42-NTR3A7-11 
BB1587 BL21 pGEX6P1PH EXO70 
BB1588 DH5α pRS313 CDC42-NTR3A16-19 
BB1589 DH5α pRS313 CDC42-NTR3A12-15 
BB1593 DH5α pRS315 CDC42-NTR3A12-15 
BB1594 DH5α pRS313 CDC42-NTR3A3,4 
BB1596 DH5α pRS315 CDC42-NTR3A3,4 
BB1597 DH5α pRS315 CDC42-NTR3A16-19 
BB1598 DH5α pRS313 CDC42-NTR3A17-18 
BB1731 DH5α pRS315 CDC42 
BB1857 DH5α pRS315 CDC42-NTR3A6 
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