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ABSTRACT

JENNIFER J. YOUNG: Cytoskeleton Micromechanics: A Continuum-Microscopic

Approach

(Under the direction of Sorin Mitran)

Creating accurate, whole-cell scale models of the cytoskeleton is computationally

challenging, due to the material’s highly heterogeneous microstructure. Continuum-

based models, homogenization methods, and coarse grained models are common model-

ing approaches. These methods utilize constant-in-time, average mechanical properties,

whereas continuum-microscopic (CM) models utilize a microscopic model to periodically

update local mechanical parameters for a macroscopic model. CM methods have been

used for heterogeneous media with unchanging microstructures. This research focuses

on extending a basic CM algorithm to model heterogeneous media with time-varying

microstructures. Microscopic data is saved over time in the form of probability distri-

bution functions. These PDFs are then extrapolated forward in time to predict what

the microstructure will look like in the future. Keeping track of the microstructure over

time allows for the accurate computation of the local mechanical parameters used in the

continuum-level equations. The model was tested on a rectangular domain, representa-

tive of a cytoskeleton. Results showed that the elastic parameters computed with this

algorithm are similar to those computed with a fully-microscopic simulation. Errors for

continuum level variables (such as stress) in the 10% range are deemed an acceptable

trade-off for the 50 − 75% savings in computational expense offered by this algorithm.
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CHAPTER 1

Introduction

Many natural phenomena involve multiple length and time scales. These different

scales arise as a result of the discrete nature of matter. As an illustrative example of a

separation of length scales, consider an ideal gas, which is composed of discrete molecules.

The mean free path λ is the average distance a molecule travels before colliding with

another molecule. Three basic length scales can be defined by introducing a dimensionless

value K, (known as the Knudsen number) defined as λ/L where L is the physical length

scale of interest. If K ≪ 1 then the length scale of interest is much larger than the

mean free path. With K ≈ 1, the length scale of interest is close in magnitude to λ, and

collisions between molecules become observable. Lastly, if K ≫ 1, then the length scale

of interest is small compared to λ. Separation of scales also exists for time. Using again

a gas example, consider a mole sample of gas in an enclosed macroscopic sized container

that is in a state of non-equilibrium. Three time scales, τ1, τ2, τ3, can be established with

τ1 the average time it takes a molecule to traverse the length of the container, τ2 the

average time between collisions, and τ3 the average time it takes for a collision to occur

[52]. The particular phenomenon to be modeled will dictate the scale (or scales) that

are important to focus on to capture the desired behavior.

Each scale warrants a different modeling approach. As a general illustration consider

the dynamics of fluids. The fluid motion for the K ≪ 1 case (e.g. river flow) can be

well described by the Navier-Stokes equations. At the K < 1 level, a Boltzmann-like

equation can be employed to model the dynamics of the fluid particle distribution. At

K ≈ 1, Newton’s law of molecular dynamics can be applied to model the positions and



velocities of individual fluid molecules. Zooming in to the K ≫ 1 case the Schrödinger

equation of quantum mechanics can be utilized [25].

When creating a computational model, the goal is to include as many components as

needed to accurately capture a specific behavior. A more detailed model that includes

many of the smaller scale components will increase the accuracy of the model, but may

significantly slow down the computation. Numerical analysts seek to strike a balance

between creating realistic but efficient models. Going from the above scale descriptions,

if the goal is to model flow in a river the most logical choice would be to employ the

Navier-Stokes equations. Newton’s law could also be used to model the individual parti-

cles to capture the same overall fluid motion, but due to the large number of molecules

in a region of river the molecular dynamics computation would be computationally in-

tractable. (More details on computational difficulties will be presented in chapter 2.)

The decision is made to view the river’s fluid as a continuum, meaning that the hetero-

geneous, microscopic structure of the material is ignored [47] and is treated instead as a

continuous, homogeneous fluid.

The choice to model a material as a continuum is motivated by the economy of de-

scription. If the variables describing the discrete, microscopic elements can be averaged

without the loss of information then a continuum description is an efficient model choice.

However, there are some instances where fluctuations and structural heterogeneities at

the microscopic scale, do affect behavior at the continuum level. In these cases, a purely

continuum-based model would likely fail to capture these microscopic effects. The de-

velopment of computational models of the dynamics of continuous media which include

data from the microscopic scale is the subject of the following thesis work. The goal of

this research is to create efficient numerical models that approximate macroscopic con-

stitutive laws which accurately capture the non-equilibrium microscopic behavior that

is observable in deforming biological material, such as the cell cytoskeleton. To achieve

this goal, concepts from kinetic theory, statistical mechanics, and probability theory are

utilized to create a continuum-microscopic model that retains memory of the microscopic

2



variables without having to carry out a full microscopic simulation. The model is demon-

strated for the example case of the cell cytoskeleton, a highly heterogeneous, crosslinked

filament network.

The structure of the thesis is as follows. First a brief synopsis of the history of contin-

uum mechanics, its governing equations and basic examples will be presented. Next, bio-

logical background on the cell cytoskeleton will be described, followed by a presentation of

current research in cytoskeletal modeling. Chapter 3 will be comprised of two motivating

examples that demonstrate the need for a more comprehensive, microscopically-informed

continuum model of the cytoskeleton. In Chapter 4, general mathematical theory needed

to construct the model will be presented. This will be followed by Chapter 5, which

describes the development of the main algorithm. Finally, in Chapter 6, a basic applica-

tion of the algorithm will be demonstrated, and the chapter will conclude with ideas for

future work.

1.1. The Development of Continuum Mechanics

Describing a material as continuous ignores the media’s discrete, molecular structure

[47] and instead characterizes it as being comprised of homogenized matter that com-

pletely fills the space. The study of the mechanical behavior of continua is the subject of

continuum mechanics [48]. A brief history of continuum mechanics will first be presented.

This will be followed by derivations of the elementary notions of stress and strain put

forth by scientists such as Hooke, Navier, Cauchy and Poisson. This will be followed by

a presentation of the equations of motion for basic continuous, homogeneous bodies such

as a string, membrane, beam and plate. Composite materials will then be discussed, as

a lead-in to the more complicated modeling of highly heterogeneous materials. Finally,

current multiscale and continuum-microscopic modeling techniques will be described.

1.1.1. Early History. The experimental work of Robert Hooke led to his 1660 discov-

ery of a linear relationship between stress and strain in spring-like objects. This law

was stated in Hooke’s De Potentia Restitutiva with the Latin phrase “Ut tensio sic vis”,

3



meaning “As the expansion, so the force”. After this discovery, the next one hundred

fifty years of research included: (1) work related to the theory of beams and thin rods

by Leonhard Euler, Jacob Bernoulli and Daniel Bernoulli; (2) Coulomb’s discussion of a

non-extensional strain known today as shear; (3) the solidification of the idea of an elas-

ticity modulus of a material by Thomas Young; (4) the extension of rod theory to shells

and plates by Euler, a younger Jacob Bernoulli, and Sophie Germaine; (5) Newton’s

concept of media, that a material is composed of small, finite-sized parts that interact

through forces. These notions laid the groundwork for the theory and equations of stress

and strain put forth by Navier, Cauchy and Poisson in the early 1800’s.

Navier took the Newtonian concept of a solid and formulated the first general equa-

tions to describe the equilibrium and vibrational states of elastic bodies. He replaced

the notion of discrete molecules (that to Newton had finite size) with the idea of an

infinitesimal material point. He assumed that the forces between two material points in

a body when the distance between them was changed, was proportional to the change

increment and to the initial distance between the points. His equations of motion are

written in terms of displacements, and they contain a meterial-specific constant (the first

notion of a material-specific elasticity modulus). In 1821, Fresnel introduced the novel

idea that waves could travel through an elastic medium. This concept attracted both

Cauchy and Poisson to the study of elasticity. Cauchy soon worked out many of the

fundamental ideas of elasticity such as stress, strain and the principal axes of stress and

strain. He also formulated his own equation of motion, similar to Navier’s, but it utilized

two elastic constants as opposed to one. Concurrently, Poisson developed a similar set of

equations and also contributed many interesting applications of the general theory. (All

historical information from [54].)

1.1.2. Strain. Strain is a measure of how much an object has been stretched, compared

to its equilibrium state. Begin with an elastic body and a point on the body with position

vector r = 〈x1, x2, x3〉 in Cartesian space. (Vectors will always be noted in bold face.)

If this body gets deformed, point r is moved to r′. Let u = r′ − r be the displacement
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vector, and in component form it can be written as: ui = x′
i − xi where i = 1, 2, 3. Take

two points on the body r1 and r2 that are a small distance apart (infinitesimal) and

compute the vector between them to be: dr = r1 − r2. These points are then displaced

to new locations r′1 and r′2 after deformation has occurred. The relations: u1 = r′1 − r1

and u2 = r′2−r2 and also du = u1−u2 can be established (See Figure 1.1 for a diagram).

Figure 1.1. Diagram of displacement of infinitesimal line segment

The vector between the new points can be written in terms of the initial points and

displacements as follows:

dr′ = r′1 − r′2

dr′ = (r1 + u1) − (r2 + u2)

dr′ = (r1 − r2) + (u1 − u2)

dr′ = dr + du

The length of a vector between two points is simply the distance formula:

|dr| =
√

dx2
1 + dx2

2 + dx2
3. The length between the two deformed points can be expressed

as:

|dr′| = |dr + du|
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Call this deformed length l = |dr′| and L = |dr| will be the undeformed length. The

difference l−L is known as the stretch. The expression l2−L2 is a measure of deformation,

and can be utilized to define strain in terms of displacements. The current squared length

can be written as:

l2 = |dr + du|2

l2 = (dx2
1 + dx2

2 + dx2
3) + 2dx1du1 + 2dx2du2 + 2dx3du3 + du2

1 + du2
2 + du2

3

l2 = L2 + 2

3
∑

i=1

dxidui +

3
∑

i=1

du2
i(1.1)

The differential dui can be replaced with
∑3

j=1
∂ui

∂xj
dxj , and Equation 1.1 can be rewritten

as:

(1.2) l2 = L2 + 2
3
∑

i=1

3
∑

j=1

∂ui

∂xj

dxjdxi +
3
∑

i=1

3
∑

j=1

3
∑

k=1

∂ui

∂xj

dxj
∂ui

∂xk

dxk

The second term can be rewritten as:

3
∑

i=1

3
∑

j=1

(

∂ui

∂xj

+
∂uj

∂xi

)

dxidxj

(in a symmetric form), and in the third term the i and k indices can be swapped:

∂uk

∂xj

∂uk

∂xi

dxidxj

Replacing these two expressions back into 1.2 (and using repeated index summation

notation) gives:

l2 = L2 +

(

∂ui

∂xj
+

∂uj

∂xi

)

dxidxj +
∂uk

∂xj

∂uk

∂xi
dxidxj

Grouping the last two terms together:

(1.3) l2 − L2 =

(

∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xj

∂uk

∂xi

)

dxidxj
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Equation 1.3 can be written succinctly as:

l2 − L2 = 2Eijdxidxj

where Eij is the Green strain tensor:

Eij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xj

∂uk

∂xi

)

Tensor Eij is symmetric and has been derived from a Lagrangian formulation where points

in the body are labeled by their initial states. It makes intuitive sense as an expression

describing strain because if there is no change in length (l2 − L2 = 0) then Eij = 0.

This includes rigid body motion (translations and rotations), whose displacements may

be non-zero but Eij still vanishes. This tensor can also be easily related to the notion of

strain as the ratio of change in length to equilibrium length:

l2 − L2 = 2Eijdxidxj

(l − L)(l + L) = 2Eijdxidxj

2L(l − L) ≈ 2Eijdxidxj

l − L

L
≈ Eij d̂xi

ˆdxj

where d̂xi and ˆdxj are simply normalized vector components.

The above strain tensor E is valid for both large and small deformation situations

and is also commonly known as the finite strain tensor. It can be written in terms of the

displacement gradient tensor ∇u as:

E =
1

2
((∇u)T + ∇u + (∇u)T · ∇u)
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If deformations are small, meaning ∂ui/∂xj ≪ 1 then the finite strain tensor can be

reduced to the infinitesimal strain tensor:

E =
1

2
((∇u)T + ∇u)

This is a result of the fact that if displacement gradients are small, then the product of

two such quantities: ∂uk

∂xj

∂uk

∂xi
, will be several orders of magnitude smaller and can thus be

neglected. (Derivation from [36, 48]).

Both notions of finite and infinitesimal strains will be used in the following thesis

work. The cytoskeleton experiences large strains on the length and time scales of the

formation of whole cell protrusions. On the microscopic scale, small displacements occur

rapidly due to thermal and biochemical flucations, and at this scale infinitesimal strain

theory can be assumed over successive micro-time steps.

1.1.3. Stress. Stress is defined as the average force per unit area.

F

A
= σ

Like strain, there are different representations of stress depending on the magnitude

of deformation. The Cauchy stress tensor (written in an Eulerian framework) is valid

for small deformations (where the deformed and reference states are very close), and is

expressed as:

σ =











σxx σxy σxz

σyx σyy σyz

σxz σzy σzz











Given an infinitesimal cube upon which surface forces are acting, the tensor can be

interpreted as follows: the first index i indicates the direction of the force and the second

index j gives the direction of the normal vector to the surface. (See Figure 1.2 for a

diagram.) Normal stresses (stresses acting on a surface perpendicular to that surface)

are along the diagonal of the stress tensor. Tangential (or shear) stresses appear in the

off diagonal positions [48]).
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Figure 1.2. Components of the Cauchy stress tensor (from www.stiintaazi.ro)

The Cauchy stress tensor can be utilized to find the stress on any surface element dA

of an elastic body, as long as the normal vector to that surface is known. This relationship

is simply

T = σ · n

where T is the computed stress vector on the surface of interest, and n is the normal

vector to that surface [36].

The Cauchy stress tensor is symmetric. This can be shown by utilizing concepts of

angular momentum and moments. The angular momentum vector L can be defined as

L = Iω where I is the moment of inertia and ω is the angular velocity. A moment

M is defined as the cross product of a moment arm vector r and a force vector F, and

describes the rotational forces on an object. The following relationship can be established

by Newton’s second law:

dL

dt
=

∑

M

d(Iω)

dt
=

∑

r × F

Iα =
∑

r × F
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where α is angular acceleration. Using Figure 1.2, consider the net moment that would

cause a rotation of the cube around an axis placed through the centers of the top and

bottom faces. The forces acting on the four sides around the cube that could cause

rotations are the four shear forces: σxydxdz and σyxdydz (each repeated twice). Given

the forces along with corresponding moment arms, all with their correct signs so as to

produce the same direction of rotation, the net moment (in the z direction) can be written

as:

∑

Mz = σxydxdz
dy

2
− σyxdydz

dx

2
+ σxydxdz

dy

2
− σyxdydz

dx

2
∑

Mz = σxydxdydz − σyxdxdydz

∑

Mz = (σxy − σyx)dxdydz(1.4)

Iαz = (σxy − σyx)dxdydz(1.5)

The moment of inertia of a cube rotating around the axis described above is given by:

(1.6) I =
ρ

12
dxdydz((dx)2 + (dy)2)

where ρ is a mass density. Substituting 1.6 into 1.5:

ρ

12
dxdydz((dx)2 + (dy)2)αz = (σxy − σyx)dxdydz

This relationship has to hold even as the cube is made arbitrarily small. Cancelling

dxdydz from both sides and sending both dx and dy to zero means that the angular

acceleration α will tend to infinity in order to equal the quantity: (σxy − σyx). An

infinite angular acceleration is non-physical, thus σxy − σyx = 0 or σxy = σyx. Similar

results are obtained by constructing equations for the two other axes of rotation. The

conclusion is that:

σij = σji
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As mentioned earlier, the Cauchy stress tensor is valid for small deformations. For

large deformations, the Piola-Kirchhoff stress tensors (first and second) provide La-

grangian descriptions of stress expressing the forces and areas in terms of reference states.

To define these two stress tensors, let X be the initial position vector of a point, and

let x(X, t) be the current position vector. The displacement vector can be defined as:

u(X, t) = x(X, t) −X. The displacement gradient tensor can be expressed as:

∇Xu = ∇Xx − I

where I is the identity tensor and the gradient was taken with respect to the reference

vector X. The quantity ∇Xx is often labeled as F and is called the deformation gradient

tensor. The first Piola-Kirchhoff stress tensor P is defined as:

P = Jσ · F−T

where σ is the Cauchy stress tensor, the −T indicates the inverse transpose, and J =

det(F). This stress tensor relates forces in the current state to areas in the reference

state.

The second Piola-Kirchhoff stress tensor S expresses both the forces and areas in

terms of the reference state. This tensor is defined as:

S = JF−1 · σ · F−T

A linear relationship can be established between stress and strain by generalizing

Hooke’s law:

σij = Cijklǫkl

where Cijkl is the stiffness tensor. Both σ and ǫ are second order tensors with 9 elements

each. The tensor Cijkl is a fourth order tensor, containing 81 elements. In the case of

Cauchy stress, the symmetry of σ and ǫ, along with a strain energy relationship, allow

Cijkl to be reduced to 21 independent entries. If the body is isotropic, meaning that it
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has the same material properties independent of direction, then these 21 values can be

reduced to two. Extensional behavior and shear behavior will each be described by one

material parameter.

Cijkl = λδijδkl + 2µδikδjl

where λ and µ are the Lamé coefficients [36], and the δ’s are Kronecker deltas. The

linear stress-strain relationship can be written succinctly as:

σij = λδijǫkk + 2µǫij

Stress and strain can be related nonlinearly as well. Determining an accurate stress-

strain relationship (denoted as a function of the general form: σ(ǫ)) for a particular

material is one of the major goals of continuum mechanics research. These constitutive

relationships depend on the structure and material properties of the medium as well as

the type and magnitude of forces applied. There is also the potential added complex-

ity of time variability. This is particularly true for biological materials (like the cell

cytoskeleton), whose material properties change over time due to structural rearrange-

ments induced by biochemical reactions and external forces [2, 27, 82]. These structural

changes occur at the microscopic level. To accurately model such a material at the

continuum-level will require information from the micro-scale. This information must be

periodically fed to the continuum level to keep the constitutive law up-to-date.

Developing an accurate continuum-scale, computational model of the deformation of

the cell cytoskeleton is the main goal of this thesis. In order to model deformation,

the dynamic elasticity equations will be solved. These equations require a relationship

between stress and strain in order to close the system. Numerically modeling this rela-

tionship at the continuum level, utilizing time-varying microscopic data in an efficient

manner is the central focus of this research work.
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1.2. Simple Continuum Models

The derivation of continuum-level equations of motion for a homogeneous string,

membrane, bean and plate will now be presented.

1.2.1. String. The equation for longitudinal motion in a uniform string can be derived

by starting with a discrete mass-spring system (Figure 1.3).

Figure 1.3. A simple mass-spring system

This discrete system is composed of N point masses (each of mass m), that in the

zero stretch state are spaced a distance h apart from one another. Let uj(t) be the

displacement of mass j at time t from its zero stretch position. Between every two

masses, place a spring of stiffness k and equilibrium length h. Newton’s Law (F = ma)

can be used to describe the motion of this mass-spring system. Mass j will feel forces

from masses j − 1 and j + 1. The equation of motion for mass j can be written as:

müj(t) = k [(uj+1(t) − uj(t)) − (uj(t) − uj−1(t))]

müj(t) = k [uj+1(t) − 2uj(t) + uj−1(t)]

üj(t) =
kh2

m

[uj+1(t) − 2uj(t) + uj−1(t)]

h2

Taking the limit of h → 0, gives:

utt(x, t) =
E

λ
uxx(x, t)

where zero stretch position x ∈ R replaces the j integer valued numbering system for

the discrete point mass positions. This is the familiar wave equation with E = kh the

Young’s modulus of the string material and λ = m/h a linear mass density. This is a

continuum-level constitutive law valid for describing the longitudinal motion of the string

whose parameters (E, λ) do not depend on the microscopic scale data.
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A similar equation can be derived for transverse motion in a uniform string. Let

w(x, t) be the transverse displacement of the string above the x axis (See Figure 1.4).

Figure 1.4. The transverse motion of an elastic string

When a string is displaced transversely, a tension T is created in the segment. This

tension can be represented as a vector T with x and y components by using the sin and

cos of the angle θ the string makes with the x axis.

T =





T · cos(θ)

T · sin(θ)





x+δx

x

δx is the length of the segment of string under this tension. Assuming the transverse

displacements are small, sin(θ) can be approximated by δw
δx

≈ ∂w
∂x

. Similarly, cos(θ) can

be assumed to be close to 1. This gives the tension force as:

T =





T

T ∂w
∂x





x+δx

x

Newton’s law can be used to write an equation for the transverse motion of the string.

For this example, the transverse direction is the y direction, thus the equation is:

λwtt(x, t) = Twxx(x, t)

where λ is again a linear mass density. The right hand side comes from the second

component of the vector ∂T

∂x
which gives the net force acting on the string in the y

direction. This is once again a wave equation like in the longitudinal case [36].
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1.2.2. Membrane. The equation of transverse motion for a thin,flexible membrane is

an extension of the elastic string model to two dimensions. Begin with a two-dimensional

mass-spring system as seen in Figure 1.5.

Figure 1.5. A two-dimensional mass-spring system

There are N × N masses in the discrete system, each of mass m. A spring of stiff-

ness k and equilibrium length h is placed between each pair of masses, creating a two-

dimensional grid (Figure 1.5). Let wi,j(t) be the transverse displacement of mass i, j from

its zero stretch state (Figure 1.6). The inertial portion of Newton’s law for mass i, j is

given by mẅi,j. The forces acting on that mass stem from the differences in displacement

between that point and the four surrounding spring-connected mass points. There are

two springs that emanate from the mass in the x direction and two in the y direction.

The forces can be calculated form Hooke’s law as was done for the string:

F = k[(wi+1,j(t) − wi,j(t)) − (wi,j(t) − wi−1,j(t))

+ (wi,j+1(t) − wi,j(t)) − (wi,j(t) − wi,j−1(t))]

F = k(wi+1,j(t) − 2wi,j(t) + wi−1,j(t) + wi,j+1(t) − 2wi,j(t) + wi,j−1(t))

mẅi,j(t) = kh2 wi+1,j(t) − 2wi,j(t) + wi−1,j(t) + wi,j+1(t) − 2wi,j(t) + wi,j−1(t

h2

As in the string case, take the limit as h → 0 to obtain

wtt(x, y, t) =
T

λ
(wxx(x, y, t) + wyy(x, y, t))
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where the positions x ∈ R, y ∈ R replace the integer indexed mass points, λ = m/h2

is a mass per unit area parameter, and T = k is the tension per unit length. This is a

two-dimensional wave equation [60].

Figure 1.6. An elastic membrane undergoing transverse displacement

1.2.3. Beam. For the case of a beam, the same longitudinal equation of motion can be

derived as in the string case as long as the cross-sectional area A of the beam is uniform.

The transverse motion equation will be different because of the added dimension of

cross-sectional area which introduces an internal structure to the beam. Besides tension,

a beam also experiences shear as its inside layers rub over one another as the beam bends.

This shear force will be labeled N and its direction is chosen as the transverse direction

(See Figure 1.7 for force diagram).

Figure 1.7. The forces and moments on a segment of beam

The shear force vector therefore looks like:

N =





0

N





x+δx

x
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The transverse displacement equation can be written as:

T
∂2w

∂x2
+

∂N

∂x
= λ

∂2w

∂t2

The next step is to relate N and w. This is done by first relating the shear force with

the bending moment M. By Newton’s second law:

dL

dt
=
∑

M

where L is the angular momentum. When a section of beam, (length δx) is bent, its

rotational forces include the two moments acting on each end, as well as the shear force

N . This gives:

(1.7)
dLz

dt
= −Mz(x + δx, t) + Mz(x, t) + δxN(x + δx, t)

The subscript z indicates the vector component of interest for this computation, since

the rotation is occurring around the z axis. The shear force N is multiplied by the length

of its moment arm to compute its moment. By the same argument presented in the

symmetry discussion for the Cauchy stress tensor, the only way for Equation 1.7 to be

physically correct is if (taking the limit as δx → 0):

(1.8)
∂Mz

∂x
= N

The moment can be written in terms of the transverse displacement w because the

moment is proportional to the curvature of the beam. The curvature is given by the

second derivative with respect to arc length of w. The proportionality constant is EI

(the Young’s modulus times the moment of inertia for the beam’s cross-section):

(1.9) Mz = EI
∂2w

∂x2

Utilizing relationships 1.8 and 1.9, the transverse motion of the beam can be written as:

EI
∂4w

∂x4
+ T

∂2w

∂x2
= λ

∂2w

∂t2
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This beam was assumed to be uniform, meaning the elastic properties were assumed to

be homogeneous for the length of the beam.

1.2.4. Plate. As the membrane’s equation of motion was the two-dimensional version

of the string equation, the plate equation is the extension of the beam equation to three

dimensions. Figure 1.8 shows a rectangular section of plate.

Figure 1.8. The forces acting on a section of a plate

An equation for the transverse motion of the plate will be constructed. Looking

at Figure 1.8, the transverse direction is the z direction. The xy plane forces can be

described by a tensor:

T =





Txx Txy

Tyx Tyy





The shear forces in the z direction along the x and y planes will be denoted as N =

(Nx, Ny). The section of plate is assumed to be in equilibrium in the x and y direction,

thus by balance of moments, Txy = Tyx. Let w(x, y, t) be the displacement in the z

direction. These displacements are assumed to be small, which will allow the use of

approximations (based on trigonometric relationships) to express the tension forces in

terms of w(x, y, t). The equation of motion in the z direction is:

∂

∂x
(Txx

∂w

∂x
+ Txy

∂w

∂y
+ Nx) +

∂

∂y
(Tyx

∂w

∂x
+ Tyy

∂w

∂y
+ Ny) = λ

∂2w

∂t2
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where λ is the mass per unit area. The first section on the left hand side represents the

net z direction forces over the x variable and the second section is the same for the y

variable. The right hand side is the usual inertial component. The shear forces, can be

written in terms of moments as:

∂Mxx

∂x
+

∂Mxy

∂y
+ Ny = 0

∂Myx

∂x
+

∂Myy

∂y
− Nx = 0

where the first index on M represents the component of the moment vector, and the

second index indicates the direction of the normal vector of the plane. The moments can

then be written in terms of the curvature (second derivatives of w). The final result is:

Txx
∂2w

∂x2
+ 2Txy

∂2w

∂x∂y
+ Tyy

∂2w

∂y2
− D∇4w = λ

∂2w

∂t2

where D is the bending stiffness of the plate (involving the Young’s modulus and moment

of inertia). In the simple case of an isotropic tension, the equation can be reduced to:

T∇2w − D∇4w = λwtt

Given boundary conditions, this problem can be solved easily for the transverse motion

of the entire plate [36].

1.3. Composite Materials

The materials described thus far have been homogeneous in composition and struc-

ture. The mechanical behavior of the string, membrane, beam, and plate is described

by constant material properties. Heterogeneous materials, on the other hand, do not

have constant material properties. They are either composed of multiple materials, each

exhibiting different mechanical behavior, or they have inhomogeneous structures which

cause their meterial parameters to vary in space and/or time. Composite materials make

up one simple subclass of heterogeneous media. They are composed of two or more

materials with different mechanical properties, arranged in alternating layers. Examples

of composites include steel, reinforced concrete, fiberglass, and Kevlar. The purpose of
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creating such materials is often to capitalize on the combination of beneficial qualities of

each component. The alternating layer patterns of composites can be found at a scale

well above the molecular level. In comparison, the heterogeneity of biomaterials is much

more complex. Their structures can be inhomogeneous down to the molecular scale, and

often do not have well-defined patterns.

The inhomogeneities in composites and biomaterials both need to be taken into ac-

count to produce accurate models. However, the methods utilized will be different. The

periodicity of a composite’s heterogeneous structure allows for the successful application

of homogenization methods [53, 56]. This is not the case with biomaterials. However,

understanding the mechanics of a simple composite is a step in the right direction to-

wards the continuum-microscopic approaches that will be utilized in modeling media like

the cell cytoskeleton.

As an elementary example, consider a one-dimensional string that is composed of 2N

alternating equal length segments of two different types of material. The first material

has a Young’s modulus of E1 while the second has a very different Young’s modulus of

E2. Let the string be of length L. Then the elasticity modulus is given by:

E(x) =







E1 n L
N

< x < (n + 1
2
) L

N

E2 (n + 1
2
) L

N
< x < (n + 1) L

N

where n = 0, 1, ...N − 1.

A linear stress-strain relationship for this situation would be:

σ = E(x)ǫ = E(x)
∂u

∂x

where u(x) is the longitudinal displacement. Rewriting the stress as a tension force over

area gives:

(1.10)
T

A
= E(x)

∂u

∂x
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For a homogeneous material, E is a constant, so u(x) can be found by simple integration:

u(x) =
T

AE
x

However, if E is spatially varying as in a composite material, then the solution becomes

piecewise as:

u(x) =
T

A







x
E1

+ nL
2N

( 1
E2

− 1
E1

) n L
N

< x < (n + 1
2
) L

N

x
E2

+ (n+1)L
2N

( 1
E1

− 1
E2

) (n + 1
2
) L

N
< x < (n + 1) L

N

These functions come from the integral of 1/E(x) where E(x) looks like Figure 1.9.

Figure 1.9. The graph of the elasticity modulus of a string with alter-
nating segments of two types of materials.

Homogenization is a general technique that can be easily applied to this simple ex-

ample to average the integral of 1
E(x)

that arises when solving 1.10.

(1/E) =
N

L

∫ L/N

0

dx

E(x)

(1/E) =
N

L
(

1

E1

+
1

E2

)
L

2N

(1/E) =
1

2
(

1

E1
+

1

E2
)

The function:

u(x) =
Tx

A
1/E + c
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is a good approximation to the exact solution on the scale of the whole string. This

basic example was used to introduce one of the fundamental issues in multiscale model-

ing, namely how to incorporate the varying mechanical properties of an inhomogeneous

material into a continuum-level description of the medium. For this simple case, homoge-

nization is sufficient. For materials with more complex space and time-varying properties,

a different class of algorithms known as continuum-microscopic methods is often used.

An introduction to such methods and a description of how this thesis work contributes

to the further development of these algorithms is presented in the forthcoming sections.

1.4. Continuum-Microscopic Models

Continuum-microscopic (CM) methods incorporate the modeling of two or more scales

(length, time, or both) into one algorithm to model a particular phenomenon. The

different scales are usually governed by different physical laws [25]. The general idea

behind continuum-microscopic modeling is to utilize information obtained from a more

detailed description of the material to update or predict information at a less detailed

level of description, where presumeably computations can be done more efficiently. CM

models have thus far been used under the assumption that the microscopic configuration

is known or can be reasonably approximated by a known distribution function (such as

a Gaussian or unifrom distribution) [25, 28, 43]. However there are many problems

for which the microscopic structure is unknown because it is changing over time and

highly heterogeneous. This thesis work seeks to extend a basic CM model to address

such situations.

CM models have been applied to a wide range of scientific subjects including fluid

dynamics [9, 49, 68], biology [12, 26], chemistry [8, 31], and material sciences [45, 79].

The main CM methods that have been applied in these various fields include the Hetero-

geneous Multiscale Method (HMM) [24], the Adaptive Mesh and Algorithm Refinement

(AMAR) method [28] and the Equation-Free Method [43]. A brief summary of each

method will now be presented.
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1.4.1. The Heterogeneous Multiscale Method. The Heterogeneous Multiscale Method

(HMM) was developed by E and Engquist [25]. Usually one is interested in modeling a

continuum level situation such as fluid flow or deformation of an object. Sometimes one

only has data from the discrete microscopic elements that make up the medium. A model

that utilizes this vast quantity of detailed information to evolve the entire macroscopic

domain is not computationally feasible [25]. The main idea behind HMM is to have two

different numerical schemes: one at the continuum level (ex. finite volume with Navier

Stokes) and one at the microscopic level (ex. Newton’s molecular dynamics). Suppose

a grid is laid over the macroscopic domain. To update the continuum variables of each

macroscopic grid cell requires the computation of fluxes at each interface between adja-

cent cells. At these interfaces is where the microscopic scheme is employed to produce

more accurate flux information. As an example, let U be a macroscopic variable (such as

velocity), and u is the corresponding variable at the microscopic scale. The two variables

are related by an averaging operator Q where Qu = U . Consider the scalar conservation

law that would be used to update the u variable at the microscale:

(1.11) ut + f(u)x = 0

This equation may be solved using, for example, a Riemann solver. The updated variable

ū is then used to compute the average flux F at the macroscopic scale:

Fj+1/2 =

∫ tn+1

tn
fj+1/2(ū, s)ds

∆t

where j + 1/2 indexes the macroscopic grid cell interfaces and the values j index the

grid cell centers. Then the new macroscopic U variable is found via the following update

scheme:

Un+1
j = Un

j − ∆t

∆x
(Fj+1/2 − Fj−1/2)

Due to the smaller spatial scale at the microscopic level, smaller time steps must be used

in the solution of 1.11 to get stable results. This is the main reason why full microscopic
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simulations are computationally intractable. HMM is often applied to problems where

there are two time-scales: A slow continuum level time scale where variables change

perhaps on the order of seconds and a fast time scale at the microscopic level where

molecules quickly reach a quasi-stationary state, meaning the microscopic variables settle

to particular values [25]. Therefore the microscopic equations do not need to be solved

for the entire macroscopic time step. This separation of scales is what makes HMM

possible and useful. The basic steps in HMM can be summarized as:

(1) Create a microscopic instantiation from the macroscopic variable information

for the interface regions

(2) Run the microscopic updating scheme (ex. molecular dynamics equations) until

the microscopic data has reached a quasi-stationary state

(3) Apply an averaging or compression algorithm to produce macroscopic level flux

information for the continuum equation

(4) Update the macroscopic variables

This method works well for systems where thermodynamic equilibrium can be assumed

within each macroscopic grid cell. HMM has been applied in many scientific areas such

as gas kinetics [81], fluids [68] and elasticity [1].

1.4.2. Adaptive Mesh and Algorithm Refinement. The Adaptive Mesh and Algo-

rithm Refinement (AMAR) technique was developed by Garcia et al. [28]. This method

combines the ideas of grid refinement with the utilization of different equations at the

different refinement levels. As a general example, suppose that the goal is to model the

flow of cytoplasm in a motile cell. Typically to solve such a problem numerically one

would lay a grid over the fluid domain and solve the Navier-Stokes equations for the

hydrodynamic variables. Within this fluid grid there may be regions where interesting

dynamics is taking place, perhaps near the opening of a protrusion or at the boundary

of the cell. In thees regions one may want to use adaptive mesh refinement to obtain

a better resolution of the solution. If the refinement changes the spatial scale by sev-

eral orders of magnitude, the fluid may no longer be viewed as a continuum but rather
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as individual fluid particles. The AMAR method proposes employing a different set of

equations at this fine grid scale to reflect this new problem description.

The basic idea of adaptive mesh refinement is simply to begin with a coarse grid and

divide this grid into smaller grid cells using a specified refinement ratio. The refinement

should proceed until the error in the solution has been reduced to below a given thresh-

old. There can be different depths of refinement in different regions of the domain. The

variables in the boundary cells that border the interfaces between regions of differing

refinement need to match up. This synchronization is done using averaging and interpo-

lation techniques. The fine grid is initialized by interpolating the coarse grid information.

Once the fine grid has been advanced, the boundary values are averaged to update the

interface boundary with the coarse grid. Also, a flux correction algorithm is applied at

the coarse/fine interface. These adjustments help to maintain conservation of variables

such as mass, momentum and energy.

AMAR adds another layer of complexity to the normal AMR algorithm. It has to

match up variables that come from two different physical laws. One cycle of AMAR

begins with the computation of fluxes for all coarse grid cells. These fluxes are used to

advance the variables forward in time one continuum step ∆tcont. This is done even for

the coarse cells that overlay the refined cells. Once the continuum step has been taken,

the particle dynamics equations within the refined region are advanced one small time

step ∆tparticle at a time until they have evolved to the same point in time as the coarse

grid. In the coarse grid cells directly surrounding the refined region, a “buffer” region of

microscopic particles is created. They are instantiated using distribution functions (like

Maxwell-Boltzmann) parameterzed by the continuum level variables. These particles are

moved with the particles in the refined area during each ∆tparticle. If a particle crosses

from the refined region to a coarse cell or vice versa, then a contribution to the flux at

that interface is recorded. After all microscopic time steps have taken place, the overlying

coarse grid is updated using averaged quantities from the refined grid. Also the fluxes
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at the interfaces between coarse and refined regions are corrected utilizing the fluxes

obtained during the particle level advancement.

In order to maintain numerical stability, the finer grid region may need to take many

small time steps to equal one large time step of the coarser grid. In AMAR, the hope

is that the region of the domain where particle dynamics needs to be applied is small so

that the number of computations can be kept to a minimum.

Garcia et al. demonstrated this technique with several examples such as the movement

of a shock wave generated by a piston, the motion of a gas sheared by a moving wall

and fluid flow past a sphere [28]. In the piston example the region around the shock

wave is refined to the gas particle level, and this fine grid moves with the shock wave.

The Navier-Stokes equation is used to solve for the overall air flow in the tube, while

the Direct Simulation Monte Carlo method is employed for the particles near the shock

wave. This method captures the shock wave better then the purely continuum level

Navier-Stokes equation version.

1.4.3. The Equation-Free Method. The Equation-Free Method (EFM) was intro-

duced by Kevrekidis et al. [44] and has been utilized in a wide variety of applications. It

is similar to HMM in that its goal is to solve a continuum level problem by using micro-

scopic scale information to improve accuracy. As in HMM, EFM performs a small number

of microscopic level time step updates to garner information to be used at the continuum

level. The difference between the two techniques is that in EFM the macroscopic level

equations are never explicitly advanced as they are in HMM. The microscopic equation

solutions are used to predict what the continuum variables will be at the next macro-

scopic time step. Once the prediction has been made, a new microscopic instantiation is

determined from the macroscopic variables and the method is repeated. The transition

from the macroscopic level to the microscopic level is done via a “lifting” operator and

the opposite transmission of information is done by a “restriction” operator. The lifting

operator consists of using the first few statistical moments of the continuum variables
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to find a distribution function to instantiate the microscopic variables. The restriction

operator is usually an averaging algorithm.

The reasoning behind EFM stems from the difficulty in determining constitutive laws

at the macroscopic level. The physical laws for the motion of the microscopic level

description of the problem are usually well-known (ex. molecular dynamics or kinetic

theory). However, for many practical applications, the interest lies in what is happening

at a much coarser level. The microscopic laws are used to try to establish constitutive

laws at the macroscopic level, but this task is not always simple. EFM circumvents this

issue by not requiring explicit continuum level constitutive relations. The basic steps in

EFM are:

(1) Start with initial conditions for the macroscopic variables

(2) Use a lifting operator to instantiate microscopic variables

(3) Run the computation at the microscopic level for a short time period

(4) Use the restriction operator to transfer the variables to the macroscopic scale

(5) Average the information over time to determine an estimate for the future macro-

scopic variables.

As mentioned previously, EFM has been applied to numerous subjects including pop-

ulation dynamics [12], disease evolution [21], peptide folding [38] and chemical reactions

[55].

1.5. Extending the Continuum-Microscopic Idea

The common drawback among the continuum-microscopic methods presented above

is that their utility has thus far been demonstrated for examples where the probability

distribution function (PDF) of the microscopic data has an assumed shape. However

if a system has a highly heterogeneous micro-structure or experiences many changes

and fluctuations over time, its microscopic data is unlikely to consistently conform to

one particular shape. The cell cytoskeleton falls into this category due to its complex
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structure of interconnected filaments that changes over time in response to mechanical

stresses and chemical reactions.

What is needed is a computationally efficient procedure that models continuum-level

constitutive relations utilizing microscopic data from configurations that were instanti-

ated based on past microscopic data. This is precisely the goal of the following thesis

work. This research intertwines several topics including the investigation of: (1) com-

putationally efficient methods of PDF estimation; (2) the evolution of the microscopic

variable distribution functions forward in time in order to perform accurate instantia-

tions at later time steps; (3) the incorporation of continuum level constraints during

microscopic instantiation to insure model consistency. These are the research topics to

be discussed in this thesis work, with specific application to cytoskeletal mechanics.
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CHAPTER 2

The Cytoskeleton: Biology and Models

In this chapter background information on the biology of the cytoskeleton and its role

in cellular protrusive activities will be provided. This will be followed by a quantitative

description of the difficulties encountered in trying to model such a complex structure.

Next, a review of various computational algorithms that have been utilized to model

the cytoskeleton will be presented. The chapter will conclude with an outline of the

modeling approach developed in this thesis, and how this new algorithm adds to the

current research in the field.

2.1. The Structure of the Cytoskeleton

A typical animal cell is approximately 10 µm in diameter [2], and consists of organelles

(such as the nucleus, mitochondria) suspended in a fluid cytosol surrounded by the cy-

toskeleton. All of these cellular components are encased by a thin plasma membrane

(Figure 2.1).

The cytoskeleton of the animal cell is a complex structure that gives the cell me-

chanical support and integrity [2, 59]. This dynamic newtwork of intertwined filaments

participates in and orchestrates many cellular activities such as cell migration, mitosis,

apoptosis and mechanotransduction [59].

The protein polymers that comprise the cytoskeleton include actin filaments, micro-

tubules and intermediate filaments [2, 10, 59], and these fibers are crosslinked to one

another by proteins such as filamin and α-actinin [2]. The main types of filaments par-

ticipating in protrusive activities such as blebbing and lamellipodium formation are actin

polymers, and their properties will now be describe in further detail.



Figure 2.1. Cartoon of a typical eukaryotic cell from www.abcam.com

2.1.1. The Actin Filament. Actin filaments are long polymer chains built from actin

protein subunits. These subunits are approximately 5 nm in diameter [2]. Free monomers

of actin carry a molecule of ATP and are known as G-actin or globular-actin (see Figure

2.2).

Figure 2.2. (A) Ribbon diagram of the actin monomer and (B) cartoon
image of the actin monomer with ATP molecule http :
//www.rpi.edu/dept/bcbp

When a G-actin subunit joins a growing polymer chain the ATP molecule is hy-

drolyzed into ADP and the subunit is attached. The actin protein in filament form is

known as F-actin (filamentous-actin). Actin filaments have different rates of growth and

shrinkage at their two ends. The “plus” end has a faster rate of elongation and shortening

than the “minus” end [2].
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Figure 2.3. Actin monomers typically join onto the plus end of the grow-
ing chain, http : //www.iam.ubc.ca/ spiros

The subunits in a filament are held together by weak, noncovalent bonds that can

be broken by thermal fluctuations [2]. Because of this, it is very easy for monomers

to add on and break off at both ends of the chain. This dynamic instability allows

the polymers to disassemble easily into monomer form to diffuse across the cell, and

reconstruct themselves in a new position [2]. However, a chain that breaks easily is not

very useful to the cell for doing mechanical work. To circumvent this issue, two actin

subunit chains are often bound together in parallel to form a stronger double-stranded

helical structure (see Figure 2.4. Subunits can still add on and fall off the ends, but it is

much more difficult for a filament to break spontaneously somewhere in the middle with

this type of structure [2].

Figure 2.4. A doubled stranded, helical actin filament composed of linked
G-actin monomers, http : //www.cryst.bbk.ac.uk/PPS2

Filament length can vary depending on cell type, but they generally are 1-20 µm long

and about 8 nm wide [10, 41]. They can be as long as 50-100 µm in muscle cells [40],

and as short as 0.2-0.35 µm in cytoskeleton meshes [15]. In either case, they are several

orders of magnitude longer than they are wide.

Actin filaments are classified as semi-flexible polymers [41]. A single actin filament

can withstand an elongation force of about 110-250 pN before breaking, and it only
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stretches about 0.2-0.3% under these forces [41]. It has a stiffness of approximately 45-

65 pN/nm for actin filaments of length 1 µm [41]. On average the Young’s modulus of

an actin polymer is 0.5 to 2 × 109N/m2 [10, 41]. In comparison to stretching, actin

filaments bend quite easily. Their flexural rigidity has been found to be on the order

of 10−26Nm2, based on a persistence length of 10-20 µm [10]. This large difference in

magnitude between the stretching and bending properties of actin filaments allows them

to be classified as an elastic string for modeling purposes.

2.1.2. Construction of Filament Networks. Actin filaments typically group to-

gether to form larger structures such as bundles and meshes. Microvilli and filopodia

(to be described in depth later) are examples of actin bundle structures (see Figure

2.12). A typical microvillus is composed of 20 to 30 actin filaments tightly bound to-

gether in parallel, with a diameter of 0.08 microns and an average length of 1 micron [2].

The protein α-actinin is one of the main proteins that connects actin filaments together

in parallel in these bundled structures [59].

The cytoskeleton is an example of a mesh-like actin structure. The actin filaments are

attached together in a woven pattern by proteins such as spectrin and filamin. Spectrin

is a long 100 nm, flexible protein found close to the cell surface in red blood cells [2].

Two molecules link together head to head to create two actin filament binding sites

that are spaced approximately 75-200 nm apart depending if the spectrin polymer is

in a convoluted position or stretched out straight [2, 10]. This distance is quite large

compared to the other proteins which bind actin bundles in tight configurations about

14-30 nm apart. There are approximately 1.2 to 2 × 105 spectrin molecules in one red

blood cell [2, 10]. Spectrin has an estimated spring constant of 2 × 10−6J/m2 which

means spectrin is elastic enough to allow a red blood cell to adjust its shape in order

to squeeze through a narrow capillary [10]. Filamin is another binding protein found in

other types of cells. It crosslinks two filaments together almost at right-angles to one

another forming a loose grid of actin polymers [2, 59] (Figure 2.5).
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Figure 2.5. (A) Cartoon showing how the filamin protein crosslinks two
actin filaments, and how it forms an actin mesh, [2] and (B) an electron
micrograph of a typical actin network near the plasma membrane, http :
//scienceblogs.com/

There are other proteins which keep the actin mesh attached to the plasma membrane

[71]. In platelets, filamin serves the dual purpose of linking actin filaments to other actin

filaments and linking the actin mesh to the plasma membrane. In red blood cells, a

protein in the plasma membrane known as band 3 attaches to another protein called

ankyrin which in turn attaches to the spectrin proteins on the cytoskeleton [2] (see

Figure 2.6).

Figure 2.6. Diagrams depicting how spectrin crosslinks actin filaments
together, and also how it attaches to the plasma membrane
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Dystrophin is a protein found in muscle cells that attaches the cytoskeleton to the

outer membrane. Other adhesive proteins include ezrin, radixin, and moesin [2]. Figure

2.7 shows several examples of membrane-cytoskeleton adhesion via different proteins.

Figure 2.7. Diagrams of how various proteins attach the cytoskeleton
to the plasma membrane in a (A) platelet, (B) muscle cell and (C) an
epithelial cell. Images from http : //bioweb.wku.edu

The total number of actin filaments within a cell varies by cell type and concentration

levels of actin. In red blood cells, actin fibers form a one to two filament thick network

of short filaments [71]. This amounts to approximately 120,000-300,000 short actin

filaments in a red blood cell cytoskeleton. Boal estimates that cells with high actin

densities of 5mg/ml or more, have approximately 1.9×1020filaments/m3 of filaments of

length 1 µm [10]. This translates to about 200,000, 1 µm filaments in a 10 µm diameter

animal cell.

2.1.3. Network Properties and Behavior. The cytoskeleton is typically between

5 nm - 2 microns thick [18, 71]. The size of the gaps in the actin mesh range from

10 nm - 100 nm [19, 70, 73], depending on cell type. Individual actin filaments have

certain material properties as described above. However, when these filaments become
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crosslinked in a gel, these values can change. For instance, the estimated Young’s modulus

for 1 mg/ml of crosslinked F-actin is 100, 000dyn/cm2 which is 10 kPa and the shear

modulus is approximated at 1000dyn/cm2 or 100 Pa [41]. Charras et al. estimated

the elastic modulus of the actin cortex in filamin-depleted melanoma cell line to be 1-

3 kPa [19]. In general, the Young’s modulus for the actin network is lower than the

individual actin filaments. This is due to the fact that crosslinking proteins such as

spectrin are more elastic than actin, so they make the overall mesh less stiff. In Boal’s

textbook, he estimates the shear modulus of the actin networks of several types of cells:

red blood cell, 6 − 9 × 10−6J/m2 (determined with pipette aspiration); auditory outer

hair cells, 1.5× 10−2J/m2 (pipette aspiration); fibroblasts, 2− 4× 10−3J/m2 (calculated

with magnetic field applied to magnetic beads attached to the membrane) [10].

An interesting feature of actin filaments and consequently of the cytoskeletal network

is that it can be contracted by myosin II (a motor protein) to produce a force [2, 42,

57, 66]. This force generation plays a central role in the cell’s protrusive and locomotive

activities. Myosin II, like actin, is found in all eukaryotic cells [2]. Myosin II is a long

protein composed of two heavy chains and two light chains. Near the end of the two heavy

chains is a “head” region from which forces can be generated [2]. Myosin II subunits

join to form a filament by bundling their tails together. This creates a bipolar filament

with myosin heads facing in opposite directions along the fiber (see Figure 2.8). This

configuration is ideal for pulling actin filaments together [2]. It is often an influx of

calcium ions that biochemically triggers myosin to begin the contraction process [2, 62].

Figure 2.8. A myosin thick filament, with the myosin heads facing op-
posite directions on the fiber, [2]

One cycle of force-generation can be described as follows. Each myosin head attaches

to the actin filament at a binding site. A molecule of ATP attaches to the myosin

head causing the release of the head from the actin filament. The ATP becomes tightly
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bound to the head region and this binding causes the 8.5 nm “lever arm” [2] to travel

toward the plus end of the actin filament and weakly reattach at a new binding site

approximately 4-11 nm further up the filament [75]. During this traversal, the ATP

molecule is hydrolyzed into ADP and an inorganic phosphate. This phosphate is then

released, which produces the force-generating “power stroke” that pulls the myosin head

and the actin filament back to a normal starting position. During this last stage, the

ADP molecule is also released, readying the myosin head for another cycle. Figure 2.9

shows the stages of the actin-myosin force generation cycle. This whole process can be

done at rates ranging from 0.2 - 60 µm/s [2]). One myosin head can produce a force

ranging from 0.8-8 pN [10, 19, 75]. There are several hundred myosin heads on a myosin

filament, with approximately 16-20% of the heads working on an actin filament at one

time [75]. Using this method, myosin filaments can slide actin filaments past each other

to produce a contraction of the actin mesh.

2.2. Cellular Protrusions

As mentioned at the beginning of this chapter, the cytoskeleton plays a central role

in cell migration and cellular protrusive activities. It carries out these tasks by breaking

down, rearranging and rebuilding itself as needed. The types of protrusions that can be

produced by cytoskeletal reconfigurations include lamellipodia, microvilli and blebs, and

they will now be described.

2.2.1. Lamellipodia. A lamellipodium is a two-dimensional actin network projection

that forms in at the periphery of a motile cell to help the cell crawl over a solid substrate.

It is a flat, fan-like protrusion that pushes the cell forward via actin polymerization [2].

Lamellipodia are found primarily in epithelial cells and fibroblasts, but also in some

neurons. The actin filaments in a lamellipodium are arranged in a very organized way

(as opposed to the more randomly entangled cytoskeleton). The filaments form a tree-

like structure, with polymers branching off from one another at 70◦ angles. Growth of

this webbed structure needs to happen quickly in order for it to push the cell forward at
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Figure 2.9. The actin-myosin force generation cycle [2].

a reasonable pace. (For example, keratocytes can crawl at top speeds of 30 µm/minute

[2].) To facilitate nucleation (the formation of a new actin filament) and polymerization

(elongation of an existing actin filament), the cell utilizes proteins known as actin-related

proteins (ARPs). The ARP 2/3 complex attaches to the minus end of an actin subunit,

creating a base off of which other actin monomers quickly latch onto forming a growing

filament. ARP 2/3 can also attach itself to the middle of existing filaments creating

a branch point off of which a new filament segment can grow. (See Figure 2.10 for a

diagram).

The thin lamellipodium protrusion needs strong mechanical support behind it in

order to push the cell forward. This strength comes from the cell’s cytoskeleton whose

crosslinked structure provides the necessary mechanical stiffness.
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Figure 2.10. Image from Alberts’, “Molecular Biology of the Cell”, de-
picting (A) the protein structure of actin, ARP 2 and ARP 3, (B) the
nucleation process, (C) how a 2D actin web is created, and (D) electron
micrographs of the actin branch points [2]

How is a cell able to crawl across a solid substrate utilizing a lamellipodium? The

whole process is accomplished in several coordinated stages using different actin struc-

tures and cell functions. The first stage is the formation of the lamellipodium at the

front of the cell (in the direction the cell plans to crawl). The actin filaments in the

tree structure are oriented with their plus ends facing forward, and their minus ends

facing the interior of the cell. The lamellipodium pushes the cell membrane forward by

treadmilling, meaning that actin filaments grow at the front of the protrusion and depoly-

merize at their other ends. Once the lamellipodium has pushed the membrane forward

a short distance, the cell forms focal contacts (attachments) with the solid substrate at

the protrusion’s leading edge. These attachments provide traction for when the back end

of the cell is moved forward to catch up with the front. This task is accomplished by
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Figure 2.11. Image from Alberts’, “Molecular Biology of the Cell”, show-
ing the stages of one cycle of cell crawling [2]

myosin II fibers which contract the actin mesh at the rear of the cell pulling it forward.

Figure 2.11 shows the stages in one full crawling step.

2.2.2. Microvilli. Microvilli are very different from lamellipodia in structure and pur-

pose. They are thin, finger-like protrusions found most commonly in epithelial cells. A

typical intestinal epithelial cell can have thousands of microvilli whose purpose is to in-

crease the surface area of their host cell to facilitate the absorption of nutrients from food

passing through the small intestine [2]. A microvillus is composed of 20-30 actin filaments

bundled together tightly in a parallel structure (see Figure 2.12). They have a diameter

of 0.08 microns and an average length of 1 micron [2]. The filaments are held together

by two crosslinking proteins: villin and fimbrin. These proteins each have two actin fil-

ament binding sites that are very close together (8-10 nm apart [2]) that facilitate tight

bundling. The actin structure is attached to the plasma membrane by adhesive myosin I

protein sidearms. Like in lamellipodia, the actin filaments in microvilli are oriented with
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their plus ends outward, so polymerization takes places at their protruding end. These

actin bundles are anchored in and grow out of the cell’s cytoskeleton.

Figure 2.12. (A) Cartoon of the structure of microvilli, http :
//anatomy.iupui.edu and (B) Microvilli in an intestinal epithelial cell
http : //www.cytochemistry.net/Cell − biology

2.2.3. Blebs. A bleb is a balloon-like, cytosol-filled protrusion of the plasma membrane.

Unlike lamellipodia and microvilli, this type of protrusion is not formed by active growth

and rearrangement of the cytoskeleton [19, 22]. However, the onset of bleb formation is

triggered by a contraction of the actin network and the retraction of a bleb back into the

cell body is completely driven by cytoskeletal actions [18].

The driving force behind bleb formation, is not actin polymerization, but rather fluid

pressure [3, 19, 22]. The cell’s cytosol is typically at a higher pressure (20-300 Pa higher

[17, 67]) as compared to the external ambient fluid. The membrane is prevented from

moving outward in normal circumstances by its connections with the cytoskeleton via

adhesive proteins. However, if a section of membrane and cytoskeleton detach, then the

fluid pushes on this freed membrane creating a bleb.

Membrane-cytoskeleton detachment is thought to be caused by a contraction of the

actin mesh by myosin II fibers that are dispersed in the cytoskeleton [18, 66]. The forces

created by the contraction are thought to break the bonds between the actin cortex and
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Figure 2.13. An expanding and retracting bleb in an M2 cell, where
actin is labelled in green. After the bleb has fully inflated (frame 2), actin
is recruited into the bleb to build a new cortex in order to retract the bleb
[18]

the plasma membrane. A gap size of 0.5-1 µm in the cytoskeleton/membrane connections

is enough to initiate bleb formation [71].

A bleb takes about 3-7 seconds to fully form. It then stays fully inflated (1-10 µm

in diameter [18]) for about 10-20 seconds. During some cellular activities, the bleb will

retract back inward and this is a slower process, taking about 1 minute [3, 22, 61]. (See

Figure 2.13 for a time sequence of blebbing).

The retraction phase of blebbing is where the cytoskeleton takes on an active role.

When the membrane breaks away from the cytoskeleton during the initial detachment,

some of the actin-binding proteins such as ankyrin and protein 4.1 remain adhered to

the membrane [18]. These proteins act as anchors upon which a new cytoskeleton can

form. As the cytosol flows into the blebbed region it carries with it actin, myosin and

other cytoskeletal protein monomers. These subunits collect at the bleb’s perimeter

and form a new cytoskeleton within the bleb [18]. It takes the cell approximately 30

seconds to reassemble a cortex inside the bleb before retraction can begin [18]. The new

cortex is built to a thickness of 10-20 nm (3-4 actin filaments thick) with gap sizes of

approximately 200 nm [18] (see Figure 2.14). Myosin II, present in this new cytoskeleton,

creates contractions which pull the blebbed membrane inward to be reattached to the

base cytoskeleton [18, 42].
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Figure 2.14. The newly formed actin cortex inside a bleb of a dividing
HeLa cell [18]

2.3. Computational Modeling Difficulties

The main issue that arises when modeling the cytoskeleton is how to balance repre-

senting the details of its complex structure with computational efficiency. To use rough

numbers, there are on the order of 105, 1 micron long filaments in a typical cell [10]. The

majority of filaments are concentrated at the cell periphery as part of the cytoskeleton.

These filaments are crosslinked to one another to form the actin network. The typical

length of a filament segment between crosslinks is on the order of 100 nm [78]. This

means there are approximately one million filament segments in the cytoskeleton and

roughly 500,000 crosslink protein complexes. Such large numbers of components quickly

become difficult to deal with computationally.

For example, suppose one wants to carry out a full simulation of the cytoskeletal

network as the cell undergoes a deformation. One approach would be to treat the filament

segment endpoints as point masses connected to each other by springs, and write an

equation of motion for each point mass using Newton’s law. These equations could then

be evolved using a numerical scheme. Due to the small distances between neighboring

point masses, the time steps taken will have to be small as well to maintain numerical

stability. Using the numbers above, the space step based on segment length will be on

the order of 100 nm. Assuming a wave propagation speed on the order of 104 square

nano-seconds (determined by the elasticity modulus and linear mass density of an actin
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filament), the time scale would be on the order of 0.01 nano-seconds. Cellular protrusions

develop on the order of seconds, thus it would take 1011 time steps to advance one second

of the simulation. During each time step, at least 106 flops (floating point operations)

need to take place to update all positions. This is a total of 1017 flops to advance the

system one second. At a flop speed of 100 Giga-flops per second, this would take 106

seconds or about 12 days. To advance the simulation 30 seconds would take about a

year. If the algorithm can be parallelized, then the time can be reduced by dividing the

time by the number of available processors. However, even with parallelization this is

still a large computation.

A different approach might be to replace the solving of the equations of motion with

an energy minimization problem. Mechanical theory states that systems will always

tend towards states of minimal potential energy. Once the boundaries of the cytoskeletal

network have been moved, an energy minimization algorithm could be applied to move

all internal filaments to a state of mechanical equilibrium. Larger time steps should be

possible in this approach as compared to the first method, although one must still be

careful. Any minimization algorithm is only guaranteed to converge if the process starts

with an initial guess that is “close” to the solution. The savings in number of time steps

is offset by the expense of the energy minimization procedure. A simple linear gradient

search algorithm takes on the order of n iterations to converge, where n is the number

of elements being moved in the minimization (106 filament segment endpoints). Each

iteration requires the computation of the gradient vector, approximately 100n flops. To

do one energy minimization would thus take about 1014 flops, or about 17 minutes on

a 100 Giga-flop speed machine. This time can be multiplied by the number of deforma-

tion/minimization steps to be taken in one second of simulation (which could vary widely

based on the speed and magnitude of deformation) to obtain the total CPU time for one

second of simulation.
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From these estimations, it should be clear that modeling the cytoskeleton as a network

of crosslinked fibers over the time interval of whole cell deformation is very computation-

ally expensive. Because of these difficulties, a variety of methods have been used to create

and model simplified versions of the cytoskeleton. There are also efforts being made to

thoroughly model a small patch of cytoskeleton to understand how it reacts to various

stresses. This research coincides with the work being conducted in this thesis, however

the other groups have not yet progressed to the stage of utilizing their detailed mod-

els to simulate cell-level deformation. Some examples of different cytoskeletal modeling

approaches will be presented next.

2.4. Models of the Cytoskeleton

The development of a continuum-microscopic model of the cytoskeleton in this thesis

work is timely for this research field, as evidenced by a recent review article by Mofrad

[59]. In this paper, he presents a summary of the various theoretical and computational

techniques currently available for modeling the actin cortex. He mentions that there

are a wide range of models “ranging from continuum to discrete descriptions of the

cytoskeleton”. At the continuum level, the cytoskeleton has been described as an elastic

or viscoelastic material, a porous gel, and a soft glassy material. In the discrete catergory,

the actin network has been represented via a tensegrity model and also polymer or

filament based descriptions. He explains that these different descriptions are a result

of the relevant length scales (whole cell vs. small cytoskeletal patch) and the behavior

one is trying to capture with a given model.

He acknowledges the limitations of continuum level models that coarse-grain the

microstructure, leaving out important details. He states that continuum models “are only

as good as the constitutive laws (stress-strain relation) on which they are based”, and that

continuum descriptions only allow for a “limited number of constants to characterize the

cell’s behavior”. These models do not capture microscopic thermal fluctuations, which

via coordination, can affect whole-cell level mechanical responses. Continuum models
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also exclude the representation of local biochemical reactions that can collectively trigger

cell deformation.

The computational models described in this review article are clearly split into discrete

and continuum approaches. The research door is left wide open on the goal of creating

microscopically-informed continuum-level models for this biological material. He states

that “As a first milestone, continuum models must be able to incorporate an understand-

ing of the cytoskeletal stress field” stemming from the behavior of “cytoskeletal fibers”,

because “changes in stress-fiber patterns affect cell shape and orientation”.

This review article clearly provides motivation for the creation of a continuum-

microscopic model of the cytoskeleton, and the hope is that the new model presented in

this thesis will be of great utility in this field. Before briefly describing this new model,

a summary of other cytoskeletal models will be presented.

2.4.1. Coarse Graining Models. Coarse-graining is a method which uses averaging

and smoothing tools to create a lower resolution description of the problem to be mod-

eled. Li et al. [51] used coarse graining concepts to create a model of the red blood

cell (RBC) cytoskeleton in order to study shape configurations when the cell undergoes

certain deformations. The RBC has a simple structure composed of a thin cytoskeleton

constructed from spectrin protein complexes and short actin filaments. The spectrin

tetramers crosslink with the actin filaments to form junctional complexes. These junc-

tions typically bring together six spectrin tetramers, thus creating a hexagonal tessella-

tion pattern in the cytoskeleton. There are approximately 105 spectrin junctions in an

RBC. Li et al.’s model of the cytoskeleton consisted of a sample number of these junction

complexes (20,000 out of 100,000). The spectrin filaments between these junctions are

not explicitly modeled, but instead are represented by potential forces. This model of

the RBC was then used for numerical optical tweezer experiments.

Pivkin et al. [65] developed another coarse-grained model of the red blood cell for

the intended purpose of modeling the RBC in blood flow. They employed the model of

Li et al. [51] as a starting point for their model, and coarse-grained it further. They
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ran their simulations with 5000, 500, 100 and 50 junctional complexes, utilizing concepts

from mean field theory to adjust parameter values. They did similar numerical optical

tweezer experiments and concluded that a minimum of 100 complex points is required

to get an accurate rendering of the deformed RBC. However they do not quantify their

meaning of the term “accuracy”. They then took the coarse-grained RBC and placed

it in a simulated flow tube to mimic blood flow in a capillary to study how blood flow

deforms the RBC. Their simulations were able to produce the expected “parachute”

shape observed for RBCs in normal blood flow.

2.4.2. Network Symmetry Models. Another way of simplifying the representation

of a system is to simplify the geometry by using regular patterns. In a paper by Boey

et al. [11] they created a model to study large deformations of a patch of red blood

cell cytoskeleton. The RBC cytoskeleton does have general 6-fold symmetry, creating a

triangular pattern. This model by Boey et al. creates a 6-fold, two-dimensional network

to test how the network behaves under large deformations. The spectrin proteins are

represented as polymer chains with n segments each. In their simulations they used 16

junctional complexes and either 12 or 26 segments per spectrin . They found that their

networks behaved like Hookean spring networks up to moderate deformations. At large

deformations (more than 50% of its equilibrium dimensions), they found non-Hookean

regimes for the elastic moduli of the network.

A coarse-grained version of this microscopic model was utilized by Discher et al. [23]

in a whole-cell model of the RBC undergoing micropipette aspiration. The spectrin

polymer chains composed of multiple segments were replaced by two force potentials

(like in the Li paper [51]). Utilizing mean field theory, the elastic moduli found in

computational experiments of [11] are used in this whole cell model of the RBC. This

model includes approximately 6000 junctional complexes with 6-fold, fixed connectivity.

These complexes are moved on the surface of the RBC during a simulated micropipette

aspiration by an energy minimization procedure. One simulation took approximately one

week to run on a 200 MHz machine.
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Palmer et al. [63] used a different type of symmetric network to propose a constitutive

model for the stress-strain relationship of actin networks. They employ the 8-chain net-

work model of Arruda and Boyce [5] to describe the actin mesh. This three-dimensional

model is built from filament “cubes”. Each cube has a filament beginning at each of

its eight corners that extends inward, where the filaments all meet at a junction. These

blocks are averaged, idealized representations of the random actin network configurations

found in real cells. The goal of this research was to test this cytoskeleton model’s response

to shear stress. They found that the 8-chain model did well at mimicking the nonlinear

stress-strain relationship observed in the F-actin network shear strain experiments of

Gardel et al.[30].

2.4.3. Localized Models. Many researchers realize that modeling the details of the

microscopic structure of the cytoskeleton is important to understanding the material’s

macroscopic behavior. Several research groups have undertaken the task of thoroughly

modeling a small portion of the cytoskeleton to understand its mechanical respone to

various stresses. The hope is that the results of these small patch experiments will shed

light on the behavior of the whole actin network in a cell.

In the Kwon et al. article [46] on modeling actin networks, they modeled a small

block of the crosslinked cytoskeleton. The cytoskeleton of a typical cell contains on the

order of 105 crosslinked filaments. In this paper, they modeled a 400nm-length cube

that contains approximately 50-100, 350nm long actin filaments. The filaments were

represented as elastic Euler-Bernoulli beams, and crosslinked to one another via short

polymers that have the same material properties as the actin filaments. The purpose of

this model was to determine the components of the stiffness tensor Cijkl for the linear

stress-strain relationship σ = Cǫ of different actin networks. Their experiments were run

for networks with varying filament densities, as well as different distributions of filament

orientations. This model performed well for isotropic and nearly isotropic systems, but

had large errors when the distribution of filament orientations was far from uniform.
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In a similar study, Huisman et al. created an actin network model to examine its

mechanical behavior under shear strain [37]. They modeled a three-dimensional patch

of cytoskeleton (cube of length = 2µm) containing several hundred actin filaments, con-

nected to each other via rigid crosslinks . Stretching, bending and torsional stiffness

values found in the literature were assigned to the filaments, and a large-scale shearing

force field was applied to the network. The filaments were found to reorient themselves in

the direction of shear, and the computed shear stiffening seems to match the experimental

calculations in the literature of similar networks. Their computational experiments were

run for varying filament and crosslink concentrations, as well as different filament lengths.

They conclude that the response of the network is highly dependent upon the topology

of the filament mesh, which backs up the general claim in this thesis that differences in

the microscopic structure do affect macroscopic material properties.

Yet another microscopic scale computational investigation was conducted by Head,

Levine, and MacKintosh in [34]. In this study, they explored the response of two-

dimensional model networks to extensional and shear stresses. Their main interest was

to look at how strain is distributed in such networks, dependent on crosslink density and

filament length. They discovered two distinct regimes, where strains are uniformly and

non-uniformly distributed.

Lastly, Buxton et al. [13] recently presented a computational model of actin networks

built utilizing actin dynamics information. Their initial network begins with 100, 1-

micron long actin filaments, that they then allow to polymerize and depolymerize based

on various rates and probabilities. The filaments can also undergo capping, severing

and crosslinking. The network develops until it reaches a steady state (a state where its

average properties remain approximately constant over a specified length of time). The

network is then placed under shear stress in order to examine its mechanical response.

Different networks were built based on different actin dynamics rates, and the mechanical

responses of these networks were compared. The networks upon which these simulations

were carried out typically consisted of approximately 102 − 103 filaments of lengths 2 −
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9µm, with about 103 crosslinks connecting them. Each simulation took about 100 hours

of CPU time.

2.4.4. Tensegrity Models. A tensegrity (tensional integrity) model of the cell was

introduced in 1993 by Ingber in [39] to model the deformation of cells adhering to a

substrate. This model consists of two types of prestressed elements: interconnected

tension-bearing elements which represent the actin filaments of the cytoskeleton and

compression-bearing elements, which represent microtubules [73]. This model assumes

that the cell’s shape and integrity derives from the cytoskeleton, an active mechanical

structure capable of producing tension.

A physical model of Ingber’s idea was constructed from 6 wooden dowels (struts) for

the microtubules, and 24 elastic strings for the actin filaments. The zero external stress

state of this system resting on a surface is a rounded shape [76], but when a force is

applied to the top of the structure, it flattens out. The model is successful at capturing

the strain-hardening observed in cells spreading over a substrate. However, it does not

address the cytoskeleton’s ability to rearrange and remodel itself during deformation [76].

Stamenovic et al. [73] used this tensegrity model to analytically compute upper and lower

bounds for the Young’s modulus of cells. They compare their results against experimental

data, finding that the empirical moduli in general fall within their theoretically derived

bounds.

2.4.5. Continuum Models. The models discussed so far have been discrete in nature,

characterizing the cytoskeleton as a network of crosslinked filaments. There is also a

body of research dedicated to the treatment of the cytoskeleton as a continuum.

Alt and Dembo in [4] utilized a two-phase fluid description of the cytoplasm in ame-

boid cells. The cytosol (water-like substance within the cell) is represented as a Newto-

nian fluid, and the cytoskeleton is represented as a highly viscous, polymeric fluid. This

characterization is used under the assumption that the crosslinks in the cytoskeleton

are constantly rearranging, allowing the network to adapt and move easily (like a fluid).

This model is used to simulate the formation of a lamellipodium during cell migration.
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During this phenomenon, the cytoskeleton undergoes many structural rearrangements.

The model of Alt and Dembo [4] is used for understanding the general stages of this

process.

Charras et al [16, 19], characterized the cytoskeleton as a solid porous medium. They

propose that the actin network with interspersed cytoplasmic fluid should be thought of as

a “sponge” with pressure diffusion occurring over time. They demonstrate experimentally

that localized contractions of the actin mesh can create local pressure increases that do

not instantaneously equilibrate across the cell. They develop a linear constitutive law for

the cytoskeleton/cytosol complex using concepts from mixture theory. The stress-strain

relationship is of the form: σ = Eǫ− p, with σ the stress, E the bulk elasticity modulus,

ǫ the strain, and p the fluid pressure. Darcy’s law for flow through porous media is used

to update the fluid pressure term. Their theoretical model was developed to explain the

cellular phenomenon of bleb formation.

2.5. New Cytoskeletal Model

As evidenced by the previous section, many different models have been developed

and implemented to simulate various features and scales of cytoskeletal deformation.

The goal of this thesis work is to model whole-cell deformation of the cytoskeleton. This

deformation is orchestrated by changes in the microstructure brought about by chemical

reactions and mechanical stresses. Models of such phenomena must be whole-cell scale,

but they must also include detailed microscopic information. The models presented in

Section 2.4 each fall short in meeting these needs in some way.

The coarse graining models of Li et al. and Pivkin et al. can be reasonably utilized

for simulations of the RBC due to this cell’s nearly homogeneous structure. For other

types of cells with very complex, entangled cytoskeletons, these methods would not be

able to create accurate structural representations. The patterned models of Boey et al.

and Palmer et al. suffer from the same problems. Again for the RBC, these models may

be sufficient due to the cell’s dominant 6-fold symmetry. However, other cytoskeletal
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networks do not follow patterns. Idealizing the actin cortex with the 8-chain model of

[5] will likely lead to the oversight of microscopic inhomogeneities that create interesting

local dynamics in the deforming network.

The tensegrity model of Ingber [39] offers an approach to understanding the gen-

eral structural respone of the cell to external forces, but does not address microscopic

issues such as cytoskeletal remodeling. The simplicity of the structure in this model also

does not address spatially-varying mechanical properties of a typically heterogeneous cy-

toskeleton. The continuum models of Alt et al. and Charras et al. also disregard the

inherent microstructure of the polymer network. Utilizing a continuum description of

the cytoskeleton to model deformation requires a constitutive law to close the system.

This constitutive law is complex and time-varying, and dependent on the microstructure

of the medium. Without representing this microstructure in some way, the models in

[4] and [16] do not reflect the changes and rearrangements occurring in the cytoskeleton

that lead to varying mechanical properties.

The vast array of localized models of the cytoskeleton provide a great deal of insight

into the mechanical response of small patches of actin networks. These models utilize

detailed descriptions of the microstructure for computational experiments. Although

none of the papers mentioned above makes this claim, it would be difficult to justify the

idea that the behavior of small regions of cytoskeleton encapsulate the behavior of the

entire cellular network. The anisotropy of the cytoskeleton from one patch to the next

prevents one from drawing such a conclusion. In [37] the author specifically states that

the stiffness response of the network is highly dependent on the concentrations of the

different proteins in the cytoskeleton. These protein levels can certainly vary in different

parts of the cortex as the cell undergoes locomotion and shape change. Currently, the

level of detail introduced by these models cannot be extended to a whole-cell model of

the cytoskeleton due to computational limitations.

What is needed is a combined approach that utilizes time and space varying mi-

croscopic information in an efficient continuum-level model of the medium. This can

51



be accomplished by extending a basic continuum-microscopic method. The details of

this new approach will be presented in the forthcoming chapters, but a brief outline of

the algorithm will now be described, highlighting the new features which overcome the

difficulties of other models.

To review, the basic steps of a continuum-microscopic approach are:

(1) Create a microscopic instantiation of the system.

(2) Advance the microscopic system a short number of time steps until the data

values reach a quasi-state of equilibrium, or until enough data has been collected

to discern a pattern of behavior.

(3) Average the microscopic data and use it to update the macroscopic constitutive

laws

(4) Advance the continuum level system one large time step

(5) Repeast steps 1-4

A schematic of this process is depicted in Figure 2.15.

Figure 2.15. A visual depiction of the steps in a continuum-microscopic algorithm

The method begins with a detailed microscopic description of the entire cytoskeleton,

similar to the three-dimensional networks created in [37]. In response to some imposed

stresses, the whole system is advanced a short number of microscopic time steps (size

∆tmicro to maintain numerical stability). After each ∆tmicro step, microscopic data on

filament variables (such as orientation angles and strain) is collected and saved in the form

of distribution functions f(x, ts), where x denotes the variable and ts denotes the current

time step. After the micro-steps are complete, space-averaged mechanical properties are

computed and passed to the continuum level in Step 3 of the general algorithm. Step
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4 is then carried out to complete one cycle, using a much larger time step ∆tcont ≫

∆tmicro (permitted by the continuum-level numerical scheme). Instead of using assumed

distribution functions (e.g. Gaussian, uniform) to carry out Step 1 in the next cycle,

the f(x, ts) functions saved during the previous micro-steps are utilized to predict a

set of distribution functions for the microscopic variables at this new time step. This

prediction is done utilizing approximation and extrapolation methods. These predicted

distributions are then used to instantiate a new microstructure and the cycle continues

on.

The benefits of this new algorithm are: (1) it provides a possible solution to the prob-

lem of microscopic reinstantiation for systems with time-varying microstructures in the

continuum-microscopic approach, (2) this model incorporates heterogeneous microscopic

data into the computation of the whole-cell cytoskeleton’s mechanical properties, (3) it

is a computationally efficient model in that only a small fraction of the full time interval

of simulation is spent doing microscopic advancements.

Concepts from probability theory and statistical mechanics, relevant to this research

effort, will be presented in the next chapter in preparation for the derivation and justifi-

cation of this new algorithm.
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CHAPTER 3

Mathematical Theory

In this chapter the basic elements of probability theory, probability distribution func-

tion estimation, thermodynamics and statistical mechanics will be presented.

3.1. Probability Theory

Concepts in probability theory that pertain to the new cytoskeletal model developed

in this thesis, include probability distribution functions (PDFs) and statistical conver-

gence.

3.1.1. Basic Definitions. A random variable X is defined by a set of of possible states

(called a sample space Ω) and a probability distribution function f(X). This function

f(X) is non-negative, and is defined so that it normalizes as follows:

∫ ∞

−∞
f(X)dX = 1

The probability that X takes on a value between x and x + dx is given by f(x)dx [77].

The cumulative distribution function F (X) is defined to be the integral of the PDF, f(x)

from negative infinity to x:

F (x) =

∫ x

−∞
f(X)dX

In words, the cumulative distribution function (CDF) gives the probability that the

random variable X is found in the range −∞ to x.

A PDF can be described by several different sets of statistics: moments, centered

moments, and cumulants. The first moment, (also known as the mean, average, or



expected value) is defined as:

〈X〉 =

∫

Ω

xf(x)dx

This expression is typically denoted as µ1. Higher order moments are defined as:

µm = 〈Xm〉 =

∫

Ω

xmf(x)dx

Moments can be defined in a different way by introducing the characteristic function.

The characteristic function G(k) of a PDF f(X) is defined as:

(3.1) G(k) = 〈eikX〉 =

∫

Ω

eikxf(x)dx

for k any real number. This function is also referred to as the moment-generating function

because if a Taylor expansion is done about k = 0 the coefficients of the expansion are

the moments µm of the distribution [77]. In expansion form, G(k) looks like:

(3.2) G(k) =
∞
∑

m=0

(ik)m

m!
µm

Centered moments are defined as:

µc
m = 〈(X − µ1)

m〉 =

∫

Ω

(x − µ1)
mf(x)dx

The first centered moment µc
1 is zero. The second centered moment µc

2 = 〈(X − 〈X〉)2〉

is the variance (or spread) of the data.

Cumulants (κm) are yet another set of statistics that can be used to describe a PDF.

They are defined as the coefficients of the Taylor expansion of the natural logarithm of

the characteristic function:

log(G(k)) =

∞
∑

m=1

(ik)m

m!
κm

Each of these three sets of statistics can be written in terms of the other sets by

algebraic expressions.
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Problems often involve more than one variable. A joint probability distribution func-

tion f(X1, X2, ...XN) for the variables X1, X2, .., XN is the analogue to the single variable

case. The probability that X1 ∈ (x1, x1 + dx1), X2 ∈ (x2, x2 + dx2), etc is given by:

f(x1, x2, .., xN)dx1dx2..dxN

Moments can be defined for these multivariate distributions as:

〈Xm1
1 Xm2

2 ....XmN

N 〉 =

∫

xm1
1 xm2

2 ...xmN

N f(x1, x2, ...xN)dx1dx2...dxN

denoted as µm1,m2,...mN
.

The joint probability distribution function can be written as a product of single vari-

able PDFs if the variables are statistically independent. The statistical independence of

random variables X and Y can be established by computing their correlation coefficient.

The correlation coefficient r is computed by finding the individual variances of X and Y

and their covariance:

V arX =
n
∑

i=1

(Xi − 〈X〉)2

V arY =
n
∑

i=1

(Yi − 〈Y 〉)2

Cov(X, Y ) =

n
∑

i=1

(Xi − 〈X〉)(Yi − 〈Y 〉)

r =
Cov(X, Y )

V arX · V arY

If r = 0 then X and Y are uncorrelated and statistically independent. The closer r is to

1, the stronger the correlation is between X and Y .

Two other types of probability distribution functions that often arise in multivariate

problems are the conditional and marginal distributions. The conditional probability

f(X1, X2...Xr|Xr+1...Xn) is defined to be the probability of X1, X2, ...Xr being in states
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x1, x2, ...xr given that Xr+1..Xn are known to be in states xr+1..xn. The marginal distri-

bution is the probability that X1, X2...Xr are in states x1, x2, ..xr no matter what states

Xr+1..Xn are in. It is defined as:

fr(X1, X2, ...Xr) =

∫

f(X1, X2, ..Xr, Xr+1, ..Xn)dXr+1..dXn

The full joint probability distribution function f(X1, X2, ...Xn) can be written in terms

of marginal and conditional distributions as follows:

f(X1, X2, ...Xn) = fn−r(Xr+1, ...Xn) · f(X1, X2, ..Xr|Xr+1, ..Xn)

This relationship is known as Bayes’ Rule and is a cornerstone of probability theory.

3.1.2. Law of Large Numbers. An important theorem of probability theory is the

law of large numbers. This theorem will be useful for verifying statistical convergence of

portions of the new algorithm.

Law of Large Numbers: Let X1, X2...Xn be a sequence of independent random vari-

ables each with the same finite mean µ and finite variance σ2. Then as n → ∞, the

average of the first n of the X’s:

1

n
Sn =

1

n
(X1 + X2 + ... + Xn) → µ

In plain language, as the number of samples generated from a random process is

increased, the average of these samples will converge to the process’ underlying mean

[32].

57



Proof : To prove this statement, simply look at the expected value of the quantity: 1
n
Sn:

E

(

1

n
Sn

)

= E

(

1

n
(X1 + X2 + ...Xn)

)

=
1

n
E(X1 + X2 + ... + Xn)

=
1

n

∫

(X1 + X2 + ..Xn)f(X)dX

=
1

n

[
∫

X1f(X)dX +

∫

X2f(X)dX + ... +

∫

Xnf(X)dX

]

=
1

n
(nµ)

= µ

Part II of the Law of Large Numbers: The error between the sequence’s average

and the true mean will converge to zero in mean-square, meaning:

E

(

(

1

n
Sn − µ

)2
)

→ 0 as n → ∞

Proof : This statement can also be proved by simply computing the expected value
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written above:

E

(

(

1

n
Sn − µ

)2
)

= E

(

(

1

n
Sn − E

(

1

n
Sn

))2
)

= V ar

(

1

n
Sn

)

=
1

n2
V ar(Sn)

=
1

n2
V ar(X1 + X2 + ... + Xn)

=
1

n2
(V ar(X1) + V ar(X2) + ... + V ar(Xn))

( By independence of the X ′
is)

=
1

n2
nσ2

=
σ2

n
→ 0 as n → ∞

Since the error squared converges to zero like σ2/n, the error should converge to zero

like σ/
√

n. Since σ is a constant, the rate of convergence is given by 1√
n
. Portions of

the new model that involve the use of probability distribution functions will be validated

utilizing this theorem. The expected convergence behavior will be O(n−1/2).

3.2. The PDF Estimation Problem

As described in Chapters 1 and 2, a continuum-microscopic model of the cytoskele-

ton is the subject of this research work. Step 1 of the general algorithm outlined in

Section 2.5 constructs a new microscopic configuration at continuum time step tn+1. In

the method proposed in this thesis, this reinstantiation will be done using probability

distribution functions predicted from past microscopic data distributions at microscopic

time steps tn0 , tn1, ..., tnr
where tn0 equals continuum time tn, and tnr

≪ tn+1. These past

distribution functions must each be constructed from the microscopic data sets at time

tni
, i = 0..r. The process of constructing a PDF from a given data set is known as the

probability distribution function estimation problem.

59



PDF estimation is a classic problem of probability theory. A variety of methods

have been developed and tested in pursuit of its solution [72]. First a distinction should

be made between the two main branches of this field: parametric and non-parametric

PDF estimation. In parametric PDF estimation, the data is assumed to come from

a particular parametric family of distributions. For example, a normal distribution is

determined by two parameters: the mean µ and the variance σ2. If a data set is assumed

to come from a normal distribution, an estimate of µ and σ2 is all that is required to

construct a PDF. However, if a data set is not known to have been generated from

a specific class of distributions, the PDF estimation problem becomes non-parametric.

In this case, the data set is the only information available for PDF estimation. The

microscopic data on filament orientations and strains collected from the heterogeneous

structure of the cytoskeletal network is not known to conform to a known parametric

family of distributions, thus non-parametric PDF estimation will be required.

Common non-parametric techniques include kernel estimation, histogram interpola-

tion, and series expansion estimators (such as the characteristic function and the Hermite

polynomials). Each of these methods was explored as a potential candidate for use in the

algorithm described in the next chapter. A description of each method will be presented.

Each method will then be given the same task of estimating the PDF of a data set gen-

erated from a known normal distribution (µ = 0 and σ2 = 1). The results will then be

compared. The data set (in histogram form) and its underlying distribution function are

shown in Figure 3.1.

3.2.1. Characteristic Function. As stated previously, the characteristic function is

defined as:

(3.3) G(k) = 〈eikX〉 =

∫

eikxf(x)dx
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Figure 3.1. Data set and its underlying PDF to be used for testing var-
ious PDF estimation methods

Looking at Equation 3.3 one can see that the characteristic function and the probability

distribution function f(x) form a Fourier transform pair. Thus,

(3.4) f(X) =
1

2π

∫

G(k)e−ikXdk

If an expression for G(k) can be found, it can be used to define f(X). The expansion

form of the characteristic equation is given by 3.2. The coefficients of this expansion (the

moments) can be computed by simple averaging of the given data set:

(3.5) µj =

∑N
i=1 xj

i

N

where N is the number of data values. The expansion in 3.2 is an infinite series. An

approximation to G(k) can be found by truncating 3.2 to a finite number of terms m:

G(k) = 1 + ikµ1 −
k2

2
µ2 −

ik3

6
µ3 + ...

(ik)m

m!
µm

This truncated version of G(k) will be used in 3.4 to estimate f(X). From the given data

set, the coefficients µj are computed using 3.5. The values of the first ten moments of

the data are displayed in Table 1 along with the first ten moments of the data’s known

normal distribution.

Once G(k) has been approximated, a Fourier transform is performed to find the

estimated probability distribution function f̂(X). Estimated PDFs using G(k) truncated
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Data Moments
Moments of N(0,1)

0.0148 0
0.9882 1

-0.0004 0
2.8888 3

-0.2717 0
13.6961 15
-4.0086 0
88.1064 105

-55.0340 0
709.5603 945

Table 1. First ten moments computed from the data set, and the first
ten moments of the true PDF

Number of Error

Expansion Terms E((f(x) − f̂(x))2)
10 0.03177
20 0.01398
40 0.00567
60 0.00414
100 0.00487

Table 2. Mean Square Errors between the true PDF and the estimated
PDFs from characteristic function expansions with moment coefficients

expansions with 10, 20, 40, 60, and 100 terms are shown in Figure 3.2. The red curve on

each graph is the true PDF of the data.

An estimate of the error between the estimated PDF and the true PDF can be

computed using the mean square error (MSE):

Error = E((f(x) − f̂(x))2)

where f(x) is the true PDF, f̂(x) is the estimated PDF, and E indicates an expection or

average value. The MSEs for the five examples shown in Figure 3.2 are given in Table 2.

At first, the error decreases as the number of terms increase. However at 100 terms,

the error is larger than in the 60 term case. Results of this nature could be attributed to

the fact that the basis functions of this series expansion are the monomials. This basis
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Figure 3.2. Estimated PDFs generated using the Fourier transform of a
truncated characteristic function expansion, with 10, 20, 40, 60, and 100
expansion terms

set is known to be unstable for approximating functions, due to the fact that the mono-

mials are very similar to one another (nearly linearly dependent) [7]. The coefficients

µj computed from the data set get larger in magnitude as j increases. Approximations

constructed with monomials are very sensitive to these coefficients, so large values will

likely cause poor approximation results.

Another option is to write the characteristic function expansion in terms of cumu-

lants. The cumulants can be computed from the moments via the following algebraic
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Number of Error

Expansion Terms E((f(x) − f̂(x))2)
6 0.00708
10 0.00633
14 0.00612
34 0.00531
54 0.00591

Table 3. Mean Square Errors between the true PDF and the estimated
PDFs from characteristic function expansions with cumulant coefficients

relationship:

(3.6) κn = µn −
n−1
∑

k=1

(

n − 1

k − 1

)

κkµn−k

The characteristic equation can be written as:

G(k) = elog(G(k) = e
P

∞

m=1
(ik)m

m!
κm

Estimated PDFs using G(k) truncated expansions with 6, 10, 14, 34, and 54 terms are

shown in Figure 3.3. (Expansions with 4n terms (n an integer) result in values too large

for the exponential function to compute in MATLAB, hence expansions with 20, 40, 60

and 100 terms could not be calculated. Expansions with 4n − 2 terms are computable

due to the mutual cancellation of large positive and negative terms.) The red curve on

each graph is the true PDF of the data. The errors for these examples are given in Table

3.

The errors behave similarly to the moment expansion cases. Utilizing cumulants

instead of moments does not solve the monomial basis problem, so these results are

likely due to the same instability issues mentioned beforehand. Without the ability to

utilize the infinity of terms in either expansion to compute the full characteristic function,

this method will likely be unreliable for PDF estimation.

3.2.2. Hermite Polynomial Expansion. Another option for series expansion PDF

estimation is to utilize a set of orthogonal basis functions. Orthogonal basis functions area

linearly independent, which should solve some of the instability issues of the monomial
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Figure 3.3. Estimated PDFs generated using the Fourier transform of
a truncated characteristic function expansion containing cumulant coeffi-
cients, with 6, 10, 14, 34, and 54 expansion terms

basis. Also, the coefficients of the series expansion with an orthogonal basis are very

easy to compute. Out of the classical orthogonal polynomial families (e.g. Lagrange,

Laguerre, etc.), the Hermite polynomials are the only set that is orthogonal on the
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interval (−∞,∞). This property makes them a natural choice for PDF estimation since

data could take on any real values.

The goal is to approximate the PDF f(X), with a truncated Hermite polynomial

expansion of N terms:

(3.7) f̂(X) =
N
∑

n=0

cnHn(x)

where Hn(x) are the Hermite polynomials and cn are coefficients. The Hn(x) can be

generated from the following definition:

Hn(x) = (−1)nex2 dn

dxn
e−x2

To establish orthogonality for this basis set, first define the inner product:

(3.8)

∫ ∞

−∞
Hm(x)Hn(x)e−x2

dx

This integral is equal to zero if m 6= n and equal to n!2n
√

π if m = n. This property

provides a means for finding the expansion coefficients. To see this, take Equation 3.7

and multiply it by Hm(X)e−x2
on both sides:

f̂(x)Hm(x)e−x2

=

N
∑

n=0

[cnHn(x)] Hm(x)e−x2

Integrate both sides:

∫ ∞

−∞
f̂(x)Hm(x)e−x2

dx =

∫ ∞

−∞

[

∞
∑

i=0

(cnHn(x))Hm(x)e−x2

]

dx

Interchange the integral and sum on the right hand side to give:

∫ ∞

−∞
f̂(x)Hm(x)e−x2

dx =

∞
∑

i=0

∫ ∞

−∞
cnHn(x)Hm(x)e−x2

dx
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Coefficient Number Coefficient Values
0 3.2675e-01
1 3.0605e-03
2 -2.7405e-02
3 -3.6687e-04
4 1.1450e-03
5 2.4470e-05
6 -3.0837e-05
7 -1.1394e-06
8 5.2492e-07
9 3.1466e-08

Table 4. The first ten coefficients for the Hermite polynomial expansion
approximating a PDF

The integral on the right hand side is the inner product defined in Equation 3.8. The

only non-zero quantity in the sum will be the integral where m = n, so:

∫ ∞

−∞
f̂(x)Hm(x)e−x2

dx =

∫ ∞

−∞
cnHn(x)Hn(x)e−x2

dx

= cnn!2n
√

π

Therefore the coefficients can be defined as:

(3.9) cn =
1

2nn!
√

π

∫ ∞

−∞
f̂(x)e−x2

Hn(x)dx

This expression can be written as an expectation as:

cn =
1

2nn!
√

π
E(e−x2

Hn(x))

These expectations can be calculated from the data set using:

cn =
1

2nn!
√

π

∑N
i=1 e−x2

i Hn(xi)

N

where N is the total number of data points. The first ten coefficients for this data set

are shown in Table 4:
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Estimated PDFs using f̂(x) truncated expansions with 6, 10, 20, 40, and 60 terms

are shown in Figure 3.4. Estimate of the MSEs between the estimated PDFs and the

true PDF are given in Table 5.
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Figure 3.4. Estimated PDFs generated using a truncated Hermite poly-
nomial expansion approximation with 6, 10, 20, 40, and 60 terms

As in the characteristic function series expansion case, the errors decrease at first and

then increase with the number of terms. Qualitatively, the estimated PDF appears to

match the Gaussian well in the middle of the domain, but results at the edges of the

domain are poor. Unlike the coefficients in the characteristic function expansion, the cn

values of the Hermite expansion decay as the terms increase. However, the coefficients

are not small enough to overcome the values of Hn(x) at the edges of the domain (where
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Number of Error

Expansion Terms E((f(x) − f̂(x))2)
6 0.03374
10 0.00109
20 0.00291
40 0.01914
60 0.03683

Table 5. Mean Square Errors between the true PDF and the estimated
PDFs from Hermite polynomial expansions

x has the highest magnitude). For example, in terms such as:

H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105

the x8 leading term can be quite large for the |x| > 1 values. Multiplication by a c8 value

on the order of 10−8 is not small enough to render the c8H8(x) term insignificant. If

the full expansion (infinite terms) is computed, there large values would likely even out.

However, the truncation leaves behind these extreme tail values.

When using orthogonal basis functions φn to approximate a function f(x), there is a

theorem in approximation theory that states that the error: ‖f(x)−
∑n

i=1 ciφi‖2 → 0 as

n → ∞, so it may appear incorrect that the errors computed in the above example do

not converge to zero. However, this theorem assumes that the coefficients ci have been

computed exactly via Equation 3.9. The exact computation is possible if f(x) is known,

but in this PDF estimation situation, f(x) is unknown and the only available option is

to approximate the cn values with data averages. Presumably the accuracy of ci would

increase as the size of the data set increases (by the law of large numbers). Due to the

overall magnitude of the errors and the poor quality of the estimated PDF at the edges

of the domain, this method would likely not be a good candidate for PDF estimation for

this research.

3.2.3. Histogram Interpolation. One of the oldest and most common PDF estima-

tion techniques is histogram interpolation [72]. To construct a histogram, the first step

is to establish the bins. Given a starting point x0 and a bin width of h, the bins can be
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Bin Error

Width E((f(x) − f̂(x))2)
0.8 3.045e-5
0.5 1.589e-5
0.2 3.753e-5
0.1 8.584e-5
0.05 2.094e-4

Table 6. Mean Square Errors between the true PDF and the estimated
PDFs from interpolated histograms with different bin widths

defined as the following intervals:

[x0 + mh, x0 + (m + 1)h)

where m is an integer. As a function, the histogram can then be defined as:

(3.10) f̂(x) =
1

nh
(No. of data points in same bin as x)

This f̂(x) is a piecewise constant approximation to the true underlying PDF function of

the data. It is discontinuous, and therefore not differentiable. It can be approximated

by a continuous function using interpolation, if a smooth function is needed for further

manipulation. For these tests, cubic spline interpolation was used.

The choice of bin width and interval endpoints can produce very different results for

f̂(x). Wide bins will tend to blur and smooth out details in the data. Bins of very

small widths may not have enough data per bin to get a true picture of the data and the

interpolated function will likely have many sharp peaks.

Estimated PDFs using histogram interpolation are shown in Figure 3.5 using various

bin widths. The errors between the interpolated histogram and the true PDF are shown

in Table 6:

The errors are on the order of 10−5, two orders of magnitude better than the two

series expansion tests. The errors do vary with bin width as expected. The best result

was with a bin width of 0.5. Since the true PDF is known in this case, an optimal

bin width could be found by solving an error minimization problem. In this research
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Figure 3.5. Binned Data and Estimated PDFs for bin widths of 0.8, 0.5,
0.2, 0.1, and 0.05
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work, the true PDF is not known, thus the optimal bin width is not computable in this

manner. Typically what is done is that a bin width is estimated based on the number

of data points in the data set. For example, Sturges’ formula [74] says that the optimal

number of bins k is given by k = ⌈log2 n+1⌉, where n is the number of data points. This

rule is based on an assumption that the data is fairly normally distributed. For the test

case presented above, 10,000 data points were used, thus the optimal number of bins is

15 by this formula. If the bins must cover the range [−4, 4], this results in a bin width of

approximately 0.533. The MSE was the smallest for h = 0.5, which is close to Sturges’

predicted value. Other formulas include one by David Scott in [69] and the square root

formula. Scott’s formula computes the bin width h that minimizes the integrated mean

square error as:

(3.11) h =

(

6
∫∞
−∞ f ′(x)2dx

)1/3

n−1/3

where n is the number of data points. This of course implies that one knows the PDF

f(x), which is typically not the case. A bin width for normally distributed data is given

as h = 3.5σ/n1/3 with σ the data’s standard deviation. The square root formula is simply

k =
√

n (number of bins equals the square root of the number of data points), and this

rule is used in programs such as Excel. The various methods each tend to work better

for different types of data sets. With non-parametric PDF estimation, where one does

not know if the data conforms to a particular known PDF, the best solution is probably

to choose a bin width in the neighborhood of or an average of the suggested bin widths

of some of these popular rules.

3.2.4. Kernel Estimation. Kernel estimation is another popular PDF estimation method.

The definition of the probability distribution function f(X) can be expressed as:

f(x) = lim
h→0

1

2h
P (x − h < X < x + h)
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where P is the probability that the random variable X falls in the range x − h, x + h.

Kernel estimators try to mimic this idea. The first most intuitive example of a kernel

estimator is known as a naive estimator [72] and is a discrete version of the above

definition.

f̂(x) =
1

2hn
(Number of X1, ...Xn in (x − h, x + h))

where n is the number of data points and h is known as the window width. A small h

value is chosen and a simple weight function is defined:

w

(

x − Xi

h

)

=







1
2

if |x−Xi

h
| < 1;

0 otherwise.

The estimated f̂(x) is given by:

f̂(x) =
1

nh

n
∑

i=1

w

(

x − Xi

h

)

This method eliminates the need to establish pre-determined window (or bin) centers as

was the case with histograms. However, the resulting function is still piecewise constant

and discontinuous. To alleviate this problem, one can use a different weight function (or

kernel) in the summation process:

f̂(x) =
1

nh

n
∑

i=1

K

(

x − Xi

h

)

The kernel function K satisfies:

∫ ∞

−∞
K(x)dx = 1

and is usually a symmetric probability distribution, such as the normal distribution [72].

For the experiment with the given test data, K will be a normal distribution:

K

(

x − Xi

h

)

=
1√
2π

e−
1
2(

x−Xi
h )

2
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Properties such as continuity and differentiability of the kernel function pass on to f̂(x) so

if K(x) is a Gaussian then f̂(x) will be a smooth, continuous and differentiable function.

Kernel estimation still has the problem of choice of window width h. For K(x) equal

to a normal distribution, a small width will produce tall, thin Gaussian curves and will

thus create a more spiked PDF that can potentially have spurious data spikes. A wide

width creates the opposite problem of over-smoothing and the loss of details. As in the

histogram case, there are various methods of choosing a window width and each technique

may be optimal for different sets of data. For the case of kernel estimation, assuming

that K is symmetric and obeys the following properties:

∫

K(t)dt = 1

∫

tK(t)dt = 0

∫

t2K(t)dt = k2 6= 0

then the window width which minimizes the integrated mean square error can derived

as:

h = k
−2/5
2

[
∫

K(t)2dt

]1/5 [∫

f ′′(x)2dt

]−1/5

n−1/5

where n is the number of data points and f ′′(x) is the second derivative of the true PDF

[72]. As in Equation 3.11, this expression assumes f(X) is known, which in practice is

usually not the case. Several techniques have been developed to circumvent this issue.

A common choice is to use a standard distribution, (such as a normal distribution) to

estimate
∫

f ′′(X)2. If a normal distribution is used for f(X) and K is also a normal

distribution, the optimal h comes out to approximately:

h = 1.06σn−1/5

with σ the standard deviation of the data [72]. Other techniques include least squares

cross-validation and likelihood cross-validation [72]. Programs such as MATLAB and

Python with built-in kernel estimation functions utilize these types of procedures to

choose a window width for inputted data sets.
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Window Error

Width E((f(x) − f̂(x))2)
0.5 2.983e-4
0.2 1.896e-5
0.1 2.345e-5
0.05 5.110e-5

Table 7. Mean Square Errors between the true PDF and the estimated
PDFs from kernel estimation with different window widths
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Figure 3.6. Estimated PDFs from data set using kernel estimation with
window widths of h=0.5, 0.2, 0.1 and 0.05

A kernel estimator based on a Gaussian kernel should perform well at estimating the

PDF of data that has been generated from a normal distribution (as in the given data

set). Estimated PDFs of varying window widths are shown in Figure 3.6. The errors

between the estimated and true PDFs are given in Table 7. As in the histogram PDF

estimation case, the errors are on the order of 10−5.
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3.2.5. Conclusions. Out of the four methods presented here, the two which perform

best (in terms of lowest MSE) were found to be histogram interpolation and kernel

estimation. These two methods will be utilized for PDF estimation of microscopic data

in the cytoskeletal model.

3.2.6. Data Regeneration. Once an approximate PDF has been found, it will be used

to generate a new set of data. This is done by creating the cumulative distribution func-

tion (CDF), which is simply the integral of the PDF. Since the PDF has been normalized

during the estimation process, the CDF values will range from 0 to 1. A uniform ran-

dom number generator is used to choose a value between 0 and 1 and is designated as

the ordinate number in a coordinate pair. The abscissa value that corresponds to the

this ordinate value is the data point being sought for the new data set. In other words,

let g(x) be the cumulative distribution function. Given a y value where y = g(x), the

goal is to find the x value that produces this y. This problem is solved via an inverse

interpolation scheme. The steps are depicted in Figure 3.7

3.3. Thermodynamics and Statistical Mechanics

The theory presented thus far will be utilized for the construction of PDFs and the re-

generation of data at the microscopic scale. To create a consistent continuum-microscopic

model, the microscopic data must not only conform to the predicted PDFs, but also to

macroscopic, continuum level constraints. This is where concepts from statistical me-

chanics and thermodynamics become useful.

Statistical mechanics is a branch of science that seeks to understand the mechanics

of a continuum body by examining the behavior of its microscopic components [64]. It is

closely related to the field of thermodynamics, which studies macroscopic parameters (e.g.

energy, volume, pressure, temperature) and the relationships between these variables,

which characterize a system of microscopic elements. An important concept introduced

in thermodynamics is that of entropy. In this field, entropy is presented as an abstract,

variational function that must be maximized in order for a system to be in thermodynamic
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Figure 3.7. Estimated PDF for a data set and its corresponding CDF.
A new set of data is generated from the PDF by using a random number
generator to produce a y value that is then matched to an x value in the
CDF via inverse interpolation.

equilibrium. It is statistical mechanics that provides physical meaning to this abstract

idea [14].

Finding equilibrium states of a system given a set of constraints is one of the main

goals of the instantiation procedure in the continuum-microscopic model of the cytoskele-

ton. The solution of the continuum level equations will provide a macroscopic description
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of the microscopic system. Such information will include the total energy of the system,

the average strains, the number of microscopic elements, and also the volume of the

system. These conditions must be met by the microscopic system in order to maintain

model consistency. This requirement creates the need to formulate and solve a funda-

mental thermodynamics/statistical mechanics problem.

Basic concepts from thermodynamics and statistical mechanics will now be presented

as background information that will lay the groundwork for portions of the algorithm

developed in this thesis.

3.3.1. Thermodynamics. All systems have a tendency to move toward equilibrium

states, which are states governed by the internal properties of the system without any

dependence on past external influences [14]. The first postulate of thermodynamics puts

the above statement more formally as:

Postulate I: There exists particular states (called equilibrium states) of simple systems

that, macroscopically, are characterized completely by the internal energy U , the volume

V , and the mole numbers N1, N2, ....Nr of the chemical components.

More constraints can be added to this list if the system must satisfy additional conditions.

The determination of these equilibrium states is the central problem of thermodynamics

[14]. The solution to this problem is presented in the form of an extremum principle,

and is where the concept of entropy is introduced:

Postulate II: There exists a function (called the entropy S) of the extensive parame-

ters of any composite system, defined for all equilibrium states and having the following

property: The values assumed by the extensive parameters in the absence of an inter-

nal constraint are those that maximize the entropy over the manifold of constrained

equilibrium states.

This function S written in terms of the extensive parameters U ,V , and N is called

the fundamental relation. If an expression for the entropy S can be found, the state of
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maximum entropy can be determined by finding the values for the variables which satisfy

dS = 0.

There is third postulate regarding the entropy which provides some mathematical

rules about the function S:

Postulate III: The entropy of a composite system is additive over the constituent sub-

systems. The entropy is continuous and differentiable and is a monotonically increasing

function of the energy.

The continuity and differentiability of the entropy function will allow partial derivatives

to be taken in order to compote the maximum. The additivity will be important later

for the construction of the entropy function in the statistical mechanics framework.

The entropy can be written as a function S(U, V, N), and by postulate III, this fun-

damental relation can be inverted as U(S, V, N), energy as a function of entropy and

the other extensive parameters. Because of this relationship, an equivalent extremum

principle can be stated for the energy. In the entropy representation, the system is in

its equilibrium state when given total energy U , the entropy S is maximized. In the

energy formulation, the system is in equilibrium when given entropy S, the energy U is

minimized. These two principles both arrive at the same resulting equilibrium state. The

fact that thermodynamic equilibrium is associated with minimal energy makes intuitive

sense. The theory of mechanics states that a system is in a state of stable mechanical

equilibrium when its potential energy is minimized. For a system to be in thermody-

namic equilibrium, it must be in mechanical equilibrium and also thermal equilibrium.

The minimum energy principle presented above is an extension of the mechanical theory

of minimal energy that includes thermal effects. Both extremum principles are valid, and

the choice to use the entropy or the energy formulation is dependent on the problem at

hand.

Given the fundamental relation: U(S, V, N), its differential dU can be written as:

(3.12) dU =
∂U

∂S
dS +

∂U

∂V
dV +

∂U

∂N
dN
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The partial derivatives in 3.12 arise often in the discussion of thermodynamics and are

given particular names:

∂U

∂S
= T temperature

−∂U

∂V
= P pressure

∂U

∂N
= µ electrochemical potential

Collectively, these variables are known as the intensive parameters. The partial deriva-

tives of the entropy formulation can be written in terms of the intensive parameters

as:

∂S

∂U
=

1

T
,

∂S

∂V
=

−P

T
,

∂S

∂N
= −µ

T

One way to find the entropy function S is to first determine dS and then integrate. The

function dS can be constructed by utilizing known relationships between extensive and

intensive parameters for a given system.

3.3.2. Statistical Mechanics. Statistical mechanics provides a different interpretation

of the entropy concept presented above. This new description of entropy also provides

another method for constructing the S function, which is often more convenient then

trying to determine the necessary relationships to carry out the method described above.

Suppose that a particular macroscopic system composed of many microscopic ele-

ments must have total energy U , volume V and total number of microscopic elements

N . It is reasonable to assume that there will be many possible configurations of the

microscopic elements that will fulfill these three constraints. Statistical mechanics as-

sumes that the system experiences rapid transitions between permissible states, induced

by the interaction of this system with external random processes. A fundamental notion

in statistical mechanics is that the system has equal probability of being in any of its

permissible states. The total number of possible states Ω is the maximum number of

states that fulfill the constraints. If a constraint is added or removed, Ω will adjust to

a new maximum value. Entropy was also described as a value that is maximized under
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a given set of constraints, thus this suggests that Ω and S should be related. The en-

tropy is additive and Ω is multiplicative, thus the unique function that relates these two

quantities and fulfills both criteria is:

S = kB ln Ω

where kB is a constant for scaling purposes. In order for this definition to coincide

with the Kelvin scale of temperature, kB is chosen to be the Boltzmann constant. This

formulation of the entropy in terms of the number of permissible states is known as the

microcanonical formalism.

This constitutes a different way of determining the function S(U, V, N). If the number

of possible states is countable, then one can find an expression for Ω in terms of U, V, N

and in turn have an expression for S. A simple two-state system example of this method

will now be described.

Begin with a system of N atoms. Each atom can be either in a ground state of zero

energy or an excited state of energy ǫ. The total energy of the system is U , therefore U/ǫ

atoms are in the excited state and N − U/ǫ atoms are in the ground state. How many

different ways are there to choose U/ǫ atoms from the total N?

Ω =
N !

U/ǫ!(N − U/ǫ)!

Thus the entropy can be written as:

S = kB ln

(

N !

U/ǫ!(N − U/ǫ)!

)

S = kB ln(N !) − kB ln

(

U

ǫ
!

)

− kB ln

[(

N − U

ǫ

)

!

]

Assuming that the quantities within the logarithms are large, Stirling’sapproximation for

the logarithm of a factorial:

ln(M !) ≈ M ln(M) − M
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can be used to rewrite the entropy function as:

(3.13) S = kB

[

N ln(N) − U

ǫ
ln

(

U

ǫ

)

−
(

N − U

ǫ

)

ln

(

N − U

ǫ

)]

This is the fundamental relation for this particular system, written in terms of its exten-

sive parameters, constructed by counting its total number of permissible states. Expres-

sions for the extensive parameters can be found in terms of the intensive parameters T

and µ by taking the partial derivatives of 3.13 and solving for U and N .

In the next chapter, more simple examples of entropy function construction and

maximization will be presented within the context of the cytoskeleton. This concludes

the theory portion of this thesis. The next chapter will describe the development of a

new continuum-microscopic model of the cytoskeleton.
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CHAPTER 4

Motivating Examples

In the previous chapter, concepts from probability theory and statistical mechanics

pertaining to the development of the new model were presented. These concepts will

now be put to practical use with some examples that demonstrate: (1) the necessity of

PDF estimation and extrapolation of the microscopic data, (2) how macroscopic con-

straints can be incorporated into the microscopic instantiation procedure to maintain

model consistency.

4.1. Microscopic Distributions of Network Variables

As mentioned in Chapter 1, other continuum-microscopic algorithms perform Step

1 of the general algorithm in Section 2.5 by utilizing known or presumed PDFs. With

simpler systems this may be a viable option, but with the cytoskeleton, the distributions

of filament angles and strains are unknown and varying with space and time. PDF

estimation will be necessary in order to determine an underlying distribution. These

distributions will be collected over time to understand how they evolve, in order to make

predictions on the shapes of the PDFs at future instantiation steps. As evidence of

the complexity of the distributions, a one block example of a cytoskeletal network will

now be presented. This example will also be used to demonstrate how changes in the

microstructure due to deformation can alter continuum-level quantities such as elasticity

moduli.

4.1.1. Network Construction and Deformation. Begin with a three-dimensional

block with dimensions: [xmin, xmax]× [ymin, ymax] × [zmin, zmax]. At the continuum-level,



this cube is viewed as a portion of continuous media, but at the microscopic level this

block is a network of crosslinked cytoskeletal filaments (Figure 4.1).

Figure 4.1. A three-dimensional microscopic network of crosslinked fibers.

To set up this initial network, n filaments were laid in the block. This was done

by placing one endpoint (x0, y0, z0) inside the block: xmin ≤ x0 ≤ xmax, ymin ≤ y0 ≤

ymax, zmin ≤ z0 ≤ zmax. The second endpoint (x1, y1, z1) is assigned by choosing two

things: (1) a length t for the filament using a Gaussian distribution centered around

a mean length t0, (2) a direction vector 〈xdir, ydir, zdir〉 established by choosing xdir ∈

[−1, 1], ydir ∈ [−1, 1], zdir ∈ [−1, 1] via uniform random number generator, and then

normalizing the vector. The second endpoint is thus computed by:

x1 = x0 + txdir

y1 = y0 + tydir

z1 = z0 + tzdir

If this endpoint falls outside the block, the endpoint is revised to be the intersection point

of that filament with the box wall through which it crosses. This filament is flagged as

attached to the wall, which will be important for when the block is strained (to be
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explained shortly). The n filaments are assumed to be at their equilibrium lengths in

this initial state, however strains could be assigned to each filament if desired.

Crosslinks between filaments must be established next. This is done by taking each fil-

ament pair and finding the shortest distance between them. This is done using geometric

relationships. Let:

p = p0 + te1

q = q0 + se2

be the equations for two filament lines with p0,q0 the starting points on each filament,

e1, e2 direction vectors, and t, s lengths along those lines. The distance between any two

points on these lines is given by the length of the following vector:

r = (p0 − q0) + te1 − se2

The shortest r is the one that is perpendicular to both original lines. This gives the

following two equations:

0 = ((p0 − q0) · e1) + t − s(e2 · e1)

0 = ((p0 − q0) · e2) + t(e1 · e2) − s

These two equations can be solved for t and s, which will give the points on each line

where the shortest distance occurs. The length of this distance can be computed using the

distance formula. If this distance is below a certain threshold value, then a crosslink has

a probability P of forming. A random number generator is used to pick a value x ∈ [0, 1].

If x < P a crosslink forms and is added to the network as a new short fiber connecting

the two original filaments. The two filaments are broken down into four segments (see

Figure 4.2).

This completes the initial construction of the network. To demonstrate how the

distributions of variables change as a result of deformation, the block will be placed
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Figure 4.2. Establishing a crosslink between two filaments.

under an extensional strain. During one deformation step, the two walls of the block with

equations of plane x = xmin and x = xmax will be moved outward a distance ∆x so that

these walls will now be defined by the two equations x = xmin −∆x and x = xmax + ∆x.

In a typical medium, the other four walls defined as y = ymin, y = ymax, z = zmin and

z = zmax would likely move inward (compress) to accommodate the extension in the

other direction. For this simple example, the assumption will be made that this does not

occur, and the four walls remain defined by the above plane equations. The only thing

that changes is that their area increases (see Figure 4.3).

∆ x

∆ x

y
min

x
min

y
max

x
max

z
min

z
max

Figure 4.3. Original block (in black) under an extensional strain (in
green) in the x direction.

Any filaments attached to the six walls move with those walls during the deformation.

The filament segments and crosslinks in the box’s interior are moved in another manner.
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As described in Section 2.3 one way to move all of the interior points is to utilize Newton’s

Law, F = ma to set up a large system of ordinary differential equations. Maintaining

numerical stability in such a system forces one to use very small time steps for an explicit

method or to find the solution of a very large linear system in an implicit method. An

alternative approach (also mentioned in Section 2.3) is to recast the problem as one of

energy minimization. Systems tend to move towards equilibrium states, and as explained

in the thermodynamics section in Chapter 3 these equilibrium states occur when the

entropy is maximized or equivalently when the energy is minimized. The cytoskeletal

network will try to reorient itself into a position of minimal energy, and this is how the

internal filaments and crosslinks will be moved in this algorithm. As a starting point,

the internal filaments and crosslinks are initially moved via a linear mapping that maps

points in the original block to points in the extended block (see Appendix A for mapping

details). These assigned positions are likely not a minimal energy configuration, but are

simply an initial guess with which to start an energy minimization procedure. In the full

algorithm, there will be macroscopic constraints on the system (demonstrated in the next

section’s examples), but for this case the goal will simply be to rearrange the filaments

and crosslinks to minimize the potential energy. Filament segments and crosslinks are

modeled as springs, thus the total potential energy is given by:

(4.1) Energy =

m
∑

j=1

[

kj

2
(Lj − Lj

0)
2

]

where kj is the spring constant and Lj and Lj
0 are the current and equilibrium lengths

respectively of the jth filament or crosslink segment. The equilibrium length Lj
0 of each

segment was established by computing the length of the segment in its initial state. The

current length Lj is found via a distance formula:

Lj =

√

(xj
1 − xj

0)
2 + (yj

1 − yj
0)

2 + (zj
1 − zj

0)
2

where the subscripts 1 and 0 represent the two ends of the filament or crosslink segment.

The values xj
1, y

j
1, z

j
1, x

j
0, y

j
0, z

j
0 are the variables of the energy function in 5.5. A necessary
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condition for a minimum of 5.5 is that the variables satisfy:

∂E/∂xj
1 = 0 ∂E/∂xj

0 = 0

∂E/∂yj
1 = 0 ∂E/∂yj

0 = 0

∂E/∂zj
1 = 0 ∂E/∂zj

0 = 0

for all internal filament and crosslink segments j. This is a large nonlinear system of

equations. An iterative, gradient search algorithm is employed to find a solution (see

Appendix A for algorithm details). Once the minimum has been found, the next defor-

mation step can take place and the process is repeated.

How one computes elasticity moduli of the block that can then be used in the macro-

scopic equations is not pertinent for demonstrating the complexity of microscopic distri-

butions. However it will be presented here briefly (details in Chapter 6 and Appendix A)

for completeness since an analogue to this procedure will be used in the full continuum-

microscopic model. In this simple extensional example, the Young’s modulus of the block

can be computed by using Hooke’s Law: σxx = Eǫxx where σxx is the stress in the x di-

rection on the block face with normal vector in the x direction, E is the sought after

Young’s modulus and ǫxx is the block’s extensional strain in the x direction. The stress

σxx can be found by first computing the total force F in the x direction on the two x walls

of the block (walls with original equations x = xmin and x = xmax). The x component

of F, denoted Fx, can be found by summing the Hookean forces (in the x direction) of

all filament segments (total of m) that are attached to these two walls.

Fx =

m
∑

j=1

−kj(L
j − Lj

0)x
j
dir

where xj
dir is the x component of filament segment j’s direction vector. Fx can then be

recast as σxx by dividing by the area of one of the x walls. The extensional strain ǫxx

of the block (after the first deformation step) is 2∆x
xmax−xmin

. The Young’s modulus E can
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then be computed by E = σxx/ǫxx. For a more detailed presentation of how to find all

of the elasticity moduli from the microscopic data see Appendix A.

4.1.2. Network Behavior. With the explanation of network construction and defor-

mation complete, attention can now be focused on the network’s behavior during the

deformation.

The original network was assigned filament orientations from a uniform distribution

and zero strains. Does the Young’s modulus remain constant over successive deformation

steps? If the answer is “No”, then this provides evidence for the need for a model of the

cytoskeleton that utilizes the response of its microscopic network to update macroscopic

parameters. Secondly, do the filament orientations remain uniformly distributed and the

filament strains remain zero as the network deforms? If the answer to this question is

also “No”, this motivates the need to keep track of how these distributions are changing

so that Step 1 of the general continuum-microscopic algorithm can be carried out using

predicted PDFs as opposed to an assumed family of distributions like those used in the

initial construction.

The first task is to track the Young’s modulus for this block of filaments as it un-

dergoes several extensional strain steps as outlined above. Intuitively, as the block is

stretched further in the x direction, the filaments should tend to align themselves in the

direction of strain to minimize their stored energy. This creates a more parallel set of

fibers, which should increase the Young’s modulus of the block. Thus as strain increases,

the expectation is that the Young’s modulus will also increase, (a demonstration of strain

hardening). Figure 4.4 shows a plot of the calculated Young’s modulus of the block versus

the strain. These results are corroborated by simulation results from Åström et al (see

Figure 1(a) in [6]) and also with results from the model of a red blood cell cytoskeleton in

Hansen et al. (see Figure 19 in [33]). This result has also been shown experimentally by

several groups: Chaudhuri et al. in dendritic actin networks (Figure 3(a) [20]), Gardel

et al. in in vitro F-actin networks (Figure 1(b) [29]), and by Xu et al. in α-actinin

crosslinked F-actin networks (Figure 1 [80]).
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Figure 4.4. The Young’s modulus vs. strain curve for a box of crosslinked
filaments under extensional strain

Data was also collected on the angles each filament makes with the x axis (axis of

strain). As the strain grows in the x direction, the average angle decreases as expected

(Figure 4.5). Also in Figure 4.5 is a a plot of the average filament strain versus the overall

strain. As the block is stretched, the aveage strain of the filaments also increases.
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Figure 4.5. Average angle of orientation of the filaments with respect to
the axis of strain versus the overall block strain. Average filament strain
versus the overall block strain

The second question posed at the beginning of this section is in reference to the distri-

bution of microscopic variables, such as filament orientations and strains. To exemplify

that the microscopic data does not conform to a known distribution, a histogram of the

distribution of orientation angles of the filaments after one deformation step is shown in
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Figure 4.6 along with an estimated PDF and a reference uniform PDF. The initial orien-

tations were generated from a uniform distribution. After one deformation step the mean

squared error between the estimated PDF and a uniform PDF is found to be ≈ 0.0173.
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Figure 4.6. A histogram of filament orientation angles near the beginning
of the simulation, and the data’s estimated PDF computed via histogram
interpolation.

The strain of each filament segment after the first deformation step was also collected,

and this data and estimated PDF are shown in Figure 4.7. The filament strains do not

remain zero nor are they a constant value or uniformly distributed.
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Figure 4.7. A histogram of filament orientation angles near the beginning
of the simulation, and the data’s estimated PDF computed via histogram
interpolation.

To demonstrate that these distributions are also time-varying, the orientation angle

that each filament makes with the axis of strain and the filament strains were collected
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at a later point in time when the extensional strain is much larger. The distributions

and estimated PDFs are shown in Figure 4.8. It is clear from the histogram and PDF

that the average angle has shifted to a smaller value. As explained before, this is to be

expected since the filaments will tend to align themselves in the direction of strain. Also

the strains become more varied as the overall strain increases. The estimated angle PDF

has an MSE of 0.0198 compared to the uniform distribution, thus the angles are moving

further away from a uniform distribution as the extension increases.
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Figure 4.8. Top row: the distribution of orientation angles and estimated
PDF after a large extensional strain. Bottom row: the distribution of
strains and estimated PDF for the same network.

This one block example was presented to solidify the idea that changes occurring at

the microscopic level do impact variables (such as elasticity moduli) at the macroscopic

scale. This example also demonstrates that the distributions of microscopic variables

change over time and do not conform to particular, known families of distributions.
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During the microscopic reinstantiation phase of the continuum-microscopic algorithm, in

order to produce a network that represents a state into which the original network could

have evolved if it had been advanced over the full time interval, the evolution of these

distributions must be tracked over time to extrapolate predictions for their shapes at

future time steps.

4.2. Macroscopic Constraints

The examples presented above deal with the goal of retaining memory of the cy-

toskeletal microstructure over continuum time steps and utilizing the evolution of the

microstructure during micro-time steps to update continuum-level parameters. A sec-

ond, equally important goal is that the reinstantiated microstructure should fulfill a set

of macroscopic parameters and constraints that have been provided by continuum level

equations. This will keep the continuum-microscopic model consistent. The microscopic

computation finds a new set of elasticity moduli for each continuum grid cell that is then

used in the advancement of the continuum level elasticity equations. This advancement

produces new values for the positions of each grid cell, as well as new stress, strain, and

energy values. The microscopic network created during the next step should embody

the same macroscopic parameters as its overlying continuum grid cell. This new system

should also be in a state of mechanical equilibrium since natural systems such as the

cytoskeleton will tend towards a state of minimal potential energy. These two require-

ments can both be met by solving the fundamental thermodynamics problem presented

in the last chapter. This problem should be solved in the entropy representation since

an energy constraint will be provided. To illustrate this approach, several examples will

now be presented. The statistical mechanics representation of the entropy will be used

to construct the fundamental relations.

4.2.1. Entropy Formulation. Example 1: As an elementary example, consider a one-

dimensional continuum segment of length dX which represents a segment of cytoskeleton.

Microscopically, this segment is composed of bundled actin filaments, with the bundles
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connected end to end in this simple case. Suppose in this segment dX, there must be N

total filaments, and for simplicity these N filaments must be grouped into two bundles.

Each bundle is attached with one end to one of the edges of the dX segment, and the

other end is attached to the other bundle somewhere in dX (Figure 4.9).

Figure 4.9. Segment of continuum cytoskeleton, represented by bundled filaments

A bundle is defined as containing at least one filament (this forces dX to not have any

gaps). Suppose again for simplicity that these filaments each have an equilibrium length

of L0. The filaments in the first bundle have a current length of C1 and the filaments in

second bundle have current lengths of C2 where C1 + C2 = C = dX. The energy of the

system U is also given. This energy can be written as:

(4.2) U = kN1(C1 − L0)
2 + kN2(C2 − L0)

2

where k is the spring constant for one filament, and N1 and N2 are the number of filaments

in bundle 1 and bundle 2 respectively. Besides relation 4.2, the following must also be

true:

N1 + N2 = N

C1 + C2 = C
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which allows U to be rewritten as:

(4.3) U = kN1(C1 − L0)
2 + k(N − N1)(C − C1 − L0)

2

How many states have the given energy U and have N filaments divided into two bundles

whose total length must be C? The values N1 and N2 must be integer valued since they

denote the number of filaments in each bundle. There are N − 1 possible choices for N1.

(It is not N because N2 must be at least 1). Once N1 is chosen, N2 is automatically

known. Also, once N1 is chosen, C1 is also determined because it must take on a value

that satisfies the energy constraint 4.3. With C1 known, C2 is known as well, and thus

all variables have been accounted for. The total number of possible states is therefore

N − 1. The entropy is simply:

(4.4) S = kB ln(N − 1)

The goal is to find an equilibrium state for this system, or a state where the entropy is

maximized. The variables to be determined are N1, N2, C1, C2 so 4.4 should be written

in terms of these variables. This can be done by utilizing 4.3 to solve for N and replace

it in 4.4:

S = kB ln

(

U − kN1(C1 − L0)
2 + kN1(C − C1 − L0)

2

k(C − C1 − L0)2
− 1

)

To find a maximum value for S, take its partial derivatives with respect to N1 and C1,

set these quantities equal to zero and solve for N1 and C1.

∂S

∂N1

= kB
k(C − C1 − L0)

2 − k(C1 − L0)
2

U − kN1(C1 − L0)2 + kN1(C − C1 − L0)2

∂S

∂C1

= kB

[−2k(N1 − 1)(C − C1 − L0) − 2kN1(C1 − L0)

U − kN1(C1 − L0)2 + kN1(C − C1 − L0)2
+

2

(C − C1 − L0)

]

Setting these two equations equal to zero and solving for N1 and C1 gives:

N1 = N/2, C1 = C/2
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and means that N2 = N1 and C2 = C1. This result matches physical intuition. If both

bundles have equilibrium length L0 then the total energy of the system will be minimized

if the bundles are the same length and contain the same number of filaments.

Example 2: Consider a similar situation as in Example 1, except let there be three

filament bundles instad of two. In this case the energy can be written as:

U = kN1(C1 − L0)
2 + kN2(C2 − L0)

2 + kN3(C3 − L0)
2

The following constraints also apply:

N1 + N2 + N3 = N

C1 + C2 + C3 = C

This allows a reduction in the number of variables found in U :

(4.5) U = kN1(C1 − L0)
2 + kN2(C2 − L0)

2 + k(N − N1 − N2)(C − C1 − C2 − L0)
2

The number of possible states that conform to these constraints will be more complicated

than in Example 1 since there are more variables. There are N filaments to place in 3

bundles, and the number of ways this can be done is:

(4.6)
(N + 2)!

N !2!
=

(N + 2)(N + 1)

2

However, this includes cases where some bundles can be empty, which are not permissible

states for the system. There are 3(N − 1) cases with one empty bucket and 3 cases with

two empty buckets, so these need to be subtracted off of 4.6:

(N + 2)(N + 1)

2
− 3(N − 1) − 3

(N − 1)(N − 2)

2
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This is the number of ways the filaments can be arranged into three bundles, and es-

tablishes the possibilities for N1, N2, N3. The energy constraint in 4.5 still has the two

unknowns C1, C2. Once the number of possibilities for one of these is known, the other

will follow automatically from the satisfaction of 4.5. Length is usually a real-valued

quantity, but to make things countable here, suppose that C1 can take on only integer

values from 1 to C − 2 (assuming that C2 and C3 must be at least one unit long each,

but they can be real-valued). As mentioned in the theory discussion, the number of

permissible states Ω is multiplicative so:

Ω =
(N − 1)(N − 2)(C − 2)

2

The entropy can then be written as:

(4.7) S = kB ln

(

(N − 1)(N − 2)(C − 2)

2

)

As in Example 1, the goal is find values for the variables N1, N2, N3, C1, C2, C3 that

maximize the entropy. Equation 4.5 can be solved for N and substituted into 4.7 to

write S in terms of the desired variables. The same process can then be carried out to

find what values maximize S. This algorithm was carried out using Mathematica and

the results were:

C1 = C2 = C3 = C/3, N1 = N2 = N3 = N/3

This again matches intuition, as the analogue to the two filament bundle case.

Example 3 Example 1 can be extended in another manner, by allowing the equilibrium

length L0 to vary. Suppose that L is the equilibrium length for segment dX and that L0

can take on two possible values: L/4 or 3L/4. Since the value of the spring constant is

based on the spring’s equilibrium length, k will now be a function of L0 for each bundle.
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The energy for this system can be written as:

(4.8) U =
KL

L0
N1(C1 − L0)

2 +
KL

L − L0
(N − N1)(C − C1 − L + L0)

2

with K the spring constant of a filament of length L. The number of possible states for

this system is given by (N −1) (the possibilities for N1) multiplied by 2 (the possibilities

for L0). The entropy is given as:

S = kB ln(2(N − 1))

Using 4.8 to replace N , and taking partial derivatives with respect to N1 and C1 as in

Example 1, yields:

∂S

∂N1

= kB

KL
L−L0

(C − C1 − L + L0)
2 − KL

L0
(C1 − L0)

2

U − KL
L0

N1(C1 − L0)2 + KL
L−L0

N1(C − C1 − L + L0)2

∂S

∂C1

= kB

[

−2 KL
L−L0

(N1 − 1)(C − C1 − L + L0) − 2KL
L0

N1(C1 − L0)

U − KL
L0

N1(C1 − L0)2 + KL
L−L0

N1(C − C1 − L + L0)2
+

2

(C − C1 − L + L0)

]

Setting the first equation equal to zero, gives:

0 =
KL

L − L0
(C − C1 − L + L0)

2 − KL

L0
(C1 − L0)

2

If L0 = L/4, then C1 = C−3L/4+
√

3L/4√
3+1

, and if L0 = 3L/4 then C1 =
√

3C+3L/4−
√

3L/4√
3+1

.

Setting the second equation equal to zero and plugging in each L0, C1 pair gives the two

corresponding N1 values. These expressions for N1 are very complicated, and listing them

here would detract from the point of the exercise, which is simply that for this situation

there are two possible states that fulfill the given constraints. There is not always just

one solution.

The first two examples were presented in order to demonstrate that solving the max-

imum entropy problem produces physically intuitive results for two systems with unique

equilibrium states. Mechanically speaking, the expectation is that a system will tend to

settle into a position of minimal energy. From the thermodynamics theory presented, the

principle of minimum energy is equivalent to the maximum entropy problem, and will
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yield the same results. The entropy maximum was found in each case, and it matched

the expected physical results.

The third example was presented to demonstrate that even in a simple one-dimensional

case there can be multiple correct solutions to the maximum entropy problem. There can

be many equilibrium states which satisfy the given conditions. The question becomes

which state to choose. The other goal of the network instantiation procedure to create a

network that represents a feasible state the original network could have evolved to, pro-

vides some guidance. There are many states that will fulfill the macroscopic constraints,

but this field of possibilities can be narrowed by requiring the microscopic elements to be

positioned by the extrapolated distribution functions. Once the network has been laid

down, it is logical to move the system to the “closest” equilibrium state so as to minimally

disturb the configuration predicted by the distribution functions. A nearby equilibrium

state can be found by utilizing a gradient search procedure to solve the maximum entropy

problem. For the simple cases above, exact solutions were found easily due to the small

number of variables involved in each problem. However, the types of networks created in

the full three-dimensional model of the cytoskeleton will have a much larger number of

variables. This in turn will create a large number of nonlinear equations that will need to

be solved to find the equilibrium states. It quickly becomes computationally intractable

to solve such a system with direct methods. The approach is instead to use iterative

schemes to move the system toward one of its solutions. The typical choice is to use a

gradient search algorithm (see Appendix A).

4.2.2. Equivalent Non-Entropy Formulation. The entropy formulation is clearly a

good approach to finding an equilibrium state for the cytoskeleton network. However as

the number of variables increase, and if these variables are allowed to be real-valued, the

total number of possible equilibrium states becomes uncountable. It becomes difficult

to write down an expression for the entropy as was done so easily in the simple cases

presented above. An alternative (yet equivalent) formulation is clearly needed, perhaps

relating to the idea of energy minimization even though an energy constraint is given.
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This can be formulated as a slightly different minimization problem. Besides requiring

U to be a minimum value, the request can be made to also have (U −U0)
2 be minimized,

where U0 is the desired energy value. Thus the target function to be minimized will look

like:

F (x) = (U(x) − U0)
2 + U(x)

where x is a vector containing all variables. The minimization of this target function

should be equivalent to the solution of the entropy maximization problem. This equiv-

alence will now be shown by re-doing Examples 1-3 utilizing the above target function,

and comparing the results.

Example 1: This was the case with two actin filament bundles, each with equilibrium

length L0. The target function for this scenario can be written as:

F (x) = (kN1(C1−L0)
2+k(N−N1)(C−C1−L0)

2−U0)
2+kN1(C1−L0)

2+k(N−N1)(C−C1−L0)
2

with x = (N1, C1). Taking partial derivatives with respect to N1 and C1, gives:

∂F

∂N1
= 2(kN1(C1 − L0)

2 + k(N − N1)(C − C1 − L0)
2 − U0)(k(C1 − L0)

2

− k(C − C1 − L0)
2) + k(C1 − L0)

2 − k(C − C1 − L0)
2

∂F

∂C1

= 2(kN1(C1 − L0)
2 + k(N − N1)(C − C1 − L0)

2 − U0)(2kN1(C1 − L0)

− 2k(N − N1)(C − C1 − L0)) + 2kN1(C1 − L0) − 2k(N − N1)(C − C1 − L0)

Solving for N1 and C1 yields:

N1 = N/2, C1 = C/2

which leads to N2 = N1 and C2 = C1. These are the same results obtained by maximizing

the entropy.
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Example 2 In this case, the filaments are grouped into three bundles and all still have

an equilibrium length of L0. The target function for this case is:

F (x) = (kN1(C1 − L0)
2 + kN2(S2 − L0)

2 + k(N − N1 − N2)(C − C1 − C2 − L0)
2

− U0)
2 + kN1(C1 − L0)

2 + kN2(S2 − L0)
2 + k(N − N1 − N2)(C − C1 − C2 − L0)

2

with x = (N1, N2, C1, C2). Computing partial derivatives with respect to the four vari-

ables will lead to four equations with similar structures to the two bundle case. Solving

these four equations for the four unknowns gives:

N1 = N2 = N3 = N/3, C1 = C2 = C3 = C/3

These results again match the entropy formulation results.

Example 3 The third example involved two filament bundles. The equilibrium length

of the first bundle can either be L/4 or 3L/4. The energy for this system can be written

as:

U =
KL

L0
N1(C1 − L0)

2 +
KL

L − L0
(N − N1)(C − C1 − L + L0)

2

and the target function is thus:

F (x) = (
KL

L0
N1(C1 − L0)

2 +
KL

L − L0
(N − N1)(C − C1 − L + L0)

2 − U0)
2

+
KL

L0
N1(C1 − L0)

2 +
KL

L − L0
(N − N1)(C − C1 − L + L0)

2

For the case of L0 = L/4, if partial derivatives of the target function are taken with

respect to C1 and N1, and are both set equal to zero, C1 is found to be: C−3L/4+
√

3L/4√
3+1

as

in the entropy formulation. With L0 = 3L/4, the result is C1 =
√

3C+3L/4−
√

3L/4√
3+1

, which

also matches the entropy formulation.

These simple examples demonstrate that the minimization of the target function

introduced above is equivalent to maximizing the entropy for the same problem. As

mentioned previously the entropy becomes more difficult to represent as the problems
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become more complex with more variables and dimensions. Beyond these simple exam-

ples, it is thus difficult to demonstrate the same equivalence. However, the problems with

two or three dimensions and more variables are only extensions of these examples, and

the same physical principles apply, thus the minimization of similarly constructed target

functions should produce valid results.

4.2.3. Note on Cytoskeletal Networks. In the above examples the constraints in-

cluded restrictions on the number of filaments, filament lengths, and the total energy of

the system. Also included were constraints on filament equilibrium length. In these 1D

cases, knowing the current and equilibrium lengths of the filament bundles can also be

recast as knowing the strain of the system. In the continuum-microscopic model of the

cytoskeleton, the continuum level advances the elasticity equations, which will update

the velocities, stresses and strains of each three-dimensional grid cell. To have a truly

consistent model, the microscopic network within each grid cell should embody the stress

and strain state that was found at the continuum level. However, requiring a network to

have a particular stress and strain would imply that the two elasticity moduli are known

(assuming isotropy). The point of doing the microscopic computation is to determine

new elasticity moduli, and thus one does not want to impose both a stress and strain

component. Since strain data is being collected anyway, having the average strain state

of the network match the strain state of the continuum cell seems to be a logical choice.

However, there is another issue that arises that has to do with the type of microscopic

network one is constructing. Utilizing the descriptors of Head, Levine and MacKintosh

in [35], networks can be affine (have uniform strain distribution) or non-affine (have

non-uniform strain distribution). The degree of affinity of a network is correlated to

the density of the crosslinks and filament rigidity [35]. Typically, a network with high

filament stiffness and high crosslink density is affine because the filaments do not have

much freedom to move. The strains on these filament tend to be fairly close to the overall

imposed strain. In networks with low filament stiffness and low crosslink density, even

though a uniform strain may be imposed, the individual filaments may have different
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strains due to their ability to move around to situate themselves in a configuration of

minimal energy. These networks are non-affine since their strain distribution is non-

uniform. Also, the average strain of these filaments may not match the overall imposed

strain. This is again due to the filaments’ freedom to move to reduce their potential

energy. Despite the mismatch, when computing the elasticity moduli of this type of

network, the convention is to use the imposed strain state in the calculation as opposed

to the network’s strain state [35]. This is a flaw and its solution is an open research

question that will not be addressed in this thesis work, but would be very interesting to

delve into in future work.

The non-affine situation is the one presented in this thesis in order to demonstrate

the inclusion of an energy minimization procedure. Other types of cytoskeletal networks

will be explored in future work. For this case, during network reinstantiation strains

are assigned utilizing PDF distributions extrapolated from past strain data (described

in the next chapter). These strains may not necessarily average out to the same strain

state as the continuum level. However, the distribution of strains will come from the

extrapolated microscopic data and therefore should provide an accurate picture of the

microstructure’s strain state.
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CHAPTER 5

A Continuum-Microscopic Model of Cytoskeletal Mechanics

In this chapter, a continuum-microscopic (CM) model of the cytoskeleton will be

presented. The main addition to the basic CM model described in Section 2.5 is a new

procedure for carrying out the reinstantiation step (Step 1). The development of this

algorithm will be presented first, followed by a description of how this procedure fits into

the overall CM framework. As described in Chapter 4, the general idea is to have a

continuum description of the cytoskeleton (as a solid elastic material), and a microscopic

description of the cytoskeleton (as a crosslinked filament network) and incorporate these

two scales into a CM model. The steps of the CM method specific for this cytoskeleton

problem will be:

(1) Create a microscopic instantiation of the cytoskeletal network.

(2) Deform the microscopic network a short number of time steps.

(3) Utilize averaging to compute the elasticity moduli for each network block and

use them to update the macroscopic constitutive laws

(4) Advance the continuum level equations (elasticity equations) one large time step

(5) Repeast steps 1-4

The main research question faced in this modeling technique is how to accurately reinstan-

tiate the microscopic configuration at a later point in time. In the forthcoming sections,

the algorithm that has been developed to accomplish this task will be presented.

As a simple case upon which to build the algorithm, the one block network example

presented in the previous chapter will be utilized. Given a particular network, the first

goal will be to generate probability distribution functions to represent its data and use

these to create a new network that has the same continuum-level properties (such as



elasticity moduli) as the original network. The ultimate goal is to be able to do this

reinstantiation procedure at a future point in time, creating a network that represents a

configuration the original network could have evolved to.

5.1. Network Reinstantiation: Current Time

As stated above, the first goal is to begin with a network block, place it under some

strain, collect data from it, and then use this data to construct a new network with

very similar average properties and behavior. Data that will be collected includes the

orientation of each filament as well as each filament’s strain. Two simple cases involving a

network of parallel filaments and a network of non-crosslinked filaments will be presented

first in order to demonstrate the development of various aspects of the algorithm. This

will be followed by a fully crosslinked filament network example.

5.1.1. Parallel Filaments. As a simple first case to test that the general PDF con-

struction is working properly, a block of n parallel filaments was created. The block

dimensions are [xmin, xmax] × [ymin, ymax] × [zmin, zmax]. Each filament i has a uniformly

chosen endpoint on the x = xmin wall, meaning a coordinate of (xmin, yi, zi) where

ymin ≤ yi ≤ ymax, zmin ≤ zi ≤ zmax. The second endpoint is assigned to be (xmax, yi, zi),

a point on the opposite wall of the block, which creates a filament parallel to the x axis

(Figure 5.1). These filaments all have the same angle of orientation and also the same

length.

From this initial configuration, the block is strained in the x direction, in the same

manner as described in Chapter 4. All n filaments in this case are attached at both

ends to walls. No energy minimization is required for this case because there are no

internal filament segments and crosslinks to move around. This case is used simply as a

test of the probability distribution function generation and network reconstruction basic

algorithm. Data collected includes the two angles θi and φi of each filament that define

its orientation in three-dimensional space (like in spherical coordinates), as well as the

strain ǫi of each filament. For this simple case the strains and angles are the same for
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Figure 5.1. Network block of parallel filaments.

each filament (see example histogram of θi data in Figure 5.2). Kernel estimation (as

described in Chapter 3) using Gaussian kernels and a small window width was used to

construct single variable PDFs f(X) for each of the two angles and the strain. These

PDFs each have a spiked shape centered over the correct value from the data (Figure

5.2). These PDFs are then used to produce a new set of angles and strains that are

assigned to filaments in a new network. In Figure 5.2 one can see that the histogram of

the new data is the same as original histogram.

The Young’s modulus of the original block is simple to compute. The spring constant

k of each filament is the same since they are all the same length. The forces of each

filament act only in the x direction since the filaments are all oriented parallel to the

x axis. The displacement ∆x of each filament is the same as the displacement of the

block itself. The total force is thus equal to nk∆x. Assuming the original box was a

unit box (all sides length 1), the stress is equal to the force and the strain is simply

∆x. The Young’s modulus E is equal to the stress divided by the strain which in this

case is: nk (a constant). The newly constructed network should have the same Young’s

modulus. An example to test this was done with 150 filaments with a spring constant

of k = 0.4. The modulus of the original network was found to be E = 60 as expected.

After reinstantiation, the new network’s modulus was found to be E = 60.002, which is a
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Figure 5.2. Each graph shows angle data (one of the two angles): (1) the
original network’s data, (2) the probability distribution function produced
with kernel estimation, (3) the newly generated data for the new network.

relative error of 3.33 · 10−5. This is to be expected due to the simplicity of this test case,

but it is a confirmation that the general code framework successfully renders network

reconstructions based on the generated pdfs.

By the law of large numbers, as the number of filaments in the original and recon-

structed networks is increased the relative error between the network properties should de-

crease. To check this, the same test as above was run with different numbers of filaments.

Each test with n filaments (where n = 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000)

was run 1000 times and the found elasticity moduli were averaged. The relative error be-

tween this average modulus and the original network’s elasticity modulus was computed.

Figure 5.3 shows the log-log plot of the error vs. the number of filaments. As the number
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of filaments increases the relative error goes down. The slope of the regression line is

-0.46, which is close to the convergence rate of -0.5 given by the law of large numbers.

2 2.5 3 3.5 4 4.5 5
−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

Log(n)

Lo
g(

(E
−

E
0)

/E
0)

Error in Elasticity Modulus vs. Number of Filaments

Figure 5.3. This graph depicts the log of the relative error between the
original elasticity modulus and the ensemble averaged elasticity modulus of
the reconstruction versus the log of the number of filaments in the network.
The data is shown in blue and the least squares regression line is shown in
black (has slope of -0.46).

5.1.2. Non-Crosslinked Filaments. In this next case, all filaments begin with one

endpoint (x0, y0, z0) on one of the six walls of the three-dimensional block, and can grow

in any direction. They are made long enough so that they will hit another wall of the

block (Figure 5.4), so their second endpoint (x1, y1, z1) is also attached to a wall. No

crosslinks are established for this case, thus like in the first case no energy minimization

is needed. However, unlike the parallel case, there are many more possibilities for the

two angles and strains of each filament.

Figure 5.5 shows a typical data set for filament strain after the block has been strained

in the x direction. This figure also shows the data’s estimated PDF and CDF, as well as

a new data set generated by this PDF. The new data appears qualitatively to be a good

reproduction of the initial data set. As a quantitative measure, the average relative error

between the original and new histogram heights was compured and found to be on the
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Figure 5.4. Network of non-crosslinked filaments.

order of 10−2. Non-parametric PDF estimation error is likely the dominant error source,

with factors such as kernel type and window width playing a role. Without knowing

the underlying PDF it is difficult to know how to construct an optimal PDF estimation

algorithm for the given data set.

To conduct the same Young’s modulus before and after comparison test as was done in

the parallel filament test, each filament’s two angles (θ and φ) and strain ǫ are collected

and single variable PDFs were constructed for each data set: f(θ), g(φ), h(ǫ). A new

network was then established as follows. The box has the same dimensions as the original

block in its strained state. A filament is laid in this box by placing its first endpoint

(x0, y0, z0) on one of the six walls as before. A θ and a φ value were then generated from

f(θ) and g(φ) in order to establish a direction vector (xdir, ydir, zdir) for the filament. The
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Figure 5.5. The original network’s strain distribution, the probability
distribution function produced with kernel estimation for this data, the
cumulative distribution function and the newly generated strain data for
the new network.

second endpoint (x1, y1, z1) was found using:

x1 = x0 + Lxdir

y1 = y0 + Lydir

z1 = z0 + Lzdir

where L is the filament length, long enough to insure that it reaches another wall of the

block. The second endpoint is then modified to be the intersection point of the filament

with this wall. The filament is then assigned a strain ǫ utilizing h(ǫ). The elasticity

modulus of this new network was then computed and compared against the original
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network’s modulus. (The elasticity modulus was computed using the method described

in Chapter 4 since this block is again under a simple extensional strain.)

As in the parallel filament case, this test was run for increasing numbers of n filaments,

with multiple runs for each n case to produce an average error. The results are shown in

Figure 5.6 in table form and also in a log-log plot.

Number Original E0 Average Relative

of Filaments New E Error: (E − E0)/E0

500 21.529 15.933 0.3528
1000 40.109 25.511 0.36539
2000 83.407 53.124 0.3638
5000 216.06 143.334 0.3366
10000 437.378 275.27 0.3708
20000 863.3838 552.09 0.36055
50000 2191.42 1392.21 0.364697
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Error in Elasticity Modulus vs. Number of Filaments

Figure 5.6. The table displays the relative errors in elasticity modulus
for different numbers of filaments in a network, using three independent
pdf reconstructions for the strain and each angle. The graph is a log-log
plot the error vs. the number of filaments. The data is in blue and the line
of best fit is in black.

The networks constructed with these distributions do not have the same elasticity

modulus as the original network. The average elasticity modulus comes out consistently

lower then the original with the relative errors on the order of ≈ 0.36. There is no

convergence as the number of filaments is increased. These results can be attributed to
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the fact that the new strains are being assigned to the filaments without regard to the

orientation of that filament. Intuitively, the angles and strain should be related, because

filaments that are more aligned with the axis of strain have larger strains. Filaments

which are more perpendicular to the axis of strain should have very low strains. Evidence

of a relationship between angles and strains can be shown by computing the correlation

coefficients between pairs of the three variables. These correlation coefficients are:

Variable 1 Variable 2 Correlation Coefficient

Strain Angle 1 0.51

Strain Angle 2 0.39

Angle 1 Angle 2 0.071

It is clear from these correlation coefficients that a relationship does exist between

strain and each angle. The two angles are not as highly coorelated with one another. The

correlation coefficients between each angle and the strain imply that single variable dis-

tributions f(θ), g(φ), h(ǫ) cannot be used to separately assign the two angles and a strain

to each new filament. Single variable PDFs can only be used if variables are independent

(correlation coefficients equal to zero). What is needed is a joint probability distribution

function F (θ, φ, ǫ). This function provides a relationship between the variables, and can

be used to find the probability of having θ ∈ [θ0, θ0 + h], φ ∈ [φ0, φ0 + h], ǫ ∈ [ǫ0, ǫ0 + h].

The problem with joint PDFs as opposed to single variable PDFs is that the dimension

of the phase space increases and the situation becomes more complex. Instead of three,

one-dimensional phase spaces for each variable, this joint PDF has one, three-dimensional

phase space. In a discrete case, suppose there are m possible states for each variable,

then there are m3 possible states for the variable triplet θ, φ, ǫ. Suppose a minimum of

p filaments is considered a reasonable number of data points for PDF estimation in the

single variable case. This means that a minimum of p3 filaments will be needed to get an

equivalent amount of data to be able to estimate the joint PDF. Also the PDF estimation

process becomes more complex in that one must now use multivariate kernel functions.

The data generation process from a multivariate PDF for the new network also becomes
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more complex. For the single variable case, one uses the CDF and a basic reverse in-

terpolation procedure to find a data point. In the multivariate case, the CDF (like the

PDF) is a surface, and the reverse interpolation procedure is much more complex and

computationally taxing.

To circumvent this issue, the goal will be to establish a relationship between the strain

and angles in a different manner. One possibility is to do single variable distributions

for the angles, and then deterministically assign each filament a strain based on these

angles. As a simple first test of this idea, consider a two-dimensional case, where there is

only one angle involved. The strain of a filament can be determined by its current angle

of orientation and the overall strain of the box in the following way. (This derivation is

based on an extensional strain in the principle x direction, but a similar formula could

be derived for a more complex strain tensor.) Figure 5.7 will be used for notation where

the hypotenuses of the triangles represent a filament before and after stretching. The l

is the original length of the box within which this filament is placed and the ∆l is the

displacement of the block in the x direction.

Figure 5.7. Diagram of a two-dimensional filament strain calculation
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The strain of this filament ǫnew can be described as:

ǫnew =
r′ − r

r

=

l+∆l
cos(θ′)

l
cos(θ)

− 1

= (1 + ǫ)
cos(θ)

cos(θ′)
− 1

where ǫ is the overall strain of the block. The goal is to find ǫnew in terms of only its

current angle θ′. The dependence on θ can be removed by creating another relationship

using tangents:

tan(θ)

tan(θ′)
=

H
l
H

l+∆l

= (1 + ǫ)

θ = arctan((1 + ǫ) tan(θ′))

This last line can be substituted into the filament strain equation to give:

ǫnew = (1 + ǫ)
cos(arctan((1 + ǫ) tan(θ′))

cos(θ′)
− 1

Utilizing this relationship to assign a strain to a filament, the following results, (shown

in Figure 5.1.2), were obtained for the elasticity modulus test. The relative error between

the original and new Young’s modulus attenuates to values in the 10−3 range as the

number of filaments is increased. This is a large improvement over the three single

variable PDF method.

These results show that in this simple case the strain can be deterministically assigned

by knowing the angle. The need to collect strain data has been completely eliminated.
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Number Relative

of Error

Filaments (E − E0)/E0

100 0.0312
200 0.00612
500 0.001
1000 0.0044
2000 0.00233
5000 0.00188
10000 0.00275
20000 0.0046
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Figure 5.8. The relative error in elasticity moduli found for increasing
numbers of filaments within the 2D network where strains are determinis-
tically assigned. The blue line is the data and the black is the regression
line with slope -0.17

A similar relationship can be established for a three-dimensional case. Here again,

the formula will be derived for an extensional strain in the x direction but could be

derived for more complex strain fields if needed. Figure 5.9 will be used as a guide for

the notation in the derivation of the formula.

Figure 5.9. Diagram of three-dimensionally strained filament
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Let r0 and rnew represent the equilibrium and strained lengths of the filament. The

new strain of the filament is given by:

(5.1) ǫnew =
rnew − r0

r0

=
rnew

r0

− 1

The goal is to replace r0 and rnew with expressions involving the overall strain of the

block ǫ in the x direction and the filament’s current orientation angles. Due to the three-

dimensionality, this is a multi-step process to find the correct relationship. The θ angles

in Figure 5.9 are the angles the filament makes with the x-axis if projected into the x-y

plane, and the φ angles are the angles made with the z-axis if the filament is projected

onto the x-z plane. Expressions for r0 and rnew can be developed as follows:

r0 =
b0

cos(s)
rnew =

bnew

cos(s′)

where s = π
2
− φ and s′ = π

2
− φ′. The values b0 and bnew can be written in terms of

angles and strains. The b variables are the hypotenuses of the triangles representing the

projection of the filaments onto the x-y plane (Figure 5.10).

Figure 5.10. Diagram of the x-y plane with the projections of the equi-
librium and strained filaments

The b variables can be written as:

b0 =
l

cos(θ)
bnew =

l + ∆l

cos(θ′)

116



Substituting these expressions into the expressions for r0 and rnew, Equation 5.1 looks

like

ǫnew =

l+∆l
cos(θ′) cos(s′)

l
cos(θ) cos(s)

− 1

= (1 + ǫ)
cos(θ) cos(s)

cos(θ′) cos(s′)
− 1(5.2)

As in the 2D case, the goal is to write ǫnew in terms of only θ′, s′ and ǫ so θ and s

must be eliminated. This can be done using tangent relationships as was done for the

two-dimensional case.

tan(θ)

tan(θ′)
=

y
l
y

l+∆l

tan(θ)

tan(θ′)
= (1 + ǫ)

θ = arctan((1 + ǫ) tan(θ′))(5.3)

A similar expression can be found for s:

tan(s)

tan(s′)
=

l+∆l
cos(θ′)

l
cos(θ)

tan(s)

tan(s′)
= (1 + ǫ)

cos(θ)

cos(θ′)

s = arctan((1 + ǫ)
cos(θ)

cos(θ′)
tan(s′))(5.4)

Equations 5.3 and 5.4 can be substituted into 5.2 to find ǫnew as:

ǫnew = (1+ǫ)
cos(arctan((1 + ǫ) tan(θ′))) cos(arctan((1 + ǫ) cos(arctan((1+ǫ) tan(θ′)))

cos(θ′)
tan(s′)))

cos(θ′) cos(s′)
−1

The results of the elasticity modulus test for a 3D network using this 3D deterministic

relationship for assigning the strain are shown in Figure 5.11. These results parallel

the results found in the two-dimensional case, although the convergence rate is better

(≈ −0.35). The relative errors settle out to values in the 0.7% range.
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Number Relative

of Error

Filaments (E − E0)/E0

100 0.0407
200 0.0470
500 0.0198
1000 0.0146
2000 0.0106
5000 0.00721
10000 0.0032
20000 0.0069
50000 0.00871 2 2.5 3 3.5 4 4.5 5
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Error in Elasticity Modulus vs. Number of Filaments

Figure 5.11. The relative errors in elasticity moduli found for increasing
numbers of filaments within the 3D network when strains are assigned
deterministically. The blue line is the data and the black is the regression
line with slope -0.35

These strain-angle relationships have worked well for these simple non-crosslinked

cases. However the relationships will likely break down for more complex models that

include crosslinking and external effects such as fluid forces and biochemical reactions.

A relationship that utilizes the real strain data would be a more general approach that

should be applicable to a wider range of network systems.

One idea is to replace a global joint probability distribution function F (θ, φ, ǫ) with

local, piecewise PDFs. The idea goes as follows. In the three-dimensional case the two

angles θ and φ determine the filament’s orientation. The correlation coefficient between

the two angle variables is very low in comparison to the correlation coefficients between

the strain and each angle. It is a reasonable assumption that the two angles are still

independent and thus single variable PDFs will be constructed for each angle data set

and used to assign an orientation to each filament. The strains are correlated to the

angles and will be assigned in a different way.

Angle θ ranges from [−π
2
, π

2
] and angle φ ranges from [0, π]. Divide the range of θ

angles into m bins of equal length π
m

. These intervals look like [−π
2

+ π
m

i,−π
2

+ π
m

(i + 1)]

with i = 0..m − 1. The same is done for the φ angle values, whose intervals look like
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[ π
m

j, π
m

(j + 1)] with j = 0..m − 1. If a filament has orientation angles θ′, φ′, these angles

fall into a bin pair: θ′ ∈ [−π
2

+ π
m

i,−π
2

+ π
m

(i + 1)], φ′ ∈ [ π
m

j, π
m

(j + 1)]. This bin pair

will be indexed as i, j. There are m × m bin pairs. Once it has been determined that

filament k falls into bin pair i, j, the filament’s strain ǫk is recorded in this bin i, j. Once

all filament strains have been binned, the mean µi,j and standard deviation σi,j of strain

data in each bin pair i, j are computed and used to construct a local normal distribution

N(µi,j, σi,j). These local distributions for the strain data are put together in a global

piecewise distribution for the strain. During reinstantiation, a filament k is assigned two

angles θk, φk, and its strain is assigned using the following distribution:

H(ǫ) = N(µi,j, σi,j) when θk ∈ [−π

2
+

π

m
i,−π

2
+

π

m
(i + 1)], φk ∈ [

π

m
j,

π

m
(j + 1)]

Strain ǫk will be generated from this normal distribution. Figure 5.12 gives a visual

representation of what is being done.

Figure 5.12. The strain of a filament is saved into an angle pair bin
(based on its two orientation angles). Once all strains have been stored in
these bins, a mean and variance is calculated for the data within each bin.
These values are then used to create a normal distribution for the strains
for each bin.

Results of the elasticity modulus test done using this strain assignment method are

shown in Figure 5.13. This method had a convergence rate of -1.36 and relative errors

reaching the 0.4% range as the number of filaments is increased.
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Number Relative

of Filaments Error

500 0.7414
1000 0.551
2000 0.305
5000 0.0515
10000 0.00687
20000 0.00390
50000 0.00413
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Error in Elasticity Modulus vs. Number of Filaments

Figure 5.13. The relative error in elasticity modulus found for increas-
ing numbers of filaments within the 3D network using the strain binning
method. This data has slope -1.36

The large errors for the lower numbers of filaments (n) is attributed to the small

amount of data. For networks with a small n there may be not be enough data to

construct the Gaussians within each bin (some bins may be empty). However, the results

quickly improve as the number of filaments are increased. This method still works best

with larger amounts of data, but it avoids the numerical complexities of multivariate PDF

estimation and data regeneration that would occur with a joint probability distribution

function. The conclusion is that this binning algorithm is a valid substitute for a joint

probability distribution function.

5.1.3. Crosslinked Filaments. The ideas presented above will now be extended to

the case of a fully crosslinked network of filaments. For this case, the network will be set

up exactly as described in the example in Chapter 4, and a minimization problem will

be solved to rearrange the network after each strain step. The function to be minimized

will not simply be the energy, but will look instead like the functions presented in the

thermodynamics examples of Chapter 4 (F (X) = (U(X) − U0)
2 + U(X), where U(X)

is the energy). However first some examples will be presented where the function to be

minimized is only the energy (G(X) = U(X)) to illustrate the problems that occur that

led to the development of F (X).
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The first test will be to try to use the deterministic relationship derived in the previ-

ous section to assign strains to new filaments during network reconstruction. The only

difference between this case and the previous one is that after each strain step, the inter-

nal filament segments and crosslinks are rearranged into a position of minimal energy by

the same energy minimization procedure described in the previous chapter. The same

elasticity modulus comparison test (original vs. new) was conducted for networks with

increasing numbers of filaments. The results of this test are shown in Figure 5.14.

Number Number Relative

of of Error

Filaments Segments (E − E0)/E0

100 145 0.0426
200 401 0.005
500 1955 0.10
1000 6619 0.14
2000 24785 0.15
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Figure 5.14. The relative error in elasticity modulus with increasing
numbers of filaments in a 3D network. In this case the strains were as-
signed using the three-dimensional deterministic relationship. This data
has positive slope of 0.8

This method does not converge, and the elasticity moduli produced in the reconstruc-

tions tends to run on the order of 10% higher than the original network’s modulus. This

can be explained by the fact that there are crosslinks present. The energy minimization

rearranges the filament segments and crosslinks into positions of minimal overall energy.

121



Since the filaments have the freedom to move to minimize their energy, the filament

strains will tend to decrease. The deterministic relationship does not take this into ac-

count and thus in general will assign a higher strain to the filament than it had in the

original network.

In a second test, the binning method described in the previous section was used

to assign strains. The results of this test are shown in Figure 5.15. In this case, the

reconstructed networks have elasticity moduli that are too low compared to the original.

However this too has a logical explanation. Data is collected from the original network

after energy minimization has taken place. Given the same boundary conditions, a

new network is created during reconstruction. This network has different crosslinking

connectivity than the original network. The filaments in this new network are assigned

strains ǫi via the binning method. Due to the fact that this strain assignment method

is still a random process, it is likely that there is a less costly (energetically-speaking)

configuration for this new network to be in. Thus when the energy minimization is run

the new network settles to a state of lower energy and thus a lower elasticity modulus.

Figure 5.16 gives a visual description of what is happening. The red data represents

the total energy of the original network. Each group of red data points is a strain step,

with each data point representing the energy after another m minimization steps (until

convergence was reached). The blue data represents the total energy of two example new

networks. The points represent the network’s energy after each m energy minimization

steps (until convergence is reached). What is important to take note of is that the initial

energy of each of the two example new networks is close to that of the original network.

However, there is a steep drop in energy when the energy minimization is applied. The

network is able to find a new configuration that significantly lowers its total energy.

The solution to this problem is where thermodynamics comes into play. The goal

is to create a network that possesses the same stored energy as the original network

and whose filaments are arranged in a configuration of minimal energy. Mathematically,

the variables X of the network should satisfy both G(X) = U(X) → ∇G(X) = 0
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Number Number Relative

of Filaments of Segments Error

100 145 0.10
200 401 0.0557
500 1955 0.078
1000 6619 0.16
2000 24785 0.0706
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Figure 5.15. The relative error in elasticity modulus with increasing
numbers of filaments in a 3D network. In this case the strains were as-
signed using the binning method. This data has positive slope of 0.05

and U(X) = U0, where U0 is the desired stored energy. These two expressions can be

combined into one function:

F (X) = (U(X) − U0)
2 + U(X)

which is the target function described in the previous chapter. The goal is find a global

minimum of this function, where hopefully both parts are simultaneously minimized.

For simple cases like those presented in the previous chapter, the solution is easy to

find analytically. For the networks in the cytoskeleton simulation an analytical solution

will not be possible, thus a numerical solution generated by an iterative procedure is

sought instead. The problem one may encounter with such a complex system is that

the minimization iterations may lead to a local minimum rather than a global minimum.

Also, an issue that is likely to occur is that since the two requirements U(X) = U0 and
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Figure 5.16. The red data points represent the total energy within the
20 strain steps which occur in the simulation. Each “step” contains several
data points that show the energy decrease that occurs during the applica-
tion of the energy minimization procedure after each strain. The two sets
of blue data represent the total energy in two reconstructed networks that
have been run through the energy minimization algorithm. Reconstruction
was done using the binning method.

U(X) be a minimum have been combined into one function F (X), there is a possibility

that both conditions may not be satisfied.

Because both conditions are important to satisfy, a different approach has been taken

to this problem. The idea goes as follows. The total energy of the system is:

(5.5) Energy =

m
∑

j=1

[

kj

2
(Lj − Lj

0)
2

]

with Lj and Lj
0 the current and equilibrium lengths respectively. When a strain is assigned

to a filament during reinstantiation, what is really being done is that the filament is

assigned an equilibrium length Lj
0 that gives the filament the desired strain. If this system

is then modified so as to minimize U(X) the current length Lj of the filament changes,

but the equilibrium length remains the value it was assigned. After an application of

the minimization of U(X) most filaments end up with a lower strain. The goal is to

choose strains for the filaments such that when the energy minimization is applied the
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end result is that U(X) of the system is equal to U0. This can be achieved by utilizing

a method based on a root-finding method such as bisection. First, a strain ǫi is assigned

to each filament via the binning method with distribution H(ǫ) described previously.

Energy minimization is then applied. Typically the resulting total energy U1 is lower

than the desired U0 values. Suppose that U1 < U0, then the ǫi values drawn from the

H(ǫ) distribution are marked as a lower bound for the bisection method. To create

an upper energy bound, begin with the same initial filament configuration and strain

assignment ǫi. However, modify each ǫi as:

(5.6) ǫnew
i = Cǫi

where C is a constant and is greater than 1. This will raise all the strains of all the

filaments by the same percentage. The energy minimization is then run on this system

to find the final energy state U2. If U2 > U0 then an upper bound has been found. If

U2 < U0 then process 5.6 must be repeated again with a larger C value until a final

configuration is found with U2 > U0.

In some cases the first energy computed U1 may be greater than U0. If so, then this

becomes the upper bound case and a lower bound is created by doing 5.6 with a C < 1.

Once an upper and lower bound have been found, bisection can be used to zero in on

a C value that will result in a network whose minimal energy state has total energy U0.

Figure 5.17 shows several steps of the process.

The configuration found via this method certainly is a minimum of the target function

F (X). It is by no means the only possible solution. However, as stated in the previous

chapter, utilizing the angle and strain distributions should narrow the field of possibilities

to a set of states that the original system could have evolved to. Since thermal fluctuations

exist in this system, it is feasible to conclude that these states are equally valid, and thus

choosing one as a configuration for the reinstantiated network is acceptable.
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Figure 5.17. Several steps of the energy correction algorithm. The line
is the target energy value U0. The cross data shows the application of the
energy minimization procedure to the same system with different initial
strain states.

Results from the elasticity modulus comparison test are shown in Figure 5.18. The

relative errors approach the 0.5% range and the rate of convergence is approximately

-1.15.

5.2. PDF Extrapolation: Future Time

With the main reconstruction algorithm in place, the focus now turns to performing

the reconstruction at future points in time. Instead of only collecting angle and strain

data after the last microstep, data will be collected after every microstep. PDFs for the

angles and strains will be constructed at each microstep in accordance with the binning

method. This is done so that the evolution of the distributions can be tracked over time,

and used to predict what a variable’s distribution will look like in the future.

The algorithm will now be described in general mathematical terms for the extrapo-

lation of the two angle PDFs. After a microscopic time step, the angle data is collected

and used to construct two single variable distribution functions for the angles θ and φ.
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Number Number Relative Error of

of Filaments of Segments Elasticity Modulus

200 401 0.13
500 1955 0.0592
1000 6619 0.03
2000 24785 0.00512
5000 146537 0.004509
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Figure 5.18. The relative error in elasticity modulus with increasing
numbers of filaments in a 3D network. In this case the strains were as-
signed using the binning method, and adjusted to the correct total energy
using the bisection method described above. This data has slope of -1.15

The PDFs are created via kernel estimation and have the general form:

f(θ) =
1

m

m
∑

i=1

K

(

θ − θi

h

)

g(φ) =
1

m

m
∑

i=1

K

(

φ − φi

h

)

where m is the total number of data points (which will be the number of filament seg-

ments), and K is the Gaussian kernel. These two functions give the PDFs of the angle

distributions at one point in time. The goal is to understand how these PDFs evolve over
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time, so these equations can be rewritten with a time dependence as:

f(θ, t) =
1

m

m
∑

i=1

K

(

θ − θi(t)

h

)

(5.7)

g(φ, t) =
1

m

m
∑

i=1

K

(

φ − φi(t)

h

)

(5.8)

(5.9)

The time dependence arises in the angle data points themselves which change from time

step to time step as new stresses are applied to the network block. However, the goal is

not to follow the evolution of the angles of the individual filament segments over time,

but rather the general shape evolution of the distribution functions. To do this N angle

values, evenly spaced in the interval
[

−π
2
, π

2

]

for θ and [0, π] for φ are chosen. The values

look like θi = −π
2

+ π
N−1

(i − 1) and φi = π
N−1

(i − 1) with i = 1..N . Their function

values at time tj are computed using 5.7-5.8. These function values are denoted as:

f(θi, tj), g(φi, tj) with i = 1..N and j = 1..n (the total number of microsteps). This gives

n coordinate pairs per angle i for both θ and φ:

(t1, f(θi, t1)), (t2, f(θi, t2)), ..., (tn, f(θi, tn))

(t1, g(φi, t1)), (t2, g(φi, t2)), ..., (tn, g(φi, tn))

The goal is to predict f(θi) and g(φi) at time tp (sometime in the future). Using the

above data, an approximation function will be run through each set of coordinate pairs

for θi and φi. These functions will be constructed via least squares approximation, which

creates a function that minimizes the distance between itself and the given data points

(see Appendix A for details). The approximate functions are denoted

f̂i(t), ĝi(t)

and are indexed by i (one for each f(θi) and g(φi) set of data). These functions can then

be used to extrapolate the function values at a new point in time tp where a reinstantiation
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needs to occur. The desired function values are: f̂i(tp), ĝi(tp) with i = 1..N . To create

the PDF of the θ angle data at time tp, the coordinate pairs (θi, f̂i(tp)) for i = 1..N will

be interpolated using cubic splines. The same is done for the φ angle using coordinate

pairs (φi, ĝi(tp)). These PDFs are used to generate angle data for the new filaments.

Similar procedures are done to extrapolate forward in time, the mean and variance of

the strains in each angle bin, as well as the total energy of the system. Figure 5.19 shows

a schematic of the PDF extrapolation concept.

Figure 5.19. A schematic of PDF extrapolation forward in time.

To test this least squares extrapolation method, a network of filaments was created

and placed under an extensional strain over n small time steps. During each step, data

was collected and after the n steps, least squares functions were created as described

above for the different variables. A future point in time tp was then chosen and PDFs for

the variables were constructed based on the method described above. The reconstruction

algorithm described in the previous section is then utilized to create a new network of

filaments. This new network is then placed under an extensional strain for m time steps.

The hope is that the new network will behave similarly to how the original network

would have behaved if it had been permitted to evolve to the same strain state. A full

simulation of the original network was run for comparison purposes. Figure 5.20 shows the

elasticity modulus of the original network in black and the elasticity modulus of different

reconstructed networks in color (each colored line is a different new network). The three

graphs differ in the size of the time interval between data collection and reinstantiation

(denoted with yellow dots).

A convergence study was run on this data. The smaller the leap forward in time, the

better the predictions should be. The error between the original elasticity modulus at a
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Figure 5.20. Three plots (a),(b),(c) depicting the original elasticity mod-
ulus vs. strain (in black) and the elasticity modulus vs. strain of reinstan-
tiated networks (in color) after a leap forward in time has occurred. Each
graph shows a different leap size (denoted by the two yellow circles). Graph
(d) is a log-log plot of the relative error in elasticity modulus vs. the length
of the time interval between data collection and network reconstruction.

later time and the average elasticity modulus from the new networks at the same later

point in time should get larger as the network reconstruction occurs after larger time

intervals. The average elasticity modulus of the reinstantiated networks was computed

at instantiation and compared with the elasticity modulus of the original network at the

same point in time. The result are shown in Figure 5.20 in a log-log plot of the relative
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error in elasticity modulus versus the time interval size. The approximate slope is 0.54,

which is in line with the expectations for this type of convergence study.

5.2.1. Extrapolation Tests. With the general framework for PDF extrapolation out-

lined above, the question now becomes one of algorithm efficiency. The goal of the

microscopic simulation is to update the elasticity moduli for each continuum grid cell.

These elasticity moduli will be used during the next continuum step. As seen in the one

block example of Chapter 4, even during the microsteps the elasticity moduli are chang-

ing. If the next continuum step will take place from tn to tn+1, a logical idea is to estimate

the elasticity moduli from the microsteps at the midpoint in time, tmid = tn+tn+1

2
, of this

next continuum interval. These new elasticity moduli are then utilized in the tn to tn+1

step. The question is then, what is the minimum number of microsteps needed to get an

accurate estimate of the elasticity moduli at time tmid?

To answer this question, it is first helpful to look at the evolution of the elasticity

moduli data. In the one block example of Chapter 4, the Young’s modulus as the block

is extensionally strained is shown in Figure 4.4. The block was strained by moving the

corners of the block at constant velocities, thus the strain data on the x axis can be

replaced by time (Figure 5.21).
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Figure 5.21. The Young’s modulus vs. time curve for a box of crosslinked
filaments under extensional strain

The data appears qualitatively linear. Suppose that the Young’s modulus at the

midpoint in time of the next continuum step is given by the last data point in Figure
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5.21. How well can this value at time tmid be predicted by utilizing a subset of the

data points in Figure 5.21 and a linear approximation function? Figure 5.22 shows least

squares lines for varying numbers of data points and the predicted elasticity modulus at

tmid. The relative errors between the true value and the predicted value are shown in the

table in Figure 5.2.1 along with a log-log plot of the number of steps versus the error.

The choice in the number of data points to utilize will depend on the error one is willing

to tolerate.
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Figure 5.22. The true data points and linear least squares function con-
structed from 3, 5, 10, and 15 data points to predict the Young’s modulus
at tmid.

A low number of microsteps may suffice for producing a good approximation to the

elasticity moduli at tmid, but this small amount of data may not be enough to extrapolate

accurate PDFs for reinstantiation. To demonstrate this, a second test was run where data

collected from varying numbers of microsteps was utilized in the extrapolation procedure
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Number Relative

of Error

MicroSteps (E − E0)/E0

3 0.0353
5 0.0272
10 0.0141
15 0.00678
18 0.00402
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Figure 5.23. The relative error in Young’s modulus found for increasing
numbers of data points used to construct a linear least squares function to
predict the Young’s modulus at tmid in a log-log plot.

to predict the PDFs at time tp. These PDFs were used to produce new networks. The

average Young’s modulus of the new networks at time tp was compared against the

original network’s Young’s modulus at time tp. The relative error versus number of

microsteps used is shown in Figure 5.2.1 along with a log-log plot. In order to get the

same level of accuracy in reinstantiation as the tmid elasticity modulus prediction, more

data points must be included.

Number Relative

of Error

MicroSteps (E − E0)/E0

5 0.1682
10 0.0813
15 0.0615
20 0.0217
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Figure 5.24. The relative error in Young’s modulus found for increas-
ing numbers of data points used in the PDF extrapolation algorithm to
reinstantiate a new network at a future point in time in a log-log plot.
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Different error tolerances may be deemed acceptable in the elasticity modulus predic-

tion versus the network reinstantiation. Whichever error tolerance is more restrictive will

determine the necessary number of microsteps. In this situation, it is important to have

high accuracy for both approximations, however the accuracy of the elasticity modulus

prediction becomes dependent on the network reinstantiation’s accuracy after the first

step. If large errors are incurred during network reinstantiation due to the use of a small

number of microsteps, the elasticity modulus prediction during this next step will also

likely have large errors. For these examples, it will therefore be a priority to make the

network reinstantiation procedure as accurate as possible, while still maintaining com-

putational efficiency. A number of microsteps n will be chosen that is considered to be a

reasonable compromise between the two goals.
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CHAPTER 6

Model Application

Now that the novel continuum-microscopic model and relevant biological background

have been presented, the utility of the full algorithm will now be demonstrated. First,

the three-dimensional, linear elasticity equations will be presented since these will be

the equations that are solved at the continuum level. This will then be followed by

simulations performed on a rectangular patch of model cytoskeleton.

6.1. Three-Dimensional Elasticity Equations

In order to describe the motion of the cytoskeleton as an elastic body, the three di-

mensional, linear elasticity equations will be utilized. The deformation the cytoskeleton

experiences during a protrusive activity or during locomotion would be classified as large

deformation as opposed to infinitesimal deformation. Generally, linear elasticity equa-

tions would not be valid in such a case. However, for these applications, the microscopic

model provides locally valid elasticity moduli for each grid cell during each continuum

step. These moduli will vary in both space and time, and will alter the linear elasticity

equations being solved in each cell during each time step. In this format, the linear

elasticity equations are being utilized in a local, piece-wise sense. The updated moduli

from the microscopic model provide the non-linearity to this large deformation problem

The following derivation was modeled after the one found in Chapter 22 of [50]. Begin

with the 3 × 3 stress and strain tensors:

σ =










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σ31 σ32 σ33
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The strain tensor for small deformations is ǫij = 1
2

(

∂δi

∂xj
+

∂δj

∂xi

)

with δi the displacement

and xj the direction. Equations of motion can be formulated from this definition by

taking the time derivative of this equation and using the equality of mixed partials:

ǫ11
t − ux = 0 ǫ12

t − 1

2
(uy + vx) = 0

ǫ22
t − vy = 0 ǫ23

t − 1

2
(vz + wy) = 0

ǫ33
t − wx = 0 ǫ13

t − 1

2
(uz + wx) = 0

where u = ∂δ1
∂t

, v = ∂δ2
∂t

, w = ∂δ3
∂t

are the velocities in the x, y, z directions. We can obtain

three more equations by using Newton’s law, F = ma:

ρut − (σ11
x + σ12

y + σ13
z ) = 0

ρvt − (σ21
x + σ22

y + σ23
z ) = 0

ρwt − (σ31
x + σ32

y + σ33
z ) = 0

where ρ is a density. So far, this provides a total of 9 equations for 15 unknowns (6

independent σ values, 6 independent ǫ values, and 3 velocities), so 6 more equations

are needed to close the system. This can be done by utilizing the linear stress-strain

relationship: σij = Cijklǫ
kl, with Cijkl containing two independent parameters, the Lamé

coefficients λ and µ. The quantity µ is the shear modulus and λ is relatable to the

Young’s modulus E of the material by the following relationship:

λ =
µ(E − 2µ)

3µ − E

The values E and µ are obtained from the microscopic model in the following way. The

local values of σij and ǫij are computed within each grid cell using the methods described

in previous chapters and Appendix A. Then a least squares problem is used to estimate

E from the following three equations: σii = Eǫii, i = 1, 2, 3. The µ value is then obtained
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utilizing the relationship:

µ =
E

2(1 + ν)

where ν the material’s Poisson ratio. The Poisson ratio can be found by the following

formula:

ν = −1

2

(

tr(ǫ)E

tr(σ)
− 1

)

where tr(ǫ) = ǫ11 + ǫ22 + ǫ33 and tr(σ) = σ11 + σ22 + σ33. The stress-strain relationship

looks like:
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These six equations complete the system of equations for the 15 unknowns. These six

equations can be used to eliminate either the stress or strain variables to reduce the

system to 9 equations for 9 unknowns. For instance if strain is eliminated, the resulting
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set of equations is:

σ11
t − (λ + 2µ)ux − λvy − λwz = 0

σ22
t − λux − (λ + 2µ)vy − λwz = 0

σ33
t − λux − λvy − (λ + 2µ)wz = 0

σ12
t − µ(uy + vx) = 0

σ23
t − µ(vz + wy) = 0

σ13
t − µ(uz + wx) = 0

ρut − (σ11
x + σ12

y + σ13
z ) = 0

ρvt − (σ21
x + σ22

y + σ23
z ) = 0

ρwt − (σ31
x + σ32

y + σ33
z ) = 0

This system of equations can be written in conservation form as;

qt + Aqx + Bqy + Cqz = 0

with q = [σ11, σ22, σ33, σ12, σ23, σ13, u, v, w], and A, B, C matrices of dimension 9 × 9.

Wave propagation techniques developed by LeVeque in [50] can then be applied to evolve

the q variables forward in time.

6.2. Patch Simulations

As a test of the full algorithm, a rectangular area of cytoskeleton will be simulated.

The size of the portion of cytoskeleton will be 10µm × 100µm and will be 1µm thick,

which is a reasonable size for an area of the cytoskeleton of a large cell (for instance a

neuron).

This rectangular patch of cytoskeleton is discretized into 1000, 1µm × 1µm × 1µm

grid cells. These will be the continuum level grid cells upon which the elasticity equations
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will be solved. This cytoskeleton will be placed under an extensional strain. The left

side of the cytoskeleton is attached to a fixed wall and a sine wave stress will be applied

uniformly on the right end. The top and bottom sides are free to move (Figure 6.1). These

computational experiments can be likened to physical experiments done with optical

tweezers on a real cytoskeleton.

10 µ m

100 µ m Stress

Figure 6.1. Discretized 10µm × 100µm × 1µm portion of cytoskeleton,
attached at the left to a wall and under an extensional strain on the right.

6.2.1. Simple Demonstration. As a control case, the deformation of the cytoskeleton

is first modeled only with the continuum equations where E and µ are constants over

space and time. The left column of plots in Figure 6.2 shows σxx at several time steps

during this continuum simulation. The right column of Figure 6.2 shows σxx at the

same time slices as the control case. However in this case, one of the 1000 grid blocks

is simulated with the continuum-microscopic algorithm and has its elasticity moduli

updated by the microscopic model. The block (denoted B) was chosen near the right

edge of the cytoskeleton so that any changes in stress that result from different elasticity

moduli would appear quickly in the simulation (Figure 6.3).

At the start of each continuum step, a microscopic network is constructed within

block B utilizing the PDF extrapolation and reinstantiation techniques described in the

previous chapter. This network is then deformed for a short number of micro-time steps

and new elasticity moduli are computed from the data. These elasticity moduli are then

utilized in the continuum level advancement of the elasticity equations for this grid cell.

Spring constants for the filaments in the network were chosen so that the elasticity moduli

of block B come out to be roughly one order of magnitude smaller than the E and µ
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Patch of Cytoskeleton under Extensional Strain
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Figure 6.2. The left column shows time plots of σxx in the cytoskeleton
with elasticity moduli E and µ constant in space and time. The right
column shows the same time slices of σxx with elasticity moduli E and
µ constant in space and time, except for one block whose moduli were
determined by the microscopic model.
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Stress

Block B

Stress

Column C

Figure 6.3. The right end of the cytoskeleton patch with block B high-
lighted in green in the left picture and Column C highlighted in green in
the right picture. For the one block example, block B’s elasticity moduli
will be updated via the microscopic algorithm, while the rest of the grid
cells have constant E and µ values. The same is done for the blocks in
Column C in the second example.

constant values in the rest of the domain. This was done so that the differences would

be visible in the stress plots. Lower moduli mean that waves travel slower through block

B. Forces do not propagate as fast through block B as through its neighbors, resulting

in a different stress field.

In a real cell, an area with a lower elasticity modulus could be explained physically

in several ways. It could be an area with a lower number of crosslinks, perhaps due to

a lack of crosslinking protein monomers in the interstitial fluid. It could also be an area

that has a higher concentration of filament severing proteins that depolymerize the actin

fibers at a faster rate, creating a gap-filled, looser network with a lower stiffness response.

6.2.2. One Block Test. Consider the same patch of cytoskeleton, again where the

continuum equations will be solved everywhere utilizing constant E and µ values except

in block B (where the microscopic model will update the moduli). Suppose one continuum

step is of length dtcont and that one microstep is of length dtmicro = dtcont/m where m is

the number of microsteps in one continuum step. The goal of the continuum-microscopic

algorithm is not to evolve the microscopic network all m microsteps, but rather to evolve

it a shorter number of steps n, (n ≪ m) and extrapolate the rest of the data up through
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microstep m. The hope is that a network constructed from the extrapolated data at the

next continuum step will be similar to the original network if it had been simulated over

the full continuum step. To test this, the continuum-microscopic algorithm that takes

n microsteps to update block B’s moduli (denoted for short as case MR = Microscopic

Reinstantiation) will be compared against results from a test where the original network

in block B was evolved through the whole simulation. This case will be denoted as

the FM (Full Microscopic) case. The same spring constant values utilized in the initial

demonstration will be used here (again so that differences will be more visible). Plots of

σxx are shown in Figure 6.4 with left and right column graphs depicting the FM and MR

cases respectively at the same time slices. Qualitatively the results look similar however

there are some small differences.

One can make a quantitative comparison between the two cases by looking at how

the elasticity moduli change over time in block B in each simulation. Figure 6.5 shows

the Young’s modulus of block B during each continuum step for the FM (in black) and

MR (in red) cases. Figure 6.6 shows the relative error in Young’s modulus between the

two cases over each continuum step.

There are several things to note from Figure 6.5. First, in general there is more vari-

ability of the Young’s modulus in the MR case than the FM case, which is to be expected.

The MR case has a different network reinstantiated at each continuum step, while the

FM case follows the deformation of the original network through the full simulation. As

seen from the data in Figure 5.18 the elasticity moduli of the reinstantiated networks can

vary, even though their average is close to the original network’s value. This variability

is due to factors such as different connectivity of crosslinks and the changing number and

locations of filaments attached to the walls. Unlike Figure 5.18, Figure 6.5 shows only

one MR path over time. Because there are some random elements in the reinstantiation

procedure, other runs with the same starting data will produce different elasticity moduli

paths. The variability in the data points in these paths will increase with each continuum

step (after each reinstantiation). The increase in variability is quantitatively visible if
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Figure 6.4. Time plots of the σxx stress in the cytoskeleton with elasticity
moduli E and µ constant in space and time, except for block B whose
moduli were determined by the microscopic model. The left column is the
FM case and the right column is the MR case.
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Figure 6.5. The Young’s modulus of block B during each continuum step
for the FM (black) and MR (red) cases.

one looks at the relative error in Young’s modulus (shown in Figure 6.6) between the MR

and FM cases of Figure 6.5. The error is generally smallest during the first few contin-

uum steps (errors in the range of 5 − 10%), but they become larger as the computation

continues. The slope of a regression line through the data in Figure 6.6 is approximately

0.015 (if the two extreme relative error points are removed). This means that the relative

error in Young’s modulus increases by roughly 1.5% after each continuum step.

For these examples, the predicted data utilized in the construction of a new network

at the start of each continuum step is based only on the previous network’s data. This

could be altered to include more past networks’ info which would presumably improve

the model’s accuracy. (This is something to be investigated in future work). Also, it

is important to note the elasticity moduli affect the speed of the elastic waves passing

through the medium. Small variations in the elasticity moduli that result from the

reinstantiation procedure will lead to different wave speeds, which in turn will lead to

different boundary conditions for the grid cell during the next time step. These different

boundary conditions are then used in the reinstantiation procedure. The grid cell in

the FM and MR cases at the same continuum time step may not be in the exact same
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Figure 6.6. The relative error in Young’s modulus of block B between
the FM and MR cases during each continuum step.

continuum state. Also as mentioned earlier the filaments in block B were assigned spring

constants that produced elasticity moduli well below the E and µ values of the rest of

the grid cells. Any small initial differences in the FM and MR cases are likely to be

magnified as the computation goes on due to the large differences between this cell and

its neighbors. This aspect will be corrected in the column example.

Having discussed these possible error sources, if one takes a qualitative look at Figure

6.5, the general shape of the Young’s modulus curves in the MR and FM cases is quite

similar. Both curves start off with an initial concave down section that then levels out and

rises to another peak towards the end. The largest relative errors of approximately 300−

400% which occur around continuum steps 50 may seem unacceptably high. However

looking at Figure 6.5, these relative errors occur at points where the second peak of the

FM case is shifted over from the second peak of the MR case. Though the errors may seem

large in a step by step comparison, the general behavior of the two cases is qualitatively

similar and they produce qualitatively similar stress fields. A quantitative comparison of

the stress (σxx) found in block B over time for the FM and MR cases is shown in Figure

6.7, and the relative errors are shown in Figure 6.8. Overall the errors in stress are lower
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than the errors in Young’s modulus. Having lower errors in the continuum level variables

is important since they determine the overall deformation state of the cytoskeleton.
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Figure 6.7. The relative error in Young’s modulus of block B between
the FM and MR cases during each continuum step.
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Figure 6.8. The relative error in Young’s modulus of block B between
the FM and MR cases during each continuum step.

One last aspect to discuss about this first example is the computational time. The

point of doing the continuum-microscopic model versus a full microscopic model is to
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reduce computational expense. In these examples, the number of micro-time steps m per

continuum step was 25. The continuum-microscopic model performed n = 10 microsteps

during each continuum step. The value of 10 was chosen based on the results of basic tests

such as those conducted at the end of Chapter 5 that provide estimates of errors incurred

by utilizing various numbers of microsteps. The MR simulation took approximately 4

hours to run, while the FM simulation took roughly double the amount of time at about

8 hours. The reason the MR simulation took half the time as opposed to 2/5 of the time

(10 vs. 25 microsteps per continuum time step) is that the bisection algorithm of the

reinstantiation procedure does take some computational time. This process equates to

approximately 2 microsteps worth of time.

6.2.3. One Column Test. In this second example, the same patch of cytoskeleton

receives the same extensional stress on its right end as in the one block example. In

this case, the elasticity moduli will be computed with the microscopic algorithm for all

the blocks in the highlighted column in Figure 6.3. Since the stress is applied uniformly

across the right edge, these Bi (i = 1..10) blocks in column C (as they will be denoted)

should generally experience the same stress/strain states at the continuum level with

some differences arising due to edge effects at the top and bottom of the column. A

microscopic network with the same number of filaments N with uniformly distributed

orientations will be laid in each block in column C during the first instantiation. For this

example, spring constants were assigned to the filaments that produce elasticity moduli

close to the E and µ values of the rest of the domain that match parameters found in the

literature. The Young’s moduli computed during this first step for the blocks in column

C is shown in Figure 6.9 on the left. The Young’s moduli for the same column of blocks

at a later point in time is also shown in Figure 6.9 on the right. The variance of the

moduli at the later point in time is approximately an order of magnitude higher than at

the beginning. This increase in variance is due to many of the same factors mentioned

in the one block example. Small differences in the initial moduli will lead to differences

in wave propagation through those cells which will alter the continuum variables. These
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differences will then feed back into the reinstantiation process during the next step and

create a wider variation in the new elasticity moduli.
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Figure 6.9. The Young’s modulus of the 10 blocks in Column C at the
beginning (left) and after several continuum steps (right).

As in the one block case, the stress field for σxx will be compared for an MR and

FM case. Time plots of σxx for the two cases are shown side-by-side in Figure 6.10. The

results are qualitatively similar. The average relative error in σxx over the blocks Bi in

Column C between the FM and MR case over time is shown in Figure 6.11. In general the

errors are in the range of 5− 10% which is an improvement over the one block example.

As in the one block case, it is interesting to look at how the elasticity moduli of

the MR case compare to those of the FM case. The left column of Figure 6.12 shows

examples of the comparison in Young’s moduli for four of the ten blocks in the column.

The behavior is similar to that of the one block case in that there is more variability

in the MR values than in the FM values, but overall the two curves take on the same

general shapes in each block. The networks in the blocks in this column have the same

potential error sources as the one block case. The relative errors in Young’s modulus for

these four example blocks over time are also shown in Figure 6.12 in the right column.

Relative errors over 1 are not present which is an improvement over the one block case.

The errors are still in the 50% range, however as mentioned in the one block case this is the

step-by-step comparison which may be unfair to examine since the blocks in the FM and

MR cases may be in slightly different strain states stemming from initial variations in the
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Figure 6.10. Time plots of σxx in the cytoskeleton with elasticity moduli
E and µ constant in space and time, except for the blocks in Column C
whose moduli were determined by the microscopic model during each time
step. The left column shows the FM case while the right column shows the
MR case at the same time slices
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Figure 6.11. The average relative error in σxx of the blocks in column C
between the FM and MR cases during each continuum step.

moduli. Regression lines through these relative errors have slopes between 0.002−0.006.

With each continuum step the relative errors increase approximately 0.2 − 0.6%.

As in the one block case, there is an approximately 50% reduction in computational

time with the MR simulation versus the FM simulation. The MR simulation took approx-

imately 40 hours to run in serial mode and the FM simulation took about 80 hours. The

code was also run with parallelization. Because the microscopic blocks deform individ-

ually during the microsteps, they can be evolved simultaneously on parallel processors.

This algorithm performs the microscopic advancement on the ten blocks in Column C,

thus ideally the code should be able to run about ten times faster in parallel mode. The

code with microscopic reinstantiation that took about 40 hours to run in serial mode, took

approximately 14 hours in parallel mode, which is about three times faster. The main

reason for this is that, the parallel code can only go as fast as the slowest microscopic

advancement. If one block takes longer (more iterations) to reach a state of minimal

energy than the rest of the blocks, the parallel code must wait for this minimization to

finish before it can move back to the continuum solver. The speed up should improve for

cases with more blocks where more processors are used.
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Figure 6.12. The left plots show the Young’s modulus of blocks 3, 4, 8
and 9 of Column C for the FM (in black) and MR (in red) cases during
each continuum step. The right plots show the relative error in Young’s
modulus of blocks 2, 3, 5 and 8 of Column C between the FM and MR
cases during each continuum step.
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The continuum-microscopic algorithm could be sped up further by utilizing a sam-

pling technique to minimize the number of necessary reinstantiations. For example, if

grid cell i, j experiences no change in its strain state from continuum step tn to continuum

step tn+1, the elasticity moduli should also not change. Doing a microscopic reinstan-

tiation during this time step wastes computational time and could also introduce error

since the new network will likely have slightly different elasticity moduli than the original.

The elasticity moduli found for time step tn should be used for time step tn+1. There

are several ways that sampling could be introduced into the continuum-microscopic algo-

rithm. One possibility is to simply check the differences in strains from tn to tn+1. If the

magnitude of the change is above a given threshold then microscopic reinstantiation and

computation of new elasticity moduli should take place. If the change is too small, this

grid cell will be skipped and its elasticity moduli will remain the values they were at tn.

Another way of implementing the same idea is to utilize an idea similar to the Adaptive

Mesh and Algorithm Refinement (AMAR) of Garcia et al. [28]. The microscopic algo-

rithm is only utilized in regions where fine grids are required to resolve the solution. The

continuum-microscopic algorithm presented in this thesis has been coded in the Bearclaw

framework [58], and includes adaptive mesh refinement capabilities. If mesh refinement

is required in an area of the domain to better resolve the variables (due perhaps to shock

waves or other large differences in variable values between adjacent grid cells), then this

grid cell will be flagged to be run through the microscopic algorithm in order to update

its elasticity moduli. In this thesis work, the first technique will be tested. The method

involving adaptive mesh refinement will be explored in future work.

The same one column simulation will now be run with the sampling technique de-

scribed above. If the strain state of block Bi in column C does not change significantly

from tn to tn+1 then the elasticity moduli computed at tn will be utilized in the continuum

advancement at tn+1. Plots of the Young’s modulus of the MR with sampling (MRS)

versus the FM case for the same four blocks as Figure 6.12 are shown in Figure 6.13

along with plots of the relative error between the two cases. The FM, MR, and MRS
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time plots of the Young’s modulus for the four blocks are shown all together in the plots

in Figure 6.14.

Although the relative errors may not have changed very much between the MR and

MRS cases, doing the sampling does appear to provide some qualitative improvements.

The MRS case has less variability than the MR case. The trends in the MRS case appear

more stable, and are qualitatively similar to the FM case. The average relative error in

σxx for these ten blocks over time with the MRS case is shown in Figure 6.15. In general

the errors tend to be smaller for the MRS case, especially later on in the simulation,

which is likely a result of the more stable elasticity moduli that it produces.

Utilizing the sampling method also offers a reduction in computational expense. The

MR code which took 14 hours in parallel mode, took approximately 10 hours to run in

parallel with sampling.

6.3. Full Simulation

For the full simulation, all blocks in the domain had their moduli updated by the mi-

croscopic reinstantiation (with sampling) algorithm. An FM simulation was also carried

out for comparison purposes. Figure 6.16 shows plots of the Young’s modulus over time

for the MRS and FM cases of six blocks in the domain. As in the one block and one

column case, the trend of the curves is similar. Relative errors in the Young’s modulus

(though not shown) look similar to the one column case.

The average relative error in stress σxx taken over a subset of the blocks is shown in

Figure 6.17. These errors are again in the 10% range. A comparison of σxx between the

MRS and FM simulation for an example block is also shown in Figure 6.17.

What is important to take away from these examples is the following: (1) variability

is present in the simulations with microscopic reinstantiations, however the general trend

in the evolution of the Young’s moduli is similar, (2) the continuum-level variables such

as σxx show significantly smaller errors than the moduli themselves which is important

since these variables determine the overall state of the cytoskeleton, (3) errors in the
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Figure 6.13. The left plots show the Young’s modulus of blocks 2, 3, 5
and 8 of Column C for the FM (in black) and MRS (in blue) cases during
each continuum step. The right plots show the relative error in Young’s
modulus of blocks 2, 3, 5 and 8 of Column C between the FM and MRS
cases during each continuum step.
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Figure 6.14. The plots show the Young’s modulus of blocks 2, 3, 5 and 8
of Column C for the FM (in black), MR (in red), and MRS (in blue) cases
during each continuum step.

range of 5− 10% for the continuum variables are an acceptable trade-off for a savings of

50 − 75% of the computational time.
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Figure 6.15. The average relative error in σxx of the blocks in column C
between the FM and MRS cases during each continuum step.
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Figure 6.16. The Young’s modulus of six blocks for the FM (in black)
and MRS (in blue) cases during each continuum step.
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Figure 6.17. A comparison of the evolution of σxx in the FM and MRS
case. The average relative error in σxx over a subset of blocks in the domain.
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CHAPTER 7

Conclusion

This research effort has focused on the development of a novel continuum-microscopic

algorithm to model biological materials undergoing deformation. The work in this thesis

will now be summarized. This will be followed by a discussion of the main contributions

this reseach provides in the field of computational biomechanics and the conclusions that

can be drawn from the presented results. Finally the chapter will conclude with a section

on future work that will be done to further improve and extend the research.

7.1. Summary

The goal of this reseach was to examine the problem of modeling the cytoskeleton of

an animal cell. At the whole-cell level the cytoskeleton is often modeled as a continuous

medium, however its microstructure reveals a complex network of crosslinked filaments.

This structure is heterogeneous in space and in time and thus its elastic properties also

vary with space and time. This means that the tensor Cijkl in the constitutive law

σij = Cijklǫkl which closes the elasticity equations utilized to model the cytoskeleton as

continuous media cannot be assumed to be constant. The microscopic structure of the

cytoskeleton must play a role in modeling this material’s deformation. Developing an

algorithm that can perform this task was the goal of this thesis work.

Chapter 1 began with a brief history of the development of continuum mechanics, and

the notions of stress and strain. The derivation of several basic constitutive relationships

for homogeneous objects such as a string, beam, membrane and plate was then pre-

sented. These equations were straightforward to develop due to the material’s assumed

homogeneity. These derivations are not so simple when the material is heterogeneous,



because the constitutive laws are no longer spatially independent. As a simple intro-

duction, a constitutive relationship was derived for a composite material. Composites

still have a regular pattern to their heterogeneity and thus homogenization techniques

are applicable. In materials like the cytoskeleton, this is not the case. If a continuous

model of the cytoskeleton is abandoned in favor of a full microscopic model, one quickly

determines that such a model is computationally intractable. A class of methods that

has been developed to try to address this issue is known as continuum-microscopic (CM)

models. Examples include the Heterogeneous Multiscale Method [25], Adaptive Mesh

and Algorithm Refinement [28], and the Equation-Free Method [43]. The basic idea

behind these algorithms is to have two physical scales (continuum and microscopic) that

are governed by two different physical laws (e.g. Navier-Stokes and molecular dynamics).

These methods try to capitalize on the speed of a continuum level simulation while still

including microscopic information. The equations at the micro-scale are advanced a short

number of time steps, and data collected from this evolution is used to update parame-

ters at the continuous scale before those equations are advanced next. The benefit of a

CM algorithm is that it is a computationally efficient way of incorporating microscopic

information into the continuum level equations. An issue that has not been addressed

by the CM models mentioned above is how to maintain an accurate representation of

the microstructure throughout the simulation. Since the microscopic model is not be-

ing fully advanced during each continuum step, the question becomes how to predict the

state of the microstructure at the beginning of the next continuum step. The CM models

mentioned here utilize known families of distributions (e.g. Gaussian and uniform distri-

butions) to instantiate microscopic states at future points in time. All information from

previous micro-states is lost and no memory of the material’s heterogeneous structure is

retained. In a material like the cytoskeleton, the microscopic data is valuable for deter-

mining the elastic properties of the cell and retaining memory of the microstructure is

necessary for capturing observed behaviors such as strain hardening. This research effort

is focused on developing computationally efficient algorithms that address this issue.
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Chapter 2 began with detailed background information on the biology of the cy-

toskeleton and the cellular activities it participates in. This was followed by a discussion

of the computational modeling difficulties of performing a purely microscopic simulation

of the entire cytoskeletal network in a cell during deformation. Because of the expense,

microscopic models of the cytoskeleton are reserved for small patches of the network to

understand how the cytoskeleton behaves in a local region of the cell. If a whole cell

model is desired, the typical avenue is to use a continuum model of the cytoskeleton as

a porous medium or highly viscous fluid, or to utilize a coarse grained network repre-

sentation. A list of cytoskeleton modeling methods both continuous and discrete was

presented in Section 2.4 along with the applications for which they were utilized. In

Section 2.5, the difficulties with utilizing these methods for a whole cell model of cellular

deformation is explained. The basic continuum-microscopic algorithm that will be used

to model the cytoskeleton is then presented, with the main goal being to retain memory

of the microstructure from continuum step to continuum step.

Chapter 3 provided the basic definitions and theorems from probability theory that

were utilized in the development of the microscopic reconstruction algorithm. The mi-

croscopic algorithm requires PDF estimation and the extrapolation of PDFs forward in

time. PDF estimation is a central problem in the field of statistics, and non-parametric

estimation (required for this algorithm) is particularly challenging. Several different non-

parametric PDF estimation techniques were presented and tested on a data set (whose

underlying PDF was known) to try to determine which method would be the best to use

for the microscopic algorithm. Kernel estimation and histogram interpolation produced

the lowest errors and were thus chosen as two possible methods for the algorithm. Least

squares approximation was chosen as the PDF extrapolation technique.

Concepts from thermodynamics were also presented in Chapter 3. It is important that

the microscopic systems being reinstantiated during each continuum step obey certain

continuum level constraints such as having the correct number of elements in a system,

and correct values for the volume and energy of a system, while still being in a state
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of equilibrium. Thermodynamics provides a means for constructing microscopic systems

that are both in equilibrium and embody certain macroscopic characteristics. This is done

by setting up an entropy maximization problem, or an equivalent energy minimization

problem.

Chapter 4 contains an example of a one block cytoskeletal network. The example is

utilized to demonstrate that the microscopic data such as filament orientation and strain

does not conform to known PDF families of distributions and also that the distribution

of data changes over time as the network is deformed. This provides evidence for the

need for non-parametric PDF estimation, and also the need to follow the evolution of

these PDFs over time. The chapter also contains several simple examples of finding

equilibrium states for systems of filaments, given certain macroscopic constraints. At

first an entropy formulation is used since an energy constraint is provided. However,

writing an expression for the entropy becomes difficult for complex systems, thus the

problem is recast as an energy minimization problem that includes an energy constraint.

Chapter 5 detailed the development of the microscopic algorithm. One block examples

were utilized to test different ideas. Simple cases such as a block of parallel filaments and

a block of non-crosslinked filaments were presented first. These first two cases did not

utilize an energy minimization procedure since they were already in equilibrium states

from their construction. In each block example, a network was created, the block was

deformed via an extensional strain, data on filament orientation and strain was collected,

PDFs of these data sets were constructed and utilized to generate a new network either

at the same point in time or sometime in the future. The parallel filament case was useful

for confirming that the general algorithm was working properly. In the non-crosslinked

filament case, it was determined that single variable PDFs for the two angles and strains

was not an acceptable data collection method due to the correlation between the angles

and the strain. Two different techniques to address this issue were presented. The first

technique utilized a deterministic relationship to assign a strain to each filament based

on the orientation of that filament and the overall strain of the block. This method
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was successful at creating networks of non-crosslinked filaments with similar elasticity

moduli to the original network. Such a deterministic relationship would likely no longer

hold true in a crosslinked network. This prompted the development of a strain binning

method. In this method, the strains of filaments with similar orientations were saved

into bins. A normal distribution for the strain was constructed within each bin based on

this saved data, creating a piecewise joint PDF which was then utilized to assign strains

to filaments during reinstantiation. This method was also successful in its endeavor to

create networks with similar elastic properties to the original.

Finally an example with a fully crosslinked network of filaments was tested. When

this network was deformed an energy minimization procedure was utilized to rearrange

the internal filament segments and crosslinks. Network reinstantiation was done utilizing

the strain binning method. This method failed to produce a network with similar elastic

properties to the original. The new network began with a configuration and stored energy

close to that of the original, however an application of the energy minimization procedure

to settle the network was causing a large drop in stored energy and thus a large drop in

the elasticity moduli of the block. To fix this problem, a new target function similar to

ones developed in the thermodynamics examples, in conjunction with a bisection type

method, was employed to create a network with the correct stored energy that was also

in a state of mechanical equilibrium. This resolved the problem and the method was

successful at producing networks with similar properties to the original at current and

future points in time.

With the basic algorithm complete, Chapter 6 contained a demonstration of the full

continuum-microscopic model for the simulation of a rectangular piece of cytoskeleton.

Simulations where the microscopic reinstantiation procedure was used to update the

elasticity moduli of one block, a column of blocks, and all the blocks were compared

against simulations where the elasticity moduli of the same blocks were updated by full

microscopic evolution of the original networks. Results showed greater variability in the

moduli of the microscopic reinstantiation cases versus the full microscopic cases, but the
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data took on the same general shape. Possible sources of error for these comparisons were

discussed. The continuum level variables that dictate the overall state and shape of the

cytoskeleton had much lower errors. The small errors of the microscopic reinstantiation

procedure are a small price to pay for the large savings in computational time that this

algorithm offers in comparison to a full microscopic simulation.

7.2. Discussion

The motivation for the development of this algorithm was to model complex biologi-

cal materials such as the cytoskeleton undergoing deformation. At the cellular level the

cytoskeleton is often perceived as a continuous medium, but its microscopic scale struc-

ture is a highly heterogeneous network of fibers. Creating computational models of this

material at the whole cell scale that accurately model its microstructure is a challenge.

The solution has often been to ignore the heterogeneous nature of the cytoskeleton in

a purely continuum level computation or to create a detailed model of a small portion

of cytoskeleton [59]. Continuum-microscopic models are one possible way of combining

the two scales into one algorithm. The problem with current CM models is that the

microscopic data utilized to update continuum level parameters is discarded after each

continuum step. No memory of the microstructure is retained. In heterogeneous materi-

als like the cytoskeleton this is a problem, because the filaments form certain patterns and

configurations under different strains and losing this information will lead to inaccurate

predictions for continuum level parameters such as elasticity moduli.

The new method developed in this research performs the basic CM algorithm, but

with the added feature that the microscopic data is saved in the form of probability

distribution functions. These PDFs are then extrapolated forward in time and utilized to

instantiate a microstructure at the next continuum step that resembles the microstructure

of the original network at the same future point in time. This method provides an

accurate way of determining the local elastic parameters (both in space and in time)

that are then passed on to the continuum level equations to close the system. A purely
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continuum level equation set with constant elasticity parameters would not capture the

variability of the elastic moduli that come about from the structure’s heterogeneous

nature.

A full microscopic simulation of the cytoskeleton is computationally intractable. The

CM model presented here cuts the computational expense by 50%, if reinstantiations are

done during each continuum time step, and by 75% when a sampling method is applied.

In conclusion, this new method offers a computationally efficient algorithm for mod-

eling continuous media that incorporates the variability of its mechanical properties that

stem form its heterogeneous structure. Though the method has been demonstrated for

modeling the cytoskeleton, the general algorithm should be employable in a variety of

applications.

7.2.1. Publications from this Research. This research effort has produced several

publications. The first paper entitled “A numerical model of cellular blebbing: A volume-

conserving, fluidstructure interaction model of the entire cell” was published in the Jour-

nal of Biomechanics, Volume 43, Issue 2, January 2010. This paper presented a compu-

tational model of cellular blebs, a fluid-filled protrusion of the cell membrane that forms

when the cytoskeleton and membrane separate. The main focus of this model was the

interaction between the cellular fluid (cytosol) and the membrane since this process is

what drives bleb formation. The model included a coarse-grained representation of the

actin-myosin cytoskeleton, which plays a role in bleb initiation and retraction. Constant

mechanical parameters were used to describe the elastic response of the cytoskeleton.

This model successfully captured the blebbing phenomenon.

The desire to improve this first model by replacing the coarse-grained cytoskeletal

model with a model that would capture the medium’s time and space-varying behavior

was the main inspiration for this thesis work. The novel continuum-microscopic algo-

rithm and results presented in this thesis has been summarized in an article entitled “A

continuum-microscopic model of fibrous, heterogeneous media with dynamic microstruc-

tures” and submitted in May 2010 to SIAM Multiscale Modeling and Simulation. A
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generic fibrous medium was utilized to demonstrate the model. The macroscopic and

microscopic models for this material were described, as well as the microscopic reinstan-

tiation and energy correction procedures. Results from a full microscopic simulation were

compared to the results from the new algorithm. Emphasis was placed on the efficiency

and accuracy of this new model.

The first publication on blebbing also spawned an invitation to contribute a chapter

to the book Cellular and Biomolecular Mechanics and Mechanobiology edited by Amit

Gefen, in the Springer series Studies in Mechanobiology, Tissue Engineering and Bio-

materials. The chapter was entitled “Multiscale computation of cytoskeletal mechanics

during blebbing” and was accepted for publication in May 2010. The goal of this work

was to incorporate the large range of scales present in the blebbing process into one

computational model. These scales range from the molecular level where biochemical re-

actions take place, to the cellular level where large changes in cytoskeleton and membrane

shape occur. The computation includes three models: continuum, kinetic and molecular,

that are advanced together and interact with one another in a time-parallel algorithm.

This efficient model is able to capture changes at the macroscopic scale brought on by

changes at the microscopic scale.

A third paper is planned for the fall of 2010 that will present the statistics-based,

continuum-microscopic model from the thesis for a cytoskeletal application. As will be

discussed in the “Future Work” section below, some modifications need to be made to the

current algorithm in order to make it more applicable to biological materials. Namely,

viscous damping from interstitial fluid will need to be added both to the macroscopic

elasticity equations and to the microscopic model’s energy minimization procedures.

7.3. Future Work

This research has laid the basic framework for a microscopic reinstantiation procedure

that can be incorporated in a continuum-microscopic model. There are several computa-

tional improvements still to be made and other avenues to explore to increase the model’s
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efficient. For the cytoskeleton application, additions will be made to the network model

to include more realistic biological features. Finally as stated before this new algorithm

is not confined to work only for the cytoskeleton, but could be utilized for numerous

applications involving heterogeneous media.

One goal of future work will be to improve the accuracy of the reinstantiation pro-

cedure. Several possible methods have already been suggested in the thesis but will be

mentioned again here. The current model bases the reinstantiation on only the previous

network. The algorithm will be adjusted to include more past information, which should

improve the accuracy of the extrapolated data. The extrapolation procedure itself will

also be examined. Currently the extrapolation is done utilizing least squares approxima-

tion functions created from the data. The basis functions utilized in the approximation

are orthogonal Legendre polynomials, but other basis functions should be tested to see

if another set produces better approximations. One can also experiment with the num-

ber of terms or degree of the approximating function. The functions in the examples

presented in this work are parametrized by time, but one could also parametrize them

by continuum strain state and/or strain rates. Parameterizing the functions with more

variables will require more data points, but this may be possible if more past network

data is included.

In terms of computational efficiency one area that will be explored further is that of

sampling. As mentioned previously the current algorithm does not perform a microscopic

reinstantiation in a cell whose strain state has not changed over the previous continuum

step. If a particular activity in the cell (such as a protrusion forming) is confined to

a small area, then only the grid cells in this localized area will have their continuum

level parameters recomputed. The rest of the grid cells will use the parameter valuse

computed during their last strain state change. Another way of implementing this would

be to utilize the adaptive mesh refinement routines already built into the Bearclaw code

as a flagging mechanism for microscopic reinstantiation. If an area of the domain needs to

be resolved to a finer grid to compute its solution, this is likely an area where variables are
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changing and is thus an area that should have its continuum level parameters updated.

This method will be tested against the computational efficiency of the current method

to see whether any speed-up can be gained.

The microscopic model utilized in this algorithm captures the crosslinked network

structure of the cytoskeleton. However several additions could be made to make the model

more biologically realistic. In the real cytoskeleton, crosslinks can break and reform based

on forces and the presence or absence of various proteins. When the network is strained,

crosslinks should be allowed to break if too much force is generated in the deformation.

Likewise, after a deformation has taken place, new crosslinks should be allowed to reform

if two filaments are close enough together. One could also add the presence of various

crosslinking proteins by assigning concentration levels of each type of monomer over the

domain. These levels could be utilized to compute probabilities of crosslink formation or

severing in different areas of the cell. The presence of other types of cytoskeletal proteins

such as actin and myosin could also be introduced to the model. Myosin is known to

generate forces in the cytoskeleton by sliding actin filaments over one another [2]. The

presence of myosin filaments in the cytoskeleton can change the elastic properties of the

network, and thus would be another interesting addition to make to the model.

One important issue that has not been addressed by this cytoskeletal model is the

presence of cytosol (the interstitial fluid). A fluid-structure interaction algorithm was

completed with a very simple cytoskeleton in previous work [83]. This new model focused

on creating an improved model of the cytoskeleton, but has not yet been coupled to a

fluid solver. The presence of fluid surrounding the network will produce friction, which is

a loss of energy. The system would no longer be conservative. The energy minimization

procedure used to move the filaments during a microscopic deformation step will have to

be altered to account for this damping. The reinstantiation procedure that minimizes a

function of the form F (X) = (U(X)−U0)
2+U(X) that was derived from thermodynamics
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will also have to change to reflect the presence of the fluid. A full cytoskeleton-fluid-

membrane continuum-microscopic model of the cell will be a longer term goal of this

research.

The networks created in the examples presented in this thesis were non-affine, meaning

that even though a uniform strain was applied to the network, strain was not uniformly

distributed among the filaments in the network (due to energy minimization). During

reinstantiation strains were assigned to the filaments based on strain data collected from

the previous network in that grid cell. A new continuum strain state of the block is

found by advancing the elasticity equations. Theoretically the average strain state of the

microscopic network should match the strain state of its overlying continuum grid cell.

How to enforce this is unclear. This issue is a very interesting open research question

and one that will be pursued in future work as well.

Lastly, there are many interesting, possible applications of this new algorithm to pur-

sue. The cytoskeleton alone is involved in a diverse array of cellular activies including

mitosis, apoptosis, and cell spreading and migration. Continuum-microscopic models

have yet to be applied to many of these phenomena and thus there is plenty of research

opportunities available in these areas. Though the model in this thesis was developed

for the cytoskeleton, the general framework of this novel continuum-microscopic model

should be applicable to many multiscale problems that require microscopic data to up-

date continuum level parameters. One particular problem of interest is to utilize these

algorithms to model the human retina. Many diseases and abnormal conditions of the

eye stem from the malformation or breakdown of the retina. The retina at the scale of

the human eye looks like a continuous tissue that lines the back of the eye. However,

microscopically it has a very complex structure composed of interconnected layers of dif-

ferent types of neurons. Very little computational modeling of the retina has been done

thus far, and the development of a continuum-microscopic model will hopefully shed light

on the retina’s mechanical behavior in people with visual impairments caused by retinal

problems.
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This research effort has laid the groundwork for a new class of continuum-microscopic

models that retain memory of the microscopic data over time. With continued develop-

ment and improvement, hopefully these new algorithms will be useful for many different

multiscale problems in a variety of reseach fields.
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APPENDIX A: Numerical Methods

A.1. Energy Minimization

After a block has undergone an overall strain, the internal filament segments and

crosslinks need to react to this strain. The expectation is that they will rearrange them-

selves to positions of minimal energy. The energy function looks like:

E =

n
∑

j=1

kj(L
j − Lj

0)
2

2

where this sum is over all filament segments and crosslinking springs. The Lj is the

current length of the spring and Lj
0 is the equilibrium length. The quantity kj is the

spring constant for that spring, which is different for springs of different lengths. If E is

the elasticity modulus of the filament material, then the spring constant is computed by

the following relationships:

F = k∆l Hooke’s Law for springs

F

A
= E

∆l

l
Hooke’s Law in general

F =
AE

l
∆l

k =
AE

l

where l is the spring length and ∆l is the displacement of the length from equilibrium.

The cross-sectional area A of the filament is assumed to be the same for all filaments and

a unit value.

This energy system may look like a simple quadratic, but it is actually not due to

the three-dimensionality of the problem. What needs to move in order to minimize the

energy are the interior points of filaments and crosslinks, which each have 3 coordinates

(x, y, z) that define their location. The energy is dependent on the spring’s current length
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Li, which can be written in terms of the coordinates as:

Lj =

√

(xj
1 − xj

0)
2 + (yj

1 − yj
0)

2 + (zj
1 − zj

0)
2

where the 0 and 1 index the two endpoints of this filament segment. The energy is

therefore:

E =
n
∑

j=1

kj(
√

(xj
1 − xj

0)
2 + (yj

1 − yj
0)

2 + (zj
1 − zj

0)
2 − Lj

0)
2

2

Taking partial derivatives of this expression with respect to each x0, y0, z0, x1, y1, z1 and

setting these equal to zero will yield a nonlinear system of equations. To solve such a

system an iterative procedure is used.

A gradient search algorithm was employed to find the optimal position of the filament

and crosslink endpoints that minimize the total energy. The basic idea of a gradient

search is to taken the current position of the system and move each point in the negative

gradient direction. The gradient vector of a surface always points in the direction of

steepest increase, so the negative of this vector will be in a decreasing direction towards

a minimum. Close to the minimum, the gradient vector should be close to the zero vector,

and this will be the indication to stop the iteration. The iteration looks like:

xnew = xold − α∇E

The parameter α is the distance traveled down the gradient before looking for a new

direstion of travel. Typically, α is not known ahead of time, but ideally it should be chosen

so that the move α∇E finds a minimum for E in this direction. A method for estimating

α can be established by assuming that in the vicinity of the current position xold on

the energy landscape along the gradient direction ∇E line, the surface is a parabola.

An equation for this parabola by finding three points along the gradient line, with the

first and third point having larger energy values then the middle, second point. With

these points, a Lagrange polynomial of degree two is constructed. The minimum of the

parabola is found and this gives an estimate for α.
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A.2. Grid Mappings

Due to the complex shape of a typical cell, the cytoskeleton cannot be gridded by a

simple three-dimensional Cartesian grid. An unstructured grid will be used to discretize

the domain where the grid cells will be hexahedra. During each instantiation step, new

filament networks must be laid within each grid cell, and doing so in a complex 3D shape

is computationally challenging. A more efficient and simple method is to to construct the

filament networks within a unit cube cell and then map the network to its corresponding

hexahedra in physical space (Figure 0.1).

Figure 0.1. A unit cell in computational space and a corresponding grid
block in physical space.

Let ξ, η, τ be the coordinate variables in computational space and x, y, z the variables

in physical space. The unit box where each network will be constructed has dimensions

[−1, 1] × [−1, 1] × [−1, 1] in computational space. This box needs to be mapped to a

hexahedra in physical space defined by eight corner points: (xi, yi, zi) i = 1..8. Given a

point ξ, η, τ in the unit box, it can be mapped to a point (x, y, z) in physical space by:

x = f(ξ, η, τ) =

8
∑

i=1

xiNi(ξ, η, τ)(A.1)

y = g(ξ, η, τ) =

8
∑

i=1

yiNi(ξ, η, τ)(A.2)

z = h(ξ, η, τ) =

8
∑

i=1

ziNi(ξ, η, τ)(A.3)
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where Ni(ξ, η, τ) are the following functions:

N1(ξ, η, τ) =
1

8
(1 − ξ)(1 − η)(1 − τ) N2(ξ, η, τ) =

1

8
(1 + ξ)(1 − η)(1 − τ)

N3(ξ, η, τ) =
1

8
(1 + ξ)(1 + η)(1 − τ) N4(ξ, η, τ) =

1

8
(1 − ξ)(1 + η)(1 − τ)

N5(ξ, η, τ) =
1

8
(1 − ξ)(1 − η)(1 + τ) N6(ξ, η, τ) =

1

8
(1 + ξ)(1 − η)(1 + τ)

N7(ξ, η, τ) =
1

8
(1 + ξ)(1 + η)(1 + τ) N8(ξ, η, τ) =

1

8
(1 − ξ)(1 + η)(1 + τ)

There are some instances in the code where it is necessary to do the reverse mapping

from physical to computational space. Given x, y, z, the goal is to find ξ, η, τ . This can

be done by solving the equations in A.1-A.3 for ξ, η, τ . This is a nonlinear system of

3 equations. It can be solved using Newton’s method for three variables. One variable

Newton’s method finds the solution to the nonlinear equation f(x) = 0 by carrying out

successive iterations of:

xnew = xold −
f(xold)

f ′(xold)

For this case with 3 variables, the updating formula becomes:

(A.4)











ξnew

ηnew

τnew











=


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



ξold

ηold

τold











−











fξ fη fτ

gξ gη gτ

hξ hη hτ











−1 









f(ξold, ηold, τold)

g(ξold, ηold, τold)

h(ξold, ηold, τold)











Due to the simplicity of equations A.1-A.3 the partial derivatives in A.4 can be computed

exactly, and the inverse of the matrix can also be found analytically. This iterative

procedure is run until convergence is reached.

A.3. Least Squares Approximation

Least squares approximation is a technique which seeks to create a function that

minimizes the distance between itself and a set of data points (like a regression line).

This method is used to construct functions through the time data of variables such as

angle, strains and total energy in order to have a method of approximating future data.
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In mathematical terms, data points (xi, yi), i = 1..m are given, and the goal is to find

a function f(x) =
∑n

j=1 ajφj(x) such that:

S =
1

m

[

m
∑

i=1

(f(xi) − yi)
2

]1/2

is minimized. Here, φj(x) are a set of basis functions and aj are coefficients. In order

to minimize this sum, partial derivatives with respect to each xi are taken and set equal

to zero. This system of equations is equivalent to setting up and solving the following

overdetermined system of equations: Ax = b with A an m × n matrix containing the

basis functions φj(x) evaluated at the xi’s, b an m × 1 vector containing the yi’s, and x,

an n × 1 vector containing the unknown aj coefficients.

























φ1x1 φ2(x1) ... φn(x1)

φ1x2 φ2(x2) ... φn(x2)

... ... ... ...

... ... ... ...

φ1xm φ2(xm) ... φn(xm)











































a1

a2

....

an



















=

























y1

y2

...

...

ym

























The choice of basis functions is dependent on the type of data. In the simulations in this

thesis, the Legendre polynomials: [1, x, 1
2
(3x2 − 1), 1

2
(5x3 − 3x)...] were used for the basis

set.

To solve the overdetermined system Ax = b, both sides of the equation are multiplied

by AT (the transpose of A):

AT Ax = AT b

This is the normal equation for the least squares problem. This system is equivalent to

the system of partial derivatives of the S(x) sum. This linear equation set can be solved

via Gaussian elimination. Once the coefficients aj in vector x have been found for the

approximating function f(x), it can be used to predict the behavior of the data at other

points xnew.
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A.4. Stress and Strain Tensor Computation

This section describes how the three-dimensional stress and strain tensors will be

computed.

Ideally, when the energy minimization is run, the system should settle to a position

where the forces over all the faces of the block sum to zero. If this is the case, then the

stress tensor can be filled in by finding the forces on the faces and dividing by the area

of the faces. However, using a gradient search procedure to find a solution to the energy

minimization problem can create some numerical error. It is an iterative algorithm that

stops when the error in solution is below a certain threshold. The lower the threshold

the more accurate the solution. However a lower threshold will require more iterations

to reach a solution and thus more computational time. One must balance the two goals

of accuracy and low computational expense.

Before explaining how the stress tensor is computed in such a situation, evidence of

convergence of the gradient procedure will first be presented. As stated above, the more

iterations that are done, the more accurate the results should be. To test this, the energy

minimization procedure was run for an increasing number of iterations. At each level,

the total force in the x direction on the block was computed. This value represents the

error made by the energy minimization procedure. The graph of the number of iterations

versus the error in total force is shown in Figure A.4. Convergence is occurring at an

approximately linear rate.

These numerical errors (though small) produce a non-physical situation. An im-

balance of forces suggests that the block is in motion, which is not the case. Before

computing the stress tensor the forces need to be adjusted so that they represent a phys-

ical scenario. There are six faces on a block, and each face has a computed force vector.

The forces on a face are determined by adding up the spring forces of any filaments

attached to that face. The force vector for face i is given as (f i
x, f

i
y, f

i
z), thus there are 18

total forces computed for the block. Figure 0.3 shows a diagram of a block that will be
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Number Relative Error

of Iterations in Total Force

1000 0.0395
2000 0.0354
5000 0.0226
10000 0.0113
20000 0.00383
50000 0.000193
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Relative Error in Total Force vs. Number of Gradient Iterations

Figure 0.2. A log-log plot of the number of gradient procedure iterations
versus the error in total force (in the x direction) on the three-dimensional
block. The blue data is the actual values, and the black line is the regression
line through the data, with slope -1.25.

used as a reference to set up the equations that need to be satisfied to have a physically

correct system.

Figure 0.3. Diagram of a network block to use for reference in the force
calculations. Face 3 is the front face, and face 4 is the back face of the box.

To satisfy a zero translation criteria, the following equations must be satisfied:

f 1
x + f 2

x + f 3
x + f 4

x + f 5
x + f 6

x = 0(A.5)

f 1
y + f 2

y + f 3
y + f 4

y + f 5
y + f 6

y = 0(A.6)

f 1
z + f 2

z + f 3
z + f 4

z + f 5
z + f 6

z = 0(A.7)
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Besides these equations, zero rotation conditions must also be satisfied. This gives three

more equations that need to be satisfied:

f 2
y + f 3

x − f 1
y − f 4

x = 0(A.8)

f 1
z + f 6

x − f 2
z − f 5

x = 0(A.9)

f 4
z + f 5

y − f 3
z − f 6

y = 0(A.10)

The 18 force values must satisfy the 6 conditions in A.5 - A.10. With the numerical error

from the gradient procedure, these conditions are likely not exactly satisfied. To adjust

the 18 force values to make them satisfy the conditions a least squares projection will be

done. The 18 forces can be represented in an 18-dimensional phase space with one point.

The 6 physical conditions can be represented in this phase space as a hypersurface. The

6 equations intersect in this 18-dimensional space with a 12-dimensional hypersurface.

To goal is to project the 18-dimensional force point onto this surface and do so with an

orthogonal projection to minimize the changes made to the force values. The procedure

goes as follows:

(1) Find a basis for the 12-dimensional space.

(2) Form the 18 × 12 matrix A with the basis vectors as the columns.

(3) Put the current force values into an 18 × 1 vector b.

(4) Set up the overdetermined linear system: Ax = b, where x represents the pro-

jection of b onto the 12× 1 vector x, which can be found on the 12-dimensional

surface.

(5) This is now a least squares type problem, which can be solved by forming the

normal equations: AT Ax = b and finding x via Gaussian elimination.

For this situation, to find the basis, it will simplify notation to use the alphabet letters

[a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r, s] for [f 1
x , f 2

x , f 3
x , f 4

x , f 5
x , f 6

x , f 1
y , f 2

y , f 3
y , f 4

y , f 5
y , f 6

y , f 1
z , f 2

z , f 3
z , f 4

z , f 5
z

If Equations A.5 - A.10 are converted to the alphabet letters, and 6 variables (a, c, i, l, m, r)
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are eliminated, a vector belonging to the desired hypersurface will look like:

(A.11)
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−b − g − 2d + h − e − f

b

g + d − h

d

e

f

g

h

−g − h − j − 2k + p − q

j

k

q + k − p

n + e − f

n

p

q

−2n − e + f − p − q − s

s













































































































This vector can be written as a sum of 12 orthogonal vectors, one for each of the 12

remaining letters. The x solution vector will give the values of (b, d, e, f, g, h, j, k, n, p, q, s)

and then Equation A.11 can be used to find the remaining 6 letters.

The strain tensor for each block must also be computed. This can be done by using

the definition of strain in terms of displacement. For finite strains:

E =
1

2
((∇u)T + ∇u + (∇u)T · ∇u)
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where u is the displacement vector. The displacement of each block is available from the

continuum level equations by using the velocities and the time step. Finite differencing

can be used to find the spatial derivatives of the displacement to fill in the components

of the strain tensor.
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