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ABSTRACT 

Lindsay Claire Wickersham: Antibiotic Resistance of Staphylococcus aureus in Watersheds 

With and Without Commercial Hog Operations 

 (Under the direction of Jill Stewart) 

 Antibiotic use in commercial hog operations (CHOs) can lead to selection of antibiotic 

resistant bacteria, which is a concern for zoonotic bacteria such as Staphylococcus aureus. 

However, the extent to which antibiotic resistant S. aureus from CHOs contaminates surrounding 

surface waters is unknown. To determine whether watersheds with CHOs have more multidrug 

resistant S. aureus (MDRSA) and livestock-associated S. aureus than watersheds without CHOs, 

S. aureus was isolated and characterized from surface water samples (n=44) from sites with 

CHOs in their watersheds (n=3) and without CHOs (n=3). S. aureus (n=84) was isolated from 

100% of CHO sites and 66% of non-CHO sites. MDRSA (n=23) was only recovered from one 

CHO site on one sampling event and was positive for markers of livestock-association. No 

MDRSA or livestock-associated S. aureus was found in non-CHO sites. This research suggests 

that CHOs can episodically contribute livestock-associated MDRSA to surface water. 
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CHAPTER 1: INTRODUCTION 

Since 1940, there has been a marked increase in the antibiotic resistance of 

Staphylococcus aureus, a zoonotic pathogen that can lead to dermatitis, respiratory and eye 

infections and bacteremia (Cars, Högberg, & Murray, 2008; van Hal et al., 2012). Of particular 

concern is the emergence of methicillin resistant S. aureus (MRSA) labeled by the CDC as a 

“serious hazard level,” representing an antibiotic resistant threat that will worsen without public 

health intervention (CDC 2016). Infection with MRSA has been associated with increased 

mortality and morbidity rates compared to infection with methicillin susceptible S. aureus 

(MSSA), and often can only be treated with intense antibiotic therapy that may cause harmful 

side effects to the patient (Cosgrove et al., 2003). In addition to methicillin, S. aureus has 

acquired resistance to several other antibiotics including those deemed of “critical importance” to 

human medicine by the World Health Organization (WHO) (WHO Advisory Group on 

Integrated Surveillance of Antimicrobial Resistance and World Health Organization, 2017.). 

Documented cases of resistance to vancomycin in certain S. aureus strains emerged in 2002 

(Ventola, 2015). Additionally, ceftaroline resistant strains of S. aureus were documented in 

2011, just one year after the introduction of this critical antibiotic in 2010 (Ventola, 2015). 

Despite the erratic and rapid resistance patterns emerging in S. aureus, a large body of research 

solely investigates the emergence and presence of MRSA in various environments. Limited work 

has purposefully investigated the scope of antibiotic resistance of S. aureus to classes of 

antibiotics outside of methicillin, or even the antibiotic resistance profiles of MSSA.  

Antibiotic resistant S. aureus is commonly documented in hospitals across the world, but 
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recently it has also be documented in concentrated animal feeding operations (CAFOs), 

particularly in commercial hog operations (CHOs) also known as industrial hog operations 

(IHOs) or swine CAFOs. CHOs commonly utilize antibiotics for growth promotion, with swine 

production alone accounting for 37% of all medically important antimicrobial drugs used in 

food-producing animals in the United States (FDA, 2017).  Evidence of emerging antibiotic 

resistance not only in livestock but also in humans as a result of this practice has been well 

documented (Nadimpalli et al. 2016; Hatcher et al. 2016; Price et al. 2012; Gilchrist et al. 2007; 

Köck et al. 2013). Fecal samples from livestock and human workers on CHOs have shown 

intestinal flora with resistance to antibiotics without being treated clinically with the same 

antibiotic (Gilchrist et al., 2007). Another study investigating Dutch CHOs documented the 

transmission of three different MRSA strains from hogs to workers, and then from workers to 

their families (Köck et al., 2013).  

Antibiotic resistant S. aureus has been isolated from livestock with increasing frequency, 

indicating the potential for S. aureus to survive in hosts outside of humans (Fitzgerald, 2012). 

Phenotypic and genetic differences between S. aureus isolated from human and livestock 

however provide an opportunity for identifying the source of S. aureus isolates (Fitzgerald, 

2012). The scn gene for example has been found in low frequency among S. aureus collected 

from animals (2-35%) compared to humans (90-100%), thus absence of the scn gene can identify 

S. aureus isolates with a non-human source (Rinsky et al., 2013). Genetic sequencing and 

categorization of the Staphylococcus protein a (spa) gene has been used to categorize and 

determine clonal complexes (CCs) as a way to track populations of S. aureus from different hosts 

(Fitzgerald, 2012). This genetic categorization has identified S. aureus belonging to CC398, 

CC5, CC9, or CC30 as livestock-associated (LA) (Armand-Lefevre, Ruimy, & Andremont, 



 3 

2005; Hasman et al., 2010; Hau et al., 2018; Pomba et al., 2009; Price et al., 2012; Stegger et al., 

2012; Vestergaard et al., 2012). Tetracycline resistance can also be used to identify LA S. 

aureus, as tetracycline resistance is highly conserved among LA isolates (Fluit, 2012).  

S. aureus and MRSA can also persist in the environment and humans exposure can occur 

through water systems (Charoenca and Fujioka 1995). Exposure to S. aureus and MRSA has been 

studied in marine water systems, encompassing potential human exposure through water, sand, 

and soil (Plano et al. 2013; Akanbi et al. 2017). While S. aureus has been studied in marine 

environments, little work has been done to characterize the presence and survival of S. aureus in 

freshwater. Several studies have shown that S. aureus can be present in fresh water surface 

waters in various environments, particularly those with high levels of human traffic (Fogarty et 

al., 2015; Levin-Edens et al., 2012; Viau et al., 2011). Yet, few studies have investigated non-

human introduction of S. aureus into freshwater systems. Those that have addressed this topic 

focused more on the ability of wildlife and other animals to act as a reservoirs for  S. aureus, 

rather than the surrounding environment itself (Wardyn, Kauffman, & Smith, 2012). Literature 

has further identified the off-site transport of microbes and antibiotic resistance from CHO 

lagoons and spray fields into surface waters, yet there is little research investigating the potential 

of CHOs to act as sources of antibiotic resistant S. aureus to surrounding water ways (Heaney et 

al., 2015; Ibekwe et al., 2002; Jokinen et al., 2012). To our knowledge, only one published study 

has attempted to detect MRSA in fresh water systems associated with CHOs, despite extensive 

evidence that S. aureus is present in freshwater systems, livestock, and in CHOs. Hatcher and her 

research team were the first to document the presence of MRSA in surface waters near CHOs; 

however, this research was not able to account for potential environmental sources of S. aureus 

not associated with CHOs (Hatcher et al. 2016). Additionally, this study focused on isolating 
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MRSA and did not include intentional analysis of S. aureus isolates without resistance to 

methicillin. 

To further expand the work of Hatcher et al (2016), this study examined surface water 

samples from watersheds with and without CHOs for S. aureus. Three background sites, with no 

CHOs or other known sources of fecal contamination, were included in this study to provide a 

baseline for presence of S. aureus in the environment and to serve as a comparison for potential 

microbial contamination. While MRSA has been widely studied in the literature, there remains 

limited research on MSSA and their subsequent resistance profiles to other classes of antibiotics. 

Here, we investigated potential emerging antibiotic resistance of S. aureus to a wide variety of 

antibiotic classes through antibiotic resistance testing of 11 different classes and intentional 

isolation of S. aureus instead of strict screening for MRSA. Furthermore, we investigated three 

different markers of livestock-association (LA) to provide insights into potential contamination 

sources: absence of the scn gene, tetracycline resistance, and identification of LA spa types.  

Our objectives were to 1) determine the presence of S. aureus in surface waters with and 

without commercial hog operations in their watersheds, 2) analyze S. aureus collected for 

antibiotic resistance to 11 different mechanistic classes and 3) identify prevalence of three 

different livestock-associated markers among S. aureus isolates. This work provides an 

exploratory report of antibiotic resistant S. aureus present in surface waters proximal to CHOs in 

Eastern North Carolina.  
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CHAPTER 2: METHODS 

2.1 Site Selection 

Sampling locations were chosen for this study based on a USGS report by Harden (2015). 

A subset of three background sites (prefix: “BK”) and three commercial hog operation (CHO) 

sites (prefix: “SW”) were chosen for a total of six sampling locations. Background sites are 

defined as those without CHOs nor any other type of concentrated animal feeding operations 

(CAFO) in their watersheds. CHO sites are defined as sites with CHOs in their watershed but no 

other concentrated animal feeding operations (CAFOs). All watersheds sampled did not have any 

other known point sources of fecal waste, such as wastewater treatment plants. 

The sites selected from Harden’s study were the following: BK03, BK12, BK14, SW04, 

SW07, and SW11 (Harden, 2015). These sites were considered representative of their respective 

watersheds and vary in physical characteristics such as area and wetland percentage (Figure 1, 

Table 1). CHO sites further differed in the number of hog lagoons used for waste storage and 

spray field acreage, in which hog waste is sprayed onto fields as a soil conditioner (Figure 1, 

Table 1).   

Water samples were collected from all sites seven times between December 2016 and 

October 2017 and one additional time in November 2016 (n=8)  (Table 2). To explore the 

seasonal effects of S. aureus presence, water samples were collected twice per season for all 

sites, except for sites SW04, BK03, BK12, and BK14, for which only one Fall water sample was 

collected (Table 2). Seasons were defined according to astronomical definitions for the Northern 

Hemisphere.  
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 Note: Background sites (prefix “BK”) refer to sites without a commercial hog operation (CHO) or other known 

point source of fecal contamination in their watersheds. CHO sites (prefix “SW”) refer to sites with a CHO in their 

watersheds but no other concentrated animal feeding operations (CAFOs) or other known point sources of fecal 

contamination. Data courtesy of Elizabeth Christenson.  

 

 

 

 

 

Table 1. Sampling Site Watershed Characteristics 
 

Site ID 
Watershed area 

(mi2) 

Wetland percentage of 

watershed area 

Spray field acreage 

in watershed 

n lagoons in 

watershed 

BK03 3.67 14% 0 0 

BK12 3.55 14% 0 0 

BK14 13.27 27% 0 0 

SW04 1.23 15% 98.4 1 

SW07 1.25 18% 46.2 1 

SW11 1.95 22% 324 2 

Total 24.91 109% 468 4 

 

Table 2. Sampling Dates and Presence of S. aureus  
Site ID Sampling Dates 

 11/28/16* 1/16/17* 2/20/17 4/03/17 5/09/17 6/26/17 8/14/17 10/5/17 

BK03         

BK12         

BK14         

SW04         

SW07         

SW11         

Season Fall Winter Winter Spring Spring Summer Summer Fall 

 Water Sample Collected      S. aureus present 
 

 

 

*Most probable number (MPN) calculations not performed  

Note: Background sites (prefix “BK”) refer to sites without a commercial hog operation (CHO) or other known 

point source of fecal contamination in their watersheds. CHO sites (prefix “SW”) refer to sites with a CHO in 

their watersheds but no other concentrated animal feeding operations (CAFOs) or other known point sources of 

fecal contamination. Seasons are defined in accordance with the astronomical definitions for the Northern 

Hemisphere.  
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Background Sites Commerical Hog Operation (CHO) Sites 

A. BK03 

 

 D. SW04 

 

B. BK12 

 

  E. SW07 

 

C. BK14 

 

 F. SW11 

 
 

Figure 1. Maps of Sampling Sites and Watershed Information  
 

Visual representations of sampling site locations and watershed information. Figures A-C represent 

background sites while Figures D-F represent CHO sites. All sites shown have no other known sources of 

fecal contamination other than those documented. Maps created by Elizabeth Christenson and used with 

permission. 
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 A multi-meter measured ambient air temperature, water temperature, pH, conductivity, 

and dissolved oxygen (DO) (mg/L) at each site. One liter of water was collected at the sampling 

site from the center of the water bodies using sterilized containers and standard sampling 

technique. Water samples were placed on ice for the duration of sampling, and refrigerated at 

4°C overnight. Samples were processed within 24 hours.  

2.2 Processing of Water Samples and S. aureus Isolation 

Water samples were processed using standard membrane filtration technique with 0.45 

µm pore size filters (Millipore Sigma, Burlington, Massachusetts). Five volumes of 10 ml and 

five volumes of 50 ml samples of water were processed from each site for a total of 10 

membranes per sampling site. To enrich the samples, membranes were folded into quarters using 

sterile tweezers and submerged in 10 ml of Mueller Hinton broth + 6.5% NaCl contained in a test 

tube. Tubes containing broth and membranes were vortexed at medium speed and incubated at 

37 C for 24 hours. Tubes were removed from the incubator and vortexed for 3-5 seconds on 

medium speed before returning to the incubator for an additional 24 hours. After a total of 48 

hours each tube was vortexed and broth from each tube was streaked to isolation on its own 100 

mm CHROMagar™ Staph Aureus plate (Chromagar, Springfield, NJ). Biofilms and the 

membrane were avoided when transferring the broth to limit the presence of mixed colonies on 

plates. Plates were incubated at 37 C for 18-24 hours.  

In accordance with the manufacturer’s instructions, pink to mauve colonies with 

morphologies indicative of S. aureus were streaked to isolation on 100 mm CHROMagar™ 

Staph Aureus plates (Chromagar, Springfield, NJ). This process was repeated with up to five 

colonies from each plate. Plates were incubated at 37 C for 18-24 hours. Isolated colonies were 

transferred to quartered 100 mm BBL™ Mannitol Salt Agar (BD, Sparks, MD) plates and 



 9 

incubated at 37 C for 18-24 hours. Isolates positive for mannitol fermentation as indicated by 

yellow growth were considered presumptive S. aureus and transferred to 1 ml of Brain Heart 

Diffusion Broth with 15% glycerol, vortexed, and frozen at -80 C for further analysis.  

Most probable number (MPN) calculations were performed based on the number of 

enrichment tubes that were positive for presence of confirmed S. aureus identified by the 

confirmation testing described below. Calculations were performed in MATLAB™ and 

normalized to MPN per 100 ml. The mean seasonal MPNs from CHO and background sites were 

compared using a paired t-test in Microsoft Excel to determine significance (𝛼=0.05).  

2.3 Confirmation Testing of S. aureus 

Biochemical and molecular assays were used to confirm S. aureus. All presumptive 

isolates were measured for production of catalase using standard methods and subjected to direct 

tube coagulase testing using BBL™ Coagulase Plasma Rabbit with EDTA in accordance with 

the manufacturer’s protocol (BD, Sparks, MD). Isolates positive for both assays were subjected 

to molecular confirmation.  

Molecular confirmation was performed on crude DNA extracts from freshly streaked 

isolates on TSB agar, as described by Reishcl et al. (2000).  A multiplex PCR reaction and gel 

electrophoresis was then used to identify the presence of the following 5 genes: Staphylococcus 

aureus protein A (spa), mecA, mecC, scn, and pvl as described by Steggar et al. (2012) and as 

adapted by Hatcher et al. (2017). All presumptive isolates positive for the presence of the spa 

gene were considered confirmed S. aureus isolates and are henceforth designated simply as 

isolates. Two different methicillin resistance genes, mecA and mecC were tested to determine the 

presence of methicillin resistant S. aureus (MRSA) (Hatcher et al. 2017). Presence of two 

virulence genes was also assessed using PCR including scn which is a human-associated immune 
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evasion cluster and the Panton–Valentine leukocidin (pvl) gene associated with the dissemination 

of community-acquired MRSA (Fluit, 2012; Van Wamel, Rooijakkers, Ruyken, Van Kessel, & 

Van Strijp, 2006).  

2.4 Antibiotic Susceptibility Testing of S. aureus 

 All confirmed S. aureus isolates were measured for phenotypic susceptibility to 15 

different antibiotics from 11 classes (Table 3). Antibiotic susceptibility testing was performed 

using the Kirby Bauer Disk Diffusion method in accordance with the standardized protocol by 

the Clinical and Laboratory Standards Institute (CLSI 2015). All zones of inhibition except for 

spectinomycin and linocomyin were interpreted in accordance with the Clinical and Laboratory 

Standards Institute (CLSI 2015). Resistance to spectinomycin and lincomyocin was defined as 

having no zone of inhibition around antibiotic disks and intermediate resistance was not 

measured in this study because CLSI standards are not available for determination of S. aureus 

susceptibility for these two antibiotics. In accordance with Magiorakos et al. (2012), isolates that 

exhibited resistance to ≥ 1 antibiotic class were classified as antibiotic resistant S. aureus, while 

those that exhibited resistance to ≥ 3 antibiotic classes were classified as multidrug resistant S. 

aureus (MDRSA).  

2.5 Livestock-Associated Markers 

 Three different livestock-associated (LA) markers were assessed to determine the 

potential sources of S. aureus to surface waters: tetracycline resistance, absence of scn, and spa 

type. Isolates that showed resistance to tetracycline were considered positive for one LA marker 

(Nadimpalli et al. 2016; Gilchrist et al. 2007; Hatcher et al. 2017). Isolates that tested negative 

for scn by PCR were considered to be associated with animals, in accordance with Nadimpalli et 

al. (2016). Thus isolates with an absence of scn were considered positive for a putative LA 
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marker.  Spa-typing of isolates was conducted through Sanger sequencing of PCR products by 

Eton Biosciences, Inc. (Research Triangle Park, NC) in accordance with Hatcher et al. (2017).  

Sequences were then characterized using the Ridom StaphType software and the Ridom 

SpaServer (http://spa.ridom.de/index.shtml), and assigned to clonal complexes (CC) based on 

existing scientific literature. Spa types belonging to CC9, CC5, CC30, and CC398 were 

classified as LA spa types as specified in the literature and considered positive for a putative LA 

marker (Skallerup et al. 2015; Khanna et al. 2007.).  

Table 3. Characteristics of Antibiotics Used in Antibiotic Susceptibility Testing 

 

Antibiotic Class Name (Abbreviation) Disc Potency Medical Use 

    

Aminoglycosides Gentamicin (GM) 10 µg V/H (39) 

Spectinomycin (SPT) 100 µg V 

Cephalosporins 

 

Cefoxitin (FOX) 30 µg H 

Fluoroquinolones Ciprofloxacin (CIP) 5 µg H 

Levofloxacin (LVX) 5 µg H 

Lincosamide 

 

Clindamycin (CC) 2 µg H 

Lincomycin (L) 2 µg V 

Macrolides 

 

Erythromycin (E) 15 µg V/H (3) 

Oxazolidinone Linezolid (LZD) 30 µg H 

Penicillians Amoxicillin/ Clavulanic acid (AmC) 20/10 µg V/H (0.6) 

Penicillin (P) 10 U V/H (0.6) 

Rifamycins Rifampin (RA) 5 µg H 

Streptogramins Quinupristin/Dalfopristin (SYN) 15 µg H 

Sulfonamides Sulfamethoxazole/Trimethroprim (SXT) 23.75/1.25 µg H 

Tetracylines Tetracycline (TE) 30 µg V/H (57) 

Note: V=Veterinary usage, H=Human usage, V/H(#) Veterinary and human usage. The number represents the 

corresponding percentage used in veterinary medicine compared to human medicine. Data courtesy of Personal 

Communication with Sarah Rhodes and collected from FDA (2017).  
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CHAPTER 3: RESULTS 

3.1 Presence of S. aureus by Sampling Site 

To determine the extent of surface water contamination of drug resistant S. aureus as 

related to CHOs in Eastern North Carolina, water samples were collected from three background 

sites (prefix: BK) and three commercial hog operation (CHO) sites (prefix: SW) and analyzed for 

presence of Staphylococcus aureus. S. aureus was recovered in 67% of background sites and in 

100% of commercial hog operation (CHO) sites. S. aureus was present in 11 out of the total 44 

water samples (25%) at all time points: present in eight samples taken from CHO sites (18%) and 

three samples in background sites (6.8%) (Table 2, Table 4). Antibiotic resistant S. aureus 

(resistant to ≥ 1 antibiotic class) was present in samples twice (4.5%) and multidrug resistant S. 

aureus (MDRSA; resistant to ≥ three different antibiotic classes) was present once (2.3%) 

(Table 4). No antibiotic resistant S. aureus or MDRSA was present in samples collected from 

background sites (Table 4). S. aureus with LA marker absence of scn was present in eight 

samples (18%): three times in background sites (14%) and five times in CHO sites (22%). S. 

aureus with LA marker tetracycline resistance was present in samples once (2.3%) and S. aureus 

with LA spa types was present in samples once (2.3%) (Table 4). No S. aureus with LA 

tetracycline resistance or LA spa types were present in background sites (Table 4). S. aureus 

positive for all three LA markers was present once in a CHO site and not present in background 

sites (Table 4). No S. aureus was cultured from background site BK12 during the study (Table 

4).  
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Table 4: Presence of Staphylococcus aureus by Sampling Site 
 

Sampling  

Site ID 

Number 

of 

Samples 

S. aureus 

Antibiotic 

Resistant  

S. aureus 

MDRSA 

LA 

absent 

scn  

LA 

tetracycline 

resistance 

LA spa 

Type 

All Three 

LA 

Markers 

BK03 7 2 (29%) 0 (0%) 0 (0%) 2 (29%) 0 (0%) 0 (0%) 0 (0%) 

BK12 7 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

BK14 7 1 (14%) 0 (0%) 0 (0%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 

SW04 7 2 (29%) 1 (14%) 1 (14%) 2 (29%) 1 (14%) 1 (14%) 1 (2.3%) 

SW07 8 2 (25%) 1 (13%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

SW11 8 4 (50%) 0 (0%) 0 (0%) 3 (38%) 0 (0%) 0 (0%) 0 (0%) 

Total 44 11 (25%) 2 (4.5 %) 1 (2.3%) 8 (18%) 1 (2.3%) 1 (2.3%) 1 (2.3%) 

Note: Background sites (prefix “BK”) refer to sites without a commercial hog operation (CHO) in their 

watersheds. CHO sites (prefix “SW”) refer to sites with a CHO in their watersheds but no other concentrated 

animal feeding operations (CAFOs) or other known point sources of fecal contamination. Antibiotic resistant S. 

aureus is defined as resistant to ≥ 1 antibiotic class. Multidrug resistant S. aureus (MDRSA) is defined as isolates 

resistant to ≥ 3 different antibiotic classes. LA is abbreviated for livestock-associated.  

 

3.2 Most Probable Number Calculations 

 Most probable number (MPN) calculations were used to quantify the presence of S. 

aureus in sampling sites seasonally. The minimum MPN was <0.168 colony forming units 

(CFU) per 100 mL and represented zero positive enrichment tubes (Figure 2). Below detect 

values were denoted as 0.168 in Figure 2. The maximum MPN measured by this study was 3.76 

CFU/100 mL and was measured at a CHO site in the spring (Figure 2). CHO sites had higher 3rd 

quartiles and maximum CFUs than background sites for all seasons except winter (Figure 2). 

CHO sites had a higher median CFU (0.490, 0.588) in the spring and fall compared to 

background sites (<0.168, <0.168) (Figure 2). No significant difference was found between mean 

MPNs for background and swine sites during any season (𝛼=0.05; data not shown). Only one 

sample from each season were used in the MPN calculation for Fall and Winter. No enrichment 

tubes used in the MPN calculation were positive for S. aureus in the winter (Table 2, Figure 2). 
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Most Probable Number (MPN) of S. aureus in Surface Water Samples 
 

 
 

Site type Statistics (MPN/100 ml) Winter Spring Summer Fall 

Background 

Maximum 0.168 0.365 0.365 0.168 

3rd Quartile 0.168 0.266 0.365 0.168 

Mean 0.168 0.234 0.299 0.168 

Median 0.168 0.168 0.266 0.168 

1st Quartile 0.168 0.168 0.168 0.168 

Minimum 0.168 0.168 0.168 0.168 

Commercial 

Hog 

Operation 

Maximum 0.168 3.76 1.25 0.811 

3rd Quartile 0.168 2.28 0.710 0.588 

Mean 0.168 0.873 0.349 0.448 

Median 0.168 0.490 0.168 0.365 

1st Quartile 0.168 0.168 0.168 0.266 

Minimum 0.168 0.168 0.168 0.168 

 

Figure 2. Most Probable Number (MPN) of S. aureus in Surface Water Samples 
 

Note: Most probable number (MPN) statistics of S. aureus per 100 ml of water samples as differentiated by type of 

sampling site and season. Seasons were defined according to astronomical definitions for the Northern Hemisphere. 

Only one sampling date was used to calculate the MPN of Fall and Winter, compared to two in Spring and Summer.  
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3.3 Isolate Analysis from Positive Samples 

Originally 90 presumptive S. aureus isolates were collected, with up to five isolates being 

collected per sample (Table 5). This number was reduced to 85 based on results of biochemical 

and molecular confirmatory tests and finalized at 84 isolates with the removal of one isolate due 

to laboratory error (Table 5). These 84 isolates were subjected to antibiotic testing for 15 

antibiotics comprising 11 different mechanistic classes. 70 (82%) of these isolates originated 

from CHO sites and 14 (17%) were obtained from background sites (Table 5). 27 (39%) of 

isolates from CHO sites exhibited antibiotic resistance to 1 or more antibiotic classes (Table 5). 

No antibiotic resistant isolates were obtained from background sites (Table 5). 23 (33%) isolates 

from CHO sites were classified as MDRSA and were positive for LA tetracycline resistance, and 

eight (11%) were positive for LA spa types (Table 5). Eight isolates (11%) from CHO sites were 

positive for all three LA markers (Table 5). No isolates from background sites were classified as 

MDRSA, presented with LA tetracycline resistance, LA spa types, nor presented with all three 

LA markers (Table 5). 61 (73%) isolates had an absent scn: 14 (100%) originating from 

background sites and 47 (67%) originating from CHO sites.  No confirmed S. aureus isolates 

were identified by this study that harbored the mecA, mecC, or pvl gene. 
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3.4 Unique Isolate Characterization and Analysis   

Due to the potential for cloning with enrichment methods, isolates were further 

characterized as “unique” if they harbored an original spa type and/or antibiotic resistance 

profile for their enrichment tube. By this definition, 24 unique isolates were identified with 20 

(77%) obtained from CHO sites and four (17%) obtained from background sites (Table 6). Eight 

unique isolates (40%) obtained from the CHO sites were characterized as MDRSA and positive 

for LA tetracycline resistance (Table 6). Four unique isolates (20%) obtained from CHO sites 

were positive for all three LA markers (Table 6).  No MDRSA, tetracycline resistant, nor S. 

Table 5: Characteristics of Staphylococcus aureus Isolates  

Sampling  

Site ID 

# of  

Presumptive 

S. aureus 

isolates 

(% of 

Combined 

Total) 

# of 

Confirmed  

S. aureus 

isolates 

(% of 

Combined 

Total) 

Antibiotic 

Resistant 

S. aureus 

 

MDRSA 

LA 

absent 

scn  

LA 

tetracycline 

resistance 

LA 

spa 

Type 

All 

Three 

LA 

Markers 

BK03 13 9 0 0  9 0  0 0 

BK12 0 0  0 0  0  0  0 0 

BK14 6 5   0 0  5  0  0  0  

BK Total 
19 

 (21%) 

14  

(17%) 

0 

(0%) 

0 

(0%) 

14 

(100%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 
         

SW04 30  30  23 23  30  23  8  8  

SW07 9 9  4 0  0  0  0  0  

SW11 32 31 0 0 17  0  0  0  

SW Total 
71  

(78%) 

70  

(82%) 

27  

(39%) 

23 

(33%) 

47 

(67%) 

23 

(33%) 

8 

(11%) 

8 

(11%) 
         

Combined  

Total 

90 

 (100%) 

84  

(100%) 

27  

(32%) 

23 

(27%) 

61 

(73%) 

23 

(27%) 

8 

(9.5%)  

8 

(9.5%) 

(%)=Percentage of confirmed isolates for specified site type (unless otherwise specified) 
 

Note: Background sites (prefix “BK”) refer to sites without a commercial hog operation (CHO) in their 

watersheds. CHO sites (prefix “SW”) refer to sites with a CHO in their watersheds but no other concentrated 

animal feeding operations (CAFOs) or other known point sources of fecal contamination. Antibiotic resistant S. 

aureus is defined as resistant to ≥ 1 antibiotic class. Multidrug resistant S. aureus (MDRSA) is defined as isolates 

resistant to ≥ 3 different antibiotic classes. LA is abbreviated for livestock-associated.  
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aureus with a LA spa type were isolated from background sites (Table 6). All 14 unique isolates 

from background sites were absent scn, compared to 15 (75%) of isolates from CHO sites (Table 

6). No isolates from background sites presented with all three LA markers (Table 6).  

Table 6. Unique Staphylococcus aureus Isolates Counts and Percent Positive For Traits of 

Interest 

Source n 

Antibiotic 

Resistant  

S. aureus 

MDRSA 

LA 

absent 

scn  

LA 

tetracycline 

resistance 

LA spa 

Type 

All Three 

LA 

Markers  

Background 

Site (n=3) 
4 (17%) 0 (0 %) 0 (0 %) 

4 (100 

%) 
0 (0 %) 0 (0 %) 0 (0%) 

CHO Site  

(n=3) 
20 (83%) 9 (45%) 8 (40%) 

15 

(75%) 
8 (40%) 4 (20%) 4  (20 %) 

Total 
24 

(100%) 
9 (38%) 8 (35%) 

19 

(79%) 
15 (63%)  4 (17%) 4 (17 %) 

Note:  Background sites indicate sampling locations without a commercial hog operation (CHO) in their 

watersheds. CHO sites indicate sampling locations with a CHO in their watersheds but no other concentrated 

animal feeding operations (CAFOs) or other known point sources of fecal contamination. Antibiotic resistant S. 

aureus is defined as resistant to ≥ 1 antibiotic class. Multidrug resistant S. aureus (MDRSA) is defined as isolates 

resistant to ≥ 3 different antibiotic classes. LA is abbreviated for livestock-associated.  

 

Antibiotic resistance profiles of these 24 unique isolates were compared and analyzed. 

Resistance to the following nine antibiotics was identified: spectinomycin (SPT) (n=8), 

lincomycin (L) (n=8), ciprofloxacin (CIP) (n=7), levofloxacin (LVX) (n=7), clindamycin (CC) 

(n=7), erythromycin (E) (n=8), tetracycline (TE) (n=8), gentamicin (GM) (n=1) , and penicillin 

(P) (n=9) (Figure 3). All isolates were susceptible to the following six antibiotics: rifampin (RA), 

quinupristin-dalfopristin (SYN), sulfamethoxazol-trimethoprim (SXT), linezolid (LZD), 

cefoxitin (FOX), and amoxicillin-clavulanate acid(AMC) (Figure 3). All eight unique MDRSA 

unique isolates were found on 5/9/17 from one sampling site, SW04. Outside of these eight 

unique isolates, only two (7.7%) showed resistance (P, n=1) or intermediate susceptibility (CIP, 

n=1) to antibiotics (Figure 3). All other isolates (n=15, 56%) showed susceptibility to all 

antibiotics measured (Figure 3). 
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Sub-typing of isolates was performed through Sanger genetic sequencing of the 

staphylococcal protein A (spa). 12 spa types were identified using the Ridom SpaServer database 

(http://spa.ridom.de/index.shtml): t002 (n=1), t127 (n=2), , t189 (n=2), t208 (n=2), t273 (n=4), 

t324 (n=1), t337 (n=3), t1166 (n=1), t2315 (n=1), t17704 (n=5), t17705 (n=2), and t17706 (n=1) 

(Figure 3). Livestock-associated spa types (t337, t2315) were identified in the unique isolates 

four (17%) times (Figure 3). The following three spa types were identified for the first time in 

this study and added to the Ridom SpaServer: t17704, t17705, and t17706.  Livestock-associated 

spa-types were also only found at one sampling time and location, 5/9/17 at SW04.  

This study recovered S. aureus (n=84) from surface water samples from 100% of CHO 

sites (n=3) and 67% of BK sites (n=3). 24 unique isolates were identified from the original 84 

isolates and differentiated by their unique resistance profiles and/or spa type within their 

enrichment tubes. Regardless of grouping, MDRSA and S. aureus isolates with all three markers 

of LA were found only on 05/9/17 from site SW04.  All isolates with a LA spa type were 

MDRSA. The only other antibiotic resistance observed was to penicillin in a CHO isolate and 

intermediate ciprofloxacin resistance in one BK isolate. No MDRSA, antibiotic resistant S. 

aureus, S. aureus with a LA spa type, or LA tetracycline resistant S. aureus was isolated from 

background sites. All isolates from background sites were absent scn, a LA marker indicating a 

non-human source.  
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*= Newly Identified spa type 
. 

Figure 3. Antibiotic Resistance Profiles and Livestock-Association of Unique S. aureus Isolates 
 . 
Note: Isolates displayed antibiotic resistance to the following:  spectomycin (SPT), lincomycin (L), ciprofloxacin 

(CIP), levofloxacin (LVX), clindamycin (CC), erythromycin (E), tetracycline (TE), gentamicin (GM), and penicillin 

(P). All isolates were susceptible to the following antibiotics: rifampin (RA), quinupristin (SYN), sulfamethoxazole 

(SXT), linezolid (LZD), cefoxitin (FOX), amoxicillin (AMC). LA is abbreviated for livestock-associated. To our 

knowledge, spa types t17704, t17705, t17706 were identified for the first time in this study.  

 

  



 20 

 

 

 

CHAPTER 4: DISCUSSION 

4.1. S. aureus presence and seasonality 

 

This is the first exploratory study to evaluate Staphylococcus aureus from surface water 

samples from watersheds with and without commercial hog operations (CHOs). Furthermore, 

this study considers antibiotic resistant S. aureus broadly rather than exclusively focusing on 

methicillin resistant S. aureus (MRSA). We identified isolates with and without livestock-

associated markers, indicating that multiple sources may be contributing S. aureus to the 

environment. While this study does not directly identify sources of contamination, sources could 

include septic tanks, wild animals, humans, and or insect and rodent vectors (Hatcher et al., 

2016; Viau et al., 2011; Wardyn et al., 2012). As all S. aureus isolates from background sites did 

not have scn, it is unlikely that human contamination, such as from septic tanks, is contributing 

S. aureus to surface water at these sites.  

No S. aureus was present between February 2017 and April 2017 when average water 

temperature at sites was 17.2 C and ranged between 13.7 C and 20.7 C. This was higher in 

both range and average than winter as whole (8.9C - 16 C; 12.4 C) when S. aureus was still 

recoverable. This lack of S. aureus from February 2017 and April 2017 is discordant with Levin-

Edens et al. (2011), as it falls within the survival limits of S. aureus in freshwater. However, it 

has been suggested that S. aureus survives differently in varying climates and further research is 

needed to determine the survival of S. aureus from warmer regions such as North Carolina in 

fresh water (Levin-Edens, Bonilla, Meschke, & Roberts, 2011).  
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4.2 Methicillin Resistant S. aureus and Antibiotic Resistance 

One unique S. aureus isolate originating from a CHO site showed antibiotic resistance to 

penicillin outside of the multidrug resistant S. aureus (MDRSA) identified. The remaining 15 

unique isolates from both CHO and background sites were susceptible to all antibiotics tested. 

This finding suggests that antibiotic resistant S. aureus was not prominent in the surface waters 

tested by this study, but occurred episodically in watersheds housing CHOs.  

No methicillin resistant S. aureus (MRSA) was identified in this study. Previous studies 

have solely focused on isolating MRSA in water systems, yet a limited number have purposely 

investigated methicillin susceptible S. aureus (MSSA). Designing experiments to isolate MRSA 

but not MSSA could lead to lower detection of S. aureus in water systems and limit the potential 

of isolating and documenting MDRSA in the environment.  

4.3. Multidrug Resistant S. aureus (MDRSA) 

Multidrug resistant S. aureus (MDRSA) was isolated on one occasion from a CHO site 

that exhibited signs of a hog lagoon spill or discharge. Physical and chemical conditions of the 

site were abnormal on the sampling date MDRSA was found and suggested a presumptive hog 

lagoon spill. Water appeared pink in appearance, measured conductivity was 3.2 times that of the 

average for that site (122.2 SPC compared to 400.5 SPC), the water was exceptionally odorous, 

and this site produced the highest most probable number (MPN) of S. aureus identified by this 

study. Additionally, all MDRSA isolates were scn negative and resistant to tetracycline, two 

different livestock-associated (LA) markers. MDRSA isolates included three spa types. One 

unique MDRSA isolate had spa type t2315 and three had spa type t337. These spa types belong 

to CC9 and CC398 respectively, both of which have a known association with hogs and are 

considered a LA marker (Skallerup et al., 2015). The final spa type identified in MDRSA 
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isolates, t17704, was newly identified by this study and therefore has no previous associations. 

Four unique isolates from this event were positive for all three LA markers.  No other isolates 

from this study presented with LA spa types, nor were positive for all three LA markers. 

MDRSA was only found on this occasion during the span of our study and was not 

present again at this site. This finding suggests that MDRSA can be found episodically in surface 

water in watersheds containing CHOs. Transfer of antibiotic resistant bacteria from CHOs and 

other concentrated animal operations (CAFOs) has been documented through nasal carriage in 

workers, air transport, and run off of applied feces to fields (Hatcher et al. 2017; Copeland 2003; 

West et al. 2011; Sapkota et al. 2007; Schulz et al. 2012). However, as sampling was limited to 

twice per season, it is notable that this presumptive lagoon spill and MDRSA was captured by 

our study. This indicates that hog lagoon contamination could be occurring more frequently, and 

that more intensive monitoring of this site and of other watersheds could be warranted. 

4.4 Study Limitations 

There is not one unified method or preferable media for isolation of S. aureus from 

environmental samples. Through a short pilot study comparing different enrichment methods and 

medias for isolation of S. aureus, enrichment in 6.5% NaCl + Muller Hinton broth for 48 hours 

followed by plating on CHROMagar™ Staph Aureus (Chromagar, Springfield, NJ) was chosen 

as the preferable method. The limitations of CHROMagar™ Staph Aureus (Chromagar, 

Springfield, NJ) in environmental applications are well documented (Goodwin and Pobuda 2009; 

Hatcher et al. 2016; Levin-Edens et al. 2012, 2011). Additionally, the manufacturer’s 

instructions provide the vague and widely applicable description of “purple to mauve” to 

describe S. aureus colonies. We suggest the more detailed criteria determined by this study for 

defining the appearance of S. aureus isolates on CHROMagar™ Staph Aureus (Chromagar, 
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Springfield, NJ) in order to prevent a high level of false positives: shiny, opaque, bright purple to 

dark magenta colonies with a slightly raised circular form.  

While selective for S. aureus in clinical samples, CHROMagar™ Staph Aureus 

(Chromagar, Springfield, NJ) was not reliably selective for S. aureus in environmental samples, 

even after enrichment. Mixed colonies were common and competition with other organisms may 

have lowered the recoverable number of S. aureus isolates. Thus, S. aureus may have been 

present in samples, but proved unrecoverable due to the complications and limitations of the 

chosen media. As up to five colonies per plate were chosen for analysis by this study, not all S. 

aureus found was analyzed for antibiotic resistance and LA markers. However, as the majority of 

isolates collected from an enrichment tube presented with identical spa types and antibiotic 

resistance patterns, it can be inferred that only minimal characterization was missed by this 

constraint.   

All isolates fitting the morphology description for S. aureus on CHROMagar S. aureus 

plates were secondarily confirmed on BBL™ Mannitol Salt Agar (MSA) (BD, Sparks, MD). 

This media further reduced the number of false-positives found, as not all presumptive isolates 

were positive for mannitol fermentation on MSA agar. When genetically confirmed, all 

presumptive isolates negative for mannitol formation were also negative for the spa gene and 

therefore were not S. aureus. Based on this study, use of MSA in addition to CHROMagar™ 

Staph Aureus is highly recommended by this study for the isolation of S. aureus from 

environmental samples. 

4.5 Generalizability  

This study highlights the presence of S. aureus in watersheds with and without CHOs, 

and reveals episodic presence of MDRSA in CHO sites. While Hatcher et al. (2016) identified 
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the potential to identify MRSA in watersheds with CHOs, no comparison was made with 

watersheds without CHOs. This study builds on the knowledge that MRSA can be found in 

surface waters near CHOs, and adds that MSSA can also be identified in surface waters from 

watersheds with and without CHOs. This study further expands the work of Hatcher to include 

isolation of S. aureus resistant to many different classes of antibiotics, not only MRSA. Finally, 

our results show that MDRSA can be present episodically in surface waters from watersheds 

with CHOs, indicating a potential source of contamination from CHOs.  
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CHAPTER 5: CONCLUSION 

This research suggests that livestock-associated, multidrug resistant S. aureus (MDRSA) 

can be present in surface water near CHOs episodically, and most likely occurs when waste 

management practices fail. This finding is of critical interest to multiple stakeholders and 

community members. While CHO farmers should ensure proper disposal of waste is occurring 

on their farms to prevent the spread of MDRSA into surface waters, larger management 

contractors and corporations employing the CHO farmers should also ensure that their businesses 

are implementing and enforcing best practice waste management. Furthermore, waste 

management practices should be improved and implemented such that they consider the potential 

for contamination of nearby surface waters with multidrug resistant bacteria. Consumers should 

also consider their role in purchasing from companies who routinely use antibiotics for animal 

production, as this practice yields consequences for antibiotic resistance, particularly for 

zoonotic microbes such as S. aureus. Regulatory agencies should consider using traditional 

monitoring or alternative markers such as conductivity tests to determine when contamination of 

surface water has occurred and to highlight sites in need of interventions. Future work regarding 

the presence of S. aureus in the environment should more broadly include isolation of S. aureus 

and not just that of methicillin resistant S. aureus (MRSA). This technique can produce 

comprehensive results and insights into microbial contamination in waterways that would 

otherwise be missed due to early stage selectivity. Finally, increased cooperation between 

contractors, regulatory agencies, researchers, and CHOs can increase our knowledge of microbial 

contamination of nearby surface waters and act to prevent it. 
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