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Abstract 

 

Elizabeth Rainey Matthews 

Piedmont alluvial vegetation: 

Classification, geographic variation, and restoration 

(Under the direction of Robert K. Peet) 

 

 

Riparian ecosystems are home to diverse and highly productive plant communities, 

long known to be among the more species-rich terrestrial communities. However, few 

pristine riparian systems remain, particularly in North America. Due to their ecological 

significance and their current imperiled status, there is substantial interest in conservation 

and restoration of riparian habitat in the Southeastern United States. Successful conservation 

and restoration require detailed information regarding the composition and structure of 

natural floodplain plant communities, in addition to an understanding of the environmental 

drivers associated with compositional variation. While southeastern alluvial vegetation has 

been well-studied, most studies have focused on the larger rivers of the Coastal Plain region, 

rather than the relatively smaller streams of the topographically more complex inland 

Piedmont. In fact, there is relatively little documentation or understanding of Piedmont 

bottomland vegetation in North Carolina or elsewhere on the Southeastern Piedmont.  

 This dissertation advances our understanding of Piedmont alluvial vegetation by 

documenting and describing vegetation patterns and environmental drivers in this system. 

This work provides the vital information that is necessary both for successful management of 

alluvial habitat and for restoration of degraded alluvial vegetation. As part of this work, I 

sampled high-quality alluvial vegetation in five North Carolina river basins: the Catawba,
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 Yadkin-Pee Dee, Cape Fear, Neuse, and Tar-Pamlico. As a first step towards advancing our 

understanding of these systems, I developed a vegetation classification of the Piedmont 

alluvial plant communities in North Carolina. I expect this classification will provide 

guidance for revising Piedmont alluvial plant community concepts currently recognized in 

the U.S. National Vegetation Classification. I also explored the spatial distribution of plant 

species richness across the Piedmont riparian landscape and examined compositional 

variation in a metacommunity context, quantifying the relative influence of niche-processes 

and dispersal-processes in shaping riparian plant community composition. I found that niche-

processes are dominant in this system, with environmental variables explaining more 

variation in community composition than spatial structure. Finally, I developed an approach 

for using quantitative vegetation descriptions to develop reference information for riparian 

restoration efforts. Because these communities are strongly structured by environmental 

variables, I was able to develop a matching tool to link restoration sites to described 

vegetation types based on environmental similarity. In all, I expect the work described in this 

dissertation to improve management and restoration outcomes for alluvial plant communities 

in the North Carolina Piedmont.  
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CHAPTER 1 

Introduction: Piedmont brown-water alluvial vegetation 
 

Introduction 

 

 Riparian areas are known to be diverse and highly productive systems, functioning as 

both boundaries between terrestrial and aquatic ecosystems and corridors for the movement 

of nutrients and biota across the natural landscape (Gregory et al. 1991; Naiman et al. 1993; 

Johansson et al. 1996). Floodplain plant communities, in particular, have been shown to be 

among the more species-rich terrestrial habitats (Nilsson et al. 1989; Naiman et al. 1993; 

Brown and Peet 2003). In addition to the ecological value of these communities, riparian 

areas also provide many ecosystem services to the human population, including filtration of 

pollutants, flood and erosion control, carbon storage, fish and wildlife habitat, and a wide 

variety of recreational opportunities. However, few pristine riparian ecosystems remain in the 

Southeastern United States (Sharitz and Mitsch 1993; Sudduth et al. 2007). Many riparian 

landscapes have been converted to agriculture, damaged by impoundments and hydrologic 

alterations, or degraded by non-native invasion, eutrophication, and urban development 

(Sharitz and Mitsch 1993; Graf 1999; Brinson and Malvarez 2002; Tockner and Stanford 

2002; King et al. 2009).  In fact, only 2% of river kilometers in the United States remain 

relatively unimpacted (Abell et al. 2000), and floodplain ecosystems are considered to be 

among the most threatened ecosystems globally (Tockner and Stanford 2002).  

 North Carolina‟s rivers have not escaped these trends. As residential and commercial 

development keep pace with the growing North Carolina population, waterways continue to 
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face new threats, particularly in the rapidly developing Piedmont region. According to the 

U.S. Census Bureau, four North Carolina Piedmont cities are among the 25 fastest growing 

U.S. cities: Cary, Raleigh, Charlotte, and Durham (U.S. Census Bureau 2008), and the effects 

of this growth on our water resources are already evident. The American Rivers organization 

has identified two North Carolina rivers as being among America‟s most endangered rivers: 

the Catawba (#1 most endangered; 2008) and the Neuse (#8 most endangered; 2007). The 

Rivers of Life publication, produced by The Nature Conservancy and various non-profit and 

state agency partners, also listed two North Carolina rivers, the Neuse and the Tar, as hot- 

spots for at-risk freshwater species (Masters et al. 1998).  

 As a result of the growing threats to riparian systems and the increasing recognition 

of the ecological importance and imperiled status of these systems, there is significant 

interest among the scientific community, government agencies, and the general public in the 

management and restoration of floodplain ecosystems (Wohl et al. 2008; King et al. 2009). 

River restoration has become an increasingly common approach to management (Bernhardt 

et al. 2005; Bernhardt et al. 2007), and North Carolina is a hotspot for stream restoration in 

the Southeastern U.S. (Sudduth et al. 2007). However, informed management decisions, 

restoration project design, and restoration evaluation all require detailed information 

regarding the composition and structure of natural floodplain communities, in addition to an 

understanding of the environmental drivers associated with compositional variation.  

 Although riparian ecosystems of the Southeastern United States have been the focus 

of many past studies (e.g., Wharton et al. 1982; Hupp and Osterkamp 1985; Hodges 1997; 

Kellison et al. 1998; Hupp 2000; Townsend 2001), few authors have addressed the floodplain 

plant communities of the inland physiographic regions Piedmont (except see Hupp and 
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Osterkamp 1985; Hupp 1986), and relatively little is known about these plant communities. 

The alluvial vegetation of the North Carolina Piedmont region, in particular, has not 

previously been well-documented nor described, and the relationship between alluvial 

vegetation and the Piedmont riparian landscape remains poorly understood. The current 

understanding of these floodplain plant communities is based primarily on qualitative 

vegetation descriptions, with little or no quantitative data supporting the descriptions (e.g., 

Classification of the Natural Communities of North Carolina, Third Approximation; Schafale 

and Weakley 1990).  

 Data-based, quantitative community classifications are a critical tool for the 

conservation, management, and restoration of natural communities, providing the detailed 

floristic and environmental information necessary for successful management action. 

Standardized classifications, based on uniform criteria for distinguishing units, facilitate 

communication among conservation and land management agencies, advance basic scientific 

understanding of vegetation patterns, and provide reference information for restoration 

(Faber-Langendoen et al. 2007; Lane and Texler 2009; Jennings et al. 2009). The collection 

of quantitative vegetation plot data is a crucial step in the process of developing vegetation 

descriptions; the U.S. National Vegetation Classification (NVC), in fact, requires vegetation 

associations and alliances be documented by field plot data, ideally “collected across the 

range of a vegetation type and closely related types, irrespective of political borders” 

(Jennings et al. 2009).  

 In the research program summarized in this dissertation, my initial goal was to 

document the remaining high-quality floodplain vegetation of the North Carolina Piedmont 

and to collect the quantitative vegetation data necessary to characterize vegetation patterns of 
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this region. To this end, I sampled vegetation in five North Carolina river basins: the 

Catawba, Yadkin-Pee Dee, Cape Fear, Neuse, and Tar-Pamlico. In Chapter 2, I use these data 

to develop a classification and description of the alluvial plant communities of the North 

Carolina Piedmont as a first step towards advancing our understanding of these systems.  

Each subsequent chapter is intended to further expand our understanding of Piedmont 

riparian plant communities and inform future conservation and restoration efforts. In addition 

to the classification presented in Chapter 2, I explore the spatial distribution of plant species 

richness across the Piedmont riparian landscape and examine the relative influence of niche 

and dispersal processes in shaping riparian plant community composition. Finally, I develop 

an approach for applying quantitative vegetation descriptions to riparian restoration 

activities. It is my hope and expectation that the chapters of this dissertation will provide 

critical information necessary for effective conservation and restoration of North Carolina 

Piedmont alluvial vegetation. 

 

Chapter Summaries  

 In Chapter 2, I present a classification and description of the North Carolina Piedmont 

alluvial plant communities. I develop a hierarchical classification, with five higher-level 

groups representing broad geomorphic-floristic conditions across the Piedmont and fourteen 

lower-level groups characterizing finer-scale floristic variation. I use constrained ordination 

to illustrate the environmental setting of the higher-level forested vegetation groups. For each 

of the finer-scale groups, I present a summary of floristic composition, structure, 

environmental setting, and geographic distribution. I also present a comparison of the 

vegetation types developed in this chapter with the currently recognized NVC communities, 
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a comparison that suggests a need for revision and reworking of the currently recognized 

NVC alluvial type concepts.  

 In Chapter 3, I examine the distribution of plant species richness across the Piedmont 

riparian landscape. Although riparian systems are known to be species-rich, there is 

substantial debate in the literature about the spatial distribution of this diversity. The unique 

habitat arrangement of riparian systems is a crucial factor to consider when exploring 

richness patterns, as riparian habitat is not a simple linear system, but instead is composed of 

different sized channels that coalesce to create a dendritic landscape structure. In this chapter, 

I examine richness across rivers of various sizes in the dendritic riparian landscape, and 

explore how different species groups contribute to these patterns. 

 In Chapter 4, I examine compositional variation of alluvial plant communities in a 

metacommunity framework. I explore how riparian connectivity influences the relative role 

of niche processes and dispersal processes in shaping community composition. I explore 

riparian connectivity by examining metacommunity structure at two landscape scales and in 

four species groups based on dispersal mode, each spatial scale and dispersal mode 

representing different levels of connectivity. I also investigate the importance of the spatial 

model in analyzing riparian metacommunity structure, using both Euclidean distance based 

spatial models, representing overland dispersal, and network distance based spatial models, 

representing dispersal through the riparian corridor. 

 Finally, in Chapter 5, I develop an approach for utilizing quantitative vegetation 

descriptions, such as those presented in Chapter 2 and currently being developed in the U.S. 

National Vegetation Classification, in the design of reference conditions for riparian 

restoration projects. I first outline a methodology for matching new restoration sites to 
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quantitative plant community descriptions based upon their environmental setting and then 

present a matching tool developed using the Piedmont alluvial vegetation classification and 

North Carolina-Ecosystem Enhancement Program (EEP) restoration sites as a case study.  

 I conclude by synthesizing results presented in this dissertation and discussing how 

this work has advanced our understanding of Piedmont brown-water vegetation. 

Additionally, I suggest places where gaps in our knowledge remain, important future 

research areas to achieve successful management of riparian systems. 
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CHAPTER 2 

Classification and description of alluvial plant communities of the 

Piedmont region, North Carolina, U.S.A. 

 

Abstract 

 Floodplain ecosystems have long been known to be diverse and highly productive 

communities. Despite their ecological significance, there is relatively little documentation or 

understanding of bottomland vegetation types in North Carolina or elsewhere on the 

Southeastern Piedmont. As population growth and continued development disturb larger 

areas of the North Carolina Piedmont, ecosystem restoration activities are becoming more 

common, and the need for detailed knowledge of vegetation composition and structure is 

becoming more critical. However, our current understanding of these brownwater 

bottomlands is based primarily on qualitative data, and there has been no comprehensive, 

data-based classification and description of these community types. A detailed vegetation 

classification can provide the vital information needed for effective restoration and 

conservation of North Carolina bottomland plant communities. 

 In this chapter, I present a classification and description of the Piedmont alluvial 

vegetation communities found in North Carolina. I inventoried 194 alluvial vegetation plots 

in the Catawba, Yadkin-PeeDee, Cape Fear, Neuse, and Tar-Pamlico River Basins. 

Vegetation types were derived using flexible-β hierarchical cluster analysis and random 
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forests classifiers to reassign misclassified plots. I identified fourteen vegetation types, 

including twelve forested vegetation types and two herbaceous types, nested within a 

hierarchical classification structure with five higher-level groups. The five higher-level 

groups describe broad geomorphic-floristic conditions, whereas the narrower vegetation 

types characterize finer-scale floristic variation. I used Canonical Correspondence Analysis 

to differentiate and characterize the environmental setting of the vegetation groups, providing 

a useful framework within which to compare the environmental settings of the four forested 

higher-level groups. For each of the four upper-level forest groups and the fourteen 

association-level types, I present a summary of floristic composition, structure, 

environmental setting, and geographic distribution. I suggest recognition of fourteen alluvial 

vegetation types in the North Carolina Piedmont. The major patterns of alluvial vegetation in 

this region are driven by fluvial geomorphology and are strongly correlated with stream size, 

floodplain width, and soil texture and nutrients.  

Keywords: U.S. National Vegetation Classification (NVC); ordination; random forests; 

cluster analysis; wetlands 
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Introduction 

Riparian ecosystems are home to diverse plant communities, in part due to the 

diversity of habitats found in this landscape. Floodplain plant communities, in particular, 

have long been known to be among the more species-rich terrestrial habitats (Nilsson et al. 

1989; Gregory et al. 1991; Naiman et al. 1993, Brown and Peet 2003). In addition to the 

ecological value of these communities, floodplain vegetation provides many “ecosystem 

services” to the human population including filtration of pollutants, flood and erosion 

control, fish and wildlife habitat, and a variety of recreational opportunities. However, few 

pristine riparian ecosystems remain, particularly in North America (Sharitz and Mitsch 

1993). Many of these landscapes have been converted to agriculture, damaged by 

impoundments, or degraded by the invasion of non-native species.  

Due to the ecological significance of floodplain ecosystems and their current 

imperiled status, there is significant interest in conservation and restoration of these habitats, 

and North Carolina, in particular, is a hotspot for riparian restoration in the Southeastern 

United States (Sudduth et al. 2007). However, informed management decisions and 

restoration project design and evaluation require detailed information regarding the 

composition and structure of natural alluvial plant communities, in addition to an 

understanding of the environmental drivers associated with compositional variation. Plant 

community classifications and descriptions can provide the detailed vegetation information 

necessary for many applications including facilitation of communication between 

conservation and land management agencies, advancing basic scientific understanding of 

vegetation patterns, and providing reference information for planning and assessing the 
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success of restoration activities (Harris 1999; Faber-Langendoen et al. 2007; Lane and Texler 

2009; Jennings et al. 2009).  

Whereas vegetation classification has a long history in Europe (Rodwell 1991, 

Rodwell et al. 1995), a national-scale classification has been slower to develop in the United 

States (Jennings et al. 2009). Although the U.S. National Vegetation Classification (NVC) is 

currently in development in an effort to meet the needs of the conservation and restoration 

communities in the U.S., most of the vegetation types currently recognized by the NVC have 

not yet been evaluated using quantitative floristic data and lack accessible plot data and 

summary tables (Jennings et al. 2009). In particular, previous documentation of floodplain 

vegetation in North Carolina, and elsewhere on the Southeastern Piedmont, is extremely 

limited.  

Alluvial vegetation patterns of the Southeastern United States have been studied by 

many plant ecologists (e.g., Wharton et al. 1982; Hupp and Osterkamp 1985; Hupp 1986; 

Hodges 1997; Kellison et al. 1998; Hupp 2000; Townsend 2001), but most of these studies 

have focused on the larger rivers of the Coastal Plain region, rather than the relatively smaller 

streams of the topographically more complex inland Piedmont (except see Hupp and 

Osterkamp 1985; Hupp 1986). These previous Coastal Plain studies of southeastern alluvial 

vegetation found a strong relationship between bottomland vegetation and fluvial 

geomorphic processes and landforms. Wharton et al. (1982) emphasized the anaerobic 

gradient generated by hydroperiod on floodplains as the dominant driver of vegetation 

patterns in bottomland hardwood swamps, with soil pH and nutrient availability as secondary 

drivers. Hodges (1997) presented hydrologic events and the resulting patterns of deposition 

across the floodplain as the primary drivers of floristic composition and successional patterns 
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in Coastal Plain bottomland hardwoods. He also noted that patterns of deposition across 

floodplains are closely related to topographic features and result in a predictable distribution 

of soil texture and nutrient content. Hupp (2000) also emphasized the importance of 

hydrologic events in controlling the development of fluvial landforms and sediment 

deposition, which then determine vegetation patterns. In contrast to Coastal Plain rivers, 

however, Piedmont rivers are restricted by resistant bedrock, constraining the width of the 

floodplain and the development of topographic features and fluvial landforms. This may 

result in less species sorting than has been found along the strong hydrogeomorphic gradient 

evident in many Coastal Plain systems. As Hodges (1997) points out, in the narrower 

floodplains of the upper Coastal Plain there is less variation in soil texture and drainage class 

than one finds in the larger-order rivers of the outer Coastal Plain.  

Although alluvial vegetation patterns of Coastal Plain rivers have been well-studied, 

the relationship between alluvial vegetation and the Piedmont floodplain landscape remains 

poorly understood and described. My goal was to document the remaining high-quality 

floodplain vegetation of the North Carolina Piedmont and to collect the quantitative 

vegetation data necessary to define and characterize the patterns in alluvial vegetation of this 

region. Here I present a classification and description of the alluvial plant communities of the 

North Carolina Piedmont based on 194 vegetation plots sampled in the Catawba, Yadkin-

PeeDee, Cape Fear, Neuse, and Tar-Pamlico River Basins (Figure 2.1). I also describe the 

geographic distribution, geomorphic and hydrologic setting, and edaphic characteristics 

associated with each vegetation type to clarify the relationship between the Piedmont 

floodplain landscape and alluvial vegetation. I expect these results will provide the 
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information necessary to inform revisions of the NVC, guide management decisions, and 

generate appropriate restoration targets in the NC Piedmont region.  

 

Methods 

Study area 

The study area included five contiguous North Carolina river basins: the Catawba, 

Yadkin, Cape Fear, Neuse, and Tar-Pamlico. The study area also includes the northern 

section of the Catawba River basin in South Carolina (Figure 2.1). I restricted study sites to 

the Piedmont portion of each river basin, as defined by mapped geologic and soil units. The 

Piedmont is one of three physiographic regions in North Carolina. It is underlain by 

metamorphic and igneous bedrock and bounded on the northwest by the Southern 

Appalachian Mountains and on the southeast where crystalline Piedmont bedrock meets the 

softer sedimentary bedrock of the Southeastern Coastal Plain. Although Piedmont bedrock is 

largely composed of erosion-resistant metamorphic and intrusive igneous rocks, a large 

southwest-northeast trending rift basin composed of Triassic sedimentary rock is a prominent 

geologic feature of the lower Piedmont (Benedetti et al. 2006). Where Piedmont rivers cross 

the more resistant igneous and metamorphic bedrock, the resulting river valleys are  

relatively narrow and incised, whereas in the Triassic Basins Piedmont rivers are better able 

to erode the softer sedimentary rock, resulting in wider floodplains (though still somewhat 

more constrained than in the unconsolidated sediments of the Coastal Plain).  

There has been a long history of human disturbance in the North Carolina Piedmont, 

with the most extensive alteration of native forest vegetation occurring after European 

colonization. Although fertile, arable lands were most affected, even vegetation on land 
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unfavorable for cultivation has been altered by selective tree harvesting (Peet and 

Christensen 1980). Bottomland habitat in the Piedmont that was not converted to agriculture 

during European settlement was subject to this selective harvesting. 

Site selection 

Because I anticipate this classification will be used in the development of restoration 

targets, I aimed to sample high-quality alluvial vegetation, defined as stands with minimal 

recent natural disturbance (e.g. treefall gaps), minimal anthropogenic disturbance (e.g. ≥ 50 

years since harvest), and minimal cover contributed by exotic species. However riparian 

areas are known to be highly invaded (Brown and Peet 2003), and many stands included in 

the dataset had high exotic species cover. Since large extents of the natural riparian 

vegetation in the Piedmont region have been subject to anthropogenic disturbances, one of 

the most important steps in collecting data for this project was the identification of remaining 

patches of high-quality floodplain vegetation. This was accomplished with assistance from 

state agencies and non-profit, conservation organizations, which track natural areas of the 

state. 

 After I identified areas of remaining high-quality natural vegetation, I selected 

sample sites to ensure representation from a broad geographic area within each of five river 

basins. I also selected sites to provide a broad representation of various geologic features, 

stream order, watershed area, and geomorphic setting. However, because high-quality 

alluvial vegetation is rare in the highly fragmented and disturbed North Carolina Piedmont, I 

sampled the majority of high-quality sites that were identified. At sample sites, plots were 

located haphazardly, in representative, homogenous vegetation, with the intent of capturing 
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high-quality vegetation and a single geomorphic setting. In total, I established and recorded 

194 vegetation plots (Figure 2.1).  

Field Methods 

I surveyed vegetation in May-August, 2006-2008, following the Carolina Vegetation 

Survey (CVS) protocol (Peet et al. 1998). Six alluvial plots surveyed by CVS prior to the 

2006-2008 field seasons were exported from the archived CVS database and included in this 

dataset. Forested plots ranged in size from 400m
2
 (typically 20m × 20m) to 1000m

2 
(typically 

20m × 50m), depending upon the width of the floodplain. The fourteen strictly herbaceous 

vegetation plots were 100m
2
. Within each plot, cover was estimated for all vascular plant 

taxa in intensive subplots (100m
2
) following the CVS cover class scale (1 = trace, 2 = 0-1%, 

3 = 1-2%, 4 = 2-5%, 5 = 5-10%, 6 = 10-25%, 7 = 25-50%, 8 = 50-75%, 9 = 75-95%, 10 = 

>95%); all forested plots included four 100m
2 

intensive subplots. Cover by strata was also 

estimated for each taxon at the scale of the whole plot; strata include tree (>5m to canopy 

height), shrub (0.5 to 5m), and herb (0 to 0.5m) strata, although the height ranges of strata 

could be adjusted in the field to reflect local vegetation structure. Cover by strata better 

reflects the size and structure of the vegetation than a single cover value. Woody species 

reaching breast height were tallied by CVS size classes.  

Plots were oriented with the long axis parallel to the longitudinal axis of the river in 

an effort to maintain a constant geomorphic setting. Sample sites on 1
st
 and 2

nd
 order streams, 

where geomorphology is poorly developed and there are not clear distinctions between 

geomorphic positions, were identified as small stream floodplains. Sites on larger streams 

were identified to one of five geomorphic positions: rocky bar and shore (within the river 

channel inside any levee structure); levee (the area of the floodplain closest to the river, 
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running parallel to the flow direction, and often slightly raised); backswamp (farther from the 

river channel, beyond the levee, and flooded for longer periods of time when compared to 

other geomorphic settings); flat (typically parallel to a levee or the actual levee in smaller 

rivers in the place of a true raised levee, generally intermediate to or intergrading with the 

levee and backswamp where geomorphology is poorly developed); and bottomland 

(primarily restricted to the Triassic Basins, on very wide floodplains with poorly defined and 

generally low-lying geomorphic settings).  

All plots were located within the 100-year floodplain of the nearest river (the area 

adjoining a river that has a 1% annual chance of flooding). In the field, alluvial species 

suggested an area inside the 100-year floodplain, and following field data collection, I 

excluded plots that were determined to be outside of the 100-year floodplain when mapped in 

a geographic information system (GIS). Additional environmental data recorded at each site 

includes slope, aspect, evidence of disturbance (e.g. stumps, deer browse, flood debris), and 

soil nutrient content and texture as determined from field samples. Soil samples included one 

from the top 10 cm of mineral soil in each of the four intensive subplots and one sub-surface 

sample from the center of each plot collected approximately 50 cm below the ground surface. 

Samples were analyzed by Brookside Laboratories, Inc., New Oxford, OH using the Mehlich 

3 extraction method (Mehlich 1984). Exchangeable Ca, Mg, K, and Na, total cation exchange 

capacity, pH, percent base saturation, extractable micronutrients (B, Fe, Mn, Cu, Zn, and Al), 

soluble sulfur, bulk density, and percent organic matter were reported. Texture analyses 

included percent clay, silt, and sand. Samples from the four intensive subplots were averaged 

for analysis.  
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Plant taxa were identified to the finest taxonomic resolution possible. Taxonomy 

follows Weakley 2010. Taxa that were difficult to identify to species without fruit or flower 

due to the timing of field sampling were grouped into lower resolution complexes (examples: 

Viola spp., Oxalis spp., Solidago spp., Carex grisea group). All finer scale taxa were 

included in the lower resolution complexes. Additionally, taxonomy was reviewed and 

standardized prior to analysis to account for differences due to plant identifications by a 

variety of individuals, both in the field and in the lab. The final analysis dataset contained 

606 consistently recorded taxonomic units. 

Following field sampling, plots were mapped in a GIS and additional environmental 

variables were calculated for each sample. These included Strahler stream order (an 

indication of river size), upstream area drained (the land area drained by any point on the 

river), the width of the 100-year floodplain, and elevation. GIS analyses were based on 

digital elevation models from the USGS National Elevation Dataset (NED; 

http://ned.usgs.gov/) and surface water themes from the USGS National Hydrography 

Dataset (NHD; http://nhd.usgs.gov/). NED data was downloaded at a 30m resolution, and 

NHD data were downloaded at medium resolution (1:100,000-scale). Elevation was derived 

directly from the NED data. Upstream area drained and stream order were derived using the 

ArcHydro toolset. Width of the 100-year floodplain was determined using the North Carolina 

digital floodplain maps (DFIRM; http://www.ncfloodmaps.com/), and bedrock was 

determined using the North Carolina digital geologic map (North Carolina Geological Survey 

(NCGS); http://www.nconemap.com/). 

Analytical methods 

http://www.ncfloodmaps.com/
http://www.nconemap.com/
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Vegetation data were analyzed using cluster techniques, indicator species analysis, 

discriminant analyses using random forests (Breiman 2001), and ordination techniques. 

Group selection was based on agglomerative, hierarchical clustering (PC-ORD version 5; 

MjM Software, Gleneden Beach, Oregon, USA). Preliminary clusters were produced using 

flexible beta group linkage (β = 0.25) and Sörensen distance. Hierarchical analyses aided in 

illustrating the relationships of vegetation types recognized. Species importance values used 

to calculate the dissimilarity matrix were the original cover class codes by stratum. The 

matrix of “pseudo-species” (species-stratum couplets) for forested stands (182 plots × 842 

“species”) reflects species cover in each stratum, treated independently. Indicator species 

analysis was used as an initial guide for pruning the resulting cluster analysis dendrogram, 

following the method described by Dufrêne and Legendre (1997). An optimum number of 

clusters was determined based upon maximization of significant indicator values and 

minimization of average p-values (Dufrêne and Legendre 1997; McCune and Grace 2002).  

I adjusted the number and composition of vegetation types using discriminant 

analyses with the random forests method (as implemented in the „randomForest‟ 4.5-35 

package in R 2.11.1; R Development Core Team 2010). Random forest classifiers have many 

of the same benefits as classification and regression tree (CART) models, including the 

ability to account for interactions among predictor variables and no underlying assumptions 

of normally distributed data. Random forests, however, improve on traditional CART models 

by producing more robust results that do not over fit data, yet still have very high 

classification accuracy; this is accomplished by repeatedly creating individual trees using a 

random subset of the data and then combining the predictions from all trees (Breiman 2001; 

Liaw and Wiener 2002; Cutler et al. 2007). To identify misclassified plots, I classified 
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clusters with random forests, using the floristic matrix as predictor variables; this analysis 

identified plots that could not be assigned to the correct group based upon the floristic data 

and identified a more appropriate group assignment. Random forest classifiers also allow the 

researcher to identify predictors that were most important in driving the splits in the 

classification; I classified clusters using the environmental matrix to identify the most useful 

environmental variables in discriminating between vegetation types. Following random forest 

analyses, I used ordination analyses to clarify how variation in vegetation relates to key 

environmental variables identified in the second random forests analysis. For this purpose I 

used Canonical Correspondence Analysis (CCA; as implemented in the „vegan‟ 1.17-3 

package in R) to constrain the ordination to subset of environmental drivers of vegetation 

patterns. Vegetation plots used for this study have been archived in VegBank 

(http://vegbank.org) and are available to the public for reanalysis.  

Indicator species analysis was used to identify indicator species in each forested 

vegetation type. Dufrêne and Legendre (DL) indicator species analysis was performed using 

PC-ORD; this statistic reflects relative abundance and relative frequency of species present in 

each group. I evaluated the significance of indicator values using Monte Carlo tests with 100 

randomizations. Only species with significant indicator values (P < 0.05) are reported. In 

addition to the DL indicator values, I calculated a diagnostic value (DV) of individual species 

based on constancy and fidelity relative to the assigned vegetation type (DV = constancy x 

fidelity / 100). This statistic identifies the degree to which species are both frequent within a 

group (high constancy) and relatively restricted to a group (high fidelity) and is more likely 

to identify potential indicator species with low abundance than the DL values.  

http://vegbank.org/
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Finally, I developed a community characterization for each vegetation type. 

Vegetation type names are consistent with the naming system used in the U.S. National 

Vegetation Classification (U.S. FGDC 2008; Jennings et al. 2009). Names reflect species 

with high constancy, high cover, and/or higher indicator value. A “-” separates species within 

the same vertical strata, while a “/” separates strata. For each group, I determined average 

cover and constancy of each pseudo-species. Average cover class was calculated using only 

plots where the species was present. Constancy was calculated as the percent of plots within 

a group in which a given species occurred. Only prevalent species (sensu Curtis 1959) in 

each group are reported in the floristic tables, where prevalent species were identified by 

ranking species by constancy and selecting the most common species such that the total 

number of prevalent species equals average species richness per 400m
2 

within the group. 

Prevalence was calculated separately for each stratum. Cover and constancy for woody vines 

were calculated separately with slightly altered methodology in the two synoptic tables. 

Since many woody vines cross stratum boundaries, I limited reported species to a single 

stratum. Vine cover and constancy in these tables were calculated based on the geometric 

mean cover in the four intensive subplots (cover in the subplots is not recorded in separate 

strata). Woody vine species summarized by these methods include Bignonia capreolata, 

Campsis radicans, Lonicera japonica, Parthenocissus quinquefolia, Smilax spp., 

Toxicodendron radicans, and Vitis spp. Homotoneity (Peet 1981), or mean constancy of the 

prevalent species, was calculated for each group. Homotoneity is an indicator of the degree 

of compositional variability among plots belonging to a described community type. Non-

native species are identified in the floristic tables based on Weakley 2010. Appendices 
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include floristic tables for each group, including diagnostic and indicator values, in addition 

to summarized basal area and average values of soil variables (Appendices 1-7).  

 

Results 

Cluster analysis, indicator species analysis, and discriminant analysis together 

suggested recognition of twelve forested vegetation types and two herbaceous types, nested 

within five broad vegetation groups (Figure 2.2). Cluster analyses consistently indicated that 

herbaceous vegetation plots formed a unique cluster, and these plots were removed and 

analyzed separately from further analyses of forested communities. Indicator species 

analyses suggested recognition of 14 forested types, based on a dip in average p-value and 

peak in the total number of significant p-values. The random forests analysis indicated four 

problematic groups in the classification because no plots in these groups were classified 

correctly by the random forests algorithm. Two of these groups were small and incohesive; 

plots in these groups were reassigned based on random forests output. I recognize the 

additional two problematic groups as separate vegetation types here, despite the random 

forests output, based on high cover of species not normally present in the Piedmont of North 

Carolina. Random forests indicated that both the Quercus lyrata - Fraxinus pennsylvanica / 

Saururus cernuus and the Carya aquatica - Nyssa aquatica swamp types (IVd and IVe in the 

notation below) should be relocated into the Fraxinus pennsylvanica - Acer rubrum - Ulmus 

americana / Ilex decidua / Saururus cernuus (IVb) type, likely due to all three of these types 

having very high Acer rubrum and Fraxinus pennsylvanica cover. However, I elected to 

recognize these types as different due to the high cover of Quercus lyrata in the first type and 

Carya aquatica and Nyssa aquatica in the second (see further discussion below in the 
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sections describing these vegetation types). Twenty-five additional plots were reassigned to 

different vegetation types based on the random forests output. 

The twelve forested types are nested within four broader mega groups, where 

compositional variation among the groups is strongly related to geomorphology and edaphic 

variables. CCA ordination illustrates the relationship of floristic variation among the four 

mega groups to five key environmental variables identified in the second random forest 

analysis: % clay, % sand, pH, Ca-Mg ratio, and 100-year floodplain width (Figure 2.3). 

Stream order is a strong differentiating factor among the mega groups. Two mega groups are 

plotted on the upper left portion of the ordination diagram, associated with low to mid-order 

rivers, narrow floodplains, and sandy soils; these groups most commonly occur along small 

streams and alluvial flats. Alternatively, the large river levees are plotted on the right side of 

the ordination space and are related to higher pH, Ca-Mg ratio, and stream order. The second 

axis is mainly related to soil texture and floodplain width. The bottomland and swamp forests 

are plotted in the lower portion of the ordination diagram, associated with decreasing sand 

and increasing clay content and floodplain width.   

Additional floristic differences within both the high stream order mega groups and the 

low stream order groups can be attributed primarily to soil chemistry and texture (Figure 2.3; 

Appendix 1). In the set of types associated with smaller floodplains, chemistry is the 

strongest gradient differentiating between the two mega groups, with Quercus-Carya 

dominated flats occurring in the more nutrient poor sites and small stream alluvial forests 

occurring in the sites where soils have a higher average pH and percent base saturation. In 

the larger floodplain forests, there is substantial variation in soil texture. The texture gradient 

is related to variation in flooding dynamics and hydroperiod. High sand content is associated 
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with the levee landform and high clay content is associated with backswamps, where longer 

periods of standing water result in fine sediment deposition. I recognize two mega groups in 

the larger floodplain forests associated with each end of this geomorphic gradient: the drier 

levee sites and the wetter bottomland and swamps sites. Levee vegetation types are also 

differentiated from other larger floodplain forests by more nutrient-rich soils. The twelve 

forested vegetation types are presented below, nested in their mega groups reflecting four 

geomorphic settings: small streams and narrow floodplains (I), alluvial flats (II), large river 

levees (III), and wide-floodplain bottoms and swamps (IV). The two herbaceous vegetation 

types are presented in a fifth group (V).  

 I. Small streams and narrow floodplain forests 

The two vegetation types of this group are associated with narrow floodplains. The 

narrow floodplains of the Piedmont occur for two reasons: low order rivers or geologic 

formations that restrict floodplain development, typically metamorphic and igneous bedrock. 

The narrow floodplain restricts geomorphic development and results in communities where 

species are not well sorted along a hydrologic gradient and are more strongly influenced by 

the surrounding upland flora than are the alluvial types found on larger rivers This group is 

associated with higher elevations of the North Carolina Piedmont, occurring in areas farther 

removed from the fall-line. The soils are very sandy (both types recognized having higher 

average percent sand in both the A and B horizons than any of the other 10 forested types 

recognized; Appendix 1) and are associated with high pH and base saturation when 

compared with other types occurring along low-order streams. The vegetation of these sites 

tends to be species-rich in comparison to the other mega groups (Table 2.1); I recognize two 

types in this group. 
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Ia. Liriodendron tulipifera - Liquidambar styraciflua / Lindera benzoin / Amphicarpaea 

bracteata Forest (18 plots):  

This small stream, narrow floodplain community type occurs on sandy soils, with 

high cation exchange capacity, high Ca and Mg content, and high pH (Appendix 1) and is 

distributed across all five river basins (Figure 2.1). It is found across a variety of stream 

orders, but all occurrences are associated with narrow floodplains (x̄= 171.5m, s.e.= 26.1).  

The type is typically species rich, with an average of 79 species / 400m
2
 and includes 

plots having some of the highest richness values observed in this study (Table 2.2). The tree 

stratum is dominated by the nominal species (Liriodendron and Liquidambar) in addition to 

Betula nigra, Fagus grandifolia, and Acer rubrum, with substantial sub-canopy cover 

contributed by Cornus florida and Carpinus caroliniana (Appendix 2, 3). Both nominals are 

common successional species in Piedmont forests and may be somewhat transient dominants 

in this type; Quercus and Carya species, presently found at low constancy and cover, may 

become more dominant with succession. The shrub stratum is dense with smaller individuals 

from the sub-canopy in addition to abundant Lindera benzoin and frequent Viburnum 

prunifolium. Corylus americana has a high diagnostic value for this group and may also 

contribute substantial shrub cover. The diverse herb stratum is dominated by a mix of alluvial 

and mesic slope species and frequently includes Botrypus virginianus, Galium triflorum, and 

Phryma leptostachya (which is also an indicator for this type). The exotic grass 

Microstegium vimineum often has high cover. 

 Ib. Liriodendron tulipifera - Betula nigra / Cornus florida / Sanicula canadensis var. 

canadensis Forest (6 plots):  
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This type is found on first and second order streams in three river basins: the 

Catawba, Cape Fear, and Neuse (Figure 2.1). This type is floristically similar to group Ia, but 

it is associated with lower cation exchange capacity and extremely sandy soils in comparison 

to the other narrow-floodplain forest type (Appendix 1).  

These sites are infrequently flooded, resulting in the presence of more species 

commonly associated with both mesic slopes and upland forests. The canopy is dominated by 

the nominal species, in addition to species more typical of well-drained upland forests, such 

as Oxydendrum arboreum and Quercus alba (Table 2.2; Appendix 3). Ilex opaca and the 

indicator species Ostrya virginiana are also frequent subcanopy species. The shrub layer is 

relatively open and primarily composed of small individuals of the tree stratum. In contrast to 

Ia, where Lindera benzoin contributes a large percentage of shrub cover, Lindera benzoin 

was not observed in any plots assigned to this group.  

II. Oak-hickory flats 

The vegetation types in this group occur on levees and flats along mid-sized rivers, 

primarily 3
rd

 to 5
th

 order, although IIb occurs on larger order rivers (IIb was treated in this 

section due to its floristic affinity with the other Quercus-Carya dominated vegetation types 

of group II). In general, the soils of oak-hickory flats are relatively infertile with low base 

saturation, Ca/Mg ratios, and cation exchange capacities (Appendix 1). The three vegetation 

types recognized are dominated by a mix of Quercus species and other common bottomland 

tree species, in addition to high Carya cover in some types (Table 1). Within this group, there 

is a strong gradient of floodplain width, with IIb occurring on the widest floodplains and 

consequently the finest textured soils and IIc on the narrowest floodplains (Table 2.2). IIa is 

associated with intermediate-width floodplains, but with the sandiest soils (Appendix 1). 
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IIa. Liquidambar styraciflua - Quercus nigra / Carpinus caroliniana / Mitchella repens 

Forest (32 plots):  

These forests are found on levees and flats along 3
rd

 to 5
th

 order streams in all five 

river basins (Figure 2.1). The geomorphic position of this type intergrades between the levee 

concept of larger order rivers and alluvial flats of smaller order rivers; these sites are often 

located directly adjacent to the river channel, yet may not be identifiable as a classic levee 

where floodplain geomorphology is not well developed. In contrast to IVa, which may also 

have high Quercus cover and is associated with wet areas of wide floodplains, this type is 

associated with relatively dry, flat landscape positions. The soils tend to be sandy, 

approaching the percent sand that characterized the low order, narrow floodplain forests 

mega group (Appendix 1).  

This community is dominated by the nominal tree species, especially Quercus species 

and including Q. nigra, Q. phellos, and Q. pagoda, in addition to Fagus grandifolia (in 

contrast to all other oak-dominated groups) and a mix of Carya species, including C. ovata 

and C. alba (Table 2.2; Appendix 2). The high sand content and abundance of Fagus 

suggests affinities with type Ia, but IIa has less affinity with the upland sites and is 

characteristic of higher order streams. Fagus grandifolia and Ilex opaca are known to be 

intolerant to extended flooding, further suggesting a drier setting with a short hydroperiod 

(Townsend 2001). In contrast to IVa, Quercus nigra more consistently contributes a large 

percentage of the tree cover in this type (Table 2.2). The dense shrub/understory stratum is 

dominated by Carpinus caroliniana, while a diverse set of grass species contribute 

significant cover to the herb stratum, including especially Chasmanthium latifolium, Elymus 

virgincus s.l., Poa autumnalis, and Melica mutica (Appendix 4). 
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IIb. Liquidambar styraciflua - Quercus pagoda - Carya cordiformis / Asimina triloba / 

Arundinaria tecta Forest (3 plots):  

In contrast to the other oak-hickory flats, this type is found on wide flats along high-

order rivers (all ≥ 4
th

 order). The soils are characterized by a high clay content and are 

associated with very high Ca content and cation exchange capacity (Appendix 1). The three 

plots documenting this vegetation type occur in the Yadkin River Basin in the Triassic Basins 

close to the fall line (Figure 2.1). As a result of its location in the Triassic Basins, this type is 

associated with very wide floodplains and has the widest average floodplain width of any 

group recognized here ( > 1 km). In the CCA ordination, these three plots appear in the cloud 

of bottomland and swamp forest plots, reflecting the wide floodplains of this group (Figure 

2.3). However, the abundance of species rarely present in the wetter types, including 

Arundinaria tecta and Asimina triloba, floristically distinguishes this type from the 

bottomland and swamp forests of group IV (Table 2.2). 

The dominant trees of this type include the nominal species as well as Quercus 

michauxii, Q. nigra, and Nyssa sylvatica, and high sub-canopy cover of Carpinus caroliniana 

(Table 2.2; Appendix 2). The shrub stratum is sparse and frequently dominated by Asimina 

triloba, whereas the herb layer is dominated by Arundinaria tecta, which floristically 

distinguishes this type from IIa (Appendix 4).  IIIa occasionally includes significant Asimina 

and Arundinaria cover, but lacks the frequent and abundant Quercus cover observed in this 

type.   

IIc. Carya carolinae-septentrionalis - Acer floridanum / Aesculus sylvatica / Zizia aurea 

Forest (8 plots):  
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This community is found across a variety of stream orders, but primarily mid-sized, 

2
nd

 to 4
th

 order streams. Even when found on higher-order rivers, it is always associated with 

narrow floodplains, similar to the forested vegetation group presented above (I).  However, it 

is grouped with the oak-hickory flats because of its floristic affinity with these types. This 

type is also associated with higher percent slope values, suggesting sites influenced by the 

slope forests surrounding the floodplain. It is only found in the Cape Fear and Yadkin River 

Basins, on soils with high silt content (Figure 2.1; Appendix 1).  

These forests are the most diverse among those documented here, with an average of 

84.9 species observed in 400m
2
 (Table 2.2). The diverse tree stratum is dominated by the 

nominals, in addition to a mix of other Quercus and Carya species and a dense sub-canopy of 

Carpinus caroliniana (Table 2.2; Appendix 4). The sparse shrub stratum is primarily 

composed of smaller individuals of the tree stratum species. The herb stratum is dominated 

by grasses, many of which are significant indicators for this group, including Elymus hystrix, 

Dichanthelium boscii, and Danthonia spicata (Appendix 4). 

III. Large river levee forests 

This group is associated with levees on mid to large-order rivers (3
rd

 to 7
th

 order 

streams). In contrast to other types associated with higher-order streams, the soils are sandy, 

with high pH and Ca/Mg ratios (Figure 2.3). Compositional variation within this group may 

reflect disturbance history. The canopy of IIIb is more frequently dominated by fast-growing, 

often early successional species, including Platanus occidentalis, Fraxinus pennsylvanica, 

and Acer negundo, which are typical dominants of young, newly accreted pointbar forests in 

southeastern riparian zones (Meitzen 2009; Romano2010).  These dominants may also reflect 

a history of human disturbance as they are known to increase following tree harvesting. 
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Abundant species in IIIa, on the other hand, more frequently include long-lived successional 

species (Liriodendron tulipifera and Liquidambar styraciflua) and shade-tolerant species 

typically associated with older natural-levee forests (Celtis laevigata and Ulmus americana). 

Additional compositional variation within this group reflects geographic distribution of the 

types, as well as river size.  

IIIa. Ulmus americana - Celtis laevigata / Lindera benzoin / Osmorhiza longistylis Levee 

Forest (33 plots):  

This levee community occurs on large 4
th

 to 7
th

 order rivers in the Catawba, Yadkin, 

Cape Fear and Neuse River Basins (Figure 2.1). This type is associated with relatively wide 

floodplains of large watersheds (i.e. rivers that drain larger areas and more sub-watersheds) 

and tends to occur at lower elevation and further downstream than the other levee type, 

though the stream order range for the two types broadly overlaps. The soils associated with 

this type are some of the most fertile alluvial soils, with average pH, Mg content, and base 

saturation values higher than any other type described, although there is considerable overlap 

in the range of these measures with the other levee vegetation type (Appendix 1). 

The dominant tree species include the nominals, with Celtis often contributing a large 

proportion of the cover (Table 2.2). Additional tree cover may be contributed by a variety of 

species commonly associated with nutrient-rich habitats, including Carya cordiformis, Acer 

floridanum, and Juglans nigra (Appendix 5). Acer negundo is prominent in the sub-canopy. 

The shrub layer is relatively dense and diverse, with additional cover contributed by Asimina 

triloba, Aesculus sylvatica, and the exotic Ligustrum sinense. The herb stratum is composed 

of a mix of graminoid species, occasionally including substantial cover by Arundinaria tecta, 

and various forb species, commonly including Laportea canadensis. The exotic species 
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Microstegium vimineum, Glechoma hederacea, and Lonicera japonica may also contribute 

high cover in the herb stratum (Appendix 5). 

IIIb. Fraxinus pennsylvanica - Platanus occidentalis / Acer negundo / Chasmanthium 

latifolium Levee Forest (30 plots):  

This levee community primarily occurs on 3
rd

 to 6
th

 order rivers across all five river 

basins and is associated with slightly narrower floodplains than the other levee type. In 

comparison to IIIa, it is associated with higher elevations and longer river-course distances 

from the river mouth, reflecting locations more towards the interior Piedmont, although there 

is considerable spatial overlap (Figure 2.1). The soils are also fertile, with high pH and base 

saturation; in comparison to the other levee group, these soils have a higher percentage of 

sand, expected of interior types (Appendix 1). 

The nominal species dominate the canopy of this levee type, in addition to Ulmus 

americana, Betula nigra, and Liquidambar styraciflua. Acer negundo consistently 

contributes very high cover in the subcanopy. In comparison to the other levee vegetation 

type, this type tends to have a less diverse tree stratum with higher cover and constancy of 

Fraxinus pennsylvanica and Platanus occidentalis (Table 2.2). The shrub layer is moderately 

diverse and primarily composed of smaller individuals from the tree stratum, in addition to 

Lindera benzoin and the exotic Ligustrum sinense. Graminoid species commonly dominate 

the herb stratum, particularly, Chasmanthium latifolium, Elymus virginicus s.l., and Carex 

grayi. As with IIIa, exotic species may be prominent in this group; Microstegium vimineum 

often contributes substantial cover in the herb stratum (Appendix 5). 

IV. Bottomland and swamp forests 
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The bottomland and swamp forest group occurs on the widest floodplains and mid- to 

high-order rivers (primarily 3
rd

 order and higher). These types are found on low areas of the 

floodplain where standing water remains for a longer period of the year and growing season. 

The soils have a high concentration of silt, clay, and organic matter; they are relatively acidic 

and infertile, with low base saturation and Ca/Mg ratios. In ordination space, soil texture 

separates the drier oak-hickory flats (II) from the wetter, more commonly flooded oak 

bottomlands, which have much higher clay content (Figure 2.3). Soil variables suggest that 

floristic variation within this group is largely driven by hydroperiod, with types IVd and IVe 

occurring in the wettest sites, types IVa and IVb occurring in intermediate sites, and IVc 

occurring in the narrower floodplains of the inner Piedmont where the hydroperiod is shorter 

(Table 2.2). The two intermediate groups (IVa and IVb) are also separated by hydroperiod, 

with IVa being drier than IVb; the soils of IVa are characterized by high silt levels, while IVb 

is characterized by high clay content (Appendix 1).  

IVa. Quercus (phellos - pagoda - michauxii) - Ulmus americana / Ilex decidua / Arisaema 

triphyllum Bottomland Forest (17 plots):  

This bottomland forest community is found in wide floodplains on larger rivers in the 

Triassic Basins; six plots were classified to this group that do not map directly over Triassic 

Basin bedrock, but they were all located directly adjacent to this region. This type is 

associated with bottomland geomorphology, on low, broad Piedmont floodplains, often 

without obvious relief or geomorphologic development (in contrast to levees, which are often 

raised, or backswamps, which are often obvious depressions on the floodplain). This type is 

documented in every river basin except the Catawba, likely due to the North Carolina section 

of the Catawba basin lacking Triassic Basin bedrock (Figure 2.1). In addition, many of the 
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larger-order rivers of the Catawba basin are heavily dammed, resulting in very little 

remaining bottomland forest habitat. The soils of this type have moderately high clay 

content, although not as high as the other swamp groups described below; this likely reflects 

the shorter flooding duration at these sites (Appendix 1).  

The nominal Quercus spp. dominate the tree stratum, along with common canopy co-

dominants of wet Piedmont forests, such as Acer rubrum and Fraxinus pennsylvanica. 

Climbing vines may also contribute substantial cover in the tree stratum, especially 

Toxicodendron radicans (Table 2.2). The considerable cover contributed by A. rubrum and 

F. pennsylvanica floristically differentiates this type from other vegetation types with high 

Quercus cover (IIa and IIb). Also in contrast to group II, Quercus nigra is much less 

common in the wetter vegetation types of group IV. As expected in these wetter sites, Fagus 

grandifolia is extremely rare, also differentiating this type from IIa. Carpinus caroliniana 

and Ulmus alata frequently contribute cover to the subcanopy and shrub strata. The herb 

stratum tends to be more open when compared to the other mega groups, with most cover 

contributed by patches of Carex species (Appendix 6).  

IVb. Fraxinus pennsylvanica - Acer rubrum - Ulmus americana / Ilex decidua / Saururus 

cernuus Swamp Forest (24 plots):  

This swamp forest type is associated with medium to large-sized rivers (all ≥ 3
rd

 

order). Approximately a quarter of the plots in this group were located in the Triassic Basins, 

where Piedmont rivers have broader floodplains with better-developed geomorphology. Even 

where plots included in this type were found outside of the Triassic Basins, they were located 

on wider Piedmont floodplains. This type occurs in the backswamp geomorphic position, 
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with relatively acidic soils characterized by high clay content and frequent flooding 

(Appendix 1). 

The dominant tree stratum species of this type include the nominal species in addition 

to Liquidambar styraciflua and Quercus phellos. There is some degree of overlap, both in 

floristics and environmental setting, of this type and the more oak-dominated types in this 

group, IVa and IVd. This type may be an earlier successional stage of the bottomland forests 

(IVa) and is found in slightly wetter sites with longer periods of flooding. Alternatively, in 

comparison to group IVd, this group represents slightly shorter hydroperiods, with Quercus 

lyrata occasionally present in small very wet inclusions (Appendix 6) .The shrub layer tends 

to be moderately open, while the herb stratum is heavily dominated by Carex species and 

wetland forbs.  

IVc. Fraxinus pennsylvanica - Betula nigra - Platanus occidentalis / Alnus serrulata / 

Boehmaria cylindrica Swamp Forest (6 plots):  

This forested type is found along the larger order rivers at high regional elevations in 

the river basin, farther from the fall line and mouth of the river (Figure 2.1). This type occurs 

on wet areas of the floodplain, but in contrast to the other bottomland and swamp forests, 

these floodplains are restricted by resistant granitic bedrock and tend to be narrower than 

those found closer to the fall line in the Triassic Basins. The wet areas of these narrower 

floodplains may be the result of ponding due to dams, natural or human, or seepage areas at 

the edge of the floodplain. Soils at these sites are sandier than the other swamp types, perhaps 

as a result of erratic, short-duration flooding events common in the narrow valleys of the 

upper Piedmont (Appendix 1). 
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The tree canopy of this type is more open than other swamp types and is dominated 

by the nominal species, with additional cover from Ulmus americana, Liquidambar 

styraciflua, and Salix nigra. The open canopy and dominance of many early successional 

species may be a result of flooding disturbance. The shrub stratum is composed of small 

individuals of the tree stratum, in addition to Alnus serrulata, Carpinus caroliniana, Cornus 

amomum, and Viburnum dentatum. The herb stratum is well developed and dominated by a 

mix of sedges and grasses (Appendix 6).  

IVd. Quercus lyrata - Fraxinus pennsylvanica / Saururus cernuus Swamp Forest (3 

plots):  

This type is found in the wide floodplains of the Triassic Basins. While there is some 

floristic overlap with other swamp types, these forests dominate in sites where there is 

prolonged flooding over a larger area, and therefore they not included in other vegetation 

types (such as IVb, where Quercus lyrata is present in small-scale floodplain depressions). 

While random forests analysis indicated that these plots should be lumped with IVb, I chose 

to recognize this as a distinct type due to the high Quercus lyrata cover in these plots, which 

is not common in the Piedmont (Weakley 2010) and is generally associated with very wet 

conditions. The soils of this type are very acidic, with a very high clay content (Appendix 1).  

This type is dominated by high Quercus lyrata cover, in addition to the other 

common swamp co-dominants. The shrub stratum is very sparse and mostly composed of 

young tree species. The herb layer is heavily dominated by Saururus cernuus, with additional 

herb cover contributed by common wetland species such as Impatiens capensis, Bidens 

frondosa, and Carex spp (Appendix 6). 

IVe. Carya aquatic - Nyssa aquatica Swamp Forest (2 plots):  
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The two plots of this swamp forest type occur in very wide floodplains of the lower 

Triassic Basins, close to the fall line in the Yadkin River Basin. Soils at these sites are acidic, 

with very high clay content, indications of long flooding periods (Appendix 1).  

The tree stratum is dominated by the two nominal species, both of which are more 

typical dominants of swamp vegetation on the Coastal Plain of North Carolina. Carya 

aquatica and Nyssa aquatica are rare in the Piedmont region of North Carolina (Weakley 

2010). Random forests analysis also indicated that these plots should be lumped with IVb, 

but I chose to recognize this type due to the rarity of the dominant tree species. If the analysis 

had included Coastal Plain plots, this type would likely have been seen to have higher 

affinities to the Coastal Plain plots than to IVb. Other canopy trees include species 

commonly associated with the wettest sites in the floodplain, including Quercus lyrata, Acer 

rubrum, and Fraxinus pennsylvanica. The shrub and herb layer of this community type is 

very sparse as the plots are frequently inundated for extended periods (Appendix 6).  

V. Riparian herbaceous vegetation 

This group is comprised of two herbaceous vegetation types. It is found within the 

channels of rocky-bottomed Piedmont rivers. No soil data is presented for the types in this 

group, as there is little to no soil present in the rocky river channels where they are found. 

Cover data for these plots is presented in a single stratum.  

Va. Justicia americana herbaceous vegetation (10 plots):  

This type is found in rocky-bottomed rivers in all basins except the Catawba (Figure 

2.1). The vegetation is heavily dominated by herbaceous cover from Justicia americana 

(Appendix 7). Other herbs that commonly contribute cover include Boehmeria cylindrica and 

the exotic Murdannia keisak. Occasional tree cover is contributed by overhanging 
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bottomland species that may include Platanus occidentalis, Fraxinus pennslyvanica, and 

Betula nigra.  

Vb. Hymenocallis coronaria - Justicia americana herbaceous vegetation (2 plots):  

The two plots documenting this type are located in the Catawba River in South 

Carolina, where Hymenocallis coronaria is a state-listed rare species (Figure 2.1; S.C. 

Department of Natural Resources). This vegetation type is heavily dominated by herbaceous 

cover of both nominal species (Appendix 7).  

 

Discussion 

Composition of alluvial plant communities varies continuously, as evidenced by plots 

reassigned to alternate vegetation types by different methodologies. This is particularly 

evident in the swamp group, where there is substantial floristic similarity in the vegetation 

types recognized here. However, it is possible to acknowledge the continuous nature of 

vegetation while recognizing that there are identifiable, repeated vegetation patterns across 

the landscape. This classification aims to clarify and document the recurrent patterns in 

Piedmont alluvial vegetation and their relationships to the alluvial landscape.  

Piedmont alluvial vegetation is driven in large part by geomorphology, which is 

strongly related to stream order, floodplain width, and soil texture and chemistry. The 

floodplains of the lower-order Piedmont rivers are often narrow and the geomorphic 

landscape is poorly developed, primarily as a result of the prevalence of resistant 

metamorphic and granitic bedrock. Where distinct fluvial landforms are not easily 

identifiable in these narrow floodplain rivers, compositional variation is strongly correlated 

with soil texture and chemistry. Vegetation group I (small streams and narrow floodplain 
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forests) and group II (oak hickory flats) generally occur in such settings: group I is associated 

with fertile, sandy soils and group II is associated with less fertile, loamy soils. In contrast, 

the higher-order rivers with wider floodplains have a better- developed geomorphic 

landscape, with distinct geomorphic settings and more variation in substrate. Vegetation 

group III (large river levee forests) and group IV (bottomland and swamp forests) are 

dominant in the higher-order rivers, where vegetation types are sorted along a hydrologic 

gradient and are associated with distinct fluvial landforms. The levee forests are associated 

with higher and drier regions of the floodplain, located close to the river channel, where 

flooding events are short in duration and soils are sandy and very fertile. The bottomland and 

swamp forests are often farther removed from the river channel, in the low topographic areas 

of floodplains where longer hydroperiods result in deposition of fine sediment and soils with 

high clay content. However, in contrast to the very wide floodplains of the Coastal Plain, 

where fluvial geomorphologic settings and their associated vegetation are distinct, the 

geomorphic features of the narrower Piedmont floodplains intergrade over smaller spatial 

distances. The results suggest less species-sorting in the narrower Piedmont floodplains and 

stronger species-sorting in the more Coastal Plain-like settings of group III and IV; however, 

I am unable to directly compare the degree of species sorting in the Piedmont versus the 

Coastal Plain because previous studies of Coastal Plain vegetation are primarily qualitative, 

descriptive studies, lacking plot data. 

This classification describes remnant alluvial plant communities in a highly 

fragmented landscape, representing only a portion of the original diversity of these systems. 

The natural hydrologic regime of Piedmont rivers has been altered by anthropogenic 

activities since the beginning of European colonization. Although I attempted to locate and 
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sample the most natural, high-quality vegetation possible, it is important to realize the 

implications of the highly altered Piedmont landscape. A long history of selective tree 

harvesting may have resulted in certain species being under-represented in vegetation types 

where they historically may have been prominent. The presence of non-native invasive 

species in many samples suggests the structural and compositional differences between the 

pre-European native vegetation and the vegetation on the landscape today (7% of the riparian 

flora sampled was exotic; only 3 plots did not contain an exotic species). Additionally, 

extensive sediment deposition following European agriculture on the uplands during the 

period of 1700-1940 homogenized the hydrogeomorphic landscape of many Piedmont rivers, 

decreasing floodplain habitat complexity and likely resulting in floristic changes to pre-

European riparian vegetation (Trimble 1974).  

Vegetation sampling was restricted by common hurdles associated with working in 

the Southeastern U.S., including seasonal variation in the present and identifiable flora. 

Because each sample site was visited only once during the summer, there is likely a 

systematic under-sampling of spring ephemerals in this dataset, many of which are common 

in Piedmont bottomland habitats (e.g. Erythronium spp., Dentaria spp., Claytonia virginica). 

Additionally, many large tracts of alluvial forests in the North Carolina Piedmont are 

privately owned; while I was able to obtain permission from some landowners to access areas 

identified as potentially high-quality vegetation, there were sites that I was not able to access. 

Despite these obstacles, this classification provides the most comprehensive documentation 

and description of the remaining natural alluvial forests of the North Carolina Piedmont to 

date. 
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The classification presented here complements and can be expected to inform future 

revision of floodplain associations in the Southeastern United States recognized in the U.S. 

National Vegetation Classification (NVC; U.S. FGDC 2008; Jennings et al. 2009). The 

vegetation types I describe are comparable to NVC associations in terms of compositional 

variation and consistency, although NVC community concepts may reflect the broader 

geographic scope of the NVC. The current NVC floodplain associations of the Piedmont 

region are considered provisional and ranked as having low confidence, for although the 

current NVC floodplain associations are based on a synthesis of available literature and 

qualitative field surveys of variation across their range, plot data are usually lacking. The 

current NVC set of alluvial vegetation associations occurring in the Piedmont includes a 

mixture of broadly defined “placeholders” (provisional type concepts), types with uncertain 

conceptual boundaries, and types based on limited, unavailable or non-existent plot data. In 

contrast, the descriptions of most of these types are based upon a large number of plots 

distributed across a wide geographic area and capture compositional variation within the 

groups across this area. These plots are archived in VegBank and thus are available for 

reanalysis and integration into larger datasets that can better test the full range of variation 

expressed by current NVC types across their geographic extent.  

Although some types recognized here fit well within currently recognized NVC 

community concepts, others deviate sharply from established types and may point to the need 

for reworking currently recognized NVC alluvial type concepts. To facilitate comparison of 

these types and existing NVC associations, I have matched each of the fourteen types to the 

closest recognized NVC association, as well as any other NVC associations that appear to 

overlap my own (Table 2.3). Table 2.3 illustrates the complexity of interrelationships 
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between the quantitatively derived types presented here and the current NVC associations, 

showing how future work in defining and characterizing NVC types might proceed.  A more 

direct comparison between quantitative data-based classifications and the NVC will be 

available only when the established NVC types are documented with plot data as mandated 

for high confidence types in the FGDC. Standard procedures and requirements for 

establishing high confidence NVC types are provided in Jennings et al. (2009). 

Quantitative vegetation classification and description are important for conservation 

and restoration activities. In particular, vegetation types provide a useful common language 

for the coordination of conservation activities across organizations. It is my intent that this 

classification promotes conservation of Piedmont alluvial systems by providing a 

comprehensive classification and description of the vegetation types found in this region and 

their associated environmental setting. In addition to furthering the documentation and 

understanding of these communities, I also expect that this classification will serve as 

reference material for restoration activities of alluvial forests in the North Carolina Piedmont 

and adjacent areas. 
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Table 2.1: Trees, vines and herbs with high constancy and high average cover where present 

in each of the four mega groups (see text for definition of each metric). Groups are identified 

by the roman numerals used in the text. Only prevalent species with constancy >25% and 

average cover >3 for trees and herbs and >2 for vines are shown.  Species only appear in one 

stratum (i.e. the stratum where the adult life form is found). See text for description of 

prevalence and calculation of constancy and cover. Non-native species are identified with an 

asterisk. 

 
Groups I II III IV 

Plot Count 24 43 63 52 

Avg Plot Spp Richness (400m2) 77.1 72.6 55.2 52.6 

Avg Plot Spp Richness (100m2) 42.8 42.8 32.6 31.4 

Avg Plot Spp Richness (10m2) 23.8 23.2 17.1 15.6 

Avg Plot Spp Richness (1m2) 10.4 10.0 8.0 6.6 

Homotoneity 58% 57% 57% 56% 

Tree taxon name con. cov. con. cov. con. cov. con. cov. 

Acer floridanum 29 7 33 7 41 7 13 6 

Acer negundo var. negundo 8 5 2 2 79 7 4 4 

Acer rubrum 88 6 72 6 19 6 96 7 

Betula nigra 58 7 14 6 33 5 38 6 

Carpinus caroliniana 75 7 86 7 48 6 44 6 

Carya cordiformis 38 6 28 6 49 6 6 5 

Carya ovata 25 6 40 6 10 6 21 5 

Celtis laevigata  4 6 5 5 67 6 12 5 

Cornus florida 92 6 42 5 29 4 4 3 

Fagus grandifolia 50 6 40 6 5 6 4 3 

Fraxinus pennsylvanica 42 4 56 5 73 6 87 7 

Ilex opaca var. opaca 29 6 42 6 24 5 12 4 

Juglans nigra 33 5 9 4 35 6 -- -- 

Liquidambar styraciflua 75 6 98 6 68 6 88 6 

Liriodendron tulipifera 92 6 53 5 43 6 10 6 

Nyssa sylvatica 17 5 58 5 8 4 27 4 

Ostrya virginiana 33 6 23 6 11 5 -- -- 

Oxydendrum arboreum 42 5 14 4 -- -- -- -- 

Platanus occidentalis  29 6 14 6 73 6 31 5 

Quercus alba 25 5 44 6 8 4 13 5 

Quercus michauxii 8 6 26 6 21 7 29 6 

Quercus nigra 13 6 58 6 11 7 19 5 

Quercus pagoda 8 6 40 6 6 6 33 6 

Quercus phellos -- -- 49 6 5 4 56 6 

Quercus shumardii  33 6 26 6 10 5 12 5 

Ulmus alata 29 5 63 6 29 6 48 6 

Ulmus [americana + rubra] 42 5 42 5 79 6 87 6 

Vine taxon name con. cov. con. cov. con. cov. con. cov. 

Bignonia capreolata 54 2 95 3 84 3 79 3 

Campsis radicans 75 2 58 2 60 2 90 2 

Lonicera japonica* 100 4 91 3 95 4 85 3 

Parthenocissus quinquefolia 100 3 100 3 100 2 94 2 

Smilax rotundifolia 63 2 93 2 73 3 98 3 

Toxicodendron radicans  100 3 98 4 100 4 100 5 

Vitis [cinerea + vulpina] 38 3 12 2 22 4 8 2 

Vitis rotundifolia  100 3 95 3 67 3 67 2 

Shrub taxon name con. cov. con. cov. con. cov. con. cov. 
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Ilex decidua 13 2 70 4 37 4 71 5 

Ligustrum sinense* 17 2 19 2 68 5 37 3 

Lindera benzoin 42 7 14 3 56 6 12 5 

Viburnum prunifolium 38 4 51 4 21 3 40 4 

Herb taxon name con. cov. con. cov. con. cov. con. cov. 

Boehmeria cylindrica 63 2 47 2 73 3 87 4 

Carex [amphibola+grisea+corrugata] 58 3 65 4 73 4 42 4 

Carex crinita 13 2 12 2 3 2 38 4 

Carex grayi 4 1 16 2 51 4 23 5 

Carex lupulina 4 1 -- -- 10 2 46 4 

Carex tribuloides 29 2 23 2 51 4 81 4 

Carex typhina 8 2 16 2 16 3 63 4 

Danthonia spicata 4 2 28 4 -- -- -- -- 

Elymus virginicus s.l. 38 2 42 4 65 6 44 2 

Festuca subverticillata 71 2 40 2 49 4 21 3 

Galium aparine 29 2 12 2 67 4 23 2 

Laportea canadensis 4 1 -- -- 54 5 10 2 

Polystichum acrostichoides 100 4 65 3 44 2 19 2 

Saururus cernuus 13 2 16 2 19 3 56 6 

Verbesina occidentalis 46 4 30 2 68 2 8 2 
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Table 2.2:  Prevalent species in each vegetation type (by stratum). Species shown are prevalent in at least one group and also have 

>50% constancy and average cover class of >2 (i.e. > 1% cover) in at least one group (see text for definition of each metric). 

Constancy and average cover are bolded in the group where a species is prevalent. Species are only listed in the stratum in which the 

adult life form is present (only one stratum per species). Non-native species are identified with an asterisk. 

 

Groups 

I. Small streams and 
narrow floodplain 

forests 
II. Oak-hickory flats III. Large river levees IV. Swamps 

Types Ia. Ib. IIa. IIb. IIc. IIIa. IIIb. IVa. IVb. IVc. IVd. IVe. 

Plot Count 18 6 32 3 8 33 30 17 24 6 3 2 

Avg Plot Spp Richness (400m2) 79.3 70.5 70.7 53.0 84.9 58.2 51.9 56.2 53.5 54.8 33.3 35.0 

Avg Plot Spp Richness (100m2) 43.0 42.5 42.3 33.9 48.2 36.3 28.5 36.1 31.8 27.6 18.7 16.6 

Avg Plot Spp Richness (10m2) 24.4 22.1 22.4 17.8 28.6 18.9 15.2 17.6 15,7 17.3 7.8 5.9 

Avg Plot Spp Richness (1m2) 10.6 9.6 9.6 8.1 12.7 8.7 7.1 7.4 6.6 7.4 3.5 2.1 

Homotoneity 61% 60% 59% 78% 65% 61% 58% 58% 62% 59% 63% 62% 

Average floodplain width (m) 172 119 420 1150 142 489 370 624 639 471 603 1100 

Average pH 5.11 5.08 4.87 4.93 4.91 5.36 5.16 4.74 4.82 4.63 4.76 4.81 

Average Ca Mg ratio (ppm) 5.54 5.34 3.91 2.77 3.39 6.15 6.11 3.83 4.52 4.38 4.03 3.95 

Average % Ca  38.32 36.30 28.89 28.36 28.69 45.10 39.71 26.77 29.72 25.59 27.02 27.59 

% Clay 14.55 11.40 18.40 43.82 17.49 20.37 21.94 27.45 35.58 30.91 35.65 44.25 

% Sand 47.04 70.18 45.36 17.23 37.02 34.18 44.02 22.76 27.87 30.96 13.88 15.50 

Trees  con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. 

Acer floridanum 33 8 17 2 19 7 -- -- 100 7 55 7 27 6 35 6 4 5 -- -- -- -- -- -- 

Acer negundo var. negundo 11 5 -- -- -- -- 33 2 -- -- 64 6 97 7 6 5 -- -- 17 3 -- -- -- -- 

Acer rubrum 83 6 100 7 78 7 100 6 38 5 18 5 20 6 88 6 100 8 100 7 100 7 100 6 

Betula nigra 56 6 67 8 19 6 -- -- -- -- 24 4 43 6 41 6 29 6 83 6 -- -- 50 4 

Carpinus caroliniana 78 7 67 7 88 7 100 7 75 7 52 6 43 6 71 6 33 7 17 6 33 3 50 6 

Carya aquatica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 6 

Carya carolinae-septentrionalis -- -- -- -- -- -- -- -- 100 7 3 6 -- -- 6 5 -- -- -- -- -- -- -- -- 

Carya cordiformis 39 6 33 4 25 6 67 7 25 5 76 6 20 6 12 6 4 3 -- -- -- -- -- -- 

Carya ovata 33 6 -- -- 38 6 67 5 38 4 18 6 -- -- 41 6 17 5 -- -- -- -- -- -- 

Celtis laevigata  6 6 -- -- -- -- 67 5 -- -- 73 7 60 6 18 6 13 4 -- -- -- -- -- -- 

Cornus florida 89 6 100 6 44 5 -- -- 50 4 42 5 13 4 6 3 4 3 -- -- -- -- -- -- 

Fagus grandifolia 56 6 33 3 50 6 -- -- 13 3 9 6 -- -- 6 3 4 2 -- -- -- -- -- -- 

Fraxinus pennsylvanica 44 5 33 3 53 5 67 3 63 6 58 6 90 7 71 6 96 7 100 8 100 6 50 4 

Ilex opaca  17 6 67 6 53 6 -- -- 13 4 36 5 10 4 29 4 4 4 -- -- -- -- -- -- 

Liquidambar styraciflua 78 6 67 6 97 6 100 5 100 6 94 6 40 6 100 7 88 6 67 6 67 5 100 5 

Liriodendron tulipifera 100 6 67 6 66 5 -- -- 25 6 58 6 27 6 24 6 -- -- 17 6 -- -- -- -- 
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Nyssa aquatica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 8 

Nyssa sylvatica 6 5 50 5 56 5 33 7 75 5 15 4 -- -- 35 5 29 4 -- -- 33 5 -- -- 

Ostrya virginiana 22 5 67 6 22 6 -- -- 38 7 15 5 7 5 -- -- -- -- -- -- -- -- -- -- 

Platanus occidentalis  22 7 50 5 16 6 -- -- 13 7 58 6 90 6 24 4 25 6 67 6 33 4 50 2 

Quercus alba 22 5 33 5 41 6 33 6 63 5 12 4 3 3 41 5 -- -- -- -- -- -- -- -- 

Quercus lyrata -- -- -- -- 13 5 -- -- -- -- 6 4 -- -- 12 7 17 6 -- -- 100 6 100 6 

Quercus michauxii 6 4 17 7 28 6 67 6 -- -- 36 7 3 6 41 6 33 6 -- -- -- -- -- -- 

Quercus nigra 6 7 33 5 69 6 67 6 13 5 15 7 7 6 35 5 8 4 33 6 -- -- -- -- 

Quercus pagoda 6 5 17 6 47 6 67 7 -- -- 9 6 3 5 53 6 33 5 -- -- -- -- -- -- 

Quercus phellos -- -- -- -- 56 6 -- -- 38 6 6 4 3 4 76 7 54 6 -- -- 100 6 -- -- 

Ulmus alata 39 5 -- -- 56 6 33 3 100 5 36 6 20 6 76 6 46 6 17 5 -- -- -- -- 

Ulmus [americana + rubra] 44 5 33 4 44 5 33 4 38 6 82 6 77 6 94 6 88 6 67 5 67 5 100 4 

Vines con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. 

Bignonia capreolata 56 2 50 2 94 3 100 5 100 2 97 3 70 2 100 3 79 3 67 2 -- -- 50 2 

Lonicera japonica* 100 5 100 2 97 3 33 2 88 2 100 4 90 4 100 2 79 2 100 4 33 1 50 1 

Parthenocissus quinquefolia 100 3 100 2 100 3 100 3 100 2 100 2 100 2 100 3 96 2 100 3 33 1 100 2 

Smilax rotundifolia 67 2 50 2 94 2 100 2 88 2 76 2 70 4 94 4 100 3 100 3 100 2 100 2 

Smilax walteri 6 2 33 2 13 2 -- -- 25 5 12 3 -- -- 18 3 21 2 17 2 -- -- 50 3 

Toxicodendron radicans 100 4 100 3 97 4 100 5 100 3 100 3 100 4 100 5 8 5 83 5 100 2 100 2 

Vitis [cinerea + vulpina] 78 3 -- -- 38 2 -- -- 25 3 27 4 70 3 35 2 46 2 33 2 -- -- -- -- 

Vitis rotundifolia 100 3 100 4 100 4 100 2 75 2 85 3 47 3 88 2 58 2 67 3 -- -- 100 2 

Shrubs con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. 

Aesculus sylvatica 11 4 -- -- 9 2 -- -- 63 4 42 4 17 4 24 4 4 3 -- -- 33 2 -- -- 

Alnus serrulata 11 3 -- -- -- -- -- -- -- -- 3 4 3 4 -- -- -- -- 67 5 -- -- -- -- 

Asimina triloba 17 5 17 1 19 4 100 5 -- -- 45 6 7 4 29 6 13 3 -- -- -- -- -- -- 

Carpinus caroliniana 78 6 67 4 91 6 67 4 75 6 64 5 37 4 88 5 71 4 50 6 67 4 -- -- 

Cornus florida 61 4 50 4 28 3 -- -- 13 2 27 4 13 3 18 3 -- -- -- -- -- -- -- -- 

Ilex decidua 17 2 -- -- 72 4 67 3 63 4 52 4 20 4 88 5 71 5 -- -- 100 3 100 4 

Ligustrum sinense* 22 2 -- -- 22 2 33 3 -- -- 64 5 73 4 47 4 33 2 50 4 -- -- -- -- 

Lindera benzoin 56 7 -- -- 19 3 -- -- -- -- 67 6 43 6 18 4 8 4 17 7 -- -- -- -- 

Viburnum prunifolium 50 4 -- -- 50 4 67 4 50 4 27 3 13 3 65 4 38 4 17 2 -- -- -- -- 

Herbs con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. con. cov. 

Amphicarpaea bracteata 89 3 50 2 44 2 -- -- 63 2 39 2 27 2 6 1 8 2 17 3 -- -- -- -- 

Arisaema dracontium 11 2 -- -- 3 1 67 2 13 1 42 2 17 2 24 2 4 1 17 1 -- -- -- -- 

Arisaema triphyllum 78 2 50 2 19 2 -- -- 75 2 39 2 37 2 88 2 17 2 33 1 -- -- -- -- 

Arundinaria tecta 17 2 17 4 28 6 100 5 25 2 39 5 13 6 24 5 17 4 17 5 -- -- 50 1 

Asarum canadense 17 4 -- -- 16 2 100 2 -- -- 21 5 17 2 29 2 -- -- 17 1 -- -- -- -- 

Bidens frondosa 11 1 17 2 13 2 33 1 25 1 6 3 27 2 24 2 29 2 50 3 67 2 100 2 

Boehmeria cylindrica 67 2 50 2 47 2 100 2 25 2 64 2 83 3 76 2 92 3 100 6 100 2 50 1 
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Botrypus virginianus 83 2 33 2 34 2 -- -- 25 2 45 2 17 2 12 2 4 1 17 1 -- -- -- -- 

Bromus [nottowayanus + pubescens] 39 2 -- -- 9 2 -- -- 75 2 30 2 3 2 6 2 -- -- -- -- 33 2 -- -- 

Carex [amphibola+grisea+corrugata] 72 3 17 2 66 5 100 3 50 3 73 4 73 4 59 4 38 4 33 1 -- -- 50 3 

Carex [radiata + rosea] 89 3 83 2 66 3 67 2 63 2 67 5 33 4 53 2 42 2 17 1 -- -- -- -- 

Carex blanda 61 3 50 2 41 3 -- -- 63 3 67 3 33 3 35 2 29 2 -- -- -- -- 50 1 

Carex caroliniana 22 2 -- -- 41 3 -- -- 25 2 12 2 13 2 41 2 25 2 -- -- -- -- -- -- 

Carex crinita 11 2 17 3 16 2 -- -- -- -- 3 2 3 2 29 2 33 3 83 6 67 2 -- -- 

Carex debilis 39 3 50 2 66 3 67 2 -- -- 9 2 3 2 41 3 50 4 -- -- -- -- -- -- 

Carex grayi 6 1 -- -- 13 2 -- -- 38 2 61 3 40 5 12 3 33 5 17 3 -- -- 50 2 

Carex intumescens 6 2 33 1 41 2 100 2 -- -- 3 2 10 2 47 3 29 5 -- -- 67 2 -- -- 

Carex laxiculmis  17 3 33 2 9 2 -- -- 63 3 6 2 -- -- -- -- -- -- -- -- -- -- -- -- 

Carex lupulina 6 1 -- -- -- -- -- -- -- -- 3 1 17 2 29 2 58 4 67 4 33 5 -- -- 

Carex oxylepis 39 3 50 2 22 3 -- -- 75 3 18 2 10 2 24 4 4 8 -- -- -- -- -- -- 

Carex tribuloides 33 2 17 1 25 2 33 1 13 1 42 2 60 4 76 3 88 4 100 4 33 2 50 2 

Carex typhina 6 1 17 2 13 2 100 2 -- -- 12 2 20 3 47 2 88 4 33 4 67 2 -- -- 

Chasmanthium latifolium 50 3 -- -- 69 4 100 5 75 6 45 5 77 6 47 2 54 4 67 4 -- -- 50 1 

Commelina virginica 11 1 -- -- 6 2 33 1 25 2 27 2 57 2 24 1 54 2 67 6 33 3 -- -- 

Danthonia spicata -- -- 17 2 22 3 -- -- 63 5 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Dichanthelium boscii 22 2 33 4 16 2 -- -- 63 5 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Dichanthelium commutatum 72 2 83 2 84 3 100 2 100 3 45 3 23 2 29 2 46 2 33 2 33 1 50 2 

Dichanthelium laxiflorum 28 2 33 2 34 2 -- -- 75 2 3 1 -- -- 12 2 -- -- -- -- -- -- -- -- 

Dioscorea [quaternata + villosa] 28 2 -- -- 56 2 33 2 63 2 27 2 13 2 6 2 8 2 17 2 -- -- -- -- 

Elephantopus carolinianus -- -- -- -- 6 2 67 2 -- -- -- -- -- -- -- -- 4 2 -- -- -- -- -- -- 

Elymus virginicus s.l. 33 2 50 2 47 4 -- -- 38 2 67 5 63 6 65 3 42 2 33 1 -- -- -- -- 

Elymus hystrix 33 4 33 3 9 2 -- -- 100 3 15 3 23 4 -- -- -- -- -- -- -- -- -- -- 

Erechtites hieracifolia 22 2 33 1 16 1 100 2 13 1 30 2 37 2 59 2 63 1 17 1 33 1 100 1 

Euonymus americanus 100 2 100 2 100 2 100 2 100 2 58 2 30 2 76 2 71 2 33 2 -- -- -- -- 

Festuca subverticillata 78 2 50 2 44 3 -- -- 38 2 39 5 60 3 35 2 17 4 -- -- 33 2 -- -- 

Galium aparine 39 2 -- -- 3 1 -- -- 50 2 64 2 70 4 18 2 17 2 67 2 33 1 -- -- 

Galium circaezans 78 2 17 1 50 2 -- -- 63 2 6 1 3 1 -- -- 4 1 -- -- -- -- -- -- 

Galium tinctorium 17 2 17 1 38 2 -- -- 38 2 -- -- 3 1 65 2 42 2 -- -- -- -- 50 1 

Galium triflorum 89 2 83 2 44 2 -- -- 50 2 27 2 13 1 18 2 8 2 -- -- -- -- -- -- 

Gelsemium sempervirens -- -- 17 2 47 2 -- -- -- -- -- -- -- -- 12 2 4 1 17 1 67 2 -- -- 

Geum canadense 84 2 50 2 34 2 -- -- 50 1 48 2 43 2 29 2 50 2 50 2 -- -- -- -- 

Glyceria striata  39 2 50 2 16 2 -- -- 13 1 15 2 37 2 65 2 50 4 83 4 67 2 -- -- 

[Gonolobus + Matelea] 33 2 33 1 34 2 67 2 25 2 73 2 60 2 18 2 8 2 -- -- -- -- -- -- 

Hexastylis arifolia 28 2 67 2 22 2 33 1 100 2 6 2 -- -- -- -- -- -- -- -- -- -- -- -- 

Hypericum hypericoides 6 1 33 2 59 2 -- -- 88 2 -- -- -- -- 6 1 8 1 -- -- -- -- -- -- 

Impatiens capensis 33 2 17 1 3 1 67 2 38 1 27 5 23 2 29 4 38 2 33 2 67 2 50 1 

Juncus coriaceus 28 2 83 2 28 2 -- -- 88 2 6 2 10 2 35 2 33 3 33 2 33 2 -- -- 
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Juncus effusus 22 2 50 2 19 2 -- -- 13 1 3 2 23 2 24 2 54 3 33 4 -- -- -- -- 

Laportea canadensis 6 1 -- -- -- -- -- -- -- -- 52 5 57 4 24 2 4 1 -- -- -- -- -- -- 

Leersia virginica 17 2 33 2 31 2 -- -- 63 4 9 3 53 2 18 2 50 3 50 3 -- -- -- -- 

Lobelia cardinalis 6 2 -- -- 3 1 -- -- -- -- -- -- 7 1 12 1 13 2 67 2 33 2 -- -- 

Lonicera japonica* 100 4 100 2 97 4 33 2 88 2 100 4 90 4 100 2 79 2 100 3 33 1 50 1 

Ludwigia palustris -- -- 17 1 -- -- -- -- -- -- -- -- 3 1 6 1 21 2 -- -- 100 2 50 2 

Lycopus virginicus 28 2 50 2 19 2 67 2 25 1 9 2 23 2 24 2 54 2 100 3 100 2 100 2 

Melica mutica 22 3 -- -- 56 2 -- -- 25 2 12 3 -- -- 18 1 8 2 -- -- -- -- -- -- 

Microstegium vimineum* 94 6 83 6 66 2 -- -- 100 3 85 6 93 7 82 4 67 4 83 7 33 2 50 1 

Mitchella repens 22 2 67 2 91 2 67 2 38 2 3 2 -- -- 24 2 21 2 -- -- -- -- -- -- 

Oxalis sp 61 2 100 2 31 2 -- -- 88 2 48 2 60 2 12 1 13 1 -- -- -- -- -- -- 

Parthenocissus quinquefolia 100 3 100 2 100 3 100 3 100 2 100 2 100 2 100 3 96 2 100 2 33 1 100 2 

Passiflora lutea  39 2 67 2 38 2 67 1 50 2 39 2 27 2 6 1 4 1 -- -- -- -- -- -- 

Peltandra virginica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 29 2 83 4 -- -- -- -- 

Persicaria sp 11 1 17 2 -- -- 33 1 -- -- 6 2 40 2 12 2 46 3 83 3 33 1 50 2 

Persicaria virginiana 50 2 50 2 19 2 33 2 25 1 76 2 87 2 53 2 42 2 67 2 33 2 -- -- 

Phryma leptostachya 72 2 -- -- 6 1 -- -- -- -- 6 2 3 1 -- -- 4 2 -- -- -- -- -- -- 

Phytolacca americana 6 2 -- -- -- -- 67 2 -- -- 21 2 53 2 6 1 17 1 50 2 -- -- -- -- 

Pilea pumila 17 2 -- -- -- -- -- -- 13 1 27 2 63 2 29 2 38 2 33 3 33 2 100 2 

Poa [autumnalis + cuspidata] 50 5 50 2 78 4 -- -- 63 3 45 3 27 2 82 3 42 3 50 2 -- -- 50 2 

Polygonatum biflorum 56 2 67 2 53 2 33 2 50 2 39 2 17 1 -- -- 4 1 -- -- -- -- -- -- 

Polystichum acrostichoides 100 4 100 3 63 3 -- -- 100 2 52 2 37 2 35 2 13 2 17 1 -- -- -- -- 

Potentilla [simplex + canadensis] 17 2 33 1 34 2 -- -- 75 2 6 2 -- -- 6 1 8 2 -- -- -- -- -- -- 

Ranunculus abortivus 44 2 17 1 6 1 100 2 50 1 39 2 33 2 41 2 17 2 50 1 -- -- 50 2 

Rosa sp 50 2 -- -- 34 2 33 2 13 1 39 2 30 2 35 2 25 2 67 2 -- -- -- -- 

Rubus sp 94 2 50 2 94 2 100 2 38 1 55 2 40 2 71 3 79 2 100 2 67 2 50 2 

Ruellia caroliniensis 33 2 17 1 31 2 -- -- 75 2 3 2 -- -- 18 1 21 2 -- -- -- -- -- -- 

Salvia lyrata 50 2 50 2 22 2 -- -- 88 2 3 1 3 2 -- -- -- -- -- -- -- -- -- -- 

Sanicula canadensis  89 2 100 2 72 2 67 2 88 2 70 2 37 2 47 2 33 2 67 1 -- -- 100 1 

Saururus cernuus 6 2 33 2 19 2 -- -- 13 2 15 2 23 3 29 2 71 6 33 6 100 7 100 2 

Sceptridium [biternatum + dissectum] 67 2 50 2 78 2 33 1 50 2 39 2 17 2 53 2 54 2 17 2 -- -- 50 1 

Solidago sp 89 2 100 2 91 2 100 2 100 2 52 2 77 2 88 2 96 3 83 4 67 2 100 2 

Symphoricarpos orbiculatus 17 2 -- -- 13 2 -- -- 63 2 36 3 10 2 -- -- -- -- -- -- -- -- -- -- 

Trachelospermum difforme 6 2 -- -- 50 2 -- -- 38 2 6 2 10 2 59 2 29 2 17 1 -- -- -- -- 

Verbesina alternifolia 39 2 33 2 38 2 -- -- 100 2 70 3 80 3 12 1 8 1 17 2 -- -- -- -- 

Verbesina occidentalis 50 2 33 5 28 2 -- -- 50 3 70 2 67 2 12 2 8 2 -- -- -- -- -- -- 

Viola sp 94 2 100 2 81 2 100 2 88 2 88 2 73 3 100 2 67 2 50 2 -- -- 100 2 

Zizia aurea -- -- -- -- -- -- -- -- 75 2 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
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Table 2.3: Relationship of the 14 recognized vegetation types to established NVC associations (http://www.natureserve.org/explorer/, 

September 1, 2010). Relationships are depicted in the table by five symbols: < indicating the type recognized here is included in the 

NVC concept, > indicating the type defined here includes the NVC concept, >< indicating that the two concepts overlap,  ~ indicating 

the type recognized here is approximately equivalent to NVC concept, and = indicating the two concepts are equal to each other. 

 
type N Alluvial vegetation type name relationship NVC community type (with CEGL code) 

I. Small streams and narrow floodplain forests 

Ia. 18 
Liriodendron tulipifera – Liquidambar styraciflua / 
Lindera benzoin/ Amphicarpaea bracteata Forest  

>< 4418 
Liquidambar styraciflua - Liriodendron tulipifera / Lindera benzoin / Arisaema 

triphyllum Forest 

>< 7329 Liquidambar styraciflua - Liriodendron tulipifera / Onoclea sensibilis Forest 

> 7321 
Fagus grandifolia - Acer barbatum / Asimina triloba / Toxicodendron radicans 

/ Carex blanda Forest 

Ib. 6 
Liriodendron tulipifera - Betula nigra / Cornus florida / 

Sanicula canadensis var. canadensis Forest  
< 4418 

Liquidambar styraciflua - Liriodendron tulipifera / Lindera benzoin / Arisaema 
triphyllum Forest 

II. Oak-hickory flats 

IIa. 32 
Liquidambar styraciflua - Quercus nigra / Carpinus 

caroliniana / Mitchella repens Forest  

>< 4419 
Liriodendron tulipifera / Asimina triloba / Arundinaria gigantea ssp. gigantea 

Forest   

>< 7329 Liquidambar styraciflua - Liriodendron tulipifera / Onoclea sensibilis Forest 

IIb. 3 
Liquidambar styraciflua- Quercus pagoda- Carya 

cordiformis/ Asimina triloba/ Arundinaria tecta Forest  
>< 4419 

Liriodendron tulipifera / Asimina triloba / Arundinaria gigantea ssp. gigantea 
Forest   

IIc. 8 
Carya carolinae-septentrionalis - Acer floridanum  / 

Aesculus sylvatica/ Zizia aurea Forest  

> 8487 
Quercus shumardii - Quercus michauxii - Quercus nigra / Acer barbatum - Tilia 

americana var. heterophylla Forest 

>< 7356 
Quercus pagoda - Quercus phellos - Quercus lyrata - Quercus michauxii / 

Chasmanthium latifolium Forest 

III. Large river levee forests 

IIIa. 33 
Ulmus americana - Celtis laevigata/ Lindera benzoin / 

Osmorhiza longistylis Levee Forest 

> 7730 
Platanus occidentalis - Celtis laevigata - Fraxinus pennsylvanica / Lindera 

benzoin - Ilex decidua / Carex retroflexa Forest 

>< 7340 
Platanus occidentalis - Liquidambar styraciflua / Carpinus caroliniana - 

Asimina triloba Forest 

>< 4419 
Liriodendron tulipifera / Asimina triloba / Arundinaria gigantea ssp. gigantea 

Forest 

IIIb. 30 
Fraxinus pennsylvanica- Platanus occidentalis / Acer 

negundo/ Chasmanthium latifolium Levee Forest 
< 7340 

Platanus occidentalis - Liquidambar styraciflua / Carpinus caroliniana - 
Asimina triloba Forest 
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type N Alluvial vegetation type name relationship NVC community type (with CEGL code) 

IV. Bottomland and swamp forests 

IVa. 17 
Quercus (phellos-pagoda-michauxii)- Ulmus 
americana / Ilex decidua / Arisaema triphyllum 
Bottomland Forest  

< 7356 
Quercus pagoda - Quercus phellos - Quercus lyrata - Quercus michauxii / 

Chasmanthium latifolium Forest 

IVb. 24 
Fraxinus pennsylvanica -Acer rubrum-Ulmus 

americana/ Ilex decidua / Saururus cernuus Swamp 
Forest  

~ 6548 
Acer (rubrum, saccharinum) - Fraxinus pennsylvanica - Ulmus americana / 

Boehmeria cylindrica Forest  

IVc. 6 
Fraxinus pennsylvanica -Betula nigra-Platanus 

occidentalis/ Alnus serrulata / Boehmaria cylindrica 
Swamp Forest  

~ 7312 
Betula nigra - Platanus occidentalis / Alnus serrulata / Boehmeria cylindrica 

Forest  

IVd. 3 
Quercus lyrata- Fraxinus pennsylvanica/ Saururus 

cernuus Swamp Forest  
< 7356 

Quercus pagoda - Quercus phellos - Quercus lyrata - Quercus michauxii / 
Chasmanthium latifolium Forest 

IVe. 2 Carya aquatica- Nyssa aquatica Swamp Forest  ~ 7397 Quercus lyrata - Carya aquatica Forest 

V. Riparian herbaceous vegetation 

Va. 10 Justicia americana herbaceous vegetation = 4286 Justicia americana Herbaceous Vegetation 

Vb. 2 
Hymenocallis coronaria - Justicia americana 

herbaceous vegetation 
= 4285 Hymenocallis coronaria - Justicia americana Herbaceous Vegetation 5

0
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Figure 2.1: Distribution of 194 vegetation plots by the five mega vegetation groups. The 

inset map identifies the location of North Carolina in the U.S.A.  In the North Carolina state 

maps, the wide grey lines delineate the three broad physiographic regions of North Carolina 

(left Mountains, center Piedmont, right Coastal Plain). The narrow grey lines delineate river 

basin boundaries; moving from West to East: Catawba, Yadkin- PeeDee, Cape Fear, Neuse, 

and Tar-Pamlico River Basins. The narrow blue lines indicate river courses. 
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Figure 2.2: Dendrogram produced by flexible β cluster analysis (β = 0.25) of 194 vegetation 

plots. Five broader vegetation groups denoted by dashed boxes; roman numerals correspond 

with notation in the text. 
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Figure 2.3: Canonical Correspondence Analysis (CCA) of 182 forest vegetation plots. The 

four broader geomorphic-floristic groups are indicated, where small stream and narrow 

floodplain forests (I) are indicated by filled circles, oak-hickory flats (II) are by asterisks, 

large river levees (III)  by open squares, and bottomland and swamp forests (IV) by filled 

squares. 
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CHAPTER 3 

High vascular plant richness in low order streams of the  

Piedmont region, North Carolina, USA 

 

Abstract 

 Riparian areas are known to be diverse and highly productive ecosystems. However, 

there is substantial debate over the spatial distribution of floodplain plant diversity across the 

riparian landscape. Few studies have explicitly examined the distribution of richness in this 

complex landscape, where small channels merge with larger channels producing a dendritic 

habitat-structure characterized by different sized rivers. This is particularly true in the 

Southeastern United States, where most riparian research has focused on larger-order Coastal 

Plain Rivers. In this chapter, I explore patterns of plant richness across rivers of different 

sizes in the Piedmont riparian landscape. I examine variation in total species richness and 

richness of species groups defined by nativity, growth habit, and habitat affinity across 

stream orders, in addition to testing for correlations between richness and environmental site 

descriptors.  

 Floodplain plant richness is highest in the smaller-order Piedmont rivers, whereas the 

proportion of exotic species and native species associated with bottomland-habitat increases 

with  stream order. Total richness is also significantly related to floodplain width and soil 

texture variables, both of which reflect hydroperiod. Exotic richness is positively correlated 
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with soil fertility (pH). These results suggest that riparian richness is driven by local 

hydrologic and environmental settings, in addition to dispersal along the riparian corridor. 

Although native richness is negatively related to river size, the increasing proportion of 

exotic and native species associated with bottomland-habitat with increasing stream order 

suggests that these species accumulate in part as a consequence of the larger upstream 

propagule source. Significant correlations between richness and edaphic variables, however, 

suggest that local site conditions also influence riparian richness patterns. 

Keywords:  riparian vegetation, plant communities, spatial patterns, Southeastern United 

States, exotic plant species, stream order; dendritic landscape
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Introduction 

 Riparian areas are known to be diverse and highly productive systems, 

functioning as both boundaries between terrestrial and aquatic ecosystems and corridors 

across the natural landscape, controlling the flux of energy, nutrients, and biota (Gregory 

et al. 1991; Naiman et al. 1993; Johansson et al. 1996; Naiman and Decamps 1997; Ward 

et al. 2002). The vascular plant communities of riparian corridors are unusually species 

rich, and riparian richness patterns have been the subject of many studies (Naiman et al. 

1993; Nilsson et al. 1994; Brown and Peet 2003; Goebel et al. 2003; Mouw and Alaback 

2003). However, there is still substantial debate over the spatial distribution of plant 

richness in these systems.  Studies that have examined richness along the main channel of 

large rivers have found a variety of patterns, including a peak in native plant richness at 

the mid-reaches (Nilsson et al. 1989; Planty-Tabacchi et al. 1996), a monotonically 

increasing trend in native richness from the headwater regions to the river mouth (Gould 

and Walker 1997), and decreasing richness in downstream sections of the main stem 

(Renofalt et al. 2005).  Contrary to the patterns exhibited by native taxa, some of the 

same studies that found decreasing native richness downstream found that exotic plant 

richness increases downstream (Planty-Tabacchi et al. 1996; Renofalt et al. 2005), 

suggesting that distinct plant groups may be distributed differently across the riparian 

landscape. 

 Many studies of riparian richness have focused on longitudinal patterns along the 

main river channel, and the diversity in the floodplain communities of these larger-order 

rivers is well documented (Nilsson et al. 1989; Tabacchi et al. 1996; Tabacchi and 

Planty-Tabacchi 2005; Mouw et al. 2009). However, real rivers are not simple linear 
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systems. Instead, they generally form a dendritic pattern, with small channels joining 

larger channels to create a complex riparian landscape. Much less is known about the 

biotic communities and processes associated with riparian zones bordering smaller 

streams despite the fact that various authors have argued for the importance of unique 

habitats in the headwater regions of the riparian landscape, which are home to rich and 

distinctive biological communities (Richardson et al. 2005; Meyer et al. 2007). 

Additionally, few studies have explicitly examined the distribution of richness in the 

complex riparian landscape, spanning both smaller tributaries and larger channels (except 

see Hupp 1986; Nilsson et al. 1994; Khomo and Rogers 2009). This is particularly true in 

the Southeastern U.S., where studies of alluvial systems have primarily focused on the 

larger coastal plain rivers, overlooking the smaller rivers of the inland physiographic 

provinces (Wharton et al. 1982; Kellison et al. 1998; Townsend 2001). 

 In this paper, I explore spatial patterns of vascular plant richness and 

environmental correlates in riparian landscapes of the Southeastern United States. I focus 

on the distribution of richness across a range of river sizes in five Piedmont river basins. 

In studies of large-order rivers, richness has been found to correlate with various 

physiographic, hydrologic, and local environmental variables including elevation, 

distance from river mouth, distance to channel, floodplain width, and soil texture and 

nutrients (see Nilsson et al. 1989; Hupp and Osterkamp 1985; Tabacchi et al. 1996; 

Turner et al. 2004; Renofalt et al. 2005; Mouw et al. 2009). I also explore how these 

variables relate to plant richness and river size in Piedmont rivers. Additionally, since 

species groups with different attributes may exhibit dissimilar spatial patterns and suggest 
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mechanisms driving these patterns, I also investigate richness patterns of species groups 

defined by nativity, growth habit, and habitat affinity.  

 Some studies of riparian plant richness have focused on the vegetation of the river 

margin (annual floodplain sensu Gould and Walker 1997; Nilsson et al. 1989; Nilsson et 

al. 1994; Renofalt et al. 2005), while others have expanded the focal spatial extent to 

include the whole floodplain (Gould and Walker 1997; Turner et al. 2004; Predick and 

Turner 2008; and others). This study examines vascular plant richness within the larger 

riparian corridor. I follow the definition of Naiman et al. 1993, where the riparian 

corridor “encompasses the stream channel and that portion of terrestrial landscape from 

the high water mark towards the uplands where vegetation may be influence by elevated 

water tables or flooding, and by the ability of soils to hold water.” Previous studies have 

found richness can vary laterally across the width of the floodplain as a result of the 

differential influence of hydrologic and environmental variables (Brown and Peet 2003; 

Goebel et al. 2003; Augiar et al. 2006; Mouw et al. 2009); my primary focus here, 

however, is the longitudinal distribution of richness along rivers reaches of different size 

across the dendritic riparian landscape.  Specifically, I address three questions in this 

paper. (1) How is plant species richness distributed across rivers of various sizes in the 

riparian landscape of the North Carolina Piedmont?  (2) How do different species groups 

contribute to this pattern? (3) What environmental factors drive species richness in this 

system, and how are they related to river size? 

 

Methods 

Study area 
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 The study area spans five North Carolina river basins: the Catawba, Yadkin, Cape 

Fear, Neuse, and Tar-Pamlico. Study sites were restricted to the Piedmont portion of each 

river basin, as defined by mapped geologic and soil units. Piedmont bedrock is largely 

composed of erosion-resistant metamorphic and igneous rocks, although a large 

southwest-northeast trending rift basin composed of Triassic sedimentary rock constitutes 

a prominent geologic feature of the lower Piedmont (Benedetti et al. 2006). Where 

Piedmont rivers cross the more resistant metamorphic and igneous bedrock, the river 

valley is relatively narrow and incised, whereas in the Triassic Basins, softer sedimentary 

rock and a long history of geomorphic development on an ancient landscape have 

resulted in wider floodplains.  

 The vegetation of the Southeastern United States floodplains is dominated by 

deciduous hardwood species (see Hodges 1998 and Kellison et al. 1998). There has been 

a long history of anthropogenic disturbance in the region, and the disturbances most 

likely to have affected riparian vegetation include sediment deposition, damming, and the 

subsequent regulation of downstream flow (Walter and Merritts 2008). The five rivers 

included in this study have all been influenced to some degree by these wide-spread 

disturbances, although I made an effort to exclude the most highly-altered regions of 

riparian vegetation from the dataset.  

  The rivers included in this study ranged in size from 1
st
 to 7

th
 order, with mean 

annual discharge ranging from < 1 to 220 cubic meters per second (cms). Watershed area 

ranged from 2.29 to 17,820 km
2
. Where Piedmont rivers cross metamorphic and igneous 

bedrock the associated 100-year floodplain is relatively narrow (x̄ = 340 m; 1
st
 to 3

rd
 

quartile range: 150 - 450m), whereas the floodplains of the Triassic Basins are wider (x̄ = 
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877.4m; 1
st
 to 3

rd
 quartile range: 500 - 1150m), with more variation in geomorphic 

setting.  

Field methods 

 Sites were surveyed May through August in 2006, 2007, and 2008. Areas of high-

quality natural vegetation were identified with assistance from state agencies such as the 

Natural Heritage Program and non-profit organizations, particularly local land trusts such 

as the Triangle Land Conservancy and the Land Trust for Central North Carolina. To 

various degrees, these organizations track natural areas of the state and were able to assist 

in locating and providing access to many of these sites. I selected sample sites in order to 

ensure representation from a broad geographic area within each of five river basins and to 

provide a good representation of various geologic features, geomorphic setting, stream 

order, and watershed area. In total, I established and recorded one hundred and eighty-

two vegetation plots (Figure 3.1).  

 Vegetation was sampled following the Carolina Vegetation Survey (CVS) 

protocol (Peet et al. 1998). Vegetation plots were haphazardly established in areas of 

high-quality, homogenous vegetation. Plots ranged in size from 400m
2
 (typically 20m × 

20m) to 1000m
2 

(typically 20m × 50m), depending upon the width of the floodplain; for 

consistency, I restricted the dataset for this study to the intensively sampled 400m
2
 area. 

All plots were located within the one-hundred year floodplain based upon NC floodplain 

maps and local vegetation composition; plots determined to be outside of the one-

hundred year floodplain after field data collection were excluded from analyses. Each 

plot included four intensively sampled 100m
2
 modules (10m × 10m), with a smaller-scale 

observation in two corners encompassing a 10m
2 

nested sample area (Figure 3.2). 
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 Plant taxa were identified to the finest taxonomic resolution possible. The 

definition of a “species” follows Weakley 2010, except for taxa that were impossible to 

correctly identify to the species-level as a result of the timing of field sampling and lack 

of floral parts. These taxa were grouped into lower resolution complexes (examples: 

Rubus spp., Oxalis spp., Carex [amphibola+grisea+corrugata]; see Appendix 8), and 

each complex was treated as an individual taxon.  Taxonomy was reviewed and 

standardized prior to analysis to account for differences due to plant identifications by a 

variety of individuals, both in the field and in the lab.  

 Observed taxa were partitioned into groups according to plant attributes. Three 

attributes were used to group species: (i) nativity (2 groups: exotic or native), (ii) growth 

form (6 groups: tree, shrub, subshrub, vine, forb, graminoid), and (iii) typical habitat 

association (8 groups: bottomland, upland, wet acidic, woodland, dry lowland acidic, 

mesic lowland, rich cove, ruderal), according to information obtained from regional 

floras, dissertations, and plant databases (Weakley 2005; USDA PLANTS 2010). Only 

native species were classified to a typical habitat association, and only habitats with a 

minimum of 10 associated species were included in the analyses. Classification of species 

to a habitat association follows the “90% rule,” i.e., that 90% of the population of the 

taxon occurs in the habitat and up to 10% can occur in other habitats (Weakley 2005). 

The eight habitat-associations are defined as: bottomland, floodplains of large streams 

and rivers; upland, upland forests;  wet acidic, boggy habitats; woodland, sunny habitats, 

including woodlands, glades, and prairies; dry lowland acidic, dry and dry-mesic forests 

of the Piedmont and less typically upper Coastal Plain, dominated by oaks and pines, and 

usually with extensive and diverse shrub cover of heaths; mesic lowlands, mesic lower 
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slopes and flats along small streams in the Piedmont and upper Coastal Plain, sometimes 

extending into mesic habitats in the mountains; rich coves, nutrient-rich, mesic forests of 

moderately high to low elevations in the Blue Ridge and the Blue Ridge escarpment,  

often occurring in “coves” or other “gathering” landforms, but can also be on open slopes 

or along small streams over the appropriate substrates; and ruderal, man-altered habitats. 

Taxa lacking attribute information were excluded from the richness by attribute-group 

analyses (see below). Composite taxa that spanned several attribute groups were also 

removed for these analyses (example: Solidago spp. complex with different habitat 

associations). 

 Environmental data collected in the field included percent slope and soil samples 

analyzed for texture and nutrient content. Soil samples included one surface sample from 

the top 10 cm of mineral soil in each intensive module, for a total of four surface 

samples, and one sub-surface sample from the center of each plot, 50 cm below the 

ground surface. Samples were analyzed by Brookside Laboratories, Inc., New Oxford, 

OH using the Mehlich 3 extraction method (Mehlich 1984). Exchangeable Ca, Mg, and 

K, pH, percent base saturation, extractable micronutrients (Fe, Cu, Zn, and Al), 

extractable P, bulk density, and percent organic matter were reported. Texture analyses 

included percent clay, silt, and sand.  Samples from the four intensive modules were 

averaged for analysis.  

 Following field sampling, plot locations were mapped in a geographic 

information system (GIS) and additional environmental variables were calculated for 

each sample. These included stream order, cumulative drainage area, flow volume, and 

elevation. GIS analyses were based upon digital elevation models from the USGS 
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National Elevation Dataset (NED; http://ned.usgs.gov/), surface water themes from the 

USGS National Hydrography Dataset (NHD; http://nhd.usgs.gov/), and additional 

hydrologic variables from the NHDPlus dataset (http://www.horizon-

systems.com/nhdplus/).  NED data were downloaded at a 30m resolution, and NHD data 

were downloaded at the medium resolution (1:100,000-scale).  Cumulative drainage area 

and Strahler stream order were derived using the ArcHydro toolset (Strahler 1952). Flow 

volume estimates for flowlines in the stream network were extracted from NHDPlus data. 

Digital floodplain maps delineating the 100- year floodplain were downloaded from the 

North Carolina Floodplain Mapping Program (http://www.ncfloodmaps.com/).  

Quantitative analyses 

 I calculated total species richness at three scales: 10m
2
, 100m

2
 and 400m

2
. I 

performed regression analyses to test for a relationship between species richness and 

three hydrologic variables reflecting river size and location in the riparian network: 

stream order, cumulative drainage area, and flow volume. As predicted by Shreve (1966), 

the three hydrologic variables were highly correlated, and I present analyses related only 

to stream order. Since the response data consisted of discrete species counts, I explored 

both normal and negative binomial regression models. Model evaluation by AIC 

suggested no difference in fit between the two models; mean-variance relationships 

suggested that normal models were appropriate for these data. Richness patterns were 

qualitatively equal at all three spatial scales, so I limited further analyses to the 400m
2
 

scale. I tested for both linear and quadratic relationships in all regression analyses. 

 To explore how different species groups influence riparian richness patterns, I 

also used regression models to examine the distribution of richness in the three sets of 

http://nhd.usgs.gov/
http://www.horizon-systems.com/nhdplus/
http://www.horizon-systems.com/nhdplus/
http://www.ncfloodmaps.com/
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species groups across stream orders, where groups were defined by nativity, growth form, 

and habitat affinity. I used two measures to examine the relationships between group 

richness and stream order: total richness and proportion of total richness in each category.  

For each group, I tested for a relationship between both floristic measures and stream 

order. Since there were more categories of growth form and habitat association, I also 

calculated and graphed the average total richness per plot and average proportion of 

richness contributed by species groups per plot to visually illustrate the distribution of all 

growth form and habitat association groups across stream orders. To examine the 

diversity of plant attribute groups found at each stream order, I calculated Simpson 

diversity indices using the average richness of growth form and habitat association 

groups. 

 I tested for correlations between 15 quantitative environmental variables and 

species richness using Pearson correlation coefficients. Environmental variables included 

3 hydrologic variables (stream order, cumulative drainage area, and flow volume), 5 

landscape descriptors (elevation, distance to mouth, slope, floodplain width, and distance 

to channel), and 7 edaphic variables (pH, % organic matter, bulk density, base saturation, 

Ca/Mg ratio, % sand, and % clay). To explore how environmental variables vary across 

the riparian landscape, I also tested for correlation between each of the environmental 

variables and stream order. 

 All analyses were performed in R (R Development Core Team 2010). Negative 

binomial models were fitted in the MASS package (Venables and Ripley 2002). Diversity 

indices were calculated using the vegan package (Oksanen et al. 2010).  
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Results 

Floristic overview 

 I recognized a total of 530 vascular plant taxa in 121 families.  Exotic species 

comprised 6% of the dataset (34 species were identified as non-native according to 

USDA Plants Database).  The majority of taxa in the dataset were forbs (48%), followed 

by graminoids (19%), trees (13%), shrubs (10%), vines (8%), and subshrubs (< 2%). The 

most common habitat associations were bottomland (28%) and lowland mesic (14%) 

habitats, followed by upland (10%), ruderal (8%), wet acidic (7%), dry lowland acidic 

(6%), woodland (5%), and rich cove (4%). The remaining 18% of species in the dataset 

either were associated with a habitat-type rare in this dataset or were not classified to a 

habitat due to a lack of sufficient data on the species.  

Spatial richness patterns 

 Total species richness at the three spatial scales decreased with increasing stream 

order (400m
2
: r

2 
= 0.09, P < .0001; 100m

2
: r

2 
= 0.07, P < .001; 100m

2
: r

2 
= 0.06, P < .01; 

Figure 3.3). Native species richness showed a significant negative relationship with 

increasing stream order (r
2
= 0.10, P < .0001), whereas exotic species did not exhibit any 

significant relationship with stream order (P = .25; Figure 3.4). The proportion of exotic 

species, on the other hand, increased with stream order (r
2
= 0.07, P < 0.001; Figure 3.5), 

whereas the proportion of native species declined (r
2
= 0.06, P < 0.001; Figure 3.5). 

 Forb species richness showed the strongest decrease with increasing stream order 

(y = 23.2 -1.45x, r
2
= .08, P < .001; Figure 3.6), although tree, subshrub, and graminoid 

richness also significantly decreased with increasing stream order (Figure 3.6). I found no 

significant relationship between species richness in the other growth form groups and 
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stream order.  The proportion of forb, vine, and graminoid richness vary quadratically 

with stream order, with the lowest proportion of forb richness in the mid-order streams 

(r
2
 = .13, P < 0.001) and the highest proportion of vine and graminoid richness in the 

middle to higher order streams (vine: r
2
 = .15, P < 0.003; graminoid: r

2
 = .03, P = 0.023; 

Figure 3.7). Proportion of subshrubs decreased monotonically with stream order.  

Simpson diversity indices for growth form diversity peaked in the mid-sized rivers 

(Figure 3.8). 

 Species richness associated with upland, wet acidic, woodland, dry lowland 

acidic, mesic lowland, and rich cove habitats all decreased significantly with increasing 

stream order (Figure 3.9). Neither richness of species associated with bottomland habitats 

nor ruderal habitats was significantly related to stream order. The proportion of richness 

of six habitat association groups was significantly related to stream order (bottomland; 

upland; wet acidic; dry lowland acidic; mesic lowland; rich cove; Figure 3.10). However, 

the bottomland habitat associated group was the only group that significantly increased in 

the proportion of richness with increasing stream order (y = .35 + 0.02x, r
2
= .10, P < 

0.0001; Figure 3.10). Simpson diversity indices were highest in the lower order streams 

for the habitat association groups (Figure 3.11). 

Relationship between vegetation and environment 

 The strongest correlation between total species richness and the environment was 

a negative correlation with floodplain width and clay content (floodplain width: r = -.45, 

P <  0.0001; clay: r = -.41, P <  0.0001; Table 3.1). Exotic richness, on the other hand, 

was positively correlated with edaphic variables associated with soil fertility, including 

pH, Ca/Mg ratio, and base saturation (pH: r = .34, P <  0.001; Ca/Mg: r = .40, P < 0.001; 
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base saturation: r = .35, P < 0.001; Table 3.1). Forb, tree, and upland richness 

correlations were very similar to those of the whole floristic dataset. Bottomland species 

richness was not significantly correlated to any environmental variables. Stream order 

was strongly correlated with the two additional hydrologic variables (cumulative drainage 

area: r = .70, P <  0.001; flow volume: r = .77, P <  0.001; Table 3.1) and was not 

significantly correlated with any of the soil fertility variables. Stream order was 

positively correlated with floodplain width and negatively correlated with elevation and 

distance to mouth (floodplain width: r = .33, P <  0.001; elevation: r = -.19, P <  0.05; 

distance to mouth: r = -.17, P <  0.05; Table 3.1). 

 

Discussion 

Floristic patterns 

 Piedmont floodplain plant species richness declines with increasing river size. 

This pattern was qualitatively consistent across all spatial scales examined in this study 

(10m
2
, 100m

2
 and 400m

2
) and also when constrained to native taxa. However, in contrast 

to native diversity patterns, I found that larger-order rivers had a greater proportion of 

exotic plant taxa than smaller rivers. 

 The negative relationship between native species richness and river size found in 

Piedmont rivers contradicts earlier studies of riparian vegetation patterns in Europe 

(Nilsson et al. 1989; Nilsson et al. 1994; Planty-Tabacchi 1996).  These studies found a 

mid-reach peak in richness along the larger order, main channel and higher richness in 

the main channel, when compared with smaller tributaries. However, results of these 

studies may not be directly comparable to the results presented here as the European 
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studies only examined richness in the narrow belt of streamside vegetation, known as the 

annual floodplain. On the other hand, studies that have focused on patterns across the 

larger riparian corridor in both arid and arctic systems have also found richness to 

increase in downstream riparian areas (Bendix 1997; Gould and Walker 1997). 

Alternatively, a more recent study of boreal rivers found a decrease in native species 

richness from the headwater to the coast, whereas ruderal species richness increased 

towards the mouth (Renofalt et al. 2005), results that are more consistent with those 

reported here. The fact that spatial richness patterns appear so variable across river 

systems in different geographic-climatic regions highlights the inherent complexity of 

riparian landscapes, where a wide variety of processes, many of which are unique to 

riparian systems, influence species richness. These unique riparian processes may include 

dispersal in a dendritically-arranged habitat, hydrologic movement of sediment and 

organisms, and seasonal flooding disturbances.  

 In this study, forb richness had the strongest negative relationship with stream 

order. Since forbs were the most common species in our dataset (48% of taxa), a strong 

decrease in forb richness substantially contributed to the overall decline in richness with 

increasing stream order (although tree, shrub, and graminoid richness also declined with 

increasing stream order). The proportion of forb taxa was lowest in the mid-order rivers, 

resulting in a greater diversity of growth forms. The proportion of vine taxa was highest 

in the mid to larger stream orders, where vines are known to be an important component 

of bottomland forest communities (Allen et al. 2007). Although the proportion of 

graminoid and subshrubs was also significantly related to stream order, the regression 

models explained only a small amount of the variation of these species groups. 
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 Upland habitat species richness was highest in the small order streams, whereas 

the proportion of taxa associated with bottomland habitats was highest in the large-order 

streams. These results are consistent with earlier studies that found both a larger 

proportion of non-riparian species in areas of spatially constrained floodplain habitat, 

similar to small order stream floodplains, and decreased abundance of non-riparian 

species in downstream riparian areas (Tabacchi et al. 1996). The floodplain plant 

communities of smaller-order streams were also more diverse with regard to habitat 

associations of the resident species when compared to communities of large-order 

streams, where over 50% of species were associated with bottomland habitat. The 

decrease in bottomland-habitat associated species and increased diversity in the small 

order streams may reflect isolation from other riparian habitat, which might reduce 

dispersal of alluvial species into small-stream riparian areas. Additionally, small-stream 

habitats may be less affected by typical alluvial dynamics, such as flooding events, 

facilitating the long-term coexistence of non-alluvial species with the more typical 

alluvial species. Where coalescing rivers grow larger and fluvial landforms are better 

developed, species physiological tolerances to riparian processes like flooding may 

become more important, resulting in a species pool increasingly limited to alluvial 

species. In these larger-river floodplains, lower species richness may be a result of this 

physiological, flood-tolerance filter.  

Relationships to the environment 

 Native and total richness exhibited similar relationships to environmental 

variation in the Piedmont riparian landscape. Richness was lowest in the wide 

floodplains, larger order streams, and soils high in clay content. In the Piedmont riparian 
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landscape, fine textured soils most commonly occur on the low areas of wide floodplains 

where there are long, low-energy floods. The sustained flooding at these sites is stressful 

to many plant species and precludes species not adapted to these conditions from long 

term persistence. Alternatively, richness was positively correlated with sand and 

elevation. Sandy soils of the Piedmont riparian landscape frequently occur in the higher-

elevation, small-stream forests and levee-flat geomorphic sites, where flooding is more 

rare and of short duration. These results are consistent with previous work in riparian 

systems that has also documented a significant relationship between richness and both 

substrate particle size and flow energy (Nilsson et al. 1989; Bendix 1997; Mouw et al. 

2009).   

 Unlike native richness, however, exotic species richness was positively correlated 

with soil fertility, represented by pH, base saturation, and Ca/Mg ratio.  Other studies in 

alluvial systems have also found soil pH, as a proxy for fertility, to have a positive effect 

on exotic species richness (Brown and Peet 2003; Vidra et al. 2006), whereas total 

richness is weakly or negatively correlated with pH (Renofalt et al. 2005; Vidra et al. 

2006; however, Gould and Walker 1997 found a strong positive correlation between 

native richness and soil pH in an arctic riparian system).  Additionally, recent studies in 

grassland and deciduous forest ecosystems have found a strong relationship between soil 

fertility and exotic richness (Thompson et al. 2001; Huebner and Tobin 2006; Huebner et 

al. 2009). These results are consistent with hypotheses that exotic invasions are promoted 

by resource availability and suggest that nutrient rich soils may be more prone to exotic 

invasion.  
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 Stream order was significantly correlated with environmental variables that reflect 

expected changes in the riparian landscape as stream order increases. Stream order was 

positively correlated with cumulative drainage area, flow volume, and floodplain width, 

whereas it is negatively correlated with elevation and distance to the mouth. The positive 

correlation with floodplain width is partly due to the prominence of Triassic Basin 

bedrock the downstream, southeastern regions of the Piedmont river basins. The Triassic 

Basins sedimentary bedrock is less resistant than the bedrock of the inner Piedmont and 

allows erosion of wider floodplains in the same downstream region where the main 

channel of the Piedmont rivers has become a high-order river.   

Synthesis: spatial patterns of alluvial plant community richness 

  This study demonstrates that the flora associated with different sized rivers in the 

Piedmont riparian landscape is distinctive. The flora of larger rivers is not simply a 

collection of the flora in smaller tributaries, a conclusion well supported by other riparian 

studies (Hupp 1986; Nilsson et al 1994; Chapter 2).  The proportion of species groups 

based on nativity, life form, and habitat affinity all varied with stream order, as did total 

richness at three spatial scales. Additionally, none of our soil texture and chemistry 

variables were related to stream size, suggesting that they cannot explain the observed 

variation in richness across stream order. 

 These results are consistent with the view of riparian areas as both boundaries and 

corridors. The boundary concept is most appropriate in the small-order stream, headwater 

regions where the influence of surrounding uplands on the riparian flora is strongest. In 

contrast, the concept of the riparian zone acting as a corridor is more appropriate in the 

larger-order rivers where the influence of upstream riparian area is greatest. In low-order 
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streams, propagule inputs of riparian species are limited by a small upstream watershed 

area. This is evident in the results presented here, where the lowest proportion of 

bottomland-associated species occurred in the small-stream floodplain forests, but total 

richness was high in these sites, augmented through floristic contributions from the 

surrounding uplands.  In contrast, in larger-order rivers, the flora had a higher proportion 

of both exotic species and species associated with alluvial habitats, suggesting that these 

sites have accumulated alluvial species and exotic species as they move downstream from 

more extensive upstream watershed.   

 Downstream dispersal has commonly been proposed as an explanation for 

riparian diversity patterns (Johansson et al. 1996; Andersson et al. 2000; Renofalt et al. 

2005); this study suggests that both location in the riparian landscape, which is related to 

downstream dispersal, and local environmental conditions are important drivers of 

richness in Piedmont riparian systems. Richness was significantly related to variables 

reflecting river size and position in the riparian landscape (stream order, upstream 

drainage area, elevation), but was also influenced by local edaphic conditions. Soil 

texture reflects site flood energy, with long, low-energy flood events resulting in fine-

textured sediment deposition. A strong negative correlation between richness and fine-

textured sediments suggests that local hydrology influences species richness. Soil nutrient 

variables were positively correlated to exotic richness further suggesting that local 

resource availability plays a role in driving richness patterns. 

 These results have implications for conservation and restoration practices in 

riparian areas in the Southeastern U.S. Other authors have argued for the important 

contribution of small-order and headwater streams to regional riparian diversity (Meyer 
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et al. 2007). This study supports this position by elucidating the spatial distribution of 

diversity across the riparian landscape and highlighting the importance of taking a 

landscape perspective in riparian conservation efforts. Streams of different sizes 

contribute differently to the regional diversity of these systems, and this study suggests a 

stronger emphasis on conservation and restoration of small streams and tributaries is 

appropriate. 
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Table 3.1. Correlations between richness and 15 environmental variables (Pearson‟s correlation coefficients). Table also includes 

correlation between stream order and the environmental variables. Variable codes include: Cum. drain.= cumulative drainage, Flow 

vol.= flow volume, Elev.= elevation, Dist. to mouth= river distance to mouth, Dist. to channel= distance to river channel, O.M.= % 

organic matter, Base. sat.= base saturation.  Significance codes: *, P < 0.05; ***, P < 0.001. 

 

Richness 
Stream 
order 

Cum. 
drain. 

Flow vol. Elev. 
Dist. to 
mouth 

Slope 
Floodplain 
width 

Dist. to 
channel 

Sand Clay pH O.M. Dens. Base sat. Ca/Mg 

Total  -0.29*** -0.20* -0.27*** 0.22* 0.13 0.20* -0.45*** -0.22* 0.27*** -0.41*** 0.07 -0.13 0.24* 0.08 -0.12 

Native  -0.31*** -0.22* -0.28*** 0.19* 0.10 0.19* -0.44*** -0.21* 0.26*** -0.38*** 0.04 -0.11 0.21* 0.04 -0.17 

Exotic 0.09 0.07 -0.01 0.15* 0.12 0.04 -0.31*** -0.19* 0.21* -0.39*** 0.34*** -0.21* 0.25* 0.35*** 0.40*** 

  
               

Forb  -0.30*** -0.09 -0.25* 0.39*** 0.31*** 0.25* -0.44*** -0.22* 0.17* -0.30*** 0.17* -0.07 0.21* 0.17* 0.14 

Graminoid  -0.19* -0.20* -0.18* -0.04 -0.09 -0.03 -0.22* -0.03 0.11 -0.11 -0.11 -0.08 0.16* -0.10 -0.26*** 

Shrub  -0.06 -0.05 -0.09 0.01 -0.07 0.11 -0.16 -0.11 0.20* -0.32*** 0.12 -0.08 0.07 0.11 -0.09 

Subshrub  -0.24* -0.25* -0.28* 0.14 0.08 0.16* -0.26*** -0.06 0.24* -0.26*** -0.10 -0.09 0.11 -0.10 -0.31*** 

Vine  0.02 -0.11 -0.05 0.04 0.00 0.12 -0.16* -0.16* 0.26*** -0.33*** 0.11 -0.08 0.14 0.11 -0.09 

Tree  -0.24* -0.21* -0.20* 0.04 -0.02 0.13 -0.40*** -0.23* 0.25* -0.4*** 0.01 -0.13 0.13 0.02 -0.17* 

  
               

Bottomland  0.03 -0.07 0.08 -0.08 -0.11 -0.10 -0.10 -0.04 -0.02 0.05 0.11 0.02 -0.03 0.11 -0.02 

Upland forest  -0.30*** -0.25* -0.31*** 0.17* 0.09 0.19* -0.33*** -0.20*** 0.30*** -0.38*** -0.09 -0.09 0.20* -0.09 -0.28*** 

Wet acidic  -0.21* -0.20* -0.16* 0.03 0.00 -0.14 -0.01 0.26*** 0.04 0.15* -0.36*** 0.16* -0.17* -0.35*** -0.30*** 

Woodland  -0.17* -0.09 -0.12 0.07 -0.02 0.04 -0.31*** -0.17* 0.14 -0.25* -0.03 -0.14 0.20* -0.02 -0.22* 

Dry lowland acidic -0.27*** -0.16* -0.26*** 0.13 0.10 0.16* -0.28*** -0.12 0.19* -0.26* -0.15* -0.10 0.15 -0.15* -0.28*** 

Mesic lowland  -0.27*** -0.17* -0.28*** 0.22* 0.13 0.25* -0.49*** -0.30*** 0.28*** -0.54*** 0.27*** -0.19* 0.27*** 0.28*** 0.11 

Ruderal  -0.02 0.13 0.01 0.15* 0.15* 0.02 -0.09 -0.11 0.06 -0.01 0.08 -0.03 0.15 0.09 0.23* 

Rich cove  -0.23* -0.08 -0.24* 0.21* 0.25* 0.52*** -0.20* 0.00 0.10 -0.22* 0.02 -0.06 0.17* 0.03 -0.08 

  
               

Stream Order 1*** 0.70*** 0.77*** -0.19* -0.17* -0.12 0.33*** -0.04 -0.02 0.08 0.11 -0.06 0.03 0.10 0.05 

7
7
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Figure 3.1: One hundred and eighty two vegetation plots across five river basins in the 

North Carolina Piedmont. Moving West to East, basins include the Catawba, Yadkin, 

Cape Fear, Neuse, and Tar-Pamlico. All plots are located within the one-hundred year 

floodplain of the nearest river channel. 
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Figure 3.2: Nested quadrat vegetation plot design.  400m
2
 plots of 20 × 20m included 4 

modules of 10 × 10m, each with 2 nested subplots of 10m
2
 (3.16 × 3.16m).  
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Figure 3.3: Total species richness across stream order at three scales: (a) 400m

2
, (b) 

100m
2
, and (c) 10m

2
. The equations for the regression lines are: (a) y = 74.5 – 3.10x; P < 

0.0001; (b) y = 43.7 – 1.83x; P < 0.001; (c) y = 23.1 - .96x; P < 0.002. 

(a) 

(b) 

(c) 

r2 = 0.09 

r2 = 0.07 

r2 = 0.06 
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Figure 3.4: Total native species richness and exotic species richness across stream order 

(400m
2
). Native species richness varies linearly with stream order (y = 70.67 – 3.16x; P < 

0.0001). Exotic species richness is not significantly related to stream order (P = .25). 

 
Figure 3.5: Proportion of native and exotic flora across stream order (400m

2
). Both 

proportion of native and exotic species are linearly related to stream order (native 

equation: y = .95 - .0045x; P < 0.001; exotic equation: y = .04 + .0048x; P < 0.001). 
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Figure 3.6:  Growth form group richness with significant linear relationships to stream 

order (Tree: y = 19.18 - .77x, r
2
 = .06, P < 0.001;  Subshrub: y = 2.72 - .20x, r

2
 = .06, P < 

0.002;  Forb: y = 23.57 – 1.50x; r
2
 = .08, P < 0.0001;  Graminoid: y = 14.34 - .60x, r

2
 = 

.03, P < 0.001).  
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Figure 3.7: Proportion of growth form richness with significant relationships to stream 

order (Forbs: y = .44 - .09x + .01x
2
, r

2
 = .13, P < 0.001;  Graminoids:  y = .15 + .03x - 

.003x
2
, r

2
 = .03, P = 0.023; Subshrubs: y = .04 - .002x, r

2
 = .03, P = 0.028;  Vines: y =.10 

+ .03x - .003x
2
, r

2
 = .15, P < 0.003). 
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Figure 3.8: Richness (a) and proportion (b) of all growth form groups across stream 

order, with Simpson Diversity Index for each stream order. Error bars denote standard 

error.  

.764         .769            .783             .785             .786              .788              .768  

.764         .769            .783             .785             .786              .788              .768  
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Figure 3.9:  Richness of six habitat association groups is linearly related to stream order. 

Equations for the regressions lines are: upland: y= 15.28 - 1.0x; r
2
= .09, P < 0.0001; wet 

acidic: y= 3.06 - .26x,  r
2
= .04, P < 0.006; woodland: y= 2.53 - .18x; r

2
= .03, P = 0.0259; 

dry acidic lowland: y= 3.34 - .37x; r
2
= .08, P < 0.002; lowland mesic: y= 14.78 -1.06x; 

r
2
= .07, < 0.0001; and rich cove: y= 1.23 - .17x; r

2
= .06, P < 0.002). 
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Figure 3.10: Proportion of richness of six habitat association groups significantly related 

to stream order. Four habitat association groups declined with increasing stream order 

(upland forest: y = .21 - 0.01x, r
2
= .03, P = 0.012; dry lowland acidic: y = .05 - 0.005x, 

r
2
= .06, P < 0.001; lowland mesic forest: y = .20 - 0.01x, r

2
= .04, P = 0.009; and rich 

cove: y = .012 - 0.001x, r
2
= .02, P = 0.037). The proportion of wet acidic species peaked 

at intermediate stream order (wet acid: y = .02 + 0.01x - 0.001x
2
, r

2
= .05,  P = 0.042). 

Only the proportion of bottomland species increased with increasing stream order (y = .35 

+ 0.02x, r
2
= .10, P < 0.0001).  
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Figure 3.11: Richness and proportion of species in each habitat association group across 

stream order, with Simpson Diversity Index for each stream order. Error bars represent 

standard error. 

  .798           .788                 .743               .724              .732               .742              .709
  

  .798           .788                 .743               .724              .732               .742              .709
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CHAPTER 4 

Riparian connectivity and the role of niche-assembly and dispersal-

assembly processes in shaping alluvial metacommunity composition 

 

Abstract 

 Although the metacommunity concept has received much attention as a framework in 

which to examine niche-assembly and dispersal-assembly processes, the relative influence of 

these processes remains a topic of debate. Niche-assembly and dispersal-assembly concepts 

can be interpreted as reflecting a gradient in connectivity, where higher connectivity is 

expected to result in local composition that closely tracks the abiotic environmental setting, 

whereas lower connectivity results in composition more strongly shaped by dispersal 

limitation and spatial structure. Metacommunity connectivity reflects both landscape-level 

attributes and organism-level traits. 

In this chapter, I investigated how riparian connectivity affects the relative role of 

niche-assembly and dispersal-assembly processes in shaping alluvial plant communities. 

Whereas many metacommunity studies fail to account for the true habitat configuration and 

dispersal pathways in natural systems, I also explored two spatial models for the riparian 

system: one representing overland dispersal and the other representing dispersal in the 

dendritic riparian network.  Since floodplain habitat is connected along the course of a river, 

I expect that dispersal limitation will not play a strong role in determining compositional 
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variation, and instead niche-assembly processes will dominate in these riparian plant 

communities. However, I also expect that the explanatory power of environmental variables 

will be stronger at higher connectivity. Finally, I hypothesize that accounting for network 

distance, expected to be an important dispersal pathway in riparian systems, will be 

important for identifying spatial structure within river basins. 

 I found that riparian plant communities are primarily shaped by niche processes, with 

environmental variables explaining the most compositional variation at all spatial scales and 

for all species groups. While landscape connectivity did not shift the influence of niche and 

dispersal processes, dispersal processes were influenced by landscape attributes, with the 

overland model explaining more compositional variation at the cross-basin spatial scale and 

the network model explaining more variation at the river basins scale. Distributions of 

species groups with facilitated dispersal were more strongly related to environmental 

variables compared with unassisted species, whose distributions were more strongly 

structured by spatial variables. Overall, even dispersal-limited species were more strongly 

structured by local environment and hydrological variables than spatial structure, suggesting 

that riparian connectivity is sufficient to produce communities primarily shaped by niche 

processes.  

Keywords:  metacommunity, principal coordinates of neighbour matrices, distance-based 

Eigenvector maps, network distance, variation partitioning, Mantel tests, habitat connectivity, 

dispersal mode 
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Introduction 

 A central theme of ecology is the identification and elucidation of processes that 

generate and maintain patterns of community composition (Watt 1947; Ricklefs 1987; 

Leibold et al. 2004). Traditional explanations focused on local processes that allow for the 

coexistence of species in a closed community, where local presence and abundance were 

interpreted to reflect underlying environmental gradients (Gleason 1926; Whittaker 1956; 

Grime 1974) or species interactions (Gause 1934; Tilman 1981).  However, as the field of 

ecology developed from foundational concepts based on local processes in a closed 

community, there has been an increasing recognition that communities are open entities 

affected by processes operating at broader spatial scales. MacArthur and Wilson‟s theory of 

island biogeography (1967), for example, explicitly recognized the importance of processes 

occurring over larger spatial scales and highlighted the significance of distance and area 

measures in determining the movement and persistence of organisms, and subsequently local 

community patterns.  

Theoretical developments in ecology have been derived from efforts to integrate 

processes acting at different scales, explicitly recognizing that processes operating at various 

scales are simultaneously driving patterns of local community composition. In particular, the 

metacommunity concept has provided a useful framework in which to examine the relative 

strength of local, niche-assembly processes and larger-scale, dispersal-assembly processes 

(Wilson 1992; Leibold et al. 2004; Cottenie 2005; Ozinga et al. 2005). It is well documented 

in the metacommunity literature that both niche-assembly and dispersal-assembly processes 

drive community patterns (tropical forests: Duque et al. 2002, Tuomisto et al. 2003, Powers 

et al. 2009; lake plankton communities: Cottenie et al. 2003, Soininen et al. 2007, Beisner et 
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al. 2006; macroinvertebrates: Van de Meutter et al. 2007, Brown and Swan 2010;  temperate 

forests and grasslands: Gilbert and Lechowicz 2004, Carr et al. 2009), but the relative 

influence of each process remains a topic of debate. Although documenting and comparing 

the relative strength of these processes across many different systems may lead to a better 

understanding of where to expect each process to dominate (Cottenie 2005), additional 

insight may also be gained by focusing on the landscape attributes and organism traits that 

influence the relative contribution of niche and dispersal processes in shaping local 

metacommunity composition (Driscoll and Lindenmayer 2009; Flinn et al. 2010).  

 The niche-assembly and dispersal-assembly concepts could be interpreted to reflect a 

gradient in connectivity, where connectivity is variously defined as “rates of dispersal among 

localities” (Chase and Ryberg 2004) and the “degree to which the landscape facilitates or 

impedes the movement of organisms among patches” (Rothley 2005). Higher connectivity is 

expected to result in more deterministic local community composition, heavily influenced by 

niche-assembly processes. Sufficient dispersal is necessary to provide the “fuel” for species 

distributions to closely track the abiotic setting in which they are most competitive (Cottenie 

and DeMeester 2004). Alternatively, metacommunities characterized by low connectivity are 

expected to be more heavily influenced by dispersal limitation, resulting in strong spatial 

structure and little influence of niche-assembly processes (Chase 2003; Cottenie and 

DeMeester 2004; Moore and Elmendorf 2006). Metacommunity connectivity, however, is 

related to both landscape-level attributes and organism-level traits. At the landscape level, 

greater habitat connectivity might be expected to reduce dispersal limitation and result in 

metacommunities more strongly structured by local niche processes (Cottenie and DeMeester 

2004). At the species-level, better dispersed species might be expected to be less dispersal 
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limited and more closely track the local environment (Ozinga et al. 2005; Van de Meutter et 

al. 2007; Minor et al. 2009). In this chapter, I examine the influence of connectivity at both 

the landscape and organism levels in floodplain plant communities.  

 Floodplain habitats are an informative setting to examine the relationship between 

landscape connectivity and metacommunity processes. Floodplain habitat is, by definition, 

connected in a landscape context, longitudinally arranged along river channels (Figure 4.1). 

In this respect, the riparian landscape is fundamentally different from habitats associated with 

patchy geologic or soil attributes, such as rock outcrops or depression bogs. At the river 

basin-scale, both hydrologic dynamics and the movement of animals along the riparian 

corridor may serve to further increase the functional connectivity of floodplain habitat by 

acting as dispersal vectors (Naiman and Decamps 1997). In contrast, floodplain habits in 

separate river basins are explicitly not connected, requiring either dispersal through upland 

habitat or oceanic-estuarine environments at the river mouth. For these reasons, floodplain 

habitat offers a unique dichotomy of scales in which to examine the relative influence of 

niche and dispersal processes: within river basins, where habitat connectivity is higher, and 

across river basin boundaries, where connectivity is lower.  

 At the organism level, metacommunity connectivity is related to the dispersal ability 

of individual species. Less motile species are more dispersal limited, and compositional 

patterns of these taxa have been found to be more strongly shaped by spatial structure 

(Beisner et al. 2006; Van de Meutter et al. 2007; Minor et al. 2009; Flinn et al. 2010).  

However, certain dispersal modes may be more conducive to mobility in specific systems. In 

riparian ecosystems, the movement of water along the riparian corridor might be expected to 

facilitate the movement of plant propagules adapted for aquatic dispersal (hydrochory), 
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resulting in compositional patterns that closely track the local environment. However, plant 

dispersal by animals (zoochory) and wind (anemochory) may also be important for propagule 

movement in riparian corridors, although it is unclear what the relative effect of hydrochory, 

zoochory, and anemochory might be in the riparian zone (Naiman and Decamps 1997; Imbert 

and Lefevre 2003). Alternatively, plant species with no adaptations for assisted dispersal are 

likely to be the most dispersal limited taxa of the floodplain plant community, resulting in 

compositional patterns strongly shaped by spatial structure.  

  Recent studies have highlighted the critical role that the spatial model plays when 

analyzing metacommunity structure (Beisner et al. 2006; Jones et al. 2008; Minor et al. 

2009). However, few researchers have explicitly incorporated habitat configuration and 

theorized dispersal pathways of natural systems into the spatial model used in 

metacommunity analyses (except see: Beisner et al. 2006; Urban et al. 2006; Minor et al. 

2009; Nabout et al. 2009; Brown and Swan 2010). In riparian systems, connectivity is 

influenced by river basin boundaries, as discussed above, but may also be influenced by the 

dendritic configuration of riparian habitat (Figure 4.1). The dendritic arrangement may 

influence the functional dispersal pathway between floodplain locations within a river basin. 

For organisms that disperse within the riparian corridor, the true distance between local 

floodplain sites might best be represented by a network distance-based spatial model, as 

opposed to the Euclidean distance-based model often used in metacommunity analyses. In a 

riparian system, Euclidean distance would suggest overland dispersal through the upland 

habitat matrix. While strictly aquatic species might be limited to the network dispersal 

pathway (Beisner et al. 2006; Urban et al. 2006), both overland and network dispersal 
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pathways are potential dispersal routes for floodplain plants and both might be considered 

viable spatial models. 

 In this chapter, I examine the influence of riparian connectivity on the relative 

strength of niche-assembly and dispersal-assembly processes in floodplain plant 

communities. While past studies have examined metacommunity dynamics in alluvial 

systems (Urban et al. 2006; Nabout et al. 2009; Brown and Swan 2010), this approach has 

not previously been applied to floodplain plant communities. I also investigate how the 

spatial model, representing dispersal pathways, affects the results of metacommunity 

analyses in riparian systems. I address three questions: 

 (1) What is the relative influence of niche-assembly and dispersal-assembly 

processes in alluvial plant metacommunities?  

(2) How is the relative strength of niche-assembly and dispersal-assembly processes 

affected by different levels of connectivity, represented by two spatial scales (across 

river basins and within river basins) and four species groups defined by dispersal 

mechanism (wind, vertebrate, water, and unassisted)?  

(3) How sensitive are the results of metacommunity analyses to the spatial model 

employed to represent dispersal pathways? Does variation in riparian plant 

community composition relate more strongly to Euclidean distance (overland 

dispersal) or network distance (riparian-zone dispersal) and does this change at 

different spatial scales? 

 I hypothesize that niche-assembly processes will dominate in riparian plant communities due 

to the inherently connected arrangement of floodplain habitat. However, I hypothesize that 

the explanatory power of environmental variables will be stronger with higher connectivity, 
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both within river basin boundaries and for species groups with facilitated dispersal 

mechanisms. Finally, I hypothesize that accounting for network distance, expected to be an 

important dispersal pathway in riparian systems, will be important for identifying spatial 

structure at the within river basin scale, where the network dispersal pathway may be most 

important. 

 

Methods 

Study area 

 The study area spans five North Carolina river basins (Figure 4.2). Study sites were 

restricted to the Piedmont portion of each river basin, as defined by mapped geologic and soil 

units. Piedmont bedrock is largely composed of erosion-resistant metamorphic and igneous 

rocks, although a large southwest-northeast trending rift basin composed of Triassic 

sedimentary rock is a prominent geologic feature of the lower Piedmont (Benedetti et al. 

2006). Where Piedmont rivers cross the more resistant metamorphic and igneous bedrock, 

the resulting river valley is relatively narrow and incised; in contrast, the softer sedimentary 

bedrock that dominates the ancient Triassic Basin landscape, has allowed for the 

development of wider floodplains. 

 High-quality natural vegetation was identified with assistance from state agencies 

such as the Natural Heritage Program and non-profit organizations, particularly local land 

trusts such as the Triangle Land Conservancy and the Land Trust for Central North Carolina. 

To various degrees, these organizations track natural areas of the state and were able to assist 

in locating and providing access to many of these sites. Sample sites were selected in order to 

ensure representation from a broad geographic area within each of the river basins and to 
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provide a good representation of various geologic features, geomorphic settings, stream 

order, and watershed area. In total, one hundred and eighty-two vegetation plots were 

established and recorded (Figure 4.2).  

Vegetation and environmental data 

 Vegetation was surveyed May through August 2006-2008, following the Carolina 

Vegetation Survey protocol (Peet et al. 1998). Six alluvial plots surveyed by CVS prior to the 

2006-2008 field seasons were exported from the archived CVS database and included in this 

dataset. Plots ranged in size from 400m
2
 (typically 20m × 20m) to 1000m

2 
(typically 20m × 

50m), depending upon the width of the floodplain, and all plots included four 100m
2
 

intensively sampled subplots (10m × 10m). For consistency, I restricted this dataset to the 

intensively sampled 400m
2
 area. Cover was estimated for all vascular plant taxa in each of 

the four subplots, following the CVS cover class scale: 1 = trace, 2 = 0-1%, 3 = 1-2%, 4 = 2-

5%, 5 = 5-10%, 6 = 10-25%, 7 = 25-50%, 8 = 50-75%, 9 = 75-95%, 10 = >95%. All plots 

were located within the one-hundred year floodplain of the nearest creek, determined using 

floodplain maps and local vegetation composition; plots determined to be outside of the one-

hundred year floodplain after field data collection were excluded from this analysis.  

 At each plot, slope, aspect, and geomorphic position were recorded in the field. 

Geomorphology was identified to one of five settings: small stream forests, alluvial flats, 

levees, bottomlands, and backswamps (see in-depth descriptions of geomorphic settings in 

Chapter 2). Soil samples were collected for nutrients and texture analysis. Soil samples 

included one surface sample (top 10cm of mineral soil) from each of the four intensive 

modules and one sub-surface sample from the center of each plot, collected approximately 50 

cm below the ground surface. Samples were analyzed by Brookside Laboratories, Inc., New 
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Oxford, OH using the Mehlich III extraction method (Mehlich 1984).  Chemical analyses 

included pH, percent base saturation, exchangeable Ca, Mg, K, and Na, total cation exchange 

capacity, extractable micronutrients (B, Fe, Mn, Cu, Zn, and Al), soluble sulfur, estimated N-

release, extractable P, bulk density, and percent organic matter. Texture analyses included 

percent clay, silt, and sand. Soil samples from the four intensive modules were averaged for 

analysis.  

 Following field sampling, plot locations were mapped in a geographic information 

system (GIS) and additional environmental variables were calculated for each sample. These 

included stream order, upstream area drained, distance to river mouth, the width of the one 

hundred year floodplain, and elevation. GIS analyses were based upon digital elevation 

models from the USGS National Elevation Dataset (NED; http://ned.usgs.gov/) and surface 

water themes from the USGS National Hydrography Dataset (NHD; http://nhd.usgs.gov/).  

NED data were downloaded at a 30m resolution, and NHD data were downloaded at the 

medium resolution (1:100,000-scale). Upstream area drained and stream order were derived 

using the ArcHydro toolset. Width of the one hundred year floodplain was determined using 

the North Carolina digital floodplain maps (NC Floodplain Mapping Program; 

http://www.ncfloodmaps.com/). PRISM mean annual temperature and mean annual 

precipitation were extracted from the NHD Plus dataset (PRISM and NHD Plus; 

http://www.prism.oregonstate.edu/ and http://www.horizon-systems.com/nhdplus/).  

 Plant taxa were identified to the finest taxonomic resolution possible, following 

Weakley 2010. Taxa that were difficult to identify to species without fruit or flower due to 

the timing of field sampling were grouped into lower resolution complexes (examples: Viola 

spp., Oxalis spp., Solidago spp., Carex [amphibola+grisea+corrugata]; see Appendix 8). 
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Taxonomy was reviewed and standardized to account for differences due to plant 

identifications determined by a variety of individuals, both in the field and in the lab. The 

final floristic dataset contained 530 consistently recorded taxonomic units. Plant taxa were 

classified by dispersal mode based on information obtained from the literature and plant 

databases (Appendix 8). Taxa were assigned to four dispersal modes: wind, water, vertebrate, 

or unassisted, although some taxa were characterized by more than one dispersal mode. Taxa 

that were dispersed by gravity or small invertebrates (e.g. ants) were grouped with the 

unassisted species. 

Analytical methods 

 There has been some debate in the literature about the best methods for investigating 

metacommunity structure. This debate has primarily centered on the advantages of distance 

approaches, e.g. Mantel tests, versus the raw-data approaches, e.g. variation partitioning with 

canonical analysis (Tuomisto and Ruokolianen 2006; Legendre et al. 2008; Tuomisto and 

Ruokolianen 2008; Pelissier et al. 2008; Laliberte 2008). However, many authors have 

suggested that the two methods are complementary and each approach yields results that may 

provide insights into the drivers of metacommunity structure (Borcard et al. 1992; Jones et al. 

2006; Tuomisto and Ruokolainen 2006; Vanschoenwinkel et al. 2007).  I used the distance-

based Mantel test approach to test for correlations between floristic, environmental, and 

spatial distance or dissimilarity matrices to answer two questions: (1) do environmentally 

similar sites have similar species composition, while environmentally different sites have 

dissimilar species composition? and (2) are samples located closer together (i.e., a smaller 

spatial distance between samples) more similar than sites farther apart? Simple Mantel 

correlations indicate which explanatory dataset might best explain overall variation in 
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floristic composition. I then used a raw-data variation partitioning approach to quantify the 

proportion of floristic variation independently explained by spatial and environmental 

variables.  

 Three data sets were created for these analyses: floristic, spatial, and environmental 

matrices. For the floristic matrices, species importance values were calculated as the 

geometric mean of the cover values in the four intensive modules (400m
2
). Four floristic 

matrices were restricted to subsets of taxa defined by the four dispersal modes (wind, 

vertebrate, water, and unassisted). Floristic dissimilarity was computed using the Bray-Curtis 

dissimilarity index.  

 The environmental data matrix included 29 variables: all 22 soil chemistry and 

texture variables, 2 climate variables (mean annual temperature and precipitation), and 5 

variables related to the local geomorphic setting (stream order, upstream area drained, 

distance to river mouth, floodplain width, and geomorphic position). Soil chemistry variables 

were log transformed and the categorical geomorphic settings were coded as dummy 

variables prior to analysis. To account for environmental variables with varying scales of 

measurement, all variables were standardized to z-scores before analysis (Legendre and 

Legendre 1998).  Environmental dissimilarity was computed using Euclidean distance.  

 Two spatial matrices were computed for each landscape scale, one using Euclidean 

distance and one using network distance.  For Mantel correlations, Euclidean distance was 

calculated from UTM coordinates of each plot, whereas network distance was calculated at 

the river basin-scale in a GIS using the FLoWS toolbox (Theobald et al. 2005). Network 

distance is defined as the symmetric instream distance between two sample locations. 

Network distance matrices that included samples across river basins required special 
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consideration, since sites located in separate river basins have no network distance yet cannot 

be represented by a zero in the distance matrix (which would suggest the sites are in the same 

location). Therefore, network distance of sites in different river basins was calculated as 4* 

the maximum within-basin network distance, following standard practice in metacommunity 

spatial models (Borcard and Legendre 2002; Dray et al. 2006; Urban et al. 2006; Van de 

Meutter et al. 2007). For variation partitioning analyses, Moran‟s eigenvector maps (MEM) 

were used to generate spatial predictor matrices. MEM spatial matrices were constructed in 

two ways: the principal coordinates of neighborhood matrices (PCNM) approach was used to 

generate predictors based on Euclidean distance, while a distance-based eigenvector map was 

used to generate spatial predictors based on network distance (PCNM: Borcard and Legendre 

2002; Dray et al. 2006; dbMEM: Dray et al. 2006; Griffith and Peres-Neto 2006; Beisner et 

al. 2006). MEMs are an improvement over the traditional trend-surface spatial model, which 

can only model broad-scale spatial structure, whereas MEMs can identify spatial patterns 

across a range of scales perceptible in a given dataset (Legendre and Legendre 1998; Borcard 

and Legendre 2002; Jones et al. 2008). 

 To compare the floristic dissimilarity with environmental dissimilarity and spatial 

distance, simple Mantel tests were carried out at two levels of habitat connectivity, across 

river basins and within river basins, using both Euclidean and network spatial distance 

matrices (Mantel 1967). Bootstrapped confidence intervals for the Mantel r statistic were 

generated based on 500 iterations of resampling, without replacement (Goslee and Urban 

2007).  

 To quantify the proportion of floristic variation explained by environmental and 

spatial variables, I used variation partitioning based upon partial redundancy analysis 
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(pRDA; Borcard et al. 1992; Legendre et al. 2005; Jones et al. 2006; Peres-Neto et al. 2006; 

Legendre 2008). The total variation in the response floristic matrix was partitioned into four 

fractions representing the effects of environmental conditions, the effects of spatial structure, 

the shared effects environment and space, and unexplained variation. Results of variation 

partitioning reflect the adjusted R
2
 values developed by Peres-Neto et al. (2006); negative 

R
2

adj values were interpreted as a zero value (Peres-Neto et al. 2006; Satller et al. 2010). To 

prevent overestimation of explained variance, forward selection of explanatory variables was 

used to select significant environmental and spatial predictors before all variation partitioning 

analyses (Blanchet et al. 2008). The number of forward selected environmental variables 

ranged from 6-27 variables; selected variables in each analysis can be found in Appendix 2. 

To better illustrate the relative importance of environmental and spatial variables in 

structuring community composition, I calculated the ratio of variation explained by spatial 

variables to variation explained by environmental variables for each analysis. Variation 

partitioning was performed at the two spatial scales and for the four subsetted floristic 

matrices; all analyses were performed with both Euclidean and network distance models. 

 All statistical analyses were carried out in the R statistical language (R Development 

Core Team 2007). Mantel tests were computed in the “ecodist” package (Goslee and Urban 

2007). The canonical analyses, variation partitioning, and tests of significance of the 

fractions were computed using the „„vegan‟‟ library (Oksanen et al. 2007).  PCNM 

eigenfunctions were created using the package “PCNM” (Legendre et al. 2009) and MEM 

eigenfunctions for network analyses were created using the “spacemakeR” package (Dray 

2008). Forward selection procedures were carried out using the „„packfor‟‟ package (Dray et 

al. 2009). 
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Results 

 Of the 182 vegetation plots sampled, the geographic distribution of the plots across 

the five river basins included 19 plots in the Catawba basin, 49 plots in the Yadkin basin, 57 

plots in the Cape Fear basin, 30 in the Neuse basin, and 27 in the Tar basin. Of the 530 taxa 

identified in the field sampling, 381 were categorized by their dispersal modality (72 % of 

the taxa observed): 86 (16%) were wind-dispersed, 149 (28%) were vertebrate-dispersed, 63 

(12%) were water-dispersed, and 132 taxa (25%) were classified as taxa with unassisted 

dispersal (some taxa were characterized by more than one dispersal mode). 

Mantel tests 

 Mantel test results indicate that floristic dissimilarity was more strongly related to 

environmental dissimilarity at both spatial scales, regardless of the spatial model employed 

(Figure 4.3). In examining the full floristic dataset across all river basins, the Mantel 

correlation with environment was significantly higher than the correlation with either spatial 

distance matrix, as indicated by non-overlapping 95% confidence intervals (environment: 

Mantel r = .407, P ≤ 0.001; Euclidean distance: Mantel r = .139, P ≤ 0.001; network 

distance: Mantel r = .096, P ≤ 0.001; Figure 4.3). Within river basins, the qualitative pattern 

remained the same, with environmental dissimilarity more strongly correlated with floristic 

dissimilarity than either spatial distance model (the Tar Basin is the only basin in which 

overlapping confidence intervals indicate that the correlation with environmental 

dissimilarity is not significantly different than the correlation with spatial distance). The 

strength of the correlation between floristic and environmental dissimilarity did not change 

substantially at the two spatial scales; in contrast, the correlation between floristic 
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dissimilarity and spatial distance increased slightly at the river basin scale. Overlapping 

confidence intervals for the two spatial distance models suggests that the Mantel results are 

not sensitive to the spatial model. The Euclidean distance model was at least as strongly 

correlated to floristic dissimilarity as the network model, and in two basins (Neuse and Tar) it 

was the only spatial model significantly correlated with floristic dissimilarity (Figure 4.3). 

 Variation partitioning 

 Environmental predictors consistently explained more variation in community 

composition (Table 4.1; Table 4.2). The ratio of space to environment (S:E) was < 1 in all 

analyses, reflecting the dominant influence of the environmental variables. When all species 

and plots were considered together, environmental variables alone explained over 18% of the 

variation in community composition, whereas spatial variables explained less than 5%. The 

strongest environmental predictors of alluvial plant community composition were Ca/Mg 

ratio, % clay, geomorphic position, floodplain width, distance to river mouth, and 

exchangeable Fe (Appendix 9). 

 Consistent with the Mantel results, there was no substantial change in the relative 

influence of spatial and environmental variables at the two spatial scales (Table 4.1). 

Additionally, the total variation explained ([E+S]; Table 4.1) did not differ at the two scales 

of landscape connectivity; [E+S] was somewhat higher at the river basin scale for three 

basins (Yadkin, Cape Fear and Neuse basins) and lower for two basins (Catawba and Tar). In 

three basins, neither the Euclidean nor network distance spatial models were significant. 

However, in the two basins with significant spatial structure, the Yadkin and Cape Fear 

basins, the ratio of spatial:environmental variation (S:E) was higher for the network distance 

spatial model compared with the Euclidean distance model. Alternatively, when all river 
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basins were considered together, the ratio of S:E based on Euclidean distance was higher 

than the ratio for network distance. The highest ratio of S:E based on Euclidean distance was 

found at the broader spatial scale, and consistently decreased at the scale of a single basin 

(reflecting both an increase in E and a decrease in S). In contrast, the S:E ratio for the 

network distance spatial model had the highest values at the river basin scale. 

 When considering the species grouped by dispersal mode across all river basins, the 

lowest S:E ratio occurred in the species with facilitated dispersal, reflecting the importance of 

niche-assembly processes (Table 4.2). The distributions of unassisted species were more 

strongly related to spatial variables (higher S:E ratios), although environmental variables still 

explained more variation in composition. The Euclidean model explained more 

compositional variation at this scale for the wind-dispersed, animal-dispersed, and unassisted 

species, while the network model was a stronger predictor of water- dispersed species 

distributions.  At the scale of the single river basins, many of the spatial models were not 

significant predictors of floodplain plant community composition. However, the general 

patterns evident at the cross-basin scale remained, with floristic variation more strongly 

related to environmental variables and the highest S:E ratios, where significant, associated 

with unassisted dispersal species. Floristic composition for each of the species groups at the 

river basin scale was also more strongly related to network distance than Euclidean distance. 

 

Discussion 

 Compositional variation of Piedmont riparian plant communities is primarily driven 

by niche processes. Local environmental and hydrologic setting consistently explained more 

variation in community composition than spatial structure, regardless of the analytical 
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approach, the spatial scale, the dispersal mechanism, or the spatial model employed. The 

strong influence of environmental variables is consistent with the hypothesis that the 

configuration of floodplain habitat along the river channel results in sufficient connectivity 

for plant communities to be primarily structured by niche processes; indeed, prior research in 

riparian systems has found high rates of plant dispersal along the riparian corridor 

(Johannsson et al. 1996; Brown and Peet 2003). In contrast, plant metacommunities 

associated with patchy wetland habitats might be expected to be more strongly shaped by 

dispersal limitation and spatial structure, and this has been documented in recent studies in 

seeps on serpentine outcrops (Freestone and Inouye 2006) and wetlands within an old growth 

forest matrix (Flinn et al. 2010).  

 The strongest environmental predictors of compositional variation in Piedmont 

floodplain plant communities were relatively consistent across all analyses and confirmed 

environmental drivers of vegetation patterns identified in previous work (see Chapter 2 

results). Soil texture (% Clay) was commonly among the forward selected environmental 

variables, as was geomorphic position and floodplain width. These variables reflect the local 

hydroperiod, long known to be an important driver of floodplain plant community 

composition (Wharton et al. 1982). Other important environmental variables included those 

reflecting local soil fertility (Ca/Mg ratio) and location within the river basins (distance to 

river mouth). 

 The dominant influence of environmental variables in floodplain forests is also 

consistent with studies conducted in other contiguous forested systems (Tuomisto et al. 2003; 

Jones et al. 2006; Powers et al. 2009). However, the results of observational ecological 

studies must always be interpreted in light of their spatial scale. Even with advances in 
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spatial modeling tools that allow for the assessment of a multitude of scales in a single 

analysis (e.g. eigenvectors maps), inference is not possible outside the spatial scales at which 

data were collected. In this study, I did not examine variation in community composition at 

small spatial scales (<1,000m), and many past studies of contiguous forested systems have 

examined compositional variation at similar spatial scales to those investigated here (1km to 

1000 km). However, there is some evidence that plant metacommunity structure is more 

strongly influenced by dispersal processes at small spatial scales (<200m; Karst et al. 2005), 

where two opposing dispersal-processes, dispersal limitation and mass effects, could  result 

in stronger spatial structure. The dominant processes driving metacommunity structure, 

therefore, may change depending upon the spatial scale, and the results of metacommunity 

studies should be interpreted in light of the observed spatial scale. 

 At the scales examined here, there was little evidence for my second hypothesis, that 

landscape-scale connectivity affects the relative influence of niche-assembly and dispersal-

assembly processes in shaping floodplain plant community composition. However, 

landscape-scale connectivity does appear to influence dispersal processes, a conclusion that 

is only evident when accounting for the two possible dispersal pathways at each spatial scale. 

While Mantel results suggested there is little difference between the two spatial models, 

variation partitioning results suggest that community composition is more strongly related to 

a specific spatial model at each scale. At the cross basin boundary scale, the Euclidean spatial 

model almost always explained more floristic variation than the network model (the one 

exception was for water-dispersed species), but its explanatory power decreased at the 

within-basin scale. Alternatively, the network spatial model was more important at the river 

basin scale, consistently explaining more variation in composition than the Euclidean model; 
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when expanding the spatial scale across river basin boundaries, the strength of the network 

model tended to decrease.   

 These results suggest that both overland and network dispersal are influencing 

community composition, and each is more important at a different scale. At the cross-basin 

scale, the importance of the Euclidean model suggests that at least some riparian plants 

disperse across the upland habitat. Indeed some plant species found in riparian communities 

also occur in upland habitats and are not restricted to riparian zones; overland dispersal 

between floodplain habitats in separate river basins would likely occur most frequently for 

these species. Alternatively, at the scale of a single river basin, the network spatial model 

explains more variation than Euclidean distance, suggesting that within river basins, at least 

part of the riparian plant community disperses within the riparian corridor. Species that are 

restricted to the riparian corridor are more likely to include taxa less ubiquitous in the upland 

Piedmont landscape and taxa with dispersal traits that facilitate movement within the corridor 

(e.g. water and animal dispersed species; see discussion below). While past studies have 

found that both overland and network dispersal were equally important in riparian landscapes 

(Beisner et al. 2006), these results suggest that each form of dispersal is dominant at a 

different spatial scale. 

 In contrast to the effects of landscape-scale connectivity, the relative influence of 

niche-assembly and dispersal-assembly processes depended on organism traits. At the 

broader cross-basin scale, the results support the hypothesis that dispersal limited species are 

more strongly influenced by dispersal processes, while species with facilitated dispersal more 

closely track the local environment (Ozinga et al. 2005; Van de Meutter et al. 2007; Minor et 

al. 2009). Within river basins, the spatial model was rarely significant, suggesting little 
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influence of dispersal processes at this scale. This was particular true for water-dispersed 

species, whose distributions were significantly related to spatial structure in only one river 

basin.  

 The true dispersal pathway, as represented by a spatial model, was important to 

consider. While the Euclidean model was stronger for most species groups at the cross-basin 

scale, water-dispersed species were more strongly related to network spatial structure, 

reflecting the dominant influence of the network dispersal pathway for these species; this is 

not surprising in light of past research suggesting hydrochory is an important dispersal 

mechanism in riparian systems (Jansson et al. 2005; Chambert and James 2009). Similar to 

the results for all species at the single river basin scale, composition of animal-dispersed and 

unassisted species were also more strongly related to network spatial structure, suggesting 

that network dispersal is also important for these taxa. While animal-dispersed species may 

be dispersed by animals moving within the riparian corridor, past research has suggested that 

even species without specific adaptations for hydrochory are often dispersed by water in 

riparian systems (Danvind and Nilsson 1997; Hampe 2004). In the two river basins where 

wind-dispersed species distributions were significantly related to spatial structure, on the 

other hand, network distance was more important in one basin and Euclidean and network 

dispersal were equally important in the other, suggesting that dispersal of these species may 

not be restrained to the riparian corridor.  

 Overall, accounting for network distance did not qualitatively alter the interpretation 

of the results: niche-processes dominate over dispersal-processes in shaping Piedmont 

alluvial plant metacommunities. In many cases, the overall difference between Euclidean and 

network-distance spatial models was small, and often, neither spatial model was a significant 
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predictor of community composition. However, the two spatial models did make additional 

insights into the processes structuring alluvial communities possible, suggesting that 

overland dispersal and network dispersal are each important in this system, although perhaps 

at different spatial scales.  

 Metacommunity studies aimed at increasing our understanding of where to expect 

niche-assembly and dispersal-assembly processes to dominate can benefit conservation 

planning and restoration design. Successful conservation and restoration of degraded 

communities requires information about the processes that determine natural plant 

community composition (Chase 2003; Mouillot et al. 2007). For riparian systems, strong 

control by niche-processes, where composition is more predictable based upon local 

environment, lends itself well to describing repeatable vegetation units and developing 

restoration reference conditions based upon environmental variables. Alternatively, systems 

characterized by low connectivity and high dispersal limitation, likely resulting in less 

predictable community composition, common management practices, such as community 

classification and restoration target design, may prove more difficult.  
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Table 4.1: Redundancy analysis (RDA) variation partitioning of plant community composition into fractions explained by environmental and 

spatial variables. Floristic composition data includes all species at two spatial scales, across river basins and within river basins. Spatial distance 

was computed using Euclidean (Euc) distance and network (Net) distance. The different components are: total explained variation [E + S], 

variation explained by environmental variables [E], variation explained by spatial variables [S], variation explained by environmental variables 

independent of space [E|S], variation explained by spatial variables independent of environment [S|E], and variation jointly explained by 

environment and space [E∩S]. S:E is the ratio of spatial to environmental variation.  * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001 

 

 

 

 

 

 

 
All plots Catawba Yadkin Cape Fear Neuse Tar 

 
Euc 

 
Net 

 
Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P 

[E+S] 30.43 *** 29.08 *** 26.28 *** 27.93 *** 36.23 *** 36.49 *** 31.35 *** 33.73 *** 37.02 *** 37.44 *** 28.08 *** 26.87 *** 

[E] 26.04 *** 26.04 *** 24.75 *** 24.75 *** 31.77 *** 31.77 *** 29.52 *** 29.52 *** 35.95 *** 35.95 *** 26.37 *** 26.37 *** 

[S] 11.66 *** 9.29 *** 4.8 * 9.56 *** 11.97 *** 17.87 *** 6.76 *** 15.58 *** 7.39 *** 5.4 *** 11.63 *** 3.77 ** 

[E|S] 18.81 *** 19.78 *** 21.48 *** 18.38 *** 24.26 *** 18.63 *** 24.58 *** 18.15 *** 29.63 *** 32.04 *** 16.44 *** 23.1 *** 

[S|E] 4.4 *** 3.05 *** 1.53 n.s. 3.18 n.s. 4.47 *** 4.73 *** 1.83 * 4.22 ** 1.07 n.s. 1.49 n.s. 1.7 n.s. .51 n.s. 

[E∩S] 7.23 
 

6.25 
 

3.28 
 

6.48 
 

7.5 
 

13.14 
 

4.93 
 

11.37 
 

6.31 
 

3.91 
 

9.93 
 

3.27 
 

S:E 0.23 
 

0.15 
 

n.s. 
 

n.s. 
 

0.18 
 

0.25 
 

0.07 
 

0.23 
 

n.s. 
 

n.s. 
 

n.s. 
 

n.s. 
 

1
1

4
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Table 4.2: Redundancy analysis (RDA) variation partitioning of plant community composition into fractions explained by environmental and 

spatial variables. Floristic composition data includes all species grouped by dispersal mode (wind, animal, water, and unassisted) at two spatial 

scales, across river basins and within river basins. Spatial distance was computed using Euclidean (Euc) distance and network (Net) distance. The 

different components are: total explained variation [E + S], variation explained by environmental variables [E], variation explained by spatial 

variables [S], variation explained by environmental variables independent of space [E|S], variation explained by spatial variables independent of 

environment [S|E], and variation jointly explained by environment and space [E∩S]. S:E is the ratio of spatial to environmental variation.  * P ≤ 

0.05; ** P ≤ 0.01; *** P ≤ 0.001 

 

Wind-dispersed 
  All plots Catawba Yadkin Cape Fear Neuse Tar 

  Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P 

[E+S] 34.67 *** 30.99 *** 32.61 *** 30.97 *** 38.25 *** 39.15 *** 35.79 *** 34.96 *** 42.31 *** 40.25 *** 38.13 *** 39.37 *** 

[E] 30.99 *** 33.7 *** 32.43 *** 32.43 *** 34.08 *** 34.08 *** 32.33 *** 32.33 *** 39.92 *** 39.92 *** 37.78 *** 37.78 *** 

[S] 12.9 *** 11.58 *** 5.69 * 6.85 * 16.52 *** 23.28 *** 10.44 *** 14.77 *** 10.11 ** 3.12 ** 7.74 * 7.66 ** 

[E|S] 21.77 *** 22.12 *** 26.93 *** 24.12 *** 21.73 *** 15.86 *** 25.36 *** 20.19 *** 32.21 *** 37.13 *** 30.39 *** 31.71 *** 

[S|E] 3.68 *** 2.7 *** 0.18 n.s. -1.5 n.s. 4.17 * 5.07 * 3.46 ** 2.63 * 2.39 n.s. 0.33 *** 0.35 n.s. 1.59 n.s. 

[E  S] 9.22   8.87   5.5   8.31   12.35   18.21   6.98   12.15   7.71   2.78   7.39   6.07   

1- [E+S] 65.33   66.3   67.39   63.1   61.75   60.85   64.21   65.04   57.69   59.71   61.87   60.63   

S:E 0.17   0.12   n.s.   n.s.   0.19   0.32   0.14   0.13   n.s.   0.01   n.s.   n.s.   

Animal-dispersed 
  All plots Catawba Yadkin Cape Fear Neuse Tar 

  Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P 

[E+S] 30.31 *** 28.81 *** 22.67 *** 21.79 *** 28.11 *** 28.2 *** 24.25 *** 26.21 *** 29.39 *** 32.12 *** 23.05 *** 20.37 *** 

[E] 26.99 *** 26.99 *** 21.31 *** 21.31 *** 26.11 *** 26.11 *** 22.22 *** 22.22 *** 25.32 *** 25.32 *** 20.32 *** 20.32 *** 

[S] 10.57 *** 7.95 *** 2.87 n.s. 3.49 * 11.82 *** 17.13 *** 2.44 ** 10.97 *** 8.56 *** 9.23 ** 10.92 *** 3.09 * 

[E|S] 19.75 *** 20.85 *** 18.79 *** 18.3 *** 16.29 *** 11.07 *** 21.81 *** 15.24 *** 20.83 *** 22.9 *** 12.13 *** 17.29 *** 

[S|E] 3.32 *** 1.82 *** 1.35 n.s. 0.48 n.s. 2.01 ** 2.1 * 2.03 ** 3.98 ** 4.06 n.s. 6.8 ** 2.73 n.s. 0.06 n.s. 

[E  S] 7.24   6.14   1.52   3.01   9.81   15.04   0.41   6.99   4.5   2.43   8.19   3.03   

1- [E+S] 69.69   71.19   77.33   78.21   71.89   71.8   75.75   73.79   70.62   67.88   76.95   79.63   

S:E 0.17   0.09   n.s.   n.s.   0.12   0.19   0.09   0.26   n.s.   0.30   n.s.   n.s.   

1
1

5
 

 



116 
 

Table 4.2, continued:  
 

Unassisted dispersal 
  All plots Catawba Yadkin Cape Fear Neuse Tar 

  Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P 

[E+S] 24.02 *** 23.68 *** 31.07 *** 29.94 *** 27.029 *** 31.91 *** 19.79 *** 22.84 *** 16.74 *** 14.68 *** 34.99 *** 33.7 *** 

[E] 17.46 *** 17.46 *** 27.78 *** 27.78 *** 25.98 *** 25.98 *** 18.19 *** 18.19 *** 15.07 *** 15.07 *** 32.8 *** 32.8 *** 

[S] 10.89 *** 9.98 *** 5.7 n.s. 8.83 ** 5.85 *** 13.33 *** 4.96 *** 11.99 *** 7.63 * 3.97 * 10.5 *** 11.46 *** 

[E|S] 13.13 *** 13.71 *** 25.37 *** 21.11 *** 21.18 *** 18.58 *** 14.82 *** 10.85 *** 9.11 *** 10.71 *** 24.5 *** 22.24 *** 

[S|E] 6.56 *** 6.23 *** 3.3 n.s. 2.16 n.s. 1.05 n.s. 5.93 *** 1.59 n.s. 4.65 *** 1.68 n.s. 0.39 n.s. 2.2 n.s. 0.91 n.s. 

[E  S] 4.33   3.75   2.41   6.67   4.8   7.4   3.37   7.34   5.95   4.35   8.3   10.56   

1- [E+S] 75.98   76.32   68.93   70.06   72.97   68.09   80.22   77.16   83.26   85.32   65.01   66.3   

S:E 0.50   0.45   n.s.   n.s.   n.s.   0.32   n.s.   0.43   n.s.   n.s.   n.s.   n.s.   

Water- dispersed 
  All plots Catawba Yadkin Cape Fear Neuse Tar 

  Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P Euc P Net P 

[E+S] 27.43 *** 28.56 *** 54.84 *** 54.69 *** 37.29 *** 38.25 *** 24.38 *** 23.41 *** 30.54 *** 32.84 *** 33.83 *** 29.78 *** 

[E] 24.74 *** 24.74 *** 53.69 *** 53.69 *** 34.62 *** 34.62 *** 23.68 *** 23.68 *** 30.94 *** 30.94 *** 30.41 *** 30.41 *** 

[S] 10.87 *** 11.04 *** -2.01 n.s. 5.5 n.s. 15.78 *** 19.91 *** 1.11 n.s. 3.87 ** 2.87 n.s. 3.81 * 13.37 ** 5.51 *** 

[E|S] 16.56 *** 17.52 *** 56.85 *** 48.82 *** 21.52 *** 18.34 *** 23.28 *** 19.53 *** 27.67 *** 29.03 *** 20.46 *** 24.27 *** 

[S|E] 2.69 *** 3.83 *** 1.15 n.s. 0.63 n.s. 2.67 * 3.63 *** 0.7 n.s. -0.28 * -0.41 n.s. 1.9 n.s. 3.42 n.s. -0.63 n.s. 

[E  S] 8.17   7.22   -3.17   4.87   13.1   16.28 *** 0.04   4.15   3.27   1.91   9.95   6.14   

1- [E+S] 72.57   71.45   45.16   45.69   62.71   61.75 *** 75.62   76.59   69.47   67.16   66.17   70.22   

S:E 0.16   0.22   n.s.   n.s.   0.12   0.20   n.s.   -0.01   n.s.   n.s.   n.s.   n.s.   

 

 

1
1

6
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Figure 4.1: Sub-basins within the Cape Fear River Basin. The aquamarine lines are USGS 

Hydrologic Unit sub-basin boundaries. The dark blue lines indicate the outer-edge of the 100-year 

floodplain of the nearest river channel, and the lighter blue shading within the dark blue lines 

indicates floodplain habitat. 
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Figure 4.2: Distribution of 182 forested vegetation plots recorded in five Piedmont river 

basins. The inset map identifies the location of North Carolina. In the North Carolina state 

map, the wide grey lines delineate the three broad physiographic regions of North Carolina 

(left mountains, center Piedmont, right Coastal Plain). The narrow dark grey lines delineate 

river basin boundaries: 1. Catawba, 2. Yadkin- PeeDee, 3. Cape Fear, 4. Neuse, and 5. Tar-

Pamlico River Basins. 
 

 



119 
 

 
Figure 4.3: Mantel correlations (Mantel r) for riparian plant community composition at two scales, 

across river basins and within river basins.  Floristic dissimilarity is compared to Euclidean spatial 

distance, network spatial distance, and environmental dissimilarity. Environmental dissimilarity is 

most strongly correlated to floristic dissimilarity at both scales. Error bars reflect the 95% confidence 

interval for the Mantel r statistic. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001
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CHAPTER 5 

Application of Quantitative Vegetation Descriptions to Restoration 

 

Abstract 

 The definition of reference conditions is a vital step in restoration projects. However, 

as a result of resource constraints, adequate descriptions of reference conditions are rarely 

feasible. Past studies have suggested that vegetation databases and plant community 

descriptions may be able to provide this essential reference information, but a methodology 

for matching new restoration sites to vegetation descriptions is not readily available for 

resource managers. I present an approach for matching restoration sites to quantitative 

vegetation descriptions based on a reference dataset from North Carolina. The Southeastern 

U.S., and North Carolina in particular, are active regions for restoration of stream 

ecosystems, and we illustrate our approach with six sites in North Carolina. I develop a 

prototype matching tool that is flexible and is able to match restoration sites to the most 

similar quantitative plant community descriptions based on easily obtainable, common 

environmental data.  I then illustrate the usability of this tool with a set of restoration sites 

from the North Carolina Piedmont. I expect that this approach and infrastructure can be 

readily applied to other locations and vegetation types as data become available. My goal is 

to provide an approach that might be implemented in other regions where quantitative 

vegetation descriptions are available.
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Introduction 

 Reference information is an important component of ecological restoration projects 

(Brinson and Rheinhardt 1996; White and Walker 1997; Harris 1999; Stephenson 1999; de 

Gruchy et al. 2001; Hughes et al. 2005; Rheinhardt et al. 2007; Lane and Trexler 2009). The 

description of reference conditions aids in the design of restoration projects, the 

establishment of restoration goals, and the assessment of restoration success (Lane and 

Trexler 2009; Rheinhardt et al. 2009). While incorporating natural variation of ecological 

systems into reference condition descriptions is a vital part of this process, this often proves 

to be challenging in practice. Many restoration projects proceed with insufficient reference 

information because of limited time, limited funding, or difficulty in identifying appropriate 

reference sites (White and Walker 1997; Hughes et al. 2005; Lane and Trexler 2009). 

Activities commonly associated with restoration projects include riparian buffer creation, 

buffer maintenance, and revegetation projects (Palmer et al. 2007). However, resource 

constraints often result in planting lists that are either developed based upon a single, local 

reference site, or developed by scientists and then planted indiscriminately across ecosystems 

(Lane and Trexler 2009). 

 Vegetation databases and plant community descriptions may be able to provide high-

quality reference information for restoration activities. Quantitative vegetation descriptions 

offer a financially feasible way to include natural variation of plant communities into 

conservation and restoration activities (Harris 1999; Lane and Trexler 2009; Rheinhardt et al. 

2009). Quantitative descriptions of plant communities are being developed and archived in 

publicly available databases on both a nation-wide scale, such as the U.S. National 

Vegetation Classification (NVC; Jennings et al. 2009), and a regional-scale, such as the 
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Carolina Vegetation Survey database (http://cvs.bio.unc.edu/).  The vegetation plot data used 

in community descriptions are frequently collected at a larger spatial and temporal scale than 

typical restoration reference data, which is often collected at a single, opportunistic sampling 

location. In addition, plant community descriptions generally include a more complete list of 

species, are more likely to contain information about the average abundance and frequency of 

species across large spatial extents, and are more likely to represent natural vegetation with 

minimal human impacts. 

 While the concept of applying quantitative vegetation descriptions to restoration 

activities is not new (Harris 1999; Lane and Trexler 2009; Rheinhardt et al. 2009), few 

authors have discussed how quantitative descriptions are matched to restoration sites. A 

methodology for matching sites to quantitative vegetation descriptions should be cheap, 

efficient, and based on data that are readily accessible to resource managers and restoration 

practitioners. In this paper, we present an approach for matching new restoration sites to 

appropriate vegetation descriptions based on quantitative environmental data associated with 

each type description. As quantitative vegetation descriptions become more readily available, 

this methodology for matching sites to community descriptions will provide savings to the 

user by preventing the need for field work beyond the restoration site. We developed a 

matching tool that can be readily accessible to resource managers and restoration 

practitioners over the web.  

 We illustrate our approach with a case study in the Piedmont region of North 

Carolina.  The Southeastern United States, and North Carolina in particular, are active 

regions for stream restoration (Sudduth et al. 2007). We utilize quantitative plant community 

descriptions developed from high-quality alluvial vegetation plot data, outline an approach 
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for matching the community descriptions to new restoration sites, and demonstrate this 

process with a set of pre-construction restoration sites in North Carolina. We expect that this 

approach and infrastructure can be readily applied to other locations and vegetation types as 

data become available.  

 

Methods 

Case study  

 Our case study uses two datasets. The first is a quantitative classification of the 

alluvial vegetation types of the North Carolina Piedmont. The classification is based on 182 

vegetation plots documenting high-quality natural vegetation. These plots have been 

classified to twelve forested vegetation types, each with a quantitative description that 

includes average cover and constancy values for each taxon occurring in the type. The 

classification spans five river basins in the Piedmont region in the Southeastern United 

States, the Catawba, Yadkin, Cape Fear, Neuse, and Tar-Pamlico (Figure 5.1), and was 

developed using standard quantitative techniques, including cluster analyses, random forests, 

and ordination (Chapter 2). The twelve forested types are comparable to NVC associations in 

terms of compositional variation and consistency, and in fact, have been proposed as possible 

revisions of the NVC alluvial associations. These types reflect the level of resolution that we 

expect would be most useful in guiding restoration practices and in the design of restoration 

targets.  

 Environmental data associated with the described vegetation types includes both 

field-collected data and data derived using a geographic information system (GIS). These 

data characterize the environmental setting of each type and include variables that have been 
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shown to be important drivers of Piedmont alluvial vegetation (Chapter 2). Field-based 

environmental variables include geomorphic position, slope, geographic coordinates, and soil 

nutrient and texture variables. GIS-derived variables include elevation, stream order, 

cumulative upstream area drained (watershed area), width of the 100-year floodplain, 

distance to channel, mean annual temperature and precipitation, mapped soil unit, and 

bedrock formation. All GIS-derived variables were extracted from readily available spatial 

data or basic GIS analyses; data sources include the National Elevation Dataset (NED; 

http://ned.usgs.gov/), the USGS National Hydrography Dataset (NHD; http://nhd.usgs.gov/), 

and the USDA-NRCS Soil Survey Geographic Database (SSURGO; 

http://soildatamart.nrcs.usda.gov/). Width of the one hundred year floodplain was determined 

using the North Carolina digital floodplain maps (http://www.ncfloodmaps.com/).  

 The second dataset includes six pre-production restoration sites in the North Carolina 

Piedmont (Figure 5.1). These sites were identified by the North Carolina-Ecosystem 

Enhancement Program (EEP), the state agency that oversees wetland conservation and 

restoration in North Carolina. The six sites were visited in the fall of 2009 to characterize the 

geomorphic setting. Following field visits, restoration sites were mapped in a GIS and 

supplementary environmental data were gathered; the GIS-derived variables extracted for 

each restoration site matched those extracted for the reference vegetation plots. Larger 

restoration sites were divided into separate units corresponding to different environmental-

geomorphic settings. Where restoration sites included streams of various stream order, each 

stream was treated as an independent restoration unit.  

Quantitative analysis 
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 We summarized the environmental data associated with each vegetation type. The 

environmental dataset included 14 variables: cumulative drainage area, distance to river 

mouth (km), elevation (m), latitude (decimal degrees), longitude(decimal degrees), distance 

to channel (m), one-hundred year floodplain width (m), mean annual temperature (C), mean 

annual precipitation (mm), stream order, and four categorical variables: mapped soil unit, 

geologic bedrock, river basin, and general geomorphic position. We calculated the mean 

value for each group for six variables: distance to river mouth, latitude, longitude, one-

hundred year floodplain width, and mean annual temperature and precipitation. We reported 

the median value for two variables, cumulative drainage area and stream order, in order to 

minimize the influence of outlier values. Categorical variables were summarized by the 

percentage of plots associated with each category; only categories that included >10% of the 

vegetation plots were reported. 

 We employed classification methods to identify key environmental variables in 

discriminating between potential vegetation types. Classification results would allow 

restoration professionals to focus on a subset of the potential environmental site data. 

Classification techniques are particularly appropriate for identifying key variables in 

predicting the potential vegetation type because they do not require assumptions of normally 

distributed variables and can easily handle both categorical and continuous predictor data 

(Byrd and Kelly 2006; Cutler et al. 2007). We used random forests classification methods as 

implemented in R to identify the key environmental variables in discriminating between the 

plant community descriptions of our model system (Breiman 2001; R Development Core 

Team 2010). Both R and the “randomForests” package are free statistical software.  
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 Environmental variables were evaluated in the “randomForests” package via the 

permutation importance measure. This measure is computed from permuted out-of-bag 

predictor data (oob; out-of-bag data are those data left out of the training dataset for each 

tree, typically one third of the dataset; Breiman 2001). For each tree, the oob data is run 

through the trees produced by the random forests algorithm and the prediction error rate is 

recorded. This procedure is then repeated, with the values of each predictor variable 

randomly permuted. The number of correct classifications from the permuted oob data is 

subtracted from the correct classifications from the unpermuted oob data. The difference 

between the two values is then averaged across all trees grown in the forest and becomes the 

raw importance score for each variable. Variables are ranked by their importance score. 

 We developed a tool in Microsoft Access (Microsoft Corporation 2007) to match new 

restoration sites to described vegetation types based upon similarity of environmental 

variables. The tool is flexible and will determine the most similar vegetation types based 

upon any set of user-supplied environmental data. However, when many predictor variables 

are available, resource manager may choose to restrict predictors to those identified by the 

random forests variable importance analyses. User-supplied environmental variables are 

compared to the average group variables using similarity metrics. Any similarity or 

dissimilarity metric could be utilized for this matching process, based upon user-preferences 

and metrics most appropriate for the available quantitative data. To compare the 

environmental settings at new restoration sites with environmental variables for described 

vegetation types, we used a dissimilarity metric defined as 

  |     |    
  (     )    
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where Ni = i 
th

 environmental variable at the new site, Gi = group average for i 
th

 

environmental variable, wi = weight for i
th

 environmental variable. 

 Various data transformations and standardizations may be required prior to analysis, 

either to satisfy assumptions for quantitative analyses or to adjust the influence of specific 

variables. For this case study, we transformed all categorical variables (geomorphic position, 

river basin, mapped soil unit, and geologic bedrock formation) to dummy variables. We also 

square root transformed cumulative drainage area to down-weight high outliers. We 

calculated Gi as the arithmetic average; all environmental variables were relativized by the 

maximum observed value in this dataset to standardize all variables to a 0-1 scale. All 

variables included the same weight (w = 1) for this analysis.  

 We then used the tool to generate reference community descriptions for each of the 

six restoration sites identified by EEP. Described vegetation types were ranked by 

dissimilarity metric, with the three least dissimilar (most similar) groups identified and 

reported by the tool. The reference community descriptions include the floristic information 

for each of the most similar vegetation types, consisting of average percent cover where 

present and constancy (the percent of plots in which the taxon occurs). The vegetation type 

species information reported by the tool can also be filtered by constancy and species 

attributes to include only prevalent (sensu Curtis 1959) and woody species. Prevalent species 

are identified by ranking species by constancy and selecting the most common species such 

that the total number of prevalent species equals average species richness. 

 Results 

 The environmental descriptors of our restoration sites fell well within the range of 

variation captured in the fourteen community descriptions (Table 5.1; Table 5.2). The six 
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restoration sites identified covered a variety of environmental settings, from 1
st
 to 5

th
 order 

rivers, across a range of geomorphic settings, bedrock, and soil units. The restoration sites 

were all located within the Piedmont sections of the Cape Fear and Yadkin River Basins 

(Figure 5.1). All but one of the sites spanned more than one geomorphic setting and were 

treated as multiple sites in the matching approach.  

 Random forest analysis identified geomorphic position as the strongest environmental 

predictor of vegetation type (Figure 5.2). Distance to mouth, longitude, and elevation were 

the next three strongest predictors, followed by the two climatic variables (temperature and 

precipitation) and watershed area. Mapped soil unit, latitude, stream order, and floodplain 

width were also identified as useful predictors of vegetation types. 

 We created a user interface that allows the user to input predictor environmental 

variables (Figure 5.3). We also incorporated input space for additional environmental 

variables not used in this analysis, but often associated with vegetation descriptions (e.g., soil 

texture and nutrient descriptions). The tool interface generates a list of the most similar 

communities in the reference dataset, as well as a panel that summarizes the floristic data of 

the matched community type. Predictor variables can also be color coded to reflect their 

influence on the predicted community.  

 We generated restoration targets for each of the six restoration sites based upon the 14 

descriptor variables (Table 5.2; Table 5.3). We present the single most similar community 

type, although the tool ranked all described community types by their dissimilarity and 

identified the three most similar types.  

 

Discussion 
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 Using environmental descriptors of restoration sites, we were able to generate 

reference condition descriptions from quantitative community classifications and their 

associated floristic information. We created a tool that matches new restoration sites to the 

most similar described vegetation type based on a user-supplied set of environmental 

variables describing the restoration site. The tool is flexible and does not require a full set of 

environmental variables to match restoration sites to vegetation types. We also demonstrated 

how classification techniques can be used to rank environmental variables by their ability to 

predict the natural vegetation on a site. 

 We illustrated the usability of the matching tool with a set of restoration sites from 

the North Carolina Piedmont. The highest-ranked vegetation types for the restoration sites 

were often associated with similar geomorphic settings and characterized by similar species 

composition. The two most similar community types for the Mill Creek, Uwharrie River site, 

for example, are both oak-hickory dominated flats (Figure 5.3). Even the third most similar 

vegetation type is commonly found on both alluvial flats and small stream riparian areas 

(Table 5.1); while slightly more common along small streams, this type includes many of the 

dominant species found in the oak-hickory flat vegetation types (Carpinus caroliniana, 

Carya cordiformis, Ulmus americana). As illustrated by this example, the tool was able to 

match a single best vegetation type and two additional, often geomorphically and floristically 

similar, communities to the restoration site, suggesting that other high-ranked types might 

also provide useful floristic reference information for restoration sites.  

 Detailed floristic descriptions that accompany quantitative vegetation classifications 

often include data on species composition, abundance, constancy, and diagnostic value. 

These data can be used as the basis for designing planting species mixes that reflect species 
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most likely to naturally occur on site and, hence, might be most likely to be successful after 

restoration activities are complete. Restoration practitioners may chose species for planting 

based upon the floristic descriptions, although the tool-generated lists may be edited to 

emphasize both dispersal-limited species that are unlikely to colonize restoration sites 

unassisted and species that are rare on the landscape. Restoration sites that are matched to 

community types that include early successional, well-dispersed species at high cover, such 

as Liquidambar styraciflua, may be edited in the creation of planting lists, perhaps directing 

resources towards less common or dispersal-limited species, such as heavy-seeded Quercus 

and Carya species. Many of the smaller restoration sites included in our case study were 

matched to a vegetation type described by high constancy and cover of early successional 

species (Ia. Liriodendron tulipifera – Liquidambar styraciflua / Lindera benzoin/ 

Amphicarpaea bracteata Forest). However, two Carya species (C. cordiformis and C.ovata) 

also contribute high cover, although at a lower constancy, to this vegetation type. Planting 

lists might emphasize these species over the smaller-seeded, early-successional dominants.  

 Quantitative community descriptions generated using our approach can also provide 

the multivariate data necessary to both characterize the restoration target and assess the 

success of restored vegetation communities using multivariate analyses (Rheinhardt et al. 

2008). Vegetation monitoring data can be used to track the long-term recovery trajectory of 

restoration sites after planting. The combination of quantitative reference data and 

monitoring data may also suggest taxa that remain underrepresented in restored sites, taxa 

that might need to be introduced later in the successional recovery of restoration sites. 

 In this study, the environmental predictor dataset was limited to easily obtainable 

data, requiring only short field visits to the restoration site and spatial analyses in a 
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geographic information system (GIS). All GIS analyses were restricted to free and readily 

accessible spatial data. We further demonstrated that restoration practitioners can utilize 

classification methods to rank environmental variables by their predictive power; as a result, 

restoration professionals can focus limited resources toward the collection of a smaller, yet 

more powerful set of predictor environmental data. In our case study we found geomorphic 

setting to be the strongest predictor of vegetation type; it is well-established that vegetation 

varies with geomorphology in the riparian landscape (Wharton et al. 1982; Hupp and 

Osterkamp 1985; Hupp 2000; Chapter 2). The next three strongest predictors of vegetation, 

distance to mouth, longitude, and elevation, all reflect the location of the vegetation type 

within the river basin. High values for each of these variables indicate a position higher in the 

basin and more distant from the river mouth. Watershed size (cumulative are drained), stream 

order, and floodplain width all reflect the size of the stream. Climatic variables were also 

useful in predicting vegetation, as was the mapped soil unit.  

 It is important to note that the variables best able to discriminate between potential 

vegetation types will be different for each system, possibly for similar habitats in different 

climatic regions (temperate riparian systems vs. desert riparian system), and will likely 

change with the spatial extent of the reference dataset. The initial phase of gathering 

appropriate environmental predictors must be carefully executed and must reflect both the 

ecological context and the resources available for restoration projects. The primary 

ecological considerations when gathering predictor variables include an effort to incorporate 

variables known to be important drivers of vegetation patterns in the system. These drivers 

may be identified based upon past field work, expert knowledge of the system, published 

literature, and the reference classifications and quantitative community descriptions. 



139 
 

Choosing among potential environmental variables is a vital step in this process and should 

be carefully considered before continuing with classification methods or matching 

techniques. More disturbed restoration sites may require more complex assessment of 

appropriate environmental predictors as the setting before and after restoration may change 

substantially. Stream size and soil properties, for instance, may be altered in a large 

restoration project. Financial resources and time constraints may also play a role in 

determining the set of environmental variables appropriate; however, we have shown here 

that there are many freely available data and software resources that might alleviate financial 

restrictions. Additionally, the matching tool presented here is flexible and is able to match 

restoration sites to the most similar quantitative plant community descriptions even when 

limited to easily obtainable environmental data.   

 Because both the reference dataset and the restoration sites of this study were 

confined to a single physiographic region in the Southeastern U.S., we were able to utilize 

local to regional scale environmental variables in the matching process. However, as the 

spatial extent of the reference dataset expands towards regional or national-scale databases, a 

preliminary filter based upon physiognomy, biogeographic history, or bioclimatic variables 

will be necessary (Hughes et al. 2005). These filters may reflect higher levels already 

recognized in classification systems, such as the NVC‟s Formation level (e.g., Temperate 

Shrublands and Grasslands) or U.S. Environmental Protection Agency Level III Ecoregions 

(e.g., Central Great Plains).  

 The application of quantitative community descriptions to the development of 

restoration targets allows relatively easy generation of otherwise unattainable, state-of-the-art 

predictions of the natural vegetation of a site. We expect these targets should satisfy the most 
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stringent current and future restoration guidelines. As a consequence, the application of the 

vegetation databases can greatly increase the efficiency and effectiveness with which 

agencies and contractors conduct restoration work while significantly reducing their costs. 

We expect that this approach and infrastructure can be readily applied to other locations and 

vegetation types as they become available, increasing restoration efficiency and success 

beyond North Carolina. 
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Table 5.1: Summary of environmental variables for vegetation types and restoration sites. Unless otherwise noted, quantitative 

variables are summarized by their arithmetic mean. Cumulative drainage and stream order are summarized by their median values. 

River basin includes all basins where present, listed in order of abundance. Geologic bedrock includes all bedrock with >10% of 

occurrences. Mapped soil unit in which greater than 25% of the plots in a group occur are listed, with percentage of plots. ** indicates 

that no mapped soil unit occurred at more than 25% of the plots. Codes used in table include: MAT= mean annual air temperature; 

MAP= mean annual precipitation. 

 

vegetation type  
cumu. 

drainage 

distance to 
river 

mouth 
(km) 

elevation 
(m) 

lat. long. 

distance 
to 

channel 
(m) 

100 year 
floodplain 
width (m)  

MAT 
(C) 

MAP 
 (mm) 

mapped 
soil unit 

geologic 
bedrock 

stream 
order 

river 
basin 

geomorphic 
position 

Ia. Liriodendron tulipifera – Liquidambar styraciflua / 
Lindera benzoin/ Amphicarpaea bracteata Forest  

61.3 454 175 35.81 -80.03 
 

37.9 171.5 14.5 1177 ** CZ (78%) 3 all SS(50%); 
flat(45%) 

Ib. Liriodendron tulipifera - Betula nigra / Cornus florida / 
Sanicula canadensis var. canadensis Forest  

26.1 391 121 35.60 -79.57 29.2 118.8 15 1160 Ch(50%) CZ(100%) 2 Cat; CF; 
Neu  

SS(100%) 

IIa. Liquidambar styraciflua - Quercus nigra / Carpinus 
caroliniana / Mitchella repens Forest  

300.2 334 91 35.72 -79.12 37.3 419.5 14.8 1161 Ch(44%) CZ(63%); 
TR(22%) 

4 all flat(56%); 
bottom (22%) 

IIb. Liquidambar styraciflua- Quercus pagoda- Carya 
cordiformis/ Asimina triloba/ Arundinaria tecta Forest  

427.9 340 60 35.06 -80.05 36.7 1150.0 16.1 1200 Ch(100%) TR(100%) 4 Yad bottom(66%) 

IIc. Carya carolinae-septentrionalis - Acer floridanum  / 
Aesculus sylvatica/ Zizia aurea Forest  

896 364 118 35.55 -79.76 29.7 141.6 15.1 1175 Ok (63%) CZ(100%) 3 Yad; CF flat(63%) 

IIIa. Ulmus americana - Celtis laevigata/ Lindera benzoin 
/ Osmorhiza longistylis Levee Forest 

3347 350 89 35.61 -79.38 37.8 488.5 14.5 1170 Ch(30%); 
RvA(27%) 

CZ(54%); 
PPg(21%); 
TR(18%) 

6 CF; Yad; 
Neu: 
Cat 

levee (67%) 

IIIb. Fraxinus pennsylvanica- Platanus occidentalis / Acer 
negundo/ Chasmanthium latifolium Levee Forest 

1150 394 129 35.87 -79.48 34.5 369.8 14.3 1156 Ch(43%) CZ(43%); 
PPg(27%) 

5 all levee(70%) 

IVa. Quercus (phellos-pagoda-michauxii)- Ulmus 
americana / Ilex decidua / Arisaema triphyllum 
Bottomland Forest  

146.8 347 78 35.76 -79.07 89.1 624.5 14.7 1157 Ch(82%) TR (53%); 
CZ (41%) 

4 CF; 
Neu; 

Tar; Yad 

bottom(76%) 

IVb. Fraxinus pennsylvanica -Acer rubrum-Ulmus 
americana/ Ilex decidua / Saururus cernuus Swamp 
Forest  

231.5 339 82 35.82 -78.95 97.6 639.0 14.7 1149 Ch(63%) CZ (33%); 
PPg(33%); 
TR(25%) 

4 all BS(58%); 
bottom(29%) 

IVc. Fraxinus pennsylvanica -Betula nigra-Platanus 
occidentalis/ Alnus serrulata / Boehmaria cylindrica 
Forest  

2532 481 212 35.78 -80.59 64.7 470.8 13.9 1224 ** CZ (83%) 3 Yad; 
Cat; CF 

BS(83%) 

IVd. Quercus lyrata- Fraxinus pennsylvanica/ Saururus 
cernuus Swamp Forest  

144.7 370 74 35.47 -79.40 93.0 603.3 15.6 1171 Ch(33%); 
Co(33%); 
CoA(33%) 

TR (100%) 4 CF; 
Neu; 
Yad 

BS(100%) 

IVe. Carya aquatica- Nyssa aquatica Swamp Forest  17381 316 55 35.07 -79.90 35.5 1100.0 14.6 1189 Ch(100%) TR (100%) 7 Yad BS(100%) 

1
4

1
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Table 5.2: Environmental descriptors for the six NC-EEP restoration sites. 

 

restoration site 
cumu. 

drainage 

distance to 
river mouth 

(km) 

elevation 
(m) 

lat. long. 
distance to 
channel (m) 

100- yr 
floodplain 
width (m)  

MAT 
(C) 

MAP 
(mm) 

mapped soil 
unit 

geologic 
bedrock 

stream 
order 

river 
basin 

geomorphic 
position 

Morgan Creek                             

  112 345 70 35.890 -79.910 <50 760 14.5 1168 Cp; Ch TR 4 CF levee  

  112 345 70 35.890 -79.910 50-150+ 760 14.5 1168 Ch TR 4 CF bottom; BS 

Wells Creek #2                             

  <10 383 180 35.919 -79.466 0-40 30-50 14.7 1155 Cf; Hd; Ce CZ 2 (UT,1) CF SS; flats 
UT to West Fork of 
Deep River (G)                             

UTA <10 501 260 36.055 -80.04 <10 NA 14.7 1111 Ha PPg 1 CF SS 

UTB <10 501 260 36.055 -80.04 <10 10 14.7 1111 Ha PPg 1 CF SS 

UTC <10 501 260 36.055 -80.04 <10 NA 14.7 1111 Ha PPg 1 CF SS 
main channel, West 
Fork Deep <10 501 260 36.055 -80.04 <25 16 14.7 1111 Ha PPg 2 CF SS; flats 

Sandy Creek                              

UT 74 451 170 35.827 -79.646 0-80+ 180-220 14.7 1159 Ch CZ 2 CF SS;BS 

  74 451 170 35.827 -79.646 0-40 150 14.7 1159 Ch CZ 2 CF levee; flat 

Sandy Creek    89 451 170 35.827 -79.646 0-40 120 14.7 1159 Ch CZ 4 CF flat 

Ut to Haw (Beckom)                         CF   

  <10 389 194 36.153 -79.464 0-40 40-50 14.7 1134 Lc CZ 1 CF BS 

  <10 389 194 36.149 -79.464 0-40 40-50 14.7 1134 Lc; EeD2 CZ 1 CF SS; flat 

Mill Creek                              

Uwharrie River 767 406 112 35.556 -79.976 <150 220 15.2 1156 Ch; DoB CZ 5 Yad flat 

Mill Creek    <10 406 112 35.556 -79.971 <45 50-60 15.4 1173 BtC CZ 1 Yad SS 

UT2 <10 406 118 35.558 -79.974 <20 0-30 15.2 1156 DoB; MeC CZ 1 Yad SS 

UT4 <10 406 120 35.555 -79.968 <20 NA 15.4 1173 BtC CZ 1 Yad SS 

UT5 <10 406 120 35.557 -79.971 <20 0-30 15.4 1173 BtC CZ 1 Yad SS 

 

 

 

1
4

2
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Table 5.3: Restoration sites and matched vegetation type generated by tool. 

 

Restoration site name 
Geomorphic 

position 
Matched vegetation 

type ID  
Dissimilarity 

Morgan Creek 

  levee  IIIa 0.118 

  bottom; BS IVd. 0.086 

Wells Creek #2 

  SS; flats Ib. 0.102 

UT to West Fork of Deep River (G) 

UTA SS Ia. 0.187 

UTB SS Ia. 0.194 

UTC SS Ia. 0.187 

West Fork Deep SS; flats Ib. 0.123 

Sandy Creek  

UT SS;BS IVc. 0.161 

  levee; flat Ia. 0.163 

Sandy Creek    flat IIc. 0.128 

Ut to Haw (Beckom) 

  BS Ib. 0.193 

  SS; flat Ib. 0.114 

Mill Creek  

Uwharrie River flat IIb. 0.145 

Mill Creek    SS Ib. 0.051 

UT2 SS Ib. 0.054 

UT4 SS Ib. 0.048 

UT5 SS Ib. 0.054 
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Figure 5.1: 182 reference floodplain forest vegetation plots and 6 restoration sites identified 

by NC-EEP for this case study. 
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Figure 5.2:  Environmental variables ranked by importance in discriminating between 

vegetation groups: (a) the four broad geomorphic-floristic groups and (b) the twelve finer-

scale vegetation types. Code for the environmental variable are: Geomorph= geomorphic 

position, Long= longitude, Lat= latitude, Pathlength= distance to river mouth, MAT= mean 

annual temperature, MAP= mean annual precipitation, Cumu_drain= watershed area, 

Strm_ord= stream order, Fdpn_wd= one-hundred year floodplain width, Dist_cha= distance 

to channel, and MUS= mapped soil unit. 
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Figure 5.3: Screenshot of the restoration tool to match restoration sites with described vegetation types. Screen shot shows results for 

the Mill Creek, Uwharrie River restoration site.  
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CHAPTER 6 

Conclusion 

 
Summary of conclusions 

 The research presented in this dissertation provides documentation and description of 

North Carolina‟s Piedmont alluvial vegetation, an understudied yet ecologically important 

Southeastern ecosystem. This work substantially advances our understanding of the major 

drivers of diversity in this system and outlines an approach for using vegetation descriptions 

in the restoration of degraded alluvial vegetation. The major conclusions of this dissertation 

work include: 

1.  Piedmont riparian vegetation can best be represented in a hierarchical framework, 

where higher-level vegetation groups reflect broad geomorphic-floristic patterns and 

lower-level vegetation types reflect finer-scale floristic variation. These lower-level 

groups are comparable to National Vegetation Classification (NVC) associations in 

terms of compositional variation and consistency and may be used to guide revisions 

to currently recognized NVC concepts. Compositional variation is strongly related to 

local hydrogeomorphic setting and soil fertility. 

2.  Richness of Piedmont riparian forests is highest in the small-stream floodplain 

forests. However, floodplain forests associated with different river sizes are 

characterized by distinct plant communities, where the total abundance or proportion 

of the community represented by species groups defined by plant attributes (nativity, 

habitat association and growth form) varies with river size.
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 3.  Piedmont alluvial vegetation can be viewed as a metacommunity, where local 

sites are linked by both overland and riparian network dispersal. Compositional 

patterns of Piedmont alluvial metacommunities, however, are primarily shaped by 

local environmental setting, with dispersal processes playing a relatively small role in 

determining local composition.  

4.  By utilizing quantitative environmental variables of both vegetation types and 

restoration sites, it is possible to match restoration sites to described vegetation types.  

Floristic descriptions of the matched vegetation type provide the necessary reference 

information for guiding restoration action. As a result of using site-specific variables, 

matched vegetation type descriptions can increase the likelihood of restoration 

success when compared with current restoration protocols.  

 

Implications for conservation and restoration 

 The results of this work have various implications for the conservation and restoration 

of North Carolina‟s Piedmont alluvial vegetation. The classification presented in Chapter 2 

can inform revisions of vegetation classifications used by state agencies, conservation 

organizations, and federal land management agencies, improving the ability of managers to 

efficiently engage in management action. Comparison of the vegetation units presented in 

Chapter 2 with those currently recognized in the U.S. National Vegetation Classification 

suggests that revisions of the NVC are necessary to better represent Piedmont alluvial 

vegetation. Additionally, Piedmont alluvial vegetation in North Carolina is now documented 

by substantial plot data, allowing for both more complete explorations of patterns across the 

state and reclassification by future researchers in developing vegetation types at broader 
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spatial scales. In addition, results presented in Chapter 3 suggest that conservation and 

restoration activities should take a broader view of riparian systems and include efforts 

focused on both small stream alluvial forests and larger-river bottomland habitat, as each 

contributes a unique set of species to the riparian flora. The work presented in Chapter 4 

demonstrates that NC piedmont riparian plant communities are largely structured by local 

environmental setting, and Chapter 5 illustrates that in a system predominately structured by 

local environmental variables, restoration practitioners can employ these variables and using 

matching criteria generate reference information from quantitative community 

classifications. 

 

Future needs 

 Although this research expands the body of knowledge related to Southeastern 

alluvial vegetation, there are still gaps in our knowledge that need to be addressed. In 

particular, while the spatial extent of this work was motivated by ecological and 

biogeographic factors (e.g. river basin boundaries, Piedmont physiographic region), it also 

reflects political borders (e.g. the North Carolina state border). Alluvial plant communities, 

however, likely respond to these boundaries as either fuzzy edges, in the case of ecological 

and biogeographic boundaries, or nonexistent edges, in the case of political borders. Future 

research should address how vegetation patterns respond to and change at these boundaries 

and how vegetation scientists and plant ecologists should handle boundary issues in 

classification and description. These questions are of vital importance for management and 

remain unanswered and under-investigated. A variety of questions related to the issue of 

boundaries are of interest for understanding alluvial vegetation of the Southeast, including: 
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How do riparian plant communities within the same river basin change across 

biogeographical boundaries, such as the fall line of the Southeastern U.S.? Do the major 

drivers of community composition vary across physiographic boundaries (Mountains, 

Piedmont, Coastal Plain)? How do riparian communities vary across the remainder of the 

Southeastern Piedmont region, which crosses many political borders? Are the types defined 

here sufficient in capturing variation in riparian plant communities across the Southeastern 

Piedmont? If not, how might they be integrated with other classifications, which are often 

conducted at spatial scales smaller than the entire ecological region due to resources 

constraints? 

 I expect that as the spatial scale of study increases to include the entire Piedmont, 

unique histories, unique combinations of environmental settings, and perhaps unique spatial 

constraints will result in distinct alluvial vegetation types, perhaps structured by distinct 

drivers. In addition to dealing with the variation across boundaries, applied ecologists and 

natural resource managers must also address how to reconcile patterns described at one 

spatial scale with variation occurring over a wide range of scales, often in the face of 

insufficient data for adequately describing variation across these scales. With limited 

resources available for description and classification of natural systems, methods that utilize 

available data to “fill in the gaps” are essential. Many of these issues are apparent in current 

efforts to describe North American vegetation; regional and national-scale vegetation 

classification is approached at a wide variety of scales and by a wide variety of practitioners 

(e.g., National Park-scale vegetation classifications and state-wide classifications, such as 

those developed by the California Native Plant Society and being developed by the Carolina 

Vegetation Survey).  How these descriptions, developed at very different spatial and 
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temporal scales, will be reconciled, however, is not obvious, and is of fundamental 

importance for successful implementation of large-scale natural resource management.
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Appendix 1 

Means and standard errors (±SE) of soil variables by vegetation type and soil horizon. Texture variables (sand, silt, and clay) are 

reported as %, and all nutrients (Ca, Mg, K, Na, Fe, Mn, and Al) are reported in ppm. Codes used in table: H= horizon, Or= 

organic matter, exc= cation exchange capacity, base= base saturation, dens= density. 

Type H Sand ±SE Silt ±SE Clay ±SE Or ±SE pH ±SE exc ±SE base ±SE Ca ±SE Mg ±SE K ±SE Na ±SE Fe ±SE Mn ±SE Al ±SE den ±SE 

Ia. A 47 5 38 4 15 2 5.6 0.5 5.1 0.1 11.8 0.8 52.6 2.8 955 114 170 18 65 7 29 1 185 15 124 18 623 26 0.85 0.04 

Ib. A 70 5 18 5 11 1 4.1 0.8 5.1 0.2 8.1 0.7 51.9 4.7 585 108 113 5 56 11 29 5 201 31 109 30 526 76 0.86 0.04 

IIa. A 45 3 36 3 18 1 5.9 0.3 4.9 0.0 9.4 0.5 45.4 1.2 564 44 143 10 69 4 31 2 229 12 132 11 704 24 0.78 0.02 

IIb. A 17 4 39 1 44 4 5.9 1.1 4.9 0.2 21.7 2.6 47.0 5.5 1240 336 445 61 90 9 28 3 145 11 269 25 850 94 0.77 0.03 

IIc. A 37 10 45 7 17 3 4.4 0.6 4.9 0.2 8.6 1.0 46.9 4.1 502 107 151 21 50 5 31 1 211 12 115 13 667 70 0.89 0.03 

IIIa. A 34 4 45 3 20 2 5.9 0.4 5.4 0.1 15.2 0.7 59.5 2.1 1385 89 228 14 55 4 29 1 183 8 129 8 500 26 0.77 0.02 

IIIb. A 44 5 34 3 22 2 4.9 0.3 5.2 0.1 13.9 1.1 53.5 1.6 1083 86 181 16 65 5 34 2 257 13 107 12 551 30 0.83 0.03 

IVa. A 23 2 50 2 27 2 6.2 0.3 4.7 0.0 13.2 1.1 42.0 1.1 741 87 189 15 65 3 35 1 249 27 150 23 691 28 0.69 0.01 

IVb. A 28 3 37 2 36 2 7.6 0.5 4.8 0.1 14.9 1.5 44.4 1.6 914 122 216 31 84 6 45 3 328 18 99 12 764 32 0.68 0.02 

IVc. A 31 6 38 1 31 6 7.4 0.9 4.6 0.1 8.7 0.9 39.4 2.0 437 33 106 17 58 5 35 3 351 56 48 5 802 49 0.75 0.04 

IVd. A 14 3 50 6 36 4 6.0 0.4 4.8 0.2 14.6 5.6 42.9 5.5 755 276 182 18 76 3 35 10 373 52 94 52 840 111 0.70 0.05 

IVe. A 16 4 40 4 44 0 5.0 0.3 4.8 0.1 11.5 1.9 43.5 1.9 636 93 177 62 67 13 46 8 275 68 90 42 907 53 0.71 0.00 

Type H Sand ±SE Silt ±SE Clay ±SE Or ±SE pH ±SE exc ±SE base ±SE Ca ±SE Mg ±SE K ±SE Na ±SE Fe ±SE Mn ±SE Al ±SE den ±SE 

Ia. B 52 5 31 4 16 2 1.7 0.1 5.1 0.1 5.6 0.5 52.5 2.3 396 48 96 11 30 2 29 2 167 22 106 17 764 26 1.03 0.03 

Ib. B 64 7 23 5 13 3 1.5 0.3 4.9 0.0 6.8 1.2 45.0 1.0 448 107 74 16 31 5 31 5 255 101 106 33 765 101 1.01 0.04 

IIa. B 45 4 32 3 23 2 2.0 0.1 4.9 0.0 6.1 0.6 46.6 1.1 337 40 108 11 36 3 33 2 162 7 128 18 861 39 0.97 0.02 

IIb. B 16 2 51 5 34 6 2.5 0.4 4.7 0.1 14.4 1.9 41.0 2.2 523 72 351 37 69 12 37 3 158 7 356 57 1264 74 0.87 0.02 

IIc. B 35 9 42 7 23 4 3.2 0.6 5.1 0.2 8.6 1.0 51.0 4.6 541 112 175 15 40 5 30 2 180 19 102 15 714 83 0.93 0.04 

IIIa. B 39 4 39 3 22 1 2.2 0.2 5.2 0.1 9.7 0.7 53.7 2.1 736 65 156 11 30 2 31 2 171 8 112 12 678 31 0.92 0.02 

IIIb. B 50 5 28 3 22 2 2.1 0.1 5.0 0.1 9.6 0.9 49.9 1.6 680 72 140 16 38 3 32 1 216 12 80 9 703 27 0.97 0.02 

IVa. B 25 3 46 2 29 2 2.3 0.2 4.9 0.1 9.9 0.9 45.2 1.3 546 76 177 15 34 2 46 5 199 15 139 24 849 29 0.86 0.03 

IVb. B 33 5 34 3 33 3 2.4 0.2 4.9 0.1 11.2 1.3 45.9 1.6 633 87 205 32 44 4 51 6 250 21 90 15 867 37 0.88 0.02 

IVc. B 44 9 28 6 28 4 2.8 0.5 5.0 0.1 7.1 0.9 48.8 2.3 449 54 103 15 38 7 39 3 209 17 57 15 826 79 0.94 0.05 

IVd. B 12 3 48 4 40 6 2.3 0.4 4.9 0.1 13.2 3.2 45.4 1.3 774 264 222 47 44 1 49 6 298 44 85 34 843 45 0.80 0.04 

IVe. B 17 5 52 8 31 3 2.0 0.0 4.9 0.2 12.5 0.5 44.3 3.3 679 99 224 19 36 3 42 8 490 112 110 7 805 35 0.81 0.03 

 

 

1
5

5
 

 



155 
 

Appendix 2 

Average constancy (%) and basal area of woody vegetation in each type (BA = basal area m2/ha). Species list includes species with constancy 

>25% in at least one group. Non-native species are identified with an *. Rhododendron group 1 = periclymenoides + arborescens + viscosum 

+ calendulaceum. 

 
 
  

I. Small streams and 
narrow floodplain forests 

II. Oak-hickory flats III. Large river levees IV. Swamps 

Types Ia. Ib. IIa. IIb. IIc. IIIa. IIIb. IVa. IVb. IVc. IVd. IVe. 

Plot Count 18 6 32 3 8 33 30 17 24 6 3 2 

taxon name const BA const BA const BA const BA const BA const BA const BA const BA const BA const BA const BA const BA 

Acer floridanum 44 0.99 -- -- 31 1.26 -- -- 100 1.59 64 1.61 23 1.45 29 0.46 8 0.13 -- -- -- -- -- -- 

Acer negundo 22 1.63 -- -- 6 0.00 33 0.06 -- -- 73 0.78 90 3.07 29 0.10 -- -- -- -- -- -- -- -- 

Acer rubrum 78 1.37 100 2.63 88 1.72 100 1.73 50 0.72 21 0.11 17 3.03 82 1.48 100 4.79 83 9.93 67 9.06 100 3.41 

Aesculus sylvatica 6 0.00 -- -- 6 0.00 -- -- 13 0.45 33 0.08 13 0.02 12 0.01 -- -- -- -- -- -- -- -- 

Alnus serrulata 11 0.19 -- -- -- -- -- -- -- -- -- -- 3 0.24 -- -- -- -- 50 0.39 -- -- -- -- 

Asimina triloba 11 0.15 -- -- 6 0.03 100 0.17 -- -- 42 0.19 7 0.01 29 0.19 8 0.01 -- -- -- -- -- -- 

Betula nigra 44 6.98 67 6.19 13 4.48 -- -- -- -- 12 1.35 23 3.01 35 0.65 25 5.35 83 3.32 -- -- 50 2.87 

Bignonia capreolata 44 0.00 -- -- 78 0.03 100 0.01 25 0.00 52 0.01 43 0.01 71 0.01 58 0.00 33 0.00 -- -- -- -- 

Campsis radicans 28 0.18 -- -- 13 0.06 -- -- -- -- 12 0.10 37 0.15 59 0.04 25 0.01 33 0.13 -- -- 50 0.00 

Carpinus caroliniana 83 1.26 83 1.37 97 1.69 100 1.18 75 0.95 64 0.66 40 0.58 71 0.40 63 0.54 50 0.68 67 0.09 50 3.28 

Carya alba 28 0.15 17 0.01 28 0.79 -- -- 13 1.19 -- -- -- -- 6 0.01 -- -- -- -- -- -- -- -- 

Carya aquatica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 1.81 

Carya carolinae-septentrionalis -- -- -- -- -- -- -- -- 75 6.03 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Carya cordiformis 44 2.35 17 0.00 28 1.02 67 1.03 13 0.24 70 1.69 13 1.20 -- -- -- -- -- -- -- -- -- -- 

Carya glabra 6 0.00 33 0.03 16 0.83 -- -- 25 1.39 -- -- -- -- 6 0.40 -- -- -- -- -- -- -- -- 

Carya ovata 17 0.24 -- -- 34 1.06 33 0.02 13 0.49 12 1.23 3 0.83 35 0.63 13 0.50 -- -- -- -- -- -- 

Celtis laevigata 28 0.10 -- -- -- -- 33 0.04 -- -- 76 3.96 60 1.05 35 0.22 8 0.20 -- -- -- -- -- -- 

Cornus florida 89 0.73 83 0.33 44 0.10 -- -- 38 0.16 36 0.16 13 0.13 18 0.04 -- -- 17 0.01 -- -- -- -- 

Crataegus viridis -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 17 0.17 -- -- -- -- 50 0.04 

Diospyros virginiana 11 0.24 33 0.44 13 0.62 -- -- 13 0.59 3 0.00 -- -- -- -- -- -- 17 0.04 -- -- -- -- 

Elaeagnus umbellata* -- -- 17 0.01 9 0.05 -- -- 38 0.07 18 0.04 -- -- -- -- 4 0.04 -- -- -- -- -- -- 

Fagus grandifolia 44 6.41 50 0.06 47 2.26 -- -- 25 0.02 9 0.42 10 0.17 18 0.02 4 0.11 -- -- -- -- -- -- 

Fraxinus pennsylvanica 56 0.48 33 0.01 50 0.55 67 0.12 88 0.90 45 1.15 87 6.25 82 0.80 88 2.94 100 4.42 100 2.38 50 1.19 

Ilex decidua 11 0.04 -- -- 63 0.13 -- -- 38 0.18 30 0.03 17 0.11 82 0.26 58 0.07 -- -- 67 0.22 50 0.06 

Ilex opaca var. opaca 61 0.26 67 0.85 78 1.30 -- -- 25 0.02 48 0.49 10 0.43 41 0.15 13 1.69 33 0.01 -- -- -- -- 

Ilex verticillata -- -- -- -- 3 0.00 -- -- -- -- -- -- -- -- 6 0.00 -- -- -- -- 33 0.00 -- -- 

Juglans nigra 22 1.37 -- -- -- -- -- -- 13 0.02 33 1.25 20 1.57 -- -- -- -- -- -- -- -- -- -- 
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I. Small streams and 
narrow floodplain forests 

II. Oak-hickory flats III. Large river levees IV. Swamps 

Juniperus virginiana 33 0.33 -- -- 28 0.46 -- -- 50 0.80 15 0.31 3 0.40 -- -- -- -- -- -- -- -- -- -- 

Ligustrum sinense* 6 0.00 -- -- 22 0.00 33 0.01 -- -- 52 0.14 63 0.06 35 0.02 25 0.01 67 0.06 -- -- -- -- 

Lindera benzoin 56 0.18 -- -- 16 0.00 -- -- -- -- 58 0.12 30 0.11 18 0.00 8 0.01 17 1.02 -- -- -- -- 

Liquidambar styraciflua 67 4.60 100 1.84 94 4.82 67 0.05 88 3.82 88 2.98 43 2.44 100 4.56 75 3.62 67 3.78 100 2.19 50 5.38 

Liriodendron tulipifera 89 6.74 67 3.53 50 2.80 -- -- 25 3.87 42 4.16 20 5.34 24 0.84 -- -- 17 4.88 -- -- -- -- 

Lonicera japonica* 67 0.02 17 0.00 63 0.07 -- -- 25 0.00 79 0.03 60 0.08 76 0.02 33 0.00 33 0.09 -- -- -- -- 

Morus rubra 28 0.33 -- -- 3 0.12 -- -- -- -- 21 0.40 13 0.62 24 0.35 -- -- -- -- -- -- -- -- 

Nyssa aquatica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 31.10 

Nyssa sylvatica 22 0.04 50 0.35 63 0.54 33 4.98 38 0.20 12 0.20 -- -- 35 0.08 13 2.07 -- -- -- -- -- -- 

Ostrya virginiana 17 0.77 50 0.36 25 0.79 -- -- 25 1.34 12 0.40 7 0.57 6 0.02 -- -- -- -- -- -- -- -- 

Oxydendrum arboreum 33 1.64 50 0.48 16 0.15 -- -- 13 0.07 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Parthenocissus quinquefolia 39 0.06 17 0.00 47 0.02 67 0.00 38 0.01 79 0.07 50 0.04 94 0.01 63 0.01 33 0.01 -- -- -- -- 

Pinus taeda 6 3.91 33 9.35 16 5.08 -- -- 25 4.92 9 4.09 10 4.92 6 2.21 4 1.77 -- -- -- -- -- -- 

Platanus occidentalis 17 13.43 33 0.80 9 8.56 -- -- 13 1.10 33 4.52 53 13.97 12 0.46 21 2.04 50 2.18 -- -- -- -- 

Populus deltoides -- -- -- -- -- -- -- -- -- -- 3 1.10 13 10.01 6 2.66 -- -- -- -- -- -- 50 5.19 

Prunus serotina 22 0.18 17 0.03 19 0.38 -- -- -- -- 18 0.19 10 0.38 -- -- -- -- -- -- -- -- -- -- 

Quercus alba 28 0.24 17 0.01 34 1.88 -- -- 38 0.83 6 0.75 -- -- 18 0.40 -- -- -- -- -- -- -- -- 

Quercus lyrata -- -- -- -- -- -- -- -- -- -- -- -- -- -- 12 9.31 13 2.44 -- -- 100 8.23 100 4.30 

Quercus michauxii -- -- 17 3.27 25 1.69 67 1.33 -- -- 24 4.98 3 1.56 35 0.69 29 0.46 -- -- 33 0.00 -- -- 

Quercus nigra 6 5.84 17 4.24 53 3.76 33 5.85 13 1.10 12 2.92 7 6.44 24 1.63 13 0.04 33 2.11 -- -- -- -- 

Quercus pagoda 6 1.50 17 2.51 28 2.21 33 5.88 -- -- -- -- -- -- 29 4.57 13 1.36 -- -- -- -- -- -- 

Quercus phellos -- -- -- -- 47 3.56 -- -- 38 2.67 6 0.31 -- -- 59 4.24 33 3.26 -- -- 100 5.13 -- -- 

Quercus rubra 22 1.86 -- -- 9 1.52 -- -- -- -- 6 0.01 -- -- -- -- -- -- 17 0.11 -- -- -- -- 

Quercus shumardii 33 7.60 -- -- 9 2.97 -- -- 50 6.34 3 1.78 -- -- 12 2.61 -- -- 17 0.03 -- -- -- -- 

Quercus stellata 6 0.30 17 0.03 -- -- -- -- 25 1.32 3 0.40 -- -- -- -- -- -- -- -- -- -- -- -- 

Rhododendron group 11 -- -- 33 0.16 6 0.01 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Smilax bona-nox 28 0.00 -- -- 16 0.01 33 0.00 13 0.01 27 0.01 23 0.01 -- -- 8 0.00 17 0.00 -- -- -- -- 

Smilax [rotundifolia + walterii] 44 0.00 17 0.00 59 0.01 33 0.00 13 0.01 21 0.01 43 0.02 76 0.01 71 0.00 67 0.01 67 0.00 -- -- 

Toxicodendron radicans 78 0.12 33 0.02 66 0.03 100 0.01 38 0.21 64 0.05 70 0.17 100 0.08 75 0.06 83 0.15 33 0.00 50 0.06 

Ulmus alata 39 0.34 17 0.06 69 0.63 -- -- 75 0.59 45 0.73 27 1.23 94 0.81 63 0.44 -- -- -- -- -- -- 

Ulmus [americana +rubra] 44 0.47 17 0.01 41 0.62 -- -- 25 1.50 67 0.84 67 2.35 82 1.17 79 0.83 33 0.18 67 0.48 -- -- 

Viburnum dentatum 6 0.01 -- -- 16 0.00 -- -- -- -- 3 0.00 3 0.01 6 0.00 13 0.02 33 0.01 -- -- -- -- 

Viburnum prunifolium 22 0.05 -- -- 41 0.02 33 0.04 38 0.13 21 0.02 7 0.00 53 0.01 25 0.04 17 0.44 -- -- -- -- 

Vitis [cinerea + vulpina] 39 0.18 -- -- 13 0.03 33 0.36 25 0.03 24 0.21 40 0.15 18 0.04 4 0.00 17 0.14 -- -- -- -- 

Vitis aestivalis var. aestivalis -- -- -- -- -- -- 33 0.00 -- -- 12 0.09 3 0.11 6 0.00 4 0.01 -- -- -- -- -- -- 

Vitis rotundifolia 61 0.05 83 0.19 94 0.05 -- -- 38 0.05 67 0.08 20 0.29 59 0.06 25 0.01 33 0.11 -- -- -- -- 
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Appendix 3 

Average cover by strata, constancy (const.), fidelity, diagnostic value (DV), and indicator value 

(IV) of prevalent species in the two small stream, narrow floodplain forest types. Prevalence is 

calculated separately for each stratum, and species must be prevalent in at least one type to be 

included in table (see text for definition of terms and calculation of metrics).  Species may be in 

the table more than once as they receive cover in every stratum in which they were observed. 

Non-native species are identified by an *. 

Type Ia. Ib. 

Plot Count 18 6 

Avg Spp Richness (400m2) 79.3 70.5 

Avg Spp Richness (100m2) 43.0 42.5 

Avg Spp Richness (10m2) 24.4 22.1 

Avg Spp Richness (1m2) 10.6 9.6 

Homotoneity 61 60 

Tree stratum const. cover fidelity DV IV const. cover fidelity DV IV 

Acer floridanum 33 8 11 4 -- 17 2 2 0 -- 

Acer rubrum 83 6 13 11 -- 100 7 5 5 -- 

Betula nigra 56 6 16 9 -- 67 8 7 4 -- 

Carpinus caroliniana 78 7 13 10 -- 67 7 4 2 -- 

Carya cordiformis 39 6 13 5 -- 33 4 4 1 -- 

Carya glabra 6 4 8 0 -- 33 4 15 5 -- 

Carya ovata 33 6 15 5 -- -- -- -- -- -- 

Cornus florida 89 6 27 24 -- 100 6 10 10 30.5 

Fagus grandifolia 56 6 29 16 -- 33 3 6 2 -- 

Fraxinus pennsylvanica 44 5 6 3 -- 33 3 2 1 -- 

Ilex opaca var. opaca 17 6 7 1 -- 67 6 9 6 -- 

Juglans nigra 44 5 24 10 -- -- -- -- -- -- 

Liquidambar styraciflua 78 6 9 7 -- 67 6 3 2 -- 

Liriodendron tulipifera 100 6 23 23 27.6 67 6 5 3 -- 

Morus rubra 28 3 24 7 -- 17 4 5 1 -- 

Nyssa sylvatica 6 5 2 0 -- 50 5 6 3 -- 

Ostrya virginiana 22 5 16 4 -- 67 6 16 11 28.0 

Oxydendrum arboreum 39 5 44 17 -- 50 5 19 9 -- 

Pinus taeda 11 6 8 1 -- 33 6 8 3 -- 

Platanus occidentalis var. occidentalis 22 7 5 1 -- 50 5 4 2 -- 

Quercus alba 22 5 11 2 -- 33 5 5 2 -- 

Quercus nigra 6 7 2 0 -- 33 5 4 1 -- 

Quercus shumardii var. shumardii 33 6 19 6 -- 33 5 6 2 -- 

Toxicodendron radicans 56 4 9 5 -- 33 3 2 1 -- 

Ulmus alata 39 5 9 4 -- -- -- -- -- -- 

Ulmus [americana + rubra] 44 5 7 3 -- 33 4 2 1 -- 

Vitis rotundifolia var. rotundifolia 33 4 8 3 -- 83 4 6 5 -- 

Shrub stratum const. cover fidelity DV IV const. cover fidelity DV IV 

Acer floridanum 44 4 14 6 -- -- -- -- -- -- 

Acer rubrum 56 4 13 7 -- 67 3 5 3 -- 

Carpinus caroliniana 78 6 11 9 -- 67 4 3 2 -- 
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Type Ia. Ib. 

Carya cordiformis 28 3 20 6 -- 17 2 4 1 -- 

Cornus florida 61 4 28 17 -- 50 4 8 4 -- 

Corylus americana 28 5 63 17 -- -- -- -- -- -- 

Fagus grandifolia 44 4 21 9 -- 33 4 5 2 -- 

Fraxinus pennsylvanica 44 3 9 4 -- 17 2 1 0 -- 

Ilex opaca var. opaca 44 4 10 4 -- 83 5 6 5 -- 

Juniperus virginiana 33 4 26 9 -- -- -- -- -- -- 

Lindera benzoin 56 7 18 10 -- -- -- -- -- -- 

Liquidambar styraciflua 44 3 12 5 -- 33 2 3 1 -- 

Liriodendron tulipifera 17 3 19 3 -- 67 2 25 17 35.5 

Lonicera japonica* 39 2 9 4 -- 17 2 1 0 -- 

Ostrya virginiana 11 4 11 1 -- 67 4 22 15 33.6 

Quercus alba 17 2 21 4 -- 33 2 14 5 -- 

Toxicodendron radicans 56 2 9 5 -- 33 2 2 1 -- 

Ulmus alata 44 5 10 4 -- -- -- -- -- -- 

Ulmus [americana + rubra] 28 5 8 2 -- 17 2 2 0 -- 

Vaccinium elliottii -- -- -- -- -- 33 4 100 33 33.3 

Viburnum prunifolium 50 4 14 7 -- -- -- -- -- -- 

Vitis [cinerea + vulpina] 33 2 19 6 -- -- -- -- -- -- 

Vitis rotundifolia var. rotundifolia 61 3 12 7 -- 67 4 4 3 -- 

Herb stratum const. cover fidelity DV IV const. cover fidelity DV IV 

Acalypha rhomboidea -- -- -- -- -- 50 2 17 8 -- 

Acer floridanum 50 3 12 6 -- 33 2 3 1 -- 

Acer negundo var. negundo 56 2 10 6 -- -- -- -- -- -- 

Acer rubrum 89 2 13 12 -- 100 2 5 5 -- 

Amphicarpaea bracteata 89 3 25 23 -- 50 2 5 2 -- 

Anemonella thalictroides 33 2 46 15 -- 17 2 8 1 -- 

Arisaema triphyllum 78 2 19 15 -- 50 2 4 2 -- 

Athyrium asplenioides 28 3 15 4 -- 33 2 6 2 -- 

Betula nigra -- -- -- -- -- 33 2 22 7 -- 

Bignonia capreolata 56 2 7 4 -- 33 2 1 0 -- 

Boehmeria cylindrica 67 2 10 6 -- 50 2 2 1 -- 

Botrypus virginianus 83 2 28 23 31.0 33 2 4 1 -- 

Brachyelytrum erectum 22 2 33 7 -- 33 2 17 6 -- 

Bromus [nottowayanus + pubescens] 39 2 24 9 -- -- -- -- -- -- 

Campsis radicans 83 2 12 10 -- 50 2 2 1 -- 

Carex [amphibola+grisea+corrugata] 72 3 12 9 -- 17 2 1 0 -- 

Carex [radiata + rosea] 89 3 16 14 -- 83 2 5 4 -- 

Carex blanda 61 3 14 9 -- 50 2 4 2 -- 

Carex debilis 39 3 13 5 -- 50 2 5 3 -- 

Carex intumescens 6 2 3 0 -- 33 1 5 2 -- 

Carex laxiculmis var. laxiculmis 17 3 20 3 -- 33 2 13 4 -- 

Carex oxylepis 39 3 19 7 -- 50 2 8 4 -- 

Carex tribuloides 33 2 7 2 -- 17 1 1 0 -- 

Carpinus caroliniana 83 2 11 9 -- 100 2 4 4 -- 

Carya alba 17 2 12 2 -- 33 1 8 3 -- 

Carya cordiformis 56 2 10 6 -- 17 2 1 0 -- 

Carya glabra 11 2 11 1 -- 33 2 11 4 -- 



160 
 

Type Ia. Ib. 

Carya ovata 39 2 14 6 -- 17 1 2 0 -- 

Celtis laevigata  72 2 11 8 -- 50 2 3 1 -- 

Cercis canadensis var. canadensis 50 2 39 20 -- 17 1 4 1 -- 

Chasmanthium latifolium 50 3 9 4 -- -- -- -- -- -- 

Chasmanthium [sessiliflorum + laxum] 11 3 9 1 -- 50 4 13 7 -- 

Cornus florida 100 2 27 27 29.1 100 2 9 9 -- 

Desmodium paniculatum var. paniculatum 6 1 8 0 -- 33 2 17 6 -- 

Dichanthelium boscii 22 2 25 6 -- 33 4 13 4 -- 

Dichanthelium commutatum var. commutatum 72 2 14 10 -- 83 2 5 4 -- 

Dichanthelium laxiflorum 28 2 19 5 -- 33 2 7 2 -- 

Dichanthelium yadkinense 6 2 7 0 -- 33 4 14 5 -- 

Diospyros virginiana 28 2 11 3 -- 50 2 7 3 -- 

Elaeagnus umbellata 28 2 19 5 -- 17 1 4 1 -- 

Elephantopus tomentosus 6 1 13 1 -- 33 1 25 8 -- 

Elymus [glabriflorus + macgregorii + virginicus] 33 2 7 2 -- 50 2 3 2 -- 

Elymus hystrix 33 4 19 6 -- 33 3 6 2 -- 

Endodeca serpentaria 44 2 25 11 -- 33 2 6 2 -- 

Erechtites hieracifolia 22 2 6 1 -- 33 1 3 1 -- 

Eubotrys racemosa -- -- -- -- -- 33 2 15 5 -- 

Euonymus americanus 100 2 14 14 -- 100 2 5 5 -- 

Eurybia divaricata 39 2 54 21 -- -- -- -- -- -- 

Fagus grandifolia 61 2 28 17 -- 17 2 3 0 -- 

Festuca subverticillata 78 2 18 14 -- 50 2 4 2 -- 

Fraxinus pennsylvanica 83 2 9 8 -- 33 2 1 0 -- 

Galium aparine 39 2 11 4 -- -- -- -- -- -- 

Galium circaezans 78 2 35 27 30.2 17 1 3 0 -- 

Galium triflorum 89 2 28 25 29.7 83 2 9 7 -- 

Geum canadense 78 2 17 13 -- 50 2 4 2 -- 

Glyceria striata var. striata 39 2 11 4 -- 50 2 5 2 -- 

[Gonolobus + Matelea] 33 2 9 3 -- 33 1 3 1 -- 

Goodyera pubescens 22 1 31 7 -- 33 2 15 5 -- 

Hexastylis arifolia 28 2 19 5 -- 67 2 15 10 -- 

Hypericum hypericoides 6 1 3 0 -- 33 2 6 2 -- 

Ilex decidua 22 2 4 1 -- 67 1 4 2 -- 

Ilex opaca var. opaca 72 2 13 9 -- 100 2 6 6 -- 

Impatiens sp 33 2 13 4 -- 17 1 2 0 -- 

Juglans nigra 39 2 16 6 -- 17 1 2 0 -- 

Juncus coriaceus 28 2 10 3 -- 83 2 10 9 -- 

Juncus effusus 22 2 10 2 -- 50 2 7 4 -- 

Juniperus virginiana 72 2 22 16 -- 33 2 3 1 -- 

Leersia virginica 17 2 5 1 -- 33 2 4 1 -- 

Lespedeza cuneata* -- -- -- -- -- 33 3 15 5 -- 

Ligustrum sinense* 94 2 11 10 -- 50 1 2 1 -- 

Lindera benzoin 78 3 18 14 -- -- -- -- -- -- 

Liquidambar styraciflua 78 2 10 8 -- 100 2 4 4 -- 

Liriodendron tulipifera 72 2 19 14 -- 100 2 9 9 25.6 

Lonicera japonica 100 4 11 11 -- 100 2 4 4 -- 

Luzula echinata 28 2 24 7 -- 50 2 14 7 -- 



161 
 

Type Ia. Ib. 

Lycopus virginicus 28 2 9 2 -- 50 2 5 3 -- 

Lysimachia ciliata 11 2 8 1 -- 33 1 8 3 -- 

Magnolia macrophylla 6 2 50 3 -- 17 2 50 8 -- 

Maianthemum racemosum ssp. racemosum 28 2 33 9 -- 17 2 7 1 -- 

Microstegium vimineum* 94 6 12 11 -- 83 6 3 3 -- 

Mitchella repens 22 2 8 2 -- 67 2 8 5 -- 

Murdannia keisak* 6 1 6 0 -- 50 3 17 8 -- 

Nyssa sylvatica 22 2 6 1 -- 50 2 4 2 -- 

Osmorhiza longistylis 33 2 27 9 -- -- -- -- -- -- 

Ostrya virginiana 22 2 17 4 -- 67 2 17 12 27.7 

Oxalis sp 61 2 15 9 -- 100 2 8 8 -- 

Parthenocissus quinquefolia 100 3 10 10 -- 100 2 3 3 -- 

Passiflora lutea var. lutea 39 2 13 5 -- 67 2 8 5 -- 

Persicaria virginiana 50 2 9 5 -- 50 2 3 2 -- 

Phryma leptostachya 72 2 68 49 58.5 -- -- -- -- -- 

Pinus taeda 6 1 3 0 -- 50 2 9 5 -- 

Poa [autumnalis + cuspidata] 50 5 10 5 -- 50 2 3 2 -- 

Polygonatum biflorum 56 2 18 10 -- 67 2 7 5 -- 

Polystichum acrostichoides 100 4 20 20 30.1 100 3 7 7 -- 

Potentilla [simplex + canadensis] 17 2 11 2 -- 33 1 7 2 -- 

Potentilla indica 22 2 11 2 -- 17 2 3 0 -- 

Prenanthes [altissima + serpentaria + trifoliolata] 33 2 21 7 -- 50 2 11 5 -- 

Prunus serotina 100 2 19 19 20.5 83 2 5 4 -- 

Quercus alba 44 2 19 8 -- 50 2 7 4 -- 

Quercus michauxii 6 2 2 0 -- 33 2 5 2 -- 

Quercus nigra 17 2 5 1 -- 33 2 3 1 -- 

Quercus rubra 44 2 29 13 -- 33 2 7 2 -- 

Ranunculus abortivus 44 2 14 6 -- 17 1 2 0 -- 

Ranunculus recurvatus 17 2 20 3 -- 33 1 13 4 -- 

Rhododendron group 11 -- -- -- -- -- 50 2 40 13 -- 

Rosa sp 50 2 15 8 -- -- -- -- -- -- 

Rubus sp 94 2 13 13 -- 50 2 2 1 -- 

Ruellia caroliniensis 33 2 19 6 -- 17 1 3 1 -- 

Salvia lyrata 50 2 32 16 -- 50 2 11 5 -- 

Sambucus canadensis 44 2 13 6 -- -- -- -- -- -- 

Sanicula canadensis var. canadensis 89 2 15 13 -- 100 2 5 5 -- 

Saururus cernuus 6 2 2 0 -- 33 2 4 1 -- 

Sceptridium [biternatum + dissectum] 67 2 14 9 -- 50 2 3 2 -- 

Scutellaria integrifolia 11 2 9 1 -- 50 2 13 7 -- 

Smilax bona-nox 94 2 11 11 -- 67 2 3 2 -- 

Smilax glauca 89 2 15 13 -- 100 2 6 6 -- 

Smilax hispida 56 2 20 11 -- 17 2 2 0 -- 

Smilax [rotundifolia + walterii] 72 2 8 6 -- 83 2 3 3 -- 

Solidago sp 89 2 11 10 -- 100 2 4 4 -- 

Stellaria pubera 33 4 55 18 -- -- -- -- -- -- 

Styrax [americanus + grandifolius] -- -- -- -- -- 33 2 67 22 -- 

Thelypteris noveboracensis -- -- -- -- -- 33 6 67 22 32.3 

Toxicodendron radicans 100 3 10 10 -- 100 2 3 3 -- 
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Type Ia. Ib. 

Ulmus alata 44 2 8 3 -- 17 2 1 0 -- 

Ulmus [americana + rubra] 50 2 8 4 -- 67 2 4 3 -- 

Uvularia perfoliata 33 2 67 22 -- 17 2 11 2 -- 

Vaccinium stamineum -- -- -- -- -- 33 2 50 17 -- 

Verbesina alternifolia 39 2 9 3 -- 33 2 2 1 -- 

Verbesina occidentalis 50 2 13 6 -- 33 5 3 1 -- 

Viburnum prunifolium 78 2 16 12 -- -- -- -- -- -- 

Viola sp 94 2 11 11 -- 100 2 4 4 -- 

Vitis [cinerea + vulpina] 78 2 17 13 -- -- -- -- -- -- 

Vitis rotundifolia var. rotundifolia 100 2 13 13 -- 100 3 4 4 -- 

Xanthorhiza simplicissima -- -- -- -- -- 33 2 40 13 -- 
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Appendix 4 

Average cover by strata, constancy (const.), fidelity, diagnostic value (DV), and indicator value (IV) of prevalent species in the 

three oak-hickory flat types. Prevalence is calculated separately for each stratum, and species must be prevalent in at least one type 

to be included in table (see text for definition of terms and calculation of metrics).  Species may be in the table more than once as 

they receive cover in every stratum in which they were observed. Non-native species are identified by an *. 

Type Name IIa. IIb. IIc. 

Plot Count 32 3 8 

Avg Spp Richness (400m2) 70.7 53 84.9 

Avg Spp Richness (100m2) 42.3 33.9 48.2 

Avg Spp Richness (10m2) 22.4 17.8 28.6 

Avg Spp Richness (1m2) 9.6 8.1 12.7 

Homotoneity 59 78 65 

Tree stratum const. cover fidelity DV IV const. cover fidelity DV IV const. cover fidelity DV IV 

Acer floridanum 19 7 11 2 -- -- -- -- -- -- 100 7 15 15 38.1 

Acer negundo var. negundo -- -- -- -- -- 33 2 2 1 -- -- -- -- -- -- 

Acer rubrum 78 7 22 17 -- 100 6 3 3 -- 38 5 3 1 -- 

Asimina triloba -- -- -- -- -- 33 3 7 2 -- -- -- -- -- -- 

Bignonia capreolata 28 2 18 5 -- 67 2 4 3 -- 13 1 2 0 -- 

Carpinus caroliniana 88 7 26 23 -- 100 7 3 3 -- 75 7 6 4 -- 

Carya carolinae-septentrionalis -- -- -- -- -- -- -- -- -- -- 100 7 80 80 93.4 

Carya cordiformis 25 6 15 4 -- 67 7 4 2 -- 25 5 4 1 -- 

Carya glabra 16 5 38 6 -- -- -- -- -- -- 38 5 23 9 -- 

Carya ovata 38 6 30 11 -- 67 5 5 3 -- 38 4 8 3 -- 

Celtis laevigata  -- -- -- -- -- 67 5 4 3 -- -- -- -- -- -- 

Cornus florida 44 5 23 10 -- -- -- -- -- -- 50 4 7 3 -- 

Fagus grandifolia 50 6 47 24 -- -- -- -- -- -- 13 3 3 0 -- 

Fraxinus pennsylvanica 53 5 14 7 -- 67 3 2 1 -- 63 6 4 3 -- 

Ilex opaca var. opaca 53 6 37 20 -- -- -- -- -- -- 13 4 2 0 -- 

Juglans nigra 3 4 3 0 -- -- -- -- -- -- 38 4 9 3 -- 

Juniperus virginiana 9 5 20 2 -- -- -- -- -- -- 38 5 20 8 -- 

Liquidambar styraciflua 97 6 21 20 -- 100 5 2 2 -- 100 6 5 5 -- 

Liriodendron tulipifera 66 5 27 18 -- -- -- -- -- -- 25 6 3 1 -- 

Nyssa sylvatica 56 5 38 21 -- 33 7 2 1 -- 75 5 13 9 -- 

Ostrya virginiana 22 6 28 6 -- -- -- -- -- -- 38 7 12 5 -- 

Parthenocissus quinquefolia 22 2 12 3 -- 67 2 3 2 -- 13 2 2 0 -- 

Quercus alba 41 6 35 14 -- 33 6 3 1 -- 63 5 14 8 -- 

Quercus michauxii 28 6 22 6 -- 67 6 5 3 -- -- -- -- -- -- 

 

1
6

3
 



164 
 

Type Name IIa. IIb. IIc. 

Quercus nigra 69 6 49 34 -- 67 6 4 3 -- 13 5 2 0 -- 

Quercus pagoda 47 6 38 18 -- 67 7 5 3 -- -- -- -- -- -- 

Quercus phellos 56 6 34 19 -- -- -- -- -- -- 38 6 6 2 -- 

Quercus shumardii var. shumardii 22 6 23 5 -- -- -- -- -- -- 50 7 13 6 -- 

Toxicodendron radicans 50 4 14 7 -- 100 4 3 3 -- 38 4 3 1 -- 

Ulmus alata 56 6 23 13 -- 33 3 1 0 -- 100 5 10 10 21.0 

Ulmus [americana + rubra] 44 5 11 5 -- 33 4 1 0 -- 38 6 2 1 -- 

Vitis [cinerea + vulpina] 6 3 6 0 -- 33 3 3 1 -- 25 3 6 1 -- 

Vitis aestivalis var. aestivalis -- -- -- -- -- 33 2 8 3 -- -- -- -- -- -- 

Vitis rotundifolia var. rotundifolia 69 4 28 19 -- -- -- -- -- -- 38 3 4 1 -- 

Shrub stratum const. cover fidelity DV IV const. cover fidelity DV IV const. cover fidelity DV IV 

Acer floridanum 28 4 15 4 -- -- -- -- -- -- 100 6 14 14 37.6 

Acer negundo var. negundo 6 4 4 0 -- 33 1 2 1 -- -- -- -- -- -- 

Acer rubrum 53 4 22 12 -- -- -- -- -- -- 13 2 1 0 -- 

Aesculus sylvatica 9 2 9 1 -- -- -- -- -- -- 63 4 14 9 -- 

Arundinaria tecta 6 4 12 1 -- 100 6 18 18 71.3 -- -- -- -- -- 

Asimina triloba 19 4 16 3 -- 100 5 8 8 36.8 -- -- -- -- -- 

Bignonia capreolata 44 2 19 9 -- 100 2 4 4 26.4 25 2 3 1 -- 

Carpinus caroliniana 91 6 23 21 -- 67 4 2 1 -- 75 6 5 4 -- 

Carya ovate 19 3 30 6 -- 33 2 5 2 -- -- -- -- -- -- 

Crataegus flabellata group 13 2 44 6 -- 33 2 11 4 -- -- -- -- -- -- 

Elaeagnus umbellata* 9 6 14 1 -- -- -- -- -- -- 38 6 14 5 -- 

Fagus grandifolia 44 4 36 16 -- -- -- -- -- -- 13 3 3 0 -- 

Fraxinus pennsylvanica 44 4 16 7 -- 33 2 1 0 -- 13 3 1 0 -- 

Ilex decidua 72 4 25 18 -- 67 3 2 1 -- 63 4 5 3 -- 

Ilex opaca var. opaca 78 5 31 24 -- -- -- -- -- -- 25 4 2 1 -- 

Juniperus virginiana 28 3 39 11 -- -- -- -- -- -- 50 2 17 9 -- 

Ligustrum sinense* 22 2 9 2 -- 33 3 1 0 -- -- -- -- -- -- 

Liquidambar styraciflua 53 4 25 13 -- 33 1 1 0 -- 25 4 3 1 -- 

Lonicera japonica* 38 2 16 6 -- -- -- -- -- -- 13 2 1 0 -- 

Parthenocissus quinquefolia 25 2 11 3 -- 100 2 4 4 21.6 13 2 1 0 -- 

Quercus michauxii 13 3 15 2 -- 33 2 4 1 -- -- -- -- -- -- 

Quercus nigra 16 3 33 5 -- 33 2 7 2 -- -- -- -- -- -- 

Smilax bona-nox 9 2 13 1 -- 33 2 4 1 -- 13 2 4 1 -- 

Smilax glauca 13 2 31 4 -- 33 1 8 3 -- -- -- -- -- -- 

Smilax [rotundifolia + walterii] 47 2 17 8 -- 100 2 3 3 -- 13 2 1 0 -- 

Toxicodendron radicans 53 2 15 8 -- 100 2 3 3 -- 25 2 2 0 -- 

Ulmus alata 66 4 26 17 -- 33 2 1 0 -- 50 4 5 2 -- 

Viburnum prunifolium 50 4 25 12 -- 67 4 3 2 -- 50 4 6 3 -- 
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Type Name IIa. IIb. IIc. 

Vitis aestivalis var. aestivalis -- -- -- -- -- 33 2 8 3 -- -- -- -- -- -- 

Vitis rotundifolia var. rotundifolia 72 2 26 18 -- -- -- -- -- -- 38 2 3 1 -- 

Herb stratum const. cover fidelity DV IV const. cover fidelity DV IV const. cover fidelity DV IV 

Acer floridanum 34 2 14 5 -- -- -- -- -- -- 100 2 11 11 28.5 

Acer negundo var. negundo 28 2 9 3 -- 67 2 2 1 -- 13 2 1 0 -- 

Acer rubrum 91 2 24 22 -- 100 2 2 2 -- 63 2 4 3 -- 

Aesculus sylvatica 13 2 10 1 -- -- -- -- -- -- 75 2 15 11 -- 

Allium canadense var. canadense 16 2 13 2 -- 33 1 3 1 -- 50 3 10 5 -- 

Amphicarpaea bracteata 44 2 22 10 -- -- -- -- -- -- 63 2 8 5 -- 

Arisaema dracontium 3 1 3 0 -- 67 2 6 4 26.4 13 1 3 0 -- 

Arisaema triphyllum 19 2 8 2 -- -- -- -- -- -- 75 2 8 6 -- 

Arundinaria tecta 28 6 20 6 -- 100 5 7 7 37.5 25 2 4 1 -- 

Asarum canadense 16 2 17 3 -- 100 2 10 10 44.2 -- -- -- -- -- 

Asimina triloba 25 2 16 4 -- 67 5 4 3 25.7 13 1 2 0 -- 

Athyrium asplenioides 47 2 44 21 -- -- -- -- -- -- -- -- -- -- -- 

Bidens frondosa 13 2 11 1 -- 33 1 3 1 -- 25 1 5 1 -- 

Bignonia capreolata 94 4 20 19 -- 100 5 2 2 22.6 100 2 5 5 -- 

Boehmeria cylindrica 47 2 12 6 -- 100 2 2 2 -- 25 2 2 0 -- 

Botrypus virginianus 34 2 20 7 -- -- -- -- -- -- 25 2 4 1 -- 

Brachyelytrum erectum -- -- -- -- -- -- -- -- -- -- 50 4 33 17 29.6 

Bromus [nottowayanus + pubescens] 9 2 10 1 -- -- -- -- -- -- 75 2 21 16 28.1 

Campsis radicans 66 2 16 11 -- 33 1 1 0 -- 38 2 2 1 -- 

Carex [amphibola+grisea+corrugata] 66 5 19 13 -- 100 3 3 3 -- 50 3 4 2 -- 

Carex [radiata + rosea] 66 3 21 14 -- 67 2 2 1 -- 63 2 5 3 -- 

Carex blanda 41 3 17 7 -- -- -- -- -- -- 63 3 6 4 -- 

Carex caroliniana 41 3 33 13 -- -- -- -- -- -- 25 2 5 1 -- 

Carex crebriflora -- -- -- -- -- 33 3 11 4 -- 13 2 11 1 -- 

Carex debilis 66 3 38 25 -- 67 2 4 2 -- -- -- -- -- -- 

Carex gracillima 28 4 23 6 -- -- -- -- -- -- 50 3 10 5 -- 

Carex grayi 13 2 8 1 -- -- -- -- -- -- 38 2 6 2 -- 

Carex intumescens 41 2 33 13 -- 100 2 8 8 28.3 -- -- -- -- -- 

Carex laxiculmis var. laxiculmis 9 2 20 2 -- -- -- -- -- -- 63 3 33 21 35.3 

Carex laxiflora -- -- -- -- -- 33 2 100 33 -- -- -- -- -- -- 

Carex oxylepis 22 3 19 4 -- -- -- -- -- -- 75 3 16 12 -- 

Carex tribuloides 25 2 9 2 -- 33 1 1 0 -- 13 1 1 0 -- 

Carex typhina 13 2 8 1 -- 100 2 6 6 -- -- -- -- -- -- 

Carpinus caroliniana 97 4 23 22 -- 67 2 1 1 -- 100 2 6 6 -- 

Carya alba 38 2 46 17 -- -- -- -- -- -- 38 2 12 4 -- 

Carya carolinae-septentrionalis -- -- -- -- -- -- -- -- -- -- 75 2 75 56 70.7 
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Type Name IIa. IIb. IIc. 

Carya cordiformis 59 2 19 11 -- 100 2 3 3 -- 50 2 4 2 -- 

Carya glabra 22 2 39 9 -- -- -- -- -- -- 38 2 17 6 -- 

Carya ovata 41 3 27 11 -- 67 3 4 3 -- 38 2 6 2 -- 

Celtis laevigata  47 2 13 6 -- 67 2 2 1 -- 38 2 3 1 -- 

Cercis canadensis var. canadensis 9 2 13 1 -- -- -- -- -- -- 50 1 17 9 -- 

Chasmanthium latifolium 69 4 21 15 -- 100 5 3 3 -- 75 6 6 4 -- 

Chasmanthium [sessiliflorum + laxum] 31 4 43 14 -- 33 2 4 1 -- 38 4 13 5 -- 

Clematis viorna 25 1 28 7 -- 33 2 3 1 -- 13 1 3 0 -- 

Commelina virginica 6 2 4 0 -- 33 1 2 1 -- 25 2 4 1 -- 

Cornus florida 59 2 29 17 -- -- -- -- -- -- 63 2 8 5 -- 

Crataegus flabellata group 34 2 79 27 -- -- -- -- -- -- 13 2 7 1 -- 

Cryptotaenia canadensis 9 1 9 1 -- 33 2 3 1 -- 13 1 3 0 -- 

Danthonia spicata 22 3 54 12 -- -- -- -- -- -- 63 5 38 24 46.7 

Dichanthelium boscii 16 2 31 5 -- -- -- -- -- -- 63 5 31 20 37.5 

Dichanthelium commutatum var. commutatum 78 3 26 20 -- 100 2 3 3 -- 100 3 8 8 -- 

Dichanthelium dichotomum 47 2 47 22 -- -- -- -- -- -- 50 4 13 6 -- 

Dichanthelium laxiflorum 34 2 41 14 -- -- -- -- -- -- 75 2 22 17 37.5 

Dichanthelium polyanthes 9 2 30 3 -- -- -- -- -- -- 38 3 30 11 -- 

Dichanthelium yadkinense 6 2 14 1 -- -- -- -- -- -- 38 3 21 8 -- 

Dioscorea [quaternata + villosa] 56 2 39 22 -- 33 2 2 1 -- 63 2 11 7 -- 

Diospyros virginiana 50 2 36 18 -- -- -- -- -- -- 25 1 5 1 -- 

Elaeagnus umbellata 13 2 15 2 -- -- -- -- -- -- 38 2 11 4 -- 

Elephantopus carolinianus 6 2 40 3 -- 67 2 40 27 55.2 -- -- -- -- -- 

Elymus [glabriflorus + macgregorii + virginicus] 47 4 16 8 -- -- -- -- -- -- 38 2 3 1 -- 

Elymus hystrix 9 2 10 1 -- -- -- -- -- -- 100 3 26 26 44.6 

Endodeca serpentaria 41 2 41 17 -- 33 1 3 1 -- 25 2 6 2 -- 

Erechtites hieracifolia 16 1 8 1 -- 100 2 5 5 -- 13 1 2 0 -- 

Eubotrys racemosa 22 2 54 12 -- 33 2 8 3 -- -- -- -- -- -- 

Euonymus americanus 100 2 25 25 14.9 100 2 2 2 -- 100 2 6 6 -- 

Fagus grandifolia 50 2 41 21 -- -- -- -- -- -- 13 2 3 0 -- 

Festuca subverticillata 44 3 18 8 -- -- -- -- -- -- 38 2 4 1 -- 

Fraxinus pennsylvanica 100 2 20 20 -- 100 2 2 2 -- 88 2 4 4 -- 

Galium aparine 3 1 2 0 -- -- -- -- -- -- 50 2 6 3 -- 

Galium circaezans 50 2 40 20 -- -- -- -- -- -- 63 2 13 8 -- 

Galium obtusum var. obtusum 3 2 33 1 -- 33 2 33 11 -- -- -- -- -- -- 

Galium tinctorium 38 2 29 11 -- -- -- -- -- -- 38 2 7 3 -- 

Galium triflorum 44 2 25 11 -- -- -- -- -- -- 50 2 7 4 -- 

Gelsemium sempervirens 47 2 68 32 -- -- -- -- -- -- -- -- -- -- -- 

Geum canadense 34 2 14 5 -- -- -- -- -- -- 50 1 5 2 -- 
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Type Name IIa. IIb. IIc. 

[Gonolobus + Matelea] 34 2 16 5 -- 67 2 3 2 -- 25 2 3 1 -- 

Hamamelis virginiana var. virginiana 6 2 33 2 -- -- -- -- -- -- 50 2 67 33 42.9 

Hexastylis arifolia 22 2 26 6 -- 33 1 4 1 -- 100 2 30 30 42.6 

Houstonia purpurea 6 2 25 2 -- -- -- -- -- -- 50 2 50 25 39.5 

Hypericum hypericoides 59 2 59 35 -- -- -- -- -- -- 88 2 22 19 38.4 

Ilex decidua 91 2 25 23 -- 100 2 3 3 -- 100 2 7 7 -- 

Ilex opaca var. opaca 91 2 29 26 -- 33 2 1 0 -- 100 2 8 8 -- 

Impatiens sp 3 1 2 0 -- 67 2 4 3 -- 38 1 6 2 -- 

Ipomoea sp 6 1 40 3 -- 33 1 20 7 -- 25 2 40 10 -- 

Juncus coriaceus 28 2 19 5 -- -- -- -- -- -- 88 2 15 13 -- 

Juniperus virginiana 56 2 30 17 -- -- -- -- -- -- 100 2 13 13 31.9 

Justicia ovata var. ovata -- -- -- -- -- 33 1 50 17 -- -- -- -- -- -- 

Lactuca sp 9 1 23 2 -- 33 1 8 3 -- -- -- -- -- -- 

Leersia virginica 31 2 18 5 -- -- -- -- -- -- 63 4 9 5 -- 

Lespedeza cuneata* 6 1 15 1 -- -- -- -- -- -- 50 2 31 15 -- 

Ligustrum sinense* 84 2 17 14 -- 100 2 2 2 -- 100 2 5 5 -- 

Lindera benzoin 22 2 9 2 -- -- -- -- -- -- 63 2 7 4 -- 

Liquidambar styraciflua 100 2 24 24 -- 100 2 2 2 -- 100 2 6 6 -- 

Liriodendron tulipifera 50 2 23 12 -- -- -- -- -- -- 25 1 3 1 -- 

Lonicera japonica* 97 4 19 18 -- 33 2 1 0 -- 88 2 4 4 -- 

Luzula echinata 22 2 33 7 -- -- -- -- -- -- 50 2 19 10 -- 

Lycopus virginicus 19 2 11 2 -- 67 2 4 2 -- 25 1 4 1 -- 

Lysimachia ciliata 22 2 28 6 -- 33 1 4 1 -- 38 2 12 5 -- 

Melica mutica 56 2 55 31 24.5 -- -- -- -- -- 25 2 6 2 -- 

Microstegium vimineum* 66 2 15 10 -- -- -- -- -- -- 100 3 6 6 -- 

Mitchella repens 91 2 56 51 27.8 67 2 4 3 -- 38 2 6 2 -- 

Morus rubra 47 2 47 22 -- 33 1 3 1 -- -- -- -- -- -- 

Nyssa sylvatica 75 2 35 26 -- 67 2 3 2 -- 75 2 9 7 -- 

Oxalis sp 31 2 14 4 -- -- -- -- -- -- 88 2 10 8 -- 

Parthenocissus quinquefolia 100 3 18 18 -- 100 3 2 2 -- 100 2 4 4 -- 

Passiflora lutea var. lutea 38 2 23 9 -- 67 1 4 3 -- 50 2 8 4 -- 

Persicaria sp -- -- -- -- -- 33 1 3 1 -- -- -- -- -- -- 

Persicaria virginiana 19 2 6 1 -- 33 2 1 0 -- 25 1 2 1 -- 

Phytolacca americana -- -- -- -- -- 67 2 6 4 -- -- -- -- -- -- 

Pinus taeda 31 2 31 10 -- -- -- -- -- -- 25 2 6 2 -- 

Poa [autumnalis + cuspidata] 78 4 27 21 -- -- -- -- -- -- 63 3 5 3 -- 

Polygonatum biflorum 53 2 31 16 -- 33 2 2 1 -- 50 2 7 4 -- 

Polystichum acrostichoides 63 3 22 14 -- -- -- -- -- -- 100 2 9 9 -- 

Potentilla [simplex + canadensis] 34 2 41 14 -- -- -- -- -- -- 75 2 22 17 24.8 
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Type Name IIa. IIb. IIc. 

Prenanthes [altissima + serpentaria + trifoliolata] 25 2 29 7 -- -- -- -- -- -- 50 2 14 7 -- 

Prunus serotina 81 2 28 23 -- -- -- -- -- -- 75 2 6 5 -- 

Quercus alba 66 2 50 33 -- -- -- -- -- -- 50 2 10 5 -- 

Quercus michauxii 25 2 20 5 -- 67 2 5 3 -- 13 2 2 0 -- 

Quercus nigra 66 2 36 24 -- 100 2 5 5 -- 38 2 5 2 -- 

Quercus pagoda 28 2 29 8 -- 33 2 3 1 -- -- -- -- -- -- 

Quercus phellos 75 2 28 21 -- -- -- -- -- -- 75 2 7 5 -- 

Quercus shumardii var. shumardii 22 2 28 6 -- -- -- -- -- -- 75 2 24 18 33.7 

Ranunculus abortivus 6 1 4 0 -- 100 2 5 5 30.5 50 1 7 4 -- 

Ranunculus recurvatus 9 1 20 2 -- -- -- -- -- -- 38 2 20 8 -- 

Rosa sp 34 2 18 6 -- 33 2 2 1 -- 13 1 2 0 -- 

Rubus sp 94 2 24 22 -- 100 2 2 2 -- 38 1 2 1 -- 

Rudbeckia laciniata 22 2 26 6 -- 33 2 4 1 -- 25 2 7 2 -- 

Ruellia caroliniensis 31 2 31 10 -- -- -- -- -- -- 75 2 19 14 36.0 

Salvia lyrata 22 2 25 5 -- -- -- -- -- -- 88 2 25 22 42.9 

Sambucus canadensis 13 2 7 1 -- 33 1 2 1 -- -- -- -- -- -- 

Sanicula canadensis var. canadensis 72 2 21 15 -- 67 2 2 1 -- 88 2 6 6 -- 

Sceptridium [biternatum + dissectum] 78 2 29 22 -- 33 1 1 0 -- 50 2 5 2 -- 

Scutellaria integrifolia 34 2 48 16 -- -- -- -- -- -- 13 2 4 1 -- 

Smilax bona-nox 84 2 18 15 -- 100 2 2 2 30.5 100 2 5 5 -- 

Smilax glauca 91 2 27 25 -- 100 2 3 3 -- 88 2 7 6 -- 

Smilax [rotundifolia + walterii] 97 2 20 19 -- 100 2 2 2 -- 88 2 4 4 -- 

Solanum carolinense var. carolinense -- -- -- -- -- 33 1 50 17 -- -- -- -- -- -- 

Solidago sp 91 2 19 18 -- 100 2 2 2 -- 100 2 5 5 -- 

Stellaria media 6 2 10 1 -- 33 2 5 2 -- -- -- -- -- -- 

Symphoricarpos orbiculatus 13 2 15 2 -- -- -- -- -- -- 63 2 19 12 24.3 

Toxicodendron radicans 97 4 17 17 -- 100 5 2 2 -- 100 2 4 4 -- 

Trachelospermum difforme 50 2 37 19 -- -- -- -- -- -- 38 2 7 3 -- 

Ulmus alata 84 2 26 22 -- 67 2 2 1 -- 100 2 8 8 17.2 

Ulmus [americana + rubra] 31 2 9 3 -- 33 2 1 0 -- 38 2 3 1 -- 

Uvularia sessilifolia 16 2 38 6 -- 33 2 8 3 -- 38 2 23 9 -- 

Verbesina alternifolia 38 2 15 6 -- -- -- -- -- -- 100 2 10 10 -- 

Verbesina occidentalis 28 2 13 4 -- -- -- -- -- -- 50 3 6 3 -- 

Viburnum dentatum  75 2 39 29 -- -- -- -- -- -- 38 1 5 2 -- 

Viburnum prunifolium 81 2 30 24 -- 33 2 1 0 -- 75 2 7 5 -- 

Viola sp 81 2 18 14 -- 100 2 2 2 -- 88 2 5 4 -- 

Vitis [cinerea + vulpina] 38 2 15 6 -- -- -- -- -- -- 38 2 4 1 -- 

Vitis aestivalis var. aestivalis -- -- -- -- -- 33 2 5 2 -- -- -- -- -- -- 

Vitis rotundifolia var. rotundifolia 100 3 23 23 -- 100 2 2 2 -- 75 2 4 3 -- 
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Type Name IIa. IIb. IIc. 

Zizia aurea -- -- -- -- -- -- -- -- -- -- 75 2 100 75 75.0 
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Appendix 5 

Average cover by strata, constancy (const.), fidelity, diagnostic value (DV), and indicator value 

(IV) of prevalent species in the two large river levee forest types. Prevalence is calculated 

separately for each stratum, and species must be prevalent in at least one type to be included in 

table (see text for definition of terms and calculation of metrics).  Species may be in the table 

more than once as they receive cover in every stratum in which they were observed. Non-native 

species are identified by an *. 

Type Name IIIa. IIIb. 

Plot Count 33 30 

Avg Species Richness (400m2) 58.2 51.9 

Avg Species Richness (100m2) 36.3 28.5 

Avg Species Richness (10m2) 18.9 15.2 

Avg Species Richness (1m2) 8.7 7.1 

Homotoneity 61 58 

Tree stratum const. cover fidelity DV IV const. cover fidelity DV IV 

Acer floridanum 55 7 33 18 -- 27 6 15 4 -- 

Acer negundo var. negundo 64 6 38 24 -- 97 7 53 51 53.1 

Betula nigra 24 4 13 3 -- 43 6 21 9 -- 

Bignonia capreolata 42 3 27 12 -- 17 2 10 2 -- 

Campsis radicans 18 2 18 3 -- 20 3 18 4 -- 

Carpinus caroliniana 52 6 16 8 -- 43 6 12 5 -- 

Carya cordiformis 76 6 45 34 -- 20 6 11 2 -- 

Celtis laevigata  73 7 47 34 26.5 60 6 35 21 -- 

Cornus florida 42 5 23 10 -- 13 4 7 1 -- 

Fraxinus pennsylvanica 58 6 15 9 -- 90 7 22 19 -- 

Juglans nigra 45 6 44 20 -- 23 5 21 5 -- 

Liquidambar styraciflua 94 6 21 20 -- 40 6 8 3 -- 

Liriodendron tulipifera 58 6 25 14 -- 27 6 10 3 -- 

Lonicera japonica* 30 2 30 9 -- 30 2 27 8 -- 

Parthenocissus quinquefolia 64 2 36 23 -- 27 2 14 4 -- 

Platanus occidentalis var. occidentalis 58 6 25 15 -- 90 6 36 32 21.9 

Toxicodendron radicans 64 4 18 12 -- 70 5 18 13 -- 

Ulmus [americana + rubra] 82 6 22 18 -- 77 6 19 14 -- 

Vitis [cinerea + vulpina] 24 5 22 5 -- 47 4 39 18 -- 

Vitis rotundifolia var. rotundifolia 73 3 30 22 -- 20 3 8 2 -- 

taxon name const. cover fidelity DV IV const. cover fidelity DV IV 

Acer floridanum 55 5 31 17 -- 23 4 12 3 -- 

Acer negundo var. negundo 67 5 41 27 -- 63 5 35 22 -- 

Aesculus sylvatica 42 4 40 17 -- 17 4 14 2 -- 

Asimina triloba 45 6 39 18 -- 7 4 5 0 -- 

Bignonia capreolata 52 2 24 12 -- 30 2 13 4 -- 

Carpinus caroliniana 64 5 17 11 -- 37 4 9 3 -- 

Celtis laevigata  39 4 33 13 -- 50 4 38 19 -- 

Fraxinus pennsylvanica 33 3 13 4 -- 47 4 16 8 -- 

Ilex decidua 52 4 18 9 -- 20 4 6 1 -- 

Ilex opaca var. opaca 58 4 23 14 -- 20 3 7 1 -- 

Ligustrum sinense* 64 5 28 18 -- 73 4 30 22 -- 

Lindera benzoin 67 6 39 26 -- 43 6 23 10 -- 

Liquidambar styraciflua 27 3 13 4 -- 33 3 15 5 -- 

Lonicera japonica* 61 2 26 16 -- 43 3 17 7 -- 

Parthenocissus quinquefolia 73 2 32 23 -- 37 2 14 5 -- 
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Type Name IIIa. IIIb. 

Smilax [rotundifolia + walterii] 45 2 17 8 -- 40 3 14 5 -- 

Toxicodendron radicans 73 3 21 15 -- 60 3 15 9 -- 

Ulmus alata 39 5 16 6 -- 23 4 9 2 -- 

Ulmus [americana + rubra] 27 5 15 4 -- 30 4 15 5 -- 

Vitis [cinerea + vulpina] 15 2 16 2 -- 37 2 34 13 -- 

Vitis rotundifolia var. rotundifolia 76 2 28 21 -- 30 2 10 3 -- 

taxon name const. cover fidelity DV IV const. cover fidelity DV IV 

Acer floridanum 64 2 28 18 -- 43 2 17 7 -- 

Acer negundo var. negundo 94 3 31 29 -- 97 3 29 28 21.8 

Aesculus sylvatica 42 3 35 15 -- 13 2 10 1 -- 

Amphicarpaea bracteata 39 2 21 8 -- 27 2 13 3 -- 

Arisaema dracontium 42 2 45 19 -- 17 2 16 3 -- 

Arisaema triphyllum 39 2 18 7 -- 37 2 15 5 -- 

Arundinaria tecta 39 5 29 11 -- 13 6 9 1 -- 

Asimina triloba 58 3 38 22 -- 3 1 2 0 -- 

Bignonia capreolata 97 2 22 21 -- 70 3 14 10 -- 

Boehmeria cylindrica 64 2 17 11 -- 83 3 20 17 -- 

Botrypus virginianus 45 2 28 13 -- 17 2 9 2 -- 

Campsis radicans 55 2 14 8 -- 67 2 16 10 -- 

Carex [amphibola+grisea+corrugata] 73 4 22 16 -- 73 4 20 15 -- 

Carex [radiata + rosea] 67 5 22 15 -- 33 4 10 3 -- 

Carex blanda 67 3 28 19 -- 33 3 13 4 -- 

Carex grayi 61 3 38 23 -- 40 5 23 9 -- 

Carex tribuloides 42 2 15 7 -- 60 4 20 12 -- 

Carpinus caroliniana 67 3 16 11 -- 60 2 13 8 -- 

Carya cordiformis 94 2 31 29 19.4 60 2 18 11 -- 

Celtis laevigata  94 3 26 25 17.4 87 2 22 19 -- 

Chasmanthium latifolium 45 5 14 7 -- 77 6 22 17 -- 

Cinna arundinacea 9 4 9 1 -- 43 4 38 17 -- 

Clematis viorna 15 2 17 3 -- 33 2 34 11 -- 

Commelina virginica 27 2 16 4 -- 57 2 31 18 -- 

Cryptotaenia canadensis 27 2 26 7 -- 43 2 38 17 -- 

Dichanthelium clandestinum 3 3 6 0 -- 37 2 65 24 -- 

Dichanthelium commutatum var. commutatum 45 3 16 7 -- 23 2 7 2 -- 

Elymus [glabriflorus + macgregorii + virginicus] 67 5 24 16 -- 63 6 21 13 -- 

Erechtites hieracifolia 30 2 15 5 -- 37 2 17 6 -- 

Euonymus americanus 58 2 15 9 -- 30 2 7 2 -- 

Festuca subverticillata 39 5 17 7 -- 60 3 24 14 -- 

Fraxinus sp 82 2 17 14 -- 90 2 17 15 -- 

Galium aparine 64 2 32 20 -- 70 4 32 22 -- 

Geum canadense 48 2 20 10 -- 43 2 16 7 -- 

Glechoma hederacea 33 6 48 16 -- 37 6 48 18 -- 

Glyceria striata var. striata 15 2 8 1 -- 37 2 18 7 -- 

[Gonolobus + Matelea] 73 2 34 25 -- 60 2 26 15 -- 

Ilex decidua 48 2 14 7 -- 33 2 9 3 -- 

Ilex opaca var. opaca 52 2 17 9 -- 27 2 8 2 -- 

Juglans nigra 52 2 40 20 -- 37 2 26 9 -- 

Laportea canadensis 52 5 43 22 -- 57 4 43 24 -- 

Leersia virginica 9 3 5 0 -- 53 2 28 15 -- 

Ligustrum sinense* 94 3 19 18 -- 97 2 18 18 -- 

Lindera benzoin 70 3 30 21 -- 53 2 21 11 -- 

Liquidambar styraciflua 45 2 11 5 -- 53 2 12 6 -- 

Lonicera japonica* 100 4 20 20 -- 90 4 16 15 -- 

Microstegium vimineum* 85 6 19 16 -- 93 7 19 18 -- 
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Type Name IIIa. IIIb. 

Osmorhiza longistylis 45 2 68 31 28.3 -- -- -- -- -- 

Oxalis sp 48 2 22 11 -- 60 2 25 15 -- 

Parthenocissus quinquefolia 100 2 18 18 -- 100 2 17 17 -- 

Persicaria sp 6 2 5 0 -- 40 2 32 13 -- 

Persicaria virginiana 76 2 26 20 -- 87 2 27 23 -- 

Phytolacca americana 21 2 21 4 -- 53 2 47 25 -- 

Pilea pumila 27 2 18 5 -- 63 2 37 24 -- 

Poa [autumnalis + cuspidata] 45 3 16 7 -- 27 2 9 2 -- 

Polygonatum biflorum 39 2 24 9 -- 17 1 9 2 -- 

Polystichum acrostichoides 52 2 19 10 -- 37 2 12 4 -- 

Potentilla indica 39 3 36 14 -- 40 2 33 13 -- 

Prunus serotina 45 2 16 7 -- 43 2 14 6 -- 

Ranunculus abortivus 39 2 23 9 -- 33 2 18 6 -- 

Rosa sp 39 2 22 9 -- 30 2 15 5 -- 

Rubus sp 55 2 14 8 -- 40 2 10 4 -- 

Sambucus canadensis 36 2 20 7 -- 67 2 33 22 -- 

Sanicula canadensis var. canadensis 70 2 21 15 -- 37 2 10 4 -- 

Smilax bona-nox 91 2 20 18 -- 83 2 17 14 -- 

Smilax hispida 27 2 18 5 -- 40 2 24 9 -- 

Smilax [rotundifolia + walterii] 73 2 15 11 -- 70 2 13 9 -- 

Solidago sp 52 2 11 6 -- 77 2 15 12 -- 

Staphylea trifolia 45 2 48 22 -- 20 2 19 4 -- 

Toxicodendron radicans 100 2 18 18 -- 100 2 17 17 -- 

Ulmus alata 45 2 14 6 -- 30 2 9 3 -- 

Ulmus [americana + rubra] 55 2 17 9 -- 70 2 20 14 -- 

Verbesina alternifolia 70 3 28 20 -- 80 3 30 24 -- 

Verbesina occidentalis 70 2 32 23 -- 67 2 28 19 -- 

Viola sp 88 2 20 17 -- 73 3 15 11 -- 

Vitis [cinerea + vulpina] 33 2 14 5 -- 73 2 27 20 -- 

Vitis rotundifolia var. rotundifolia 82 2 19 16 -- 47 2 10 5 -- 
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Appendix 6 

Average cover by strata, constancy (const), fidelity (fid), diagnostic value (DV), and indicator value (IV) of prevalent species in 

the five bottomland and swamp forest types. Prevalence is calculated separately for each stratum, and species must be prevalent in 

at least one type to be included in table (see text for definition of terms and calculation of metrics).  Species may be in the table 

more than once as they receive cover in every stratum in which they were observed. Non-native species are identified by an *. 

Type Name IVa.  IVb. IVc. IVd. IVe. 

Plot Count 17 24 6 3 2 

Avg Spp Richness (400m2) 56.2 53.5 54.8 33.3 35.0 

Avg Spp Richness (100m2) 36.1 31.8 27.6 18.7 16.6 

Avg Spp Richness (10m2) 17.6 15,7 17.3 7.8 5.9 

Avg Spp Richness (1m2) 7.4 6.6 7.4 3.5 2.1 

Homotoneity 58 62 59 63 62 

Tree stratum const cover fid DV IV const cover fid DV IV const cover fid DV IV const cover fid DV IV const cover fid DV IV 

Acer floridanum 35 6 11 4 -- 4 5 2 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Acer negundo var. negundo 6 5 2 0 -- -- -- -- -- -- 17 3 2 0 -- -- -- -- -- -- -- -- -- -- -- 

Acer rubrum 88 6 13 12 -- 100 8 21 21 -- 100 7 5 5 -- 100 7 3 3 -- 100 6 2 2 -- 

Betula nigra 41 6 11 5 -- 29 6 11 3 -- 83 6 8 7 -- -- -- -- -- -- 50 4 2 1 -- 

Bignonia capreolata 41 2 14 6 -- 38 2 18 7 -- 17 2 2 0 -- -- -- -- -- -- -- -- -- -- -- 

Campsis radicans 53 2 27 14 -- 29 2 21 6 -- 17 2 3 1 -- -- -- -- -- -- 50 2 3 2 -- 

Carpinus caroliniana 71 6 11 8 -- 33 7 7 2 -- 17 6 1 0 -- 33 3 1 0 -- 50 6 1 0 -- 

Carya aquatica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 6 100 100 100.0 

Carya ovata 41 6 18 7 -- 17 5 10 2 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Crataegus viridis -- -- -- -- -- 13 5 75 9 -- -- -- -- -- -- -- -- -- -- -- 50 4 25 13 38.7 

Fraxinus pennsylvanica 71 6 10 7 -- 96 7 18 18 -- 100 8 5 5 17.7 100 6 2 2 -- 50 4 1 0 -- 

Liquidambar styraciflua 100 7 11 11 -- 88 6 14 12 -- 67 6 3 2 -- 67 5 1 1 -- 100 5 1 1 -- 

Lonicera japonica* 24 2 12 3 -- 8 3 6 1 -- 33 2 6 2 -- -- -- -- -- -- -- -- -- -- -- 

Nyssa aquatica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 8 100 100 100.0 

Nyssa sylvatica 35 5 13 4 -- 29 4 15 4 -- -- -- -- -- -- 33 5 2 1 -- -- -- -- -- -- 

Parthenocissus quinquefolia 53 2 15 8 -- 25 2 10 3 -- 33 2 3 1 -- -- -- -- -- -- -- -- -- -- -- 

Pinus taeda 18 5 12 2 -- 8 5 8 1 -- -- -- -- -- -- 33 3 4 1 -- -- -- -- -- -- 
Platanus occidentalis var. 
occidentalis 24 4 5 1 -- 25 6 8 2 -- 67 6 5 4 -- 33 4 1 0 -- 50 2 1 1 -- 

Populus deltoides 6 7 10 1 -- 4 2 10 0 -- -- -- -- -- -- -- -- -- -- -- 50 5 10 5 -- 

Quercus alba 41 5 19 8 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Quercus lyrata 12 7 12 1 -- 17 6 24 4 -- -- -- -- -- -- 100 6 18 18 42.9 100 6 12 12 -- 

Quercus michauxii 41 6 17 7 -- 33 6 20 7 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Quercus nigra 35 5 13 5 -- 8 4 4 0 -- 33 6 4 1 -- -- -- -- -- -- -- -- -- -- -- 

Quercus pagoda 53 6 23 12 -- 33 5 20 7 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

1
7

3
 

 



174 
 

Type Name IVa.  IVb. IVc. IVd. IVe. 

Quercus phellos 76 7 25 19 -- 54 6 25 13 -- -- -- -- -- -- 100 6 6 6 27.9 -- -- -- -- -- 

Salix nigra -- -- -- -- -- 13 3 43 5 -- 50 5 43 21 40.5 -- -- -- -- -- -- -- -- -- -- 

Toxicodendron radicans 94 5 14 13 -- 71 5 15 10 -- 83 5 4 4 -- -- -- -- -- -- 50 3 1 0 -- 

Ulmus alata 76 6 17 13 -- 46 6 14 7 -- 17 5 1 0 -- -- -- -- -- -- -- -- -- -- -- 

Ulmus [americana + rubra] 94 6 13 12 -- 88 6 17 15 -- 67 5 3 2 -- 67 5 2 1 -- 100 4 2 2 -- 

Vitis rotundifolia var. rotundifolia 53 3 11 6 -- 13 2 4 0 -- 17 4 1 0 -- -- -- -- -- -- -- -- -- -- -- 

Shrub stratum const cover fid DV IV const cover fid DV IV const cover fid DV IV const cover fid DV IV const cover fid DV IV 

Acer floridanum 41 6 12 5 -- 8 2 3 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Acer rubrum 65 4 14 9 -- 88 4 27 24 -- 83 4 6 5 -- 67 4 3 2 -- -- -- -- -- -- 

Aesculus sylvatica 24 4 11 3 -- 4 3 3 0 -- -- -- -- -- -- 33 2 3 1 -- -- -- -- -- -- 

Alnus serrulata -- -- -- -- -- -- -- -- -- -- 67 5 50 33 54.3 -- -- -- -- -- -- -- -- -- -- 

Bignonia capreolata 71 2 17 12 -- 42 2 14 6 -- 17 2 1 0 -- -- -- -- -- -- -- -- -- -- -- 

Campsis radicans 65 2 27 17 -- 29 2 17 5 -- 17 2 2 0 -- 33 2 2 1 -- 50 1 2 1 -- 

Carpinus caroliniana 88 5 12 11 -- 71 4 14 10 -- 50 6 2 1 -- 67 4 2 1 -- -- -- -- -- -- 

Cephalanthus occidentalis -- -- -- -- -- 8 3 67 6 -- -- -- -- -- -- -- -- -- -- -- 50 2 33 17 41.4 

Cornus amomum -- -- -- -- -- -- -- -- -- -- 33 4 67 22 -- -- -- -- -- -- -- -- -- -- -- 

Fraxinus pennsylvanica 71 5 14 10 -- 79 4 22 17 -- 67 6 5 3 -- 33 3 1 0 -- -- -- -- -- -- 

Ilex decidua 88 5 16 14 -- 71 5 18 13 -- -- -- -- -- -- 100 3 3 3 -- 100 4 2 2 -- 

Ilex opaca var. opaca 47 5 10 5 -- 25 4 7 2 -- 33 3 2 1 -- -- -- -- -- -- -- -- -- -- -- 

Ilex verticillata 18 3 43 8 -- 4 2 14 1 -- -- -- -- -- -- 33 2 14 5 -- -- -- -- -- -- 

Ligustrum sinense* 47 4 11 5 -- 33 2 11 4 -- 50 4 4 2 -- -- -- -- -- -- -- -- -- -- -- 

Liquidambar styraciflua 47 3 12 6 -- 25 4 9 2 -- 50 5 4 2 -- 33 2 1 0 -- -- -- -- -- -- 

Lonicera japonica* 94 2 21 20 22.9 17 2 5 1 -- 50 4 4 2 -- -- -- -- -- -- -- -- -- -- -- 

Parthenocissus quinquefolia 76 2 17 13 -- 42 2 13 5 -- 33 2 3 1 -- -- -- -- -- -- -- -- -- -- -- 
Platanus occidentalis var. 
occidentalis -- -- -- -- -- 8 5 25 2 -- 33 3 25 8 -- -- -- -- -- -- -- -- -- -- -- 

Quercus lyrata 6 2 33 2 -- 4 7 33 1 -- -- -- -- -- -- 33 2 33 11 -- -- -- -- -- -- 

Quercus michauxii 41 3 27 11 -- 21 3 19 4 -- 17 2 4 1 -- 33 2 4 1 -- -- -- -- -- -- 

Quercus phellos 18 2 20 4 -- 17 2 27 4 -- 17 2 7 1 -- 33 2 7 2 -- -- -- -- -- -- 

Rubus sp -- -- -- -- -- 13 2 43 5 -- -- -- -- -- -- 33 2 14 5 -- -- -- -- -- -- 

Smilax [rotundifolia + walterii] 88 4 17 15 -- 71 3 19 14 -- 67 3 5 3 -- 67 3 2 2 -- 50 2 1 1 -- 

Toxicodendron radicans 94 3 14 13 -- 75 3 15 12 -- 50 3 3 1 -- 67 2 2 1 -- 100 2 2 2 -- 

Ulmus alata 88 5 18 16 23.0 54 4 16 9 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Ulmus [americana + rubra] 71 4 20 14 -- 46 4 19 9 -- 17 2 2 0 -- 33 2 2 1 -- -- -- -- -- -- 

Viburnum dentatum -- -- -- -- -- 17 4 22 4 -- 33 5 11 4 -- -- -- -- -- -- -- -- -- -- -- 

Viburnum prunifolium 65 4 17 11 -- 38 4 14 5 -- 17 2 2 0 -- -- -- -- -- -- -- -- -- -- -- 

Vitis rotundifolia var. rotundifolia 59 2 11 7 -- 21 2 6 1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Herb stratum const cover fid DV IV const cover fid DV IV const cover fid DV IV const cover fid DV IV const cover fid DV IV 

Acer negundo var. negundo 35 2 6 2 -- 29 2 7 2 -- 67 3 4 3 -- -- -- -- -- -- -- -- -- -- -- 

Acer rubrum 100 2 14 14 -- 100 2 20 20 -- 100 2 5 5 -- 100 2 2 2 -- 100 2 2 2 -- 
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Type Name IVa.  IVb. IVc. IVd. IVe. 

Aesculus sylvatica 35 2 15 5 -- 8 2 5 0 -- -- -- -- -- -- 33 2 3 1 -- -- -- -- -- -- 

Allium canadense var. canadense 47 2 21 10 -- 8 2 5 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Alnus serrulata -- -- -- -- -- -- -- -- -- -- 33 3 40 13 -- -- -- -- -- -- -- -- -- -- -- 

Apios americana -- -- -- -- -- 4 1 20 1 -- 33 1 40 13 -- -- -- -- -- -- -- -- -- -- -- 

Arisaema triphyllum 88 2 20 18 -- 17 2 5 1 -- 33 1 3 1 -- -- -- -- -- -- -- -- -- -- -- 

Betula nigra -- -- -- -- -- 8 2 22 2 -- 33 2 22 7 -- 33 2 11 4 -- -- -- -- -- -- 

Bidens frondosa 24 2 11 2 -- 29 2 18 5 -- 50 3 8 4 -- 67 2 5 4 -- 100 2 5 5 -- 

Bignonia capreolata 100 3 12 12 -- 79 3 13 10 -- 67 2 3 2 -- -- -- -- -- -- 50 1 1 0 -- 

Boehmeria cylindrica 76 2 10 8 -- 92 3 17 16 -- 100 6 5 5 23.6 100 2 2 2 -- 50 1 1 0 -- 
Bromus [nottowayanus + 
pubescens] 6 2 3 0 -- -- -- -- -- -- -- -- -- -- -- 33 2 3 1 -- -- -- -- -- -- 

Callitriche heterophylla  -- -- -- -- -- 4 1 50 2 -- -- -- -- -- -- 33 2 50 17 -- -- -- -- -- -- 

Campsis radicans 100 2 13 13 -- 83 2 16 13 -- 100 2 5 5 -- 100 2 2 2 -- 50 2 1 0 -- 
Carex 
[amphibola+grisea+corrugata] 59 4 9 5 -- 38 4 8 3 -- 33 1 2 1 -- -- -- -- -- -- 50 3 1 0 -- 

Carex [radiata + rosea] 53 2 9 5 -- 42 2 10 4 -- 17 1 1 0 -- -- -- -- -- -- -- -- -- -- -- 

Carex blanda 35 2 8 3 -- 29 2 9 3 -- -- -- -- -- -- -- -- -- -- -- 50 1 1 1 -- 

Carex bromoides -- -- -- -- -- 46 5 73 34 31.9 -- -- -- -- -- -- -- -- -- -- 50 1 7 3 -- 

Carex caroliniana 41 2 18 7 -- 25 2 15 4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Carex crinita 29 2 17 5 -- 33 3 27 9 -- 83 6 17 14 41.9 67 2 7 4 -- -- -- -- -- -- 

Carex cumberlandensis -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 33 2 13 4 -- -- -- -- -- -- 

Carex debilis 41 3 13 5 -- 50 4 21 11 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Carex flaccosperma 12 2 8 1 -- 33 2 33 11 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Carex gracillima 18 3 8 1 -- 33 3 21 7 -- 17 2 3 0 -- -- -- -- -- -- -- -- -- -- -- 

Carex grayi 12 3 4 0 -- 33 5 15 5 -- 17 3 2 0 -- -- -- -- -- -- 50 2 2 1 -- 

Carex hirsutella -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 50 2 50 25 48.5 

Carex intumescens 47 3 20 9 -- 29 5 18 5 -- -- -- -- -- -- 67 2 5 3 -- -- -- -- -- -- 

Carex louisianica 6 2 8 0 -- 38 4 69 26 23.9 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Carex lupulina 29 2 16 5 -- 58 4 45 26 -- 67 4 13 9 -- 33 5 3 1 -- -- -- -- -- -- 

Carex lurida 6 1 10 1 -- 13 3 30 4 -- -- -- -- -- -- 33 2 10 3 -- -- -- -- -- -- 

Carex stipata 6 2 3 0 -- 50 3 39 19 -- 33 3 6 2 -- 33 2 3 1 -- 50 1 3 2 -- 

Carex tribuloides 76 3 14 11 -- 88 4 23 20 -- 100 4 7 7 22.2 33 2 1 0 -- 50 2 1 1 -- 

Carex typhina 47 2 15 7 -- 88 4 40 35 27.0 33 4 4 1 -- 67 2 4 3 -- -- -- -- -- -- 

Carpinus caroliniana 76 2 9 7 -- 63 2 11 7 -- 67 2 3 2 -- 67 3 1 1 -- 50 2 1 0 -- 

Carya cordiformis 41 2 7 3 -- 29 2 7 2 -- 17 2 1 0 -- -- -- -- -- -- -- -- -- -- -- 

Carya ovata 41 2 14 6 -- 29 2 14 4 -- 17 2 2 0 -- -- -- -- -- -- -- -- -- -- -- 

Celtis laevigata  71 2 10 7 -- 42 2 9 4 -- 17 1 1 0 -- -- -- -- -- -- 50 1 1 0 -- 

Cephalanthus occidentalis -- -- -- -- -- 29 2 58 17 -- 33 1 17 6 -- 33 1 8 3 -- 50 1 8 4 -- 

Chasmanthium latifolium 47 2 8 4 -- 54 4 13 7 -- 67 4 4 3 -- -- -- -- -- -- 50 1 1 0 -- 

Cicuta maculata -- -- -- -- -- 4 1 25 1 -- 33 3 50 17 30.6 -- -- -- -- -- -- -- -- -- -- 
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Type Name IVa.  IVb. IVc. IVd. IVe. 

Cinna arundinacea 12 4 6 1 -- 33 4 24 8 -- 50 6 9 4 -- -- -- -- -- -- -- -- -- -- -- 

Clematis virginiana -- -- -- -- -- -- -- -- -- -- 33 2 12 4 -- -- -- -- -- -- -- -- -- -- -- 

Commelina virginica 24 1 7 2 -- 54 2 24 13 -- 67 6 7 5 -- 33 3 2 1 -- -- -- -- -- -- 

Cornus amomum -- -- -- -- -- 4 2 17 1 -- 33 2 33 11 -- 33 2 17 6 -- -- -- -- -- -- 

Dichanthelium commutatum2  29 2 5 2 -- 46 2 11 5 -- 33 2 2 1 -- 33 1 1 0 -- 50 2 1 1 -- 

Dichanthelium dichotomum 18 2 9 2 -- 17 2 13 2 -- -- -- -- -- -- 33 2 3 1 -- -- -- -- -- -- 

Dichanthelium yadkinense -- -- -- -- -- 8 2 14 1 -- -- -- -- -- -- -- -- -- -- -- 50 2 7 4 -- 

Diospyros virginiana 12 2 5 1 -- 21 2 11 2 -- 67 2 9 6 -- 67 2 5 3 -- -- -- -- -- -- 

Elymus1  65 3 12 8 -- 42 2 11 5 -- 33 1 2 1 -- -- -- -- -- -- -- -- -- -- -- 

Erechtites hieracifolia 59 2 15 9 -- 63 1 23 14 -- 17 1 2 0 -- 33 1 2 1 -- 100 1 3 3 -- 

Euonymus americanus 76 2 10 8 -- 71 2 13 9 -- 33 2 2 1 -- -- -- -- -- -- -- -- -- -- -- 

Festuca subverticillata 35 2 8 3 -- 17 4 5 1 -- -- -- -- -- -- 33 2 1 0 -- -- -- -- -- -- 

Fraxinus pennsylvanica 94 2 10 9 -- 92 2 14 13 -- 100 2 4 4 -- 100 2 2 2 -- 50 1 1 0 -- 

Galium aparine 18 2 5 1 -- 17 2 6 1 -- 67 2 6 4 -- 33 1 2 1 -- -- -- -- -- -- 

Galium tinctorium 65 2 26 17 -- 42 2 24 10 -- -- -- -- -- -- -- -- -- -- -- 50 1 2 1 -- 

Gelsemium sempervirens 12 2 9 1 -- 4 1 5 0 -- 17 1 5 1 -- 67 2 9 6 30.7 -- -- -- -- -- 

Geum canadense 29 2 6 2 -- 50 2 15 7 -- 50 2 4 2 -- -- -- -- -- -- -- -- -- -- -- 

Glyceria striata var. striata 65 2 18 11 -- 50 4 19 10 -- 83 4 8 7 -- 67 2 3 2 -- -- -- -- -- -- 

Gratiola virginiana -- -- -- -- -- 4 2 33 1 -- 17 1 33 6 -- 33 3 33 11 -- -- -- -- -- -- 

Hydrocotyle umbellata -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 50 2 100 50 50.0 

Hypericum punctatum 6 1 8 0 -- 4 1 8 0 -- 17 3 8 1 -- 33 2 8 3 -- -- -- -- -- -- 

Hypoxis hirsuta -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Ilex decidua 100 2 15 15 -- 88 2 18 16 -- -- -- -- -- -- -- -- -- -- -- 100 2 2 2 -- 

Ilex opaca var. opaca 47 2 8 4 -- 33 2 8 3 -- 33 2 2 1 -- -- -- -- -- -- -- -- -- -- -- 

Ilex verticillata 29 2 19 6 -- 21 2 19 4 -- 17 2 4 1 -- 67 2 8 5 27.6 -- -- -- -- -- 

Impatiens sp 29 4 10 3 -- 38 2 19 7 -- 33 2 4 1 -- 67 2 4 3 -- 50 1 2 1 -- 

Juncus acuminatus -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 33 1 100 33 33.3 -- -- -- -- -- 

Juncus coriaceus 35 2 13 4 -- 33 3 17 6 -- 33 2 4 1 -- 33 2 2 1 -- -- -- -- -- -- 

Juncus effusus 24 2 10 2 -- 54 3 32 17 -- 33 4 5 2 -- -- -- -- -- -- -- -- -- -- -- 

Juncus elliottii -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 33 2 100 33 33.3 -- -- -- -- -- 

Leersia oryzoides -- -- -- -- -- -- -- -- -- -- 33 4 50 17 -- -- -- -- -- -- -- -- -- -- -- 

Leersia virginica 18 2 5 1 -- 50 3 21 11 -- 50 3 5 3 -- -- -- -- -- -- -- -- -- -- -- 

Ligustrum sinense* 94 2 10 9 -- 79 2 12 9 -- 67 2 3 2 -- 33 1 1 0 -- 50 2 1 0 -- 

Lindera benzoin 47 2 11 5 -- 4 2 1 0 -- 33 2 3 1 -- -- -- -- -- -- -- -- -- -- -- 

Liquidambar styraciflua 88 2 11 10 -- 88 2 15 14 -- 67 3 3 2 -- 33 2 1 0 -- 50 2 1 0 -- 

Liriodendron tulipifera 29 2 7 2 -- 17 1 6 1 -- 67 2 6 4 -- 33 1 1 0 -- -- -- -- -- -- 

Lobelia cardinalis 12 1 14 2 -- 13 2 21 3 -- 67 2 29 19 27.3 33 2 7 2 -- -- -- -- -- -- 

Lobelia siphilitica var. siphilitica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 33 2 100 33 33.3 -- -- -- -- -- 

Lonicera japonica* 100 2 10 10 -- 79 2 11 9 -- 100 3 4 4 -- 33 1 1 0 -- 50 1 1 0 -- 

Ludwigia alternifolia -- -- -- -- -- 4 1 25 1 -- 17 1 25 4 -- 33 1 25 8 -- -- -- -- -- -- 
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Type Name IVa.  IVb. IVc. IVd. IVe. 

Ludwigia palustris 6 1 8 0 -- 21 2 42 9 -- -- -- -- -- -- 100 2 25 25 60.1 50 2 8 4 -- 

Lycopus virginicus 24 2 7 2 -- 54 2 23 13 -- 100 3 11 11 -- 100 2 5 5 -- 100 2 4 4 -- 

Microstegium vimineum* 82 4 10 8 -- 67 4 11 7 -- 83 7 3 3 -- 33 2 1 0 -- 50 1 1 0 -- 

Mikania scandens -- -- -- -- -- 21 2 42 9 -- 50 2 25 13 31.4 -- -- -- -- -- -- -- -- -- -- 

Murdannia keisak* 6 1 6 0 -- 29 3 39 11 -- 33 6 11 4 -- 33 4 6 2 -- 50 1 6 3 -- 

Nyssa aquatica -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 50 2 100 50 50.0 

Nyssa sylvatica 47 2 12 6 -- 38 2 13 5 -- 33 1 3 1 -- 33 1 1 0 -- -- -- -- -- -- 

Onoclea sensibilis 24 2 24 6 -- 8 2 12 1 -- 33 4 12 4 -- -- -- -- -- -- -- -- -- -- -- 

Packera aurea -- -- -- -- -- -- -- -- -- -- 33 1 50 17 -- -- -- -- -- -- -- -- -- -- -- 

Parthenocissus quinquefolia 100 3 9 9 -- 96 2 13 12 -- 100 2 3 3 -- 33 1 1 0 -- 100 2 1 1 -- 

Peltandra virginica -- -- -- -- -- 29 2 58 17 -- 83 4 42 35 68.5 -- -- -- -- -- -- -- -- -- -- 

Persicaria sp 12 2 5 1 -- 46 3 29 13 -- 83 3 13 11 26.1 33 1 3 1 -- 50 2 3 1 -- 

Persicaria virginiana 53 2 9 5 -- 42 2 10 4 -- 67 2 4 3 -- 33 2 1 0 -- -- -- -- -- -- 

Phytolacca americana 6 1 3 0 -- 17 1 12 2 -- 50 2 9 4 -- -- -- -- -- -- -- -- -- -- -- 

Pilea pumila 29 2 10 3 -- 38 2 18 7 -- 33 3 4 1 -- 33 2 2 1 -- 100 2 4 4 31.8 

Pinus taeda 24 1 13 3 -- 17 2 13 2 -- -- -- -- -- -- 33 2 3 1 -- -- -- -- -- -- 
Platanus occidentalis var. 
occidentalis -- -- -- -- -- 8 2 15 1 -- 17 2 8 1 -- 33 1 8 3 -- -- -- -- -- -- 

Pleopeltis polypodioides -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 33 2 33 11 -- -- -- -- -- -- 

Pluchea camphorata -- -- -- -- -- -- -- -- -- -- 17 1 50 8 -- 33 2 50 17 -- -- -- -- -- -- 

Poa [autumnalis + cuspidata] 82 3 15 12 -- 42 3 11 4 -- 50 2 3 2 -- -- -- -- -- -- 50 2 1 1 -- 

Polystichum acrostichoides 35 2 7 2 -- 13 2 3 0 -- 17 1 1 0 -- -- -- -- -- -- -- -- -- -- -- 

Prunus serotina 18 2 3 1 -- 13 1 3 0 -- 67 2 4 3 -- -- -- -- -- -- -- -- -- -- -- 

Quercus lyrata 12 2 17 2 -- 13 2 25 3 -- -- -- -- -- -- 67 3 17 11 45.7 -- -- -- -- -- 

Quercus michauxii 53 2 22 12 -- 38 2 22 8 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Quercus nigra 35 2 10 4 -- 29 2 12 4 -- 33 2 3 1 -- -- -- -- -- -- -- -- -- -- -- 

Quercus pagoda 41 2 23 9 -- 25 2 19 5 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Quercus phellos 82 2 16 13 -- 75 2 21 16 -- 50 2 3 2 -- 33 2 1 0 -- -- -- -- -- -- 

Ranunculus abortivus 41 2 13 5 -- 17 2 7 1 -- 50 1 5 3 -- -- -- -- -- -- 50 2 2 1 -- 

Rosa sp 35 2 10 4 -- 25 2 10 3 -- 67 2 7 4 -- -- -- -- -- -- -- -- -- -- -- 

Rubus sp 71 3 10 7 -- 79 2 15 12 -- 100 2 5 5 -- 67 2 2 1 -- 50 2 1 0 -- 

Sambucus canadensis 29 2 8 2 -- 29 2 12 3 -- 50 2 5 3 -- -- -- -- -- -- -- -- -- -- -- 

Samolus parviflorus 6 2 50 3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 50 2 50 25 44.7 
Sanicula canadensis var. 
canadensis 47 2 7 3 -- 33 2 7 2 -- 67 1 4 2 -- -- -- -- -- -- 100 1 2 2 -- 

Saururus cernuus 29 2 10 3 -- 71 6 33 24 -- 33 6 4 1 -- 100 7 6 6 33.0 100 2 4 4 -- 
Sceptridium [biternatum + 
dissectum] 53 2 10 5 -- 54 2 15 8 -- 17 2 1 0 -- -- -- -- -- -- 50 1 1 1 -- 

Sisyrinchium angustifolium 6 1 10 1 -- 8 1 20 2 -- 33 2 20 7 -- 33 1 10 3 -- 50 2 10 5 -- 

Smilax bona-nox 82 2 9 8 -- 75 2 12 9 -- 50 2 2 1 -- -- -- -- -- -- -- -- -- -- -- 

Smilax glauca 59 2 9 5 -- 50 2 11 6 -- 67 2 4 2 -- -- -- -- -- -- 50 1 1 0 -- 
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Type Name IVa.  IVb. IVc. IVd. IVe. 

Smilax rotundifolia + walterii 100 3 11 11 -- 100 3 15 15 -- 100 2 4 4 -- 100 2 2 2 -- 100 3 1 1 -- 

Solidago sp 88 2 10 9 -- 96 3 15 15 -- 83 4 3 3 -- 67 2 1 1 -- 100 2 1 1 -- 

Toxicodendron radicans 100 4 9 9 -- 100 4 13 13 -- 100 4 3 3 -- 100 2 2 2 -- 100 2 1 1 -- 

Trachelospermum difforme 59 2 23 14 -- 29 2 16 5 -- 17 1 2 0 -- -- -- -- -- -- -- -- -- -- -- 

Triadenum walteri -- -- -- -- -- 4 1 20 1 -- 50 4 60 30 45.8 -- -- -- -- -- -- -- -- -- -- 

Ulmus alata 88 2 14 13 -- 71 2 16 11 -- 17 1 1 0 -- 33 1 1 0 -- 50 1 1 0 -- 

Ulmus [americana + rubra] 76 2 12 9 -- 83 2 19 16 -- 67 2 4 3 -- 67 2 2 1 -- 50 1 1 0 -- 

Viburnum dentatum  41 2 11 5 -- 42 2 16 7 -- 50 2 5 2 -- 33 1 2 1 -- -- -- -- -- -- 

Viburnum prunifolium 76 2 15 11 -- 38 2 10 4 -- 17 1 1 0 -- -- -- -- -- -- -- -- -- -- -- 

Viola sp 100 2 11 11 -- 67 2 11 7 -- 50 2 2 1 -- -- -- -- -- -- 100 2 1 1 -- 

Vitis [cinerea + vulpina] 35 2 7 3 -- 46 2 14 6 -- 33 2 2 1 -- -- -- -- -- -- -- -- -- -- -- 

Vitis rotundifolia var. rotundifolia 88 2 11 9 -- 54 2 9 5 -- 67 2 3 2 -- -- -- -- -- -- 100 2 1 1 -- 
 

1 var. heterophylla  
2 var. commutatum 
3[glabriflorus + macgregorii + virginicus] 
 
 1
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Appendix 7 

 

Average cover, constancy, fidelity, and diagnostic value (DV) of prevalent species in the two 

riparian herbaceous vegetation types. Species may be in the table more than once as they receive 

cover in every stratum in which they were observed. Non-native species are identified by an *. 

 

Type Name Va. Vb. 

Plot Count 10 2 

Avg Spp Richness (10m2) 20 13 

Homotoneity 53 81 

taxon name const. cover fidelity DV const. cover fidelity DV 

Acalypha rhomboidea 10 1 100 10 -- -- -- -- 

Acer negundo var. negundo 40 3 100 40 -- -- -- -- 

Acer rubrum 20 2 67 13 50 1 33 17 

Betula nigra 70 3 100 70 -- -- -- -- 

Bidens frondosa 30 2 60 18 100 2 40 40 

Boehmeria cylindrica 80 2 89 71 50 2 11 6 

Cardamine pensylvanica 10 2 50 5 50 2 50 25 

Cephalanthus occidentalis 30 4 100 30 -- -- -- -- 

Commelina communis* -- -- -- -- 50 1 100 50 

Diodia virginiana 30 2 100 30 -- -- -- -- 

Eclipta prostrata 70 3 100 70 -- -- -- -- 

Fraxinus pennsylvanica 50 4 100 50 -- -- -- -- 

Galium sp. -- -- -- -- 50 1 100 50 

Gratiola neglecta -- -- -- -- 100 1 100 100 

Hymenocallis coronaria -- -- -- -- 100 8 100 100 

Hypericum mutilum -- -- -- -- 50 3 100 50 

Hypericum mutilum var. mutilum 40 2 100 40 -- -- -- -- 

Justicia americana 100 7 83 83 100 7 17 17 

Leersia oryzoides -- -- -- -- 50 1 100 50 

Ludwigia alternifolia -- -- -- -- 50 2 100 50 

Ludwigia palustris 50 2 71 36 100 2 29 29 

Microstegium vimineum* 70 2 100 70 -- -- -- -- 

Murdannia keisak* 80 4 80 64 100 2 20 20 

Oxalis sp. 40 2 100 40 -- -- -- -- 

Persicaria setacea -- -- -- -- 100 2 100 100 

Persicaria virginiana 60 2 100 60 -- -- -- -- 

Platanus occidentalis var. occidentalis 80 2 100 80 -- -- -- -- 

Rumex crispus -- -- -- -- 100 1 100 100 

Saururus cernuus 40 3 100 40 -- -- -- -- 

Toxicodendron radicans var. radicans 30 2 100 30 -- -- -- -- 

Ulmus alata 30 3 100 30 -- -- -- -- 

Ulmus americana var. americana 30 2 100 30 -- -- -- -- 

Viola sp. 40 2 100 40 -- -- -- -- 
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Appendix 8 

 

Species attributes (growth habit, nativity, habitat, and dispersal mode) for 530 taxa recognized in Chapters 3 and 4. Growth habit 

information is from USDA PLANTS 2010. Nativity and habitat is from Weakley 2010. References for dispersal mode information 

are included in table.  

 

 
Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

1 Acalypha gracilens Forb Native Ruderal Unassisted Minor et al 2009 

2 Acalypha rhomboidea Forb Native Ruderal Unassisted 
Minor et al 2009; Hooper et al 
2004 

3 Acer floridanum Tree Native General bottomland Wind 
Inferred from morphology and 
con-geners 

4 Acer negundo Tree Native General bottomland Wind; Water Minor et al 2009; Cain et al 1998 

5 Acer rubrum Tree Native General forest Wind 
Inferred from morphology and 
con-geners 

6 Acer saccharinum Tree Native General bottomland Wind 
Inferred from morphology and 
con-geners 

7 Actaea racemosa Forb Native Rich Cove Vertebrate 

Thompson 1979; Royal Botanic 
Gardens Kew Seed Information 
Database (SID) 2008 

8 Adiantum pedatum Forb Native 
Lowland Mesic 
Forest Wind Flinn et al 2010 

9 Aesculus sylvatica Shrub Native 
Lowland Mesic 
Forest 

Vertebrate; 
Water Howard 1992 

10 Ageratina altissima Forb Native 
Lowland Mesic 
Forest Unknown   

11 Agrimonia [bicknellii + microcarpa + pubescens] Forb Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

12 Agrimonia parviflora Forb Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

13 Agrimonia rostellata Forb Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

14 Agrostis perennans Graminoid Native Gen Woodland Unknown   

15 Ailanthus altissima Tree Exotic No natural habitat Wind 
 Inferred from morphology and 
con-geners 
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

16 Albizia julibrissin Tree Exotic No natural habitat 

Wind; 
Vertebrate; 
Water Meyer 2009 

17 Alisma subcordatum Forb Native General bottomland Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

18 Allium canadense var. canadense Forb Native General bottomland 
Water; 
Unassisted Mehrhoff et al 2003 

19 Allium cuthbertii Forb Native Granite Glade 
Water; 
Unassisted Mehrhoff et al 2003 

20 Alnus serrulata Shrub Native General wet acidic Wind; Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

21 Ambrosia artemisiifolia Forb Native Ruderal Unassisted 
Minor et al 2009; Lavoie et al 
2007 

22 Amelanchier arborea Shrub Native 
Lowland Acid Dry 
Forest Vertebrate USDA, NRCS 2010 

23 Amianthium muscitoxicum Forb Native 
Lowland Mesic 
Forest Unknown   

24 Amorpha fruticosa Shrub Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

25 Amphicarpaea bracteata Vine Native 
Lowland Mesic 
Forest Unassisted Trapp 1988 

26 Amsonia tabernaemontana Forb Native General bottomland Unknown   

27 Anemone americana Forb Native 
Lowland Mesic 
Forest Unknown   

28 Anemone virginiana Forb Native General bottomland Unknown   

29 Anemonella thalictroides Forb Native General bottomland Unassisted Minor et al 2009; Sitzia 2007 

30 Antennaria sp. Forb Native 
Lowland Acid Dry 
Forest Unknown   

31 Apios americana Vine Native General bottomland Unknown   

32 Arisaema dracontium Forb Native General bottomland Vertebrate Minor et al 2009; Matlack 1994 

33 Arisaema triphyllum Forb Native General bottomland Vertebrate Minor et al 2009; Matlack 1994 

34 Arnoglossum atriplicifolium Forb Native 
Lowland Mesic 
Forest Unknown   

35 Aronia arbutifolia Shrub Native General wet acidic Vertebrate Rossell and Kesgen 2003 

36 Artemisia sp. Forb Exotic No natural habitat Unknown   
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

37 Arundinaria tecta Graminoid Native General bottomland Unassisted Hughes 1951 

38 Asarum canadense Forb Native 
Lowland Mesic 
Forest Unassisted Minor et al 2009; Matlack 1994 

39 Asclepias incarnata Forb Native General bottomland Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

40 Asclepias quadrifolia Forb Native Rich Cove Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

41 Asimina triloba Shrub Native General bottomland 
Vertebrate; 
Water 

Minor et al 2009; Thompson 
1981 

42 Asplenium platyneuron Forb Native 
Lowland Acid Dry 
Forest Wind Minor et al 2009   

43 Athyrium asplenioides Forb Native 
Lowland Mesic 
Forest Wind Flinn et al 2010 

44 Aureolaria virginica Forb Native 
Lowland Acid Dry 
Forest Unknown   

45 Berchemia scandens Vine Native General bottomland Unknown   

46 Betula nigra Tree Native General bottomland Wind; Water 
Inferred from morphology and 
con-geners 

47 Bidens frondosa Forb Native Aquatic 
Vertebrate; 
Water 

Cain et al 1998; Neff and 
Baldwin 2005 

48 Bignonia capreolata Vine Native General bottomland Unknown   

49 Boechera canadensis Forb Native Mafic Glade Unknown   

50 Boehmeria cylindrica Forb Native General bottomland Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

51 Botrypus virginianus Forb Native 
Lowland Mesic 
Forest Wind Minor et al 2009; Matlack 1994 

52 Brachyelytrum erectum Graminoid Native 
Lowland Mesic 
Forest Wind Montgomery 1977 

53 Bromus [nottowayanus + pubescens] Graminoid Native General bottomland Unassisted Minor et al 2009; Cain et al 1998 

54 Callitriche heterophylla var. heterophylla Forb Native General bottomland 
Vertebrate; 
Unassisted 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

55 Callitriche terrestris Forb Native Ruderal 
Vertebrate; 
Unassisted 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

56 Calycanthus floridus Shrub Native 
Lowland Mesic 
Forest Unknown   

57 Campsis radicans Vine Native General bottomland Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

58 Cardamine debilis Forb Exotic No natural habitat Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

59 Cardamine hirsuta Forb Exotic No natural habitat Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

60 Cardamine pensylvanica Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

61 Carex [amphibola + grisea + corrugata] Graminoid Native 
Lowland Mesic 
Forest Unassisted Minor et al 2009; Cain et al 1998 

62 Carex [radiata + rosea] Graminoid Native 
Lowland Mesic 
Forest Unassisted Minor et al 2009; Cain et al 1998 

63 Carex alata Graminoid Native General bottomland Unassisted Inferred from con-geners 

64 Carex albolutescens Graminoid Native General bottomland Unassisted Inferred from con-geners 

65 Carex allegheniensis Graminoid Native General wet acidic Unassisted Inferred from con-geners 

66 Carex blanda Graminoid Native 
Lowland Mesic 
Forest Unassisted Minor et al 2009; Cain et al 1998 

67 Carex bromoides Graminoid Native General wet acidic Unassisted Inferred from con-geners 

68 Carex caroliniana Graminoid Native 
Lowland Acid Dry 
Forest Unassisted Inferred from con-geners 

69 Carex cephalophora Graminoid Native General forest Unassisted Minor et al 2009; Cain et al 1998 

70 Carex complanata Graminoid Native 
Lowland Acid Dry 
Forest Unassisted Inferred from con-geners  

71 Carex crebriflora Graminoid Native General bottomland Unassisted Inferred from con-geners 

72 Carex crinita Graminoid Native General wet acidic Water Flinn et al 2010 

73 Carex crus-corvi Graminoid Native General bottomland Unassisted Inferred from con-geners 

74 Carex cumberlandensis Graminoid Native Rich Cove Unassisted Inferred from con-geners 

75 Carex debilis Graminoid Native General wet acidic Unassisted Inferred from con-geners 

76 Carex digitalis Graminoid Native 
Lowland Mesic 
Forest Unassisted Minor et al 2009; Cain et al 1998 

77 Carex festucacea Graminoid Native General bottomland Unassisted Inferred from con-geners 

78 Carex flaccosperma Graminoid Native General bottomland Unassisted Inferred from con-geners 
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

79 Carex folliculata Graminoid Native Mont Bog Unassisted Inferred from con-geners  

80 Carex glaucescens Graminoid Native Black Bottom Unassisted Inferred from con-geners 

81 Carex glaucodea Graminoid Native General bottomland Unassisted Inferred from con-geners 

82 Carex gracilescens Graminoid Native Rich Cove Unassisted Inferred from con-geners 

83 Carex gracillima Graminoid Native 
Lowland Mesic 
Forest Unassisted Inferred from con-geners 

84 Carex grayi Graminoid Native General bottomland Water 
Flinn et al 2010; Inferred from 
con-geners 

85 Carex hirsutella Graminoid Native 
Lowland Acid Dry 
Forest Unassisted Inferred from con-geners 

86 Carex impressinervia Graminoid Native 
Lowland Mesic 
Forest Unassisted Inferred from con-geners 

87 Carex intumescens Graminoid Native General wet acidic Water Flinn et al 2010 

88 Carex laevivaginata Graminoid Native General bottomland Unassisted Inferred from con-geners 

89 Carex laxiculmis var. laxiculmis Graminoid Native Rich Cove Unassisted Inferred from con-geners 

90 Carex laxiflora Graminoid Native General bottomland Unassisted Minor et al 2009; Cain et al 1998 

91 Carex leavenworthii Graminoid Native 
Lowland Acid Dry 
Forest Unassisted Inferred from con-geners 

92 Carex louisianica Graminoid Native CP Calc wet Unassisted Inferred from con-geners 

93 Carex lupulina Graminoid Native General bottomland Unassisted Inferred from con-geners 

94 Carex lurida Graminoid Native General wet acidic Unassisted Inferred from con-geners 

95 Carex mitchelliana Graminoid Native General wet acidic Unassisted Inferred from con-geners 

96 Carex nigromarginata Graminoid Native 
Lowland Acid Dry 
Forest Unassisted Inferred from con-geners 

97 Carex normalis Graminoid Native 
Lowland Mesic 
Forest Unassisted Inferred from con-geners 

98 Carex oblita Graminoid Native General wet acidic Unassisted Inferred from con-geners 

99 Carex oligosperma Graminoid Native Mont Bog Unassisted Inferred from con-geners 

100 Carex oxylepis Graminoid Native CP Calc wet Unassisted Inferred from con-geners 

101 Carex pigra Graminoid Native 
Lowland Mesic 
Forest Unassisted Inferred from con-geners 

102 Carex planispicata Graminoid Native 
Lowland Mesic 
Forest Unassisted Inferred from con-geners 

103 Carex retroflexa Graminoid Native General forest Unassisted Inferred from con-geners 
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

104 Carex scoparia var. scoparia Graminoid Native General wet acidic Unassisted Inferred from con-geners 

105 Carex seorsa Graminoid Native Black Bottom Unassisted Inferred from con-geners 

106 Carex squarrosa Graminoid Native General bottomland Unassisted Inferred from con-geners 

107 Carex stipata Graminoid Native General bottomland Unassisted Inferred from con-geners 

108 Carex striatula Graminoid Native General bottomland Unassisted Inferred from con-geners 

109 Carex tenera var. tenera Graminoid Native General bottomland Unassisted Inferred from con-geners 

110 Carex tribuloides Graminoid Native General bottomland Unassisted Inferred from con-geners 

111 Carex typhina Graminoid Native General bottomland Unassisted Inferred from con-geners 

112 Carex willdenowii Graminoid Native 
Lowland Acid Dry 
Forest Unassisted Inferred from con-geners 

113 Carpinus caroliniana Tree Native General bottomland Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

114 Carya alba Tree Native General forest Vertebrate Minor et al 2009 

115 Carya aquatica Tree Native General bottomland Vertebrate Minor et al 2009 

116 Carya carolinae-septentrionalis Tree Native 
Lowland Calc Dry 
Forest Vertebrate Minor et al 2009 

117 Carya cordiformis Tree Native General bottomland Vertebrate Minor et al 2009 

118 Carya glabra Tree Native General forest Vertebrate Minor et al 2009 

119 Carya laciniosa Tree Native General bottomland Vertebrate Minor et al 2009 

120 Carya ovalis Tree Native General forest Vertebrate Minor et al 2009 

121 Carya ovata Tree Native General forest Vertebrate Minor et al 2009 

122 Carya pallida Tree Native 
Lowland Acid Dry 
Forest Vertebrate Minor et al 2009 

123 Celastrus orbiculatus Vine Exotic No natural habitat Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

124 Celtis laevigata Tree Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

125 Cephalanthus occidentalis Shrub Native General wet acidic Water Schneider and Shartiz 1988 

126 Cerastium fontanum Forb Exotic No natural habitat Unknown   

127 Cercis canadensis Tree Native Gen Woodland Wind 
Minor et al 2009; Wilson et al 
1990 

128 Chaerophyllum procumbens var. procumbens Forb Native General bottomland Unassisted 
Minor et al 2009; Romermann et 
al 2005 

129 Chamaecrista sp. Forb Native Ruderal Unknown   
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130 Chamaelirium luteum Forb Native 
Lowland Mesic 
Forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

131 Chasmanthium [laxum + sessiliflorum] Graminoid Native General bottomland Unknown   

132 Chasmanthium latifolium Graminoid Native General bottomland Unknown   

133 Chelone glabra Forb Native General wet acidic Wind Flinn et al 2010 

134 Chenopodium album Forb Native Ruderal Unassisted Minor et al 2009 

135 Chimaphila maculata Subshrub Native 
Lowland Acid Dry 
Forest Unknown   

136 Chionanthus virginicus Shrub Native Gen Woodland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

137 Chrysogonum virginianum Forb Native 
Lowland Mesic 
Forest Unknown   

138 Cicuta maculata Forb Native Aquatic Unknown   

139 Cinna arundinacea Graminoid Native General bottomland Wind Montgomery 1977 

140 Circaea canadensis Forb Native 
Lowland Mesic 
Forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

141 Clematis terniflora Vine Exotic No natural habitat Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

142 Clematis viorna Vine Native General forest Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

143 Clematis virginiana Vine Native General forest Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

144 Clitoria mariana Vine Native Gen Woodland Unknown   

145 Collinsonia canadensis Forb Native Rich Cove Unknown   

146 Collinsonia tuberosa Forb Native 
Lowland Mesic 
Forest Unknown   

147 Commelina communis Forb Exotic No natural habitat Unassisted 
Minor et al 2009; Ohtsuka and 
Ohsawa 1994 

148 Commelina virginica Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

149 Conoclinium coelestinum Forb Native Ruderal Unknown   

150 Conyza canadensis Forb Native Ruderal Unknown   

151 Coreopsis auriculata Forb Native Lowland Mesic Unknown   
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Forest 

152 Cornus amomum Shrub Native General bottomland Vertebrate Stiles 1980 

153 Cornus florida Tree Native General forest Vertebrate 
Minor et al 2009; Czarnecka 
2005 

154 Cornus foemina Shrub Native General bottomland Vertebrate Stiles 1980 

155 Corydalis flavula Forb Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

156 Corylus americana Shrub Native General forest Unassisted 
Minor et al 2009; Beattie and 
Culver 1981 

157 Crataegus [flabellata group] Shrub Native General bottomland Vertebrate Stiles 1980 

158 Crataegus marshallii Shrub Native General bottomland Vertebrate Stiles 1980 

159 Crataegus phaenopyrum Shrub Native General forest Vertebrate Stiles 1980 

160 Crataegus viridis Shrub Native General bottomland Vertebrate Stiles 1980 

161 Cryptotaenia canadensis Forb Native 
Lowland Mesic 
Forest Unassisted Minor et al 2009; Williams 1994 

162 Cynoglossum virginianum var. virginianum Forb Native 
Lowland Mesic 
Forest Unknown   

163 Cyrilla racemiflora Shrub Native CP Pocosin Unknown   

164 Danthonia spicata Graminoid Native Gen Woodland Vertebrate 
Minor et al 2009; McIntyre et al. 
1995 

165 Decumaria barbara       Unknown   

166 Dendrolycopodium obscurum Forb Native 
Lowland Mesic 
Forest Unknown   

167 Desmodium [glabellum + perplexum] Forb Native General forest Unknown   

168 Desmodium nudiflorum Forb Native General forest Unknown   

169 Desmodium paniculatum var. paniculatum Forb Native Gen Woodland Vertebrate Minor et al 2009; Matlack 1994* 

170 Desmodium rotundifolium Forb Native Gen Woodland Unknown   

171 Dichanthelium acuminatum var. acuminatum Graminoid Native Gen Woodland Unassisted Inferred from con-geners 

172 Dichanthelium boscii Graminoid Native General forest Unassisted Inferred from con-geners  

173 Dichanthelium clandestinum Graminoid Native Gen Woodland Unassisted Inferred from con-geners 

174 Dichanthelium commutatum Graminoid Native General forest Unassisted Kirkman et al 2004 
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175 Dichanthelium dichotomum Graminoid Native General bottomland Unassisted Inferred from con-geners  

176 Dichanthelium erectifolium Graminoid Native CP Pond Unassisted Inferred from con-geners  

177 Dichanthelium laxiflorum Graminoid Native 
Lowland Mesic 
Forest Unassisted Inferred from con-geners  

178 Dichanthelium polyanthes Graminoid Native Gen Woodland Unassisted Inferred from con-geners  

179 Dichanthelium yadkinense Graminoid Native General bottomland Unassisted Inferred from con-geners  

180 Dichondra carolinensis Forb Native Ruderal Unknown   

181 Dicliptera brachiata Forb Native General bottomland Unknown   

182 Dioscorea [quaternata + villosa] Vine Native 
Lowland Mesic 
Forest Unknown   

183 Dioscorea polystachya Vine Exotic No natural habitat Unassisted 
Minor et al 2009; Harrison et al. 
2001 

184 Diospyros virginiana Tree Native General forest 
Vertebrate; 
Water 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

185 Diphasiastrum digitatum Forb Native 
Lowland Acid Dry 
Forest Unknown   

186 Diphasiastrum tristachyum Forb Native 
Lowland Acid Dry 
Forest Unknown   

187 Dryopteris cristata Forb Mixed Mont Bog Wind Flinn et al 2010 

188 Eclipta prostrata Forb Native Ruderal 
Vertebrate; 
Water 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

189 Elaeagnus umbellata Shrub Exotic No natural habitat Vertebrate 
Minor et al 2009; Swearington et 
al. 2002 

190 Elephantopus carolinianus Forb Native 
Lowland Acid Dry 
Forest Wind Kirkman et al 2004 

191 Elephantopus tomentosus Forb Native 
Lowland Acid Dry 
Forest Wind Kirkman et al 2004 

192 Elymus [glabriflorus + macgregorii + virginicus] Graminoid Native General bottomland Unknown   

193 Elymus canadensis var. canadensis Graminoid Native General bottomland Unassisted 
Minor et al 2009; Bockelmann et 
al 2003 

194 Elymus hystrix Graminoid Native General bottomland Unknown   

195 Elymus repens Graminoid Exotic No natural habitat Unknown   

196 Elymus riparius Graminoid Native General bottomland Unknown   
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197 Elymus villosus Graminoid Native General bottomland Unassisted 
Minor et al 2009; Bockelmann et 
al 2003 

198 Endodeca serpentaria Forb Native 
Lowland Acid Dry 
Forest Unassisted Kirkman et al 2004 

199 Epilobium coloratum Forb Native Mont Bog Unknown   

200 Equisetum arvense Forb Native General bottomland Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

201 Equisetum hyemale ssp. affine Forb Native General bottomland Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

202 Erechtites hieracifolia Forb Native Ruderal Wind based on morphology  

203 Erigeron strigosus var. strigosus Forb Native Ruderal Unknown   

204 Eubotrys racemosa Shrub Native Black Bottom Unknown   

205 Euonymus americanus Subshrub Native General forest Vertebrate Stiles 1980 

206 Euonymus fortunei var. radicans Shrub Exotic No natural habitat Vertebrate Stiles 1980 

207 Eupatorium capillifolium Forb Native Ruderal Wind 
Flinn et al 2010; Montgomery 
1975 

208 Eupatorium compositifolium Forb Native Dry Pine Wind 
Flinn et al 2010; Montgomery 
1976 

209 Eupatorium perfoliatum Forb Native General wet acidic Wind 
Flinn et al 2010; Montgomery 
1977 

210 Eupatorium serotinum Forb Native Barrier Wind 
Flinn et al 2010; Montgomery 
1978 

211 Euphorbia corollata Forb Native Gen Woodland Unknown   

212 Eurybia divaricata Forb Native 
Lowland Mesic 
Forest Wind 

Flinn et al 2010; Britton and 
Brown 1913 

213 Eutrochium fistulosum Forb Native General wet acidic Unknown   

214 Fagus grandifolia Tree Native 
Lowland Mesic 
Forest Vertebrate Minor et al 2009;  

215 Fallopia scandens Vine Native General wet acidic Unknown   

216 Festuca subverticillata Graminoid Native 
Lowland Mesic 
Forest Wind Minor et al 2009; Cain et al 1998 

217 Fragaria vesca var. americana Forb Native Ruderal Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 
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218 Fragaria virginiana Forb Native Ruderal Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2009 

219 Frangula caroliniana Shrub Native Mafic Glade Unknown   

220 Fraxinus caroliniana Tree Native Black Bottom Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

221 Fraxinus pennsylvanica Tree Native General bottomland Wind Minor et al 2009; Cain et al 1998 

222 Galium aparine Forb Native Ruderal Vertebrate 
Minor et al 2009; Fischer et al 
1996 

223 Galium circaezans Forb Native 
Lowland Mesic 
Forest Unknown   

224 Galium latifolium Forb Native Rich Cove Unknown   

225 Galium obtusum Forb Native General forest Unknown   

226 Galium pilosum Forb Native 
Lowland Mesic 
Forest Unknown   

227 Galium tinctorium Forb Native General bottomland Unknown   

228 Galium triflorum Forb Native General forest Vertebrate 
Minor et al 2009; Fischer et al 
1996 

229 Gaultheria procumbens Forb Native Montane Dry Forest Unknown   

230 Gelsemium sempervirens Vine Native General forest Unknown   

231 Gentiana saponaria Forb Native General wet acidic Unknown   

232 Geranium maculatum Forb Native Rich Cove Unassisted Minor et al 2009; Matlack 1994 

233 Geum canadense Forb Native 
Lowland Mesic 
Forest Vertebrate 

Minor et al 2009; Thompson 
1981 

234 Geum virginianum Forb Native General bottomland Unknown   

235 Glechoma hederacea Forb Exotic No natural habitat Unassisted 
Minor et al 2009; Hutchings and 
Price 1999 

236 Gleditsia triacanthos Tree Native General bottomland Vertebrate 

Minor et al 2009Royal Botanic 
Gardens Kew Seed Information 
Database (SID) 2008 

237 Glyceria septentrionalis Graminoid Native General bottomland Unknown   

238 Glyceria striata var. striata Graminoid Native General wet acidic 

Wind; 
Vertebrate; 
Water 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

239 Gonolobus suberosus Vine Native Lowland Mesic Unknown   
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Forest 

240 Goodyera pubescens Forb Native 
Lowland Acid Dry 
Forest Unknown   

241 Gratiola virginiana Forb Native General wet acidic Unknown   

242 Halesia tetraptera var. tetraptera Tree Native General bottomland Wind based on morphology  

243 Hamamelis virginiana Shrub Native General forest 
Vertebrate; 
Unassisted 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

244 Hedera helix Vine Exotic No natural habitat Vertebrate 
Minor et al 2009; Swearington et 
al. 2002 

245 Heliopsis helianthoides Forb Native 
Lowland Mesic 
Forest Wind based on morphology  

246 Hexastylis arifolia Forb Native 
Lowland Acid Dry 
Forest Unassisted 

Padgett 2004. Dissertation at 
ASU. 

247 Hibiscus moscheutos Forb Native General bottomland Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

248 Houstonia caerulea Forb Native 
Lowland Acid Dry 
Forest Unknown   

249 Houstonia purpurea Forb Native Gen Woodland Unknown   

250 Humulus japonicus Vine Exotic No natural habitat Wind; Water 
PA Department of Conservation 
and Natural Resources 2009 

251 Huperzia lucidula Forb Native Acid Cove Unknown   

252 Hydrangea arborescens Shrub Native General forest Unknown   

253 Hydrocotyle umbellata Forb Native Ruderal Water Flinn et al 2010 

254 Hypericum crux-andreae Subshrub Native General forest 

Wind; 
Vertebrate; 
Water 

Tisdale et al 1959; Comes et al 
1978 

255 Hypericum densiflorum Shrub Native Gen Woodland 

Wind; 
Vertebrate; 
Water 

Tisdale et al 1959; Comes et al 
1978 

256 Hypericum hypericoides Subshrub Native 
Lowland Acid Dry 
Forest 

Wind; 
Vertebrate; 
Water 

Tisdale et al 1959; Comes et al 
1978 

257 Hypericum mutilum Forb Native General wet acidic 

Wind; 
Vertebrate; 
Water 

Tisdale et al 1959; Comes et al 
1978 
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258 Hypericum nudiflorum Subshrub Native General wet acidic 

Wind; 
Vertebrate; 
Water 

Tisdale et al 1959; Comes et al 
1978 

259 Hypericum prolificum Subshrub Native General forest 

Wind; 
Vertebrate; 
Water 

Tisdale et al 1959; Comes et al 
1978 

260 Hypericum punctatum Forb Native Ruderal 

Wind; 
Vertebrate; 
Water 

Tisdale et al 1959; Comes et al 
1978 

261 Hypoxis hirsuta Forb Native Gen Woodland Unknown   

262 Ilex decidua Tree Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

263 Ilex opaca var. opaca Tree Native 
Lowland Mesic 
Forest Vertebrate Stiles 1980 

264 Ilex verticillata Tree Native General wet acidic Vertebrate Stiles 1980 

265 Impatiens capensis Forb Native 
Lowland Mesic 
Forest Unassisted Minor et al 2009; Cain et al 1998 

266 Impatiens pallida Forb Native Rich Cove Unassisted Minor et al 2009; Cain et al 1998 

267 Ipomoea sp. Vine Exotic No natural habitat Wind; Vertebrate Erwin 2010 

268 Iris sp. Forb Native 
Lowland Mesic 
Forest Unknown   

269 Itea virginica Shrub Native General bottomland Unknown   

270 Juglans nigra Tree Native General bottomland Vertebrate Minor et al 2009; Cain et al 1998 

271 Juncus abortivus Graminoid Native Wet Pine Unknown   

272 Juncus acuminatus Graminoid Native Ruderal Unknown   

273 Juncus coriaceus Graminoid Native General bottomland Unknown   

274 Juncus dichotomus Graminoid Native Ruderal Unknown   

275 Juncus effusus Graminoid Native General wet acidic 

Wind; 
Vertebrate; 
Water 

Flinn et al 2010; Pakeman et al 
2002; Neff and Baldwin 2005 

276 Juncus elliottii Graminoid Native Wet Pine Unknown   

277 Juncus tenuis Graminoid Native Ruderal Wind 
Minor et al 2009; Cain et al. 
1998 

278 Juniperus virginiana Tree Native General forest Vertebrate Minor et al 2009; Stiles 1980 
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279 Justicia americana Forb Native General bottomland Unknown   

280 Justicia ovata var. ovata Forb Native General bottomland Unknown   

281 Kalmia latifolia Shrub Native Montane Dry Forest Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

282 Krigia sp. Forb Native Ruderal Unknown   

283 Lactuca sp. Forb Native Ruderal Unknown   

284 Lamium purpureum Forb Native Ruderal Unknown   

285 Laportea canadensis Forb Native General bottomland Unassisted Montgomery 1977 

286 Leersia [oryzoides + virginica] Graminoid Native General bottomland Water 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Ridley 1930 

287 Lespedeza cuneata Subshrub Exotic No natural habitat Vertebrate Eddy et al 2003 

288 Leucothoe axillaris Shrub Native Black Bottom Unknown   

289 Ligusticum canadense Forb Native Montane Dry Forest Unknown   

290 Ligustrum sinense Shrub Exotic No natural habitat Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

291 Lilium superbum Forb Native Rich Cove Unknown   

292 Lindera benzoin Shrub Native General bottomland Vertebrate Minor et al 2009; Matlack 1994 

293 Linum striatum Forb Native General wet acidic Unknown   

294 Liquidambar styraciflua Tree Native General bottomland Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

295 Liriodendron tulipifera Tree Native 
Lowland Mesic 
Forest Wind; Vertebrate   

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

296 Lobelia cardinalis Forb Native General bottomland Unassisted Inferred from con-geners  

297 Lobelia inflata Forb Native Ruderal Unassisted 
Minor et al 2009; Simons and 
Johnston 2000 

298 Lobelia puberula Forb Native Ruderal Unassisted 
Minor et al 2009; Simons and 
Johnston 2000 

299 Lonicera japonica Vine Exotic No natural habitat Vertebrate 
Minor et al 2009; Sewarington et 
al 2002 

300 Lonicera sempervirens Vine Native General forest Vertebrate Stiles 1980 

301 Ludwigia alternifolia Forb Native General wet acidic Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 
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302 Ludwigia glandulosa Forb Native General bottomland Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

303 Ludwigia palustris Forb Native Ruderal Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

304 Luzula acuminata var. acuminata Forb Native 
Lowland Mesic 
Forest Unknown   

305 Luzula echinata Graminoid Native 
Lowland Mesic 
Forest Unknown   

306 Lycopus sp. Forb Native General bottomland Unknown   

307 Lysimachia ciliata Forb Native General bottomland Water Andersson et al 2000 

308 Lysimachia nummularia Forb Exotic No natural habitat Unassisted 
Minor et al 2009; Suzuki et al. 
2003 

309 Magnolia macrophylla Tree Native Rich Cove Vertebrate Stiles 1980 

310 Magnolia virginiana var. virginiana Tree Native CP Pocosin Vertebrate Stiles 1980 

311 Maianthemum racemosum ssp. racemosum Forb Native General forest Vertebrate Thompson 1979 

312 Marshallia obovata var. obovata Forb Native Mafic Glade Unknown   

313 Matelea sp. Vine Native 
Lowland Mesic 
Forest Wind 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

314 Medeola virginiana Forb Native 
Lowland Mesic 
Forest Unknown   

315 Melica mutica Graminoid Native General forest Unknown   

316 Melothria pendula Vine Native General bottomland Unknown   

317 Menispermum canadense Vine Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

318 Micranthemum umbrosum Forb Native General bottomland Unknown   

319 Microstegium vimineum Graminoid Exotic No natural habitat 

Wind; 
Vertebrate; 
Water Swearingen 2004 

320 Mikania scandens Vine Native General bottomland Unknown   

321 Mimulus sp. Forb Native General wet acidic Unassisted Montgomery 1977 

322 Mitchella repens Forb Native General forest Vertebrate Stiles 1980 

323 Mollugo verticillata Forb Exotic No natural habitat Unknown   
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324 Monotropa uniflora Forb Native 
Lowland Acid Dry 
Forest Unassisted Montgomery 1977 

325 Morus rubra Tree Native 
Lowland Mesic 
Forest Vertebrate Minor et al 2009; Stiles 1980 

326 Muhlenbergia sp Graminoid Native General bottomland Unassisted 
Minor et al 2009; Kirkman et al. 
2004 

327 Murdannia keisak Forb Exotic No natural habitat Vertebrate Dunn and Sharitz 1990 

328 Myosotis sp. Forb Native General bottomland Unknown   

329 Nandina domestica Shrub Exotic No natural habitat 
Vertebrate; 
Water Meisenburg and Fox 2002 

330 Nemophila aphylla Forb Native General bottomland Unknown   

331 Nyssa aquatica Tree Native General bottomland 
Vertebrate; 
Water 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

332 Nyssa biflora Tree Native Black Bottom Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

333 Nyssa sylvatica Tree Native 
Lowland Acid Dry 
Forest Vertebrate Minor et al 2009;  

334 Onoclea sensibilis Forb Native General bottomland Wind Flinn et al 2010 

335 Ophioglossum pycnostichum Forb Native General bottomland Unknown   

336 Osmorhiza longistylis Forb Native 
Lowland Mesic 
Forest Vertebrate Minor et al 2009; Matlack 1994 

337 Osmunda cinnamomea Forb Native General wet acidic Wind Flinn et al 2010 

338 Ostrya virginiana Tree Native 
Lowland Mesic 
Forest Wind 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

339 Oxalis sp. Forb Native NA Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

340 Oxydendrum arboreum Tree Native 
Lowland Acid Dry 
Forest Wind Schwartz et al 2001 

341 Packera aurea Forb Native General bottomland Unknown   

342 Panicum anceps var. rhizomatum Graminoid Native Dry Pine Unassisted Kirkman et al 2004 

343 Parthenocissus quinquefolia Vine Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

344 Passiflora lutea var. lutea Vine Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 
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345 Pedicularis canadensis Forb Native Gen Woodland Unknown   

346 Peltandra virginica Forb Native Aquatic Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

347 Penstemon sp. Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

348 Penthorum sedoides Forb Native Ruderal Unassisted Montgomery 1977 

349 Perilla frutescens Forb Exotic No natural habitat Unknown   

350 Persicaria arifolia Vine Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

351 Persicaria hydropiperoides Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

352 Persicaria lapathifolia Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

353 Persicaria punctata Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

354 Persicaria sagittata Forb Native General wet acidic Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

355 Persicaria setacea Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

356 Persicaria virginiana Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

357 Phacelia covillei Forb Native General bottomland Unknown   

358 Phryma leptostachya Forb Native 
Lowland Mesic 
Forest Vertebrate Minor et al 2009; Holm 1913 

359 Phytolacca americana Forb Native Ruderal Vertebrate Minor et al 2009; Matlack 1994 

360 Pilea pumila Forb Native General bottomland Water Neff and Baldwin 2005 

361 Pinus echinata Tree Native 
Lowland Acid Dry 
Forest Wind 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

362 Pinus strobus Tree Native Montane Dry Forest Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

363 Pinus taeda Tree Native General bottomland Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

364 Pinus virginiana Tree Native Montane Dry Forest Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 
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365 Piptochaetium avenaceum Graminoid Native Gen Woodland Unknown   

366 Platanthera sp. Forb Native General bottomland Wind Minor et al 2009; Cain et al 1998 

367 Platanus occidentalis Tree Native General bottomland Unknown   

368 Pleopeltis polypodioides Forb Native General forest Unknown   

369 Pluchea camphorata Forb Native General bottomland Wind; Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

370 Poa [autumnalis + cuspidata] Graminoid Native General bottomland Unassisted   

371 Poa sylvestris Graminoid Native 
Lowland Mesic 
Forest Unassisted Minor et al 2009; Cain et al 1998 

372 Poa trivialis Graminoid Exotic No natural habitat Unassisted Minor et al 2009; Cain et al 1998 

373 Podophyllum peltatum Forb Native 
Lowland Mesic 
Forest Unknown   

374 Podostemum ceratophyllum Forb Native General bottomland Vertebrate Minor et al 2009; Matlack 1994 

375 Polygonatum biflorum Forb Native General forest Wind Flinn et al 2010 

376 Polypodium virginianum Forb Native Acid Outcrop Wind Minor et al 2009 

377 Polystichum acrostichoides Forb Native 
Lowland Mesic 
Forest Vertebrate Minor et al 2009; Matlack 1994 

378 Populus deltoides Tree Native General bottomland Wind; Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

379 Potentilla [simplex + canadensis] Forb Native Gen Woodland Unknown   

380 Potentilla indica Forb Exotic No natural habitat Unknown   

381 Potentilla norvegica Forb Mixed Ruderal Vertebrate Minor et al 2009 

382 Potentilla simplex Forb Native Gen Woodland Unknown   

383 Prenanthes sp. Forb Native 
Lowland Mesic 
Forest Unknown   

384 Prunella vulgaris Forb Native Ruderal Vertebrate Minor et al 2009; Cain et al 1998 

385 Prunus americana Tree Native General forest Unknown   

386 Prunus caroliniana Tree Native Hammock Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

387 Prunus serotina Tree Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

388 Pseudognaphalium sp. Forb Native Gen Woodland Unknown   

389 Ptelea trifoliata Shrub Native Mafic Glade Unknown   

390 Ptilimnium capillaceum Forb Native Ruderal Unknown   
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391 Pycnanthemum pycnanthemoides Forb Native General forest Unknown   

392 Pyrularia pubera Shrub Native Montane Dry Forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

393 Pyrus communis Tree Exotic No natural habitat Unknown   

394 Quercus alba Tree Native General forest Vertebrate Minor et al 2009 

395 Quercus falcata Tree Native 
Lowland Acid Dry 
Forest Vertebrate Minor et al 2009 

396 Quercus laurifolia Tree Native Black Bottom Vertebrate Minor et al 2009 

397 Quercus lyrata Tree Native General bottomland Vertebrate Minor et al 2009 

398 Quercus michauxii Tree Native General bottomland Vertebrate Minor et al 2009 

399 Quercus muehlenbergii Tree Native Calc Glade Vertebrate Minor et al 2009 

400 Quercus nigra Tree Native General bottomland Vertebrate Minor et al 2009 

401 Quercus pagoda Tree Native General bottomland Vertebrate Minor et al 2009 

402 Quercus phellos Tree Native General bottomland Vertebrate Minor et al 2009 

403 Quercus rubra Tree Native 
Lowland Mesic 
Forest Vertebrate Minor et al 2009 

404 Quercus shumardii var. shumardii Tree Native 
Lowland Mesic 
Forest Vertebrate Minor et al 2009 

405 Quercus stellata Tree Native 
Lowland Acid Dry 
Forest Vertebrate Minor et al 2009 

406 Quercus velutina Tree Native 
Lowland Acid Dry 
Forest Vertebrate Minor et al 2009 

407 Ranunculus abortivus Forb Native General bottomland Unassisted Minor et al 2009; Matlack 1994 

408 Ranunculus arvensis Forb Exotic No natural habitat Unknown   

409 Ranunculus recurvatus Forb Native General bottomland Vertebrate Montgomery 1977 

410 Ranunculus repens Forb Native General bottomland Unknown   

411 

Rhododendron 
[periclymenoides+arborescens+viscosum+calend
ulaceum] Shrub Native 

Lowland Mesic 
Forest Unknown   

412 Robinia pseudoacacia Tree Native Montane Dry Forest Vertebrate 
Minor et al 2009; Zalba and 
Villamil 2002 

413 Rosa sp. Subshrub NA NA Vertebrate Minor et al 2009   

414 Rubus sp. Subshrub Native NA Vertebrate Minor et al 2009   

415 Rudbeckia laciniata Forb Native General bottomland Unknown   
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

416 Ruellia caroliniensis Forb Native 
Lowland Acid Dry 
Forest Unassisted Kirkman et al 2004 

417 Rumex sp. Forb Exotic No natural habitat 

Wind; 
Vertebrate; 
Water 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

418 Sagittaria australis Forb Native Aquatic Unknown   

419 Salix nigra Tree Native General bottomland Wind; Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

420 Salvia lyrata Forb Native Ruderal Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

421 Sambucus canadensis Shrub Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

422 Samolus parviflorus Forb Native General wet acidic Unknown   

423 Sanguinaria canadensis Forb Native 
Lowland Mesic 
Forest Vertebrate Minor et al 2009; Matlack 1994 

424 Sanicula canadensis Forb Native 
Lowland Mesic 
Forest Vertebrate Montgomery 1977 

425 Sanicula smallii Forb Native 
Lowland Mesic 
Forest Vertebrate Montgomery 1977 

426 Sassafras albidum Tree Native Gen Woodland Vertebrate Minor et al 2009; Stiles 1980 

427 Saururus cernuus Forb Native General bottomland Unknown   

428 Sceptridium [dissectum+biternatum] Forb Native General bottomland Wind infered from morphology 

429 Schizachyrium scoparium Graminoid Native Gen Woodland Unknown   

430 Scirpus atrovirens Graminoid Native General wet acidic Water Flinn et al 2010; Aubin et al 2007 

431 Scirpus cyperinus Graminoid Native General wet acidic Unknown   

432 Scleria oligantha Graminoid Native Gen Woodland Unknown   

433 Scutellaria elliptica Forb Native 
Lowland Acid Dry 
Forest Unknown   

434 Scutellaria integrifolia Forb Native General wet acidic Unknown   

435 Scutellaria lateriflora Forb Native General bottomland 
Unassisted; 
Water 

Minor et al 2009; Kirkman et al. 
2004 

436 Scutellaria nervosa Forb Native General bottomland Unknown   

437 Scutellaria serrata Forb Native Rich Cove Unknown   
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

438 Sedum ternatum Forb Native General bottomland Water 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

439 Sideroxylon lycioides Shrub Native 
Lowland Mesic 
Forest Unknown   

440 Silene stellata Forb Native 
Lowland Mesic 
Forest Wind 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

441 Sisyrinchium sp. Forb Native Gen Woodland Unknown   

442 Sium suave Forb Native General bottomland Water Montgomery 1977 

443 Smallanthus uvedalius Forb Native General bottomland Unknown   

444 Smilax [rotundifolia + walterii] Vine Native General forest Vertebrate 
Minor et al 2009; Schneider and 
Sharitz 1988 

445 Smilax bona-nox Vine Native General forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Shcneider and Shartiz 
1988 

446 Smilax glauca Vine Native General forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Shcneider and Shartiz 
1988 

447 Smilax herbacea Vine Native Rich Cove Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Shcneider and Shartiz 
1988 

448 Smilax hispida Vine Native General forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Shcneider and Shartiz 
1988 

449 Smilax laurifolia Vine Native Black Bottom Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Shcneider and Shartiz 
1988 

450 Smilax pulverulenta Vine Native 
Lowland Mesic 
Forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Shcneider and Shartiz 
1988 
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

451 Smilax smallii Vine Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

452 Solanum carolinense var. carolinense Forb Native Ruderal Unknown   

453 Solidago altissima Forb Native Ruderal Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

454 Solidago arguta Forb Native Gen Woodland Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

455 Solidago caesia Forb Native 
Lowland Mesic 
Forest Wind 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

456 Solidago curtisii Forb Native Rich Cove Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

457 Solidago gigantea Forb Native NA Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

458 Solidago rugosa Forb Native Ruderal Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

459 Solidago sp. Forb Native NA Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

460 Sonchus asper Forb Exotic No natural habitat Unknown   

461 Sorghastrum sp. Forb Native Gen Woodland Unknown   

462 Sphenopholis obtusata Graminoid Native General forest Unknown   

463 Sporobolus clandestinus Graminoid Native Gen Woodland Unknown   

464 Stachys cordata Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

465 Stachys latidens Forb Native Rich Cove Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

466 Staphylea trifolia Shrub Native General bottomland Wind; Vertebrate 
Minor et al 2009; Garwood and 
Horvitz 1985; Willson et al 1990 

467 Stellaria media Forb Exotic No natural habitat Unassisted Minor et al 2009; Harvey 2000 

468 Stellaria pubera Forb Native Rich Cove Unassisted Minor et al 2009; Harvey 2000 

469 Styrax americanus var. americanus Tree Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

470 Symphoricarpos orbiculatus Shrub Native Gen Woodland Wind Minor et al 2009 

471 Symphyotrichum divaricatum Forb Mixed Ruderal Wind Minor et al 2009 
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

472 Symphyotrichum pilosum Forb Native Ruderal Wind Minor et al 2009 

473 Symphyotrichum puniceum Forb Native General wet acidic Wind Minor et al 2009 

474 Symphyotrichum racemosum var. racemosum Forb Native General bottomland Wind Minor et al 2009 

475 Symphyotricum [lateriflorum + lanceolatum] Forb Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

476 Symplocos tinctoria Shrub Native General forest Unknown   

477 Taxodium distichum Tree Native General bottomland Water Schneider and Sharitz 1988 

478 Tephrosia sp. Forb Native Gen Woodland Unknown   

479 Teucrium canadense Forb Native General wet acidic Unknown Minor et al 2009 

480 Thalictrum revolutum Forb Native Mafic Glade Unassisted infer from morphology 

481 Thaspium trifoliatum Forb Native Rich Cove Unknown   

482 Thelypteris noveboracensis Forb Native 
Lowland Mesic 
Forest Wind Flinn et al 2010 

483 Tiarella cordifolia Forb Native Rich Cove Unassisted 
Flinn et al 2010; Montgomery 
1977 

484 Tiarella wherryi Forb Native 
Lowland Mesic 
Forest Unassisted 

Flinn et al 2010; Montgomery 
1977 

485 Tilia americana  Tree Native 
Lowland Mesic 
Forest Wind Flinn et al 2010 

486 Tipularia discolor Forb Native 
Lowland Acid Dry 
Forest Unknown   

487 Toxicodendron radicans Vine Native General bottomland Vertebrate Minor et al 2009; Cain et al 1998 

488 Trachelospermum difforme Vine Native 
Lowland Mesic 
Forest Unknown   

489 Triadenum walteri Forb Native General bottomland Unassisted 
Flinn et al 2010; Britton and 
Brown 1913 

490 Trillium catesbaei Forb Native 
Lowland Mesic 
Forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

491 Trillium cuneatum Forb Native Rich Cove Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

492 Trillium sulcatum Forb Native Rich Cove Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

493 Triodanis perfoliata Forb Native Ruderal Unknown   
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

494 Tripsacum dactyloides Graminoid Native General bottomland Unknown   

495 Ulmus alata Tree Native Gen Woodland Wind; Water 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Young and Young 1992 

496 Ulmus [americana + rubra] Tree Native General bottomland Wind; Water 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 
2008; Young and Young 1992 

497 Uvularia perfoliata Forb Native 
Lowland Mesic 
Forest Unassisted Thompson 1979 

498 Uvularia sessilifolia Forb Native General bottomland Unassisted Thompson 1979 

499 Vaccinium arboreum Shrub Native Gen Woodland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

500 Vaccinium elliottii Shrub Native Black Bottom Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

501 Vaccinium fuscatum Shrub Native General wet acidic Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

502 Vaccinium pallidum Shrub Native Montane Dry Forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

503 Vaccinium stamineum Shrub Native Gen Woodland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

504 Valerianella radiata Forb Native Ruderal Unknown   

505 Verbesina alternifolia Forb Native General bottomland Wind: Vertebrate 

Minor et al 2009; Royal Botanic 
Gardens Kew Seed Information 
Database (SID) 2008 

506 Verbesina occidentalis Forb Native 
Lowland Mesic 
Forest Wind: Vertebrate 

Minor et al 2009; Royal Botanic 
Gardens Kew Seed Information 
Database (SID) 2008 

507 Vernonia sp. Forb Native Ruderal Wind 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

508 Veronica sp. Forb Exotic No natural habitat Wind; Vertebrate Flinn et al 2010; Minor et al 2009 

509 Viburnum acerifolium Shrub Native 
Lowland Mesic 
Forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

510 Viburnum [dentatum + rafinesquianum] Shrub Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 
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Taxon name Growth Habit Nativity Habitat Dispersal mode Dispersal mode references 

511 Viburnum nudum Shrub Native CP Pocosin Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

512 Viburnum prunifolium Shrub Native General bottomland Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

513 Viburnum rufidulum Shrub Native 
Lowland Calc Dry 
Forest Vertebrate 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

514 Vinca minor Vine Exotic No natural habitat Unassisted Sonday 2010 

515 Viola bicolor Forb Native Ruderal Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

516 Viola palmata Forb Native General bottomland Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

517 Viola pubescens Forb Native 
Lowland Mesic 
Forest Unassisted 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

518 Viola sororia Forb Native General forest Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

519 Viola sp. Forb Native NA Unassisted 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

520 Viola striata Forb Native 
Lowland Mesic 
Forest Unassisted 

Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

521 Vitis [cinerea + vulpina] Vine Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

522 Vitis aestivalis var. aestivalis Vine Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

523 Vitis labrusca Vine Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

524 Vitis riparia Vine Native NA Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

525 Vitis rotundifolia Vine Native General forest Vertebrate 
Royal Botanic Gardens Kew Seed 
Information Database (SID) 2008 

526 Woodwardia areolata Forb Native General wet acidic Wind infered from morphology 

527 Xanthorhiza simplicissima Forb Native General bottomland Unknown   

528 Yucca filamentosa Forb Native Granite Glade Unassisted Massey and Hamrick 1998 

529 Zephyranthes atamasca Forb Native General bottomland Unknown   

530 Zizia aurea Forb Native Rich Cove Unassisted Farnsworth 2003 
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Appendix 9 

 

Forward selected environmental variables for variation partitioning analyses (Chapter 4). 

 
Table 1. Forward selected environmental variables for all plant species and all plots, across all 5 river 
basins.  

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Ca/Mg (ppm) 0.063 0.063 0.058 12.187 0.001 

2 Clay (A horizon) 0.040 0.103 0.093 7.949 0.001 

3 Levee (geomorphic position) 0.030 0.134 0.119 6.240 0.001 

4 Fe (ppm) 0.025 0.159 0.140 5.263 0.001 

5 Distance to river mouth 0.018 0.177 0.154 3.949 0.001 

6 Floodplain width 0.015 0.192 0.165 3.313 0.001 

7 S 0.015 0.207 0.175 3.272 0.001 

8 Al (ppm) 0.015 0.222 0.186 3.273 0.001 

9 Cu (ppm) 0.014 0.236 0.196 3.157 0.001 

10 Mean annual precipitation 0.010 0.246 0.201 2.165 0.001 

11 Silt (A horizon) 0.009 0.255 0.207 2.146 0.001 

12 N 0.010 0.265 0.213 2.392 0.001 

13 K (ppm) 0.009 0.274 0.218 1.974 0.001 

14 Flat (geomorphic position) 0.008 0.282 0.222 1.947 0.001 

15 Mean annual temperature 0.008 0.291 0.226 1.924 0.001 

16 Upstream area drained 0.008 0.298 0.230 1.794 0.001 

17 Mn (ppm) 0.007 0.305 0.233 1.717 0.002 

18 Stream order 0.007 0.313 0.237 1.727 0.001 

19 Mg (ppm) 0.007 0.320 0.240 1.688 0.001 

20 Cation exchange capacity 0.008 0.327 0.244 1.832 0.001 

21 Small stream (geomorphic position) 0.007 0.335 0.247 1.725 0.002 

22 Backswamp (geomorphic position) 0.007 0.341 0.250 1.610 0.003 

23 Bulk density 0.006 0.347 0.252 1.462 0.009 

24 P 0.006 0.353 0.254 1.446 0.005 

25 Organic matter 0.006 0.359 0.257 1.494 0.006 

26 Ca (ppm) 0.006 0.365 0.259 1.430 0.015 

27 Zn (ppm) 0.005 0.371 0.260 1.332 0.033 

 
Table 2. Forward selected variables for all species in the Catawba river basin. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Floodplain width 0.120 0.120 0.068 2.316 0.001 

2 Cu (ppm) 0.096 0.216 0.118 1.958 0.002 

3 Small stream (geomorphic position) 0.074 0.290 0.148 1.564 0.015 

4 Mean annual temperature 0.073 0.363 0.181 1.599 0.018 

5 P 0.068 0.431 0.212 1.559 0.030 

6 Ca/Mg (ppm) 0.067 0.498 0.248 1.613 0.016 
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Table 3. Forward selected variables for all species in the Yadkin river basin. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Ca/Mg (ppm) 0.103 0.103 0.084 5.390 0.001 

2  Clay (A horizon) 0.058 0.161 0.124 3.172 0.001 

3 Fe (ppm) 0.050 0.211 0.158 2.849 0.001 

4 Levee (geomorphic position) 0.040 0.251 0.183 2.357 0.001 

5 Floodplain width 0.034 0.285 0.202 2.038 0.001 

6 Mean annual precipitation 0.034 0.319 0.222 2.119 0.001 

7 Small stream (geomorphic position) 0.027 0.346 0.234 1.674 0.005 

8 Backswamp (geomorphic position) 0.026 0.372 0.246 1.668 0.004 

9  Organic matter 0.025 0.397 0.258 1.636 0.005 

10 P 0.025 0.422 0.270 1.629 0.005 

11 pH 0.023 0.445 0.280 1.517 0.011 

12 Al (ppm) 0.022 0.467 0.289 1.484 0.017 

13 Bulk density 0.020 0.487 0.297 1.386 0.038 

14 Stream order 0.020 0.507 0.304 1.372 0.046 

15 Upstream area drained 0.024 0.531 0.318 1.682 0.005 

 
Table 4. Forward selected variables for all species in the Cape Fear river basin. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Ca/Mg (ppm) 0.108 0.108 0.092 6.694 0.001 

2 Floodplain width 0.053 0.162 0.131 3.442 0.001 

3 Distance to river mouth 0.040 0.202 0.156 2.631 0.001 

4 Cu (ppm) 0.035 0.237 0.178 2.407 0.001 

5 N 0.033 0.270 0.198 2.279 0.001 

6 S 0.026 0.296 0.211 1.845 0.002 

7 Levee (geomorphic position) 0.024 0.320 0.223 1.743 0.002 

8  Silt (A horizon) 0.024 0.344 0.234 1.765 0.002 

9 Mean annual temperature 0.025 0.369 0.248 1.859 0.001 

10 Stream order 0.020 0.389 0.256 1.521 0.008 

11 Small stream (geomorphic position) 0.020 0.409 0.265 1.555 0.011 

12 B (ppm) 0.019 0.428 0.272 1.427 0.038 

13 basesatA 0.019 0.447 0.280 1.476 0.019 

14 Fe (ppm) 0.019 0.466 0.288 1.514 0.012 

15 Mean annual precipitation 0.018 0.484 0.295 1.411 0.033 

 
Table 5. Forward selected environmental variables in the Neuse river basin. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Cu (ppm) 0.110 0.110 0.078 3.450 0.001 

2 Backswamp (geomorphic position) 0.093 0.203 0.144 3.156 0.001 

3 Small stream (geomorphic position) 0.079 0.282 0.199 2.868 0.001 

4 Floodplain width 0.052 0.334 0.227 1.933 0.003 

5 Ca (ppm) 0.046 0.380 0.251 1.797 0.004 

6 Distance to river mouth 0.043 0.423 0.273 1.728 0.008 

7 N 0.039 0.462 0.291 1.581 0.017 

8 Upstream area drained 0.036 0.498 0.307 1.520 0.028 

9 Flat (geomorphic position) 0.035 0.534 0.324 1.518 0.037 

10 Levee (geomorphic position) 0.035 0.569 0.342 1.551 0.033 
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11 Mg (ppm) 0.034 0.602 0.359 1.517 0.038 

 
Table 6. Forward selected environmental variables in the Tar river basin. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Flat (geomorphic position) 0.119 0.119 0.084 3.389 0.001 

2 Levee (geomorphic position) 0.091 0.210 0.144 2.755 0.001 

3 Upstream area drained 0.066 0.276 0.181 2.091 0.001 

4 Backswamp (geomorphic position) 0.064 0.340 0.219 2.121 0.002 

5 Distance to river mouth 0.054 0.394 0.249 1.881 0.004 

6 Small stream (geomorphic position) 0.040 0.434 0.264 1.404 0.049 

 
Table 7. Forward selected environmental variables for wind-dispersed species,  across all river basins. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Levee (geomorphic position) 0.078 0.078 0.073 15.151 0.001 

2  Clay (A horizon) 0.045 0.123 0.113 9.207 0.001 

3 Ca/Mg (ppm) 0.039 0.162 0.148 8.302 0.001 

4 Fe (ppm) 0.027 0.189 0.171 5.993 0.001 

5 Distance to river mouth 0.025 0.214 0.192 5.530 0.001 

6 Cu (ppm) 0.023 0.237 0.211 5.334 0.001 

7 N 0.020 0.257 0.228 4.734 0.001 

8 Floodplain width 0.014 0.272 0.238 3.383 0.001 

9 S 0.014 0.286 0.248 3.397 0.001 

10  Silt (A horizon) 0.011 0.296 0.255 2.583 0.001 

11 Mean annual precipitation 0.011 0.307 0.262 2.613 0.001 

12 Flat (geomorphic position) 0.010 0.317 0.268 2.447 0.003 

13 K (ppm) 0.009 0.326 0.274 2.319 0.002 

14 Small stream (geomorphic position) 0.009 0.335 0.280 2.254 0.005 

15 basesatA 0.009 0.344 0.285 2.178 0.003 

16 P 0.008 0.352 0.289 1.967 0.007 

17 Bulk density 0.007 0.359 0.292 1.807 0.026 

18 Mean annual temperature 0.006 0.365 0.295 1.657 0.032 

19 Upstream area drained 0.007 0.372 0.298 1.728 0.024 

20 Al (ppm) 0.006 0.378 0.301 1.667 0.030 

21  Organic matter 0.006 0.385 0.304 1.647 0.034 

22 Mn (ppm) 0.006 0.391 0.307 1.693 0.041 

23 Mg (ppm) 0.006 0.398 0.310 1.704 0.034 

 
Table 8. Forward selected environmental variables for vertebrate-dispersed species, across all river basins. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Ca/Mg (ppm) 0.080 0.080 0.075 15.647 0.001 

2  Clay (A horizon) 0.047 0.127 0.117 9.567 0.001 

3 Fe (ppm) 0.026 0.153 0.139 5.494 0.001 

4 Levee (geomorphic position) 0.022 0.175 0.157 4.803 0.001 

5 Floodplain width 0.020 0.195 0.172 4.407 0.001 

6 Distance to river mouth 0.016 0.212 0.185 3.644 0.001 

7 Al (ppm) 0.019 0.231 0.200 4.408 0.001 

8 S 0.013 0.244 0.209 2.974 0.001 

9 Cu (ppm) 0.010 0.254 0.215 2.255 0.001 
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10 N 0.011 0.265 0.222 2.656 0.001 

11 Mean annual precipitation 0.009 0.275 0.228 2.207 0.001 

12  Silt (A horizon) 0.009 0.284 0.233 2.198 0.001 

13 basesatA 0.008 0.292 0.237 1.918 0.001 

14 Zn (ppm) 0.007 0.300 0.241 1.742 0.005 

15 Flat (geomorphic position) 0.007 0.307 0.244 1.724 0.005 

16 Mean annual temperature 0.007 0.314 0.247 1.661 0.017 

17 Stream order 0.008 0.322 0.251 1.915 0.001 

18 Small stream (geomorphic position) 0.007 0.329 0.255 1.771 0.002 

19 Upstream area drained 0.007 0.336 0.258 1.734 0.005 

20 P 0.007 0.343 0.261 1.670 0.012 

21 Na (ppm) 0.006 0.349 0.264 1.554 0.025 

22 Cation exchange capacity 0.006 0.355 0.266 1.521 0.020 

23 Mg (ppm) 0.006 0.361 0.269 1.537 0.032 

24 Ca (ppm) 0.007 0.368 0.272 1.697 0.008 

25 pH 0.006 0.374 0.274 1.498 0.034 

 

Table 9. Forward selected environmental variables for water dispersal species, across all river basins. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Ca/Mg (ppm) 0.083 0.083 0.078 16.302 0.001 

2 Levee (geomorphic position) 0.036 0.119 0.110 7.389 0.001 

3 S 0.035 0.154 0.140 7.358 0.001 

4 Mn (ppm) 0.026 0.180 0.162 5.611 0.001 

5  Clay (A horizon) 0.019 0.200 0.177 4.260 0.001 

6 Cu (ppm) 0.015 0.215 0.188 3.456 0.001 

7 Backswamp (geomorphic position) 0.014 0.229 0.198 3.077 0.001 

8 Al (ppm) 0.013 0.241 0.206 2.874 0.001 

9 Distance to river mouth 0.016 0.257 0.218 3.680 0.001 

10 Upstream area drained 0.013 0.270 0.227 2.931 0.001 

11 Mean annual temperature 0.009 0.278 0.232 2.025 0.016 

12 Flat (geomorphic position) 0.009 0.288 0.237 2.244 0.011 

13  Silt (A horizon) 0.009 0.297 0.243 2.236 0.007 

14 P 0.008 0.306 0.247 2.001 0.019 

 
Table 10. Forward selected environmental variables for unassissted dispersal species, across all river basins. 

Order Variable R
2
 Cumulative R

2
 Adj. Cumulative R

2
 F P-value 

1 Levee (geomorphic position) 0.041 0.041 0.035 7.608 0.001 

2 Backswamp (geomorphic position) 0.034 0.075 0.065 6.674 0.001 

3 Ca/Mg (ppm) 0.020 0.095 0.080 3.899 0.001 

4  Clay (A horizon) 0.018 0.113 0.093 3.645 0.001 

5 S 0.014 0.127 0.102 2.820 0.001 

6 Mn (ppm) 0.015 0.142 0.113 3.033 0.001 

7 SandA 0.013 0.155 0.121 2.637 0.001 

8 Mean annual precipitation 0.013 0.168 0.129 2.673 0.001 

9 Mean annual temperature 0.013 0.180 0.137 2.630 0.001 

10 K (ppm) 0.011 0.191 0.144 2.361 0.001 

11 Stream order 0.011 0.202 0.151 2.343 0.001 

12 Fe (ppm) 0.009 0.212 0.156 1.987 0.002 

13  Organic matter 0.009 0.221 0.160 1.938 0.003 
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14 Zn (ppm) 0.009 0.230 0.165 1.948 0.006 

15 Floodplain width 0.008 0.237 0.168 1.698 0.014 

16 Upstream area drained 0.008 0.245 0.172 1.666 0.02 

17 Al (ppm) 0.007 0.252 0.175 1.555 0.034 
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