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ABSTRACT
XUXIN LIU: New Statistical Tools for Microarray Data and Comparison with Existing

Tools

(Under the direction of Dr. J. S. Marron)

Microarray technologies have gained tremendous interest from researchers in recent

years. The problem we are interested in is how to combine two microarray data, which

have systematic batch di�erences. The reason for the combination is that the combined

data set contains more samples which will give improved statistical power. This disser-

tation covers two topics about microarray batch adjustment. The �rst topic is about the

visualization of paired High Dimension Low Sample Size (HDLSS) data. We propose two in-

teresting directions: the Canonical Parallel and the Canonical Orthogonal Directions (CPD

& COD). This pair of directions gives an insightful 2-d parallel view for understanding

paired HDLSS data sets. The CPD can be used for adjusting the batch di�erences. An ap-

plication to the NCI60 cell lines data shows good performance of this method. The second

topic is about the comparison between three commonly used batch adjustment methods:

the Support Vector Machine (SVM), the Distance Weighted Discrimination (DWD), and

the Prediction Analysis of Microarray (PAM). We show that SVM has some serious prob-

lems for the HDLSS data. The DWD method is much more robust than PAM under the

Unbalanced Subgroup Model.

The mathematical studies made in this dissertation are in the area of HDLSS asymp-

totics, in the sense that the sample sizes are �xed and the dimension (the number of genes)

goes to in�nity. Hall et. al (2004) have studied the geometric structure of the data when the

dimension is high. In this dissertation, we study the geometric structure of the data under

more complicated models. In the �rst topic, we give the conditions for the consistency and

the strong inconsistency of the CPD under the Linear Shift Model. This model reects the

e�ects of systematic biases and the random measurement errors. In the second topic, we

compare the PAM and the DWD method using the Unbalanced Subgroup Model. Both

iii



methods are biased when the dimension goes to in�nity. However, DWD is shown to be

consistently more robust than PAM. We give the quantitative bias of them.

Keywords: Microarray Batch Adjustment, Principal Component Analysis, Exploratory

Data Analysis, High Dimension Low Sample Size Data Analysis, Data Discrimination Meth-

ods, Distance Weighted Discrimination, Support Vector Machine, Predication Analysis of

Microarray, High Dimension Asymptotics.
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CHAPTER 1

Introduction and Background

This Chapter is organized as follows: Section 1.1 gives an introduction to microarray

data. Section 1.2 discusses the High Dimensional, Low Sample Size (HDLSS) problem.

It introduces the multivariate view of microarray data. It also illustrates the principal

component direction visualization for HDLSS data. In Section 1.3, the NCI60 cancer cell

line data sets are introduced. They will be used for illustration of many di�erent points in

the rest of this dissertation. This section also describes the statistical analysis problem of

batch adjustment for microarray data sets. Several batch adjustment methods are reviewed

and compared. Section 1.4 gives the organization of the rest of the dissertation.

1.1 Microarray Data Introduction

Genes and their products (such as RNA and protein) play an important role in the

function of living organisms. The traditional methods of molecular biology generally worked

on a \one gene studied in one experiment" basis. The cost was extremely high to get the

expressions for thousands of genes, which meant the \whole picture" of gene function was

hard to obtain. In recent years, a collection of new technologies called DNA microarrays

has attracted tremendous interest among biologists; see Schena et al. (1995), Eisen and

Brown (1999), and Alter et al. (2000). These technologies permit the expression pro�ling

of thousands of genes simultaneously. This highly reduces the costs of collecting gene

expression data. Thus researchers can monitor the whole genome and study the interactions

among thousands of genes.

Usually a microarray chip contains tens of thousands of spots on a chip of glass or

some other material. DNA molecules are immobilized and attached to these spots. There



are at least two currently most widely-used formats of DNA microarray technology. One

is single channel microarray, the other is two-channel microarray. An example of

single channel microarray is Oligonucleotide microarray, i.e. A�ymetrix microarray

(A�y), developed at A�ymetrix, Inc. A�ymetrix microarray technology uses synthetic

DNA fragments, i.e. oligonucleotides, consisting of around 25 bases. A technique called

photolithographical array production is applied to synthesize the oligonucleotides on the

chip. An example of two-channel microarray is cDNA Microarray (cDNA) , developed

at Stanford University. cDNA molecules are usually 0.2 to 5 kb long and are immobilized

on the chip using robot spotting (printing).

A microarray experiment consists of three steps: sample preparation and labeling; sam-

ple hybridization and washing; and microarray image scanning and processing. We will take

the cDNA microarray as a basis for a general discussion of these steps. Other technologies

such as the A�ymetrix microarray follow similar principals.

Figure 1.1: Shows the scheme of a cDNA microarray experiment. This �gure is taken from
Duggan et al. (1999).

The general scheme of a cDNA microarray experiment is illustrated in Figure 1.1. For

gene expression levels studies, each spot on the chip is representative of a certain gene or a

transcript. The total mRNA from the cells in test tissue and in reference tissue is extracted

and labeled with two di�erent uorescent dyes separately, e.g. green dye for the mRNA
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from the test tissue and red dye for the mRNA from the reference tissue. More precisely,

the labeling is done on the nucleotides that are complementary to the isolated mRNA. All

the extracted mRNA from both tissues are prepared and hybridized to the immobilized

molecules on the spots. The mRNA that did not bind to the immobilized molecules during

the hybridization process is washed away. The relative abundance of hybridized molecules

on a de�ned spot can be determined by measuring the uorescent level of this spot. This

is done done by scanning the chip twice with red and green lasers. If the mRNA from the

test tissue is abundant, the spot will be green; if the mRNA from the reference tissue is

abundant, the spot will be red. If both are equally abundant, the spot will be yellow. If

neither are in abundance, the spot will appear black. Thus the relative gene expression

level at each spot can be estimated from the uorescence intensities, i.e. the color for this

spot. This method has the advantage of measuring the expression levels for thousands of

genes in one experiment.

A microarray experiment produces massive amounts of gene expression data. Figure 1.2

illustrates the organization of one microarray data set. The top row displays the sample

(or individual) annotations. The �rst column on the left shows the gene annotations. The

large rectangle displays the gene expression matrix, which is organized in this paper as a

d�n matrix X, where d is the number of genes (rows), and n is the number of the samples

(or individuals, i.e. columns). Thus Xi;j is the expression value for the ith gene and jth

sample (or individual). Sometimes, a microarray data set is organized using the transpose

of the above matrix , e.g. each column as a gene and each row as an array (individual); see

for example in Irizarry et al. (2003).

1.2 High Dimension Low Sample Size data Visualization

There are at least two important view points for the analysis of microarray data Xd�n.

One is the gene by gene view. It treats the gene expression matrix Xd�n as d separate

\sets of n numbers". Each set corresponds to the expression values for a single gene. Many

analysts choose to study microarray data in this way; see Kuo et al. (2002) and Johnson

et al. (2006). The other view is the Multivariate view, which treats the gene expression
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Figure 1.2: The expression matrix for a microarray data set. Each column corresponds to
a sample and each row corresponds to a gene. The gene expression values are displayed in
a matrix. (This plot is taken from Brazma et al. (2004)).

matrix as a set of n d�dimensional vectors. The data set contains n data objects. Each data
object is a d dimensional vector (the column of the expression matrix), which represents

the gene expression values for some speci�c sample (individual). Since the dimension d is

typically much larger than the sample size n, we call this aHigh Dimension Low Sample

Size (HDLSS) setting, as studied in Hall et al. (2005).

In this section, we will introduce and compare these two viewpoints for HDLSS data.

Section 1.2.1 presents the \Gene by Gene" view. Section 1.2.2 introduces the Principal

Component Directions view as a the multivariate view method.

1.2.1 Gene by Gene View

The \Gene by gene" view needs to be regarded with healthy skepticism in the analysis of

microarray data, because the data are intrinsically multivariate in nature. A toy example in

Figure 1.3 is presented to show that \gene by gene view" doesn't provide su�cient insights

into the multivariate nature of these data sets.

The toy data set in the Figure 1.3 are for the expression values, measured on 4000 genes

(dimensions), and are intended to model an important biological e�ect with gene expression
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Figure 1.3: Projection view of the toy data, which contain two batches and two biological
clusters. Symbols are for the batches and colors are for the biological clusters.

values measured across two batches. There are 30 samples within each batch , split evenly

between the two clusters. Hence there are 15 samples in each simulated biological cluster.

The entries of each sample are generated from independent Gaussian distributions with

standard deviation 1. The means of these entries are taken to be �0:2, in such a way that

there are 4 clusters, where pairs correspond to batches, and within each pair, the clusters

simulate an important biological di�erence. Figure 1.3 shows a two dimensional projection

view of the data sets. We will explain more details about the projection directions in the

next subsection. In this Figure, each point represents a sample, with expression values for

4000 genes. Two batches are represented by di�erent symbols, and the biological clusters

are represented by di�erent colors. Dashed line segments are used to connect associated

samples from the two batches. Clearly there is signi�cant batch di�erence in the data sets

(the cloud of crosses are away from the cloud of pluses). Samples from di�erent biological

clusters have very di�erent expression values, as shown in Figure 1.3 using colors. However,

the very small di�erence in the means of the entries is an order of magnitude less than the

noise level for each gene, so that it is essentially invisible to a gene by gene analysis. This

is seen via a gene by gene scatter plot, shown in Figure 1.4 or a gene by gene correlation
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analysis, as done by Kuo et al. (2002).

Figure 1.4: Gene by Gene view of the toy data. On-diagonal plots show single gene ex-
pression values. O�-diagonal plots are scatter plots of the expression values for two genes.
Symbols represent batches, and colors represent biological clusters. The black dashed seg-
ments are used to connect the associated samples from the two batches.

Figure 1.4 shows the gene-by-gene view of the simulated data for the �rst four genes.

In these plots, each point represents a sample (i.e. case). Every plot on the diagonal

displays the expression values for a single gene. A one-dimensional \jitter plot" (see Tukey

and Tukey (1990)) is used with a random vertical coordinate for visual separation of the

data points. Also kernel density estimation curves are drawn to provide another view of

how the expression values of one single gene are distributed. For example, the subplot in

the top row, the �rst column shows the expression values on the �rst gene. Three kernel

density curves, colored with black, blue and red, are drawn for the all the samples, the blue

samples only (biological cluster 1), and red samples only (biological cluster 2) respectively.
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In this direction, there is no appropriate separations of batches, or biological clusters. All

the o�-diagonal plots show the two dimensional scatterplots for the two corresponding

genes. For example, the top row, second column subplot shows the projection of the data

onto the plane, formed by the �rst and the second genes. As in Figure 1.3, symbols are

used to represent samples from di�erent batches. Colors are used to represent the samples

from di�erent biological clusters. Dashed line segments are used to connect the associated

samples from the two di�erent batches.

In all the subplots of Figure 1.4, there are no appropriate separations of batches (circles

and pluses), or biological types (reds and blues). This is due to the very small di�erence

in the mean values of entries, compared with the noise level for each gene. Thus from the

gene by gene view, both batch e�ect and biology e�ect are invisible. In the next subsection,

we will present the multivariate view of the data, which shows that there are actually some

biological and batch e�ects, which can be seen using an appropriate view.

1.2.2 Multivariate View

The multivariate view treats a microarray data set Xd�n as a cloud of n points in d

dimensional space. Due to limitations of the human perceptual system, it is challenging to

visually understand the full geometric structure of the data with dimension more than 3.

However, we can project the data points onto some carefully chosen directions of interest.

There are many interesting directions in HDLSS settings, e.g. you could �nd a direction

(which is not unique) such that the projections of all the samples on this direction are

piled up on one single point. Ahn and Marron (2006) developed the maximal data piling

direction. In this direction, the projections of some samples are piled up on one single

point, the projections of all the other samples are piled up on another single point, and the

distance between these two points is maximized. On the webpage for this dissertation (see

Liu (2007b)), these types of projections are illustrated for some interesting examples.

Actually, the Gene by Gene view in Figure 1.4 can also be thought of as a multivariate

projection view for HDLSS data. The projection directions are the directions of the �rst

four genes (i.e. the �rst four Euclidean unit vectors). As we have discussed, important
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batch e�ects and biological e�ects are invisible in this gene by gene view, because the dif-

ference between batches or biological clusters are very small in a single gene. However,

this di�erence is signi�cant, if all the genes are taken into considerations. E.g. instead

of projecting data onto single gene direction, we could project the data onto some linear

combinations of the gene directions, such as the principal component directions.

Principal Component Directions View

Principal Component Analysis (PCA) is a classical statistical method, which continues

to be widely used for statistical data representation and data compression. For a data set

in high dimensional space, PCA �nds a set of directions called the Principal Component

directions (PC directions) such that the �rst PC direction accounts for as much of the

variability in the data as possible, and each succeeding PC direction accounts for as much of

the remaining variability as possible. Often, the �rst several PC directions will express most

of the variability in the data. Thus, PC directions are often commonly used to visualize the

data. This kind of view for HDLSS data was used by Benito et al. (2004), Liu et al. (2007)

and Marron and Liu (2005).

We use the the toy data in Figure 1.3 to illustrate the idea of the PC projection plot.

Note that all the PC directions are the linear combinations of gene directions. Fig 1.5 shows

the PC projections of the data on the 1-d directions or 2-d planes formed by the �rst four

PC directions. Every plot on the diagonal has displayed a one-dimensional projection on

the PC directions. All the o�-diagonal plots show 2-d views of the data projected on the

plane formed by the two corresponding PC directions.

The limitation of the gene-by-gene view is made clear in the PCA multivariate scatter-

plot view of these data in Figure 1.5. Note that the �rst two principal components (top row,

second column) contain the deliberately constructed structure in the data. In particular,

the batch e�ect (indicated by pluses and circles) is clear, shown mostly on the �rst PC

direction. The strong simulated biological e�ect is shown as two clusters (indicated by the

red and blue colors) on the second PC direction.

In the rest of this dissertation, we will focus on the multivariate view of the data.
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Figure 1.5: Toy data are projected onto the �rst four PC directions. On-diagonal plots are
one-dimensional projection plots. O�-diagonal plots are 2-d projection plots for correspond-
ing PC directions. Symbols represent batches, and colors represents biological clusters. The
black dashed segments are used to connect the associated samples from the two batches.

1.3 Microarray Batch Adjustment Methods

1.3.1 NCI60 Cancer Cell Line Data

In 2000, cDNA and A�y microarrays were used to measure the gene expression values

among the 60 cell lines from National Cancer Institute's anti-cancer drug screen (NCI60)

(Eisen and Brown (1999), and Alter et al. (2000)). These cell lines are from di�erent sites

of origin, i.e. 7 breast, 5 central nervous system (CNS), 7 colon, 6 leukemia, 8 melanoma,

9 non-small-cell-lung-carcinoma (NSCLC), 6 ovarian, 2 prostate, 9 renal, and 1 unknown.

Using cDNA microarrays, 9703 genes were spotted on the chip and the expression values

were measured. After excluding those genes with more than two missing data points,
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the cDNA gene expression data were collected as a 5244 � 60 matrix. Missing data were

imputed using K-Nearest Neighbors imputation (KNN, see Troyanskaya et al. (2001)). The

same list of 60 cancer cell lines were measured with the A�ymetrix Microarray Suit 4.0

for 7070 genes. There are some negative values in the A�y, which were set to 1 before

taking log2 transformation. We linked genes from cDNA and A�y data sets by mapping

their identi�ers to Unigene Cluster Identi�ers (UCID). Duplicate UCIDs were collapsed by

taking the median value within each sample. The paired cDNA and A�y data set were

created from the intersection of UCIDs of these two sets. Both the cDNA and the A�y

data contain 60 common samples and 2267 common genes. In the rest of the dissertation,

We refer the NCI60 data as two such A�y and cDNA data sets with common samples and

genes.

Fig 1.6 shows the PC projection view of the NCI60 data, which have a similar format

to Figure 1.5. In this �gure, The purple circles are the A�y samples, and the green pluses

are the cDNA samples. The dashed line segments are used to connect the associated bio-

logical samples measured on the two di�erent platforms. Long segments tell us that there

are signi�cant di�erences between the expression values of the associated biological samples

measured by cDNA and by A�y. The top row, second column subplot shows the projections

of the data on the plane formed by the �rst and the second PC directions. Note that the

di�erences between cDNA and A�y are mostly along the �rst PC direction. We also �nd

that the dashed line segments are quite parallel.

1.3.2 Microarray Batch Adjustment

Microarray data contain the expression values for thousands of genes. The measurements

tend to be noisy. The noise in the data could be countered by running a large number of

arrays, and averaging the results. However, this is currently not practical because array

costs are still relatively high. Another approach to reduce the e�ect of noise is to combine

the current data with previously existing data sets, many of which are web available. The

combined data set will have larger sample size, which will boost statistical power. However,

as noted by Irizarry et al. (2003), hurdles to such combinations include biases introduced
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Figure 1.6: NCI60 data are projected onto the �rst four PC directions. The purple circles
are A�y samples. The green pluses are cDNA samples. The black dashed segments are
used to connect the same biological samples from the two platforms.

during the sample preparation, manufacture of the arrays, and the processing of the arrays

(labelling, hybridization, and scanning, etc). Even more challenging is that the data are

especially non-comparable when they are collected using di�erent microarray formats of

technologies (e.g. A�ymetrix versus cDNA; see Yauk et al. (2004)). Systematic biases

between data sets are commonplace. As shown in Figure 1.6, the expression values for A�y

and cDNA are very di�erent in means and variation of the measurements, even when they

are the expression values for the same list of genes and biological samples. We usually use the

term \batch adjustment" for the operation of eliminating systematic biases by combining

di�erent data sets. In this dissertation, we only consider the combination of two data sets,

where the measurements are made for the same list of genes, and may or may not be for

the same samples. In this situation, two data sets can be visualized and compared in the
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same high dimensional gene space.

Some researchers have used the Singular Value Decompositions (SVD/PCA) to correct

for systematic biases in the data set of yeast cell cycle experiments (Alter et al. (2000)),

and to correct for microarray batch bias in a data set containing many soft tissue tumors

Nielsen et al. (2002)). Recall that the SVD/PCA seeks to �nd the \directions of greatest

variation". To adjust the batch di�erence, the variations of the data sets along the SVD

direction were totally removed. However, as noticed by Benito et al.(2002), there are some

serious problems for this method.

Figure 1.7: Underlying conceptual model shows that the SVD/PCA direction (green dashed
line) is not consistent with the batch di�erence direction (magenta dashed line). Classes
are represented by di�erent colors and symbols.

Firstly, it works well only when the direction of the batch di�erence is consistent with

the SVD/PCA direction. This means that the between-group di�erences are much larger

than the within batch variation. Figure 1.7 shows an underlying conceptual model. The

observations from two batches are represented by symbols and colors. In this toy data set,

the within group variation is much larger than the batch di�erence. The �rst SVD/PCA

direction (green dashed line) is very di�erent from the actual batch di�erence direction

(magenta dashed line). The adjustment of the data along the �rst SVD/PCA direction

will not eliminate the di�erences between batches. Notice that SVD/PCA direction doesn't
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use the batch memberships of the observations. A natural way to improve the analysis

is to make full use of the systematic bias information (i.e. the batch membership of each

observation). Instead of choosing the direction to maximize the variation of the full data,

i.e. SVD/PCA, we could choose the direction which gives the maximum separation between

two batches. In the next subsection, we will introduce and compare several such methods,

which separate two batchesas well as possible, in some sense.

In addition to �nding a useful direction for systematic batch di�erence, Benito et al.

(2004) proposed another improvement over the SVD/PCA adjustment. Alter et al. (2000)

adjust the batch di�erence by totally eliminating the variation of each batch along the

SVD/PCA direction. This method squashes all the geometric structures in the data along

the chosen direction. If there is other important biological variation along this direction,

other than systematic batch di�erence, these important biological di�erences will disappear

when the data are squashed along this direction. This idea is illustrated by a toy data set

with two genes, as shown in the left subplot of Figure 1.8. Batches and biological clusters

are presented using symbols and colors respectively. The green dashed line shows the �rst

SVD/PCA direction. This direction shows the batch di�erence, which is in the same direc-

tion as the biological di�erences. If the data are squashed along the SVD/PCA direction,

as shown in the top right subplot of Figure 1.8, the batch di�erence can be successfully

removed. However, the di�erences between biological clusters are removed too, in the sense

that the blues and reds are mixed together after adjustment. A possible improvement is

to subtract the subpopulation means of the data projected on the given direction. The

geometric interpretation of this operation is to shift each cluster along the given direction

until they overlap, instead of squashing them along the direction. This preserves any vari-

ation in this direction, which is not caused by systematic e�ects. The bottom right subplot

of Figure 1.8 shows the adjusted data after shifting along the SVD/PCA direction. The

batch di�erence has been adjusted in the sense that circles and crosses are mixed well. The

important biological structures are preserved in the adjusted data, as shown by the color.
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Figure 1.8: Toy data set for comparing the adjustments of squashing and shifting. The left
subplot shows the data set before adjustment. Batches are represented by symbols, and
the important biological clusters are represented by colors. The green line shows the �rst
SVD/PCA direction. The upper right subplot shows the data after squashing along the
direction of the green line. Both batch di�erence and biological di�erences are removed.
The bottom right subplot shows the data sets after rigidly shifting along the direction of
green line. The batch di�erence is removed and the biological di�erences are preserved.

1.3.3 Linear Batch Adjustment Methods

In this dissertation, we are mainly interested in linear batch adjustment methods, be-

cause they have direct and meaningful geometric interpretations. Using the multivariate

view, two HDLSS data sets are treated as two clouds of points in high dimensional space.

Linear batch adjustment methods �nd an appropriate direction and then move the two

clouds along this direction until they overlap. The problem of batch adjustment is equiv-

alent to the problem of binary discrimination problem for two data sets. The objective of

linear discrimination between two data sets is to �nd a hyperplane, which separates them

14



as well as possible. The orthogonal direction of the hyperplane gives the maximum separa-

tion of two data sets and can be used for adjusting the batch di�erence. In this Section ,

several important linear discrimination methods are introduced and compared for the batch

adjustment.

Binary Classi�cation (Discrimination) Problem

Here we introduce some mathematical notations for the classi�cation problems, (see Hastie

et al. (2001)). In the binary classi�cation problem, we use class labels +1 and �1 to rep-

resent two di�erent classes. Suppose that we have the training data f(x1; y1); � � � (xn; yn)g.
Each xi 2 <d represents the observation vector for the ith sample. Each yi = +1; or �1
represents the class membership for the ith sample. The objective of binary classi�cation

is to �nd a classi�cation rule (classi�er) f(x) : <d ! f�1; 1g , which assigns a cluster label

(+1 or �1) to a given sample x. One goal of f(x) is the consistency with the observed data,
i.e. for (x; y)s is in the training data set. A second goal is the prediction of new observa-

tions. Sometimes f(x) can be a function from <d ! R. Then the sample is classi�ed to +1

if f(x) > 0, and to �1 if f(x) < 0.

Linear Discrimination Problem

If the classi�er f(x) is a linear function of x, we call f(x) is a linear classi�er, i.e.

f(x) = w
Tx+ b (1.1)

where w is a d dimensional vector, and b is the threshold for the classi�cation. The class

label +1 or �1 is given to the sample x, if f(x) > 0 or f(x) < 0. Using the multivariate

view, each sample x is a point in d dimensional space. A linear classi�er attempts to �nd

a d� 1 dimensional hyperplane, which separates two the classes +1;�1 as well as possible.
The vector w de�nes the orthogonal direction of the separation hyperplane.

The batch adjustment method, corresponding to the above linear classi�er is to move

two data sets along the normal direction of w to eliminate systematic batch di�erences.

The problem of �nding the best batch adjustment direction is equivalent to �nd the best
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linear classi�er (discrimination hyperplane). In the following, we will take a further look at

some basic and widely used discrimination methods. The comparison between them will be

further studied in Chapter 3.

Nearest Centroid method

Suppose Xd�n1 and Yd�n2 are two clusters of d dimensional data. Using the multivariate

view, they are treated as two clouds of points in d dimensional gene space. The nearest

centroid method uses the within class sample mean as the representative for each cluster.

Every sample is classi�ed to the cluster with nearest centroid to this sample. This is a

linear discrimination method in the sense that the normal direction w of this method is the

normalized direction vector which connects the centroids of the two clusters. Thus

w =
x� y

jjx� yjj ;

where x and y are the sample mean vectors of the two classes. Tibshirani et al. (2002) uses

this direction for adjusting the batch di�erence in their Predicton Analysis of Microarray

(PAM) software.

The gene by gene view of the PAM method is that the observations for every gene

are subtracted by their within batch mean for this gene. Using multivariate view, this

adjustment has a very simple multivariate geometric interpretation. It can be treated as

rigidly shifting two clusters such that their centroids are moved to the origin. After adjusting

within group mean, the mean value for every gene is zero. To preserve the variation of the

mean values of genes, the observations for each gene are added by the mean value of this

gene across two batches. The geometric interpretation of this adjustment and the previous

within batch mean adjustment is to rigidly shift two clusters along the direction which

connects two centroids, until both centroids move to the centroid of two clusters. Instead

of moving two clusters to the centroid of two clusters, some researchers choose to �x one

cluster and move the other cluster to the �rst one until their centroids overlap. This method

preserves the mean values of genes on the chosen batch.

No matter what kind of centroids adjustment, they are the results of shifting two clusters
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along the direction which connects two centroids. From now on, we call this direction as the

PAM direction. In addition to adjust the mean, the PAM software has a step to adjust

batch variation di�erences. However, in this dissertation, we focus on the batch di�erence

adjustment, and hence we won't consider the variation adjustment.

The PAM adjustment has been shown to work very well for many data sets, see Tib-

shirani et al. (2002). It involves easy calculation and has a simple geometric interpretation.

However, the PAM method is not robust if there are outliers, which are away from the main

population. Johnson et al. (2006) proposed the empirical Bayesian methods to improve the

robustness. In Chapter 3, Section 3.2, we will study other properties of the PAM direc-

tion. In particular, PAM is not asymptotically robust for combining two data sets with

unbalanced subgroup sample sizes, when the number of genes goes to in�nity.

Note that every observation has some inuence on locating the PAM direction. However,

it is natural to think that those points which are close to the separating hyperplane are more

important than the observations which are away from the separation hyperplane. Another

discrimination method, called the Support Vector Machine (SVM), directly addresses this

problem.

Support Vector Machine (SVM)

SVM, (see Vapnik (1982), Vapnik (1995), Burges (1998) and Liu (2007a)) is a popular

linear discrimination method. It is introduced in two cases: when the data are linear

separable, and when they are not. In this dissertation, we will focus on the separable

case, because two HDLSS data sets are linear separable with probability one, if the data

follow distributions that are absolutely continuous with respect to d dimensional lebesgue

measure. Consider a linear classi�er f(x) = w
Tx + b, as in Section 1.3.3. A special linear

classi�er, called SVM classi�er, involves an interesting choice of w and b. The SVM �rst

�nds two hyperplane margins (over w and b) which are de�ned by f(x) = 1 or �1, such
that there are some observations on the margins and there are no observations between

these two margins. The points on the margin are called \support vectors". Usually there

are multiple choices over w and b for the margins, when the data are separable in HDLSS

settings. The SVM �nds w and b such that the distance between two the margins 2
jjwjj2 is
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maximized. The hyperplane between the two margins: f(x) = 0 is the SVM discrimination

hyperplane. Given w and b, the class label +1 is given to a new sample xi, if f(xi) > 0

and the class label �1 is given if f(bxi) < 0. The SVM can be interpreted as the solution

of the following optimization problem over w and b:

minimize
1

2
jjwjj2

subject to yi � f(xi) > 1; i = 1; � � � ; n: (1.2)

where yi represents the class membership of the ith sample xi in the training data set. The

normalized direction vector of w represents the SVM direction. The constrains yi �f(xi) >
1 i = 1; � � � ; n indicate that the f(x) must classify all the samples in the training data set

correctly. The SVM classi�er gives as accurate predication to the class membership of new

samples as possible, in the sense of maximizing the distance between two margins.

Figure 1.9: SVM hyperplane to separate two classes, represented by crosses and pluses for
a two dimensional toy data set. The Purple normal vector is used for batch adjustment.

Figure 1.9 shows the SVM method for classifying a 2 � d toy data set, with the two

classes represented by blue circles and red pluses respectively. The two grey thin dashed

lines show the two hyperplanes for the margins (fx : f(x) = �1g), with some support

vectors (black boxes) on the margins. The SVM �nds two margins (over w and b) such

that the distance between them is maximized. The green dashed line between two margins
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represents the discrimination hyperplane (fx : f(x) = 0g). The observations on the left

side of this hyperplane are classi�ed to the class with label �1 (the class of blue circles).

The observations on the right side of this hyperplane are assigned to the class with label

+1 (the class of red pluses). The purple normal vector of the hyperplane is the direction

showing the batch di�erence. It can be used for adjusting the batch di�erence by rigidly

shifting the blue class and the red class along this direction. The SVM method has been

shown to be very successful in a variety of classi�cation problems. However, as noticed by

Marron and Todd (2002) and Benito et al. (2004), the SVM can be improved in HDLSS

settings. There are two main drawbacks of the SVM method. Firstly, the SVM su�ers

from a substantial data piling on the margins, which could lead to biased batch adjustment.

Secondly, only those observations on the margins have an inuence on locating the SVM

hyperplane; the observations which are away from the margins have no inuence at all. For

example, in Figure 1.9, if you move o�-margin blue circles to anywhere on the left side of the

above margin, the discrimination hyperplane won't change at all. These two problems of

the SVM will be studied more precisely in Chapter 3. Marron et al. (2005) have addressed

these problems by the development of Distance Weighted Discrimination (DWD) method.

Distance Weighted Discrimination (DWD)

The DWD method, developed by Marron et al. (2005) is an improvement upon the Sup-

port Vector Machine (see Burges (1998)) in HDLSS contexts, as explained by Benito et al.

(2004). Suppose two classes are separable, which is very likely for HDLSS data. Again, sup-

pose the separating hyperplane is f(x) = w
Tx+b. Denote the distance from the observation

xi to the hyperplane as ri (see Figure 1.10). DWD �nds the hyperplane that minimizes

the sum of the inverse distances. This gives larger inuence to those points which are close

to the hyperplane relative to the points that are farther away from the hyperplane. For

separable classes, the DWD method is the solution of the following optimization problem,

minimize
nX
i=1

1

ri

subject to yi � f(xi) > 1; i = 1; � � � ; n: (1.3)
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Figure 1.10: DWD hyperplane to separate crosses and pluses. The Purple Normal Vector
is the DWD direction.

As shown in Figre 1.10, DWD �nds a linear hyperplane (Green) to separate the two

clouds of points (blue circles and red pluses) as well as possible, in the sense of minimizing

the sum of the inverse distances from the samples to the hyperplane. The normal direction

of the hyperplane is called the DWD direction. The computing of this hyperplane can

be formulated as a Second-Order Cone Programming (SOCP) problem and is solved using

the software package SDPT3 (for Matlab), which is web-avaible at Toh et al. (2006). The

DWD direction has been shown to provide e�ective bias adjustment for many situations by

Benito et al. (2004), including e�ective across-platform adjustment. In Chapter 3, we will

demonstrate the robustness of DWD method, compared with PAM, when the dimension d

goes to in�nity.

1.4 Organization of the Dissertation

This dissertation covers two di�erent aspects of microarray data adjustment, which are

organized as two chapters. In each chapter, we will introduce the motivation of the problem,

review the literature, and present our work.

Chapter 2 is about HDLSS parallel directions. We propose two interesting directions:

the canonical parallel direction and the canonical orthogonal direction. This pair of direc-

tions gives an insightful 2-d view for understanding paired HDLSS data sets. The algorithm

to produce these two directions is developed in this chapter. Under some mild conditions,
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these two directions exist and are unique. The canonical parallel direction shows the dif-

ferences between batches and can be used for adjusting the di�erences. The mathematical

properties of this direction are studied using a Linear Shifted Model, for which, we know

the theoretical canonical parallel direction between two data sets. We present and prove

the asymptotic properties of the empirical canonical parallel direction, as the dimension

d increases. We explore the Consistency and the Strong Inconsistency of the empirical

direction under di�erent conditions. Simulated data sets are used to verify the asymptotic

results.

Chapter 3 is about the comparison between three linear batch adjustment methods,

SVM, DWD, and PAM. First, several examples are presented to illustrate the limitation

of the SVM method, especially for HDLSS data. Secondly, DWD and PAM are compared

under an Unbalanced Subgroup Model. We discover that DWD is more robust than PAM,

when the two data sets have unbalanced subgroup sample sizes. We study this problem

for two cases. In the �rst case, when the dimension is �xed and the subgroup sample sizes

become more and more unbalanced, DWD is consistently more robust than PAM. In the

other case, when the subgroup sample sizes are unbalanced and �xed, as the dimension

goes to in�nity, DWD is also much more robust than PAM. Thus, the PAM direction has

remarkably inferior asymptotic properties, compared to DWD, when the dimension is high.
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CHAPTER 2

HDLSS Canonical Parallel Direction

In the HDLSS settings, it's challenging to view the full geometric structure of the data

because the dimension of the data d is large. A common approach is to choose some direc-

tions and view the projections of the data on the 1 � d or 2 � d subspaces determined by

these directions. In Chapter 1, Section 1.2, we introduced the gene by gene view and the

principal component directions view. In this chapter, Section 2.1, we produce two novel

directions, called the Canonical Parallel Direction and the Canonical Orthogonal

Direction. These two directions provide a new and useful 2� d subspace to show di�erent

aspects of the two data sets. We give the theorems for the existence and uniqueness of

these two directions. In Section 2.2, we develop algorithms to generate canonical parallel

and canonical orthogonal directions. The algorithms indicate the existences and uniqueness

of the two directions. The canonical parallel direction is the one showing batch di�erence.

We use it to adjust the di�erences between A�y and cDNA in NCI60 data. A visual diag-

nosis shows good performance of this adjustment. In Section 2.3, we study the asymptotic

properties of the empirical canonical parallel direction in a linear shift model, for which,

the theoretical canonical parallel direction is known. We identify the conditions which as-

sure the convergence of the empirical direction to the theoretical one, and conditions which

give strong inconsistency.



2.1 Visualization and Adjustment using the Canonical Par-

allel Direction

Two microarray data sets Xd�n and Yd�n are called paired, if xi;j and yi;j (the ith row,

jth column of the two data sets, (i = 1; � � � ; d; j = 1; � � � ; n) are the measurements for the
same gene and related biological samples. For paired data sets, the multivariate view treats

these two data sets as two clouds of points in d dimensional space. Each cloud contains n

points. Since the two data sets are paired, an insightful illustration is to use a line segment

to connect the associated points from the two data sets. The vector of the line segment

shows the di�erences of measurements between each pair of associated points.

The top row, second column of Figure 1.6 in Chapter 1 shows the projections of the

NCI60 data on the plane formed by the PC1 and PC2 directions. The di�erence between the

two data sets is mostly in the PC1 direction. We notice that all the line segments are almost

parallel, but not exactly. Actually we can replace PC1 and PC2 by two other directions such

that the projections of the data on the plane formed by these two directions have all of the

line segments exactly parallel. The left plot in Figure 2.1 shows one such parallel projection.

Figure 2.1: Left Plot: NCI60 data are projected on two speci�c directions which make all
the line segments parallel. Symbols and colors are the same as in Figure 1.6. Right Plot:
NCI60 data are projected onto the plane formed by the canonical parallel direction and the
canonical orthogonal direction.

In the left plot of Figure 2.1, the y-axis is a direction showing the di�erences between the

two data sets. The x-axis is a direction that makes all the line segments parallel. In HDLSS
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settings, there are many direction vectors of x and y axes, which will also give a parallel

projection. A special choice among these, called the Canonical Parallel Direction and

the Canonical Orthogonal Direction is shown in the right plot of Figure 2.1. Among

all the possible parallel projection plots, this plot shows the most variability in the data,

i.e. on the x-axis, the variation of the projected data is maximized; on the y-axis, the sum

of the squared projected lengths of line segments is maximized. This projection plot shows

the di�erences between batches as well as possible, since the y-axis highlights the di�erences

between batches. The de�nitions of the two canonical directions are given in the following:

De�nition 2.1.1. Assume Xd�n and Yd�n are paired HDLSS matrices (d > n). Associated

samples are connected using dashed line segments. The d dimensional direction vector is

called the Canonical Parallel Direction (CPD), denoted as vcpd, if the projections of

the line segments (i.e. columns of X � Y ) have the maximum, over all direction vectors in

<d, sum of squared lengths.

De�nition 2.1.2. Assume that Xd�n and Yd�n are paired HDLSS matrices (d > n).

The d dimensional direction vector, which satis�es the following conditions, is called the

Canonical Orthogonal Direction (COD), denoted as vcod:

� this direction vcod is orthogonal to all the directions of line segments (i.e. to all column

vectors of X � Y );

� the projections of the column vectors of X along vcod have the maximum, over all

direction vectors in <d, variation, i.e. the sum of the squared distances from each

projection to the center of the projections.

The above two de�nitions indicate that these two canonical directions can be derived

separately and they are orthogonal to each other. The CPD is the direction, which shows

the di�erences between batches as much as possible. The COP is the direction which makes

all the projected line segments parallel. The projections of the data onto the plane spanned
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by these two directions have all the line segments parallel and show as much of the vari-

ability in the data as possible among such vectors. Under some mild conditions, these two

directions exist and are unique. The following two theorems give the conditions for the

existence and uniqueness of these two directions separately.

Theorem 2.1.1. (Existence and Uniqueness of CPD)

Suppose Xd�n = (x1; � � � ;xn) and Yd�n = (y1; � � � ;yn) are paired HDLSS matrices (n <

d). The vcpd between X and Y exists and is unique (modulo the � ip of direction) if

the �rst eigenvalue of (X � Y )(X � Y )T is positive and strictly larger than all the rest

eigenvalues.

Proof. This theorem will be proved when the derivation for this direction is given in Section

2.2. In real data analysis, the conditions in this theorem are very likely to be satis�ed. From

the deviations in Section 2.2, we will show the CPD is the �rst eigenvector of (X �Y )(X �
Y )T . Suppose the eigenvalues of (X � Y )(X � Y )T are �1; �2; � � � ; �d. Because the rank of

(X �Y )(X �Y )T is no larger than n (n < d). Among these eigenvalues, at most n of them

are nonnegative. If the �rst eigenvalue is positive and strictly larger than the others, the

�rst eigenvector exists and is unique (modulo the � ip of direction). Otherwise, suppose

the �rst two eigenvalues are the same, i.e. �1 = �2 > 0, then the �rst two eigenvectors

could be any pair of orthogonal basis vectors in an two dimensional plane, and hence the

�rst eigenvector is not unique.

Theorem 2.1.2. (Existence and Uniqueness of COD)

Suppose Xd�n = (x1; � � � ;xn) and Yd�n = (y1; � � � ;yn) are paired HDLSS matrices (n <

d). If all the columns of X and Y are independent and they are from distributions which

are absolutely continuous with respect to d dimensional Lebesgue measure, the vcod between

X and Y exists and is unique almost surely (modulo the � ip of direction).

Proof. We could give weaker conditions for the existence and uniqueness of COD. However,

they are very complicated. Note that when the conditions in this theorem are satis�ed,
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the matrices X, Y and X � Y are full rank almost surely. And their eigenvalues are not

the same almost surely. The algorithms for the COD will be given in Section 2.2 and it

indicates the proof for this theorem. The conditions are very likely to be satis�ed in the

real data analysis.

The NCI60 data projected onto the plane generated by vcpd and vcod are shown in the

right plot of Figure 2.1. The di�erences between cDNA and A�y are shown clearly on the

CPD. It looks similar to the left plot of Figure 2.1. Both of them show that all line segments

are parallel. However, they are not the same. On the x axis, the data points spread from

around -20 to 30 on the left plot, and from around -20 to 40 on the right plot. On the y

axis, the data points are distributed from 0 to around 150 in the left plot, and from 0 to

around 300 on the right plot. Thus the right plot shows much stronger di�erences between

the two data sets and much more variations on the x axis.

As shown in Figure 2.1, the CPD shows the systematic di�erence between A�y and

cDNA. This di�erence can be eliminated by shifting two data sets along the CPD until the

two centers overlaps, as we have done for the other linear adjustment method in Chapter

1, Section 1.3. A�y data have much larger variation than cDNA data. Thus after linear

shifting, we standardize each column of the data (each entry is subtracted by the column

mean, and divided by the column standard deviation) to adjust the variation di�erence.

The adjusted data are projected onto the �rst four PC direction of the Raw data, in order

to compare with the projection view of the raw data.

In Figure 2.2, line segments become much shorter than those in Figure 1.6, which in-

dicate the systematic batch di�erence has been successfully removed. In addition, some

biological clusters emerge in Figure 2.2 for the data after adjustment. E.g. in the second

row, third column subplot, a cluster, colored as read, shows up in the right part of the plot.

This cluster has been examined to be a cluster of melanoma cancer cell lines. In the second

row, forth column subplot, there is a cluster in the top corner, colored as blue. It has been

examined to the cluster of leukemia cell lines. These two clusters can not be seen clearly
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Figure 2.2: The NCI60 data are adjusted using CPD and then are column standardized.
The adjusted data are projected onto the �rst four PC directions of the raw data. Symbols
and colors are the same as in Figure 1.6.

in Figure 1.6. Thus by adjusting data along the CPD, we boost statistical power to detect

some biological clusters.

In the next section, we will present the algorithms for producing the CPD and the COD

for paired HDLSS data sets. The algorithms indicate the proofs for Theorem 2.1.1 and

Theorem 2.1.2.

2.2 Canonical Parallel Direction (CPD) and Canonical Or-

thogonal Direction (COD)

In Section 2.2.1, we review some fundamental results about linear algebra and the Prin-

cipal Component Analysis (PCA). There are many papers and books about PCA. One
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recommended reference is the book by Jolli�e (2002). In Section 2.2.2, we give algorithms

to produce the CPD and the COP. The algorithms establish the existence and uniqueness

of these two directions and can be treated as the proofs of Theorem 2.1.1 and Theorem 2.1.2.

2.2.1 Linear Algebra and PCA Overview

De�nition 2.2.1. A matrix M is called symmetric, if it equals its transpose.

A matrix M is called a square matrix, if it has the same number of rows and columns.

Lemma 2.2.1. For a real-valued symmetric square matrix Md�d, there exists an eigen-

value decomposition,

M = V DV T ;

such that Dd�d is a diagonal matrix,

D =

0
BBBB@

�1 � � � 0

...
. . .

...

0 � � � �d

1
CCCCA ;

and �1 > �2 > � � � > �d > 0 are called eigenvalues; Vd�d is an orthonormal matrix, which

means V TV = V V T = I. The columns of V = (v1; � � � ;vd) are called eigenvectors.

Speci�cally, vi is called the ith eigenvector.

Note that if �1 is positive and strictly larger than the rest eigenvalues, the �rst eigen-

vector v1 exist and is unique. If the columns of X are independent with each other and are

from distributions which are absolutely continuous with respect to d dimensional lebesgue

measure, then �1 is positive and strictly larger than the rest eigenvalues almost surely,

which means that the �rst eigenvector v1 exists and is unique almost surely (modulo the �
ip of direction).
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Lemma 2.2.2. Suppose Xd�n = (x1; � � � ;xn) is a real-valued matrix. If we view the

columns of X as vectors in the d dimensional Euclidean space, the �rst eigenvector of XXT

is the direction such that the projections of all the column vectors on this direction have the

maximum sum of squared length.

This result is very well known; see Jolli�e (2002). The details of the proof are written

out here because a very similar idea is used for the computation of canonical directions.

Proof. Assume Xd�n = (x1; � � � ;xn), where xi is the ith column of X. Given any normal-

ized direction vector � 2 Rd (i.e. k�k = 1), the projection of xi in this direction is denoted

as P�(xi). Then the sum of squared lengths of the projected column vectors of X are

nX
i=1

kP�(xi)k2 =
nX
i=1

khxi;�i�k2 =
nX
i=1

hxi;�i2k�k

=
nX
i=1

hxi;�i2 =
nX
i=1

(xi
T
�)2

=
nX
i=1

�
T
xixi

T
�

= �
TXXT

�

Since XXT is a real-valued symmetric square matrix, according to Lemma 2.2.1, there is

an eigenvalue decomposition, such that

XXT = V DV T :

Thus

nX
i=1

kP�(xi)k2 = �
TXXT

� = (�TV )D(�TV )T :

Because �TV = �
T (v1; � � � ;vd) = (h�;v1i; � � � ; h�;vdi), and D = diag(�1; � � � ; �d), we

29



have
nX
i=1

kP�(xi)k2 =
dX
i=1

�ih�;vii2:

Since V is an orthonormal matrix, we have� =
Pd

i=1h�;viivi. It follows that

dX
i=1

h�;vii2 = h�;
dX
i=1

h�;viivii

= h�;�i

= k�k2 = 1:

If the eigenvalues are ordered, e.g. �1 � �2 � � � � � �d ,
Pn

i=1 kP�(xi)k2 =
Pd

j=i �ih�;vii2

is maximized (over �) by putting a maximal amount of the energy in the largest direction,

i.e. � = v1, and

max
nX
i=1

kP�(xi)k2 = �1

The direction which maximizes the sum of squared projected lengths in this direction is the

�rst eigenvector of XXT . Again, as in Lemma 2.2.1, if �1 is positive and strictly larger

than the rest eigenvalues, the �rst eigenvector v1 exist and is unique. If the columns of X

are independent with each other and are from distributions which are absolutely continuous

with respect to d dimensional lebesgue measure, then �1 is positive and strictly larger than

the rest eigenvalues almost surely, which means that the �rst eigenvector v1 exists and is

unique almost surely (modulo the � ip of direction).

Lemma 2.2.3. Xd�n = (x1; � � � ;xn) can be viewed as n points in the d dimensional Eu-

clidean space. The center of these points is expressed as �x
:
= 1

n(xi + � � �+ xn). We de�ned

�X as a matrix with n duplicate columns, �x, which means �X = (�x; � � � ; �x). Then, the �rst

eigenvector of (X � �X)(X � �X)T is the direction such that the projections of these n points

on this direction have the maximum variation.

Lemma 2.2.3 is also well known; see Jolli�e (2002). The proof of this lemma is very
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similar to the proof of Lemma 2.2.2.

Proof. Xd�n = (x1; � � � ;xn). Given a direction vector � 2 Rd. (i.e. k�k = 1). The

projection of �x in this direction is P�(�x). The center of all these projections is

1

n

nX
i=1

P�(xi) =
nX
i=1

1

n
hxi;�i�

= h�x;�i�

= P�(�x)

The center of the projections is exactly the projection of �x in this direction, P�(�x). Thus

the variation of the projections of the data on the direction � is

nX
i=1

kP�(xi)� P�(�x)k2 =
nX
i=1

khxi;�i�� h�x;�i�k2

=
nX
i=1

kh(xi � �x)�i�k2 =
nX
i=1

h(xi � �x)�i2k�k

=
nX
i=1

h(xi � �x);�i2 =
nX
i=1

((xi � �x)T�)2

=
nX
i=1

�
T (xi � �x)(xi � �x)T�

= �
T (X � �X)(X � �X)T�

The rest of the argument is very similar to the proof for Lemma 2.2.2 . We conclude

that when � is the �rst eigenvector direction of (X � �X)(X � �X), the projections of the

data on this direction have the maximum variation. This �rst eigenvector is also called

the �rst principal component direction of the matrix X. Again, if the columns of X;Y are

independent with each other and are from distributions which are absolutely continuous

with respect to d dimensional lebesgue measure, the �rst eigenvector of (X � �X)(X � �X)T

exists and is unique almost surely (modulo the � ip of direction).
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2.2.2 Algorithm for the CPD and COD

In this part, the algorithms for the computations of the two canonical directions are

developed. We will also discuss the existence and uniqueness of these two directions. The

discussion results in the proofs of Theorem 2.1.1 and Theorem 2.1.2.

Again, we assume that Xd�n = (x1; � � � ;xn) and Yd�n = (y1; � � � ;yn) are paired

HDLSS data sets, which means that xi and yi (i = 1; � � � ; n) are the expression vectors for

associated samples. E.g. for the NCI60 data, we have X as the expression matrix for the

cDNA samples and Y as the expression matrix for the corresponding A�y samples, mea-

sured on the same list of genes. The direction vectors of the line segments which connect

the same sample from di�erent platforms are the columns of X � Y .

Algorithm for the CPD

We intend to �nd a vector vcpd which maximizes the sum of squared lengths of the

projected line segments in this direction. That is to maximize

nX
i=1

kPvcpd(xi � yi)k2 = vTcpd(X � Y )(X � Y )Tvcpd (over vcpd):

According to Lemma 2.2.2, vcpd is the �rst eigenvector of (X � Y )(X � Y )T , which can

be easily calculated by eigenvalue analysis.

If the �rst eigenvalue of (X � Y )(X � Y )T is strictly larger than all the rest eigenval-

ues, the �rst eigenvector of (X � Y )(X � Y )T exists and is unique (modulo the � ip of

direction), which means that the CPD exists and is unique. This proves Theorem 2.1.1.
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Algorithm for the Canonical Orthogonal Direction

Before we give the algorithm for COD, we �rst introduce some de�nitions and lemmas

about the linear algebra.

De�nition 2.2.2. A nonzero vector � 2 Rd is called a normalized direction vector, if

k�k = 1.

De�nition 2.2.3. We de�ne the following notations:

HX : the space spanned by the column vectors of X.

H[X;Y ]: the space spanned by all the column vectors of X and Y .

HX�Y : the space spanned by the column vectors of X � Y .

De�nition 2.2.4. HX
?: the orthogonal complement of the space HX in Rd, which means

HX �HX
? = R

d.

H[X;Y ]=X is de�ned as the orthogonal complement of the space HX in the space H[X;Y ],

which means HX �H[X;Y ]=X = H[X;Y ].

Lemma 2.2.4. Let H be any proper subspace of Rd. H? is the orthogonal complement of

the space H. For any nonzero vector � 2 Rd, there exist two normalized vectors �1 2 H
and �2 2 H?, such that � has an orthogonal decomposition:

� = h�;�1i�1 + h�;�2i�2:

Note that If � =2 H and � =2 H?, the two such directions �1 and �2 are unique (modulo

the � ip of direction). The �1 is actually the direction vector of the projection of � onto

the space H, and the �2 is the direction vector of the projection of � onto the space H?.
Suppose vcod is the canonical orthogonal direction in Theorem 2.1.2. According to
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Lemma 2.2.4, it can be orthogonally decomposed into two directions such that

vcod = hvcod;�1i�1 + hvcod;�2i�2;

where �1, �2 are normalized vectors and �1 2 H[X;Y ] , �2 2 H[X;Y ]
?. Then the projection

of any vector v 2 H[X;Y ] on this normalized direction vcod can be expressed as:

Pvcod(v) = hv;vcodivcod
= hv; (hvcod;�1i�1 + hvcod;�2i�2) ivcod
= hv; hvcod;�1i�1 ivcod + hv; hvcod;�2i�2 ivcod
= hvcod;�1ihv;�1ivcod + hvcod;�2ihv;�2ivcod:

Since v 2 H[X;Y ], we have hv;�2i = 0 (because �2 2 H[X;Y ]
?). Thus ,

Pvcod(v) = hvcod;�1ihv;�1ivcod: (2.1)

Recall that De�nition 2.1.2 requires that vcod �rstly needs be orthogonal to all the direction

vectors of the line segments, which means it is orthogonal to the space HX�Y , thus

Pvcod(X � Y ) = 0 =) Pvcod(X) = Pvcod(Y ):

Since X and Y have exactly the same projections on the direction vcod, the second condition

in De�nition 2.1.2 actually assures that the COD is the one which maximizes the variability

of the projections of the data in this direction. The projection of the ith sample of X can

be expressed as Pvcod(xi). The center of the samples in X is �x. Thus the variability of the

projected data on vcod is
nX
i=1

kPvcod(xi � �x)k2:
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Since xi � �x 2 H[X;Y ], we have

nX
i=1

kPvcod(xi � �x)k2 =
nX
i=1

khvcod;�1ihxi � �x;�1ivcodk2

=
nX
i=1

hvcod;�1i2vTcod(xi � �x)(xi � �x)Tvcod;

where �1 2 H[X;Y ].

In order to maximize this variation, we choose vcod such that hvcod;�1i = 1. This means

that vcod 2 H[X;Y ], i.e. the maximizing direction is in the subspace generated by the data.

Considering vcod ? HX�Y (because vcod is orthogonal to all the direction vectors of the

line segments), we have vcod 2 H[X;Y ]=(X�Y ). This also means vcod 2 H[X�Y;Y ]=(X�Y ), since

H[X;Y ] = H[X�Y;Y ].

Next, we will derive a set of basis vectors for the space H[X�Y;Y ]=(X�Y ). Suppose the

matrix [X � Y; Y ] has an orthogonal-triangular decomposition

[X � Y; Y ]d�2n = Qd�2nR2n�2n;

where R is an upper triangular matrix, and Q is a d�2n unitary matrix (QTQ = I2n�2n). As

we mentioned in Theorem 2.1.2, the columns of X and Y are from continuous distributions,

which assumes that [X � Y; Y ] is a full rank matrix a.s. and hence both Q and R are

full rank matrices a.s. These two matrices exist and are unique if we ignore the direction

� ip in Q and ignore the sign of the corresponding entries in R. We decompose Q as

Q = [Q1; Q2], where Q1 is the �rst n columns, and Q2 is the last n columns of Q. Because

R is a full rank upper triangular matrix, Q1 forms a basis for the space HX�Y and Q2 forms

a set basis vectors for the space H[X�Y;Y ]=(X�Y ), i.e.

HQ1 = HX�Y ;

HQ2 = H[X�Y;Y ]=(X�Y ):
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Since vcod 2 H[X�Y;Y ]=(X�Y ) = HQ2 , it can be expressed as a linear combination of the

columns of Q2 , say

vcod = Q2C;

where C is an n� 1 vector.

The variation to be maximized (over �, i.e. over C) is :

nX
i=1

kPvcod(xi � �x)k2 =
nX
i=1

vTcod(xi � �x)(xi � �x)Tvcod

=
nX
i=1

CT (QT
2 (xi � �x))((xi � �x)TQ2)C

= CT (QT
2 (X � �X))(QT

2 (X � �X))TC:

From Lemma 2.2.3, in order to maximize the above variability, we choose C as the �rst

eigenvector of

QT
2 (X � �X)(X � �X)TQ2:

To produce the canonical orthogonal direction, we �rst calculate Q2 by the orthogonal-

triangular decomposition of [X � Y; Y ], then we get C as the �rst eigenvector of QT
2 (X �

�X)(X � �X)TQ2 by the eigenvalue analysis. The canonical orthogonal direction is

vcod = Q2C:

When the columns of X and Y are independent with each other and are from distribu-

tions which are absolutely continuous with respect to d dimensional lebesgue measure, each

of X, Y , and X � Y is a full rank matrix a.s. Thus, the orthogonal-triangular decompo-

sition exists and is unique a.s (modulo the � ip of directions). Also, the �rst eigenvector

of QT
2 (X � �X)(X � �X)TQ2 exists and is unique a.s. These establishes the existence and

uniqueness of the COD, and can be treated as the proof for Theorem 2.1.2.

Note that vcpd is the �rst eigenvector of (X � Y )(X � Y )T , thus vcpd 2 HX�Y . The

COD is orthogonal to all the directions of line segments, i.e. vcod 2 H[X�Y;Y ]=(X�Y ). Thus

we have vcod ? vcpd. The de�nitions of these two directions assure that they are orthogonal
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to each other, hence we could derive CPD and COD separately.

2.3 Asymptotic results for the CPD

The CPD shows the systematic di�erences between two paired HDLSS data. It could

be used for adjusting the these di�erences, as we have done for the NCI60 data in Section

2.1. In the previous Section, we have given the algorithms to produce CPD and these al-

gorithms indicate the existence and uniqueness of the CPD, under some mild conditions.

In this Section, we will study the asymptotic properties of the CPD using a linear shift

model, when the sample sizes are �xed and the dimension increases to in�nity. In Section

2.3.1, we discussed three types of viewpoints to study asymptotic properties. Section 2.3.2

introduces a linear shift model, which is an underlying conceptual model for studying the

batch di�erence between two HDLSS data sets with Gaussian errors. In Section 2.3.3, we

study the asymptotic properties of the CPD for two data sets under the linear shift model.

Section 2.3.4 gives the simulation veri�cation for the results in Section 2.3.3.

2.3.1 Three Types of Asymptotic Studies

Using multivariate view, a random matrix Xd;n are viewed as n vectors in d dimensional

space, or n samples from the distribution of a d dimensional variable. There are at least

three types of asymptotic viewpoints to study a random matrix Xd;n. We call them the n

asymptotics, the (d; n) asymptotics and the d asymptotics.

The n asymptotics

The n asymptotics studies the problem when the dimension of the variable d is �xed and

the sample size n goes to in�nity. This is the traditional mathematical statistical setting,

such as the normal approximation to Maximum Likelihood Estimation (MLE); the central

limit theorem and so on. However, the concepts that are revealed by this approach are not

very relevant to HDLSS data analysis, because the sample size n is small, and even smaller

than the dimension d.
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The (d; n) asymptotics

The (d; n) asymptotic studies the problem when both d and n increase to in�nity. This

research falls in the area, called random matrices, see Silverstein (1989), Bai et al. (1988).

The main problems include the distribution of the eigenvalues, the spectral measure of a

random symmetric matrix and so on. Fujikoshi (2004) reviewed some (d; n) asymptotic

results. Johnstone (2001) studied the distribution of the �rst eigenvalue of the random

matrix, when the dimension d and the sample size n both increase to in�nity and the ratio

of them goes to 0, a constant, and 1 respectively.

The d asymptotics

The third type of asymptotics is d asymptotics, which means that the sample size n is

�xed and the dimension d goes to in�nity. This viewpoint is much more practical than the

�rst two, especially in micorarray data analysis. Hall et al. (2005) studied the geometric

representation of a random matrix Xd;n, when the dimension is high. From multivariate

view, each column of Xdn is a point in d dimensional space. The matrix Xdn can be

represented as a cloud of n points in the d dimensional space. Hall et al. (2005) conclude

that when d goes to in�nity, under some mild conditions, these points converge to the

vertices of a simplex with all the edges of the same length, after scaling by a constant

d�
1
2 . They also study and compare the d asymptotic properties of several discrimination

methods, such as SVM, PAM and DWD. We will discuss these results in Chapter 3. Ahn

et al. (2005) establish the same result as in Hall et al. (2005) under a milder condition with

Gaussian assumptions, which will be discussed in Theorem 2.3.2.

In this dissertation, we will focus on the d asymptotics for HDLSS data. The d�asymptotics
provide an important viewpoint of HDLSS data. E.g, for a microarray data set, It explains

what will happen if the number of measured genes increases. In the next subsection, we

will introduce an underlying conceptual model, called the linear shift model to study the

CPD between two data sets.
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2.3.2 Linear Shift Model

Suppose that f(X(1); Y (1)) � � � ; (X(d); Y (d)); � � � g is a series of paired HDLSS random

matrices, where the dimensions of these paired matrices are 1�n; � � � ; d�n; � � � respectively.
For example, the �rst paired matrices (X(1); Y (1)) are the expression values for 1 genes, and

the paired matrices (X(d); Y (d)) are the expression values for d genes, d = 1; 2; 3; � � � . From
now on, any variable with superscript (d) indicates that it is speci�cally for the data with

d genes.

Using the multivariate view, each ofX
(d)
d�n = (x1

(d); � � � ;xn(d)) and Y
(d)
d�n = (y1

(d); � � � ;yn(d))

is a cloud of n points in the d dimensional space (d > n). We construct the linear shift

model, such that

xi
(d) = si

(d) + �
(d)
1;i ; (2.2)

yi
(d) = si

(d) + v(d) + �
(d)
2;i (i = 1; 2; � � � ; n): (2.3)

The si
(d) represents the vector for the true expression values of d genes in the ith array,

and it is unknown. In the batch X(d), the observation vector of the ith array is the sum

of si
(d) (true expression values) and �

(d)
1;i (random errors). In the other batch, Y (d), the

observations have systematic batch di�erence v(d), from the observations in the batch X(d).

The systematic di�erence v(d) = (v
(d)
1 ; � � � ; v(d)d )T is a d dimensional vector. The asymptotic

norm of the triangular sequence fv(d)(d = n+1; � � � )g is of the order cd�, in the sense that

lim
d!1

k 1

cd�
v(d)k = 1; (2.4)

where c is a constant and � is the parameter which describes how fast the length of the

systematic di�erences increase as the dimension d goes to in�nity. For example, v
(d)
d�1 =

(1; � � � ; 1)T has c = 1; � = 1
2 . The di�erence vectors are the same for any pair of arrays,

i.e. (xi
(d);yi

(d)); i = 1; 2; � � � ; n. We de�ne the normalized direction vector of v(d) as v
(d)
t ,

i.e.

v
(d)
t =

1

cd�
v(d) (2.5)

39



then the asymptotic norm of v
(d)
t is 1, i.e.

lim
d!1

kv(d)t k = 1; (2.6)

The errors vectors �
(d)
1;i ; �

(d)
2;i (i = 1; � � � ; n; d = n + 1; � � � ) are i.i.d random variables

and follow the multivariate Gaussian distribution with mean zero and a given sequence

covariance matrices f�(d) (d = n+ 1; � � � )g.
If we de�ne

S(d) = (s1
(d); � � � ; sn(d))d�n; V

(d)
t = (v

(d)
t ; � � � ;v(d)t )d�n;

�
(d)
1 = (�

(d)
1;1; � � � ; �(d)1;n)d�n; �

(d)
2 = (�

(d)
2;1; � � � ; �(d)2;n)d�n;

Equations (2.2) and (2.3) can be expressed as

X(d) = S(d) +�
(d)
1 ; (2.7)

Y (d) = S(d) + cd�V
(d)
t +�

(d)
2 (2.8)

Figure 2.3 shows how the data sets are constructed. Each point in Figure 2.3 represents

a d dimensional vector of the expression values for an array. The black dots are the true

expression values for the arrays in batch X(d), i.e. si
(d)s in Equations (2.2) and (2.3). Blue

dots represent the observations in the batch X(d), each of which deviates from the true

expression value si by a Gaussian random variable. The dashed line segments are used to

connect the associated pairs. These line segments show the systematic di�erence vector,

i.e. v
(d)
t , which are exactly the same for all the paired samples. The true expression values

in the batch Y (d), shown as black diamonds, have systematic di�erences with those of the

batch X(d). The red diamonds represent the observations in the batch Y (d), which deviate

from the true expression values by a Gaussian random variables.

2.3.3 The Consistency and Inconsistency of the empirical CPD

In the linear shift model, shown in Figure 2.3, the observed data are the blue dots and the

red diamonds. If there are no measurement errors, i.e. �
(d)
1;i = 0; �

(d)
2;i = 0 (i = 1; 2; � � � ; n),
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Figure 2.3: The underlying conceptual linear shift model. Blue points represent the ob-
servations in the batch X(d). Red diamonds represent the observations in the batch Y (d).
Dashed lines show the direction of the systematic batch di�erence.

all the pair vectors which connect the blue dots and the red diamonds are in the same

direction as v(d), i.e. they are all parallel. Thus the direction vector v
(d)
t represents the

theoretical Canonical Parallel Direction (theoretical CPD), in the sense that if there are

no measurement errors, the batch di�erence will be totally removed after rigid shifting of

the blue and red classes along this theoretical CPD. The data sets we observed X(d) and

Y (d), i.e. blue dots and red diamonds, are driven by Gaussian errors. Using the algorithm

in Section 2.2, we produce an empirical Canonical Parallel Direction (empirical CPD),

denoted as v
(d)
e . Because of the measurement errors in the data, the empirical CPD is

usually di�erent from the theoretical CPD. If we measure more and more genes, i.e. d goes

to in�nity, what will be the di�erence between them?

Note that the empirical CPD v
(d)
e is a direction vector, i.e. kv(d)e k = 1 and the theoretical

CPD has asymptotic norm 1, i.e. lim
d!1

kv(d)t k = 1. We use the Absolute value of the Inner

Product (AIP) between the theoretical and the empirical CPD, i.e. AIP = j(v(d)t )Tv
(d)
e j

to evaluate the similarity between them. Thus AIP ! 1 in probability (for any given

� > 0, lim
d!1

P (jAIP � 1j > �) = 0) means that v
(d)
t and v

(d)
e are asymptotically the same in
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probability (modulo the � ip of direction), which we called the consistency of v
(d)
e . The

statement AIP ! 0 in probability (for any given � > 0, lim
d!1

P (AIP > �) = 0) indicates

that v
(d)
t and v

(d)
e are asymptotically orthogonal in probability, which is called the strong

inconsistency of v
(d)
e .

The algorithm in Chapter 2, Section 2.2.2 indicates that the CPD between two data

sets X(d) and Y (d) is the �rst eigenvector of the matrix X(d) � Y (d). Thus studying the

d asymptotic properties of the CPD is similar to studying the d asymptotic properties of

the �rst eigenvector of a d � n matrix. The following theorem presents the d asymptotic

results for the CPD between X(d) and Y (d) under the linear shift model, when the sequence

of covariance matrices �(d) (d = n+1; � � � ) of the errors is a sequence of identity matrices.

Theorem 2.3.1. In the linear shift model of Section 2.3.2, if the sequence of covariance

matrices of the errors �d (d = n + 1; � � � ) is a sequence of identity matrices Id�d (d =

n + 1; � � � ), depending on the assumed value of � (note: v
(d)
t = 1

cd�v
(d)), we have the

following conclusions for the empirical CPD v
(d)
e and the theoretical CPD v

(d)
t between X(d)

and Y (d). As the sample size n is �xed, de�ning that AIP = j(v(d)t )Tv
(d)
e j

1: if � > 1
2 , v

(d)
e is asymptotically the same as v

(d)
t in probability, i.e. AIP ! 1 in prob:

as d!1 (consistency of direction)

2: if � < 1
2 , v

(d)
e is asymptotically orthogonal to v

(d)
t in probability, i.e. AIP ! 0 in prob:

as d!1 (strong inconsistency of direction)

Proof. This theorem will be proved as a special case of Theorem 2.3.3.

Each of X(d) and Y (d) is a cloud of points in d dimensional space. As studied by Hall

et al. (2005), the clouds expand to the vertices of a randomly rotated simplex, with all the

edges having the same lengths. The speed of expansion as d goes to in�nity, is decided by

the covariance matrices of the errors. E.g. if the covariance matrices are identity matrices,

this speed is d
1
2 . When d goes to in�nity, the length of the systematic di�erences also

increase, with the speed of d�. If the two data clouds expand faster than the systematic

di�erence, then the two clouds will �nally overlap. The within group variation will dominate

the systematic di�erences and the empirical CPD between them will be asymptotically
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orthogonal to the theoretical one. We call this the strong inconsistency of the empirical

CPD. Note that if two random vectors v1
(d), v2

(d) are independent and are from the d

dimensional standard Gaussian distribution, they are asymptotically orthogonal to each

other in probability, i.e.

j(v1(d))T (v2)(d)j
kv1(d)kkv2(d)k

! 0 in probability: (2.9)

If the length of the systematic di�erence increases faster than the expansion of the two

populations, then the systematic di�erence will dominate the variation of each cloud and

the empirical CPD will converge to the theoretical CPD in probability. This is called the

consistency of the empirical CPD.

In the real data analysis, the covariance matrices of the errors �(d) (d = n+1; � � � ) are
not assured to have such simple structures as identity matrices. Hall et al. (2005) gave some

conditions, under which the asymptotic geometric representation of a matrix Xd�n is the

the same as if the covariance matrices are identity matrices. Ahn et al. (2005) assume that

columns of Xd�n follow the Gaussian distribution and obtain the same conclusion when the

eigenvalues of �(d) are \su�ciently di�use", which are weaker conditions than those in Hall

et al. (2005).

Theorem 2.3.2. For a �xed number n, consider a sequence of random matrices fX(1); � � � ; X(d); � � � g,
where X(d) is a d�n matrix (d = 1; 2; � � � ). The columns of X(d) are from the d dimensional

normal distribution with mean zero and the covariance matrix �(d). Let �
(d)
1 > � � � > �

(d)
d be

the ordered triangular array of eigenvalues of the covariance matrices S
(d)
D (d = 1; 2; � � � ),

and let S
(d)
D (d = 1; 2; � � � ) be the the corresponding uncentered dual sample covariance ma-

trices, i.e. �(d) = (X(d))TX(d). Suppose the eigenvalues of �(d) are su�ciently di�use, in

the sense that Pd
j=1(�

(d)
j )2

(
Pd

j=1 �
(d)
j )2

�! 0 as d �!1: (2.10)

Then the sample eigenvalues behave as if they are those of the identity covariance in the
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sense that
S
(d)
D

c(d)
�! In in probability, as d!1, where c(d) =

Pd
j=1 �

(d)
j :

The theorem says that if the eigenvalues of the covariance matrices satisfy the condition

(2.10), the data become spherical as the dimension d increases. In this situation, all the

eigenvalues of the scaled sample uncentered covariance matrices
S
(d)
D

c(d)
= (X(d))TX(d)

c(d)
converge

to 1 in probability. The condition (2.10) means that there is no dominant set of eigenvalues.

Ahn et al. (2005) give some cases where this conditions holds:

� Constant: �
(d)
1 = � � � = �

(d)
d = C(d), where C(d) can be a constant, or a function of d,

because Pd
j=1(�

(d)
j )2

(
Pd

j=1 �
(d)
j )2

=
d(C(d))2

(dC(d))2
=

1

d
�! 0 as d �!1:

� Fixed Blcok, Small �: �
(d)
1 = � � � = �

(d)
k = c1d

�; �
(d)
k+1 = � � � = �

(d)
d = c2, where

� < 1; c1; c2 > 0, because

Pd
j=1(�

(d)
j )2

(
Pd

j=1 �
(d)
j )2

=
kc21d

2� + (d� k)c22
(kc1d� + (d� k)c2)2

=
O(d _ d2�)
O(d2)

�! 0 as d �!1:

� Polynomial: �
(d)
j = j��; j = 1; � � � ; d;8� > 0, because

Pd
j=1(�

(d)
j )2

(
Pd

j=1 �
(d)
j )2

=

Pd
j=1 j

�2�

(
Pd

j=1 j
��)2

=
O(d�2�+1)

O(d�2�+2)
�! 0 as d �!1:

Ahn et al. (2005) also give some cases where the condition (2.10) doesn't hold:

� Fixed Blcok, Large �: �
(d)
1 = � � � = �

(d)
k = c1d

�; �
(d)
k+1 = � � � = �

(d)
d = c2, where

� > 1; c1; c2 > 0, because

Pd
j=1(�

(d)
j )2

(
Pd

j=1 �
(d)
j )2

=
kc21d

2� + (d� k)c22
(kc1d� + (d� k)c2)2

�! c1 as d �!1:

� Exponential: �
(d)
j = j ; j = 1; � � � ; d;80 <  < 1, because

Pd
j=1(�

(d)
j )2

(
Pd

j=1 �
(d)
j )2

=
(1� )2(1� 2d)

(1� )2(1� (d))2
�! 1� 

1 + 
as d �!1:
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� Finite Support: �
(d)
j = c1; j = 1; � � � ; k; �(d)k+1 = � � � = �

(d)
d = 0; k < d; c

(d)
1 > 0, because

Pd
j=1(�

(d)
j )2

(
Pd

j=1 �
(d)
j )2

=
1

k

Based on the above results, we are going to study the convergence of the CPD for paired

data sets X(d); Y (d) in the linear shift model with covariance matrices �(d) (d = n+1; � � � ).

Theorem 2.3.3. In the linear shift model of Section 2.3.2, assume that the eigenvalues of

the covariance matrices �(d) (d = n+ 1; � � � ) are �(d)1 > � � � > �
(d)
d and they are su�ciently

di�use as in (2.10). Suppose that c(d) =
Pd

i=1 �
(d)
i and lim

d!1
log(c(d))

log(d)
= h, where h is a

constant. Depending on the assumed value of �, we have the following conclusions for the

empirical CPD v
(d)
e and the theoretical CPD v

(d)
t between X(d) and Y (d).

As the sample size n is �xed, again de�ning that AIP = j(v(d)t )Tv
(d)
e j,

1: if � > h
2 , v

(d)
e is asymptotically the same as v

(d)
t in probability, i.e. AIP ! 1 in prob:

as d!1 (consistency of direction)

2: if � < h
2 , v

(d)
e is asymptotically orthogonal to v

(d)
t in probability, i.e. AIP ! 0 in prob:

as d!1 (strong inconsistency of direction)

Notice that Theorem 2.3.1 is a special case of Theorem 2.3.3. When �(d) = Id, all the

eigenvalues are 1, which are su�ciently di�use, in the sense of Equation (2.10). Note thatPd
i=1 �

(d)
i = d and h = lim

d!1
log(d)

log(d)
= 1. The results in Theorem 2.3.3 indicate the results

in Theorem 2:3:1. Hence, we only need to prove Theorem 2.3.3. The proof of Theorem

2.3.3 will be given in Section 2.3.5.

The conclusions in Theorem (2.3.3) provide a way to examine the e�ect of random

errors, when calculating the empirical CPD. As we have discussed before, when d goes to

in�nity, the two data clouds X(d) and Y (d) are expanding. Although the covariance matrices

of their columns are not identity matrices, Theorem 2.3.2 indicates that these two clouds

still expand to the vertices of two randomly rotated simplices respectively, normalized the

eigenvalues of the covariance matrices are su�ciently di�use. The asymptotic properties

of the empirical CPD depend on the comparison between the speed of cloud expansion,
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i.e. dh=2 and the speed of the increasing systematic di�erence, i.e. d�. When � > h=2, the

systematic di�erence dominates the variation within each group, i.e. the variation of random

errors. Hence the empirical CPD converges to the theoretical one. One the other hand,

when � < h=2, the systematic di�erence is relatively small, and the two approximating

simplices completely overlap. In this situation, the empirical CPD is a random direction

vector, thus it is orthogonal to the theoretical CPD, as seen in (2.9).

The above two theorems give the consistency and inconsistency of the empirical CPD

when the eigenvalues are su�ciently di�use. Sometimes, there is one or more eigenvalues,

which dominate all the others, see the given examples which follow Theorem 2.3.2. When

the condition 2.10 is not satis�ed, the consistency of the empirical direction not only depends

on the constant � but also the structure of the covariance matrix. The next theorem studies

the data sets with a very special covariance matrix, called the Spike Covariance Matrix.

In this situation, the condition (2.10) is not satis�ed.

Theorem 2.3.4. Two paired data sets X(d) and Y (d) are constructed as in the linear shift

model, see Section 2.3.2. Suppose the covariance matrix of the measurement errors has a

\spike structure", in the sense that the eigenvalues of �d are �1;d = d�; �d;2 = � � � = �d;d = 1,

where � � 1 (If � < 1, the condition (2.10) holds; see Theorem 2.3.3). De�ne the d

dimensional vector v
(d)
s = (1; 0; � � � 0)T as the Spike Direction.

As the sample size n is �xed,

1: if 2� > �, v
(d)
e is asymptotically the same as the empirical CPD v

(d)
t in probability, i.e.

j(v(d)t )Tv
(d)
e j ! 1 in prob: as d!1 (consistency of direction)

2: if 2� < �, v
(d)
e is asymptotically the same as the spike direction v

(d)
s in probability, i.e.

j(v(d)s )Tv
(d)
e j ! 1 in prob: as d!1.

When the covariance matrices have the above spike structure, the �rst eigenvalue dom-

inates all the other eigenvalues. When d goes to in�nity, neither cloud of X(d) and Y (d)

expands to the vertices of a rotated simplex. The expansion is mainly along the spike direc-

tion v
(d)
s , with the rate of speed d�=2. Again, the systematic di�erences increase with the

speed of d�. The asymptotic properties of the empirical CPD depend on the comparison

between � and �=2. Note that in Theorem (2.3.4), when 2� > �, the empirical CPD v
(d)
e
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converge to the theoretical CPD v
(d)
t . However, it may or may not be orthogonal with the

spike direction v
(d)
s , because the theoretical CPD is not necessarily orthogonal with the

spike direction.

2.3.4 Simulation Study

In this subsection, we present several simulation data sets to illustrate the results in

Theorem 2.3.1, 2.3.3, and 2.3.4 respectively.

Simulation 1 for Theorem 2.3.1

In the linear shift model, we set v = ( 1p
d
; � � � ; 1p

d
)T , The random errors �is are i.i.d and

are from N(0; Id). We independently generate data sets (X(d); Y (d)) as in (2.7) for n = 20,

the dimensions d = 40+ 21; 40+ 22; � � � ; 40+ 215 and � = �1; 0; 0:25; 0:5; 0:75; 1. There are
totally 15� 6 = 90 pairs of data sets. For each pair of (X(d) and Y (d)), the empirical CPD

v
(d)
e is calculated using the algorithm introduced in Section 2.2. The theoretical CPD is the

normalized direction vector v = ( 1p
d
; � � � ; 1p

d
)T . We calculate the Absolute Inner Product

(AIP) between these two directions. The results are organized in Figure 2.4:

Each plot in Figure 2.4 shows the Absolute Inner Products (AIPs) between the empiri-

cal CPD and the theoretical CPD for the paired data sets, simulated with a given �. The

AIPs are plotted against the dimension d. The three subplots in the top row illustrate the

results for � = �1; 0; 0:25 respectively. Since � < 0:5, according to Theorem 2.3.1, the

AIPs converge to 0 in probability, which are shown by the curves in these three subplots.

When � = 0:25, the AIPs aren't close to 0 until d = 40 + 215. However, the trend of

the convergence is clear. When � = 0:5, the AIPs vary between 0.97 to 0.98, as shown in

the second row, �rst column subplot. There is no trend of convergence to 0 or 1. When

� = 0:75 and 1, the AIPs converge to 1, which is shown the the second row, second column

and third column subplots. These two subplots indicate that the empirical CPD converges

to the theoretical CPD and hence verify the consistency of the empirical parallel direction.

Note that the scales on the y axes are di�erent in these subplots. In order to com-
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Figure 2.4: Simulation results for Theorem 2.3.1. Each subplot illustrates the results for
data sets with a choice of �. The three plots in the �rst row indicate the strong inconsistency
of the empirical CPD, i.e. the AIP converges to 0. The last two plots in the second row
illustrate the consistency of the empirical CPD. The second row, �rst colum subplot is for
the data sets with � = 0:5, which shows no trend of convergence. These plots are consistent
with the conclusions in Theorem 2.3.1.

pare the speeds of the convergence for the data sets with di�erent values of �, in Figure 2.5,

we show the same results as in Figure 2.4. All the subplots in Figure 2.5 have the same axes.

When � < 1=2, the three subplots in the top row indicate that small � leads to fast con-

vergence to 0. When � > 1=2, it's not easy to compare the convergence speed for � = 0:75

and � = 1, using Figure 2.5. From the last two subplots in Figure 2.4, we can see clearly

that larger � leads to faster speed of convergence to 1.

Simulation 2 for Theorem 2.1.2
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Figure 2.5: Simulation results for Theorem 2.3.1. It shows the same results as in Figure
2.4, using the same axes for each subplot. This plot shows the convergence (� = 0:75; 1:0),
and strong inconsistency (� = �1; 0; 0:25) more clearly.

In Theorem 2.3.3, although the covariance matrices are not identity matrices. The eigen-

values of the covariance matrices are su�ciently di�used, i.e. they satisfy the condition

(2.10). We generate paired data sets (X(d); Y (d)) as in (2.7) with �d = diag(d�; 1; � � � ; 1).
normalized � 6 1, the condition (2.10) is satis�ed. In this simulation, we choose � = 0:5.

Similar with Simulation 1, paired data sets are simulated with n = 20, d = 40 + 21; 40 +

22; � � � ; 40 + 215 and � = �1; 0; 0:25; 0:5; 0:75; 1. The results are shown in the Figure 2.6.

The conclusions are the same as Simulation 1. When � = �1; 0; 0:25, the AIPs converge
to 0. When � = 0:5, there is no trend of convergence to 0 or 1. When � = 0:75; 1, the

AIPs converge to 1. The �rst eigenvalue of the covariance matrices is larger than the rest

eigenvalues. However, it doesn't dominate the other eigenvalues, i.e. the eigenvalues are
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Figure 2.6: Simulation results for Theorem 2.3.3. Each subplot illustrates the results for
data sets with a choice of �. The three plots in the �rst row indicate the strong inconsistency
of the empirical CPD, i.e. the AIP converges to 0. The last two plots in the second row
illustrate the consistency of the empirical CPD. The second row, �rst colum subplot is for
the data sets with � = 0:5, which shows no trend of convergence. These plots are consistent
with the conclusions in Theorem 2.3.3.

su�ciently di�use, as in (2.10). According to Theorem 2.3.2, the sample eigenvalues behave

as if they are those of the identity covariance matrices. Thus we obtain similar asymptotic

properties as in Theorem 2.3.1.

The value of � also has e�ect on the speed of convergence. The conclusions are the same

as in Simulation 1, i.e. when � < 1=2, the three subplots in the top row show that small �

leads to fast convergence to 0; when � > 1=2, larger � leads to faster speed of convergence

to 1.
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Simulation 3 for Theorem 2.3.4

In Theorem 2.3.4, the covariance matrices have a \spike structure", i.e. �d = diag(d�; 1; � � � ; 1)
with � > 1. Because � > 1, the condition (2.10) doesn't hold, i.e. the �rst eigenvalue dom-

inate all the others. We set � = 2 for the spike covariance matrices in our simulated data.

Multiple pairs of data sets are simulated with n = 20, � = 0:5; 1; 1:5 and the dimensions

d = 40 + 21; 40 + 22; � � � ; 40 + 215. We choose the theoretical CPD as v = ( 1p
d
; � � � ; 1p

d
)T .

The spike direction (the �rst eigenvector of the covariance matrix) is vs = (1; 0; � � � ; 0)T .
The AIPs between the empirical CPD and the theoretical CPD are computed and shown

in the top row of Figure 2.7. We also compute the AIPs between the empirical CPD and

the spike direction, which are shown in the second row of Figure 2.7.

The two subplots in the �rst column are for the data sets with � = 0:5. Because

2� < 2 = �, Theorem 2.3.4 indicate that the empirical CPD will asymptotically con-

verge to the spike direction, which is exactly what we observed in the second row, �rst

column subplot. The plot on the top row, �rst column shows that this empirical CPD is

also asymptotically orthogonal to the theoretical CPD. Note that this is not already true

and It depends on your data settings. In our simulated data, the chosen theoretical CPD

v = ( 1p
d
; � � � ; 1p

d
)T is asymptotically orthogonal with the spike direction vs = (1; 0; � � � ; 0)T .

The middle two subplots of Figure 2.7 illustrate that there are no trend of convergence when

2� = �. The third columns are for the data sets with � = 1:5. Since 2� > 2 = �, the

second conclusion in Theorem 2.3.4 implies that the empirical CPD converge to the theo-

retical CPD, which is shown in the top row, third column subplot. Again, the empirical

CPD is not necessary orthogonal to the spike direction. In our data setting, we have them

orthogonal to each other, as shown in the top row, third column subplot.

For this simulation, we tried di�erent � values to study the speed of convergence. We

found that when 2� < �, larger � leads to a faster speed of convergence to the spike direc-

tion; when 2� > �, larger � leads to a slower speed of convergence to the theoretical CPD.

The additional plots are presented on the website for this dissertation at Liu (2007b).
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Figure 2.7: Simulation results for Theorem 2.3.4. The two subplots in each column illustrate
the results for data sets with a choice of �, i.e. the two subplots in the �rst column
corresponding to the data sets with � = 0:5. Three subplots in the �rst row illustrate the
AIPs between the empirical CPD and the theoretical CPD. The three subplots in the seond
row show the AIPs between the empirical CPD and the spike direction.

2.3.5 Proofs of the Theorems

In this subsection, we will prove Theorem 2.3.1, 2.3.3 and 2.3.4. As we have discussed

before, Theorem 2.3.1 is a special case of 2.3.3, i.e. all the covariance matrices are identity

matrices. The proof of Theorem 2.3.3 indicates the proof for Theorem 2.3.1. In the follow-

ing, we will �rst prove Theorem 2.3.3.

Proofs for Theorem 2.3.3

De�ne Z(d) = X(d) � Y (d) as the di�erences between the paired matrices. According to

Equation (2.7) and (2.8) in the linear shift model, we have
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Z(d) = cd�V
(d)
t +�

(d)
1 ��

(d)
2 ;

where V
(d)
t = (v

(d)
t ; � � � ;v(d)t ), and lim

d!1
kv(d)t k = 1. De�ne �(d) = �

(d)
1 � �

(d)
2 , then the

columns of �(d) follow a Gaussian distribution with means 0 and covariance matrix 2�(d),

since �
(d)
1 and �(d) are independent from Gaussian distribution with mean 0 and covariance

matrix �(d). The batch di�erence matrix between X(d) and Y (d) can be expressed as

Z(d) = cd�V
(d)
t +�(d): (2.11)

As we have concluded in Section 2.2.2, the empirical CPD is the �rst eigenvector of

Z(d)(Z(d))T = (cd�V
(d)
t +�(d))(cd�V

(d)
t +�(d))T .

Because the proof of Theorem 2.3.3 is quite complicated, we organize them into the

following steps:

Step 1: We �rst show that it is enough to assume that �(d) is a diagonal matrix.

Suppose �(d) has the following Singular Value Decomposition (SVD)

�(d) = F�F�1;

where F is an d�d orthonormal matrix, i.e. FF T = Id; � is a diagonal matrix of eigenvalues.

Multiply both sides of Equation (2.11) by F�1, as follows

F�1Z(d) = cd�F�1V (d)
t + F�1�(d): (2.12)

De�ne Z�(d) = F�1Z(d), V
�(d)
t = F�1V (d)

t and ��(d) = F�1�(d), then Equation (2.12)

is equivalent to

Z�(d) = cd�V
�(d)
t +��(d) (2.13)

where suppose V
(�d)
t = (v

(�d)
t ; � � � ;v(�d)t ), then v

(�d)
t = F�1v(d)t . Now, for the new di�erence

matrix Z�(d), the theoretical CPD is the direction vector of v
�(d)
t and the matrix of random

errors is ��(d). The covariance matrix for the random errors F�1�(d) is 2�, which is a
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diagonal matrix. Because F�1F = Id, V
�(d)
t has the same asymptotic length as V

(d)
t , i.e.

lim
d!1

kv�(d)t k = 1. Notice that if the �rst eigenvector of Z(d)(Z(d))T is v
(d)
e , then the �rst

eigenvector of Z�(d)(Z�(d))T = F�1Z(d)(Z(d))TF is v̂e
�(d) = F�1v(d)e . To study the relations

between v
(d)
e and v

(d)
t , v̂e

�(d) and v
�(d)
t , we calculate the inner products, i.e. j(v(d)t )Tv

(d)
e j

and j(v�(d)t )T v̂�(d)j, as follows

j(v�(d)t )T v̂�(d)j = j(v(d)t )TFF�1v̂�(d)j = j(v(d)t )Tv(d)e j (2.14)

Since two inner products are the same, if we could prove the relations of v
�(d)
t and v̂�(d) for

the new data Z�(d), the same results between v
(d)
t and v

(d)
e hold too, by Equation (2.14).

Thus it is enough to assume that �(d) is a diagonal matrix, the same results hold when it

is not. From now on, we assume that �(d) is a diagonal matrix.

Step 2: Asymptotic properties of the uncentered Dual Sample Covariance Matrix.

Suppose Xd�n is a HDLSS data. The uncentered Dual Sample Covariance Matrix of

X is de�nes as XTX, which is a n � n matrix, denotes as SD. The uncentered Sample

Covariance Matrix of X is de�nes as XXT , which is a d�d matrix, denoted as SP . When

n is �xed and d goes to in�nity, the dimension of SP is increasing and it's hard to study

the asymptotic properties of it's eigenvalues directly. Since SP and SD have exactly the

same nonnegative eigenvalues, we can study the eigenvalues of SD to obtain the asymptotic

properties of the eigenvalues of SP .

De�ne 1n as the n� 1 vector with all the entries as 1, then

V
(d)
t = v

(d)
t 1Tn

Suppose �(d) = (�
(d)
1 ; � � � ; �(d)n ), where �

(d)
1 follows the Gaussian distribution with mean zero

and covariance matrix 2�(d). Hence Equation (2.11) implies

Z(d) = cd�v
(d)
t 1n

T +�(d): (2.15)
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The uncentered dual sample covariance matrix of Z(d) is

S
(d)
D = (Z(d))TZ(d) = (cd�v

(d)
t 1n

T +�(d))T (cd�v
(d)
t 1n

T +�(d))

= c2d2�1n(v
(d)
t )Tv

(d)
t 1n

T + cd�1n(v
(d)
t )T�(d) + cd�(�(d))Tv

(d)
t 1n

T + (�(d))T�(d)

� A+B1 +B2 + C (2.16)

where

A = c2d2�1n(v
(d)
t )Tv

(d)
t 1n

T

B1 = cd�1n(v
(d)
t )T�(d)

B2 = cd�(�(d))Tv
(d)
t 1n

T

C = (�(d))T�(d)

The uncentered Dual sample covariance matrix is the sum of four terms A;B1; B2 and C.

Next, we will study the asymptotic properties of them separately.

� The asymptotic properties of A.

A = c2d2�1n(v
(d)
t )Tv

(d)
t 1n

T

= (cd�)21n(v
(d)
t )T (v

(d)
t )1n

T

= (cd�)21nkv(d)t k21nT (2.17)

Because lim
d!1

kv(d)t k = 1, as in Equation (2.4), we obtain

lim
d!1

1

(cd�)2
A = 1n1n

T = Jn (2.18)

where Jn is an n� n matrix with all the entries as 1.

� The asymptotic properties of B1 and B2.

Note that B1 = BT
2 . Thus we only need to focus on B2. Recall that �(d) =

(�
(d)
1 ; � � � ; �(d)n ), where �

(d)
i = (�

(d)
i;1 ; � � � ; �(d)i;d )

T , and �
(d)
i follows a d dimensional Gaus-

sian distribution with mean 0 and covariance matrix 2�(d). Also recall that v
(d)
t =
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(v
(d)
t;1 ; � � � ; v(d)t;n ). Since B2 = cd�(�(d))Tv

(d)
t 1n

T , the ith row, jth column of B2 is

B2(i; j) = cd�(�
(d)
i )Tv

(d)
t = cd�

dX
k=1

�
(d)
i;k v

(d)
t;k (i; j = 1; � � � ; n)

Next, we will prove that

1

cd�(2c(d))1=2
B2(i; j)! 0 in probability; as d!1:

For any given � > 0, using Chebyshev's inequality, we get

P (j 1

cd�(2c(d))1=2
B2(i; j)j > �) 6

Ej 1
cd�(2c(d))1=2

B2(i; j)j
�

(2.19)

For any random variable x with a �nite mean, (Ejxj)2 6 Ejxj2, because Ejxj2 �
(Ejxj)2 = var(jxj) > 0. Thus

(Ej 1

cd�(2c(d))1=2
B2(i; j)j)2 6 Ej 1

cd�(2c(d))1=2
B2(i; j)j2

=
1

2c(d)
E(

dX
k=1

�
(d)
i;k v

(d)
t;k )

2 (2.20)

Since E(
Pd

k=1 �
(d)
i;k v

(d)
t;k ) = 0, and 2�(d) is a diagonal matrix, i.e. �

(d)
i;k1

and �
(d)
i;k2

are

independent (k1 6= k2), we have

E(
dX

k=1

�
(d)
i;k v

(d)
t;k )

2 = var(
dX

k=1

�
(d)
i;k v

(d)
t;k )

=
dX

k=1

(v
(d)
t;k )

2var(�
(d)
i;k )

=
dX

k=1

(v
(d)
t;k )

22�
(d)
k (2.21)
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Using the CauchySchwarz inequality,

(
dX

k=1

(v
(d)
t;k )

22�
(d)
k )2 6

"
dX

k=1

(v
(d)
t;k )

4

#"
dX

k=1

(2�
(d)
k )2

#
(2.22)

Summarizing results from (2.19) to (2.22), we obtain

P (j 1

cd�(2c(d))1=2
B2(i; j)j > �) 6

1

�

1

(2c(d))1=2

"
dX

k=1

(v
(d)
t;k )

4

#1=4 " dX
k=1

(2�
(d)
k )2

#1=4

=
1

�

"Pd
k=1(�

(d)
k )2

(c(d))2

#1=4 " dX
k=1

(v
(d)
t;k )

4

#1=4
(2.23)

Because lim
d!1

dX
k=1

(v
(d)
t;k )

2 = lim
d!1

kv(d)t k = 1, it follows that

lim
d!1

dX
k=1

(v
(d)
t;k )

4
6 lim

d!1

dX
k=1

(v
(d)
t;k )

2 = 1: (2.24)

Recall that the eigenvalues of �(d) have been assumed to be su�ciently di�use (see

Equation (2.10)) and also recall that c(d) =
Pd

i=1 �
(d)
i . Then,

Pd
k=1(�

(d)
k )2

(c(d))2
=

Pd
j=1(�

(d)
k )2

(
Pd

k=1 �
(d)
k )2

�! 0 as d �!1: (2.25)

From (2.23), (2.23) and (2.23), it follows that

P (j 1

cd�(2c(d))1=2
B2(i; j)j > �) ! 0 as d!1: (2.26)

This implies that

j 1

cd�(2c(d))1=2
B2(i; j)j ! 0 in probability as d!1: (2.27)
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An assumption of Theorem (2.3.3) is that c(d) has the following asymptotic property,

lim
d!1

log(c(d))

log(d)
= h: (2.28)

Combining (2.27) and (2.28), we conclude that for i; j = 1; � � � ; n,

1p
2dh=2

1

(2c(d))1=2
B2(i; j) = (

c(d)

dh
)1=2

1

cd�(2c(d))1=2
B2(i; j)

�! 0 in probability; as d!1 (2.29)

Thus

1p
2dh=2

1

(cd�)
B2 �! 0 in probability; as d!1 (2.30)

The same result holds for B1.

1p
2dh=2

1

(cd�)
B1 �! 0 in probability; as d!1 (2.31)

� Asymptotic properties of C.

Recall that C = (�(d))T�(d). We use C(i; j) to represent the ith row, jth column of

C.

When i = j; (i; j = 1; 2; � � � ; n),

C(i; i) =
dX

k=1

(�
(d)
i;k )

2:

Recall that c(d) =
Pd

i=1 �
(d)
i . Next, we are going to prove that

1

2c(d)
C(i; i) �! 1; in probability; as d!1 (2.32)

Because the random variables �
(d)
i;k1

and �
(d)
i;k2

are independent (k1 6= k2), we have
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E

"
1

2c(d)

dX
k=1

(�
(d)
i;k )

2

#
=

1

2c(d)

dX
k=1

E(�
(d)
i;k )

2 =

Pd
i=1 2�

(d)
i

2c(d)
= 1

For any given � > 0, according the Chebyshev's inequality,

P

"
j 1

2c(d)

dX
k=1

(�
(d)
i;k )

2 � 1j > �

#
6

var( 1
2c(d)

Pd
k=1(�

(d)
i;k )

2)

�2

=

Pd
k=1 var((�

(d)
i;k )

2)

(2c(d))2�2
(2.33)

Since �
(d)
i;k follows N(0; �

(d)
k ), then var((�

(d)
i;k )

2) = (�
(d)
k )2. It follows that

P

"
j 1

2c(d)

dX
k=1

(�
(d)
i;k )

2 � 1j > �

#
6

Pd
k=1(2�

(d)
j )2

(2c(d))2
1

�2

=

Pd
k=1(�

(d)
j )2

(c(d))2
1

�2
(2.34)

Again because the eigenvalues of �(d) are su�ciently di�used, i.e. in Equation (2.10)

Pd
k=1(�

(d)
j )2

(c(d))2
=

Pd
j=1(�

(d)
j )2

(
Pd

j=1 �
(d)
j )2

�! 0 as d �!1:

Thus

P

"
j 1

2c(d)
(
dX

k=1

(�
(d)
i;k )

2)� 1j > �

#
�! 0 as d �!1:

This means that

1

2c(d)
(
dX

k=1

(�
(d)
i;k )

2) �! 1 in probability: (2.35)

Similar derivations as (2.32) to (2.35) can be found at Hall et al. (2005).
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When i 6= j (i; j = 1; 2; � � � ; n),

C(i; j) =
dX

k=1

�
(d)
i;k �

(d)
j;k :

Note that E( 1
2c(d)

Pd
k=1 �

(d)
i;k �

(d)
j;k) = 0. Using the similar derivations as (2.32)- (2.35),

for any � > 0;

P

"
j 1

2c(d)

dX
k=1

�
(d)
i;k �

(d)
j;k j > �

#
6

var( 1
2c(d)

Pd
k=1 �

(d)
i;k �

(d)
j;k)

�2

=

Pd
k=1 var(

1
2c(d)

�
(d)
i;k �

(d)
j;k)

�2

=

Pd
k=1(2�

(d)
k )2

(2c(d))2
1

�2

=

Pd
k=1(�

(d)
k )2

(c(d))2
1

�2
(2.36)

Again, the eigenvalues of �(d) have been assumed to be su�ciently di�use

P

"
j 1

2c(d)

dX
k=1

�
(d)
i;k �

(d)
j;k j > �

#
�! 0 as d!1:

This indicates that

1

2c(d)

dX
k=1

�
(d)
i;k �

(d)
j;k �! 0 in probability; as d!1: (2.37)

Combining the results in (2.35) and (2.37), we conclude the element-wise convergence

for C:

1

2c(d)
C �! In in probability; as d!1: (2.38)

Again in Theorem 2.3.3, we assume that lim
d!1

log(c(d))

log(d)
! h, which means lim

d!1
c(d)

dh
!
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1. Thus

1

2dh
C =

"
c(d)

dh

# �
1

2c(d)
C

�
�! In in probability; as d!1: (2.39)

From the above discussions, we have the following results for the asymptotic properties

of A;B1; B2 and C :

lim
d!1

1

c2d2�
A = Jn;

1p
2dh=2

1

(cd�)
B1 �! 0 in probability; as d!1;

1p
2dh=2

1

(cd�)
B2 �! 0 in probability; as d!1;

1

2dh
C �! In in probability; as d!1:

Recall from (2.16), the uncentered dual sample covariance matrix

S
(d)
D = A+B1 +B2 + C (2.40)

Next, we study the asymptotic properties of S
(d)
D , with respect to di�erent values of �.

� The case when � > h=2.

We multiply both sides of (2.40) by 1
c2d2�

, according to the asymptotic properties of

A;B1; B2; C, we conclude that

1

c2d2�
S
(d)
D =

1

c2d2�
A+

1

c2d2�
B1 +

1

c2d2�
B2 +

1

c2d2�
C

=
1

c2d2�
A+

1

cd��h=2

�
1

dh=2
1

cd�
B1

�
+

1

cd��h=2

�
1

dh=2
1

cd�
B2

�
+

1

c2
1

d2��h

�
1

dh
C

�
�! Jn + 0 + 0 + 0 = Jn in probability; as d!1:
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Thus,

1

c2d2�
S
(d)
D �! Jn in probability; as d!1: (2.41)

� The case when � < h=2

We multiple both sides of (2.40) by 1
2dh

. Then according to the asymptotic properties

of A;B1; B2; C, we conclude that

1

2dh
S
(d)
D =

1

2dh
A+

1

2dh
B1 +

1

2dh
B2 +

1

2dh
C

=
1

2
c2dh�2�

�
1

c2d2�
A

�
+

1p
2
cd��h=2

�
1p
2dh=2

1

cd�
B1

�

+
1p
2
cd��h=2

�
1p
2dh=2

1

cd�
B2

�
+

�
1

2dh
C

�
�! 0 + 0 + 0 + In = In in probability; as d!1:

Thus,

1

2dh
S
(d)
D �! In in probability; as d!1: (2.42)

� The case when � = h=2.

We multiple both sides of (2.40) by 1
2dh

and get

1

2dh
S
(d)
D =

1

2dh
A+

1

2dh
B1 +

1

2dh
B2 +

1

2dh
C

=
1

2
c2dh�2�

�
1

c2d2�
A

�
+

1p
2
cd��h=2

�
1p
2dh=2

1

cd�
B1

�

+
1p
2
cd��h=2

�
1p
2dh=2

1

cd�
B2

�
+

�
1

2dh
C

�

=
1

2
c2
�

1

c2d2�
A

�
+

1p
2
c

�
1p
2dh=2

1

cd�
B1

�
+

1p
2
c

�
1p
2dh=2

1

cd�
B2

�
+

�
1

2dh
C

�
�! 1

2
c2Jn + In in probability; as d!1:
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Thus,

1

2dh
S
(d)
D �! 1

2
c2Jn + In in probability; as d!1: (2.43)

Step 3: The �rst eigenvector of the uncentered sample covariance matrix S
(d)
P .

The uncentered sample covariance matrix is de�ned as

S
(d)
P = Z(d)(Z(d))T

= (cd�v
(d)
t 1n

T +�(d))(cd�v
(d)
t 1n

T +�(d))T

= c2d2�v
(d)
t 1n

T1n(v
(d)
t )T + cd�v

(d)
t 1n

T (�(d))T + cd��(d)1n(v
(d)
t )T +�(d)(�(d))T

= n� c2d2�v
(d)
t (v

(d)
t )T + cd�v

(d)
t 1n

T (�(d))T

+cd��(d)1n(v
(d)
t )T +�(d)(�(d))T (2.44)

We are interested in the relation between the �rst eigenvector of S
(d)
P and the theoretical

CPD v
(d)
t . From Equation (2.44), we get

(v
(d)
t )TS

(d)
P v

(d)
t = n� c2d2�(v

(d)
t )Tv

(d)
t (v

(d)
t )Tv

(d)
t + cd�(v

(d)
t )Tv

(d)
t 1n

T (�(d))Tv
(d)
t

+cd�(v
(d)
t )T�(d)1n(v

(d)
t )Tv

(d)
t + (v

(d)
t )T�(d)(�(d))Tv

(d)
t

= n� c2d2�kv(d)t k4 + cd�kv(d)t k21nT (�(d))Tv
(d)
t

+cd�(v
(d)
t )T�(d)1nkv(d)t k2 + (v

(d)
t )T�(d)(�(d))Tv

(d)
t

� S1 + S2 + S3 + S4 (2.45)

where

S1 = n� c2d2�kv(d)t k4;

S2 = cd�kv(d)t k21nT (�(d))Tv
(d)
t ;

S3 = cd�(v
(d)
t )T�(d)1nkv(d)t k2;

S4 = (v
(d)
t )T�(d)(�(d))Tv

(d)
t :
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Note that the dimensions of S1; S2; S3; S4 are all 1� 1, hence

S3 = ST2 = S2

From (2.45) we have

(v
(d)
t )TS

(d)
P v

(d)
t = S1 + 2S2 + S4 (2.46)

Next, we will study the asymptotic properties of S1; S2; S4 respectively. Because v
(d)
t

has the asymptotic norm 1, thus we conclude

lim
d!1

1

c2d2�
S1 = lim

d!1
nkv(d)t k4 = n: (2.47)

Recall that B1 = cd�1n(v
(d)
t )T�(d)), as in (2.16). Then,

1n
T (B1)

T1n = cd�1n
T (�(d))Tv

(d)
t 1n

T1n = ncd�1n
T (�(d))Tv

(d)
t ;

1n
TB1(B1)

T1n = n2c2d2�(v
(d)
t )T�(d)(�(d))Tv

(d)
t :

Thus

S2 =
1

n
kv(d)t k21nT (B1)

T1n =
1

n
kv(d)t k2

nX
i=1

nX
j=1

B(i; j)

S4 =
1

n2c2d2�
1n

TB1(B1)
T1n =

1

n2c2d2�

nX
i=1

2
4 nX
j=1

B1(i; j)

3
52

Recall the asymptotic properties of B1 from (2.29)

1p
2dh=2

1

(cd�)
B1(i; j) �! 0 in probability; as d!1:

It follows that

1p
2dh=2

1

(cd�)
jB1(i; j)j �! 0 in probability; as d!1:
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We have the following asymptotic properties for S2 and S4:

1

dh=2cd�
jS2j =

1

n

1

dh=2
1

cd�
j

nX
i=1

nX
j=1

B1(i; j)j

6

p
2

n

nX
i=1

nX
j=1

�
1p
2dh=2

1

cd�
jB1(i; j)j

�

�!
p
2

n
� n� n� 0 = 0 (2.48)

Thus

1

dh=2cd�
S2 �! 0 in probability; as d!1: (2.49)

For the term S4, we have

1

dh
S4 =

1

n2dhc2d2�

nX
i=1

2
4 nX
j=1

B1(i; j)

3
52

6
2

n2

nX
i=1

2
4 nX
j=1

���� 1p
2dh=2cd�

B1(i; j)

����
3
52

�! 2

n2
� n� n2 � 0 = 0 (2.50)

Thus

1

dh
S4 �! 0 in probability; as d!1: (2.51)

Combining results from (2.47), (2.49) and (2.51), we have the following asymptotic

results for (v
(d)
t )TS

(d)
P v

(d)
t with di�erent value of �.

� The case when � > h=2.

(
1

c2d2�
)(v

(d)
t )TS

(d)
P v

(d)
t =

�
1

c2d2�
S1

�
+ 2cdh=2��

�
1

dh=2cd�
S2

�

+dh�2�
1

c2

�
1

dh
S4

�
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! n (2.52)

� The case when � = h=2

(
1

c2d2�
)(v

(d)
t )TS

(d)
P v

(d)
t =

�
1

c2d2�
S1

�
+ 2cdh=2��

�
1

dh=2cd�
S2

�

+dh�2�
1

c2

�
1

dh
S4

�

=

�
1

c2d2�
S1

�
+ 2c

�
1

dh=2cd�
S2

�
+

1

c2

�
1

dh
S4

�
! n (2.53)

� The case when � < h=2

(
1

dh
)(v

(d)
t )TS

(d)
P v

(d)
t = c2dh�2�

�
1

c2d2�
S1

�
+ 2cd��h=2

�
1

dh=2cd�
S2

�

+

�
1

dh
S4

�
! 0 (2.54)

The d�d matrix S(d)
P has the same list of eigenvalues as the n�n dual sample covariance

matrix S
(d)
D = (Z(d))TZ(d). Since the rank of S

(d)
P is no more than n (n < d), it has no

more than n positve eigenvalues. Suppose the �rst n eigenvalues of S
(d)
P and S

(d)
D are

�̂1 > � � � > �̂n > 0. Assume that the symmetric d � d matrix S
(d)
P has the following

eigenvalue decomposition:

S
(d)
P = GLGt = �̂1ĝ1ĝ1

T + � � �+ �̂nĝnĝn
T (2.55)

where L = diag(�̂1; � � � ; �̂n) is an n�n diagonal matrix; the d�n matrix G = (ĝ1; � � � ; ĝn)
contains the �rst n d�dimensional eigenvectors of S(d)

P . As we have studied in Section 2.2,

the empirical CPD is the �rst eigenvector of S
(d)
P , i.e. v

(d)
e = ĝ1.

Equation (2.55) implies that

(v
(d)
t )TS

(d)
P v

(d)
t = �̂1(v

(d)
t )T ĝ1ĝ1

Tv
(d)
t + � � �+ �̂n(v

(d)
t )T ĝnĝn

Tv
(d)
t

66



= �̂1j(v(d)t )T ĝ1j2 + � � �+ �̂nj(v(d)t )T ĝnj2 (2.56)

Next, we will study the asymptotic property of the �rst eigenvector ĝ1, depending on

the values of � and h.

� The case when � > h=2.

We have shown in (2.41) that

1

c2d2�
S
(d)
D �! Jn in probability; as d!1:

Note that the �rst eigenvalue of Jn is n, and all the rest of the eigenvalues are 0. Thus

1

c2d2�
�̂1 �! n in probability; as d!1; (2.57)

1

c2d2�
�̂j �! 0 in probability; as d!1; (j = 2; � � � ; n) (2.58)

We multiply both sides of Equation (2.56) by 1
c2d2�

and get

1

c2d2�
(v

(d)
t )TS

(d)
P v

(d)
t =

1

c2d2�
�̂1j(v(d)t )T ĝ1j2 +

� � �+ 1

c2d2�
�̂nj(v(d)t )T ĝnj2 (2.59)

Because lim
d!1

jv(d)t j = 1 and jĝij = 1, it follows that for a su�ciently large d0, when

d > d0, j(v(d)t )T ĝij 6 jv(d)t jjĝij 6 2 (i = 1; � � � ; n). If we let d ! 1 on both sides of

(2.59), because of (2.57) and (2.58), we have

1

c2d2�
(v

(d)
t )TS

(d)
P v

(d)
t =

�
1

c2d2�
�̂1

�
j(v(d)t )T ĝ1j2 + � � �+

�
1

c2d2�
�̂n

�
j(v(d)t )T ĝnj2

/p nj(v(d)t )T ĝ1j2 + � � �+ 0� j(v(d)t )T ĝnj2

= nj(v(d)t )T ĝ1j2 (2.60)

67



where the symbol /p means that two terms are asymptotically the same in probability,

i.e. A(d) /p B(d) means that
A(d)
B(d) �! 1 in probability, as d!1.

Recall that in (2.41), we have the conclusion

1

c2d2�
(v

(d)
t )TS

(d)
P v

(d)
t �! n in probability; as d!1 (2.61)

Hence,

j(v(d)t )T ĝ1j2 �! 1 in probability; as d!1: (2.62)

Since v
(d)
e = ĝ1, the result in (2.62) is equivalent to

j(v(d)t )Tv(d)e j �! 1 in probability; as d!1: (2.63)

This proves the �rst conclusion in Theorem 2.3.3.

� The case when � = h=2.

We have shown in (2.43) that

1

2dh
S
(d)
D �! 1

2
c2Jn + In in probability; as d!1:

Note that the �rst eigenvalue of 1
2c

2Jn+ In (c > 0) is 1
2c

2n+1, and all the rest of the

eigenvalues are 1. Thus

1

2dh
�̂1 �! 1

2
c2n+ 1 in probability; as d!1; (2.64)

1

2dh
�̂j �! 0 in probability; as d!1; (j = 2; � � � ; n) (2.65)
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Similiar with (2.59) and (2.60), we get

1

2dh
(v

(d)
t )TS

(d)
P v

(d)
t =

�
1

2dh
�̂1

�
j(v(d)t )T ĝ1j2 + � � �+

�
1

2dh
�̂n

�
j(v(d)t )T ĝnj2

/p (
1

2
c2n+ 1)j(v(d)t )T ĝ1j2 + � � �+ 1� j(v(d)t )T ĝnj2 (2.66)

Recall that from (2.53), we have

(
1

2dh
)(v

(d)
t )TS

(d)
P v

(d)
t �! 1

2
nc2 (2.67)

Thus

(
1

2
c2n+ 1)j(v(d)t )T ĝ1j2 + � � �+ j(v(d)t )T ĝnj2 ! 1

2
nc2 (2.68)

Obtaining the value of j(v(d)t )T ĝ1j2 does not appear to be straightforward. However,

it follows that

j(v(d)t )T ĝ1j < 1; or j(v(d)t )Tv(d)e j < 1;

which means that the empirical CPD is not asymptotically the same as the theoretical

CPD.

� The case when � < h=2:

We have shown in (2.42) that

1

2dh
S
(d)
D �! In in probability; as d!1:

Note that all the eigenvalues of In are 1. Thus

1

2dh
�̂j �! 1 in probability; as d!1; (j = 1; � � � ; n) (2.69)
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Similiar with (2.59) and (2.60), we get

1

2dh
(v

(d)
t )TS

(d)
P v

(d)
t =

�
1

2dh
�̂1

�
j(v(d)t )T ĝ1j2 + � � �+

�
1

2dh
�̂n

�
j(v(d)t )T ĝnj2

/p j(v(d)t )T ĝ1j2 + � � �+ j(v(d)t )T ĝnj2 (2.70)

Recall that from (2.54), we have

(
1

2dh
)(v

(d)
t )TS

(d)
P v

(d)
t ! 0 (2.71)

Thus it follows that

j(v(d)t )T ĝ1j2 + � � �+ j(v(d)t )T ĝnj2 ! 0 (2.72)

Since all j(v(d)t )T ĝij2 (i = 1; � � � ; n) are nonnegative, (2.72) indicates that

j(v(d)t )T ĝij2 �! 0 in probability; as d!1 (i = 1; � � � ; n): (2.73)

The theoretical CPD is asymptotically orthogonal to all the eigenvectors. In particu-

lar, it is orthogonal with the �rst eigenvector, i.e.

j(v(d)t )Tv(d)e j �! 0 in probability; as d!1: (2.74)

This proves the second conclusion in Theorem 2.3.3.

Now we have �nished the proof of Theorem 2.3.3. As we have discussed, Theorem 2.3.1

is a special case of 2.3.3, when all the covariance matrices are identity matrices.

Proof of Theorem 2.3.4

The proof of Theorem 2.3.4 is similar to that of Theorem 2.3.3. Since the covariance
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matrices are diagonal matrices, we don't need to show Step 1, as in the proof of Theorem

2.3.3. The rest of the proof is organized as two steps.

Step A: Asymptotic properties of the uncentered Dual Sample Covariance Matrix.

As we have obtained in (2.16), the uncentered dual sample covariance matrix of Z(d) is

S
(d)
D = A+B1 +B2 + C (2.75)

where

A = c2d2�1n(v
(d)
t )Tv

(d)
t 1n

T

B1 = cd�1n(v
(d)
t )T�(d)

B2 = cd�(�(d))Tv
(d)
t 1n

T

C = (�(d))T�(d)

Next we study the asymptotic properties of A;B1; B2 and C for the cases when 2� > �

and 2� < � respectively.

� The case when 2� > �.

We multiply both sides of (2.75) by 1
c2d2�

,

1

c2d2�
S
(d)
D =

1

c2d2�
A+

1

c2d2�
B1 +

1

c2d2�
B2 +

1

c2d2�
C (2.76)

Next, we study the asymptotic properties of the four terms on the right side of Equa-

tion (2.76) respectively.

{ The asymptotic properties of 1
c2d2�

A

Using the same derivations as in (2.18), we have

lim
d!1

1

(cd�)2
A = 1n1n

T = Jn (2.77)

where Jn is an n� n matrix with all the entries as 1.
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{ The asymptotic properties of 1
c2d2�

B1 and
1

c2d2�
B2

Again B1 = BT
2 , so we only focus on B2. The ith row, jth column of B2 is

B2(i; j) = cd�(�
(d)
i )Tv

(d)
t = cd�

dX
k=1

�
(d)
i;k v

(d)
t;k (i; j = 1; � � � ; n)

Using similar derivations from (2.19) to (2.22), we have for any given � > 0

P (j 1

(cd�)2
B2(i; j)j > �) 6

1

�

1

(cd�)

"
dX

k=1

(v
(d)
t;k )

4

#1=4 " dX
k=1

(2�
(d)
k )2

#1=4

=
1

�

"Pd
k=1 4(�

(d)
k )2

(cd�)4

#1=4 " dX
k=1

(v
(d)
t;k )

4

#1=4
(2.78)

Again for the second term on the right side

lim
d!1

dX
k=1

(v
(d)
t;k )

4
6 lim

d!1

dX
k=1

(v
(d)
t;k )

2 = 1: (2.79)

Recall that in Theorem 2.3.4, �(d) = diag(d�; 1; � � � ; 1). Because � > 1 and

2� > �, we have

Pd
k=1 4(�

(d)
k )2

(cd�)4
= 4� d2� + (d� 1)

c4d4�
�! 0 as d �!1: (2.80)

Thus

P (j 1

(cd�)2
B2(i; j)j > �) �! 0 as d �!1; (2.81)

which means that

1

(cd�)2
B2(i; j) �! 0 in probability; as d!1: (2.82)
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{ The asymptotic properties of 1
c2d2�

C

Recall that C = (�(d))T�(d).

When i = j; (i; j = 1; 2; � � � ; n),

C(i; i) =
dX

k=1

(�
(d)
i;k )

2:

For any given � > 0, according Chebyshev's inequality,

P

�
j 1

(cd�)2
C(i; i) > �

�
= P

"
j 1

(cd�)2

dX
k=1

(�
(d)
i;k )

2j > �

#
6
E( 1

(cd�)2
Pd

k=1(�
(d)
i;k )

2)

�

=

Pd
k=1 var((�

(d)
i;k )

2)

(cd�)2�

= 2� d� + (d� 1)

c2d2��

�! 0 (� > 1 and 2� > �): (2.83)

Thus

1

(cd�)2
C(i; i) �! 0 in probability; as d!1: (2.84)

When i 6= j; (i; j = 1; 2; � � � ; n),

C(i; j) =
dX

k=1

�
(d)
i;k �

(d)
j;k :

Using similar derivations with (2.83), we have

1

(cd�)2
C(i; j) �! 0 in probability; as d!1: (2.85)

Hence

1

(cd�)2
C �! 0 in probability; as d!1: (2.86)

Summarizing the results in (2.77), (2.82) and (2.86), we conclude that when � > 1

73



and 2� > �,

1

c2d2�
S
(d)
D �! Jn in probability; as d!1: (2.87)

� The case when 2� < �

We multiply both sides of (2.75) by 1
d�
,

1

d�
S
(d)
D =

1

d�
A+

1

d�
B1 +

1

d�
B2 +

1

d�
C

{ The asymptotic properties of 1
d�
A

lim
d!1

1

d�
A = lim

d!1
(cd�)2

d�
1

(cd�)2
A = 0� Jn = 0 (2.88)

{ The asymptotic properties of 1
d�
B1 and

1
d�
B2

Using similar derivations from (2.19) to (2.22), we have for any given � > 0

P (j 1
d�
B2(i; j)j > �) 6

1

�

cd�

d�

"
dX

k=1

(v
(d)
t;k )

4

#1=4 " dX
k=1

(2�
(d)
k )2

#1=4

=
c

�

"
4
Pd

k=1(�
(d)
k )2

d4��4�

#1=4 " dX
k=1

(v
(d)
t;k )

4

#1=4

=
c

�

�
d2� + (d� 1)

d4��4�

�1=4 " dX
k=1

(v
(d)
t;k )

4

#1=4
�! 0 as d �!1: (� > 1 and 2� < �) (2.89)

Hence,

1

d�
B2(i; j) �! 0 in probability; as d!1: (2.90)

{ The asymptotic properties of 1
d�
C

Ahn et al. (2005) have studied the asymptotic properties of C as follows,

Recall that C = (�(d))T�(d). Because the covariance matrix for the errors are
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2�(d) = 2� diag(d�; 1; � � � ; 1), the matrix C can be expressed as:

C = 2d�W1 + 2
dX

j=2

W2;

where the Wj 's are i.i.d. from the Wishard distribution Wn(1; In). Let

U :=W1

V :=
dX

j=2

W2

Note that U � Wn(1; In) and U � Wn(d � 1; In) independently. Then dividing

C by d� gives

1

d�
C = 2U +

2

d�
V (2.91)

As d ! 1, the matrix V has the element-wise convergence, i.e. 1
d�1V ! In .

Thus, when � > 1, 2
d�
V ! 0. It follows that

1

d�
C �! 2U: (2.92)

Combining results in (2.88), (2.90), and (2.92), we conclude that when � > 1

and 2� < �,

1

d�
S
(d)
D �! 2U; (2.93)

where U � Wn(1; In). Since U can be represented as the outer product of

a random vector from N (0; In) it's eigenvalue is its inner product, which is a

univariate random variable from �2
n.

Step B: The �rst eigenvector of the uncentered sample covariance matrix S
(d)
P .
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� The case when 2� > �.

Using similar derivations from (2.45) to (2.52), we obtain

(
1

c2d2�
)(v

(d)
t )TS

(d)
P v

(d)
t �! n (2.94)

As in (2.87), the matrix S
(d)
D has the following limits

1

c2d2�
S
(d)
D �! Jn in probability; as d!1:

Again, using similar derivations from (2.57) to (2.63), we have the following result

j(v(d)t )Tv(d)e j �! 1 in probability; as d!1: (2.95)

This proves the �rst conclusion in Theorem 2.3.4.

� The case when 2� < �.

Recall that the spike direction is v
(d)
s = (1; 0; � � � 0)T . Then

(
1

d�
)(v(d)s )TS

(d)
P v(d)s = (

1

d�
)
nc2d2�

d�
+ 2

cd�

d�

nX
i=1

�1;i +
1

d�

nX
i=1

(�1;i)
2

� S1 + S2 + S3 (2.96)

Because � > 2�, we have S1 �! 0. Since var(�i;1) = 2d� and � > 2�,

S2 = 2
cd�

d�

nX
i=1

�1;i = 2
p
2
cd�

d�=2

nX
i=1

�1;ip
2d�=2

! 0�
nX
i=1

Zi �! 0

where the Zi follows the standard Gaussian distribution.

S3 =
1

d�

nX
i=1

(�1;i)
2 = 2

nX
i=1

(
�1;ip
2d�=2

)2 = 2
nX
i=1

(Zi)
2 � 2� �2

n

Suppose S
(d)
P has the following eigenvalue decomposition:

S
(d)
P = GLGt = �̂1ĝ1ĝ1

T + � � �+ �̂nĝnĝn
T
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This indicates that

1

d�
(v(d)s )TS

(d)
P v(d)s =

�̂1
d�
j(v(d)s )T ĝ1j2 + � � �+ �̂n

d�
j(v(d)s )T ĝnj2 (2.97)

As we have discussed in (2.93), the eigenvalues have the following asymptotic proper-

ties

�̂1
d�

�! �2
n

�̂j
d�

�! 0 (j = 2; � � � ; n):

The left side of (2.97) also converges to �2
n. Since Equation (2.97) holds, we must

have

j(v(d)s )T ĝ1j2 �! 1 in probability; as d!1:

This is equivalent to

j(v(d)s )Tv(d)e j2 �! 1 in probability; as d!1;

which proves the second conclusion in Theorem 2.3.4.
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CHAPTER 3

Comparison among SVM, DWD, and PAM

This chapter studies and compares three batch adjustment methods that were moti-

vated by data discrimination methods. These methods are SVM, DWD and PAM, which

have been introduced in Chapter 1, Section 1.3.3. In Section 3.1, we compare the SVM and

the DWD methods. Several toy examples are given to illustrate the limitations of SVM,

especially for the HDLSS data sets. In Section 3.2, we study the robustness of DWD and

PAM under the Unbalanced Subgroup Model. DWD will be shown to be much ro-

bust than PAM when the dimension is �xed and the subgroup sample sizes become more

and more unbalanced. The mathematical problem of interest is to study the d asymptotic

properties of DWD and PAM (see Chapter 2, Section 2.3.1). The conclusions are presented

in Theorems 3.2.1 and 3.2.2. Simulation studies are given to verify the results in the two

theorems. In Section 3.2.5, we give the proofs of Theorems 3.2.1 and 3.2.2.

3.1 The Comparison between DWD and SVM

In Chapter 1, Section 1.3.3, we have given the de�nitions for several commonly used

linear discrimination methods, including SVM, DWD and PAM. Figure 1.9 shows the SVM

hyperplane between the two data sets, represented by blue circles and red pluses. As we

have discussed, the SVM normal vector (green dashed line) is only a�ected by those points

on the two margins (dashed thin grey lines). The observations which are not on the margins

have no e�ect at all. For example, in Figure 1.9, if you move those o�-margin blue circles

to the locations which are further away from the margin, the SVM hyperplane will not

change at all. This property of SVM could cause serious problems. Next, we will use two



toy example to illustrate the drawbacks of SVM, when we use it as a batch adjustment

method.

The �rst drawback is that SVM could produce bias batch adjustment, as shown in

Figure 3.1. This toy data contain two batches, represented by blue circles and red crosses.

The purpose of linear batch adjustment is to �nd a direction and shift the two data sets

until they overlap. Note that in the toy data, the support vector, i.e. the points on the

margins almost form parallel line. Thus the SVM discrimination hyperplane will also be

parallel with the two sets of points on the margins and is located halfway between the two

margins. The orthogonal direction of the SVM hyperplane is shown using the magenta

dashed line, called the SVM direction. Apparently, shifting the two data sets along the

SVM direction will not successfully combine the two data sets and will instead produce

biased batch adjustment results. The reason is that the SVM ultimately only considers

those points on the margins, and totally ignore the e�ects of other points. A much better

batch adjustment direction is shown using the green line. Shifting the two data sets along

this direction will successfully eliminate the batch di�erence.

The second drawback is the data piling problem, especially for the HDLSS data. This

problem was �rst noticed by Marron et al. (2005). Figure 3.2 illustrates this problem using

two toy data sets, each of which contains 20 samples in 50 dimensional space. The left plot

shows a projection view of the data. The magenta line represents the SVM direction. The

projection view of the data along the SVM direction is shown in the right bottom plot.

Notice that many observations pile up on the margins, which lead to opposite directions of

skewness between the two populations. Shifting the data along the SVM direction will not

combine the two data sets successfully. A much better projection direction is shown using

the dashed magenta line in the left plot. The projection of the data along this direction

is shown in the right top plot. The projections of both data sets have an approximately

Gaussian shape (uni-modal and symmetric). Shifting the data along this direction will

produce a successful data combination. The problem of data piling becomes more and more

severe when the dimension of the data increase. This is due to the fact that SVM only

maximizes the margin and totally ignores those points o� the margins.

Distance Weighted Discrimination (DWD) was proposed by Marron et al. (2005) as an
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Figure 3.1: Two data sets are represented by blue circles and red crosses respectively.
The SVM Direction (magenta dashed line) is orthogonal to the SVM hyperplane, which
is determined only by those points on the margin. Combining two data sets along this
direction will not produce a good result. A much better batch adjustment direction is
shown using the green line.

improvement upon the SVM for the problem of statistical classi�cation (i.e. discrimination),

especially in HDLSS problems. In Chapter 1, Section 1.3 gives the de�nition of the DWD

hyperplane between two separable data sets. DWD �nds the hyperplane such that the sum

of the inverse distances from the samples to the hyperplane is minimized. Thus, instead

of only considering the observations on the margin as SVM does, DWD allow the every

observation to have some inuence. However, those observation close to the hyperplane are

much more important than those which are far away from the hyperplane. DWD has been

shown to avoid the data piling problem for HDLSS data sets. Benito et al. (2004) illustrates

this using some toy data sets. Figure 3.3 shows the projection of the toy data along the

SVM direction. Although two populations have good separation along this direction, many

observations from the two sources are piled up on the margins. The approximate density

curves for the two populations are skewed in the opposite direction. These make the shifting

the two data sets along the SVM direction unsuccessful to adjust source di�erence. In
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Figure 3.2: This Figure is taken from Marron et al. (2005) to illustrate the data piling
problem of SVM. The toy data contain two batches, represented by blue circles and red
pluses. Each data set contains 20 observations in 50 dimensional space. The left plot shows
the projection view of the toy data on the plane formed by the �rst two principal component
directions. The SVM direction is shown using the magenta line. The dashed line shows
the optimal direction. The two plots on the right show the projection view of the toy data
along the SVM direction and the optimal direction.

this �gure, the distance between the two centers of the projected data sets is around 26.

Figure 3.4 shows similar projection plot for the toy data in Figure 3.3 using the DWD

direction between the two data sets. First of all, the projection of both data sets have

smooth Gaussian shape density curve (uni-modal and symmetric). The shifting of the data

along the DWD direction will eliminate the source di�erence and produce successful data

combination. Secondly, along the DWD direction the distance between the centers of the

two projected population is around 30. Thus the DWD direction provides better separation

between the two data sets than the SVM does.

Since SVM has this serious problem of data piling, we will focus on DWD and PAM in

the rest of this dissertation.

3.2 The Comparison between PAM and DWD

In Section 3.1, we have studied the good performance of DWD over SVM for adjusting

Batch di�erence. In this Section, we will extend the analysis of the DWD direction, by
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Figure 3.3: This Figure is taken from Benito et al. (2004) to illustrate the data piling
problem of SVM. Two data sets are projected along the SVM direction. The estimated
density curves are �tted for the two populations separately. Similar projection plots can be
found on the diagonal of Figure 1.6.

Figure 3.4: This Figure is taken from Benito et al. (2004) to illustrate that DWD does
not have the data piling problem. The two data sets are projected along the DWD direc-
tion. The estimated density curves are �tted for the two populations separately. Similar
projection plots can be found on the diagonal of Figure 1.6.

explicitly studying robustness issues due to unbalanced subgroup sample sizes. E.g, both

of two microarray data sets contain breast cancer samples and leukaemia samples. But one

data set has a much larger proportion of breast cancer samples and smaller proportion of

leukaemia samples than the other data set. We say that these two data sets have unbalanced

subgroups.

The robustness of DWD due to the unbalanced sugroups e�ect is compared with another

commonly used batch adjustment method: PAM, which has been discussed in Chapter 1

Section 1.3.3. SupposeXd�n1 and Yd�n2 are two microarray data sets. With the multivariate

view, they are treated as two clouds of points in d dimensional gene space. Using PAM, two

clouds are rigidly shifted along the direction, which connects two centroids of the clouds,
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until these two centroids overlap.

PAM is simple and easily understood. However, PAM doesn't work well when two data

sets have unbalanced subgroups. We studied the robustness of DWD and PAM due to the

e�ect of unbalanced subgroup in two ways. In Section 3.2.1, the toy data sets are used to

show that DWD is consistently more robust than PAM, when the the dimension of data

is �xed and the subgroups sample sizes become more and more unbalanced. In Section

3.2.2 to 3.2.5, we studied the robustness of DWD and PAM directions for the data from

the Unbalanced Subgroup Model, i.e. the subgroups sample sizes are unbalanced and

�xed, and the dimension of the data goes to in�nity. The robustness of DWD and PAM

are shown in two theorems separately. Section 3.2.4 is about the simulation veri�cations

for these two theorems. The proofs of these two theorems are given in Section 3.2.5.

3.2.1 Robustness of DWD and PAM for Data with Fixed Dimension

This point is explored in the following toy example. In this example, there are 4 clusters

in the simulated data, which have 4000 genes. One grouping of the clusters is into two

biological subtypes, which could represent treatment or cancer type, represented by color.

The other grouping of the data is into systematic e�ects, which could be protocol, batch

or platform e�ects, represented by di�erent symbols. This design is illustrated in the �rst

column of Figure 3.5, where red and blue are used to illustrate the two biological subgroups,

and pluses and circles are used for the systematic e�ect.

Figure 3.5: Toy example to illustrate the e�ect of unbalanced subgroup e�ect. Symbols are
for the batches and colors are for the biological e�ects. The �rst, second, third columns are
the PC projection plots for the Raw, PAM adjusted, and DWD adjusted data, respectively.
The purple line is the DWD direction. The black line is the PAM direction.
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The goal of DWD and PAM adjustment is to eliminate the systematic e�ect (i.e. to

move the clusters with similar symbols on top of each other), while at same time preserving

the biological structure in the data (i.e. to keep the di�erent colors separated). For the

data in the left plot of Figure 3.5, an excellent result will have just two clusters, each with

a di�erent color, and will have complete overlap of the appropriately colored symbols. This

good result can be achieved when the four cluster sizes are balanced. Usually, when the

data have unbalanced subgroups, the samples from the sam biological cluster won't totally

overlap. In the following, we investigate the performance of PAM and DWD using toy data

sets.

The left plot of Figure 3.5 shows the Raw data (data before adjustment). Note that there

are relatively fewer blue circles and red pluses, and more blue pluses and red circles. Hence

the subgroup sample sizes are unbalanced. In this panel the ratio between the number of

blue circles and red circles (similarly between red pluses and blue pluses) is 0.43. The left

plot is a projection of the raw data onto the �rst two Principal Component directions (in

4000 dimensional gene space). This clearly shows the four clusters. The best adjustment is

combining the blue clouds together and combining the red clouds together. However, PAM

doesn't produce such a good adjustment. The second column plot shows the result of PAM

adjustment. The colored clusters have not been brought together. The third column shows

the result of DWD adjustment. The colored clusters have now been brought together which

indicates that DWD is more robust than PAM due to the unbalanced subgrooups.

To study robustness of DWD over a range of di�erent cluster size ratios, we chose to �x

the number of samples for each biological subtype, and to �x the number of samples for each

systematic subtype. The number of genes is always 4000 (�xed dimension). Thus unbalance

of the subgroup sample sizes is created by removing samples from two of the clusters, and

adding the same number to the other two, i.e. removing sample from red pluses to blue

pluses and removing samples from blue circles to red circles. DWD is used for adjusting

batch di�erence. The result are shown using a movie ToyMovie-DWDRobust.avi, which is

web available from the Liu (2007b). Each frame of the movie shows the projection view of

the Raw data and DWD adjusted data with a di�erent subgroup sample size ratio. There

the subgroup sample size ratio varies from 1 (perfectly balanced subgroups) to the extremely
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unbalanced ratio of 0.04. As expected, when the ratio is 1, the adjustment is excellent, with

the two colored clusters coming together, and a complete overlapping of the circles and

pluses. The overlap is still very good to ratios around 70%. Then overlap lessens down to

35% (chosen to appear in Figure 3.6, as "midway"), after which a space appears between

the clusters. While it is an arbitrary choice in a continuum, we feel that the method is quite

broken down, when the ratio falls below 20% (i.e. 5 to 1), in the sense that then the gap

between the two biggest clusters is actually smaller than the gaps between the clusters of

the same colors. Figure 3.6 shows one frame of the movie when the ratio is 35%.

Figure 3.6: Toy example to illustrate the e�ect of sub-sample size. Symbols and colors are
the same as above. The purple line is the DWD adjustment direction. The black line is the
best adjustment direction. Top and bottom panels show the projections of the Raw data
and DWD adjusted data onto the plane formed by the �rst two PC directions.

In summary, we �nd that DWD is much more robust than PAM. DWD gives very robust

performance for data sets where the subgroup sample size ratios are 2
3 or better. It is still

reasonably robust for the ratios down to 1
3 , and still seems to have some bene�t for ratios

down to 1
5 . When the subgroup sample size ratio is very low, two data sets can't have many
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samples from the same biological subgroup. In this case, we won't expect any successful

adjustment.

In the rest of this Chapter, we will discuss the asymptotic properties of the DWD and

the PAM directions as d goes to in�nity, when the subgroup sample sizes are unbalanced

and �xed. In Section 3.2.2, we propose a statistical model, called Unbalanced Subgroup

Model, for simulating similar data sets as in Figure 3.6 with four clusters.

3.2.2 Unblanced Subgroup Model

In this section, we use similar notations for the gene expression matrices as in Chapter 2,

Section 2.3.2. Suppose that X1, X2, Y1, and Y2 are four series of HDLSS random matrices,

i.e.

X1 = fX(1)
1 ; � � � ; X(d)

1 ; � � � g;

X2 = fX(1)
2 ; � � � ; X(d)

2 ; � � � g;

Y1 = fY (1)
1 ; � � � ; Y (d)

1 ; � � � g;

Y2 = fY (1)
2 ; � � � ; X(d)

2 ; � � � g:

The variables with superscript (d) indicate that they are speci�cally for the data with d

genes. For example, the four matrices X
(d)
1 ; X

(d)
2 ; Y

(d)
1 and Y

(d)
2 are expression matrices for

d genes. One grouping of the four series of matrices is into systematic e�ects, i.e. the batch

X , which contains X1, X2 and the other batch Y, which contains Y1 and Y2. The other

grouping of the data is into two biological subgroups, i.e. treatments or cancer types. In this

model, we use the subscripts to represent the biological subgroups, i.e. all the samples in X1

and Y1 are from the biological subtype 1; all the samples in X2 and Y2 are for the biological

subtype 2. For mathematical convinces, we study a simpli�ed unbalanced sugroup model,

the sample sizes in X1 and Y2 are both n, and the sample sizes in X2 and Y1 are m (m < n).

Thus the total number of samples in each batch is N = n+m. The number of samples for

each biological subtype is also N . The subgroup sample sizes are unbalanced because there
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are more biological subtype 1 samples than biological subtype 2 samples in the batch X ,
and there are less biological subtype 1 samples than the biological subtype 2 samples in the

batch Y. The subgroup sample size ratio is de�ned as r = n
m . In our model, we have r > 1.

When the number of genes is d, the four expression matrices are X
(d)
1 , X

(d)
2 , Y

(d)
1 and

Y
(d)
2 . From the multivariate view, they are represented by four clusters of points in d

dimensional space. We write the four data matrices as

X
(d)
1 = (x

(d)
1;1; � � � ;x(d)1;n);

X
(d)
2 = (x

(d)
2;1; � � � ;x(d)2;m);

Y
(d)
1 = (y

(d)
1;1; � � � ;y(d)1;m);

Y
(d)
2 = (y

(d)
2;1; � � � ;y(d)1;n):

In our model, each column vector is generated from the multivariate Gaussian distribu-

tion, with the covariance as the identity matrix Id. The vectors in each cluster have the

same mean vector. The following four d dimensional vectors are the mean vectors for the

columns in X
(d)
1 , X

(d)
2 , Y

(d)
1 and Y

(d)
2 respectively:

v
(d)
x;1 = d��

1
2 (�1; 1;�1; 1; � � � )T ;

v
(d)
x;2 = d��

1
2 (�1;�1;�1;�1; � � � )T ;

v
(d)
y;1 = d��

1
2 ( 1; 1; 1; 1; � � � )T ;

v
(d)
y;2 = d��

1
2 ( 1;�1; 1;�1 � � � )T :

Over the sequence of di�erent numbers of genes, the four mean vectors are represented by

four triangular sequences, i.e.

Vx;1 = fv(1)x;1; � � � ;v(d)x;1; � � � g;

Vx;2 = fv(1)x;2; � � � ;v(d)x;2; � � � g;
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Vy;1 = fv(1)y;1; � � � ;v(d)y;1; � � � g;

Vy;2 = fv(1)y;2; � � � ;v(d)y;2; � � � g:

The asymptotic norms of these four triangular sequences are all d� in the sense that

lim
d!1

1

d�
kv(d)x;1k = 1 (3.1)

Similar results hold for the other three sequences. Using matrix notation, the four data

sets in the unbalanced subgroup model can be expressed as:

X
(d)
1 = v

(d)
x;1 � (1n)

T +�
(d)
x;1

X
(d)
2 = v

(d)
x;2 � (1m)

T +�
(d)
x;2

Y
(d)
1 = v

(d)
y;1 � (1m)

T +�
(d)
y;1

Y
(d)
2 = v

(d)
y;2 � (1n)

T +�
(d)
y;2 (3.2)

where 1n and 1m represents the n and m dimensional vectors respectively with all entries

equal to one; all the �(d)s represent measurement errors. Each column of them follows the

multivariate gaussian distribution with mean 0 and covariance matrix Id.

Figure 3.7 illustrates the underlying conceptual structure for the unbalanced subgroup

model. The batch e�ects are represented by symbols, i.e. pluses for the batches X and

circles are for the batch Y. The biological e�ects are represented by colors, i.e. reds are for

the biological subtype 1, blues are for the biological subtype 2. Hence, clockwise from the

top row, �rst column cluster, the four clusters are X
(d)
1 , Y

(d)
1 , Y

(d)
2 and X

(d)
2 respectively.

The sample sizes are unbalanced in the sense that there are more red pluses than blue pluses

and there are less red circles than blue circles.

The unbalanced subgroup model captures an important phenomena in microarray batch

adjustment analysis. In the real data analysis, it is very common that two before-adjusted

data sets contain unequal proportions of the samples from the same biological subtype.

The unbalanced subgroup model studies an extreme case, where the sample size ratio in

one batch is r, and it is 1
r (r > 1) in the other batch. In next section, we study the e�ects
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Figure 3.7: Toy example to illustrate the underlying conceptual structure of the unbalanced
subgroup model. Symbols are for the batches and the colors are for the biological subgroups.

of unbalanced sample sizes on the batch adjustment, when the dimension tends to in�nity.

Considering the drawbacks of SVM in Section 3.1, we focus on the comparison between

DWD and PAM.

3.2.3 The d Asymptotic Properties of the DWD and PAM directions

Two batches are [X
(d)
1 ; X

(d)
2 ] and [Y

(d)
1 ; Y

(d)
2 ], which are represented by pluses and circles

respectively in Figure 3.7. Suppose that we intend to adjust the batch di�erence between

pluses and circles by linearly shifting them along the chosen direction. A successful combi-

nation result will have all the blue samples together and all the red samples together. The

best combination direction is the direction vector of v
(d)
y;1 � v

(d)
x;1 or v

(d)
y;2 � v

(d)
x;2, because if

there were no measurement noise, the batch di�erences can be totally removed by shifting

the data along this direction. We call the normalized direction vector of v
(d)
y;1 � v

(d)
x;1 or

v
(d)
y;2 � v

(d)
x;2 as the best combination direction, denoted as v(d). Actually, we have
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v(d) =
v
(d)
y;1 � v

(d)
x;1

kv(d)y;1 � v
(d)
x;1k

=
v
(d)
y;2 � v

(d)
x;2

kv(d)y;2 � v
(d)
x;2k

=

r
2

d
(1; 0; 1; 0; � � � )T : (3.3)

We can also apply the DWD or PAM method, introduced in Chapter 1, Section 1.3.3

to adjust the batch di�erence. Two combination directions, the DWD direction and the

PAM direction are denoted as v
(d)
DWD and v

(d)
PAM respectively. Figure 3.8 illustrates the

best combination direction (black), the PAM direction (megenta) and the DWD direction

(green) for adjusting the di�erences between the two batches in Figure 3.7. It shows that

the PAM direction has been driven signi�cantly by the unbalanced sample sizes e�ect. It

tends to the direction which points from the large cluster (red pluses) to the other large

cluster (blue circles). The DWD direction has also been driven by the e�ect of unbalanced

sample sizes, however, not as much as the PAM direction. In Section 3.2.1, we have shown

that DWD is consistently better than the PAM direction as the dimension d is �xed and the

sample sizes becomes more and more unbalanced. From now on, we compare the asymptotic

properties of v
(d)
DWD and v

(d)
PAM , when the sample sizes are �xed and unbalanced, and the

dimension d goes to in�nity.

The Absolute value of Inner Products (AIP) is used to evaluate the similarity between

two normed direction vectors. We use AIP because we only care about the acute angle be-

tween the two direction vectors (modulo the � ip of direction). As we have introduced in

Section 3.2.2, the asymptotic norms of the mean vectors v
(d)
x;1;v

(d)
x;1;v

(d)
x;1 and v

(d)
x;1 are all d

�,

thus � represents how fast these four clusters move apart when d goes to in�nity. Looking

over a range of choices of �, we develop the two following theorems.

Theorem 3.2.1. (DWD Direction)

Suppose that the four series of data are generated from the unbalanced subgroup model, as
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Figure 3.8: This �gure illustrates the theoretical, DWD and PAM direction to adjusted the
systematic di�erences between data from two batches. The same data has been shown in
Figure 3.7.

in Section 3.2.2. The sample sizes n and m are �xed, and the subgroup sample size ratio

r = n
m . Depending on the value of �, we have the following conclusions for the DWD di-

rection v
(d)
DWD and the theoretical combination direction v(d) between the two batches X and

Y. Recall that AIP = j(v(d))Tv(d)DWDj,
1: if � > 1

2 , AIP �! 3
p
r+1p

2
3p
r2+2

in probability, as d!1;

2: if � < 1
2 , v

(d)
DWD is asymptotically orthogonal to v(d) in probability, i.e. AIP �! 0 in

prob. as d!1. (strong inconsistency)

Theorem 3.2.1 presents the asymptotic relations between the DWD direction with the

best combining direction v(d). Similar as we studied in Chapter 2, the samples in each

cluster converge to the vertices of a simplex as d goes to in�nity. The speed of convergence

is determined by the covariance matrix, which is assumed to be the identity matrix Id.

As d increases, the distances between clusters also increase, with the speed of d�. When

� is large enough (> 1
2), the increasing of the distances between batches dominates the
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variation within each cluster, thus the data act as though there were no errors in the data,

under which, the angle between the DWD direction and the best combination direction

v(d) converges to �DWD = cos�1
3
p
r+1p

2
3p
r2+2

. This result is due to the e�ect of unbalanced

sample sizes. Note that when r = 1, the angles between them converges to zero. When

� is relatively small (< 1
2), the variations within each cluster dominate the increasing of

the distances between batches, so we conclude that the DWD direction is asymptotically

orthogonal with the best combination direction. This is called the strong inconsistency of

the DWD direction. In Section 3.2.5, we give the details of the proof for Theorem 3.2.1.

Note that the asymptotic properties of the DWD direction are a�ected by the he unbal-

anced sample size ratio r = n
m . Actually, PAM direction has similar asymptotic properties

to the DWD direction. We will we show that the DWD direction is always more robust

than the PAM direction.

Theorem 3.2.2. (PAM Direction)

Suppose that the four series of data are generated from the unbalanced subgroup model, as

in Section 3.2.2. The subgroup sample size ratio is r = n
m and the total sample size in each

batch is N = n+m. Depending on the value of �, we have the following conclusions for the

PAM direction v
(d)
PAM and the theoretical combination direction v(d) between the two batches

X and Y. As the sample sizes n and m are �xed, recall that AIP = j(v(d))Tv(d)PAM j,
1: if � > 1

2 , AIP �! r+1p
2r2+2

in probability, as d!1;

2: if � = 1
2 , AIP �! r+1p

2r2+2+(1=N)(r+1)2
in probability, as d!1;

3: if � < 1
2 , v

(d)
PAM is asymptotically orthogonal with v(d), in the sense that AIP �! 0 in

probability, as d!1. (strong inconsistency)

Theorem 3.2.2 indicates that the PAM direction is always inconsistent with the best

combination direction v(d), as long as the subgroup sample sizes are unbalanced (r 6= 1).

The asymptotic angle between them can be calculated. Note that vPAM is strongly a�ected

by unbalanced subgroup sample size ratio r. When � > 1
2 , the angle between the PAM

direction and v(d) converges to a �xed value, �PAM = cos�1( r+1p
2r2+2

). This angle is not zero

as long as r 6= 1. In the special case where the subgroup sample sizes are balanced, i.e.
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r = 1, PAM converges to the best combination direction. When � = 1
2 , the PAM direction

never converges to v(d); even when the subgroup sample sizes are balanced. The asymptotic

angle between v
(d)
PAM and v(d) is a little bit di�erent from the angle between them when

� > 1
2 . When � < 1

2 , the PAM direction is asymptotically orthogonal to the best combining

direction. This is the strong inconsistency of the PAM direction. The details of the proof

for Theorem 3.2.2 are given in Section 3.2.5.

Comparison between DWD and PAM

When � < 1
2 , both the DWD and the PAM directions are asymptotically orthogonal

with the best combination direction v(d). When � > 1
2 , Theorem 3.2.1 and 3.2.2 discover a

very important di�erence between PAM and DWD combination. De�ne that f(r) = r+1p
2r2+2

.

Some calculations show that f(r) is a decreasing function when r > 1. For any r > 1, we

have 3
p
r < r, thus

3
p
r + 1p

2
3
p
r2 + 2

= f( 3
p
r) > f(r) =

r + 1p
2r2 + 2

; (r 6= 1):

It follows that

�DWD = cos�1(
3
p
r + 1p

2
3
p
r2 + 2

) < cos�1(
r + 1p
2r2 + 2

) = �PAM ; (r 6= 1): (3.4)

This indicate that the DWD direction is always more robust than the PAM direction,

in the sense that the angle �DWD is always smaller than the angle �PAM . Figure 3.9 illus-

trates these two asymptotic angles, when the sample size ratio changes from 1 to 40. The

blue curve shows the angle between the PAM direction and the best combination direction,

�PAM . The red curve shows the angle between the DWD direction and the best combination

direction, �DWD. In this �gure, for any given r > 1, �DWD < �PAM . Thus this �gure is

consistent with the conclusion in Inequality (3.4).

Now, we are interested in the quantitative improvement of the DWD direction over the
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Figure 3.9: Shows the two angles: �PAM and �DWD for di�erent choices of r, when � > 1
2 .

The DWD direction is consistently better than the PAM direction, when r > 1.

PAM direction. The di�erence between the two asymptotic angles is

� = cos�1(
r + 1p
2r2 + 2

)� cos�1(
3
p
r + 1p

2
3
p
r2 + 2

) (3.5)

To study the change of �, we plot �s against the subgroup sample size ratios r. The

results are shown in Figure 3.10. We chose the sample size ratio r from 1 to 40, and found

that the di�erence between the two angles �rst increases, then decreases. The di�erence is

maximized at the location, speci�ed by the red dashed line. The exact location can be ob-

tained by taking the derivative with respect to r on Equation (3.5), and solve the equation.

This location is r = 7:21, at which, �DWD = 17:64 degrees, �PAM = 37:10 degrees. The

improvement of DWD over PAM is � = 19:47 degrees. Figure 3.10 indicates that the DWD

is much more robust than PAM over a large range of r. Note that the angle between the

best combination and the direction which points from the center of the red pluses to the

center of blue circles is 45 degress, hence, the improvement of 19.47 degrees at r = 7:21 is

a very signi�cant improvement.
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Figure 3.10: This �gure shows the di�erence between the two asymptotic angles: the DWD
direction and best combination direction, and the PAM direction and the best combination
direction. The red dashed line shows the location, at which the di�erence is maximized.

3.2.4 Simulation Study

In order to illustrate the conclusions in Theorem 3.2.1 and in 3.2.2, we generate data

sets for batch X and Y according to the unbalanced subgroup model, with the sample sizes

n = 50, m = 10 and the dimension varying from 21; � � � ; 213. The subgroup sample size

ratio is r = n
m = 5:0. The AIPs between vPAM and the best combining v, vDWD and v are

calculated and presented in Figure 3.11.

The three plots in the �rst row of Figure 3.11 illustrate the results in the Theorem 3.2.1.

When � < 1
2 , the AIPs converge to 0, as shown in the top row, �rst column plot. When

� = 1
2 , the asymptotic properties of AIPs are unknown. When � > 1

2 , the AIPs converge

to
3
p
r+1p

2
3p
r2+2

= 0:9674, as shown using the red line in the top row, third column plot.

The corresponding asymptotic angle between the DWD direction and the best combination

direction is 14.68 degrees. The three bottom plots illustrate the asymptotic properties of

the AIPs between the PAM direction and the best combining direction for the same data
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Figure 3.11: Toy example to illustrate the conclusions in Theorem 3.2.1 and 3.2.2. Each
column is for a choice of �. The �rst row is for the AIPs between the DWD direction and
the best combination direction. The second row is for the AIPs between the PAM direction
and the best combination direction.

sets. As we conclude in Theorem 3.2.2, when � < 1
2 , the AIPs converge to 0; when � = 1

2 ,

the AIPs converge to a di�erent value r+1p
(2r2+2+(1=N)(r+1)2)

= 0:8274, which is represented

by the red line in the bottom row, second column subplot. This corresponds to an angle of

35.56 degrees. when � > 0:5, the AIPs converge to r+1p
2r2+2

= 0:8321, which is represented

by the red line in the bottom row, third column subplot. The corresponding angle is 33.69

degrees, which is large than that of the DWD direction, 14.68 degrees. Three plots on the

bottom verify the conclusions in Theorem 3.2.2.

In the unbalanced subgroup model, when the covariance matrix of the noise � is not

the identity matrix, similar results as Theorem 3.2.1 and 3.2.2 can be obtained by studying

the eigenvalues of �. The derivations are similar with those in Chapter 2, Section 2.3.3.
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3.2.5 Proofs of the Theorems

In the following, we will prove Theorem 3.2.1 and Theorem 3.2.2 separately. Before we

give the proofs, we �rst propose and prove two lemmas. The �rst lemma is about the DWD

direction between two data separable HDLSS data.

Lemma 3.2.1. The DWD direction v(d) between two separable HDLSS data sets Xd�n and

Yd�m (d > n) is always in the sample space, i.e. v
(d)
DWD 2 HX;Y .

Proof. Let Xd�n = (x1; � � � ;xn) and Yd�n = (y1; � � � ;yn) are two separable HDLSS data

sets. Using the notation in Chapter 1, Section 2.2.2, the sample space generated by the

columns of X and Y is denoted as HX;Y . The orthogonal complementary of HX;Y is de-

noted as H?X;Y . Suppose the normalized direction vector v
(d)
DWD is the the DWD direction

between X and Y . There exists a nonnegative constant b such that the DWD hyperplane

is expressed as between X and Y is

HDWD = fx : (v(d))Tx� b = 0; b > 0; kv(d)k = 1g:

First of all, note that v(d) is not in the space H?X;Y . Otherwise, (v(d))Txi = 0 (i =

1; � � � ; n); (v(d))T yj = 0 (j = 1; � � � ;m), which means that all the observations are on the

same side of the hyperplane fx : (v(d))Tx = bg. This contradicts the fact of the assumed

separability. Next, we will prove that the direction vector v(d) is in the sample space, i.e.

v(d) 2 HX;Y .

Suppose that the DWD direction is not in the sample space HX;Y . According to Lemma

2.2.4, v(d) has the following orthogonal decomposition

v(d) = c1w1 + c2w2

where w1 and w2 are two normed direction vectors with w1 2 HX;Y and w2 2 HX;Y
?.

Since v(d) is not in HX;Y or H?X;Y , the two constants c1 and c2 are positive and c1 =
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(v(d))Tw1 < 1, c2 = (v(d))Tw2 < 1. Consider a new classi�cation hyperplane

HNew = fx : wT
1 x�

b

c1
= 0g

In the following, we compare the two classi�cation hyperplanes HDWD and HNew. For any

column of X, i.e xi,

(v(d))Txi � b = (c1w
T
1 xi + c2w

T
2 xi)� b

Since w2 2 H?X;Y , we have wT
2 xi = 0. Thus

(v(d))Txi � b = c1w
T
1 xi � b = c1(w

T
1 xi �

b

c1
) (3.6)

It follows that

(v(d))Txi � b 6 0() w
T
1 xi �

b

c1
6 0: (i = 1; � � � ; n)

Hence HNew gives the same class memberships for the columns of X as HDWD does. The

same result holds for the columns of Y . Thus HNew and HDWD give the same class mem-

berships for all the columns of X and Y .

From Equation (3.6), we have

j(v(d))Txi � bj = c1jwT
1 xi �

b

c1
j (3.7)

Since 0 < c1 < 1, it follows that

j(v(d))Txi � bj < jwT
1 xi �

b

c1
j (3.8)

Note that the distance from the sample xi to HDWD is j(v(d))Txi � bj. The distance

from xi to HNew is jwT
1 xi � b

c1
j. Inequality (3.8) indicates that the distance from xi to

HDWD is always smaller than the distance to HNew. This is true for all the columns of X

and Y . Recall that DWD solves the following optimization problem:
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minimize
nX
i=1

1

ri

subject to yi � f(xi) > 1; i = 1; � � � ; n: (3.9)

The two hyperplanes HNew and HDWD give the same cluster membership for any col-

umn ofX and Y . The sum of inverse distances from the samples toHNew is smaller than the

one from the samples to the HDWD. This contradicts the fact that the hyperplane HDWD

is the solution of the optimization problem (3.9). Thus the DWD direction is always in the

sample space HX;Y .

Suppose X
(d)
1 ; X

(d)
2 ; Y

(d)
1 ; Y

(d)
2 are the four data sets for d genes in the unbalanced sub-

group model (see Section 3.2.2). De�ne the combined data setsD(d) = [X
(d)
1 ; X

(d)
2 ; Y

(d)
1 ; Y

(d)
2 ].

Recall that the sequence of the best combination directions between the batch X and Y is

fv(d) =
q

2
d(1; 0; 1; 0; � � � )T ; d = 1; 2; � � � g. We say that the sequence of vectors fw(d); d =

1; 2; � � � g is in the sequence of sample space fHD(d) ; d = 1; 2; � � � g, if w(d) 2 HD(d) . Lemma

3.2.2 studies the asymptotic relations between fv(d); d = 1; 2; � � � g and any sequence of

vectors in the sequence of sample space, when � < 1=2.

Lemma 3.2.2. Suppose w
(d) 2 HD(d) is a sequence of nonzero vectors in fHD(d) ; d =

1; 2; � � � g. When � < 1=2, this sequence of vectors is asymptotically orthogonal to the best

combination vectors fv(d) d = 1; 2; � � � g, in the sense that (v(d))Tw(d)

kv(d)kkw(d)k �! 0 in probability

as d!1.

Proof. Any nonzero vector w(d) in the sample space can be expressed as a matrix product

D(d)�C(d), where C(d) is a 2N�1 nonzero constant vector. The cosine of the angle between
the two vectors w(d) and v(d) is

(v(d))Tw(d)

kv(d)kkw(d)k =
(v(d))Tw(d)

kw(d)k
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Since w(d) = D(d) � C(d), it follows that

(v(d))T

w(d)kw(d)k =
(v(d))TD(d) � C(d)

kD(d) � C(d)k : (3.10)

where v(d) =
q

2
d(1; 0; 1; 0; � � � )T . We �rst study the square of the denominator,

kD(d) � C(d)k2 = (C(d))T (D(d))TD(d)C(d)

Since D(d) = [X
(d)
1 ; X

(d)
2 ; Y

(d)
1 ; Y

(d)
2 ], it follows that

(D(d))TD(d) =

0
BBBBBBB@

(X
(d)
1 )TX

(d)
1 (X

(d)
1 )TX

(d)
2 (X

(d)
1 )TY

(d)
1 (X

(d)
1 )TY

(d)
2

(X
(d)
2 )TX

(d)
1 (X

(d)
2 )TX

(d)
2 (X

(d)
2 )TY

(d)
1 (X

(d)
2 )TY

(d)
2

(Y
(d)
1 )TX

(d)
1 (Y

(d)
1 )TX

(d)
2 (Y

(d)
1 )TY

(d)
1 (Y

(d)
1 )TY

(d)
2

(Y
(d)
2 )TX

(d)
1 (Y

(d)
2 )TX

(d)
2 (Y

(d)
2 )TY

(d)
1 (Y

(d)
2 )TY

(d)
2

1
CCCCCCCA

Recall from Equation (3.2), X
(d)
1 = v

(d)
x;1 � (1n)

T +�
(d)
x;1. From the result in Chapter 2,

Equation (2.42), we have proven that, when � < 1
2 ,

1

d
(X

(d)
1 )TX

(d)
1 �! In in probability; as d!1: (3.11)

In the same way, we can obtain that

1

d
(X

(d)
2 )TX

(d)
2 �! Im in probability; as d!1; (3.12)

1

d
(Y

(d)
1 )TY

(d)
1 �! Im in probability; as d!1; (3.13)

1

d
(Y

(d)
2 )TY

(d)
2 �! In in probability; as d!1: (3.14)

Using the law of large number, when � < 1=2, we have the following element-wise

convergence,

1

d
(X

(d)
1 )TX

(d)
2 �! 0n�m in probability; as d!1: (3.15)
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where 0n�m is the n�m matrix with all entries equal to 0. In a similar way, we can show

that all the o�-diagonal matrices in the expression of (D(d))TD(d) are zeros. Hence

1

d
(D(d))TD(d) �! I2N in probability; as d!1:

It follows that

1

d
(C(d))T (D(d))TD(d)C(d) �! (C(d))TC(d) in probability; as d!1: (3.16)

De�ne the standardized form of C(d) to be Ĉ = C(d)=
p
(C(d))TC(d). Now we study the

numerator in Equation (3.10). It follows that

(v(d))TD(d) � C(d)p
(C(d))TC(d)

= (v(d))TD(d) � Ĉ

Again, recall that the data can be expressed as in Equation (3.2). De�ne �(d) =

[�
(d)
x;1;�

(d)
x;2;�

(d)
y;1;�

(d)
y;2] and write Ĉ = (Ĉ1; Ĉ2; Ĉ3; Ĉ4), where the four vectors have dimen-

sions n� 1, m� 1, m� 1, n� 1 respectively. It follows that

d�1=2(v(d))TD(d) � Ĉ = d�1=2(v(d))T (v(d)x;1 � (1n)
T )Ĉ1

+d�1=2(v(d))T (v(d)x;2 � (1m)
T )Ĉ2

+d�1=2(v(d))T (v(d)y;1 � (1m)
T )Ĉ3

+d�1=2(v(d))T (v(d)y;1 � (1n)
T )Ĉ4

+d�1=2(v(d))T�(d)Ĉ (3.17)

When � < 1=2,

d�1=2(v(d))T (v(d)x;1 � (1n)
T )Ĉ1 = 2

p
2d��1=2

nX
i=1

Ĉ1(i)

�! 0 (3.18)

The same results hold for the other three terms in Equation (3.17). The last term in
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Equation (3.17),

d�1=2(v(d))T�(d)Ĉ2N =
p
2d�1

d=2X
k=1

(
2NX
j=1

�2k+1;jĈ(j)) (3.19)

Because
P2N

j=1 �2k+1;jĈ(j) follows the standard Gaussian distribution, according to the law

of large number, we have

d�1=2(v(d))T�(d)Ĉ2N �! 0 in probability; as d!1: (3.20)

Summaizing Equations (3.17) to (3.20), we have

d�1=2(v(d))TD(d) � Ĉ2N �! 0 in probability; as d!1: (3.21)

From Equations (3.10), (3.16) and (3.21), we �nally get

(v(d))Tw(d)

kw(d)k �! 0 in probability; as d!1:

Hence, we have proven Lemma 3.2.2

Now, we prove Theorems 3.2.1 and 3.2.2 separately.

Proof of Theorem 3.2.1

The proof is organized as two parts, each of which proves one conclusion in Theorem 3.2.1.

� The case when � > 1
2 .

Consider the ith columns of X
(d)
1 , x

(d)
1;i = v

(d)
x;1 + �

(d)
x;1;i (i = 1; � � � ; n), when d ! 1,

after scaling by d��, we have

d�2�(x(d)1;i )
Tx

(d)
1;i = d�2�((v(d)x;1)

Tv
(d)
x;1 + 2d�2�(v(d)x;1)

T �
(d)
x;1;i + d�2�(�(d)x;1;i)

T �
(d)
x;1;i(3.22)
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When � > 1=2, the �rst term in Equation (3.22) is

d�2�(v(d)x;1)
Tv

(d)
x;1 = (

1

d�
kv(d)x;1k)2

�! 1 (3.23)

According to the law of large number, the second term in Equation (3.22) converges

to zero, and the third term converges to 0 in probability. Hence,

d�2�(x(d)1;i )
Tx

(d)
1;i �! 1:

This means that after scaling by a constant d��, the distance from each point in X
(d)
1

to the origin is 1. Similar results hold for all the samples in batches X and Y. Again,
using the law of large number, we can show that the distance from each sample to it's

cluster mean vector satis�es

d��kx(d)1;i )� v
(d)
x;1k �! 0:

It is straightforward to see that any column vector from X
(d)
1 is asymptotically or-

thogonal to the one from Y
(d)
1 , in the sense that

d�2�(x(d)1;i )
Ty

(d)
1;j �! 0:

These results indicate that when � > 1=2, the mean vectors dominate the measure-

ment noise in the data. The asymptotic geometric structure of the data is the same

as that of the data without any measurement noise. Figure 3.12 shows the asymp-

totic geometric structure of the data. When � > 1=2 and d ! 1, after scaling by a

constant d��, all the column vectors in X
(d)
1 ; X

(d)
2 ; Y

(d)
1 ; Y

(d)
2 converge to their cluster

mean vectors Vx1; Vx2; Vy1 and Vy1 respectively as in the Figure, where

Vx1 = d�
1
2 (�1; 1;�1; 1; � � � )T ;
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Vx2 = d�
1
2 (�1;�1;�1;�1; � � � )T ;

Vy1 = d�
1
2 ( 1; 1; 1; 1; � � � )T ;

Vy2 = d�
1
2 ( 1;�1; 1;�1 � � � )T :

The within cluster variation converges to 0. Note that there are n samples located at

Vx1; Vy2 and m samples located at Vx2; Vy1.

Figure 3.12: Shows the asymptotic geometric structure of the data in the unbalanced
subgroup model, when � > 1=2 and d!1.

In Figure 3.12, the black dashed line shows the best combination direction. Shifting

the data along this direction will combine all the samples from the same biological

subtype together. Suppose that the DWD direction, shown as the green line, has an

angle of � to the best combination direction. The DWD hyperplane is shown using

a red dashed line in the �gure. The distance from Vx1 to the hyperplane can be

calculated as sin(�4 + �). The distance from Vx2 to the hyperplane can be calculated

as sin(�4 � �). According to the de�nition of the DWD hyperplane, it �nds � to
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minimize

D(�) =
2n

sin(�4 + �)
+

2m

sin(�4 � �)

Note that r = n
m . Solving the equation

@D(�)
@� = 0, we have

�̂ = cos�1(
3
p
r + 1p

2
3
p
r2 + 2

):

Hence, the AIP between the DWD direction and the best combination direction is

cos(�̂) =
3
p
r + 1p

2
3
p
r2 + 2

):

This proves the �rst conclusion in Theorem 3.2.1.

� The case when � < 1
2 .

In the unbalanced subgroup model, the four HDLSS data sets are grouped into two

batches, which are separable. According to Lemma 3.2.1, the DWD direction v
(d)
DWD

is in the sample space of the data with d genes. When � < 1=2, according the Lemma

3.2.2, the DWD direction is asymptotically orthogonal to the best combination direc-

tion v(d). This proves the second conclusion in Theorem 3.2.1.

Comments on the asymptotics of SVM

As we have shown in Chapter 3, Section 3.1, SVM has a serious data piling problem

for HDLSS data. Figure 3.3 shows the projection view of the data on the SVM direction.

The data piling problem is quite serious, although the dimension d = 50 is not signi�cantly

larger than the sample size 20. The batch adjustment using the SVM direction will lead to

unsuccessful combination because of the data piling. Thus in Section 3.1, we only compare

the asymptotic properties of DWD and PAM.

The asymptotic properties of the SVM direction can be studied similarly as for the

DWD direction. In the linear shift model, when � < 1=2, because the SVM direction is
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in the sample spanned space, as is the DWD direction, according to Lemma 3.2.2, the

SVM direction is asymptotically orthogonal to the theoretical best combination direction.

When � > 1=2, as shown in the proofs of Theorem 3.2.1, the four subgroups have a simple

asymptotic geometric structure, shown in Figure 3.12. In this �gure, all the samples are on

the margins, hence the SVM direction is asymptotically the same as the best combination

direction. Thus, the SVM direction is more robust than the DWD direction and the PAM

direction, when the dimension goes to in�nity. However, this does not indicate that we

should use the SVM direction for the batch adjustment in real data analysis. Because when

the dimension is not very high (around 50), the data piling problem has negative inuence

on the batch adjustment; when the dimension goes to in�nity, the data intrinsically have

\the extreme piling" geometric structure as in Figure 3.12, thus the data piling problem

will not have a negative inuence on the batch adjustment any more.

Proof of Theorem 3.2.2

The proofs are organized into three parts.

� The case when � > 1=2. As we have concluded in the proofs of Theorem 3.2.1,

Figure 3.12 shows the asymptotic geometric structure of the four clusters, when � >

1=2. Since the PAM direction is the one which connects the two centers of batches, it

follows that

v
(d)
PAM =

(nVx1 +mVx2)� (mVy1 + nVy2)

k(nVx1 +mVx2)� (mVy1 + nVy2)k =
1p

d(r2 + 1)
(r+1; r�1; r+1; r�1; � � � )T

Thus the AIP between the PAM direction and the best combination direction v(d) =q
2
d(1; 0; 1; 0; � � � )T is

r
2

d
(1; 0; 1; 0; � � � )� 1p

d(r2 + 1)
(r + 1; r � 1; r + 1; r � 1; � � � )T =

r + 1p
2r2 + 2

:

This is the �rst conclusion in Theorem 3.2.2.
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� The case when � = 1=2. When the number of genes is d, recall the matrix expres-

sions of the data in Equation (3.2),

X
(d)
1 = v

(d)
x;1 � (1n)

T +�
(d)
x;1

X
(d)
2 = v

(d)
x;2 � (1m)

T +�
(d)
x;2

Y
(d)
1 = v

(d)
y;1 � (1m)

T +�
(d)
y;1

Y
(d)
2 = v

(d)
y;2 � (1n)

T +�
(d)
y;2

When � = 1=2, we have

v
(d)
x;1 = (�1; 1;�1; 1; � � � )T ;

v
(d)
x;2 = (�1;�1;�1;�1; � � � )T ;

v
(d)
y;1 = ( 1; 1; 1; 1; � � � )T ;

v
(d)
y;2 = ( 1;�1; 1;�1 � � � )T :

The center of the batch X is

L1 =
1

m+ n
(X

(d)
1 � 1n +X

(d)
2 � 1m)

=
1

m+ n
((nv

(d)
x;1 +�

(d)
x;1 � 1n) + (mv

(d)
x;2 +�

(d)
x;2 � 1m))

In the same way, we get the center of the batch Y is

L2 =
1

m+ n
(Y

(d)
1 � 1m + Y

(d)
2 � 1n)

=
1

m+ n
((mv

(d)
y;1 +�

(d)
y;1 � 1m) + (nv

(d)
y;2 +�

(d)
y;2 � 1n))
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The PAM direction is the direction vector which connects two centers, thus

v
(d)
PAM =

L2 � L1

kL2 � L1k (3.24)

We �rst look at the numerator

L2 � L1 =
1

m+ n
(n(v

(d)
y;2 � v

(d)
x;1) +m(v

(d)
y;1 � v

(d)
x;2))

+
1

m+ n
(�

(d)
y;2 � 1n +�

(d)
y;1 � 1m ��

(d)
x;1 � 1n ��

(d)
x;2)

� A+B;

where

A =
1

m+ n
(n(v

(d)
y;2 � v

(d)
x;1) +m(v

(d)
y;1 � v

(d)
x;2));

=
2

m+ n
(nv

(d)
y;2 +mv

(d)
y;1)

B =
1

m+ n
(�

(d)
y;2 � 1n +�

(d)
y;1 � 1m ��

(d)
x;1 � 1n ��

(d)
x;21m)

The inner product between the PAM direction and the best combination direction is

(v(d))Tv
(d)
PAM =

(v(d))T (L2 � L1)

kL2 � L1k

=
(v(d))TA+ (v(d))TB

kA+Bk (3.25)

Next we study the asymptotic properties of the left side term in Equation (3.25).

Firstly,

d�1=2(v(d))TA = d�1=2(v(d))T � 2

m+ n
(nv

(d)
y;2 +mv

(d)
y;1)

=
p
2: (3.26)
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Secondly,

d�1=2(v(d))TB = d�1=2(v(d))T ��
(d)
y;2 � 1n + d�1=2(v(d))T ��

(d)
y;1 � 1m

�d�1=2(v(d))T ��
(d)
x;1 � 1n � d�1=2(v(d))T ��

(d)
x;2 (3.27)

Using the law of large number, we show that d�1=2(v(d))T � �
(d)
y;2 � 1n �! 0 as

d!1. The other three terms in the right side of Equation (3.27) also have the same

properties. Thus,

d�1=2(v(d))TB �! 0: (3.28)

The square of the denominator in Equation (3.25) is

kA+Bk2 = ATA+BTB + 2ATB: (3.29)

It follows that

d�1ATA = d�1(
2

m+ n
)2(nv

(d)
y;2 +mv

(d)
y;1)

T (nv
(d)
y;2 +mv

(d)
y;1)

=
4(n2 +m2)

(m+ n)2
: (3.30)

d�1ATB = d�1
2

m+ n
(nv

(d)
y;2 +mv

(d)
y;1)

T

� 1

m+ n
(�

(d)
y;2 � 1n +�

(d)
y;1 � 1m ��

(d)
x;1 � 1n ��

(d)
x;2)

�! 0 (3.31)

The asymptotics in Equation (3.31) follow because d�1(v(d)y;2)
T�

(d)
y;2 � 1n �! 0, as

d!1, using the law of large number. All other interaction terms in Equation (3.31)

have the same properties. Thus,

d�1BTB = d�1(
1

m+ n
)2(�

(d)
y;2 � 1n +�

(d)
y;1 � 1m ��

(d)
x;1 � 1n ��

(d)
x;2)

T
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�(�(d)
y;2 � 1n +�

(d)
y;1 � 1m ��

(d)
x;1 � 1n ��

(d)
x;2) (3.32)

According to the law of large number,

d�1((�(d)
y;2 � 1n)

T (�
(d)
y;2 � 1n) �! n; as d!1: (3.33)

Because the columns of �
(d)
y;2 and the columns of �

(d)
y;1 are independent, again, according

to the law of large number, we have

d�1((�(d)
y;2 � 1n)

T (�
(d)
y;1 � 1m) �! 0; as d!1: (3.34)

Similar results hold for the other terms on the right side of Equation (3.32). Because

of Equation (3.32) and results in (3.33) and (3.34), we have

d�1BTB �! 2

m+ n
as d!1 (3.35)

From the results in (3.29), (3.30), (3.31) and (3.35), we obtain

d�1kA+Bk2 �! 4(n2 +m2)

(m+ n)2
+

2

m+ n
=

4(r2 + 1)

(r + 1)2
+

2

N
: (3.36)

Combining the results in (3.25), (3.26), (3.28), and (3.36), it follows that

(v(d))Tv
(d)
PAM �!

p
2q

(4(r
2+1)

(r+1)2
+ 2

N

=
r + 1q

2r2 + 2 + 1
N (r + 1)2

(3.37)

Hence, we have proven the second conclusion in Theorem 3.2.2

� The case when � < 1=2 When the number of genes is d, recall that D(d) =

[X
(d)
1 ; X

(d)
2 ; Y

(d)
1 ; Y

(d)
2 ]. The PAM direction is the direction vector which connects
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the centers of two batches. Hence

v
(d)
PAM =

D(d)C

kD(d)Ck ;

where C = (1 � � � ; 1| {z }
N

;�1 � � � ;�1| {z }
N

).

According to Lemma 3.2.2, the PAM direction is asymptotically orthogonal to the

best combination direction. Hence we have proven the third conclusion in Theorm

3.2.2
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