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ABSTRACT 

Zheng Huang: Alkane Metathesis via Tandem Catalysis 
(Under the direction of Professor Maurice Brookhart) 

 

     Alkane metathesis (AM) has potentially tremendous applicability via converting  

low-value alkanes (C3-C9) from the Fisher-Tropsch process into linear alkanes in the 

diesel fuel range (C10-C19). A well-defined and highly efficient tandem catalytic system 

for the metathesis of n-alkanes has been developed. The system is comprised of one 

pincer Ir catalyst that effects alkane dehydrogenation and olefin hydrogenation, and a 

second catalyst for olefin metathesis. The catalytic system shows complete selectivity for 

linear alkane products. 

     Chapter 2 presents the mechanistic studies of AM. The (tBu-PCP)Ir [tBu-PCP = 

C6H3(CH2PtBu2)2-1,3] system shows higher product selectivity than the (tBu-POCOP)Ir 

[tBu-POCOP = C6H3(OPtBu2)2-1,3] system because of the different resting states under 

AM. Both of steric and electronic factors favor the formation of (tBu-PCP)IrH2 and (tBu-

POCOP)Ir-olefin as the catalytic resting states. Experimental evidence and DFT 

calculations suggest that olefin isomerization by the Ir complex occurs from a 

(pincer)Ir(I)-olefin complex via formation of a (pincer)Ir(III)(allyl)(H) intermediate, not 

via a (pincer)Ir(H)2(olefin) intermediate. 

     Syntheses of eight new Ir pincer complexes for transfer dehydrogenation and alkane 

metathesis are outlined in chapter 3. Among these iridium complexes, the least bulky, 



 iv

(iPr-POCOP)Ir-C2H4, exhibits the highest activity in both transfer dehydrogenation and 

alkane metathesis. Compared to the parent (tBu-POCOP)Ir-C2H4, the sterically more 

hindered complex (tBu-PSCOP)Ir-C2H4 shows lower transfer dehydrogenation and 

alkane metathesis activity, but the product selectivity in alkane metathesis was improved 

as a result of a dihydride resting state ((tBu-PSCOP)Ir-H2).   

     Chapters 4 and 5 describe the synthesis of alumina-supported Ir pincer complexes 

which are recyclable and highly active in transfer dehydrogenation reactions. In addition, 

use of this supported catalyst in combination with Re2O7/Al2O3 or MoO3/CoO/Al2O3 

catalyst provides an efficient alkane metathesis catalytic system in which both catalytic 

components are heterogeneous. 

         Chapter 6 presents a series of unprecedented single-crystal-to-single-crystal 

transformations involving interchange of multiple small gaseous ligands  (N2, CO, NH3, 

C2H4, H2, O2) at an iridium center of a pincer iridium(I) complex. The single crystal 

remains intact during these ligand exchange reactions which occur within the crystal and 

do not require prior ligand extrusion. Single crystals bearing nitrogen, ethylene or 

hydrogen exhibit highly selective hydrogenation of ethylene relative to propylene (25:1) 

when surface sites are passified by CO. 
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CHAPTER ONE 

 

Alkane Metathesis by Tandem Catalysis:                         

Introduction and Initial Results 

 

(Part of this chapter has been adapted, with permission from Goldman, A. S.; Roy, A. H.; 

Huang, Z.; Ahuja, R.; Schinski, W.; Brookhart M. Science 2006, 312, 257. Copyright 2006 

by the American Association for the Advancement of Science. Experiments carried out with 

PCP-Ir catalysts or Re2O7/Al2O3 in collaborations with the Goldman group and Dr. Amy H. 

Roy) 

 

Introduction 

         The interconversion of alkanes via alkane metathesis (Eq 1) is a reaction with enormous 

potential applicability.  

 

H3C-(CH2)n-CH3  +  H3C-(CH2)m-CH3   H3C-(CH2)m+n-x-CH3 +  H3C-(CH2)x-CH3  (Eq 1) 

 

         Alkanes are the major constituents of petroleum. As oil reserves dwindle, application of 

the Fischer-Tropsch (F-T) process to produce synthetic petroleum will likely become 

increasingly important. The feedstock of the F-T process, syngas (a mixture of carbon 

monoxide and hydrogen), can be derived from various carbon sources including coal, natural 

gas, shale oil and biomass. Conversion of coal to liquid hydrocarbons is of current interest 
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due to the world’s vast coal reserves.1 Production of diesel fuel using the F-T process is 

attractive since it is highly paraffinic with very low sulphur content (< 1ppm) and thus burns 

more cleanly than oil-based diesel.2,3 Furthermore, diesel engines run ~30% more efficiently 

than gasoline engines.  

          Though F-T technology has been in use for nearly a century, diesel production is still 

limited due to its high cost. A major problem is that the F-T process yields alkane mixtures 

with no molecular weight (MW) control and only linear hydrocarbons in the C9–C19 range 

are useful as diesel fuel. n-Alkanes lower than ca. C9, however, suffer from high volatility 

and lower ignition quality (cetane number).4 In addition to F-T product mixtures, low-carbon 

number, low-MW alkanes are also major constituents of a variety of refinery and 

petrochemical streams. Heavy hydrocarbons can (unselectively) be broken into liquid alkanes 

via the hydrocracking process. Unfortunately, there is no practical method to upgrade the 

low-MW alkanes to transportation fuel. Alkane metathesis (AM) can potentially be employed 

to selectively convert low-MW hydrocarbons into diesel and thus improve the diesel yields 

via F-T synthesis. 

          Two examples of AM have been previously reported. In 1971, Burnett and Hughes5 

showed that passage of n-butane over a mixture of an alumina-supported platinum (a 

hydrogen transfer catalyst) and a silica-supported WO3 (an olefin metathesis catalyst) 

resulted in the formation of hydrocarbons in the C1–C8+ range with propane and pentane as 

the major products (25 wt% and 16 wt%, respectively). The process operated at high 

temperature (399 °C), resulting in poor product selectivity. Methane, branched hydrocarbons, 

and olefins were produced in addition to the linear alkanes. The yield of the process was 

good (62 wt %), but the alumina-supported platinum catalyst is sensitive to impurities. More 
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recently, Basset et al.6-9 reported single component Ta or W catalysts for AM which function 

at much lower temperatures. For example, propane can be converted at 150 °C to a mixture 

of C1 to C6 alkanes in 18% yield (121 turnovers, 120 h) by using an alumina-supported W 

hydride catalyst.7 These systems are proposed to operate via the reaction of metal with 

alkanes to form alkylidene complexes and olefins.9 As a result, both branched and linear 

hydrocarbons, as well as methane, are generated. 

In this study, we report a tandem system in which the metathesis of n-alkanes is 

achieved efficiently with complete selectivity for linear alkanes at moderate temperatures. 

The basic tandem catalytic process is outlined in Fig. 1.1 for metathesis of n-hexane, to give 

ethane and n-decane. A dehydrogenation catalyst, M, reacts with hexane to give 1-hexene 

and MH2. Olefin metathesis of 1-hexene generates ethylene and 5-decene. The alkenes thus 

produced serve as hydrogen acceptors and generate ethane and n-decane via reaction with 

MH2, regenerating M and closing the catalytic cycle. The transfer dehydrogenation catalysts 

chosen for investigation were Ir-based pincer complexes, first reported by Jensen and 

Kaska10,11 and explored extensively in these laboratories.12-16 Complexes 1a, 2a and 2b were 

employed in this study (Fig. 1.2). These systems exhibit high stability, but activity is 

inhibited by build-up of even moderate concentrations of alkene product. The dual catalytic 

system as envisioned in Fig. 1.1 would require only a very low steady-state concentration of 

alkenes during catalysis; thus, inhibition of catalysis by product could be avoided. Numerous 

olefin metathesis catalysts are available;17-19 for studies in homogeneous systems, the 

Schrock-type catalyst, 3, was initially examined.20-21 
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Fig. 1.1 Alkane metathesis via tandem transfer dehydrogenation/olefin metathesis illustrated 
with the formation and metathesis of two mol 1-hexene. M = active fragment in the transfer-
dehydrogenation cycle (e.g. (pincer)Ir). 

 

 

 

 

 

 

 

Fig. 1.2 Dehydrogenation catalysts (R-PCP)IrL and (tBu-POCOP)IrL; and Schrock-type 
metathesis catalyst, 3. 
 

Results and Discussion 

Initial experiments employing the combination of 3 with Ir-based dehydrogenation 

catalysts in solution proved successful. Heating an n-hexane solution at 125 °C under argon 

in a sealed glass vessel containing 10 mM dehydrogenation-catalyst precursor 1a-C2H4 (0.14 

mol% relative to hexane) and 16 mM Schrock catalyst 3, for 24 h, converts ca. 135 

equivalents (relative to Ir) of n-hexane to a range of C2 to C15 n-alkanes. No branched or 

cyclic alkanes were detected. Products were monitored by gas chromatography (GC) using 
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mesitylene as an internal standard. Major amounts of products lie in the C2-C5 and C7-C10 

range. Results are summarized in Table 1.1, entry 1.  Heating for longer times results in few 

additional turnovers. However, upon addition of additional olefin metathesis catalyst 3, 

alkane metathesis catalysis reinitiated, indicating that decomposition of 3 is responsible for 

deactivation of the system under these conditions. Using 1a-H2 and 2 equiv tert-

butylethylene (TBE) as a hydrogen-acceptor, along with catalyst 3, similar results were 

obtained and are summarized in entry 2, Table 1.1. 

Table 1.1 Representative examples of the metathesis of n-hexane by 1a or 2 (10 mM) and 3 
(16 mM): distribution of C2-C15 n-alkane products (mM). 
 

entry Ir-catalyst 
[TBE] 
/mM 

temp. 
/°C time C2 C3 C4 C5 C7 C8 C9 C10 C11 C12 C13 C14 C≥15 total (M)

1 1a-C2H4 0 125 6 h 123 105 183 131 73 70 47 10 4 2 1 0.3 0.75 
    24 h 233 191 319 234 133 122 81 22 9 5 2 1 1.35 
    2 d 261 215 362 265 147 138 89 25 11 6 3 1 1.52 
    4 d 264 218 372 276 154 146 95 26 12 6 3 1 1.57 
  Added additional 3 (8 mM) 
    5d 502 436 721 420 239 223 153 56 30 18 10 5 2.81 

2 1a-H2
 20 125 1d 458 345 547 258 151 139 95 29 13 6 3 2 2.05 

3 2a-H2
a 20 125 26 h (140) 155 119 262 125 37 49 240 15 4 4 10 1 1.16 

  Added additional 3 (6.4 mM) 
    49 h (300) 190 174 376 180 62 82 356 30 10 10 24 7 1.80 

a) 6.4 mM catalyst 3 added initially. Ethane concentrations for entry 3 are extrapolated as explained in the text. 
For entries 1 and 2 no separation of C2 and C3 peaks was obtained (values shown are not extrapolated). 
  

Pincer-ligated iridium complexes have been reported to dehydrogenate n-alkanes with 

high kinetic selectivity for the formation of the corresponding 1-alkene.14 Thus, the product 

distributions indicated in entries 1 and 2 in Table 1.1 presumably reflect a substantial degree 

of olefin isomerization prior to olefin metathesis under these conditions. Thus for example, 

isomerization of 1-hexene to 2-hexene, followed by cross-metathesis between 2-hexene and 

1-hexene, could give 1-pentene plus 2-heptene.17-19 Alternatively, or in addition, 5-decene 

(from the cross metathesis of 2 mol 1-hexene) could be isomerized to give 4-decene; 
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metathesis with ethylene would then give 1-pentene and 1-heptene. Thus, terminal 

dehydrogenation of n-hexane in tandem with olefin metathesis, when coupled with rapid 

olefin isomerization, can account for the C3-C5 and C7-C9 alkanes; this is illustrated for 

production of n-pentane and n-heptane in Fig. 1.3.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.3 Two possible pathways for the metathesis of n-hexane to give n-pentane and n-
heptane, initiated by dehydrogenation at the n-hexane terminal position. 

 

Alkanes with carbon number greater than 10, produced from hexane, must derive 

from olefin metathesis of at least one alkene of Cn>6. The Cn>6 alkene may derive from 

dehydrogenation of the corresponding n-alkane primary product, or it may be obtained 

directly via cross-metathesis of hexenes, before the resulting olefin (e.g. 5-decene) is 

hydrogenated. 
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Consistent with the hypothesis that 1-alkenes are the initial dehydrogenation products, 

under certain conditions, presumably when olefin isomerization is slow relative to olefin 

metathesis, n-decane is the major heavy (Cn>6) product of n-hexane metathesis. (The non-

degenerate cross-metathesis of 1-hexene can only yield ethene and 5-decene). The results of 

an experiment with dehydrogenation-catalyst 2a and metathesis-catalyst 3 are shown in entry 

3, Table 1.1. Notably, n-decane is the major heavy product under these conditions. (The 

formation of n-tetradecane presumably results from the secondary metathesis reaction of n-

decane with n-hexane.) This reaction was also monitored by 13C NMR, a method that yields 

results that are less precise than GC, but facilitates continuous monitoring in a sealed reaction 

vessel. The NMR results were generally consistent with those obtained by GC, and in 

particular revealed that the ratio of the major n-alkane products did not significantly change 

with time. 

While it is difficult to precisely quantify ethane production under our conditions, the 

concentration for the first run in entry 3 was measured by GC as 85 mM. Assuming that the 

average carbon-number of all products is equal to 6, and assuming that ethane is the major 

alkane product lost from solution, the concentration of ethane produced (if none had escaped 

from solution) would be 140 mM. This value is an upper limit since any escaped propane 

would also partially account for the high (>6) average carbon-number of the observed 

products;22 however, it is substantially lower than the concentration of n-decane observed 

(240 mM). This discrepancy between ethane and n-decane production is probably largely 

attributable to secondary metathesis of the ethene product with 2- or 3- hexenes (which 

would then contribute to the formation of propene, butene, and pentene). 
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As well as for alkane disproportionation (i.e. self-metathesis) as illustrated above, the 

catalyst system may be used for alkane conproportionation (cross-metathesis), i.e., the 

production of intermediate-MW alkanes from low-MW and high-MW reactants. Table 1.2 

shows the result of carrying out alkane metathesis on a mixture of 4:1 (mol:mol) n-hexane 

and the C20 alkane, eicosane. 

Table 1.2 Distribution of C2-C38 n-alkane products (M) from the metathesis of n-hexane and 
eicosane (n-C20H42) by 1a-C2H4 (7.14 mM) and 3 (11.43 mM) at 125 °C. 
 

time C2-5 C7-10 C11-14 C15-19 C21-24 C25-38 Total 

1d 0.44 0.36 0.24 0.31 0.14 0.066 1.56 

6d 0.56 0.64 0.31 0.27 0.12 0.070 1.97 
 

Given the instability of the molybdenum alkylidene catalysts, the supported Re 

metathesis-catalyst Re2O7/Al2O3 which exhibits greater stability at high temperature, was 

investigated.23 These reactions were conducted at 175 °C with n-decane as the 

solvent/substrate (Table 1.3).24  The (PCP)Ir catalysts (2) proved more effective than the 

(POCOP)Ir systems (1).  In a typical experiment, a n-decane (2.5 mL, 12.8 mmol) solution of 

2b-H4 (12.8 mg, 0.0227 mmol), TBE (10 µL, 0.078 mmol), and hexamethylbenzene (10 mg, 

internal standard) was heated over Re2O7/Al2O3 (535 mg, 5 wt% Re2O7) at 175 °C under 

argon and monitored by GC. After 3 h, C2-C28 alkanes were observed with total product 

concentration estimated as 1.6 M (corresponding to 180 turnovers based on Ir). Catalysis 

slows, but after 9 days, product concentrations reached 4.4 M. Remarkably, at 9 days, n-

decane is comparable in molar quantity to n-nonane and n-undecane with measured molar 

ratios of C9:C10:C11 of 0.6 : 1 : 0.6 (Fig. 1.4). 
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Table 1.3 Distribution of C2-C34 n-alkane products (mM) from the metathesis of n-decane by 
Ir-based catalysts (9.0-9.5 mM) and Re2O7/Al2O3 (16 mM effective Re2O7 concentration) at 
175 °C. 
 

Ir-cat. [TBE] 
/mM time C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 [> C18] total/M

1a-C2H4 0 3h 3.9 2.8 8.3 10 12 12 13 16 4980 15 11 9.3 7.2 6.0 4.6 2.1 1.3 1.9 0.14 

(9.5 mM)  18h 5.4 9.7 39 43 43 48 55 64 4580 61 46 38 28 23 17 6.9 3.7 5.4 0.54 

  7d 26 101 117 118 115 140 163 3760 154 115 94 71 58 43 18 9.8 16.3 1.36 

2a-H2 18 3h 16 61 86 98 122 142 152 3990 137 104 78 53 37 23 9.3 5.2 6.3 1.13 

(9.0 mM)  11d 39 207 299 327 382 427 446 1500 408 314 245 174 129 87 48 32 58 3.62 

2b-H4 35 3h 15 81 117 134 146 172 181 3490 177 147 120 91 72 52 34 26 63 1.63 

(9.1 mM)  18h 39 160 234 265 280 318 324 1870 317 271 226 176 145 110 76 61 194 3.20 

  9d 44 220 332 346 405 456 457 753 429 362 300 233 195 151 108 88 241 4.37 

 
 
 

 
 
Fig. 1.4 GC trace of product mixture resulting from the metathesis of n-decane (solvent) by 
2b-H4 and Re2O7/Al2O3 after 9 days at 175 °C (see Table 1.3). 
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Conclusions 
 

In summary, the catalytic metathesis of n-alkanes has been achieved through the use 

of a tandem system comprising catalysts for alkane dehydrogenation and olefin metathesis. 

Conversions as high as 84% have been obtained. The system is completely selective for 

linear alkane products in contrast to the Basset systems which produce both linear and 

branched alkanes. The product can display a roughly stochastic distribution of carbon-

numbers, but under certain conditions the system shows significant (and unprecedented) 

selectivity for the C(2n-2) alkane (i.e. n-decane from n-hexane).  

 

Experimental Section 

General Considerations.  All manipulations were carried out using standard Schlenk and 

glovebox techniques. Argon was purified by passage through columns of BASF R3-11 

(Chemalog) and 4 Å molecular sieves.  Toluene and pentane were passed through columns of 

activated alumina. Hexane was purchased from Aldrich, dried over CaH2, degassed via 

several freeze-pump-thaw cycles, and stored under argon.  Anhydrous decane was purchased 

from Aldrich, degassed, and stored under argon. Eicosane and ammonium perrhenate was 

purchased from Aldrich and used as received. γ-Alumina and 

[Mo(C10H12)(C12H17N)[OC(CH3)(CF3)2]2, 3, were purchased from Strem and used as 

received. {C6H3-2,6-[CH2P(t-Bu)2]2}Ir(H)2, 2a-H2,10 and {C6H3-2,6-[OP(t-Bu)2]2}Ir(H)(Cl)12 

were prepared according to literature procedures. NMR spectra were recorded on Bruker 

DRX 400 and AMX 300 MHz instruments and are referenced to residual protio solvent. 

31P{1H} NMR chemical shifts are referenced to an external 85% H3PO4 standard. GC 
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analysis was performed on an Agilent 6850 Series GC with a dimethylpolysiloxane column 

(Agilent HP-1). 

Synthesis of Re2O7 supported on alumina. The following procedure was adapted from 

literature procedure.3 In a vial, 1.20 g (4.47 mmol) of NH4ReO4 was dissolved in 30 mL 

distilled water.  This solution was added to 10 g (98 mmol) of γ-Al2O3. The suspension was 

swirled by hand for about a minute, then allowed to stand undisturbed at room temperature 

for 30 min. This cycle of swirling and standing was repeated until all of the water was 

absorbed by the alumina. The solid was dried in a 120 °C oven overnight, then calcined at 

550 °C for 3 hours under a flow of O2 cooled to room temperature under O2. The solid was 

brought into the drybox under vacuum to avoid exposure to moisture, and was stored under 

argon. 

Synthesis of {C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4), 1a-C2H4. {C6H3-2,6-[OP(t-Bu)2]2}Ir(H)(Cl) 

(1.5 g, 2.4 mmol) and NaO-t-Bu (277 mg, 2.89 mmol) were weighed into a flame-dried 

Schlenk flask and put under a flow of argon. Toluene (40 mL) was added to the flask via 

syringe, and the resulting suspension was stirred for 10 min at room temperature. Ethylene 

was bubbled through the solution for 1-2 hours. The solution was cannula-filtered through a 

pad of Celite, volatiles were evaporated under vacuum, and the resulting red solid was dried 

under vacuum overnight to give 867 mg (59% yield) of pure product. 1H NMR (C6D6): δ 

1.24 (t, J=6.8 Hz, 36H), 3.10 (t, J=2.4 Hz, 4H), 6.91-6.94 (m, 2H), 7.01-7.06 (m, 1H). 13C 

NMR (C6D6):  δ 28.93 (m, 12C), 36.13 (s, 2C), 41.92 (t, J=11.2 Hz, 4C), 103.98 (t, J=6.0 Hz, 

2C), 127.45 (s), 145.19 (t, J=8.5 Hz), 168.17 (t, J=8.4 Hz, 2C). 31P{1H} NMR (C6D6):  δ 

181.7 (s).  Anal. Calc’d for C24H43O2P2Ir: C, 46.65; H, 7.03.  Found: C, 46.64; H, 7.15. 
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Procedures for alkane metathesis reactions: 

Table 1.1, entry 1:  A flask was charged with 12.8 mg (0.021 mmol) of 1a-C2H4, 26 mg 

(0.034 mmol) of the hexafluorinated Schrock catalyst 3, 2 mL (15.1 mmol) of n-hexane, and 

8.8 µL (0.063 mmol) of mesitylene as internal standard. The flask was sealed tightly with a 

teflon plug under an argon atmosphere, and the solution stirred in a 125 °C oil bath.  

Periodically, the flask was removed from the bath and cooled in an ice bath. An aliquot was 

removed from the flask, and analyzed by GC. Product concentrations were calculated for 

each aliquot. 

GC Method Details:   

Column:  HP-1, 100% dimethylpolysiloxane 
 Length:  30 m 
 ID:  0.32 mm 
 Film thickness:  0.25 µm 
Detector:  FID 
Starting temperature:  33 °C 
Time at starting temp:  5 min 
Ramp:  20 °C/min 
Ending temperature:  300 °C 
Time at ending temperature:  10 min 
Flow rate:  1 mL/min 
Split ratio:  400 
Inlet temperature:  250 °C 
Detector temperature:  250 °C 
 

Method to measure/calculate GC response factors: The response factors of n-alkanes from 

pentane to pentadecane with respective to mesitylene were obtained from experimental data. 

The area percent ratios of each alkane with respective to mesitylene were obtained by GC 

analysis from three independent n-hexane solutions which contained a 1:1 molar ratio of 

alkane to mesitylene. The final response factor of each alkane with respective to mesitylene 

were an average of three independent runs. A plot for response factors vs molecular weights 
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of alkanes was made. The response factors of ethane, propane, butane, and alkanes after 

pentadecane were extrapolated from the plot.    

Table 1.1, entry 2 and 3: A flask was charged with 12.3 mg (0.021 mmol) of 1a-H2 or 2a-H2, 

5.4 µL  (0.042 mmol) of tert-butyl ethylene, 26 mg (0.034 mmol) of the hexafluorinated 

Schrock catalyst 3, 2 mL (15.1 mmol) of n-hexane, and 8.8 µL (0.063 mmol) of mesitylene 

as internal standard. The flask was sealed tightly with a teflon plug under an argon 

atmosphere, and the solution stirred in a 125 °C oil bath.  Periodically, the flask was removed 

from the bath and cooled in an ice bath. An aliquot was removed from the flask, and 

analyzed by GC. Product concentrations were calculated for each aliquot. 

Table 1.2: A flask was charged with 12.8 mg (0.021 mmol) of 1a-C2H4, 26 mg (0.034 mmol) 

of the hexafluorinated Schrock catalyst 3, 1.6 mL (12.07 mmol) of n-hexane, 0.852 g (3.02 

mmol) of eicosane, and 10.2 mg (0.063 mmol) of hexamethylbenzene as internal standard. 

The flask was sealed tightly with a teflon plug under an argon atmosphere, and the solution 

stirred in a 125 °C oil bath.  Periodically, the flask was removed from the bath and cooled in 

an ice bath.  An aliquot was removed from the flask, and analyzed by GC. Product 

concentrations were calculated for each aliquot. 

Table 1.3, entry 1: A flask was charged with 14.7 mg (0.024 mmol) of 1a-C2H4, 546 mg of 

Re2O7 supported on alumina (5% Re2O7 by weight), 2.5 mL (12.8 mmol) of n-decane, and 

9.6 mg (0.059 mmol) of hexamethylbenzene as internal standard. The iridium complex 

immediately adsorbed itself onto the Re2O7 alumina support, as observed by the colorless 

solution and rust-colored solid. The flask was sealed tightly with a teflon plug under an argon 

atmosphere, and the solution stirred in a 175 °C oil bath. Periodically, the flask was removed 
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from the bath and cooled in an ice bath. An aliquot was removed from the flask, and 

analyzed by GC.  Turnover numbers were calculated for each aliquot. 

Table 1.3, entry 2: A flask was charged with 13.3 mg (0.023 mmol) of 2a-H2, 5.8 µL (0.045 

mmol) of tert-butyl ethylene as hydrogen acceptor, 543 mg of Re2O7 supported on alumina 

(5% Re2O7 by weight), 2.5 mL (12.8 mmol) of n-decane, and 10.2 mg (0.063 mmol) of 

hexamethylbenzene as internal standard. The iridium complex immediately adsorbed itself 

onto the Re2O7 alumina support, as observed by the colorless solution and rust-colored solid.  

The flask was sealed tightly with a teflon plug under an argon atmosphere, and the solution 

stirred in a 175 °C oil bath. Periodically, the flask was removed from the bath and cooled in 

an ice bath. An aliquot was removed from the flask, and analyzed by GC. Turnover numbers 

were calculated for each aliquot. 

Table 1.3, entry 3: A flask was charged with 12.8 mg (0.023 mmol) of 2b-(H)4, 10 µL 

(0.078 mmol) of tert-butyl ethylene, 536 mg of Re2O7 supported on alumina (5% Re2O7 by 

weight), 2.5 mL (12.8 mmol) of n-decane, and 20.2 mg (0.124 mmol) of hexamethylbenzene 

as internal standard. The iridium complex immediately adsorbed itself onto the Re2O7 

alumina support, as observed by the colorless solution and rust-colored solid.  The flask was 

sealed tightly with a teflon plug under an argon atmosphere, and the solution stirred in a 175 

°C oil bath.  Periodically, the flask was removed from the bath and cooled in an ice bath.  An 

aliquot was removed from the flask, and analyzed by GC.  Turnover numbers were calculated 

for each aliquot. 
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CHAPTER TWO 

 

Mechanistic Studies of Alkane Metathesis 

Introduction 

          In homogeneous alkane metathesis (AM) reactions (Scheme 2.1), we observed that a) 

the Schrock olefin metathesis catalyst (Mo-F6) is short-lived relative to the pincer iridium 

dehydrogenation catalyst under AM conditions;1,2 b) the POCOP system (1a) is more 

productive than the PCP system (2);2 and c) the PCP system is more selective for the 

formation of n-decane from the metathesis of n-hexane than the POCOP system.1,2  

          Moreover, the PCP and POCOP Ir catalysts show different resting states in AM.1 For 

the PCP system, the Ir(III) dihydride complex (2-H2) is the resting state. Starting from the 

1a-H2, the POCOP-Ir catalyst forms Ir(I) olefin complexes as the resting states. It is 

interesting that a slight variation of the linkers in the pincer ligand (“O” vs “CH2”) leads to 

such a significant difference between POCOP and PCP in AM. In collaboration with the 

Goldman group (Rutgers University), we investigated the role that pincer complexes play in 

AM with respect to olefin isomerization and transfer dehydrogenation.  

          Results described in this chapter establish that the POCOP system shows a higher 

olefin binding affinity relative to the PCP system from both steric and electronic effects. 

Results presented here support a new iridium-catalyzed olefin isomerization pathway 

involving formation of an iridium π–allyl hydride from an iridium olefin complex. DFT 
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calculations conducted by Goldman et al. indicate this “π–allyl” pathway is favored over the 

previously presumed “hydride insertion” olefin isomerization pathway.3 Goldman 

demonstrated that there is no solvent effect (n-alkane vs mesitylene) on the rate of olefin 

isomerization, suggesting the iridium dihydride is not the major isomerization catalyst. 

Results reported in this chapter demonstrate the H/D scrambling in the coordinated propylene 

ligand of an iridium complex which must occur via the “π–allyl” isomerization pathway. 

Furthermore, the π–allyl hydride intermediate in the “π–allyl” olefin isomerization 

mechanism has been observed using low-temperature NMR spectroscopy. Kinetic 

investigations of the hydrogen transfer and the isomerization of 1-octene using the POCOP 

ethylene complex, 1a-C2H4, were carried out. 1-octene isomeraztion via the “π–allyl” 

mechanism is hindered in the presence of ethylene. Furthermore, the high binding affinities 

of ethylene and 1-octene to the iridium center inhibit the transfer hydrogenation. 

Scheme 2.1 Tandem catalytic alkane metathesis with pincer iridium and Schrock-type 
catalysts  
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Results and discussion 

1. Olefin metathesis catalyst in alkane metathesis. 

         Schrock-type catalysts are highly active, but not very stable and typically operate at 

room temperature for olefin metathesis. Two decomposition pathways have been proposed 

by Schrock et al.: a bimolecular coupling of alkylidenes, especially methylidene, and 

rearrangement of metallacyclobutanes.2,4-6 Under the AM condition (125 °C), though the 

Mo-F6 catalyst is relatively unstable compared to the iridium catalyst, it maintains metathesis 

activity over the course of a day (see Table 1.1, Chapter 1).1,2 The low concentration of 

olefins (especially ethylene) in AM limits the concentration of metallacyclobutanes in 

solution. 2,4-6 Additionally, low concentrations of Schrock catalyst will result in a low rate of 

the bimolecular coupling of alkylidenes in AM, which may also extend the lifetime of 

Schrock catalyst. In a cross metathesis reaction of n-hexane and eicosane (Eq 1), increasing 

the concentration of Mo-F6 from 2.86 mM to 11.44 mM had a negligible effect on the total 

productivity (1.36 vs 1.40 M of total product, Table 2.1). The results imply that the 

decomposition rate via bimolecular coupling increases as the metathesis catalyst 

concentration increases. The experiments also show that the productivity is limited mainly by 

decomposition of the Schrock catalyst, as addition of more Mo-F6 reinitiated the reaction 

(Table 2.1, entry 1).  

 

                                                                                                                                 

                                                                                                                                   (Eq 1) 

 

 

 

 

125 oC
++ Mo-F6+ n-C6H14

1 equiv 0.4/1.6 equiv610 equiv

1a-C2H4   n-alkanesn-C20H42

153 equiv
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Table 2.1. Distribution of n-alkanes products from the metathesis of n-hexane (4.36 M) and 
eicosane (1.09 M) by 1a-C2H4 (7.14 mM) and Mo-F6 (2.86 to 11.44 mM) at 125 °C. 
 

Product distribution (mM)  

Entry 

Mo 

(mM) 

Time 

(d) C2-5 C7-10 C11-14 C15-19 C21-36 

Total 

Product (M) 

1 404 386 179 225 164 1.36  

2.86 2 396 376 190 233 163 1.36 

Additional 2.86 mM of Mo-F6 added 

 

 

1 

5.72 1 556 548 311 317 203 1.93 

2 11.44 2 422 438 209 200 130 1.40 

 

2. Product selectivity and resting states in AM with POCOP and PCP systems.    

         Under the same reaction conditions, the PCP system shows higher selectivity for C2H6 

and Cn-2H2n-2 from metathesis of CnH2n+2 (see Chapter 1).1,2 For example, metathesis of C6H14 

using 1a-H2 formed 15 mol% of n-C10H22 relative to the production of total heavy alkanes 

(C7H16 – C10H22). As a comparison, the reaction with 2-H2 produced 49% of n-C10H22.1  

          Notably, the PCP and POCOP iridium systems exhibit different resting states in AM. 

For the PCP system, Goldman et al. found that the dihydride complex, 2-H2, is the primarily 

iridium resting state in the AM reaction with catalysts 2-H2 and Mo-F6.1 In AM with the 

POCOP system, under working catalytic condition only 1a-olefin species were observed. As 

shown in Fig. 2.1, monitoring a n-hexane solution of 1a-H2, Mo-F6 and tert-butylethylene 

(hydrogen accepter, 2 equiv.) by 31P NMR spectroscopy indicated that at the early stage (4 h 

at 125 °C), 1a-C2H4 was the major resting state, with small amounts of 1a-propylene, 1a-(1-

butene), 1a-(1-pentene), 1a-(1-hexene), and 1a-(internal-hexenes) present (all the 1a-

olefin complexes were synthesized independently and characterized by 31P NMR, see 

Experimental Section). At the later stage (4 d at 125 °C), however, 1a-(1-hexene) was 
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observed as the primarily iridium species. The iridium resting state reflects the activity of the 

olefin metathesis catalyst. As Mo-F6 decays over time, ethylene is no longer produced via 

olefin metathesis. Meanwhile, it continues to be consumed by dehydrogenation of hexane, 

resulting in the conversion of 1a-C2H4 to 1a-(1-hexene). In a control experiment, heating a 

hexane solution of 1a-C2H4 at 125 °C led to the formation of 1a-(1-hexene) (> 90%) and 1a-

(internal-hexenes) (< 10%) in 24 h. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 The resting states of (tBu-POCOP)Ir catalyst in AM. 

3. Olefin binding affinities of iridium complex. 

          It’s interesting that the apparently similar POCOP and PCP iridium systems have 

different resting states in AM. Indeed, from both steric and electronic considerations, the 

POCOP is more likely to form the olefin complexes than the PCP.  
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          First, the PCP iridium complex is more sterically crowded than the POCOP iridium 

complex. Fig. 2.2 shows the crystal structures of (tBu-POCOP)Ir-CO (1a-CO) and (tBu-

PCP)Ir-CO (2-CO). The C-C and C-P bond distances are longer than C-O and O-P bond 

distances and most significantly the P-Ir-P bond angle in 2-CO is larger than that in 1a-CO 

(163 vs 158°). Consequently, the tert-butyl groups on different phosphorus atoms in the PCP 

system are closer to each other compared to those in the POCOP system. As shown in the 

spacefilling structures (Fig. 2.2), the average distance between the tert-butyl groups in 2-CO 

is 4.33 Å, closer than that of 4.67 Å in 1a-CO. The steric overcrowding in the PCP iridium 

complex is believed to promote the formation of 2-H2 where the hydride ligands occupy little 

space, instead of 2-olefin. In contrast, the more “open” POCOP iridium complex is better 

able to bind the sterically demanding olefin ligand relative to PCP iridium.     

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 The crystal structures of (tBu-POCOP)Ir-CO (left) and (tBu-PCP)Ir-CO (right). 
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           The π-donation by two “O” atoms in the POCOP ligand raise the energy of the Ir dxz 

orbital, resulting in increased backbonding from the Ir center to the π* orbital of the ligand 

(see Fig. 2.3).8 Therefore, the POCOP system is more favorable for olefin binding compared 

to the PCP system. The more electron-rich iridium center in the POCOP complex is also 

more reactive in oxidative addition of H2 since it is the filled dxz orbital which donate two 

electrons in forming the two new Ir-H bonds.8  

 

 

 

 

 

                                                                                                dxz               π* 

 

Fig. 2.3 Ir dxz orbital raised by π-donation from two “O” atoms in the pincer ligand. 

 

          Indeed, the DFT calculations by the Goldman group show a remarkable energetic 

difference between (tBu-POCOP)Ir and (tBu-PCP)Ir for 1-butene binding and n-butane 

addition (both favorable for POCOP, ∆∆G = 12 kcal/mol). (tBu-POCOP)Ir also binds H2 

more strongly than (tBu-PCP)Ir, but the energetic difference is relatively small (∆∆G = 3 

kcal/mol, Table 2.2). 
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Fig. 2.4 Structures of tBu and H-substituted pincer complexes used in DFT calculations. 

               Goldman et al. also conducted DFT calculations on the truncated pincer complexes 

(Fig. 2.4) in which steric effects have been greatly diminished by replacing the bulky tert-

butyl groups with the small hydrogen atoms. The energetic differences between POCOP and 

PCP for olefin binding and alkane addition are decreased in the H-substituted system (∆∆G = 

5 kcal/mol, Table 2.2), suggesting that most of the difference between POCOP and PCP 

results from steric effects, but electronic differences also play a role. 

Table 2.2 Binding free energies (kcal/mol) for 1-butene binding and ∆G for oxidative 
addition of butane and H2 to the tBu-substituted and truncated pincer complexes. 
 

tBu-substituted H-substituted                   
                        Reactions ∆G ∆∆G ∆G ∆∆G 

(PCP)Ir + 1-butene → (PCP)Ir-(1-butene) -5 -20 

(POCOP)Ir + 1-butene → (POCOP)Ir-(1-butene) -17 

 
12 -25 

 
5 

(PCP)Ir + n-butane → (PCP)Ir-(H)(butyl) 14 7 

(POCOP)Ir + n-butane → (POCOP)Ir-(H)(butyl) 2 

 
12 2 

 
5 

(PCP)Ir + H2 → (PCP)Ir-H2 -18 

(POCOP)Ir + H2 → (POCOP)Ir-H2 -21 

 
3 

 

4. Mechanism of olefin isomerization mediated by pincer iridium catalysts 

         Iridium catalysts have been known to dehydrogenate n-alkanes with high selectivity for 

α-olefin.3 The formation of other alkanes besides ethane and n-decane from the metathesis of 

X X
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X X
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H

H H
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n-hexane indicates isomerization of 1-hexene to internal hexenes prior to metathesis. The 

lower selectivity with the POCOP catalyst reflects a faster olefin isomerization compared to 

the PCP system. An olefin isomerization experiment carried out in the Goldman group 

showed that (tBu-POCOP)Ir is apparently a faster isomerization catalyst than (tBu-PCP)Ir 

when both complexes are present as Ir-(α-olefin) complexes, but the rate is only about 2 

times greater at 125 °C, which is inadequate to account for the large difference of product 

selectivity in AM.  

 

 

  

 

 

 

 

 

 

Fig. 2.5 A proposed “hydride insertion” olefin isomerization pathway by pincer iridium 
complex.    
 
4.1 “Hydride insertion” vs “π–allyl” olefin isomerization mechanisms. Catalytic olefin 

isomerization by the pincer iridium complexes was initially assumed to proceed via 2,1 

insertion of α-olefin into the Ir-H bond of a (pincer)IrH2 complex, followed by β-H 

elimination to generate the isomerized 2-olefin (“hydride insertion” mechanism, Fig. 2.5).3 If 

the 2-H2 species was the major olefin isomerization catalyst, then increasing the alkane 

concentration should increase the isomerization rate. As shown in Eq 2, the concentration of 

X X

P P(tBu)2Ir(tBu)2
HH R

X X

P P(tBu)2Ir(tBu)2
H

R
H

R

X X

P P(tBu)2Ir(tBu)2
HH

R



 26

2-H2 must be greater in n-alkane solvent than that in mesitylene solvent. However, a 

comparison of the 1-hexene isomerization with the PCP iridium catalyst in mixtures of n-

hexane and mesitylene showed that the rate was even slightly slower with an increase in 

hexane, suggesting the iridium dihydride species is NOT the active catalyst for olefin 

isomerization.  

      

                                                                                                                            (Eq 2) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 A proposed “π–allyl” olefin isomerization pathway by pincer iridium. 

          An alternative pathway is a “π–allyl” olefin isomerization mechanism as shown in Fig. 

2.6. DFT calculations on the PCP system gave a lower barrier to olefin isomerization via the 

“π–allyl” mechanism vs the “hydride insertion” mechanism (22 vs 29 kcal/mol) (Goldman). 
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oxidative addition of an allylic C-H bond. Migration of the hydride to the terminal carbon 

leads to the formation of an Ir-(2-olefin) complex. Finally, the ligand substitution by an α-

olefin releases the internal olefin product.  

4.2 Intramolecular deuterium/hydrogen scrambling via the “π–allyl” mechanism.  

To test the π–allyl olefin isomerization mechanism, complex 1a-propylene-d3 containing a 

deuterium-labeled methyl group in the propylene ligand was prepared. Monitoring a 

mesitylene-d12 solution of 1a-propylene-d3 by 1H NMR indicated no hydrogen/deuterium 

(H/D) exchange at room temperature over a course of one day. However, heating the solution 

at 60 °C resulted in H/D scrambling between the methyl group and the terminal carbon of 

propylene (Fig. 2.7). The reaction reached equilibrium after ~20 hours with a rate of 0.08 h-1. 

Increasing the temperature to 125 °C increased the rate and the reaction reached equilibrium 

in ~10 min. 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Hydrogen/deuterium scrambling via a Ir(III) η3-allyl deuteride intermediate. 
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                The H/D exchange must occur via the Ir(III) allyl hydride intermediate if no 

iridium hydride/deuteride species are formed during the reaction, which is presumed to be 

true in the system when using mesitylene as the solvent. To exclude the possibility of 

formation of an iridium hydride/deuteride species and isomerization via a “hydride insertion” 

mechanism (Fig. 2.5), a crossover experiment was carried out. Complex 1a-propylene-d6 

(perdeuterio propylene ligand) was treated with two equiv of free propylene (perhydrio) in 

mesitylene-d12 at 60 °C (Fig. 2.8). If an iridium hydride/deuteride species was present in the 

system, a “hydride insertion” mechanism and intermolecular H/D scrambling would be 

expected. However, only ligand exchange was observed in this experiment. Complex 1a-

propylene-d6 (t1/2 = 0.9 h) underwent ligand substitution with propylene, giving a mixture of 

1/3 equiv 1a-propylene-d6, 2/3 equiv 1a-propylene, 4/3 equiv propylene, and 2/3 equiv 

propylene-d6. No crossover of H/D between the perdeuterio and perhydrio propylene 

occurred under the reaction conditions. These results indicate that no “iridium hydride” is 

involved in the H/D exchange reaction as discussed above. Thus, the “π–allyl” mechanism as 

shown in Fig. 2.7 fully accounts for the intramolecular H/D scrambling.  

  

 

 

 

 

 

Fig. 2.8 Ligand exchanges reaction of 1a-propylene-d6 and propylene. 
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Fig. 2.9 H/D scrambing at the central carbon of propylene involving a metallacyclobutane 
intermediate. 
 

            Interestingly, besides the H/D exchange between the terminal carbon and the methyl 

group, we also observed H/D scrambling at the central carbon of the propylene ligand in 1a-

propylene-d3 (Fig. 2.9), though the reaction rate (5×10-4 h-1 at 60 °C) is much slower 
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iridium species have been reported by Ibers9 and Stryker10.  
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characterized by low-temperature NMR techniques. Treatment of complex 1a-H2 with allene 

(2 equiv) in methylcyclohexane-d14 generated a mixture of 1a-H(allyl) and 1a-propylene 

(~1: 5 ratio) after 30 min at -83 °C (Scheme 2.2). The characteristic 1H NMR data for 

complex 1a-H(allyl) include a hydride resonance at -13.1 and five separate signals for the 

allyl unit: Hmeso, 4.9; Hsyn, 2.6, 2.8; Hanti, 2.0, 2.1 ppm. The 31P NMR spectrum shows a pair 

of AB pattern doublets at 158.5 and 152.5 ppm for two non-equivalent phosphorus atoms. 

The observation of the 1a-H(allyl) provides additional evidence for the “π–allyl” olefin 

isomerization mechanism. 

Scheme 2.2 Formation of a Ir(III) hydride η3-allyl and Ir(I) propylene complexes. 

     

 

 

 

 

         As discussed above, (tBu-POCOP)Ir is known to isomerize olefins 2 times faster than 

(tBu-PCP)Ir when both are present as Ir-(α-olefin) complexes. In AM, the (tBu-POCOP)Ir 

system has olefin complexes as the resting state with ~50% Ir-(α-olefin) complexes (see Fig. 

2.1). In contrast, the (tBu-PCP)Ir system has the dihydride complex as the primary resting 

state. Therefore, under AM conditions, the (tBu-POCOP)Ir system isomerizes the α-olefins to 

form internal olefins much faster than the (tBu-PCP)Ir system via the π–allyl olefin 

isomerization mechanism, since very little of (tBu-PCP)Ir exists as an α-olefin complex, the 

precursor of the π–allyl hydride intermediate. 
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5. Transfer dehydrogenation and olefin isomerization by 1a-C2H4. Dehydrogenation of 

alkane by 1a-C2H4 is mainly inhibited by the binding of α-olefin. With tert-butyl ethylene as 

the hydrogen acceptor, the catalyst shows high activity for dehydrogenation of cyclooctane to 

form cyclooctene (~1600 TONs after 40 h)11, but very poor activity for dehydrogenation of 

n-octane (~10 TONs after 40 h). The remarkably different activities arise from the 

dehydrogenation products — 1-octene binds more strongly to the Ir center than cyclooctene.  

           We carried out several transfer dehydrogenation and olefin isomerization reactions 

and monitored them by 1H and 31P NMR spectroscopy (Fig. 2.10). In the first run, complex 

1a-C2H4 was completely converted to 1a-(1-hexene) (87%) and 1a-(internal-hexene) (13%) 

within 24 hours at 125 °C in the presence of excess n-hexane (solvent). Upon addition of 

ethylene (4 equiv), the rate of transfer dehydrogenation was significantly retarded and 

formed only 0.05 equiv of internal-hexene and 2% 1a-(1-hexene) after 1 day at 125 °C. The 

major iridium species was 1a-C2H4 (98%). In run 3 with 1 equiv of 1-octene added, 1a-C2H4 

(98%), 1a-(1-hexene) (2%), and ca. 1 equiv of internal octenes were observed after 1 day. 

The amount of ethane were difficult to determine because of overlap with the alkane solvent 

in the 1H NMR spectrum. However, based on the results of run 2, we reasoned that the 

amount of transfer dehydrogenation products must be very low. The internal octenes (~1 

equiv) was most likely derived from 1-octene which displaced the ethylene to form 1a-(1-

octene). Olefin isomerization of 1a-(1-octene) generated 1a-(internal-octene) and, 

following ligand exchange with ethylene, released the internal octenes and regenerated 1a-

C2H4. The iridium dihydide complex 1a-H2 would be present in very low concentration due 

to the presence of excess ethylene. Thus, 1-octene was most likely isomerized via the π–allyl 

isomerization mechanism, instead of the “hydride insertion” mechanism.      
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Fig. 2.10 Transfer dehydrogenation and olefin isomerization reactions by 1a-C2H4.  
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inhibited. In an isomerization reaction employing 1a-C2H4 and 1-octene (8 equiv) with n-

octane as solvent, various quantities of ethylene (0, 5, and 30 equiv) were added. The 

OO
P P(tBu)2Ir(tBu)2

125 oC, 1d

4 eq

OO
P P(tBu)2Ir(tBu)2 125 oC, 1d

OO
P P(tBu)2Ir

OO
P P(tBu)2Ir

n=m=1 or n=0, m=2

(tBu)2 (tBu)2

+

( )n
( )m

87% 13%

+

OO
P P(tBu)2Ir(tBu)2

+
  4 eq

   1 eq  1-octene

125 oC, 1d

OO
P P(tBu)2Ir(tBu)2

++       internal-hexene

OO
P P(tBu)2Ir(tBu)2

+

98% 2%

0.05 eqiv trace

OO
P P(tBu)2Ir(tBu)2

+

OO
P P(tBu)2Ir(tBu)2

+

98% 2%

ca. 1 eqiv internal-alkene

OO
P P(tBu)2Ir(tBu)2

+ internal-octene

OO
P P(tBu)2Ir(tBu)2

+
OO

P P(tBu)2Ir(tBu)2

+
  0, 5, 30 eq

   8 eq  1-octene

125 oC



 33

reaction without ethylene generated a mixture of 1a-(1-octene) (26%), 1a-C2H4 (74%), free 

ethylene, as well as internal-octene (0.6 equiv) at 125 °C at an early stage (35 min). After 12 

hours, more than 98% of 1-octene was converted to internal octenes. Due to the high binding 

affinity of ethylene relative to internal octenes, internal octenes were diplaced to generate 1a-

C2H4 (96%). 1a-(1-octene) was present as a minor iridium species (4%). The transfer 

dehydrogenation rate must be very slow because most of ethylene (96%) was still remaining. 

In a second reaction with 5 equiv of ethylene present, 1-octene isomerization was again 

complete in 12h (>98%); however, 1a-C2H4 was the only species observed at any stage of 

the reaction. Again, transfer dehydrogenation rate was slow.12 When 30 equiv of ethylene 

were introduced, the olefin isomerization was significantly slower as only 50% of 1-octene 

had been isomerized after 12 hours. The iridium resting state was 1a-C2H4 and no transfer 

dehydrogenation occurred. 

 

Conclusions 

              Through the mechanistic studies, a rationale has been put forward for the different 

product selectivities and resting states of the POCOP and PCP iridium catalysts in AM. Both 

steric and electronic effects favor the formation of (tBu-POCOP)Ir-olefin and (tBu-PCP)IrH2 

as the catalytic resting states in these systems. Olefin isomerization during AM occurs from a 

(pincer)Ir(I)-olefin complex via formation of a (pincer)Ir(III)(allyl)(H) intermediate, not via a 

(pincer)Ir(H)2(olefin) intermediate. This conclusion was supported by DFT calculations, 

solvent effects on rate of olefin isomerization, and deuterium labeling experiments. The Ir(III) 

π–allyl hydride intermediate was independently generated; is was observed by low 

temperature NMR spectroscopy and shown to collapse to a (pincer)Ir-propylene complex. 
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Compared to the PCP system, the POCOP system, with iridium-olefin resting states, 

isomerizes olefins much faster during AM, resulting in low product selectivity. Finally, 

experiments show that olefin isomerization with the POCOP iridium complex can be 

prevented by addition of ethylene but dehydrogenation activity was inhibited as well.  

 

Experimental Section 

General Considerations. All manipulations were carried out using standard Schlenk, high-

vacuum and glovebox techniques. Pentane and toluene were passed through columns of 

activated alumina. Mesitylene-d12 and methylcyclohexane-d12, 1-pentene, 1-hexene, 1-octene, 

1-decene, cis/trans 2-hexene and cis/trans 3-hexene were dried with 4 Å molecular sieves and 

degassed by freeze-pump-thaw cycles. n-hexane, tert-butylethylene and eicosane were 

purchased from Aldrich. Hexane and tert-butylethylene were dried with LiAlH4 vacuum 

transferred into sealed flasks. Deuteride propylene gases, CD3CHCH2, CH3CDCH2, and 

CD3CDCD2 were purchased from CDN and used as received. Complex Mo-F6 was 

purchased from Strem and used as received. Complexes 1a-C2H4,1 1a-H2,7 2-H2,11 were 

synthesized as previously reported. Complex 1a-CO7 was synthesized as previously 

reported7 and single crystal was obtained from a toluene solution.  

NMR spectra were recorded on BRUKER DRX-400, AVANCE-400, and BRUKER 

DRX-500 MHz spectrometers. 1H and 13C NMR spectra were referenced to residual protio 

solvent peaks. 31P chemical shifts were referenced to an external H3PO4 standard.  

Synthesis of 1a-(alkene) (alkene = propene, 1-butene, 1-pentene, 1-hexene, 1-decene, 

and internal-hexene). To a solution of {C6H3-2,6-[OP(t-Bu)2]2}IrH2 (1a-H2) (5 mg, 8.4 

µmol) and n-hexane (0.35 ml) in a medium-walled J. Young NMR tube was added excess of 
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respective olefins. After 30 min at room temperature, volatiles were evaporated under 

vacuum, and the resulting red solid was dried under vacuum overnight. 31P{1H} NMR (n-

hexane): 1a-(propene) δ 179.6 (s); 1a-(1-butene) δ 179.5 (s); 1a-(1-pentene) δ 179.4 (s); 

1a-(1-hexene) δ 179.4 (s); 1a-(1-decene) δ 179.4 (s); 1a-(internal-hexene) δ 176.3-176.5 

(d). 

Synthesis of 1a-(propylene-d3), 1a-(propylene-d1), and 1a-(propylene-d6). To a solution 

of 1a-H2 (5 mg, 8.4 µmol) and toluene (0.35 ml) in a medium-walled J. Young NMR tube 

was added 3-5 equiv of respective olefins. After 2 hours at room temperature, volatiles were 

evaporated under vacuum, and the resulting red solid was dried under vacuum overnight. 1a-

(propylene-d3): 1H NMR (162 MHz, 23 °C, Mes-d12): δ 1.15 (virtual triplet, apparent J = 6.4 

Hz, 18H, 2 × tBu), 1.33 (virtual triplet, apparent J = 6.4 Hz, 18H, 2 × tBu), 2.39 (d, 3JH-H = 

8.0 Hz, 1H, CH2), 3.74 (m, 1H, CH2), 4.46 (m, 1H, CH), 6.67 (d, 3JH-H = 8.0 Hz, 2H), 6.84, (t, 

3JH-H = 8.0 Hz, 1H). 31P{1H} NMR (400 MHz, 23 °C, Mes-d12): δ 179.8 (s). 1a-(propylene-

d1): 1H NMR (400 MHz, 23 °C, Mes-d12): δ 1.15 (virtual triplet, apparent J = 6.4 Hz, 18H, 2 

× tBu), 1.33 (virtual triplet, apparent J = 6.4 Hz, 18H, 2 × tBu), 1.65 (s, 3H, CH3 in 

propylene), 2.39, (s, 1H, CH2), 3.74 (t, 3JH-D = 5.6 Hz, 1H, CH2), 6.67 (d, 3JH-H = 8.0 Hz, 2H), 

6.84, (t, 3JH-H = 8.0 Hz, 1H). 31P{1H} NMR (162 MHz, 23 °C, Mes-d12): δ 179.8 (s). 1a-

(propylene-d6): 1H NMR (400 MHz, 23 °C, Mes-d12): δ 1.15 (virtual triplet, apparent J = 6.4 

Hz, 18H, 2 × tBu), 1.33 (virtual triplet, apparent J = 6.4 Hz, 18H, 2 × tBu), 6.67 (d, 3JH-H = 

8.0 Hz, 2H), 6.84, (t, 3JH-H = 8.0 Hz, 1H). 31P{1H} NMR (162 MHz, 23 °C, Mes-d12): δ 179.8 

(s). 

Formation of the Ir(III) η3-allyl hydride complex. To a frozen methylcyclohexane-d14 

(0.35 ml) solution of 1a-H2 (5 mg, 8.4 µmol) in a medium-walled J. Young NMR tube was 
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added 2 equiv of allene. The J. Young NMR tube was shaken quickly when the solution was 

just beginning to melt and then the tube was inserted into the spectrometer at -83 °C. A 

mixture of 1a-(allyl)(H), 1a-H2 and 1a-propylene was observed by 1H and 31P NMR. 1a- 

(allyl)(H): 1H NMR (500 MHz, 23 °C, methylcyclohexane-d14): δ −13.13 (s, 1H, IrH), 2.00 

(s, 1H, Hanti), 2.13 (s, 1H, Hanti), 2.64 (s, 1H, Hsyn), 2.78 (s, 1H, Hsyn), 4.94 (s, 1H, Hmeso), 

6.42 (s, 1H, H at the meta-position), 6.43 (s, 1H, H at the meta-position). The tBu groups and 

one H at the para-position of the backbone were overlapping with thoses of 1a-H2 and 1a-

propylene. 31P{1H} NMR (202 MHz, 23 °C, methylcyclohexane-d14): δ 152.5 (d, JP-P = 341 

Hz), 158.5 (d, JP-P = 341 Hz).  

Procedures for resting state experiments: A medium-walled J. Young NMR tube was 

charged with 8 µmol of 1a-H2, 9.8 mg (13 µmol) of the hexafluorinated Schrock catalyst 3, 

and 0.75 mL of n-hexane. The NMR tube was inserted into a 125 °C oil bath. Periodically, 

the tube was removed from the bath, cooled to room temperature, and analyzed by 31P{1H} 

NMR. 

Procedures for alkane metathesis reactions: A flask was charged with 12.8 mg (21 µmol) 

of 1a-C2H4, 6.5-26 mg (8.5-34 µmol) of Mo-F6, 1.6 mL (12.07 mmol) of n-hexane, 0.852 g 

(3.02 mmol) of eicosane, and 10.2 mg (0.063 mmol) of hexamethylbenzene as internal 

standard. The flask was sealed tightly with a teflon plug under an argon atmosphere, and the 

solution stirred in a 125 °C oil bath.  Periodically, the flask was removed from the bath and 

cooled in an ice bath.  An aliquot was removed from the flask, and analyzed by GC.  Product 

concentrations were calculated for each aliquot. 

Intraligand deuterium/hydrogen exchange. A mesitylene-d12 (0.35 ml) solution of 1a-

(propylene-d3) or 1a-(propylene-d1) (8.4 µmol) in a medium-walled J. Young NMR was 
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heated at 60 or 125 °C. Peoriodically, the tube was cooled to room temperature and 

monitored by NMR. 

Ligand exchanges reaction of 1a-(propylene-d6). To a mesitylene-d12 (0.35 ml) solution of 

1a-(propylene-d6) (8.4 µmol) in a medium-walled J. Young NMR tube was added 2 equiv of 

propylene. The tube was heated at 60 °C. Peoriodically, the tube was cooled to room 

temperature and monitored by NMR.   

Tansfer dehydrognenation and olefin isomerization by 1a-C2H4. To an n-hexane or n-

octane (0.45 ml) solution of 1a-(C2H4) (8-9 µmol) in a medium-walled J. Young NMR tube 

was added ethylene (0-30 equiv) and/or 1-octene (8 equiv). The tube was heated at 125 °C. 

Peoriodically, the tube was cooled to room temperature and monitored by NMR. 
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CHAPTER THREE 

 

Synthesis of New Iridium Pincer Complexes for Catalytic 

Transfer Dehydrogenation and Alkane Metathesis 

 

Introduction 

             Our initial homogeneous alkane metatheis (AM) systems were comprised of an 

iridium pincer dehydrogenation catalyst [(tBu-POCOP)IrC2H4 (1a-C2H4) or (tBu-PCP)IrH2 

(2-H2), Fig. 3.1] and a Schrock olefin metathesis catalyst, Mo(NAr)(CHR)[OCMe(CF3)2]2 

(Ar = 2,6-diisopropylphenyl), (Mo-F6).1 More recently, over 40 molybdenum and tungsten 

imido alkylidene olefin metathesis catalysts were screened in combination with iridium 

catalysts for AM.2 The results showed that W(NAr)(CHR)(OSiPh3)2 (W-siloxyl) was most 

active, performing about twice as well as the previously employed catalyst (Mo-F6).  

            To date, only two iridium pincer catalysts, 1a and 2, have been examined for 

homogeneous AM. The POCOP catalyst, 1a, gave higher yields than the PCP catalyst; the 

latter exhibited a higher selectivity for the formation of n-decane from the metathesis of n-

hexane.1,2 The lower selectivity with the POCOP system reflects a faster iridium-catalyzed 

olefin isomerization compared to the PCP system. Mechanistic studies (see Chapter 2) 

indicated that the product selectivity in AM was related to the resting state of the iridium 

species. Our experimental results and DFT calculations supported a “π–allyl” olefin 
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isomerization mechanism catalyzed by Ir complexes. The resting states of the POCOP-Ir 

catalysts are the Ir(I)(olefin) complexes. In contrast, the more sterically hindered PCP-Ir 

catalyst exhibits PCPIr-H2 complex as the major resting state. Therefore, the POCOP system 

can isomerize the terminal-olefin to the internal-olefin(s) much faster than the PCP-Ir 

complex via the “π–allyl” mechanism. Through DFT calculations and crystal structure 

comparisons to assess steric effects, we found both steric and electronic consideration favor 

POCOP-Ir over PCP-Ir regarding olefin binding affinities. However, evidence suggested that 

the differences between POCOP and PCP mainly arise from the steric effect (see Chapter 

two).  

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.1 Transfer dehydrogenation catalysts 1a and 2 and Schrock olefin metathesis catalysts 
Mo-F6 and W-siloxyl.  
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Fig. 3.2 Structures of iridium pincer complexes.  

           In this chapter, we report the syntheses of eight new iridium complexes with different 

substituents on the phosphorus atoms and various linkers between the backbone and 

phosphorus (see Fig. 3.2). These catalysts were screened for transfer dehydrogenation (TD), 

and AM in combination with the Schrock olefin metathesis catalyst. Interestingly, the least 

bulky complex 1b-C2H4, (iPr-POCOP)IrC2H4, not only proved to be most efficient in both 

TD and AM, but also showed a higher product selectivity in AM than complex (tBu-

POCOP)IrC2H4, 1a-C2H4. A moderate productivity, but good selectivity, was obtained in 

AM using the bulky complex (tBu-PSCOP)IrC2H4, 3a-C2H4. The most bulky complex 5-

C2H4, (tBu-PSCSP)IrC2H4, showed no and few TOs in TD and AM, respectively. Complexes 

6-C2H4 and 7-C2H4 containing the sterically bulky and electron-withdrawing 2,4,6-

tris(trifluoromethyl)phenyl substituents on the phosphorus atoms, exhibited low to moderate 

activities in TD and AM.  

 

Results and Discussion 

1. Syntheses of new pincer iridium complexes.  
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          Complexes 1a-C2H4, 1a-H2 and 2-H2 (Fig. 3.1) have been previously prepared and 

investigated for homogeneous alkane metathesis.1 Complexes 1b-C2H4, 3a-C2H4, 3b-C2H4, 

4-C2H4, 5-C2H4, 6-C2H4 7-C2H4 and 8-C2H4 (Fig. 3.2), previously unknown, were prepared 

in this study.  

           The chloro-bis[2,4,6-tris(trifluoromethyl)phenylphosphine3 and  chloro-methyl-2,4,6-

tris(trifluoromethyl)phenylphosphine were prepared from 1,3,5- tris(trifluoromethyl)benzene 

as shown in Scheme 3.1. Deprotonation of resorcinol, 3-mercaptophenol, 3-aminothiophenol 

and benzene-1,3-dithiol with sodium hydride or n-butyllithium, followed by 

diphosphorylation with four different chlorophosphines formed the corresponding ligands 

(abbreviated as R-PXCYP or RR’-PXCYP if R is unequal to R’, Scheme 3.2). The 

metalation conditions of these ligands are different and they are described below. 

 

Scheme 3.1 Syntheses of tris(trifluoromethyl)phenyl-substituted phosphine compounds 
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Scheme 3.2 Syntheses of the pincer ligands 

 

 

 

       

          

              The tert-butyl substituted complexes 3a-C2H4, 4-C2H4, and 5-C2H4 were prepared 

in a similar way as outlined in Scheme 3.3. The reaction of the pincer ligand with 

[(COD)IrCl]2 or [(COE)2IrCl]2 generated the monomeric hydrochloride (Note: complex 4-

HCl was prepared by Dr. Lalehzari). Treatment of the hydridochloride complexes with 

sodium tert-butyloxide in the presence of ethylene produced the corresponding ethylene 

iridium complexes. 

Scheme 3.3 Formation of complexes 3a-C2H4, 4-C2H4, and 5-C2H4 

 

 

 

 

 

 

 

    

            Syntheses of the iso-propyl substituted complexes 1b-C2H4 and 3b-C2H4 are outlined 

in Scheme 3.4. The monomeric iridium hydrochloride complex can be synthesized readily by 
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a reaction of the tert-butyl substituted pincer ligand with [(COD)IrCl]2 or [(COE)2IrCl]2. 

However, the less sterically bulky ligands, iPr-POCOP and iPr-PSCOP, react with an iridium 

source to form the Cl-bridged dimeric complexes (1b-dimer and 3b-dimer). It should be 

noted that the iridium sources and reaction conditions are crucial to the formation of clean 

products. Treatment of iPr-POCOP with one equiv. of [(COE)2IrCl]2 at room temperature 

generated a dimer, (iPr-POCOP)IrH(µ-Cl)2Ir(COE)2, in a low yield (20–30%); and the 

reaction of iPr-PSCOP with one equiv. of [(COD)IrCl]2 and five equiv. of COD at 130 °C 

formed (iPr-PSCOP)IrH(µ-Cl)2Ir(COD) in 21% yield (addition of excess of COD prevents 

the formation of Ir(0) metal). The dimeric complexes were then cleaved by NaOtBu to form 

monomers 1b-C2H4 and 3b-C2H4 in the presence of ethylene.  

 
Scheme 3.4 Formation of complexes 1b-C2H4 and 3b-C2H4 
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Scheme 3.5 Formation of complexes 6-C2H4 and 7-C2H4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Syntheses of the 2,4,6-tris(trifluoromethyl)phenyl substituted complexes 6-C2H4 

and 7-C2H4 are outlined in Scheme 3.5. The tetra-[2,4,6-tris(trifluoromethyl)phenyl] 

substituted pincer ligand, Ar-POCOP, reacts slowly with [(COE)2IrCl]2 to form a chloro-

bridged dimer, 6-dimer. Most of the [(COE)2IrCl]2 decomposed under the reaction 

conditions and thus excess [(COE)2IrCl]2 must be added. After 8 days with 16 periodic 

additions of [(COE)2IrCl]2 (one equiv. of Ir relative to ligand each time), the reaction 

O O

P PAr2 Ar2

O O

P Ir P

Cl
H Cl

Ir

Ar2 Ar2

6-dimer, 80%

XS [(COE)2IrCl]2

Toluene       
Reflux

XS H2

Toluene       
Reflux

O O

P PIr

Cl
H

Ar2 Ar2

6-HCl
59%

O O

P PAr2IrAr2

6-C2H4      
42%

NaOtBu/

Toluene RT

ethylene

F3C

F3C

CF3Ar  =

O O

P PAr(Me) Ar(Me)

1 eq [(COD)IrCl]2

Toluene       
Reflux

O O

P Ir P

Cl
H Cl

Ir

Ar(Me) Ar(Me)

7-dimer
77%

NaOtBu/

Toluene RT

ethylene O O

P PAr(Me)IrAr(Me)

7-C2H4
67%



 46

generated ca. 80% of product and [(COD)IrCl]2 presumably through the dehydrogenation of 

COE. Heating a toluene solution of the dimer with excess of H2 at 150 °C formed a 

monomeric iridium hydrochloride complex. The iridium ethylene complex, 6-C2H4, was 

obtained from the reaction of 6-HCl with NaOtBu in the presence of ethylene. 

        The less sterically bulky ligand, Ar(Me)-POCOP, reacted readily with one equiv. of 

[(COD)IrCl]2 to form a chloro-bridged dimer, 7-dimer, which was cleaved by NaOtBu to 

generate the iridium ethylene complex, 7-C2H4.   

Scheme 3.6 Formation of complexes 8-C2H4 

 

 

 

 

 

        Syntheses of complex 8-C2H4 is outlined in Scheme 3.6. Complex 8-HCl has been 

prepared by Dr. Göttker-Schnetmann. Treatment of the iridium hydrochloride complex with 

NaOtBu in the presence of ethylene generated 8-C2H4. 

2. Structural comparisons of iridium pincer complexes 

         Our previous studies indicated that steric effects in iridium complexes play an essential 

role in determining the selectivity and activity of AM. Thus, it is of interest to consider the 

structural features of the iridium pincer complexes, which provide information concerning 

the steric environment of the iridium center. The tert-butyl substituted complexes, 1a-C2H4 
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two bulky tris(trifluoromethyl)phenyl substituents on one phosphorus is more crowded than 

7a-C2H4 with one methyl and one tris(trifluoromethyl)phenyl substituent. 

             For the series of tert-butyl substituted complexes, the crystal structures provide 

insights into the extent of steric crowding at iridium. Here we compare the bond distances 

and angles of the hydridochloride complexes because they are easier to crystallize compared 

to the ethylene analogues. Fig. 3.3 shows the ORTEP diagrams of 1a-HCl, 3a-HCl, 4-HCl 

and 6-HCl. Tables 3.1 and 3.2 summarize the key bond distances and angles, and the 

crystallographic data. As the size of the linker atom (X) increases (S > N > O), the C-X and 

X-P bond distances and the P-Ir-P bond angle increase. For example, the P-Ir-P bond angles 

for complexes 1a-HCl, 3a-HCl, and 4-HCl are 160.06(4)°, 168.32(3)° and 169.49(4)°, 

respectively. With the P-Ir-P bond angle increasing, the iridium center is more crowded as 

two tert-butyl groups on two phosphorus atoms become closer to each other. Thus, 3a-HCl 

and 4-HCl are similar to each other regarding steric crowding, but are much more crowded 

than 1a-HCl. The solid-state structure of 5-HCl is unavailable, but it must be the most 

hindered one as it has two large S atoms as the linkers. In short, the steric crowding of the 

series of tert-butyl substituted complexes increases as the atomic volume of the linker 

increases: 5-C2H4 (S,S linkers) >  4-C2H4 (S,N) > 3a-C2H4 (S,O) >  2-C2H4 (C,C) > 1a-C2H4 

(O,O).  

           Due to the presence of the bulky tris(trifluoromethyl)phenyl substituents, 6-C2H4 is 

more sterically hindered than 1a-C2H4, even though the P-Ir-P bond angle in 6-HCl 

(158.61(13)°) is slightly smaller than that in 1a-HCl. As shown in Fig. 3.3d, the four 

[(CF3)3C6H2] rings forms a deep pocket with two of trifluoromethyl groups very close to the 

Ir center (Ir···F = 3.074 and 3.187 Å). 
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Table 3.1 Selected bond distances (Å) and angles (deg) for single crystals 1a-HCl, 3a-HCl, 
4-HCl and 6-HCl.  
 
Crystals                     bond distances (Å)   bond angles (deg) 
 
 
1a-HCl 

Ir1-C10 = 2.011(5), Ir1-P2 = 2.2928(12), Ir1-P1 = 2.2971(12), 

Ir1-Cl1 = 2.4041(12), P1-O9 = 1.662(3), P2-O16 = 1.662(3), 

O9-C11 = 1.399(5), C15-O16 = 1.394(5) 

P2-Ir1-P1 = 160.06(4), 

C11-O9-P1 = 115.5(3), 

C15-O16-P2 = 115.5(3) 
3a-HCl Ir1-C17 = 2.019(3), Ir1-P1 = 2.2986(8), Ir1-P2 = 2.2980(8),      

Ir1-Cl1 = 2.4149(8), P1-S1 = 2.123(3), P2-O1 = 1.670(7),         

S1-C18 = 1.772(7), O1-C22 = 1.396(9) 

P2-Ir1-P1 = 168.32(3), 

C18-S1-P1 = 99.1(3), 

C22-O1-P2 = 116.0(6) 
 
 
4-HCl 

Ir1-C9 = 2.031(4), Ir1-P2 = 2.3037(10), Ir1-P1 = 2.3055(10), 

Ir1-Cl1 = 2.4273(12), P1-S1 = 2.1069(15), P2-N15 = 1.696(4), 

S1-C10 = 1.777(4), C14-N15 = 1.392(6) 

P2-Ir1-P1 = 169.49(4), 

C10-S1-P1 = 99.16(16), 

C14-N15-P2 = 118.7(3), 
 
6-HCl Ir1-C1 = 2.007(14), Ir1-P1 = 2.288(5), Ir1-P2 = 2.304(5), 

Ir1-Cl1 = 2.428(11), P1-O1 = 1.635(12), P2-O2 = 1.612(13), 

O1-C2 = 1.41(2), O2-C6 = 1.42(2) 

P1-Ir1-P2 = 158.61(13), 

C2-O1-P1 = 115.9(10), 

C6-O2-P2 = 115.4(10) 
 
Table 3.2 Crystal data and structure refinement summary of 1a-HCl, 3a-HCl, 4-HCl and 6-
HCl.  
 

 1a-HCl 3a-HCl 4-HCl 6a-HCl 

Formula C22H41ClIrO2.5P2 C22H39ClIrOP2S C22H41ClIrNP2S C119H62Cl2F72Ir2O4P4 

crystal system Triclinic Orthorhombic Orthorhombic Triclinic 

Space group P-1 Pbca Pna21 P-1 

a/Å 8.1459(2) 12.1021(4) 22.7124(6) 12.694(3) 

b/Å 12.1660(2) 15.0014(5) 7.9189(2) 13.460(3) 

c/Å 13.3405(3) 28.1281(9) 14.1470(5) 18.120(4) 

α/deg 100.598(1) 90 90 81.197(16) 

β/deg 95.618(1) 90 90 86.626(17) 

γ/deg 103.830(1) 90 90 84.041(16) 

V/(Å3) 1247.84(5) 5106.6(3) 2544.44(13) 3040.1(12) 

Z 2 8 4 1 

T/K 100(2) 100(2) 100(2) 100(2) 

R1 [I>2σ(I)] 0.0314 0.0226 0.0217 0.0818 

wR2 (all data) 0.0746 0.0539 0.0528 0.2076 
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Fig. 3.3 Crystal structures of 1a-HCl (a), 3a-HCl (b), 4-HCl (c) and 6-HCl (d, chlorine atom 
is disordered). Hydrogen atom on the Ir center in 3a-HCl and 6-HCl can not be located.   
 

3. Transfer dehydrogenation (TD) results with new iridium pincer complexes 

 

 

                                                                                                                              (eq 1) 

         

        The newly synthesized iridium pincer complexes were examined for transfer 

dehydrogenation activity using the “benchmark” reaction (eq 1), the transfer of hydrogen 

TBECOA COE TBA

++
 catalyst
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from cyclooctane (COA) to tert-butylethylene (TBE). In a typical reaction, a system 

containing 2.5 µmol of iridium catalyst, 7.5 mmol of COA (3000 equiv. relative to Ir) and 7.5 

mmol of TBE, was heated to 200 °C under argon in a sealed vessel. The results are 

summarized in Table 3.3. The initial TD rate using the less bulky (iPr-POCOP)IrC2H4 

complex, 1b-C2H4, was lower than that using (tBu-POCOP)IrC2H4, 1a-C2H4 (310 vs 920 

TONs at 30 min), but the ultimate conversion by 1b-C2H4 is greater (2680 vs 1580 TONs at 

40 h). Compared to 1a-C2H4, 1b-C2H4 appears to be less subject to inhibition by the 

dehydrogenation product, COE.5,6 For the series of tert-butyl substituted catalysts, the TD 

activities decrease as the steric hindrance increases: 1a-C2H4 > 3a-C2H4 > 4-C2H4 > 5-C2H4. 

As shown in Table 3.3, 1a-C2H4 gave 1580 TONs after 40 h compared to the run where no 

activity was observed using the most bulky (tBu-PSCSP)IrC2H4, 5-C2H4.  

          The sterically bulky and electron-deficient 6-C2H4 showed very poor TD activity and 

short lifetime. The color of the solution changed from red to light yellow after 3 h and the 

catalyst lost activity completely as heating for longer time resulted no additional turnovers. 

By comparison, the less crowded and more electron-rich complex 7-C2H4 performed better, 

giving 310 TONs after 40 h.  

 
Table 3.3 TONs in the transfer dehydrogenation of COA/TBE using 1a-C2H4, 1b-C2H4, 3a-
C2H4, 4-C2H4, 5-C2H4, 6-C2H4, and 7-C2H4 at 200 °C. 
 
Time (h) 1b-C2H4 1a-C2H4 3a-C2H4 4-C2H4 5-C2H4 6-C2H4 7-C2H4 

0.5 310 920 120 17 0 -- 230 

3 1150 1190 140 -- 0 30 280 

15 2240 1510 170 -- 0 -- -- 

40 2680 1580 170 17 0 30 310 
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4. Alkane metathesis (AM) results with new iridium pincer complexes  
 
                                                                                                                                     
                                                                                                                                    (eq 2) 
 
 
 

          Finally, AM reactions were conducted with these new iridium catalysts. An n-hexane 

solution (760 equiv. relative to Ir) containing 10 mM iridium catalyst and 8 mM of Schrock 

catalyst (Mo-F6 unless otherwise specified) was heated at 125 °C (eq 2). The reactions were 

monitored by GC periodically using mesitylene as an internal standard. The product 

distributions are summarized in Table 3.4 and the activity and selectivity are described below.  

 
Table 3.4 Distribution of C2 to C15+ n-alkanes products from the metathesis of n-hexane (7.6 
M) by various iridium catalysts (10 mM) and the Schrock catalyst Mo-F6 (8 mM) at 125 °C. 
 

Product concentration (mM)  
Entry 

Ir 
cat. 

 

Time C2/C3 C4 C5 C7 C8 C9 C10 C11 C12 C13 C14 C15+ 

Total

TONs

1 h 79 38 94 62 25 37 39 3 1 1 --- --- 38 

6 h 307 168 375 241 103 136 160 30 13 9 6 4 155 

24 h  307 175 392 261 114 150 169  34 15 11 7 5 164 

2 d  309 180 405 267 116 151 169 24%a 34 15 11 7 5 167 

    Added additional Mo-F6 (8 mM) 

 

 

    1 

 

 

1b- 
C2H4 

20 h 446 304 674 428 183 219 269 68 32 24 18 14 268 
1 h  29 19 32 21 11 12 8 1 --- --- --- --- 13 

6 h  89 67 115 82 46 45 29 53 2 1 --- --- 48 

24 h  187 155 253 195 113 106 66  17 7 4 2 2 111 

 

2 

 

1a- 
C2H4 

2 d  238 194 323 240 134 128 80 14% 21 9 5 2 2 138 

3 h 10     6     9     6     2 1 2 1 -- -- -- -- 4 

24 h 123 89 175 130 59 50 37  3 1 -- -- -- 67 

2 d 418 291 520 376 184 195 122 14% 27 12 7 3 2 216 

4 d 456 322 561 411 206 219 139 36 18 9 4 3 239 

 

 

3 

 

1a-H2 

w/o 

olefin 

 7 d 495 366 643 459 220 221 134 34 17 9 4 3 261 

4 2-H2
b 23 h 307 127 306 155 37 49 232 49% 18 4 4 1 2 125 

+
125 oC

+ n-C6H14

1 equiv 0.8 equiv760 equiv

  Schrock cat.Ir Pincer Catalyst   n-alkanes
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1 h 21 4 11 6 1.7 3.4 8.7 1.7 -- -- -- -- 6 

6 h 45 16 46 32 9 9 20 5 1 0.5 -- -- 18 

24 h 110 41 124 89 22 25 60+6c  11 3 1 -- -- 50 

 
 
 

5 
 

3a- 
C2H4 2 d 170 65 190 129 35 39 110+4 

 36% 

18 4 2 1 -- 77 

    With 2.5 equiv. 5-decene 

1 h 26 13 30 22 8+1 4+7 4+9 2 1 -- -- -- 11d 

6 h 74 39 112 88 30 20+6 29+11 11 4 1 0.7 -- 41d 

24 h 201 101 275 196 61 52+4 100+6 24 7 3 1 -- 101d

 

 

6 3a- 
C2H4 

2 d 217 106 283 206 67 62 108+1 27 9 4 2 1 107d

    With 10 equiv. 5-decene 

1 h 33 21 55 48+4 22+3 10+17 7+26 6 5 2 1 -- 16e 

6 h 99 61 155 116 46 29+12 35+24 14 6 2 1 -- 50e 

 

 

7 
3a- 

C2H4 

24 h 95 61 154 128 52 40+6 52+8 18 8 3 1 1 52e 

    With W-siloxyl as the olefin metathesis catalyst (8 mM)  

8 
3a- 

C2H4 2d 116 65 105 58 31 35 101 45% 10 5 3 2 -- 47 

1 h 24 14 33 21 7 10 11 1 -- -- -- -- 12 

6 h 49 32 76 43 13 16 29 3 1 -- -- -- 26 

24 h 88 55 129 82 24 28 44 7 2 1 -- -- 46 

 
 

9 
3b- 

C2H4 

 
2 d 84 54 126 84 27 33 49 25% 8 2 1 -- -- 47 

1 h 22 9 18 15 5 3+1 3+2 1 -- -- -- -- 8 

6 h 30 15 33 28 12 7+1 5+1 3 2 1 -- -- 14 

24 h 47 28 68 54 20 10+1 8+2 5 2 1 -- -- 25 

 
 

10 4- 
C2H4 

 2 d 47 29 79 70 28 15+1 12+1 

10% 

6 3 1 -- -- 29 

 
11 

5- 
C2H4 

2d 12 4 6 3 1 -- -- -- -- -- -- -- 2.6 

1 h 16 12 31 23 7 6 3 2 1 -- -- -- 10 

6 h 49 37 95 80 29 19 16 6 2 1 -- -- 33 

24 h 88 67 164 140 53 35 28 6 2 1 -- -- 59 

 
 

12 7- 
C2H4 

2 d 88 68 170 143 54 36 28 11% 10 4 2 1 -- 60 

6 h 134 84 156 110 56 64 57 8 3 1 -- -- 67 

24 h 184 119 219 155 80 86 73 13 4 2 1 -- 94 

 
13 8- 

C2H4 
2 d 211 139 254 181 94 102 87 19% 17 6 3 2 -- 110 

a Selectivity of formation of C10: C10/(C7+C8+C9+C10); b Using 16 mM of Mo-F6 olefin metathesis catalyst; c 

[Olefin] observed in the reactions; d The total TONs was obtained after subtracting the amount of 5-decene (2.5 
equiv.); e The total TONs was obtained after subtracting the amount of 5-decene (10 equiv.)     
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4.1. AM activities with various iridium catalysts. The AM activities of iridium complexes 

mirror somewhat the TD activities, which is consistent with our observation that the rate-

determining step in AM is transfer dehydrogenation by the iridium catalyst (at least at the 

early stage). In general, the AM activity decreases as the steric hindrance of iridium 

complexes increases:  1b-C2H4 (169 TONs, 2 d) > 1a-C2H4 (138 TONs) > 3a-C2H4 (77 

TONs) > 4-C2H4 (29 TONs) > 5-C2H4 (2.6 TONs). The least sterically hindered complex 1b-

C2H4 was most efficient and three times faster than the 1a-C2H4 at the early stage (155 vs 48 

TONs after 6 hours). The activity decayed after 6 h mainly due to the decomposition of 

Schrock catalyst (Table 3.4, entry 1) since addition of more Mo-F6 catalyst resulted in an 

additional 101 TONs after 20 h.  

            The most hindered complexes, 4-C2H4 and 5-C2H4, gave very low TONs (entry 10 

and 11). Complex 3a-C2H4 was moderately active in AM with 77 TONs after 2 days (entry 

5). The less hindered complex (iPr-PSCOP)IrC2H4, 3b-C2H4 was initially faster (12 TONs by 

3b-C2H4 vs 6 TONs by 3a-C2H4 after 1h), but the final conversion (47 TONs after 2 d) was 

less than that with 3a-C2H4.  

              Complex 7-C2H4 exhibited a moderate activity with 60 TONs after 2 days (entry 12). 

Compared to the parent complex 1a-C2H4, 7-C2H4 is more electron-deficient, but is 

presumably less sterically bulky with one methyl and one tris(trifluoromethyl)phenyl 

substituent on each phosphorus compared to two tert-butyl groups. Thus, the lower activity 

of 7-C2H4 seems to result from the reduced electron density at the Ir center. Complex 8-C2H4 

is slightly less active than 1a-C2H4, giving 111 TONs after 2 days (entry13). The tert-butyl 

substituents in the meta-positions of the backbone appear, as expected, to have a negligible 

effect in AM activity.      
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4.2. Product selectivity in AM. The product selectivity is as important as the activity in AM. 

The (tBu-PCP)Ir complex 2-H2 is known to be more selective than 1a-C2H4 for the formation 

of n-decane from the metathesis of n-hexane. For example, a reaction using 2-H2 formed 49 

mol% of n-C10H22 (entry 4) relative to the total production of the heavier alkanes (C7H16 – 

C10H22); the same reaction with 1a-C2H4 generated only 14% of n-C10H22 (entry 2). The 

initial product of dehydrogenation of n-hexane is presumed to be the 1-hexene. Thus, the 

formation of other alkane products besides ethane and n-decane reflects substantial olefin 

isomerization.1 Experimental and computational results suggest that the selectivity in AM is 

closely related to the resting state and the steric crowding of iridium complexes. Because the 

(tBu-PCP)Ir complex is more sterically crowded at iridium relative to (tBu-POCOP)Ir, the Ir 

dihydride complex is the resting state, while for the (tBu-POCOP)Ir system the olefin 

complexes are the resting states. It has been found that the pincer complexes isomerize 

olefins via a π–allyl hydride intermediate which forms from the olefin complexes. Thus the 

higher concentration of (pincer)Ir-olefin(s) in AM results in faster olefin isomerization, 

which consequently leads to a lower product selectivity. This feature accounts for the lower 

selectivity of the (tBu-POCOP)Ir system relative to the (tBu-PCP)Ir system 

             Complex 3a-C2H4 is more sterically hindered than 1a-C2H4. As expected, the AM 

reaction with 3a-C2H4 formed n-decane with higher selectivity (36%, 2d) than 1a-C2H4 

(14%). When another Schrock catalyst, W-siloxyl, was used, the reaction with 3a-C2H4 

formed n-decane with 45% selectivity. However, the selectivity exhibited by 3a-C2H4 was 

still lower than that shown by 2-H2 (49%), even though 3a is more crowded than 2 as judged 

by crystal structures of each complex.  
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            Monitoring the AM reaction with 3a-C2H4 and Mo-F6 by 31P{1H} NMR provided 

insight into the resting state(s) of the iridium species. As shown in Fig. 3.4, after 2 h at 125 

°C, there was ca. 50% of 3a-H2, 30% of 3a-C2H4 and 20% of unidentified species. After 4 

hours, 3a-H2 became the major resting state (ca. 90%). The observation of an iridium 

dihydride resting state is consistent with our previous results: highly sterically hindered 

structures favor the formation of a dihydride resting state. As a result, the olefin 

isomerization by 3a is relatively slow, resulting in a higher product selectivity. 

 

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Resting states of (tBu-PSCOP)Ir catalyst in AM.   
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             It should be noted that the product selectivity of these iridium complexes is not 

always consistent with the relative bulk of the pincer ligands. For example, the most hindered 

complexes 4-C2H4 and 5-C2H4 exhibited very low product selectivity in AM (entry 10 and 

11). The less sterically hindered complex 1b-C2H4 surprisingly showed a better selectivity 

for n-decane (24%, entry 1) than 1a-C2H4. A preliminary NMR study indicated iridium 

olefin complexes (1b-olefin) as the major resting states in AM. It is unclear which catalyst, 

1a-C2H4 or 1b-C2H4, isomerizes olefins faster. Mechanistic studies of 1b-C2H4 regarding 

transfer dehydrogenation and olefin isomerization are currently underway.   

              The electron-deficient complex 7-C2H4 showed a low selectivity in AM, giving 11% 

of n-decane after 2 days (entry 12). Interestingly, complex 8-C2H4 containing two bulky 

substituents in the meta-postions of the backbone is slightly more selective than 1a-C2H4 

(19% vs 14%). 

4.3. Effect of added olefin on AM. 

           Some olefin products were observed in the AM reaction with 3a-C2H4 (entry 5). 

Given the fact that the iridium catalyst has a dihydride resting state, the rate-determining step 

must be the olefin hydrogenation step. Indeed, when additional olefin (2.5 equiv. of 5-decene) 

was added, the initial reaction rate was more than doubled (entry 6). For instance, the 

reaction with 5-decene gave 41 TONs after 6 h, while the reaction without added olefin gave 

18 TONs. The total conversion was also increased with olefin added (107 vs 77 TONs, 2 

days). However, an addition of more olefin (10 equiv. of 5-decene, entry 7) led to an early 

decay of the catalytic system, even though the initial reaction rate was faster. After 6 h, 

essentially no further TOs were observed. It has been known that the Schrock catalyst decays 

in a bimolecular decomposition pathway involving coupling of methylidene units.6-9 Thus, 
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the presence of excess olefin could accelerate the decomposition of Schrock catalyst by 

allowing it to more frequently sample the Mo methylidene structure and consequently 

decrease the final conversion.  

               In another experiment, we conducted a reaction of 1a-H2 and Mo-F6 in hexane 

without any olefin to accept hydrogen (entry 3). Compared to the reaction with 1a-C2H4, the 

initial rate was extremely slow with only 4 TONs after 3 h. However, the rate appeared to 

increase over time and gave 67 TONs after 1 day. It was possible that olefin had been 

generated from the Mo-F6 complex,7-9 which could serve as the hydrogen acceptor. More 

importantly, the system was relatively long-lived as an additional 159 TONs was obtained 

from 1 day to 2 days. In contrast, the reaction employing 1a-C2H4 and Mo-F6 was nearly 

complete after 1 day (entry 2). As mentioned above, the early decomposition of Schrock 

catalyst in AM using 1a-C2H4 and Mo-F6 limits the conversion. The higher productivity in 

entry 3 presumably resulted from the longer lifetime of the Schrock catalyst with only very 

low concentration of olefin present which arised form the Schrock catalyst itself.6-9 

 

Conclusions 

             By modifying the substituents and linkers in the pincer ligands, eight new iridium 

complexes were prepared with varying steric and electronic features. Compared to the parent 

1a-C2H4, the least bulky catalyst, 1b-C2H4, displayed a higher activity in both TD and AM, 

as well as a better product selectivity. The sterically more hindered complex 3a-C2H4 

showed low TD activity and moderate AM activity, but the product selectivity in AM was 

significantly improved which is presumably the result of a dihydride resting state (3a-H2). 

The AM reaction rate and productivity could be increased upon addition of olefin in the 
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system using 3a-C2H4. However, the lifetime of the Schrock olefin metathesis catalyst was 

controlled by the concentration of olefin, so using a large excess of olefin resulted a short 

lifetime for the Schrock catalyst. The other iridium catalysts we synthesized exhibited low to 

moderate activities in TD and AM and poor selectivity in AM. 

                  

Experimental Section 

General Considerations. All manipulations were carried out using standard Schlenk, high-

vacuum and glovebox techniques. Tetrahydrofuran (THF) was distilled under a nitrogen 

atmosphere from sodium benzophenone ketyl prior to use. Pentane and toluene were passed 

through columns of activated alumina. Benzene-d6, THF-d8, toluene-d8, methylene chloride-

d2, chloroform-d1, and cyclohexane-d12 were dried with 4 Å molecular sieves and degassed 

by freeze-pump-thaw cycles. Cyclooctane (COA), 3,3’-dimethyl-1-butene (TBE), n-hexane 

and mesitylene were purchased from Aldrich, dried with LiAlH4 or Na/K, and vacuum 

transferred into sealed flasks. Resorcinol, 3-mercaptophenol, 3-aminothiophenol, benzene-

1,3-dithiol and tris(trifluromethyl)benzene were purchased from Aldrich and used as received. 

Schrock catalyst Mo-F6 was purchased from Strem and W-siloxyl was received as a gift 

from the Schrock group. Complexes 1a-C2H4,1 1a-H2,11 2-H2,10 [(COD)IrCl]2, 

[(COE)2IrCl]2
12 were synthesized as previously reported.  

NMR spectra were recorded on BRUKER DRX-400, AVANCE-400, and BRUKER 

DRX-500 MHz spectrometers. 1H and 13C NMR spectra were referenced to residual protio 

solvent peaks. 31P chemical shifts were referenced to an external H3PO4 standard.  

              GC analyses (FID detection) was performed according to the following methods: 

Agilent 6850 Series GC System fitted with an Agilent HP-1 column (100% 
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dimethylpolysiloxane, 30m×0.32mm i.d., 0.25 µm film thickness). Typical temperature 

program: 5 min isothermal at 33 ºC, 20 ºC/ min heat up, 10 min isothermal at 300 ºC. Flow 

rate: 1 mL/min (He). Split ratio: 400. Inlet temperature: 250 °C. Detector temperature: 250 

°C.  

 

 

 

 

Synthesis of the pincer ligand iPr-POCOP. A solution of 13.6 mmol of resorcinol (1.5 g) 

in 20 mL of THF was slowly added via syringe to a suspension of 30.3 mmol of NaH (725 

mg) in 100 mL of THF under a flow of argon at room temperature (caution: hydrogen 

evolution). The mixture was then heated to reflux for 2 h, di-iso-propylchlorophosphine (27.2 

mmol, 4.32 g) was then added via syringe, and the mixture was refluxed for additional 2 h. 

After evaporation of the solvent under high vacuum, the residue was extracted with 3 × 40 

mL of pentane, and the extract was cannula transferred and filtered through a pad of Celite. 

After removal of pentane under high vacuum, the flask was heated to 50 °C for 2 h under 

high vacuum to remove residual amounts of di-iso-propylchlorophosphine. Product (> 95% 

purity) as a colorless oil was collected in 77% yield (10.5 mmol, 3.58 g). 1H NMR (400 MHz, 

23 °C, C6D6): δ 0.95 (dd, 3JH-H = 7.2 Hz, 3JH-P = 15.8 Hz, 12H, 4 × CH3), 1.11 (dd, 3JH-H = 

7.0 Hz, 3JH-P = 10.5 Hz, 12H, 4 × CH3), 1.73 (m, 4 × CH(CH3)2), 7.00 (m, 3H, 4–6-H), 7.40 

(m, 1H, 2-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 149.8 (s).  
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Synthesis of the 1b-dimer. A Schlenk flask was charged with 0.26 mmol of iPr-POCOP 

(90 mg) and 0.26 mmol of [(COE)2IrCl]2 (234 mg) and put under a flow of argon. Toluene (6 

mL) was added via syringe, and the solution was stirred at room temperature for 20 min. 

Volatiles were removed under high vacuum and the residue was extracted with 3 × 8 mL of 

pentane. Removal of pentane solvent and other volatiles resulted in the isolation of 1b-dimer 

as a yellow waxy solid. Yield, 66 mg, (65 µmol, 25%). 1H NMR (400 MHz, 23 °C, CD2Cl2): 

δ -23.97 (t, 2JP-H = 14.8 Hz, 1H, IrH), 0.98 (m, 2 × CH3), 1.16 (m, 2 × CH3), 1.36 (b, COE), 

1.53 (m, 2 × CH3), 1.88 (m, 2 × CH3), 2.03 (m b, COE), 2.20 (m b, COE), 2.29 (m, 2 × 

CH(CH3)2), 3.29 (m, 2 × CH(CH3)2), 6.64 (d, 3JH-H = 7.8 Hz, 2H, 3, 5-H), 6.76 (t, 3JH-H = 7.8 

Hz, 1H, 4-H). 31P{1H} NMR (162 MHz, 23 °C, CDCl3): δ 153.4 (s).  

 

 

 

 

 

 

 

Synthesis of the ethylene complex 1b-C2H4. Complex 1b-dimer (120 mg, 118 µmol) and 

NaOtBu (14 mg, 146 µmol) were weighed into a Schlenk flask and put under a flow of argon. 
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Toluene (8 mL) was added to the flask via syringe and ethylene was bubbled through the 

solution for 4 h. After evaporation of the solvent under high vacuum, the residue was 

extracted with 3 × 10 mL of pentane, and the extract was cannula transferred and filtered 

through a pad of Celite. Pentane was removed under high vacuum, and the red solid was 

dried under high vacuum overnight to give 56 mg (100 µmol, 85% yield) of pure product. 1H 

NMR (400 MHz, 23 °C, C6D6): 1.00 (m, 12H, 4 × CH3), 1.10 (m, 12H, 4 × CH3), 2.27 (m, 

4H, 4 × CH(CH3)2), 2.58 (t, 3JH-H = 2.2 Hz, 4H, C2H4), 6.97 (d, 3JH-H = 7.7 Hz, 2H, 3, 5-H), 

7.04 (t, 3JH-H = 7.7 Hz, 1H, 4-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 185.3 (s).  

 

 

 

 

 

Synthesis of the pincer ligand tBu-PSCOP. A solution of 39 mmol of 3-mercaptophenol 

(96% purity, 5.14 g) in 20 mL of THF was slowly added via syringe to a suspension of 82 

mmol of NaH (1.96 g) in 100 mL of THF under a flow of argon at 0 °C (caution: hydrogen 

evolution). The mixture was then heated to reflux for 2 h, di-tert-butylchlorophosphine (81 

mmol, 15.30 g) was then added via syringe, and the mixture was refluxed for additional 12 h. 

After evaporation of the solvent under high vacuum, the residue was extracted with 3 × 60 

mL of pentane, and the extract was cannula transferred and filtered through a pad of Celite. 

After removal of pentane under high vacuum, the flask was heated to 55 °C for 3 h under 

high vacuum to remove residual amounts of di-tert-butylchlorophosphine. Pure product as a 

colorless oil was collected in 95% yield (36.9 mmol, 15.30 g). 1H NMR (400 MHz, 23 °C, 

CD2Cl2): δ 1.15 (d, 3JH-P = 12.3 Hz, 18H, OPtBu2), 1.27 (d, 3JH-P = 12.0 Hz, 18H, SPtBu2), 

6.94 (m, 1H, 5-H), 7.12 (m, 2H, 4 and 6-H), 7.38 (s, 1H, 2-H). 31P{1H} NMR (162 MHz, 23 
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°C, CD2Cl2): δ 155.9 (s, OP), 84.9 (s, SP). 13C{1H} NMR (100.5 MHz, 23 °C, CD2Cl2): δ 

27.6 (CH3, d, 2JP-C = 15.5 Hz, OPtBu2), 29.9 (CH3, d, 2JP-C = 15.3 Hz, SPtBu2), 35.6 (Cq, d, JP-

C = 30.6 Hz, OPtBu2), 36.0 (Cq, d, JP-C = 26.5 Hz, SPtBu2), 116.5 (CH, d, 3JP-C = 11.5 Hz, C4), 

121.6 (CH, m, C2), 124.6 (CH, d, 3JP-C = 8.5 Hz, C6), 129.6 (CH, s, C5), 139.3 (Cq, d, 2JP-C = 

15.1 Hz, C1), 160.4 (Cq, d, 2JP-C = 9.0 Hz, C3). 

 

 

 

 

 

 

 

Synthesis of the pincer iridium complex 3a-HCl. A Schlenk flask was charged with 1.6 

mmol of tBu-PSCOP (663 mg) and 0.8 mmol of [(COD)IrCl]2 (537 mg) and put under a 

flow of argon. Toluene (15 mL) was added via syringe, and the solution was stirred in an oil 

bath for 16 h at 130 °C. The reaction mixture was cooled to room temperature. Volatiles were 

removed under high vacuum and the resulting solid was washed with 4 × 7 mL of pentane 

and dried under high vacuum overnight to yield 732 mg (1.14 mmol, 71%) of pure orange 

product. 1H NMR (400 MHz, 23 °C, CD2Cl2): δ -41.70 (t, 2JP-H = 12.4 Hz, 1H, IrH), 1.37 (t, 

virtual triplet, apparent J = 14.0 Hz, 18H, 2 × tBu), 1.47 (t, virtual triplet, apparent J = 14.0 

Hz, 18H, 2 × tBu), 6.56 (d, 3JH-H = 6.4 Hz, 1H, 5-H), 6.72 (m, 1H, 4-H), 6.97 (d, 3JH-H = 6.4 

Hz, 1H, 3-H). 31P{1H} NMR (162 MHz, 23 °C, CD2Cl2): δ 106.8 (d, JP-P = 353 Hz, SPtBu2), 

163.7 (d, JP-P = 353 Hz, OPtBu2). 13C{1H} NMR (100.5 MHz, 23 °C, CD2Cl2): δ 27.2 (CH3, 

d, 2JP-C = 4.2 Hz, OPtBu2), 27.5 (CH3, d, 2JP-C = 4.5 Hz, OPtBu2), 29.0 (CH3, d, 2JP-C = 4.2 Hz, 

SPtBu2), 29.3 (CH3, d, 2JP-C = 4.5 Hz, SPtBu2), 39.4 (Cq, m, OPtBu2), 39.5 (Cq, m, SPtBu2), 
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42.5 (Cq, m, SPtBu2), 43.1 (Cq, m, OPtBu2), 107.3 (CH, d, 3JP-C = 11.8 Hz, C5), 115.8 (CH, d, 

3JP-C = 10.3 Hz, C3), 124.7 (CH, s, C4), 132.1 (Cq, m br, C1), 153.4 (Cq, m, C2), 167.3 (Cq, 

m, C6). 

 

 

 

 

 

Synthesis of the ethylene complex 3a-C2H4. Complex 3a-HCl (225 mg, 0.35 mmol) and 

NaOtBu (37 mg, 0.39 mmol) were weighed into a Schlenk flask and put under a flow of 

argon. Toluene (15 mL) was added to the flask via syringe and ethylene was bubbled through 

the solution for 3 h. After evaporation of the solvent under high vacuum, the residue was 

extracted with 3 × 20 mL of pentane, and the extract was cannula transferred and filtered 

through a pad of Celite. Pentane was removed under high vacuum, and the brown solid was 

dried under high vacuum overnight to give 198 mg (0.31 mmol, 89% yield) of pure product. 

1H NMR (400 MHz, 23 °C, CD2Cl2): δ 1.31 (d, 3JP-H = 13.2 Hz, 18H, OPtBu2), 1.42 (d, 3JP-H 

= 13.2 Hz, 18H, SPtBu2), 3.17 (m, 4H, C2H4), 6.66 (d, 3JH-H = 7.6 Hz, 1H, 5-H), 6.87 (m, 1H, 

4-H), 7.09 (d, 3JH-H = 7.6 Hz, 1H, 3-H). 31P{1H} NMR (162 MHz, 23 °C, CD2Cl2): δ 106.8 (d, 

JP-P = 353 Hz, SPtBu2), 166.6 (d, JP-P = 353 Hz, OPtBu2). 13C{1H} NMR (125.8 MHz, 23 °C, 

CD2Cl2): δ 29.0 (CH3, d, 2JP-C = 5.0 Hz, OPtBu2), δ 30.3 (CH3, d, 2JP-C = 4.9 Hz, SPtBu2), 

39.3 (CH2, s, C2H4), 41.5 (Cq, m, OPtBu2), 41.6 (Cq, m, SPtBu2), 106.3 (CH, d, 3JP-C = 12.6 

Hz, C5), 113.6 (CH, d, 3JP-C = 10.8 Hz, C3), 127.3 (CH, s, C4), 156.4 (Cq, m, C1), 164.8 (Cq, 

m, C2), 168.4 (Cq, m, C6). 
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Synthesis of the pincer ligand iPr-PSCOP. A solution of 11.4 mmol of 3-mercaptophenol 

(96% purity, 1.5 g) in 20 mL of THF was slowly added via syringe to a suspension of 23.3 

mmol of NaH (0.56 g) in 80 mL of THF under a flow of argon at 0 °C (caution: hydrogen 

evolution). The mixture was then heated to reflux for 2 h, di-iso-propylchlorophosphine (23 

mmol, 3.65 g) was then added via syringe, and the mixture was refluxed for additional 2 h. 

After evaporation of the solvent under high vacuum, the residue was extracted with 3 × 30 

mL of pentane, and the extract was cannula transferred and filtered through a pad of Celite. 

After removal of pentane under high vacuum, the flask was heated to 50 °C for 2 hours under 

high vacuum to remove residual amounts of di-sio-propylchlorophosphine. Pure product as a 

colorless oil was collected in 85% yield (9.69 mmol, 3.47 g). 1H NMR (400 MHz, 23 °C, 

CDCl3): δ 1.04-1.21 (m, 24H, 4 × iPr), 1.89 (m, 2H, OPiPr2, 2.00 (m, 2H, SPiPr2), 6.87 (m, 

1H, 5-H), 7.08 (m, 2H, 4 and 6-H), 7.27 (s, 1H, 2-H). 31P{1H} NMR (162 MHz, 23 °C, 

CDCl3): δ 149.2 (s, OP), 66.1 (s, SP). 13C{1H} NMR (125.8 MHz, 23 °C, CDCl3): δ 16.9 

(CH3, d, 2JP-C = 8.6 Hz, 2 × CH3), 17.6 (CH3, d, 2JP-C = 20.3 Hz, 2 × CH3), 18.5 (CH3, d, 2JP-C 

= 8.1 Hz, 2 × CH3), 19.4 (CH3, d, 2JP-C = 19.0 Hz, 2 × CH3), 25.6 (Cq, d, JP-C = 20.9 Hz, 2 × 

CH), 38.2 (Cq, d, JP-C = 17.9 Hz, 2 × CH), 116.2 (CH, d, 3JP-C = 11.3 Hz, C4), 121.4 (CH, m, 

C2), 124.5 (CH, d, 3JP-C = 7.5 Hz, C6), 129.1 (CH, s, C5), 137.5 (Cq, d, 2JP-C = 13.8 Hz, C1), 

159.2 (Cq, d, 2JP-C = 7.5 Hz, C3). 
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Synthesis of the 3b-dimer. A Schlenk flask was charged with 0.42 mmol of iPr-PSCOP 

(150 mg), 0.42 mmol of [(COD)IrCl]2 (281 mg) and 2.1 mmol COD (400 mg) and put under 

a flow of argon. Toluene (6 mL) was added via syringe, and the solution was stirred in an oil 

bath for 2 days at 130 °C. The reaction mixture was cooled to room temperature. Volatiles 

were removed under high vacuum and the residue was extracted with 3 × 15 mL of pentane. 

Removal of pentane solvent and other volatiles resulted in the isolation of 3b-dimer as a 

yellow-brown waxy solid. Yield, 81 mg, (88 µmol, 21%). 1H NMR (400 MHz, 23 °C, C6D6): 

δ -24.75 (t, 2JP-H = 15.0 Hz, 1H, IrH), 1.0-1.8 (m, 24H, 8 × CH3), 2.04 (m, 8H, CH2 in COD), 

2.35 (m, 1H, CH), 2.66 (m, 1H, CH), 3.50 (m, 1H, CH), 3.64 (m, 1H, CH), 3.95 (m, 4H, CH 

in COD), 6.61 (m, 2H, 3- and 5-H), 6.61 (m, 1H, 4-H). 31P{1H} NMR (162 MHz, 23 °C, 

C6D6): δ 77.1 (d, JP-P = 381 Hz, SP), 145.9 (d, JP-P = 381 Hz, OP).  
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Synthesis of the ethylene complex 3b-C2H4. Complex 3b-dimer (50 mg, 54 µmol) and 

NaOtBu (10 mg, 104 µmol) were weighed into a Kontes flask. Toluene (6 mL) was added to 

the flask via syringe and the solution was degassed by three freeze-pump-thaw cycles. The 

flask was refilled with ethylene at -78 °C and then sealed tightly with a Teflon plug. The 

mixture was stirred at room temperature for 3 d. Volatiles were removed under high vacuum 

and the residue was extracted with 3 × 10 mL of pentane. The extract was cannula transferred 

and filtered through a 0.2µm pore size syringe filter. Pentane was removed under high 

vacuum to give 26 mg (45 µmol, 84% yield) of product as a dark-red waxy solid. 1H NMR 

(400 MHz, 23 °C, C6D6): δ 1.08 (m, 24H, 8 × CH3), 2.29 (m, 2H, 2 × CH(CH3)2), 2.31 (m, 

2H, 2 × CH(CH3)2), 2.91 (s, 4H, C2H4), 6.92 (m, 2H, 4 and 5-H), 7.39 (d, 3JH-H = 7.2 Hz, 1H, 

3-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 95.1 (d, JP-P = 355 Hz, SP), 165.9 (d, JP-P = 

355 Hz, OP). 

 

 

 

 

 

Synthesis of the pincer ligand tBu-PSCNP. A solution of 12 mmol of nBuLi (7.5 mL, 1.6 M 

in hexane) was slowly added via syringe to a mixture of 4.0 mmol of 3-aminothiophenol (0.5 

g) and 12 mmol of di-tert-butylchlorophosphine (2.27 g) in 5 mL of THF under a flow of 

argon at -78 °C. The mixture was then warmed to room temperature and stirred overnight. 

After evaporation of the solvent under high vacuum, the residue was extracted with 3 × 5 mL 

of pentane, and the extract was cannula transferred and filtered through a pad of Celite. After 

removal of pentane under high vacuum, the flask was heated to 55 °C for 3 h under high 

vacuum to remove residual amounts of di-tert-butylchlorophosphine. Product as a while-
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yellow solid was collected in 24% yield (0.96 mmol, 0.4 g, ca. 71% purity by NMR). 1H 

NMR (400 MHz, 23 °C, C7D8 & DMSO-d6): δ 1.06 (d, 3JH-P = 11.6 Hz, 18H, tBu2), 1.15 (d, 

3JH-P = 11.6 Hz, 18H, tBu2), 3.61 (s, NH), 5.59 (d, 3JH-H = 11.6 Hz, 4-H), 6.91 (m, 1H, 5-H), 

7.08 (m, 1H, 6-H), 7.58 (s, 1H, 2-H). 31P{1H} NMR (162 MHz, 23 °C, C7D8 & DMSO-d6): 

δ 80.1 (s, SP), 60.9 (s, NP).  

 

 

 

 

 

 

Synthesis of the pincer iridium complex 4-HCl. A Schlenk flask was charged with 1.37 

mmol of tBu-PSCNP (565 mg) and 0.68 mmol of [(COD)IrCl]2 (385 mg) and put under a 

flow of argon. Toluene (10 mL) was added via syringe, and the solution was stirred in an oil 

bath for 2 days at 130 °C. The reaction mixture was cooled to room temperature. Red crystals 

precipitated which were collected through filtration. Yield: 400 g (0.62 mmol, 55%). 1H 

NMR (400 MHz, 23 °C, CDCl3): δ -42.49 (t, virtual triplet, 2JP-H = 12.7 Hz, 1H, IrH), 1.36 

(m, 18H, 2 × tBu), 1.47 (m, 18H, 2 × tBu), 4.6 (s, 1H, NH), 6.31 (d, 3JH-H = 7.0 Hz, 1H, 5-H), 

6.64 (m, 1H, 4-H), 6.83 (d, 3JH-H = 7.5 Hz, 1H, 3-H). 31P{1H} NMR (202 MHz, 23 °C, 

CDCl3): δ 99.3 (d, JP-P = 349 Hz, NPtBu2), 105.8 (d, JP-P = 349 Hz, SPtBu2). 13C{1H} NMR 

(125.8 MHz, 23 °C, CD2Cl2): δ 28.2 (CH3, m, NPtBu2), 28.3 (CH3, m, NPtBu2), 29.3 (CH3, m, 

SPtBu2), 29.6 (CH3, m, SPtBu2), 38.3 (Cq, m, NPtBu2), 39.5 (Cq, m, SPtBu2), 41.7 (Cq, m, 

NPtBu2), 42.5 (Cq, m, SPtBu2), 105.2 (CH, d, 3JP-C = 12.1 Hz, C5), 113.3 (CH, d, 3JP-C = 10.6 

Hz, C3), 124.2 (CH, s, C4), 128.5 (Cq, m br, C1), 154.2 (Cq, m, C2), 158.1 (Cq, m, C6). 
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Synthesis of the ethylene complex 4-C2H4. Complex 4-HCl (300 mg, 0.46 mmol) and 

NaOtBu (48 mg, 0.50 mmol) were weighed into a Schlenk flask and put under a flow of 

argon. Toluene (10 mL) was added to the flask via syringe and ethylene was bubbled through 

the solution for 3 h. After evaporation of the solvent under high vacuum, the residue was 

extracted with 3 × 15 mL of pentane, and the extract was cannula transferred and filtered 

through a pad of Celite. Pentane was removed under high vacuum, and the brown solid was 

dried under high vacuum overnight to give 128 mg (0.20 mmol, 43% yield) of pure product. 

1H NMR (400 MHz, 23 °C, C6D6): δ 1.10 (d, 3JP-H = 12.4 Hz, 18H, OPtBu2), 1.41 (d, 3JP-H = 

12.8 Hz, 18H, SPtBu2), 3.24 (s, 4H, C2H4), 4.30 (s, 1H, NH), 6.40 (d, 3JH-H = 7.2 Hz, 1H, 5-

H), 6.92 (m, 1H, 4-H), 7.35 (d, 3JH-H = 7.2 Hz, 1H, 3-H). 31P{1H} NMR (161.9 MHz, 23 °C, 

C6D6): δ 95.1 (d, JP-P = 370 Hz, NPtBu2), 103.0 (d, JP-P = 370 Hz, OPtBu2). 13C{1H} NMR 

(125.8 MHz, 23 °C, C6D6): δ 29.4 (CH3, d, 2JP-C = 5.2 Hz, NPtBu2), 30.6 (CH3, d, 2JP-C = 5.0 

Hz, SPtBu2), 36.8 (CH2, m, C2H4), 39.2 (Cq, d, JP-C = 4.0 Hz, OPtBu2), 39.3 (Cq, d, JP-C = 3.9 

Hz, OPtBu2), 41.3 (Cq, d, JP-C = 3.1 Hz, SPtBu2), 41.3 (Cq, d, JP-C = 3.3 Hz, SPtBu2), 104.7 

(CH, d, 3JP-C = 13.7 Hz, C5), 111.6 (CH, d, 3JP-C = 11.1 Hz, C3), 130.6 (CH, s, C4), 158.1 (Cq, 

m, C1), 160.2 (Cq, m, C2), 163.3 (Cq, m, C6). 
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Synthesis of the pincer ligand tBu-PSCSP. A solution of 17.3 mmol of benzene-1,3-dithiol 

(2.46 g) in 20 mL of THF was slowly added via syringe to a suspension of 35 mmol of NaH 

(0.84 g) in 80 mL of THF under a flow of argon at 0 °C (caution: hydrogen evolution). The 

mixture was then heated to reflux for 2 h, di-tert-butylchlorophosphine (34.5 mmol, 6.5 g) 

was then added via syringe, and the mixture was refluxed for additional 20 h. After 

evaporation of the solvent under high vacuum, the residue was extracted with 3 × 50 mL of 

pentane, and the extract was cannula transferred and filtered through a pad of Celite. 

Volatiles were removed under high vacuum. The residue was washed with 3 × 10 mL of 

pentane at -78 °C and the resulting white solid was dried under high vacuum to give 3.42 g 

(7.96 mmol, 46% yield) of white solid product (92% purity). 1H NMR (400 MHz, 23 °C, 

CD2Cl2): δ 1.20 (d, 3JH-P = 12.0 Hz, 36H, 4 × tBu), 6.91 (t, 3JH-H = 7.6 Hz, 1H, 5-H), 7.42 (d, 

3JH-H = 7.6 Hz, 2H, 4 and 6-H), 8.16 (m, 1H, 2-H). 31P{1H} NMR (162 MHz, 23 °C, C7D8): 

δ 82.8 (s b). 

 

 

 

 

 

 

Synthesis of the pincer iridium complex 5-HCl. A Schlenk flask was charged with 1.47 

mmol of tBu-PSCSP (633 mg) and 0.88 mmol of [(COD)IrCl]2 (795 mg) and put under a 
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flow of argon. Toluene (10 mL) was added via syringe, and the solution was stirred in an oil 

bath for 15 h at 130 °C. The reaction mixture was cooled to room temperature. Volatiles were 

removed under high vacuum and the resulting solid was washed with 3 × 10 mL of pentane 

and dried under high vacuum overnight. The residue was extracted with  3 × 5 mL of toluene 

and the solvent was removed under vacuum to yield 260 mg (0.40 mmol, 27%) of pure red 

product. 1H NMR (400 MHz, 23 °C, C6D6): δ -42.02 (t, 2JP-H = 12.6 Hz, 1H, IrH), 1.37 (t, 

virtual triplet, apparent J = 7.6 Hz, 18H, 2 × tBu), 1.45 (t, virtual triplet, apparent J = 7.8 Hz, 

18H, 2 × tBu), 6.53 (t, 3JH-H = 7.6 Hz, 1H, 4-H), 7.00 (d, 3JH-H = 7.6 Hz, 2H, 3 and 5-H). 

31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 94.2 (s). 

 

 

 

 

 

 

 

Synthesis of the ethylene complex 5-C2H4. Complex 5-HCl (80 mg, 0.12 mmol) and 

NaOtBu (14 mg, 0.15 mmol) were weighed into a Schlenk flask and put under a flow of 

argon. Toluene (5 mL) was added to the flask via syringe and ethylene was bubbled through 

the solution for 3 h. After evaporation of the solvent under high vacuum, the residue was 

extracted with 3 × 10 mL of pentane, and the extract was cannula transferred and filtered 

through a pad of Celite. Pentane was removed under high vacuum, and the red solid was 

dried under high vacuum overnight to give 62 mg (95 µmol, 79% yield) of pure product. 1H 

NMR (400 MHz, 23 °C, C6D6): δ 1.35 (t, virtual triplet, apparent J = 6.8 Hz, 36H, 4 × tBu), 
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3.23 (t, 3JP-H = 3.2 Hz, 4H, C2H4), 6.70 (t, 3JH-H = 7.6 Hz, 1H, 5-H), 7.41 (d, 3JH-H = 7.6 Hz, 

2H, 3 and 5-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 93.0 (s).  

 

 

 

 

 

Synthesis of the pincer ligand {η3-C6H3[OP-(C6H2(CF3)3-2,4,6)2]2-1,3}, (Ar-POCOP) 

A solution of 1.2 mmol of resorcinol (132 mg) in 20 mL of THF was slowly added via 

syringe to a suspension of 2.5 mmol of NaH (60 mg) in 10 mL of THF under a flow of argon 

(caution: hydrogen evolution). The mixture was heated to reflux for 1 h, then a solution of 

2.4 mmol of di-2,4,6-tris(trifluoromethyl)phenylchlorophosphine (1.508 g) in 10 ml of THF 

was added via syringe. The white solution turned to blue upon addition of phosphine. The 

mixture was then refluxed for additional 2 h. After evaporation of the solvent under high 

vacuum, the residue was extracted with 3 × 40 mL of pentane at room temperature, and the 

extract was cannula transferred and filtered through a pad of Celite. Volatiles were removed 

under high vacuum. The residue was washed with 3 × 5 mL of pentane at -34 °C and the 

resulting white solid was dried under high vacuum to give 1.035 g (0.8 mmol, 67% yield) of 

pure product. 1H NMR (400 MHz, 23 °C, CDCl3): δ 6.81 (m, 3H, 2-, 4-H, and 6-H), 7.11 (t, 

3J H-H= 8.2 Hz, 1H, 5-H), 8.14 (s, 8H, Ar(CF3)3-H). 31P{1H} NMR (162 MHz, 23 °C, CDCl3): 

δ 109.35 (septep, 4JP-F = 35.3). 19F NMR (376 MHz, 23 °C, CDCl3): δ -56.2 (d, 4JP-F = 35.3, 

24F, o-CF3), -64.7 (s, 12F, p-CF3). 13C{1H} NMR (126 MHz, 23 °C, CDCl3): δ 108.5 (CH, t, 

3JC-P = 11.3 Hz, C2), 113.0 (CH, d, 3JC-P = 12.1 Hz, C4 and C6), 122.2 (Cq, q, 1JC-F = 272.9 

Hz, p-CF3), 122.7 (Cq, q, 1JC-F = 276.7 Hz, o-CF3), 127.9, (CH, s, Cm), 129.9 (CH, s, C5), 
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133.2 (Cq, q, 2JC-F = 34.8 Hz, Co), 135.8 (Cq, q, 2JC-F = 34.8 Hz, Cp), 143.3 (Cq, d, 1JP-C = 70.4 

Hz, Ci), 154.8 (Cq, d, 2JP-C = 16.4 Hz, C1 and C3). 

 

 

 

 

 

 

 

 

Synthesis of the dimer {C6H3-2,6-[OP-(C6H2(CF3)3-2,4,6)2]2}IrH(µ-Cl)2Ir(COD), 6-

dimer 

The pincer ligand reacts slowly with [(COE)2IrCl]2 to form a chloro-bridged dimer, Most of 

[(COE)2IrCl]2 decomposes under the reaction conditions and thus excess [(COE)2IrCl]2 must 

be added. In a typical reaction, a Schlenk flask was charged with 0.3 mmol of ligand (388 mg) 

and 0.15 mmol of [(COE)2IrCl]2 (135 mg) and put under a flow of argon. Toluene (5 mL) 

was added via syringe, and the solution was stirred in an oil bath for 12 h at 150 °C. Black 

solid precipitated during the process and ca. 10% of product was observed by 31P{1H} NMR. 

Additional [(COE)2IrCl]2 (0.15 mmol, 135 mg) was then added and the mixture was heated 

for another 12 h at 150 °C. After 8 days with 16 periodic addition of [(COE)2IrCl]2 (0.15 

mmol each), the reaction generated ca. 90% of product and [(COD)IrCl]2 presumably 

through the dehydrogenation of COE ([(COD)IrCl]2 does not react with the pincer ligand). 

Volatiles were removed under high vacuum overnight and the residue was extracted with 3 × 

30 mL of pentane. Removal of the pentane solvent resulted in the isolation of both 

[(COD)IrCl]2 and the dimer {C6H3-2,6-[OP-(C6H2(CF3)3-2,4,6)2]2}IrH(µ-Cl)2Ir(COD). The 
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dimer is more soluble than [(COD)IrCl]2 in pentane, thus part of [(COD)IrCl]2 was isolated 

through recrystallization from pentane at -34 °C. After filtration, the pentane solvent was 

removed and the resulting solid was dried under high vacuum overnight to yield 1.25 g of red 

solid [(COD)IrCl]2 and yellow solid {C6H3-2,6-[OP-(C6H2(CF3)3-2,4,6)2]2}IrH(µ-

Cl)2Ir(COD), (ca. 0.24 mmol,  80% yield) in ca. a 5:1 ratio (determined by 1H NMR). 1H 

NMR of A (400 MHz, 23 °C, C6D6): δ -22.85 (t, 2JP-H = 13.0 Hz, 1H, IrH), 6.76 (m, 3H, 3-, 

4-H, and 5-H), 7.80 (s, 2H, Ar(CF3)3-H), 7.85 (s, 2H, Ar(CF3)3-H), 8.16 (s, 2H, Ar(CF3)3-H), 

8.20 (s, 2H, Ar(CF3)3-H) (the signals for COD in the dimer are overlapping with those of 

[(COD)IrCl]2). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 111.3 (m, b). 19F NMR (376 MHz, 

23 °C, C6D6): δ -49.0 (m, 6F, o-CF3), -50.3 (m, 6F, o-CF3), -52.1 (m, 6F, o-CF3), -54.3 (m, 

6F, o-CF3), -64.1 (s, 6F, p-CF3), -64.2 (s, 6F, p-CF3). Yellow single crystals of {C6H3-2,6-

[OP-(C6H2(CF3)3-2,4,6)2]2}IrH(µ-Cl)2Ir(COD) suitable for X-ray analysis were obained from 

toluene solution. The stucture is shown in Fig. 3.5 and X-ray crystallographic data are 

summarized in Table 3.5. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 ORTEP diagram of 6-dimer. Hydrogen atom on the iridium center can not be 
located.  
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Synthesis of 6-HCl 

The mixture of {C6H3-2,6-[OP-(C6H2(CF3)3-2,4,6)2]2}IrH(µ-Cl)2Ir(COD), 6-dimer, and 

[(COD)IrCl]2 (625 mg total, containing ca. 0.12 mmol of 6-dimer), and toluene (10 mL) 

were added to a Kontes flask. The toluene solution was degassed by three freeze-pump-thaw 

cycles. The flask was refilled with hydrogen gas at -190 °C and then sealed tightly with a 

Teflon plug. The mixture was heated at 120 °C for 15 h. Volatiles were removed under high 

vacuum overnight and the residue was extracted with 3 × 20 mL of pentane. Pentane was 

removed under high vacuum, and the red solid was dried under high vacuum overnight to 

give 108 mg (0.071 mmol, 59% yield) of pure product. 1H NMR (400 MHz, 23 °C, C6D12): 

δ -34.60 (m, 1H, IrH), 6.63 (d, 3JH-H = 8.0 Hz, 2H, 3- and 5-H), 6.85 (t, 3JH-H = 8.0 Hz, 1H, 4-

H), 8.12 (s, 4H, Ar(CF3)3-H), 8.18 (s, 4H, Ar(CF3)3-H). 31P{1H} NMR (162 MHz, 23 °C, 

C6D12): δ 119.5 (m). 19F NMR (376 MHz, 23 °C, C6D12): δ -54.5 (b, 24F, o-CF3), -65.7 (s, 6F, 

p-CF3), -65.8 (s, 6F, p-CF3). Red single crystals of 6-HCl suitable for X-ray analysis were 

obained from toluene solution. The stucture is shown in Fig. 3.3d.  and X-ray 

crystallographic data are summarized in Table 3.2. 
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Synthesis of 6-C2H4 

A solution of 0.12 mmol of complex 6-HCl (183 mg) in 5 mL of toluene and NaOtBu (20 mg, 

0.21 mmol) were added to a Kontes flask. The mixture was degassed by three freeze-pump-

thaw cycles. The flask was refilled with ethylene at -78 °C and then sealed tightly with a 

Teflon plug. The mixture was stirred at room temperature for 2 h. Volatiles were removed 

under high vacuum and the residue was extracted with 3 × 10 mL of pentane. The extract was 

cannula transferred and filtered through a 0.2µm pore size syringe filter. Pentane was 

removed under high vacuum to give 75 mg (20 µmol, 42% yield) of product as a deep-red 

waxy solid. 1H NMR (400 MHz, 23 °C, C6D6): δ 3.35 (s, b, 4H, Ir-C2H4), 7.04 (s, 3H, 3-, 4- 

and 5-H), 7.81 (s, 8H, Ar(CF3)3-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 111.3 (s). 19F 

NMR (471 MHz, 23 °C, C6D6): δ -53.1 (b, 24F, o-CF3), -64.1 (s, 12F, p-CF3). 

 

 

 

 

 

 

Synthesis of chloro-methyl-2,4,6-tris(trifluoromethyl)phenylphosphine. A solution of 

16.5 mmol of n-butyllithium (2.5 M, 6.6 mL) in hexanes was slowly added via syringe to a 
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solution of 16.4 mmol of 1,3,5-tristrifluromethylbenzene (4.77 g) in 25 mL of Et2O under a 

flow of argon at -78 °C. Then the mixture was warmed to room temperature and stirred for 

additional 4 h to form a brown mixture. The mixture was slowly cannula transferred into a 

solution of 16.4 mmol of dichloromethylphosphine (2.0 g) in 15 mL of Et2O at -78 °C. The 

mixture was warmed to room temperature and stirred for additional 2 h. After evaporation of 

the solvent under high vacuum at -30 °C, the residue was extracted with 3 × 30 mL of 

pentane, and the extract was cannula transferred and filtered through a pad of Celite. 

Volatiles were removed under high vacuum at -30 °C to give 1.81 g (5.0 mmol, 30% yield) 

of product (> 95% purity). 1H NMR (400 MHz, 23 °C, C6D6): δ 1.52 (d, 2JP-H = 15.2 Hz, 3H, 

CH3), 7.72 (s, 2H, Ar(CF3)3-H). 31P{1H} NMR (162 MHz, 23 °C, C6D12): δ 83.3 (septep, 4JP-

F = 51.8).  

 

 

 

 

 

Synthesis of the pincer ligand {η3-C6H3[OP-Me(C6H2(CF3)3-2,4,6)]2-1,3} (ArMe-POCOP) 

Note: excess NaH and resorcinol were required to prepare the pincer ligand in good yield. A 

solution of 5.7 mmol of resorcinol (630 mg) in 20 mL of THF was slowly added via syringe 

to a suspension of 20 mmol of NaH (480 mg) in 15 mL of THF under a flow of argon 

(caution: hydrogen evolution). The mixture was heated to reflux for 1.5 h, then a solution of 

5.0 mmol of chloro-methyl-2,4,6-tris(trifluoromethyl)phenylphosphine (5.0 g) in 10 ml of 

THF was added via syringe. The mixture was then refluxed for additional 4 d. After 

evaporation of the solvent under high vacuum, the residue was extracted with 3 × 40 mL of 
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pentane at room temperature, and the extract was cannula transferred and filtered through a 

pad of Celite. Volatiles were removed under high vacuum. The residue was washed with 4 × 

5 mL of pentane at -78 °C and the resulting white solid was dried under high vacuum to give 

850 g (1.1 mmol, 45% yield) of pure product. 1H NMR (400 MHz, 23 °C, C6D6): δ 1.47 (d, 

2JP-H = 9.6 Hz, 6H, CH3), 6.76 (d, 3JH-H = 8.4 Hz, 2H, 4 and 6-H), 6.84 (t, 3JH-H = 8.4 Hz, 1H, 

5-H), 6.94 (s, 1H, 2-H), 7.81 (s, 4H, Ar(CF3)3-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): 

δ 115.3 (septep, 4JP-F = 46.5).19F NMR (471 MHz, 23 °C, C6D6): δ -55.3 (d, 4JP-F = 47.1, 12F, 

o-CF3), -63.2 (s, 6F, p-CF3). 

 

 

 

  

 

 

 

 

 

Synthesis of the dimer {C6H3-2,6-[OP-Me(C6H2(CF3)3-2,4,6)]2}IrH(µ-Cl)2Ir(COD), 7-

dimer 

A Schlenk flask was charged with 0.41 mmol of ligand (311 mg) and 0.46 mmol of 

[(COD)IrCl]2 (310 mg) and put under a flow of argon. Toluene (5 mL) was added via syringe, 

and the solution was stirred in an oil bath for 30 h at 130 °C. The toluene solution was 

degassed by three freeze-pump-thaw cycles. The flask was refilled with hydrogen gas at -190 

°C and then sealed tightly with a Teflon plug. The mixture was heated at 120 °C for 15 h. 

Volatiles were removed under high vacuum and the residue was extracted with 3 × 15 mL of 

pentane. Removal of pentane solvent and other volatiles resulted in the isolation of 7-dimer 
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as a yellow solid. Yield, 0.42 g, (0.32 µmol, 77%). 1H NMR (400 MHz, 23 °C, C6D6): δ -

24.59 (t, 2JP-H = 19.2 Hz, 1H, IrH), 1.26 (m, 2H, CH2 in COD), 1.59 (m, 2H, CH2 in COD), 

1.93 (m, 2H, CH2 in COD), 2.03 (m, 2H, CH2 in COD), 2.07 (s b, 3H, PCH3), 2.59 (s b, 3H, 

PCH3), 3.46 (m, 1H, CH in COD), 3.75 (m, 1H, CH in COD), 3.85 (m, 1H, CH in COD), 

4.12 (m, 1H, CH in COD), 6.72 (m, 2H, 3- and 5-H), 6.85 (t, 3JH-H = 8.0 Hz, 1H, 4-H), 7.73 

(s, 2H, Ar(CF3)3-H), 7.98 (s, 1H, Ar(CF3)3-H), 8.11 (s, 1H, Ar(CF3)3-H). 31P{1H} NMR (162 

MHz, 23 °C, C6D6) δ 123.2 (s), 123.5 (s). Yellow single crystals of 7-dimer suitable for X-

ray analysis were obained from toluene solution. The stucture is shown in Fig. 3.6 and X-ray 

crystallographic data are summarized in Table 3.5. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 ORTEP diagram of the 7-dimer. Hydrogen atom on the iridium center can not be 
located.  
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Table 3.5 Crystal data and structure refinement summary of 6-dimer and 7-dimer 
 

 6-dimer 7-dimer 
Formula C71H41.50Cl2F36Ir2O2P2 C34H25Cl2F18Ir2O2P2 
crystal system monoclinic monoclinic 
Space group P 1 21/m 1 P 1 21/c 1 
a/Å 13.1594(5) 13.3274(7) 
b/Å 19.9987(10) 11.9056(8) 
c/Å 13.3599(5) 24.8018(14) 
α/deg 90 90 
β/deg 95.880(2) 98.669(2) 
γ/deg 90 90 
V/(Å3) 3497.4(3) 3890.4(4) 
Z 2 4 
T/K 100(2) 100(2) 
R1 [I>2σ(I)] 0.0413 0.0257 
wR2 (all data) 0.1033 0.0620 

 

 

 

 

 

 

 

Synthesis of the ethylene complex, 7-C2H4. Complex 7-dimer (200 mg, 0.18 mmol) and 

NaOtBu (29 mg, 0.30 mmol) were weighed into a Schlenk flask and put under a flow of 

ethylene. Toluene (5 mL) was added to the flask via syringe and ethylene was bubbled 

through the solution for 3 h. After evaporation of the solvent under high vacuum, the residue 

was extracted with 3 × 10 mL of pentane, and the extract was cannula transferred and filtered 

through a 0.2µm pore size syringe filter. Pentane was removed under high vacuum to give 

120 mg (0.12 mmol, 67% yield) of product as a red solid. 1H NMR (400 MHz, 23 °C, C6D6): 
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δ 1.76 (s, 6H, CH3), 3.23 (m, 4H, C2H4), 7.00 (d, 3JH-H = 6 Hz, 3H, 3 and 5-H), 7.18 (t, 3JH-H 

= 8 Hz, 1H, 4-H), 7.78 (s, 4H, Ar(CF3)3-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 143.8 

(s). 19F NMR (376 MHz, 23 °C, C6D6): δ -54.8 (s, 12F, o-CF3), -63.3 (s, 6F, p-CF3). 

 

 

 

 

 

 

 

 

Synthesis of 8-C2H4: Complex 8-HCl (210 mg, 0.28 mmol) and NaOtBu (29 mg, 0.30 mmol) 

were weighed into a Schlenk flask and put under a flow of argon. Toluene (10 mL) was 

added to the flask via syringe and ethylene was bubbled through the solution for 3 h. After 

evaporation of the solvent under high vacuum, the residue was extracted with 3 × 20 mL of 

pentane, and the extract was cannula transferred and filtered through a pad of Celite. Pentane 

was removed under high vacuum, and the brown solid was dried under high vacuum 

overnight to give 168 mg (0.23 mmol, 82% yield) of pure product. 1H NMR (400 MHz, 23 

°C, CDCl3): δ 1.30 (virtual triplet, apparent J = 6.4 Hz, 36H, 2 × PtBu2), 1.61 (s, 16H, 2 × 

tBu), 3.17 (s, 4H, C2H4), 7.38 (s, 1H, 4-H). 31P{1H} NMR (162 MHz, 23 °C, CDCl3): δ 180.9 

(s). 13C{1H} NMR (100.6 MHz, 23 °C, CDCl3): δ 29.2 (CH3, virtual triplet, apparent J = 3.0 

Hz, 2 × PtBu2), δ 31.1 (CH3, S, 2 × tBu), 34.8 (Cq, s, 2 × tBu), 36.8 (CH2, s, C2H4), 42.0 (Cq, t, 

JP-C = 11.1 Hz, 2 × PtBu2), 123.3 (Cq, s, C3 and C5), 125.0 (Cq, m, C1), 150.5 (Cq, s, C4), 

163.6 (Cq, virtual triplet, apparent J = 8.0 Hz, C2 and C6).  
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Hydrogen transfer from COA to TBE catalyzed by iridium pincer complexes: A flask 

was charged with iridium pincer complex (2.5 µmol), COA (7.5 mmol), and TBE (7.5 mmol). 

The flask was sealed tightly with a Teflon plug under an argon atmosphere, and the solution 

was stirred in an oil bath at 200 °C. Periodically, the flask was removed from the bath and 

cooled in an ice bath. An aliquot was removed from the flask, and analyzed by GC. 

Procedures for alkane metathesis reactions: A flask was charged with 0.021 mmol of 

iridium pincer complex, 0.017 mmol of the Schrock catalyst Mo-F6 or W-siloxyl, 2 mL (15.1 

mmol) of n-hexane, and 8.8 µL (0.063 mmol) of mesitylene as internal standard.  The flask 

was sealed tightly with a teflon plug under an argon atmosphere, and the solution stirred in a 

125 °C oil bath.  Periodically, the flask was removed from the bath and cooled in an ice bath.  

An aliquot was removed from the flask, and analyzed by GC.  Product concentrations were 

calculated for each aliquot. 
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CHAPTER FOUR 

 

Highly Active and Recyclable Heterogeneous Iridium Pincer 

Catalysts for Transfer Dehydrogenation of Alkanes 

 

(Reproduced, with permission from Huang, Z.; Brookhart, M.; Goldman, A. S.; Kundu, S.; 

Ray, A.; Scott, S. L.; Vicente, B. C. Adv. Synth. Catal. 2009, 351, 188. Copyright 2009 by 

WILEY-VCH. The PCP-Ir catalysts in this chapter were prepared by the Goldman group 

(Rutgers); The solid-state 31P[1H] NMR studies were carried out by Brian Vicente (UCSB)) 

 

Introduction 

Catalytic alkane dehydrogenation is carried out industrially on an enormous scale for 

the conversion of inexpensive saturated hydrocarbon feedstocks to higher-value olefins and 

arenes. Heterogeneous catalysts are used in these cracking and reforming processes which 

typically operate at high temperatures (400–600 °C), resulting in low product selectivities 

and poor energy efficiency.1  

While numerous homogeneous catalytic alkane dehydrogenation systems have been 

reported,2 iridium pincer complexes have been shown to be the most productive. Two 

examples of such systems are shown in Fig. 4.1. The iridium bis(phosphine) (tBu-PCP) 

complex, 1a,3 has been investigated by Jensen, Kaska and Goldman,3 while the 
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bis(phosphinite) (tBu-POCOP) complexes, 2a–e, have been studied by Brookhart.4,5 Other 

related iridium pincer systems have also shown good activity in alkane dehydrogenation.6 

Operating under relatively mild conditions (100–200 °C), these iridium pincer complexes can 

effect the transfer-dehydrogenation of alkanes, using sacrificial olefins as hydrogen acceptors 

(as in eq 1), or dehydrogenation in the absence of sacrificial acceptors under conditions 

where H2 is allowed to escape from the system. 

By comparison with conventional heterogeneous dehydrogenation systems, the 

iridium pincer catalysts (like other homogeneous dehydrogenation catalysts) show excellent 

chemoselectivity: “cracking” (C-C bond cleavage side-reactions) has never been reported. 

Even more notably, these complexes have been reported to catalyze dehydrogenation with 

high regioselectivity for the terminal positions of n-alkanes or n-alkyl groups. Moreover, in 

addition to simple alkanes, iridium pincer complexes have been reported to catalyze 

dehydrogenation of numerous other substrates including amines,7 alcohols,8 and polyolefins.9 

Mechanistic details of the dehydrogenations by both iridium PCP and POCOP pincer 

catalysts have been disclosed.10 

 

 

 

 

 

Fig. 4.1 Structures of Ir–PCP and Ir–POCOP complexes. 
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While the iridium pincer systems are quite robust, the utility of these homogeneous 

catalysts is limited due to problems of catalyst recyclability and product separation. 

Heterogeneous iridium pincer systems therefore hold promise for a broad range of 

applications. In particular, our groups desired such catalysts to combine with heterogeneous 

olefin metathesis catalysts to generate a fully heterogeneous catalyst system for alkane 

metathesis.11  

In this paper we report the results of three strategies for preparing supported iridium 

pincer complexes: (i) Covalent attachment of an iridium complex containing a phenoxide 

functionality to a Merrifield resin through an SN2 reaction with the chlorobenzyl moieties. (ii)  

Covalent bonding to silica of iridium pincer complexes containing a pendant alkoxy silane 

group. (iii) Adsorption of Ir pincer complexes (particularly those containing basic functional 

groups) on γ-Al2O3 through a Lewis acid/Lewis base interaction. The Merrifield resin–

supported iridium POCOP catalyst was found to have low transfer-dehydrogenation activity. 

The silica-supported iridium POCOP catalyst showed good transfer dehydrogenation activity 

at early stages but poor lifetimes. Notably, the γ-Al2O3–supported iridium complexes were 

recyclable and highly active, and in some cases even more productive than the analogous 

homogeneous system for transfer dehydrogenation.     

 

Results and Discussion 

1. Alumina-supported iridium pincer catalyst systems. 

The iridium PCP dihydride complexes (1a-d) and POCOP ethylene complexes (3–5) 

shown in Fig. 4.1 and 4.2 were used in the alumina adsorption studies. Complexes 1a, 1b, 1c 
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and 3 have been previously prepared. Complexes 1d, 4 and 5, previously unknown, contain 

polar groups in the para position and were thought to be good candidates for adsorption.  

 

 

 

 

 

Fig. 4.2 Structures of  iridium POCOP complexes used for absorption on γ-alumina. 

1.1. Syntheses of complexes 1d, 4 and 5. Synthesis of the bis(phosphine) PCP complex 1d 

is outlined in Scheme 4.1.12 Dimethylation of the commercially available dimethyl-5-

aminoisophthalate (6) was achieved by adaptation of a method developed by Borch and 

Hassid.13 The diester 7 was then reduced to 5-dimethylamino-1,3-benzenedimethanol (8) by 

lithium aluminum hydride in THF.14 Diol 8 was then treated with PBr3 in acetonitrile and the 

resulting dibromide 9 was recrystallized in 77% yield from acetonitrile/water15 before 

conversion to Me2N-PCP-H (10) by an adaptation of the method of Moulton and Shaw.16 

Metalation of the free ligand could only be achieved under H2; the resulting iridium hydrido 

chloride was reduced to the iridium dihydride (1d) and tetrahydride in analogy with the 

synthesis of 1a and the corresponding tetrahydride. Although we were not successful in 

obtaining crystals of either (Me2N-PCP)IrH2 or (Me2N-PCP)IrH4, the reaction of this mixture 

with CO, in analogy with the reaction of the unsubstituted PCP hydrides, gave clean 

conversion to (Me2N-PCP)Ir(CO) which was crystallographically characterized (see 

Supporting Information). For catalytic runs, 1d was generally used as a mixture of (Me2N-

O O

P PtBu2Ir

OK

tBu2

4

O O

P PtBu2Ir

OP(tBu)2

tBu2

5

O O

P PtBu2IrtBu2

3



 87

PCP)IrH2 and (Me2N-PCP)IrH4 (the iridium PCP and POCOP tetrahydrides readily convert 

to the dihydrides under catalytic conditions).  

Scheme 4.1 Synthesis of (p-Me2N-PCP)IrH2 complex   

 

 

 

 

 

 

 

 

 

 

 

 

 

        The synthesis of complex 4 is outlined in Scheme 4.2. Deprotection of the methoxy 

group of previously reported4 {p-OMe-C6H2-2,6-[OP(t-Bu2)]2}IrHCl, 2b, with 9-I-BBN (9-I-

BBN = 9-iodo-9-borabicyclo[3.3.1]nonane, 1M in hexanes), followed by hydrolysis with 

water lead to the formation of {4-HO-C6H2-2,6-[OP(t-Bu2)]2}IrHI, 11, in 86% yield. 

Treatment of 11 with 2 equivalents of KH in THF produces Ir dihydride complex, {p-KO-

C6H2-2,6-[OP(t-Bu2)]2}Ir(H)2, 12, which then reacts with ethylene to form {p-KO-C6H2-2,6-

[OP(t-Bu2)]2}Ir(C2H4), 4, in 70% yield. 
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Scheme 4.2 Synthesis of (p-KO-POCOP)IrC2H4 complex 

 

 

 

 

 

 

 

                            

            Preparation of tris(phosphinite) Ir pincer complex, 5, is outlined in Scheme 4.3. The 

tris(phosphinite) POCOP ligand, 13, was synthesized in 89% yield by reaction of 1,3,5-

benzenetriol with di-tert-butylchlorophosphine and sodium hydride. Ir hydrido chloride 

complex, 14, was obtained from the reaction of 0.5 equivalent of [Ir(COD)Cl]2 with the 

tris(phosphinite) ligand in toluene for 12 h at 130 °C (82% yield). Treatment of the 

hydridochloride complex with sodium tert-butyloxide in the presence of ethylene produced 5 

(75% yield).  

Scheme 4.3 Synthesis of (p-tBu2PO-POCOP)IrC2H4 complex 
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1.2 Support of bisphosphinite (POCOP) complexes 3 and 4 on γ-alumina; transfer-

dehydrogenation activity. γ-Al2O3 has been widely used to support metals or metal oxides 

for heterogeneous catalysis, with most applications being in the petroleum industry.17 For 

example, a γ-Al2O3–supported cobalt catalyst has been used in the Fisher-Tropsch process 

for decades. However, γ-Al2O3 is rarely used to support organometallic catalysts. Since 

alumina contains Lewis acidic sites we considered that iridium pincer complexes containing 

basic and/or polar functional groups could be strongly adsorbed on this support. We visually 

examined the effects of adding alumina to cyclooctane solutions of the pincer catalysts, 

which are orange in color. When 50 mg of γ-Al2O3 is added to 1.0 mL of a COA solution 

containing 2.5 µmol of phenoxide complex 4, the solution is completely decolorized and the 

alumina acquires the orange color of the pincer complex. In contrast, a similarly treated 

solution of 3 retains an orange color. Addition of a further 50 mg alumina results in a nearly 

colorless solution, suggesting that the parent complex, 3, can be adsorbed but that the 

interaction is weaker than with 4. 

 

 

 

 

Fig. 4.3 Transfer dehydrogenation of COA and TBE with alumina-supported Ir catalysts. 

         The transfer of hydrogen from COA to tert-butylethylene (TBE) as acceptor to yield 

cyclooctene (COE) and 2,2-dimethylbutane (TBA) (eq 1) is a commonly used “benchmark” 

reaction;18 this reaction is thermodynamically favorable by 6 kcal/mol.19 Using the iridium 

PCP complex 1a, TONs up to 1000 can be achieved at 200 °C but require portionwise 
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addition of TBE which is a strong inhibitor. The iridium POCOP systems, 2a-2f, are much 

less subject to inhibition by TBE; TONs up to 2200 have been observed at 200 °C with 

substrate : catalyst ratios of 3300 : 1.4 

The γ-Al2O3–supported complex 4 was examined for transfer-dehydrogenation 

activity using the COA/TBE couple. Results are summarized in Table 4.1. A system 

containing 2.5 µmol of the iridium catalyst 4 supported on 280 mg of γ-Al2O3, 7.5 mmol of 

COA (3000 equivalents relative to Ir), and 7.5 mmol of TBE, was heated at 200 °C under 

argon in a sealed glass vessel for 40 h. This process converted 1990 equivalents (relative to Ir) 

of TBE to TBA, and COA to COE and 1,3-cyclooctadiene (COE/COD ~ 5/1).20 The activity 

is similar to the homogeneous system under identical conditions (1970 TONs, 40 h, Table 

4.1). In the heterogeneous system, part of the TBE was isomerized to form 2,3-dimethyl-2-

butene (DM2B, 810 equivalents, 40 h) and 2,3-dimethyl-1-butene (DM1B, 70 equivalents, 40 

h). These isomerized olefins were shown to be poor acceptors. For the homogeneous system, 

no TBE isomerization products were observed. 

The homogenous catalyst 4 gradually decomposed and unidentified black solids 

precipitated during the transfer dehydrogenation reaction. The catalytic activity was 

completely lost after evaporation of volatiles and addition of fresh COA and TBE solutions 

(Table 4.1). However, when supported on γ-Al2O3, 4 can be recycled with only modest loss 

of activity. Surprisingly, the extent of isomerization of TBE increased after each recycle. 

After the first run (showing 1990 TONs), the catalyst was isolated and recharged with COA 

and TBE (3000 equivalents respectively). After 40 h at 200 °C, 1420 equivalents of TBE 

were converted to TBA, with the formation of 1150 equivalents of DM2B and 200 
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equivalents of DM1B. A second recycle exhibited 1200 turnovers (TONs) with 1200 

equivalents of DM2B and 580 equivalents of DM1B formed as isomerization products.  

  The isomerization of TBE decreases the transfer dehydrogenation efficiency since 

DM2B and DM1B are inefficient hydrogen acceptors. (No 2,3-dimethylbutane, the 

hydrogenation product of DM2B or DM1B, was observed in the transfer dehydrogenation 

reaction catalyzed by 4/γ-Al2O3). In control experiments with 280 mg of γ-Al2O3 (no Ir), 7.5 

mmol of COA, and 7.5 mmol of TBE, 98 % of TBE was isomerized at 200 °C to form 

DM2B (78 %) and DM1B (22 %) after 6 h. No transfer dehydrogenation products TBA or 

COE were observed. This result indicates that the isomerization of TBE is catalyzed by the γ-

Al2O3, presumably by acidic sites on the alumina surface. DM1B and DM2B are well known 

products of acid-catalyzed rearrangement of TBE.21  

The supported parent complex 3 (3/γ-Al2O3; 2.5 µmol of 3 on 280 mg of γ-Al2O3) was 

also investigated for transfer dehydrogenation under similar conditions. Compared to 4/γ-

Al2O3, the transfer reaction catalyzed by 3/γ-Al2O3 shows a higher TBE isomerization rate 

and poorer dehydrogenation activity. After 15 h at 200 °C, 2300 and 480 equivalents of 

DM2B and DM1B were produced with the 3/γ-Al2O3, and only 190 equivalents of TBA were 

produced as the transfer dehydrogenation product. The reaction with 4/γ-Al2O3 under the 

same reaction conditions produced 690 equivalents of DM2B, 40 equivalents of DM1B, and 

1600 equivalents of TBA (See Table 4.1). In contrast to the neutral complex 3, the basic 

phenoxide complex 4 must, to a certain extent, “neutralize” the acidity of γ-Al2O3, thus 

decreasing the TBE isomerization rate. Since most of the TBE was isomerized to form 

DM2B and DM1B with 3/γ-Al2O3, the transfer dehydrogenation efficiency is very low.  
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Table 4.1 Transfer dehydrogenation of COA/TBE using 4 (solution phase) or 4/γ-Al2O3 at 
200 °Ca 

 
4/solution 

(homogeneous) 
Equivs. 

4/γ-Al2O3  
(heterogeneous) 

Equivs. 
time TBA TBA DM2B DM1B TBE 
0.5 h 450 800 280 0 1920 
3 h 1450 1290 530 0 1180 
15 h 1800 1600 690 40 670 
40 h 1970 1990 810 70 130 

1st recycle 
40 h No activity 1420 1150 200 230 

2nd recycle 
40 h No activity 1200 1200 580 20 

a) 1.23 mM iridium catalyst in solution or equivalent amount in the case of supported 
systems; [COA]o = [TBE]o = 3.7 M; 280 mg γ-Al2O3. 
 

Solid-state 31P MAS NMR analysis of the γ-Al2O3–supported 4 (5.0 µmol of 4 on 150 

mg of γ-Al2O3) shows a single species with a 31P shift at 177 ppm which is close to that of 

complex 4 in solution (170 ppm). After 1090 turnovers in the hydrogen transfer reaction, a 

new minor (ca. 10 %) species with a 31P shift of 66 ppm appears (See Fig. 4.4). This shift 

corresponds to one for the species generated when the supported catalyst is exposed to 

oxygen and suggests that catalyst decay occurs through oxidation, probably at phosphorus.   
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Fig. 4.4 Left: Solid-state 31P MAS NMR of fresh 4/γ-Al2O3. Right: Solid-state 31P MAS 
NMR of 4/γ-Al2O3 after use for catalytic transfer-dehydrogenation (1090 TOs). 12 kHz MAS, 
20 °C, referenced to 85% H3PO4. Starred signals represent spinning sidebands.  
 

1.3. Preparation of basic alumina and transfer dehydrogenation activity of basic 

alumina–supported 4 and 5. As discussed above, the acid-catalyzed isomerization of TBE 

by γ-Al2O3 results in decreased efficiency of COA/TBE transfer dehydrogenation. A variety 

of commercially available aluminas, including acidic, neutral, and basic were screened as the 

supports for the iridium catalyst. However, all of these aluminas were found to isomerize 

TBE rapidly. To decrease the acidity of alumina, a Na2O-modified γ-Al2O3 (2.7 wt% of 

Na2O) solid support was synthesized by adding an aqueous solution of NaOH or Na2CO3 to 

γ-Al2O3. The solid was calcined at 550 °C for 18 h under a flow of O2. A control experiment 

with 310 mg of the Na2O-modified alumina (Al2O3/Na2O), 7.5 mmol of COA, and 7.5 mmol 

of TBE, resulted in isomerization of only 1 % of the TBE to form DM2B after 48 h at 200 °C. 

The Al2O3/Na2O solid (310 mg) was used to support catalyst 4 (1.3 µmol) and was 

screened for transfer dehydrogenation activity (Table 4.2). Transfer dehydrogenation of COA 

and TBE (7500 equivalents relative to Ir) catalyzed by 4/Al2O3/Na2O results in 4140 

turnovers and only 2.4 % isomerization of TBE  after 40 h at 200 °C. Recycle showed only 

660 TONs were obtained after 15 h (Table 4.2). It should be noted that the transfer 
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dehydrogenation activity with the heterogeneous system 4/Al2O3/Na2O is much higher 

than the activity with the homogenous catalyst 4 which exhibited only 1860 TONs after 40 

h under the same reaction conditions (Table 4.2). The homogenous catalyst 4 decays faster 

than the heterogeneous system, and no catalytic activity was observed after evaporation of 

volatiles and addition of fresh COA and TBE solutions (Table 4.2). Heating at a higher 

temperature, 240 °C, with the heterogeneous system B and 11000 equivalents of COA and 

TBE gave 7010 turnovers after 40 h, and only 1.6 % of TBE was isomerized to form DM2B 

(Table 2).  

     Table 4.2 Transfer dehydrogenation of COA/TBE with solution-phase or supported 4 and 5. 

Homogeneous Heterogeneous 

4a 
(200 ˚C) 

5a 
(200 ˚C) 

4/Al2O3/Na2Oa 
(200 ˚C) 

5/Al2O3/Na2Oa 
(200 ˚C) 

4/Al2O3/Na2Ob 
(240 ˚C) 

time TBA TBA TBA DM2B TBA DM2B TBA DM2B

0.5 h 270 1260 1220 30 980 0 2170 0 

3 h 1380 2110 2220 80 2520 0 3620 40 

15 h 1830 2540 3490 160 3730 30 6240 130 

40 h 1860 2660 4140 180 4310 40 7010 180 

 recycle, 

200 ˚C 

recycle, 

200 ˚C 

recycle, 

200 ˚C 

recycle, 

200 ˚C 

recycle, 

240 ˚C 

15 h No activity No activity 660 60 1520 0 940 50 

a) 0.49 mM iridium catalyst in solution or equivalent amount in the case of supported 
systems (1.34 µmol supported iridium catalyst); 10.05 mmol COA and TBE, [COA]o = 
[TBE]o = 3.7 M; 310 mg γ-Al2O3/Na2O. b) 1.34 µmol supported iridium catalyst; 14.74 
mmol COA and TBE, [COA]o = [TBE]o = 3.7 M; 310 mg γ-Al2O3/Na2O. 
    

One major disadvantage of catalyst 4 is its lengthy and involved synthesis. Complex 5, 

readily prepared from 1,3,5-benzenetriol, was found to adsorb strongly on alumina. Analysis 

of the Al2O3/Na2O–supported 5 (7.6 µmol of 5 on 150 mg of Al2O3/Na2O) by solid-state 31P 
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MAS NMR shows two major phosphorus environments (see Fig. 4.5). The peak at 176.5 

ppm is assigned to the intact, coordinated phosphinite group with a spinning sideband at 275 

ppm (the spinning sideband expected at 78 ppm is obscured by the second peak in the 

spectrum). This constitutes a slight upfield shift from the solution-state chemical shift of 

181.1 ppm and is a result of complex-support interactions. The peak at 78.0 ppm is attributed 

to the phosphinite group not coordinated to Ir, which is shifted far upfield from its solution 

state chemical shift of 150.8 ppm. The significant upfield shift indicates an intensive 

interaction between the uncoordinated phosphinite and the alumina. There is a third, minor 

31P NMR signal observed at 151.2 ppm. This signal position is close to the uncoordinated 

phosphine in solution (150.8 ppm) and is ascribed to some of 5 in which the free phosphinite 

group is not interacting with alumina.  
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Fig. 4.5 Solid-state 31P MAS NMR of the 5/Al2O3/Na2O (top left), phenyl di-tert-
butylphosphinite /Al2O3/Na2O (top right), and triphosphinte-benzene/Al2O3/Na2O (bottom), 
12 kHz MAS, 20 °C, referenced to 85% H3PO4. Starred signals represent spinning sidebands. 
 

To investigate the interaction of uncoordinated phosphinite with alumina, the free 

1,3,5-tri(di-tert-butylphosphinite)benzene ligand and the model compound phenyl di-tert-

butylphosphinite were supported on Al2O3/Na2O. Analysis of the Al2O3/Na2O-supported 

phenyl di-tert-butylphosphinite by solid-state 31P MAS NMR shows a large upfield shift 

from the solution-state chemical shift of 153 ppm to 69 ppm (see Fig. 4.5). Supporting the 

1,3,5-tri(di-tert-butylphosphinite)benzene results in two major phosphorus environments. 

The sharp peak at 68.5 ppm is consistent with a phosphinite interacting with the alumina 
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surface as in the phenyl di-tert-butylphosphinite sample. The broad peak at 154 ppm is 

assigned to the phosphinite groups not directly interacting with the surface. The results 

indicate the uncoordinated phosphinite in complex 5 can indeed interact with the alumina 

surface and this results in a 31P upfield shift by about 70–80 ppm in the 31P MAS NMR 

spectrum. The nature of this interaction is currently under study. 

The Al2O3/Na2O-supported 5 (1.3 µmol 5 on 310 mg Al2O3/Na2O) mirrors the activity 

of Al2O3/Na2O-supported 4 but recycle of 5/Al2O3/Na2O is much more efficient. For example, 

transfer dehydrogenation of COA and TBE (7500 equivalents each relative to Ir) catalyzed 

by 5/Al2O3/Na2O results in 4310 turnovers and less than 1 % isomerization of TBE  after 40 

h at 200 °C. The first recycle exhibited 1520 turnovers after 15 h (Table 2). For the 

homogenous system, the conversion at early time (30 min., 1260 TONs) is greater than the 

heterogeneous system (30 min., 980 TONs), however; after 40 h, the homogeneous system 

exhibited only 2660 TONs relative to 4310 TONs for the supported system. Attempted 

recycle of the solution-phase catalyst 5 by evaporation of volatiles and addition of fresh COA 

and TBE resulted in no additional turnovers, indicating the complete decomposition of 5 

under transfer dehydrogenation condition. Thus the alumina–supported 5 has a much longer 

lifetime than catalyst 5 in solution.      

1.4. Leaching experiments. COA suspensions of 4/Al2O3/Na2O and 5/Al2O3/Na2O were 

filtered at 200 °C. The solid material was extracted twice more with COA at 200 °C and the 

colorless filtrates were combined and analyzed for iridium content by ICP-MS. The analysis 

of solutions indicated that only 0.02 % of Ir had leached into the solution from the 

Al2O3/Na2O-supported 4 and only 0.007 % from the Al2O3/Na2O-supported 5. The solutions 

showed no activity for COA/TBE transfer dehydrogenation. These results, in combination 
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with the activity of the supported systems being comparable to or even greater than that of 

the catalysts in solution phase, clearly indicate that the active catalytic species remains bound 

to the alumina surface during the transfer dehydrogenation reaction. 

1.5. Catalytic activity of bisphosphine (PCP) complexes supported on γ-alumina. Unlike 

the bisphosphinite analogues, (PCP)IrH2 (1a) and derivatives react with TBE, if present in 

high concentration, to give an unidentified, catalytically inactive, decomposition product. 

Thus we conducted our study of alumina-supported PCP complexes under conditions 

somewhat different than those applied in studies of the alumina-supported POCOP 

complexes. 

Complexes (MeO-PCP)IrH2 (1b) and (MeOC(O)-PCP)IrH2 (1c) have been previously 

synthesized.22 The methoxy-substituted complex 1b was previously reported to be a more 

robust alkane dehydrogenation catalyst than the parent complex 1a,23 while giving slightly 

higher rates of acceptorless dehydrogenation (of cyclodecane) but slightly lower rates of n-

octane/NBE transfer-dehydrogenation. As seen in Table 4.3 (solution phase), turnover 

frequencies (TOFs) for COA/TBE transfer-dehydrogenation by 1b are also somewhat lower 

than are found for 1a. The ester-substituted complex 1c is found to afford slightly greater 

initial rates for catalytic COA/TBE transfer dehydrogenation than either 1b or 1a (Table 4.3). 

However 1c apparently undergoes significant decomposition under the catalytic conditions as 

indicated by a decrease in catalytic activity. Accordingly, 31P and 1H NMR spectroscopy 

independently reveal that in the presence of TBE 1c reacts to give six-coordinate iridium 

hydride complexes. This decomposition is attributable to intermolecular addition of a C-H 

bond ortho to the ester functionality, in accord with the previously reported reaction of 

(PCP)Ir with acetophenone.24 
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Table 4.3 COA/TBE transfer-dehydrogenation catalyzed by solution-phase and γ−alumina-
supported (PCP)Ir-based complexes at 125 °C.a 

Catalyst (5 mM) 
 

time 
(min) 

homogeneous 
(solution phase) 

[COE] (mM) 

heterogeneous 
 (γ-alumina) 
[COE] (mM) 

(PCP)IrH2  (1a) 15 61 3 
 60 164 3 
 240 368 4 
(MeO-PCP)IrH2  (1b) 15 36 28 
 60 115 60 
 240 352 84 
(MeO2C-PCP)IrH2 (1c) 15 73 49 
 60 155 119 
 240 258 354 
(Me2N-PCP)IrH2  (1d) 15 20 42 
 60 68 111 
 240 200 283 
 a) 5 mM  iridium catalyst in solution or equivalent amount in the case of supported systems; 
[TBE]o = 0.4 M, 1 mL COA and 100mg γ-Al2O3. 
 

Upon addition of γ-alumina to a COA (100mg γ-Al2O3 + 1 mL COA) solution of 

unsubstituted PCP iridium complex 1a (5 mM) the red solution turned clear and the solid 

acquired the characteristic red color of the complex. Upon heating to 125 °C the red solid 

rapidly turned orange, suggesting that decomposition had occurred. Accordingly, very little 

COA/TBE transfer-hydrogenation occurred in the presence of alumina at 125 °C (less than 5 

mM COE formed; Table 4.3).  

Attempts to support (PCP)Ir-based catalysts on alumina were more promising with 

MeO-PCP complex 1b than with 1a, but were still not satisfactory. As in the case of 1a, upon 

addition of alumina the solution lost its red color which was acquired by the alumina, but, in 

contrast to alumina-supported 1a, no color change was observed even upon heating. After 15 

min at 125 °C, 1b (5 mM) afforded product yields in the presence of alumina only slightly 
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less than in the absence of alumina (28 mM vs. 36 mM). But after 240 min the total yield was 

substantially less than was obtained in the absence of alumina (84 vs. 352 mM). 

In contrast to results with 1a and 1b, the catalyst lifetime and total turnovers effected 

by ester-substituted complex 1c were increased in the presence of alumina. As with all the 

bound iridium PCP catalysts, adsorbtion of 1c visually appeared to be complete. Although 

initial rates of COA/TBE transfer-dehydrogenation were slightly lowered by the presence of 

alumina (49 mM vs. 73 mM after 15 min), the yield of COE was appreciably greater after 

240 min than was obtained with the solution-phase catalyst (354 mM vs. 258 mM). This 

effect can be rationalized by assuming that adsorbtion of the catalyst to alumina inhibits the 

intermolecular catalyst de-activation reaction noted above. However, attempts to recycle the 

1c/γ-alumina catalyst system met with only partial success. The solution was removed from 

the solid, which was then washed two times with COA (2 x 2 mL) and a fresh TBE/COA 

solution was then added. The subsequent catalytic runs showed significantly decreased 

reactivity (Table 4.4). 

Table 4.4 COA/TBE transfer dehydrogenation: recycling catalysts 1c and 1d.a 
catalyst  
(5 mM equivalent) 

Time 
(h) 

1st 
cycle 

2nd 
cycle 

3rd 
cycle 

4th 
cycle 

5th 
cycle 

6th 
cycle 

7th 
cycle 

8th 
cycle 

1 117 101 27      
4 331 188 41      

(MeO2C-PCP)IrH2   (1c) 
heterogeneous 
(γ-alumina-supported) 8 440 259 49      

1 75 67 56 47 30 15 9 4 
4 281 222 154 116 70 41 20 11 

(Me2N-PCP)IrH2   (1d) 
homogeneous 
(solution-phase) 8 465 339 246 161 114 65 30 14 

1 115 91 66 61 46 16 10 6 
4 314 173 135 119 74 43 23 12 

(Me2N-PCP)IrH2   (1d) 
heterogeneous 
( γ-alumina-supported) 8 464 315 216 197 117 65 31 15 
a) 5 mM  iridium catalyst in solution or equivalent amount in the case of supported systems. 
[TBE]o = 0.6 M, 1 mL COA and 100mg γ-Al2O3. 
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Very promising results were obtained with the new catalyst (Me2N-PCP)IrH2 (1d). Of 

the four X-PCP iridium catalysts used in this study, 1d gave the lowest TOFs for COA/TBE 

transfer-dehydrogenation in solution (Table 4.3). Thus it is found that initial COA/TBE 

solution-phase transfer-dehydrogenation rates increase with decreasing electron-donating 

ability of the group X: Me2N < MeO < H < CO2Me. However, when 1d was adsorbed on γ-

alumina, initial rates of COA/TBE transfer-dehydrogenation were greater than obtained by 

solution-phase 1d. This is consistent with the correlation with electron-withdrawing ability of 

X; binding of the Me2N group to a Lewis acidic surface site would indeed be expected, based 

on this correlation, to increased catalytic activity.  

In addition to the increased TOFs observed upon binding 1d to alumina, the total TONs 

effected by the 1d/γ-alumina system after 4 h were significantly greater than achieved with 

the homogeneous system (283 vs. 200 mM; Table 4.3).  The system proved to be robust and 

recycliable (Table 4.4). The solution was removed after 8 h of catalysis at 125 °C and the 

remaining solid was washed two times with COA; upon addition of fresh TBE/COA solution 

to the solid, each subsequent run showed only a relatively small decrease in catalytic activity. 

This process involves extensive exposure of the catalyst (which is sensitive to O2, H2O and 

even N2) to an imperfect glove-box atmosphere; thus the observed decrease in TOF for each 

cycle represents only an upper limit of the degree of decomposition that occurred during the 

actual catalytic run. Recycling of the solution-phase catalyst necessarily involves a different 

protocol, namely, removal of solvent in vacuo before adding fresh solution. While this 

presumably involves less exposure to impurities, the loss of activity with each cycle is 

approximately the same as that observed in the case of the alumina-supported system (Table 

4.4). 
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The 1d/γ-alumina system was also effective for the transfer dehydrogenation of n-

octane, and as was found with COA, more active than solution-phase 1d (Table 4.5).  

Table 4.5 n-Octane/TBE transfer-dehydrogenation by (Me2N-PCP)IrH2 (1d) at 125 °C.a 
 

 homogeneous 
(solution-phase) 

heterogeneous 
(γ-alumina-supported) 

time 
(min) 

1-octene 
(mM) 

total octene 
(mM) 

1-octene 
(mM) 

total octene 
(mM) 

15 4 7 2 15 
30 9 22 3 30 
60 15 43 3 59 

120 16 73 4 99 
240 16 98 4 130 

a) 5 mM iridium catalyst in solution or equivalent amount in the case of supported systems. 
[TBE]o = 0.4 M, 1 mL n-octane and 100mg γ-Al2O3. 
 
Table 4.6 Control experiment: isomerization of 1-octene by γ−alumina (no iridium present, 
100mg γ-Al2O3 + 1 mL n-octane). 

initial 
[1-octene] 

time 
(min) 

1-octene 
(mM) 

trans-2-octene
(mM) 

2-cis-octene 
(mM) 

29 mM 5 27 1 1 
 10 26 2 1 
 15 24 3 2 
 30 20 6 3 
 60 14 8 5 

427 mM 5 413 8 6 
 10 404 14 12 
 15 393 22 15 
 30 366 46 24 
 60 307 88 40 

 
The yield of 1-octene from n-octane with this system is much lower than with solution-

phase 1d. We initially assumed that this lower apparent selectivity was due to the 

isomerization of 1-octene by γ-alumina. Control experiments with γ-alumina, with no iridium 

present, do indeed show that 1-octene is isomerized under these conditions (Table 4.6). For 

example, after ca. 60 min, with an initial 1-octene concentration of 29 mM, isomerization is 

ca. 50% complete with cis- and trans-2-octene being the only major products. However, it 
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does not seem that this level of isomerization activity (half-life of ca. 60 min), by itself, could 

account for the much lower yields of 1-octene obtained from 1d/γ-alumina vs. solution phase 

1d (e.g. 3 mM 1-octene out of 30 mM total octene product vs. 9 mM 1-octene out of 22 mM 

total octene, after only 30 min of catalysis). Further work is ongoing to elucidate the reason 

for the relatively low yield of terminal alkene, but possible explanations include formation of 

a minor decomposition product on alumina that acts as a highly active catalyst for 

isomerization, or perhaps simply increased isomerization activity from 1d upon binding to 

alumina (possibly due to decreased electron-density at Ir). It should be noted, however, that 

even the small yields of 1-octene observed at early reaction times indicate that at least partial 

selectivity for dehydrogenation at the terminal position is retained upon binding to alumina 

(even the low 1-octene concentrations observed at early reaction times are much greater than 

equilibrium values). Furthermore, the predominant internal octenes observed are cis- and 

trans-2-octene, with much lower concentrations of 3- and 4-octene (e.g. >80% 2-octene after 

60 min); this is indicative of selectivity for the terminal position followed by rapid α−β 

isomerization and slower further internal isomerization.  

To summarize the results in this section, (PCP)IrH2 (1a) shows very rapid loss of 

catalytic activity in the presence of γ-alumina. All three para-substituted complexes 

investigated in this study underwent decomposition in the presence of γ-alumina far more 

slowly than 1a, if at all. Thus para-substituent binding appears to inhibit a decomposition 

reaction of the iridium center with alumina. In the case of complex 1c the presence of 

alumina also appears to inhibit the intermolecular decomposition reaction that is observed in 

the solution phase; this effect is similar to that observed for complexes 4 and 5 as discussed 

in the preceding section. In the case of catalyst 1b, deactivation by alumina still occurs, albeit 
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slowly, suggesting that the methoxy group does not bind as strongly as the ester or dimethyl 

amino groups of 1c or 1d, respectively. Electron-withdrawing ability of the para-substituent 

is correlated with catalytic TOFs in solution; consistent with the presumed binding of the 

Me2N group to a Lewis acidic surface site, the Me2N-PCP catalyst 1d affords increased 

TOFs when bound to γ-alumina. The 1d/γ-alumina system is also found to be quite stable 

under catalytic conditions, and even tolerates multiple cycles of solvent removal, washing, 

and reuse. In the case of n-alkane, the product distribution from the 1d/γ-alumina system is 

predominantly 2-octene, but this is likely due to increased rates of α−β isomerization rather 

than selectivity for dehydrogenation the 2-position of the alkane chain. 

1.6. Quantifying the strength of binding of the Me2N-PCP unit to alumina. (Me2N-

PCP)IrH2 (30 mg) was dissolved in 10 mL COA in the presence of 1g γ-alumina. The 

mixture was stirred for 15 min and then filtered; the filtrate was then evaporated in vacuo. 

The residue was analyzed by X-ray fluorescence and the iridium content was found to be 

below the detection limit of this method, which is estimated as <1 ×10-6 g, or 0.003% of the 

initial amount of iridium.  

The iridium carbonyl complexes are much more robust than the catalytically active 

hydrides. For this reason, (Me2N-PCP)Ir(CO) (1d-CO) was used to help quantify, by UV-

visible spectroscopy, the strength of binding of the (Me2N-PCP)Ir unit to alumina. A n-

hexane solution of 1d-CO (2.5 mM; 3mg in 2.0 mL) has an absorbance of 1.58 at λ = 493 nm 

(1.0 cm pathlength). When 2.0 mL of the same solution was stirred in the presence of 50 mg 

γ-alumina for 15 minutes and then filtered, the absorbance at λ = 493 nm was found to be <1 

× 10-4. The concentration of 1d-CO in solution under these conditions is therefore <0.006% 

of that present prior to the addition of alumina.  
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1.7. Infrared spectroscopic characterization of the iridium complexes supported on γ-

alumina. C-O stretching frequencies act as a valuable25 indicator of small changes in 

electron density at the metal center of transition metal carbonyl complexes. In order to probe 

the nature of the binding of the X-PCP complexes to γ-alumina, we prepared the 

corresponding (X-PCP)Ir(CO) complexes. All complexes appeared, visually, to be fully 

adsorbed by γ-alumina. After removal of solvent, nujol mulls of the material were prepared 

for IR analysis. 

Table 4.7 C-O stretching frequencies of complexes (X-PCP)Ir(CO) in solution and adsorbed 
on γ-alumina. 
 

 
compound 

νCO (cm-1) 
(Nujol) 

νCO (cm-1) 
(γ-alumina, Nujol) 

(PCP)Ir(CO) 1925.3 1925.9 
(MeO-PCP)Ir(CO) 1922.6 1927.5 
(Me2N-PCP)Ir(CO) 1918.4 1928.9 

(MeO2C-PCP)Ir(CO) 1931.0 1930.5 
(KO-POCOP)Ir(CO) 1945 1945 

(tBu2PO-POCOP)Ir(CO) 1934 1945 
 

Adsorbtion of (PCP)Ir(CO) (1a-CO) on alumina results in a negligible change in C-O 

stretching frequency as compared with 1a-CO dissolved in Nujol hydrocarbon (1925.9 cm-1 

vs. 1925.3 cm-1; Table 4.7). The value of νCO of (MeO-PCP)Ir(CO) in Nujol is ca. 3 cm-1 red-

shifted versus solution-phase 1a-CO, consistent with the electron-donating properties of the 

p-methoxy group. When bound to alumina however, νCO of 1b-CO is 5 cm-1 greater than 

solution-phase 1b-CO and ca. 2 cm-1 greater than either solution phase 1a-CO or 

1a-CO/γ−alumina. These data indicate that 1b-CO binds to γ-alumina with the p-methoxy 

group acting as a Lewis base toward a Lewis acid surface site; the bound methoxy group is 

then electron-withdrawing, as might be expected. Likewise, the νCO value of complex 1d-CO 

in solution is 7 cm-1 less than that of 1a-CO; but upon binding to alumina, νCO is blue-shifted 
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by 10.5 cm-1 and is then 3 cm-1 higher than that of 1a-CO/γ-alumina. Thus, as indicated by 

the relative binding-induced blue-shifts, the Me2N group of 1d-CO apparently donates 

significantly more electron-density to the alumina than does the MeO group of 1b-CO; this is 

in accord with results of the catalytic runs which indicated that 1d binds more strongly to γ-

alumina than does 1b. 

Ester substituted complex 1c-CO shows no significant change in νCO upon binding to 

alumina. This may be attributable to a weak interaction with alumina; alternatively, the 

binding may proceed via a trans-esterification type reaction that does not result in a large 

change in electron density at the iridium center. Likewise, the binding of (KO-POCOP)Ir(CO) 

to alumina yields no significant change in νCO; this suggests that the alumina surface exerts 

an electronic effect similar to that of the K+ counterion in solution. Finally, (tBu2PO-

POCOP)Ir(CO) shows a significant blue shift upon binding to alumina (1934 cm-1 to 1945 

cm-1). While this large shift is consistent with a strong Lewis acid-base interaction, it may 

also be noted that the resulting νCO value is equal to that of alumina-bound (KO-

POCOP)Ir(CO). This may suggest that the binding involves cleavage of the tBu2P-O bond to 

give a species very similar to that obtained from the binding of (KO-POCOP)Ir; this is 

currently under further investigation. 

 

2. Synthesis of a Merrifield resin–supported iridium pincer complex and transfer 

dehydrogenation activity.  

Complex 4, which contains a phenoxide functionality, was attached to a Merrifield 

resin through an SN2 reaction with the chlorobenzyl moieties (Scheme 4.4). The Merrifield 

resin (2% cross-linked, 200-400 mesh, 2.25 mmol Cl/g) was swollen in THF-d8 for 1 h 
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before the coupling reaction. To prevent the possible dissociation of the ethylene ligand, 

reactions were conducted under ca 1.5 atmosphere of ethylene. Protonation of the phenoxide 

group of 4 occurred during the reaction though the THF solvent and Merrifield resin were 

dried before use. With the addition of KH (2–3 equivalents relative to Ir), the conversion to 

phenol was avoided. When a red THF-d8 solution of 4 (18 mg, 27 µmol) was treated with a 

stoichiometric amount of Merrifield resin (12 mg, 27 µmol) (Ir:chlorobenzyl moiety = 1:1) 

for 15 days at 65 °C, the THF solution was still red indicating incomplete reaction. Analysis 

of the THF-d8 solution by 1H NMR spectroscopy indicated that only about 45% of 4 was 

immobilized on the resin. When 4 was treated with a 7 molar excess of Merrifield resin 

(Ir:chlorobenzyl moiety = 1:7) in THF, after 7 days at 65 °C the original red solution of 

complex 4 faded to colorless and the original white resin was now red. Analysis of the THF-

d8 solution by NMR indicated that no 4 remained in solution. The solids were filtered and 

washed with 3 times of THF. To remove the excess KH in the solid mixture, excess tBuOH 

was added to the solid mixture in THF-d8 under an ethylene atmosphere (tBuOH has proven 

to be compatible with the parent complex 3). Reaction of tBuOH with KH produced KOtBu 

and H2 which then hydrogenated ethylene to form ethane (ethane was observed by 1H NMR 

spectroscopy). The red resin was filtered, washed 3 times with THF and H2O (to remove KCl 

and KOtBu) under argon and then dried under high vacuum overnight. 
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Scheme 4.4 Synthesis of a Merrifield resin-supported Ir pincer catalyst 

 

 

 

 

 

       The polymer–supported iridium catalyst shows poor activity and short lifetimes for 

transfer dehydrogenation of COA by TBE.  A system containing 5.4 µmol of the polymer–

supported iridium catalyst, 240 µmol of COA (44 equivalents relative to Ir), 240 µmol of 

TBE, and 0.3 ml of mesitylene-d12 was heated at 175 °C under argon in a J-Young NMR tube. 

After 2 days, 85% conversion of TBE to TBA (37 TONs) was observed by 1H NMR. The 

supported catalyst was recovered and recharged with same amount of COA, TBE, and 

mesitylene. Heating the sample for 2 days at 175 °C resulted in 20 % conversion (9 TONs). 

After the second cycle, the catalyst lost activity completely and the support changed in color 

from red to black. The decomposition product is unidentified. One possible decomposition 

pathway could result from reaction of the remaining chlorobenzyl moieties of the Merrifield 

resin with the Ir center. In light of the low activity of this system, further experiments were 

not pursued.  

  

3.  Covalent attachment of iridium pincer complexes containing pendant alkoxy silane 

groups to silica and transfer dehydrogenation activity.  

Iridium pincer complexes containing either a pendant -Si(OMe)3 group, 15, 

or -Si(Me)2OMe group, 16, were prepared by treating 4 with either 
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3-iodopropyldimethylmethoxy silane or 3-iodopropyltrimethoxy silane, respectively, in THF 

under an ethylene atmosphere (Scheme 4.5).  

         Attachment of 15 to silica was achieved by heating 300 mg silica (Grace XPO 2402) 

with 16 mg (20 µmol) 15 in toluene-d8 at 120 °C under an atmosphere of ethylene to prevent 

ethylene loss from the Ir center.26 Periodic analysis of the solution by 1H NMR showed that 

as the concentration of 15 decreased, methanol and ethane formed and increased in 

concentration. After 2 days, the original red solution became colorless and the silica acquired 

a pink color. No detectable 15 remained in solution and ca. two equivalents of methanol were 

produced (relative to Ir) which indicated that on average two methoxy groups of 15 reacted 

with the silanol groups on silica surface to produce a siloxane linkage and methanol. Excess 

trimethylsilyldimethylamine was added to cap the remaining silanol groups.27 This supported 

catalyst, which contained 63 µmol Ir/g, was isolated, washed with pentane, toluene, and THF 

three times respectively, and dried under high vacuum. 

Scheme 4.5 Syntheses of silica-supported Ir pincer catalysts 
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           Transfer dehydrogenation of COA/TBE with this silica–supported catalyst (50 mg, 

3.15 µmol Ir) showed low activity. Reaction with 750 equivalents of COA and TBE at 200 

°C gave only 135 turnovers after 24 h. Heating for longer times resulted in no additional 

turnovers, indicating the decomposition of the catalyst. 

 The formation of ethane during the immobilization process indicates that 

hydrogenation of ethylene occurred. A control experiment was conducted by heating 

homogeneous complex 3 with 3 equivalents of methanol under ethylene atmosphere in 

toluene at 120 °C. Iridium carbonyl complex 17 and ethane were formed as observed by 

NMR spectroscopy. Production of CO from methanol will produce hydrogen necessary for 

hydrogenation of ethylene (see Scheme 4.6). The formation of ethane during the 

immobilization process implies conversion of a significant fraction of the Ir ethylene 

complex to an Ir carbonyl complex which we have shown is inactive for dehydrogenation.  

 

Scheme 4.6 Proposed pathway for formation of Ir carbonyl complex  
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          In order to avoid extensive production of an iridium carbonyl complex, reaction 

conditions and starting material were modified (Scheme 4.5). The monomethoxy complex 16 

was employed to reduce the production of methanol to one equivalent and cyclooctene (COE) 

was used as the reaction solvent to provide a high concentration of alkene to “protect” the Ir 

center (we assume under these conditions the ethylene complex will be converted to the COE 

complex). After reaction of 16 with silica for 2 days at 150 °C in COE, the original red 

solution became colorless and the silica particles were now red. Excess 

dimethyl(trimethylsilyl)amine was then added to cap the remaining silanol groups on silica. 

The solid material was collected and washed with pentane, toluene, and THF three times 

respectively, and was dried under high vacuum. The catalyst made by this modified 

procedure showed improved activity for transfer dehydrogenation. After 15 h, transfer 

dehydrogenation of COA/TBE (3000 equivalents of COA and TBE) at 200 °C yielded 790 

turnovers. However, heating for longer times did not increase the TON (790 after 39 h), 

which indicates that this silica–supported catalyst is not stable and loses activity at a 

relatively fast rate.   

 

Conclusions 

Three approaches are reported here for constructing iridium pincer-based transfer 

dehydrogenation catalysts. POCOP iridium catalysts were covalently attached to a Merrifield 

resin and to silica.  These systems showed low to moderate transfer dehydrogenation activity. 

A third method was developed in which iridium pincer complexes bearing basic functional 

groups in the para-position bind to γ-alumina through a Lewis acid/Lewis base interaction. 

These alumina-supported complexes have been characterized by solid state 31P NMR and IR 
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spectroscopies which yield information concerning the nature of surface binding. The 

catalysts are thermally robust and recyclable and display high activities with turnover 

numbers up to 7000 for transfer of hydrogen from cyclooctane to t-butylethylene. ICP-MS 

experiments with para-phosphinite- and para-oxide-supported systems show negligible 

leaching from alumina under reaction conditions. A number of applications can be 

envisioned for these catalysts including use in alkane metathesis.11 

 

Experimental Section 

General Considerations. All manipulations were carried out using standard Schlenk, high-

vacuum and glovebox techniques. Tetrahydrofuran (THF) was distilled under a nitrogen 

atmosphere from sodium benzophenone ketyl prior to use. Pentane and toluene were passed 

through columns of activated alumina. Water was degassed by purging with argon. Benzene, 

THF-d8, and toluene-d8 were dried with 4 Å molecular sieves and degassed by freeze-pump-

thaw cycles. Acetone was dried with 3 Å molecular sieves for 7 hours and degassed by 

freeze-pump-thaw methods. Cyclooctane (COA), 3,3’-dimethyl-1-butene (TBE), p-xylene 

and mesitylene were purchased from Aldrich, dried with LiAlH4 or Na/K, and vacuum 

transferred into sealed flasks. Complexes 1a, 1b, 1c, 3,4 and [Ir(COD)Cl]2
28 were synthesized 

as previously reported. KH was purchased from Aldrich as 30 wt% in oil and washed with 

hexanes five times prior to use. I(CH2)3Si(OMe)3 and Cl(CH2)3Si(Me)2(OMe) were 

purchased from Gelest and used as received. I(CH2)3Si(Me)2(OMe) was prepared through the 

Finkelstein reaction by stirring the mixture of NaI and Cl(CH2)3Si(Me)2(OMe) in dried 

acetone overnight at 60 ºC. γ-Al2O3, acidic γ-Al2O3, neutral γ-Al2O3, and basic γ-Al2O3 were 

purchased from Strem and calcined as noted below. Merrifield resin (2% cross-linked, 200-
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400 mesh, 2.25 mmol Cl/g) was purchased from Aldrich and dried under high vacuum at 40 

°C for 20 hours. Silica (Grace XPO 2402) was supplied by DuPont and used as received. All 

other reagents were purchased from Sigma-Aldrich or Strem and used as received.  

NMR spectra were recorded on DRX-400, VANCE-400, Varian-400 and Varian-500 

spectrometers. 1H and 13C NMR spectra were referenced to residual protio solvent peaks. 31P 

chemical shifts were referenced to an external H3PO4 standard. The samples for solid-state 

31P MAS NMR spectra were packed into 4 mm zirconia solid-state NMR rotors under an 

argon atmosphere and sealed with tight-fitting rotor caps. Solid-state 31P MAS NMR spectra 

were recorded on a Bruker Avance DSX300 spectrometer operating at 121.49 MHz with 

magic angle spinning (MAS) of 12 kHz. The rotors were spun with N2 in order to keep the 

samples air-free. All spectra were recorded at room temperature and are referenced to an 

aqueous 85% H3PO4 solution.  

UV-visible spectra were recorded on a Varian Cary-50 spectrophotometer. Infrared 

spectra were recorded on a Thermo Nicolet 360-FT-IR instrument. Elemental analyses were 

carried out by Robertson Microlit Laboratories, NJ.  

GC analyses (FID detection) were performed according to the following methods: 

Method A. Agilent 6850 Series GC System fitted with an Agilent HP-1 column (100% 

dimethylpolysiloxane, 30m×0.32mm i.d., 0.25 µm film thickness). Typical temperature 

program: 5 min isothermal at 33 ºC, 20 ºC/ min heat up, 10 min isothermal at 300 ºC. Flow 

rate: 1 mL/min (He). Split ratio: 400. Inlet temperature: 250 °C. Detector temperature: 250 

°C.  

Method B. Thermo Electron Corporation Focus GC instrument fitted with an Agilent HP-1 

column (100% methyl silicone gum: 100m x 0.25mm ID x 0.5 µm film thickness). Typical 
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temperature program: Starting temperature 100 ºC, 5 ºC/min up to 230 °C with hold time 10 

min, then 5 ºC/min up to ending temperature 250 °C. Flow rate: 1 mL/min (He). Split ratio: 

25. Inlet temperature: 230 °C. Detector temperature: 250 °C. 

Method C. As in Method B but with typical temperature program: Starting temperature 60 

ºC with hold time 70 min, 10 °C/min up to 200 °C with hold time 10 min, then 10 °C/min up 

to ending temperature 250 °C. 

ICP-MS Analysis was performed on a Varian 820-MS. Sample preparation for ICP-MS: The 

COA (2 mL × 3) suspension of alumina-supported iridium complex (2.50 µmol Ir on 310 mg 

of alumina) was filtered through a frit separated double-cell glassware. The COA solution 

was combined and dried under high vacuum and the residue was digested by a 69.5 % HNO3 

solution at 100 ° C for 2 hours. Finally, the sample was diluted with HNO3 at 2%. The 

quantification was carried out using external calibration curves from dilution of a certified 

ICP-MS Ir standard (Varian). The calibration curves were made as follows: 191Ir and 193Ir: 

1000, 500, 250, 50, and 5 ppb. The certified standard was diluted with 2% HNO3 solution. 

The quadratic correlation coefficient obtained in the regression line was 0.99997. 115In was 

used as the internal standard for correcting possible instrumental drifts. Both of 191Ir and 193Ir 

were analyzed. Five replicates were carried out for each isotope analyzed. The RSD mean 

obtained was 3.0%.  
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Synthesis of iridium complex {p-OH-C6H2-2,6-[OP(t-Bu2)]2}IrHI, 11. {p-OMe-C6H2-2,6-

[OP(t-Bu2)]2}IrHCl, 2b, (200 mg, 0.305 mmol) was dissolved in benzene (6 mL) in a flame-

dried Schlenk flask and put under a flow of argon. 9-I-BBN (1M in hexanes, 0.63 mL) was 

added, and the solution was stirred for 2 hours at room temperature. The solvent was 

removed at room temperature under high vacuum and then the by-product 9-Cl-BBN and the 

extra 9-I-BBN were removed at 80 °C under high vacuum. A mixture of benzene (3 mL) and 

degassed water (7 mL) was added into the residue, and the solution was stirred at room 

temperature overnight. Volatiles were removed under high vacuum. The residue was washed 

with pentane (3 × 6 mL) and the resulting red solid was dried under high vacuum overnight 

to give 192 mg (0.262 mmol, 86% yield) of pure product. 1H NMR (400 MHz, 23 °C, 

CDCl3): δ -42.11 (t, 2JP-H = 13.0 Hz, 1H, IrH), 1.36 (virtual triplet, apparent J = 7.2 Hz, 36H, 

4 × tBu), 4.49 (s, 1H, OH), 6.19 (s, 2H, 3- and 5-H). 31P{1H} NMR (162 MHz, 23 °C, 

CDCl3): δ 181.3. 13C{1H} NMR (100.6 MHz, 23 °C, CDCl3): δ 28.0 (CH3, virtual triplet, 

apparent J = 2.8 Hz, P(tBu)2), 28.1 (CH3, virtual triplet, apparent J = 2.6 Hz, P(tBu)2), 40.1 

(Cq, virtual triplet, apparent J = 12.6 Hz, P(tBu)2), 43.4 (Cq, virtual triplet, apparent J = 11.5 

Hz, 2 × P(tBu)2), 93.3 (CH, virtual triplet, apparent J = 6.0 Hz, C3 and C5), 111.7 (Cq, m br, 

C1 ), 155.3 (Cq, s, C4), 166.9 (Cq, virtual triplet, apparent J = 6.0 Hz, C2 and C6).  Elemental 

analysis calculated for C22H40IO3P2Ir (734.11): C, 36.02; H, 5.50.  Found: C, 36.87; H, 5.31.   
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Synthesis of iridium complex {p-OK-C6H2-2,6-[OP(t-Bu2)]2}Ir(C2H4), 4. Complex 11 

(160 mg, 0.218 mmol) and KH (22 mg, 0.548 mmol) were weighed into a flame-dried 

Kontes flask under an argon atmosphere. THF (5 mL) was added to the flask via syringe and 

the resulting suspension was stirred for 2 hours at room temperature. The solution was 

filtered into a Schlenk flask through a 0.2 µm pore size syringe filter (Nalgene 199-2020). 

Ethylene was bubbled through the solution for 2 hours. Volatiles were removed under high 

vacuum, and the red solid was dried under high vacuum for 4 hours to give 105 mg (0.156 

mmol, 72% yield) of pure product. 1H NMR (400 MHz, 23 °C, THF-d8): δ 1.26 (virtual 

triplet, apparent J = 6.2 Hz, 36H, 4 × tBu), 2.64 (s, 4H, C2H4), 5.67 (s, 2H, 3- and 5-H). 

31P{1H} NMR (162 MHz, 23 °C, THF-d8): δ 170.3 (s). 13C{1H} NMR (100.6 MHz, 23 °C, 

THF-d8): δ 26.5 (CH3, m, 2 × P(tBu)2), 28.6 (s, C2H4), 38.5 (Cq, apparent J = 11.1 Hz, 2 × 

P(tBu)2), 91.1 (CH, virtual triplet, apparent J = 5.5 Hz, C3 and C5), 134.5 (Cq, m, C1), 168.8 

(Cq, virtual triplet, apparent J = 7.0 Hz, C2 and C6), 174.4 (Cq, s, C4). Elemental analysis 

calculated for C24H42O3P2IrK (672.19): C, 42.90; H, 6.30.  Found: C, 42.66; H, 6.31.   

Synthesis of phenyl di-tert-butylphosphinite. A solution of 10.63 mmol of phenol (1.0 g) in 

25 mL of THF was slowly added via syringe to a suspension of 10.8 mmol of NaH (259 mg) 

in 25 mL of THF under a flow of argon (caution: hydrogen evolution). The mixture was 

heated to reflux for 2 hours, di-tert-butylchlorophosphine (10.63 mmol, 2.0 g) was then 

added via syringe, and the mixture was refluxed for an additional 8 hours. After evaporation 

of the solvent under high vacuum, the residue was extracted with 3 × 40 mL of pentane, and 

the extract was cannula transferred and filtered through a pad of Celite. After removal of 

pentane under high vacuum, the flask was heated to 55 °C for 3 hours under high vacuum to 
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remove residual amounts of di-tert-butylchlorophosphine. Pure product as clear oil was 

collected in 92 % yield (9.8 mmol, 2.334 g). 1H NMR (400 MHz, 23 °C, CDCl3): δ 1.13 (d, 

3JP-H = 11.6 Hz, 18H, 2 × tBu), 6.90 (t, 3JH-H = 7.2 Hz, 1H, 4-H), 7.11 (d, 3JH-H = 7.6 Hz, 2H, 

2- and 6-H), 7.20 (m, 2H, 3- and 5-H). 31P{1H} NMR (162 MHz, 23 °C, CDCl3): δ 153.12 (s). 

13C{1H} NMR (100.6 MHz, 23 °C, CDCl3): δ 27.4 (CH3, d, 2JP-C = 15.1 Hz, P(tBu)2), 35.6 

(Cq, d, JP-C = 25.1 Hz, P(tBu)2), 118.4 (CH, d, 3JP-C = 10.1 Hz, C2 and C6), 121.3 (CH, s, C4), 

129.3 (CH, s, C3 and C5), 159.9 (Cq, d, 2JP-C = 9.0 Hz, C1). 

Synthesis of pincer ligand 1,3,5-tri(di-tert-butylphosphinite)benzene, 13. A solution of 10 

mmol of 1,3,5-trihydroxybenzene (1.261 g) in 25 mL of THF was slowly added via syringe 

to a suspension of 31 mmol of NaH (782 mg) in 25 mL of THF under a flow of argon 

(caution: hydrogen evolution). The mixture was heated to reflux for 2 hours, di-tert-

butylchlorophosphine (31.0 mmol, 5.834 g) was then added via syringe, and the mixture was 

refluxed for additional 2 hours. After evaporation of the solvent under high vacuum, the 

residue was extracted with 3 × 40 mL of pentane, and the extract was cannula transferred and 

filtered through a pad of Celite. After removal of pentane under high vacuum, the flask was 

heated to 55 °C for 3 hours under high vacuum to remove residual amounts of di-tert-

butylchlorophosphine. Pure product as clear waxy solid was collected in 89 % yield (8.9 

mmol, 4.972 g). 1H NMR (400 MHz, 23 °C, CDCl3): δ 1.13 (d, 3JP-H = 11.6 Hz, 54H, 6 × 

tBu), 6.58 (m, 3H, 2-, 4-, and 6-H). 31P{1H} NMR (162 MHz, 23 °C, CDCl3): δ 151.22 (s). 

13C{1H} NMR (100.6 MHz, 23 °C, CDCl3): δ 27.4 (CH3, d, 2JP-C = 16.1 Hz, 3 × P(tBu)2), 

35.6 (Cq, d, JP-C = 26.1 Hz, 3 × P(tBu)2), 100.0 (CH, t, 3JP-C = 10.6 Hz, C2, C4, and C6), 

161.0 (Cq, d, 2JP-C = 9.0 Hz, C1, C3, and C5). 
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Synthesis of iridium complex {p-OP(t-Bu2)-C6H2-2,6-[OP(t-Bu2)]2}IrHCl, 14. A Schlenk 

flask was charged with 1.1 mmol of 13 and 0.5 mmol of [(COD)IrCl]2 and put under a flow 

of argon. Toluene (5 mL) was added via syringe, and the solution was stirred in an oil bath 

for 15 hours at 150 °C. The reaction mixture was cooled to room temperature. Volatiles were 

removed under high vacuum and the residue was extracted with 10 mL of pentane under 

ultrasound (10 min). After filtration (no inert gas required), the solid was washed with 3 × 10 

mL of pentane and dried under high vacuum overnight to yield 645 mg (0.82 mmol, 82%) of 

pure red purple product. 1H NMR (400 MHz, 23 °C, CDCl3): δ -41.91 (t, 2JP-H = 13.2 Hz, 1H, 

IrH), 1.16 (d, 3JP-H = 12 Hz, 18H, 2 × tBu), 1.33 (m, 36H, 4 × tBu), 6.43 (s, 2H, 3- and 5-H). 

31P{1H} NMR (162 MHz, 23 °C, CDCl3): δ 154.2 (s, uncoordinated P(tBu)2), 175.8 (s, 

coordinated 2 × P(tBu)2). 13C{1H} NMR (100.6 MHz, 23 °C, CDCl3): δ 27.5 (CH3, d, 2JP-C = 

16.1 Hz, uncoordinated P(tBu)2), 27.6 (CH3, br, coordinated P(tBu)2), 27.8 (CH3, br, 

coordinated P(tBu)2), 35.6 (Cq, d, JP-C = 25.1 Hz, uncoordinated P(tBu)2), 39.5 (Cq, virtual 

triplet, apparent J = 12.6 Hz, coordinated P(tBu)2), 43.1 (Cq, virtual triplet, apparent J = 11.1 

Hz,  coordinated P(tBu)2), 96.2 (CH, dvt, apparent J = 4.0 and 9.0 Hz, C3 and C5), 109.3 (Cq, 

m br, C1), 159.4 (Cq, m br, C4), 166.9 (Cq, virtual triplet, apparent J = 5.5, C2 and C6). 
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Elemental analysis calculated for C30H57O3P3ClIr (786.28): C, 45.82; H, 7.31.  Found: C, 

45.58; H, 7.04. 

 

 

 

 

 

 

Synthesis of iridium complex {p-OP(t-Bu2)-C6H2-2,6-[OP(t-Bu2)]2}Ir(C2H4), 5. Complex 

14 (500 mg, 0.636 mmol) and NaOtBu (64 mg, 0.666 mmol) were weighed into a Schlenk 

flask and put under a flow of argon. Toluene (20 mL) was added to the flask via syringe and 

ethylene was bubbled through the solution for 2 hours. After evaporation of the solvent under 

high vacuum, the residue was extracted with 3 × 20 mL of pentane, and the extract was 

cannula transferred and filtered through a pad of Celite. Pentane was removed under high 

vacuum, and the red brown solid was dried under high vacuum overnight to give 371 mg 

(0.477 mmol, 75% yield) of pure product. 1H NMR (400 MHz, 23 °C, C6D6): δ 1.10 (d, 3JP-H 

= 8.0 Hz, 18H, 2 × tBu), 1.23 (virtual triplet,  apparent J = 6.8 Hz, 36H, 4 × tBu), 3.11 (s, 4H, 

C2H4), 7.06 (s, 2H, 3- and 5-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 150.8 (s, 

uncoordinated P(tBu)2), 181.1 (s, coordinated 2 × P(tBu)2). 13C{1H} NMR (100.6 MHz, 23 

°C, C6D6): δ 27.6 (CH3, d, 2JP-C = 15.8 Hz, uncoordinated P(tBu)2), 28.7 (CH3, virtual triplet, 

apparent J = 3.0 Hz, coordinated 2 × P(tBu)2), 35.6 (Cq, d, JP-C = 26.8 Hz, uncoordinated 

P(tBu)2), 35.8 (s, C2H4), 41.5 (Cq, virtual triplet, apparent J = 11.0 Hz, coordinated 2 × 

P(tBu)2), 94.7 (CH, dvt, apparent J = 5.5 and 11.1 Hz, C3 and C5), 139.7 (Cq, m, C1), 161.5 
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(Cq, d, JP-C = 10.1 Hz, C4) 168.8 (Cq, virtual triplet, apparent J = 8.0, C2 and C6). Elemental 

analysis calculated for C32H60O3P3Ir (778.34): C, 49.40; H, 7.77.  Found: C, 49.60; H, 7.60.   

Calcination of alumina. γ-Al2O3, acidic γ-Al2O3, neutral γ-Al2O3, and basic γ-Al2O3 were 

calcined at 550 °C for 2 hours under a flow of O2 and cooled to 135 °C under O2, then cooled 

to room temperature under high vacuum. The solid were brought into the drybox under high 

vacuum and stored under argon.  

Synthesis of Na2O-modified alumina. In a vial, 235 mg (2.22 mmol) of Na2CO3 or 178 mg 

(4.45 mmol) of NaOH was dissolved in 10 mL of distilled water. The solution was added to 5 

g of γ-Al2O3. The suspension was stirred at room temperature until all of the water was 

absorbed by the alumina. The solid was dried in a 120 °C oven overnight, then calcined at 

550 °C for 17 hours under a flow of O2 and cooled to 135 °C under O2, and then cooled to 

room temperature under high vacuum. The solid was brought into the drybox under high 

vacuum and stored under argon. 

Synthesis of alumina-supported iridium pincer complexes.  

The alumina-supported pincer Ir ethylene complexes can be prepared either in situ or by 

using pentane as solvent.  

Method A (In situ): Ir complex (1.34 – 2.50 µmol) was dissolved in alkane (1 – 3 mL) 

(cyclooctane or linear alkanes).  The solution was added to 280 – 310 mg (2.74 – 3.04 mmol) 

of  γ-Al2O3. The suspension was stirred at room temperature. After 10 – 20 min, the original 

red solution turned colorless and the alumina acquired a rust-red color. The suspension 

continued to stir for 2 – 4 hours.  

Method B (Pentane): Ir complex (1.34 – 2.50 µmol) was dissolved in pentane (1.5 mL). The 

solution was added to 280 – 310 mg (2.74 – 3.04 mmol) of  γ-Al2O3. The suspension was 
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stirred at room temperature for 2 – 4 hours. The original red solution turned colorless and the 

alimina acquired a rust-red color. The solvent was removed by syringe in the glovebox. The 

solid was washed with pentane three times. Pentane was evaporated in the glovebox  

(no vacuum applied) and the rust-red solid was collected.  

Synthesis of alumina-supported 13 and phenyl di-tert-butylphosphinite. Compound 13 

(26 µmol), or phenyl di-tert-butylphosphinite, was dissolved in pentane (1.5 mL). The 

solution was added to 200 mg (1.96 mmol) of γ-Al2O3. The suspension was stirred at room 

temperature for 2 – 4 hours. The solvent was removed by syringe in the glovebox. The solid 

was washed with pentane three times. Volatile was evaporated in the glovebox and the white 

solid was collected. 

Hydrogen transfer from cyclooctane (COA) to 3,3-dimethyl-1-butene (TBE) catalyzed 

by γ-Al2O3-supported iridium pincer complexes. Complexes 1a-d: the iridium complex (5 

µmol) was dissolved in COA (1mL) in a Kontes flask. γ-Al2O3 (100 mg, 0.98 mmol)  was 

added to the solution and the suspension was stirred at room temperature for 20 min. TBE 

(95%, 70 µL, 0.54 mmol) was added to the suspension. The flask was sealed tightly with a 

Teflon plug under an argon atmosphere, and the suspension was stirred in an oil bath at 125 

°C. Periodically, the flask was removed from the bath and cooled in an ice bath. An aliquot 

was removed from the flask, and analyzed by GC (method B). Turnover numbers were 

calculated for each aliquot using mesitylene as a GC standard. Complexes 3-5: the iridium 

complex (1.34 – 2.50 µmol) was dissolved in COA (0.842 – 1.655 g, 7.50 – 14.74 mmol) in a 

Kontes flask. γ-Al2O3 (280 – 310 mg, 2.74 – 3.04 mmol) was added to the solution and the 

suspension was stirred at room temperature for 2 – 4 hours. TBE (95%, 0.664 – 1.306 g, 7.50 

– 14.74 mmol) was added to the suspension. The procedure was otherwise as described 
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above for complexes 1a-d but reactions were conducted at 200 or 240 °C and the solution 

was analyzed by GC using method A. Turnover numbers were calculated for each aliquot. 

Results are summarized in the text. 

       The heterogeneous catalysts can be recycled. After each cycle, the solution was syringed 

out and the solid was washed 2-3 times with COA. Fresh COA and TBE were then added. 

Hydrogen transfer from COA or n-octane to TBE catalyzed by solution-phase iridium 

pincer complexes. A flask was charged with iridium pincer complex 1a, 1b, 1c or 1d (5 

µmol), COA or n-octane (1mL), and TBE (95%, 70 µL, 0.54 mmol). Respective values in the 

case of complex 4 or 5: iridium complex, 1.34 – 2.50 µmol; COA, 0.842 – 1.655 g, 7.50 – 

14.74 mmol; TBE (95%), 0.664 – 1.306 g, 7.50 – 14.74 mmol. The flask was sealed tightly 

with a Teflon plug under an argon atmosphere, and the solution was stirred in an oil bath at 

125 °C (complexes 1a-d) or 200 °C (complexes 4 and 5). Periodically, the flask was removed 

from the bath and cooled in an ice bath. An aliquot was removed from the flask, and 

analyzed by GC (method A, complexes 1a-d; method B, complexes 1a-d). Turnover 

numbers were calculated for each aliquot. Recycle of the homogeneous catalysts was 

obtained by evaporation of under high vacuum and addition of fresh COA and TBE. Results 

are summarized in the text. 

Isomerization of TBE or 1-octene by alumina (control experiments). A flask was charged 

with 280–310 mg of γ-Al2O3 or Al2O3/Na2O, 0.842 g of COA (7.50 mmol), and 0.664 g of 

TBE (7.50 mmol). In the case of 1-octene, a flask was charged with 100 mg of γ-Al2O3, COA 

(1mL), and 1-octene (4.55 µL, 29 mmol or 67 µL, 427 mmol). The flask was sealed tightly 

with a Teflon plug under an argon atmosphere, and the solution was stirred in an oil bath at 
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125 °C (1-octene) or 200 ° (TBE). Periodically, the flask was removed from the bath and 

cooled in an ice bath. An aliquot was removed from the flask, and analyzed by GC. 

Synthesis of a Merrifield-resin-supported iridium pincer complex. The Merrifield resin 

(12 mg, 27 µmol chlorobenzyl moiety; or 84 mg, 189 µmol chlorobenzyl moiety when 

Merrifield resin was used in excess) was swollen in THF-d8 (0.5 mL) for 1 to 2 hours in a 

thick walled J. Young tube in the glovebox. Complex 4 (18 mg, 26.8 µmol) and KH (3 mg, 

75 µmol) were added to the tube. The THF-d8 solution was degassed by freeze-pump-thaw 

cycles. The tube was refilled with ethylene gas at -78 °C. The suspension was heated at 65˚C. 

The solution was monitored by 1H and 31P{1H} NMR spectroscopy periodically. For the 

sample with Ir:chlorobenzyl moiety ratios of 1:1, after 15 days, about 45% of 4 was 

immobilized on the resin (determined by NMR). For the sample with a 7 molar excess of 

Merrifield resin, after 7 days, no 4 was observed in the solution. The solid was collected by 

filtration and washed with 3 times of THF (0.5 mL each) in the golvebox. The solid was 

reloaded into a thick walled J. Young tube and THF-d8 (0.5 mL) was added to the tube. 

Degassed tBuOH (ca 0.2 mL) was added into the J. Young tube by vacuum transfer method 

(caution, hydrogen evolution). The red resin was filtered, washed with 3 times of THF and 

H2O (0.5 mL each) under an argon atmosphere, and then dried under high vacuum overnight.  

Hydrogen transfer from COA to TBE catalyzed by Merrifield-resin-supported iridium 

pincer complex. A J. Young tube was charged with 8 mg of the Merrifield resin supported 

iridium catalyst (5.4 µmol of Ir), 32 µL of COA (240 µmol), 33 µL of TBE (240 µmol), and 

0.3 ml of mesitylene-d12. The tube was sealed tightly under an argon atmosphere, and then 

heated in an oil bath at 175 °C. The sample was analyzed by NMR spectroscopy periodically. 
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After each cycle, the catalyst was filtered, washed with pentane and dried under high vacuum. 

Fresh COA, TBE and mesitylene-d12 were then added. Results are summarized in the text. 

Synthesis of dimethyl 5-dimethylaminoisophthalate (7). The compound was prepared via 

the literature procedure for reductive alkylation of aromatic amines. Sodium 

cyanoborohydride (5 g, 75.6 mmol) was added to a stirred solution of 5 g (23.4 mmol) of 

dimethyl 5-aminoisophthalate (6) (98%) and 20 mL (269 mmol) of 37% aqueous 

formaldehyde in 150 mL acetonitrile. This was followed by slow addition (over a period of 

20 min) of 3 mL of glacial acetic acid to adjust the pH at 5-6. The resulting solution was 

stirred at room temperature for 8 hr and the solvent was removed under reduced pressure. 

The wet-solid obtained thereby was washed thoroughly with distilled water and air-dried to 

give 5.39 g of 7 as a light yellowish-white solid in near quantitative yield (97%). 1H NMR 

(CDCl3): δ 8.01 (s, 1H, Ar), 7.56 (s, 2H, Ar), 3.94 (s, 6H, CO2CH3), 3.05 (s, 6H, (CH3)2N). 

Synthesis of 5-dimethylamino-1,3-benzenedimethanol (8). To a stirred suspension of 2.69 

g (67.4 mmol) of lithium aluminum hydride (95%) in THF (50 mL) at 0 °C under argon 

atmosphere was slowly added a THF (100 mL) solution of 7 (5 g, 21.1 mmol). After the 

addition was complete, the resultant suspension was refluxed for 18 h, diluted with 100 mL 

tetrahydrofuran and cooled to 0 °C. Excess LiAlH4 was quenched by slow addition of a 

saturated sodium sulfate solution followed by distilled water and the suspension was stirred 

at 0 °C - 5 °C for 1 h (until the gray color of LiAlH4 disappeared completely). The 

suspension was filtered through a pad of anhydrous magnesium sulfate and subsequently 

washed with ethyl acetate (3 × 50 mL). The combined filtrates were concentrated under 

reduced pressure to give a clear colorless oil that crystallized upon standing. The product 8 

was recrystallized from THF/heptane system as a white powder (3.49 g, 91% yield). 1H 
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NMR (DMSO-d6): δ 6.58 (s, 1H, Ar), 6.56 (s, 2H, Ar), 5.03 (t, 2H, OH), 4.41 (d, 4H, CH2), 

2.87 (s, 6H, (CH3)2N). 

Synthesis of 1,3-bis(bromomethyl)-5-dimethylaminobenzene (9). PBr3 (10.4 mL, 110 

mmol) was added dropwise over a 30-minute period to a stirred solution of 8 (5.0 g, 27.6 

mmol) in 140 mL of anhydrous acetonitrile at 0 °C under argon atmosphere. The solution 

was stirred at room temperature for 2 h and then heated to 70 °C for an additional 4 h. The 

reaction was quenched by pouring the solution over ice followed by slow addition of a 

saturated NaHCO3 solution to adjust pH to ~ 7. The solution was filtered and the precipitate 

product was dissolved in acetonitrile. Pure 9 was recrystallized out from acetonitrile/water 

system to give 6.52 g of white powder in 77% yield. 1H NMR (CDCl3): δ 6.78 (s, 1H, Ar), 

6.66 (s, 2H, Ar), 4.45 (s, 4H, CH2), 2.99 (s, 6H, (CH3)2N). 

Synthesis of 1,3-bis[di(t-butyl)phosphinomethyl]-5-dimethylaminobenzene 

(Me2N-PCP-H) (10). Synthesis of this ligand and its corresponding iridium hydrido chloride 

were based on reported syntheses by Shaw for the parent ligand.16 To 1.0 g of 9 (3.25 mmol) 

in 20 mL of degassed acetone was added 1.36 mL (7.2 mmol) of di-tert-butylphosphine (98%) 

(Strem) at room temperature. The mixture was heated under reflux with stirring for 24 h 

under an argon atmosphere, and the solvent was removed in vacuo. The solid was dissolved 

in degassed deionized water (15 mL) and treated with a solution of potassium carbonate (2.7 

g, 19.5 mmol) in degassed deionized water (10 mL). The diphosphine ligand was extracted 

with degassed n-hexane (3 x 20 mL) and the solvent was evaporated under vacuum, giving 

1.03 g (72%) of the ligand 10 as a white solid. 31P{1H} NMR (C6D6): δ 31.03 (s). 1H NMR 

(C6D6): δ 6.98 (s, 1H, Ar), 6.79 (s, 2H, Ar), 2.87 (d, 2JH-P = 2.4 Hz, 4H, CH2), 2.78 (s, 6H, 

(CH3)2N), 1.18 (d, 3JH-P = 10.8 Hz, 36H, C(CH3)3). 
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Synthesis of (Me2N-PCP)IrHCl. To 0.51 g of 10 (1.16 mmol) in 30 mL of toluene was 

added 0.38 g of [Ir(COD)Cl]2 (0.57 mmol) at room temperature and stirred for 30 min under 

a hydrogen atmosphere. (note: the solution changes color from yellow to deep red under the 

hydrogen atmosphere at room temperature). This mixture was refluxed for three days under 

the hydrogen with stirring, and the solvent was removed in vacuo giving 0.78 g of (Me2N-

PCP)IrHCl as dark-red solid in 94% yield. 31P{1H} NMR (C6D6): δ 67.03 (s). 1H NMR 

(C6D6): δ 6.65 (s, 2H, Ar), 3.16 (dvt, the left part of ABX2 , 2JH-H = 17.7 Hz, JH-P = 3.9 Hz, 

2H, CH2), 3.06 (dvt, the right part of ABX2 , 2JH-H = 17.7 Hz, apparent J = 3.9 Hz, 2H, CH2), 

2.77 (s, 6H, (CH3)2N), 1.34 (virtual triplet, apparent J = 6.9 Hz, 18H, C(CH3)3), 1.29 (virtual 

triplet, apparent J = 6.9 Hz, 18H, C(CH3)3), - 43.11 (t, 2JH-P = 12.8 Hz, 1H, Ir-H). 

Synthesis of (Me2N-PCP)IrH4 and (Me2N-PCP)IrH2 (1d). A stream of hydrogen was 

passed through a solution of 0.73 g of (Me2N-PCP)IrHCl (1.1 mmol) in 300 mL anhydrous 

pentane for about 30 min. This was followed by a slow dropwise addition of 1.1 mL of 1 M 

LiBEt3H in THF (1.1 mmol) to this solution with continuous stirring under hydrogen 

atmosphere. The solution turned nearly colorless and some white precipitate was formed at 

the bottom of the flask. After the addition of LiBEt3H was complete, stirring was continued 

for 1 h and finally the solution was filtered under argon atmosphere. (note: on changing from 

H2 to argon atmosphere the solution rapidly turned deep red). The solvent was removed in 

vacuo, giving 0.55 g (79%) of 1d as reddish brown crystals containing ca. 10% of (Me2N-

PCP)IrH4. (All the PCP-Ir tetrahydrides are quickly converted to the corresponding 

dihydrides under catalytic conditions; accordingly, for catalytic runs, the dihydrides are 

frequently used containing varying amounts of tetrahydride.) NMR data for (Me2N-PCP)IrH4: 

31P{1H} NMR (C6D6): δ 72.42 (s). 1H NMR (C6D6): δ 6.73 (s, 2H, Ar), 3.32 (virtual triplet, 
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apparent J = 3.9 Hz, 4H, CH2), 2.79 (s, 6H, (CH3)2N), 1.24 (virtual triplet, apparent J = 6.9 

Hz, 36H, C(CH3)3), -9.09 (t, 2JH-P = 9.9 Hz, 4H, IrH4). NMR data for 1d: 31P{1H} NMR 

(C6D6): δ 85.48 (s). 1H NMR (C6D6): δ 6.84 (s, 2H, Ar), 3.62 (virtual triplet, apparent J = 3.6 

Hz, 4H, CH2), 2.76 (s, 6H, (CH3)2N), 1.33 (virtual triplet, apparent J = 6.9 Hz, 36H, 

C(CH3)3), -19.99 (t, 2JH-P = 8.7 Hz, 2H, IrH2). 

 

 

 

 

 

 

 

Synthesis of {p-O(CH2)3Si(OMe)3-C6H2-2,6-[OP(t-Bu2)]2}Ir(C2H4) (15). Complex 4 (80 

mg, 0.119 mmol), I(CH2)3Si(OMe)3 (138 mg, 0.476 mmol), and THF (10 mL) were added to 

a Kontes flask. The THF solution was degassed by freeze-pump-thaw cycles. The flask was 

refilled with ethylene gas at -78 °C. The mixture was heated at 65 °C for 2 hours. NaOMe 

(22 mg, 0.407 mmol) was then added to the Kontes flask in the glovebox and the flask was 

refilled with ethylene gas at -78 °C. The mixture was stirred at RT for 2 days.  NaOMe 

reacted with the excess of I(CH2)3Si(OMe)3 (80 °C/2 mm) to produce NaI and 

CH2=CHCH2Si(OMe)3 which is relatively more volatile (bp, 146 °C/760 mm) and easier to 

remove. Volatiles were then removed under high vacuum.  The residue was extracted with 3 

× 10 mL of pentane, and the extract was filtered through a 0.2 µm pore size syringe filter 

(Nalgene 199-2020) into a Schlenk flask. Removal of the solvent under high vacuum yielded 

69 mg (0.086 mmol, 73% yield) of red waxy solid which contained ca. 95% of 11 by NMR 
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and was used without further purification in the next step. 1H NMR (400 MHz, 23 °C, C6D6): 

δ 0.75 ( m, 2H, CH2Si), 1.27 (virtual triplet, apparent J = 6.6 Hz, 36H, 4 × tBu), 1.88 (m, 2H, 

OCH2CH2), 3.14 (t, 3JP-H = 2.7 Hz, 4H, C2H4), 3.40, (s, 9H, 3 × OMe), 3.71 (t, 2JH-H = 6.5 Hz, 

2H, OCH2CH2), 6.65 (s, 2H, 3- and 5-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): δ 181.4. 

 

 

 

 

 

 

Synthesis of {p-O(CH2)3Si(Me)2(OMe)-C6H2-2,6-[OP(t-Bu2)]2}Ir(C2H4) (16). The same  

synthetic procedure used for 15 was used except that I(CH2)3Si(OMe)3 was replaced by 

I(CH2)3Si(Me)2(OMe) (123 mg, 0.476 mmol), giving 63 mg (0.082 mmol, 69% yield) of red 

waxy solid which contained ca. 95% of 12 by NMR and was used without further 

purification in the next step. 1H NMR (400 MHz, 23 °C, C6D6): δ 0.09 (s, 6H, 

Si(CH3)2), 0.56 (m, 2H, CH2Si), 1.27 (virtual triplet, apparent J = 6.4 Hz, 36H, 4 × tBu), 1.69 

(m, 2H, OCH2CH2), 3.14 (t, 3JP-H = 2.7 Hz, 4H, C2H4), 3.17, (s, 3H, OMe), 3.71 (t, 2JH-H = 

6.4 Hz, 2H, OCH2CH2), 6.68 (s, 2H, 3- and 5-H). 31P{1H} NMR (162 MHz, 23 °C, C6D6): 

δ 181.5. 

Synthesis of silica supported-iridium pincer complex 15. Complex 15 (50 mg, 0.062 

mmol), silica (1.5 g), and toluene (10 mL) were added to a Kontes flask. The toluene 

suspension was degassed by freeze-pump-thaw cycles. The flask was refilled with ethylene 

gas at -78 °C and the suspension was stirred at 120 °C for 2 days. The flask was cooled to 

O O

P PtBu2Ir

O Si
OMe

tBu2

16
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room temperature and ethylene gas was removed by freeze-pump-thaw cycles.  Excess 

trimethylsilyldimethylamine (3 mL, 18.7 mmol) was added in the glovebox and the flask was 

degassed and refilled with ethylene gas at -78 °C. The suspension was stirred at room 

temperature for 2 days. This supported catalyst was filtered under argon, and washed with 

pentane, toluene and THF three times (5 ml each), respectively. The orange solid was dried 

under high vacuum overnight to give 1.46 g of product.  

Synthesis of silica supported-iridium pincer complex 16. Complex 16 (48 mg, 0.062 

mmol), silica (1.05 g), and COE (5 mL) were added to a Kontes flask. The COE suspension 

was stirred at 150 °C for 2 days. The flask was cooled to room temperature and excess 

trimethylsilyldimethylamine (3 mL, 18.7 mmol) was added in the glovebox. The suspension 

was stirred at room temperature for 2 days. This supported catalyst was filtered under argon, 

and washed with pentane, toluene and THF three times (5 ml each), respectively. The light 

orange solid was dried under high vacuum overnight to give 0.86 g of product. 

Hydrogen transfer from COA to TBE, catalyzed by silica-supported iridium pincer 

complexes. The silica-supported complex 11 or 12 (2.0 – 3.15 µmol), COA (0.265 – 0.674 g, 

2.36 – 6.0 mmol), and TBE (95%, 0.209 – 0.532 g, 2.36 – 6.0 mmol) were added to a Kontes 

flask. The flask was sealed tightly with a Teflon plug under an argon atmosphere and the 

suspension stirred in an oil bath at 200 °C. Periodically, the flask was removed from the bath 

and cooled in an ice bath. An aliquot was removed from the flask, and analyzed by GC 

(method A). Turnover numbers were calculated for each aliquot. Details are summarized in 

the text. 
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CHAPTER FIVE 

 
An Efficient Heterogeneous Dual Catalyst System 

for Alkane Metathesis 

 

(Experiments carried out with (POCOP)IrC2H4 in collaborations with Dr. Amy H. R. 

MarArthur; (p-Meo-POCOP)IrC2H4 and (p-NMe2-PCP)IrH2 in collaborations with Dr. Emily 

Carson; pyrimidine-derived Ir catalyst 6 in collaborations with Eleanor Rolfe). 

 

Introduction 

           We have reported both homogeneous and heterogeneous tandem catalytic systems 

(Scheme 5.1) in which alkane metathesis was achieved at moderate temperatures (125 – 175 

°C) with complete selectivity for linear alkanes.1 The iridium-based pincer complexes (Fig. 

5.1), reported by Jensen, Kaska, Goldman2,3 and our own group4, serve as the alkane-

dehydrogenation/olefin-hydrogenation catalysts. The combination of a Mo olefin metathesis 

catalysts, [Mo(C10H12)(C12H17N)[OC(CH3)(CF3)2]2 (Mo-F6),1 or other Schrock-type olefin 

metathesis catalysts5 and an iridium catalyst provided efficient homogeneous AM systems. 

For instance, a reaction conducted at 125 °C converted ca. 125 – 200 equivalents of n-hexane 

to a range of C2 to C15 n-alkanes after one day.1 The Schrock catalyst was found to decay 

much faster than the Ir catalyst and its early decomposition limited conversion.1,5  
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 Scheme 5.1 Alkane metathesis via tandem transfer dehydrogenation/olefin metathesis 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.1 Structures of (POCOP)Ir and (PCP)Ir complexes 

            Alumina-supported Re2O7 can be used as a heterogeneous metathesis catalyst, and 

when used in combination with iridium pincer catalysts, provides a more stable and longer 

lived AM dual catalyst system. For example, heating an n-decane solution of 1b and t-

butylethylene at 175 °C over Re2O7/Al2O3 gave linear alkane products in the C2-C34 range 

with 485 turnovers after 9 days.1 We showed in these systems that iridium complexes were 

partially or completely adsorbed on the Re2O7 alumina support.  These observations led us to 

study alumina-supported-iridium pincer complexes for catalytic transfer dehydrogenation. 

We showed that iridium pincer complexes, especially those bearing basic functional groups 

in the para-position of the pincer ligands (Fig. 5.2), bind to γ-alumina through a Lewis 

acid/Lewis base interaction.6 These alumina-supported catalysts are thermally robust and 

recyclable, and display high activities for transfer of hydrogen from cyclooctane to tert-
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butylethylene (see Chapter four).6 The goal of the work reported here is to combine such 

catalysts with heterogeneous olefin metathesis catalysts to generate a fully heterogeneous 

catalyst system for AM.  

 

 

 

 

 

Fig. 5.2 Structure of iridium pincer complexes with basic functional groups in the para-
position 
 
            In this chapter, an investigation of heterogenous AM using six γ-alumina-supported 

iridium pincer catalysts in combination with the heterogeneous olefin metathesis catalyst 

Re2O7/Al2O3 is reported. These heterogeneous catalyst systems show significantly higher 

activity for alkane metathesis than homogeneous systems examined earlier. Since the 

Re2O7/Al2O3 catalyst is longer-lived and operates more efficiently at temperatures 

substantially below optimum temperatures for the Ir pincer catalysts, a device has been 

constructed in which the catalysts can be isolated from one another and run at different 

temperatures. The system with separated catalysts is long-lived, recyclable and quite efficient 

for AM, exhibiting total turnover numbers (TONs) up to 7000. When this device is used the 

product distribution favors heavy alkanes and shows few or no secondary AM products. A 

readily available heterogeneous olefin metathesis catalyst, MoO3/CoO/Al2O3, has also been 

investigated for AM. High activity is achieved with alumina-supported iridium and MoO3 

catalysts isolated and operated at different temperatures.           
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Result and Discussion 

1. Iridium pincer catalysts used in AM with Re2O7/Al2O3. 

               Iridium pincer complexes used as hydrogen transfer catalysts in this study include 

unsubstituted complex 1a and pincer complexes bearing basic functionality in the para 

position of the arene ring 1b, 3, 4 and 5.  The syntheses of these catalysts have been 

previously reported.1,6  In addition, a new catalyst, 6, derived from 4,6-dihydroxypyrimidine 

has also been examined.  Its synthesis is outline in Scheme 5.2.  

Scheme 5.2 Formation of complex 6 

 

 

                               

                                                                                                                                 

                                                                

 

 

 

               The POCOP ligand, 7, was synthesized in 79% crude yield by reaction of 4,6-

dihydroxypyrimidine with di-tert-butylchlorophosphine and excess triethylamine. NMR 

analysis shows a 15% impurity presumed to be the monophosphinite. Iridium 

hydridochloride complex, 8, was obtained from the reaction of excess [Ir(COD)Cl]2 with the 

ligand in mesitylene for 12 h at 170°C (60% yield). The impurity observed in the ligand does 

not undergo metallation, and thus does not interfere with the isolation of pure 8. The square 

pyramidal geometry at the metal center, in which hydrogen occupies the apical position, was 

confirmed by single crystal X-ray diffraction analysis. An ORTEP diagram of 8 is shown in 
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Fig. 5.3. Treatment of the hydridochloride complex with sodium tert-butyloxide in the 

presence of ethylene produced 6 (53% yield).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 ORTEP diagram of 8. The bond distances around the metal center are 1.988(7) Å (Ir1-C10), 

2.3031(19)Å (Ir1-P1), 2.2968 (Ir1-P2), and 2.392(2) Å (Ir1-Cl1). Selected bond angles (deg): 

158.77(7) (P1-Ir1-P2), 79.6(2) (C10-Ir1-P1), 79.1(2) (C10-Ir1-P2), 175.3(2) (C10-Ir1-Cl). Hydrogen 

on the Ir center can not be located.  

 

2. Alkane metathesis with 1a and Re2O7/Al2O3.  

  

                                                                                                                                      Eq 1                                 

                                                      

      

           Catalytic alkane metathesis reactions were run using n-decane as the solvent in 

combination with unsubstituted iridium catalyst 1a and heterogeneous olefin metathesis 

catalyst Re2O7 on alumina. Reactions were carried out under argon and monitored by GC 

1a    +    Re2O7/Al2O3   +    n-decane     +     C6Me6

5-13 
wt % Re2O7

175 oC

8.4-10.0
 mM

5.12 M

linear
alkanes
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with hexamethylbenzene or mesitylene used as an internal standard (See Eq 1). Results are 

summarized in Table 5.1.  Initial runs at 125 and 175 °C (entries 1 and 2) employed 22.8 

µmol 1a with a 1:2.5 molar ratio of 1a : Re2O7, supported on 540 mg of γ-alumina. At 125 °C 

very low productivity was observed (14 TO after 4 days) compared to the 175 °C run where 

140 TOs were observed after 5 days. All subsequent runs were thus carried out at 175 °C. In 

runs 1 and 2 we noted n-decane solutions of 1a were orange prior to addition of Re2O7/Al2O3. 

When Re2O7/Al2O3 was added, these solutions lightened and became nearly colorless, 

suggesting that a significant fraction of 1a was adsorbed on the alumina.    

            Entries 3-7, all run with similar concentrations of 1a in n-decane, show that a critical 

feature in determining the productivity of these reactions is the amount of alumina present. 

For example, when a 1:4.2 molar ratio of 1a : Re2O7 on 1020 mg Al2O3 (5 wt% of Re2O7) 

was used (entry 3) TONs are more than doubled relative to entry 2; however, when 

conditions of entry 2 are used and 506 mg of pure alumina added (entry 4, bringing total 

alumina to 1048mg ), a similar increase in TONs is observed. In entry 6, a 1a : Re2O7 molar 

ratio of 1:3 was used (similar to entry 2) except a 13 wt% loading of Re2O7 on Al2O3 was 

employed7-9, so only 225 mg of Al2O3 was required. Very poor productivity was observed. 

Finally compare entries 5 and 7. A low 1: 1.5 molar ratio of 1a : Re2O7 was used in each case, 

but in entry 7 additional Al2O3 (415 mg) had been added. With no added alumina (entry 5), 

productivity was poor but with added alumina (entry 7) productivity was equal to that of 

entry 2 even though a significantly lower molar quantity of Re2O7 was used.  

           These results argue strongly that as the fraction of 1a which is supported on alumina 

increases, the AM productivity of the system increases. Furthermore, it seems plausible that 
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the system is deactivated by the interaction of 1a with Re2O7 since the thermal stability of 1a 

in alkane solution at 175 °C is very long.  

 
Table 5.1. Total turnover numbers (TONs)a and concentration of products from the 
metathesis of n-decane (2.5 mL, 5.12 M) by 1a (21 to 25 µmol) and varied loading of Re2O7 
with or without additional Al2O3. 

 
a TONs relative to Ir; b When the system has lost activity completely.  
 
3. AM with γ-alumina-supported iridium complexes 1b, 3 and 4. 

               Our previous studies indicated that iridium pincer complexes containing basic 

functional groups in the para-position are adsorbed strongly on γ-alumina through a Lewis 

acid/Lewis base interaction6. ICP-MS experiments with para-oxide- and para-phosphinite-

supported systems (2.5 µmol of complexes 4 and 5 on 310 mg of alumina) show negligible 

leaching from alumina when heated in cyclooctane for several hours at 200 °C.  These 

alumina-supported catalysts are highly active for transfer dehydrogenation of alkanes and can 

be efficiently recycled. The strong adsorption of these iridium complexes by alumina should 

retard the interaction between the iridium catalyst and the olefin metathesis catalyst as was 

seen for weakly adsorbed unsubstituted 1a.  

[Product] (M)/TONs Entry Temp 
(˚C) 

wt % 
Re2O7 

[1a]/ 
1a:Re2O7 

Re2O7/ 
Al2O3 

Added 
Al2O3 3 hrs 5 days End of RXNb 

    1 125 5 22.8 µmol/ 
1 : 2.5 

540 mg 0 mg trace --- 0.13 (4d)/  
14.2  

2 175 5 22.8 µmol/ 
1 : 2.5 

540 mg 0 mg 0.153/ 
17 

1.28/ 
140 

1.59 (9d) 
177 

3 175 5 25.0 µmol/ 
1 : 4.2 

1020 mg 0 mg 0.295/ 
30 

3.63/ 
363 

4.51 (11d)/ 
451 

4 175 5 22.8 µmol/ 
1 : 2.5 

542 mg 506 mg 0.281/ 
31 

2.65/ 
291 

2.92 (8d)/ 
321 

5 175 13 21.0 µmol/ 
1: 1.5 

128 mg 0 mg trace --- 0.04 (2d)/ 
4.8 

6 175 13 22.3 µmol/ 
1 : 3 

255 mg 0 mg trace --- 0.436 (3d)/ 
49 

7 175 13 21.0 µmol/ 
1: 1.5 

130 mg 415 mg 0.196/ 
23 

1.29/ 
154 

1.70 (9d)/ 
202 
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Table 5.2. Total TONs and concentration of products from the metathesis of n-decane (2.5 or 
10 mL, 5.12 M) by Re2O7/Al2O3 (ca. 540 mg, 5 wt % of Re2O7) and iridium catalyst 1b, 3, or 
4 (23.5 to 27 µmol) with or without additional Al2O3 at 175 °C. 
 

[Product] (M)/TONs Entry Ir [Ir] 
(µmol) 

 Re2O7/Al2O3  Added 
Al2O3 3 h 1 d 7 d 

1 1b 23.5  570 mg 0 mg 2.49/ 
265  

3.06/ 
326 

3.24/  
345 

2 1b 23.8 550 mg 502 mg 2.15/ 
226 

3.10/ 
326 

4.12/ 
434 

3 3 24.0  547 mg 0 mg --- 3.07/ 
320 

3.88/  
406 

4 3 24.0 538 mg 503 mg 2.22/ 
231 

4.30/ 
448 

4.75/ 
495 

5 3 25.0* 540 mg 503 mg 0.687/ 
277 

2.05/ 
827 

2.67/ 
1077 

6 4 24.3  538 mg 0 mg 2.02/ 
208 

--- 3.85/ 
402 

7 4 27.0 530 mg 506 mg 3.36/ 
311 

3.92/ 
363 

4.55/ 
421 

*With 10 mL of n-decane as starting material. 

              In combination with Re2O7/Al2O3 (5 wt% of Re2O7), catalysts 1b, 3 and 4 were 

screened for AM using n-decane. In most runs ca. 23.8 µmol Ir was used together with ca. 

550 mg of Re2O7/Al2O3 which corresponds to a 1:2.5 molar ratio or Ir : Re2O7. Reactions 

were carried out at 175 °C and monitored by GC at 3 h, 1 d and 7 d. Table 5.2 summarizes 

the total concentration of alkane products (C2-C9 plus C11-C34) and TONs. In runs 1, 3, and 6 

the iridium complex was added to n-decane and was adsorbed on Re2O7/Al2O3. In these runs 

the reaction rates and productivities were significantly increased by using 1b, 3 or 4 relative 

to 1a. For example, after 3 h at 175 °C, AM with 1b and 4 gave 265 and 208 TONs, 

respectively. Under identical conditions, only 17 TONs were obtained in the reaction using 

1a (Table 5.1, entry 2). The reactions with 3 and 4 formed alkane products in 79% yield (406 

and 402 TONs respectively) after 7 days. When the reaction with 1a was terminated at 9 days, 

the total conversion was only 31% (177 TONs).            
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            The effect of added alumina was also investigated in these systems by using ca. 500 

mg of alumina to support iridium complexes 1b, 3 and 4 prior to the addition of the 

Re2O7/Al2O3 catalyst. Using the para-methoxy-supported system 1b supported on the 

Re2O7/Al2O3 particles, catalysis was finished after ca. one day, as heating an additional 6 

days resulted in only 19 additional TOs (Table 5.2, entry 1). Supporting 1b on 502 mg Al2O3 

prior to exposure to Re2O7/Al2O3 resulted in a significant increase in catalyst lifetime with 

TONs reaching 434 at 7 days (entry 2). The effect on productivity of supporting the iridium 

catalyst on alumina is more significant for the para-dimethylamino-supported 3/Al2O3 and 

para-oxide-supported systems 4/Al2O3. For example, the productivity using catalyst 4 was 

significantly increased by the presence of additional alumina (208 TONs vs 311 TONs after 

30 mins). Among these systems, the para-dimethylamino catalyst 3 supported by additional 

alumina was most productive and gave 495 TONs after 7 days (entry 4). Remarkably, the n-

decane starting alkane was present in lower molar quantities than n-nonane and n-octane, 

with measured C8 : C9 : C10 : C11 molar ratios of 1.46 : 1.06 : 1.0 : 0.66 (Fig. 5.4).  

Encouraged by these high productivities, the substrate n-decane was increased from 2.5 mL 

to 10 mL using the same quantities of 3, alumina and Re2O7/Al2O3.  After 7 days at 175 °C, 

the product concentration reached 2.67 M with a total of 1077 TOs (entry 5). 

             These results show that iridium complexes bearing polar groups in the para-position 

adsorb strongly on alumina and perform much better than the weakly adsorbed parent 

complex 1a in AM. Though the complexes bind strongly to the Re2O7/Al2O3 particles, the 

reaction rates and productivities are improved by independently adsorbing Ir complexes on 

additional alumina prior to exposure to Re2O7/Al2O3.  
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Fig. 5.4 GC trace of product mixture resulting from the metathesis of n-decane (solvent) by 
3/Al2O3 and Re2O7/Al2O3 after 7days at 175 °C (see Table 5.2). 
 
4. AM with low loading of iridium catalysts 4, 5 and 6.   

            As demonstrated above, using additional alumina to support iridium catalysts 

prevents the interaction between the iridium catalysts and Re2O3/Al2O3. An alternative 

method of minimizing these presumed interactions is to decrease the loading of iridium 

catalyst on Re2O7/Al2O3. Complex 4 together with iridium complexes 5, bearing a 

phosphinite group in the para-position, and 6 possessing a pyrimidine backbone in the pincer 

ligand, were tested under these low-load conditions. Complexes 4 and 5 have been 

previously shown to adsorb strongly on alumina through a Lewis acid/Lewis base 

interaction6. A similar phenomenon occurs with 6, which most likely binds to acidic sites on 

the alumina through the basic nitrogen atoms in the pincer backbone. In these AM reactions, 

4.2 µmol of either 4, 5 or 6 were combined with Re2O7/Al2O3 (ca. 540 mg) in n-decane (2.5 

mL) without additional alumina and heated at 175 °C. Results are summarized in Table 5.3 
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and Fig. 5.5. Catalysis with 4 gave 291 TONs after 3 hours and 1672 TONs after 2 days 

(Table 5.3, entry 1). Among the three systems, the initial rate using 6 was fastest with 1914 

TONs after 1 day (64% conversion); however, activity ceased after ca. 1 day as heating for 6 

more days resulted in only 143 additional TONs (see Table 5.3 and Fig. 5.5). The system 

employing phosphinite catalyst 5 appears to be the most stable and long-lived. After 7 days, 

the catalyst was still active for AM and TONs up to 2521 (84% conversion) were obtained 

after 14 days.   

          The plot of turnovers vs time for all three catalysts (Fig 5.5) is instructive. All show an 

initial burst of activity in the first hour. Catalyst 6 shows highest initial productivity but 

quickly loses activity. The para-phosphinite catalyst 5 shows a steady increase after this burst 

and at long times clearly outperforms both 4 and 6. We don’t fully understand the reaction 

profiles, but we note that previous ICP-MS experiments6 suggest the phosphinite system is 

most strongly adsorbed on alumina relative to 4.  

 
Table 5.3. Total TONs and concentration of products from the metathesis of n-decane (2.5 
mL, 5.12 M) by Re2O7/Al2O3 (ca. 540 mg, 5 wt % of Re2O7) and iridium catalysts 4, 5 and 6 
(4.2 µmol) without additional Al2O3 at 175 °C. 
 

[Product] (M)/TONs Entry Ir  [Ir]  
Ir:Re2O7 

Re2O7/Al2O3 
3 h 1 d 7 d 14 d 

1 4 4.2 µmol 
1 : 14.4 

544 mg 0.489/ 
291  

1.20/ 
715  

2.38/ 
1419 

2.81/ 
1672 

2 5 4.2 µmol 
1 : 14.4  

546 mg 0.366/ 
218  

2.32/ 
1382 

3.26/ 
1942 

4.24/ 
2521 

3 6 4.2 µmol 
1 : 14.4 

544 mg 0.687/ 
609  

3.22/ 
1914  

3.46/ 
2057 

-- 
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Fig. 5.5 Plot of total AM TONs employing 4, 5, and 6 with Re2O7/Al2O3.  
 
 
Table 5.4 Distribution of C2 to C34 n-alkane products (equivalents relative to Ir) from the 
metathesis of n-decane (2.5 mL, 5.12 M) by 4, 5 and 6 (4.2 µmol) and Re2O7/Al2O3 (ca. 540 
mg, 5 wt % of Re2O7) without additional Al2O3 at 175 °C after 7 days. 

 
Entry Ir C2-C5 C6-C9 C11-C14 C15-C18 C>18 Total TON

1 4 160 727 376 121 35 1419 
2 5 357 833 489 201 62 1942 
3 6 366 834 553 235 69 2057 

 
             Heterogeneous AM reactions with n-decane as substrate form products in the C2-C34 

range. Table 5.4 summarizes the alkane product distributions formed using catalysts 4, 5 and 

6 after 7 days (Entries 1, 2, and 3, Table 5.4). Selectivity for the desirable products, ethane 

and n-C18H38, is low and is attributed to olefin isomerization, which is known to be catalyzed 

by the iridium complexes and may also be catalyzed by Re2O7/Al2O3 and even Al2O3 itself. 

Alkanes heavier than n-C18H38 must be produced via secondary alkane metathesis since they 

are derived from metathesis of at least one olefin of Cn>10, which is necessarily a product of 

primary alkane metathesis.  
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5. AM using physically separated 4/Al2O3 and Re2O7/Al2O3  

                 A disadvantage of using Al2O3-supported iridium catalysts together with 

Re2O7/Al2O3 in the same pot is that the Ir catalysts function at viable rates only above 175 °C 

while the rhenium metathesis catalysts function most effectively at 20-100 °C8-11 and degrade 

moderately rapidly at temperatures above 80 °C.9 Thus, carrying out reactions at 175 °C 

results in decay of the rhenium catalyst while 175 °C is actually lower than optimum for the 

highly stable iridium catalysts. Furthermore, there is a potential interaction between Ir and 

Re2O3 catalyst in the one-pot system which accelerates the decomposition rate of both 

catalysts and decrease the activity. These circumstances limit overall conversion and prevent 

efficient catalyst recycling, the normal advantage of easily reisolated heterogeneous catalysts. 

To circumvent these problems we have designed a simple apparatus shown in Fig. 5.6 which 

allows physical separation and operation of the two catalysts at two different temperatures. 

The device contains two “pots” connected by two tubes as shown. The upper, larger diameter 

tube is heavily insulated. The lower pot is loaded with the Ir catalyst and the upper pot is 

loaded with Re2O7/Al2O3. The lower tube contains a frit at the mouth of the upper pot to 

prevent the rhenium catalyst from being washed into the lower pot. When the lower pot is 

heated, hydrocarbons distill through the upper insulated tube and condense in the upper pot 

which is stirred and held at a lower temperature (50 °C). Olefin metathesis occurs readily at 

these temperatures and product returns to the lower pot through the lower tube. Table 5.5 

summarizes the results of an experiment using n-octane (6594 equiv relative to Ir) and 

Re2O7/Al2O3 (540 mg, 5 wt % of Re2O7) in the upper pot (50 °C) and the alumina-supported 

Ir catalyst 4 (2.8 µmol of Ir on 280 mg Al2O3) in the lower pot (220 °C). After 52 h 3907 TOs 

were observed (entry 1). After solutions were removed from each pot and the device 
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recharged, the first recycle produced 1370 TOs after 52 h (entry 2). The second recycle gave 

670 TOs after 18 h (entry 3).  The decay of activity of the system may be due to the loss of 

olefins upon removal of product (at lease 1 equiv of olefin is required to support the catalytic 

cycle). Therefore, twenty equiv of 1-octene were added to the n-octane charge in the third 

recycle. This third recycle produced 1620 TOs after 28 h and was an improvement over even 

the first recycle. The result suggests that the loss of olefin is clearly a factor affecting 

recyclability but may not be the only one.  

 

 
Fig. 5.6 A two-pot device for alkane metathesis.  

 

Table 5.5. Distribution of C2 to C16 n-alkane products (equivalents relative to Ir) from the 
metathesis of n-octane (3 ml, 6.15 M) by alumina-supported 4 (2.8 µmol) and Re2O7/Al2O3 
(540 mg, 5 wt % of Re2O7) at 175 °C using a two-pot reactor. 

 
 C2-C4 C5-C7 C9-C11 C12-C14 C15,C16 Total 

TON 
18 h 88 642 717 114 1 1562 
52 h 300 1421 1775 392 19 3907 

1st recycle 
18 h 48 284 357 58 1 748 
52 h 109 479 653 122 3 1370 

2nd recycle 
18 h 33 205 375 61 0 674 

add 20 equiv of 1-octene 
28 h 139 506 817 162 0 1624 

Two-pot system: 

2.8 µmol p-OK-Ir/ γ-Al2O3 
220 ˚C 

60 µmol Re2O7/γ-Al2O3 
50 ˚C 

C8

Frit

Insulated
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Alkane Product Distributions Using the Two-pot Device. Using the two-pot system avoids 

the build up of heavy alkanes via secondary alkane metathesis. Alkanes n-C15H32 and n-

C16H34 are the only two observable products of secondary alkane metathesis and are present 

in very small amounts (19 equiv total after 52 h in the first cycle). The yield of alkanes above 

C14 is low because olefins heavier than octenes are difficult to distill and therefore they are 

less likely to reach the upper pot containing the olefin metathesis catalyst. Consequently, the 

heavier olefins (C>8) seldom undergo metathesis and serve primarily as hydrogen acceptors 

in the lower pot. Moreover, the alkane product distribution is concentrated in the C9-C14 

range relative to the distributions in the “one pot” reaction. Such a skew in the distribution is 

favorable for diesel production. The molar ratio of C9-C14 n-alkanes to C2-C7 n-alkanes 

obtained from octane in the two pot reactor is 1.3 : 1. In contrast, alkane metathesis by the 

mixed catalysts favors the formation of alkanes lighter than the starting alkane. For example, 

metathesis of n-decane by 4 and Re2O3/Al2O3 in the one pot system (Table 5.4, entry 1) 

forms heavier alkanes C11-C18 and lighter alkanes C2-C9 n-alkanes in a 0.56 : 1 molar ratio. 

This favorable change in hydrocarbon distribution arises from the fact that the lower 

molecular weight olefins are more volatile and can be repeatedly distilled into the upper pot 

for secondary metathesis, while the heavy olefins tend to remain in the lower pot and serve as 

hydrogen acceptors.  

6. AM with MoO3/CoO/Al2O3 as the olefin metathesis catalyst  

             While Re2O7/Al2O3 is an efficient heterogeneous catalyst when operated at 20-100 

°C,  heterogeneous molybdenum and tungsten catalysts are known to operate above these 

temperatures.8,10,11 Mo2O3/CoO/Al2O3 was particularly attractive in that it is commercially 

available at low cost and so this catalyst was screened in AM. Mo2O3/CoO/Al2O3 pellets 
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(Strem) were calcined at 550 °C under air prior to use. Following calcining these pellets 

showed excellent activity in olefin metathesis at 175 °C. Initial AM experiments were carried 

out by mixing the MoO3/CoO/Al2O3 (240 mg, 243 µmol of Mo) catalyst with alumina-

supported 4 (2.5 µmol of Ir on 310 mg of alumina) in n-decane (5130 equiv relative to Ir) and 

heating at 175 °C. AM activity was low with only 120 TOs seen after 4 days (Table 5.6, 

entry 1). Remarkably, when the metathesis catalyst was isolated from the iridium catalyst by 

using the two-pot device, the productivity was very significantly increased. In a typical 

experiment, n-octane (7385 equiv relative to Ir) was heated with alumina-supported 4 (2.5 

µmol of Ir on 310 mg of alumina) at 220 °C in the lower pot and the Mo catalyst (240 mg) 

was heated in the upper pot at 100 °C. After 9 days, TONs up to 3127 were obtained (Table 

5.6). These results indicate that in the one pot system there must be interaction between the Ir 

and Mo catalysts which significant decreases catalyst activity and stability and that this can 

be circumvented by physically separating the catalysts. The mode and nature of this 

deleterious interaction is unknown.  

Table 5.6. Total TONs of products from the metathesis of n-decane (2.5 mL) or n-octane (3 
mL) by alumina–supported 4 (2.5 µmol Ir, 310 mg Al2O3) and MoO3/CoO/Al2O3 (240 mg, 
243 µmol Mo). 

 
 

 

 

Conclusions 

               In summary, several γ-alumina-supported iridium systems were investigated for 

alkane metathesis. The Ir catalysts, which adsorb strongly on alumina through a Lewis 

acid/Lewis base interaction, exhibit unprecedented high activity for alkane metathesis in 

[Product] (M)/TONs Entry System Temp (°C)   
1 day 2 day 4 days 9 days 

1 Mixed 175 --- --- 120 --- 
2 Separated 220/100 1026 1753 2450 3127 
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combination with Re2O7/Al2O3. Addition of alumina was found to improve the productivity 

and catalyst stability by minimizing the potential interaction between the iridium species and 

Re2O7/Al2O3. Using a “two-pot” device, the supported Ir catalysts, and the metathesis 

catalysts, including Re2O7/Al2O3 and the commercial available MoO3/CoO/Al2O3, can be 

isolated and run at different temperatures. The system with separated Ir and Re2O7 catalysts 

is recyclable, highly efficient, and shows selectivity for heavy alkanes products. The AM 

process holds promise for selective conversion of the less useful n-alkanes in the C3-C8 range 

to heavier alkanes in the diesel range. 

Experimental Section 

General Considerations. All manipulations were carried out using standard Schlenk, high-

vacuum and glovebox techniques. Argon was purified by passage through columns of BASF 

R3-11 (Chemalog) and 4 Å molecular sieves. Tetrahydrofuran (THF) was distilled under a 

nitrogen atmosphere from sodium benzophenone ketyl prior to use. Pentane and toluene were 

passed through columns of activated alumina. Triethylamine, THF-d8, and toluene-d8 were 

dried with 4 Å molecular sieves and degassed by freeze-pump-thaw cycles. Anhydrous 

decane was purchased from Aldrich, dried with 4 Å molecular sieves and degassed by freeze-

pump-thaw cycles. Mesitylene and n-octane were purchased from Aldrich, dried with Na or 

LiAlH4, and vacuum transferred into sealed flasks. Ammonium perrhenate was purchased 

from Aldrich and used as received. γ-Al2O3 (97.7%) and MoO3/CoO/Al2O3 were purchased 

from Strem and calcined as noted below. Complexes 1a,4 1b,4 3,6 4,6 56  and [(COD)IrCl]2
15 

were synthesized as previously reported. All other reagents were purchased from Sigma-

Aldrich or Strem and used as received.  



 150

NMR spectra were recorded on BRUKER DRX-400, AVANCE-400, and BRUKER 

DRX-500 MHz spectrometers. 1H and 13C NMR spectra were referenced to residual protio 

solvent peaks. 31P chemical shifts were referenced to an external H3PO4 standard. Elemental 

analyses were carried out by Robertson Microlit Laboratories, NJ.  

GC analyses (FID detection) was performed according to the following methods: 

Agilent 6850 Series GC System fitted with an Agilent HP-1 column (100% 

dimethylpolysiloxane, 30m×0.32mm i.d., 0.25 µm film thickness). Typical temperature 

program: 5 min isothermal at 33 ºC, 20 ºC/ min heat up, 10 min isothermal at 300 ºC. Flow 

rate: 1 mL/min (He). Split ratio: 400. Inlet temperature: 250 °C. Detector temperature: 250 

°C. 

Synthesis of pyrimidine-based POCOP pincer ligand {C4H1N2-[OP(t-Bu)2]2-4,6}, 7. To a 

cloudy, pale yellow suspension of 400 mg (3.57 mmol) 4,6-dihydroxypyrimidine in 40 mL 

THF was added 3.6 mL (25.90 mmol) Et3N and 1.5 mL (7.85 mmol) di-tert-butyl-

chlorophosphine, both via syringe. The reaction mixture was heated to 80 °C and was 

allowed to reflux overnight. The solvent was removed under high vacuum, yielding the crude 

product as a pale yellow solid. The product was extracted in 40 mL toluene and filtered 

through a pad of celite. Toluene was removed under vacuum; 1.13 g (2.81 mmol, 79%) 

product was obtained as pale yellow powders (ca. 85% purity by NMR). 1H NMR (400 MHz, 

23°C, toluene-d8): δ 7.10 (s, 1H, H2), 6.98 (s, 1H, H5), 1.11 [d, 3JP-H = 11.6 Hz, 36H, 4 ×  

tBu]. 31P{1H} NMR (162 MHz, 23 °C, toluene-d8): δ 158.4 (15%, monophosphorylated 

impurity), 157.5 (85%). 13C{1H} NMR (101 MHz, 23 °C, CDCl3): δ 172.6 (d, JP-C = 8.1 Hz, 

C4 and C6), 158.2 (s, C2), 94.2 (t, JC-C = 5.1 Hz), 35.5 [Cq, m, C(CH3)3], 27.2 (CH3, m, 4 × 

tBu).  
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Synthesis of hydridochloride complex (POCOP)IrHCl, 8. The ligand (530 mg, 1.32  

mmol) and [(COD)IrCl2] (387 mg, 0.58 mmol) were suspended in 25 mL mesitylene; this 

mixture was heated at 170 °C for 20 hours. Solvent was removed under vacuum. The pure 

product was extracted by washing with toluene (methylene chloride could also be used). 

Solvent was removed under vaccum; 493.7 mg (0.86 mmol, 60%) was obtained as a mixture 

of red-orange powder and burgundy crystals. 1H NMR (400 MHz, 23°C, toluene-d8): δ 8.29 

(s, 1H, H2), 1.16 (m, 36H, 4 × tBu), -40.14 (t, 2JP-H = 12.8 Hz, 1H, IrH). 31P{1H} NMR (162 

MHz, 23 °C, CDCl3): δ 172.4. Elemental analysis calcd for C20H38N2O2P2ClIr (628.15): C, 

38.24; N, 4.46; H, 6.10. Found: C, 37.63; N, 4.47; H, 5.67.  

Synthesis of (POCOP)IrC2H4, 6. A flask containing 200 mg (0.318 mmol) 8 and 33.9 mg 

(0.352 mmol) sodium tert-butoxide was placed under positive argon pressure. Next, the flask 

was placed under positive ethylene pressure via a needle connected to the ethylene hose; after 

several minutes, 25 mL toluene was added via syringe, producing a cloudy, red-orange liquid. 

The needle connected to the ethylene hose was submerged in the suspension, and the liquid 

was allowed to stir for 5 h. After three hours, the reaction mixture was a deep burgundy color. 

The solution was cannula transferred and filtered through a pad of celite. The solvent was 

removed under vacuum; the pure product was isolated as a red-orange powder. 1H NMR (400 

MHz, 23°C, toluene-d8): δ 8.61 (s, 1H, H2), 2.95 (t, JH-H = 2 Hz, 4H, C2H4), 1.15 [m, 36H, 4 

× tBu]. 31P{1H} NMR (162 MHz, 23 °C, toluene-d8): δ 177.1. 13C{1H} NMR (101 MHz, 23 

°C, CDCl3): δ 179.7 (Cq, vt, C4 and C6), 153.7 (CH, s, C2), 127.0 (Cq, m, C5), 42.2 (Cq, vt, 4 

× tBu2), 38.1 (CH2, s, C2H4), 28.6 [CH3, vt, 2 × tBu2].  Elemental analysis calcd for 

C22H41N2O2P2Ir (619.74): C, 42.64; N, 4.52; H, 6.67. Found: C, 42.85; N, 4.38; H, 6.43.  

Procedures for alkane metathesis reactions: 



 152

Table 5.1 and 5.2: A flask was charged with the Ir catalyst (21-27 µmol), varied loading of 

Re2O7 on alumina (5 wt% or 13 wt%), 2.5 mL (12.8 mmol) of n-decane, and 

hexamethylbenzene (ca. 60 µmol) as internal standard. In the entries of Table 5.1 where 

additional alumina was introduced, the alumina was added together with solid starting 

material prior to the addition of decane. In the entries of Table 5.2, the alumina was added to 

the decane solution of Ir catalyst. After the solution turned to colorless, Re2O7/Al2O3 was 

added. The flask was sealed tightly with a teflon plug under an argon atmosphere, and the 

solution stirred in a 175 °C oil bath.  Periodically, the flask was removed from the bath and 

cooled in an ice bath. An aliquot was removed from the flask, and analyzed by GC.  

Turnover numbers were calculated for each aliquot. 

Table 5.3 and 5.4: A flask was charged with the Ir catalyst (4.2 µmol), ~540 mg 

Re2O7/Al2O3, 2.5 mL (12.8 mmol) of n-decane, and mesitylene (ca. 70 µmol) as internal 

standard. The flask was sealed tightly with a teflon plug under an argon atmosphere, and the 

solution stirred in a 175 °C oil bath.  Periodically, the flask was removed from the bath and 

cooled in an ice bath. An aliquot was removed from the flask, and analyzed by GC.  

Turnover numbers were calculated for each aliquot.   

Table 5.5: The lower pot of the two-pot apparatus was charged with γ-alumina-supported 

iridium catalyst 4 (2.8 µmol), hexamethylbenzene (60 µmol) and 3 mL of n-octane. And the 

upper pot was charged with 540 mg of Re2O7/Al2O3 (5 wt%). The device was sealed tightly 

with two teflon plugs under an argon atmosphere. The lower pot was heated at 220 °C and 

the upper pot was heated at 50 °C. Periodically, the flask was removed from the bath and 

cooled in an ice bath. An aliquot was removed from the flask, and analyzed by GC.  

Turnover numbers were calculated for each aliquot. 
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The heterogeneous catalysts can be recycled. After each cycle, the solution was syringed out 

and the solid was washed 3 times with penane and n-octane, respectively. Fresh n-octane and 

internal standard were then added. 

Table 5.6: For the one-pot system, the procedure was similar to than in Table 5.3 except 240 

mg of MoO3/CoO/Al2O3 was used as the olefin metathesis catalyst. For the two-pot system, 

the procedure was similar to that in Table 5.5 except 240 mg of MoO3/CoO/Al2O3 was 

charged in the upper pot of the device.  
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CHAPTER SIX 

 
Ligand Exchange Reactions and Selective Catalytic 

Hydrogenation in Nonporous Single Crystals 

 

Introduction 

             In analogy with enzymatic transformations, reactions within the interior of single 

crystals are likely to be highly selective and are thus of considerable interest due to potential 

applications in selective catalytic transformations and chemical sensor technology. Examples 

of single-crystal-to-single-crystal (SC–SC) transformations are uncommon since crystallinity 

is difficult to retain following the rearrangement of atoms in the solid-state.1–13 The most 

widely studied SC–SC transformations involve guest (solvent) exchange in porous 

coordination polymers or metal-organic frameworks (MOFs) which take advantage of the 

robust polymeric framework of the hosts.6-9 Examples of SC–SC transformations in 

molecular organic crystals have been reported and generally involve photo-induced coupling 

of alkenes or alkynes contained within the crystal.2,10-13 A remarkable exception is the report 

by Atwood and Barbour of a calix[4]arene which upon uptake of vinyl bromide undergoes a 

SC–SC phase transformation with significant rearrangement of the host molecule.14 For 

nonporous molecular inorganic and organometallic crystals, SC–SC transformations 

involving cleavage and formation of metal-ligand bonds are quite rare15,16 and normally 
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involve ligand loss from the single crystal and reversible religation. Ligand loss is often 

accompanied by conversion of the single crystal to a microcrystalline powder as in the case 

of loss of SO2 from a Pt(II) NCN pincer complex reported by Albrecht and van Koten17 and 

loss of pyridine from bis(benzoylacetonato)pyridine copper(II) reported by Lennartson.18 

Brammer has described loss of ethanol from a single crystal silver coordination polymer with 

retention of single crystal character.15 Uptake of ethanol was shown to occur in 

microcrystalline powders of the ethanol-free product. Reversible exchange of ethanol and 

water at an iron center in a single crystal of a triiron cluster is reported by Das to occur 

without loss of single crystal character.16  

         We report here a series of unprecedented SC–SC transformations involving exchange 

of multiple small gaseous ligands (L = N2, CO, NH3, C2H4, H2, O2) at an iridium center in 

single crystals of a pincer iridium complex [Ir]-L, [Ir] = {C6H3-[OP-(C6H2(CF3)3–2,4,6)2]2–

2,6}–Ir. The single crystal remains intact during these ligand exchanges19 which, remarkably, 

occur within the crystal and do not require prior ligand extrusion. The single crystals [Ir]-N2, 

[Ir]-(H)2(H2) and [Ir]-C2H4 serve as catalysts for hydrogenation of ethylene. When the 

surface sites are passified by CO, high selectively for hydrogenation of ethylene relative to 

propylene is observed.    

 

Scheme 6.1 Formation of [Ir]-N2 
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Results and Discussion 

             The iridium complexes reported here are supported by a highly sterically hindered 

and electron-deficient pincer ligand {C6H3[OP(C6H2(CF3)3-2,4,6)2]2-1,3}. Light red single 

crystals of the nitrogen iridium pincer complex [Ir]-N2 form upon reaction of [Ir]HCl (see 

Scheme 6.1) and NaOtBu in the presence of N2 in toluene. As shown by the ORTEP diagram 

of [Ir]-N2 in Fig. 6.1, the coordination geometry around the Ir(I) center is square planar. 

Tables 6.1 and 6.2 summarize the crystal data as well as selected bond distances and angles. 

The Ir(1)–C(1) and Ir(1)–N(1) bond distances are 2.010(3) and 1.977(3) Å, respectively. 

Nitrogen coordinates to the Ir(I) center in an end-on mode with an N(2)–N(1)–Ir(1) bond 

angle of 176.5(5)° and an N(1)–N(2) bond distance of 1.106(5) Å, which is close to the 

reported value in free N2 (1.098 Å).20 In contrast, analogous complexes bearing less hindered 

pincer ligands form the dinitrogen-bridged dinuclear complex (PCP)Ir–N≡N–Ir(PCP).21,22 In 

[Ir]-N2, the four tris-trifluoromethylphenyl [2,4,6-(CF3)3C6H2] rings form a deep pocket 

around the Ir center (see Fig. 6.1) and prevent dimer formation.   

              The crystals of [Ir]-N2 have a non-merohedral twinned structure with a rotation of 

~180° about the reciprocal axis [0,0,1]. (All the other derived structures mirror this twinning 

behaviour.) Each unit cell contains two independent [Ir]-N2 molecules related by a 

crystallographic center of symmetry and five toluene molecules (Fig. 6.2a). One of the 

toluene molecules is disordered and is located at the corner of the unit cell. As depicted in 

Fig. 6.2c, the [Ir]-N2 molecules are stacked along the a axis to form channels which are filled 

with the (disordered) toluene molecules. Along the b axis, there is a second channel which is 

filled with four toluene molecules per unit cell (Fig. 6.2b). 
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             [Ir]-CO orange                                                                  
                                                                                           
                                                                                                 [Ir]-NH3 dark-red         
                                     
 
 
 

                           
                                                                                                                            
 
 
 
 
 
 
                               
                   [Ir]-N2 light red                                                                      [Ir]-C2H4 deep-red 
                                                                                                                          
                                                                                                                  
 
 
 
 
 
 
 
 
 
                                                                                                    
                                                                                                   [Ir]-H2(H2) light-red                                          
                           
 
                 [Ir]-O2 dark-green  
 
Fig. 6.1 ORTEP structures of single crystals [Ir]-N2, [Ir]-CO, [Ir]-NH3, [Ir]-C2H4, [Ir]-
H2(H2), and [Ir]-O2. Iridium, flesh; Phosphorus, orange; Fluorine, yellowgreen; Oxygen, red; 

  CO
< 1 min

CH2=CH2  
< 12 h

  Air
< 12 h

NH3
< 1 min

    H2
 < 1 d
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Nitrogen, purple; Carbon, stateblue; Hydrogen, cyan. Hydrogen atoms are omitted for clarity 
except for those in C2H4, NH3 and H2 ligands. All single-crystal-single-crystal 
transformations occur at ambient temperature in the presence of one atm pressure of gas 
except for the transformation from [Ir]-N2 to [Ir]-H2(H2) (1.5 atm of H2 was employed).  
 
       

        

 

 

 

 

 

                     
                                (a)                                                                       (b) 
 

 

 

 

 

 

 

 
                                                                         (c) 
Fig. 6.2 (a) Unit cell of single crystal [Ir]-N2 along a direction; (b) stacking diagram of 
single crystal [Ir]-N2 along b direction; (c) along a direction showing the disordered toluene 
(hydrogen atoms are omitted for clarity). 
 
 
          Exposure of single crystals of [Ir]-N2 to one atmosphere (atm) of CO results in a rapid 

(< 1 min) color change from light red to orange with retention of the single crystal 

morphology. Examination of this crystal by X-ray diffraction revealed that a carbonyl 
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complex, [Ir]-CO, had been formed. The ORTEP diagram is shown in Fig. 6.1 with crystal 

data and selected bond lengths and angles summarized in Tables 6.1 and 6.2. The Ir(1)–C(43)  

and C(43)–O(44) bond distances are 1.937(5) and 1.101(7) Å, respectively and are consistent 

with analogous bond lengths in a similar pincer Ir(I) CO complex, [C6H3(OPtBu2)2-2,6]Ir-CO, 

[Ir–Ccarbonyl = 1.890(3), C–O = 1.130(3) Å]. [Ir]-CO exhibits the same space group, and 

essentially identical lattice parameters as [Ir]-N2. The ligand sets of the two systems are 

superimposable as are the positions of the toluene molecules in the crystal. In short, N2 has 

been rapidly displaced by CO in crystals of [Ir]-N2 with complete retention of the atomic 

positions of all other atoms in the crystal.          

     Similar ligand substitution reactions in the single crystal occur when [Ir]-N2 is exposed to 

ammonia, ethylene or hydrogen. Exposure of single crystals of [Ir]-N2 to NH3 results in a 

color change from pale red to dark red in less than 1 min and formation of [Ir]-NH3. The 

ORTEP diagram for [Ir]-NH3 is shown in Fig. 6.1 and crystal data as well as key bond 

lengths and angles are contained in Tables 6.1 and 6.2. The Ir(1)–N(1) distance of 2.163(8) Å 

is close to a similar distance in a square planar pincer Ir(I) ammonia complex.23 As with the 

CO complex, identical lattice parameters are observed and all atoms including those of the 

solvent molecules occupy superimposable positions in the crystal.  

      Treatment of single crystals of [Ir]-N2 with one atm of ethylene results in nitrogen 

displacement to form deep red single crystals of [Ir]-C2H4 over the course of a few hours. 

The structure of [Ir]-C2H4 shows ethylene to be bound perpendicular to the square plane 

with Ir(1)–C(43) and Ir(1)–C(44) distances of 2.182(8) and 2.168(8) Å (see Table 6.2). The 

lattice parameters of [Ir]-C2H4 are identical to those of [Ir]-N2, [Ir]-CO and [Ir]-NH3 and 
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the pincer ligand and solvent molecules are again superimposable with the positions of these 

groups in the other crystals.  

 

 

 

 

 

 

      

 

 

Fig. 6.3 A superposition of crystal structures of [Ir]-N2 (violet), [Ir]-CO (blue), [Ir]-NH3 
(cyan), [Ir]-C2H4 (green) and [Ir]-(H)2(H2) (red). 
 

      Exposure of single crystals of [Ir]-N2 to H2 (~1.5 atm) does not lead to any significant 

color change after several days. However, examination of the single crystal by X-ray 

diffraction revealed complete loss of nitrogen and formation of an apparent tetrahydride. 

Since the precise location of metal-bound hydrogen atoms by X-ray diffraction is 

problematic, the formation of a tetrahydride was confirmed by solution 1H NMR 

spectroscopy. Dissolution in toluene-d8 of crystals exposed to H2 reveal a broad signal at -

9.21 ppm (23 °C) in 1H nuclear magnetic resonance spectroscopy (NMR) which integrates 

for four hydrogens. The chemical shift of -9.21 ppm is consistent with similar pincer iridium 

tetrahydrides.22 The structure of this tetrahydride is very likely an Ir(III) dihydride η2-

dihydrogen complex [Ir]-(H)2(H2) but this cannot be confirmed based on the X-ray data 

reported here. Again, [Ir]-(H)2(H2) exhibits the same lattice parameters as [Ir]-N2, [Ir]-CO, 
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[Ir]-NH3 and [Ir]-C2H4 and identical positions of all ligand and solvent molecules. Fig. 6.3 

shows a superposition of [Ir]-N2, [Ir]-CO, [Ir]-NH3, [Ir]-C2H4 and [Ir]-(H)2(H2) which 

clearly demonstrates the fidelity of ligand and solvent positions in each of these structures.  

          Under air, pale red single crystals of [Ir]-N2 acquire a dark green color in less than 12 

h and (visually) retain single crystal morphology. X-ray diffraction analysis revealed loss of 

N2 and formation of a mono peroxo Ir(III) complex [Ir]-O2. The ORTEP diagram of [Ir]-O2 

is shown in Fig. 6.1 and bond lengths and angles and crystal data are summarized in Tables 

6.2 and 6.1. Oxygen binds to the Ir center in a side-on mode with an O(3)–Ir(1)–O(4) bond 

angle of 39.3(5)°. The pentacoordinate Ir(III) center has a distorted trigonal bipyrimidal 

geometry with the two P atoms occupying axial positions. The Ir(1)–O(3) and Ir(1)–O(4) 

bond distances are 2.052(10) and 2.024(10) Å, respectively. The O(3)–O(4) bond distance of 

1.372(15) Å is typical of peroxo complexes24. Interestingly, [Ir]-O2 is somewhat more 

distorted from [Ir]-N2 compared to the other four systems (Table 6.1) and is composed of at 

least three (and possible some minor unidentifiable) components as a result of a twin/split 

structure. The structure was thus refined using a non-standard unit cell so as to be consistent 

with the other compounds. To date, [Ir]-O2 is the first unsaturated iridium peroxo complex 

characterized by single crystal X-ray diffraction.24  

      The transformations described above all involved displacement of the nitrogen ligand 

from [Ir]-N2. Other SC–SC interconversions are possible depending on the relative binding 

strengths of the ligands (Fig. 6.4). For example, we have observed conversion of [Ir]-C2H4 to 

[Ir]-CO (~30 min under one atm of CO) and conversion of [Ir]-(H)2(H2) to [Ir]-CO (less 

than 1 min under one atm of CO). CO exhibits the strongest binding constant in this series as 

none of the other ligands studied here displace CO from [Ir]-CO. Size selectivity is exhibited 
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in exchange reactions. Exposure of single crystals of [Ir]-N2 to one atm pressure of 

propylene leads to no displacement of nitrogen over the course of five days. However, 

exposure of toluene-d8 solutions of [Ir]-N2 to one atm of propylene results in complete 

displacement of nitrogen in 10 min, establishing that propylene exhibits a higher binding 

affinity to Ir relative to nitrogen.  

 
Table 6.1. Crystal data and structure refinement summary of [Ir]-N2, [Ir]-CO, [Ir]-NH3, 
[Ir]-C2H4, [Ir]-(H)2(H2) and [Ir]-O2. 
 

 [Ir]-N2 [Ir]-CO [Ir]-NH3 [Ir]-C2H4 [Ir]-(H)2(H2) [Ir]-O2 
Formula C59.5H31F36Ir

N2O2P2 
C60.5H31F36Ir
O3P2 

C59.5H34F36Ir
NO2P2 

C61.5H35F36Ir
O2P2 

C59.5H35F36Ir 
O2P2 

C59.5H31F36Ir 
O4P2 

crystal system Triclinic Triclinic Triclinic Triclinic Triclinic Triclinic 
Space group P-1 P-1 P-1 P-1 P-1 P-1 
a/Å 12.4720(3) 12.4680(5) 12.4758(5) 12.4844(6) 12.4334(11) 12.769(3) 
b/Å 14.0891(4) 14.1099(6) 14.0658(5) 14.2365(6) 14.0615(12) 13.637(3) 
c/Å 18.6382(5) 18.6021(7) 18.5976(6) 18.5497(9) 18.6354(14) 17.835(3) 
α/deg 108.865(2) 108.852(3) 108.155(2) 108.791(3) 108.879(5) 99.088(13) 
β/deg 99.010(2) 98.939(3) 99.291(3 98.572(3) 98.956(6) 87.194(15) 
γ/deg 97.567(2) 97.635(3) 97.445(3) 98.284(3) 97.594(6) 96.357(17) 
V/(Å3) 3002.11(14) 3000.1(2) 3003.56(19) 3020.6(2) 2986.6(4) 3046.3(10) 
Z 2 2 2 2 2 2 
T/K 100(2) 100(2) 100(2) 100(2) 100(2) 100(2) 
R1 [I>2σ(I)] 0.0389 0.0415 0.0556 0.0531 0.0445 0.1090 
wR2 (all data) 0.0866 0.0916 0.1305 0.1313 0.1001 0.2925 

 
Table 6.2. Selected bond distances (Å) and angles (deg) for single crystals [Ir]-N2, [Ir]-CO, 
[Ir]-NH3, [Ir]-C2H4, [Ir]-(H)2(H2) and [Ir]-O2.  
 
Crystals Ir1–C1 Ir1–P1 Ir1–P2 P1–Ir1–P2 Other 
[Ir]-N2 2.010(3) 2.2660(10) 2.2706(11) 157.85(3) Ir1-N1=1.977(3), N1-N2=1.106(5), 

C1-Ir1-N1=174.64(18),  
N2-N1-Ir1=176.5(5) 

[Ir]-CO 2.030(5) 2.2665(17) 2.2729(17) 157.36(4) Ir1-C43=1.937(5), C43-O44=1.101(7), 
C1-Ir1-C43=174.9(3),  
O44-C43-Ir1=174.5(7) 

[Ir]-NH3 2.009(6) 2.2423(16) 2.2465(17) 157.17(6) Ir1-N1 = 2.163(8), C1-Ir1-N1=174.7(4) 
[Ir]-C2H4 2.039(5) 2.2733(17) 2.2764(18) 156.87(5) Ir1-C43=2.182(8), Ir1-C44=2.168(8),       

C43-C44=1.311(10), C1-Ir1-
C44=162.1(3), C1-Ir1-C43=162.9(3), 
C43-Ir1-C44=35.1(3) 

[Ir]-
(H)2(H2) 

2.005(5) 2.2506(18) 2.2511(19) 158.44(5)  

[Ir]-O2 1.963(13) 2.311(4) 2.293(4) 159.53(12) Ir1-O3=2.052(10), Ir1-O4=2.024(10), 
O3-O4=1.372(15), C1-Ir1-O3=161.0(6),    
C1-Ir1-O4=159.7(6), O3-Ir1-O4=39.3(5) 
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Fig. 6.4 Single-crystal-single-crystal transformation between [Ir]-CO, [Ir]-C2H4, and [Ir]-
(H)2(H2) 
 

         Reversible transformations between single crystals of [Ir]-C2H4 and single crystals of 

[Ir]-(H)2(H2) have been observed. Exposure of single crystals of [Ir]-(H)2(H2) to one atm of 

ethylene results in formation of  deep red single crystals of [Ir]-C2H4 and ethane in less than 

two days, while exposure of [Ir]-C2H4 to one atm of hydrogen generates light red single 

crystals of [Ir]-(H)2(H2) and ethane after about five days. Single crystals of [Ir]-N2, [Ir]-

C2H4 and [Ir]-(H)2(H2) are hydrogenation catalysts for mixtures of hydrogen and ethylene. 

For example, treatment of single crystals of [Ir]-N2 containing 0.6 µmol Ir with ~120 equiv 

of ethylene and 200 equiv of hydrogen (relative to Ir, total pressure ~2.3 atm) at room 

30 min
  CO   CO

 < 1 min

CH2=CH2  
< 2 d

H2  
5 d
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temperature produced ethane (95% conversion after 5 h). Heating the system at 75 °C 

increased the hydrogenation rate and led to greater than 99% conversion in 30 min. The 

solid-state catalysts maintain single crystal morphology throughout the hydrogenation 

process. The deep-red color of the crystals suggests [Ir]-C2H4 as the dominant catalyst 

resting state. The single crystals can be reused and show no loss of catalytic activity after 

three recycles. Hydrogenation of olefins with well-characterized organometallic single 

crystals appears to be unprecedented.  

      High selectivity for catalytic hydrogenation of ethylene versus propylene can be achieved 

using these Ir single crystals. As a comparison experiment, an equimolar mixture of ethylene 

and propylene was hydrogenated with 10% palladium on carbon. Ethane and propane were 

formed in an initial ratio of 1:1 indicating no selectivity for hydrogenation using this 

heterogeneous catalyst. In initial experiments, single crystals of [Ir]-N2 or [Ir]-C2H4 (0.6 

µmol) were treated with ~200 equiv of hydrogen and 120 equiv each of ethylene and 

propylene (total pressure ~3.2 atm). Hydrogenation at 25 °C occurs with a turnover 

frequency of 5/min with formation of ethane and propane in an initial ratio of 1.8:1.  Given 

the fact that propylene cannot penetrate the channels of these crystals, this moderate 

selectivity was surprising and suggested that hydrogenation may occur unselectively at 

surface or near-surface sites. We reasoned these sites could be passivated by CO since CO 

cannot be displaced in the crystals by either ethylene or hydrogen. Thus, crystals of [Ir]-N2 

were exposed to a CO/N2 mixture (0.6 vol.% CO, 0.5 equiv relative to Ir) for four days. 

Using these poisoned crystals, as expected, the rate of hydrogenation is significantly reduced 

with negligible turnover at 25 °C. However, hydrogenation of a mix of 200 equiv. 

hydrogen/120 equiv. propylene/12 equiv. ethylene at 75 °C (total pressure ~2.4 atm, 1:10 
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molar ratio ethylene: propylene) occurs with a turnover frequency of 0.3/min and produces 

an initial ratio (ca. 15% consumption of ethylene) of ethane : propane of 2.5:1, indicating a 

dramatic increase in selectivity for ethylene hydrogenation of  25:1. It seems likely that the 

small fraction of propylene that undergoes hydrogenation may be occurring at surface or 

near-surface sites that were not poisoned by CO. 

         Exposure of single crystals of [Ir]-N2 to high vacuum results in no loss of nitrogen or 

toluene over one week; yet exposure to CO or NH3 results in conversion of [Ir]-N2 to [Ir]-

CO or [Ir]-NH3, respectively, within minutes. Furthermore, exposure of single crystals of 

[Ir]-N2 to toluene-d8 vapor did not lead to any toluene-h8/toluene-d8 exchange. These 

observations point to ligand exchange occurring within the crystal rather than nitrogen or 

solvent loss from the crystal followed by diffusion of CO or NH3 into the nitrogen or solvent-

depleted crystal. As noted above, examination of the packing diagram (Fig. 6.2b and Fig. 

6.2c) reveals solvent-filled channels along the a and b axes. The channel along the a axis 

containing disordered toluene molecules appears to offer the best access to the Ir center so it 

is likely ligands enter this channel. Remarkably, the free volume of the crystal as estimated 

by the PLATON program25 using a modified method (see Experimental Section) is only ca. 

0.2% (~6 Å3) per unit cell vol. of 3002 Å3. It may be that these channels have the ability to 

temporarily expand in some manner to allow facile ligand diffusion in and out.  

 

Conclusions 

      In summary, we have observed an unprecedented series of single-crystal-to-single-crystal 

transformations in which small gaseous ligands CO, NH3, C2H4, H2 and O2 displace N2 from 

nonporous, molecular single crystals of an iridium(I) pincer complex with retention of the 
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single crystal morphology. In contrast to the few reports of ligand exchanges in crystals,15-18 

the substitutions reported here occur associatively within the crystal and not by ligand loss 

followed by uptake of the incoming ligand by the “unsaturated” crystal. Furthermore, 

although these crystals contain 2.5 equiv of toluene solvent, exchange of bound toluene with 

toluene vapor does not occur, showing solvent loss is not a requirement for ligand exchange. 

Size selectivity is exhibited in these exchange reactions. While ethylene displaces nitrogen 

from single crystals of [Ir]-N2, propylene will not. Yet the displacement of nitrogen by 

propylene occurs readily in solutions of [Ir]-N2. Most remarkable is that single crystals of 

[Ir]-N2, [Ir]-(H)2(H2) or [Ir]-C2H4 function as olefin hydrogenation catalysts. When surface 

and near-surface sites are passivated by treatment with CO, a 25:1 selectivity is observed for 

hydrogenating ethylene vs propylene, suggesting hydrogenation occurs within the crystal. 

This is the first demonstration of a catalytic reaction occurring within the interior of a 

nonporous organometallic crystal, and as expected, this catalytic hydrogenation exhibits high 

substrate selectivity. These results demonstrate the potential for using nonporous crystals to 

carry out selective catalytic reactions. 

 
Experimental Section 

1. General Experimental Section 

General Considerations. All manipulations were carried out using standard Schlenk, high-

vacuum and glovebox techniques. Tetrahydrofuran (THF) was distilled under a nitrogen 

atmosphere from sodium benzophenone ketyl prior to use. Pentane and toluene were passed 

through columns of activated alumina. Cyclohexane-d12, and toluene-d8 were dried with 4 Å 

molecular sieves and degassed by three freeze-pump-thaw cycles. Di-2,4,6-

tris(trifluoromethyl)phenylchlorophosphine26 and [(COE)2IrCl]2
27 were synthesized as 
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previously reported. The syntheses of the pincer ligand and complex [Ir]HCl have been 

reported in Chapter three. CO and ethylene gases were purchased from Matheson, H2 and N2 

gases from National Welders, and NH3 and propylene gases from Aldrich. All these gases 

were used as received. Palladium (10 wt %) on activated carbon was purchased from Sigma-

Aldrich and used as received. All other reagents were used as purchased from Sigma-Aldrich. 

NMR spectra were recorded on BRUKER DRX-400, AVANCE-400, and BRUKER DRX-

500 MHz spectrometers. 1H and 13C NMR spectra were referenced to residual protio solvent 

peaks. 31P chemical shifts were referenced to an external aqueous 85% H3PO4 standard. 19F 

chemical shifts have not been referenced. 

X-ray data collection and structure determinations. X-ray single-crystal diffraction data 

for all complexes were collected on a Bruker Smart APEX-2 diffractometer at 100(2) K with 

Cu Kα radiation (λ= 1.54175 Å) or Mo Kα radiation (λ= 0.71073 Å). The program SAINT 

was used for integration of the diffraction profiles. All the iridium positions were located by 

Patterson methods and other non-hydrogen atoms by different syntheses, and refined by full-

matrix leastsquares methods with SHELXL (absorption corrections were applied using 

TWINABS or SADABS program). The hydrogen atoms of the ligand were generated 

theoretically onto the specific atoms and refined isotropically with fixed thermal factors. 

Further details for structural analysis are summarized in Table 6.1. 

2. Synthesis and experimental section 

2.1 Synthesis of single crystals of {C6H3-2,6-[OP-(C6H2(CF3)3-2,4,6)2]2}Ir-N2 [Ir]-N2 

A J. Young tube was charged with complex [Ir]HCl (5 mg, 3.3 µmol), NaOtBu (2.5 mg, 26 

µmol) and tol-d8 or tol-h8 (0.3 mL) in the glovebox. The toluene solution was degassed by 

three freeze-pump-thaw cycles. The tube was refilled with N2 gas at -78 °C and then sealed 
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tightly with a Teflon plug. The tube was slowly rotated with a mechanical stirrer. Block red 

single crystals suitable for X-ray analysis were obtained over 5–12 h. After filtration, the 

crystals were washed with 3 × 0.2 mL of cold toluene and dried under high vacuum. Yield: 

45% (2.6 mg). 1H NMR (500 MHz, 23 °C, C7D8): 6.85 (s, 3H, 3-H, 4-H and 5-H), 7.86 (s, 

8H, Ar(CF3)3-H). 31P{1H} NMR (202 MHz, 23 °C, C7D8): 119.0 (m,b). 19F NMR (471 MHz, 

23 °C, C7D8): -52.5 (s, 24F, o-CF3), -64.5 (s, 12F, p-CF3). 

2.2  Synthesis of single crystals of [Ir]-CO, [Ir]-NH3, [Ir]-C2H4, [Ir]-(H)2(H2) and [Ir]-O2 

([Ir] = {C6H3-2,6-[OP-(C6H2(CF3)3-2,4,6)2]2}Ir) through single-crystal-to-single-crystal 

transformations 

All the single crystals of [Ir]-CO, [Ir]-NH3, [Ir]-C2H4, [Ir]-(H)2(H2) and [Ir]-O2 were 

obtained in a quantitative yield by a similar method as described below.  

[Ir]-CO. Single crystals of [Ir]-N2 were added to a 30 mL Schlenk flask in the glovebox. 

The flask was evacuated and CO gas (1 atm) was then introduced. The flask was sealed and 

kept at room temperature. In less than 1 min, the red single crystals turned to orange. 1H 

NMR (500 MHz, 23 °C, C6D12): 2.27 (s, 7.5 H, 2.5 × tol.)  6.73 (d, 3JH-H = 8.0 Hz, 2H, 3- and 

5-H), 6.94 (t, 3JH-H = 8.0 Hz, 1H, 4-H), 6.99-7.13 (m, 12.5 H, 2.5 × tol.), 8.13 (s, 8H, 

Ar(CF3)3-H). 31P{1H} NMR (202 MHz, 23 °C, C6D12): 124.2 (s). 19F NMR (471 MHz, 23 °C, 

C6D12): -52.4 (s, 24F, o-CF3), -65.4 (s, 12F, p-CF3). 

 [Ir]-NH3. Obtained by exposure of single crystals of [Ir]-N2 to 1 atm of NH3 gas. Visually 

complete in less than 1 min. 1H NMR (500 MHz, 23 °C, C7D8): -4.46 (s, 3H, NH3), 6.73 (d, 

3JH-H = 8.0 Hz, 2H, 3-, and 5-H), 6.80 (t, 3JH-H = 8.0 Hz, 1H, 4-H), 7.94 (s, 8H, Ar(CF3)3-H). 

31P{1H} NMR (202 MHz, 23 °C, C7D8): 116.9 (m, b). 9F NMR (471 MHz, 23 °C, C7D8): -

53.4 (s, 24F, o-CF3), -63.7 (s, 12F, p-CF3). 
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[Ir]-C2H4. Obtained by exposure of single crystals of [Ir]-N2 to 1 atm of ethylene gas over 

12 h. 1H NMR (500 MHz, 23 °C, C7D8): 3.35 (s, b, 4H, Ir-C2H4), 7.04 (s, 3H, 3-, 4- and 5-H), 

7.81 (s, 8H, Ar(CF3)3-H). 31P{1H} NMR (202 MHz, 23 °C, C7D8): 111.3 (s). 19F NMR (471 

MHz, 23 °C, C7D8): -53.1 (b, 24F, o-CF3), -64.1 (s, 12F, p-CF3). 

[Ir]-(H)2(H2). Obtained by exposure of single crystals of [Ir]-N2 to ca. 1.5 atm of H2 gas in 1 

day. 1H NMR (500 MHz, 23 °C, C7D8): -9.21 (s, b, 4H, Ir-H4), 7.06 (s, 3H, 3-, 4- and 5-H), 

7.76 (s, 8H, Ar(CF3)3-H). 31P{1H} NMR (202 MHz, 23 °C, C7D8): 121.3 (s). 19F NMR (471 

MHz, 23 °C, C7D8): -52.2 (s, 24F, o-CF3), -64.6 (s, 12F, p-CF3). 

[Ir]-O2. Obtained by exposure of single crystals of [Ir]-N2 to air. Visually complete in less 

than in 12 h. 1H NMR (500 MHz, 23 °C, C6D12): 2.27 (s, 7.5 H, 2.5 × tol.), 6.78 (d, 3JH-H = 

8.0 Hz, 2H, 3- and 5-H), 6.96 (t, 3JH-H = 8.0 Hz, 1H, 4-H), 6.99-7.13 (m, 12.5 H, 2.5 × tol.), 

8.11 (s, 8H, Ar(CF3)3-H). 31P{1H} NMR (202 MHz, 23 °C, C6D12): 106.3 (m, b). 19F (471 

MHz, 23 °C, C6D12): -53.6 (b, 24F, o-CF3), -63.4 (s, 12F, p-CF3).  

3.  General procedure for hydrogenation of olefins by single crystals 

3.1 Preparation of the gaseous mixture 

H2/C2H4: In an evacuated 60 mL Kontes flask, ethylene gas (1 atm) was added at room 

temperature. The flask was then cooled to -130 °C which liquified ethylene. Then 1 atm of 

H2 gas was added. The flask was sealed tightly with a Teflon plug and warmed to room 

temperature. The gaseous mixture was added to a 2 mL evacuated J. Young tube through an 

8 ml “T”-shape tube at room temperature. Since the total volume of the gaseous mixture was 

increased from 60 mL to 70 mL, the ethylene pressure decreased from 1 atm to ~0.86 atm. 

The amount of ethylene in the J. Young tube was calculated using the ideal gas law. The 

molar ratio of ethylene : H2 was determined by the gas-phase 1H NMR. 
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H2/C2H4/C3H6: The same procedure as for H2/C2H4 was used except that 1 atm of propylene 

was added at room temperature, ethylene gas was added at -78 °C, and H2 gas was added at -

130 °C. 

3.2 Hydrogenation of olefins by single crystals 

Single crystals of [Ir]-N2, [Ir]-C2H4 or [Ir]-(H)2(H2) (0.6–1.2 µmol ) were added to a 2 mL J. 

Young tube. The tube was evacuated and the H2/C2H4 or H2/C2H4/C3H6 gaseous mixture was 

then introduced. The NMR tube was sealed tightly with a Teflon plug and kept at room 

temperature or heated at 75 °C. Periodically, the hydrogenation reaction was monitored by 

the gas-phase 1H NMR. 

3.3 Hydrogenation of ethylene vs propylene by palladium (10 wt%) on activated carbon 

Palladium (10 wt %) on activated carbon (0.9 µmol) was added to a 2 mL J. Young tube. The 

tube was evacuated and the H2/C2H4/C3H6 gaseous mixture was then introduced (A 1.0:1.0 

mol ratio of C2H4:C3H6 was used). The NMR tube was sealed tightly with a Teflon plug and 

kept at room temperature. Periodically, the hydrogenation reaction was monitored by the gas-

phase 1H NMR. 

3.4 Treatment of single crystals with CO 

To a 500 mL Schlenk flask filled with 1 atm of N2, CO (3 mL) was added via a syringe. The 

CO/N2 gaseous mixture (2 mL, 1 atm) was then introduced into a J. Young tube of single 

crystals containing 0.6 µmol of [Ir]-N2. The J. Young tube was sealed tightly with a Teflon 

plug and kept at room temperature for 4 days. 

4. Calculation of void volume by PLATON 

The calculation of [Ir]-N2 by PLATON software indicates 0% void volume. However, the 

calculation of the disordered toluene was incorrect because PLATON recognized it as C9H10 
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instead of C7H8. Thus, a modified method was used by replacing the disordered toluene with 

an ordered toluene. The disordered toluene (one equiv. per unit cell) was deleted from the 

structure and 6.3% of void volume was observed; while the removal of ordered toluene (two 

equiv. per unit cell) formed 12.2% of void volume. Thus, the real void volume should be 

(6.3% – 12.2%/2) * 3002 Å3 / unit cell = 6 Å3 / unit cell. 
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