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ABSTRACT 
 

Grace O. Silva: Comprehensive Characterization of DNA Copy Number Alterations in Mouse 
and Human Breast Tumors 

(Under the direction of Charles M. Perou) 

 

 Breast cancer is a heterogeneous disease as evident through the diversity observed 

between the molecularly identified “intrinsic subtypes”. These intrinsic subtypes are based upon 

patterns of gene expression, are predictive of relapse-free survival, overall survival, and 

responsiveness to treatment. Furthermore, these subtypes are in part driven by specific genomic 

DNA copy number alterations (CNAs), such that the identification of these intrinsic subtype-

defining genetic events is of research and clinical value.  

 To robustly identify breast cancer “driver” genes within frequently occurring DNA 

CNAs, we implemented multiple integrative strategies using genomic data from various human 

breast tumors and genetically engineered mouse (GEM) mammary models. One strategy, a cross-

species conservation based method, identified “conserved genes” that are the subtype-specific 

DNA copy number altered genes found in both human breast tumors and GEM mammary 

tumors. Another strategy, incorporated gene expression signatures of oncogenic pathway activity 

to identify patterns of oncogenic signaling within each breast cancer subtype that correlated 

directly with DNA CNAs. In both strategies, additional functional data from genome-wide RNA-

mediated interference screens and/or a molecular interaction network analysis were included 

highlighting multiple Basal-like-specific 1q21-23 amplified genes and also amplified genes 

unique in highly proliferative luminal breast tumors. 
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 In addition to using CNAs as a base for identifying therapeutic targets, we demonstrated 

that CNAs play other important roles in the advancement of “personalized medicine”. For 

example, when tumor DNA is used as the source DNA for genotyping, we demonstrate that 

CNAs should be taken into consideration as they can lead to erroneous classification of germline 

genotypes. We examined two separate breast cancer cohorts and observed frequent loss of 

heterozygosity at the CYP2D6 locus, which is a predictive marker of tamoxifen response. As 

result, when tumor tissue was used to determine germline CYP2D6 genotype, we observed 

departure from Hardy Weinberg equilibrium and misclassification of intermediate metabolizers 

(of tamoxifen) as either extensive or poor metabolizers. 

 In summary, my work utilized multiple genomic data types to develop novel methods of 

analysis and data visualization to identify driver gene(s) within regions of DNA copy number 

change, which can and should be used to guide personalized treatment decisions. 
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CHAPTER 1 

INTRODUCTION 
 

 

 Breast cancer is a heterogeneous disease that is characterized by distinct histological 

forms, genetic alterations, and patient outcomes. In addition, breast cancer is the most common 

cancer in women living in the Unities States and is also common in women living in less 

developed countries across the world. In 2012, the World Health Organization reported that an 

estimated 1.67 million new cases of breast cancer occurred among women worldwide [1].  In 

2014, the estimated new cases of breast cancer in the United States was 14% of all cancer cases, 

whereas the estimated deaths was 6.8% of all cancer deaths [2]. Interestingly, the NCI SEER 

program demonstrated that between 2002-2011 the death rates have falling yearly at an average 

of 1.9% [2]. This decrease in death rates attests to the improvements in screening, and patient 

treatment options including the advancement of hormone and HER2 targeted therapies.  

 Genomic studies of breast cancer have highlighted the molecular differences observed 

between, and even within, tumors. Genome-wide gene expression pattern analyses identified the 

molecular subtypes existing within breast cancer. These “intrinsic subtypes” demonstrate many 

genetic differences and also varying frequency of clinical features such as differences in 

incidence, survival (both relapse-free and overall), and responsiveness to therapies. Breast 

tumors are categorized into therapeutic groups using clinical-pathological markers based on the 

estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor
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receptor (HER2; also known as ERBB2). The presence of ER, PR and HER2 proteins dictates 

the administration of specific targeted drug therapies. For example, patients with amplified 

and/or over-expressed HER2 are treated with trastuzumab, a monoclonal antibody targeting 

HER2 [3], while all ER and/or PR positive (+) patients are treated with endocrine therapy 

(tamoxifen or aromatase inhibitors) [4]. However, there are subgroups of HER2+ patients with 

worsen response to trastuzumab [5, 6] and also ER+ patients that failed to response to endocrine 

therapies [7, 8]. In addition, there are the poor prognoses “triple-negative (-)” breast cancer 

(TNBC) patients that lack the expression of ER, PR and HER2, and therefore are not candidates 

to receive standard endocrine or trastuzumab therapy options. This heterogeneity in 

responsiveness, even within more homogenous clinical groups like ER+/HER2- patients, 

suggested that additional genetic diversity exists that must be responsible for this behavior. 

Therefore, the focus of this thesis was to identify some of this genetic heterogeneity by using the 

DNA copy number landscape as an arena of potential causation. 

 

DNA Copy Number Alterations as Drivers of Carcinogenesis 

 Numerous somatic mutations occur in all cancer cells and some are known to have 

important clinical implications [9]. These types of genetic mutations included base substitutions, 

small insertions and deletions, translocation, inversions and copy number alterations. Copy 

number alterations (CNAs) are biologically relevant due to gene changes that may affect gene 

expression levels, function, and/or sequence [10, 11]. Specifically, CNAs are imbalances that 

lead to an altered diploid status and result in regions of gains (amplifications) or losses 

(deletions) of genetic information. CNAs range in size, varying in the number of base pairs 
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altered and can also encompass just a handful of bases or even millions of bases encompassing 

hundreds of genes [10, 12]. 

 Somatic CNAs, which are separate from germline copy number variations, are common 

in cancer and specific CNAs are associated with numerous cancer types [12, 13]. Frequently 

occurring CNAs are important in understanding the cellular defects that promote cancer and the 

identification of potential therapeutic strategies [11, 14]. A shining example of this was the copy 

number gain and therapeutic targeting of HER2 in breast cancer, which has now literally saved 

thousands of lives. The current and future challenge is in identifying alterations that promote 

cancer growth from passenger mutations in the many existing CNAs where we do not have an 

obvious candidate like HER2 or MYC [15]. Specifically, copy number losses could lead to 

deletion of tumor suppressor genes, whereas copy number gains could lead to amplification of 

oncogenes [10, 11]; thus the identification of these regions and their potential driver genes are of 

great value. 

 The development of microarray technology provided an exciting new resource for 

estimating CNAs across the genome. In our work, the two array-based technologies used to infer 

CNAs include oligonucleotide array-based comparative genomic hybridization (aCGH) and 

single nucleotide polymorphism (SNP) array platforms. Both technologies were able to infer 

relative copy number values at specific known locations across the genome by using the ratio 

from a simultaneous analysis of tumor and reference DNAs [16, 17]. However, there are caveats 

about using relative copy number values, as the actual DNA content of cancer cells (ploidy) may 

be unknown or difficult to determine, and also cancer cells can be heterogeneous comprising of 

subclones with and without specific CNAs [18–20]. In addition, tumor tissue can be 

contaminated with an unknown amount of normal cells, thus complicating estimates of copy 
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number change. Today, even more computationally consuming and expensive resources are 

currently in development that infers CNAs through single-cell array-based technologies and 

next-generation sequencing data. However, despite all these caveats, microarray-based (and now 

sequencing-based) assessments of genome-wide DNA copy number levels are feasible, robust, 

and yield a large amount of clinically useful data.  

 One benefit of current microarray based technologies includes the ability to specify 

unique regions of the genome with higher coverage or target an even distribution genome-wide 

[11, 17, 21].  Specifically, aCGH analysis can use bacterial artificial chromosomes, cDNAs, or 

long oligonucleotides to target specific regions of the genome [11, 21]. Genomic DNA from 

tumor and normal/reference are uniquely fluorescently labeled and hybridized onto the arrays 

[11, 17, 21]. Relative copy number values are inferred by measuring the fluorescence intensity 

ratio, between tumor and reference [11, 17, 21]. In addition, aCGH can detect whole 

chromosome aneuplodies and submicroscopic deletions and duplications [11, 21]. However, 

because aCGH arrays co-hybridize the tumor with the reference DNA, aCGH arrays may miss 

copy-neutral alterations and regions of LOH, if the LOH is a copy neutral event. 

 SNP arrays use short-base-pair sequences (i.e. regions of single nucleotide 

polymorphisms) to target genomic regions [16, 22]. Unlike aCGH arrays, SNP arrays do not 

require the reference/normal sample to be hybridized along with the target of interest [16, 22]. 

However, we ran SNP arrays on matching normal samples to create relative copy number ratios 

from the two SNP arrays.  Relative copy number is inferred at each SNP by comparing the ratio 

of combined intensity signal at both alleles from a target sample against the reference [16, 22]. 

Additionally, SNP arrays provided genotyping information by also determining the minor-allele 

frequency, the relative proportion of one allele with respect to total intensity signal [16, 22]. 
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Therefore, a benefit of SNP arrays is the ability to identify copy-neutral loss of heterozygosity 

events across the genome [16, 22]. However, a limitation of SNP arrays is the coverage, being 

restricted by the location of SNPs throughout the genome.  

 To ultimately identify regions of the genome where CNAs have occurred, two main 

additional analyses are performed on data produced from aCGH or SNP array platforms. The 

first stage is the normalization and the second stage is segmentation. Normalization involved 

probe-specific adjustments to remove intensity biases due to binding affinity differences and 

other artifacts [11]. Additional quality control pre-processing steps are also needed according to 

each individual platform-specific protocol.  Segmentation incorporated statistical methods to 

identify the exact regions of the genome, on a patient level basis, where the relative copy number 

value is greater or less than the observed diploid value coming from the control/normal DNA 

sample. Segmentation is implemented under the observation that, within an individual sample, 

adjacent positions in the genome are likely to have the same underlying copy number [22, 23]. 

Therefore, segmentation groups the genome into regions that share the same DNA copy number, 

and identifies the region/location of DNA copy number changes. The two main segmentation 

methods selected for this research was the circular binary segmentation (CBS) tool by Olshen et 

al. 2004, and the sup-Wald identification of copy changes in DNA (SWITCHdna) tool by 

Weigman et al. 2011 [23, 24]. Both segmentation tools incorporated maximum likelihood 

statistics to test for significant breakpoints separating neighboring regions (i.e. change-points) 

and to apply their test procedures iteratively until no more changes are detected [23, 24]. 

 

Molecular Intrinsic Subtypes of Breast Cancer 

 Genomic studies using microarray technology have identified “intrinsic” human breast  
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cancer subtypes through differential gene expression, resulting in the PAM50 [25] and Claudin-

low predictors [26]. These gene expression defined subtypes include the Basal-like (typically 

triple-negative), Claudin-low, HER2-enriched, Luminal A, Luminal B and a subgroup of normal-

like samples (some tumors and all true normals). Furthermore, these breast cancer subtypes 

demonstrated prognostic value as patients with Basal-like, HER2-enriched and Claudin-low 

tumors exhibited a worse prognosis compared to patients with Luminal (in particular Luminal A) 

tumors [26]. Additionally, there are specific gene expression features and frequently copy 

number altered regions of the genome observed for each intrinsic subtype, thus highlighting the 

heterogeneity of breast cancers. The genomic features of the intrinsic subtypes will be described 

further below, with an emphasis on the DNA copy number landscape, which has been a constant 

focus of my thesis research. 

 Basal-like Subtype. The Basal-like subtype represents roughly 10-20% of all breast 

tumors [27]. The Basal-like subtype disproportionally affects African American women, is very 

prevalent among younger African American women (27%), and also demonstrates higher 

mortality rates [28, 29]. The majority of Basal-like tumors lack expression of the hormone 

receptors (ER and PR) or the amplification and/or over-expression of HER2, and therefore are 

commonly referred to as “triple-negative” (ER-/PR-/HER2-) [27]. Lacking the standard targets 

of drug therapy, these tumors often only have chemotherapy options and demonstrat high risk of 

recurrence and disease progression. Therefore, not surprisingly, Basal-like patients also 

demonstrate a worse overall and relapse free survival in the absence of systemic therapies [26, 

30, 31].  

 These tumors were initially referred to as Basal-like due to the unique expression of basal 

epithelial genes including cytokertain 5, 6, and 17 [31, 32]. Additionally, these tumors are highly 
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proliferative, demonstrating high expression of many cell cycle regulated genes and other 

markers of proliferations (i.e. proliferation index and the immunohistochemical marker Ki-67) 

[27, 33]. The high proliferative nature of Basal-like tumors is partially due to the lack of RB1 

protein function, a key regulator of the cell cycle [34]. Other important features of the Basal-like 

subtype include high occurrence of TP53 and BRCA1 mutations which, in combinations with 

RB1 loss, leads to high aneuploidy and high level of genomic instability [24, 27, 35]. Regions of 

previously observed high frequent CNAs in the Basal-like subtype include copy number losses at 

4q, 5q and copy number gains at 1q, 6p, 8q and 10p (Figure 1.1a) [24, 36]. 

 Claudin-Low Subtype. The Claudin-low subtype is the newest identified subtype, 

occurring in 5-7% of all breast cancers [26]. Claudin-low tumors also demonstrate poor 

prognosis representing an intermediate time of disease-free survival; better than the HER2-

enriched and Basal-like subtypes but worse than Luminal A and normal-like patients [26, 37]. 

The immunohistochemical definitions of the Claudin-low subtype are consistent with the  “triple-

negative” characteristics of Basal-like tumors. However, Claudin-low tumors lack the hallmark 

basal expression features, such as high expression of basal keratins and proliferation genes. 

 The subtype was named “Claudin-low” based on the unique lack of expression of the 

claudin family of genes. Specifically, the expression of the epithelial cell-cell adhesion genes 

claudin 3, claudin 4, and claudin 7 are all significantly lower in these breast tumors [26, 27, 28]. 

In addition, Claudin-low tumors lack the E-cadherin protein, an epithelial cell interaction protein 

involved in tight junctions [26, 27, 28]. Recently, Claudin-low tumors have been classified as 

having an intense immune cell infiltrate, with high expression of immune system response genes 

including CD4, CD79b and CD14 [26, 38]. Other characteristics of Claudin-low tumors include 

low expression of luminal cell surface markers, and enrichment of breast stem cell and epithelial-
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mesenchymal transition features [26, 38]. Regions of previously observed high frequent CNAs 

include copy number gains at 7p, 8q, and copy number losses at 8p (Figure 1.1c) [37]. 

 HER2-enriched Subtype. The HER2-enriched subtype is characterized by high 

expression of several genes on the ERBB2 (commonly known as HER2) amplicon at 17q22.24, 

which is the region that includes HER2 and GRB7 [31].  HER2 encodes for a cell surface protein 

with tyrosine kinase receptor activity, that activates signal transduction pathways involved in 

multiple cellular functions ranging from cell division, migration, adhesion, differentiation and 

apoptosis [39]. The subtype was named based on the observation that most samples within this 

subtype were clinically HER2 positive (HER2+) [38]. Clinically HER2+ tumors represent 15-

20% of all tumors, however, not all clinically HER2+ tumors fall within the HER2-enriched 

subtype, and not all HER2-enriched subtype tumors are HER2 amplified. The clinically HER2+ 

tumors that fall within the HER2-enriched subtype versus the Luminal subtypes are separated 

predominantly by ER status [40]. Specifically, 30-40% of HER2-enriched tumors are ER 

positive (ER+), meanwhile the majority lack the expression of ER (i.e. ER negative, ER-) [27].  

 Along with the Basal-like subtype tumors, HER2-enriched patients also demonstrate a 

significantly shorter overall and relapse free survival prognosis [31], which is likely due to 

deregulation of the ERBB signaling network [39]. However, amplification and/or overexpression 

of HER2 are associated with benefiting from trastuzumab treatment (an antibody targeting 

HER2) [41], with this targeting agent showing large improvements in patient outcomes.  In 

addition, HER2-enriched tumors show high genomic instability with frequent copy number gains 

at 1q, 8q, 17q, and copy number losses at 8p (Figure 1.1b) [36, 40].  

 Luminal Breast Cancers. Luminal breast tumors are characterized by high gene and 

protein expression of the luminal signature, which includes the Estrogen Receptor (ESR1), the 
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Progesterone Receptor (PGR), FOXA1 and BCL2 [30, 40]. From an immunohistochemical stand 

point, Luminal tumors are generally ER+ and/or PR+ [29].  Additional profiling studies 

highlighted two distinct subtypes within Luminal tumors, separating into Luminal A and 

Luminal B [30]. In a given population, Luminal A tumors tend to occur more often then Luminal 

B tumors (roughly 2/3 versus 1/3 frequency). The Luminal B subtype is distinctly separate from 

the Luminal A tumors by exhibiting lower expression of the luminal signature and higher 

expression of proliferation-related genes including MKI67, BIRC5, CCNB1 and MBL2 [33, 42]. 

Highly proliferative Luminal tumors have worst prognosis and poor response to standard 

therapies [43]. Consequently, Luminal A tumors demonstrate a more favorable survival outcome, 

living longer before developing metastatic disease [30].  

 Luminal tumors are also heterogeneous within the mutation and copy number landscapes. 

PIK3CA and TP53 genes are frequently mutated within both Luminal subtypes. However, 

Luminal A tumors demonstrate the largest set of recurrently mutated genes including GATA3, 

CDH1, MAP3K1 and FOXA1 [40]. Regions of previously observed high frequent CNAs within 

Luminal A tumors include copy number gains at 16p (Figure 1.1d), whereas, Luminal B tumors 

demonstrate copy number gains at 17q (Figure 1.1e) [36, 44].  Interestingly, both Luminal 

subtypes share a highly frequent copy number loss at 16q [44] (Figure 1.1d and Figure 1.1e).  

 

Conservation Based Approach Using Genetically Engineered Mouse Models 

 In science, the word “conservation” can have many meanings depending on the context. 

For an artist, conservation might refer to the restoration, protection and/or care of cultural 

heritage. For a mathematician, conservation might refer to a quantity that does not change over 

time. Consequentially, the word “conservation” may lead to a variety of hypotheses within 
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science. However, the underline concept of conservation is the same throughout science, and that 

is the preservation of some important feature(s).  

 Cancer progression is an evolutionary process driven by somatic cell factors [45].  One 

such factor in tumor progression is the acquisition of mutations in oncogenes and tumor 

suppressor genes [45], which can occur in the form of single nucleotide variants (SNV), or DNA 

CNAs (gains or losses of pieces of chromosomal DNA). We took an evolutionary approach to 

define “conservation”, and refer to conservation as the selection of shared breast tumor 

phenotypes in individuals from distinctly separate species (i.e. mice and humans). Understanding 

cancer development not only at the level of cells and tissue, but also cross-species can be an 

important feature in defining key carcinogenic events [46, 47].  

  Numerous genetically engineered mouse (GEM) mammary models are available that 

were created to mimic specific genetic properties observed in human breast cancers [48–50]. 

Incorporating GEM models provide an ability to study the interaction of different cell types and 

other physiological functions that are not represented in tissue culture cell analyses. However, 

certain caveats are included in murine to human comparative studies such as species-specific 

pathway differences and physiology differences [47].  However, the increase in available GEM 

mammary models and the advancement of gene expression profiling technologies provides an 

unique ability to group GEM mammary models together that share distinct gene expression 

patterns with human tumors. As a result, large combined human and murine gene expression-

based studies have identified gene expression features within mouse mammary model groups 

that are also observed in a specific human breast cancer subtype [49, 50]. However, on the gene 

expression level, there is not a single mouse mammary model that completely covers the 

complexity of any individual breast cancer subtype [49, 50].  
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On a DNA copy number level, mouse mammary models are particularly interesting as 

these models were designed to represent specific genetic alterations found in human breast 

cancers. Popular targets of mouse mammary modeling include overexpression of HER2/ERBB2 

or MYC, and inactivation of BRCA1, RB or TP53 [51–53]. Interestingly, we hypothesize that if a 

selected genetic alteration occurs frequently in a human breast cancer subtype, and a 

corresponding mouse mammary model is made with the same frequent genetic alteration, and if 

both then shares the same defining gene-expression features, this would be suggestive of 

causation of that subtype and a “conserved” genetic event. As a result, conserved alterations 

likely represent regions of importance in tumor progression, and the identification of these 

regions would be helpful to the scientific community. 

 Overlapping of CNAs across human and murine genomes created unique computational 

challenges. The first challenge was due to the inability to directly compare intensity values cross-

species from different copy number array technologies [11, 54]. To circumvent this challenge, 

individual significance tests are applied independently within a species/platform, and then only 

normalized values compared. Another challenge occurred due to variability in copy number 

segment sizes, and the differences in genetic annotation cross-species [23, 54]. To address this 

challenge, we initially increased the complexity from segments to gene level, with the 

observation that genes are the underlining target of an alteration and therefore are a more 

unambiguous cross-species. Next, given that blocks of synteny between human and murine 

genome may span multiple copy number segments, and given that a copy number altered 

segment many encompass numerous genes, we used the list of overlapping syntenic regions and 

the genes within them as the link. Using this overlapping gene list provided a straightforward 
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way to remap the murine genome in human order, with the caveat that mouse to human 

orthologues represent roughly 85% of all human genes [55].  

 

Research Introduction 

 In order to address the key topics discussed above, my thesis work highlighted the 

computational analyses and bioinformatics tools necessary to characterize CNAs in breast 

cancer. The studies in Chapter 2 and Chapter 3 utilized copy number and gene expression data to 

define drivers of CNAs in highly recurrent regions of copy number alterations. In addition, the 

studies in Chapter 2 and Chapter 3 also utilized functional data from RNAi screens to identify 

CNAs harboring genes essential for proliferation; thus representing novel integrated 

computational analyses utilizing multiple genomic data types, both quantitative and functional. 

 In Chapter 2, we characterized over 600 human tumors and 70 mouse mammary models 

of breast cancer to provide the largest human-to-mouse mammary dataset to date, which 

identified key human-to-mouse conserved copy number features. In addition, we demonstrated 

the usefulness of a new tool that can identify shared copy number features cross-species 

(SWITCHdna). Furthermore, we provided a resource for human to murine (and vice versa) 

cancer-related projects that can guide model selection during preclinical study designs. In 

Chapter 3, gene-expression based pathway activity was integrated with DNA copy number 

analyses to identify the impact of copy number regions with altered signaling pathway in 

tumorigenesis. Specifically, patterns of oncogenic signaling essential for cell proliferation were 

correlated with CNAs observed in highly proliferative luminal breast tumors.  

 In Chapter 4, the focus turns to the examination of another role CNAs play in the clinical 

setting, specifically when tumor DNA is used as the source of genomic DNA to make treatment 
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decisions. In this chapter, CNAs in tumors resulted in inaccurate genotype calls at a gene that is a 

marker of tamoxifen response. Throughout all this work, we highlighted the importance of 

understanding CNAs in both the laboratory and clinical setting and laid the foundation for how 

to integrate copy number data with other genomics data to determine subtype-specific drivers of 

tumorigenesis in breast cancer. 
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FIGURES 

 
 
Figure 1.1 Copy number frequency plots from SWITCHplus. Segments of copy number gains 

are plotted above the x-axis in red and segments of copy number loss plotted below the x-axis in 

green. The frequency of alterations in each subtype is indicated on the y-axis from 0-100%. a 

Basal-like, b Her2-enriched, c Claudin-low, d Luminal A e Luminal B copy number landscapes. 
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CHAPTER 2 

CROSS-SPECIES DNA COPY NUMBER ANALYSES IDENTIFIES MULTIPLE 1q21–q23 
SUBTYPE-SPECIFIC DRIVERS OF BREAST CANCER 

 

 

 A large number of DNA copy number alterations (CNAs) exist in human breast cancers, 

and thus characterizing the most frequent CNAs is key to advancing therapeutics because it is 

likely that these regions contain breast tumor ‘drivers’ (i.e. cancer causal genes). This study aims 

to characterize the genomic landscape of breast cancer CNAs and identify potential subtype-

specific drivers using a large set of human breast tumors and genetically engineered mouse 

(GEM) mammary tumors. Using a novel method called SWITCHplus, we identified subtype-

specific DNA CNAs occurring at a 15% or greater frequency, which excluded many well-known 

breast cancer related drivers such as amplification of ERBB2, and deletions of TP53 and RB1. A 

comparison of CNAs between mouse and human breast tumors identified regions with shared 

subtype-specific CNAs. Additional criteria that included gene expression-to-copy number 

correlation, a DawnRank network analysis, and RNA interference functional studies highlighted 

candidate driver genes that fulfilled these multiple criteria. Numerous regions of shared CNAs 

were observed between human breast tumors and GEM mammary tumor models that shared 

similar gene expression features. Specifically, we identified chromosome 1q21-23 as a Basal-like 

subtype enriched region with multiple potential driver genes including PI4KB, SHC1, and 

NCSTN. This step-wise computational approach based on a cross-species comparison is 
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applicable to any tumor type for which sufficient human and model system DNA copy number 

data exists, and in this instance, highlights that a single region of amplification may in fact 

harbor multiple driver genes. 
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INTRODUCTION 

Breast cancer is a heterogeneous disease that is characterized by distinct histological 

forms, genetic alterations, and patient outcomes [1–6]. Consistent with these observations, 

differential gene expression can distinguish molecular subtypes that separates breast cancer into 

distinct groups including Basal-like, Claudin-low, HER2-enriched, Luminal A, and Luminal B 

subtypes [2–4, 7–9]. These so called “intrinsic subtypes” are predictive of relapse-free survival, 

overall survival and responsiveness to treatment [7–11]. Previous work highlighted numerous 

somatic mutations [12] and DNA CNAs [13] that are linked to specific intrinsic subtypes, 

suggesting that these genetic events may be causative of these subtypes. Beyond a few well-

known drivers, the identification of genetic drivers present in many of these recurrent regions of 

DNA copy number change remains to be determined. Specifically, numerous copy number 

alterations are located on chromosome 1 and occur at high frequency among various cancer types 

including breast and liver [12, 14]. In breast cancer, copy number loss frequently occurs at 1p 

while copy number gains are frequent at 1q [13]. Furthermore, copy number gains at 1q often 

encompass the majority of the 1q arm, which include hundreds of genes. 

To identify additional genetic drivers of breast cancer in common regions of 

amplification, we have taken a cross-species conservation approach based upon the hypothesis 

that important etiological events in breast tumors will occur both in human breast cancers and 

mouse mammary tumor models. Through combined DNA copy number analyses of human 

breast tumors and multiple genetically engineered mouse (GEM) mammary tumor models, we 

identified 662 copy number alteration (CNA) regions conserved between these two species. Our 

ultimate selection strategy also incorporated gene expression data, an RNAi screen, and a 

network analysis to focus the list to the most likely driver genes within CNAs. Furthermore, 
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using published functional studies, we provide new insights on the potential implications of 

Basal-like tumor-specific chromosome 1 drivers, some of which are therapeutically targetable. 

 

MATERIALS AND METHODS 

 Breast cancer tumor datasets. For these comparative studies, two human datasets and 

one mouse dataset were used that contained both gene expression and DNA copy number data 

(Table 2.1). The two human datasets were: (1) tumors collected at the University of North 

Carolina at Chapel Hill and the Oslo University Hospital, Radiumhospitalet, Norway (“UNC”, 

n=159, GSE52173), and (2) The Cancer Genome Atlas (TCGA) Project dataset [12] (“TCGA”, 

n=485).  The third dataset contained tumors from numerous mouse mammary tumor models 

including GEM mammary models with inactivation of TP53, BRCA1, BRG1, and over-

expression of cMYC, HER2/ERBB2/Neu, PyMT and WNT1 (“mouse”, n = 73, GSE52173). The 

publically available level 3 segmented copy number data for the TCGA dataset was downloaded 

through the TCGA data portal and the published PAM50 subtype calls were used [12]. 

Demographic and clinical characteristics of the UNC tumors, and an extended methods section 

are provided in the online version of the paper. 

 Cross-species assessment of subtype-specific changes in genomic DNA copy number. 

To identify subtype-specific CNAs from segmentation data generated by the various copy 

number array platforms, we produced an add-on script to the SWITCHdna method of DNA copy 

number change point detection [13]. We created an R suite of functions called SWITCHplus, 

which can identify segments of the genome with copy number changes specific for a user 

determined set of tumors, thus providing a supervised method for analyzing copy number data. 

SWITCHplus is provided as a source script in R and available for download at: 
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https://genome.unc.edu/SWITCHplus/. Note, that we did not perform multiple hypothesis testing 

corrections as we chose alternative biologically based filtering criteria (Figure 2.1) based upon 

cross-species conservation. 

 Computational analysis of candidate driver genes within conserved CNAs. In order 

to identify putative driver alterations within regions of copy number gains or losses, we began 

with all the conserved CNAs with a subtype segment frequency of 15% or greater. To distinguish 

putative drivers from passengers, three further criteria were used. We first identified genes 

within a CNA that demonstrate concordance between the DNA and RNA expression.  The 

second criterion filtered for conserved CNAs that contained genes with a breast cell line RNAi-

associated phenotype as published in the Solimini et al. 2012 RNAi screen on Human Mammary 

Epithelial Cells [15]. The third criterion was to identify top ranking genes when scored using 

DawnRank [16]. By combining all these features together, we further decrease the false positive 

genes by filtering out genes without functional implications (Table 2.2).   

 

RESULTS 

Subtype-specific breast cancer copy number landscapes 

 In order to identify both known and novel genetic drivers of breast cancer on the DNA 

copy number level, we developed a multi-step and multi-platform computational strategy (Figure 

2.1). This strategy is predicated on using a “cross-species” comparative genomics approach 

where we searched for spontaneous copy number events across two different species (human and 

mouse). For this study, we created a new murine genomic resource of 73 mammary tumors 

profiled by both gene expression and DNA copy number microarray data (GSE52173); this new 
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resource complements our human data set that contains 644 human breast tumors that have both 

gene expression and DNA copy number data (GSE52173 and https://tcga-data.nci.nih.gov/tcga). 

We began by using gene expression data to identify subtypes, separately for human tumor 

samples and GEM mammary models. For clarity, we refer to the classification of mouse tumors 

as “groups” to distinguish them from human classes that are termed “subtypes”. Using the 

PAM50 [8] algorithm and the Claudin-low predictor [9] we assigned each of the human tumor 

samples within the dataset to a specific intrinsic breast cancer subtype (Table 2.1). However, 

since there is no established expression-based classifier for mouse mammary tumors, we 

performed a supervised hierarchical cluster analysis of the murine mRNA expression data using 

the Herschkowitz et al. 2007 intrinsic mouse list of 866 genes. SigClust [17] analysis was used to 

identify 7 significant mouse groups (Figure 2.2), which were given an unique group name based 

on the majority mouse model contributor in that group (i.e. Myc, Neu/PyMT, Wnt1, C3Tag, 

Mixed, p53null-Basal, and p53null-Luminal). The “Mixed” mouse group lacked a single 

dominant mouse model contributor, however, this group was comprised of mouse tumors that all 

demonstrate the previously described Claudin-low gene expression features [18, 19], and hence 

forth this mouse group is referred to as “ClaudinLow”.  

 To identify subtype-specific, and mouse group-specific regions of DNA copy number 

gains and/or losses we developed a new bioinformatics visualization tool called SWITCHplus. 

Applying this tool to the mouse dataset identified group-specific DNA copy number changes for 

each of the seven expression-defined groups (Figure 2.3). These results suggest that most mouse 

groups are characterized by numerous DNA copy number changes, many of which are specific to 

a given model/group (source data available in the online version of the paper). However, by 

comparing the copy number landscape between mouse groups, we also identified CNAs that 
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were present in multiple models (Figure 2.3), which can be considered common CNAs of murine 

mammary oncogenesis. Therefore, these data support the notion that common spontaneous 

events may occur within different GEM mammary models irrespective of the initiating genetic 

event (i.e. transgene). Consistent with previous work, we identified multiple GEM mammary 

p53null groups based on gene expression patterns [18, 19]. Interestingly, these p53null groups 

demonstrated not only differences in mRNA expression patterns, but also exhibited differences 

in the DNA copy number landscapes (Figures 2.3c and 2.3d). Additionally, we noticed that the 

p53null-Luminal, p53null-Basal and C3-Tag groups contained more group-specific CNAs than 

any of the other mouse groups (source data available in the online version of the paper); this 

observation is likely due to the loss of TP53 in these three groups. On average, each mouse 

group exhibited nearly twice the number of group-specific copy number gains versus losses. 

We next analyzed the human DNA copy number landscape in the combined UNC/TCGA 

breast cancer dataset (Figure 2.4). Our results, not surprisingly, were consistent with previous 

publications [6, 12, 13]. For example, our analyses confirmed previously identified breast cancer 

copy number gains of 8q that is common and present irrespective of breast cancer subtype, as 

well as a number of subtype-specific CNAs. For instance, we again identified Basal-like-specific 

DNA copy number losses at 4q, 5q and gains of 10p; Luminal A-specific copy number gains at 

16p; Luminal B-specific copy number gains at 17q; and a Luminal-associated (encompassing 

both Luminal A and Luminal B) copy number loss at 16q (Figure 2.4 and source data available 

online) [6, 12, 13, 20, 21]. The HER2-enriched subtype contained few subtype-specific CNAs, 

noting that the HER2/ERBB2 amplicon was not a HER2-enriched subtype specific copy number 

gain event as it also occurred in many Luminal tumors. Additionally, the Basal-like subtype 

contained the highest number of subtype-specific CNAs (source data available online). In 
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contrast to what was observed in the mouse groups, human tumors on average demonstrated 

more frequent subtype-specific regions of copy number loss compared to copy number gains 

(source data available online). 

 

Comparisons of copy number landscapes of mouse and human breast tumors 

 The extent to which mouse models of breast cancer recapitulate human phenotypes has 

been examined at the gene expression level [18–20], as well as on the copy number level, albeit 

only in a much smaller subset of these data [20]. We examined sub-chromosomal events and 

compared human subtype-specific copy number landscape plots to mouse group-specific 

landscape plots and identified shared cross-species CNAs events (after re-ordering the mouse 

chromosomal landscape into human chromosome order). We first selected for “conserved 

regions”, which were DNA segments/regions that were altered at high frequency (> 15%) and in 

the same direction (i.e. amplified or lost) in both human and mouse copy number landscapes. 

Applying this selection criterion reduced the search space for potential subtype-specific drivers 

more than 2-fold, leaving a total of 662 conserved regions when all mouse groups and human 

subtypes were considered (Figure 2.5 and source data available online). 

In comparison amongst subtypes, the Claudin-low subtype had the fewest number of 

conserved regions (and the fewest CNAs overall) (source data available online). Conversely, the 

Basal-like subtype contained the most conserved CNAs; however, this may be due to the fact 

that the Basal-like subtype also contained the most subtype-specific CNAs (source data available 

online). Consistent with a previous publication [20], shared Basal-like-specific and murine 

p53null-Basal-specific regions of DNA copy number loss was observed spanning human 4q31–

q35.2 and encompassing INPP4B, and also spanning 14q22.1-23.1 (source data available online). 
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By comparing shared sub-chromosomal CNAs between the human Basal-like subtype and all 

mouse groups, we noted that the C3-Tag mouse group contained the most human Basal-like-

specific copy number amplified regions, while the p53null-Basal mouse group contained the 

most human Basal-like-specific copy number loss regions (source data available online). Both of 

these mouse models were previously shown to have the Basal-like tumor gene expression 

phenotypes [18, 20], therefore, for this study, we largely focused on copy number commonalities 

between human Basal-like tumors and these two mouse groups. 

 

Identification of Basal-like tumor chromosome 1 amplification driver genes 

Across all breast tumors, amplification of human chromosome 1q was the most frequent 

copy number altered event (not depicted). However, as can be seen in Figures 2.4 and 2.5, the 

“shape” of the chromosome 1 amplification varies by subtype, with the subtype-enriched 

amplification regions being identified within this largest of human chromosome arms. Among 

the 662 conserved regions identified across the genome, chromosome 1 harbored 18% of all 

conserved CNAs (source data available online). Focusing on chromosome 1, we determined that 

chromosome 1q harbored more than twice the number of conserved segments when compared to 

the 1p arm (source data available online). Of particular note, a number of 1q amplified regions 

that were identified as human Basal-like-specific were also altered in the mouse C3-Tag and/or 

p53null groups (Figure 2.6 and Appendix 1); thus our results indicate that this region of human 

chromosome 1q21-23 is being repeatedly selected for in both mouse and human Basal-like breast 

cancers.  

In order to identify the driver(s) present on chromosome 1, we next applied our filtering 

criteria outlined in Figure 2.1. Of the 120 chromosome 1 conserved CNAs, 79 contained at least 
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one gene that showed DNA to RNA concordance (Appendix 2); 25 CNAs contained at least one 

RNAi identified essential gene (Table 2.3), and 20 CNAs contained genes showing DNA to 

RNA concordance and a RNAi identified essential gene (Table 2.4). Interestingly, all 20 CNAs 

were copy number gained segments, even among the 1p CNAs (Table 2.4).  

To further study the biology of the conserved chromosome 1 genes, we performed a 

cohort based DawnRank [16] analysis using genes from human chromosome 1. DawnRank uses 

gene-gene interaction networks to measure the impact of genomic alterations on the differential 

gene expression of downstream genes in the network. Then, DawnRank scores (as previously 

described [16]) the level of perturbation on the gene interaction network caused by the alteration 

(either amplification or deletion) of the gene of interest. We selected human chromosome 1 gene 

blocks with shared synteny with the mouse genome for the DawnRank analysis. There were 7 

such gene blocks, totaling 1509 genes (source data available online). Using the chromosome 1 

syntenic regions, we identified 44 chromosome 1 genes that represented the top 5% DawnRank 

scores using DNA copy number changes as the input “mutation” features along with the gene 

expression for each human tumor sample (Appendix 3). The 44 DawnRank genes mapped to 9 

copy number gained segments, which also harbored genes with DNA to RNA concordance, or an 

RNAi identified essential gene (Table 2.4). Within the 9 CNAs, encompassing a total of 182 

potential genes, only 3 genes met all four filtering criteria of 1) subtype-specific CNA, 2) DNA 

to RNA concordance, 3) a RNAi “GO” gene, and 4) a DawnRank hit: these genes were 

phosphatidylinositol 4-kinase (PI4KB), src homology 2 domain-containing (SHC1), and nicastrin 

(NCSTN) (Figure 2.6 and Table 2.4). 

 The three chromosome 1 potential driving genes span 1q21-q23 and are altered with an 

average segment subtype frequency of 47% (Table 2.4). Interestingly, PI4KB and SHC1 span 
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1q21, falling less than the average Basal-like subtype segment length apart (Figure 2.6), thus 

suggesting that on chromosome 1q21-23 multiple target genes lie within a single amplicon. 

Furthermore, SHC1 is in a subtype-specific high frequency altered segment among Basal-like 

tumors only (Figure 2.6 and Appendix 1), while NCSTN and PI4KB CNAs appeared across 

multiple subtypes, passing the significance threshold in the Basal-like and Luminal A subtypes 

(Appendix 2). However, NCSTN and PI4KB also passed the significance threshold for the 

p53null-Luminal, p53null-Basal, and C3-Tag mouse groups (Appendix 1), the last two of which 

are models linked to human Basal-like disease as determined in previous gene expression 

comparative studies [18, 19]. 

 

Notch pathway features in 1q21-23 amplified Basal-like breast cancers 

! Numerous studies have implicated the Notch signaling pathway in Basal-like breast 

and/or Triple-Negative Breast Cancers [22, 23]. Importantly, numerous studies on the functional 

role of NCSTN have already been performed [24–26]. To evaluate the effect of 1q21-23/NCSTN 

amplification, we first examined the DawnRank network space around NCSTN and noted that 

when NCSTN was amplified NOTCH1, NOTCH2, and NOTCH3 were also more highly 

expressed (Figure 2.7). In addition, NCSTN is one of three components of the gamma-secretase 

complex, a protein complex that cleaves and activates Notch receptors. Two other gamma-

secretase complex members, namely APH1A and PSEN2, were also both altered within the 

network (Figure 2.7), and were also higher in NCSTN amplified samples versus not amplified 

(Figure 2.8a). Also, APH1A and PSEN2 are physically located on human chromosome 1q21.2 

and 1q42, and are often co-amplified along with NCSTN (although PSEN2 is not within a Basal-

like-specific CNA). Thus, three components of the gamma-secretase complex are often co-
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amplified together, and more highly expressed, and the NCSTN/Notch Network is perturbed in 

these NCSTN amplified tumors. Following up on these network findings, NCSTN amplification 

was also correlated with higher NOTCH1 and NOTCH3 mRNA levels (Supplemental Figure 4b), 

with this feature showing an even greater difference when examined just amongst Basal-like 

breast cancers (Figure 2.8c). As expected from previous work, Basal-like tumors as a whole 

exhibited significantly lower LFNG expression (i.e. a negative regulator of Notch signaling) 

along with significantly higher expression of NOTCH1, NCSTN, APH1A, MYC, and HEY2 

mRNAs (Figure 2.9), the latter two of which are thought to be a targets of activated Notch-

pathway.  

 

DISCUSSION 

 In breast cancer, there are many copy number gains and losses, a few of which like 

amplification of ERBB2, are of known clinical and biological significance. Over the years, many 

of these CNAs have been studied and candidate genes identified [12, 13, 27–30], but there are 

still many regions for which the genetic drivers remain unknown. The simultaneous analysis of 

DNA copy number change in both human and mouse tumors, and their corresponding gene 

expression patterns, provides for a biologically meaningful way to identify important regions of 

CNAs. The basic hypothesis being that a CNA found to spontaneously occur in two different 

mammalian species breast cancers is being repeatedly selected for and must therefore contain an 

important tumor causing gene(s). 

Although many studies have identified frequent CNAs within groups of human breast 

tumors [13, 21], most do not functionally narrow down the candidate genes within a specific 

segment. In addition to the mere presence of a highly frequent CNAs being identified across 
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species, we took a biologically based approach to refine the list of genes within a given segment 

into a subset of candidate driver genes. These analyses prompted the development of a new a 

bioinformatics tool (SWITCHplus) to identify and highlight subtype-specific DNA copy number 

events using a visual display in a user-friendly format. Using this tool and a systematic data-

mining schema that includes identifying regions that show: 1) shared DNA CNAs cross-species, 

2) concordance between mRNA expression and relative DNA copy number value, 3) functional 

effects in a genome-wide RNAi screen, and 4) functional effects in a network analysis (i.e. 

DawnRank), we identified a limited number of CNAs that harbored potential breast cancer driver 

genes. From these analyses, we identified human chromosome 1q21-23 as a region of 

amplification consistently present in human and mouse Basal-like tumors, and which contains at 

least three potential driver genes (Figure 2.6). 

 The first of these three genes, PI4KB encodes for a lipid kinase member of the 

phosphoinositide signaling pathway. The phosphoinositide signaling system regulates cell 

migration [31–33], proliferation [31–33], and activation of this signaling pathway is observed in 

many aggressive tumors [33–35]. Specifically, phosphatidylinositol 4-phosphate is utilized by 

phosphoinositide kinases, such as PI3KCA, to signal to downstream protein kinase targets 

including AKT and PDK1 [33, 35, 36]. In the 2012 TCGA publication on breast cancer, it was 

noted that Basal-like cancers showed high activity of the PIK3CA/AKT pathway, and that these 

tumors tended to show few PIK3CA mutations, but frequent loss of PTEN and/or INPP4B 

(negative regulators of the pathway) and amplification of PIK3CA and AKT3 (positive regulators 

of the pathway) [12]. Here we show yet another positive regulator of the pathway is amplified in 

Basal-like cancers. 
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 SHC1 encodes for a member of the Shc family of adapter proteins. SHC1 is composed of 

multiple protein domains that can bind to multiple transmembrane receptors including 

phosphorylated insulin-like growth factor 1 receptor (IGF1R), and the platelet-derived growth 

factor receptor (PDGFR), thus potentially activating multiple pathways involved in cell 

proliferation and differentiation [37, 38]. Specifically, SHC1 is a key signaling mediator, and can 

act as a scaffold between an activated receptor and downstream signaling proteins [39]. In 

addition, growth factor signaling through PDGFR is known to occur in many TNBC [40], and 

thus SHC1 amplification may be contributing to these key signaling processes. 

 NCSTN encodes for a component of the gamma-secretase complex (GSC), which is a 

multi-protein complex that cleaves a number of transmembrane proteins to typically activate 

their functions [41, 42]; the GSC targets include Notch 1-4, ErBB4, CD44 and E-cadherin [24, 

41, 42]. Importantly, Hu et al. 2002 demonstrated, in Drosophila, that NCSTN provides 

structural support and is required for GSC cleavage of Notch receptor [43].  In our data, when 

Basal-like tumors were examined, those with copy number gains at NCSTN showed 1) 

perturbation/activation of the Notch pathway via the DawnRank network analysis (Figure 2.7), 

2) significantly higher expression of NOTCH1 and NOTCH3 (Figure 2.8c), and 3) high 

expression of other markers of the Notch pathway (Figure 2.8d). Further support for Notch-

pathway importance comes from previous mouse model experiments where genetic inactivation 

of a negative regulator of Notch signaling (i.e. lunatic fringe) resulted in Basal-like mammary 

tumors [22]. Interestingly, Notch activity is also higher in Basal-like breast cancer cell lines 

compared with luminal breast cancer cell lines [44]. In vitro, by RNAi-mediated silencing of 

NCSTN in the TNBC cell-line MDA-MB-231, Filipovi et al. 2011 showed reduced transcription 

of Notch pathway targets, and a reduction in cell motility and invasion [41]. In total, these results 
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strongly suggest that activation of Notch-pathway signaling is occurring within Basal-like/TNBC 

tumors, and we now provide additional evidence for a mechanistic explanation for this in vivo.  

Other investigators using different computational approaches have also identified this 

region, but identified other genes (i.e. NIT1 and PVRL4) as potential drivers [45]. The observed 

differences in potential driver genes is mostly likely due to the “filtering criteria”, where we 

focused on species conservation, and they focused on somatic mutation targets. It is clear that a 

multitude of targets and drivers are present, and that 1q21-23 is a region that is the target of 

selection as opposed to any single gene being the target of selection. In conclusion, our work 

here provides an objective analysis path for identifying potential driver genes using a cross-

species computational approach, which can be applied to any tumor type for which sufficient 

mouse and human tumor data exist. 
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TABLES 

Table 2.1 Copy number array sample information of Human and Mouse tumors 
 

Subtype Number of Samples Total 

Basal-Like UNC: 54 TCGA: 89 143 

Claudin-Low UNC: 20 TCGA: 8 28 

HER2-enriched UNC: 16 TCGA: 55 71 

Luminal A UNC: 35 TCGA: 213 248 

Luminal B UNC: 34 TCGA: 120 154 

 

Expression SigClust Group Number of Samples 

Wap Myc 10 

Neu/PyMT 11 

Wnt1 16 

C3Tag 8 

Mixed 6 

p53null-Basal 9 

p53null-Luminal 13 
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Table 2.2 Basal-specific pipeline segments count 
 

Pipeline Segment 
Count 

Stage 1: Basal-specific segments 1511 

Stage 2: Basal-specific segments with frequency at least 15% 1067 

Stage 3: Basal-specific conserved segments with frequency at least 15% 429 

Stage 4: Basal-specific conserved segments with RNAi screen genes & frequency 
at least 15% 104 

Stage 5: Basal-specific conserved segments showing DNA & RNA concordance in 
Human samples & frequency at least 15% 341 

Stage 6: Basal-specific conserved segments showing DNA & RNA concordance in 
Mouse Samples & frequency at least 15% 126 
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Table 2.3 Chromosome 1 subtype specific conserved CNAs with frequency >= 15 and genes 
found in RNAi screen 
 

Chr Start Stop % Genes in Segment CNA 

Mouse 
group-
specific 

CNA 

Solimini 
et al 2012 
GO/STO
P RNAi 

Subtype 

1 78405135 78535584 0.20 FUBP1 GAIN C3Tag FUBP1 Basal 

1 113655140 116683656 0.22 

RSBN1, BCL2L15, AP4B1, 
DCLRE1B, HIPK1, OLFML3, 
SYT6, TSHB, TSPAN2, NGF, 
CASQ2, NHLH2, SLC22A15 

GAIN C3Tag DCLRE1
B, HIPK1 Basal 

1 145792064 150025833 0.50 BOLA1, SV2A, SF3B4, 
MTMR11, OTUD7B GAIN C3Tag SF3B4 LumA 

1 146101240 148205520 0.57 PRKAB2, FMO5, CHD1L, 
BCL9, ACP6 GAIN C3Tag, 

Myc PRKAB2 Basal 

1 149850351 149935164 0.59 
HIST2H2BE, HIST2H2AC, 

HIST2H2AB, BOLA1, SV2A, 
SF3B4, MTMR11 

GAIN C3Tag SF3B4 Basal 

1 150929687 151773763 0.62 

LASS2, ANXA9, FAM63A, 
PRUNE, BNIPL, CDC42SE1, 

MLLT11, GABPB2, SEMA6C, 
TNFAIP8L2, LYSMD1, 

SCNM1, TMOD4, VPS72, 
PIP5K1A, PI4KB, RFX5, 

PSMB4, POGZ, CGN, TUFT1, 
MIR554, SNX27, CELF3, 

MRPL9, TDRKH 

GAIN C3Tag 

GABPB2, 
PI4KB, 
PSMB4, 
TDRKH 

Basal 

1 151062957 151321770 0.50 

SEMA6C, TNFAIP8L2, 
LYSMD1, SCNM1, TMOD4, 

VPS72, PIP5K1A, PI4KB, 
RFX5 

GAIN C3Tag PI4KB LumA 

1 151321770 151409843 0.50 PSMB4 GAIN C3Tag PSMB4 LumA 

1 151659023 151789548 0.50 CELF3, MRPL9, TDRKH, 
LINGO4 GAIN ClaudinLo

w, C3Tag TDRKH LumA 

1 151880754 152292453 0.50 S100A10, S100A11, TCHH, 
RPTN, HRNR GAIN ClaudinLo

w, C3Tag RPTN LumA 

1 152067728 152208144 0.62 TCHH, RPTN, HRNR GAIN ClaudinLo
w, C3Tag RPTN Basal 

1 152233280 152643406 0.64 FLG2, CRNN, CRCT1, 
LCE3C, LCE3B, LCE3A GAIN C3Tag LCE3C Basal 

1 152447359 152617731 0.51 CRCT1, LCE3C, LCE3B, 
LCE3A GAIN C3Tag LCE3C LumA 

1 152661380 153346263 0.64 

KPRP, LCE1F, LCE1E, 
LCE1C, LCE1B, LCE6A, 

SMCP, IVL, SPRR4, SPRR1A, 
SPRR3, SPRR1B, SPRR2D, 
SPRR2B, SPRR2E, SPRR2F, 

SPRR2G, LELP1, LOR, 
PGLYRP3, PGLYRP4 

GAIN C3Tag PGLYRP
3 Basal 

1 153354347 153576396 0.64 S100A8, S100A7A, S100A6, 
S100A5, S100A4, S100A3 GAIN C3Tag S100A5 Basal 

1 153576396 154012535 0.63 

S100A16, S100A14, S100A13, 
C1orf77, SNAPIN, ILF2, 
NPR1, INTS3, SLC27A3, 
GATAD2B, DENND4B, 

SLC39A1, CREB3L4, JTB, 
JTB, RPS27 

GAIN C3Tag NPR1 Basal 
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Table 2.3 Chromosome 1 subtype specific conserved CNAs with frequency >= 15 and genes 
found in RNAi screen (Continued) 
 

Chr Start Stop % Subtype-Specific Genes in 
Segment CNA Mouse 

Group 

Solimini 
et al 2012 
GO/STO
P RNAi 

Subtype 

1 154270185 154318564 0.62 ATP8B2 GAIN C3Tag ATP8B2 Basal 

1 154807935 155175657 0.62 

PMVK, PYGO2, SHC1, 
CKS1B, FLAD1, LENEP, 

ZBTB7B, DCST2, DCST1, 
DPM3, KRTCAP2, TRIM46, 

MUC1, MIR92B 

GAIN C3Tag SHC1, 
TRIM46 Basal 

1 155936658 156321154 0.60 

SSR2, UBQLN4, RAB25, 
MEX3A, LMNA, SEMA4A, 
SLC25A44, PMF1, BGLAP, 
PAQR6, SMG5, TMEM79, 

CCT3, C1orf182 

GAIN C3Tag 
CCT3, 

C1ORF18
2 

Basal 

1 156321154 156545720 0.59 RHBG, MEF2D, IQGAP3 GAIN C3Tag RHBG Basal 

1 160043165 160439014 0.57 

KCNJ9, IGSF8, ATP1A2, 
ATP1A4, CASQ1, DCAF8, 
PEX19, COPA, SUMO1P3, 
NCSTN, NCSTN, NHLH1, 

VANGL2 

GAIN 
C3Tag, 

p53null_
Basal 

CASQ1, 
COPA, 

SUMO1P
3, 

NCSTN, 
NCSTN 

Basal 

1 160197660 160372346 0.51 PEX19, COPA, SUMO1P3, 
NCSTN, NCSTN, NHLH1 GAIN 

C3Tag, 
p53null_

Basal, 
p53null_
Luminal 

COPA, 
SUMO1P

3, 
NCSTN 

LumA 

1 160906176 163790065 0.18 

F11R, USF1, ARHGAP30, 
PVRL4, KLHDC9, NIT1, 

DEDD, DEDD, UFC1, PPOX, 
B4GALT3, ADAMTS4, 

NDUFS2, FCER1G, APOA2, 
TOMM40L, NR1I3, NR1I3, 

PCP4L1, MPZ, SDHC, 
C1orf192, FCGR2B, FCRLA, 

FCRLB, DUSP12, ATF6, 
OLFML2B, NOS1AP, MIR556, 

UHMK1, UAP1, DDR2, 
HSD17B7, RGS4, RGS5, NUF2 

GAIN p53null_
Luminal 

F11R, 
TOMM40
L, NR1I3, 
FCGR2B, 
FCRLA 

Claudin 

1 182988016 184909056 0.18 

LAMC1, LAMC2, NMNAT2, 
SMG7, NCF2, ARPC5, RGL1, 

APOBEC4, GLT25D2, 
TSEN15, EDEM3 

GAIN p53null_
Luminal GLT25D2 Claudin 

1 205333969 206253777 0.73 

LEMD1, MIR135B, CDK18, 
MFSD4, ELK4, SLC45A3, 

NUCKS1, RAB7L1, SLC41A1, 
PM20D1, SLC26A9, FAM72A, 

AVPR1B 

GAIN ClaudinL
ow CDK18 LumB 
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Table 2.4 Chromosome 1 conserved CNAs with frequency >= 15%, concordant with gene 
expression, RNAi identified essential gene, and top DawnRank score 
 

Chr Start Stop Seg 
Freq CNA Mouse 

Model 

Solimini 
et al 2012 
GO/STOP 
RNAi 

Concordant 
DNA/RNA Subtype Dawn

Rank ALL 3 

1 78405135 78535584 0.20 GAIN C3Tag FUBP1 FUBP1 Basal   

1 113655140 116683656 0.22 GAIN C3Tag DCLRE1
B, HIPK1 

 RSBN1, BCL2L15, 
AP4B1, DCLRE1B, 
HIPK1, SLC22A15 

Basal NGF  

1 145792064 150025833 0.50 GAIN C3Tag SF3B4 BOLA1, SF3B4, 
MTMR11, OTUD7B LumA   

1 146101240 148205520 0.57 GAIN C3Tag, 
Myc PRKAB2 

PRKAB2, FMO5, 
CHD1L, BCL9, 
ACP6 

Basal   

1 149850351 149935164 0.59 GAIN C3Tag SF3B4 
HIST2H2AC, 
BOLA1, SF3B4, 
MTMR11 

Basal   

1 150929687 151773763 0.62 GAIN C3Tag 

GABPB2, 
PI4KB, 
PSMB4, 
TDRKH 

LASS2, FAM63A, 
PRUNE, BNIPL, 
CDC42SE1, 
GABPB2, SEMA6C, 
LYSMD1, SCNM1, 
TMOD4, VPS72, 
PIP5K1A, PI4KB, 
RFX5, PSMB4, 
POGZ, CGN, 
TUFT1, MIR554, 
SNX27, MRPL9, 
TDRKH 

Basal PI4KB PI4K
B 

1 151062957 151321770 0.50 GAIN C3Tag PI4KB 

SEMA6C, LYSMD1, 
SCNM1, TMOD4, 
VPS72, PIP5K1A, 
PI4KB, RFX5 

LumA PI4KB PI4K
B 

1 151321770 151409843 0.50 GAIN C3Tag PSMB4 PSMB4 LumA   

1 151659023 151789548 0.50 GAIN ClaudinLo
w, C3Tag TDRKH MRPL9, TDRKH, 

LINGO4 LumA   

1 151880754 152292453 0.50 GAIN ClaudinLo
w, C3Tag RPTN S100A10, S100A11 LumA   

1 153354347 153576396 0.64 GAIN C3Tag S100A5 S100A8, S100A6 Basal   

1 153576396 154012535 0.63 GAIN C3Tag NPR1 

S100A16, S100A14, 
S100A13, C1ORF77, 
SNAPIN, ILF2, 
INTS3, GATAD2B, 
DENND4B, 
SLC39A1, 
CREB3L4, JTB, 
RPS27 

Basal 

GATA
D2B, 
SNAPI
N 
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Table 2.4 Chromosome 1 conserved CNAs with frequency >= 15%, concordant with gene 
expression, RNAi identified essential gene, and top DawnRank score (Continued) 
 

1 154807935 155175657 0.62 GAIN C3Tag SHC1, 
TRIM46 

PMVK, PYGO2, 
SHC1, CKS1B, 
FLAD1, ZBTB7B, 
DCST2, DCST1, 
DPM3, KRTCAP2, 
TRIM46, MUC1 

Basal SHC1 SHC1 

1 155936658 156321154 0.60 GAIN C3Tag 
CCT3, 
C1ORF18
2 

SSR2, UBQLN4, 
RAB25, MEX3A, 
LMNA, SEMA4A, 
SLC25A44, PMF1, 
BGLAP, PAQR6, 
SMG5, TMEM79, 
CCT3, C1ORF182 

Basal SMG5  

1 156321154 156545720 0.59 GAIN C3Tag RHBG MEF2D, IQGAP3 Basal   

1 160043165 160439014 0.57 GAIN 
C3Tag, 
p53null_B
asal 

CASQ1, 
COPA, 
SUMO1P
3, 
NCSTN, 
NCSTN 

IGSF8, DCAF8, 
PEX19, COPA, 
SUMO1P3, NCSTN, 
NHLH1, VANGL2 

Basal NCST
N 

NCST
N 

1 160197660 160372346 0.51 GAIN 

C3Tag, 
p53null_B
asal, 
p53null_L
uminal 

COPA, 
SUMO1P
3, 
NCSTN, 
NCSTN 

PEX19, COPA, 
SUMO1P3, NCSTN, 
NHLH1 

LumA NCST
N 

NCST
N 

1 160906176 163790065 0.18 GAIN p53null_L
uminal 

F11R, 
TOMM40
L, NR1I3, 
NR1I3, 
FCGR2B, 
FCRLA 

F11R, USF1, 
PVRL4, KLHDC9, 
NIT1, DEDD, UFC1, 
PPOX, B4GALT3, 
ADAMTS4, 
NDUFS2, 
TOMM40L, NR1I3, 
PCP4L1, SDHC, 
C1ORF192, 
DUSP12, ATF6, 
NOS1AP, MIR556, 
UHMK1, UAP1, 
HSD17B7, NUF2 

Claudin 

DEDD
, 
F11R,  
FCER
1G, 
FCGR
2B 

F11R 

1 182988016 184909056 0.18 GAIN p53null_L
uminal GLT25D2 

LAMC2, SMG7, 
ARPC5, TSEN15, 
EDEM3 

Claudin   

1 205333969 206253777 0.73 GAIN ClaudinLo
w CDK18 

CDK18, MFSD4, 
ELK4, SLC45A3, 
NUCKS1, RAB7L1, 
SLC41A1, FAM72A 

LumB   
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FIGURES 

 

Figure 2.1 Data-analysis pipeline to identify subtype-specific CNA candidate driver genes.  
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Figure 2.2 Supervised cluster of mouse gene expression data using an 866 intrinsic gene list. 
The cluster analysis identified 7 murine tumor subtypes, which were further used to supervise 
subsequent DNA copy number analyses. Each group is labeled according to the majority 
component mouse model within that group. 
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Figure 2.3 Copy number frequency plots from SWITCHplus showing mouse group-specific 
CNAs. Segments of group-specific copy number gains are plotted above the x-axis in red and 
segments of copy number loss plotted below the x-axis in green. Regions shaded gray indicate 
segments that are not group-specific or high frequent (greater than or equal to 15%). The 
frequency of alterations in each mouse group is indicated on the y-axis from 0-100%. a C3Tag, b 
Neu/PyMT, c p53null-Basal, d p53null-Luminal e Myc, f Wnt1, g ClaudinLow copy number 
landscapes. 
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Figure 2.4 Copy number frequency plots from SWITCHplus showing human subtype-specific 
CNAs. Segments of subtype-specific copy number gains are plotted above the x-axis in red and 
segments of copy number loss plotted below the x-axis in green. Regions shaded gray indicate 
segments that are not subtype-specific or high frequent (greater than or equal to 15%). The 
frequency of alterations in each subtype is indicated on the y-axis from 0-100%. a Basal-like, b 
Her2-enriched, c Claudin-low, d Luminal A e Luminal B copy number landscapes. 
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Figure 2.5 Copy number frequency plots from SWITCHplus showing conserved CNAs. 
Segments of copy number gains are plotted above the x-axis and segments of copy number loss 
plotted below the x-axis. Regions shaded gray indicate segments that are either not subtype-
specific, mouse group-specific or high frequent (greater than or equal to 15%). The conserved 
segments are colored according to the mouse model(s) in which they appear. The frequency of 
alterations in each subtype is indicated on the y-axis from 0-100%. a Basal-like, b Her2-
enriched, c Claudin-low, d Luminal A e Luminal B copy number landscapes. 
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Figure 2.6 Expanded view of a chromosome 1 Basal-like conserved copy number frequency 
plots for SWITCHplus.  Segments of copy number gains are plotted above the x-axis and 
segments of copy number loss plotted below the x-axis. Regions shaded gray indicate segments 
that are either not subtype-specific, mouse group-specific or high frequent (greater than or equal 
to 15%). The conserved segments are colored according to the mouse model(s) in which they 
appear. The frequency of alterations is indicated on the y-axis. b View of the genomic location of 
candidate chromosome 1 driver genes. Genes colored red are Basal-like subtype-specific or 
subtype-associated, demonstrate DNA and RNA concordance in human tumors and had a top 
DawnRank score; genes underlined are Basal-like subtype-specific or subtype-associated, 
demonstrate DNA and RNA concordance in human tumors and labeled as a growth enhancer and 
oncogene (“GO gene”) in the Solimini et al. 2012 RNAi screen on Human Mammary Epithelial 
Cells; the remaining genes surrounded by a box are additional potential drivers.  A color bar is 
placed above the genes conserved for a particular mouse group. 
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Figure 2.7 DawnRank identified NCSTN gene expression network 
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Figure 2.8 Box-and-whisker plots for expression of Notch signaling pathway targets. a APH1A 
and PSEN2 mRNA expression across all tumors with NCSTN amplification versus all other 
tumors without NCSTN amplification. b NOTCH1 and NOTCH3 mRNA expression across all 
tumors with NCSTN amplification versus all tumors without NCSTN amplification. c NOTCH1 
and NOTCH3 mRNA expression across all basal tumors with NCSTN amplification versus basal 
tumors without NCSTN amplification. d APH1A and PSEN2 mRNA expression across all basal 
tumors with NCSTN amplification versus basal tumors without NCSTN amplification. 
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Figure 2.9 Box-and-whisker plots of the mRNA expression of LFNG, NOTCH1, NCSTN, 
APH1A, MYC and HEY2 across breast cancer subtypes. 
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CHAPTER 3 

AN INTEGRATED GENOMICS APPROACH IDENTIFIES DRIVERS OF PROLIFERATION 
IN LUMINAL-SUBTYPE HUMAN BREAST CANCER 

 

 

 Elucidating the molecular drivers of human breast cancers requires a strategy that is 

capable of integrating multiple forms of data and an ability to interpret the functional 

consequences of a given genetic aberration. Here we present an integrated genomic strategy 

based on the use of gene expression signatures of oncogenic pathway activity (n = 52) as a 

framework to analyze DNA copy number alterations in combination with data from a genome-

wide RNA-mediated interference screen. We identify specific DNA amplifications and essential 

genes within these amplicons representing key genetic drivers, including known and new 

regulators of oncogenesis. The genes identified include eight that are essential for cell 

proliferation (FGD5, METTL6, CPT1A, DTX3, MRPS23, EIF2S2, EIF6 and SLC2A10) and are 

uniquely amplified in patients with highly proliferative luminal breast tumors, a clinical subset of 

patients for which few therapeutic options are effective. This general strategy has the potential to 

identify therapeutic targets within amplicons through an integrated use of genomic data sets.1 
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INTRODUCTION 

 Tumorigenesis is driven by a combination of inherited and acquired genetic alterations 

resulting in a complex and heterogeneous disease. The ability to dissect this heterogeneity is 

critical to understanding the relevance of these alterations for disease phenotypes but also to 

enable the development of rational therapeutic strategies that can match the characteristics of the 

individual patient's tumor. Many studies, including reports from The Cancer Genome Atlas 

(TCGA) project, have made use of the power of multiplatform genomic analyses to identify 

known and new genetic drivers of tumor phenotypes [1–3]. This has led to the identification of 

disease subgroups with distinct characteristics and, in some instances, distinct genetic 

mechanisms of disease [1, 2, 4]. The strength of this approach relies on the integration of large-

scale genomic data to reveal biological covariation that cannot be identified when using a single 

technology. A weakness of this approach is in the interpretation of the underlying biology, which 

generally represents an inference about pathway activity based on prior knowledge concerning 

an individual gene mutation or protein alteration. 

 Altered signaling pathway activity is an important determinant of the biology of a tumor 

and may predict therapeutic response; therefore, identifying the mechanisms driving key 

tumorigenic pathways is essential to understanding the transformation process [2, 5–8]. To take 

advantage of the vast amounts of existing genomic data, we used a series of experimentally 

derived gene expression signatures that are capable of measuring oncogene or tumor suppressor 

pathway activity, aspects of the tumor microenvironment and other tumor characteristics, 

including proliferation rate, as a framework by which to integrate multiple forms of genomic 

data. Our results identify patterns of oncogenic signaling within each of the molecular subtypes 

of breast cancer, many of which correlate directly with DNA copy number aberrations. By 
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further analyzing functional data from a genome-wide RNA-mediated interference (RNAi) 

screen [9], we identified genes that are essential for cell viability in a pathway-dependent and, in 

some cases, subtype-dependent manner. Our results identify a small number of DNA 

amplifications as potential drivers of proliferation in poor-outcome luminal breast cancers, and in 

general terms, we outline an approach that could be applied to many other tumor types for which 

multiplatform genomic data exist. 

 

MATERIALS AND METHODS 

 Gene expression data. Agilent custom 244K whole-genome gene expression microarray 

data for human breast cancer samples was acquired from the TCGA project [2] data portal. 

Samples were filtered to include only those 476 samples for which Affymetrix SNP 6.0 data was 

present. As previously described [2], (TCGA) data were median centered for each gene. Illumina 

HT-29 v3 expression data for the METABRIC project (n = 1,992 samples) were acquired from 

the European Genome-phenome Archive at the European Bioinformatics Institute, and data were 

median centered for each gene [3]. Expression data for a panel of 51 breast cancer cell lines were 

acquired from GEO (GSE12777) [41]. Affymetrix U133+2 data were MAS5.0 normalized using 

the Affymetrix Expression Console (ver1.2.1.20) and log2 transformed. Expression probes were 

collapsed using the median gene value with the GenePattern [56] module CollapseProbes. 

 Affymetrix SNP 6.0 data. DNA copy number values were determined in 490 TCGA 

primary breast tumors (476 of which had matched mRNA expression data) and 1,992 

METABRIC primary breast tumors using Affymetrix 6.0 SNP arrays as described previously [2, 

3]. Copy number segmentation and segment calls (i.e., NEUT, AMP, GAIN, HOMD or HETD) 

were performed using the circular binary segmentation (CBS) algorithm as described previously 
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[2, 3]. Using the hg19 build annotation from the UCSC genome browser, genes were selected if 

they fell completely within a CBS-identified copy number segment. Genes that were not found 

completely within a copy number segment across any sample were filtered out. In the 

METABRIC data set, the copy number call gene matrix was determined from genes that fell 

completely within a CBS-identified copy number segment. Out of the 12 genes of interest, 

SNX21, ZBTB46 and DNAJC5 were not found completely within a CBS-identified segment 

among the METABRIC samples and were excluded from further analyses. 

 Gene expression signatures. A panel of 52 previously published gene expression 

signatures was used to examine patterns of pathway activity and/or microenvironmental states 

(Table 3.1). To implement each signature, the methods detailed in the original studies were 

followed as closely as possible. Of these 52 signatures, 22 signatures [10, 11, 32] were originally 

developed using a Bayesian binary regression strategy and are comprised of Affymetrix probe 

sets with positive and negative regression weights. These signatures were translated to a form 

that could be applied to non-Affymetrix expression data. For each signature, we excluded those 

probe sets with a negative correlation coefficient. The remaining probe sets with a positive 

coefficient were then translated to the gene level, and replicate genes were merged. To apply a 

given signature to a new data set, the expression data were filtered to contain only those genes 

that met the previous criteria, and the mean expression value was calculated using all genes 

within a given signature that were present in more than 80% of samples. The list of genes in each 

modified signature is shown in the online version of the paper, along with the scores for the 

TCGA data and cell line data set. 

 Statistical analyses of signature scores. To quantify differences in patterns of signature 

scores across subtypes, ANOVA followed by Tukey's post-test for pairwise comparisons was 
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used (as shown in Figure 3.1b). To investigate the level of concordance between each of the 52 

signatures, the pathway scores calculated for each sample in the TCGA data set (data available 

online) were analyzed. The R values calculated by Pearson correlation are reported in Figure 3.2 

and the source data available online. 

 Identification of point mutations as a function of pathway activity. To compare the 

frequencies of mutations, the 35 genes identified as being significantly mutated in human breast 

cancer [2] were assessed in the context of the 11-gene PAM50 proliferation signature [31]. A 

Fisher's exact test (Bonferroni corrected) was used to compare the frequency of mutations in 

samples with high (top quartile) and low (all other samples) pathway activity in LumA, LumB 

and HER2E (n = 388) samples. The frequencies of mutations associated with each group for each 

signature are summarized in the online version of the paper. 

 Identification of CNAs as a function of pathway activity. To identify CNAs, two 

analysis methods were used independently. Spearman rank correlation, both positive and 

negative, was used to compare gene-level segment scores with predicted pathway activity. To 

compare the frequencies of amplifications and losses, a Fisher's exact test was used to compare 

the frequencies of either gene-specific copy number gains and amplifications or deletions (both 

LOH and deletions) against nonamplified or nondeleted samples. Samples in the top quartile of 

the calculated pathway activity were compared to those in the bottom three quartiles. For each 

analysis, the %log10 Bonferroni-adjusted P values are reported (Figure 3.3 and 3.4). To identify 

genes that were significant across both methods, a threshold of q < 0.01 (Bonferroni corrected) 

was set for validation (Figure 3.5) and q < 0.05 for discovery (Figure 3.6). The Bonferroni-

corrected P values for the positive and negative Spearman rank correlation for each gene and 

each signature are reported in the online version of the paper. The frequency of copy number 
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gains in the top quartile compared to all other samples, as well as the Bonferroni-corrected P 

values calculated by Fisher's exact test, are reported for each gene and each signature and are 

available in the online version of the paper. 

 Analysis of genome-wide RNAi proliferation data. To identify genes that are required 

for cell viability in a signature-dependent manner, data from a previously published genome-

wide RNAi screen carried out on a panel of breast cancer cell lines were analyzed [9]. The Gene 

Active Ranking Profile (GARP)-normalized data were obtained from the COLT database and 

filtered to include only those 27 cell lines for which gene expression data (GSE12777) were also 

available (acquired February 2013). To identify genes essential for pathway-dependent cell 

proliferation, a negative Spearman correlation was performed comparing predicted pathway 

activity and GARP score for each sample. A threshold of P < 0.05 was considered significant for 

all analyses. 

 Analysis of mRNA expression in copy number–neutral samples. To assess mRNA 

expression in luminal tumors lacking CNAs of each candidate gene, luminal and HER2E 

samples from the TCGA (n = 388) and METABRIC (n = 1,333) studies were grouped into those 

with high (top quartile) and low (all other samples) pathway activity. Samples with copy number 

gains (including high-level amplifications or gains) or losses (both LOH and homozygous 

deletions) were excluded, and a t test was used to examine statistical differences between the 

expression levels of genes in each cohort. 

 Survival analyses. To investigate the effect that candidate gene amplification has on 

disease-specific survival, clinical data for the 1,992 patients in the METABRIC study were 

obtained [3]. The 11-gene PAM50 proliferation signature [31] was applied to all 1,992 samples 

by calculating the median value of the signature for each sample. For survival analyses, patients 
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that died of causes unrelated to breast cancer and patients without a date of death were censored. 

We extracted patients with tumors classified as LumA, LumB or HER2E and for whom survival 

data were reported (n = 1,333). For survival analysis of the TCGA data set [2], we extracted 

patients with tumors classified as LumA, LumB or HER2E and for whom clinical data were 

available (September 2012). Disease-specific survival was calculated by comparing samples with 

amplification (including copy number gains and high-level amplification) of a candidate gene 

against those without. In each data set, patients without a CNA call for a specific gene were 

excluded from the survival analysis. For each analysis, significance was calculated by a log-rank 

test, and the hazard ratio (HR) is reported. To compare the effect of candidate gene copy number 

status on common prognostic markers, including proliferation (PAM50 proliferation signature), 

molecular subtype (PAM50), tumor stage, node status, ER status, HER2 status and age at 

diagnosis, a multivariate Cox model was used. 

 

RESULTS 

Subtype-specific patterns of oncogenic signaling 

 To objectively identify genetic drivers of breast cancer, we examined genomic-based 

patterns of oncogenic pathway activity, the tumor microenvironment and other important 

features in human breast tumors using a panel of 52 previously published gene expression 

signatures (Table 3.1 and the online version of the paper) [10 –32]. We applied each signature to 

the breast cancer gene expression microarray data (n = 476) from the TCGA project (online 

version of the paper), for which the molecular intrinsic subtype had been determined [2]. 

Consistent patterns of pathway activity emerged for each subtype (as illustrated in Figure 3.1a), 

and we quantitatively assessed these patterns using an analysis of variance (ANOVA) test 
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followed by Tukey's test for pairwise comparison (Figure 3.1b and Table 3.2). Analyzing 

differences across subtypes on the basis of these 52 features demonstrated that the strongest 

correlation between samples existed within each molecular subtype (Figure 3.7). 

 The patterns of pathway activity recapitulated known characteristics of each subtype, 

including dysregulation of pathways that can be linked to female hormone receptors, oncogenes 

and/or tumor suppressor mutation status (Figure 3.1). For example, basal-like tumors, which 

represent ~80% of triple-negative breast cancers, are characterized by low hormone receptor 

signaling, mutant p53 signaling and high expression of proliferation pathway activity (Figure 

3.1). Likewise, HER2-enriched (HER2E) tumors show high expression of the HER2 [11] and 

HER2 amplicon (HER2-AMP) [12] signatures, whereas luminal A (LumA) tumors show high 

hormone receptor signaling and wild-type p53 signaling. Highly proliferative LumB tumors, 

which also show some hormone receptor signaling, are distinguished from less proliferative 

LumA samples by increased proliferation-associated pathways. Thus, these data robustly 

recapitulate many previously published pathway and subtype associations. 

 Calculating a Pearson correlation coefficient to assess the concordance between each of 

the 52 signatures (Figure 3.2 and data available online) identified strong relationships between 

independent signatures for a given pathway, as well as between related pathways. For example, 

two MYC signatures [11, 15, 32] demonstrated an R value of 0.72, whereas PIK3CA [18] and 

PTEN-deleted [27] signatures had an R value of 0.82. Signatures scoring different pathways 

were also concordant; for instance, MYC-mediated regulation of E2F signaling [33] was 

identified by the association between the RB loss of heterozygosity (RB-LOH) [16] and MYC 

[15] signatures (R = 0.79), whereas EGFR-mediated activation of STAT33 signaling [34] was 

recapitulated by the EGFR [11, 32] and STAT3 [11, 32] (R = 0.72) signatures. These results 
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provide a measure of validity for each signature, but because differences do exist between 

signatures for a specific pathway, the results suggest that each signature provides an opportunity 

to investigate a particular pathway, taking into account the genetic manipulation used to develop 

a given signature. 

 

Characterization of pathway-specific copy number alterations 

 We next used DNA copy number data from the TCGA project (n = 476) to identify copy 

number alterations (CNAs) associated with pathway activity (Figure 3.5a). We first identified 

genes for which CNAs were positively (or inversely) correlated with pathway activity using a 

Spearman rank correlation (Bonferroni corrected to control the familywise error rate) to assess 

the relationship between pathway score and gene-level DNA segment score (Figure 3.3 and data 

available online). Second, we used a Fisher's exact test (Bonferroni corrected) to calculate the 

frequency of CNA gains (including high-level amplifications and gains) or losses (including 

LOH and deletions) in samples with high (top quartile) pathway activity compared to all other 

samples (low activity) (Figure 3.4 and data available online). To reduce potential false-positive 

results associated with either strategy alone, for each signature we focused on those genes that 

were significant in both analyses (Figure 3.5a); potential drivers of pathway activity had a 

positive correlation and a higher amplification frequency in samples with high pathway activity, 

whereas potential repressors had a negative correlation and increased frequency of copy number 

losses. Mapping genes that met these criteria to chromosomal loci identified pathway-specific 

patterns of CNAs (Figure 3.5b). Consistent with previous studies reporting that basal-like tumors 

have a higher incidence and larger spectrum of CNAs [2, 35], pathways associated with basal-



! &)!

like tumors had more complex patterns of CNAs when compared to luminal-associated 

pathways. 

 To further assess the validity of this strategy, we investigated the relationship between 

pathway activity and a chromosomal alteration of known causative activity. We first focused on 

the HER2-AMP signature [12], as this signature is comprised of genes located at the 17q loci and 

the ERBB2/17q amplification is the dominant driver of this pathway. ERBB2 was amplified in 

84.9% of samples with high (top quartile) pathway activity compared to in 7.3% of low-scoring 

samples (q = 1.1 & 10%55); likewise, this relationship had a positive Spearman rank correlation (q 

= 2.4 & 10%108) (Figure 3.5c and data available online). Although several other alterations, 

including MYC amplification (q = 1.1 & 10%2 and q = 6.3 & 10%3), were also associated with this 

signature, thus identifying a previously known relationship [36], ERBB2/17q amplification was 

the dominant alteration identified, providing a robust positive control for this strategy. As 

expected, we observed similar results when analyzing the HER2 pathway using the 

independently developed HER2 [11, 32] signature (data available online). 

 We further validated this strategy by assessing the relationship between CNAs and 

pathways that are associated with a more complex genomic landscape. Previous studies from our 

group have suggested that the HER1-C2 [13] signature measures predominantly the RAS-RAF-

MEK arm of the EGFR pathway [13]. Consistent with this observation, we detected a correlation 

between the HER1-C2 signature (q < 0.01) and GRB2, SOS1, KRAS, BRAF, PIK3CA, PIK3CB 

and MYC genomic DNA amplifications, as well as a negative correlation (q < 0.01) with loss of 

NF1 and the PI3K repressors INPP4B and PTEN (Figure 3.5d and data available online). We 

then analyzed CNAs associated with the RB-LOH [16] signature (Figure 3.5e and data available 

online) and identified associations between it and CNAs of known RB-E2F components, 
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including loss of RB1 and gains of E2F1 and/or E2F3. Consistent with the role of the RB-E2F 

pathway in mediating cell cycle progression and proliferation [37], CCND2, CCND3 and MYC 

amplification also correlated with this signature. Collectively these results demonstrate that this 

strategy is able to link CNAs with pathway activity and does so by focusing on all aspects of the 

pathway, often beyond the dominant regulator, potentially allowing for the identification of new 

regulatory components. 

 

Identification of amplified genes linked to pathway activity 

 Given the ability of this strategy to identify known CNAs of pathway activity, we next 

used this approach to identify new drivers of pathway activity. Because highly proliferative 

luminal tumors have a poor prognosis and poor responses to existing therapies [38, 39], we 

sought to identify amplified genes and/or CNAs associated with our previously published 11-

gene PAM50 proliferation signature with the hope that these might represent targetable drivers 

of oncogenesis. 

 To identify those genes that are altered specifically in highly proliferative luminal tumors 

while excluding those that are associated with proliferation irrespective of subtype, we 

performed analyses on two subsets of samples: all tumors and all non–basal like tumors 

(henceforth called luminal tumors). Some rationale for this binary distinction comes from recent 

TCGA studies in which 12 tumor types were studied simultaneously, and the results showed that 

breast tumors formed two groups, namely basal-like and all other breast tumors (called luminal 

and including HER2+ tumors), suggesting that breast cancer might be considered broadly as two 

main disease types [40]. 
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 Examining the TCGA breast cancer data set using the PAM50 proliferation signature 

[31], we found that basal-like, LumB and HER2E tumors had the highest proliferation levels 

(Figures 3.8a, b), with the top quartile (Figure 3.8c) comprised of patients with basal-like 

(49.6%), LumB (33.6%) and HER2E (16.8%) tumors, whereas the top quartile of proliferative 

luminal tumors (Figure 3.8d) contained patients with LumB (68.0%) and HER2E (32.0%) 

tumors. Using the PAM50 proliferation signature, we examined the frequency of CNA gains and 

losses in highly proliferative (top quartile) tumors relative to less proliferative samples 

irrespective of subtype using the statistical strategies discussed previously (Figures 3.8e, f and 

data available online). To identify genes that are specifically amplified in highly proliferative 

luminal breast cancer, we repeated these analyses using the luminal tumor subset (Figures 3.8g, h 

and data available online). Analyzing both populations of tumors identified three classes of 

proliferation-associated regions (q < 0.05): (i) CNAs associated irrespective of subtype, (ii) 

CNAs altered in basal-like tumors, and (iii) CNAs altered in highly proliferative luminal tumors. 

These results allowed us to focus our analyses on those genes within regions that are uniquely 

altered in highly proliferative luminal tumors by censoring proliferation-associated genes that are 

altered in basal-like breast cancer (e.g., TP53 or INPP4B loss) or that are altered irrespective of 

molecular subtype (e.g., RB1 loss or MYC amplification). These analyses identified a number of 

regions, including 3p25, 5p15, 11q13, 17q22 and 20q11-13, that were uniquely amplified in 

highly proliferative luminal tumors. 

 

Identification of pathway-specific essential genes 

 To distinguish essential from nonessential genes in amplified regions that are associated 

with proliferation in luminal tumors, we next examined data from a genome-wide RNAi screen 
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of multiple breast tumor–derived cell lines [9]. We applied the 52 gene expression signatures to a 

panel (GSE12777) [41] of breast cancer cell lines (Figure 3.9 and data available online), 27 of 

which had mRNA expression data and were also part of an RNAi proliferation screen in which a 

genome-wide shRNA library (~16,000 genes) had been used to identify essential genes (Figure 

3.10a) [9]. For each signature, we used a negative Spearman rank correlation to identify 

pathway-specific essential genes (Figure 3.10b and data available online) by comparing the 

pathway score against the normalized shRNA score across the panel of 27 cell lines. These 

analyses identified inverse relationships between the abundance of shRNAs targeting key 

regulatory genes and pathway scores. For instance, examining the ER [11, 32], HER2 [11, 32] or 

STAT1 [42] signatures as controls (Figures 3.10c–e) showed a negative correlation between 

pathway score and shRNA against ESR1 (P = 0.0143), ERBB2 (P = 0.0227) and STAT1 (P = 

0.0049) or JAK3 (P = 0.00013), respectively. These associations were expected for the ER and 

HER2 pathways given the relationship between HER2 or ER-# mRNA and/or protein expression 

and the response of cell lines or tumors to trastuzumab or anti-estrogen therapies, respectively. 

These results confirm that this approach is able to identify essential genes that are known to be 

functionally associated with pathway activity, thereby suggesting that these data can serve as a 

biological filter to distinguish pathway-specific essential from nonessential genes. 

 

Amplified essential genes linked to luminal tumor proliferation 

 We next sought to distinguish between essential and nonessential genes within regions 

amplified specifically in highly proliferative luminal tumors. For each subset of tumors, we 

identified genes in amplified regions that were positively correlated with proliferation and 

showed an increased amplification frequency (q < 0.05). We next examined the RNAi data in all 
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breast cancer cell lines (Figure 3.11a) and in luminal HER2+ cell lines (Figure 3.11b) in the 

context of the PAM50 proliferation signature (data available online). Comparing the results of 

these four analyses (Figure 3.6a) identified 19 genes that were uniquely essential for cell 

viability in luminal cell lines and that were amplified in highly proliferative luminal tumors 

(Figure 3.6b). Two additional genes, DNAJC5 and SNX21, were identified by RNAi analysis but 

were initially overlooked in the CNA analyses, as they were located at the cusp of two 

segmented regions; however, because genes overlapping both 5' and 3' of these genes were 

amplified, we included them in further investigations. Of these 21 candidate genes, 12 showed a 

significant relationship (P < 0.05) between DNA copy number levels and mRNA expression in 

luminal tumors (Figure 3.12). Notably, half of these genes were located at 20q11-13 (EIF2S2, 

EIF6, SLC2A10, SNX21, ZBTB46 and DNAJC5), with two located at 3p25.1 (FGD5 and 

METTL6) and the remaining genes located at 5p15 (TRIO), 11q13 (CPT1A), 12q13 (DTX3) and 

17q22-23 (MRPS23). In contrast, permuting the data labels 1,000 times for each analysis, in all 

samples and in luminal samples alone, identified no gene that met this statistical threshold, 

suggesting that the 21 candidate genes could not have been identified by chance alone. 

 

Validation of identified candidate genes 

 We next confirmed that the majority of the identified genes were significantly amplified 

in highly proliferative luminal breast tumors by analyzing an independent breast tumor data set 

(Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), n = 1,992) for 

which both mRNA expression and genomic DNA CNA data were available [3]. Of the 12 genes 

identified, 9 (FGD5, METTL6, TRIO, CPT1A, DTX3, MRPS23, EIFS2S, EIF6 and SLC2A10) 

were present on both platforms used in the METABRIC study. Each of these genes (Figure 3.13) 
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showed a significant (P < 0.05) relationship between CNA status and mRNA expression in 

luminal breast tumors (n = 1,333). Notably, eight of the nine genes, the exception being TRIO, 

also showed an increased amplification frequency (P < 0.05) in highly proliferative (top quartile) 

luminal tumors (Figure 3.14), thus recapitulating one of our main findings. 

 To confirm that DNA mutations of genes associated with proliferation in luminal tumors 

did not confound these results, we examined the relationship between the 11-gene proliferation 

score and the mutation frequency of the 35 previously identified significantly mutated genes in 

human breast cancers reported by TCGA [2]. Using a Fisher's exact test (Bonferroni corrected), 

we determined that only TP53 (q = 7.0 & 10%10) and MAP3K1 (q = 5.0 & 10%3) mutations 

occurred at significantly different frequencies in highly proliferative (top quartile) luminal 

tumors compared to all other samples; TP53 mutations occurred more frequently (51.6% 

compared to 18.6%) and MAP3K1 (2.1% compared to 12.4%) mutations occurred less frequently 

in highly proliferative luminal tumors (Table 3.3). Moreover, we found no significant 

relationship between MAP3K1 or TP53 mutation status (Bonferroni-corrected Fisher's exact test, 

q > 0.05) and the amplification status of each candidate gene (Table 3.4) in highly proliferative 

luminal tumors. 

 We then investigated whether expression of the candidate genes, independent of CNA 

status, was associated with proliferation in luminal breast tumors. By comparing the mRNA 

expression patterns of each candidate gene in highly proliferative luminal tumor samples (top 

quartile) against all other samples, we found that tumors lacking CNAs of each candidate gene 

fell into three categories: those that exhibited a positive relationship between mRNA expression 

and the PAM50 proliferation signature (EIF2S2, EIF6, CPT1A and MRPS23), those that were 

anticorrelated with the signature (DTX3) and those that showed no correlation (FGD5, METTL6 
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and SLC2A10) between data sets (Figure 3.15). These data suggest that amplification is a key 

mechanism driving the expression of these genes. However, our data also suggest, not 

surprisingly, that overall high expression may be the driver for some genes, which can be 

accomplished by amplification or through other unknown means. 

 

Candidate gene amplification correlates with poor prognosis 

 Previous studies have shown that highly proliferative luminal tumors have a poor 

prognosis [38, 39]; therefore, we investigated what impact amplification of each candidate gene 

had on overall survival. From the TCGA (n = 388) [2] and METABRIC (n = 1,333) [3] data sets, 

we extracted the subset of patients with LumA, LumB or HER2E tumors for which survival data 

were available online. We first analyzed data from the TCGA project (Figures 3.16a–e), and 

despite the relatively short follow-up time (median, 1.7 years), we determined that amplification 

of FGD5 (P < 0.0001; hazard ratio (HR), 8.0), METTL6 (P = 0.0003; HR, 5.9), DTX3 (P = 

0.0387; HR, 2.6) and MRPS23 (P = 0.0078; HR, 2.9) predicted a significantly worse outcome in 

patients with luminal breast cancer, whereas CPT1A amplification had no effect on patient 

survival (P = 0.3738). Extending these analyses to the METABRIC data set (Figures 3.16f–j), 

which had a longer median survival time (7.2 years), confirmed that FGD5 (P = 0.0170; HR, 

2.0), METTL6 (P = 0.0081; HR, 2.1), DTX3 (P = 0.0098; HR, 1.8) and MRPS23 (P = 0.0020; 

HR, 1.5) amplification correlated with a poor prognosis, whereas gain of CPT1A had no effect (P 

= 0.099) on the survival of patients with luminal breast cancer. The remaining three genes 

showed no consistent effect on prognosis (Figure 3.17). Although it is possibly that other genes 

within these chromosomal loci are also prognostic, these amplified genes were associated with 
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proliferation in vivo, were prognostic in multiple patient cohorts and are essential for cell 

viability in vitro. 

 We likewise determined that for most of the identified candidate genes that failed to meet 

all our predetermined criteria, amplification alone, without a coordinate increase in mRNA 

expression, was not sufficient to affect prognosis, as only one (TMEM117) of these genes 

showed a consistently poor prognosis in the TCGA and METABRIC data sets (Table 3.5). We 

then investigated whether the 12 initial candidate genes were predictive of poor prognosis when 

compared with standard prognostic markers, including molecular subtype, tumor stage, node 

status, ER status, HER2 status, age at diagnosis and the 11-gene proliferation score, when tested 

using a multivariate analysis (Cox model). We determined that amplification of a single 

candidate gene did not consistently outperform or improve the prognostic capacity of these 

clinical and genomic variables (Appendix 4). However, these candidate genes were not identified 

to be prognostic markers, especially given that they correlate with proliferation, but instead were 

selected as likely drivers of proliferation, a highly important prognostic feature. 

 

DISCUSSION 

 Numerous studies, including many that have focused on human breast cancer, used large-

scale analyses to investigate the genomic landscape of human cancers in order to identify 

molecular heterogeneity and define new tumor subtypes not previously recognized [2, 3, 6, 11]. 

The challenge presented by these studies, and by the enormous amount of genomic data available 

from resources such as the TCGA and METABRIC projects, is how to integrate multiple forms 

of genomic data to investigate the biology of disease and how to interpret the relevance of 
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identified genomic alterations without relying on inferences of 'known' biology to determine the 

role that these alterations have in tumorigenesis. 

 In this study we utilized gene expression signatures of signaling pathways to identify 

patterns that can distinguish the known subtypes of breast cancer. These signatures were 

developed largely from controlled manipulations of the relevant pathways in vitro and are thus 

based on experimental evidence for pathway activation as opposed to extrapolations of pathway 

activity achieved from analyses of annotated gene lists. Therefore, the use of an experimentally 

derived pathway signature, as opposed to an analysis of a single genomic alteration, provides a 

measure of pathway activity irrespective of how the pathway may have been activated. For 

instance, a given pathway can be active in a subset of tumors as a result of either an activating 

alteration (i.e., E2F1 or E2F3 amplification) or an independent event that inactivates a negative 

regulator of the pathway (i.e., RB1 loss and/or mutation), which nevertheless achieves the same 

end result (i.e., DNA replication and cell proliferation); notably, we identified these four genetic 

events as being statistically associated with the RB-LOH signature [16], which is dominated by 

E2F-regulated genes and is a strong indicator of cell proliferation and prognosis. 

 Proliferation is one of the most powerful prognostic features in breast cancers, especially 

for ER+ cancers [38, 39]. Because proliferation is so important, we used a gene expression 

signature of proliferation as a means to integrate the DNA copy number data, along with data 

from a genome-wide RNAi screen of luminal breast cancer cell lines, to identify luminal-specific 

genetic drivers of proliferation. We identified 12 genes that were amplified uniquely in highly 

proliferative luminal tumors in the TCGA data set, have a correlation between mRNA expression 

and DNA copy number and have been shown to be essential for luminal breast cancer cell line 

viability; we validated 8 of these genes using the independent METABRIC data set. Whereas 
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FGD5, METTL6, DTX3 and MRPS23 amplification was prognostic in luminal tumors, these and 

many of the other identified genes have been reported previously to regulate tumorigenic 

characteristics, albeit not necessarily in human breast cancer. For example, FGD5 has been 

shown to regulate the proangiogenic function of VEGF [43], potentially leading to increased 

proliferation. DTX3 purportedly promotes Notch signaling [44, 45], whereas EIF6 is a Notch-

dependent regulator of cell invasion and migration [46], and its inhibition restricts 

lymphomagenesis and tumor progression [47]. MRPS23 expression is associated with 

proliferation, oxidative phosphorylation, invasiveness and tumor size in uterine cervical cancer 

[48]. METTL6 has been reported to contribute to cytotoxic chemotherapy sensitivity in lung 

cancers [49]. 

 Several previous studies have identified chromosomal regions altered specifically in 

subsets of breast cancer, including 3p25 (encompassing METTL6 and FGD5) [2] and 11q13 

(CPT1A) [3] in luminal breast tumors; however, these studies neither discriminated between 

essential and nonessential genes within a specific amplicon nor identified the functional 

consequences of these alterations. In contrast, we have shown that these regions are amplified 

uniquely in highly proliferative luminal tumors, and we distinguish between amplified genes that 

are essential for cell proliferation and are thus likely contribute to tumorigenesis and those that 

are amplified but are not essential. For instance SRC (20q12-13), which is co-amplified with 

EIF6, is similarly amplified in a significant (q < 0.01) percentage of highly proliferative luminal 

tumors (data available online) but was not identified as being essential in highly proliferative 

luminal breast cancer cell lines in the RNAi screen (data available online). Notably, in addition 

to its role in regulating translation [50] and Notch signaling [46], EIF6 has been reported to link 

integrin-"4 to the intermediate filament cytoskeleton [51], potentially leading to downstream 
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activation of SRC signaling. These results may explain some of the paradoxical findings of SRC 

in that it may contribute to proliferation status but may not be essential, whereas a gene very near 

it, which is also linked to proliferation, is essential for cell viability in vitro. Clearly, additional 

experiments are needed to address this issue, but these results highlight the complex nature and 

importance of this specific amplicon. 

 A major challenge to translating these findings into the clinic is the identification of 

genes within amplicons that are therapeutically targetable. One such event may be amplification 

of 11q13-14 (CPT1A), which was recently reported [3] to be a defining feature of a high-risk 

ER+ subgroup (integrative cluster 2) and correlates with a poor prognosis in esophageal 

squamous cell carcinoma [52]. We identified CPT1A as the only gene within the amplified 

11q13 locus that is required for cell viability within the confines of the proliferation signature 

and luminal cell lines, suggesting that repression of CPT1A could affect the proliferative 

phenotype of these tumors. Consistent with this hypothesis, it was recently reported that RNAi-

mediated downregulation, or drug-mediated inhibition, of CPT1A inhibited cancer cell line 

proliferation, migration and metastasis [53-55], although not in breast cancer cell lines. In 

addition, a specific inhibitor of CPT1A (ST-1326) repressed tumor formation and proliferation in 

an Eµ-Myc mouse model of Burkett's lymphoma [55]. 

 Collectively these data demonstrate the ability of this cross-platform genomics approach 

to identify new oncogenes that are essential for cell viability and are amplified in a subset of 

patients with highly proliferative luminal breast cancer. These data suggest that not only are 

these identified genes potential drivers of oncogenesis and that an emphasis should be placed on  
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elucidating their role in breast tumorigenesis but also that they, or their associated pathways, may 

serve as new therapeutic targets in a subset of human breast cancers for which limited 

therapeutic opportunities currently exist.  
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TABLES 

Table 3.1 Summary of Gene Expression Signatures 
 

Signature Pathway References 
ACIDOSIS Acidosis response PMID: 21672245, PMID: 22078435 
ACTIVE 

ENDOTHELIUM Activated endothelium PMID: 23975155 

AKT Akt signaling PMID: 20335537, PMID: 22078435 
"CATENIN Beta catenin activation PMID: 20335537, PMID: 22078435 

BMYB BMYB signaling PMID: 19043454 
BRCA1 BRCA1 signaling PMID:11823860 
CMYB CMYB signaling PMID:20949095 

E2 ACTIVATED (IE) Estrogen activated signaling PMID:16505416 
E2 REPRESSED (IIE) Estrogene repressed signaling PMID:16505416 

E2F1 E2F1 signaling PMID: 20335537, PMID: 22078435 
EGFR EGFR activation PMID: 20335537, PMID: 22078435 

ER Estrogen receptor signaling PMID: 20335537, PMID: 22078435 
ESC HUMAN Human Embryonic Stem Cell PMID:18397753 

FOS JUN Fos-Jun kinase signaling PMID: 21214954 
GATA3 Wild-type GATA3-mediated signaling PMID:15361840 

GLUCOSE DEPLETION Glucose depletion response PMID: 21672245, PMID: 22078435 
GYCOLYSIS Glycolysis response PMID:19291283 

HER1 C1 HER1/EGFR Cluster 1 PMID:17663798 
HER1 C2 HER1/EGFR Cluster 2 PMID:17663798 
HER1 C3 HER1/EGFR Cluster 3 PMID:17663798 

HER2 HER2/ERBB2 overexpression PMID: 20335537, PMID: 22078435 
HER2 AMP HER2/ERBB2 amplification PMID: 21214954 
HYPOXIA Hypoxia response PMID: 21672245, PMID: 22078435 

IFNA Interferon alpha response PMID: 20335537, PMID: 22078435 
IFNG Interferon gamma response PMID: 20335537, PMID: 22078435 

LACTIC ACID Lactic acidosis response PMID: 21672245, PMID: 22078435 
LKB1 LKB1 signaling PMID:17676035 

MYC DUKE Myc activation PMID: 20335537, PMID: 22078435 
MYC UNC Myc signaling PMID:19690609 

P53 p53 signaling PMID: 20335537, PMID: 22078435 
P53 MUT Mutant p53 signaling PMID:17150101 
P53 WT Wild-type p53 signaling PMID:17150101 

P63 p63 activation PMID: 20335537, PMID: 22078435 
PI3K PI3 kinase signaling PMID: 20335537, PMID: 22078435 

PIK3CA PI3 kinase signaling PMID:22552288 
PR Progesterone Receptor PMID: 20335537, PMID: 22078435 

PROLIFERATION Proliferation PMID: 21214954 
PROLIFERATION 

(PAM50) Proliferation PMID:19204204 

PTEN WT Wild-type PTEN signaling PMID: 17452630 
PTEN DEL Mutant PTEN signaling PMID: 17452630 

RAS Ras activation PMID: 20335537, PMID: 22078435 
RB LOH Loss of RB expression PMID:18782450 

SRC Src kinase PMID: 20335537, PMID: 22078435 
STAT1 Stat1 activation PMID: 19272155 
STAT3 Stat3 activation PMID: 20335537, PMID: 22078435 

STEM CELL Stem cell associated expression PMID:15931389 
STROMAL DOWN Low stromal cellularity PMID:19648928 

STROMAL UP High stromal cellularity PMID:19648928 
TGFB Tumor growth factor beta PMID: 20335537, PMID: 22078435 
TNFA Tumor necrosis factor alpha PMID: 20335537, PMID: 22078435 

VEGF/HYPOXIA Vascular endothelial growth factor / hypoxia 
signaling PMID:19291283 

WOUND RESPONSE Wound response in breast cancer 
microenvironment PMID:19887484 



! '*!

Table 3.2 Summary of ANOVATukey test analysis of subtype pathway score  
 

Pathway ANOVA 
Basal-
HER2 

Basal-
LumA 

Basal-
LumB 

HER2-
LumA 

HER2-
LumB 

LumA-
LumB 

BRCA1 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

HER1 C2 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.05 <0.001 

P53 Mut <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

E2 Repressed (IIE) <0.0001 >0.05 <0.001 <0.001 <0.001 >0.05 <0.001 

Proliferation (PAM50) <0.0001 <0.01 <0.001 <0.001 <0.001 >0.05 <0.001 

ESC Human <0.0001 <0.01 <0.001 <0.001 <0.001 >0.05 <0.001 

B-catenin <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

BMYB <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

PROLIFERATION <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

PTEN DEL <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

RB LOH <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

HER1 C3 <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

MYC (DUKE) <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

Activated Endothelium <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

MYC (UNC) <0.0001 <0.001 <0.001 <0.001 <0.001 <0.05 <0.001 

PIK3CA <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

RAS <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

HER1 C1 <0.0001 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 

GLYCOLYSIS <0.0001 >0.05 <0.001 <0.001 <0.001 <0.001 <0.001 

VEGF/Hypoxia <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 >0.05 

E2F1 <0.0001 >0.05 <0.001 <0.05 <0.001 >0.05 <0.001 

PI3k <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

Stem Cell <0.0001 <0.01 <0.001 <0.05 <0.001 >0.05 <0.001 

P63 <0.0001 <0.001 <0.01 <0.001 <0.001 >0.05 <0.001 

IFNA 0.0008 >0.05 <0.01 >0.05 <0.05 >0.05 <0.05 

IFNG 0.0005 >0.05 <0.001 >0.05 >0.05 >0.05 >0.05 

STAT1 <0.0001 >0.05 <0.001 <0.01 <0.001 >0.05 <0.01 

TNFA <0.0001 <0.05 <0.001 <0.001 <0.01 <0.001 >0.05 

Glucose Depeletion <0.0001 <0.05 <0.001 <0.001 <0.001 <0.001 >0.05 
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Table 3.2 Summary of ANOVATukey test analysis of subtype pathway score (Continued) 
 

Pathway ANOVA 
Basal-
HER2 

Basal-
LumA 

Basal-
LumB 

HER2-
LumA 

HER2-
LumB 

LumA-
LumB 

CMYB 0.0957 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 

HYPOXIA <0.0001 >0.05 <0.01 <0.001 <0.05 <0.001 >0.05 

AKT 0.0004 >0.05 <0.001 <0.05 >0.05 >0.05 >0.05 

FOS JUN <0.0001 >0.05 <0.001 >0.05 <0.001 >0.05 <0.001 

ACID <0.0001 <0.01 >0.05 <0.001 <0.001 >0.05 <0.001 

Stromal UP <0.0001 >0.05 <0.001 >0.05 <0.01 >0.05 <0.001 

Wound Response <0.0001 >0.05 >0.05 <0.001 <0.01 <0.05 <0.001 

LKB1 <0.0001 >0.05 >0.05 <0.001 >0.05 <0.001 <0.001 

HER2 <0.0001 <0.001 >0.05 <0.001 <0.001 <0.001 <0.001 

EGFR <0.0001 >0.05 >0.05 <0.001 >0.05 <0.001 <0.001 

STAT3 <0.0001 >0.05 <0.001 <0.001 >0.05 <0.001 <0.001 

TGFB <0.0001 >0.05 >0.05 <0.001 >0.05 <0.001 <0.001 

GATA3 <0.0001 <0.001 >0.05 <0.001 <0.01 <0.001 <0.001 

HER2AMP <0.0001 <0.001 >0.05 >0.05 <0.01 <0.001 <0.05 

Lactic Acidosis <0.0001 <0.001 <0.001 <0.001 >0.05 >0.05 >0.05 

Stromal DOWN <0.0001 >0.05 <0.001 <0.001 >0.05 >0.05 >0.05 

ER <0.0001 <0.001 <0.001 <0.01 <0.001 <0.001 >0.05 

PR <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 >0.05 

P53 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

E2 Activated (IE) <0.0001 >0.05 <0.001 <0.001 <0.001 <0.001 <0.001 

P53 WT <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

PTEN WT <0.0001 <0.001 <0.001 <0.001 <0.001 >0.05 <0.001 

SRC 0.0016 >0.05 >0.05 >0.05 >0.05 >0.05 <0.001 
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Table 3.3 Summary of SMG mutation frequency associated with Proliferation (PAM50) in 
luminal/HER2E samples  
 

GENE 
%PROLIFERATION 
(PAM50) LOW 

%PROLIFERATION 
(PAM50) HIGH 

PROLIFERATION 
(PAM50) Q 

MUT.7157_TP53 18.56 51.55 7.00E-10 

MUT.5290_PIK3CA 44.67 34.02 7.17E-02 

MUT.2625_GATA3 12.71 12.37 7.73E-01 

MUT.4214_MAP3K1 12.37 2.06 4.98E-03 

MUT.58508_MLL3 7.90 5.15 9.76E-01 

MUT.999_CDH1 9.28 5.15 3.85E-01 

MUT.6416_MAP2K4 6.53 1.03 1.14E-01 

Mut.861_RUNX1 4.47 2.06 6.58E-01 

MUT.5728_PTEN 4.12 3.09 9.70E-01 

MUT.6926_TBX3 1.72 5.15 9.39E-01 

MUT.5295_PIK3R1 2.06 6.19 4.55E-01 

Mut.207_AKT1 3.44 2.06 9.89E-01 

Mut.865_CBFB 2.06 2.06 9.10E-01 

MUT.79718_TBL1XR1 2.06 2.06 1.00E+00 

MUT.9611_NCOR1 3.78 3.09 9.66E-01 

MUT.10664_CTCF 3.44 1.03 4.05E-01 

Mut.677_ZFP36L1 1.37 1.03 1.00E+00 

MUT.2874_GPS2 1.72 0.00 6.35E-01 

MUT.23451_SF3B1 2.41 1.03 9.84E-01 

MUT.1027_CDKN1B 1.03 2.06 7.24E-01 

MUT.7399_USH2A 3.09 5.15 4.23E-01 

MUT.6103_RPGR 1.03 0.00 1.00E+00 

MUT.5925_RB1 0.34 3.09 1.15E-01 

MUT.2334_AFF2 1.72 4.12 1.00E+00 

MUT.4763_NF1 3.09 2.06 1.00E+00 

MUT.26191_PTPN22 1.03 4.12 2.39E-01 

MUT.6262_RYR2 4.12 8.25 8.61E-01 

MUT.5789_PTPRD 2.06 4.12 8.99E-01 

MUT.8590_OR6A2 1.37 0.00 1.00E+00 
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Table 3.3 Summary of SMG mutation frequency associated with Proliferation (PAM50) in 
luminal/HER2E samples (Continued) 
 

GENE 
%PROLIFERATION 
(PAM50) LOW 

%PROLIFERATION 
(PAM50) HIGH 

PROLIFERATION 
(PAM50) Q 

MUT.8347_HIST1H2BC 0.69 1.03 1.00E+00 

MUT.2854_GPR32 1.03 1.03 1.00E+00 

MUT.100310847_CLEC19A 0.00 1.03 1.00E+00 

Mut.896_CCND3 0.69 1.03 1.00E+00 

MUT.641977_SEPT13 0.69 1.03 1.00E+00 

MUT.138009_DCAF4L2 1.37 1.03 1.00E+00 
 
 
 
 
 
 
 
 
Table 3.4 Summary of the association between TP53 and MAP3K1 mutations and gene 
amplification status in highly proliferative luminal breast tumors  
 

Gene 

% 
AMP 
TP53 
WT 

% 
AMP 
TP53  
MUT 

FISHER 
Q  Gene 

% AMP 
MAP3K1 

WT 

% AMP 
MAP3K1 

MUT 
FISHER 

Q 

aCGH.152273_FGD5 23.40 22.00 0.988  aCGH.152273_FGD5 23.16 0.00 1.000 

aCGH.131965_METTL6 23.40 20.00 0.988  aCGH.131965_METTL6 22.11 0.00 1.000 

aCGH.196403_DTX3 23.40 30.00 0.988  aCGH.196403_DTX3 26.32 50.00 1.000 

aCGH.51649_MRPS23 55.32 54.00 0.988  aCGH.51649_MRPS23 55.79 0.00 1.000 

aCGH.1374_CPT1A 31.91 48.00 0.902  aCGH.1374_CPT1A 40.00 50.00 1.000 

aCGH.3692_EIF6 36.17 60.00 0.711  aCGH.3692_EIF6 49.47 0.00 1.000 

aCGH.8894_EIF2S2 34.04 52.00 0.828  aCGH.8894_EIF2S2 44.21 0.00 1.000 

aCGH.81031_SLC2A10 34.04 70.00 0.465  aCGH.81031_SLC2A10 53.68 0.00 1.000 

*** only 2 samples in this cohort have a MAP3K1 mutation*** 
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Table 3.5 Summary of overall survival associated with candidate gene amplification  
 

Gene Name 

mRNA/DNA 
Correlation 

(TCGA 
dataset) 

mRNA/DNA 
Correlation 

and 
Increased 

Amplification 
frequency 

(METABRIC) 

P-
value 
(log 

rank) 
TCGA 

Hazard 
Ratio 

(TCGA) 

P-value 
(log 

rank) 
METAB

RIC 

Hazard 
Ratio 

(METABRIC) 

AMP Gene 
Prognosis Luminal 

Breast Tumors 

FGD5 YES YES <0.000
1 8 0.017 2 Significant in both 

datasets 
METTL6 YES YES 0.0003 5.9 0.0081 2.1 Significant in both 

datasets 
DTX3 YES YES 0.0387 2.6 0.0098 1.8 Significant in both 

datasets 

MRPS23 YES YES 0.0078 2.9 0.002 1.5 Significant in both 
datasets 

CPT1A YES YES 0.3738 1.4 0.0991 1.2 Not significant  

EIF2S2 YES YES 0.7651 1.1 0.0053 1.5 Significant in 
METABRIC 

EIF6 YES YES 0.6286 1.2 0.0001 1.8 Significant in 
METABRIC 

SLC2A10 YES YES 0.9482 1 0.0103 1.4 Significant in 
METABRIC 

TRIO YES NO 0.0436 2.4 0.0594 1.4 Significant in TCGA 

SNX21 YES N/T# 0.1009 1.1 N/A N/A Not significant 

DNAJC5 YES N/T# 0.4064 1.3 N/A N/A Not significant 

ZBTB46 YES N/T# 0.6409 1.2 N/A N/A Not significant 

CD200R1 NO N/A 0.0129 3.3 0.8645 1 Significant in TCGA 

PRDM9 NO N/A 0.2114 1.7 0.0477 1.4 Significant in 
METABRIC 

FGF3 NO N/A 0.2899 1.4 0.0006 1.5 Significant in 
METABRIC 

FGF19 NO N/A 0.6053 1.3 0.0029 1.4 Significant in 
METABRIC 

TMEM117 NO N/A 0.0415 2.9 0.0022 2.6 Significant in both 
datasets 

SEMA5A NO N/A 0.082 2.2 0.2211 1.2 Not significant  

PMEPA1 NO N/A 0.5068 1.2 0.0011 1.5 Significant in 
METABRIC 

ANKRD56 N/T† N/A 0.1827 2.3 0.1259 1.5 Not significant  

TMEM189 N/T† N/A 0.8868 1 0.0076 1.4 Significant in 
METABRIC 

Twenty-one candidate genes  were identified by the integrative analysis to have an increased amplification frequency in 
highly proliferative luminal tumors and were essential in the RNAi screen.  
Of these 12 had a positive correlation between mRNA expression and DNA copy number status;  
8 were found to have the same characteristics in the METABRIC dataset.   
Genes that did not meet each criteria in the TCGA discovery dataset 
were filtered out prior to testing in the METABRIC validation dataset.    
        
BOLD: Candidate gene (n=8)       
RED: Significant in both 
datasets       
BLUE: Not significant       
Black: Significant in one dataset       
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FIGURES 

 

 
Figure 3.1 Patterns of genomic signature pathway activity in breast cancer. (a) Patterns of 
pathway activity (n = 52) were determined for each sample in the published TCGA breast cancer 
cohort (n = 476). Expression signature scores (y axis) are median centered and clustered by 
complete linkage hierarchical clustering. (b) ANOVA (P < 0.0001) for all signatures according 
to PAM50 subtype followed by Tukey’s test for pairwise comparison demonstrates statistically 
significant differences in the levels of pathway expression between molecular subtypes. Box 
colors indicate the level of significance between subtypes, as indicated in the legend. NS, not 
significant. 
 
 
 



! ''!

 
Figure 3.2 Correlation between calculated pathway activity. A Pearson correlation matrix of 
each signature versus all other signatures (including itself as the diagonal line) demonstrates a 
high degree of concordance amongst independently developed gene expression signatures 
measuring similar or associated pathways. Red indicates high positive correlation and blue a 
strong anti-correlation. 
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Figure 3.3 Identification of pathway-specific copy number alterations by Spearman Rank 
Correlation. A Spearman rank correlation, both positive (red) and negative (blue) were used to 
identify associations between predicted genomic signature pathway activity and gene-level DNA 
copy number content (n=476).  The negative log10 Bonferroni adjust p-values are plotted 
according to chromosomal position. Chromosomal borders are delineated by vertical black lines. 
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Figure 3.4 Identification of pathway-specific copy number alterations based on frequency of 
gains or losses calculated by Fisher’s Exact test. A Fisher’s exact test was used to calculate the 
statistical significance of the frequency of copy number gains (red) or losses (blue) in samples 
with the highest (top quartile) pathway signature activity relative to all other samples (n=476).  
The negative log10 Bonferroni adjust p-values are plotted according to chromosomal position. 
Vertical black lines indicate chromosomal borders. 
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Figure 3.5 Identification of genomic pathway–specific CNAs. (a) Schematic outlining the 
strategy used to identify CNAs associated with pathway activity. Gain/loss indicates gains or 
losses; Pos/Neg indicates positive or negative. (b) For each signature, significant copy number 
gains and losses were calculated. The plot identifies those genes that had a positive Spearman 
rank correlation and increased amplification frequency (q < 0.01) (red) and those that had a 
negative Spearman rank correlation and an increased frequency of copy number losses in the top-
scoring (top quartile) samples with pathway activity (q < 0.01) (blue). (c–e) Spearman rank 
correlation was used to identify genes positively (black line) or negatively (dark blue) associated 
with pathway activity, and Fisher’s exact test was used to compare the frequency of copy number 
gains (Amp, red) or losses (Del, light blue) for the HER2-AMP (c), HER1-C2 (d) and RB-LOH 
(e) signatures. Yellow arrowheads indicate known pathway drivers with q < 0.01 for each 
analysis; the black arrowhead indicates q < 0.01 for a single analysis. In each figure, 
chromosomal boundaries are indicated by vertical black lines.  
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Figure 3.6 Identification of essential genes amplified in highly proliferative luminal tumors. (A) 
Schematic outlining the integrated genomic strategy to identify essential genes amplified in 
highly proliferative luminal breast tumors. (B) Identification of 21 genes in amplified loci that 
are unique to highly proliferative luminal tumors and are specifically required for luminal cell 
line proliferation in vitro. mRNA expression of genes in red and blue were significantly 
associated with CNA status, with the subset highlighted in red being further validated in the 
METABRIC dataset; genes in black do not show a significant mRNA-DNA correlation. 
Candidate genes demarcated by (*) are located at cusp of a CNA segment and were originally 
excluded, but mentioned here. Genes identified by (#) were not included on mRNA expression 
microarrays, and the correlation between DNA and mRNA expression was not assessed. 
 
 
 
 
 
 
 



! %)+!

 
 
Figure 3.7 Patterns of pathway activity correspond with molecular subtypes of breast cancer. 
Analysis of molecular subtypes of breast cancer based on 52 gene expression signature scores. 
Euclidean distance was used to calculate the relationship between samples based on scores of 52 
gene express signatures. Samples are commonly ordered on the X and Y axis according to 
molecular subtype. These results demonstrate high concordance within a subtype (dark blue), 
and lower concordance across subtypes; each sample versus itself is the blue diagonal line  
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Figure 3.8 Identification of DNA copy number alterations in highly proliferative breast tumors. 
(A) Distribution of proliferation scores across all tumors and (B) by subtype. (B) Box and 
whisker plots indicate median score and the upper and lower quartile. Basal-like (n=88), HER2E 
(n=55), LumA (n=214) and LumB (n=119). (C) Highly proliferative tumors (top quartile) are 
comprised of Basal-like (49.6%), LumB (33.6%) and HER2E (16.8%). (D) Highly proliferative 
luminal tumors are restricted to LumB (68.0%) and HER2E (32.0%) samples. (E) Frequency of 
CNA in highly proliferative (black line) and all other samples (gray line). (F) Statistical analyses 
of CNA: positive correlation (black) and negative (dark blue) Spearman rank correlation and 
Fisher’s exact test of amplification (red) or deletion (light blue) frequency. (G) Frequency of 
CNA in highly proliferative luminal tumors; color key same as (E). (H) Statistical analyses of 
CNA in proliferative luminal tumors; color key same as (F). Chromosomal boundaries in (E–H) 
are defined by vertical black lines. 
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Figure 3.9 Patterns of pathway activity in human breast cancer cell lines. The scored pathway 
activity for a panel of 51 breast cancer cell lines (GSE12777) was calculated for the 52 pathway 
signatures. Of these cell lines, 27 which are denoted by black squares in lower panel were 
subjected to a genome-wide RNAi screen. 
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Figure 3.10 Identification of genomic pathway-associated essential genes in cell lines. (A) 
Schematic outlining strategy used to identify pathway-specific genetic dependencies. (B) A panel 
of 27 breast cancer cell lines with both expression data and data from a genome-wide RNAi 
screen was used to identify pathway-specific genes required for cell viability using a negative 
Spearman rank correlation (-log10 P-values plotted); significant genes (P<0.05) are shown 
according to chromosome location. Vertical black lines indicate chromosomal boundaries. (C) 
ESR1 (D) ERBB2 and (E) STAT1 or JAK3 shRNA levels are inversely associated with the ER, 
Her2 or Stat1pathway scores. 
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Figure 3.11 Identification of essential genes in proliferative breast cancer cell lines. 
Identification of genes essential for cell viability in vitro in the context of the 11-gene PAM50 
Proliferation signature in (A) all cell line samples and (B) in luminal and HER2+ breast cancer 
cell lines. The negative log10 Spearman rank correlation p values are plotted for each gene 
relative to chromosomal position. 
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Figure 3.12 Correlation between candidate gene mRNA expression and DNA copy number 
status in TCGA samples. The mRNA expression levels of the 21 identified candidate genes that 
are required for cell viability and are uniquely amplified in highly proliferative luminal breast 
tumors. In each plot, the mRNA levels from the TCGA data are compared in those tumors with 
amplifications versus all others.  Of the 21 genes, two (ANKRD56 and TMEM189) were not 
present on the mRNA expression array and are not included here. Of the remaining 19 genes, 12 
had a significant relationship (p<0.05) between copy number status and mRNA expression 
levels. 
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Figure 3.13 Correlation between candidate gene mRNA expression and DNA copy number 
status in METABRIC samples. The mRNA expression levels of the 12 identified candidate genes 
that are required for cell viability and are uniquely amplified in highly proliferative luminal 
breast tumors were analyzed within the context of copy number level in the METABRIC dataset.  
Of these 12 genes, three (SNX21, ZBTB46 and DNAJC5) were not present on both of the 
METABRIC data platforms (mRNA expression and copy number). Of the remaining 9 genes, all 
had a significant relationship (p<0.05) between copy number status and mRNA expression levels 
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Figure 3.14 Validation of increased candidate gene copy number status in highly proliferative 
luminal breast tumors in METABRIC samples. The relationship between amplification of each 
candidate gene within the context of highly proliferative luminal breast tumors was examined in 
the METABRIC dataset. Of the nine candidate genes, eight showed a significant enrichment in 
highly proliferative (top quartile) luminal breast tumors.  
 



! %%(!

 

Figure 3.15 Candidate gene expression correlation with PAM50 Proliferation score independent 
of copy number status. The relationship between mRNA expression and the PAM50 proliferation 
signature was determined independent of copy number status (t-test) in the TCGA (n=388) and 
METABRIC (n=1,333) luminal/ ER+ subset of patients. Three classes of genes were identified 
(top rows) those that have a positive correlation with the signature score irrespective of CN 
status (EIF2S2, EIF6, MRPS23, CPT1A), those that have an inverse correlation (DTX3) and 
those that do not show a consistent pattern between datasets (FGD5, METTL6, SLC2A10) 
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Figure 3.16 Candidate gene amplification correlates with a poor prognosis. Amplification of (A) 
FGD5 (NAMP=51, NNoAMP=337), (B) METTL6 (NAMP=51, NNoAMP=337), (C) DTX3 
(NAMP=71, NNoAMP=317) and (D) MRSP23 (NAMP=127, NNoAMP=261) correlated with 
poor disease-specific outcome in the luminal breast cancer patients in the TCGA dataset (n=388) 
while (E) CPT1A (NAMP=111, NNoAMP=277) amplification had no effect on prognosis. 
Consistent results were observed in the METABRIC dataset (n=1,333) for (F) FGD5 
(NAMP=42, NNoAMP=1,218), (G) METTL6 (NAMP=44, NNoAMP=1,278), (H) DTX3 
(NAMP=67, NNoAMP=1,266), (I) MRPS23 (NAMP=266, NNoAMP=1,062) and (J) CPT1A 
(NAMP=241, NNoAMP=1,029). Samples in the METABRIC dataset missing CNA calls were 
excluded. For each analysis, P-value determined by log-rank test and Hazard Ratio (HR) are 
reported. 
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Figure 3.17 Amplification status of a subset of candidate genes has no reproducible effect on 
prognosis. Kaplan-Meier survival analysis based upon the amplification status of highly 
proliferative luminal tumor genes. No consistent difference in disease specific survival was 
observed for EIF2S2 (A, D), EIF6 (B, E) or SLC2A10 (C, F) when comparing luminal tumors 
characterized by amplification of each candidate gene relative to luminal tumors without an 
amplification (log rank p>0.05) in the TCGA (A-C) and METABRIC (D-F) datasets.   
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CHAPTER 4 

LOSS OF HETEROZYGOSITY AT THE CYP2D6 LOCUS IN BREAST CANCER: 
IMPLICATIONS FOR GERMLINE PHARMACOGENETIC STUDIES2 

 

 

 Background: Controversy exists regarding the impact of CYP2D6 genotype on tamoxifen 

responsiveness. We examined loss of heterozygosity (LOH) at the CYP2D6 locus and 

determined its impact on genotyping error when tumor tissue is used as a DNA source.  

 Methods: Genomic tumor data from the adjuvant and metastatic settings (The Cancer 

Genome Atlas [TCGA] and Foundation Medicine [FM]) were analyzed to characterize the 

impact of CYP2D6 copy number alterations (CNAs) and LOH on Hardy Weinberg equilibrium 

(HWE). Additionally, we analyzed CYP2D6 *4 genotype from formalin-fixed paraffin-

embedded (FFPE) tumor blocks containing nonmalignant tissue and buccal (germline) samples 

from patients on the North Central Cancer Treatment Group (NCCTG) 89-30-52 tamoxifen trial. 

All statistical tests were two-sided.  

 Results: In TCGA samples (n =627), the CYP2D6 LOH rate was similar in estrogen 

receptor (ER)–positive (41.2%) and ER-negative (35.2%) but lower in HER2-positive tumors 

(15.1%) (P < .001). In FM ER+ samples (n = 290), similar LOH rates were observed (40.8%). In 

190 NCCTG samples, the agreement between CYP2D6 genotypes derived from FFPE tumors
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and FFPE tumors containing nonmalignant tissue was moderate (weighted Kappa = 0.74; 95% 

CI = 0.63 to 0.84). Comparing CYP2D6 genotypes derived from buccal cells to FFPE tumor 

DNA, CYP2D6*4 genotype was discordant in six of 31(19.4%). In contrast, there was no 

disagreement between CYP2D6 genotypes derived from buccal cells with FFPE tumors 

containing nonmalignant tissue.  

 Conclusions: LOH at the CYP2D6 locus is common in breast cancer, resulting in 

potential misclassification of germline CYP2D6 genotypes. Tumor DNA should not be used to 

determine germline CYP2D6 genotype without sensitive techniques to detect low frequency 

alleles and quality control procedures appropriate for somatic DNA. 
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INTRODUCTION 

 The CYP2D6 enzyme metabolizes tamoxifen to its active metabolites (4-hydroxy-

tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen [endoxifen]), and numerous studies have 

demonstrated that CYP2D6 genetic variants are associated with steady state endoxifen 

concentrations [1–2]. However, there is substantial controversy on the validity of CYP2D6 

genotype as a predictor of benefit from tamoxifen therapy in the adjuvant setting (reviewed in 

[3]). Secondary analyses of adjuvant trials administering five years of tamoxifen (the North 

Central Cancer Treatment Group [NCCTG] 89-30-52 [4], Arimidex, tamoxifen, alone or in 

combination (ATAC) [5], BIG1-98 [6], and the Austrian Breast and Colorectal Cancer Study 

Group [ABCSG] 8 [7] have reached discrepant conclusions). Multiple investigators have voiced 

concern regarding the unprecedented departure of CYP2D6 allele frequencies from Hardy- 

Weinberg equilibrium (HWE) in the BIG 1-98 study [8–10]. While substantial departure from 

HWE was not observed in the ABCSG 8 analysis [7], some departure from HWE was observed 

with the CYP2D6*4 allele frequencies reported in the NCCTG 89-39-52 [4] and ATAC [5, 9] 

CYP2D6 analyses. Given previous demonstration of genomic instability at the chromosomal 

segment where CYP2D6 is located [11–12], it has been hypothesized that when tumor DNA is 

used for genotyping, the presence of tumor loss of heterozygosity (LOH) at the CYP2D6 locus 

distorts the frequencies of observed alleles, which could lead to an excessive homozygous 

assignment of the germline genotype [8–10]. To address this question, we undertook a detailed 

evaluation of whether somatic LOH occurs at the CYP2D6 locus by analyzing genomic tumor 

data from the adjuvant (The Cancer Genome Atlas [TCGA]) [13] and metastatic settings. 

Furthermore, we sought to determine whether CYP2D6 LOH could affect the accuracy of calling 

germline CYP2D6 genotypes. Finally, in a limited number of adjuvant cases in which both 
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formalin-fixed paraffin-embedded (FFPE) tumor blocks and buccal samples were available, we 

compared CYP2D6 *4 genotypes obtained from each DNA source.  

 

MATERIALS AND METHODS 

 Samples. Three previously published data sets were analyzed. The first data set included 

tumors collected and annotated within The Cancer Genome Atlas breast dataset [13]. TCGA 

collected breast tumors from newly diagnosed patients who underwent surgical resection. 

Extensive quality control was employed to verify the presence of both tumor DNA and germline 

DNA. Briefly, each frozen primary tumor specimen had a companion normal tissue DNA 

specimen that was derived from blood components (including DNA extracted at the tissue source 

site) (n = 684), adjacent normal tissue taken from greater than 2 cm from the tumor (n = 76), or 

both (n = 65). Each hematoxylin and eosin (H&E) stained case was reviewed by a board-certified 

pathologist to confirm that the tumor specimen was histologically consistent with breast 

adenocarcinoma and the adjacent normal specimen contained no tumor cells. The tumor sections 

were required to contain an average of 60% of tumor cell nuclei with less than 20% necrosis for 

inclusion in the study per TCGA protocol requirements. The clinical characteristics of this cohort 

and the process for informed consent have been previously described [13].  

 The second set included paraffin-embedded blocks from 360 patients, with relapsed and 

metastatic ER+ (n = 261) or ER- (n = 99) breast cancers derived from a subset of patients from 

the NCT00780676 trial and from pathology departments of several medical centers, as recently 

described [14]. From these samples, CYP2D6 sequencing was performed by Foundation 

Medicine (FM). In addition, samples were stained for ER, progesterone receptor (PR), and 

human epidermal growth factor receptor–2 (HER2) and reviewed by a pathologist to confirm ER 
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positivity. All tissue collections were done with the approval of the corresponding institutional 

review boards, and the process for informed consent was previously published [14].  

 The third set included specimens from 190 ER-positive breast cancer case patients from 

the NCCTG 89-30-52 clinical trial [4]. In the initial reported CYP2D6 analysis, an H&E section 

was obtained from FFPE tumors and a board-certified pathologist identified the invasive 

component and DNA was extracted from a 1 cm area of highest tumor cellularity for both DNA 

[4] and RNA [15] studies. At a later date, the same tissue block was accessed and whole tissue 

sections containing both invasive and benign tissue were processed for DNA extraction as 

previously described [16–17]. Additionally, germline DNA from a buccal sample was collected 

and reported initially on 17 patients [4] and an additional 21 patients later provided buccal 

samples. All tissue collections were done with the approval of the corresponding institutional 

review boards, and the process for informed consent was previously published [4]. 

 Genomic Analysis. For the TCGA cohort, DNA copy number at the CYP2D6 locus 

(Chr. 22: 42 522 501 – 42 525 911) was determined using the Affymetrix 6.0 single-nucleotide 

polymorphism (SNP) arrays [13] and copy number segmentation was performed using the 

Circular Binary Segmentation (CBS) algorithm version 1.12.0, as previously described [13]. 

Copy number segments of interest were identified as regions with intensity values greater than 

|0.3|. Frequency landscape plots of these segments were created using the SWITCHdna R-

package plotting function [18]. Exome sequencing was performed as previously described [13]. 

Regions of LOH were identified using the Broad Institute’s ABSOLUTE method on exome 

sequencing data and Affymetrix 6.0 SNP arrays [19]. LOH landscape frequency plots were 

created using modifications of SWITCHdna’s plotting function. The percentage of overlap 
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between breast TCGA samples analyzed on SNP arrays and those through exome sequencing 

was 86%.  

 For the FM cohort, genomic DNA was extracted from 40 )m of FFPE tissue and up to 

200ng of extracted DNA was sheared by sonication, followed by ligation of Illumina sequencing 

adaptors. Sequencing libraries were hybridization captured using RNA-based baits (Agilent), 

targeting a total of 3320 exons of 182 cancer-related genes and 78 polymorphisms in 34 ADME-

related genes. Deep (>500x) paired-end sequencing (49 x 49 cycles) was performed using the 

HiSeq2000 (Illumina). Sequence reads were mapped to the reference human genome (hg19), 

analyzed for all classes of genomic alterations (substitutions, indels, and copy number 

alterations), using custom methods optimized for clinical tumor specimens with stromal 

admixture. Variant calls at the CYP2D6 locus were resolved into genotypes according to the star 

(*) allele nomenclature [20]. If the minor allele frequency was greater than 5%, the patient was 

considered to have germline heterozygosity. To determine tumor LOH at CYP2D6, a genome-

wide copy number model was fitted to the coverage data at all sequenced exons and more than 

1800 SNPs. This profile was segmented and interpreted using allele frequencies of sequenced 

SNPs to estimate tumor purity and copy number at each segment. Fitting was performed using 

Gibbs sampling, assigning total copy number and minor allele count to all segments. LOH was 

called if total copy number at the CYP2D6 locus was 1 (copy loss LOH), or if copy number was 

2 or more with a minor allele count of 0 (copy neutral LOH). The distortion of the germline 

alternate allele frequency from 50% because of LOH is calculated. To assess the impact of LOH, 

we simulated low-sensitivity genotyping assays by requiring minor allele frequencies to have 

minimum levels of 10% and 20% before assigning genotypes as heterozygous. The estimate of 

potential error impact on genotyping methods was then estimated using the HWE test.  
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 For the NCCTG samples, CYP2D6 genotyping (*3, *4, *6, *10, *41) was performed at 

the Mayo Clinic using the Applied Biosystems’ Taqman Allelic Discrimination Assay (Foster 

City, CA), as previously described and reported in the context of a pooled analysis of NCCTG 

and Stuttgart patients [16] and as submitted to the International Tamoxifen Pharmacogenomics 

Consortium [21]. Analyses were performed irrespective of ethnicity. 

 Statistical Methods. Within the TCGA, a Pearson’s Chi Square Test was used to 

determine whether LOH rates differed across intrinsic subtypes. Within the FM cohort, a two-

sided Fisher’s exact test was used to assess whether copy loss rate differed with respect to ER 

status. Within the NCCTG cohort, the extent of agreement between CYP2D6 genotypes derived 

from FFPE tumor and FFPE tumors containing nonmalignant tissue was assessed using weighted 

Kappa statistics and the corresponding 95% confidence interval. HWE tests were calculated 

using an exact test (the Simple Hardy-Weinberg Calculator by Michael H Court) (http://www. 

tufts.edu/~mcourt01/Documents/Court%20lab%20-%20HW%20 calculator.xls) by comparing 

the observed and expected genotype frequencies for case patients and control patients. All 

statistical tests were two-sided, and a P value of less than .05 was considered statistically 

significant. 

 

RESULTS 

TCGA Samples 

 Using SNP array data (n = 728) [13], evaluation of the CYP2D6 locus at chromosome 22 

demonstrated copy number alterations (CNA) in 29.0% (n = 211) (Figure 4.1A). Among the 627 

case patients with exome sequencing data, 219 case patients (34.9%) had LOH at the CYP2D6 

locus (Figure 4.1B). While the CNA were higher for the ER-positive (35.0%) (Figure 4.2A) 
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compared with the ER-negative (12.0%) (Figure 4.2B), LOH rates were similar comparing ER-

positive (41.2%) (Figure 4.3A) and ER-negative (35.2%) (Figure 4.3B). Analyzing according to 

intrinsic subtypes, LOH rates among the ER+ (luminal A [40.3%] luminal B [42.7%]) and basal- 

like (43.4%) subsets were similar but greater than that in the HER2-enriched subtype (15.1%) (P 

< .001, Pearson’s Chi Square Test). For each of these subtypes, a “zoomed-in plot” of the region 

containing the CYP2D6 gene is indicated (Figure 4.4 and Figure 4.5). A further analysis within 

the clinically defined HER2+ subset demonstrated that LOH rates were lower within the ER-

/HER2+ (14.3%) compared with ER+/ HER2+ (26.6%). 

 

Foundation Medicine Samples 

 The findings among the case patients comprising the FM cohort were similar to those 

from the TCGA cohort, where 82 of 201(40.8%) and 23 of 89 (25.8%) of the ER+ and ER- case 

patients, respectively, had LOH at the CYP2D6 locus (Figure 4.6). While copy- neutral LOH 

was similar in both ER+ and ER- (18.9% and 19.1%, respectively), the copy loss rate among 

ER+ case patients was statistically significantly greater relative to ER- case patients (21.9% vs 

6.7%; P = .001, two-sided Fisher’s exact test). Given that standard genotyping assays (eg, 

Taqman) may not be able to detect an allele that is present at low frequency because of LOH, 

CYP2D6 genotypes were determined using next generation sequencing (Table 4.1) and the 

potential effect of LOH on CYP2D6 genotype was assessed (Table 4.2). Among the 105 case 

patients with LOH, a substantial fraction had a low frequency of one of the germline alleles: 

under 20% (n = 27), under 10% (n = 7). If such samples were assumed to be homozygous, this 

would result in excessive number of homozygotes and, statistically, departure from HWE (Table 

4.2). 



! %(.!

NCCTG 89-30-52 Samples 

 The original CYP2D6 *4 genotyping results were derived from tumor FFPE (FFPE-T) 

and demonstrated departure from HWE (chi square = 16.1, P * .001) [4]. These case patients (n 

= 190) were reassessed using FFPE sections containing nonmalignant tissue (FFPE-NM) [16]. 

For CYP2D6 *4, the agreement was moderate comparing CYP2D6 *4 genotypes derived from 

FFP-T with FFPE-NM (weighted Kappa 0.74; 95% CI = 0.63 to 0.84), resulting in excess 

homozygous genotypes and departure from HWE (P < .001). Specifically, 15 original 

homozygous wild-type (Wt/Wt) cases were reclassified as heterozygous for *4 (Wt/*4) and three 

homozygous variant (*4/*4) were reclassified as (Wt/*4). The *4 discrepancies among the 

remaining five cases were likely unexplained by LOH (Table 4.3). An evaluation for HWE using 

the genotyping data derived from FFPE-NM demonstrated that CYP2D6*4 is within HWE (chi 

square = 1.34, P = .25).  

 To further investigate the observed discrepancy between these results, the CYP2D6 

genotypes derived from FFPE-T tumor [4] and FFPE-NM [16] were compared with CYP2D6*4 

genotype derived from buccal cells (germline). Among the 31 case patients with both FFPE-T 

and buccal cells available for CYP2D6*4 genotyping, there were six (19.4%) cases of 

disagreement. In four of these six case patients, CYP2D6 *4 genotypes classified as homozygous 

wild-type using FFPE-T were determined to be heterozygous for *4 (Wt/*4) using DNA derived 

from buccal cells, and, in another case, a homozygous variant (*4/*4) based on FFPE-T was 

classified as (Wt/*4) using DNA from buccal cells. One of the errors appeared to be unrelated to 

LOH, as the tumor-derived genotype of *4/*4 was classified as Wt/Wt using buccal cells. In 

contrast, among the 35 case patients with DNA from both FFPE-NM and buccal cells, there was 

100% agreement comparing CYP2D6 *4 genotypes from each source. 



! %(&!

DISCUSSION 

 Using two large breast cancer datasets, we have demonstrated the presence of extensive 

LOH at the CYP2D6 locus in breast cancer. Furthermore, our data demonstrate that 

determination of germline CYP2D6 genotype using cancer tissue can result in substantial 

departure from HWE, as was seen in the original NCCTG CYP2D6 analysis [4], ATAC [5], and 

BIG 1-98 [6] studies. In the cohorts examined in this study, CYP2D6 genotyping using DNA 

extracted from FFPE-T blocks resulted in erroneous classification of up to 40% of CYP2D6*4 

heterozygotes (intermediate metabolizers) as either extensive metabolizers or poor metabolizers.  

 Recently, Rae et al., in a cohort of 122 patients, extracted DNA from three 0.6-mm 

diameter cores obtained from FFPE breast tumor blocks as well as DNA derived from either 

normal lymph nodes or leukocytes [22]. Rae et al. used DNA from these sources to genotype for 

CYP2D6 and demonstrated a concordance rate of over 94% between these different sources, 

concluding that this modest quality control study was sufficient to support the use of breast 

cancer tissue for germline genotyping of CYP2D6 [22]. The results of our studies in this report 

clearly refute the conclusions of Rae and colleagues and provide further confirmation of the 

concerns raised by multiple authors [8–10] regarding the fidelity of the CYP2D6 genotyping 

performed in the context of the BIG 1-98 study [6]. 

 Quality control procedures are critical for accurate genotyping. This includes a 

requirement to develop assays for all relevant variants, particularly for a locus as complex as 

CYP2D6 [23]. An additional critical aspect of quality control relates to the source of DNA used 

for germline genotyping. In ATAC [5], FFPE tumor blocks from the trans-ATAC tumor 

collection were used for DNA extraction. In BIG 1-98 [6], DNA was extracted from one or two 1 
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mm cores that were punched into an area of the FFPE block most representative of the invasive 

tumor component.  

 Given our observation of LOH at the chromosomal locus containing CYP2D6, it was 

critical to understand whether the use of tumor DNA could contribute to the observed departures 

from HWE. In the FM cohort, nearly one-third of the tumors with LOH had a frequency of the 

germline allele under 20%, suggesting that use of a low-sensitivity polymerase chain reaction 

(PCR) assay could result in misclassification of heterozygous CYP2D6 genotypes as 

homozygous. Therefore, we directly compared CYP2D6 genotyping results from different 

laboratories using DNA from the same patients. In the original publication of the NCCTG 89-30-

52 clinical trial, CYP2D6 genotyping (using DNA extracted from tumors) was performed in the 

laboratory of Rae et al. at the University of Michigan [4]. When CYP2D6 genotyping was 

repeated at the Mayo Clinic using DNA derived from the same FFPE blocks but using whole 

tissue sections containing benign tissue, genotyping errors were identified, which appeared to be 

partially related to the lack of detection of low-frequency alleles in the 2005 analysis; however, 

additional discrepancies were observed that appear to be unrelated to LOH (Table 4.3). A full 

reanalysis of the NCCTG data set demonstrated that CYP2D6 genotypes met HWE, with 

complete agreement (35/35) between the updated genotype results with the germline (buccal) 

cells in those patients that provided a buccal sample. Furthermore, as previously reported, 

CYP2D6 genotype was statistically significantly associated with the risk of recurrence [16, 21].  

 In ATAC [5], the departure from HWE with regard to CYP2D6 *4 was similar in 

magnitude as observed in the original NCCTG CYP2D6 analysis (HWE +2 = 18.1, P = .000021). 

While we are confident in our conclusions that LOH at the CYP2D6 locus is common in breast 

cancer and that the use of tumor DNA for CYP2D6 genotype results in misclassification of 
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germline CYP2D6 genotype, we were unable to reproduce the extreme departure from HWE 

observed in BIG 1-98 (P = 10-92 ) [6]. Stanton noted that if LOH was the sole cause of deviation 

from HWE in BIG 1-98, the distorted genotype frequencies could be normalized by adjusting for 

LOH [9]. Therefore, we agree with Stanton that the extreme departure from HWE in BIG 1-98 

may be related to other factors, such as the use of nonstandard PCR techniques (use of upwards 

of 60 PCR cycles) [6].  

 Following the simultaneous publication of the CYP2D6 analyses of the ATAC and BIG 

1-98 data sets, the authors of these studies argued that testing for CYP2D6 has no value in 

clinical practice, and an accompanying editorial concluded that this matter can be likely laid to 

rest [24]. However, our findings have validated the initial concerns raised by multiple 

investigators regarding genotyping error [8–10] and the conclusions that were generated based 

on these erroneous data. It is now clear that data from ongoing prospective clinical trials will be 

necessary to settle the debate on whether or not CYP2D6 genotyping can identify patients in 

whom tamoxifen would be would be an inferior therapy. However, until such data are available, 

clinicians and patients should be aware of the data generated from secondary analyses of 

prospective clinical trials that support the importance of both CYP2D6 genotype [7, 16] and 

endoxifen concentrations [25] and that these data fulfill the basic criteria of Simon et al. for a 

“prospective-retrospective” design in which the biomarker test is analytically and preanalytically 

validated for use with archived tissue [26].  

 An important finding within the TCGA CYP2D6 analysis was the observation of a 

substantially higher rate of LOH within the luminal A (40%), luminal B (43%), and basal-like 

subsets (40%), compared with the HER2-enriched (15%) and normal-like (8%) subtypes. Within 

the clinically defined HER2+ subset, LOH rates were lower within the ER-/HER2+ (14%) 
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compared with ER+/ HER2+ (27%). Within the FM cohort, the CYP2D6 loss rate among ER+ 

case patients was statistically significantly greater relative to ER- case patients While the 

biological relevance of these findings is unknown, the demonstration of substantial LOH at 

chromosome 22q13, the cytogenetic segment which contains the CYP2D6 gene, has been 

implicated in breast [11], colon [11, 27], and insulinomas [28], suggesting that a putative tumor 

suppressor gene in this region may be important in the pathogenesis of cancer, and particularly in 

the luminal and basal-like subtypes of breast cancer. 

 There are some limitations to our study. While we have demonstrated that the use of 

tumor-derived DNA contributes to CYP2D6 genotyping error (analytical validity), this is 

unlikely to be the only factor contributing to the heterogeneity in the tamoxifen CYP2D6 

literature. In addition to “analytical validity,” Simon et al. pointed out that an “adequate number 

of patients with archived tissue must be present,” and suggested that the correlative study 

“include at least two-thirds of the total accrued patients” [26]. It should be noted that in the 

ATAC study, less than 19% of the patients receiving tamoxifen were analyzed with regard to 

CYP2D6 genotype. Lastly, Simon et al. pointed out the critical nature of “clinical validity” [26]. 

Here, it should be noted that the tamoxifen CYP2D6 literature contains variability in tamoxifen 

dosing (20-40 mg/day), duration of therapy (one to 10 years), ER status of the primary tumor, 

use of CYP2D6 inhibiting medications, and, finally, lack of control for drugs that alter the hazard 

for recurrence (chemotherapy and aromatase inhibitors) [21]. Therefore, we recommend careful 

control for each of these factors when analyzing and interpreting the tamoxifen CYP2D6 

literature.  

 In summary, we have provided definitive data from independent data sets that over 40% 

of primary and metastatic breast tumors exhibit tumor LOH at the CYP2D6 locus and that the 
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use of standard PCR (eg, Taqman) genotyping techniques applied to purified tumor DNA to 

detect germline CYP2D6 variation results in genotyping error because of an excess number of 

homozygotes and departure from HWE. Based on these results, we recommend that CYP2D6 

genotyping be repeated in those studies in which the use of tumor DNA to derive germline 

CYP2D6 genotype resulted in substantial departure from HWE. Furthermore, recommendations 

and/or guidelines for the use of CYP2D6 genotyping should not be derived from studies with 

evidence for genotyping error.  
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TABLES 
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CYP2D6 allele   Enzyme activity Count in FM 
cohort 

Frequency in 
FM cohort, % 

Expected 
frequency, 
% (20) (for 
Europeans) 

*1 or *2 Normal (wild-type) 461 64.0 63.1 
*4  None 120 16.7 17.2 
*41 Reduced 65 9.0 7.0 
*9  Reduced 15 2.1 2.5 
*10  Reduced 14 1.9 2.9 
*5(deletion of allele) None 11 1.5 3.2 
*6 None 7 1.0 0.6 
 *29 Reduced 7 1.0 0 
*3  None 6 0.8 0.3 
*17 Reduced 4 0.6 0 
Other rare alleles Various 10 1.4 0.4 
Tandem duplications Increased  Not assessed  Not assessed 2.8 
* CYPD6 = cytochrome P450 2D6; FM = Foundation Medicine; NGS = next generation 
sequencing. 
!

!

!

&'()*+!,-!ZM>!LD2>A2"19!>NN>J2K!DN!BT;(U-!2EID<!7:[!DA![1<HP!\>"AO><G!>WE"9"O<"EI!

! B9"A"J19!
KEO2PL>!

[\]!2>K2V!
BT;(U-!Y+!

[\]!2>K2V!
BT;(U-!Y+%!

X08/O1K>H!J199K! ]^_! )6)),! )6%'!
X08/O1K>H!J199K! ]^/! )6',! )6.,!
X08/O1K>H!J199K! F99! )6)(! )6%%!
Y0><I9"A>!199>9>!`%)a! ]^_! .6(!$!%)/+! )6%-!
Y0><I9"A>!199>9>!`%)a! ]^/! )6.&! )6.,!
Y0><I9"A>!199>9>!`%)a! F99! *6(!$!%)/+! )6)'!
Y0><I9"A>!199>9>!`%)a! ]^_! %6(!$!%)/-! )6)+!
Y0><I9"A>!199>9>!`%)a! ]^/! )6)%&! )6.,!
Y0><I9"A>!199>9>!`%)a! F99! &6*!$!%)/&! )6)(!
Y![1<HP!\>"AO><G!>WE"9"O<"EI!J19JE912"DA!1KKEI"AG!1!9Db/K>AK"2"#"2P!
G>AD2PL"AG!1KK1P!bDE9H!I"KJ91KK"NP!2M>!9Db!N<>WE>AJP!199>9>!1K!
MDID3PGDEK6!BT;U-!c!JP2DJM<DI>!;+,)!(U-d!]^!c!>K2<DG>A!<>J>L2D<d![\]!
c![1<HP!\>"AO><G!>WE"9"O<"EId!7:[!c!9DKK!DN!M>2><D3PGDK"2Pd!X08!c!A>$2!
G>A><12"DA!K>WE>AJ"AG6!



! %*+!

&'()*+!,.!BT;(U-Y+!G>AD2PL>K!DO21"A>H!N<DI!@@;]!O9DJ=K!>A<"JM>H!ND<!2EID<!D<!O>A"GA!
2"KKE>K!

 CYP2D *4 genotype using 
DNA from tumors containing 
benign tissues (16) 

 

CYP2D6 *4 genotype 
using tumor-enriched 
DNA(4) 

Wt/Wt Wt/*4 *4/*4 No call on 
updated 
analysis 

Total 

Wt/Wt 121 15 1   
Wt/*4  2 34 0   
*4/*4 2 3 8   
Total 125 52 9   
* CYPD6 = Cytochrome P450 2D6; FFPE = formalin-fixed paraffin-embedded; Wt = 
wild-type. 
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FIGURES 

 

 
 
Figure 4.1 Cytochrome P450 2D6 (CYP2D6) copy number alterations (A) and loss of 
heterozygosity (B) within the entire Cancer Genome Atlas cohort. CNA = copy number 
alteration; LOH = loss of heterozygosity. 
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Figure 4.2. Cytochrome P450 2D6 (CYP2D6) copy number alterations within The Cancer 
Genome Atlas estrogen receptor (ER)–positive (A) and ER-negative (B) cohorts. CNA = copy 
number alteration; ER = estrogen receptor. 
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Figure 4.3 Cytochrome P450 2D6 (CYP2D6) loss of heterozygosity within The Cancer Genome 
Atlas estrogen receptor (ER)–positive (A) and ER-negative (B) cohorts. ER = estrogen receptor; 
LOH = loss of heterozygosity. 
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Figure 4.4 Cytochrome P450 2D6 (CYP2D6) Loss of Heterozygosity (LOH) rates according to 
intrinsic subtypes:  Luminal A (A), Luminal B (B) within The Cancer Genome Atlas (TCGA) 
samples.  The CYP2D6 gene is indicated by a yellow line. 
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Figure 4.5 Cytochrome P450 2D6 (CYP2D6) Loss of Heterozygosity (LOH) rates according to 
intrinsic subtypes Basal (A) and HER2 (B) within The Cancer Genome Atlas (TCGA) samples.  
The CYP2D6 gene is indicated by a yellow line. 
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Figure 4.6 Frequency of Cytochrome P450 2D6 (CYP2D6) loss of heterozygosity within the 
Foundation Medicine estrogen receptor (ER)–positive (A) and ER-negative (B) cohorts. Tumor 
LOH is denoted in red. ER = estrogen receptor. 
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CHAPTER 5 

CONCLUSION 
 

 

 Numerous hallmarks of cancers have been proposed including sustaining proliferative 

signaling, activating metastasis and invasion, evading growth suppressors, resisting cell death, 

and inducing angiogenesis [1].  The function of these hallmarks are fostered, and at times 

accelerated, by genomic instability. In tumors, increases in genomic instability and aneuploidy 

are usually associated with poor patient prognosis. Early on, the focus of copy number analyses 

research favored whole arm/whole chromosome changes that were traditionally studied by 

spectral karyotyping. However, using high-density arrays, this work demonstrated that many of 

the sub-chromosomal changes, which are less characterized, are also significant and detrimental 

in complex human disease. Understanding how DNA Copy Number Alterations (CNAs) promote 

disease is an important challenge and is further complicated by the complexity of cancer. We 

demonstrate that one single strategy, which has normally been presented in copy number 

analyses, is not sufficient to fully understand the role of CNAs in breast cancer progression. 

 In breast cancer, numerous genetic alterations have been identified and demonstrate 

clinical implications, with the best example being the biological and clinical importance of 

HER2 amplification. We highlighted another class of potential drivers that have yet to be 

established in the clinical setting. This copy number based approach identified targets that were 

rarely mutated, and drivers where the genetic alteration is used as a mechanism for differential
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gene expression and cellular changes. In addition, we demonstrated that numerous genes could 

be targeted by a single alteration, where in essence a given amplification in fact has at least three 

driver genes as opposed to the more conventional expectation that a given CNA has a single 

target gene. More importantly, we demonstrated that a single alteration could lead to disruptions 

of multiple pathways with similar, or diverse, downstream biological processes that promote the 

cancer phenotype. These findings support the use of combinatorial-targeted drug therapies and 

can further help in the development of new ‘personalized’ cancer treatment options.  

 Previous studies have demonstrated the heterogeneity of breast cancers, and used 

histopathological features as prognostics for clinical outcomes. More recently, various 

molecular-profiling methods are used to identify and characterize new clinically relevant 

features. The increase in high-throughput molecular data from cancer-profiling projects using 

microarrays (and now next-generation sequencing) platforms creates great research 

opportunities, but also significant computational challenges for analysis and interpretation. These 

challenges emphasized the necessity of integrative analyses, and the need to investigate multi-

dimensional interactions across multi-level ‘-omics’ data types. For example, integrative 

analyses can incorporate data from different sample types (i.e. germline DNA genotypes, tumor, 

or model system samples), different disease states (i.e. normal or malignant), and multi-level 

classified data that may include histopathology, genetics, transcriptomics and/or proteomics 

features.  

 Given the growing importance of integrative analyses, it was also important to point out 

necessary caveats. From a statistical perspective, as we increased the dimensionality in the 

analyses we also increased the amount of unknown parameters. Therefore, we selected data 

where the underlying relationships between the levels are known (i.e. similar copy number 



! %+-!

changes are present and spontaneously occurring cross-species). Furthermore, various 

normalization steps were performed, including numerous data checks to test and correct for 

platform batch effects, and to adjust the data to the same scale (both technically or biologically). 

From a biological perspective, this work demonstrated that multiple potential drivers can exists 

within a single region of CNA, and as a result, different strategies may identify different drivers 

within the same altered region. 

 The integrative analyses in Chapter 2 showed a novel way to comprehensively compare 

CNAs observed in human breast cancer subtypes and genetically engineered mouse (GEM) 

mammary tumor models. We highlighted regions of shared CNAs between human breast tumors 

and GEM models that also shared similar gene expression features, with a particular emphasis on 

basal-like breast cancers. We demonstrated that there was not a single GEM mammary model 

that shared an overall defining pattern of CNAs with any single human breast intrinsic subtype; 

however, numerous sub-chromosomal commonalities were identified, and were the focus of our 

additional analyses. These analyses incorporated additional functional resources using data from 

a RNAi screen, DNA to RNA correlations, and a DawnRank network analysis [2] to develop a 

comprehensive map of essential breast cancer driver genes on a few selected conserved CNAs. 

Importantly, this work provided a preclinical resource for selecting GEM mammary models for 

therapeutic response testing based upon the genetics shared between human tumors and mouse 

models. 

 Interestingly, the majority of conserved CNAs between humans and mice were identified 

in the Basal-like breast cancer subtype. We suggest this is due to the fact these CNAs are altering 

pathways that promote the Basal-like phenotype such as PIK3CA/AKT and NOTCH signaling 

pathways. Additionally, we demonstrated that chromosome 1 is a rich region of CNAs across all 
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subtypes, especially for the Basal-like subtype. And unlike previous works that could not narrow 

down the driving genes of 1q arm amplification, we’ve highlighted a more target-gene 

concentrated region of 1q21-23 that contains multiple drivers. Here we highlighted PI4KB, 

SHC1, and NCSTN as candidate Basal-like-specific driving genes. These results suggested that 

the strategy presented in Chapter 2 was sensitive enough to identify regions of CNAs that harbor 

multiple drivers within an amplicon while still filtering out “passenger” genes. 

 Another example of using integrative analyses to highlight driving genes within CNAs 

was shown in Chapter 3. In this study, experimentally derived gene expression signatures of 

signaling pathway activity, and a RNAi screen dataset, was used to identify the driver genes 

within CNAs that were associated with high proliferation among luminal/ER+ breast cancers. 

Gene expression signatures provided an essential tool by highlighting patterns of pathway 

deregulation that reflect activation of various oncogenic pathways, like proliferation. Using 

experimentally derived gene-expression signatures, we were able to define subtype-specific 

patterns of oncogenic signaling and identified a novel drug target that regulates fatty acid 

oxidation (i.e. CTP1A).  

 In Chapter 3, we highlighted known characteristics of each subtype such as low hormone 

receptor signaling, mutant p53 signaling and high proliferation activity in Basal-like/triple-

negative breast cancers. In addition numerous significant correlations were highlighted between 

gene expression signatures of shared pathways such as between separate MYC signatures, and 

between PIK3CA and PTEN-deleted signatures. Significant correlations were also observed 

between signatures from separate pathways but that shared similar associations such as EGFR-

mediated activation of STAT3 signaling resulting in the observed concordance between STAT3 

and EGFR signatures.  



! %+&!

 We highlighted expected finding such as an association between the RB-LOH signature 

and RB1 DNA copy number loss and also with HER2/ERBB2 amplicon and the HER2-AMP 

signature. In addition, we presented many novel correlations, including a set of amplified genes 

associated with the PAM50 proliferation signature [3] that was specific to proliferative luminal 

tumors. This association is particularly interesting as defects in cell-cycle regulation are 

hallmarks of cancer progression. Additional RNAi screen data was used to filter out non-

essential genes in the region highlighting FGD5, METTL6, CPT1A, DTX3, MRPS23, EIF2S2, 

EIF6 and SLCA10 as essential genes, and which also demonstrate prognostic characteristics. 

 Another clinically relevant implication of CNAs analyses was highlighted in Chapter 4. 

In this chapter, we aimed to address the controversy regarding the impact of CYP2D6 genotype 

on tamoxifen responsiveness. Tamoxifen, an effective breast cancer treatment in the subgroup of 

ER+ patients, demonstrates anti-estrogen properties and inhibits estrogen-dependent breast 

cancer growth. As a result, tamoxifen is often used to treat all stages of ER+ breast cancer. The 

most potent metabolite of tamoxifen is produced as a result of a cyotchrome p450 enzymes [4], 

which is encoded by the CYP2D6 gene. Previously, pharmacodynamics studies demonstrated 

varying results as to whether CYP2D6 genotype is associated with a patient’s ability to 

metabolize tamoxifen with the potential high metabolizing variants predicting response, and the 

low tamoxifen metabolizing alleles predicting resistance. 

 This work addressed previous concerns that somatic deletion and/or LOH at CYP2D6 

distorts genotype calls and lead to excessive homozygous assignments, and thus, incorrect 

genotype calls. We evaluated the frequency of LOH and copy number loss across multiple 

cohorts. We identified frequent copy number loss and LOH at CYP2D6 in breast cancer patients 

(~30%). This region of copy number loss was more frequently observed in ER-positive patients 
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(i.e. patients that are offered Tamoxifen therapies) compared to ER-negative, whereas, the rate of 

LOH was comparable across both patient group. In addition, we compared genotyping results in 

the same group of patients across different labs and observed that when tumor DNA was used to 

infer germline CYP2D6 genotype, this resulted in genotyping error and the misclassification of 

some patients which affects whether or not, and potentially at what dose, a patient might receive 

Tamoxifen treatment.  

 In conclusion, my dissertation demonstrated two separate clinical utilities of CNA 

analyses in breast cancer; one includes highlighting driver genes on frequent regions of CNA, 

and the other highlights the effect of CNAs on the genotype calls used to predict a patients’ 

therapeutic responsiveness. The two integrative analyses presented in Chapter 2 and Chapter 3 

were successful in identifying driver genes within regions of CNAs and discovering the 

functional implications of identified CNAs in subtype-specific breast cancer progression. 

However, the analyses highlighted in Chapter 2 and Chapter 3 does share some limitations. In 

both chapters we were confounded by the amount that either mouse models or gene expression 

signatures recapitulate driving human breast cancer features. To validate all potential targets 

identified in these chapters will require new experiments, both at the bench and computationally. 

In some cases published functional analyses were already performed  (i.e. NCSTN in Chapter 2). 

In these cases a comprehensive data-mining approach to match identified genes with relevant 

published functional experiments is feasible and provides for quick functional validation of our 

computational findings.  

 For the cases where published functional information is unavailable, we suggest 

additional biological experiments, which likely include forward genetics (cDNA 

overexpression), or reverse genetic (RNAi or CRISPR) type experiments.  These experiments 
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would likely incorporate breast cancer cell lines such as ME16C, SUM102, SUM149 and MCF7 

to act as a model system. In these experiments, CNAs can be identified as was described in 

Chapter 2 or through publically available resources such as the Cancer Cell Line Encyclopedia 

[5]. Using cell lines, an identified altered gene can be functionally characterized through 

additional experiments that over-expresses the gene, alters the protein function via drug-delivery, 

or compare growth in soft agar (which only cancer cells can do) with and without the gene of 

interest. Any biologically validated genes can then be compared with the clinical outcomes of 

patients who, for example, highly express that given amplified gene, to see if expression and/or 

alteration demonstrate any prognostic or predictive benefits. The work presented provides 

important insights and strategies to understand and characterize the genetic and cellular defects 

that promote the cancer phenotype using a novel analysis of DNA CNAs and a logical 

computational strategy, which can be applied to multiple tumor types. 
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APPENDIX 1 

 
Basal-specific conserved 1q segments of CNAs with frequency >= 15% 
  

Chr Start Stop % Subtype-Specific  Segment Genes CNA Mouse Groups 

1 120315523 144109392 0.35 REG4, ADAM30, NOTCH2 GAIN C3Tag, Myc 

1 144369072 145390170 0.37 PDE4DIP, SEC22B GAIN C3Tag, Myc 

1 145406799 145431022 0.52 HFE2 GAIN C3Tag 

1 145431022 145464501 0.53 TXNIP GAIN C3Tag 

1 145464501 145737051 0.54 ANKRD34A, LIX1L, RBM8A, GNRHR2, PEX11B, 
PIAS3, NUDT17, POLR3C, RNF115, CD160 GAIN C3Tag, Myc 

1 146101240 148205520 0.57 PRKAB2, FMO5, CHD1L, BCL9, ACP6 GAIN C3Tag, Myc 

1 149850351 149935164 0.59 HIST2H2BE, HIST2H2AC, HIST2H2AB, BOLA1, 
SV2A, SF3B4, MTMR11 GAIN C3Tag 

1 150102064 150184759 0.61 PLEKHO1 GAIN C3Tag 

1 150184759 150372866 0.62 ANP32E, MRPS21, PRPF3 GAIN C3Tag 

1 150372866 150673482 0.62 TARS2, ECM1, ADAMTSL4, ENSA, GOLPH3L GAIN C3Tag 

1 150673606 150763841 0.62 CTSS GAIN C3Tag 

1 150763841 150908906 0.62 CTSK, ARNT GAIN C3Tag 

1 150929687 151773763 0.62 

LASS2, ANXA9, FAM63A, PRUNE, BNIPL, 
CDC42SE1, MLLT11, GABPB2, SEMA6C, TNFAIP8L2, 
LYSMD1, SCNM1, TMOD4, VPS72, PIP5K1A, PI4KB, 
RFX5, PSMB4, POGZ, CGN, TUFT1, MIR554, SNX27, 

CELF3, MRPL9, TDRKH 

GAIN C3Tag 

1 151773763 151814405 0.61 C2CD4D, LOC100132111 GAIN ClaudinLow, 
C3Tag 

1 151880387 152067728 0.62 S100A10, S100A11 GAIN ClaudinLow, 
C3Tag 

1 152067728 152208144 0.62 TCHH, RPTN, HRNR GAIN ClaudinLow, 
C3Tag 

1 152233280 152643406 0.64 FLG2, CRNN, CRCT1, LCE3C, LCE3B, LCE3A GAIN C3Tag 

1 152661380 153346263 0.64 

KPRP, LCE1F, LCE1E, LCE1C, LCE1B, LCE6A, SMCP, 
IVL, SPRR4, SPRR1A, SPRR3, SPRR1B, SPRR2D, 

SPRR2B, SPRR2E, SPRR2F, SPRR2G, LELP1, LOR, 
PGLYRP3, PGLYRP4 

GAIN C3Tag 

1 153354347 153576396 0.64 S100A8, S100A7A, S100A6, S100A5, S100A4, S100A3 GAIN C3Tag 

1 153576396 154012535 0.63 
S100A16, S100A14, S100A13, C1orf77, SNAPIN, ILF2, 

NPR1, INTS3, SLC27A3, GATAD2B, DENND4B, 
SLC39A1, CREB3L4, JTB, JTB, RPS27 

GAIN C3Tag 

1 154105694 154234864 0.63 TPM3, MIR190B GAIN C3Tag 

1 154270185 154318564 0.62 ATP8B2 GAIN C3Tag 

1 154318564 154670097 0.63 UBE2Q1, ADAR GAIN C3Tag 

1 154807935 155175657 0.62 
PMVK, PYGO2, SHC1, CKS1B, FLAD1, LENEP, 

ZBTB7B, DCST2, DCST1, DPM3, KRTCAP2, TRIM46, 
MUC1, MIR92B 

GAIN C3Tag 

1 155175657 155269798 0.63 GBA, FAM189B, SCAMP3 GAIN C3Tag 

1 155269798 155551091 0.62 FDPS, C1orf104, RUSC1, ASH1L, MIR555, LOC645676 GAIN C3Tag 

1 155556216 155699118 0.62 MSTO1 GAIN C3Tag 

1 155808785 155922229 0.60 SYT11, RIT1, RXFP4 GAIN C3Tag 

1 155936658 156321154 0.60 
SSR2, UBQLN4, RAB25, MEX3A, LMNA, SEMA4A, 

SLC25A44, PMF1, BGLAP, PAQR6, SMG5, TMEM79, 
CCT3, C1orf182 

GAIN C3Tag 

1 156321154 156545720 0.59 RHBG, MEF2D, IQGAP3 GAIN C3Tag 
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1 156545720 156587032 0.60 TTC24, APOA1BP, GPATCH4 GAIN C3Tag 

1 156587032 157009095 0.59 
HAPLN2, BCAN, NES, CRABP2, ISG20L2, MRPL24, 

HDGF, PRCC, SH2D2A, NTRK1, NTRK1, INSRR, 
PEAR1 

GAIN C3Tag 

1 157009095 157324089 0.59 ETV3L, ETV3, CYCSP52 GAIN C3Tag 

1 157324089 157657927 0.58 FCRL5 GAIN C3Tag 

1 157657927 158585877 0.57 FCRL1, CD5L GAIN C3Tag 

1 160043165 160439014 0.57 
KCNJ9, IGSF8, ATP1A2, ATP1A4, CASQ1, DCAF8, 

PEX19, COPA, SUMO1P3, NCSTN, NCSTN, NHLH1, 
VANGL2 

GAIN C3Tag, 
p53null_Basal 

1 160439014 160626897 0.58 SLAMF6, SLAMF1 GAIN p53null_Luminal 

1 160630352 160735536 0.59 CD48, SLAMF7 GAIN p53null_Luminal 

1 162023809 162694593 0.61 NOS1AP, MIR556, UHMK1, UAP1 GAIN p53null_Basal, 
p53null_Luminal 

1 162695676 162802177 0.61 HSD17B7 GAIN p53null_Basal, 
p53null_Luminal 

1 162926083 163194263 0.59 RGS4, RGS5 GAIN p53null_Basal, 
p53null_Luminal 

1 202542202 202901068 0.45 KDM5B GAIN p53null_Luminal 

1 202992792 203977548 0.45 FMOD GAIN ClaudinLow 

1 204164507 204187207 0.45 GOLT1A GAIN ClaudinLow, 
p53null_Luminal 

1 204674026 205386068 0.45 NFASC GAIN ClaudinLow, 
p53null_Luminal 

1 207257303 207792896 0.43 CD55 GAIN ClaudinLow 
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APPENDIX 2 

Chromosome 1 subtype-specific conserved CNAs with frequency >= 15% and concordant with 
gene expression in Humans 
 

Chr 

Start Stop % 

CNA 

Mouse Group 

Concordant DNA/RNA Gene Subtype 

1 76174149 77155253 0.17 GAIN MixedRb_C3Tag , ST6GALNAC3 Basal 

1 78405135 78535584 0.20 GAIN MixedRb_C3Tag , FUBP1 Basal 

1 84505777 84732529 0.21 GAIN MixedRb_C3Tag , PRKACB Basal 

1 84915300 85310085 0.21 GAIN MixedRb_C3Tag , GNG5, GNG5, CTBS, SSX2IP Basal 

1 85311192 85537890 0.21 GAIN MixedRb_C3Tag , MCOLN2 Basal 

1 86037551 86753596 0.22 GAIN MixedRb_C3Tag , CYR61 Basal 

1 86753596 87297758 0.23 GAIN MixedRb_C3Tag , ODF2L, SH3GLB1 Basal 

1 87436385 89979180 0.23 GAIN MixedRb_C3Tag , LMO4, GTF2B, GBP2, GBP6 Basal 

1 91482031 92144933 0.22 GAIN MixedRb_C3Tag , CDC7 Basal 

1 92332865 92754726 0.21 GAIN MixedRb_C3Tag , EPHX4, BTBD8 Basal 

1 94323020 94402263 0.23 GAIN MixedRb_C3Tag , DNTTIP2, GCLM Basal 

1 94402263 94847424 0.22 GAIN MixedRb_C3Tag , ABCA4 Basal 

1 94847424 95095305 0.22 GAIN MixedRb_C3Tag , ABCD3, F3 Basal 

1 95095305 95481339 0.21 GAIN MixedRb_C3Tag , SLC44A3, CNN3 Basal 

1 113655140 116683656 0.22 GAIN MixedRb_C3Tag 
, RSBN1, BCL2L15, AP4B1, DCLRE1B, 
HIPK1, TSPAN2, CASQ2, SLC22A15 Basal 

1 116947174 117783083 0.24 GAIN 
MixedRb_C3Tag, 
p53null2, Wap_Myc , IGSF3, CD101, TRIM45, VTCN1 Basal 

1 118147744 118546081 0.25 GAIN 
MixedRb_C3Tag, 
p53null2 , FAM46C, GDAP2 Basal 

1 119419556 119735326 0.29 GAIN 
MixedRb_C3Tag, 
p53null2 , WARS2 Basal 

1 120315523 144109392 0.35 GAIN 
MixedRb_C3Tag, 
Wap_Myc , NOTCH2 Basal 

1 144369072 145390170 0.37 GAIN 
MixedRb_C3Tag, 
Wap_Myc , PDE4DIP, SEC22B Basal 

1 145464501 145737051 0.54 GAIN 
MixedRb_C3Tag, 
Wap_Myc 

, ANKRD34A, GNRHR2, PEX11B, PIAS3, 
NUDT17, POLR3C, RNF115, CD160 Basal 

1 145792064 150025833 0.50 GAIN MixedRb_C3Tag , BOLA1, SF3B4, MTMR11, OTUD7B LumA 

1 146101240 148205520 0.57 GAIN 
MixedRb_C3Tag, 
Wap_Myc , PRKAB2, FMO5, CHD1L, BCL9, ACP6 Basal 

1 149850351 149935164 0.59 GAIN MixedRb_C3Tag , HIST2H2AC, BOLA1, SF3B4, MTMR11 Basal 

1 150184759 150372866 0.62 GAIN MixedRb_C3Tag , ANP32E, MRPS21, PRPF3 Basal 

1 150189284 150401522 0.50 GAIN MixedRb_C3Tag , ANP32E, MRPS21, PRPF3 LumA 

1 150372866 150673482 0.62 GAIN MixedRb_C3Tag , TARS2, ECM1, ENSA, GOLPH3L Basal 

1 150402288 150677017 0.50 GAIN MixedRb_C3Tag , TARS2, ECM1, ENSA, GOLPH3L LumA 

1 150677017 151008852 0.50 GAIN MixedRb_C3Tag 
, ARNT, SETDB1, LASS2, FAM63A, 
PRUNE LumA 

1 150763841 150908906 0.62 GAIN MixedRb_C3Tag , ARNT Basal 

1 150929687 151773763 0.62 GAIN MixedRb_C3Tag 

, LASS2, FAM63A, PRUNE, BNIPL, 
CDC42SE1, GABPB2, SEMA6C, LYSMD1, 
SCNM1, TMOD4, VPS72, PIP5K1A, 
PI4KB, RFX5, PSMB4, POGZ, CGN, 
SNX27, MRPL9, TDRKH Basal 

1 151062957 151321770 0.50 GAIN MixedRb_C3Tag 
, SEMA6C, LYSMD1, SCNM1, TMOD4, 
VPS72, PIP5K1A, PI4KB, RFX5 LumA 
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1 151321770 151409843 0.50 GAIN MixedRb_C3Tag , PSMB4 LumA 

1 151409843 151575155 0.50 GAIN MixedRb_C3Tag , CGN LumA 

1 151659023 151789548 0.50 GAIN 
MixedGroup, 
MixedRb_C3Tag , MRPL9, TDRKH, LINGO4 LumA 

1 151773763 151814405 0.61 GAIN 
MixedGroup, 
MixedRb_C3Tag , LOC100132111 Basal 

1 151789548 151880754 0.50 GAIN 
MixedGroup, 
MixedRb_C3Tag , LOC100132111 LumA 

1 151880387 152067728 0.62 GAIN 
MixedGroup, 
MixedRb_C3Tag , S100A10, S100A11 Basal 

1 151880754 152292453 0.50 GAIN 
MixedGroup, 
MixedRb_C3Tag , S100A10, S100A11 LumA 

1 153354347 153576396 0.64 GAIN MixedRb_C3Tag , S100A8, S100A6 Basal 

1 153576396 154012535 0.63 GAIN MixedRb_C3Tag 

, S100A16, S100A14, C1ORF77, SNAPIN, 
ILF2, INTS3, GATAD2B, DENND4B, 
SLC39A1, JTB, JTB, RPS27 Basal 

1 154105694 154234864 0.63 GAIN MixedRb_C3Tag , TPM3 Basal 

1 154318564 154670097 0.63 GAIN MixedRb_C3Tag , UBE2Q1, ADAR Basal 

1 154807935 155175657 0.62 GAIN MixedRb_C3Tag 

, PMVK, PYGO2, SHC1, CKS1B, FLAD1, 
ZBTB7B, DCST2, DPM3, KRTCAP2, 
TRIM46, MUC1 Basal 

1 155175657 155269798 0.63 GAIN MixedRb_C3Tag , GBA, FAM189B, SCAMP3 Basal 

1 155269798 155551091 0.62 GAIN MixedRb_C3Tag , RUSC1, LOC645676 Basal 

1 155556216 155699118 0.62 GAIN MixedRb_C3Tag , MSTO1 Basal 

1 155808785 155922229 0.60 GAIN MixedRb_C3Tag , RIT1 Basal 

1 155936658 156321154 0.60 GAIN MixedRb_C3Tag 

, SSR2, UBQLN4, RAB25, MEX3A, 
LMNA, SEMA4A, SLC25A44, PMF1, 
BGLAP, PAQR6, SMG5, TMEM79, 
C1ORF182 Basal 

1 156321154 156545720 0.59 GAIN MixedRb_C3Tag , MEF2D, IQGAP3 Basal 

1 156545720 156587032 0.60 GAIN MixedRb_C3Tag , APOA1BP, GPATCH4 Basal 

1 156587032 157009095 0.59 GAIN MixedRb_C3Tag 
, CRABP2, ISG20L2, MRPL24, HDGF, 
PRCC Basal 

1 157009095 157324089 0.59 GAIN MixedRb_C3Tag , ETV3L Basal 

1 160043165 160439014 0.57 GAIN 
MixedRb_C3Tag, 
p53null1 

, IGSF8, DCAF8, PEX19, NCSTN, NCSTN, 
VANGL2 Basal 

1 160197660 160372346 0.51 GAIN 
MixedRb_C3Tag, 
p53null1, p53null2 , PEX19, NCSTN, NCSTN LumA 

1 160906176 163790065 0.18 GAIN p53null2 

, F11R, USF1, PVRL4, KLHDC9, DEDD, 
DEDD, UFC1, PPOX, B4GALT3, 
ADAMTS4, NDUFS2, NR1I3, NR1I3, 
PCP4L1, C1ORF192, DUSP12, ATF6, 
UHMK1, UAP1, HSD17B7, NUF2 

Claudin-
Low 

1 162023809 162694593 0.61 GAIN p53null1, p53null2 , UHMK1, UAP1 Basal 

1 162695676 162802177 0.61 GAIN p53null1, p53null2 , HSD17B7 Basal 

1 167718720 170486625 0.18 GAIN p53null2 

, ADCY10, DCAF6, DCAF6, GPR161, 
TIPRL, TBX19, NME7, NME7, SLC19A2, 
SCYL3, KIFAP3 

Claudin-
Low 

1 168137580 168255773 0.67 GAIN p53null1, p53null2 , TIPRL LumB 

1 169049881 169622927 0.37 GAIN p53null1, p53null2 , NME7 Her2 

1 169622927 169957961 0.38 GAIN p53null1, p53null2 , SCYL3 Her2 

1 169728459 170031491 0.68 GAIN p53null1, p53null2 , SCYL3 LumB 

1 170453516 170634305 0.68 GAIN p53null2 , GORAB LumB 

1 182988016 184909056 0.18 GAIN p53null2 , SMG7, ARPC5, TSEN15, EDEM3 
Claudin-
Low 

1 202542202 202845388 0.73 GAIN p53null2 , SYT2, KDM5B LumB 
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1 202542202 202901068 0.45 GAIN p53null2 , KDM5B Basal 

1 202845388 203372186 0.73 GAIN MixedGroup 
, RABIF, KLHL12, ADIPOR1, CYB5R1, 
PPFIA4, ADORA1, MYBPH, BTG2 LumB 

1 203372186 204393038 0.73 GAIN 
MixedGroup, 
p53null2 

, SOX13, KISS1, GOLT1A, PLEKHA6, 
PPP1R15B LumB 

1 204164507 204187207 0.45 GAIN 
MixedGroup, 
p53null2 , GOLT1A Basal 

1 204393582 204863970 0.73 GAIN 
MixedGroup, 
p53null2 , MDM4, LRRN2 LumB 

1 205035520 205333969 0.73 GAIN MixedGroup , TMEM81, RBBP5, DSTYK, NUAK2 LumB 

1 205333969 206253777 0.73 GAIN MixedGroup 
, CDK18, MFSD4, ELK4, SLC45A3, 
NUCKS1, RAB7L1, SLC41A1, FAM72A LumB 

1 206617766 206976274 0.72 GAIN MixedGroup , IKBKE, DYRK3, MAPKAPK2 LumB 

1 206976766 207086194 0.72 GAIN MixedGroup , IL20 LumB 

1 207086194 207153759 0.71 GAIN MixedGroup , PIGR LumB 

1 207205030 207256205 0.72 GAIN MixedGroup , YOD1, PFKFB2 LumB 

1 207257303 207792896 0.43 GAIN MixedGroup , CD55 Basal 

1 207260606 207864198 0.72 GAIN MixedGroup , CD55 LumB 
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APPENDIX 3 

Top 5% DawnRank Scores 
 

Gene DawnRankPvalue DawnRankRawScore 

PRCC 0.0956 0.8326 

STX6 0.0954 0.8328 

UBE2Q1 0.0944 0.8341 

SNAPIN 0.0942 0.8343 

KLHL12 0.0914 0.8379 

RAP1A 0.0893 0.8407 

CASP9 0.0882 0.8421 

PI4KB 0.0877 0.8428 

GATAD2B 0.0870 0.8437 

GTF2B 0.0867 0.8441 

BPNT1 0.0861 0.8449 

MAPKAPK2 0.0850 0.8464 

SMG5 0.0842 0.8475 

RAB4A 0.0800 0.8533 

DEDD 0.0800 0.8534 

VPS45 0.0776 0.8569 

PSEN2 0.0743 0.8617 

ZBTB17 0.0740 0.8621 

ACTN2 0.0725 0.8643 

NGF 0.0703 0.8677 

LCK 0.0671 0.8727 

JAK1 0.0664 0.8739 

HNRNPU 0.0648 0.8765 

HDAC1 0.0614 0.8822 

GNAI3 0.0596 0.8853 

F11R 0.0577 0.8886 

FCER1A 0.0572 0.8895 

JUN 0.0557 0.8924 

SETDB1 0.0523 0.8987 

CDC42 0.0506 0.9020 

FCGR2B 0.0476 0.9082 

DHX9 0.0465 0.9105 

IKBKE 0.0399 0.9251 

NCSTN 0.0394 0.9264 

FCER1G 0.0390 0.9273 

PTPRC 0.0383 0.9290 

FASLG 0.0377 0.9306 

AKT3 0.0336 0.9411 

ACTA1 0.0315 0.9469 

SHC1 0.0286 0.9558 

CD247 0.0274 0.9593 
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POU2F1 0.0265 0.9624 

ARNT 0.0246 0.9688 

ARF1 0.0238 0.9715 
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APPENDIX 4 

Multivariate survival analaysis of prognostic markers 
   

TCGA Variable Univariate 
P-value 

Hazard 
Ratio 

Multivariate 
FGD5 

Hazard 
Ratio 

Multivariate 
METLL6 

Hazard 
Ratio 

Multivariate 
CPT1A 

Hazard 
Ratio 

FGD5 8.91E-05 3.6120 0.0175 2.6298       
METTL6 0.0006 3.1500     0.0256 2.4917     
CPT1A 0.3720 1.3340       0.4430 1.3574 
DTX3 0.0435 2.0720           

MRPS23 0.0097 2.4250           
EIF2S2 0.7690 1.0990           

EIF6 0.6250 1.1630           
SLC2A10 0.9440 1.0220           

Age 0.0205 1.0280 0.0006 1.0524 0.0006 1.0519 0.0005 1.0537 
Stage 0.5780 1.1040 0.6387 1.0524 0.6645 0.8970 0.6998 0.9104 

ER.Statuspos 0.3850 0.6612 0.1195 0.3805 0.1352 0.3944 0.1728 0.4163 

HER2.Statuspos 0.8210 0.8972 0.0241 0.2007 0.0219 0.1913 0.0305 0.1957 

Node.Status 0.0542 1.3830 0.1907 1.2983 0.2152 1.2787 0.2069 1.2799 
PAM50LumB 0.0078 2.4860 0.7205 1.2335 0.7297 1.2234 0.7911 0.8527 
PAM50Her2 0.0098 2.8210 0.1174 3.3879 0.1210 3.3601 0.2495 2.4861 

Proliferation.Score 0.0006 3.5540 0.1105 2.9367 0.1025 3.0054 0.0182 4.8883 

         
         

TCGA Variable 
(Proliferation 

Excluded) 

Univariate 
P-value 

Hazard 
Ratio 

Multivariate 
FGD5 

Hazard 
Ratio 

Multivariate 
METLL6 

Hazard 
Ratio 

Multivariate 
CPT1A 

Hazard 
Ratio 

FGD5 8.91E-05 3.6120 0.0023 3.2201       
METTL6 0.0006 3.1500     0.0038 3.0597     
CPT1A 0.3720 1.3340       0.4840 1.3285 
DTX3 0.0435 2.0720           

MRPS23 0.0097 2.4250           
EIF2S2 0.7690 1.0990           

EIF6 0.6250 1.1630           
SLC2A10 0.9440 1.0220           

Age 0.0205 1.0280 0.0019 1.0466 0.0018 1.0462 0.0029 1.0466 
Stage 0.5780 1.1040 0.5047 0.8443 0.5305 0.8535 0.5893 0.8765 

ER.Statuspos 0.3850 0.6612 0.1580 0.4361 0.1760 0.4505 0.1969 0.4592 

HER2.Statuspos 0.8210 0.8972 0.0242 0.2016 0.0223 0.1934 0.0351 0.2101 

Node.Status 0.0542 1.3830 0.1318 1.3517 0.1512 1.3303 0.1380 1.3424 
PAM50LumB 0.0078 2.4860 0.0252 2.4405 0.0248 2.4433 0.0451 2.3183 
PAM50Her2 0.0098 2.8210 0.0053 6.4303 0.0055 6.4608 0.0088 6.1336 

         
         

METABRIC 
Variable 

Univariate 
P-value 

Hazard 
Ratio 

Multivariate 
FGD5 

Hazard 
Ratio 

Multivariate 
METLL6 

Hazard 
Ratio 

Multivariate 
CPT1A 

Hazard 
Ratio 

FGD5 1.84E-02 1.719 0.64934 1.2143       
METTL6 0.0090 1.7730     0.5551 1.2620     
CPT1A 0.0996 1.2220       0.3278 1.2281 
DTX3 0.0105 1.6250           

MRPS23 0.0021 1.4080           
EIF2S2 0.0056 1.4530           

EIF6 0.0002 1.6180           
SLC2A10 0.0106 1.3690           

Age 0.0004 1.0160 0.3437 1.0079 0.2761 1.0088 0.1682 1.0114 
Stage 2.83E-05 1.279 0.83096 0.9786 0.6986 1.0376 0.8082 1.024 

ER.Statuspos 1.15E-07 0.4953 0.42202 0.777 0.3262 0.7409 0.2005 0.6674 
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HER2.Statuspos 0.0004 1.4010 0.2750 1.1612 0.2034 1.1799 0.2999 1.1503 

Node.Status <2e-16 1.0720 2.37E-07 1.1188 1.83E-07 1.1138 3.31E-08 1.1238 
PAM50LumB 3.24E-08 1.9570 0.6493 1.1546 0.3329 1.3418 0.5780 1.1914 
PAM50Her2 4.00E-15 2.7760 0.7051 1.1592 0.5954 1.2251 0.8446 1.0801 

Proliferation.Score 1.55E-15 2.4800 0.0056 2.3635 0.0164 2.0314 0.0111 2.1539 

         
         

METABRIC 
Variable 

(Proliferation 
Excluded) 

Univariate 
P-value 

Hazard 
Ratio 

Multivariate 
FGD5 

Hazard 
Ratio 

Multivariate 
METLL6 

Hazard 
Ratio 

Multivariate 
CPT1A 

Hazard 
Ratio 

FGD5 1.84E-02 1.719 0.449884 1.3768       
METTL6 0.00903 1.773     0.358892 1.4305     
CPT1A 0.0996 1.222       0.28784 1.2496 
DTX3 0.0105 1.625           

MRPS23 0.00212 1.408           
EIF2S2 0.00557 1.453           

EIF6 0.000158 1.618           
SLC2A10 0.0106 1.369           

Age 0.000415 1.016 0.430909 1.0066 0.378172 1.0071 0.23022 1.0099 
Stage 2.83E-05 1.279 0.902639 0.9877 0.627168 1.0474 0.73455 1.0336 

ER.Statuspos 1.15E-07 0.4953 0.35883 0.7486 0.307927 0.7314 0.17769 0.6521 

HER2.Statuspos 0.000352 1.401 0.261251 1.1657 0.196853 1.1825 0.2907 1.1529 

Node.Status <2e-16 1.072 1.15E-07 1.1231 1.25E-07 1.1164 3.56E-08 1.125 
PAM50LumB 3.24E-08 1.957 0.000957 2.1096 0.000282 2.2106 0.00173 2.045 
PAM50Her2 4.00E-15 2.776 0.017171 2.141 0.019139 2.0753 0.04356 1.9082 
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Multivariate survival analaysis of prognostic markers  (Continued) 
 

TCGA 
Variable 

Multivari
ate 

DTX3 

Hazard 
Ratio 

Multivar
iate 

MRPS23 

Hazard 
Ratio 

Multivar
iate 

EIF2S2 

Hazard 
Ratio 

Multivar
iate 
EIF6 

Hazard 
Ratio 

Multiva
riate 

SCL2A
10 

Hazard 
Ratio 

FGD5               

METTL6               

CPT1A               
DTX3 0.3516 1.4869             

MRPS23   0.2727 1.5937         

EIF2S2       0.5275 0.7736       
EIF6         0.6294 0.8239   

SLC2A10             0.4468 0.7336 

Age 0.0011 1.0519 0.0006 1.0521 0.0003 1.0552 0.0004 1.0546 0.0004 1.0547 
Stage 0.6113 0.8864 0.6346 0.8907 0.6168 0.8875 0.6205 0.8886 0.6091 0.8857 

ER.Statuspo
s 0.1493 0.4052 0.1515 0.4053 0.1965 0.4401 0.2014 0.4422 0.2133 0.4521 

HER2.Status
pos 0.0461 0.2345 0.0272 0.1952 0.0388 0.2184 0.0367 0.2155 0.0404 0.2218 

Node.Status 0.1668 1.3057 0.1278 1.3422 0.1074 1.3849 0.1186 1.3706 0.0982 1.3993 

PAM50Lum
B 0.9972 1.0021 0.8679 0.9091 0.9298 1.0531 0.9568 1.0324 0.8814 1.0926 

PAM50Her2 0.2355 2.4946 0.2503 2.4449 0.2016 2.7165 0.2005 2.7363 0.1916 2.7956 

Proliferation
.Score 0.0355 4.1506 0.0219 4.5151 0.0218 4.6018 0.0217 4.6041 0.0237 4.5122 

           
           

TCGA 
Variable 

(Proliferatio
n Excluded) 

Multivari
ate 

DTX3 
Hazard 
Ratio 

Multivar
iate 

MRPS23 
Hazard 
Ratio 

Multivar
iate 

EIF2S2 
Hazard 
Ratio 

Multivar
iate 
EIF6 

Hazard 
Ratio 

Multiva
riate 

SCL2A
10 

Hazard 
Ratio 

FGD5               

METTL6               

CPT1A               
DTX3 0.1572 1.8168             

MRPS23   0.2256 1.6704         

EIF2S2       0.4275 0.7213       
EIF6         0.5018 0.7613   

SLC2A10             0.3306 0.6733 

Age 0.0063 1.0432 0.0023 1.0459 0.0017 1.0490 0.0021 1.0480 0.0021 1.0480 
Stage 0.4412 0.8331 0.5365 0.8599 0.5627 0.8702 0.5663 0.8710 0.5632 0.8711 

ER.Statuspo
s 0.1583 0.4316 0.1772 0.4500 0.2261 0.4835 0.2384 0.4910 0.2513 0.5002 

HER2.Status
pos 0.0550 0.2518 0.0326 0.2105 0.0424 0.2246 0.0396 0.2203 0.0421 0.2242 

Node.Status 0.0909 1.3824 0.0715 1.4170 0.0532 1.4760 0.0585 1.4625 0.0464 1.4921 

PAM50Lum
B 0.0195 2.4954 0.0441 2.2690 0.0109 2.7622 0.0120 2.7181 0.0095 2.8503 
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PAM50Her2 0.0150 5.2160 0.0100 5.7788 0.0066 6.4947 0.0063 6.5935 0.0061 6.6658 

           
           

METABRIC 
Variable 

Multivari
ate 

DTX3 
Hazard 
Ratio 

Multivar
iate 

MRPS23 
Hazard 
Ratio 

Multivar
iate 

EIF2S2 
Hazard 
Ratio 

Multivar
iate 
EIF6 

Hazard 
Ratio 

Multiva
riate 

SCL2A
10 

Hazard 
Ratio 

FGD5               

METTL6               

CPT1A               
DTX3 0.4702 1.2737             

MRPS23   0.3804 0.8397         

EIF2S2       0.2185 1.3234       
EIF6         0.0431 1.5433   

SLC2A10             0.9790 1.0059 

Age 0.2733 1.0088 0.2061 1.0102 0.2951 1.0084 0.3199 1.0080 0.2432 1.0094 
Stage 0.7224 1.0346 0.64839 1.0447 0.7164 1.0351 0.7323 1.033 0.7164 1.0354 

ER.Statuspo
s 0.267 0.7149 0.33076 0.7419 0.2628 0.7126 0.2549 0.7093 0.2765 0.7175 

HER2.Status
pos 0.2412 1.1642 0.2044 1.1789 0.2529 1.1602 0.2635 1.1565 0.2356 1.1667 

Node.Status 1.13E-07 1.1159 2.14E-07 1.1129 1.13E-07 1.114 9.30E-08 1.1142 1.41E-
07 1.1142 

PAM50Lum
B 0.3754 1.3103 0.4105 1.2833 0.3482 1.3308 0.3580 1.3241 0.3470 1.3305 

PAM50Her2 0.6461 1.1898 0.7015 1.1567 0.5505 1.2547 0.5112 1.2832 0.6319 1.1996 

Proliferation
.Score 0.0146 2.0493 0.0054 2.3158 0.0262 1.9365 0.0315 1.8944 0.0154 2.0549 

           
           

METABRIC 
Variable 

(Proliferatio
n Excluded) 

Multivari
ate 

DTX3 
Hazard 
Ratio 

Multivar
iate 

MRPS23 
Hazard 
Ratio 

Multivar
iate 

EIF2S2 
Hazard 
Ratio 

Multivar
iate 
EIF6 

Hazard 
Ratio 

Multiva
riate 

SCL2A
10 

Hazard 
Ratio 

FGD5               

METTL6               

CPT1A               
DTX3 0.426052 1.3061             

MRPS23   0.74510
2 0.9385         

EIF2S2       0.09762
3 1.4482       

EIF6         0.01663
4 1.6597   

SLC2A10             0.65140
9 1.1045 

Age 0.375404 1.0071 0.29520
7 1.0084 0.38819

7 1.0069 0.41361
5 1.0065 0.33211

8 1.0078 

Stage 0.672986 1.0413 0.60147
4 1.0514 0.66522

4 1.0419 0.67730
9 1.0402 0.65264

6 1.0439 

ER.Statuspo
s 0.246021 0.7036 0.26283

3 0.7091 0.23207
2 0.6962 0.22631

8 0.6938 0.23634
9 0.6961 



! %-*!

HER2.Status
pos 0.222193 1.171 0.21274

3 1.1762 0.24399
4 1.1632 0.25402

2 1.1597 0.22338
2 1.1712 

Node.Status 7.71E-08 1.1186 1.21E-07 1.1163 8.63E-08 1.1157 7.36E-08 1.1157 1.04E-
07 1.1162 

PAM50Lum
B 0.000377 2.1815 0.00025

2 2.2549 0.00069
9 2.1115 0.00091

7 2.0756 0.00039
8 2.1875 

PAM50Her2 0.022442 2.0194 0.02065 2.0738 0.02079
6 2.0406 0.01939

1 2.0548 0.02305
3 2.0247 
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