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Abstract

Background: Despite advances in transplant surgery and general medicine, the
number of patients awaiting transplant organs continues to grow, while the supply
of organs does not. This work outlines a method of organ decellularization using
non-thermal irreversible electroporation (N-TIRE) which, in combination with
reseeding, may help supplement the supply of organs for transplant.

Methods: In our study, brief but intense electric pulses were applied to porcine
livers while under active low temperature cardio-emulation perfusion. Histological
analysis and lesion measurements were used to determine the effects of the pulses
in decellularizing the livers as a first step towards the development of extracellular
scaffolds that may be used with stem cell reseeding. A dynamic conductivity
numerical model was developed to simulate the treatment parameters used and
determine an irreversible electroporation threshold.

Results: Ninety-nine individual 1000 V/cm 100-μs square pulses with repetition rates
between 0.25 and 4 Hz were found to produce a lesion within 24 hours post-
treatment. The livers maintained intact bile ducts and vascular structures while
demonstrating hepatocytic cord disruption and cell delamination from cord basal
laminae after 24 hours of perfusion. A numerical model found an electric field
threshold of 423 V/cm under specific experimental conditions, which may be used in
the future to plan treatments for the decellularization of entire organs. Analysis of
the pulse repetition rate shows that the largest treated area and the lowest
interstitial density score was achieved for a pulse frequency of 1 Hz. After 24 hours of
perfusion, a maximum density score reduction of 58.5 percent had been achieved.

Conclusions: This method is the first effort towards creating decellularized tissue
scaffolds that could be used for organ transplantation using N-TIRE. In addition, it
provides a versatile platform to study the effects of pulse parameters such as pulse
length, repetition rate, and field strength on whole organ structures.

Background
Over the past fifty years, organ transplantation has become a standard care for patients

diagnosed with end stage organ failure including cirrhosis and renal failure. Liver

transplantation is very successful, with 90 and 75% survival rates after 1 and 5 years,

respectively. Unfortunately, the number of patients with cirrhosis, chronic viral hepati-

tis and hepatocellular carcinoma has steadily increased, leading to unmet demands for
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organ transplantation [1]. According to the United Network of Organ Sharing (UNOS),

there are over 108,000 candidates in the US alone currently waiting for organ trans-

plants including kidney, liver, heart, and lung. In 2009, there were fewer than 7,000

liver transplants from both living and deceased donors [2].

Despite advances in transplant surgery and general medicine, the number of patients

awaiting transplant organs continues to grow, while organ supply does not. Organ

supply is constrained by obstacles that impede acquisition, such as the requirement for

organ removal coincident with brainstem death necessitating the use of hospital

resources to maintain artificial life support. As a result, organ donation may be proble-

matic when intensive care resources are strained[3]. In addition, life support for poten-

tial organ donations has been ethically debated[4,5] and donation refusal is common in

regions where social, cultural, and religious pressures constrain organ procurement.

The increasing gap between organ donation and supply to severely-ill patients has

fostered an increased interest in alternative organ sources[6]. For the development and

differentiation of full organs suitable for human transplant, structures that provide

microvasculature for the delivery of nutrients to all cells must be developed[7-9].

Traditional top-down manufacturing techniques are currently unable to produce a

hierarchical vascular structure scale which can span the more than 4 orders of magni-

tude of human organs[10]. Microfabrication techniques can replicate some features of

the complex architecture of mammalian microvasculature, but current processes fail to

extend into the macro-scale[11]. Thus, structures which have features spanning multi-

ple length scales are currently only fabricated through biological mechanisms and the

relatively new field of biofabrication has developed, with the goal of utilizing and

manipulating these processes [12].

Decellularization of existing tissues extends the concept of biofabrication by taking

advantage of the body’s natural programming to create a complete tissue, including a

functional vascular network. Rat liver extracellular matrix constructs have been created

using chemical decellularization and reseeding [13-15]. Decellularized rat hearts,

reseeded with multiple cell types, can contract and have the ability to generate pump-

ing pressures [16]. Challenges to chemical decellularization techniques include the

potential for detergents to damage extracellular matrix components [17,18] the poten-

tial to create and deposit toxins [13,17], and the inherent difficulty of scaling these

techniques up from small rat organs to larger organs [14]. These challenges must be

overcome before decellularized organs can successfully be translated to the clinical

setting.

Xenotransplantation, or the transplantation of animal organs, is one potential solu-

tion to the future organ shortages [19]. Porcine xenotransplants have shown consider-

able potential but have failed to become widely accepted or used clinically.

Transplantation of porcine pancreatic islets has recently been shown to temporarily

reverse diabetes mellitus [20,21] and the use of T-cell tolerance protocols have demon-

strated feasibility of long-term renal xeonograft transplantation in a non-human

primate model [22]. Additionally, it has been shown that explanted porcine livers have

the ability to clear ammonium and restore coagulation while under short term

perfusion of human plasma [23,24]. Unfortunately, the mechanisms of graft loss and

rejection in these transplants are still not well understood, and immunological rejection

remains a significant barrier to successful transplantation [25].
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Hypothermic oxygenated perfusion (HOPE) is a method of whole organ preservation

which mechanically delivers an oxygenated, nutrient-rich blood substitute to an entire

organ at sub-physiological temperatures [26,27]. This method has been successfully

demonstrated to improve the preservation quality and transplant success rates of

kidneys which have undergone warm ischemia [28,29]; with research striving to reach

72 hour preservation times [30]. In addition, Schon et al. [31] and Brockmann et al.

[32] have demonstrated the ability to prolong organ quality using normothermic

perfusion, a process in which the perfused fluid is held at or near physiological

temperatures. These methods of organ preservation can be used to isolate N-TIRE tis-

sue ablation effects from the immune response observed in vivo and the natural degra-

dation of tissue post mortem.

Electroporation is a non-linear biophysical process in which the application of pulsed

electric fields leads to an increase in permeability of cells, presumably through the

creation of nanoscale pores in the lipid bilayer [33]. At low pulsing energy, this perme-

ability is reversible and cellular health and function is maintained. Once a critical elec-

tric field intensity threshold is surpassed (approximately 500 [34] to 700 V/cm [35] for

ninety 50 μs pulses at 4 Hz in brain and eight 100 μs pulses at 1 Hz in liver, respec-

tively), the cell membrane is unable to recover and cell death is induced in a precise

and controllable manner with sub-millimeter resolution [36,37]. This process is

referred to as non-thermal irreversible electroporation (N-TIRE) [38]. N-TIRE does

not rely on thermal mechanisms [38] and preserves the structure of the underlying

extracellular matrix as well as nerve conduits and bile ducts [39]. Since N-TIRE cell

death does not require any drugs, there should not be any creation or deposition of

toxins when killing the cells from this technique.

Recently, we and others have determined, through the use of translational laboratory

models, that capitalizing on the ability of N-TIRE to destroy cells without destroying

the extracellular matrix might make N-TIRE a viable means for scaffold creation via

organ decellularization [40,41]. We hypothesize that viable decellularized tissue scaf-

folds can be obtained using non-thermal irreversible electroporation (N-TIRE) on

organs under continuous perfusion.

Machine-perfused porcine livers were treated with N-TIRE using external plate or

needle electrodes within one hour of organ harvest and establishment of active perfu-

sion. At varying time points after electroporation, livers were removed from perfusion,

immediately after which samples were collected, preserved in 10% neutral buffered for-

malin, prepared for histology, and their microscopic structure was examined. Examina-

tion of the N-TIRE treated and control (untreated) regions of tissue demonstrated that

N-TIRE was capable of decellularizing large volumes of tissue when performed in con-

junction with active organ perfusion, suggesting that N-TIRE may be a viable method

of decellularization for tissue engineering applications.

Methods
Tissue

Young mixed breed pigs were sacrificed via barbiturate overdose. Livers were harvested

and placed on ice within 15 minutes of death. Vascular anastomosis with the perfusion

system was created by inserting Luer lock syringe connections into the portal vein,

hepatic artery, and major hepatic vein and then secured with zip ties. The livers were
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flushed with lactated Ringer’s solution (LRS) to remove blood/clots before placement

on the perfusion system.

Perfusion

The VasoWave™ Perfusion System (Smart Perfusion, Denver, NC) was used to perfuse

the livers for 4 and 24 hours. This system produces a cardioemulating pulse wave to

generate physiological systolic and diastolic pressures and flow rates within the organ.

The system is capable of controlling the oxygen content of the perfusate above and

below physiological norms. A perfusate, consisting of modified LRS, was delivered to

the portal vein and hepatic artery and recycled back into the system via the hepatic

vein. All livers were under active machine perfusion within one hour post-mortem and

the perfusate was held at 4°C

Electroporation

The ECM 830 Square Wave BTX Electroporation System (Harvard Apparatus, Cam-

bridge, MA) was used to deliver low-energy pulses to the liver tissue while it was on

ice undergoing active perfusion with the solution maintained at 21°C. Two metal plate

electrodes, 2 cm in diameter, were attached to a pair of ratcheting vice grips (38 mm,

Irwin Quick-Grips) using Velcro. High voltage wire was used to connect the electrodes

to the BTX unit. The electrodes were clamped gently to the liver and the center-to-

center distance between the electrodes was measured. The voltage output on the BTX

unit was adjusted such that the approximate applied electric field was 1000 V/cm.

Then, ninety-nine individual 100-μs square pulses were administered at repetition rates

of 0.25, 0.5, 1.0 and 4.0 Hz. Repetition rates trials were performed at random and

repeated a minimum of three times. Sham controls were performed by placing the

electrodes over the tissue without delivering any pulses. Since needle electrodes are

typically employed in clinical applications of IRE, two additional trials were performed

using needle electrodes separated by 0.5 cm, inserted into the tissue approximately 1

cm, using a voltage-to-distance ratio of 1500 V/cm at rates of 1 and 4 Hz. The experi-

mental setup for plate electrodes is illustrated in Figure 1a. All N-TIRE treatments were

completed within two hours post mortem. The surface lesion created at each treatment

site was measured at the end of the 24 hour perfusion period. Statistical analysis of the

lesion diameters was conducted using JMP 8.0 (SAS Institute Inc., South Cary, NC) via

Student’s t-test with a 0.1 a level. Histological images were imported into ImageJ (Ver-

sion 1.43u, NIH, USA). For each sample, a binary image was created using the threshold

tool based on a sample selected within an acellular region. An average pixel value for

each image was calculated using the measure RGB plugin and a density score was cre-

ated by normalizing these values to 1; where 1 corresponds to regions filled with cells

and extracellular material and 0 to a region completely devoid of material. Samples were

analyzed for statistical significance in JMP via Student’s t-test with a maximum 0.05

a level and a minimum of 6 samples for each treatment group.

Tissue preparation

Following N-TIRE treatment and machine perfusion, livers were disconnected from the

VasoWave™ system, immediately sectioned to preserve lesions, and tissues were imme-

diately fixed by immersion in 10% neutral buffered formalin solution. After fixation,
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tissues were trimmed and processed for routine paraffin embedding, then sectioned at

4 micrometers, and stained with hematoxylin-eosin (H&E) or Masson’s trichrome

stain. Tissue sections were evaluated by a veterinary pathologist who had no knowl-

edge of the N-TIRE treatment parameters.

Numerical model

Numerical modeling can be used to predict the electric field distribution, and thus pro-

vide insight into the N-TIRE treatment regions in tissue [42,43]. This has been chosen

as the method to correlate lesion volume with electric field in the liver. The methods

for predicting N-TIRE areas are similar to the ones described by Sel et al. [35]. In

order to understand the effective electric field threshold to induce N-TIRE in the liver,

Figure 1 Experimental setup and IRE lesion. (a) Placement of the electrodes on actively perfused liver
tissue and (b) the resultant lesion after treatment with 99, 100 μs, 1500 V/cm pulses and 4 hours of
perfusion. The approximate area of the electrode is outlined in black.
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finite element simulations were conducted using Comsol Multiphysics 3.5a (Comsol,

Stockholm, Sweden). The numerical model was constructed using 2 cm diameter

plates, each 1 mm thick, placed above and below the tissue. The model was generated

in an axis symmetric platform and the conductivity changes incorporated the effects of

electroporation and temperature as described by Garcia et al. [34], with identical

parameters from [35] and its physical setup may be seen in Figure 2. The electric field

distribution is given by solving the Laplace equation:

∇ ⋅ ∇( ) =  0

Figure 2 Numerical model of the liver tissue with conductivity map, electric field distribution, and
thermal map. (a) The conductivity of the tissue changes from 0.067 to 0.256 during treatment based on
changes in the (b) electric field distribution and (c) temperature changes.
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where s is the electric conductivity of the tissue and � is the potential. The electrical

boundary condition along the tissue that is in contact with the energized electrode is

� = Vo. The electrical boundary condition at the interface of the other electrode is � = 0.

The boundaries where the analyzed domain is not in contact with an electrode are

treated as electrical insulation.

Conductivity changes due to electroporation and temperature have been modeled to

calculate the dynamic conductivity according to the following equation:



 

dynamic

dc delta range o

normE dc

flc hs normE E E T T

_

,
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= + −( ) + −0 1 2 (( )⎡
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where s0 is the baseline conductivity. flc2hs is a smoothed heavyside function with a

continuous second derivative that ensures convergence of the numerical solution. This

function is defined in Comsol, and it changes from zero to one when normE_dc - Edelta
= 0 over the range Erange. However, any continuous step function may be used to

model the conductivity change, depending on the application, such as the sigmoidal

ones proposed in [35,44]. In the flc2hs function that mimics the sigmoidal ones, nor-

mE_dc is the magnitude of the electric field, and Edelta is the magnitude of the electric

field at which the transition occurs over the range, Erange. In the simulations, we used

Edelta = 580 V/cm and Erange = ±120 V/cm. These values were selected from the litera-

ture in which models incorporated conductivity changes due to electroporation and

were validated with real-time measurements in rat and rabbit liver [35,45]. The baseline

tissue conductivity was set to 0.067 S/m [35], and N-TIRE affected tissue was considered

to increase by a factor of 3.6 as determined by Sel et al. [35,46], reaching a final conduc-

tivity of 0.241 S/m. The electric field within the tissue domain was first determined

using a conductivity of 0.067 S/m, adjusted to incorporate the dynamic conductivity,

and reevaluated to determine the final electric field distribution. This numerical

model was solved for the pulse parameters that produced the maximum thermal effects

(i.e. 1500 V/cm at 4 Hz) used on the livers in order to obtain a simulation of the electric

field to which the tissue was exposed using the 1.5% °C-1 (Δs/s/ΔT) temperature coeffi-

cient in electrical conductivity. The temperature was calculated with the Penne’s bioheat

equation with the additional joule heating term [47] and with the values of the liver

tissue heat capacity (cp = 3.6 kJ·kg-1K-1), thermal conductivity (k = 0.512 W·m-1K-1),

density (r = 1050 kg·m-3), blood perfusion per unit volume (wb = 1 kg·m-3s-1), and the

heat capacity of blood (cp = (3.64 kJ·kg-1K-1) taken from the literature [48,49]. The outer

surface of the analyzed liver domain and top electrode surface was mathematically con-

sidered to have proportional loss to air due to convective heat transfer, h = 10W/(m2 · K),

as in [50] with T∞ = 21°C. The electrode-tissue boundaries were treated as continuity. The

N-TIRE electric field thresholds were then found by measuring lesion dimensions and

determining the electric field value at this region in the model after the completion of the

99 pulses and thus incorporating all the thermal effects as well.

Results
Surface lesions develop during perfusion within 30 minutes initiating of treatment. The

area of these on the liver surface created by plate electrodes were larger than, but the

same type as that from the needle electrodes. In Figure 1b, a 3.3 cm surface lesion
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produced from an applied voltage of 1500 V may be seen, taken 4 hours after treat-

ment. Numerically modeled, this lesion size was produced within the region of tissue

experiencing an electric field of 423 +/- 147 V/cm (average ± standard deviation). The

results of the numerical model for this trial may be seen in Figure 2.

The average applied voltage to distance ratio between the plates for the frequency

trials was 962 V/cm, corresponding to an average applied voltage and tissue thickness of

696.9 +/- 141.7 V and 7.3 +/- 1.5 mm, respectively. Lesions from these trials developed

over 22 hours post-treatment, and were 2.5 cm in diameter on average (125% electrode

diameter); with a minimum lesion of 2 cm occurring at 0.25 Hz and 936 V/cm, and

maximum lesion of 3.2 cm occurring at 1.0 Hz and 950 V/cm. Though not dramatically

significant, the results suggest that lesion sizes were on average greatest at 1 Hz and

decreased as the frequency increased or decreased. The lesions which developed after

treatments applied at 0.25 and 4 Hz were statistically smaller (a = 0.1) than those which

developed for treatments applied at 1 Hz (Figure 3). Future studies will investigate the

role of pulse parameters such as repetition rate, duration, magnitude and number on

lesion volume.

Analysis of the treated tissue reveals a uniform treatment region that extended

cylindrically through the tissue with no visible damage distal to the treatment regions.

Figure 3 Lesion diameter and density score vs. pulse frequency. Plots comparing the (a) measured
lesion diameters for the plate electrodes and (b) density score for each experimental frequency. Box plots
(red) which share a common symbol (+, *, or #) were not statistically different from each other for (a) a =
0.1 and (b) a = 0.05. The average value and standard deviations are represented by green and blue lines
respectively. The box plots represent the interquartile range between the 25th and 75th data percentiles.
The largest lesions developed and the lowest density score was observed when pulses were applied at a
frequency of 1 Hz
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This resulted in calculated treated volumes between 1.97 cm3 and 6.37 cm3 for

corresponding tissue thicknesses of 0.628 and 0.792 cm.

Histological examination 24 hours post-treatment indicates that treated regions

exhibit cell death (Figure 4b) compared to controls (Figure 4a). Hepatic acini in pigs

are bordered by connective tissue, which contains blood vessels and biliary structures,

and have a prominent cord architecture terminating in a hepatic venule. In areas adja-

cent to energy delivery, hepatic cell cords were well preserved, with mildly vacuolated

hepatocytes (an expected finding at 24-hour ex vivo machine perfusion cycle). Sinusoi-

dal structure in untreated areas is open, reflecting the flow of perfusate between hepa-

tic artery/portal vein and hepatic vein. N-TIRE treatment disrupts hepatic cords and

induces cell degeneration (Figure 4b). Preservation of major acinar features, including

connective tissue borders and blood vessels, is evident. In zones of N-TIRE treatment,

cell cords were indistinct and membranes lining sinusoids are fragmented to varying

degrees.

Pigs, like humans, have substantial septation of liver acini by thin bands of fibrous

connective tissue that run between portal triads. This macrostructure had an effect on

the distribution of lesions induced by electroporation. Lesions are confined within

structural acini in a manner that at the edges of the electroporation field acini with

lesions could border normal or nearly normal acini. Thus, the bands of connective

tissue act as insulation for the electrical pulsing, an important observation when con-

sidering procedures for treating focal liver lesions with electroporation or for evolving

an intact connective tissue/duct/vascular matrix for subsequent tissue engineering.

Figure 5a shows a portion of untreated porcine liver with normal sinusoidal cell cords

arrayed from portal tracts to central vein. Cell morphology is well preserved. Some

vascular congestion with red blood cells is noted and there is also mild centrilobular

biliary stasis. Mildly damaged porcine acini are observed in regions subjected to elec-

troporation from needle electrodes (Figure 5b). The center of the acinus shows disrup-

tion of cord architecture and some cell degeneration and clumping. A higher

magnification view of this area is shown in Figure 5c, where cellular changes are more

readily appreciated. These treated regions display mild lesions consisting of hepatocytic

Figure 4 Histological comparison of untreated liver tissue to areas which have undergone mild IRE
treatments showing preservation of connective tissue and blood vessels. Histological comparison of
untreated liver tissue to areas which have undergone mild IRE treatments showing preservation of connective
tissue and blood vessels. Samples stained with H&E from (a) untreated and (b) ninety nine, 100 μs, 1000 V/cm
pulses using plate electrodes 24 hours of cardio emulation perfusion at 10×.
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cord disruption and cells delaminating from cord basal laminae. Mild biliary stasis is

noted (dark pigment).

Administration of N-TIRE treatment, either with needle electrodes or with plate

electrodes produced lesions in some hepatic acini that are distinctive. The severity of

lesions within individual acini ranges from mild to moderately severe. Mild lesions

consisted of small clumps of hepatocytes that detach from basal membranes. These

cells show a loss of organization of fine intracellular structure and clumping of cyto-

plasm/organelles (Figure 5b-c).

Moderately severe lesions are readily discerned (Figure 6). Cells affected by the

N-TIRE procedure show varying degrees of cell swelling and karyolysis (Figure 6b).

Within individual acini, most cells are affected. In some acini, frank nuclear pyknosis

and cellular degeneration is seen, with small clumps of hyperchromic cells unattached

from basal membranes. In some acini, centrilobular biliary stasis is noted, with aggre-

gation of bile pigments in distal sinusoidal spaces. In all cases, as noted, bridging

bands of connective tissue, with intact bile ducts and vascular structures are seen, even

immediately bordering acini with significant N-TIRE-induced tissue damage.

The density score for control samples was 0.87 +/- 0.0097 corresponding to approxi-

mately 87% of the histological tissue containing cells and extracellular material. Each

treatment group had a statistically significant different density score versus the control

(a = 0.01). The lowest density score of 0.509 +/- 0.069, was obtained for N-TIRE

Figure 5 IRE treatments result in hepatocytic cord disruption and cell delamination. (a) A section of
untreated liver after 24 hours of perfusion. Sections of the same liver treated with 90, 1500 V/cm, 100 μs
pulses at 4 Hz using needle electrodes after 24 hours of perfusion at (b) 10× and (c) 20× magnification.

Figure 6 Moderately severe lesions maintain bile ducts and vascular structures. (a) A section of
untreated liver after 24 hours of perfusion. (b) The same liver treated with 100, 1500 V/cm, 100 μs pulses
at 1 Hz using needle electrodes after 24 hours of perfusion at 20× magnification.
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treatments where pulses were applied at a rate of 1.0 Hz. Additionally, treatments

applied at 1.0 Hz resulted in a statistically significant lower density score as compared

to all other treatment groups (a = 0.05).

Discussion
To the best of our knowledge, this is the first work reporting the effect of non-thermal

irreversible electroporation in an actively perfused organ. This effort is the first step

towards creating decellularized tissue scaffolds that could be used for organ transplan-

tation. This paper is aimed as a proof of concept to show that the cells may be

removed, and therefore we targeted our study towards treating centimeter-scale

regions of tissue. However, because N-TIRE procedures are dependent on the electric

field to which a region of tissue is exposed, and thermal effects are mitigated by brief

pulses with intervals between pulses, it is possible to scale up N-TIRE procedures to

treat larger regions of tissue and organs.

The clearance of cellular debris was analyzed in this study using an image analysis

algorithm as a preliminary method to determine the effectiveness of this technique.

A more comprehensive study will include staining for primary and secondary antibo-

dies, apoptotic markers, and DNA [16] and analysis of these samples via electron

microscopy. Assays to determine the quantity of sulfated glycosaminoglycans, elastin,

and collagen will be used as a measure of success of this method to preserve the

important proteins in the extracellular matrix [13]. Additionally, biodegradation evalua-

tion [13] and analysis of the vascular structure [14] must be completed before cell

seeding and animal studies can be conducted.

The results reported here were localized to volumes of tissue up to 6.37 cm3 for a

single N-TIRE treatment. This can readily be expanded into much larger volumes by

performing multiple treatments with the goal of creating decellularized structures for

partial and full liver transplants. Analysis of the pulse repetition rate shows that the

largest treated area and the lowest density score was achieved for a pulse frequency of

1 Hz. After 24 hours of perfusion, a maximum density score reduction of 58.5 percent

had been achieved and cellular debris remained within the tissue construct. Since cell

viability in the treatment regions was minimal, this is likely due to the combination of

three factors; adhesion of cellular debris to the extracellular matrix, low physiological

flow rates and pressures at the lobule level, and possible damage to the microvascula-

ture by the N-TIRE treatments.

Although electroporation has been shown to preserve major blood vessels, vascular

occlusion after electroporation has been reported in the literature under multiple treat-

ment regiments including work done by Edd et al. [51] (a single 20 ms, 1000 V/cm

pulse), Sersa et al. [52] (eight, 100 μs, 1300 V/cm pulses at 1 Hz) and Nuccitelli et al.

[53] (three hundred, 300 ns, 40 kV/cm pulses at 0.5 Hz) and is reportedly due to two

mechanisms. The first is a rapid onset of temporary vasoconstriction due to reflex

vasoconstriction of vascular endothelial cells lasting between 1 and 3 minutes [54].

The second, slower mechanism is due to the disruption of the microfilament and

microtubule cytoskeletal networks which are necessary for maintaining cell function

and structure [55]. This decrease in blood flow has been observed lasting up to 4 to

8 hours after electroporation of in-vivo tumors [56] before partially recovering to nor-

mal physiological values after 24 hours [57,58]. Thus, electroporation induces profound
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but essentially transient and reversible decline in blood flow [56]. This phenomenon

may have occurred during the course of perfusion ex-vivo, though it was not directly

observed, and it may have an effect on the clearance of cellular debris from the vascu-

lar network.

Additionally, the branching network of vessels within the liver produces a system

with low pressures and fluid velocities at the capillary level and within individual

lobules. The combination of physiological geometry and the loss of fine capillary struc-

ture caused by the N-TIRE treatments may have resulted in local sheer stresses which

were not significant enough to fully clear cellular debris from the tissue. Removal of

this debris is essential in minimizing immune response of recipients. Future work will

focus on optimizing treatment and perfusion protocols to minimize disruption of the

microvasculature network while enhancing the clearance of debris. This may include

the continuous application of sub 1000 V/cm pulses at 1 Hz and perfusion at higher

than physiological pressures which we believe will enhance the decellularization pro-

cess. Recently developed chemical decellularization processes require perfusion cycles

of up to 72 hours [14] for the complete removal of cellular material from a rat liver

matrix and extension of N-TIRE treatment and perfusion cycles to these durations

may be necessary to achieve complete decellularization.

Both external plate electrodes and needles placed within the tissue produced clearly

delineated regions of cell death. Plate electrodes produced circular surface lesions,

which when appeared cylindrical in shape in sectioned samples and extended between

the top and bottom electrodes. Sections of tissue treated with needle electrodes pro-

duced oval shaped surface lesions which extended through the tissue.

Needle punctures damaged the tissue structure and provided an alternative path

for fluid to flow. Rather than returning through the vasculature, some perfusate

escaped the organ through the punctures hindering the perfusion process. Due to

this, treatment of an entire organ using needle electrodes is likely not possible and

external electrodes appear to be the best method of inducing N-TIRE in large tissue

volumes.

In N-TIRE areas, cell death was directly related to energy delivered. Close to elec-

trode placements, over 90% of the cells were degenerate and in varying stages of lysis.

In the more reversibly energized zone, cell disruption was 20-30% of cells. Other cells

may have been degenerate or leaky, but not morphologically abnormal. We have

observed that the machine perfusion system can mobilize large amounts of cellular

debris, a significant benefit for tissue engineering.

In addition to producing decellularized tissue scaffolds, this method provides an ideal

platform to study the effects of pulse parameters such as pulse length, repetition rate,

and field strength on whole organ structures. Additionally, since we have direct control

over the electrical properties of the perfusate, this could serve as a model for examin-

ing the effects of N-TIRE on diseased or cancerous organs with unique electrical or

physical properties.

The development of engineered materials to replicate the structure and function of

thoracic and abdominal organs has achieved only limited success. Large volumes of

poorly-organized cells and tissues cannot be implanted due to the initial limited diffu-

sion of oxygen, nutrients and waste [59,60]. Despite this, researchers have made some

progress toward complete organ regeneration. For instance, mouse renal cells, grown
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on decellularized collagen matrices and implanted into athymic mice, developed

nephron-like structures after 8 weeks [9]. In addition, five millimeter thick porous

polyvinyl-alcohol (PVA) constructs, implanted in mice and then injected with hepato-

cytes, developed liver-like morphology over the course of one year [7]. However, cell

survival and proliferation in each of these structures was limited to a few millimeters

from a nutrient source [7].

The resulting scaffolds from N-TIRE plus perfusion maintain the vasculature neces-

sary for perfusion into structures far beyond the nutrient diffusion limit that exists for

non-vascularized structures. Since the temperature of the perfusate used can be as low

as 4°C, thermal aspects associated with Joule heating are negligible. This provides an

ideal platform in which to explore the effects on the cells and tissue of electric fields

in isolation from the effects of thermal damage. Additionally, the low temperature of

the organ compared to in vivo applications may allow for the application of much

higher voltages to attain appropriate electric fields for decellularizing thicker structures

without inducing thermal damage. This is important since the thickness of a human

liver can exceed 10 cm in some regions.

When planning to decellularize tissues and organs undergoing active perfusion, the

treatment region of decellularized tissue may be predicted through numerical model-

ing. From the lesion sizes and numerical model used here, when decellularizing an

entire organ for a transplantable scaffold, the protocol should expose all of the tissue

to an electric field of 423 +/- 147 V/cm. This will ensure complete cell death, allowing

comprehensive reseeding of the scaffold with the desired cells, thus minimizing the

effects of recipient rejection. The threshold found here is slightly lower than the

approximate 500-700 V/cm values reported in previous investigations [34,35]. This

may be a result of the unique pulse parameters used (e.g., pulse number) or an inher-

ent increased sensitivity of the cells to the pulses when under perfusion. The variability

in the electric field threshold may result from the multiple inhomogeneous characteris-

tics of the tissue anatomy and structure, such as the vascular system and tissue thick-

ness, leading to lesions that were not perfectly circular.

The continuous active machine perfusion methods utilized here in the decellulariza-

tion process may also be advantageous for recellularization. Once the decellularization

process is complete, it should be possible to reseed the scaffold without risking damage

attendant with removing the newly-created scaffold from the perfusion system. Since

the arterial and venous supplies are individually addressable, multiple cell types can be

delivered simultaneously to different regions of the organ. Similarly, retrograde perfu-

sion through the biliary system may be the ideal pathway in which to deliver hepato-

cytes for the reseeding process.

Lesions seen microscopically are clearly indicative of a mechanism and morphology

for cellular stripping using electroporation. It is very interesting that even at 24 hours,

when using the N-TIRE parameters described here, there is only a modest loss of aci-

nar architecture. More stringent conditions of energy delivery could likely alter this,

but this might induce damage to important connective tissue and vascular structures.

Addition of adjuvant cytotoxic agents, enzymes, and detergents in the perfusion fluid

also might modulate the severity and temporal nature of cell stripping. Logically, it is

much better to build on mild conditions, preserving important architecture for tissue

engineering purposes, than to rapidly obliterate cells and stroma. The ability to manage
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the period of perfusion and conditions of perfusion with the cardioemulation system

has clear advantages for this gradual, evolutionary approach to decellularization and

eventual recellularization of liver.

Conclusions
This study investigated the ability to develop decellularized tissue scaffolds using

N-TIRE on organs undergoing active perfusion. Porcine livers were harvested and

placed under active mechanical perfusion while N-TIRE electrical pulses were applied

using plate and needle electrodes. Livers were removed from the perfusion system and

the resultant lesions and control regions were examined histologically and a density

score improvement of 58.5 percent was observed. Through numerical modeling of the

electric field distribution from the pulse applications, it was found that an N-TIRE

threshold of 423 +/- 147 V/cm may be used to predict the affected area. The continu-

ous active machine perfusion method utilized during the decellularization process in

this study provides the necessary platform for scaffold recellurization, a vital aspect

required for practical organ transplantation techniques.
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