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ABSTRACT 

 
Tasha Nalywajko Blatt: Role of the P2Y1 receptor in platelet activation 

(Under the direction of Robert Nicholas) 
 
 

Understanding and manipulating thrombosis and blood hemostasis is critical for the 

effective treatment of patients at risk for heart attack and stroke. ADP is an important modulator 

of platelet function and vascular tone that acts by binding to and activating the P2Y1 and P2Y12 

receptors. Deletion or inhibition of either receptor results in nearly a total loss of ADP-promoted 

aggregation. Interestingly, the P2Y1 receptor desensitizes extremely rapidly, with a half-life of 

approximately 18 sec, whereas the P2Y12 receptor continuously signals minutes after initial 

activation. We hypothesized that the rapid desensitization of the P2Y1 receptor in platelets 

prevents excess thrombosis and unwanted aggregation at lower concentrations of ADP. We have 

used ex vivo platelet activation experiments to demonstrate that the observed desensitization is 

specific to the P2Y1 receptor compared to other Gq-coupled receptors in platelets and is 

recapitulated in mouse platelets. We focused on serine and threonine residues on the C-terminus 

because of the involvement of various Ser and Thr phosphorylation on the regulation of the P2Y1 

receptor in cell culture systems. Using an optimized viral transduction model to introduce 

variants of the P2Y1 receptor into bone marrow, we show preliminary data suggesting that 

mutating multiple serine and threonine residues in the C-terminus of the P2Y1 receptor (“340-

0P”) results in prolonged activation of platelets in the absence of the P2Y12 receptor pathway, 

thus eliminating the observed desensitization in the wild type P2Y1 receptor. Furthermore, 

creation of a knock-in mouse for the 340-0P variant of the P2Y1 receptor revealed a loss of 
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desensitization in platelets upon ADP stimulation in 340-0P heterozygous mice. These data 

suggest that the loss of Ser and Thr residues on the C-terminus of the P2Y1 receptor nullifies the 

observed desensitization and provides insights regarding the physiological relevance of this 

process in platelets. 
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CHAPTER 1: A LITERARY REVIEW OF G-PROTEIN COUPLED RECEPTORS, 
NUCLEOTIDE SIGNALING AND PLATELET BIOLOGY 
	
	
G-protein coupled receptors 

Introduction 

G-protein coupled receptors (GPCRs) are members of a superfamily of membrane-bound 

proteins that comprise approximately 4% of the protein coding sequence of human genome 

(Bjarnadóttir et al., 2006). Their primary function is to transduce extracellular signals to 

intracellular activity through various effectors. The nomenclature of GPCRs is derived from their 

coupling to heterotrimeric guanosine nucleotide-binding proteins (G proteins) within the cell, 

which are responsible for initiating distinct intracellular signaling pathways upon GPCR 

activation. The GPCR field was born out of the discovery of an entity that was able to transmit a 

signal from an extracellular hormone to the intracellular activation of liver phosphorylase 

through an intermediary factor (Berthet et al., 1957), which was later identified as cyclic AMP 

(cAMP) (Sutherland and Rall, 1958). Since their discovery, GPCRs have been classified, cloned, 

and crystallized in what is now a broad field of study that transcends many areas of basic and 

clinical research. 

GPCR structure and function 

Structure 

GPCRs are defined structurally as having an extracellular N-terminus, 7 transmembrane 

domains, and an intracellular C-terminus. Between the transmembrane domains are three 
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extracellular loops and three intracellular loops of various lengths that contribute to receptor 

function. The majority of GPCRs fall into one of five families: i) the Rhodopsin family, which is 

activated by small molecules and constitutes the majority of GPCRs (including all olfactory 

receptors); ii) the Secretin and iii) Adhesion families, which are activated by larger peptide 

hormones and extracellular matrix (ECM) proteins, respectively; iv) the Glutamate family, 

which has a large N-terminus that binds to the endogenous ligand; and v) the Frizzled/Taste2 

family (Lagerström and Schiöth, 2008). The first crystal structure of a GPCR was of rhodopsin 

(Palczewski et al., 2000); since then more than 100 crystal structures have been published, 

including the first structure of a GPCR in an active conformation (Rasmussen et al., 2011). 

Despite the extent of this superfamily, there are still over 120 “orphan receptors” that were 

identified from the Human Genome project at the turn of the millennium but whose ligand and 

function remain unknown (Tang et al., 2012). 

Canonical function 

When the GPCR is inactive, nearby complexes of heterotrimeric G proteins comprising a 

Gα, Gβ, and Gγ subunit are at a resting state. The Gα subunit interacts with the GPCR as well as 

with the Gβ and Gγ subunits, the latter two of which form a stable complex and are not observed 

separately. To allow for localization of the G proteins to the plasma membrane, the Gα subunits 

are either myristoylated or palmitoylated at the N-terminus, and the Gγ subunit is prenylated at 

the C-terminus (Wedegaertner et al., 1995); the Gβ subunit does not require lipidation because of 

its strong affinity to the Gγ subunit. 

Canonical GPCR function occurs by binding an endogenous ligand to the orthosteric site 

on the extracellular surface of the receptor, which causes a conformational change in the receptor 

structure. This change is sufficient to allow the receptor to serve as a guanine nucleotide 
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exchange factor (GEF), which promotes exchange of GDP for GTP in the Gα subunit of the 

heterotrimeric G protein complex. This nucleotide exchange allows both the Gα and Gβγ 

subunits to dissociate from the receptor. When GTP-bound, the Gα subunit activates downstream 

effectors and initiates a specific signaling cascade based on the subunit type, which will be 

discussed later, and the cell type. The Gα subunit has intrinsic GTPase activity, and therefore 

catalyzes the hydrolysis of GTP to GDP by reducing the energy required for hydrolysis; this step 

is aided by regulators of G-protein signaling (RGS), which act as GTPase-activating proteins 

(GAPs) to increase the rate of hydrolysis (De Vries et al., 1995; Druey et al., 1996). The Gα 

subunit then rebinds to Gβγ subunits, and the complex reassociates with the GPCR when the 

ligand is released from the extracellular binding pocket, thus returning the system to its original 

inactive state. This cycle of activation is summarized in Figure 1-1. 

Heterotrimeric G protein signaling 

Members of the GPCR superfamily are primarily characterized based on the Gα subunit 

of the heterotrimeric G protein to which they couple. There are 4 primary classes of Gα subunits 

based on their sequence homology comprising 20 different proteins. The canonical downstream 

effectors of these four families are illustrated in Figure 1-2. Additionally, there are 5 Gβ subunits 

and 12 Gγ subunits that have several functions outside of complexing with Gα. 

Gαs and Gαi  

The Gαs and Gαi families act on the same target protein, albeit in an opposing fashion. 

The Gαs family is comprised of Gαs and Gαolf. Activation of Gαs increases the activity of 

adenylyl cyclase (AC), which converts ATP to cAMP. Increased cAMP levels result in the 

activation of protein kinase A (PKA); some of the downstream effectors of PKA include the 

activation of the transcription factors nuclear factor kappa B (NFκB) (Zhong et al., 1997) and 
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cyclic AMP response element-binding protein (CREB) (Parker et al., 1996) to influence 

transcriptional changes in the cell, glycolytic enzymes in glucose production, and ion channels to 

increase permeability. The Gαolf subunit has high homology to Gαs and activates AC in a similar 

manner (Jones and Reed, 1989), but its expression is limited to olfactory sensory neurons, where 

it couples to olfactory GPCRs. 

It was discovered that cholera toxin (CTX) acts by ADP-ribosylating Gαs, which inhibits 

the GTPase catalytic activity of the protein and prevents the GTP from being hydrolyzed (Moss 

and Vaughan, 1979). This in turn decouples the heterotrimeric G protein complex from GPCR 

regulation and results in sustained intracellular cAMP levels. 

The Gαi family includes Gαi1, Gαi2, Gαi3, Gαo, Gαz, and Gαt. The majority of the proteins 

in this class act by inhibiting AC activity, which results in a reduction of cAMP levels. The Gαi 

isoforms are ADP-ribosylated by pertussis toxin (PTX) in a manner similar to that of cholera 

toxin with Gαs. However, ADP-ribosylation of Gαi prevents the interaction of the subunit with 

the GPCR, thus preventing GEF-mediated GDP-GTP exchange and blocking activation of the 

pathway, which results in increased levels of intracellular cAMP (Burns, 1988). Interestingly, 

Gαz is able to inhibit AC but is insensitive to PTX (Wong et al., 1992). Although it shares the   

most homology with other members of the Gαi family, Gαt couples exclusively to rhodopsin and 

activates phosphodiesterase 6 (PDE6), which converts cyclic GMP (cGMP) to 5’-GMP to 

regulate Na+/Ca++ channels and hyperpolarize of the cell (Fung et al., 1981). This pathway 

allows for the transduction of light signals to the brain.  

Gαq 

The Gαq family includes Gαq, Gα11, Gα14, and Gα16. Upon activation, these proteins 

activate phospholipase C (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2)  
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Figure 1-1. Canonical activation and inactivation of GPCR signaling. 
 
Binding of an agonist causes the GPCR to change conformation and promote 
exchange of GTP for GDP on the associated Gα subunit. This causes separation 
from Gβγ, which allows for interaction with downstream effectors for both Gα 
and Gβγ. RGS proteins act as GAPs for the hydrolysis of the GTP bound to Gα; 
this promotes reassociation of the heterotrimeric G protein complex with the 
inactive GPCR. 
 
 
 

	
	
 

Figure 1-2. Traditional downstream effectors of various Gα subunits. 
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into diacylglycerol (DAG) and inositol triphosphate (IP3). DAG is a second messenger that 

activates protein kinase C (PKC), whereas IP3 binds to IP3 receptors in the endoplasmic or 

sarcoplasmic reticulum and induces the release of Ca2+ into the cytoplasm of the cell. PKC 

activation leads to modulation of several downstream effectors, e.g. increased extracellular-

signal-regulated kinase (ERK) activity and β-catenin degradation (Druey et al., 1996; Gwak et 

al., 2006). Interestingly, several PLC isoforms have been shown to have GAP activity on Gαq, 

thus serving as negative feedback, preventing aberrant activation, and providing exquisite control 

of PLC activation. More recent studies have discovered Gαq is capable of activating RhoGEFs 

such as p63, Kalirin and Trio (Lutz et al., 2005; Schmidt and Debant, 2014). 

Gα12/13 

The Gα12/13 subunits signal through several RhoGEFs, including p115-RhoGEF and 

PDZ-RhoGEF, to activate the small G protein RhoA and influence cytoskeletal changes within 

the cell (Fukuhara et al., 1999; Hart et al., 1998). Many GPCRs that couple to Gα12/13 also couple 

to other Gα subunits (Riobo and Manning, 2005), suggesting that these Gα subunits are more 

promiscuous in their preferred coupling and aid in tissue-specific signaling. 

Gβ/γ 

Although originally thought to be secondary to Gα protein signaling, the Gβγ dimer 

activates distinct downstream pathways independent of the Gα subunit. The most well 

characterized pathway is activation of inward-rectifier potassium channels (GIRKs), which are 

found primarily in the nervous system and heart, to cause hyperpolarization of the cell. The Gβγ 

complex has also been shown to recruit G-protein receptor kinase 2 (GRK2) to the plasma 

membrane (Li et al., 2003), and indirectly activate the mitogen-activated protein kinase (MAPK) 

pathway via Src family kinases (Luttrell et al., 1996). Gβγ is also capable of activation multiple 
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PLC-β family members (Camps 1992), though the affinity for PLC-β is lower for Gβγ compared 

to Gαq. 

Taken together, the multiple combinations of Gα and Gβγ proteins with the hundreds of 

GPCRs and tissue-specific downstream effectors result in nearly limitless possibilities and fine-

tuning of outside-in signaling.  

GPCR regulation 

Receptor desensitization 

One of the most rapid forms of regulation of GPCRs is phosphorylation of the receptor. 

Upon ligand binding and G-protein dissociation, many GPCRs are phosphorylated on their 

intracellular regions by G-protein receptor kinases (GRKs). These phosphorylated residues are 

binding sites for arrestins (described below), which prevents reassociation and subsequent 

reactivation of the G-protein pathway. This phenomenon referred to as homologous 

desensitization, which is defined by the inability of the receptor to signal to the downstream G 

proteins despite the continued presence of the receptor agonist. These GRKs are serine/threonine 

kinases that primarily phosphorylate target residues on the C-termini of the activated GPCR; an 

exception to this rule is that receptors with large 3rd intracellular loops, e.g. muscarinic receptors, 

become phosphorylated in the loop and not the C-terminus. The first GRKs were described as 

phosphorylating rhodopsin (GRK1) and the β2-adrenergic receptor (GRK2) only after agonist 

stimulation (Benovic et al., 1986; Shichi and Somers, 1978). Since then, a total of 7 GRKs have 

been identified, with GRK2, GRK3, GRK5, and GRK6 as the predominant kinases expressed in 

the majority of tissues. GRK1 and GRK7 are solely expressed in regions of the eye. 

Aside from their activities as second messengers and downstream effectors of Gα 

signaling, PKA and PKC have been shown to phosphorylate GPCRs on intracellular loops and 
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C-termini as a form of negative feedback (Benovic et al., 1985; Raymond, 1991). This differs 

from GRK-mediated desensitization in that other receptors, i.e. those that were not activated, can 

display desensitization to their cognate agonists, which is defined as heterologous 

desensitization. 

Arrestin binding 

Upon phosphorylation, one of two events can occur: the phosphates can be removed by 

phosphatases to allow the receptor to regain its signaling capabilities, or regulatory proteins 

called arrestins can bind to the phosphorylated residues and serve as a physical disruptor to the 

binding motif of the GPCR, preventing any interaction with the heterotrimeric G-protein 

complex. Arrestin 1 (Arr1), also known as visual arrestin, is expressed in the eye and binds to the 

phosphorylated C-terminal residues on rhodopsin, whereas β-arrestin 1 and β-arrestin 2 (Arr2 

and Arr3, respectively) are expressed ubiquitously throughout the organism. Arr2 and Arr3 bind 

to many phosphorylated GPCRs in a sequence non-specific manner; these proteins interact with 

several intracellular regions of the GPCR (provided they are phosphorylated), including the third 

intracellular loop (Dohlman et al., 1987). Furthermore, binding of the β-arrestins is dependent on 

the phosphorylation state of the GPCR, suggesting that this regulation occurs only when the 

GPCR is activated (Vilardaga et al., 2003). 

Receptor internalization 

 Aside from the rapid regulation of desensitization of GPCRs, another common and more 

elaborate form of regulation is receptor internalization. Internalization can be independent of 

desensitization and involves the physical removal of the GPCR from the plasma membrane 

surface into the cell via a process known as endocytosis. This relocation prevents activation of 

those GPCRs by ligands on the surface; however, some studies suggest that activated signaling 
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cascades can continue after endocytosis (Calebiro et al., 2010; Kotowski et al., 2011; Wehbi et 

al., 2013). There are two common types of endocytosis: clathrin-dependent and clathrin-

independent, each of which is described below. 

Clathrin-dependent internalization 

Clathrin is a heterodimeric protein consisting of a heavy chain (approximately 180 kDa) 

and a light chain (30-40 kDa), the latter of which associates with the C-terminal region of the 

heavy chain (Fotin et al., 2004). The basic functional clathrin unit is comprised of a trimer of 

dimers, in which the three heavy chains associate at their C-termini (residues 1488-1587) (Blank 

and Brodsky, 1986) and form a “triskelion” shape. These trimers are the basis for the lattice 

structure that forms clathrin-coated pits, which are the precursor to an endocytic vesicle. 

Also required for clathrin-mediated endocytosis is adaptor protein 2 (AP2), a tetramer 

with 4 unique subunits (α, α2, β2 and µ2). This protein serves as a scaffold between clathrin and 

targeted proteins in the plasma membrane, as clathrin itself is unable to associate with the lipid 

bilayer. The β2 subunit contains a specific dileucine motif (LLNLD) that can bind to the N-

terminus of the clathrin heavy chain (ter Haar et al., 2000). Various regions of the other AP2 

subunits are able to bind to the intracellular domains of membrane-associated proteins, thus 

linking the target proteins with clathrin. As more AP2 binds to the target proteins, there is an 

increase in the size of the clathrin lattice, which stabilizes the membrane into a rounded pit. As a 

“neck” is created at the invagination of the vesicle, the GTPase dynamin is recruited to the site 

(van der Bliek et al., 1993) and catalyzes the “pinching” of the invaginated vesicle to separate it 

from the plasma membrane (Zhang et al., 1996). Once the vesicle is separated, the clathrin 

coating destabilizes and dissociates from the lipid bilayer of the vesicle, which allows the vesicle 

to fuse with early endosomes. 
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Although the binding of Arr2 and Arr3 to the phosphorylated GPCR serves to temporary 

block signaling, these proteins bind both clathrin and AP2 to facilitate clathrin-dependent 

internalization of receptors. Upon binding of β-arrestins to the GPCR, the C-terminus of β-

arrestin becomes exposed (Gurevich and Gurevich, 2006) and binds to clathrin through a clathrin 

binding motif [LIEΦ(D/E)] (Goodman et al., 1996). More importantly, it was shown that Arr2 

and Arr3 bind to the β2 subunit of AP2 and serve as a scaffold between the GPCR and the AP2-

clathrin complex (Laporte et al., 1999). Thus, β-arrestins are play a central role in clathrin-

mediated endocytosis of GPCRs. 

Clathrin-independent internalization 

 Clathrin-independent internalization of plasma membrane proteins occurs through dense 

hydrophobic regions within the membrane known as lipid rafts. These rafts are enriched with 

cholesterol and sphingolipids and are considered to be less fluid than the rest of the plasma 

membrane. A subset of lipid rafts known as caveolae are 50-80 nm invaginations that are 

intracellularly surrounded by caveolin. Endocytosis of caveolae is stimulated by both Src and 

PKC-α activity (Sharma et al., 2004) as well as actin polymerization and recruitment of dynamin 

(Pelkmans et al., 2002). Upon internalization, these caveolae can be sorted into either pre-early 

endosomes known as caveosomes, which are unique to caveolae (Pelkmans et al., 2001), or 

directly to early endosomes. 

 Another common form of internalization is macropinocytosis. This dynamin-independent 

process is driven by Rho GTPase activation and reorganization of the actin cytoskeleton to form 

protrusions. Macropinocytosis is both non-specific and non-absorptive, as it engulfs an area of 

extracellular fluid to internalize free-floating particles and nutrients. Once internalized, these 

vesicles enter into the endosome pathway, where they fuse with lysosomes to metabolize the 
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extracellular particles. As this process is less organized, macropinocytosis uses very little energy. 

However, pathogens such as Ebola virus (Shimojima et al., 2006) and Salmonellae bacteria 

(Alpuche-Aranda et al., 1994) have taken advantage of this uptake mechanism to infect target 

cells. 

Receptor Trafficking 

 Upon fusion with early endosomes, GPCRs are subjected to one of two fates: recycling to 

the plasma membrane (resensitization) or degradation by either lysosomes or proteasomes 

(downregulation). These fates are influenced by the C-terminal tail region of the GPCRs and 

their capacity to interact with β-arrestins. Class A GPCRs have a less stable interaction with β-

arrestins and are generally recycled back to the surface; however, class B GPCRs have a stronger 

association with β-arrestins and remain in the endosomes (Anborgh et al., 2000). 

 Other protein modifications and interactions also impact the fate of internalized GPCRs. 

There exist several recycling sequences in the C-terminal tail of GPCRs to promote their return 

to the plasma membrane. The most common of these sequences is a 4 amino acid (aa) motif on 

the distal C-terminus that binds to post synaptic density 95/Drosophila large disc tumor 

suppressor/zonula occludens-1 (PDZ) domains; these motifs have been observed on both the β2-

adrenergic receptor (β2AR) (Gage et al., 2005) and the luteinizing hormone (LH) receptor (Galet 

et al., 2004). Conversely, the ubiquitination of GPCRs shifts their trafficking towards 

proteasome-dependent degradation and lysosomes and has been shown to occur with β2AR 

(Shenoy et al., 2001), protease-activated receptor 2 (PAR2) (Jacob et al., 2005), and the platelet-

activating factor receptor (PAFR) (Dupré et al., 2003). For the β2AR, this ubiquitination requires 

both β-arrestin binding and GRK phosphorylation (Shenoy et al., 2001).  
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Non-canonical signaling 

 Over the past two decades, new evidence has emerged regarding GPCR signaling outside 

of the traditional heterotrimeric G protein complex. The majority of these studies involve MAPK 

pathway activation via β-arrestin binding to both activated and quiescent GPCRs. MAPK 

pathways are characterized by their activation of transcription factors such as CREB and c-Myc, 

which promote gene expression and cell proliferation. 

When β-arrestin is bound to the activated angiotensin II type 2 receptor (AT2), it prevents 

the translocation of the MAPK c-Jun N-terminal kinase (JNK) to the nucleus (McDonald et al., 

2000); a similar mechanism was observed in the sequestration of ERK in the cytosol upon β-

arrestin binding to activated PAR2 (DeFea et al., 2000). Conversely, β-arrestin 2 is able to 

interact with the vasopressin receptors V1a and V2 without agonist stimulation and initiate 

clathrin-mediated internalization of the receptor. Furthermore, β-arrestin 2 binding and 

internalization of the receptors is sufficient to promote ERK phosphorylation (Terrillon and 

Bouvier, 2004). It has been shown that more stable arrestin interactions with the intracellular 

regions of GPCRs are correlated with increased MAPK pathway activation as measured by the 

levels of phosphorylated ERK1/2 (Tohgo et al., 2003). Thus, the GPCR signaling field has 

expanded dramatically to determine the mechanisms that control canonical versus non-canonical 

signaling. 

GPCRs as therapeutic targets 

 Because of the ability of GPCRs to transduce extracellular signaling to intracellular 

changes, these proteins have been utilized as drug targets to treat various diseases and illnesses. 

The pharmaceutical industry implemented high-throughput screening (HTS) techniques to test 

millions of compounds against an array of GPCRs to identify novel chemical structures that 
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could be further developed into clinically viable drugs. Approximately 30% of all FDA-approved 

drugs target canonical GPCR signaling pathways (Lee et al., 2014), with 18% of the drugs 

approved in 2012 alone targeting GPCRs either directly or indirectly (Jarvis, 2013). However, 

like many drug treatments, GPCR-targeted therapies are not without their drawbacks. Variable 

tissue expression profiles can result in off-target side effects; (insert example here regarding 

original and off target effects of GPCR-targeted drug). Also, single-nucleotide polymorphisms 

(SNPs) have been found to influence drug effectiveness between patients, resulting in 

subpopulations that are unresponsive to certain therapies. However, recent scientific advances 

have allowed for fewer adverse drug reactions and increased specificity to the targeted disease.  

Biased agonism 

 Originally, GPCR dogma stated that there existed a single binding site for either an 

agonist or an antagonist on a receptor that could promote or block, respectively, the propagation 

of a single downstream signal. However, one study showed that the recruitment of β-arrestin 

upon activation of the β2AR caused the formation of Src kinase complexes with the β2 receptor, 

which was dependent on the presence of β-arrestin (Luttrell et al., 1999). Since this discovery, β-

arrestin recruitment has been linked to cAMP degradation (Perry et al., 2002), inhibition of NF-

κB (Witherow et al., 2004), and JNK (DeFea et al., 2000) and Akt activation (Beaulieu et al., 

2005; Beaulieu et al., 2004). Another example that has garnered attention is the bias at the µ-

opioid receptor: β-arrestin recruitment has been shown to be responsible for the adverse effects 

of opioid usage in patients undergoing pain management, such as constipation, nausea, 

respiratory depression and drug abuse (Violin et al., 2014). 

The increasing evidence supporting non-canonical GPCR signaling has contributed to the 

theory of biased agonism; that is, certain agonists can shift the downstream signaling fate from 



14 

the receptor towards either traditional heterotrimeric G protein effectors or β-arrestin-dependent 

effectors. By developing drugs that are biased towards one pathway, the negative off-target side 

effects could be reduced. 

Allosteric modulation 

 The majority of clinically available GPCR-targeted drugs function by binding to the 

orthosteric site of the receptor to directly influence GPCR activity. However, the past two 

decades have seen a shift in focus from identifying ligands that bind to the orthosteric site to 

those that bind to allosteric sites. Allostery is the ability of a compound to bind to a receptor 

without directly influencing signaling; however, the binding of an allosteric ligand can either 

promote or hinder the receptor’s natural ability to interact with a ligand at the orthosteric site, as 

well as influence the potency of said ligand. Two examples of altered ligand interactions in the 

native binding site include a positive allosteric modulator of the M1 muscarinic receptor (Marlo 

et al., 2009) and a negative allosteric modulator of the prostaglandin D2 receptor CRTH2 

(Mathiesen et al., 2005). In conjunction with their cognate agonists, these modulators either 

enhance or inhibit the responsiveness of their respective receptors; however, when they are 

bound in the absence of the native ligand, the receptors do not elicit a response. Allosteric 

ligands are becoming increasingly popular in drug discovery because of their high specificity, 

reduced off-target effects, and wider array of binding targets on the extracellular regions of 

GPCRs. 

Genome-based drug targeting 

 Another practice that is becoming more common is the sequencing of patient genomes 

prior to initiating treatment. Certain drugs have been shown to be less effective in patients 

carrying mutations either in the target GPCR or in the cytochrome enzymes responsible for 
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metabolizing the prodrug into a viable compound. This allows for patients to not only receive the 

best care possible but also prevent wasted time and money on ineffective drug treatments. The 

majority of targeted therapies either in practice or in development focus on cancer treatments, as 

the heterogeneity of cancer subtypes render a large percentage of possible drug treatments either 

partially or completely ineffectual (Barretina et al., 2012).   

Purinergic Signaling 

History 

The year 1929 was important for the molecule adenosine triphosphate (ATP) for two 

reasons: first, the existence of the ATP molecule was discovered independently by two scientists 

– Karl Lohmann (Lohmann, 1929) and Cyrus Fiske & Yellapragada SubbaRow (Fiske and 

Subbarow, 1929); and second, Drury and Szent-Gyorgyi reported the physiological effects of 

adenine compounds on guinea pig hearts, in which they observed a rapid but reversible decrease 

in the heart rate (Drury and Szent-Györgyi, 1929). Though they could have not known it at the 

time, one of those adenine compounds was ATP. 

Over the course of the 20th century, adenosine and adenosine-derived molecules were 

shown to exert effects on the heart (Honey et al., 1930), vasculature (Bennet and Drury, 1931; 

Scott et al., 1965), intestines & uterus (Mihich et al., 1954) nervous system (Holton, 1959), lung 

(Bianchi et al., 1963), platelets (Born, 1962) and brain (Galindo et al., 1967). Furthermore, Berne 

discovered that systemic administration of adenosine caused an increase in coronary blood flow, 

suggestive of vasodilation, which was rapidly reversed (Berne, 1963). 

However, while many scientists who studied ATP focused on its importance as the 

energy source of the cell in virtually all organisms, there was mounting evidence that adenosine 

and adenosine-derived molecules (especially ATP) were involved in cellular signaling events. 
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These studies culminated in the purinergic hypothesis put forth by Geoffrey Burnstock, who 

suggested that there existed proteins with the capability to bind ATP and other purinergic 

molecules to induce signaling (Burnstock et al., 1972). This hypothesis was borne out of Pamela 

Holton’s publication in 1959, which stated that ATP was a neurotransmitter in the great auricular 

nerve in rabbits (Holton, 1959). Unfortunately, the neurotransmitter field highly criticized this 

theory and ridiculed Burnstock for 2 decades because of ATP’s well-established role in energy 

production (Burnstock, 2012). However, with overwhelming evidence published during the 

1970s and 1980s, Burnstock’s hypothesis was finally accepted, and the field of purinergic 

signaling was born. 

ATP synthesis 

 ATP is comprised of adenosine (the nucleobase adenine attached to a ribose sugar) with 

three phosphates daisy-chained via pyrophosphate bonds on the 5’ carbon of the ribose. ATPases 

and pyrophosphatases can hydrolyze one or more of the phosphate groups to form adenosine 

diphosphate (ADP) or adenosine monophosphate (AMP), both of which are also involved in 

purine signaling. Another critical member of this family of molecules is cyclic AMP (cAMP), 

which is formed from ATP by adenylyl cyclase and produces pyrophosphate as a byproduct. 

The majority of ATP in humans is produced in two of the three stages of glucose 

metabolism: glycolysis and oxidative phosphorylation via the electron transport chain in the 

mitochondria; the substrates used in the electron transport chain are derived from the third stage 

of glucose metabolism, the citric acid cycle. The latter produces the largest percentage of ATP, 

thus ATP exists in millimolar concentrations inside the mitochondria (compared to extracellular 

nanomolar concentrations) The ATP-ADP carrier (AAC) is an antiporter that pumps ATP out of 

the mitochondria in exchange for ADP, thus accounting for the high concentrations of ATP in 
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the cytoplasm (Pfaff et al., 1965). The body produces approximately its entire weight of ATP in 

a single day (Törnroth-Horsefield and Neutze, 2008); however, its prolific requirements result in 

approximately 250 grams existing at any given time. 

Nucleotide transport and release 

 As with any signaling molecule, the transport and release of ATP is critical to effectively 

communicate a cell’s requirements. Cytoplasmic ATP is primarily used for its communicative 

capacity along with its energy release for the molecules that require it. The methods by which 

ATP is either released or transported are passive release, exocytosis, active release, and cell lysis. 

Although less prevalent, signaling with uridine triphosphate (UTP) and other derivatives is also 

subjected to similar methods of release and regulation. 

Passive release 

 Passive release involves the movement of nucleotides down their gradient through open 

channels. Here, we describe three such channels and their role in nucleotide release. 

Gap junctions 

One such channel is the gap junction, which is comprised of a connexin heterohexamer 

(also referred to as a ‘hemichannel’) connecting two adjacent cells. These gap junctions allow for 

the diffusion of small molecules throughout a cell monolayer, such as epithelial cells in the 

kidneys or intestines. ATP was observed to move through gap junctions when connexins were 

introduced into C6 cells, an astrocytoma culture line that does not natively express any of the 

connexin proteins. When transduced, ATP levels were increased within the cells (Cotrina et al., 

2000). Direct evidence of ATP movement across gap junctions was discovered using membrane 

patch-clamp to measure the permeability of ATP (Kang et al., 2008). 
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Pannexins 

Another passive ATP release mechanism is via diffusion through plasma membrane 

pannexin channels, which are hexamers of pannexin subunits. Pannexins form gap junctions in 

invertebrates but serve as channels linking the cytoplasm to the extracellular space in vertebrates. 

The involvement of pannexins in ATP release was discovered when Xenopus oocytes were 

injected with mRNA encoding human pannexin. These oocytes exhibited increased ATP release 

compared to control oocytes (Bao et al., 2004). Pannexins are also sensitive to mechanical 

stresses, including shear stress, osmotic pressure and liquid flow.  

Active release 

Exocytosis 

 Exocytosis is the fusion of intracellular membrane vesicles with the plasma membrane to 

release the vesicular contents into the extracellular space. One of the most well established 

systems of exocytosis is the release of neurotransmitters into the synapses of neurons. Prior to 

release, the vesicles must be loaded with high concentrations of molecules. The vesicular 

nucleotide transporter 1 (VNUT-1) actively concentrates ATP within secretory vesicles of 

astrocytes (Oya et al., 2013), T-cells (Tokunaga et al., 2010), and pancreatic cells (Geisler et al., 

2013). VNUT-1 has also been shown to contribute to vesicle loading in platelets (Hiasa et al., 

2014)  and lung airway epithelial cells (Okada et al., 2013); the latter study further showed that 

ATP release was secondary to protein secretion into the lung mucosa.  

Physical stress and lysis 

  Physical influences also affect nucleotide release. Electrical signals and myofibrillar 

contractions cause ATP release, and cell lysis due to apoptosis or other pathways results in a 

local increase of free ATP because of the high concentration of ATP within cells. 
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External nucleotide metabolism  

 Nucleotides are degraded by a family of enzymes referred to as ecto-nucleotidases. These 

enzymes break down ATP to ADP, AMP, and eventually adenosine (Zimmermann, 2001). The 

largest subfamily of this group is the nucleoside diphosphohydrolases, also known as NTPDases. 

There are 8 members of this family that exhibit different affinities for either the triphosphate or 

the diphosphate. The catalytic domain of diphosphohydrolases is either extracellular (i.e., 

membrane bound) or organelle bound (Robson et al., 2006). A highly characterized NTPDase is 

CD39, which is expressed on smooth muscle and endothelial cells (Kaczmarek et al., 1996). 

CD39 function with regard to platelet activity will be described later. 

 The other two types of ecto-nucleotidases are the nucleotide pyrophosphatase/ 

photodiesterases (NPPs) and ecto-5’-nucleotidase. There are 7 members of the NPP family, but 

only 3 are capable of acting on nucleotides; the other 4 prefer phospholipid substrates 

(Vollmayer et al., 2003). Ecto-5’-nucleotidase, also known as CD71, hydrolyzes AMP into 

adenosine, which can act on its own receptors, be phosphorylated to reform AMP via adenosine 

kinase (Spychala et al., 1996), or deaminated to form inosine via adenosine deaminase 

(Blackburn et al., 1996).  

Purinergic receptors 

P1 receptors 

 There are four P1 receptors that are activated by adenosine, which are classified based on 

their G protein coupling. The Gαi-coupled receptors A1- and A3-adenosine decrease cAMP levels 

by inhibiting adenylyl cyclase. The A1-adenosine receptor is primarily expressed in the central 

nervous system and on smooth muscle cells. Activation of the A1-adenosine receptor has been 

shown to decrease heart rate (Olsson and Pearson, 1990), protect against ischemia (Matherne et 
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al., 1997) and inhibit neurotransmitter release (Hu and Li, 1997; Santicioli et al., 1993). 

Activation of the A1-adenosine receptor in airway epithelial cells under inflammatory conditions 

results in increased mucosal secretion and hyperresponsiveness to airflow (Ponnoth et al., 2010), 

which are two main contributors to asthmatic conditions. A1-adenosine receptor inhibitors have 

been shown to reduce Ca2+ signaling in human bronchial smooth muscle cells (Ethier and 

Madison, 2006), indicating their potential as a therapeutic target for asthma patients. More recent 

evidence suggests that A1 forms a heterodimer with the D1 dopamine receptor to inhibit 

neurotransmitter release in the mesocorticolimbic system (Fuxe et al., 2007), though this is still 

controversial.  

 The A3-adenosine receptor is expressed in the lung, kidney, heart, liver, eyes, and 

neutrophils (Jacobson and Gao, 2006). The receptor is cardioprotective under ischemic 

conditions (Ge et al., 2006), but excessive signaling can result in cardiomyopathy (Black et al., 

2002). The A3-adenosine receptor can also reduce superoxide anion levels and suppress TNF-α 

release under inflammatory conditions (Gessi et al., 2002). With the prevalence of secondary 

signaling cascades in GPCRs emerging, evidence suggests that the A3 receptor can also activate 

the MAPK pathway (Matot et al., 2006; Neary et al., 1998). 

 The other two P1 receptors, A2A and A2B, couple to the Gαs pathway. The A2A receptor is 

the most extensively studied of the four P1 receptors due to its ubiquitous tissue distribution; in 

fact, crystal structures with a bound agonist (Lebon et al., 2011) and antagonist (Jaakola et al., 

2008) are available. Though the highest levels are found in the immune system and brain 

(Fredholm et al., 2001), these receptors also are expressed on coronary smooth muscle cells, 

endothelial cells, monocytes and macrophages. Activation of the A2A receptor promotes 

neurotransmitter release in the peripheral nervous system (Gonçalves and Queiroz, 1996), 
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endothelial proliferation (Sexl et al., 1997), vasodilation (Conti et al., 1993), (Belardinelli et al., 

1998), and TNF-α production (McColl et al., 2006). The involvement of A2A receptors with 

neurodegenerative and cognitive disorders has become more apparent in recent years – Fuxe and 

colleagues reported that the A2A receptor dimerized with the D2 dopamine receptor and reduced 

D2 signaling in the indirect pathway in vivo (Fuxe et al., 2007), whereas A2A antagonists have 

been shown to protect against Parkinsons disease “off” time in patients (LeWitt et al., 2008). 

 The A2B receptor is not as widely expressed as the A2A receptor but is still found in 

airway smooth muscle cells, fibroblasts, platelets, intestinal epithelial cells and glial cells. A2B 

receptor activation has been shown to exert a protective effect in reperfused ischemic tissues 

(Kuno et al., 2007; Methner et al., 2010) and increase the release of anions (e.g., Cl- and HCO3
-) 

to induce water release in the intestines (Ham et al., 2010; Strohmeier et al., 1995). The A2B 

receptor has also been shown to promote bronchoconstriction in airway epithelial cells (Zhong et 

al., 2004), which provides another nucleotide-related target for asthma therapies. 

P2X receptors 

 The ionotropic P2X family of receptors is comprised of ligand-gated cation channels 

whose native ligand is ATP. Each individual member of this family has a short N-terminus (18-

20 amino acids) and two transmembrane domains. Because of this, multimers are required to 

form a functioning channel – the most stable configuration has been shown to be trimers based 

on crystal structure data (Gonzales et al., 2009; Kawate et al., 2009). These channels regulate the 

flow of positive ions into the cell and are not highly selective with regard to the ion, though there 

appears to be preference to Ca2+ ions over Na+ and K+ (Egan and Khakh, 2004). 

There are seven subunits within this family (X1-X7) that can form either homotrimers or 

heterotrimers, with the exception of the X6 subunit, which can only form heterotrimers with other 
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family members, and the X7 subunit, which can only form homotrimers. The known stable 

multimer combinations are P2X2/X3, P2X4/X6, P2X1/X5, P2X2/X6, P2X1/X2 and P2X1/X4 

(Burnstock, 2007). The family as a whole is expressed in nearly every tissue type, but the 

distribution is highly variable. Because of this widespread expression, ATP dysregulation can 

cause mild to severe pathogenesis in cation-related signaling. 

P2Y receptors 

 The metabotropic P2Y family of receptors is comprised of GPCRs whose native ligands 

are either nucleotides or nucleotide variants: ATP, ADP, UTP, UDP, and UDP-glucose. The 

majority of these genes were cloned during the 1990s; several cloned receptors were either later 

shown not to respond to nucleotides or were species homologues of previously identified human 

receptors. This resulted in the disjointed numbering of the receptors and the absence of P2Y3, 

P2Y5, P2Y7, P2Y8, P2Y9 and P2Y10 within the nomenclature. These receptors share between 20-

50% sequence homology with each other, primarily in transmembrane domains 3, 6, and 7 (Erb 

et al., 1995), suggesting that these regions are involved in ligand binding – this became evident 

when the crystal structures of two P2Y receptors (P2Y12 and P2Y1) were solved, as the largest 

shifts were observed on TM6 and TM7 upon agonist binding (Figure 1-3). The P2Y family is 

broken up into two subfamilies based on relative homology and the downstream G-alpha 

signaling: the P2Y1-like receptors, and the P2Y12-like receptors.	

P2Y1-like receptors 

 This subfamily of receptors is coupled to the Gαq family of signaling pathways. The 

sections below provide a brief description of the expression profiles, pharmacological 

selectivities, and physiological activities of each receptor. 
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P2Y1 receptor 

 The P2Y1 receptor was first cloned from a chick brain in 1993 (Webb et al., 1993). Its 

natural cognate agonist is ADP (Ki 0.92 µM), with ATP having both a lower affinity (Ki 17.7 

µM)  (Waldo 2004) and acting as a partial agonist at low levels of receptor reserve. The receptor 

is expressed in a wide number of animals, including cow (Henderson et al., 1995), turkey (Filtz 

et al., 1994), frog (Cheng et al., 2003), mouse (Tokuyama et al., 1995) and humans (Janssens et 

al., 1996; Léon et al., 1996). In humans, the receptor is widely distributed among various tissues 

such as skeletal muscle, kidney, heart, platelets and liver (Ayyanathan et al., 1996), with the 

highest levels of mRNA message found in the prostate, placenta and multiple brain regions 

(Moore et al., 2000a; Moore et al., 2000b). In platelets, the P2Y1 receptor contributes to 

nucleotide-induced platelet activation in conjunction with the P2Y12 receptor. The receptor also 

promotes prostaglandin release and muscle relaxation in skeletal muscle tissues. 

 P2Y1 knockout mice were developed by two independent research groups in the late 

1990s (Fabre et al., 1999; Léon et al., 1999). Both of these labs reported that mice lacking the 

P2Y1 receptor had defects in platelet activation. Although initial studies showed no 

developmental or survival deformities, these knock-out mice have reduced pain responses in a 

model of nociceptive hyperalgesia (Malin and Molliver, 2010) and lower inflammation responses 

in the vasculature (Zerr et al., 2011). Global loss of P2Y1 receptor expression also contributes to 

decreased bone density (Orriss et al., 2011) and increased glucose levels and weight gain 

compared to wild-type mice (Léon et al., 2005). All of these observations have been repeated and 

confirmed with the use of P2Y1 receptor-specific antagonists. 

There are several synthesized compounds that selectively bind at the P2Y1 receptor. 

Members of the MRS series of antagonists, including MRS2179 (Nandanan et al., 1999),  
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Figure 1-3. Crystal structures of the P2Y1 and P2Y12 receptor.  
 
A, Structure of the P2Y1 receptor bound to the antagonist MRS2500. B, Structure 
of the P2Y12 receptor bound to the agonist 2MeSADP. Red, TM7; Cyan, TM6; 
Blue, TM3; stick, structure of respective molecule. 
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MRS2279 and MRS2500 (Waldo et al., 2002), are highly selective for the P2Y1 receptor and 

show increasing affinity, with MRS2500 having a Ki less than 1 nM (Ohno et al., 2004). A 

selective agonist, MRS2365, was also developed with sub-nanomolar affinity to the P2Y1 

receptor (Chhatriwala et al., 2004). The availability of these high affinity methanocarbo ring-

based compounds allowed for the P2Y1 receptor crystal structure to be solved (Zhang et al., 

2015). Surprisingly, it was observed that two agonist binding sites exist on the receptor: the first 

within the predicted binding pocket near TM6 and TM7, and a second on the exterior of the 

receptor. 

P2Y2 receptor 

 The P2Y2 receptor was cloned from multiple species in the mid 1990s (Lustig et al., 

1993; Parr et al., 1994; Rice et al., 1995). It is activated equipotently by the nucleotide 

triphosphates ATP and UTP but has a much lower affinity for either of the corresponding 

diphosphates ADP and UDP (Lazarowski et al., 1995). The receptor is expressed primarily in 

epithelial, endothelial, and smooth muscle cells, but also in skeletal muscle, heart, lung, 

lymphocytes and macrophages (Bowler et al., 1995; Ho et al., 1995; Kirischuk et al., 1995; Rice 

et al., 1995). In polarized epithelial cells, the P2Y2 receptor is expressed on the apical surface 

and responds to nucleoside triphosphates released into the lumen of organs that are lined with 

epithelial cells (Wolff et al., 2005). Some of the common functions of the P2Y2 receptor are the 

release of prostaglandins and nitric oxide from endothelial tissues (Welch et al., 2003; Xing et 

al., 1999), increased proliferation (Burnstock, 2007), and increased anion transport in epithelial 

tissues (Leipziger, 2003). 

 P2Y2 receptor knock-out mice exhibit a loss of Cl- secretion in airway epithelia, which 

results in increased mucosal thickness (Cressman et al., 1999). This phenotype has allowed for 
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the P2Y2 knockout mouse to serve as a mouse model for cystic fibrosis, a disease in which the 

anion channel CFTR is dysfunctional and prevents the release of Cl- into the airway mucosa. 

These mice also have decreased bone density due to lower osteoblast activity (Hoebertz et al., 

2002) and more rapid kidney deterioration (Potthoff et al., 2013; Zhang et al., 2012); the latter 

condition is possibly due to increased sodium and water reabsorption (Rieg et al., 2007). 

 Currently, there are a few agonists selective to the P2Y2 receptor that could serve as a 

lynchpin to future cystic fibrosis treatments. The agonist INS37217 has been shown to increase 

Cl- and water secretion in human airway epithelia, thereby promoting mucosal clearance (Yerxa 

et al., 2002). One P2Y2 receptor agonist (4-thio-β,γ-difluoromethylene-UTP) was shown to be 

approximately 50-fold more selective for the P2Y2 receptor compared to P2Y4 and P2Y6 

receptors, which also are activated by UTP (El-Tayeb et al., 2011). 

P2Y4 receptor 

 The human P2Y4 receptor was cloned and sequenced in 1995 (Communi et al., 1995), 

with rat (Webb et al., 1998) and mouse (Lazarowski et al., 2001) following soon after. In 

humans, rodents, and other mammals, UTP is the primary native ligand (EC50 = 0.55 µM). 

Interestingly, ATP is a naturally occurring competitive antagonist (Kennedy et al., 2000), but is a 

full agonist at rodent P2Y4 receptors (Kennedy et al., 2000). The P2Y4 receptor is expressed in 

placenta, intestine, lung, leukocytes and human umbilical vein endothelial cells (HUVECs), with 

the intestine having the highest levels of expression (Moore et al., 2001). Most studies involving 

the P2Y4 receptor focus on its involvement in anion release in intestinal epithelia, in conjunction 

with the P2Y2 receptor (Matos et al., 2005). In polarized epithelial cells, the P2Y4 receptor 

(along with the P2Y2 receptor) is expressed solely on the apical membranes (Wolff et al., 2005). 
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 Regarding P2Y4 knockout mice, there is less data available compared to the P2Y1 and 

P2Y2 knockout mice. Studies have shown that loss of P2Y4 receptors result in reduced chloride 

secretion in the intestinal epithelium (Robaye et al., 2003) and colon (Ghanem et al., 2005), as 

well as a decreased instance of cardiac hypertrophy and overall smaller heart size via 

downregulation of endothelin-1 activity (Horckmans et al., 2015; Horckmans et al., 2012)  

Because of their high sequence identity (~50%), similar expression patterns, and 

endogenous ligands, it has been difficult to differentiate between P2Y2 and P2Y4 activity within 

the intestinal lumen. However, the compound iso-CMP was shown to be approximately 20-fold 

more selective for the P2Y4 receptor compared to P2Y2 and P2Y6 receptors (El-Tayeb et al., 

2011). The Jacobson group synthesized three compounds with sub-micromolar EC50 values 

(MRS4062, MRS2927, and N4-phenylethoxy-CTP) that showed at least one log order of 

selectivity of the P2Y4 receptor over the P2Y2 receptor (Maruoka et al., 2011). 

P2Y6 receptor 

 The P2Y6 receptor has been cloned from humans (Communi et al., 1996), mice 

(Lazarowski et al., 2001) and rats (Nicholas et al., 1996), and is preferentially activated by UDP 

(EC50 = 0.3 µM) and UTP (EC50 = 6 µM) compared to adenosine nucleotides. The receptor is 

expressed in vascular smooth muscle, gall bladder, placenta, leukocytes, and epithelial cells 

(Chang et al., 1995; Somers et al., 1999). P2Y6 receptor activation promotes cell growth (Hou et 

al., 2002) and vasoconstriction (Mitchell et al., 2012) in smooth muscle cells and exerts an anti-

apoptotic effect against TNF-α signaling in an astrocytoma cell line (Kim et al., 2003). This 

receptor is also involved in anion release in several tissues (Köttgen et al., 2003; Lazarowski and 

Boucher, 2001), but the activity is not as pronounced as either the P2Y2 or P2Y4 receptors. More 

recent physiological data suggests that the P2Y6 receptor contributes to the pro-inflammatory 



28 

responses in macrophages (Garcia et al., 2014) and microglia (Koizumi et al., 2007; Quintas et 

al., 2014). Regarding its regulation, the P2Y6 receptor is slow to desensitize and internalize 

compared to the other P2Y receptors (Brinson and Harden, 2001). 

 A P2Y6 receptor knockout mouse was developed in 2008 (Bar et al., 2008), in which the 

macrophage UDP response, in particular UDP-promoted interleukin release, was lost. These 

mice also exhibited a lack of aortic vasoconstriction and endothelial-induced relaxation, which 

was dependent on the tissue studied. P2Y6 receptor activity has also been shown to be involved 

in bone maintenance, as P2Y6 -/- knockout mice showed reduced bone mass (Orriss et al., 2011). 

 Regarding synthetic compounds targeted to the P2Y6 receptor, the thiol derivative 

UDPβS shows high selectivity for P2Y6 compared to the P2Y2 and P2Y4 receptors (Malmsjö et 

al., 2000). Interestingly, three compounds (MRS2567, MRS2575 and MRS2578) had sub-

micromolar IC50 values and were shown to insurmountably eliminate the protective effect against 

apoptosis (Mamedova et al., 2004), but it is unclear whether these compounds are selective to the 

P2Y6 receptor.  

P2Y11 receptor 

 The P2Y11 receptor was first cloned in 1997 and is unique for two reasons: 1) it is the 

only P2Y receptor to contain an intron within its mRNA (Communi et al., 2001b), and 2) its 

natural ligand, ATP, can activate both Gαq and Gαs pathways (Communi et al., 1997) with 

varying EC50 values (3.6 µM and 62.4 µM, respectively) (Qi et al., 2001). However, this receptor 

is less well understood because there is no homolog expressed in rodents, and the EC50 values of 

endogenous and synthetic agonists are dependent on the cell in which the receptor is studied 

(Communi et al., 1999). Expression of P2Y11 receptor mRNA is observed in spleen, intestine, 

and immunocytes (Communi et al., 1997). Though this receptor can function to regulate ion 
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secretion similar to its other subfamily members (Nguyen et al., 2001), there is more research 

focused on P2Y11 receptor activity in inflammation and leukocyte signaling. P2Y11 receptor 

activity has been attributed to the differentiation and maturation of leukocytes (Wilkin et al., 

2001) and neutrophils, as well as immunosuppression in dendritic cells (Chadet et al., 2015). The 

P2Y11 receptor has also been shown to be involved in cytokine regulation, either via inhibition of 

IL-12 production, stimulation of IL-10 production, or changes in chemokine receptor expression 

levels (la Sala et al., 2002; Wilkin et al., 2002). 

P2Y12-like receptors 

 This subfamily of receptors is coupled to the Gαi family of signaling pathways. Below 

we provide a brief description of the expression, agonist and antagonist profiles, and 

physiological activity of this subfamily. 

P2Y12 receptor 

 P2Y12 receptors in human, mouse and rat were cloned by multiple groups in 2001 (Foster 

et al., 2001; Hollopeter et al., 2001; Nicholas, 2001; Zhang et al., 2001), although its existence 

was first considered in platelets over two decades earlier (Cooper and Rodbell, 1979). At the 

time, it was classified as the P2cyc receptor due to its coupling to adenylyl cyclase activity, 

which was uncommon for P2Y receptors at the time. The endogenous ligand of the P2Y12 

receptor is ADP (EC50 = 0.061 µM) (Zhang et al., 2001), with high concentrations of ATP acting 

as an antagonist (Park and Hourani, 1999). The P2Y12 receptor was the first of the P2Y receptors 

to be successfully crystallized bound to both an agonist (Zhang et al., 2014a) and an antagonist 

(Zhang et al., 2014b). These two structures supported studies suggesting that ligands activate the 

receptor by interacting to TM6 and TM7. 
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The P2Y12 receptor is expressed primarily in platelets and neural tissues, particularly in 

microglia (Sasaki et al., 2003; Zhang et al., 2001). Its activity in platelets will be further 

discussed below, but there are other reports regarding its involvement in the formation of 

processes and polarization in microglia via chemotaxis (Koizumi et al., 2013), as well as in 

neuropathic pain development (Ohsawa et al., 2007). 

 The P2Y12 knockout mouse was developed shortly after its successful cloning, in which a 

distinctive loss of platelet aggregation was observed (Andre et al., 2003; Foster et al., 2001). 

More recent studies involving these knockout mice have shown that the loss of P2Y12 receptor 

results in decreased osteoclast activity and bone loss (Su et al., 2012; Syberg et al., 2012), 

increased protection against brain ischemia (Webster et al., 2013), and reduced cytokine 

production and neuropathic pain (Horváth et al., 2014). 

 Although there are several synthetic agonists that activate the P2Y12 receptor (e.g., 2-

MeSADP, ATPγS), none of these are highly selective for the P2Y12 receptor. However, the 

limited tissue profile of this receptor, combined with its importance in platelet aggregation, has 

led to the development of clinically available P2Y12-selective antagonists, many of which were 

developed before the receptor was cloned. These prodrugs, termed thienopyridines, are 

metabolized to a form that covalently reacts with the P2Y12 receptor to irreversibly inhibit its 

activity (Gachet et al., 1992). Ticlopidine was the first of these prodrugs developed, but the 

second generation drugs clopidogrel and prasugrel are part of the current gold standard of anti-

platelet therapies. More recently, the non-competitive antagonist ticagrelor has been touted as a 

possible replacement for clopidogrel and prasugrel because of its reversible nature (van Giezen 

et al., 2009). 
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P2Y13 receptor 

 The P2Y13 receptor was first identified after the human genome sequencing project was 

completed owing to its homology to the P2Y12 receptor and was successfully cloned from human 

(Communi et al., 2001a), mouse (Zhang et al., 2002) and rat (Fumagalli et al., 2004). ADP (EC50 

= 0.06 µM), ATP (EC50 = 0.26 µM), and the diadenosine polyphosphate Ap3A (EC50 0.072 µM) 

act as agonists at this receptor. P2Y13 receptor mRNA is expressed in the spleen, leukocytes, 

bone marrow, liver and brain (Communi et al., 2001a). Activation of the P2Y13 receptor 

promotes a neuroprotective effect in astrocytes (Ortega et al., 2011) and granule neurons (Pérez-

Sen et al., 2015), as well as an anti-apoptotic effect in neurons (Voss et al., 2014) and pancreatic 

beta cells (Tan et al., 2013). 

 The P2Y13 knockout mouse presents with decreased levels of high-density lipoprotein 

(HDL) and fatty acids within the plasma (Blom et al., 2010), suggesting the receptor’s 

involvement in sterol transport and/or metabolism. This was further established in an 

atherosclerotic mouse model, whereby loss of P2Y13 receptor expression in these mice increased 

plaque development and reduced HDL levels in the plasma and fecal matter (Lichtenstein et al., 

2015). One developmental defect observed in the P2Y13 knockout mice was an increase in bone 

mass in young and adolescent mice, which was completely reversed to significant bone loss in 

adult mice (Wang et al., 2014). 

 There are no known selective agonists to the P2Y13 receptor; however, the selective 

antagonist MRS2211 (IC50 = 1 µM) was synthesized and shown to have approximately 20-fold 

selectivity for the P2Y13 receptor compared to P2Y1 and P2Y12 receptors. 
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P2Y14 receptor 

 The P2Y14 receptor was first cloned in 2000 (Chambers et al., 2000) but was not 

officially added to the P2Y family until 2003. It is active by UDP but is unique compared to 

other P2Y receptors in that it is also activated by UDP sugars (Harden et al., 2010). Of the 4 

known UDP sugars that activate the P2Y14 receptor, only UDP-glucose (EC50 0.08 µM) has been 

shown to be released extracellularly, likely as a result of fusion to the plasma membrane of 

protein secretory vesicles (Lazarowski et al., 2003). The P2Y14 receptor is widely expressed in 

humans, including the placenta, intestine, brain, spleen, lung, and bone marrow, with higher 

mRNA levels found in neutrophils, glial cells and lymphocytes (Moore et al., 2003). Receptor 

activation has been linked to chemotaxis in both hematopoietic progenitors (Lee et al., 2003) and 

mature neutrophils (Barrett et al., 2013; Sesma et al., 2012). P2Y14 receptor signaling is also 

involved in the release of pro-inflammatory cytokines (Barrett et al., 2013; Müller et al., 2005).  

 Data from recently created P2Y14 knockout mice show increased release of TNF-α from 

astrocytes (Kinoshita et al., 2013) and increased bone marrow senescence (Cho et al., 2014) in 

these animals. Loss of this receptor also results in increased protection from radiation-induced 

stress of developing embryos in utero (Kook et al., 2013) and reduced glucose tolerance and 

insulin release (Meister et al., 2014).  

 Currently there are two synthetic agonists with high selectivity to the P2Y14 receptor – 

MRS2802 (EC50 0.05 µM) and MRS2907 (EC50 0.05 µM) (Carter et al., 2009). A highly potent 

and selective synthetic antagonist, PPTN (IC50 0.008 µM), has been crucial for studying P2Y14 

receptor activity (Barrett et al., 2013). 
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Purinergic signaling in platelets 

GPCR-based activation of platelets is dependent on the Gα12/13 pathway, the Gαq 

pathway, and the Gαi pathway. Within platelets, four proteins from the purinergic family are 

expressed to either promote or inhibit this platelet activation. The A2B receptor is expressed on 

the platelet plasma membrane and binds adenosine to activate adenylyl cyclase, which increases 

intracellular cAMP concentrations to keep the platelet in a quiescent state.  

P2Y1 and P2Y12 receptors are activated by ADP, with ADP being more potent at the 

P2Y1 receptor compared to the P2Y12 receptor. P2Y1 receptor activation results in Gαq 

activation, formation of IP3 and DAG, and the subsequent release of Ca2+ from the calcium 

stores. The 3-log shift in intracellular calcium concentration contributes to both microfilament 

rearrangement in shape change and increases in Rap1B signaling. The P2Y12 receptor inhibits 

adenylyl cyclase activity via Gαi2 signaling, resulting in a decrease of inhibitory cAMP levels. 

When either the P2Y1 or P2Y12 receptor is activated, the platelet does not fully convert to an 

activated state; it is only upon simultaneous activation of these two P2Y receptors that ADP-

induced integrin αIIbβ3 activation can occur. This integrin activation is the hallmark of activated 

platelets. Though not a major player, ATP binding to P2X1 homotrimers on the platelet 

membrane causes an influx of Ca2+ into the cytoplasm, which contributes to shape change. The 

following section describes the activation and signaling of platelets in more detail. 

There are few cases of polymorphisms of the P2Y1 and P2Y12 receptor affecting platelet 

function in humans. The only known dimorphism of the P2Y1 receptor was identified by 

Hetherington et al, in which the affected individuals showed an increase in ADP-induced platelet 

activation (Hetherington et al., 2005). There have been far more recorded instances of congenital 

P2Y12 defects and polymorphisms. All of these individuals either have reduced or no ADP-
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induced platelet activation, with varying penetrance of the bleeding phenotype. These cases are 

summarized in more detail by Marco Cattaneo (Cattaneo, 2011).   

Platelet Biology 

Introduction 

The platelet is a unique manifestation of the mammalian cardiovascular system. Although 

there were earlier reports, platelet discovery is officially credited to Guilio Bizzozero in 1881, 

who described “small plates” of cells that would attach to sites of vessel wall injury and form 

clumps (Bizzozero, 1881; Bizzozero, 1882). Building on these results, William Osler (who 

identified platelets nearly 10 years earlier but was uncertain as to their origin) described the first 

“plaques” in thrombotic diseases as containing platelets (Osler, 1886). However, it wasn’t until 

1906 that James Wright discovered megakaryocytes, the cells from which platelets are born 

(Wright, 1906). 

Believed to be evolutionarily derived from the amebocytes of invertebrates, platelets are 

anuclear fragments of cytoplasm from megakaryocytes and primarily serve as a hemostatic 

mechanism at sites of vessel injury to prevent blood loss and initiate the repair of the damaged 

vessel. However, the platelet is more than a glorified plug, as we will discuss below. 

Thrombopoiesis 

 All blood cells are formed from totipotent hematopoietic stem cells, which express 

cluster of differentiation 34 (CD34) and CD41 (integrin αIIb) on their surfaces. Stem cells are 

exposed to interleukin 3 (IL-3), IL-6, IL-11 and stem cell factor (SCF) to maintain their 

pluripotency. Upon exposure to thrombopoietin (Tpo) along with these other cytokines, the stem 

cells shift towards the formation of burst-forming cells, which give rise to promegakaryoblasts. 

Continuous exposure to Tpo and IL-11 along with a loss of IL-3, IL-6 and SCF exposure 
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promotes the formation of a megakaryoblast, followed by a promegakaryocyte and eventually a 

mature megakaryocyte. The maturation process is marked by a loss of CD34 expression and an 

increase of CD61 expression (integrin β3); the co-expression of CD41 and CD61 is the hallmark 

of platelet identification. The process from burst-forming cell to megakaryocyte takes 

approximately 1 week; a single burst-forming cell can produce 40-500 megakaryocytes (Briddell 

et al., 1989). 

 As an immature megakaryocyte, the cell undergoes endomitosis; that is, the 

chromosomes undergo mitosis but the cell does not execute cytokinesis. This increases the size 

of the cell (50-100 µm diameter; up to 150 µm) as well as the amount of DNA within the 

megakaryocyte. This polyploid cell has an average of 16N (Odell et al., 1970), but 

megakaryocytes are capable of existing with 64N. It is believed that this massive increase in 

DNA is required to produce higher levels of protein for the eventual platelets (Raslova et al., 

2003). 

 Megakaryocyte maturation is signified by the presence of alpha granules and the 

demarcation membrane system (DMS) (Yamada, 1957); however, not much is known about the 

function of the DMS. It was hypothesized that the DMS was involved in the release of platelets 

from the megakaryocyte, but the widely held theory today is that platelets are borne from the 

formation of proplatelets (Becker and De Bruyn, 1976; Schmitt et al., 2001; Thiery and Bessis, 

1956). The megakaryocyte forms long protrusions from its cell body referred to as proplatelets 

that are akin to beads on a string. These projections enter the sinusoids of the bone marrow 

vasculature to be taken up into the blood stream. Over a period of 5 days, a single 

megakaryocyte produces thousands of platelets, 30% of which are sequestered in the spleen to be 
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released upon a vascular crisis. On average, a human produces 100 x 109 platelets per day to 

maintain normal levels in the bloodstream (Daly, 2011). 

Platelet characteristics 

Physical characteristics 

 Figure 1-4 illustrates the unique features of a quiescent platelet. At rest, platelets are 

concave disk-like structures approximately 2-5 µm in diameter and 0.5 µm in thickness 

(Bizzozero, 1882). They contain large quantities of microtubules and microfilaments, the latter 

of which represents only 50% of all actin molecules within the platelet. Scanning electron 

microscopy reveals that the membrane surface of platelets is similar to the invaginations of the 

brain, giving a wrinkly appearance (White and Escolar, 1993). These invaginations are important 

in the hemostatic function of platelets, as their lipid bilayers are rigid (Behnke, 1970), and 

subsequent shape change of the platelet is dependent on the presence of additional membrane 

rather than its flexibility. 

Platelets have a unique system of organelles that optimize their function within the 

bloodstream; they contain no Golgi complexes and have few (but efficient) mitochondria. The 

most prominent organelles present are alpha granules, which number between 50-80 per platelet 

and contain soluble and membrane-bound proteins (Frojmovic and Milton, 1982). The most 

abundant of these proteins are the αIIbβ3 integrins, fibrinogen, von Willebrand factor (vWF), 

and glycoprotein VI (GPVI). Many of the proteins in alpha granules promote platelet activation, 

but these granules also contain growth factors, including those that promote angiogenesis. Since 

the turn of the century, advances in proteomic technology has allowed the identification of over 

300 unique proteins within alpha granules (Coppinger et al., 2004). 
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Dense granules are also specific to platelets. Although much smaller in number compared 

to alpha granules, these vesicles contain cations and small biomolecules at high concentrations. 

ADP and ATP have been measured in the sub-molar range, whereas [Ca2+] was recorded above 2 

M (Holmsen and Weiss, 1979).  

Platelets also contain an open canalicular system (OCS) that is directly connected to the 

plasma membrane surface. As the OCS is in direct contact with circulating plasma, the total 

exposed surface area is approximately double that of the simple surface (Frojmovic et al., 1992). 

This massive tunneling of folded membranes allows the cell to expand its surface area over 

400% when reorganizing from a disc-shape to a flattened fillipodia (Escolar et al., 1989). 

Interestingly, the OCS is not found in all platelets; it is present in humans, mice, and dogs yet 

absent in bovines, horses and camels (Choi et al., 2010). 

One final organelle unique to platelets is the dense tubular system (DTS). This separate 

set of membranes is completely enclosed within the platelet and is formed from remnants of the 

endoplasmic reticulum (ER) of the parent megakaryocyte. The primary purpose of the DTS is to 

release Ca2+ into the cytoplasm upon receiving a signal in a similar manner that the ER of other 

cells release calcium.  

Life span 

 The life span of platelets was first described by William Duke in 1910, who provided 

blood transfusions to patients with low platelet counts and remarked that the patients’ ability to 

coagulate was only temporary (Duke, 1910). It wasn’t for another 45 years that scientists were 

able to definitively measure a platelet’s life span using quantifiable measures, which was 

calculated at approximately 10 days (Harker and Finch, 1969; Leeksma and Cohen, 1955). 
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Figure 1-4. Organelle and structural schematic of a quiescent platelet. 
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Interestingly, platelets undergo apoptosis via the intrinsic pathway. B-cell lymphoma-

extra large (Bcl-xL) has been shown to be critical for a normal platelet life span in mice (5 days) 

(Mason et al., 2007); conversely, mice that do not express Bcl-2 homologous antagonist/killer 

(Bak) have platelets with a doubled life span compared to wild type mice (Mason et al., 2007). 

This suggests tight regulation of the number of circulating platelets in the bloodstream. 

Platelet count 

 A normal platelet count in humans ranges from 150-400 × 109 platelets per liter; this has 

been shown in healthy Caucasians (Brecher and Cronkite, 1950), the elderly population (Ruocco 

et al., 2001) and the Spanish population (Lozano et al., 1998). However, the platelet count for the 

African or West Indies populations is slightly lower (Bain and Seed, 1986), but this does not 

reflect any increased incidence of platelet-related dysfunction in this group. 

Platelet function 

Primary platelet activation 

 A platelet’s primary role in maintaining hemostasis is its ability to react at a vessel injury. 

The multitude of proteins expressed on the platelet membrane allow for rapid recruitment and 

activation through various pathways. Here, we will discuss the most common proteins involved 

in the critical stages of platelet activation. 

Binding to injury site 

 When the sub-endothelium beneath the vessel wall is exposed to the blood plasma, 

several molecules are released into the blood stream. One such molecule is von Willebrand 

factor (vWF), which also is expressed in endothelial cells and can be found circulating within the 

plasma. vWF binds to glycoprotein Ib (GPIb), a crucial member of the GPIb-IX-V complex. 

vWF exhibits rapid on-off binding with GPIb and acts as a brake to slow the platelet down at the 
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injury site within a high shear flow environment. This mechanism makes the platelet appear to 

“roll” along the vessel wall. 

 As the platelet slows towards the injury site, other receptors on the platelets are able to 

bind to the exposed collagen from the subendothelial matrix. These receptors include the αII/βI 

integrin and glycoprotein VI (GPVI), which propagate “outside-in” signaling to further activate 

the platelet (which is described below). It has also been shown that the GPIb-IX-V complex is 

also able to bind to collagen under high shear situations (Farndale et al., 2004). This secondary 

adhesion securely attaches the platelet to the injury site.  

 The initial formation of a platelet matrix involves the platelet endothelial cell adhesion 

molecule (PECAM-1), also known as CD31. These proteins contribute to platelet-platelet 

adhesions at the injury site but are known to be secondary to integrin and glycoprotein-based 

adhesions (Burk et al., 1991; Duncan et al., 1999). PECAM-1 has been shown to interact with 

the platelet cytoskeleton upon activation (Newman et al., 1992), which is a critical component of 

platelet shape change and is described below.  

Shape change 

Gα12/13 mediated events 

 Shape change through the Gα12/13 pathway has been shown to be critical in thrombin- 

and thromboxane-driven platelet activation (Moers et al., 2003). Gα13 couples to the protease-

activated receptors 1 (PAR1) and 4 (PAR4) in humans. These receptors are activated by 

thrombin, which cleaves their N-termini at an arginine residue and exposes a cryptic 

agonist(Jacques and Kuliopulos, 2003; Jacques et al., 2000). Because this newly revealed agonist 

is tethered to the receptor, it results in irreversible activation of the receptors. Upon dissociation 

of the heterotrimeric G-protein complex, Gα13 activates p115RhoGEF, which then activates Rho 
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(Fukuhara et al., 2001). Rho then acts upon the Rho-activated kinase p160ROCK (Klages et al., 

1999) and LIM domain kinase (Pandey et al., 2006); these kinases phosphorylate myosin light 

chain kinase and cofilin, respectively, to influence actin filament polymerization. 

Gαq mediated events 

 Gαq-directed shape change in platelets is mediated solely by ADP activation of the P2Y1 

receptor (Offermanns et al., 1997). GTP-bound Gαq activates PLCβ, which hydrolyzes PIP2 to 

produce diacylglycerol and inositol triphosphate (IP3), the latter of which binds to the IP3 

receptor expressed on the DTS. This releases Ca2+ into the cytoplasm, which binds to and 

activates the protein gelsolin (Hartwig et al., 1989; Yin and Stossel, 1979). Normally, gelsolin is 

autoinhibited in the absence of Ca2+; however, Ca2+-bound gelsolin is capable of binding to 

existing actin filaments and depolymerize them into globular actin. It was determined that 

gelsolin is required for platelet shape change (Witke et al., 1995). 

Cytoskeletal reorganization 

 The combination of the mass gelsolin-mediated depolymerization of actin combined with 

the activation of cofilin and myosin light chain kinase produces a perfect storm for cytoskeletal 

reorganization. Along with the events described above, the barbed ends of existing filaments are 

removed, and Arp2/3 complexes are activated to provide branch points in actin polymerization. 

Phosphoinositides, which are produced from phosphatidylinositide 3-kinases (PI3K), have also 

been shown to be required for filament assembly (Hartwig et al., 1995). This massive 

reorganization and polymerization event is sufficient to force the cell from its resting discoid 

shape into what looks like a fried egg. 
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Integrin activation 

 Integrin activation is the key event that defines whether a platelet is activated or not. 

Upon conformational change of the cytoplasmic tails of the integrin αIIbβ3, an “inside-out” 

signal is propagated across the membrane to the extracellular domains that promotes the binding 

of the integrin to an Arg-Gly-Asp (RGD) peptide sequence. Three molecules that contain this 

sequence are fibrinogen, fibronectin, and vWF (Plow et al., 2000), with fibrinogen having the 

most repeats. Here, we describe the multiple pathways that converge to result in activation of 

αIIbβ3. 

Gαq mediated events 

 Gαq couples to the P2Y1, 5HT2A, PAR1, and PAR4 receptors in human platelets. Binding 

of GTP to the Gαq subunit from the heterotrimeric G protein complex results in the activation of 

PLCβ, which hydrolyzes PIP2 into IP3 and DAG. As described earlier, IP3 induces the release of 

Ca2+ from the DTS stores. Along with activating gelsolin, cytoplasmic Ca2+ activates calcium 

and DAG-regulated GEF1 (CalDAG-GEF1) (Dupuy et al., 2001). 

Gαi family mediated events 

 Two Gαi proteins are expressed in platelets: Gαi2 and Gαz. Gi is primarily coupled with 

the P2Y12 receptor (although the PAR1 receptor is capable of coupling with lower affinity), 

whereas the α2A adrenergic receptor couples to Gz. Activation of these alpha subunits results in a 

decrease in cAMP levels due to inhibition of adenylyl cyclase. More critical to platelet biology is 

the activation of PI3K (Trumel et al., 1999), which (in the case of the P2Y12 receptor) results in 

sustained activation. Recent research has shown that PI3K inhibits Ras GTPase-activating 

protein 3 (RASA3), which functions as a GAP for Rap1B (Stefanini et al., 2015) and activates 

Akt (Woulfe, 2010).  
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Collagen-mediated events 

 As previously mentioned, collagen binding to GPVI and integrin α2/β1 aids the platelet 

in adhering to the exposed subendothelial matrix at the injury site. However, this binding also 

serves as an “outside-in” mechanism to activate the platelet as well. Src family kinases (SFKs) 

are recruited to the intracellular regions of these proteins upon collagen binding. This results in 

the recruitment and eventual phosphorylation of spleen tyrosine kinase (Syk), which then 

phosphorylates PLCγ (Poole et al., 1997). Similar to PLCβ, this enzyme is capable of 

hydrolyzing PIP2 into DAG and IP3, the latter of which releases Ca2+ from the DTS. 

Rap1B: the focal point 

 Activation of CalDAG-GEF1 leads the activation of Rap1B (Crittenden et al., 2004), a 

small GTPase. This activation is intensified by inhibition of the GAP RASA3. While little is 

known regarding the proteins involved between Rap1B activation and integrin αIIbβ3 activation, 

one study discovered that Rap1B activation induces increased activity of the Rap1-GTP-

interacting adaptor molecule (RIAM), which is capable of binding talin (Lee et al., 2009). Talin 

is known to bind to the cytoplasmic tail of β3 (Wegener et al., 2007), which is a key step in 

activating integrin αIIbβ3. However, a RIAM knockout mouse was shown to have no loss of 

integrin activation using multiple agonists (Stritt et al., 2015), indicating that there are redundant 

molecules downstream of Rap1B that lead to αIIbβ3 activation. A schematic summarizing the 

multiple signaling cascades involved in platelet activation is shown in Figure 1-5. 

Granule release 

 The release of alpha and dense granules is critical for effective platelet clot formation 

because it releases proaggregatory molecules into the immediate microenvironment, which can 

recruit nearby platelets and intensify the initial plug at the injury site. As described above, 
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activation of Gα13 leads to p160ROCK activation, which enhances myosin light chain 

phosphorylation by inhibiting the corresponding phosphatases. This increased phosphorylation of 

the myosin light chain promotes actin contraction. The corresponding shape change leads to the 

exocytosis of granules to the OCS (Stenberg et al., 1984). This is executed using vSNAREs and 

tSNAREs (Polgár et al., 2002; Polgár et al., 2003) in the presence of increased filamentous actin 

(F-actin) (Flaumenhaft et al., 2005). The release of the granule contents into the OCS promotes 

sustained activation of nearby platelets, thus providing a positive feedback loop at the injury site. 

Inhibition of platelet activation 

 With platelets exhibiting such strong responses upon activation, maintaining a quiescent 

state under normal blood flow conditions is imperative. Endothelial cells both express and 

secrete proteins and molecules that keep platelets in an inactive state to prevent excessive 

thrombosis formation and maintain homeostasis.	

Prostacyclin 

 Prostacyclin (PGI2) is a product of the arachidonic acid pathway in endothelial cells. It is 

produced by prostacyclin synthase (PGIS) from prostaglandin H2 (PGH2) (Oates et al., 1988; 

Weksler et al., 1977); interestingly, PGH2 is the same substrate that is used to produce 

thromboxane in platelets. Upon release from the endothelial cells, PGI2 binds to the prostacyclin 

(IP) receptor on platelets. The IP receptor is a Gs-coupled GPCR, and thus its activation results 

in increased cAMP levels within the platelet due to increased adenylyl cyclase activity (Tateson 

et al., 1977). Prostacyclin, though a potent inhibitor, has a brief half-life of 42 seconds (Cawello 

et al., 1994), thus providing quick inhibition in undamaged vessels yet allowing for rapid 

activation in its absence. 
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Figure 1-5. Overview of signaling involved in platelet activation. 
 
Green GPCRs couple to Gs, pink GPCRs couple to Gi, yellow GPCRs couple to 
Gq, and purple GPCRs couple to G12/13. 
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Nitric Oxide 

 Nitric oxide is a highly stable free radical produced in endothelial cells by endothelial 

nitric oxide synthase (eNOS) and can freely cross the plasma membrane. NO binds to soluble 

guanylyl cyclase (sGC) within cells to increase cGMP levels; in platelets, this is similar to 

increasing cAMP levels and serves to lower its excitability state. sGC activation also reduces 

cytosolic Ca2+ levels (Moro et al., 1996). 

Nucleotidase activity 

 The nucleotidases CD39 and CD73 are membrane proteins expressed on endothelial cells 

that break down ATP and ADP in the plasma to prevent purinergic-mediated platelet activation 

(Marcus et al., 1991). CD39 is an ecto-nucleotidase that metabolizes ATP to ADP and then to 

AMP; CD73 is a 5’-nucleotidase that converts AMP into adenosine (Dwyer et al., 2004). This is 

important because platelets express the A2A adenosine receptor, which couples to Gs. Activation 

of the A2A receptor results in increased cAMP levels, decreased intracellular Ca2+ concentrations, 

and platelet inhibition (Yang et al., 2010). 

Secondary activation 

 The recruitment and activation of platelets serves as the first phase of thrombus 

formation. After the accumulation of activated platelets at the injury site, the secondary phase of 

clot stabilization transforms the loose platelet mesh into a gel-like plug to firmly block the site of 

injury and halt blood loss from the damaged vessel. This well characterized “waterfall cascade” 

has two initiating points that converge to retract the platelets and form a tight clot: the intrinsic 

pathway and the extrinsic pathway. 

 The intrinsic pathway is initiated primarily by the formation of a collagen-based complex 

with proteins within the subendothelial matrix, which derives the alternative moniker “contact 
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pathway”.  This complex converts Factor XII (FXII), a serine protease in its zymogen form, into 

FXIIa (its activated form) (Renné et al., 2012), although any negatively charged molecule can 

facilitate this activation. FXIIa then activates FXI to FXIa, which in turn converts FIX into FIXa, 

hence the descriptor “waterfall cascade”. The extrinsic pathway is controlled by the exposure of 

tissue factor (TF) to the bloodstream at the injury site. Under normal conditions, FVII freely 

circulates in the blood plasma; however, when fibroblasts and leukocytes (which express TF) are 

present at an injury site, FVII binds with TF to form an activated TF-FVIIa complex. 

 Whether by FIXa (in conjunction with its cofactor FVIIIa) or the TF-FVIIa complex, FX 

is activated to FXa, which is the key node in secondary activation. FXa, with FV, Ca2+ and 

phospholipids as cofactors, cleaves prothrombin into thrombin, which not only serves as a potent 

platelet activator as described above, but also cleaves fibrinogen, activates FVIII and FV, and 

converts FXIII to FXIIIa. Fibrinogen cleavage produces insoluble fibrin, which serves as the 

core of a mature clot. These fibrin strands are cross-linked by FXIIIa to further stabilize the clot. 

 Platelets provide critical components of secondary activation. Phospholipids within these 

membranes are used for intrinsic FX activation as well as the prothrombinase activity of FXa. 

Both FV and FVIII are expressed on platelet membranes, and alpha granules contain high levels 

of fibrinogen (Harrison et al., 1989), FV (Camire et al., 1998) and FXIII (McDonagh et al., 

1969). 

Non-aggregatory functions 

Inflammation 

 Platelet contribution to inflammation is a callback to its evolution from amebocytes, 

which are nucleated cells that serve as a “catch-all” for hemostasis in invertebrates. Along with 

its aggregatory nature, platelets serve to maintain the vessel barrier by interacting and 
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communicating with endothelial cells and leukocytes to determine the possibility of infection or 

foreign agents at the vessel injury site. Platelets aid in the inflammatory response by increasing 

vessel permeability to cause edema (Nachman and Polley, 1979) and release chemokines and 

cytokines (e.g., CXCL1, IL-1β, TGF-β) to recruit leukocytes at locations of activated endothelial 

cells.  

Angiogenesis 

 Platelets have been shown to promote endothelial cell growth and proliferation 

(Gimbrone et al., 1969; Pintucci et al., 2002; Saba and Mason, 1975) and release the growth 

factors VEGF, bFGF, and PDGF (Brill et al., 2004). The combination of these growth factors 

plus a thrombus can induce tube formation (Pipili-Synetos et al., 1998) as well as direct the 

maturation of endothelial progenitors into mature cells (Langer et al., 2006). 

 There are data suggesting that platelets contain both pro- and anti-angiogenic factors 

within sequestered populations of granules (Italiano et al., 2008), which could serve as a node to 

determine what activators either enhance or inhibit vessel formation. This is of particular interest 

to cancer biologists, in which angiogenesis is a target for anti-cancer therapies. The first study 

reporting the involvement of platelets in cancer described a reduction in lung tumors in mice 

with low platelet counts that were injected with tumor cells compared to mice with normal 

platelet counts (Gasic et al., 1968). Further evidence has shown that the release of 

lysophosphatidic acid (LPA) from platelets can increase tumor growth, whereas 

pharmacologically blocking LPA activity results in reduced metastasis (Boucharaba et al., 2004).  

Pathogenesis 

 Dysregulated platelet activity has two causes: irregular function and irregular numbers. 

Here, we describe both types of dysregulation as well as the therapeutic options for correcting 
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these conditions. We also discuss the role of platelets in cardiovascular disease as well as current 

platelet-related treatments. 

Platelet count 

 The most common platelet dysfunction is a loss of platelets, defined as 

thrombocytopenia, due to decreased production or increased destruction of platelets. Decreased 

production can be due either to hereditary diseases (e.g., Bernard-Soulier syndrome, gray platelet 

syndrome, Wiskott-Aldrich syndrome) or secondary reactions to other medical maladies (e.g., 

folic acid deficiency, liver failure). Increased platelet destruction can be caused by autoimmune 

disorders (e.g., immune thrombocytopenic purpura), hypersplenism, von Willebrand disease, or 

heparin treatments. Patients undergoing myelosuppressive treatment regimens are also at risk for 

developing thrombocytopenia. The primary treatment options for patients with low platelet 

counts are corticosteroids, platelet transfusions, plasmapheresis, and bone marrow transplants.  

 At the other end of the spectrum, thrombocytosis is the excessive production of platelets. 

Primary thrombocytosis is congenital and usually the result of myeloproliferative disorders, 

including chronic myelogenous leukemia (CML) and essential thrombocythemia. Much more 

common is secondary thrombocytosis, which can be due to an elevated inflammatory state (e.g., 

bacterial diseases, rheumatoid arthritis, surgery), loss of spleen or spleen function, or Kawasaki 

disease, among other causes. Although many cases of secondary thrombocytosis do not require 

intervention, patients suffering from extreme thrombocytosis (i.e., count >1000 x 109/liter of 

blood) may benefit from a low dose aspirin regimen.  

Platelet function 

 As there are a plethora of proteins and processes involved in aggregation, dysfunction of 

even one of these can have deleterious effects on hemostasis, resulting in prolonged bleeding 
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times and poor thrombus formation. The inability to properly transduce signals within the 

platelet due to either missing components or inactive enzymes can disrupt hemostasis and lead to 

severe illness. 

A common loss-of-function node occurs with the inability of platelets to adhere to their 

target proteins. There are two characterized diseases from the absence of the GPIb-vWF 

interaction: Bernard-Soulier syndrome and von Willebrand disease. The former is caused by the 

loss of expression of GPIb and is also associated with low platelet counts (described above) and 

abnormally large platelets; the latter is caused by the loss of either vWF expression or function. 

Platelets from patients who suffer from Glanzmann thromasthenia no longer bind fibrinogen due 

to either inefficient expression or defective activity αIIbβ3, thus resulting in increased bleeding 

times. 

 Granule dysfunction is less common but still just as detrimental to platelet function. 

These diseases are often classified as platelet pool storage defects regardless of whether the alpha 

or dense granules are affected. The majority of these disorders is congenital and thus has 

minimal treatment options. Patients with either Hermansky-Pudlak syndrome or Chediak-

Higashi syndrome have defects in their dense granules, whereas gray platelet syndrome is 

characterized by a lack of alpha granules. A recent study discovered a new autosomal dominant 

alpha granule-related disorder, termed “White platelet syndrome” named after the ancestor of the 

commonly affected people, in which platelets had more megakaryocytic morphology and 

incomplete alpha granule formation (White et al., 2004). 

Cardiovascular disease 

 Cardiovascular disease remains the leading killer of Americans as of 2013, responsible 

for nearly 30% of all deaths.  Normally, platelets recruit leukocytes to sites of vessel injury to 
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promote endothelial healing and prevent infection. However, increased inflammatory conditions 

within the vessels can cause platelets to bind to undamaged endothelial cells (Bombeli et al., 

1998; Gawaz et al., 1997). The primary causes of this inflammation are the accumulation of 

oxidized low-density lipoproteins (LDLs) and the release of chemokines. Once congregated, the 

P-selectin expressed on platelets binds to the inflamed endothelium (Huo et al., 2003). As 

leukocytes are recruited, they extravasate into the subendothelial space and accumulate. Over 

time, these fatty deposits develop into plaques and constrict the vessel diameter, which is a 

hallmark of coronary artery disease (CAD). Though the increased pressure due to the decreased 

vessel width can cause discomfort, the greater risk to patients with CAD is vessel occlusion. As 

platelets accumulate at plaque sites, smaller thrombi can break off of instable clots and block 

vessels – a dangerous combination. 

Brain ischemia 

 Extended occlusion of arteries and arterioles can cause hypoxia and tissue death in the 

affected areas, more commonly referred to as ischemia. The most deadly of these occlusions 

occurs in the brain and causes a stroke, as minutes without oxygen can cause irreparable harm. 

Most of the thrombi that cause stroke are formed in the heart, aortic arch and carotid arteries. 

Several studies have found that stroke patients have higher levels of activated platelets due to 

increased beta-thromboglobulin, a protein released after platelet activation, compared to healthy 

individuals (Hoogendijk et al., 1979; Landi et al., 1990; Taomoto et al., 1983). Conversely, 

increased bleeding due to loss of platelet function can result in brain hemorrhage and increased 

intracranial pressure. 
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Anti-platelet therapies 

 Fortunately, there have been great advances in treating patients suffering from 

cardiovascular disease. The most well known anti-platelet medication is low dose aspirin. 

Aspirin, a non-steroidal anti-inflammatory drug (NSAID), irreversibly inhibits the 

cyclooxygenases that produce thromboxane, with a slightly higher affinity for the COX-1 

isozyme. Because of the rapid turnover of platelets, low dose aspirin can prevent excessive 

thrombus formation without permanently disabling hemostasis. Another established class of anti-

platelet drugs is thienopyridines, which are antagonists of the P2Y12 receptor. The majority of 

these compounds, including clopidogrel and ticlopidine, irreversibly block the P2Y12 receptor by 

binding covalently to the extracellular loops. This only partially blocks platelet function but 

reduces the size of the thrombi that are formed. Finally, integrin αIIbβ3 antagonists prevent 

fibrinogen from forming the thrombus matrix that is critical for aggregation. The three most 

commonly administered drugs (abciximab, eptifibatide, and tirofiban) all have relatively short 

half-lives in the blood stream and are used primarily in hospitalized patients to temporarily 

prevent aberrant blood clots. All of these anti-platelet therapies aid in preventing excessive 

thrombus formation from causing myocardial infarction, stroke, and ischemia. Despite the 

available therapies, there still remains a significant need for more targeted anti-platelet therapies 

in patients who do not respond to thienopyridines as well as more reversible treatments in 

patients who require surgery or other procedures with increased bleeding risks. 

 With the majority of the pharmaceutical focus on the P2Y12 receptor and other major 

players in integrin activation, other studies have begun to unravel the role of the P2Y1 receptor in 

platelet function. There is evidence that the P2Y1 receptor desensitizes in human platelets, which 

may be physiologically relevant to homeostatic platelet function. The experiments in this 
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dissertation are aimed at testing the hypothesis that P2Y1 receptor desensitization limits 

excessive thrombosis and maintains hemostatic homeostasis.  	  
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CHAPTER 2: DESENSITIZATION OF THE P2Y1 RECEPTOR IN MULTIPLE HUMAN 
AND MOUSE MODELS OF PLATELET ACTIVATION 
	
	
Introduction 

Understanding thrombosis is the first step in determining how to control it. The tight 

regulation of clot formation and dissolution appears benign in the realm of scraped knees and 

bruises, but there are a myriad of points within platelet function and coagulation that can tip the 

scale towards either bleeding or thrombosis. Thrombosis plays a vital role in cardiovascular 

disease (CVD), which is the leading cause of death in the United States. CVD affects more than 

85 million Americans as of 2013, with approximately 50% under the age of 60 (Mozaffarian et 

al., 2016). The primary end result of the process of hemostasis is a thrombus, which is comprised 

of platelets within a fibrous network that serves to plug the endothelium of a damaged blood 

vessel to prevent blood loss. Excessive thrombus formation can result in vessel occlusion, , 

causing ischemia of the surrounding tissues. When this occurs in the brain, it causes stroke. In 

adults with CAD, the vessels are at a higher propensity to form clots in the constricted space; 

complete blockage here results in a myocardial infarction (MI). Thus, the ability to prevent 

thrombus formation in patients at risk for stroke or MI is critical for long-term prognosis and 

overall health. 

Thrombi generally form upon exposure to the extracellular matrix, which simultaneously 

disrupts inhibitory influences from the endothelial vessel walls on platelets and promotes pro-

aggregatory pathways within platelets. Initial activation causes the release of other pro-
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aggregatory factors from alpha and dense granules; release of these secondary mediators results 

in positive feedback on other nearby platelets to amplify the aggregation response and prevent 

excessive blood loss. The critical aspect of thrombus formation is localization, that is, 

containment of the positive feedback and aggregation to the injury site. If positive feedback is 

permitted to balloon out of control, the thrombus can grow to sizes that occlude the entire vessel 

and cause ischemia to tissues supplied by the affected artery. Furthermore, smaller thrombi from 

an oversized aggregate can embolize and flow downstream into smaller arterioles and capillaries, 

which can also result in tissue ischemia. Vessel occlusion is more prominent in patients suffering 

from atherosclerosis, whereby vessel diameters are greatly reduced because of fatty buildup and 

inflammation under the endothelial cell layer and increasing the likelihood of blockage. 

 There has already been significant scientific and clinical progress made in controlling 

thrombus formation. Aspirin inhibits cyclooxygenase that functions in the arachidonic acid 

pathway; in platelets this prevents the formation of thromboxane A2 (TxA2), a potent platelet 

agonist. Many CVD patients are currently on a low-dose aspirin regimen, as this is an 

inexpensive yet effective anti-platelet therapy. The current gold standard of anti-platelet 

therapies, particularly those at higher risk of strokes and myocardial infarctions, is 

thienopyridines, which inhibit the P2Y12 receptor and prevent ADP-induced platelet activation. 

This class of molecules includes clopidogrel, prasugrel and ticagrelor and functions by reducing 

the secondary amplification of platelet activation, thereby producing smaller thrombi, but 

activation via thrombin is unaffected – the platelets are still responsive to their primary activator 

and do not lose all function. 

 The current model of platelet activation focuses on Rap1B activity in platelets, which is 

described in more detail in Chapter 1. An emerging theory regarding the synergy between Gq 
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and Gi signaling hinges on the regulation of Rap1B activity – Gq signaling activates CalDAG-

GEF1 and results in Rap1B activation, but this activation is transient and insufficient to result in 

integrin activation because of the inhibitory GAP activity of RASA3. Activation of the Gi 

signaling pathway results in the inhibition of the RASA3, thereby allowing for prolonged Rap1B 

activity. Only when the two pathways are activated simultaneously does sufficient Rap1B-GTP 

accumulate and promote downstream platelet activation.  

 Much of the work in developing antiplatelet therapies has focused primarily on direct 

integrin inhibition and optimizing the thienopyridines, but each of these therapies has limitations. 

For example, approximately 4-30% of the population is resistant to clopidogrel treatment 

(Nguyen et al., 2005). Therefore, recent interest has shifted to other potential targets that 

influence platelet activation; one such target is the P2Y1 receptor. The role of the P2Y1 receptor 

in platelet aggregation was first reported by Gachet and colleagues by assessing the 

pharmacological selectivity of P2Y1 receptor inhibitors in blocking ADP-promoted platelet 

aggregation (Hechler et al., 1998). A subsequent study analyzing mice lacking CD39, an ATP 

diphosphohydrolase expressed on endothelial cells, reported an unusual result: mice without 

CD39, instead of displaying an expected hyperaggregatory phenotype due to the lack of 

ATP/ADP metabolism, actually showed a loss of platelet aggregation in response to ADP 

(Enjyoji et al., 1999). This loss of platelet aggregation was subsequently shown to be due to loss 

of P2Y1 receptor activity, suggesting that the higher levels of ADP in the blood promoted 

desensitization of the receptor and a loss of ADP-promoted aggregation. These results suggest 

that P2Y1 receptor-selective antagonists could be developed as an alternative anti-platelet 

therapy. Also, targeting secondary activators of aggregation are preferable because they are less 

potent compared to thrombin-based and collagen-based activation, which can reduce excessive 
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bleeding and increase reversibility of platelet reactivity under extenuating circumstances (e.g., 

surgery). 

 Bourdon et al. showed that the P2Y1 receptor on human platelets desensitized rapidly in 

the presence of the P2Y1 receptor-selective agonist, MRS2365, with a half-life of the loss of 

receptor activity of ~18 sec, which is extremely rapid for a GPCR (Bourdon et al., 2006). Based 

on the observations that the platelet P2Y1 receptor undergoes rapid desensitization, we 

hypothesize that this property is both physiologically relevant and important in normal 

homeostasis. We further hypothesize that rapid desensitization of the P2Y1 receptor in platelets 

provides both an early reversible brake that prevents unwanted aggregation, thereby saving the 

platelet after a shape change event that does not ultimately result in a clot, and by limiting 

excessive thrombus formation by preventing aggregation in the loose outer sphere of a platelet 

clot at sites of vascular injury. Because the P2Y1 receptor is the initiator of aggregation, its 

desensitization is expected to limit excess thrombosis and thus maintains proper hemostasis. The 

experiments in this dissertation are aimed at testing this hypothesis and elucidating the 

physiological importance of P2Y1 receptor desensitization. 

Materials and Methods 

Mouse studies 

P2Y1
-/- mice were purchased from Jackson Laboratories (Bar Harbor, ME) and bred to 

C57/BL6J mice (Jackson Laboratories) to maintain genomic heterogeneity. Mice were housed in 

hot-washed cages under a 12-h light/dark cycle and provided food and water ad libitum. All 

protocols and procedures were approved by the Institutional Animal Care and Use Committee 

(IACUC) at the University of North Carolina at Chapel Hill. 
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Reagents 

 The P2Y1 receptor agonist MRS2365 was purchased from Tocris Biosciences (Bristol, 

UK). The TxA2 receptor agonist U46619 was acquired from Cayman Chemicals (Ann Arbor, 

MI, USA). ADP, serotonin, and epinephrine-HCl were purchased from Sigma Aldrich (St. Louis, 

MO, USA). The phycoerythrin (PE)-labeled JON/A antibody was kindly provided by Dr. 

Wolfgang Bergmeier in the Biochemistry Department at the University of North Carolina at 

Chapel Hill. Monoclonal antibody against the hemagglutinin tag (Covance, Princeton, NJ, USA) 

was labeled with AlexaFluor 647 dye as previously described (Bergmeier et al., 2002). 

Human whole blood aggregation 

Adult human subjects (>18 years of age) weighing more than 110 pounds who had not 

donated blood within the previous 4 weeks were eligible for this study. Exclusion criteria were 

either pregnancy or ingestion of one of the following drugs within 72 hours of donation: aspirin, 

acetaminophen, ibuprofen, naproxen, or any other antiplatelet medications (e.g., clopidogrel, 

etc.). Enrolled subjects provided written informed consent. After sterilizing the arm and applying 

the tourniquet, an 18G needle was inserted into either the basilic or the cephalic vein depending 

on the anatomy of the subject. Blood was collected by gravity into a sterile 50 mL conical tube 

containing 3 mL heparin sulfate (100 U/mL) to a total volume of 30 mL. The blood-heparin 

mixture was gently inverted and placed at 37°C until further testing. 

For each sample, 500 µL of whole blood was combined with sterile 0.9% saline and 

incubated in a cuvette (Chrono-Log, Havertown, PA) containing a magnetic stir bar (Chrono-

Log) at 37°C for approximately 5 minutes. Prior to data acquisition, the samples were placed in 

the 592A aggregometer (Chrono-Log) and recorded for 1 minute to record baseline; any sample 

that did not pass the baseline was repeated until achieved. Drugs were added at either 19× or 20× 
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depending on the time of drug addition and number of adds for the sample. The data were 

recorded for 4 minutes after the final drug addition to allow for slower activation, and the final 

volume after all additions was 1 mL. 

Mouse whole blood aggregation 

Male and female mice were anesthetized under 3.5% isoflurane for 3-4 minutes with 

1.5% O2 and bled via retro-orbital capillary insertion into a microcentrifuge tube containing 30 

U/mL of heparin. Approximately 600 µL of blood per animal was collected, and blood from 

mice of the same genotype was pooled into a 15 mL conical tube, which was stored at 37°C. 

For each sample, 300 µL of whole blood was combined with sterile 0.9% saline and 

incubated in a cuvette containing a stir bar at 37°C for approximately 5 minutes. Prior to data 

acquisition, the samples were placed in the 592A aggregometer and the baseline recorded for 1 

minute; samples that yielded unstable baselines were repeated until achieved. The data were 

recorded for 4 minutes after the final drug addition to allow for slower activation, and the final 

volume after all additions was 1 mL. 

Washed mouse platelets 

Mice were anesthetized as previously described, and either 350 µL or 525 µL was 

collected via retro-orbital capillary insertion into a microcentrifuge tube containing 150 µL or 

225 µL, respectively, of 30 U/mL of heparin solution. After the mouse recovered, the blood was 

centrifuged at 130 g for 5 minutes with the brake off to maximize separation of the red blood 

cells and plasma layers. After transfer of the plasma layer and top of the RBC layer into a new 

microcentrifuge tube, the mixture was centrifuged at 100 g for 5 minutes with the brake off. The 

plasma layer was then collected and transferred into a fresh microcentrifuge tube, after which it 

was centrifuged at 700 g for 5 minutes. The supernatant was carefully discarded, and the platelet 
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pellet was resuspended in 1 mL of Tyrode’s buffer containing 1 mM Ca2+, 0.2 U/mL of apyrase 

(Sigma) and 2 µg/mL of prostaglandin (Cayman Chemicals). The platelets were incubated at 

37°C for 5 minutes and centrifuged at 700 g for 5 minutes. The supernatant was discarded, and 

the platelet pellet was resuspended in approximately 50-70 µL of Tyrode’s buffer containing 0.2 

U/mL of apyrase and 2 µg/mL of prostaglandin I2. To determine the platelet count, 1 µL of the 

platelet solution was diluted into 999 µL of sterile-filtered PBS, and 25 µL of this solution was 

run through the BD Accuri C6 flow cytometer (Becton Dickinson, San Jose, CA, USA). 

Mouse integrin activation 

Washed platelets were resuspended to a concentration of 5 x 108 per mL in Tyrodes 

buffer containing 1 mM Ca2+ and 0.2 U/mL apyrase as a concentrated platelet suspension. For 

each sample, 2.5 uL of platelets were added to Tyrode’s buffer containing 1 mM Ca2+. Each of 

the drugs added to the samples were made at 4 to 5× depending on the time of the drug addition 

and number of additions per sample. After the final drug addition (to bring the reaction volume 

to 25 µL), the samples were incubated at room temperature for 1 minute, after which 5 µL of 

phycoerythrin (PE)-labeled JON/A antibody was added to each sample to a final concentration of 

0.75 µg/mL. The samples were incubated for an additional 9 minutes at room temperature and 

diluted with 1 mL of sterile-filtered PBS to halt the reaction. The samples were read on the 

Accuri C6 until 10,000 events within the platelet-defined gate were collected. 

Statistical analysis 

 Data are presented as the mean ± standard deviation of the respective measurements. 

Two-way analysis of variance (ANOVA) was used to compare multiple groups. A p-value less 

than 0.05 was defined as statistically significant. All statistical analyses were performed using 

GraphPad Prism 6.0 (GraphPad Software, LaJolla, CA, USA). 
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Results 

P2Y1 vs. 5HT2A receptor desensitization in human platelets 

 To determine if previous desensitization of the P2Y1 receptor in washed human platelets 

could be recapitulated in whole blood, samples were pretreated with 3 µM MRS2365 for various 

amounts of time before adding 10 µM ADP. The results show that there is a similar loss of 

signaling capabilities in response to ADP following longer pretreatments of MRS2365 (Figure 2-

1) as was observed with washed platelets by Bourdon et al. The average half-life for 

desensitization of P2Y1 receptor signaling was 13.12 seconds. To determine if another Gq-

coupled receptor could desensitize on this time scale, platelets were pretreated with serotonin to 

activate the 5-HT2A receptor, followed at various time intervals by addition of epinephrine, 

which activates the Gz-coupled α2-adrenergic receptor. Unlike the P2Y1 receptor, the 5-HT2A 

receptor showed little to no desensitization upon pre-treatment with serotonin (Figure 2-1). 

Significant differences between the serotonin-pretreated platelets and MRS2365-pretreated 

platelets were observed at 15, 30, 60, and 120 seconds (p<0.05, p<0.01, p<0.0001, and p<0.01, 

respectively). After 2 minutes of serotonin pretreatment before addition of epinephrine, the 

platelets retained approximately 81% of the maximum serotonin-epinephrine response. This is 

significantly higher than the responsiveness of P2Y1-pretreated platelets (37% of maximum ADP 

response; p<0.01). These data suggest that desensitization of the P2Y1 receptor in platelets is 

specific to the P2Y1 receptor and does not occur with other Gq-coupled receptors. 

P2Y1 receptor desensitization in mouse platelets 

Mouse platelet aggregometry 

 Because of the difficulty in biochemically manipulating human platelets as well as the 

lack of a strong platelet-like cell culture system, the use of mice was considered necessary for  
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Figure 2-1. Gq-based desensitization in human whole blood aggregation. 
 
Platelets were pretreated with either 3 µM MRS2365 (P2Y1) or 10 µM serotonin 
(5HT2A) prior to the addition of 10 µM ADP and 5 µM epinephrine, respectively. 
The data are presented as the mean ± standard deviation of the percentage of the 
amplitude at 0 seconds of pretreatment. *p<0.05; **p<0.01; ****p<0.0001. N = 
6. 
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future experiments. To test the validity of a mouse model, washed mouse and human platelets 

were pretreated with MRS2365 for various amounts of time prior to the addition of ADP. The 

data show that mouse platelets desensitize to ADP activation in a similar rapid manner as human 

platelets (Figure 2-2), indicating that P2Y1 receptor desensitization also occurs in mouse 

platelets. To validate that the loss of aggregation was due to desensitization of the P2Y1 receptor 

in mouse platelets and not some other mechanism, a rescue experiment was performed using 

serotonin as an alternate activator of the Gq signaling pathway. As shown in Figure 2-3, the 

aggregation response to ADP was significantly decreased when the blood was pretreated with 3 

µM MRS2365 for 90 seconds (p<0.0001). Furthermore, when serotonin was co-administered 

with ADP, the loss of aggregation observed with the MRS2365 pretreatment was abolished. 

These same experiments were performed in P2Y1
-/- mice, which showed that the combination of 

ADP + serotonin was capable of promoting aggregation, whereas ADP alone was without effect. 

These results bolster the credibility of using mouse blood in place of human blood in studying 

the desensitization of the P2Y1 receptor in platelets. 

Flow cytometry-based integrin activation of mouse platelets 

 With the disadvantage of a low blood volume, studying hemostatic properties using mice 

can result in requiring large broods of animals with few data points. To bypass this limitation, an 

assay using flow cytometry and the JON/A monoclonal antibody, which binds specifically to the 

activated conformation of mouse integrin αIIbβ3, requires <300 µL of blood but can provide  

dozens of data points in triplicate. Thus, we assessed whether P2Y1 receptor desensitization 

could also be observed in washed platelets using this flow cytometry assay. Figure 2-4 shows 

that the mouse P2Y1 receptor in platelets desensitizes upon pretreatment with MRS2365 prior to 

the addition ADP in the flow cytometry assay. Although the loss of ADP-promoted activation of   
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Figure 2-2. Comparison of P2Y1 receptor desensitization in mouse and human 
platelets. 
 
Washed platelets from either mouse or human platelets were pretreated with 
MRS2365 prior to the addition of ADP. The data are presented as the mean ± 
standard deviation of the percentage of the rate of aggregation at 0 seconds of 
pretreatment. t1/2(mouse) = 21.25 sec; t1/2(human) = 18.72 sec. N = 12 for human; 
N = 9 for mouse. 

 
 

 
 

Figure 2-3. Whole blood aggregation response of mouse platelets. 
 
ADP, 10 µM ADP. 2365 à ADP, 90 second pretreatment of 3 µM MRS2365 
followed by 10 µM ADP. ADP/Sero, 10 µM ADP and 10 µM serotonin. 2365 à 
ADP/Sero, 90 second pretreatment of 3 µM MRS2365 followed by 10 µM ADP 
and 10 µM serotonin. The data are presented as the mean ± standard deviation of 
the percentage of the amplitude at 0 seconds of pretreatment. ****p<0.0001. N = 
6 for WT; N = 7 for P2Y1

-/-. 
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Figure 2-4. Measurement of mouse integrin activation using several secondary 
activators of platelet aggregation. 

	
MRS2365, 3 µM; ADP, 10 µM; 2365 à ADP, 90 second pretreatment with 
MRS2365 before ADP addition; Serotonin, 10 µM serotonin; Epi, 5 µM 
epinephrine; Sero+Epi, 10 µM serotonin and 5 µM epinephrine; Sero à Epi, 90 
second pretreatment with serotonin before epinephrine addition; U46619, 1 uM 
U46619; U46+Epi, 1 µM U46619 and 5 µM epinephrine; U46 à Epi, 90 second 
pretreatment with U46619 before epinephrine addition. **p<0.01. N = 5. 
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αIIbβ3 is decreased upon MRS2365 pretreatment and is significant (p<0.01), it is not as 

pronounced as the decrease observed in the whole blood and washed platelet aggregometry. 

Additionally, 90-sec pretreatment with either serotonin or U46619 (a stable thromboxane analog) 

did not show any loss of integrin activation after addition of epinephrine; interestingly, the 

U46619 pretreatment alone resulted in a significant increase in integrin activation (p<0.01) 

compared to the simultaneous addition of U46619 and epinephrine. Based on these results, we 

concluded that the JON/A flow cytometry assay was sufficient for measuring P2Y1 receptor 

desensitization. 

Discussion 

 Understanding the mechanism of receptor regulation has been an evolving and active area 

within the GPCR field. A large percentage of commercially available drugs currently target 

GPCRs, but elucidating how these proteins are regulated within different tissues could result in 

the development of more effective treatments. An example of this tissue-specific regulation is the 

P2Y1 receptor, which does not desensitize in cultured cell lines [e.g., HEK293, Madin-Darby 

canine kidney (MDCKs), and C6 glioblastoma cells] but desensitizes in platelets on the order of 

seconds. Furthermore, we show that this desensitization occurs in physiological blood conditions 

and is not observed with the 5HT2A receptor. 

 It was important to show that the loss of ADP-promoted platelet aggregation following 

pre-activation of the P2Y1 receptor occurs in the most physiologically relevant system available. 

The original study reporting this phenomenon used washed platelets (Bourdon et al., 2006), 

which are devoid of many plasma proteins and molecules. Here we quantify desensitization of 

the platelet P2Y1 receptor by measuring aggregation of washed platelets and in whole blood, as 

well as measuring platelet activation by flow cytometry with an antibody detecting the active 
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conformation of the αIIbβ3 integrin complex. Furthermore, we showed that P2Y1 receptor 

desensitization is observed in both mouse and human platelets, which opens the door for 

biochemical and genetic manipulation of mouse platelets. Interestingly, the degree of 

desensitization was dependent on the method used to quantify this phenomenon; the most 

striking difference was observed in the JON/A flow cytometry assay. Although we cannot say 

for certain why this is so, one possibility for the smaller levels of desensitization determined by 

flow cytometry is that the extremely high affinity of the JON/A antibody to the active 

conformation of the integrin αIIbβ3 complex may mask a graded aggegratory state of platelets. 

That is, the activation state of the αIIbβ3 integrins may be in conformational equilibrium, with 

the integrin shifting in and out of its active state. Following MRS2365 treatment, the αIIbβ3 

integrins could be rapidly fluxing in and out of the active state, but the high affinity of the 

antibody for the active conformation could irreversibly lock the integrin into its active 

conformation. Thus, the flow cytometry assay may not accurately reflect the actual number of 

integrin complexes that are stably activated and can bind fibrinogen in a temporal aggregation 

assay. Nonetheless, only pretreatment of mouse platelets with ADP showed any loss of maximal 

integrin activation and aggregation compared to pretreatment of platelets with 5HT2A- and TxA2-

selective agonists (followed by epinephrine to activate Gz-coupled α2-adrenergic receptors), 

suggesting that the desensitization of the P2Y1 receptor in platelets is unique in both mice and 

humans. 

Conclusions 

 The data presented here strongly support the claim that P2Y1 receptor desensitization is 

not only specific to this receptor compared to other Gq-coupled receptors expressed in platelets, 

but that this desensitization occurs in mouse platelets as well as human platelets. Furthermore, 
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the murine P2Y1 receptor shows similar specificity regarding desensitization compared to the 

other Gq-coupled receptors. Because of the observed desensitization activity using the labeled 

JON/A antibody, the flow cytometry assay can be used to measure this phenomenon using small 

populations of mouse platelets – this is critical for measuring integrin activity in platelets from a 

potential mouse model that introduces mutant P2Y1 receptors, as described in Chapter 3.  
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CHAPTER 3: OPTIMIZATION OF A VIRAL TRANSDUCTION MODEL TO EXPRESS 
MUTANT P2Y1 RECEPTORS IN BONE MARROW CELLS  
 

Introduction 

Model Systems 

 One of the overarching themes of scientific discovery is the understanding of the human 

body – development, function, and pathogenesis. Because of the ethics and complications 

involved to study diseases in humans, researchers rely on model systems to translate various 

biological processes to human analogs. Model animals can vary widely depending on the process 

studied, from Saccharomyces cerevisiae to zebrafish to primates. As the species being studied 

becomes more evolved, increasing ethical standards are applied, with all research institutions 

housing an internal committee known as the Institutional Animal Care and Usage Committee 

(IACUC) to oversee all animal research and work closely with government agencies to ensure 

animal safety and wellbeing. 

Regarding disease states and pathogenesis, the most prominent animal model is the 

common house mouse, as they breed rapidly and share approximately 90% of their genome with 

humans (Consortium et al., 2002). Although mice were initially used to determine cause and 

effect, genetic manipulation has allowed mouse models to become a powerful tool in a 

researcher’s repertoire. The earliest mouse studies involved the administration of a drug or 
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treatment followed by monitoring of vital signs and behaviors. However, the advent of genetic 

engineering of mice has allowed scientists to perform biochemical experiments in vivo and to 

study the effects of knocking out a specific protein in an animal versus in vitro cell culture, the 

previous standard method for understanding cell function upon loss of a gene product. First 

established in 1981, genetically modified mice were the perfect tool to translate test tube and 

bench science into possible therapeutic targets for clinical applications (Gordon and Ruddle, 

1981). Further developments by Oliver Smithies, Mario Capecchi and Martin Evans resulted in 

the ability to target specific genes within the genome to create “knock-out mice” (Thomas and 

Capecchi, 1987), a discovery that was awarded with the Nobel Prize in Physiology & Medicine 

in 2007. With the mouse genome fully decoded in 2002 (Consortium et al., 2002), the 

technology of genetically engineered mice has evolved from simple global gene knockout into 

sophisticated targeting that can control gene expression in specific tissues at predetermined 

times. 

The first instance of DNA modification in a mouse came from Jaenisch and colleagues in 

1974, who reported that when mouse embryos were injected with a DNA-based virus, the entire 

animal globally expressed the foreign DNA (Jaenisch and Mintz, 1974). However, these mice 

were incapable of passing the foreign DNA to their offspring, as the germ line was unaffected.  

Some years later, other researchers were able to inject purified DNA directly into the blastocyst 

of mouse embryos. This method not only proved successful in the incorporation of non-native 

DNA into the genome but also allowed for the passage of the DNA into the offspring of these 

transgenic animals (Brinster et al., 1981; Costantini and Lacy, 1981). DNA could be randomly 

inserted into the mouse genome to create modified mice that either expressed foreign proteins or 

overexpressed native proteins. 
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However, scientists were also interested in the physiological processes in animals lacking 

certain proteins. In 1987, two groups of researchers utilized homologous recombination to 

recombine large fragments of DNA into the native chromosome at the locus site. The design of 

the construct allowed for the selection of positively modified cells, but more importantly could 

be used to alter or eliminate a gene at its natural locus, thus creating “knock-out” mice. When the 

mouse genome was fully sequenced, scientists could knock out any gene they wished.  

One significant downside of global gene knockout is the limit to the types of genes that 

can be studied using this system. For example, genes essential for development and survival such 

as actin and β-arrestin are embryonic lethal if knocked out in a homozygous manner. This 

phenotype both excites and frustrates researchers, as reaching an understanding as to why these 

types of proteins are critical would be illuminating, but the optimal tool for studying their 

importance is unavailable. This changed when the Cre-recombinase mouse was created in 1992 

(Orban et al., 1992). Cre recombinase is an enzyme that targets a 10 base pair sequence (known 

as a loxP site) in the genome and cleaves it; however, the recombinase only functions when there 

are two loxP sites in relative proximity. When this is met, the enzyme cuts at the two loxP sites 

and “stiches” them together, thereby removing the intervening sequence. The creation of mice 

that express Cre recombinase in selective tissues provided a method to study a gene in a specific 

tissue type without affecting the other organ systems of the mouse and thus allowed researchers 

in many cases to leave the gene untouched in tissues that lead to the block in development. 

Another method of controlling gene expression in mice is the introduction of tetracycline-

controlled transcriptional activation. By introducing a tetracycline response element (TRE) 

directly upstream of the open reading frame of the gene, often the Cre recombinase, researchers 

can treat the mice with either doxycycline or tetracycline to either promote or inhibit gene 
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expression, depending on the design of the transactivator (tTA) protein. The “Tet-On” system 

only expresses the gene in the presence of the antibiotic, whereas the “Tet-Off” system prevents 

gene expression under the same conditions. The implementation of this system was first 

described in 1992 (Gossen and Bujard, 1992) and has been used to study developmentally 

required genes that are embryonic lethal. 

More recently, scientists have taken advantage of a bacterial defense mechanism known 

as CRISPR/Cas to rapidly create gene knock-outs, knock-ins, and other genetic manipulations in 

mice. This is a prokaryotic immune system that eliminates any inserted foreign DNA (e.g., 

bacteriophages, plasmids) and protects the bacterium from future attacks. CRISPR is a series of 

short repeating sequences separated by spacers that are generated by previous encounters with 

foreign DNA. When a CRISPR region is transcribed, the resulting RNA is used in conjunction 

with Cas9 (an endonuclease) to cleave the invading DNA or RNA. The precision of this system 

has allowed researchers to target specific regions in the mouse genome for excision to produce 

highly targeted deletions, insertions, or mutations at the native locus. 

Platelet study 

In studying different tissue types, most scientists use cell lines derived from the tissue in 

question and perform experiments in vitro to acquire a basic understanding of their particular 

interest before investing into animal models because cell culture is less expensive and can be 

more easily manipulated. However, there are several tissue types that do not lend themselves to 

cell culture, a prime example of which are platelets. Platelets are small anuclear protein sacs that 

arise from the maturation and breakdown of megakaryocytes in the bone marrow, a process 

described in more detail in Chapter 1. They have a life span of 7-10 days in the bloodstream and 

are incapable of mitosis. The closest cell culture model to platelets is the use of megakaryocyte 
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cell lines, which are primarily derived from cancer cells and have different protein expression 

patterns compared to mature platelets. Thus, platelet studies require the use of whole blood from 

either human subjects (which cannot be molecularly manipulated in the same manner as cell 

culture and are generally lacking in any sort of mutations) or animal subjects. Despite the fact 

that platelet-specific knockout mice can be generated using Pf4-Cre mice (Tiedt et al., 2007), 

there still remains an inability to study the effect of mutant proteins in platelet biology without 

creating a new mouse, which can be expensive both in cost and time. 

The study of bone marrow transplantation has helped to provide treatment options in 

patients suffering from blood diseases such as leukemia. Implementing total body irradiation 

(TBI) at specific doses and time intervals can successfully destroy the existing bone marrow 

without having a significant effect on other vital organs (e.g., heart, lung, brain). This procedure, 

combined with the introduction of healthy bone marrow cells, is the gold standard of treatment 

for leukemia and other blood disorders. This technique can also be performed in mice, allowing 

for the replacement of the original bone marrow with a different source of hematopoietic stem 

cells to either correct or introduce a novel population of blood cells. Because of advances made 

in culturing primary cells, it is now possible to remove bone marrow cells from a mouse and 

culture the cells in vitro to promote sustained (or even enhanced) pluripotent hematopoietic stem 

cell growth. Thus, the application of cell culture techniques with these primary cells may allow 

for the genetic manipulation of platelets that are usually afforded only to cell culture. 

Studies in our lab have focused on agonist-promoted internalization and the role of 

phosphorylation in this process in a variety of cultured cell lines (Qi et al., 2011). However, 

receptor desensitization is not observed in any of these cell lines with the rapidity observed in 

platelets, thus leading to the question of why P2Y1 signaling is drastically reduced seconds after 
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activation in platelets but not cell culture. Based on our data that phosphorylation of Ser residues 

in the C terminus of the P2Y1 receptor are critical for receptor internalization in cultures cell 

lines, we hypothesized that phosphorylation of Ser/Thr amino acids on the C-terminus also may 

play a crucial role in P2Y1 receptor desensitization observed in platelets. To test this hypothesis, 

a mouse model was developed to introduce mutant constructs of the P2Y1 receptor into platelets 

to study the effects of these mutations in a mouse system. Here, we highlight viral production 

efficacy, bone marrow culturing and transplantation procedures to maximize the uptake of virally 

transduced bone marrow into recipient animals as well as the functionality of platelets from 

successfully transduced chimeric mice. To best study the effects of the introduction of this 

protein, we are using mice that have a global P2Y1 receptor knockout to ensure that all measured 

effects are due to the introduction of this protein into the platelets. 

Materials and Methods 

Reagents 

 Dulbecco’s Modified Eagle medium containing 4.5 g/L glucose (DMEM-H), Iscove’s 

Modified Dulbecco medium (IMDM), fetal bovine serum (FBS), newborn calf serum (NCS) 

penicillin/streptomycin (P/S) and phosphate buffered saline (PBS) were obtained from Sigma-

Aldrich (St. Louis, MO, USA). The cytokines interleukin 3 (IL-3), interleukin 6 (IL-6) and 

murine stem cell factor (mSCF) were purchased from Peprotech (Rocky Hill, NJ, USA). 

Plasmids 

 The pMigRI (Addgene plasmid # 27490) and pCL-Eco (Addgene plasmid # 12371) 

plasmids were kindly provided by Dr. Wolfgang Bergmeier from the University of North 

Carolina at Chapel Hill. The multiple cloning site (MCS) of pMigR1 between 1411-1447 bp was 
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reconfigured to include the restriction sites (5’ to 3’) EcoRI, XhoI, BamH1 and NotI. The 

plasmids were verified by restriction enzyme digestion. 

Animals 

 C57BL/6 wild type mice and mice globally lacking the P2Y1 receptor (P2Y1
-/-) were 

acquired from Jackson Laboratories (Sacramento, CA, USA) and bred in house to maintain 

sufficient populations. P2Y1
-/- mice were backcrossed to wild type mice once a year to prevent 

excessive inbreeding and to create similar genetic backgrounds for comparison. The mice were 

housed in micro-washed cages under a 12-h light/dark cycle and provided food and water ad 

libitum. All protocols and procedures were approved by the International Animal Care and Usage 

Committee at the University of North Carolina at Chapel Hill. 

PCR and cloning of the mP2Y1 receptor 

 Genomic DNA from a wild type C57BL/6 mouse (Jackson Laboratory) was extracting 

using the PureLink Genomic DNA Mini kit (Invitrogen, Waltham, MA, USA) according to the 

manufacturer’s instructions. PCR was carried out using Pfu polymerase and the following 

primers: forward, 5’- GACTACGCGTTGAGTCTCTCGCCGCTGCT-3’; reverse, 5’- GACTCT 

CGAGTGCCTTCACAAACTCGTGTC-3’. The resulting fragment was purified and digested 

with MluI and XhoI (sites underlined in the aforementioned primers) prior to ligation into a 

pLXSN vector containing a hemagglutinin (HA) tag immediately upstream of the MluI site 

within the vector; this allowed for the addition of the HA tag onto the 5’ end of the P2Y1 

receptor. Once cloned into the pLXSN vector, it was subsequently digested with EcoRI and XhoI 

to allow for ligation into the pMigRI vector. After transformation into chemically competent E. 

coli, the bacteria were grown on LB agar plates containing carbenicillin to select for cells 

harboring the recombinant plasmids. Success of the insertion was verified by sequencing.  
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 To create a mutant form of the mP2Y1 receptor that lacked phosphorylatible residues on 

the C-terminus, we created two primers that mutated all Ser and Thr residues to Ala downstream 

of Thr339 (P2Y1 340-0P), as previous studies in cell culture systems had shown that 

phosphorylation of Ser and Thr on the C-terminus downstream of Thr339 is critical for agonist-

dependent internalization of the P2Y1 receptor (Qi et al., 2011). These primers incorporated the 

necessary point mutations, and the differences between the two receptors are illustrated in Figure 

3-1.  

Virus production 

 Virus production in cell lines requires that they express gag-pol to convert transfected 

plasmid into functioning virus. Because the gag-pol elements are located trans to the target 

plasmid, the virus is considered to be “replication incompetent”; that is, once the virus infects a 

cell, it is unable to complete the replication cycle after incorporating its DNA into the host cell 

genome. Here, we describe the procedure used to form virus and the optimal conditions that 

produce the greatest viral titer. We used the pMigRI retroviral plasmid as the target plasmid 

because it has been previously shown to transduce bone marrow cells. 

Cells 

 HEK293T cells that stably overexpress integrins αv and β3 (TAB22 cells) were kindly 

provided by Dr. John Olson from the University of North Carolina at Chapel Hill. The 

expression of these integrins allow for greater adherence of the cells to the culture dish compared 

to regular HEK293T cells, as viral production requires several liquid removal and application 

steps. TAB22 cells were grown in DMEM-H containing 10% FBS and 1× penicillin/ 

streptomycin (1× P/S) in a humidified incubator at 37°C with 5% CO2. 
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Figure 3-1. Differences in the C-termini of the wild type P2Y1 receptor and 
mutant 340-0P P2Y1 receptor. 
 
All Ser/Thr residues are indicated in red; all mutations created are shown in green. 
The PDZ domain is indicated in blue. 

  

FRRRLSRATRKASRRSEANLQSKSEEMTLNILSEFKQNGDTSL 
FRRRLSRATRKAARRAEANLQAKAEEMALNILAEFKQNGDAAL 

wt:	
340-0P:	
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Mouse 3T3 cells were kindly provided by Dr. Klaus Hahn at the University of North 

Carolina at Chapel Hill. These cells were grown in DMEM-H containing 10% FBS and 1× P/S in 

a humidified incubator at 37°C with 5% CO2. 

Transfection 

On day 1, 6.5-7 x 106 TAB22 cells were plated in a 10 cm tissue culture-treated dish (BD 

Falcon) and incubated overnight. One dish produces enough virus to infect 5 million bone 

marrow cells and ideally should be approximately 80-90% confluent the following day. On day 

2, a total of 30 µg of target and helper plasmid DNA was combined with 9 µg of VSVG in a 

solution containing 250 mM CaCl2 at a volume of 300 µL per 10 cm plate. The ratio of target to 

helper plasmid DNA was adjusted to determine the optimal conditions that would produce the 

best viral titer. The following ratios of pMigRI:pCL-Eco were tested: 1:1, 1.5:1, 2:1 and 2.5:1. 

To the CaCl2-DNA mixture, 300 µL of 2× HEPES-buffered saline (HBS) was added drop-wise 

and gently agitated to promote the formation of a Ca2+/DNA precipitate. After incubating at 

room temperature for 30 minutes, 600 µL of the DNA solution was added drop-wise to cells in a 

10 cm plate in which the media had been replaced with 6 mL of DMEM-H containing 6% FBS 

and 1× P/S. The plates were incubated overnight at 37°C in 5% CO2. On day 3, the media on the 

plates was replaced with 8 mL DMEM-H containing 2% FBS, 1× P/S and 10 mM sodium 

butyrate to promote virus production. 

Viral harvest 

 On day 4, the medium from the plate was collected and filtered through a 0.45 µm PES 

filter and spun at 5000 g for 22 hours at 4°C in a swinging bucket rotor. This slower speed 

allowed the virus to be concentrated without damaging the pCL-Eco vector-based protein 

coating, which is less stable than other protein coats. The resulting viral pellet was resuspended 
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in 1 mL of IMDM and either frozen at -80°C until further use or applied immediately to bone 

marrow cells. 

Viral titer testing 

 Mouse 3T3 cells were seeded at a density of 1.5 × 105 cells in a T-25 flask (Corning, 

source) in DMEM-H containing 10% FBS and 1× P/S and incubated overnight at 37°C with 5% 

CO2. The following day, the media was removed and replaced with 1.5 mL of DMEM-H 

containing 8 µg/mL of Polybrene, which neutralizes the repulsion charge on the cell surface and 

improves the infection rate, and one of the following volumes of concentrated virus: 500 µL, 250 

µL, 125 µL, or 50 µL. The cells were incubated at 37°C for 4 hours followed by removal of the 

virus and the addition of fresh DMEM-H containing 10% FBS and 1× P/S. The cells were then 

incubated for an additional 72 hours. 

 Prior to removal from the plates, the cells were imaged to qualitatively assess the 

infection efficiency of each treatment. After imaging, the cells were washed with PBS and 

treated with 5 mM EDTA in PBS to gently lift the cells from the plate. The cells were then 

centrifuged at 1200 rpm for 5 min and resuspended in 2 mL of PBS. These cells were then 

analyzed for GFP expression via the UNC flow cytometry core facility. 

Collection and enrichment of hematopoietic stem cells from bone marrow for viral 

infection 

 The two primary sources of murine hematopoietic stem cells are fetal livers (usually 

taken between E14-E18) and bone marrow cells (BMCs) of young adult mice (6-8 weeks). Here, 

we discuss the procedure used to collect and enrich BMCs to promote the pluripotency of HSCs. 

A full diagram of the process to collect, transduce and transplant these BMCs is shown in Figure 

3-2. 



80 

 

 
 

Figure 3-2. Schematic of mouse model system used to create chimeric mice 
expressing various types of P2Y1 constructs in platelets. 

	
The bone marrow from a P2Y1

-/- mouse is harvested (1) and plated in BMC 
medium containing IL-3, IL-6, and mSCF to promote pluripotency of 
hematopoietic stem cells. After incubation overnight, the cells are transduced with 
virus containing a plasmid that expresses both GFP and the P2Y1 construct of 
interest (2). Concurrently, recipient P2Y1

-/- mice are irradiated to deplete existing 
bone marrow (3) and administered antibiotics to assist in fighting infection. The 
majority of the transduced bone marrow cells are injected into the irradiated 
mouse (4), and the mice are allowed to recover for at least 4 weeks prior to blood 
cell measurement to determine the effectiveness of the engraftment. At 48 hours 
post injection, remaining BMCs are run on flow cytometry to determine the 
percentage of BMCs transduced (72 hours post-infection). 
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Bone marrow harvest 

 A C57BL/6 P2Y1
-/- mouse (aged 6-8 weeks) was anesthetized with 3.5% aerosolized 

isoflurane (source) until there was a lack of response from multiple toe pinches. The mouse was 

then cervically dislocated and sprayed with 70% ethanol prior to dissection. The skin and fur 

were stripped from the hind legs of the animal to expose the muscles, and the femur was 

dislocated from the hip socket. The legs were then cut away from the main body, and the feet 

were removed with scissors. The muscle tissue was gently stripped away from the bones using 

surgical scissors and a scalpel to avoid any damage to the bone. Once completely stripped, the 

patella was removed and discarded to produce a clean femur and clean tibia. The hip socket was 

then cut off to expose an opening on the lateral end of the femur, and a 25G needle on a 10 mL 

syringe containing wash buffer (PBS containing 2% NCS, sterile filtered) was inserted into one 

of the exposed openings on the ends of the femur or tibia. Approximately 2-3 mL of wash buffer 

was used to flush the bone marrow cells for each bone (maximum of 10 mL per animal) into a 

clean 10 cm plate. Prior to flushing, the bones were kept in BMC media (IMDM containing 10% 

FBS and 1× P/S, sterile filtered) on ice. 

 After flushing, the needle was replaced with an 18G needle, and the bone marrow 

suspension was siphoned several times to break up any large tissue clumps and to form a single 

cell suspension, which was then filtered through a 40 µm filter (BD Falcon). The plate was then 

washed 3 times with wash buffer and subsequently filtered. The suspension was centrifuged at 

420 g for 5 min, and the supernatant is discarded. The pellet was resuspended in ACK lysis 

buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA; pH 7.4) and incubated at room 

temperature for 5 minutes to lyse the red blood cells (RBCs). The reaction was halted with the 

addition of 5 mL of wash buffer, and the suspension was spun again at 420 g for 5 min. After the 
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supernatant was discarded, the cells were resuspended in BMC media containing the cytokines 

IL-3 (20 ng/mL), IL-6 (10 ng/mL) and mSCF (100 ng/mL) to promote the pluripotency of 

existing hematopoietic stem cells. The cells were then seeded in a volume of 2.5 mL at a density 

of 5 × 106 cells/mL (12.5 × 106 cells total) in a 12-well cell culture plate (BD Falcon). The cells 

were incubated overnight at 37°C with 5% CO2. 

Infection of bone marrow cells 

 Following overnight incubation, non-adherent BMCs were removed from the plates 

(including a single wash with PBS) and centrifuged at 700 g for 5 minutes. After removal of the 

supernatant, each well of recovered cells was resuspended either in concentrated virus or in 

BMC media alone (mock) containing IL-3, IL-6 and mSCF as well as 4 µg/mL of polybrene. The 

cells were plated into a new 12-well plate and centrifuged at 1500 g for 50 min (referred to as a 

“spinfection”). This centrifugation step compacts the cells into a single layer to promote more 

equivalent viral infection of all cell sizes. After centrifugation, the cells were incubated for 2.5 

hours at 37°C with 5% CO2, at which point 2 mL of BMC media containing the 3 cytokines were 

added to each well. The cells were then incubated overnight at 37°C with 5% CO2. 

 The following day, the non-adherent cells were collected and centrifuged at 700 g for 5 

min. After removal of the supernatant, the cells were then washed with 1 mL of PBS, from which 

200 µL of cells from each condition were set aside for flow cytometry analysis. The remaining 

800 µL was centrifuged at 700 g for 5 min, and the cells were resuspended in approximately 320 

µL of PBS for injections into irradiated recipient mice. The 200 µL fractions were replated into 2 

mL of BMC media containing the 3 cytokines in a 12-well plate and incubated at 37°C with 5% 

CO2 for an additional 48 hours. 
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Irradiation and transplantation of recipient mice with virally transduced bone marrow 

cells 

 The technique of total body irradiation (TBI) and bone marrow engraftment has been 

hailed as an effective treatment of patients with leukemia and other blood diseases. Although 

many animal studies that utilize this technique focus on graft-versus-host disease (GvHD) and 

relapse rates related to donor-recipient relationships, here we describe the application of this 

technique as it pertains to the ability of virally transduced bone marrow cells to successfully 

engraft irradiated mice. 

Preparation of animals 

 Approximately 2-4 days prior to bone marrow harvest, C57BL/6 P2Y1
-/- mice (aged 12-

13 weeks) were administered water containing 2 g/L of neomycin sulfate (source) as a 

prophylaxis for any potential infection that the animals might incur following irradiation. On the 

same day that the harvested BMCs were spinfected (day 0), the animals receiving the treated 

water were irradiated in an XRAD 400 X-ray irradiator to sufficiently kill bone marrow but 

allow for survival of animals receiving a bone marrow transplant. After irradiation, the animals 

were transferred to sterile caging and given irradiated food and autoclaved water treated with 2 

g/L of neomycin sulfate. 

 The following day, the irradiated mice were anesthetized with 3.5% aerosolized 

isoflurane for 3 min and maintained under anesthesia with 2% isoflurane. For each mouse, 

approximately 90-100 µL of resuspended transduced BMCs (as described above) were injected 

retro-orbitally into the right eye with a 32G insulin syringe (Becton Dickinson, Franklin Lakes, 

NJ, USA). The mice were allowed to recover until they regained their righting reflex and were 

monitored for 5 min after regaining consciousness. The mice were monitored daily for signs of 
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lethargy and weight loss, and the treated water was changed weekly. After 4 weeks of recovery, 

the animals were subjected to a retro-orbital bleed (50 µL) to determine platelet counts and 

estimate success of the engraftment. 

Fluorescence imaging 

 Mouse 3T3 cells were subjected to epifluorescence imaging 72 hours after initial 

infection. The plated cells were imaged on an IX70 inverted microscope (Olympus, Waltham, 

MA, USA) under bright field and excitation at 488 nm at 40× to detect GFP. 

Flow cytometry 

 To measure GFP expression in the 3T3 cells, samples were run on an Accuri C6 flow 

cytometer (BD Falcon). Untransduced cells served as a negative control to determine the 

fluorescence cutoff for positive GFP expression. The values are expressed as the average GFP 

fluorescence intensity and the percentage of GFP positive cells per group. A minimum of 10,000 

gated events were run per sample. 

Statistical Analysis 

 The fluorescence data collected from the flow cytometer is expressed as the mean 

intensity (confidence interval). The number of GFP+ cells is expressed as the mean percentage ± 

standard error of the mean (SEM) of the corresponding number of replicate experiments. 

Differences between the groups were analyzed using two-way analysis of variance (ANOVA), 

with a p-value < 0.05 set for statistical significance. All data were analyzed using GraphPad 

Prism 6.0 (GraphPad Software, LaJolla, CA, USA). 
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Results 

Insertion of a second gene alters the optimal ratio of target:helper plasmid 

To determine the optimal ratio of target:helper plasmid in TAB22 cell transfections that 

produce the highest viral titer, we tested 4 different ratios using pMigRI plasmids that contained 

no P2Y1 insert (empty vector, EV) or the wild type P2Y1 receptor (P2Y1 wt). We then graphed 

the overall percentage of GFP+ cells (Figure 3-3A) and the average GFP fluorescence intensity 

of these positive cells (Figure 3-3B). Transfections with the 1:1 ratio of target:helper plasmid 

with the EV had the highest titers (determined indirectly by quantifying the percentage of  

transduced 3T3 cells) and also produced the highest average GFP fluorescence compared to the 

other ratios, In contrast, transfections at a 1.5:1 ratio of target:helper plasmids were the most 

effective with plasmids expressing the P2Y1 receptor. Moreover, we observed a decreased 

average GFP fluorescence as well as a decreased percentage of transduced 3T3 cells. The drop in 

average GFP fluorescence for the P2Y1 virus compared to the EV virus is likely due to the 

bicistronic transcription of the plasmid containing the P2Y1 receptor gene construct, as more 

resources can be dedicated to the transcription of GFP in the EV virus. Thus, for the remainder 

of the experiments, the ratio of 1.5:1 pMigRI:pCL-Eco was used for all transfections for virus 

production. 

Mutating the C-terminal region of the P2Y1 receptor has no impact on viral transduction in 

3T3 cells 

 Next we sought to determine if mutations on the C-terminus of the P2Y1 receptor would 

have an impact on viral transduction in 3T3 cells. We produced concentrated viral stocks 

containing either the wild type or 340-0P mutant forms of the P2Y1 receptor parallel and 

transduced 3T3 cells with varying amounts of the virus. Figure 3-4A shows the microscope   
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Figure 3-3. Analysis of GFP+ mouse 3T3 cells 72 hours after viral transduction. 
 
A, Percentage of GFP+ cells. The cells (total number) were analyzed by flow 
cytometry and gated based on the population of untreated cells. The numbers in 
each column represent the ratio of pMigRI:pCL-ECO plasmid upon transfection 
of the TAB22 cells. B, Average fluorescence intensity of GFP+ cells. The 
numbers in each variable represent the ratio of pMigRI:pCL-ECO plasmid upon 
transfection of the TAB22 cells. EV, empty pMigRI vector; wt, pMigRI 
containing the P2Y1 wild type receptor. EV, empty pMigRI vector; wt, pMigRI 
containing the P2Y1 wild type receptor. 
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Figure 3-4. Qualitative and quantitative data of viral infection of mouse 3T3 cells. 
 
A, Fluorescence microscopy of transduced mouse 3T3 cells. (From left) Mock-
transduced, P2Y1 wild type-transduced, P2Y1 340-0P-transduced. B, Assessment 
of viral titer in mouse 3T3 cells. Varying amounts of concentrated virus were 
added to mouse 3T3 cells; after wash off, the cells were grown for 72 hours prior 
to GFP measurement. The values represent the percentage of cells that were 
GFP+. N = 4. 
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images under bright field and excitation at 488 nm of 3T3 cells infected with 500 µL of virus 

containing either of the two P2Y1 constructs. Qualitatively, both viruses show significant 

transduction compared to mock-treated cells. The quantitative measurements of the transduction 

percentages (as determined by flow cytometry) for the wild type and 340-0P P2Y1 viruses at the 

tested volumes are as follows: 500 µL, 50.94 ± 11.09 and 44.50 ± 15.83; 250 µL, 42.77 ± 11.76 

and 34.30 ± 13.95; 125 µL, 25.41 ± 10.24 and 22.13 ± 9.60; and 50 µL, 7.04 ± 2.44 and 10.58 ± 

5.00, respectively. The data show that the transduction efficiencies of both viruses are similar (p 

> 0.05 for all volumes), suggesting that differences in viral production or expression between the 

wild type and 340-0P P2Y1 constructs are likely to be negligible (Figure 3-4B). This is crucial, as 

differences in protein expression could alter any signaling data acquired downstream of receptor 

activation. 

Transduction of wild type and mutant P2Y1 receptor in primary bone marrow cells shows 

similar efficiencies 

 To assess the transduction efficiency of the virus into primary bone marrow cells, 

approximately 20% of the transduced BMCs were left in culture until 72 hours post-infection to 

measure the percentage of GFP+ cells. When analyzed by flow cytometry, there were 3 distinct 

cell populations within the bone marrow culture based on forward and side scattering. The 

population of the largest cells contains approximately 90-95% of the GFP+ cells; thus, this 

population was the only gate assessed. Cells transduced with virus containing either the wild 

type or 340-0P P2Y1 receptor showed similar percentages of successful transduction (11.37 ± 

1.35; 95% CI 8.25-14.50 and 11.40 ± 1.11; 95% CI 8.84-13.96, respectively), with only 0.60 ± 

0.14 of the mock-treated cells expressing GFP (95% CI 0.22-0.85, Figure 3-5A). Furthermore, 

the difference between the two treated groups and the mock group were statistically significant  
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Figure 3-5. Assessment of viral transduction in cultured bone marrow cells and 
recovered platelets. 
	
A, Percentage of GFP+ BMCs 72 hours after infection. Harvested cells were 
mock treated (white) or treated with virus containing pMigRI that expressed 
either P2Y1 wt (black) or P2Y1 340-0P (red). The values represent the percentage 
of cells in the target gate that were GFP+. ****p<0.0001. N = 9. B, Percentage of 
GFP+ platelets collected from mice 4 weeks after injection with bone marrow 
cells virally transduced with pMigRI vectors containing either P2Y1 wt (black) or 
P2Y1 340-0P (red). The values represent the percentage of platelets in the target 
gate that were GFP+. N = 4. 
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(p < 0.0001 for both comparisons). These data are indicative that the virus is able to successfully 

transduce the bone marrow cells in culture and that 10% of the target BMCs that were injected 

into the irradiated mice contain the plasmid. 

GFP expression in platelets from mice transplanted with virally transduced bone marrow 

 Blood samples from mice receiving either mock-treated or transduced BMCs were 

collected 4 weeks after the procedure to measure the platelet count and determine the percentage 

of GFP+ platelets. Figure 3-5B shows that the mean percentages of the platelets positive for GFP 

were similar between the wild type and 340-0P-transduced bone marrow transplanted into 

irradiated recipients (9.51 ± 3.76 and 6.60 ± 1.70, respectively; p > 0.05). This indicates that, 

although lower than the observed percentage of transduced bone marrow cells, HSCs were 

successfully infected with the plasmid DNA and produced platelets that expressed GFP. 

Integrin activity of virally transduced platelets 

Validation of model system 

 With a standardized assay in place, we moved forward in implementing an optimized 

chimeric mouse model introducing the P2Y1 receptor into platelets via viral transduction of bone 

marrow cells from P2Y1
-/- mice. We determined if viral transduction of bone marrow cells of the 

pMigRI sequence (and expression of the GFP reporter protein) would impact purinergic 

signaling in platelets. Following the viral transduction procedure, we obtained one chimeric 

mouse with transplanted bone marrow cells transduced with the empty vector (EV mouse) and 

another chimeric mouse transplanted with bone marrow transduced with the vector expressing 

the HA-tagged P2Y1 receptor (P2Y1 wt mouse). The limited number of transduced mice made 

solid conclusions difficult, but preliminary data with the few mice that were transduced showed 

that the platelets from the EV mouse did not activate αIIbβ3 in response to ADP regardless of  
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Figure 3-6. Comparison of ADP responses in virally transduced platelets. 
 
Preliminary data compares ADP-based integrin activation of P2Y1

-/- mice grafted 
with bone marrow cells transduced with virus containing the pMigRI vector 
expressing either empty vector (EV mouse) or the wt P2Y1 receptor (P2Y1 wt 
mouse). *p<0.05; ****p<0.0001. 
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GFP expression (Figure 3-6). Likewise, GFP- platelets from the mouse transduced with the P2Y1 

wt virus also did not activate αIIbβ3 in response to ADP. In contrast, GFP+ platelets from these 

same mice showed significant integrin activation in response to ADP compared to both GFP+ 

buffer-treated platelets and GFP- ADP-treated platelets (p<0.0001 for both comparisons). Based 

on these preliminary data, we proceeded with the introduction of mutant P2Y1 receptors. 

Activity of transduced P2Y1 receptors 

Mouse BMCs were transduced with either HA-WT P2Y1 receptor or HA-340-0P receptor 

and transplanted back into irradiated mice. From this procedure, there were three successful 

chimeras obtained: one that expressed the HA-WT-P2Y1 receptor and two that expressed the 

HA-P2Y1-340-0P receptor. Figure 3-7 shows the response of platelets from the different chimeric 

mice to MRS2365 and ADP. None of the GFP- platelets in any of the chimeric mice activated 

αIIbβ3 integrin in response to any of the treatments; in contrast, the GFP+ platelets in the HA-

WT chimera were capable of activating integrin αIIbβ3 in response to ADP but not MRS2365 as 

expected. Unexpectedly, the GFP+ platelets from both HA-P2Y1-340-0P mice showed significant 

integrin activation in response to MRS2365 alone compared to the HA-WT-P2Y1 GFP+ platelets 

treated with MRS2365 (p<0.0001). ADP-promoted αIIbβ3 integrin activation in the HA-P2Y1-

340-0P GFP+ platelets was 60% higher than that of the HA-WT GFP+ platelets (p<0.0001). 

These preliminary data strongly suggest that the P2Y1-340-0P mutant receptor stimulates the Gq 

signaling pathway better (or longer) compared to the wild type receptor.  

 An additional caveat of these experiments is that the highest ranges of receptor 

expression within the GFP+ population could account for the increased responsiveness to ADP 

and MRS2365. To account for this possibility, we repeated these experiments in the presence of 

PE-labeled JON/A and Alexa467-labeled anti-HA antibodies and performed flow cytometry 
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Figure 3-7. Raw preliminary results of purinergic activation of platelets with 
mutant P2Y1 receptors. 
	
Data show responses from a BL/6 mouse (N = 1) and P2Y1

-/- mice transplanted 
with bone marrow transduced with virus expressing either the wt HA-P2Y1 
receptor (N = 1) or the HA-340-0P mutant receptor (N = 2). The data are 
presented as the mean ± standard deviation of the raw fluorescence values. 
****p<0.0001. 
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simultaneously measuring the two fluorophores; we then binned platelets based on the levels of 

HA antibody binding. We first selected platelets expressing WT P2Y1 receptors that activated 

αIIbβ3 integrins to the same level as native platelets, and used the range of HA antibody binding 

from the selected set to bin P2Y1-340-0P-expressing platelets that expressed the same levels of 

receptor. Using these sets of selected platelets, we observed that integrin activation in response to 

MRS2365 in the HA-P2Y1-340-0P receptor-expressing mice was approximately the same as the 

response to ADP in both a BL/6 wild type mouse and the HA-WT-P2Y1 receptor mouse (Figure 

3-8). Furthermore, the ADP response in HA-P2Y1 340-0P receptor-expressing mice was twice 

that observed in platelets from BL/6 wild type or HA-WT-P2Y1 receptor-expressing mice. These 

data provide a basis for the possibility that, at native levels, mutating several Ser and Thr 

residues on the C-terminus of the P2Y1 receptor could result in platelets that are more sensitive 

to nucleotide-based integrin activation. 

 Due to the capacity of MRS2365 alone to activate αIIbβ3 integrins in platelets expressing 

the HA-P2Y1-340-0P receptor, we ascertained the concentration-response relationship for 

MRS2365 to determine the potency of the agonist and to determine if any differences could be 

observed between the two mutant receptor chimeric mice. Both mice showed similar EC50 values 

(13.3 nM for 3386 and 10.8 nM for 3387), and the difference between the efficacies was 

insignificant (Figure 3-9). Additionally, the HA-WT mouse showed no response to 3 µM 

MRS2365, which was shown to be a maximal concentration for both HA-P2Y1-340-0P receptor-

expressing mice. 

 To determine whether the increased activity of ADP and MRS2365 observed in GFP+ 

chimeric platelets as detailed above was due solely to activation of the P2Y1 receptor or a  
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Figure 3-8. Gated preliminary results of purinergic activation of platelets with 
mutant P2Y1 receptors. 
 
Data from a BL/6 mouse (N = 1) and P2Y1

-/-mice transplanted with bone marrow 
transduced with virus expressing either the wt HA-P2Y1 receptor (N = 1) or the 
HA-340-0P mutant receptor (N = 2) based on GFP and HA-antibody correlation 
between the BL/6 response and HA-WT response. The data are presented as the 
mean ± standard deviation of the raw fluorescence values. **p<0.01; ***p<0.001; 
****p<0.0001. 

 
 

 
 

Figure 3-9. MRS2365 dose response of GFP+ chimeric P2Y1
-/- platelets. 

 
Platelets expressing either HA-WT P2Y1 (3385_wt) or HA-340-0P P2Y1 
(3386_340-0P, 3387_340-0P) were treated with multiple doses of MRS2365. The 
data are presented as the mean ± standard deviation of the raw fluorescence 
values. The calculated EC50 values for the two HA-340-0P chimeras were 13.3 
nM (3386) and 10.8 nM (3387). 
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Figure 3-10. Purinergic platelet activation in the presence of MRS2500. 
 
A, Preliminary data showing inhibition of ADP-induced integrin activation in 
BL/6 wt mice (N = 3) and binned GFP+ chimeric P2Y1

-/- platelets expressing 
either HA-WT P2Y1 (N = 1) or HA-340-0P P2Y1 (N = 1) using the P2Y1-
selective antagonist MRS2500 (30 uM). The data are presented as the mean ± 
standard deviation of the raw fluorescence values. B, Preliminary data showing 
inhibition of MRS2365-induced integrin activation in BL/6 wt mice (N = 3) and 
binned GFP+ chimeric P2Y1

-/- platelets expressing either HA-WT P2Y1 (N = 1) or 
HA-340-0P P2Y1 (N = 1) using the P2Y1-selective antagonist MRS2500 (30 uM). 
The data are presented as the mean ± standard deviation of the raw fluorescence 
values. ****p<0.0001. 
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combination of other signaling pathways, platelets were pretreated with 30 µM MRS2500, a 

P2Y1-selective antagonist, prior to addition of ADP or MRS2365. For the ADP-treated platelets, 

30 µM MRS2500 blocked approximately 90% of the signal in the BL/6 wild type mice but only 

59% and 42% of the signal in the HA-WT and HA-340-0P mice, respectively (Figure 3-10A). 

For the MRS2365-treated platelets, only the HA-340-0P mouse showed integrin activation, and 

this response was antagonized by approximately 87% in the presence of MRS2500 (Figure 3-

10B). These data suggest the increased integrin activation upon MRS2365 treatment occurs 

through the mutant P2Y1 receptor alone. 

Variability of transplantation in mouse groups 

The complexity of transducing BMCs is further confounded by differences among the 

responsiveness of mice to the irradiation procedure. Initial tests used two doses of 450 cGy, but 

control mice not receiving a transplant survived, indicating that the dose was insufficient for full 

bone marrow death (data not shown). A dose of 1200 cGy was determined empirically for the 

P2Y1
-/- mice. Table 3-1 summarizes the survival and GFP expression in platelets of mice injected 

with transduced BMCs. The first several rounds of irradiation and transplantation treatments 

through 2013 showed good survival but highly variable GFP transduction into platelets, with a 0-

100% success rate in surviving transduced animals. However, under the same conditions with 

P2Y1
-/- mice having the same lineage as their predecessors, none of the 33 mice transplanted 

after February 2014 survived past 19 DPT, suggesting that the radiation dosage was too strong 

for the transplanted cells to overcome. Another empirical test was performed to reestablish the 

appropriate dosage, which was determined to be 950 cGy (data not shown). Unfortunately, the 

two sets of transplanted mice irradiated at this lower dose still showed low survival (37.5% and 

14.3%), with none of the surviving mice expressing GFP+ platelets. The repetitive failures with  
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Date Irradiation 
dose 

Transduced 
mice 

4-wk 
survival 

>2% 
GFP+ 

platelets 

6-wk 
survival 

>2% 
GFP+ 

platelets 
10/30/12 1200 cGy 6 6 2 6 2 

2/5/13 1200 cGy 12 11 2 11 2 
3/20/13 1200 cGy 5 5 5 N/A N/A 
7/16/13 1200 cGy 12 12 6 N/A N/A 
9/16/13 1200 cGy 6 6 4 5 4 

12/21/13 1200 cGy 4 4 0 4 0 
2/6/14 1200 cGy 8 8 1 7 0 
3/11/14 1200 cGy 6 0 N/A N/A N/A 
3/18/14 1200 cGy 7 0 N/A N/A N/A 
3/28/14 1200 cGy 8 0 N/A N/A N/A 
5/5/14 1200 cGy 5 0 N/A N/A N/A 
6/9/14 1200 cGy 7 0 N/A N/A N/A 
1/21/16 950 cGy 8 3 0 3 0 
2/26/16 950 cGy 7 1 0 1 0 

 
Table 3-1. Summary of irradiation treatments and survival of mice transplanted 
with transduced BMCs.  
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the multiple groups of mice that were irradiated and transplanted highlight the difficulty in using 

this model testing the different transduced P2Y1 receptors. 

Discussion 

 The ability to study mutant proteins in an environment conducive to platelet function is 

challenging and cumbersome. Between the lack of culturing techniques and the monetary and 

temporal expense of mouse engineering, there are limited options in using biochemistry to 

determine the effects of a mutant protein within a native platelet system. Here, we optimized 

several established techniques to produce a viable mouse model that stably expresses one of two 

types of P2Y1 receptor in live platelets to be assayed for activity and expression. The entire 

process of viral transduction of HSCs prior to transplantation has been developed by Mark Kahn 

at the University of Pennsylvania; however, maximizing virus production and infection is critical 

in targeting the 0.01% of HSCs within the bone marrow population to consistently produce 

platelets that express the protein of interest. 

 The ratio between the targeted plasmid and enveloping plasmid is critical to ensure that 

there is neither an excess of envelope nor plasmid within the production cells. As the transfection 

of large quantities of DNA could damage the production cells, 39 µg was set as the maximum 

amount, with 9 µg as a fixed volume of VSVG. Thus, the remaining 30 µg was separated into 4 

ratios, with the amount of target plasmid gradually increasing. For the 3T3 cells infected with 

empty vector, the percentage of infected cells as well as the average fluorescence intensity 

decreased inversely with the target:helper ratio. This effect was also observed with the cells 

infected with virus containing the P2Y1 wild type receptor, but the 1:1 ratio showed the lowest 

percentage of infected cells as well as the lowest average fluorescence intensity. Based on these 
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results, we decided to proceed as using the 1.5:1 target:helper ratio (i.e., 18 µg pMigRI:12 µg 

pCL-Eco) for all subsequent experiments. 

 With the virus production in place, we then sought to determine if the 340-0P construct of 

the P2Y1 receptor would have any effect on either the virus transduction or the expression levels 

in mouse 3T3 cells. We transduced cells with multiple volumes of virus containing either the 

wild type or 340-0P construct of the P2Y1 receptor and observed that the transduction 

efficiencies were similar as measured by the percentage of GFP+ cells. However, the average 

fluorescence intensities of the positive cells were highly variable within each transduction group 

(data not shown); this could be attributed to the health of the targeted cells, the location of the 

inserted DNA (insertions into active parts of the genome would express higher levels than those 

going into silent parts of the genome), and the number of copies integrated per infection. Despite 

the high variability, both the wild type and 340-0P P2Y1 constructs exhibited a minimum of a 5-

fold increase in average fluorescence compared to either the mock-transduced or untreated cells 

(data not shown). This fluorescence increase supported the notion that transduced cells could be 

easily separated from non-transduced cells by measuring GFP levels. 

 The critical phase of this optimization was the transduction of harvested BMCs from 

mice. Retroviral transduction only affects actively dividing cells, which can skew the 

transduction efficiencies due to the mitotic rates of different hematopoietic subpopulations. As 

the target population of HSCs is approximately 0.01% of all bone marrow cells, collecting a 

sufficient population and treating with a substantial amount of virus increases the likelihood of 

transduction into these pluripotent cells. In measuring GFP expression in a subset of BMCs that 

were not transplanted, we observed distinct subpopulations based on cell size and complexity. 

The gate denoting larger, more complex cells contained the majority of the GFP-expressing cells 
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and was thus used as the primary marker for detecting GFP measurement. With the cell counts 

nearly identical in both treatment groups as well as the mock control group, our data showed that 

approximately 11% of the selected gated cells were successfully transduced as measured by GFP 

expression. Both the wild type and 340-0P P2Y1 receptor constructs had highly similar 

transduction rates and 95% CIs. Furthermore, the percentage of GFP expression was over 18-

fold higher than that of the control BMCs. These data indicate that retroviral transduction of 

BMCs using the transfection parameters and viral concentration is effective.  

 Our data show that approximately 7-9% of platelets in irradiated mice that received a 

bone marrow transplant containing experimentally transduced cells were GFP+. A non-

transplanted mouse will succumb to immunodeficiency between 10 and 20 days after a lethal 

irradiation dose. During that time, the injected BMCs will uptake to bone and proliferate to 

replace the dying cells. Platelet production and release from mature megakaryocytes takes 

approximately 4-10 hours (Patel et al., 2005); therefore any platelets observed 4 weeks after 

irradiation and implantation are derived from the transplanted bone marrow. Although the BMC 

transduction rate was approximately 11% for both P2Y1 constructs, the lower GFP+ rate in 

platelets may be attributed to the lineage of transduced cells at the time of infection, i.e., 

lymphoid progenitors, myeloblasts, and other BMCs downstream of the pluripotent 

hematopoietic stem cells may account for a large percentage of the observed GFP+ cells in the 

BMC measurements. However, the existence of GFP+ platelets indicates that a small number of 

hematopoietic stem cells were successfully transduced and produced GFP+ megakaryocytes, 

which would give rise to the positive platelets. 

Our preliminary data with the chimeric mouse model showed that introduction of the 

P2Y1 receptor into bone marrow cells via viral transduction restores the capacity of ADP to 
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activate integrin αIIbβ3 in receptor-expressing platelets. These data also showed that expression 

of GFP alone had no influence on platelet activation by ADP. Despite having data from only 2 

test mice regarding the effectiveness of the mouse model, the data were compelling enough that 

we moved forward with creation of chimeric mice to measure the integrin activation of platelets 

expressing mutant P2Y1 receptors. There were a total of three successfully transduced mice: one 

mouse expressed the HA-P2Y1 wild type receptor, and two mice expressed the HA-P2Y1-340-0P 

receptor. The analyses of platelets from these mice were surprising: whereas integrin activation 

in platelets expressing the WT HA-P2Y1 receptor was essentially identical to those from native 

C57BL/6 mice, we unexpectedly observed integrin activation in platelets expressing HA-P2Y1-

340-0P receptors platelets in response to MRS2365 alone.  

One explanation for these results was that these platelets express very high amounts of 

mutant receptors, as overexpression of even WT P2Y1 receptors is known to make platelets 

hyperaggretory (Hechler et al., 2002). Therefore, we sorted the flow data to reflect platelets with 

the lowest expression of WT and mutant receptors, and the MRS2365-promoted integrin 

activation was still observed in the HA-P2Y1-340-0P transduced platelets. These results suggest 

that specific Ser and/or Thr residues in the C-terminus of the P2Y1 receptor are involved in 

receptor desensitization, and that mutations in these residues are capable of bypassing the 

otherwise required activation of Gi-coupled signaling to induce integrin activation, a feat that has 

not been observed previously in platelets. Because we believe that this mutant receptor is 

incapable of desensitizing, the continued signaling of the P2Y1 receptor results in increased 

activation of CalDAG-GEF1 that can overcome the baseline RASA3 GAP activity without a Gi 

signaling pathway, as evidenced by activated integrin αIIbβ3 in the presence of MRS2365 alone. 
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To clarify that the observed activation of integrins using the P2Y1-selective agonist was 

not due to off-target effects, platelets were treated with the P2Y1-selective antagonist MRS2500. 

In the presence of 30 µM MRS2500, over 90% of the integrin activation observed with 10 µM of 

ADP in BL/6 wild type platelets was inhibited; however, only 59% and 42% of integrin 

activation was inhibited in the HA-WT and HA-340-0P platelets, respectively. The inability of 

MRS2500 to block integrin activation in the chimeric platelets likely reflects the increased 

expression of P2Y1 receptors in these platelets following viral transduction; that is, there was not 

enough MRS2500 to fully inhibit a 10 µM dose of ADP in the chimeric platelets. Based on 

Gaddum’s equation, approximately 8% of receptors in platelets from C57BL/6 mice would not 

be inhibited at the concentrations of ADP and MRS2500 used. As the chimeric platelets likely 

have much higher variability in P2Y1 receptor expression, it appears likely that the receptor 

number on some of the platelets is significantly higher than the reported native expression levels 

(Hechler et al., 2002). Regarding the partial inhibition of ADP-treated HA-340-0P platelets, there 

are three possibilities: 1) increased sensitivity of the P2Y1 receptor may result in increased 

integrin activation with fewer receptors, 2) the receptor is expressed at higher numbers on the 

membrane, or 3) the remaining activity acts through other signaling pathways independent from 

P2Y1. However, inhibition of MRS2365-induced integrin activation in the HA-340-0P platelets 

with the same concentration of MRS2500 indicates that the observed activity operates primarily 

through the P2Y1 receptor. 

A considerable limitation to this procedure is the extreme variability in the penetrance of 

successfully transplanted and transduced BMCs that convey GFP expression to platelets. Though 

the data from the available chimeric mice are compelling, no definitive conclusions can be drawn 

from these studies as only a single HA-P2Y1-WT and two HA-P2Y1-340-0P mice were 
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successfully created, which are insufficient numbers to make a strong statistical conclusion 

regarding the differences in activity. Furthermore, these chimeric mice deteriorated before any 

other experiments could be performed, namely treatments in the presence of a P2Y12 receptor-

selective antagonist to eliminate any influence of the P2Y12 receptor on the signaling of the 

transduced P2Y1 receptors. Power calculations based on the preliminary data revealed that a total 

of 6 mice for each chimeric genotype were necessary for the data to hold any statistical 

significance. Unfortunately, multiple attempts to create additional chimeric mice were 

unsuccessful.  

Of the 14 groups of mice subjected to the transplantation procedure, only three groups 

had more than 50% of the animals producing GFP+ platelets. Of these groups, two of them were 

further subjected to an additional harvest and transplantation into a second set of irradiated mice, 

a procedure termed second-generation transplantation. The original goal was to sort the GFP+ 

BMCs from the successful mice to produce mice that produced >90% of GFP+ platelets; this 

would allow for more uniform activation responses. However, all mice receiving sorted GFP+ 

BMCs died within 7 days after receiving the transplant. This procedure has been successful with 

introducing a mutant CalDAG-GEF1 protein into platelets (Stolla et al., 2011), but only 4 mice 

were produced in this publication. Based on these exciting data, we attempted to repeat the 

generation of chimeric mice using the same protocol, but unfortunately all subsequent attempts 

were unsuccessful. While the number of chimeric mice tested did not have enough statistical 

power to make meaningful conclusions, these preliminary data were provocative and provided 

the impetus to create knock-in mice expressing the HA-P2Y1-340-0P receptor using 

CRISPR/Cas technology. These experiments are described in Chapter 4. 



105 

Conclusions 

 With the success of these optimization experiments, the protocol tested the functionality 

and activity of platelets derived from transduced BMCs expressing either wild-type or 340-0P 

P2Y1 receptors. Introduction of the wild type receptors should elicit a restoration of function and 

serve as a control for the unknown properties of the 340-0P receptors. Because of the low GFP+ 

rate in platelets, large numbers of mice are necessary to best elucidate any possible changes in 

signaling and/or activation of the mutant receptor. 

The three chimeric mice produced provide a small glimpse into the importance of Ser 

and/or Thr residues on the C-terminus of the P2Y1 receptor in platelet activation and regulation. 

Mutation of these residues results in integrin activation following activation of only the P2Y1 

receptor, which is not observed in wild type platelets. Unfortunately, the extremely high failure 

rate of the multiple injection groups hinders the use of this mouse model to study P2Y1 receptor 

desensitization. However, the preliminary data give credence to generating knock-in mice to 

better understand the physiological consequences of P2Y1 receptor desensitization.  
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CHAPTER 4: VIABILITY AND PLATELET CHARACTERISTICS OF P2Y1 
RECEPTOR KNOCK-IN MICE CONTAINING MUTATIONS ON THE C-TERMINUS 
 

Introduction 

 Data from Chapter 3 strongly suggest that mutation of Ser and Thr residues downstream 

of Thr339 in the P2Y1 receptor (“HA-P2Y1-340-0P”) has a significant impact on platelet 

aggregation. Unfortunately, multiple attempts to repeat the generation of chimeric mice were 

unsuccessful, thereby limiting the statistical power of the experiment due to too few mice 

available for testing. Moreover, it was apparent from our analyses that viral transduction of WT 

and mutant P2Y1 receptors into bone marrow cells resulted in a high variability of receptor 

expression in platelets, which confounded the interpretation of the experiments. Therefore, we 

proceeded with generation of a knock-in mouse expressing the HA-P2Y1-340-0P receptor. 

Although time consuming initially, replacing the coding region of the native allele with the 

coding sequence containing the mutations would allow for physiological expression levels of the 

mutant receptor and provide more accurate data on how this mutation affects platelet activity. 

Because the mutant receptor also contains an HA tag on the N-terminus of the receptor, a second 

knock-in mouse with an HA tag on the N-terminus of the wild type P2Y1 receptor was also 

created to determine if the HA tag alone has any effect on ADP-induced platelet activation, as 

well as providing the means to assess receptor expression using an anti-HA antibody. 
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Materials and Methods 

Cloning of mP2Y1 locus for genomic translocation 

 To integrate the hemagglutinin (HA) tag into the locus of the P2Y1 receptor, the 

previously cloned mP2Y1 receptors (the wild type receptor and receptor containing 12 point 

mutations to create the 340-0P mutant as described in Chapter 3) were used as templates for 

overlap extension PCR to combine the HA-P2Y1 receptor coding sequence (either WT or 

mutant) from the pMigRI vector with the 1560-bp section immediately upstream of the start 

codon of the P2Y1 receptor in the chromosomal locus. The primers used are listed in Table 4-1. 

The upstream genomic sequence was amplified from C57BL/6 genomic DNA and the coding 

sequences of the mutant and wild type P2Y1 receptors were amplified from the respective 

pMigR1 plasmids, the fragments were purified, and then the two coding sequences were 

combined with the upstream genomic sequence in separate reactions and amplified with the 

outside primers to produce single bands of 2727 bp. As the outside primers contained a SacI 

(fwd) or BamHI (rev) at their 3’ ends, the fragments were digested with SacI and BamHI and 

cloned into similarly digested pUC18. To clone the region downstream of the P2Y1 receptor 

coding sequence, the appropriate primers from Table 4-1 were used to amplify the sequence 

from C57BL/6 genomic DNA; these primers contained on their 5’ends a BamHI site (fwd 

primer) and an SphI site (rev primer). The fragment was digested with these enzymes and cloned 

into similarly digested wild type and mutant plasmids generated above to yield the final 

contructs. Colonies were identified by digestion with MluI and XbaI; the correct digestion 

produces bands of 3328 bp, 2447 bp, and 1174 bp. Selected colonies were confirmed by 

sequencing with the primers listed in Table 4-1. 
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Primer Fwd/ 
Rev Sequence 

Primers for generating P2Y1 receptor targeting construct 

To amplify genomic DNA 
upstream of P2Y1 receptor 
coding sequence 

Fwd 5’-ACTGGAGCTCCCCTCAACAAATGAACCCTCT-3’ (SacI site 
bolded/underlined) 

Rev 5’-TGGACGCGTAGTCGGGCACGTCGTAGGGGTACATCCTC 
TTCTTTCCAACTCAG-3’ (MluI site bolded/underlined) 

To amplify the HA-tagged P2Y1 
receptor coding sequence 

Fwd 5’-GAGTTGGAAAGAAGAGGATGTACCCCTACGACGTGC-3’ 

Rev 5’-AGTCGGATCCTTCACAAACTCGTGTCTC-3’ (BamHI site 
bolded/underlined) 

To amplify the HA-tagged P2Y1 
-340-0P receptor coding 
sequence 

Fwd 5’-GAGTTGGAAAGAAGAGGATGTACCCCTACGACGTGC-3’ 

Rev 5’-AGTCGGATCCTTCACAAAGCCGCGTCTCC-3’ (BamHI site 
bolded/underlined) 

To amplify genomic DNA 
downstream of P2Y1 receptor 
coding sequence  

Fwd 5’-ACGAGGATCCTAGCTCCTGAGTTTTG -3’ (BamHI site 
bolded/underlined) 

Rev 5’-ACTGGCATGCCCTACTGGGCACAAAGGTTG-3’(SphI site 
bolded/underlined) 

Primers for sequencing P2Y1 receptor targeting construct 
pUC rev primer Fwd 5’-GAGCGGATAACAATTTCACACAGG-3’ 

Seq751 Fwd 5’-CTCTGCTTCCAGAGGCCA-3’ 

Seq1542 Fwd 5’-AGCTGCCTGAGTTGGAAAGA-3’ 
Seq2341 Fwd 5’-CTGGACAACTCTCCGCTCC-3’ 
Seq3140 Fwd 5’-TCTATCCTTTAAACAATTTGGCA-3’ 
pUC -40 primer Rev 5’- GCCAGGGTTTTCCCAGTCACGA-3’ 
Primers for genotyping recombinant mice 
HA-tag genotyping Fwd 5’-AGC TGC CTG AGT TGG AAA GA-3’ 
HA-tag genotyping Rev 5’-TTG GGG ACA ACC GAC CAA-3’ 
P2Y1 Wild-type genotyping Fwd 5’-TCAAGCAGAATGGAGACACG-3’ 

P2Y1-340-0P genotyping Fwd 5’-GgcTGAGGCCAATTTACAAg-3’ 

Common Rev primer for 
WT/340-0P genotyping Rev 5’-AAAAGGAGGAAGGGGAAGTG-3’ 

 

 
Table 4-1. Primers used to generate genomic targeting construct. 
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The vectors containing the HA-tagged wild type and mutant P2Y1 receptors were given 

to Dr. Dale Cowley at the UNC Mouse Core, who designed guide RNAs and subjected the 

vectors to the CRISPR/Cas9 system to integrate the HA-tagged receptors into the locus on 

chromosome 3. There were 3 successfully integrated HA-tagged wild type mice and 1 

successfully integrated HA-tagged 340-0P mutant mouse. These mice were bred with C57BL/6J 

mice to eventually produce homozygous HA-tagged mice. 

Genotyping of P2Y1 knock-in mice 

 To detect the difference in the wild type and inserted coding regions, PCR primers 

surrounding the start site of the coding sequence of the P2Y1 receptor mRNA were used (primer 

sequences listed in Table 4-1). The wild type locus produces a PCR product of 56 bp, whereas 

both HA-tagged receptors produce a PCR product of 89 bp. To differentiate between mice 

expressing wild type P2Y1 and P2Y1-340-0P receptors, two forward primers were used that 

targeted the wild type or the mutant,sequences paired with an identical reverse primer. The wild 

type allele produced a PCR product of 264 bp, whereas the 340-0P mutant PCR product was 326 

bp. 

Measurement of intracellular Ca2+ 

Washed platelets (protocol described in Chapter 2) were resuspended at a concentration 

of 1 x 109 per mL in Tyrode’s buffer containing 0.2 U/mL of apyrase as a stock solution. For 

each sample, 1 µL of platelets was added to 109 µL of Tyrode’s buffer containing 0.1 µL of 

either 500 mM Fluo-4 AM dye (Thermo Fisher Scientific, Waltham, MA, USA) or 500 mM 

Fura-Red AM dye (Thermo Fisher Scientific). The platelets were incubated in black 

microcentrifuge tubes (Argos Technologies, Elgin, IL, USA) at 37°C for 30 minutes. The 

platelets were then briefly vortexed and run on an Accuri C6 flow cytometer. After 10 µL of 
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solution was run (approximately 10 seconds), 100 µL of 2× drug was added (total volume 200 

µL) and the sample continued to record. For samples with two additions, 100 µL of 2× drug was 

added at 1 minute 40 seconds after sample read initiation (total volume 200 µL), and the sample 

continued to record. The sample was halted either 3 minutes after the final addition or when the 

number of counts reached 1,000,000, whichever came first. 

Statistical analysis 

 Data are presented as the mean ± standard deviation of the respective measurements. 

Two-way analysis of variance (ANOVA) was used to compare multiple groups. A p-value less 

than 0.05 was defined as statistically significant. All statistical analyses were performed using 

GraphPad Prism 6.0 (GraphPad Software, LaJolla, CA, USA). 

Results 

Breeding of HA-P2Y1 wild type mice 

 Upon receipt, the founder animals were bred with C57BL/6J mice to produce larger 

numbers of heterozygous HA-WT/WT mice. Once sufficient populations of heterozygous 

animals were available, they were crossbred together to produce homozygous HA-WT/HA-WT 

mice. Pups from these litters were of similar sizes to litters born to C57BL/6J wild type mice (6-

12 mice), suggesting that reproduction and/or development was not affected by the insertion of 

the HA tag at the N-terminus of the receptor. Thus, HA-WT/WT mice were used to continue 

breeding of homozygous HA-WT mice and to prevent excessive inbreeding of the animals. Of 

the 137 live births from heterozygous HA-WT/WT animals, there were 29 wild type, 70 

heterozygous, and 38 HA-WT homozygous progeny, which is within the bounds of the predicted 

Mendelian distribution (Table 4-2). 
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Breeding of HA-P2Y1 340-0P mutant mice 

 Upon receipt, the founder animal was bred with C57BL/6J mice to produce larger 

numbers of heterozygous HA-WT/WT mice. As there was only a single founder, the descendent 

HA-340-0P/WT heterozygous mice were bred together to produce HA-340-0P/HA-340-0P mice. 

However, of the 68 live pups born among the breeding pairs, there were 45 heterozygous mice 

(HA-340-0P/WT) and 23 WT mice (WT/WT), with no live births of HA-340-0P homozygous 

mice. This outcome deviates markedly from the predicted distribution of progeny (Table 4-2). 

Although this is a small sample size, the 66/34 distribution of the heterozygous and wild type 

mice (respectively) is highly suggestive of lethality of embryos homozygous for the HA-340-0P 

allele.  

Genotyping and sequencing of HA-P2Y1 wild type and HA-P2Y1 340-0P mice 

 Figure 4-1 shows the expected PCR products of mice containing two wild type alleles, 

one HA-WT allele and one wild type allele, and two HA-WT alleles. The difference in size of 

the amplified products allowed for quick identification of homozygous HA-WT mice for further 

experiments. An agarose gel showing the results of PCR genotyping for detecting the 340-0P 

mutant allele is also shown in Figure 4-1. The alleles of C57BL/6J wild type and HA-WT/HA-

WT homozygous mice were amplified and sequenced to determine any significant changes. The 

wild type allele was consistent with the genome sequence present in the NCBI database. 

However, the HA-WT allele showed an 81 base pair deletion downstream of the stop codon of 

the genome within the intron region of the chromosome. It is uncertain if this deletion exerts a 

significant effect on either the transcription or translation of the HA-WT protein, although the 

observation that platelets from HA-P2Y1
+/+ mice showed normal activation properties in response 

to ADP suggest that this deletion had little effect on P2Y1 receptor levels (see below). 
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 Wild type 
homozygous Heterozygous Knock-in 

homozygous 
Predicted HA-WT 
(%) 34.25 (25%) 68.5 (50%) 34.25 (25%) 

Actual HA-WT 
(%) 29 (21.2%) 70 (51.1%) 38 (27.7%) 

	
Predicted HA-340-0P 
(%) 17 (25%) 34 (50%) 17 (25%) 

Actual HA-340-0P 
(%) 23 (33.8%) 45 (66.2%) 0 (0%) 

 
Table 4-2. Predicted and observed genotyping of offspring from HA-WT/WT and 
HA-340-0P/WT heterozygous parents. 
 
 
 
 
1  2            3          4             5             6       7 

							 	
 

Figure 4-1. Images of genotyping PCR of wild type, HA-WT, and HA-340-0P 
alleles of the P2Y1 receptor. 
 
Lane 1, low molecular weight ladder (bright band, 100 bp). Lane 2, homozygous 
wild type. Lane 3, HA-WT/WT heterozygote. Lane 4, homozygous HA-WT. 
Lane 5, HA-340-0P/WT heterozygote. Lane 6, homozygous wild type. Lane 7, 
low molecular weight ladder (bright band, 200 bp).  
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P2Y1 receptor activity in platelets 

 To determine if the P2Y1 proteins expressed in the knock-in mice had similar activity to 

the wild type mice, integrin αIIbβ3 activation using the JON/A antibody was performed as 

described in Chapter 2. A concentration-response curve to ADP was generated using platelets 

from wild type, HA-P2Y1
+/+, and HA-P2Y1-340-0P/WT mice to detect any changes in ADP-

promoted integrin activation. Figure 4-2 shows that platelets from all three mice have similar 

EC50 values to ADP (2.6 ± 0.2 µM, 3.4 ± 0.3 µM, and 2.9± 0.2 µM for wild type, HA-WT, and 

HA-340-0P/WT, respectively). Because ADP-promoted activation of αIIbβ3 integrins involves 

both the P2Y1 and P2Y12 receptor, it is not a direct measure of P2Y1 receptor activation; 

therefore, we also measured P2Y1 receptor-dependent calcium release to get a more direct 

representation of P2Y1 receptor activation. Figure 4-2 shows the concentration-response 

relationship of MRS2365 for Ca2+ mobilization in platelets from HA-P2Y1
+/+ and HA-P2Y1-340-

0P/WT mice, which indicate that platelets from both of these mice have similar EC50 values (180 

pM for HA-WT and 360 pM for HA-340-0P/WT). Interestingly, platelets from the HA-340-

0P/WT heterozygous mice have a higher maximal AUC in response to MRS2365, though this 

difference is not significant. Taken together, these data support three notions: 1) introducing the 

HA tag on the N-terminus of the P2Y1 receptor does not impact (positively or negatively) the 

integrin-activating capabilities of the receptor, 2) the 81 bp deletion in the HA-P2Y1
-/- mice has 

no effect on the EC50 of ADP, and 3) the heterozygous HA-340-0P/WT mice have similar 

calcium and integrin responses to MRS2365 and ADP, respectively, compared to wild type and 

HA-WT mice. 
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Figure 4-2. Dose response of integrin activation on platelets from P2Y1 knock-in 
mice. 
 
A, Dose response curve of ADP on integrin activation in platelets from wild type 
(WT), HA-WT homozygous, and HA-340-0P heterozygous mice. The EC50 
values were 2.58 ± 0.20 µM, 3.38 ± 0.25 µM, and 2.85 µM ± 0.18 for wild type, 
HA-WT, and HA-340-0P/WT heterozygous mice, respectively. N = 6 for wild 
type mice; N = 4 for the HA-WT and HA-340-0P heterozygous mice. B, Dose 
response curve of MRS2365 on calcium release from platelets from HA-WT 
homozygous and HA-340-0P/WT heterozygous mice. The EC50 values were 
181.9 ± 47.0 pM for the HA-WT platelets and 357.7 ± 129.5 pM for the HA-340-
0P/WT heterozygous platelets. The data are represented as the mean ± SEM. N = 
3 for both mouse lines. 
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Changes in extended signaling of the HA-340-0P/WT mouse 

 To determine if platelets from HA-340-0P/WT heterozygous mutant mice showed any 

differences in P2Y1 receptor signaling kinetics, the levels of integrin activation using the JON/A 

antibody were assessed as described in Chapter 2. Platelets from HA-P2Y1
+/+ or the HA-340-

0P/WT mice treated with either buffer or 3 µM of MRS2365 showed no increase in integrin 

activation. The heterozygous mutant platelets treated with ADP alone displayed a significant 

increase in integrin responsiveness compared to platelets from HA-P2Y1
+/+ mice (p<0.0001). 

ADP treatment of platelets preincubated with either MRS2500 or PSB0739 showed similar 

levels of inhibition of integrin activation in both HA-P2Y1
+/+ and HA-340-0P heterozygous mice. 

Platelets from HA-P2Y1
+/+ mice pretreated with MRS2365 for 90 seconds prior to the addition of 

ADP exhibited a similar decrease in integrin activation to a subsequent challenge with ADP to 

that observed with wild type mice (see Chapters 2, 3); in contrast, platelets from the  

heterozygous mutant mice showed a highly significant increase in integrin activation compared 

to platelets from HA-P2Y1
+/+ mice in the MRS2365 pretreatment paradigm (p<0.0001). The 

MRS2365-pretreated platelets from heterozygous mutant mice had a slight increase in integrin 

integrin activation in the MRS2365 pretreatment paradigm compared to the response of the same 

platelets challenged with ADP directly, but this increase was not significant. 

 Because of the increased ADP-induced integrin activation observed in platelets from HA-

340-0P heterozygous mice, we sought to determine if this increase could be attributed to 

increased P2Y1 receptor signaling in platelets from the heterozygous mice. Platelets from HA-

P2Y1
+/+ and heterozygous HA-340-0P mice were treated with thrombin to measure the maximum 

achievable JON/A signal. Figure 4-4 shows the normalized integrin activation response to both 

thrombin and ADP to determine the influence of thrombin-induced granule release on platelet  
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Figure 4-3. αIIbβ3 activation response to agonist stimulation of homozygous HA-
WT mice and heterozygous HA-340-0P mice. 

	
Buffer, buffer only; 2365, 3 µM of MRS2365; ADP, 10 µM of ADP; 2365 à 
ADP, 90 second pretreatment with 3 µM of MRS2365 followed by 10 µM of 
ADP; 2500 à ADP, platelets pretreated with 100 µM of MRS2500 before 
addition of 10 µM of ADP; PSB à ADP, platelets pretreated with 10 µM of 
PSB0739 before addition of 10 µM of ADP. The data are represented as the mean 
± SEM. N = 6 for both genotypes. 
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Figure 4-4. αIIbβ3 activation response to agonist stimulation of wild type, 
homozygous HA-WT, and heterozygous HA-340-0P mice. 

	
Buffer, buffer only; Thrombin, 0.5 U/mL of thrombin; ADP, 10 µM of ADP; 
Thrombin + apyrase, 0.5 U/mL of thrombin in platelets treated with 1 U/mL of 
apyrase; Thrombin + 2500, platelets pretreated with 100 µM of MRS2500 before 
addition of 0.5 U/mL of thrombin; Thrombin + PSB, platelets pretreated with 10 
µM of PSB0739 before addition of 0.5 U/mL of thrombin. The data are 
represented as the mean ± SEM. N = 5 for all three genotypes. 
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activation. The raw fluorescence values from both sets of platelets in response to thrombin 

treatment were similar (data not shown), thus all of the values were normalized to the thrombin 

response. The levels of integrin activation in response to ADP in the heterozygous HA-340-

0P/WT platelets were significantly higher than those in both the wild type and HA-WT platelets 

(p<0.0001 for both), suggesting that the platelets have similar maximum responses but the HA-

340-0P/WT platelets have stronger ADP-induced integrin activation. The thrombin responses in 

the presence of apyrase and MRS2500 were similar for all three genotypes, but preincubation 

with PSB0739 was more effective on both knock-in mice compared to the wild type platelets 

(p<0.0001 for both vs. wild type).  

Discussion 

 The use of the CRISPR/Cas9 system at the UNC Mouse Core Facility generated three 

mice with successfully integrated HA-P2Y1 alleles and one mouse with a successfully integrated 

HA-340-0P allele. The mice with the HA-WT alleles were able to breed normally, with full 

homozygous HA-WT mice produced within 5 months of receiving the founder mice. These 

animals presented no obvious changes in phenotype or behavior and had a Mendelian 

distribution of progeny, suggesting that the insertion of the HA tag at the N-terminus had no 

negative effects on mouse development. Surprisingly, although the HA-340-0P allele was able to 

transmit from parent to offspring, there were no live births of mice homozygous for two mutant 

alleles. The number of heterozygous mice and wild type mice progeny follows a 67/33 

distribution of genotypes, indicative of embryonic lethality of HA-340-0P homozygous fetuses. 

This is potentially the first known instance of a mutant GPCR at the native locus conferring 

embryonic lethality; other published instances of embryonic lethality relating to GPCRs involve 

homozygous knockout mice, including the orphan receptor GPR126, with full lethality by E13.5 
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(Waller-Evans et al., 2010), and the sphingosine 1-phosphate receptor 1 (S1P1) (Liu et al., 2000) 

and calcitonin receptor-like receptor (CLR) (Dackor et al., 2006), both of which have full 

lethality by E14.5. Further studies using timed pregnancies are necessary to determine the time 

point of lethality. Currently, breeding is underway with the HA-340-0P/WT heterozygous mice 

with P2Y1 knockout mice to determine if an HA-340-0P hemizygous mouse is viable, which 

would allow for further study of the expression and activity of the HA-P2Y1-340-0P mutant 

receptor in the absence of a wild-type allele. 

 The integrin activation responses in platelets from wild type mice and both knock-in mice 

were measured to determine if the incorporation of the HA tag on the N-terminus would exert 

any effect (positive or negative) on the ability of the P2Y1 receptor to activate platelets. Because 

of the observed embryonic lethality, all experiments comparing the changes in integrin activation 

in HA-340-0P mice were performed using the heterozygous mice. At face value, the 

concentration-response relationships for ADP in the integrin activation assay were virtually 

identical among the wild type, HA-WT homozygous, and HA-340-0P heterozygous platelets. 

These data suggest that 1) the N-terminal HA tag does not influence ADP signaling in platelets, 

and 2) the heterozygous mutant exerts a similar integrin signal in response to ADP. However, 

these data do not account for the influence of the P2Y12 receptor in integrin activation, which is 

more responsible for maintaining the integrin response (Stefanini et al., 2015). To measure P2Y1 

receptor signaling more directly, calcium release from the DTS was measured using platelets 

loaded with a calcium-sensitive dye. The calcium dose response to MRS2365 showed that the 

homozygous HA-WT and heterozygous HA-340-0P mice had similar EC50 values, but the Hill 

slopes were vastly different (6.08 for HA-WT; 1.40 for HA-340-0P heterozygote).	
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  Although the concentration-response curves were similar in response to both ADP and 

MRS2365, these data do not reflect any potential changes in the kinetics of P2Y1 receptor 

activation and inactivation in platelets. Thus, homozygous HA-WT and heterozygous HA-340-

0P platelets were preincubated with MRS2365 for 90 seconds prior to the addition of ADP to 

determine if either the HA tag or a single copy of the mutant allele had an effect on the loss of 

ADP-induced integrin activation. Although not as pronounced as wild type platelets (Chapter 2), 

the HA-WT platelets showed a significant reduction in ADP-induced integrin activation when 

the P2Y1 receptor was stimulated for 90 seconds before activation of the P2Y12 receptor by 

adding ADP, indicating that the HA tag does not affect normal receptor activity. The 

heterozygous mutant platelets, however, had increased integrin activation upon ADP stimulation 

alone and increased (but not significant) activity upon preincubation with MRS2365. These data 

suggest that there is some penetrance of mutant receptor expression on platelets. Assuming that 

the receptors are transcribed and translated equally from both copies of the chromosome, 

approximately 75 of the receptors on the platelet surface would have the mutations. Although 

this is insufficient to reproduce the data observed in the transplanted chimeric mice, it does 

support the notion that low expression levels of C-terminal mutant P2Y1 receptor can influence 

ADP-induced activation of integrin αIIbβ3. 

Of course, it is possible that the introduction of these HA tags onto the P2Y1 receptor 

could increase the overall excitability of platelets. This was addressed by treating homozygous 

HA-WT and heterozygous HA-340-0P platelets with a high dose of thrombin to determine the 

maximum integrin response measurable using the JON/A antibody. The raw thrombin responses 

were similar between the two genotypes, thus any differences in the purinergic-based responses 

were solely due to the mutations on the C-terminus of the HA-340-0P allele. Although not direct, 
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taken together these data support the hypothesis that the Ser and Thr residues on the C-terminus 

of the P2Y1 receptor are involved in the inactivation of the receptor upon initial stimulation. 

 One significant limitation in the interpretation of the data is proving the expression of the 

HA tag on the N-terminus of the knock-in P2Y1 receptor proteins. This tag was originally 

incorporated into the coding region of the receptor because current antibodies against the P2Y1 

receptor are insufficient for either pulldown or detection. The HA tag begins immediately after 

the start codon, after which there are two amino acids followed by a second Met codon. Thus, 

there exists the possibility that the ribosomal machinery does not recognize the first Met as the 

proper start site for translation. Thus, tissues that express high levels of the P2Y1 receptor (brain, 

heart, intestine) will be processed to perform Western blots and pull-down assays to determine if 

the HA tag is expressed on the protein. There are several transgenic designer receptor 

exclusively activated by designer drug (DREADD) mouse lines that successfully express the HA 

tag on the N-terminus (Rogan and Roth, 2011), thus detecting and identifying the HA-tagged 

P2Y1 receptors should be straightforward. 

Conclusions 

 Introduction of the HA-tagged P2Y1 receptor into the locus of BL/6J wild type mice 

showed no phenotypic differences regarding development, procreation and ADP-induced platelet 

activity compared to BL/6J wild type mice. However, the HA-340-0P P2Y1 receptor mutants 

were more intriguing, as the homozygous mutants were embryonic lethal and the heterozygous 

HA-340-0P/WT mice showed increased integrin activation upon ADP treatment as well as 

increased instead of decreased activity when pretreated with the P2Y1-selective agonist 

MRS2365. Further studies regarding the expression of the HA tag as well as the time point of 

embryonic lethality will provide more solid evidence regarding the importance of the C-terminal 
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Ser and Thr residues in P2Y1 receptor desensitization in platelets, as well as during embryonic 

development. 
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