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ABSTRACT 

 

Candidate-based approaches to identify genetic variation influencing type 2 diabetes and 

quantitative traits 

 (Under the direction of Karen Mohlke) 

 

Type 2 diabetes (T2D) is a metabolic disorder characterized by insulin resistance and 

impaired insulin secretion that affects more than 20 million Americans, although the 

genetic component of the disorder is largely unknown.  Individual genetic susceptibility 

to type 2 diabetes and other complex traits is the result of variation that is both common 

in human populations and rare, de novo and inherited mutations.  We adopted a diverse 

set of genetics, genomics and informatics approaches to prioritize candidate genomic 

regions and variants and perform in-depth, targeted analysis of their contributions to type 

2 diabetes susceptibility and related trait variability.  Our initial efforts focused on the 

selection of candidate genes relevant to a complex trait by developing a metric to weight 

the relevance of functional gene annotations to the known biology of a trait.  We used 

this method to select candidate genes for type 2 diabetes and performed a T2D case-

control and quantitative trait association study in 2,335 Finnish individuals from the 

FUSION study.  After follow-up in additional samples, we identified several variants that 

might contribute to T2D susceptibility.  Genomic regions associated with plasma levels 

of HDL cholesterol and triglycerides were re-sequenced in individuals with
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trait-extreme values.  Our analysis revealed a denser set of common and rare functional 

target variants including several non-synonymous, 3’ UTR, and non-coding SNPs and 

indels. Finally, we utilized two approaches to identify candidate functional non-coding 

variants that may directly contribute to trait susceptibility.  First, we used Formaldehyde-

assisted isolation of regulatory elements (FAIRE) coupled with high-throughput 

sequencing to identify nucleosome-depleted regions in pancreatic islets. We used islet 

FAIRE-seq data to identify SNPs associated with T2D that potentially alter islet 

transcriptional regulation.  A SNP in TCF7L2, rs7903146, was located in a FAIRE-seq 

site and demonstrated allelic differences in islet chromatin openness and enhancer 

activity, suggesting that it may contribute functionally to T2D susceptibility.  Second, we 

used transcription factor binding site motifs to computationally predict variants that have 

allelic differences in regulatory activity.  Taken together, these results suggest that 

identifying candidate genomic regions can successfully enrich for variation important for 

type 2 diabetes and other complex traits. 
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Chapter I 

Introduction 

The genetics of complex traits 

The majority of phenotypic variability between humans is the result of both genetic and 

environmental factors that are neither sufficient nor necessary determinants of the 

phenotype
1
.  This complex pattern of inheritance is found in both traits that are common 

to all individuals (quantitative), such as anthropometric traits and plasma levels of 

biomarkers, as well as those that are only found in a subset of the population 

(qualitative), including the majority of cardiovascular 
2
, metabolic 

3
, autoimmune 

4
 and 

psychiatric disorders 
5-7

.  As the both impact on human health and the genetic heritability 

for these disorders is substantial, there is considerable interest in understanding the 

underlying genetic factors.  However, these factors are just beginning to be identified.  

Genetic diversity in humans includes factors of both vastly different allele frequencies 

and genomic sizes 
8
.  On a macro scale are entire chromosomal deletions or duplications, 

chromosomal rearrangements and copy number variable (CNV) regions that can be 

several megabases in size. CNVs can also be a few base pairs, such as microsatellites, as 

can insertions / deletions (indels).  At the smallest scale are single base pair indels or 

changes (SNPs).  SNPs account for the majority of human genetic variation by frequency, 

as there are roughly 10 million that are common (minor allele frequency > .01) in human 
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populations as well as millions more rare SNPs 
9
.  Despite changing only a single base, 

SNPs likely contribute a great amount to phenotypic differences between individuals.  

SNPs can functionally cause differences in protein products (nonsynonymous 

substitutions), transcript stability, transcript expression level, transcript splicing, 

transcription factor binding, chromatin accessibility, RNA folding and secondary 

structure, among many other mechanisms 
10

.   

One traditional mechanism to identify factors influencing genetic disorders is family-

based linkage analysis using polymorphic markers such as microsatellites to identify 

stretches of the genome that individuals with a disease share through common ancestry 

(identity by descent - IBD) and that might contain variants that contribute to disease 

susceptibility 
11

.  However, for complex traits, the effect size of the contributing variants 

is often small, and thus difficult to identify through IBD approaches 
11

.  In addition, the 

relatively low resolution of linkage peaks coupled with the polygenic inheritance of 

complex traits means that a large percentage of the genome is often covered by these 

analyses. 

Alternatives are approaches that use identity by state (IBS), direct tests of a genetic 

marker for trait association.  Technological limitations previously restricted the number 

of variants that could be interrogated for disease association, requiring the selection of a 

small number of known variants for study
11

.  Candidate gene approaches have typically 

been used to identify variants of interest, which rely on prior biological knowledge of 

genes to determine a potential relationship to disease 
12

.  Informatics-assisted methods 

can help consolidate biological data into gene annotation to assist candidate selection 
13-
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18
.  Many are designed to assist positional cloning of a linkage peak, although for 

complex traits few convincing linkage peaks have been identified 
19

.  Further, predictive 

quality of these methods is restricted to available biological annotation data and the 

known etiology of a disorder, and for many complex traits the underlying biological 

mechanisms are poorly understood 
20

.   

Several advances have made large-scale, more comprehensive IBS studies possible.  

First, the International Haplotype Map (HapMap) project catalogued common SNPs in 

four human populations
21

.  This work helped consolidate knowledge of the existence and 

allele frequencies of many SNPs based on previous human genome sequencing studies
22

, 

as well as patterns of linkage disequilibrium (LD) between them 
21

.  Second, advances in 

technology made it possible to genotype thousands to hundreds of thousands of markers 

at once 
23-26

.  Third, computational methods to impute untyped markers allowed genotype 

inference for many of the remaining HapMap markers not directly present on a 

genotyping chip 
27

.  The resulting candidate gene and genome-wide association (GWA) 

studies of common SNPs in population-based cohorts have identified numerous 

susceptibility loci for a wide variety of complex traits and disorders 
28

.   

The next generation of complex trait genetics involves both population-based and 

phenotype guided sequencing studies to identify a broader spectrum of allele frequencies 

and types of variation influencing trait susceptibility 
28

.  The primary aim of the former is 

to identify a denser set of linkage disequilibrium patterns that can be used to fill in 

association studies of an incomplete marker set.  Sequencing studies aimed at uncovering 

LD patterns have traditionally targeted specific genomic regions of interest, based on 
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candidate gene selection or the results of previous genetic association. Advances in 

sequencing technology, however, have made large scale, even full-genome, sequencing 

of many samples a technical possibility.  One of the goals of the 1000 Genomes Project 

(www.1000genomes.org) is to perform low-pass full-genome sequencing of an ethnically 

diverse set of individuals to catalog SNP, indel and CNV variation down to population 

allele frequencies as low as .005, and may obviate the need for de novo sequencing for 

LD discovery completely. 

Medical sequencing projects enrich for rare alleles that are not present or present in low 

frequency in the general population yet may contribute to individual phenotypes.  Many 

previous candidate gene studies focused on coding regions, where variants affecting 

protein products are easier to predict 
29-33

.  As statistical power to detect association with 

rare, often private, variants is low, these studies often group variants either by disease 

status or trait value.  Recently, sequencing of the entire coding sequence (exome) of 

individuals has been used to find mutations causing a Mendelian disorder 
34

.  Full 

genome sequencing of phenotyped samples will eventually allow interrogation of the 

entire profile of variation in individuals with complex disorders. 

The genetics of type 2 diabetes 

Diabetes mellitus is a heterogeneous collection of disorders characterized by high levels 

of blood glucose, which can cause heart disease, stroke, neuropathy, blindness and 

reduced life expectancy
35

.  The most prevalent form of diabetes is type 2 (T2D), 

previously known as non-insulin dependant diabetes mellitus (NIDDM), which accounts 

for 90-95% of cases and affects more than 20 million people in the United States 
9
.  High 
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blood glucose levels in type 2 diabetes are sustained by peripheral tissue resistance to 

insulin, which normally triggers glucose uptake, and reduced insulin secretion by the beta 

cells of the pancreatic islets
36

.    

Type 2 diabetes has a complex pattern of inheritance, influenced by numerous factors, 

such as diet, weight, amount of physical activity, smoking, sleep patterns, as well as those 

that are heritable 
3,35

.  Evidence supportive of the heritability of T2D includes increased 

concordance in monozygotic compared to dizygotic twins, monogenic forms of the 

disorder, and common risk factors 
37,38

.   

Genome-wide scans of family cohorts had previously identified numerous regions of the 

genome linked to type 2 diabetes
39-44

, although many of these regions did not consistently 

replicate across populations or identify convincing association signals upon positional 

cloning, and a meta-analysis across many T2D linkage studies resulted in only modest 

signals 
45,46

.  However, one follow-up study of a linkage peak identified on chromosome 

10q in Icelandic individuals successfully localized to a variant in intron 3 of the 

transcription factor TCF7L2 with a large relative risk
47

.  Candidate gene association 

studies also similarly often identified only modest associations with SNP variants, and 

amino acid changing substitutions in PPARG
48

 and KCNJ11
49

 were until recently among 

the only variants with convincing replication across populations and large sample sizes.  

Variants near WFS1 
50

 and TCF2 
51,52

 have subsequently been confirmed through 

candidate gene studies in large samples.  

Genome-wide studies have implicated a much larger set of genes in T2D susceptibility, 

including many that were previously unreported through linkage or candidate gene 
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studies.  The first reported T2D genome-wide association (GWA) scan implicated 

variants at five susceptibility loci that include TCF7L2, and novel loci near the genes 

SLC30A8, IDE-KIF11-HHEX, LOC387761, and EXT-ALX4 
53

.  Three companion GWA 

studies replicated evidence for PPARG, KCNJ11, TCF7L2, SLC30A8, IDE-KIF11-

HHEX, and provided new evidence for CDKAL1, CDKN2A/B, IGF2BP2, and FTO 
54-56

.   

Additional first-generation GWA studies provided additional evidence for TCF7L2, 

CDKAL1 and SLC30A8 
57-62

.  Subsequent studies have implicated variants near MTNR1B 

63,64
, IRS1 

65
, a region on chromosome 11q 

66
, and KCNQ1 

67,68
.  More recently, meta-

analyses of the results of several genome-wide association studies following by 

replication in more than 50,000 samples identified six additional loci, including variants 

near JAZF1, CDC123/CAMKD1, TSPAN8/LGR5, THADA, ADAMTS9, and NOTCH2 
69

.   

In total, more than 20 independent genetic loci are known to harbor common risk alleles 

for type 2 diabetes, although the additive effects of these variants explain only 5-10% of 

trait heritability
70,71

.  Many of these risk variants appear to influence aspects of pancreatic 

beta cell function leading to impaired insulin secretion 
70,72

.  In addition, numerous loci 

have been identified that influence quantitative traits related to T2D pathogenesis 

including body-mass index (BMI), plasma lipid level (HDL-C, LDL-C, TG), and plasma 

fasting glucose and insulin levels.  Association studies of T2D-related quantitative traits 

are likely to help identify T2D susceptibility loci.  For example, of 18 loci recently 

identified to influence fasting glucose or insulin level, variants at five also demonstrated 

novel association with type 2 diabetes (ADCY5, PROX1, GCK, GCKR, and 

DGKB/TMEM195) 
73

, and several BMI and lipid level quantitative trait loci overlap 

known T2D susceptibility loci 
74

.  For the vast majority of loci, however, the direct 
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mechanisms of how they contribute to T2D susceptibility or quantitative trait variability 

is unknown.  

Finland-United States Investigation of NIDDM (FUSION) genetics study 

The Finland-United States Investigation of NIDDM genetics (FUSION) study aims to 

map and identify variants influencing susceptibility to T2D and related quantitative traits 

in the Finnish population 
75

.  There are several advantages to using Finns as a model 

population for genetic study.  The majority of Finland belongs to one linguistic and 

ethnic group formed by a small founder population that was linguistically, culturally and 

geographically isolated.  Clinical aspects of T2D in Finland are similar to those in other 

European populations, suggesting that susceptibility loci identified in Finnish samples 

may be more generally applicable. 

 

Initially, FUSION ascertained Finnish affected sib-pair (ASP) families to perform a 

genome-wide linkage scan for T2D susceptibility loci.  The sample collection criteria 

included selecting probands of 35-60 years of age with no family history of type 1 

diabetes, where at least one sibling was also affected by T2D and one parent was normal 

glucose tolerant (NGT).  In addition, a set of extended families was ascertained with non-

diabetic spouses, siblings and offspring, as well as a set of elderly controls.  Blood 

samples and clinical measurements were collected from all study participants in 21 cities 

distributed throughout Finland. 

 

Linkage and association analysis for type 2 diabetes were performed on 580 FUSION 

ASP families and controls genotyped on roughly 400 microsatellite markers spaced 
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across the genome 
76

.  Regions on chromosomes 20, 11 and 6q showed the strongest 

evidence of linkage, and a region on chromosome 22 had the most significant association; 

however, none of the results reached accepted thresholds for genome-wide significance.  

The T2D and NGT control individuals were also separately analyzed for QTL linkage 

using a set of T2D-related quantitative traits 
77

.  Among numerous QTLs were several 

that overlapped those identified in the T2D analysis on multiple chromosomes.  An 

additional linkage analysis of 275 ASP Finnish families (FUSION 2) was performed and 

the results were combined with the initial linkage analysis.  Regions on chromosome 6, 

11, 14 and X were most interesting across both studies, and were fine-mapped using a 

denser set of microsatellite markers 
41

.   

 

In several candidate gene association studies, FUSION identified modest T2D association 

in Finns with variants in HNF4A 
78

, four genes known to cause MODY 
79

 
78

 
80

, PPARG, 

KCNJ11, ENPP1, SLC2A2, PCK1, TNF, IL6 
79

, and TCF7L2 
81

. 

 

A two-stage genome-wide association study of type 2 diabetes with 2,335 Stage 1 and 

2,473 Stage 2 samples from the FUSION and Finrisk 2002 studies confirmed associations 

with variants in PPARG, KCNJ11, TCF7L2, HHEX, SLC30A8, FTO, contributed to novel 

associations with variants near CDKAL1, CDKN2A/B, IGF2BP2, and identified an 

association with variants in an intergenic region of chromosome 11q12 
55

.   FUSION has 

since contributed to a meta-analysis of T2D GWA results with the DGI and WTCCC 

consortiums to help identify susceptibility variants near JAZF1, CDC123/CAMKD1, 

TSPAN8/LGR5, THADA, ADAMTS9, and NOTCH2 
69

.   
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FUSION has also contributed to the identification of loci influencing quantitative trait 

variability including BMI 
82

, blood pressure 
83

, waist circumference (WC) and waist-to-

hip ratio (WHR) 
84

, plasma lipid level (HDL-C, LDL-C, TG) 
85,86

, fasting glucose and 

insulin level, measures of beta-cell function (homeostasis model adjustment (HOMA)-B) 

and insulin resistance (HOMA-IR) 
73

, and height 
87

.   

 

Currently, FUSION has 2,335 samples with GWA data and 4,937 samples for replication 

studies.  In addition, approximately 14,000 samples from the HUNT, METSIM and 

DIAGEN studies are also used for replication of quantitative trait results. 

Determining the functional basis for complex trait association 

Variants associated with a complex trait do not necessarily contribute functionally to 

differences in trait susceptibility and can be in linkage disequilibrium with true functional 

variant(s) 
11

.  While this is advantageous for genetic studies that interrogate an 

incomplete set of markers, the ensuing process of sorting functional variants from those 

merely inherited on the same haplotypes can be non-trivial.  Due to limited 

recombination events in the human genome, associated variants can often be in linkage 

disequilibrium with many additional variants.  For example, at one locus on chromosome 

12 associated with high-density lipoprotein cholesterol (HDL-C) level, there are over 50 

HapMap SNPs in high LD (r
2
>.8) spanning a region of approximately 200 kb 

86
.  In 

addition, the completion of the 1000 Genomes Project will uncover on average about 

three times more variants in LD than in HapMap 
21

.  Many loci do not contain an obvious 

functional trait-associated variant, such as a frameshift early in a protein, splice site, or 

non-synonymous substitution predicted to be deleterious.  Given that it is not efficient to 
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test all variants for differential activity in the laboratory, it is often necessary to prioritize 

between variants to guide functional follow-up studies.   

Variants influencing transcriptional regulation are likely to contribute to complex trait 

variability 
88

 at sites driving gene expression proximal to transcription start sites (TSS) 

(promoters), distal sites increasing or decreasing the amount of expression (enhancers / 

silencers), or sites blocking the activity of distal regulatory elements (insulators) 
89

.  The 

accessibility of regulatory DNA sequence to DNA-binding proteins that control 

transcriptional regulation at these sites is largely controlled by chromatin packaging into 

nucleosomes, which consist of DNA wrapped around a core of histone proteins.  Histones 

contain N-terminal tails that can be post-translationally modified to change the dynamics 

of how histones interact with DNA to help modulate regulatory activity.  Specific histone 

modifications have been shown to demarcate active and repressed regions of 

transcriptional regulation 
90

.  For example, lysine residue 4 of histone H3 is often 

methylated either to mark enhancer (mono-methylation) or promoter (tri-methylation) 

regions 
90

. Another hallmark of transcriptional regulation is that nucleosomes are evicted 

from active regulatory sites, making the underlying DNA more accessible to regulatory 

proteins 
91

. 

Identification of regulatory elements has benefited from this improved knowledge of how 

the human genome encodes and organizes regulatory information and the recent 

development of high-throughput experimental techniques to exploit this knowledge 
89

.  

Chromatin immunoprecipitation (ChIP) can identify genomic locations where specific 

proteins are bound to DNA, and when coupled with microarray hybridization (ChIP-chip) 
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or high-throughput sequencing (ChIP-seq), can be used to find these DNA-protein 

interactions on a genome-wide scale 
92

 
93

.  ChIP can also be performed to identify 

epigenetic information such as specifically modified histone residues 
90

 
93

.  Additional 

techniques such as DNase I hypersensitivity (DHS) 
94

 and Formaldehyde-assisted 

isolation of regulatory elements (FAIRE) 
95

 identify regions of the genome not bound to 

nucleosomes, and can both identify sites of transcriptional regulation on a genome-wide 

scale (DNase-seq 
96

, FAIRE-seq).  The employment of these techniques across a series of 

tissue types, genotypes, and environmental conditions will uncover a denser set of 

regulatory elements to facilitate study of how transcriptional regulation is affected by 

variants influencing complex traits.  

Computational tools have also been developed to identify functional non-coding 

elements, many by predicting the genomic locations of where transcriptional regulatory 

factors bind (TFBS).  Transcription factors often bind sequences in degenerate patterns, 

making in silico binding site prediction difficult 
97

.  Information in a set of related 

sequences, for example known binding sites for a transcription factor, can be 

consolidated into frequency matrices of each base at each binding site position, and these 

binding site motifs can then be used to find similarly matching sequences that might 

represent novel binding sites 
97

.  Databases catalog motifs for a large number of 

transcription factors derived from literature of known binding sites (JASPAR 
98

 and 

TRANSFAC 
99

) or studies that profile binding to oligonucleotide microarrays 

(UniPROBE 
100

).  Prediction of individual TFBS using motifs alone, however, has low 

sensitivity and specificity 
101

. To increase predictive quality, methods have been 

developed that exploit genomic features of in vivo TFBS.  First, the sequence surrounding 
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functional elements is often conserved between both between closely and distantly 

related species 
102-106

.  Second, TFBS are found in clusters, especially those for factors 

that are expressed in the same tissues 
107-111

.  Computational predictions of functional 

elements can be considered complimentary to functional genomics approaches, as the 

latter are restricted to tested experimental conditions and the technological limitations of 

the assay.  

 



Chapter II 

Computational selection of biologically-relevant candidate genes for complex traits 

 

Abstract 

Motivation: Identification of the genetic variation underlying complex traits is 

challenging. The wealth of information publicly available about the biology of complex 

traits and the function of individual genes permits the development of informatics-

assisted methods for the selection of candidate genes for these traits. 

Results: We have developed a computational system named CAESAR that ranks all 

annotated human genes as candidates for a complex trait by using ontologies to 

semantically map natural language descriptions of the trait with a variety of gene-centric 

information sources. In a test of its effectiveness, CAESAR successfully selected 7 out of 

18 (39%) complex human trait susceptibility genes within the top 2% of ranked 

candidates genome-wide, a subset that represents roughly 1% of genes in the human 

genome and provides sufficient enrichment for an association study of several hundred 

human genes. This approach can be applied to any well-documented mono- or multi-

factorial trait in any organism for which an annotated gene set exists. 
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Availability: CAESAR scripts and test data can be downloaded from 

http://visionlab.bio.unc.edu/caesar/ 

Introduction 

Unlike Mendelian traits, in which a mutation in one gene is
 
causative, or oligogenic traits, 

where several genes are sufficient
 
but not necessary, complex traits are caused by 

variation in
 
multiple genetic and environmental factors, none of which are sufficient to 

cause the trait 
20

.
 
The contribution of any given gene to a complex trait is usually

 
modest. 

In addition, complex traits often encompass a variety
 
of phenotypes and biological 

mechanisms, making it difficult
 
to determine which genes to study 

112
. 

As a result, traditional methods of genetic discovery, such
 
as linkage analysis and 

positional cloning, while widely successful
 
in identifying the genes for Mendelian traits, 

have had more
 
limited success in identifying genes for complex traits. Candidate

 
gene 

studies have had encouraging success, yet this approach
 
requires an effective method for 

deciding a priori which genes
 
have the greatest chance of influencing susceptibility to 

the
 
trait 

113
. Recent advances in genotyping technology

 
have provided researchers with 

the ability to test association
 
in hundreds of genes relatively quickly, and even the 

entire
 
genome through a genome-wide association study. Genome-wide association 

studies are promising, yet not always economically
 
feasible or statistically desirable 

114
. 

Therefore,
 
one of the greatest challenges in disease association study

 
design remains the 

intelligent selection of candidate genes. 
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To this end, we have developed a computational methodology,
 
named CAESAR 

(CAndidatE Search And Rank), that uses text and
 
data mining to rank genes according to 

potential involvement
 
in a complex trait. CAESAR exploits the knowledge of 

complex
 
traits in literature by using ontologies to semantically map

 
the trait information 

to gene and protein-centric information
 
from several different public data sources, 

including tissue-specific
 
gene expression, conserved protein domains, protein–

protein
 
interactions, metabolic pathways and the mutant phenotypes of

 
homologous 

genes. CAESAR uses four possible methods of integration
 
to combine the results of data 

searches into a prioritized candidate
 
gene list. In effect, CAESAR mimics the steps a 

researcher would
 
undertake in selecting candidate genes, albeit faster, potentially

 
more 

thoroughly, and in a more quantitative manner. 

CAESAR represents a novel selection strategy in that it combines
 
text and data mining to 

associate genetic information with extracted
 
trait knowledge in order to prioritize 

candidate genes. In contrast
 
to a number of existing approaches 

15-17
 gene selection is 

not
 
limited to one or more genomic regions, as all genes annotated

 
in one of our databases 

are potential candidates. CAESAR is ultimately designed for traits in which the relevant 

biological
 
processes may not be well understood and potentially hundreds

 
of reasonable 

candidate genes exist. 

The potential benefits to a researcher in adopting a computational
 
approach to gene 

selection such as CAESAR include the ability
 
to quickly and systematically process 

several hundred thousand
 
biological annotations, many of which require highly 

specialized
 
domain expertise to interpret. This benefit will continue to

 
grow in importance 
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as the volume and technical detail of annotation
 
data increases. Relevant gene annotations 

can easily escape
 
human consideration due to biases that investigators bring to

 
the task of 

prioritization and that are difficult to overcome
 
even by conscious effort. This is 

particularly valuable for
 
complex traits, which may be affected by a wider array of 

biological
 
processes, some of which may not have been directly implicated

 
by previous 

studies. CAESAR also reports the evidence supporting
 
the prioritization rank of each 

gene, allowing an investigator
 
to trace the line of reasoning and to exercise his or her 

own
 
judgment as to its validity. Thus, it can be seen as a very

 
sophisticated aid to manual 

prioritization. 

Though designed to help with the design of an association study
 
involving a few hundred 

genes, CAESAR can also be used to prioritize
 
a smaller number of candidates within a 

region of linkage, or
 
to prioritize among polymorphisms annotated with ranked genes

 
that 

show significant association in a genome-wide study. 

We have tested CAESAR on 18 susceptibility genes for 11 common
 
complex traits in 

humans including type 1 and type 2 diabetes
 
mellitus, schizophrenia, Parkinson's disease, 

cardiovascular
 
disease, age-related macular degeneration, rheumatoid arthritis

 
and celiac 

disease. Test genes were ranked higher than 95.7%
 
of all ranked genes on average, and 

higher than 99.7% in the
 
best case. 

Methods 

CAESAR is comprised of three main steps. First, previously implicated
 
genes mentioned 

in the input text are identified and ontology
 
terms are ranked based on their similarity to 
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an input text.
 
Second, genes are ranked for each data source independently

 
based on the 

relevance of the ontology terms with which they
 
are annotated. Third, the individual gene 

lists are integrated
 
to provide a single ranked list of candidate genes that 

combines
 
evidence from all data sources. We refer to these three steps

 
as text mining, 

data mining and data integration, respectively.
 
The approach of CAESAR is presented as 

a schematic diagram in
 
Figure 2.1a. 

 

CAESAR requires a user-defined body of text (referred to as
 
a corpus) as input. This text 

is ideally an authoritative and
 
comprehensive source of biological knowledge about the 

trait
 
of interest. If an online Mendelian inheritance in man (OMIM)

115 
identifier is 

supplied, CAESAR will use
 
the OMIM record as input. Alternately, the user can 

provide
 
any other body of text, for instance one or more review articles. 

Since the corpus is written in natural language, the information
 
must be converted to 

machine-readable form. This is done in
 
two ways. First, human gene symbols are 

identified within the
 
corpus. If an OMIM record is used as input, gene identifiers

 
can be 

extracted directly from the OMIM database. Otherwise,
 
gene symbols are extracted by 

matching to a reference list.
 
Genes are weighted based on frequency of occurrence in the 

corpus,
 
fg, where the weight cg of extracted gene g is calculated as

 
fg divided by the sum 

of all fg across n total extracted genes.
 
The reference list of standard names, symbols, 

database identifiers
 
and corresponding mouse homologs for each gene is compiled 

from
 
Entrez Gene 

116
 and Ensembl 

117
. The extracted genes are assumed to be relevant to 

the
 
biology of the trait, but do not necessarily contribute to the

 
genetic variation of the 

trait. 



18 

Second, the corpus is used to quantify the relevance of terms
 
within several different 

biomedical ontologies. Four ontologies
 
are used as part of CAESAR, the gene ontology 

biological process
 
(GO bp) and molecular function (GO mf) 

118
,
 
the mammalian 

phenotype ontology (MP) 
119

 and
 
the eVOC anatomical ontology 

120
 (Table 

2.1).
 
Relevance is quantified using a similarity search under a vector-space

 
model 

121
, as 

follows (Figure 2.2). For each ontology,
 
the individual terms are split into separate 

documents containing
 
the term name and term description if available. These 

documents
 
together comprise a document database, or search space, against

 
which the 

corpus is queried (Figure 2.2a). The corpus and each document
 
are converted to 

vectors vi = < wi1, wi2, ... , win >
 
with dimensionality equal to the size of the word space n, 

which
 
is the total number of unique words in the document database.

 
Commonly used 

stop words such as ‘and’ and ‘the’
 
are removed from the word space. Each element of the 

vector
 
for document i is calculated as wij = eij , where eij is the number of occurrences of 

word j in the document. 

The similarity of the corpus to each document is calculated
 
as the cosine of the angle 

between the vectors, which is equal
 
to the dot product of the vectors divided by the 

product of
 
the magnitudes of the vectors. A larger cosine indicates vectors

 
with greater 

similarity. Using this measure, ontology terms
 
are weighted based on their similarity to 

the corpus (Figure 2.2c),
 
where the weight ct of term t is directly equal to the cosine. 

Eight sources of gene-centric information are used to map ranked
 
ontology terms to the 

genes annotated with them (Figure 2.1b). The
 
resulting output is eight lists of gene 

scores, one for each
 
functional category. 
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Mammalian phenotype ontology terms are used to query the mouse
 
genome database 

(MGD) 
122

 for genes producing
 
a given phenotype when mutated and to query the genetic 

association
 
database (GAD) 

123
 for genes showing positive

 
evidence of association with a 

phenotype in a human population.
 
The eVOC anatomical ontology terms are used to 

query the UniProt
 
database 

124
 for genes expressed in a given

 
tissue. Gene ontology terms 

are used to query the gene ontology
 
annotation database (GOA)

125
 for genes 

annotated
 
with a given gene ontology biological process or molecular function

 
term. 

Finally, the extracted genes are used to query the biomolecular
 
interaction network 

database (BIND) 
126

 and the human protein reference database (HPRD) 
127

 for genes 

encoding proteins that interact with the protein
 
products of the extracted genes, query the 

Kyoto encyclopedia
 
of genes and genomes (KEGG) pathway database 

128
 for other genes 

involved in the same human cellular pathways
 
and query the InterPro protein domain 

database (IPro) 
129

 for genes sharing conserved protein domains with the extracted genes. 

The user may also optionally input one or several genomic sequence
 
regions to include 

genes in chromosomal regions implicated through
 
genetic linkage as an additional list of 

genes (Figure 2.1b). 

The score rij of gene i for source j is then calculated as either
 
the maximum, sum or mean 

of the weights of the k matching ontology
 
terms or extracted genes c1 ... ck . The three 

alternatives
 
weigh the combined evidence for relevance in different ways,

 
as described 

below for data integration from multiple sources. 

The gene scores from the eight sources are integrated to produce
 
one combined score for 

each gene. Integration is accomplished
 
using one of four methods. Each method 
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represents a different
 
approach that an investigator might choose when manually 

prioritizing
 
candidate genes on the basis of evidence from several data sources. 

The first three methods involve taking the maximum, sum or mean
 
of the z-

transformed rij scores for each gene. The maximum favors
 
genes with strong evidence 

from one data source, the sum favors
 
genes with evidence in many data sources and the 

mean favors
 
genes with strong evidence only, penalizing genes with any weak

 
evidence. 

The maximum, mean and sum are referred to as int1,
 
int2 and int3, respectively. 

Transformed scores are calculated
 
as zij = (rij – xj)/sj, where xj is the mean and sj the SD of 

the scores from
 
source j. The combined score !.,i is then obtained

 
by calculating the 

maximum
  

 

average
 
 

  

or sum
 
 

 

of the transformed scores for gene i. 
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The fourth method, referred to as int4, differs from the other
 
three by considering both the 

score of a gene within a data
 
source as well as the number of genes returned for that 

data
 
source. First, a transformed score sij is obtained.

 
 

 

The transformed gene scores are then summed together
 
to provide a final score for each 

gene.
 
 

 

where gj is the number of genes returned for
 
source j and

 
 

 

The CAESAR algorithms were written using Perl version 5.8.1
 
and Java version 1.4.2. 

The vector space similarity searches
 
were performed using a modified version of the Perl 

module Search::VectorSpace
 
by Maciej Ceglowski 

(http://www.perl.com/pub/a/2003/02/19/engine.html).
 
Databases and ontology schemas 

were downloaded and parsed into
 
XML under a custom XML schema. Intermediate text 

and data-mining
 
results were also stored as XML under the same schema. 

To assess the ability of CAESAR to choose valid candidates,
 
18 test genes were selected 

from recently published reports
 
providing strong evidence of statistical association with 
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known
 
complex human disorders. The test genes included CTLA4 

130
, PTPN22 

131
, 

PTPN22 
132

, SUMO4 
133

, FCRL3 
134

, ENTH 
135

, EN2 
136

, TCF7L2 

47
, CFH 

137
, LOC387715

 138
, LTA4H 

139
, C2

 140
, CFB 

140
, NPSR1 

141
, MYO9B 

142
, 

IL2RA 
143

, SEMA5A 
144

 and LOC439999 
145

. 

Each disorder required a custom corpus, either an OMIM record
 
or one or more review 

articles describing the biology of the
 
disorder (Table 2.2). Review articles were selected 

by searching
 
PubMed 

146
 for articles published before

 
the year of discovery of each gene 

association. Where multiple
 
suitable review articles were available, the texts were 

concatenated
 
to produce the corpus. We removed any direct reference to the

 
testing gene 

in the input text. In addition, entries in the
 
GAD containing the test genes were removed. 

Thus, the input
 
data closely mimicked the state of knowledge prior to the discovery

 
of the 

positive association between the disease and the test
 
gene. 

In the case of age-related macular degeneration (ARMD), positive
 
associations for the 

two test genes, CFB and C2, were reported
 
after the discovery of CFH as a susceptibility 

gene for the
 
disease. Due to the absence of a suitable review article incorporating

 
the 

discovery of CFH, results for these two test genes employ
 
the ARMD OMIM corpus 

only. 

A common way of summarizing the performance of previous candidate
 
gene selection 

algorithms is to calculate ‘fold enrichment’,
 
which is the total number of ranked genes 

divided by the rank
 
of the test gene. Fold enrichment must be interpreted with 

caution,
 
because it is not calculated relative to random expectation.

 
Nonetheless, we 

report this statistic in order to facilitate
 
comparison with other methods. 
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Results 

We tested the performance of the algorithm on a set of test
 
genes previously reported to 

be associated with 11 complex human
 
diseases (Table 2.2). For each disease, we selected 

one or more
 
genes for which recent population genetic studies have reported a significant 

association with the disease phenotype. Nearly
 
15,000 genes had sufficient information 

from one or more data
 
sources to be ranked. Table 2.2 summarizes results of the 18 

test
 
genes by separately considering tests using review articles

 
and OMIM records as 

input, although not all genes were tested
 
using both input types. In order to report the 

success of CAESAR
 
using all 18 genes, we combined review article tests for 16

 
genes 

with OMIM record tests for 2 genes, CFB and C2, which were not tested using review 

articles (see Methods section).
 
The following results using all 18 test genes are thus not 

summarized
 
in Table 2.2. 

First, we evaluated the choice of data-mining method for determining
 
the score rij of each 

gene i for each data source j (see Methods
 
section). The distributions of the ranks are 

shown in Figure 2.3a.
 
 Each data-mining method used the int4 integration method 

(data
 
for other integration methods not shown). The maximum method

 
had a smaller 

median rank (549.5) than both the sum (1353) and
 
mean (1020) methods. 

Second, we evaluated the four different methods for the integration
 
of data from different 

sources (Figure 2.3b). Int4 yielded the smallest
 
median rank (549.5) compared to the 

results for int1 (max),
 
int2 (mean) and int3 (sum), which were 1488, 2594 and 

1201,
 
respectively. Furthermore, int4 had smaller upper and lower

 
quartile ranks than 
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int1, int2 and int3. We thus report the
 
results for the maximum data-mining and int4 

integration method
 
in what follows. 

Overall, 16 of 18 test genes were ranked with a median rank
 
of 549.5 and 67-fold average 

enrichment. Seven of the 18 test
 
genes (39%) were ranked higher than 98% of all ranked 

genes
 
for the trait in question, while five (28%) ranked in the 99th

 
percentile. The highest 

rank seen in our tests was 44 for CFB,
 
a susceptibility gene for age-related macular 

degeneration,
 
which corresponds to a 293-fold enrichment. Two of the 

genes,
 
LOC387715 and LOC439999, were unranked due to a lack of information

 
on these 

genes in any of the data sources. 

We compared the observed distribution of the ranks for the 18
 
test genes to that expected 

by chance, which is a minimal test
 
for the effectiveness of the method. The expected 

mean percentile
 
for a random gene would be 50. The observed mean percentile

 
is 80.5 

and, under a binomial expectation, the 95% confidence
 
interval is 66–95. Thus, the 

observed distribution of
 
ranks for the test genes is significantly displaced relative

 
to 

random expectation. 

We next examined the effect of the choice of corpus on the ranks
 
for the test genes. Using 

review article corpus tests only,
 
14 of 16 test genes were ranked, with a median rank of 

725 and
 
54-fold average enrichment. Six of the 16 test genes (37.5%)

 
ranked in the 98th 

percentile, while four (25%) ranked in the
 
99th percentile (Table 2.2). 

For comparison, we selected for each disease the relevant records
 
from the OMIM 

database. For all tests the int4 method was used
 
(Table 2.1). The test for candidate genes 
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of myocardial infarction
 
was omitted because the OMIM record for this disease is 

only
 
100 words in length, which would be insufficient for reliably

 
scoring a large number 

of ontology terms. Of the remaining 17
 
genes tested, 15 had sufficient information to be 

ranked. The median
 
rank was 879 with an average 43-fold enrichment. The best 

performance
 
was observed for CFB, with 293-fold enrichment. Three of the

 
17 test genes 

(17.6%) ranked in the 98th percentile of all ranked
 
genes, while 2 of 17 (11.8%) ranked in 

the 99th percentile.
 
Only one gene, SEMA5A, had a dramatically improved rank 

relative
 
to that obtained using a corpus of published review articles.

 
Thus, the ranks for 

the test genes using OMIM records, while
 
still clearly an improvement over random 

expectation, are in
 
most cases inferior to those obtained using review articles. 

We examined whether the length of the input text could help
 
explain the difference in 

performance between the two types
 
of input text. The length of each corpus was 

measured as the
 
number of words excluding stop words and non-word characters.

 
There 

was no significant correlation between the length of the
 
corpus and the rank obtained for 

each test gene (Spearman's
 
rho = –0.21 , P = 0.27). 

CAESAR is dependent on available annotations to rank genes.
 
Therefore, the preferential 

ranking of well-annotated genes
 
is a potential source of bias in the results. We addressed 

this
 
issue in two ways, by measuring the effect of both breadth and

 
depth of annotation on 

gene rank. We first measured the correlation
 
between gene rank and the breadth of 

annotation, or the number
 
of sources for which a gene is annotated, across each 

integration
 
method. Using the default methods (max and int4), there is a

 
strong 

correlation (" = –0.75), as shown in Figure 2.4. By comparison, again using the max 
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method, int2 (" = –0.15)
 
and int3 (" = –0.06) showed little correlation, while int1 showed 

modest correlation (" = –0.47). 

 

We next addressed the correlation between gene rank and annotation
 
depth by 

considering the number of GO annotations (biological
 
process + molecular function) per 

gene. For each data-mining
 
method, and using int4 for data integration, we calculated 

the
 
mean number of GO terms for genes ranked within the top 98th

 
percentile (max: 7.2 ± 

4.1; avg: 6.2 ± 3.7; sum:
 
9.8 ± 5.3) and found this to be significantly higher

 
than the mean 

number of GO terms across all ranked genes (4.6
 
± 2.9) for all three data methods (two-

tailed, unpaired
 
t-tests, P-values <2 x 10

–16
). 

Data sources used by CAESAR include diverse available sources
 
of gene-centric 

information; however, non-independence among
 
data sources could also potentially bias 

the results. To address
 
this issue, we measured the average correlation between the

 
ranked 

gene lists for each tested trait using the review article
 
corpus (Table 2.3). The majority of 

the sources show a mild, yet
 
significant, correlation. No two data sources show a 

correlation
 
greater than " = 0.43.  Several pairs of sources show very weak

 
negative 

correlations. 

Discussion 

The extraordinary amount of biological information available
 
in the published literature 

and in publicly available databases
 
about complex human diseases, on the one hand, and 

genes and
 
their protein products, on the other, is well suited to the

 
in silico identification 

of candidate genes for disease. The
 
approach is enabled by ontologies that provide a 
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semantic mapping
 
between the natural language description of diseases and traits,

 
and the 

functional annotation of genes and their products. It
 
is further enabled by the availability 

of well-curated pathway
 
and protein-interaction datasets, and a wide variety of 

functional
 
information about not only the genes themselves, but also their

 
homologs in 

model organisms. The approach implemented in CAESAR
 
can, in principle, be applied to 

any complex trait in any organism
 
for which similar information resources exist. 

CAESAR relies on human expert knowledge in order to function
 
effectively, but it does 

not require that the user actually
 
possess all of this knowledge. At a minimum, the user 

needs
 
to select a relevant corpus, but much more user intervention

 
is possible. The user 

may manually modify the scores from the
 
text-mining step and/or introduce genes in 

addition to those
 
that were extracted from the corpus. The final rankings may

 
be modified 

based on user perceptions of the importance of particular
 
data sources. The user may also 

restrict the algorithm to consider
 
only certain genomic regions or particular sets of genes. 

While
 
it is not advisable to eliminate human judgment and oversight

 
of the candidate gene 

selection process, due to the volume and
 
the complexity of the information involved, 

semi-automated methods
 
such as CAESAR may well outperform an unaided expert. At 

the
 
very least, CAESAR provides a quantitative starting point for

 
which the assumptions 

are clear and the user's biases are minimized. 

The success of CAESAR in any given instance is due both to factors
 
that are, at least to 

some extent, under the user's control
 
and those that are not. The user's choice of a corpus 

that accurately
 
reflects the biology of the trait is clearly of critical importance.

 
In our 

experiments, we found that review articles generally,
 
though not always, yielded better 
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results than OMIM records.
 
The explanation for this difference is not clear; it does 

not
 
appear to be due to differences in corpus length. 

Other factors under the user's control are algorithmic, e.g.
 
how to calculate a score for a 

gene within a data source and
 
to rank genes across multiple data sources. The variety of 

simple
 
methods used here can, in some cases, lead to substantially

 
different rankings. One 

example is NPSR1, which had ranks of
 
749 and 2751 using int1 and int2, respectively. 

Four different
 
data sources (GO bp, GO mf, IPro and tissue) report 

information
 
on NPSR1, and the scores vary from high to low. Int1, which

 
calculates the 

maximum, favors genes with a high score in one
 
data source regardless of the others, 

whereas the low scores
 
are detrimental to the final rank using int2, which calculates the 

average. Each of the methods can be justified (see Method
 
section), and it is not clear a 

priori which should be superior. 

Overall, we found that the best results on the test set were
 
obtained using a corpus of 

review articles, the maximum method
 
for combining scores for a gene within a data 

source, and the
 
int4 method for data integration across multiple sources. However,

 
other 

combinations of parameters were superior for particular
 
test genes. On the basis of our 

test results, we have selected
 
the ‘max’ data-mining and ‘int4’ data-integration

 
methods to 

be the default settings for CAESAR. The OMIM record,
 
if available, is used as the input 

text by default, though our
 
results suggest that one or more review articles should be 

used
 
instead, or in addition, when possible. 

A number of factors affecting CAESAR's success are outside of
 
the user's control. One is 

the depth of biological knowledge
 
about the complex trait under study and the extent to 
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which
 
this knowledge has been recorded. Another is the extent to which

 
ontologies can be 

used to mediate between trait-centric and
 
gene-centric information sources. For example, 

anatomical ontologies
 
are available for mammals, but not yet for all organisms. 

Even
 
where an ontology exists, certain terms may not exist, have

 
listed synonyms, or be 

sufficiently well defined. 

The process of extracting gene names from unstructured text
 
is also error-prone 

147
, 

especially when
 
using older bodies of text containing outdated gene names and

 
symbols. 

Gene extraction is complicated further by the fact
 
that genes often share symbols with 

other genes and non-gene
 
acronyms. 

Perhaps most importantly, CAESAR depends on the availability
 
of functional 

information. Approximately half of the unique
 
entries in our reference set remained 

unranked for any trait
 
due to lack of annotation, including two of the test 

genes,
 
LOC387715 and LOC439999. As the total number of ranked genes

 
depends on the 

number of ontology terms that are mapped from
 
the corpus, the success of CAESAR for a 

given trait depends
 
on the information content of the corpus. One tested trait,

 
myocardial 

infarction, did not have a sufficiently informative
 
OMIM record. Therefore, CAESAR is 

limited to genes and traits
 
for which there is sufficient information in the form of 

annotations
 
and text descriptions, respectively. To the extent that this

 
reflects incomplete 

knowledge of genes and traits, it is a limitation
 
shared by all candidate gene approaches. 

The lack of gene-centric
 
information, at least, can be partially overcome by 

including
 
additional data sources from map-based studies, systematic functional

 
genomic 

screens and other model systems in which homologs may
 
have been characterized. 
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Given the importance of including a wide variety of functional
 
information, CAESAR 

could be enhanced by the inclusion of additional
 
data sources. A particularly valuable 

source would be data from
 
transcription profiling experiments, which would provide 

information
 
on a large proportion of genes that are lacking information

 
from other 

sources. Inclusion of this data will be challenging,
 
however, as the datasets available are 

diverse and heterogeneous,
 
and it is not clear how best to score the relevance of a 

particular
 
expression pattern to a trait. 

Inclusion of additional data sources could potentially raise
 
the issue of non-independence 

among them. Although no two data
 
sources used in this study are highly correlated, most 

of them
 
have a significant weak correlation. CAESAR does not currently

 
correct for non-

independence during the data-integration step. 

A variety of in silico methods for candidate gene selection
 
have previously been reported, 

though most have been designed
 
and tested to prioritize positional candidates. Gene-

Seeker
 17 

selected candidates in a given genomic
 
region through web-based data mining of 

expression and phenotype
 
databases. This approach enriched for disease genes in 10 

monogenic
 
disorders, providing at best 25- and 7-fold enrichment on average.  POCUS 

15
 

exploited functional similarities
 
between genes at two or more loci to predict candidates, 

requiring
 
no user input beyond the genomic regions of interest. It provided

 
12-, 29- and 

42-fold enrichment on average for three test loci
 
of increasing size and at best provided 

81-fold enrichment.
 
Perez-Iratxeta et al. (2002) used literature mining to 

associate
 
pathology with GO terms and then used these terms to rank candidate genes. 

The authors created artificial loci containing an average
 
of 300 genes for testing and 
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found 10-fold enrichment on average
 
and, at best, 38-fold enrichment. The correct disease 

gene was
 
present in their enriched set for 50% of the loci. Freudenberg

 
and Propping 

(2002) computed similarity-based clusters of known
 
disease genes based on phenotypic 

sharing between diseases.
 
Their method selected the correct disease gene in roughly two-

thirds of the cases, on average resulting in 10-fold enrichment, and
 
in the top one-third of 

the cases resulting in 33-fold enrichment.
 
Franke et al. (2006) developed a functional 

network of human
 
genes to select candidate genes found in pathways with known

 
disease 

genes. They constructed artificial loci that contained
 
on average 100 genes, and found 20- 

and 10-fold enrichment on
 
average in 27 and 34% of tested genes, respectively. 

More recently, SUSPECTS 
16

 and ENDEAVOUR 
14

 have been developed for application 

to more complex
 
traits. Both of these systems prioritized genes using a combination

 
of 

annotation and sequence features based on similarity to a
 
training set.  SUSPECTS was 

able to identify a test gene in artificial
 
loci on average within the top 13% of candidates, a 

7-fold enrichment.
 
In half the cases, the test gene was in the top 5% of candidates,

 
a 20-

fold enrichment. ENDEAVOUR tested both monogenic and polygenic
 
(complex) 

disorders using a test set of 200 genes. Over all
 
tested disorders, ENDEAVOUR provided 

9-fold enrichment on average
 
and 200-fold enrichment at best. Considering polygenic 

disorders
 
only, ENDEAVOUR provided 5-fold enrichment on average and 18-

fold
 
enrichment at best. 

The measure of success for an approach such as CAESAR ultimately
 
depends on the 

specific application. Our goal has been the enrichment
 
of candidates within the top 2% of 

ranked genes, which represents
 
roughly the top 1% of genes in the human genome. Given 
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the number
 
of functionally annotated human genes, this corresponds to 250–300

 
genes, 

which is a reasonable number to include in a high-resolution
 
SNP association study for a 

complex disease in human populations.
 
Our results suggest that approximately one-third 

to one-half
 
of the genes previously associated with complex human disease

 
would be 

included in this enriched candidate set. With a complex
 
trait, for which the true effectors 

are only partially known,
 
it is difficult to quantify the number of true and false positives.  

Nonetheless, assuming all genes outside of our test set are
 
negatives, we can calculate 

sensitivity as TP/(TP+FN) and specificity
 
as TN/(TN+FP), where TP is the number of 

true positives, TN
 
is the number of true negatives, FP is the number of false positives

 
and 

FN is the number of false negatives. Considering positives
 
to be the top 2% of ranked 

genes, we obtained an overall sensitivity
 
of 39% and specificity of 98% for our test set. 

Other measures
 
of success may be relevant for different applications, such

 
as prioritizing 

SNPs for follow-up work from a genome-wide association
 
study. By standard measures, 

CAESAR compares favorably with
 
other methods, even though we use a test set of genes 

associated
 
with complex rather than monogenic or oligogenic diseases. The

 
highest (293) 

and average (67) fold enrichment obtained with
 
CAESAR are greater than those reported 

for other systems. 

CAESAR makes use of a relatively small trait-specific corpus,
 
comprised of one to 

several review articles, and a large body
 
of gene-centric information. A similar approach 

could be useful
 
for other applications involving semantic mediation between

 
larger 

corpora or sets of corpora. 
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In conclusion, CAESAR can successfully mine large amounts of
 
biological information 

to guide the selection of candidate genes
 
for complex diseases in humans. Applications 

include selection
 
of candidate genes for association or re-sequencing 

studies,
 
prioritization of candidates for functional genomics experiments,

 
or evaluation of 

results from linkage and genome-wide association
 
studies. The approach may be 

extended to select candidates for
 
complex traits in other organisms for which similar 

informatics
 
resources are available. No computational system can select candidate genes 

with certainty; however, when used as a guide,
 
CAESAR is a useful tool for candidate 

gene prioritization. 
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Chapter III 

Comprehensive association study of type 2 diabetes and related quantitative traits with 

common variation in 222 candidate genes 

Abstract 

OBJECTIVE: Type 2 diabetes is a common complex disorder with environmental and 

genetic components. We used a candidate gene-based approach to identify single 

nucleotide polymorphism (SNP) variants in 222 candidate genes that influence 

susceptibility to type 2 diabetes. RESEARCH DESIGN AND METHODS: In a case-

control study of 1,161 type 2 diabetic subjects and 1,174 control Finns who are normal 

glucose tolerant, we genotyped 3,531 tagSNPs and annotation-based SNPs and imputed 

an additional 7,498 SNPs, providing 99.9% coverage of common HapMap variants in the 

222 candidate genes. Selected SNPs were genotyped in an additional 1,211 type 2 

diabetic case subjects and 1,259 control subjects who are normal glucose tolerant, also 

from Finland. RESULTS: Using SNP- and gene-based analysis methods, we replicated 

previously reported SNP-type 2 diabetes associations in PPARG, KCNJ11, and SLC2A2; 

identified significant SNPs in genes with previously reported associations (ENPP1 

[rs2021966, P = 0.00026] and NRF1 [rs1882095, P = 0.00096]); and implicated novel 

genes, including RAPGEF1 (rs4740283, P = 0.00013) and TP53 (rs1042522, Arg72Pro, 

P = 0.00086), in type 2 diabetes susceptibility. CONCLUSIONS: Our study provides an 

effective gene-based approach to association study design and analysis. One or more of 

the newly implicated genes may contribute to type 2 diabetes pathogenesis. Analysis of 
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additional samples will be necessary to determine their effect on susceptibility. 

 

Introduction 

Type 2 Diabetes (T2D) is a metabolic disorder characterized by insulin resistance and 

pancreatic #-cell dysfunction, and is a leading cause of morbidity and mortality in the 

USA and worldwide.  The incidence of T2D is rapidly increasing with 1.5 million new 

cases documented in the United States in 2005 alone, and the number of affected 

individuals worldwide is expected to double in the next 50 years 
148

.  While 

environmental factors play a major role in predisposition to T2D, substantial evidence 

supports the influence of genetic factors on disease susceptibility.  For example, the twin 

concordance rate is an estimated 34% for monozygotic twins and 16% for dizygotic twins 

38
.  However, the underlying genetic variants are just beginning to be identified 

149
 .  

 

Numerous published reports have identified association between T2D and common 

genetic variants in human populations 
79,150,151

; however, until very recently, variants in 

only a few genes have been consistently replicated across populations and with large 

sample sizes.  Among these are the Pro12Ala (rs1801282) variant in peroxisome 

proliferator-activated receptor gamma (PPARG) 
152

, the Glu23Lys (rs5210) variant in the 

potassium channel gene KCNJ11 
49

, and several variants in the Wnt-receptor signaling 

pathway member TCF7L2 
153

. 

 

Recent genome-wide studies have implicated many previously unreported genes in T2D 

susceptibility.  The first reported genome-wide association (GWA) scan implicated 
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variants at five susceptibility loci that include TCF7L2, and novel loci near the genes 

SLC30A8, IDE-KIF11-HHEX, LOC387761, and EXT-ALX4 
53

.  Three companion GWA 

studies, including one by our group, replicated evidence for PPARG, KCNJ11, TCF7L2, 

SLC30A8, IDE-KIF11-HHEX, and provided new evidence for CDKAL1, CDKN2A-

CDKN2B, IGF2BP2, FTO, and a region of chromosome 11 with no annotated genes 
54-56

.   

Additional GWA studies 
57-62

 provided additional evidence for TCF7L2, CDKAL1 and 

SLC30A8.  The candidate genes WFS1 
50

 and TCF2 
51,52

 have also been confirmed in 

large samples, bringing the current list of T2D susceptibility loci to at least 10. 

 

The recent discovery of these loci still explains only a small fraction (estimated 2.3%) of 

the overall risk of T2D 
54

.  Therefore, novel susceptibility genes remain to be identified 

through increasingly comprehensive analyses of both individual genes and the entire 

genome.   

 

The Finland-United States Investigation of NIDDM genetics (FUSION) study aims to 

identify variants influencing susceptibility to T2D and related quantitative traits in the 

Finnish population 
75

.  FUSION has previously identified modest T2D association in 

Finns with variants in HNF4A 
78

, four genes known to cause MODY 
79

 
78

 
80

, PPARG, 

KCNJ11, ENPP1, SLC2A2, PCK1, TNF, IL6 
79

, and TCF7L2 
81

, in addition to the loci 

identified in the GWA studies. 

 

As a complementary approach to GWA studies, which are conducted without a priori 

biological hypotheses, we sought to perform an in depth analysis of >200 genes likely to 
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influence susceptibility to T2D and quantitative trait variation that we selected by 

applying CAESAR (CandidAtE Search And Rank), a text and data-mining algorithm 
154

. 

We aimed to analyze the full spectrum of HapMap-based common variation in each of 

these candidate genes. The combination of high-throughput genotyping, linkage 

disequilibrium (LD) information from HapMap 
21

, the ability to impute un-genotyped 

variants 
27

, and the improved functional annotation of the genome make possible in-depth 

candidate gene based association analysis.  

 

Methods 

Sample selection 

The Stage 1 sample set consisted of 2,335 Finnish individuals from the FUSION 
75

 and 

Finrisk 2002 
155

 
156

 studies (Table 3.1, Table 3.6).  The sample included 1,161 

individuals with T2D and 1,174 normal glucose tolerant (NGT) controls.  Diabetes was 

defined according to 1999 World Health Organization criteria of fasting plasma glucose 

concentration ! 7.0 mmol/L or 2-h plasma glucose concentration ! 11.1 mmol/L, by 

report of diabetes medication use, or based on medical record review. Normal glucose 

tolerance was defined as having fasting glucose < 6.1 mmol/L and 2-h glucose < 7.8 

mmol/L.  120 FUSION offspring with genotyped parents were included for quantitative 

trait analysis; all offspring were NGT except one T2D individual who was included in the 

case sample.  

 

Stage 2 consisted of 2,473 Finnish individuals (Table 3.1, Table 3.7), and included 1,215 

individuals with T2D and 1,258 NGT controls 
55

.  56 duplicate samples were used for 
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quality control. 

 

The sample sets are identical to those used in the FUSION GWA study 
55

.  Study 

protocols were approved by local ethics committees and/or institutional review boards, 

and informed consent was obtained from all study participants. 

 

Gene selection 

A total of 222 candidate genes were selected for study using two strategies.  217 

candidate genes were selected using CAESAR, an algorithm that prioritizes candidate 

genes for complex human traits 
154

. CAESAR prioritizes candidate genes for complex 

human traits by semantically mapping trait relevant natural language descriptions to a 

variety of functional annotation sources. The trait relevant input text used here was four 

concatenated T2D review articles 
157-160

.  Given a trait relevant input text, CAESAR uses 

text- and data-mining to extract information from the input text in two ways.  

 

First, terms in four biomedical ontologies (gene ontology biological process and gene 

ontology molecular function 
161

, eVOC anatomy 
162

, and mammalian phenotype ontology 

163
) were ranked based on vector-space similarity to the input text 

121
.   For each ontology 

term, the term, including its description, and the input text were represented as two 

separate word vectors excluding common stop words, and the similarity of the word 

frequency in the two vectors was measured as the cosine of the angle between the 

vectors. A stronger similarity results in a higher rank.  The ranked ontology terms were 

then used to query four functional annotation databases for genes annotated with the 
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ranked terms.  We queried the gene ontology annotation (GOA) database 
164

, UniProt 
124

, 

the mouse genome database (MGD) 
122

, the genetic association database (GAD) 
123

 to 

create four lists of annotated genes. 

 

Second, we independently compiled a list of genes of interest. Unlike the procedure 

described in CEASAR, in which the input text is mined for gene symbols, we empirically 

chose seven genes related to T2D. PPARG, HNF4A, and KCNJ11 were selected based on 

prior evidence of T2D association in FUSION and other studies 
78-80

, and PPARGC1A, 

PPARGC1B, ESRRA, and GABPA were selected based on evidence of T2D-relevant 

transcriptional regulation 
165-167

.  These seven genes were then used to query functional 

databases for genes sharing annotations with the extracted genes.  We used InterPro 
129

, 

the Kyoto encyclopedia of genes and genomes (KEGG) pathway database 
128

, and 

combined data from the interaction databases biomolecular interaction network database 

(BIND) 
126

 and the human protein reference database (HPRD) 
127

 to create three lists of 

annotated genes. Each extracted gene was given the same weight. 

 

We added two gene lists to the seven described above: (a) genes located on chromosome 

10 from ~120-130 cM, a region implicated by a meta-analysis of linkage genome scans 

168
  and (b) genes with evidence of cis-acting variation affecting gene expression 

169
 .  

 

For each list, annotated genes are weighted based on calculating the maximum, sum, or 

average of the matching terms for that gene. For the MGD and cis-acting variant gene 

lists, the ‘sum’ of term scores was used to favor genes with evidence from several 
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ontology terms. For the remaining seven gene lists scores were generated by taking the 

‘maximum’ term score for each gene to favor genes with strong evidence from one 

ontology term. 

 

For the integration step, we weighted each of the nine resulting lists by the strength of 

their biological evidence; MGD, GO biological process, and UniProt data were 

considered to have the strongest biological evidence and were weighted highest.  The 

weighted scores across all lists were then summed together for each gene to provide a 

final score for that gene.  In total, 10,760 genes with annotation evidence were ranked 

and thus prioritized for relevance as T2D candidate genes.  Genes were chosen from the 

top of the prioritized list, except 22 high-ranking genes were excluded based partially on 

strong negative evidence of association from previous reports, an absence of known 

SNPs in the gene, or numerous SNPs in the gene. The last choice was made before 

imputation techniques were available and exclusion of 11 genes with >20 SNPs allowed 

inclusion of additional lower-ranked genes that required less additional tagSNP 

genotyping.  The genes excluded for this criterion were CACNA1D, CACNA1E, 

CACNA1C, RFX3, NRG1, SHC3, RARB, PRKCE, PFKP, SNAP25, and RORA. 

 

Five genes were not ranked high enough to have been included using CAESAR. ENPP1, 

HFE, WFS1, and ZNHIT3 were included because each had one or more SNPs associated 

with T2D (p < .1) in prior study of a subset of FUSION samples 
79

 ( and unpublished 

data); in addition, ENPP1 and WFS1 had been previously studied as T2D candidate 

genes.  CAPN10 was included because it had been previously studied by FUSION 
170

 and 
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others 
171

 
172

.    

 

SNP selection 

We defined the ‘transcribed region’ of each of the 222 candidate genes as the sequence 

including the first exon of any transcribed isoform through the last exon of any 

transcribed isoform, and we aimed to capture variation up to 10 kb upstream and 5 kb 

downstream of the transcribed region (-10kb/+5kb).  In this process we allowed SNPs to 

be located as far as 50 kb upstream and 50 kb downstream (-50kb/+50kb) of the 

transcribed region if they tagged a -10kb/+5kb SNP at r
2
>.8. 

 

We initially identified 2,312 SNPs from the Illumina Infinium™ II HumanHap300 

BeadChip. A SNP was included if it was located within (a) the -10kb/+5kb region or (b) 

the 50 kb upstream and 50 kb downstream of the transcribed region of a candidate gene (-

50kb/+50kb) and it tagged one or more HapMap SNPs within the -10kb/+5kb region at 

an r
2
 threshold of .8 based on HapMap CEU genotypes.  We previously demonstrated that 

the HapMap CEU data are a sufficient resource to select tagSNPs for the Finnish 

population 
173

. 

 

To more comprehensively evaluate each gene, we selected additional SNPs for 

genotyping on an Illumina GoldenGate panel. 1,405 HapMap tagSNPs not present on the 

HumanHap300 BeadChip were selected to tag additional HapMap SNPs in each -

10kb/+5kb region at an r
2
 threshold of .8.  We used a tiered selection process to select 

tagSNPs that were prioritized based on proximity to a candidate gene and functional 
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annotation.  Annotation categories were non-synonymous variants, variants close to 

exon/intron boundaries, and variants in 8-species conserved regions (multiz8way) 
174

.  

We selected 122 additional non-synonymous and potential splice-site SNPs with dbSNP 

minor allele frequency (MAF) >.05 that were not present in HapMap. 

 

When HapMap release 21 became available, we re-selected tagSNPs from the 

HumanHap300 BeadChip by first identifying 10,762 common (MAF > .05) HapMap 

SNPs present within the -10kb/+5kb gene regions.  For each SNP in the -10kb/+5kb gene 

region we included the best tag from the -50kb/+50kb gene region; the best tag for a 

genotyped SNP was itself.  3,428 SNPs were identified in this manner, including all 

successfully genotyped tagSNPs not on the HumanHap300 BeadChip.  We also included 

eight SNPs that had been previously genotyped in candidate gene studies on a smaller 

subset of FUSION samples 
79

.  

 

All reported SNP and gene positions are based on NCBI Build 35 (hg17). 

 

Genotyping 

317,503 SNPs were genotyped at the Center for Inherited Disease Research (CIDR) on 

the HumanHap300 BeadChip using the Illumina Infinium™ II assay protocol 
55

.  99.7% 

(2,585 / 2,592) of the genotyped samples were successful at a call rate > 97.5%.  

Genotypes were obtained for 99.4% (315,635 / 317,503) of the SNPs and for the 317,503 

SNPs there was a genotype consistency rate of 99.994% based on 24,990,942 duplicate 

genotype pairs (79 duplicate samples).  
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1,527 SNPs were genotyped in partnership with the Mammalian Genotyping Core at the 

University of North Carolina using the Illumina GoldenGate assay.  99.7% (2,586 / 

2,592) of the genotyped samples were successful at a call rate > 97.5%, and genotypes 

were obtained for 97.2% (1,484 / 1,527) of the SNPs.  GoldenGate SNPs were manually 

clustered, and in this process 40 of the 79 duplicate samples were used to assist and 

improve clustering; the remaining 39 duplicate samples were used to estimate the error 

rate.  For the 1,527 SNPs there was a genotype consistency rate of 99.979% based on 

61,905 duplicate genotype pairs. 

 

Eight SNPs that were previously genotyped on a subset of our Stage 1 samples 
79

 using 

the Illumina GoldenGate assay were genotyped on the remaining samples using the 

Sequenom homogeneous MassEXTEND (hME) assay.  Genotypes were obtained for all 

eight SNPs.  Between the two platforms there was a genotype consistency rate of 

99.889% based on 904 duplicate genotype pairs.  Four SNPs were genotyped to validate 

imputed p-values; three were genotyped using Applied Biosystems TaqMan allelic 

discrimination assays and the fourth (rs2021966) using the hME assay.  Genotypes were 

obtained for all four SNPs and there was a genotype consistency rate of 100% based on 

295 duplicate genotype pairs.  

 

31 SNPs were genotyped on Stage 2 samples using the hME assay.  Genotypes were 

obtained for 29 of the SNPs and there was a genotype consistency rate of 100% based on 

1,518 duplicate genotype pairs. 
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We applied quality control criteria to exclude and flag SNPs.  SNPs were excluded from 

analysis if they (a) failed a test for Hardy-Weinberg equilibrium (HWE) at a p-value 

threshold of 1x10
-6

 using unrelated subjects, (b) had four or more duplicate errors or non-

Mendelian inheritance (NMI) errors, or (c) had a sample success rate < 90%.  Stage 2 

data for two SNPs was included even though they had sample success rates < 90%  

(87.8% for rs858341 and 85.0% for rs4843165).  Flagged SNPs were not removed from 

analysis, but were carefully examined if found interesting.  A SNP was flagged if it (a) 

failed HWE at a threshold of 1x10
-3

, (b) had two or more duplicate or NMI errors, (c) had 

a sample success < 95%, or (d) had atypical clustering patterns. Twenty-two non-

polymorphic SNPs were excluded from analysis.  Two SNPs overlapped between GWA 

and UNC genotyping; thus, a total 3,531 genotyped SNPs were included in analysis. 

 

Imputation 

We used MACH, a computationally efficient hidden Markov model based algorithm (29, 

38) to impute genotypes in FUSION samples for 7,498 common (MAF > .05) HapMap 

SNPs present in the target regions but not genotyped in our study. MACH combines our 

genotype data with phased chromosomes for the HapMap CEU samples and then infers 

the unknown FUSION genotypes probabilistically by searching for similar stretches of 

flanking haplotype in the HapMap CEU reference sample 
27

.  In this process, we used the 

GWA and Golden Gate genotype data from SNPs in the extended gene regions (-50 

kb/+50 kb).  For each individual at each imputed SNP, we calculated an expected allele 

count based on the average of allele counts for 90 iterations of the imputation algorithm. 

We assessed the quality of the results for each SNP by calculating the ratio of the 
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observed variance of scores across samples to the expected variance given the imputed 

allele frequency of the SNP (estimated r
2
).  SNPs with an estimated r

2
 " .3 were excluded 

from further analysis.  To improve the quality of imputation near the ends of the target 

regions, we used at least 1Mb of flanking genotype information to impute SNPs in target 

regions. 

 

Coverage of HapMap SNPs 

Coverage was calculated as the percentage of all common (MAF > .05) HapMap Release 

21 CEU SNPs in the -10kb/+5kb gene regions that are tagged by a genotyped SNP at an 

r
2
 threshold of at least .8.    

 

T2D association analysis 

Genotyped SNPs were tested for T2D association using logistic regression under additive 

(padd), dominant, and recessive genetic models with adjustment for 5-year age category, 

sex, and birth province.  Imputed SNPs were tested for T2D association using logistic 

regression under an additive model (pimpute) with the expected allele count in place of the 

allele count and adjusted for the same covariates. This approach takes into account the 

degree of uncertainty of genotype imputation in a computationally efficient manner by 

replacing allele counts (0, 1, 2) at the marker locus by predicted allele counts based on 

estimated probabilities of 0, 1, or 2 copies of a SNP allele 
27

. 

We accounted for carrying out multiple correlated tests using the p-value Adjusted for 

Correlated Tests (pACT) method 
176

. The pACT method was used to correct the minimum p-
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value among (a) tests of three genetic models for a single SNP (pSNP) and (b) multiple 

SNPs and models across a gene region (pgene).   

 

To evaluate each genotyped SNP, we adjusted the minimum p-value across the three 

tested models using pACT and termed the adjusted p-value pSNP. We performed 

permutation testing to verify the pSNP results.  We empirically determined the experiment-

wide significance of pSNP by permuting case/control status 1,000 times.  We calculated 

the power of our experiment to detect T2D association of the TCF7L2 SNP rs7903146 in 

the Stage 1 or Stage 1+2 samples based on an experiment-wide p-value = 6.3 x 10
-5

, 

disease prevalence =.1, risk allele frequency =.18, and OR=1.37, based on Table 1 of 

Scott et al. 
55

, using CaTS 
177

. 

 

For each gene region we identified the minimum T2D association p-value for all models 

and SNPs and adjusted this p-value for the multiple tests using pACT and termed the 

adjusted p-value pgene.  Six pairs of the 222 candidate genes had adjacent or overlapping 

gene regions and were thus combined for the gene analysis: C3-TRIP10, CHUK-

PKD2L1, KCNJ11-ABCC8, LTA-TNF, NR1H3-SPI1, and NR5A1-NR6A1.  We estimated 

the study-wide significance of an observed number of significant SNPs by comparing to 

the appropriate binomial distribution and using a one-sided test of significance.  To 

remove potential bias from the test for excess significance, two sets of genes were 

separately excluded: (a) seven genes with SNP(s) showing prior evidence of association 

in FUSION samples: ENPP1, IL6, KCNJ11, PCK1, PPARG, SLC2A2, TNF; and (b) five 

genes not selected by CAESAR: CAPN10, ENPP1, HFE, WFS1, ZNHIT3. 
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The genomic control $ values were 1.03 for genotyped SNPs (padd) and 1.04 for imputed 

SNPs (pimpute) (Figure 3.1) 
69

. 

 

We determined the independence of significant association signals in genes by including 

one SNP as a covariate in logistic regression and reassessing the evidence for association 

with the other SNPs. 

 

Quantitative trait analysis 

We tested all genotyped and imputed SNPs for association with 20 T2D-related 

quantitative traits including, in controls only: fasting insulin, fasting glucose, homeostasis 

model adjustment, and fasting free fatty acid; and in all samples: body-mass index, 

weight, waist circumference, hip circumference, waist to hip ratio, waist to height
2
 ratio, 

total cholesterol, HDL cholesterol, LDL cholesterol, triglyceride level, cholesterol to 

HDL ratio, triglyceride to HDL ratio, diastolic blood pressure, systolic blood pressure, 

pulse, and pulse pressure.  

 

For cases and controls separately, we regressed the quantitative trait variables on age, 

age
2
, sex, birth province, and study indicator, and transformed the residuals of each 

quantitative trait to approximate normality using inverse normal scores, which involves 

ranking the residual values and then converting these to z-scores according to quantiles of 

the standard normal distribution.  We then carried out association analysis on the 

residuals. To allow for relatedness, regression coefficients were estimated in the context 
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of a variance component model that also accounted for background polygenic effects 

(40).  For genotyped SNPs we tested for association using the residuals under an additive 

model.  For imputed SNPs we tested for association using the residuals and the expected 

allele count in place of the allele count under an additive model. For traits analyzed in 

both cases and controls, results were combined using meta-analysis in which we 

calculated a z-statistic summarizing the p-value, in its magnitude, and the direction of 

effect, in its sign.  We then calculated an overall z-statistic as a weighted average of the 

T2D and NGT statistics and calculated the corresponding p-value.  Weights were 

proportional to the square-root of the number of individuals in each sample and were 

selected such that the squared weights summed to 1. 

 

Results 

We studied 222 candidate genes for T2D association in our Stage 1 sample of 1,161 T2D 

cases and 1,174 NGT controls from the FUSION study (Table 3.1).  Of 10,762 target 

HapMap SNPs (MAF > .05) in the –10 kb/+5 kb gene regions, the 3,531 genotyped SNPs 

cover 10,299 (95.7%) SNPs at an r
2
 threshold of .8.  This represents an improvement over 

the genome-wide HumanHap300 genotyped SNPs, which alone cover 79.0% of the target 

SNPs at r
2 
! .8 (Table 3.2).  3,187 of the 3,531 genotyped SNPs are located in the -

10kb/+5kb regions.  Of the remaining 7,575 ungenotyped target SNPs, 7,498 were 

successfully imputed.  Altogether, 99.9% of all target variation was genotyped, imputed, 

or tagged (r
2
!.8) by an analyzed SNP.    
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We evaluated the significance of genotyped SNPs in each gene region after correcting for 

multiple SNPs tested while accounting for the LD between SNPs, designated pgene 
176

 .  

Given six pairs of adjacent genes (see Methods), we analyzed 216 distinct gene regions 

for T2D association (Table 3.8).  SNPs in four gene regions were significantly associated 

with T2D at pgene < .005: rs11183212 in ARID2 (pgene = .0029), rs2235718 in FOXC1 

(pgene = .0028), rs8069976 in SOCS3 (pgene = .0037), and rs222852 in SLC2A4 (pgene = 

.0024), although no pgene result reached study-wide significance of .00023, a threshold 

determined using a Bonferroni correction.  SNPs in 19 genes were significant at pgene < 

.05, including SNPs in three genes previously implicated in T2D susceptibility in 

FUSION (6) (Table 3.3).  There was an excess of significant pgene results at both 

thresholds: four at pgene < .005 (p = .024); 19 at pgene < .05 (p = .013).  The excess of 

significant results at pgene < .005 is maintained after excluding (a) seven genes showing 

prior evidence of association with any SNP in FUSION samples (p = .022) or (b) five 

genes not selected by CAESAR (p = .022), as no excluded genes were significant at that 

threshold (see Methods). 

 

To evaluate all 3,531 genotyped SNPs (Table 3.9), we permuted the case/control status to 

estimate whether an excess of significant results was observed.  214 SNPs showed 

significant T2D association at a pSNP threshold of .05, and of these, 26 were associated at 

a pSNP threshold of .005 (Table 3.4); there was modest but not significant excess at both 

of these pSNP thresholds (observed=214, expected=183.3, p = .09; observed=26, 

expected=18.9, p = .12, respectively). The most significant pSNP value of 3.6x10
-4

 was 

observed for rs11183212, an intronic SNP in the ARID2 gene, but when compared to an 
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empirical distribution of the most significant p-values this SNP does not reach a study-

wide significance threshold of 6.3x10
-5 

based on 1,000 permutations.  In the combined 

Stage 1 and Stage 2 sample, we have >99% power (80% in Stage 1 alone) to detect the 

most strongly associated previously observed T2D SNP, rs7903146 in TCF7L2 
53-56

, at a 

study-wide significance level, and substantially less power to detect T2D-associated 

SNPs with smaller effect sizes.   

 

Nineteen of the 216 gene regions have at least one SNP significantly associated with T2D 

at pSNP < .005; among these, Pro12Ala (rs1801282) in PPARG (pSNP = .0025) was the 

only SNP that matched or was in high LD (r
2
!.8) with a previously reported variant, 

given the available HapMap LD information.  Imputation identified 421 additional SNPs 

in 59 genes significantly associated with T2D (pimpute < .05, Table 3.9), including SNPs in 

10 genes that did not contain a significant genotyped SNP (pSNP > .05). We genotyped 

four of these initially imputed SNPs that were both significantly associated with T2D 

(pimpute < .05) and for which the imputation-based p-value was at least five times more 

significant than that for any nearby genotyped SNP; three of the four SNPs had highly 

concordant imputed and genotyped p-values (Table 3.11). 

 

We selected for follow-up genotyping in Stage 2 samples 24 SNPs that were either 

significant at pSNP < .005 or, if a non-synonymous variant, significant at pSNP < .01 (Table 

3.1).  The most significant SNPs in the combined Stage 1 and Stage 2 samples were 

rs4740283 in RAPGEF1 (pSNP = .00013), rs2021966 in ENPP1 (pSNP = .00026), Arg72Pro 

(rs1042522) in TP53 (pSNP = .00086), and rs1882095 in NRF1 (pSNP = .00096).  In total, 
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16 SNPs were significant at pSNP < .05 in the combined Stage 1 and Stage 2 samples 

(Table 3.4).  

 

To evaluate the effect of body-mass index (BMI), we included BMI as an additional 

covariate in the analysis of the additive model for all genotyped and imputed SNPs.  Of 

the 11 SNPs originally significant at padd<.001, all were within a 10-fold difference after 

correction (Table 3.12).  In addition, of the 16 SNPs significant at padd<.001 after 

correction, three were more than 10-fold different than before correction, including 

several SNPs at the TRIP10/C3 locus (Table 3.13). 

 

Four genotyped and 30 imputed SNPs were strongly associated (p < .0001) with one or 

more of 20 quantitative traits after combining case and control subjects by meta-analysis 

(see Methods) (Table 3.5, Table 3.14).  Variants in APOE and PPARA showed strong 

evidence of association with serum lipid levels, confirming previous reports 
178,179

.  

Strong novel associations (p<1x10
-5

) were observed for rs4912407 in PRKAA2 with 

triglyceride level (p = 3.68x10
-6

), rs10517844 in CPE with HDL level (p = 2.07x10
-5

), 

and rs4689388 in WFS1 with LDL level (p = 5.30x10
-5

).  We followed-up genotyped 

SNPs significantly associated (p < .0001) with one or more quantitative traits by 

genotyping the Stage 2 samples.  No SNP showed study-wide significance in the 

combined Stage 1 and Stage 2 samples (Table 3.5). 

 

Discussion 

In this study we evaluated the evidence for T2D association for SNPs in 222 candidate 
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genes and provide a framework for thorough analysis of association of common variation 

to disease using gene-based functional annotation, HapMap LD information, and 

imputation of genotypes. This framework could be used in the context of a genome-wide 

association study or an independent investigation of candidate genes. We replicated 

previous T2D association with SNPs in PPARG, KCNJ11, and SLC2A2; identified 

significant SNPs in genes previously implicated in T2D risk, NRF1 and ENPP1; and 

identified additional genes that may influence susceptibility to T2D and related 

quantitative traits including RAPGEF1 and TP53.  While some of the genes may be 

significant by chance, one or more may represent true susceptibility genes.  We expect 

true susceptibility genes identified in our sample set will in many cases be shared in 

additional populations, as the FUSION GWA study identified many of the same risk 

alleles as other GWA studies on European populations 
53-56,62

. 

 

To assess the role of the 222 genes in susceptibility to T2D, we attempted to assess 

complete coverage of common (MAF > .05) SNPs in the HapMap CEU database.  The 

coverage of common HapMap CEU SNPs across all 222 candidate genes using 

genotyped SNPs was 95.7%, a 16.7% percent improvement over the coverage of 79.0% 

based on the Illumina HumanHap300 genome-wide panel (Table 3.2). HapMap provides 

excellent coverage of common variation in European samples; however, there are 

additional non-HapMap SNPs in these gene regions 
21

.  Of the 122 genotyped SNPs not 

in HapMap, 10 were not tagged at an r
2
 threshold of .8 by a HapMap SNP, indicating that 

some of the non-HapMap variation is better covered in our study than the GWA panel.  
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Our most strongly T2D-associated SNP in the Stage 1 and Stage 2 samples was SNP 

rs4740283 (pSNP = .00013), located 4 kb downstream of Rap guanine nucleotide exchange 

factor 1 (RAPGEF1). RAPGEF1 is a ubiquitously expressed gene involved in insulin 

signaling 
180

 and Ras-mediated tumor suppression 
181

. rs4740283 is in strong LD with 

SNPs in the coding region, and may affect either a regulatory element or protein function.  

Variation in this gene may contribute to susceptibility through reduced ability of 

peripheral tissues to absorb glucose in response to insulin.   

 

The second strongest associated SNP in the Stage 1 and Stage 2 samples was Arg72Pro 

in TP53 (rs1042522, pSNP = .00086), originally identified by imputation, subsequently 

genotyped, and not well tagged by any originally genotyped SNP (maximum r
2 
= .27 with 

rs2909430).  TP53 encodes the tumor-suppressor protein p53, and the Arg72Pro variant 

has a functional role in the efficiency of p53 in inducing apoptosis, possibly through 

reduced localization to the mitochondria 
182

.  The risk allele Arg72 has higher apoptotic 

potential consistent with a possible link between increased pancreatic beta-cell apoptosis, 

impaired insulin secretion and T2D. 

 

We observed significant association with SNPs in two genes previously implicated in 

T2D susceptibility, nuclear respiratory factor 1 (NRF1) and the insulin-dependent 

facilitated glucose transporter SLC2A2. NRF1 helps regulate mitochondrial transcription 

and oxidative phosphorylation 
167

, which has a known role in insulin resistance, and the 

associated NRF1 variant, rs1882095, is located 1 kb downstream of the gene and not in 

modest LD (r
2
>.6) with any HapMap SNP.  In SLC2A2 we found supporting evidence in 
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Stage 1 for the non-synonymous variant Thr110Ile (rs5400) (pSNP = .0065), as well as a 

previously unreported variant, rs10513684 (pSNP = .0046).  The rs10513684 signal 

became slightly more significant after Stage 2 genotyping (pSNP = .0023); however, the 

signal was attenuated (p =.18) after inclusion of Thr110Ile in the analysis. 

 

Among the most significant T2D associated SNPs is rs2021966 in ENPP1 (pSNP = 

.00026).  SNPs in high LD with rs2021966 are located in intron 1, in a region of strong 

multi-species conservation containing a pseudogene but no known transcripts.  Previous 

studies of ENPP1 have reported associations with rs1044498 and with a related three-

SNP haplotype (rs1044498, rs1799774, rs7754561) and support a modest role in T2D 

susceptibility, possibly acting through obesity 
183

.  In our study, rs1044498 (pSNP = .16) 

and rs7754859 (pSNP = .18, r
2
=1 with rs7754561) were not significantly associated with 

T2D (rs1799774 was not tested). The newly identified variants are in very low LD with 

rs1044498 (r
2 
< .05).  

 

Although we observed significant quantitative trait associations in previously implicated 

genes (APOE and PPARA with serum lipid levels), no quantitative trait associations 

became more significant after addition of Stage 2 samples (Table 3.5).  This is likely due 

in part to the small number of SNPs selected for follow-up.  Stage 2 genotyping of SNPs 

less significant in Stage 1 samples will be necessary to establish whether any novel SNPs 

contribute to quantitative trait variability.  

In any gene-based study, the definition of gene boundaries is critical but by necessity 

somewhat arbitrary.  We defined a gene region as 10 kb upstream of the first known exon 
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through 5 kb downstream of the last known exon in an attempt to capture the majority of 

nearby regulatory elements influencing a gene.  Regulatory elements, however, can often 

be found up to several hundred kb away from a gene 
184

.  We evaluated whether a broader 

definition of a gene had a substantial effect on the pgene results by testing extended gene 

regions, 50 kb upstream and 50 kb downstream of transcribed regions, by including 

HumanHap300 SNPs from these regions in our analysis.  Using the extended gene 

boundaries, the insulin gene INS would be the most significant gene in our study (pgene = 

.0019), driven by SNP rs10743152 (pSNP = .00015) located 13 kb upstream of the first 

exon.  Other genes that had significant SNPs (pgene < .05) only in the extended gene 

region were MAP2K1, CDK4, and IRF4. 

 

Even using the narrow gene boundaries, several SNPs in our study may influence 

expression or function of other nearby or even more distant genes.  Recent genome-wide 

association studies have confirmed novel susceptibility variants downstream of HHEX, a 

gene selected for this study by CAESAR 
53-56

; the reported SNPs are located outside of 

the narrow gene region (-10 kb/+5 kb) in a large LD block that includes KIF11 and IDE, 

and we only detected nominal significance in the narrow HHEX region (pSNP = .037 for 

rs12262390).  For some genes, the extent of LD surrounding significant SNPs implicates 

flanking genes. For example in ARID2, rs35115 (pSNP = .0067) is located in intron 7 but 

also tags the non-synonymous variant rs7315731 in SFRS2IP (r
2
 = .93).  These examples 

demonstrate that defining a gene boundary requires a balance between capturing all 

possible SNPs influencing the gene and introducing SNPs that may be more functionally 

relevant to other genes.  A more sophisticated approach to establish gene boundaries that 
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defines each gene boundary separately by considering the genomic context around the 

gene may be helpful in future gene-based approaches. 

 

Gene-based approaches to interpreting the results of candidate gene and even genome-

wide association studies are important because most variation influencing susceptibility 

to T2D and other common complex traits is currently expected to be gene-centric, 

although the definition of a gene is constantly evolving.  Detailed coverage of the 

common variation in these genes represents a critical requirement for an effective and 

thorough gene-based study.  Here we have identified genes significantly associated with 

T2D and related quantitative traits that are attractive targets for future replication studies.  

Confirmation in a larger sample set and meta-analyses across studies will be important to 

help determine the role of these genes. 
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Chapter IV 

Targeted sequencing of the HDL cholesterol level associated loci GALNT2 and 

MVK/MMAB and triglyceride level associated loci MLXIPL, TRIB1 and ANGPTL3 in 

Finnish individuals with trait values in the tails of the trait distribution  

 

Abstract 

Recent genome-wide association studies have identified many novel risk loci for plasma 

lipid levels.  To identify additional genetic variants contributing to individual trait 

variability at these loci, we sequenced three novel loci associated with triglyceride level, 

MLXIPL, TRIB1, and ANGPTL3 and two loci associated with HDL cholesterol level, 

GALNT2 and MVK/MMAB in 188 Finnish individuals with trait values in the tails of the 

trait distribution.  We identified common variants in linkage disequilibrium with known 

associated SNPs that represent additional functional targets, including several non-

synonymous, 3’ UTR, and non-coding variants in predicted hepatic regulatory regions.  

In addition, between 10% -15% of variants in linkage disequilibrium with what at a given 

threshold were indels.  Among less common and rare variants, we identified several with 

trait association that may independently contribute to trait values, including a variant in 

intron 1 of TRIB1 and rare variants unique to low HDL-C individuals in the GALNT2 3’ 

UTR.  This study represents the first sequencing effort of these lipid-level associated loci 

in phenotypically-selected samples. 
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Introduction 

Plasma concentrations of lipids such as HDL cholesterol, LDL cholesterol and 

triglycerides are important risk factors for the development of coronary artery disease, the 

leading cause of morbidity and mortality in industrialized nations 
185

.  In the past several 

years, genome-wide association studies have identified many common variants 

contributing to individual variation in plasma lipid levels, many of which were previously 

unknown 
85,86

.   

 

For triglyceride level, recently identified loci include variants near MLXIPL, ANGPTL3 

and TRIB1 
86

.  Both MLXIPL and ANGPTL3 have links to triglyceride metabolism.  

MLXIPL encodes a transcription factor that binds carbohydrate response element motifs 

upstream of genes involved in triglyceride synthesis
186

, and ANGPTL3 encodes a protein 

that inhibits lipoprotein lipase (LPL) that in turn regulates triglyceride metabolism 
187

.  

TRIB1 regulates mitogen-activated protein kinases and helps control vascular smooth 

muscle proliferation 
188

, although how this function may contribute to triglyceride 

metabolism is unclear.  As the associated variants in this region are 25 kb downstream of 

TRIB1, the contribution to triglyceride level variability may involve another gene or 

transcript altogether.   

 

Novel susceptibility loci for HDL-C level include variants near GALNT2 and 

MMAB/MVK 
86

.  The MMAB/MVK associated region spans greater than 350 kb and 

includes two bi-directionally organized genes, MMAB and MVK, that are both known to 

be regulated by SREBP2 
189

.  The protein product of MVK catalyzes an early step in 
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cholesterol biosynthesis
189

, and the product of MMAB is involved in cholesterol 

degradation
190

.  In addition, HDL-C associated variants at this locus are correlated with 

levels of MMAB transcript in hepatocytes
191 ,192

.  The association signal at GALNT2 is 

localized to an approximately 14 kb region in intron 1 of the gene.  GALNT2 is a 

glycosyltransferase involved in O-linked oligosaccharide biosynthesis 
193

, and the 

mechanism by which this gene may influence HDL-C level is currently unknown. 

 

Identification of susceptibility loci influencing lipid levels has subsequently created a 

new set of challenges, including identification of the variant(s) functionally responsible 

for the association signal and identification of other variants in these genomic regions 

influencing trait susceptibility.  Targeted re-sequencing of associated regions and/or 

nearby genes in a small to moderate number of samples should identify the full suite of 

common variants potentially responsible for the association, and genotyping the more 

complete set of associated SNPs in a large sample could help localize the signal 
194

.  The 

1,000 Genomes Project should facilitate susceptibility variant discovery by uncovering a 

more complete set of common SNPs, insertions-deletions (indels) and copy number 

variants (CNVs) across the genome 
28

.  Targeted functional study of candidate variants 

may successfully identify likely functional culprits, as has been accomplished previously 

for other GWA loci 
195,196

.   

 

Deeper re-sequencing efforts are aimed at identifying rare variants not easily captured 

through linkage disequilibrium (LD)-based approaches and that may contribute 

independently to trait susceptibility.  One widely used approach is to re-sequence 
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genomic regions in phenotypically-selected groups of individuals, such as those at 

phenotypic extremes of the trait distribution, and then identify highly penetrant variants 

preferentially found in one group
29,31,32,197,198

.  These studies have thus far been primarily 

restricted to re-sequencing coding regions, which requires less sequencing and at which 

predictions of variants with a functional effect can focus on protein changes.  

 

We sequenced genomic regions representing three loci associated with TG level and two 

loci associated with HDL-C level in normoglycemic individuals with high (>95
th
 

percentile) and low (<5
th

 percentile) TG or HDL-C level.  Common SNPs and indels 

were in LD with previously associated variants that represent additional functional targets 

at these loci.  We also identified less common (MAF<.05) transcribed and non-coding 

variants that may contribute to trait variability.  

 

Methods 

Sample selection for sequencing 

Samples were selected from 2,335 Finnish individuals part of the FUSION 
199

 and Finrisk 

2002 
41,200

 studies that had been previously genotyped on 315,000 SNPs using the 

Illumina HumanHap300 BeadChip 
201

.  Although FUSION is a study of type 2 diabetes, 

we chose to exclude individuals from sequencing affected with type 2 diabetes to remove 

the influence of diabetes status on lipid levels.  We also excluded individuals whose trait 

values at the time of clinical exams could have been influenced by lipid-lowering 

medications.  Study protocols were approved by local ethics committees and/or 

institutional review boards, and informed consent was obtained from all study 
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participants. Serum HDL cholesterol and triglycerides were quantified from samples as 

described previously 
199

 

 

The 188 samples in the HDL-C set consisted of 94 individuals that had the highest or 

lowest HDL-C levels.  The low HDL-C set had a mean HDL-C level of 0.87±0.13 

mmol/L, and the high HDL-C set had a mean HDL-C level of 2.30±0.25 mmol/L.  The 

188 samples in the TG set consisted of 94 individuals that had the highest or lowest TG 

levels.  The low TG set had a mean TG level of 0.61±0.081 mmol/L, and the high TG set 

had a mean TG level of 2.87±0.72 mmol/L (Table 4.1). 

 

A total of 322 Finnish individuals were selected for re-sequencing from the FUSION and 

Finrisk 2002 studies, as there was overlap in the set of samples selected for HDL and TG 

loci; 143 samples are unique to the HDL-C set, 134 are unique to the TG set, and 55 

samples are included in both sets. 

 

Follow-up samples (Stage 2) consisted of 18,860 individuals from the FUSION, 

DIAGEN, METSIM and HUNT studies.   

 

Genomic region selection 

We selected five novel loci associated with HDL-C and TG level in more than 20,000 

individuals 
86

; two independent novel loci associated with HDL-C, chromosome 12 

including MMAB and MVK and chromosome 1 in intron 1 of GALNT2, and three 
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independent novel loci associated with TG, chromosome 7 near MLXIPL, chromosome 8 

downstream of TRIB1, and chromosome 1 near ANGPTL3. 

 

For each locus we selected the regions for re-sequencing based on three criteria.  First, 

we included the region spanning the associated SNPs at each locus, empirically 

determined from GWA data.  Second, we included the best candidate genes near each 

associated locus.  For MVK, MMAB, MLXIPL, and TRIB1 the full gene including all 

isoforms was selected; GALNT2 was too large to re-sequence the entire gene so in this 

case only exons were selected.  Third, we used published genome-wide data profiling 

histone modifications and variants (H3K4me1, H3K4me3, H3K9me1, H2A.z) 
202

, DNase 

hypersensitivity 
96

 and DNA binding proteins (CTCF, RNA Pol II) 
202

 to select regions 

likely to harbor regulatory elements. 

 

In total, 175 kB at the HDL-C and TG associated loci was targeted for re-sequencing: 119 

kB of gene regions, 33 kB of associated regions lying outside of the candidate gene 

boundaries, and 22 kB of regions containing functional regulatory data. 

 

Sequencing and SNP detection 

Sequencing was performed at the J. Craig Venter Institute as part of the National Heart 

Lung and Blood Institute Re-sequencing and Genotyping Service.   

 

PCR reactions were performed with genomic DNA and products were analyzed by DNA 

sequencing.  PCR reactions were categorized as "strict" if the amplicon Tm was less than 
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or equal to 82C, or "high_gc" if the amplicon Tm exceeded 82C and used different 

parameters.  DNA sequencing was performed on ABI 3730xl DNA Analyzers.  Initial 

base calling for sequence chromatograms was done using ABI kb V1.2.  Sequence 

chromatograms were filtered using custom digital signal processing (DSP) software to 

attenuate "dye-blob", primer off-by-one, and PCR stutter artifacts.  Filtered sequence 

chromatograms were base called and .poly files generated using a customized version of 

TraceTuner, calibrated for ABI 3730xl, POP7, and BDTv3.1.   

 

Mixed bases were called, using custom software, by comparing areas, heights, and 

locations of minor peaks versus major peaks identified in the .poly file.  The high signal-

to-noise-ratio (SNR) clear range was identified for each chromatogram.  Sequence 

chromatograms were analyzed for the presence of heterozygous indels.  Sequence 

chromatograms containing heterozygous indels were computationally split into long 

haplotype and short haplotype versions.  PCR primer sequences were screened from the 

chromatogram sequence using cross_match.  Chromatogram sequences were assembled 

together with the reference amplicon sequence using phrap.  Mixed bases (i.e., 

SWMKUY) were called when bi-directional reads agreed.  Variations (substitution, 

insertion, or deletion) between the reference amplicon sequence and assembly consensus 

sequence were calculated and recorded. 

 

Variants identified through computational methods were manually inspected if they were 

singletons, non-synonymous coding changes, heterozygous indels, or, if sequenced on 

multiple amplicons, had inconsistent calls between amplicons. 
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We observed a 21-bp deletion (rs6143660) as part of an independent sequencing project.  

We genotyped rs6143660 on 87 FUSION samples to determine its frequency and relation 

to HDL-C associated SNPs. Primers for amplification were selected using Primer3: 

Forward: 5’-CTCATCTTTGCACACGAAGG-3’ Reverse: 5’-

GAGACCCTGAGTGTGAGGCT-3’.  The products for chromosomes with and without 

the deletion were 91 bp and 112 bp, respectively.  The products were run on a 3% low 

melting point agarose gel and were scored by hand. 

 

 

Stage 1 and Stage 2 genotyping of selected variants identified in sequencing was 

performed using the Sequenom homogeneous MassEXTEND (hME) assay.  

 

Quality control 

We excluded 67 SNPs identified in re-sequencing that failed Hardy-Weinberg 

equilibrium (p < 1x10
-3

) and/or had low genotyping success (<75%).  When comparing 

genotypes for 86 SNPs that were sequenced on more than one amplicon, SNPs were 

excluded that had more than 2 discrepancies.  

 

For imputation, SNPs with MAF > .01 were excluded if they had an MACH imputation 

quality score (r
2
 hat) < .3.  SNPs with MAF < .01 were excluded if they had an r

2
 hat < .5. 

 

Variants in LD with trait associated SNPs 
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We identified published index SNPs for TG level associated loci: rs17145738 (MLXIPL), 

rs1748195 (ANGPTL3) and rs2954029 (TRIB1), and HDL-C level associated loci: 

rs2144300 (GALNT2) and rs2338104 (MMAB/MVK) 
86

.  We then identified SNPs in 

HapMap CEU release 22 in strong LD (r
2
 > .8) with each index SNP.  Using this set of 

SNPs (termed ‘HapMap associated’ SNPs), we then identified variants from sequence 

data and 1000 Genomes Project data in high (r
2
>.9), moderate (r

2
>.5) and low LD (r

2
>.2) 

with these SNPs.  1000 Genomes Project LD files were created from the December 2009 

pilot release of 60 CEU samples. 

 

Selection of Stage 2 variants  

We selected variants follow-up (Stage 2) genotyping using several criteria.  All amino 

acid changing variants (non-synonymous, frameshift) not in HapMap were selected.  A 

subset of variants with MAF < .05 were also selected that showed preliminary evidence 

of association in Stage 1 FUSION samples and also had HepG2 annotation.  6 of 12 

variants selected for Stage 2 were successfully genotyped.   

  

Quantitative trait association analysis  

We tested all genotyped and imputed variants for Stage 1 association with HDL 

cholesterol and triglyceride level.  We regressed the quantitative trait variables on age, 

age
2
, sex, birth province, type 2 diabetes affection status, and study indicator, and 

transformed the residuals of each quantitative trait to approximate normality using 

inverse normal scores, which involves ranking all trait values and then converting these to 

z-scores according to quantiles of the standard normal distribution.  We then carried out 
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association analysis on the residuals. To allow for relatedness, regression coefficients 

were estimated in the context of a variance component model that also accounted for 

background polygenic effects.  We tested for association using the residuals and the 

expected allele count from imputation under an additive model.  

 

For follow-up analysis, variants were tested for association separately for each Stage 2 

study population (FUSION, METSIM, DIAGEN, HUNT).  Results from Stage 1 and 

each Stage 2 study were then combined using meta-analysis. 

 

Excess of group-unique variants 

Starting with all 261 variants with one allele found only in individuals belonging to one 

trait group (‘group-unique variants’), we looked for windows with significant deviations 

from the expected number of high and low-unique variants.  We tested window sizes of 

200 bp, 400 bp, 1000 bp and 2000 bp, where each new window started at the position of 

each group-unique variant.  Thus, for each window size, the number of tested windows is 

equal to the number of group-unique variants.  The significance of individual windows 

was determined by comparing the ratio of observed high or low-unique variants to the 

ratio obtained in each of 10,000 permutations of high/low status.  P-values represent the 

number of permutations with a greater deviation in ratio of high-unique/low-unique 

variants in either direction.  A total of 1,044 (261 variants x 4 window sizes) windows 

were tested, resulting in a P value of 4.8x10
-5

 for experiment-wide significance. 
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Results 

Re-sequencing of loci  

We selected three loci associated with triglyceride (TG) level, and two loci associated 

with high-density lipoprotein cholesterol (HDL-C) level for re-sequencing in 94 samples 

at each tail (5%/95%) of the distribution of TG or HDL-C trait values from the Finland-

United States Investigation of NIDDM genetics (FUSION) study
86

 (Table 4.1). Although 

FUSION is a study of type 2 diabetes, we chose to exclude individuals from sequencing 

affected with type 2 diabetes.  Due to limited resources, regions selected for re-

sequencing differed between the loci, always including at least exons of the closest 

candidate gene(s), and at some loci also including the region of association and regions 

predicted to contain regulatory elements based on data from CD4+ T cells (see Methods).  

In total, 130,466 (75%) of 174,595 targeted base pairs were successfully re-sequenced in 

essentially all 188 individuals (Table 4.2). 

 

874 total variants (818 SNPs and 56 indels of 1 to 38 nucleotides) were identified (Table 

4.3).  60% of these variants were novel, and 60% of novel variants had a minor allele 

frequency (MAF) less than 1%.  After filtering variants for low genotyping success, 

HWE failure, and discrepancies between overlapping amplicons (see Methods), we 

further assessed genotype quality of the 807 remaining variants by measuring 

concordance with existing genotypes for sequenced samples 
201

.  Re-sequenced genotype 

concordance was 100% with 25 variants directly genotyped by Illumina Infinium, 

Illumina GoldenGate or Sequenom platforms, and 98.6% with 147 variants imputed from 

Illumina Infinium genotypes using HapMap reference haplotypes.   
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We then used the re-sequenced samples as reference haplotypes and imputed genotypes 

for all non-singleton, bi-allelic variants in 2,457 FUSION samples (Stage 1) 
141

, and 

tested these variants for HDL-C or TG association (see Methods).  Follow-up genotyping 

(Stage 2) consisted of 18,860 samples from the FUSION, DIAGEN, METSIM and 

HUNT studies (See Methods). 

 

Novel functional targets in LD with known trait-associated variants 

Prior to sequencing, the set of common variants associated with HDL-C level or TG level 

at these loci primarily was restricted to variants present in HapMap.  We identified 

HapMap SNPs in high LD (r
2 
> .8) with the published index SNP for each locus, and 

considered them highly likely to be associated with the trait (see Methods; Table 3.4).  

Using this set of SNPs present in HapMap (termed ‘HapMap associated’ SNPs), we 

searched for additional (non-HapMap) variants identified by sequencing and determined 

to be in LD with a HapMap associated SNP.  Across all five loci, 20 non-HapMap 

variants were in high LD (r
2 
> .9) with a HapMap associated SNP (28 in r

2 
> .5, 68 in r

2 
> 

.2) (Table 3.4).  10-15% of variants identified at these r
2
 thresholds were indels.  We 

compared the patterns of LD identified in our sequencing data to those obtained from 

pilot data on 60 CEU samples from the 1000 Genomes Project (www.1000genomes.org; 

see Methods).  Using 1000 Genomes Project data identified a larger set of non-HapMap 

variants in LD with a HapMap associated SNP at each locus, which is expected because 

resequencing was incomplete (Table 3.4).  87% of SNPs identified by resequencing to be 

in LD (r
2
 > .2) with a HapMap associated variant were also identified at this threshold 

using 1000 Genomes Project data.  When comparing LD patterns using the subset of 
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variants identified using both approaches, pairwise r
2
 values exhibit strong correlation 

(Pearson’s r = .92).    

 

Several non-HapMap variants in moderate LD with what were located in transcribed 

regions (Table 4.5).  One of these variants is a previously identified non-synonymous 

substitution in MLXIPL (Q241H, rs3812316) 
203

.  We found a novel non-synonymous 

substitution in exon 1 of MMAB (R18H, rs10774775, MAF = .31), in moderate LD with 

HapMap associated SNPs (r
2
=.5 with rs7134594).  This SNP is predicted by SIFT to be 

damaging, and it is in perfect LD with synonymous substitution R19 (rs10774774) at the 

adjacent base pair.  In addition, we identified a common 9-bp deletion (rs34483103) in 

the 3’ UTR of ANGPTL3 (r
2
 = 1 with HapMap associated variant rs11207997). 

 

Differences in transcriptional regulatory activity may be the functional basis for 

association at susceptibility loci, especially in regions at which the entire association 

signal spans no known genes (near TRIB1) or is completely intronic (GALNT2).  To 

identify non-coding, possible regulatory SNPs, we annotated variants with publicly 

available datasets predictive of transcriptional regulation in HepG2 cells 
102,204-207

 (Table 

4.6).  At the GALNT2 locus, 8 HapMap SNPs are in high LD (r
2 
> .8) with HDL-C 

associated variant rs2144300 
86

, and an additional 9 in high LD were identified through 

sequencing (see Methods).  Of these 17 variants, five (rs2144300, rs6143660, 

rs17315646, rs4846914, and rs10127775) are located in a ~1 kb genomic region that 

contains many HepG2 non-coding annotations, including open chromatin (FAIRE and 

DNase), transcription factor binding (cMYC, SREBP1A, and RNA Pol II) and histone 
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modification (H3K4me3) (Figure 4.1).  These SNPs represent a priori the strongest 

candidates for regulatory variants at this locus.  

 

Quantitative trait association 

Of 116 variants with nominal evidence of association (P < .05) with either TG or HDL-C 

level, the majority represent variants in LD (r
2 
> .2) with previously reported association 

signals (Table 4.6).  Among variants in lower LD with a previously associated SNP, 21 

were significant (P < .05) including 9 with MAF less than .01 (Table 4.7). 

 

To follow up preliminary evidence of association and/or functional annotation, a subset 

of these 21 SNPs were genotyped in Stage 2 samples (see Methods).  A common variant 

in GALNT2 (rs56217501, MAF=.1) with modest Stage 1 HDL-C association (P = .005) 

was in low LD (r
2
<.2) with HapMap associated SNPs at this locus (Table 4.7);  however, 

after genotyping in Stage 2 samples evidence of HDL-C association was not significant 

(P = .27) (Table 4.8). Among less common variants, the most significant result after 

Stage 2 genotyping was rs72647336 in intron 1 of TRIB1 (P = 1x10
-4

 with TG level), 

located in a genomic region highly conserved between species (Table 4.8).  The 

rs72647336 signal appears to be independent of the GWA-identified index SNP 

rs17321515 (Stage 1 P = .017; conditional on rs17321515, P = .023). 

 

Rare alleles unique to one trait group in associated regions 

We identified 261 variants for which the rare allele was present only in individuals in the 

high trait value group or low trait value group but not both.  Among six coding variants 
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with MAF < .05 four were only found in one trait group: a frameshift mutation in MMAB 

(rs72650181), and non-synonymous mutations in MLXIPL (R841W; rs66489924, 

predicted to be damaging by SIFT 
208

), MVK (V377I; rs28934897, reported in patients 

with Hyper-IgD syndrome 
209,210

), and ANGPTL3 (N151D; rs72649574) (Table 4.9). 

Among these variants, only rs28934897 and rs72650181 were successfully genotyped in 

Stage 1 and Stage 2 samples; both were no longer significantly associated (P>.4) with 

HDL-C (see Methods; Table 4.8). 

 

Given large, contiguous re-sequenced regions for each locus, we used a sliding window 

approach to identify genomic regions with an excess of rare variants unique to one group 

(Table 4.10; see Methods).  The greatest excess was in a 2 kb window spanning the 3’ 

UTR of GALNT2 (11 low HDL-C individuals with a variant, 1 high HDL-C individual 

with a variant), although this excess was not significant after correction for multiple 

windows tested.  

  

Discussion 

Our sequencing at five GWA loci identified additional common variant(s) expected to 

show evidence of association with HDL or TG based on LD.  The number of new 

common variants we identified by sequencing varied greatly between loci.  For example, 

at an r
2
 threshold of .9, the number of likely HDL-C associated variants at GALNT2 

doubled, while at TRIB1 only three additional variants were added to 17 TG-associated 

HapMap variants. One of the major goals of the 1000 Genomes Project is to catalog all 

common variation in European populations, which should render re-sequencing studies to 



73 

determine LD patterns unnecessary in these populations 
28

.  Our data suggest that using 

1000 Genomes Project data, even at a pilot stage of 60 CEU samples, is sufficient to 

capture much of the same information about LD patterns as we observed with 188 

samples, and even more given that targeted sequencing coverage was lower. 

 

With a set of common variants significantly associated with a trait comes the challenge of 

identifying which variants are immediate candidates for functional study.  Frameshift 

variants early in a coding region are obvious functional targets, as are some but not all 

non-synonymous substitutions and 3’ UTR variants.  However, some transcribed variants 

have no effect on a transcript or protein, and other variants on the same haplotypes may 

also affect function. For example, while we identified a non-synonymous substitution in 

MMAB (R18H; rs10774775) that is predicted damaging by SIFT 
208

 in moderate LD with 

HDL-C associated SNPs, previous studies have shown that the associated SNPs are 

correlated with hepatocyte transcript levels of MMAB.  Therefore, it may be a 

combination of biological effects influencing HDL-C levels at this locus. 

 

Non-coding annotations may usefully predict likely regulatory variants, especially at loci 

where the associated variants do not include any coding variants 
211

.  In our study, open 

chromatin, ChIP, and histone modification data generated in HepG2 cells, which may be 

relevant to cholesterol and triglyceride biology, identified a 1 kb portion of GALNT2 

intron 1 that contains 5 likely HDL-C-associated variants which warrant further study.  

However, for other loci currently available annotation data might not be as useful for 

prioritization.  For example, the region roughly 20 kb downstream of TRIB1 associated 
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with TG level had no striking annotations to suggest that any of the associated variants 

are strong a priori regulatory candidates.  It may be that the contribution of this locus to 

TG level involves regulatory elements either not identified in HepG2 cells or with these 

specific techniques, or another biological mechanism altogether. 

 

Sequencing samples selected from the trait extremes should enrich for the discovery of 

rare alleles with an effect on trait value that might be missed or is not present in databases 

or other sequenced individuals.  However, to detect significant associations with rare 

variants either effects or sample sizes need to be substantial 
28

.  One approach to increase 

sample size is to impute the new rare genotypes in samples that have an existing 

genotype scaffold; this approach is limited by reduced accuracy of imputation at low 

allele frequencies.   

 

Another approach is to directly genotype lower frequency variants in larger sample sets, 

although large numbers of variants with preliminary evidence of association coupled with 

low power to detect real associations requires genotyping many low frequency variants 

that may be false-positives.  In our study we selected variants to follow-up based on 

coding and non-coding annotation, an approach that is limited by the quality and depth of 

available annotation.  One annotated variant we selected for follow-up, rs72647336 in 

intron 1 of TRIB1, was significantly associated with TG level at P = 1x10
-4 

in 16,000 

samples.  As this variant did not reach genome-wide significance (P < 5x10
-8

), it is 

unclear whether it or a variant in strong LD functionally contributes to trait variability. 

The need for large sample sizes for rare variants is also complicated by variants that may 
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be population-specific and thus not present in replication samples from different 

populations.  For example, a frameshift mutation in MMAB (rs72650181) with an allele 

frequency of .0002 in FUSION samples was monomorphic in all other studies.     

 

 A third option to detect significant, rare variant associations is to group rare variants 

together, an approach that has been successful in re-sequencing studies of coding regions 

197
.  Identifying meaningful groups of non-coding variants is a more complex problem, 

confounded by the under-annotation of the non-coding genome and the difficulty in 

determining a priori the directional effect of a variant. For example, we identified a 

modest excess of low HDL-C individuals with variants in the 3’ UTR of GALNT2.  3’ 

UTR variants may influence transcript stability through differences in miRNA binding, 

and we searched for predicted miRNA sites at these variants.  Several variants unique to 

low HDL-C individuals overlapped a predicted miRNA site; however, predictions of how 

these variants might influence binding of the miRNA, if at all, are needed to help 

determine whether they are altering transcript stability and thus phenotypic output in the 

same direction.  Finally, given the likely smaller effect sizes of many non-coding 

variants, much larger sample sets than the 188 sequenced in this project would need to be 

sequenced to tease out subtle effects through grouping analysis.   

 

Given the sequencing capabilities afforded by next-generation technologies, it is now 

feasible to consider the availability of whole-genome re-sequencing data on a large 

number of samples selected based on phenotype.  While the amount of data generated by 
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these efforts will greatly eclipse the scope of this project, fundamental questions remain 

about how to optimally identify and follow-up variants influencing trait variability. 
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Chapter V 

Mapping regions of open chromatin using FAIRE 

 

Abstract 

Tissue-specific transcriptional regulation is central to human disease. To identify 

regulatory DNA active in human pancreatic islets, we profiled chromatin by 

formaldehyde-assisted isolation of regulatory elements coupled with high-throughput 

sequencing (FAIRE-seq). We identified ~80,000 open chromatin sites. Comparison of 

FAIRE-seq data from islets to that from five non-islet cell lines revealed ~3,300 

physically linked clusters of islet-selective open chromatin sites, which typically 

encompassed single genes that have islet-specific expression. We mapped sequence 

variants to open chromatin sites and found that rs7903146, a TCF7L2 intronic variant 

strongly associated with type 2 diabetes, is located in islet-selective open chromatin. We 

found that human islet samples heterozygous for rs7903146 showed allelic imbalance in 

islet FAIRE signals and that the variant alters enhancer activity, indicating that genetic 

variation at this locus acts in cis with local chromatin and regulatory changes. These 

findings illuminate the tissue-specific organization of cis-regulatory elements and show 

that FAIRE-seq can guide the identification of regulatory variants underlying disease 

susceptibility. 

 

Introduction 
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Pancreatic islets are groups of endocrine cells that secrete insulin, glucagon, and other 

polypeptide hormones. Beta cells, the predominant islet cell type, secrete insulin in 

response to glucose. Insulin, in turn, promotes cellular glucose uptake 
212

. Defects in beta 

cell mass or function consequently result in diabetes, a leading cause of blindness, kidney 

failure, heart disease, and premature death
213

.  

 

The transcriptional regulation of genes that function in islet cells has major implications 

for human diabetes. In Type 1 diabetes, which results from the autoimmune destruction 

of beta-cells, one of the major research goals is to generate new beta cells for replacement 

therapies by transcriptional reprogramming 
214

. In many cases of monogenic inherited 

forms of Type I diabetes, the disease is caused by mutations in genes encoding for islet-

cell transcriptional regulators. 

 

Transcriptional control of islet cells is also relevant for Type 2 diabetes (T2D), the most 

prevalent form of this disease . 
213

 T2D results from decreased function and mass of islet 

beta-cells, coupled with insulin resistance in peripheral tissues 
215-217

. The complex 

etiology of T2D includes numerous environmental and genetic factors that each 

contribute to disease susceptibility and pathogenesis 
218

. Genome-wide association 

studies have identified over 20 loci that harbor common risk variants for T2D, many of 

which are likely to influence T2D susceptibility through impaired insulin secretion and 

beta cell function 
63,69,201,219-229

. Many loci do not contain an associated non-synonymous 

coding variant, so it is likely that the functional variants at most T2D susceptibility loci 

are involved in regulation of gene activity. At many loci, several hundred variants are 
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associated with the linked genomic interval, and determining which of these is functional, 

either singly or in combination, is a difficult challenge. Knowledge of the exact location 

of the regulatory elements utilized in islets would be valuable in narrowing the search for 

DNA sequence variants that contribute to T2D pathogenesis. 

 

The current state of knowledge regarding genomic regulatory sequence elements remains 

extremely sparse. Regulatory elements are likely to be highly specific to cell type, 

influenced by developmental cues, and specified in part by the local cellular environment. 

An added complexity is that detailed studies of individual loci suggest that regulatory 

elements function in concert as complex units, rather than in isolation. Comprehensive 

identification of regulatory DNA is needed to understand differences in transcriptional 

regulation across tissues, physiological conditions, and individuals.  

 

Regulatory elements function by recruiting DNA-associated proteins to specific loci. This 

process of recruitment and factor binding typically results in local nucleosome 

eviction
230

. Nucleosome loss is therefore an evolutionarily conserved indicator of 

regulatory activity, and can be used as a molecular tag to isolate regions of the genome 

that are bound by regulatory factors in a give cell or tissue type 
91

. Nucleosome loss has 

traditionally been detected by hypersensitivity to nuclease digestion 
231-234

. FAIRE 

(Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternate technique for 

isolating and identifying nucleosome-depleted DNA from cells. In FAIRE, cells are fixed 

lightly with formaldehyde. Whole cell extract is then prepared, sonicated to shear 

chromatin, and subjected to phenol-chloroform extraction. DNA fragments that are not 



80 

covalently linked to proteins are recovered in the aqueous phase, and can be identified by 

any number of common methods 
235

. The mechanism by which FAIRE efficiently 

recovers nucleosome-depleted regions is proposed to be rooted in the extremely high 

efficiency of crosslinking histone proteins to DNA relative to other DNA-binding 

proteins such as transcription factors 
236,237

.  

 

In human cells, FAIRE was first performed in a fibroblast cell line 
235

. In that study, 

genomic segments recovered after FAIRE were identified by fluorescent labeling and 

hybridization to tiling DNA microarrays covering 1% of the human genome 
235

. The 

DNA elements identified in this way exhibited concordance with established hallmarks of 

regulatory function such as DNaseI hypersensitivity, active promoters, and evolutionary 

constraint. Given the sparse annotation of the human regulatory landscape, it is not 

surprising that FAIRE also identified genomic regions not yet annotated by other 

methods 
89,235

. The advent of next-generation sequencing technologies makes possible 

rapid genome-wide mapping and direct quantification of FAIRE fragments at high 

resolution. We call this method FAIRE-seq, which combines the power of deep 

sequencing with the simplicity and flexibility of FAIRE for the rapid identification of 

open chromatin regions from primary human tissue. 

 

We performed FAIRE-seq on purified pancreatic islets. To our knowledge, this is the first 

detailed atlas of regulatory elements in this tissue. The unbiased maps generated by 

FAIRE-seq reveal new insights regarding the higher order organization of tissue-specific 

cis-regulatory elements, and provide a foundation for mechanistic understanding of 



81 

transcriptional regulation of genes important for pancreatic islet function and type 2 

diabetes susceptibility. The data show that FAIRE-seq can identify regions of open 

chromatin from a small amount of primary tissue, and provide guidance for studies 

seeking to characterize functional SNPs in tissues relevant to human disease. 

 

Methods 

Islet sample preparation 

All experiments were performed according to protocols approved by the Institutional 

ethical committees of the Hospital Clinic de Barcelona, Geneva University Hospitals, 

Istituto Scientifico Ospedale San Raffaele, and Hospital Universitari de Bellvitge. All 

samples were isolated from multiorgan donors without a history of glucose intolerance 

after informed consent from family members. Information on samples used for FAIRE-

Seq are provided in Table 5.1. Pancreatic islets were isolated according to established 

procedures
238

. After isolation, islets were cultured in CMRL 1066 containing 10% FCS 

and shipped at room temperature in the same medium. Samples 1 and 2 were processed 

upon arrival, while sample 3 and subsequent samples used in locus-specific assays were 

recultured in RPMI 1640 containing 10% FCS for three days before performing FAIRE. 

Islets were rinsed with PBS three times, and crosslinked for 10 min in 1% formaldehyde 

at room temperature with constant shaking. After adding glycine (final concentration 125 

mM), islets were rinsed with PBS containing protease inhibitor cocktail (Roche) at 4°C, 

snap frozen, and stored at -80°C. Islet purity was assessed by dithizone staining
239 

immediately prior to fixation. The accuracy of dithizone staining was verified by 

immunofluorescence analysis using DAPI, anti-insulin, and anti-glucagon antibodies
240

.  
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FAIRE 

For all but 2 samples (see below), FAIRE was performed as described
235

 with 

modifications. Frozen pellets with ~3000 crosslinked islets were thawed on ice in 1 mL 

lysis buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-Cl at pH 8.0, 1 mM 

EDTA) and disrupted with five 1-minute cycles using 0.5 mm glass beads (BioSpec). 

Samples were sonicated for 10-20 rounds of 30 pulses (1 second on/0.5 second off) using 

a Branson Sonifier 450D at 15% amplitude. After 10 rounds the efficiency of sonication 

was assessed, and further rounds were performed when needed to ensure that the majority 

of chromatin fragments were in the 200-1000 bp range. Debris was cleared by 

centrifugation at 15,000 g for 5 minutes at 4°C. Nucleosome-depleted DNA was 

extracted with phenol-chloroform followed by ethanol precipitation and RNase A (100 

µg/mL) treatment
235

.  

 

For samples 1 and 2 we employed a modified procedure that yielded less consistent 

chromatin fragmentation. Cells were incubated with 50 mM HEPES (pH 8.0), 140 mM 

NaCl, 1 mM EDTA, 0.1% SDS, 0.1% sodium deoxycholate, then centrifuged at 9,000 g 

10 min. The pellet was resuspended in 50 mM HEPES (pH 8.0), 140 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate, and then processed as 

described above.  

 

Sequence analysis 

Libraries were generated from gel-purified ~200 bp DNA fragments. After adaptor 

ligation and PCR-based amplification, samples were sequenced on the Illumina Genome 
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Analyzer II platform using standard procedures. Sequence reads were aligned to the 

human reference genome (hg18) using Mapping and Assembly with Qualities (MAQ) 

with default mapping parameters 
241

. Post-alignment processing removed all reads that 

had an overall MAQ mapping quality <30 and artificially extended each read to a final 

length of 200 bp. We counted filtered reads mapping to each base in the genome to obtain 

a read density for each base. To facilitate display, read densities were centered on the 

mean read density of each chromosome. 

 

Sites of FAIRE-seq enrichment were assessed with F-Seq
242

, which uses a kernel density 

estimate to calculate genomic regions where the continuous probability is greater than a 

user-defined standard deviation threshold over the mean across a local background. We 

used a feature length of 1,000 and three standard deviation (s.d.) thresholds resulting in 

three sets of enriched regions for each sample. The most liberal threshold was set for each 

sample using an empirical estimation of the upper bounds on the number of nucleosome-

depleted regions genome-wide (roughly 200,000). For sample 3, the thresholds used were 

s.d.=6 (liberal), s.d.=8 (moderate) and s.d.=10 (stringent). For samples 1 and 2, which 

were sequenced to a lower depth, the thresholds used were s.d.=4 (liberal), s.d.=5 

(moderate) and s.d.=8 (stringent). 

 

We estimated the mappable proportion of the reference genome in two ways, using 120 

million randomly generated reads (2.7x10
9
 mappable bases, ~85% of hg18) and using 

PeakSeq (2.8x10
9
 mappable bases, ~89% of hg18)

243
.  We independently calculated 
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genome coverage using 125 million reads obtained from islet FAIRE and found it to be 

97.9% and 97.7% concordant, respectively.  

Sequence reads obtained from five major ENCODE cell lines (GM12878, HeLa-S3, 

HUVEC, K562, and HepG2) were aligned to the reference genome (hg18) using MAQ
241

 

and filtered as described above. Sites of enrichment were determined using F-Seq
242

, 

using the same parameters as islet samples 1 and 2.  

 

Microarray analysis 

Islet FAIRE preparations from samples 1 and 2 were fluorescently labeled and hybridized 

to a tiling DNA microarray covering 1% of the genome selected for the ENCODE pilot 

project
89

. Sites of enrichment were called using ChIPOTle
244

. For Receiver Operating 

Characteristic (ROC) curve analysis, sites of enrichment were called using a p-value 

threshold of 1x10
-12

. 

 

Regulatory feature analysis 

We recorded the percentage of bases underlying FAIRE-seq sites that overlapped 28-

species conserved elements
207

, predicted regulatory modules (PreMod)
110

 and 

transcription factor binding sites (TRANSFAC
245

 and MotifMap
102

). For each set of 

peaks we permuted positions across the mappable genome 1,000 times and re-calculated 

the overlap. P values were calculated from permutations that had a higher degree of 

overlap than the observed set of peaks. We used Clover to test for over-represented 

transcription factor binding motifs in sequences underlying intergenic FAIRE-seq 

enrichment
246

. Sequences were separated by chromosome and analyzed for motifs from 
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JASPAR
247

 and TRANSFAC
245

, as well as the CTCF motif
248

. Significance was 

calculated by comparing to the mappable intergenic portion of the tested chromosome, 

and motifs reaching a p-value threshold of .01 were reported. 

 

FAIRE-Seq and expression level analysis 

 We used RMA-normalized signals from a previously reported experiment using HG-

U133A and HG-U133B GeneChips with five non-diabetic islet samples
249

, and obtained 

an average value for each probe. The five samples were selected by hierarchically 

clustering expression data from 7 non-diabetic individuals. We excluded two samples 

(Sydp2 and SydPI) that had poor concordance with the others and showed low expression 

of known islet genes. We counted the number of FAIRE-Seq reads mapping to each base 

in a 1 kb window surrounding each RefSeq TSS, grouped RefSeq genes by their average 

islet expression level, and, for each group, calculated the average mean-centered FAIRE 

read density at every base in the window. 

 

Islet-selective and ubiquitous site definitions.   

An islet FAIRE-seq site was considered islet-selective if the site did not overlap a site 

from any of the five additional tested cell types. Note that such sites are not expected to 

be necessarily unique to islets. An islet site was considered ubiquitous if the site 

overlapped a FAIRE-seq site in all five additional cell types. Moderate stringency 

FAIRE-seq site thresholds were used for all datasets. 

 

Selection of genes with islet-selective open chromatin  
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For each RefSeq transcript we assessed the region 2 kb upstream through 2 kb 

downstream and calculated the percentage of bases that overlapped a moderate islet 

FAIRE enrichment site. We calculated the same value in the combined data from five 

non-islet cell lines, and selected genes that were more or equally enriched in islets 

compared to combined non-islet data. 

 

Clusters of Open Regulatory Elements (COREs) 

We identified 3,348 regions with at least three islet-selective sites (as defined above) 

located <20 kb from each other using Galaxy
250

. These criteria were based on the typical 

size of islet-selective clusters (Fig. 3b). For comparisons we created a set of randomized 

COREs of identical size and mappability. To assess CTCF binding enrichment, we 

obtained CTCF binding sites from multiple cell types
251

, calculated the frequency within 

COREs (0.007 sites/kb), in randomized COREs (0.013 sites/kb), and in the mappable 

genome (0.013 sites/kb), and tested for significance using a two-sided #
2
 test.  

 

RefSeq, ncRNA, or Non-RefSeq Unigene transcripts were assigned to a CORE when the 

transcriptional start or end site was within 10 kb of either end of the CORE. When 

comparing CORE overlaps with one or more genes we required a minimum overlap of 

one bp. We used DAVID
252

 to test enrichment of biological processes in CORE genes, 

and used all RefSeq genes as a background. We employed all biological processes from 

GO and PANTHER
253

, removing GO terms associated with >1,000 genes from the 

analysis.   
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For gene expression comparisons, we obtained gcRMA-normalized signals from Human 

U133A and GNF1H microarrays from seven tissues (pancreatic islet, liver, heart, kidney, 

lung, skeletal muscle and whole brain)
254

. We required that probes reported a signal of 

>100 in at least one tissue. We used one-way ANOVA to assess expression differences 

between tissues for CORE genes and for an identical number of randomly selected genes 

that did not overlap a CORE.  

 

Definition of T2D susceptibility variants 

We identified 20 loci where SNPs have been reported to show genome-wide association 

(P<5x10
-8

) with T2D or fasting glycemia
67,69,71,219,221,223,255,256

. For each locus we 

identified variants in HapMap CEU release 22 in strong linkage disequilibrium (r
2
>0.8) 

with the reported reference SNP; 350 variants satisfied these criteria and were termed 

‘T2D-associated SNPs’. We then defined the region of association for each locus by 

manually identifying recombination hotspots from HapMap release 22 data flanking the 

associated SNPs. We identified SNPs in dbSNP v129 with an average heterozygosity 

>1% in these regions. SNPs that overlapped FAIRE sites in sample 3 were recorded. 

 

Detection of allelic imbalance in open chromatin and PCR analysis of FAIRE.  

We genotyped 31 human islet genomic DNA (gDNA) samples using TaqMan SNP 

Genotyping Assays (Applied Biosystems). Nine samples were heterozygous for 

rs7903146. For these samples we used TaqMan SNP Genotyping Assays to determine the 

allelic ratio of DNA fragments containing rs7903146 in FAIRE and input DNA. All 

reactions were performed in triplicate in a volume of 25 µl using 5 ng DNA quantified 
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with a Nanodrop 1000 (Thermo Scientific). A standard curve was generated by mixing 

gDNA from samples with known genotype to generate seven allelic ratios - 10:90, 20:80, 

40:60, 50:50, 60:40, 80:20, and 90:10. The relative abundance of T and C alleles in each 

experimental sample was estimated from the standard curve, and compared to input DNA 

from the same samples and gDNA from unrelated heterozygous individuals. Allelic ratio 

was also assessed in seven samples heterozygous for rs7903146 by quantitative Sanger 

sequencing in FAIRE and input DNA (oligonucleotides shown in Table 5.). ImageJ was 

used to quantify the area under the curve of peaks in the chromatogram. Data are 

expressed as mean ± s.d. and were assessed with two-sided unpaired t-tests for gDNA vs. 

FAIRE, or paired t-tests for input vs. FAIRE. 

 

To confirm islet-selective FAIRE enrichments, we employed real-time PCR with SYBR 

Green detection as described
257,258

. We performed triplicate measurements from 5 ng 

FAIRE DNA, and used a serial dilution of input DNA as the standard curve. We 

expressed FAIRE enrichment values relative to the enrichment values in the same sample 

at a local negative control region.  

 

Luciferase reporter assays 

A 240 bp fragment surrounding rs7903146 was PCR-amplified from DNA of individuals 

homozygous for either the T or C allele of rs7903146 (oligonucleotides shown in Table 

5.). PCR fragments were cloned in both orientations in the multiple cloning site of the 

minimal promoter-containing firefly luciferase reporter vector pGL4.23 (Promega). Four 

independent clones for each allele for each orientation were verified by sequencing and 

transfected in duplicate into MIN6
259

 and 832/13 (Chris Newgard, Duke University) ß-
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cell lines, and into HEK293T cells. Cells were co-transfected with a phRL-TK Renilla-

luciferase vector to control for transfection efficiency. Transfections were performed with 

lipofectamine 2000 (for MIN6 and HEK 293T; Invitrogen) or FUGENE-6 (for 832/13; 

Roche Diagnostics). Cells were assayed 48 hours after transfection using the Dual 

Luciferase Assay (Promega). Firefly luciferase activity was normalized to Renilla 

luciferase activity and then divided by values for a pGL4.23 minimal promoter empty 

vector control. A two-sided t-test was used to compare luciferase activity between alleles. 

Experiments in MIN6 and 832/13 cells were carried out on a second independent day and 

yielded comparable allele-specific results.  

 

Results 

For three samples of purified human pancreatic islets, we used FAIRE
235,236,260

 to identify 

sites of open chromatin (Figure 5.1a, Table 5.1, Table 5.1). We technically validated 

FAIRE-seq by its high concordance to patterns determined by hybridization of the same 

FAIRE samples to tiling DNA microarrays (Figure 5.1b, Figure 5.5a). Furthermore, we 

found that despite differences in age, cause of death, genotype, islet isolation procedures, 

and level of exocrine cell contaminants, the majority of regions identified by FAIRE in 

any one sample were also detected in the others (Figure 5.5b). Thus, FAIRE-seq is a 

robust method for characterizing chromatin in islets.  

 

 

Several lines of evidence indicate that FAIRE reliably identifies active regulatory 

elements in islets. Consistent with FAIRE in fibroblasts
235

, the most enriched FAIRE 
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regions were found near known Transcription Start Sites (TSS) (Figure 5.2a). Overall, 

there was a positive relationship between FAIRE signal near TSS and transcript levels in 

human islets
249

 (Figure 5.2a). Furthermore, promoters previously shown to bind RNA 

Polymerase II and the transcription factors HNF4A and HNF1A in islets
261

 were enriched 

by FAIRE more frequently than other promoter regions (Figure 5.2b).  

 

To extend this observation, we identified regulatory regions that were utilized selectively 

in islets relative to other cell types. We compared FAIRE-seq data from islets to data 

from five non-islet cell lines (HeLa-S3, HUVEC, GM12878, HepG2 and K562; 

Methods) and found that 45% of islet open chromatin sites were unique to islets among 

this group of cell types. We refer to these sites as islet-selective open chromatin. We 

identified 340 RefSeq genes with islet-selective open chromatin in the TSS or gene body 

(Table 5.3). This relatively short list included 24 well characterized genes that are 

selectively expressed in islets (Table 5.4), including genes involved in human diabetes 

(PDX1, ABCC8, SLC30A8, G6PC2, GAD2) and islet developmental regulators 

(NEUROD1, NKX6-1, PAX6, ISL1)
221,262-265

. Therefore, islet-selective open chromatin 

detected by FAIRE identifies loci integral to islet-cell biology and disease. 

 

Many sites of open chromatin detected by FAIRE are located in intergenic regions, far 

(>2 kb) from a known TSS. For these distal sites, evidence also points strongly toward a 

regulatory function. First, distal intergenic open chromatin sites were enriched in 

evolutionary conserved sequences, predicted transcription factor binding sites and 

regulatory modules, regardless of whether the open chromatin was islet-selective or 
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ubiquitous (shared by all six cell types) (Figure 5.2c, Figure 5.5d and Table 5.5, 

Methods). Second, ubiquitous intergenic open chromatin often coincided with binding 

sites of CTCF
248,251,266

 (observed 16%, expected 0.39%, P<0.001) (Figure 5.2c), a 

transcriptional regulator and insulator protein that binds to a large number of genomic 

sites, many of which are shared in different cell types
266

. Open chromatin at CTCF sites 

was centered at the location of the CTCF binding
248

, suggesting that FAIRE signal is 

indicative of interactions between regulatory factors and DNA (Figure 5.2d). Third, 

intergenic islet-selective (but not ubiquitous) open chromatin preferentially harbors 

DNA-binding motifs of pancreatic islet transcription factors, including RFX, 

TCF1/HNF1, HNF3B, FOXD, and MAF (P<0.01, Table 5.5). Notably, whereas ~36% of 

ubiquitous open chromatin was located within 2 kb upstream of a TSS or in the first 

exon, only 1% of islet-selective open chromatin was located in these regions (Figure 

5.2e, Figure 5.5c). Collectively, these findings indicate that distal FAIRE sites harbor 

regulatory elements, and consistent with recent studies of histone modification patterns in 

enhancer regions
267

 suggest that most cell-type specific open chromatin is located far 

from known TSS. 

 

We next sought to link these distal islet-selective elements to specific genes. We 

examined whether islet-selective sites exhibit a higher-order organization that could point 

to the existence of functional domains. We found that open chromatin sites were not 

evenly distributed throughout the genome, but instead were located in physically linked 

clusters (Figure 5.3a). Clustering was also observed with islet-selective open chromatin 

(Figure 5.3b). We identified 3,348 domains containing at least three islet-selective open 
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chromatin sites separated by less than 20 kb, which we call islet-selective COREs 

(Clusters of Open Regulatory Elements) (Figure 5.3c, Methods). Islet-selective COREs 

had a median size of 25 kb, with the largest containing 148 FAIRE sites spanning 602 kb 

(Figure 5.3d). Consistent with CTCF binding to insulator elements separating chromatin 

domains
268

, the frequency of CTCF binding sites was two-fold higher outside than within 

COREs (P=1.3x10
-48

). This suggested that islet-selective COREs were functional 

chromatin domains and provided an avenue to assigning open chromatin sites to genes.  

 

Islet-selective COREs were located within 10 kb of at least one RefSeq gene in 69% of 

cases (randomized COREs=54%; P=1.5x10
-35

, Figure 5.3e). Of these, 94% were 

associated with only one gene, and most were contained within 2 kb of gene boundaries 

(Figure 5.5) suggesting single-gene regulatory function (expected=84%; P=6.2x10
-23

, 

Figure 5.3e). Compared to six other primary tissues, genes overlapping islet COREs had 

higher expression in islets and brain (one-way ANOVA, both tissues P<1x10
-5

, Figure 

5.3f), consistent with the neuroendocrine nature of islet-cells
269

. Islet-selective COREs 

were also enriched in genes linked to islet-specific functions, including transcription 

factors, ion channels, and secretory apparatus components (Table 5.6). Thus, islet-

selective COREs are typically linked to single genes that are expressed in an islet-

selective manner. 

 

A subset of islet-selective COREs spanned remarkably broad distances at loci encoding 

critical regulators of pancreas development and function (Figure 5.3g, Table 5.7 and 

Figure 5.6 and Figure 5.7). For example, an islet-selective CORE spanned a 46-kb 
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domain containing PDX1, a master regulator of pancreas development and $-cell 

function
263

 (Figure 5.3g). At this locus, FAIRE sites coincided with previously 

characterized evolutionarily conserved enhancers named “Area I-IV”
270,271

 and with 

uncharacterized putative enhancer sites (Figure 5.3h). Other islet-selective COREs 

included a 94-kb domain 3% of NKX6-1, an essential regulator of $-cell differentiation
272

, 

one located in a cluster of brain-enriched snoRNA and miRNAs
273

, and another in 

conserved sequences >400 kb from any annotated gene (Figure 5.7 and Table 5.7 for 

additional examples). Such domains contrasted with loci devoid of open chromatin and 

known to be inactive in islets (Figure 5.7q-s). This dataset thus provides a rich resource 

to dissect cis regulation in pancreatic islets.  

 

Recent genome-wide association studies for T2D susceptibility have implicated sequence 

variants at multiple loci, many of which may impair islet-cell function
69,71,221,265,274

. Many 

T2D susceptibility loci do not contain strongly associated variants in protein-coding 

regions, suggesting that the underlying functional variants regulate gene activity. 

Furthermore, at each locus, most associated SNPs are not expected to directly affect 

disease risk and are instead in linkage disequilibrium with one or more functional 

variant(s). We sought to use our open chromatin map to guide identification of functional 

regulatory SNPs. We identified known SNPs mapping to islet FAIRE sites and focused 

on 20 loci harboring variants associated with T2D or fasting glycemia (FG)
47,69,221,265,275

 

(Figure 5.4a, and Table 5.8). Of 350 SNPs in strong linkage disequilibrium with a 

reported SNP associated with T2D or FG (Methods), 38 SNPs at 10 loci overlapped islet 

FAIRE regions (Figure 5.4a, and Table 5.8). Notably, rs7903146 in TCF7L2, which 
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shows consistent T2D association in samples across diverse ethnic groups
276

, is located in 

an islet-selective open chromatin site (Figure 5.4b, and Figure 5.4a). 

 

The presence of rs7903146 in a FAIRE-enriched site allowed us to test directly whether 

sequence variation at this locus correlates with chromatin state in islet cells. We tested 31 

human islet samples and identified nine individuals heterozygous at rs7903146. Using 

two independent assays, FAIRE-isolated DNA from heterozygous individuals exhibited a 

T:C allelic ratio that was significantly greater than observed from input genomic DNA or 

from genomic DNA from unrelated heterozygote individuals (Real-time PCR: input: 

49.3±1.0% T allele, FAIRE: 57.3±2.8% T allele, P=2.1x10
-5

, Figure 5.4c; Quantitative 

sequencing: input: 57.5 ± 2.7% T allele, FAIRE: 66.2 ± 4.6% T allele, P=0.004, Figure 

5.4d and Figure 5.8b). Thus, in human islet cells, the chromatin state at rs7903146 is 

more open in chromosomes carrying the T allele, which is associated with increased T2D 

risk
47

.  

 

Next, we created allele-specific luciferase reporter constructs and measured enhancer 

activity in two islet $-cell lines, MIN6 and 832/13. Allelic differences in enhancer 

activity were observed in both cell lines. The T allele showed significantly greater 

enhancer activity compared to the C allele in both orientations (Forward: MIN6 

P=1.6x10
-7

, 832/13 P=0.005; Reverse: MIN6 P=3.1x10
-7

, 832/13 P=3.1x10
-4

, Figure 

5.4e,f, Figure 5.8c,d). However, allele-specific differences were not observed in the 

human embryonic kidney cell line 293T (Figure 5.8e). These data suggest that sequence 

variation at TCF7L2 affects T2D susceptibility by altering cis regulation and local 
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chromatin structure in islet cells. The results are consistent with a previous report of 

association between the T allele and increased TCF7L2 transcripts in islets
276

, although 

the allele-specific changes described here can potentially impact different genomic 

regulatory functions, including transcriptional rates, promoter usage, or splicing. 

 

Discussion 

To our knowledge, this study represents the first high-resolution atlas of regulatory 

elements in pancreatic islets. The unbiased maps generated by FAIRE-seq reveal new 

insights regarding the organization of tissue-specific cis-regulatory elements. Many 

earlier studies have shown that the genome is functionally organized in chromosomal 

territories
89,277-279

. Our observations extend previous findings by uncovering the existence 

of a large number of cell-selective regulatory domains associated with single genes, and 

provide a foundation for mechanistic understanding of transcriptional regulation of genes 

important for pancreatic islet cells. Identification of regulatory sites in a disease-relevant 

primary tissue also serves to dramatically reduce the genomic space when searching for 

functional non-coding sequence variants that influence T2D susceptibility. More 

generally, the current study provides a framework to move forward from the 

identification of large sets of disease-associated variants toward understanding the subset 

of functional variants that underlie disease risk. 
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Chapter VI 

Predicting allele-specific differences in transcription factor binding profiles 

 

Abstract 

Recent genome-wide association studies have identified more than 20 susceptibility loci 

for type 2 diabetes and fasting glycemia, many of which contain a large number of 

associated variants.  Differences in transcriptional regulation are likely responsible for 

susceptibility at some loci, although the best candidates to directly influence a regulatory 

element are not often obvious.  We thus developed a method to predict SNPs with 

differences in transcription factor binding.  When tested on open chromatin data from 

pancreatic islets, ROC analysis confirmed that the method can use TFBS predictions to 

correctly identify islet open chromatin elements more often than expected (AUC=0.811).  

We assessed allelic differences in islet TFBS predictions using SNPs associated with type 

2 diabetes.  Ten SNPs had significant differences in predicted TFBS between alleles at P 

< 1x10
-4

, including rs7903146 in TCF7L2, which has been previously demonstrated to 

have allelic differences in islet enhancer activity. More SNPs were significant at this p-

value threshold than expected, suggesting that this approach may enrich for variants 

directly altering transcriptional regulation. 

 

Introduction 

Genome-wide association (GWA) studies have identified many loci harboring risk 
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variants for numerous traits and common diseases, although the ensuing process of 

singling out the variant or variants functionally responsible for the association signal is 

often not straightforward for several reasons.  First, the number of variants in moderate or 

even high LD with an association signal can often be large and span relatively large 

genomic regions.  For example, at a locus on chromosome 12 recently identified to be 

associated with levels of high-density lipoprotein cholesterol (HDL-C), there are more 

than 50 associated variants in high LD spanning a region of approximately 200 kb 
86

.  

Second, relatively few loci contain an obvious functional candidate SNP, such as a 

deleterious non-synonymous or splice-site variant, and even for loci that do, it is possible 

that multiple variants on risk haplotypes contribute to trait variability 
280

.  Finally, while 

variants perturbing transcriptional regulatory elements likely contribute to trait variability 

at many loci, determining which variants may alter regulatory element activity is often 

non-trivial.  

 

Relatively new techniques allow genome-wide identification of non-coding regulatory 

elements through positional identification of molecular hallmarks of regulatory activity, 

such as nucleosome-depletion 281 235 282, histone tail modification 202 283, and DNA-protein 

interaction 202 284 92.  This data has helped improve knowledge of transcriptional 

regulatory elements across many tissues and environmental conditions and can help 

prioritize non-coding variants.  For example, FAIRE-seq data generated in pancreatic 

islets successfully limited the list of type 2 diabetes (T2D)-associated variants to the 

10% most likely to be located in islet transcriptional regulatory elements 282.  One of 
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these variants, rs7903146, at the TCF7L2 susceptibility locus was then shown to have 

allelic differences in both islet nucleosome occupancy and regulatory activity, suggesting 

that this approach can help identify regulatory variants.  However, experimental genomic 

methods often identify a larger genomic region surrounding the sequence(s) directly 

necessary for the transcriptional regulatory element.  Therefore, genomic data alone is 

often not sufficient to distinguish a priori benign SNPs from those that may influence 

transcriptional regulation. 

 

Additional and complementary approaches to identify regulatory elements include 

computational predictions of transcription factor binding sites (TFBS).  Sequences known 

to bind transcription factors can be stored as binding motifs, such as those in the 

databases JASPAR 98, TRANSFAC 99 and UniPROBE 100, which can be used to directly 

predict the location of where a transcription factor might bind in additional sequences  97.   

One advantage of using TFBS predictions is that they provide more fine-tuned positional 

information over genomic data, and in several cases have been used to identify SNPs at 

predicted TFBS that directly alter the binding of that transcription factor 285.  Individual 

TFBS predictions, however, typically have low sensitivity and specificity
101,286

.   More 

accurate method for regulatory element identification using TFBS have included 

combining many predictions together to identify regulatory modules often using multiple-

species sequence comparisons to identify conserved sites or expression data to find TFBS 

potentially active in specific tissues 
108-111

.  These approaches are limited in that TFBS 

are often not conserved between species and many factors are widely expressed.   
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The availability of genome-wide maps of open chromatin for cell lines and primary tissue 

allows in-depth analysis of the regulatory landscape of these tissues.  We sought to utilize 

open chromatin data as a means to identify cis regulatory modules of predicted 

transcription factor binding sites.  The approach we developed weights transcription 

factor motifs based on relative enrichment in open chromatin regions compared to 

negative regions.  Query sequences are then scanned for the presence of motifs and the 

sequence is scored based on the derived weights of the identified motifs.   We then 

extended our approach to compare differences in sequence scores to help identify SNPs 

with potential allelic differences in regulatory activity. In principle, this approach can 

predict not only regulatory SNPs at a trait-associated locus, but also the nature of the 

functional difference at that SNP. 

 

We tested our approach by training motifs on open chromatin data obtained using 

FAIRE-seq from pancreatic islets, which are a critical tissue in the pathogenesis of type 2 

diabetes (T2D).  Cross-validation using an independent set of islet FAIRE elements 

confirmed the use of weighted motifs as a successful means to identify regulatory 

sequences.  For variant analysis, there was an excess of T2D associated variants with 

significant allelic differences, including positive control rs7903146, suggesting that this 

approach may enrich for variants directly altering regulatory element activity. 

 

Methods 
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Our methodology is comprised of three main parts:  motif training, sequence scoring, and 

allelic sequence comparison.  

 

Motif training 

A total of 361 TFBS position weight matrices (PWM, or motif) from TRANSFAC 
99

 and 

JASPAR 
98

 are used in training. An overview of training is presented in Figure 6.1a. 

 

Motifs are trained using user-defined sets of positive and negative sequences. Each 

sequence in both sets is scanned for the presence of a motif using previously developed 

Perl modules 
287

, where a binding site is returned if it scores at least 80% of the highest 

possible motif score.  The number of sequences with at least one predicted site for a 

given motif is counted for both the positive and negative sets, which is used to calculate 

the percentage of sequences in each set containing the motif.  The two percentages are 

then divided and the log of that number is returned as the ‘motif score’.  The ‘motif 

score’ represents the relative enrichment of the motif in the positive training set 

compared to the negative training set. 

  

Sequence scoring 

Input sequences are scanned for the presence of all 361 motifs using the same threshold 

as in training (80% of highest possible match). 

 

The resulting set of returned motifs each has a ‘motif score’ from training.  The ‘motif 

scores’ for all motifs identified in the input sequence are summed together to provide an 
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overall ‘sequence score’.  All instances of a motif found in a sequence are counted and 

contribute to the ‘sequence score’  

 

Allelic sequence comparison 

For variant analysis, the sequences surrounding each allele of the variant are first 

analyzed separately to obtain a ‘sequence score’.  The score for the first allele is 

subtracted from the score for the second allele, resulting in the difference in sequence 

scores between alleles.   

 

To help estimate the significance of an allelic difference, variants are randomly sampled 

from HapMap and the differences in ‘sequence scores’ are recorded to determine the 

expected distribution of allelic differences.  Input SNP P-values are then estimated from 

the distribution of these scores using the R function pnorm(). 

 

Selection of training and validation sets for pancreatic islet open chromatin 

For training, the positive set consisted of all 1,818 islet FAIRE sites (sample 3) in the 

ENCODE pilot project regions, and the negative training set was 1,899 contiguous 36-bp 

mappable regions with no islet FAIRE signal in sample 3 (Figure 6.1a).  The negative 

training set regions were size-matched to the positive regions. 

 

For validation, positive regions were 1,489 islet FAIRE sites on chromosome 10 found in 

all three islet samples, and true negative regions were size-matched contiguous 36-bp 
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mappable regions on chromosome 10 for which there was no signal in any of the three 

islet samples.   

 

Selection of T2D associated SNPs 

We identified 20 published variants associated with either type 2 diabetes or fasting 

glucose level (Table 5.7).  Using data from the 1000 Genomes project 

(www.1000genomes.org; August freeze), 899 variants were in high LD (r
2
>.8) with a 

published susceptibility variant, and were thus considered the set of associated variants. 

 

Availability 

The Perl source code can be downloaded from http://polaris.med.unc.edu/projects/TFBS/. 

 

Results 

Motif training and sequence validation using pancreatic islet open chromatin 

We trained 361 TFBS motifs using open chromatin data generated in pancreatic islets 

(see Methods; Figure 6.1a) 
211

.  Training sets were selected from data in regions from the 

pilot ENCODE project.  The positive training set consisted of 1,818 islet FAIRE sites, 

and the negative training set was 1,899 contiguous regions with no islet FAIRE signal. 

The motifs with the highest and lowest ‘motif scores’ from training are listed in Table 

6.1. 

 

We attempted to validate the training set results using an independent set of positive and 

negative sites (see Methods).  For each site in the validation sets, a ‘sequence score’ was 



104 

obtained that represents the sum of ‘motif scores’ identified in that sequence (see 

Methods).  A Receiver Operating Characteristic (ROC) was generated from the ‘sequence 

scores’, and the area under the curve (AUC) was .811 (Figure 6.1b).  From ROC 

analysis, the optimal sensitivity and specificity were 73% and 86%, respectively. 

 

Identifying type 2 diabetes associated variants with differences in islet sequence scores 

We sought to determine whether our approach could help prioritize between disease-

associated non-coding variants by identifying those with differences in ‘sequence scores’. 

 

We identified 899 SNPs from the 1000 Genomes project in LD with published T2D-

associated variants (Table 5.7).  For each SNP, we obtained the ‘sequence score’ for the 

200 bp region surrounding each allele.  We then calculated the difference in scores 

between alleles, and assessed the significance of this difference by comparing to the 

expected distribution (see Methods; Figure 6.2a,b).  Of the 899 tested SNPs, 10 were 

significant at p<1x10
-4

 (Table 6.2), which is greater than expected by chance (expected = 

.09; Figure 6.2c).  Of the 10 SNPs significant at p<1x10
-4

, eight distinct loci are 

represented, suggesting possible functional targets at these loci.   

 

Characteristics of variants with significant differences in sequence scores 

We next assessed the in vivo relevance of the genomic region surrounding SNPs with 

significant differences in ‘sequence scores’ by identifying those that overlapped FAIRE 

sites identified in pancreatic islets.  Three of the 10 SNPs co-localized with a FAIRE site 

from at least one sample (Table 6.2), including rs7903146 in TCF7L2, which has been 
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previously demonstrated to have islet-specific differences in enhancer activity (Figure 

5.4).  We further investigated the properties of TFBS surrounding each allele (T/C) of 

rs7903146.  The T allele, which has greater islet regulatory activity, had both a greater 

number of allele-specific factors (27, compared to 8 C-specific factors) as well as several 

high scoring factors (LHX3, FOXD3; Table 6.1).   

 

We next looked for patterns in TFBS predictions across all 10 SNPs to determine if they 

shared features in common.  A majority of SNPs overlapped predicted binding sites for 

FOXD3, PDX1 and/or HNF3B, transcription factors with known involvement in islet 

regulation
288-290

.  These SNPs thus make attractive targets for future functional study. 

 

Discussion  

Our approach has two potential advantages over using in vivo regulatory data alone to 

prioritize potential regulatory variants.  First, using TFBS allows the direct identification 

of those SNPs likely to alter transcriptional regulation while filtering out those that are 

benign.  Second, by using sequence information, the method can be unbiased towards the 

incompleteness of the in vivo regulatory element catalog, which thus far is limited to data 

generated in a small number of tissues, genotypes and environmental conditions.  

 

Still, there are several disadvantages to this approach.  First, the catalog of transcription 

factors with known binding motifs is still a small percent of all factors, and thus the 

qualities of predictions are limited to those factors.  Second, even when a factor has a 

known binding motif, the models used to build the motif often use very few known 
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binding sites for the protein, and the small number of factors for which genome-wide 

ChIP-seq data is available has almost invariably refined the original motif 
291

.  Using data 

from the UniPROBE resource, which uses an array-based approach to identify binding 

sites in an unbiased manner, may somewhat circumvent this problem, although the 

accuracy of these binding site motifs in vivo is unclear.  Third, many transcription factors 

are part of large protein families that have very similar binding sites.  Thus, identifying a 

motif for one protein might be more relevant to a closely related protein, which may have 

a completely different transcriptional profile. Finally, while nucleosome occupancy data 

is assumed to be an unbiased survey of the regulatory activity in a given tissue, biases 

likely exist in the types of and frequency at which transcription factor binding events are 

identified in every technique, and therefore likely to bias the results of TFBS profiling 

based on this data.  For example, FAIRE and DNase HS, both techniques to identify 

nucleosome depleted regions, identify only a partially overlapping set of elements 
235

.  A 

less biased approach might group several datasets from different assays together. 

Despite these limitations, using a sequence classification approach to find SNPs with 

allelic differences in islet regulatory profiles successfully identified a subset of T2D-

associated variants with significant differences, including rs7903146, which has been 

shown previously to have allelic differences in islet enhancer activity 
282

.  

 

The utility of this approach may also extend beyond predicting SNPs with differential 

regulatory activity.  For example, once a SNP has been identified and tested for 

regulatory activity, the TFBS output for each allele can be a useful tool to help prioritize 

further study to narrow in on the specific factor(s) causing the effect.  Furthermore, 
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simply the knowledge of the relative importance of transcription factor binding between 

two datasets could be useful.  In our example, the output of training could be used to 

identify potentially novel factors important for islet transcriptional regulation.   

 

Many computational tools exist that provide information about the co-localization of a 

SNP with annotations from a variety of sources 
292-298

, and can assist manual selection of 

SNPs in likely functional regions.  However, while many tools predict SNPs directly 

affecting protein products, few if any predict how a SNP might affect a non-coding 

regulatory element.  Sorting out variants likely to alter regulatory activity from those 

merely co-localizing with a regulatory element will become even more critical as 

functional genomics projects annotate a larger percentage of the non-coding genome and 

millions of non-coding variants are identified in re-sequencing projects.  Our approach 

attempts to provide this information in the form of variants with differences in predicted 

transcription factor binding.  When coupled with other annotation tools, it could be a 

useful resource assisting projects aimed at identifying functional non-coding variants. 
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Chapter VII 

Conclusions and future directions 

 

In this work we have used a series of candidate-based approaches to prioritize and test 

variable regions of the genome for possible direct or indirect involvement in complex 

trait susceptibility, in particular type 2 diabetes.  The scope of these approaches ranged 

from the full genome, by using CAESAR to narrow down a list of candidate genes from 

all known genes, to genes, by selecting SNPs in type 2 diabetes candidate genes for 

genotyping and lipid level-associated genomic regions for re-sequencing, and loci, by 

selecting T2D-associated variants for functional study based on pancreatic islet FAIRE-

seq data, down to the individual variant level, by predicting transcription factors 

differentially bound to variant alleles.   

 

Our first approach, CAESAR, represented a novel method that combined text- and data-

mining to select candidate genes for complex traits based on the known biology of a trait.  

CAESAR was able to prioritize several published susceptibility genes for complex traits, 

suggesting that it was a valid metric to potentially prioritize novel susceptibility genes.  

We next used CAESAR to help select candidate genes for type 2 diabetes, selected tag 

variation to capture the majority of common variation in these genes, and genotyped 

selected variants in Finnish samples from the FUSION study.  Using the approach we 

identified common variants associated with type 2 diabetes and related quantitative traits 
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near these candidate genes that may influence trait susceptibility.  We then selected 

genomic regions harboring variants associated with lipid levels for re-sequencing in trait-

extreme individuals, and identified additional common, less common and rare variants 

that may contribute to trait variability.  Finally, we used several approaches to prioritize 

between trait-associated variants to identify functional variants influencing transcriptional 

regulation, including identifying T2D-associated variants in regions of pancreatic islet 

open chromatin identified by FAIRE-seq and identifying variants with allelic differences 

in predicted transcription factor binding sites.  

 

The common goal of all of these approaches was to attempt to intelligently reduce the 

space in which we interrogate the genome.  An obvious limitation to any candidate-based 

approach to finding susceptibility variants is that the success of the ensuing study relies 

on the quality of predictions from the candidate selection process.  However, as is it is 

typically not cost or time effective to interrogate all variation of interest, candidate 

selection is often a necessary aspect of studies designed to identify variation influencing 

disease risk.  Even as technology increases the throughput by which genetic and genomic 

information can be generated, candidate selection metrics will still be needed at 

remaining cost or time bottlenecks, and therefore will continue to be an integral part of 

medical research. 

 

For example, while full genome sequencing will soon be economically feasible for large 

scale genetic study, gene selection methods such as CAESAR will still be needed to help 

identify targets for follow-up genotyping and functional study.    Since the initial testing 
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of CAESAR, a much larger set of susceptibility loci have been identified for the complex 

traits used to test our algorithm.  In addition, some of the published loci used for the 

initial tests identified in small studies have since not replicated across additional studies, 

and therefore may represent false-positives. Therefore, we followed up on the results of 

CAESAR by comparing the published gene rankings with a current list of genome-wide 

significant loci (P < 5x10
-8

) available from the GWAs catalog.  As the functional basis 

for the majority of loci is not known, we included all genes in cases when multiple genes 

are reported.   

 

To facilitate comparison with our initial results (Table 2.2), successfully prioritized 

genes were defined as those ranked in the top 2% of all ranked genes for a given trait 

using the same gene lists.  Of the 150 genome-wide significant loci, 27 (18%) were 

ranked in the top 2% for the respective trait, a 9-fold increase over the number expected 

by chance (exp = 3).  This supports our initial conclusions that CAESAR can successfully 

prioritize susceptibility genes, and with continued development may be a useful tool to 

assist in the follow-up of next-generation genetic studies. 

 

While genome-wide association studies have identified numerous common variants 

influencing trait values and disease susceptibility, the amount that the identified variants 

contribute to heritability is relatively low 
28

.  Therefore, a large focus of the next phase of 

human genetic research is uncovering missing heritability, which is likely in the form of 

less common (MAF<.05) and rare variants (MAF<.005) that have yet to be interrogated 

on a genome-wide scale 
28

.  The 1000 Genomes project is performing low-pass 
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sequencing (4x coverage) of a large number of samples. If data from that project can 

effectively identify LD patterns in less common variants (.005<MAF<.05), it would 

allow them to be imputed into existing GWA frameworks and tested for association.  

Uncovering extremely rare variants not identified in the 1000 Genomes Projects will 

require targeted medical re-sequencing efforts.  Given rapid advances in sequencing 

technology and constantly lowering costs, projects of 1000 Genomes scope on medically-

relevant samples should soon be able to answer many questions about the topography of 

the genetic landscape for complex disease.   

 

While protein-coding variants are an important contributor to trait variability, the 

majority of variants are located in non-coding regions, and variants perturbing 

transcriptional regulation likely contribute a large amount to trait variability 280 88. 

Therefore, understanding how variants shape non-coding elements is critical to understand 

the genetic component of complex trait variability. Until recently, however, annotation of 

the non-coding portion of the genome was extremely sparse. Relatively new techniques 

allowing genome-wide identification of non-coding regulatory elements through positional 

identification of molecular hallmarks of regulatory activity, such as nucleosome-depletion, 

histone tail modification, and transcription factor binding, have improved our knowledge 

of transcriptional regulatory elements, but the genome is still vastly under-annotated 

across tissues, environmental conditions, and disease states. Further, how variants may 

influence activity of these regulatory elements is also poorly understood.  
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Potential approaches to identifying non-coding variants with a functional effect on disease 

susceptibility and trait variability likely depend on the allele frequency of variants being 

analyzed. For variants that are common, an extension of our previous study of FAIRE-

seq would be to correlate variants to a quantitative variable describing a regulatory 

element, for example, sequence read density from FAIRE-seq (or ChIP-seq, DNase-seq) 

experiments, in the same manner as expression QTL studies. This approach would require 

both genetic and genomic data on a large number of samples to have sufficient power to 

detect significant associations. Alternately, sequence reads from genomics experiments 

could be used directly for genotyping to identify variants with allelic imbalance in read 

density, though this requires extremely deep sequencing. These approaches would be 

most powerful using samples under standardized conditions to remove confounding non-

genetic variation. One particularly enticing possibility for cell types that are hard to 

obtain such as pancreatic islets would be to use emerging stem cell technology to 

artificially create cell types of interest from more readily available cell types collected on 

a larger number of samples 299. 

 

Statistical power to detect significant, single rare variant associations using QTL-based 

methods is low. Given medical re-sequencing of thousands of samples, tens of millions of 

rare variants will be discovered and methods could be developed to exploit the grouping of 

variants in non-coding elements in statistically meaningful ways. Our analysis of re-

sequencing data from several hundred individuals at the extremes of lipid level traits 

suggests this will be fruitful. Similar to studies profiling differences in number of coding 
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changes between individuals in trait-extreme groups (high or low trait value) or different 

disease states (case or control), variants in annotated regulatory elements may be 

preferentially found in one extreme trait group. As variants perturbing the same 

regulatory element(s) could feasibly influence trait values in different directions, the same 

analysis could be performed grouping trait-extreme individuals together and compare 

against individuals in the middle of the trait distribution. Yet another approach could be to 

correlate the number of regulatory variants along a trait value gradient.  Alternate 

approaches could function independent of genome annotation; for example, clustering 

methods to identify rare variants in trait-extreme individuals that group together at the 

sites of critical non-coding elements. 

 

A critical component of identifying non-coding variation influencing transcriptional 

regulation is determining the cis targets of these elements.  Emerging, high-throughput 

techniques based on chromatin conformation capture (3C) 300, such as 5C 301, 6C 302, and 

Hi-C 303, have started to successfully couple distal regulatory elements to their 

transcriptional targets, although the volume of multi-dimensional data produced by these 

techniques presents a major computational challenge. 

 

As the above approaches do not necessarily identify the mechanistic basis for how 

variants directly influence transcriptional regulation, a supplementary component could 

be the continued development of computational methods for sequence analysis in the 

context of variants; for example, the use of transcription factor binding site motifs to 
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predict how a variant will change factor binding. Such methodologies could be used for a 

priori identification of interesting regulatory variants, regardless of allele frequency, as 

well as to place variants of already known interest in biological context.  Further, 

combining the above-mentioned chromatin capture data with TFBS prediction and 

protein-protein interaction data might allow the development of in silico models for how 

and where regions of the genome interact, and facilitate both the reconstruction of 

transcriptional regulatory networks and the degree to which variants might affect the 

activity of these networks.   

 

Ultimately, research projects of this type will help lead to a detailed understanding of 

how variants influence transcriptional regulation, which belongs in the larger context of 

the full spectrum of genomic variants with allelic differences in biological function that 

influence trait variability and disease susceptibility. The impending availability of genome 

sequencing on an individual basis makes large-scale classification of functional variation an 

immediately relevant problem in medical research, and answering these research questions 

that has the potential to broadly influence human health.  The utility of such knowledge 

will be a critical component in the eventual development of both predictive measures for 

genetic disposition to complex traits and diseases as well as the field of personalized 

medicine. 
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Figure 2.1.  CAESAR overview.  (A) Text mining is used to extract gene symbols and 

ontology terms from the input. In the data-mining step, genes within each gene-centric 

data source are ranked based on the relevance to the trait-centric terms. In the data-

integration step, the results from each source are combined into a single ranked list of 

candidates. Db=database. (B) Eight types of functional information (GO molecular 

function and biological process listed together) are queried using extracted genes and 

anatomy, phenotype and gene ontology terms. Genomic regions of interest represent 

optional user input. See text for abbreviations. 
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Figure 2.2.  Vector-space similarity search. (A) Each ontology term and its description 

comprise a document, as in this example of three terms from the mammalian phenotype 
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ontology. (B) The word space consists of all unique words. For illustration, here the word 

space is (‘insulin’, ‘resistance’, ‘glucose’). Each document, including the corpus, 

describes a vector in word space, where the elements of the vector are weighted counts 

within the document of each word in the word space. (C) The similarity of each of the 

documents to the corpus is measured as the cosine of angle formed by the document and 

corpus vectors. High-ranking ontology terms have document vectors that are similar in 

both direction and magnitude to the corpus vector. In this example, MP:0005331 is the 

highest-ranking document. 
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Figure 2.3. Box and whisker plot distributions of the ranks of 18 test genes in Table 2 

using different CAESAR parameters. Ranks are plotted on a log scale. Plots are 

constructed so that the bounds of the box are the upper and lower quartile medians, the 

line inside the box is the median, the whiskers extend to the last value no more than 1.5 

times the length of the box, and all remaining values are outliers. (A) Distribution of 

ranks using the max, mean and average data-mining methods (int4 method for 

integration). (B) Distribution of ranks using the four different integration methods (max 

data-mining method). 
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Figure 2.4. The relationship between the rank of a gene and the number of data sources 

in which it is annotated, using the max and int4 methods.  Ranks are plotted on a log 

scale. Box and whisker plots were constructed as described for Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 

A. 

B.

 
Figure 3.1. (A) Quantile-quantile plot for all genotyped and imputed SNPs comparing -

log10 p-values (padd and pimpute) for Stage 1 samples with p-values expected under the null 

distribution.  (B) Quantile-quantile plot after removing SNPs corresponding to known 

susceptibility genes PPARG, KCNJ11/ABCC8, HHEX, and WFS1. 
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Figure 4.1.  Non-coding annotation of variants in LD with HDL-C association signal in 

GALNT2 intron 1.  Eight HapMap variants were in r
2
 > .8 with HDL-C associated variant 

rs2144300 (‘HapMap associated’ variants), and nine sequenced variants were in r
2
 > .8 

with a HapMap associated variant.  Of these 17 variants, five are in a region containing 

several non-coding annotations generated in HepG2 cells (see Table 3.6 for annotation 

descriptions).   

 



122 

 

 

 

Figure 5.1. FAIRE-seq in human pancreatic islets. (a) Chromatin is cross-linked using 

formaldehyde, sonicated, and subjected to phenol-chloroform extraction. DNA fragments 

recovered in the aqueous phase are then sequenced. (b) Reads obtained from sequencing 

were highly concordant with FAIRE signal obtained from tiling microarrays covering the 

ENCODE pilot project regions. Arrows indicate the direction of gene transcription. 
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Figure 5.2. Both proximal and distant FAIRE sites harbor functional regulatory 

elements. 

(a) Genes with high expression in islets (top 20%; red) have more FAIRE enrichment at 

promoters than genes with moderate (middle 20%; green) or low (bottom 20%; blue) 
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expression. (b) Promoters (-750/+250 bp) bound by RNA Pol II, HNF4A or HNF1A in 

human islets
261

 are significantly over-represented among islet FAIRE sites (red dash 

indicates expected value; all bars: P<0.001). (c) Intergenic islet-selective and ubiquitous 

FAIRE sites that are located >2 kb from a TSS are enriched for evolutionary conserved 

sequences (P<0.001), predicted regulatory modules (PreMod, P<0.001), and transcription 

factor binding sites (conserved TFBS and MotifMap, both P<0.001). CTCF binding, 

however, is enriched in ubiquitous FAIRE sites only. Over half of intergenic open 

chromatin sites are coincident with an experimentally or computationally determined 

functional annotation (expected value for random sites: 27%). (d) Open chromatin is 

most enriched directly at sites of experimentally determined CTCF binding. (e) In 

contrast to ubiquitous FAIRE sites, islet-selective FAIRE sites are rarely located within 2 

kb upstream of a TSS or in exon 1, and are instead located predominantly in more distal 

regions. Shown is the percentage of bases covered by each annotation category in islet-

selective FAIRE sites (blue), ubiquitous FAIRE sites (red), and the mappable genome 

(gray).  
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Figure 5.3. Islet-selective FAIRE sites form Clusters of Open Regulatory Elements 

(COREs) 
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(a) FAIRE sites are highly clustered. We divided the genome in windows of varying size 

(x axis), and calculated a #2 statistic to determine if the number of windows with 0, 1 or 

>1 FAIRE sites differed from randomly distributed sites. The highest significance was 

observed in ~20 kb windows. (b) Same as (a) but for islet-selective sites. (c) We defined 

islet-selective clusters of open chromatin regulatory elements (COREs) as three or more 

islet-selective FAIRE sites separated from each other by <20 kb. (d) We identified 3,348 

islet-selective COREs (blue points). Fewer COREs were generated using randomized 

FAIRE sites (orange points), and they were smaller than in vivo COREs (e) Most islet-

selective COREs were associated with a single gene. (f) RefSeq genes associated with 

islet-selective COREs were on average inactive in non-islet human tissues, except for 

brain. Asterisks indicate P<1x10
-5

 (one-way ANOVA). (g) Chromatin landscape of the 

PDX1 locus showing an extended cluster of islet-selective FAIRE sites, contrasting with 

a closed conformation of the adjacent gut-specific homeodomain gene CDX2. The top 

panel depicts the density of FAIRE-Seq reads centered on the genomic average density 

value, the location of moderate stringency FAIRE sites in islets (blue) or in any of the 5 

non-islet cells (red), and the binding sites of the CTCF insulator protein in K562 cells. 

CTCF sites demarcate regions that show broadly consistent FAIRE-Seq enrichment 

patterns. The bottom panel shows a closer view of a portion of the PDX1 islet-selective 

CORE, with islet-selective open chromatin sites at previously characterized regulatory 

elements (Area I-III, Area IV) and in an evolutionarily conserved putative enhancer. 
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Figure 5.4. Allele-specific open chromatin and enhancer activity at the TCF7L2 

locus. 
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(a) Schematic representation of how FAIRE-seq enables the identification of human 

sequence variants located in islet open chromatin. From ~4 million SNPs present in 

dbSNP with average heterozygosity >1%, 38 SNPs associated with T2D or fasting 

glycemia mapped to islet open chromatin sites. The analysis was carried out with all 

SNPs in strong linkage disequilibrium (r
2
>0.8) with an FG- or T2D-associated variant, 

which are labeled as FG or T2D SNPs, and FAIRE-seq sites identified with a liberal 

threshold. (b) Among TCF7L2 variants in linkage disequilibrium with rs7903146 (r
2
>0.2, 

top panel), only rs7903146 maps to an islet-selective FAIRE site. (c) In all 9 human islet 

samples that were heterozygous for rs7903146, the risk allele T was more abundant than 

the non-risk C allele in the open chromatin fraction, in contrast to input DNA or gDNA 

from unrelated heterozygous individuals. (d) Allelic imbalance for open chromatin at 

rs7903146 was verified in independent assays using quantitative Sanger sequencing (see 

also Supplementary Fig. 4b). (e) The risk allele T of rs7903146 exhibits greater 

enhancer activity than the non-risk allele C in MIN6 cells and (f) 832/13 cells. Standard 

deviations represent four independent clones for each allele. Results for inserts in the 

reverse direction are provided in Supplementary Fig. 4. P-values were calculated by 

two-sided t-test. 
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Figure 5.5. Characteristics of FAIRE-Seq in human pancreatic islets. (a) Comparison 

of FAIRE-chip and FAIRE-seq. Receiver Operating Characteristic (ROC) curve analysis 

using positive regions called from ENCODE tiling DNA microarrays at a stringent 

threshold (P<1x10
-12

) for both samples 1 and 2, and negative regions called from 

contiguous regions of low intensity. The percentage of positive and negative regions 

captured at increasing sequence read density thresholds was then plotted. The sequence 
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data from both samples 1 and 2 captures positive tiling array data while rejecting negative 

tiling array data at a much higher rate than random. (b) Comparison of FAIRE-seq 

regions across three samples. Stringent islet FAIRE sites (in columns) from all three 

samples were compared against liberal islet FAIRE sites (in rows). Overlap is reported as 

the percentage of stringent sites that are captured with liberal sites from another sample. 

(c) Genome-wide distribution of islet FAIRE sites. Genomic regions enriched for FAIRE 

are preferentially located upstream and through the body of known genes. More than 25% 

of FAIRE regions at most stringent enrichment threshold are located proximal to known 

transcription start sites and in first introns. (d) Intergenic open chromatin sites are 

enriched for functional annotations. FAIRE sites significantly (P<0.001) overlap 

sequence conservation (28-species most conserved elements), transcription factor binding 

sites (TFBS) (TFBS cons. and MotifMap), predicted regulatory modules (PreMod) and 

the ORegAnno database of regulatory elements compared to random regions. Stringent 

regions are the most enriched across all functional annotations. 
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Figure 5.6. Distribution of islet-selective COREs relative to gene boundaries. In most 

islet-selective COREs that are associated with genes, the entire CORE is located within 2 

kb of gene boundaries. However,  21% of islet-selective COREs that are associated with 

genes extend further than 2 kb from the transcription start site, termination site, or both. 

Among these COREs that extend far away from gene boundaries, in 54% of the cases the 

extension is greater in the 5% rather than in the 3% direction of the gene, whereas in 46% 

the extension is greater towards the 3% end of the gene. The box plots represent the 

median (line), 25-75th (shaded) and 5-95th percentile (whiskers) of the sizes of COREs 

extending in either 5% or 3% directions from genes. 
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Figure 5.7. Long-range regulatory maps of selected loci. Islet-selective COREs are 

depicted as black horizontal stripes and labeled as COREs. Blue vertical lines are 

moderate stringency FAIRE sites in islets, red vertical lines are FAIRE sites present in 

any of the 5 non-islet cells. In loci where FAIRE sites are observed in only one non islet-

cell line we separate non-islet cell line tracks to show the islet-cell selectivity of the 

CORE. For some loci we show zoomed images with tracks depicting evolutionary 

conserved sequences (PhastCons 44–way alignments). (a) A CORE spanning 94 kb 

located in the 3% region of NKX6.1. The lower panel shows qPCR verifications of islet-

selective FAIRE enrichment in 6/7 sites from this CORE in 8 additional human islet 
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samples and 4 additional non-islet cell lines. No differences in enrichment between the 

two groups of samples were found at the TBP promoter region. FAIRE enrichment was 

normalized to a local negative control region located 5% of NKX6.1 that lacks apparent 

enrichment in islet FAIRE-seq. P-values correspond to non-paired t-tests, error bars are 

S.E.M. (b-d) COREs overlapping SLC30A8, RFX6, and DACH1. (e-g) COREs extending 

5% and/or 3% of ELAVL4, C3orf14 and ACSL6. (h,i) COREs overlapping ISL1 and PAX6. 

Distant 5% or 3% COREs are also present and shown as zoomed images. (j) A CORE in a 

distant region 5% of NKX2.2. (k) A 602 kb CORE overlapping ROBO2. (l) A CORE 

located at a gene desert between BCKDHB and FAM46A. (m) A CORE overlapping a 

non-coding RNA cluster on chromosome 14 recently reported to be associated with type 

1 diabetes. 
304

 (n) A CORE at IAPP with a 30-kb 5% extension. (o) Islet FAIRE-seq map 

of the INS locus, showing a small accumulation of islet FAIRE-seq reads surrounding the 

INS promoter. (p) Islet FAIRE-seq map of MAFA, showing an islet-selective site at the 

previously reported distant upstream evolutionary conserved MAFA enhancer sequence 

located in an intronic region of ZC3H32. 
305

 (q,r,s) GCK, encoding for the $-cell low-

affinity hexokinase, exhibits a CORE at the islet-cell promoter, whereas HK1 and HK2, 

encoding for high-affinity hexokinases that are inactive in $-cells to enable GCK 

function, are devoid of FAIRE sites in islets but not in other cell types3. 
306
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Figure 5.8. Additional functional analysis of the genomic region surrounding 

rs7903146 (a) Confirmation by qPCR of islet-cell selective FAIRE enrichment in the 

region surrounding rs7903146. FAIRE enrichment in 7 human islet samples and four non 

islet cell lines (SW480, C33A, HEK293T and MCF-7) was normalized to the negative 

control region 5% of NKX6.1 described in Supplementary Figure 3a. Similar levels of 

enrichment were found at the TBP promoter region in the two groups of cells. P values 

correspond to non-paired t tests, error bars are S.E.M. (b) Sanger sequencing of input and 

FAIRE DNA surrounding rs7903146 from human islets from 7 heterozygous individuals. 

Area under the sequence curves of each allele was quantified using ImageJ (input: 57.5 
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+/- 2.7% T allele, FAIRE: 66.2 +/- 4.6% T allele). (c-e) Luciferase reporter data for (c,d) 

reverse orientation in MIN6 and 832/13 cell lines, and (e) both orientations for 293T 

cells; standard deviations represent four independent clones for each allele. 
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A. 

 

 

B. 

 

 

Figure 6.1.  Motif training and sequence validation using pancreatic islet open 

chromatin.  (A) Motifs are trained by comparing the percentage of positive and negative 

training sequences the motif was found in.  Input sequences are then assigned a sequence 

score by adding training scores for all motifs found in the sequence.  361 motifs from 

Motif score 
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TRANSFAC and JASPAR were trained using islet FAIRE sites (positive) and contiguous 

regions of no FAIRE signal (negative) from pilot ENCODE regions (B) Receiver 

Operating Characteristic (ROC) analysis using an independent set of islet FAIRE sites 

and regions of no FAIRE signal on chromosome 10.  The area under the curve (AUC) 

was .8, with an optimal sensitivity (73%) and specificity (86%) at a sequence score of 

3.87 (blue star).   
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A.             B. 

 

C. 

 

 

Figure 6.2.  Predicting differences in TFBS between SNP alleles.  (A) Distribution of 

sequence scores for 200 bp surrounding each allele of randomly selected HapMap SNPs.  

(B) Distribution of differences in sequence scores between alleles of randomly selected 
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HapMap SNPs.  (C) Quantile-quantile plot of observed vs. expected p-values for 899 

SNPs in high LD (r
2
>.8) with a T2D-associated SNP. 
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Table 2.1. Data sources and ontologies used in CAESAR  

Source a Version b URL Records Content 

Ontology     

MP 1/23/06 www.informatics.jax.org/ 3850 Phenotype 

eVOC 2.7 www.evocontology.org/ 394 Anatomy 

GO bp 1/23/06 www.geneontology.org/ 9687 Function 

GO mf 1/23/06 www.geneontology.org/ 7055 Function 

     

Database     

OMIM 1/23/06 www.ncbi.nih.gov/ 16564 Disease 

Gene 10/1/05 www.ncbi.nih.gov/ 32859 Gene 

Ensembl 37.35j www.ensembl.org/ 20134 Gene 

SwissProt 48.8 www.ebi.ac.uk/uniprot/ 13434 Expression 

TrEMBL 31.8 www.ebi.ac.uk/uniprot/ 57551 Expression 

InterPro 12 www.ebi.ac.uk/interpro/ 12542 Domain 

BIND 10/1/05 www.bind.ca/ 35661 Interaction 

HPRD 10/1/05 www.hprd.org/ 33710 Interaction 

KEGG 41 www.genome.jp/kegg/ 209 Pathway 

MGD 3.41 www.informatics.jax.org/ 7705 Phenotype 

GAD 1/23/06 hpcio.cit.nih.gov/gad.html 8176 Association 

GOA 1/23/06 www.ebi.ac.uk/goa/ 27768 Function 

a. See text for abbreviations     

b. Download date reported where version information not available 



 

Table 2.2. Tests using susceptibility genes for complex human traits 

         Reviews  OMIM 

Complex 

trait 

OMI

M Review(s)a Geneb  Rank Total Percent Enrich  Rank Total Percent Enrich 

Age-related 

macular 

degeneration 

6030

75 

15094132; 

15350892 CFH  7263 13771 47.3 2  10450 12608 17.1 1 

   LOC387715  – 13771 – –  – 12608 – – 

ARMD 

(second run) 

6030

75 N/Ac C2  – – – –  766 12875 94.1 17 

   CFB  – – – –  44 12875 99.7 293 

Alzheimer’s 

disease 

1043

00 15225164 LOC439999  – 13550 – –  – 13709 – – 

Asthma 

6008

07 

12810182; 

14551038 NPSR1  1117 13881 92 12  2835 13120 78.4 5 

Autism 

2098

50 

11733747; 

12142938 EN2  98 13610 99.3 139  98 13213 99.2 135 

Celiac 

disease 

2127

50 

12907013; 

12699968; 

14592529 MYO9B  234 13039 98.2 56  168 12703 98.7 76 

Myocardial 

infarction 

6084

46 

15861005; 

16041318 LTA4H  122 14043 99.1 115  –d – – – 

Parkinson’s 

disease 

1686

00 

16026116; 

16278972 SEMA5A  4548 13477 66.2 3  879 13329 93.4 15 

Rheumatoid 

arthritis 

1803

00 

15478157; 

12915205 PTPN22  333 13279 97.5 40  2156 13038 83.5 6 

   FCRL3  3743 13279 71.8 3  2230 13038 82.9 6 

Schizophreni

a 

1815

00 

15340352; 

16033310 ENTH  

1001

3 14603 31.4 1  8065 13572 40.6 2 

Type 1 

diabetes 

mellitus 

2221

00 

12270944; 

11921414; 

11237226; 

11899083 SUMO4  

1212

3 14272 15.1 1  7675 13130 41.5 2 

   PTPN22  165 14272 98.8 86  833 13130 93.7 16 

   IL2RA  130 14272 99.1 110  528 13130 96 25 

   CTLA4  78 14272 99.5 183  324 13130 97.5 40 

Type 2 

diabetes 

mellitus 

1258

53 

15662000; 

15662001; 

15662002; 

15662003 TCF7L2  2911 13922 79.1 5  4013 13586 70.5 3 

1
4
7
 



 

Totals         725e 13826e 94.7e 54f   879e 13130e 93.4e 43f 

a. PubMed ID(s) of 

review articles used 

in corpus             

b. For references see Methods.  

HUGO approved gene symbols used 

to identify genes            

c. No suitable review corpus 

available (see Methods)            

d. The OMIM record is insufficiently 

detailed and was not used            

e. Median result              

f. Mean result              

1
4
8
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Table 2.3. Independence of CAESAR data sources  

  GAD GObp GOmf PPI IPro MGD Path Tissue 

GAD – -0.04 -0.04 0.08 0.06 0.1 0.11 -0.03 

GObp 2e-6 – 0.43 -0.06 0.12 -0.11 -0.10 -0.06 

GOmf 5e-6 2e-16 – -0.07 0.16 -0.15 -0.08 -0.11 

PPI 2e-16 2e-13 2e-16 – 0.08 0.18 0.21 -0.04 

IPro 1e-10 2e-16 2e-16 2e-16 – 0.08 0.13 -0.10 

MGD 2e-16 2e-16 2e-16 2e-16 2e-16 – 0.27 -0.13 

Path 2e-16 2e-16 2e-16 2e-16 2e-16 2e-16 – -0.18 

Tissue 2e-4 2e-10 2e-16 1e-6 2e-16 2e-16 2e-16 – 

Top: Spearman rank correlations among pairs of sources. Each value represents the 

maximum correlation found for a given pair across data for all 11 tested complex traits 

using default parameters. Bottom: Significance of each correlation. GAD = genetic 

association database data, GObp = GO biological process data, GOmf = GO molecular 

function data, PPI = protein–protein interaction data, IPro = InterPro data, MGD = mouse 

genome database data, path = KEGG pathway data, tissue = Swiss-prot/TrEMBL tissue 

data. 
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Table 3.1. Characteristics of the Stage 1 and Stage 2 case and control samples 

  Stage 1 Stage 2 

 Cases Controls Cases Controls 

N 1161 1174 1215 

12 

58 

    Male 653 574 724 768 

    Female 508 600 491 490 

Age of diagnosis (years) 53.0 (12.0) N/A 56.0 (12.0) N/A 

Study age (years) 63.4 (11.2) 64 (11.7) 60.0 (11.5) 59.0 (10.6) 

Body-mass index (kg/m2) 29.8 (6.1) 26.8 (5.0) 30.1 (6.7) 26.4 (4.9) 

Fasting glucose (mmol/l) 8.4 (3.9) 5.4 (0.7) 7.2 (2.1)
*
 5.4 (0.6)

†
 

* n=204 and † n=583 values converted from whole blood to plasma glucose equivalent using 

prediction equation from the European Diabetes Epidemiology Group, of which †n=262 fasted <8 

hours 

 

 

 

 

 

 

 

 



 

 

Table 3.2. Coverage of 10,762 HapMap SNPs (MAF > .05)
*
 within -10 kb/+5 kb of 222 candidate genes 

              SNPs -10 kb/+5 kb of gene 

  # SNPs analyzed
†
 # Captured

‡
  % Captured

‡
 

SNPs genotyped on GWA panel only 2,150 8,507 79.04 

All 3,531 genotyped SNPs  3,531 10,299 95.74 

Genotyped and imputed SNPs from GWA panel only 10,596 10,647 98.93 

All 3,531 genotyped and 7,498 imputed SNPs 11,029 10,752
§
 99.91 

* MAF=minor allele frequency >.05 in HapMap CEU     

† Genotyped SNPs are located within -50 kb/+50 kb of a gene but may not be within -10 kb/+5 kb of a gene;  

    Imputed SNPs are all located within -10 kb/+5 kb of a gene   

‡ HapMap SNPs genotyped, imputed, or tagged (r
2
>.8) by a genotyped SNP  

§ 10,752 includes 3,187 genotyped SNPs, 7,498 imputed SNPs, and 67 SNPs tagged (r
2
>.8) by a genotyped SNP 
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Table 3.3. Gene regions (-10 kb/+5 kb) associated with T2D (pgene < .05) in Stage 1 samples 

Gene symbol Chr 

Start position
*
 

(bp) End position
*
 (bp) 

Coverage 

(%)
†
 SNP

‡
 pgene 

SLC2A4 17 7,125,835 7,131,125 90.0 rs222852 .0024 

FOXC1 6 1,555,680 1,557,341 100.0 rs2235718 .0028 

ARID2 12 44,409,887 44,588,086 97.8 rs11183212 .0029 

SOCS3 17 73,864,459 73,867,753 100.0 rs8069976 .0037 

FOXC2 16 85,158,443 85,159,948 100.0 rs4843165 .012 

ENPP1
§,**

 6 132,170,853 132,254,043 94.8 rs9402346 .014 

PRKAA2 1 56,823,041 56,886,142 90.0 rs11206883 .014 

JAK3 19 17,797,961 17,819,800 85.7 rs11888 .016 

CBLB 3 106,859,799 107,070,577 98.8 rs17280845 .017 

SLC2A2
§
 3 172,196,839 172,227,470 100.0 rs10513684 .023 

PRKAR2B 7 106,279,129 106,396,206 97.0 rs2395836 .027 

EDF1 9 137,032,408 137,036,575 100.0 rs3739942 .029 

PCK2 14 23,633,323 23,643,177 100.0 rs2759407 .034 

PRKAG3 2 219,512,611 219,522,017 100.0 rs6436094 .037 

MECR 1 29,340,001 29,378,070 87.1 rs10915239 .038 

RXRA 9 134,519,422 134,558,376 85.7 rs3118526 .040 

PPARGC1A 4 23,469,914 23,567,969 94.4 rs2970871 .041 

PPARG
d
 3 12,304,359 12,450,840 99.1 rs1801282 .042 

NR1I3 1 158,012,528 158,021,028 100.0 rs2502807 .049 

* Start and end positions of transcribed region (see Methods).  Positions based on hg17. 

† Percentage of common (MAF>.05) SNPs within -10 kb/+5 kb of a gene and captured at 

   r
2
 of at least .8     

‡ SNP with minimum p-value in given gene used to calculate pgene value (see Methods) 

§ Gene has previous evidence of association in FUSION   

** Selected for study only based on previous evidence of association in FUSION 

 

 

 

 

 

 



 

Table 3.4. T2D association for SNPs genotyped in FUSION Stage 1 and 2 samples, sorted by Stage 2 pSNP 

                 Combined Stage 1+2 

SNP Gene symbol 
Risk/Non 

risk allele 

Risk 

allele 

freq.   
Stage 1 

pSNP  
Stage 2 

pSNP  Model p-value 
Odds 

ratio 95% CI pSNP 

rs4740283 RAPGEF1 G/A .104  .0042   .030   REC .000052 3.12 1.73-5.63 .00013 

rs2021966
† ENPP1 A/G .608  .00018  .27  REC .00010 1.27 1.13-1.43 .00026 

rs1042522
†,‡ TP53 G/C .263  .010  .067  MUL .00037 1.18 1.08-1.30 .00086 

rs1882095 NRF1 T/C .381  .0036  .061  DOM .00043 1.24 1.10-1.40 .00096 

rs10513684 SLC2A2 C/T .918  .0046  .20  MUL .0010 1.28 1.11-1.49 .0023 

rs1801282 PPARG C/G .836  .0025  .44  MUL .0014 1.20 1.07-1.33 .0034 

rs222852 SLC2A4 A/G .610  .00048  .18  MUL .0029 1.14 1.04-1.23 .0070 

rs4843165 FOXC2 C/T .706  .0038  .28
§  MUL .0033 1.15 1.05-1.25 .0078 

rs5400
‡ SLC2A2 G/A .871  .0065  .46  MUL .0045 1.19 1.06-1.35 .010 

rs858341 ENPP1 G/A .510  .0039  .70
§  REC .0052 1.21 1.06-1.39 .012 

rs1349498 RAPGEF4 C/T .729  .0015  .68  DOM .0065 1.35 1.09-1.67 .015 

rs8069976 SOCS3 C/A .849  .0011  .90  MUL .0070 1.17 1.04-1.31 .016 

rs3769249 RAPGEF4 G/A .647  .0040  .79  DOM .0077 1.27 1.06-1.51 .018 

rs17280845 CBLB T/C .238  .00083  .65  REC .010 1.37 1.07-1.76 .027 

rs5219
‡ KCNJ11 T/C .476  .0054  .45  MUL .014 1.11 1.02-1.20 .031 

rs10915239 MECR C/A .945  .0046  .60  REC .016 1.26 1.04-1.51 .033 

rs11206883 PRKAA2 A/G .095  .0014  .58  MUL .026 1.17 1.02-1.34 .054 

rs11183212 ARID2 G/A .200  .00036  .68  MUL .028 1.12 1.01-1.24 .061 

rs2395836 PRKAR2B C/T .519  .0022  .26  DOM .034 1.16 1.01-1.34 .072 

rs2970871 PPARGC1A C/T .424  .0012  .081  REC .042 1.17 1.01-1.36 .088 

rs11888 JAK3 C/T .315  .0014  .71  MUL .075 1.08 0.99-1.18 .15 

rs2235718 FOXC1 T/C .117  .00068  .28  REC .096 1.55 0.92-2.59 .19 

rs3118526 RXRA C/T .922  .0039  .60  DOM .11 0.52 0.23-1.18 .21 

rs9313 SORBS1 G/T .919  .0045  .66  MUL .11 1.13 0.97-1.32 .21 

rs9402346 ENPP1 C/G .646  .00062   -
**

  - - - - - 

rs1830971 ENPP1 A/G .648  .00072   -
**

  - - - - - 

rs1409184 ENPP1 G/A .646  .00072   -
**

  - - - - - 
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rs6802898 PPARG C/T .835  .0031   -
**

  - - - - - 

rs7796553 NRF1 C/T .172  .0039   -
**

  - - - - - 

rs943852 RAPGEF1 T/C .111  .0042   -
**

  - - - - - 

* Positions based on hg17                     

† SNP was originally imputed, see Table 3.11       

‡ Non-synonymous SNP selected for Stage 2 genotyping         

§ Included even though Stage 2 sample success rate < 90%       

** SNP was not successfully genotyped in Stage 2 or not selected for genotyping in Stage 2 based on high LD with  selected SNP  
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Table 3.5. Quantitative trait association results for SNPs genotyped in FUSION Stage 1 and Stage 2 samples  

SNP Gene Chr Position (bp) 

Major/

minor 

allele  Trait Samples 
* 

Stage 1   

p-value 
† 

Stage 2   

p-value 
† 

Combined p-

value
  ‡ 

rs9615264 PPARA 22 44,953,108 G/A HDL level 4682 1.06E-04 .13 .00013 

rs10517844 CPE 4 166,691,996 T/C 
Cholesterol to HDL 

ratio 4682 4.00E-05 .66 .009 

     HDL level 4682 2.07E-05 .098 .065 

rs4689388 WFS1 4 6,388,128 A/G LDL level 4067 5.30E-05 .94 .002 

rs429358 APOE 19 50,103,781 T/C 
Cholesterol to HDL 

ratio 2327 1.78E-10  - 
§ - 

     LDL level 2257 1.09E-06 - 
§ - 

     HDL level 2327 2.36E-06 - 
§ - 

     Cholesterol level 2327 1.51E-05 - 
§ - 

rs4912407 PRKAA2 1 56,825,022 G/A Triglyceride level 2339 3.68E-06 - 
§ - 

     
Triglyceride to HDL 

ratio 2339 2.77E-05 - 
§ - 

* Number of samples corrected to an effective sample  

size considering the relatedness of some samples  
 

  

† p-value calculated under additive model       
‡ Stage 1 and Stage 2 p-values combined by meta-analysis 

(see Methods)     
  

§ SNP was not successfully genotyped in Stage 2       
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Table 3.6. Characteristics of the Stage 1 case and control samples  

  

FUSION 

cases 

FUSION 

controls 

Finrisk 2002 

controls for 

FUSION 

Finrisk 2002 

cases 

Finrisk 2002 

controls 

N 789 523 † 276 372 375 

    Male 429 194 163 224 217 

    Female 360 329 113 148 158 

Age of diagnosis (years)* 51.0 (11.0) N/A N/A 59.0 (12.0) N/A 

Study age (years)* 64.2 (10.1) 69.6 (7.7) 62.0 (9.0) 61.0 (12.0) 61.0 (12.0) 

Body-mass index 

(kg/m2)* 29.3 (6.2) 27.3 (5.5) 26.5 (4.5) 30.7 (6.0) 26.6 (4.4) 

Fasting glucose (mmol/l)* 9.6 (4.7) 5.1 (0.6) 5.6 (0.5) 7.3 (1.3) 5.6 (0.5) 

* Data are median (interquartile range). N/A=not applicable.     

† 523 = 219 FUSION elderly controls and 304 spouse controls.   
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Table 3.7. Characteristics of the Stage 2 case and control samples * 

  
D2D      

cases 
D2D  

controls 
Health 2000 

cases 
Health 2000 

controls 

Action 

LADA 

cases 

Action 

LADA 

controls 

Finrisk 

1987 

cases 

Finrisk 

1987 

controls 

Savitaipale 

Diabetes 

Study cases 

Savitaipale 

Diabetes 

Study 

controls 

N 327 314 127 124 373 402
† 266 300 122 118 

    Male 184 176 67 66 235 259 171 202 67 65 

    Female 143 138 60 58 138 143 95 98 55 53 
Age of diagnosis 

(years)
* 60.0 (13.0) N/A 55.0 (13.0) N/A 

55.0 

(10.0) N/A 
55.5 

(13.0) N/A 55.1 (11.7) N/A 
Study age 

(years)
* 64.0 (11.4) 64.3 (12.0) 61.0 (15.0) 59.0 (12.0) 

60.2 

(10.8) 58.0 (9.0) 
58.0 

(11.0) 57.0 (12.0) 57.9 (13.4) 57.0 (13.0) 
Body-mass 

index (kg/m
2
)
* 29.9 (7.1) 26.4 (4.9) 30.3 (5.4) 26.5 (5.6) 30.3 (6.9) 26.3 (4.7) 30.5 (6.1) 26.7 (4.8) 28.3 (7.1) 25.4 (4.5) 

Fasting glucose 

(mmol/l)
* 7.2 (2.0) 5.4 (0.5) 7.3 (2.0) 5.4 (0.5) 7.3 (2.4) 5.5 (0.6)

‡ 6.9 (3.0)
§ 5.1 (0.6)

§,** 7.2 (0.9)
§ 5.6 (0.4)

§ 

* Data are median (interquartile range). N/A=not applicable.               

† 85 D2D, 100 Health 2000, 52 Finrisk 2002, 97 Finrisk 1987, and 68 Savitaipale Diabetes Study controls      
‡ n=165 values converted from whole blood to plasma glucose equivalent using prediction equation from the European Diabetes Epidemiology Group (22), of which 

n=52 fasted < 8 hours  
§ all values converted from whole blood to plasma glucose equivalent using prediction equation from the European Diabetes Epidemiology 

Group (22)  

** n=210 fasted 

< 8 hours         
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Table 3.8. SNP coverage and T2D association for 222 candidate gene regions (-10 kb/+5 kb) 

 

Table available online at http://diabetes.diabetesjournals.org/content/suppl/2008/08/19/db07-

1731.DC1/Gaulton_online_appendix_tables.xls 
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Table 3.9. Stage 1 T2D SNP association for 3,531 genotyped SNPs, sorted by pSNP 

 

Table available online at http://diabetes.diabetesjournals.org/content/suppl/2008/08/19/db07-

1731.DC1/Gaulton_online_appendix_tables.xls 
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Table 3.10. Stage 1 T2D association and linkage disequilibrium for genotyped and imputed 

SNPs within +10kb/-5 kb of gene regions, sorted by chromosome/position 

 

Table available online at http://diabetes.diabetesjournals.org/content/suppl/2008/08/19/db07-

1731.DC1/Gaulton_online_appendix_tables.xls



 

 

Table 3.11. Imputed SNPs at least 5-fold more strongly associated with T2D than genotyped SNPs in a given gene 

  Genotyped SNP     Imputed SNP      Imputed SNP after genotyping 

Gene symbol SNP padd
* Position (kb)   SNP Position (kb) pimpute    padd

 * pSNP
 † 

NMU rs11728776 .18 56,368,695  rs9999653 56,339,177 .023  .016 .035 

TP53 rs8079544 .013 7,520,777  rs1042522 7,520,197 .0019  .0044 .010 

ENPP1 rs1409184 .0011 132,182,184  rs2021966 132,192,132 .00019  .00026 .00018 

RAPGEF1 rs4740304 .0085 131,629,563  rs10901081 131,626,229 .0015  .061 .10 

CAPN10 rs7571442 .30 241,275,981  rs3792270 241,251,565 .055  - - 

* Additive model p-value used for genotyped SNPs to allow comparison to imputed p-values   

† For imputed SNPs that were then genotyped, we calculated pSNP values to enable comparison to results in Table 3.9 
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Table 3.12.  Genotyped (bold)  and imputed (non-bold) 

SNPs significant at p<.001 in Stage 1 samples before correcting for BMI 

SNP 

Gene 

symbol Chr Position (bp) 

 padd or 

pimpute 
* 

 padd or 

pimpute (BMI) 
*  

rs7316454 ARID2 12 44,486,663 .00014 .0011  

rs11183212 ARID2 12 44,500,134 .00014 .0011  

rs7310939 ARID2 12 44,488,463 .00014 .0011  

rs12580303 ARID2 12 44,468,076 .00017 .0014  

rs2021966 ENPP1 6 132,192,132 .00019 .0012  

rs8069976 SOCS3 17 73,861,445 .00045 .00055  

rs8071356 SOCS3 17 73,861,591 .00057 .00071  

rs11888 JAK3 19 17,796,626 .00058 .00032  

rs11206883 PRKAA2 1 56,815,240 .00061 .0046  

rs2395836 PRKAR2B 7 106,381,475 .00086 .0048  

rs257384 PRKAR2B 7 106,399,345 .00088 .0041  

* Additive model for genotyped (padd) and imputed (pimpute) SNPs  
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Table 3.13.  Genotyped (bold)  and imputed (non-bold) 

SNPs significant at p<.001 in Stage 1 samples after correcting for BMI 

SNP 

Gene 

symbol Chr Position (bp) 

 padd or 

pimpute 
* 

 padd or 

pimpute (BMI) 
*  

rs2230204 TRIP10 19 6,660,848 .030 .00018  

rs11888 JAK3 19 17,796,626 .00058 .00032  

rs8069976 SOCS3 17 73,861,445 .00045 .00055  

rs729302 IRF5 7 128,162,911 .0071 .00058  

rs1042522 TP53 17 7,520,197 .0019 .00060  

rs1801282 PPARG 3 12,368,125 .0011 .00062  

rs8071356 SOCS3 17 73,861,591 .00057 .00071  

rs11709077 PPARG 3 12,311,507 .0015 .00082  

rs6802898 PPARG 3 12,366,207 .0016 .00083  

rs2881654 PPARG 3 12,371,955 .0018 .00086  

rs1899951 PPARG 3 12,369,840 .0018 .00090  

rs2197423 PPARG 3 12,366,583 .0018 .00092  

rs7647481 PPARG 3 12,366,813 .0018 .00092  

rs7649970 PPARG 3 12,367,272 .0018 .00092  

rs2241392 C3 19 6,636,983 .057 .00092  

rs17036328 PPARG 3 12,365,484 .0019 .00094  

* Additive model for genotyped (padd) and imputed (pimpute) SNPs  
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Table 3.14. Stage 1 quantitative trait genotyped and imputed SNP association results (p < 

.005), sorted by p-value 

 

Table available online at http://diabetes.diabetesjournals.org/content/suppl/2008/08/19/db07-

1731.DC1/Gaulton_online_appendix_tables.xls 
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Table 4.1.  Characteristics of samples selected for targeted sequencing 

 

high HDL 

(>95th PCTL)  

low HDL 

(<5th PCTL)  

high TG 

(>95th PCTL)  

low TG 

(<5th PCTL) 

Mean age 62.8 57  58.1 57.8 

% Male 20% 80%  63% 47.9% 

HDL 

(mmol/L) 
2.30±0.25  0.87±0.13 

 
- - 

TG 

(mmol/L) 
- - 

 
2.87±0.72 0.61±0.081 

BMI 25.2 28.4  29.2 24.7 
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Table 4.2. Sequencing success 

  

    

  

Targeted 

bp 

Total bp 

sequenced 

% bp 

sequenced 

GALNT2 locus    

  associated region 14,052 11,330 80.6% 

  GALNT2 exons 9,965 7,029 70.5% 

  regulatory regions 6,589 5,631 85.5% 

    

MMAB/MVK locus    

  MVK gene region 27,452 22,168 80.8% 

  MMAB gene region 23,835 18,332 76.9% 

  regulatory regions 10,044 9,911 98.7% 

    

TRIB1 locus    

  associated region 19,051 13,108 67.2% 

  TRIB1 gene region 12,081 9,517 78.8% 

  regulatory regions 4,183 4,011 95.9% 

    

ANGPTL3 gene 

region 11,995 8,643 72.1% 

    

MLXIPL gene region 35,348 20,786 58.8% 

Total 174,595 130,466 74.7% 
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Table 4.3. Variants identified by sequencing 188 individuals 

   

known        

(dbSNP v129)  novel 

region total  total 

common 

(MAF>.05)  total 

common 

(MAF>.05) 

rare 

(MAF<.01) 

GALNT2 211  98 78  113 15 70 

MMAB/MVK 334  122 102  212 53 120 

TRIB1 204  94 79  110 15 72 

ANGPTL3 16  5 4  11 1 8 

MLXIPL 109  29 25  80 14 43 

All 874  

348  

(40%) 

288      

(83%)  

526  

(60%) 

98  

(19%) 

313  

(60%) 

 

 



 

Table 4.4. HapMap, sequenced and 1000 Genomes Projects variants in LD with HDL-C or TG associated SNPs 

    

Sequencing          

(targeted regions only) a  

1000 Genomes Project     

(all data)b 

 Index SNP a 

HapMap SNPs 

in LD (r2>.8)  r2>.9 r2>.5 r2>.2  r2>.9 r2>.5 r2>.2 

MVK/MMAB rs2338104 34  8 (1) 11 (2) 19 (4)  16 39 250 

MLXIPL rs17145738 10  0 (0) 5 (0) 13 (1)  31 93 124 

GALNT2 rs2144300 8  7 (0) 9 (1) 20 (1)  14 25 124 

TRIB1 rs2954029 17  3 (0) 3 (0) 14 (3)  7 11 37 

ANGPTL3 rs1748195 103  2 (1) 2 (1) 2 (1)  134 151 275 

a. # of total variants sequenced in 188 individuals in LD with any previously associated sequenced variant at 

specified threshold (# of indels) 

b. # of total 1000 Genomes (60 CEU samples) variants in LD  with any previously associated variant 
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Table 4.5. Non-HapMap variants in LD (r2>.2) with trait associated SNPs, sorted by locus and r2  

rs id locus alleles 

minor 

allele MAF 

best r2 with 

HapMap 

associated 

SNP  

HapMap 

associated SNP 

Stage 1   

p-value Annotation a 

rs34483103 ANGPTL3 -/TAATGTGGT - 0.25 1 rs11207997 0.061 ANGPTL3 3'UTR 

rs10789117 ANGPTL3 A/C C 0.24 1 rs11207997 0.063 ANGPTL3 3'UTR 

         

rs2281721 GALNT2 C/T C 0.46 1 rs2281719 0.0030  

rs10864727 GALNT2 A/G A 0.45 1 rs2281719 0.0030  

rs10864728 GALNT2 A/G A 0.46 1 rs2281719 0.0027  

rs11122456 GALNT2 A/G A 0.46 1 rs2281719 0.0027  

rs4846921 GALNT2 A/G G 0.46 0.989 rs2281719 0.0032  

rs2281718 GALNT2 A/T A 0.47 0.966 rs2281719 0.012  

rs4846922 GALNT2 C/T T 0.43 0.915 rs1321257 0.00070  

rs5781574 GALNT2 -/CAA CAA 0.41 0.821 rs1321257 0.00031  

rs4846923 GALNT2 G/T T 0.34 0.616 rs10489615 0.0030  

rs2144301 GALNT2 C/T T 0.27 0.445 rs10779835 0.022  

rs4846917 GALNT2 C/T T 0.24 0.407 rs2281719 0.39  

rs4846841 GALNT2 A/G A 0.24 0.393 rs2281719 0.39  

rs4846840 GALNT2 G/T T 0.24 0.392 rs2281719 0.39  

rs6672758 GALNT2 C/T C 0.24 0.387 rs2281719 0.39  

rs966333 GALNT2 C/T T 0.19 0.322 rs2281719 0.18  

rs6666884 GALNT2 G/T G 0.21 0.322 rs1321257 0.0038 H3K4me3 

rs2103827 GALNT2 A/T T 0.19 0.283 rs10489615 0.17  

rs598203 GALNT2 C/G G 0.19 0.281 rs2281719 0.068 DnaseHS 

rs59153235 GALNT2 G/T T 0.28 0.234 rs2281719 0.05  

rs35198744 GALNT2 C/T T 0.2 0.215 rs10489615 0.064  
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rs13240065 
MLXIPL A/G A 0.1 0.87 rs17145750 0.00018  

rs3812316 MLXIPL C/G G 0.1 0.87 rs17145750 0.00018 MLXIPL Q241H 

rs13246993 MLXIPL A/G A 0.1 0.87 rs17145750 0.00017  

rs34062580 MLXIPL A/G A 0.1 0.868 rs17145750 0.00023  

rs13235543 MLXIPL C/T T 0.1 0.867 rs17145750 0.00018 RNA Pol II 

rs34060476 MLXIPL A/G G 0.1 0.844 rs17145750 0.00091 

H3K4me3,RNA Pol 

II,H3ac,HNF4a,Dnas

eHS 

rs13247874 MLXIPL C/T T 0.15 0.737 rs17145750 0.0029  

rs13225660 MLXIPL C/T T 0.16 0.732 rs17145750 0.0023  

rs55747707 MLXIPL A/G A 0.15 0.722 rs17145750 0.0037 

H3K4me3,RNA Pol 

II,SREBP1A,SREBP2,

HNF4A,cMYC,FAIRE,

DnaseHS 

rs35493868 MLXIPL C/G G 0.15 0.722 rs17145750 0.0090 H3K4me3 

rs35368205 MLXIPL C/T T 0.15 0.711 rs17145750 0.0081 DnaseHS 

rs61010704 MLXIPL A/G G 0.22 0.449 rs17145750 0.0056  

rs35512732 MLXIPL -/C - 0.22 0.449 rs17145750 0.0056  

         

rs10850358 

MMAB/MV

K A/G G 0.49 1 rs11067231 0.0013 RNA pol II,DNaseHS 

rs2058805 

MMAB/MV

K C/T C 0.48 1 rs7134594 0.0015  

rs2058806 

MMAB/MV

K A/C A 0.49 1 rs11067231 0.0013  

rs6606734 

MMAB/MV

K G/T G 0.48 1 rs7134594 0.0012  

rs736344 

MMAB/MV

K A/G G 0.48 1 rs7134594 0.0015  

rs7953014 

MMAB/MV

K A/G G 0.48 1 rs7134594 0.0015  

rs3782894 

MMAB/MV

K G/T T 0.48 0.989 rs7134594 0.00096  

rs60036171 

MMAB/MV

K -/T - 0.49 0.989 rs7134594 0.00092  
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rs59227481 MMAB/MV

K A/G G 0.37 0.632 rs7134594 0.0071  

rs57044180 

MMAB/MV

K -/CACT - 0.32 0.522 rs10850435 0.017 DNaseHS 

rs12322541 

MMAB/MV

K A/G G 0.3 0.503 rs7134594 0.013 DNaseHS 

rs3782897 

MMAB/MV

K C/T C 0.32 0.496 rs7134594 0.019  

rs10774774 

MMAB/MV

K G/T T 0.31 0.482 rs7134594 0.015 

H3K4me3,RNA pol 

II,SREBP1A,SREBP2,

cMYC,DNaseHS 

rs10774775 

MMAB/MV

K C/T T 0.31 0.482 rs7134594 0.013 

MMAB R18H, 

H3K4me3,RNA pol 

II,SREBP1A,SREBP2,

cMYC,DNaseHS 

rs11364376 

MMAB/MV

K -/G - 0.3 0.48 rs7134594 0.013  

rs59652081 

MMAB/MV

K -/CTT - 0.31 0.47 rs7134594 0.014  

rs877709 

MMAB/MV

K G/T T 0.29 0.459 rs10850435 0.019 3' UTR 

rs11067359 

MMAB/MV

K A/G A 0.21 0.316 rs10850435 0.12  

rs11067271 

MMAB/MV

K C/T C 0.2 0.273 rs7134594 0.048  

         

rs2980886 TRIB1 A/G G 0.49 1 rs2980853 0.00040  

rs2001846 TRIB1 C/T T 0.42 0.978 rs2954021 0.015  

rs2954017 TRIB1 C/T T 0.42 0.967 rs2954021 0.015  

rs2954023 TRIB1 -/A T 0.25 0.422 rs2954021 0.11  

rs12674939 TRIB1 A/T A 0.21 0.341 rs2954021 0.060  

rs7015677 TRIB1 A/G G 0.18 0.297 rs2954021 0.091  

rs72655675 TRIB1 -/T T 0.18 0.284 rs2954021 0.090  

rs12679184 TRIB1 C/T T 0.18 0.28 rs2954021 0.072  

rs7828194 TRIB1 A/G A 0.14 0.274 rs2954021 0.088  

1
7
1
 



 

rs34604874 
TRIB1 A/G A 0.18 0.274 rs2954021 0.071  

rs62521034 TRIB1 C/T T 0.29 0.267 rs2980856 0.77 3' UTR 

rs7828701 TRIB1 C/G G 0.15 0.249 rs2954021 0.072  

rs4419828 TRIB1 G/T T 0.27 0.246 rs6982636 0.013  

rs66488903 TRIB1 -/TTGTT - 0.19 0.203 rs2954021 0.13 RNA pol II 

 

1
7
2
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Table 4.6. Datasets used to annotate non-coding variants 

  

HepG2 experimental data  

Dataset Type Source 

DNaseI 

hypersensitivity 

Nucleosome occupancy 

ENCODE; Crawford 

FAIRE Nucleosome occupancy ENCODE; Lieb 

FOXA2 binding DNA-binding protein Wallerman O, Nucleic Acids Res. 

2009 Dec;37(22):7498-508. 

HNF4A binding DNA-binding protein Wallerman O, Nucleic Acids Res. 

2009 Dec;37(22):7498-508. 

GABP binding DNA-binding protein Wallerman O, Nucleic Acids Res. 

2009 Dec;37(22):7498-508. 

SREBP1A 

binding 

DNA-binding protein 

ENCODE; Snyder 

SREBP2 DNA-binding protein ENCODE; Snyder 

RNA Pol II 

binding 

DNA-binding protein 

ENCODE; Snyder 

USF1 binding DNA-binding protein Rada-iglesias, Genome Res. 2008 

Mar;18(3):380-92. 

USF2 binding DNA-binding protein Rada-iglesias, Genome Res. 2008 

Mar;18(3):380-92. 

CTCF binding DNA-binding protein ENCODE; Bernstein/Iyer 

cMYC binding DNA-binding protein ENCODE; Bernstein/Iyer 

H3 acetylation Histone modification Rada-iglesias, Genome Res. 2008 

Mar;18(3):380-92. 

H3K4me3 Histone modification Guenther MG, Cell. 2007 Jul 

13;130(1):77-88. 

   

Non-coding element predictions  

Dataset   Reference 

28-species most conserved elements Miller W. 2007 Dec;17(12):1797-808. 

Predicted transcription factor binding sites Xie X. 2009 Jan 15;25(2):167-74. 

Predicted regulatory modules Blanchette M. Genome Res. 2006 

May;16(5):656-68 

Predicted tissue-specific enhancers Pennacchio LA. Genome Res. 2007 

Feb;17(2):201-11. 
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Table 4.7. Stage 1 quantitative trait association with variants in low LD (r2<.2) 

with previously associated HapMap variants 

SNP id locus 

 

alleles MAF annotation r2 pvalue 

rs72649520 MMAB/MVK A/G 0.005  0.98 0.0018 

rs72650176 MMAB/MVK C/T 0.005 MMAB 3’ UTR 0.97 0.0018 

rs72650173 MMAB/MVK AT/C 0.005 RNA PolII 0.93 0.0018 

rs72648004 MMAB/MVK C/T 0.005 Dnase HS 0.61 0.0021 

rs56200521 GALNT2 C/G 0.12  0.92 0.005 

rs56217501 GALNT2 C/G 0.12  0.92 0.005 

rs60122995 GALNT2 A/G 0.12  0.94 0.014 

rs1051943 MLXIPL C/T 0.02 

MLXIPL 3’ UTR 

RNA PolII 0.72 0.016 

rs72647336 TRIB1 A/G 0.02 CTCF_IMR90 0.59 0.018 

rs67866345 MMAB/MVK C/T 0.01  0.94 0.02 

rs66815418 GALNT2 C/T 0.13  0.95 0.022 

rs72655702 TRIB1 A/T 0.008  0.94 0.031 

rs72649530 GALNT2 -/G 0.21  0.96 0.031 

rs12038714 GALNT2 A/G 0.20  0.96 0.031 

rs72649011 MLXIPL A/G 0.008 RNA PolII 0.65 0.035 

rs72649026 MLXIPL C/T 0.008 CTCF_IMR90 0.65 0.035 

rs72646994 MMAB/MVK G/T 0.05  0.67 0.037 

rs72647325 TRIB1 C/T 0.008  0.54 0.037 

rs55882275 TRIB1 A/T 0.089  0.99 0.04 

rs72648003 MMAB/MVK A/G 0.02  0.72 0.041 

rs72651720 MMAB/MVK C/T 0.008  0.7 0.045 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4.8.  Re-sequenced SNPs Stage 1+2 quantitative trait association, sorted by 

combined p-value         

         Stage 1  Stage 2  Combined 

SNP id 

gene 

region 

major/min

or allele trait  MAF 

Effect 

size 

P-

value  MAF 

Effect 

size 

P-

value  MAF 

Effect 

size 

P-

value 

rs72647336 TRIB1 G/A 

Triglyceride 
level  .02 .31 .023  .035 .11 .00083  .033 .12 .00011 

rs72650176 MMAB T/C HDL-C level  

.000
6 -2.12 .0018  .001 -.14 .14  .0009 -.42 .15 

rs56217501 GALNT2 C/G HDL-C level  .12 -.15 .0051  .12 .061 .20  .12 .02 .27 

rs28934897 MVK A/G HDL-C level  

.001
3 .43 .33  .0016 .08 .15  .0016 .12 .42 

rs72649012 MLXIPL T/C 

Triglyceride 

level  .012 .066 .66  .015 .044 .39  .015 .038 .44 

rs72650181 MMAB T/- HDL-C level  

.000

4 -1.57 .026  .0001 2.3 .022  .0002 -.29 .62 

 1
7
5
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Table 4.9.  Aming acid changing variants (MAF<.05) identified by 

sequencing in 188 samples  

      

SNP Gene 

Amino 

acid 

change 

# high 

trait 

value 

#low trait 

value 

Predicted 

effect* 

rs72650181 MMAB Y238* 0 1 - 

rs72649574 ANGPTL3 N151D 0 1 TOLERATED 

rs66489924 MLXIPL R841W 1 0 DAMAGING 

rs72649573 ANGPTL3 L127F 2 1 DAMAGING 

rs28934897 MVK V377I 0 1 TOLERATED 

rs72649012 MLXIPL V758I 3 1 DAMAGING 

* Predictions using SIFT (Kumar et al. Nat Protoc. 2009;4(7):1073-81) 
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Table 4.10.  Excess of high or low trait value individuals with variants in genomic 

windows of 200 bp, 400 bp, 1 kb and 2 kb 

Win

dow 

size 
a Coordinates  

# high 

trait 

value b 

# low 

trait 

value b 

Uncorrected 

p-value c 

2 kb chr1:228482029-228484029 1 11 .0055 

 chr1:228367973-228369973 1 9 .016 

1 kb chr1:228483591-22848591 0 6 .030 

 chr1:228483119-228484119 1 7 .063 

400 

bp 

chr12:108497292-

108497692 0 5 .057 

 

chr12:108496572-

108496972 5 0 .055 

200 

bp 

chr12:108497292-

108497492 0 5 .05 

 

chr12:108496572-

108496772 5 0 .056 

a. Two most significant results shown for each window size 

b. Number of high or low individuals with a rare allele in window 

c. P-values calculated using 10,000 permutations of high / low trait status.  

Experiment-wide significance = 4.8x10-5 
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Table 5.1.  FAIRE-seq sequence depth and enrichment sites in three 

human islet samples 

      FAIRE-seq sites 

  Sequence reads   Liberal Moderate Stringent 

sample 1 39,359,429  205,922 99,361 18,189 

sample 2 25,176,624  213,972 91,455 9,601 

sample 3 60,515,180  202,783 81,546 33,305 

FAIRE was performed on three human pancreatic islet sample (Methods).  

Sample 3 had the highest purity (Table 5.2) and was thus sequenced at 

greater depth and used for subsequent analysis.  Aligned reads were used 

to call FAIRE sites at three thresholds 
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Table 5.2. Donor profiles of islet samples  

    

 sample 1 sample 2 sample 3 

Ethnicity Caucasian Caucasian N/A 

Sex Male Male Male 

Age (years) 26 53 53 

BMI (kg/m2) 27.3 32.65 23.5 

Cause of death Head trauma 
Cerebral 

hemmorhage 

Cerebral 

hemmorhage 

Cold ischemia (hours) 9 18 6.5 

Islet purity (%) 55 55 85 

Culture duration before 

shipment (days) 4 0 3 

3-days reculture after arrival No No Yes 
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Table 5.3. RefSeq transcripts with preferential islet FAIRE enrichment 

   

% FAIRE 

enriched a 

Transcript id Gene symbol position b islets 

5 cell 

lines c fold 

NM_000415 IAPP 

chr12:21415084-

21425683 33.63 0.00 - 

NM_006168 NKX6-1 

chr4:85631459-

85640411 19.71 0.00 - 

NM_004472 FOXD1 

chr5:72775840-

72782108 16.00 0.00 - 

NM_014469 RBMXL2 

chr11:7064740-

7070955 9.04 0.00 - 

NM_019062 RNF186 

chr1:20011108-

20016358 8.67 0.00 - 

NM_004138 KRT33A 

chr17:36753896-

36762582 8.61 0.00 - 

NM_004982 KCNJ8 

chr12:21807155-

21821014 8.25 0.00 - 

NM_145175 FAM84A 

chr2:14688306-

14695898 7.84 0.00 - 

NM_012183 FOXD3 

chr1:63559317-

63565385 7.50 0.00 - 

NM_001001343 C5orf40 

chr5:156699184-

156707307 6.59 0.00 - 

NM_020633 VN1R1 

chr19:62656353-

62661666 6.06 0.00 - 

NM_006057 B3GALT5 

chr21:39949123-

39958685 5.95 0.00 - 

NM_033170 B3GALT5 

chr21:39949123-

39958685 5.95 0.00 - 

NM_033171 B3GALT5 

chr21:39949123-

39958685 5.95 0.00 - 

NM_033172 B3GALT5 

chr21:39949123-

39958685 5.95 0.00 - 

NM_033173 B3GALT5 

chr21:39949123-

39958685 5.95 0.00 - 

NM_178445 CCRL1 

chr3:133799670-

133806072 5.84 0.00 - 

NM_022843 PCDH20 

chr13:60879819-

60889656 5.41 0.00 - 

NM_033512 TSPYL5 

chr8:98352889-

98361352 5.13 0.00 - 

NM_012403 ANP32C 

chr4:165335608-

165340313 4.68 0.00 - 

NM_018971 GPR27 

chr3:71883890-

71889018 4.50 0.00 - 

NM_001077710 FAM110C chr2:29607-38385 4.48 0.00 - 

NM_032099 PCDHGB5 

chr5:140755878-

140762335 3.41 0.00 - 

NM_032089 PCDHGA9 

chr5:140760703-

140767190 3.39 0.00 - 
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NM_032115 KCNK16 

chr6:39388459-

39400294 3.39 0.00 - 

NM_001004310 FCRL6 

chr1:158036796-

158054671 3.33 0.00 - 

NM_182532 TMEM61 

chr1:55217052-

55232554 3.30 0.00 - 

NM_012226 P2RX2 

chr12:131703475-

131711045 3.20 0.00 - 

NM_016318 P2RX2 

chr12:131703475-

131711045 3.20 0.00 - 

NM_174872 P2RX2 

chr12:131703475-

131711045 3.20 0.00 - 

NM_170683 P2RX2 

chr12:131703475-

131711045 3.20 0.00 - 

NM_174873 P2RX2 

chr12:131703475-

131711045 3.20 0.00 - 

NM_170682 P2RX2 

chr12:131703475-

131711045 3.20 0.00 - 

NM_001105195 FAM123C 

chr2:131228333-

131244177 3.17 0.00 - 

NM_001105194 FAM123C 

chr2:131228333-

131244177 3.17 0.00 - 

NM_031883 PCDHAC2 

chr5:140324535-

140331190 3.07 0.00 - 

NM_001105193 FAM123C 

chr2:131227693-

131244177 3.05 0.00 - 

NM_152698 FAM123C 

chr2:131227546-

131244177 3.02 0.00 - 

NM_001004734 OR14I1 

chr1:246909292-

246914228 2.80 0.00 - 

NM_006308 HSPB3 

chr5:53785201-

53789964 2.27 0.00 - 

NM_017594 DIRAS2 

chr9:92409933-

92446928 2.21 0.00 - 

NM_001005611 EDA 

chrX:68750635-

68755868 2.18 0.00 - 

NM_001024215 FBLIM1 

chr1:15961580-

15976302 2.07 0.00 - 

NM_144605 SEPT12 

chr16:4765674-

4780348 2.02 0.00 - 

NM_130786 A1BG 

chr19:63547983-

63558677 1.88 0.00 - 

NM_006439 MAB21L2 

chr4:151720526-

151727293 1.82 0.00 - 

NM_018228 C14orf115 

chr14:73882918-

73898464 1.74 0.00 - 

NM_020160 MEIS3 

chr19:52596194-

52616597 1.40 0.00 - 

NM_001009813 MEIS3 

chr19:52596192-

52616597 1.40 0.00 - 

NM_030883 OR2H1 

chr6:29532208-

29542078 1.37 0.00 - 

NM_207379 TMEM179 chr14:104129464- 1.24 0.00 - 
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104144142 

NM_000209 PDX1 

chr13:27390167-

27400451 1.23 0.00 - 

NM_181709 FAM101A 

chr12:123337662-

123368521 1.22 0.00 - 

NM_000814 GABRB3 

chr15:24337786-

24571344 1.15 0.00 - 

NM_021912 GABRB3 

chr15:24337786-

24572020 1.15 0.00 - 

NM_031882 PCDHAC1 

chr5:140284485-

140291569 0.99 0.00 - 

NM_001039360 ZBTB7C 

chr18:43805742-

43823492 0.97 0.00 - 

NM_023926 ZSCAN18 

chr19:63285017-

63303389 0.85 0.00 - 

NM_001128618 C9orf57 

chr9:73854116-

73867341 0.83 0.00 - 

NM_016615 SLC6A13 chr12:198051-244263 0.82 0.00 - 

NM_001127648 GABRA1 

chr5:161208280-

161261543 0.73 0.00 - 

NM_001127647 GABRA1 

chr5:161207969-

161261543 0.73 0.00 - 

NM_001127646 GABRA1 

chr5:161206475-

161261543 0.71 0.00 - 

NM_001127645 GABRA1 

chr5:161206119-

161261543 0.71 0.00 - 

NM_001127644 GABRA1 

chr5:161205517-

161261543 0.70 0.00 - 

NM_001127643 GABRA1 

chr5:161205262-

161261543 0.69 0.00 - 

NM_000806 GABRA1 

chr5:161204774-

161261543 0.69 0.00 - 

NM_021098 CACNA1H 

chr16:1141241-

1213773 0.52 0.00 - 

NM_001005407 CACNA1H 

chr16:1141241-

1213773 0.52 0.00 - 

NM_002259 KLRC1 

chr12:10487903-

10499196 0.51 0.00 - 

NM_007328 KLRC1 

chr12:10487903-

10499196 0.51 0.00 - 

NM_213657 KLRC1 

chr12:10487903-

10500251 0.47 0.00 - 

NM_213658 KLRC1 

chr12:10487903-

10500251 0.47 0.00 - 

NM_014351 SULT4A1 

chr22:42549719-

42591711 0.43 0.00 - 

NM_182594 ZNF454 

chr5:178298829-

178328040 0.42 0.00 - 

NM_014392 D4S234E chr4:4436883-4473685 0.42 0.00 - 

NM_001040101 D4S234E chr4:4436883-4473686 0.42 0.00 - 

NM_198904 GABRG2 

chr5:161425225-

161517123 0.28 0.00 - 
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NM_198903 GABRG2 

chr5:161425225-

161517123 0.28 0.00 - 

NM_000816 GABRG2 

chr5:161425225-

161517123 0.28 0.00 - 

NM_015347 RIMBP2 

chr12:129444633-

129570363 0.27 0.00 - 

NM_021599 ADAMTS2 

chr5:178508735-

178706935 0.25 0.00 - 

NM_014244 ADAMTS2 

chr5:178471455-

178706935 0.24 0.00 - 

NM_024690 MUC16 

chr19:8818519-

8955018 0.12 0.00 - 

NM_000555 DCX 

chrX:110421662-

110543030 0.09 0.00 - 

NM_178151 DCX 

chrX:110421662-

110543962 0.09 0.00 - 

NM_178152 DCX 

chrX:110421662-

110544062 0.09 0.00 - 

NM_178153 DCX 

chrX:110421662-

110544062 0.09 0.00 - 

NM_145793 GFRA1 

chr10:117810942-

118023784 0.06 0.00 - 

NM_005264 GFRA1 

chr10:117810942-

118024966 0.06 0.00 - 

NM_001005615 EDA 

chrX:68750635-

68999614 0.05 0.00 - 

NM_002545 OPCML 

chr11:131788084-

132320247 1.09 0.01 181.6 

NM_001080455 SLC35F4 

chr14:57098392-

57135368 3.23 0.06 49.7 

NM_001130682 GUCY1A3 

chr4:156805311-

156874951 15.93 0.33 47.8 

NM_000856 GUCY1A3 

chr4:156805311-

156874951 15.93 0.33 47.8 

NM_001130683 GUCY1A3 

chr4:156805598-

156874951 15.99 0.33 47.8 

NM_001130685 GUCY1A3 

chr4:156805598-

156874951 15.99 0.33 47.8 

NM_001130684 GUCY1A3 

chr4:156806264-

156874951 16.15 0.34 47.8 

NM_001130686 GUCY1A3 

chr4:156805311-

156853983 20.48 0.48 43.0 

NM_001130687 GUCY1A3 

chr4:156805311-

156864835 16.74 0.39 43.0 

NM_001389 DSCAM 

chr21:40304212-

41142909 1.55 0.04 36.8 

NM_018940 PCDHB7 

chr5:140530426-

140538141 22.85 0.74 30.9 

NM_173851 SLC30A8 

chr8:118214517-

118260134 27.04 0.89 30.5 

NM_001128929 ROBO2 

chr3:77227852-

77781353 12.94 0.51 25.3 

NM_002942 ROBO2 chr3:77169983- 12.53 0.53 23.4 
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77781353 

NM_001004492 OR2B11 

chr1:245678953-

245683907 1.39 0.06 23.0 

NM_001083619 GRIA2 

chr4:158359185-

158508676 9.80 0.44 22.5 

NM_000826 GRIA2 

chr4:158359185-

158508676 9.80 0.44 22.5 

NM_001083620 GRIA2 

chr4:158359269-

158508676 9.75 0.44 22.3 

NM_017433 MYO3A 

chr10:26261007-

26543471 6.25 0.31 20.0 

NM_003469 SCG2 

chr2:224167901-

224177365 45.95 3.09 14.9 

NM_003787 NOL4 

chr18:29683061-

30059444 13.58 0.91 14.9 

NM_020225 STOX2 

chr4:185061502-

185177869 2.43 0.19 12.9 

NM_153456 HS6ST3 

chr13:95539093-

96291813 4.23 0.33 12.8 

NM_020297 ABCC9 

chr12:21839590-

21982895 3.12 0.26 12.0 

NM_005691 ABCC9 

chr12:21847374-

21982895 3.16 0.27 11.5 

NM_020298 ABCC9 

chr12:21847374-

21982895 3.16 0.27 11.5 

NM_178177 NMNAT3 

chr3:140759722-

140881530 1.58 0.15 10.5 

NM_001040429 PCDH17 

chr13:57101789-

57203066 20.98 2.00 10.5 

NM_020872 CNTN3 

chr3:74392411-

74655033 0.38 0.04 10.4 

NM_021952 ELAVL4 

chr1:50345224-

50441643 5.89 0.60 9.8 

NM_024944 CHODL 

chr21:18537020-

18563558 4.53 0.46 9.8 

NM_014227 SLC5A4 

chr22:30942462-

30983319 2.89 0.31 9.4 

NM_194300 CCDC129 

chr7:31521502-

31661828 1.04 0.11 9.3 

NM_001001850 STX19 

chr3:95213904-

95232144 17.74 2.25 7.9 

NM_004770 KCNB2 

chr8:73610179-

74015138 5.78 0.77 7.5 

NM_000818 GAD2 

chr10:26543599-

26635493 4.69 0.66 7.1 

NM_001008539 SLC7A2 

chr8:17443205-

17474352 12.11 1.70 7.1 

NM_152573 RASEF 

chr9:84785136-

84869863 1.35 0.20 6.9 

NM_002500 NEUROD1 

chr2:182247438-

182255626 37.76 5.69 6.6 

NM_206857 RTN1 

chr14:59130446-

59266184 4.00 0.66 6.1 
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NM_020203 MEPE 

chr4:88971163-

88988968 23.56 3.91 6.0 

NM_017419 ACCN5 

chr4:156968330-

157008875 0.86 0.14 6.0 

NM_152774 TMEM196 

chr7:19723462-

19781541 13.40 2.27 5.9 

NM_000857 GUCY1B3 

chr4:156897664-

156949506 13.95 2.36 5.9 

NM_001438 ESRRG 

chr1:214741210-

214965430 7.64 1.30 5.9 

NM_002202 ISL1 

chr5:50712714-

50728320 12.03 2.06 5.9 

NM_207303 ATRNL1 

chr10:116841113-

117700486 3.40 0.60 5.7 

NM_198515 C10orf96 

chr10:118071929-

118131531 1.73 0.31 5.6 

NM_015912 FAM135B 

chr8:139209447-

139580247 2.43 0.45 5.4 

NM_198353 KCTD8 

chr4:43869029-

44147581 2.79 0.52 5.4 

NM_020783 SYT4 

chr18:39099854-

39113342 28.56 5.38 5.3 

NM_014510 PCLO 

chr7:82285731-

82632133 9.45 1.87 5.0 

NM_080760 DACH1 

chr13:70908098-

71341331 22.05 4.44 5.0 

NM_080759 DACH1 

chr13:70908098-

71341331 22.05 4.44 5.0 

NM_004392 DACH1 

chr13:70908098-

71341331 22.05 4.44 5.0 

NM_001005463 EBF3 

chr10:131521536-

131654081 1.24 0.25 4.9 

NM_019065 NECAB2 

chr16:82557737-

82595880 2.14 0.46 4.6 

NM_003749 IRS2 

chr13:109202184-

109238915 3.59 0.81 4.4 

NM_014677 RIMS2 

chr8:104898591-

105336627 5.12 1.17 4.4 

NM_002971 SATB1 

chr3:18362437-

18442344 20.93 4.87 4.3 

NM_003360 UGT8 

chr4:115760971-

115819651 5.31 1.25 4.2 

NM_019120 PCDHB8 

chr5:140535613-

140542205 17.75 4.20 4.2 

NM_004921 CLCA3 

chr1:86870546-

86895647 5.43 1.29 4.2 

NM_033026 PCLO 

chr7:82219256-

82632133 8.63 2.08 4.1 

NM_014790 JAKMIP2 

chr5:146948898-

147144445 3.86 0.96 4.0 

NM_005651 TDO2 

chr4:157042296-

157063000 2.90 0.72 4.0 

NM_001013659 ZNF793 chr19:42687680- 2.10 0.55 3.8 
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42728079 

NM_020973 GBA3 

chr4:22301645-

22432290 0.47 0.12 3.8 

NM_001128432 GBA3 

chr4:22301645-

22432290 0.47 0.12 3.8 

NM_030965 ST6GALNAC5 

chr1:77103773-

77304325 3.45 0.93 3.7 

NM_001080544 LOC653314 

chr5:177412995-

177417888 7.26 1.96 3.7 

NM_001085490 LOC285501 

chr4:178884900-

179150663 2.25 0.61 3.7 

NM_201591 GPM6A 

chr4:176789081-

176973176 1.49 0.41 3.6 

NM_198281 GPRIN3 

chr4:90382451-

90450184 17.14 4.74 3.6 

NM_206594 ESRRG 

chr1:214741210-

215331599 3.30 0.95 3.5 

NM_206595 ESRRG 

chr1:214741210-

215331599 3.30 0.95 3.5 

NM_178011 LRRTM3 

chr10:68353797-

68532873 5.74 1.65 3.5 

NM_139211 HOPX 

chr4:57206920-

57219408 8.06 2.32 3.5 

NM_175929 FGF14 

chr13:101169205-

101854125 3.75 1.10 3.4 

NM_004115 FGF14 

chr13:101169205-

101368996 5.37 1.58 3.4 

NM_021136 RTN1 

chr14:59130446-

59409310 5.00 1.47 3.4 

NM_014682 ST18 

chr8:53183951-

53486856 9.45 2.94 3.2 

NM_001100117 RIMS2 

chr8:104580151-

105336627 4.55 1.42 3.2 

NM_020685 C3orf14 

chr3:62278435-

62296360 6.58 2.10 3.1 

NM_031501 PCDHA5 

chr5:140179544-

140185995 6.23 2.02 3.1 

NM_001104629 C4orf19 

chr4:37129946-

37273527 4.37 1.41 3.1 

NM_001076682 NCAM1 

chr11:112335204-

112643129 2.80 0.91 3.1 

NM_004570 PIK3C2G 

chr12:18303740-

18694619 1.08 0.35 3.1 

NM_201572 CACNB2 

chr10:18467815-

18872694 4.15 1.39 3.0 

NM_201571 CACNB2 

chr10:18467815-

18872694 4.15 1.39 3.0 

NM_201597 CACNB2 

chr10:18467611-

18872694 4.15 1.39 3.0 

NM_201596 CACNB2 

chr10:18467611-

18872694 4.15 1.39 3.0 

NM_201593 CACNB2 

chr10:18467611-

18872694 4.15 1.39 3.0 
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NM_004822 NTN1 

chr17:8863583-

9090042 0.57 0.19 3.0 

NM_020346 SLC17A6 

chr11:22314242-

22359619 2.45 0.82 3.0 

NM_000248 MITF 

chr3:70066442-

70102177 1.40 0.47 3.0 

NM_198158 MITF 

chr3:70066442-

70102177 1.40 0.47 3.0 

NM_206852 RTN1 

chr14:59130446-

59169273 2.01 0.69 2.9 

NM_003936 CDK5R2 

chr2:219530641-

219537121 13.07 4.60 2.8 

NM_144596 TTC8 

chr14:88358730-

88416088 22.12 7.96 2.8 

NM_198310 TTC8 

chr14:88358730-

88416088 22.12 7.96 2.8 

NM_198309 TTC8 

chr14:88358730-

88416088 22.12 7.96 2.8 

NM_181351 NCAM1 

chr11:112335204-

112656368 2.68 0.97 2.8 

NM_000615 NCAM1 

chr11:112335204-

112656368 2.68 0.97 2.8 

NM_015678 NBEA 

chr13:34412455-

35146873 7.12 2.56 2.8 

NM_000343 SLC5A1 

chr22:30767258-

30838645 1.31 0.48 2.7 

NM_198178 MITF 

chr3:70008945-

70102177 1.59 0.59 2.7 

NM_175768 GRIK2 

chr6:101951625-

102626651 3.76 1.42 2.6 

NM_021956 GRIK2 

chr6:101951625-

102626651 3.76 1.42 2.6 

NM_133448 TMEM132D 

chr12:128120223-

128956165 0.81 0.32 2.6 

NM_174937 TCERG1L 

chr10:132778644-

133001974 0.47 0.18 2.6 

NM_153331 KCTD6 

chr3:58457131-

58465127 6.60 2.59 2.6 

NM_080872 UNC5D 

chr8:35519451-

35773722 0.32 0.13 2.5 

NM_000724 CACNB2 

chr10:18587589-

18872694 3.28 1.32 2.5 

NM_018168 C14orf105 

chr14:57004347-

57032329 7.69 3.12 2.5 

NM_138818 PRUNE2 

chr9:78626000-

78712823 4.46 1.81 2.5 

NM_153604 MYOCD 

chr17:12508230-

12609686 0.88 0.37 2.4 

NM_002772 PRSS7 

chr21:18561560-

18699844 0.99 0.41 2.4 

NM_001843 CNTN1 

chr12:39370624-

39752361 5.01 2.09 2.4 

NM_175038 CNTN1 chr12:39370624- 5.01 2.09 2.4 
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39752361 

NM_173560 RFXDC1 

chr6:117303068-

117362007 28.29 11.96 2.4 

NM_001285 CLCA1 

chr1:86705113-

86740562 6.78 2.89 2.3 

NM_015480 PVRL3 

chr3:112271554-

112337752 11.47 4.91 2.3 

NM_000855 GUCY1A2 

chr11:106061119-

106396381 0.51 0.22 2.3 

NM_005068 SIM1 

chr6:100941470-

101020272 8.30 3.60 2.3 

NM_015888 HOOK1 

chr1:60051120-

60116638 20.56 9.04 2.3 

NM_078625 VNN3 

chr6:133083618-

133099596 16.04 7.09 2.3 

NM_018399 VNN3 

chr6:133083618-

133099596 16.04 7.09 2.3 

NM_001024460 VNN3 

chr6:133083618-

133099596 16.04 7.09 2.3 

NM_001008781 FAT3 

chr11:91722909-

92271283 1.03 0.46 2.3 

NM_003046 SLC7A2 

chr8:17438664-

17474352 15.36 6.83 2.3 

NM_178532 RNF180 

chr5:63495426-

63551095 8.66 3.86 2.2 

NM_018349 MCTP2 

chr15:92640498-

92825267 4.83 2.16 2.2 

NM_020856 TSHZ3 

chr19:36455690-

36534030 0.86 0.39 2.2 

NM_130902 COX7B2 

chr4:46429603-

46608009 0.17 0.08 2.2 

NM_000347 SPTB 

chr14:64300901-

64361619 1.90 0.86 2.2 

NM_030632 ASXL3 

chr18:29410538-

29583397 6.22 2.84 2.2 

NM_201590 CACNB2 

chr10:18667619-

18872694 2.36 1.08 2.2 

NM_002753 MAPK10 

chr4:87154655-

87595307 4.28 1.96 2.2 

NM_003054 SLC18A2 

chr10:118988705-

119029085 2.43 1.12 2.2 

NM_033196 ZNF682 

chr19:19974226-

20013277 0.98 0.45 2.2 

NM_001077349 ZNF682 

chr19:19974226-

20013064 0.98 0.45 2.2 

NM_003658 BARX2 

chr11:128749090-

128829384 1.25 0.58 2.2 

NM_152744 SDK1 chr7:3305605-4277157 2.89 1.36 2.1 

NM_145001 STK32A 

chr5:146592771-

146710585 1.58 0.76 2.1 

NM_015879 ST8SIA3 

chr18:53168718-

53189159 6.77 3.29 2.1 

NM_001112719 LIMCH1 chr4:41307675- 4.56 2.22 2.1 
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41398818 

NM_001112720 LIMCH1 

chr4:41307675-

41398818 4.56 2.22 2.1 

NM_003122 SPINK1 

chr5:147182335-

147193453 4.19 2.05 2.0 

NM_020864 KIAA1486 

chr2:225971845-

226228978 4.40 2.16 2.0 

NM_020724 RNF150 

chr4:142004174-

142276066 1.49 0.73 2.0 

NM_001017970 TMEM30B 

chr14:60811841-

60820283 19.51 9.93 2.0 

NM_001127612 PAX6 

chr11:31760915-

31798085 8.39 4.29 2.0 

NM_001604 PAX6 

chr11:31760915-

31791455 10.21 5.23 2.0 

NM_000280 PAX6 

chr11:31760915-

31791455 10.21 5.23 2.0 

NM_145913 SLC5A8 

chr12:100072124-

100130147 0.46 0.24 1.9 

NM_000352 ABCC8 

chr11:17369007-

17457025 2.91 1.51 1.9 

NM_014814 PSMD6 

chr3:63969270-

63986160 13.06 6.81 1.9 

NM_001128085 ASPA 

chr17:3322153-

3351450 3.68 1.94 1.9 

NM_020866 KLHL1 

chr13:69170725-

69582460 2.08 1.10 1.9 

NM_001113561 RNF180 

chr5:63495426-

63706452 4.56 2.41 1.9 

NM_019851 FGF20 

chr8:16892704-

16906045 1.17 0.62 1.9 

NM_138980 MAPK10 

chr4:87154655-

87502240 4.55 2.43 1.9 

NM_002374 MAP2 

chr2:210150647-

210309079 10.10 5.45 1.9 

NM_031845 MAP2 

chr2:210150647-

210309079 10.10 5.45 1.9 

NM_031847 MAP2 

chr2:210150647-

210309079 10.10 5.45 1.9 

NM_000049 ASPA 

chr17:3324045-

3351450 3.78 2.07 1.8 

NM_213599 TMEM16E 

chr11:22169297-

22259975 3.34 1.83 1.8 

NM_006198 PCP4 

chr21:40159216-

40225192 3.06 1.68 1.8 

NM_001128174 UGT8 

chr4:115737059-

115819651 7.68 4.24 1.8 

NM_005925 MEP1B 

chr18:28021984-

28056364 4.05 2.23 1.8 

NM_001100391 RALYL 

chr8:85257654-

85998633 0.92 0.51 1.8 

NM_173848 RALYL 

chr8:85256140-

85998633 0.92 0.51 1.8 
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NM_001100392 RALYL 

chr8:85256007-

85998633 0.92 0.51 1.8 

NM_001100393 RALYL 

chr8:85256007-

85998633 0.92 0.51 1.8 

NM_001080476 GRXCR1 

chr4:42588040-

42729432 0.56 0.31 1.8 

NM_138982 MAPK10 

chr4:87154655-

87496767 4.09 2.30 1.8 

NM_182948 PRKACB 

chr1:84380539-

84478769 20.31 11.44 1.8 

NM_001080463 DYNC2H1 

chr11:102483369-

102857801 3.78 2.13 1.8 

NM_002407 SCGB2A1 

chr11:61730715-

61739987 4.55 2.58 1.8 

NM_001039538 MAP2 

chr2:209995015-

210309079 14.17 8.08 1.8 

NM_080818 OXGR1 

chr13:96433973-

96446605 6.72 3.84 1.8 

NM_001112724 STK32A 

chr5:146592771-

146745961 1.57 0.90 1.7 

NM_012128 CLCA4 

chr1:86783346-

86821020 1.03 0.59 1.7 

NM_004248 PRLHR 

chr10:120340905-

120347150 4.32 2.48 1.7 

NM_001080477 ODZ3 

chr4:183480130-

183963171 4.40 2.53 1.7 

NM_001099 ACPP 

chr3:133516901-

133562379 11.24 6.54 1.7 

NM_001005527 FAM19A4 

chr3:68861606-

69066401 0.50 0.29 1.7 

NM_182522 FAM19A4 

chr3:68861606-

69066401 0.50 0.29 1.7 

NM_022901 LRRC19 

chr9:26981585-

26997670 8.39 4.91 1.7 

NM_175607 CNTN4 chr3:2115246-3076645 3.25 1.92 1.7 

NM_033126 PSKH2 

chr8:87127806-

87152967 2.03 1.21 1.7 

NM_002062 GLP1R 

chr6:39122534-

39165498 1.82 1.09 1.7 

NM_000901 NR3C2 

chr4:149217364-

149585093 5.35 3.20 1.7 

NM_007123 USH2A 

chr1:214411914-

214665361 2.57 1.54 1.7 

NM_022571 GPR135 

chr14:58997992-

59003812 9.79 5.88 1.7 

NM_015206 KIAA1024 

chr15:77509912-

77553697 1.62 0.97 1.7 

NM_002612 PDK4 

chr7:95048744-

95065861 19.82 11.91 1.7 

NM_001873 CPE 

chr4:166517546-

166640932 11.71 7.06 1.7 

NM_000722 CACNA2D1 

chr7:81415353-

81912967 8.48 5.16 1.6 
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NM_024603 C1orf165 

chr1:48964126-

49017134 1.34 0.82 1.6 

NM_001100916 MBOAT4 

chr8:30106728-

30123742 11.04 6.78 1.6 

NM_016557 CCRL1 

chr3:133796783-

133806072 11.42 7.06 1.6 

NM_201592 GPM6A 

chr4:176789081-

177162642 1.06 0.65 1.6 

NM_005277 GPM6A 

chr4:176789081-

177162642 1.06 0.65 1.6 

NM_032785 AGBL4 

chr1:48769113-

50264213 1.06 0.66 1.6 

NM_138981 MAPK10 

chr4:87154655-

87249830 5.85 3.65 1.6 

NM_001012428 ASB11 

chrX:15209547-

15244590 1.64 1.03 1.6 

NM_080873 ASB11 

chrX:15209547-

15245648 1.59 1.00 1.6 

NM_001007470 TRPM3 

chr9:72586597-

72675794 1.33 0.83 1.6 

NM_206948 TRPM3 

chr9:72586597-

72675794 1.33 0.83 1.6 

NM_134431 SLCO1A2 

chr12:21309650-

21441638 4.32 2.72 1.6 

NM_001083592 ROR1 

chr1:64010277-

64383640 2.39 1.53 1.6 

NM_002338 LSAMP 

chr3:117009831-

117649068 4.28 2.76 1.5 

NM_001042406 HMGCLL1 

chr6:55405129-

55553971 11.67 7.55 1.5 

NM_019036 HMGCLL1 

chr6:55405129-

55553971 11.67 7.55 1.5 

NM_021153 CDH19 

chr18:62320300-

62424196 3.46 2.24 1.5 

NM_032606 CAPS2 

chr12:73954025-

74012103 5.47 3.56 1.5 

NM_001112812 GRIA4 

chr11:104984620-

105291441 2.32 1.52 1.5 

NM_001077244 GRIA4 

chr11:104984009-

105291441 2.32 1.52 1.5 

NM_201570 CACNB2 

chr10:18727518-

18872694 2.29 1.50 1.5 

NM_022351 NECAB1 

chr8:91870953-

92042806 2.33 1.53 1.5 

NM_001012393 OPCML 

chr11:131788084-

132909613 0.60 0.40 1.5 

NM_139212 HOPX 

chr4:57206920-

57244322 5.14 3.46 1.5 

NM_032495 HOPX 

chr4:57206920-

57244322 5.14 3.46 1.5 

NM_001101320 LOC647174 

chr13:50811168-

50836240 2.02 1.37 1.5 

NM_007038 ADAMTS5 chr21:27210102- 6.53 4.42 1.5 
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27263310 

NM_032435 KIAA1804 

chr1:231528136-

231589517 7.65 5.19 1.5 

NM_001039580 MAP9 

chr4:156481261-

156519572 9.23 6.31 1.5 

NM_201548 CERKL 

chr2:182107649-

182231996 15.57 10.69 1.5 

NM_153377 LRIG3 

chr12:57550203-

57602529 18.32 12.58 1.5 

NM_001030313 CERKL 

chr2:182109155-

182231978 15.17 10.49 1.4 

NM_001030312 CERKL 

chr2:182109155-

182231978 15.17 10.49 1.4 

NM_001030311 CERKL 

chr2:182109155-

182231978 15.17 10.49 1.4 

NM_000329 RPE65 

chr1:68665094-

68690230 2.74 1.90 1.4 

NM_148898 FOXP2 

chr7:113840287-

114120328 16.43 11.54 1.4 

NM_148899 FOXP2 

chr7:113840287-

114120328 16.43 11.54 1.4 

NM_014491 FOXP2 

chr7:113840287-

114120328 16.43 11.54 1.4 

NM_207491 MGC48628 

chr4:91373204-

91924174 2.81 2.00 1.4 

NM_022824 FBXL17 

chr5:107221347-

107747010 8.39 5.99 1.4 

NM_004734 DCLK1 

chr13:35241477-

35605443 0.94 0.68 1.4 

NM_198177 MITF 

chr3:69996131-

70102177 1.76 1.28 1.4 

NM_020741 KIAA1257 

chr3:130170471-

130197676 3.67 2.67 1.4 

NM_001040428 SPATA7 

chr14:87919764-

87976557 7.41 5.42 1.4 

NM_018418 SPATA7 

chr14:87919764-

87976557 7.41 5.42 1.4 

NM_000232 SGCB 

chr4:52579628-

52601203 7.67 5.63 1.4 

NM_182644 EPHA3 

chr3:89237363-

89534185 0.60 0.44 1.4 

NM_207578 PRKACB 

chr1:84314332-

84445567 20.02 14.73 1.4 

NM_000919 PAM 

chr5:102227425-

102395316 13.05 9.62 1.4 

NM_138766 PAM 

chr5:102227425-

102395316 13.05 9.62 1.4 

NM_138821 PAM 

chr5:102227425-

102395316 13.05 9.62 1.4 

NM_138822 PAM 

chr5:102227425-

102395316 13.05 9.62 1.4 

NM_152788 ANKS1B 

chr12:97651201-

98904563 1.63 1.21 1.3 
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NM_031889 ENAM 

chr4:71711324-

71733400 6.66 4.98 1.3 

NM_014802 KIAA0528 

chr12:22490784-

22590719 12.32 9.23 1.3 

NM_006203 PDE4D 

chr5:58298622-

58920081 8.11 6.09 1.3 

NM_006914 RORB 

chr9:76300071-

76493937 1.71 1.28 1.3 

NM_004795 KL 

chr13:32486570-

32540279 6.38 4.80 1.3 

NM_014648 DZIP3 

chr3:109789273-

109898383 9.65 7.27 1.3 

NM_152489 UBE2U 

chr1:64440077-

64484615 5.72 4.34 1.3 

NM_001024611 LRRC66 

chr4:52552622-

52580543 5.76 4.37 1.3 

NM_144591 C10orf32 

chr10:104602008-

104615960 13.12 9.99 1.3 

NM_031457 MS4A8B 

chr11:60221622-

60241861 3.57 2.72 1.3 

NM_001453 FOXC1 chr6:1553679-1561128 10.97 8.38 1.3 

NM_152290 C1orf158 

chr1:12726749-

12745689 2.54 1.94 1.3 

NM_145243 OMA1 

chr1:58716978-

58787034 12.48 9.57 1.3 

NM_203403 C9orf150 

chr9:12763011-

12815059 22.00 16.87 1.3 

NM_021073 BMP5 

chr6:55726195-

55850334 22.54 17.30 1.3 

NM_005233 EPHA3 

chr3:89237363-

89615974 0.47 0.36 1.3 

NM_006022 TSC22D1 

chr13:43903658-

43910979 37.41 28.88 1.3 

NM_206937 LIG4 

chr13:107655792-

107667883 9.01 6.97 1.3 

NM_002312 LIG4 

chr13:107655792-

107667131 9.61 7.43 1.3 

NM_002731 PRKACB 

chr1:84314332-

84478769 16.62 12.89 1.3 

NM_018394 ABHD10 

chr3:113178517-

113196900 21.70 16.91 1.3 

NM_207361 FREM2 

chr13:38157172-

38361267 0.31 0.24 1.3 

NM_032859 ABHD13 

chr13:107666763-

107686604 24.48 19.10 1.3 

NM_014576 A1CF 

chr10:52234330-

52317441 12.85 10.03 1.3 

NM_138932 A1CF 

chr10:52234330-

52317441 12.85 10.03 1.3 

NM_138933 A1CF 

chr10:52234330-

52317441 12.85 10.03 1.3 

NM_000810 GABRA5 

chr15:24661150-

24778749 0.51 0.40 1.3 



194 

NM_206933 USH2A 

chr1:213860858-

214665361 2.09 1.63 1.3 

NM_177398 LMX1A 

chr1:163435728-

163593641 0.89 0.69 1.3 

NM_001014797 KCNMA1 

chr10:78297367-

79069583 3.28 2.58 1.3 

NM_052953 LRRC3B 

chr3:26637303-

26729269 0.33 0.26 1.3 

NM_001103184 FMN1 

chr15:30851636-

31149377 6.41 5.06 1.3 

NM_018315 FBXW7 

chr4:153459859-

153495560 26.95 21.27 1.3 

NM_019090 KIAA1383 

chr1:231005260-

231014715 22.17 17.61 1.3 

NM_002247 KCNMA1 

chr10:78312640-

79069583 3.31 2.63 1.3 

NM_207322 FAM148A 

chr15:60144467-

60152408 24.96 19.98 1.2 

NM_021936 PAPPA2 

chr1:174696929-

174928964 3.16 2.56 1.2 

NM_175056 ZPLD1 

chr3:103634548-

103683375 3.56 2.88 1.2 

NM_001113380 RGS4 

chr1:161306318-

161315216 22.04 17.89 1.2 

NM_003429 ZNF85 

chr19:20895919-

20927343 2.32 1.89 1.2 

NM_001031804 MAF 

chr16:78183731-

78194112 11.40 9.31 1.2 

NM_005360 MAF 

chr16:78183731-

78194112 11.40 9.31 1.2 

NM_173642 FAM80A 

chr1:42617054-

42664487 1.45 1.19 1.2 

NM_015978 TNNI3K 

chr1:74471672-

74784696 1.21 0.99 1.2 

NM_021255 PELI2 

chr14:55652845-

55839784 6.02 4.93 1.2 

NM_001111061 NHLH2 

chr1:116178521-

116186856 3.79 3.13 1.2 

NM_005599 NHLH2 

chr1:116178521-

116187270 3.61 2.98 1.2 

NM_183422 TSC22D1 

chr13:43903654-

44050701 10.00 8.31 1.2 

NM_172315 MEIS2 

chr15:34968523-

35179795 11.71 9.73 1.2 

NM_001004303 C1orf168 

chr1:56955064-

57059957 5.97 4.97 1.2 

NM_001083907 BANK1 

chr4:102952005-

103216992 2.46 2.04 1.2 

NM_005941 MMP16 

chr8:89116575-

89410833 4.70 3.92 1.2 

NM_015009 PDZRN3 

chr3:73512341-

73758762 4.59 3.85 1.2 

NM_032138 KBTBD7 chr13:40661710- 20.29 17.12 1.2 
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40668702 

NM_152606 ZNF540 

chr19:42732147-

42798836 1.82 1.54 1.2 

NM_052907 TMEM132B 

chr12:124375114-

124711542 1.36 1.16 1.2 

NM_004801 NRXN1 

chr2:49998991-

51115178 4.81 4.12 1.2 

NM_139167 SGCZ 

chr8:13989743-

15142163 0.31 0.26 1.2 

NM_006217 SERPINI2 

chr3:168640416-

168676512 1.16 0.99 1.2 

NM_033326 SOX6 

chr11:15946370-

16456494 14.67 12.68 1.2 

NM_005964 MYH10 

chr17:8316254-

8476761 6.36 5.51 1.2 

NM_025075 THOC7 

chr3:63792585-

63826637 6.67 5.78 1.2 

NM_173808 NEGR1 

chr1:71639212-

72522865 2.61 2.27 1.2 

NM_152321 ERP27 

chr12:14956244-

14984722 2.55 2.22 1.2 

NM_001101669 INPP4B 

chr4:143166631-

143989054 3.38 2.95 1.1 

NM_003866 INPP4B 

chr4:143166631-

143989054 3.38 2.95 1.1 

NM_003716 CADPS 

chr3:62357060-

62838094 2.29 2.00 1.1 

NM_183393 CADPS 

chr3:62357060-

62838094 2.29 2.00 1.1 

NM_183394 CADPS 

chr3:62357060-

62838094 2.29 2.00 1.1 

NM_172316 MEIS2 

chr15:34968523-

35180889 11.65 10.20 1.1 

NM_144996 ARL13B 

chr3:95179671-

95258813 8.98 7.87 1.1 

NM_182896 ARL13B 

chr3:95179671-

95258813 8.98 7.87 1.1 

NM_144981 IMMP1L 

chr11:31408524-

31489745 21.92 19.23 1.1 

NM_001042784 FLJ25770 

chr4:77451215-

77549482 5.28 4.64 1.1 

NM_017508 SOX6 

chr11:15946370-

16382968 15.76 13.85 1.1 

NM_017970 C14orf102 

chr14:89812150-

89870032 4.04 3.57 1.1 

NM_199043 C14orf102 

chr14:89812150-

89870032 4.04 3.57 1.1 

NM_024114 TRIM48 

chr11:54784233-

54797171 0.80 0.70 1.1 

NM_003453 ZMYM2 

chr13:19428809-

19560939 8.61 7.64 1.1 

NM_197968 ZMYM2 

chr13:19428809-

19560939 8.61 7.64 1.1 
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NM_001127384 CTNNA3 

chr10:67347730-

69097422 1.39 1.23 1.1 

NM_080874 ASB5 

chr4:177369821-

177429269 1.73 1.53 1.1 

NM_020431 TMEM63C 

chr14:76715854-

76797591 1.22 1.09 1.1 

NM_052959 PANX3 

chr11:123984662-

123997461 2.46 2.20 1.1 

NM_001015887 IGSF11 

chr3:120100168-

120238366 2.67 2.39 1.1 

NM_000926 PGR 

chr11:100403564-

100507754 4.73 4.25 1.1 

NM_025114 CEP290 

chr12:86964920-

87062124 9.19 8.31 1.1 

NM_002399 MEIS2 

chr15:34968523-

35182792 11.67 10.57 1.1 

NM_153262 SYT14 

chr1:208176160-

208406256 4.22 3.83 1.1 

NM_019040 ELP4 

chr11:31485872-

31763905 14.38 13.06 1.1 

NM_032679 ZNF577 

chr19:57064361-

57085009 2.23 2.02 1.1 

NM_170675 MEIS2 

chr15:34968523-

35181996 11.59 10.61 1.1 

NM_170674 MEIS2 

chr15:34968523-

35181996 11.59 10.61 1.1 

NM_170676 MEIS2 

chr15:34968523-

35181996 11.59 10.61 1.1 

NM_170677 MEIS2 

chr15:34968523-

35181996 11.59 10.61 1.1 

NM_021161 KCNK10 

chr14:87718998-

87865004 1.09 1.00 1.1 

NM_138318 KCNK10 

chr14:87718998-

87809008 1.77 1.62 1.1 

NM_138317 KCNK10 

chr14:87718998-

87861100 1.12 1.03 1.1 

NM_152538 IGSF11 

chr3:120100168-

120349588 1.86 1.70 1.1 

NM_001105531 FAM135A 

chr6:71177827-

71329596 12.90 11.91 1.1 

NM_020819 FAM135A 

chr6:71177827-

71329596 12.90 11.91 1.1 

NM_001098517 CADM1 

chr11:114547554-

114882451 4.41 4.08 1.1 

NM_014333 CADM1 

chr11:114547554-

114882451 4.41 4.08 1.1 

NM_173559 C6orf224 

chr6:109918756-

109936386 4.00 3.70 1.1 

NM_032036 FAM14A 

chr14:93661870-

93667710 7.77 7.19 1.1 

NM_018972 GDAP1 

chr8:75423172-

75443890 10.60 9.81 1.1 

NM_001040875 GDAP1 chr8:75423207- 10.62 9.82 1.1 
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75443890 

NM_033437 PDE5A 

chr4:120632997-

120770650 7.22 6.69 1.1 

NM_033430 PDE5A 

chr4:120632997-

120769890 7.26 6.73 1.1 

NM_001083 PDE5A 

chr4:120632997-

120771429 7.18 6.66 1.1 

NM_022564 MMP16 

chr8:89148576-

89410833 4.52 4.20 1.1 

NM_014980 STXBP5L 

chr3:122107739-

122628298 1.47 1.37 1.1 

NM_001102445 RGS4 

chr1:161303019-

161315216 27.15 25.30 1.1 

NM_001113381 RGS4 

chr1:161303667-

161315216 28.67 26.72 1.1 

NM_005613 RGS4 

chr1:161303387-

161315216 27.99 26.09 1.1 

NM_213606 SLC16A12 

chr10:91178035-

91287293 6.97 6.51 1.1 

NM_183387 EML5 

chr14:88148955-

88330910 3.66 3.44 1.1 

NM_018717 MAML3 

chr4:140854995-

141296683 9.99 9.40 1.1 

NM_000829 GRIA4 

chr11:104984009-

105360029 2.13 2.00 1.1 

NM_001077243 GRIA4 

chr11:104984009-

105360029 2.13 2.00 1.1 

NM_152279 ZNF585B 

chr19:42365561-

42395291 2.65 2.51 1.1 

NM_018179 ATF7IP 

chr12:14407877-

14544964 18.47 17.50 1.1 

NM_001112717 LIMCH1 

chr4:41055560-

41398818 3.00 2.84 1.1 

NM_001112718 LIMCH1 

chr4:41055560-

41398818 3.00 2.84 1.1 

NM_014988 LIMCH1 

chr4:41055560-

41398818 3.00 2.84 1.1 

NM_001111031 ACVR1C 

chr2:158089524-

158164318 11.05 10.49 1.1 

NM_014841 SNAP91 

chr6:84317331-

84477495 2.18 2.07 1.1 

NM_000306 POU1F1 

chr3:87389472-

87410427 6.33 6.03 1.0 

NM_001122757 POU1F1 

chr3:87389472-

87410427 6.33 6.03 1.0 

NM_024829 FLJ22662 

chr12:14545863-

14614058 0.97 0.93 1.0 

NM_153184 CADM2 

chr3:85856321-

86202640 0.58 0.56 1.0 

NM_003383 VLDLR chr9:2609792-2646485 5.54 5.34 1.0 

NM_001018056 VLDLR chr9:2609792-2646485 5.54 5.34 1.0 

NM_004253 PLAA 

chr9:26892517-

26927207 3.90 3.77 1.0 
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NM_012301 MAGI2 

chr7:77482309-

78922826 3.12 3.01 1.0 

NM_005012 ROR1 

chr1:64010277-

64419295 2.29 2.21 1.0 

NM_203282 ZNF254 

chr19:24059815-

24106494 1.28 1.24 1.0 

NM_001093734 LOC645441 

chr1:77364632-

77369995 8.24 8.09 1.0 

NM_013361 ZNF223 

chr19:49246003-

49265982 3.09 3.04 1.0 

NM_001080440 OTOL1 

chr3:162695289-

162706424 3.25 3.21 1.0 

NM_001033602 KIAA0774 

chr13:28494747-

28980084 1.15 1.14 1.0 

NM_021635 PBOV1 

chr6:138576819-

138583320 9.11 9.00 1.0 

NM_012419 RGS17 

chr6:153371724-

153496082 8.78 8.69 1.0 

NM_052867 NALCN 

chr13:100502130-

100868814 2.27 2.25 1.0 

NM_002069 GNAI1 

chr7:79600075-

79688661 12.51 12.38 1.0 

NM_021176 G6PC2 

chr2:169463995-

169476756 34.72 34.43 1.0 

NM_001081686 G6PC2 

chr2:169463995-

169476756 34.72 34.43 1.0 

NM_144979 RBM46 

chr4:155919876-

155971414 3.32 3.31 1.0 

NM_138453 RAB3C 

chr5:57912695-

58185163 4.49 4.48 1.0 

NM_145695 DGKB 

chr7:14180130-

14849600 0.99 0.99 1.0 

NM_001013356 OR8U8 

chr11:55897675-

56267136 0.27 0.27 1.0 

A. Calculated as the percentage of bases across transcript that overlap moderate 

FAIRE-enriched site  

B. Region 2 kb upstream through 2 kb downstream of transcript 

(hg18)   

C. Moderate peaks for HeLa-S3, HUVEC, GM12878, HepG2 and K562 were merged 

into one peak set 

 

 

 



 

 

Table 5.4. Referenced list of genes with preferential islet FAIRE enrichment that are known to be 

expressed in islet-cells in a selective manner 

Gene 

symbol Reference 

IAPP 

!"#$"%&'(%&)*+,-%&.(%&!*/*0*1#2%&)(%&3-44%&5(6(&7&)1-"+-8%&9(:(&6#4-1&*0;4<"=&><4;>->1"=-(&?&+-@&A-1*&B-44&

#-B8-1<8;&>8<=2B1&8-4*1-=&1<&"#4-1&*0;4<"=&=-><#"1#(&!"#$%&"'()*&!"#%&CDEFGH&IDJJKL(&

NKX6-1 

Sander, M. et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway 

of beta-cell formation in the pancreas. Development 127, 5533-40 (2000). 

FOXD3 

M-8-8*%&N(O(&-1&*4(&PQ>8-##"<+&*+=&#$"R1"+/&#2AB-4424*8&4<B*4"S*1"<+&<R&1$-&18*+#B8">1"<+&R*B1<8%&:<Q=F%&"+&

-0A8;<+"B&*+=&*=241&>*+B8-*#(&+),)"-./0"1233)0,4&"%&JEDGE&ITKKHL(&

PDX1 

U$4##<+%&N(%&O*84##<+%&O(&7&P=42+=%&.(&6M:D%&*&$<0-<=<0*"+GB<+1*"+"+/&18*+#*B1"V*1<8&<R&1$-&"+#24"+&

/-+-(&-5#6"!&$!%&CTWDGJ&IDJJFL(&

SULT4A1 

Falany, C.N., Xie, X., Wang, J., Ferrer, J. & Falany, J.L. Molecular cloning and expression of 

novel sulphotransferase-like cDNAs from human and rat brain. Biochem J 346 Pt 3, 857-64 

(2000). 

SCG2 

Karlsson, E. The role of pancreatic chromogranins in islet physiology. Curr Mol Med 1, 727-

32 (2001). 

GAD2 

Kaufman, D.L. et al. Autoimmunity to two forms of glutamate decarboxylase in insulin-

dependent diabetes mellitus. J Clin Invest 89, 283-92 (1992). 

NEUROD1 

Naya, F.J. et al. Diabetes, defective pancreatic morphogenesis, and abnormal 

enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11, 2323-34 

(1997). 

ISL1 

Ahlgren, U., Pfaff, S.L., Jessell, T.M., Edlund, T. & Edlund, H. Independent requirement for 

ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385, 257-60 (1997). 

DACH1 

Miyatsuka, T., Li, Z. & German, M.S. Chronology of islet differentiation revealed by 

temporal cell labeling. Diabetes 58, 1863-8 (2009).  
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ST18 Wang, S. et al. Loss of Myt1 function partially compromises endocrine islet cell 

differentiation and pancreatic physiological function in the mouse. Mech Dev 124, 898-910 

(2007). 

NCAM1 

Esni, F. et al. Neural cell adhesion molecule (N-CAM) is required for cell type segregation 

and normal ultrastructure in pancreatic islets. J Cell Biol 144, 325-37 (1999). 

CDK5R2 

Lilja, L. et al. Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 

phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem 279, 29534-41 (2004). 

RFXDC1 

Miyatsuka, T., Li, Z. & German, M.S. Chronology of islet differentiation revealed by 

temporal cell labeling. Diabetes 58, 1863-8 (2009). 

PAX6 

Sander, M. et al. Genetic analysis reveals that PAX6 is required for normal transcription of 

pancreatic hormone genes and islet development. Genes Dev 11, 1662-73 (1997). 

ABCC8 

Aguilar-Bryan, L. et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a 

regulator of insulin secretion. Science 268, 423-6 (1995). 

GLP1R 

Thorens, B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin 

hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A 89, 8641-5 (1992). 

CPE 

Naggert, J.K. et al. Hyperproinsulinaemia in obese fat/fat mice associated with a 

carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10, 135-42 (1995). 

LMX1A 

Iannotti, C.A. et al. Identification of a human LMX1 (LMX1.1)-related gene, LMX1.2: tissue-

specific expression and linkage mapping on chromosome 9. Genomics 46, 520-4 (1997). 

KCNK10 

Kang, D., Choe, C. & Kim, D. Functional expression of TREK-2 in insulin-secreting MIN6 

cells. Biochem Biophys Res Commun 323, 323-31 (2004). 

G6PC2 

Hutton, J.C. & Eisenbarth, G.S. A pancreatic beta-cell-specific homolog of glucose-6-

phosphatase emerges as a major target of cell-mediated autoimmunity in diabetes. Proc 

Natl Acad Sci U S A 100, 8626-8 (2003). 
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KCNB2 Wolf-Goldberg, T. et al. Target soluble N-ethylmaleimide-sensitive factor attachment 

protein receptors (t-SNAREs) differently regulate activation and inactivation gating of Kv2.2 

and Kv2.1: Implications on pancreatic islet cell Kv channels. Mol Pharmacol 70, 818-28 

(2006). 

SYT4 

Gauthier, B.R. et al. Synaptotagmin VII splice variants alpha, beta, and delta are expressed 

in pancreatic beta-cells and regulate insulin exocytosis. FASEB J 22, 194-206 (2008). 

SLC30A8 

Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 

diabetes. Nature 445, 881-5 (2007). 
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Table 5.5.  Over- and under-represented transcription factor binding motifs 

Motif 
# chr 

(p<.01)
d 

# chr 

(p>.99)
e  Motif 

# chr 

(p<.01) 
# chr 

(p>.99)  Motif 
# chr 

(p<.01) 
# chr 

(p>.99) 

CTCF_main 23 -  MA0047 Foxa2 FORKHEAD 16 -  CTCF_main 22 - 

V$SRY_01 22 -  
MA0031 FOXD1 
FORKHEAD 15 -  

MA0060 NF-Y 
CAAT-BOX 7 - 

V$TAL1ALPHAE47_01 21 -  CTCF_main 13 -  V$NFY_01 7 1 
MA0020 Dof2 ZN-FINGER, 
DOF 19 -  MA0094 Ubx HOMEO 13 -  V$AP1_Q6 6 1 
MA0031 FOXD1 
FORKHEAD 19 -  V$SRY_01 12 -  

MA0026 E74A 
ETS 5 - 

V$AP1_C 19 -  V$RFX1_01 9 -  
MA0080 SPI1 
ETS 5 - 

V$AP1_Q6 19 -  
MA0053 MNB1A ZN-
FINGER, DOF 9 -  

MA0098 c-
ETS ETS 5 - 

MA0047 Foxa2 
FORKHEAD 18 -  MA0089 TCF11-MafG bZIP 8 -  V$AP1FJ_Q2 5 2 
MA0053 MNB1A ZN-
FINGER, DOF 18 -  

MA0020 Dof2 ZN-FINGER, 
DOF 8 -  

MA0028 
ELK1 ETS 4 - 

MA0064 PBF ZN-FINGER, 
DOF 18 -  

MA0064 PBF ZN-FINGER, 
DOF 8 -  

MA0062 
GABPA ETS 4 - 

V$NFE2_01 18 -  MA0091 TAL1-TCF3 bHLH 7 -  
MA0076 
ELK4 ETS 4 - 

V$NFAT_Q6 17 -  V$TAL1ALPHAE47_01 7 -  
MA0099 Fos 
bZIP 4 1 

V$TAL1BETAE47_01 16 -  V$TAL1BETAITF2_01 6 -  V$AP1_Q4 4 2 

MA0091 TAL1-TCF3 bHLH 15 -  
MA0072 RORA1 NUCLEAR 
RECEPTOR 5 -  V$ATF_01 4 - 

MA0099 Fos bZIP 15 -  V$RORA2_01 5 -  V$CREB_Q2 4 - 

V$AP1_Q2 15 -  MA0046 TCF1 HOMEO 4 -  V$CREB_Q4 4 - 

V$AP1_Q4 15 -  V$FREAC4_01 4 -  
MA0009 T T-
BOX 3 - 

V$TAL1BETAITF2_01 15 -  V$MIF1_01 4 -  

MA0039 Klf4 
ZN-FINGER, 
C2H2 3 - 

MA0089 TCF11-MafG bZIP 13 -  V$NFAT_Q6 4 -  

MA0120 ID1 
ZN-FINGER, 
C2H2 3 1 

MA0046 TCF1 HOMEO 12 -  V$RFX1_02 4 -  V$E47_01 3 - 
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V$AP1FJ_Q2 12 -  V$HNF1_01 3 -  V$HLF_01 3 2 

V$RFX1_01 11 -  V$TAL1BETAE47_01 3 -  V$HSF1_01 3 - 

MA0094 Ubx HOMEO 10 -  
MA0059 MYC-MAX bHLH-
ZIP 2 3  V$HSF2_01 3 - 

V$HNF1_01 9 -  MA0075 Prrx2 HOMEO 2 -  V$NFE2_01 3 1 

MA0084 SRY HMG 8 -  MA0084 SRY HMG 2 -  V$SP1_Q6 3 1 

V$AREB6_04 8 -  
MA0100 Myb TRP-
CLUSTER 2 -  V$STAT_01 3 - 

V$RFX1_02 7 -  V$AP1_C 2 -  
MA0003 
TFAP2A AP2 2 1 

V$TGIF_01 7 -  V$CREBP1CJUN_01 2 1  
MA0004 Arnt 

bHLH 2 - 

MA0026 E74A ETS 6 -  V$EGR1_01 2 4  

MA0007 Ar 
NUCLEAR 
RECEPTOR 2 - 

MA0055 Myf bHLH 6 -  V$EGR2_01 2 3  

MA0010 
Broad-
complex_1 
ZN-FINGER, 
C2H2 2 4 

V$RORA2_01 6 -  V$EGR3_01 2 4  

MA0020 Dof2 
ZN-FINGER, 
DOF 2 - 

MA0072 RORA1 
NUCLEAR RECEPTOR 5 -  V$RSRFC4_01 2 -  

MA0025 
NFIL3 bZIP 2 - 

MA0052 MEF2A MADS 4 -  V$TGIF_01 2 -  

MA0053 
MNB1A ZN-
FINGER, DOF 2 - 

V$FREAC4_01 4 -  MA0005 Agamous MADS 1 2  
MA0055 Myf 
bHLH 2 - 

V$HNF1_C 4 -  MA0026 E74A ETS 1 1  
MA0058 MAX 
bHLH-ZIP 2 - 

V$ISRE_01 4 -  MA0040 Foxq1 FORKHEAD 1 -  

MA0059 
MYC-MAX 
bHLH-ZIP 2 - 

V$MIF1_01 4 -  MA0048 NHLH1 bHLH 1 2  
MA0093 USF1 

bHLH-ZIP 2 1 

V$RSRFC4_01 4 -  MA0052 MEF2A MADS 1 1  

MA0100 Myb 
TRP-
CLUSTER 2 - 
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MA0060 NF-Y CAAT-BOX 
3 1  

MA0054 MYB.ph3 TRP-
CLUSTER 1 -  

MA0101 REL 
REL 2 - 

MA0076 ELK4 ETS 3 -  MA0055 Myf bHLH 1 1  
MA0104 Mycn 
bHLH-ZIP 2 - 

V$E47_01 3 -  MA0062 GABPA ETS 1 4  
MA0123 ABI4 

AP2 2 - 

V$NFY_01 3 1  MA0087 Sox5 HMG 1 -  V$AP1_C 2 1 

V$RORA1_01 3 -  MA0113 NR3C1 NUCLEAR 1 2  V$AP1_Q2 2 - 
MA0021 Dof3 ZN-FINGER, 
DOF 2 -  

MA0115 NR1H2-RXR 
NUCLEAR RECEPTOR 1 1  V$AP2_Q6 2 1 

MA0050 IRF1 TRP-
CLUSTER 2 -  V$AHRARNT_02 1 9  V$CREB_01 2 - 
MA0071 RORA NUCLEAR 
RECEPTOR 2 -  V$AP1_Q6 1 -  

V$CREBP1_0
1 2 - 

MA0080 SPI1 ETS 2 5  V$AP4_Q5 1 7  V$E4BP4_01 2 - 

MA0081 SPIB ETS 2 1  V$E4BP4_01 1 -  V$ELK1_02 2 - 

MA0096 bZIP910 bZIP 2 -  V$FREAC3_01 1 -  V$NFAT_Q6 2 - 

MA0097 bZIP911 bZIP 2 -  V$GATA1_04 1 -  V$NFY_C 2 - 

MA0117 MafB bZIP, MAF 2 -  V$HFH3_01 1 -  V$NFY_Q6 2 - 
MA0119 Hox11-CTF1 
HOMEO/CAAT 2 -  V$HNF1_C 1 -  

V$TAL1ALPH
AE47_01 2 - 

V$MEF2_03 2 -  V$MEF2_01 1 -  V$USF_Q6 2 1 

V$MYCMAX_01 2 -  V$MYCMAX_01 1 1  
MA0006 Arnt-
Ahr bHLH 1 - 

V$MYOD_Q6 2 1  V$NF1_Q6 1 2  

MA0021 Dof3 
ZN-FINGER, 

DOF 1 - 

V$NFY_C 2 -  V$NFE2_01 1 -  
MA0022 
Dorsal_1 REL 1 - 

V$NFY_Q6 2 3  V$NFY_C 1 -  
MA0023 
Dorsal_2 REL 1 - 

MA0005 Agamous MADS 1 -  V$STAT1_01 1 -  
MA0024 E2F1 
Unknown 1 - 

MA0012 Broad-complex_3 
ZN-FINGER, C2H2 1 -  V$STAT3_01 1 -  

MA0029 Evi1 
ZN-FINGER, 

C2H2 1 3 

MA0018 CREB1 bZIP 1 -  
MA0007 Ar NUCLEAR 
RECEPTOR - 1  

MA0043 HLF 
bZIP 1 1 

MA0024 E2F1 Unknown 1 -  MA0021 Dof3 ZN-FINGER, - 1  MA0049 1 1 
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DOF Hunchback 
ZN-FINGER, 
C2H2 

MA0028 ELK1 ETS 1 -  
MA0032 FOXC1 
FORKHEAD - 1  

MA0056 
ZNF42_1-4 

ZN-FINGER, 
C2H2 1 2 

MA0030 FOXF2 
FORKHEAD 1 -  

MA0038 Gfi ZN-FINGER, 
C2H2 - 1  

MA0064 PBF 
ZN-FINGER, 
DOF 1 - 

MA0038 Gfi ZN-FINGER, 
C2H2 1 -  MA0078 Sox17 HMG - 1  

MA0067 Pax2 
PAIRED 1 1 

MA0040 Foxq1 

FORKHEAD 1 -  MA0093 USF1 bHLH-ZIP - 1  
MA0081 SPIB 

ETS 1 - 

MA0042 FOXI1 
FORKHEAD 1 -  MA0097 bZIP911 bZIP - 1  

MA0088 Staf 
ZN-FINGER, 
C2H2 1 2 

MA0059 MYC-MAX 
bHLH-ZIP 1 -  V$CDP_01 - 1  

MA0091 
TAL1-TCF3 
bHLH 1 - 

MA0062 GABPA ETS 1 -  V$CREB_Q4 - 1  
MA0096 

bZIP910 bZIP 1 - 

MA0083 SRF MADS 1 2  V$CREBP1_Q2 - 2  
MA0097 
bZIP911 bZIP 1 - 

MA0087 Sox5 HMG 1 -  V$FOXJ2_01 - 1  
MA0117 MafB 
bZIP, MAF 1 2 

MA0098 c-ETS ETS 1 3  V$GATA_C - 1  

MA0119 
Hox11-CTF1 
HOMEO/CAA

T 1 2 
MA0100 Myb TRP-
CLUSTER 1 -  V$MYOGNF1_01 - 1  V$AP4_01 1 - 
MA0113 NR3C1 
NUCLEAR 1 1  V$OCT1_06 - 1  V$AP4_Q5 1 - 
MA0116 Roaz ZN-FINGER, 
C2H2 1 1  V$OCT1_Q6 - 1  V$AP4_Q6 1 - 

V$AP4_Q5 1 2  V$SRF_01 - 1  V$AREB6_04 1 - 

V$AP4_Q6 1 4  MA0004 Arnt bHLH - 2  V$ARNT_01 1 - 

V$CREB_01 1 -  
MA0017 NR2F1 NUCLEAR 
RECEPTOR - 2  V$CHOP_01 1 3 
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V$CREBP1_01 1 -  MA0028 ELK1 ETS - 2  V$CREB_02 1 1 

V$CREBP1CJUN_01 1 -  MA0043 HLF bZIP - 3  
V$CREBP1_Q
2 1 1 

V$E2F_02 1 -  MA0044 HMG-1 HMG - 2  
V$CREBP1CJ

UN_01 1 - 

V$E4BP4_01 1 1  MA0060 NF-Y CAAT-BOX - 2  V$CREL_01 1 - 

V$EGR1_01 1 2  MA0067 Pax2 PAIRED - 2  V$E2F_02 1 - 

V$EGR2_01 1 2  MA0070 Pbx HOMEO - 2  V$ELK1_01 1 - 

V$EGR3_01 1 2  MA0083 SRF MADS - 2  
V$FREAC3_0
1 1 - 

V$FOXD3_01 1 2  V$ARNT_01 - 2  V$HNF4_01 1 - 

V$FOXJ2_01 1 -  V$COUP_01 - 2  
V$LMO2COM
_01 1 2 

V$GATA1_04 1 -  V$CREB_01 - 2  V$MAX_01 1 - 

V$HFH3_01 1 -  V$CREB_Q2 - 2  
V$MYCMAX
_02 1 - 

V$HSF2_01 1 4  V$E2F_01 - 3  V$NF1_Q6 1 1 

V$MEF2_01 1 -  V$MEIS1_01 - 2  
V$NFKAPPA

B65_01 1 - 

V$MEF2_02 1 -  V$NFKAPPAB65_01 - 2  V$PAX6_01 1 1 

V$SRF_01 1 1  V$NFY_01 - 2  V$RFX1_02 1 - 

V$STAT_01 1 -  V$SOX9_B1 - 2  V$SP1_01 1 1 

V$STAT1_01 1 -  V$SRF_Q6 - 2  V$SRF_Q6 1 - 

V$USF_Q6 1 2  V$TCF11MAFG_01 - 2  V$STAT1_01 1 - 

MA0043 HLF bZIP - 1  V$USF_01 - 2  V$STAT3_01 1 - 

MA0048 NHLH1 bHLH - 1  MA0018 CREB1 bZIP - 3  
V$TAL1BETA
E47_01 1 - 

MA0058 MAX bHLH-ZIP - 1  MA0058 MAX bHLH-ZIP - 3  
V$TAL1BETA
ITF2_01 1 - 

MA0065 PPARG-RXRA 
NUCLEAR RECEPTOR - 1  

MA0074 RXR-VDR 
NUCLEAR RECEPTOR - 3  

V$TAXCREB
_01 1 2 

MA0066 PPARG 
NUCLEAR RECEPTOR - 1  MA0081 SPIB ETS - 3  V$USF_01 1 1 

MA0067 Pax2 PAIRED - 1  
MA0092 HAND1-TCF3 
bHLH - 3  

MA0014 Pax5 
PAIRED - 1 

MA0104 Mycn bHLH-ZIP - 1  MA0104 Mycn bHLH-ZIP - 3  

MA0017 
NR2F1 
NUCLEAR - 1 
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RECEPTOR 

MA0108 TBP TATA-box - 1  MA0107 RELA REL - 3  

MA0019 
Chop-cEBP 
bZIP - 1 

V$ARNT_01 - 1  V$CEBP_Q2 - 4  

MA0032 
FOXC1 
FORKHEAD - 1 

V$CART1_01 - 1  V$CREB_02 - 3  

MA0035 Gata1 
ZN-FINGER, 
GATA - 1 

V$CDP_01 - 1  V$ELK1_02 - 3  

MA0041 
Foxd3 

FORKHEAD - 1 

V$CREB_02 - 1  V$LMO2COM_02 - 3  
MA0044 
HMG-1 HMG - 1 

V$ELK1_01 - 1  V$NFKB_C - 3  

MA0045 
HMG-IY 
HMG - 1 

V$MYCMAX_02 - 1  V$P53_02 - 3  

MA0051 IRF2 
TRP-
CLUSTER - 1 

V$MYOGNF1_01 - 1  V$SRF_C - 3  

MA0068 Pax4 
PAIRED-
HOMEO - 1 

V$NFKAPPAB65_01 - 1  
MA0066 PPARG NUCLEAR 
RECEPTOR - 4  

MA0070 Pbx 
HOMEO - 1 

V$OCT1_03 - 1  V$CEBP_C - 4  

MA0073 
RREB1 ZN-
FINGER, 

C2H2 - 1 

V$OCT1_Q6 - 1  V$CEBPA_01 - 5  

MA0074 RXR-
VDR 
NUCLEAR 
RECEPTOR - 1 

V$PBX1_01 - 1  V$GATA1_03 - 4  
MA0078 
Sox17 HMG - 1 

V$SRF_Q6 - 1  V$HAND1E47_01 - 4  
MA0082 

SQUA MADS - 1 

V$TATA_01 - 1  V$NFY_Q6 - 4  
MA0083 SRF 
MADS - 1 

V$TCF11MAFG_01 - 1  V$P53_01 - 4  MA0095 YY1 - 1 
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ZN-FINGER, 
C2H2 

MA0007 Ar NUCLEAR 
RECEPTOR - 2  V$TAXCREB_02 - 4  

MA0106 TP53 
P53 - 1 

MA0017 NR2F1 NUCLEAR 

RECEPTOR - 2  V$USF_02 - 5  

MA0110 

ATHB5 
HOMEO-ZIP - 1 

MA0032 FOXC1 
FORKHEAD - 2  V$USF_Q6 - 4  

MA0111 Spz1 
bHLH-ZIP - 1 

MA0033 FOXL1 
FORKHEAD - 2  

MA0015 CF2-II ZN-
FINGER, C2H2 - 6  

MA0112 ESR1 
NUCLEAR - 1 

MA0041 Foxd3 
FORKHEAD - 2  

MA0049 Hunchback ZN-
FINGER, C2H2 - 6  

MA0114 
HNF4 

NUCLEAR - 1 

MA0061 NF-kappaB REL - 2  MA0082 SQUA MADS - 5  
V$AHRARNT
_02 - 1 

MA0078 Sox17 HMG - 2  
MA0116 Roaz ZN-FINGER, 
C2H2 - 6  V$ARP1_01 - 1 

MA0107 RELA REL - 2  V$CDPCR1_01 - 6  V$CEBPA_01 - 1 

V$COUP_01 - 2  V$CDPCR3_01 - 5  V$E47_02 - 1 

V$E2F_01 - 2  V$CEBPB_01 - 6  
V$FREAC7_0
1 - 1 

V$FREAC7_01 - 2  V$E47_01 - 6  V$GATA1_03 - 1 

V$GATA_C - 2  V$GRE_C - 5  V$GATA1_04 - 1 

V$GRE_C - 2  V$MYOD_Q6 - 6  V$GATA3_01 - 1 

V$NFKAPPAB_01 - 2  V$OCT1_04 - 5  V$HNF1_C - 1 

V$NFKB_C - 2  MA0022 Dorsal_1 REL - 6  V$IRF1_01 - 1 

V$NRSF_01 - 2  
MA0085 SU_h IPT/TIG 
domain - 6  V$MEF2_02 - 1 

V$PBX1_02 - 2  MA0106 TP53 P53 - 7  V$MYOD_Q6 - 1 

V$SOX9_B1 - 2  V$AP4_Q6 - 7  V$MZF1_01 - 1 

V$SRF_C - 2  V$CDPCR3HD_01 - 7  V$MZF1_02 - 1 

V$TAXCREB_02 - 2  V$USF_C - 7  V$NKX61_01 - 1 

MA0044 HMG-1 HMG - 3  MA0061 NF-kappaB REL - 7  V$OCT_C - 1 
MA0074 RXR-VDR 
NUCLEAR RECEPTOR - 3  MA0090 TEAD TEA - 7  V$OCT1_01 - 1 
MA0085 SU_h IPT/TIG 
domain - 3  MA0123 ABI4 AP2 - 7  V$OCT1_02 - 1 
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MA0092 HAND1-TCF3 
bHLH - 3  V$AP4_01 - 7  V$OCT1_03 - 1 

MA0106 TP53 P53 - 3  V$NFKAPPAB_01 - 7  V$OCT1_07 - 1 

V$AHRARNT_02 - 3  V$TST1_01 - 8  V$PAX5_01 - 1 

V$AP4_01 - 3  MA0014 Pax5 PAIRED - 9  V$RORA1_01 - 1 

V$CDPCR3_01 - 3  MA0023 Dorsal_2 REL - 8  V$TATA_C - 1 

V$HAND1E47_01 - 3  MA0080 SPI1 ETS - 9  V$TCF11_01 - 1 

V$LMO2COM_02 - 3  MA0105 NFKB1 REL - 8  V$USF_C - 1 

V$NF1_Q6 - 3  MA0114 HNF4 NUCLEAR - 9  V$ZID_01 - 1 

V$NFKAPPAB50_01 - 3  V$AHRARNT_01 - 9  
MA0001 

AGL3 MADS - 2 

V$YY1_02 - 3  V$AREB6_01 - 9  

MA0042 
FOXI1 
FORKHEAD - 2 

MA0101 REL REL - 4  V$CHOP_01 - 8  

MA0079 SP1 
ZN-FINGER, 
C2H2 - 2 

MA0120 ID1 ZN-FINGER, 

C2H2 - 4  V$ELK1_01 - 8  

MA0086 Snail 

ZN-FINGER, 
C2H2 - 2 

V$GATA1_03 - 4  V$HSF2_01 - 9  

MA0089 
TCF11-MafG 
bZIP - 2 

V$USF_02 - 4  V$NFKAPPAB50_01 - 9  

MA0103 
deltaEF1 ZN-
FINGER, 
C2H2 - 2 

MA0082 SQUA MADS - 5  V$NFKB_Q6 - 8  

MA0118 
Macho-1 ZN-
FINGER, 
C2H2 - 2 

MA0105 NFKB1 REL - 5  MA0003 TFAP2A AP2 - 10  V$CART1_01 - 2 

V$CEBPA_01 - 5  MA0006 Arnt-Ahr bHLH - 10  V$CDP_02 - 2 

V$CREL_01 - 5  
MA0120 ID1 ZN-FINGER, 

C2H2 - 10  V$CEBP_01 - 2 

V$NFKB_Q6 - 5  V$E47_02 - 10  V$ER_Q6 - 2 

V$OCT1_06 - 5  V$HSF1_01 - 10  V$FOXD3_01 - 2 

MA0006 Arnt-Ahr bHLH - 6  V$RREB1_01 - 10  V$FOXJ2_01 - 2 
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MA0010 Broad-complex_1 
ZN-FINGER, C2H2 - 6  

MA0037 GATA3 ZN-
FINGER, GATA - 11  V$GATA2_01 - 2 

MA0022 Dorsal_1 REL - 6  
MA0073 RREB1 ZN-
FINGER, C2H2 - 10  V$HFH3_01 - 2 

MA0023 Dorsal_2 REL - 6  MA0102 cEBP bZIP - 11  V$MEF2_03 - 2 

MA0070 Pbx HOMEO - 6  
MA0121 ARR10 TRP-
CLUSTER - 11  V$OCT1_04 - 2 

MA0090 TEAD TEA - 6  MA0101 REL REL - 11  V$P53_01 - 2 

V$CEBPB_01 - 6  
MA0109 RUSH1-alfa ZN-
FINGER, GATA - 12  V$P53_02 - 2 

V$HSF1_01 - 6  V$CEBP_01 - 12  V$PAX2_01 - 2 

V$P53_01 - 6  V$CREL_01 - 11  V$SREBP1_01 - 2 

V$P53_02 - 6  V$GATA1_02 - 11  V$YY1_01 - 2 
MA0049 Hunchback ZN-
FINGER, C2H2 - 7  V$PAX5_01 - 12  

MA0008 Athb-
1 HOMEO-ZIP - 3 

V$CEBP_C - 7  V$TAXCREB_01 - 11  
MA0027 En1 
HOMEO - 3 

V$PAX5_01 - 7  
MA0016 CFI-USP 
NUCLEAR RECEPTOR - 13  

MA0036 
GATA2 ZN-

FINGER, 
GATA - 3 

V$TST1_01 - 7  
MA0057 ZNF42_5-13 ZN-
FINGER, C2H2 - 13  V$CDP_01 - 3 

MA0003 TFAP2A AP2 - 8  
MA0068 Pax4 PAIRED-
HOMEO - 13  V$MEF2_04 - 3 

V$AHRARNT_01 - 8  MA0098 c-ETS ETS - 12  V$OCT1_06 - 3 

V$CEBP_Q2 - 8  V$HNF4_01 - 13  V$AREB6_02 - 4 

V$TAXCREB_01 - 8  V$LMO2COM_01 - 13  V$AREB6_03 - 4 
MA0016 CFI-USP 
NUCLEAR RECEPTOR - 9  V$YY1_02 - 13  V$FOXJ2_02 - 4 
MA0073 RREB1 ZN-
FINGER, C2H2 - 9  V$ZID_01 - 12  V$PBX1_01 - 4 

MA0112 ESR1 NUCLEAR - 9  MA0112 ESR1 NUCLEAR - 14  
V$RSRFC4_0
1 - 4 

MA0114 HNF4 NUCLEAR - 9  MA0122 Bapx1 HOMEO - 14  V$SREBP1_02 - 4 

V$AP2_Q6 - 9  V$AP2_Q6 - 14  
MA0094 Ubx 
HOMEO - 5 

V$CDPCR3HD_01 - 9  V$CEBPB_02 - 14  
MA0015 CF2-
II ZN- - 5 
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FINGER, 
C2H2 

V$HNF4_01 - 9  V$PAX5_02 - 14  

MA0033 
FOXL1 
FORKHEAD - 5 

V$OCT1_04 - 9  V$SREBP1_01 - 14  

MA0052 
MEF2A 
MADS - 5 

V$USF_C - 9  
MA0036 GATA2 ZN-
FINGER, GATA - 15  

MA0063 
Nkx2-5 
HOMEO - 5 

MA0102 cEBP bZIP - 10  
MA0095 YY1 ZN-FINGER, 
C2H2 - 15  

MA0075 Prrx2 
HOMEO - 6 

V$CDPCR1_01 - 10  V$AREB6_03 - 15     

V$CHOP_01 - 10  V$GR_Q6 - 15     

V$LMO2COM_01 - 10  
MA0035 Gata1 ZN-FINGER, 
GATA - 16     

V$PAX5_02 - 10  
MA0088 Staf ZN-FINGER, 
C2H2 - 16     

V$ZID_01 - 10  V$AREB6_02 - 16     

V$GR_Q6 - 11  V$PAX2_01 - 16     

MA0014 Pax5 PAIRED - 12  V$SREBP1_02 - 16     

V$E47_02 - 12  
MA0086 Snail ZN-FINGER, 
C2H2 - 17     

V$GATA1_02 - 12  
MA0103 deltaEF1 ZN-
FINGER, C2H2 - 17     

MA0121 ARR10 TRP-

CLUSTER - 13  V$AML1_01 - 17     

V$RREB1_01 - 13  V$GATA2_01 - 17     
MA0037 GATA3 ZN-
FINGER, GATA - 14  V$MZF1_02 - 17     
MA0068 Pax4 PAIRED-
HOMEO - 14  MA0111 Spz1 bHLH-ZIP - 18     

V$AREB6_01 - 14  V$GATA3_01 - 18     

V$CEBP_01 - 14  V$MZF1_01 - 18     

V$CEBPB_02 - 14  V$SP1_Q6 - 18     

MA0122 Bapx1 HOMEO - 15  V$YY1_01 - 18     

V$SP1_Q6 - 15  MA0027 En1 HOMEO - 19     
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MA0015 CF2-II ZN-
FINGER, C2H2 - 16  

MA0056 ZNF42_1-4 ZN-
FINGER, C2H2 - 19     

MA0027 En1 HOMEO - 16  
MA0118 Macho-1 ZN-
FINGER, C2H2 - 19     

MA0057 ZNF42_5-13 ZN-

FINGER, C2H2 - 16  V$ER_Q6 - 19     

MA0109 RUSH1-alfa ZN-
FINGER, GATA - 16  

MA0039 Klf4 ZN-FINGER, 
C2H2 - 21     

V$PAX2_01 - 17  MA0045 HMG-IY HMG - 21     

V$MZF1_01 - 18  
MA0079 SP1 ZN-FINGER, 
C2H2 - 21     

V$SREBP1_02 - 18  V$ARP1_01 - 21     

MA0036 GATA2 ZN-
FINGER, GATA - 19  V$P300_01 - 21     
MA0056 ZNF42_1-4 ZN-
FINGER, C2H2 - 19  V$SP1_01 - 22     
MA0088 Staf ZN-FINGER, 
C2H2 - 19  MA0019 Chop-cEBP bZIP - 23     
MA0095 YY1 ZN-FINGER, 
C2H2 - 19         

MA0111 Spz1 bHLH-ZIP - 19         

V$AML1_01 - 19         

V$SREBP1_01 - 19         
MA0035 Gata1 ZN-
FINGER, GATA - 20         
MA0039 Klf4 ZN-FINGER, 
C2H2 - 20         

MA0045 HMG-IY HMG - 20         
MA0118 Macho-1 ZN-
FINGER, C2H2 - 20         

V$AREB6_02 - 20         

V$GATA2_01 - 20         

V$MZF1_02 - 20         

V$YY1_01 - 20         

MA0086 Snail ZN-FINGER, 
C2H2 - 21         
MA0103 deltaEF1 ZN-
FINGER, C2H2 - 21         
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V$AREB6_03 - 21         

V$ER_Q6 - 21         

V$GATA3_01 - 21         

MA0079 SP1 ZN-FINGER, 
C2H2 - 22         

V$P300_01 - 22         

V$SP1_01 - 22         

MA0019 Chop-cEBP bZIP - 23         

V$ARP1_01 - 23         

A. All islet peaks not within 2 kb of a known transcipt (intergenic)             

B. All intergenic islet peaks that did not overlap any peak from five additional cell lines       

C. All intergenic islet peaks that overlapped peaks in all five additional cell lines       

D. The number of chromosomes on which the motif was significantly over-represented (p<.01)       

E. The number of chromosomes on which the motif was significantly under-represented (p>.99)      
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Table 5.6.  Functional annotations of genes overlapping islet COREs*  

PANTHER Biological Process PValue   GO Biological Process PValue 

BP00044:mRNA transcription 

regulation 2.25E-24  

GO:0051056~regulation of small GTPase mediated 

signal transduction 5.72E-08 

BP00071:Proteolysis 1.45E-22  GO:0016192~vesicle-mediated transport 5.85E-07 

BP00063:Protein modification 4.95E-21  GO:0006512~ubiquitin cycle 9.13E-07 

BP00040:mRNA transcription 4.32E-20  GO:0009966~regulation of signal transduction 3.44E-06 

BP00104:G-protein mediated 

signaling 7.57E-16  

GO:0007264~small GTPase mediated signal 

transduction 7.57E-06 

BP00143:Cation transport 8.83E-14  

GO:0006366~transcription from RNA polymerase 

II promoter 9.15E-06 

BP00064:Protein phosphorylation 1.49E-12  GO:0046903~secretion 1.05E-05 

BP00142:Ion transport 1.96E-11  GO:0008104~protein localization 2.43E-05 

BP00286:Cell structure 9.20E-11  GO:0032940~secretion by cell 5.91E-05 

BP00289:Other metabolism 3.87E-10  GO:0006468~protein amino acid phosphorylation 5.95E-05 

BP00102:Signal transduction 8.08E-10  

GO:0046578~regulation of Ras protein signal 

transduction 5.99E-05 

BP00060:Protein metabolism and 

modification 1.17E-08   GO:0007265~Ras protein signal transduction 7.37E-05 

* Twelve most enriched PANTHER and GO 

biological processes    
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Table 5.7. Islet-selective CORES that extend > 2 kb from the transcription start or 

termination site of overlapping genes 

 

Table available at http://www.nature.com/ng/journal/v42/n3/extref/ng.530-S5.



 

 

Table 5.8. Islet FAIRE enrichment at T2D susceptibility loci       

   # FAIRE enriched regions b  # SNPs in dbSNP c  # T2D-associated SNPs d 

              # overlapping FAIRE      # overlapping FAIRE 

Locus 
Reference 

SNP  liberal moderate stringent  
total # in 

region   liberal moderate stringent  
total # in 

region   liberal moderate stringent 

TCF7L2 rs7903146e  10 7 2  106  3 2 1  4  1 1 - 

CDKAL1 rs4712523e  38 14 5  242  44 8 2  18  5 - - 
CDKN2A/

CDKN2B rs2383208e  25 10 2  324  23 8 -  3  2 1 - 

IGF2BP2 rs4402960e  3 3 2  82  4 2 2  29  1 1 1 

JAZF1 rs864745e  22 10 6  157  11 4 2  6  - - - 
CDC123/

CAMK1D rs12779790e  8 3 2  135  9 5 2  4  1 1 - 
TSPAN8/

LGR5 rs7961581e  34 11 5  623  22 8 5  7  - - - 

THADA rs7578597e  100 57 26  638  85 50 24  109  23 12 6 
ADAMTS

9 rs4607103e  1 - -  76  - - -  8  - - - 
NOTCH2/

ADAM30 rs10923931e  5 1 1  223  2 - -  41  - - - 

FTO rs8050136e  15 7 3  114  6 4 1  37  2 - - 

SLC30A8 rs13266634e  80 55 38  377  122 63 21  4  1 1 - 

HNF1B rs7501939f  18 9 2  284  11 7 2  3  1 1 1 

WFS1 rs10010131g  3 2 -  115  - - -  45  - - - 

MTNR1B rs10830963h  3 2 1  96  2 1 1  1  - - - 
HHEX/ID

E rs1111875e  22 6 4  266  13 5 4  4  - - - 

KCNQ1 rs2237892i  4 3 2  285  2 - -  3  - - - 
PPARG/S

YN2 rs1801282e  12 1 0  557  1 - -  13  - - - 

KCNJ11 rs5215e  7 5 3  88  7 5 3  7  - - - 

G6PC2 rs560887h  28 21 11  177  52 30 20  3  1 1 1 
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A. Coordinates defined by identifying recombination hotspots flanking the reference SNP 
                  

B. Number of FAIRE-enriched sites (sample 3 only) at liberal, moderate and stringent threshold located within locus coordinates      

C. Number of SNPs in dbSNP v129 with a reported average heterozygosity > 1% located within locus coordinates    
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Table 6.1.  Most over- and under-represented TFBS motifs in islet training set         

Enriched in positive set   Enriched in negative set 

TFBS id Database 

Positive 

% 

Negative 

% 

Motif 

score  TFBS id Database 

Positive 

% 

Negative 

% 

Motif 

score 

V$BRACH_01 TRANSFAC 0.1 0.0 3.7  V$NRSF_01 TRANSFAC 0.0 0.5 -4.7 

F$ABF1_01 TRANSFAC 5.5 0.8 0.8  V$HEN1_02 TRANSFAC 0.6 5.7 -1.0 

V$MEF2_01 TRANSFAC 7.2 1.1 0.8  V$R_01 TRANSFAC 0.6 5.1 -1.0 

V$CART1_01 TRANSFAC 36.1 5.7 0.8  MA0138_REST JASPAR 0.3 3.1 -1.0 

V$CLOX_01 TRANSFAC 34.9 5.7 0.8  V$AHRARNT_02 TRANSFAC 0.9 7.3 -0.9 

OCT1 JASPAR 22.4 3.8 0.8  MA0105_NFKB1 JASPAR 6.4 44.4 -0.8 

V$HNF1_C TRANSFAC 36.4 6.7 0.7  MA0112_ESR1 JASPAR 1.5 10.4 -0.8 

P$ATHB1_01 TRANSFAC 30.3 6.2 0.7  I$HAIRY_01 TRANSFAC 7.3 47.7 -0.8 

V$PAX6_01 TRANSFAC 6.2 1.3 0.7  V$SP1_Q6 TRANSFAC 13.2 79.1 -0.8 

V$E4BP4_01 TRANSFAC 43.3 9.6 0.7  I$ADF1_Q6 TRANSFAC 4.1 22.9 -0.8 

V$NKX61_01 TRANSFAC 58.8 13.6 0.6  MA0016_USP JASPAR 12.7 66.7 -0.7 

MA0135_LHX3 JASPAR 67.9 16.0 0.6  V$ER_Q6 TRANSFAC 3.9 20.1 -0.7 

MA0025_NFIL3 JASPAR 59.6 14.2 0.6  F$GAL4_C TRANSFAC 0.1 0.5 -0.7 

P$O2_01 TRANSFAC 0.4 0.1 0.6  P$BZIP910_02 TRANSFAC 3.5 16.4 -0.7 

V$PBX1_02 TRANSFAC 17.9 4.4 0.6  V$SREBP1_02 TRANSFAC 7.6 35.5 -0.7 

MA0046_HNF1A JASPAR 46.0 11.8 0.6  F$LAC9_C TRANSFAC 0.4 2.0 -0.7 

V$OCT1_07 TRANSFAC 64.5 16.6 0.6  F$PACC_01 TRANSFAC 12.5 54.1 -0.6 

V$FOXJ2_02 TRANSFAC 63.8 16.7 0.6  V$ARP1_01 TRANSFAC 7.6 32.5 -0.6 

P$MYBPH3_02 TRANSFAC 27.8 7.6 0.6  V$EGR3_01 TRANSFAC 3.9 16.0 -0.6 

V$FREAC2_01 TRANSFAC 39.7 11.4 0.5   V$NGFIC_01 TRANSFAC 6.4 26.4 -0.6 
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Table 6.2. T2D-associated SNPs with significant allelic differences in TFBS classification 

(p < .0001) 

    

  

 Allele 1 

  

 Allele 2      

islet FAIRE 

sites a 

SNP locus a1 

a1 

score a2 

a2 

score 

score 

differe

nce P  1 2 3 

rs4686697 IGF2BP2 C 20.8 T 30.3 -9.5 3.50E-08     

rs10965246 CDKN2A C 15.2 T 23.8 -8.6 5.90E-07     

rs4747971 CDC123 C -2.8 T 5.5 -8.2 1.90E-06     

rs16884074 CDKAL1 C 38.6 T 46.2 -7.6 1.00E-05    l 

rs7903146 TCF7L2 C 14.6 T 22 -7.5 1.30E-05   m m 

rs3847554 MTNR1B C 5.7 T 13 -7.4 1.70E-05     

rs6445424 ADAMTS9 A 27.2 C 19.9 7.3 2.20E-05     

rs6456370 CDKAL1 A 24.6 G 17.4 7.2 2.90E-05     

rs13405776 THADA C 7 T 13.9 -6.9 6.10E-05     

rs6747229 THADA A 26.6 T 33.3 -6.8 7.70E-05    l   

a. SNP overlapping islet FAIRE sites from sample 1 (IF1), 2 (IF2), or 3 (IF3) at liberal 

(l), moderate (m) or stringent (s) threshold 
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