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ABSTRACT

JENNIFER J. YOUNG: Cytoskeleton Micromechanics: A Continuum-Microscopic

Approach

(Under the direction of Sorin Mitran)

Creating accurate, whole-cell scale models of the cytoskeleton is computationally
challenging, due to the material’s highly heterogeneous microstructure. Continuum-
based models, homogenization methods, and coarse grained models are common model-
ing approaches. These methods utilize constant-in-time, average mechanical properties,
whereas continuum-microscopic (CM) models utilize a microscopic model to periodically
update local mechanical parameters for a macroscopic model. CM methods have been
used for heterogeneous media with unchanging microstructures. This research focuses
on extending a basic CM algorithm to model heterogeneous media with time-varying
microstructures. Microscopic data is saved over time in the form of probability distri-
bution functions. These PDFs are then extrapolated forward in time to predict what
the microstructure will look like in the future. Keeping track of the microstructure over
time allows for the accurate computation of the local mechanical parameters used in the
continuum-level equations. The model was tested on a rectangular domain, representa-
tive of a cytoskeleton. Results showed that the elastic parameters computed with this
algorithm are similar to those computed with a fully-microscopic simulation. Errors for
continuum level variables (such as stress) in the 10% range are deemed an acceptable

trade-off for the 50 — 75% savings in computational expense offered by this algorithm.
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CHAPTER 1

Introduction

Many natural phenomena involve multiple length and time scales. These different
scales arise as a result of the discrete nature of matter. As an illustrative example of a
separation of length scales, consider an ideal gas, which is composed of discrete molecules.
The mean free path A is the average distance a molecule travels before colliding with
another molecule. Three basic length scales can be defined by introducing a dimensionless
value K, (known as the Knudsen number) defined as A\/L where L is the physical length
scale of interest. If K < 1 then the length scale of interest is much larger than the
mean free path. With K ~ 1, the length scale of interest is close in magnitude to A, and
collisions between molecules become observable. Lastly, if K > 1, then the length scale
of interest is small compared to . Separation of scales also exists for time. Using again
a gas example, consider a mole sample of gas in an enclosed macroscopic sized container
that is in a state of non-equilibrium. Three time scales, 7, 7, 73, can be established with
71 the average time it takes a molecule to traverse the length of the container, 7 the
average time between collisions, and 73 the average time it takes for a collision to occur
[52]. The particular phenomenon to be modeled will dictate the scale (or scales) that
are important to focus on to capture the desired behavior.

Each scale warrants a different modeling approach. As a general illustration consider
the dynamics of fluids. The fluid motion for the K < 1 case (e.g. river flow) can be
well described by the Navier-Stokes equations. At the K < 1 level, a Boltzmann-like
equation can be employed to model the dynamics of the fluid particle distribution. At

K =~ 1, Newton’s law of molecular dynamics can be applied to model the positions and



velocities of individual fluid molecules. Zooming in to the K > 1 case the Schrodinger
equation of quantum mechanics can be utilized [25].

When creating a computational model, the goal is to include as many components as
needed to accurately capture a specific behavior. A more detailed model that includes
many of the smaller scale components will increase the accuracy of the model, but may
significantly slow down the computation. Numerical analysts seek to strike a balance
between creating realistic but efficient models. Going from the above scale descriptions,
if the goal is to model flow in a river the most logical choice would be to employ the
Navier-Stokes equations. Newton’s law could also be used to model the individual parti-
cles to capture the same overall fluid motion, but due to the large number of molecules
in a region of river the molecular dynamics computation would be computationally in-
tractable. (More details on computational difficulties will be presented in chapter 2.)
The decision is made to view the river’s fluid as a continuum, meaning that the hetero-
geneous, microscopic structure of the material is ignored [47] and is treated instead as a
continuous, homogeneous fluid.

The choice to model a material as a continuum is motivated by the economy of de-
scription. If the variables describing the discrete, microscopic elements can be averaged
without the loss of information then a continuum description is an efficient model choice.
However, there are some instances where fluctuations and structural heterogeneities at
the microscopic scale, do affect behavior at the continuum level. In these cases, a purely
continuum-based model would likely fail to capture these microscopic effects. The de-
velopment of computational models of the dynamics of continuous media which include
data from the microscopic scale is the subject of the following thesis work. The goal of
this research is to create efficient numerical models that approximate macroscopic con-
stitutive laws which accurately capture the non-equilibrium microscopic behavior that
is observable in deforming biological material, such as the cell cytoskeleton. To achieve
this goal, concepts from kinetic theory, statistical mechanics, and probability theory are

utilized to create a continuum-microscopic model that retains memory of the microscopic



variables without having to carry out a full microscopic simulation. The model is demon-
strated for the example case of the cell cytoskeleton, a highly heterogeneous, crosslinked
filament network.

The structure of the thesis is as follows. First a brief synopsis of the history of contin-
uum mechanics, its governing equations and basic examples will be presented. Next, bio-
logical background on the cell cytoskeleton will be described, followed by a presentation of
current research in cytoskeletal modeling. Chapter 3 will be comprised of two motivating
examples that demonstrate the need for a more comprehensive, microscopically-informed
continuum model of the cytoskeleton. In Chapter 4, general mathematical theory needed
to construct the model will be presented. This will be followed by Chapter 5, which
describes the development of the main algorithm. Finally, in Chapter 6, a basic applica-
tion of the algorithm will be demonstrated, and the chapter will conclude with ideas for

future work.

1.1. The Development of Continuum Mechanics

Describing a material as continuous ignores the media’s discrete, molecular structure
[47] and instead characterizes it as being comprised of homogenized matter that com-
pletely fills the space. The study of the mechanical behavior of continua is the subject of
continuum mechanics [48]. A brief history of continuum mechanics will first be presented.
This will be followed by derivations of the elementary notions of stress and strain put
forth by scientists such as Hooke, Navier, Cauchy and Poisson. This will be followed by
a presentation of the equations of motion for basic continuous, homogeneous bodies such
as a string, membrane, beam and plate. Composite materials will then be discussed, as
a lead-in to the more complicated modeling of highly heterogeneous materials. Finally,

current multiscale and continuum-microscopic modeling techniques will be described.

1.1.1. Early History. The experimental work of Robert Hooke led to his 1660 discov-
ery of a linear relationship between stress and strain in spring-like objects. This law

was stated in Hooke’s De Potentia Restitutiva with the Latin phrase “Ut tensio sic vis”,



meaning “As the expansion, so the force”. After this discovery, the next one hundred
fifty years of research included: (1) work related to the theory of beams and thin rods
by Leonhard Euler, Jacob Bernoulli and Daniel Bernoulli; (2) Coulomb’s discussion of a
non-extensional strain known today as shear; (3) the solidification of the idea of an elas-
ticity modulus of a material by Thomas Young; (4) the extension of rod theory to shells
and plates by Euler, a younger Jacob Bernoulli, and Sophie Germaine; (5) Newton’s
concept of media, that a material is composed of small, finite-sized parts that interact
through forces. These notions laid the groundwork for the theory and equations of stress
and strain put forth by Navier, Cauchy and Poisson in the early 1800’s.

Navier took the Newtonian concept of a solid and formulated the first general equa-
tions to describe the equilibrium and vibrational states of elastic bodies. He replaced
the notion of discrete molecules (that to Newton had finite size) with the idea of an
infinitesimal material point. He assumed that the forces between two material points in
a body when the distance between them was changed, was proportional to the change
increment and to the initial distance between the points. His equations of motion are
written in terms of displacements, and they contain a meterial-specific constant (the first
notion of a material-specific elasticity modulus). In 1821, Fresnel introduced the novel
idea that waves could travel through an elastic medium. This concept attracted both
Cauchy and Poisson to the study of elasticity. Cauchy soon worked out many of the
fundamental ideas of elasticity such as stress, strain and the principal axes of stress and
strain. He also formulated his own equation of motion, similar to Navier’s, but it utilized
two elastic constants as opposed to one. Concurrently, Poisson developed a similar set of
equations and also contributed many interesting applications of the general theory. (All

historical information from [54].)

1.1.2. Strain. Strain is a measure of how much an object has been stretched, compared
to its equilibrium state. Begin with an elastic body and a point on the body with position
vector r = (x,z9, x3) in Cartesian space. (Vectors will always be noted in bold face.)

If this body gets deformed, point r is moved to r’. Let u = r’ — r be the displacement



vector, and in component form it can be written as: w; =z, — x; where i = 1,2, 3. Take
two points on the body r; and ry that are a small distance apart (infinitesimal) and
compute the vector between them to be: dr = r; — ry. These points are then displaced
to new locations r} and r), after deformation has occurred. The relations: u; = rj — ry

and uy = r, —ry and also du = u; —u, can be established (See Figure 1.1 for a diagram).

Ficure 1.1. Diagram of displacement of infinitesimal line segment

The vector between the new points can be written in terms of the initial points and
displacements as follows:
dr’' = r| -1
dI'/ = (I‘l + ul) — (I‘Q + llg)
dI‘l = (1'1 — I'Q) + (111 — 112)

dr’ = dr +du

The length of a vector between two points is simply the distance formula:

|dr| = \/d2? + da3 + dz3. The length between the two deformed points can be expressed
as:

dr'| = |dr + du
|



Call this deformed length | = |dr'| and L = |dr| will be the undeformed length. The
difference [ — L is known as the stretch. The expression [2— L? is a measure of deformation,
and can be utilized to define strain in terms of displacements. The current squared length

can be written as:

> = |dr+ dul?

> = (da? +dx3 + dod) + 2dxiduy + 2dxoduy + 2dzsdus + du? + duj + dul

3 3
(1.1) * = L*+ ZZ dx;du; + Zduf
i=1 i=1

The differential du; can be replaced with 2?21 g;f? dz;, and Equation 1.1 can be rewritten
J

as:

(1.2) l2—L2+223:23:auidx'dx-jng:izg:auidaz-%dx
' a Oz, T Lz 0x; T Oz, g

i=1 j=1

The second term can be rewritten as:

(in a symmetric form), and in the third term the ¢ and & indices can be swapped:

Ou Oy
8.’,13']‘ aSL’Z

d[[’id{['j

Replacing these two expressions back into 1.2 (and using repeated index summation

notation) gives:

8’&@' + 0uj
al‘j 8x,

8uk 8uk

ZQ:L2+(

Grouping the last two terms together:

(1.3) P = (6“" 0y Qe O

dx;dz;
&xj * 8@ al‘j 8x,) Tt



Equation 1.3 can be written succinctly as:
l2 — L2 = QEZ]dSL’ZdSL’]

where [;; is the Green strain tensor:

B — 1 (8ul- u; N 8uk8uk)

2 Oz, * Ox;  Ox; Ox;

Tensor £;; is symmetric and has been derived from a Lagrangian formulation where points
in the body are labeled by their initial states. It makes intuitive sense as an expression
describing strain because if there is no change in length (> — L? = 0) then E;; = 0.
This includes rigid body motion (translations and rotations), whose displacements may
be non-zero but £;; still vanishes. This tensor can also be easily related to the notion of

strain as the ratio of change in length to equilibrium length:

l2 — L2 = ZEZ]dZL‘ZdZL‘j

[—L

L

Q

Eyjdrdz;

where dz; and d;cj are simply normalized vector components.
The above strain tensor E is valid for both large and small deformation situations
and is also commonly known as the finite strain tensor. It can be written in terms of the

displacement gradient tensor Vu as:

E= %((Vu)T +Vu + (Vu)” - Vu)



If deformations are small, meaning Ou,;/0z; < 1 then the finite strain tensor can be

reduced to the infinitesimal strain tensor:
1 T
E = 3 ((Vu)" + Vu)

This is a result of the fact that if displacement gradients are small, then the product of

Qug Juy
8m]~ ox;

neglected. (Derivation from [36, 48]).

two such quantities: will be several orders of magnitude smaller and can thus be

Both notions of finite and infinitesimal strains will be used in the following thesis
work. The cytoskeleton experiences large strains on the length and time scales of the
formation of whole cell protrusions. On the microscopic scale, small displacements occur
rapidly due to thermal and biochemical flucations, and at this scale infinitesimal strain

theory can be assumed over successive micro-time steps.

1.1.3. Stress. Stress is defined as the average force per unit area.

F
_:O'

A

Like strain, there are different representations of stress depending on the magnitude
of deformation. The Cauchy stress tensor (written in an Eulerian framework) is valid
for small deformations (where the deformed and reference states are very close), and is

expressed as:
Ozez Ogy Ozz

S}

Oyz Oyy Oyz

Opz Ozy Oz

Given an infinitesimal cube upon which surface forces are acting, the tensor can be
interpreted as follows: the first index 7 indicates the direction of the force and the second
index j gives the direction of the normal vector to the surface. (See Figure 1.2 for a
diagram.) Normal stresses (stresses acting on a surface perpendicular to that surface)
are along the diagonal of the stress tensor. Tangential (or shear) stresses appear in the

off diagonal positions [48]).
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FIGURE 1.2. Components of the Cauchy stress tensor (from www.stiintaazi.ro)

The Cauchy stress tensor can be utilized to find the stress on any surface element dA
of an elastic body, as long as the normal vector to that surface is known. This relationship
is simply

T=cg-'n

where T is the computed stress vector on the surface of interest, and n is the normal
vector to that surface [36].

The Cauchy stress tensor is symmetric. This can be shown by utilizing concepts of
angular momentum and moments. The angular momentum vector L can be defined as
L = [Iw where I is the moment of inertia and w is the angular velocity. A moment
M is defined as the cross product of a moment arm vector r and a force vector F, and
describes the rotational forces on an object. The following relationship can be established

by Newton’s second law:

dL
T - XM
% = erF



where o is angular acceleration. Using Figure 1.2, consider the net moment that would
cause a rotation of the cube around an axis placed through the centers of the top and
bottom faces. The forces acting on the four sides around the cube that could cause
rotations are the four shear forces: o,,dxdz and o,,dydz (each repeated twice). Given
the forces along with corresponding moment arms, all with their correct signs so as to

produce the same direction of rotation, the net moment (in the z direction) can be written

as:
d d d d
Z M, = axyd:cdz—y — aymdydz—x + amydxdz—y — aymdydz—x
2 2 2 2
Y M. = ogdadydz — oy, drdydz
(1.4) Z M, = (04 — 0y)dxdydz
(1.5) Ia, = (04 — 0y)dedydz

The moment of inertia of a cube rotating around the axis described above is given by:
(1.6) I= %dxdydz((dx)Q + (dy)?)
where p is a mass density. Substituting 1.6 into 1.5:

%d:cdydz((dx)Q + (dy)?)a, = (04y — 0y0)dadyds

This relationship has to hold even as the cube is made arbitrarily small. Cancelling
dxdydz from both sides and sending both dx and dy to zero means that the angular
acceleration a will tend to infinity in order to equal the quantity: (o, — 0,,). An
infinite angular acceleration is non-physical, thus oy, — 0y, = 0 or 0,y = 0,,. Similar
results are obtained by constructing equations for the two other axes of rotation. The
conclusion is that:

Oij = 0ji
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As mentioned earlier, the Cauchy stress tensor is valid for small deformations. For
large deformations, the Piola-Kirchhoff stress tensors (first and second) provide La-
grangian descriptions of stress expressing the forces and areas in terms of reference states.
To define these two stress tensors, let X be the initial position vector of a point, and
let x(X,¢) be the current position vector. The displacement vector can be defined as:

u(X,t) = x(X,t) — X. The displacement gradient tensor can be expressed as:

qu = Vxx —l

where 1 is the identity tensor and the gradient was taken with respect to the reference
vector X. The quantity Vxx is often labeled as F and is called the deformation gradient

tensor. The first Piola-Kirchhoff stress tensor P is defined as:

—Jo-F 7T

(lae!
=1

where g is the Cauchy stress tensor, the —7" indicates the inverse transpose, and J =
det(F). This stress tensor relates forces in the current state to areas in the reference
state.

The second Piola-Kirchhoff stress tensor S expresses both the forces and areas in

terms of the reference state. This tensor is defined as:

—JF'!'. .- F7T

0]
I~

A linear relationship can be established between stress and strain by generalizing
Hooke’s law:

0ij = Cijri€rl

where Cjjy, is the stiffness tensor. Both o and € are second order tensors with 9 elements
each. The tensor Cjjy; is a fourth order tensor, containing 81 elements. In the case of
Cauchy stress, the symmetry of o and ¢, along with a strain energy relationship, allow

Cijr to be reduced to 21 independent entries. If the body is isotropic, meaning that it

11



has the same material properties independent of direction, then these 21 values can be
reduced to two. Extensional behavior and shear behavior will each be described by one

material parameter.

Cijrl = N0ijOr + 20101051

where A and p are the Lamé coefficients [36], and the ¢’s are Kronecker deltas. The

linear stress-strain relationship can be written succinctly as:

Oij = NOjj€rk + 2165

Stress and strain can be related nonlinearly as well. Determining an accurate stress-
strain relationship (denoted as a function of the general form: o(¢)) for a particular
material is one of the major goals of continuum mechanics research. These constitutive
relationships depend on the structure and material properties of the medium as well as
the type and magnitude of forces applied. There is also the potential added complex-
ity of time variability. This is particularly true for biological materials (like the cell
cytoskeleton), whose material properties change over time due to structural rearrange-
ments induced by biochemical reactions and external forces [2, 27, 82]. These structural
changes occur at the microscopic level. To accurately model such a material at the
continuum-level will require information from the micro-scale. This information must be
periodically fed to the continuum level to keep the constitutive law up-to-date.

Developing an accurate continuum-scale, computational model of the deformation of
the cell cytoskeleton is the main goal of this thesis. In order to model deformation,
the dynamic elasticity equations will be solved. These equations require a relationship
between stress and strain in order to close the system. Numerically modeling this rela-
tionship at the continuum level, utilizing time-varying microscopic data in an efficient

manner is the central focus of this research work.

12



1.2. Simple Continuum Models

The derivation of continuum-level equations of motion for a homogeneous string,

membrane, bean and plate will now be presented.

1.2.1. String. The equation for longitudinal motion in a uniform string can be derived

by starting with a discrete mass-spring system (Figure 1.3).

UGN AN (NN

FIGURE 1.3. A simple mass-spring system

This discrete system is composed of N point masses (each of mass m), that in the
zero stretch state are spaced a distance h apart from one another. Let wu;(¢) be the
displacement of mass j at time ¢ from its zero stretch position. Between every two
masses, place a spring of stiffness £ and equilibrium length h. Newton’s Law (F' = ma)
can be used to describe the motion of this mass-spring system. Mass j will feel forces

from masses j — 1 and j + 1. The equation of motion for mass j can be written as:

miig(t) = k[(uj(t) —w;(t)) = (u;(t) = uja (1))

miij(t) = k[ujea(t) — 2u;(t) + uj-1 (1))

m

Taking the limit of h — 0, gives:

u(x,t) = Xum(a:, t)

where zero stretch position z € R replaces the j integer valued numbering system for
the discrete point mass positions. This is the familiar wave equation with £ = kh the
Young’s modulus of the string material and A = m/h a linear mass density. This is a
continuum-level constitutive law valid for describing the longitudinal motion of the string

whose parameters (F, \) do not depend on the microscopic scale data.

13



A similar equation can be derived for transverse motion in a uniform string. Let

w(x,t) be the transverse displacement of the string above the z axis (See Figure 1.4).

ya

T(x+0x,t)
T (x,1)

5x. x

FIGURE 1.4. The transverse motion of an elastic string

When a string is displaced transversely, a tension 7' is created in the segment. This
tension can be represented as a vector T with x and y components by using the sin and
cos of the angle 6 the string makes with the z axis.

4oz
T - cos(6
T = (6)

T - sin(0)

T

dx is the length of the segment of string under this tension. Assuming the transverse

ow

displacements are small, sin(f) can be approximated by ‘;—? ~ o

. Similarly, cos(#) can
be assumed to be close to 1. This gives the tension force as:

r+ox

T
T =

ow
T3

xT
Newton’s law can be used to write an equation for the transverse motion of the string.

For this example, the transverse direction is the y direction, thus the equation is:
A (2, t) = Twey(x, 1)

where A\ is again a linear mass density. The right hand side comes from the second

component of the vector aa—rf which gives the net force acting on the string in the y

direction. This is once again a wave equation like in the longitudinal case [36].
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1.2.2. Membrane. The equation of transverse motion for a thin,flexible membrane is
an extension of the elastic string model to two dimensions. Begin with a two-dimensional

mass-spring system as seen in Figure 1.5.
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FIGURE 1.5. A two-dimensional mass-spring system

There are N x N masses in the discrete system, each of mass m. A spring of stiff-
ness k and equilibrium length A is placed between each pair of masses, creating a two-
dimensional grid (Figure 1.5). Let w; ;(t) be the transverse displacement of mass 4, j from
its zero stretch state (Figure 1.6). The inertial portion of Newton’s law for mass i, j is
given by ma; ;. The forces acting on that mass stem from the differences in displacement
between that point and the four surrounding spring-connected mass points. There are
two springs that emanate from the mass in the x direction and two in the y direction.

The forces can be calculated form Hooke’s law as was done for the string:

Fo= k[(wis1;(#) —wi(t) — (wi;(t) — wi1 (1))
+ (Wi (t) —wij(t) — (wi;(t) — wij1(1))]

Fo= k(w1 (t) — 2w;;(t) + wi1 () + wijea(t) — 2wi5(t) +wij1(t))

1h2 Wiy1,5(t) — 2w; () + wi—15(t) + w1 (t) — 2w; 5(t) + w; 51 (2
h2

mi;;(t) =
As in the string case, take the limit as h — 0 to obtain

T
wtt('rvyvt) = X(wl“l“(xvva + wyy('rvyvt))
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where the positions € R,y € R replace the integer indexed mass points, A\ = m/h?

is a mass per unit area parameter, and 7' = k is the tension per unit length. This is a

two-dimensional wave equation [60].

R
L, /L:%?W\\T:

|
f”// | N\
L

FIGURE 1.6. An elastic membrane undergoing transverse displacement
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L

1.2.3. Beam. For the case of a beam, the same longitudinal equation of motion can be
derived as in the string case as long as the cross-sectional area A of the beam is uniform.
The transverse motion equation will be different because of the added dimension of
cross-sectional area which introduces an internal structure to the beam. Besides tension,
a beam also experiences shear as its inside layers rub over one another as the beam bends.

This shear force will be labeled N and its direction is chosen as the transverse direction

(See Figure 1.7 for force diagram).

N(x+ ox,t)
T > T(x+0x,1)
M (x,1)
liT Tﬁfx + 0x,1)
T(x,1) /l o
N(x,1)

F1GURE 1.7. The forces and moments on a segment of beam

The shear force vector therefore looks like:

r+dox



The transverse displacement equation can be written as:

TaQ_w+a_N— aQ_w
or2  dr Ot

The next step is to relate N and w. This is done by first relating the shear force with

the bending moment M. By Newton’s second law:
dL
B M
D
where L is the angular momentum. When a section of beam, (length dz) is bent, its

rotational forces include the two moments acting on each end, as well as the shear force

N. This gives:

dL,
dt

(1.7) = —M,(z + ox,t) + M,(x,t) + 0xN(x + ox, 1)

The subscript z indicates the vector component of interest for this computation, since
the rotation is occurring around the z axis. The shear force N is multiplied by the length
of its moment arm to compute its moment. By the same argument presented in the
symmetry discussion for the Cauchy stress tensor, the only way for Equation 1.7 to be
physically correct is if (taking the limit as 0x — 0):

oM.

Ox N

(1.8)

The moment can be written in terms of the transverse displacement w because the
moment is proportional to the curvature of the beam. The curvature is given by the
second derivative with respect to arc length of w. The proportionality constant is ET

(the Young’s modulus times the moment of inertia for the beam’s cross-section):

0*w
1.9 M, =FEl—
(1.9) 02

Utilizing relationships 1.8 and 1.9, the transverse motion of the beam can be written as:
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This beam was assumed to be uniform, meaning the elastic properties were assumed to

be homogeneous for the length of the beam.

1.2.4. Plate. As the membrane’s equation of motion was the two-dimensional version
of the string equation, the plate equation is the extension of the beam equation to three

dimensions. Figure 1.8 shows a rectangular section of plate.

ox T

FIGURE 1.8. The forces acting on a section of a plate

An equation for the transverse motion of the plate will be constructed. Looking
at Figure 1.8, the transverse direction is the z direction. The zy plane forces can be

described by a tensor:

Tmm T:vy

1M
I

Tye Ty
The shear forces in the z direction along the x and y planes will be denoted as N =
(Nz, Ny). The section of plate is assumed to be in equilibrium in the z and y direction,
thus by balance of moments, 7,, = T,,. Let w(z,y,t) be the displacement in the z
direction. These displacements are assumed to be small, which will allow the use of
approximations (based on trigonometric relationships) to express the tension forces in

terms of w(x,y,t). The equation of motion in the z direction is:

0 ow ow 0w
N) + —(Typ oo 4 Ty + N, ) = Ao
+ :r) + 8?/( yx ax + yy ay + y) A 8t2

0 ow ow
“r. 2= 27
8x< O + Y oy
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where A is the mass per unit area. The first section on the left hand side represents the
net z direction forces over the x variable and the second section is the same for the y
variable. The right hand side is the usual inertial component. The shear forces, can be

written in terms of moments as:

oM, OM,, oM, oM,
TT T N. =0 yx vy Nx =0
ox + dy + Ny ox + dy

where the first index on M represents the component of the moment vector, and the
second index indicates the direction of the normal vector of the plane. The moments can

then be written in terms of the curvature (second derivatives of w). The final result is:

0w 0w 0w 0w
Tyor—r + 2Ty ——— + T,y — DV*w = A\

02 oz, Ty, TS
where D is the bending stiffness of the plate (involving the Young’s modulus and moment

of inertia). In the simple case of an isotropic tension, the equation can be reduced to:
TV?w — DV*w = \wy

Given boundary conditions, this problem can be solved easily for the transverse motion

of the entire plate [36].

1.3. Composite Materials

The materials described thus far have been homogeneous in composition and struc-
ture. The mechanical behavior of the string, membrane, beam, and plate is described
by constant material properties. Heterogeneous materials, on the other hand, do not
have constant material properties. They are either composed of multiple materials, each
exhibiting different mechanical behavior, or they have inhomogeneous structures which
cause their meterial parameters to vary in space and/or time. Composite materials make
up one simple subclass of heterogeneous media. They are composed of two or more
materials with different mechanical properties, arranged in alternating layers. Examples

of composites include steel, reinforced concrete, fiberglass, and Kevlar. The purpose of
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creating such materials is often to capitalize on the combination of beneficial qualities of
each component. The alternating layer patterns of composites can be found at a scale
well above the molecular level. In comparison, the heterogeneity of biomaterials is much
more complex. Their structures can be inhomogeneous down to the molecular scale, and
often do not have well-defined patterns.

The inhomogeneities in composites and biomaterials both need to be taken into ac-
count to produce accurate models. However, the methods utilized will be different. The
periodicity of a composite’s heterogeneous structure allows for the successful application
of homogenization methods [53, 56]. This is not the case with biomaterials. However,
understanding the mechanics of a simple composite is a step in the right direction to-
wards the continuum-microscopic approaches that will be utilized in modeling media like
the cell cytoskeleton.

As an elementary example, consider a one-dimensional string that is composed of 2NV
alternating equal length segments of two different types of material. The first material
has a Young’s modulus of F; while the second has a very different Young’s modulus of

FE5. Let the string be of length L. Then the elasticity modulus is given by:

E(x) B nk<z<(n+i)E
€Tr) =
B, n+dHE<z<(n+1)k

where n =0,1,..N — 1.

A linear stress-strain relationship for this situation would be:

ou

o=FE(x)e= E(SL’)%

where u(z) is the longitudinal displacement. Rewriting the stress as a tension force over

area gives:

(1.10) % - Bz

20



For a homogeneous material, F is a constant, so u(z) can be found by simple integration:

T
u(z) = Vo

However, if E is spatially varying as in a composite material, then the solution becomes

piecewise as:

T 2+%(E-2) ng<z<(@m+i)s
u(z) = —

A

x n+1)L
Loyl L) (it DE<o<(n+1)t

These functions come from the integral of 1/FE(x) where E(z) looks like Figure 1.9.

El

Elasticity
Modulus

E2

X

FI1GURE 1.9. The graph of the elasticity modulus of a string with alter-
nating segments of two types of materials.

Homogenization is a general technique that can be easily applied to this simple ex-

ample to average the integral of ﬁ that arises when solving 1.10.

LIN 1
o - 5[
N, 1 1, L

(1/E) = Z(E + E)ﬁ

W75 = 50 + )

The function:

To——
u(z) = le/E—i—c
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is a good approximation to the exact solution on the scale of the whole string. This
basic example was used to introduce one of the fundamental issues in multiscale model-
ing, namely how to incorporate the varying mechanical properties of an inhomogeneous
material into a continuum-level description of the medium. For this simple case, homoge-
nization is sufficient. For materials with more complex space and time-varying properties,
a different class of algorithms known as continuum-microscopic methods is often used.
An introduction to such methods and a description of how this thesis work contributes

to the further development of these algorithms is presented in the forthcoming sections.

1.4. Continuum-Microscopic Models

Continuum-microscopic (CM) methods incorporate the modeling of two or more scales
(length, time, or both) into one algorithm to model a particular phenomenon. The
different scales are usually governed by different physical laws [25]. The general idea
behind continuum-microscopic modeling is to utilize information obtained from a more
detailed description of the material to update or predict information at a less detailed
level of description, where presumeably computations can be done more efficiently. CM
models have thus far been used under the assumption that the microscopic configuration
is known or can be reasonably approximated by a known distribution function (such as
a Gaussian or unifrom distribution) [25, 28, 43]. However there are many problems
for which the microscopic structure is unknown because it is changing over time and
highly heterogeneous. This thesis work seeks to extend a basic CM model to address
such situations.

CM models have been applied to a wide range of scientific subjects including fluid
dynamics [9, 49, 68], biology [12, 26], chemistry [8, 31], and material sciences [45, 79].
The main CM methods that have been applied in these various fields include the Hetero-
geneous Multiscale Method (HMM) [24], the Adaptive Mesh and Algorithm Refinement
(AMAR) method [28] and the Equation-Free Method [43]. A brief summary of each

method will now be presented.
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1.4.1. The Heterogeneous Multiscale Method. The Heterogeneous Multiscale Method
(HMM) was developed by E and Engquist [25]. Usually one is interested in modeling a
continuum level situation such as fluid flow or deformation of an object. Sometimes one
only has data from the discrete microscopic elements that make up the medium. A model
that utilizes this vast quantity of detailed information to evolve the entire macroscopic
domain is not computationally feasible [25]. The main idea behind HMM is to have two
different numerical schemes: one at the continuum level (ex. finite volume with Navier
Stokes) and one at the microscopic level (ex. Newton’s molecular dynamics). Suppose
a grid is laid over the macroscopic domain. To update the continuum variables of each
macroscopic grid cell requires the computation of fluxes at each interface between adja-
cent cells. At these interfaces is where the microscopic scheme is employed to produce
more accurate flux information. As an example, let U be a macroscopic variable (such as
velocity), and u is the corresponding variable at the microscopic scale. The two variables
are related by an averaging operator () where QQu = U. Consider the scalar conservation

law that would be used to update the u variable at the microscale:
(1.11) u + f(u), =0

This equation may be solved using, for example, a Riemann solver. The updated variable

u is then used to compute the average flux F' at the macroscopic scale:

n+1 _
F _ fti fi+1/2(u, s)ds
j+1/2 At

where j + 1/2 indexes the macroscopic grid cell interfaces and the values j index the
grid cell centers. Then the new macroscopic U variable is found via the following update
scheme:

At

urtt =up — A—x<Fj“/2 — Fj_1)2)

Due to the smaller spatial scale at the microscopic level, smaller time steps must be used

in the solution of 1.11 to get stable results. This is the main reason why full microscopic
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simulations are computationally intractable. HMM is often applied to problems where
there are two time-scales: A slow continuum level time scale where variables change
perhaps on the order of seconds and a fast time scale at the microscopic level where
molecules quickly reach a quasi-stationary state, meaning the microscopic variables settle
to particular values [25]. Therefore the microscopic equations do not need to be solved
for the entire macroscopic time step. This separation of scales is what makes HMM

possible and useful. The basic steps in HMM can be summarized as:

(1) Create a microscopic instantiation from the macroscopic variable information
for the interface regions

(2) Run the microscopic updating scheme (ex. molecular dynamics equations) until
the microscopic data has reached a quasi-stationary state

(3) Apply an averaging or compression algorithm to produce macroscopic level flux
information for the continuum equation

(4) Update the macroscopic variables

This method works well for systems where thermodynamic equilibrium can be assumed
within each macroscopic grid cell. HMM has been applied in many scientific areas such

as gas kinetics [81], fluids [68] and elasticity [1].

1.4.2. Adaptive Mesh and Algorithm Refinement. The Adaptive Mesh and Algo-
rithm Refinement (AMAR) technique was developed by Garcia et al. [28]. This method
combines the ideas of grid refinement with the utilization of different equations at the
different refinement levels. As a general example, suppose that the goal is to model the
flow of cytoplasm in a motile cell. Typically to solve such a problem numerically one
would lay a grid over the fluid domain and solve the Navier-Stokes equations for the
hydrodynamic variables. Within this fluid grid there may be regions where interesting
dynamics is taking place, perhaps near the opening of a protrusion or at the boundary
of the cell. In thees regions one may want to use adaptive mesh refinement to obtain
a better resolution of the solution. If the refinement changes the spatial scale by sev-

eral orders of magnitude, the fluid may no longer be viewed as a continuum but rather
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as individual fluid particles. The AMAR method proposes employing a different set of
equations at this fine grid scale to reflect this new problem description.

The basic idea of adaptive mesh refinement is simply to begin with a coarse grid and
divide this grid into smaller grid cells using a specified refinement ratio. The refinement
should proceed until the error in the solution has been reduced to below a given thresh-
old. There can be different depths of refinement in different regions of the domain. The
variables in the boundary cells that border the interfaces between regions of differing
refinement need to match up. This synchronization is done using averaging and interpo-
lation techniques. The fine grid is initialized by interpolating the coarse grid information.
Once the fine grid has been advanced, the boundary values are averaged to update the
interface boundary with the coarse grid. Also, a flux correction algorithm is applied at
the coarse/fine interface. These adjustments help to maintain conservation of variables
such as mass, momentum and energy.

AMAR adds another layer of complexity to the normal AMR algorithm. It has to
match up variables that come from two different physical laws. One cycle of AMAR
begins with the computation of fluxes for all coarse grid cells. These fluxes are used to
advance the variables forward in time one continuum step At..,;. This is done even for
the coarse cells that overlay the refined cells. Once the continuum step has been taken,
the particle dynamics equations within the refined region are advanced one small time
step Atpariicie at a time until they have evolved to the same point in time as the coarse
grid. In the coarse grid cells directly surrounding the refined region, a “buffer” region of
microscopic particles is created. They are instantiated using distribution functions (like
Maxwell-Boltzmann) parameterzed by the continuum level variables. These particles are
moved with the particles in the refined area during each At,q40e. If a particle crosses
from the refined region to a coarse cell or vice versa, then a contribution to the flux at
that interface is recorded. After all microscopic time steps have taken place, the overlying

coarse grid is updated using averaged quantities from the refined grid. Also the fluxes
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at the interfaces between coarse and refined regions are corrected utilizing the fluxes
obtained during the particle level advancement.

In order to maintain numerical stability, the finer grid region may need to take many
small time steps to equal one large time step of the coarser grid. In AMAR, the hope
is that the region of the domain where particle dynamics needs to be applied is small so
that the number of computations can be kept to a minimum.

Garcia et al. demonstrated this technique with several examples such as the movement
of a shock wave generated by a piston, the motion of a gas sheared by a moving wall
and fluid flow past a sphere [28]. In the piston example the region around the shock
wave is refined to the gas particle level, and this fine grid moves with the shock wave.
The Navier-Stokes equation is used to solve for the overall air flow in the tube, while
the Direct Simulation Monte Carlo method is employed for the particles near the shock
wave. This method captures the shock wave better then the purely continuum level

Navier-Stokes equation version.

1.4.3. The Equation-Free Method. The Equation-Free Method (EFM) was intro-
duced by Kevrekidis et al. [44] and has been utilized in a wide variety of applications. Tt
is similar to HMM in that its goal is to solve a continuum level problem by using micro-
scopic scale information to improve accuracy. Asin HMM, EFM performs a small number
of microscopic level time step updates to garner information to be used at the continuum
level. The difference between the two techniques is that in EFM the macroscopic level
equations are never explicitly advanced as they are in HMM. The microscopic equation
solutions are used to predict what the continuum variables will be at the next macro-
scopic time step. Once the prediction has been made, a new microscopic instantiation is
determined from the macroscopic variables and the method is repeated. The transition
from the macroscopic level to the microscopic level is done via a “lifting” operator and
the opposite transmission of information is done by a “restriction” operator. The lifting

operator consists of using the first few statistical moments of the continuum variables
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to find a distribution function to instantiate the microscopic variables. The restriction
operator is usually an averaging algorithm.

The reasoning behind EFM stems from the difficulty in determining constitutive laws
at the macroscopic level. The physical laws for the motion of the microscopic level
description of the problem are usually well-known (ex. molecular dynamics or kinetic
theory). However, for many practical applications, the interest lies in what is happening
at a much coarser level. The microscopic laws are used to try to establish constitutive
laws at the macroscopic level, but this task is not always simple. EFM circumvents this
issue by not requiring explicit continuum level constitutive relations. The basic steps in

EFM are:

1) Start with initial conditions for the macroscopic variables

(1)
(2) Use a lifting operator to instantiate microscopic variables

(3) Run the computation at the microscopic level for a short time period

(4) Use the restriction operator to transfer the variables to the macroscopic scale
(5) Average the information over time to determine an estimate for the future macro-

scopic variables.

As mentioned previously, EFM has been applied to numerous subjects including pop-
ulation dynamics [12], disease evolution [21], peptide folding [38] and chemical reactions

[55].

1.5. Extending the Continuum-Microscopic Idea

The common drawback among the continuum-microscopic methods presented above
is that their utility has thus far been demonstrated for examples where the probability
distribution function (PDF) of the microscopic data has an assumed shape. However
if a system has a highly heterogeneous micro-structure or experiences many changes
and fluctuations over time, its microscopic data is unlikely to consistently conform to

one particular shape. The cell cytoskeleton falls into this category due to its complex
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structure of interconnected filaments that changes over time in response to mechanical
stresses and chemical reactions.

What is needed is a computationally efficient procedure that models continuum-level
constitutive relations utilizing microscopic data from configurations that were instanti-
ated based on past microscopic data. This is precisely the goal of the following thesis
work. This research intertwines several topics including the investigation of: (1) com-
putationally efficient methods of PDF estimation; (2) the evolution of the microscopic
variable distribution functions forward in time in order to perform accurate instantia-
tions at later time steps; (3) the incorporation of continuum level constraints during
microscopic instantiation to insure model consistency. These are the research topics to

be discussed in this thesis work, with specific application to cytoskeletal mechanics.

28



CHAPTER 2

The Cytoskeleton: Biology and Models

In this chapter background information on the biology of the cytoskeleton and its role
in cellular protrusive activities will be provided. This will be followed by a quantitative
description of the difficulties encountered in trying to model such a complex structure.
Next, a review of various computational algorithms that have been utilized to model
the cytoskeleton will be presented. The chapter will conclude with an outline of the
modeling approach developed in this thesis, and how this new algorithm adds to the

current research in the field.

2.1. The Structure of the Cytoskeleton

A typical animal cell is approximately 10 gm in diameter [2], and consists of organelles
(such as the nucleus, mitochondria) suspended in a fluid cytosol surrounded by the cy-
toskeleton. All of these cellular components are encased by a thin plasma membrane
(Figure 2.1).

The cytoskeleton of the animal cell is a complex structure that gives the cell me-
chanical support and integrity [2, 59]. This dynamic newtwork of intertwined filaments
participates in and orchestrates many cellular activities such as cell migration, mitosis,
apoptosis and mechanotransduction [59].

The protein polymers that comprise the cytoskeleton include actin filaments, micro-
tubules and intermediate filaments [2, 10, 59], and these fibers are crosslinked to one
another by proteins such as filamin and a-actinin [2]. The main types of filaments par-
ticipating in protrusive activities such as blebbing and lamellipodium formation are actin

polymers, and their properties will now be describe in further detail.



Micro- and Intermediate
MICROTUBULES T FILAMENTS

Ficure 2.1. Cartoon of a typical eukaryotic cell from www.abcam.com

. The Actin Filament. Actin filaments are long polymer chains built from actin

protein subunits. These subunits are approximately 5 nm in diameter [2]. Free monomers

of actin carry a molecule of ATP and are known as G-actin or globular-actin (see Figure

Actin monomer
FDE 2ETF G-actin with bound ATF

FIGURE 2.2. (A) Ribbon diagram of the actin monomer and (B) cartoon
image of the actin monomer with ATP molecule http
/ Jwww.rpi.edu/dept /bcbp

When a G-actin subunit joins a growing polymer chain the ATP molecule is hy-

drolyzed into ADP and the subunit is attached. The actin protein in filament form is

known as F-actin (filamentous-actin). Actin filaments have different rates of growth and

shrinkage at their two ends. The “plus” end has a faster rate of elongation and shortening

than the “minus” end [2].

30



DR I>I>I)3

Actin Actin
Monomer Filament
(G-Actin) (F-Actin)

FI1GURE 2.3. Actin monomers typically join onto the plus end of the grow-
ing chain, http : //www.iam.ubc.ca/ spiros
The subunits in a filament are held together by weak, noncovalent bonds that can
be broken by thermal fluctuations [2]. Because of this, it is very easy for monomers
to add on and break off at both ends of the chain. This dynamic instability allows
the polymers to disassemble easily into monomer form to diffuse across the cell, and
reconstruct themselves in a new position [2]. However, a chain that breaks easily is not
very useful to the cell for doing mechanical work. To circumvent this issue, two actin
subunit chains are often bound together in parallel to form a stronger double-stranded
helical structure (see Figure 2.4. Subunits can still add on and fall off the ends, but it is
much more difficult for a filament to break spontaneously somewhere in the middle with

this type of structure [2].

FIGURE 2.4. A doubled stranded, helical actin filament composed of linked
G-actin monomers, http : //www.cryst.bbk.ac.uk/PPS2

Filament length can vary depending on cell type, but they generally are 1-20 pym long
and about 8 nm wide [10, 41]. They can be as long as 50-100 um in muscle cells [40],
and as short as 0.2-0.35 pum in cytoskeleton meshes [15]. In either case, they are several
orders of magnitude longer than they are wide.

Actin filaments are classified as semi-flexible polymers [41]. A single actin filament

can withstand an elongation force of about 110-250 pN before breaking, and it only
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stretches about 0.2-0.3% under these forces [41]. It has a stiffness of approximately 45-
65 pN/nm for actin filaments of length 1 pum [41]. On average the Young’s modulus of
an actin polymer is 0.5 to 2 x 10°N/m? [10, 41]. In comparison to stretching, actin
filaments bend quite easily. Their flexural rigidity has been found to be on the order
of 107 Nm?, based on a persistence length of 10-20 um [10]. This large difference in
magnitude between the stretching and bending properties of actin filaments allows them

to be classified as an elastic string for modeling purposes.

2.1.2. Construction of Filament Networks. Actin filaments typically group to-
gether to form larger structures such as bundles and meshes. Microvilli and filopodia
(to be described in depth later) are examples of actin bundle structures (see Figure
2.12). A typical microvillus is composed of 20 to 30 actin filaments tightly bound to-
gether in parallel, with a diameter of 0.08 microns and an average length of 1 micron [2].
The protein a-actinin is one of the main proteins that connects actin filaments together
in parallel in these bundled structures [59].

The cytoskeleton is an example of a mesh-like actin structure. The actin filaments are
attached together in a woven pattern by proteins such as spectrin and filamin. Spectrin
is a long 100 nm, flexible protein found close to the cell surface in red blood cells [2].
Two molecules link together head to head to create two actin filament binding sites
that are spaced approximately 75-200 nm apart depending if the spectrin polymer is
in a convoluted position or stretched out straight [2, 10]. This distance is quite large
compared to the other proteins which bind actin bundles in tight configurations about
14-30 nm apart. There are approximately 1.2 to 2 x 10° spectrin molecules in one red
blood cell [2, 10]. Spectrin has an estimated spring constant of 2 x 107°.J/m? which
means spectrin is elastic enough to allow a red blood cell to adjust its shape in order
to squeeze through a narrow capillary [10]. Filamin is another binding protein found in
other types of cells. It crosslinks two filaments together almost at right-angles to one

another forming a loose grid of actin polymers [2, 59] (Figure 2.5).
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(B)

FIGURE 2.5. (A) Cartoon showing how the filamin protein crosslinks two
actin filaments, and how it forms an actin mesh, [2] and (B) an electron
micrograph of a typical actin network near the plasma membrane, http :
//scienceblogs.com/

There are other proteins which keep the actin mesh attached to the plasma membrane
[71]. In platelets, filamin serves the dual purpose of linking actin filaments to other actin
filaments and linking the actin mesh to the plasma membrane. In red blood cells, a
protein in the plasma membrane known as band 3 attaches to another protein called
ankyrin which in turn attaches to the spectrin proteins on the cytoskeleton [2] (see

Figure 2.6).

junctional
complex

(A)

ki lne band3 9lycophorin

1
100 nm

F1GURE 2.6. Diagrams depicting how spectrin crosslinks actin filaments
together, and also how it attaches to the plasma membrane
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Dystrophin is a protein found in muscle cells that attaches the cytoskeleton to the
outer membrane. Other adhesive proteins include ezrin, radixin, and moesin [2]. Figure

2.7 shows several examples of membrane-cytoskeleton adhesion via different proteins.

(a) Platelet (b) Muscle
Clot ECM
i
8 =
7.% Gp1b-IX f Glycoprotein
! complex
i

| ’a@i | o LY ‘ Dystrophin

(c) Epithelial cell

FiGure 2.7. Diagrams of how various proteins attach the cytoskeleton
to the plasma membrane in a (A) platelet, (B) muscle cell and (C) an
epithelial cell. Tmages from http : //bioweb.wku.edu
The total number of actin filaments within a cell varies by cell type and concentration
levels of actin. In red blood cells, actin fibers form a one to two filament thick network
of short filaments [71]. This amounts to approximately 120,000-300,000 short actin
filaments in a red blood cell cytoskeleton. Boal estimates that cells with high actin
densities of 5mg/ml or more, have approximately 1.9 x 10?° filaments/m? of filaments of
length 1 pm [10]. This translates to about 200,000, 1 pm filaments in a 10 gm diameter

animal cell.

2.1.3. Network Properties and Behavior. The cytoskeleton is typically between
5 nm - 2 microns thick [18, 71]. The size of the gaps in the actin mesh range from
10 nm - 100 nm [19, 70, 73], depending on cell type. Individual actin filaments have

certain material properties as described above. However, when these filaments become
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crosslinked in a gel, these values can change. For instance, the estimated Young’s modulus
for 1 mg/ml of crosslinked F-actin is 100,000dyn/cm? which is 10 kPa and the shear
modulus is approximated at 1000dyn/cm? or 100 Pa [41]. Charras et al. estimated
the elastic modulus of the actin cortex in filamin-depleted melanoma cell line to be 1-
3 kPa [19]. In general, the Young’s modulus for the actin network is lower than the
individual actin filaments. This is due to the fact that crosslinking proteins such as
spectrin are more elastic than actin, so they make the overall mesh less stiff. In Boal’s
textbook, he estimates the shear modulus of the actin networks of several types of cells:
red blood cell, 6 — 9 x 107%.J/m? (determined with pipette aspiration); auditory outer
hair cells, 1.5 x 1072J/m? (pipette aspiration); fibroblasts, 2 — 4 x 1073.J/m? (calculated
with magnetic field applied to magnetic beads attached to the membrane) [10].

An interesting feature of actin filaments and consequently of the cytoskeletal network
is that it can be contracted by myosin II (a motor protein) to produce a force [2, 42,
57, 66]. This force generation plays a central role in the cell’s protrusive and locomotive
activities. Myosin II, like actin, is found in all eukaryotic cells [2]. Myosin IT is a long
protein composed of two heavy chains and two light chains. Near the end of the two heavy
chains is a “head” region from which forces can be generated [2]. Myosin II subunits
join to form a filament by bundling their tails together. This creates a bipolar filament
with myosin heads facing in opposite directions along the fiber (see Figure 2.8). This
configuration is ideal for pulling actin filaments together [2]. Tt is often an influx of

calcium ions that biochemically triggers myosin to begin the contraction process [2, 62].

mycaln haods
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FIGURE 2.8. A myosin thick filament, with the myosin heads facing op-
posite directions on the fiber, [2]

One cycle of force-generation can be described as follows. Each myosin head attaches
to the actin filament at a binding site. A molecule of ATP attaches to the myosin

head causing the release of the head from the actin filament. The ATP becomes tightly
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bound to the head region and this binding causes the 8.5 nm “lever arm” [2] to travel
toward the plus end of the actin filament and weakly reattach at a new binding site
approximately 4-11 nm further up the filament [75]. During this traversal, the ATP
molecule is hydrolyzed into ADP and an inorganic phosphate. This phosphate is then
released, which produces the force-generating “power stroke” that pulls the myosin head
and the actin filament back to a normal starting position. During this last stage, the
ADP molecule is also released, readying the myosin head for another cycle. Figure 2.9
shows the stages of the actin-myosin force generation cycle. This whole process can be
done at rates ranging from 0.2 - 60 pm/s [2]). One myosin head can produce a force
ranging from 0.8-8 pN [10, 19, 75]. There are several hundred myosin heads on a myosin
filament, with approximately 16-20% of the heads working on an actin filament at one
time [75]. Using this method, myosin filaments can slide actin filaments past each other

to produce a contraction of the actin mesh.

2.2. Cellular Protrusions

As mentioned at the beginning of this chapter, the cytoskeleton plays a central role
in cell migration and cellular protrusive activities. It carries out these tasks by breaking
down, rearranging and rebuilding itself as needed. The types of protrusions that can be
produced by cytoskeletal reconfigurations include lamellipodia, microvilli and blebs, and

they will now be described.

2.2.1. Lamellipodia. A lamellipodium is a two-dimensional actin network projection
that forms in at the periphery of a motile cell to help the cell crawl over a solid substrate.
It is a flat, fan-like protrusion that pushes the cell forward via actin polymerization [2].
Lamellipodia are found primarily in epithelial cells and fibroblasts, but also in some
neurons. The actin filaments in a lamellipodium are arranged in a very organized way
(as opposed to the more randomly entangled cytoskeleton). The filaments form a tree-
like structure, with polymers branching off from one another at 70° angles. Growth of

this webbed structure needs to happen quickly in order for it to push the cell forward at
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FIGURE 2.9. The actin-myosin force generation cycle [2].

a reasonable pace. (For example, keratocytes can crawl at top speeds of 30 pm/minute
[2].) To facilitate nucleation (the formation of a new actin filament) and polymerization
(elongation of an existing actin filament), the cell utilizes proteins known as actin-related
proteins (ARPs). The ARP 2/3 complex attaches to the minus end of an actin subunit,
creating a base off of which other actin monomers quickly latch onto forming a growing
filament. ARP 2/3 can also attach itself to the middle of existing filaments creating
a branch point off of which a new filament segment can grow. (See Figure 2.10 for a
diagram).

The thin lamellipodium protrusion needs strong mechanical support behind it in
order to push the cell forward. This strength comes from the cell’s cytoskeleton whose

crosslinked structure provides the necessary mechanical stiffness.
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F1GURE 2.10. Image from Alberts’, “Molecular Biology of the Cell”, de-
picting (A) the protein structure of actin, ARP 2 and ARP 3, (B) the
nucleation process, (C) how a 2D actin web is created, and (D) electron
micrographs of the actin branch points [2]
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How is a cell able to crawl across a solid substrate utilizing a lamellipodium? The
whole process is accomplished in several coordinated stages using different actin struc-
tures and cell functions. The first stage is the formation of the lamellipodium at the
front of the cell (in the direction the cell plans to crawl). The actin filaments in the
tree structure are oriented with their plus ends facing forward, and their minus ends
facing the interior of the cell. The lamellipodium pushes the cell membrane forward by
treadmilling, meaning that actin filaments grow at the front of the protrusion and depoly-
merize at their other ends. Once the lamellipodium has pushed the membrane forward
a short distance, the cell forms focal contacts (attachments) with the solid substrate at
the protrusion’s leading edge. These attachments provide traction for when the back end

of the cell is moved forward to catch up with the front. This task is accomplished by
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FI1GURE 2.11. Image from Alberts’, “Molecular Biology of the Cell”, show-
ing the stages of one cycle of cell crawling [2]

myosin II fibers which contract the actin mesh at the rear of the cell pulling it forward.

Figure 2.11 shows the stages in one full crawling step.

2.2.2. Microvilli. Microvilli are very different from lamellipodia in structure and pur-
pose. They are thin, finger-like protrusions found most commonly in epithelial cells. A
typical intestinal epithelial cell can have thousands of microvilli whose purpose is to in-
crease the surface area of their host cell to facilitate the absorption of nutrients from food
passing through the small intestine [2]. A microvillus is composed of 20-30 actin filaments
bundled together tightly in a parallel structure (see Figure 2.12). They have a diameter
of 0.08 microns and an average length of 1 micron [2]. The filaments are held together
by two crosslinking proteins: villin and fimbrin. These proteins each have two actin fil-
ament binding sites that are very close together (8-10 nm apart [2]) that facilitate tight
bundling. The actin structure is attached to the plasma membrane by adhesive myosin [

protein sidearms. Like in lamellipodia, the actin filaments in microvilli are oriented with
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their plus ends outward, so polymerization takes places at their protruding end. These

actin bundles are anchored in and grow out of the cell’s cytoskeleton.
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FIGURE 2.12. (A) Cartoon of the structure of microvilli, http
//anatomy.iupui.edu and (B) Microvilli in an intestinal epithelial cell
http : | Jwww.cytochemistry.net/Cell — biology

2.2.3. Blebs. A bleb is a balloon-like, cytosol-filled protrusion of the plasma membrane.
Unlike lamellipodia and microvilli, this type of protrusion is not formed by active growth
and rearrangement of the cytoskeleton [19, 22]. However, the onset of bleb formation is
triggered by a contraction of the actin network and the retraction of a bleb back into the
cell body is completely driven by cytoskeletal actions [18].

The driving force behind bleb formation, is not actin polymerization, but rather fluid
pressure [3, 19, 22]. The cell’s cytosol is typically at a higher pressure (20-300 Pa higher
[17, 67]) as compared to the external ambient fluid. The membrane is prevented from
moving outward in normal circumstances by its connections with the cytoskeleton via
adhesive proteins. However, if a section of membrane and cytoskeleton detach, then the
fluid pushes on this freed membrane creating a bleb.

Membrane-cytoskeleton detachment is thought to be caused by a contraction of the
actin mesh by myos