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Abstract

ANNIE GREEN HOWARD: MISSING DATA IN NON-PARAMETRIC
TESTS OF CORRELATED DATA

(Under the direction of Shrikant Bangdiwala)

Many public health studies are designed to test for differences in repeated measure-

ments. Measurements on the same subject are not independent and therefore analysis

methods must take correlation into account. A number of tests have been developed to

analyze this type of data. Two prominent non-parametric methods, used often when

one is not willing to make any distributional assumptions about the data, include Fried-

man’s test and a variation on Friedman’s test proposed by Koch and Sen that requires

no assumptions to be made about the correlation between measurements.

While both tests require complete and balanced data, in many studies missing data

can arise for a variety of reasons. Researchers have developed a number of methods

to adapt Friedman’s test to situations involving missing data when it can be assumed

that the missing data are missing completely at random. We propose applying these

same adjustments to the test statistic proposed by Koch and Sen to adapt this test to

deal with data that are missing completely at random. This method involves using the

sum of the reduced ranks, rather than the average rank, across all subjects to allow

for meaningful comparisons across subjects. An inflation factor is used to ensure the

missing data do not result in a substantial loss of power.

The assumption that the data are missing completely at random is often too strict

an assumption for correlated data. Often the reason for the data to be missing is di-

rectly related to the outcome values. A new strategy is proposed for adjusting both
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Friedman’s test and Koch and Sen’s test to informative missing data scenarios. The

method put forth in this paper involves the use of single imputation to impute missing

rank values along with a weighting scheme which assigns smaller weight to individuals

with more missing data. Guidelines and suggestions are put forward as to when this

new method would be preferred to the method currently used to address problems with

missing completely at random data.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

1.1.1 Motivation

Many public health studies are designed to test for a difference between repeated

measurements on the same subject. These studies can be useful in a number of different

contexts including, but not limited to, testing the reliability of a particular procedure

using repeated measurements on the same individuals, testing for a change in average

values or proportions over time, and testing for an effect of different treatments on the

same subject over a follow-up period. In all of these cases, measurements on the same

subject are not independent and therefore analysis methods must take into account

the correlation between measurements taken on the same subject. Recently, some of

the analytic approaches for this type of data analysis have been generalized to account

for missing data. In large sample studies, these methods have been proven to produce

accurate type I error rates in certain scenarios although the preferred analysis method

differs depending on a number of factors.

Non-parametric methods are one of the approaches for which these adaptations

have been developed and tested for small studies. However, these adaptations have



only been developed for scenarios where one can assume the correlation between any

two measurements on the same subject is the same. This is problematic for many

repeated measures studies, particularly longitudinal studies, when one can often make

the assumption that the correlation between two measurements that are close together

in time are likely to be more strongly correlated than measurements farther apart in

time.

These non-parametric adjustments that seek to minimize bias and preserve the ac-

curacy of type I error rates have been proven to be effective only when the probability

an observation is missing does not depend on the outcome or covariate values, com-

monly referred to as missing completely at random (MCAR). Some researchers have

investigated the power of these adjusted tests, finding the reduction in power not to be

an of great concern in the case of MCAR data (Kenward and Roger, 1997; Schluchter

and Elashoff, 1990; Catellier and Muller, 2000; Manor and Zucker, 2004; Kawaguchi

and Koch, 2010).

In practice the reasons for missingness, if even known, can be complex and assum-

ing MCAR can potentially lead to accuracy problems when testing hypotheses. Often

in studies involving repeated measurements, missingness is informative, meaning miss-

ingness depends on the actual outcome values themselves. Current methods have not

been adapted to deal with this missingness scenario and there is a strong potential for

biased results when attempting to make inference when incorrectly assuming that the

data are MCAR.

1.1.2 Example

The first example this research will address is a longitudinal study testing for a

change in average outcome values over time. A fixed study schedule is assumed with

2



the same number of measurements planned to be recorded for each subject. A contin-

uous outcome is to be measured at each of these time points. Measurements closer in

time tend to be more highly correlated than measurements further apart in time and

therefore equal correlation between any two measurements is highly unlikely. Specif-

ically we will be looking at a study in which investigators were interested in testing

if pain scores differed throughout a day. Participants with irritable bowel syndrome

(IBS) were asked to record pain scores (on a scale from 0 to 10) at wake up, morning,

midday, evening and bedtime. Measurements were collected over a large number of

days and so pain scores were collapsed by averaging pain scores for each period of the

day across all days. Occasionally patients forgot to record pain scores. If the pain score

was missing for more than 40% of all days for a particular period the average pain score

for that subject at that period of the day was set to missing. In the larger context,

it is important to note that missing data occur in longitudinal studies in a number of

contexts. In this case, it is reasonable to assume the chance of a subject reporting a

missing value is unrelated to the outcome value.

The second example involves a situation where a number of judges were each asked

to rank a number of objects. In this scenario, since the objects are naturally ranked,

non-parametric methods are a natural choice of analysis. Researchers are interested in

testing for a preference in objects. Therefore, one is interested in testing if the rank

for each object is the same, although differences between judges are not of interest.

In this scenario, some judges felt uncomfortable ranking one or more of the objects.

This could happen when one object was noticeably better or worse than the remaining

objects. Therefore, one would expect that these missing ranks were more likely to be

higher ranks. This scenario would be similar to one in which lab measurements were

collected on the same subject at one clinic visit and researchers tested for a within

subject difference. We would expect ranks from the same subject, particularly as they

3



were taken at the same time, to be highly correlated. In the case of a particular lab

outcome, we assume that the results from each aliquot, coming from the same subject,

will be equally correlated with all other aliquots. Some loss of data is expected in this

study as some aliquots were lost or broken during the transportation of the samples to

the lab. In addition with this data set, the lab equipment cannot measure certain lab

values when values fall outside of a pre-specified value, in the case of this study when

the lab values are extremely high.

The final example examined in this research involves a similar situation to that

described in the first example. Researchers were interested in testing to determine if

there was a difference in the difference in pre and post-bowel movement pain scores

throughout the day. Subjects suffering from irritable bowel syndrome (IBS) were asked

to rank pain on a scale from 0 to 10 before and after every bowel movement. Based

on the time stamp of these measurements, the difference in pre and post-bowel pain

scores were classified as early morning, morning, afternoon or evening. This study en-

rolled both diarrhea predominant (IBS-D) and constipation predominant IBS (IBS-C)

patients. IBS-C patients were more likely to have missing data when they were ex-

periencing IBS symptoms. A missing value for these participants was often indicative

of a higher pre-bowel pain score as they were experiencing constipation. As such, one

expects missing measurements to be higher than the non-missing counterparts. A sim-

ilar situation can develop in any longitudinal trial with missing data. While subjects

may miss a visit randomly, some also drop out of studies due to a change in location or

health status. If a patient drops out of the study due to health status, this can be due

to either the participant’s health improving or declining to a point that they are no

longer interested or able to participate in the study. These improvements or declines

can be associated with better or worse outcome values, often denotes by extremely high

or extremely low outcome values.

4



1.2 Literature Review

1.2.1 Notation and Assumptions

We will generalize this research to a study designed with n planned measurements

recorded for each of the k subjects. We denote the jth measurement for the ith indi-

vidual as the scalar Yij and Xij denotes any additional covariates collected on the ith

subject along with the jth outcome measurement. These Xij values can either vary by

measurement or can be constant within a subject. For our research, we will assume all

covariates are constant within a subject and therefore that Xij = Xi for all i.

Missing outcome values occur often in repeated measures studies. Any scenario

involving missing data also involves a loss of information and therefore analysis with

missing data will often differ from the analysis of the data if it was a complete data

set. Missing data is a very common occurrence and one that must be accounted for in

order to minimize bias and loss of efficiency both of which are associated with missing

data. To classify missingness, a variable Rij is specified as an indicator variable to

denote if Yij is missing. Rij takes the value of 1 if the Y th
ij observation is observed

and 0 otherwise. Table 1.1 below illustrates that all the information gathered can be

summarized by reporting these three values (Yij, Xij, and Rij).

The notation Yi will denote the full vector of missing and observed responses for

the ith subject (Yi1, Yi2, . . .Yin) and the notation Ri will denote the corresponding

vector for the indicators Rij. Each of these vectors has n elements, corresponding to

the n measurements taken on each subject.

1.2.2 Non-parametric Analysis of Complete and Balanced Data

There are a number of situations in which there are problematic and potentially

influential outliers or situations in which making distributional assumptions about Yij
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Table 1.1: Repeated Measures Data Set with Missing Data

Measurement

Subject 1 2 . . . n

1

Y11X1

R11


Y12X1

R12


Y1nX1

R1n


2

Y21X2

R21


Y22X2

R22


Y2nX2

R2n


. . . . . . . . . . . . . . .

k

Yk1Xk

Rk1


Yk2Xk

Rk2


YknXk

Rkn



values may be inappropriate. A number of non-parametric approaches to the repeated

measures analysis have been adapted to deal with such scenarios. The earliest methods

focused on data in which each subject had the same number of measurements, known

as balanced data, and data where there were no missing values, known as complete data

(Friedman, 1937; Koch and Sen, 1968). While there are methods to test for differences in

measurement within a subject if the effects are different between subjects, this research

will be focusing on methods that assume the measurement effect is constant across all

subjects.

Within this subset of methods, the preferred method depends on assumptions one

is willing to make. One such assumption involves, what Koch and Sen refer to as, the

additivity of subject effects. When this assumption is true, it is reasonable to believe

that comparisons of between block rankings are meaningful. This involves assuming

that the difference between two ranked measurements on the same subject is comparable

to the difference in measurements of the same ranks for a different subject (Koch and
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Sen, 1968; Stokes, Davis and Koch, 2000). If one assumes the additivity of subject

effects, methods take this into account and adapt their methods so rank comparisons

between subjects are used. The most widely accepted class of these testing methods

involves the use of aligned rank tests. The premise behind all these tests is that some

function of the data for the subject, usually a measure of location, is subtracted from

all the Yij values. These differences are then treated as the outcome variables and are

ranked within a subject (Stokes, Davis and Koch, 2000; Hodges and Lehmann, 1962;

Sen, 1968; Lehmann and D’Abrera, 2006; Koch and Sen, 1968).

Friedman’s Test

One of the most widely-used non-parametric methods, Friedman’s test, utilizes par-

tial rank transformation methods to test for the hypothesis of no difference in measure-

ments within a subject while assuming no additivity of subject effects. In studies where

compound symmetry can be assumed, Friedman’s statistic tests the measurement ef-

fect while controlling for any subject effect. This test does not require the normality

assumptions of parametric methods and also minimizes the effect of the between sub-

ject variability, allowing tests to focus on measurement effect (Friedman, 1937; Stokes,

Davis and Koch, 2000).

Friedman’s method assumes that all outcome variables Yij come from an n-

variate continuous cumulative distribution function Fi where Fi = Gi(y− bi + θj). The

focus of this test is in testing for a measurement effect while controlling for subject.

Therefore hypothesis testing involve testing if θj = 0 for all j, under the constraint that∑
θj = 0. No additional covariates are included in analysis and therefore no Xi’s are

involved in the test statistic.

Friedman’s test replaces the original measurement values by within subject ranks.

Therefore in the case of the data set described in Table 1.1, the outcome variable

7



Yij would be replaced with within subject rank, which will be denoted rij where

rij = 1, 2, ...ni. For complete and balanced data sets, we assume the total number

of non-missing measurements is the same for all subjects. Thus, for any subject i,

ni = n. It is important to note that
∑n

j=1 rij = n(n+1)
2

for all k subjects. The data in

Table 1.1 can be summarized in a new format, which allows for a display of the same

data in a new format show in Table 1.2 below:

Table 1.2: Non-Parametric Test With Complete and Balanced Data

Measurement
Subject 1 2 . . . n

1 r11 r12 r1n
2 r21 r22 r2n

. . . . . . . . . . . . . . .
k rk1 rk2 rkn

If there was no difference in measurements collected on the same subject, one would

expect each rank to be equally likely to be located in each of the n columns. There-

fore, under the null hypothesis of no measurement effect, one would expect the mean

rank for each column to come from a distribution with a mean of the average rank,

n+1
2

. The variance of this distribution under the null hypothesis can be calculated to

be n2−1
12k

, where k denotes the number of subjects. Friedman’s test statistic, based off

these values for the mean and variance, is:

12k

n(n+ 1)

n∑
j=1

(
r̄j −

1

2
(n+ 1)

)2

where r̄j is the average rank of the jth column. In small studies, it is best to use

the exact permutation distribution to test the null hypothesis of no trend across the

columns, or in the case of longitudinal data no trend over time. However, when the

number of blocks is sufficiently large the Friedman statistic will have a chi-squared
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distribution with n− 1 degrees of freedom.

Tied outcome variables can be dealt with by assigning the tied ranks at random

to each of the tied measurements. However, the mid-rank method is a more common

method that allows for the utilization of more information. This method involves giving

tied measurements the average value of the ranks for which two or more observations

are tied (Friedman, 1937).

This method, with the use of the mid-rank option for ties, is equivalent to combining

Kruskal-Wallis tests while conditioning on subject which is equivalent to a stratified

Mantel-Haenszel tests with column scores being equal to within subject ranks. Since

Friedman’s test can only be used in the case of complete and balanced data, in this case

only the stratified Mantel-Haenszel statistic equivalent to Friedman’s statistics. Both

involve tests to determine if mean responses differ using within subject rank scores

rather than actual measurement values (Landis, Heyman and Koch, 1978; Stokes, Davis

and Koch, 2000).

Koch and Sen’s Test

If it is not reasonable to assume a compound symmetric correlation structure, Koch

and Sen have proposed an alternative to Friedman’s test. This method also uses partial

rank transformation and therefore the data structure is identical to that shown in Ta-

ble 1.2. Where the two methods differ is in terms of the permutation-based distribution

under the null hypothesis. In Friedman’s test, when the correlation is equal between

any two measurements within a subject, the distribution of the ranks under the null

hypothesis is based off of the fact that each permutation of ranks is equally likely

within each subject. The distribution used for the test statistic in Koch and Sen’s test

is based off of the premise that when compound symmetry is violated, the unique pair

wise correlation between each two measurements must be taken into account. In Koch
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and Sen’s test, the distribution under the null hypothesis allows for only two possible

permutations of ranks within a subject. The first possible permutation is the observed

permutation and the second is the exact opposite permutation, specified explicitly be-

low. For both of these permutations the correlation between any two measurements is

the same, thereby preserving the correlation structure (Koch and Sen, 1968).

ri = (ri1, ri2, ..., rin)

ri = (n+ 1− ri1, n+ 1− ri2, ..., n+ 1− rin)

These two permutations for the ith subject are the only two permutations that have

the same correlation as the observed data for the ith subject. Each of these permutations

are assumed to be observed with equal probability under the null hypothesis that there

is no difference in measurements within a subject. Koch and Sen’s method tests for a

measurement effect while controlling for subject, and therefore the results are combined

across all subjects to get an estimated average effect across all subjects. Interest lies

in tests involving T which is a n x 1 vector with elements Tj = 1
k

k∑
i=1

rij.

Under the null hypothesis of this distribution, the expected value of Tj can be

calculated based on the expected value of rij which is equal to n+1
2

.

E[Tj] =
1

k

k∑
i=1

E[rij] = E[rij] = ((rij)Pr(rij = rij) + (n+ 1− rij)Pr(rij = n+ 1− rij))

= rij
1

2
+ (n+ 1− rij)

1

2
=
n+ 1

2
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Under the assumptions required for Koch and Sen’s test, the covariance matrix of

T, a nxn matrix, will be denoted as V with each element vjj′ calculated as:

vjj′ = Cov(Tj, Tj′) = Cov(
1

k

k∑
i=1

rij,
1

k

k∑
i=1

rij′) =

(
1

k

)2 k∑
i=1

Cov(rij, rij′)

=
1

k2

k∑
i=1

(E[(rij − E[rij])(rij′ − E[rij′ ])])

=
1

k2

k∑
i=1

(
E[rijrij′ ]−

(
n+ 1

2

)2
)

=
1

k2

k∑
i=1

(
(rijrij′)

1

2
+ (n+ 1− rij)(n+ 1− rij′)

1

2
−
(
n+ 1

2

) 1
2

)

=
1

k2

k∑
i=1

(
2rijrij′

2
− rij(n+ 1)

2
− rij′(n+ 1)

2
+

(n+ 1)2

2
−

1
2
(n+ 1)2

2

)

=
1

k2

k∑
i=1

(
rijrij′ −

rij(n+ 1)

2
− rij′(n+ 1)

2
+

(
n+ 1

2

)2
)

=
1

k2

k∑
i=1

((
rij −

(n+ 1)

2

)(
rij′ −

(n+ 1)

2

))

Koch and Sen developed a generalized statistic which allows for the testing of any

linear contrast C of the vector T, which consists of all n Tj elements, for which Cj =

0 where j′ = (1, ..., 1). The form of the generalized statistic is stated in terms of

the contrast matrix as T′C′ (CVC′)−1 CT. Under the null hypothesis k1/2T is an

asymptotically multivariate normal vector of rank n − 1. Therefore, the test statistic

T′C′ (CVC′)−1 CT has an asymptotically chi-squared distribution with n− 1 degrees

of freedom under the null hypothesis (Koch and Sen, 1968).
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1.2.3 Missing Data Mechanisms

Missing Covariates

Although in some studies missing covariates can also be a problem, we will be

assuming no missing covariates in our examples. Background on dealing with missing

covariates is included for completeness since this can present substantial concerns. Var-

ious methods exist to address the problems that arise from missing covariates, but for

simplicity we will deal with studies that have complete covariate data. Missing covari-

ates can potentially be an issue in all types of studies; however, in repeated measures

scenarios it can often have a greater impact on the analysis, as one missing covariate

can affect multiple observations on one participant. One method used to address these

concerns involves replacing the missing covariate with the mean or median value of

the covariate. An alternative method involves replacing the missing value by the pre-

dicted value generated by regressing the covariate with missing values on all observed

covariates. More recently, methods often used for dealing with missing outcome values

have been adapted for use in dealing with missing covariates values, including max-

imum likelihood methods, weighted estimating equations and multiple imputations.

However, these are not directly incorporated into the basic repeated measures mod-

eling procedures in many computer-programming packages, including SAS. These can

be done separately from repeated measures analysis computing procedures, although

they are more computationally intensive, particularly the more complex methods, and

these methods do require additional assumptions. In order to simplify analysis, the

most common method of dealing with missing covariates is that all observations for a

participant are deleted if one or more covariates are missing, which can lead to a much

smaller sample size and to biased estimates unless the covariates are missing com-

pletely at random (Horton and Kleinman, 2007). This research will consider data with

complete covariates and instead focus on scenarios involving missing outcome variables.

12



Missing Completely at Random (MCAR)

When outcome variables are missing completely at random (MCAR), the proba-

bility of a subject having a missing value for an observation does not depend on the

subject’s observed values or the covariates. MCAR data are defined explicitly to be

data in which the indicator vector for missingness, Ri, is independent of both Yi and

Xi. This is equivalent to stating Pr(Ri|Yi, Xi) = Pr(Ri) (Fitzmaurice, Laird and

Waire, 2004). As a number of analyses require the assumption that missing data are

MCAR, this assumption is often assumed even though it requires the strictest assump-

tions.

In studies with repeated measures over time, participants have a higher proba-

bility of missing later visits due to fatigue or lack of interest as the study continues. In

these studies missing data are often classified at MCAR since missingness depends only

on time, which is often treated as a design variable in the case on longitudinal studies.

Unlike covariates, design variables are specified by the investigator and predetermined

for use in the study design. If time is fixed and treated as a design variable, the miss-

ingness depends on a fixed variable and therefore not on the observed or unobserved

data. Therefore time is not included in the covariate matrix and the missingness is

MCAR (Fitzmaurice, Laird and Waire, 2004).

Covariate Dependent Missingness or Missing at Random (MAR)

Covariate dependent missingness, commonly referred to as missing at random (MAR),

occurs when the probability of a subject having a missing value does not depend on

the actual missing outcome values but could depend on a subject’s covariates. Stated

explicitly, covariate dependent missingness is defined to occur when Pr(Ri|Yi, Xi) =

Pr(Ri|Xi). Covariate dependent missingness requires fewer assumptions than MCAR
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and is still considered likely in studies involving repeated outcome measurements. As-

suming MCAR requires less strict assumptions and therefore fewer methods of analysis

are valid. Under the assumption of covariate dependent missingness, the distribution of

the data used for analysis, the observed, is not the same as the population of interest.

Therefore, the parameter estimates will be biased when using least squares methods

and will only be accurate with maximum likelihood methods when the distribution of

the outcome is correctly specified (Fitzmaurice, Laird and Waire, 2004).

Non-ignorable or Informative Missingness

As knowing that an observation is missing reveals no information about the ac-

tual missing values, both MCAR and covariate dependent missingness are commonly

referred to as non-informative or ignorable missing data. In these cases knowing the

actual missing values is not needed to conduct valid analyses. In contrast, the third

type of missing data, missing not at random (MNAR), is commonly referred to as

informative or non-ignorable missingness. In this situation Pr(Ri|Yi,Xi) cannot be

simplified, meaning the probability of a subject having a missing value depends on the

actual unobserved missing values. In this case, not incorporating information about

the missing data will yield biased results. There is not currently a computationally

simple method when dealing with this type of data for statistical estimation and test-

ing. The most common method, which is extremely difficult to do with great accuracy,

requires specifying models both for the response as well as the missing data mechanism.

This requires defining Pr(Ri|Yi, Xi) accurately and explicitly (Fitzmaurice, Laird and

Waire, 2004)
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Monotonic vs. Non-Monotonic Missingness

All three of these categories can be further classified, if the order of the repeated

measures has meaning, by specifying the missing data as monotonic or non-monotonic.

If having a missing value forces all subsequent values for a subject to be missing as

well, the missing mechanism is considered to be monotonic. This is commonly referred

to as drop-out or loss to follow up in longitudinal studies. In contrast, non-monotonic

missing data occur when a measurement can be observed after a missing measurement

was reported for that subject. When missing data are non-monotonic, non-informative

missingness is easier to assume and more likely to be valid. For example, when a subject

drops out it is difficult to assume the reason for drop out is completely unrelated

to the subject’s missing outcome values. In contrast, if a subject has intermittent

missing data, it is easier to assume the missingness is unrelated to the missing outcome

values. Additionally, for subjects with intermittent missingness, the observed data

which occurred after the missing data can help in making assumptions about the true

missing values with greater accuracy (Fitzmaurice, Laird and Waire, 2004).

1.2.4 Missing Data in Repeated Measures Analysis

Complete-Case Analysis

There are a number of methods for dealing with missing data. The simplest ap-

proach is known as complete-case analysis, in which any subject with one or more

observations missing is excluded from the analysis. Only data from subjects who have

no missing data are included in the analysis. Using this method with informative miss-

ing data will result in noticeably biased results. If for example participants with high

values were more likely to drop out of a study, the missingness is informative and any

overall estimate of the mean value would be lower than the true population mean. The
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only situation in which complete case analysis would produce unbiased analyses would

be MCAR, as that is the only situation in which dropping those with missing data

would be dropping a random sample of the population. However, even with MCAR

data, the decrease in sample size could lead to a substantial decrease in power. With

small samples, the loss of even a small number of observations can have an important

effect. However, due to the ease of analysis and interpretation, complete case analysis

is still considered an option of handling missing data (Fitzmaurice, Laird and Waire,

2004).

Repeated Measures ANOVA

Repeated measures analysis of variance (ANOVA) requires complete and balanced

data and is therefore is often used in conjunction with complete case analysis. This

method assumes the correlation between an individual’s measurements are based on the

individual’s underlying tendencies that remain the same for all measurements. This is

one of the earliest methods developed but due to ease of computation and interpreta-

tion, this method is still commonly used even though it requires making assumptions

that may not always be valid. Repeated measures ANOVA assumes the individual

has a latent response which is the same for all measurements thereby assuming some

individuals tend to have overall higher or lower outcomes than the population. This

method forces the data to have a compound symmetric correlation matrix, meaning

the correlation is the same between any two time points. Compound symmetry is par-

ticularly questionable in longitudinal studies as one would expect measurements taken

further apart in time to have weaker correlation than measurements closer in time

(Fitzmaurice, Laird and Waire, 2004; Demidenko, 2004).
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Single Imputation

An additional approach to handling missing data is imputation, in which each miss-

ing value is replaced by some estimated value. There are many approaches to impu-

tation. The simplest case is that of single imputation, in which the missing value is

replaced with one value generated as an estimate of the true unobserved value. Within

this category, imputation can be broken down further into within individual imputa-

tion, where the estimates are gathered from the individual with the actual missing

value, or between individual imputations, in which information from the entire sam-

ple or a portion of the sample is used to estimate the missing value for an individual.

Missing values for an individual of a particular subgroup, for example females, may be

imputed to be the overall mean of that particular subgroup. One of the most common

within individual single imputations for monotonic missing data is last observation

carried forward (LOCF), in which a subject’s last known measurement is substituted

for all successive missing values. However, the assumption of a stable outcome after

drop out is unrealistic and the standard errors are smaller than they would be in the

case of non-missing data. A number of other functions of the data, both within the

individual as well as data from the overall sample, can replace the missing data. Some

of the more frequently used values for single imputation include the mean value for

a subject, the baseline value, or a worse or best case value, known as extreme case

analysis (Fitzmaurice, Laird and Waire, 2004).

Multiple Imputation

Single imputation methods do not take into account the variation and uncertainty

of predicting an unobserved value. Multiple imputation methods have been developed

to address this concern. These methods involve replacing the missing value with a

value based on a number of different values (Fitzmaurice, Laird and Waire, 2004). A
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number of possible values for the missing value, generally somewhere between 3 and

10, are generated (Schafer, 1999). The methods of generating these imputed values

can greatly affect the analyses. All methods rely on using the observed data to predict

the missing data. One of the more common methods involves generating the imputa-

tions from an estimated proper prior distribution generated from the observed data.

For more complex situations, Markov Chain Monte Carlo (MCMC) methods can be

used. Both methods require multivariate normality; however, with minor departures,

accurate inferences can still be made using these estimates (Horton and Lipsitz, 2001).

One complete data set is generated from each one of the generated estimates of

the missing value. The complete data sets created from these multiple estimates of the

missing values are then used to determine parameter estimates and variances. Denoting

the parameter estimate or the combination of parameter estimates as Q, m imputa-

tions would result in m estimates of Q, denoted as Q̂, with each having a variance

estimator U . These multiple Q̂ estimates are then averaged to create a point esti-

mate for Q. The estimate of the variance of this point estimate incorporates both the

between-imputation and within-imputation variance. In the multivariate case, where

Q̂ is a vector of values, the within-imputation variance Ū is the average of the m co-

variate matrices U . The between imputation B is 1
m−1

m∑
t=1

(Q̂t − Q̄)(Q̂t − Q̄)T . The

total variance can then be expressed as T = Ū + (1 + m−1)B. If we define k to be

the number of elements in Q, then inference can be made by comparing the statis-

tic (Q̄−Q0)TT−1(Q̄−Q0)
k

to an F distribution with k numerator degrees of freedom and

v = (m − 1)
{

(1 +m−1)tr(BT−1)/k
}−2

denominator degrees of freedom. In multi-

variate cases, especially with only a small number of imputations, it becomes more

complicated as the between-imputation covariance matrix would not be of full rank

when the number of imputations is less than or equal to the number of elements in Q.

This can lead to an inaccurate estimate of the variance (Rubin, 1987; Schafer, 1997).
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Generalized Estimating Equations

Methods have been developed that analyze all observed data without imputing

the missing values or excluding subjects with missing data. One of these methods

involves the use of generalized estimating equations, known also as marginal models,

which extends generalized linear model theory to correlated data. As in generalized

linear models, a link and a variance function are specified that connect the outcome

to a linear combination of covariates. These methods do not require any distributional

assumptions be made about the outcome variable but rely on quasi-likelihood methods

in order to estimate parameters and test hypotheses. Instead of making assumptions

about the distribution of the outcome variable, a correlation structure must specified

(Liang and Zeger, 1986). When dealing with a continuous outcome, which we will be

focusing on in this research, the mean model is defined as

µi = E [Yi|Xi] = Xiβ

The specification of the variance component involves the specification of the corre-

lation structure. The general covariance matrix of Yi is specified as

Vi = φA
1
2
iWi(α)A

1
2
i

where Ai is an ni x ni matrix with the elements consisting of the variance of Yi along

the diagonal. Here Wi is the working correlation matrix; an ni x ni matrix which

is a function of the correlation parameters α. Once these are specified, the equation

below can be solved in order to get parameter estimates, for both mean and covariance

parameters.
k∑
i=1

dµ
′

i

dβ
Vi(Yi − µi(β)) = 0
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In this equation Vi denotes the covariance matrix and µi denotes the estimate of the

mean for the ith individual. Here we note that
dµ
′
i

dβ
is an s x s matrix where s denotes

the number of mean parameters in the model as β is an s x 1 vector. The estimate

for the covariance matrix is calculated based on the working correlation matrix. The

model-based estimate of the covariance matrix is specified as:

(
k∑
i=1

dµ
′

i

dβ
V −1
i

dµi

dβ

)−1

If the working correlation matrix is misspecified, this estimate of the covariance

matrix will be incorrect and the standard errors of the estimates will be inaccurate.

Even when the correlation structure is misspecified and the standard errors are invalid,

the mean parameter estimates are accurate since the mean model is separate from the

covariance model. However, inference about the parameter estimates will be invalid.

As a solution, an empirical estimator, commonly referred to as the sandwich estimator

has been derived and can be a more accurate estimator of the covariance of Yi

(
k∑
i=1

dµ̂
′

i

dβ
V̂ −1
i

dµ̂i

dβ

)−1( k∑
i=1

dµ̂
′

i

dβ
V̂ −1
i (Yi − µ̂i)(Yi − µ̂i)

′
V̂ −1
i

dµ̂i

dβ

)(
k∑
i=1

dµ̂
′

i

dβ
V̂ −1
i

dµ̂i

dβ

)−1

If the working correlation matrix is relatively accurate, the results can be more effi-

cient than when using the model based estimator. Although there are many advantages

to using generalized estimating equations, including the use of all observed data, these

methods will yield unbiased estimates only in the case of MCAR (Stokes, Davis and

Koch, 2000; Fitzmaurice, Laird and Waire, 2004).

Mixed Models

With recent computing advances, mixed models has become one of the most com-

mon methods that utilizes incomplete data. The linear mixed model for the ith subject
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is commonly expressed by the following equation where i = 1, 2, ...k:

Yi = Xiβ + Zibi + εi

Suppose Yi is the ni x 1 vector of non-missing outcomes for the ith subject and Xi

is the fixed effect design matrix containing the covariates of interest. In this model, Zi

is defined as a subset of the Xi matrix known as the random effects design matrix. We

define bi as the vector of unobserved random effects for the ith subject and εi as the

unobserved vector of within-subject error. In this model bi and εi are assumed to have

multivariate normal distributions and to be independent of each other. We can write

this as follows: bi
εi

 : N


0

0

 ,

σ2
b 0

0 σ2
ε




If the Zi matrix is a ni x 1 column of ones, the model is simplified. Based on these

assumptions, the covariance matrix for Yi can be defined as
∑
i = σ2

b11′ + σ2
εI where

1 is a ni x 1 matrix and I denotes a ni x ni identity matrix. In the simplest case of

mixed models, the components of the model are divided into between and within subject

components. The between subject components are considered to be fixed effects, which

are the true values of the population. The within subject effects, commonly referred to

as random effects, are the random deviation of the subject from the population average.

In this case the pair wise correlation for any two observations within an individual is the

same and by including only a random intercept we are forcing a compound symmetric

correlation structure on the data. Each individual has the same population mean and

differs from this mean by a random intercept.

In more complex mixed models the overall mean, the effect of measurement, and

any number of other regression coefficients are allowed to vary by subject. This is

done by including additional covariates in the design matrix for the random effects
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(Fitzmaurice, Laird and Waire, 2004).

Treatment of Missing Data

Mixed models and GEE have risen to the forefront as the primary methods of

addressing missing data. Since both methods do not require a equal number of obser-

vations per individual, they allow for unbalanced and therefore missing data. However,

mixed modeling is usually preferred over GEE in the case of small samples for a num-

ber of reasons. First, stronger assumptions about missing data are needed to use GEE,

which limits GEE to situations involving covariate-dependent MCAR. Mixed modeling

requires less strict assumptions and therefore is applicable for both MCAR and MAR

mechanisms (Hedeker and Gibbons, 2006). Additionally the covariance matrix based

on GEE estimates may not be positive definite. A number of simulation studies with

missing data suggest that the likelihood methods of mixed models provide less bias and

smaller mean squared errors than the quasi-likelihood methods used in GEE (Catellier

and Muller, 2000).

Additionally, mixed models allow for a distinction of between and within subject

variances without having to estimate a large number of covariance parameters. Thus,

mixed models are preferred for longitudinal studies which have a large number of time

points or a flexible timing for visits. Since correlation within a cluster, or within an

individual, is incorporated in the model by the use of random effect, mixed models are

ideal in the case of unbalanced data. Mixed models not only allow for a decomposition

in variance, into between and within variation, but they also allow for testing of fixed

effects while allowing for the variation to differ depending on the individual (Fitzmau-

rice, Laird and Waire, 2004). However, the tests associated with both mixed models

and generalized estimating equation models rely on asymptotic properties and therefore

the methodology developed works best with larger sample sizes.
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Small Sample Studies

Some researchers have failed to explicitly define what they constitute to be small

samples, and of those who do there, is some variation in terms of the definition. Some

researchers have focused on defining small samples according to the overall number

of observations while others have defined small samples by the number of subjects.

Additionally, small sample sizes can be more or less of a problem depending on the

number of parameters of interest, if there is an interest in the interaction terms, and

what hypotheses are of interest. When dealing with mixed models, guidelines have

been suggested that require a minimum of 30 sampling units and 30 repeated measure-

ments on each unit to avoid small sample concerns. However, this is often incredibly

impractical especially in the case of longitudinal studies and therefore these guidelines

are often ignored (Bell et al., 2010). Some researchers have referred to studies with

30 or 40 subjects as small studies while others have defined small studies to involve

as few as 10 or 12 subjects. These studies still had anywhere from 30 to 136 overall

number of observations (Fouladi and Shieh, 2004; Catellier and Muller, 2000; Akritas

and Brunner, 1997; Zucker, Lieberman and Manor, 2000).

There are two common approaches for dealing with small samples and missing data.

The first method uses mixed modeling techniques with small sample adjustments to

preserve the validity of tests. The second method involves ranking the response variable

and using non-parametric methods to make inference. This allows for a relaxation in

terms of assumptions about the distribution of the outcome variable and minimized the

influence of outliers, which may be more influential in small studies (Friedman, 1937;

Koch and Sen, 1968). Research on both of these methods has been developed in order to

preserve type I error rates in small studies. However, there are still some problems with

accuracy in certain scenarios depending on the combination of the covariance structure

assumed, the methods of addressing missing data, the correlation within a subject and
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what hypothesis is being tested. While most of this research has focused on the type I

error rate, some have presented power results for certain scenarios as well (Schluchter

and Elashoff, 1990; Catellier and Muller, 2000; Manor and Zucker, 2004; Mehrotra, Lu

and Li, 2010).

Since current mixed modeling techniques allow for missing data, substantial research

has been done using parametric methods to adjust large sample methods to be more

efficient for small samples. Generally these methods have been tested in scenarios for

which the mixed model assumptions, primarily that the outcome variable has a mul-

tivariate normal distribution, is true (Catellier and Muller, 2000; Fouladi and Shieh,

2004; Gao, 2007). There has been, however, some research that has attempted to exam-

ine the performance for outcomes with alternative distributions. These have resulted in

relatively good results in terms of preserving type I error in particular scenarios (Manor

and Zucker, 2004).

Some of the earliest small sample statistics involved adjustments to the likelihood ra-

tio statistic. The first of these adjustments involved a general formula, using Bartlett’s

method of weighting the likelihood ratio statistic. With this weight, the moments of

the likelihood ratio statistic are moved closer to the chi-squared distribution to which

they are compared (Lawley, 1956). In small samples, the impact of nuisance param-

eters on the likelihood statistic can be significant. Therefore, an adjusted likelihood

that involves the likelihood conditional on the nuisance parameters was developed (Cox

and Reid, 1987). Bartlett’s correction has been applied to the statistic based on this

adjusted likelihood. When directly comparing these two methods, Bartlett’s correction

alone tends to produce a slightly inflated type I error rate and the adjusted likelihood

proposed by Cox and Reid was overly conservative particularly for small samples. How-

ever, Bartlett’s correction in combination with the adjusted likelihood statistic produces

only a slightly inflated type I error rate in very small sample sizes (Manor and Zucker,
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2004; Zucker, Lieberman and Manor, 2000). Using the likelihood ratio statistics, even

an adjusted version, only allows for comparison between two nested models. Therefore,

these methods are limited in the type of hypotheses that can be tested. Additionally,

all of these studies were tested for using unbalanced data thereby suggesting that the

validity of these results is limited to MCAR data (Manor and Zucker, 2004; Zucker,

Lieberman and Manor, 2000).

In comparison, the Wald statistic allows for the testing of a much broader class

of hypotheses and the research suggests that adjustments to the Wald statistic yield

a comparable type I error rate to tests done based on the likelihood ratio statistic

(Fouladi and Shieh, 2004). In the case of likelihood ratio tests, only maximum likeli-

hood methods can be used to test fixed effects. One aspect involved with adjustments

to Wald tests is the use of restricted maximum likelihood (REML) rather than max-

imum likelihood (ML) estimation. These estimation methods are often used in large

sample methods but can also improve the small sample behavior of tests. Maximum

likelihood methods generally behave well when sample size is large; however, in the case

of small samples these results underestimate the variance and produce biased results.

These problems with the variance estimate in ML methods arises even in the case of

complete data (Manor and Zucker, 2004; Fitzmaurice, Laird and Waire, 2004). Since

the precision of a test relies on accurate variance estimates, many methods of adjusting

tests to small samples use restricted maximum likelihood estimates. Maximum likeli-

hood methods use estimates of the mean model to estimate the variance without taking

into account the uncertainty associated with the estimates of the mean model. The log

likelihood of the mixed model maximized by ML estimates is shown below:

L = constant− 1

2

∑
i

ln |Σi| −
1

2

∑
i

(Yi −Xiβ)′Σ−1
i (Yi −Xiβ)
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By comparison REML methods remove the estimate of the mean model from the

calculation of the estimate of the variance and thereby remove some of the bias. The

log likelihood maximized by REML methods is

L = constant− 1

2

∑
i

ln |Σi| −
1

2
ln

∣∣∣∣∣∑
i

X ′iΣ
−1
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2
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r
′

iΣ
−1
i ri
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X
′

iΣ
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X
′
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i Yi

)
When direct comparisons were made, REML statistics proved to be consistently

better at preserving the type I error rate than uncorrected maximum likelihood esti-

mates (Schluchter and Elashoff, 1990; Manor and Zucker, 2004). As an alternative to

uncorrected ML methods, some researchers have suggested adjusting the actual ML

statistic for small samples in order to account for bias. After allowing for a correc-

tion factor for the ML test statistic, REML and adjusted ML estimates proved to

produce comparable type I error rates as well as similar power curves in certain scenar-

ios (Schluchter and Elashoff, 1990). However, REML estimates are less likely to have

inflated type I error rates in the case of non-normal outcomes (Catellier and Muller,

2000; Manor and Zucker, 2004).

A number of correction factors for Wald statistics have been proposed to improve the

small sample behavior of both ML and REML tests. Most of these adjustments involve

comparing the Wald statistic to critical values from a t or an F-distribution rather than

a chi-squared distribution. There are numerous variations of this method that involve

weighting this test statistic or using a different degrees of freedom. Changes to the

degrees of freedom usually involve changing the denominator degrees of freedom when

using the F distribution or the degrees of freedom for the t test. Numerous studies have
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investigated which choice of weight or denominator degrees of freedom is better at pre-

serving type I error rate in different scenarios with both MCAR and MAR data. The

preferred method depends strongly on study design, covariance structure, hypothesis

of interest, choice of REML or ML, and the correlation of outcome variables (Catellier

and Muller, 2000; Schluchter and Elashoff, 1990).

For studies with fixed time points and missing data, researchers have suggested the

best choices for the adjustments, in terms of both weights and denominator degrees of

freedom, involve a function of the number of non-missing observations. Depending on

a number of different factors, these adjustments can be improved upon when the num-

ber of groups, number of repeated measurements, and the number of overall subjects

are also taken into account in deriving the weight or the denominator degrees of free-

dom (Catellier and Muller, 2000; Schluchter and Elashoff, 1990). However, even with

this additional information taken into account, it has been noted that studies with fewer

observations, more repeated measurements, higher correlation between measurements,

and more missing data still have problems with inflated type I error rates. Specifically,

one study examined sample sizes with up to 10% missingness and with higher levels

of missingness the type I error rates are considerably inflated (Catellier and Muller,

2000).

For studies without fixed time points, there is no way of defining a participant with

complete data so alternative methods must be used. All of these methods involve an

adjustment to the degrees of freedom of the test. There are six common options that

are often considered: the näıve degrees of freedom, the residual degrees of freedom,

the separation of the degrees of freedom into between and within subject components,

the containment method, the Satterwaite approximation and the Kenward-Rogers ad-

justment to the Satterwaite approximation. Determining the denominator degrees of
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freedom as if the sample comes from a balanced design has been proven to be an ef-

fective method of controlling the type I error in certain MCAR small sample scenarios

when testing fixed effects. In this näıve method, the denominator degrees of freedom

are determined as if the tests were simply done using ANOVA with subject specific

parameters specified by subject’s specific linear regression. An additional option in-

volves making the degrees of freedom the total number of observations minus number

of between subject parameters in the model. This choice, known as the residual degrees

of freedom, yields the same degrees of freedom for a study with many subjects with

few observations per subject as for a study with few subjects but many observations

per subject. To combat this issue and to account for differences in these two scenar-

ios, an alternative option is to use the between and within degrees of freedom. This

method separates the denominator degrees of freedom into two different parts that are

used in different hypothesis testing scenarios. The degree of freedom for the between-

subject hypotheses is the number of subjects minus the number of between-subject

effects in the model (Manor and Zucker, 2004). An additional option, the contain-

ment method, allows the degrees of freedom for a fixed effect to depend on whether

or not there is a corresponding random effect for that fixed effect. If there are, then

the degrees of freedom is the rank contribution of the random effect to the

(
X Z

)
matrix (SAS/STAT(R) 9.2 User’s Guide, Second Edition). Otherwise the degrees of

freedom are the residual degrees of freedom mention above, which is the total number

of observations minus the rank of

(
X Z

)
. One of the most effective methods at pre-

serving type I error in small samples is the Satterthwaite approximation. This method

approximates the degrees of freedom to be
2S4
i

Appr(V ar(S2
i ))

where S2
i = V ar(β̂i) (Manor

and Zucker, 2004). Kenward and Roger adjusted the Satterwaite approximation so the

uncertainty about the estimate of the covariance matrix was taken into account. The

same Satterthwaite approximation for the degrees of freedom is used but before this
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is calculated, the covariance matrix is inflated (Kenward and Roger, 1997). This ad-

justment lowers the bias and improves the type I error rate, although again in specific

situations the error rate remains inflated (Fouladi and Shieh, 2004; Kenward and Roger,

1997). Only this method and the Satterthwaite approximation are a function of the

observed data. A small sample simulation study, which did not test the Kenward-Roger

method, found the Satterwaite and the näıve REML method performed the best in the

particular small sample MCAR scenarios. However, even these methods had problems

with inflated type I error rates in certain scenarios (Manor and Zucker, 2004).

1.2.5 Missing Data in Non-parametric Analysis

Friedman’s test was developed to analyze data with one observation per cell. This

applies only to situations with balanced data with no missingness and exactly one ob-

servation per subject for each measurement. Methods have been developed to adapt

Friedman’s test to more general scenarios. These adaptations generally focus on one of

two situations although some do incorporate both. The first of these involves data with

more than one observation per cell and the second involves missing data while dealing

with at most one observation per cell. The focus of this research will be on applications

of the second type.

Durbin has been recognized as one of the first researchers to investigate alterna-

tive to Friedman’s test with missing data. However, his methods do require an equal

number of observations per subject (Durbin, 1951). As it is more common in the case

of missing data to have an uneven number of observations per subject, research has

further developed these methods to allow for incomplete and unbalanced data. The

majority of these methods have focused on inflating or weighting the contribution of

each subject to the statistic by some function of the number of observations the indi-

vidual contributes.
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Bernard and van Elteren adapted Durbin’s model for scenarios with an arbitrary

number of observations for any subject at any time. This statistic completes the k x

n table used in Friedman’s test by forcing the rank of any missing observation to be

zero and then ranking all other observations from 1 to ni. The ranks for the ith subject

are then weighted by a factor of
n3
i−

∑
γ
γ3tiγ

12ni(ni−1) where tiγ is the number of ties of size γ for

subject i. Based on the calculated mean and variance of the distribution of these ranks,

a statistic is generated which for large samples under the null hypothesis is compared

to a chi-squared statistic with n-1 degrees of freedom (Bernard and Elteren, 1953). The

complexity of these calculations has led many researchers to attempt to find simpler

methods for dealing with these scenarios (Prentice, 1979; Mack and Skillings, 1980;

Skillings and Mack, 1981; Rai, 1987; Wittkowski, 1988).

Van Elteren developed a more usable statistic to deal with scenarios with only two

measurements. Friedman’s test involves combining data across subjects to determine if

the average rank for measurements are different. Van Elteren’s test, which is two mea-

surement form of the Friedman’s test, involves testing a linear combination of within

subject Wilcoxin rank sum tests. A general test statistic was proposed with no specific

linear combination specified. A locally most powerful test was derived which involved

a linear combination that inflated the test statistic for each subject based on some

function of the number of measurements collected for that subject. The inflation factor

of (ni + 1)−1 yielded the most powerful test for the hypothesis of no difference between

two populations, or in the case of longitudinal studies, two time points (Elteren, 1960).

When there is a true constant effect across subjects, van Elteren’s method was devel-

oped to preserve type I error rate and with the intention to have better power than

the alternatives (Mehrotra, Lu and Li, 2010). However, if within strata samples sizes

are small, Van Elteren’s statistic has been shown to have low power (Kawaguchi and

Koch, 2010).
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Just as a method involving a combination of Wilcoxin rank sum statistics condi-

tioning on subject has been developed, methods have been developed that are combina-

tions of Kruskal-Wallis statistics conditioning on subject. These are stratified Mantel-

Haenszel tests, which as mentioned previously are equivalent to Friedman’s test in the

case of complete data. However, unlike Friedman’s test these can deal with missing

data in the case of MCAR data (Landis, Heyman and Koch, 1978; Stokes, Davis and

Koch, 2000). In a case such as one we are focusing on, with a continuous outcome

and one in which only one observation per time point is possible, Van Elteren type

adjustments to these tests have been developed. These adjustments, of applying an

inflation factor of (ni + 1)−1 to the ranks of each subject, have been tested in scenarios

involving incomplete and unbalanced study designs with great success. These values,

just as those provided for the two measurement case by Van Elteren, improve the power

by inflating the contribution of subjects with fewer observations (Prentice, 1979). Us-

ing this inflation factor in the statistical calculations is equivalent to selecting different

scores in stratified Mantel-Haenzel methods. This Van Elteren inflation factor, com-

bined with the ranks, is commonly referred to as the modified ridit scores and the use

of these methods has become widely used as SAS and other statistical packages have

made it part of standard software (SAS/STAT(R) 9.2 User’s Guide, Second Edition,

N.d.).

A number of other researchers have proposed alternative inflation factors to deal

specifically with Friedman-type statistics, although most were established to ease com-

putation. Overall the most effective methods work well with MCAR data as they assign

a subject a weight inversely proportional to their sample size which allows for subjects

with smaller number of observations to contribute more than in unadjusted tests (Mack

and Skillings, 1980; Skillings and Mack, 1981; Rai, 1987; Wittkowski, 1988)
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1.3 Proposed Research

1.3.1 Background and Motivation for the Research Problem

In the case of complete and balanced data, non-parametric methods are commonly

used to test for a within subject difference while controlling for the effect of subject.

These methods minimize the influence of extreme outliers and require no distributional

assumption regarding the outcome variable. Methods have been developed to address

missing data in these scenarios however these methods are limited to MCAR data and

compound symmetric correlation structures. Often one or both of these assumptions

are not realistic in studies with repeated measurements.

Longitudinal studies, with measurements recorded over a number of time points,

are one of the most widely used repeated measures designs. In this case, the assump-

tion of compound symmetry is often unrealistic as measurements recorded closer in

time are likely to be more strongly correlated than measurements further apart. While

some researchers still use Friedman type tests for this type of data, it is important to

note that the estimate of the variance associated with Friedman’s test is incorrect and

is actually an inflated estimate if the true correlation structure if actual correlation

is not compound symmetric. Other methods of analysis for repeated measure studies

have been proven to yield biased results in scenarios in which a compound symmetry

correlation structure is incorrectly assumed (Gurka, Edwards and Muller, 2011). It is

therefore important to adapt methods of handling MCAR data to test statistics where

the assumption of compound symmetry is not required.

For situations where both compound symmetry can and cannot be assumed, the as-

sumption that any missing data are MCAR can be questionable. Particularly problem-

atic in longitudinal studies, non-MCAR missing data often occur as patients who drop

out of the study do so as an either a direct or indirect result of their outcomes. However,

32



even with other types of studies informative missing data arise due to any number of

other reasons, one such reason being detection limits, above or below which outcomes

cannot be measured. As such, informatively missing data are common in repeated mea-

sures studies. Research methods have not dealt with adapting non-parametric methods

to address the issue of informative missing data. This research seeks to adjust current

methods for handling missing outcome data in small repeated measures studies when

the missingness is not MCAR. We will be focusing on non-parametric methods; looking

at non-parametric methods with only one covariate of interest, subject, in order to ac-

count for any potential subject effect. We will adapt methods used for these scenarios

in the case of equal correlation between any two measurements and for scenarios where

this equal correlation cannot be assumed.

1.3.2 Proposed Method

Current methods of addressing missing data in these tests often involve some form of

an inflation factor for each subject that is some function of the number of non-missing

measurements collected on that subject. This is generally done to ensure acceptable

statistical power by inflating the ranks of participants with more missing values so they

contribute as much to an overall test statistic as participants with complete data. This

has become a generally accepted method developed of dealing with missing data for

MCAR data (Stokes, Davis and Koch, 2000; Landis, Heyman and Koch, 1978). As

the statistical justification of Friedman’s test is similar to that of the test proposed by

Koch and Sen, we propose applying this adjustment to Koch and Sen’s test statistic.

When using these adjustments, one is making an assumption regarding the missing

data, which in the case of informative missing data is not valid. In a non-parametric

setting, we propose imputing values for the missing ranks. These values would be

used to complete each block and eliminate all missing values, therefore creating blocks
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of equal size and creating a scenario for which Friedman’s test and Koch and Sen’s

test would be appropriate. The information about the reason for missingness should

be used in determining the value for the imputed rank. This method would utilize

Wittkowski’s imputation methods and then use these imputed ranks to produce a test

statistic from the generated data (Wittkowski, 1988). In addition, we propose using

weights to account for the uncertainty associated with imputation, assigning smaller

weights to individuals with fewer observations.

The statistical power for these tests is extremely sensitive to sample size and for

even moderate sample sizes the power can be extremely low. Therefore, the effect of

missing data on an already low powered statistical test can be more extreme. Therefore,

the focus of this research will be on developing methods that preserve type I error rates

while minimizing the loss of power due to missing data. The performance of these

tests will be done using simulated data. In these simulation studies, the number of

observations per individual, the number of individuals and the degree of correlation

between measurements will be allowed to vary. In addition, when testing the methods

developed to work with informatively missing data, we will vary the percent of the

missing data that are informative. By varying all these factors, we aim to develop some

guidelines as to when the methods proposed will be most useful. We will also apply

these proposed tests to data sets in which the guidelines developed suggest they would

be an improvement over current methods.
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Chapter 2

MCAR: Without Assuming
Compound Symmetry

2.1 Introduction

2.1.1 Introduction and Motivation

This research was motivated by a longitudinal study in which measurements were

collected on the same subject over a period of time. This study is interested in de-

termining if the outcome changed over time. Measurements on the same subject are

correlated and therefore any subject effect must be accounted for even though differ-

ences between subjects are not of interest.

When testing non-parametrically if there is a difference in measurements over time

while controlling for the effect of subject, one option for analyzing complete data sets is

Koch and Sen’s test. Koch and Sen’s test relies on methodology similar to Friedman’s

but addresses scenarios in which equal correlation between any two measurements on

the same subject cannot be assumed. This test evaluates whether there are differences

in outcome with preservation of the actual correlation structure, without the test being

affected by variation between subjects. This is done by using within subject ranks so

as to evaluate their equality. Diagonal symmetry is assumed, meaning if the outcome



vector for the ith subject is denoted Yi, the distribution is the same for Yi − E[Yi]

and E[Yi]−Yi. Under the null hypothesis only two permutations of ranks are possible

for each subject: the permutation observed and the exact opposite permutation. The

correlation between two measurements on the same subject is preserved in the case of

both of these possible permutations (Koch and Sen, 1968).

Koch and Sen’s method, like Friedman’s test, requires complete and balanced data.

No research has been done on specifically adapting Koch and Sen’s test to scenarios

involving missing data; however, numerous researchers have developed adaptations to

Friedman’s test that allow for MCAR data (Prentice, 1979; Mack and Skillings, 1980;

Skillings and Mack, 1981; Rai, 1987; Wittkowski, 1988). The most widely accepted of

these methods involve ranking all non-missing observations within a subject, thereby

allowing each subject to have a different number of ranked observations. Missing ob-

servations within a subject are excluded from the calculation of the test statistic. To

address the loss of information associated with the missing observations, the ranks

for subjects with missing observations is inflated so as to ensure relatively equal con-

tribution from each subject in the calculation of the test statistic (Prentice, 1979).

This method, which is equivalent to the stratified Mantel-Haenszel test using modified

ridit scores, has become a widely accepted method of testing for differences within

blocks (Landis, Heyman and Koch, 1978; Stokes, Davis and Koch, 2000). Using this

test when the correlation structure is not compound symmetric could lead to an over-

or an under-estimation of the covariance structure for Friedman’s test statistic. Due

to the similarities between Friedman’s and Koch and Sen’s tests, we propose using

these methods for Koch and Sen’s test as a method to preserve type I error rate while

maximizing power with MCAR data.
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2.1.2 Notation, Assumptions and Terminology

We assume a longitudinal study design within the context notation specified in

Section 1.2.2 where the jth measurement represents the measurement at the jth time

point. Koch and Sen’s test focuses on the effect of time when no other covariates are

of interest. Therefore, no Xi’s are involved in the test statistic. Missing data can

be intermittent throughout a study but in longitudinal studies, missing data can also

occur as a result of a subject dropping out of the study. With loss to follow up, the

missingness is less likely to be MCAR as subjects who drop out are likely doing so due

to either good or bad outcomes. Therefore, to address the issue of MCAR data, we

will assume a non-monotonic missing data pattern. The set up for this test, as seen

in table Table 1.2, involves the ranking of the Yij values within each subject with rij

denoting the within subject rank of the ith individual at the jth time point. In the case

of complete data, it is important to note that
∑n

i=1 = n(n+1)
2

.

The aim of this test is to determine if the outcomes are different within a sub-

ject without assuming a compound symmetric correlation structure. As mentioned

in Section 1.2.2, this test preserves the correlation structure of the observed data as

only two possibilities of ranks are possible under the null hypothesis of no difference in

measurements.

2.2 Reduced Rank Adjustment

Koch and Sen’s test, like Friedman’s, was developed for the case of complete and

balanced data. In the case of unbalanced and incomplete data, basing a test statistic

on the average rank can be misleading, as subjects with missing observations would

not have a complete rank vector of numbers from 1 to n. In addition the distributional

assumption under the null hypothesis, of two equally likely permutations, is violated.
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In the case of missing data, each subject has a different expected rank based on the

number of non-missing measurements. Therefore, testing if the average rank of the jth

measurement is equal to n+1
2

would not be an appropriate test. In the case of Friedman’s

test, the use the reduced ranks, rather than average rank, has been proposed as a way

to adapt this test to scenarios involving missing data. First proposed by Bernard

and Van Elteren, this method involves calculating a reduced rank by subtracting the

expected rank for the subject from the observed rank (Bernard and Elteren, 1953).

This makes the value comparable across subjects with different numbers of observed

outcome values.

We propose using the ”reduced rank” method that has been widely used in cases of

unbalanced and incomplete data in Friedman’s test. The reduced rank method takes

into account different subjects having a different number of observations and therefore

different expected ranks. In the case of unbalanced and incomplete data, using the sum

of the reduced ranks is generally accepted as a preferred over the average rank as a

method of controlling for subject effect while testing for a difference in measurements.

If the null hypothesis that all measurements are equal is true it is expected the

sum of the reduced ranks for each of the jth measurements will be very close to the

value of zero. If a particular measurement tends to be higher or lower than the other

measurements then the value for the sum of the reduced rank for those measurements

will be further away from zero (Bernard and Elteren, 1953).

The generalized form of Koch and Sen’s test statistic involves a test of contrasts

involving the elements of the vector T. For complete and balanced data, if a contrast

matrix with diagonal elements k − k
n

and off diagonal elements − k
n

is specified this

creates a test statistic consisting of the sum of the reduced ranks. The jth element of
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the (n-1) vector CT can be calculated as follows:

kTj −
k

n

n∑
i=1

Tj = k
1

k

k∑
i=1

rij −
k

n

n∑
j=1

1

k

k∑
i=1

rij =
k∑
i=1

rij −
k

n

(
n(n+ 1)

2

)
=

k∑
i=1

(
rij −

n+ 1

2

)

Koch and Sen’s test statistic, based on this vector CT relies on this value as well

as the V ar(CT) = CVC′ (Koch and Sen, 1968). The calculation of this test statistic

for this specific contrast relies on the fact that
∑n

j=1 Tj = n(n+1)
2

, which is not the case

with incomplete data. Therefore, while we must note that our revised test statistic

cannot be proposed as a simple contrast matrix, it is important to note it is of similar

format.

We propose a test statistic that is based on the vector µK which has elements µKj

which are shown below:

µKj =
k∑
i=1

(
rij −

ni + 1

2

)

As proven in Section 1.2.2, E[rij] = ni+1
2

. Therefore,

E[µKj] =
k∑
i=1

(
E[rij]−

ni + 1

2

)
= 0

In the case of the null hypothesis being true, we can determine the asymptotic

behavior of this vector in the situation where the number of the measurements remains

bounded and only the number of subjects goes to infinity. While the sums of the

reduced ranks for all n measurements are not linearly independent, suppose we select

the n − 1 vector where one µKj is removed arbitrarily. This results in a µK vector

which is composed of n−1 linearly independent sums. By the central limit theorem and

Lyapunov’s condition, the n − 1 vector µK has an asymptotically normal distribution

of dimension n− 1 with a covariance matrix equal to the covariance of the sum of the
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reduced ranks. We propose a test statistic K = µ′KV
−1
K µK where VK denotes the

covariance matrix of the µK vector. If this is the case, then the test statistic K has a

chi-squared distribution with n−1 degrees of freedom under the null hypothesis (Koch

and Sen, 1968; Sen and Puri, 1967).

2.3 Inflation Factor for Ranks

After the method of reduced ranks was proposed by Bernard and Van Elteren to

address problems in Friedman-type statistics, a number of researchers expressed concern

about the decrease in power that would result from the loss of information due to the

missing data. For this reason, a number of inflation factors were proposed which inflate

the ranks of those subjects with more missing data, thereby allowing their contribution

to be substantial in comparison with the contribution of subjects with more complete

data (Prentice, 1979; Rai, 1987; Wittkowski, 1988)

We propose updating the test statistic based on the vector µK with a similar vector

calculated based on the inflated ranks, specifically the inflation factor proposed by

Prentice. Prentice’s weight, 1
ni+1

, both simplifies variance calculations and allows for

each subject to have a more equal contribution to the test statistic. The weighted test

statistic will be of similar format to the test statistic K proposed above but will be

based on the inflated reduced rank vector µU and the variance matrix for this weighted

vector. Just as with the µK vector, the µU vector consists of n− 1 elements with one

µUj will be omitted from the vector in order to preserve linear independence. The µUj

element of this vector is calculated below:

µUj =
k∑
i=1
nij>0

(
1

ni + 1
rij −

1

2

)
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By the same methodology as shown in Section 2.2, we note that the vector µU has

an asymptotically normal distribution with a covariance matrix VU . We will define vjj′

as the element in the jth row and the j′th column of the VU matrix.

vjj = V ar(µUj) =
k∑
i=1
nij>0

(
1

ni + 1
rij −

1

2

)2

vjj′ = Cov(µUj, µUj′) =
k∑
i=1

nij>0,nij′>0

((
1

ni + 1
rij −

1

2

)(
1

ni + 1
rij′ −

(n+ 1)

2

))

Calculations for both the covariance and variance elements can be found in Ap-

pendix A. The test statistic, U , that we will calculate as µ′UV
−1
U µU will be asymptot-

ically distributed as chi-squared with n− 1 degrees of freedom.

2.4 Simulations

The goal of our simulation study was to maintain generalizability while still varying

the simulations enough to be able specify guidelines in which this test statistic would be

appropriate. Data were generated from a multivariate normal distribution. In each sce-

nario 10% of the overall observations were set to missing. As we were primarily focused

situations where compound symmetry cannot be assumed, commonly the case in longi-

tudinal studies, we assumed an autoregressive correlation structure which corresponds

more to longitudinal studies. The correlation between two consecutive measurements

was varied, including 0.1, 0.3 and 0.5, to allow for some variation in terms of the degree

of correlation. The number of measurements on each subject as well as the number

of subjects to vary. We selected all possible combinations of 10, 50 and 100 subjects

and 5 and 10 measurements. With this test, as with most non-parametric tests, low
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power could potentially be a problem. In order to combat this issue, 0.1 was the lowest

correlation tested. For each scenario, 10,000 simulated data sets were generated. The

selected combinations can be seen in Table 2.1 below.

In each scenario, 10% of the overall observations were set to missing. The missing

Table 2.1: Data Sets Generated

Number of Subjects Number of Observations Per Subject Correlation

10 5 0.1

10 5 0.01

10 10 0.1

10 10 0.01

50 5 0.1

50 5 0.01

50 10 0.1

50 10 0.01

100 5 0.1

100 5 0.01

100 10 0.1

100 10 0.01

data were assumed to be missing completely at random. Although it is acknowledged

that monotonic missing data does occur in longitudinal studies, only non-monotonic

missing data were generated, although this does not lessen the generalizability of our

results.

Three different mean vectors were chosen in order to allow for the examination of

both the type I error rate and power. The overall mean of all three mean matrices was

zero although one of the mean vectors had a linear increase in the mean as a function

of observation number. The three mean vectors for the 10 observations per subject can

be seen in Figure 2.1. These mean vector with the linear increase in outcome was used

to examine power. As some scenarios included a larger number of observations, the
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linear increase per observation was minimized as a quarter of the variance of the data,

0.25 and equivalent to the variance of the data, 1.

Figure 2.1: Mean Vectors for Null and Alternative Hypotheses
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2.5 Results

2.5.1 Type I Error Rates

For the simulation study, we compared the type I error rates for the updated method,

using the generated missing data, to that of the type I error rates of Koch and Sen’s

test using the original complete data set. The results for the simulations can be seen in

Figure 2.2. The type I error rates for our method, which can handle missing data, are

comparable to the type I error rates calculated based on the original complete data set.
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Therefore, our method does not appear to noticeable change the power of the complete

test. The sample size, both the number of subjects and the number of observations for

each subject, appear to have the some influence on type I error rates. As expected,

having fewer subjects leads to larger problems with type I error rates. In situations

with only 10 subjects, the type I error rates appear to be so extremely stringent that the

effectiveness of the test is highly questionable. Type I error rates appear to be overly

stringent for studies with a larger number of measurements collected on each subject.

When 10 measurements were collected on each subject, the type I error rates were

noticeably more stringent, although the difference between 5 and 10 measurements is

less pronounced when data are collected on more subjects. As the number of subjects

increase, the stringent nature of the type I error rate does not appear to be problematic

for the test involving the complete data set nor for the test proposed in this paper.

While there were some differences in the type I error rates depending on the pair-
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Figure 2.2: Type I Error Rates
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wise correlation specified between two sequential measurements, these differences were

not as clearly defined nor as noteworthy as the differences due to the number of subjects

and number of measurements.

2.5.2 Power

As seen in Figure 2.3 and Figure 2.4 below, the power of the test proposed in this

paper is relatively similar to the power of the test even when using the complete data

set. Although, in the case of only 10 subjects in the study, both this test and the test

using the complete data, have extremely low statistical power with which to detect a

difference in outcome measurements.

5 As expected, an increase in the number of study subjects as well as a more
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Figure 2.3: Power (Under Linear Increase of 0.25)

extreme alternative hypothesis are associated with an increase in statistical power.
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With more measurements per subject, the power appears to decrease. As with the

type I error rates, the differences in power between differing strengths of the correlation

were minimal in the case of the less extreme alternative shown in Figure 2.3 and in the

when the number of subjects was substantially greater than the number of observations

collected on each subject in Figure 2.4.
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Figure 2.4: Power (Under a Linear Increase of 1)

2.5.3 Asymptotic Behavior

The distribution of our test statistic, based on 5,000 simulations, was examined in

order to evaluate the asymptotic behavior of our revised test statistic under the null

hypothesis. As mentioned in Section 2.3, under the null our distribution is asymptoti-

cally distributed chi-squared distribution with n-1 degrees of freedom. We considered a
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scenario with 500 subjects and 5 measurements collected on each subject. The distribu-

tion of these test statistics along with the probability density function for a chi-squared

distribution with 4 degrees of freedom is shown in Figure 2.5 below.

Our Revised MCAR Chi−Squared Test Statistic
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Figure 2.5: Asymptotic Behavior of Our Revised Test Statistic

2.6 Data Example

We will use this method to analyze data from forty-seven individuals who suffer

from irritable bowel syndrome (IBS). In this study, participants were asked to report

pain, on a scale from 0 to 10, at five times throughout the day: wake up, morning,

midday, evening and bedtime. Researchers were interested in determining if levels of

pain were different throughout the day. Participants were reminded by alarms to record
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their pain at these time points.

Data were collected over a number of visits. At each visit, data was requested for

multiple days. With so much data, it is of interest to limit the focus of the study to

data from the first visit as well as combine data across all days. The average pain score

across all days for wake up, morning, midday, evening and bedtime were calculated for

all participants. If a subject was missing pain scores for more than forty percent of

the days the average pain score for that period of the day was set to missing for an

individual. Using this criteria, there were 14 missing average pain scores, resulting in

5.96% of the data missing. As seen in Figure 2.6 below, the distribution of the average

pain score in this study does not appear to be normally distributed. Therefore, the

nonparametric test for difference in average pain scores would be ideal, as it requires

no distributional assumptions to be made about the average pain score. The average

pain score for each period of time can be found in Table A.4 in Appendix A.

The distribution of the average pain score across all periods of the data for both the

data set including subjects with missing values and for the data set once those subjects

are excluded is shown in Figure 2.7 below. Using the macro given in Appendix A, the

revised Koch and Sen’s test statistic was calculated to be 5.16 which, with 4 degrees of

freedom, yields a p-value of 0.27. Therefore, we fail to reject the null hypothesis. This

data set suggests that the average pain score does not significantly differ by period of

the day. The only method of using the original Koch and Sen’s test statistic would be

to remove all subjects with any missing observations. In this case, rather than data

on 47 participant, only 38 participants are included in this analysis. The test statistic

using only these participants is 6.27 with a p-value of 0.18. Both tests in this case, fail

to reject the null hypothesis which the data shown in Figure 2.7 suggest.
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Average Pain Score by Wave
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Figure 2.6: Histogram of Average Pain Score by Wave with Normal Curve

2.7 Discussion

Koch and Sen’s test is an effective method of testing for a difference in measure-

ments when one does not want to make any assumptions regarding the distribution of

the outcome measurement. However, often in the case of studies involving repeated

measurements, missing data occurs and Koch and Sen’s test can only analyze complete

and balanced data. The method proposed in this paper serves as an effective adap-

tation of Koch and Sen’s test to cases with MCAR data. The power and the type I

error rates for this method are comparable to analysis done using the complete data.

With the smaller correlations examined in this paper, particularly most autoregressive

correlation structures, we acknowledge that the power of both the revised test and the

complete test provide lower statistical power. For smaller sample sizes, of 10 subjects
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Figure 2.7: Average Pain Score by Period of Day

or less, the power under very minor alternative hypotheses is very small and essentially

makes it very difficult to reject the null hypothesis of no difference in measurements

when a difference does exist. However, this method, as well as the complete method,

provide adequate statistical power when the sample size is greater than 10 subjects.

We recommend using this method for testing for differences between measurements on

the same subject when there is missing data, the number of subjects is greater than 10

and no distributional assumptions can be made about the outcome variables.

The power of this test presents more problematic issue with this method. Even with

relatively large sample sizes (more than 100 subjects), this test only has around 10%

power in the case of less extreme alternative hypotheses. For smaller sample sizes, the

power is even smaller and essentially makes it very difficult to reject the null hypothesis

of no difference in measurements even when a difference does exist. This seems to be
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a function of the correlation and therefore with very small correlations, including most

autoregressive correlation structures, we recommend using this method with great cau-

tion.

Koch and Sen’s test was developed to work in situations where the only assumption

was that the correlation was not compound symmetric, thereby allowing for a variety

of correlation structures. Further research should investigate alternative correlation

structures that result in higher correlation between measurements. These may yield

higher statistical power for this test. It was felt that an autoregressive structure would

be one of the more common correlation structures, as a logical choice for longitudinal

studies. However, we acknowledge that this did limit the scope of this research and the

investigation into the performance of this test. As Koch and Sen’s test allows for any

correlation structure, it would be of interest to examine the performance when com-

pound symmetry does hold and compare these results to their Friedman counterparts.

With regards to the covariance calculations used in this paper, it is important to

note that the covariance estimates are composed only from data for those subjects with

the measurements observed for both the jth and the j′th measurement. It is noted that

we could include more information in these calculations by breaking the covariance into

the correlation and variance components and allowing for all subjects with a missing

jth measurement to contribute to the variance calculations of the j′th measurement for

the correlation estimate and vice-versa. For the purpose of this paper, we felt it was

important to not use this method due to the increase in the amount of computations

that would be required. Using the covariance estimates proposed in this paper, cal-

culating test statistics requires only minor computational adjustments to most major

statistical software. In addition by using the covariance estimates proposed in this pa-

per, we allow for situations in which the variance of those with the jth but not the j′th

measurement, or vice versa, differed from the rest of the collected data. However, it
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would be of interest to compare the performance of the statistic proposed in this paper

and the similar statistic using the alternative covariance estimates.

In addition, the method proposed in this paper makes a number of assumptions

regarding the missing data, one of the stricter being that the missing data are missing

completely at random. When the missing data are not missing completely at random,

which is often the case in longitudinal studies, the performance of this test may be

called into question and revised methods may need to be developed.
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Chapter 3

Informative Missing: Assuming
Compound Symmetry

3.1 Introduction

3.1.1 Introduction and Motivation

This research was motivated by study to test for a preference among k objects. All

n subjects were asked to rank all k objects. As the outcomes provided in this data set

were naturally ranked within each subject, this research question lends itself naturally

to non-parametric tests. If one assumes that some subjects felt uncomfortable ranking

one or more of the k objects, missing data are present in this scenario. Assuming the

unease of the subject was due to those objects being particularly better than the re-

maining objects, one would expect these missing ranks to be more likely to be assigned

higher ranks. As all k objects are independent of each other, we can easily assume a

compound symmetric correlation structure.

One of the most common tests for a difference in measurements while controlling

for the effect of subject, in the case of equal correlation between any two measurements

for the same subject, is Friedman’s test. By using within subject ranks to determine

if each rank is equally likely for each measurement, the results are not dependent on



the variation between subjects. Under the null hypothesis, each permutation of ranks

is equally likely for all subjects.

Friedman’s test requires complete and balanced data, which does not often occur in

practice. A number of researchers have since developed methods to adjust Friedman’s

test to address missing data. These methods have been developed under the assump-

tion of MCAR data and have been tested and yield accurate type I error rates in these

scenarios involving this type of missingness (Prentice, 1979; Mack and Skillings, 1980;

Rai, 1987; Skillings and Mack, 1981; Wittkowski, 1988). This would be applicable if

the missingness was due to vials being dropped or lost during the shipping process as

these can be assumed to be missing completely at random. However, in scenarios where

the measurement is reported as missing when values fall outside of prespecified detec-

tion limits, the missingness is informative. If the missing data truly are informative,

analyzing the results under this invalid assumption could lead to biased results.

We will examine the performance of these MCAR adaptations to Friedman’s test,

specifically examining the inflation factor proposed by Prentice, in the case of informa-

tive missing data. The focus will be primarily on evaluating the type I error rates and

power. In this paper a new method is proposed that aims to be less biased, preserve

the type I error rate and improve power in the case of strictly informative missing

data. This method will use single imputation to impute the ranks for missing outcome

variables rather than removing missing observations from the calculation of the test

statistic completely. The information known about the reason for missingness will be

used to generate imputed values. For example if it is known higher values cannot be

read by the lab equipment, then the imputed value will be the average of the highest

possible ranks for that subject. The ranks for each subject will then be weighted by a

function of the number of missing observations per subject so that subjects with more

missing data will be given less weight to account for the uncertainty associated with
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imputation.

3.1.2 Notation, Assumptions and Terminology

We will generalize this research to a study designed with a planned number of

measurements, n, to be recorded for each k subjects. The within subject ranks are

calculated and in the case of complete data the data can be summarized in the manner

specified in Table 1.1. It is assumed that there were n preplanned measurements for

each individual. We also assume any missing data are non-monotonic as the actual

number of the measurement, j, has no inherent meaning in the calculation of this

statistic. Therefore, if a subject has a missing jth measurement than any subsequent

measurement j
′

for j
′
> j may still be observed.

3.1.3 MCAR Data Using Friedman Methodology

Reduced Rank Adjustment

When analyzing data with a different number of observations collected on each sub-

ject, the expected rank for each subject does not remain the same. Therefore Friedman’s

test if the average within subject rank for each measurement is equal to n+1
2

would be

inappropriate in this scenario. For situations involving missing data, most methods de-

veloped using Friedman-type methods have proposed using Bernard and Van Elteren’s

method of reduced ranks to resolve this issue (Bernard and Elteren, 1953; Wittkowski,

1988; Mack and Skillings, 1980; Skillings and Mack, 1981; Rai, 1987; Prentice, 1979).

By calculating a reduced rank, subtracting the subject specific expected rank from the

observed rank, differences between subjects in the number of observed measurement

are taken into account. This makes the value meaningful for subjects with different

numbers of non-missing outcome values. When the reduced ranks are used it is impor-

tant to note that any subject with missing data for the jth measurement is not included
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in the calculations. Thereby under the null hypothesis any of the permutations from 1

to ni are equally likely for all the observed measurements.

Rather than averaging the ranks across all subjects, as was done in Friedman’s test,

the reduced rank method calculates a statistic by summing the reduced ranks over all

subjects. A test statistic is calculated based on these values. If the null hypothesis

is true and all permutations of ranks, from 1 to ni are equally likely, the sum of the

reduced ranks for each of the jth measurements will be very close to zero. If a particular

measurement tends to be higher or lower than other measurements, meaning each rank

is not equally likely at each measurement, then the value for the sum of the reduced

rank for those measurements will be further away from zero (Bernard and Elteren,

1953).

Inflation Factor

This loss of information due to the missing data can result in a substantial decrease

in power. To address this issue, a number of researchers proposed inflating the ranks,

and therefore the expected values of the ranks, of individuals with missing observations.

This would ensure a greater equality across subjects in terms of a subject’s contribution

to the calculation of the test statistic. By multiplying the rank by some function of the

number of non-missing observations per subject, this method increases the value of a

subject’s non-missing observations in the calculations in an effort to account for the loss

of information due to the missing data. The use of inflation factors results in substan-

tially higher power than Bernard and Van Elteren’s original test statistic (Prentice,

1979; Mack and Skillings, 1980; Skillings and Mack, 1981; Rai, 1987; Wittkowski, 1988).
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Test Statistic

One of the more common choices for this inflation factor, proposed by Prentice, in-

volves multiplying the reduced rank by (ni+1)−1. We will denote the vector of reduced

ranks, when using this inflation factor, as a vector µP consisting of n − 1 elements.

The jth element of this vector, corresponding to the jth measurement, will be denoted

as µPj and can be specified as follows:

µPj =
k∑
i=1

(
(ni + 1)−1rij −

1

2

)
One µPj is arbitrarily omitted so the vector will be of full rank. It is important

to note that any subject with a missing jth measurement does not contribute to the

calculation of the µPj element of this vector.

We denote VP as the (n x 1) x (n x 1) covariance matrix associated with µP . The vjj′

element of this matrix denotes the covariance between the jth and j′th measurements.

Assuming measurements from different subjects are independent, we can calculate the

elements of the covariance matrix as:

vjj = V ar (µPj) =
k∑
i=1
nij>0

ni − 1

12(ni + 1)

vjj′ = Cov (µPj, µPj′) = −
k∑
i=1

nij>0,nij′>0

1

12(ni + 1)

It is important to note that these summations only include subjects with nij >

0 and nij′ > 0. Therefore the summation, while specifically from 1 to k does not

include k elements unless there are no subjects with missing jth or j′th measurements.

The Friedman-type test statistic, P = µ′pV
−1
P µp, is assumed to have a chi-squared

distribution with n-1 degrees of freedom under the null hypothesis of no difference in
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measurements within a subject (Prentice, 1979).

Application to Informative Missing Data

For complete data, under the null hypothesis, all outcome values are equally likely to

be any of the n ranks. When missing data exists, all of the non-missing measurements

are equally likely to be any of ni ranks. The missing measurements are equally likely

to be at any of the n time points if the null hypothesis is true. Friedman’s test, and

Prentice’s test statistic based on Friedman’s test, tests the hypothesis that the outcomes

at each measurement are not significantly different. In the case of informatively missing

data, as the number of subjects goes to infinity, the higher missing values will be equally

spread out across all n measurements. Therefore, the type I error rate for this the test

for a difference in measurements should not be drastically affected by the informative

missing data.

Bias associated with µP as an estimator of the vector of reduced ranks, µ, can

be explicitly calculated in the case of strictly informative missing data. The expected

value of each element of the vector µP is:

E[µPj] = E

 k∑
i=1
nij>0

(
1

ni + 1
rij −

1

2

) =
k∑
i=1
nij>0

(
1

ni + 1
E[rij]−

1

2

)

For subjects with a non-missing jth measurement, Pr (rij = a) = 0 for any value

where a > ni and under the null hypothesis all ranks less than or equal to ni are equally

likely for each measurement. Therefore the expected value of rij is

E[rij] = 1 (Pr (rij = 1)) + ...+ ni (Pr (rij = ni)) + ...+ n (Pr (rij = n))

= 1

(
1

ni

)
+ ...+ ni

(
1

ni

)
+ (ni + 1)(0) + ...+ (n)(0) =

(ni + 1)

2
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Subjects with a missing jth measurement are not included in the calculation of the

estimate of µPj. Based on these calculations of the expected values, we can calculate

the bias of Prentice’s test statistic based on the true value of µj, the reduced rank,

which is defined as
∑k

i=1

[
rij − n+1

2

]
.

E[µPj]−µj =
k∑
i=1
nij>0

(
1

ni + 1

(
ni + 1

2

)
− 1

2

)
−

k∑
i=1

(
rij −

n+ 1

2

)
= −

k∑
i=1

(
rij −

n+ 1

2

)

As k approaches infinity, under the null hypothesis the bias will be zero. Therefore,

the test statistic, even in the case of informative missing data, yields an asymptotically

unbiased estimator of the reduced rank vector µ. Prentice’s method therefore yields

an unbiased estimator and a test statistic for which the type I error rate of the test

statistic is not greatly impacted by informatively missing data.

While in terms of bias and type I error rate, Prentice’s test statistic performs well

other substantial problems do arise. If the null hypothesis is in fact not true and

one, or multiple, measurements are significantly different from others, then informative

missing data can lead to substantial problems with statistical power. In situations

with few subjects or only a few measurements reported for each subject, the power for

Friedman’s test is already low and therefore any decrease in power could potentially be

problematic (Friedman, 1937; Stokes, Davis and Koch, 2000). In the scenario proposed

in this paper, higher values are more likely to be missing. If many of these higher

values are missing this could result in the estimates of the reduced rank to be much

lower than they are in reality thereby making the reduced ranks for the measurements

closer in range than they truly are.
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3.2 Method

The sum of the reduced ranks, when combined with an inflation factor, is a proven

and effective non-parametric method of estimating the differences between measure-

ments in the case of MCAR data. However, in the case of informative missing data,

by not taking into account the information known about the reason for missingness,

Prentice’s method results in an unnecessary loss of power. This paper proposes a new

method that utilizes reduced ranks, weights and imputation to adapt these Friedman-

type tests to informative missing data. It is of interest to compare both the type I error

rate and power of Prentice’s method with the new method.

3.2.1 Imputation

Prentice’s method ranks only non-missing measurements, thereby excluding all in-

formation about missing measurements from the calculations. In situations where the

probability that a measurement is missing is related directly to the value of the mea-

surement, excluding these values can result in a substantial loss of information. We

propose a method which imputes missing ranks based on information known about

the reason for missingness. For simplicity, we assume strictly informative missingness

data, although it is acknowledged that this is rarely the case in practice. We propose

using single imputation methods to address the scenario where higher measurements

are more likely to be missing. With minor adjustments, the methods proposed here

can also be applied to situations where lower measurements have a higher probability

of being missing.

In scenarios where higher measurements are more likely to have missing values, im-

putation is based on the assumption that non-zero probabilities can be assigned only

to the highest n−ni ranks. Often in these scenarios there is no way to distinguish mul-

tiple missing values from each other. Therefore the probabilities of each of the higher
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ranks are assumed to be equal for each missing measurement on the same subject.

This method assumes the probabilities assigned to each of the highest ranks are 1
n−ni .

Therefore, the expected value for the missing observations can be calculated as below.

E[rij] = 1 (Pr(rij = 1)) + ...+ (ni + 1) (Pr(rij = ni + 1)) + n (Pr(rij = n))

=
1

n− ni
(ni + 1) +

1

n− ni
(ni + 2) + ...+

1

n− ni
(n) =

n+ ni + 1

2

Imputation using this expected value rather than the missing value is done for all

missing measurements. For all non-missing observations, the ranks remain the within

subject rankings from 1 to ni. After imputation, it is important to note that the average

rank for each subject is now the same as the average rank would be for each subject in

the case of no missing data.

3.2.2 Subject-specific Weight for Ranks

After imputation, each subject has a complete set of n ranks. The revised test

statistic µRj will therefore be based on k elements, one from each subject. Subjects that

were missing the jth measurement and therefore were excluded from the calculations of

µPj, will be included and given the imputed value for calculations of µRj. To account

for the uncertainty associated with imputation, particularly as this imputation assumes

the only reason for missingness is the actual outcome value, a weight is proposed that

will assign less weight to subjects with more missing data. These weighted reduced

ranks will then be used to calculate the estimate for µ as well as the statistic for

testing if there is a significant difference in measurements within a subject.

The method of the reduced ranks involves subtracting the expected value of the

weighted ranks from the actual value of the weighted ranks. After imputation, the
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expected value for rij can be calculated as follows:

E[rij] =

[
1 (Pr (rij = 1)) + ...+ ni (Pr (rij = ni)) +

n+ ni + 1

2

(
Pr

(
rij =

n+ ni + 1

2

))]
=

[
1

(
1

n

)
+ ...+ ni

(
1

n

)
+
n+ ni + 1

2

(
n− ni
n

)]
=
n+ 1

2

If the weight assigned to the ranks of the ith subject is denoted as wi then µR, the

revised estimate of µ, can be expressed in general terms with elements, µRj, defined

as the weighted rank minus the expected value of the weighted rank under the null

hypothesis. Just as with Prentice’s statistic, one µRj is omitted to insure the vector is

of full rank.

µRj =
k∑
i=1

wi

(
rij −

n+ 1

2

)
It is important that non-missing values are given higher weights than missing values,

as there is a degree of uncertainty in imputation. Therefore we will assign a subject

specific weight which assigns less weight to individuals with more missing data. For

subjects with many missing measurements, imputation adds very little information

and therefore we want to ensure the weight for these subjects is much smaller. We

propose a weight 1
n−ni+1

which gives subjects with complete data the same weight they

would be given in the case of complete data. However, subjects with very few non-

missing observations are assigned a very small weight to account for the high level

of uncertainty. Based on this weight, our estimate of the elements of the µR vector

becomes the following:

µRj =
k∑
i=1

1

n− ni + 1

(
rij −

n+ 1

2

)
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3.2.3 Test Statistic

The hypothesis test proposed by Prentice involves testing the null hypothesis that

the inflated ranks for the jth measurement are on average close to the expected value

of the inflated ranks, which is equivalent to testing if µP = 0. In a similar fashion, if

the weighted ranks of the method proposed in this paper are close to their expected

value, then µR = 0. Therefore, this revised estimate of the reduced ranks can be used

to test the same hypothesis as Prentice’s statistic.

We denote VR as the (n−1) x (n−1) covariance matrix associated with µR with the

element in the jth column and j′th row denoted as vjj′ . We can calculate this covariance

matrix, after first calculating the variance and covariance of the actual ranks.

V ar[rij] =
n3
i + 3n2ni − 3nn2

i − ni
12n

=
(ni − n))3 + (n3 − ni)

12n

and

Cov[rij] = E[rij, rij′ ]− E[rij]
2 = −n

3
i − 3nn2

i + 3n2ni − ni
12n(n− 1)

Based on these calculations, since ranks from different subjects are independent,

V ar (µRj) =
k∑
i=1

(
1

n− ni + 1

)2(
(ni − n)3 + (n3 − ni)

12n

)

=
k∑
i=1

(
1

n− ni + 1

)2(
n3
i + 3n2ni − 3nn2

i − ni
12n

)

Cov (µRj, µRj′) = −
k∑
i=1

(
1

n− ni + 1

)2(
n3
i − 3nn2

i + 3n2ni − ni
12n(n− 1)

)

63



The explicit calculation for these values can be found in Appendix B. By the central

limit theorem and Lyapunov’s condition, the n − 1 vector µR has an asymptotically

normal distribution of dimension n − 1 with a covariance matrix composed of the

elements specified above. Therefore, the revised Friedman-type test statistic, R =

µ′RV
−1
R µR, has a chi-squared distribution with n−1 degrees of freedom under the null

hypothesis (Koch and Sen, 1968; Sen and Puri, 1967).

3.2.4 Calculation of Bias

Bias associated with µR as an estimator of the vector of reduced ranks, µ, can

be explicitly calculated in the case of strictly informative missing data. The expected

value of each element of the vector µR is:

E[µRj] = E

[
k∑
i=1

(
1

n− ni + 1

)(
rij −

n+ 1

2

)]
=

k∑
i=1

(
1

n− ni + 1

)(
E[rij]−

n+ 1

2

)

Under the null hypothesis, as shown in Section 3.2.2, when using this revised test

statistic, the expected value of rij = n+1
2

. Therefore, under the null hypothesis E[µRj] =

0. Therefore the bias of the test statistic is easily calculated below:

E[µRj]− µj = 0−
k∑
i=1

(
rij −

n+ 1

2

)

Just as with Prentice’s statistic, this value approaches 0 as k goes to infinity so

both Prentice’s method as well as the revised method proposed in this paper produce

asymptotically unbiased estimates of the reduced rank vector. Therefore, other methods

must be used to compare the two test statistics.
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3.2.5 Comparison of Type I Error Rate

In the case of informative missing data, it is important to note that Pr(rij is missing)

= Pr(rij > ni) = 1
n−ni for all n measurements under the null hypothesis. Therefore,

regardless of the value of j, the missing values are excluded with equal probability from

all n measurements. By the same justification, the inclusion of the imputed value is

equally likely to be at any value at any of the n measurements, again with probability

1
n−ni for all n measurements. Therefore when testing if one or more measurements has

a significantly higher reduced rank than the others, is not affected if the informatively

high values are excluded with equal likelihood from each measurement. Therefore,

whether the missing value is excluded from the test statistic, or an imputed value is

substituted, under the null hypothesis this does not change the probability that one

would reject the null hypothesis.

3.2.6 Comparison of Power

In unbalanced designs, the Pitman efficiency can be largely dependent on the al-

ternative hypothesis (Prentice, 1979). Therefore, in an effort to generalize our results,

we will address the comparison of power between our revised method and Prentice’s

method using less explicit guidelines. The general alternative hypothesis of our statisti-

cal test is that measurements within a subject are statistically different. As mentioned

previously, we are only considering situations where the differences within a subject are

constant across all subjects.

In these scenarios, the alternative hypothesis requires the reduced ranks of one or

more measurements to be significantly greater than the reduced rank of others. In

this situation, it is important to note that Pr(rij is missing) is not the same for all n

measurements. This probability, under the alternative hypothesis, is dependent on the

measurement number j. Without losing generalizability we cannot specifically give an

65



explicit function of this probability.

However, we can note that when using Prentice’s method, all observations with a

missing value are excluded from the test statistic. In the case of strictly informative

missing data, this would exclude the highest reduced ranks from the value of the re-

duced rank for the jth measurement thereby making this reduced rank closer to the

reduced rank of the other measurements. In doing so, this makes it harder to reject

the null hypothesis when in fact the alternative is true.

In contrast, although the revised method does not impute the highest values, it

does minimize the difference in the reduced rank for that measurement. Therefore

using this statistic allows for the clearer delineation between the reduced ranks and

thereby increases the power as compared to Prentice’s test statistic.

3.3 Simulations

3.3.1 Generation of Data sets

To narrow the scope of our research, only a few factors were allowed to vary so spe-

cific guidelines could be established. For each combination of factors 10,000 complete

data sets were generated. Of primary concern was how well the method would work

in scenarios with a blend of informative missing data and missing completely at ran-

dom data. We allowed the percentage of these two types of missingness to vary while

maintaining the same amount of overall missing data. All data were generated from a

multivariate normal distribution. In each scenario 10% of the overall observations were

set to missing and then a certain percentage out of this 10% was set to be informatively

missing data and the remaining was set to be MCAR. Therefore each data set gener-

ated had the same number of missing observations, although some of those had a higher

percentage of the missingness generated by informative missingness. As our derivations
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of the revised test statistic assumed 100% of the missing data were informative this was

the first option selected. However, we also chose to examine scenarios where 80%, 50%

and 20% out of the total 10% missing data were forced to be informative missing data.

While the percent of the missing data that were informative was of primary interest,

we also were interested in varying the number of subjects and the number of observa-

tions within each subject. It was of interest to examine the performance of our test in a

relatively small sample scenario as well as a more moderate sample size. Therefore, the

number of subjects considered included 10 and 50 and the number of measurements per

subject for each of those options were 5 and 10 respectively. Table 3.1 below illustrates

all of the variations generated in our scenarios.

Table 3.1: Data Sets Generated

Number of Subjects Number of Observations % Of Missing Data

Per Subject that is Informative

10 5 100%

10 5 80%

10 5 50%

10 5 20%

10 10 100%

10 10 80%

10 10 50%

10 10 20%

50 5 100%

50 5 80%

50 5 50%

50 5 20%

50 10 100%

50 10 80%

50 10 50%

50 10 20%
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Continuous outcome variables were generated from the same multivariate normal

distribution, with the covariance matrix calculated based on the specification of the

variance and correlation. For generalizability we standardized our outcome variable

with the mean of each measurement to be zero and variance of each measurement to be

one. As measurements taken on the same individual at the same time point are likely

to be highly correlated the correlation matrix was compound symmetric with ρ = 0.9.

Based off of the mean and covariance matrix, multivariate normal data were generated

using the RANDNORMAL function in PROC IML.

Once the complete data set was generated, the data were sorted by outcome and the

highest observations, up to the prespecified number of informative missing observations,

were set to missing. While we acknowledge that informative missing data realistically

involve increasing the probability of a subject being missing, we felt that our method

allowed for optimal control over the percent that is truly informatively missing. The

remaining amount of missing data, if any, was then eligible to be set to missing accord-

ing to MCAR patterns. Using PROC SURVEYSELECT, a simple random sample of

the remaining non-missing observations were randomly selected. Those selected were

then set to missing.

Three different mean vectors were chosen in order to allow for the examination of

both the type I and power. All three mean vectors, in the case of 10 observations col-

lected on each subject, can be seen in Figure 3.1 below. The overall mean of all three

mean matrices was zero although two of the three mean vectors had a linear increase

in the mean as a function of observation number. These two mean vectors with the

linear increases in outcome were used to examine power. As some scenarios included

a larger number of observations, the linear increase per observation was minimized to

half the variance of the data and a quarter of the variance of the data, 0.5 and 0.25

respectively.
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Figure 3.1: Mean Vectors for Null and Alternative Hypotheses
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3.3.2 Imputation

The single imputation method first ranked the observations within a block from

one to the total number of non-missing observations within that block. The remaining

ranks that were not assigned, which consisted of the highest ranks for that subject, were

averaged and this average rank was imputed as the value for all missing observations

within that block. As mentioned in Section 3.2.1, this was equivalent to assigning all

missing values the value n+ni+1
2

.

3.3.3 Calculation and Comparison of Type I Error Rate

Prentice’s weighting of the reduced ranks is an option included in many statistical

packages. These adjusted test statistics were calculated using PROC FREQ in SAS 9.2
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with the additional specification of CMH2 and SCORES=MODRIDIT.

The revised method proposed in this paper can be calculated using Friedman type

test statistics using the weighted ranks after imputation rather than the ranks. Using

the weighted rank is equivalent to weighting the reduced ranks. The outcomes must

first be ranked and weighted and then test statistics and corresponding p-values can

be calculated using PROC FREQ with the CMH2 option and SCORES=TABLE.

For both these methods, type I error rates were calculated. Using a standard rejec-

tion level of 0.05, if the p-value for the test statistic fell below 0.05, the test rejected

the null hypothesis. The type I error of these methods were calculated as the total

percentage of data sets for which the null hypothesis was rejected when there was in

fact no linear change in the outcome variable over time. Power was calculated in a

similar fashion, under the two alternative hypotheses.

3.4 Results

3.4.1 Type I Error Rate

The type I error rates for both Prentice’s method as well as the method presented

in the paper are shown in Figures 3.2 and 3.3. For reference, the type I error rates

for the original complete data set are shown as well. Overall, the type I error rates

did not appear to be very different between the two methods that can handle missing

data. There appears to be a slight inflation of the type I error rate when using the

revised method proposed in this paper in the case of 50 subjects and 5 observations

with 100% of the missingness being informative. Also in the case of 50 subjects and 10

observations with 80% of the missingness being informative, there is a slight inflation

of the type I error rate. Other than those two cases, for all three tests, the type I error

rate was well preserved and under 0.05. The exact type I error rates are presented in
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tabular format in Appendix B. Type I error rates were not calculated for the scenario

of 10 subjects and 10 observations per subject as data on more than 10 subjects is

needed to test for a difference in 10 measurements.
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Figure 3.2: Type I Error Rates by % Informative Missing - 10 Subjects

3.4.2 Power

The power calculations for both the proposed method and Prentice’s under an alter-

native of a linear increase of 0.25 across all n measurements, are shown in Figures 3.4

and 3.5. Under this less extreme alternative, in the case of 10 subjects, the power

of our revised test is very similar to that of Prentice’s test. As expected, for smaller

sample sizes, the power for Prentice’s test statistic, our revised test statistic and the

original complete data set, is relatively low. For 50 subjects, our method shows a slight

improvement in power over that of Prentice’s method when 100% of the missing data

are informatively missing and in the case of 5 observations per subject, our revised

method yields a relatively similar power to that of Prentice’s test when at least 50% of
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Figure 3.3: Type I Error Rates by % Informative Missing - 50 Subjects

the missingness is informatively missing.

Power for scenarios under an alternative of a linear increase of 0.50 are shown in

Figures 3.6 and 3.7. In the case of this more extreme alternative hypothesis, with 10

subjects, our revised method shows an improvement in power over Prentice’s test when

100% of the data are informatively missing and comparable power to Prentice’s method

when at least half of the missing data is informatively missing. For a sample size of 50,

this extreme alternative results in extremely high power with almost equivalent power

for all three tests.

3.4.3 Asymptotic Behavior

The distribution of our test statistic, based on 5,000 simulations, was examined

in order to evaluate the asymptotic behavior of our revised test statistic under the

null hypothesis. As mentioned in Section 3.2.3, under the null our distribution is
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Figure 3.4: Power by % Informative Missing (Increase of 0.25) - 10 Subjects

asymptotically distributed chi-squared distribution with n-1 degrees of freedom. We

considered a scenario with 250 subjects and 5 measurements collected on each subject.

The distribution of these test statistics along with the probability density function for

a chi-squared distribution with 4 degrees of freedom is shown in Figure 3.8 below.

3.5 Data Example

A data set composed of the rankings of k objects by n subjects, as proposed in

Section 3.1.1 was used. This data set set is of an identical structure to that used for

Kendall’s test involving n objects being ranked by k judges (Kendall and Smith, 1939).

The data set proposed by Kendall was used to test for agreement and concordance,

although the same type of data set could be used to test for a difference in ranks while

controlling for subject.

We have data collected from a Kendall-type scenario where 20 individuals each
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Figure 3.5: Power by % Informative Missing (Increase of 0.25) - 50 Subjects

ranked 4 objects. This study sought to gather data to test the hypothesis that each rank

is equally likely for each object, combining data across all subjects. Since there are four

distinct objects we expect the true correlation between rankings of the same subject

to be equal between any two objects. This allows for the assumption of compound

symmetry to be made. The within-subject ranks are shown in Table B.4 in Appendix B.

As the data are already ranked within each subject, non-parametric within subject tests

are a preferred analysis method. When dealing with the complete data set, Friedman’s

test would be an effective method of testing for a difference in ranks while controlling

for any potential subject effect.

In truth the rank each subject gave each object is known. However, suppose not all

subjects felt comfortable ranking all objects. In particular, suppose the second object

was of a slightly higher quality, and therefore some subjects felt uncomfortable ranking

this object. We can therefore suppose that the missing data in this study are, at least

in some substantial part, informatively missing as the missing values are more likely to
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Figure 3.6: Power by % Informative Missing (Increase of 0.50) - 10 Subjects

be higher values. The data set with missing data is shown in Table B.5 in Appendix B

as well.

As all ranks were actually collected on all subjects, we can compare both Prentice’s

method as well as the method proposed in this paper to the results from Friedman’s

test done with the complete data set. As seen in Figure 3.9 below, the original complete

data set appears to show slightly more differences between objects than the data set

with simulated missing data. When Friedman’s test is performed on the complete data

set, the test statistic is 5.34, which with 3 degrees of freedom yields a p-value of 0.1485.

Prentice’s test statistic, intended for MCAR missing data, provides a test statistic of

1.98, which with the same degrees of freedom, yields a p-value of 0.5756. The revised

test statistic proposed in this paper, gives a value closer to the true value calculated

using the complete data set. The test statistic is 2.47 with a corresponding p-value of

0.4801. Here, unlike in many studies, we can compare ranks between the missing and

the observed data. The missing data appear to be informative, as 62.5% of the missing
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Figure 3.7: Power by % Informative Missing (Increase of 0.50) - 50 Subjects

data has a true rank of four, compared to the observed data where only 20.8% was

given a rank of four. Therefore, as missing values are more likely to be of higher ranks,

the revised method produces a test statistic closer to the actual value and therefore in

this case this test statistic would be preferred over Prentice’s.

3.6 Discussion

Our method offers an improvement in power in certain scenarios, which in the case

of a within subject test for differences, can be an important improvement to current

methods. When the number of subjects is substantially larger than the number of

measurements collected on each subject, our method proves power that is at least as

high, if not higher, as Prentice’s test when at least half of missing data are informatively

missing. The most marked improvements appear to be when the power is not extremely

high nor extremely low, in this case in the situations of the less extreme alternative and
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Figure 3.8: Asymptotic Behavior of Our Revised Test Statistic

higher sample sizes and in the case of the more extreme alternative and smaller sample

sizes. However, it is important to note that the revised method proposed in this paper

can result is slightly inflated type I error rates when the sample size is moderately large.

It is important to note that making assumptions about the percent of the missing

data that are truly informative missing is difficult to do and, as such, this presents

itself as one limitation of the guidelines proposed in this paper. Additionally, we must

acknowledge that due to the large number of possibilities, we could not fully evaluate

the performance of our revised test statistic under all alternative hypotheses. The

alternative hypotheses for our tests were meant to evaluate a smaller departure from the

null hypothesis and a relatively drastic departure. In addition both of our alternative

hypotheses tested the performance in the case of a linear increase in outcome. Further
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Figure 3.9: Mean Rank for Each Object
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research should be done to test the performance of this test under a wider variety

of alternative hypotheses including both different levels of linear increases as well as

non-linear alternative hypotheses.
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Chapter 4

Informative Missing: Without
Assuming Compound Symmetry

4.1 Introduction

4.1.1 Introduction and Motivation

This research is motivated by longitudinal studies in which repeated measurements

are collected on the same subject over a period of time. The study is interested in

determining if the difference in pre and post-bowel pain scores differ throughout the

day. Based on the time stamp of the pre-bowel movement pain score, the difference

in pain score was categorized into early morning, morning, afternoon or evening. Re-

searchers were interested in testing if the difference was the same throughout the day.

Measurements on the same subject are expected to be correlated and therefore any

subject effect must be accounted for; however, differences between subjects are not of

interest.

In scenarios where compound symmetry cannot be assumed, one method of testing

this hypothesis has been proposed by Koch and Sen (Koch and Sen, 1968). Using sim-

ilar methods and assumptions to those proposed by Friedman, this method tests for a

difference in measurements while controlling for any potential subject effect. However,



the test requires complete data, which can be rare when dealing with longitudinal data.

Missing data in these studies can be MCAR, with missingness due to patients missing

observations for reasons unrelated to their outcomes. In Chapter 2 of this paper we

proposed a method of adjusting Koch and Sen’s test statistic to analyze data sets with

MCAR missing data. One common form of missing data in longitudinal studies is loss

to follow up. This type of missing data are likely to be informatively missing as drop

out can be a result of subjects dropping out of the study due to either adverse health

outcomes or improved health outcomes. In the case of the example above, a subject

may stop reporting pain scores if they are feeling large amounts of pain. In these cases,

assuming the data are MCAR, when in reality the data are informative, can lead to

substantial problems with bias and inaccuracy. The performance of the revised test

proposed in Chapter 2 when the MCAR assumption is violated has not been examined.

In this chapter we propose using a method similar to that proposed in Chapter 3 to

address the informative missing data. This method will use single imputation to impute

missing ranks and a weighting scheme to account for the uncertainty associated with

the imputation. The new method proposed seeks to have higher power and comparable

type I error rate to the test proposed in Chapter 2, when the missing data truly are

informatively missing.

4.1.2 Notation, Assumptions and Terminology

A longitudinal study design, as specified in Section 1.2.2, is assumed. The jth

measurement represents the measurement at the jth time point for the ith subject.

Koch and Sen’s test focuses on the effect of time when no other covariates are of

interest. Missing data can be intermittent throughout a study but in longitudinal

studies, missing data can also occur as a result of a subject dropping out of the study.

Often when a subject drops out of a study it is related to either particularly negative
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or positive results. Therefore, it is often assumed that missing data due to loss to

follow up is informative missing. Since the goal of this paper is to adapt the methods

of Chapter 2 to informative missing data, we will assume the informative missing data

are monotonic. Therefore if any subject is missing the jth measurement, the subject will

subsequently have a missing j′th measurement for all j′ > j. The general set up for this

test, as seen in table Table 1.2, involves the ranking of the Yij values within each subject.

Here we allow rij to denote the within subject rank of the ith individual at the jth time

point. In the case of complete data, it is important to note that
∑n

i=1 rij = n(n+1)
2

.

The aim of this test is to determine if the outcomes are different within a subject

without making any assumptions about the correlation structure. As mentioned in

Section 1.2.2, Koch and Sen’s test, which uses complete and balanced data, preserves

the correlation structure of the observed data as only two possible permutations of ranks

are possible for each subject under the null hypothesis of no difference in measurements.

4.1.3 MCAR Data Using Koch and Sen’s Methodology

Reduced Rank Adjustment

Koch and Sen’s test statistic was developed for situations of complete and balanced

data. However, this is often not practical for the analysis of longitudinal studies.

Researchers have proposed the reduced rank method as a way to address the problem of

incomplete and unbalanced data sets for tests involving within subject ranks (Bernard

and Elteren, 1953). This method, which is explicitly described in Chapter 2 of this

paper, ranks all non-missing observations and calculates a reduced rank by subtracting

the expected value of the rank from the observed rank. Testing to see if the sum of

these reduced ranks are different from each other is often seen as an alternative to

testing if the average ranks across all subjects are equal. In these cases, subjects with

a missing jth observation are not included in the summation and therefore not in the
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calculation of the test statistic.

Inflation Factor

Due to the loss of information that results from missing data, the power from the test

is lower than desired. In an effort to rectify this problem, a number of researchers pro-

posed different inflation factors that inflate the values of the reduced rank for subjects

with more missing data, thereby minimizing the impact of the loss of information from

subjects with fewer observations (Prentice, 1979; Mack and Skillings, 1980; Skillings

and Mack, 1981; Rai, 1987; Wittkowski, 1988). One of the most widely used inflation

factors is 1
ni+1

, which has been proposed by Prentice. His inflation factor has been

proven to yield acceptable power in the case of MCAR data in scenarios involving

Friedman’s test and has been applied to Koch and Sen’s test with some success as

shown in Chapter 2 of this document (Prentice, 1979; Stokes, Davis and Koch, 2000).

Test Statistic

The test statistic proposed in Chapter 2 is based on the inflated reduced rank vector

µU and the corresponding covariance matrix. The µU matrix consists of n−1 elements

with one µUj omitted from the vector in order to preserve linear independence. The

µUj element of this vector is shown below:

µUj =
k∑
i=1
nij>0

(
1

ni + 1
rij −

1

2

)

The vector µU has an asymptotically normal distribution with a covariance matrix

VU where vjj′ is used to denote the element in the jth row and the j′th column of the
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VU matrix.

vjj = V ar(µUj) =
k∑
i=1
nij>0

(
1

ni + 1
rij −

1

2

)2

vjj′ = Cov(µUj, µUj′) =
k∑
i=1

nij>0,nij′>0

((
1

ni + 1
rij −

1

2

)(
1

ni + 1
rij′ −

(n+ 1)

2

))

Calculations for both the covariance and variance elements can be found in Ap-

pendix A. The test statistic, U , that we will calculate as µ′UV
−1
U µU will be asymptot-

ically distributed as chi-squared with n− 1 degrees of freedom.

Application to Informative Missing Data

Under the null hypothesis there is no difference between measurements at different

time points. This test statistic is testing the same hypothesis as Friedman’s test but

relying on the fact that under this null hypothesis only two permutations are possible

for each subject. Assuming no difference in measurements, as the number of subjects

goes to infinity, the missing measurements are spread out evenly across all n time

points. Therefore, the impact of the informatively missing data will be similar for all

measurements and the type I error rate of this test will not be greatly impacted by

informative missing data.

For the scenario proposed in this paper, in which higher values are more likely to be

missing, all subjects with a non-missing jth measurement have the following expected
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rank:

E[rij] = rij (Pr(rij = rij)) + (ni − rij + 1) (Pr(rij = ni − rij + 1))

= rij

(
1

2

)
+ (ni − rij + 1)

(
1

2

)
=
ni + 1

2

And therefore,

E[µUj] =
k∑
i=1
nij>0

(
1

ni + 1
E[rij]−

1

2

)
=

k∑
i=1
nij>0

(
1

ni + 1

ni + 1

2
− 1

2

)
= 0

Based on the calculations above, the bias of the µU vector in estimating the true

vector of reduced ranks, µ, can be calculated explicitly in the case of informatively

missing data.

E[µUj]− µj = 0−
k∑
i=1

(
rij −

n+ 1

2

)
= −

k∑
i=1

(
rij −

n+ 1

2

)

As k approaches infinity, under the null hypothesis the bias will be zero. Therefore,

the test statistic, even in the case of informative missing data, yields an asymptotically

unbiased estimator of the reduced rank vector µ. Therefore the test statistic proposed

in Chapter 2 yields an unbiased estimator and a test statistic for which the type I error

rate is not greatly impacted by informatively missing data.

While in terms of bias and type I error rate, this test statistic performs well other

issues do arise. If the null hypothesis is in fact not true and one, or multiple, measure-

ments are significantly different from others, then informative missing data can lead to

substantial problems with statistical power. In situations with few subjects or only a

few measurements reported for each subject, the power for this test has been shown to

be low and therefore any decrease in power could potentially be problematic. In the

scenario proposed in this paper, higher values are more likely to be missing. If many
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of these higher values are missing this could result in the estimates of the reduced rank

for one measurement to be much lower than they are in reality thereby making the

reduced ranks for the measurements closer in range than they truly are.

4.2 Method

The sum of the reduced ranks, when combined with an inflation factor, is a proven

and effective non-parametric method of estimating the differences between measure-

ments in the case of MCAR data. However, in the case of informative missing data,

by not taking into account the information known about the reason for missingness,

this adjustment results in an unnecessary loss of power. This paper proposes a new

method that utilizes reduced ranks, weights and imputation to adapt Koch and Sen’s

test to scenarios involving informatively missing data. It is of interest to compare both

the type I error rate and power of the new method to that proposed in Chapter 2 to

handle MCAR data.

4.2.1 Imputation

The method for MCAR data ranks only non-missing measurements, thereby exclud-

ing all information about missing measurements. In situations where the probability

that a measurement is missing is related directly to the value of the measurement,

excluding these values can result in a substantial loss of information. We propose a

method which imputes missing ranks based on information known about the reason for

missingness. For simplicity, we assume strictly informative missingness data, although

it is acknowledged that this is rarely the case in practice. We propose using single im-

putation methods to address the scenario where higher measurements are more likely

to be missing. With minor adjustments, the methods proposed here can also be applied

to situations where lower measurements have a higher probability of being missing.
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In scenarios where higher measurements are more likely to have missing values, im-

putation is based on the assumption that non-zero probabilities should be assigned to

the highest n− ni ranks. Often in these scenarios there is no way to distinguish multi-

ple missing values from each other. Therefore the probabilities associated with each of

the higher ranks are assumed to be equal for each missing measurement for the same

subject. This method assumes the probabilities assigned to each of the highest ranks

are 1
n−ni . Therefore, the expected value for the missing observations can be calculated

as below.

E[rij] = 1 (Pr(rij = 1)) + ...+ (ni + 1) (Pr(rij = ni + 1)) + n (Pr(rij = n))

=
1

n− ni
(ni + 1) +

1

n− ni
(ni + 2) + ...+

1

n− ni
(n) =

n+ ni + 1

2

Imputation using this expected value rather than the missing value is done for all

missing measurements. For all non-missing observations, the ranks remain the within

subject rankings from 1 to ni. After imputation, it is important to note that the average

rank for each subject is now the same as the average rank would be for each subject in

the case of no missing data.

4.2.2 Subject-specific Weight for Ranks

, After imputation, each subject has a complete set of n ranks. Now, regardless

of whether or not rij is an imputed value or an observed value, we have one observed

permutation of ranks from 1 to n. Therefore, there are two possible possibilities, the

observed permutation after imputation or the permutation that is the exact opposite.

The revised test statistic will therefore be based on k elements, one from each subject.

Subjects that were missing the jth measurement, and therefore were excluded from

the calculations of µUj, will be included and given the imputed value for calculations
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of the revised estimate. To account for the uncertainty associated with imputation,

particularly as this imputation assumes the only reason for missingness is the actual

outcome value, a weight is proposed that will assign less weight to subjects with more

missing data. These weighted reduced ranks will then be used to calculate the estimate

for µ as well as the statistic for testing if there is a significant difference in measurements

within a subject.

The method of the reduced ranks involves subtracting the expected value of the

weighted ranks from the actual value of the weighted ranks. After imputation, the

expected value for rij, regardless of whether rij is an imputed value or not, can be

calculated as follows:

E[rij] = rij (Pr(rij = rij)) + (n− rij + 1) (Pr(rij = n− rij + 1))

=
n+ 1

2

If the weight assigned to the ranks of the ith subject is denoted as wi then µF , the

revised estimate of µ, can be expressed in general terms with the jth element, µFj,

defined as the weighted rank minus the expected value of the weighted rank under the

null hypothesis. Just as with Prentice’s statistic, one µFj is omitted to insure the vector

is of full rank.

µFj =
k∑
i=1

wi

(
rij −

n+ 1

2

)
It is important that non-missing values are given higher weights than missing values,

as there is a degree of uncertainty in imputation. Therefore we will assign a subject

specific weight which assigns less weight to individuals with more missing data. For

subjects with many missing measurements, imputation adds very little information

and therefore we want to ensure the weight for these subjects is much smaller. We

propose a weight 1
n−ni+1

which gives subjects with complete data the same weight they
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would be given in the case of complete data. However, subjects with very few non-

missing observations are assigned a very small weight to account for the high level

of uncertainty. Based on this weight, our estimate of the elements of the µF vector

becomes the following:

µFj =
k∑
i=1

1

n− ni + 1

(
rij −

n+ 1

2

)

4.2.3 Test Statistic

The hypothesis test proposed in Chapter 2 involves testing the null hypothesis that

the inflated ranks for the jth measurement are on average close to the expected value

of the inflated ranks, which is equivalent to testing if µU = 0. In a similar fashion, if

the weighted ranks of the method proposed in this paper are close to their expected

value, then µF = 0. Therefore, this revised estimate of the reduced ranks can be used

to test the same hypothesis as Prentice’s statistic.

We denote VF as the (n−1) x (n−1) covariance matrix associated with µF with the

element in the jth column and j′th row denoted as vjj′ . The variance and covariance

of rij after imputation are the same as they would be in the case of complete data.

Therefore the elements of the covariance matrix are very similar to those elements

shown in Chapter 2. A more explicit illustration of the calculation of these elements of

the covariance matrix can be found in Appendix C. Since ranks from different subjects

are independent,

V ar (µFj) =
k∑
i=1

(
1

n− ni + 1

)2(
rij −

(n+ 1)

2

)2

Cov (µFj, µFj′) =
k∑
i=1

(
1

n− ni + 1

)2(
rij −

n+ 1

2

)(
rij′ −

n+ 1

2

)
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By the central limit theorem and Lyapunov’s condition, the n − 1 vector µF has

an asymptotically normal distribution of dimension n − 1 with a covariance matrix

composed of the elements specified above. Therefore, the revised test statistic, F =

µ′FV
−1
F µF , has a chi-squared distribution with n−1 degrees of freedom under the null

hypothesis (Koch and Sen, 1968; Sen and Puri, 1967).

4.2.4 Calculation of Bias

Bias associated with µF as an estimator of the vector of reduced ranks, µ, can

be explicitly calculated in the case of strictly informative missing data. The expected

value of each element of the vector µF is:

E[µFj] = E

[
k∑
i=1

(
1

n− ni + 1

)(
rij −

n+ 1

2

)]
=

k∑
i=1

(
1

n− ni + 1

)(
E[rij]−

n+ 1

2

)

Under the null hypothesis, as shown in Section 4.2.2, the expected value of rij = n+1
2

.

Therefore, under the null hypothesis E[µFj] = 0. Therefore the bias of the test statistic

is easily calculated below:

E[µFj]− µj = 0−
k∑
i=1

(
rij −

n+ 1

2

)

Just as in the case of the test statistic proposed in Chapter 2 to handle MCAR

data, this value approaches 0 as k goes to infinity. Therefore both the method for

MCAR data and the revised method proposed in this paper produce asymptotically

unbiased estimates of the reduced rank vector. Therefore, other methods must be used

to compare the two test statistics.
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4.2.5 Comparison of Type I Error Rate

In the case of strictly informative missing data, it is important to note that Pr(rij

is missing) does not depend on j under the null hypothesis. Therefore, regardless of the

value of j, informatively missing values are excluded with equal probability from all n

measurements. By the same justification, the inclusion of the imputed value is equally

likely to be at any value at any of the n measurements. Therefore when testing if one

or more measurements has a significantly higher reduced rank than the others, is not

affected by the exclusion of informatively high values. Therefore, whether the missing

value is excluded from the test statistic, or an imputed value is substituted, under the

null hypothesis this does not noticeably change the probability that one would reject

the null hypothesis.

4.2.6 Comparison of Power

In an unbalanced study design, the Pitman efficiency can be largely dependent

on the alternative hypothesis. Therefore, in an effort to generalize our results, we will

address the comparison of power between our revised method and the method proposed

for MCAR data using less explicit guidelines. The general alternative hypothesis of our

statistical test is that measurements within a subject are statistically different. As

mentioned previously, we are only considering situations where the differences within

a subject are constant across all subjects.

In these scenarios, the alternative hypothesis requires the reduced ranks of one or

more measurements to be significantly greater than the reduced rank of others. In

this situation, it is important to note that Pr(rij is missing) is not the same for all n

measurements. This probability, under the alternative hypothesis, is dependent on the

measurement number j. Without a loss of generalizability, we cannot specifically give

an explicit function of this probability.
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However, we can note that when using the MCAR method, all observations with a

missing value are excluded from the test statistic. In the case of strictly informative

missing data, this would exclude the highest reduced ranks from the value of the reduced

rank for the jth measurement thereby making this reduced rank closer to the reduced

rank of the other measurements. In doing so, this makes it harder to reject the null

hypothesis when it should be rejected.

In contrast, although the revised method does not impute the exact high value,

it does minimize the difference in the reduced rank for that measurement. Therefore

using this statistic allows for the clearer delineation between the reduced ranks and

thereby increases the power as compared to the test statistic proposed in Chapter 2.

4.3 Simulations

4.3.1 Generation of Data sets

To narrow the scope of our research, only a few factors were allowed to vary so

specific guidelines could be established. For each combination of factors, 10,000 com-

plete data sets were generated in order to calculate the type I error rate and power.

Of primary concern was how well the method would work in scenarios with a blend of

informative missing data and missing completely at random data. We allowed the per-

centage of these two types of missingness to vary while maintaining the same amount

of overall missing data. All data were generated from a multivariate normal distribu-

tion. In each scenario 10% of the overall observations were set to missing and a certain

percentage out of this 10% were set to be informatively missing data and the remaining

were MCAR. Therefore each data set generated had the same number of missing obser-

vations, although some of those had a higher percentage of the missingness generated

by informative missingness. As our derivations of the revised test statistic assumed
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100% of the missing data were informative this was the first option selected. However,

we also chose to examine scenarios where 80%, 50% and 20% out of the total 10%

missing data were forced to be informative missing data.

While the percent of the missing data that were informative was of primary in-

terest, we also were interested in varying the number of subjects and the number of

observations within each subject. It was of interest to examine the performance of our

test in a relatively small sample even though as shown in Chapter 2 this can present

substantial problems in terms of statistical power. Therefore, we selected a much larger

sample size as well, testing scenarios involving 10, 50 and 100 subjects with the num-

ber of measurements per subject being 5 and 10. Table 4.1 below illustrates all of the

variations generated in our scenarios.

Continuous outcome variables were generated from the same multivariate normal

distribution, with the covariance matrix calculated based on the specification of the

variance and correlation. To narrow the scope of our research, we focused primarily

on longitudinal studies. For generalizability we standardized our outcome variable,

making the mean zero and the variance of each measurement one. If measurements

are taken on the same individual across a wide range of time, the correlation is usually

relatively small between measurements. To maintain a reasonably small correlation

as expected in longitudinal studies, while still generating a range of correlations, we

chose to narrow the simulations to situations where the correlation between any two

consecutive measurements is 0.1, 0.3 and 0.5. An autoregressive correlation structure

was assumed. Using the mean and covariance matrix, multivariate normal data were

generated using the RANDNORMAL function in PROC IML.

Once the complete data set was generated, the data were sorted by outcome and

the highest observations, up to the prespecified number of informative missing obser-

vations, were set to missing. While we acknowledge that informative missing data
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realistically involve increasing the probability of a subject being missing, we felt that

our method allowed for optimal control over the percent that is truly informatively

missing. The remaining missing data, if any, was then eligible to be set to missing ac-

cording to MCAR patterns. Using PROC SURVEYSELECT, a simple random sample

of the remaining non-missing observations were randomly selected. Those selected were

then set to missing.

Three different mean vectors were chosen in order to allow for the examination of

both the type I and power. The three mean vectors for the 10 observations per subject

can be seen in Figure 4.1. The overall mean of all three mean matrices was zero al-

though two of the three mean vectors had a linear increase in the mean as a function of

observation number. These two mean vectors with the linear increases in outcome were

used to examine power. As some scenarios included a larger number of observations,

the linear increase per observation was varied. The less extreme alternative hypothesis

was a linear increase of a quarter of the variance of the data, 0.25, and the more extreme

alternative was a linear increase of 1.

4.3.2 Imputation

The single imputation method first ranked the observations within a block from

one to the total number of non-missing observations within that block. The remaining

ranks that were not assigned, which consisted of the highest ranks for that subject, were

averaged and this average rank was imputed as the value for all missing observations

within that block. As mentioned in Section 4.2.1, this was equivalent to assigning all

missing values the value n+ni+1
2

.
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Figure 4.1: Mean Vectors for Null and Alternative Hypotheses
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4.3.3 Calculation and Comparison of Type I Error Rate

SAS currently does not offer packages that can easily compute Koch and Sen’s test

statistic. For this reason, a simple SAS macro using the IML language was developed

which calculated the elements of the µF vector and the corresponding VF matrix along

with the test statistic and p-value. The macro developed can be seen in Section C.3 in

Appendix C.

For both the MCAR method, calculated from the macro in Appendix A, and the

revised method put forth in this chapter, the type I error rates were calculated. Using

a standard rejection level of 0.05, if the p-value for the test statistic fell below 0.05, the

test rejected the null hypothesis. The type I error rates were calculated as the total

percentage of data sets for which the null hypothesis was rejected when there was in

94



fact no linear change in the outcome variable over time. Power was calculated in a

similar fashion, under the two alternative hypotheses.

4.4 Results

4.4.1 Type I Error Rate

Type I error rate for Koch and Sen’s test using the original complete data was

calculated for comparison the MCAR method and our revised method for informative

missing data in this paper. The error rates for 10, 50 and 100 subjects can be seen

respectively in Figures 4.2, 4.3 and 4.4. The type I error rates for all three tests, in the

case of 10 subjects, are extremely stringent. For the cases of 50 and 100 subjects, the

type I error rates for the most part are all under the 0.05 level, with the exception of

our revised method which has a slightly inflated type I error rate in some cases with 100

subjects. In the case of 50 subjects, the scenario with more observations collected on

each subject has more stringent type I error rates than the fewer observations scenario.

Overall, the type I error rates for the MCAR method and the informative method

proposed in this paper do not appear to differ substantially when the number of subjects

is noticeably larger than the number of observations collected on each subject. In cases

where 10 observations are collected on each subject the type I error rate of our revised

method is more stringent than the MCAR alternative in some situations. There does

not appear to be any noticeable difference between type I error rates and correlation.

Exact values can be found in Appendix C. Simulations were not run in the case of

10 subjects and 10 observations per subject as more than 10 subjects are needed to

evaluate a difference in 10 measurements.
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Figure 4.2: Type I Error Rate by % Informative Missing - 10 Subjects

4.4.2 Power

Graphs visually displaying the power under the less extreme alternative, a linear

increase of 0.25, for 10, 50 and 100 subjects are shown in Figures 4.5, 4.6, and 4.7

respectively. The exact values are given in Appendix C. All three tests show almost

no power to detect any difference in measurements under this alternative when data

is collected on only 10 subjects. Our revised method for informative missing data

has lower power than the MCAR alternative, for 50 subjects, when 10 observations

are collected on each subject and almost equivalent power to the MCAR test when

5 observations are collected. When the sample size is 100, our revised test shows at

least equivalent, and at times, an improvement in power over the MCAR method for
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Figure 4.3: Type I Error Rate by % Informative Missing - 50 Subjects

5 observations when at least 50% of the missing data are informatively missing. The

revised method also appears to to offer a slight improvement in power over the MCAR

alternative when all of the missing data is informative and 10 observations are collected

on each subject.

Statistical power under the more extreme alternative of a linear trend of 1 across all

measurements, is shown for cases of 10, 50 and 100 subjects in Figures 4.8, 4.9, and 4.10.

The power for the revised method is compared to the power of the MCAR test and

the power of Koch and Sen’s test using the original complete data. In the case of 10

subjects, shown in Figure 4.8, the power is extremely low and all three methods have

essentially no power to detect a difference in measurements. For situations involving

50 or 100 subjects, there are more noticeable differences in power between the original
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Figure 4.4: Type I Error Rate by % Informative Missing- 100 Subjects

complete data and the methods proposed to handle missing data. With regards to

comparisons between the two methods that allow for missing data, has better power

than the MCAR alternatives when only 5 measurements are reported on each subject

and over 50% of the missing data are informatively missing. The revised method

proposed in this paper has similar power to the MCAR method when exactly 50% of

the missing data are informatively missing and there are only 5 measurements collected

on each subject. Our method shows a slight improvement in power over the MCAR

test when all of the missing data are informatively missing and the correlation is lower.
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Figure 4.5: Power by % Informative Missing (Increase of 0.25) - 10 Subjects

4.4.3 Asymptotic Behavior

The distribution of our test statistic, based on 5,000 simulations, was examined

in order to evaluate the asymptotic behavior of our revised test statistic under the

null hypothesis. As mentioned in Section 4.2.3, under the null our distribution is

asymptotically distributed chi-squared distribution with n-1 degrees of freedom. We

considered a scenario with 500 subjects and 10 measurements collected on each subject.

The distribution of these test statistics along with the probability density function for

a chi-squared distribution with 9 degrees of freedom is shown in Figure 4.11 below.
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Figure 4.6: Power by % Informative Missing (Increase of 0.25) - 50 Subjects

4.5 Data Example

We will use this method to analyze data collected from individuals who suffer from

irritable bowel syndrome (IBS). This data set is intended to be a specific case of the

longitudinal study design described in Section 4.1.1. In this study, participants were

asked to report pain, on a scale from 0 to 10, before and after any bowel movement.

The timing of these pain measurements were classified into one of four categories based

on the time stamp. Midnight to six a.m. was considered as early morning, from six

a.m. to noon was considered morning, from noon to six p.m. was considered afternoon

and from six p.m. to midnight was considered evening. Researchers were interested in

determining if the difference in pre and post bowel movement differed throughout the
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Figure 4.7: Power by % Informative Missing (Increase of 0.25) - 100 Subjects

day. Therefore, both pre and post measurements were required for a measurement to

be included in this analysis. Data had been collected over a number of different days,

and due to irregularities in certain days, the average difference in pre and post bowel

measurements for each time period across all days was used as the outcome of interest.

Both participants with diarrhea predominant IBS and constipation predominant IBS

were included in the study. Both types of participants were missing some observations at

some time points. However, those patients with constipation predominant IBS reported

less pain measurements overall as they had fewer bowel movements. During bouts of

constipation, was usually when these participants were in the most pain and when

these individuals were most likely to not be reporting pain measurements. Therefore,

we have reason to believe that a substantial amount of the missing observations were
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Figure 4.8: Power by % Informative Missing (Increase of 1) - 10 Subjects

likely to be higher pain scores. We could therefore likely assume that at over half the

data should be informatively missing data.

Data were collected on 37 participants, 18 with constipation prominent IBS and 19

with diarrhea prominent IBS. Almost 34% of the measurements were missing, 62% of

which were measurements of the constipation prominent patients. Just over 50% of

the missing measurements were from the early morning time period of midnight to 6

a.m. Using the nonparametric test for difference in pre and post bowel movement pain

scores would be ideal, as it requires no distributional assumptions to be made about

the difference in pain scores. The average difference in pre and post pain scores for

each period of time along with the within subject rankings of the average pain scores

are found in Table C.10 and Table C.11 in Appendix C.
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Figure 4.9: Power by % Informative Missing (Increase of 1) - 50 Subjects

Using the macro also found in Appendix C, the revised test statistic for this data

set is 7.30 which with 3 degrees of freedom yields a p-value of 0.063. With this p-value,

we fail to reject the null hypothesis that the difference in pre and post bowel movement

pain score are different throughout the day. For comparison, the MCAR test statistic,

proposed in Chapter 2, yielded a test statistic of 3.08 with a p-value of 0.3802. Also

for comparison, when all subjects with any missing observations were removed, leaving

only 9 subjects, Koch and Sen’s test statistic was 4.85 with a corresponding p-value of

0.1828. However, it is important to note that there is a large amount of missing data

here, and most commonly this missing data is found in the early morning time period.

Therefore, due to the large number of missing observations at that time period, these

results should be interpreted with caution. Figure 4.12 illustrates the mean difference in
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Figure 4.10: Power by % Informative Missing (Increase of 1) - 100 Subjects

pre and post-bowel movement pain scores by time of day. The dotted line, representing

the averages for the 9 subjects with all 4 measurements, does appear to differ from the

solid line which includes data from all 37 participants.

4.6 Discussion

Koch and Sen’s test is an effective method of testing for a difference in measure-

ments when one does not want to make any assumptions regarding the distribution of

the outcome measurement. However, often in the case of studies involving repeated

measurements, missing data occur and Koch and Sen’s test can only analyze complete

and balanced data. In Chapter 2, we proposed a test to handle MCAR data. However,
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Figure 4.11: Asymptotic Behavior of Our Revised Test Statistic

in this paper, the revised method proposed offers a slight improvement in power over

the MCAR method in certain scenarios. With the smaller correlations examined in

this paper, particularly the autoregressive correlation structure, we acknowledge that

the power the revised test as well as the MCAR test and the test using the original

complete data set yield relatively low statistical power. Therefore, the improvement in

power provided by this revised test can be very crucial.

For smaller sample sizes, of 10 subjects or less, the type I error rate and power

under the less extreme alternative hypotheses is very small and essentially makes it

very difficult to reject the null hypothesis altogether. The revised test proposed in this

chapter provides at least as much power, if not more, as the MCAR test when at least

half of the missing data can be assumed to be informatively missing and the number of
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Figure 4.12: Mean Difference in Pre and Post BM Pain Score by Time of Day
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subjects is substantially larger than the number of observations collected on each sub-

ject. Therefore, in these situations we would recommend using the method proposed

in this paper, since it performs at the least very similar to the MCAR method and can

actually led to an improvement in statistical power. One should however be aware, in

the case of large sample sizes, there may be a slight inflation of type I error rate.

Koch and Sen’s test was developed to work in situations where the only assumption

was that the correlation was not compound symmetric, thereby allowing for a variety

of correlation structures. Further research should investigate alternative correlation

structures that result in higher correlation between measurements. These may yield

higher statistical power for this test. It was felt that an autoregressive structure would

be one of the more common correlation structures, as a logical choice for longitudinal

studies. However, we acknowledge that this did limit the scope of this research and the
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investigation into the performance of this test. As Koch and Sen’s test allows for any

correlation structure, it would be of interest to examine the performance when com-

pound symmetry does hold and compare these results to their Friedman counterparts.

With regards to the covariance calculations used in this paper, it is important to

note that the covariance estimates are composed only from data for those subjects with

the measurements observed for both the jth and the j′th measurement. It is noted that

we could include more information in these calculations by breaking the covariance into

the correlation and variance components and allowing for all subjects with a missing

jth measurement to contribute to the variance calculations of the j′th measurement for

the correlation estimate and vice-versa. For the purpose of this paper, we felt it was

important to not use this method due to the increase in the amount of computations

that would be required. Using the covariance estimates proposed in this paper, cal-

culating test statistics requires only minor computational adjustments to most major

statistical software. In addition by using the covariance estimates proposed in this pa-

per, we allow for situations in which the variance of those with the jth but not the j′th

measurement, or vice versa, differed from the rest of the collected data. However, it

would be of interest to compare the performance of the statistic proposed in this paper

and the similar statistic using the alternative covariance estimates.
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Table 4.1: Data Sets Generated

Number of Subjects Number of Observations % Of Missing Data

Per Subject that is Informative

10 5 100%

10 5 80%

10 5 50%

10 5 20%

10 10 100%

10 10 80%

10 10 50%

10 10 20%

50 5 100%

50 5 80%

50 5 50%

50 5 20%

50 10 100%

50 10 80%

50 10 50%

50 10 20%

100 5 100%

100 5 80%

100 5 50%

100 5 20%

100 10 100%

100 10 80%

100 10 50%

100 10 20%
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Chapter 5

Proposed Guidelines and Future
Research

5.1 Summary and Guidelines

When analyzing small sample sizes, or in any situation where one is not willing to

make assumptions regarding the outcome variable in the case of repeated measurements,

often non-parametric methods should be used to test for a difference in measurements

on the same subject. There are a variety of ways to handle missing data in all these

scenarios. One could remove all measurements collected on subjects who were missing

one or more measurements. Alternatively one could use methods which account for

missing data and utilize the known non-missing measurements for hypothesis testing.

As a final alternative, one could impute the missing values and complete the data set,

then use complete data methods to analyze the data.

In the case of MCAR data, the first two of these methods would both be appropriate

to handle missing data. However, using the first method of excluding all measurements

for subjects missing one or more measurements can result in a much smaller sample

size. This can present problems particularly when the sample size for a study is already

relatively small. When compound symmetry cannot be assumed and the missing data



can be assumed to be MCAR, we propose using the method proposed in this paper.

Our method allows for the use of all available data, as compared to the only alternative,

which involves removing all observations from the analysis from any subject missing

even one measurement. Based on our simulation study, which compared Koch and

Sen’s test using the original complete data to our method, our method shows similar

type I error rates and power to that of the original complete data set. Therefore, when

contrasted with the alternative of excluding all subjects with missing data, our method

yields similar type I error rates and power while including the maximum amount of

information.

When the missing data are informatively missing, we proposed a method which

used imputation and complete data analysis methods. While our method does not

provide much difference in terms of type I error rate, our method does shows improve-

ment over MCAR methods with regards to statistical power. In scenarios where the

number of subjects is substantially larger than the number of measurements collected

on each subject, our method has proven to provide either equivalent power or provide

improvements in statistical power over the MCAR alternatives. While, often the exact

proportion of missing data that are informatively missing are not known, we propose

using our method as it has the potential to improve power when one is willing to assume

at least 50% of the missing data are informatively missing and the number of subjects

is substantially larger than the number of measurements collected on each subject.

5.2 Future Research

5.2.1 Imputation Assumptions and Limitations

Although in this research we focused on informative missing data where higher

outcomes are more likely to be missing, as mentioned earlier, these methods can easily
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be adapted to scenarios where lower outcomes are more likely to be missing. The ranks

for those missing observations are imputed under these assumptions that the highest

ranks, or similarly the lowest ranks, are those that are likely to be missing. The idea

that the extreme measurements are those most likely to be missing is often a reasonable

assumption in many cases. As mentioned earlier, when subjects drop out of a study

or cannot make it to a study visit, this may often be a result of extremely bad or

extremely good health which would have resulted in an extreme outcome measurement

if the missing measurement were recorded. For instance, one can likely hypothesize

that if a subject did not report pain for a number of time points in a row, that subject

may be suffering from extreme pain and imputing the highest ranks seems to be a

reasonable assumption. However, imputing the most extreme values is not always

appropriate. Most notably, in the event of death, when a subject has missing values,

imputing a value would be inappropriate. Adaptations to our imputation method and

the performance of our method against these will be investigated in order to allow for

informative missing data in the event of death.

5.2.2 Performance in Alternative Scenarios

The guidelines above were developed based on the simulation studies done for this

research. There are a number of factors that we did not vary and some variations which

we did not consider. One much consideration, is in terms of the true distribution of the

outcome variables used in these simulations. The outcome variable in our simulation

studies were generated from a multivariate normal distribution. Non-parametric meth-

ods are used more often in scenarios where the outcome variables have a more distinct

distribution. Future research will investigate the performance of the tests proposed in

this paper, when the outcome variables are generated from distributions further away

from the multivariate normal distribution. The guidelines proposed in this paper will
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be evaluated for these scenarios. One specific distribution of interest is the proposed

is a multivariate t-distribution with only a few degrees of freedom. This distribution

has heavier tales than the multivariate normal and, as such, it would be of interest to

examine the performance of ours tests in these scenarios.

In addition, our research was limited in terms of the correlation scenarios examined.

Our research was focused only on scenarios of compound symmetry and autoregressive

correlation structures. Compound symmetry is realistic for scenarios involving litters

of animals or in cases where the block group is not subject but rather some collec-

tion of subjects at some location. One would expect any two measurements, in this

case, collected from the same block, to have equal correlation. To generate scenarios

where one could not assume compound symmetry, we chose an autoregressive scenario

as a way of selecting a simple correlation structure where measurements further apart

are less strongly correlated than measurements closer together. However, it should be

noted, particularly when many measurements are collected on the same subject, the

correlation between measurements that are farther apart is essentially zero under the

assumption of autoregressive correlation. In reality, measurements on the same subject,

even if they were extremely far apart, would still be correlated. As such, we will test our

methods in a scenario where some minimal level of correlation between measurements

collected on the same subject is assumed. For example, one option we plan to pursue

is to simulate data with a correlation structure of ρ,ρ,1.25ρ,1.75, ect. As an alternative

we also plan to examine scenarios where a simple a floor correlation between any two

measurements from the same subject is assumed.

Our scenarios were limited in the number of possible observations that could be

collected on any subject. As such, we are currently working on evaluating future re-

search which will investigate the performance of our test in cases where even fewer

observations are collected on each subject, specifically examining situations with only
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three observations collected on each subject.

In terms of the covariance calculations used in this paper, it is important to note

that the covariance estimates are composed only from data for those subjects with the

measurements observed for both the jth and the j′th measurement. It is noted that we

could include more information in these calculations by breaking the covariance into

the correlation and variance components and allowing for all subjects with a missing

jth measurement to contribute to the variance calculations of the j′th measurement for

the correlation estimate and vice-versa. For the purpose of this paper, we felt it was

important to not use this method due to the increase in the amount of computations

that would be required. By using the covariance estimates proposed in this paper,

calculating test statistics requires only minor computational adjustments to most ma-

jor statistical software. In addition by using the covariance estimates proposed in this

paper, we allow for situations in which the variance of those with the jth but not the

j′th measurement, or vice versa, differed from the rest of the collected data. However,

we plan to compare the performance of the statistic proposed in this paper and the

similar statistic using the alternative covariance estimates.

5.2.3 Alternative Tests

The within subject test proposed by Koch and Sen, involves tests for a overall

difference in measurement effect. Often, in the case when compound symmetry cannot

be assumed, interest lies in testing for a trend across measurements. We will investigate

a non-parametric counterpart to Koch and Sen’s test which will be able to test for

a trend over time rather than just testing for a general difference in measurements.

The focus of this test at this time is in the calculation of subject specific Spearman

correlation coefficients. Under the assumptions put forward by Koch and Sen, this

test will be based on the assumption that the observed correlation coefficient and the
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inverse of the observed correlation coefficient are equally likely with probability 1
2
.

This research has been based on developing methods to test for a difference in within-

subject measurements, thereby focusing on situations in which we assume between rank

comparisons are not equivalent between different subjects. It is of interest to expand

these methods to aligned rank scenarios in which one takes into account between subject

comparisons after accounting for differences in subjects (Stokes, Davis and Koch, 2000;

Hodges and Lehmann, 1962; Sen, 1968; Lehmann and D’Abrera, 2006; Koch and Sen,

1968). Our methods could be applied to a variety of aligned rank tests, specifically those

where a compound symmetric correlation structure can be assumed and one where it

cannot. We propose to develop methods for aligned rank tests, which involve ranking

all measurements after subtracting some subject specific measure of location from the

measurements for each subject. The guidelines for applying this method to aligned

ranks tests may vary depending on the measure of location for each subject that is

subtracted from the outcome values. For some scenarios proposed in our simulation

study, these aligned rank tests could provide more statistical power than the within

subject methods proposed in this research. By using tests involving overall comparison,

between subject comparisons can be used to detect differences in measurements ??.

These tests do require the assumption that observations from difference subjects are

comparable after a subject specific measure is subtracted from all observations. One is

often willing to make this assumption, particularly in scenarios where randomization is

used and one is willing to assume a homogenous variance across all subjects.
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Appendix A

Chapter 2

A.1 Variance
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A.2 Covariance

vjj′ = Cov(µKj, µKj′)

= Cov

 k∑
i=1
nij>0

(
1

ni + 1
rij −

1

2

)
,

k∑
i=1

(
1

ni + 1
rij′ −

1

2

)
=

k∑
i=1
nij>0

Cov

((
1

ni + 1
rij −

1

2

)
,

(
1

ni + 1
rij′ −

1

2

))

=
k∑
i=1
nij>0

(
1

ni + 1

)2
(
E

[
rijrij′ − rij

ni + 1

2
− rij′

ni + 1

2
+

(
ni + 1

2

)2
]
− 0

)

=
k∑
i=1
nij>0

(
1

ni + 1

)2
(
E[rijrij′ ]−

(
ni + 1

2

)2
)

=
k∑
i=1
nij>0

(
1

ni + 1

)2
(

(rijrij′)
1

2
+ (ni + 1− rij)(ni + 1− rij′)

1

2
−
(
ni + 1

2

)2
)

=
k∑
i=1
nij>0

(
2rijrij′

2(ni + 1)2
− rij(ni + 1)

2(ni + 1)2
− rij′(ni + 1)

2(ni + 1)2
+

(ni + 1)2

2(ni + 1)2
−

1
2
(ni + 1)2

2(ni + 1)2

)

=
k∑
i=1
nij>0

(
rijrij′

(ni + 1)2
− rij

2(ni + 1)
− rij′

2(ni + 1)
+

(
1

2

)2
)

=
k∑
i=1
nij>0

((
1

ni + 1
rij −

1

2

)(
1

ni + 1
rij′ −

1

2

))

116



A.3 SAS Macro for Statistic with MCAR data

This macro requires the input of three variables. The variable numTime denotes

the maximum number of measurements collected on any subject and n denotes the

number of subjects. Data set, is the name of the SAS data set. The outcome variables

should be ranked prior to using this macro. There should be one record for each subject

and each subject should have multiple variables which denote the rank at the jth time

point. The only variables that should be included in the data set are these within

subject ranks. If these macro variables are specified correctly this macro will output a

data set k which provides the Koch and Sen test statistic, the degrees of freedom and

the corresponding p-value.

%macro koch(data set,numTime,n);
proc iml;

numTime = &numTime;
n = &n;
dimension = numTime*n;

/*Reading data set into IML*/
use &data set;
read all var NUM into X[colname=varNames];

/*Creating Indicator Variable for Nonmissing*/
NOTMISS=j(n,numTime,1);
DO g=1 TO n;

DO d=1 TO numTime;
IF X[g, d]=. THEN NOTMISS[g, d]=0;

END;
END;

/*Creating inflation factor vector*/
NI=1/(NOTMISS[,+]+1);

/*Calculation of inflated mu vector*/
INF X=j(n,numTime,.);
DO e=1 TO n;

DO f=1 to numTime;
INF X[e,f]=X[e,f]*NI[e,1];

END;
END;

/*Creating Expected Value Matrix*/
Y=((1/2))*j(n,numTime);
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DIFF=INF X-Y;
/*Creating Mu Matrix*/

MU=DIFF[+,];
/*Creating Variance Matrix*/

VNTIME=t(1:numTime);
SUBJ =j(n,1,1);
IND=SUBJ@VNTIME;

/*Creating elements for summation*/
Z = j(numTime*n,numTime,1);
DO a=1 to dimension;

DO b=1 to numTime;
Z[a,b]=DIFF[ceil(a/numTime),mod(a-1,numTime)+1]*DIFF[ceil(a/numTime),b];
IF Z[a,b]=. then Z[a,b]=0;

END;
END;
NEW Z=IND‖Z;
create z from NEW Z;
append from NEW Z;
create MU from MU;
append from MU;

run;
quit;
/*Creating variance matrix as summation of variance components*/
data z; set z; rename COL1=row; run;
%macro combine var(inds,c,outds);
proc sql; create table &outds as

select distinct row,
%DO s=2 %TO &c; sum(col&s) as fcol&s %IF &s¡&c %THEN,;
%END;
from &inds
group by row
order by row;

quit;
%mend;

%combine var(z,&numTime+1,p);
data p (drop=row); set p; run;

proc iml;
use p;
read all var NUM into VAR;
use mu;
read all var NUM into MU;
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numTime = &numTime;
n = &n;
dimension = numTime*n;

/*Making Mu Vector and Covariance Matrix Singular*/
MU U =MU[2:numTime];
VAR U=VAR[2:numTime,2:numTime];

/*Inverting Covariance Matrix*/
INV VAR=inv(VAR U);
KOCH=t(MU U)*INV VAR*MU U;
DATASET = KOCH ‖numTime;
create k &data set from DATASET;
append from DATASET;

run;
quit;
/*Creation of final data set*/

data k (drop=numTimes);
set k &data set;
dof=col2-1;
p value=1-probchi(col1,col2-1);
rename col1=Koch;
rename col2=numTimes;
run;

%mend Koch;
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A.4 Tables

Table A.1: Type I Error Rates

Number Number of Obs Correlation Revised Complete
of Subjects Per Subject

10 5 0.1 0.0008 0.0014
10 5 0.3 0.0012 0.0017
10 5 0.5 0.0007 0.0017
10 10 0.1 - -
10 10 0.3 - -
10 10 0.5 - -
50 5 0.1 0.0465 0.0477
50 5 0.3 0.0467 0.0484
50 5 0.5 0.0453 0.0449
50 10 0.1 0.0311 0.032
50 10 0.3 0.0323 0.034
50 10 0.5 0.0325 0.0356
100 5 0.1 0.0452 0.0471
100 5 0.3 0.0459 0.0452
100 5 0.5 0.0447 0.0438
100 10 0.1 0.0442 0.0455
100 10 0.3 0.039 0.0422
100 10 0.5 0.0439 0.0437
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Table A.2: Power Under a Linear Increase of 0.25

Number Number of Obs Correlation Revised Complete
of Subjects Per Subject

10 5 0.1 0.0008 0.002
10 5 0.3 0.0012 0.002
10 5 0.5 0.0024 0.002
10 10 0.1 - -
10 10 0.3 - -
10 10 0.5 - -
50 5 0.1 0.069 0.07
50 5 0.3 0.0707 0.073
50 5 0.5 0.0663 0.069
50 10 0.1 0.05 0.048
50 10 0.3 0.0458 0.051
50 10 0.5 0.045 0.046
100 5 0.1 0.1173 0.127
100 5 0.3 0.1107 0.116
100 5 0.5 0.1102 0.122
100 10 0.1 0.0866 0.091
100 10 0.3 0.0777 0.073
100 10 0.5 0.0767 0.075
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Table A.3: Power Under a Linear Increase of 1

Number Number of Obs Correlation Revised Complete
of Subjects Per Subject

10 5 0.1 0.0046 0.01
10 5 0.3 0.0064 0.009
10 5 0.5 0.0076 0.012
10 10 0.1 - -
10 10 0.3 - -
10 10 0.5 - -
50 5 0.1 0.6171 0.688
50 5 0.3 0.5876 0.657
50 5 0.5 0.6101 0.676
50 10 0.1 0.4821 0.536
50 10 0.3 0.391 0.438
50 10 0.5 0.3214 0.365
100 5 0.1 0.9387 0.967
100 5 0.3 0.9257 0.958
100 5 0.5 0.9213 0.95
100 10 0.1 0.8989 0.932
100 10 0.3 0.816 0.861
100 10 0.5 0.7288 0.77
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Table A.4: Average Pain Scores By Period of the Day for IBS Study

Subject Wake Up Morning Midday Evening Bedtime
D01 4.20 3.75 3.00 2.77 3.77
D02 0.86 0.79 0.23 0.31 0.45
D03 2.25 3.15 4.29 4.62 3.00
D05 1.25 1.00 2.14 1.08 1.18
D06 5.73 6.00 5.88 5.50 4.88
D07 0.50 0.71 0.50 0.60 0.46
D09 0.27 0.27 . . 0.08
D10 0.64 0.87 0.35 0.23 0.38
D11 0.92 0.08 0.17 0.17 0.22
D12 0.73 1.31 0.93 0.92 0.50
D13 0.00 0.31 0.20 0.38 0.23
D14 0.64 0.43 0.64 1.07 0.62
D15 1.00 0.75 0.64 1.38 2.25
D16 2.50 2.27 2.08 2.15 2.38
D17 5.21 4.07 4.08 4.15 2.09
D18 1.86 1.43 1.50 1.71 1.15
D19 0.21 0.13 0.62 0.15 0.17
D20 0.00 0.00 0.00 0.17 0.00
D21 0.29 0.54 1.92 3.50 .
D23 0.33 0.50 0.00 0.33 .
D24 2.41 1.65 1.63 1.31 1.88
D25 1.15 1.86 2.07 0.92 0.70
D26 1.93 1.58 1.62 1.50 1.11
D27 0.95 1.50 1.79 1.70 .
D28 3.14 1.21 1.13 0.86 .
D29 0.47 0.47 0.00 0.00 0.13
M02 4.63 4.05 3.37 3.38 3.80
M03 3.00 2.93 4.14 4.00 3.63
M04 2.29 2.07 2.64 2.06 2.08
M05 1.67 1.29 0.69 0.87 1.42
M06 0.87 0.22 0.30 0.31 0.07
M07 1.43 1.43 0.86 0.71 1.31
M08 0.92 0.77 1.27 0.64 0.75
M09 1.93 2.36 2.00 1.69 2.23
M11 1.47 1.38 0.93 0.93 0.47
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Table A.4 Continued: Average Pain Scores By Period of the Day for IBS Study

Subject Wake Up Morning Midday Evening Bedtime
M12 0.00 0.00 0.22 0.25 .
M13 4.64 4.14 3.43 4.15 5.45
M15 1.86 2.00 3.29 1.73 .
M16 4.31 4.85 4.75 4.75 5.00
M17 4.40 5.00 4.85 5.21 5.00
M18 1.00 1.40 0.87 0.79 1.27
M20 1.46 0.50 0.25 0.27 0.25
M21 1.85 2.07 3.23 2.82 3.17
M22 0.00 0.09 0.00 0.00 0.00
M23 2.93 2.79 2.67 3.15 3.00
M24 3.36 3.38 2.92 3.10 .
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Appendix B

Chapter 3

B.1 Variance
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B.2 Covariance
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B.3 Tables

Table B.1: Type I Error Rates

Number Number of Obs % Informative Revised Prentice Complete
of Subjects Per Subject Missing

10 5 20 0.0417 0.0413 0.042
10 5 50 0.04 0.0396 0.042
10 5 80 0.0435 0.0402 0.042
10 5 100 0.039 0.043 0.042
10 10 20 - - -
10 10 50 - - -
10 10 80 - - -
10 10 100 - - -
50 5 20 0.0454 0.046 0.0469
50 5 50 0.0481 0.0476 0.0469
50 5 80 0.0451 0.0483 0.0469
50 5 100 0.0529 0.0499 0.0473
50 10 20 0.0452 0.0495 0.042
50 10 50 0.0482 0.0456 0.042
50 10 80 0.0511 0.044 0.042
50 10 100 0.048 0.045 0.042
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Table B.2: Power Under a Linear Increase of 0.25

Number Number of Obs % Informative Revised Prentice Complete

of Subjects Per Subject Missing

10 5 20 0.0866 0.0919 0.109

10 5 50 0.089 0.0836 0.109

10 5 80 0.0838 0.0836 0.109

10 5 100 0.089 0.082 0.109

10 10 20 - - -

10 10 50 - - -

10 10 80 - - -

10 10 100 - - -

50 5 20 0.4052 0.4531 0.549

50 5 50 0.4332 0.4483 0.549

50 5 80 0.4564 0.4557 0.549

50 5 100 0.471 0.455 0.549

50 10 20 0.3248 0.417 0.469

50 10 50 0.3593 0.4063 0.469

50 10 80 0.393 0.4087 0.469

50 10 100 0.432 0.397 0.469
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Table B.3: Power Under the Alternative of a Linear Increase of 0.5

Number Number of Obs % Informative Revised Prentice Complete

of Subjects Per Subject Missing

10 5 20 0.262 0.3044 0.374

10 5 50 0.287 0.2949 0.374

10 5 80 0.3012 0.2945 0.374

10 5 100 0.321 0.288 0.374

10 10 20 - - -

10 10 50 - - -

10 10 80 - - -

10 10 100 - - -

50 5 20 0.9622 0.9823 0.99

50 5 50 0.9711 0.9774 0.99

50 5 80 0.9808 0.9788 0.99

50 5 100 0.983 0.978 0.99

50 10 20 0.9442 0.9812 0.996

50 10 50 0.959 0.9785 0.996

50 10 80 0.9701 0.9734 0.996

50 10 100 0.975 0.977 0.996
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Table B.4: Complete Ranking of 4 Objects by 20 Subjects

Object
Subject 1 2 3 4

1 2 3 1 4
2 3 2 1 4
3 3 4 1 2
4 1 2 3 4
5 1 3 4 2
6 1 3 4 2
7 3 2 1 4
8 3 1 4 2
9 4 1 2 3
10 4 3 1 2
11 4 3 2 1
12 1 3 2 4
13 3 4 2 1
14 1 3 2 4
15 1 4 2 3
16 3 4 1 2
17 1 4 3 2
18 4 2 1 3
19 1 3 2 4
20 1 4 3 2
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Table B.5: Ranking of 4 Objects by 20 Subjects with Missing Data

Object
Subject 1 2 3 4

1 2 3 1 4
2 3 2 1 4
3 3 4 1 2
4 1 2 3 4
5 1 3 4 2
6 1 3 4 2
7 3 2 1 4
8 3 1 4 2
9 4 1 2 3
10 4 3 1 2
11 4 3 2 1
12 1 3 2 4
13 3 . 2 1
14 1 . 2 3
15 1 . 2 3
16 3 . 1 2
17 1 . 3 2
18 3 . 1 2
19 1 . 2 3
20 1 . 3 2
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Appendix C

Chapter 4

C.1 Variance
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C.2 Covariance
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C.3 SAS Macro for Statistic with Informative Missing data

This macro requires the input of three variables. The variable numTime denotes

the maximum number of measurements collected on any subject and n denotes the

number of subjects. Data set, is the name of the SAS data set. The outcome variables

should be ranked prior to using this macro. There should be one record for each subject

and each subject should have multiple variables which denote the rank at the jth time

point. The only variables that should be included in the data set are these within

subject ranks. If these macro variables are specified correctly this macro will output a

data set k info which provides the Koch and Sen test statistic for informative missing

data, the degrees of freedom and the corresponding p-value.

%macro koch inform(data set,numTime,n);
proc iml;

numTime = &numTime;
n = &n;
dimension = numTime*n;

/*Reading data set into IML*/
use &data set;
read all var NUM into X[colname=varNames];

/*Creating Indicator Variable for Nonmissing*/
NOTMISS=j(n,numTime,1);
DO g=1 TO n;

DO d=1 TO numTime;
IF X[g, d]=. THEN NOTMISS[g, d]=0;

END;
END;

/*Creating inflation factor vector*/
NI=1/(NOTMISS[,+]+1);

/*Imputed Value*/
IM=((NOTMISS[,+])+numTime+1)/2;

/*Imputed Matrix*/
NEWX=j(n,numTime,1);
DO g=1 TO n;

DO d=1 TO numTime;
IF X[g,d]=. THEN NEWX[g,d]=IM[g,];
ELSE NEWX[g,d]=X[g,d];

END;
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END;
/*Creating Expected Value Matrix*/

Y=j(n,numTime,(numTime+1)/2);
U DIFF=NEWX-Y;

/*Creating Mu Matrix*/
DIFF=j(n,numTime);
DO e=1 TO n;

DO f=1 to numTime;
DIFF[e,f]=U DIFF[e,f]*NI[e,1];

END;
END;

/*Creating Mu Matrix*/
MU=DIFF[+,];

/*Creating Variance Matrix*/
VNTIME=t(1:numTime);
SUBJ =j(n,1,1);
IND=SUBJ@VNTIME;

/*Creating elements for summation*/
WEIGHT=NI@j(numTime,1,1);
Z = j(numTime*n,numTime,1);
DO a=1 to dimension;

DO b=1 to numTime;
Z[a,b]=(U DIFF[ceil(a/numTime),mod(a-1,numTime)+1]

*U DIFF[ceil(a/numTime),b])*(WEIGHT[a,1]**2);
IF Z[a,b]=. then Z[a,b]=0;

END;
END;
NEW Z=IND‖Z;
create z from NEW Z;
append from NEW Z;
create MU from MU;
append from MU;

run;
quit;
/*Creating variance matrix as summation of variance components*/
data z; set z; rename COL1=row; run;
%macro combine var(inds,c,outds);
proc sql; create table &outds as

select distinct row,
%DO s=2 %TO &c; sum(col&s) as fcol&s %IF &s¡&c %THEN,;
%END;
from &inds
group by row
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order by row;
quit;
%mend;

%combine var(z,&numTime+1,p);
data p (drop=row); set p; run;

proc iml;
use p;
read all var NUM into VAR;
use mu;
read all var NUM into MU;
numTime = &numTime;
n = &n;
dimension = numTime*n;

/*Making Mu Vector and Covariance Matrix Singular*/
MU U =MU[2:numTime];
VAR U=VAR[2:numTime,2:numTime];

/*Inverting Covariance Matrix*/
INV VAR=inv(VAR U);
KOCH=t(MU U)*INV VAR*MU U;
DATASET = KOCH ‖numTime;
create k &data set from DATASET;
append from DATASET;

run;
quit;
/*Creation of final data set*/

data k info (drop=numTimes);
set k &data set;
dof=col2-1;
p value=1-probchi(col1,col2-1);
rename col1=Koch;
rename col2=numTimes;
run;

%mend koch inform;
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C.4 Tables

Table C.1: Type I Error Rates - 10 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

10 5 20 0.1 0.0003 0.0013 0

10 5 20 0.3 0.0003 0.0013 0.001

10 5 20 0.5 0.0003 0.0011 0.001

10 5 50 0.1 0.0003 0.0011 0

10 5 50 0.3 0.0009 0.0008 0.001

10 5 50 0.5 0.0002 0.0012 0.001

10 5 80 0.1 0.0002 0.0004 0

10 5 80 0.3 0.0003 0.0005 0.001

10 5 80 0.5 0.0004 0.0012 0.001

10 5 100 0.1 0 0 0

10 5 100 0.3 0 0.001 0.001

10 5 100 0.5 0.001 0.002 0.001
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Table C.2: Type I Error Rates - 50 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

50 5 20 0.1 0.0411 0.0447 0.0463

50 5 20 0.3 0.0418 0.0434 0.0408

50 5 20 0.5 0.0347 0.0385 0.036

50 10 20 0.1 0.0264 0.0338 0.0358

50 10 20 0.3 0.0246 0.0327 0.0321

50 10 20 0.5 0.0276 0.0364 0.036

50 5 50 0.1 0.0432 0.0451 0.046

50 5 50 0.3 0.0456 0.0443 0.0431

50 5 50 0.5 0.0391 0.0383 0.036

50 10 50 0.1 0.0264 0.0357 0.037

50 10 50 0.3 0.027 0.0361 0.0371

50 10 50 0.5 0.0263 0.0369 0.036

50 5 80 0.1 0.044 0.0451 0.0443

50 5 80 0.3 0.0442 0.0422 0.0425

50 5 80 0.5 0.0444 0.0417 0.036

50 10 80 0.1 0.0281 0.0381 0.0343

50 10 80 0.3 0.0252 0.0354 0.0351

50 10 80 0.5 0.0257 0.043 0.036

50 5 100 0.1 0.0397 0.0447 0.041

50 5 100 0.3 0.0488 0.0457 0.045

50 5 100 0.5 0.048 0.044 0.036

50 10 100 0.1 0.0256 0.037 0.035

50 10 100 0.3 0.0255 0.0345 0.0363

50 10 100 0.5 0.026 0.041 0.036
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Table C.3: Type I Error Rates - 100 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

100 5 20 0.1 0.0495 0.0498 0.044

100 5 20 0.3 0.0462 0.0471 0.048

100 5 20 0.5 0.0459 0.047 0.051

100 10 20 0.1 0.0386 0.0439 0.043

100 10 20 0.3 0.0379 0.0411 0.037

100 10 20 0.5 0.0408 0.0409 0.04

100 5 50 0.1 0.0443 0.0473 0.044

100 5 50 0.3 0.0498 0.046 0.048

100 5 50 0.5 0.0478 0.0459 0.051

100 10 50 0.1 0.0398 0.0418 0.043

100 10 50 0.3 0.0389 0.0413 0.037

100 10 50 0.5 0.0392 0.0415 0.04

100 5 80 0.1 0.0451 0.0467 0.044

100 5 80 0.3 0.056 0.0408 0.048

100 5 80 0.5 0.0524 0.0458 0.051

100 10 80 0.1 0.0384 0.0416 0.043

100 10 80 0.3 0.0365 0.0379 0.037

100 10 80 0.5 0.0404 0.0376 0.04

100 5 100 0.1 0.048 0.044 0.044

100 5 100 0.3 0.055 0.037 0.048

100 5 100 0.5 0.05 0.054 0.051

100 10 100 0.1 0.028 0.038 0.043

100 10 100 0.3 0.04 0.044 0.037

100 10 100 0.5 0.038 0.047 0.04
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Table C.4: Power Under a Linear Increase of 0.25 - 10 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

10 5 20 0.1 0.0008 0.0018 0.002

10 5 20 0.3 0.0006 0.0004 0.002

10 5 20 0.5 0.0006 0.0019 0.002

10 10 20 0.1 - - -

10 10 20 0.3 - - -

10 10 20 0.5 - - -

10 5 50 0.1 0.0006 0.0004 0.002

10 5 50 0.3 0.0005 0.0014 0.002

10 5 50 0.5 0.0003 0.0009 0.002

10 10 50 0.1 - - -

10 10 50 0.3 - - -

10 10 50 0.5 - - -

10 5 80 0.1 0.0007 0.0014 0.002

10 5 80 0.3 0.0001 0.0005 0.002

10 5 80 0.5 0.0004 0.0004 0.002

10 10 80 0.1 - - -

10 10 80 0.3 - - -

10 10 80 0.5 - - -

10 5 100 0.1 0.001 0.002 0.002

10 5 100 0.3 0 0 0.002

10 5 100 0.5 0 0 0.002

10 10 100 0.1 - - -

10 10 100 0.3 - - -

10 10 100 0.5 - - -
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Table C.5: Power Under a Linear Increase of 0.25 - 50 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

50 5 20 0.1 0.0652 0.0729 0.07

50 5 20 0.3 0.0647 0.073 0.073

50 5 20 0.5 0.0579 0.0636 0.069

50 10 20 0.1 0.0368 0.0515 0.048

50 10 20 0.3 0.0319 0.0513 0.051

50 10 20 0.5 0.0299 0.0459 0.046

50 5 50 0.1 0.0705 0.0745 0.07

50 5 50 0.3 0.0632 0.0678 0.073

50 5 50 0.5 0.0609 0.0595 0.069

50 10 50 0.1 0.0325 0.0514 0.048

50 10 50 0.3 0.0312 0.0514 0.051

50 10 50 0.5 0.0319 0.0461 0.046

50 5 80 0.1 0.0739 0.0754 0.07

50 5 80 0.3 0.0694 0.0691 0.073

50 5 80 0.5 0.0652 0.0609 0.069

50 10 80 0.1 0.037 0.044 0.048

50 10 80 0.3 0.032 0.0459 0.051

50 10 80 0.5 0.0299 0.0513 0.046

50 5 100 0.1 0.074 0.081 0.07

50 5 100 0.3 0.072 0.068 0.073

50 5 100 0.5 0.066 0.063 0.069

50 10 100 0.1 0.033 0.043 0.048

50 10 100 0.3 0.03 0.041 0.051

50 10 100 0.5 0.025 0.044 0.046
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Table C.6: Power Under a Linear Increase of 0.25 - 100 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

100 5 20 0.1 0.1004 0.1087 0.127

100 5 20 0.3 0.0934 0.1047 0.116

100 5 20 0.5 0.0983 0.1117 0.122

100 10 20 0.1 0.0682 0.0866 0.091

100 10 20 0.5 0.0578 0.071 0.075

100 10 20 0.5 0.0578 0.071 0.075

100 5 50 0.1 0.1026 0.102 0.127

100 5 50 0.3 0.0976 0.0957 0.116

100 5 50 0.5 0.1027 0.1065 0.122

100 10 50 0.1 0.0736 0.0796 0.091

100 10 50 0.5 0.0604 0.0646 0.075

100 10 50 0.5 0.0604 0.0646 0.075

100 5 80 0.1 0.1033 0.0941 0.127

100 5 80 0.3 0.1021 0.0957 0.116

100 5 80 0.5 0.1061 0.0994 0.122

100 10 80 0.1 0.0756 0.0809 0.091

100 10 80 0.5 0.0629 0.0604 0.075

100 10 80 0.5 0.0629 0.0604 0.075

100 5 100 0.1 0.104 0.088 0.127

100 5 100 0.3 0.106 0.092 0.116

100 5 100 0.5 0.109 0.1 0.122

100 10 100 0.1 0.076 0.07 0.091

100 10 100 0.5 0.064 0.068 0.075

100 10 100 0.5 0.064 0.068 0.075
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Table C.7: Power Under a Linear Increase of 1 - 10 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

10 5 20 0.1 0.0015 0.0039 0.01

10 5 20 0.3 0.0011 0.0041 0.009

10 5 20 0.5 0.0006 0.0058 0.012

10 10 20 0.1 - - -

10 10 20 0.3 - - -

10 10 20 0.5 - - -

10 5 50 0.1 0.0015 0.0042 0.01

10 5 50 0.3 0.0017 0.0059 0.009

10 5 50 0.5 0.0014 0.0041 0.012

10 10 50 0.1 - - -

10 10 50 0.3 - - -

10 10 50 0.5 - - -

10 5 80 0.1 0.002 0.0071 0.01

10 5 80 0.3 0.0023 0.0038 0.009

10 5 80 0.5 0.0016 0.0027 0.012

10 10 80 0.1 - - -

10 10 80 0.3 - - -

10 10 80 0.5 - - -

10 5 100 0.1 0.003 0.006 0.01

10 5 100 0.3 0.003 0.003 0.009

10 5 100 0.5 0.003 0.002 0.012

10 10 100 0.1 - - -

10 10 100 0.3 - - -

10 10 100 0.5 - - -
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Table C.8: Power Under a Linear Increase of 1 - 50 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

50 5 20 0.1 0.5222 0.5779 0.688

50 5 20 0.3 0.4994 0.5585 0.657

50 5 20 0.5 0.506 0.584 0.676

50 10 20 0.1 0.3076 0.4346 0.536

50 10 20 0.3 0.2419 0.3624 0.438

50 10 20 0.5 0.1942 0.3065 0.365

50 5 50 0.1 0.5384 0.5346 0.688

50 5 50 0.3 0.5189 0.5249 0.657

50 5 50 0.5 0.5278 0.5455 0.676

50 10 50 0.1 0.3308 0.3918 0.536

50 10 50 0.3 0.2693 0.3246 0.438

50 10 50 0.5 0.2143 0.2817 0.365

50 5 80 0.1 0.5658 0.5142 0.688

50 5 80 0.3 0.5351 0.5054 0.657

50 5 80 0.5 0.5506 0.5395 0.676

50 10 80 0.1 0.3701 0.3537 0.536

50 10 80 0.3 0.292 0.3051 0.438

50 10 80 0.5 0.2285 0.2553 0.365

50 5 100 0.1 0.581 0.511 0.688

50 5 100 0.3 0.548 0.49 0.657

50 5 100 0.5 0.566 0.522 0.676

50 10 100 0.1 0.381 0.323 0.536

50 10 100 0.3 0.307 0.285 0.438

50 10 100 0.5 0.234 0.251 0.365
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Table C.9: Power Under a Linear Increase of 1 - 100 Subjects

Number Number % Informative Correlation Revised Prentice Complete

of of Obs Missing

Subjects Per Subject

100 5 20 0.1 0.8756 0.9142 0.967

100 5 20 0.3 0.8591 0.9007 0.958

100 5 20 0.5 0.8567 0.9032 0.95

100 10 20 0.1 0.7602 0.8725 0.932

100 10 20 0.3 0.6529 0.7817 0.861

100 10 20 0.5 0.5458 0.6944 0.77

100 5 50 0.1 0.8924 0.8816 0.967

100 5 50 0.3 0.8667 0.8762 0.958

100 5 50 0.5 0.8704 0.8841 0.95

100 10 50 0.1 0.7862 0.833 0.932

100 10 50 0.3 0.674 0.7457 0.861

100 10 50 0.5 0.5651 0.6629 0.77

100 5 80 0.1 0.9035 0.8568 0.967

100 5 80 0.3 0.8752 0.8482 0.958

100 5 80 0.5 0.8829 0.8502 0.95

100 10 80 0.1 0.8057 0.8014 0.932

100 10 80 0.3 0.6989 0.714 0.861

100 10 80 0.5 0.598 0.6414 0.77

100 5 100 0.1 0.915 0.834 0.967

100 5 100 0.3 0.883 0.831 0.958

100 5 100 0.5 0.886 0.829 0.95

100 10 100 0.1 0.834 0.782 0.932

100 10 100 0.3 0.723 0.685 0.861

100 10 100 0.5 0.611 0.616 0.77
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Table C.10: Avg. Difference in BM Pain Scores By Period of Day

Subject Early Morning Morning Afternoon Night
C01 . -1 1 2
C03 . 5 2 2
C04 . 1 1 .
C05 . 0 -1 .
C06 . 2 -2 .
C08 . . 0 .
C09 0 -1 0.5 -0.67
C11 . 1 . 1
C12 . 0.5 2.67 0.5
C13 . 0 . .
C14 . 0 2 0.67
C15 1 -0.5 0 0.38
C16 . -1.5 . .
C18 . 0 0 .
C19 . 0.17 0.8 0
C20 3 2 . .
C21 . 0 . 0.5
C22 . 3 . .
D01 . 0.67 1 2
D02 . 0 0.4 .
D03 . 0 -0.06 -0.21
D04 1 . 1 .
D05 1 3.2 1.33 1.5
D08 . -1.6 0.13 0
D09 . 0 2.33 .
D10 0 0 2.08 2.13
D11 . 0 0 .
D12 . 0.25 0 0.5
D14 4 5 4.33 6.2
D15 . 7 4 .
D16 . 0.83 0 .
D17 . 3.5 0.8 -0.25
D18 -1 . 0 -0.33
D19 2 2.33 3.11 4
D20 0.5 0 1 -1.5
D21 . 4 -0.33 4
D22 1.5 1.93 3 1.67
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Table C.11: Ranked Difference in BM Pain Scores By Period of Day

Subject Early Morning Morning Afternoon Night
C01 . 1 2 3
C03 . 3 1.5 1.5
C04 . 1.5 1.5 .
C05 . 2 1 .
C06 . 2 1 .
C08 . . 1 .
C09 3 1 4 2
C11 . 1.5 . 1.5
C12 . 1.5 3 1.5
C13 . 1 . .
C14 . 1 3 2
C15 4 1 2 3
C16 . 1 . .
C18 . 1.5 1.5 .
C19 . 2 3 1
C20 2 1 . .
C21 . 1 . 2
C22 . 1 . .
D01 . 1 2 3
D02 . 1 2 .
D03 . 3 2 1
D04 1.5 . 1.5 .
D05 1 4 2 3
D08 . 1 3 2
D09 . 1 2 .
D10 1.5 1.5 3 4
D11 . 1.5 1.5 .
D12 . 2 1 3
D14 1 3 2 4
D15 . 2 1 .
D16 . 2 1 .
D17 . 3 2 1
D18 1 . 3 2
D19 1 2 3 4
D20 3 2 4 1
D21 . 2.5 1 2.5
D22 1 3 4 2
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