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ABSTRACT

AMY RICHARDSON: Inference about Treatment Effects Using Bounds, Sensitivity
Analysis and Instrumental Variables

(Under the direction of Michael G. Hudgens)

This dissertation considers conducting inference about the effect of a treatment (or expo-

sure) on an outcome of interest. In the ideal setting where treatment is assigned randomly,

under certain assumptions the treatment effect is identifiable from the observable data and

inference is straightforward. However, in many other settings observable data may only par-

tially identify treatment effects or may identify treatment effects only for some subset of the

population. In this case three approaches are often employed: (i) bounds are derived for

the treatment effect under minimal assumptions, (ii) additional untestable assumptions are

invoked that render the treatment effect identifiable and then sensitivity analysis is conducted

to assess how inference changes as the untestable assumptions are varied, or (iii) instrumental

variables are used to identify treatment effects for a subset of the population of interest. In

this dissertation, first we review approaches (i) and (ii) in various settings, including assess-

ing principal strata effects, direct and indirect effects, and effects of time-varying exposures.

Methods for drawing formal inference about partially identified parameters are also discussed.

Second, we derive the large sample properties of instrumental variable-based treatment effect

estimators and test statistics when the outcome is subject to right censoring and competing

risks. These results are applied to a real data example about the use of antiretroviral therapy

to reduce mother to child transmission of HIV. Third, we derive identification results for

direct, indirect and total effects of treatment in presence of interference (i.e., settings where

the treatment of one individual may be affected by the treatment of other individuals). These

results are applied to a real data example about rotavirus vaccination. All derived asymptotic

results are supported by simulation studies.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The goal of many health and epidemiological studies is to gain insight into the mechanisms

that cause disease or other health outcomes and then use that insight to prevent disease and/or

better health outcomes. These mechanisms may consist of one or more causal pathways

in which different exposure states or risk factors lead to various effects (Rothman, 1976).

Epidemiological studies often seek to investigate not only whether or not various sets of

exposures or risk factors are on any of the causal pathways to a health outcome of interest Y

but also the size and nature of the effects of these exposures on this causal pathway.

In hopes of gaining some information on causal effects of exposure states suspected of

being on some causal pathway, data is collected and analyzed on some set of subjects or units

in either a controlled experiment or under observational settings. However, as often noted by

statistical scientists, effects estimated using conventional statistical methods can only mea-

sure association and do not have a causal interpretation. To estimate causal effects using

more conventional methods, assumptions that are strong and often empirically untestable

are needed. If these assumptions are dubious, resulting causal effect estimates are subject to

biases and inferences may be misleading. In order to untangle differences between associa-

tional effects and causal effects precise mathematical notation and language is essential. The

counterfactual or potential outcomes framework dating back to Neyman (1923) and formal-

ized by Rubin (1974) allows for precise definitions of a myriad of causal effects and allows for

distinction between associational and causal effects (Holland, 1986).
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1.1.1 The Potential Outcomes Model

Using the potential outcomes approach from Rubin (1974), let z denote the various levels

of the exposure or factor for which causal comparisons are being drawn, and Z the observed

value of the exposure z which is observed prior to the outcome of interest Y . The potential

outcome Y (z) is defined as the value of the outcome under exposure status z; for example,

z might be a medical intervention or treatment with z = 1 denoting treatment received and

z = 0 denoting control or treatment not received. The potential outcome Y (1) would then

be the outcome had treatment z = 1 been received and Y (0) the outcome had control been

received.

Causal effects at the unit level can be defined as some function of the potential outcomes

Y (z) that compare different levels of the exposure z. In order to define sensible causal effects

each level of the exposure in the effect must be able to be observed in the units under study.

For example, an individual causal treatment effect might be defined as the difference between

an individual’s outcome under treatment compared to control, Y (1) − Y (0), which is not

well defined if it is not possible for an individual or unit to experience both z = 0 and

z = 1 (Holland, 1986). Often the target of inference in health and epidemiological studies is

some population level parameter or population level causal effect such as the mean difference

between the potential outcomes under treatment and control, E[Y (1] − Y (0)] or average

treatment effect (ATE). Here E[Y (1)] is the mean potential outcome of the target population

if everyone were treated (Z = 1), and E[Y (0)] the mean potential outcome if no one were

treated (Z = 0).

In order to make inferences about these population causal effects, assumptions regarding

the relationships between the observed outcome Y , the observed exposure Z, and the poten-

tial outcomes Y (z) must be made. One of the first assumptions regularly made when studying

causal effects under the potential outcomes framework is that each level z of the exposure

Z maps to one fixed potential outcome Y (z). A second basic assumption connects the ob-

served outcome Y to the potential outcomes Y (z); specifically it is assumed that Y (Z) = Y ,

which means that the observed outcome is equal to the potential outcome under the observed

2



exposure Z. This assumption has been referred to as a consistency assumption in the litera-

ture (Cole and Frangakis, 2009) and will be termed causal consistency here to avoid confusion

with concepts of statistical consistency. With this assumption, one potential outcome for each

individual is observed and known, but the potential outcomes Y (z′) for Z 6= z′ are termed

counterfactual and are unobserved. A third basic assumption frequently made in studying

causal effects is that the exposure of one unit under study does effect the outcomes of other

individuals or units, this is referred to as an assumption of no interference between units.

Collectively these three assumptions are often referred to as the stable unit treatment value

assumption or SUTVA (Rubin, 1980).

The assumptions contained in SUTVA will be reasonable in many situations, but unfor-

tunately are not strong enough to allow for estimation of most population level causal effects

such as the average treatment effect, E[Y (1) − Y (0)]. Under SUTVA, the observation of Y

and Z for some population of units allows us to estimate E[Y (z)|Z = z], thus allowing for

estimation of the associational effect

E[Y (1)|Z = 1]− E[Y (0)|Z = 0], (1.1)

but estimation of the ATE, a causal effect, is not possible without further assumptions. Under

experimental settings the observed exposure or treatment Z might be under the control of the

experimenter and random assignment of Z to the units under study would give plausibility

to the assumption that

Y (z)q Z for z = 0, 1 (1.2)

(here q denotes statistical independence). Under (1.2) E[Y (z)|Z = z] = E[Y (Z)] and thus the

average treatment effect may be consistently estimated using the estimated associational effect

(1.1). In absence of random assignment of Z, (1.2) may be dubious and an estimator based

on (1.1) is subject to bias. Specifically, the associational effect (1.1) between the exposure Z

and the outcome Y may have resulted from some unknown or unmeasured factor(s) X that

is associated with both the exposure and the outcome. The factors in X are said to confound

the effect of Z on Y . Epidemiologists often seek to measure different variables in X, if this

3



can be accomplished then (1.2) might be replaced by

Y (z)q Z|X for z = 0, 1, (1.3)

which will be plausible if all factors that confound the causal effect of Z on Y are measured

in X. Under (1.3) the ATE may be consistently estimated using by weighting by the inverse

probability of exposure z

E[Y (1)|Z = 1;X]

Pr[Z = 1|X]
− E[Y (0)|Z = 0;X]

Pr[Z = 0|X]
(1.4)

which is a function of associational parameters that may be consistently estimated from the

data. Estimators based on (1.4) are referred to as inverse probability of treatment weighted

estimators.

1.1.2 Instrumental Variables

Measuring all factors X such that (1.3) holds is one of the biggest challenges of causal

inference in epidemiological research, particularly because it is not possible to provide evidence

that (1.3) holds using empirical statistical tests. If there are factors U not measured in X

that confound the effect of Z on Y (z) then the resulting inverse probability estimators will

be biased. A method to potentially avoid this problem of unmeasured confounding entails

the use of instrumental variables. A variable R is considered an instrumental variable if it

meets the following three criteria: i) R has a causal effect on the exposure of interest Z, ii) R

affects the outcome Y only through its effect on Z and iii) R does not share common causes

with Y (Hernán and Robins, 2006).

Specifically, under a set of assumptions that may be more reasonable than (1.2) or (1.3),

the instrumental variable allows for estimation of a causal effect known as a local average

treatment effect or a principle treatment effect. To illustrate, let Z(r) be the potential values

of the exposure Z for different levels of the instrument r, without loss of generality assume that

the exposure Z, the outcome Y and the instrument R are all binary. Define SP0 as the vector

4



of the two potential values of Z(r), SP0 = (Z(0), Z(1)), stratification of the potential outcomes

Y (z) by SP0 is commonly referred to as principal stratification (Frangakis and Rubin, 2002).

A local average treatment effect or principle effect is the average treatment effect in one of the

strata defined by SP0 , where causal effects in the strata defined by SP0 = (0, 1) are commonly

of interest. Imbens and Angrist (1994) showed the local average treatment effect (LATE)

defined as E[Y (1) − Y (0)|SP0 = (0, 1)] is identifiable under four assumptions: independent

treatment instrument

R q {Y (z), Z(r)} for z.r = 0, 1, (1.5)

monotonicity with respect to Z

Pr[Z(1) ≥ Z(0)] = 1, (1.6)

exclusion restriction

Y (0) = Y (1) if Z(0) = Z(1), (1.7)

and if there is a nonzero causal effect of R on Z, namely

E[Z(1)− Z(0)] 6= 0. (1.8)

The monotonicity assumption (2.21) states there are no individuals such that Z(0) = 1 and

Z(1) = 0, meaning that the principal strata SP0 = (1, 0) is empty. Assumption (1.7) states

that Z has no effect on Y in individuals who are always exposed SP0 = (1, 1) or are never

exposed SP0 = (0, 0). Assumption (1.8) indicates that the instrument R has a causal effect

on the exposure Z. Under these four assumptions the LATE can be expressed as

E[Y |R = 1]− E[Y |R = 0]

E[Z|R = 1]− E[Z|R = 0]
. (1.9)

Under these four assumptions, (1.9) is simply the ratio of the average associational effect

of R on Y and the average associational effect of R on Z; (1.9) is referred to as the in-

strumental variable estimand (Angrist et al., 1996; Hernán and Robins, 2006). To see that

5



E[Y (1)−Y (0)|SP0 = (0, 1)] equals (1.9), first note under the assumptions that the numerator

of (1.9) equals E[Y (1) − Y (0)] = E[{Y (1) − Y (0)}{Z(1) − Z(0)}] = E[Y (1) − Y (0)|Z(1) >

Z(0)] Pr[Z(1) > Z(0)]. Similarly, the denominator of (1.9) equals Pr[Z(1) = 1] − Pr[Z(0) =

1] = Pr[Z(0) = 0, Z(1) = 1] = Pr[Z(1) > Z(0)], which is non-zero under (1.8).

Obtaining a valid instrument such that (1.5–1.8) hold can prove to be a difficult task. An

example of a variable R that might satisfy (i)-(iii) such that (1.5–1.8) hold is the calendar

time for the FDA approval of a novel treatment for a disease, where here Z would be the

novel treatment. Let R = 1 denote that diagnosis of the disease was after the calendar

time for the approval of the new treatment, and R = 0 indicate diagnosis was before this

calendar time; let Z = 1 denote that the novel treatment was selected and Z = 0 denote that

treatment was not selected. The principal strata vector would indicate a subject’s treatment

selection before and after the calendar time FDA approval for the novel treatment, for instance

SP0 = (1, 1) would be represent individuals that would take the treatment regardless of the

FDA calendar time approval. In this situation Y might represent survival to a given time

point after having been diagnosed with the disease, thus the local average treatment defined

as E[Y (1) − Y (0)|SP0 = (0, 1)] would represent the difference in the proportion surviving

amongst those who took the novel treatment versus those whom did not in the principal

stratum wherein individuals would take treatment only after the FDA calendar time approval.

The assumption in (1.5) states that there are no factors that confound the relationship

between the outcome Y and the instrument R; randomization of the instrument R can insure

that this assumption is met making instruments that can be randomized attractive. In a

randomized clinical trial with noncompliance a commonly used instrumental variable is treat-

ment assignment (here the exposure would be the actual treatment taken). Another example

might be randomized treatment assignment in an encouragement randomized trial where sub-

jects are randomly assigned to be enrolled in programs that encourage (or discourage) the

exposure Z, while others are randomized to control, or no encouragement program. In some

situations natural randomization processes, such as Mendelian randomization, might provide

a valid instrumental variable. For instance, a study investigating a causal effect between low
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serum cholesterol and cancer might use a genetic determinant of serum cholesterol as the

instrumental variable (Martens et al., 2006).

1.1.3 Interference

When studying causal effects of a treatment or exposure, sometimes the treatment or

exposure received by one individual may affect the outcomes of other individuals under study.

In the causal inference literature this is referred to as interference and is most frequently

encountered in settings in which outcomes are largely dependent on social happenings. Some

well known examples of settings where this might occur include the study of infectious diseases

and vaccination, educational interventions and effects of housing voucher programmes. Until

recently most of the causal inference literature has operated under the assumption that there

is no interference between units (Cox, 1958, this assumption is included in SUTVA). In the

aforementioned settings this assumption is not only undoubtedly violated, but the pattern of

interference between units is often a target of inference useful in determining important social

and public health policies.

Though most of the causal inference literature operates under the assumption of no in-

terference, Rubin (1980) noted that the potential outcomes framework could be extended

to accommodate interference between units. Specifically, assume that there are N > 1

groups or communities for which data are observed, with each group having ni individuals

for i = 1, . . . , N . Let Zi = (Zi1, . . . , Zini) denote the treatment selections or exposures of

those ni individuals for each group i. Assume that Zij is a dichotomous, taking values 0

for no exposure or treatment not selected, and 1 for exposure or treatment selected. Let

Zi,−j = (Zi1, . . . Zij−1, Zij+1, . . . , Zini) denote the ni− 1 subvector of treatment selections for

group i with entry j deleted. Define Z(ni) as the set of possible treatment selections for a

group of size ni. Zi,−j takes on values in the set Z(ni−1). There are 2ni different realizations

of the vector Zi, and 2ni−1 realizations of Zi,−j . For each subject in each group we extend

the potential outcomes such that there is a separate potential outcome for each permutation

of the treatment allocation vector Zi. Denote the potential outcome for the jth person in the
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ith group for treatment allocation vector Zi by Yij(Zi). Denote the potential outcomes for

all members of group i as Yi(Zi). This allows for interference between members of the same

group, but does not allow for interference between members of different groups. This is an

assumption, and is referred to as partial interference in the literature. In Manski (2013) this

assumption is a specific case of a more general class of assumptions which he calls constant

treatment response assumptions (CTR). This assumption is reasonable if interaction between

members of different groups is minimal or nonexistent.

Halloran and Struchiner (1995) took Rubin’s suggestion and defined several new causal ef-

fects unique to studying interference: direct, indirect, total and overall effects. The individual

direct, indirect, total and overall effects are defined as

DEij(zi,−j) =Yij(zi,−j , zij = 0)− Yij(zi,−j , zij = 1),

IEij(zi,−j , z
′
i,−j) =Yij(zi,−j , zij = 0)− Yij(z′i,−j , zij = 0),

TEij(zi,−j , z
′
i,−j) =Yij(zi,−j , zij = 0)− Yij(z′i,−j , zij = 1), and

OEij(zi, z
′
i) =Yij(zi)− Yij(z′i).

The direct effect compares potential outcomes that keep the treatment of other members

of the same group constant and comparing the effect of treatment in the individual. The

indirect effect compares two different treatment allocation vectors given to other members of

the group while holding the treatment given to the individual constant at zij = 0. The total

effect compares both the different treatment allocation vectors and the effect of treatment

in the individual. The overall effect compares any two treatment allocation vectors for the

whole group and may correspond to a direct effect, indirect effect or a total effect, or another

effect.

Often it is still of interest to compare 2 specific treatment allocation strategies or laws,

denoted πi(Zi, α0) and πi(Zi, α1), say for example comparing causal effects when vaccinating

1/3 of the population versus vaccinating 2/3 thirds of the population. The parameters α0 and

α1 index the two treatment allocation law of which comparisons of causal effects are desired.
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For the purposes here, a Bernoulli type parametrization of πi(Zi, α0) will be assumed:

πi(Zi, α0) =

ni∏
j=1

α
Zij

0 (1− α0)1−Zij (1.10)

Sobel (2006) introduced the idea of defining causal estimands that average over all possible

treatment assignment vectors according to some treatment allocation law in a paper assessing

the comparative effectiveness of different housing voucher programmes. Specifically, let

Y ij(z, α0) =
∑

s∈Z(ni−1)

Yij(zi,−j = s, zij = z)Prα0(Zi,−j = s|Zij = z)

and

Y ij(α0) =
∑

s∈Z(ni)

Yij(zi = s)πi(Zi,j = s;α0);

then the individual average direct, indirect, total and overall effects are defined as

DEij(α0) =Y ij(0;α0)− Y ij(1;α0),

IEij(α0, α1) =Y ij(0;α0)− Y ij(0;α1),

TEij(α0, α1) =Y ij(0;α0)− Y ij(1;α1),

OEij(α0, α1) =Y ij(α0)− Y ij(α1).

Now the direct effect compares the effect of treatment in individual ij while holding the

treatment allocation strategy constant, the indirect effect compares the effect of the treatment

allocation strategy constant while holding the treatment to the individual constant at zij = 0.

The total effect compares both the treatment allocation strategies and treatment given to

individual ij. Group average direct, indirect, total and overall effects can be defined by

taking the mean for group i of DEij(α0), IEij(α0, α1), TEij(α0, α1) and OEij(α0, α1) (i.e.

DEi(α0) =
ni∑
j=1

DEij(α0) and so forth). Population average direct, indirect, total and overall

effects can be defined by taking the mean of the group average direct, indirect, total and

overall effects (i.e. DE(α0) =
N∑
i=1

DEi(α0) and so forth).

9



The so called gold standard for achieving accurate estimates of causal estimands compar-

ing these two allocation strategies is 2-stage randomization, where both individual treatment

assignment is randomized as well as treatment allocation strategy to various groups or com-

munities. The majority of the inferential methods developed for the population average

direct, indirect, total and overall effects rely on the assumption that there are two levels of

randomization. Rosenbaum (2007) developed nonparametric inferential methods for assessing

treatment effects in presence of interference under 2 stage randomized treatment assignment.

Hudgens and Halloran (2008) formalized the definitions of direct, indirect, total and overall

effects averaged over all possible treatment assignment vectors and developed unbiased es-

timators and corresponding variance upper bounds for these causal treatment effects under

2 stage randomization and an additional assumption referred to as stratified interference.

Stratified interference assumes

Yij(zi,−j , zij) = Yij(z
′
i,−j , zij) for

∑
j

zij =
∑
j

z′ij .

which means that potential outcomes will remain constant when the same number of other

members of the group are treated and treatment to the individual remains constant. This

reduces the number of potential outcomes for each individual from 2ni to ni. Tchetgen Tch-

etgen and Vanderweele (2012) improved upon the variance bounds developed by Hudgens

and Halloran (2008) for these effects under 2 stage randomization by relaxing the stratified

interference assumption.

Hong and Raudenbush (2006) consider interference effects in the context of educational

performance. In this setting randomization is not present at either the individual level or the

group level. The independent treatment assignment assumption that 2 stage randomization

makes plausible

{Y (zi)}zi∈Z(ni)
qZi

for i = 1, . . . , N is replaced by

{Y (zi)}zi∈Z(ni)
qZi|Xi
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for some set of covariates Xi. Tchetgen Tchetgen and Vanderweele (2012) derived the follow-

ing inverse probability of treatment weighted estimators for Y i(z, α0)] (the group average) to

be used for inference of the population average direct, indirect, and total effects

Ŷ IPW
i (z, α0) =

∑ni
j=1 πi(Zi,−j ;α0)Yij(Zi)I[Zij = z]

nifZ|X,i(Zi|Xi)

for a the Bernoulli type parametrization of π(Zi, α0) given above and where fZ|X,i(zi|Xi) =

Pr[Zi = zi] is the estimated probability of treatment allocation vector Xi given covariates

Xi. Tchetgen Tchetgen and Vanderweele (2012) suggest using a logistic-normal mixed effects

model to estimate fZ|X,i(Zi|Xi).

Though the advancements made account for interference and allow for definition of causal

effects specific to interference, many of the results obtained are limited by the need for 2

stage randomized designs requiring randomization at the individual level within each group,

as well as randomization of groups to different treatment allocation strategies. Such designs

are difficult, all but infeasible to implement in practice, thus there is a strong need for adap-

tations to be used for observational data or for randomized designs not necessarily having

achieving randomization at both the group and the individual level. Both Hong and Rau-

denbush (2006) and Tchetgen Tchetgen and Vanderweele (2012) have obtained results for

observational data under the assumption that conditional on measured covariates, treatment

assignment is independent of the potential outcomes. Hong and Raudenbush (2006) devel-

oped results for estimators of interference effects within strata defined by different levels of

Xi and Tchetgen Tchetgen and Vanderweele (2012) derived inverse probability of treatment

weighted estimators of interference effects. Both the results of Hong and Raudenbush (2006)

and Tchetgen Tchetgen and Vanderweele (2012) enjoy the same results obtained under 2 stage

randomization in terms of inference, but are limited by the fact that they rely on a strong

conditional independent treatment assignment assumption and require measurement of all

covariates required for conditional independence of the treatment and potential outcomes.

Manski (2013) develops bounds for interference effects under assumptions that are weaker

and maybe more plausible than the conditionally independent treatment allocation of Hong

11



and Raudenbush (2006) and Tchetgen Tchetgen and Vanderweele (2012), but such bounds are

only for effects pertaining to group level or population level means in presence of interference

and are not for causal estimands averaged according to some treatment allocation law.
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CHAPTER 2: NONPARAMETRIC BOUNDS AND SENSITIVITY
ANALYSIS OF TREATMENT EFFECTS

2.1 Introduction

In many areas of science, interest often lies in assessing the causal effect of a treatment

(or exposure) on some particular outcome of interest. For example, researchers may be

interested in estimating the difference between the average outcomes when all individuals are

treated (exposed) versus when all individuals are not treated (unexposed). When treatment

is assigned randomly and there is perfect compliance to treatment assignment, such treatment

effects are identifiable and inference about the effect of treatment proceeds in a straightforward

fashion. On the other hand, if the treatment assignment mechanism is not known to the

analyst or compliance is not perfect, then these treatment effects are not identifiable from the

observable data.

A statistical parameter is considered identifiable if different values of the parameter give

rise to different probability distributions of the observable random variables. A parameter is

partially identifiable if more than one value of the parameter gives rise to the same observed

data law, but the set of such values is smaller than the parameter space. Traditionally, sta-

tistical inference has been restricted to the situation when parameters are identifiable. More

recent research has considered methods for conducting inference about partially identifiable

parameters. This research has been motivated to some extent by methods to evaluate causal

effects of treatment, which are frequently partially identifiable. For instance, causal estimands

are typically only partially identifiable in observational studies where the treatment selection

mechanism is not known to the analyst. Noncompliance in randomized trials may also render

treatment effects partially identifiable and a large amount of research has been devoted to

drawing inference about treatment effects in the presence of noncompliance. Partial identifi-
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ability also arises when drawing inference about treatment effects within principal strata or

effects describing relationships between an outcome and a treatment that are mediated by

some intermediate variable.

In order to conduct inference about treatment effects that are partially identifiable, two

approaches are often employed: (i) bounds are derived for the treatment effect under minimal

assumptions, or (ii) additional untestable assumptions are invoked under which the treat-

ment effect is identifiable and then sensitivity analysis is conducted to assess how inference

about the treatment effect changes as the untestable assumptions are varied. Below (i) and

(ii) are illustrated in five settings. In Section 2.2 we consider treatment effect bounds and

sensitivity analysis when the treatment assignment mechanism is unknown. In Section 2.3

partial identifiability of principal strata causal effects are discussed. In Section 2.4 the setting

of non-compliance is considered where there is interest in assessing the effect of treatment if

there was perfect compliance. In Section 2.5 bounds and sensitivity analysis for direct and

indirect effects in mediation analysis are presented, and in Section 2.6 longitudinal treatment

effects are considered. Much of the literature on bounds and sensitivity analysis focuses on

ignorance due to partial identifiability and tends to ignore uncertainty due to sampling er-

ror. Section 2.7 presents some methods that appropriately quantify this uncertainty when

drawing inference about partially identifiable treatment effects. Section 2.8 concludes with a

discussion.

2.2 Treatment Selection

2.2.1 Minimal Assumptions Bounds

Suppose we have a random sample of individuals where each potentially receives treatment

or control. Unless otherwise indicated, let Z indicate treatment received where Z = 1 denotes

treatment and Z = 0 denotes control. Denote the observed outcome of interest by Y . In

order to define a treatment effect on the outcome Y , we first define potential outcomes for an

individual when receiving treatment, denoted Y (1), and when receiving control, denoted Y (0).
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Throughout this paper we invoke the stable unit treatment value assumption (SUTVA; Rubin,

1980), i.e., there is no interference between units and there are no hidden (unrepresented)

forms of treatment such that each individual has two potential outcomes {Y (0), Y (1)}. The

no hidden forms of treatment guarantees that the observed outcome is equal to the potential

outcome corresponding to the observed treatment, namely that Y = Y (z) for Z = z. Here

this will be referred to as the causal consistency assumption; for further discussion of causal

consistency see Pearl (2010) and references therein. Once an individual receives treatment Z,

the potential outcome Y (Z) is observed and the other potential outcome (or counterfactual)

Y (1− Z) becomes missing. Assume that n iid copies of (Z, Y ) are observed and denoted by

(Zi, Yi) for i = 1, . . . , n.

In this section we consider treatment effect bounds when the treatment assignment mech-

anism is unknown. Here Z can be thought of as treatment selection by the individual or by

nature, rather than random treatment assignment as in an experiment. Define the average

treatment effect ATE to be E[Y (1)−Y (0)] = E[Y (1)]−E[Y (0)] where E denotes the expected

value. The ATE can be decomposed as

1∑
z=0

E[Y (1)|Z = z] Pr[Z = z]−
1∑
z=0

E[Y (0)|Z = z] Pr[Z = z]. (2.1)

Note E[Y (z)|Z = z] = E[Y |Z = z] by the causal consistency assumption. Thus from the

observed data E[Y (z)|Z = z] and Pr[Z = z] are identifiable and can be consistently estimated

by their empirical counterparts. On the other hand, the observed data provide no information

about E[Y (z)|Z = 1 − z], such that (2.1) is only partially identifiable without additional

assumptions.

Bounds on E[Y (1)−Y (0)] can be obtained by entertaining the smallest and largest possible

values for E[Y (z)|Z = 1−z]. If Y (1) and Y (0) are not bounded then bounds on E[Y (1)−Y (0)]

will be completely uninformative, ranging from −∞ to∞. Thus informative bounds are only

possible if Y (0) and Y (1) are bounded. Because any bounded variable can be rescaled to take

values in the unit interval, without loss of generality assume Y (z) ∈ [0, 1] for z = 0, 1. Then

0 ≤ E[Y (z)|Z = 1 − z] ≤ 1 and from (2.1) it follows that E[Y (1) − Y (0)] is bounded below
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by setting E[Y (1)|Z = 0] = 0 and E[Y (0)|Z = 1] = 1, which yields the lower bound

E[Y (1)|Z = 1] Pr[Z = 1]− E[Y (0)|Z = 0] Pr[Z = 0]− Pr[Z = 1]. (2.2)

Similarly E[Y (1) − Y (0)] is bounded above by setting E[Y (1)|Z = 0] = 1 and E[Y (0)|Z =

1] = 0, which yields the upper bound

E[Y (1)|Z = 1] Pr[Z = 1]− E[Y (0)|Z = 0] Pr[Z = 0] + Pr[Z = 0]. (2.3)

These bounds were derived independently by Robins (1989) and Manski (1990). The lower

and upper bounds (2.2) and (2.3) are sharp in the sense that it is not possible to derive

narrower bounds without additional assumptions. Note the interval formed by (2.2) and

(2.3) is contained in [−1, 1] and is of width 1. Thus the bounds are informative in that the

treatment effect is now restricted to half of the otherwise possible range [−1, 1]. On the other

hand, the bounds will always contain the null value 0 corresponding to no average treatment

effect. That is, without additional assumptions the sign of the treatment effect cannot be

determined from the observable data.

2.2.2 Additional Assumptions

The bounds (2.2) – (2.3) are sometimes called the “no assumptions” or “worst case”

bounds because no assumptions are made about the effect of treatment in the population

(Lee, 2005; Morgan and Winship, 2007). The only assumptions made in deriving (2.2) and

(2.3) are SUTVA and that the observed data constitute a random sample. If additional

assumptions are invoked, the treatment effect bounds may become tighter (i.e., narrower) or

even collapse to a point (i.e., the treatment effect may become identifiable). Sometimes these

additional assumptions will have implications that are testable based on the observed data.

Should the observed data provide evidence against an assumption under consideration, then

bounds should be computed without making this assumption.
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An example of an additional assumption is mean independence, i.e.,

E[Y (z)|Z = 0] = E[Y (z)|Z = 1] for z = 0, 1. (2.4)

Under (2.4) ATE is identifiable. Specifically the upper and lower bounds (2.2) and (2.3) both

equal E[Y (1)|Z = 1]−E[Y (0)|Z = 0], which is identifiable from the observable data and can

be consistently estimated by the “naive” estimator given by the difference in sample means

between the groups of individuals receiving treatment and control. Assumption (2.4) will

hold in experiments where treatment is randomly assigned as in a randomized clinical trial.

Moreover, in randomized experiments the stronger assumption

Y (z)q Z for z = 0, 1, (2.5)

will hold, which in turn implies (2.4).

In some settings it may be reasonable to consider additional assumptions that are not

as strong as (2.4) or (2.5) but nonetheless lead to tighter bounds than (2.2) and (2.3). For

example, monotonicity type assumptions might be considered, such as monotone treatment

selection (MTS)

E[Y (z)|Z = 1] ≥ E[Y (z)|Z = 0] for z = 0, 1. (2.6)

MTS assumes individuals who select treatment will on average have outcomes greater than or

equal to that of individuals who do not select treatment under the counterfactual scenario all

individuals selected the same z. Manski and Pepper (2000) consider MTS when examining the

effect of returning to school on wages later in life. For this example, MTS implies individuals

who choose to return to school will have higher wages on average compared to individuals

who choose to not return to school under the counterfactual scenario no individuals return

to school. Alternatively, one might assume monotone treatment response (MTR)

Pr[Y (1) ≥ Y (0)] = 1

17



(Manski, 1997). MTR assumes that under treatment each individual will have a response

greater than or equal to that under control. For instance, suppose Z = 1 if an individual elects

to get the annual influenza vaccine and Z = 0 otherwise, and let Y (z) = 1 if an individual

subsequently does not develop flu-like symptoms when Z = z, and Y (z) = 0 otherwise. MTR

asserts that each individual is more or as likely to not develop flu-like symptoms if they are

vaccinated versus if they are unvaccinated. Given to date there is no evidence that the annual

flu vaccine enhances the probability of acquiring influenza, MTR might be plausible for this

example.

Assuming MTS or MTR can lead to narrower bounds than (2.2) and (2.3) because they

imply additional constraints on unobserved counterfactual expectations. For example, assum-

ing MTS, E[Y (0)|Z = 1] is bounded below by E[Y (0)|Z = 0] and E[Y (1)|Z = 0] is bounded

above by E[Y (1)|Z = 1], implying the upper bound on E[Y (1)− Y (0)] is

E[Y (1)|Z = 1]− E[Y (0)|Z = 0], (2.7)

for which the naive estimator is consistent. Under MTS the lower bound remains (2.2). In

contrast to the no assumptions bounds, assuming MTS the bounds may exclude 0, specifically

when (2.7) is negative. MTR implies E[Y (1)] ≥ E[Y (0)] which in turn implies that the ATE

lower bound is 0. Under MTR the upper bound remains (2.3).

2.2.3 AZT Example

To illustrate the bounds above consider a hypothetical study of 2000 HIV patients (from

Figure 2 of Robins, 1989) where 1400 individuals elected to take the drug AZT and 600

elected not to take AZT (this is a simplified version of the problem Robins considers). The

outcome of interest is death or survival at a given time point. Of the 2000 patients, 1000 died

with exactly 500 from each group. Let Z = 1 if the patient elected to take AZT and Z = 0

otherwise; let Y = 1 if the individual died and 0 otherwise. The naive estimator, i.e., the

difference in sample means between Z = 1 and Z = 0, equals 500/1400-500/600 ≈ -0.48. The
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empirical estimates of the no assumptions bounds (2.2) and (2.3) equal −0.7 and 0.3. In this

setting, the MTS assumption (2.6) supposes that individuals who elected to take AZT would

have been more or as likely to die as individuals who did not take AZT in the counterfactual

scenarios where everyone receives treatment or everyone does not receive treatment. This

might be reasonable if it is thought that those who took AZT were on average less healthy

than those who did not. Assuming MTS, the upper bound (2.7) is estimated to be -0.48. Thus

in this example the MTS bounds are substantially tighter than the no assumption bounds.

The estimated MTS bounds lead to the conclusion (ignoring sampling variability, a point

which we return to later) that AZT reduces the probability of death by at least 0.48 whereas

without the MTS assumption we cannot even conclude whether the effect of treatment is

non-zero.

2.2.4 Sensitivity Analysis

Assumptions such as (2.4) or (2.5) which identify the ATE, or assumptions such as MTS

which sharpen the bounds, cannot be tested empirically because such assumptions pertain

to the counterfactual distribution of Y (z) given Z = 1 − z. Robins and others (e.g., see

Robins et al., 1999; Scharfstein et al., 1999) have argued that a data analyst should conduct

sensitivity analysis to explore how inference varies as a function of departures from any

untestable assumptions.

For instance, a departure from assumption (2.5) might be due to the existence of an

unmeasured variable U associated with both treatment selection Z and the potential outcomes

Y (z) for z = 0, 1; a variable such as U is often referred to as an unmeasured confounder. Under

this scenario, one might postulate that Y (z)qZ|U for z = 0, 1 rather than (2.5). Sensitivity

analysis proceeds by examining how inference drawn about ATE varies as a function of the

magnitude of the association of U with Z, Y (0), and Y (1). This idea has roots as early

as Cornfield et al. (1959), who demonstrated the plausibility of a causal effect of cigarette

smoking (Z) on lung cancer (Y ) by arguing that the absence of such a relationship was only

possible if there existed an unmeasured factor U associated with cigarette use that was at
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least as strongly associated with lung cancer as cigarette use. This idea was further developed

by Schlesselman (1978); Rosenbaum and Rubin (1983); Lin et al. (1998); Hernán and Robins

(1999); and VanderWeele and Arah (2011) among others.

To illustrate this approach, suppose in the AZT example above that the analyst first

assumes (2.5) holds and thus estimates the effect of AZT to be -0.48. To proceed with

sensitivity analysis, the analyst posits the existence of an unmeasured binary variable U and

assumes that Y (z)q Z|U for z = 0, 1. Similar to VanderWeele and Arah (2011), let

c(z) = {E[Y (z)|U = 1]− E[Y (z)|U = 0]}{Pr[U = 1|Z = z]− Pr[U = 1]}.

Then under the assumption that Y (z) q Z|U for z = 0, 1, the naive estimator converges in

probability to E[Y (1)] − E[Y (0)] + c(1) − c(0). Thus the naive estimator is asymptotically

unbiased if and only if c(1) = c(0). For an alternative decomposition of the asymptotic bias

of the naive estimator see Morgan and Winship (2007, §2.6.3)

Sensitivity analysis proceeds by making varying assumptions about the unidentifiable

associations of U with Y (0), Y (1), and Z. Under the most extreme of these assumptions

the bounds (2.2) and (2.3) are recovered. In particular, the upper bound in (2.3) is achieved

when Pr[U = 1|Z = 1] = 0, Pr[U = 1|Z = 0] = 1, E[Y (1)|U = 1] = 1 and E[Y (0)|U = 0] = 0,

meaning that the confounder U is perfectly negatively correlated with treatment Z and that if

the confounder is present (U = 1), then a treated individual will die, whereas if the confounder

is absent (U = 0), then an untreated individual will survive. The lower bound (2.2) is achieved

under the opposite conditions.

In practice the extreme associations of U with Y (0), Y (1), and Z leading to the bounds

might be considered unrealistic. Instead the analyst might consider associations only in a

range deemed plausible by subject matter experts. In order to arrive at an accurate range,

care should be taken in communicating the meaning of these associations and eliciting this

range should be done in a manner that avoids data driven choices. Alternatively, the degree

of associations required to change the sign of the effect of interest might be determined. For
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instance, suppose the analyst further assumes that E[Y (z)|U = 1] − E[Y (z)|U = 0] does

not depend on z. This assumption will hold if the effect of Z on Y is the same if U = 0

or U = 1. Letting γ0 = E[Y (z)|U = 1] − E[Y (z)|U = 0] and γ1 = Pr[U = 1|Z = 1] −

Pr[U = 1|Z = 0], the asymptotic bias of the naive estimator is then given by γ0γ1 and a bias

adjusted estimator is found by subtracting γ0γ1 from the naive estimator. Sensitivity analysis

may proceed by determining the values of γ0 and γ1 for which the bias adjusted estimator of

the ATE will have the opposite sign of the naive estimator. For the AZT example, the bias

adjusted estimator will have the opposite sign of the naive estimator if γ0γ1 < −0.48. This

indicates that the product of (i) the difference in the mean potential outcomes between levels

of the confounder for both treatment and control and (ii) the difference in the prevalence of

the unmeasured confounder between the treatment and control groups must be less than -

0.48. Such magnitudes might be considered unlikely in the opinion of subject matter experts,

in which case the sensitivity analysis would support the existence of a beneficial effect of

AZT on survival among HIV+ men (ignoring sampling variability). Note the observed data

distribution places some restrictions on the possible values of (γ0, γ1), i.e., (γ0, γ1) is partially

identifiable. For instance, if γ1 = 1 then Pr[U = 1|Z = 1] = 1 and Pr[U = 1|Z = 0] = 0 which

implies E[Y (z)|U = u] = E[Y (z)|Z = u] and therefore max{E[Y (1)|Z = 1]−1,−E[Y (0)|Z =

0]} ≤ γ0 ≤ min{E[Y (1)|Z = 1], 1 − E[Y (0)|Z = 0]}. Such considerations should be taken

into account when determining the range of values of (γ0, γ1) in sensitivity analysis.

Because the data provide no evidence about U , VanderWeele (2008) and VanderWeele

and Arah (2011) recommend choosing U and any simplifying assumptions based on what is

considered plausible by relevant subject-matter experts. Such sensitivity analyses are most

applicable when the existence of unmeasured confounders is known, but these factors could

not be measured for logistical or other reasons. General bias formulas to be used for sensitivity

analyses of unmeasured confounding for categorical or continuous outcomes, confounders, and

treatments can be found in VanderWeele and Arah (2011).

In other settings there might not be any known unmeasured confounders, or it may be

thought that there are numerous unmeasured confounders, in which cases the sensitivity
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analysis strategy described above would not be applicable or feasible. One general alternative

approach entails making additional untestable assumptions regarding the unobserved poten-

tial outcome distributions. Typically these assumptions (or models) are indexed by one or

more sensitivity analysis parameters conditional upon which the causal estimand of interest

is identifiable (e.g., Scharfstein et al., 1999; Brumback et al., 2004). Sensitivity analysis then

proceeds by examining how inference changes as assumed values of the parameters are varied

over plausible ranges. Examples of such sensitivity analyses are given below in Sections 2.3.4

and 2.6.3.

2.2.5 Covariate Adjustment

Typically in observational studies baseline (pre-treatment) covariates X will be collected

in addition to Z and Y . Incorporating information from observed covariates can help sharpen

inferences about partially identified treatment effects. For example, incorporating covariates

will generally lead to narrower bounds (Scharfstein et al., 1999). This follows because any

treatment effect consistent with the distribution of observed variables (X,Y, Z) must also be

consistent with the distribution of (Y, Z), i.e., the observable variables if we do not observe or

choose to ignore X (Lee, 2009). Covariate adjusted bounds are discussed further in Section

2.3.3 below.

Additionally, incorporating covariates may lend plausibility to some of the bounding as-

sumptions discussed in Section 2.2.2. For example, in the absence of randomized treatment

assignment (2.4) or (2.5) may be dubious. Instead of (2.4) it might be more plausible to

assume

E[Y (z)|Z = 0, X = x] = E[Y (z)|Z = 1, X = x] for z = 0, 1. (2.8)

Similarly, assumption (2.5) might be replaced by

Y (z)q Z|X for z = 0, 1, (2.9)

i.e., each potential outcome is independent of treatment selection conditional on some set
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of covariates. Assumption (2.9) is commonly referred to as no unmeasured confounders.

Assumptions such as (2.8) or weaker inequalities similar to (2.6) such as

E[Y (z)|Z = 1, X = x] ≥ E[Y (z)|Z = 0, X = x] for z = 0, 1,

may be deemed plausible for certain levels of X, but not for others. Availability of covariates

also allows for the consideration of new types of assumptions (e.g., see Chiburis, 2010).

To conduct covariate adjusted sensitivity analysis, departures from identifying assump-

tions such as (2.9) can be explored. Similar to the previous section, a departure from (2.9)

might entail positing the existence of an unmeasured variable U associated with both treat-

ment selection Z and the potential outcomes Y (z) for z = 0, 1. Under this scenario, one

might postulate that Y (z) q Z|{X,U} for z = 0, 1 rather than (2.9) and sensitivity analysis

proceeds by examining how inference varies as a function of the magnitude of the association

of U with Z, Y (0), and Y (1) given X. Similar to covariate adjusted bounds, smaller associ-

ations or tighter regions of the values of the sensitivity parameters may be deemed plausible

within certain levels of X, potentially yielding sharper inferences from the sensitivity analy-

ses. However, as cautioned by Robins (2002), care should be taken in clearly communicating

the meaning of such sensitivity parameters and their relationship to covariates when eliciting

plausible ranges from subject matter experts. In some scenarios plausible regions for sensi-

tivity parameters may in fact be wider when conditioning on X than when not conditioning

on X.

2.3 Principal Stratification

2.3.1 Background

Even if treatment is randomly assigned (e.g., as in a clinical trial), the causal estimand of

interest may still be only partially identifiable. For example, in many studies it is often of in-

terest to draw inference about treatment effects on outcomes that only exist or are meaningful

after the occurrence of some observable intermediate variable. For instance, in studies where
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some individuals die, investigators might be interested in treatment effects only among indi-

viduals alive at the end of the study. Unfortunately, estimands defined by contrasting mean

outcomes under treatment and control that simply condition on this observable intermediate

variable do not measure a causal effect of treatment without additional assumptions. One

approach that may be employed in this scenario entails principal stratification (Frangakis

and Rubin, 2002). Principal stratification uses the potential outcomes of the intermediate

post-randomization variable to define strata of individuals. Because these “principal strata”

are not affected by treatment assignment, treatment effect estimands defined within princi-

pal strata have a causal interpretation and do not suffer from the complications of standard

post-randomization adjusted estimands. The simple framework of principal stratification has

a wide range of applications. For a recent discussion of the utility (and lack thereof) of

principal stratification, see Pearl (2011) and corresponding reader reactions.

As a motivating example for this section, we consider evaluating vaccine effects on post-

infection outcomes. In vaccine studies, uninfected subjects are enrolled and followed for

infection endpoints, and infected subjects are subsequently followed for post-infection out-

comes such as disease severity or death due to infection with the pathogen targeted by the

vaccine; often interest is in assessing the effect of vaccination on these post-infection endpoints

(Hudgens and Halloran, 2006). For example, Preziosi and Halloran (2003) present data from

a pertussis vaccine field study in Niakhar, Senegal. In this study 3845 vaccinated children and

1020 unvaccinated children were followed for one year for pertussis. In the vaccine group 548

children contracted pertussis, of whom 176 had severe infections; in the unvaccinated group

206 children contracted pertussis, of whom 129 had severe infections. In this setting investi-

gators are interested in assessing whether or not the vaccine had an effect on the severity of

infection.

When assessing such post-infection effects, a data analyst might consider contrasts be-

tween study arms including all individuals randomized, or, alternatively, only those who

become infected. Though including all individuals in the study has the advantage of provid-

ing valid inference about the overall effect of vaccination (assuming perfect compliance), such
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an approach does not distinguish vaccine effects on susceptibility to infection from effects on

the post-infection endpoint of interest. An analysis that conditions on infection attempts to

distinguish these effects and may be more sensitive in detecting post-infection vaccine effects.

However, because the set of individuals who would become infected under control are not

likely to be the same as those who would become infected if given the vaccine, conditioning

on infection might result in selection bias. For example, those who would become infected un-

der vaccine may tend to have weaker immune systems than those who would become infected

under control, and thus are more susceptible to severe infection. Because of this potential

selection bias, comparisons between infected vaccinees and infected controls do not necessarily

have causal interpretations.

2.3.2 Principal Effects

In this section treatment is vaccination, with Z = 1 corresponding to vaccination and

Z = 0 corresponding to not being vaccinated. Assume that assignment to vaccine is equivalent

to receipt of vaccine, i.e., there is no non-compliance. Denote the potential infection outcome

by S(z), where S(z) = 0 if uninfected and S(z) = 1 if infected. Here the focus is on evaluating

the causal effect of vaccine on Y, a post-infection outcome. For simplicity we consider the

case where Y is binary, indicating the presence of severe disease. If S(z) = 1, define the

potential post-infection outcome Y (z) = 1 if the individual would have the worse (or more

severe) post-infection outcome of interest given z, and Y (z) = 0 otherwise. If an individual’s

potential infection outcome for treatment z is uninfected, (i.e., S(z) = 0), then we adopt

the convention that Y (z) is undefined. In other words, it does not make sense to define the

severity of an infection in an individual who is not infected. This convention is similar to that

employed in other settings. For instance, in the analysis of quality of life studies it might be

assumed that quality of life metrics are not well defined in those who are not alive (Rubin,

2000).

Define a basic principal stratification P0 according to the joint potential infection outcomes

SP0 = (S(0), S(1)). The four basic principal strata or response types are defined by the
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joint potential infection outcomes, (S(0), S(1)), and are composed of immune (not infected

under both vaccine and placebo), harmed (infected under vaccine but not placebo), protected

(infected under placebo but not vaccine), and doomed individuals (infected under both vaccine

and placebo). Note the only stratum where both potential post-infection endpoints are well

defined is in the doomed basic principal stratum, SP0 = (1, 1). Thus defining a post-infection

causal vaccine effect is only possible in the doomed principal stratum SP0 = (1, 1). Such a

causal estimand will describe the effect of vaccination on disease severity in individuals who

would become infected whether vaccinated or not. For instance, the vaccine effect on disease

severity may be defined by

E[Y (1)|SP0 = (1, 1)]− E[Y (0)|SP0 = (1, 1)]. (2.10)

Frangakis and Rubin call treatment effect estimands such as (2.10) “principal effects.”

2.3.3 Bounds

Assume we observe n iid copies of (Z, S, Y ) denoted by (Zi, Si, Yi) for i = 1, . . . , n. Also

assume that the doomed principal strata is non-empty, Pr[SP0 = (1, 1)] > 0, so that the

principal effect in (2.10) is well defined. Bounds for (2.10) are presented below under two

additional assumptions: independent treatment assignment, i.e.,

Z q {Y (z), S(z)} for z = 0, 1 (2.11)

and monotone treatment response with respect to S, i.e.,

Pr[S(0) ≥ S(1)] = 1. (2.12)

Assumption (2.11) will hold in randomized vaccine trials. Monotonicity (2.12) assumes that

the vaccine does no harm at the individual level, i.e., there are no individuals who would be

infected if vaccinated but uninfected if not vaccinated. Monotonicity is equivalent to assuming

the harmed principal stratum is empty. Note no such monotonicity assumption is being made
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regarding Y . Under (2.11), assumption (2.12) implies P (S = 1|Z = 1) ≤ P (S = 1|Z = 0),

which is testable using the observed data. For the pertussis example, the proportion infected

in the vaccine group was less than in the unvaccinated group; thus, assuming (2.11), the data

do not provide evidence against (2.12).

Assuming independent treatment assignment and monotonicity, (2.10) is partially identi-

fiable from the observable data. The left term of (2.10) can be written

E[Y (1)|SP0 = (1, 1)] = E[Y (1)|S(1) = 1]

= E[Y (1)|S(1) = 1, Z = 1]

= E[Y |S = 1, Z = 1],

(2.13)

where the first equality holds under (2.12), the second equality under (2.11), and the third by

causal consistency. On the other hand, the right term of (2.10) is only partially identifiable.

To see this, note

E[Y (0)|S(0) = 1] = E[Y (0)|SP0 = (1, 1)] Pr[S(1) = 1|S(0) = 1]+

E[Y (0)|SP0 = (1, 0)] Pr[S(1) = 0|S(0) = 1].
(2.14)

In (2.14), only E[Y (0)|S(0) = 1] and Pr[S(1) = s|S(0) = 1] for s = 0, 1 are identifiable. In

particular, E[Y (0)|S(0) = 1] = E[Y |S = 1, Z = 0] by similar reasoning to (2.13), and

Pr[S(1) = 1|S(0) = 1] =
Pr[S(1) = 1]

Pr[S(0) = 1]
=

Pr[S = 1|Z = 1]

Pr[S = 1|Z = 0]
,

where the first equality holds under (2.12) and the second under independent treatment as-

signment (and causal consistency). The other two terms in (2.14), namely E[Y (0)|SP0 =

(1, 1)] and E[Y (0)|SP0 = (1, 0)], are only partially identifiable. In words, infected controls

are a mixture of individuals in the protected and doomed principal stratum and without

further assumptions the observed data do not identify exactly which infected controls are

doomed. Therefore the probability of severe disease when not vaccinated in the doomed

principal stratum is not identified. Under (2.12), the data do however indicate what propor-

tion of infected controls are doomed and this information provides partial identification of
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E[Y (0)|SP0 = (1, 1)] and hence (2.10).

For fixed values of E[Y (0)|S(0) = 1] and Pr[S(1) = 1|S(0) = 1], any pair of expectations

(E[Y (0)|SP0 = (1, 1)], E[Y (0)|SP0 = (1, 0)]) ∈ [0, 1]2 satisfying (2.14) will give rise to the same

observed data distribution. Equation (2.14) describes a line segment with non-positive slope

intersecting the unit square as illustrated in Figure 1. An upper bound of E[Y (0)|SP0 = (1, 1)]

and thus a lower bound for (2.10) is achieved when the line intersects the right or lower side

of the square, i.e., when either

E[Y (0)|SP0 = (1, 1)] = 1 or E[Y (0)|SP0 = (1, 0)] = 0. (2.15)

Together (2.14) and (2.15) imply E[Y (0)|SP0 = (1, 1)] is bounded above by

min

{
1,

E[Y (0)|S(0) = 1]

Pr[S(1) = 1|S(0) = 1]

}
. (2.16)

Similarly, E[Y (0)|SP0 = (1, 1)] is bounded below by

max

{
0,
E[Y (0)|S(0) = 1]− Pr[S(1) = 0|S(0) = 1]

Pr[S(1) = 1|S(0) = 1]

}
. (2.17)

Combining (2.17) with (2.13) yields the upper bound on the principal effect of interest (2.10)

and combining (2.16) with (2.13) yields the lower bound. These bounds were derived by

Rotnitzky and Jemiai (2003); Zhang and Rubin (2003); and Hudgens et al. (2003). Con-

sistent estimates of (2.16) and (2.17) can be computed by replacing E[Y (0)|S(0) = 1] with∑
i YiI(Si = 1, Zi = 0)/

∑
i I(Si = 1, Zi = 0) and Pr[S(1) = 1|S(0) = 1] with

min

{
1,

∑
i I(Si = Zi = 1)/

∑
i I(Zi = 1)∑

i I(Si = 1, Zi = 0)/
∑

i I(Zi = 0)

}
.

Returning to the pertussis vaccine study, the estimated lower and upper bounds of (2.10) are

-0.57 and -0.15. These estimated bounds exclude zero, leading to the conclusion (ignoring

sampling variability) that vaccination lowers the risk of severe pertussis in individuals who

will become infected regardless of whether they are vaccinated.
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Note if Pr[S(1) = 1|S(0) = 1] = 1, i.e., the vaccine has no protective effect against

infection, then the protected principal stratum SP0 = (1, 0) is empty and both (2.16) and

(2.17) equal E[Y (0)|S(0) = 1] meaning that (2.10) is identifiable and equals E[Y |Z = 1, S =

1]− E[Y |Z = 0, S = 1]. Intuitively the lack of vaccine effect against infection eliminates the

potential for selection bias.

As discussed in Section 2.2.5, incorporation of covariates can tighten bounds. For covari-

ates X with finite support, one simple approach of adjusting for covariates entails determining

bounds within strata defined by the levels of X and then taking a weighted average of the

within strata bounds over the distribution of X. For the bounds in (2.16) and (2.17), adjust-

ment for covariates will always lead to bounds that are at least as tight as bounds unadjusted

for covariates (Lee, 2009; Long and Hudgens, 2013).

If the observed data provide evidence contrary to monotonicity (2.12), then bounds may be

obtained under only (2.11). Without monotonicity (2.12) the proportion of infected controls

that are in the doomed principal stratum is no longer identified but may be bounded in order to

arrive at bounds for E[Y (0)|SP0 = (1, 1)]. In addition, the harmed principal stratum defined

by SP0 = (0, 1) is no longer empty and thus E[Y (1)|SP0 = (1, 1)] is no longer identifiable

from the observed data and may also be bounded in a similar fashion to E[Y (0)|SP0 = (1, 1)].

Details regarding these bounds without the monotonicity assumption may be found in Zhang

and Rubin (2003) and Grilli and Mealli (2008).

2.3.4 Sensitivity Analysis

The bounds (2.16) and (2.17) are useful in bounding the vaccine effect on Y in the doomed

stratum. However, these bounds may be rather extreme. An alternative approach is to

make an untestable assumption that identifies the post-infection vaccine effect on Y and then

consider how sensitive the resulting inference is to departures from this assumption. For

instance, assuming

Pr[Y (0) = 1|SP0 = (1, 1)] = Pr[Y (0) = 1|SP0 = (1, 0)], (2.18)
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identifies (2.10). Hudgens and Halloran (2006) refer to this as the no selection model. To

examine how inference varies according to departures from (2.18), following Scharfstein et al.

(1999), and Robins et al. (1999), consider the following sensitivity parameter

exp(γ) =
Pr[Y (0) = 1|SP0 = (1, 1)]/Pr[Y (0) = 0|SP0 = (1, 1)]

Pr[Y (0) = 1|SP0 = (1, 0)]/Pr[Y (0) = 0|SP0 = (1, 0)]
. (2.19)

In words, exp(γ) compares the odds of severe disease when not vaccinated in the doomed

versus the protected principal stratum. Assuming (2.18) corresponds to γ = 0. A sensitivity

analysis entails examining how inference about (2.10) varies as γ becomes farther from 0. For

any fixed value of γ, (2.10) is identified (see Figure 1) and can be consistently estimated by

maximum likelihood estimation without any additional assumptions (Gilbert et al., 2003).

The lower and upper bounds (2.17) and (2.16) are obtained by letting γ →∞ and γ → −∞.

To see this, note that as γ →∞ (2.19) implies in the limit that either

Pr[Y (0) = 1|SP0 = (1, 1)] = 1 or Pr[Y (0) = 1|SP0 = (1, 0)] = 0,

which is equivalent to (2.15). Sensitivity analysis can be conducted by letting γ range over a

set of values Γ.

Tighter bounds can be achieved by placing restrictions on Γ, perhaps based on prior beliefs

about γ elicited from subject matter experts. For example, Shepherd et al. (2007) surveyed

10 recognized HIV experts in order to elicit a plausible range for a sensitivity parameter

representing a departure from the assumption of no selection bias between vaccinated and

unvaccinated individuals who acquired HIV during an HIV vaccine trial. Included in this

survey was the analysis approach, a brief explanation of the potential for selection bias, the

definition of the sensitivity parameter being employed, examples of the implications of certain

sensitivity parameter values on selection bias, and possible justification for believing certain

values of the sensitivity parameter. The expert responses to the survey were fairly consistent

and several written justifications for the respondents’ chosen ranges indicated a high level of

understanding of both the counterfactual nature of the sensitivity parameter and the need to
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account for selection bias.

2.4 Randomized Studies with Partial Compliance

2.4.1 Global Average Treatment Effect

In a placebo controlled randomized trial where (2.5) holds but there is non-compliance

(i.e., individuals are randomly assigned to treatment or control but they do not necessarily

adhere or comply with their assigned treatment), the naive estimator is a consistent estimator

of the average effect of treatment assignment. However, in this case parameters other than

the effect of treatment assignment may be of interest. As in the last section, a principal effect

may be defined using compliance as the intermediate post-randomization variable over which

to define principal strata; namely the principal strata would consist of individuals who would

comply with their randomization assignment if assigned treatment or control or “compliers,”

individuals who would always take treatment regardless of randomization or “always takers,”

individuals who never take treatment “never takers,” and individuals who take treatment

only if assigned control or “defiers.” A principal effect of interest might be the effect of

treatment in the complier principal stratum (Imbens and Angrist, 1994; Angrist et al., 1996),

in which case bounds and sensitivity analyses similar to those in Section 2.3 are applicable.

However, as several authors including Robins (1989) and Robins and Greenland (1996) have

pointed out, such principal effects may not be of ultimate public health interest because they

only apply to the subpopulation of compliers in clinical trials, which may differ from the

population that elect to take treatment once licensed. For example, once efficacy is proved,

a larger subpopulation of people may be willing to take the treatment. Effects defined on

the subpopulation of compliers are also of limited decision-making utility because individual

principal stratum membership is generally unknown prior to treatment assignment (Joffe,

2011).

Robins and Greenland (1996) suggested that in settings where the trial population could

be persuaded to take the treatment once licensed, a more relevant public health estimand is
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the global average treatment effect, defined as the average effect of actually taking treatment

versus not taking treatment given treatment assignment z. This causal estimand is similar

to the average treatment effect defined in Section 2.2, but requires generalizing the potential

outcome definitions used previously to include separate potential outcomes for each of the four

combinations of treatment assignment and actual treatment received. For further discussion

regarding causal models in presence of noncompliance see Chickering and Pearl (1996) and

Dawid (2003) among others.

Suppose we observe data from a clinical trial where each individual is randomly assigned

to treatment or control. Let Z indicate treatment assignment where Z = 1 denotes treat-

ment and Z = 0 denotes control. Suppose individuals do not necessarily comply with their

randomization assignment and let S be a variable indicating whether or not treatment was

actually taken, where S = 1 denotes treatment was taken and S = 0 otherwise. Thus an

individual is compliant with their randomization assignment if S = Z. Let Y be a binary

outcome of interest. Denote the potential treatment taken by S(z) for z = 0, 1, where

S(z) = 1 indicates taking treatment when assigned treatment z and S(z) = 0 denotes not

taking treatment when assigned z. Let Y (z, s) denote the potential outcome if an individual

is assigned treatment z but actually takes treatment s. Conceiving of these potential out-

comes depends on a supposition that trial participants who did not comply in the trial could

be persuaded to take the treatment under other circumstances. Given this supposition, the

global average treatment effect for each treatment assignment z = 1 and z = 0 is defined as

GATEz = E[Y (z, 1)−Y (z, 0)]. For instance, GATE1 is the difference in the average outcomes

under the counterfactual scenario everyone was assigned vaccine and did comply versus the

counterfactual scenario everyone was assigned vaccine but did not comply.

Bounds for GATEz are given below under three assumptions: independent treatment

assignment

Z q {S(0), S(1), Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)}; (2.20)

monotonicity with respect to S

Pr[S(1) ≥ S(0)] = 1; (2.21)
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and the exclusion restriction

Y (0, s) = Y (1, s) for s = 0, 1. (2.22)

Assumption (2.22) indicates treatment assignment has no effect when the actual treatment

taken is held fixed. Under (2.22), GATE0 = GATE1 which we denote by GATE. In this

case each individual has two potential outcomes according to s = 0 and s = 1 (which could

be denoted by Y (s) = Y (0, s) = Y (1, s) for s = 0, 1) and GATE is equivalent to the ATE

discussed in Section 2.2 with z replaced by s. Robins (1989) derived bounds for GATE

under several different combinations of (2.20) – (2.22) as well as some additional assumptions

such as monotonicity with respect to S, i.e., Y (z, 1) ≥ Y (z, 0) for z = 0, 1. Manski (1990)

independently derived related results. Under (2.20) – (2.22) the sharp lower and upper bounds

on GATE are

− 1 + maxz{Pr[Y = 1, S = 1|Z = z]}+ maxz{Pr[Y = 0, S = 0|Z = z]}, (2.23)

and

1−maxz{Pr[Y = 0, S = 1|Z = z]} −maxz{Pr[Y = 1, S = 0|Z = z]}. (2.24)

Balke and Pearl (1997) derived sharp bounds for GATE under a variety of assumptions,

including (2.20) – (2.22), by recognizing that the derivation of the bounds is equivalent to

a linear programming optimization problem. To see that bounds can be formulated as a

linear programming optimization problem, first note that GATE can be expressed as a linear

combination of probabilities of the joint distribution of L = (Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1),

S(0), S(1)) ∑
l1∈L1

Pr[L = l1]−
∑
l0∈L0

Pr[L = l0] (2.25)

where Ls is the set of possible realizations of L where Y (0, s) = Y (1, s) = 1 for s = 0, 1.

Under independent treatment assignment, there exists a linear transformation between the

probabilities in the joint distribution of L and the probabilities in the conditional distribution
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of the observable random variables Y and S given Z, namely

Pr[Y = y, S = s|Z = z] =
∑

l∈Oys·z

Pr[L = l] (2.26)

where Oys·z is the set of possible realizations of L where S(z) = s and Y (z, s) = y for z, y, s =

0, 1. To find the sharp bounds, the objective function (2.25) is minimized (or maximized)

subject to the constraints (2.26), Pr[L = l] ≥ 0 for every l ∈ L, and
∑

l∈L Pr[L = l] = 1

where L is the set of all possible realizations of L assuming (2.21) and (2.22). Optimization

may be accomplished using the simplex algorithm and the dimension of this problem permits

obtaining a closed form solution involving probabilities of the observed data distribution

(Balke and Pearl, 1993), namely (2.23) and (2.24).

If in addition to assumptions (2.20) and (2.22), it is assumed that

E[Y (z, 1)− Y (z, 0)|Z = 1, S = s] = E[Y (z, 1)− Y (z, 0)|Z = 0, S = s] (2.27)

for s, z = 0, 1 then GATE is identified and equals

E[Y |Z = 1]− E[Y |Z = 0]

E[S|Z = 1]− E[S|Z = 0]
(2.28)

(Hernán and Robins, 2006). For s = 0 assumption (2.27) is known as a no current treatment

interaction assumption (Robins, 1994), and expression (2.28) is known as the instrumental

variables estimand (Imbens and Angrist, 1994; Angrist et al., 1996). Sensitivity analyses may

be conducted by defining sensitivity parameters representing departures from (2.20), (2.22)

or (2.27) and then examining how inference about GATE varies as values of these parameters

change. For instance, Robins et al. (1999) define current treatment interaction functions

which represent a departure from (2.27) for s = 0.
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2.4.2 Cholestyramine Example

To illustrate the GATE, we consider data presented in Pearl (2009, §8.2.6) on 337 subjects

who participated in a randomized trial to assess the effect of cholestyramine on cholesterol

reduction. Let Z = 1 denote assignment to cholestyramine and Z = 0 assignment to placebo.

Let S = 1 if cholestyramine was actually taken by the participant and S = 0 otherwise. Let

Y = 1 if the participant had a response and Y = 0 otherwise, where response is defined as

reduction in the level of cholesterol by 28 units or more. Pearl reported the following observed

proportions

P̂r[Y = 0, S = 0|Z = 0] = 0.919 P̂r[Y = 0, S = 0|Z = 1] = 0.315

P̂r[Y = 0, S = 1|Z = 0] = 0.000 P̂r[Y = 0, S = 1|Z = 1] = 0.139

P̂r[Y = 1, S = 0|Z = 0] = 0.081 P̂r[Y = 1, S = 0|Z = 1] = 0.073

P̂r[Y = 1, S = 1|Z = 0] = 0.000 P̂r[Y = 1, S = 1|Z = 1] = 0.473

No participants assigned placebo actually took cholestyramine, suggesting the monotonicity

assumption (2.21) is reasonable. On the other hand, 38.8% of individuals assigned treatment

did not actually take cholestyramine.

From (2.23) and (2.24) the bounds on GATE assuming (2.21), (2.20) and (2.22) are

estimated to be −1+max{0.000, 0.473}+max{0.919, 0.315} = 0.392 and 1−max{0, 0.139}−

max{0.081, 0.073} = 0.780. The positive sign of the estimated bounds indicates the treatment

is beneficial. Pearl interprets the estimated bounds as follows: “although 38.8% of the subjects

deviated from their treatment protocol, the experimenter can categorically state that, when

applied uniformly to the population, the treatment is guaranteed to increase by at least

39.2% the probability of reducing the level of cholesterol by 28 points or more.” Such an

interpretation does not account for sampling variability, the topic of Section 2.7.
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2.5 Mediation Analysis

2.5.1 Natural Direct and Indirect Effects

As demonstrated in Sections 2.3 and 2.4, independent treatment assignment does not

guarantee that the causal estimand of interest will be identifiable. Another setting where this

occurs is in mediation analysis, where researchers are interested in whether or not the effect

of a treatment is mediated by some intermediate variable. Even in studies where treatment

is assigned randomly and there is perfect compliance, confounding may exist between the

intermediate variable and the outcome of interest such that effects describing the mediated

relationships will not in general be identifiable. Thus bounds and sensitivity analysis may be

helpful in drawing inference.

To illustrate, let Y be an observed binary outcome of interest, and S a binary intermediate

variable observed some time between treatment assignment Z and the observation of Y . The

goal is to assess whether and to what extent the effect of Z on Y is mediated by or through

S. Denote the potential outcome of the intermediate variable under treatment z by S(z) for

z = 0, 1 such that S = S(Z), and the potential outcomes under treatment z and intermediate

s as Y (z, s) such that Y = Y (Z, S(Z)). Here, as in the previous section, it is assumed that

both Z and S can be set to particular fixed values, such that there are four potential outcomes

for Y per individual. Unless otherwise specified, independent treatment assignment (2.20)

will be assumed throughout this section.

Define the total effect of treatment to be E[Y (1, S(1)) − Y (0, S(0))], which is equivalent

to the ATE defined in Section 2.2.1. The total effect of treatment can be decomposed in the

following way

E[Y (1, S(1))− Y (0, S(0))] = E[Y (1, S(z))− Y (0, S(z))]

+ E[Y (z′, S(1))− Y (z′, S(0)]

(2.29)

for z = 0, 1 and z′ = 1−z. The right side of (2.29) decomposes the total effect into the sum of
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two separate effects. The first expectation on the right side of (2.29) is the natural direct effect

for treatment z, NDEz = E[Y (1, S(z))−Y (0, S(z))] (Robins and Greenland, 1992; Pearl, 2001;

Robins, 2003; Kaufman et al., 2009; Robins and Richardson, 2010). The natural direct effect

is the average effect of the treatment on the outcome when the intermediate variable is set to

the potential value that would occur under treatment assignment z. The second expectation

on the right side of (2.29) is the natural indirect effect, NIEz = E[Y (z, S(1)) − Y (z, S(0))]

(Pearl, 2001; Robins, 2003; Imai et al., 2010). The natural indirect effect is the difference

in the average outcomes when treatment is set to z and the intermediate variable is set to

the value that would have occurred under treatment compared to if the intermediate variable

were set to the value that would have occurred under control.

Though the total effect is identifiable assuming (2.20), the natural direct and indirect

effects are not identifiable since they entail E[Y (z, S(1 − z))] which depends on unobserved

counterfactual distributions. Sjölander (2009) derived bounds for the natural direct effects

assuming only independent treatment assignment (2.20) using the linear programming tech-

nique of Balke and Pearl (1997). This results in the following sharp lower and upper bounds

for NDE0 and NDE1

max


−p11·0 − p10·0,

p11·1 + p01·0 − 1− p10·0,

p10·1 + p00·0 − 1− p11·0

 ≤ NDE0 ≤ min


p01·0 + p00·0,

1− p00·1 + p01·0 − p10·0,

1− p01·1 + p00·0 − p11·0

 (2.30)

max


−p01·1 − p00·1,

p00·0 − 1− p01·1 + p10·1,

p01·0 − 1− p00·1 + p11·1

 ≤ NDE1 ≤ min


p11·1 + p10·1,

1− p01·1 + p10·1 − p11·0,

1− p00·1 + p11·1 − p10·0

 (2.31)

where pys·z = Pr(Y = y, S = s|Z = z). These bounds may exclude 0, indicating a natural

direct effect of treatment z when the intermediate variable is set to S(z) (ignoring sampling

variability). There are instances where the bounds in (2.30) and (2.31) may collapse to a single

point, e.g., if p10·0 = p10·1 = 1. Using (2.29), bounds for NIE0 and NIE1 can be obtained by
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subtracting the bounds for NDE1 and NDE0 from the total effect, which is identified under

(2.20) and equal to (p11·1 + p10·1)− (p10·0 − p11·0).

Just as in Sections 2.2–2.4, monotonicity assumptions can be made to tighten the above

bounds. For instance, if

Pr[S(0) ≤ S(1)] = 1

Pr[Y (0, s) ≤ Y (1, s)] = 1 for s = 0, 1 and

Pr[Y (z, 0) ≤ Y (z, 1)] = 1 for z = 0, 1,

are assumed, then Pr[L = l] = 0 for all l such that (i) S(0) = 1 and S(1) = 0, (ii) Y (0, s) = 1

and Y (1, s) = 0 for s = 0 or 1, or (iii) Y (z, 0) = 1 and Y (z, 1) = 0 for s = 0 or 1, which

restricts the feasible region of the linear programming problem. The resulting sharp bounds

for the natural direct effect are

max

 0, p01·0 − p01·1, p10·1 − p10·0,

p01·0 − p01·1 + p10·1 − p10·0

 ≤ NDEz ≤ p10·1 + p11·1 − p10·0 − p11·0 (2.32)

(Sjölander, 2009). The bounds (2.32) are always at least as narrow as (2.30) and (2.31).

Interestingly these narrower bounds do not depend on z. The bounds in (2.32) may also

collapse to a single point, e.g., if p10·0 = p10·1 and p01·0 − p01·1 = p11·1 − p11·0.

The natural direct effect provides insight into whether or not treatment yields additional

benefit on the outcome of interest when the influence of treatment on the intermediate variable

is eliminated. However, researchers might also be interested in what benefit is provided by

treatment if the effect of the intermediate variable on the outcome is eliminated or held

constant. This question suggests a different causal estimand known as the controlled direct

effect. Bounds for the controlled direct effect can be found in Pearl (2001); Cai et al. (2008);

Sjölander (2009); and VanderWeele (2011).
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2.5.2 Sensitivity Analysis

As in other settings where the effect of interest is not identifiable, sensitivity analysis in

the mediation setting may be conducted by making untestable assumptions that identify the

direct or indirect effects. Then sensitivity of inference to departures from these assumptions

can be examined. For example, if (2.20) holds, then the natural direct and indirect effects

are identified under the following additional assumptions

Y (z, s)qS|Z for z, s = 0, 1 and (2.33)

Y (z, s)qS(z′) for z, z′, s = 0, 1 (2.34)

(Pearl, 2001; VanderWeele, 2010). Assumption (2.33) would be valid if subjects were randomly

assigned S within different levels of treatment assignment Z. In settings where S is not

randomly assigned, (2.33) might be considered plausible if it is believed that conditional on Z

there are no variables which confound the mediator–outcome relationship. Both assumptions

(2.33) and (2.34) will not hold in general if Z has an effect on some other intermediate variable,

say R, which in turn has an effect on both S and Y . Thus (2.33) and (2.34) may fail unless the

mediator S occurs shortly after treatment Z. Under assumptions (2.20), (2.33) and (2.34),

NDEz = (−1)z
∑
s

{E[Y |Z = 1− z, S = s]− E[Y |Z = z, S = s]}Pr[S = s|Z = z]

and

NIEz = (−1)z
∑
s

E[Y |Z = z, S = s]{Pr[S = s|Z = 1− z]− Pr[S = s|Z = z]}.

Because assumptions (2.33) and (2.34) cannot be empirically tested, sensitivity analysis

should be conducted. Similar to Section 2.2.4, sensitivity analysis might proceed by positing

the existence of an unmeasured confounding variable U associated with the potential mediator

values S(z) and the potential outcomes Y (z, s) for z, s = 0, 1. Assumption (2.33) would then

replaced by Y (z, s) q S|{Z,U} and (2.34) by Y (z, s) q S(z′)|U for s, z, z′ = 0, 1. Sensitivity
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analysis would then proceed by exploring how inference about the natural direct and indirect

effects changes as the magnitude of the associations of U with S(z) and Y (s, z′) for z, z′, s =

0, 1 vary. For further details regarding bounds and sensitivity analysis in mediation analysis

see Imai et al. (2010); VanderWeele (2010); and Hafeman (2011).

2.6 Longitudinal Treatment

2.6.1 Background

In Sections 2.2–2.5 treatment is assumed to remain fixed across follow up time and out-

comes are one dimensional. However, frequently researchers are interested in assessing causal

effects comparing longitudinal outcomes for patients on different treatment regimens where

treatment may vary in time. As the number of times at which an individual may receive

treatment increases, the number of possible treatment regimens increases exponentially. Be-

cause each treatment regimen corresponds to a separate potential (longitudinal) outcome and

only one potential outcome is ever observed, the fraction of potential outcomes that are unob-

served quickly grows close to one as the number of possible treatment times increases. As in

other settings, unless treatment regimens are randomly assigned, regimen effects will not be

identifiable without additional assumptions. In the longitudinal setting bounds will typically

be largely uninformative because of the large proportion of unobserved potential outcomes.

Therefore analyses usually proceed by invoking modeling assumptions that render treatment

effects identifiable and then conducting sensitivity analysis corresponding to key untestable

modeling assumptions.

Models for potential outcomes as functions of covariates (such as treatment) and possibly

other potential outcomes are often referred to as structural models. For longitudinal poten-

tial outcomes and treatments, popular models include structural nested models and marginal

structural models (Robins et al., 1999; Robins, 1999; van der Laan and Robins, 2003; Brum-

back et al., 2004). In Section 2.6.2 below we consider a marginal structural model where

the treatment effect is identified assuming conditionally independent treatment assignment.
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Sensitivity analyses exploring departures from this assumption are then considered in Section

2.6.3.

2.6.2 Marginal Structural Model

Consider a study where individuals possibly receive treatment at τ fixed time points (i.e.,

study visits). In general let Ā(t) = (A(0), . . . , A(t)) represent the history of variable A up to

time t and Ā be the entire history of variable A such that Ā = Ā(τ). Let z(t) = 1 indicate

treatment at visit t, and z(t) = 0 otherwise such that z̄ represents a treatment regimen for

visits 0, . . . , τ . Denote the observed treatment regimen up to time t as Z̄(t). Let Y be some

outcome of interest that may be categorical or continuous, and denote the potential outcome

of Y at visit t for regimen z̄ by Y (z̄, t) and the observed outcome by Y (t). Let X̄(t) denote the

history of some set of time varying covariates up to time t, where X(0) denotes the baseline

covariates. Assume for simplicity there is no loss to follow-up or non-compliance such that

we observe n iid copies of (Z̄, Ȳ , X̄).

Consider the following marginal structural model of the mean potential outcome were the

entire population to follow regimen z̄ up to time t

g(E[Y (z̄, t)|X(0) = x(0)]) = β0 + β1cum[z̄(t− 1)] + β2t+ β3x(0) (2.35)

for t ∈ {1, . . . , τ}, where cum[z̄(t− 1)] =
∑t−1

k=1 z(k) and g(·) is an appropriate link function.

The causal estimand of interest is β1, the regression coefficient for cum[z̄(t − 1)], which is

the effect of having received treatment at one additional visit prior to time t conditional on

baseline covariates X(0). Because (2.35) involves counterfactual outcome distributions, β1 is

not identifiable without additional assumptions. One additional assumption is conditionally

independent treatment assignment

Y (z̄, t)q Z(k)|{Z̄(k − 1), X̄(k)} for all z̄ and t > k (2.36)

(Robins et al., 1999; Robins, 1999; Brumback et al., 2004). This assumption is true if the
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potential outcome at visit t under treatment regimen z̄ is independent of the observed treat-

ment at visit k given the history of treatment up to visit k − 1 and the covariate history up

to visit k. Assuming both a correctly specified model (2.35) and conditionally independent

treatment assignment (2.36), fitting the following model to the observed data

g(E[Y (t)|Z̄(t− 1) = z̄(t− 1), X(0) = x(0)]) = η0 + η1cum[z̄(t− 1)] + η2t+ η3x(0),

using generalized estimating equations with an independent working correlation matrix and

time varying inverse probability of treatment weights (IPTW) yields an estimator η̂1 that is

consistent for β1 (Tchetgen Tchetgen et al., 2012a,b).

2.6.3 Sensitivity Analysis

If assumption (2.36) does not hold, then the IPTW estimator η̂1 is not necessarily con-

sistent. Because (2.36) is not testable from the observed data, sensitivity analysis might

be considered to assess robustness of inference to departures from (2.36). Following Robins

(1999) and Brumback et al. (2004), let

c(t, k, z̄(t− 1), x̄(k)) = E[Y (z̄, t)|Z̄(k) = z̄(k), X̄(k) = x̄(k)]−

E[Y (z̄, t)|Z(k) = 1− z(k), Z̄(k − 1) = z̄(k − 1), X̄(k) = x̄(k)]

for t > k and z̄ such that Pr[Z(k) = z(k)|Z̄(k− 1) = z̄(k− 1)] is bounded away from 0 and 1.

The function c quantifies departures from the conditional independent treatment assignment

assumption (2.36) at each visit t > k, where c(t, k, z̄(t − 1), x̄(k)) = 0 for all z̄ and t > k if

(2.36) holds. For the identity link, a bias adjusted estimator of the causal effect β1 may be

obtained by recalculating the IPTW estimator with the observed outcome Y (t) replaced by

Y γ(t) = Y (t)− b(Z̄(t− 1), X̄(t− 1)) where

b(Z̄(t− 1), X̄(t− 1)) =

t−1∑
k=0

c(t, k, Z̄(t− 1), X̄(k))f [1− Z(k)|Z̄(k − 1), X̄(k)]
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and f [z(k)|z̄(k−1), x̄(k)] = P̂r[Z(k) = z(k)|Z̄(k−1) = z̄(k−1), X̄(k) = x̄(k)] is an estimate of

the conditional probability of the observed treatment based on some fitted parametric model

(Brumback et al., 2004). Provided this parametric model and c are both correctly specified,

this bias adjusted estimator, say η̃1, is consistent for β1. Sensitivity analysis proceeds by

examining how η̃1 changes when varying sensitivity parameters in c(t, k, z̄(t− 1), x̄(k)).

Because c(t, k, z̄(t − 1), x̄(k)) is not identifiable from the observable data, Robins (1999)

recommends choosing a particular c that is easily explainable to subject matter experts to

facilitate eliciting plausible ranges of the sensitivity parameters. As an example of a particular

c, Brumback et al. (2004) suggest c(t, k, z̄(t− 1), x̄(k)) = γ{2z(k)− 1} where γ is an uniden-

tifiable sensitivity analysis parameter. Note that c(t, k, z̄(t − 1), x̄(k)) = γ for z(k) = 1 and

c(t, k, z̄(t−1), x̄(k)) = −γ for z(k) = 0. Thus γ > 0 (γ < 0) corresponds to subjects receiving

treatment at time k having greater (smaller) mean potential outcomes at future visit t than

those who did not receive treatment at visit k. When γ = 0, Y (t) = Y γ(t) and therefore

η̃1 = η̂1. The function c might depend on the baseline covariates X(0) or the time-varying

covariates X̄(k). In this case, as in Section 2.2.5, care should be taken in clearly communicat-

ing the sensitivity parameters’ relationship to these covariates when eliciting plausible ranges

from subject matter experts. Another consideration when choosing a function c is whether it

will allow for the sharp null of no treatment effect, i.e., for all individuals Y (z̄, t) = Y (z̄′, t) for

all z̄, z̄′, t. The example function c presented above allows for the sharp null. See Brumback

et al. (2004) for other example c functions and further discussion of sensitivity analysis for

marginal structural models.

2.7 Ignorance and Uncertainty Regions

Treatment effect bounds describe ignorance due to partial identifiability but do not ac-

count for uncertainty due to sampling error. This section discusses some methods to appropri-

ately quantify uncertainty due to sampling variability when drawing inference about partially

identifiable treatment effects. Over the past decade a growing body of research, especially

in econometrics, has considered inference of partially identifiable parameters. The approach
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presented below draws largely upon Vansteelandt et al. (2006), who considered methods for

quantifying uncertainty in the general setting where missing data causes partial identifiability.

As questions about treatment (or causal) effects can be viewed as missing data problems, the

approach of Vansteelandt et al. generally applies (under certain assumptions) to the type of

problems considered throughout this paper. This approach builds on earlier work by Robins

(1997) and others.

2.7.1 Ignorance Regions

Let L be a vector containing the potential outcomes for an individual, let O denote the

observed data vector, and letR be a vector containing indicator variables denoting whether the

corresponding component of L is observed. For example, L = (Y (1), Y (0)), O = (Z, Y ), and

R = (Z, (1 − Z)) for the scenario described in Section 2.2 and L = (Y (1), Y (0), S(1), S(0)),

O = (Z, Y, S) and R = (Z, (1 − Z), Z, (1 − Z)) for the scenario described in Section 2.3.

Denote the distribution of (L,R) by f(L,R) and let f(L) =
∫
f(L,R)dR. The goal is to draw

inference about a parameter vector β which is a functional of the distribution of potential

outcomes L; this is sometimes made explicit by writing β = β{f(L)}. Denote the true

distribution of (L,R) by f0(L,R) and the true value of β by β0 = β{f0(L)}. For example,

β0 = E[Y (1)−Y (0)] for the scenario described in Section 2.2 and β0 = E[Y (1)−Y (0)|SP0 =

(1, 1)] for the scenario described in Section 2.3. Denote the true observed data distribution by

f0(O) =
∫
f0(L,R)dL(1−R) where L(1−r) denotes the missing part of L when R = r (i.e., the

unobserved potential outcomes). The challenge in drawing inference about β0 is that there

may be multiple full data distributions f(L,R) that marginalize to the true observed data

distribution, i.e., f0(O) =
∫
f(L,R)dL(1−R) for some f 6= f0. When this occurs, β may be

only partially identifiable from O, in which case bounds can be derived for β0 as illustrated

in the sections above.

The set of values of β{f(L)} such that f(L,R) marginalizes to the true observed data

distribution is sometimes called the ignorance region or the identified set. These ignorance

regions or intervals are distinct from traditional confidence intervals in that even as the sample
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size tends to infinity these intervals will not shrink to a single point when β is partially

identifiable. The ignorance region for β can be defined formally as follows. Following Robins

(1997), define a class M(γ) of full data laws indexed by some sensitivity parameter vector γ

to be non-parametrically identified if for each observed data law f(O) there exists a unique

law f(L,R; γ) ∈M(γ) such that f(O) =
∫
f(L,R; γ)dL(1−R). In other words, the class M(γ)

contains a unique distribution that marginalizes to each possible observed data distribution.

For example, for the sensitivity analysis approach in Section 2.3.4, Hudgens and Halloran

(2006, §4.3.3) defined a class of full data laws indexed by γ given in (2.19) that is non-

parametrically identified. The ignorance region for β is formally defined to be

irf0(β,Γ) =

{
β{f(L)} : f(L) =

∫
f(L,R; γ)dR for some

f(L,R) ∈M(Γ) such that

∫
f(L,R; γ)dL(1−R) = f0(O)

}
, (2.37)

where Γ is the set of all possible values of γ under whatever set of assumptions is being

invoked and M(Γ) = ∪γ∈ΓM(γ). Assume M(Γ) contains the true full data distribution, i.e.,

f0(L,R) = f(L,R, γ0) for some γ0 ∈ Γ. (For considerations when M(Γ) does not contain

the true full data distribution, see Todem et al. (2010).) Because M(γ) is non-parametrically

identified, for each γ ∈ Γ there is a single β(γ) = β{
∫
f(L,R; γ)dR)} in the ignorance region

(2.37). If M(Γ) includes all possible full data distributions that marginalize to any possible

observed data distribution, then the ignorance region will contain the bounds.

In practice the ignorance region will be unknown because it depends on the unknown

true observed data distribution f0(O). For γ fixed, β(γ) is identifiable from the observed

data and the ignorance region can be estimated by estimating β(γ) for each value of γ ∈ Γ,

denoted by β̂(γ). The resulting estimator of irf0(β,Γ) is then {β̂(γ) : γ ∈ Γ}. For scalar β(γ),

let β̂l = infγ∈Γ{β̂(γ)} and β̂u = supγ∈Γ{β̂(γ)} such that the estimated ignorance region is

contained in the interval [β̂l, β̂u].
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2.7.2 Uncertainty Regions

Estimated ignorance regions convey ignorance due to partial identifiability and do not

reflect sampling variability in the estimates. Indeed much of the literature on bounds and

sensitivity analysis of treatment effects tends to report estimated ignorance regions and either

ignores sampling variability or employs ad-hoc inferential approaches such as pointwise con-

fidence intervals conditional on each value of the unidentifiable sensitivity parameter. More

recent developments have provided a formal framework for conducting inference in partial

identifiability settings (e.g., see Imbens and Manski, 2004; Vansteelandt et al., 2006; Romano

and Shaikh, 2008; Bugni, 2010; Todem et al., 2010). The main focus in this research has been

the construction of confidence regions for either the parameter β0 or the ignorance region

irf0(β0,Γ).

Following Vansteelandt et al. (2006), a (1 − α) pointwise uncertainty region for β0 is

defined to be a region URp(β,Γ) such that

inf
γ∈Γ

Prf0 {β(γ) ∈ URp(β,Γ)} ≥ 1− α,

where Prf0 {·} denotes probability under f0(O). That is, URp(β,Γ) contains β(γ) with at

least probability 1 − α for all γ ∈ Γ. In particular, assuming γ0 ∈ Γ, then URp(β,Γ) will

contain β0 = β(γ0) with at least probability 1− α.

An appealing aspect of pointwise uncertainty regions is that they retain the usual duality

between confidence intervals and hypothesis testing. Namely, one can test the null hypothesis

H0 : β0 = βc versus Ha : β0 6= βc for some specific βc at the α significance level by rejecting

H0 when the (1−α) pointwise uncertainty region URp(β,Γ) excludes βc. This is easily shown

by noting for βc = β(γ0)

Prf0 [reject H0] = 1− Prf0 {β(γ0) ∈ URp(β,Γ)}

≤ 1− infγ∈ΓPrf0 {β(γ) ∈ URp(β,Γ)} ≤ α,
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where the last inequality follows because URp(β,Γ) is a (1−α) pointwise uncertainty region.

Various methods under different assumptions have been proposed for constructing point-

wise uncertainty regions. Imbens and Manski (2004) and Vansteelandt et al. (2006) proposed

a simple method for constructing pointwise uncertainty regions for a scalar β with ignorance

region [βl, βu]. Let γl, γu ∈ Γ be the values of the sensitivity parameter such that βl = β(γl)

and βu = β(γu). Assume

There exist β̂l such that
√
n(β̂l − βl)→d N(0, σ2

l ) and β̂u such that

√
n(β̂u − βu)→d N(0, σ2

u).
(2.38)

The values γl and γu are the same for all possible observed data laws. (2.39)

Under assumptions (2.38) and (2.39) an asymptotic (1−α) pointwise uncertainty interval for

β0 is

URp(β,Γ) =
[
β̂l − cασ̂l/

√
n, β̂u + cασ̂u/

√
n
]
, (2.40)

where cα satisfies

Φ

cα +

√
n
(
β̂u − β̂l

)
max{σ̂l, σ̂u}

− Φ(−cα) = 1− α, (2.41)

Φ(·) denotes the cumulative distribution function of a standard normal variate, and σ̂l and σ̂u

are consistent estimators of σl and σu respectively (Imbens and Manski, 2004; Vansteelandt

et al., 2006). Note if β̂u−β̂l > 0 and n is large such that the left side of (2.41) is approximately

equal to 1−Φ(−cα), then cα ≈ z1−α, the (1− α) quantile of a standard normal distribution.

In contrast, if β̂u = β̂l, then cα = z1−α/2.

In addition to the pointwise uncertainty region, Horowitz and Manski (2000) and Vanstee-

landt et al. (2006) define a (1− α) strong uncertainty region for β0 to be a region URs(β,Γ)

such that

Prf0 {irf0(β,Γ) ⊆ URs(β,Γ)} ≥ 1− α,

i.e., URs(β,Γ) contains the entire ignorance region with probability at least 1−α. Whereas the

pointwise uncertainty region can be viewed as a confidence region for the partially identifiable
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target parameter β0, the strong uncertainty region is a confidence region for the ignorance

region irf0(β,Γ). Clearly any strong uncertainty region will also be a (conservative) pointwise

uncertainty region as β0 ∈ irf0(β,Γ). Under assumptions (2.38) and (2.39) an asymptotic

(1− α) strong uncertainty interval for scalar β0 is simply

URs(β,Γ) =
[
β̂l − z1−α/2σ̂l/

√
n, β̂u + z1−α/2σ̂u/

√
n
]
. (2.42)

Note that (2.42) is equivalent to the union of all pointwise (1−α) confidence intervals for β(γ)

under M(γ) over all γ ∈ Γ, which is a simple approach often employed when reporting sensi-

tivity analysis. Because strong uncertainty intervals are necessarily pointwise intervals, this

simple approach is also a valid method for computing pointwise intervals, although intervals

based on (2.40) will always be as or more narrow.

The two key assumptions (2.38) and (2.39) may not hold in general. For example, (2.38)

may not hold for all possible observed data distributions, particularly for extreme values of γl

or γu. Assumption (2.39) may not hold if different observed data distributions place different

constraints on the possible range of γ or if Γ is chosen by the data analyst on the basis of the

observed data. If (2.38) or (2.39) does not hold, alternative inferential methods are needed

(e.g., see Vansteelandt and Goetghebeur, 2001; Horowitz and Manski, 2006; Chernozhukov

et al., 2007; Romano and Shaikh, 2008; Stoye, 2009; Todem et al., 2010; Bugni, 2010).

A third approach to quantifying uncertainty due to sampling variability is to consider β(·)

as function of γ and construct a (1− α) simultaneous confidence band for the function β(·).

That is, a random function CB(·) is found such that

Prf0 {β(γ) ∈ CB(γ) for all γ ∈ Γ} ≥ 1− α.

It follows immediately that ∪γ∈ΓCB(γ) is a strong uncertainty region (and thus a pointwise

uncertainty region as well). Todem et al. (2010) suggest a bootstrap approach to constructing

confidence bands.

Whether pointwise uncertainty regions, strong uncertainty regions, or confidence bands
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are preferred will be context specific. Typically it is of interest to draw inference about a single

target parameter and not the entire ignorance region. Thus, in general pointwise uncertainty

regions may have greater utility than strong uncertainty regions. Because strong uncertainty

regions are necessarily conservative pointwise uncertainty regions, the strong regions can be

useful in settings where determining a pointwise region is more difficult. Additionally, in

some settings it may be of interest to assess whether β is non-zero, e.g., if β denotes the

effect of treatment. In these settings computing a confidence band CB(·) has the advantage

of providing the subset of Γ where the null hypothesis β(γ) = 0 can be rejected. This is

especially appealing if γ is scalar, in which case a confidence band (as in Figure 3 of Todem

et al., 2010) provides a simple approach to reporting sensitivity analysis results. On the

other hand, if γ is multidimensional, visualizing confidence bands can be difficult and instead

reporting the (pointwise or strong) uncertainty region may be more practical.

2.7.3 Data Example

Returning to the pertussis vaccine study described in Section 2.3, an analysis that ignores

the potential for selection bias might entail computing a naive estimator (the difference in

empirical means of Y between the vaccinated and unvaccinated amongst those infected) along

with a 95% Wald confidence interval, which would be -0.31 (95% CI -0.38, -0.23). If the

sensitivity analysis approach in Section 2.3.4 is applied, the parameter of interest β(γ) =

E[Y (1)− Y (0)|SP0 = (1, 1)] is identified for fixed values of the sensitivity analysis parameter

γ given in (2.19). For fixed γ, E[Y (0)|SP0 = (1, 1)] equals the intersection of the negative

sloped line (2.14) and the curve (2.19), which is illustrated in Figure 2.1 for the pertussis data.

Because E[Y (0)|SP0 = (1, 1)] increases with γ, β(γ) is a monotonically decreasing function of

γ. Therefore γl and γu equal the maximum and minimum values of Γ regardless of the observed

data law, indicating (2.39) holds provided that Γ is chosen by the analyst independent of the

observed data.. For γ fixed and finite, β(γ) can be estimated via nonparametric maximum

likelihood (i.e., without any additional assumptions). This estimator will be consistent and

asymptotically normal under standard regularity conditions if Pr[S(0) > S(1)] > 0 (i.e., the
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Table 2.1: Pertussis vaccine study data: Estimated ignorance regions and 95% pointwise and
strong uncertainty regions of β = E[Y (1)− Y (0)|SP0 = (1, 1)] for different Γ.

Γ irf0(β,Γ) URp(β,Γ) URs(β,Γ)

[−3, 3] [-0.49, -0.17] [-0.58, -0.07] [-0.59, -0.06]
[−5, 5] [-0.55, -0.15] [-0.66, -0.05] [-0.69, -0.03]

[−10, 10] [-0.57, -0.15] [-0.70, -0.04] [-0.73, -0.02]
(−∞,∞) [-0.57, -0.15] [-0.70, -0.04] [-0.73, -0.02]

vaccine has a protective effect against infection). For γ = ±∞ and Pr[S(0) > S(1)] > 0, Lee

(2009) proved that the estimators of the bounds similar to those given in Section 2.3.3 are

consistent and asymptotically normal for a continuous outcome Y . The limiting distribution

of the estimator of the upper bound (γ = −∞) for a binary outcome will be normal if in

addition

1− E[Y |S = 1, Z = 0] 6= Pr[S = 1|Z = 1]

Pr[S = 1|Z = 0]
, (2.43)

and similarly the estimator of the lower bound (γ = ∞) will be asymptotically normal if in

addition

E[Y |S = 1, Z = 0] 6= Pr[S = 1|Z = 1]

Pr[S = 1|Z = 0]
. (2.44)

Likelihood ratio tests for the null hypotheses that (2.43) and (2.44) do not hold yield p-values

p < 10−4 and p = 0.18 respectively, indicating strong evidence that (2.43) holds and equivocal

evidence regarding (2.44). Assuming (2.43) and (2.44) both hold implies (2.38), such that

(2.40) and (2.42) can be used to construct (1−α) pointwise and strong uncertainty intervals

for β0. Estimated ignorance and uncertainty intervals of β0 for different choices of Γ are

given in Table 2.1 and Figure 2.2, with standard error estimates obtained using the observed

information. Even for Γ = (−∞,∞) both the pointwise and strong uncertainty intervals

exclude zero, indicating a significant effect of vaccination. In particular, with 95% confidence

we can conclude the vaccine decreased the risk of severe disease among individuals who would

have become infected regardless of vaccination.
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2.8 Discussion

This paper considers conducting inference about the effect of a treatment (or exposure)

on an outcome of interest. Unless treatment is randomly assigned and there is perfect com-

pliance, the effect of treatment may be only partially identifiable from the observable data.

Through the five settings in Sections 2.2 – 2.6, we discussed two approaches often employed to

address partial identifiability: (i) bounding the treatment effect under minimal assumptions,

or (ii) invoking additional untestable assumptions that render the treatment effect identifiable

and then conducting sensitivity analysis to assess how inference about the treatment effect

changes as the untestable assumptions are varied. Incorporating uncertainty due to sampling

variability was discussed in Section 2.7, and throughout large-sample frequentist methods

were considered. Analogous Bayesian approaches to partial identification (Gustafson, 2010;

Moon and Schorfheide, 2012; Richardson et al., 2011) and sensitivity analysis (McCandless

et al., 2007; Gustafson et al., 2010) have also been developed.

Determining treatment effect bounds is essentially a constrained optimization problem,

where the constraints are determined by the relationship between the distributions of the

observable random variables and of the potential outcomes under whichever assumptions are

being made. In simple cases, such as in Section 2.2.1, bounds can easily be derived from first

principles and may have simple closed forms; in more complicated settings, such as in Section

2.4, bounds may be determined using linear programming or other optimization methods.

In many cases calculating bounds under minimal assumptions may seem to be a meaningless

exercise because the bounds are often quite wide and may not exclude the null of no treatment

effect as seen with the “no assumptions” bounds in Section 2.2. On the contrary, in settings

like this Robins and Greenland (1996) write: “Some argue against reporting bounds for

nonidentifiable parameters, because bounds are often so wide as to be useless for making

public health decisions. But we view the latter problem as a reason for reporting bounds in

conjunction with other analyses: Wide bounds make clear that the degree to which public

health decisions are dependent on merging the data with strong prior beliefs.”

Bounds may be narrowed by reducing the feasible region of the optimization problem. This
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may be accomplished by considering further assumptions that place restrictions on either the

distributions of the potential outcomes, the distributions of the observable random variables,

or both. Assumptions that place restrictions on the observable random variables may have

implications which are testable. If the observed data provide evidence against any assumptions

being considered, bounds should be computed without making these assumptions. Those

assumptions without testable implications can only be determined to be plausible or not by

subject matter experts.

A potentially less conservative approach to computing bounds is to make untestable as-

sumptions which identify the causal estimand and then assess the robustness of inference

drawn to departures from these assumptions in a sensitivity analysis. A general guideline

for specifying the sensitivity analysis parameters representing these departures is to choose

parameters that are easily interpretable to subject matter experts. Parameter specification

will depend on whether or not sensitivity analysis is conducted by directly modeling the asso-

ciation of an unmeasured confounder U with treatment selection and the potential outcomes.

Sensitivity analyses based on this approach are applicable when the existence of U is known

and there is some historical knowledge of the magnitude association of U with Z and the

potential outcomes (Robins, 1999; Brumback et al., 2004). Otherwise, alternative approaches

based on directly modeling the unobserved potential outcome distributions may be preferred.

A second guiding principle should be to avoid specifications of sensitivity parameters that

place restrictions on the distributions of observable random variables that are not empirically

supported. A third consideration when conducting sensitivity analysis concerns determining

a plausible region of the sensitivity parameters. That the region be chosen prior to data

analysis is in general necessary for inference, such as described in Section 2.7, to be valid.

Choice of the region of the sensitivity parameters may be dictated by whether one wants to

consider only mild or also severe departures from the identifying assumptions. If the identify-

ing assumption in question is considered plausible, then it may be that only mild departures

from the assumption are deemed necessary for the sensitivity analysis. In this case, subject

matter experts can be consulted to determine, prior to data analysis, a plausible region for the

sensitivity parameters. If, on the other hand, severe departures from untestable identifying
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assumptions are to be entertained, sensitivity analyses should be conducted over all possible

values of the sensitivity parameters. Sensitivity analyses which consider all possible full data

distributions that marginalize to the observed data distribution will yield ignorance regions

containing the bounds.

Though the examples presented here demonstrate the broad scope of scenarios where

bounds and sensitivity analysis methods have been derived and employed to draw inference

about treatment effects, they certainly are not exhaustive of all settings where these methods

have been developed. For instance, VanderWeele et al. (2011) consider sensitivity analysis

to unmeasured confounding for causal interaction effects. Bounds and sensitivity analysis

methods have also recently been considered in the presence of interference, i.e., in settings

where treatment of one individual may affect the outcome of another individual, such as

in social networks (Ver Steeg and Galstyan, 2010; Vanderweele, 2011; Manski, 2013). For

studies where sensitivity analyses are planned or anticipated, Rosenbaum and colleagues have

examined how aspects of study design and the choice of statistical tests or estimators may

affect the power or precision of the sensitivity analyses to be conducted (Heller et al., 2009;

Rosenbaum, 2010a,b, 2011).

Bounds and sensitivity analyses of treatment effects have been utilized in various substan-

tive settings, such as biomedical research (e.g., Cole et al., 2005; Rerks-Ngarm et al., 2009;

VanderWeele and Hernández-Diaz, 2011; Hu et al., 2012) and economics (e.g., Heckman, 2001;

Sianesi, 2004; Armstrong et al., 2010). Nonetheless, despite the wide range of settings in which

these methods are applicable, their use in substantive settings remains somewhat limited in

frequency. Given the large amount of literature detailing their broad scope of applicability

and that formal inferential methods for partially identifiable parameters are now available,

hopefully these approaches will be employed with greater frequency in substantive settings in

the future.

The sensitivity analyses described throughout this paper focus on departures from untestable

assumptions which identify treatment effects. Other types of sensitivity analyses might be

considered as well, e.g., to assess how robust inferences are to various analytical decisions
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that are invariably made in data analysis. Rosenbaum (2002, §11.9) refers to such assess-

ment as “stability analysis,” in contrast to the types of sensitivity analyses discussed above.

See Rosenbaum (1999, 2002) and Morgan and Winship (2007, §6.2) for further discussion

regarding various types of sensitivity analyses beyond the type considered here.

Figure 2.1: Graphical depiction of the bounds and sensitivity analysis model described in
Sections 2.3.3 – 2.3.4. The solid thin line with negative slope represents a set of joint dis-
tribution functions of (Z, S(1), S(0), Y (1), Y (0)) that all give rise to the same distribution
of the observable random variables (Z, S, Y ). The four dotted curves depict the log odds
ratio selection model for γ = 0, 1, 2, 4. The γ = 0 model is equivalent to the no selection
model. Each selection model identifies exactly one pair of expectations from this set, render-
ing the principal effect (2.10) identifiable. The thick black lines on the edge of the unit square
correspond to the lower bound of the principal effect.
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Figure 2.2: Estimated ignorance regions irf0(β,Γ) and 95% pointwise uncertainty regions
URp(β,Γ) for the pertussis vaccine example in Section 2.7.3. The principal effect (2.10) is
denoted β and Γ = [−γu, γu] for γu along the horizontal axis. The curve given by the lower
boundary of the area with black slanted lines corresponds to β̂l, the minimum of the estimated
ignorance regions, and the upper bound of the area with black slanted lines corresponds to β̂u,
the maximum of the estimated ignorance region. The curve given by the lower (upper) bound-
ary of the gray shaded area corresponds to the minimum (maximum) of the 95% pointwise
uncertainty region.
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CHAPTER 3: NONPARAMETRIC INSTRUMENTAL VARIABLE
ANALYSIS OF COMPETING RISKS DATA

3.1 Introduction

In both randomized and non-randomized studies, researchers may seek to assess the causal

effect of a treatment on the time to some event of interest, such as the effect of infant or ma-

ternal antiretroviral (ARV) therapy on the time to death or HIV infection of a breastfeeding

infant of an HIV+ woman. However, such treatment effects are not identifiable without mak-

ing empirically untestable assumptions about the relationship between the various causes of

the event, the time to the event and the treatment allocation mechanism. With the exception

of randomized clinical trials with perfect compliance to treatment assignment, the treatment

allocation mechanism is unknown, which may confound standard “as treated” analyses. Such

unmeasured confounding may bias treatment effect estimates in both observational studies

and randomized studies with non-compliance to assigned treatment.

In some circumstances there may exist variables that are not related to the outcome ex-

cept through their effect on treatment allocation. Such variables may be used to provide

partial or point identification of treatment effects without knowledge of the treatment al-

location mechanism (Manski, 1990; Imbens and Angrist, 1994; Angrist et al., 1996). These

variables are referred to as instrumental variables and examples include treatment assignment

in randomized clinical trials with non-compliance (Imbens and Angrist, 1994; Angrist et al.,

1996), the calendar time for the approval of a new treatment by a regulatory agency (Martens

et al., 2006; Cain et al., 2009), physician treatment prescribing preference (Brookhart and

Schneeweiss, 2007), or randomized encouragement to take treatment (Martens et al., 2006). If

the effect of the instrumental variable on treatment allocation is monotonic, then the instru-

mental variable may be used to identify treatment effects within the subpopulation whose
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treatment is determined by the instrumental variable (Imbens and Angrist, 1994; Angrist

et al., 1996; Hernán and Robins, 2006).

Instrumental variables have been used to identify treatment effects describing differences

in survival analysis functions between treatment arms within the subpopulation described

above. Inferential methods for censored data have been developed using both nonparametric

methods (Baker and Lindeman, 1994; Baker, 1998; Abbring and van den Berg, 2005; Nie

et al., 2011) as well as parameteric and semiparametric modelling techniques (Robins and

Tsiatis, 1991; Loeys and Goetghebeur, 2003; Cuzick et al., 2007). In this paper, we consider

competing risks data with multiple failure types and decompose the overall causal effect of

treatment on the survival probability at a fixed time point into the sum of its causal effects

on the various cause specific subdistributions. If an instrumental variable does not share

common causes with either the time to the event or type of event experienced, it may be

used to identify the cause-specific causal effect based on the difference in the cause-specific

cumulative incidence function between treatment arms. Inferences may be obtained using

nonparametric estimates of the cumulative incidence functions, analogously to the overall

causal effect estimator which may entail nonparametric estimators of the survival functions.

Typically, in survival analysis, one performs an intent to treat test for differences in

treatment specific survival functions using the log-rank statistic. This nonparametric test

provides a global assessment of differences in survival functions over time. To our knowledge,

the existing literature on nonparametric analyses of censored data with instrumental variables

does not address testing for global treatment differences, providing inferential methods only

at fixed time points (Baker and Lindeman, 1994; Baker, 1998; Abbring and van den Berg,

2005; Nie et al., 2011). In this paper we develop test statistics for differences in overall

survival which are integrated weighted differences of the estimated causal effects over time,

where the weight function may be chosen to emphasize time points of greatest interest. The

tests are easily implemented using a straightforward variance estimator and are theoretically

justified. The proposed statistics are extended to the competing risks setting, where they

are constructed from nonparametric estimators of the differences in the treatment specific
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cumulative incidence functions.

As an example of a setting where such methods may be applicable, consider the Breastfeed-

ing, Antiretrovirals, and Nutrition (BAN) randomized clinical trial undertaken in Lilongwe,

Malawi between 2004 and 2010 (Chasela et al., 2010). In this study 2369 HIV-infected breast-

feeding mothers and their uninfected newborn babies were randomly assigned to one of three

treatment regimens: maternal antiretrovial (ARV) therapy (n = 849); daily infant nevirap-

ine (NVP) therapy (n = 852); or control (n = 668). The aim was to assess the effect of

these treatment regimens on reducing mother to child transmission of HIV. Two challenges

in the analysis of data from such trials are (i) not all participants comply to their randomized

treatment regimen assignment and (ii) death (prior to HIV infection) is a competing risk

for HIV infection. The randomized treatment assignment provides an instrumental variable

that allows for estimation of treatment effects amongst those who would comply to whichever

treatment they were assigned. In the BAN study treatment regimen adherence was measured

via surveys administered to the mothers, allowing for estimation of such effects (assuming

accurate self-report).

The organization of the paper is as follows. In Section 3.2 notation, assumptions, causal

estimands and estimators are given, both for the overall and cause-specific causal effects.

Section 3.3 describes nonparametric inferences using the estimators for both the standard

survival set-up as well as in the presence of competing risks, and gives details of nonparametric

test statistics for a global assessment of the causal effects over time. Section 3.4 presents the

results of a simulation study examining the finite sample performance of these estimators and

tests. Section 3.5 applies the methods derived in Section 3.3 to the BAN study. Section 3.6

concludes with a discussion.
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3.2 Preliminaries

3.2.1 Notation

An instrumental variable that is often used to estimate causal effects is randomized treat-

ment assignment in a clinical trial. Let R be an instrumental variable given by randomized

assignment where R = 0 indicates assignment to control and R = 1 indicates assignment to

treatment (e.g. maternal or infant ARV therapy in the BAN study). Though treatment ef-

fects of R on the outcome of interest may be identifiable if R is randomly assigned, treatment

effects due to the actual treatment taken (which may differ from R) are typically the target

of inference. Let Z be the actual treatment taken, where Z = 0 denotes treatment not taken,

Z = 1 denotes that treatment was taken. Define potential treatment outcomes Z(r) under

randomized treatment assignment r = 0, 1; specifically let Z(r) = 0 indicate that the subject

would not take treatment under randomized assignment r and Z(r) = 1 indicates that the

subject would take treatment under randomized assignment r. As in Imbens and Angrist

(1994) and Angrist et al. (1996), define principal strata based on the vector of the treatment

potential outcomes ZP0 = (Z(0), Z(1)) where ZP0 = (0, 1) are compliers (i.e. they only take

treatment if they were assigned to do so), ZP0 = (1, 1) are the always treated, ZP0 = (0, 0)

are the never treated, and ZP0 = (1, 0) are defiers (i.e. they would only take treatment when

not assigned to do so).

Suppose we are interested in time to event outcomes that may be subject to competing

risks. Let T (r, z) be the potential first failure times under treatment assignment z and

randomized assignment r and ∆(r, z) the potential event type or cause indicators that may

take on values 1, . . . , J . Let T be the observed time to the first event for event types j =

1, . . . , J , C be the censoring time and X the minimum of T and C (which is the observed

follow up time). Let ∆ = jI[T ≤ C]) be the observed event indicator where ∆ = 0 indicates

that the subject was lost to follow up before the event was experienced. Suppose we observe

n i.i.d copies of {Xi, Ri, Zi,∆i}.
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3.2.2 Assumptions

Assumption 3.1. Stable unit treatment value assumption (Rubin, 1978, SUTVA): if R = r

and Z = z then Z(R) = Z(r) and T (R,Z) = T (r, z) and ∆(R,Z) = ∆(r, z) for r, z = 0, 1.

Assumption 3.2. Independent instrument: R q {T (r, z), Z(r) for r, z = 0, 1}.

Assumption 3.3. Exclusion restriction: T (0, z) = T (1, z) and ∆(0, z) = ∆(1, z) for z = 0, 1

Assumption 3.4. Nonzero causal effect of R on Z: E[Z(1)− Z(0)] 6= 0.

Assumption 3.5. Monotonicity (Imbens and Angrist, 1994): Z(1) ≥ Z(0).

Assumption 3.6. Independent censoring: {T,∆} q C|R.

Assumption 3.1 is a standard assumption made in order to estimate causal effects defined

using potential outcomes. Assumptions 3.2–3.4 qualify R as an instrumental variable and are

the same assumptions found in Imbens and Angrist (1994) and Angrist et al. (1996). When

the instrumental variable is randomly assigned, Assumption 3.2 will typically be considered

plausible. Assumption 3.3 means that the potential outcomes only depend on z such that

we may write T (z) = T (r, z) and ∆(z) = ∆(r, z). Assumption 3.5 implies that the defiers

principal strata ZP0 = (1, 0) is empty (i.e., there is no subject that would take treatment

only when not assigned to do so). Assumption 3.6 is made in order to estimate the all cause

survival function and subdistribution functions in presence of right censoring.

3.2.3 Causal estimands

We are interested in causal effects describing differences between the survival curves of

the treated versus the nontreated within the subpopulation defined by ZP0 = (0, 1). This is

sometimes referred to as a local average treatment effect and is defined as

δ(t) = Pr[T (1) > t|ZP0 = (0, 1)]− Pr[T (0) > t|ZP0 = (0, 1)]. (3.1)
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Under Assumptions 3.1–3.5, (3.1) is equivalent to

δ(t) =
Pr[T > t|R = 1]− Pr[T > t|R = 0]

Pr[Z = 1|R = 1]− Pr[Z = 1|R = 0]
=
S1(t)− S0(t)

p1 − p0
=
dS(t)

dp
(3.2)

where Sr(t) = Pr[T > t|R = r] is the survival function given R = r and pr = Pr[Z = 1|R =

r]. In absence of right censoring, (3.2) is equivalent to the standard instrumental variables

estimand of Imbens and Angrist (1994) and Angrist et al. (1996). Under Assumptions 3.2

and 3.6, a consistent estimator δ̂(t) is found by plugging in the Kaplan Meier estimator of

the survival functions Ŝr(t) = P̂r[T > t|R = r] at time t and conditional on R = r as well as

a consistent estimator of each pr such as an empirical sample mean of Z given R = r (Baker,

1998; Abbring and van den Berg, 2005; Nie et al., 2011). This will be called the instrumental

variables (IV) estimator of δ(t).

The local average treatment effect maybe further broken down into cause specific local

average treatment effects describing differences in the subdistribution functions for specific

cause j when there are competing risks for the failure time T . Namely, a local average

treatment effect for cause j can defined as

δj(t) = Pr[T (0) ≤ t, ∆(0) = j|ZP0 = (0, 1)]− Pr[T (1) ≤ t,∆(1) = j|ZP0 = (0, 1)]. (3.3)

It follows that δ(t) =
∑J

j=1δ
j(t), i.e., the local average treatment effect can be decomposed

into the sum of cause-specific effects. Note the local average treatment effects can be zero

while some of the cause specific effects are nonzero, e.g., if there are
∑J

j 6=j′ δ
j′(t) = −δj(t)

then this would occur. In context of the BAN study this could occur if infant (or maternal)

ARV resulted in a reduced proportion of infants being infected with HIV, but also increased

the proportion of infants dying (perhaps due to drug side effects) such that the proportions

dying or becoming infected are the same in the treated versus the control arms.

In order to arrive at an expression of (3.3) that is identifiable from observable data,

Assumption 3.2 will be replaced by the stronger condition given below.

Assumption 3.7. Jointly independent instrument: R q {T (r, z), Z(r),∆(z) for r, z = 0, 1}.
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Under Assumptions 3.1–3.5 and 3.7, (3.3) is equivalent to the following

δj(t) =
Pr[T ≤ t, ∆ = j|R = 0]− Pr[T ≤ t, ∆ = j|R = 1]

Pr[Z = 1|R = 1]− Pr[Z = 1|R = 0]
=
F j0 (t)− F j1 (t)

p1 − p0
=
dF j(t)

dp
(3.4)

where F jr (t) = Pr[T ≤ t, ∆ = j|R = r] is the subdistribution (or cumulative incidence)

function for cause j given R = r. Under Assumptions 3.6-3.7, a consistent estimator δ̂j(t) is

found by plugging in the Aalen and Johansen (1978) estimator of the subdistribution function

F̂ jr (t) = P̂r[T ≤ t, ∆ = j|R = r] for cause j at time t and conditional on R = r and consistent

estimates of each pr. This will be called the IV estimator of δj(t). As with the estimands in

(3.2) and (3.4), the estimator of the all cause local average treatment effect δ̂(t) equals the

sum of the estimators of the cause specific local average treatment effects
∑J

j=1δ̂
j(t).

3.3 Asymptotic Distributional Results

3.3.1 Pointwise Confidence Intervals

Here asymptotic pointwise confidence intervals for the local average treatment effect and

the cause specific local average treatment effect are derived for some t ∈ (0, τ) where τ is the

maximum follow up time. To present our estimation procedure, some additional notation is

needed. Define Y i(t) =I(Xi ≥ t) to be the unconditional at risk process, Y i
r = I(Xi ≥ t, Ri =

r) the conditional at risk process for randomized assignment r, and Y i
rz = I(Xi ≥ t, Ri =

r, Zi = z) the conditional at risk process for randomized assignment r and treatment z. Define

N ji(t) = I(Xi < t,∆i = j) to be counting processes for the number of failures of type j up to

time t. Let N ji
r (t) = I(Xi < t,∆i = j, Ri = r) be the number of failures of type j up to time

t for randomized treatment assignment r, and let N ji
rz(t) = I(Xi < t,∆i = j, Ri = r, Zi = z)

be the number of failures of type j up to time t for randomized treatment assignment r

and treatment z. Let N i(t)=
∑J

j=1N
ji(t), N i

r(t)=
∑J

j=1N
ji
r (t), N i

rz(t)=
∑J

j=1N
ji
rz(t) be the

corresponding total failures. Throughout, assume time is continuous such that N i(t) and

N i′(t) do not jump at the same time for any i 6= i′ = 1 . . . n. Let the all cause hazard function

be denoted by λ(t) = limdt→0 Pr[T ∈ (t, t+dt)|T > t]/dt. Similarly, let λr(t) = limdt→0 Pr[T ∈
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(t, t+ dt)|R = r, T > t]/dt and λrz(t) = limdt→0 Pr[T ∈ (t, t+ dt), Z = z| R = r, T > t]/dt.

Let the cause specific hazard functions be λj(t) = limdt→0 Pr[T ∈ (t, t+dt),∆ = j|T > t]/dt.

Similarly, let λjr(t) = limdt→0 Pr[T ∈ (t, t+ dt),∆ = j|R = r, T > t]/dt and λjrz(t) = limdt→0

Pr[T ∈ (t, t + dt),∆ = j, Z = z| R = r, T > t]/dt. Here we will consider the sequences of

counting processes N j(t) =
∑n

i=1N
ji(t), N(t) =

∑J
j=1N

j(t), N j
r (t) =

∑n
i=1N

ji
r (t), Nr(t)

=
∑J

j=1N
j
r (t), N j

rz(t) =
∑n

i=1N
ji
rz(t), Nrz(t) =

∑J
j=1N

j
rz(t), Y (t) =

∑n
i=1 Y

i(t), Yr(t) =∑n
i=1 Y

i
r (t) and Yrz(t) =

∑n
i=1 Y

i
rz(t). Let nr =

∑n
i=1 I[Ri = r].

Proposition 3.1. Assume that nr/n → qr > 0 as n → ∞ for r = 0, 1 and let yr(t) =

Pr[X ≥ t | R = r] and yrz(t) = Pr[X ≥ t, Z = z | R = r]. Assume that yr(t), yrz(t) > 0.

Then

√
n
{
δ̂(t)− δ(t)

}
d→ N(0, σ2

δ (t)) and
√
n
{
δ̂j(t)− δj(t)

}
d→ N(0, σ2

δ (t, j)) as n→∞

where σ2
δ (t) = dp−2

[
var{d̂S(t)} − 2δ(t)cov{d̂S(t), d̂p}+ δ(t)2var(d̂p)

]
,

σ2
δ (t, j) = dp−2

[
var{d̂F

j
(t)} − 2δj(t)cov{d̂F

j
(t), d̂p}+ δj(t)2var(d̂p)

]
,

var{d̂S(t)} =
∑
r

σ2
r for σ2

r (t) = Sr(t)
2

∫ t

0

λr(u)

yr(u)
du, var(d̂p) =

∑
r

var(p̂r)

cov{d̂S(t), d̂p} =
∑
r

σr1 for σrz(t) = −Sr(t)
∫ t

0

yrz(u)

yr(u)
{λrz(u)− λr(u)} du,

var{d̂F
j
(t)} =

∑
r

σ2
r (t, j) for σ2

r (t, j) =

∫ t

0
Sr(t)

2λ
j
r(u)

yr(u)
du− 2

∫ t

0
Sr(u)

λjr(u)

yr(u)

×
{∫ t

u
Sr(s)λ

j
r(s)ds

}
du+

∫ t

0

λr(u)

yr(u)

{∫ t

u
Sr(s)λ

j
r(s)ds

}2

du and

cov{d̂F
j
(t), d̂p} =

∑
r

σr1(t, j) for σrz(t, j) =

[∫ t

0
Sr(u)

yrz(u)

yr(u)

{
λjrz(u)− λjr(u)

}
du

−
∫ t

0

yrz(u)

yr(u)
{λrz(u)− λr(u)}

∫ t

u
Sr(s)λ

j
r(s)ds du

]
.

Consistent variance estimators σ̂2
δ (t) and σ̂2

δ (t, j) can be obtained by plugging in consistent

estimators of δ(t), δj(t), σ2
r (t), σrz(t), σ

2
r (t, j), σrz(t, j), p1 and p0 for r = 0, 1, and z = 1 in
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the expressions above; specifically

σ̂2
r (t) =Ŝr(t)

2

∫ t

0

{
nr

Yr(u)− 1

}
dNr(u)

Yr(u)
, σ̂rz(t) = Ŝr(t)

∫ t

0

{
Yrz(u)dNr(u)

(Yr(u))2
− dNrz(u)

Yr(u)

}
,

σ̂2
r (t, j) =

∫ t

0
Ŝr(u)2

{
nr{Yr(u)− 1}

Yr(u)

}
dN j

r (u)

{Yr(u)}2
− 2

∫ t

0
{F̂ jr (t)− F̂ jr (u)}Ŝr(u)

dN j
r (u)

Yr(u)

+

∫ t

0
{F̂ jr (t)− F̂ jr (u)}2 dN j

r (u)

Yr(u){Yr(u)− 1}
and

σ̂rz(t, j) =

∫ t

0
Ŝr(t)

Yrz(u)dN j
r (u)

{Yr(u)}2
−
∫ t

0
Ŝr(t)

dN j
rz(u)

Yr(u)
−
∫ t

0
{F̂ jr (t)− F̂ jr (u)}Yrz(u)dNr(u)

{Yr(u)}2

+

∫ t

0
{F̂ jr (t)− F̂ jr (u)}dNrz(u)

Yr(u)
.

The estimator σ̂2
r (t) is the usual Greenwood estimator of the variance of Ŝr(t). The estima-

tor σ̂2
r (t, j) is the estimator of the variance of F̂ jr (t) proposed in Gaynor et al. (1993) (which

most accurately estimates the true variance of F̂ jr (t) when compared to several competing es-

timators according to the simulation study in Braun and Yuan, 2007). Using Proposition 3.1,

a 100(1−α)% confidence interval for δ(t) is given by δ̂(t)± zα/2σ̂δ(t)/
√
n and a 100(1−α)%

confidence interval for δj(t) is given by δ̂j(t) ± zα/2σ̂δ(t, j)/
√
n where z1−α/2 is the 1 − α/2

quantile of a standard normal variate. A proof of Proposition 3.1 is contained in Appendix

A.1.

3.3.2 Hypothesis Testing

To conduct tests of any difference between the two treatment groups in the survival curves

and subdistribution curves for cause j, consider testing the following hypotheses

H0 : δw(t0) =

∫ t0

0
w(u)δ(u)du = 0 and Hj

0 : δjw(t0) =

∫ t0

0
w(u)δj(u)du = 0

for t0 ∈ (0, τ) and where w is a user defined weight function.

Proposition 3.2. Suppose there exists a non-negative function W such that for some t ∈
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[0, t0), assume that

sup
t∈[0,t0]

∣∣∣Ŵ (t)− w(t)
∣∣∣ p→ 0 as n→∞.

Then for the null hypotheses H0 : and Hj
0 : we have that

under H0,
√
n
{
δ̂w(t0)− δw(t0)

}
du

d→N(0, σ2
w(t0)) as n→∞ and

under Hj
0 ,
√
n
{
δ̂jw(u)− δjw(u)

}
du

d→N(0, σ2
w(t0, j)) as n→∞

where δ̂w(t0) =

∫ t0

0
Ŵ (u)δ̂(u)du, δ̂jw(t0) =

∫ t0

0
Ŵ (u)δ̂j(u)du,

σ2
w(t0) = dp−2

 t0∫
0

{∫ t0

t
w(u)S(u)du

}2 {
y0(t)−1 + y1(t)−1

}
λ(t)dt

 and

σ2
w(t0, j) = dp−2

 t0∫
0

{∫ t0

t
w(u)du

}2 {
y0(t)−1 + y1(t)−1

}
dσ2(t, j)

 .
Further, σ2

w(t0) and σ2
w(t0, j) may be consistently estimated by

σ̂2
w(t0) = d̂p

−2∑
r

t0∫
0

{∫ t0

t
Ŵ (u)Ŝr(u)du

}2{
nr

(Yr(u)− 1)

}
dNr(u)

Yr(u)
and

σ̂2
w(t0, j) = d̂p

−2∑
r

t0∫
0

{∫ t0

t
Ŵ (u)du

}2

dσ̂2
r (u, j).

Weighted instrumental variables (WIV) tests with rejection regions defined by

Q =
{
δ̂w(t0) :

∣∣∣√nδ̂w(t0)/σ̂w(t0)
∣∣∣ > z1−α/2

}
and

Qj =
{
δ̂jw(t0) :

∣∣∣/√nδ̂jw(t0)/σ̂w(t0, j)
∣∣∣ > z1−α/2

}

provide unbiased 2-sided size α tests of H0 : δw(t0) = 0 and Hj
0 : δjw(t0) = 0.

Rejection of the WIV test for H0 indicates that the effect of treatment on the all-cause

survival experience within the ZP0 = (0, 1) principal strata is nonzero.

Rejection of the WIV test for Hj
0 indicates that the effect of treatment on the cumulative
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incidence of the event due to cause j is nonzero. Similar to the estimands in (3.2) and (3.4),

δw(t) =
∑J

j=1δ
j
w(t). Again, the effect of treatment on one cause j may cancel with the effect

of treatment on another cause j′ such that the hypothesis of no treatment effect on the all

cause survival H0 is null, but the cause specific hypotheses of no treatment effect Hj
0 and

Hj′

0 are not null. Therefore the availability of unbiased tests of Hj
0 for j = 1, . . . , J allows

for testing of treatment effects on cause specific subdistributions that may have been missed

if only a test of a treatment effect on the all cause survival H0 were conducted. A proof of

Proposition 3.2 is contained in Appendix A.2.

3.4 Simulation Study

Simulations were conducted under Asssumptions 3.1–3.7. For each simulated data set n

principal strata vectors ZP0 were simulated using a multinomial random number generator

with parameter θ = (θ00, θ01, θ10, θ11) with θij = Pr[ZP0 = (i, j)]; (θ10 = 0 under Assumption

3.5). The parameter θ01 is the proportion of the population that are in the compliers principal

strata and provides a measure of the strength of the instrument in determining treatment

allocation. The randomized treatment assignment R was simulated by randomly permuting

a vector of size n containing 0 p0n times and 1 for the p1n remaining entries. The random

variable Z was determined based on R and ZP0 . Censoring times C were generated using

a uniform random number generator on the interval (CR, CR + ∆CR). The time to the

first event T (Z) = T was simulated by sampling from the distribution defined by an overall

hazard of
∑J

j=1 λ
j
rz(t) where each λjrz(t) is a Weibull hazard of the form κγ(γt)κ−1 for various

scenarios as detailed in Table 3.1. The event indicator ∆ was simulated by sampling from a

multinomial random variable with Pr[∆ = j|T ] = λjrz(T )/
∑J

j=1 λ
j
rz(T ) for j = 1, 2. If the

subject was censored, ∆ was set to 0. All results are based on 5,000 Monte Carlo simulations,

p0 = 0.5, C0 = 4, ∆C0 = 6, C1 = 3, ∆C1 = 3, w(t) = 1 and t0 = min{maxi(Xi|Ri = 0),

maxi(Xi|Ri = 1)}.
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Naive “as treated” analysis about (3.1) and (3.3) might entail computing the estimators

δ̃(t) = Ŝ11(t)− Ŝ00(t) and δ̃j(t) = F̂ j00(t)− F̂ j11(t) (3.5)

where Ŝrz(t) and F̂ jrz(t) are the Kaplan Meier estimator of the survival function and the

Aalen Johansen estimator of the subdistribution function conditional on R = r and Z =

z. Pointwise confidence intervals for (3.1) and (3.3) might be computed by appealing to

asymptotic normality results (Andersen et al., 1995) for Ŝrz(t) and F̂rz(t). In this “as treated”

analysis, testing the hypotheses H0 and Hj
0 might be accomplished using weighted Kaplan

Meier (WKM) tests as in Pepe and Fleming (1989). The coverage of the pointwise confidence

intervals for δ(t) and δj(t) and power of the WIV tests for H0 and Hj
0 in Propositions 3.1 and

3.2 are compared to the coverage of pointwise confidence intervals and the power of WKM

tests in this naive analysis.

Nonproportional hazards in the treated versus the control amongst the complier principal

strata are assumed in all scenarios. Scenario 1 describes a situation in which one cause (j = 2)

exhibits a causal treatment effect in the complier principal strata. In this scenario, the power

to reject H2
0 is similar to H0 and the power of H1

0 is small (though note that this scenario is

not null, i.e. H1
0 : δ1

w(t0) 6= 0). Scenario 2 describes a situation in which both causes exhibit

causal treatment effects, but these effects cancel each other out such that δw(t0) = 0 (as

described in Section 3.2.3 and at the end Section 3.3.2). The power to reject H0 in Scenario

2 reflects that this test is consistent and the type I error is controlled. These opposing causal

effects for j = 1 and 2 are roughly the same magnitude as δ2
w(t0) in Scenario 1, and the power

to reject both H1
0 and H2

0 in Scenario 2 is similar to the power to reject H2
0 in Scenario 1.

Scenario 3 describes a situation in which both causes exhibit a causal treatment effect that are

the same sign and magnitude. As would be expected, the power to reject H0 in this situation

is higher than that of H1
0 or H2

0 , which are roughly the same. Scenario 4 describes a situation

in which there are no causal treatment effects in the complier principal strata for cause 1 or 2

such that δw(t0) = δ1
w(t0) = δ2

w(t0) = 0. Again, as expected the results here demonstrate that

the tests of H0, H1
0 and H2

0 are consistent. In all scenarios the strength of the instrument (as
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measured by θ01 – the proportion of the population who are compliers) has large effects on

the power of the test, with increasing instrument strength yielding increased power.

The power for the corresponding naive weighted Kaplan Meier tests are higher, however,

these tests are not unbiased. The estimated power is greater than 5% in the scenarios where

the treatment effect is null (Scenario 4, and Scenario 2 for j = (all)), meaning that these

tests have inflated type I error and therefore should not be used to test for the local average

treatment effects in (3.1) and (3.3).

Table 3.2 shows that the IV estimators δ̂(t) and δ̂j(t) are unbiased and that the variance

estimators accurately estimate the true variance (as indicated by the ratio of the average

estimated variance and the empirical standard error). The coverage of the IV pointwise

confidence intervals exhibit the ideal 0.95 in almost all scenarios (though there is slight over

coverage in Scenario 2 for δ1(t) where the treatment effect in the compliers principal strata

has the opposite sign of that of the difference between the always treated and never treated

principal strata). On the other hand, the naive “as treated” estimators δ̃(t) and δ̃j(t) have

higher bias and the coverage for the corresponding confidence intervals is poor in several

scenarios (e.g., see Scenario 2, j = 1 or Scenario 4, for all j). The power to reject Hj
0(t) :

δj(t) = 0 based on the IV pointwise confidence intervals gives similar results as what was

seen in Table 3.1, particularly for t = 5. These tests are again unbiased as indicated by the

null scenarios yielding estimated power of approximately 5%. However, testing Hj
0(t) using a

naive analysis again results in inflated type I error.

3.5 Application to the BAN Study

In this section the methods devleoped in Section 3.3 are employed to compare cumulative

incidence of HIV or death in the infant NVP arm and the maternal ARV arm to the control

group in the BAN study. Treatment Z is the actual treatment taken based on the randomized

assignment R and the treatment compliance surveys taken in the weeks following random-

ization. A subject was considered noncompliant (i.e., Z = 0) if any pills were reported as

missed on the first completed treatment compliance survey. In the maternal ARV arm, 12%
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of subjects met this criteria and in the infant NVP arm, 5% met this criteria. It was assumed

that no patients in the control arm took either the infant NVP or maternal ARV treatment

regimens which would imply that Assumption 3.5 holds.

The nonparametric IV and naive “as treated” estimates along with corresponding 95%

confidence intervals of δj(t) are given in Table 3.3 for time to HIV infection (j = 1) or death

(j = 2). Figure 3.1 depicts IV estimates of the all cause cumulative incidence functions

partitioned by cumulative incidence of HIV and death for each treatment arm as well as

the results of the WIV tests for H0 and Hj
0 . Table 3.3 and Figure 3.1 show that infant NVP

decreases the probability of both infant HIV infection and death and this result is statistically

significant for the composite endpoint and the HIV infection endpoint. The estimated effect of

maternal ARV is positive for cumulative incidence of HIV, death and the composite endpoint,

however none of these effects are significant based on the pointwise IV confidence intervals.

Table 3.3 and Figure 3.1 also demonstrate that the IV pointwise confidence intervals

and WIV tests give qualitatively similar results to a naive analysis adjusting for compli-

ance (as described in Section 3.5) when comparing the infant NVP arm to control. This

might be expected because the proportion that were compliant in the infant NVP arm was

quite high. However, different conclusions are reached by IV based and naive analyses when

comparing the maternal ARV arm to control for the HIV infection endpoint. Specifically, a

significant positive effect of maternal ARV versus control is found when using the WIV test

(
∣∣∣√nδ̂2

w(t0)/σ̂w(t0)
∣∣∣ = 1.96, p-value 0.05) whereas the naive WKM test does not reject the null

hypothesis H1
0 of no treatment effect on cumulative incidence of HIV (Z score 1.67, p-value

0.09). Also, as seen in Table 3.3, the IV based estimates of the difference in cumulative inci-

dence of HIV between maternal ARV and control are roughly 20-30% greater than the naive

estimates. Additionally, at 18 weeks a naive confidence interval for δ(t) for maternal ARV

versus control excludes 0 indicating a significant positive effect of maternal ARV on time to

death or HIV infection, but the IV confidence interval does not exclude 0 and therefore does

not indicate a significant positive effect.
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3.6 Discussion

In this paper large sample properties are derived of nonparametric IV estimators and

global hypothesis test statistics for the local average treatment effects (3.1) and (3.3) for right

censored data in the presence of competing risks. Without competing risks, our proposed test

enables a test for the causal effect on survival at all time points, which contrasts with previous

work on fixed time points. The methods are valid under a wide range of relationships between

the competing causes for the event, for local average treatment effects with nonproportional

hazards and for various scenarios regarding the similarity of the distributions of the time to

the event in the various principal strata. As demonstrated in Table 3.1, weaker instrumental

variables (i.e. smaller proportions of the population whose treatment is determined by the

instrument) yield less powerful WIV global tests of no treatment effect, but the WIV tests

remain consistent for both a stronger and weaker instrumental variable. Also as evidenced

by Table 3.1, naive treatment comparisons similar to those described in Section 3.4 do not

yield valid results for the hypothesis test of no local average treatment effect on the all cause

survival experience or on the cumulative incidence of some specific cause.

As demonstrated by Section 3.5, the use of such naive analyses may result in different

conclusions being drawn about a treatment effect, which may impact important clinical or

policy decisions. In the BAN study rates of non-compliance were low, and application of

the IV methods here demonstrate that even when there is a low rate of non-compliance,

the IV pointwise confidence intervals and WIV tests may yield different results than a naive

analysis, highlighting the importance of using these methods for randomized studies with

non-compliance to treatment assignment and a competing risks outcome. In a study with a

higher rate of non-compliance the amount of discordance between the two analyses will likely

increase.

Though the results here are valid for any instrumental variable meeting Assumptions 3.1–

3.5 and 3.7, finding an instrumental variable that is unrelated to the outcome may be difficult.

Relaxing Assumption 3.7 such that the instrumental variable R is independent of the outcome

conditional on some set of covariates might allow for more candidate instrumental variables to
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choose from. Additionally, treatment effects adjusted for covariates might also be desired. In

this paper compliance is simplified to an all or nothing binary measure; however, in many real

world applications compliance may be more complicated with some subjects being partially

compliant. Thus results that allow for a more general form of the either the instrumental

variable R or the treatment received Z may also be useful. The use of multiple weaker

instrumental variables to identify local average treatment effects might also have utility in

many real world applications (Hahn et al., 2004; Hausman et al., 2012).
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Table 3.1: Simulation scenarios for T (Z) for ZP0 in presence of competing risks (J = 2) and
power of a size α = 0.05 WIV test of H0 : δjw(t0) = 0 and the naive WKM test discussed in
Section 3.4 for n = 300, 1000, 2000. Results are based on θ = ([1−θ01]/2, θ01, 0, [1−θ01]/2) for
various θ01. The hazard for each j within each ZP0 has Weibull hazard of the form κγ(γt)κ−1

for parameters (γ, κ). For ZP0 = (1, 1), (γ, κ) = (0.10, 1) for j = 1, 2 and for ZP0 = (0, 0),
(γ, κ) = (0.16, 1) for j = 1, 2.

(γ, κ) for Power Hj
0 : δjw(t0)=0

ZP0 = (0, 1) WIV Naive WKM
Scen- n= n=
ario θ01 j z=0 z=1 300 1000 2000 300 1000 2000

1 0.6 1 (0.12,1.2) (0.12,1.2) 5 8 14 83 98 14
2 (0.24,1.2) (0.12,1.2) 63 95 99 90 100 100

(all) 56 97 100 89 100 100

0.3 1 (0.12,1.2) (0.12,1.2) 4 4 4 59 93 98
2 (0.24,1.2) (0.12,1.2) 20 51 80 20 51 80

(all) 19 50 78 79 99 100

2 0.6 1 (0.1,1.2) (0.2,1.2) 59 96 99 87 99 100
2 (0.3,1.2) (0.2,1.2) 65 97 99 89 100 100

(all) 6 6 6 17 45 74

0.3 1 (0.1,1.2) (0.2,1.2) 18 45 74 18 45 74
2 (0.3,1.2) (0.2,1.2) 20 50 76 20 50 76

(all) 6 5 5 34 83 99

3 0.6 1 (0.19,1.2) (0.12,1.2) 14 35 61 30 69 90
2 (0.19,1.2) (0.12,1.2) 15 35 61 15 35 61

(all) 62 98 100 91 100 100

0.3 1 (0.19,1.2) (0.12,1.2) 6 10 17 13 20 29
2 (0.19,1.2) (0.12,1.2) 8 10 17 17 19 31

(all) 21 55 84 42 94 100

4 0.6 1 (0.2,1.2) (0.2,1.2) 4 3 2 6 9 10
2 (0.2,1.2) (0.2,1.2) 5 3 3 6 10 12

(all) 6 5 5 13 32 58

0.3 1 (0.2,1.2) (0.2,1.2) 4 3 3 5 7 9
2 (0.2,1.2) (0.2,1.2) 5 3 2 5 7 9

(all) 5 5 5 5 17 31
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Table 3.2: Simulation results: bias (× 100), empirical standard error (ESE) (× 100), the
ratio of the average estimated standard error and the empirical standard error (ESE Ratio,
%), coverage of pointwise 95% confidence intervals for δj(t) and the percent power to reject
Hj

0(t) : δj(t) = 0 (%) based on (i) the IV estimators and pointwise confidence intervals and
(ii) the naive estimators and confidence intervals for simulation Scenarios 1–4 as described in
Table 3.1 for θ01 = 0.6 and n = 1000.

Scen- Bias ESE ESE Ratio Coverage Power

ario j t δ̂j(t) δ̃j(t) δ̂j(t) δ̃j(t) δ̂j(t) δ̃j(t) δ̂j(t) δ̃j(t) δ̂j(t) δ̃j(t)
1 1 3 -0.2 2.9 4.4 3.0 104 99 96 84 11 6

5 -0.2 4.1 5.2 3.4 105 101 96 79 31 21

2 3 0.2 -3.3 5.0 3.6 94 90 93 82 99 100
5 0.2 -4.3 5.6 3.7 95 98 93 79 100 100

(all) 3 0.0 -0.4 5.3 3.5 100 101 95 95 93 100
5 0.0 -0.3 5.2 3.4 100 101 95 95 92 100

2 1 3 -0.1 7.0 4.6 3.1 110 97 97 36 98 97
5 -0.1 8.5 5.3 3.5 112 99 97 30 99 100

2 3 0.1 -2.8 5.2 3.7 94 92 93 87 97 100
5 0.1 -4.2 5.6 3.7 93 99 93 79 99 100

(all) 3 0.0 4.1 5.2 3.4 100 102 95 78 6 22
5 0.0 4.2 4.8 3.0 100 101 95 72 5 28

3 1 3 -0.3 -0.5 4.8 3.3 97 95 94 94 54 84
5 -0.1 -0.3 5.5 3.7 97 98 94 94 41 70

2 3 0.0 -0.4 4.8 3.3 96 96 94 94 57 85
5 0.1 -0.2 5.6 3.7 96 99 94 95 43 70

(all) 3 -0.2 -0.9 5.1 3.4 103 103 96 95 96 100
5 0.0 -0.6 5.1 3.4 102 101 96 95 95 100

4 1 3 0.1 2.3 5.0 3.5 98 93 95 88 5 12
5 0.0 2.3 5.5 3.7 100 99 95 90 5 10

2 3 -0.1 2.2 5.0 3.5 99 93 94 89 6 11
5 -0.1 2.2 5.6 3.8 98 97 95 90 5 10

(all) 3 0.1 4.4 5.3 3.5 98 98 94 74 6 26
5 0.0 4.4 4.9 3.1 98 99 95 69 5 31
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Table 3.3: Results for the BAN study: IV δ̂j(t) and naive δ̃j(t) estimates (×100) and
corresponding 95% confidence intervals for (a) infant NVP versus control and (b) maternal
ARV versus control and for endpoints of infant HIV infection (j = 1), death (j = 2) and HIV
infection or death (all j).

Treatment Comparison
(a) Infant NVP (b) Maternal ARV

Endpoint vs control vs control

t δ̂j(t) (95% CI) δ̃j(t) (95% CI) δ̂j(t) (95% CI) δ̃j(t) (95% CI)
HIV infection (j = 1)

6 weeks 1.60 (0.56, 2.64) 1.53 (0.54, 2.52) 0.69 (-0.68, 2.07) 0.60 (-0.63, 1.84)
18 weeks 3.31 (1.76, 4.86) 3.16 (1.67, 4.65) 1.79 (-0.19, 3.76) 1.59 (-0.19, 3.36)
28 weeks 3.41 (1.56, 5.25) 3.36 (1.60, 5.12) 2.20 (-0.01, 4.42) 1.88 (-0.13, 3.88)
48 weeks 2.55 (0.19, 4.92) 2.59 (0.32, 4.85) 2.07 (-0.58, 4.72) 1.71 (-0.70, 4.12)

Death (j = 2)

6 weeks 0.40 (-0.26, 1.05) 0.37 (-0.26, 1.01) 0.28 (-0.49, 1.06) 0.36 (-0.29, 1.01)
18 weeks 0.69 (-0.61, 1.98) 0.61 (-0.66, 1.87) 0.43 (-1.05, 1.91) 0.80 (-0.44, 2.04)
28 weeks 1.12 (-0.55, 2.78) 0.98 (-0.64, 2.60) 1.05 (-0.80, 2.89) 1.44 (-0.13, 3.00)
48 weeks 1.55 (-0.59, 3.68) 1.34 (-0.74, 3.42) 2.01 (-0.29, 4.30) 2.35 (0.38, 4.32)

HIV infection or death (all)

6 weeks 2.00 (0.77, 3.22) 1.90 (0.73, 3.08) 0.98 (-0.59. 2.55) 0.96 (-0.43, 2.35)
18 weeks 4.00 (2.00, 6.00) 3.76 (1.83, 5.70) 2.22 (-0.21. 4.65) 2.39 (0.24, 4.53)
28 weeks 4.52 (2.07, 6.97) 4.34 (1.98, 6.70) 3.25 (0.43. 6.07) 3.31 (0.80, 5.82)
48 weeks 4.10 (0.98, 7.22) 3.93 (0.91, 6.94) 4.08 (0.68. 7.47) 4.06 (1.01, 7.11)
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Figure 3.1: Application to the BAN study: cumulative incidence estimates partitioned by
cause and results of the hypothesis tests of no treatment effect on cumulative incidence of HIV,
H1

0 : δ1
w(t0) = 0; no treatment effect on death, H1

0 : δ2
w(t0) = 0; and no effect of treatment on

death or cumulative incidence of HIV, H0: δw(t0) = 0 based on the WIV tests in Proposition
3.2 for (a) infant NVP versus control and (b) maternal ARV versus control.
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CHAPTER 4: IDENTIFICATION OF TREATMENT EFFECTS WITH
INTERFERENCE USING INSTRUMENTAL VARIABLES

4.1 Introduction

When studying causal effects of a treatment or exposure, sometimes the treatment or ex-

posure received by one individual may affect the outcomes of other individuals under study.

This is referred to as interference and is most frequently encountered in settings in which

outcomes are largely dependent on social happenings. Some well known examples of settings

where this might occur include the study of infectious diseases and vaccination, educational

interventions, and effects of housing voucher programmes. Until recently, most causal infer-

ence research has operated under the assumption that there is no interference between units

(Cox, 1958), which is part of the assumption commonly known as the stable unit treatment

value assumption or SUTVA (Rubin, 1980). In the aforementioned settings, this assumption

is undoubtedly violated. Moreover, effects due to interference between units are often a target

of inference useful in determining important social and public health policies, where policy

makers must consider the totality of an effect of a treatment or exposure, not just the effect

it has at the individual level.

Though most causal inference operates under the assumption of no interference, Rubin

(1980) noted that the potential outcomes framework could be extended to accommodate

interference between units. Drawing inference about treatment effects in the presence of in-

terference has since become an active area of research, especially in the last decade (Halloran

and Struchiner, 1995; Hong and Raudenbush, 2006; Sobel, 2006; Rosenbaum, 2007; Hudgens

and Halloran, 2008; Aronow and Samii, 2011; Tchetgen Tchetgen and Vanderweele, 2012;

Bowers et al., 2012). Though the advancements made account for interference and define new

causal effects describing the level of interference, many of the results obtained assume a two
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stage randomized experiment (randomizing both individuals as well as groups of individuals to

different treatment allocation strategies). Two stage randomized experiments are sometimes

difficult, impractical or unethical to implement in practice, thus adaptations to these methods

for use with observational data or for randomized designs not necessarily having randomiza-

tion at both the group and the individual level may have great utility. Hong and Raudenbush

(2006) proposed estimators that stratify by the z-score of the propensity model to estimate

interference effects in observational data. Tchetgen Tchetgen and Vanderweele (2012) pro-

posed inverse probability of treatment weighted estimators that Perez-Heydrich et al. (2014)

demonstrate consistently estimate causal interference effects in observational settings. Both

the stratified and inverse probability weighted approaches rely on the assumption that there

is no unmeasured confounding with regard to treatment selection. If such an assumption is to

be avoided, many of the causal interference effects are in general not identifiable if treatment

assignment is not randomized at either the group or individual level. Manski (2013) delin-

eates partial identification results under general interference and describes various classes of

bounding assumptions which shrink the identification regions obtained. These results lay a

foundation for identification of causal effects under interference.

In this article, we assume individuals can be partitioned into groups such that there may

be interference between individuals in the same groups but there is no interference between

individuals in different groups. Under this assumption, identification results are derived for

direct, indirect, and total effects of treatment in the presence of interference under various

assumptions. These results may be used in observational settings where there exist variables

that are only associated with the outcome through their effect on treatment allocation, which

are commonly known as instrumental variables. These bounds might also be applicable to

randomized studies where an instrumental variable may be available (e.g. a randomized

encouragement design). We also derive consistent estimators of the derived bounds and

estimands. The remainder of this article is organized as follows. In Section 4.2, the notation

and a few key assumptions are introduced. Section 4.3 defines the direct, indirect and total

effects of treatment. In Section 4.4, bounds for these three causal effects are derived under

varying sets of assumptions. Section 4.5 discusses estimation of the bounds and Section 4.7
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presents the motivating example on rotavirus vaccination amongst U.S. infants and applies

the obtained results. Section 4.8 concludes with a discussion.

4.2 Notation, Potential Outcomes and Assumptions

Suppose we have a random sample (from some super population) of N groups of individ-

uals each containing ni individuals for i = 1, . . . , N . Let Zij denote the treatment selected

(or received) by individual j in group i where Zij = 1 indicates treatment selected and 0

indicates treatment not selected. Let Zi,−j be the proportion of individuals in group i other

than individual j that are treated and Zi the proportion of individuals treated in group i.

At the individual level we are interested some binary outcome Yij . For instance, Yij may

indicate whether or not an infection of interest occurred where Yij = 1 indicates that the

individual becomes infected and Yij = 0 otherwise. Let the individual potential outcomes

be denoted Yij(zij , zi,−j , rij) for zij = 0, 1, zi,−j ∈ [0, 1] and rij ∈ R, allowing for different

potential outcomes for each individual treatment choice zij , each value of the proportion

of other individuals in the group treated zi,−j and each value of the instrumental variable

rij (further discussed below). The potential outcomes are assumed to remain constant with

changes in the treatment status of members of other groups; this assumption has been referred

to as partial interference (Sobel, 2006) or constant treatment response (Manski, 2013). This

assumption is reasonable if interaction between members of different groups is minimal or

nonexistent and will be made throughout the remainder of this paper. The potential outcomes

are also assumed to remain constant regardless of which specific members of the individual’s

group are treated. This has been referred to as stratified interference (Hudgens and Halloran,

2008). Let Zij be the set of all possible realizations of the vector (Zij , Zi,−j , Rij) and denote

the set of all possible potential outcomes for individual j in group i as Yij(Zij). Finally, let Vi

be some set of measured group level covariates that might confound the relationship between

(Zij , Zi,−j) and Yij(Zij).

Assumptions 4.1–4.2 introduced below for j = 1, . . . , ni and i = 1, . . . , N are assumed

throughout the rest of the paper.
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Assumption 4.1. Causal consistency: if Zij = zij, Zi,−j = zi,−j and Rij = rij, then

Yij(zij , zi,−j , rij) = Yij and Zij(rij) = Zij for zij = 0, 1, rij ∈ R and for all zi,−j.

Assumption 4.1 connects the observed outcomes to the potential outcomes. It states that

the observed outcome is equal to the potential outcome under the observed treatment Zij ,

observed proportion of other group members treated Zi,−j , and instrumental variable Rij .

Assumption 4.2. Positivity: dFZi,−j ,Zij
(z, zi,−j) > 0 for z = 0, 1 and all zi,−j.

Here FZi,−j ,Zij
(z, zi,−j) denotes the joint distribution of Zi,−j , Zij at (z, zi,−j) (in general

let FA,B(a, b) denote the joint distribution of the random variables A and B at (a, b)). As-

sumption 4.2 states that every combination of Zij and Zi,−j is observed as the number of

groups goes to infinity.

In many circumstances an instrumental variable will be available and may provide a means

for arriving at tighter bounds on the causal effects defined in Section 4.3 below. Suppose that

Rij is some instrumental variable taking finitely many values in some set R. Assumptions 4.3–

4.6 below are analogous to the assumptions made in Imbens and Angrist (1994) and Angrist

et al. (1996) to estimate average treatment effects when an instrumental variable is available

(in the absence of interference). A variable Rij will qualify as an instrumental variable if

it meets Assumptions 4.3–4.5 below. Here assume that each individual in each group has

potential treatment outcomes Zij(rij) for each level of this instrumental variable rij ∈ R.

Assumption 4.3. Nonzero causal effect of Rij on Zij: E[Zij(r)− Zij(r′)] 6= 0 for r 6= r′.

Assumption 4.4. Exclusion restriction : Yij(zij , zi,−j , rij) = Yij(zij , zi,−j , r
′
ij) for zij = 0, 1,

rij , r
′
ij ∈ R and all zi,−j

Assumption 4.3 states that the instrumental variable has some effect on treatment selection

and Assumption 4.4 states that the instrumental variable has no effect on the potential

outcomes for Yij for fixed zij and zi,−j . Assumptions 4.3 and 4.4 together imply that Rij only

affects the potential outcomes Y(Zij) through its effect on treatment selection.

Assumption 4.5. Independent instrument: Rij q {Yij(Zij), Zij(rij)} for rij = 0, 1}
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Assumption 4.5 states that the distribution of the observed value of instrumental variable

does not depend on the potential outcomes Y(Zij). This assumption might be considered

valid for variables Rij such as calendar time, randomized encouragement to take treatment,

or randomized treatment assignment.

Assumption 4.6. Monotonicity of rij on Zij: Zij(rij) ≥ Zij(r′ij) for rij > r′ij ∈ R

Under Assumption 4.6 there are no individuals that would be treated under smaller values

of r but not under larger values of r. For a variable corresponding to calendar time of

enrollment in a study, this assumption indicates that there are no individuals who would get

treated if they enrolled earlier, but not if they enrolled later.

When there is no interference, an ideal instrumental variable to estimate the average

treatment effect is given by the individual randomized treatment assignment (assuming no

noncompliance to treatment assignment). As mentioned in the Introduction, when there is

interference the gold standard for estimating causal effects is achieved by randomly assigning

groups to different treatment allocation programmes p, meaning that Zi is randomly assigned,

and then randomly assigning Zij based on Zi. Thus an ideal instrumental variable is given

by Rij = (Rpi , R
z
ij) where Rpi is the group treatment allocation strategy assignment and Rzij

is the individual level treatment assignment based on Rpi (again assuming no noncompliance

to treatment assignment).

4.3 Causal Estimands

Often it is of interest in public health to draw inference about the relative effectiveness of

different group wide treatment allocation programmes. For example, policy makers might be

interested in the effect of vaccinating 90% of school aged children compared to vaccinating a

smaller percentage on the incidence of some childhood disease. Consider two treatment allo-

cation programmes p = 0, 1 where the proportion of individuals in a group that are treated

under programme p follows some distribution indexed by parameter αp denoted FZ(z|αp).

Causal effects in the presence of interference can be defined as contrasts between average
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potential outcomes under a particular treatment programme and individual treatment sta-

tus (Sobel, 2006; Hudgens and Halloran, 2008; Tchetgen Tchetgen and Vanderweele, 2012).

Specifically, for individual j in group i, define the individual average potential outcome under

αp as

Y ij(z, αp, r) =

1∫
0

Yij(z, zi,−j , r)dFZi,−j |Zij
(zi,−j |z;αp). (4.1)

where FZi,−j |Zij
(zi,−j |z) is the conditional distribution of Zi,−j given Zij = z (in general

let FA|B(a|b) denote the distribution of the random variable A at a given B = b). Under

Assumption 4.4, Y ij(z, αp, r) = Y ij(z, αp, r
′) for r, r′ ∈ R which we denote by Y ij(z, αp).

Define E[Y ij(z;αp)] to be the mean individual average potential outcome (in the super-

population) under individual treatment status z and group treatment allocation programme

p.

As delineated by Halloran and Struchiner (1995), several effects may be of interest when

studying interference. Direct effects study the effect of treatment (z = 1 compared to z = 0)

while holding the treatment allocation strategy fixed. Indirect effects compare the effect of

different treatment programmes (p = 1 compared to p = 0) while holding the treatment

constant. These are also referred to as spillover effects (Sobel, 2006; Tchetgen Tchetgen and

Vanderweele, 2012). For the purposes here, we are only interested in indirect effects for the

untreated z = 0. T otal effects compare the effects of treatment (z = 1 compared to z = 0)

while also comparing treatment allocation strategies. Formally, define

DE(α0) = E[Y ij(0;α0)]− E[Y ij(1;α0)]

IE(α0, α1) = E[Y ij(0;α0)]− E[Y ij(0;α1)]

TE(α0, α1) = E[Y ij(0;α0)]− E[Y ij(1;α1)] (4.2)

to be the direct, indirect and total effects. Assumptions 4.3–4.9 introduced above and below

are used to bound or identify the causal effects defined in (4.2).
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Assumption 4.7. No unmeasured confounding for other group members treatment: Yij(Zij)q

Zi,−j |{Vi, Rij}

Assumption 4.7 will be valid if all variables that confound the relationship between Zi,−j

and Yij(Zij) are measured in Vi and Rij . Because Zi,−j pertains to the treatment selections of

other individuals, this assumption might be considered valid for a rich enough set of covariates

Vi, perhaps containing only group level demographic information.

Assumption 4.8. No unmeasured confounding for individual treatment: Yij(Zij) q Zij |

{Vi, Rij , Zi,−j}

Assumption 4.8 will be valid if all variables that confound the relationship between Zij

and the potential outcomes Yij(Zij) are measured in Vi and Rij for Zi,−j . However, there

may exist unmeasured individual level factors that confound this relationship, meaning that

Assumption 4.8 might be considered less plausible than Assumption 4.7 for Vi containing only

group level and/or demographic covariates (as will be the case with the rotavirus vaccine data

examined in Section 4.7).

Assumption 4.9. Constant direct effect across Rij: E[Y ij(0, αp, r) − Y ij(1, αp, r)|Zij =

z,Rij = r] = E[Y ij(0, α0, r)− Y ij(1, α0, r)|Zij = z,Rij = r′] for all r 6= r′ and p = 0, 1.

Assumption 4.9 will be valid if the direct effect remains constant amongst those individuals

who selected treatment z across the strata defined by the instrumental variable. Assumptions

similar to Assumption 4.9 are considered in Hernán and Robins (2006) are used to identify

the average treatment effect using an instrumental variable in the absence of interference.

4.4 Identification Results

Bounds for DE(α0), IE(α0, α1) and TE(α0, α1) under some subset of Assumptions 4.1–4.9

can be found by formulating optimization problems maximizing and minimizing E[Y ij(z;αp)]

for z, p = 0, 1 subject to the constraints imposed by the subset of assumptions.
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Result 4.1. Under Assumptions 4.1–4.2 and 4.7–4.8, the upper and lower bounds for E[Y ij(z;αp)]

are both given by

µIPW (z, αp) = {dFZij |Vi(Zij |Vi, Rij)}
−1Y w

ij (z, αp;Vi) (4.3)

where

Y w
ij (z, αp;Vi, Rij) =

dFZi,−j |Zij
(Zi,−j |Zij ;αp)

dFZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)

I(Zij = z)Yij

and thus E[Y ij(z;αp)] is identified as are DE(α0), IE(α0, α1) and TE(α0, α1).

A proof of Result 4.1 is given in Appendix B.1.

Result 4.2. Under Assumptions 4.1–4.7, a sharp lower bound for E[Y ij(z;αp)] is given by

µLB(z, αp) = E

[
max
r∈R

{
E
[
Y w
ij (z, αp;Vi, r)

]}]
(4.4)

and a sharp upper bound is given by

µUB(z, αp) =E

[
min
r∈R

{
E
[
Y w
ij (z, αp;Vi, r) + dFZij |Vi,Rij

(1− Zij |Vi, r)
]}]

(4.5)

The bounds µLB(z, αp), µ
LB(z, αp) reduce to the bounds in Manski (1990) if there is no

interference (i.e. ni = 1 for all subjects). The length of these bounds (upper minus lower) is

at most minr 6=r′∈R{Pr[Zij = 0|Rij = r] + Pr[Zij = 1|Rij = r′}, which would be the rate of

noncompliance for Rij given by randomized treatment assignment.

Result 4.3. Under Assumptions 4.1–4.7 and 4.9 it follows that

TEIV (α0, α1) =(drE[Zij ])
−1
{
E
[
Y w
ij (α0;Vi, Rij)|Rij = rl

]
− E

[
Y w
ij (α1;Vi, Rij)|Rij = ru

]}
IEIV (α0, α1) =

{
E
[
Y w
ij (α0;Vi, Rij)− Y w

ij (α1;Vi, Rij)|Rij = rl
]
E[Zij |Rij = ru]

−E
[
Y w
ij (α0;Vi, Rij)− Y w

ij (α1;Vi, Rij)|Rij = ru
]
E[Zij |Rij = rl]

}
DEIV (α0) =TEIV (α0, α1)− IEIV (α0, α1) (4.6)
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where

drE[Zij ] = E[Zij |Rij = ru]− E[Zij |Rij = rl]

Y w
ij (αp;Vi, Rij) =

dFZi,−j |Zij
(Zi,−j |Zij ;αp)

dFZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)

Yij .

In absence of interference IEIV (α0, α1) = 0 and TEIV (α0, α1) = DEIV (α0) which is the

instrumental variable estimand of Imbens and Angrist (1994).

4.5 Estimation

Under Assumptions 4.1–4.2 and 4.7–4.8 a consistent estimator of µIPW (z, αp) is

µ̂IPW (z, αp) =
1∑N
i=1 ni

N∑
i=1

ni∑
j=1

{dFZij |Vi,Rij
(Zij |Vi, Rij)}−1Ŷ w

ij (z, αp;Vi, Rij) (4.7)

where

Ŷ w
ij (z, αp;Vi) =

dFZi,−j |Zij
(Zi,−j |Zij ;αp)

d̂FZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)

I(Zij = z)Yij .

Here d̂FZij |Vi,Rij
(Zij |Vi, Rij) and d̂FZi|Vi,Rij

(Zi,−j |Vi, Rij) are found by fitting correctly spec-

ified parametric models for Z̄i and Zij . The estimator µ̂IPW (z, αp) is similar to the IPW

estimator found in Tchetgen Tchetgen and Vanderweele (2012) under stratified interference

and allowing for the a continuous distribution of Zi,−j . Under Assumptions 4.1–4.7, a con-

sistent estimator of µLB(z, αp) is

µ̂LB(z, αp) =

∫
Vi∈V

max
r∈R

{
Ê
[
Ŷ w
ij (z, αp;Vi, r)

]}
d̂F Vi(Vi)

where V is the set of all possible Vi and Ê[minr∈R{·}] can be found by taking sample means

within strata defined by Rij = r or by fitting a correctly specified parametric model when
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Rij may take on many possible values. Similarly, a consistent estimator of µUB(z, αp) is

µ̂UB(z, αp) =

∫
Vi∈V

min
r∈R

{
Ê
[
Ŷ w
ij (z, αp;Vi, r)

]
+ d̂FZij |Vi,Rij

(1− Zij |Vi, r)
}
d̂F Vi(Vi). (4.8)

A consistent estimator of TEIV (α0, α1), IEIV (α0, α1) and DEIV (α0) can be found by plugging

in in consistent estimators for E[Zij |Rij = r] and E [Y w(αp)|Rij = r], which both may be

found by taking sample means of Zij and Ŷ w
ij (αp;Vi, Rij) within strata defined by Rij = r or

by fitting correctly specified parametric models for Zij and Y w
ij (αp;Vi, Rij)) if Rij has many

levels. Here

Ŷ w
ij (αp;Vi, Rij) =

dFZi,−j |Zij
(Zi,−j |Zij ;αp)

d̂FZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)

Yij .

4.6 Simulation Study

Simulations were conducted under various sets of Assumptions 4.1–4.9 for ni = 60 indi-

viduals for all i in N = 300 groups. For each individual in each group a binary instrumental

variable Rij meeting meeting assumptions 4.3–4.5 was simulated using a Bernoulli random

number generator. The mean coverage for each group Zi was simulated using a beta ran-

dom number generator with mean dependent on a binary group level covariate Vi. Individual

treatment Zij |Zi was simulated using a Bernoulli random number generator with mean Zi.

For each individual the potential treatment outcome under the unobserved value of the in-

strument was also simulated yielding the vector ZP0
ij = (Zij(0, Zij(1)) for each individual in

each group. A binary outcome Yij = Yij(Zij , Zi,−j) was simulated using a Bernoulli random

number generator that depends on Zi,−j and ZP0
ij .

Estimates of DE(0.25), IE(0.25, 0.75), and TE(0.25, 0.75) based on µIPW (z, α) and

µIV (z, α) were computed and corresponding bootstrap confidence intervals (using 200 repli-

cates found by resampling entire groups) were computed for each of 1000 simulated data sets

and were used to estimate the bias, empirical standard error and coverage of the bootstrap

confidence intervals. Estimated bounds based on µLB(z, α) and µUB(z, α) were computed as

well as the length of these bounds. Strong uncertainty regions as found in Vansteelandt et al.
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(2006) were computed by taking the union of bootstrap confidence intervals for the lower and

upper bounds.

As demonstrated by Table 4.1, when all Assumptions 4.1–4.9 are met, estimators based

on µIPW (z, α) and µIV (z, α) are consistent and the coverage of the corresponding confidence

intervals is approximately equal to the nominal 95%. The bounds under this scenario may were

informative (i.e., they exclude 0) for some of the simulated datasets, however inference using

the strong uncertainty regions is quite conservative as evidenced by the estimated coverage

of 100% for each of the causal estimands examined. When Assumptions 4.1–4.4 and 4.7–4.8

are met, but Assumption 4.9 is not met then the estimators based on µIPW (z, α) remain

consistent and the corresponding confidence intervals have approximately 95% coverage as

expected based on the results in Section 4.4. However, estimators based on µIV (z, α) are

not consistent and the corresponding confidence intervals exhibit significant under coverage.

Conversely, when Assumptions 4.1–4.7 and 4.9 are met, but 4.8 is not met then the estimators

based on µIV (z, α) are consistent and the coverage of the corresponding confidence intervals

is approximately nominal as would also be expected given the results in Section 4.4. However,

under this set of assumptions estimators based on µIPW (z, α) are no longer consistent and the

corresponding confidence intervals have lower than nominal coverage (though the coverage is

not as poor as that of the µIV (z, α) estimators when Assumption 4.9 is not met). The bounds

in each of these two scenarios are again conservative with regards to the coverage of the 95%

strong uncertainty regions, but again may be informative. When only Assumptions 4.1–4.4

and 4.7 are met then estimators based on both µIPW (z, α) and µIV (z, α) are not consistent

and the corresponding 95% confidence intervals have poor coverage. However, the bounds still

provide valid (albeit conservative) inference about the interference effects examined. These

bounds were also informative for some of the simulated datasets.

4.7 Motivating Example: Rotavirus Vaccination in U.S. Infants

Panozzo et al. (2014) analyzed data from the MarketScan Research Databases (Thomson

Truven Healthcare, Inc.) that contain information on (i) rotavirus vaccination and (ii) in-
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patient and outpatient claims including diagnoses of acute gastroenteritis (AGE) and more

specifically, rotavirus gastoenteritis (RGE) for privately insured US infants. Infants at least

one outpatient claim and that were born between May 1, 2006 and April 30, 2010 were

extracted from the databases.

To assess the efficacy of rotavirus vaccine (the treatment of interest here) on reducing

rotavirus gastroenteritis (RGE) and/or acute gastroenteritis (AGE) hospitalization, Panozzo

et al. (2014) considered this cohort of infants and compared them to a cohort of infants

born between May 1, 2000 and April 30, 2005 when a rotavirus vaccine was not available.

Indirect effects of rotavirus vaccination were computed by comparing the unvaccinated in

the 2006–2010 cohort to this cohort, and direct effects were computed by comparing the

vaccinated infants in the 2006–2010 cohort to the respective unvaccinated infants in the 2006–

2010 cohorts. Such an analysis provides direct effect estimates for the observed treatment

allocation laws and indirect effects comparing these observed allocation laws to an allocation

law where no one receives treatment. They found that rotavirus vaccination had a direct effect

of reducing rotavirus hospitalization by 87-92% and an indirect effect of reducing rotavirus

vaccination by an additional 3-8%. However, this does not take into account geographic

variation in vaccine coverage.

In order to assess the interference effects in (4.2) and to account for the geographic specific

coverage rates, here we apply above derived results to the data considered by Panozzo et al.

(2014). We consider infants in the 2000–2005 and 2006–2010 cohorts who had at least 9

months of contiguous health insurance enrollment, had data recorded on the county in which

they received health care services, and were enrolled in a county where at least 19 other

infants resided and were included in the database (in order to model the coverage, or Zi,−j

using assuming a continuous distribution). Table 4.2 describes these cohorts of infants in

more detail as well as the groups, which are defined as all captured infants over 6 weeks of

age being provided health care services in the same county. These groups will be used to

define the direct, indirect and total effects of vaccination.

The first dose of rotavirus vaccination should occur by age 4 months and a potential
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instrumental variable might be given by the calendar time in which the infant reaches 4

months of age. Specifically, let Rij = RpijR
z
ij where Rp indicates whether or not the vaccine

was available when the infant reached 4 months of age and Rzij indicates the number of years

since the introduction of the rotavirus vaccine (Feb. 2006) that infant reached 4 months of

age provided Rpi = 1 (rounded to the nearest quarter year). The potential outcomes Zij(rij)

may be interpreted as the vaccination choice of individual j in group i had the vaccine been

available rij years before the infant reached 4 months of age. Figure 4.1 depicts the 3,499

US counties and their estimated rotavirus vaccine coverage in each year from 2006–2010 as

indicated by the Marketscan research databases and demonstrates that calendar time Rzij

appears to have a fairly large positive effect on vaccination choice indicating that calendar

time may be a good instrument for Zij provided that it does not have an effect on the

outcome Yij . Here the outcomes of interest will be an acute gastroenteritis (AGE) diagnosis,

or a rotavirus gastroenteritis (RGE) diagnosis from either an inpatient or an outpatient file

(meaning that diagnoses not resulting in hospitalization were included in this analysis).

The proportion of other group members vaccinated Zi,−j was modeled using a mixed ef-

fects beta regression model with covariates Vi including the rural-urban continuum code of the

county; high, medium or low unemployment in the county (in the year 2006); whether or not

there was a state funded vaccination program and whether or not > 25% of adults completed

a college education. As Zi,−j has repeated measures over calendar time, a random intercept

and calendar time slope for each county was also included. Individual level vaccination Zij |Vi

was modeled using logistic regression with these same covariates and a random intercept for

the county. Table 4.2 gives the observed proportions of each of the levels of the covariates

Vi stratified by year of 4 month birthday Rij for the 936,410 infants in the 2000-2005 and

2006-2010 cohorts.

Estimated values of DE(α), IE(0, α) and TE(0, α) based on (4.3) and 4.6 and estimated

bounds based on (4.4) and (4.5) can be found in Figure 4.2 for various α and for both the AGE

and the RGE outcome. For both the AGE and the RGE outcomes, the estimated indirect

effect based on (4.3) and (4.6) is positive and steadily increases as α increases and the direct
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effect is positive for lower values of α and then turns negative as α increases (at lower values

of α for the AGE outcome than the RGE outcome). The total effect is positive for all α and

slightly increases with α. Bounds for DE(α) based on (4.4) and (4.5) do not include 0 for all

α ≤ 0.33. This indicates that the assumption of no unmeasured confounding for individual

vaccination choice was not necessary in order to determine the sign of the direct effect when

vaccine is coverage is low (for the AGE outcome only). In contrast, bounds for IE(0, α)

based on (4.4) and (4.5) do not include 0 for all α ≥ 0.69, indicating that the assumption

of no unmeasured confounding for individual vaccination choice was not necessary in order

to determine the sign of the indirect effects when there is high coverage (again for the AGE

outcome only). Bounds for TE(0, α) for the AGE outcome exclude 0 for all α.

4.8 Discussion

The results obtained demonstrate that potentially informative bounds for interference

effects may be obtained under a fairly reasonable set of assumptions using an instrumental

variable. The length of the bounds will be related to the ability of the instrumental variable

to predict treatment selection. For rare outcomes, such as the RGE outcome in the rotavirus

example above, bounds based on (4.4) and (4.5) will not be informative unless the instrumental

variable very near perfectly predicts treatment selection. Identification results under two

different sets of assumptions is also given, providing a means for inference about the defined

causal interference effects if the required set of assumptions are considered plausible. All of

these results are corroborated by the simulation study in Section 4.6. Analysis of interference

effects might proceed by comparing the results obtained using the bounds and the estimators

based on µIPW (z, α) and µIV (z, α).

In the rotavirus data, the infants were subject to both administrative censoring and right

censoring due to loss of health insurance enrollment. The results here could easily be extended

to account for right censoring by considering weighted Kaplan Meier estimates of the survival

curve or weighted Cox models or weighted accelerated failure time models. In addition,

bounds without Assumption 4.6 could be found using the simplex algorithm similarly to
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Balke and Pearl (1997).

Assumptions such as 4.7, 4.8 or 4.9 might not be considered valid in general, but mild de-

partures from this assumption could be assessed in a sensitivity analysis. Sensitivity analyses

examining departures from 4.9 may be conducted in a similar fashion to the sensitivity analy-

ses discussed in Robins et al. (1999) in absence of interference. Similarly, mild departures from

Assumptions 4.7 and 4.8 maybe assessed in a sensitivity analysis by positing the existence of

some unmeasured confounding variable Uij as in VanderWeele and Halloran (2014).
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Table 4.1: Simulation study results: true effect (×100), bias (×100), empirical standard error
(ESE, ×100), coverage of confidence intervals and strong uncertainty regions (%) for the
estimators based on µIPW (z, α), µIV (z, α) and the lower (LB) and upper (UB) bounds in 4.4
and 4.5 as well as the length of the bounds.

Coverage
Assumptions Bias ESE CI URs Length

met Effect Truth IPW IV IPW IV IPW IV UB−LB

4.1–4.9 DE(0.25) 23 3.1 -0.2 2.4 2.4 94 97 100 37
IE(0.25, 0.75) 24 2.9 2.3 4.1 4.2 95 96 100 37
TE(0.25, 0.75) 47 3.2 2.6 3.3 3.6 94 97 100 32

4.1–4.8 DE(0.25) 23 3.5 12.2 3.5 6.2 94 34 100 49
IE(0.25, 0.75) 24 2.9 -7.1 3.7 5.1 95 27 100 49
TE(0.25, 0.75) 47 2.7 5.3 3.4 6.4 94 37 100 41

4.1–4.7 & 4.9 DE(0.25) 23 36.1 -0.3 6.5 3.2 79 93 100 50
IE(0.25, 0.75) 24 25.2 0.8 7.0 3.6 24 93 100 53
TE(0.25, 0.75) 47 28.3 0.6 8.4 3.1 78 94 100 42

4.1–4.7 DE(0.25) 24 29.1 -6.3 7.0 2.2 55 54 99 59
IE(0.25, 0.75) 25 7.7 -6.4 7.3 2.9 78 21 99 64
TE(0.25, 0.75) 49 21.4 -9.6 6.9 2.6 57 55 100 49
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Figure 4.1: Map of the US counties estimated rotavirus vaccine coverage by study year
as indicated by color. Deepening shades indicate higher vaccine coverage as indicated by
the legend. Orange or red shaded counties indicate a metropolitan county (100,000 or more
individuals) and blue shaded counties are nonmetropolitan (source: United States Department
of Agriculture, Economic Research Service from the 2010 US census). Grey shaded areas
indicate that no infants were enrolled in the study for that county and study year.
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Table 4.2: Group level characteristics: rural-urban continuum code of the county; high,
medium or low unemployment in the county (in the year 2006); whether or not there was a
state funded vaccination program and whether or not > 25% of adults completed a college
education (variables Vi) by enrollment year of the infants extracted from the MarketScan
Research Databases and followed for rotavirus or acute gastroenteritis hospitalization (936,410
total infants).

No vaccine, Rp
ij = 0 Vaccine available, Rp

ij = 1

Years Years, Rz
ij

2000-01 2002-03 2004-05 2006 2007 2008 2009-10
Rural urban
continuum code
Metro ≥1000k 54.3% 51.3% 58.3% 60.0% 58.9% 61.0% 63.6%
Metro 250k 1000k 21.3% 23.0% 21.6% 20.6% 20.9% 20.4% 20.1%
Metro <250k 9.1% 9.8% 9.0% 9.7% 9.6% 8.8% 8.2%
Urban ≥ 20k:
adjacent to metro 4.7% 4.5% 3.4% 3.6% 3.6% 3.1% 2.9%
not adjacent to metro 1.6% 2.2% 1.6% 1.9% 2.0% 1.8% 1.4%

Urban 2.5–19.999k:
adjacent to metro 4.9% 5.0% 3.6% 2.7% 3.1% 3.0% 2.4%
not adjacent to metro 2.6% 2.8% 1.7% 1.3% 1.6% 1.6% 1.3%

Rural <2.5k:
adjacent to metro 0.6% 0.6% 0.5% 0.1% 0.1% 0.2% 0.1%
not adjacent to metro 0.7% 0.7% 0.4% 0.1% 0.1% 0.1% 0.1%

Unemployment

High (>6.5%) 19.2% 18.9% 26.1% 21.8% 22.2% 20.1% 19.8%
Medium (4-6.5%) 68.9% 67.8% 61.6% 68.5% 67.5% 66.6% 67.4%
Low (< 4%) 11.9% 14.3% 12.2% 9.7% 10.3% 13.2% 12.7%

State vaccination
program N/A N/A N/A 10.0% 8.8% 8.5% 9.5%

> 25% adults
college educated 67.3% 68.7% 69.8% 68.2% 66.8% 69.5% 72.1%

Total 19.9k 123.4k 174.2k 105.7k 145.4k 184.8k 183.1k
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Figure 4.2: Estimates of DE(α), IE(0, α) and TE(0, α) for various α based on µIPW (z, α)
(solid lines), µIV (z, α) (dotted lines) and the bounds based on µLB(z, α) and µUB(z, α)
(shaded area) for the AGE outcome (first row) and the RGE outcome (second row).
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 3

A.1 Proof of Proposition 3.1

We seek the asymptotic distribution of

√
n
{
δ̂j(t)− δj(t)

}
=
√
ndp−1

{
d̂F

j
(t)− δj(t)d̂p

}
as n→∞

which is normally distributed with mean 0 because d̂F
j
(t) and d̂p are each asymptotically

normally distributed and the IV estimator is asymptotically consistent for the difference in

the subdistribution curves for the compliers principal strata. Using Slutsky’s theorem, the

variance of δ̂(t) is then given by

var
{
δ̂j(t)

}
= dp−2var

{
d̂F

j
(t)− d̂pδj(t)

}
= dp−2

[
var{d̂F

j
(t)} − 2δj(t)cov{d̂F

j
(t), d̂p}+ δj(t)2var(d̂p)

]
.

The influence functions, Li
β̂

for β̂ = d̂F
j
(t) and d̂p are given by

Li
d̂F

j
(t)

=
∑
r

(−1)r
[∫ t

0

Sr(u)

yr(u)
dN ji

r (u)−
∫ t

0

Y i
r (u)Sr(u)

yr(u)
λjr(u)du

−
∫ t

0
Sr(u)λjr(u)

{∫ u

0

1

yr(s)
dN i

r(s)−
∫ u

0

Y i
r (s)

yr(s)
λr(s)ds

}
du

]
Li
d̂p

=
∑
r

(−1)1−r (I[Zi = 1|Ri = r]− pr)

(Pepe, 1991). Using Le Cam’s third lemma we have the following:

var{d̂F
j
(t)} = E

[
{Li

d̂F
j
(t)
}2
]

=
∑
r

∫ t

0
Sr(t)

2λ
j
r(u)

yr(u)
du− 2

∫ t

0
Sr(u)

λjr(u)

yr(u)

{∫ t

u
Sr(s)λ

j
r(s)ds

}
du

+

∫ t

0

λr(u)

yr(u)

{∫ t

u
Sr(s)λ

j
r(s)ds

}2

du
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cov{d̂F
j
(t), d̂p} = E[Li

d̂F
j
(t)
Li
d̂p

]

=
∑
r

[∫ t

0

yr1(u)Sr(u)

yr(u)

{
λjr1(u)− λjr(u)

}
du

−
∫ t

0
Sr(u)λjr(u)

∫ u

0

yr1(s)

yr(s)
{λr1(s)− λr(s)} ds du

]
var(d̂p) = E{(Li

d̂p
)2} =

∑
r

pr(1− pr)

(Pepe, 1991). Results for the asymptotic distribution of
√
n
{
δ̂(t)− δ(t)

}
are obtained using

similar arguments.

A.2 Proof of Proposition 3.2

We seek the asymptotic distribution of

√
n
{
δ̂w(t0)− δw(t0)

}
=
√
ndp−1


t0∫

0

W (u)d̂S(u)du− δw(t0)d̂p

 as n→∞

which is normally distributed with mean 0. Using the continuous mapping theorem
t0∫
0

W (u)d̂S(u)du

is normally distributed. Because d̂p is also normally distributed, Slutsky’s theorem yields that

the variance of δ̂w(t) is given by

var
{
δ̂w(t)

}
= dp−2var


t0∫

0

W (u)d̂S(u)du− d̂pδ(t)


= dp−2

var


t0∫

0

W (u)d̂S(u)du

− 2δw(t0)cov


t0∫

0

W (u)d̂S(u)du, d̂p


+δw(t0)2var(d̂p)

]
.
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where under the null hypothesis that δw(t0) = 0 the above variance reduces to

var

{
t0∫
0

W (u)d̂S(u)du

}
which is given by

dp−2

 t0∫
0

{∫ t0

t
w(u)S(u)du

}2 {
y0(t)−1 + y1(t)−1

}
λ(t)dt



(Pepe, 1991). Results for the asymptotic distribution of
√
n
{
δ̂jw(t0)− δjw(t0)

}
are obtained

using similar arguments.
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 4

B.1 Proof that 4.3 identifies E[Y ij(z;αp)]

To see that µIPW (z, αp) is equal to E[Y ij(z, αp)] under Assumptions 4.7–4.8 note

E

{
E

[
dFZi,−j |Zij

(Zi,−j |Zij ;αp)
dFZi,−j |Vi(Zi,−j |Vi, Rij)dFZij |Vi,Rij

(Zij |Vi)
I(Zij = z)Yij(Zij , Zij , Rij)

]}

= E

 1∑
zij=0

∫ 1

0

{
dFZi,−j |Zij

(Zi,−j |Zij ;αp)Yij(zij , zi,−j , Rij)I[zij = z]

dFZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)dFZij |Vi,Rij

(Zij |Vi, Rij)
×

dFZi,−j |Yij(Zij)(zi,−j |Yij(Zij))dFZij |Yij(Zij)(zij |Yij(Zij))
}]

= E

[∫ 1

0

{
dFZi,−j |Zij

(Zi,−j |Zij ;αp)
dFZi,−j |Vi,Rij

(Zi,−j |Vi)dFZij |Vi,Rij
(Zij |Vi, Rij)

Yij(zij , zi,−j , Rij)×

dFZi,−j |Vi,Rij
(zi,−j |Vi)dFZij |Vi,Rij

(zij |Vi, Rij)
}]

=

∫ 1

0

∫ 1

0
Yij(z, zi,−j , Rij)dFZi,−j |Zij

(zi,−j |z;αp)dFY ij(z,αp)(y)

=

∫ 1

0
Y ij(z, αp)dFY ij(z,αp)(y) = E[Y ij(z;αp)].

The first equality comes from Assumption 4.1, the second from Assumptions 4.7–4.8. The

third, fourth and fifth come from properties of expectations and algebraic manipulation.

B.2 Estimation of 4.3

To show that µ̂IPW (z, αp) consistently estimates µIPW (z, αp), let

g(Yij , Zij , Zi,−j , z, αp) = dFZi,−j |Zij
(zi,−j |z;αp)I[Zij = z]Yij and

ψz,αp(Yij , Zij , Zi,−j , µ(z, αp)) =
g(Yij , Zij , Zi,−j , z, αp)

dFZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)dFZij |Vi,Rij

(Zij |Vi, Rij)
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then for m =
∑N

i=1 ni

µ̂(z, αp) = m−1
N∑
i=1

ni∑
j=1

g(Yij , Zij , Zi,−j , z, αp)

dFZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)dFZij |Vi,Rij

(Zij |Vi, Rij)

and µ̂(z, αp) is a solution (for µ(z, αp)) to the estimating equation

N∑
i=1

ni∑
j=1

ψz,αp(Yij , Zij , Zi,−j , µ(z, αp)) = 0.

Thus, by M-estimation theory µ̂(z, αp)
p→ µ(z, αp) provided

d̂FZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)d̂FZij |Vi,Rij

(Zij |Vi, Rij)
p→

dFZi,−j |Vi,Rij
(Zi,−j |Vi, Rij)dFZij |Vi,Rij

(Zij |Vi, Rij)

.

B.3 Proof that 4.4 and 4.5 are sharp bounds

To see that the bounds in (4.4) and (4.5) are sharp, let L′ij = {Y ij(z, αp, r), Zij(r) :

r ∈ R, Vi, Rij}, L the set of all possible realizations of Lij and

pzr(αp) =

∫
l∈Pzr

Y ij(z, αp, r)dFLij (l)
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where Pzr is the set of all realizations of Lij such that Zij(r) = z. Note that

E

{
E

[
dFZi,−j

(Zi,−j |Zij ;αp)
dFZi,−j |Vi,Rij

(Zi,−j |Vi, Rij)
I(Zij(Rij) = z)Yij(Zij(Rij), Zi,−j , Rij)|Rij = r

]}

= E

[∫ 1

0

{
dFZi,−j |Zij

(zi,−j |zij ;αp)
dFZi,−j |Vi,r(zi,−j |Vi, r)

Yij(Zij(r), zi,−j)I[Zij(r) = z]×

dFZi,−j |Yij(Zij)(zi,−j |Yij(Zij))
}]

= E

[∫ 1

0

{
dFZi,−j |Zij

(zi,−j |zij ;αp)
dFZi,−j |Vi,Rij

(zi,−j |Vi, r)
Yij(z, zi,−j , r)dFZi,−j |Vi,Rij

(zi,−j |Vi, r)

}]

=

∫
l∈Pzrv

∫ 1

0
Yij(z, zi,−j , r)dFZi,−j |Zij

(zi,−j |zij ;αp)dFLij (l)

=

∫
l∈Pzr

Y ij(z, αp, r)dFLij (l) = pzr(αp)

(B.3.1)

for all r ∈ R and Vi ∈ V. The first line again comes from Assumption 4.1. The first equality

(2nd line) comes from Assumption 4.5. The second equality (3rd line) comes from Assumption

4.7. Note also that

E[Y ij(z, α)] =

∫
l∈L

Y ij(z, αp, r)dFLij (l)

=

∫
l∈Pzr

Y ij(z, αp, r)dFLij (l) +

∫
l∈{L−Pzr}

Y ij(z, αp, r)dFLij (l)

= pzr(αp;Vi) +

∫
l∈{L−Pzt}

Y ij(z, αp, r)dFLij (l)

for all r ∈ R under Assumption 4.4. Because pzr(αp) is identified from the observable data,

bounds for E[Y ij(z, α)] may be found by maximizing and minimizing

qzr(αp) =

∫
l∈{L−Pzr}

Y ij(z, αp, r)dFLij (l).

A lower bound in qzr is reached when Y (z, αp, r) = 0 for all Lij ∈ L − Pzr and an upper

bound when Y (z, αp, r) = 1. Thus a lower bound is given by maxr∈R pzr (by Assumption

4.4) and an upper bound is given by minr∈R{pzr + Pr[l ∈ {L−Pzr}]. Under Assumption 4.6,
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Pr[Lij ∈ {L − Pzr}] = Pr[Zij(r) = 1 − z] = Pr[Zij = 1 − z]. These results will hold within

strata defined by Vi = v and thus a tight lower and upper bound maybe computed by finding

bounds within these strata and then integrating across Vi as in the bounds in (4.4)–(4.5).

B.4 Proof that 4.6 identifies 4.2

To see that DE(α0) is given by the expression in (4.6) under Assumptions 4.3–4.7 and 4.9

note that the numerator of the estimand for DE(α0)

E[Y w
ij (α0;Vi, Rij)|Rij = rl]− E[α0;ViRij |Rij = ru]

=

1∑
z=0

E[Y w
ij (α0;Vi, Rij)I[Z(rl) = z]|Rij = rl]− E[Y w

ij (α0;Vi, Rij)I[Zij(ru) = z]|Rij = ru]

=E[(Y ij(0, α0)− Y ij(1, α0;Vi, Rij))(Zij(ru)− Zij(rl))]

=E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij(ru) > Zij(rl)] Pr[Zij(ru) > Zij(rl)]

=E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij(ru) > Zij(rl)](drE[Zij ]). (B.4.1)

The first equality comes from properties of expectations, the second from rearranging terms

and applying the results in (B.3.1). The third and fourth equalities come from Assumption

4.6. Continuing,

E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij(ru) > Zij(rl)]

=E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij(ru) = 1, Zij(rl) = 0]

=E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij = 1, Rij = ru] or

E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij = 0, Rij = rl].

E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij = 1, Rij = ru]

=E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij = 1, Rij = r] and

E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij = 0, Rij = rl]
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=E[Y ij(0, α0)− Y ij(1, α0;Vi, Rij)|Zij = 0, Rij = r]

for all r ∈ R.

The first equality holds because Zij is dichotomous and the second and third equalities come

from Assumption 4.1. The fourth and fifth equalities hold due to Assumption 4.9. The above

equalities yield that E[Y ij(0, α0) − Y ij(1, α0)] = E[Y ij(0, α0) − Y ij(1, α0;Vi, Rij)|Zij(ru) >

Zij(rl)] and thus that DE(α0) is identified and given by the expression in (4.6).

To see that IE(α0, α1) is identified and equal to the estimand in (4.6) note that

E[Y w
ij (α0;Vi, Rij)− Y w

ij (α1;Vi, Rij)|Rij = rl]

=
1∑
z=0

E[(Y w
ij (α0;Vi, Rij)− Y w

ij (α1;Vi, Rij))I[Z(rl) = z]|Rij = rl]

={E[Y ij(1, α0)− Y ij(0, α0)|Z = 1, R = rl]

− E[Y ij(1, α1)− Y ij(0, α1)|Z = 1, R = rl]}E[Zij |Rij = rl] + IE(α0, α1). (B.4.2)

And similarly,

E[Y w
ij (α0;Vi, Rij)− Y w

ij (α1;Vi, Rij)|Rij = ru]

=

1∑
z=0

E[(Y w
ij (α0;Vi, Rij)− Y w

ij (α1;Vi, Rij))I[Z(rl) = z]|Rij = ru]

={E[Y ij(1, α0)− Y ij(0, α0)|Z = 1, R = ru]

− E[Y ij(1, α1)− Y ij(0, α1)|Z = 1, R = ru]}E[Zij |Rij = ru] + IE(α0, α1)

={E[Y ij(1, α0)− Y ij(0, α0)|Z = 1, R = rl]

− E[Y ij(1, α1)− Y ij(0, α1)|Z = 1, R = rl]}E[Zij |Rij = ru] + IE(α0, α1). (B.4.3)

Solving (B.4.2) for {E[Y ij(1, α0)− Y ij(0, α0)|Z = 1, R = rl] − E[Y ij(1, α1)− Y ij(0, α1)|Z =

1, R = rl]}E[Zij |Rij = ru] and plugging this into (B.4.3) and solving for IE(α0, α1) yields the

estimand in (4.6) which is composed of identifiable quantities.
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