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ABSTRACT 
 

Characterization and Modulation of Autoreactive CD4+ T cells in Type 1 Diabetes 
 
 
 

   Type 1 diabetes (T1D) is an autoimmune disease mediated by pathogenic β cell-specific T 

cells. The soluble (s) IAg7- immunoglobulin (Ig) dimers covalently linked to GAD65 peptides 

or the mimetic BDC2.5 epitope (mBDC) were utilized in two studies. The first use was to 

enhance the efficacy of peptide treatment. NOD female mice with established β cell 

autoimmunity received a short course of sIAg7-Ig dimers intravenously (i.v.). NOD mice 

treated with sIAg7-mBDC continued to develop diabetes. In marked contrast, the majority of 

NOD mice treated with sIAg7-Ig complexed with the GAD65-specific peptides p217 or p286 

remained diabetes-free. Protection correlated with an increased frequency of IL-10 secreting 

immunoregulatory CD4+ T cells that delayed diabetes in a co-adoptive transfer model. These 

results demonstrate that treatment with a short-course of sIAg7-GAD65 peptide dimers is an 

effective approach to suppress T1D.   

 

   Secondly, the relative role for BDC2.5 clonotypic CD4+ T cells in the progression of the 

diabetogenic response was tracked and temporal analyzed using sIAg7-mBDC multimers. The 

frequency and/or number of T cells binding sIAg7-mBDC multimers (g7-mBDC+) increase 

with in peripheral blood lymphocytes (PBL) and the islets at the onset of β cell autoimmunity 

in NOD female mice. In contrast, a reduced frequency and number of g7-mBDC+ T cells was 

observed in the PBL and islets of NOD male mice. T cell receptor (TCR) variable β (Vβ) 
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gene complementary determinant region 3 (CDR3) sequences revealed that BDC2.5 

clonotypic CD4+ T cells in the islets but not PBL selectively expressed TRBV15. These data 

demonstrate that g7-mBDC+ T cells are an early indicator of the development of destructive 

insulitis, and that both clonotypic expansion and preferential usage of TCR characterize islet 

infiltrating g7-mBDC+ T cells. 

 iv



 
 
 
 

ACKNOWLEDGEMENTS 
 
 
 
   I wish to give my warmest thanks to Dr. Roland Tisch. He introduced me to this field and 

generously gave me advice and suggestions during these years. I would like to express my 

gratitude to him for spending valuable time inspiring me and conducting my dissertation 

research. Likewise, I am grateful to Dr. Bo Wang for providing me with thought-provoking 

discussions and advice. I am also grateful to my dissertation committee members, Dr. Jeff 

Frelinger, Dr. Ed Collins, Dr. Glenn Matsushima, and Dr. Steve Clark. Thank you for 

generously giving me valuable time and advice during the last few years. 

 

   Finally, I would like to specially dedicate this work to my wife, Hong Yu and my son, 

Evan. Thank you for supporting me both intellectually and emotionally during these years. I 

could not have done this without your immense love. Thank you Evan for bringing felicity to 

my life. As well as my parents, Shiyan Li and Yaqin Zhao, your endless love for me and 

continuous encouragement throughout my life are deeply appreciated. Without the generous 

help of my sister, Yueying Li and brother, Zongrui Li, this investigation would not have been 

possible. 

 
 
 
 
 
 
 
 
 

 v



 
 
 
 

TABLE OF CONTENTS 
 
 
               Page 

LIST OF TABLES……………………………………………………………………….vii 

LIST OF FIGURES…………………………………………………………………..…..ix 

LIST OF ABBREVIATIONS………………………………………………………….....x 

CHAPTER 

1. INTRODUCTION…………………………………………………………….……..…1 

1.1 Type 1 Diabetes……………………………………………………….………2 

1.2 The NOD Mouse…………………………………………….………….……..4 

1.3 Properties of IAg7…………………………………………….……….……….5 

1.4 T1D is a T cell-mediated Autoimmune Disease………………………..……..6 

1.5 Multiple β cell Autoantigens are Targeted in T1D……………………………9 

1.6 Multiple Defects Account for the Breakdown  
        of Self-tolerance to β cells………………………………………………….11 

 1.6.1 Thymic Selection…………………………………………………..12 

 1.6.2 Immunoregulation………………………………………………….13 

1.7 Immunotherapy of T1D……………………………………………..……….18 

 1.7.1 Antigen-independent Immunotherapies……………………...…….18 

 1.7.2 Antigen-dependent Immunotherapies………………………...……20 

1.8 References……………………………………………………………..……..23 

 

 vi



2. SUPPRESSION OF AUTOIMMUNE DIABETES BY TREATMENT  
     WITH PEPTIDE-MHC CLASS II DIMERS…………………………………………36 

 2.1 Abstract…………………………………………………………………….…37 

 2.2 Introduction…………………………………………………………………..38 

 2.3 Results…………………………………………..……………………………41 

  The production and characterization of sIAg7-Ig dimers……….………...41 

  sIAg7-p217 and sIAg7-p286 but not sIAg7-mBDC dimers 
  prevent diabetes in NOD mice……………………………………....…...43 

  Protection mediated by sIAg7-p217 and sIAg7-p286 dimers 
  correlates with the induction of peptide-specific  

immunoregulatory Tr1 cells……………………………………….…..…44 

 2.4 Discussion……………………………………………………………..….…..46 

 2.5 Materials and Methods……………………………………………….………50 

 2.6 References……………………………………………………………...…….61 

3. SELECTIVE EXPANSION OF β CELL-SPECIFIC T CELL RECEPTORS  
     IN AUTOIMMUNE DIABETES…………………………………………………….66 

3.1 Abstract………………………………………………………..……………..67 

3.2 Introduction……………………………………………………..……………68 

3.3 Results…………………………………………………………..……………71 

 Detection of mBDC-specific CD4+ T cells in PBL  
and the islets……………………………………………………...………71 

The TCR Vβ repertoire of mBDC2.5-specific CD4+ T cells 
is skewed in the Islets…………………………………………….………72 

 3.4 Discussion……………………………………………………………..……..74 

 3.5 Materials and Methods……………………………………………..………...77 

 3.6 References……………………………………………………..……………..93 

4. FUTURE PERSPECTIVES...…………………………………………………………95 

 vii



4.1 sIAg7-Ig dimer administration: A potent strategy of  
      peptide vaccination……………………………..…………………………....96 

4.2 Characterization of autoreactive T cells in islet infiltrates…………..………97 

4.3 References…………………………………………………………………..100 

5. APPENDICES………………………………………………………………………..101 

 Appendix I………………………………………………………………………101 

 Appendix II……………………………………………………………………...132 

 
  

 viii



LIST OF TABLES 
 
 

    Page 
Table 3.1 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 1…………………………………………………………………83 

Table 3.2 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 2…………………………………………………………………84 

Table 3.3 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 3…………………………………………………………………85 

Table 3.4 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 4…………………………………………………………………86 

Table 3.5 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 5…………………………………………………………………87 

Table 3.6 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 6…………………………………………………………………88 

Table 3.7 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 7…………………………………………………………………89 

Table 3.8 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 8…………………………………………………………………90 

Table 3.9 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 9…………………………………………………………………91 

Table 3.10 CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets 
      from Mouse 10……………………………………………………………..…92 

 ix



LIST OF FIGURES 

    Page 

Figure 2.1 Characterization of sIAg7-Ig dimers……………………………………….…53 

Figure 2.2 T cell binding by sIAg7-Ig multimers is peptide specific…………………….54 

Figure 2.3 sIAg7-Ig dimers induce T cell proliferation in a peptide-specific manner…....55 

Figure 2.4 In vivo detection of sIAg7-Ig dimers…………………………………...……..56 

Figure 2.5 sIAg7-p217 and sIAg7-p286 but not sIAg7-mBDC dimers  
       prevent diabetes in NOD female mice……………………………….………57 

Figure 2.6 Treatment of sIAg7-p217 or sIAg7-p286 dimers 
       blocks the progression of insulitis………………………………….…..……58 

Figure 2.7 Protection mediated by sIAg7-p217 and sIAg7-p286 dimers correlates 
       with the induction of peptide-specific immunoregulatory Tr1 cells…………59 

Figure 2.8 sIAg7-p217 dimer treatment induces immuoregulatory T cells………………60 

Figure 3.1 g7-mBDC+ CD4+ T cells are increased in PBL and the islets 
       of NOD female mice…………………………………………………………79 

Figure 3.2 The Vβ repertoire of most islet infiltrating g7-mBDC+ CD4+ T cells 
       is skewed…………………………………………………………..…………80 
 

 

 x



LIST OF ABBREVIATIONS AND SYMBOLS 
 
 
AC  apoptotic cell 
 
Ag  antigen 
 
APC  antigen presenting cell 
 
CCR  chemokine receptor 
 
CDR3  complementarity determining region 3 
 
ConA  concavilin A 
 
CTE  cortical thymic epithelial cell 
 
CTL  cytotoxic T lymphocyte 
 
CTLA-4 cytotoxic T lymphocyte antigen 
 
DC  dendritic cell 
 
DN  double-negative 
 
DP  double-positive 
 
ELISA  enzyme-linked immunosorbent assay 
 
ELISPOT enzyme-linked immuospot asay 
 
FACS  fluorescent activated cell sorting 
 
FITC  fluorescein isothiocyanate 
 
FoxP3  Forkhead box P3 
 
GAD65 glutamic acid decarboxylase 65 
 
GITR  glucocorticoid-induced tumor necrosis factor receptor family-related gene  
 
HA  hemagglutinin 
 
HEL  hen egg lysozyme 
 
HLA  human leukocyte antigen 
 

 xi



HRP  horseradish peroxidase 
 
IA-2  insulinoma-associated protein 2 
 
Idd  insulin-dependent genes 
 
IDDM  Insulin dependent diabetes mellitus  
 
IFN  interferon 
 
Ig  immunoglobulin 
 
IGRP  islet-specific glucose-6-phosphatase catalytic subunit–related protein 
 
IL  interleukine  
 
InsB  insulin B 
 
i.v.  intravenous 
 
MAb  monoclonal antibody 
 
MHC  major histocompatibility complex 
 
MTE  medullary thymic epithelial cell 
 
MΦ  macrophage 
 
NK  natural killer 
 
NOD  non-obese diabetic 
 
Ova  ovalbumin 
 
PBL  peripheral blood lymphocyte 
 
PE  phyco-erythrin 
 
PerCP  peridinin-chlorophyll protein 
 
PLN  pancreatic lymph node 
 
RIP  rat insulin promoter 
 
RT-PCR reverse transcription-polymerase chain reaction 
 

 xii



SAV  streptavidin 
 
mBDC  mimetic BDC 
 
scid  severe-combined immunodeficient 
 
SP  single-positive  
 
T1D  type 1 diabetes 
 
TCR  t cell receptor 
 
TGF  transforming growth factor 
 
Tg  tansgenic 
 
TH1  type 1 T helper 
 
TH2  type 2 T helper 
 
TNF  tumor necrosis factor 
 
TRBV  T cell receptor beta chain variable gene 
 
Treg  regulatory T cell 
 
α  alpha 
 
β  beta 
 
γ  gamma 
 
µ  micro 

 xiii



CHAPTER 1 

 
INTRODUCTION 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.1 Type 1 Diabetes 

   Type 1 diabetes (T1D) or insulin dependent diabetes mellitus (IDDM) is a T cell-mediated 

autoimmune disease characterized by the destruction of the insulin producing β cells of the 

islets of Langerhans (Bach 1994; Tisch and McDevitt 1996). T1D affects mostly children and 

young adults, but can occur at any age. Currently, 0.3% of the population in the United States 

is affected by T1D with 30,000 new clinical cases diagnosed each year and importantly, the 

incidence of T1D is increasing in developed countries. Diabetic individuals suffer from long-

term complications including blindness, kidney failure and premature vascular disease 

leading to a reduced life expectancy by an average of 15 years. Although diabetes can be 

controlled by daily insulin injections, there is no effective therapy to prevent or “cure” the 

disease in humans. Accordingly, there is a pressing need to understand the pathogenic 

mechanisms of β cell autoimmunity in order to design effective and rational 

immunotherapies for the prevention and treatment of T1D. 

 

   T1D is a multi-factorial disease with both environmental and genetic factors contributing to 

the development and progression of β cell autoimmunity. Epidemiological studies have 

found that environmental factors such as diet, toxins, and viral and bacterial infections are 

associated with T1D (Hyoty and Taylor 2002). The most important evidence for 

environmental factors having a role in T1D comes from observations that 1) migrants from 

countries with low incidence rates are more susceptible to T1D in countries with high 

incidence rates, and 2) genetically identical twins are only 36% concordant in disease 

development. However, whether environmental insults play a role in the initiation and/or 

exacerbation of β cell autoimmunity is unknown. Transgenic (Tg) mouse models of T1D 
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provide evidence that viral infections may trigger β cell autoimmunity through for instance, 

molecular mimicry between viral and β cell proteins (Ohashi, Oehen et al. 1991; Faideau, 

Larger et al. 2005) or by direct β cell injury (Oldstone, Southern et al. 1984).  

 

   T1D is polygenic and more than 20 chromosal loci have been found to be associated with 

disease susceptibility in humans and the nonobese diabetic (NOD) mouse, a spontaneous 

model of T1D (see below) (Davies, Kawaguchi et al. 1994; Todd 1995; Concannon, Gogolin-

Ewens et al. 1998). The majority of the susceptibility genes within these loci have yet to be 

identified with the exception of the major histocompatibility complex (MHC) class II genes, 

the 5' flanking region of the insulin gene, and the CTLA4 gene (Rotwein, Chyn et al. 1981; 

Winter, Beppu et al. 1987; Owerbach and Gabbay 1993; Kristiansen, Larsen et al. 2000). The 

strongest genetic association with T1D susceptibility and resistance maps to the MHC class 

II region in both humans (IDDM1) and NOD mice (idd1). The HLA-DRB1*0301, 

HLADRB1*0401, HLA-DQB1*0302, and HLADQA1*0301 alleles  confer high-risk 

susceptibility in humans, whereas other alleles such as HLA-DRB1*0403, HLA-

DQB1*0602, and HLADQA1*0102 confer resistance to T1D (Wicker, Todd et al. 1995; 

Undlien, Lie et al. 2001). Currently, it is believed that MHC class II susceptibility alleles are 

necessary but not sufficient for the development of diabetes, and that the combined effects of 

other susceptibility genes influence the progression of β cell autoimmunity in the context of 

the appropriate environmental insult (Redondo, Rewers et al. 1999). 

  

 3



1.2 The NOD Mouse 

   NOD mice are considered to be the leading animal model for T1D. β cell autoimmunity 

spontaneously develops in NOD mice and several aspects of the diabetogenic response 

closely reflect the human disease. For instance, both NOD mice and humans share a number 

of T1D genetic susceptible loci, and both autoimmune responses are affected by 

environmental factors. In addition, multiple immune effector cells, such as CD4+ and CD8+ T 

cells, B cells, macrophages (MΦ), dendritic cells (DCs), and natural killer (NK) cells are 

involved in the respective disease processes (Miller, Appel et al. 1988; O'Reilly, Hutchings et 

al. 1991; Cooke, Phillips et al. 2001). Finally, several β cell autoantigens, such GAD and 

insulin, are targeted in both diabetic patients and NOD mice (Kent, Chen et al. 2005).  

 

   Islet infiltration or insulitis is initially detected in NOD mice at 3-4 weeks of age. The first 

step in insulitis referred to peri-insulitis, is characterized by pancreatic infiltrates surrounding 

an islet. Peri-insulitis then progresses to intra-insulitis in which cells invade the islets. MΦs 

and DCs are the first cells to traffick to the islets (Jansen, Homo-Delarche et al. 1994) and 

appear to play essential albeit ill-defined roles in the disease process (Jun, Santamaria et al. 

1999; Yoon, Yoon et al. 1999). Islet infiltrating antigen-presenting cells (APC) may mediate 

initial β cell injury through the secretion of proinflammatory cytokines such as interferon-γ 

(IFNγ), tumor necrosis factor-α (TNFα) and interleukin (IL)-1 and reactive oxygen species, 

in addition to processing and presenting β cell autoantigens to promote the subsequent 

recruitment of T cells (Chervonsky, Wang et al. 1997; Kagi, Odermatt et al. 1997; Suarez-

Pinzon, Mabley et al. 2001; Ogasawara, Hamerman et al. 2003). Insulitis continues over a 

period of weeks without significant β cell loss. However, at 12 weeks of age the insulitic 
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lesion undergoes a qualitative change and β cells are efficiently destroyed (Mathis, Vence et 

al. 2001). The events that promote this destructive phase of insulitis are poorly understood 

and may involve changes in the composition of DC subsets residing in the islets (Ludewig, 

Odermatt et al. 1998; Summers, Behme et al. 2003), affinity/avidity maturation of pathogenic 

T effectors (Amrani, Verdaguer et al. 2000), and a reduced frequency of immunoregulatory T 

cells (see below) (Gregori, Giarratana et al. 2003; Pop, Wong et al. 2005). Once 90% of β 

cell mass is lost, hyperglycemic blood levels are achieved and overt diabetes are established. 

Typically, diabetes is initially detected at 13-15 weeks of age in NOD mice. The frequency 

of diabetes differs markedly between NOD male and female mice. By 30 weeks of age 30% 

and 80% of NOD males and females develop diabetes, respectively. This sex bias in diabetes 

development appears due to the ill-defined effects of testosterone and estrogen on the 

immune system (Fox 1992; Bao, Yang et al. 2002).  

 

1.3 Properties of IAg7

   The IAg7 MHC class II molecule expressed by NOD mice plays a key role in the initiation 

and progression of T1D . The association of IAg7 with T1D is believed to be due to the 

molecule’s unique structure. The α chain of IAg7 is identical to that of the IAd α chain. 

However, the sequence of the IAg7 β chain is unique compared to all other mouse IAβ alleles 

(Acha-Orbea and McDevitt 1987). Specifically, histidine and serine residues are found at 

positions 56 and 57 in the IAg7β chain, respectively, whereas all other IAβ chain alleles 

contain proline and aspartic acid residues, respectively. Noteworthy is that  the human T1D 

susceptible DQ8β chain is also characterized by a non-aspartic residue at position 57 (Tisch 

and McDevitt 1996). 
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   A direct role for IAg7 in T1D has been confirmed by introduction of transgenes encoding 

various IA alleles, such as IAk (Akα/Akβ) or IAd (Adβ) that prevent or reduce the frequency 

of  diabetes in Tg NOD mice (Nishimoto, Kikutani et al. 1987; Lund, O'Reilly et al. 1990). 

Furthermore, substitution of the histidine and/or serine residues at β56 and β57 with a proline 

and aspartic acid, respectively, significantly reduces the frequency of insulitis and prevents 

diabetes in the corresponding lines of Tg NOD mice (Lund, O'Reilly et al. 1990; Quartey-

Papafio, Lund et al. 1995). Consequently, it has been proposed that the amino acid residues 

at β56 and β57 influence the peptide binding properties of IAg7 (Carrasco-Marin, Shimizu et 

al. 1996; Latek, Suri et al. 2000). Nevertheless, the precise mechanism(s) by which the β56 

and β57 amino acids govern peptide binding, and in turn the diabetogenic capacity of IAg7 

remains ill defined. Studies have suggested that IAg7 binds to peptides weakly, and/or the 

surface half-life of IAg7-peptide complexes are relatively short-lived (Carrasco-Marin, 

Shimizu et al. 1996). Either of these properties would be predicted to impact the repertoire 

and reactivity of β cell-specific T cells.  

 

1.4 T1D is a T cell-mediated Autoimmune Disease. 

   As alluded to above, T cells are the primary mediators of β cell destruction (Wicker, Miller 

et al. 1986; Bach 1994). B cells have also been implicated in T1D, and appear to primarily 

serve as APC (Baekkeskov, Nielsen et al. 1982; Baekkeskov, Aanstoot et al. 1990; Kaufman, 

Clare-Salzler et al. 1993). The first evidence indicating that T1D is a T cell-mediated 

autoimmune disease came from histological examination of pancreases from diabetic patients 

which demonstrated significant lymphocytic infiltration concomitant with the loss of β cell 
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mass (Gepts 1965). Subsequent work in prediabetic and diabetic NOD mice has also 

demonstrated T cell infiltrates in the islets. A direct role for T cells in β cell destruction was 

initially shown by depleting T cells via administration of anti-CD3 antibody, and preventing 

diabetes in NOD mice (Hayward and Shreiber 1989; Chatenoud, Thervet et al. 1992; 

Hayward and Shriber 1992; Chatenoud, Thervet et al. 1994). Furthermore, NOD mice 

deficient of T cells develop neither insulitis nor diabetes, and diabetes can be adoptively 

transferred in immunodeficient NOD.scid mice by T cells from diabetic NOD donors. A 

number of Tg mouse lines have been established expressing T cell receptors (TCR) specific 

for native or neo β cell autoantigens that further substantiate the critical role for T cells in the 

initiation and progression of β cell autoimmunity (Ohashi, Oehen et al. 1991; Oldstone, 

Nerenberg et al. 1991; Pankewycz, Strom et al. 1991; Katz, Wang et al. 1993) 

 

   Both CD4+ and CD8+ T cells are required to mediate efficient β cell destruction based on 

adoptive transfer studies using NOD.scid or irradiated NOD mice as recipients (Bendelac, 

Carnaud et al. 1987; Miller, Appel et al. 1988). For example, diabetes is transferred to 

NOD.scid recipients by a mixture of naïve CD4+ and CD8+ T cells prepared from the spleens 

of diabetic NOD mice, but not by either T cell subset alone (Bendelac, Carnaud et al. 1987; 

Miller, Appel et al. 1988). These pathogenic β cell-specific CD4+ and CD8+ T cells typically 

exhibit a type 1 phenotype characterized by the production of IFNγ and TNFα (Healey, 

Ozegbe et al. 1995; Katz, Benoist et al. 1995; Liblau, Singer et al. 1995).  

 

   The relative contribution of CD4+ and CD8+ T cells in the diabetogenic response continues 

to be a controversial issue. A number of studies suggest that CD4+ T cells are necessary for 
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the early and late stages of β cell autoimmunity. Various groups have shown that activated 

CD4+ T cells alone transfer diabetes to irradiated NOD or NOD.scid recipients (Katz, Wang 

et al. 1993). Furthermore, depletion of CD4+ T cells in NOD mice via anti-CD4 antibody 

treatment at early and late preclinical stages of T1D prevents diabetes (Shizuru, Taylor-

Edwards et al. 1988). Moreover, NOD mice lacking expression of the MHC class II 

transcriptional regulator CIITA and which have few CD4+ T cells, remain diabetes-free 

although insulitis is detected (Wong, Visintin et al. 1998). The latter observation is important 

since NOD mice depleted of CD8+ T cells by anti-CD8 antibody treatment prior to the 

initiation of β cell autoimmunity, remain diabetes-free but also fail to develop insulitis 

(Wang, Gonzalez et al. 1996). Prevention of diabetes, however, is only detected when young 

but not older NOD mice (>5 weeks of age) are treated with anti-CD8 antibody (Wang, 

Gonzalez et al. 1996). Together, these findings suggest that CD8+ T cells play an important 

role in the initiation of β cell autoimmunity. Further support for this notion comes from work 

with NOD mice lacking expression of the β2 microglobulin (β2m) (NOD. β2mnull) gene and 

which have significantly reduced numbers of CD8+ T cells. NOD. β2mnull mice exhibit no 

insulitis and consequently fail to develop diabetes (Serreze, Leiter et al. 1994; Wicker, Leiter 

et al. 1994). Based on these observations a model has been proposed in which CD8+ T cells 

are required to promote early β cell injury, and CD4+ T cells amplify the response and drive 

autoimmunity through the destructive phase of the disease process (Wang, Gonzalez et al. 

1996). However, this model is too simplistic. For instance, reports by the Santamaria group 

demonstrate that detection of increasing numbers of CD8+ T cells specific for islet-specific 

glucose-6-phosphatase catalytic subunit–related protein (IGRP)206-214 in the peripheral blood 

of euglycemic adult NOD mice coincides with the progression to diabetes (Trudeau, Kelly-
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Smith et al. 2003). This result would argue that (at least) IGRP-specific CD8+ T cells are also 

involved in the late stages of β cell destruction. Therefore, β cell antigen specificity and 

affinity/avidity of the clonotypic TCR may be additional parameters determining the relative 

role of CD4+ and CD8+ T cells in the disease process.   

 

1.5 Multiple β cell Autoantigens are Targeted in T1D 

   Given the overall importance of T cells in the pathogenesis of T1D, a large body of work 

has been devoted to identifying the β cell antigens that drive the autoimmune T cell 

responses in NOD mice and diabetic patients. A number of β cell autoantigens are targeted 

throughout the diabetogenic response, but only a few have been identified. The autoantigens 

targeted in T1D can be distinguished by tissue distribution, namely: 1) β-cell-specific 

antigens such as insulin, insulin derivatives, and IGRP; 2) neuroendocrine antigens such as 

carboxypeptidase H, insulinoma-associated antigen (IA-2), GAD, and carboxypeptidase E; 

and 3) those that are expressed ubiquitously such as heat shock protein 60 (HSP60) 

(Anderson and Bluestone 2005). Among these autoantigens, insulin, GAD and IGRP appear 

to have significant roles in disease initiation and progression. BDC2.5 clonotypic CD4+ T 

cells also appear to have an important role in the diabetogenic response of NOD mice, which 

will be discussed in Chapter 3 (Candeias, Katz et al. 1991; Katz, Wang et al. 1993).  

 

   Insulin is abundantly expressed by β cells and processed from a precursor molecule, 

preproinsulin. Mice, unlike humans, express two isoforms of insulin, insulin 1 and 2. In mice, 

proinsulin 1 is expressed mainly in the pancreas, whereas proinsulin 2 is expressed in both 

the pancreas and thymus. Thymic expression of proinsulin 2 is believed to be crucial for 
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inducing self-tolerance to insulin. Compelling evidence suggests that insulin is a major target 

of pathogenic T cells in NOD mice (French, Allison et al. 1997; Eisenbarth, Moriyama et al. 

2002). For instance, CD4+ T cells isolated from islet infiltrates of young NOD mice display 

high reactivity to insulin, with more than 90% recognizing the insulin B chain derived 

peptide 9 to 23 (InsB9−23) (Wegmann, Norbury-Glaser et al. 1994). Furthermore, InsB9-23-

specific CD4+ T cell lines or clones induce diabetes upon transfer into young NOD or 

NOD.scid mice (Wegmann, Norbury-Glaser et al. 1994; Daniel, Gill et al. 1995). Insulin-

specific CD8+ T cells that are H2Kd-restricted and recognize an InsB15-23 epitope have also 

been identified in islet infiltrates. Recently, Nakayama et al. demonstrated that insulitis and 

diabetes are prevented in Tg NOD mice expressing a transgene encoding proinsulin 2 in 

which the IAg7 and H2Kd epitopes had been mutated (Nakayama, Abiru et al. 2005). These 

results argue that insulin is a key causative self-antigen of T1D in NOD mice. 

 

   Two isoforms of GAD exist, namely GAD65 and GAD67, which catalyze the production 

of the neurotransmitter γ amino butyric acid in the central nerve system (Erlander, 

Tillakaratne et al. 1991; Martin and Rimvall 1993). Both isoforms of GAD are expressed in β 

cells, the thymus and brain (Faulkner-Jones, Cram et al. 1993; Kim, Richter et al. 1993). The 

role of GAD in the pancreas is unclear, and may be involved in regulating the response of β 

cells to glucose. GAD65 is an important autoantigen implicated in the pathogenesis of T1D. 

The earliest autoantibodies found in pre-diabetic patients are GAD65-specific (Verge, 

Gianani et al. 1996) and presentation of these autoantibodies indicate a strong likelihood for 

the development of diabetes (Baekkeskov, Aanstoot et al. 1990). In NOD mice, the earliest 

detectable response to islet extracts coincides with detection of GAD65- and GAD67-specific 
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T cell reactivity (Kaufman, Clare-Salzler et al. 1993; Tisch, Yang et al. 1993). Furthermore, 

immunization with plasmid DNA (pDNA) encoding GAD65 exacerbates the onset of 

diabetes in NOD mice, further suggesting a pathogenic role in T1D (Tisch, Wang et al. 2001).  

 

   IGRP-specific CD8+ T cells are detected in the earliest insulitic lesions, and up to 30% of 

islet infiltrating CD8+ T cells in adult NOD female mice are specific for IGRP206-214 or the 

corresponding mimetic peptide NRP-V7 (Anderson, Park et al. 1999). Interestingly, the 

majority of IGRP-specific CD8+ T cells are characterized by a recurrent amino acid sequence 

motif in the complementarity determining region 3 (CDR3) of the TCR α chain, with a 

prevalence of Vα17 joined to the Jα42 segment (Santamaria, Utsugi et al. 1995). Several 

lines of evidence suggest that IGRP-specific CD8+ T cells play a critical role in the 

diabetogenic response of NOD mice. First, the frequency and TCR avidity of IGRP-specific 

CD8+ T cells increase in the islet infiltrates during disease progression (Amrani, Verdaguer et 

al. 2000; Lieberman, Evans et al. 2003). Second, diabetes onset is accelerated in NOD mice 

that express a transgenic IGRP-specific TCR (Verdaguer, Yoon et al. 1996). Finally, 

depletion of IGRP-specific CD8+ T cells via treatment with the mimetic peptide NRP-A7 

protects NOD mice from diabetes (Han, Serra et al. 2005).  

 

1.6 Multiple Defects Account for the Breakdown of Self-Tolerance to β cells.  

   Induction of self–tolerance is essential for regulating the development, activation and 

expansion of autoreactive lymphocytes. A number of mechanisms exist to establish tolerance 

to self antigens, including central deletion, peripheral clonal anergy and/or deletion and 

active immunoregulation (Wraith, Nicolson et al. 2004; Gonzalez-Rey, Chorny et al. 2007). 
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Studies in NOD mice suggest that the development and expansion of pathogenic β cell-

specific T cells are largely due to defective thymic selection, and aberrant peripheral 

immunoregulation (Thomas-Vaslin, Damotte et al. 1997; Kishimoto and Sprent 2001; 

Anderson and Bluestone 2005).  

 

1.6.1 Thymic Selection.  

   Positive selection of thymocytes occurs in the cortex of the thymus. Double-positive (DP) 

CD4+CD8+ thymocytes bearing newly rearranged TCR interact with self-peptide/MHC 

complexes presented by cortical thymic epithelial cells (CTE). This interaction can lead to 

transduction of a survival signal, thereby ensuring that the TCR expressed by thymocytes is 

“restricted” to self-MHC (Liu 2006). On the other hand, DP thymocytes expressing TCR that 

fail to recognize a self-peptide/MHC complex die by neglect (Nossal 1994). DP thymocytes 

that are positively selected traffick to the corticomedullary junction and medulla to undergo 

negative selection. The majority of DP thymocytes with autoreactive potential are eliminated 

by negative selection  (Anderson, Partington et al. 1998). DP thymocytes are clonally deleted 

which express TCR that bind with high affinity/avidity to peptide/MHC complexes on the 

surface of medullary thymic epithelial (MTE) cells and/or thymic DC (Shortman, Vremec et 

al. 1998). The efficiency of MTE to mediate negative selection is partly regulated by the 

transcription factor Aire, which drives expression of a large number of self-antigens normally 

found in peripheral tissues (Kyewski, Derbinski et al. 2002; Anderson, Venanzi et al. 2005). 

 

   Properties of the IAg7 molecule and characteristics intrinsic to NOD thymocytes are 

believed to influence thymic selection and the development of autoreactive β cell-specific T 
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cells in NOD mice. For instance, Ridgway et al. have proposed that the relatively short half-

life of peptide/IAg7 complexes reduces the “stimulatory” capacity of CTE, therefore resulting 

in positive selection skewed towards thymocytes expressing TCR with increased 

affinity/avidity (Ridgway, Fasso et al. 1999). In the periphery, these T cells would be 

expected to have an increased autoreactive potential. Poor peptide binding by and/or a 

decreased half-life of peptide/IAg7 complexes would also be expected to diminish the 

efficacy of thymic negative selection, and result in increased development of autoreactive T 

cells (Carrasco-Marin, Shimizu et al. 1996). Recent work by the Mathis and Benoist group 

has demonstrated that DP thymocytes from NOD mice exhibit a decreased sensitivity to the 

apoptotic-inducing events promoted by negative selection (Anderson, Venanzi et al. 2005), 

which would further promote the development of T cells with a pathogenic potential. 

Interestingly, CTE of NOD mice have been reported to be inefficient in inducing the 

development of natural CD4+CD25+ regulatory T cells (Treg) (Thomas-Vaslin et al., 1997). 

CD4+CD25+ Treg play an important role in preventing the expansion and/or differentiation of 

autoreactive T cells in the periphery (Sakaguchi 2000) (see below). Therefore, defective 

thymic selection in NOD mice may both enhance the development of autoreactive T cells, 

and limit the production of natural CD4+CD25+ Treg. 

 

1.6.2 Immunoregulation  

   Negative selection of thymocytes is not absolute and mature T cells with autoreactive 

potential reside in the periphery. Nevertheless, activation, expansion and/or effector cell 

differentiation of these autoreactive T cells are normally held “in check” through several 

mechanisms that include induction of clonal anergy and/or deletion (Wraith, Nicolson et al. 
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2004; Gonzalez-Rey, Chorny et al. 2007). The most dominant mechanism by which self-

tolerance within the T cell compartment is maintained, however, is through the function of 

immunoregulatory T cells. Until recently immunoregulation of T cells was considered in 

terms of a functional balance between CD4+ T helper (Th)1 and Th2 cells (Abbas, Murphy et 

al. 1996; Coffman and Reiner 1999). Th1 cells are generally associated with pro-

inflammatory/cell-mediated responses, and are characterized by the secretion of IFNγ (Scott 

1993). As mentioned above, pathogenic β cell-specific CD4+ T effectors exhibit a Th1 

phenotype (Katz, Benoist et al. 1995; Haskins and Wegmann 1996). Th2 cells typically 

mediate humoral immunity, are characterized by the production of IL-4, and in T1D exhibit 

an immunoregulatory function (Stevens, Bossie et al. 1988; Kopf, Le Gros et al. 1993). IFNγ 

and IL-4 have reciprocal down-regulatory effects on the differentiation of naïve Th cells into 

Th1 or Th2 cells. For example, IFNγ aids in the differentiation of Th1 cells, and blocks Th2 

cell development (Mosmann, Cherwinski et al. 1986). In contrast, IL-4 promotes and inhibits 

the differentiation of Th2 and Th1 cells, respectively (Abbas, Murphy et al. 1996).  

 

   The current view of immunoregulation and self-tolerance is considerably more complex. 

Several subsets of immunoregulatory T cells with distinct phenotypes and mechanisms of 

action have been identified (Ramsdell 2003). These subsets include: i) Th3 cells, which 

primarily secrete IL-4 and transforming growth factor-β (TGFβ) and are induced via 

mechanisms of oral tolerance (Chen, Kuchroo et al. 1994), ii) Tr1 cells, which secrete high 

levels of IL-10 (Groux, O'Garra et al. 1997), and iii) natural and adaptive CD4+CD25+ Treg 

which are defined by the expression of the transcription factor Forkhead box P3 (FoxP3) and 

exhibit suppressor function mediated by cell-cell contact and secretion of TGFβ (Hori, 
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Nomura et al. 2003). More recently, CD8+ T cells exhibiting immunoregulatory function 

have also been identified (Chang, Ciubotariu et al. 2002; Hu, Ikizawa et al. 2004). For the 

purpose of this thesis and in view of their potent immunoregulatory function, the following 

discussion will focus primarily on Tr1 cells and CD4+CD25+ Treg. Discussion of other 

subsets of immunoregulatory T cells can be obtained in the following reviews (Bluestone and 

Boehmer 2006; Weaver, Harrington et al. 2006).  

 

   Similar to Th1 and Th2 cells, Tr1 cells differentiate from naïve CD4+ T precursors. IL-10 is 

critical for Tr1 cell differentiation. Tr1 cells are characterized by the secretion of high levels 

of IL-10, low amounts of IL-5, IFNγ, and no IL-2 and IL-4 production (Groux, O'Garra et al. 

1997). The surface phenotype of Tr1 cells is similar to that of naïve T cells with regard to 

expression levels of CD40L, CD69, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4) 

(Bacchetta, Sartirana et al. 2002). The observation that Tr1 cells express CCR5 and T1-ST2, 

which are surface markers expressed preferentially by Th1 and Th2 cells, respectively, 

suggests that Tr1 cells are a phenotypically distinct subset of CD4+ T cells (McGuirk, 

McCann et al. 2002). Functional studies have shown that upon antigen stimulation, Tr1 cells 

promote bystander suppression mediated by the local release of IL-10.  IL-10 has effects on 

both APC and T cells (Groux, O'Garra et al. 1997). IL-10 blocks the effector function of 

APC by inhibiting upregulation of costimulatory molecules and pro-inflammatory cytokine 

secretion, and directly inhibits IL-2 and TNFα production by CD4+ T cells (Conti, Kempuraj 

et al. 2003). Numerous studies have demonstrated that Tr1 cells prevent the development of 

type 1-mediated autoimmune and inflammatory bowel diseases (Roncarolo, Bacchetta et al. 

2001; O'Garra, Vieira et al. 2004). 
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   Natural FoxP3-expressing CD4+CD25+ Treg are considered to be the most potent subset of 

immunoregulatory T cells, and as such play a pivotal role in establishing and maintaining 

self-tolerance (Hori, Nomura et al. 2003). Indeed, mice lacking natural CD4+CD25+ Treg 

develop a highly aggressive, systemic form of autoimmunity (Chatila, Blaeser et al. 2000; 

Bennett, Christie et al. 2001; Brunkow, Jeffery et al. 2001). Unlike Th2 or Tr1 cells which 

differentiate into immunoregulatory T effector cells upon antigen stimulation in the periphery, 

the suppressor function of natural CD4+CD25+ Treg is established in the thymus upon 

recognition of self-peptide/MHC complexes. Expression of FoxP3 is essential for the 

differentiation of CD4+CD25+ Treg. For instance, retroviral transduction of a FoxP3 

transgene into naïve CD4+CD25- T cells is sufficient to induce differentiation of bona fide 

CD4+CD25+ Treg (Hori, Nomura et al. 2003). Furthermore, humans and mice lacking 

FoxP3-expression fail to develop natural CD4+CD25+ Treg (Khattri, Cox et al. 2003; 

Fontenot, Rasmussen et al. 2005; Sakaguchi 2005). Natural CD4+CD25+ Treg exhibit an 

anergic-like phenotype in vitro but proliferate extensively in vivo (Bluestone and Boehmer 

2006), and constitutively express CTLA-4 and the glucocorticoid-induced TNF receptor 

(GITR) among other surface molecules. Natural CD4+CD25+ Treg have been shown to 

mediate suppression in vitro by a cell-cell contact mechanism. However, the mechanism by 

which natural CD4+CD25+ Treg elicit suppression in vivo is a matter of debate, and may also 

involve the production of TGFβ. This controversy may partly be explained by the presence 

of “adaptive” FoxP3-expressing CD4+CD25+ Treg, which differentiate in the periphery from 

naïve CD4+ T precursors upon antigen stimulation and in the presence of TGFβ (Chen, Jin et 

al. 2003; Fantini, Becker et al. 2004). Although phenotypically identical, the effector 
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function of adaptive versus natural CD4+CD25+ Treg may nevertheless differ. Natural 

CD4+CD25+ Treg can directly inhibit CD4+ and CD8+ T cells regardless of the activation, 

proliferative and effector status of the T cells (Sakaguchi 2000; Shevach 2002). 

Immunoregulation of T cells by natural CD4+CD25+ Treg can also be achieved indirectly by 

the latter’s modulatory effects on DC. For example, DC co-cultured with natural CD4+CD25+ 

Treg produce indoleamine 2,3-dioxygenase (IDO) which catalyzes the degradation of 

tryptophans and in turn promotes T cell apoptosis (Fallarino, Grohmann et al. 2003). 

 

   The breakdown of T cell immunoregulation is believed to be a key factor in driving β cell 

autoimmunity in NOD mice and diabetic individuals. In NOD female mice, the frequency of 

β cell-specific Th2 and Tr1 cells is reduced relative to NOD males, which develop diabetes 

less frequently (Haskins and Wegmann 1996). Notably, work by Peakman and colleagues has 

shown that in individuals that are at high risk of developing diabetes, the frequency of 

proinsulin- and IA-2-specific type 1 T effectors is increased, and the percentage of Tr1 cells 

markedly decreased compared to HLA-matched healthy control subjects (Peakman, Stevens 

et al. 1999). Furthermore, the frequency and function of natural FoxP3-expressing 

CD4+CD25+ Treg progressively decline with age in NOD female but not male mice (Pop, 

Wong et al. 2005). In diabetic subjects, FoxP3-expressing CD4+CD25+ Treg exhibit a 

reduced suppressor activity in vitro (Gregori, Giarratana et al. 2003). Finally, adoptive 

transfer of Th2 cells, Tr1 cells or CD4+CD25+ Treg into NOD female mice can effectively 

prevent the development of diabetes, providing additional evidence that β cell autoimmunity 

progresses due to insufficient T cell immunoregulation (Healey, Ozegbe et al. 1995; Chen, 

Lee et al. 2003; Green, Gorelik et al. 2003).  
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1.7 Immunotherapy of T1D 

   A number of different strategies of immunotherapy have been tested experimentally and in 

the clinic to prevent and/or suppress β cell autoimmunity. These immunotherapies can be 

generally categorized as antigen-independent versus antigen-dependent strategies. Antigen-

independent strategies typically have the benefit of targeting large numbers of autoreactive T 

cells that are found at late preclinical T1D or once diabetes has been established. However, a 

major drawback of this approach is that both autoreactive and nonautoreactive T cells are 

affected, therefore raising the possibility that a treated subject may be immunocompromised. 

“Vaccinating” with a β cell autoantigen provides the means to selectively target disease 

relevant T cells, leaving the nonautoimmune component of the immune system unaffected. 

However, the efficacy of antigen-specific immunotherapies tends wane at late stages of 

disease progression due to the high numbers of established pathogenic T effectors, and the 

relatively low frequency of immunoregulatory T cells. In general, the most effective antigen-

independent or –dependent immunotherapies at late stages of β cell autoimmunity promote 

the development of immunoregulatory T cells. As alluded to above, immunoregulatory T 

cells when found at a sufficient frequency are highly effective at inhibiting the differentiation 

of type 1 T effectors, in addition to suppressing the activity of established pathogenic T cells 

depending on the subset of immunoregulatory T cell.  

 

1.7.1 Antigen-independent Immunotherapies.  

   One of the first approaches tested in the clinic to target T cells and treat T1D was the 

administration of cyclosporine A to recent onset diabetic children (Stiller, Laupacis et al. 

 18



1983; Stiller, Dupre et al. 1984). Remission of diabetes was observed but the treatment had to 

be discontinued due to adverse effects, and unfortunately both T cells and diabetes 

reappeared. This study provided proof of principle that targeting T cells in the clinic can be 

effective for the treatment of T1D, and that establishing self-tolerance (e.g. 

immunoregulation) is essential for suppressing β cell autoimmunity long-term. A variety of 

approaches have since been investigated attempting to modulate the activity of β cell-specific 

T cells. Continuous administration of anti-inflammatory cytokines such as IL-4, IL-10, IL-13 

and TGFβ to young NOD mice prevents diabetes (Cameron, Arreaza et al. 1997; Nitta, 

Tashiro et al. 1998; Piccirillo, Chang et al. 1998; Zaccone, Phillips et al. 1999). However, the 

efficacy of cytokine immunotherapy is significantly diminished when initiated after β cell 

autoimmunity is well established. Noteworthy, is that treatment with a short course of IL-10 

and rapamycin protects islet grafts in diabetic NOD recipients via induction of Tr1 cells 

(Battaglia, Stabilini et al. 2006). T cell-depleting antibodies specific for CD4, CD8, and 

CD25 have been used in NOD mice and Tg models of T1D to successfully prevent or induce 

remission of diabetes (Wang, Hao et al. 1987; Shizuru, Taylor-Edwards et al. 1988; 

Lenschow, Ho et al. 1995; Wang, Gonzalez et al. 1996; Balasa, Krahl et al. 1997; Kuttler, 

Rosing et al. 1999). Despite their efficacy, the depleting action of these antibodies establishes 

a state of immunosuppression, and protection is only maintained by continuous treatment 

with the antibodies. Nevertheless, an approach based on low dose administration of an anti-

CD3 (Fab’)2  antibody has proven to be highly effective at inducing remission in recent onset 

diabetic NOD mice. At effective doses, T cell depletion is minimal and long-term protection 

is mediated by adaptive FoxP3-expressing CD4+CD25+ Treg that express TGFβ (Chatenoud, 

2005) . A clinical Phase II trial has shown that a short course of anti-CD3 antibody treatment 
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protects β cell mass in recent onset diabetics (Herold, Bluestone et al. 1992; Chatenoud 2005; 

Herold, Gitelman et al. 2005; Schwartz 2005; Li, Davis et al. 2006). The protective effect, 

however, is only transient and there are concerns regarding adverse cytokine release due to T 

cell activation, and recurrent viral infections due to transient depletion of T cells (Xu, Wang 

et al. 2005; Chatenoud 2006).   

  

1.7.2 Antigen-dependent Immunotherapies.  

   Treatment with self-antigen can affect autoreactive T cells in two mutually nonexclusive 

ways. First, T cells may undergo clonal anergy and/or deletion, which is typically seen when 

soluble antigen is administered at high doses (Liblau, Pearson et al. 1994; Liblau, Tisch et al. 

1996). This approach is effective if there is a single or dominant autoantigen as in the case of 

myasthenia gravis (Drachman, Okumura et al. 1996; Barchan, Souroujon et al. 1999). 

However, inducing anergy/deletion in a select set of clonotypes is only marginally effective 

when multiple autoantigens are targeted, as seen in the late stages of T1D (Sohnlein, Muller 

et al. 2000; Tian, Gregori et al. 2001). The second possible outcome of self-antigen 

vaccination is the induction/expansion of immunoregulatory T cells. This outcome is 

appealing since once established, immunoregulatory T cells traffick to the site of 

inflammation and suppress the differentiation and/or activity of pathogenic T effectors 

independent of antigen-specificity. Indeed, administration of whole GAD65 or a pool of 

GAD65-specific peptides (e.g. p217-236, p290-309) induces GAD65-specific 

immunoregulatory CD4+ T cells in 12 week-old NOD female mice, which traffick to the 

islets and draining pancreatic lymph nodes (PLN) to suppress β cell autoimmunity and 

prevent diabetes (Tisch, Liblau et al. 1998; Tisch, Wang et al. 1999). Importantly, the 
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extracellular milieu established by GAD65-specific immunoregulatory T cells also promotes 

the development of additional immunoregulatory T cells with distinct β cell-specificities to 

amplify the protective effect (Kaufman, Clare-Salzler et al. 1993; Tisch, Yang et al. 1993; 

Elliott, Qin et al. 1994). 

 

   There are at least two key issues that need to be addressed when developing an antigen-

based approach to induce β cell-specific immunoregulatory T cells. First, the identity of the β 

cell antigen used for vaccination is critical. Preventing the initiation of the diabetogenic 

response in young NOD mice has been readily achieved by treatment with several β cell 

autoantigens such as insulin, GAD65, and HSP60 (Kaufman, Clare-Salzler et al. 1993; Tisch, 

Yang et al. 1993; Daniel and Wegmann 1996; Cohen 1997; Elias, Meilin et al. 1997). 

However, in older NOD mice in which β cell autoimmunity is ongoing, only administration 

of intact GAD65 or derived peptides has consistently induced a sufficient frequency of 

immunoregulatory T cells to prevent diabetes (Kaufman, Clare-Salzler et al. 1993; Tian, 

Clare-Salzler et al. 1996; Tisch, Liblau et al. 1998; Tisch, Wang et al. 1999). The efficacy of 

GAD65 treatment may partly be explained by a significant number of naïve GAD65-specific 

T precursors present at the late stages of T1D, which in turn can differentiate into 

immunoregulatory T effectors. The second key issue is how immunoregulatory versus 

pathogenic T effectors can be selectively induced/expanded by self-antigen vaccination. The 

use of adjuvants such as complete Freund’s adjuvant or alum have proven to be relatively 

effective in inducing antigen-specific Th2 and Tr1-like cells (Sadelain, Qin et al. 1990; Qin, 

Sadelain et al. 1993). Furthermore, co-administration of antigen and anti-inflammatory 

cytokines such as IL-4 and/or IL-10 provides the means to preferentially induce specific 
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subsets of immunoregulatory T cells (Tisch, Wang et al. 2001; Weaver, Liu et al. 2001; Pop, 

Wong et al. 2007). Properties intrinsic to a given approach of self-antigen vaccination may 

also skew towards the induction/expansion of immunoregulatory T cells. One such example 

is the use of soluble MHC class II molecules containing a covalently linked peptide (Casares, 

Bona et al. 1997; Casares, Zong et al. 1999; Appel, Seth et al. 2001; Zuo, Cullen et al. 2002). 

These fusion molecules consist of the extracellular domains of an MHC class II molecule that 

is supported by an immunoglobulin (Ig) scaffold. Remission of diabetes has been reported in 

a TCR Tg mouse model following treatment with a peptide-MHC class II-Ig fusion molecule 

(Casares, Hurtado et al. 2002; Masteller, Warner et al. 2003). Notably, protection 

corresponds with clonal anergy/deletion of pathogenic T effectors, and induction of IL-10 

producing Tr1 cells (Casares, Hurtado et al. 2002; Masteller, Warner et al. 2003).  
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2.1 Abstract 

 

   Type 1 diabetes (T1D) is an autoimmune disease mediated by pathogenic β cell-specific T 

cells. The use of antigen-specific based immunotherapy is one strategy to selectively target β 

cell-specific T cells, leaving the remainder of the immune system intact. Administration of 

peptides derived from β cell autoantigens such as GAD65 prevents T1D in nonobese diabetic 

(NOD) mice. However, as β cell autoimmunity progresses, the conditions for peptide 

treatment to suppress T1D become highly stringent. To enhance the efficacy of peptide 

treatment, soluble (s) IAg7- immunoglobulin (Ig) dimers covalently linked to GAD65 

peptides (p217-236, p286-309) or the mimetic BDC2.5 epitope (mBDC) were tested. Twelve 

week-old NOD female mice with established β cell autoimmunity received a short course of 

sIAg7-Ig dimers intravenously (i.v.). Treatment with sIAg7-mBDC expanded mBDC-specific 

CD4+ Th1 cells, and NOD mice continued to develop diabetes. In marked contrast, the 

majority of NOD mice treated with sIAg7-p217 or sIAg7-p286 remained diabetes-free. 

Protection correlated with an increased frequency of IL-10 secreting immunoregulatory 

CD4+ T cells that delayed diabetes in a co-adoptive transfer model. These results demonstrate 

that treatment with a short-course of sIAg7-GAD65 peptide dimers is an effective approach to 

suppress T1D.   
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2.2 Introduction 

 

   T1D is an autoimmune disease characterized by the T cell-mediated destruction of insulin-

producing β cells (Tisch and McDevitt 1996). Studies in the NOD mouse, a spontaneous 

model of T1D, suggest that the diabetogenic response progresses in discrete stages 

culminating in massive β cell destruction. Infiltration of the islets is first detected in NOD 

mice at 3 weeks of age. Insulitis progresses for a number of weeks with only a minimal effect 

on β cell mass. However, at 12 weeks of age the destructive phase of insulitis is initiated. 

During this stage β cells are readily destroyed leading to hyperglycemic blood levels, and the 

development of overt diabetes. β cell destruction is driven by CD4+ and CD8+ T cells 

recognizing multiple autoantigens, of which only a few have been identified (Anderson and 

Bluestone 2005). The latter group includes insulin, glutamic acid decarboxylase 65 (GAD65), 

and insulinoma-associated antigen (IA-2) (Tisch, Yang et al. 1993; Wegmann, Norbury-

Glaser et al. 1994; Verge, Gianani et al. 1996; Hawa, Rowe et al. 1997; Eisenbarth, 

Moriyama et al. 2002). CD4+ T cells expressing the diabetogenic BDC2.5 clonotypic T cell 

receptor (TCR) and recognizing a mimetic peptide (mBDC), represent an unidentified β cell 

specificity that also has a key role in the pathogenesis of T1D (Katz, Wang et al. 1993; 

Bergman and Haskins 1994; Kurrer, Pakala et al. 1997; Yoshida, Martin et al. 2002).  

   To date, a considerable effort has been devoted to developing therapeutic approaches to 

target T cells and prevent and/or treat T1D. Strategies based on administration of 

immunosuppressant drugs, anti-inflammatory cytokines, and antibodies specific for T cells 
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have been successfully used in experimental models, and in some instances the clinic 

(Shizuru, Taylor-Edwards et al. 1988; Yang, Tisch et al. 1994; Lenschow, Ho et al. 1995; 

Wang, Gonzalez et al. 1996; Balasa, Krahl et al. 1997; Cameron, Arreaza et al. 1997; Nitta, 

Tashiro et al. 1998; Piccirillo, Chang et al. 1998; Kuttler, Rosing et al. 1999; Nicoletti, 

Zaccone et al. 1999; Zaccone, Phillips et al. 1999; Chatenoud 2005). However, these 

approaches fail to discriminate between autoreactive and nonautoreactive T cells, and as a 

result induce varying degrees of immunosuppression.  

   Antigen-specific immunotherapies offer an approach to selectively target autoreactive T 

cells, leaving the remainder of the immune system intact (Bach 2001). Administration of 

insulin, insulin B chain or GAD65 to young NOD mice effectively prevents insulitis and the 

development of T1D (Daniel and Wegmann 1996; Tian, Atkinson et al. 1996; Tian, Clare-

Salzler et al. 1996; Maron, Melican et al. 1999; Tisch, Wang et al. 1999). However, at late 

preclinical stages of T1D conditions for antigen-specific immunotherapy become far more 

stringent due to the high number of pathogenic T effectors. For instance, β cell autoimmunity 

is readily prevented in young NOD female mice with a single injection of GAD65-specific 

peptides p217-236 (p217) or p286-309 (p286) prepared in incomplete Freund’s adjuvant 

(IFA) (Tisch, Wang et al. 1999). However, once β cell autoimmunity is  established (e.g. 12 

week old NOD female mice), diabetes can be prevented only after multiple injections of high 

doses of a mixture of GAD65 p217 and p286 in IFA (Tisch, Wang et al. 1999). Protection 

corresponds with clonal deletion of GAD65-specific Th1 effectors, and the induction of IL-4 

secreting peptide-specific CD4+ Th2 cells.  
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   Based on our findings and that of others, peptide immunotherapy can be an effective 

approach to modulate the activity of β cell-specific T cells (Chao and McDevitt 1997; 

Zechel, Elliott et al. 1998; Tisch, Wang et al. 1999). Nevertheless, several parameters need to 

be considered for successful clinical application of this approach including peptide dose and 

the route of administration, the peptide binding affinity to MHC molecules, and in vivo 

peptide stability. For instance, peptides are rapidly cleared from the circulation and 

inefficiently presented by APC in vivo, which limit therapeutic efficacy (Babbitt, Matsueda et 

al. 1986; Muller, Adorini et al. 1990; Ishioka, Adorini et al. 1994). One strategy to overcome 

these limitations has been the engineering of soluble peptide-MHC class II-Ig fusion 

proteins. Such recombinants consist of the extracellular domains of the MHC class II α and β 

chains supported by an Ig scaffold, which in turn enhances the stability of the fusion 

molecule in vivo (Casares, Bona et al. 1997; Casares, Zong et al. 1999; Appel, Seth et al. 

2001; Zuo, Cullen et al. 2002). In addition, a peptide is tethered to the MHC class II β chain 

ensuring that each bivalent fusion molecule presents a peptide. Soluble bivalent peptide-

MHC-Ig molecules stimulate T cells by delivering a signal through TCR (Hamad, O'Herrin et 

al. 1998; Casares, Zong et al. 1999; Appel, Gauthier et al. 2000; Cochran, Cameron et al. 

2000). Recently, peptide-MHC-Ig molecules have been reported to: i) ameliorate collagen-

induced arthritis in mice by induction of antigen-specific hyporesponsiveness (Zuo, Cullen et 

al. 2002), and ii) promote remission of diabetes in a transgenic (Tg) mouse model of T1D via 

induction of immunoregulatory Tr1 cells (Casares, Hurtado et al. 2002). With this in mind, 

the current study was initiated to test the hypothesis that administration of sIAg7-Ig dimers 

complexed with β cell peptides effectively suppresses ongoing β cell autoimmunity, and 

blocks the development of overt diabetes in NOD female mice. 
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2.3 Results 

The production and characterization of sIAg7-Ig dimers 

   sIAg7-Ig dimers were engineered using  recombinant DNA techniques. The transmembrane 

and cytoplasmic domains of the IAdα- and the IAg7β-chains were replaced with leucine zipper 

dimerization domains to promote assembly of the two chains. Peptides were covalently 

linked to the NH2-terminus of the IAg7β-chain. For this study sIAg7-Ig dimers were 

established tethered to: i) GAD65-specific peptides p217 and p286; ii) the mimetic peptide 

recognized by BDC2.5 CD4+ T cells (mBDC); and iii) the hen egg lysozyme (HEL) epitope 

p12-26. The IAdα-chain was modified by the addition of the murine IgG2a Fc domain to 

establish a divalent structure (Malherbe, Filippi et al. 2000). Two amino acids in the IgG2a 

hinge were mutated (L234/A235) to prevent the recombinant protein from binding to FcγR 

I/FcγR II (Lund, Winter et al. 1991; Wines, Powell et al. 2000). sIAg7-Ig dimers were 

produced in stably transfected Drosophila S2 cells and purified by affinity chromatography.  

   SDS-PAGE analysis of purified sIAg7-p217 dimers under denaturing conditions 

demonstrated two bands of 60 and 35 kD, which corresponded to the predicted molecular 

weights of the IAdα-Ig and peptide-IAg7β chains, respectively (Figure 2.1A). HPLC 

confirmed the molecular weight of the assembled sIAg7-p217 dimer complex, in addition to 

showing that the purified preparations had no significant high molecular weight aggregates 

(Figure 2.1B). 

   Initially, the specificity of the sIAg7-Ig recombinants was verified. Multimers of sIAg7-

mBDC, sIAg7-p217 and sIAg7-HEL were tested for binding to CD4+ T cells found in 

peripheral blood lymphocytes (PBL) of BDC2.5 TCR Tg NOD mice, and the GAD65 p217-
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specific T cell clone 11H11. To establish the multimers and detect binding via flow 

cytometry, sIAg7-Ig dimers were preincubated with Protein A conjugated with the 

flurochrome Alexa 647. sIAg7-mBDC multimers stained 88.7% of the BDC2.5 CD4+ T cells, 

whereas only 0.23% of the T cells were stained with the negative control sIAg7-HEL 

multimers (Figure 2.2A). On the other hand, 98% and 0.3% of 11H11 CD4+ T cells stained 

with the sIAg7-p217 and sIAg7-HEL multimers, respectively (Figure 2.2B). These data 

demonstrate that the sIAg7-Ig recombinants bind to T cells in a peptide-specific manner. 

   Next, the capacity of the sIAg7-Ig dimers to stimulate CD4+ T cells in vitro was 

investigated. Ninety-six well plates were coated with sIAg7-mBDC, sIAg7-p217 or sIAg7-HEL 

and the proliferative response of splenic BDC2.5 and 11H11 CD4+ T cells measured via [3H] 

thymidine incorporation after 48 hours of culture. As demonstrated in Figure 2.3, significant 

proliferation of BDC2.5 CD4+ T cells was detected following stimulation with sIAg7-mBDC, 

but not sIAg7-p217 or sIAg7-HEL. Furthermore a robust proliferative response was detected 

for 11H11 CD4+ T cells stimulated with sIAg7-p217, but not sIAg7-mBDC or sIAg7-HEL 

(Figure 2.3). These results demonstrate that sIAg7-Ig dimers stimulate CD4+ T cell 

proliferation in a peptide-specific manner.  

 

   The half-life of native peptides in blood is typically short, in the order of a few minutes. 

With this in mind, persistence of sIAg7-Ig dimers in serum was examined. NOD.scid mice 

received a single i.v. injection of 50 µg of sIAg7-Ig dimers prepared in PBS. Serum was 

harvested at varying times post-injection, and levels of sIAg7-Ig dimers measured with an 

anti-mouse IgG2a specific ELISA. Results indicate that 50% of the maximum detectable 
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serum concentration of the sIAg7-Ig dimers was observed 48 hours after injection, consistent 

with previous reports (Casares, Bona et al. 1997) (Figure 2.4). 

 

sIAg7-p217 and sIAg7-p286 but not sIAg7-mBDC dimers prevent diabetes in NOD mice  

   To assess the efficacy of sIAg7-Ig dimers to suppress ongoing β cell autoimmunity and 

prevent diabetes, 12 week-old NOD female mice were treated with the respective 

recombinants. Specifically, NOD female mice received i.v. injections of 50 µg of sIAg7-Ig 

dimers on 3 consecutive days; 3 weeks later a second course of sIAg7-Ig dimers was 

administered. Diabetes was monitored weekly by measuring blood glucose levels. No 

significant difference in the time of onset or frequency of diabetes was detected in NOD mice 

left untreated or receiving sIAg7-HEL, indicating that sIAg7-Ig dimers do not prevent diabetes 

in a nonspecific manner (Figure 2.5). NOD mice treated with sIAg7-mBDC developed 

diabetes at a similar rate and frequency as the sIAg7-HEL treated and untreated control 

groups (Figure 2.5). In marked contrast, the majority of NOD mice treated with sIAg7-p217 

(8/10) or sIAg7-p286 (9/10) dimers remained diabetes-free (Figure 2.5). Furthermore, 

histological analysis of pancreases showed a significantly reduced frequency of intra-insulitis 

in sIAg7-p217 and sIAg7-p286 dimer-treated mice compared to the sIAg7-mBDC and sIAg7-

HEL treated groups (Figure 2.6). Interestingly, a comparison between sIAg7-p217 and sIAg7-

p286 dimer-treated versus untreated 12 week-old NOD female mice showed no significant 

difference in the frequency of insulitis (Figure 2.6). This latter finding suggests that the 

progression of insulitis was effectively suppressed at the time sIAg7-p217 and sIAg7-p286 

dimer treatment was initiated. Together, these results demonstrate that treatment with sIAg7-
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p217 and sIAg7-p286 dimers can effectively prevent diabetes at a late preclinical stage of 

T1D, and that protection is epitope-specific. 

 

Protection mediated by sIAg7-p217 and sIAg7-p286 dimers correlates with the induction 

of peptide-specific immunoregulatory Tr1 cells 

   To determine the nature of the T cell response induced by the respective sIAg7-Ig dimers, 

12 week-old NOD female were treated as above. Three weeks after the last injection, spleens 

were harvested and the frequency of IL-4, IL-10 and IFNγ-secreting T cells in response to the 

panel of peptides measured via ELISPOT. NOD mice treated with sIAg7-mBDC dimers 

exhibited a significant increase in the frequency of T cells secreting IFNγ and IL-4 in 

response to mBDC, relative to the other groups (Fig. 2.7). On the other hand, cultures 

prepared from NOD mice vaccinated with the sIAg7-p217 and sIAg7-p286 dimers were 

characterized by an increased frequency of IL-10 secreting T cells and only a marginal (if 

any) increase in IL-4 and IFNγ-secreting T cells in response to the corresponding recall 

peptides (Fig. 2.7). Analyses of the frequency and absolute number of FoxP3-expressing 

CD4+CD25+ Treg showed no significant difference in the spleen or pancreatic lymph nodes 

among the respective groups (data not shown).  

 

   The above results indicate that protection induced by the sIAg7-p217 and sIAg7-p286 dimers 

is mediated by immunoregulatory Tr1-like cells. To determine whether functional 

immunoregulation was indeed established by the sIAg7-Ig dimers, a set of adoptive transfer 

experiments were carried out. Twelve week-old NOD female mice were treated with sIAg7-

p217 dimer as above, and splenocytes harvested 3 weeks after the last injection. These 
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splenocytes were then mixed with splenocytes prepared from diabetic NOD donor mice, 

injected into NOD.scid recipients, and diabetes monitored. As expected, transfer of 

diabetogenic splenocytes alone induced diabetes in all of the recipients (6/6) (Figure 2.8). In 

contrast, transfer of splenocytes prepared from sIAg7-p217 dimer-treated mice alone failed to 

induce diabetes in NOD.scid recipients (0/6), indicating a lack of pathogenic T effectors 

(Figure 2.8). Notably, the onset of diabetes was significantly delayed in NOD.scid mice 

receiving the mixture of splenocytes from the two respective groups versus mice injected 

with diabetogenic splenocytes alone (p=0.0015, Kaplan-Meier Log Rank test) (Figure 2.8). 

These results demonstrate that the protection induced by sIAg7-p217 dimer treatment is 

mediated by active immunoregulation.   
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2.4 Discussion 

 
   Peptide-based vaccination is one strategy of antigen-specific immunotherapy that is 

appealing for a number of reasons. For instance, peptides can be readily synthesized in bulk 

under conditions necessary for clinical application; the immunogenicity of peptides can be 

manipulated with greater ease than an intact antigen; the therapeutic efficacy of peptides has 

been demonstrated in experimental models of T1D and other tissue-specific autoimmune 

diseases; and clinical application of peptides for the treatment of allergies has shown promise 

(Daniel and Wegmann 1996; Wallner and Gefter 1996; Chao and McDevitt 1997; Tisch, 

Wang et al. 1999; Haselden, Kay et al. 2000). However, therapeutic efficacy continues to be 

limited by the short in vivo half-life, and the relatively inefficient in vivo presentation of 

exogenous peptides (Ishioka, Adorni et al. 1994). In addition, administration of high doses of 

soluble self-peptide has been reported to induce anaphylaxis (Liu, Moriyama et al. 2002; 

Pedotti, Sanna et al. 2003). The current study tested the hypothesis that administration of 

sIAg7-Ig dimers is an effective approach to suppress β cell autoimmunity at late preclinical 

stages of T1D. The latter represents a more clinically relevant model since at risk individuals 

are the primary candidates for immunotherapy, who in turn are defined by ongoing β cell 

autoimmunity. 

 

   A key finding made in this study is that sIAg7-p217 and sIAg7-p286 dimers block the 

progression of insulitis (Figure 2.6) and prevent the onset of diabetes (Figure 2.5) at a late 

preclinical stage of T1D. Protection is achieved by two short courses of relatively low doses 

(e.g. 50 µg) of sIAg7-Ig dimers in the absence of adjuvant. These results are in marked 

contrast to our earlier work in which a cocktail of p217 and p286 peptides prepared in IFA 
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and administered multiple times at high doses (e.g. 400 µg) was necessary to prevent 

diabetes in 12 week-old NOD female mice (Tisch, Wang et al. 1999). On a molar basis ~140-

fold less peptide was required to suppress β cell autoimmunity by the sIAg7-p217 and sIAg7-

p286 dimers versus the native GAD65-specific peptides. There are at least two mutually 

nonexclusive explanations for the increased therapeutic efficacy of the sIAg7-Ig dimers 

versus “native” peptide. First, sIAg7-Ig dimers are more efficient at eliciting a T cell response 

than the native peptides. For instance, sIAg7-Ig dimers exhibit prolonged in vivo persistence 

(Figure 2.4), and directly stimulate T cells (Figure 2.3) therefore by-passing the need for 

APC to bind and present peptide. Second, sIAg7-Ig dimers induce a more effective subset of 

immunoregulatory T cells. Treatment with p217 and p286 elicits a response dominated by 

IL-4 secreting Th2 cells (Tisch, Wang et al. 1999), whereas sIAg7-p217 and sIAg7-p286 

dimers induce IL-10-secreting Tr1-like cells (Figure 2.7). The latter finding is consistent with 

work by Casares and colleagues who demonstrated in a TCR Tg model of T1D, that 

administration of sIEd-Ig dimers tethered to an influenza hemagglutinin (HA) peptide 

blocked the diabetogenicity of HA-specific CD4+ T effectors via induction of HA-specific 

Tr1 cells (Casares, Hurtado et al. 2002). Tr1 cells are a particularly potent subset of 

immunoregulatory T cells that regulate the responses of naïve and memory T cells in vitro 

and in vivo, and suppress both Th1 and Th2 cell–mediated pathologies through bystander 

suppression mediated by local release of IL-10 (Groux, O'Garra et al. 1997; Roncarolo, 

Bacchetta et al. 2001). IL-10 not only affects T cells directly, but also indirectly by blocking 

the activation and function of APC such as dendritic cells (DC) (McGuirk, McCann et al. 

2002). IL-10 treated DC gain a “tolergenic” phenotype and preferentially promote the 

development of immunoregulatory T cells (Wakkach, Fournier et al. 2003). The potency of 
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Tr1 cells may also explain why individually, sIAg7-p217 and sIAg7-p286 dimers prevent 

diabetes, whereas both p217 and p286 are required.  For instance, a high frequency of IL-4 

secreting Th2 cells (e.g. p217- plus p286-specific clonotypes) may be necessary to 

compensate for a reduced immunoregulatory function compared to Tr1 cells.  

 

   Another important observation made in this study is that sIAg7-Ig dimer mediated 

protection is epitope-specific. Whereas sIAg7-p217 and sIAg7-p286 dimers suppressed β cell 

autoimmunity, sIAg7-mBDC dimer failed to prevent diabetes (Figure 2.5). Interestingly, 

sIAg7-mBDC dimer treatment induced “mixed” T cell reactivity in response to mBDC. 

Namely, a robust Th1 cell response and moderate but significant Th2 cell reactivity were 

detected in sIAg7-mBDC dimer treated NOD mice (Figure 2.7). The lack of IL-10-secreting 

Tr1 cells in NOD mice receiving sIAg7-mBDC dimer further argues that this subset of 

immunoregulatory T cells is necessary for the suppression of β cell autoimmunity. Currently, 

it is unclear why sIAg7-mBDC dimer induced IFNγ and IL-4-secreting T cells, but not IL-10 

producers. Significant induction of IFNγ-secreting Th1 cells may reflect expansion of 

existing effector and/or memory T cells or differentiation of naïve mBDC-specific T 

precursors into Th1 effectors. The TCR affinity/avidity of naïve mBDC-specific T precursors 

may also influence signaling events elicited by sIAg7-mBDC dimer binding that promote 

(albeit weakly) differentiation of IL-4 versus IL-10-secreting T effectors. A better 

understanding of the biochemical and transcriptional signaling events transduced in CD4+ T 

cells by sIAg7-Ig dimers would greatly aid in the interpretation of these results. Nevertheless, 

these findings underscore the need for selecting the “appropriate” self-antigen/peptide in 

order to suppress ongoing autoimmunity.   
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   In summary, our data demonstrate that the efficacy of peptide-based immunotherapy to 

suppress ongoing β cell autoimmunity can be significantly enhanced through the use of 

sIAg7-Ig dimers.  
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2.5 Materials and Methods 

Mice 

   NOD/LtJ, NOD.BDC2.5 and NOD.CB17.Prkdcscid/J (NOD.scid) mice were maintained and 

bred under specific-pathogen free conditions. Mice were diagnosed as diabetic when having 

blood glucose levels  >250 mg/dl on two successive measurements as determined by an 

Autokit Glucose CII assay (WAKO). Animals were maintained at an American Association 

of Laboratory Animal Care-accredited animal facility. All procedures were reviewed and 

approved by the University of North Carolina Institutional Animal Care and Use Committee.  

 

Expression and purification of sIAg7-Ig fusion proteins 

   The sIAg7-Ig dimers were engineered as previously described (Malherbe, Filippi et al. 

2000). Briefly, IAg7 α and β chain extracellular domains were attached to fos and jun leucine 

zippers, respectively. Peptide epitopes were covalently linked to the NH2-terminus of the 

IAg7β chain by a flexible thrombin-GGGGS linker. The dimerized IAg7 molecule replaces the 

original Ig heavy and light chains by adjoining to the Fc hinge via the leucine zipper. cDNAs 

encoding the respective sIAg7-Ig recombinants were subcloned into the pMT-Bip vector and 

transgene expression driven by a metallothionein-inducible promoter. Expression vectors 

were co-transfected via calcium phosphate into Drosophila S2 cells with a vector containing 

the selectable marker pHygro, and stable transfectants selected in hygromycin containing 

medium. Expression of the sIAg7-Ig dimers was confirmed using ELISA with antibody pairs 

specific for mouse IgG2a Fc (BD PharMingen, San Diego, CA) or a combination with the 

conformation-specific anti-IAg7 antibody, 10-2.16. sIAg7-Ig dimer protein expression was 

induced by 500 µM CuSO4 for 7-10 days and purified by affinity chromatography on a 
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Protein A column (Gebioscience). Bound molecules were eluted using 0.1 M Glycine-HCl 

(pH 2.5). Fractions were neutralized immediately with the addition of 1 M Tris (pH 9.0), 

dialyzed against PBS, and concentrated using Centricon concentrators (Millipore, Bedford, 

MA). Protein concentration was determined by a bicinchoninic acid assay (Pierce, Rockford, 

IL). 

 

Flow Cytometry 

   To generate multimeric staining reagents, sIAg7-Ig dimers were incubated with Alexa 647-

coupled Protein A (Molecular Probes, Invitrogene, OR) as described (Malherbe, Filippi et al. 

2000). Samples were also co-stained with anti-CD3 FITC, -CD19 PE, -CD4 PerCP, -CD11C 

Pacific blue, and -F4/80 PEcy7. Data was acquired on a Cyan flow cytometer 

(DakoCytomation), and analyzed using Summit software (DakoCytomation). 

 

ELISPOT 

   ELISPOT plates (Millipore) were coated overnight at 4°C with purified rat anti-mouse 

cytokine antibodies in PBS (anti-IFN-γ, anti-IL-4, or anti-IL-10) (BD Pharmingen). Plates 

were seeded with splenocytes at 1 x 106 cells per well in HL-1 medium (BioWhittaker). 

Peptides were added at a final concentration of  20 µg/ml. Cultures were incubated for 48 

hours at 37°C. Cells were removed by washing, and plates incubated with the appropriate 

biotinylated anti-mouse cytokine antibodies overnight at 4°C. Plates were then washed, 

incubated with streptavidin-HRP (BD Pharmingen) for 2 hours at room temperature, and 

developed using a 100-mM sodium acetate buffer containing 0.3 mg/ml 3-amino-9-
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ethylcarbazole (Sigma-Aldrich) and 0.015% hydrogen peroxide. An ImmunoSpot plate reader 

(Cellular Technology) was used to count the spot-forming cells per well. 

 

T cell proliferation assay 

   Proliferation assays were performed as previously described (Casares, Zong et al. 1999). 

Briefly, proliferation of CD4+ T cells was assayed by incubating 2 x 105 cells with peptide at 

30 µg/ml and irradiated (3000 rad) syngeneic splenocytes for 48 hours. One µCi per well of 

[3H] thymidine was added during the last 16 hours of culture. Cells were then harvested on a 

Trilux 1450 Microbeta Wallac Harvester, and incorporated [3H] thymidine was counted using 

the Microbeta 270.004 software (Wallac). 

 

T cell adoptive transfers 

Splenocytes prepared from diabetic (10 x 106) or sIAg7-Ig dimer treated (10 x 106) NOD 

female mice were injected intraperitoneally either alone or mixed together into 5-8 week old 

NOD.scid mice. Recipient mice were monitored for diabetes incidence. Two consecutive 

readings of blood glucose levels of ≥250 mg/dl were indicative of diabetes. 

 

Histopathology 

   Pancreases were harvested from mice, and fixed with 10% formalin. Serial cross-sections 

(5 µm) were cut and stained with hematoxylin and eosin (H&E).  
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Figure 2.1 
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Figure 2.2 
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Figure 2.3 
 
 

 

 

 

 

 

 

 

 

sIAg7-Ig dimers induce T cell proliferation in a peptide-specific manner. BDC2.5 CD4+ T 
cells and the p217-specific T cell clone 11H11 were stimulated with plate-bound sIAg7-BDC, 
sIAg7-p217, or sIAg7-HEL dimers and proliferation determined by the incorporation of [3H] 
thymidine. ∗∗∗ p<0.001, Student’s t test. 
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Figure 2.4 
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In vivo detection of sIAg7-Ig dimers. Two NOD.scid mice received an i.v. injection of 50 µg 
of sIAg7-p217 dimers. Serum was harvested at different times post-injection and sIAg7-p217 
dimers detected using an anti-mouse IgG2a ELISA in triplicate. The amount of IgG2a 
detected at 1 hour post-injection is regarded as 100%. Data are representative of two separate 
experiments. 
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Figure 2.5 
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sIAg7-p217 and sIAg7-p286 but not sIAg7-mBDC dimers prevent diabetes in NOD female 
mice. 12-week-old NOD female mice were injected i.v. with 50 µg of sIAg7-p217, sIAg7-
p286, sIAg7-mBDC, or sIAg7-HEL for 3 consecutive days. Three weeks later, mice were 
similarly treated and diabetes incidence monitored. Mice were considered diabetic after 2 
consecutive readings of  >250 mg/dL. p<0.0003, untreated or sIAg7-HEL versus sIAg7-p217; 
p<0.0001, untreated or sIAg7-HEL versus sIAg7-p286, Kaplan-Meier Log Rank Test. 
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Figure 2.6 
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Treatment of sIAg7-p217 or sIAg7-p286 dimers blocks the progression of insulitis. The 
frequency of insulitis as determined by H&E staining was assessed for sIAg7-p217 and sIAg7-
p286 treated nondiabetic NOD female mice 35 weeks of age, sIAg7-BDC and sIAg7-HEL 
treated diabetic NOD female mice, and unmanipulated 12-week-old NOD female mice. 
N=number of mice; total number of islets is indicated in parentheses. p<0.0011, sIAg7-mBDC 
or sIAg7-HEL versus sIAg7-p217 (>50% infiltration); p<0.002, sIAg7-mBDC or sIAg7-HEL 
versus sIAg7-p286 (>50% infiltration), Student’s t test. 
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Figure 2.7 
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Protection mediated by sIAg7-p217 and sIAg7-p286 dimers correlates with the induction 
of peptide-specific immunoregulatory Tr1 cells. Splenocytes harvested from sIAg7-p217, 
sIAg7-p286, sIAg7-mBDC, and sIAg7-HEL dimer treated mice were examined via ELISPOT 
to determine the frequency of peptide-specific T cells secreting IFNγ, IL-4, and IL-10. 
Medium-only values were subtracted. ∗∗∗ p< 0.001, Student’s t test. 
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Figure 2.8 
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sIAg7-p217 dimer treatment induces immunoregulatory T cells. 10 x 106 splenocytes 
from diabetic or sIAg7-p217 dimer treated NOD mice were transferred alone or co-transferred 
i.p. into 5-8 week old NOD.scid mice. The recipient mice were then followed for diabetes 
incidence. Two consecutive readings of blood glucose levels of  ≥250 mg/dl was indicative 
of diabetes. p = 0.0005, diabetic alone versus sIAg7-p217 alone; p =0.0015, diabetic alone 
versus cotransfer,  Kaplan-Meier Log Rank Test. 
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3.1 Abstract 
 
 
   It is well established that T cells are the primary mediators of β cell destruction in Type 1 

diabetes (T1D). However, the relative role for different β cell-specific T cell clonotypes in 

the progression of the diabetogenic response, and the molecular basis for their expansion 

remain poorly understood. Accordingly, the current study exploits soluble (s) IAg7-

immunoglobulin (Ig) multimer technology to analyze BDC2.5 clonotypic CD4+ T cells at the 

single cell level. CD4+ T cells expressing the BDC2.5 clonotypic T cell receptor (TCR) 

and/or which recognize the mimetic BDC (mBDC) peptide are thought to have a key albeit 

undefined role in β cell autoimmunity of the nonobese diabetic (NOD) mouse. Using sIAg7-

mBDC multimers, BDC2.5 clonotypic CD4+ T cells were tracked and/or isolated in a 

temporal manner. sIAg7-mBDC-binding (g7-mBDC+) CD4+ T cells were detected in 

peripheral blood lymphocytes (PBL) and the islets at the onset of β cell autoimmunity in 

NOD female mice, with the frequency and/or number of g7-mBDC+ T cells increasing with 

age. In contrast, a reduced frequency and number of g7-mBDC+ T cells was observed in the 

PBL and islets of NOD male mice. A comparison of TCR gene usage by single, g7-mBDC+ 

T cells isolated from 16 week-old NOD female mice demonstrated dominate usage of 

TRBV15 and monoclonality based on variable β (Vβ) gene complementary determinant 

region 3 (CDR3) sequences of BDC2.5 clonotypic CD4+ T cells in the islets but not PBL. 

These data demonstrate that g7-mBDC+ T cells are an early indicator of the development of 

destructive insulitis, and that both clonotypic expansion and preferential usage of TCR 

characterize islet infiltrating g7-mBDC+ T cells.  
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3.2 Introduction 
 
 
   T1D is marked by the breakdown of self-tolerance to β cells within the T cell compartment 

(Tisch and McDevitt 1996; Haskins 2005). Defects in thymic selection coupled with aberrant 

peripheral immunoregulation are believed to contribute to the development and expansion of 

pathogenic, β cell-specific CD4+ and CD8+ T cells (Carrasco-Marin, Shimizu et al. 1996; 

Ridgway, Fasso et al. 1999). Nevertheless, the relative role of different β cell-specific 

clonotypes in the disease process, and the molecular basis underlying recognition of β cell 

autoantigens and subsequent expansion of pathogenic T effectors remain ill-defined. This is 

partly due to only partial knowledge of the identity of the key β cell autoantigens targeted in 

the diabetogenic response, and the low frequency of the corresponding T cell clonotypes in 

vivo thereby making analyses difficult. Groups have attempted to address some of these 

issues by establishing T cell clones from the islets of NOD mice, and then defining peptide 

specificity and TCR gene usage of these clones (Haskins, Portas et al. 1988; Katz, Wang et al. 

1993; Gelber, Paborsky et al. 1994; Santamaria, Utsugi et al. 1995; Verdaguer, Yoon et al. 

1996; Wong, Visintin et al. 1996; Quinn, McInerney et al. 2001). However, this approach is 

limited since in vitro expansion may promote out-growth of minor T cell clonotypes. NOD 

mice transgenic (Tg) for TCR of known β cell autoantigen specificities have proven to be 

valuable in studying the role of particular clonotypes in T1D (Katz, Wang et al. 1993; 

Verdaguer, Yoon et al. 1996; Jasinski, Yu et al. 2006). However, this approach is limited by 

the homogeneity of the peripheral T cell repertoire established in Tg mice. For instance, 

spontaneous β cell autoimmunity is driven by a large repertoire of T effectors in which 

clonotypes influence one another, as in the case of “epitope spread” (Zechel, Krawetz et al. 

1998; Tian, Gregori et al. 2001). Targeting of certain epitopes leads to recognition of new 
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peptides, and subsequent “spreading” or recruitment of additional T cell clonotypes that 

amplify the autoimmune response (Kelemen, Wegmann et al. 2001; Olcott, Tian et al. 2005).  

 

   To track and define the clonotypic properties of β cell-specific CD4+ T cells, we have in the 

current study exploited the use of sIAg7-Ig multimer technology described in Chapter 2. 

Specifically, BDC2.5 clonotypic CD4+ T cells recognizing mBDC have been analyzed in a 

temporal manner using sIAg7-mBDC multimers. The BDC2.5 clonotype is defined by the 

BDC2.5 CD4+ T cell clone, which was originally established from the spleen of diabetic 

NOD mice by Haskins and colleagues (Haskins, Portas et al. 1988). The BDC2.5 T cell clone 

is diabetogenic upon adoptive transfer into young NOD or NOD.scid recipients (Haskins and 

McDuffie 1990; Peterson, Pike et al. 1995; Peterson and Haskins 1996). In addition, 

NOD.scid mice transgenic for the BDC2.5 TCR α (Vα1)- and β (Vβ4) chains rapidly develop 

diabetes, further demonstrating the diabetogenic capacity and disease relevance of this T cell 

clonotype (Kurrer, Pakala et al. 1997). The β cell autoantigen recognized by BDC2.5 CD4+ T 

cells has yet to be determined. However, the mimetic epitope mBDC has recently been 

defined thereby providing an important reagent to track and identify “BDC2.5-like” 

clonotypes in vivo (Yoshida, Martin et al. 2002).  

 

   In the current study we test the general hypothesis that diabetogenic CD4+ T clonotypes are 

defined by common TCRs, and are selectively expanded in the islets. Specifically, three 

important questions will be addressed: 1) How does the temporal development of g7-mBDC+ 

T cells correspond with the progression of β cell autoimmunity? 2) How does the repertoire 
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of g7-mBDC+ T cells compare between different tissues? 3) Is there preferential TCR usage 

by g7-mBDC+ T cells that in turn defines the diabetogenicity of this general clonotype?  
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3.3 Results 

 

Detection of mBDC-specific CD4+ T cells in PBL and the endogenous islets 

   To determine the association between BDC2.5 clonotypic CD4+ T cells and the progression 

of β cell autoimmunity, the frequency of g7-mBDC+ T cells was examined in PBL and the 

islets of NOD female and male mice of varying ages. Notably, the frequency of insulitis 

between NOD females and males is similar with age; however, only 20% of males develop 

diabetes compared to the 80% of female mice that become diabetic. To enhance the 

specificity of the analysis of CD4+ T cells binding sIAg7-mBDC, cells were also stained with 

antibodies specific for CD19, CD11c, and F4/80 in order to gate out B cells, dendritic cells 

and macrophages, respectively. Background levels of sIAg7-Ig binding was typically 0.2-

0.4% of CD4+ T cells based on staining with a sIAg7-Ig recombinant tethered to a hen egg 

lysozyme (HEL) epitope (sIAg7-HEL) (Figure 3.1A). 

 

   Temporal analysis of purified islets in NOD female mice demonstrated that at 4 wks of age, 

the time at which insulitis is initiated, ~2.1% of CD4+ T cells bound sIAg7-mBDC (Figure 

3.1B). By 6 weeks of age, the frequency of g7-mBDC+ T cells was decreased by 2-fold and 

remained unchanged up to 24 weeks of age (Figure 3.1B). However, the absolute number of 

g7-mBDC+ T cells was gradually increased with age (Figure 3.1C). In the islets of 16 and 24 

week-old NOD male mice, a reduced frequency and a ~4-fold reduction in the number of g7-

mBDC+ T cells was observed relative to age matched NOD females (Figure 3.1B).  
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   In the PBL of 4 week-old NOD female mice, ~0.35% of CD4+ T cells bound sIAg7-mBDC 

(Figure 3.1D). This frequency and the absolute number of g7-mBDC+ T cells increased by 8 

weeks of age and was maintained up to 24 weeks of age. In contrast, the frequency and 

number of g7-mBDC+ T cells in the PBL of NOD male mice was markedly reduced 

compared to NOD female mice, especially in older animals (Figure 3.1 B and D). A profile 

of g7-mBDC+ T cells similar to NOD males was detected in PBL from diabetes-resistant 

NOR female mice that develop only peri-insulitis (data not shown). Together, these findings 

demonstrate that g7-mBDC+ T cells are detected in PBL and islets early in the disease 

process, and that the frequency and number of sIAg7-mBDC binding CD4+ T cells increases 

with age in NOD female mice.  

 

The TCR Vβ repertoire of mBDC2.5-specific CD4+ T cells is skewed in the islets 

   Next, we set out to gain insight into the TCR usage of mBDC-specific CD4+ T cells, and in 

turn determine how the islets shape the repertoire of BDC2.5 clonotypic T cells. Accordingly, 

sIAg7-mBDC binding CD4+ T cell were sorted from the blood and islets of 10 individual 16 

week-old NOD female mice, and TCR Vβ gene usage assessed in single cells via RT-PCR. 

The repertoire of the 197 g7-mBDC+ T cells isolated from PBL was relatively diverse being 

distributed primarily among four TCR Vβ genes; namely TRBV13.2 (Vβ8.2; 18.8%) TRBV2 

(Vβ4; 9.6%), TRBV15 (Vβ12; 10.7%), and TRBV5 (Vβ2; 9.1%) (Figure 3.2). In marked 

contrast, significant skewing of Vβ gene usage was detected among the g7-mBDC+ T cells 

infiltrating the islets. Analysis of the 218 islet g7-mBDC+ T cells showed that 62.4% 

expressed TCR β chains bearing TRBV15 (Figure 3.2A). In fact, >80% of islet g7-mBDC+ T 

cells expressed TRBV15 in mouse #1 (19/22), #2 (12/15), #3 (47/51), #7 (38/43) and #10 

(21/26) (Figure 3.2B). Even in mouse #4 (7/20), #5 (5/21), #6 (12/21) and #9 (6/20), 
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TRBV15 predominated among the other Vβ genes (Figure 3.2B). Furthermore, whereas 

18.8% of PBL g7-mBDC+ T cells expressed TRBV13.2, only 4.1% of islet T cells expressed 

this Vβ gene. Conversely, a six-fold increase in the frequency of TRBV15 gene usage was 

detected in islet versus PBL g7-mBDC+ T cells.  

 

   Analysis of CDR3β sequences confirmed the monoclonality of the islet TRBV15+ g7-

mBDC+ T cells in mouse #1 (KDSSYEQ; Table 3.1), #2 (LGWPGAEQ; Table 3.2), #3 

(RPGGRDYAEQ; Table 3.3), #7 (LAQGQGYEQ; Table 3.7), and #10 (LAQGQGYEQ, 

Table 3.10). In mouse 6 the 12/21 TRBV15+ islet g7-mBDC+ T cells consisted of two 

clonotypes containing the PDRGQDTQ and LAQGQGYEQ CDR3β motifs. Furthermore, the 

LAQGQGYEQ CDR3β sequence was shared among mouse #6, #7, and #10, with this motif 

dominating in mouse #7 and #10. Moreover, no CDR3β sequence was shared among islet 

and PBL g7-mBDC+ T cells within an individual mouse, with the exception of mouse #7 

(LGQQDTQ; Table 3.7) and #8 (LANSQNTL; Table 3.8). Finally, no CDR3β sequence was 

shared among PBL g7-mBDC+ T cells within an individual mouse with the exception of 

mouse #1 (LLPRATGQL, DRGPDTEV; Table 3.1). Together, these results demonstrate that 

PBL g7-mBDC+ T cells exhibit a highly diverse repertoire, whereas the repertoire of islet g7-

mBDC+ T cells is skewed with a strong preference for TRBV15 usage. Finally, the 

repertoires of PBL versus islet g7-mBDC+ T cells are largely distinct. 
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3.4 Discussion 
 
 
   A key question in T1D is the relative contribution of and the molecular basis for expansion 

of certain T clonotypes in mediating β cell destruction. To begin to address these issues we 

have used sIAg7-Ig technology to study BDC2.5 clonotypic CD4+ T cells. Based on evidence 

derived from T cell clones and TCR transgenic mice, the BDC2.5 clonotype is disease 

relevant (Haskins and McDuffie 1990; Kurrer, Pakala et al. 1997). However, the precise role 

of these β cell-specific CD4+ T cells in the diabetogenic response remains ill defined.  

 

   The current work has made three major findings. First, expansion of g7-mBDC+ T cells in 

the islets corresponds with the development of destructive insulitis. g7-mBDC+ T cells are 

detected in PBL and/or islets at the time insulitis is initiated in NOD female and male mice 

(Figure 3.1). In NOD female mice, however, the number of g7-mBDC+ T cells increase with 

age but not in NOD male mice (Figure 3.1). Notably, the majority of NOD male mice remain 

diabetes-free due to the lack of progression towards destructive insulitis. We propose that 

establishment of the destructive phase of insulitis is in part dependent on a sufficient number 

of g7-mBDC+ T cells residing in the islets. In our model, islet g7-mBDC+ T cells mediate β 

cell injury to recruit other clones specific for different β cell autoantigens via epitope spread. 

Continued expansion of islet g7-mBDC+ T cells promotes further epitope spread thereby 

ensuring that appropriate numbers of pathogenic effectors are present to drive the destructive 

phase of insulitis. The fact that the frequency of islet g7-mBDC+ T cells among CD4+ T cells 

is maintained at a consistent level from 6 weeks of age and older, supports the idea that islet 

g7-mBDC+ T cells are promoting the recruitment of other CD4+ T clonotypes. The 

progressive increase in the frequency and number of g7-mBDC+ T cells in PBL of NOD 
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female mice reflects the increasing numbers of g7-mBDC+ T cells in the islets (Figure 3.1), 

suggesting a cause and effect association. Based on TCR usage, however, g7-mBDC+ 

clonotypes in PBL are distinct compared to those infiltrating the islets (Figure 3.2; Tables 

3.1-10). One possible explanation for this disparity is that the β cell autoantigen recognized 

by g7-mBDC+ T cells is released systemically as the disease process continues, promoting 

the expansion of “nonpathogenic” (e.g. TRBV13.2+) BDC2.5 clonotypic T cells in the 

periphery.   

 

   The second major observation made in this study is that the majority (>60%) of islet 

infiltrating g7-mBDC+ T cells express TRBV15. In PBL there is a modest preference of 

TRBV13.2 usage, and TRBV15 is expressed by 10% of PBL g7-mBDC+ T cells. On the 

other hand, in 50% of NOD female mice >80% of islet g7-mBDC+ T cells expressed 

TRBV15. It is important to note that our analysis is at the single cell level and does not 

involve in vitro culturing, therefore ruling out the possibility that the observed skewing of 

TCR gene usage is an artifact of preferential in vitro expansion. Interestingly, preferential 

usage of TRBV15 has also been reported for islet-infiltrating CD4+ T cells analyzed in bulk 

from early and late stages of disease progression in NOD female mice (Quinn, McInerney et 

al. 2001; Baker, Lee et al. 2002). It is tempting to speculate that the islet infiltrating 

TRBV15+ CD4+ T cells characterized by Baker et al. are the same g7-mBDC+ T cells 

detected in our study. The simplest interpretation of the data is that TRBV15 provides islet-

infiltrating g7-mBDC+ T cells a selective advantage over clonotypes expressing other Vβ 

genes. For instance, TCR affinity/avidity may be increased by TRBV15. Experiments 
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examining binding kinetics of mBDC-specific TRBV15 versus TRBV13.2 TCR would 

directly address this possibility.  

 

   Our data also demonstrates that in most NOD female mice examined (Mouse #1, #2, #3, #4, 

#6, #7, #10), g7-mBDC+ T cells are represented by one to two major clonotypes based on 

CDR3β sequences. This finding is analogous to earlier work by our group studying islet-

specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific CD8+ T 

cells (Wong, Stevens et al. 2007). Here, IGRP-specific CD8+ T cells infiltrating the islets 

also were represented by one to two dominant clonotypes that in turn were unique to 

individual NOD mice. Interestingly, mouse #7 and #10 shared the same islet-infiltrating 

immunodominant clonotype characterized by the LAQGQGYEQ CDR3β sequence. 

TRBV15+ CD4+ T cells bearing the LAQGQGYEQ motif may represent a more diabetogenic 

clonotype compared to other TRBV15+ T cells. Together these data would suggest that 

pathogenic T effectors are preferentially expanded in the islets, and that relatively few 

clonotypes for a given epitope are necessary to drive the diabetogenic response at late stages 

of disease progression.    

 

   In summary, this work has demonstrated that BDC2.5 clonotypic CD4+ T cells play a role 

early in the diabetogenic response by influencing the nature of insulitis, and that most islet 

infiltrating g7-mBDC+ T cells are characterized by expression of TRBV15 and are 

represented by a small number of clonotypes.  
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3.5 Materials and Methods 
 
Mice 

NOD/LtJ mice were maintained and bred under specific-pathogen free conditions, and 

maintained at an American Association of Laboratory Animal Care-accredited animal 

facility. All procedures were reviewed and approved by the University of North Carolina 

Institutional Animal Care and Use Committee. 

Pancreatic islet isolation  

Pancreases were perfused with 0.2 mg/ml Liberase (Roche) and digested for 30 minutes at 

37°C. Islets were purified via Ficoll gradient, handpicked and counted. For flow cytometry 

analysis, freshly isolated islets were dissociated into a single-cell suspension using enzyme-

free cell dissociation solution (Sigma-Aldrich) before staining. Lymphocytes infiltrating the 

islets were collected and cellular debris removed by 70-µm nylon filters. 

Flow Cytometry 

Single-cell suspensions from islets were prepared in PBS. Peripheral blood was collected via 

the tail vein and RBC lysed where appropriate. T cells were costained with sIAg7-Ig 

multimers and Abs in PBS containing 3% FBS, 10 mM HEPES, and 1 mM EDTA for 1 hour 

at room temperature followed by CD3, CD4, CD19, CD11c, and F4/80 staining on ice for 30 

minutes. Flow cytometry data were acquired on a Cyan instrument (DakoCytomation) and 

analyzed using Summit software (DakoCytomation). For all sIAg7-Ig multimer analyses, 

CD4+ T cells were gated based on forward and side scatter and CD3 and CD4 expression. For 

single-cell analyses, sIAg7-mBDC multimer-binding CD4+ T cells were sorted by a MoFlo 

high-speed sorter (DakoCytomation) into 4 µl of RT-PCR buffer at one cell per well of a 96-
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well PCR plate (USA Scientific), and the RT-PCR was performed immediately. All flow 

cytometry analyses and single-cell sorting were performed at the University of North 

Carolina Flow Cytometry facility. 

Single-cell RT-PCR and TCR repertoire analyses  

TCR usage was analyzed by a single-cell PCR protocol previously described (Baker, Lee et 

al. 2002) with the following modifications. Single-cell RT-PCR was performed using a 

Qiagen OneStep RT-PCR kit (Qiagen) according to the manufacturer’s protocol. A panel of 

primers specific for all known TCR α- or β-chain variable regions and respective constant 

regions were used for reverse transcription and first-round PCR amplification. RT-PCR 

amplicons (2 µl) were used as templates for second-round PCR amplification using a panel of 

nested TCR α- or β-chain-specific primers. All oligonucleotides were synthesized at the 

Nucleic Acids Core Facility at the University of North Carolina. PCR products were treated 

with Exonuclease I (NEB Biolabs) and shrimp alkaline phosphatase (Roche), and sequenced 

at the University of North Carolina Genome Analysis Facility. TCR sequence alignments 

were performed using Sequencher software (Gene Codes). TCR β-chain (TRBV-D-J) gene 

family usage was identified and assigned using the SoDA software online (Volpe, Cowell et 

al. 2006) and former nomenclature based on Arden et al. (Arden 1992). CDR3 regions were 

analyzed using CLC Combined workbench software (CLCbio).  
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The Vβ repertoire of most islet infiltrating g7-mBDC+ CD4+ T cells is skewed. Single g7-
mBDC+ CD4+ T cells sorted from PBL and islet infiltrates of 10 individual 16 week-old 
NOD female mice were sorted by MoFlo and Vβ gene usage determined by RT-PCR. (A) Vβ 
gene usage plotted as the average for the 10 NOD female mice. (B) Vβ gene usage plotted for 
individual mice.   
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Table 3.1 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 1. 

 VB CDR3  NUMBER TRBV-D-J 
MOUSE 1 ISLETS   22  

YLCASS KDSSYEQ YFG 19 15-D1.1-J2.7 
YLCASS  RQDTQ  YFG 1 30-D1.1-J2.5 
YFCASS RTGGYAEQ YFG 1 19-D2.1-J2.4 
YFCASS QRTGGGEQ YFG 1 5-D2.1-J2.7 

     
MOUSE 1 PBL   17  

YLCASS  DADRGTGNTL YFG 1 13.1-D1.1-J1.3 
YLCASS  LGTLTGQL YFG 1 15-D1.1-J2.2 
YFCASS QDGGGEQ YFG 1 2-D2.1-J2.7 
YLCAWS PGRDQNTL YFG 1 31-D.11-J2.4 
YLCAWS LEGDTQ YFG 1 31-D1.1-J2.5 
YFCASS DRGPDTEV FFG 2 13.3-D1.1-J1.1 
YLCASS PGLGGLAETL YFG 1 14-D2.1-J2.3 
YLCAWS LGQAGPYSDY TFG 1 31-D2.1-J1.2 
YCASS LLPRATGQL YFG 2 29-D1.1-J2.2 
YLCASS FGREGITNQAP LFG 1 15-D1.1-J1.5 
YLCASS DAYRGTGNTL FFG 1 13.1-D1.1-J1.3 
YLCASS LAQGQGYEQ YFG 1 15-D1.1-J2.7 
YFCASS GDSDQNTL YFG 1 13.2-D1.1-J2.4 
YCASS DRTISNERL FFG 1 13.3-D1.1-J1.4 
YFCASS GEQITL YFG 1 13.2-D1.1-J2.4 
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Table 3.2 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 2. 

 CDR3  NUMBER TRBV-D-J 
MOUSE 2 ISLETS   15  

YFCASS LGWPGAEQ FFG 12 15-D2.1-J2.1 
FLCASS IWQGDGNTL YFG 1 19-D1.1-J1.3 
YFCASS GGQGSTL YFG 1 13.3-D1.1-J2.4 
YFCASS AGTGGGYEG YFG 1 1-D2.1-J2.7 

     
MOUSE 2 PBL   19  

YCTCS PYSFSNERL FFG 1 1-D1.1-J1.4 
YFCASS HDSNNQAP LFG 1 5-D1.1-J1.5 
YFCASS PLGGLNQDTQ YFG 1 3-D2.1-J2.5 
YFCAS GEVGGQNTL YFG 1 13.2-D2.1-J2.4 
YFCAS GDGGDYAEQ FFG 1 13.2-D2.1-J2.1 

YFCASS QDRGVGAEQ FFG 1 2-D2.1-J2.1 
YFCASS GDRDDWGGYEQ YFG 1 13.2-D2.1-J2.7 
YLCASS LIWGGNQDTQ YFG 1 16-D2.1-J2.5 
YFCASS DADSSAETL YFG 1 13.1-D1.1-J2.3 
YFCASS HPDITSGNTL YFG 1 2-D1.1-J1.3 
YLCASS THWGNYAEQ FFG 1 4-D2.1-J2.1 
YCTCS ADRANTGQL YFG 1 1-D1.1-J2.2 

YFCASS LSQQDTQ YFG 1 29-D1.1-J2.5 
YFCAS GDAAGSGNTL YFG 1 13.2-D1.1-J1.3 

YFCASS RRDRGVNTGQL YFG 1 12.1-D1.1-J2.2 
YFCASS QPRTPSAETL YFG 1 2-D1.1-J2.3 
YLCASS RDWGNQDTQ YFG 1 14-D2.2-J2.5 
YFCASS AGGQDTQ YFG 1 13.1-D2.1-J2.5 
YFCAS GDSWGAGDTQ YFG 1 13.1-D2.1-J2.5 
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Table 3.3 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 3. 

 VB CDR3  NUMBER TRBV-D-J 
MOUSE 3 ISLETS   51  

YLCAS RPGGRDYAEQ FFG 47 15-D2.1-J1.1 
YLCAS NPHSSYEH VLG 1 26-D1.1-J2.7 
YLCAS RLGGAQDTQ YFG 1 16-D2.1-J2.5 

YLCASS FDRVEQ YFG 1 16-D1.1-J2.7 
YLCASS TGGDTQ YFG 1 15-D2.1-J2.5 

     
Mouse 3 PBL   15  

YFCAS GGGQGAGEQ YFG 1 13.2-D1.1-J2.7 
YLCASS LGWQDTQ YFG 1 15-D2.1-J2.5 
YFCASS QGGTTNSDY TFG 2 2-D1.1-J1.2 
YFCAS DRLGGANTGQL YFG 1 13.2-D2.1-J2.2 

YLCASS LGVESAETL YFG 1 4-D2.1-J2.3 
YLCASS SRGSGNTL YFG 1 4-D1.1-J1.3 
YFCAS GDHTEV FFG 1 13.2-D1.1-J1.1 

YFCASS KLGYEQ YFG 1 3-D2.1-J2.7 
YFCAS GDQSQNTL YFG 1 13.2-D1.1-J2.4 

YFCASS QGQGTDY TFG 1 2-D1.1-J1.2 
YFCAS GIETEQ YFG 1 13.2-D1.1-J2.7 
YLCAS RRDRGNTEV FFG 1 14-D1.1-J1.1 

YFCASS QEVGGHQDTQ YFG 1 2-D2.1-J2.5 
YFCASS QGGTTNSDY TFG 1 2-D1.1-J1.2 
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Table 3.4 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 4. 

 CDR3  NUMBER TRBV-D-J 
MOUSE 4 ISLETS   20  

YLCAS RPGGRDYAEQ FFG 3 15-D2.1-J1.1 
YLCASS LDASYEQ YFG 2 15-D1.1-J2.7 
YSCASS IDGGRAETL YFG 1 19-D2.1-J2.3 
YLCAS GEWDRGGNERL FFG 1 13.2-D1.1-J1.4 

YFCASS LRGASAETL YFG 1 19-D1.1-J2.3 
FLCASS IQADSAETL YFG 1 19-D1.1-J2.3 
YFCASS QDWGPAETL YFG 1 5-D2.1-J2.3 
YFCASS PGTNTEV FFG 1 5-D1.1-J1.1 
VYLCAS GDAGTDDTQ YFG 1 13.1-D2.1-J2.5 
YFCASS PSNSDY TFG 1 2-D2.1-J1.2 
YFCASS HGGNYAEQ FFG 1 2-D1.1-J2.1 
YFCASS DGTGEDTQ YFG 1 13.1-D1.1-J2.5 
YLCASS RGAQDTQ YFG 1 15-D2.1-J2.5 
YFCASS STNSQNTL YFG 1 13.3-D1.1-J2.4 
YLCASS GDSYYNM YFG 1 15-D1.1-J2.7 
YFCASS DLGASAETL YFG 1 13.3-D1.1-J2.3 
YLCASS LDNERL FFG 1 16-D1.1-J1.4 

     
MOUSE 4 PBL   18  

YLCASS QTTNSDY TFG 1 4-D1.1-J1.2 
YLCAS RGHKYEQ YFG 1 13.3-D1.1-J2.7 
YFCAS GGTGEDYAEQ FFG 1 13.2-D1.1-J2.1 

YFCASS PRDWGGYEQ YFG 1 5-D2.1-J2.7 
YFCASS RDGNYAEQ FFG 1 5-D1.1-J2.1 
YLCAWS PDRGDTQ YFG 1 31-D1.1-J2.5 
YLCASS PTHQDTQ YFG 1 16-D1.1-J2.5 
YFCASS QEPSSGNTL YFG 1 5-D1.1-J1.3 
YLCAWS PGTGGWQNTL YFG 1 31-D2.1-J2.4 
YLCAW GNRDEQ YFG 1 31-D1.1-J2.7 
YLCAS GYGWGGNTL YFG 1 13.2-D2.1-J2.4 

YLCASS LELPL YFG 1 15-D1.1-J1.6 

YLCASS GPTGEDTQ YFG 1 13.2-D1.1-J2.5 
YFCASS RTGGAHEQ YFG 1 2-D2.1-J2.7 
YLCASS PLGVYEQ YFG 1 14-D2.1-J2.7 
YFCASS GDAGQNTL YFG 1 13.2-D1.1-J2.4 
YLCAWS LGQAGPYSDY TFG 1 31-D2.1-J1.2 
YFCASS GDQDTQ YFG 1 13.2-D1.1-J2.5 
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Table 3.5 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 5 

 CDR3  NUMBER TRBV-D-J 
MOUSE 5 ISLETS   21  

YLCASS LGQQDTQ YFG 2 15-D1.1-J2.5 
YLCAS RPGGRDYAEQ FFG 1 15-D2.1-J1.1 

YLCASS RLGETL  YFG 1 17-D2.1-J2.3 
YLCASS LNTEV FFG 1 15-D1.1-J1.1 
YCTCS GTGVNSPL YFG 1 1-D1.1-J1.6 
YCTCS AGADSGNTL YFG 1 1-D1.1-J1.3 

YLCASS LGDREDTQ YFG 1 16-D1.1-J2.5 
YFCASS PGGPDTQ YFG 1 5-D2.1-J2.5 
FLCASS PDRDEQ YFG 1 19-D1.1-J2.7 
YLCAWS LGGRAEQ FFG 1 31-D2.1-J2.1 
YFCAS GDARGENTEV FFG 1 13.2-D1.1-J1.1 

YLCASS LGGNTEV FFG 1 15-D2.1-J1.1 
YFCAS GDRQEYEQ YFG 1 13.2-D1.1-J2.7 
YFCAS GDGRQANERL FFG 1 13.2-D2.1-J1.4 

YFCASS LPGGSTEV FFG 1 2-D2.1-J1.1 
YLCASS TGGQYEQ YFG 1 16-D1.1-J2.7 
YFCASS DGTGGTGQL YFG 1 13.3-D1.1-J2.2 
YFCAS GDLGGRAEQ FFG 1 13.2-D2.1-J2.1 
YLCAW GTGGTYEQ YFG 1 31-D1.1-J2.7 
YLCASS FGLGGAEQ FFG 1 16-D2.1-J2.1 

     
MOUSE 5 PBL   24  

FLCASS KNRPGGNYDEQ FFG 1 19-D2.1-J2.1 
YFCASS PPGLGVYEQ YFG 1 13.3-D2.1-J2.7 
YCTCS LWGGDEQ YFG 1 1-D2.1-J2.7 
YFCAS GDKGADTQ YFG 1 13.2-D1.1-J2.5 
YFCAS GDRISNERL FFG 1 13.2-D1.1-J1.4 
YCTCS AGWGRMHEQ FFG 1 1-D1.1-J2.1 

YFCASS QTGSGNERL FFG 1 5-D1.1-J1.4 
YLCASS PGQGQ YFG 1 15-D1.1-J2.7 
YLCAS RRDWGGFEQ YFG 1 15-D2.1-J2.7 

YLCAWS SRDWGDEQ YFG 1 31-D2.1-J2.7 
YFCASS QGGTTNSDY TFG 1 2-D1.1-J1.2 
YFCASS PTGPNERL FFG 1 12-D1.1-J1.4 
YFCASS DALGTGTNTGQL YFG 1 5-D2.1-J2.1 
YFCASS QDLSYEQ YFG 1 5-D2.1-J2.7 
YFCASS PGGYQDTQ YFG 1 5-D1.1-J2.5 
YFCAS RDRNYNSPL YFG 1 29-D1.1-J1.6 

YFCASS QPGQGGYEQ YFG 1 5-D1.1-J2.7 
FLCASS PGTGSNTGQL YFG 1 19-D1.1-J2.2 
YLCASS PGLGENTL YFG 1 4-D2.1-J2.4 
YFCAS GDADYEQ YFG 1 13.2-D1.1-J2.7 

YLCASS LGGENTL YFG 1 16-D2.1-J2.4 
YCTCS APGTGVDTQ YFG 1 1-D1.1-J2.5 
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Table 3.6 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 6. 

 CDR3  NUMBER TRBV-D-J 
MOUSE 6 ISLETS   21  

YLCASS GTSNSDY TFG 1 13.3-D1.1-J1.2 
FLCASS MGTGPNERL FFG 1 19-D1.1-J1.4 
YCASS LSGSDY TFG 1 29-D1.1-J1.2 

YLCAWS SLGGNYAEQ FFG 1 31-D2.1-J2.1 
YLCAS RSKSSYEQ YFG 1 4-D1.1-2.7 

YFCASS QDNFQRNI FFG 1 2-D1.1-1.4 
YFCASS LGGAEQ YFG 3 12-D2.1-J2.7 
YLCASS PDRGQDTQ YFG 5 15-D1.1-J2.5 
YLCASS LAQGQGYEQ YFG 7 15-D1.1-J2.7 

     
MOUSE 6 PBL   20  

YLCASS LGAETL YFG 1 16-D1.1-J2.3 
YLCASS RTGGAAEQ FFG 1 20-D2.1-J2.1 
YLCASS WDRGGTEV FFG 1 16-D1.1-J1.1 
YFCAS GDATGSGNTL YFG 1 13.2-D1.1-J1.3 

YLCAWS RGLGGYAEQ FFG 1 31-D2.1-J2.1 
YFCASS DRGSAETL YFG 1 5-D1.1-J2.3 
YFCASS QDSSYEQ YFG 1 2-D1.1-J2.7 
YLCASS PLDWGDTQ YFG 1 4-D2.1-J2.5 
YFCASS GDPGSYAEQ FFG 1 2-D2.1-J2.1 
YLCASS PRDWGSEQ FFG 1 15-D2.1-J2.1 
YLCASS GDRGAGNTL YFG 1 13.2-D1.1-J1.3 
YLCASS GQGEQ YFG 1 14-D1.1-J2.7 
YFCASS DSGNSDY TFG 1 13.3-D1.1-J1.2 
YFCASS HSGTGRETQ YFG 1 5-D1.1-J2.5 
YFCAS GGTGEATGQL YFG 1 13.2-D1.1-J2.2 

YFCASS LWGELPDS FFG 1 13.2-D2.1-J1.5 
YLCASS LRGGDAETL YFG 1 14-D1.1-J2.3 
YFCAS GRGTGRQDTQ YFG 1 13.2-D1.1-J2.5 

YFCASS LRGRGTEV FFG 1 29-D1.1-J1.1 
YFCASS DLLVGPNQDTQ YFG 1 13.1-D2.1-J2.5 
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Table 3.7 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 7. 

 CDR3  NUMBER TRBV-D-J 
MOUSE 7 ISLETS   43  

YLCASS LAQGQGYEQ YFG 38 15-D1.1-J2.7 
YLCASS AGGNQAP LFG 1 4-D2.1-J1.5 
YFCASS TGVNQDTQ YFG 1 29-D1.1-J2.5 
YLCASS LGQQDTQ YFG 1 15-D1.1-J2.5 
YLCASS LDTGPNERL FFG 1 16-D1.1-J1.4 
YLCASS LARGDGTGQL YFG 1 15-D1.1-J2.2 

     
MOUSE 7 PBL   23  

YLCASS LDRDEQ YFG 1 15-D1.1-J2.7 
YLCASS RETGGAEQ FFG 1 17-D1.1-J2.1 
YLCASS TPGLGVEQ YFG 1 15-D2.1-2.7 
YFCASS QDVWGGVEQ YFG 1 5-D2.1-J2.7 
YLCASS LGQQDTQ YFG 1 15-D1.1-J2.5 
YLCAWS LPGQQDTQ YFG 1 31-D1.1-J2.5 
YLCASS PGLGGLAETL YFG 1 14-D2.1-J2.3 
YLCASS PQGATNERL FFG 1 4-D1.1-J1.4 
YLCASS RTGQEEQ YFG 1 15-D1.1-J2.7 
YFCASS AGTPISNESL FFG 1 13.1-D1.1-J1.4 
YCTCS AAWGYEQ YFG 1 1-D2.1-J2.7 

YLCAWS LGLGGREQ YFG 1 31-D2.1-J2.7 
YFCASS QAWGDYEQ YFG 1 5-D2.1-J2.7 
YFCASS QTGDYAEQ FFG 1 5-D2.1-J2.1 
YLCAWS PDWEQDTQ YFG 1 31-D2.1-J2.5 
YLCASS LSGGAREQ YFG 1 15-D2.1-2.7 
YLCASS GDAIQAP LFG 1 13.2-D1.1-J1.5 
YFCASS QDGGALGNTL YFG 1 2-D2.1-J1.3 
YFCASS GEPDSPL YFG 1 13.2-D2.1-J1.6 
YLCAS GETGVAEQ FFG 1 13.2-D1.1-J2.1 

YFCASS QETTGGNTGQL YFG 1 2-D1.1-J2.2 
YCTCS AESGGGNSPL YFG 1 1-D1.1-J1.6 
YCTCS ADWGSAETL YFG 1 1-D2.1-J2.3 
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Table 3.8 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 8. 

 CDR3  NUMBER TRBV-D-J 
MOUSE 8 ISLETS   25  

YLCAS GYRSNTGKL YFG 1 13.2-D1.1-J2.2 
YLCASS QNTL YFG 1 13.2-D2.1-J2.4 
YFCAS GVADQAP LFG 1 13.2-D1.1-J1.5 
YLCAS GYAGGGGEQ YFG 1 13.2-D2.1-J2.7 

YFCASS EGHTGQL YFG 1 13.3-D1.1-2.2 
YFCASS DAKDRGHERL FFG 1 13.3-D1.1-J1.4 
YFCASS QVRGDTQ YFG 1 5-D1.1-J2.5 
YFCASS QSGNYAEQ FFG 1 5-D1.1-J2.1 
YLCASS RDSSYEQ YFG 4 15-D1.1-J2.7 
YLCASS IVGFQDTQ YFG 1 16-D1.1-J2.5 
YLCASS LDEQGGYAEQ FFG 1 16-D1.1-J2.1 
YCTCS ADPWTGGQDTQ YFG 1 1-D2.1-J2.5 
YCTCS ADSDYEQ YFG 1 1-D2.1-J2.7 

YLCASS LAQGQGYEQ YFG 2 15-D1.1-J2.7 
YLCAWS LLAGGDTQ YFG 1 31-D2.1-J2.5 
YFCASS LANSQNTL YFG 1 29-D1.1-J2.4 
FLCASS DRGTGTGQL YFG 1 19-D2.1-J2.2 
YLCASS DRGGSDY TFG 1 13.1-D2.1-J1.2 
YFCASS HQDTQ YFG 1 2-D2.1-J2.5 
YFCASS HRDNYEQ YFG 1 2-D1.1-J2.7 
FLCASS DTSYNSPL YFG 1 19-D1.1-J1.6 

     
MOUSE 8 PBL   20  

YFCAS GDIQDTQ YFG 1 13.2-D1.1-J2.5 
YFCASS QKSGGCQNTL YFG 1 2-D1.1-J2.4 
YFCAR GSGTGVEQ YFG 1 13.2-D1.1-J2.7 
YFCASS VEGDKQ YFG 1 13.3-D2.1-J2.7 
YFCAS GDGRDWGGATETL YFG 1 13.2-D2.1-J2.3 
YFCAS GDAGANTGQL YFG 1 13.2-D1.1-J2.2 

YFCASS LPGTGNTEV FFG 1 13.3-D1.1-J1.1 
YLCG AIKNTGQL YFG 1 20-D1.1-J2.2 

YFCASS QQYEQ YFG 1 5-D1.1-J2.7 
YFCASS QKGTGGH YFG 1 5-D2.1-J2.7 
YCTCS AMGGLEQ YFG 1 1-D2.1-J2.7 
YCTCS DRDSQDTQ YFG 1 1-D1.1-J2.5 
YCTCS GGQYEQ YFG 1 1-D1.1-J2.7 

YLCASS LRTGQDTQ YFG 1 14-D2.1-J2.5 
YLCAWS DRVDNQAP LFG 1 31-D1.1-J1.5 
YLCASS LSGGALEQ YFG 1 15-D2.1-J2.7 
YLCASS PRDRGAEQ FFG 1 15-D1.1-J2.1 
YFCASS LANSQNTL YFG 1 29-D1.1-J2.4 
YLCASS PGERL FFG 1 4-D1.1-J1.4 
FLCASS IGRSSGNTL YFG 1 19-D2.1-J1.3 
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Table 3.9 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 9. 

 CDR3  NUMBER TRBV-D-J 
MOUSE 9 ISLETS   20  

YLCASS KTGGQNTL YFG 1 15-D1.1-J2.4 
YLCASS FRDRKDTQ YFG 1 16-D1.1-J2.5 
YFCASS QEGQLSNERL FFG 1 5-D1.1-J1.4 
YFCASS QSLNGQNTL YFG 1 2-D1.1-J2.4 
YFCSS RDLGGSTL YFG 1 30-D1.1-J2.4 

YLCASS PGGAGSDY TFG 1 15-D1.1-J1.2 
YLCAW RRGRGSYAEQ FFG 1 31-D1.1-J2.1 
YLCASS FWGGQDTQ YFG 1 16-D2.1-J2.5 
YLCASS LDNQDTQ YFG 1 15-D2.1-J2.5 
YCTCS AGQGAPGNTL YFG 1 1-D1.1-J1.3 

YFCASS RDWADTQ YFG 1 5-D2.1-J2.5 
YLCASS RDNNNQAP LFG 1 16-D1.1-J1.5 
YLCASS LLGGRDTQ YFG 1 16-D2.1-J2.5 
YLCASS SGGDTL YFG 1 15-D1.1-J2.4 
YLCASS LLGSYEQ YFG 1 15-D2.1-J2.7 
YFCASS QDNYPGQL YFG 1 2-D2.1-J2.2 
YCTCS APGQNTGQL YFG 1 1-D1.1-J2.2 

YFCASS QDSQDTG YFG 1 5-D1.1-J2.5 
YLCASS DRGAEV FFG 1 4-D1.1-J1.1 
YLCASS LGGYAEQ FFG 1 15-D1.1-D2.1 

     
MOUSE 9 PBL   23  

YFCASS QVRGHNERL FFG 1 2-D1.1-J1.4 
YLCASS LPAKTGPL YFG 1 15-D1.1-J2.2 
YLCASS PDWVNQDTQ YFG 1 16-D2.2-J2.5 
YLCASS YGRGANTKV FFG 1 4-D1.1-J1.1 
YLCASS GGARGYAEQ FFG 1 20-D2.1-J2.1 
YFCASS QDRDQAP LFG 1 5-D1.1-J1..5 
YLCASS PGQGHERL FFG 1 14-D1.1-J1.4 
YFCASS RRGAQDTQ YFG 1 3-D2.1-J2.5 
YFCASS VPGEDAEQ LFG 1 13.3-D1.1-J2.1 
YFCASS QGTGGVSNERL FFG 1 5-D1.1-J1.4 
YFCASS QDGGQGAETL YFG 1 5-D1.1-J2.3 
YLCASS TGTGYEQ YFG 1 4-D1.1-J2.7 
FLCASS IRISNERL FFG 1 19-D1.1-J1.4 
FLCASS LTGGDDAETL YFG 1 19-D1.1-J1.4 
FLCASS IRDKDTQ YFG 1 19-D1.1-J2.5 
YCTCS ADGGAGERL FFG 1 1-D2.1-J1.4 
YLCAS GEPGLGDQDTQ YFG 1 13.2-D2.1-J2.5 
YLCAS RGVGTDQDTQ YFG 1 13.2-D1.1-J2.5 

YLCASS QDADAEQ FFG 1 13.1-D1.1-J2.1 
YLCASS LDPGNERL FFG 1 16-D1.1-J1.4 
YLCASS GNYAEQ FFG 1 15-D1.1-J2.1 
YLCASS RERANTEV FFG 1 17-D1.1-J1.1 
YFCASS QDSAETL YFG 1 5-D1.1-J2.3 
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Table 3.10 

CDR3β analysis of g7-mBDC+ CD4+ T cells in PBL and islets from Mouse 10. 

 CDR3  NUMBER TRBV-D-J 

MOUSE 10 ISLETS   26  

YLCASS LAQGQGYEQ YFG 21 15-D1.1-J2.7 

FLCASS QGLGAYEQ YFG 1 19-D2.1-J2.7 

YFCASS QPTGGYEQ YFG 1 2-D1.1-J2.7 

YLCASS GETGSAETL YFG 1 13.2-D1.1-J2.3 

YLCAW AGLGGHQDTQ YFG 1 31-D2.1-J2.5 

YCTCS GDRDAETL YFG 1 1-D1.1-J2.3 

     

MOUSE 10 PBL   18  

YLCASS QDVSGNTL YFG 1 15-D1.1-J1.3 

YLCASS LGGGGGERL FFG 1 16-D1.1-J1.4 

YFCASS QDGTVYNSPL YFG 1 2-D1.1-J1.6 

YLCASS DRNSDY TFG 1 4-D1.1-J1.2 

YLCASS LDGTGRGNTL YFG 1 16-D1.1-J1.3 

YLCASS LEGQAP LFG 1 16-D1.1-J1.5 

YCTCS ATGTKDTQ YFG 1 1-D1.1-J2.5 

YLCASS LAGNEQ YFG 1 15-D1.1-J2.7 

YLCAS PGLYADTQ YFG 1 29-D2.1-J2.5 

YFCASS RTGGNERL FFG 1 5-D1.1-J1.4 

YCTCS LRDSYAEQ FFG 1 1-D2.1-J2.1 

YLCASS LGRADTQ YFG 1 15-D1.1-J2.5 

YLCASS LRDGVDTQ YFG 1 15-1.1-J2.5 

YLCAS RTGNDTL YFG 1 13.2-D1.1-J2.4 

YFCAS QGGWGEQ YFG 1 13.2-D2.1-J2.7 

YFCASS AGTDQDTQ YFG 1 13.1-D1.1-J1.4 

YLCAS QGGGRGVDTQ YFG 1 13.2-D2.1-J2.5 

YLCASS RQGTNSDY TFG 1 2-D1.1-J1.2 
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CHAPTER 4 

 

FUTURE PERSPECTIVES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4.1 sIAg7-Ig dimer administration: A potent strategy of peptide vaccination. 
 

   Peptide-based vaccination is one approach of antigen-specific immunotherapy that has 

proven to be effective in experimental models of autoimmunity including the NOD mouse 

and Tg models of T1D. Nevertheless, various aspects of peptide immunotherapy need to be 

improved to enhance efficacy and safety for clinical application. With this in mind, we 

established an approach based on administration of peptide-sIAg7-Ig recombinants. Recent 

work by the Bluestone group reported use of a similar sIAg7-Ig recombinant tethered to the 

mimetic BDC2.5 peptide P31 (Masteller, Warner et al. 2003). Administration of sIAg7-P31 

dimers blocked the capacity of activated BDC2.5 CD4+ T cells to transfer diabetes to T cell 

deficient NOD recipients. However, treatment of young NOD female mice with sIAg7-P31 

failed to prevent diabetes. This finding is consistent with our observation that administration 

of sIAg7-mBDC to 12 week-old NOD female mice also failed to block diabetes. On the other 

hand, sIAg7-p217 and sIAg7-p286 dimer vaccination of NOD female mice proved to be highly 

effective in suppressing the progression of insulitis and preventing diabetes at a late 

preclinical stage. Protection correlated with the induction of IL-10 secreting Tr1-like cells in 

agreement with work by Casares and colleagues, who used sIEd-HA dimers to induce HA-

specific Tr1 cells in a TCR Tg model of T1D (Casares, Hurtado et al. 2002).  

   A key issue that has yet to be addressed is the mechanism by which sIAg7-p217 and sIAg7-

p286 dimers preferentially promote the differentiation of IL-10 secreting Tr1 cells. 

Noteworthy is that Tr1 cells can be generated in vitro and in vivo by chronic antigen 

exposure (Roncarolo, Bacchetta et al. 2001; Sundstedt, O'Neill et al. 2003; Wakkach, 

Fournier et al. 2003). The relatively long in vivo persistence of sIAg7-Ig dimers coupled with 
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two courses of treatment may establish a similar state of chronic antigenic stimulation. Of 

particular interest will be the biochemical and transcriptional signals delivered by TCR 

following sIAg7-Ig dimer binding, and how these events promote a Tr1 cell phenotype. One 

possibility is that different T cell phenotypes are established based on the affinity/avidity of 

sIAg7-Ig binding, and in turn the quality and/or magnitude of  the signaling events. The latter 

may explain why sIAg7-mBDC dimers promote Th1 and Th2 cells, and Tr1 cells are induced 

by sIAg7-p217 and sIAg7-p286 dimers. In view of the fact that sIAg7-Ig induced protection is 

dependent on the identity of the β cell peptide, it will be of interest to determine which other 

epitopes presented in the context of a sIAg7-Ig dimer can mediate a sufficient 

immunoregulatory response. Of particular interest are the insulin B chain and proinsulin 

derived peptides which have been reported to induce protection in NOD mice via other 

modes of treatment (Liu, Abiru et al. 2002; Martinez, Augstein et al. 2003). Finally, 

experiments are needed to assess the general applicability of sIAg7-Ig dimer vaccination. For 

instance, sIAg7-p217 and sIAg7-p286 dimer treatment can be tested for inducing islet graft 

protection, or be employed as part of a combinatorial approach to induce diabetes remission.  

 

4.2 Characterization of autoreactive T cells in islet infiltrates. 

   A significant effort has gone on to define the specificities and TCR properties of 

diabetogenic T cells. Of particular interest has been the identity of the autoantigens and 

corresponding T clonotypes initiating β cell autoimmunity. Various observations suggest that 

insulin, proinsulin and GAD65 have key roles in the initial stages of β cell autoimmunity 

(Tisch, Yang et al. 1993; Wegmann, Norbury-Glaser et al. 1994; Krishnamurthy, Dudek et al. 

2006). However, work by Davis and colleagues indicates that CD4+ T cells recognizing other 
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β cell autoantigens and characterized by TCR expressing TRBV15 also reside in the islet 

infiltrates early in the diabetogenic response (Baker, Lee et al. 2002).  

 

   Our findings indicate that BDC2.5 clonotypic CD4+ T cells are detected in the earliest islet 

infiltrates, consistent with observations that a surprisingly high frequency of BDC+ 

CD4+CD8- SP thymocytes are found in 2 week old NOD mice (Jang, Seth et al. 2003; 

Stratmann, Martin-Orozco et al. 2003). We argue that g7-mBDC+ T cells establish conditions 

necessary for promoting the destructive phase of insulitis by mediating β cell injury needed 

for the recruitment of other diabetogenic T clonotypes. Two complementary approaches can 

be used to confirm this model. The first is to clonally delete g7-mBDC+ T cells, using for 

instance sIAg7-Ig molecules coupled to a toxin, and determine whether the progression of 

insulitis and the development of diabetes are inhibited. The second approach entails isolation 

of g7-mBDC+ T cells and adoptively transferring these T cells into young NOD male 

recipients; insulitis should be exacerbated and diabetes readily induced in the recipient mice 

based on our model.  

 

   Another major conclusion from our study is that there is preferential TCR usage by, and 

clonal expansion of g7-mBDC+ T cells residing in the islets but not PBL. Furthermore, the 

TCR repertoires are distinct between islet and PBL g7-mBDC+ T cells. We propose that the 

affinity/avidity of the TCR determine the pathogenic potential of the respective BDC2.5 

clonotypic T cells. For instance, g7-mBDC+ T cells found in the periphery are expected to be 

nonpathogenic, and express TCR of relatively low affinity/avidity. In contrast, g7-mBDC+ T 

cells infiltrating the islets are expected to be pathogenic, and express TCR of relatively high 
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affinity/avidity. This model can be tested in two ways. The first is to directly compare the 

diabetogenicity of g7-mBDC+ T cells isolated from the periphery versus the islets upon 

adoptive transfer into NOD.scid recipients. Secondly, the binding kinetics of soluble TCR 

cloned from peripheral versus islet infiltrating g7-mBDC+ T cells can be measured.  

 

   Our current analysis of TCR gene usage is limited to that found in 16 week-old NOD 

female mice. This analysis needs to be extended to NOD male mice, and to younger NOD 

female mice. In NOD male mice we would expect no or limited expansion of a given islet 

g7-mBDC+ T clonotype. Interestingly, 3/10 NOD female mice examined in our study fall into 

this category; it is tempting to speculate that these 3 female mice were destined to remain 

diabetes-free. In young NOD female mice, it will be of keen interest to determine how clonal 

expansion evolves. For instance, in younger NOD females we would predict limited if any 

obvious selection of a given clonotype. However, with age clonal selection will become 

increasingly more evident. Finally, analysis of TCR Vα gene usage by islet g7-mBDC+ T 

cells would aid in determining the relative contribution of Vβ gene segments such as 

TRBV15, in establishing the specificity of BDC2.5 clonotypic T cells.  
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Abstract 

β cell replacement via islet or pancreas transplantation is currently the only approach to cure 

type 1 diabetic patients. Recurrent β cell autoimmunity is a critical factor contributing to 

graft rejection along with alloreactivity. However, the specificity and dynamics of recurrent β 

cell autoimmunity remain largely undefined. Accordingly, we compared the repertoire of 

CD8+ T cells infiltrating grafted and endogenous islets in diabetic nonobese diabetic mice. In 

endogenous islets, CD8+ T cells specific for an islet-specific glucose-6-phosphatase catalytic 

subunit-related protein derived peptide (IGRP206–214) were the most prevalent T cells. Similar 

CD8+ T cells dominated the early graft infiltrate but were expanded 6-fold relative to 

endogenous islets. Single-cell analysis of the TCR α and β chains showed restricted variable 

gene usage by IGRP206–214-specific CD8+ T cells that was shared between the graft and 

endogenous islets of individual mice. However, as islet graft infiltration progressed, the 

number of IGRP206–214-specific CD8+T cells decreased despite stable numbers of CD8+ T 

cells. These results demonstrate that recurrent β cell autoimmunity is characterized by 

recruitment to the grafts and expansion of already prevalent autoimmune T cell clonotypes 

residing in the endogenous islets. Furthermore, depletion of IGRP206–214-specific CD8+ T 

cells by peptide administration delayed islet graft survival, suggesting IGRP206–214-specific 

CD8+ T cells play a role early in islet graft rejection but are displaced with time by other 

specificities, perhaps by epitope spread.  
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Introduction 

Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by the 

destruction of the insulinproducing pancreatic β cells. The nonobese diabetic (NOD) mouse 

spontaneously develops T cell-dependent β cell destruction (1–3). CD4+ T cells have an 

essential role in both regulating and mediating the diabetogenic response. It is also evident 

that autoreactive CD8+ T cells play an important role in β cell destruction (4). CD8+ T cell 

clones established from islet infiltrates of NOD mice mediate diabetes upon adoptive transfer, 

and diabetes is exacerbated in transgenic NOD mice expressing TCRs derived from 

pathogenic CD8+ T cell clones (5–7). In addition, NOD mice that lack CD8+ T cells, either 

by anti-CD8 Ab depletion (8) or a disrupted β2-microglobulin gene (9 –12), fail to develop 

diabetes. Finally, pancreatic infiltrates (insulitis) of diabetic patients have significant 

numbers of CD8+ T cells (13–16).  

 

A concerted effort has been made to elucidate the β cell specificities of CD8+ T cells 

involved in the pathogenesis of T1D. Early work showed that the TCR α-chain expressed by 

a high frequency of CD8+ T cells infiltrating the islets of NOD mice was shared with the 

pathogenic 8.3 CD8+ T cell clone (17). 8.3-like CD8+ T cells are specific for an H2Kd-

restricted epitope of isletspecific glucose-6-phosphatase catalytic subunit-related protein 

(IGRP206–214) and are detected with H2Kd (Kd) tetramers complexed with NRP mimotopes 

such as the high avidity NRP-A7 and NRP-V7 analogues (18 –20). Notably, selective 

expansion in peripheral blood and islets of high avidity/affinity NRP-A7- or NRPV7-specific 

clonotypes coincides with the onset of overt diabetes in NOD mice (19, 20). Peptides derived 

from the insulin B chain (InsB15–23) (21) and dystrophia myotonica kinase (DMK138–146) (22) 
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are also targeted in NOD mice by islet-infiltrating H2Kd- and H2Db-restricted CD8+ T cells, 

respectively. However, IGRP206–214- specific clonotypes typically predominate in the islets 

relative to InsB- and DMK-specific CD8+ T cells, especially at later stages of disease 

progression.  

 

Islet or pancreas transplantation offers a permanent treatment for diabetic individuals. 

Analogous to other transplants, genetic differences in HLA between donor and recipient 

promote islet and pancreas graft rejection. In addition, successful β cell engraftment in 

diabetic patients is further complicated by recurrent autoimmunity (23, 24). The importance 

of β cell-specific CD8+ T cells in recurrent autoimmunity is highlighted by studies 

demonstrating that MHC class I-deficient syngeneic islet grafts survive indefinitely in 

diabetic NOD mice (25, 26). However, the specificity of CD8+ T cells associated with 

autoimmune-mediated destruction of islet grafts is undefined. One possibility is that T cell 

clonotypes involved in the destruction of endogenous islets are also recruited to the islet graft. 

Alternatively, “new” β cell specificities may be targeted in the islet graft due to “exhaustion” 

of clonotypes driving endogenous β cell destruction. Distinguishing between these and other 

possible scenarios is important for understanding the mechanism of recurrent autoimmunity 

and the development of strategies for inducing islet graft tolerance. Accordingly, the current 

study was initiated to gain insight into the nature of β cell-specific CD8+clonotypes in 

autoimmune-mediated islet graft rejection. 
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Results 

IGRP206–214-specific CD8+ T cells predominate the early infiltrates of syngeneic islet 

grafts 

To gain insight into the mechanism of recurrent β cell autoimmunity, the specificity and 

frequency of CD8+ T cells that infiltrate grafted vs endogenous islets were measured. Initially, 

the predominate CD8+ clonotype(s) residing in the endogenous pancreas was assessed in 

nondiabetic 20-wk-old NOD female mice, which represent a late preclinical stage of T1D. 

ELISPOT was used to measure the relative frequency of IFN-γ-, IL-4-, and IL-10-secreting 

CD8+ T cells specific for a panel of known β cell autoantigenic epitopes. This included 

IGRP206–214 and the corresponding NRP-V7 mimotope, in addition to InsB15–23, and DMK138–

146. H2Kd-restricted peptides derived from ProInsB25-C34 (37) and GAD65 (GAD65546–554) (38) 

were also tested. Pooled pancreatic islets from groups of four 20-wk-old NOD female mice 

were cultured for 3 days in IL-2-containing medium. Lymphocyte infiltrates were harvested 

and stimulated in vitro with the panel of peptides. IFN-γ-secreting CD8+ T cells were 

detected in response to IGRP206–214 and NRP-V7, but not InsB15–23, DMK138–146, ProInsB25-C34, 

GAD65546–554, or the control influenza NP peptide (Fig. 1A). No IL-4 or IL-10-secreting T 

cells were detected above background in response to any of the peptides tested. Similar 

results were obtained when lymphocyte infiltrates isolated from islets of individual 20 wk-

old NOD female mice were examined (data not shown). Consistent with the ELISPOT data, 

H2Kd tetramers complexed with NRP-V7 (Kd-NRPV7) bound CD8+ T cells from islets 

prepared from four individual nondiabetic 20-wk old NOD female mice (Fig. 1B). Kd-

NRPV7 bound 7.9 ± 2.8% of islet-infiltrating CD8+ T cells, whereas only minimal binding 

was observed with Kd-InsB15–23 (0.7± 0.3%) or Kd-NP (0.4 ± 0.1%) (Fig. 1B). Kd-NRPV7+ 
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CD8+ T cells were also detected in the pancreatic lymph nodes (PLN) (0.4 ± 0.1%) and 

spleen (0.5 ± 0.2%), albeit at lower frequencies than that seen in the islets (Fig. 1B). Because 

increased binding to CD8+ T cells prepared from 8.3 TCR NOD transgenic mice was 

detected for Kd-NRPV7 compared with Kd tetramer complexed with IGRP206–214 (Kd-IGRP) 

(data not shown), NRP-V7 tetramers were used in subsequent experiments to detect IGRP206–

214-specific clonotypes ex vivo.  

 

The aforementioned results indicated that IGRP206–214-specific CD8+ T cells were the most 

prevalent of the known MHC class I-restricted β cell-specificities in the islets; therefore, 

efforts initially focused on Kd-NRPV7 binding in syngeneic islet grafts. Recent onset diabetic 

NOD female mice were transplanted with islets prepared from NOD.scid donor mice. 

Recurrent diabetes was typically detected ~2 wk postimplantation. The infiltrates from 

grafted and endogenous islets were compared 7 days postimplantation within individual 

recipients. Strikingly, a marked increase in the frequency of Kd-NRPV7+ CD8+ T cells was 

detected in islet grafts (42.1%) (Fig. 2A) compared with the endogenous islets (8.9%) (Fig. 

2B). Few Kd-NRPV7+ CD8+ T cells were detected in the draining renal lymph node (0.7%), 

PLN (0.9%), or spleen (1.4%) of islet graft recipients (Fig. 2, C–E). In 10 recipients analyzed, 

a >6-fold increase in the frequency of Kd-NRPV7+ CD8+ T cells was detected in grafted vs 

endogenous islets ( p = 0.003) (Fig. 2F). Minimal staining (0.6%) was observed using the 

control Kd-NP tetramer in all samples analyzed. Furthermore, no significant staining above 

background was detected with Kd-InsB (0.8 ± 0.3%) or Kd-ProIns (0.6 ± 0.2%) tetramers. 

Consistent with a role as effector cells, 98% of Kd-NRPV7+ CD8+ T cells infiltrating the islet 

graft were CD62LlowCD44high (data not shown). 
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The marked increase in Kd-NRPV7+ CD8+ T cells infiltrating the transplant was dependent 

on H2Kd expression by the islet graft. In diabetic NOD (H2DbKd) recipients of BALB/c 

(H2DdKd) islets, a 5-fold increase of Kd-NRPV7+ CD8+ T cells was detected in grafted (13.9 

± 0.9%) vs endogenous (2.8 ± 1.0%) islets ( p = 0.003) (Fig. 3). In contrast, in NOD 

recipients of FVB (H2DqKq) islets, Kd-NRPV7+ CD8+ T cells were detected in the graft, but 

the frequency of tetramer binding CD8+ T cells was equivalent to that detected in the 

endogenous islets (2.7 ± 0.6% vs 3.3 ± 1.9%, respectively) (Fig. 3). These results 

demonstrate that IGRP206–214- specific CD8+ T cells dominate the early infiltrate of syngeneic 

islet grafts, and that the frequency of this set of clonotypes is significantly expanded in grafts 

compared with the endogenous islets.  

 

The TCR repertoire of IGRP206–214-specific CD8+ T cells in grafted and endogenous islet 

infiltrates is restricted and shared 

To determine the diversity of IGRP206–214-specific CD8+ T cells residing in grafted vs 

endogenous islets, the TCR repertoire of Kd-NRPV7+ CD8+ T cells was examined in four 

individual recipients 7 days postimplantation via single-cell sorting and RT-PCR. A total of 

53 Vα TCR sequences were analyzed from Kd- NRPV7+ CD8+ T cells isolated from grafted 

and endogenous islets, all of which used the Vα17-Jα42 segment (IMGT nomenclature, 

TRAV16-TRAJ42) characteristic of IGRP206–214-specific clonotypes with a conserved N 

junction. Analysis of the TCR β -chain revealed preferential usage of Vβ 8.1 (TRBV13–3), 

and Jβ 2.4 (TRBJ2–4) and Jβ 2.7 (TRBJ2–7) (Fig. 4, A and B). Alignment of the CDR3β 

segments indicated a restricted number of T cell clones in each recipient, with one or two 
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dominant clonotypes comprising up to 87% of Kd-NRPV7+ CD8+ T cells analyzed (Fig. 4C). 

Notably, these clonotypes were found to be dominant in both grafted and endogenous islets 

of individual recipients (Fig. 4C). However, when the TCR repertoires of Kd-NRPV7+ CD8+ 

T cells were compared among the recipients, different sets of clones were detected in each 

recipient (Fig. 4C). The identity of the dominant clones also differed among the four 

recipient mice analyzed. Indeed, only two clonotypes with the respective CDR3β usage of 

SDSQNTL and SDGTYEQ were repeatedly observed (Fig. 4C). Taken together, these results 

indicate that in diabetic NOD mice, the TCR repertoire of IGRP206–214-specific CD8+ T cells 

infiltrating grafted and endogenous islets is shared and limited to a few dominant clonotypes.  

Furthermore, clonotypic variation exists within IGRP206–214-specific CD8+ T cells among 

individual recipient mice. 

 

The specificity of CD8+ T cells infiltrating an islet graft variesin a temporal manner 

Next, the frequency of Kd-NRPV7+ CD8+ T cells was examined shortly before graft failure. 

The percentage of Kd-NRPV7+ CD8+ T cells present in the grafted islets was significantly 

reduced by day 13 postimplantation (Fig. 5A). An average of 4.7 ± 1.1% of CD8+ T cells 

bound Kd-NRPV7 tetramers compared with 24.1 ± 4.3% in infiltrates of day 7 grafted islets 

( p = 0.001). The former was not significantly expanded compared with that detected in the 

endogenous islets (2.9 ± 1.6%). To determine whether this reduction was attributed to an 

influx of non-Kd-NRPV7+ CD8+ T cells, the number of CD4+, CD8+, and Kd-NRPV7+ CD8+ 

T cells present within the grafted and endogenous islets was analyzed. A 7-fold increase in 

CD4+ T cells was observed in the islet graft infiltrates between days 7 and 13 ( p = 0.006) 

(Table I). In comparison, the number of CD8+ T cells increased only slightly (1.5-fold) 
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during this period. Strikingly, there was a 3-fold decrease in the number of Kd-NRPV7+ 

CD8+ T cells detected between days 7 and 13 in the grafted islets ( p = 0.02) despite a 

relatively constant number of CD8+ T cells in the islet graft. Furthermore, the number of Kd-

NRPV7+ CD8+ T cells found in grafted and endogenous islets at 13 days postimplantation 

was equivalent (Table I). In contrast, at day 7 postimplantation, the number of Kd- NRPV7+ 

CD8+ T cells was increased >5-fold compared with the endogenous islets (Table I). No 

significant change in T cell numbers was observed in the endogenous islet infiltrates of the 

recipient mice between the two time points (Table I). The reduction of Kd-NRPV7+ CD8+ T 

cells in grafted islets could not be attributed to the influx of InsB-specific or ProIns-specific 

CD8+ T cells, as staining with Kd-InsB (0.7 ± 0.1%) and Kd-ProIns (0.4 ± 0.3%) tetramers, 

respectively, was not significantly above that detected with Kd-NP tetramers (0.4 ± 0.04%). 

Similar to results observed at 7 days postimplantation, there was a preferential usage of 

Vβ8.1 (TRBV13–3) with Jβ2.4 (TRBJ2–4) or Jβ2.7 (TRBJ2–7) among Kd-NRPV7 binding 

CD8+ T cells sorted from 13-day grafted and endogenous islets (Fig. 5, B and C). The TCR 

clonotypes of Kd-NRPV7 binding CD8+ T cells detected in the grafted and endogenous islets 

were represented at similar frequencies (Fig. 5D), and the identity of the dominant 

clonotype(s) varied among the recipient mice. Collectively, these results demonstrate that the 

TCR repertoire of IGRP206–214-specific CD8+ T cells remains constant as islet graft 

destruction progresses, but that the number of these CD8+ T cells declines.  

 

Depletion of IGRP206–214-specific CD8+ T cells delays islet graft rejection 

Because IGRP206–214-specific CD8+ T cells dominated the early pool of graft-infiltrating 

CD8+ T cells, whether survival of the transplanted islets could be enhanced by depleting 
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these T cells was investigated. For this purpose, high doses of soluble peptide were 

administered. Injections of soluble IGRP206–214 or NRP-V7 peptides were equally effective in 

near complete depletion of Kd- NRPV7+ CD8+ T cells (data not shown). Diabetic NOD mice 

were injected i.v. three times with soluble IGRP206–214 in PBS on 2, 4, and 6 days before islet 

implantation. Two more peptide immunizations were given at 5 and 12 days postislet 

implantation to ensure continued depletion. Circulating levels of Kd-NRPV7+CD8+ T cells in 

peripheral blood before islet transplantation were significantly reduced after IGRP206–214 ( p 

= 0.002) but not HA peptide immunization (Table II). The frequency of Kd-NRPV7+ CD8+ T 

cells was also markedly reduced (0.3%) in graft infiltrates of IGRP206–214-treated recipient 

mice examined 7 days postislet implantation. This indicates that IGRP206–214 treatment 

effectively depleted Kd-NRPV7+ CD8+ T cells in peripheral blood and prevented infiltration 

of IGRP206–214-specific CD8+ T cells into the islet grafts. 

 

The duration of graft survival in untreated and HA peptidetreated transplant recipients was 

not significantly different, with median graft survival of 15 and 12 days, respectively (Fig. 6). 

In contrast, islet graft survival in IGRP206–214-treated mice was delayed with a median of 31 

days (five mice per treatment group, p= 0.05, IGRP206–214 vs untreated; p= 0.03, IGRP206–214 

vs HA; log-rank test) (Fig. 6). One IGRP206–214 treated-mouse remained euglycemic at 67 

days postimplantation when the experiment was terminated. Recurrent diabetes in the 

remaining four IGRP206–214-treated mice was not due to reappearance of Kd-NRPV7+ CD8+ T 

cells. For example, a reduced number of Kd-NRPV7+ CD8+ T cells was detected in islets 

implanted in IGRP206–214 vs HA treated recipient mice ( p = 0.04) at the time of onset of 

recurrent diabetes (Table II). No significant binding with Kd-InsB15–23 (0.5 ± 0.3%) or Kd-
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ProInsB (0.2 ± 0.1%) tetramers was detected in the graft infiltrates of IGRP206–214-treated 

recipients. These findings demonstrate that depletion of IGRP206–214-specific CD8+ T cells 

delays islet graft rejection. 

 

Discussion 

Established autoimmunity in diabetic islet (or pancreas) transplant recipients is an important 

factor contributing to the failure of subsequent β cell engraftment (23–26). CD4+ and CD8+ T 

cells have been reported to mediate autoimmune destruction of both allogeneic and syngeneic 

islet grafts (25, 26, 39–41). To develop effective strategies to induce and monitor islet 

transplantation tolerance in the clinic, knowledge of the β cell epitopes targeted by T cells 

and the dynamics of autoimmune-mediated destruction of an islet graft is needed. In the 

current study, these issues were examined by comparing the repertoire of β cell-specific 

CD8+ T cells found infiltrating grafted and endogenous islets in diabetic NOD recipient mice. 

 

A key observation made in this study is that autoimmune destruction of islet grafts is 

mediated by a restricted repertoire of β cell-specific CD8+ T cells, which in turn evolves in a 

time-dependent manner. IGRP206–214-specific CD8+ T cells predominated in graft infiltrates 7 

days postimplantation with up to 42% of infiltrating CD8+ T cells binding Kd-NRPV7 

tetramer (Fig. 2). Attempts to assess graft infiltrates at earlier posttransplantation times were 

unsuccessful due to insufficient T cell numbers. Detection of IGRP206–214-specific CD8+ T 

cells in the islet grafts is consistent with reports demonstrating the importance of this set of 

clonotypes in mediating the progression of β cell destruction in endogenous islets (19, 20). 

The frequency of Kd-NRPV7+ CD8+ T cells at 7 days postimplantation represented an >6-
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fold increase in grafted vs endogenous islets (Fig. 2). Expansion of IGRP206–214-specific 

CD8+ T cells was dependent on H2Kd expression by the transplanted islets. For example, a 

significant increase in Kd-NRPV7+ CD8+ T cells compared with endogenous islets was 

detected in BALB/c (H2Kd) but not FVB (H2Kq) islets (Fig. 3). This increase in Kd-NRPV7+ 

CD8+ T cells is likely due to direct and indirect presentation of the IGRP206–214 epitope by 

H2Kd expressing donor β cells and APC residing in the graft, respectively. Albeit reduced 

relative to NOD and BALB/c islets, a significant frequency of Kd-NRPV7+ CD8+ T cells was 

also detected in infiltrates of MHC mismatched FVB islets (Fig. 3). This result suggests that, 

in fully MHC mismatched islet grafts, autoimmunemediated destruction occurs via cross-

presentation and –priming by recipient APC. Notably, the frequency and number of Kd-

NRPV7+ CD8+ T cells varied in a temporal manner despite a relatively constant number of 

CD8+ T cells during infiltration and destruction of syngeneic islet grafts. For instance, a >3-

fold reduction in the number of Kd-NRPV7+ CD8+ T cells was detected in NOD islet grafts 

13 vs 7 days postimplantation (Table I). The progressive loss of Kd-NRPV7+ CD8+ T cells 

suggests that IGRP206–214-specific CD8+ T cells are recruited into the islet graft from a finite 

pool, and undergo expansion and subsequent contraction. A similar profile of expansion and 

contraction was detected in islet grafts after adoptive transfer of CD8+ T cells isolated from 

8.3 TCR NOD transgenic mice (C. P. Wong and R. Tisch, unpublished results). The above 

findings also suggest that inter- (and intra-) molecular epitope spread occurs in an ordered 

progression during islet graft destruction. By 13 days postimplantation, IGRP206–214-specific 

CD8+ T cells are displaced as a major set of clonotypes in the islet graft by other CD8+ T 

cells that, however, do not include either InsB15–23- and ProInsB25-C34-specific CD8+ T cells. 

The specificity and diversity of these additional clonotypes are of obvious interest, and need 
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to be defined. These results suggest a scenario in which IGRP206–214-specific CD8+ T cells 

promote early autoimmune destruction of islet grafts and subsequent epitope spread. Indeed, 

a delay (albeit short-lived) was detected in the onset of recurrent diabetes in islet graft 

recipient mice treated with high doses of soluble peptide (Fig. 6) and depleted of IGRP206–214-

specific CD8+ T cells (Table II). This delay in islet graft rejection may reflect the recruitment 

and/or differentiation of sufficient numbers of other pathogenic effectors. These results also 

indicate that islet graft rejection can be mediated in the absence of IGRP206–214-specific CD8+ 

T cells.  

 

Single-cell analysis of TCR Vα and Vβ gene usage by Kd-NRPV7+ CD8+ T cells 

demonstrated that the immunodominant clonotypes mediating β cell destruction in the 

endogenous islets were also recruited to the islet grafts. All of the sorted Kd-NRPV7+ CD8+ T 

cells expressed the canonical Vα17-Jα42 element characteristic of IGRP206–214-specific 

clonotypes (17, 36). However, as determined by CDR3β sequences, up to two dominant 

clonotypes were detected in the endogenous islets that, in turn, were also found to dominate 

the islet graft of an individual recipient (Figs. 4 and 5). The diversity of these 

immunodominate clonotypes may in fact be greater based on recent findings by Santamaria 

and colleagues (42) showing that three different Vα17 elements are used by IGRP206–214-

specific clonotypes. Due to the positioning of primers used in our study, the sequence 

spanning CDR1α that contains the respective substitutions in the Vα17 elements could not 

be determined. These findings indicate that the IGRP206–214-specific CD8+ T cells driving 

early islet graft infiltration are recruited from an already established pool of effector and/or 

memory T cells as opposed to naive precursors. Immunodominance within the islet graft is 
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likely to be established by clonotypes found at a relatively high frequency and/or exhibiting 

increased avidity/affinity. Indeed, progression toward overt diabetes in NOD mice 

corresponds with the expansion of IGRP206–214-specific CD8+ T cells having increased 

vidity/affinity (20). However, whether recruitment of other β cell-specific clonotypes to the 

islet graft follow the same “rules” as IGRP206–214-specific CD8+T cells remains to be 

determined.  

 

In summary, autoimmune destruction of islet grafts is characterized by a restricted repertoire 

of β cell-specific CD8+ T cells, and an apparent ordered progression of epitopes that are 

targeted. Early infiltrates are dominated by established effector and/or memory IGRP206–214-

specific CD8+ T cells that are needed for efficient islet graft rejection. Finally, tolerogenic 

strategies targeting graft-infiltrating β cell-specific CD8+ T cells may prove to be of 

significant clinical value in preventing recurrent autoimmunity in islet transplantation. 

 

Materials and Methods 

Mice 

NOD/LtJ, NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa (8.3 TCR transgenic), and 

NOD.CB17.Prkdcscid/J (NOD.scid) mice were bred and housed under specific pathogen-free 

conditions. Diabetes was monitored weekly by measuring urine glucose levels with Diastix 

(Bayer). Mice were diagnosed as diabetic when the level of urine glucose exceeds 0.25% for 

two successive measurements according to manufacturer’s guidelines. A urine glucose level 

of 0.25% is equivalent to a blood glucose value of >250 mg/dl as determined by an Autokit 

Glucose CII assay (WAKO) (data not shown). BALB/c and FVB/J mice were bred and 
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housed in filter-covered isolator cages. Animals were maintained at an American Association 

of Laboratory Animal Care-accredited animal facility. All procedures were reviewed and 

approved by the University of North Carolina Institutional Animal Care and Use Committee. 

 

Peptides 

MHC class I peptides NRP-V7 (KYNKANVFL), IGRP206–214 (VYLKTNVFL), GAD546–

554 (SYQPLGDKV), InsB15–23 (LYLVCGERG), InsBG9V(LYLVCGERV), proinsulin 

(ProInsB25-C34; FYTPMSRREV), DMK138–146 (FQDENYLYL), influenza-derived 

hemagglutinin (HA512–520,IYSTVASSL), and nucleoprotein (NP147–155, TYQRTRALV) 

were synthesized at the University of North Carolina Peptide Synthesis Core Facility. The 

InsB-G9V peptide was modified from its native sequence to increase MHC class I stability 

(27).  

 

Tetramers, Abs, and flow cytometry 

H2Kd tetramers were prepared as described (28). Briefly, peptide/MHC monomers were 

purified by HPLC and biotinylated using biotin-protein ligase (Avidity). Tetramers were 

assembled by conjugating MHC monomers with streptavidin-PE (Molecular Probes). 

Fluorescent-conjugated antimouse mAbs used for cell surface staining include anti-CD4 

purchased from BD Pharmingen, and anti-CD3, anti-CD8, anti-CD62L, and anti-CD44 

purchased from eBioscience. Single-cell suspensions from spleens, lymph nodes, islets, and 

islet grafts were prepared in PBS. Peripheral blood was collected via the tail vein and RBC 

lysed where appropriate. T cells were costained with tetramers and Abs in PBS containing 

3% FBS, 10 mM HEPES, and 1 mM EDTA for 1 h on ice. Flow cytometry data were 
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acquired on FACSCalibur (BD Biosciences) and analyzed using Summit software 

(DakoCytomation). For all tetramer analyses, CD8+ T cells were gated based on forward and 

side scatter and CD3 and CD8 expression. For single-cell analyses, Kd-NRPV7 tetramer-

binding CD8+ T cells were sorted by a MoFlo high-speed sorter (DakoCytomation) into 25 ul 

of RT-PCR buffer at one cell per well of a 96-well PCR plate (USA Scientific), and the RT-

PCR was performed immediately (see third paragraph below). All flow cytometry analyses 

and single-cell sorting were performed at the University of North Carolina Flow Cytometry 

facility. 

 

Pancreatic islet isolation 

Pancreases were perfused with 0.2 mg/ml Liberase (Roche) and digested for 30 min at 37°C. 

Islets were purified via Ficoll gradient and handpicked. For flow cytometry analysis, freshly 

isolated islets were dissociated into a single-cell suspension using enzyme-free cell 

dissociation solution (Sigma-Aldrich) before staining. Alternatively, islets were cultured 

overnight in RPMI 1640 containing 10% FBS and 4 ng/ml recombinant murine IL-2 

(PeproTech). Lymphocytes infiltrating the islets were collected and cellular debris was 

removed by 70-um nylon filters. For ELISPOT, islets were cultured up to 3 days in IL-2-

containing medium before use.  

 

Islet transplantation and graft harvest 

Recent onset diabetic NOD female mice received daily insulin injections until the day of 

transplantation. Recipients were transplanted within 2 wk of glycosuria. Five hundred freshly 

isolated syngeneic (NOD.scid) or allogeneic (BALB/c or FVB) islets were transplanted under 
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the renal capsule of the left kidney. Urine glucose levels were monitored daily 

posttransplantation. Successful islet engraftment was defined as restoration of glycemic 

control for a minimum of 7 days. Graft failure was defined as glycosuric values exceeding 

0.25% (>250 mg/dl blood glucose) for two successive measurements. At 7 or 13 days 

posttransplantation, or shortly after graft failure, the area of kidney containing the visible 

islet graft was dissected. A single-cell suspension of the islet graft was prepared by lysing 

RBC, removing debris using a 70-um nylon filter, and resuspending in FACS buffer for flow 

cytometric analysis. For a negative control, a similar sized tissue sample was dissected from 

the nontransplanted kidney and processed accordingly. 

 

Single-cell RT-PCR and TCR repertoire analyses 

TCR usage was analyzed by a single-cell PCR protocol previously described (29) with the 

following modifications. Single-cell RT-PCR was performed using a Qiagen OneStep RT-

PCR kit (Qiagen) according to the manufacturer’s protocol. A panel of primers specific for 

all known TCR α-or β-chain variable regions and respective constant regions were used for 

reverse transcription and first-round PCR amplification. RT-PCR amplicons (2.5 ul) were 

used as templates for second-round PCR amplification using a panel of nested TCR α- or β-

chain-specific primers. All oligonucleotides were synthesized at the Nucleic Acids Core 

Facility at the University of North Carolina. PCR products were treated with Exonuclease 

(NEB Biolabs) and shrimp alkaline phosphatase (Roche), and sequenced at the University of 

North Carolina Genome Analysis Facility. TCR sequence alignments were performed using 

Sequencher software (Gene Codes). TCR α- and β-chain (TRA and TRB, respectively) gene 

family usage was identified and assigned using the international ImMunoGeneTics (IMGT) 
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information system (http://imgt.cines.fr; Refs. 30–35) and former nomenclature based on 

Arden et al. (36). 

 

ELISPOT 

ELISPOT plates (Millipore) were coated overnight at 4°C with purified rat anti-mouse 

cytokine Abs in PBS (anti-IFN-γ, anti-IL-4, or anti-IL-10) (BD Pharmingen). Plates were 

seeded with islet-infiltrating lymphocytes at 1 x 104 cells per well in HL-1 medium 

(BioWhittaker), and 5 x 105 irradiated splenocytes were added. Peptides were added at a final 

concentration of 10 ug/ml. Cultures were incubated for 24 h at 37°C. Cells were removed by 

washing, and the plates were incubated with the appropriate biotinylated anti-mouse cytokine 

Abs overnight at 4°C. Plates were then washed, incubated with streptavidin-HRP (BD 

Pharmingen) for 2 h at room temperature, and developed using a 100-mM sodium acetate 

buffer containing 0.3 mg/ml 3-amino-9-ethylcarbazole (Sigma-Aldrich) and 0.015% 

hydrogen peroxide. An ImmunoSpot plate reader (Cellular Technology) was used to count 

the spot-forming cells (SFC) per well. 

 

Peptide immunization 

Diabetic NOD mice were immunized i.v. with 200 ug of IGRP or HA peptide in PBS. A total 

of five immunizations were given at 2, 4, and 6 days before islet implantations, and at 5 and 

12 days postimplantation. Levels of IGRP206–214-specific CD8+ T cells in peripheral blood 

were determined by flow cytometry before the first peptide immunization and after the third 

injection before islet transplantation using Kd-NRPV7 tetramer. Alternatively, peptide-treated 

diabetic NOD mice received islet grafts, and islet 
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infiltrates were analyzed 7 days postimplantation.  

 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism (GraphPad Software). Values of p 

were calculated using Student’s t test. Survival curves were compared using Kaplan Meier 

log-rank test. 
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FIGURE 1. IGRP206–214-specific CD8+ T cells are the prevalent cell-specific clonotypes in 
the islets of 20-wk-old NOD female mice. A, Pooled islet T cell infiltrates from four 20-wk-
old NOD female mice were expanded in IL-2-containing medium. ELISPOT was used to 
measure the frequency of IFN- -secreting T cells upon restimulation with a panel of MHC 
class I-restricted peptides (NP, NRP-V7, IGRP206–214, InsB15–23, GAD546–554, ProInsB25-C34, 
and DMK138–146). IFN- -specific SFC per 10,000 islet-infiltrating lymphocytes is shown after 
subtraction of background (approximately six SFC) in medium-only wells. Data are 
representative of four separate experiments. B, The average percentage (±SEM) of Kd-
NRPV7+ ( ) and Kd-InsB15–23

+ ( ) CD8+ T cells isolated from islet infiltrates, PLN, and 
spleens of four individual 20-wk-old NOD female mice was determined. Kd-NP served as a 
negative control ( ). 
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FIGURE 2. Kd-NRPV7+ CD8+ T cells dominate the early infiltrates of syngeneic islet grafts. 
Representative Kd-NRPV7 staining profiles in a diabetic NOD female mouse transplanted 
with a syngeneic islet graft. The frequencies of Kd-NRPV7+ CD8+ T cells in islet graft (A), 
endogenous islets (B), draining renal lymph node (C), PLN (D), and spleen (E) were 
analyzed 7 days postimplantation. Numbers indicate percentage of tetramer-positive CD8+ T 
cells. The percentage of staining using control Kd-NP tetramer was <0.6%. F, Average 
percentage (±SEM) of Kd-NRPV7+ CD8+ T cells in grafted islets ( ) and endogenous islets 
( ) in 10 diabetic transplant recipients (*, p = 0.003, Student’s t test). 
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FIGURE 3. Kd-NRPV7+ CD8+ T cells are detected in islet allografts. Diabetic NOD female 
mice were transplanted with partially mismatched BALB/c islets (H2DdKd) or fully 
mismatched FVB islets (H2DqKq). The frequencies of Kd-NRPV7+ CD8+ T cells in 
endogenous ( ) and grafted ( ) islets were analyzed 7 days postimplantation. Numbers 
indicate the average percentage (±SEM) of Kd-NRPV7+ CD8+ T cells from three recipients 
per group. The percentage of staining using control Kd-NP was <0.6%. *, p = 0.0013, grafted 
BALB/c islets vs endogenous islets, Student’s t test. 
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FIGURE 4. A restricted TCR repertoire of Kd-NRPV7+ CD8+ T cells is detected in grafted 
and endogenous islets. The TCR β-chain repertoire of Kd-NRPV7+ CD8+ T cells present in 
the endogenous and grafted islets in individual transplant recipients were compared using 
single-cell RT-PCR. Kd-NRPV7+ CD8+ T cells in endogenous islets ( ) and grafted islets ( ) 
were analyzed 7 days postimplantation for V β (A) and J β (B) gene usage. Vβ 2, Vβ 6, Vβ 
8.1, Vβ 10, and Vβ 16 correspond to IMGT nomenclature of TRBV1, TRBV19, TRBV13–3, 
TRBV4, and TRBV3, respectively. Data represent averaged percentages derived from four 
islet recipients. C, Comparison of CDR3β usage of Kd-NRPV7+ CD8+ T cells in the 
endogenous islets and grafted islets from four individual transplant recipients. A total of 27, 
14, 23, and 50 CDR3β sequences were analyzed from the endogenous islets of recipients 1–4, 
respectively. TCR sequences were compared with a total of 25, 14, 23, and 15 CDR3β 
sequences derived from the grafted islets of the respective recipients. 
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FIGURE 5. The frequency of Kd-NRPV7+ CD8+ T cells decreases as islet graft destruction 
progresses but the TCR repertoire remains constant. The frequency of Kd-NRPV7+ CD8+ T 
cells in endogenous ( ) and grafted ( ) islets in diabetic islet recipients was analyzed 13 days 
postimplantation (n = 8) A, The percentage of staining using control Kd-NP was <0.5%. The 
TCR β-chain repertoire of Kd-NRPV7+ CD8+ T cells present in grafted and endogenous islets 
from individual transplant recipients was determined using single-cell RT-PCR at 13 days 
postimplantation. Averaged frequencies of Vβ (B), Jβ (C), and CDR3β (D) gene usage of 
sorted Kd-NRPV7+ CD8+ T cells from four recipients are shown. Vβ8.1, Vβ8.3, Vβ10, and 
Vβ16 correspond to IMGT nomenclature of TRBV13–3, TRBV13–1, TRBV4, and TRBV3, 
respectively. A total of 11, 14, and 13 CDR3β sequences were analyzed from the endogenous 
islets of recipients 1, 3, and 4, respectively. TCR sequences were compared with a total of 28, 
51, 36, and 20 CDR3β sequences derived from the grafted islets of the recipients 1–4, 
respectively. ND, Not done, islets were not recovered from recipient two for analysis. 
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Table I. CD4+, CD8+, and Kd-NRPV7+ CD8+ T cells present in islet grafts and endogenous 
islets at 7 and 13 days posttransplantation  

Islet Graft (absolute 
number per 10,000 gated 

events)a

Endogenous Islets 
(absolute number per 
10,000 gated events)a

 

Days 
Posttransplantation CD4+ CD8+

CD8+ 
Kd-

NRPV7+ CD4+ CD8+

CD8+ 
Kd-

NRPV7+

 
Day 7 655 

(±241) 
826 

(±207)
153 

(±29) 
3679 

(±690)
1390 

(±340)
31 (±8)     

Day 13 4731 
(±707) 

1275 
(±130)

45 (±3) 3410 
(±808)

1390 
(±259)

38 (±7)     

 

a Data represents averaged events (±SEM) from three recipient mice at each time point. A 
total of 10,000 events were analyzed within the lymphocyte gate based on forward and side 
scatter, and subsequently were gated on CD4+, CD8+ and CD8+ Kd-NRPV7+ T cells. 
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Table II. Frequency of Kd-NRPV7+ CD8+ T cells present in peripheral blood and islet graft 
infiltrates of diabetic transplant recipients treated with IGRP or HA peptides  

Kd-NRPV7+ CD8+ T Cells in 
Peripheral Blood Pretransplantation 

(%)a

Graft-Infiltrating CD8+ T Cells 
(absolute number per 10,000 

gated events)b

 
Peptide 

treatment Prepeptide tx Postpeptide tx CD8 
CD8+Kd-NRP-

V7+

 
IGRP (n = 
4)c

0.89 (±0.14) 0.11 (±0.03) 491 (±145) 2 (±1)d
  

HA (n = 5) 0.48 (±0.16) 0.43 (±0.13) 1220 (±330) 24 (±8)   
 

a Averaged percentage (±SEM) of Kd-NRPV7+ CD8+ T cells in peripheral blood from 
diabetic mice pre- and postpeptide treatments prior to receiving islet grafts.  

b Averaged data (±SEM) from peptide-treated, transplanted mice analyzed upon the onset of 
recurrent diabetes. A total of 10,000 events were analyzed within the lymphocyte gate based 
on forward and side scatter, and subsequently were gated on CD8 and Kd-NRPV7+ T cells.  

c Five mice were treated with IGRP peptide. One recipient mouse was used for histological 
assessment upon diagnosis of recurrent diabetes  
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FIGURE 6. Islet graft rejection is delayed in diabetic NOD mice depleted of IGRP206–214-
specific CD8+ T cells. Groups of five diabetic NOD female mice were left untreated ( ), 
treated with 200 µg soluble IGRP206–214 ( ), or HA peptide ( ) at 2, 4, and 6 days before islet 
transplantation. Depletion was verified by checking circulating levels of Kd-NRPV7+ CD8+ T 
cells in peripheral blood pre- and postpeptide treatment. Mice were transplanted with 500 
NOD.scid islets, and received two additional doses of peptide at 5 and 12 days 
postimplantation. (Log-rank test, untreated vs IGRP206–214, p = 0.05; HA vs IGRP206–214, p = 
0.03). 
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Abstract 

A major issue regarding T cell responses in autoimmunity is how the repertoire compares 

between the periphery and target organ. In type 1 diabetes, the status of at-risk or diabetic 

individuals can be monitored by measuring β cell-specific T cells isolated from PBL, but 

whether these T cells accurately reflect the repertoire residing in the pancreatic islets is 

unclear. The TCR repertoire of disease-relevant, tetramer-sorted CD8+ T cells was examined 

at the single-cell level in PBL, pancreatic lymph nodes (PLN), and the islets of individual 

NOD mice. CDR3α and CDR3β sequences demonstrated that the same repertoire of T cells 

in PBL was detected in the islets and PLN, although the frequency of specific clonotypes 

varied. Albeit infrequent, clonotypes that were prevalent in the islets but not found in PBL 

were also detected. β cell Ag immunization expanded immunodominant PBL clonotypes 

present in the islets and PLN. These results show that insight into repertoire profiles of islet-

infiltrating T cells can be obtained from PBL.  

 

 

 

 

 

 

 

 

 

 133



 

Introduction 

A key question in T cell immunology is how the repertoire at one site reflects the repertoire 

at distinct anatomical locations. This is of considerable importance in both tissue-targeted 

infections and in organ-restricted autoimmune diseases such as type 1 diabetes (T1D). Insight 

into the nature of an immune response can be gained by knowing whether T cells found in 

blood represent 1) a broad spectrum of clonotypes some of which are involved in mediating a 

localized response, or 2) a selected population identical with those effectors residing in the 

target tissue.  

 

Autoimmune destruction of the insulin-producing β cells in T1D is mediated by CD4+ and 

CD8+ T cells (1– 4). Several β cell autoantigens are targeted by T cells in diabetic patients 

and the NOD mouse, a model for T1D (1– 4). An H2Kd-restricted peptide derived from islet-

specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206–214 is  recognized 

by a high frequency of CD8+ T cells residing in islet infiltrates of NOD mice (5, 6). Several 

lines of evidence suggest that IGRP206–214-specific CD8+ T cells play a critical role in T1D. 

First, the frequency and TCR avidity of IGRP206–214-specific CD8+ T cells increase in the 

islet infiltrates during disease progression (7, 8). Second, diabetes onset is accelerated in 

NOD mice that express a transgenic IGRP206–214-specific TCR (9). Third, depletion of 

IGRP206–214-specific CD8+ T cells via treatment with the mimetic peptide NRP-A7 protects 

NOD mice from diabetes (8, 10). Finally, elevated IGRP206–214-specific CD8+ T cells in PBL 

of prediabetic NOD mice correlates with the progression to overt diabetes (11). 
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Tracking changes in β cell-specific T cells may provide an accurate readout for disease 

progression in at-risk or diabetic patients. β cell-specific T cells have been detected in PBL 

of patients and rodent models using tetramer technology or sensitive ELISPOT assays (12–

14). Nevertheless, whether autoreactive T cell clones detected in PBL are identical with those 

found in the islets and/or at sites of T cell activation such as the draining pancreatic lymph 

nodes (PLN) has yet to be ascertained (15). We used a single cell-based PCR sequencing 

method to determine the α- and β-TCR repertoire of IGRP206–214-specific CD8+ T cells (16, 

17) in PBL, the PLN, and islet infiltrates of unmanipulated or immunized NOD mice. 

 

Results 

IGRP206–214-specific CD8+ TCR repertoire is similar in PBL, PLN, and islets 

Because islet-infiltrating T cells are inaccessible in humans, it is critical to know whether 

peripheral T cell clones are also found in the islets. To address this question, the TCR 

repertoire of IGRP206–214-specific CD8+ T cells residing in PBL, draining PLN, and islets of 

recent onset diabetic or euglycemic 20-wk-old NOD female mice was compared. At 20 wk of 

age, a high frequency of intrainsulitis is detected in the islets of nondiabetic NOD female 

mice. H2Kd (Kd) tetramers complexed with the high-affinity NRP-V7 mimetic peptide (Kd-

V7) were used to identify IGRP206–214-specific CD8+ T cells. Consistent with previous reports, 

Kd-V7 bound IGRP206–214-specific CD8+ T cells isolated from 8.3 TCR NOD transgenic mice 

with increased avidity relative to Kd tetramers complexed with native IGRP206–214 (data not 

shown) (17). In PBL, PLN, and islets, 1.67 ± 0.74, 0.51 ± 0.27, and 2.21 ± 0.94% of CD8+ T 

cells bound Kd-V7, respectively, whereas staining with control Kd tetramers complexed with 

an influenza-derived nucleoprotein peptide NP147–155 (Kd-NP) was minimal (Fig. 1). Single 
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Kd-V7+ CD8+ T cells were sorted from PBL, PLN, and islets of five individual mice, and 

TCR α-chain usage was determined via single-cell RT-PCR. In agreement with earlier work, 

Kd-V7+ CD8+ T cells exclusively used TCRα-chain Vα17 and Jα42 elements, with the 

former further divided into three distinct genes, namely Vα17.4, Vα17.5, and Vα17.6 (Table 

I) (7). 

 

In each mouse, no significant difference in the frequency of Vα17 genes was detected among 

Kd-V7+ CD8+ T cells isolated from PBL, islets, or PLN (Table I). Furthermore, examination 

of CDR3α sequences showed no significant difference in the frequency of specific junctional 

sequences among tetramer+ CD8+ T cells isolated from the three tissues in NOD mice #1, #4, 

and #5 (Fig. 2). In these mice, the canonical MRD motif associated with TCRα-chain 

IGRP206–214 specificity (7, 19, 20) was dominant (Fig. 2). In NOD mice #2 and #3, however, 

differences in the frequency for a particular motif were observed. For example, in NOD 

mouse #2, an increased frequency of Kd-V7+ CD8+ T cells using the MRD motif was found 

in the islets (32 of 36) vs PBL (15 of 27) ( p = 0.004, Fisher’s exact test) (Fig. 2). In addition, 

the MRV motif (7) in NOD mouse #2 was used by 41% (11 of 27) of PBL but not by any of 

the islet (0 of 36) tetramer+ CD8+ T cells ( p < 10-3, Fisher’s exact test). In NOD mouse #3, in 

which the MRV motif was dominant, no difference was detected between islet (26 of 31) and 

PBL (40 of 42) Kd-V7+ CD8+ T cells, but a significant decrease in the pool of PLN tetramer+ 

CD8+ T cells (20 of 42) ( p ≤ 0.002, Fisher’s exact test) was observed (Fig. 2). Collectively, 

these data demonstrate that the major V_ genes are found in PBL, PLN, and the islets of 

individual NOD mice, although the frequency of these clonotypes may vary among the 

respective tissues.  
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Because the TCR α-chain repertoire of IGRP206–214-specific CD8+ T cells is limited, it was 

possible that clonotypic variation within the PBL, PLN, and islets was obscured. The 

Santamaria (5, 19, 20) group and others demonstrated that the TCR β-chain repertoire of 

IGRP206–214-specific CD8+ T cells is heterogeneous, and therefore can provide a more 

“sensitive” readout for potential repertoire differences. Therefore, TCRβ-chain usage of Kd-

V7+ CD8+ T cells from the same NOD mice and an additional three 20-wk-old nondiabetic 

NOD female mice were assessed. Analogous to earlier work (17), ≥80% of IGRP-specific 

CD8+ T cells in PBL, PLN, and the islets used Vβ8.1 in combination with Jβ1.3, Jβ2.4, or 

Jβ2.7 elements. CDR3β analysis revealed a high degree of heterogeneity in which 50 distinct 

motifs were detected with only five CDR3β sequences shared among some of the individual 

mice (SDSQNTL, SDPGNTL, STDWGYEQ, SSDTYEQ, SNDTYEQ) (Table II). Up to four 

prevalent clonotypes (e.g., >10%) were found in a mouse (Table II). Between each mouse 

prevalent clonotypes typically differed, with the exception of mice #6 and #7, which shared 

the immunodominant SSDTYEQ motif (Table II). In six of eight NOD mice (mice #1, #2, 

and #4 –7), the same immunodominant T cell clones detected in PBL were also found in the 

islets and PLN (Table II). In NOD mice #4 –7, no significant difference in the frequency of 

CDR3β sequences was detected between PBL and islet Kd-V7+ CD8+ T cells (Table II). In 

fact, a single clonotype with the CDR3β sequence SDAQNTL was detected in all three 

tissues of NOD mouse #4 (Table II). In NOD mice #1 and 2, identical clonotypes were 

detected in PBL and islets (and PLN) although at varying frequencies. For instance in NOD 

mice #1 and 2, immunodominant motifs (e.g., SDPGNTL and SDSQNTL, respectively) were 

shared between PBL and islet Kd-V7+ CD8+ T cells but with significantly different 

frequencies ( p ≤ 0.05, Fisher’s exact test) (Table II). Furthermore, in NOD mouse #1, the 
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SDPRNTL motif was prevalent in islet (8 of 33) but absent in PBL (0 of 22) tetramer+ CD8+ 

T cells. In NOD mouse #3, an interesting profile was observed for the two immunodominant 

CDR3β motifs that were detected. SAERGANSDYT usage was significantly increased in the 

islet (11 of 18) vs PBL (0 of 22; p < 10-3, Fisher’s exact test) or PLN (2 of 25; p< 10-3, 

Fisher’s exact test), whereas STDWGYEQ was prevalent in the PBL (17 of 22) but not the 

islets (1 of 18; p < 10-3, Fisher’s exact test) or PLN (1 of 25; p < 10-3, Fisher’s exact test) 

(Table II). Similarly, in NOD mouse #8 SSGDNYEQ usage dominated islet (9 of 25) but not 

PBL (1 of 14) tetramer+ CD8+ T cells (Table II), although this difference was not statistically 

significant. Collectively, these results demonstrate that immunodominant clonotypes as 

defined by CDR3β usage are generally shared among IGRP206–214-specific CD8+ T cells in 

PBL and islets (and PLN) (e.g., mouse #1-SDPGNTL; mouse #2-SDSQNTL; mouse #4-

SDAQNTL; mouse #5-SDPAYEQ and SGDDYEQ; mouse #6-SSDTYEQ; mouse #7-

SSDTYEQ). In addition, the relative distribution of specific clonotypes can vary in the 

respective tissues, particularly with less dominant T cell clones. Finally, only few mice 

contain clonotypes that are prevalent in the islets but not found in PBL (e.g., mouse #3-

SAERGANSDYT; mouse #8-SSGDNYEQ). 

 

IGRP206–214-specific CD8+ T cell clonotypes expanded in the periphery post-IGRP206–214 

immunization are detected in the islets 

The T cell repertoire following immunization with IGRP206–214 was assessed. The goal was to 

determine whether distinct clonotypes expanded in the periphery were also found in the islets. 

A possible clinical scenario would be the monitoring of PBL for β cell-specific T effectors 

induced by Ag-specific immunotherapy. Nondiabetic NOD female mice 15 wk of age 
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received a single injection of nonreplicating VRP-IGRP encoding an IGRP206 –214-Ig fusion 

molecule (22, 23). Preliminary studies indicate that diabetes is prevented in female NOD 

mice by targeting IGRP206 –214-specific CD8+ T cells via Ag-encoding VRP vaccines (R. 

Tisch, unpublished results). Ten days later, the frequency of Kd-V7+ CD8+ T cells in PBL 

was compared with prevaccination levels. As expected, expansion of IGRP206 –214-specific 

CD8+ T cells was readily induced by VRP-IGRP (Fig. 3, A and B). For the five NOD mice, 

an average increase of 14.1-fold was detected in postvaccination PBL. Kd-V7+ CD8+ T cells 

increased from 0.36 ± 0.09 to 5.06 ± 0.52% of CD8+ T cells ( p = 10-3, Student’s t test). 

Importantly, expansion of Kd-V7+ CD8+ T cells was IGRP206 –214-specific. No significant 

increase in IGRP206 –214-specific CD8+ T cells was detected in PBL from three age-matched 

NOD mice vaccinated with VRP-HA encoding an HA512–520-Ig fusion (Fig. 3A). In pre- and 

post-VRP-HA PBL samples, 0.58 ± 0.14 and 0.83 ± 0.17%, respectively, of CD8+ T cells 

were Kd-V7+. 

 

To determine whether vaccination altered the α- and β-TCR repertoire among the tissues, 

cDNA from Kd-V7+ CD8+ T cells sorted from prevaccination PBL, and from PBL, islets and 

PLN 10 days post-VRP-IGRP was sequenced. No significant difference in the frequency of 

Vα17.4, Vα17.5, or Vα17.6 genes was detected among pre- or postvaccination PBL, islets, or 

PLN (Fig. 3C). Furthermore, CDR3α usage was invariant in which all of the 244 TCRα-

chain sequences examined from individual mice contained the canonical MRD motif. Near 

uniform usage of Vβ8.1 regardless of the immunization status or tissue sampled was detected, 

with Jβ2.4 being used in the majority of Kd-V7+ CD8+ T cells analyzed (Fig. 3, D and E). 

CDR3β usage revealed that in four of five mice (NOD mice #1–4) examined, there was no 
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significant difference in the frequency of immunodominant clonotypes in PBL pre- vs 

postvaccination (Table III) despite robust expansion upon VRP-IGRP administration (Fig. 3), 

indicating equivalent expansion of these clonotypes. This was most evident in NOD mice #1 

and #2 in which immunodominant clonotypes using the SDWGTNTGQL and SDAQNTL 

motifs, respectively, were found at similar frequencies pre- and post-VRP-IGRP vaccination 

(Table III).  

 

In 5 of 5 treated NOD mice, the most prevalent CDR3β motif used by Kd-V7+ CD8+ T cells 

in PBL prevaccination was also immunodominant in the islets and PLN (Table III). In NOD 

mouse #3, however, the SDAQNTL motif was detected at a notable frequency (7 of 25) in 

the islets but not in pre- or postvaccination PBL ( p ≤ 0.03, Fisher’s exact test) (Table III). 

Nevertheless, SDSQNTL, which was dominant in pre- (16 of 21) and post- (10 of 17) 

vaccination PBL, was also the dominant motif in the islets (12 of 25). Noteworthy is the fact 

that, despite marked induction in PBL, no significant difference in the frequency of Kd-V7+ 

CD8+ T cells was detected in the islets or PLN of VRP-IGRP (6.2 ±1.2% (islets); 0.66 ± 

0.04% (PLN)) vs VRP-HA (4.2 ± 1.0% (islets); 0.45 ± 0.1% (PLN)) vaccinated NOD mice. 

This suggests that the frequency of immunodominant clonotypes found in the islets and PLN 

was not significantly affected by VRP-IGRP treatment, and that clonotypes in prevaccination 

PBL represented the TCR repertoire of IGRP206–214-specific CD8+ T cells established in the 

islets and PLN. 
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Discussion 

The analysis of β cell-specific T cell reactivity in at-risk or diabetic individuals is dependent 

on T cells prepared from blood. However, it is unclear how accurate clonotypes residing in 

blood reflect those targeting the islets. Insight into this issue would aid in our understanding 

of disease progression, in addition to the development of novel strategies to monitor the 

efficacy of immunotherapies applied in the clinic. Accordingly, the current study was 

conducted to define the TCR repertoire of disease-relevant IGRP206–214-specific CD8+ T cells 

residing in PBL, islets, and PLN of female NOD mice. CD8+ T cells were sorted from the 

respective tissues using Kd tetramers complexed with the mimetic NRP-V7 peptide, and 

CDR3α and CDR3β segment heterogeneity was determined at a single-cell level. Kd 

tetramers complexed with NRP-V7 rather than IGRP206–214 were used in the study because a 

broader spectrum of clonotypes was typically detected in Kd-V7+ vs IGRP206–214
+ CD8+ T 

cells sorted from the same individual NOD mice (C. P. Wong and R. Tisch, unpublished 

results). Noteworthy is the fact that prevalent clonotypes were shared; however, only a subset 

of the overall repertoire of Kd-V7+ CD8+ T cells was detected in Kd-IGRP206–214
+ CD8+ T 

cells, likely reflecting the higher binding avidity of Kd-V7 compared with Kd-IGRP206–214 (C. 

P. Wong and R. Tisch, unpublished results).  

 

An important observation made in this study is that the same immunodominant clonotypes 

detected in PBL were also prevalent in the islets (and PLN) of six of eight untreated NOD 

female mice (e.g., NOD mice #1, #2, and #4–7; Table II), although the frequency of these T 

cell clones varied depending on the tissue. T cell clonotype distribution was independent of 

disease status because both diabetic (mice #2, #4, #5) and 20-wk-old nondiabetic (mice #1, 
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#6, #7) NOD female mice contained the same immunodominant clones in PBL and islets 

(and PLN) (Table II). Untreated NOD mouse #4 provided an extreme example in which Kd-

V7+ D8+ T cells consisted of a single clonotype (based on both CDR3α and CDR3β motif 

usage) that was detected in all three tissues (Fig. 2 and Tables I and II). Exceptions to the 

general trend were nevertheless observed. For instance, in untreated NOD mice #3 and #8, 

the CDR3β sequences STDWGYEQ and SSLDRVEQ, respectively, were prevalent in PBL 

but not the islets (Table II). In contrast, the CDR3β sequences SAERGANSDYT and 

SSGDNYEQ dominated the islets but not PBL in untreated NOD mice #3 and #8,   

respectively (Table II). Fluctuation in the number of Kd-V7+ CD8+ T cells residing in PBL 

may account for differences detected in the few mice in which there was a significant 

disparity with a T cell clone found in the islets. For example, the number of Kd-V7+ CD8+ T 

cells in PBL has been shown to undergo continual rounds of expansion and contraction, 

which in turn is thought to indicate waves of clonal proliferation of IGRP206 –214-specific 

CD8+ T cells undergoing avidity maturation in the islets and/or PLN (11). Nevertheless, 

in the majority of untreated NOD mice, Kd-V7+ CD8+ T cell clonotypes prevalent in PBL 

represent a “selected” repertoire that is involved in islet-infiltration. This interpretation is 

consistent with work by Trudeau et al. (11), which demonstrated that detection of Kd-V7+ 

CD8+ T cells in PBL of euglycemic NOD mice provides a relatively accurate predictive 

marker for the progression to overt diabetes. We recently demonstrated that Kd-V7+ CD8+ T 

cell clones prevalent in the endogenous islets are also dominant in early infiltrates of islet 

grafts implanted in diabetic NOD recipients (17). This observation coupled with the findings 

made in the current study, suggest that T cell clones mediating islet graft destruction are 

directly recruited from PBL. Further evidence indicating that clonotypes found in PBL 
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exhibit a diabetogenic capacity is provided by Roep and colleagues (24) who showed that β 

cell-specific CD4+ T cell clones prepared from PBL of diabetic patients readily traffick to the 

islets after transfer into NOD.scid mice. 

 

The association between T cell clonotypes residing in PBL and the target tissue is a key issue 

for several autoimmune diseases including T1D. Addressing this issue has proven to be 

problematic in large part due to the lack of knowledge of the critical autoantigens and 

corresponding epitopes driving the respective autoimmune responses. Celiac disease (CD), 

however, is an exception in which HLA-DQ2-restricted, transglutaminase-modified wheat 

gliadin peptides have been identified as major targets of CD4+ T cells in the intestinal 

mucosa (25). Evidence indicates that gliadin-specific T cells in PBL vs the gut of CD patients 

differ in terms of HLA-restriction, epitope specificity, and a requirement for 

transglutaminase-mediated deamidation of the epitopes (26). Nevertheless, disease-relevant 

CD4+ T cell clones have been reported in PBL of CD patients under certain conditions such 

as challenging individuals with Ag (27) or using a sensitive CFSE-based assay to measure 

proliferation in response to deamidated gliadin in vitro (28). These data suggest that in CD 

and possibly other tissuespecific autoimmune diseases, only a low frequency of pathogenic 

effectors exists in PBL of patients that may vary depending on disease progression. In 

contrast, our findings indicate that the frequency of β cell-specific CD8+ T cells can be 

relatively high in PBL (i.e., >4% of CD8+ T cells) and that these T cell clones are also 

generally found dominating the islets of NOD mice. An important question that still needs to 

be addressed, however, is whether CD8+ and CD4+ T cells specific for other β cell  
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autoantigens also exhibit a similar clonotypic distribution between the periphery and islets of 

NOD mice, and ultimately in T1D patients.  

 

Vaccination of NOD female mice with VRP-IGRP provided further insight into the TCR 

repertoire of IGRP206–214-specific CD8+ T cells in the respective tissues. First, the repertoire 

for IGRP206–214-specific CD8+ T cells in the periphery is relatively limited. For example, 

immunodominant clonotypes detected in PBL before vaccination were also prevalent in the 

PBL of four of five NOD mice treated with VRP-IGRP despite expansion of up to 40-fold in 

Kd-V7+ CD8+ T cells (Fig. 3, A and B). Novel clonotypes were detected in postvaccination 

PBL of some of the NOD mice (mice #1, #3, #5); however, these T cell clones were found 

only at a low frequency (Table III). Notably, VRP-IGRP vs VRP-HA vaccination had no 

significant effect on the number of Kd-V7+ CD8+ T cells detected in the islets (or PLN), 

indicating that expansion of IGRP206–214-specific CD8+ T cells occurred predominately in the 

periphery (e.g., PBL and spleen). Importantly, in five of five mice the same 

immunodominant clonotypes detected in pre- and postvaccination PBL also were prevalent 

in the islets and PLN, although again the frequency of these clonotypes varied in the 

respective tissues (Table III). This observation further supports the conclusion that the 

repertoire of IGRP206–214-specific CD8+ T cells in PBL is similar to islet-infiltrating T cell 

clones, even after immunization.  

 

TCR analysis in patients with tissue-specific autoimmune diseases such as rheumatoid 

arthritis or multiple sclerosis have shown variation in immunodominant clonotypes among 

individuals, and within the targeted tissues (i.e., joints or brain plaques) of the same 
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individual (29, 30). Interestingly, Carnaud and colleagues (31) have also demonstrated that a 

high degree of heterogeneity of TCR CDR3β gene usage exists at an early age among islets 

in NOD mice, although the specificity of these T cells was not determined. These studies are 

consistent with the high degree of variability detected in CDR3β sequences between 

individual NOD mice in the current work (Tables II and III) and in an earlier study 

investigating the repertoire of single Kd-V7+ CD8+ T cells isolated from grafted vs 

endogenous islets (17). Interestingly, the CDR3β motif SDSQNTL was detected either as a 

dominant or minor clone in two of eight untreated (mice #2, #3; Table II), four of five 

VRP-IGRP-treated mice (mice #2–5; Table III), and in six of eight mice examined in our 

earlier study (17). The marked heterogeneity observed in the CDR3β segment would suggest 

that specificity and affinity associated with IGRP206–214 clonotypes is largely due to the 

canonical Vα17-Jα42 elements (7). However, in view of the relatively high frequency among 

individual NOD mice, the CDR3β SDSQNTL motif may also contribute to TCR specificity 

and/or affinity.  

  

This study extends previous work (11, 17) by providing novel insight into the clonotypic 

composition and distribution of diseaserelevant CD8+ T cells at the single-cell level in 

individual, unmanipulated, and immunized NOD mice. Specifically, fine TCR repertoire 

analysis of single IGRP206–214-specific CD8+ T cells demonstrates that a limited number of 

immunodominant clonotypes found in PBL typically reside in the islets. Furthermore, clones 

prevalent in PBL are preferentially expanded following immunization, and it is these 

clonotypes that typically reside in the islets. Finally, this study shows that insight into the 
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clonotypic nature of disease-relevant T cells (e.g., islet infiltrating) can be gained by analysis 

of T cells isolated from PBL. 

 

Materials and Methods 

Mice 

NOD/LtJ mice were bred and housed under specific pathogen-free conditions. Each mouse 

used in this study was derived from an independent litter. Animal protocols were approved 

by the University of North Carolina Institutional Animal Care Committee. 

 

Tetramers, Abs, and FACS 

H2Kd monomers (18) were complexed with NRP-V7 (KYNKANVFL) or NP147–155 

(TYQRTRALV). Tetramers were assembled by conjugating H2Kd monomers with 

streptavidin-PE (Molecular Probes). Anti-CD3- FITC and anti-CD8-allophycocyanin mAbs 

were purchased from eBioscience. T cells were costained with tetramers and Abs in PBS 

containing 3% FBS, 10 mM HEPES, and 1 mM EDTA for 1 h on ice. FACS data were 

acquired on a FACSCalibur (BD Biosciences) and analyzed using Summit software 

(DakoCytomation). For all tetramer analyses, CD8_ T cells were gated based on forward and 

side scatter, and CD3 and CD8 expression. For single-cell analyses, tetramer_ CD8_ T cells 

were sorted by a MoFlo highspeed sorter (DakoCytomation) at 1 cell/well into a 96-well 

PCR plate (USA Scientific), each well containing 4 ul buffer of 0.5x PBS, 10 mM DTT, and 

8 U RNaseOUT RNase inhibitor (Invitrogen Life Technologies). Plates were kept frozen at -

80°C. 
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Islet isolation 

Islets were purified (17) and cultured overnight in RPMI 1640 containing 10% FBS and 4 

ng/ml recombinant murine IL-2 (PeproTech). Lymphocytes infiltrating the islets were 

collected and cellular debris removed by 70-um nylon filters before FACS. 

 

Single-cell RT-PCR and TCR repertoire analyses 

TCR usage was analyzed by a single-cell RT-PCR protocol (16, 17). TCR α-chain analysis 

was performed using a Vα17-specific primer in combination with an α-chain constant region 

primer for RT-PCR because all IGRP206–214-related clonotypes have an invariant Vα17 gene 

usage (19, 20). For TCR β-chain analysis, a panel of primers specific for all known TCR β-

chain variable regions in combination with a β-chain constant region primer was used. RT-

PCR amplicons were used as templates for a second round of PCR amplification using a 

panel of nested TCR α- or β-chain-specific primers. Efficiency of RT-PCR for Vα and Vβ 

gene segments was ≥95 and 60–95%, respectively. PCR products were treated with 

Exonuclease I (NEB Biolabs) and shrimp alkaline phosphatase (Roche) and sequenced by the 

UNC Sequencing Core Facility. TCR sequence alignments were performed using Sequencher 

software (Gene Codes). 

 

Generation of Venezuelan equine encephalitis virus replicon particles (VRP) 

To generate Ag-expressing, nonreplicating VRP, cDNAs encoding murine IGRP206–214 

(VYLKTNVF), or influenza hemagglutinin (HA)512–520 (IYSTVASSL)) fused to IgGFc 

were subcloned into pVR21. RNA was transcribed from plasmids encoding VRP-IGRP or 

VRP-HA and capsid and envelope glycoprotein using mMESSAGE mMACHINE T7 Kit 
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(Ambion). In vitro-transcribed RNAs were electroporated into baby hamster kidney cells that 

were cultured for 24 h at 37°C at 5% CO2. VRP were harvested, concentrated, titered, and 

stored in PBS plus 1% FCS at -80°C (21). Mice were immunized via footpad with 5 _ 105 

VRP-IGRP or VRP-HA infectious units in PBS. Ten days after VRP immunization, PBL, 

PLN, and islets were harvested and tetramer+ CD8+ T cells were isolated.  

 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism (GraphPad). Values of p were 

calculated using Student’s t test or Fisher’s exact test. 
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FIGURE 1. IGRP206–214-specific CD8+ T cells are detected in PBL, PLN, and islets of NOD 
mice. A, Representative FACS plots showing Kd-V7+ and (B) control Kd-NP+ CD8+ T cells in 
PBL (mouse #2), PLN (mouse #3), and islet infiltrates (mouse #4). Events were gated on 
CD3+ and CD8+ T cells. C, Summary of Kd-V7+ CD8+ cells in PBL, PLN, and islets of five 
individual female NOD mice 20 wk old. Data represent average tetramer+ CD8+ T cells 
(±SEM). 
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FIGURE 2. Comparison of TCR CDR3α repertoire of IGRP206–214-specific CD8+ T cells in 
PBL, islets, and PLN. CDR3α usage of IGRP206–214-specific CD8+ T cells in PBL, islets, and 
PLN were determined by single-cell RT-PCR in five individual NOD female mice 20 wk old 
that were diabetic (#2, #4, #5) or euglycemic (#1, #3). The number of CDR3α sequences 
analyzed in PBL, islets, and PLN, respectively, were as follows: mouse #1 22, 28, 31; mouse 
#2 27, 36, 34; mouse #3 42, 31, 42; mouse #4 12, 34, 33; mouse #5 11, 19, and 24. *, p ≤0.05, 
PBL vs islet; , p ≤0.01, PBL vs PLN; , p ≤0.02, islets vs PLN; Fisher’s exact test. 
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FIGURE 3. Expansion of IGRP206–214-specific CD8+ T cells in PBL of VRP-IGRP-
vaccinated mice. A, Representative FACS plots showing expansion of IGRP206–214-specific 
CD8+ T cells in PBL of 15-wk-old NOD mice vaccinated with 5 x 105 VRP-IGRP, or VRP-
HA via footpad. IGRP206–214-specific CD8+ T cells in PBL were stained with Kd-V7 pre- and 
10 days post-VRP vaccination. Events were gated on CD3+ and CD8+ T cells. B, Five NOD 
mice 15–20 wk old each received a single footpad vaccination of 5 x 105 VRP-IGRP 
infectious units. Frequencies of Kd-V7+ CD8+ T cells were determined pre- ( ) and 
postvaccination ( ) in PBL of each mouse. Numbers represent the fold increase of Kd-V7+ 
CD8+ T cells in each mouse (percentage of Kd-V7+ CD8+ T cells in PBL post- vs 
prevaccination). Vα (C), Vβ (D), and Jβ (E) usage were determined by single-cell RT-PCR 
analysis using Kd-V7+ CD8+ T cells sorted from PBL of individual mice before VRP-IGRP 
vaccination or from PBL, islets, and PLN 10 days after VRP vaccination. Data represent 
averaged frequencies of Vα, Vβ, and Jβ gene families detected from each sample (±SEM). 
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Table I. V α17 gene element usage in female NOD mice  

Mouse Disease Status V  Gene Elements PBLa Isletsa PLNa

 
#1 Nondiabetic 17.4 2 (9%) 6 (21%) 0 

  17.5 20 (91%) 22 (79%) 31 (100%) 

  17.6 0 0 0 

#2 Diabetic 17.4 16 (59%) 23 (64%) 27 (79%) 

  17.5 11 (41%) 13 (36%) 6 (18%) 

  17.6 0 0 1 (3%) 

#3 Nondiabetic 17.4 0 1 (3%) 0 

  17.5 42 (100%) 30 (97%) 42 (100%) 

  17.6 0 0 0 

#4 Diabetic 17.4 12 (100%) 34 (100%) 33 (100%) 

  17.5 0 0 0 

  17.6 0 0 0 

#5 Diabetic 17.4 0 0 0 

  17.5 5 (45%) 4 (21%) 11 (46%) 

  17.6 6 (55%) 15 (79%) 13 (54%) 
 

a Represents the number of TCR sequences identified using the respective Vα gene elements 
in single-cell-sorted Kd-V7+ CD8+ T cells in five individual mice. Percentage of CD8+ T cells 
staining with Kd-V7 for PBL, islets, and PLN, respectively, were as follows: mouse #1, 0.43, 
0.9, and 0.2%; mouse #2, 0.82, 1.61, and 0.4%; mouse #3, 0.6, 1.2, and 0.5%; mouse #4, 1.5, 
2.2, and 0.5%; and mouse #5, 4.4, 5.94, and 1.6%.  
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Table II. TCR CDR3β repertoire in single-cell-sorted Kd-V7+ CD8+ T cells in female NOD 
mice  

 Disease CDR3  PBLa Isletsa PLNa

 
#1 Nondiabetic SDPGNTL 15 (68.2%) 14 (42.4%)b 22 (75.8%)d

  SDPRNTL 0 8 (24.2%)b 6 (20.7%) 

  SGDNYEQ 2 (9.1%) 3 (9.1%) 1 (3.4%) 

  SDPKYEQ 2 (9.1%) 5 (15.2%) 0 

  SLGDWGYEQ 1 (4.5%) 0 0 

  SPGDTGQL 1 (4.5%) 0 0 

  GDARDWGGRDTQ 1 (4.5%) 0 0 

  SDTKNTL 0 1 (3%) 0 

  SDPENTL 0 1 (3%) 0 

  RTGGSQNTL 0 1 (3%) 0 

  Total 22 33 29 

#2 Diabetic SDSQNTL 10 (38.5%) 23 (65.7%)b 10 (43.5%) 

  KGSSYEQ 6 (23.1%) 5 (14.3%) 8 (34.8%) 

  STDWGYEQ 3 (11.5%) 0 0 

  SGDKYEQ 3 (11.5%) 0 0 

  SDFAEQ 1 (3.8%) 1 (2.9%) 0 

  SSDRFEQ 1 (3.8%) 3 (8.6%) 4 (17.4%) 

  SSGTDYEQ 1 (3.8%) 0 0 

  SPQGWEQ 1 (3.8%) 0 0 

  SETVYEQ 0 1 (2.9%) 0 

  SEGQKYTL 0 2 (5.6%) 1 (4.3%) 

  Total 26 35 23 

#3 Nondiabetic STDWGYEQ 17 (77.3%) 1 (5.6%)b 1 (4%)c

  NRDSAETL 3 (13.6%) 3 (16.7%) 6 (24%) 

  SQVWGASQNTL 1 (4.5%) 0 0 

  SDRGSSAETLY 1 (4.5%) 0 0 
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  SAERGANSDYT 0 11 (61.1%)b 2 (8%)d

  SDPGNTL 0 1 (5.6%) 4 (16%) 

  SDSQNTL 0 1 (5.6%) 5 (20%) 

  SHRDNYEQ 0 1 (5.6%) 1 (4%) 

  SDAQYEQ 0 0 3 (12%) 

  AGDSYEQ 0 0 2 (8%) 

  GQSSYEQ 0 0 1 (4%) 

  Total 22 18 25 

#4 Diabetic SDAQNTL 12 (100%) 36 (100%) 23 (100%) 

  Total 12 36 23 

#5 Diabetic SDPAYEQ 8 (57.1%) 11 (55%) 7 (33.3%) 

  SGDDYEQ 3 (21.4%) 7 (35%) 7 (33.3%) 

  SDPGNTL 3 (21.4%) 2 (10%) 2 (9.5%) 

  SSGTDYEQ 0 0 1 (4.8%) 

  SDGLYTL 0 0 3 (14.3%) 

  SSDWGYEQ 0 0 1 (4.8%) 

  Total 14 20 21 

#6 Nondiabetic SSDTYEQ 34 (100%) 29 (90.6%) ND 

  SSLEYKYEQ 0 2 (6.3%)  

  SNDTYEQ 0 1 (3.1%)  

  Total 34 32  

#7 Nondiabetic SSDTYEQ 30 (96.8%) 32 (97%) ND 

  SNDTYEQ 1 (3.2%) 0  

  SSWDSSYEQ 0 1 (3%)  

  Total 31 33  

#8 Nondiabetic SSLDRVEQ 5 (35.9%) 0 ND 

  SSGPGQNSDYT 3 (21.4%) 0  

  SSRATGGDTGQLY 3 (21.4%) 0  

  SSRDWGGADEQ 1 (7.1%) 0  

  SSGDNYEQ 1 (7.1%) 9 (36%)  
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  SSWTGTNERLF 1 (7.1%) 0  

  PARDTKNTL 0 1 (4%)  

  SSDPGMNTL 0 1 (4%)  

  SSDTKNTL 0 4 (16%)  

  SSDPGNTL 0 2 (8%)  

  SSDDTYEQ 0 1 (4%)  

  TGDNSYEQ 0 2 (8%)  

  SSDNLYEQ 0 3 (12%)  

  SSDDTYEQ 0 1 (4%)  

  SSGDNYKQ 0 1 (4%)  

  Total 14 25  
 

a Represents the number of TCR sequences identified using the respective CDR3β in single-
cell-sorted Kd-V7+ CD8+ T cells in five individual mice.  

b p < 0.05, PBL vs islet;  

c p < 0.01, PBL vs PLN;  

d p < 0.02, islets vs PLN; Fisher’s exact test. Percentage of CD8+ T cells staining with Kd-V7 
for PBL, islets, and PLN, respectively, were as follows: mouse #1, 0.43, 0.9, and 0.2%; 
mouse #2, 0.82, 1.61, and 0.4%; mouse #3, 0.6, 1.2, and 0.5%; mouse #4, 1.5, 2.2, and 0.5%; 
mouse #5, 4.4, 5.94, and 1.6%; mouse #6, 1.3 and 4.9%, ND; mouse #7, 0.9 and 3.7%, ND; 
mouse #8, 1.1 and 5.4%, ND. 
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Table III. TCR CDR3β repertoire in single-cell-sorted Kd-V7+ CD8+ T cells in female NOD 
mice pre- and post- VRP-IGRP immunization  

 CDR3  
PBL 

Prevaccinationa
PBL 

Postvaccinationa
Islets 

Postvaccinationa
PLN 

Postvaccinationa

 
#1 SDWGTNTGQL 22 (100%) 31 (96.9%) 19 (90.5%) 7 (100%) 

 SDGTYEQ 0 1 (3.1%) 1 (4.8%) 0 

 SDAQNTL 0 0 1 (4.8%) 0 

 Total 22 32 21 7 

#2 SDAQNTL 40 (100%)c 12 (100%)d 8 (61.5%) 17 (70.8%) 

 SDPQNTL 0 0 1 (7.7%) 1 (4.2%) 

 SDSQNTL 0 0 3 (23.1%) 6 (25%) 

 SDEQNTL 0 0 1 (7.7%) 0 

 Total 40 12 13 24 

#3 SDSQNTL 16 (76.2%) 10 (58.8%) 12 (48%) 7 (50%) 

 SDEKNTL 4 (19%) 4 (23.5%) 4 (16%) 1 (7.1%) 

 SDDNYEQ 1 (4.8%) 2 (11.8%) 0 4 (28.6%) 

 SGDSSYEQ 0 1 (5.9%) 0 0 

 SDPENTL 0 0 2 (8%) 0 

 SDGSYEQ 0 0 0 1 (7.1%) 

 SDAQNTL 0 0 7 (28%)cd 1 (7.1%) 

 Total 21 17 25 14 

#4 SDSQNTL 9 (52.9%)c 10 (45.5%)d 20 (80%) 5 (41.7%) 

 SSDIYEQ 5 (29.4%) 12 (54.5%)d 5 (20%) 7 (58.3%) 

 SDEKNTL 2 (11.8%) 0 0 0 

 SLGSAETL 1 (5.9%) 0 0 0 

 Total 17 22 25 12 

#5 SDPQNTL 25 (92.6%)b 15 (68.8%) 19 (73.1%) 16 (80%) 

 SDEQNTL 2 (7.4%)b 6 (27.3%)d 2 (7.7%) 4 (20%) 

 SSDRYEQ 0 1 (4.5%) 0 0 
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 SDSQNTL 0 0 2 (7.7%) 0 

 SDPGNTL 0 0 2 (7.7%) 0 

 SDGTQAPL 0 0 1 (3.8%) 0 

 Total 27 22 26 20 
 

a Represents the number of TCR sequences identified using the respective CDR3β in single-
cell-sorted Kd-V7+ CD8+ T cells in five individual mice pre- and postimmunization with 
VRP-IGRP.  

b p < 0.03, PBL preimmunization vs postimmunization;  

c p < 0.05, preimmunization PBL vs islets;  

d p < 0.04, postimmunization PBL vs islets; Fisher’s exact test. Percentage of CD8+ T cells 
staining with Kd-V7 for PBL prevaccination, PBL-postvaccination, islets, and PLN, 
respectively, were as follows: mouse #1, 0.3, 5.04, 4.8, and 0.61%; mouse #2, 0.15, 6.1, 5.3, 
and 0.63%; mouse #3, 0.7, 3.44, 8.6, and 0.73%; mouse #4, 0.37 and 4.5%, ND,ND; mouse 
#5, 0.28 and 6.3%, ND,ND. 
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