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ABSTRACT 

YUYING XIE:  Role of Epidermal Growth Factor Receptor on Cardiac Function 

(Under the direction of David Threadgill) 

 

The epidermal growth factor receptor (EGFR/ERBB1) was the first discovered member 

of the ERBB family of tyrosine kinas receptors that includes ERBB2, ERBB3 and ERBB4.  

After binding by EGF-related ligands, EGFR is activated to induce homodimerization or 

heterodimerization with other ERBB receptors, resulting in tyrosine kinase activity.  

Subsequently, autophosphorylation or transphosphorylation of tyrosine residues in the C-

terminal tail of the receptor allows the binding of adaptor proteins to trigger intracellular 

signaling cascades that can lead to proliferation, survival, and anti-apoptosis.  As EGFR is 

expressed in the majority of developing and adult tissues including heart, dysfunction of EGFR 

activity can cause severe damage in different tissues and even initiate cancers.  Several anti-

EGFR drugs are already available in the clinic for late stage cancer patients with activated EGFR 

activity.  However, in cancer therapy using anti-ERBB2 drugs, severe cardiotoxicity among 

patients has been reported, emphasizing the importance of ERBB signaling in cardiac 

homeostasis.  Also with the increases in life expectancy of patients, some types of cancers tend 

to be treated as a chronic disease.  Therefore it is importance to understanding possible cardiac 

toxicity under chronic suppression of EGFR pathway. 

We propose the use of conditional knockout mice lacking EGFR activity in 

cardiomyocytes to understand the role of EGFR signaling in normal cardiac function.  We 
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demonstrated that chronic repression of EGFR pathway would cause severe cardiac dysfunction 

with chamber dilations, left ventricular wall thinning and depressed cardiac function. 

Left ventricular hypertrophy (LVH) is associated with many cardiovascular diseases and 

is a risk factor for cardiac related morbidity and mortality.  Mice homozygous with EGFR 

hypomorphic mutation display various background dependent phenotypes including left ventricle 

hypertrophy.  Using two different strains, we mapped a quantitative trait locus (QTL) associated 

with cardiac hypertrophy.  These studies should be useful in understanding the development of 

LVH and in predicting patients susceptible to cardiatoxicity induced by chronic use of anti-

EGFR drugs. 
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Chapter I:  ROLE OF ERBB SIGNALING IN CARDIAC DEVELOPMENT AND 

HOMESTASIS 

 

I.1 Introduction to cardiomyopathy 

Cardiomyopathies, diseases of the myocardial  tissue, are strongly linked to cardiac 

dysfunction.
1
 In early stages, cardiomypothies may be asymptomatic but as disease progresses 

typical heart failure-like symptoms present, such as shortness of breath, orthopnea, paroxysmal 

nocturnal dyspnea and edema. More importantly, cardiomyopathies are often high risk signs for 

arrhythmia or sudden cardiac death.
1
 

The four major types of cardiomyopathies are dilated cardiomyopathy, hypertrophic 

cardiomyopathy, restrictive cardiomyopathy, and arrhythmogenic right ventricular 

cardiomyopathy. The cause for cardiomyopathy is still unclear. The possible etiologies include 

hypertension, coronary artery disease, metabolic disorders, nutritional deficiencies, heart tissue 

damage, viral myocarditis, chronic rapid heart rate, use of cocaine, pregnancy and genetic 

defects.
2
(Table 1-1) 

I.1.1 Dilated cardiomyopathy 

Dilated cardiomyopathy (DCM), the most common form of non-ischemic 

cardiomyopathy, is a condition in which the heart is weakened and dialed and cannot efficiently 

pump blood. Following coronary artery disease and hypertension, DCM is the third leading 

cause of heart failure in the United States.
2
 The lungs, liver, and other organ systems are 

typically affected by the decreased heart function. 
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Epidemiology 

The estimated incidence of DCM in the United States is five per 100,000 adults and 0.57 

per 100,000 children and the incidence has been increasing, most likely due to better diagnostic 

methods.
3,4

 The mortality rates are approximately 25 percent at one year and 50 percent at five 

years post-diagnosis.
5,6

 

Pathological features 

Dilatation of both ventricles is the chief pathological feature of DCM.  Frequently, mural 

thrombi present in the left ventricle and occasionally in both atria, which are also usually 

dilated.
7
  Both DCM and left ventricular hypertrophy (LVH) present with electrocardiographic 

changes (increased voltage) and elevated heart weight. However, the thicknesses of the left 

ventricular free wall and septum are typically normal or thinner with DCM.
7
  In addition, 

secondary dilatations in mitral and tricuspid annuli are frequently present, and microscopical 

features show hypertrophy and degeneration of myocyte and interstitial fibrosis with presentation 

of DCM.
7
 

Etiology 

The etiology of DCM is multifactorial including (1) familial and genetic factors, (2) viral 

myocarditis (cytotoxic insults), (3) immune abnormalities, and (4) metabolic, energetic and 

contractile abnormalities.  Approximately 30%-50% of DCM cases have a genetic origin.
8,9

  In 

the past few years, much has been learned about DCM genetics. DCM-associated mutations in 

many different genes have been reported with autosomal dominant inheritance the most common 

form of inheritance.
10

  So far, mutations in over 20 genes have been reported to cause DCM 

including cardiac actin, desmin, dystrophin, troponin T, and lamin A/C.
10

  The mechanisms 

causing DCM are very different among the different gene mutations; for example impaired force 
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generation or force transmission is thought to be the mechanism for sarcomere and cytoskeletal 

protein genes (actin, troponin C, and troponin T).  Additional mechanisms include impaired 

energy production for mitochondrial mutations, disturbed Ca
2+

 metabolism (phospholamban), 

impaired stretch sensor machinery (titin, telethonin), and defects in nuclear envelope (lamin A/C 

and tafazzin) (Fig 1-1).
10

  Recently, several groups have found DCM causing mutations linked 

with troponin T, which is part of the thin filament.
11,12

 Other groups have mdeled this mutation in 

mice to study its effect on muscle fibers.  Troponin T mutations result in significantly lower Ca
2+

 

sensitivity in force generation in the sarcomere, which would be a possible mechanism for the 

pathogenesis of DCM.  Additionally, TnT
-/-

 mice develop severe DCM, which recapitulates the 

phenotype of patients.
12 

Genetic diseases can be classified as Mendelian diseases (monogenic diseases) or 

multifactorial diseases.
13

  Monogenic diseases are rare and are caused by single gene mutations.  

Although the gene mutations described above are monogenetic with high penetrance, they only 

explain DCM in rare familial cases.  Multifactorial diseases are more common and complex 

because they may be due to additive or interactive effects of multiple genes.  Genes responsible 

for multifactorial diseases tend to have low penetrance, and to have interactions with 

environmental factors.  Genetic association studies have identified several low-penetrance 

polymorphisms (susceptibility genes) contributing to DCM including the G994T mutation in 

plasma platelet-activating
 
factor (PAF) acetylhydrolase, and a 14-bp deletion polymorphism in 

human leukocyte antigen (HLA).
14-16

 

I.1.2 Hypertrophic cardiomyopathy 

Hypertrophic cardiomyopathy (HCM), characterized by left and/or right ventricular 

hypertrophy, is a disease of the cardiac muscle.
1
  HCM is usually asymmetric and involves the 



4 

interventricular septum.
1
 Typically in patients with HCM, the left ventricular volume is normal 

or reduced and the systolic gradients are normal.  HCM is the leading cause of sudden cardiac 

death in young athletes.
2,17

 However, it can occur patients of any age with disabling cardiac 

symptoms or sudden unexpected cardiac death. 

Epidemiology 

Hypertrophic cardiomyopathy is likely the most frequently occurring cardiomyopathy 

with an incidence of 0.2% in the general population, affecting around 600,000 people in the 

United States.
2
  Previous studies have shown that annual mortality for HCM is about 1.4%, and 

this mortality can be stratified to sudden death (0.7%), progressive heart failure (0.5%) or stroke-

related death (0.2%).
18

  In young patients sudden death is the major outcome, while progressive 

heart failure and stroke related death is most common in patients after mid-age.
18

 Most patients 

with HCM have little or no disability and can have normal life expectancy indicating additional 

factors contribute to sudden death or progressive disease. 

Pathological features 

Left Ventricular Hypertrophy (LVH) is the most common feature of HCM. However, 

with the heterogeneity of HCM, no single pattern of LVH is dominant and can include 

hypertrophy in the LV apex, symmetric hypertrophy and basal septum hypertrophy.
19

  There is 

no direct linkage between the pattern of LV thickening and pathological outcome.  At the cellular 

level, myocardial architecture in LV is frequently disorganized, and myocytes have irregular 

shapes with multiple intercellular connections.
19

 Intramural coronary arteries are also often 

impaired in HCM, and are characterized by thickened walls with narrowed lumens.  As a result, 

bursts of myocardial ischemia and myocyte death occur, followed by replacement fibrosis.
19

 

Architectural disorganization and scaring in the myocardium results in unstable 
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electrophysiological characteristic,  ultimately leading to arrhythmias  and sudden death in 

HCM.
20

 

Because of the heterogeneity of HCM, the clinical course for individual patients can be 

classified into one of subgroups: 1) no or mild symptoms, 2) high risk for sudden cardiac death, 

3) progressive heart failure with exertional dyspnea and functional disability, and 4) atrial 

fibrillation often accompanied by embolic stroke.
19

  Although sudden death can occur at a wide 

range of ages,  progressive heart failure and stroke occur more frequently in mid-age and older.
21

  

Risk factors for sudden death include: 1) patients with a prior cardiac arrest or sustained 

ventricular tachycardia, 2) family history of sudden death due to HCM, 3) syncope or near 

syncope particularly when it is related to physical activity or when it occurs several times, 4) 

repeatedly ventricular tachycardia on serial ECG recording, 5) failure of blood pressure to 

respond to exercise, especially for people younger than 50, and 6) extreme LVH with wall 

thickness > 30 mm.
19,22

  Additional risk factors that have been suggested include atrial 

fibrillation, myocardial ischemia, alcohol septal ablation surgery, LV outflow obstruction and 

bridged left anterior descending coronary artery.
19,22

 

Etiology 

Approximately 50% of hypertrophic cardiomyopathy cases are familial with most 

inherited as a Mendelian autosomal dominant trait and caused by mutations in one of a number 

of genes that encode proteins of the cardiac sarcomere (thick or thin filaments).
19,23

  Genes 

responsible for HCM include β–cardiac myosin heavy chain (MYH7), cardiac myosi-binding 

protein C (MYBPC3), cardiac troponin T (TNNT2), cardiac troponin I(TNNI3), and α-

tropomyosin (TPM1).
24

  MYH7, TNNT2 and MYBPC3 mutations dominate the familial cases 

with other genes accounting for a small portion of HCM cases.  In addition, two nonsarcomeric 
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protein mutations, γ-2-regulatory subunit of AMP-activated protein kinase (PRKAG2) and 

lysosome-associated membrane protein2 (LAMP-2) have been linked to HCM.
2
  However, the 

molecular defects and mechanisms responsible for HCM are usually different in unrelated 

patients, and many additional mutations responsible for HCM remain to be identified.  Possible 

mechanisms for HCM are impaired ATPase activity in cardiomyocytes leading to improper 

systolic and diastolic pressures, reduced contractile function leading to hypertrophy in 

cardiomyoctes, and disorganized sarcomere structure leading to stimulation of growth factors 

which would cause hypertrophy and fibrosis.
25

 

In recent years, an increasing number of mouse models have been created to model 

human HCM, such as missense mutations in α-MHC gene, transgenic mice expressing a 

troponin-T (Tnt) missense mutation, and transgenic mice with mutant myosin binding protein-C 

(Mybpc) lacking binding domains.
26-28

 

 

I.2 Brief outline of heart development 

I.2.1 Cardiac development 

The heart is the first definitive organ that forms during embryogenesis.  At embryonic 

day 7.0 (E7.0), cardiac progenitors are located in the primary heart field, a region of mesoderm 

that migrates and converges at the midline of the embryo to form the cardiac crescent. (Figure 

1.2 a,b)
29

  By E8.0, the halves of the cardiac crescent have fused to become a heart tube that 

consists of an endothelial tube surrounded by a layer of myocardial cells. (Figure 1.2 c)
29

  A 

crucial remodeling process known as cardiac looping then starts from E8.5 to E10.5. (Figure 1.2 

d-h)  During cardiac looping, the tube elongates and adopts a pronounced rightward curvature.  

The cardiac tube is then transformed into a heart structure with four distinct chambers through a 
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series of step including formation of the atrioventricular canal (Figure 1.2 e), formation of the 

endocardial cushion that will develop to four major heart valves (Figure 1.2 f), and formation of 

trabeculae within walls of left and right ventricle. (Figure 1.2 g)
29

  After spetation of the atria and 

ventricle and remodeling of the outflow tract, cardiac maturation is complete.  The heart is the 

first definitive organ that forms during embryogenesis.  At embryonic day 7.0 (E7.0), cardiac 

progenitors are located in the primary heart field, a region of mesoderm that migrates and 

converges at the midline of the embryo to form the cardiac crescent (Figure 1.3 a,b).
29

  By E8.0, 

the halves of the cardiac crescent have fused to become a heart tube that consists of an 

endothelial tube surrounded by a layer of myocardial cells (Figure 1.3 c).
29

  A crucial remodeling 

process known as cardiac looping then starts from E8.5 to E10.5 (Figure 1.3 d-h).  During 

cardiac looping, the tube elongates and adopts a pronounced rightward curvature.  The cardiac 

tube is then transformed into a heart structure with four distinct chambers through a series of step 

including formation of the atrioventricular canal (Figure 1.3 e), formation of the endocardial 

cushion that will develop to four major heart valves (Figure 1.3 f), and formation of trabeculae 

within walls of left and right ventricle (Figure 1.3 g).
29

  After septation of the atria and ventricle 

and remodeling of the outflow tract, cardiac maturation is complete. 

I.2.2 Valve development 

There are two steps for cardiac valve formation: cardiac cushion formation and valve 

remodeling.  Following cardiac looping, the extracellular matrix, known as cardiac jelly, expands 

to form the cardiac cushion in the atrioventricular canal and the distal portion of the outflow tract, 

which are precursors of tricuspid and mitral valves and the aortic and pulmonic valves, 

respectively.  Before onset of cushion formation, the cardiac jelly is surrounded by the 

endocardium and myocardium layers.  During valve formation, the endocardium undergoes an 
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epithelial-to-mesenchymal transition (EMT) following activation from adjacent myocardium.
29

  

This transition involves down-regulation of the cell-adhesion molecule vascular endothelial 

cadherin (Cdh5), which enables a subset of endocardial cells to delaminate and invade the 

cardiac jelly.
29

  These cells differentiate to mesenchymal cells and proliferate to form the cardiac 

cushions.  Endocardial cushion formation is complete by E12.5, and then cushions undergo a 

valve remodeling process in which cell proliferation is decreased and apoptosis increased 

changing the cushion into a slender valve leaflet by E15.5. 

 

I.3 Role of ERBB family signaling in cardiac development and function 

I.3.1 EGFR and ERBB family 

The epidermal growth factor receptor (EGFR/ERBB1) was the first discovered member 

of the ERBB family of tyrosine kinas receptors that includes ERBB2, ERBB3 and ERBB4.
30

  

Members of ERBB family are membrane bound glycoproteins whose basic function is to 

transmit extracellular signals into cellular responses.  EGFR as well as other members of the 

ERBB family have a conserved protein structure containing an extracellular cysteine-rich ligand 

binding domain (except for ERBB2/HER2), a single alpha-helix transmembrane domain, an 

intracellular tyrosine kinase (TK) domain (except for ERBB3/HER3) and a C-terminal tail with 

several tyrosine residues that can serve as docking sites for adaptor proteins after 

phosphorylation.  The ERBB receptor is activated by binding EGF-related ligands in an 

autocrine or paracrine manner, which induce homodimerization or heterodimerization with other 

ERBB receptors, resulting in tyrosine kinase activity.
31

  Subsequently, autophosphorylation or 

transphosphorylation of tyrosine residues in the C-terminal tail allows the binding of adaptor 

protein containing SH2 or PTB domains to trigger intracellular signaling cascades.  Depending 
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on the ligand, biological output of signaling cascade can be diverse including proliferation, 

migration, adhesion, motility and survival.
32

  ERBB2 is an orphan receptor with no recognized 

ligand, while ERBB3 lacks intrinsic kinase activity.  Therefore, ERBB2 and ERBB3 can only 

function through heterodimerization with other ERBB receptors.
33,34

 

One of the complexities of ERBB signaling stems from the diversity of ligands.  In 

addition to epidermal growth factor (EGF), there are ten known ligands for ERBB receptors 

including amphiregulin (AREG), transforming growth factor-α (TGFA), heparin-binding EGF-

like growth factor (HB-EGF), betacellulin (BTC), epiregulin (EGEG), epigen (EPG), and 

neuregulins (NRG 1-NRG4).
35-43

  EGF, TGFA, AREG and EREG are specific for EGFR/ERBB1, 

while HB-EGF, BTC and EPR can activate both EGFR/ERBB1 and ERBB4. (Figure 1.2)  NRG1 

and NRG2 are ligands for both ERBB3 and ERBB4, but NRG3 and NRG4 have higher 

preference for ERBB4.
44

  After ligand binding, the activated receptors recruit and phosphorylate 

downstream effecter proteins to activate a cascade of intracellular signaling pathways.  The 

mitogen-activated protein kinase pathway, which is a target of all ERBB receptors, and the 

phosphatidylinositol 3-kinase (PI3K)-AKT pathway, which are target for a subset of ERBB 

dimmers, are the most well-studied. The activated receptors are subsequently endocytosed and 

either degraded in the endosome or recycled to the plasma membrane. Signal termination is an 

additional control for the biological response of ERBB signaling. 

To add another layer of complexity, the ERBB family is also involved in other signaling 

networks through cross-activation with other receptor classes.  For example, members of the G-

protein coupled receptor protein (GPCR) family can transactivate EGFR by a so called “triple 

membranepassing signaling” paradigm, which involve the activation of metalloproteases and 

subsequent cleavage and release of EGF-like ligands that can bind to EGFR.
45,46

  This is the 
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proposed the mechanism that GPCR agonists, such as angiotensin II(ANG-II) and  endotelin-1 

(ET-1), triggers cardiomyocyte hypertrophy.
47

 

I.3.2 ERBB and ligand knockouts 

Evidences from knockouts in genes coding for ERBB receptors and their ligands have 

suggested the vital role for ERBB signaling in cardiac pathologies (Table 1-2).  Erbb2, Erbb4 

and Nrg1 null mice all die around E10.5 with severe defects in cardiac trabeculae formation.
48-50

  

Although mice deficient for Erbb3 have normal cardiac trabeculae, they have defective valve 

formation resulting embryonic lethal at E13.5.
51,52

  Egfr null mice show various timing of 

lethality ranging from pre-implantation to two to three weeks after birth depending on the genetic 

background.
53-55

  Surviving Egfr null mice on a mixed CD-1 background exhibit severe 

semilunar valve enlargement.
48

  Compared with the critical role of ERBB receptors on cardiac 

development, cardiac phenotype in mice lacking ERBB ligands are modest. Mutations in the 

majority of the ten known ligands including Egf, Areg, Tgfa, Btc, Ereg and Nrg-2 show no 

cardiovascular defects indicating that there is considerable redundancy or functional overlap in 

the action of specific ligands.
44

  However, genetic ablation of Hb-egf exhibits severe defects in 

heart chamber and valve formation.
56

  Moreover, Nrg-1 null mice also have cardiac traveculae 

defect.
50

  In sum, Erbb and ligand knock-out models suggest distinct roles for ERBB receptors 

and ligands during cardiovascular development with ERBB2, ERBB4 and NRG1 signaling being 

involved in trabeculae formiation, while HB-EGF and EGFR being central to cardiac valve 

development. 

I.3.3 ERBB signaling in cardiac development 

ERBB signaling is required for the mid to late gestational cardiac development, 

specifically for the cardiac trabeculae formation and valve development.  Trabeculae and valve 
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formation both require reciprocal signaling between endocardium and myocardium to regulate 

cell proliferation, differentiation, and cell invasion to cardiac jelly.  In wild-type mice, between 

E9.5 to 10.5, the expression of ERBB2 and ERRB4 are restricted to cardiac myocardial cells, 

and NRG-1 is specifically expressed in endocardial cells.  From gene targeting studies, mice 

lacking Erbb2, Erbb4 and Nrg1 all die around E10.5 due to the trabeculae defects that develop 

into arrhythmia, enlarged ventricule, and reduced blood flow.
48-50

  Moreover, other studies have 

shown expression of ERBB2 and ERBB4 under the control of cardiac specific promoters in 

Erbb2 and Erbb4 null mice, respectively, can rescue the trabeculae defects.
57,58

  Because Egfr 

and Erbb3 null mice show no trabecular defects and neither Erbb2 nor Erbb4 can compensate for 

the loss of the other, cardiac trabeculae formation seems to require NRG-1 signaling through 

ERBB2/ERBB4 heterodimers. 

While ERBB2 and ERBB4 are particularly important in trabeculation, ERBB3 and EGFR 

have vital roles in cardiac valve formation.  During cardiac development, the expression of 

ERBB3 is restricted to endocardial cushion mesenchyme, and Erbb3 null mice die at E13.5 due 

to defective cardiac cushions completely lacking mesenchymal cells.
50,51

  Although ERBB3 lacks 

tyrosine kinase activity, NRG-1 can induce the heterodimerization between ERBB2 and ERBB3, 

which can trigger downstream signaling by the tyrosine kinase activity on ERBB2.  Moreover, 

close inspection of endocardial cushions in Erbb2 and Nrg-1 null embryos shows 

underdeveloped cushion at E10.5.
48,50

  This result suggests that NRG-1 signaling to–

ERBB2/ERBB3 heterodimers is required at the early stages of cellular proliferation and 

differentiation in endocardial cushion formation. 

At E14.5, the expression of EGFR is detectable throughout the heart, but enriched in the 

endocardial cushion.
59

  EGFR signaling is particularly important in valve remodeling process, 
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which is a later stage during valve formation. Mice homozygous for the Egfr hypomorphic 

waved-2 mutation (Egfr
wa2/wa2

) have enlarged aortic and pulmonic valves, and another study 

using Egfr null mice showsed hyperplastic semilunar (aortic and pulmonic) and AV (mitral and 

tricuspid) valves.
48,59

  The role of EGFR signaling during cardiac development is also observed 

in zebrafish.
60

  Addition of an EGFR kinase inhibitor or the transient knockdown of EGFR 

expression also results in decreased circulation and a narrowed outflow tract suggesting that 

EGFR signaling function in cardiac development is conserved across species.
56,59,60

  Consistent 

with valve defects in Egfr null mice, mice lacking its ligand Hb-egf or the convertases Tace 

(TNF-alpha converting enzyme) or Adam19 (a disintengrin and metalloproteinase domain 19) 

also show cardiac valve abnormalities in semilunar and AV valve.
59,61

  During embryonic heart 

valve development the expression of HB-EGF is restricted exclusively to endocardial cells, and 

is not detected in differentiated mesenchymal cells.
59

  Analysis of Hb-egf null mice suggests that 

HB-EGF-EGFR signaling might regulate valve remodeling rather than cushion formation 

because 1) EMT is normal in Hb-egf null mice, 2) there is no change in apoptosis rate in Hb-egf 

null mice, and 3) excessive proliferation of mesenchymal cells is detected in Hb-egf null mice.
59

  

Available data suggests a paracrine model for EGFR signaling in valve formation where HB-

EGF is released from the plasma membrane of the endocardial cells and diffuses to activate 

EGFR on mesenchymal cells to activate downstream signals that suppresses mesenchymal cell 

proliferation. 

I.3.4 ERBB signaling in maintenance of mature heart function 

As in the developing heart, ERBB signaling is particularly important to maintain 

homeostasis in the mature heart.  Although expression of ERBB receptors declines after 

midembryogenesis, EGFR, ERBB2 and ERBB4 are present in postnatal myocardium, with 
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ERBB4 as the most prevalent receptor.
48

  In vitro studies have provided evidence that NRG-1, 

ERBB2, and ERBB4 are implicated in both hypertrophic and survival signaling pathways in 

adult cardiomyocyte.
48

  Several clinical studies suggest an association between heart failure and 

decreased ERBB2 and ERBB4 protein level.
62,63

  Consistent with these clinical finding, ERBB2 

and ERBB4 expression is upregulated in heart failure patients whose cardiac function was 

improving after mechanical ventricular unloading.
62

  Moreover, downregulation of ERBB2 

activity by using anti-breast cancer drug Trastuzmab, a humanized monoclonal antibody 

designed to block ERBB2’s ligand binding site, resulted in cardiac dysfunction in some 

patients.
64,65

  These findings were recapitulated in Erbb2-deficient conditional mutant mice 

(Erbb2 CKO mice) which develop severe heart failure with dilated ventricles and decreased 

contractility by three months of age. 
48,66

  Erbb4 conditional knock-out mice with 80% reduction 

in ventricular ERBB4 protein levels also develop a cardiac phenotype similar to Erbb2 CKO 

mice, suggesting that ERBB2 may partner with ERBB4 to form a heterodimer required for 

maintenance of normal cardiac function.
67

 

Ligands for ERBB receptors, such as HB-EGF and NRG1, have also been shown to play 

important role in postnatal heart.  Adult cardiomyocyte strongly express HB-EGF, and the 

constitutive tyrosine phosphorylation levels of ERBB2 and ERBB4 are significantly reduce in 

cardiomyocyte from HB-EGF knock out mice.
44

  These mice also developed a dilated heart with 

enlarged cardiomyocytes and depressed cardiac function.  Moreover, in mice with hypertrophy 

induced by pressure overload or GPCR agonists, inhibition of HB-EGF shedding by adding 

DAM12 inhibitor attenuated hypertrophic changes and improved cardiac function.
68

 

Compared to wild-type mice, mice lacking one copy of Nrg1 had more severe 

cardiotoxicity after exposure to doxorubicin, a chemotherapeutic agent known to cause 
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cardiomyocyte death.
69

  In this model, the protein level of phosphorylated ERBB2, AKT and 

ERK1/2 are significantly reduced in Nrg1
+/-

 compared with wild-type control indicating the 

involvement of survival pathway.
69

  Consistent with data above, short term intravenous 

administration of NRG1 improved cardiac performance in ischemic, drug-induced 

cardiomyopathy, myocaritis and chronic rapid pacing model in rodent and canine models.
70

  

Interestingly, the survival benefit from NRG1 is additive to angiotensin-converting enzyme 

inhibitor therapy in ischemic models.
70

 

Similar as other ERBB members, EGFR signaling also has vital role in maintenance of 

mature heart function. Exogenous EGF increases contractility and heart rate by elevating cyclic 

adenosine monophosphate (cAMP) levels in cardiac myocytes.
71

  The increase in cAMP occurs 

through activation of adenylyl cyclase by EGFR-mediated activation of Gs protein.
71

  Moreover, 

in vitro studies using isolated cardiomyocytes showed that exposure to HB-EGF or EGF induce 

hypertrophy.
72

  By using a conditional knock-in approach using the human EGFR cDNA, 

homozygous hEGFR
KI/KI 

mice develop cardiac hypertrophy and semilunar valve abnormalities, a 

phenotype that is also present in Egfr
wa2/wa2

.
73

  Another study using cardiomyocyte-specific 

dominant-negative Egfr system to block cardiac EGFR signaling in young mice show dilated 

cardiomyopathy with increased left ventricular mass and atrial natriuretic factor expression, and 

decreased cardiac function.
74

  Moreover, chronic repression of EGFR signaling using small 

molecule tyrosin kinase inhibitor (TKI) appears to affect normal cardiac function in female 

mice.
53

  In this model, mice were treated with two different TKIs, irreversible EKB-569 or 

reversible AG-1478, orally for three months.
53

  An increase in left ventricular wall thickness and 

the numbers of apoptotic cells, and reduced contractility as measured by percent fractional 
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shortening were observed in female mice.
53

  Taken together, these data suggest that EGFR 

signaling is required to maintain normal function. 

EGFR signaling may protect the heart against stress-induced injury.  Using a restraint-

and-cold (4˚C)-exposure (RCE) mice model, Miguel Pareja et al. found that heart injury 

biomarker, including plasma lactate dehydrogenase (LDH) and creatine kinase (CK), were 

increased in a time-dependent manner.
75

  By contrast, in another common used stress model, 

intermale fighting (IF), only LDH activity is raised.
75

  One difference between these two models 

is that with IF, but  not RCE, plasma EGF concentration is strongly elevated.  When mice were 

exposed to the EGFR inhibitor, AG-1478, immediately before IF, plasma levels of both 

biomarkers was increased.
75

 

Conversely, injecting Egf prior to RCE exposure significantly reduce LAH and CK 

activity.  Together, this data supports a cardiac-protective role of EGFR signaling on stress-

induced injury. 

EGFR signaling also contributes to cardiac hypertrophy induced by activation of the G-

protein-coupled receptor (GPCR) pathway.
76

  GPCR agonists, such as phenylephrine (PE), 

angiotensin II (AngII) and endothelin-1 (Et-1), are well-know inducer of cardiomyocyte 

hypertrophy.
77-79

  All of these molecules transactivate EGFR by increasing shedding of HB-EGF 

caused by activation of a specific metalloproteinase.
45

  Consistent with this model, blocking the 

cross-talk between EGFR and GPCR signaling through metalloproteinase or EGFR inhibitor 

attenuates hypertrophic phenotype.
47,68

 

I.3.5 Genetic modifiers for EGFR signaling 

Mice lacking Egfr show various phenotypes depending on the genetic background. 
53-55

  

For example, Egfr null mice on CF-1 background have degeneration of the inner cell mass, 
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which results in peri-implantation death.
55

  Contrastingly, on a CD-1 background, Egfr mutant 

mice can live up to three weeks after birth with abnormalities in skin, kidney and other 

organs.
53,55

  Additionally, mice homozygous for Egfr
wa2

 have abnormalities in aortic valves and 

development left ventricular hypertrophy, phenotypes that are also dependent on genetic 

background.
53

  Egfr
wa2

/
wa2

 mice on a C57BL/6J (B6) background have thicker aortic cusps, 

higher incidence of heart failure, and shorter lifespan compared with Egfr
wa2

/
wa2

 mice on 

129S1/SvImJ background.
53

  Taken together, these results suggest that genetic modifiers exist for 

EGFR signaling.
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Table 1.1:  Causes of cardiomyopathy.  Adapted from Wexler et.al 2009. 
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Figure 1.1:  A schematic figure of the dilated cardiomyopathy (DCM) causing mechanism.  

Adopt from Kärkkäinen 2007. 

 



19 

Figure 1.2:  The principal stages of cardiac development.  Adapted from Frances et.al 2008. 
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Figure 1.3:  Ligand binding specificity for ERBB family.  Adopt from C J Barrick’s dissertation. 
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Table 1.2:  Phenotype summary from genetic ablation of ERBB receptors, ERBB ligands.  

ERBB 

receptor 
Survival  

Cardiaovascular 

system 
Other Defects Reference 

ERBB1/EGFR 

Embryonic, 

perinatal or 

postnatal lethal 

(genetic background 

dependent) 

Semilunar valve 

enlargement 

-Degeneration of 

inner cell mass 

-Defect in placenta, 

eyelid, skin, lung, 

kidney, brain, and 

GI tract 

53-55
 

ERBB2 
Embryonic lethal at 

E10.5 
Trabeculae defect 

-Nervous system 

-Mammary gland 

impaired 

48
 

ERBB3 
Embryonic lethal at 

E13.5 
Cushion defect Nervous system 

51,52
 

ERBB4 
Embryonic lethal at 

E10.5 
Trabeculae defect 

Mammary gland 

impaired 
49

 

EGF Normal N/A N/A 
83

 

Amphiregulin 

(AR) 
Normal N/A 

Mammary gland 

impaired 
83

 

TGF-α Normal N/A Epithelial defect 
84

 

EGF/AR/TGF-

α triple 
Normal N/A 

-Mammary gland 

impaired 

-Defects in small 

intestine 

83,85
 

HB-EGF 
Perinatal or 

postnatal lethal 

Dilated caridac 

Chamber 

enlarged valve 

Lung, skin, and 

eyelid 
57,60,86

 

Betacellulin 

(BTC) 
Normal N/A N/A 

60
 

BTC/HB-EGF  
Perinatal or 

postnatal lethal 

Dilated caridac 

Chamber 

enlarged valve 

N/A 
60

 

Epiregulin(ER) Normal N/A 
Dermatitis and 

immunity defect 
87

 

Neuregulin-1 

(NRG1) 

Embryonic lethal at 

E10 
Traveculae defect Nervous system 

50
 

NRG2 Normal N/A 

-Growth retardation 

-Reduced 

reproductive 

capacity 

88
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Chapter II:  EGFR IS ESSENTIAL IN THE PREVENTION OF DILATED 

CARDIOMYOPATHY 

 

II.1 Overview 

Approximately one third of all human cancer has increased activity in EGFR/ERBB1 

signaling, which is associated with poor prognosis. EGFR targeted therapy, which includes 

monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKI), has been widely used on 

non-small-cell lung cancer, pancreatic cancer, and colorectal cancer, and has improved patient 

survival significantly. With the improvement in cancer treatment regimen, patients tend to have a 

longer prognosis, which leads to a prolonged exposure to anti-EGFR drugs. EGFR is known to 

protect the heart against acute stress, and its ligand, heparin-binding EGF is required to maintain 

homeostasis of the heart.  However, the role of EGFR in a normal heart is not clear.  Therefore, 

the chronic suppression of EGFR signaling from anti-EGFR drugs may lead to unexpected 

cardiac-toxicity similar to trastuzumab, which is a mAb for ERBB2. To investigate the 

physiological role of EGFR signaling in the adult heart, we created mice with a cardiomyocyte 

specific deletion of Egfr.  These Egfr conditional mutant mice were viable and displayed a 

normal phenotype.  However, physiological analysis revealed a progressively dilated 

cardiomyopathy, with signs of cardiac dysfunction, generally appearing by the sixth postnatal 

month.  Histological analysis revealed chamber dilations, left ventricular wall thinning and 

depressed cardiac function in mutant mice.  We infer that signaling from the EGFR receptor is 

crucial for adult heart function.  These conditional Egfr mutant mice provide a model to assess 

the possible cardiac side effects from chronic anti-EGFR cancer therapy. 
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II.2 Introduction 

The epidermal growth factor receptor (EGFR/ERBB1) was the first discovered member 

of the ERBB family of tyrosine kinase receptors that includes ERBB2, ERBB3 and ERBB4.
1
 

EGFR as well as other members of the ERBB family has a conserved protein structure 

containing an extracellular cysteine-rich ligand binding domain (except for ERBB2/HER2), a 

single alpha-helix transmembrane domain, an intracellular tyrosine kinase (TK) domain (except 

for ERBB3/HER3), and a C-terminal tail with several tyrosine residues that can serve as docking 

sites for adaptor proteins after phosphorylation.
2
 The EGFR receptor is activated by binding 

EGF-related ligands, which induce homodimerization or heterodimerization with other ERBB 

receptors, resulting in tyrosine kinase activity.
3
 Subsequently, autophosphorylation or 

transphosphorylation of tyrosine residues in the C-terminal tail allows the binding of adaptor 

protein to trigger intracellular signaling cascades, including proliferation, survival, and anti-

apoptosis.
4
 

Mutant EGFR is the main etiology for non-small-cell lung cancer, which accounts for 

more than 80% of patients.
5
 EGFR is also mutated or overexpressed in many other types of 

tumors including lung cancer, colorectal cancer, and kidney cancer. Tumors with mutant EGFR 

normally have poor prognosis, including chemotherapy resistance and decreased life-

expectancy.
6-8

 The dependency of certain cancers on EGFR for maintaining the malignant 

phenotype is the rationale for molecular targeting EGFR in cancer therapy.
9
  To date, several 

anti-EGFR drugs, such as Gefitinib, Erlotinib, Getuximab and Panitumumab are available in the 

market for late stage cancer patients with EGFR positive mutation.
10

 Those drugs have shown a 

significant improvement on patient’s survival by inhibiting EGFR signaling through blocking 
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ligand binding (Getuximab and Panitumumab) or competing with adenosine triphosphate (ATP) 

for binding to kinase pockets (Gefitinib and Erlotinib).
11

 With the advance in cancer therapy and 

the resultant increases in life expectancy among patients, some types of cancers are now treated 

as a chronic disease. The use of anti-EGFR drugs on a long-term basis emphasizes the 

importance of knowing the possible cardiac toxicity under chronic suppression of EGFR 

pathway. 

The ERBB signaling pathway is known to be essential for maintaining cardiac 

homeostasis. The expressions of EGFR, ERBB2 and ERBB4 are all detectable in adult human 

and rodent hearts. The expression and activation of ERBB2 and ERBB4 are inhibited in failing 

hearts.
12-14

 Moreover, it has been shown that breast cancer therapy using ERBB2 antibody 

trastuzumab combined with chemotherapy results in unexpected cardiac dysfunction in some 

patients.
15-17

 Mice lacking ERBB2 and ERBB4 in the cardiac ventricles also showed to have 

dilated cardiomyopathy.
11,18,19

 EGFR signaling is involved in promoting cardiachypertrophy 

through transactivation by the G protein couple receptor (GPCR) pathway.
20,21

 Several studies 

have also shown that ERGF signaling protect the heart against stress-induced injury.
22

 Previous 

studies by our laboratory have shown that mice homozygous for Egfr
wa2

, which is a hypomorphic 

mutation of Egfr, develop cardiac hypotrophy in a C57BL/6J background.
23

 However, Egfr
wa2

 

mutant mice also develop aortic valve thickening which makes the cardiac dysfunction hard to 

explain.
23,24

 To date, no direct studies have assessed the cardiac effects of chronic suppression of 

EGFR activity. To address this question, we generated a conditional Egfr knockout (CKO) 

mouse line through the cardiomyocyte-specific deletion of exon3 using a Cre-loxP system. Mice 

that were homozygous for the deletion of the Egfr allele were born at the expected Mendelian 

frequency, and reached adulthood without enlarged aortic valve. However, physiological 
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analysis revealed a progressive onset of multiple independent parameters of dilated 

cardiomyopathy. In addition, we found that Egfr deficient mice were also more susceptible to 

stress-induced cardiac dysfunction. 

 

II.3 Materials and Methods 

Animals 

The generation and genotyping of Egfr floxed (Egfr
f/f

) mice and a MHC-cre (MHC
cre/+

) 

mice have been described.
11,25

  The Rosa26 reporter (R26R) was a gift from Dr. Terry Van Dyke 

(University of North Carolina at Chapel Hill). 

In vivo pressure overload 

In vivo pressure overload was induced by transverse aortic constriction (TAC) on 10 Egfr 

conditional knockout (Egfr CKO) mice and 6 wildtype littermates with compatible cardiac 

function, as described previously.
26

  The aorta was constricted between the innominate and left 

common carotid arteries by tying a silk thread, which produced a stenosis of the vessel.  The load 

produced by TAC was measured using Doppler in the right and left carotid arteries before and 

after silk ligation.  Three mice of Egfr CKO and control group received a sham operation in 

which the aortic arch was isolated but not ligated. 

Echocardiography 

A two-dimensional long-axis and short-axis views of the left ventricle were obtained 

using a 30 MHz transducer and the vevo 2100 Ultrasonograph (VisualSonics, Toronto, Canada) 

in conscious mice.  From parasternal long-axis view, an M-mode cursor was positioned to the 

posterior wall of LV at the level of the papillary muscles.  Left ventricular internal dimension, 

diastole (LVID,d), left ventricular internal dimension, systole (LVID,s), left ventricular posterior 
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wall, diastole (LVPW,d), left  ventricular posterior wall, systole (LVPW,s) were measure from 

long-axis motion mode (M-mode) tracing.  Fractional shortening (FS), a measure of the pumping 

function of the heart, is calculated by (LVID,d-LVID,s)/LVID,d.  All measurement were done 

from leading edge to leading edge following the American Society of Echocardiography 

guildlines.
27

  Areas of increased velocities in outflow tract are identified by color flow Doppler.  

Pulsed Doppler was then used to quantify these velocities. 

Tissue collection 

After mice were weighted, hearts, kidneys and livers were removed from the mice, rinsed 

in PBS and weighted.  Hearts were cut in half at the level of papillary muscle.  The top half of 

heart was fxied in 10% neutral buffered formalin at 4˚C overnight and embedded in paraffin for 

histological analysis, and the bottom half of heart was snap-frozen for use in cryo-sectioning and 

RNA extraction. 

Histology 

The sections were stained with hematoxylin-eosin for examination of gross appearance; 

while masson’s trichrome (MT) or Periodic Acid-Schiff counterstained with hematoxylin (PAS-

H) was employed to assess fibrosis, aortic valve size.  Cardiomyocyte size was assessed by 

measuring 100 cardiomyocytes, which are round and have nuclei, per PAS-H stained slide at ten 

randomly selected fields.  To measure the aortic valve size, serial sagittal sections (7 μm) were 

collected from each heart.  Aortic cusp diameter was only measured from sections where the 

aortic outflow tract and aortic walls were clearly visible and in similar orientation.  The value of 

largest valve in this serial represents the valve size for that individual. 
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X-gal staining 

Cryo-sections of heart samples were fixed with 2% paraformaldehyde on ice for 10 min, 

and washed in rinse buffer (2 mM MgCl2, 1 X PBS, pH 7.2) for 10 min.  Then slides were 

washed in detergent rinse buffer (2 mM MgCl2, 0.02% Igepal CA 630, 0.01% sodium 

deoxycholate, 1X PBS, pH 7.2) for 10 min, and followed by incubating in x-gal staining solution 

for 4 hours at 37 ˚C in a humidified box.  Sections were counterstained with hematoxylin and 

eosin. 

Real-Time RT-PCR 

Total RNA was extracted from the lower half of the LV using TRIZOL (Invitrogen, 

Carlsbad, California) according to the manufacturer’s protocol.  After DNAse treatment, total 

RNA was reverse transcribed using the High Capacity cDNA Archive Kit (Applied Biosystems, 

Foster City, California).  Taqman primers and probes for mouse Glyceraldehyde 3-phosphate 

dehydrogenase (Gapdh), Egfr, atrial nautriuretic peptide (Nppa), brain nautriuretic peptide 

(Nppb), BCL2-associated X protein (Bax) and beta-actin (Actb) were purchased from Applied 

Biosystem.  Real-time quantitative PCR was carried out using Stratagene MX3000P.  The 

threshold count values were normalized to either GAPDH or ACTB. 

TUNEL assay 

TUNEL was performed using ApopTag Fluorescein In Situ apoptosis detection kit 

(Chemicon) according to the manufacturer’s protocol. 

Statistical analysis 

All data are presented as means±SEM.  Statistical analysis was performed with GraphPad 

Prism (version 5.00 for Windows, GraphPad Software, San Diego, CA).  Statistical significance 

of the difference between two groups was determined using the two-tailed unpaired Student’s t-
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test or nonparametric Mann-Whitney test; while one way ANOVA was used to determine 

statistical significance between three groups.  A p-value of less than 0.05 was considered 

significant. 

 

II.4 Results 

Generation of cardiomyocyte-restricted deletion of Egfr 

Egfr
wa2/wa2

 and Egfr null mice develop enlarged aortic valves, showing that EGRF 

signaling is required for normal valve remodeling processes.  However, the enlarged valves 

complicate analysis of associated cardiac phenotypes that subsequently occur.
24

  To overcome 

this limitation, Egfr was deleted exclusively in cardiomyocyte by crossing mice carrying the 

conditional Egfr
f
 allele with mice carrying the MHC

cre
 allele, which drives high-efficiency 

cardiomyocyte specific Cre expression.  To assess distribution of Cre expression in MHC
cre/+

 

mice, MHC
cre/+

 mice were crossed with R26R mice to obtain MHC
cre/+

/R26R mice.  After 

staining with x-gal, hearts from MHC
cre/+

/R26R mice showed β-galactosidase activity in the 

myocardium, but not in the valves. (Figure 2.1)  Although MHC
cre

 introduced recombination of 

the Egfr
f
 allele in cardiomyocytes with high efficiency as determined by PCR of left ventricle 

DNA, some non-recombined Egfr
f
 alleles remained in the left ventricle resulting in mosaicism of 

the heart muscle. (Figure 2.2 B)  Recombination was not detected in other tissues.  Quantitative 

RT-PCR analysis using total RNA prepared from left ventricles of three-month old mice 

revealed that the expression of Egfr was significantly lower in Egfr CKO mice compared to their 

wild-type littermates. (Figure 2.2 C)  Analysis of genotypes of offspring showed that Egfr CKO 

mice were present at the expected Mendelian ratios, indicating that loss of EGFR in 

cardiomyocytes does not cause embryonic lethality. (Data not shown)  In order to assess the 
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recombination efficiencies, we designed a recombination specific Taqman assay, Egfr KO, with 

primer and the probes located Intron 2, which is deleted in Egfr
Δ
.  Quantitative RT-PCR using 

this assay in DNA extracted from LV showed various recombination efficiencies in different age 

groups with the lowest efficiency in one-year old mice, indicating that some mice with high 

recombination efficiency likely died before one year of age. (Figure 2.2 D)  Consistent with this 

result, survival analysis showed that only 40% of Egfr CKO mice live to one year (n=35) 

compared with 76.9% for wild-type controls (n=26), and 75% of Egfr CKO mice live to six 

months of age (n=12) compared with 100% of controls (n=8). (Data not shown) 

Egfr CKO mice develop severe heart dysfunction  

Although Egfr CKO mice were born at Mendelian frequencies with normal cardiac 

morphogenesis at birth, and can live to adulthood. The life-span for the majority of Egfr CKO 

mice are less than one year because of sudden death.  Physiological examination of the hearts 

from adult Egfr CKO mice using echocardiography showed an age-related dilated 

cardiomyopathy, which was most severe in one-year old Egfr CKO mice. (Figure 2.3 A,B)  At 

three months of age, Egfr CKO mice showed normal cardiac function, which is reflected by 

fractional shortening (FS%) with normal left ventricular internal dimension, diastolic (LVID,d), 

and left ventricular posterior wall, diastolic (LVPW,d).  At six months of age, cardiac function 

was repressed significantly in Egfr CKO mice.  However, LV diameter and LV wall thickness 

were still normal at six months of age when compared with wildtype controls.  Interestingly, at 

one year of age, the left ventricle diameter dilated dramatically to reach an average value of 4.5 

mm in the Egfr CKO mice compared with 2.8 mm in the wildtype mice. (Figure 2.3 C-E)  

Moreover, sudden death of one-year-old Egfr CKO mice was also observed during 
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echocardiographic examinations, which is a common symptom for dilated cardiomyopathy 

patients. 

Histology of adult Egfr CKO hearts revealed several abnormal features that are common 

with heart from dilated cardiomyopathy patients.  Ventricular chamber dilation was evident in 

Egfr CKO mice at one year of age, as manifested by the significant reduction in LV thickness 

and the increased LV diameter. (Figure 2.4 A-B)  Moreover, heart-to-body weight ratios in mice 

at one year of age were higher in Egfr CKO than control mice despite having similar body 

weights (41.83±2.6 g for CKO mice vs 39.7±1.8 g for control mice), indicating a hypertrophic 

growth in the heart. (Figure 2.4 C)  Consistent with the increased heart-to-body weight ratio, the 

size of cardiomyocytes from CKO was significantly enlarged at six months and one year of age 

but not at three months. (Figure 2.4 D-F)  Additionally, extensive interstitial fibrosis and atrial 

thrombus were also observed in the histological section from one-year-old Egfr CKO mice. 

(Figure 2.4 G,I) 

The expression of several hypertrophy-related genes, including atrial nautriuretic peptide 

(Nppa) and brain nautriuretic peptide (Nppb) have been used as sensitive and consistent 

biomarkers for cardiac hypertrophy in humans and mice.
28

  The re-expression of ventricular 

NPPA and NPPB is known as a marker for the induction of the embryonic gene program in 

cardiomyocyte hypertrophy.  The expression of NPPA and NPPB were not different between 

Egfr CKO and control mice at three months of age.  NPPA and NPPB appeared up-regulated in 

the LV of Egfr CKO mice at six months of age compared with controls, but only NPPA reached 

statistical significance (p value < 0.01 for NPPA, and p value < 0.09 for NPPB).  For mice at one 

year of age, NPPA and NPPB expression were both dramatically increased in Egfr CKO LVs 
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compared to controls. (Figure 2.5 A,B) This expression pattern across age was correlated with 

cardiac function and cardiomyocyte cell size. 

Severity of cardiac dysfunction in Egfr CKO mice associates with recombination efficiency 

The recombination efficiency varied among mice from 5-70%. (Figure 2.2 D)  Because 

the heart is a mixture of different cell types including cells other than cardiomyocytes, the 

recombination efficiency for MHC-cre mice in total LV cannot be 100%.  Since fractional 

shortening (FS%), a measurement of the pumping function of the heart, is the most direct and 

sensitive parameter for cardiac dysfunction, correlation between the recombination efficiency 

and cardiac dysfunction using linear regression analysis for Egfr
wt 

% ( = 1- recombination 

efficiency) vs FS% for Egfr CKO mice at three months, six months and one year of age. (Figure 

2.6 A-C) 

Although the correlation between Egfr
wt 

% and FS% was not significant at three months 

and one year of age groups, Egfr
wt

% showed a positive correlation with FS% in the six months of 

age group (p value < 0.0107; R
2
 = 0.4951). (Figure 2.6 B)  The onset for cardiac dysfunction in 

Egfr CKO mice occurs after three months of age, which is why no correlation was observed at 

young ages.  Moreover, because only 40% of Egfr CKO mice live to one year, the correlation 

between recombination efficiency and FS% was likely weakened by loss of mice with high 

recombination levels die before one year of age. 

Based on recombination efficiencies, EGFR activity is likely not completely inactivated 

in all cardiomyocytes.  Therefore, the Egfr CKO model may under-represent the deleterious 

cardiac effects caused by chronic exposure to anti-EGFR drugs.  Interestingly, even for those 

mice with low recombination efficiencies, cardiac function was also suppressed at one year of 

age due to the fact that cardiomyocytes work as a unit to maintain normal cardiac function. 
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Normal aortic valves in Egfr CKO mice 

EGFR has vital roles in cardiac valve formation.  Mice homozygous for Egfr
wa2

, a 

hypormorphic mutation in Egfr, develop semi-lunar valve thickening and aortic stenosis (AS).  

In order to rule out the possibility that cardiac dysfunction observed in Egfr CKO mice is due to 

AS, the morphology and function of aortic valves was assessed.  Increased peak velocity across 

the aortic valve is a feature of aortic stenosis.  Doppler tracing taken at the level of the aortic root 

revealed no peak velocity differences between Egfr CKO mice and littermate controls indicating 

normal aortic valve function in Egfr CKO mice. (Figure 2.7 A)  Aortic valve diameter was also 

measured from H&E stained sections.  Egfr CKO mice had similar aortic valve morphology and 

thickness compared with wild-type controls. (Figure 2.7 B) 

The progression of cardiac dysfunction was assessed by correlating FS% with heart-to-

body weigh ratios (HW/BW ratio) in Egfr CKO and wildtype mice at three months, six months 

and one-year of age. (Figure 2.8)  In the three-month-old group, the majority of Egfr CKO mice 

displayed normal FS% and HW/BW ratios except for one mouse, which had a decreased FS% 

and higher HW/BW ratio. (Figure 2.8 A)  For six-month-old mice, most of the Egfr CKO mice 

showed impaired cardiac function with reduced FS%, but HW/BW ratios similar to wildtype 

controls. (Figure 2.8 B)  For one-year-old mice, all Egfr CKO mice displayed decreased FS%, 

and several Egfr CKO mice also had an increased HW/BW ratio compared with controls. (Figure 

2.8 C)  Therefore, the pathological progression for Egfr CKO mice appears that mice have 

impaired cardiac function around or before six months of age, then the impaired cardiac function 

triggers hypertrophy in cardiacmyocytes, and increased HW/BW ratios to compensate for the 

damaged heart function.  However, in the situation of aortic stenosis, which would induce 

pressure overload in the LV, the heart becomes hypertrophic first with normal cardiac function, 
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then progresses to a late stage dilated cardiomyopathy with reduce FS% and high HW/BW.  This 

pathological progression of Egfr CKO mice suggests that AS is not the cause of cardiac 

dysfunction in Egfr CKO mice. 

Apoptosis rates for cardiomyocytes is unchanged in Egfr CKO mice 

Loss of cardiomyocytes can increase cardiac stress and can cause cardiac dysfunction and 

cardiomyocyte hypertrophy. Because activation of EGFR is known to confer cardio-protection 

by activating cell survival signaling pathways
22

, Quantitative RT-PCR and TUNEL assays were 

performed to investigate whether apoptosis rates are increased in Egfr CKO mice.
29

 To minimize 

effects on apoptosis caused by impaired cardiac function, we focus on the Egfr CKO mice at 

three months of age when they display no overt signs of heart dysfunction. Our results show 

there was no significant difference in TUNEL-positive cardiac cells between Egfr CKO and 

wildtype controls mice (Figure 2.9 A). Consistent with results from the TUNEL assay, 

expression of the pro-apoptotic gene Bax was also not significantly altered in Egfr CKO 

compared with control mice (Figure 2.9B). 

Effect of Egfr deletion on gene expression in the hearts of conditional knockout mice 

To identify target genes of EGFR signaling in the heart, RNAs from the LVs of Egfr 

CKO and wildtype mice were isolated and analyzed using Agilent microarrays. To avoid effects 

on gene expression caused by secondary changes such as cardiac hypertrophy, three-month-old 

mice were used (n = 6 for Egfr CKO, n = 6 for wildtype controls).  The microarrays confirmed 

down-regulation of Egfr in the LV of Egfr CKO mice. No other ERBB family members showed 

altered expression between the Egfr CKO and wildtype mice. Although the expression of ACTA, 

a cardiac hypertrophy biomarker, was significantly up-regulated, expressions of other 

hypertrophy markers, such as NPPA and NPPB, were not altered.  Pathway analysis did not 
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show enrichment for the apoptosis pathway, consistent with TUNEL results, but did show over-

representation of genes associated with the adhesions junction (p value = 0.02), including Ep300, 

Actb, catenin and Snai2. 

Egfr CKO mice are more sensitive to pressure overload 

To determine the effect of cardiac-specific Egfr inactivation on the heart’s response to 

stress, pressure overload was induced by transverse aortic constriction (TAC) in three month-old 

wild-type and CKO male mice. Cardiac function was assessed in TAC mice and sham controls of 

each genotype by echocardiography.  By two weeks post-surgery, TAC control mice developed 

compensated hypertrophy, reflected by increased contractile function, decreased LVEDD and 

LVEDS, and increased wall thickness (Figure 2.10). However, hearts from Egfr CKO mice 

showed reduced FS% without compensating with increased pressure in the LV after aortic 

banding.  Interestingly, a subset of Egfr CKO mice developed dilated cardiamyopathy (20%, n = 

10) two weeks post aortic binding, but none of the wild-type mice showed dilated heart even at 

six weeks post surgery (n = 8). 

 

II.5 Discussion 

Here a mouse model is described in which cardiomyocyte-restricted deletion of Egfr 

leads to dilated cariomyopathy.  Although EGFR is known to have an essential role in aortic 

valve development, Egfr CKO mice had normal valve function ruling out the possibility that 

observed cardiac dysfunction was secondary to valve abnormalities.
24

  The data reported here 

shows that EGFR is also important for maintaining cardiac function in adult hearts.  Most Egfr 

CKO mice show no morphological defects at three months of age, unlike mice from Errb2 CKO 

(MHL2V Cre) that have severely dilated hearts at three months of age.  This result may reflect a 
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protective role for EGFR signaling but not ERBB2 in hearts of young mice, or alternatively 

suggest that although important, EGFR may be a minor pathway for maintaining cardiac function 

as opposed to the ERBB2 pathway.  Also, the expression level of ERBB2 is higher than EGFR in 

adult hearts.
11

  Moreover, anti-ERBB2 therapies shows more prominent cardiotoxicity than anti-

EGFR therapies in breast cancer, consistent with the idea that EGFR may play a minor role 

compared with ERBB2 in adult heart homeostasis.
30

 

Recombination efficiency varies among Egfr CKO mice, and this recombination 

efficiency is significantly correlated with a deleterious outcome.  Also, even in mice with very 

low recombination rates, cardiac function was also impaired with aging indicating that different 

cells work as a unit in the heart.  Because most of the Egfr CKO mice did not completely delete 

the Egfr allele in cardiomyocytes, the Egfr CKO model may underestimate the negative effect in 

adult hearts lacking EGFR activity. 

Egfr CKO mice display a complex cardiac dysfunction, including cardiomyocyte 

hypertrophy, left ventricular dilation and decreased pumping function.  The progression of 

pathology in cardiac dysfunction appears to be cardiomyocyte and ventricular dilation followed 

by decreased pumping function.  Hypertrophy is an indicator for cardiac stress, whether induced 

by exercise in healthy individuals or pathological alterations in patients.  Hypertrophy in a 

healthy individual often accompanies an increased cardiac pumping function, however, this is 

frequently decreased in cardiomyopathy patients.  The hypertrophy observed in the Egfr CKO 

mice can thus be interpreted as a secondary response to an underlying functional deficit in the 

heart. 

Loss of cardiomyocytes can also induce cardiac stress and lead to impaired cardiac 

function and hypertrophy.
31,32

  EGFR signaling is known to confer cardioprotection by activating 
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cell survival pathways in heart by chronic stimulation of beta-adrenergic receptors.
29

  However, 

no increased apoptosis was observed in hearts of adult Egfr CKO mice.  Because recombination 

induced by Cre was not complete, the hearts of Egfr CKO mice consisted of a mosaic of Egfr
wt/wt

, 

Egfr
-/wt 

and Egfr
-/-

 cardiomyocytes.  Using quantitative RT-PCR with LV RNA from hearts of 

six-month-old Egfr CKO mice, which have impaired cardiac function, have a similar distribution 

of Egfr
wt

 percentage as from the three-month old Egfr CKO mice. (Figure 2.2 D)  This data 

indicated that there was no preferential loss of Egfr
-/- 

cardiomyocytes.  We did detect an up-shift 

of the percentage of Egfr
wt

 in the hearts of one-year-old Egfr CKO, but this was most likely a 

loss of mice with low a percentage of remaining Egfr
wt

 alleles with high numbers of Egfr
-/- 

cardiomyocytes because survival rate for one-year-old Egfr CKO was only 40%.  Thus, 

mechanisms other than apoptosis appear to cause cardiac dysfunction in Egfr CKO mice, such as 

impaired contractility. 

The expression of ACTA increased in hearts of Egfr CKO mice at three months of age.  

Up-regulation in the expression of ACTA has been previously noted in various models of cardiac 

dysfunction indicating existence of some sort of stress in the heart.  Also, pathway analysis 

showed that genes associated with adhesive junctions are significant enriched in the microarray 

data.  Others have shown that dysregulation of cell adhesion causes cardiac arrhythmogenesis 

and dysfunction.  It is possible that abnormal adhesive junctions in the hearts of Egfr CKO mice 

might cause the severe cardiac dysfunction in adult heart. 

The essential role of EGFR in cardiomyocytes for maintaining normal cardiac 

homeostasis suggests that chronic exposure to anti-EGFR drugs may induce cardiomyopathy.  

To date, most anti-EGFR drugs are only used for late stage cancer patients with short life 

expectancy, so cardiotoxicity is not prominent.  This is also consistent with the late onset of 
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cardiac dysfunction in the Egfr CKO model.  Also, Egfr CKO mice showed a poor response to 

pressure overload, which may suggest that anti-EGFR therapy combined with chemotherapy, 

may induce more potent cardiotoxicity.



47 

Figure 2.1:  Cre expression in MHC
cre/+

 mice.  Whole heart X-gal-stained for R26R mice (A) 

and MHC
cre/+

/R26R mice (B), X-gal-stained for R26R heart section (C) and MHC
cre/+

/R26R heart 

section (D). 

 

A B 

C D 
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Figure 2.2:  Cre-mediated mutation of Egfr in cardiomyocyte.  (A) Schematic representation of 

the Egfr locus with loxp sequence (black arrowheads) and the position of primer used for PCR in 

(B).  (B) PCR using primers indicated in (A) in heart and spleen DNA of Egfr
f/f

: MHC
-/-

 and 

Egfr
f/f

: MHC
-/+

mice.  Positions of Egfr
flox 

and Egfr
Δ
 allele fragments are indicated, and PCR for 

β-casein-1 were used as an internal control.  (C) Relative fold changes in Egfr in the LV of Egfr 

CKO mice compared to wildtype.  (D) Recombination efficiencies in different age group of Egfr 

CKO mice.  Subset of CKO mice (20%, n=10) would develop dilated heart after two weeks of 

aortic banding, however, none of wild-type mice developed dilated cardiomyopathy even at 6 

weeks after aortic binding. 
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Figure 2.3:  Egfr CKO mice develop marked deficits in heart function.  Representative examples 

of echocardiography image of left ventricle from one year old wildtype control (A) and age 

matching Egfr CKO mice (B).  Fractional shortening (C), left ventricular internal dimension, 

diastolic (LVID,d) (D) and left ventricular posterior wall, diastolic (LVPW,d) of wildtype and 

Egfr CKO mice with the indicated ages.  Egfr CKO mice develop dilated cardiomyopathy at the 

age of one year old, but impaired cardiac function, which is reflected in reduced FS, from age of 

six months.  FS%, percent fractional shortening; LVID,d, left ventricular internal dimension, 

diastole; LVPW,d, left  ventricular posterior wall, diastole. 
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Figure 2.4:  Ventricular dilation and myofiber hypertrophy in Egfr CKO mice.  

Hematoxylin/eosin-stained (H&E) sections of the entire heart of one- year-old Egfr CKO (A) 

and wildtype control mice (B).  Note the dilated ventricle chamber in CKO mice.  Heart-to-body 

weight ratios (C) and cardiomyocyte size (D) increased with aging in CKO mice.  High 

magnifications of H&E stained sections with hypertrophy apparent in CKO mice (E) but not 

controls (F).  Masson’s trichrome stained sections from LV free wall with extensive interstitial 

fibrosis in CKO mice (G) but not controls (H).  Representative H&E stained section showing 

Atrial thrombus in CKO mice (I). 
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Figure 2.5:  Comparison of relative expression of cardiac hypertrophy markers in LV.  (A) 

Expression of NPPA was significantly increased in Egfr CKO mice at the age of six months and 

one year compared with age-matching wildtype littermates. (B) NPPB was significantly up-

regulated in CKO mice at the age of one year compared with controls.  
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Figure 2.6:  Correlation between FS% and Egfr
wt

%.  (A) Linear regression analysis showed that 

the correlation between FS% and Egfr
wt

% was not significant (p value = 0.288, r
2
 = 0.0712). (B) 

The correlation was significant (p value = 0.0107, r
2
 = 0.4951), (C) The correlation was not 

significant (p value = 0.6937, r
2
 = 0.02351).  FS%, percent fractional shortening; EGFR

wt
%, 

percentage of Egfr wildtype allele. 
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Figure 2.7:  Comparison of aortic valve function and morphology between Egfr CKO and 

wildtype mice.  (A) Representative Doppler tracing from Egfr CKO and wildtype mice at the 

level of the aortic root.  (B) Representative H&E stained sections of the thickest region of aortic 

valves from Egfr CKO and wildtype mice.  
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Figure 2.8:  Cardiac pathology progression in Egfr CKO mice.  FS% was plotted with HW/BW 

at the age of three months (A), six months, (B) and one year (C).  FS%, percent fractional 

shortening; HW/BW, heart-to-body weight ratio. 



55 

Figure 2.9:  Apoptosis in the hearts of Egfr CKO and wildtype mice.  (A) TUNEL assays.  (B) 

Expression of pro-apoptotic gene Bax. 



56 

Figure 2.10:  Deterioration of cardiac function in Egfr CKO mice following TAC treatment.  

Representative M-mode tracing taken from long-axis before and two weeks post surgery from 

Egfr CKO and wildtype mice.  TAC, transverse aortic constriction; FS%, percent fractional 

shortening. 
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Chapter III:  GENETIC MODIFIER LOCUS AFFECTING LEFT VENTRICULAR 

HYPERTROPHY IN THE EGFR
WA2

 MOUSE MODEL OF AORTIC STENOSIS
1
 

 

III.1 Overview 

Left ventricular hypertrophy (LVH), or thickening of the myocardium of the left ventricle, 

is known as an independent risk factor for cardiac-related morbidity and mortality. 

Cardiovascular disease, such as aortic stenosis (AS) which chronically elevates afterload, is the 

main cause of LVH.  A large body of evidence suggests genetic components significantly 

modulate the development and severity of AS-related left ventricular hypertrophy.  Mice 

homozygous for a hypomorphic mutation in the epidermal growth factor receptor gene (Egfr
wa2

) 

on a mixed genetic background were discovered to have congenitally enlarged aortic valves with 

mild AS. Interestingly, mice homozygous for Egfr
wa2

 on C57BL/6J (B6) and 129S1/SvImJ 

(129S1) inbred backgrounds showed significant strain and sex-dependent variation in LVH and 

progression to heart failure, with male B6-Egfr
wa2/wa2 

mice having the most severe cardiac 

phenotype.  Using the B6 and 129S1 inbred strains, a B6129S1 F2-Egfr
wa2/wa2 

(F2-Egfr
wa2/wa2

) 

population was created to genetically map Egfr-dependent modifiers of LVH.  Linkage analysis 

identified one significant locus, Edlvhq1 (Egfr-dependent left ventricular hypertrophy qtl 1), on 

Chromosome (Chr) 9 in males (LOD score ~ 4.5, p < 0.05) and one suggestive locus, Edlvhq2, 

on Chr 16 in females (LOD score ~5.1, p < 0.37) that were linked to heart weight.  After 

                                                           
 

1
 Mice breeding and phenotyping were done by Codelia Barrick 
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increasing sample size, Edlvh1 was confirmed; however, signal on Chr 16 was not replicated.  

By applying haplotype analysis of the candidate regions, the critical interval on Chr 9 was 

narrowed and candidate genes identified that may be responsible for the modifier effect on LVH.  

Identification of genetic modifiers using the Egfr
wa2

 disease model may provide novel 

mechanistic insight into the pathogenesis and progression of AS and LVH. 

 

III.2 Introduction 

Left ventricular hypertrophy (LVH), or thickening of the myocardium of the left ventricle 

(LV), is an independent risk factor for cardiac-related morbidity and mortality.
1-3

 Although 

mechanical stress, growth factors, catecholamines, cytokines and primary genetic abnormalities 

all can induce LVH, chronically elevated after-load, which increases LV stroke work, is the most 

common cause. Two prevalent cardiovascular diseases that induce LVH secondary to increased 

after-load are Aortic stenosis (AS) and essential hypertension (EH).  Clinical presentation for 

LVH is highly variable among different patients.
4,5,6

  Although several risk factors have been 

proposed, increasing evidence suggests genetic components significantly modulate the 

development and severity of AS and EH-related LVH, as well as LVH regression with therapy.
7-

14
  Thus, identifying genetic factors accounting for the pathogenesis of LVH is pivotal to the 

successful clinical management of these common cardiovascular diseases. 

Transverse aortic constriction (TAC), which leads to aortic narrowing and increased LV 

pressure overload, is an accepted experimental model for human cardiac response to chronic 

pressure overload.
15-20

  C57BL/6J (B6) TAC mice have a more severe pathological outcome, 

including decreased survival, LVH, and earlier progression to heart failure than 129S1/SvImJ 

(129S1) or F1 (B6x129S1) TAC mice.
21

  Since all mice shared similar environmental conditions, 
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this strongly suggested that genetic factors significantly modify cardiac response to increased 

pressure overload.  However this model is not ideal for genetic analysis, since the degree of 

constriction, and thus induced load, can fluctuate resulting in high technical variation, which 

reduced consistency of results.
22,23

  Therefore, to identify quantitative trait locus (QTL) that 

modify the hypertrophic response, a genetic model of pressure-overload induced LVH was used. 

The waved-2 allele (Egfr
wa2

), a hypomorphic allele, encodes a single base mutation in the 

epidermal growth factor receptor (Egfr/Erbb1) gene, resulting in up to 90% reduction in receptor 

activity.
24

  On a mixed genetic background, Egfr
wa2/wa2

 mice develop enlarged aortic valves and 

mild to moderate AS, but otherwise are viable and fertile, with minor coat and eye phenotypes.
25

  

However, this mutation shows a significant strain-dependent variability in cardiac phenotypes on 

the B6 and 129S1 genetic backgrounds.  With similar congenital valve defects, B6-Egfr
wa2/wa2

 

develop more severe cardiac hypertrophy, congestive heart failure and AS than 129-Egfr
wa2/wa2

.
21

  

Since F1-Egfr
wa2/wa2

 (B6-Egfr
wa2/+

 X 129S1-Egfr
wa2/wa2

) offspring show similar phenotype as 

129-Egfr
wa2/wa2

 mice, 129S1 genetic modifiers are protective and dominant to B6 in the cardiac 

response to chronic pressure overload.  Therefore, an F2-Egfr
wa2/wa2

 (F2 generated from crosses 

between B6- and 129-Egfr
wa2/wa2

) population was created in order to map genes modifying the 

development of LVH. 

 

III.3 Materials and Methods 

Animals 

The generation and genotyping of B6-Egfr
wa2/wa2

 and 129-Egfr
wa2/wa2

 mice have been 

previously described.
21

 The B6-Egfr
wa2/+

 females were crossed with 129S1-Egfr
wa2/wa2 

males to 

generate F1-Egfr
wa2/wa2

 population. Four male and four female F1-Egfr
wa2/wa2

 mice randomly 
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intercrossed and generated one hundred and ninety F2 offspring. Additionally, thirty two 

backcross N2 mice were generated by crossing F1-Egfr
wa2/wa2 

females and B6-Egfr
wa2/wa2

 males. 

All mice experiments followed National Institutes of Health guidelines and were approved by the 

University of North Carolina Institutional Animal Care and Use Committee. 

Genotyping 

Fifty five F2 progeny were used for analysis because their phenotypic values were greater 

than 0.5 standard deviations from the mean.  Since heart weight was not normally distributed, log 

transformed heart weight (logHW) was used for analysis. One-way interval mapping were 

performed using R/qtl package.26
 Because the mice were selected with extreme phenotypes, 

significant thresholds were calculated by performing 1000 stratified permutations.
26,27

 

Genome-wide Scan 

Fifty five F2 progeny were used for analysis because their phenotypic values were greater 

than 0.5 standard deviations from the mean.  Since heart weight was not normally distributed, log 

transformed heart weight (logHW) was used for analysis.  One-way interval mapping were 

performed using R/qtl package.26
  Because the mice were selected with extreme phenotypes, 

significant thresholds were calculated by performing 1000 stratified permutations.
26,27 

Haplotype analysis 

The haplotypes of regions within a 1.5 LOD interval surrounding each QTL were 

compared between B6 and 129S1 using the Jackson Laboratory’s Mouse Phenome Database 

SNP collection (http://www.jax.org/phenome/snp.html).  All SNPs are mapped to NCBI mouse 

genome build 36.1 reference assembly (C57BL/6J).  The C57BL/6J strain was used as the 

reference strain compared to 129S1/SvImJ strain. 

 

http://www.jax.org/phenome/snp.html
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=10090
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=10090
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III.4 Results 

Cardiac hypertrophy in Egfr
wa2/wa2

 mice is modified by genetic background 

For heart and body weights showed strain-dependent differences weights in three months 

of age in Egfr
wa2/wa2

 mice.  Heart weight (HW) in B6 was significantly increased compared to F1 

and 129S1-Egfr
wa2/wa2

 mice (284.50 ± 22.63 mg B6, 138.00 ± 4.71 mg F1, 130.27 ± 5.62 mg 

129S1; p value < 0.0001) (Figure 3.1 A).  Also body weight (BW) in adult homozygous mice 

was significantly increased compared to heterozygous littermates.
21

  For example, three-month-

old B6-Egfr
wa2/wa2

 mice weighed approximately 4.6% less than heterozygous littermates. 

Moreover, normalized HW was significantly higher in B6-Egfr
wa2/wa2

 mice than F1 and 

129S1-Egfr
wa2/wa2

 mice. (11.28 ± 0.75 mg:g B6, 5.38 ± 0.15 mg:g F1, 6.52±0.49 mg:g 129S1; p 

value < 0.0001) (Figure 3.1 C) 

Sexual dimorphism exists in the temporal development of cardiac hypertrophy and heart 

failure in B6-Egfr
wa2/wa2

 mice 

Although the hearts of B6-Egfr
wa2/wa2

 mice were consistently heavier than those of 

control littermates at all time points analyzed in both genders, stratifying B6-Egfr
wa2/wa2

 heart 

weight by gender and age revealed sexual dimorphism in survival and temporal development of 

severe cardiac hypertrophy.  Approximately 40% of male B6-Egfr
wa2/wa2

 mice but only one 

female B6-Egfr
wa2/wa2

 mouse (10%) (n = 43, Egfr
wa2/wa2

 littermates) died at three months of age, 

most likely from heart failure.  Although there were no significant differences between male and 

female mice in heart or lung weights in surviving three-month-old B6-Egfr
wa2/wa2

 mice, by 4-5 

months male B6-Egfr
wa2/wa2

 mice had significantly heavier heart than female B6-Egfr
wa2/wa2

 mice. 

(Figure 3.1 D) 
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By nine months of age, B6-Egfr
wa2/wa2

 female mice had significantly heavier heart than 

B6-Egfr
wa2/wa2

 male mice (Figure 3.1 D), suggesting either females survived longer with 

hypertrophy or there was a temporal delay in the development of hypertrophy.  Consistent with 

previous findings in TAC in B6 mice, these data suggested that female sex conferred a cardiac 

protective effect for hypertrophy and heart failure secondary to pressure overload.28
 

Cardiac phenotype of F2 Egfr
wa2/wa2

 progeny 

To further identify the effects of genetic factors on cardiac hypertrophy, F2-Egfr
wa2/wa2

 

progenies were generated by intercrossing F1-Egfr
wa2/wa2

 mice.  Because B6-Egfr
wa2/wa2

 females 

had lactation defects, and B6-Egfr
wa2/wa2

 male mice have short life span, B6-Egfr
wa/+2

 dams 

crossed to 129S1-Egfr
wa2/wa2

 sires to generate F1progeny.  With ability to support large litters, 

F1-Egfr
wa2/wa2

 mice were subsequently intercrossed to produce 190 F2 offspring.  At three 

months of age, both genders were equally represented in F2 panel (48.5% female, 51.5% male), 

indicating no obvious gender bias in survival within the F2 population. However, histogram of 

total distribution of gross HW (Figure 3.2 A), and scatter-plots comparing HW (Figure 3.2 B) by 

gender revealed a sexual dimorphism in the cardiac phenotypes among F2 mice.  Consistent with 

the hypothesis of dominant 129S1 protective modifiers of cardiac hypertrophy, mean HW of B6 

parental mice was significantly higher than all other groups. (Figure 3.2 B; ANOVA p value< 

0.0001)  Approximately 18% of the F2 panel had a HW > 220 mg, yet within this subset of 

severely affected mice, only 25% were female mice.  The same trend was observed using 

HW:BW as the phenotypic endpoint (data not shown).  Since by three months of age, the hearts 

of both male and female B6-Egfr
wa2/wa2

 mice are enlarged, the protective 129S1 genetic 

modifiers must interact strongly with female gender in the F2 population. 
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Body weight in F2-Egfr
wa2/wa2 

mice was normally distributed with greater variability than 

in parental Egfr
wa2/wa2

 lines or F1 progeny. (Figure 3.2 C and D)  In male mice, BW differed 

significantly among different genetic backgrounds, with the highest mean BW in F2 mice (29±4g 

F2 Egfr
wa2/wa2

, 27±0.25g B6-Egfr
wa2/wa2

, 28±3g F1-Egfr
wa2/wa2

, 24 ±4g 129S1 Egfr
wa2/wa2

; p value 

< 0.005).  The mean BW of F2 female mice was within the BW range of parental and F1 female 

mice.  Moreover, there was little correlation between HW and BW in F2 mice(Figure 3.2 E; R
2
 = 

0.10). 

At three-months of age, F2-Egfr
wa2/wa2

 mice revealed remarkable variation in cardiac 

hypertrophy, aortic valve size, fibrosis, and cardiac function (Table 3.1 and Figure 3.3).  Since 

these mice were age and sex-matched littermates with same environment, this data highlights the 

significant contribution of genetic modifiers to cardiac phenotypes.  Among these F2 mice, the 

most severely affected mouse (#62) showed the heaviest heart weight, depressed systolic 

function, enlarged LV chamber, enlarged valves, and cardiac fibrosis, replicating the phenotype 

of the B6-Egfr
wa2/wa2

 parental line.  In contrast, mouse #60 had normal aortic valves and cardiac 

function.  For enlarged aortic valves in B6- and 129S1-Egfr
wa2/wa2

 congenic lines and F1-

Egfr
wa2/wa2

 offspring, this suggests that some combination of B6 and 129S1 genetic modifiers 

was able to compensate for reduced EGFR activity during valvular development. 

Mapping modifiers of cardiac hypertrophy 

To map the genes that modify cardiac hypertrophy, progeny from the F2 intercross were 

used for linkage analysis.  An initial genome screen included 56 progeny with extreme high and 

low ends of the heart weight distribution curve (> 0.5 STD).  No markers reached suggestive or 

significant thresholds when the entire cohort was analyzed using HW as the phenotypic endpoint.  

However, when gender was used as a covariate, two suggestive QTLs for HW were identified on 
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Chromosome (Chr) 9 with a peak LOD score of 4.5 at rs13480120, named Edlvhq1 (Egfr-

dependent left ventricular hypertrophy qtl 1), and a second QTL, named Edlvhq2, with a peak 

LOD score of 4.47 at rs3696981. (Figure 3.4) 

By partitioning the panel by sex, Edlvhq1 was found to be significantly associated with 

heart weight only in male mice.  An effect plot reveals that mice homozygous for the B6 allele of 

Edlvhq1 has a heavier heart than mice heterozygous or homozygous for the 129S1 allele, which 

is consistent with previous observations that the 129S1 allele is dominant to the B6 allele. 

(Figure 3.5C)  Also, whole-genome scans on the female population showed the suggestive QTL 

on Chr 16 to be female specific, and identified two additional female-specific putative modifiers 

on Chr 2 (p < 0.37) and Chr 11 (p < 0.37). (Figure 3.6 A)  The modifier associated with the Chr 

11 marker (rs13480881) is located closely to the Egfr gene.  Therefore the signal for this 

modifier was likely an effect of selection for Egfr
wa2

 during generation of the congenic lines.  

The suggestive modifier on Chr 2 had its highest LOD score calculated from an imputed marker 

located in a 10 cM interval between rs13476535 and rs6367022 indicating this maybe a false 

positive. (Figure 3.6 B)  For the QTL on Chr 16 in females, the effect plot at marker rs3696981 

showed an additive effect, with B6 alleles being associated with heavier heart weights.  

To confirm these results, an additional 89 mice were genotyped that also had an extreme 

phenotype for Edlvhq1 at marker rs3696981 on Chr 9 and for Edlvhq2 at marker rs3696981 on 

Chr 16.  For Edlvhq1, an ANOVA test showed significant differences in heart weight (p = 0.014) 

among genotypes of male mice. (Figure 3.7 A)  However, there was no significant association 

between the Edlvhq2 on Chr 16 and heart weigh (p = 0.094), indicating that this association was 

not replicated. (Figure 3.7 B) 
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Haplotype analysis for C57BL/6J versus 129S1/SvImJ strains within candidate QTL 

regions 

Haplotype analysis comparing B6 and 129S1 genomes was performed to narrow the 

candidates for Edlvhq1 on Chr 9.  Regions spanning a 1.5 LOD confidence interval around 

Edlvhq1 was identified (Figure 3.8), and the underlying haplotypes revealed one major region 

spanning approximately 4Mb with high SNP diversity between B6 and 129S1.  The marker with 

the highest LOD score (rs13480120, LOD 4.5) is located at 30.3 Mb, approximately 2Mb away 

from the candidate regions.  There are approximately thirteen genes located in this region, all of 

which have SNPs that differ between B6 and 129S1 strains within non-coding regions.  Two of 

these genes have known SNP variants within the coding regions of the gene: kin of IRRE like 3 

(Kirrel3) and ST3 beta-galactoside alpha-2,3-sialyltransferase 4 (St3gal4). 

 

III.5 Discussion 

Using a genetically sensitized disease model, a major modifier locus on Chr 9 was 

localized that is associated with cardiac hypertrophy arising from chronic pressure overload.  

This locus, denoted Edlvhq1, only modulates hypertrophic response in male F2-Egfr
wa2/wa2 

mice, 

consistent with the sexual dimorphism of the cardiac phenotypes in the F2 progeny and B6 

parental congenic line.  The effect plots for Edlvh1 supported the dominant effect of the 129S1 

resistance allele to the cardiac hypertrophy phenotype in the Egfr
wa2

 mutant model. (Figure 3.5 C) 

Comparison of the B6 and 129S1 haplotypes revealed one regions of high SNP 

variability within the 1.5 LOD CI for Edlvh1 on Chr 9.  Within this highly variable region reside 

several genes that are reported to influence EGFR activity, inflammation, or cardiac development.  
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To assess the candidate genes for the Edlvhq1 locus, allele specific PCR can be performed to 

identify possible differential expression from B6 allele and 129S1 allele in F1 Egfr
wa2/wa2

 mice. 

Based on phenotypes from parental strains, LVH modifiers can function through either 

anti-arotic stenosis or anti-hypertrophy induced by pressure overload, or both.  The 129-

Egfr
wa2/wa2

 mice displayed a thinner aortic valve cusp than B6-Egfr
wa2/wa2 

mice.  Moreover, 129 

mice with TAC surgery have a better pathological outcome than B6 TAC mice, indicating that 

129 modifiers may protect the heart from pressure overload with normal EGFR function. 

With the increases in life expectancy of patients, some types of cancers tend to be treated 

as a chronic disease.  However as shown in Chapter 2, EGFR is required to maintain normal 

cardiac function.  Therefore, identification of genetic modifiers using the Egfr
wa2

 model may 

help to screen patients with high risk for anti-EGFR treatment, and help to define the role of 

EGFR in the pathogenesis of common cardiac diseases.
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Figure 3.1:  Comparison of heart weight (HW), body weight (BW), and normalized heart weight 

(HW:BW) by different genetic background in three-month-old Egfr
wa2/wa2

 mice.  A) HW, B) 

BW, C) HW:B.  D) Distribution of heart weight by age (in months) in B6-Egfr
wa2/wa2

 male (solid 

circle) and female (open circle) mice.  *p < 0.05, **p < 0.01, ****p < 0.0001. 
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Figure 3.2:  Distribution of heart weight and body weight.  A) Distribution of heart weight in F2 

progeny.  B) Scatter plot of HW in B6, F1 (B6x129S1), 129S1 and F2 Egfr
wa2/wa2

 mice.  C) 

Distribution of body weight (BW) in F2 progeny.  D) Scatter plot of BW in B6, F1 (B6x129S1), 

129S1, and F2 Egfr
wa2/wa2

 mice.  E.) Correlation between HW and BW in F2 Egfr
wa2/wa2

 mice.  

Blue arrow points to highest values from 129S1 Egfr
wa2/wa2

 parentals and red arrow to lowest 

value from B6-Egfr
wa2/wa2

 parentals. 
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Table 3.1:  Representative echocardiographic parameters and organ weights from F2 Egfr
wa2/wa2

 

mice 
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Figure 3.3:  Representative histological sections from F2 Egfr
wa2/wa2

 three-month-old littermates.  

Arrows point to aortic (AV) and pulmonary (PV) valves.  A fibrotic region (FIB) near the apex 

of the most severely affected heart is also indicated.  Magnification = 1.6x. 
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Figure 3.4:  Whole genome scan performed for HW on F2 progeny, using sex as a covariate.  

Two suggestive QTLs were identified. 
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Figure 3.5:  Linkage analysis on F2 male mice.  A).Whole genome scan performed for HW on 

F2 male progeny.  B) Interval mapping of the Chromosome 9 locus Q1 in F2 male mice.  C) 

Effect plot for marker rs13480120, which has the highest LOD. 
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Figure 3.6  Linkage analysis on F2 female mice.  A).Whole genome scan performed for HW on 

F2 female progeny.  B) Interval mapping of the Chromosome 2 locus in F2 male mice.  C) Left: 

interval mapping for Chromosome 2; right: effect plot for marker rs3696981, which has the 

highest LOD. 
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Figure 3.7:  Test with increased samples size.  A) Heart weight distribution among F2 male mice 

with B6/B6, B6/129, and 129/129 allele at Q1 locus.  B) Heart weight distribution among F2 

female mice with B6/B6, B6/129, and 129/129 allele at Q2 locus. 



 

Figure 3.8:  Haplotype analysis between B6 and 129/S1 at Q1 locus 
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Chapter IV:  CONCLUSIONS AND FUTURE DIRECTIONS 

 

EGFR belongs to the ERBB family of receptor tyrosine kinases, whose other members 

include ERBB2, ERBB3, and ERBB4. Upon extracellular ligand binding and receptor homo- or 

hetero-dimerization and activation, activated EGFR signals lead to downstream effects in cell 

growth, differentiation, and survival.  Overexpression or mutation of EGFR contributes to a 

significant number of human malignancies.  Thus anti-EGFR drugs have been widely used 

among patients with EGFR positive tumors.
1
  Due to early detection and innovative therapies, 

cancers are now being treated as a chronic disease.
2
  Although no severe cardiac side effect has 

been reported for EGFR targeted therapies, longer duration of anti-EGFR treatment may induce 

unexpected outcomes.  EGFR is detectable in adult human and rodent heart.  Also, human study 

has showed that a hypomorpic mutation in EGFR is associated with dilated cardiomyopathy in 

Chinese population.
3
  As EGFR signaling is involved in cardiac hypertrophy through 

transactivation by the G protein coupled receptor (GPCR) pathway, several studies have 

proposed a novel treatment for hypertension and left ventricular hypertrophy, which would cause 

patients with cardiac dysfunction to be exposed to chronic suppression of the EGFR pathway.
4-6

  

Therefore, it is important to understand the role of EGFR signaling in maintaining cardiac 

homeostasis. 

The hypomorphic Egfr
wa2

 allele has been used to assess the role of EGFR signaling in 

normal cardiac function.  Although developing cardiac hypertrophy at three months of age, 

Egf
rwa2/wa2

 mice also develop aortic valve hyperplasia, complicating identification of the cause of 
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adult cardiac dysfunction.
7
  Another study, using a humanized cardiomyocyte-specific dominant-

negative ERBB1 to block EGFR signaling, showed that EGFR is required to prevent cardiac 

dilation.
8
  However, because dominant-negative ERBB1 can also inactivate ERBB2 signaling 

through heterodimerization, this result is more likely due to the blockage of ERBB2 signaling.
8
  

Similarly, other studies using different systems also have the problem of off-target inhibition on 

ERBB2 signaling complicating the data interpretation.
9
  To answer the question, we created a 

model with cardiomyocyte-specific deletion of Egfr.
10

  These Egfr conditional mutant mice 

displayed a normal phenotype at young age with normal valve function.  They subsequently 

developed progressively dilated cardiomyopathy with signs of depressed cardiac function, 

thinner left ventricular wall, and chamber dilations similar to Erbb2 conditional knock-out mice. 

Unlike mice from Erbb2-CKO that develop severely dilated hearts at three-months of age, most 

Egfr-CKO mice show impaired cardiac function until six-months of age indicating that Egfr may 

be a minor pathway for maintaining cardiac function as opposed to the Erbb2 pathway.  This 

data is consistent with clinical results that anti-ERBB2 therapies show more conspicuous 

cardiotoxicity than anti-EGFR therapies in breast cancer. 

The mechanism behind this dysfunction still needs to be investigated.  Loss of 

cardiomyocytes can cause cardiac stress and dilated cardiomyopathy.
11,12

  Also, over-expression 

of the anti-apoptotic gene Bcl-xL has shown to rescue the dilated cardiomyopathy in mice with a 

cardiomyocyte-restricted deletion of Erbb2.
10

  However, TUNEL assay did not reveal significant 

changes in apoptosis rates between control and CKO mice at three months of age.  Moreover, 

pathway analysis of microarray data did not show enrichment for the apoptosis pathway, 

consistent with TUNEL results.  Furthermore, a preferential loss of homozygous Egfr mutant 

cardiomyocytes was not observed in the hearts of the adult conditional Egfr mutant mice using 
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qPCR for DNA from left ventricle.  Thus, mechanisms other than apoptosis appear to lead to 

cardiomyopathy in CKO mice, such as abnormal adherens junction and impaired contractility. 

It has been shown that EGFR is involved in the control of cardiac contractility activated 

by EGF.
13,14

  Injecting an adenylyl cyclase activator can rescue the cardiac dysfunction in 

dominant-negative Erbb1 mutant mice.  Therefore, impaired contractility may be the cause of 

cardiac dysfunction in our CKO mice.
8
  Interestingly, our microarray data revealed that Integrin 

alpha 5 (Itga5) and Actin alpha 1 (Acta1) were the top two up-regulated genes.  Integrins 

mechanically link the extracellular matrix to the internal cytoskeleton and in hear and thereby 

involved in mechanotransduction.  Also, integrin is showed to up-regulated in the heart with 

pressure overload indicating a potential role for integrins in the hypertrophic response.
15

  

Previous study has shown that enhanced Itga5 signaling in adult heart, in absence of pressure 

overload, leads to marked conduction abnormalities, contractile dysfunction and sudden death.
16

  

α-cardiac actin and skeletal α-actin (Acta1) are two isoforms co-expressed in normal adult 

myocardium.
17

  Studies have shown that Acta1 gene expression is up-regulated in the human 

hearts with left ventricular hypertrophy or valvular diseases.
18

  Also, cardiac contractile function 

appears to correlate with the content of Acta1 in cardiomyocytes.  Recent study has shown that 

SH2-containing protein tyrosine phosphatase 2 (SHP2), an EGFR downstream effector, 

negatively regulate Acta1 gene expression.
11

  All these results indicate that impaired contractility 

may be the cause of dilated cardiomyopathy in our CKO mice.  Future goals will unravel the 

potential effects of EGFR on cardiac contractility through assessing maximal isometric force 

production under conditions of comparable preload in left ventricle, sarcomeric shortening and 

Ca
2+

 transients in isolated cardiac myocytes, and electrical propagation.  We hope that by 
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identifying the mechanism causing dilated cardiomyopathy in CKO studies will help in 

managing or reducing the long-term cardiac toxicity in patients with EGFR-targeted therapies. 

Erbb2 targeted mono-therapy, Trastuzumab, has revealed a low incidence of cardiac 

dysfunction (1%) in patients.
19

  However, the incidence of cardiac side effects of a Trastuzumab 

mono-therapy is found to increase to 7% in patients with previous exposure to anthracyclines, 

which are known cardiotoxic agents.  Also, when Trastuzumab therapy is combined with 

anthracyclines, cardiac side effect is augmented to 27%.
19

  EGFR targeted therapies are 

frequently administered on top of standard chemo-therapies, which emphasizes the importance of 

knowing the possible role of EGFR pathway in cardioprotective responses.  Moreover, because 

EGFR signaling is indispensable to develop cardiac hypertrophy induced by GPCR pathway, 

people have proposed a novel treatment to prevent left ventricular hypertrophy using EGFR 

inhibitors.  To determine the role of EGFR in heart with pressure overload, aortic-banding was 

carried out in both control and Egfr CKO mice.  CKO mice showed a significant decrease of 

fractional shortening ( FS%) compared with wild-type controls.  Also a subset of CKO mice 

developed dilated cardiamyopathy, an end-stage of cardiomyopathy, two weeks post surgery, but 

none of the wild-type mice showed dilated heart.  This result indicated that EGFR-dependent 

pathways are indispensable to withstand cardiac injury imposed by pressure overload.  With our 

CKO mice, we can also test the cardiotoxicity using different therapy combinations, such as 

anthracycline and doxorubicin, which are commonly used anti-cancer drugs.  Characterization of 

cardiac phenotypes of our CKO mice in response to different treatment combinations would be 

helpful to increase therapy efficiency and reduce cardiac-toxicity in patients under chronic 

EGFR-target therapies. 
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Genetic variation has an important role in patients’ response to ERBB targeted 

therapies.
20,21

  As shown above, only 1% of patients with breast cancer under ERBB2 targeted 

mono-therapy have cardiac dysfunction.  Also, the high accumulation of Gefitinib, an anti-EGFR 

drug, was shown to associate with heterozygosity for the 421CA allele at the ABCG2 locus 

compared with homozygous controls.  In addition, this high accumulation would likely be 

relevant to toxicity and therapeutic effects.
20

  Also, mice homozygous for a hypomorphic 

mutation in the Egfr (Egfr
wa2

) have shown a background dependent variation of resulting 

phenotypes, which mimic the toxicities observed in patients with EGFR targeted therapy.  Using 

these mice models with 55 mice, we mapped one QTL locus (Edlvh1) for left ventricular 

hypertrophy on Chr 9 that contains thirteen candidate genes and another putative QTL locus 

(Edlvh2) for female mice on Chr16.  Edlvhq1, a 129S1 dominant locus, identified in our mapping 

panel is a moderate contributor to the heart weight with great potential to be a clinically relevant 

modifier in human studies. 

Haplotype analysis comparing B6 and 129S1 genomes narrowed the candidate region for 

Edlvh1 and revealed that several cardiac function related genes, such as Kcnj1 and Ets1, are 

located in this candidate region.  Protein encoded by KCNJ1 is an integral membrane protein and 

potassium channel. Polymorphisms in the KCNJ1 gene showed associations with blood pressure 

and left ventricular mass in human, which makes it a potential candidate.  To assess the 

candidate genes at the Edlvh1 locus, allele specific PCR can be performed to identify possible 

differential expression from B6 versus 129S1 alleles in F1 Egfr
wa2/wa2

 mice. 

Edlvh2 for female, located on Chr16, was also highlighted in our study.  This locus was 

not significant after expanding our sample size.  However, two female outliers all have 

homozygous B6 allele in Edlvh2 locus and another suggestive QTL locus on Chr2, indicating 
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possible gene-gene interactions in female mice.  We are adding 89 new samples to our interval 

mapping, and would expect to confirm previous QTLs and also identify more QTLs. 

Successful identification of genetic modifiers for cardiac dysfunctions in low EGFR 

activity model would increase our knowledge about the role of EGFR in normal heart function, 

and may assist prediction of cardiac toxicity in sensitive population.
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