
CARBOXY TERMINUS OF HEAT SHOCK COGNATE 70-INTERACTING PROTEIN (CHIP) 

FOLLOWING CELLULAR STRESS 

 

 

 

Lauren Ghislaine Anderson 

 

 

 

“A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Curriculum of Neurobiology.” 

 

 

 

Chapel Hill 

2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by, 

Rick B. Meeker, Ph.D. (Chair) 

David Y. Huang, M.D., Ph.D. (Advisor) 

W. Campbell Patterson, M.D. 

G. Jean Harry, Ph.D. 

Mohanish Deshmukh, Ph.D.



ii 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2008 

Lauren Ghislaine Anderson 

ALL RIGHTS RESERVED 



iii 
 

ABSTRACT 

LAUREN GHISLAINE ANDERSON: Carboxy terminus of Heat shock cognate 70 Interacting 

Protein (CHIP) following Cellular Stress 

(Under the direction of David Y. Huang, M.D., Ph.D. and Rick B. Meeker, Ph.D.) 

 

Carboxy terminus of Hsc70 Interacting Protein (CHIP) is thought to be a cytoprotective 

protein with roles in protein quality control in neurodegenerative diseases and myocardial 

ischemia.  This study examined CHIP expression in normal mouse brain and in primary 

cultures of cortical neurons following heat stress (HS) and oxygen-glucose deprivation 

(OGD).  CHIP was highly expressed throughout the brain, predominantly in neurons where 

the staining pattern was primarily cytoplasmic.  More intense nuclear staining was observed 

in primary cultured cells than in brain sections.  Nuclear accumulation of CHIP occurred very 

rapidly after 5-10 minutes of HS and decreased at or below baseline by 30-60 minutes.  

Increased durations of HS gave rise to sharp increases in delayed cell death and were 

inversely correlated with the loss of nuclear CHIP.  While no changes in cytoplasmic CHIP 

were observed immediately following OGD, nuclear levels of CHIP increased slightly in 

response to OGD by 30 minutes and remained increased through 240 minutes.  Increased 

CHIP levels did not decrease immediately following extended durations of OGD, but rather 

decreased during recovery following OGD.  Nuclear CHIP decreased earlier in recovery 

following 120 minutes of OGD (4 hours) than 30 minutes of OGD (12 hours).  Significant cell 

death first appeared between 12 and 24 hours after OGD again suggesting that delayed cell 

death follows closely behind the disappearance of nuclear CHIP.  Cell viability in 

heterozygous and homozygous hippocampal slice cultures from transgenic mice lacking 

CHIP was impaired following OGD.  Transgenic cultures displayed increased delayed cell 

death following 30 minutes of OGD compared to wildtype.  Following 120 minutes of OGD, 
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cell death in all cultures was greater than baseline but cell death in the transgenic samples 

was no longer significantly greater when compared to wildtype.  A yeast two-hybrid screen 

to identify proteins that interact with full-length recombinant CHIP yielded 19 sequences 

from known binding partners heat shock protein 70 and heat shock protein 90.  Together the 

results support the idea that the ability of CHIP to translocate to and accumulate in the 

nucleus may be a limiting variable that determines how effectively cells respond to external 

stressors to facilitate cell survival. 
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INTRODUCTION 

Etiology of Stroke 

Stroke is the third leading cause of death and the leading cause of long term 

disability in the United States.1  Over eighty percent of all strokes are ischemic, defined as 

cellular injury due to a loss of cerebrovascular blood flow caused by vessel blockage.  An 

ischemic stroke is identified by a lesion composed of two main regions: a core infarct where 

perfusion is lost completely and a much larger penumbral region that surrounds the core 

and receives varying levels of perfusion.2 

Cells in the infarcted core experience a complete loss of glucose and oxygen.  Under 

these conditions, ATP is depleted by 50% within one minute, which dramatically affects 

ATP-dependent pumps most notably the Na+ pump.3  With oxygen deprivation, glucose 

metabolism changes to anaerobic glycolysis, leading to lactate accumulation and tissue 

acidosis.2,4 Deficits in energy production and prolonged acidosis contribute to anoxic 

depolarization and the subsequent collapse of the sodium gradient.3,5 As the 

electrochemical gradient reverses, calcium ions may be pumped into cells by the reverse 

operation of the Na+/Ca2+ exchanger.3  Without the sodium ion gradient, neurons depolarize 

and release neurotransmitters, the most abundant of which is glutamate.  Increases in 

extracellular glutamate lead to over-activation of the N-methyl-D-aspartate (NMDA) receptor 

channel.  The subsequent influx of sodium and calcium ions increases the osmotic gradient 

set up by ion influx, and the neurons swell.  Glutamatergic over-activation and secondary 

osmotic swelling is characteristic of necrotic cell death. 

In the ischemic penumbra, blood flow is below the level needed to maintain electrical activity 

but above that required to maintain cellular ionic gradients.6  At the expense of further
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 energy depletion, cells are able to re-polarize.  Small elevations in intra-mitochondrial Ca2+ 

increase the efficiency of several mitochondrial enzymes.7  Continued depolarization gives 

rise to high concentrations of intracellular Ca2+ resulting in the activation of numerous 

degradative enzymes and continued loss of mitochondrial function.3,8  The loss of 

mitochondrial function results in the release of mediators of apoptosis, including cytochrome 

c, an early activator of the caspase cascade and apoptotic cell death.8  The gradual decline 

in neuronal function can take days or weeks, during which time the life or death of the cell 

depends heavily on the ability of the cell to maintain basic homeostatic functions.6,9  Any 

event that tips the balance in favor of physiological stability and survival could have a 

substantial beneficial impact on the large population of cells within the penumbra.   

 

Acute Stroke Treatments 

Current acute stroke treatments focus on re-establishing perfusion using proteolytic 

enzymes like tissue plasminogen activator (tPA).  These enzymes convert the blood protein, 

plasminogen, to plasmin.10  Plasmin dissolves fibrin in the insoluble matrix of clots.10  As 

such, a fibrin thrombus can be cleared by plasminogen activators.10  tPA gained approval 

from the Federal Drug Administration for acute stroke after the NINDS tPA trial showed that 

patients receiving intravenous tPA within three (3) hours of stroke onset were at least 30% 

more likely to have minimal or no disability at 3 months compared to placebo.11  

Unfortunately, tPA use in stroke is extremely limited, with less than 5% of eligible ischemic 

stroke patients receiving tPA, primarily due to the narrow therapeutic time window (<3 hr 

from the onset of symptoms ) and strict eligibility requirements, and the high risk for severe 

brain hemorrhage.12 

The relatively low rate of use of thrombolytic drugs has necessitated the exploration 

of additional agents as potential treatments for acute stroke.10,13-15  A limitation of drug 

therapy is the requirement of adequate blood flow to deliver drug to the injured site.  



3 
 

Restoration of blood flow or increased circulation could have detrimental effects if blood 

vessels are damaged or neurons are in a toxic environment prior to or following an 

occlusion.  Since the penumbra has some partial blood flow which may be increased by 

thrombolytic agents, it is a viable target for therapy.  Indeed, in preclinical studies, many 

neuroprotective drugs have shown promise in extending the therapeutic time window and 

promoting neuronal survival of cells in the penumbra.16-19 

To develop potential therapeutic treatments, surgical models have been generated 

experimentally to mimic stroke injury.  Of these models, middle cerebral artery occlusion 

(MCAO) is the most utilized for cerebral ischemia.  Injury in this model targets the striatum 

and adjacent cortex.  This mimics blockage in the MCA or lenticulostriate arteries in 

humans, the most common type of ischemic stroke.  With this in vivo model, the similar 

carotid tie-off model of global ischemia, and other parallel in vitro models, researchers have 

been able to study a number of cellular mechanisms and agents (Table 0-1) implicated in 

ischemic cell death and cell survival.8 

A number of pharmacologic treatments have been studied20 (Table 0-2), many of 

which target final molecular stages that precede cell death.21  Fewer compounds intervene 

at early stages of neuronal dysfunction in response to the ischemic stress.  For example, 

NMDA receptor antagonists have been heavily explored to prevent the influx of calcium ions 

and attenuate depolarization.8,22-25  Numerous studies have implicated NMDA receptor 

overactivation in the mechanisms of neuronal death, generally referred to as the 

―excitotoxicity‖ hypothesis.25  However, depolarization due to loss of ion flux regulation and 

subsequent NMDA receptor overactivation occurs rapidly and may model conditions within 

the ischemic core better than the surrounding tissue in the penumbra.8  Thus, such 

intervention would be too late to significantly affect destruction of viable tissue.  Failures of 

this approach have led some to question the merits of this pharmacologic strategy.26-28  

Other strategies have been designed to inhibit calcium entry23, prevent oxidative damage 
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due to free radicals7, indirectly modulate glutamate receptor activity24, and more recently to 

inhibit reverse exchange operation of the sodium-calcium exchanger29-32.  Each of these 

approaches is designed to intervene at later stages of cellular pathogenesis to block the 

immediate cause of damage or death.  If the cellular environment is already volatile as a 

result of a compound or precipitating disease state, these mechanisms could already be 

compromised, thus making it difficult to successfully intervene. 

 

Cellular Stress Response 

 In the ischemic penumbra the hypoxic, transiently energized environment challenges 

the homeostatic mechanisms of the cell to produce the proteins necessary for survival.  The 

endoplasmic reticulum (ER) is the intracellular site of newly synthesized proteins.  The 

molecular system that monitors and responds to changes in the ER protein processing 

environment thereby maintaining cellular homeostasis in spite of stress has been termed the 

unfolded protein response (UPR).33  At least three pathways integrate to upregulate proteins 

to respond to the stress, maintain membrane stability, and continue to process proteins.34,35  

The UPR monitors the protein-folding capacity of the ER and signals cell responses to 

maintain capacity and prevent the accumulation of unproductive and potentially toxic protein 

products.34  Additionally, the release of calcium by the ER in response to more severe stress 

provides additional challenge to the mitochondrial microenvironment3,34.  As such, the UPR 

is a commonly used, early indicator, of cell response and viability.34,36 

An alternative approach to re-establishing perfusion in stroke treatment is to protect 

cells by making them more tolerant to the stresses of ischemia.  This concept, known as 

ischemic tolerance (IT), comes from numerous studies that have shown sub-lethal stress 

affords substantial long-term protection from subsequent challenges.  A common 

explanation for ischemic tolerance is that the mobilization of cellular mechanisms that 

maintain homeostasis provides an extra level of protection in the face of a subsequent 
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challenge.9,37,38  Thus, any procedure that facilitates these processes has the potential to 

extend the therapeutic time window for thrombolytics as well as enhance the intrinsic level of 

neuroprotection.  Such procedures may also be useful as prophylactic measures to 

minimize stress-related damage. 

 

Endogenous Neuroprotection 

Pre-conditioning 

Research on inducing IT has centered on two experimental paradigms; ischemic pre-

conditioning (PC) and cross tolerance (CT).  The fundamental basis for both are 

observations that, in most living organisms, repeated exposure to a sub-lethal environmental 

stress often leads to transient tolerance to an otherwise lethal stress.9,16  Although it is very 

unlikely that the current techniques used to induce IT can be used as clinical treatment (e.g. 

manually inducing transient ischemic attacks via MCAO), the information gained from these 

studies have given researchers insights into the endogenous protective mechanisms in 

neurons. 

For well over a decade, studies in numerous model systems have identified cellular 

mechanisms implicated in PC (Table 0-3).  The first observation of ischemic tolerance was 

made in heart.9,39    The protection produced by PC (for periods ranging from 2.5 to 10 

minutes) nearly doubled the duration of permanent ischemia needed for infarction to occur 

with a subsequent challenge.40  This brief onset and duration suggest a metabolic 

mechanism of tolerance.  In contrast, the induction of ischemic tolerance in brain occurs 

over a longer time frame, persists over days in brain, and is dependent on protein 

synthesis.40-42  Biochemically, these mechanisms stabilize membrane potentials, activate 

protective pathways, and increase the capacity of endogenous stress response pathways 

following ischemia-reperfusion.43  Sub-lethal chronic stress often leads to accommodation by 

cells which over time can cause cell death or protect cells.  The conditions which favor 



6 
 

neuroprotection are not fully understood. However, much of the protection may stem from 

increases in heat shock proteins (HSPs).   

 

Heat Shock Proteins 

The heat shock family of proteins has emerged as one of the most ubiquitous and 

evolutionarily conserved inducible mechanisms of endogenous neuroprotection.  There are 

a number of HSPs, typically grouped by molecular weight (Table 0-4).  HSPs along with co-

chaperones facilitate assembly, transport, folding, removal, and activity of functional proteins 

generated by the cell.  HSPs have been widely studied in experimental ischemia and are 

strongly up regulated in the context of stroke and IT.42,44-46 In particular, studies of the 70-

kDa family of HSPs indicate that these proteins are essential for recovery following stroke.47-

51  This family includes heat shock cognate 70 (HSC70, constitutively expressed form, also 

known as HSP73) and HSP70 (inducible form, also known as HSP72).  HSP70 is 

synthesized in especially high levels in the central nervous system (CNS) in response to 

ischemia, and appears to be highly neuroprotective.42,47,52 

Induction of HSP70 was seen in models of IT.  Attempts to inhibit HSP70 lead to 

partial inhibition of IT.16  Gene therapy with HSP72 was neuroprotective in rat models of 

stroke.53  Transgenic mice over-expressing HSP70 were protected against cerebral 

infarction in models of focal ischemia.48,54  Conversely, reduced HSP70 gene expression led 

to increased cellular damage after focal ischemia in HSP70 knockout mice.55  In vitro, 

survival was correlated to the amount of HSP70 induction after thermal or ischemic stress 

and not with the similarity of subsequent stress.56,57 

Among other effects, HSP70 may help to preserve mitochondrial function.58  ATP is 

rapidly depleted during an ischemic event and preservation of mitochondrial function is a 

potential early intervention to facilitate cell survival.3  The importance of HSP70 for 

preservation of mitochondrial function is highlighted in several studies.58,59  Expression of 
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HSP70 correlated with mitochondrial protection against oxidative injury in immortalized cell 

lines.60  HSP70 exhibits late anti-apoptotic protection, responding to increases in caspase-3 

expression.61  In mice over expressing HSP-70, early mitochondrial release of cytochrome c 

is suppressed.59,62  In MCAO models of cerebral ischemia, HSP70 induction was greatest in 

areas of partial perfusion and increased expression was seen in cortical penumbra 

neurons.63 

As a chaperone molecule, HSP70 works in conjunction with many other proteins.  

Not surprisingly, HSF1 (heat shock factor 1, an HSP transcription factor) is activated by 

many of the same triggers known to activate HSP70, including increases in intracellular 

concentrations of misfolded proteins. 

 

HSPs and the Ubiquitin-Proteasome System (UPS) 

In normal conditions, HSPs are the major components of the molecular chaperone 

and protein folding systems.64  During cellular stress, HSPs are involved in the refolding of 

denatured proteins.65 HSPs have also been shown to contribute to the ubiquitination of 

damaged proteins, thus targeting these proteins for degradation via the 

ubiquitin/proteasome pathway.66  Under conditions of stress, survival of the cell depends 

heavily on the ability to make competent and essential proteins67 as well as the elimination 

of defective proteins4.  The folding of proteins requires energy and the maintenance of high 

intraluminal calcium concentrations in the endoplasmic reticulum.  As energy stores fail it 

becomes increasingly difficult to maintain proper folding and the number of misfolded 

proteins increases.  These misfolded proteins can aggregate and become quite toxic to 

cells.   It has been suggested that the regulation of protein degradation may actually be the 

crucial role for HSPs following cellular stress.68 

 The UPS is a major evolutionarily conserved method of protein degradation.  UPS 

involves a three-enzyme (E1, E2, and E3), ATP-dependent process to tag proteins with 
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ubiquitin (Ub) for recognition by the 26S proteasome.  E1-ubiquitin activating enzymes 

prepare ubiquitin to be associated with E2-conjugating enzymes.69  E2 proteins associated 

with Ub bind to E3-ubiquitin ligase proteins and misfolded or target proteins to transfer 

ubiquitin moieties to the misfolded proteins for degradation.69  In addition to their role in the 

cytosol, many HSPs, including HSP70 and HSP90, are present in the nucleus suggesting 

binding partners of the HSPs will also have a nuclear presence and function.70 

Brief hypoxia does not impair proteasome activity; however, prolonged periods of 

hypoxia initiates a shift from the Ub-ATP-dependent mechanisms of the 26S proteasome to 

the Ub-ATP-independent mechanisms of the 20S proteasome, a subunit of the 26S 

proteasome.71  In the absence of a functional UPS, protein degradation proceeds via 

lysosomal pathways.71  These events are correlated with the end stages of the stress 

response and may be a critical turning point in the ability of the cell to withstand the damage 

induced by the stress.   

 

Cellular Stress Response 

Evolutionarily conserved strategies of protection in the mammalian nervous system 

have provided valuable information on endogenous neuroprotective mechanisms. Under 

normal circumstances a variety of chaperone proteins insure proper protein folding.35,65  In 

the endoplasmic ER these functions are highly dependent on intraluminal Ca2+ and ATP.43,72  

During ischemia, the rapid loss of energy production disables the protein folding 

mechanisms which results in the appearance of unfolded or misfolded proteins.  This 

triggers the unfolded protein response (UPR).  Proteins including transcription factors are 

shuttled from the ER and cytoplasm to the nucleus to initiate the production of proteins 

necessary for survival at the expense of other proteins. The dynamic balance between 

normal protein folding and an unmanaged aggregation of unfolded proteins is highly 

regulated and only partially understood. The regulation of proteins in the unfolded protein 
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response will ultimately play a role in determining whether apoptotic pathways are activated 

and the cell dies; or normal function is restored and the cell recovers.43 

Of the transcription factors activated during ischemia, HSF1 is activated by a rate-

limiting trimerization and is then translocated from the cytoplasm to the nucleus.73  Once in 

the nucleus, the HSF oligomers are phosphorylated at serine residues before binding to the 

heat response element (HRE) for transcription of HSP genes, in particular HSP70.74,75  Of 

note, increased DNA binding of HSF1 occurs prior to inhibition of O2-dependent metabolic 

pathways and ATP depletion.76  Nuclear and subnuclear movements of HSF1 within minutes 

of exposure to ischemic challenge prepare the cell to upregulate heat shock proteins for 

survival at the very earliest stages of the stress response.73  It is likely that decisions of cell 

fate are being made at this time.  Thus, a better understanding of these early activation and 

nuclear translocation of HSPs is needed to appreciate fully the neuroprotective role of HSP 

induction. 

While the movement of transcription factors into the nucleus has obvious 

implications, several studies have demonstrated the nuclear translocation of other HSPs.  

For example, HSP60, typically localized to the mitochondria,  is released into the cytoplasm 

and is capable of nuclear localization in response to mitochondrial destabilization.77  

Metabolic acute cell injury in the form of hypoxia is also associated with gene induction and 

translocation of the HSP transcription factor, hypoxia-inducible factor 1 (HIF1).78 HSC70 has 

been shown to translocate from the cytoplasm to the nucleus following in vivo heat stress.79  

The time course of HSC70 translocation is within 15 minutes and initially does not involve 

HSP70.79  When the synthesis of HSPs increase to a level proportional to the appearance of 

unfolded proteins, HSP70 and other chaperones re-localize to the nucleus and bind to the 

HSF1 transcriptional transactivation domain, thereby repressing transcription of heat shock 

genes.74 The translocation of HSPs to the nucleus is perhaps the least well understood 



10 
 

response to stress and more studies are needed to evaluate the extent and significance of 

this process. 

 

HSPs, CHIP, and Ubiquitin 

HSP functions are modulated by co-chaperones.  The ability of HSPs to ubiquitinate 

proteins and promote protein degradation comes from interactions with a large family of E3-

ubiquitin ligases.  The role of the E2-ligases is unique considering only two E1-activating 

enzymes have been identified.  However, tens of E2-conjugating enzymes are presumed.  

The E3-ligating enzymes likely number in the thousands and are hypothesized to confer 

specificity in the ubiquitinating process.  One of the better studied E3 enzymes is the co-

chaperone CHIP (Carboxy terminus of Hsc70 Interacting Protein), first cloned in the 

Patterson lab.80-82  CHIP has three functional domains: the tetratricopeptide (TPR) domain, a 

charged region, and a RING-finger like U-box domain in addition to a nuclear localization 

sequence.81,83  The TPR domain allows CHIP to bind to HSPs.  The charged region has 

been implicated in dimerization of CHIP.84  When bound to HSPs, CHIP functions as a 

chaperone dependent ubiquitin ligase via its U-box region.85,86  Two lysine rich, nuclear 

localization sequences are present in advance of the charged region (KKKR)  and in 

advance of the U-box domain (KRKKR).81 

The three amino-terminus TPR domains are similar to domains in other proteins that 

interact with HSP, namely Hip, protein phosphatase 5, Hop, and CyP-40.81  Chaperone 

binding is accomplished through an electrostatic interaction between the EEVD sequence of 

the TPR domain and a carboxylate anchor on the chaperone.87  Unlike Hip and Hop, CHIP 

required a charged region adjacent to the EEVD domains for Hsp interaction.81 

The U-box domain is structurally similar to the non-catalytic ubiquitin ligating RING 

(Really Interesting New Gene) finger domains, but lacks the characteristic cysteines and a 

histidine that would cause the structure to be stabilized by coordinating zinc ions.  Instead, 
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the U-box is stabilized through strongly conserved charged and polar residues.83 The U-box 

activates E2s through an allosteric aromatic stacking interaction to transfer ubiquitin to the 

target substrates.  CHIP binds two E2 enzymes: UbcH5, which mediates autoubiquitination, 

and Ubc13-Uev1a, which mediates polyubiquitination of chaperone bound target proteins.88 

Proteins in the active site of the CHIP-HSP70 complex are ubiquitinated and directed 

down the proteasomal degradation pathway.  Other co-chaperones work with HSPs to refold 

proteins.  The balance between folding and degradation is likely to be critical to cellular 

homeostasis.  In vitro studies suggest at baseline the HSP machinery favors protein folding.  

However, even small increases in CHIP appear to reconfigure the HSP machinery to favor 

the ubiquitination pathway.  Previous data has shown that CHIP-mediated ubiquitination of 

misfolded proteins requires interactions between CHIP and E2/ubiquitin conjugating proteins 

and that CHIP on its own does not directly interact with the proteins to be ubiquitinated.89,90  

Thus, in situations of severe cellular stress, the CHIP-mediated degradation pathway may 

predominate when the refolding pathway is overwhelmed. 

Functions of the transcription factor HSF1 are also modulated by co-chaperones.  

The ability of HSF1 to trimerize is directly proportional to CHIP levels, and the accumulation 

of active HSF1 complexes persists for at least 48 hours.91  The other HSF1 activators are 

self-terminating, however it has been suggested that CHIP induced active complexes are 

possibly resistant to attenuation and self-terminating effects are absent.91  This is important 

if CHIP levels are modulated by stress.  HSF1 is not ubiquitinated by CHIP but is 

phosphorylated coincident with trimerization.91  Activation of HSF1 by CHIP coincident with 

ubiquitination of chaperone substrates supports CHIP as a ubiquitin ligase.91  This further 

suggests CHIP has a dual cytoprotective role during cellular stress, increasing the folding 

capacity by activating HSF1 and promoting degradation as a ubiquitin ligase.91 How and if 

these two functions are related is unknown. 
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Ubiquitin in neuroprotection and chronic neurodegeneration 

Ubiquitin is also a stress-response protein that is up-regulated following ischemia.  A 

number of studies support a role for ubiquitin in protection from stroke.  Following transient 

global ischemia, free ubiquitin immunoreactivity disappeared in all regions of the 

hippocampus.  Ubiquitin immunoreactivity subsequently recovered in CA3 and the dentate 

gyrus, but did not return in CA1 neurons—the population most susceptible to delayed 

neuronal death.92-94  Ubiquitin was likely incorporated into ubiquitin-protein conjugates.  

However, when animals underwent induction of tolerance prior to the ischemic insult, fewer 

neurons in CA1 died, and ubiquitin immunoreactivity recovered in the CA1 region.  Recovery 

of ubiquitin was likely due to protein recycling as well as new synthesis.95  Ubiquitin-

immunoreactive protein aggregates were also seen in dying CA1 hippocampal neurons 

following global ischemia.96 Aggregates were not seen in neurons surviving the ischemic 

stress.  These observations support the notions that efficient ubiquitination and proteolysis 

are crucial parts of the ischemic stress response and that protein aggregation is an early 

indication of failure of the degradation machinery.  It is expected that the increase in 

misfolded proteins caused by ischemic stress will increase ubiquitination of proteins by 

CHIP. 

Accumulations of misfolded proteins are hallmarks of a number of chronic 

neurodegenerative diseases.  Ubiquitin aggregates are found in senile plaques and 

neurofibrillary tangles of Alzheimer’s Disease, Lewy bodies and Parkinson’s Disease and 

Lewy body dementia, and in nuclear inclusions of numerous CAG repeat disorders like 

Huntington’s chorea.97 

 

CHIP in chronic neurodegeneration, ischemic stress, and cellular protection 

CHIP has been implicated in the pathophysiology of Parkinson’s disease98, 

Alzheimer’s disease (AD)99,100, amyotrophic lateral sclerosis101, cystic fibrosis82, and 
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myocardial ischemia102.  CHIP immunoreactivity was found in in vitro models of Lewy bodies 

and co-localized with alpha-synuclein and HSP70.98  CHIP immunoreactivity was found in 

lesions of several tauopathies, including AD.  CHIP was also shown to promote the 

ubiquitination of tau in vitro and in vivo.100  Phosphorylation of tau appeared to be a 

recognition requirement for subsequent HSC70-binding dependent ubiquitination.  CHIP 

could rescue cultured cells from phosphorylated tau-induced cell death and the authors 

suggested the HSC70-CHIP complex might provide a new therapeutic target for the 

tauopathies.100  Since these studies support a protective role for CHIP in chronic, 

neurodegenerative diseases, we hypothesize that CHIP also plays a neuroprotective role in 

acute stresses, in particular, cerebral ischemia. 

In addition, Ballinger et al. showed CHIP has protective properties in other organ 

systems following heat stress.81  The Patterson lab generated a CHIP (-/-) mouse strain that 

appeared to develop normally but was temperature sensitive and developed apoptosis in 

multiple organ systems in response to thermal challenge.81  Apoptotic changes were rare in 

thermally-challenged wild-type mice.81  The heat-stress sensitivity of the CHIP (-/-) 

phenotype appears to be much more severe relative to phenotypes of mice lacking various 

HSP70 isoforms.91,102  Similar findings were documented by the same lab in in vivo models 

of myocardial ischemia and reperfusion.102  CHIP(-/-) mice had greater infarcted area, 

impaired upregulation of HSP70 in reperfusion, decreased survival, greater incidence of 

arrhythmias, and were more prone to apoptosis in situ.  These studies strongly support a 

central role for CHIP in the ischemic stress response. 

 

CHIP in Acute Stress 

At baseline the molecular chaperone system favors protein folding, however in the 

presence of stress CHIP mediates protein ubiquitination and HSF1 activation.  CHIP forms 

an active homodimer that binds both a co-chaperone-target protein complex, and binds an 
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E2-conjugating enzyme.84,103  This complex facilitates the transfer of Ub moieties from the 

E2 to the target protein.  An additional function has been illustrated for this dimer as a 

binding partner of HSF1.  HSC70-bound CHIP dimer along with HSP90 and HSP70 hold 

HSF1 monomers in an inactive state.104  In the presence of stress HSP90 and HSP70 are 

released and the CHIP-HSC70 complexes hold HSF1 in its trimerized active state.104  So, in 

the presence of stress CHIP serves two functions: 1) ubiquitin ligase to promote 

proteasomal degradation of ubiquitinated proteins, and 2) HSF1 activator thereby promoting 

gene transcription of HSPs (Figure 0-1). 

However, if the stress is severe, protein aggregates will form.  These aggregates 

contain unfolded or misfolded proteins of unknown identity and are often also 

immunoreactive for chaperone proteins and ubiquitin.96,105  More recently, these aggregates 

have been shown to also be immunoreactive for CHIP.106  Current hypotheses suggest that 

these aggregates cannot be broken down by the proteasome, thereby promoting further 

aggregation and possibly cell death.  The possibility remains that these two processes 

(degradation and aggregation) are part of a continuum: aggregates form because the 

degradative process cannot keep up; or proteins typically associated with aggregates (i.e. 

tau, α-synuclein, ubiquitin, or parkin) or novel targets reach local concentrations that initiate 

the aggregate process. 

 

Open Opportunities 

 The current descriptions of acute stress focus on durations of stress that cause 

significant injury, but are not chronic in nature.  The fields of myocardial and cerebral 

ischemia have shown that short durations, typically those used for pre-conditioning, are 

capable of causing long-lasting changes in cells.  Thus interventions in acute stress may 

offer protection earlier than current processes which target the hours, days, and 

occasionally weeks following an ischemic event.  In hours to days, transcription of new 
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proteins has occurred, protein aggregates have formed, and by days to weeks some cells 

may have undergone apoptosis.  These points are well after the removal of the precipitating 

stressor.  More thoroughly understanding the processes that come within minutes or hours 

of the presentation of stress could reveal new points of intervention, some of which could be 

targeted prior to a catastrophic event. 

As has been suggested, the acute cellular response to stress remains somewhat of a 

mystery. What is clear is that cells are capable of responding to stress quickly and that 

perhaps even the most modest of environmental perturbations may initiate a biological 

response.  The acute processes are highly energy-dependent, and involve components of 

protein folding, gene transcription, protein degradation, and the toxic effects of protein 

aggregation. Understanding how early and acute cellular stress response processes 

interface with the chronic and degenerative manifestation of neurologic disease may help 

elucidate the role of this system in cell survival. 

The previous descriptions of acute stress do not firmly characterize the presence of 

molecular chaperones and their relative importance in the acute time frame, given the 

possibility that they may contribute to the disease process in two seemingly opposing ways: 

1) by facilitating neuroprotection when the recovery system works and 2) by driving delayed 

cell death when the system fails.  Current data shows that CHIP is a key modulator of HSP 

molecular chaperones.  To date there has been no analysis of the CNS localization of CHIP 

in neither models of ischemia nor examination of changes to CHIP that occurs in response 

to stress in vivo and in vitro.  These opportunities form the basis of the experiments outlined 

in the following chapters.  We have extended the analysis of CHIP to an in vitro system that 

has suggested the importance of CHIP as a key factor in the intracellular movement of 

molecular co-chaperones during the acute stress response.  The results further support the 

hypothesis that CHIP is an important modulator of the cellular stress response, making a 

significant contribution to cell survival following ischemic injuries like stroke.
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Table 0-1:  Perpetrators of and Agents that Mitigate Cell Death 

Agents and cellular processes that have been studied in connection with pro-death or pro-

survival pathways in ischemic cell death as reviewed in Lipton (1999)8.  Of note, 

components of apoptosis (i.e. caspase-3 inhibitors) and excitotoxicity (i.e. NMDA 

antagonists, increases in intracellular Ca2+) are universal points of intervention for lessening 

the toxic effects on a cell subjected to stress. 

 

Table 1: Perpetrators of and Agents that Mitigate Cell Death 
Pro-Death Pro-Survival 

Increases in intracellular Ca
2+

 Caspase-3 inhibitors 
Increases in Nitric Oxide Matrix Metalloproteinase inhibitors 

Increases in Free Radicals Antileukocyte adhesion agents 
Increases in platelet-activating factor CD95 ligand activity 

Decreased ATP CDP-choline 
Peroxynitrite NDAPH oxidase knockout 

Protease Activity—Calpain nNOS inhibitors 
Proteolysis PARP inhibitors 

Changes in proteins, phospholipids, and DNA COX-2 inhibitors 
Phospholipase Activity PAF antagonist 
Phospholipid changes Ca

2+
 channel antagonists 

Poly-ADPribose polymerase Calmodulin antagonist 
 NMDA antagonists 
 AMPA/kainite antagonist 
 Hypoglycemia 
 Interleukin-1 antagonism 
 TNF-α antagonism 
 Polyamine oxidase blockage 
 S20 proteasome inhibition 
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Table 0-2: Compounds Tested in the Treatment of Stroke Injury 

Compounds that have been investigated for the treatment of stroke injury, as included in the 

database by the Internet Stoke Center at Washington University21 and reviewed in Lipton 

(1999)8  Signaling cascades, ion regulation, and environmental factors are among those 

interventions pursued to no avail. 

 

Table 0-2: Compounds Tested in the Treatment of Stroke Injury 
NMDA Receptor Antagonists 
MK-801, CGS 19755 (Selfotel), Dextrorphan, 
Dextromethorphan, Aptiganel (Crestat), NPS1506, 
Remacemide, 7-chlorokynurenate, ACEA1021, 
GV 150526, NR2B antagonists (ifenprodil) 
 
Sodium Channel Blockers 
Fosphenytoin, Lubeluzole, 619C89 
 
Calcium Channel Antagonists  
Memantine, Nimodipine, Flunarizine 
 
Glutamate Antagonists 
AMPA receptor antagonists (NBQX, YM90K, 
MPQX, GYKI 52466, YM872) 
Mg

2+
 

 
Other 
Sigma receptor ligands 
AMPA receptor antagonists (YM872, MPQX) 
K

+
 channel antagonist (BMS-204352) 

CDP-choline (citicoline) 
Fosphenytoin 
FGF, EGF, TGF-β1 
PGI2 (prostacyclin) 
Phyenyl-t-butyl-nitrone 
Free radical scavengers (tirilozide, ebselen) 
HSP-72 
Lipoxygenase inhibitors 
Chemokine inhibitors (NR58-3.14.3) 
Tetrodotoxin (TTX) 
Geldanamycin 
Isoflurane 
Caspase inhibitors 

JNK inhibitors 
DOPS cyclohexyl ester 
17 β-estradiol enantiomer 
Tumor Necrosis Factor (TNF) 
Microglial conditioned medium 
IL-6 
Cyclosporin A 
Piracetam 
GABA antagonist (muscimol, clomethiazole) 
S-100β 
Uric acid 
Fenamates 
Prenanolone derivatives 
Erythropoietin 
Selegiline 
NOS anatagonists 
Clenbuterol 
Dihydroergocryptine 
Propofol 
GMCSF 
Oxygen regulated protein 
mGluR1 antagonists 
Cortico-Releasing Factor (CRF) 
Repinotan 
ONO-2506 (2-propyloctanoic acid) 
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Table 0-3: Cellular Mechanisms Implicated in Pre-conditioning 

The benefits of cross tolerance are closely related to the mechanisms of endogenous 

neuroprotection. The idea being that the brain has an innate way of protecting itself from 

ischemic injury.  While many mechanisms exists from ion regulation to gene transcription, 

the actions of the heat-shock family of proteins is a main mechanism of interest. Adapted 

from Kirino T (2002)9 and Kaufman (1999)33
.

 

Table 0-3: Inducers and Mechanisms of Ischemic Tolerance 
Ischemic Preconditioning 

Sublethal global ischemia 
Brief transient ischemia 

Proposed Mechanisms of Protection 
Membrane stabilization and inhibition of excitability 
Inhibition of apoptosis 
Unfolded Protein Response (UPR) 
Induction of Heat Shock Proteins 

Cross-Tolerance 
Hyper/Hypo-thermia 
Spreading Depression 
Epilepsy 
Inhibition of oxidative phosphorylation 
Lipopolysaccharide 
Traumatic Brain Injury 
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Table 0-4: Heat Shock Family of Proteins 

The heat shock proteins (HSPs) represent a large number of proteins actively involved in 

the normal maintenance and stress response of cells.  The chaperone proteins typically 

function in bound complexes (i.e. HSP70-HSP40, HSP60-HSP10) to complete a given 

function.  The 70-kDa HSPs have been widely studied for their dual role in normal cell 

function and neuroprotection. 

 
 

HSP Family Localization Function 

HSP10 Mitochondria Substrate release with HSP60 

Small HSPs Cytoplasm F-actin assembly, molecular chaperone 

HSP40 
Cytoplasm, 

Nucleus 
Protein folding, Collagen binding and 

transport, HSP70 co-chaperone 

HSP60 
Mitochondria, 
Cytoplasm, 

Nucleus 

Polypeptide assembly, membrane transport, 
accelerate protein folding/unfolding 

HSP70 
Cytoplasm (ER), 

Mitochondria, 
Nucleus 

Molecular chaperone, Protein 
assembly/transport/folding/unfolding/removal, 

ATPase activity, neuroprotection 

HSP90 
Cytoplasm (ER), 

Nucleus 
Specific polypeptide and receptor binding 

(signal transduction) 

Ubiquitin 
Cytoplasm, 

Nucleus 

Target proteins for proteasomal degradation, 
transcription regulation, signal transduction, 

marker for cell damage 
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Figure 0-1: CHIP Function Summary Diagram 

Upon activation CHIP dimerizes and binds to an E2-ubiquitin conjugating enzyme and HSP 

co-chaperone to poly ubiquitinate target proteins for degradation by the proteasome.  In 

addition, the CHIP-HSP complex facilitates and stabilizes the active, trimerized state the 

HSF1 transcription factor.  Once active the subsequent HSP gene transcription increases 

HSP70 in the cell, primarily for protein folding.  This potentially facilitates cell recovery.  In 

the presence of severe stress the CHIP-HSP-target protein complex is capable of 

irreversible aggregation, thereby preventing proteasomal degradation of the target protein.  

Aggregate accumulation is neurotoxic and has been associated with cell death. 

 



CHAPTER 1: 

Characterization of CHIP in Neurons 

INTRODUCTION 

Proper protein management is a key component of cellular homeostasis.52  The 

balance between protein folding and degradation that is mediated through the molecular 

chaperones ensures the proteins needed for normal cell functioning are available and 

dysfunctional proteins are renewed.  The decision between folding and degradation has 

been termed ―protein triage‖ though the factors that influence this triage are not completely 

understood.   Stress68, disease105,107, and age108 have been shown to affect the balance of 

protein degradation and protein folding.  By evaluating the molecular chaperones and the 

factors that influence chaperone function we should be able to postulate which chaperone 

functions are important for protein management and cell survival. 

The carboxy terminus of HSC70 interacting protein (CHIP) is a negative regulator of 

molecular chaperones.80,81,89,109  CHIP promotes protein ubiquitination which leads to protein 

degradation.81,85,86  CHIP mRNA was shown to be widely distributed throughout the human 

body.81  mRNA levels were highest in the striated muscles of the heart and skeletal muscles 

and to a lesser extent in the pancreas and brain.81  CHIP mRNA levels were also reported in 

human cell lines and primary cultures.81 To date, similar analysis of CHIP protein levels in 

primary cultures has yet to be presented. 

Murata et al. cited a high protein level of CHIP in the brain, but have not presented 

evidence of CHIP protein expression. 85,110  Functionally, such an observation encourages 

the hypothesis that CHIP is found at high levels in cells that have a high energy 

consumption and protein turnover.  With increased activity and protein production the 
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possibility for error would also increase making the appearance of misfolded proteins more 

frequent.111  As a link between the chaperone (folding) and proteasome (degradation) 

systems, CHIP-mediated proteasomal degradation of damaged and misfolded proteins may 

play a key role in demanding organ systems, such as the brain.  The presence of mis-folded 

proteins prompts the activity of the unfolded protein response (UPR) in the ER as well as the 

ubiquitin-proteasome response.  The ubiquitin-proteasome system is considered to play a 

key role in protein homeostasis by promoting the immediate degradation of misfolded or 

impaired proteins.  Investigation into the degradation of hyper-phosphorylated tau and α-

synuclein in Alzheimer’s disease (AD)100,112 and Parkinson’s disease (PD)90,98 respectively 

have illustrated, at least in isolated contexts, the ability of CHIP to function as an ubiquitin 

ligase to degrade these proteins.  Further, the presence of components of the system in the 

cytoplasm and nucleus suggests the proteasomal system is capable of both routine cellular 

maintenance and an early response to the generation of misfolded proteins. 

In an organ system like the brain where great variety is found in cell types, energy 

consumption, and disease susceptibility proteins important to basic homeostasis could vary.  

None of the previous studies examined the cellular and regional distribution of CHIP in the 

brain.  To further characterize CHIP, we documented the localization in the mouse brain in 

vivo and in primary mixed cultures of neurons and astrocytes in vitro.  Additional 

observations were made on the characteristics of sub-cellular localization.  To clarify the 

stability of CHIP in the cell culture model system, the stability of CHIP was evaluated. 

 

RESULTS 

CM67 Antibody Specificity: 

To study CHIP, anti-CHIP monoclonal antibodies were produced in our lab against a purified 

GST-CHIP fusion protein.  Product from hybridoma clone 67 (CM67) was selected for high 

immunoreactivity against CHIP on ELISA and Western blot screens.  On Western blot, 



23 
 

CM67 recognized a single band of approximately 35kDa molecular weight present in 

fibroblast whole cell lysate (WCL) from wildtype (+/+) mice.  Specificity was confirmed by the 

absence of immunoreactivity in lysates from CHIP (-/-) mice (Figure 1-1). 

 

CHIP Protein Localization in Mouse Brain Sections: 

To determine expression and localization of CHIP in vivo, sections of adult mouse brain 

were stained using the lab-generated monoclonal antibody against CHIP. Representative 

examples of CHIP staining from the brain of a 10-week old Sv129 mouse are show in 

Figure 1-2. Immunoreactivity was observed throughout the brain including the cortex (1-2A), 

hippocampus (1-2B), hypothalamus (1-2C), Purkinje neurons (1-2D), choroid plexus and 

ependymal cells (1-2E), and thalamus (1-2F). The staining pattern was primarily 

cytoplasmic, demonstrated by double staining sections for CHIP (1-2G) and a nuclear stain, 

bisbenzamide (1-2H) and the two images combined (1-2I) to show co-localization.  Higher 

magnification of 1-2G-I is shown in the panel Figure 1-2J to highlight perinuclear localization 

of CHIP in vivo. 

 

CHIP Protein Localization in Cultured Cortical Neurons: 

To verify the presence of CHIP in dissociated cultures of primary cortical/hippocampal cells, 

representative examples of staining are show in Figure 1-3.  Dissociated cortical cultures 

from fetal rat brains showed abundant expression of CHIP (1-3A). Neurons in the cultures, 

identified by immunoreactivity for MAP-2 (1-3B) showed the greatest immunoreactivity for 

CHIP (1-3A, arrow).  There was lower expression in astrocytes (1-3A, arrowhead).  A 

nuclear counterstain with bisbenzimide (1-3C) was also applied to the cultures. A combined 

image of CHIP, MAP-2 and bisbenzimide (1-3D) illustrated CHIP immunoreactivity was both 

nuclear and cytoplasmic, but primarily cytoplasmic with enhanced intensity in the perinuclear 
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region. The combined image also illustrated the presence of CHIP in both neurons and 

astrocytes in primary dissociated cortical cultures. 

 

CHIP expression in different culture conditions: 

Primary cortical cultures enriched in neurons were prepared normally and kept in MEM for 

the first 3 days and then switched to Neurobasal culture medium for the last 7 days.  In 

these cultures, neurons accounted for at least 80% of cells with astrocytes making up most 

of the remaining cells.  To determine if an enriched culture preparation would be appropriate 

for future studies, cortical neurons from fetal rats were kept in culture for 10 days. Control 

cultures were kept in MEM for all 10 days.  Equal amounts of protein were analyzed by 

Western blot (Figure 1-4). CHIP was present in both the cytoplasmic and nuclear fractions 

in both MEM and Neurobasal preparations. Greater immunoreactivity was observed in the 

nuclear fraction of cultures kept in Neurobasal versus the nuclear fraction of cultures kept in 

MEM (i.e. less stress in complete MEM conditions). 

 

Density of Neurons in Cultures: 

MEM was chosen as the standard culture condition.  Representative examples of 

dissociated cortical mixed cultures of neurons and astrocytes are shown in Figure 1-5.  After 

10 days in vitro, cultures consisted of neurons with astro-glial support.  Increased cell 

density resulted in the more frequent appearance of clusters of cells and more elaborate 

networks of connections among the neurons. 

 

CHIP stability profile  

To determine the presence of CHIP throughout the ischemic time course, cultures were 

exposed to increasing durations of OGD with or without cycloheximide (CHX).  Cultures 

exposed to 120 minutes of OGD were allowed to recover for 24 hours in the presence of 
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CHX.  Immediately following OGD CHIP in the cytoplasm and nucleus remained unchanged 

(Figure 1-6A, for Western see Figure 2-5A).  CHIP in whole cell lysate from cultures 

exposed to increasing durations of OGD with CHX, again remained relatively unchanged, 

with an estimated t1/2 of 111.36 hours (Figure 1-6B).  CHIP levels in whole cell lysate did 

decrease during recovery when CHX was present generating a t1/2 of 71.33 hours (Figure 1-

6C).  This suggests that 1) CHIP is stable during OGD, 2) Stable CHIP levels are not the 

result of new synthesis during OGD, and 3) During a 24 hour recovery in the absence of 

new synthesis CHIP decreased slowly suggesting gradual consumption. 

 

DISCUSSION 

In the present study we examined CHIP expression and stability in neurons.  

Previously, CHIP expression had been demonstrated in immortalized cells and in numerous 

organ systems81,113, but not the brain.  In COS7 cells, GFP-CHIP fusion proteins first 

demonstrated CHIP expression in the cytoplasm81 and later indirect immunoreactivity in the 

cytoplasm was also observed82.  Cytoplasmic CHIP was also identified in neuroblastoma 

SH-SY5Y cells90, hamster lung fibroblasts (O23)114, and Chinese hamster ovary (CHO) 

cells115.  Our work showed CHIP expression in vivo in sections of mouse brain that was 

primarily cytoplasmic with perinuclear intensity (Figure 1-2J). In vitro, CHIP immunoreactivity 

in primary cortical cultures was both cytoplasmic and nuclear with perinuclear intensity 

(Figure 1-3).  Unlike previous reports in cell lines82,91,114-116, nuclear localization of CHIP in 

primary neurons was observed without intentional perturbation of the cell culture.  These 

data demonstrate endogenous CHIP expression that is primarily cytoplasmic with the 

possibility of dense localization in the perinuclear region.  In cultured cells CHIP may also be 

localized in the nucleus.  It is possible this is an adaptive measure to ensure cell survival in 

culture.  Primary cortical cultures consisted of both neurons and astrocytes from E17 rat 

fetuses. 
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Cultured cells also displayed CHIP immunoreactivity in astrocytes.  Previous reports 

have stated astrocytes produce HSPs for secretion into the extracellular space.38,117  

Whether astrocyte activity is part of the adaptive measure that increases nuclear CHIP 

expression in culture remains to be evaluated. 

Under the assumption that nuclear translocation is a sign of stress, the primary 

cultures described in this report were maintained as to provide a minimum level of nuclear 

CHIP.  Though nuclear levels were not absent as in vivo, maintaining cultures in MEM 

provided an in vitro system in which nuclear CHIP responses could be manipulated. 

CHIP stability in these cultures was demonstrated by testing CHIP levels in the 

presence or absence of the protein synthesis inhibitor, cycloheximide (CHX).  CHX is also a 

proteotoxic substance.  In response to the addition of CHX localization of CHIP expression 

in cultures fluctuated (Figure 1-6A).  In differentiated NT2 cells displaying the neural 

phenotype (NT2-N), indirect CHIP immunoreactivity was observed in the cytoplasm and 

nucleus.116  There may be initiation of the stress response during early and acute exposure 

of cells to CHX.  Nuclear CHIP levels increased over time in culture (data not shown).  When 

CHX is present in cultures exposed to increasing durations of OGD CHIP levels did not 

significantly decrease, indicating that CHIP is likely not synthesized or consumed during 

OGD.  Additionally when CHX is added after OGD for the duration of recovery, CHIP levels 

in whole cell lysate again decreased slowly. 

These data suggest that CHIP is present at levels comparable to baseline throughout 

OGD and during recovery.  Further, our data suggests that CHIP localization is primarily in 

the cytoplasm of the cell body with some nuclear localization in culture.  Additionally, nuclear 

CHIP localization could be manipulated by different culture conditions.  Other studies have 

shown that in the presence of an HSP90 inhibitor and synthetic glucocorticoid steroid, 

dexamethasone, CHIP immunoreactivity was localized to fragmented globules in neurites.116  

Similar results were observed in HEK293 cells exposed to heat stress.115  CHIP also 
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localized to neurofibrillary tangles containing mostly four-repeat tau in cells of supranuclear 

palsy-affected brain.112  Yet this study provided convincing evidence that even with a 

presumed stress in pathological tangles, CHIP may remain active.112 

 

MATERIALS AND METHODS 

Cell culture  

Fetuses were removed from euthanized pregnant rats at 17 days gestation.  Brains were 

removed from the cranium in a sterile hood and rinsed 3X in fresh sterile HEPES Buffered 

Salt Solution (in mM: 1.25 NaCl, 5.36 KCl, 0.49 MgCl2·6H2O, 0.40 MgSO4, 138.1 NaCl, 1.0 

D-glucose, 19.97 HEPES, pH 7.4, Osmolality 290±3).  The cortex-hippocampus was 

dissected from the brain and placed in calcium-magnesium free HBSS (CMF-HBSS, same 

as HBSS except add 141.52mM NaCl and omit calcium and magnesium salts).  The tissue 

was then, minced, transferred to a 15ml tube containing 5ml CMF-HBSS containing  2.5U/ml 

dispase + 2U/ml DNase I and incubated for 15-20 minutes at 37°C.  Cells were dissociated 

by trituration and the suspended cells were transferred to a 50ml culture tube containing 

25mls of complete medium (MEM + 10% Fetal Bovine Serum (FBS, Hyclone) + 20µg/ml 

gentamicin (Gibco, 15750-060)).  After several rounds of trituration the final tube of cells was 

counted and the cells seeded onto poly-D-lysine (0.1mg/mL, Sigma, P1024) coated 

coverslips at a density 40,000 cells/cm2.  100mm dishes and 48-well plates were coated with 

poly-D-lysine and cells seeded at 100,000 cells/cm2.  The resulting cultures were grown 

from 7-10 days in vitro and contained a mixed population of neurons, astrocytes, and 

microglia. For comparison, after 4 days in vitro (DIV) some cultures were maintained in 

Neurobasal (Gibco, 21103) supplemented with B27 (1:50, Gibco, 17504-044) + 20µg/ml 

gentamicin (Gibco, 15750-060) for an additional 7 days. Culture medium was changed every 

2-3 days. Cells were used at least 48 hours after the most recent medium change. 
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Mouse brain preparation 

The brains from 10 week-old Sv129 mice were perfused with 4% paraformaldehyde in 0.1M 

phosphate buffered saline (PBS: in mM: 9.4 NaH2PO4·H2O, 12.1 Na2HPO4·7H2O, 140 NaCl, 

pH 7.4-7.5) and harvested.  Brains were paraffin embedded and cut into 5µm coronal 

sections (UNC-CH Mouse Histopathology) for immunohistochemistry.   

 

Immunostaining 

The localization of CHIP was determined by immunostaining.  Mouse Brain Sections were 

unmasked in heated citrate buffer (2% C6H807 ·H20 + 9.1% C6H5Na3O7·2H20), permeabilized 

with 0.1% Triton (Sigma, T-9284) in PBS, blocked with horse serum (1:100) then incubated 

with antibody.  Representative coronal sections were stained using a polyclonal rabbit anti-

CHIP antibody (Affinity Bioreagents, PA1-015) diluted 1:100 in PBS and visualized with an 

Alexa-594 conjugated donkey anti-mouse secondary (Invitrogen, A21207) diluted 1:100.  

Cultured Cortical Neurons Coverslips of cultured cortical neurons were fixed in 4% 

paraformaldehyde.  Cells were permeablized with 0.1% Triton in PBS, blocked with horse 

serum then incubated with the polyclonal CHIP antibody followed by directory conjugated 

anti-rabbit-Alexa 594 conjugate (Molecular Probes, 21207) for visualization. Sections and 

cultures were counterstained with goat anti-MAP2 (Santa Cruz, sc-12012) diluted 1:100 and 

visualized using Alexa 488 conjugated donkey anti-goat (Invitrogen, A11055) diluted 1:100.  

Nuclear counterstains were performed with bisbenzimide (Hoechst 33258, 1µM, Sigma, 

B1155). Sections and coverslips were mounted using Fluoromount-G (SouthernBiotech, 

0100-01). 

 

Western blot 

Cells grown at a density of 105 cells/cm2 on 100 mm plates were washed three times to 

replace MEM with artificial cerebral spinal fluid (aCSF: concentrations in mM: 137 NaCl, 5.0 
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KCl, 2.3 CaCl2, 1.3 MgCl2, 10 HEPES, 20 Glucose, pH 7.37-7.40, Osmolality 290), 

immediately placed on ice and scraped and transferred to 15mL conical tubes after 4 

minutes.  Cytoplasmic and nuclear fractions were extracted using the NE-PER Nuclear and 

Cytoplasmic Extraction Kit (Pierce, 78833) per kit instructions and protein concentrations 

were determined using the BCA Assay (Bio-Rad).  Equal amounts of lysate were mixed with 

4X sodium dodecyl sulfate (SDS) sample buffer (40% glycerol, 240mM 1M Tris-Cl, pH 6.8, 

8% SDS, 0.1% bromophenol blue) and separated by sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE).  Separated proteins were transferred to nitrocellulose 

membranes (Bio-Rad, 162-0115).  Western blotting was performed using the in-house 

mouse-anti-CHIP monoclonal antibody, conditioned medium clone 67 (CM67) undiluted 

followed by goat anti-mouse-horseradish peroxidase (HRP)-conjugated secondary antibody 

(Calbiochem, 402335) diluted 1:10,000. Membranes were reacted with Enhanced 

Chemiluminescence (ECL) reagent (Amersham, RPN2109) and exposed to film. 

 

CHIP degradation 

100mm dishes were cultured at 105 cells/cm2 and maintained 10 DIV.  Cultures were 

transferred to MEM with cycloheximide (100µg/mL, Sigma, C-1988) or MEM with 

cycloheximide and proteasomal inhibitor, MG132 (20 µM, Peptides International, I2L-3175-

V) for durations between 0 to 480 minutes.  Control cultures were not exposed to 

cycloheximide or MG132.  For CHIP degradation in recovery studies, cultures were 

maintained in MEM with cycloheximide or MEM with cycloheximide and proteasomal 

inhibitor in recovery for durations between 0 to 24 hours.  After exposure to OGD, cells were 

immediately harvested as whole cell lysate using RIPA buffer (1X0 TBS (20mM Tris pH 8.0, 

137mM NaCl), 1% NP-40, 10% glycerol, protease inhibitors (1µMm, Sigma, P8340)) or 

placed on ice for 4 minutes and cytoplasmic and nuclear fractions were extracted using the 

NE-PER Cytoplasmic and Nuclear Extraction Kit (Pierce, 78833) per kit instructions.  Protein 
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concentrations were determined using the BCA Assay (Pierce, Reagent A: 23223, Reagent 

B: 23224) and equal protein amounts were separated by SDS-PAGE and analyzed by 

Western blot for CHIP. 

 

FIGURE LEGENDS 

Figure 1-1: 

CM67 recognized a single band of approximately 35kDa molecular weight present in 

fibroblast whole cell lysate (WCL) from wildtype (+/+) mice.  Specificity was confirmed by the 

absence of immunoreactivity in lystates from mice lacking CHIP (-/-). 

 

Figure 1-2: 

Positive staining for CHIP in sections from adult Sv129 mice.  Immunoreactivity was 

observed in the cortex (1-2A), hippocampus (1-2B), hypothalamus (1-2C), Purkinje neurons 

(1-2D), choroid plexus and ependymal cells (1-2E), and thalamus (1-2F).  Cortical CHIP 

staining (1-2G) and nuclear counterstain (1-2H), demonstrate co-localization (1-2I).  Higher 

magnification images from 1-2G-I are shown in panel 1-2J. 

 

Figure 1-3: 

CHIP immunocytochemical staining of cultured neurons showed reactivity in both neurons 

and astrocytes.  Cultured neurons (10 DIV) were stained for CHIP (1-3A), MAP-2 (1-3B) and 

bisbenzimide (1-3C).  The three images were combined (1-3D) to illustrate CHIP 

immunoreactivity in neurons (arrow) and astrocytes (arrowhead) and localization in the 

cytoplasm and nucleus. 

 

Figure 1-4: 
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CHIP sub-cellular localization in cultured neurons showed greater nuclear intensity in 

cultures kept in neurobasal compared to MEM.  

 

Figure 1-5: 

Primary cultures of dissociated cortical neurons and astrocytes. Examples of dissociated 

cortical cultures at 45,000 cells/cm2, 80,000 cells/cm2, and 100,000 cells/cm2. 

 

Figure 1-6: 

CHIP is stable in culture following OGD and recovery.  A CHIP levels in cytoplasmic and 

nuclear fractions following increasing durations of OGD.  B CHIP levels in whole cell lysate 

following increasing durations of OGD in the presence of cycloheximide.  Image from the 

Western blot is inset in the graph.  C CHIP levels in whole cell lysate following 2 hours of 

OGD and during 4-24 hours of recovery with cycloheximide present during recovery.  Image 

of the Western blot is inset in the graph. 
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Anti-CHIP monoclonal production 

Anti-CHIP monoclonal antibodies were produced in our lab against a purified GST-CHIP 

fusion protein.81  Product from hybridoma clone 67 (CM67) was selected for high 

immunoreactivity against CHIP in ELISA and Western blot screens.  On Western blot, CM67 

recognized a single band of approximately 35kDa molecular weight present in fibroblast 

whole cell lysate (WCL) from wildtype (+/+) mice.  Specificity was confirmed by the absence 

of immunoreactivity in lysates from CHIP -/- mice (Figure 1-1). 

Courtesy of David Y. Huang, M.D., Ph.D. and Laboratory of Dr. E-S Huang.
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Figure 1-1: CM67 Antibody Specificity 

CM67 recognized a single band of approximately 35kDa molecular weight present in 

fibroblast whole cell lysate (WCL) from wildtype (+/+) mice.  Specifity was confirmed by the 

absence of immunoreactivity in lystates from mice lacking CHIP (-/-).  



33 
 

Figure 1-2: CHIP Protein Localization in Mouse Brain Sections 

Positive staining for CHIP in sections from adult Sv129 mice.  Immunoreactivity was 

observed in the cortex (1-2A), hippocampus (1-2B), hypothalamus (1-2C), Purkinje neurons 

(1-2D), choroid plexus and ependymal cells (1-2E), and thalamus (1-2F).  Cortical CHIP 

staining (1-2G) and nuclear counterstain (1-2H), demonstrate co-localization (1-2I).  Higher 

magnification images from 1-2G-I are shown in panel 1-2J.  
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Figure 1-3: CHIP Protein Localization in Cultured Cortical Neurons 

CHIP immunocytochemical staining of cultured neurons showed reactivity in both neurons 

and astrocytes. Cultured neurons (10 DIV) were stained for CHIP (1-3A), MAP-2 (1-3B) and 

a nuclear Hoechst stain (1-3C). The three images were combined (1-3D) to illustrate CHIP 

immunoreactivity in neurons (arrows) and astrocytes (arrowheads) and localization in the 

cytoplasm and nucleus.
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Figure 1-4: CHIP Sub-Cellular Localization in Baseline Culture Conditions 

CHIP sub-cellular localization in cultured neurons showed greater nuclear intensity in cultures 

kept in neurobasal compared to MEM.  
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Figure 1-5: Density of Neurons in Culture 

Primary cultures of dissociated cortical neurons and astrocytes. Examples of dissociated cortical 

cultures at 40,000 cells/cm2, 80,000 cells/cm2, and 100,000 cells/cm2. 
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Figure 1-6: CHIP Stability in Cell Culture 

CHIP is stable in culture following OGD and decreases during recovery. A CHIP levels in 

cytoplasmic and nuclear fractions following increasing durations of OGD.  B CHIP levels in 

whole cell lysate following increasing durations of OGD in the presence of cycloheximide.  

Image from the Western blot is inset in the graph.  C CHIP levels in whole cell lysate following 2 

hours of OGD and during 4-24 hours of recovery with cycloheximide present during recovery.  

Image of the Western blot is inset in the graph.

  



CHAPTER 2 

Nuclear Localization of CHIP Following Acute Cellular Stress 

INTRODUCTION 

Survival of cells following stress depends heavily on the balance of quality control 

mechanisms that both make functional proteins and eliminate defective proteins.  During 

ischemic stress, the rapid loss of energy production disables protein folding mechanisms, 

resulting in unfolded or misfolded proteins, thus triggering the unfolded protein response 

(UPR).  The UPR up-regulates HSPs, activates HSP transcription factors, and promotes 

protein refolding and degradation118 

In the brain, the 70-kDa family of HSPs has been widely studied in experimental 

models of cerebral ischemia.54,56,59,63  HSP70 is synthesized in especially high levels in the 

central nervous system (CNS) in response to ischemia and appears to be highly 

neuroprotective. 47,52,119  Transgenic mice overexpressing HSP70 were protected against 

cerebral infarction in models of focal ischemia.54  Conversely, reduced HSP70 expression 

led to increased cellular damage after focal ischemia in HSP70 knockout mice.55  CHIP also 

appears to play a protective role in the cellular stress response, as CHIP(-/-) mice and cells 

derived from these mice undergo temperature-sensitive apoptosis in response to thermal 

and proteotoxic stress.81 

Key to the UPR is the translocation of transcription factors and other HSPs from the 

ER to the nucleus to both initiate and suppress protein transcription.43,118  Translocation to 

the nucleus and sub-nuclear movements of HSF1, within minutes of exposure to ischemic 
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challenge, prepares the cell to upregulate HSPs for survival at the very earliest stages of the 

stress response.  Constitutively active HSC70 also translocates from the cytoplasm to the 

nucleus within minutes of in vivo heat stress.79  The time course of this translocation was 

within 15 minutes and initially did not involve the inducible HSP70.79  HSP70 and other 

chaperones are involved in repressing transcription of heat shock genes.91  CHIP is part of 

the activating complex for HSF191, but the role of CHIP in the complex is unknown.  

Inclusion of CHIP in an HSF1 complex suggests an early role for CHIP in the UPR, which 

may set the stage for a survival-promoting response. 

Rodent models of ischemia have established significant, reproducible injury from as 

little as 20 minutes of global106,107, and more commonly, 2 hours of focal ischemia105,120, 

while clinical intervention from the time of onset is almost exclusively limited to a 3 hour 

window12, beyond which significant impairment results.  Traditional in vitro ischemia models 

require 4 or more hours of ischemia to generate significant delayed cell death, possibly due 

to residual O2 and glucose present in the cultures.  However, primary neuronal cultures 

subjected to oxygen-glucose deprivation using argon displacement and 2-deoxy-D-glucose 

(2DG) were sensitive to the absence of serum121 and demonstrated significant delayed cell 

death after as little as 30 minutes of in vitro ischemia.122,123 

Since studies also support a protective role for CHIP in chronic neurodegenerative 

diseases98-100, we hypothesized that CHIP also plays a neuroprotective role following acute 

stresses such as cerebral ischemia.  We therefore undertook studies to determine changes 

in expression and localization patterns of CHIP in response to acute cellular stressors.  

Presented is evidence for rapid translocation of CHIP to the nucleus in response to both 

heat stress and oxygen-glucose deprivation (OGD) in in vitro models. 

 

RESULTS 

Immediate and Delayed Cell Death following Heat Stress 
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Because we are interested in acute cellular responses to stress we needed to 

determine what durations of heat stress resulted in cell death.  Identifying the minimum 

duration of stress required to generate significant cell death would also identify the point at 

which heat stress damaged the majority of cells in the culture.  Cultured neurons were 

stained with Sytox Green (1µM) and measured for fluorescence using a plate reader.  No 

significant cell death was observed during or immediately after exposure to heat stress (data 

not shown).  When measured after a 24 hour recovery period in normal culture conditions 

following heat stress, significant cell death was observed following 30 minutes of heat stress 

(298.33%±4.89 of baseline) and increasing exponentially to 60 minutes (835.41%±76.84 of 

baseline) (*p<.001, n=47) (Figure 2-1). 

 

CHIP in Cultured Cortical Neurons following Heat Stress: 

Our previous data suggested we could be able to increase nuclear localization of 

CHIP with the application of stress.  Primary mixed cultures were heat stressed and stained 

for CHIP. Images of CHIP (red) and with a nuclear counterstain (blue) and images merged 

to show co-localization (Figure 2-2). Unstressed cells (Figure 2-2A, 0 min) presented 

immunoreactivity patterns as was seen previously (Figure 1-3A) with both cytoplasmic and 

nuclear CHIP expression in a granular pattern and a dense perinuclear staining (Figure 2-

2A, higher magnification 2-2B, yellow arrowhead).  A fragmented apoptotic nucleus (Figure 

2-2A, white arrows), also in the field, had notably less CHIP immunoreactivity compared to 

other cells in the field.  After 5 minutes of heat stress the CHIP staining pattern was more 

uniform throughout the cytoplasm and nucleus, but again with a denser perinuclear region 

(Figure 2-2A, higher magnification 2-2B, yellow arrowhead).  Following 30 minutes of heat 

stress the CHIP staining pattern was again granular in appearance, and consistent with 

dense perinuclear staining (higher magnification 2-2B, yellow arrowhead).  Also at 30 

minutes, a condensed nucleus (Figure 2-2A, white arrow) had notably less CHIP 
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immunoreactivity compared to other cells in the field and had a pattern similar to the 

apoptotic cell in the 0 minute field. 

 

CHIP Sub-cellular Localization following Heat Stress 

To determine if the absolute changes observed with staining were representative of 

relative changes in CHIP localization; cultures were heat stressed and fractionated by 

differential salt buffer lysis to isolate the cytoplasmic and nuclear fractions for analysis.  

Equal protein concentrations were probed with anti-CHIP, anti-HSC70, or anti-HSP70 

antibodies (Figure 2-3).  CHIP immunoreactivity was observed in cytoplasmic and nuclear 

fractions at baseline (0).  With increasing durations of heat stress the relative amount of 

CHIP in the cytoplasm decreased at 30 and 60 minutes to 57.43%±12.52 and 

53.71%±14.50 of baseline, respectively.  In the nuclear fraction, CHIP peaked at 10 minutes 

(102.23%±26.54) then decreased below baseline by 30 (84.62%±22.24) and 60 

(69.11%±20.56) minutes.  The relative amount of the CHIP co-chaperone HSC70 in the 

cytoplasm slightly decreased with increasing durations of heat stress, to 83.96%±20.49 at 

60 minutes.  However, a slight increase was observed with HSC70 in the nuclear fraction 

with increasing durations of heat stress to 124.77%±26.87 by 60 minutes.  The inducible 

molecular chaperone, HSP70 increased early in the cytoplasmic fraction, peaked at 10 

minutes (270.57%±208.92), and decreased to near baseline levels by 30 (72.86%±20.75) to 

60 (100.97%±53.49) minutes.  In the nuclear fraction, HSP70 again increased, peaking at 10 

minutes (909.92%±852.29) before decreasing to near baseline levels at 30 

(156.98%±113.66) to 60 (204.08%±177.21) minutes.  

To this point, our in vitro model of ischemia has been HS.  The HS model is well 

known to be a severe stress that is more closely related to excitotoxicity than in vivo 

ischemia.  Our lab adopted a model of in vitro OGD to better model in vivo ischemia 

previously described by the Hossmann group.122,123  Fundamental objectives in adopting an 
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alternative model were to 1) evaluate increases in nuclear CHIP, 2) model a time course for 

delayed cell death similar to that observed in vivo, 3) establish a time frame for the transition 

from injury to cell death.  Human and in vivo rodent studies clearly illustrate a 2-hour 

ischemic threshold before the appearance of significant delayed cell death.  It is expected 

that changes within this early time window will predict the delayed cell death seen in vitro 

and in vivo.  A therapeutic time window might then be established that accounts for the 

correction of critical deficits. 

 

Immediate and Delayed Cell Death following OGD 

Cultured neurons were stained with Sytox Green (1µM) and measured for 

fluorescence using a plate reader.  No significant cell death was observed during or 

immediately after exposure to OGD (data not shown).  When measured after a 24 hour 

recovery period in normal culture conditions following OGD (Figure 2-4A), significant cell 

death was observed following 90 (221.87%±8.97) and 120 minutes (229.68%±7.08) of OGD.  

Significance was lost by 240 minutes (181.62%±6.33), which was attributed to the loss of 

dead cells that were no longer adhered to the 48 well-plate. 

 

Cell Death Counts 

To determine if the percentage increase in dead cell staining was indicative of an 

actual increase in cell number and not an increased staining intensity, cells from cultures 

exposed to OGD and 24 hours recovery were stained with Sytox Green and imaged under 

20X oil objective (Metamorph field calibration=0.2493mm2) (Figure 2-4B).  10 images per 

condition were captured for analysis from 48-well plates (well size=0.95cm2).  Dead cell 

percentage was calculated as: (((dead cell count x well size)/field calibration)/cells per well) 

x 100.  Baseline cell death (Figure 2-4B, 0) was calculated as 4.11%±1.84. 30 and 120 

minutes were 28.75%±11.55 and 38.07%±8.78 respectively. 
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CHIP localization following OGD 

To evaluate change in relative CHIP levels, immunoreactivity was observed in 

cytoplasmic and nuclear fractions analyzed by Western blot at baseline (Figure 2-5A, 0).  

With increasing durations of OGD the relative amount of CHIP in the cytoplasm remained 

constant (Figure 2-5A).  In the nuclear fraction, a slight increase in CHIP (to 113% of 

baseline) was observed following 30 minutes of OGD which remained slightly less elevated 

following increasing durations (to 104% at 4 hours). 

Compared to HS, OGD is a mild, metabolic stress where misfolded proteins develop 

over time.  Since CHIP likely responds to the presence of misfolded proteins we 

hypothesized that 1) changes in CHIP localization were likely to occur during the recovery 

period following OGD and 2) a difference would exist between mild durations of stress 

where minimal increases in delayed cell death occurred and severe stress where significant 

increases in delayed cell death were observed. 

 

CHIP Localization following Mild and Severe OGD plus Recovery 

Following a mild stress (30 minutes of OGD) (Figure 2-5B) CHIP in the cytoplasmic 

fraction remained unchanged until a decrease to 69.54%±16.41 of baseline at 24 hours of 

recovery.  In the nuclear fraction following mild stress (Figure 2-5B, right), CHIP increased 

acutely (125.27%±14.95) following OGD and steadily decreased through 12 hours of 

recovery before decreasing below baseline at 24 hours of recovery (38.59%±15.04).  

Following a more severe stress (120 minutes of OGD) (Figure 2-5B) CHIP was increased 

immediately following the stress in the cytoplasmic fraction (105.28%±15.12) (Figure 2-5B, 

120 min, 0 hr), as was observed previously (Figure 2-5A), but the increases were not 

sustained and decreased to baseline or lower throughout the later recovery time points. 
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CHIP co-chaperones, HSC70 and HSP70 elevated insignificantly at 8 hours of 

recovery to 106.21%±64.68 and 158.93%±30.30 respectively in the cytoplasmic fraction 

following mild OGD (30 minutes) (Figure 2-5B).  In the nuclear fraction HSC70 increased 

acutely (126.15%±38.20) but remained steady at or near baseline levels throughout the 

recovery timeframe.  Comparatively, the slight acute increase in nuclear HSP70 immediately 

after OGD (128.67%±58.54) decreased throughout recovery following mild OGD. 

However, following a more severe duration of OGD (120 minutes) (Figure 2-5B), the 

CHIP co-chaperone, HSC70 remained unchanged in the cytoplasmic fraction throughout 

recovery.  The inducible HSP70 demonstrated also remained relatively unchanged from 

baseline in the cytoplasmic fraction immediately after OGD (120 min, 0 hr) through 12 and 

24 hours of recovery. 

In the nuclear fraction, following severe OGD ((Figure 2-5B), early increases CHIP 

(135.54%±40.04) (120 min, 0 hr) were not sustained throughout the later recovery time 

points. Nuclear HSC70 remained largely unchanged in response to OGD and throughout 

recovery. Nuclear levels of HSP70 also did not significantly change in response to OGD or 

during recovery.  

 

DISCUSSION 

 Perhaps the most important observation from these studies was the rapid movement 

of CHIP to the nucleus under conditions of stress.  Under normal conditions, the pattern of 

CHIP localization in our cortical/hippocampal primary cultures was primarily cytoplasmic, but 

nuclear staining  was greater than seen in vivo.  This may be an adaptation that allows 

survival or the neurons under culture conditions.  Substantial additional increases in nuclear 

CHIP are seen with a potent stressor such as HS.  Increases in nuclear CHIP following HS 

in our experiments have been confirmed by others.82,91,114-116  At longer durations of stress 

the quality of the staining was more granular in appearance.  This observation was 



45 
 

consistent with reports of granular staining patterns of ubiquitin124-126 and HSP7038,127, 

supporting the hypothesis that protein-chaperone complexes accumulate and aggregate 

with persistent or severe stress.34,128  

 Nuclear accumulation as early as 5 minutes after the introduction of HS indicated 

that CHIP can be rapidly mobilized to the nucleus.  Nuclear CHIP was reported previously in 

the context of heat stress, though was not a focus.91  This was faster than the nuclear 

accumulation in previous reports.  Accumulation of CHIP in the nuclear fraction of COS7 

cells following 90 minutes of 42˚C HS.91 and Similar observations were made by Tripathi et 

al. (2007) in KB cells.129  We attribute the difference in sensitivity, in part, to our use of 

primary cortical and hippocampal cells instead of immortalized cell lines.  At 30 and 60 

minutes of HS nuclear CHIP was nearly undetectable.  Durations of stress that depleted 

CHIP were also associated with delayed cell death.  After a 24 hour recovery period 

significant delayed cell death following 30 minutes of heat stress was 298.33%±12.14 of 

baseline and following 90 minutes of OGD significant cell death was 221.87%±8.97 of 

baseline. 

As with HS the loss of CHIP appears just prior to the beginning of cell death.  A 

similar pattern of results was seen following OGD albeit with a different time course.  

Decreased nuclear CHIP begins at approximately 4 hours of recovery following 120 minutes 

of OGD and 12 hours following 30 minutes of OGD.  During recovery these levels were 

maintained without synthesis or degradation.  Under these conditions nuclear HSC70 

remains elevated in recovery following severe OGD even when levels of activated HSF1 are 

known to have decreased.91  Of the HSPs likely to be involved, CHIP is the only protein 

studied to decrease in the nucleus during recovery. 

 

CHIP in protein aggregates 
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In very limited models of cerebral ischemia, CHIP was observed in ribosomal 

aggregates that accumulated in the cytoplasm following ischemia in vivo.106  Such 

aggregates formed after as short an ischemic duration as 7 minutes and increased 

aggregation was observed following longer durations.125  Of note, proteins that accumulated 

early in these aggregates did not recover after HSP induction in the post-ischemic recovery 

phase.120  The timeframe for the loss of nuclear CHIP in vivo is similar to the time in which 

the folding co-chaperone HSP40 accumulates in irreversible protein aggregates in the 

cytoplasm.106,120  The similarities in timing suggest that the development of aggregates could 

be a factor that restricts chaperone availability.  The Hu lab promotes the hypothesis that 

irreversible aggregates are an important indicator in cells destined to die.96  They found 

protein aggregates during recovery periods of 4 hours or greater.96  

 

CHIP as a chaperone 

 As with aggregation, CHIP movement is probably tied to its binding with other 

proteins.  In particular HSC70 and HSP70 have been shown to accumulate in the nucleus 

after heat shock and oxidative stress.130  Others have proposed that CHIP translocates to 

the nucleus in complex with HSF191 as part of the mechanism that upregulates the heat 

shock response104.  Alternatively, CHIP may translocate with other proteins as a direct 

chaperone.  Rosser et al. (2007) have demonstrated the ability of CHIP to act as a 

chaperone is likely the result of its TPR domain.131  Tripathi et al. (2007) have shown that 

CHIP and p53 were present together on the DNA binding sites of the p21 and p53 

promoters.129 

Since CHIP is a negative regulator of HSP-mediated protein folding, it is unlikely that 

increased protein folding is occurring in the nucleus in relation to CHIP.  More likely, CHIP is 

interacting with both HSC70 and HSF1 to promote HSP transcription.  The delayed increase 
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we observed in nuclear HSP70 during the recovery phase is consistent with the hypothesis 

that HSP70 is part of a second phase of the stress response. 

The role of CHIP in the nucleus and the consequences for neuroprotection are poorly 

understood.  Our results and the observations of other investigators raise the possibility that 

E3 ligases, like CHIP, participate in the nuclear regulation of the stress response.  Very little 

is known about these potential interactions and significant investigation is required to 

understand the potential role of CHIP in neuroprotection.  Our finding of acute changes in 

sub-cellular localization of CHIP in response to cellular stress suggests that changes that 

occur shortly after exposure to stress ultimately impact on whether or not a cell has the 

capacity and capability to recovery. 

 

MATERIALS AND METHODS 

In vitro stress models 

Heat Stress (HS) Cultures maintained 10 days in vitro (DIV) in MEM were subjected to heat 

stress: 42˚C water bath for durations between 0 and 60 minutes in aCSF. 

Oxygen-Glucose Deprivation (OGD) Cultures maintained 10 DIV in MEM were subject to 

glucose-free MEM salt solution (gfMEM, in mM: 1.3 CaCl2·2H2O, 5.3 KCl, 0.81 MgSO4, 

116.4 NaCl, 26.2 NaHCO3, 1.0 NaH2PO4·H20) + 2-deoxy-D-glucose (5 mM, Sigma, D8375) 

+ 1X Amino Acid Solution (Gibco) + 1X Vitamin Solution (Gibco)) in an anaerobic chamber 

(Modular Incubator Chamber, Billups-Rothenberg, Del Mar, California) gassed with 95% 

Argon/5% CO2 (National Welders, Durham, NC), purged for 7 minutes and sealed for 

durations between 0 and 240 minutes.  Cells were returned to normal cell culture conditions 

for durations between 0 and 24 hours following OGD to assess recovery. 

 Oxygen displacement using argon was used to reduce partial oxygen in the medium 

within minutes of exposure123 instead of mitochondrial inhibitors like FCCP (carbonyl 

cyanide p-trifuoromethoxyphenylhydrazone).  Also, as an inert gas argon does not 
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presumably interact with the culture and generate reactive oxygen species, unlike nitrogen 

gas. 

 

Immunostaining 

Sub-cellular localization of CHIP following HS was determined by immunostaining.  

Coverslips of cultured cortical neurons exposed to durations of HS were placed on ice for 4 

minutes then fixed in 4% paraformaldehyde.  Cells were permeablized with 0.1% Triton in 

PBS, blocked with horse serum then incubated with the monoclonal mouse-anti-CHIP 

antibody that was directly conjugated to the red fluorescent dye, Cy3, for visualization. 

Sections and cultures were counterstained with bisbenzimide (1µM, Sigma, B1155) to 

visualize the nuclei. Coverslips were mounted using Fluoromount-G (SouthernBiotech, 

0100-01). 

 

Western blot 

Stressed and control cells grown at a density of 105 cells/cm2 on 100 mm plates were 

washed three times in aCSF, placed on ice and harvested after 4 minutes immediately or 

following recovery intervals of 4-24 h in normal culture conditions.  Cytoplasmic and nuclear 

fractions were extracted using the NE-PER Nuclear and Cytoplasmic Extraction Kit (Pierce, 

78833) per kit instructions and protein concentrations were determined using the BCA 

Assay (Pierce, Reagent A: 23223, Reagent B: 23224).  Whole cell lysates from CHIP 

transgenic mice were gifts from the Patterson lab. Equal amounts of lysate were mixed with 

4X sodium dodecyl sulfate sample buffer and separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE).  Western blotting was performed with the 

appropriate antibodies, developed with ECL reagent (Amersham, RPN2109) and exposed to 

film. 

 



49 
 

Delayed Cell Death 

For cell death experiments, cell cultures seeded at 105 cells/cm2 in poly-d-lysine coated 48-

well plates were subjected to stress and allowed to recover for 24 h in normal cell culture 

conditions.  The cells were then stained with 1µM Sytox Green (Molecular Probes, S-7020) 

to stain nuclei of dead cells and the fluorescence intensity measured on a plate reader. 

 

Antibodies 

The following primary antibodies were used for immunoblotting: mouse monoclonal mouse 

anti-CHIP conditioned medium, undiluted (CM67), goat anti-HSC70 diluted 1:1000 (Santa 

Cruz, sc-1059), goat anti-HSP70 diluted 1: 1,000 (Stressgen, SPA-812), and mouse-anti-β-

actin diluted 1:5,000 (Sigma A5441).  Peroxidase conjugated secondary antibodies diluted 

1: 10,000, for Westerns were all from Calbiochem: rabbit anti-mouse (402335), goat anti-

rabbit (401315), and rabbit anti-goat (401515).  Primary antibody incubations were 

performed overnight and secondary antibody incubations for no more than 1 h.   

 

FIGURE LEGENDS 

Figure 2-1: 

Cell death after prolonged heat stress was increased after a 24 hour recovery period.  

Cultures were subjected to durations of heat stress between 0 and 60 minutes, recovered in 

normal culture conditions for 24 hours and stained with Sytox Green (1µM).  Sytox Green 

intensity was measured by a Wallac Victor2 fluorescent plate reader.  Sytox Green intensity 

was analyzed as % of baseline ± SEM 24 hours after 0 (100%±4.89), 5 (155.45%±3.51), 10 

(174.85%±6.35) 15 (215.78%±8.36), 30 (298.3%±12.14) and 60 minutes (835.41%±76.84) 

of heat stress.  Measurements following 30 and 60 minutes were significant.  (*p<.001, 

n=47). 
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Figure 2-2: 

Increased nuclear staining of CHIP in cultured neurons exposed to heat stress.  A 

Representative images from cells subjected to 0, 5, or 30 minutes of heat stress are shown.  

CHIP (red) staining is merged with a nuclear Hoechst (blue) stain to show co-localization.  

Dead cells (white arrow) display decreased or absent CHIP immunoreactivity.  Isolated cells 

(white box) are shown at higher magnification in panel B.  B Higher magnification images 

show CHIP immunoreactivity (red) and nuclear counterstain (blue).  Increased CHIP 

immunoreactivity in the perinuclear region (yellow arrowhead) is show at 0 min. Nuclear 

CHIP increases at 5 min. Granular CHIP staining occurs following 30 min of heat stress 

 

Figure 2-3: 

Nuclear CHIP decreases following extended durations of heat stress.  Equal protein 

concentrations from sub-cellular fractions of primary mixed cultures exposed to heat stress 

were probed for CHIP, HSC70, and HSP70 on Western blot.  β-actin is shown as a loading 

control.  Comparisons were made within each fraction, between cytoplasmic and nuclear 

fractions, and between CHIP, HSC70, and HSP70 across time.  (n(CHIP)=8-10, 

n(HSC70)=8-9, n(HSP70)=2) 

 

Figure 2-4: 

Cell death after prolonged OGD was increased after a 24 hour recovery period.  Cultures 

were subjected to durations of OGD between 0 and 240 minutes, recovered in normal 

culture conditions for 24 hours and stained with Sytox Green (1µM).  Sytox Green intensity 

was measured by plate reader.  A Sytox Green intensity was analyzed as % of baseline ± 

SEM 24 hours after 0 (100%±1.85), 30 (161.86%±3.37), 60 (204.38%±5.63) 90 

(221.87%±8.97), 120 (229.68%±7.08) and 240 minutes (181.62%±6.33) of OGD.  

Measurements following 90 and 120 minutes were significant.  (*p<.001, n=47).  B 
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Representative images from 0, 30, and 120 minutes are shown.  Individual stained nuclei 

were counted per field and total cell death counts per culture were calculated at 4.11%±1.84 

at 0 minutes.  30 and 120 minutes were 28.75%±11.55 and 38.07%±8.78 respectively 

(n=10). 

 

Figure 2.5: 

A Relative amounts of sub-cellular CHIP are slightly altered immediately following OGD.  

Equal protein concentrations from sub-cellular fractions of primary mixed cultures exposed 

to OGD were probed for CHIP on Western blot.  No changes were observed in the 

cytoplasmic fraction with increasing duration of OGD.  In the nuclear fraction, a slight 

increase was observed following 30 minutes of OGD and were sustained, but not otherwise 

altered following increasing durations of OGD.  B Elevated levels of nuclear CHIP were 

maintained during recovery after 30min OGD.  Equal protein concentrations from sub-

cellular fractions of primary mixed cultures exposed to mild (30 min) and severe (120 min) 

OGD were probed for CHIP, HSC70, and HSP70 on Western blot.  Comparisons were made 

within each fraction, between cytoplasmic and nuclear fractions, between mild and severe 

stress and between CHIP, HSC70, and HSP70 across time.  (n(CHIP)=5-7, n(HSC70)=2-3, 

n(HSP70)=3-4) 
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Figure 2-1: Delayed Cell Death following Heat Stress 

Cell death after prolonged heat stress was increased after a 24 hour recovery period.  

Cultures were subjected to durations of heat stress between 0 and 60 minutes, recovered in 

normal culture conditions for 24 hours and stained with Sytox Green (1µM).  Sytox Green 

intensity was measured by a Wallac Victor2 plate reader.  Sytox Green intensity was 

analyzed as % of baseline ± SEM 24 hours after 0 (100%±4.89), 5 (155.45%±3.51), 10 

(174.85%±6.35) 15 (215.78%±8.36), 30 (298.3%±12.14) and 60 minutes (835.41%±76.84) 

of heat stress.  Measurements following 30 and 60 minutes were significant.  (*p<.001, 

n=47).
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Figure 2-2: CHIP in cultured cortical neurons following heat stress. 

Increased nuclear staining of CHIP in cultured neurons exposed to heat stress.  A 

Representative images from cells subjected to 0, 5, or 30 minutes of heat stress are shown.  

CHIP (red) staining is merged with a nuclear Hoechst (blue) stain to show co-localization.  

Dead cells (white arrow) display decreased or absent CHIP immunoreactivity.  Isolated cells 

(white box) are shown at higher magnification in panel B.  B Higher magnification images 

show CHIP immunoreactivity (red) and nuclear counterstain (blue).  Increased CHIP 

immunoreactivity in the perinuclear region (yellow arrowhead) is show at 0 min. Nuclear 

CHIP increases at 5 min. Granular CHIP staining occurs following 30 min of heat stress.
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Figure 2-3: CHIP sub-cellular localization following heat stress 

Nuclear CHIP decreases following extended durations of heat stress.  Equal protein 

concentrations from sub-cellular fractions of primary mixed cultures exposed to heat stress 

were probed for CHIP, HSC70, and HSP70 on Western blot.  β-actin is shown as a loading 

control.  Comparisons were made within each fraction, between cytoplasmic and nuclear 

fractions, and between CHIP, HSC70, and HSP70 across time.  (n(CHIP)=8-10, 

n(HSC70)=8-9, n(HSP70)=2) 
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Figure 2-4: Delayed cell death following OGD 

 Cell death after prolonged OGD was increased after a 24 hour recovery period.  Cultures 

were subjected to durations of OGD between 0 and 240 minutes, recovered in normal 

culture conditions for 24 hours and stained with Sytox Green (1µM).  Sytox Green intensity 

was measured by plate reader.  A Sytox Green intensity was analyzed as % of baseline ± 

SEM 24 hours after 0 (100%±1.85), 30 (161.86%±3.37), 60 (204.38%±5.63) 90 

(221.87%±8.97), 120 (229.68%±7.08) and 240 minutes (181.62%±6.33) of OGD.  

Measurements following 90 and 120 minutes were significant.  (*p<.001, n=47).  B 

Representative images from 0, 30, and 120 minutes are shown.  Individual stained nuclei 

were counted per field and total cell death counts per culture were calculated at 4.11%±1.84 

at 0 minutes.  30 and 120 minutes were 28.75%±11.55 and 38.07%±8.78 respectively 

(n=10).
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Figure 2-5: CHIP localization following OGD 

A Relative amounts of sub-cellular CHIP are slightly altered immediately following OGD.  

Equal protein concentrations from sub-cellular fractions of primary mixed cultures exposed 

to OGD were probed for CHIP on Western blot.  No changes were observed in the 

cytoplasmic fraction with increasing duration of OGD.  In the nuclear fraction, a slight 

increase was observed following 30 minutes of OGD and were sustained, but not otherwise 

altered following increasing durations of OGD.  B Elevated levels of nuclear CHIP were 

maintained during recovery after 30min OGD.  Equal protein concentrations from sub-

cellular fractions of primary mixed cultures exposed to mild (30 min) and severe (120 min) 

OGD were probed for CHIP, HSC70, and HSP70 on Western blot.  Comparisons were made 

within each fraction, between cytoplasmic and nuclear fractions, between mild and severe 

stress and between CHIP, HSC70, and HSP70 across time.  (n(CHIP)=5-7, n(HSC70)=2-3, 

n(HSP70)=3-4) 

 



CHAPTER 3: 

Effect of CHIP gene dose on cell survival following OGD 

INTRODUCTION 

Of the protective pathways induced following ischemia, significant data supports a 

role for heat shock proteins (HSPs), a major family of molecular chaperone proteins.  Of the 

family of heat shock proteins, most experiments have focused on HSP70.  HSP70 induction 

is a key component of cell survival following ischemia.54,55,61,124,132,133  Both overexpression of 

endogenous HSP7054,133,134 and induction of de novo synthesis of HSP7056 have been 

shown to be neuroprotective.  HSP70 and other HSPs attempt to maintain cell function in 

several ways.  First, these proteins help to refold damaged proteins.124,125  If proteins cannot 

be repaired, the HSPs in conjunction with CHIP or other ubiquitin ligases facilitate protein 

ubiquitination and subsequent degradation.110  It is clear that the loss of proper protein 

folding and accumulation of misfolded proteins are deleterious to cells.65,99,105,120,135  The 

mechanism of protection is still largely unknown. 

A frequent hypothesis in the mechanism behind HSP70-mediated neuroprotection is 

an increase in protein folding and protein degradation capacity.  Indeed, protein folding is 

increased when HSP70 is overexpressed.52  However, when CHIP is overexpressed with 

HSP70, instead of an increase in protein degradation, rather an increase in protein folding 

was observed.114  These results were challenged by data from experiments that highlighted 

increased degradation of the androgen receptor136, ataxin-1137, and four-repeat tau112 when 

CHIP was overexpressed.  Presumably, the surrounding conditions and precipitating factors 

play a role in whether or not the protein chaperone system favors folding or degradation.4  It 

is likely that a proper balance between both processes is essential for cell survival following 
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an ischemic insult.  Ubiquitin ligases play an essential role in this balance but are less well 

understood than the HSPs. 

The protective role for CHIP has largely been investigated in models of chronic 

neurodegeneration.  CHIP has been associated with aberrant proteins in Alzheimer’s 

Disease (AD)99,100,112,135,138,139, Parkinson’s Disease (PD) and Lewy Body Dementia (LBD) 

90,98, and Amyotrophic Lateral Sclerosis (ALS)101 among others.  In each case, when 

presented with excessive amounts of misfolded or mutated protein CHIP has mediated 

ubiquitination and in most cases facilitated protein degradation.  In the absence of CHIP, 

aggregates of misfolded and mutated proteins formed more rapidly.140  Any compensatory 

mechanisms that were engaged in the absence of CHIP were insufficient to prevent this 

toxic aggregation.  In cells that were unable to fold or degrade the aberrant proteins, cell 

death ultimately resulted.91,102,135  These results highlight the important role of CHIP in the 

removal of dysfunctional proteins and suggest that this process may be a rate limiting step 

in the struggle for cell survival. 

Data also favor the idea that a cell’s intrinsic capacity for protection can be 

increased.  For example, ischemic tolerance is transient and develops quickly.  The brief 

onset and duration of tolerance in the heart supports a metabolic mechanism, whereas 

tolerance in the brain persists over days.37,119  HSP mRNA induction in the brain occurs 

within 30-60 minutes of a mild ischemic insult while protein expression occurs several hours 

later.141  This temporal profile where HSP70 protein is increased from 24 hours to 5 days 

following a pre-conditioning stimulus is consistent with a role of HSPs in the generation of 

ischemic tolerance.119 

Normally, HSPs, and HSP70 in particular are upregulated following ischemia-

reperfusion injury in the heart.52,54,133  However, total protein levels of CHIP were unaffected 

by ischemia-reperfusion injury.102  HSPs and their co-chaperones are also abundant in cells 

that consume large amounts of energy.  Considering ischemia is largely a failure of energy 
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stores and cellular metabolism we hypothesized that ATP-dependent, CHIP-mediated 

mechanisms might be compromised by ischemia.  As such, in the absence of CHIP, 

increased cell death following ischemia would be observed. 

CHIP appears to play a protective role in the cellular stress response, as CHIP(-/-) 

mice and cells derived from these mice undergo temperature sensitive apoptosis in 

response to thermal and proteotoxic stress.81,102  The region at risk in the left ventricle did 

not differ between wildtype and knockout animals under normal conditions and following 30 

minutes occlusion but the infarcts of knockout mice were roughly 50% larger than 

wildtype.102 After 30 minutes of ischemia, percentage survival of CHIP knockout animals at 4 

hours of reperfusion was 78%.102  Further, HSP70 induction was consistently lower after 

myocardial ischemia in CHIP(-/-) mice.102  A similar sensitivity in brain would indicate that 

neurons are also highly dependent on CHIP function in the face of an ischemic challenge.  

Results from Section 1 and 2 have demonstrated that CHIP is abundantly expressed in 

neurons, moves to the nucleus following stress and CHIP depletion is correlated with the 

onset of cell death.  These events are on a time scale that is more rapid than those seen in 

chronic neurodegenerative diseases suggesting that CHIP availability is important from the 

earliest stages of dysfunction.  Thus in the absence of CHIP injuries should both appear 

following shorter durations of stress and be larger compared to unstressed or wildtype 

samples. 

 

RESULTS 

Genotype Distribution from heterozygous matings 

CHIP(-/-) mice are, in large colonies, birthed at a Mendelian ratio.  However, per litter 

ratios differ considerably.  To determine what could be expected in a smaller colony and to 

study the effects of gene dose on cell viability, a CHIP transgenic colony was established 

with 3 heterozygous female and 2 heterozygous breeding male Sv129 mice from the 
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Patterson Lab.  The birth results are shown in Table 3-1.  These results do not include 3 

pups that died and were removed from the cages without viable tissue collection.  In 

contrast to previous reports81, the birthrate for CHIP(-/-) mice was 4.3%. 

 

Organotypic Slice Culture from CHIP transgenic mice 

To maximize the data that could be generated from a single knockout mouse, 

organotypic hippocampal slice cultures were utilized. Unlike organotypic cortical cultures, 

hippocampal cultures generated a reasonably functional, intact system with variable 

susceptibility to ischemia, in a single culture.142-145  Further, a single postnatal day 7 (P7) 

brain could generate enough intact slices to culture three membranes (6-7 slices per 

membrane145) which would allow three conditions (control, 30 minutes, 120 minutes) to be 

tested per animal. 

Hippocampal sections were made at 100-150 microns and kept in culture for 10 

days.  Sections demonstrated similar cell outgrowth from the cultures (Figure 3-1) and good 

viability based on baseline propidium iodide (PI) staining (Figure 3-2A-C, 0 min) across all 

genotypes.  Some sections did not sufficiently ―flatten‖ thereby preventing small areas within 

a tissue section adequate access to medium which resulted in dry spots that stained brightly 

with Syto 24 (Figure 3-2, white arrows) and PI. 

 

Effect of CHIP Gene Dose on Cell Viability 

Cultures were subjected to zero, 30, or 120 minutes of OGD (Section 2 Materials and 

Methods) then returned to normal culture conditions for 24 hours.  Cultures were then 

stained with Syto 24-a live cell nuclei stain, and propidium iodide-a dead cell nuclei stain.  

Images were taken with a 4X phase objective. 

Representative images from cultures subjected to OGD are shown in Figure 3-2A-C.  

Images are shown with labels over regions of the hippocampus.  Sections are generally 
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oriented so that the CA3 region is to the left, the dentate gyrus (DG) in the lower-middle, and 

the CA1 region to the upper-right.  Qualitatively, we observed an increase in dead cells with 

increasing durations of OGD in cultures (Figure 3-2A-C), consistent across all genotypes. 

Propidium iodide and Syto24 both stain for nuclei.  To determine a relative size of 

injury a digital threshold of the images was taken to capture the stained nuclei that were in 

focus.  The size of the injury is expressed as the percentage of the total stained area 

occupied by propidium iodide-stained dead cell nuclei (Figure 3-3).  At baseline no 

significant differences in PI staining between wildtype (4.89x10-5±1.91%, n=9 animals (52 

slices)), heterozygous (1.22x10-6±1.44%, n=5 animals (23 slices)) or knockout (-3.50x10-

6±2.68%, n=2 animals (12 slices)) cultures was observed.  Within genotypes compared to 

baseline, wildtype cultures following 30 minutes were 8.03±2.11% (n=9 animals (50 slices)) 

greater than baseline and 39.26±3.46% (n=8 animals (47 slices)) greater following 120 

minutes of OGD.  Heterozygous cultures were 22.65±3.19% (n=5 animals (30 slices)) 

greater following 30 minutes and 38.94±5.08% (n=5 animals (31 slices)) greater following 

120 minutes.  Knockout cultures were 30.77±6.59% (n=2 animals (14 slices)) greater 

following 30 minutes and 50.59±6.48% (n=2 animals (14 slices)) greater following 120 

minutes.  Across all genotypes the increases were significantly greater following 30 and 120 

minutes compared to control (0 min).  Increases following 120 minutes were also 

significantly greater than 30 minutes across all genotypes. 

Compared to wildtype, no significant differences were observed when compared to 

heterozygous or knockout cultures at baseline.  Following 30 minutes of OGD, both 

heterozygous and knockout cultures demonstrated significant increases in cell death 

compared to wildtype.  Following 120 minutes heterozygous cultures were no longer 

significant compared to wildtype.  Though injured area was larger in knockout cultures they 

were not significantly larger compared to wildtype. 
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DISCUSSION 

 Organotypic hippocampal cultures from animals lacking CHIP are more sensitive to 

OGD than wildtype cultures.  Cell death patterns in cultures from animals lacking CHIP were 

more uniform and less region-specific within the hippocampus than what was observed in 

wildtype and heterozygous cultures.  This is different from previous reports from myocardial 

ischemia experiments102 where cell death patterns were similar among genotypes, though 

varying susceptibility is not a known characteristic of cardiac tissue as it is in the brain.  

However, the size and pattern of injury observed in the knockout hippocampal cultures in 

the current experiments was smaller than what was previously reported in rat hippocampal 

slice cultures following OGD.142 

Previous reports by the Patterson lab showed injury in transgenic heart to be 50% 

larger in knockouts than wildtype using ischemic durations known to cause significant 

injury.102  Here we show that while patterns over time are similar across genotype, the 

degree of increased cell death varies.  With the exception of control cultures, compared to 

their respective wildtype values, heterozygous and knockout cultures have larger injuries 

than wildtype at 30 minutes but by 120 minutes heterozygous cultures were no longer 

significant compared to wildtype.  Significant differences across genotypes, while present, 

may indicate varying sensitivity by not only cell type but perhaps more importantly, organ 

system. 

We were able to culture these slices with a relatively small amount of cell death, as 

identified by propidium iodide staining.  The ability to generate a primary culture alleviated a 

concern because of the developmental sensitivity of fetuses lacking CHIP, some of which 

were absorbed in utero81.  Caenorhabditis elegans lacking CHIP had impaired development 

and were heat sensitive.113  However, the nature of developmental sensitivity for CHIP 

transgenic animals and what role CHIP plays in development is largely unknown. 
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 Compared to our dissociated cortical cultures, which are enriched in neurons with 

approximately 20-40% astrocytes, the organotypic hippocampal slice cultures have greater 

concentration of astrocytes (nearly 80% of the adult brain is comprised of glial cells).  Thus, 

even small amounts of glial cell death could contribute significantly to total cell death in the 

slice.  However, of the cells known to be astrocytes - in particular, those that grew out from 

the edge of the culture – very few stained with PI (stain for dead nuclei) under ischemic 

conditions where neuronal loss was significant.  Thus, there appears to be little astrocyte 

death under these conditions. The pattern of PI staining also followed neuronal groups and 

did not show a random pattern which would be expected from astrocytes.  Together these 

observations suggest that the majority of cell death in the explant cultures was from more 

vulnerable neurons.  Thus, in Figure 3-2, the cell death is actually quite high due to the fact 

that the neurons are the majority of cells that die and the proportion takes into account all 

live cell nuclei. 

It is possible that the modest injury seen in our culture model is due to the fact these 

cultures may have been pre-conditioned by the initial stress of culture before being 

subjected to OGD.  From our dissociated culture experiments (Section 2, Figure 2-4) and 

other reports146 the process of culturing and including antibiotics in culture medium are both 

sufficient to induce a stress response and cell death.147,148  Presumably our hippocampal 

mouse cultures undergo a similar neuronal death following our OGD paradigm. 

 The results of a lack of CHIP may be tempered further by the degree of redundancy 

in the molecular chaperone system, that in the absence of a component of the molecular 

chaperone system other proteins or a combination thereof completes a similar function.102  

The sensitivity demonstrated by mice lacking a single copy of the CHIP gene could reflect 

the fact that in the complete absence of CHIP, HSP70 expression is impaired.91  Some but 

possibly not all of the necessary HSP70 is available and may be insufficient to return to a 

more normal state following stress.  If 1) HSF1 activation is impaired and no other HSP 
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transcription factor fills the void created by a partial loss of CHIP, 2) HSC70 is insufficient to 

process misfolded proteins created by stress, or 3) no protein processes increased 

abnormal proteins in the absence of increased HSP70, then even if HSP70 is minimally 

present it would not be at a level high enough to maintain or restore normal cell function.  

The redundancy in the molecular chaperone system would be decreased by the presence of 

a single gene copy.  While capable of maintaining viability, these compromised cultures may 

be functioning in a manner alternate to the assumed ER and HSP stress responses. 

 The likely redundancy of the molecular chaperone system may point further to a 

reason behind the different injury patterns in the slice cultures.  The heart was one of the 

organs reported to express high levels of CHIP, along with skeletal muscle.81  The brain 

expressed high levels of CHIP81 also, however, not to the extent of heart muscle.  The 

metabolic demand difference between the two organ systems may account for some of the 

difference in injury, such that energy demands in the brain differ from the energy demands 

in heart.4  Alternatively, if the stress response systems in the brain are already accustomed 

to the differing metabolic demands and priorities such differences injury size and location 

would be expected. 

 Increased sensitivity to the absence of CHIP may be reflected in the relative 

abundance of the protein.  Whereas heart muscle expresses more CHIP than the brain81, 

the expectation is that the heart would be more sensitive to stress.  Further, expression 

differences in this heat shock protein within the brain exist (Figure 1-2).  Also, HSP70 is 

more readily induced in the CA1 region of the hippocampus compared to CA3 following 

ischemia.105  It would be reasonable to expect similar induction differences would impact 

CHIP function and that such expression differences could differentially impact the survival of 

cells exposed to stress. 

 

MATERIALS AND METHODS 
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Breeding and Genotyping 

Generating mice lacking CHIP was previously described.91,102  CHIP (-/-) mice were 

produced on a Sv129 background backcrossed over 7 generations prior to the start of the 

current studies by the Patterson Lab.  Heterozygous pairs of mice were mated at 8-12 

weeks of age.  Males were removed from the breeding cage when litters were born and 

another nursing female added to cage.  At postnatal day 7 (P7) pups were removed from the 

cage for genotyping and slice culture.  Tails were clipped for genotyping after animals were 

sacrificed. 

 

Organotypic hippocampal slice culture 

The organotypic slice culture protocol was modified slightly from Stoppini et al. 

(1991)149 and Noraberg et al. (1999)145.  Briefly, P7 Sv129 CHIP-transgenic mice pups were 

sacrificed and brains harvested. Tails were clipped and numbered for genotyping.  Brains 

were rinsed once each in calcium-magnesium free HBSS (CMF-HBSS) and MEM.  Brains 

were then chopped with a coronal orientation at 100-150µm using a McIllwain Tissue 

Chopper. Under a 4x dissecting microscope sections of hippocampus were isolated and 

trimmed.  Hippocampal slices were placed on membrane inserts (Millicell) pre-wet with 

MEM. 6-7 slices were placed on a single membrane, and 3 membranes per animal were 

cultured.  A minimum amount of MEM + 10% FBS + 20 µg/ml gentamicin was added below 

the membranes (1.2 mL) and sections placed in the incubator. Culture medium was 

replaced every 2-3 days.  

Our culture preparation frequently resulted in ―dry spots‖ of dead cells in cultures.  

Part of this could be eliminated by culturing at a younger age148 or on collagen-coated 

coverslips150  Cultures on collagen-coated coverslips are more difficult to use, but are far 

superior for antibody staining experiments.  P5 slice cultures are not as developed so P7 

slice cultures were used to examine cell outgrowth from the slice.  Glial outgrowth on 
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collagen-coated coverslips was comparable to that seen on porous membranes (data not 

shown). 

 

Organotypic Slice Culture Oxygen-Glucose Deprivation and Cell Viability Imaging 

One culture per animal was subjected to 0, 30, or 120 minutes of OGD. Cultured 

membranes were placed in individual 35mm dishes with glucose-free MEM (gfMEM, in mM: 

1.3 CaCl2·2H2O, 5.3 KCl, 0.81 MgSO4, 116.4 NaCl, 26.2 NaHCO3, 1.0 NaH2PO4·H20). 

gfMEM was triple exchanged before cultures were placed in an anaerobic chamber, purged 

7 minutes with 95% argon/5% carbon dioxide, and sealed.  The cultures—in chamber—

were returned to the incubator for the duration of OGD.  After OGD, gfMEM was triple 

exchanged for complete MEM and membranes were returned to normal culture conditions 

for 24 hours. Cultures subjected to 0 minutes of OGD remained in normal culture conditions 

throughout.  Following 24 hours of recovery 1µg/mL Propidium Iodide and 1µM Syto 24 

(Molecular Probes) were added to the culture medium to visualize dead cells and live cells, 

respectively.  Culture medium was exchanged for HEPES-buffered aCSF and cultures were 

removed from the incubator for imaging. Cultures were imaged using an Olympus INT-2 

inverted microscope and Metamorph™ Imaging System (Universal Imaging Corporation, 

West Chester, PA).  PI and Syto 24 stained cultures were imaged with a 4X objective for a 

general survey of the cultures, and higher magnification images were digitally magnified 

from the 4X images or taken with a 10X objective. Cultures were then fixed with 4% 

paraformaledhyde and stored in 70% ethanol. 

To compensate for staining variability across sections, each slice served as its own 

control.  To make comparisons across genotypes, a threshold was set to capture the plane 

with the brightest stained cells which allowed us to evaluate the areas that visibly defined 

the injury.  Wildtype and heterozygous cultures demonstrated a more diffuse stain; perhaps 

due to increased cell viability in the slice, whereas knockout cultures stained more clearly. 
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Organotypic slice culture analysis 

Images from hippocampal slice cultures were inclusively thresholded for the 

positively stained cells that were in the image plane.  Since brightness varied, ranges for 

each individual slice were different.  Boundaries of the slice culture were identified based on 

live cell staining.  Regions within each slice that dried, did not stain, or were otherwise 

abnormal were also identified.  These abnormal areas were excluded from the analysis.  

Measurements for area, integrated intensity, threshold area based on propidium iodide or 

Syto24 stained nuclei, and percent of the culture area that was included in the threshold 

were automatically captured using Metamorph™ Imaging System (Universal Imaging 

Corporation, West Chester, PA). 

 

FIGURE LEGENDS 

Table 3-1: 

CHIP(-/-) birthrate is less than predicted Mendelian ratio in small breeding colonies.  The 

total birthrate from heterozygous mating pairs generated 138 animals.  Of these 39 were 

wildtype, 48 were heterozygous, and 6 were CHIP(-/-).  45 animals were unidentified. 

 

Figure 3-1: 

Cell outgrowth from the cultured slice occurred in each genotype with similar distance from 

the original slice and cell density.  The white line denotes relative boundary of the cultured 

slice and the white arrow marks the direction of cell outgrowth. 

 

Figure 3-2: 

Cell death in slice cultures from CHIP transgenic mice increased with increasing durations of 

OGD in each genotype.  A Sample CHIP wildtype (+/+) cultures B Sample CHIP 
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heterozygous (+/-) cultures C Sample CHIP knockout (-/-) cultures stained with Syto 24 

(green, live cells) and propidium iodide (red, dead cells).  Dried areas within cultures are 

marked with white arrows. 

 

Figure 3-3: 

Size of injury due to OGD is expressed as the percentage of stained nuclei area occupied 

by propidium iodide normalized to the mean at 0 min.  Significance was calculated 

compared to wildtype at each time point. (*p<.001) 

 

ACKNOWLEDGEMENTS 

CHIP transgenic breeding pairs were a generous donation from the Laboratory of Dr. 

Patterson (UNC-Chapel Hill).  The transgenic mice were generated as previously described 

in Dai et al. (2003)91 and Zhang  et al. (2005)102. 

Genotyping was completed in large part by Pamela Lockyear. 



70 
 

Table 3-1: CHIP Genotype Distribution 

CHIP(-/-) birthrate is less than predicted Mendelian ratio in small breeding colonies.  The total 

birthrate from heterozygous mating pairs generated 138 animals.  Of these 39 were wildtype, 48 

were heterozygous, and 6 were CHIP(-/-).  45 animals were unidentified. 

 

 

 

 Male Female 
Unknown 

(Slice Culture) 
Percentage 

Wildtype (+/+) 10 17 12 28.3% 

Heterozygous (+/-) 18 18 12 34.8% 

Knockout (-/-) 3 1 2 4.3% 

Unknown 7 10 28 32.6% 

Total (count) 38 46 54 100% 
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Figure 3-1: Cell outgrowth from slice cultures 

Cell outgrowth from the cultured hippocampal slices occurred in each genotype with similar 

distance from the original slice and cell density.  The white line denotes the relative boundary of 

the culture slice, while the arrow marks the direction of cell outgrowth.
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Figure 3-2: Effect of Gene Dose on Cell Viability 

Cell death in slice cultures from CHIP transgenic mice increased with increasing durations of 

OGD in each genotype.  A Sample CHIP wildtype (+/+) cultures B Sample CHIP 

heterozygous (+/-) cultures C Sample CHIP knockout (-/-) cultures stained with Sytox Green 

(green, live cells) and propidium iodide (red, dead cells). Dried areas within cultures are 

marked with white arrows.  
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Figure 3-3: Injured Area in Slice Culture following OGD 

Size of injury due to OGD is expressed as the percentage of stained nuclei area occupied 

by propidium iodide normalized to the mean at 0 min.  Significance was calculated 

compared to wildtype at each time point (*p<.001).

 
 



CHAPTER 4: 

CHIP Interacting Partners 

INTRODUCTION: 

 Proteasomal degradation is mediated by ubiquitination.  The process of labeling 

proteins for degradation involves activating, conjugating, and ligating multiple ubiquitin 

moieties to the target protein.69,97  Ubiquitin activation is mediated by one of two 

evolutionarily conserved proteins.69  The process is amplified by families of ubiquitin 

conjugating enzymes, estimated to number in the hundreds.69  Specificity for ubiquitination 

has been assigned to the ubiquitin ligases, whose number is estimated to be in the 

thousands.69  The combination of any E2-conjugating enzyme with specific E3-ligating 

enzymes creates an enormous number of potential combinations. 

 Proteasomal degradation, and subsequently ubiquitination have largely been viewed 

as cytoplasmic phenomena.  However, the recent demonstration of assembled proteasomal 

subunits in the nucleus126 and monoubiquitination69 of proteins in the nucleus clearly point to 

a nuclear function for this system.  Many HSPs express nuclear localization 

sequences77,91,151,152 and are found in the nucleus following stress153 (Section 2). 

 Since both CHIP and HSC70 show similar patterns of nuclear trafficking (Figures 2-

3, 2-5), it is possible that these proteins work together in the nucleus to modify nuclear 

targets via ubiquitination.  Further the decreased viability of cells lacking nuclear CHIP 

(Figure 3-3) suggests that CHIP translocation plays an important role in the cellular 

response to stress.  Whether this role is through specific ubiquitination or chaperoning of 

proteins in the nucleus is unknown.  To begin investigating the possibility of specific CHIP 

targets, we undertook two studies to identify potential target proteins using yeast-two-hybrid 
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screen and immunoprecipitation.  Previous screens from cardiac samples suggested limited 

CHIP interaction81, while numerous immunoprecipitation experiments, primarily from 

cultured cells, showed ubiquitinated target proteins could be isolated from CHIP-containing 

complexes99,129,154-156.  The uniqueness of the brain in the development of tolerance2,9,37,42,132, 

in chronic neurodegeneration82,97-101, in energy consumption and metabolic mechanisms3,6 

suggests potential targets of ubiquitination might not be identical to those found in other 

organ systems. 

 

RESULTS: 

Yeast-two hybrid screen for identification of CHIP interacting partners 

Full length, recombinant human CHIP was probed against an adult human brain 

cDNA library.  Nineteen (19) putative interacting partners were isolated for sequence 

analysis.  Seventeen (17) of the interacting partners were identified as segments on the C-

terminus of heat shock protein 70 (Accession number NM_006597.3).  The two remaining 

interacting partners were sequenced and identified as segments on the C-terminus of the 

heat shock protein 90 (HSP90) alpha-subunit (Accession number NM_00107963.1).  Figure 

4-1 displays the positive results. 

Table 4-1 summarizes the sequence results from this screen.  Of the 17 segments 

from HSC70, 5 had greater than or equal to 90% coverage (interacting partners 1, 2, 7, 9 

and 12).  This included segments between nucleotides 659-2124 on HSC70.  Segment 

1064-2054 had 92% coverage (interacting partner 12).  Notably, one of the key variations of 

STUB1 (NM_006597.3) was an ―alternative splicing‖ of HSP70 (NM_153201.1) whose 

binding site is immediately above and includes an EEVD (glutamic acid-glutamic acid-valine-

aspartic acid) nuclear localization sequence but does not include nucleotides 1469-1923 

(residues 464-615) found in NM_006597.3.  On the HSP90-α subunit, only 1 segment had 

90% coverage between nucleotides 2012-3014, which is in the cytosolic domain. 
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Immunoprecipitation of CHIP-bound complexes 

 Subcellular fractions were prepared from cells subjected to either 30 or 120 minutes 

of oxygen-glucose deprivation (OGD) with or without 8 hours of recovery.  Control samples 

were from unstressed cultures subjected to sub-cellular fractionation as well as whole cell 

lysates.  Samples were immunoprecipitated using a polyclonal antibody against CHIP and 

subjected to denaturing SDS-PAGE and Coomassie staining (Figure 4-2).  Our results 

indicated that in addition to the heavy chain and light chain of the anti-CHIP antibody, only 2 

additional protein species were immunoprecipitated; a protein species with a molecular 

weight between 37-50kDa and another protein species with a molecular weight between 75-

100kDa.  These proteins could be a CHIP monomer that is ubiquitinated or otherwise 

modified, and a modified HSC/HSP70 respectively.  The lower molecular weight species 

was not observed after 120 minutes OGD plus 8 hour recovery in the cytoplasmic fraction, 

nuclear fraction, or whole cell lysate.  A parallel Western blot probed for poly-ubiquitin did 

not reveal any protein species and was non-specifically stained for the heavy and light 

chains of the antibody (data not shown). 

 

DISCUSSION 

Primary interacting partners with CHIP are the N-terminus region of HSC/HSP70 and 

the cytoplasmic domain of HSP90-α.  Interestingly there was no similarity between the 

HSC70 and HSP90-α sequences.80,81  The lack of binding partners for CHIP other than 

HSC70/HSP70 and HSP90-α suggests that the target protein specificity might actually be a 

function of the CHIP-HSC70, CHIP-HSP70, or CHIP-HSP90 complex or alternatively, 

dictated by the structure of HSC/HSP70 or HSP90-α rather than by CHIP.  In general, the 

limitations of the screen preclude the determination of protein interactions of the multimeric 

protein complexes.  To take a different look at CHIP binding, constructs of CHIP that 
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exclude the TPR domain could potentially lead to the identification of other CHIP-bound 

proteins whose affinities are less than that of the known binding partners HSP70 and 

HSP90. 

Previous experiments in cultured cells suggested a number of ubiquitinated species 

immunoprecipitate with CHIP86 especially following heat stress85.  In our heat stress studies, 

we observed a few ubiquitinated species that immunoprecipitated with CHIP following heat 

stress in the nuclear fraction (data not shown).  These ubiquitinated species were not 

observed in the cytoplasmic fraction suggesting specific protein targeting in the nucleus.  

Following OGD, target proteins were not isolated from the nucleus suggesting a possible 

loss of nuclear interactions.  The inability to identify ―target‖ proteins—proteins destined for 

ubiquitination and degradation—suggests a potential technical limitation in the study of 

CHIP target proteins.  However, it should still be possible to isolate CHIP-bound complexes 

with the development of better techniques that preserve protein complexes. 

Within minutes following a stress nuclear CHIP increases, HSF1 is activated76,104, 

proteins are degraded and other proteins aggregate80,125,157.  The current results suggest 

that CHIP-mediated ubiquitinating complexes are transient.  Previous reports of CHIP-

containing complex immunoprecipitations have been performed primarily with cells 

expressing CHIP-tagged proteins.80,104,112,158   If studies of GFP-tagged HSP70159 where 

transfection of the fluorescent tag induced HSP70 expression and mediated up regulation of 

COX-2 are any indication, such constructs may signal a stressful change and thereby alter 

the expression and folding of CHIP. 

CHIP dimerization is needed for CHIP activity.160,161  The absence of this dimer in our 

Western blot experiments suggests that our isolation procedure could be eliminating the 

dimer.  The presence of higher molecular weight species in Western blot from our whole cell 

lysate experiments (data not shown) would suggest that the sub-cellular fractioning protocol 

used might contribute to some dissociation.  If this is the case we would expect 
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immunoprecipitations from whole cell lystates to generate results more in line with previous 

reports.  However, in our HS and OGD experiments, whole cell lystate fractions failed to 

yield results that were different from the sub-cellular fractions (data not shown).  Different 

protocols may be needed that cleanly isolate cytoplasmic and nuclear fractions, without 

eliminating the CHIP dimer.  Such procedures would be more likely to immunoprecipitate 

CHIP-bound complexes and potential target proteins. 

 

MATERIALS AND METHODS 

Yeast two-hybrid screen 

The protocol used by ProteinLinks, Inc. is modified from Gietz et al. (1992)162 and 

Golemis and Brent (1997)163.  Bait DNA (STUB1) was cloned into pLexA by gap repair 

homologous recombination in yeast Y338 by cotransformation of PCR product (with Pfu) 

and EcoRI-digested vector. 

The primers used in the cloning are:  

5'-5'CGCAACGGCGACTGGCTGgaattcatgaagggcaaggaggagaagg-3' and  

5'-GCCATGGTCGACGGATCCCCGGtcagtagtcctccacccagcc-3' 

The bait junction was sequenced to confirm the correct reading frame. 

About 10 million independent Human Adult Brain Library clones (about 5 library 

coverage) were screened in the galactose medium lacking leucine, histidine, trytophan, and 

uracil.  All the 132 colonies that can grow in the selection media were picked and further 

tested for expression of LacZ gene.  Interaction plasmids were prepared from 20 yeast 

colonies that can grow on the selection plates and are blue on the x-gal plates.  Interaction 

plasmids were then transformed into KC8 E.coli cells, and amplified.  All 20 plasmids were 

retransformed into EGY42 and tested for their interactions against bait STUB1 as well as the 

control bait RAS.  Finally, 19 clones were verified.  The results are shown in Figure 4-1. 
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CHIP immunoprecipitations 

 Neural cultures were prepared at 105 cells/cm2 in 100mm dishes and maintained 10 

DIV.  Cultures were subjected to 30 or 120 minutes of OGD with or without 8 hours of 

recovery.  Control cultures were not exposed to OGD.  After exposure to OGD, cells were 

placed on ice for 4 minutes and cytoplasmic and nuclear fractions were extracted using the 

NE-PER Cytoplasmic and Nuclear Extraction kit (Pierce, 78833) per kit instructions.  

Extractions were validated cytoplasmic fractions that were not immunoreactive for 

Histone2B and nuclear fractions that were not immunoreactive for Grp78 on Western blot.  

Whole cell lysate from control cultures was immediately extracted using RIPA buffer (1X 

TBS (20mM Tris pH 8.0, 137mm NaCl), 1% NP-40, 10% glycerol, protease inhibitors (1µM, 

Sigma, P8349)).  Protein concentrations were determined using the BCA Assay (Pierce) and 

equal amounts were separated by SDS-PAGE and either Coomassie stained or analyzed by 

Western blot for ubiquitin poly-ubiquitinated sequences. 

 

FIGURE LEGENDS 

Figure 4-1: 

Yeast two-hybrid results from full-length human CHIP cDNA screened against an adult brain 

cDNA library yielded 19 positive results.  Clones that grow faster or are bluer than others in 

x-Gal/Gal plate suggest possible stronger interactions.  Control interacting proteins are 

Ras/Raf. 

 

Table 4-1: 

Summary of the 19 verified interacting clones from the yeast two-hybrid screen of bait 

STUB1 (NM_005861) against Human Adult brain library (ProteinLinks, Inc., San Diego, CA). 

 

Figure 4-2: 
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Cytoplasmic and nuclear fractions from cultures subjected to OGD with or without recovery 

and whole cell lysate (WCL) were immunoprecipitated with a polyclonal antibody against 

CHIP.  The arrows indicated where protein species with molecular weights between 75-

100kDa and 37-50kDa immunoprecipated with the anti-CHIP antibody.  H.C. (heavy chain), 

L.C. (light chain) 
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Figure 4-1: Yeast Two-Hybrid Screen Results 

Yeast two-hybrid results from full-length human CHIP cDNA screened against an adult brain 

cDNA library yielded 19 positive results.  Clones that grow faster or are bluer than others in 

x-Gal/Gal plate suggest possible stronger interactions.  Control interacting proteins are 

Ras/Raf. 
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Table 4-1: Interacting Sequence Percent Matching 

Summary of the 19 verified interacting clones from the yeast two-hybrid screen of bait 

STUB1 (NM_005861) against Human Adult brain library (ProteinLinks, Inc., San Diego, CA). 

 

Interacting 
Partner 

Accession # 
Query 
Start 

Query 
End 

Match 
Start 

Match 
End 

Query 
Coverage 

(%) 

1 NM_006597.3 90 742 1603 2255 59 

2 NM_006597.3 92 739 1610 2257 58 

3 NM_006597.3 93 740 1610 2257 58 

4 NM_006597.3 89 1098 659 1669 90 

5 NM_006597.3 94 1100 1064 2077 91 

6 NM_006597.3 91 404 1712 2025 28 

7 NM_006597.3 90 1100 1108 2124 91 

8 NM_001017963.1 105 814 2358 3071 69 

9 NM_006597.3 92 1091 659 1661 90 

10 NM_006597.3 96 533 1643 2081 39 

11 NM_006597.3 95 886 1108 1900 89 

12 NM_006597.3 83 1066 1064 2054 92 

14 NM_006597.3 94 1643 531 2081 60 

15 NM_006597.3 100 1643 713 2255 57 

16 NM_006597.3 95 742 1610 2257 58 

17 NM_006597.3 92 408 1712 2028 46 

18 NM_006597.3 91 676 1670 2255 53 

19 NM_001017963.1 90 1089 2012 3014 90 

20 NM_006597.3 95 532 1643 2081 47 
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Figure 4-2: Coomassie Staining for CHIP-bound Complexes 

Cytoplasmic and nuclear fractions from cultures subjected to OGD with or without recovery 

and whole cell lysate (WCL) were immunoprecipitated with a polyclonal antibody against 

CHIP.  The arrows indicated where protein species with molecular weights between 75-

100kDa and 37-50kDa immunoprecipated with the anti-CHIP antibody.  H.C. (heavy chain), 

L.C. (light chain)



CONCLUSIONS 

 The series of experiments presented in this thesis examined CHIP localization in the 

brain at baseline and following stress.  Our models used temporal dissection and correlation 

with the development of pathology, in this case, delayed cell death.  These data are the first 

to show a response by CHIP in the acute phase of injury.  Previous reports have connected 

CHIP in chronic neurodegeneration after pathology has already developed (e.g. tau 

aggregates), while this observation starts a new page in understanding the role of CHIP 

following acute stresses and how acute phase responses correlate to functional endpoints. 

 

Potential mechanisms of acute CHIP-related protection 

Ischemic Tolerance 

Insights into the protective capacity of the early stress response have come from 

studies of ischemic tolerance.  In these studies the application of a sub-lethal stress has 

been shown to confer later protection against a subsequent ischemic challenge. Theories of 

ischemic tolerance have suggested that it may be due to an increase in the capacity of the 

stress response machinery.   Burda et al. (2003) described two mechanisms essential for 

the acquisition of ischemic tolerance.42  The first is a significant reduction in translation 

inhibition after sub-lethal stress.  A key factor after this type of stress is that both vulnerable 

and non-vulnerable neurons had the same response.  For what Burda et al. (2003) 

described as full tolerance, reduced protein synthesis inhibition was followed by a second 

process, recovery of protein synthesis regulation.42  For recovery, the interval between the 

pre-conditioning ischemia and the lethal ischemia was critical because the recovery of 
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protein processing depends on the synthesis of protective proteins (i.e. HSPs) which 

prevented the delayed cell death of vulnerable neurons.  After short durations (<5 minutes) 

of ischemia, in vivo protein synthesis regulation recovered in as little as 12 hours.  Longer 

durations of 5-10 min required up to 2 days for adequate recovery.42,125  Once the stress 

response has been initiated, enhanced mechanisms for protein processing may remain for 

up to seven days.  Beyond that the benefits of the sub-lethal stress are lost.  

In our studies, depletion of CHIP correlated with the development of delayed cell 

death.  During recovery following OGD, the decrease in nuclear CHIP occurred within a 24 

hour window.  Previous studies of ischemic pre-conditioning (PC) established the recovery 

interval between PC and the lethal stress that resulted in reduced injury following the lethal 

stress had a similar time frame of 12 hours to 2 days.42,106 Our results showed that CHIP is 

still present in the nucleus after 12 hours following a mild stress, whereas following the more 

severe stress, nuclear CHIP was significantly decreased after only 4 hours.  

To better understand early mechanisms in stroke injury, a more thorough 

understanding of normal cellular processes and the failure of these processes is required.  

Protein processing is a fundamental function of cells that is rapidly compromised during 

stroke.  The ability to retain this function may be one of the most important determinants of 

cell survival.   The HSPs are a large part of that system.  In healthy cells proteins are 

synthesized and then must be folded into their functional conformations to allow maximal 

activity.  The ability to generate functional proteins is highly dependent on calcium 

(maintained by the sarco(endo)plasmic reticulum calcium ATPase (SERCA)), ATP 

(mitochondria) and a host of other proteins that chaperone newly synthesized proteins 

through each phase of the folding process.72,77  These chaperones include HSC70 and 

HSP70 and folding co-chaperones like HSP40.  If any portion of this system fails, the 

proteins will not fold properly and there is a progressive loss of cellular function.77  To keep 
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this system running smoothly, misfolded proteins must be re-folded or removed from the 

cell.72 

 

Anatomical and Cellular Location of CHIP 

In the past, studies of CHIP in acute stress have been limited to myocardial ischemia 

experiments in vivo and heat stress experiments in vitro.  These reports illustrated the 

importance of CHIP in the stress response since animals and cells lacking CHIP were more 

prone to injury following the stress.81,91,102  Neither group of experiments looked in the brain 

or in neurons.  Our immunohistochemical mapping studies showed that CHIP was abundant 

in most neurons in mice and rats in vivo.  A similar pattern was seen in vitro in primary 

cultures of dissociated cortical/hippocampal neurons, albeit with a slightly higher basal level 

of nuclear CHIP.  This observation suggests that cultured neurons may partially depend on 

the stress response for survival. 

Variability in the CHIP staining intensity in vivo suggested that different cell types and 

brain regions use this protein differently.  The most intense staining was in the choroid 

plexus and ependymal cells (Figure 1-2E) and by comparison, the least intense staining was 

observed in the cerebellum (Figure 1-2D).  Dickey et al. (2007) has suggested that CHIP 

levels may correlate with the number of proteins synthesized and the metabolic demands 

(―work‖) of the cells.108  Within the brain parenchyma, CHIP has a preferential localization to 

neurons.  Beyond neurons the abundance of CHIP in the choroid plexus and ependymal 

cells may be due to the active secretory nature of these cells.  A role for stress proteins in 

the initiation of immune responses has been suggested.49,164,165 So it is also possible that the 

location of these cells at the interface of the blood-CSF barrier and the CSF-parenchyma 

interface may expose these cells to more stress.  The perinuclear intensity of CHIP alone 

suggests that it is poised for rapid translocation into the nucleus following stress. 
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Protein Processing 

Ischemic stress is the result of the loss of blood flow in vivo which correlates to the 

loss of oxygen and glucose in vitro.  The cellular response to ischemic stress involves a 

complex sequence of events designed to promote cell survival.  One of the earliest steps is 

the suspension of on-going protein transcription and translation in favor of the synthesis of 

proteins necessary for survival.8  How this transition takes place is largely unknown, but 

provides the opportunity for early stress response processes to begin with the full support of 

the cells energy-and protein-producing machinery.  Another key response to stress is that of 

the HSPs.  HSPs, which normally fold proteins, will work in concert with the UPS via the 

ubiquitin ligases to facilitate protein degradation in response to stress.  Specificity of the 

UPS has been attributed to the ligases69, though their relevance in the early stages of the 

stress response has yet to be fully investigated.  CHIP is one such ATP-dependent ubiquitin 

ligase.81,82  Under ischemic conditions, mitochondria depolarize, ATP is progressively limited 

and calcium levels destabilize within cells.9  Under these conditions protein folding is 

compromised and aggregates of the misfolded proteins and protein folding machinery will 

accumulate.107  Cell viability is highly dependent on removal of the misfolded proteins as the 

accumulation of unfolded proteins can quickly lead to irreversible aggregation and additional 

functional decline.  Folding intermediates may be partially functional but that functionality is 

likely largely dependent on the energy state of the cell.166  In instances where energy is 

depleted, such as ischemia, there is a temporal gradient of functional loss.  The cell 

gradually looses the ability to complete the folding process in contrast to cell stressors such 

as heat shock in which proteins are overtly damaged. 

Following stress protein processing mechanisms prioritize protein degradation over 

protein folding.66,72  Both misfolded proteins as well as proteins that are not critical to the 
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cell’s response to stress are ubiquitinated and eventually degraded.72  In a parallel effort to 

maintain cellular homeostasis, the synthesis of many other proteins is suppressed to allow 

the synthesis prioritization of chaperones and other proteins that help to manage the stress 

response.43,66,167,168  Survival of tissue with partial availability of metabolic substrates and 

oxygen will depend in part on the efficiency with which the cell regains homeostasis.43  The 

restoration of ATP production and the improved efficiency of ER function is necessary to 

regain homeostasis.43,169  The efficiency of the ER is improved, in part, by the availability of 

rapidly synthesized stress proteins, the heat shock proteins, during the initial stages of 

ischemia.67 

In vitro experimentation has shown that if presented with an abundance of misfolded 

protein, CHIP will degrade that misfolded protein.85,157,170  This is an oversimplified view of 

what happens in vivo, however.  Protein folding is a highly regulated process where 

decisions to re-fold or direct target protein for the UPS are made depending on energy 

status, availability of chaperones and other factors.72  The key decision whether to re-fold or 

degrade a given protein is a very important determination in stroke research and will take a 

great deal of further research to fully appreciate/understand. 

 

Ubiquitin-Proteasome System 

Ubiquitin ligases like CHIP provided specificity for targeting of particular proteins, but 

there is no clear protein recognition by CHIP alone.  Possible targets for CHIP have been 

identified and degradation by CHIP is possible82,101,112,138,156,170-172, however the extent to 

which these are selective in vivo targets of CHIP is largely undetermined.  In each case a 

protein complex is necessary to achieve functional activity.80,81,86  Conformation of the 

molecular chaperone complex in folding and degradation is critical.80,85,173  A major challenge 

for the field is to determine how these complexes identify target proteins for chaperoning, 
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folding, or degradation.  These studies will require multi-protein conformational analyses and 

studies of protein complex interactions.174  A better understanding of the conditions under 

which the selection is made will reveal the early events that promote cell survival following 

stress. 

Ubiquitin-proteasome system (UPS) regulation in the nucleus would be consistent 

with the early increase in the co-chaperones that we observed following heat stress.  Before 

CHIP levels decreased, HSP70 levels peaked in both the cytoplasm and nucleus (Figure 2-

3).  The timing--10 minutes--suggests a very early window of activity for HSP70.  

Interestingly, CHIP and HSC70 levels are not elevated at this point suggesting that CHIP 

and HSF1 do not drive the initial transcriptional response of HSPs.  The peak in CHIP and 

HSC70 comes minutes later--at 15 minutes.  After 15 minutes however, a divergence takes 

place: CHIP levels continue to decrease while HSC70 and HSP70 levels remain constant or 

slightly increase.  The majority of these cells at longer durations of HS ultimately die.  Cells 

that are resistant to ischemic stress, like immortalized cells, have high levels of CHIP at 

baseline.  Reports from KB cells, demonstrated elevated levels of CHIP were maintained 

throughout 24 hours of recovery following HS.129  However, immortalized cells are known to 

survive HS, reinforcing the view that maintaining CHIP levels may be important to cell 

survival. 

Recently a new concept for the role of CHIP in the nucleus has been introduced in 

the literature; a role which indicates a greater complexity of CHIP functionality than 

previously realized.  It has been suggested that CHIP may function as both an intrinsic 

chaperone and temporal regulator of the stress response.  This hypothesis is consistent with 

both the limited acute stress data, as well as the more extensive chronic neurodegeneration 

data98-101 which has reported greater pathology in the absence of CHIP.175  Additionally, 

during the course of biological aging increased protein aggregation occurred in the absence 
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of CHIP.  In our experiments, hippocampal slice cultures lacking CHIP demonstrated larger 

areas of cell death following OGD compared to heterozygous or wild-type cultures.  The 

mechanism of CHIP-related protection is currently unknown but these results suggest it may 

offer protection at two levels: 1) ubiquitin-proteasome regulation, possibly more important in 

chronic neurodegeneration, due to the progressive build-up of protein aggregates over time, 

or 2) nuclear CHIP, likely important in the response to acute stress, when normal protein 

synthesis is suspended and response mechanisms operate with limited metabolic 

resources. 

 

Nuclear localization and CHIP following stress 

 Following stress, molecular chaperone and nuclear import components will 

accumulate in the nucleus.176-178  The import of proteins into the nucleus is most likely to 

occur through the nuclear pore complex.  Small proteins (<5kDa) can passively diffuse 

through the pore whereas larger proteins have to be actively transported through the pore.  

Active transport is accomplished through a two-protein subunit complex, importin-α and 

importin-β.  The latter is the physical import mediator, while importin-α binds to the cargo 

protein.  Importin-α binds to the nuclear localization sequence (NLS) expressed by the cargo 

protein the importin-α will complex with importin-β at the nuclear pore in preparation for 

active transport of the cargo protein into the nucleus.179  Cleavage of RanGTP (a small 

guanosine triphosphatase) provides energy for the successive docking of importin-β through 

the pore and dissociation of the cargo protein from the importins once in the nucleus.   

CHIP is likely actively transported through the nuclear pore using the above 

mechanisms via its two NLSs in an energy-dependent process.  The NLSs on CHIP are 

likely direct targets for recognition by importin-α for translocation into the nucleus.  The 
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presence of strong perinuclear staining in our studies suggests that CHIP is readily available 

for import. 

While mechanisms have been identified as to how CHIP is transported into the 

nucleus, its export may be less clear. Nuclear export in general is also RanGTP-dependent 

and limited under conditions of energy depletion.  Nuclear export is mediated through 

leucine rich regions of a protein termed the nuclear export sequence.  No such sequence 

has been reported for CHIP.  CHIP might be actively exported through its NLS when 

importin-α is exported.  Together impaired nuclear import is the most parsimonious 

explanation for the decrease in CHIP during recovery from OGD.  Loss of ATP may an 

important role in the eventual loss of nuclear CHIP since the nuclear translocation is energy 

dependent.  However, a surprising observation was the rapid loss of nuclear CHIP but not 

HSPs which appeared to co-migrate with CHIP.  This would suggest that CHIP turnover in 

the nucleus is relatively rapid and must be continuously replenished to maintain function.  

Since total CHIP does not decrease it is reasonable to conclude that CHIP may be actively 

exported from the nucleus.  To better understand these processes more studies of CHIP 

import and export are needed. 

To study impaired import and export of CHIP, one would need to more closely 

examine the mechanisms that drive these two processes.  Blocking nuclear import and 

export, generally at the nuclear pore complex, would be deleterious to the cell and 

necessitates a CHIP-specific approach.  If CHIP is translocated through the interaction of 

one or both of its NLSs and importin-α, differences in localization might be observed if one 

or the other sequence is removed.  Additional mutations could be used to determine if other 

functional regions are required. 

Furthermore, our data support the hypothesis that nuclear localization of CHIP is 

important for cell survival following stress.  To directly test this hypothesis in our culture and 
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stress models, expressing a gene construct engineered to express CHIP with a mutated 

nuclear localization sequences would theoretically allow CHIP to function but not 

translocate.  A reporter gene, such as GFP, could also be included to directly verify there 

was no CHIP translocation.  If nuclear localization of CHIP is important to cell survival 

following stress, we would expect an increase in cell death at shorter durations. 

One of the important questions regarding the stress response is if active components 

of the response might be rate-limiting.  The rapid loss of nuclear CHIP and the lack of new 

synthesis seen in our experiments suggest that CHIP availability may be a limiting factor.  

Without ATP, CHIP may decrease under extended ischemic conditions because it is 

consumed by protein degradation aggregates.106  HSC70 has previously been shown to 

increase in insoluble aggregates with the same time course as CHIP.106,120  HSP70 only 

appeared in insoluble aggregates after 24 hours of recovery.120  In our experiments, when 

CHIP levels decreased HSC70 levels also decreased, but HSP70 levels remained constant 

or increased. If there is a cellular preference under acute stress to prioritize nuclear 

processes, sustained nuclear presence of CHIP could be the result of having the energy to 

import and maintain CHIP. Furthermore, CHIP may be trapped and left to aggregate in the 

nucleus due to the lack of energy available for either export or normal functioning. 

 

Rate-limiting potential of CHIP 

As suggested by Kaufman, protein folding is not a pathway but rather a landscape.118  

In this model, the intermediates in protein folding are active contributors to cellular 

processes (stress response, signaling, etc.) and are not traps of proteins that are unable to 

function (intermediate complexes as dysfunctional aggregates).  Accelerated folding is 

facilitated through an elaborate system of chaperones.118  This model is based in the idea of 

unfolded protein as a client of chaperones and not a director.  Thus, mediators of this 
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process (i.e. CHIP) may have functionally different roles depending on localization, cellular 

environment, and protein availability. 

Figure 5-1 summaries the potential functions of CHIP following acute stress.  

Proteins enter into the system by a failure to maintain a functional conformation. The 

ubiquitinating complex consisting of chaperones, ubiquitin-conjugating enzymes, and CHIP 

will bind to unfolded or misfolded proteins to facilitate ubiquitination (1).  Subsequent steps 

are influenced by the availability of ATP.  This is a pivotal point in the cell stress response 

when the cell will either attempt to continue folding proteins or prioritize degradation.  Failure 

at this level will lead to protein aggregation. In the presence of ATP, ubiquitinated proteins 

are degraded by the proteasome and freed ubiquitin is recycled.  However, in the absence 

of ATP, the ubiquitinating complex and unfolded/misfolded proteins will form irreversible 

aggregates.  The second function describes the function of nuclear CHIP.  CHIP is part of 

the complex that regulates HSF1 activation (2).  Under non-stress conditions, CHIP binds to 

the HSC70-HSF complex and in cooperation with HSP90 and HSP70 keeps HSF1 inactive.  

Following stress the CHIP-HSC70 complex holds HSF1 in an active, trimerized 

conformation.  The trimeric complex translocates to the nucleus where HSF1 induces 

transcription of HSP70. 

Our data illustrating a granular appearance of CHIP immunoreactivity in stressed 

cells suggests that nuclear translocalization of CHIP may further augment the accumulation 

of aggregates over time.  The absence of evidence for new CHIP synthesis in the protein 

synthesis inhibition experiments suggests that there may be a limited pool of CHIP available 

for these functions.  Following stress, we show that the availability of CHIP in the cytoplasm 

is determined in part by the loss of CHIP due to its translocation of into the nucleus.  The 

balance between degradation, translation, and protein aggregation is a function of the 

energy needed to support each of these functions.  However, the decrease in nuclear CHIP 



96 
 

in our experiments was not balanced by an increase in cytosolic CHIP suggesting limited 

recognition by our antibodies or deposition into the insoluble fraction. 

The current dogma about CHIP is that it is the lack of CHIP that negatively impacts 

the ability of cells to survive stress.  These studies recognize that the significant relevance of 

the viability observations lies in the function of CHIP under stressful conditions.  Our data 

suggest that the decrease in nuclear CHIP is a pivotal event in the stress response of the 

cell.  However, our data also suggest that 1) an early peak in HSP70, 2) a divergence of 

CHIP and HSC70 localization and levels, or 3) some combination of both are parallel events 

and are key observations of the stress response.  Additionally, the available energy will 

determine whether CHIP stores are exhausted through nuclear localization and trapped by 

aggregate formation, or if CHIP is reverted to its pre-stress status and is able to resume its 

normal activity upon restoration of ATP. 

Unlike HSPs, CHIP synthesis is not rapidly induced in response to stress.  This 

raises several questions regarding the utilization of CHIP.  Is CHIP efficiently recycled?  Is it 

rapidly lost/degraded?  In our studies CHIP was neither synthesized following stress nor 

was CHIP degraded.  If the functions of CHIP are split between HSF1 activation and 

mediating ubiquitination there may not be a sufficient amount of CHIP available to 

accommodate the needs of both functions following long durations of stress.  Under severe 

stress conditions, translocation to the nucleus as an HSF1 chaperone or for an as yet 

unknown function precedes a significant decrease in nuclear CHIP at the earliest points in 

recovery.  The possibility that this loss of CHIP immunoreactivity on Western blot is the 

result of aggregates is supported by studies of ischemic preconditioning.106,125 

As has been suggested by the Hu lab125 among others108, CHIP is lost following 

ischemia.  CHIP may not be degraded, but the presence of protein aggregates in vivo 

following as little as 7 minutes125 suggests that CHIP is being consumed by the system, 
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which may appear to be functioning, but is clearly under duress.  We observed decreased 

nuclear CHIP following severe durations of OGD, but saw constant and elevated nuclear 

CHIP levels following mild durations of OGD.  Cells that are destined to survive some of the 

ischemic stresses are morphologically no different from normal cells at this point, yet 

pathology exists.  Even in cells that survive, aggregates are present.96,105  The relevance of 

these early aggregates, and the relevance of the relative decrease in nuclear CHIP to 

cellular pathology remain unresolved.  However, these data do suggest that the availability 

of CHIP may be a crucial variable for survival and that treatments designed to preserve or 

restore these homeostatic processes may have substantial therapeutic utility. 

 

Final considerations for future experiments 

A clear gap in the story of CHIP thus far is the exact identification of CHIPs nuclear 

targets.  Our experiments suggest that the nuclear translocation of CHIP increases rapidly to 

―prepare‖ the cell to deal with the stress.  However, CHIP’s ability to function in a productive 

way decreases rapidly with continued stress (heat shock, in particular).  Although the 

chaperone functions of CHIP are well described, the mechanisms underlying recognition of 

target proteins is not clear; our yeast two-hybrid data, for example, showed only two 

domains constitutively interacted with CHIP and both correspond to known chaperone 

binding sites.  The lack of strong direct interaction with other proteins suggests a significant 

dependence on the CHIP-chaperone molecular complex.  Such complex interactions could 

contribute to the diversity of ubiquitin ligases that confer specificity.  This would also explain 

the difficulty of demonstrating specific protein interactions by conventional methods in 

primary cultures. 

Participation of CHIP in transcriptional regulation has been illustrated  in studies 

where loss of CHIP prevents the synthesis of protective stress-associated proteins as 
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identified previously through interactions with HSF1.104  Loss of CHIP would also interfere in 

the degradation of unfolded proteins and the repair of the cell.91,102,135,170  The loss of CHIP 

under ischemic conditions suggests that the protein is rapidly exhausted during prolonged 

stress and may be rate-limiting.  Thus, we believe if CHIP is not quickly stabilized or 

restored to normal function the cell will not be able to engage in the recovery process, 

effectively shifting the balance toward cell death.  Treatments designed to increase the 

availability of CHIP in recovery through new synthesis or prevention of sequestration in 

aggregates have therapeutic potential but will require a better understanding of CHIP 

regulation. 

The treatment window could also be well before an actual ischemic event as 

suggested by the relationship between our results and ischemic pre-conditioning.  If sub-

cellular activity has shifted to increasing nuclear CHIP as our experiments suggest, 

producing HSP70 in vivo67 or developing small aggregate deposits within cells as previous 

reports have shown125, the results of a subsequent ischemic event may depend on the 

readiness of the cell to respond and treatments that elevate CHIP and chaperone availability 

may therefore offer therapeutic alternatives for increasing cells survival as well as 

prophylaxis in at-risk conditions. 

 

Summary 

 Changes in the sub-cellular localization of CHIP are key events in the survival of 

cells following stress.  Increased nuclear localization of CHIP preceded the appearance of 

delayed cell death and was independent of new synthesis.  Decreased nuclear CHIP 

correlated with delayed cell death.  Cells were more sensitive to OGD in the absence of 

CHIP.  Our finding of acute changes in sub-cellular localization of CHIP in response to 
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cellular stress suggests that changes that occur shortly after exposure to stress ultimately 

impact on whether or not a cell has the capacity and capability to recover.
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Figure 5-1: Potential functions of CHIP following acute stress. 

A limited pool of available CHIP is involved in two main cellular functions following stress. 1) 

Unfolded protein bound to chaperones that fail to fold are joined in a complex with CHIP and 

ubiquitin-conjugating enzymes. In the presence of ATP, ubiquitinated proteins are degraded 

by the proteasome and free ubiquitin is recycled. In the absence of ATP irreversible protein 

aggregates will form containing unfolded proteins, molecular chaperones, CHIP and 

ubiquitin. 2) The CHIP-HSC70 complex activates HSF1.  The three proteins translocate to 

the nucleus where HSF1 induces transcription of HSP70.  Because CHIP contains a nuclear 

localization sequence CHIP has the potential to localize to the nucleus independently for a 

yet unknown function. 
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