
ABSTRACT

RICHARD P. McCOY.  Biological Treatment of Wastewater from
the Production of p-Nitrosophenol.  (Under the Direction of
Dr. MICHAEL D. AITKEN)

The biological treatability of p-nitrosophenol

wastewater was investigated using Sequencing Batch

Reactors (SBRs).  Two 2.5 1 SBRs were operated for more

than six months and were fed both a raw waste and a

synthetic feed.  Removal of phenol was greater than 93% and

soluble COD removal was 75% or greater.  The inhibitory

effects of the phenolic waste were partially overcome by

increasing the number of treatment cycles per day.

Significant loading rates were sustained throughout the

study, the highest being achieved at two cycles per day.

Loss of soluble COD by abiotic means was ruled out.  The

use of SBRs for treatment of p-nitrosophenol wastewaters

will result in significant savings over present chemical

oxidation processes.
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I.  INTRODUCTION

The purpose of this research project was to determine

the feasibility of biologically treating an industrial

wastewater using sequencing batch reactors (SBRs).  This

project was funded by Sandoz Chemicals of Mt. Holly, NC.

Sandoz Chemicals, located 6 miles west of Charlotte,

NC, is one of the largest manufacturers of textile dyes and

dye intermediates in the United States.  The plant employs

approximately 350 people and its products are distributed

throughout the US and overseas.  The textile manufacturing

processes at the Mt. Holly plant are all batch processes.

The most common reactions used to produce dyes are

sulfonation, chlorination, nitration and nitrosation of

phenol and chlorobenzene.  These batch processes result in

a waste stream with varying concentrations of a wide

variety of organic and inorganic constituents.  The plant

currently treats the majority of its wastewater on site by

means of chemical neutralization and biological treatment.

Sludges resulting from precipitation of neutralized

chemicals are disposed of on-site by landfilling.
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One particular wastestream that the company is

concerned about is the wastewater resulting from the

production of p-nitrosophenol.  p-Nitrosophenol (C H NO ,
6 5  2

1,4-benzoquinone monoxime) is an important stock chemical

used in the synthesis of dyes by Sandoz and other dye

manufacturers.  Nitrosophenol (as p-nitrosophenol will be

referred to in the rest of this report) is produced by the

nitrosation of phenol using sodium nitrite in a

concentrated sulfuric acid medium.  4-Nitrophenol is a

byproduct of this reaction.

After the reaction is complete, the liquid

(approximately 50,000 gallons) is drained from the reaction

vessel and put through a centrifuge.  Since nitrosophenol

is a relatively insoluble compound at acid pH, the majority

of the nitrosophenol produced in the reaction is captured

in the centrifuge cake.

The centrate that remains consists of dissolved and

suspended nitrosophenol, 4-nitrophenol, phenol, sodium

nitrite, and sulfuric acid.   The organic content of the

wastestream, on average, consists of 1340 mg/1

nitrosophenol, 1140 mg/1 phenol and 190 mg/1 4-nitrophenol.

However, there is considerable variability in these

concentrations from batch to batch.

Though the activated sludge system at the Sandoz plant

NEATPAGEINFO:id=C6C3F21D-1E71-4369-A822-9220521EFE11
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currently treats  the majority of the wastewaters

generated, the nitrosophenol process wastewater is not sent

to the activated sludge system. The discharge permit issued

to Sandoz Chemicals has a very strict mass limit on phenol,

so that it is prudent for them to pre-treat wastes that

have a high phenol content, such as the nitrosophenol

wastewater.  The current treatment method for this

wastestream is chemical oxidation in a batch system using

hydrogen peroxide in the presence of iron (the Fenton

Reaction):

Fe(III)
p-Nitrosophenol + Phenol + 4-Nitrophenol + H 0   ---->

2 2

CO  + H 0 + NO   + other products
2    2      3

The optimum pH for the reaction has been found to be

between 3.5 and 4.3.  This is achieved by adding sodium

hydroxide to the centrate.  The theoretical molar ratio of

peroxide to phenol is 14:1.  Personnel at the plant use

considerably more than the theoretical ratio.  The current

cost of treatment with this system is very high.

Ferric sulfate is used as the catalyst at 50 lb per

50,000 gallon batch.  The oxidation reaction is highly

exothermic and foaming is used as an indication of reaction

rate.  The reaction is performed at very low initial
o

temperatures (5 F).  Analyses of effluent concentrations of

NEATPAGEINFO:id=00EE551F-B86D-4974-BC90-4D39E574255D
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nitrosophenol, 4-nitrophenol, and phenol after peroxide

oxidation showed virtually complete elimination of all

three chemicals in 60 individual batches.  Data on reaction

products from the chemical oxidation process are not

available.

Because of the hazard and expense of using hydrogen

peroxide (50% reagent is used), Sandoz is very interested

in converting its nitrosophenol filtrate treatment process

to a biological system.  In addition, the current

production rate of nitrosophenol is restricted by the

limited capacity of the chemical oxidation treatment

process.

Sequencing batch biological reactors pose significant

advantages to Sandoz in the treatment of this waste stream.

Sequencing batch reactors are essentially a set of tanks

that operate on a fill and draw basis.  Each tank in the

SBR system is filled during a discrete period of time and

then operated as a batch reactor.  After desired treatment,

the mixed liquor is allowed to settle and the clarified

supernatant is drawn from the tank.  Sequencing batch

biological reactor design and operation was recently     /

reviewed (Irvine and Ketchum, 1989), and the following

description of SBRs is from that article.

The essential difference between the SBR and a

NEATPAGEINFO:id=C81E709E-33C8-4A12-8BEC-09EB9DB8092D



conventional continuous-flow activated sludge system is
that each SBR tank carries out functions such as

equalization, aeration, and sedimentation in a time, rather
than a space sequence.  One advantage of the time
orientation is the flexibility of operation.  The total
time in the SBR is used to establish the size of the system
and can be related to the total volume of a conventional

continuous-flow facility.

The cycle for each tank in a typical SBR is divided
into five discrete time periods:  Fill, React, Settle,
Draw, and Idle.

During Fill, the influent wastewater is added to the
biomass which remained in the tank from the previous cycle.
The Fill period may be either a Static Fill (no mixing or
aerating). Mixed Fill (mixing without aerating), or Aerated
Fill.  Fill is typically terminated when the tank is full
or when the next tank in the sequence is ready to receive
influent.

Reactions that may have been initiated during the Fill
period are completed during React.  React is characterized
by a high concentration of substrate at the beginning of
the period.  By the end of React, most, if not all, of the
substrate has been degraded.  The exposure to wide

NEATPAGEINFO:id=A9FF8966-578C-48A9-901E-873805BAE2DF
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differences in substrate concentration thus achieved can be

an important aspect in selection of the microbial community
in the reactor, and can lead to the development of a
culture adapted to transient loading conditions.

After the React period is over, aeration (and sometimes
mixing) is stopped and quiescent conditions are maintained
in the reactor during a Settle period to allow settling of
the biomass.  The Settle period is usually between 1 and 2
hours.  After Settle, the supernatant is drawn off during
Draw.  Supernatant can be drawn by either a floating pump
or adjustable weir or a pipe at a fixed position in the
side of the reactor.  Draw typically only takes 5-30% of
the total cycle time.  After drawing off the effluent, the
SBR may go into an Idle period or it may immediately begin
a new Fill period.

At the Sandoz plant, three tanks are available near the
nitrosophenol treatment area and would be ideal for use as
SBRs.  With a minimum of retrofitting, a two tank SBR
system, using the third tank as an equalization/storage
tank could be set up with a minimal amount of capital
equipment.

One of the objectives of this study was to determine
whether the existing tank volume would be sufficient to
treat the average daily volume of nitrosophenol wastewater.

NEATPAGEINFO:id=B11855D0-9E1C-446D-A4BF-9C6CBCCEB1DB



This required an evaluation of treatment efficiency as a

function of loading rate.  In addition, Sandoz gave a

stated objective that the biological process should remove

phenol to below 10 mg/1 consistently.  Specific objectives

of the study included:

1. evaluate the biodegradability of nitrosophenol

wastewater constituents and the treatability of the waste

in a bench-scale SBR;

2. determine nutrient requirements for optimum

degradation;

3. evaluate treatment performance as a function

of reactor operating conditions; and

4. draw conclusions as to the biological

treatability of the waste and develop a conceptual process

design if treatment appeared to be feasible.
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II.  LITERATURE REVIEW

Sequencing Batch Reactors

The historical perspective, advantages of SBRs over

conventional biological treatment systems, and design

considerations for using multiple tanks (since it is

proposed that two or three tanks at the Sandoz plant be

reconfigured as SBRs) are discussed below.  This

information has been excerpted from Irvine and Ketchum

(1989).

1.  Historical Perspective:  Sequencing Batch

Biological Reactors were initially studied and placed into

actual service in the early 1900s.  Good removal of

suspended solids and BOD was observed in the treatment of

domestic sewage as early as 1914.  However, in the 1920s,

research and development efforts switched to continuous

flow treatment systems due to the high discharge flow rate

relative to that of the influent when one tank is employed,

clogging of diffusers because of periodic settling of the

sludge, and increased operator attention resulting from the

need to switch valves and clean diffusers.  The use of a

NEATPAGEINFO:id=A8B3B539-1B3A-4EB6-84E9-A0472D42C357



multiple tank strategy alleviates the first objection and

vast improvements made since the 1920s in aeration devices

and control systems obviate the second and third

objections.  Today, applications of SBR technology can

focus more on process advantages over continuous systems,

rather than on factors associated with hardware and

operating labor.

2.  Advantages of the SBRs:

a.  Equalization and Dilution:  SBRs have two

distinct advantages over conventional biological treatment

systems when employed in the degradation of high strength,

variable composition waste.  These are its ability to

equalize and dilute wastes.  When a significant amount of

the total reactor liquid volume is removed during Draw, and

no aeration is provided during Fill, the SBR acts like a

stepwise equalization system.  Wastewater with a highly

variable concentration is equalized over the period of

Fill.  When a relatively small amount of effluent is

withdrawn during Draw, and the liquid level in the reactor

is high at the beginning of Fill, the effect is to dilute

the influent wastewater.  Thus, the SBR provides a

buffering action against rapid changes in concentration of

any component in the reactor that could result from a

sudden increase in the strength of influent wastewater.

NEATPAGEINFO:id=C2D58F3F-EACA-40B2-899D-33DE99F9C03E
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b.  Population Selection:  The power of an

unsteady-state SBR comes from its ability to provide the
microbial consortium with a controlled environment which

will select for organisms that have advantageous
characteristics in treating the wastewater.  For instance,
Static Fill is frequently used to establish feast
conditions (high instantaneous substrate concentratations)
in the SBR.  Famine conditions naturally result during

React, when the substrates are being utilized without the
input of raw waste.  Organisms that are able to compete
best for the food supplied under alternating conditions of
feast and famine will be enriched in the system.

In another example. Mixed Fill conveniently allows
alternative electron acceptors such as nitrite and nitrate
to be utilized.  Thus if oxidized forms of nitrogen are
generated by nitrification in the SBR during Aerated Fill
or React, denitrification will take place during unaerated
periods.

3.  Design Considerations Involved with Using
Multiple-Tank SBRs:

a.  In multiple tank systems, the time

available for React, Settle, Draw, and Idle must equal the

NEATPAGEINFO:id=CAE3218A-2346-4DBE-960A-539B58FB5B44
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sum of the Fill periods for all other tanks.  Therefore as
the number of tanks increases, the fraction of time devoted
to Fill in any one tank decreases, and an increased
fraction of time during a cycle is available for React,
Settle, and Idle.

b.  For a given total tank volume, the load
that can be handled increases as the number of tanks is
increased.

Because of the unsteady-state nature of Fill and React,
a kinetic-based definition of sludge age, an important
operating parameter in conventional activated sludge
systems, is not possible.  However, an evaluation of the
kinetics and stoichiometry of the treatment system is vital
(Irvine, et al., 1977).  A mathematical method of
describing the kinetic relationships of multiple reactions
involved in an SBR has been presented (Irvine, et al.,
1980).  The rates of various reactions help determine the
relative importance of each reaction in a reaction scheme.

Because the SBR has five nonaeration-oriented functions

(Static Fill, Mixed Fill, Settle, Draw, and Idle), the
definition of mass loading rate is also obscured.  A useful
definition of mass loading rate in an SBR adjusts the time
factor appearing in the denominator of the term by

NEATPAGEINFO:id=F5C732C5-9768-490C-A7C5-BF76D61334D3
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including only the fraction of time the mixed liquor is

under aeration each day.

The effect of the organic loading rate on the operation

of an SBR treating municipal waste has been reported

(Irvine, et al., 1985).  The study was done at the Culver,

IN, Wastewater Treatment Plant.  Two SBRs had been

retrofitted at the plant.  During the two month study, one

tank was operated at an organic loading rate (adjusted for

aeration time) of 0.16 kg B0D5/kg MLVSS-d, and the other

was operated at an organic loading rate of 0.42.  The

performance of the SBR at the low loading rate was found to

be better than the SBR at high loading rate in terms of

effluent B0D5, and suspended solids (SS) .  However, both

SBRs maintained effluent qualities that were quite good.

It was found that the highly loaded reactor was more

difficult to operate.

The effect of the loading rate on effluent quality in

an SBR treating domestic sewage was evaluated (Hoepker and

Schroeder, 1979).  Because bioflocculation has been

associated with extracellular polymer production occurring

under low growth rate conditions, the effluent turbidity

was thought to be related to the maximum growth rate

experienced during the feed cycle.  In this study effluent

SS and TOC were measured as functions of loading rate.

Effluent TOC concentrations varied with influent TOC

NEATPAGEINFO:id=D6299270-27A1-4344-AF92-944B12BA052E
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concentration.  No relationship was found between effluent

quality and growth rate in the reactor.  The lower feed

strength and lower growth rate systems were found to have

lower suspended solids concentrations.

A study was performed to determine the effect of the

Fill:React ratio on SBR performance (Dennis and Irvine,

1979).  In this study Fill and React times were varied to

determine the effect on settleability of the mixed liquor.

A loading rate of 0.3 g B0D5/g MLSS-d was used.  It was

found that employing short Fill periods, and consequently

long React periods, settleability was markedly better than

for long Fill and short React periods.

Treatment of Hazardous Waste Using Sequencing Batch

Biological Reactors

The treatment of an industrial wastewater with SBRs has

been evaluated at bench scale (Murthy, et al., 1988).  In

this study the wastewater from the production of Roundup

(TM), an agricultural pesticide, was treated using batch

flasks and with SBRs.  The target compound for removal in

the wastewater was glyphosate (N-phosphono-methyl glycine,

COOH-CH2-NH-CH2-H2P03).  The feed to the reactors had a

soluble COD of 3600 mg/1 and a glyphosate concentration of

1600 mg/1.
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Complete removal of glyphosate was achieved in

preliminary studies using SBRs up to an initial

concentration of 3000 mg/1.  Denitrification was found to

be an important mechanism in glyphosate removal, so the

Fill period was changed from an Aerated Fill to a Mixed

Fill.  When this occurred, better removal rates were

observed.

The results of bench scale and initial operation of a

full scale SBR system to treat landfill leachate, water

from a groundwater remediation program, and bulk hazardous

waste has been reported (Herzbrun, et al., 1985).  The

plant is operated by CECOS International at Niagara Falls,

NY.  Prior to the SBR study, removal of organics in the

wastewater was accomplished by adsorption onto activated

carbon.

Preliminary studies had confirmed the treatability of

the wastewater (Herzbrun, et al., 1984).  Total Organic

Carbon degradation ranged from 55 to 81% and phenol

degradation ranged from 96.8 to 99.2%.  Foaming was

observed during the treatment of the waste on several

occasions, but was easily controlled with a bubble breaking

compound.  A study to determine the effect of a power

failure or mechanical problems showed that with no air

supplied to a reactor for as long as 48 hours, no short-
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term or long term effects were observed.

During the bench scale testing, the waste treated had
an influent TOC of 1620 mg/1 and influent phenol of
approximately 40 mg/1.  Two reactors were operated over a
nine-week period.  One reactor operated at room temperature
(21 - 25 degrees C) and the other operated below room
temperature (5-17 degrees C) to simulate cold weather
operation.  Total Organic Carbon (TOC) removal averaged 79%
for the room temperature reactor and 75% for the cold
weather reactor.  Overall effluent phenol concentrations
averaged 0.4 mg/1 throughout the bench scale study for both
reactors.

Phenol augmentation was evaluated in both reactors to
evaluate reactor performance at increasing levels of
influent phenol.  The weekly average concentration of
phenol was increased from 40 mg/1 to 570 mg/1 over a six
week period.  The room temperature reactor maintained an
effluent phenol concentration of 0.4 mg/1 and the simulated
cold-weather reactor experienced two weekly average spikes
of 55 mg/1 and 63 mg/1.

Results of the second through the fifth week of full
scale SBR operation were reported. The one 1900 m^S SBR
constructed at the site treated an average of 220m"3/d at
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an eight to nine day retention time.  Phenol degradation in
the SBR averaged 99% and average TOC removal was 72%.
These reductions in phenol and TOC by biological methods
resulted in significant cost savings over carbon adsorption
alone.  Carbon adsorption was retained, though, as a
polishing step for the effluent.

The treatment of soils and leachate from a landfill

containing typical coal gasification wastes such as
polynuclear aromatic hydrocarbons (PNAs), phenols, coal
tars and oils, and cyanide- and sulfate-containing wastes
was reported (Brenner, et al., 1987).  In this study the
overall goal was to develop a "specialized bacteria" to be
used in a land farming technique to remediate the soil.
The SBR was chosen to develop the specialized bacteria
because of the unique activities that can occur during its
Settle period.

During the Settle period, the microorganisms have an
opportunity to perform plasmid exchange, in which general
enrichment of genetic information is achieved.  This was
thought to be an excellent way to develop a population of
organisms that would be adapted to coal conversion gas by¬
product degradation.  Once the population was developed,
the SBR would be used to culture organisms to be applied to
the surface of the contaminated site to maximize the rate
of soil detoxification.
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A population of organisms was isolated from soils at
the site and were confirmed to degrade phenol, naphthalene,
and acenaphthene by plating and respirometry methods.  Two
initial SBRs were operated using a soil/leachate mixture as
the feed to one reactor and the low COD (100 mg/1 soluble
COD) leachate as the feed to the other reactor.
Performance of these screening test reactors showed good
removal of soluble COD and good oxygen uptake rates.

Four bench scale SBRs were then operated.  Two of the
four reactors were fed a soil/leachate mixture which had a
soluble COD of 30 to 75 mg/1 and a total COD of 350 to 900
mg/1.  Phenol concentrations in the feed mixture averaged
13.1 ug/1.  The other two reactors received this same feed
supplemented with glucose (5 mg/1 as COD).

Effluent soluble COD ranged from 15 to 40 mg/1.
Effluent phenol concentrations were 0.5 ug/1 in one reactor
not supplemented with glucose and less than 0.14 ug/1 in
the other three reactors.  Moderate wasting of sludge
resulted in higher MLSS.  The reactors fed glucose-
augmented feed had higher yields of solids, though all
reactors achieved high removal efficiencies for most of the
feed constituents.  The effluents from the reactors were
turbid and this was thought to be due to the oily nature of
the feed.
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Treatment of another landfill leachate in Niagara, NY
was also evaluated using SBRs (Ying, et al., 1986).  The
leachate was mixed with a small amount of chemical

manufacturing wastewaters before treatment.  The leachate
accounted for about 60% of the combined wastewater volume,
but 80% of the total organic loading to the existing
adsorption system.  The combined waste feed had an average
phenol concentration of 780 mg/1, COD concentration of 9200
mg/1, and total dissolved solids averaged 22,000 mg/1.

Previous treatment consisted of activated carbon

adsorption.  Poor adsorptive capacities were observed for
many of the organic compounds present in the wastewater due
to competitive adsorption rather than poor bed design or
operational problems.  Any treatment technology capable of
reducing this competition could extend the adsorption
service cycle.

Initial bench scale SBR studies showed reduction of

about 90% of the TOO was achieved.  Supplementation of a
strain of bacteria isolated from the landfill.site improved
the treatment efficiency of the reactor.  Subsequent SBR
studies were then performed using 1, 12 and 500 1 reactors.
All reactors operated with a MLSS from 8000 to 13,000 mg/1
(an SBR operated with an MLSS of 5000 mg/1 failed early in
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the study).  Hydraulic retention times of 1.7 and 1.0 days

were also evaluated.  Good performance was observed during

these higher hydraulic loadings.

The 500 1 SBRs were then operated to simulate long-

term, full-scale operation of the reactor.  Good removal

efficiencies were observed with reactors that had MLSSs of

5000 and 10000 mg/1.  The SBR resulted in reduction of the

activated carbon requirement by 90%.  Results obtained in

the 1 1 SBRs was reproduced in 12 1 and 500 1 units.  The

experimental data served as the basis for the design of a

full-scale SBR-adsorption system.

Cloudy effluents (SS greater than 250 mg/1), due to

populations of dispersed and/or filamentous bacteria, were

observed several times during this study.  They were caused

by excessive organic loading, short React period, low D.O.,

nutrient deficiency and accumulation of toxic compounds.

Effluent SS was less than 100 mg/1 except when the feed TOC

was higher than 3000 mg/1.  The SBR performance was nearly

unchanged when the feeding was suspended on holidays and

weekends.

The integrated wastewater treatment system (biological

treatment in SBRs followed by carbon adsorption polishing)

produced a better quality effluent at lower overall cost.

Since the biological treatment reduced TOC by 90%, net
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savings of $526,000/year over 10 years was estimated to be
realized if biological pretreatment was implemented

A novel way to treat a complex landfill leachate has
been reported (Smith and Wilderer, 1986).  A landfill near
Hamburg, West Germany had a leachate containing organic
solvents, phenol, several chlorinated hydrocarbons and
heavy metals.  A two-stage SBR treatment strategy was
tested.  This strategy involved treatment of the more
readily degraded compounds in a first stage SBR followed by
treatment of less concentrated, but more refractory
compounds in a second stage "fixed film SBR."  A fixed film
reactor was chosen for the second stage because, due to low
concentrations of substrate, doubt existed as to whether
biological sludge floes would develop and settle.

A silicone-membrane oxygenation system was used to
provide oxygen transfer to the reactors.  This system was
employed to prevent the formation of gas bubbles and
thereby reduce the amount of volatile organics released by
stripping, so that more of the volatile organics would be
available to the microorganisms as substrate.

The first stage SBR was a conventional 15 1 glass

biological reactor.  The second stage reactor was
constructed the same as the first, except there was no

NEATPAGEINFO:id=1365BD5D-5DB4-4F36-9C62-2AE8E09EFDD8



21

mixer and it was filled with expanded-clay aggregate.

A synthetic leachate feed was fed to the reactors which
had a soluble COD concentration of 1170 mg/1 and the phenol
content was 15 mg/1.  The sludge used to seed the reactors
was obtained from a local wastewater treatment plant and
was augmented with water that had been filtered through
soil obtained from the landfill.  The suspended solids of
the reactor was 3000 mg/1.

During the initial stage of operation, the reactor
performance deteriorated appreciably over the 5 weeks of
operation.  The fraction of flocculant organisms in the
first stage reactor consistently decreased and the effluent
COD and suspended solids increased.  These effluent
suspended solids then became trapped in the second stage
reactor.  By the end of the initial seven weeks of
operation, effluent suspended solids were appearing from
the second stage reactor.

To correct these problems, a different strategy was
employed in the next phase of operation.  After a React
period was completed, the normal amount of reactor volume
was decanted from the second stage reactor.  The remaining
volume in the second stage reactor was placed in the first
stage reactor.  The contents of the first stage reactor,
again after the React period, were then placed in the
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second stage reactor.  This resulted in a decreased

hydraulic retention time for the stage one reactor to

selectively favor flocculant organisms.

This operating strategy performed well over the 70 days

of operation.  Effluent quality, evaluated by measuring

soluble COD and suspended solids, steadily improved over

time.  However, three weeks into this phase of the

experiment the MLVSS of the first stage reactor was noted

to have decreased to virtually zero, despite the fact that

the reactor was performing consistently well.  This was

explained by the fact that the organisms in the reactor had

become trapped between the reactor wall and the silicone

tubing structure.  So the first stage reactor was, in

essence, also operating as a fixed film reactor.

Bench scale studies were then performed by taking the

laboratory apparatus to the landfill site.  Effluent

concentrations of COD and TSS in all reactors steadily

increased over time and were much higher than in the

initial studies.  From these results, it was apparent that

none of the operating strategies investigated resulted in

stable performance of the suspended growth SBR process,

indicating that the suspended growth activated sludge

process is not a suitable method of biological treatment of

the leachate in question.
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Studies Done On Nitrosophenol

Very little literature is available on nitrosophenol or

treatment of wastewaters containing nitrosophenol.  One

article of particular interest to this research study

described a method of analyzing phenols in water samples by

first converting the phenols to nitrosophenol (Hassan, et

al., 1987).  This method was purported to have several

advantages over the commonly used 4-aminoantipyrine method.

These advantages include a lower detection limit for

phenols (4 ug/1 as opposed to 10 ug/1) and the capability

of detecting para-substituted phenols.

The method involves converting all phenols and

substituted phenols in a water sample to their respective

nitrosophenol derivatives by the nitrosation reaction.

These reaction products are then coupled with resorcinol to

produce a chromophore whose optical absorbance can be

measured at 480 nm.  The color development obeys Beer's Law

in the concentration range from 4 ug/1 to 40 ug/1.

In another reference to nitrosophenol wastewaters, a

patent has been issued (U.S. Patent # 4,391,715) concerning

an improvement on the treatment of the raw waste resulting

from production of nitrosophenol using sodium sulfite
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{Coates, 1983).

During the peroxide oxidation of the mother liquor,

large amounts of dark-colored foam are created which, at

treatment facilities in the U.K., have hampered the

oxidation of the wastewater.  Coates (1983) has found that

this foaming is due to the presence of a stable diazonium

salt in the nitrosophenol raw wastewater.  This salt is

believed to cause the foaming by forming a co-polymer with

other monomer units in the liquor, such as the phenolic

compounds, and at the same time release nitrogen which

causes the polymer to float up to the foam.

The foaming can be prevented by reacting the salt with

sodium sulfite prior to chemical treatment of the raw

waste.  Treatment of the raw waste with sulfite under

preferred conditions has been found to substantially

decrease the toxicity of the liquor by breaking down the

phenolic compounds.

Sims (1981) has reported the successful treatment of a

nitrosophenol wastewater using chemical oxidation.  In this

process a pharmaceutical wastewater containing 6,000 mg/1

of nitrosophenol was oxidized using hydrogen peroxide and

iron.  The resulting effluent was found to consistently

meet a discharge limit of 50 mg/1 nitrosophenol.
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Studies Done on Phenol Degradation

Problems created in receiving waters by the presence of
phenols in effluents include toxicity to aquatic life,
increased BOD, and taste and odor problems in water
subsequently used for potable purposes (Sims, 1981).

Methods of treating phenolic effluents include
biological oxidation, chemical treatment, incineration, and
physical treatment, such as carbon adsorption.  Biological
oxidation is the method commonly applied to large volumes
of biodegradable phenolic effluents.

Chemical oxidants which are effective for the oxidation

of phenols are hydrogen peroxide, chlorine dioxide, ozone
and potassium permanganate.  Of these chemical methods,
hydrogen peroxide is the most cost effective method of
treating effluents containing phenols.

When phenol or phenolic compounds are treated by
biological processes, an important consideration that must
be accounted for is substrate inhibition.  Substrate

inhibition occurs as a result of the substrate binding with
the enzyme-substrate complex as well as the free enzyme
(Grady and Lim, 1980).  When this occurs, an enzyme-
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substrate-substrate complex is formed which cannot undergo

further reaction to yield the product.

With a nontoxic substrate, a higher substrate

concentration results in a higher specific growth rate.

With a toxic substrate, an increase in substrate

concentration results in increased growth rate over a much

more limited range.  Beyond a critical substrate

concentration, the toxicity of the substrate causes a

decrease in growth rate, so that the peak specific growth

rate is below the theoretical maximum growth rate for the

system.

Some debate exists as to whether inhibition exists when

a culture has been acclimated to phenol.  Rozich and Gaudy

(1984) have concluded that in the great majority of cases,

with thoroughly acclimated populations, definite evidence

was found that an inhibitory function more accurately

depicted the behavior of a system treating phenol.

The kinetic relationship for biological treatment of

non-inhibitory substrates is described by the Monod

equation:

u = (Umax * S)/(Ks + S)

where u = specific growth rate, 1/time,
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umax = maximum specific growth rate, 1/time,
S = soluble substrate concentration, mg/1,

Ks = saturation constant, mg/1.

For inhibitory substrates, the Haldane relationship has
been found to most accurately describe the kinetics of
biodegradation,

u = (umax * S)/(Ks + S +(S"2/Ki))

where Ki = inhibition constant, mg/1.

Rozich and Gaudy (1985) have reported the values of these
kinetic constants which were determined with over 100 batch

growth curves.  These values are:  umax = 0.194/hr, Ks = 48
mg phenol/1, and Ki = 62 mg phenol/1.  In addition, the
biological decay constant, b, was determined to be
0.0195/hr.

Loading rates successfully achieved when treating

phenol have been reported by Khararjian and Smith (1979).
Using aerated lagoons and activated sludge to treat coke

oven wastes, loading rates up to 0.86 g phenol/g MLSS-d

were achieved.  At this high loading rate, excessive

foaming and sludge bulking were encountered occasionally,

but at loading rates below 0.7 g phenol/g MLSS-d, the

system operated smoothly.  In another study using single
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and multi-stage activated sludge processes for treatment of

high strength phenolic wastes (phenol concentration

averaged 3270 mg/1), bench scale studies showed that

effluent concentrations of less than 0.1 mg/1 could be

achieved 40% of the time at loading rates of 0.1 to 0.3 g

phenol/g MLSS-d.

Rozich and Gaudy (1985) have studied the effect of

shock loading on a phenol-acclimated activated sludge

culture.  In this study a bench scale activated sludge

system was operated at an influent concentration of 500

mg/1.  When the influent concentration was instantaneously

increased to 1000 mg/1, the system adjusted very well.  The

system was operated for 11 days at 1000 mg/1 and then the

influent concentration was instantaneously increased to

2000 mg/1.  Six days after the shock was administered, the

system had not achieved steady state.  An increase in

diispersed organisms was evident soon after the increase to

2000 mg/1.  By the eighth day, washout of the activated

sludge had begun to occur and the experiment was stopped.

This experiment was then repeated and after 3 days of

operation at 2000 mg/1, washout had occurred.

In a recent article, the variation of pH during phenol

degradation was reported (Lallai and Mura, 1989).  In this

study it was found that the pH first decreased and then

increased during the biodegradation.  The initial
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concentration of phenol determines the extent of the pH

drop during the degradation.  The minimum pH measured was

found to coincide with the point at which the phenol had

been exhausted, which is due to the production of organic

acids.  After exhaustion of the phenol, the pH was noted to

rise again, but never back to its original pH before being

fed phenol.

Uncoupling

A phenomenon that may or may not be applicable to the

degradation of nitrosophenol production wastewater is

uncoupling (Okey and Stensel, 1989).  The uncoupling of

oxidative phosphorylation causes substantial oxygen use

without substrate assimilation.  The term also refers to

the uncoupling of the energy-yielding electron transport

sequence from the energy-requiring formation of adenosine

triphosphate (ATP).

The production of ATP regulates cell respiration rate

through the cytochrome system.  When uncoupled, regulation

is lost and the cell respiration rate continues to increase

until intracellular reserves are exhausted.  Symptoms of

uncoupling are increased rate of respiration, limited or no

synthesis, and reduction in cell mass.
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Any refractory alcohol with roughly the same dimensions

as phenol appears to be capable of uncoupling.  4-

Nitrophenol has been found to be a strong uncoupler (Clowes

and Krahl, 1936) and nitrosophenol has the classic

characteristics of an uncoupler.  Uncouplers are generally

alcohols roughly the size of the benzene ring in overall

dimension, and are substituted with materials that normally

impede metabolism or which incidentally increase the acid

strength of the molecule.

Mitchell recognized that certain lipid soluble weak

acids can cross a membrane in either the ionized form or

the intact form (Mitchell, 1963).  When crossing in the

intact (non-ionized) form, they transport a proton which is

then promptly released in the alkaline environment to react

with a hydroxyl group.  In the presence of proton-

conducting molecules (uncouplers), the biosystem is

uncoupled.  More substrate is utilized to augment the now

limited ATP production and the cell literally runs down.

Unexpected findings in biodegradation research

involving chlorinated and nitrated phenols may have been

due to uncoupling.  These findings include low cell yield

and inhibition at high concentrations which may or may not

be related to uncoupling.  Clearly, the halogenated and

nitrated phenols have been shown to be biodegraded by

acclimated cultures, but are not degraded by unacclimated
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activated sludge which apparently experiences only the

uncoupling phenomenon even when acclimated to the carbon

skeleton.

The response of activated sludge to the presence of

uncouplers falls into one or more of the four categories

depending on the relative concentration (concentration

ratio) of uncouplers and sludge, the chemical nature of the

uncoupler and the presence of usable substrates.  These

four categories are:  increased rate of endogenous

respiration, reduced synthesis when metabolizing an

exogenous substrate, reduction in the rate of usable

substrate uptake, and toxicity at high concentration

ratios.
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III.  Experiaental Methods

Several parameters were monitored during operation of

the batch reactors.  These included Chemical Oxygen Demand

(COD), phenol concentration, Mixed Liquor Suspended Solids

(MLSS), Mixed Liquor Volatile Suspended Solids (MLVSS),

nitrate nitrogen (N03-N), nitrite nitrogen (N02-N), and

phoshporus.  High Performance Liquid Chromotography (HPLC)

was also attempted to identify the extent of nitrosophenol

degradation.  In addition, the oxygen uptake rate was

measured in a number of experiments to gauge the metabolism

of the mixed liquor.

The COD, phenol, nitrate nitrogen, nitrite nitrogen,

and phosphorus tests were all based on formation of colored

species and were measured with a Bausch & Lomb Spectronic

70 spectrophotometer.

Chemical Oxygen Demand

The chemical oxygen demand of an industrial wastewater

is often used as a measure of degradation of a mixture of

organic compounds.  The COD test is based on the chemical
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oxidation of the organic compounds in a wastewater to

carbon dioxide and water, and the results are expressed on

a mass basis in terms of the amount of oxygen required if

it were the terminal electron acceptor.

In this study COD was measured using the Hach COD

Reactor (Model #45600) with high range COD vials, which

measured COD in the range 0 - 1500 mg/1.  In the Hach

method, test reagents are pre-mixed in vials.  Reagents in

the vial include potassium dichromate, silver sulfate,

concentrated sulfuric acid, and mercuric sulfate.  Silver

sulfate is added as a catalyst and mercuric sulfate is

added to suppress interference from chloride ions.

(Interference from chloride occurs at a chloride ion

concentration of greater than 2000 mg/1.  The samples

analyzed in this study had only traces of chloride in

them.)  Potassium dichromate is the oxidizing agent and

oxidizes the available carbon and hydrogen to carbon

dioxide and water.  The production of reduced chromium

Cr(III) as a result of the oxidation is proportional to the

COD of the sample.  This method is approved by the EPA

(Federal Register, 1984).

Two ml of a sample or an aliquot of the sample is

pipetted into a vial, the cap is put on the vial and mixed

well.  The vial is then placed in the COD reactor, which is

a heating block that maintains a temperature of 150 degrees
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C for two hours.  After the two hour digestion period and a

one hour cool down, the absorbance of the solutions in the

vials are measured.

A standard curve was prepared for each lot of vials

received.  Potassium hydrogen phthalate was used to prepare

a 1500 mg/1 COD solution.  In this study, 4 lots (150 vials

per lot) were received from Hach.  A typical COD Standard

Curve is shown in Figure 1.  As can be seen from Table 1 on

the same page, correlations of the standard curves was

always good.  Initially all COD measurements were done in

duplicate and the standard deviations were always found to

be less than 5% of the mean.  As a result, single

measurements were used subsequently for routine monitoring

of COD.

Phenol Concentrations

Total Recoverable Phenolics were measured using EPA

Method 420.1 (Federal Register, 1984).  In this procedure,

phenol reacts with 4-aminoantipyrine in the presence of

potassium ferricyanide to form a stable reddish brown

colored antipyrine dye.  The amount of color produced is a

function of the concentration of phenolic material.  This

method cannot measure para-substituted phenols, so the

concentrations of nitrosophenol and 4-nitrophenol were not

measureable with this test.  An experiment with a
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Figure 1: Typical COD Standard Curve. Measurements were taken with vials
received 26 September 1989. r"2 - 0.9999

Date
Vials

Received r-2
6Feb 0.9997

28 Mar 0.9998

22 May 0.9999

Table 1: COD Standard Curve Correlations
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nitrosophenol standard confirmed that nitrosophenol did not

react with the aminoantipyrine.

A standard curve was prepared for each batch of 4-

aminoantipyrine and potassium ferricyanide made.  A 10 ug/1

phenol solution was freshly prepared for each standard

curve by dissolving 1 ml of liquid phenol in 1 liter of

distilled water.  This solution was then diluted 100:1 to

give a 10 ug/1 standard.  Though the EPA method calls for

making a standard curve in the range of 0 - 1 mg/1, the

standard curves were found to be linear up to 0-10 mg/1.

The standard curve was then broken up into a high and low

range.  A typical standard curve for the phenol test is

shown in Figure 2.

The analytical method requires a distillation to remove

interfering materials that may be present in a sample.

Since the phenol test was used in this study as a daily

measure of reactor performance, it was deemed infeasible to

perform such a large number of distillations.  The method

of standard additions was performed on the reactor effluent

to determine if interfering species were present to

confound the data.  The results of the standard additions

test is also shown in Figure 2.  The slope of the standard

addition curve (0.151) is almost equal to the slope of the

standard curve (0.148).  In addition, the concentration

measured in the standard addition sample is almost equal to
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Figure 2: Typical Phenol Standard Curve Shown V\Ath Standard Additions
Test. Standard curve measurements are for High Range values (1-10 mg/l)
taken on 3 March 1989. Concentration measured in standard addition

sample: 0.59 mg/l. X intercept: 0.60 mg/l.

Date

Low

Range
r"2

High         1
Range
r-2

29 Aug 0.9954 0.9962

1 Dec 0.9997 0.9969

3 Mar 0.9999 0.9987

26 Apr 0.9998 0.9998 1

Table 2: Phenol Standard Curve Correlations
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the concentration read from the x-intercept of the standard

addition curve.  Consequently, there were very few, if any,

interfering compounds in the reactor effluent.

All phenol concentrations measured on reactor effluents

were performed in duplicate.  Typical standard deviations

were less than 1% of the mean.

Mixed Liquor Suspended Solids (MLSS)

Mixed liquor suspended solids were measured using EPA

Method 160.2, Non-Filterable Residue (Federal Register,

1984).  A known volume of mixed liquor was filtered through

glass fiber filters that had been pre-rinsed with distilled

water, placed in aluminum weighing pans, dried in a drying

oven at 103 degrees C, and pre-weighed.  After filtering

the mixed liquor, the filters were again rinsed with

distilled water to remove any filterable solids and the

filters were again placed in the drying oven.  All

suspended solids filters were allowed to dry for at least

one day before the first weight was taken.  Each filter was

weighed three times on consecutive days to determine the

suspended solids.  The difference in the filter's weight

before and after filtering the mixed liquor was divided by

the volume of mixed liquor filtered to determine the MLSS.

All suspended solids performed on the reactor mixed
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liquors were done in triplicate. Standard deviations were

found to be less than 5% of the mean.

Mixed Liquor Volatile Suspended Solids (MLVSS)

Volatile suspended solids were measured using EPA

Method 160.4, Volatile Residue (Federal Register, 1984).

After the MLSS was determined as described in the previous

section, the filters were placed in a muffle furnace and

heated to a temperature of 450 - 500 degrees C for at least

two hours.  These filters were then placed back into the

drying oven at 103 degrees C and allowed to cool overnight.

Three daily weights were also taken on the volatile

suspended solids.  The weights of the filters from the

muffle furnace were subtracted from the MLSS weight to give

the amount of volatile solids in the mixed liquor.

Standard deviations for volatile suspended solids were also

less than 5%.  Typically, mixed liquor suspended solids

were found to be greater than 85% volatile, ranging from

82% to 97%.

Nitrate Nitrogen (N03-N)

The raw waste received from Sandoz was found to have

high levels of nitrate (1150 mg/1 N03-N).  This high

nitrate concentration is due to the oxidation of excess

sodium nitrite to sodium nitrate over time.
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Initially, the concentration of nitrate nitrogen was

measured with an ion specific electrode (Orion Research

Model 930700).  However, interfering species in the

effluent matrix, such as sulfate, caused inaccurate

readings when verified with the method of standard

additions.  Consequently, an alternative method of nitrate

analysis was sought.

Approximate concentrations of nitrate nitrogen were

measured using the Hach Cadmium Reduction Method.  Pre¬

packaged NitraVer 5 nitrate reagent powder pillows were

added to 25 ml dilutions of samples.  The samples were

shaken for one minute, allowed to react for 5-15 minutes,

and absorbance was measured.

This method of analysis is a modification of the

cadmium reduction method using gentisic acid in place of 1-

naphthylamine.  Cadmium metal in the pillows reduces

nitrates to nitrites.  The nitrites then react in an acidic

medium with sulfanilic acid to form an intermediate

diazonium salt, which when coupled with gentisic acid,

forms an amber colored compound.  Color intensity of the

compound is in direct proportion to the nitrate and nitrite

concentrations of the water sample.

The NitraVer 5 powder pillows can be used to measure

nitrate nitrogen in a "high" range (0-30 mg/1 N03-N) and

"medium" range (0 - 4.5 mg/1 N03-N) by measuring the
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absorbance of the samples at 500 and 400 nm respectively.

Interferences can be caused by the presence of strong

oxidizing and reducing agents.  Ferric ions cause false

positive results.  Chloride concentrations above 100 mg/1

as CI- will cause false negative results.  None of these

interfering species were believed to be present in

concentrations high enough to affect the results.

All nitrate nitrogen tests were performed using the

same lot of powder pillows.  The standard curve for the

high range method is shown in Figure 3.  The standard curve

for the medium range method is shown in Figure 4.  All

nitrate nitrogen tests were performed in duplicates and the

standard deviations were found to be less than 5% of the

mean.  Checks of the veracity of the nitrate nitrogen tests

were performed using the method of standard additions.  The

results of these tests are included in the calibration

curve figures.  As can be seen from Figure 3, some

interferences were present in the mixed liquor matrix,

which caused the slopes and actual concentrations measured

in the standard additions curve at high range to differ

from those in the standard curve.  As shown in Figure 4,

interferences were considerably less of a problem at higher

sample dilution (lower nitrate concentration).
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coefficient of Standard Curve: 0.9940. Correlation coefficient of
Standard Additions Line: 0.9700.
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Nitrite Nitrogen (N02-N)

Nitrites were present in the raw waste due to
unoxidized excess sodium nitrite and possibly as a result
of degradation of nitrosophenol.  Nitrites were measured by
the Hach Diazotization Method.  NitriVer 3 nitrite reagent
powder pillows were added to 25 ml dilutions of samples.
Samples were then shaken for one minute, allowed to react
for 10 - 15 minutes and the absorbance was measured at 500
nm.  The detection level of this test is 0 - 0.2 mg/1 N02-
N.  In this test, nitrite ions react with sulfanilic acid
to form an intermediate diazonium salt.  This salt reacts

with chromotropic acid to produce a red-orange complex
directly proportional to the amount of nitrite nitrogen
present.

All nitrite nitrogen measurements taken during this
study were from one lot of Hach Nitriver 3 reagent pillows.
A standard curve was prepared using a 0.2 mg/1 nitrite
nitrogen standard solution.  This standard curve is shown
in Figure 5 along with a test for interferences by the
method of standard additions.  As can be seen, there was
slight, if any, interference caused by the effluent matrix.

Phosphate

Phosphorus was added to the raw waste and synthetic
feed as a nutrient for biological growth.  The phosphate
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was added as a phosphate monobasic and dibasic buffer (O.IM

KH2P04/K2HP04).  The concentration of phosphate in the

effluent was monitored to determine the amount of phosphate

required to achieve biodegradation.

Phosphate was measured by the Hach Ascorbic Acid

Method.  The first step of this analytical procedure

involves reaction of orthophosphate with molybdate in acid

solution to form a yellow-colored phosphomolybdate complex.

The phosphomolybdate complex is then reduced by ascorbic

acid, causing a characteristic molybdenum blue species.

All phosphate measurements were performed using one lot

of PhosVer 3 powder pillows.  A standard curve for this lot

of reagent pillows is shown in Figure 6.  Measurements of

reactor phosphate concentrations were all done in

duplicates.  Standard deviations were found to be less than

5% of the mean.  A test for interferences was done by the

method of standard additions.  This test is also shown in

Figure 6.  Again, some interfering species were present in

the effluent matrix.  However, if standard curve values

above 1.5 mg/1 P are omitted, the slopes of the standard

curve and standard additions curve are nearly parallel.  Of

84 phosphate measurements taken during this study, only 2

samples had phosphate concentrations greater than 1.5 mg/1
P.
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High Performance Liquid Chromotography (HPLC)

Limited HPLC data was collected during this study due

to many equipment problems and the limited amount of time

that a post-doctoral student was available to work with the

HPLC unit.  HPLC was performed on an ISCO HPLC (Model 2350

pump and 2360 gradient programmer, with UV detection at 254

nm) using a C  analytical reversed phase column (Supelcosil
8

LC-8, 5 um packing, 15 cm X 0.46 cm).  Gradient elution

consisted of methanol:H20 at 35:65 (initial) to 100:0 over

20 minutes, then returned to 35:65 over 5 min., at a flow

rate of 1.5 ml/min.  Calibration curves were prepared for

phenol, nitrosophenol, and 4-nitrophenol.  Retention times

were 1.0 to 1.5 min. for nitrosophenol, 1.9 to 2.2 min. for

4-nitrophenol and 2.7 to 3.3 min. for phenol.

Nitrosophenol standards gave a second peak at about 2.2

min.  Based on the known retention time of 4-nitrophenol

and the known presence of 4-nitrophenol as a by-product of

nitrosophenol synthesis, this second peak was assumed to

represent 4-nitrophenol.  From the standard curve for 4-

nitrophenol and the known addition of nitrosophenol, 4-

nitrophenol was determined to be approximately 12% by

weight of the nitrosophenol reagent.
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Biological Oxygen Uptake Monitoring

Biological oxygen uptake was monitored using a YSI
Model 5300 Biological Oxygen Monitor with a YSI Model 5331
Oxygen Probe.  The Monitor is essentially a dissolved
oxygen meter that is capable of measuring real time
depletion of dissolved oxygen in a sample of mixed liquor.
The probe was placed in a water-jacketed chamber (Gilson
Medical Electronics, Middleton, WI) fitted with a ground
glass stopper that contained a capillary bore hole for
injection of reagents by syringe.  The chamber was kept at
a constant temperature with a constant temperature
circulator.  A schematic of the oxygen uptake system is
shown in Figure 7.

Oxygen Uptake was measured as follows:  Approximately
1.6 ml of mixed liquor was placed in the chamber.  The
stopper was placed in the top of the chamber to exclude air
from the mixed liquor sample.  The probe and sample were
allowed to come to thermal equilibrium and the baseline
oxygen uptake rate (representing either endogenous uptake
or in-situ uptake, depending on the status of the mixed
liquor sample) was recorded on a strip chart recorder.  A
known volume of a known concentration of substrate was then

injected into the chamber with a microliter syringe.

The initial increase or decrease in the oxygen uptake
rate after injection of substrate compared to the
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endogenous rate is a measure of the metabolic activity of
the mixed liquor at that substrate concentration.  Thus the
biological oxygen uptake rates measured at various
concentrations can be used to estimate various kinetic
parameters such as umax (maximum specific growth rate), Ks
(half-saturation constant), and Ki (inhibition constant).

Reactor Description And Operation

Two independent batch reactors were operated during
this study, designated as Reactor I and Reactor II.  The
reactors were operated in Fill, React, Settle and Draw
modes to simulate operation of an SBR.

1.  Reactor I:  Reactor I consisted of a 4 1 Pyrex
reaction kettle which received a feed solution by means of
a peristaltic pump (Masterflex Model #N-07520).  Feeding
periods were controlled by an electronic timer (Chrontrol
Model CD).  Originally, a fritted disk was placed in the
bottom of the reactor and used as the aeration device.
Laboratory compressed air passed through a flow meter and
was then humidified by passing it through a gas washing
bottle prior to entering the reactor.  After about four
weeks of operation this system was found to be inadequate
for providing enough air to the reactor for proper mixing
and suspension of the mixed liquor.  A maximum of 800 mis
per minute of air could be delivered to the reactor with
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this system. The fritted disk was replaced with a standard
aquarium aeration stone, and the gas washing bottle was
replaced with a stoppered flask configured to allow air to
bubble through it.  This configuration allowed air flow
rates to the reactor of 1.5 to 2 liters per minute, which
was found to be adequate for proper mixing during the react
period.

The mixed liquor used for the reactor came from the
Sandoz activated sludge basin.  Two liters of mixed liquor
were taken from the plant on 17 March 1989.  One liter of
the mixed liquor was aerated from 17 March until 3
September 1989.  The mixed liquor was fed approximately 10
ml of raw waste every two to three days during this period.
The other liter of mixed liquor was frozen.  On 5 September
the mixed liquor that had been aerated and the thawed mixed
liquor that had been frozen were placed in the reactor and
daily operation began.

The MLSS concentration in Reactor I varied greatly
during this study.  The concentration ranged from a low of
161 mg/1 when mixing was accomplished by aeration at a low
rate to 8519 mg/1 when the contents of Reactor II was added
to Reactor I near the end of the study.  The average MLSS
concentration found in 102 measurements was 1870 mg/1 with
a standard deviation of 1690 mg/1.
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Originally the React period was controlled by opening
and closing the air line manually.  After 4 months of
operation, a solenoid valve was placed on the air line
following the humidifying flask.  The solenoid valve was
controlled by the timer.

Mixing of the mixed liquor was performed with a
laboratory stirrer (Cole Farmer Stirpak Stirrer, Model
4554-00) and a high efficiency paddle.  After only a few
months of operation the stirrer became unreliable at mixing
at a constant speed.  The stirrer was taken out of the
reactor and a magnetic stirrer with a large stir bar was
used instead.  The magnetic stirrer was operated only
during the feed period by being plugged in to the same
timer circuit as the feed pump.

The reactor vessel was normally operated at a liquid
volume of 2.5 1.  Graduations were placed on the side of
the reactor at 0.1 1 increments to aid in the withdrawal of
the proper amount of mixed liquor or settled effluent each
day.  Withdrawal of reactor liquid (either mixed liquor or
settled supernatant) was performed by opening a clamp on
Tygon tubing that was attached to a hose barb at the 2.0 1
mark in the side of the reactor.

Poor settling of the mixed liquor was observed from the
onset of reactor operation.  During most of the operating
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period, the effluent samples from the reactor were
centrifuged and the solids returned to the reactor.
Centrifuging was accomplished by placing the reactor
effluent into 50 ml plastic tubes and centrifuging at 2000
rpm for 20 minutes (centrifuge used was an International
Equipment Company Model UV).

The reactor was initially operated using one cycle per
day.  The feed period consisted of a four hour Aerated
Fill, followed by a 19 hour React period and a 1 hour
Settle period. Draw only lasted for a few minutes and
consisted of slowly draining the reactor from the 2.0 1
mark by opening the clamp on the hose barb.  On 26
September, the Aerated Fill period was increased to eight
hours due to poor effluent quality.  This mode continued
virtually unchanged until February 7, when we began feeding
a synthetic feed.  The Fill period was changed to an eight
hour period of mixing with no aeration.  On 17 February,
the Settle period was increased to two hours in order to
decrease the effluent suspended solids.  This mode of eight
hour Fill, 14 hour React, two hour Settle lasted until 27
March with only minor changes in cycle times for short
periods.

From 27 March until 1 May, the reactor was operated
using two cycles per day.  Each cycle consisted of a four
hour Fill with mixing, no air, six hour React, and a two
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hour Settle.

On 2 May, the number of cycles was increased to 3 per
day.  In addition, the solids from Reactor II were
centrifuged and placed in Reactor I.  The mode of cycle
operation was a one hour Fill with mixing, one hour Fill
with aerating, five and one-half hours React and a one and
one-half hour Settle.  This mode continued until 23 May,
when the React period was increased to six hours and the
settle period was decreased to one hour.

2.  Reactor II:  Reactor II consisted of a 4 1

Erlenmeyer Flask which was also fed by using a peristaltic
pump.  Air was piped directly to an aeration stone at the
bottom of the flask.  Distilled water was added at the end
of the react period to account for water lost due to
aeration.  The reactor was mixed during the feed period
with a magnetic stirrer.  The magnetic stirrer was plugged
into the same timer circuit as the feed pump.  Effluent was
withdrawn by means of a second peristaltic pump (Masterflex
Model N-07553).  Care was taken to draw from the top of the
mixed liquor.

The mixed liquor used for Reactor II was also obtained
from the Sandoz activated sludge basin.  Three liters of
mixed liquor was collected on 10 November 1989 and taken to
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the lab.  It was aerated for 7 days and fed 10 mg of phenol
each day.  Normal feeding of the reactor started on 17
November.  Again, due to poor settling of the mixed liquor,
effluent samples were centrifuged and the solids returned
to the reactor.  The MLSS in Reactor II varied from 1498 to

6536 mg/1.  The average of 29 MLSS measurements was 4110
mg/1 with a standard deviation of 1450 mg/1.

Preparation Of Reactor Feeds

At the beginning of this study the reactors were fed
raw nitrosophenol filtrate waste provided by Sandoz.  In
February, 1990 we ceased using this raw waste because of
inconsistent reactor performance (effluent quality) and
switched to a synthetic waste prepared in the lab.  The
rationale for using synthetic feed was that individual
components could be varied independently to study their
effects on reactor performance.  These two feedstreams are
described below:

1.  Raw Waste:  Two separate batches were received
from Sandoz and were found to have quite different
compositions.  The characteristics of interest are
tabulated in Table 3.  The raw waste was kept refrigerated
to inhibit natural degradation of the waste, but as can be
seen from the table, the phenol and COD of the waste
nevertheless decreased over time.
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Table 3:  Characteristics of Raw Waste Received from Sandoz

1. Raw Waste Received 31 August 1989

Total

Soluble Diss.  Suspended
COD Phenol Solids   Solids

Date (mg/l) (mg/l) (mg/l) _  (mg/l)    pH

1 Sep 6842 1021 49000      800        3

12 Sep 6031 1010

18 Sep 6476 1019

26 Sep 5645 986

3 Oct 5331 967

8 Oct 5727 979

16 Oct 5339 973

22 Oct 5070 937

8 Nov ----- 965

16 Nov ----- 992

24 Nov ----- 984

2 Dec ----- 921

2. Raw Waste Received 5 December 1989

Date

Soluble
COD

(mg/l)
Phenol

(mg/l)

Total
Diss.
Solids

(mg/l)

Suspended
Solids

(mg/l) pH

Nitrate

Nitrogen
(mg/l
N03-N)

10 Dec

11 Jan
16 Jan
23 Jan

30 Jan

7 Mar

8 Mar
28 Mar

8490

7505

245

143

195

63200 3.5

50

1160
1100
1150
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Before feeding the raw waste to the reactors, it was

neutralized to a pH of 6.5 using a 0.2N magnesium hydroxide

slurry.  Magnesium hydroxide was used as the neutralizing

agent because the magnesium could be used by the

microorganisms as a nutrient and because magnesium

hydroxide is currently being used by Sandoz. Neutralized

waste was filtered with qualitative filter paper (Whatman
#1) to remove a black grainy insoluble residue that formed
during the neutralization.

Phosphorus, ammonia, and trace elements were then added

to the waste before feeding to the reactor.  The amount of
nutrients added is shown in Table 4.

2.  Synthetic Feed:  On February 8, 1990, the feed was

changed to a synthetic mixture prepared in the lab.  The

concentrations of phenol, nitrosophenol, and 4-nitrophenol

used were based on the average concentrations of these

constituents found in 60 batch runs of nitrosophenol

filtrate waste.  The analyses were performed by Sandoz

using HPLC.  This data is contained in Appendix A.

Frequency distributions were performed on the data and
are shown in Tables 5, 6, and 7.  The frequency

distribution of phenol appeared to follow a log normal
distribution as shown in Figure 8.  The nitrosophenol
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Table 4: Nutrient Concentrations of the Feed

Reagent   |
Cone. In

Feed

(mg/l)Element                 Source
.

Fe FeS04*7H20 1.4

Zn ZnSO4*7H20 0.8

Co CoCI2*6H20 0.12

Cu CuS04*6H20 0.008

Mo (NH4)6Mo7024*4H20 0.12

Ca CaCI2 10

EDTA Na2EDTA*2H20 7.4

P KH2P04/K2HP04 90

K KH2P04/K2HP04 85.5

N NH4CI 200 1

Note: EDTA was added as a chelating agent to insure
the nnetals were dissolved.
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Table 5:  Data Distribution
For Phenol

Table 6:  Data Distribution
For Nitrosophenol

%  of
Cone. # of Observs.
(mg/1) Observs. < Cone.

400 1 1.6
500 1 3.3
600 3 8.3
700 5 16.7
800 6 26.7
900 4 33.3

1000 7 61.7
1100 3 50.0
1200 6 60.0
1300 3 65.0
1400 3 70.0
1500 4 76.7
1600 5 85.0
1700 5 93.3
1800 3 98.3
1900 1 100.0

%  of
Cone. # of Observs.

(mg/1) Observs. < Cone.

700 4 6.7
800 0 6.7
900 1 8.3

1000 4 15.0
1100 5 23.3
1200 6 33.3
1300 8 46.7
1400 6 56.7
1500 3 61.7
1600 9 76.7
1700 5 85.0
1800 5 93.3
1900 1 95.0
2000 3 100.0

Table 7:  Data Distribution
For 4-Nitrophenol

Table 8:  Data Distribution
For Nitrosophenol:Phenol
Ratio

%  of
Cone. # of Observs
(mg/1) Observs. < Cone.

100 4 6.7
120 9 21.7
130 8 35.0
140 9 50.0
160 8 63.3
180 9 78.3
200 5 86.7
300 3 91.7
500 1 93.3
900 4 100.00

Nitroso¬
phenol :  Number of Percent

Phenol   Values of Values
Ratio   < Ratio  < Ratio

0.50 0.00 0.00
0.75 3.00 5.00
1.00 10.00 21.70
1.25 21.00 56.70
1.50 11.00 75.00
2.00 11.00 93.30
3.00 2.00 96.70
4.00 1.00 98.30
5.00 1.00 100.00
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distribution fit a normal distribution plot best, as seen

in Figure 9.  The 4-nitrophenol data did not seem to fit

any frequency distribution since most of the concentrations

measured centered near 200 mg/1.

Comparing the phenol concentration in the second batch

of raw waste for this study (Table 3) to the distribution

curve, this batch of waste was highly unrepresentative of

typical waste production.

Table 8 shows the data distribution for the

nitrosophenol:phenol ratio found in the data.  The average

ratio was 1.3 (std. dev. = 0.6) and varied from 0.66 to
4.1.

The average concentrations of the raw waste are 1340

mg/1 nitrosophenol (std. dev. = 330 mg/1), 1110 mg/1 phenol

(std. dev. = 390 mg/1), and 190 mg/1 4-nitrophenol (std.

dev. = 160 mg/1).  The theoretical average COD of the raw

waste based on the constituent concentrations of phenolic

compounds was 5660 mg/1 (std. dev. = 1380 mg/1).

Synthetic feed was prepared by first dissolving

nitrosophenol (Aldrich Chemical Co.) in 0.1 N NaOH.  The

phenol was then added from a 50 g/1 phenol stock solution.
This stock solution was prepared by dissolving 50 ml melted
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phenol (Aldrich Chemical Co., density of reagent = 1.071

g/ml) in a 1 1 volumetric flask.  The 4-nitrophenol was

added from a 10 g/1 stock solution prepared by dissolving 1

g 4-nitrophenol reagent (Aldrich Chemical Co.) in a 100 ml

volumetric flask.  The synthetic feed was then neutralized

to a pH of 6.8 with 1.2N HCl.

Since Mg(0H)2 was no longer used as a neutralizing

agent, MgS04 was added to the feed solution to a final

concentration of 150 mg/1, which is the approximate

concentration used in the preparation of the raw waste

feed. Nitrate was also added in the form of sodium nitrate.

The measured levels of COD, phenol, and nitrate-nitrogen

are shown in Table 9.  The nitrate level was incrementally

increased with each batch of synthetic feed made to bring

the concentration up to that of the raw waste. Nutrients

were added to the synthetic feed prior to feeding in the

same amounts as was added to the raw waste feed.

The major difference between synthetic feed and raw

waste was in the sulfate concentration.  Sulfate was

intentionally kept to a low concentration because

independent experiments (described in Chapter V) indicated

that sodium sulfate was inhibitory at concentrations as low

as 1%.  Therefore, the synthetic feed had a substantially

lower TDS concentration than the raw waste, with the

difference primarily accounted for by sulfate salts.
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Table 9 Measure!i   and Tl:leoretica
Nitrate

Measured
Soluble Theor. Measured

COD COD* Phenol
Cone. Cone . Cone .

Date (mg/1) (mg/1) (mg/l)

6 Feb 4600 4730 1053
14 Feb ---- 4730 1257
21 Feb 3480 4730 1155
27 Feb ---- 4730 1090
2 Mar 4600 4730 -----

8 Mar 5639 5760 1044
14 Mar 5401 5760 1027
28 Mar ---- 5760 1208
7 Apr 6315 5760 1156
5 May ----- 5760 1244
10 May ----- 5760 1268
23 May ----- 5760 -----

30 May ----- 5760 -----

Added     Measured   Added
Phenol    Nitrate    Nitrate
Cone.       Cone.     Cone.
(mg/1) (mg/1 N03-N)(mg/1 N03-N)
1200        ---- 0
1200        ---- 0
1200        ---- 0
1200        ---- 0
1200       ---- 83
1200 78 166
1200       ---- 166
1200 288 330
1200       ---- 580
1200        ---- 829
1200 911 829
1200        ---- 912
1200       ---- 995

* Theoretical COD as calculated by summing theoretical COD of
each organic constituent at its added concentration.
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From 6 February to 7 March, the nitrosophenol content

of the synthetic feed was not as high as desired due to

measurement error.  In addition, as discussed above, HPLC

analysis indicated approximately 12% of the nitrosophenol

reagent as purchased from Aldrich Chemical Co. is actually

4-nitrophenol.  This was not accounted for in the

preparation of the synthetic feed.  Consequently, the

nitrosophenol content was slightly lower and the 4-

nitrophenol content was slightly higher than the average

concentrations found in the raw waste.
ͣ ͣ ͣ    -   '.   )

The theoretical CODs of the three components of the

feed are shown below:

Phenol:  C6H60 + 702 -----> G C02 + 3 H20

(224 g 02/94 g phenol) = 2.383 g COD/g

Nitrosophenol:  2 C6H502N + 15.5 02 ----->

12 002 + 2 N03-  + 5 H20

(496 g 02/246 g nitrosophenol) = 2.016 g COD/g

4-Nitrophenol:  2 C6H503N + 14.5 02 ----->
12 C02 + 2 N03- + 5 H20

(464 g 02/278 g 4-nitrophenol) =  1.67 g COD/g

The COD was measured on each of these components
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individually to determine if the COD test was an accurate

method of quantifying the total organic constituents in the
feed.  A 433 mg/1 solution of the nitrosophenol salt, which
has a theoretical COD of 513 mg/1 had a measured COD of 507
mg/1 (1% error).  A 500 mg/1 solution of 4-nitrophenol has
a theoretical COD of 835 mg/1.  The actual measured COD

of this solution was 894 mg/1 (7% error).  A 500 mg/1
phenol solution, with a theoretical COD of 1192 mg/1, had
an actual measured value of 1285 mg/1 (8% error).

V
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IV.  REACTOR PERFORMANCE

Overall Performance of the Reactors

Appendices B and C to this report contain daily and

cumulative data collected on Reactors I and II,

respectively.  Included in the appendices are the volumes

of feed, loading rates, reactor MLSS, influent and effluent

concentrations of phenol and soluble COD, and the cycle

times.  Loading rates (F:M ratios) were calculated based on

total React time (e.g., when feeding two cycles per day

with a six hour React period, the time that appears in the

denominator of the loading factor quotient is 12 hours or

0.5 days.).  Also, since soluble COD was not measured every

day, cumulative values of COD were computed using the prior

effluent COD concentration measured.  This method was also

used for computations involving reactor MLSS and cumulative

effluent phenol values, though effluent phenol was measured

almost every day during the operation of the reactors.

Overall Performance of Reactor 1

Reactor I was operated from 5 September 1989 to 31 May
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1990 for a total of 268 days.  The cumulative amounts of
influent and effluent soluble COD and phenol are depicted
in Figs. 10 and 11.  Over the entire operating period,
Reactor 1 was fed 12.315 1 of raw waste and 24.518 1 of

synthetic feed.  This volume of feed translates into an

average daily feed volume of 138 ml.  Over the entire
operating period, the reactor removed 79.6%  of the
influent soluble COD and 95.9% of the added phenol.  The
average daily removal rate of soluble COD was 645 mg/d, and
that for phenol was 141 mg/d.

Also included on Fig. 10 is the cumulative non-phenol
COD fed to the reactor (i.e., the COD attributed to
nitrosophenol and 4-nitrophenol).  The difference between
the non-phenol influent COD and the effluent COD indicates
that a large fraction of the nitrosophenol was biodegraded.

To illustrate that most of the COD was biodegraded and

not wasted or accumulated as suspended solids, it is

necessary to determine what the effluent COD would have to
be with no biodegradation of non-phenol COD.  The total
influent COD fed to the reactor less the effluent COD

wasted from the reactor was 172.9 g.  If this quantity had
been wasted during this period in the effluent, then the
effluent COD would have averaged 645 mg COD/d.  For an
average volume treated of 138 ml/d, the average COD
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Figure 10: Cumulative Influent and Effluent Soluble COD, Reactor I. Raw waste
was fed from 9/5/89 through 2/6/90. Synthetic feed was fed for the remainder
of the project.
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Figure 11: Cumulative Influent and Effluent Phenol, Reactor I. Raw waste was fed from
9/5/89 through 2/6/90. Synthetic feed was fed for the remainder of the project.

NEATPAGEINFO:id=B443BB54-A222-4CE0-B499-DFE1462EC47B



71

associated with this wasting rate would have been 4,675
mg/1.  If the COD of solids (either cell mass or
precipitated nitrosophenol) is assumed to be 2.0 g COD/g
solid, the effluent total suspended solids or accumulated
MLSS in the reactor would have been 2,337 mg/1 of feed
treated.  Since effluent solids were centrifuged and
recycled to the reactor most of the time (176 days out of
268), and no increase of MLSS of this magnitude was noted
in the reactor, a large part of the soluble non-phenol COD
was mineralized during reactor operation.

Performance of Reactor 1  During Different Stages of
Operation

Table 10 shows the percent phenol removed and average
volumetric phenol removal rate for the reactor during the
four distinct periods of operation that were described in
the Experimental Methods section.  Table 11 shows the
percent soluble COD removed and average volumetric soluble
COD removal rate for these periods.

As can be seen from the tables, overall removal of
phenol was excellent, ranging from 93 to 97.5% removal.
Reactor I had the lowest average volumetric phenol removal
rate and percent phenol removed when feeding raw waste over
one cycle per day.  It also had the lowest average
volumetric soluble COD removal rate, but had the best
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Table 10: Percent Phenol Removed and Average Phenol Removal
Rate, Reactor I. (Average reactor volume - 2.5 I.)

Average
Volumetric Average

Phenol Loading
Cycles # Volume Phenol Phenol Removal Percent Rate

Per of Fed Fed Removed Rate Phenol (gCOD/
Feed Day Days (1) (g) (g) (g/d*m*3) Removed gSS'd)

Raw Waste 1 154 12.31 10.63 9.90 25.6 93,1 0.286

Synthetic 1 48 7.75 8.65 8.31 69.2 96.1 0.197

Synthetic 2 36 6.33 6.92 6.75 75.2 97.5 0.417

Synthetic 3 30 10.44 13.32 12.92 172.4 97.0 0.195

Table 11: Percent Soluble COD Removed and Average Soluble COD Removal
Rate, Reactor I. (Average reactor volume = ͣ 2.5 I.)

Average
Volumetric

Soluble Average
Soluble Soluble COD Loading

Volume COD COD Removal Percent Rate

Cycles Number Fed Fed Removed Rate COD (gCOD/
Feed Per Day of Days (1) (g) (g) (g/d*m*3) Removed gSS'd)

Raw Waste 1 154 12.31 76.74 63.04 163.6 82.1 0.286 1
Synthetic 1 48 7.75 35.40 28.89 240.8 81.6 0.197

Synthetic 2 36 6.33 37.13 29.30 325.6 78.9 0.417

Synthetic 3 30 10.44 67.98 51.71 689.6 76.1 0.195
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percent COD removed during this regimen.  The best

percentage of phenol removed occurred when feeding

synthetic waste over 2 cycles per day.  The best average

volumetric phenol and soluble COD removal rates occurred

when feeding synthetic feed over three cycles per day.

However, the solids from Reactor II were placed in Reactor

I at the beginning of the 3 cycle per day period,      ^

increasing the MLSS from 2400 mg/1 to 8500 mg/1.  The

enhanced performance during this period is due to a higher

reactor MLSS (as can be seen by comparing the average

loading rates in Tables 10 and 11 for 2 and 3 cycles per

day) .

Performance of the reactor was also analyzed using

cumulative phenol and COD removal while feeding synthetic

feed over 1, 2, and 3 cycles per day.  These cumulative

values are shown in Figure 12 for phenol and Figure 13 for

COD.  It is clear from these figures that substantially

more waste could be treated at 3 cycles per day than at 1

or 2 cycles per day.  Again, however, this increase in

removal is largely due to the higher mixed liquor solids

concentrations employed while operating at 3 cycles per

day.  Good correlations from linear regressions of the

cumulative removal data (as shown in Tables 12 and 13)

indicate relatively consistent performance of the reactor

(in terms of removal), even though effluent concentrations
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Figure 12: Cumulative Phenol Removed Feeding Reactor I Synthetic
Feed. Average removal efficiency for each cycle shown in parentheses.

Table 13: Results of Linear Regressions of Cumulative Soluble COD
Removed for Reactor I, Feeding Synthetic Feed.

m

Cycles
Per Day

Slope
(mg/d) r'2

1 201 0.9726

2 199 0.9948

3 431 0.9845
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Figure 13: Cumulative Soluble COD Removed Feeding Reactor I Synthetic
Feed. Average removal efficiency for each cycle shown in parentheses.

Table 13: Results of Linear Regressions of Cumulative Soluble COD
Removed for Reactor I, Feeding Synthetic Feed.

Cycles
Per Day

Slope
(mg/d) r'2

1 659 0.9940

2 872 0.9946

3 1718 0.9902
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varied considerably from day to day.

Effluent Quality of Reactor I.

One observation made during reactor operation was that
effluent quality generally deteriorated whenever an attempt
was made to increase loading rates.  As a result, several
methods of analyzing effluent data as a function of loading
rate and reactor operating conditions were evaluated.

1.  Feeding Raw Waste:

a. Effluent Phenol Concentrations:  Figure

14 shows the average effluent phenol concentration plotted
as a function of loading rate percentile ranges.  The
actual range of loading rates for each percentile range is
provided in Table 14.  Figure 14 clearly indicates that
effluent quality generally decreased at increasing loading
rates.

b. Effluent Soluble COD Concentrations:

Table 15 and Figure 15 summarize the data for effluent
soluble COD concentrations in a similar fashion.  There was

very little difference (350 mg/1 or approximately 25%) in
effluent COD quality over the entire loading rate range.

c. Data Distribution of Effluent Phenol
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Table 14: Effluent Phenol
versus Loading Rate,
Reactor I, Raw Waste. Data
for 74 days arranged by
five percentiles.

Loading N

Rate Average £

Range Effluent 1
Percent¬ (g COD/ Phenol t

ile g SS*d) (mg/l) 1
s

1-20 0.06-0.14 27.0

21 -40 0.15-0.21 38.0

41 -60 0.21-0.27 54.0

61 -80 0.28-0.95 69.0

81 - 100 0.95-4.28 83.1

Fig. 14:   Effluent Phenol Versus
iMding Kite, Raoctor i, Rnt Woita

1 -20 41-60

Pvc«ntili

61 - » 81-100

Table 15: Effluent Soluble COD
versus Loading Rate, Reactor I, Raw
Waste. Data for 25 days arranged by

Fig. 15: Effluent COD Versus
Loading %U, Rwctor I. Ro* Wostt

five percentiles.
u-

t / / / J /\ W//
Loading \2- 7/// W// VM,Rate Average 11 ͣ \i 111 ) A

'///// /////\
Percent¬

Range
(g COD/

Effluent
COD

1 - /////^ W//. W//, W//.
ile g SS"d) (mg/l) 9

09- ///// ///// ///// /////
1 -20 0.10-0.17 1045

QC
00

08-

0.7-WA m i 'W//
21 -40
41 -60

0.20-0.28
0.29-0.51

1102
1297

*' 0

It
V

0.S-/M W/^
61-80 0.92-1.50 1397

05 - ////// ///// /////
81 -100 1.53-2.19 1248 0.4-

OJ-

02-1 i 1
01 ^

77/7/ Wm %7 ////A
0           1                      1                       1                       1                       1

1-20              21 -«              41-60              61-80             81-100

IZZl o» Cycit
tj>,ijCXio/<i m
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Concentrations:  In Table 16, the data distribution for

effluent phenol is shown for various concentration

intervals.  When raw waste was fed, the effluent phenol was

never 10 mg/1 or less (the target effluent concentration

specified by Sandoz).  However, the concentration was less

than 50 mg/1 almost 70% of the time.

2.  Feeding Synthetic Feed:

a.  Effluent Phenol Concentration:  Figures

16, 17, and 18 show the average effluent phenol

concentration as a function of loading rate percentile

range for reactor operation at 1, 2, and 3 cycles per day

respectively.  Tables 17, 18, 19 show the loading rate

range values.  Except for the lowest loading rate range,

the effluent phenol concentration tended to increase at

increasing loading rates for two and three cycle per day

operation.  Results for the lowest loading rate range are

anomalous because loading usually was decreased to low

levels whenever effluent phenol concentrations began to

increase.  High effluent phenol concentrations typically

remained, even at reduced loadings, for one or two days

before returning to low levels.  From Table 18 it is

apparent that effluent quality for 2 cycle/day operation

was consistently better at loading rates below 0.4 g COD/g
SS-d.

NEATPAGEINFO:id=8330D55B-6594-44D2-8B3F-D586DFAE0EEB



79

Table 16: Data Distribution of

Effluent Phenol Concentrations,

Reactor I, Raw Waste.

Effluent

Phenol

Cone.

(mg/l)

Number of

Days When
Less Than

Percent  j
of Days

iWhen Less

Than

10 0 0

20 14 18.9

30 14 37.8

40 10 51.3

50 13 68.9

75 3 73

100 12 89.2

>100 8 100 1
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Table 17: Effluent Phenol
versus Loading Rate,
Reactor I, Synthetic Waste
One Cycle Per Day. Data
for 39 days arranged by
five percentiles.

Loading
Rate Average
Range Effluent

Percent¬ (g COD/ Phenol
ile g SS*d) (mg/l)

1 -20 0.04-0.18 72.0

21 -40 0.18-0.21 27.0

41-60 0.21-0.24 36.0

61 -80 .0.26-0.32 41.0

81 -100 0.33-0.40 32.0

Rg. 16;   Effluent Phenol Versus

1-20 21 -« 41-60 61 -» 81-100

__ Prctiitili
V7\ Om Cycta Pw 09

Table 18: Effluent Phenol
versus Loading Rate,
Reactor I, Synthetic Feed,
Two Cycles Per Day. Data
for 34 days arranged by five
percentiles.

Loading
Rate Average

N

f

Range Effluent 0

Percent¬ (g COD/ Phenol •

ile g SS*d) (mg/l) c
•

1 -20 0.14-0.39 19
y

21 -40 0.39-0.46 2

41 -60 0.47 57

61 -80 0.47-0.51 22
81-100 0.51-0.55 29

Rg. 17:  Effluent Phenol Versus
Looijiiij Roll, Rndor I, %nth. F«d

»-

TO-
-   '-  "'"

SO-

SO -

40- 1 1

30- 1 m20- W/'//}m
10-I/// fi m m0-1 W/{//\

I -20 21 -« 41-60 SI -80 81 - 100

Pmntila
1771 Tw> Cyd«« P« Do*
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Table 19: Effluent Phenol
versus Loading Rate,
Reactor I, Synthetic Feed,
Three Cycles Per Day. Data
for 43 days arranged by five
percentiles.

Loading
Rate Average
Range Effluent

Percent¬ (g COD/ Phenol
ile g SS«d) (mg/l)

1 -20 0.08-0.16 19

21 -40 0.17-0.18 62

41-60 0.18-0.19 31

61 -80 0.19-0.26 56

81 - 100 0.26-0.29 29

Rg. 18:  Effluent Phenol Versus
LoKJin^ Rott, Raactor I. %nth. Fwd

41-60

PrMitt*
1771 3 C»cl«8 Ptf Day

St -80
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b. Effluent Soluble COD Concentrations:

Figures 19 and 20 show average effluent COD concentrations
as a function of loading rate range for one and two cycles
per day.  Six COD measurements were collected during three
cycle per day operation and averaged 1620 mg/1 (std. dev. =
240 mg/1).  There is no clear trend in effluent COD as a
function of loading rate for one cycle per day.  Effluent
COD appears to increase slightly as loading rate increases
for two cycles per day.

c. Data Distribution of Effluent Phenol

Concentrations:  Table 22 shows the results of a data

distribution performed on effluent phenol concentration.
Using the 10 mg/1 effluent phenol goal, it can be seen that
when operating Reactor I at 2 cycles per day, the effluent
was less than 10 mg/1 68% of the time.  In addition,

concentrations of phenol were less than 50 mg/1 82% of the
time.

Removal of Phenol and Soluble COD

Removal of phenol and soluble COD were evaluated by
determining the specific removal rates and the percent
removals.  The specific removal rate was defined as the
mass of phenol or COD removed over a given 24 hour period
divided by the product of the mass of suspended solids in

NEATPAGEINFO:id=2F77BF95-44C5-402F-9E41-663FA4853B49
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Table 20: Effluent Soluble
COD versus Loading Rate,
Reactor i, Synthetic Feed,
One Cycle Per Day. Data
for 34 days arranged by
five percentiles.

Loading
Rate Average
Range Effluent

Percent¬ (g COD/ COD
ile g SS*d)

0.06-0.18

(mg/l)

1 -20 930

21 -40 0.18-0.21 863

41 -60 0.23-0.27 682

61 -80 0.29-0.33 917

81 -100 0.33-0.40 946

^ 0

Fiq. 19:   Effluent COD Versus
loo(Sng Rate, Rioclor I, Sjnth. Fwd

L -

1,9 -

li-

1.7-

1$ -

15-

1.4 -

IJ-

'^1
n -

1 -

09 J

1f W/) Wa0^-

07 -1 'i^/
W/^06-

O.'i-fe <////a /////, ////A
04 -

OJ-

Oi-I'/// i i ///i m
01 -

0-V/,m Vi7Ja 'W// y/M
1 -20 21-40 41-60 61-80 81 - 100

1771  On« C>cl« P»r Ooy

Table 21: Effluent Soluble COD
versus Loading Rate,
Reactor 1, Synthetic Feed,
Two Cycles Per Day. Data
for 17 days arranged by
five percentiles.

2

1.9

13

1.7

1.6

15

Loading
1.4

Percent¬
ile

Rate

Range
(g COD/
g SS*d)

Average
Effluent
COD

(mg/l)

00

f 0

2^

M

\1

11

1

0.9

03

1 -20 0.14-0.19 1246
y

0.7

0.6

Ol21 -40 0.21-0.45 1363

41 -60 0.47 1401 0.4

61 -80 0.47 1291 OJ

81 -100 0.50-0.55 1707 02

0,1

0

Fig. 20:  Effluent COD Versus
Loodinj Rate, Reoctor I, Synth, Feed

1 -20 21-40 41-60 61-80

\/7\ T»o Cycles Per Doy
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Table 22: Data Distribution of Effluent Phenol Concentrations, Reactor

I, Synthetic Waste.

84

1 Cycle Per Day 2 Cycles Per Day 3 Cycles Per Day        1

Effluent

Phenol

Cone.

(mg/l)

Number of

Days When
Less Than

Percent

of Days

^en Less

Than

Number of

Days When

Less Than

Percent

of Days

i/Vhen Less

Than

Number of

Days When

Less Than

Percent  1

of Days

t/Vhen Less

Than

10 15 38.5 23 67.6 12 28.6

20 8 59 3 76.5 8 47.6

30 0 59 0 76.5 3 54.8

40 2 64.1 1 79.4 5 66.7

50 3 71.8 1 82.4 0 66.7

75 3 79.5 0 82.4 5 78.6

100 2 84.6 2 88.2 2 83.3

>100 6 100 4 100 7 100 1
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the reactor and the total React time over that 24 hour

period (g phenol/g SS-d).  The amount of phenol removed was
defined as follows:

(mass of phenol fed + phenol in reactor at time of Fill)
- (mass of phenol in reactor after React).

The amount of COD removed was determined analogously.
Percent removal was defined as the amount of phenol or COD
removed divided by the amount of phenol or COD fed.  For a
batch reactor, percent removal can exceed 100% if a
substantial amount of residual substrate remained at the

end of the previous cycle.  For COD, only those days in
which COD was measured are reported.

1.  Specific Removal Rate versus Loading Rate:

a. Feeding Raw Waste:  Figures 21 and 22

show the specific phenol and COD removal rates as functions
of the loading rates.  The 100% removal line is shown as
the diagonal on these figures.  The specific phenol removal
rate tends to deviate substantially from the 100% removal
line as the loading rate increases to above 0.10 g phenol/g
SS-d.  The small amount of data on specific removal of COD
does not show any clear trends.

b. Synthetic Feed:  Figure 23 shows the

NEATPAGEINFO:id=0143FDFE-7CA2-4A78-9216-B7EC8A7D72F1
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Figure 21: Specific Phenol Removal Rate versus Loading Rate, Reactor I,
Feeding Raw Waste.
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Figure 22: Specific Soluble COD Removal Rate versus Loading Rate, Reactor I
Feeding Raw Waste
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Figure 23: Specific Phenol Removal Rate versus Loading Rate, Reactor I,
Synthetic Feed, One Cycle Per Day.
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specific phenol removal rates when operating 1 cycle per
day.  Although good removal was observed at loading rates
as high as 0.1 g phenol/g SS-d, there is clear
inconsistency in removal at all loading rates.  In Figure
24, the specific phenol removal line is shown for 2 and 3
cycles per day.  The loading rates were higher for 2 cycles
per day and good removal was achieved most of the time.
Inconsistent removal occurred for 2 cycles per day at
loading rates higher than 0.1 g/g-d.  The loading rate for
3 cycles per day was much lower (again, due to higher MLSS)
and there were also occasions during this operating period
when poor phenol removal occurred.  Overall, removal rates
were more consistent, particularly at loading rates less
than 0.1 g/g-d, for 2 and 3 cycle per day operation than at
1 cycle per day.

Figure 25 shows the specific soluble COD removal rates
observed over 1, 2, and 3 cycles per day. Except for 1
cycle per day operation, the range of loading rates was too
small to draw conclusions regarding the effects of loading
rate on COD removal. Again, good COD removal was achieved
for 1 cycle per day up to a loading rate of 0.4 g/g-d, but
removal was inconsistent over the entire range.

2.  Percent Phenol and Soluble COD Removed:

a:  Raw Waste:  Figures 26 and 27 show the

NEATPAGEINFO:id=86E8889E-E556-4135-8DA7-BF40F38A4D27
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Figure 25: Specific Soluble COD Removal Rate versus Loading Rate, Reactor I
Synthetic Feed One, Two, and Three Cycles Per Day.
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Figure 26: Percent Phenol Removed versus Loading Rate, Reactor I,
Feeding Raw Waste.
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Figure 27: Percent Soluble COD Removed versus Loading Rate, Reactor I,
Feeding Raw Waste.
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percent phenol and COD removed when the reactor was fed raw
waste.  The removal of phenol is generally good at low
loading rates, but above loading rates of 0.05 g/g-d,
highly inconsistent performance was observed.  The data
contained in Figure 27 show no clear trends in percent
soluble COD removed as a function of loading rate.

b.  Synthetic Feed:  Figure 28 shows the

percent phenol removed for one cycle per day operation.
Percentages removed of greater than 200% were achieved at
loading rates less than 0.04 g phenol/g SS-d, when low
loading rates were employed to bring the concentration down
from uncacceptably high values.  As can be seen from the
figure, inconsistency is observed at 1 cycle per day.  The
percent of phenol removed for 2 and 3 cycles per day is
plotted in Figure 29 as a function of loading rate.  As
stated above, performance generally was more consistent
than for 1 cycle per day, but became inconsistent at phenol
loading rates greater than 0.1 g/g-d.  Figure 30 shows the
percent soluble COD removed for all cycles.  No clear
trends can be gathered from this figure due to the scatter
of the data and the lack of data for 2 and 3 cycles per

day.
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Figure 28: Percent Phenol Removed versus Loading Rate, Reactor I, Synthetic
Feed, One Cycle Per Day.
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Overall Performance of Reactor II

Reactor II operated from 17 November 1989 to 1 May

1990.  During this 165 day period, the reactor was fed 7.5

1 of raw waste and 23.3 1 of synthetic feed.  This gives an

average daily feeding volume of 190 ml.  In addition,

during the initial startup of the reactor, a total of 28.56

g of supplemental phenol was added to the reactor during

the initial six weeks of reactor operation.  This

supplemental phenol was added because the raw waste fed

during this time had a low concentration of phenol (245

mg/1).  Additional supplemental phenol resulted in very

high loading rates applied to the reactor and excellent

performance.  However, at the end of December the

performance of the reactor deteriorated and phenol

supplementation was stopped.

Figures 31 and 32 depict the cumulative influent and

effluent phenol and soluble COD.  The total soluble COD fed

during this period was 247.5 g, and the total phenol fed

was 58.7 g.  The total soluble COD wasted was 39.5 g, which

gives an overall removal of 84.1%.  The daily average

removal rate of soluble COD was 1,260 mg/d.  The total

phenol wasted was 1.25 g, or a removal of 97.9%.   The

average daily removal rate of phenol was 348 mg/d.

A calculation of the amount of solids that would need

NEATPAGEINFO:id=8690599C-1317-4DA4-B3EB-B89096F9DECD
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Figure 31: Cumulative Influent and Effluent Soluble COD, Reactor II. Raw Waste
was fed from 11/17/89 through 2/9/90. Synthetic Feed was fed for the remainder
of the project.
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Figure 32: Cumulative Influent and Effluent Phenol, Reactor II. Raw
waste was fed from 11/17/89 through 2/9/90. Synthetic feed was fed for
the remainder of the project.
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to be generated to account for the COD lost due to
mechanisms such as precipitation or accumulation shows that
for Reactor II, 6,635 mg of COD per liter of feed would be
in the form of suspended solids.  Assuming a biomass COD of
2.0 g COD/g solids, this would be over 3,300 mg of solids
generated per liter of feed treated.  These solids would
have either accumulated in the reactor or been wasted as

effluent solids if no biodegradation occurred.  As was the
case for Reactor I, effluent solids in Reactor II were
returned to the reactor during most of the study (127 days
out of 165) and no increase in MLSS of this magnitude was
noted in Reactor II,

Performance of Reactor II During Different Stages of
Operation

Table 23 shows the percent and average phenol removed
from Reactor II over the three distinct periods of reactor
operation.  The best average volumetric phenol removal rate
and percent phenol removed occurred feeding raw waste over
one cycle per day.  This is due to the fact that during the
initial startup of Reactor II, a fresh culture from the
Sandoz activated sludge system that was highly acclimated
to phenol was used and was fed a substantial amount of
phenol.

NEATPAGEINFO:id=3793A5F6-D67C-4C94-87F5-4C2FF11A591A
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Table 23: Percent Phenol Removed and Average Phenol Removal
Rate, Reactor II. (Average reactor volume = 2.5 I)

Average
Volumetric Average
Phenol Loading

Volume Phenol Phenol Removal Percent Rate

Cycles Number Fed Fed Removed Rate Phenol (gCOD/
Feed Per Day of Days (1) (g) (g) (g/d*m*3) Removed gSS'd) 1

Raw Waste 1 84 7.5 32.19 32.07 153.2 99.6 0.192

Synthetic 1 39 8.75 10.01 9.74 100 97.3 0.111 1
Synthetic 2 42 14.53 16.53 15.67 149.2 94.8 0.525 1

Table 24: Percent Soluble COD Removed and Average Soluble COD Removal
Rate, Reactor II. (Average reactor volume » 2.5 I.)

Average
Volumetric

Soluble Average
Soluble Soluble COD Loading

Volume COD COD Removal Percent Rate

Cycles Number Fed Fed Removed Rate COD (gCOD/
Feed Per Day of Days (1) (g) (g) (g/d*m-3) Removed gSS*d)

Raw Wast< 1 84 7.50 122.11 112.49 535.6 92.1 0.192

Synthetic 1 39 8.75 39.92 31.90 327.2 79.9 0.111 1
Synthetic 2 42 14.53 85.45 63.64 606 74.5 0.525
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Table 24 shows the percent soluble COD removed and
average volumetric soluble COD removal rate for the three
periods.  The best percentage of COD removed occurred when
the reactor was fed raw waste.  The highest average
volumetric soluble COD removal rate occurred when feeding
synthetic feed twice a day.

Plots of cumulative phenol and soluble COD removed

versus loading rate were also made for the period when
synthetic feed was fed.  These plots are shown in Figures
33 (phenol) and 34 (COD).  Linear regressions of
these lines were performed to assess the magnitude of the
slopes, and results are shown in Tables 25 and 26.  Again,
good linear correlation indicates consistent performance of
the reactor under these operating conditions.  As Figure 33
shows, a better cumulative rate of phenol removal was
achieved when the reactor was fed twice a day.  As shown in
Table 24, higher average loading rates were sustained
during 2 cycle per day operation.  The slope of the two
cycles per day line is 50% greater than the slope for one
cycle per day.  The slope of the soluble COD removal line
is almost twice as large for the two cycles per day line as
for the one cycle per day.  This, together with the fact
that loading rates were substantially higher at two cycles
per day, illustrates that reactor performance was improved
by shifting operation from one to two cycles per day.
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Figure 33: Cumulative Phenol Removed Feeding Reactor II Synthetic Feed.
Average removal efficiency for each cycle shown in parentheses.

Table 25: Results of Linear Regressions of Cumulative Phenol Removed
for Reactor II, Feeding Synthetic Feed.

Cycles

Per Day

Slope

(mg/d) r'2

1 279 0.9853

2 407 0.9960 1
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Figure 34: Cumulative Soluble COD Removed Feeding Reactor II Synthetic Feed.
Average removal efficiency for each cycle shown in parentheses.

Table 26: Results of Linear Regressions of Cumulative Soluble COD Removed
for Reactor II, Feeding Synthetic Feed.

Cycles

Per Day
Slope
(mg/d) r*2

1 885 0.9935

2 1628 0.9950
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Effluent Quality of Reactor II

1. Feeding Raw Waste:

a. Effluent Phenol Concentrations:  Figure

35 shows the average effluent phenol concentrations as a
function of five loading rate intervals.  It is interesting
to note that better effluent quality occured at higher
loading rates, when supplemental phenol was fed to an
acclimated culture.

b. Effluent Soluble COD Concentrations:

Limited soluble COD measurements were collected during this
period.  The average soluble COD concentration measured in
seven analyses was 1427 mg/1 (std. dev. = 388 mg/1).

c. Data Distribution of Effluent Phenol

Concentrations:  Table 28 shows the data distribution of

effluent phenol concentrations for Reactor II when feeding
raw waste.  The effluent phenol concentration was less than
10 mg/1 31.1% of the time during this period.  Over two-
thirds of the entire period, the effluent phenol was less
than 50 mg/1.

2. Feeding Synthetic Feed:

a.  Effluent Phenol Concentrations:  Figures
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Table 27: Effluent Phenol versus
Loading Rate, Reactor II, Raw
Waste. Data for 35 days arranged by
five percentiles.

Percent¬
ile

1 -20

21 -40

41 -60
61 -80

81 -100

Loading
Rate

Range
(g COD/
g SS*d)

Average
Effluent
Phenol

(mg/l)

0.03-0.07
0.07-0.11
0.11-0.25
0.25-0.41
0.42-1.09

26.6

31.2
15.8
18.6

14.6

Fig. 35; Effluent Phenol Versus
Loodrg Rote, Rsoclor II - Rm Woste

I -20 21 -40

Table 28: Data Distribution of
Effluent Phenol Concentrations,
Reactor II, Feeding Raw Waste.

41 -60

Percentile

51 -80 81 - too

Effluent
Phenol
Cone.

(mg/l)

Number of

Days When
Less Than

Percent  1
of Days

^en Less
Than

10 19 31.1

20 11 49.2

30 2 52.5

40 4 59

60 6 67.2
75 0 67.2

100 2 70.5

>100 18 100 1

NEATPAGEINFO:id=3BED58D9-9838-45A5-B866-C8B4256C66DD



103

36 and 37 show the effluent phenol concentrations as a

function of loading rate interval when feeding synthetic
feed one and two cycles per day, respectively.  Good

effluent quality was achieved up to a loading rate of 0.15
when feeding one cycle per day.  At higher loading rates,

achieved during two cycle per day operation, the effluent
quality showed much more variability.

b. Effluent Soluble COD Concentrations:

The COD concentrations measured during one cycle per day

operation are shown in Figure 38.  The average effluent COD

concentrations were found to vary by approximately 30% over

the entire range of loading rates, indicating effluent COD

was not significantly affected by loading rate.  The peak

at the first loading rate range is due to feedings when

reactor performance was poor during the previous 24 hour

cycle.  Otherwise, effluent COD generally increased as the

loading rate incresed.  Limited data is available on the

effluent soluble COD concentration during two cycle per day

operation.  The eight analyses performed gave an average

COD concentration of 1420 mg/1 (std. dev. = 380 mg/1).

c. Data Distribution of Effluent Phenol

Concentrations:  A data distribution was performed on

effluent phenol concentrations during the synthetic feed

regimen, and is shown in Table 32.  When operating at 1

NEATPAGEINFO:id=8982A85F-A982-43A5-B20C-18824AF05381
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Table 29: Effluent Phenol
versus Loading Rate,
Reactor II, Synthetic
Feed, One Cycle Per Day.
Data for 32 days arranged
by five percentiles.

Loading
Rate Average
Range Effluent

Percent¬ (g COD/ Phenol
ile gSS'd)

0.05-0.08

(mg/l)

1 -20 34.6

21 -40 0.09-0.11 6.2

41-60 0.12-0.14 3.6

61 -80 0.15-0.18 59.3

81 -100 0.19-0.28 39.1

Fig. 36:  Effluent Phenol Versus

^
1-20 V -¥> 41-60

Prc«nlili
V7\ Cm cyd* pw iloy

61-80 81 - too

Percent¬
ile

1 - 20 0.27-0.53
21 -40 0.53-0.56

41-60 0.56-0.59
61 - 80 0.59-0.64

81 - 100 0.64-0.73

120

Table 30: Effluent Phenol versus
Loading Rate, Reactor II, Synthetic
Feed, Two Cycles Per Day. Data for
38 days arranged by five
percentiles. "o

Loading
Rate Average
Range Effluent
(g COD/ Phenol
g SS*d) (mg/l)

Fig. 37:  Effluent Phenol Versus
iMdiq nitt, Rnctor • - S^inti. FMd

117.8

1-20 21 -« 41-60 61 -» 81-100

^.^ P»e«nliliI//I T»6 cfttn pv day
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Table 31: Effluent Soluble COD
versus Loading Rate, Reactor II,
Synthetic Feed, One Cycle Per Day.
Data for 35 days arranged by
percentiles.

Percent¬
ile

Loading
Rate

Reinge
(g COD/
g SS'd)

Average
Effluent
COD

(mg/l)

o

1 - 20 0.05-0.08
21-40 0.09-0.11
41-60 0.12-0.15
61-80 0.15-0.18
81-100 0.19-0.28

_____i

1026   '*
829
895

956

1048

Fig. 38:  Effluent COD Versus
Looilin; Rite, Raator I, ^nlTi. Fnd

SI -»1-20 21-40 41

Pvctrtili

Table 32: Data Distribution of Effluent
Phenol Concentrations, Reactor II, Feeding
Synthetic Feed.

1 Cycle Per Day 2 Cycles Per Day
Effluent
Phenol
Cone.

(mg/l)

Number of

Days When
Less Than

Percent

of Days
^Vhen Less

Than

Number of

Days When
Less Than

Percent

of Days
^Vhen Less

Than
10 20 52.6 14 34.1
20 8 73.7 3 41.5
30 3 81.6 1 43.9
40 0 81.6 4 53.7

50 0 81.6 0 53.7
75 1 84.2 6 68.3
100 2 89.6 3 75.6

>100 4 100 10 100
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cycle per day, the effluent phenol concentration was less

than 10 mg/1 52.6% of the time and less than 50 mg/1 81.6%

of the time.  During 2 cycle per day operation the effluent

phenol concentration was less than 10 mg/1 34.1% of the

time and less than 50 mg/1 53.7% of the time.

Removal of Phenol and Soluble COD

1.  Specific Removal Rate versus Loading Rate:

a. Feeding Raw Waste:  Figure 39 shows the

specific phenol removal rate versus the phenol loading rate

when raw waste was fed.  Excellent removal was achieved at

virtually all loading rates used during this phase of

reactor operation, and indicates that higher loading rates

may have been sustainable during this period of operation.

b. Feeding Synthetic Feed:  Figure 40 shows the

specific phenol removal rate as a function of phenol

loading rate for synthetic feed.  As can be seen for both

cycle periods, there is marked inconsistency in reactor

performance.  Figure 41 shows the specific soluble COD

removal rate as a function of COD loading rate.  Again

inconsistent performance is evident, though increased

deviation from the 100% removal line does seem to appear at

loading rates of greater than 0.2 g/g-d.
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0.4 -
r,

0.35  - ^^
0.3  - ^^

0.25 - y^
0.2  - ^^

0.15 - /^
0.1   - ^^

0.05  - ^^^
tr^       1                   1                -T ͣ        -------r------------1------------------1------------------1------------------1

0.1 0.2

Loading  Rate,  g  Phenol/g  SS*d

0.3 0.4

Figure 39: Specific Phenol Removal Rate versus Loading Rate, Reactor II, Raw
Waste.
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0.26

0.24 /^
0.22 ^^
0.2 /^

0.18 ^^
0.16 ^^
0.14 V^
0.12

V^ c

0.1 /^ o o

o

0.08 /
/       * %

0.06 ^y^
0.04

J^^
ͣi^

o

« o

0.02

0 -^+
+

-----------r------------ 1           1 1 T-------------------1-------------------1-------------------1-------------------\-------------------1------------------

O 0.04

+ 1   Cycle  Per Doy

0.2 0.24

Looding  Rate, g Phenol/g  SS*d
O 2 Cycles '?Kr Doy

Figure 40: Specific Phenol Removal Rate versus Loading Rate, Reactor II,
Synthetic Feed.

0.6

?

1 Cycle Per Day
Loading Rate, g COD/g SS*d

*       2 Cycles Per Doy

Figure 41: Specific Soluble COD Removal Rate versus Loading Rate,
Reactor II, Feeding Synthetic Feed.
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2.  Percent Phenol and Soluble COD Removed:

a. Feeding Raw Waste:  Figure 42 shows the

percent phenol removed as a function of the phenol loading

rate.  The phenol removed during this period was generally

very good.  The poor performance at low loading rates is

again due mostly to those days when low loading rates were

applied to the reactor to bring down the reactor phenol

concentration from previous days.

b. Feeding Synthetic Feed:  Figure 43 shows the

percent phenol removed for synthetic feed operation.  There

is much more inconsistency in this data than in the data

for raw waste.  Figure 44 shows the percent soluble COD

removed as a function of loading rate for synthetic feed.

Again, inconsistency in reactor performance is evident.

Effect of Wasting Rate on Reactor Performance

As has been mentioned previously, the mixed liquor in

both reactors exhibited poor settling characteristics and

during most of the project, effluent solids were

centrifuged and returned to the reactor.  However, in March

1990, intentional wasting of mixed liquor at the end of the

React period was conducted to determine its effect on

NEATPAGEINFO:id=74CC74ED-6E40-4C82-BF93-C72F220466FC
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120

1 10 -p
1

100 -

90

80

70

50 -

50 -

40

30 -

20 -

10 -

0

0.1 0.2

Loading Rate, g Phenol/g S5*d

0.3 0.4

Figure 42: Percent Phenol Removed versus Loading Rate, Reactor II, Raw Waste.
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performance.  A 25 day mean cell residence time (MCRT) was
used over a seven day period.  Measurements of effluent
phenol, COD, and MLSS were performed to monitor the
performance of the Reactor.

1. Reactor I:  Table 33 shows the results of the

monitoring for Reactor I.  Figure 45 shows these results
graphically.  As can be seen, the effluent concentrations
of phenol and COD rose dramatically during the 7-day
period, with an equally dramatic decrease in reactor MLSS.

2. Reactor II: Table 34 and Figure 46 show the
results of the monitoring for Reactor II. Though no
significant increase in effluent COD or phenol
concentration was noticed during the monitoring period, the
decrease in reactor MLSS by almost 50% portended a
subsequent deterioration in reactor performance, and
wasting was stopped.

NEATPAGEINFO:id=FCAF4E05-2370-4F33-A7C0-4A0F388352F6
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Table 33: Effect of Wasting on Performance of Reactor
25 Day MCRT, 27 February - 5 March 1990.

Elapsed
Time

(days)

Effluent
Phenol

(mg/l)

Effluent
Soluble
COD

(mg/l)

Reactor
MLSS

(mg/l)
1 7 605 3033 1
2 41.1 725

3 39.1 777 2597

4 4.3 740

5 103 915

6 183.3 1154

7 235.2 1260 2143

25Z 0

Effluent Phenol 0      Reoclor MISSEFflijeni COD

Figure 45: Effect of Wasting on Performance of Reactor I
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Table 34: Effect of Wasting on Performance of Reactor II.
25 Day MCRT, 27 February - 5 March 1990.

Elapsed
Time

(days)

Effluent
Phenol

(mg/l)

Effluent
Soluble
COD

(mg/l)

Reactor
MLSS

(mg/l) 1
1 1 848 5928 1
2 3.4 879

3 4.3 868 5423

4 5.1 935

5 4.3 840

6 2.5 814
7 2.8 712 4004 1

E^

J 0

2 3 + 567
T Dovs

+      Effluent COO o      R«oetor MLSS

Figure 46: Effect of Wasting on Performance of Reactor II.

Effluent Pfienol
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V.  EXPERIMENTAL RESULTS

To quantify various phenomena that were observed or

expected to occur, side experiments were performed

throughout this project.  These side experiments included:
investigations into abiotic mechanisms of COD removal;

shake flask and enrichment culture studies to determine

various parameters which may affect cell growth;  specific

oxygen uptake rates to determine the effect of feed

characteristics on cell respiration rates;  measurement of

feed constituents in the reactor during different cycle

periods;  specific studies on nitrosophenol alone to

determine its chemical properties and effects on biological

activity;  and, a kinetic study to determine the microbial
decay constant.

Abiotic Mechanisms of Removal

To ascertain that changes in COD and phenol

concentrations were due to biological activitiy in the
reactors, it was important to demonstrate that abiotic

mechanisms were not significant.  Several experiments were

NEATPAGEINFO:id=55FB3624-20AD-4E1B-91D8-569C83142343
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carried out to accomplish this.

1. Loss of Phenol and COD by Stripping:  750 ml

of distilled water was placed in a 1000 ml flask and 100 ml

of raw waste were fed to the flask over 8 hours.

Phosphate, ammonia-nitrogen, and trace elements were mixed

in the feed.  The concentrations of these nutrients are

shown in Table 4, Chapter III.  Phenol, COD, and MLSS

concentrations were measured every day for one week.  The

COD concentration remained at around 625 mg/1 over the

entire period, and the phenol concentration decreased 2

mg/l per day from 106 mg/1 to 92 mg/1.  There was no

formation of suspended solids over the one week period.

Therefore, stripping of organic constituents was concluded

to be insignificant over periods typically employed between

sampling events used to monitor reactor performance

(typically 24 hours or less).

2. Precipitation under Reactor Conditions:  The

effluent from Reactor I was used to determine if any of the

constituents in the matrix may cause precipitation of the

nitrosophenol.  Effluent was filtered through Whatman 40

filters, then through a 0.45 micron membrane filter, and

finally through 0.2 micron membrane filters twice.  The

synthetic feed used was prepared fresh and also filtered

through 0.2 micron membrane filters.  Sixty-six ml of

effluent was available for the study.  This volume was

NEATPAGEINFO:id=68CEF2F7-D2AD-4327-B8A5-801FC119D31F
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split into two 33 ml aliquots.  The amount of synthetic

feed added to each 33 ml sample, 5.4 ml, was based on a

volumetric loading rate to the reactor of 350 ml per 2.15 1

mixed liquor.  Each feed volume had the nutrient

concentrations shown in Table 4, Chapter III.  One

effluent/feed mixture was aerated in an Erlenmeyer flask

and the other (control) was placed on the bench and allowed

to sit quiescently.

In a similar manner, synthetic feed at full strength

was tested.  A flask containing 50 ml of synthetic feed was

aerated and a second flask (control) was allowed to sit on

the bench unaerated.  Suspended solids were measured after

5 days in all four flasks and the results are shown in

Table 35.  Although a significant quantity of solids

(presumably precipitate) was generated in the effluent

matrix samples, these solids were formed over a period of 5

days.  Therefore, it does not appear that precipitation

could account for losses of organic constituents observed

over typical sampling intervals for the reactors.

3.  Precipitation of Nitrosophenol as a Function

of pH and Temperature:  1.2 liters of 1300 mg/1

nitrosophenol was prepared with 150 mg/1 MgS04, 2000 mg/1

NaN03, and 2000 mg/1 Na2S04.  The pH was adjusted to 8.0

and two 200 ml samples were taken and placed in BOD bottles

NEATPAGEINFO:id=78028325-56B1-4D41-9F28-435D837B4313
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Table 35: Results of Precipitation Under Reactor Conditions Experiment

Sample

Suspended Solids

After Five Days

(mg/l)

Rate of Suspended     1
Solids formation

(mg/l-d)

Effluent Aerated 110 22

Effluent Control 171 34.2

Synthetic Aerated 18 3.6

Synthetic Control 0 0                 1

NEATPAGEINFO:id=32729637-7173-4774-86C7-9C5035BB53C4
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which had been cleaned previously by detergent washing and

rinsing twice with distilled water.  The pH was then

brought down to 7.0 and 6.0 and again two 200 ml aliquots

withdrawn at each pH and placed in BOD bottles.  Baseline

suspended solids were taken in duplicate for each bottle.

One bottle from each pH set was placed in the refrigerator

(Temp = 4 degrees C) and the other was placed on the lab

bench.  Suspended solids were measured over time using

Whatman GF/F glass fiber filters (0.7 micron particle

retention).  Results are shown in Table 36.  As shown,

precipitation was insignificant at pH 7 and 8.

Precipitation at pH 6, 16 mg/1 per day, was more

significant, but these results also indicate precipitation

was not a major removal mechanism in the reactor.

4. Adsorption of Nitrosophenol onto Biomass:  Two

50 ml aliquots of mixed liquor were removed from Reactor I

30 minutes after the end of a React period.  To one

aliquot, 1000 mg/1 NaN3 was added to inhibit biological

growth (confirmed by observing negligible oxygen uptake

when spiked with phenol).  10 mg of a stock solution of

nitrosophenol was then added to each aliquot, and soluble

COD measurements were performed over six hours.  Shown in

Table 37 are the results of the experiment.  These results

indicate adsorption of organic constituents was negligible.

The difference in soluble COD between the azide-treated and

-untreated samples is probably due to the contribution of

NEATPAGEINFO:id=8BD0E90F-3ABE-41A6-83E8-F708A02E811E



Table 36: Results of Precipitation Experiment.

120

pH
Temp

(deg. C)

Day
Average
Rate of
Solids

Formation

(mg/l-d)
Std. Dev

(mg/l-d) 1
0 3 6 10 13 17 23

ͣ   ' .' ͣ ' .'

8 4 0 0 0 15 18 5 19 0.7 0.7 1

8 25 0 1 0 16 9 1 10 0.6 0.6 }
:; ͣ,. ͣ..; ͣ

7 4 0 4 0 11 17 0 ͣͣͣͣͣ. ͣ^^ ͣͣ' ͣͣ' J.: 0.7 0.7

7 25 0 7 0 10 9 5 30 0.9 0.8

6 4 0 11 0 5 17 6 65 1.4 1.5

6 25 0 1 67 232 296 348 455 16 9 1
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Table 37:  Results of Adsorption Experiment.

Time
After
Pulse
Feed

(hrs)

Soluble COD

with NaN3 w/0 NaN3 1
0.5 1864 1351

2 1891 1318

4 1924 1311

6 1924 1369

Note: The increase in COD expected by
addition of nitrosophenol was 400 mg/l.
Though soluble COD was not measured before
addition of NaN3, the COD of Reactor I mixed
liquor was 1207 mg/l the day before this
experiment and was 1128 mg/l two days after
the experiment.
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azide to the COD measurement.

Shake Flask Experiments

The first studies done during this project were shake

flask experiments to determine if the waste was

biologically treatable, and to assess the need for

nutrients and the effect of pH on growth.  It was found

that optical absorbance could not be used as a measure of

growth in the shake flask cultures due to the highly

colored nature of the feed mixture.  Therefore, suspended

solids were used as indicators of growth.

1.  Need For Nutrients:

a.  Initial Screening Test:  One of the first

shake flask experiments performed was to determine the need

for ammonia-nitrogen, trace elements, and/or vitamins.  A

20:1 dilution of raw waste was prepared for use as the

source of organic carbon.  Flasks were filled with 50 ml of

the raw waste dilution and inoculated with 0.1 ml of mixed

liquor from Reactor I.  An additional sample (3a) was

inoculated with 1.0 ml of mixed liquor.  The concentrations

of nutrients in the shake flasks are shown in Table 38.  A

key to the matrix used to perform the experiment is shown

in Table 39.  Shake flasks were run for 16 days and

NEATPAGEINFO:id=6EFCC353-BEDE-4F5D-B2A4-33F3037D9C4D
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Table 38: Nutrient Concentrations Used For the Shal<e Flask Experiments

Element

Nutrient

Source

Reagent |
Cone. In  1
Flask

(mg/l)
Fe FeS04*7H20 0.28 1
Zn ZnSO4*7H20 0.16

Co CoCI2*6H20 0.024

Cu CuS04*5H20 0.002

Mo (NH4)6Mo7024*4H20 0.024

Vitamins Yeast Extract 1

P KH2P04/K2HP04 90

K KH2P04/K2HP04 85.5

1       N NH4CI 40 1

NEATPAGEINFO:id=CF7FAE34-B8C9-4813-B72B-B46E2BCD548D



124

Table 39: Key to Sample Sets Used in Shake Flask Experiments

Sample
Set

Nutrients                     1

NH4CI

Trace
Elements

Yeast    1
Extract

1 X
2 X X

3 X X X

4 X X

6 X

6 X X

7 X
8

Note: "X" indicates Nutrient added.

NEATPAGEINFO:id=329D3486-6324-4D3E-A0A6-8536B62C6E4A
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suspended solids were measured.  Results are shown in

Figure 47.  Since baseline MLSS measurements were not

performed, the results are only qualitative.  Sample set 2
did appear to show the largest amount of growth during the
period, indicating ammonia-nitrogen and trace elements were
required for optimum growth.  It was concluded from this

experiment that yeast extract would not be needed as a

source of vitamins.

b. Study of Need for Nutrients Using Higher

Concentration of Raw Waste:  A subsequent shake flask

experiment was performed using a 10:1 dilution of raw

waste.  The same nutrient matrix (Table 38) was used and

the flasks were run for 13 days.  Suspended solids were
taken at the end of the experiment and the results are

shown in Figure 48.  All sample sets showed similar growth,
and no trends are evident.

c. Need for Trace Elements:  A 20:1 dilution

of raw waste at pH 7.0 was prepared in November, 1989.  A 2
ml inoculum of Reactor I mixed liquor was used.  Three

sample sets, representing trace elements at 3/5, 3 and 15

times the normal amount added to the feed, were prepared

and baseline phenol and suspended solids concentrations
were measured.  Triplicate flasks were prepared in each

set.  Results are shown in Figure 49.  There were

significant differences in growth for each concentration of
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Figure 48: Subsequent Shake Flask Study of Need for Nutrients.
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trace elements, with 3/5 times the normal trace element

concentration showing best growth.  At 3 and 15 times the

normal trace element concentration, lower suspended solids

concentrations were observed, suggesting that the level

used was inhibitory to growth.  Synthetic feed continued to

be prepared with the normal concentration of trace

elements.

d.  Need for Ammonia-Nitrogen Using

Enrichment Cultures:  In April, 1990, enrichment cultures,

which are described below, were used to determine the

amount of ammonia-nitrogen required for optimal growth of

the organisms.  The results of this study are shown in

Tables 40 and 41.  In Table 40, the need for ammonia-

nitrogen at all was evaluated.  Two enrichment cultures

were run, one with NH4C1, and one with no source of

ammonia-nitrogen.  As can be seen from the table, average

phenol removal rates and yields based on phenol removal

were greater for the culture to which ammonia-nitrogen was

added.  Once the need for ammonia was established,

additional enrichment cultures were run to see what

concentration of NH4C1 would give optimal growth.  Table 41

shows the results of four separate culture runs.  With each

increase in initial NH4C1 concentration, an increase in

average phenol removal rate and yield based on phenol is

seen up to a concentration of 667 mg/1.  As a result of
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Table 40: Determination of Need for Ammonia-Nitrogen Using Enrichment
Cultures.

Elapsed
Time

(days)

NH4CI
Cone,

(mg/l)
MLSS

(mg/l)

Phenol
Cone.

(mg/l)

Average
Phenol
Removal
Rate

(mg/l-d)

Yield

Based on |
Phenol j
Removed

(g SS/g)
0 33.3 233.9

3 8.5 187 15.6 0.18

7 37.6 3.5 45.9 0.16

0 0 230.3

3 4.3 186.6 14.6 0.1

7 5.2 138 12.2 0.02 1
13 34.3 1.1 22.8 0.21
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Table 41: Determination of Amount of Ammonia-Nitrogen Required for
Biodegradation Using Enrichment Cultures.

Elapsed
Time

(days)

NH4C

Cone,

(mg/l)

MLSS

(mg/l)

Phenol

Cone.

(mg/l)

Average
Phenol

Removal

Rate

(mg/l-d)

Yield

Based on

Phenol

Removed

(g SS/g)

Soluble

COD

Cone,

(mg/l)

Average
Soluble

COD

Removal

Rate

(mg/l-d)

Yield

Based on

COD

Removed

(gss/g)

0 66.7 232.3 :   ; ͣ      ͣ:    ͣ      ,. 1274

6 7.2 138.5 15.6 0.08 1006 44.7 0.03 1
9 14.5 34.2 22 0.07 722 61.3 0.03

12 78 0 19.4 0.34 676 58.2 0.11

' ͣ:''' ͣ ,

0 333 225.6 1297

6 8 132.4 11.7 0.09 1017 46.7 0.03 1
9 30 5.8 24.4 0.14 623 74.9 0.04 j

-0 667 258.1

6 5.5 137.2 20.2 0.05

8 38.3 83.9 21.8 0.22

11 62.4 38.4 20 0.28

13 73.4 17.8 18.5 0.31

0 2000 257.4
.....

6 <5 187.4 11.7

8 8.3 158.3 14.6 0.08

11 6.9 131.8 8.8 -0.05

13 19.1 113.5 9.2 0.67
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this experiment, the amount of NH4C1 added to the feed was

increased by a factor of 3.3.

e.  Need for Phosphorus:  An estimate of the

amount of phosphorus required for biodegradation was

determined by tracking its depletion and the removal of

soluble COD in the reactor.  In February, 1990, the

concentration of phosphorus in Reactor I was 35.7 mg/1.  To

bring down this concentration, no phosphorus was added to

the feed for eight days.  The results of the monitoring are

shown in Table 42.  Determination of the soluble COD

removed was described in Chapter IV.  The results indicate

that 9.2 mg of phosphorus are required on average to remove

1 g of soluble COD.  Table 43 shows the results for Reactor

II.  The phosphorus demand (12.3 mg P/g COD) is similar to

that of Reactor I.  Assuming the feed had an average of

6000 mg/1 of COD, the original estimate of 90 mg P/liter of

waste (15 mg P/g COD) was judicious.

2.  Effect of pH:  10:1 dilutions of raw waste

were prepared at pH 4, 5, 6, and 7 and placed in shake

flasks.  These shake flasks were run for three weeks.  pH

measurements were taken every three days and showed the pH

did not vary by more than 0.4 pH units over the entire 21

days.  The results of the suspended solids analyses are

shown in Figure 50.  Optimal growth occurred at pH 5, with

good growth at all other pHs.  Since both reactors tended
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Table 42: Determination of Need for Phosphorus in Reactor I. Average
Phosphorus Consumption is 9.2 mg P/g COD Removed (std. dev. = 5.2).

Date

P
Cone.

(mg P/l)

Std.
Dev.

(mg P/l)

COD
Removed

(mg)

P
Added

(mgP)

P
Consumed

(mgP)

P Consumed       j
(mg P/g COD
Removed)          1

Feb23 36.7 0.3 0

Feb24 28.4 0.5 863 0 17 19.4

Feb25 24 0.3 870 0 10 11.5

Feb26 20.4 1.2 867 0 8 9.6

Feb28 12.2 0.1 1689 0 19 11.2

Mar 2 10.9 0.5 1918 0 3 1.5

Mar 3 30

Mar 4 12 0.2 1971 0 8 3.9

Mar 8 8.8 0.8 668 0 7 10.8

Mar 11 30

Mar 12 4.8 0.1 3292 0 19 5.8

Note: Phosphorus consumed based on average reactor volume
before Fill of 2.3 I.

Table 43: Determination of Need for Phosphorus in Reactor II. Average
Phosphorus Consumption is 12.3 mg P/g COD Removed (std. dev. = 3.8).

Date

P
Cone,

(mg P/l)

Std.
Dev.

(mg P/l)

COD
Removed

(mg)

P
Added

(mgP)

P

Consumed
(mgP)

P Consumed

(g P/g COD           j
Removed)           i

Feb23 33.1 0.8 0

Feb24 27.2 0.2 759 0 14 17.9

Feb25 23.9 1.6 683 0 8 11.3

Feb26 18.7 1 825 0 12 14.5

Feb28 25.2 2.4 1570 0

Mar 2 14.3 0.4 1702 0 25 14.7

Mar 3 30

Mar 4 12.3 0.1 2115 0 15 7.0

Mar 8 17.3 0.1 5208 0

Mar 11 30
ͣ

Mar 12 9.7 0.1 3313 0 27 8.2                     j
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Figure 50: Effect of pH on Microbial Growth.
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to stabilize at near neutral pH, this experiment indicated

pH adjustment of the feed would not be necessary for

optimum reactor operation.

Enrichment Cultures

On 5 February 1990, 250 ml of a 5:1 dilution of

synthetic feed was prepared in a O.IM K2HP04/KH2P04 buffer.

Four ml of mixed liquor from Reactor II was added to the

dilution along with trace elements and ammonia-nitrogen

(NH4C1).  This culture was then aerated for five days.

Four ml of this culture and two ml of activated sludge

from the Farrington Road Wastewater Treatment Plant in

Durham, NC, was transferred to a new 5:1 dilution of

synthetic feed and was aerated for four days.  The addition

of Farrington Road activated sludge probably had little,

if any, effect on the enrichment, as discussed below in the

Oxygen Uptake section.  Four ml of this culture was again

transferred to a new 5:1 dilution and aerated for four

days.  The entire 250 ml of enrichment culture was then

centrifuged and the solids were placed in a 5:1 dilution

which had a final volume of 500 ml.  This culture was

aerated for four days and the solids from the entire 500 ml

was transferred to a new dilution that had a final volume

of 1000 ml.
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This culture was aerated for 11 days.  On the seventh

day, the MLSS was 108 mg/1.  The culture was fed 100 mg

phenol on the eighth day, and 150 mg phenol on the ninth

day.  The entire culture volume was centrifuged and half

the solids were transferred to a 500 ml volume of 5:1

dilution (referred to subsequently as "0% enrichment") and
the other half was transferred to a 5:1 dilution that had a

supplemented salt concentration of 2.0% (20,000 mg/1
Na2S04, referred to below as "2% enrichment").

The 0% enrichment culture was maintained from 5 March

1990 to 11 May 1990.  Frequent monitoring of phenol,

soluble COD, and MLSS concentrations was performed and

transfers to new 5:1 dilutions were performed whenever the

phenol concentration dropped to below 10 mg/1.  Transfers

consisted of placing 12 ml of the liquid culture into a

liter of 5:1 dilution of synthetic feed.

Results of the monitoring are shown in Table 44.  Also

included in the table are the average phenol and soluble

COD removal rates between sampling periods, and the net

yield based on soluble COD degradation.  Where initial

phenol and COD concentrations were not measured, these

concentrations were estimated by dividing the measured

concentration in the synthetic feed by the dilution factor

(five).  Suspended Solids concentrations at time zero were
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Table 44: Phenol, Soluble COD, and MLSS Monitoring of 0% Salt Enrichment

Transfer
Number

Elapsed
Time
(days)

Phenol
Cone.
(mg/l)

Soluble
COD
Cone,
(mg/l)

MLSS
(mg/l)

Phenol
Removal
Rate

(mg/d)

Soluble
COD
Removal
Rate

(mg/d)

Yield
(gSS/
g COD)

1 0
6 185

fM'&M'''''\
2 0 227.6 1085

2 125.6 822 73 51.0 131.5 0.278

4 1.5 425 62.1 198.5

5 1.1 397 153 0.4 28.0 0.188

3 0 224 1030
6 1 397 28 37.2 105.5 0.044

"   ͣ       ' ͣ

4 2 175.5 <5

5 49.6 18 42.0

7 2 449 34 23.8 0.054

6 0 229 1057

6 1.5 441 18 37.9 102.7 0.029

-'. ͣͣ ͣ" ͣ' ͣ:"; :. ͣ : ͣͣ:

6 0 205.8 912
5 2 218 37 40.8 138.8 0.053

7 0 233.9 1158
3 187 <5 46.9

7 3.5 37 45.9

8 0 232.3 1297
6 138.5 1006 8 15.6 48.5 0.027

9 34.2 722 15 34.8 94.7 0.025

12 0 576 80 11.4 48.7 0.445

9 0 258.1 1229

6 137.2 6 20.2
8 83.9 38.3 26.7

11 38.4 62 15.2

13 17.8 73 10.3
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estimated from the known final MLSS of the previous

enrichment.

The average phenol removal rate for the entire period
is 32.6 mg/l-d (std. dev. = 15.0 mg/l-d, 17 observations),
excluding the rate measured on Day 5 of Transfer 2.  The

average soluble COD removal rate was 105.8 mg/l-d (std.
dev. = 46.8 mg/l-d, 9 observations), again excluding the
rate measured on Day 5 of Transfer 2. It should be noted
that the final concentrations of soluble COD in the

enrichment cultures were much lower than those observed in

the reactors.

Two observations from Table 44 are significant.  First,

net yields over periods of days were quite variable, but

generally were low (less than 0.1 g SS/g COD removed) after
the first transfer.  Also, removal rates per unit biomass

were substantially higher than was achieved in either
reactor.  Such a result indicates that enrichment

techniques may be a useful method of biomass development

for reactor startup.

The 2%  enrichment culture was maintained from 5 March

1990 to 30 May 1990.  This culture was maintained

identically to the 0% culture and the results of the

monitoring are contained in Table 45.  Negative yields in
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Table 45: Phenol, Soluble COD, and MLSS Monitoring of 2% Salt Enrichment

Transfer

Number

Elapsed
Time

(days)

Phenol
Cone.

(mg/l)

Soluble

COD
Cone,

(mg/l)
MLSS

(mg/l)

Phenol

Removal
Rate

(mg/d)

Soluble
COD
Removal
Rate

(mg/d)

Yield

(g SS/
gCOD) 1

1 0

6 135

ͣͣͣͣ : ͣ ͣ      ͣͣ; ͣͣͣ

2 0 218.7 1039

2 186.4 1039 115 16.1

4 150.5 868 18.0 85.5

6 117.1 757 177 16.7 65.5 0.220

11 79.4 7.5

13 64.2 254 7.6

16 55.9 142 2.8

18 54.8 138 0.6

20 49.4 678 118 2.7 12.8 -0.330
ͣ-    . ͣ   "         ""   ͣ

3 0 235.6 1291
4 186.2 1151 117 12.4 35 0.836 j
9 146.6 125 7.9

13 126.8 31 5.0

23 43.9 820 83 8.3 17.4 -0.103

29 23.4 605 84 3.4 35.8 0.005 1." ͣ.- ͣ-. ͣ .-. ͣ:-.   '. ͣ ͣ   ͣ

,               4 0 244.6 1297

5 181.3 70 12.7

20 18.9 509 180 10.8 39.4 0.228

5 0

10 42 182 24.4

11 26.8 582 225 15.2 61.9 0.330 i
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the early transfers are due to inhibition at high salt

concentration and simultaneous microbial decay.  Inhibition

in the early transfers is also indicated by the slow rate

of phenol removal.  By the final transfer, the phenol

removal rate approached that of the 0% enrichment.

Observed yields in the last two transfers appear to be
higher than those of the 0% enrichment.  Inconsistent

trends in measured MLSS over time may indicate, however,

that there were sampling inconsistencies (non-homogeneous

dispersion of solids in the flask prior to sampling).

Biological Oxygen Uptake Monitoring

During the course of this study, the performance of the

reactors was also checked by performing biological oxygen

uptake rate measurements.  These checks were performed

using both the raw waste and the synthetic feed.  Overall,

it can be stated that oxygen uptake measurements were not

very reproducible.  Consequently, conclusions drawn from

the tests are semi-quantitative only.

Lack of reproducibility probably was due to an

inability to obtain reproducible quantities of biomass for

individual measurements.  Biomass tended to range in

character from grainy and rapid-settling to disperse and

non-settling.  This heterogeneous nature of the biomass
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made it difficult to take reproducible aliquots from an

unstirred vessel (preliminary experiments indicated that

long-term stirring affected the ability of the organisms to

respire on phenol).  Preliminary experiments also indicated
that observed oxygen uptake rates depended on the point in
the cycle that samples were withdrawn from the reactor.

In this report, the specific oxygen uptake rate

measured on the sample resting in the chamber will be

referred to as the endogenous SOUR.  The oxygen uptake rate

measured after injection of substrate into the chamber is

referred to as the feeding SOUR.  The difference between

the feeding SOUR and the endogenous SOUR has been defined
as the net SOUR.  The concentration of substrate in the

sample chamber after injection is referred to as the in-

situ concentration.  The mass ratio of COD or phenol to

suspended solids after injection is referred to as the

loading.

To compensate for the lack of reproducibility of the

SOUR data, a SOUR ratio was defined.  This SOUR ratio was

determined by dividing the feeding SOUR by the endogenous

SOUR.  Use of this quotient normalizes the SOURs to account

for the variable quantity of active biomass injected into
the sample chamber during serial measurements. Since the

feeding and endogenous SOURs are both proportional to the
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biomass in the sample chamber, the SOUR ratio should be

relatively constant at identical in-situ concentrations of

substrate.  SOUR ratios which are greater than 1 indicate

stimulation of the oxygen uptake rate upon injection of

substrate, whereas values less than 1 indicate a

retardation of the uptake rate, which may be an indication

of inhibition.

1.  SOURs Measured using Raw Waste as the

Substrate:

a. Reactor I:  Feeding SOURs for Reactor I

were typically in the range of 2 to 11 mg D.O./g SS-h when

spiked with raw waste.  Endogenous rates typically were on

the order of 1 to 7 mg D.O./g SS-h, so that net uptake

rates typically ranged between 1 to 4 mg D.O./g-h.  The

SOUR ratios are shown in Figure 51 as a function of

specific loading.  At a specific loading of 0.5 or higher,

the uptake ratios drop below 1, indicating possible

inhibition of the uptake rate.

b. Reactor II:  Reactor II, during the

initial stages of operation, had a net SOUR in the 10 - 20

mg D.O./g-h range.  These high SOURs correspond to high

rates of phenol and COD removal during the initial

operating period of Reactor II (as discussed in Chapter
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Figure 51: SOUR Ratios as a Function of Specific Loading, Reactors I and
II, Using Raw Waste as Carbon Source. Reactor I measurements taken in
October 1989 and February 1990. Reactor II measurements taken in
November 1989.
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Figure 52: SOUR Ratios as a Function of Specific Loading, Reactor I,
Using Synthetic Feed as Carbon Source. Measurements performed in
February 1990, with reactor operating at one cycle per day.
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IV).  The SOUR ratios are shown in Figure 51.  As can be
seen, the ratios are three to six times higher than those
measured in Reactor I.  Also, the limited amount of data
that was collected did not indicate any inhibition up to a

specific loading of 0.25.

2. SOURs Measured Using Synthetic Feed as

Substrate:  Net oxygen uptake rates measured on Reactor I

mixed liquor using synthetic feed as the substrate ranged

from 2 to 5 mg D.O./g-h.  The SOUR ratios are plotted in

Figure 52 as a function of specific loading.  This data is

inconclusive due to the low loadings that were employed.

3. SOURs Measured Using Phenol as Substrate:

a. Reactor I:  Net SOURs found when using

phenol as the substrate ranged from less than 1 mg D.O./g

SS-hr, to greater than 11.  The SOUR ratios are shown in

Figure 53 as a function of the in-situ phenol

concentration.  The ratios drop to below 1 at a

concentration of 100 mg/1 phenol or higher, indicating

possible inhibition.  It is clear from the trend in the

data that phenol is inhibitory throughout much of the

concentration range tested.

b. Reactor II:  Net SOURs measured on

Reactor II mixed liquor using phenol as substrate ranged
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Figure 53: SOUR Ratios as a Function of Phenol Concentration, Reactor
I.   Measurements taken in February, 1990, when reactor was operating
at two cycles per day.
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Figure 54: SOUR Ratios as a Function of Phenol Concentration, Reactor
II. Measurements taken in April 1990, when reactor was operating at two
cycles per day.
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from 0.9 mg D.O./g SS-hr to 3.  The SOUR ratios are plotted
in Figure 54 as a function of in-situ phenol concentration.
Inhibition appears to begin occurring at a concentration of
900 mg/1, indicating the mixed liquor was well acclimated
to high concentrations of phenol.

4. Inhibition by Feed Components:  The inhibitory

effects of  nitrosophenol, nitrite (NaN02), 4-nitrophenol
and dissolved solids were studied using biological oxygen
uptake rate data.  The effects of these compounds on the

SOUR was measured using the mixed liquor from Reactor I.
The in-situ phenol concentration was maintained at 10 mg/1

for each measurement.  This concentration was found to give
a consistently measureable net SOUR.  After each sample

stabilized at the phenol concentration, 4-nitrophenol,

nitrosophenol, and nitrite were injected to give in-situ

concentrations equal to that at the end of a Fill period.
As can be seen from Table 46, these compounds caused no

inhibition of the metabolic rate. In fact, addition of

nitrosophenol caused a marked increase in the oxygen uptake
rate.

5. SOURs Measured Using Activated Sludges from

Municipal Wastewater Treatment Plants:  Oxygen uptake

experiments were performed with activated sludge samples

collected form the Orange Water and Sewer Authority (OWASA)
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Table 46: Effect of Feed Species on Inhibition of the Specific
Oxygen Uptake Rate in Reactor I.

Compound
Added

In-Situ
Cone, of

Comp'd
(mg/l)

SOUR with

phenol
only

(mg DO/
g SS-hr)

Feeding
SOUR

(mg DO/
g SS-hr)

Net

SOUR

(mg DO/
g SS-hr)

SOUR
Ratio

4-nitrophenol 8 3.3 3.4 0.0 1.01

nitrosophenol 52 2.7 2.8 0.1 1.05

nitrosophenol 52 2.4 3.0 0.6 1.23 1
nitrite 1 1.8 2.1 0.3 1.15

nitrite 5              1.8 1.9 0.1 1.08 1

Note: Phenol concentration was 10 mg/l. Once mixed liquor sample
in oxygen uptake chamber became thermally stable, the phenol was
injected. Then after equilibrium was reached, the above compound
was added at the in-situ concentration shown.
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Wastewater Treatment Plant, Chapel Hill, NC, and the

Farrington Road Wastewater Treatment Plant.  These

experiments were performed to see if either of these mixed

liquors responded to phenol or raw waste.  The OWASA mixed

liquor showed no response (no increase or decrease in net

SOUR) to raw waste and the Farrington Road mixed liquor

showed no response to phenol as a substrate.  This

indicated that an acclimation period would have been

required, during which these organisms would possibly

develop enzymes to degrade phenolic compounds, and that the

best source of phenol-acclimated mixed liquor would be from

the Sandoz activated sludge basins.

Events During Different Cycle Periods

1.  Phenol and soluble COD concentration profiles

a.  Reactor I, Feeding Synthetic Feed, One

Cycle Per Day:  On 19 March 1990, the concentrations of

phenol and soluble COD were monitored during non-

consecutive Fill and React periods.  Reactor I was

operating on a four hour Fill, 18 hour React, two hour

Settle cycle.  The results of the monitoring are shown in

Table 47.  It is interesting to note that a significant

portion of soluble COD and phenol are taken up during the
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Table 47: Phenol and Soluble COD Concentration Profiles For Reactor
I During Non-Consecutive Fill and React Periods. Synthetic Feed Fed
Over One Cycle Per Day.

Period

Elapsed
Time

(hrs)

Measured
Phenol

Cone,

(mg/l)

Theoretical
Phenol
Cone,

(mg/l)

Measured
COD

Cone,

(mg/l)

Theoretical   1
COD

Cone,
(mg/l)      1

Fill 0 0 898;               1
2 28.8 34 931 1061 1
4 67.4 81.6 1095 1265

React 0 52.5 86.4 1046 1326 1
2 41.2 1052

4 0 976

6 1117

Table 48: Phenol and Soluble COD Concentration Profiles During
React For Reactor I. Synthetic Feed Fed Over Two Cycles Per Day.

Elapsed
Time

(hrs)

Measured
Phenol
Cone,

(mg/l)

Phenol
Removal
Rate

(mg/l-h)

Measured
COD
Cone,

(mg/l)

COD     jRemoval !
Rate     1

(mg/l-h) 1
0.25 53.8 1801

0.5 52.5 5.2 1703 392

1 50.5 5 1788 -170 1
1.5 48.9 3.2 1729 118

2 46.3 7.2 1743 -28

2.5 46.8 -3 1685 116 !
3 44.9 3.8 1707 -44

3.5 36.9 16 1694 26 j
4 33 7.8 1644 100

4.5 31.5 3 1707 -126

5 20.7 21.6 1618 178

5.5 17.2 7 1609 18 j
6 14.7 5 1602 14

8 1460 71  1

Note: Theoretical phenol concentration at beginning of
React: 52.5 mg/l. Theoretical COD at beginning of React:
1715 mg/l.
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Fill period.  Since all phenol was degraded by the fourth
hour of React, it is clear the reactor could have handled a
higher loading rate.

b.  Reactor I, Feeding Synthetic Feed, Two

Cycles Per Day:  A more detailed study of phenol and
soluble COD profiles was performed on 22 April 1990.
During this period, Reactor I was operated over two cycles
a day with a four hour Fill, six hour React, 2 hour Settle.
The results of this monitoring are shown in Table 48. On

this day of sampling, the reactor did not degrade the
phenol completely before the end of the React period.  In
fact, the React period was extended an additional two hours
to see how much of the soluble COD would degrade if

aeration were extended.  Approximately 10% of the reactor
COD was degraded in the additional two hours.  The phenol
removal rate does appear to increase once the reactor

phenol concentration drops below 32 mg/1, suggesting that
inhibitory concentrations of phenol lie above 30 mg/1.

2.  Measurement of Nitrate Nitrogen During Anoxic

Conditions (Denitrification):  200 ml of mixed liquor was
taken from Reactor I after a React period on 22 May 1990.
This aliquot was placed in an Erlenmeyer flask and stirred
moderately on a magnetic stirrer.  Parafilm covered the
mouth of the Erlenmeyer to exclude air from the mixed

liquor, thus maintaining anoxic conditions.  Nitrate,
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phenol, and soluble COD measurements were taken before and

after pulse feeding this mixed liquor 12 ml of synthetic

feed.  The nitrate concentration was measured approximately

every 2 hours thereafter for a total of 8 hours.  The

results are shown in Table 49.  Based on the theoretical

concentrations of nitrate and phenol, approximately 25% of

the available nitrate nitrogen was removed over the first

1.75 hours monitored.  A decrease in the expected soluble

COD concentration over this period, without a corresponding

decrease in phenol concentration, may indicate that

nitrosophenol is taken up as a result of nitrate

respiration.

3.  Biological Oxygen Uptake Measurements:  Oxygen

uptake rates were measured on the mixed liquor from Reactor

I during a React period (reactor was operating at a loading

rate of 0.25 g/g-d, 2 cycles per day).  Oxygen uptake rates

were determined every half hour during a 6 hour React

period.  Specific oxygen uptake rates are shown as

functions of phenol and soluble COD concentrations in

Figures 55 and 56, respectively.  At the end of the React

period, the phenol had not all been degraded.

The oxygen uptake rate was monitored for an additional

two hours after React, and the uptake rate was noted to

begin decreasing after 6.5 hours.  Relatively low SOURs at
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Table 49: Denltrification After a Pulse Feeding of Synthetic Feed.

Hours

After

Feed

Nitrate-N

Cone,

(mg/l)

Theor.

Nitrate-N

Cone,

(mg/l)

Phenol

Cone.

(mg/l)

Theor.

Phenol

Cone,

(mg/l)

Soluble

COD

(mg/l)

Theor.    1
Soluble

COD

(mg/l)

-0.25 863 3 1444

0 915 74.8 1791  1
0.25 824 70.8 1697

1.75 715

3 717

5.25 703

6.75 713 57.5 1936

Note: Theoretical concentrations of nitrate-N, phenol, and soluble COD
based on feeding 12 ml synthetic feed to 200 ml Reactor I mixed liquor.
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Figure 55: Specific Oxygen Uptake Rate as a Function of Phenol
Concentration. Measurennents taken during a React period. Reactor I,
feeding synthetic feed one cycle per day.
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Figure 56: Specific Oxygen Uptake Rate as a Function of Soluble COD
Concentration. Measurements taken during a React period. Reactor I,
feeding synthetic feed one cycle per day.
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the beginning of React seem to indicate inhibition of

respiration at the inital concentrations of organic

substrate.  However, since React is characterized by a

sudden shift from anaerobic to aerobic conditions, it is

possible that low initial respiration rates represent a

period of metabolic adjustment (new enzyme synthesis) to

the shift in oxygen tension.  There is no information in

the SBR literature to support either explanation.

4.  Determination of Yield During React Period:

An attempt was made to estimate the yield of microorganisms

resulting from the biodegradation of the synthetic feed.

On 27 April 1990, total and soluble COD were measured as a

function of time during a React period.  The results are

shown in Table 50.  As can be seen from the table, no

estimate of yield could be made from this data.  It was

anticipated that the total COD during the React period

would increase as a result of biomass production on the

synthetic feed added.  However, the total COD actually

decreased during the React period.  In fact, the decrease

in the total COD was greater than the decrease in soluble

COD.  This may be due to rapid accumulation of substrate by

the biomass during the Fill period, with subsequent

endogenous metabolism of the stored substrate during the

React period.
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Table 50: Determination of Yield During React Period.

Period

Total
COD
(mg/l)

Standard
Deviation
(mg/l)

Soluble
COD
(mg/l)

Standard 1
Deviation

(mg/l)
Start of React 6270 480 1477 10 1
Middle of React 6050 67 1448 6 1
End of React 5860 8 1383 3

Overall Decrease

1           in COD
410 94

i

Note: Soluble COD of Reactor effluent measured two days before
experiment was 1314 mg/l. Effluent soluble COD measured one day
after experiment was 1274 mg/l. All samples were taken In duplicate.
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Specific Studies On Nitrosophenol

1. Titration of Nitrosophenol:  3.9 grams of

nitrosophenol was dissolved in 300 ml of O.IN NaOH.  The pH

probe was calibrated at pH 7.0 and pH 10.0.  A 2.4N HCl

solution was prepared by diluting 20 ml reagent grade

concentrated HCl to 100 ml with distilled water.  The

results of the titration are shown in Figure 57 on the

following page.  A more defined titration was done between

pH 11 and pH 8 as this is where the inflection point

apparently occurs.  This "blow up" of the inflection point

is shown in Figure 58.  The pKa appears to be approximately

9.5.  This measured pKa differs markedly from a previously

published value of 6.48 (Dean, 1985), though the presence

of approximately 12% 4-nitrophenol in the nitrosophenol

reagent may account for part of the difference.

2. Fate of Nitrogen from Nitrosophenol

Degradation:  On 10 April 1990, 2 sets of triplicate flasks

were prepared using 1.2 1 of a 5:1 dilution of synthetic

feed to which 150 mg/1 MgS04 and 2500 mg/1 Na2S04 had been

added.  Sodium nitrate was not added to the feed so that

small changes in nitrate and nitrite concentrations could

be measured more easily.  Phosphate buffer and trace

elements were added to the dilution.  Each flask was filled

with 400 ml of the dilution and 4 ml of enrichment culture.

One set of flasks received 27.7 mg/1 NH4C1.  MLSS, nitrate-
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Milliequivaisnrts Acid Added

Figure 57: Titration Curve For Nitrosophenol.

1 2
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Figure 58: Blowup of Inflection Point for Nitrosophenol Titration.
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nitrogen, nitrite-nitrogen, COD, and phenol concentrations

were measured immediately after inoculation and after 9

days of growth.  Results are shown in Table 51.  It is

clear from the table that there was relatively little

change in non-phenol COD over the 9-day period, indicating

little removal of nitrosophenol.  There was a small but

significant increase in nitrite concentration in both sets
of flasks which would be consistent with mineralization of

nitrosophenol.

3. Growth on Nitrosophenol Alone.  In a

preliminary experiment to evaluate growth on nitrosophenol

as the sole carbon source, two flasks were filled with 500

ml each of 1300 mg/1 nitrosophenol.  To each flask, 10 ml

of Reactor II mixed liquor was added.  Baseline MLSS and

soluble COD were measured in each flask.  The flasks were

aerated for four days.  On the fourth day, the COD had

dropped 5% (25 mg/1) and the suspended solids decreased by

over 50%.  This indicated that a substantially larger

inoculum might be required to develop enrichment cultures

able to use nitrosophenol as a sole carbon source.

4. Nitrosophenol Degradation in Reactor I:  140

ml of synthetic feed was prepared with phenol and

nitrosophenol (no 4-nitrophenol added).  Eight hours after
feeding, the effluent phenol concentration was 16 mg/1.  A

synthetic feed was then prepared using only 1300 mg/1
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Table 51: Fate of Nitrogen During Nitrosophenoi Degradation.

'parameter
with

NM4-N

Std.
Dev.

without
NM4-N

Std.      1
Dev.

MLSS: day 0 0 1.1 1.1

day 9 10.2 3.6 12.9 3.6 1

N03-N: day 0 25.3 1.1 23.9 1.1 1
day 9 22.7 1.7 24.2 2 1

N02-N: day 0 0.131 0.082 0.131 0.049 1
day 9           ^ 0.629 0.091 0.866 0.053 1

Soluble COD: day 0 1144 1093 1

day 9 537 34 665 123 i

Phenol: day 0 233.6 1.4 225 1.4 1
day 9 0 34.3 13 1

Note: Measurements with standard deviations shown were taken
in triplicate.
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nitrosophenol and inorganic salts (no phenol or 4-

nitrophenol).  140 ml of this solution was fed over each of

two 4-hour mixed Feed periods.  Soluble COD was measured at

the end of the React cycle and Fill cycles as shown in

Table 52.  The small change in soluble COD over the Fill

period for nitrosophenol alone was less than the

theoretical increase expected with each feeding and

suggests that nitrosophenol was taken up by the biomass

over this period.  As discussed above, this removal of

nitrosophenol cannot be accounted for simply by physical

adsorption.

5. Oxygen Uptake Rates Using Nitrosophenol as a

Substrate:  Limited data were collected on the effect of

nitrosophenol on respiration.  If nitrosophenol were a

growth substrate, SOURs would tend to increase as

concentration increased (below an inhibitory range).

Actual responses varied from slight stimulation of

respiration at 1 mg/1 nitrosophenol to slight inhibition at

60 mg/1.

Measurement of b. Microbial Decay Constant

The microbial decay constant for the mixed liquor was

calculated based on measured MLSS values taken over six
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Table 52: Degradation of Nitrosophenol as Sole Carbon Source in Reactor Feed.

Sample Period Feed Components

Effluent
Phenol
Cone,
(mg/l)

1 Effluent  1
Soluble
COD
Cone.
(mg/l)

1      First Cycle End of React Phenol/Nitrosophenol 15.9 1738 1
ͣ

1   Second Cycle End of React Nitrosophenol Alone 0 1750

__

1     Third Cycle End of Fill      j   Nitrosophenol Alone   1 1723

End of React    j   Nitrosophenol Alone   j 1736 1

Note: 155 mg/l soluble COD added to the reactor with each feeding of
nitrosophenol alone.
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days.  A 100 ml aliqout of Reactor I mixed liquor was

removed from the reactor and aerated.  The MLSS samples

were taken each day in triplicate and the results are shown

in Table 53.  The value of b was determined by plotting the

In of X (MLSS on each day) divided by Xo (initial MLSS)

over time.  The results are shown in Figure 59.  The decay

constant was found to be 0.0089/d.
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Figure 59: Determination of Decay Constant. Slope
of curve is -0.0089/d. r*2 - 0.7563.

Table 53: Measurement of Mixed Liquor Decay over
Time. Suspended solids values in boldface were used
in calculation of b.

Date Time

Elapsed
Time

(days)

MLSS

(mg/l)

Std.Dev.

(mg/l)

23 May 1100 0 6534 385 1
24 May 1015 0.96875 6683 303

25 May 1800 2.2917 6485 338

26 May 1100 3 6284 304

i   27 May 1130 4.0208 6228 176

28 May 1030 4.9792 6419 181

29 May 1130 6.0208 6235 180 1
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VI.  CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. The inhibitory effects of a phenolic feed fed to an

SBR can be overcome by increasing the number of cycles per

day.  Consequently, substantially more waste can be treated

as the number of cycles per day is increased.  The best

phenol and COD removal rates and the highest loading rates

occurred when feeding synthetic waste over 2 cycles per

day.

2. Effluent quality generally decreased as attempts

were made to increase the loading rates.

3. Both reactors had high effluent suspended solids

throughout the study period.  The mixed liquor was noted to

settle poorly.  Wasting of reactor sludge and effluent

suspended solids adversely affected the performance of the
reactors.

4. Net sludge yields measured in enrichment cultures

ranged from 0.029 to 0.836 g/g COD.  However, net sludge

NEATPAGEINFO:id=E38FE4ED-4730-4907-9240-B041AEED8876



164

yields in the reactor appeared to be low, and were not
sufficient to make up for losses of solids in the effluent.
Consequently, artificial means of retaining biomass in the
reactors had to be employed.  In practice, techniques such
as supplementation with an easily degradable substrate or
use of polyelectrolytes to promote flocculation may be
necessary.  The value of b, the microbial decay constant,
was determined at the end of this study to be 0.0089/d.

5. In Reactor II, better effluent quality was achieved
when the raw waste, which had a relatively low phenol
concentration (245 mg/1) was supplemented with additional
phenol.  Reactor II showed more inconsistency in

performance when fed synthetic waste.  The reason for this
is uncertain, although substantial loss of biomass through
feeding toxic amounts of phenol occurred before switching

to synthetic feed.

6. Loss of phenol and soluble COD by air stripping

was found to be insignificant.  Precipitation of

nitrosophenol under reactor conditions was found to be
occurring, but at a much smaller rate than actual observed
removal of soluble COD.

7. Addition of supplemental ammonia nitrogen was

found to enhance the production of biomass and phenol

NEATPAGEINFO:id=028E4D50-7853-4209-80AF-6C111056F816



165

removal rates in enrichment cultures.  The amount of

phosphorus required in the feed to the reactors was found

to be between 9 and 12 mg P/g COD.  Trace elements were

also ne<;essary for optimum growth, but apparent toxicity

was observed when metal concentrations were five times

higher than normally fed.

8. Growth in shake flask experiments was essentially

independent of pH.  Also, pH stabilized near neutral in the

reactors, so that pH adjustment would not be needed for

optimum reactor performance.

9. Enrichment culture techniques may be a useful

method of biomass development for reactor startup.

10. No inhibition of oxygen uptake rate was noted when

nitrosophenol, nitrite, and 4-nitrophenol were added to a

sample at the same concentration as in the reactor at the

end of Fill.  However, since nitrosophenol and 4-

nitrophenol could act as uncouplers (Okey and Stensel,

1989), lack of respiration inhibition is not necessarily

indicative that these compounds are not inhibitory to

growth at typical in-reactor concentrations.

11. During the period when synthetic feed was being

fed to Reactor I, it was determined a significant amount of

phenol was taken up during the Fill period.  Several

NEATPAGEINFO:id=8E71BD60-64DF-4E79-BC42-31065809B7EA



166

experiments also indicated that nitrosophenol may be

accumulated intracellularly during Fill.  This uptake may

be related to nitrate consumption.

Recommendations

1. Use sequencing batch reactors to remove the bulk of

the phenol and COD from the nitrosophenol production

wastewater.  Maintain the peroxide oxidation system as a

possible polishing step for batches that may not meet

effluent phenol standards.

2. Have Sandoz perform HPLC analysis of reactor

effluent and the nitrosophenol filtrate treatment effluent

(after peroxide oxidation) to compare the end products of

the two treatment techniques.

3. Continue research to:

a.  Determine optimal number of cycles, maximum

amount of feed that can be added per cycle, minimal feeding

and react times, the effect of long periods of no feeding

if the nitrosophenol production ceases for a period of

time.

b.  Determine if neutralization of the raw waste
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with lime (solubility of CaS04 [gypsum] = 2.41 g/1), and
the concomitant reduction in dissolved solids enhances

biodegradation of the raw waste.

c. Reevaluate the wet analytical method for the

analysis of nitrosophenol to determine concentrations of
influent and effluent nitrosophenol in the reactors and

estimate the degree of nitrosophenol degradation.

d. Determine if an optimum phenol:nitrosophenol

ratio exists for the degradation of nitrosophenol.

e. Institute a random feed concentration program

to the reactor, varying concentrations of phenol and

nitrosophenol to simulate the frequency distribution of the
60 HPLC runs done by Sandoz.

f. Determine if enhanced settling of the effluent

can be achieved by adding an easily degradable carbon

source or polymer.
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Table Al; Results of 60 iPLC lie&sureients on Nitrosopbenol Influent
And Effluent. Data provided by Sandoz Cheiicals
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Influent Effluent

l-Hltro- (itroso-
phenol pbenol Phenol
Cone. Cone. Cone.

Batch (ig/n (M/U ( ͣ«/l|

76 127.3 645.8 833.9
77 168.2 941.8 916.2
78 113 668.1 781
79 144.5 1016.1 759.6
80 139.9 1171.2 699.2
81 150.6 1461.3 598.1
82 143.2 1029,4 732.4
83 162.7 1596.1 844.5
84 134.9 938.6 549.8
85 145.8 1028.6 554.4
86 164.2 1293 670.3
87 162.4 1672.5 408.4
88 27.4 1217.7 810
89 200 1218.3 675
90 13.8 1434 363
91 167.5 1264 741.3
92 182 1568 1110
93 842.4 1248.4 945
94 710.7 1529.7 732
95 683.3 1699.5 930.4
96 710 1012.5 603.7
97 427.7 1247.4 1010.8
98 179.2 1216.1 916
99 114.4 1091.6 731.8
100 153 1583.2 823.9
101 185.2 1640,1 1508.2
102 161.9 1178.1 908.4
103 181.7 1357.2 1118.6
104 154.7 1573.7 1249.3
105 196.2 1602.3 1462.6
106 135 1326 1586
107 136 1177.5 1774
108 273.2 1265.4 1801
109 125.8 1608.7 1629.6
110 113.1 1375.2 1429.4

4-Nitr(1- Utros()-

phenol phenol Phenol
Cone. Cone, Cone,
(i«/l| (•8/1) (ig/U

0.0 0.0 0.0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 D
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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Appendix A

Table Al: Results of 60 HPLC Measureients on Kitrosophenol Influent
And Effluent. Data provided b; Sandoz Cheiicals

Influent Effluent

i -Hitro- 1iitroso- 4-llitro- Nitroso-

phenol phenol Phenol phenol phenol Phenol
Cone. Cone. Cone. Cone. Cone. Cone.

Batch ( ͣ«/!) (till) ( ͣg/l| (ig/ll (M/1) (ig/1!

111 113.3 1740.1 1552 0.0 0.0 0.0
112 112.4 1922.8 1620 0.0 0.0 0.0

113 115.1 1949.8 1528.4 0.0 0.0 0.0
114 127.4 1801.2 1729.5 0.0 0.0 0.0
115 138.5 1774.2 1761 0.0 0.0 0.0
116 126.3 1708.3 1667.1 0.0 0.0 0.0
117 136.4 1779.4 1671 <5.0 <5.0 <5.0
118 133 1700.6 1617.8 <5.0 <5.0 <5.0
119 135.3 1906 1587.7 <5.0 <5.0 <5.0
120 117.9 1310 1359 0.0 0.0 0.0

121 116.9 1164.5 1441.2 0.0 0.0 0.0
122 97.6 1178 1134.6 0.0 0.0 0.0
123 97.7 1584 1113 0.0 0.0 0.0

124 126.7 926.1 1172 0.0 0.0 0.0

125 124.5 1558.4 1453 0.0 0.0 0.0
126 205.4 664.7 953.4 0.0 0.0 0.0

127 269 672.6 645.6 0.0 0.0 0.0

128 182.4 831.9 977.7 0.0 0.0 0.0
129 165.2 1171.1 1097.8 0.0 0.0 0.0

130 135.2 981.2 1017.6 0.0 0.0 0.0
131 156.8 1327 1207.5 0.0 0.0 0.0
132 160 1319,3 1217.9 0.0 0.0 0.0

133 122 1493 1321.4 0.0 0.0 0.0

134 119.5 1508 1198.4 0.0 0.0 0.0
135 123.9 1587.2 1352.6 0.0 0.0 0.0

Average: 187.8 1340.9 1110.1 0.0 0.0 0.0

Std Dev; 15.9 33.1 36.9 0.0 0.0 0.0
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Table Bl: Biodegr&dation in Reactor I, Sep 1989
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Feed Feed Inf, lionPhenol Feed Inf. Reactor MLSS Reactor Rat I

Added COD COD COD Phenol Phenol MLSS 3td. Dev. MLSS Voluie (g COD/
Date ( ͣ1) (ig/ll (•g) ( ͣg) (ig/ll (ig) (ig/l) (tg/l) X Error (1) g SS*d

09/05 0 0 0 0 4875 259 5.3 2.5 0.00

09/06 294 6842 2012 1296 1021 300 4305 261 6.1 2.7 0 17

09/07 294 6842 4023 2592 1021 600 4000 249 6.2 2.6 0 20
09/08 294 6842 6035 3889 1021 901 3530 81 2.3 2.4 0 25

09/09 0 6842 6035 3889 1021 901 4168 106 2.5 2.2 0 00

09/10 300 6842 8087 5211 1021 1207 3308 88 2.7 2.4 0 27

09/11 0 6842 8087 5211 1021 1207 2884 36 1.2 2.1 0 00

09/12 0 6031 8087 5211 1010 1207 2277 45 2.0 2.0 0 00

09/13 0 6031 8087 5211 1010 1207 2698 49 1.8 1.8 0 00

09/14 0 6031 8087 5211 1010 1207 1175 14 1.2 1,8 0 00

09/15 180 6031 9173 5864 1010 1389 582 44 7,6 1.8 1 08

09/16 190 6031 10319 6552 1010 1581 505 52 10.3 2.5 0 95

09/17 0 6031 10319 6552 1010 1581 592 191 32.3 2.5 0 DO

09/18 0 6476 10319 6552 1019 1581 698 298 42.7 2.5 0 00

09/19 0 6476 10319 6552 1019 1581 5060 174 3.4 2.3 0 00

09/20 0 6476 10319 6552 1019 1581 1658 35 2.1 2.5 0 00

09/21 320 6476 12391 7848 1019 1907 1926 92 4.8 2.5 0 45

09/22 0 6476 12391 7848 1019 1907 1539 83 5.4 2.5 0 00

09/23 0 6476 12391 7848 1019 1907 1857 51 2.7 2.5 0 00

09/24 0 6476 12391 7848 1019 1907 1049 186 17.7 2.5 0 00

09/25 0 6476 12391 7848 1019 1907 1459 83 5.7 2.4 0 00

09/26 110 5645 13012 8210 986 2015 1757 61 3.5 2.3 0 16

09/27 80 5645 13464 8474 986 2094 698 268 38.4 2.4 0 28

09/28 195 5645 14564 9116 986 2286 934 123 13.2 2.4 0 51

09/29 250 5645 15976 9940 986 2533 1252 104 8.3 2.4 0 49

09/30 300 5645 17669 10929 986 2829 1988 95 4.8 2.5 0 36
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T&ble Bl: Biodegradation in Reactor I, Sep 1989

Effluent COD Reactor Cu1. Eff. gff. Reactor Cui. Eff.
COD 5td. Dev, COD COD COD Phenol Std. Dev. Phenol Phenol Phenol Cycles

Date (i«/ll ( ͣg/1) X Error ( ͣg) ( ͣgl (ig/ll ( ͣg/1) X Error ( ͣg) ( ͣg) per day

09/05 503 221 44.0 1258 0 8.0 0.5 6.2 19.9 0 ..

09/06 646 40 6.2 1553 190 14.7 0.8 5.6 35.2 4

09/07 580 49 8.4 1339 360 18.8 0.2 1.2 43.3 10

09/08 1224 2 0.2 2578 720 33.2 0.7 2.2 69.8 20

09/09 1147 15 1.3 2524 720 26.7 0.1 0.4 58.8 20

09/10 1389 26 1.9 2951 1137 142.9 3.1 2.2 303.7 62

09/11 1624 4 0.3 3411 1137 136,8 12.8 9.3 287.2 62

09/12 1162 17 1.5 2324 1137 100.0 3.9 3.9 200.0 62

09/13 1877 0 0.0 3019 1137 116.4 0.3 0.2 209.5 62

09/14 1198 7 0.5 2156 1137 27.3 0.4 1.5 49.1 62

09/15 1200 10 0.8 1943 1353 84.3 3.8 4.5 136.5 78

09/16 1458 0 0.0 3367 1630 133.0 0.0 0.0 307.3 103

09/17 1277 2 0.2 3127 1630 56.0 0.0 0.0 137.2 103

09/18 1155 — ERR 2830 1630 32.4 0.0 0.0 79.4 103

09/19 985 2 0.2 2264 1630 27.1 0.0 0.0 62.3 103

09/20 783 6 0.8 1956 1630 21.8 0.2 1.0 54.4 103

09/21 1228 0 0.0 2676 2023 125.9 0.8 0.7 274.5 143

09/22 1131 35 3.1 2826 2023 115.6 0.0 0.0 289.0 143

09/23 937 4 0.5 2343 2023 81.2 0.4 0.5 203.1 143

09/24 714 9 1.2 1784 2023 18.6 0.1 0.5 46.5 143

09/25 606 8 1.3 1453 2023 18.9 0.4 2.1 45.4 143

09/26 660 2 0.3 1445 2095 20.2 0.1 0.5 44.2 145

09/27 817 17 2.8 1431 2145 19.0 0.1 0.5 44.1 147

09/28 739 0 0.0 1629 2289 23.2 0.1 0.4 51,2 151

09/29 1129 2 0.2 2427 2571 98.5 0.0 0.0 211.8 176

09/30 -- -- ERR ERR 2910 77.1 0.0 0.0 169.6 252
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Table Bl:   fiiodegrad&tion in Reactor I, Sep 1989

React Peed Settle Effluent
Period Period Period Voluie

Date (hrs) (hrs) (hrs) ( ͣ1)

09/05 -. -- _ 0

09/06 24 4 0 400
09/07 23 4 300
09/08 23 4 125
09/09 23 0 10
09/10 23 4 125
09/11 23 0 125
09/12 23 0 10
09/13 23 0 10
09/H 23 0 75
09/15 23 4 75
09/16 23 4 50
09/17 23 0 100
09/18 23 0 50
09/19 23 0 50

09/20 23 0 250
09/21 23 0 250
09/22 23 0 250
09/23 23 0 250
09/24 23 0 250
09/25 23 0 240
09/26 23 8 230
09/27 23 8 240
09/28 23 8 240
09/29 23 8 240
09/30 23 0 100
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T&ble 62:   Biodegradation in Reactor I, Oct 1389
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Cui. Cub. Loading
Peed Inf. Peed Inf. Reactor MLSS Reactor Rate  iiffluent COD

COD COD Phenol Phenol MLSS Std. Dev. KLSS Voluie (g COD/ COD Std. Dev

Date (i«/ll ( ͣgl (ig/l| ( ͣgl (ig/U (ig/li % Error (1) g SS*d) (ig/1) (ig/U

10/01 5645 17669 986 2823 1093 25 2.3 2.4 0,00 .. _.

10/02 5645 17867 986 2864 1248 214 17.1 2.4 0.07 — --

10/03 5645 18431 986 2962 — ... ERR 2.4 0.20 — —

10/04 5645 19334 986 3120 677 31 13.4 2.3 0.61 — "

10/05 5645 19758 986 3194 -- ... ERR 2.3 0.28 — --

10/06 5645 21169 986 3440 -- ... ERR 2.5 0.35 -- "

10/07 5645 21169 986 3440 257 55 21.4 2.4 0,00 -- --

10/08 5727 22314 979 3636 245 41 16.7 2.4 2.03 1102 17

10/09 5727 24032 979 3930 161 60 37.3 2.6 4.28 — -.

10/10 5727 24032 979 3930 200 11 5.5 2.5 0.00 1206 21

10/11 5727 24032 979 3930 217 50 23.0 2.4 0.00 — "

10/12 5727 24891 979 4077 187 70 37.4 2.4 2.00 1412 9

10/13 5727 24891 979 4077 204 58 28.4 2.4 0.00 — --

10/H 5727 24891 979 4077 163 13 11.7 2.4 0.00 1181 4

10/15 5727 25321 379 4150 223 17 7,6 2.5 0.80 -. --

10/16 5339 25855 973 4247 246 48 13.5 2.5 0.32 1108 0

10/17 5339 26522 973 4369 220 33 15.0 2.5 1.29 — --

10/18 5339 27136 973 -  4481 214 41 19.2 2.5 1.20 1260 13

10/19 5339 27937 973 4627 262 3 3.4 2.6 1.25 -. ..

10/20 5339 29005 373 4821 269 6 2.2 2.7 1.53 1382 51

10/21 5339 29005 973 4821 215 31 14.4 2.6 0.00 .. .-

10/22 5070 29765 937 4962 204 26 12.7 2.6 1.50 1430 17

10/23 5070 29765 937 4962 217 44 20.3 2.6 0.00 -- —

10/24 5070 30830 937 5159 191 20 10.5 2.7 2.19 1334 9

10/25 5070 30830 937 5159 286 14 4.9 2.5 0.00 — —

10/26 5070 31844 937 5346 308 34 11.0 2.7 1,30 -- —

10/27 5070 31844 337 5346 233 73 24.9 2.6 0.00 — —

10/28 5070 31844 337 5346 223 44 13.2 2.6 0.00 — ..

10/29 5070 31844 337 5346 276 26 9.4 2.5 0.00 1241 4

10/30 5070 32858 337 5534 245 12 4.3 2.7 1.63 -. —

10/31 5070 32858 337 5534 307 36 4.0 2.7 0.00 .- —
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Ttble B2: Biodegrad&tion in Reactor I, Oct 1983
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Reactor Cu1, Eff. Eff. Reactor ;ui. Eff. React Peed

COD COD COD Phenol Std. Dev. Phenol Phenol Phenol  Cycle! Period Period

Date I Error (H) (M) (ig/1) {•«/l) X Error ( ͣg) (ig) per da]1     (hrsi (hrs)

10/01 ERR ERR 2910 23.7 0.1 0.4 56.9 251 23 0

10/02 ERR ERR 2950 23.5 0.1 0.4 55.6 252     1 23 8

10/03 ERR ERR 3062 25.4 0.1 0.4 58.4 254 23 8

10/04 ERR ERR 3243 28 0.1 0.4 59.9 259 23 8

10/05 ERR ERR 3328 23.8 0 0.0 53.0 261 23 8

10/06 ERR ERR 3610 76.3 0 0.0 171.7 280     1 23 0

10/07 ERR ERR 3610 33.1 0.3 0.9 79.4 280 23 8

10/08 1.5 2424 3830 . 35.7 0.1 0.3 78.5 287 23 8

10/09 ERR ERR 4161 142.9 0.6 0.4 328.7 330 23 0

10/10 1.8 3015 4161 41.3 0.6 1.5 103.3 330 23 0

10/11 ERR ERR 4161 38.5 0 0.0 92.4 330 [    23 8

10/12 0.6 3177 4373 86.3 0 0.0 194.2 343 23 0

10/13 ERR ERR 4373 41.3 0.1 0.2 99.1 343 [    23 0

10/14 0.4 2834 4373 37.1 0 0.0 89.0 343 23 8

10/15 ERR ERR 4461 37.4 0.2 0.5 90.7 345 23 8

10/16 0.0 2604 4572 37.4 0.1 0,3 87.9 349 23 8

10/17 ERR ERR 4711 39.9 0.1 0.3 92.8 354 23 8

10/18 1.0 3005 4855 40.3 0 0.0 96.1 353     ] 23 8

10/19 ERR ERR 5044 39.7 0 0.0 95.3 365 23 8

10/20 3.7 3455 5321 84.2 0.9 1.1 210.5 382 23 0

10/21 ERR ERR 5321 41.9 0.1 0.2 106.8 382 [    23 8

10/22 1.2 3504 5535 88,7 0.5 0.6 217.3 395 23 0

10/23 ERR ERR 5535 36.5 0.3 0.8 93.1 395 i    23 0

10/24 0.6 3401 5828 98.1 0.3 0.3 239.4 416 23 0

10/25 ERR ERR 5828 38.7 0 0.0 96.8 416 23 8

10/26 ERR ERR 6107 106.4 0 0.0 260.7 437     1 23 0

10/27 ERR ERR 6107 104,8 0 0.0 272.5 437 23 0

10/28 ERR ERR 6107 98.1 0.3 0.3 250.2 437 23 0

10/29 0.3 3103 6107 42 0.3 0.7 105.0 437 23 8

10/30 ERR ERR 6355 108.3 0.6 0.6 265.3 458 23 0

10/31 ERR ERR 6355 92.9 0.1 0.1 250.8 458 [    23 0
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Table il:   Biodegradation in Reactor I, Oct 1989

Date

Settle Effluent
Period Voluie   UCRT
(hrs)   (ill  (days)

10/01 1   500
10/02 1   100
10/03 1   200
10/04 [   230
10/05 1   100
10/06 100 50
10/07 1   100
10/08 150 33
10/09 1   100
10/10 [    50
10/11 50
10/12 100
10/13 50
10/14 65
10/15 [    75
10/16 65
10/17 55
10/18 65
10/19 60
10/20 100
10/21 60
10/22 100
10/23 100
10/24    1 150
10/25 50
10/26 80
10/27 70
10/28 75
10/29 50
10/30 50
10/31 50
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Table 63: Biodegradation in Eeactor I, Nov 1989

Cui. Cua. Loading
Feed Feed Inf. Feed Inf. Reactor MLSS Reactor Kate [Affluent
Added COD COD Phenol Phenol MLSS Std. Dev. MLSS Volute g COD/ COD

Date (ill ( ͣg/1) M (M/n ( ͣg) (•g/U {•g/11 X Error (1) g SS*d) (ig/1)

11/01 0 5070 32858 937 5534 997 77 7.7 2.6 0.00 1226

11/02 100 5070 33365 937 5628 .— -- ^RR 2.7 0.20 —

11/03 87 5070 33806 937 5709 891 60 6.7 2.7 0.19 —

11/04 110 5070 34364 937 5812 ... -- ERR 2.6 0.25 —

11/06 120 5070 34972 937 5925 924 82 8.9 2.7 0.26 —

11/07 125 5070 35606 937 6042 ... — ERR 2.7 0.27 —

11/08 0 5070 35606 965 6042 862 28 3.2 2.7 0.00 —

11/09 0 5070 35606 965 6042 ... -- ERR 2.6 0.00 1287

11/10 120 5070 36214 965 6158 956 48 5.0 2.6 0.26 --

11/11 125 5070 36848 965 6278 ... -- ERR 2.6 0.27 --

11/12 130 5070 37507 965 6404 980 36 3.7 2.6 0.28 --

11/13 135 5070 38192 965 6534 ... -- ERR 2.6 0.29 1298

11/14 106 5070 38729 965 6636 879 43 4.9 2.7 0.24 —

11/15 0 5070 38729 965 6636 ... — ERR 2.6 0.00 —

11/16 125 5070 39363 992 8760 1081 66 6.1 2.6 0.24 —

11/17 130 5070 40022 992 6889 ... " ERR 2.6 0.24 —

11/19 0 5070 40022 992 6889 ... -- ERR 2.6 0.00 —

11/20 100 5070 40529 992 6988 971 53 5.5 2.6 0.21 —

11/21 0 5070 40529 992 6988 ... — ERR 2.6 0.00 —

11/22 100 5070 41036 992 7088 ... — ERR 2.6 0.21 —

11/24 0 5070 41036 984 7088 944 63 6.7 2.6 0.00 1259

11/26 80 5070 41442 984 7166 ... — ERR 2.6 0.17 —

11/26 90 5070 41898 984 7255 1307 206 15.8 2.5 0.15 —

11/27 100 5070 42405 984 7353 ... -- ERR 2.5 0.16 —

11/28 0 5070 42405 984 7353 2839 24 0.8 2.6 0.00 972

11/29 90 5070 42861 984 7442 ... — ERE 2.7 0.06 --

11/30 100 5070 43368 984 7540 ... — ERR 2.7 0.07 --
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COD Reactor :ui. Bff. Eff. Reactor :ui. Eff. React

Std. Dev, COD COD COD Phenol Std. Dev, Phenol Phenol Phenol  Cycles  Period
Date (ig/1! X Error ( ͣg) (ig) ( ͣg/U («g/ll X Error ( ͣgl (ig)  per day  (hrs)

11/01 0 0.0 3188 6355 40.4 0.2 0,5 105,0 452 1    23

11/02 " ERR ERR 6478 44.6 0.2 0.4 113.7 456 I    23

11/03 — ERR ERR 6584 41.3 0.0 0.0 105.9 460 I    23

11/04 " ERR ERR 6719 40.8 0.1 0.2 101.6 465 23

11/06 -- ERR ERR 6866 40.9 0.5 1.2 103.5 469 1    23

11/07 -- ERR ERR 7019 83 0.1 0.1 209.6 480 23

11/08 " ERR ERR 7019 58.2 0.1 0.2 154.2 480 1    23

11/09 17 1.3 3346 7019 39.2 0 0.0 I0I.9 480 I    23

11/10 " ERR ERR 7174 40.6 0.4 1.0 100.7 485 1    23

11/11 — ERR ERR 7335 40.9 0.5 1.2 I0I.2 490 23

11/12 — ERR ERR 7502 40.9 0.5 1.2 99,0 495 1    23

11/13 13 1.0 3135 7677 46.4 0 0.0 112,1 501 23

11/14 " ERR ERR 7815 78.5 O.I 0.1 199,7 510 23

11/15 — ERR ERR 7815 40,5 0.1 0.2 103.3 510 23

11/16 " ERR ERR 7977 39 0.1 0.3 96,5 515 23

11/17 -- ERR ERR 8146 85.7 0.3 0.4 211.7 526 23

11/19 -- ERR ERR 8146 40.7 0.1 0.2 105.8 526 23

11/20 -- ERR ERR 8276 61.6 0,1 0.2 154.0 532 23

11/21 -- ERR ERR 8276 38.5 0.1 0.3 100.1 532 23

11/22 -- ERR ERR 8406 72.2 0 0.0 180.5 539 23

11/24 4.2 0.3 3273 8406 38,9 0 0.0 101.1 539 23

11/25 -- ERR ERR 8506 40.7 0.2 0.5 100.5 542 23

11/26 -- ERR ERR 8620 40.1 0 0.0 96.6 546 23

11/27 — ERR ERR 8745 64.5 0.3 0.5 151.6 552 23

11/28 13 1.3 2527 8745 27,1 0,3 1.1 70.5 552 23

11/29 — ERR ERR 8833 21 O.I 0.5 53.8 554 23

11/30 -- ERR ERR 8930 23.3 1,1 4,7 60.6 557 23
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Table B3: Biodegradation in Reactor I, Hov 1989

Date

Peed
Period
(hrs)

Settle Effluent
Period Volme
(hrs)   (ill

11/01
11/02
11/03
11/04
11/06
11/07
11/08
11/09
11/10
11/11
11/12
11/13
11/14
11/15
11/16
11/17
11/19
11/20
11/21
11/22
11/24
11/25
11/26
11/27
11/28
11/29
11/30

50

100
50
50
100
100
120
100
50
50

100
100
50

100
50
100
50

150
600
100
100
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Table B4: Biodegradition in Reactor I, Dec 1989

Feed Feed Inf. Feed Inf.

Added COD COD Phenol Phenol

Date ( ͣ1) (M/i) ( ͣg) (ig/ll ( ͣg)

12/01 110 5070 43926 984 7648

12/02 120 5070 44534 921 7759

12/03 130 5070 45193 921 7878

12/04 140 5070 45903 921 8007

12/05 150 5070 46664 921 8146

12/06 160 5070 47475 321 8293

12/07 180 5070 48387 921 8459

12/08 210 5070 49452 921 8652

12/10 230 5070 50618 921 8864

12/12 250 8490 52741 245 8925

12/13 0 8490 52741 245 8925

12/H 0 8490 52741 245 8925

12/15 200 8490 54439 245 8974

12/17 150 8490 55712 245 9011

12/19 150 8490 56986 245 9048

12/21 150 8490 58259 245 9084

12/23 150 8490 59533 245 9121

12/25 150 8490 60806 245 9158

12/29 150 8490 62080 245 9195

12/30 150 16000 64480 6667 10195

Cui.         Cui. Loading
Reactor  MLSS Reactor Rate Effluent
mSS Std. Dev. HLSS Voluie (g COD/   COD
(ig/1)  (.g/1) X Error  (1) g SS»d) (ig/1)

2654   133   5.0   2.6   0.11   971

3103   1539

2664   121

ERR 2,8 0.08

ERR 2.6 0.09

ERR 2.7 0.09

5.0 2.6 0.11

ERR 2.7 0.12

ERR 2.7 0.12

49.6 2.7 0.11

ERR 2.7 0.13

EER 2.8 0.15

ERR 2,8 0.26

ERR 2.8 0.00

ERR 2.8 0.00

4.5 2.7 0.25

ERR 2.5 0.18

ERR 2.5 0.18

ERR 2.7 0.18

ERR 2.7 0.18

ERR 2.5 0.18

ERR 2.8 0.18

3.5 2.6 0.392491    88   3.5   2.6   0.39   2829
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Table B4: Biodegradation in Reactor I, Dec 1989
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COD Reactor 3UB. Eff. Bff. Reactor :ui, Bff. React

Std. Oev, COD COD COD Phenol Std. Dev. Phenol Phenol Phenol Cycle i Period
Date (ig/li % Error iti) (ig) (ig/1) (i«/l) X Error ( ͣ8) ( ͣg)  per day  (hrs)

12/01 — BRR ERR 9037 22.3 0.1 0.4 58.9 559 [    23

12/02 ... ERR ERR 9154 19 0.0 0.0 47.1 562 23

12/03 ... ERR ERR 9280 • 19.3 0.4 2.1 48.6 564 23

12/04 16 1.6 2389 9416 21.5 0.8 3.7 52.9 567 23

12/05 ... ERR ERR 9562 25.5 0.3 1.2 63.8 571 23

12/06 ... ERR ERR 9717 20.1 0.5 2.5 50.0 574 23

12/07 ... ERR ERR 9892 18.5 0.1 0.5 46.6 578 23

12/08 ... ERR ERR 10096 — ... ERR ERR 578     1 23

12/10 ... ERR ERR 10319 15.4 0.1 0.6 38.8 582 23

12/12 ... ERR ERR 10562 26.1 0 0.0 66.6 588     1 23

12/13 ... ERR ERR 10562 27.8 0.2 0.7 77.8 588 23

12/U ... ERR ERR 10562 27.9 0.1 0.4 78.1 588     1 23

12/15 ... ERR ERR 10564 36.2 0.3 0.8 90.5 595 23

12/17 ... ERR ERR 10710 37.2 0.2 0.5 87.4 601 23

12/19 ... ERR ERR 10855 42.6 0.2 0.5 100,1 607 23

12/21 ... ERR ERR 11001 — ... ERR ERR 607     1 23

12/23 ... ERR ERR 11147 — ... ERR ERR 607 23

12/25 ... ERR BRR 11292 — ... ERR ERR 607     1 23

12/29 ... ERR ERR 11438 75.8 0 0.0 197.1 618 23

12/30 42 1.5 6790 11862 409 0 0.0 981.6 680     1 23
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Table 84: Biodegradation in Reactor I, Dec 1989

Date

Peed   Settle Bffluent

Period Period Voluie   IJCRT

(hrs)  (hrs)   (il)  (days)

12/01 8 150

12/02 8 [   150

12/03 8 250    50

12/04 8 175   100

12/05 8 150

12/06 8 230

12/07 8 200

12/08 8 200

12/10 8 250

12/12 8 300

12/13 0 300

12/14 0 300

12/15 8 400

12/17 8 150

12/19 8 200

12/21 8 0

12/23 8 300

12/25 8 [     0

12/29 8 350

12/30 0 150
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Table B5: Biodegradatlon in Reactor I, Jan 1990
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Feed
Added

Date  {ill

Feed
COD

(ig/1)

Cua.

Inf.
COD

(ig)

Cui. Load iH

Peed Inf. Reactor KLSS Reactor Rate  1Jffluent

Phenol Phenol KLSS Std. Dev. MLSS Voluie (g COD/ COD

{till) ( ͣg) (iig/1) (ig/1) X Error (1) g SS»d! (ig/1)

6667 10195 -- — ERR 2.55 0.00 --

6667 10195 -- ... ERR 2.55 0 00 --

6667 10195 -- ... ERR 2.5 0 00 --

6667 10195 -- ... ERR 2.3 0 00 --

6667 10195 -- ... ERR 2.28 0 00 --

6667 10195 -- ... ERR 2.2 0 00 --

6667 10195 -- ... ERR 2.2 0 00 1917

6667 10195 2748 133 4.8 2.3 0 00 --

6667 10195 — ... ERR 2.3 0 00 --

6667 10195 — ... ERR 2.3 0 00 --

6667 10195 — ... ERR 2.25 0 00 --

6667 10195 — ... ERR 2.2 0 00 941

143 10209 — ... ERR 2.2 0 12 —

143 10231 — ... ERR 2.2 0 19 —

143 10256 — ... ERR 2.3 0 22 —

143 10287 2026 107 5.3 2.45 0 33 —

143 10319 — ... ERR 2,65 0 36 —

143 10355 — ... ERR 2.5 0 39 —

143 10355 2308 31 1.3 2.5 0 00 —

143 10355 — ... ERR 2.5 0 00 1356

143 10384 — ... ERR 2.5 0 27 1558

143 10384 — ... ERR 2.5 0 00 —

2000 10584 — ... ERR 2.45 0 09 —

2000 10584 — ... ERR 2.4 0 00 —

2000 10584 — ... ERR 2.45 0 00 —

2000 10584 2305 103 4.5 2.45 0 00 —

01/01
01/03
01/04
01/05
01/07
01/08
01/10
01/11
01/12
01/14
01/15
01/16
01/17
01/18
01/19
01/20
01/21
01/22
01/23
01/24
01/25
01/26
01/27
01/29
01/30
01/31

0

0

0

0

0

0

0

0

0

0

0

0

100

150

180

210

230

250

0

0

200

0

100
0

0

0

16000

16000

16000

16000

16000

16000
16000

16000

16000

16000
16000

16000
7505
7505

7505

7505

7505

7505

7505

7505

7505

7505
4800

4800
4800

4800

64480
64480
6*4480
64480
64480

64480
64480
64480

64480
64480

64480
64480
65231

66356
67707

69283
71009

72886

72886
72886
74387

74387
74867
74867
74867

74867
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Table B5; Biodegridation in Reactor I, Jan 1990

188

COD Reactor Cui. Bff. Eff. Reactor Cui. Eff.Effluent

Std. Dev. COD COD COD Phenol Std. Dev. Phenol Phenol Phenol ULSS  Cycles
Date (ig/U X Error ( ͣgl ( ͣg) (ig/l| (»g/l| X Error ( ͣg) (»g) («g/l) per day

01/01 — ERR ERR 11862 426 3.2 0.8 1086.3 680

01/03 ... ERR ERR 11862 417 2.2 0,5 1063.4 680

01/04 ... ERR ERR 11862 394 0.0 0.0 985.0 680

01/05 ... ERR ERR 11862 330.4 0.5 0.2 759,9 680

01/07 ... ERR ERR 11862 304.4 0.9 0.3 694,0 680

01/08 ... ERR ERR 11862 294.5 1.4 0.5 647,9 680

01/10 4 0.2 4218 11862 281.3 3,6 1.3 618,9 680

01/11 ... ERR ERR 11862 268.8 2.3 0.9 618,2 680

01/12 ... ERR ERR 11862 264 1.8 0.7 607.2 680

01/H ... ERR ERR 11862 171.3 3.2 1.9 394.0 680

01/15 ... ERR ERR 11862 16,1 0.4 2.5 36.2 680

01/16 32 3.4 2070 11862 14.5 2,3 15.9 31,9 680

01/17 ... ERR ERR 11956 15.3 0,7 4.6 32,1 682

01/18 ... ERR ERR 12097 16.9 0.2 1.2 34,6 684

01/19 ... ERR ERR 12267 15.5 1,3 8.4 32,9 687

01/20 ... ERR ERR 12464 17.7 0,5 2.8 39,6 691

01/21 ... ERR ERR 12680 17.5 0.4 2.3 42,4 695

01/22 ... ERR ERR 12916 33.6 0,2 0.6 75,6 703

01/23 ... ERR ERR 12916 36 0.6 1.7 90,0 703

01/2< 4 0.3 3390 12916 40.5 0 0.0 101.3 703

01/25 0 0.0 3583 13227 45.1 0.1 0.2 103,7 712 593     1

01/26 ... ERR ERR 13227 44.2 1.1 2,5 110.5 712

01/27 ... ERR ERR 13383 116,1 0.2 0.2 272.8 724

01/29 ... ERR ERR 13383 111.9 1.1 1,0 268.6 724

01/30 ... ERR ERR 13383 110.1 1.8 1,6 269.7 724

01/31 ... ERR ERR 13383 113,4 0.5 0.4 277,8 724
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Table 85; Biodegradation in Reactor I, Jan 1390

Date

React Peed Settle Effluent

Period Period Period Voluie

(hrs) (hrs) (hrs)   (.1!

01/01 23 0 25

01/03 23 0 I   150

01/04 h 0 500

01/05 23 0 260

01/07 23 0 100

01/08 23 0 25

01/10 23 0 100

01/11 23 0 25

01/12 23 0 25

01/14 23 0 50

01/15 22.5 0   1.! 25

01/16 22,5 8   I. 100

01/17 23 8     ] 100

01/18 23 8 100

01/19 23 8 100

01/20 23 8 100

01/21 23 8     ] 400

01/22 23 0 25

01/23 23 0 25

01/24 23 8 100

01/25 23 0 25

01/26 23 8 100

01/27 23 0 25

01/29 23 0 25

01/30 23 0     1 25

01/31 23 0 25
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Table B6; Biodegradation in Reactor I, Feb 1390
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Cui. Cui. Loading

Feed Feed Inf. Feed Inf. Reactor KLSS Reactor Rate  IJffluent

Added COD COD Phenol Phenol MLSS Std. Dev. KLSS Voluie (g COD/ COD

Date (ill (ig/1) in) (ig/l) (ig) (ig/1) («g/ll X Error di g SS»dl (M/U

02/01 0 7505 74867 195.0 1U584 2305 103 4.5 2.45 0.00 --

02/03 140 7505 75618 195 10604 — ... ERR 2.4 0,14 1087

02/04 100 7505 76368 195 10623 — ... ERR 2.4 0.14 --

02/05 0 7505 76368 195 10623 2615 120 4.6 2.4 0.00 --

02/06 50 7505 76743 195 10633 — ... ERR 2.35 0.10 1203

02/07 110 7505 77569 195 10654 — ... ERR 2.3 0,21 1119

02/08 30 4800 77707 1053 10686 — ... ERR 2,4 0.04 —

02/10 140 4600 78351 1053 10833 — ... ERR 2.5 0,16 931

02/11 150 4600 79041 1053 10991 2347 81 3,5 2.55 0,18 868

02/12 150 4600 73731 1053 11149 — ... ERR 2,6 0.16 964

02/13 80 4600 80099 1053 11233 — ... ERR 2,55 0,06 1007

02/H 0 4600 80099 1257 11233 — ... ERR 2.4 0.00 889

02/16- 200 4600 81019 1257 11485 3052 53 1.7 2.45 0.20 798

02/16 165 4600 81778 1257 11692 — ... ERR 2.5 0.16 768

02/17 215 4600 82767 1257 11962 3224 46 1.4 2.45 0.21 714

02/18 0 4600 82767 1257 11962 — ... ERR 2.2 0.00 722

02/19 260 4600 83963 1257 12289 — ... ERR 2.4 0.23 705

02/20 290 4600 85297 1257 12654 2906 22 0.8 2.5 0.33 651

02/21 350 3480 86515 1155 13058 — ... ERR 2,5 0.29 636

02/22 400 3480 87907 1155 13520 — ... ERR 2.55 0.21 883

02/23 0 3480 87907 1155 13520 — ... ERR 2.5 0.00 603

02/24 300 3480 88951 1155 13867 3033 70 2.3 2.5 0,21 603

02/25 300 3480 89995 1155 14213 -- ... ERR 2.45 0,24 582

02/26 300 3480 91039 1155 14560 -- ... ERR 2.5 0,24 590

02/27 300 3480 92083 1155 14906 -- ... ERR 2.45 0,24 605

02/28 300 3480 93127 1155 15253 -- ... ERR 2,5 0.24 725
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Table B6: Biodegradation in Reactor I, Feb 1990

191

COD Reactor Cui. Eft. Eft. Reactor Cui, Eff, React

Std, Dev. COD COD COD Phenol Std. Dev. Phenol Phenol Phenol  Cycles  Period
Date (ig/1) % Error ( ͣgl <>g) (•«/l) (•«/ll % Error (igl (ig)  per day  (hrs)

02/01 — ERR ERR 13383 17.7 0.0 0.0 43.4 724

02/03 15 1.4 2457 13535 17 0,5 2.9 38,4 726

02/04 — ERR ERR 13644 24.2 0.2 1.0 55.7 728

02/05 ... ERR ERR 13644 26.6 0.9 3.4 63.8 728

02/06 51 4.2 2767 13704 18.9 0 0.0 43.5 729

02/07 5 0.4 2451 13827 47.6 0 0.0 104.2 734

02/08 ... ERR ERR 13861 17.7 0.9 5.1 41.9 735

02/10 9 1.0 2197 13991 14.8 0.5 3.4 34,9 737

02/11 6 0.7 2084 14121 12.2 0.5 4.1 29.3 739

02/12 8 0.8 2362 14266 71.7 0 0.0 175.7 749

02/13 0 0.0 2486 14346 84.7 0.2 0.2 209.2 756

02/14 H/A N/A 2135 14346 44.1 0 0.0 105.8 756

02/15 H/A H/A 1796 14506 11.4 0.7 6.1 25.7 759

02/16 N/A H/A 1793 14633 34 0.2 0.6 79.4 764

02/17 N/A N/A 1595 14786 11 0 0.0 24.6 767

02/18 N/A N/A 1589 14786 9 0 0.0 19.8 767

02/19 H/A N/A 1509 14970 8.2 0.4 4,9 17,5 769

02/20 N/A H/A 1438 15158 6.7 0.3 4.5' 14.8 771 13.5

02/21 H/A H/A 1367 15381 11 0 0.0 23.7 774

02/22 N/A H/A 1898 15734 123.8 0 0.0 266.2 824

02/23 H/A N/A 1508 15734 6.5 0 0.0 16.3 824

02/24 N/A H/A 1327 15915 5.3 0.1 1.9 11.7 826     1

02/25 N/A N/A 1250 16089 4.8 0 0.0 10.3 827

02/26 N/A H/A 1298 16267 4.1 0.1 2.4 9.0 828     1

02/27 N/A N/A 1302 16448 7 0.1 1.4 15.1 830

02/28 N/A N/A 1594 16666 41.1 0.1 0.2 90.4 843     1 14
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Table B6: Biodegrad&tion in Reactor I, Feb 1990

Peet Settle Effluent
Period Period Voluie HCRT

Date (hrs ) (hrs) (ill (days)

02/01 8 100

02/03 8 100

02/04 0 100

02/05 4 100

02/06 8 100
02/07 8 250
02/08 8 65

02/10 8 100
02/11 8 150
02/12 6 180
02/13 0 200

02/14 8 100
02/15 8 150
02/16 8 250
02/17 8 250
02/18 0 50

02/19 6 250
02/20 8 2.5 350
02/21 8 400

02/22 0 400
02/23 8 300

02/24 6 300
02/25 8 250

02/26 8 300
02/27 8 250 25

02/28 8 2 250 25
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Table 87; Biodegr&dation in Reactor I, Kar 1990
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Cui. Cut. Loading
Feed Feed Inf. Feed Inf. Reactor MLSS Reactor Rate Effluent

Added COD COD Phenol Phenol HLSS Std. Dev, MLSS Voluie (g COD/ COD

Date ( ͣ1) {HID ( ͣs! (ig/1) ( ͣgl (ig/U (i«/l) S Error (1) i SS*d) (i«/l)

03/01 273 3480 94077 1155 15568 2597 109 4.2 2.45 0.26 777

03/02 270 4600 95457 1155 15915 — ... ERR 2.45 0.37 740

03/03 300 4600 96837 1155 16261 — ... ERR 2.45 0.37 915

03/04 250 4600 97987 1155 16550 — ... ERR 2.5 0.31 1154

03/05 200 4600 98907 1155 16781 — ... ERR 2.5 0.16 1260

03/06 0 4600 98907 1155 16781 2143 49 2.3 2.5 0.00 1087

03/07 0 4600 98907 1155 16781 — ... ERR 2.4 0.00 1002

03/08 0 5639 98907 1044 16781 — ... ERR 2.38 0.00 892

03/09 100 5639 99471 1044 16885 —.- ... ERR 2.45 0.18 655

03/10 150 5639 100317 1044 17042 — ... ERR 2.5 0.27 788

03/11 200 5639 101445 1044 17251 1979 11 0.6 2.45 0.40 859

03/12 250 5639 102854 1044 17512 -- ... ERR 2.5 0.32 1197

03/13 0 5639 102854 1044 17512 -- ... ERR 2.45 0.00 902

03/14 150 5401 103664 1027 17666 -- ... ERR 2.5 0.29 928

03/15 160 5401 104529 1027 17830 -- ... ERR 2.5 0.31 915

03/16 170 5401 105447 1027 18005 1883 123 6.5 2.5 0.33 933

03/17 170 5401 106365 1027 18179 — ... ERR 2.5 0.33 1085

03/18 170 5401 107283 1027 18354 — ... ERR 2.5 0.33 1147

03/19 100 5401 107823 1027 18457 — ... ERR 2.5 0.20 1052

03/20 150 5401 108633 1027 18611 1940 176 9.1 2.5 0.29 937

03/21 150 5401 109444 1027 18765 — ... ERR 2.5 0.18 926

03/22 160 5401 110308 1027 18929 — — ERR 2.5 0.24 ...

03/23 100 5401 110848 1027 19032 — ... ERR 2.6 0.15 ...

03/24 120 5401 111496 1027 19155 — ... ERR 2.7 0.18 ...

03/25 120 5401 112144 1027 19278 1593 50 3.1 2.5 0.22 ...

03/26 0 5401 112144 1027 19278 — ... ERE 2.45 0.00 931

03/27 200 5401 113224 1027 19484 — ... ERR 2.5 0.54 ...

03/28 200 5401 114304 1208 19725 — ... ERR 2.5 0.54 ...

03/29 175 5401 115250 1208 19937 — ... ERR 2.5 0.47 ...

03/30 200 5401 116330 1208 20178 1844 156 8.5 2.5 0.47 ...

03/31 200 5401 117410 1208 20420 — — ERR 2.55 0.47 ...
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Table B7:   fiiodegrad&tion in Reactor I, Mar 1990
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Reactor (;ui. gff. Eff. Reactor Sui. Eff. React Peed Settle

COD COD Phenol Std. Dev. Phenol Phenol Phenol Cycles Period Period Period

Date { ͣgl ( ͣg) (ig/l) (M/n X Error ( ͣgl (ig)  per day (hrs) (hrs) (hrs)

03/01 1691 16878 39.1 0.1 0.3 85.1 854     1 8 2

03/02 1613 17078 4.3 0.0 0.0 9.4 855     1 8 2

03/03 1968 17352 103.1 0.0 0.0 221,7 886     1 8 2

03/04 2596 17641 183.3 0.2 0.1 412.4 932     1 8 2

03/05 2898 17893 235.2 1.2 0.5 541.0 979     1 0 2

03/06 2717 17893 191 1.4 0.7 477.5 979     1 0 2

03/07 2405 17893 169.2 0 0.0 406.1 979     1 0 2

03/08 2122 17893 111.8 0.7 0.6 266.1 979     1 8 2

03/09 1540 17958 1.6 0.2 12.5 3.8 979     1 8 2

03/10 1851 18077 2 0.2 10.0 4,7 979     1 8 2

03/11 1933 18248 1.5 0 0.0 3.4 980     1 8 2

03/12 2694 18548 92.2 0.5 0.5 207,5 1003     1 0 2

03/13 2211 18548 2.3 0.2 8.7 5,6 1003     1 8 2

03/H 2182 18687 1.5 0 0.0 3,5 1003     1 8 2

03/15 2142 18833 2 0.2 10.0 4,7 1003     1 8 2

03/16 2173 18992 5.7 0.2 3.5 13.3 1004     1 8 2

03/17 2527 19176 40.2 0.2 0.5 93.7 1011     1 8 2

03/18 2673 19371 59.4 0.5 0.8 138.4 1021     1 8 2

03/19. 2525 19477 2.1 0 0.0 5.0 1021     1 8 2

03/20 2202 19617 0.8 0 0.0 1.9 1021     1 8 2

03/21 2177 19756 13.0 0.2 1.5 30.6 1023     1 0 2

03/22 ERR 19904 62.1 0.5 0.8 145.3 1033     1 18 2

03/23 ERR 19997 12.0 0,2 1.7 30.0 1034     1 18 2

03/24 ERR 20108 107.9 0.2 0.2 278.4 1047     1 18 2

03/25 ERR 20219 140.8 0.5 0.4 335.1 1064     1 18 2

03/26 2280 20219 0.9 1.3 144.4 2.2 1064     1 22 2

03/27 ERR 20405 46.9 0,2 0.4 107.9 1074     2 6 2

03/28 ERR 20591 83.4 0.2 0.2 191.8 1090     2 6 2

03/29 ERR 20754 107.5 0.7 0.7 249.9 1109     2 6 2

03/30 ERR 20940 112.7 1,9 1.7 259.2 1132     2 6 2

03/31 ERR 21126 146.9 0.2 0.1 345.2 1161     2 6 2
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Table B7: Biodegradation in Reactor I, liar 1930

Effluent

Volute UCRT

Date (il) (days)

03/Dl 236 25

03/02 236 25

03/03 250 25

03/04 200 25

03/06 100 25

03/06 75 25

03/07 100

03/08 100

03/09 100

03/10 200

03/11 200

03/12 250

03/13 100

03/14 160

03/15 200

03/16 200

03/17 170

03/18 100

03/19 150

03/20 200

03/21 25

03/22 150

03/23 150

03/24 300

03/25 540

03/26 25

03/27 150

03/28 200

03/29 150

03/30 200

03/31 200
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Table B8: Biodegrad&tion in Reactor I, Apr 1990
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Cui. Cut. Loading
Feed Feed Influent Peed Influent Reactor KLSS Reactor Rate  1Effluent

Added COD COD Phenol Phenol MLSS Std. Dev. MLSS Voluie g COD/ COD

Date (ill (M/1) fig) {till) iH) (ig/1) (»g/l) I Error (1) g SS»d) (ig/l)

04/01 ͣ 200 5401 118490 1208 20662 1844 156 8.5 2.55 0.47

04/02 200 5401 119030 1208 20782 --- ... ERR 2.50 0.47 —

04/03 100 5401 119570 1208 20903 --- ... ERR 2.60 0.23 —

04/04 90 5401 120056 1208 21012 1859 98 5.3 2.45 0.21 1237

04/05 200 5401 121137 1208 21254 — ... ERR 2.50 0.47 1185

04/06 200 5401 122217 1208 21495 — ... ERR 2.50 0.47 1073

04/07 200 6315 123480 1156 21726 — ... ERR 2.50 0.55 1256

04/08 200 6315 124743 1156 21958 1962 38 1,9 2.50 0.51 —

04/09 200 6315 126006 1156 22189 — ... ERR 2.50 0.51 1180

04/10 200 6315 127269 1156 22420 — ... ERR 2.50 0.51 1225

04/11 200 6315 128532 1156 22651 — ... ERR 2.50 0.51 ---

04/12 200 6315 129795 1156 22882 — ... ERR 2.50 0.51 ---

04/13 200 6315 131058 1156 23114 2173 110 5.1 2.50 0,46 ---

04/14 200 6315 132321 1156 23345 — ... ERR 2.50 0.46 ---

04/15 200 6315 133584 1156 23576 — ... ERR 2.50 0.46 ---

04/16 200 6124 134809 1021 23780 — ... ERR 2.50 0.45 1431

04/17 200 6124 136033 1021 23984 — ... ERR 2.50 0.45 1471

04/18 200 6124 137258 1021 24189 2094 28 1.3 2.50 0.47 1386

04/19 200 6124 138483 1021 24393 — ... ERR 2.50 0.47 1464

04/20 200 6124 139708 1021 24597 — ... ERR 2.55 0.47 1375

04/21 200 6124 140933 1021 24801 — ... ERR 2.50 0.47 1442

04/22 200 6124 142157 1021 25005 2031 32 1,6 2,40 0.50 1460

04/23 200 6124 143382 1021 25210 — ... ERR 2.55 0.50 ---

04/24 200 6124 144607 1021 25414 2477 85 3.4 2.55 0.39 ---

04/25 200 6124 145832 1021 25618 — ... ERR 2.50 0.39 1314

04/26 0 6124 145832 1021 25618 — ... ERR 2.30 0.00 ---

04/27 200 6124 147057 1021 25822 — ... ERR 2,50 0.39 ---

04/28 100 6124 147669 1021 25924 — ... ERR 2,35 0.19 1274

04/29 70 6124 148098 1021 25996 — r — ERR 2.40 0.14 1256

04/30 100 6124 148710 1021 26098 ERR 2.30 0.19 1207
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Table B8: Biodegradation in Reactor I, Apr 1990
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Reactor Cui. Eff. Eff. Reactor Cui. Eff.Effluent React  Feed
COD COD Phenol Std. Dev. Phenol Phenol Phenol MLSS Cycles Period Period

Date (M) (ig) (•8/11 !ig/i| X Error ( ͣgi ( ͣg) (ig/U per day (hra)  (hrs)

04/01 ERR 21312 140.4 0.5 0.4 329,9 1189 740 6     4
04/02 ERR 21498 ... ERR ERR 1203 6    4
04/03 ERR 21592 87.0 0.2 0.2 217,5 1212 6    4
04/04 2920 21703 36.0 0 0 0,0 85.0 1215 6    4
04/05 2725 21940 16.6 0 9 5.4 38.2 1218 6    4
04/06 2467 22154 2.8 0 5 17.9 6.4 1219 6    4
04/07 2889 22406 12.9 0 0 0.0 29.7 1222 875 6     4
04/08 ERR 22657 15.3 0 4 2.6 35.2 1225 6     4
04/09 2714 22893 8.7 0 2 2.3 20.0 1226 6    4
04/10 2817 23138 6.2 0 0 0.0 14,3 1228 6    4
04/11 ERR 23383 9.3 0 2 2.2 21.4 1229 6    4
04/12 ERR 23628 10.0 0 2 2.0 23.0 1231 6    4
04/13 ERR 23873 1.0 0 2 20.0 2.3 1232 6     4
04/14 ERR 24118 2.3 0 2 8.7 5.3 1232 E    4
04/15 ERR 24363 0.8 0 0 0.0 1.8 1232 5    4
04/16 3291 24649 0.8 0 0 0.0 1.8 1232 6    4
04/17 3383 24943 2.5 0 9 36.0 5.8 1233 6     4
04/18 3188 25220 0,0 0 0 ERR 0.0 1233 S    4
04/19 3368 25513 0.0 0 0 ERR 0.0 1233 6  "  4
04/20 3231 25788 1.0 0 2 20.0 2.4 1233 6    4
04/21 3316 26076 1.0 0 2 20.0 2.3 1233 6     4
04/22 3212 26368 2.5 0 5 20.0 5.5 1234 6    4
04/23 ERR 26660 2.8 0 0 0.0 6.6 1234 6     4
04/24 ERR 26952 2.8 0 0 0,0 6.6 1235 6     4
04/25 3023 27215 3.8 0 0 0.0 8,7 1236 6     0
04/26 ERR 27215 0.0 0 0 ERR 0,0 1236 6    4
04/27 ERR 27478 5.1 0 2 3.9 11.7 1237 6     4
04/28 2867 27605 1.6 0 7 43,7 3.6 1237 6     4
04/29 2927 27693 2.0 0 2 10,0 4.7 1237 6    4
04/30 2655 27814 0.0 0 0 ERR 0.0 1237 6    4
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Table B8:   Biodegr&dation in Reactor I, Apr 1990

Settle Sffluent

Period Voluae

Date (hrs) (.1)

04/01 2 250

04/02 2 0

04/03 2 350

04/04 2 150

04/05 2 200

04/06 2 200

04/07 2 200

04/08 2 200

04/09 2 200

04/10 2 200

04/11 2 200

04/12 2 200

04/13 2 200

04/14 2 220

04/15 2 200

04/16 2 200

04/17 2 200

04/18 2 200

04/19 2 200

04/20 2 250

04/21 2 200

04/22 2 200

04/23 2 250

04/24 2 250

04/25 2 250

04/26 2 200

04/27 2 200

04/28 2 50

04/29 2 100

04/30 2 230
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Table B9; Biodegradation in Reactor I, Kay 1990
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Cm. Cui. Loading
Feed Feed influent Feed influent Reactor HLSS Reactor Rate Effluent

Added COD COD Phenol Phenol MLSS Std. Dev. KLSS Voluie (g COD/ COD

Date («1| (i«/l) ( ͣg) (M/1) ( ͣg) («g/l) (ig/1) % Error (1) g SS*di (tg/l|

05/01 90 6315 149278 1156 26202 2477 85 3,4 2.20 0,18 ---

05/02 200 6315 151836 1156 26670 — ... ERR 3.10 0.29 ---

05/03 405 6315 154394 1156 27138 8519 217 2.5 2.65 0.16 1129

05/04 375 6315 156762 1156 27572 — ... ERR 2.45 0.15 —

05/05 420 6315 159414 1244 28094 — .— ERR 2,50 0,17 —

05/06 420 6315 162066 1244 28617 — ... ERR 2.50 0.17 —

05/07 420 6315 164719 1244 29139 — ... ERR 2.50 0.17 1738

05/08 420 6315 167371 1244 29662 5528 191 3.5 2.50 0.28 —

05/09 420 6315 170023 1244 30184 — ... ERR 2.60 0.28 —

05/10 420 6315 172675 1268 30717 — ... ERR 2.60 0.28 —

05/11 420 6315 175328 1268 31249 — ... ERR 2.55 0.28 —

05/12 420 6315 177980 1268 31782 6410 390 6.1 2.50 0.24 —

05/13 450 6315 180822 1268 32353 — ... ERR 2.60 0,26 —

05/H 450 6315 183664 1268 32923 — ... ERR 2.55 0.26 —

05/15 450 6315 186505 1268 33494 — ... ERR 2.60 0.26 —

05/16 450 6315 189347 1268 34064 — ... ERR 2,55 0.26 —

05/17 450 6315 192189 1268 34635 6452 615 9.5 2.55 0.25 —

05/18 150 6315 193136 1268 34825 — ... ERR 2.20 0.08 —

05/19 450 6315 195978 1268 35396 — .... ERR 2.50 0.25 —

05/20 450 6315 198820 1268 35966 — ... ERR 2.50 0.25 —

05/21 300 6315 200714 1268 36347 — ... ERR 2.55 0.17 —

05/22 0 6315 200714 1268 36347 6663 229 3,4 2.50 0.00 1444

05/23 450 6315 203556 1268 36917 — ... ERR 2.70 0,23 —

05/24 150 6315 204503 1268 37108 — ... ERR 2.50 0.08 —

05/25 300 6315 206398 1268 37488 — ... ERR 2.50 0,15 —

05/26 0 6315 206398 1268 37488 — ... ERR 2.50 0.00 1652

05/27 300 6315 208292 1268 37868 — ... ERR 2.55 0,15 1756

05/28 300 6315 210187 1268 38249 — ... ERR 2,55 0.15 1711

05/29 300 6315 212081 1268 38629 6674 282 4.2 2.50 0.15 1702

05/30 350 6315 214291 1268 39073 --- ... ERR 2.50 0.18 1693

05/31 350 8466 217254 1273 39519 --- ... ERR 2.50 0.24 —
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Table 69:   Biodegradation in Reactor I, Kay 1990
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Reactor (;ui. Eff. Eff. Reactor Cui, Eff,i ffluent React Peed

COD COD Phenol Std. Dev. Phenol Phenol Phenol HLSS Cycles Period Period

Date (>gi ( ͣS) (nS/ll (i«/ll % Error (M) ( ͣg) (•«/l) per day (hrs) (hrs)

05/01 ERR 28055 1.1 0.0 0.0 2.3 1237 6 0

05/02 ERR 28544 1.3 0 2 15.4 3.8 1238 5,5 2

05/03 2534 28967 1.4 0 0 0.0 3.1 1238 5.5 2

05/0< ERR 29442 0.0 0 0 ERR 0.0 1238 5,5 2

05/05 ERR 29916 11.0 0 1 0.9 22.9 1243 5,5 2

05/06 ERR 30390 0.0 0 0 ERR 0.0 1243 5.5 2

05/07 3615 31120 15.9 0 1 0.6 33.1 1249 2211 5.5 2

05/08 ERR 31850 31.0 0 1 0.3 64,5 1262 5.5 2

05/09 ERR 32580 24.5 0 2 0.8 53.4 1273 5.5 2

05/10 ERR 33309 2.3 0 1 4.3 5.0 1274 5.5 2

05/11 ERR 34039 18.9 0 1 0.5 40.3 1282 1092 5.5 2

05/12 ERR 34822 14.8 0 1 0.7 30,8 1288 5.5 2

05/13 ERR 35604 17.5 0 0 0.0 37.6 1296 5.5 2

05/H ERR 36386 34.9 0 2 0.6 73.3 1311 1201 5.5 2

05/15 ERR 37168 50.9 0 0 0.0 109,4 1334 5.5 2

05/16 ERR 37950 81.6 0 2 0.2 171.4 1371 5.5 2

05/17 ERR 38211 123.5 0 7 0.6 259.4 1427 5.5 2

05/18 ERR 38993 24.7 0 0 0.0 50.6 1430 5.5 2

05/19 ERR 39775 67.6 0 5 0.7 138.6 1461 550 5.5 2

05/20 ERR 40296 120.9 0 0 0.0 247.8 1515 5.5 2

05/21 ERR 40296 100.7 0 2 0.2 226,6 1545 576 5,5 0

05/22 3611 40946 3.0 0 2 6.7 7.5 1545 5.5 2

05/23 ERR 41163 115,5 0 2 0.2 259.9 1597 6 2

05/24 ERR 41596 38,9 0 3 0.8 91.4 1603 6 2

05/25 ERR 41596 60.7 0 2 0.3 133.5 1621 6 2

05/26 4130 42092 2.1 0 0 0.0 5.3 1621 6 2

05/27 3950 42618 17.4 0 0 0.0 39.1 1627 8 2

05/28 3849 43132 6.8 0 2 2.9 15.3 1629 604 6 2

05/29 3743 43727 3.4 0 1 2.9 7.5 1630 6 2

05/30 3639 44320 4,9 0 4 8.2 10.5 1631 6 2

05/31 ERR 44320 8.4 0 1 1.2 18.1 1634 6 2
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Table B9: Biodegradation in Reactor I, May 1990

Settle Effluent
Period Volute

Date (hrs) (111

05/01 2 25 Added Bench Solids
05/02 1.5 1000
05/03 l.S 550 Haste Eff, Solids
05/04 1.5 350 Waste Eff, Solids
05/05 1.5 400 Waste Eff. Solids
05/06 1.5 400 Waste Eff, Solids
05/07 1.5 400 Waste Eff, Solids
05/08 1.5 400 Waste Eff. Solids
05/09 1.5 500 Return Eff . Solids
05/10 1.5 500
05/11 1.5 450
05/12 1.5 400

05/13 1.5 500
05/H 1.5 450
05/15 1.5 550
05/16 1.5 500
05/17 1.5 500
05/18 1.5 175
05/19 1.5 450
05/20 1.5 300
05/21 1.5 50
05/22 1.5 450
05/23 1 650
05/24 1 300
05/25 1 250
05/26 1 300
05/27 1 350
05/28 1 350
05/29 1 350
05/30 1 350
05/31 1 350
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Table CI; Biodegradition in Reactor II, Soy ͣ Dec 1989

Cub.        Cui. Loading
Phenol Feed Feed Influent Feed  Influent Reactor MLSS Reactor Rate

Added Added COD COD Phenol Phenol MLSS Std. Dev. HLSS Voluie g COD/
Date (M) {•U (ig/l) ( ͣg) (M/l) ( ͣg) (ig/n (ig/1) X Error (1) g SS»d

11/17 0 0 5070 0 992 0 6500 __ ERR 0.00

11/19 250 0 5070 610 992 250 — ... ERR 0.03

11/20 0 0 5070 610 992 250 — ... ERR 0.00

11/21 500 0 5070 1830 992 750 — ... ERR 0.06

11/22 410 100 5070 3337 992 1259 — ... ERR 0.08

11/24 0 0 5070 3337 984 1259 — ... ERR 0.00

11/25 0 0 5070 3337 984 1259 — ... ERR 0.00

11/26 200 100 5070 4332 984 1558 — ... ERR 0.05

11/27 300 150 5070 5825 984 2005 6535 435 6.7 0.07

11/28 350 150 5070 7439 984 2503 — ... ERR 0.07

11/29 400 150 5070 9176 984 3050 — ... ERR 0,08

11/30 500 150 5070 11156 984 3698 — ... ERR 0.09

12/01 600 150 5070 13381 984 4446 — ... ERR 0.10

12/02 600 200 5070 15859 921 5230 — -— ERR 0.11

12/03 750 200 5070 18703 921 6164 — ... ERR 0.13

12/04 1000 200 5070 22157 921 7348 4015 ... ERR 0.25

12/05 1500 200 5070 26831 921 9032 — ... ERR 0.34

12/06 2000 135 5070 32395 921 11157 — ... ERR 0,41

12/07 2700 135 5070 39668 921 13981 3103 1539 49.6 0.69

12/08 3000 200 5070 48002 921 17165 --- ... ERR 0.79

12/10 3000 200 5070 56336 921 20349 --- ... ERR 0.79

12/12 3500 200 8490 66574 245 23898 --- ... ERR 0.97

12/13 4000 200 8490 78032 245 27947 .... .„ ERR 1,09

12/14 0 400 8490 81428 245 28045 --- ... ERR 0.33

12/15 0 500 8490 85673 245 28168 --- ... ERR 0.42

12/17 0 500 8490 89918 245 28290 1498 78 5.2 0.89

12/19 0 400 8490 93314 245 28388 --- ... ERR 0.71

12/21 0 213 8490 95122 245 28441 --- ... ERR 0,38

12/23 0 213 8490 96931 245 28493 --- ... ERR 0.38

12/25 0 213 8490 98739 245 28545 --- ... ERR 0,38

12/29 0 0 8490 98739 245 28545 --- ... ERR 2.9 0.00

12/30 3000 0 8490 106059 245 31545 4468 77 1.7 2.75 0,63
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Table CI: Biodegradation in Reactor II, Hov - Dec 1989
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Sffluent Reactor (;mi. Eff. Eff. Reactor :ui. Eff. React Feed

COD COD COD Phenol Std. Dev. Phenol Phenol Phenol Cycle ! Period Period

Date (M/1) ( ͣg) (M) (ig/l) (ig/n X Error (Ml (ig)  per day  (hrs| (hrsl

11/17 --- ERR 0 1.2 0.0 0.0 3.6 0 I    23 0

11/19 --- ERR 1 11.3 0.5 4.4 33.9 0 23 0

11/20 --- ERR 1 2.00 0.0 0.0 6.0 0 1    23 0

11/21 --- ERR 2 1.3 0 0.0 3.9 0 23 0

11/22 --- ERR 99 164.9 0 0.0 478,2 16 1    23 0

11/24 --- ERR 115 130.2 1.1 0.8 390.6 16 23 0

11/25 --- ERR 118 3.6 0 0.0 12.6 16 I    23

11/26 --- ERR 209 3.9 0 0.0 13.3 17 23

11/27 --- ERR 342 4.3 1 23.3 14.4 18 [    23

11/28 --- ERR 474 7,9 0 0.0 26.5 19 23

11/29 --- ERR 609 5.30 0.2 3.8 17.8 20 1    23

11/30 --- ERR 744 6.7 0,1 1.5 22.4 21 23

12/01 --- ERR 879 6.9 0 0.0 23.1 22 23

12/02 --- ERR 1057 6.1 0 0.0 20,1 23     ] 23

12/03 --- ERR 1236 6.9 0.1 1.4 22.8 25 23

12/04 878 2897,4 1412 7.4 0.1 1.4 24.4 26     1 23

12/05 — ERR 1587 8.5 0.1 1,2 28.1 27 23

12/06 — ERR 1706 12 0 0,0 40.4 29 23

12/07 — ERR 1824 12.2 0.1 0,8 41.1 32 23

12/08 — ERR 2000 — ... ERR ERR 32 23

12/10 948.2 3129.1 2190 1.10 0.1 9.1 3.6 32 23

12/12 — ERR 2379 1.3 0.1 7,7 4.3 33     ] 23

12/13 — ERR 2569 4.6 0.4 8,7 15.2 35 23

12/14 — ERR 2948 4,9 0 0.0 15.2 37     1 22.5

12/15 — ERR 3422 11.1 0.7 6.3 33,3 42 22.5

12/17 — ERR 3896 29.9 0.2 0.7 86.7 42     ] 22.5

12/19 — ERR 4276 41.7 0.2 0.5 104.3 42 22.5

12/21 .— ERR 4478 --- ... ERR BRR 42     ] 22.5

12/23 — ERR 4679 --- ... ERR ERR 42 22.5

12/25 — ERR 4881 --- ... ERR ERR 42 22.5

12/29 — ERR 4881 83.1 1.1 1.3 241.0 60 22.5

12/30 5137 14126.8 5517 1060.00 9.1 0.9 2915.0 60     ] 22.5

NEATPAGEINFO:id=BD414C8E-6DDF-48A1-A196-725D5805B6E9



205

Table CI; Biodegradation in Reactor II, Hov - Dec 1983

Settle Effluent
Period Volute

Date (hrs) (il)  Coments

11/17 25
11/19 25
11/20 250 10 d HCRT
11/21 300 8 d MCRT
11/22 25 Waste Eff. Solids
11/24 50 Waste Eff. Solids
11/25 350 Waste Eff. Solids
11/26 350 Waste Eff. Solids
11/27 100 Waste Eff. Solids
11/28 50 Waste Eff. Solids
11/29 200 Return Eff . Solids
11/30 200
12/01 200
12/02 200
12/03 300
12/04 300
12/05 400

12/06 400
12/07 500
12/08 600
12/10 450
12/12 400
12/13 400
12/14 400
12/15 500
12/17 750
12/19 400
12/21 0
12/23 400
12/25 0
12/29 380
12/30 250
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Table C2: Biodegradition in Reactor II, Jan 1990

Cua.        Cui, Loading
Peed   Feed Influent Feed Influent Reactor  ULSS Reactor Rate Effluent
Added   COD   COD Phenol Phenol ULSS Std. Dev. ULSS Voluie (g COD/   COD

Date  (ill   (ig/1)  (ig| (ig/1)  (ig| (ig/U  (ig/1! % Error  (1) g SS*d) (ig/1)

01/01
01/03
01/04
01/05
01/07
01/08
01/10
01/11
01/12
01/14
01/15
01/16
01/17
01/18
01/19
01/20
01/21
01/22
01/23
01/24
01/25
01/26
01/27
01/29
01/30
01/31 .

0
0
0
0
0

200
130
300
350

0
100

0
140
200

8490 106059
8490 106059
8490 106059
8490 106059
8490 106059
8490 106059
8490 106059
8490 106059
8490 106059
8490 106053
8490 106059
7505 106059
7505 106059
7505 106059
7505 106059
7505 106059
7505 106059
7505 107560
7505 108536
7505 110787
7505 113414
7505 113414
4800 113894
f505 113894
7505 114945
7505 116446

245
245
245
245
245
245
245
245
245
245
245
143
143
143
143
143
143
143
143
143
143
143

2000
143
195
196

31545
31545
31545
31545
31545
31545
31545
31545
31545
31545
31545
31545
31545
31545
31545
31545
31545
31574
31592
31635
31685
31685
31885
31885
31912
31951

4462 156

6248 67

4896 51

3005 166

3.5 2.55 0 00 —

ERR 2.4 0 00 —

ERR 2.5 0 00 —

ERR 2.5 0 00 —

ERR 2.3 0 00 —

ERR 2.3 0 00 —

ERR 2.5 0 00 2455
1.1 2.4 0 00 —

ERR 2.5 0 00 —

ERR 2.5 0 00 —

ERR 2.5 0 00 —

ERR 2.5 0 00 —

ERR 2,5 0 00 —

ERR 2.5 0 00 —

ERR 2.5 0 00 —

ERR 2.5 0 00 —

ERR 2.5 0 00 —

ERR 2.6 0 13 —

1.0 2.3 0 11 —

ERR 2.5 0 25 1502
ERR 2.5 0 29 1817
ERR 2.5 0 00 ---

ERR 2,5 0 05 ---

ERR 2.5 0 00 ---

ERR 2.5 0 12 ---

5.5 2.5 0 25 —
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Table C2: Biodegradation in Reactor II, Jan 1990
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Reactor (,ui. Eff. Eff. Reactor :u«, Eff. React Peed Settle

COD COD Phenol Std. Dev. Phenol Phenol Phenol Cycles Period Period Period

Date ( ͣgl ( ͣg) ( ͣg/ll (ig/1) X Error ( ͣg) ( ͣg) per day (hrs) (hrs) (hrsl

01/01 ERR 5517 960 6,8 0.7 2448.0 60 22.5 0 1.5

01/03 ERR 5517 908 1,0 0.1 2179.2 60 22.5 0 1.5

01/04 ERR 5517 739 14.0 1.9 1847.5 60 22.5 0 1.5

01/05 ERR 5517 549 2.7 0.5 1372.5 60 22 0 2

01/07 ERR 5517 474 7.0 1.5 1090.2 60 22 0 2

01/08 ERR 5517 440 2.7 0.6 1012.0 60 22.5 0 1.5

01/10 6137.5 5517 396.4 2,7 0,7 991.0 60 22 0 2

01/11 ERR 5517 355,4 2.8 0.8 853,0 60 22.5 0 1.5

01/12 ERR 5517 347.6 6.4 1.8 869,0 60 22.5 0 1,5

01/H ERR 5517 325.2 3.6 1.1 813.0 60 22.5 0 1.5

01/15 ERR 5517 313 2.7 0.9 782.5 60 22.5 0 1.5

01/16 ERR 5517 322 3.6 1.1 805,0 60 22.5 0 1.6

01/17 ERR 5517 304 1,0 0.3 760.0 60 23 0 1

01/18 ERR 5517 309.8 1,8 0.6 774.5 60 23 0 1

01/19 ERR 5517 272 0.9 0.3 680.0 60 23 0 1

01/20 ERR 5517 40.6 0.0 0.0 101.5 60 23 0 1

01/21 ERR 6008 11,1 0.2 1.8 27.8 60 19 4 1

01/22 ERR 6327 10 0,1 1.0 24.0 62 19 4 1

01/23 ERR 7064 10.9 0.2 1.8 23,7 63 19 4 1

01/24 3304.4 7589 15.7 0.0 0.0 34.5 68 19 4 1

01/25 3906.6 7589 45.6 0.0 0.0 98.0 84 19 4 1

01/26 ERR 7771 41.2 0.9 2.2 103,0 84 19 0 1

01/27 ERR 7771 88.2 0.7 0,8 211.7 93 19 4 1

01/29 ERR 8025 15.4 0.5 3.2 38.5 93 19 0 1

01/30 ERR 8389 14.3 0.2 1.4 33.7 95 19 4 1

01/31 ERR 8389 15.90 0.2 1.3 36.8 98 19 4 1
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Table C2: Biodegrad&tion in Reactor II, Jan 1990

Jffluent
Voluie HCRT

Date ( ͣ1) (days)

01/01 150
01/03 300
01/04 500
01/05 150
01/07 25
01/08 25
01/10 10
01/11 10
01/12 100 25
01/14 100 25
01/15 10 25
01/16 10 25
01/17 10 25
01/18 10 25

01/19 .  10
01/20 10
01/21 100
01/22 400

01/23 100
01/24 400
01/25 100
01/26 100
01/27 100
01/29 200

01/30 200

01/31 250
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Table C3: Biodegradation In Reactor II, Peb 1990

Ctti. Cui. Loading
Peed Peed [nfluent Feed [nfluent Reactor MLSS Reactor Rate Effluent

Added COD COD Phenol Phenol KLSS Std, Dev. MLSS Volute (g COD/ COD

Date ( ͣ1) (ig/l) ( ͣg) (ig/l) ( ͣgl (•g/l| ( ͣ«/l| X Error (1) g SS»d) (M/1)

02/01 250 7505 118322 195 32000 3005 168 5.5 2.5 0.32 1666

02/03 100 2400 118562 1000 32100 — ... ERR 2.5 0.08 1359

02/04 200 7505 120063 195 32139 — ... ERR 2.5 0.23 —

02/05 180 7505 121414 195 32174 3307 331 10.0 2.5 0.21 —

02/06 43 7505 121737 195 32182 — ... ERR 2.5 0.05 1819

02/07 0 7505 121737 195 32182 — ... ERR 2.5 0.00 —

02/08 50 7505 122112 195 32192 — ... ERR 2.5 0.06 —

02/10 0 7505 122112 195 32192 — ... ERR 2.5 0.00 1378

02/11 100 4600 122572 1053 32297 4648 59 1.3 2.5 0.05 1337

02/12 150 4600 123262 1053 32455 — ... ERR 2.5 0.08 1206

02/13 150 4600 123952 1053 32613 — ... ERR 2.5 0.08 1085

02/14 200 4600 124872 1257 32865 — ... ERR 2.5 0.11 1003

02/15 200 4600 125792 1257 33116 6207 198 3.2 2.5 0.08 933

02/16 250 4600 126942 1257 33430 --- ... ERR 2.5 0.00 790

02/17 250 4600 128092 1257 33744 6080 222 3.7 2.5 0.10 794

02/18 300 4600 129472 1257 34122 --- ... ERR 2.5 0.12 716

02/19 400 4600 131312 1257 34624 --- ... ERR 2.5 0.17 709

02/20 500 4600 133612 1257 35253 5948 287 4.8 2.5 0.21 694

02/21 500 3480 135352 1155 35830 — ... ERR 2.5 0.16 1020

02/22 0 3480 135352 1155 35830 — ... ERR 2.5 0.00 954

02/23 0 3480 135352 1155 35830 — ... ERR 2.5 0.00 887

02/24 300 3480 136396 1155 36177 5928 286 4.8 2.5 0.08 950

02/25 255 3480 137284 1155 36471 --- ... ERR 2.5 0.07 803

02/26 300 3480 138328 1155 36818 --- ... ERR 2.5 0.09 729

02/27 300 3480 139372 1155 37164 --- ... ERR 2,42 0.09 848

02/28 300 3480 140416 1155 37511 --- ... ERR 2.5 0.09 879
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Reactor (;ui. Eff. Eff. Reactor :ui. Eff.Effluent React Feed

COD COD Phenol )td. Dev. Phenol Phenol Phenol ULSS  Cycles Period Period

Date in] (M) (ig/l| ( ͣg/1) X Error ( ͣgl i>gj (ig/1) per day (hrsl (hrs)

02/01 3749 8806 36.4 0.0 0.0 81.9 107 19

02/03 3262 8941 16.1 0.9 5 6 38.6 109 20

02/04 ERR 9213 24.2 0.2 0 8 55,7 114 19

02/05 ERR 9458 33.3 0 0 0 77,3 120 19

02/06 4469 9536 35.2 0 0 0 86.5 121 19

02/07 ERR 9536 35.2 0 0 0 88.0 121 18

02/08 ERR 9627 41.2 1.4 3 4 100.9 123 18

02/10 3445 9627 19.1 1.1 5 8 47.8 123 19,5 2.5

02/11 3209 9761 18 0 0 0 43,2 125 18

02/12 2834 9942 29.8 0.5 1 7 70.0 129 18

02/13 2550 10104 16.2 0.2 1 2 38.1 132 18

02/H 2307 10305 14.2 0.5 3 5 32,7 135 18

02/15 2145 10491 13.5 0.5 3 7 31,1 137 18.5 3.5

02/16 1778 10689 11.8 0.2 1 7 26.6 140 18

02/17 1787 10887 11 0.4 3 6 24.8 143 18

02/18 1575 11102 11 0.5 4 5 24,2 146 18

02/19 1489 11386 7.6 0,2 2 6 16.0 149 17.5

02/20 1388 11733 6.6 0.1 1 5 13.2 153 18

02/21 2040 12243 152.5 0 0 0 305,0 229 697     1 18

02/22 2385 12243 136.8 0 0 0 342,0 229 22

02/23 2218 12243 89 0 0 0 222.5 229 21

02/24 2090 12528 97.3 0.9 0 9 214.1 258 478     1 21

02/26 1803 12733 28 0,2 0 7 62.9 265 21

02/26 1604 12951 4.6 0 0 0 10.1 267 18

02/27 1798 13206 1 0.3 30 0 2.1 267 18

02/28 1934 13469 3.4 0.1 2 9 7.5 268 18
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Table C3: Biodegradation In Reactor II, Peb 1990

Settle Effluent
Period Voluae

Date (hrsl (•1)

02/01 1 100
02/03 1 200
02/04 1 180
02/05 1 100
02/06 1 10
02/07 2 150
02/08 2 10
02/10 1 100
02/11 2 150
02/12 2 150
02/13 2 200
02/14 2 200
02/15 2 250
02/16 2 250
02/17 2 300
02/18 2 400
02/19 2.5 500 Waste Eff. Solids
02/20 2 500 Vaste Eff. Solids
02/21 2 10 Return Eff. Solids
02/22 2 10 Return Eff. Solids
02/23 2 300 Waste Bff. Solids
02/24 2 300 Haste Bff. Solids
02/25 2 300 Vaste Eff. Solids
02/26 2 300 Vaste Eff. Solids
02/27 2 220 25 day MCRT
02/28 2 300 25 day HCRT
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Cm. Cui. Loading
Feed Feed Influent Feed [nfluent Reactor HLSS Reactor Rate {!ffluent

Added COD COD Phenol Phenol KLSS Std. Dev. MLSS Voluie (g COD/ COD

Date (ill (i«/l) (M) (ig/1) (M) (ig/1! (M/n X Error (1) g SS»dl (HID

03/01 230 3480 141218 1155 37777 5423 262 4.8 2.5 0.08 868

03/02 300 46O0 142596 1155 38123 — ... ERR 2.5 0.14 935

03/03 235 4600 143677 1155 38395 — ... ERR 2.5 0.11 840

03/04 325 46O0 145172 1155 38770 — ... ERR 2.5 0.15 814

03/05 230 4600 146230 1155 39036 — ... ERR 2.4 0.09 712

03/06 325 4600 147725 1155 39411 4004 84 2.1 2.5 0.18 647

03/07 350 4600 149335 1155 39815 — ... ERR 2.5 0.19 907

03/08 375 5639 151450 1044 40207 — ... ERR 2.55 0.28 1009

03/09 320 5639 153255 1044 40541 — — ERR 2.5 0.20 1349

03/10 250 5639 154664 1044 40802 — ... ERR 2.5 0.16 1627

03/11 0 5639 154664 1044 40802 2932 228 7,8 2.5 0.00 1074

03/12 215 5639 155877 1044 41026 — ... ERR 2.5 0.19 1282

03/13 0 5639 155877 1044 41026 — ... ERR 2.5 0.00 1028

03/14 150 5401 156687 1027 41180 — ... ERR 2.5 0.13 1108

03/15 150 6401 167497 1027 41334 — ... ERR 2.5 0.12 1024

03/16 160 5401 158361 1027 41499 3310 174 5.3 2.5 0.12 807

03/17 160 5401 159225 1027 41663 — ... ERR 2.5 0.12 859

03/18 170 5401 160143 1027 41838 — ... ERR 2.5 0.15 898

03/19 170 5401 161062 1027 42012 — ... ERR 2.5 0.15 937

03/20 180 5401 162034 1027 42197 2867 83 2.9 2.5 0.18 853

03/21 190 5401 163060 1027 42392 — ... ERR 2.5 0.29 926

03/22 380 5401 165112 1027 42782 — ... ERR 2.5 0.57 ...

03/23 400 5401 167273 1027 43193 — ... ERR 2.7 0.60 872

03/24 200 5401 168353 1027 43399 — ... ERR 2.5 0.30 ...

03/25 375 5401 170378 1027 43784 2379 95 4.0 2.5 0.68 ...

03/26 340 5401 172215 1027 44133 — ... ERR 2.4 0.82 ...

03/27 400 5401 174375 1027 44544 — ... ERR 2.3 0.73 ...

03/28 290 5401 175941 1156 44879 — ... ERR 2.4 0.53 ...

03/29 150 5401 176752 1156 45052 — ... ERR 2.4 0.27 1348

03/30 400 5401 178912 115B 45515 2579 50 1.9 2.5 0.67 ...

03/31 400 5401 181072 1156 45977 — ... ERR 2.6 0.67 1478
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Table C4: Biodegr&dation in Reactor II, Har 1990

Reactor Cu«. Eff. Eff. Reactor :ui, Eff.E ffluent React  Feed

COD COD Phenol Std. Dev, Phenol Phenol Phenol MLSS Cycles Period  Period

Date ( ͣgl (ig) (ig/ll (•g/1) % Error ( ͣg) ( ͣg) (ig/1) per day (hrs)  (hrs)

03/01 1970 13669 4.3 1,4 32.6 10.7 269 2393 18     4

03/02 2057 13949 5.1 0.2 3.9 12.6 271 18     4

03/03 1901 14146 4.3 ... ERR 10.6 272 18     4

03/04 1769 14411 2.5 0 0.0 6,2 272 18     4

03/05 1544 14574 2.8 0 0.0 6.7 273 20     4

03/06 1406 14785 5.7 5,5 96.5 14.1 275 1642 19,5     4

03/07 1949 15102 1.0 0.2 20.0 2.5 275 20     4

03/08 2194 15480 20.4 0.2 1.0 51.3 283 18     4

03/09 2941 15912 142.2 0 0.0 350.9 328 22    4

03/10 3660 16318 193.3 0.5 0.3 478.4 377 21     0

03/11 2684 16318 1.8 0 0.0 4.5 377 18     4

03/12 2929 16594 58.9 0.7 1.2 146,0 389 20.5     0

03/13 2570 16594 1.3 0.2 15.4 3.3 389 18.5     4

03/H 2605 16760 5.1 0 0.0 12.7 390 21     4

03/15 2406 16914 0.0 0 ERR 0.0 390 22     4

03/16 1888 17043 0.0 0 ERR 0.0 390 1103 21     4

03/17 2010 17180 0.0 0 ERR 0.0 390 21     4

03/18 2092 17333 0.0 0 ERR 0.0 390 18     4

03/19 2183 17492 0.0 0 ERR 0.0 390 18     4

03/20 1978 17646 ... - ERR ERR 390 1924 18     4

03/21 2140 17822 0,0 0 ERR 0.0 390 6    4

03/22 ERR 18174 0.0 0 ERR 0.0 390 6    4

03/23 2006 18523 0.0 0 ERR 0.0 390 6     4

03/24 ERR 18697 66.5 0.2 0.3 164.9 403 6    4

03/25 ERR 19024 34.8 0.2 0.8 85.7 416 6     4

03/26 ERR 19320 53.5 0 0.0 126.6 435 562 6     4

03/27 ERR 19669 0.0 0 ERR 0.0 435 6    4

03/28 ERR 19922 71.0 0 0.0 168.3 455 6    4

03/29 3033 20124 0.0 0 ERR 0.0 455 S    4

03/30 ERR 20663 60.7 1.4 2.3 149.3 479 6    4

03/31 3251 21254 2.1 1.9 90.5 5.4 480 6    4
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Table C4: Biodegradation in Reactor II, Mar 1990

Settle
Period

Date (hrs) Coiaents

03/01 2 25 d MCRT
03/02 2 25 d MCRT
03/03 2 25 d MCRT
03/04 2 25 d MCRT
03/05 2 25 d MCRT
03/06 2 25 d MCRT
03/07 2 25 d MCRT
03/08 2 25 d MCRT
03/09 2 Waste Eff Solids
03/10 2 Waste Eff Solids
03/11 2 Waste Eff Solids
03/12 2 Waste Bff Solids
03/13 2 Waste Eff Solids
03/H 2 Waste Bff Solids
03/15 2 Waste Eff Solids
03/16 2 Waste Eff Solids
03/17 2 Waste Eff Solids
03/18 2 Waste Eff Solids
03/19 2 Waste Eff Solids
03/20 2 Waste gff Solids
03/21 2 Waste Eff Solids
03/22 2 Waste Eff Solids
03/23 2 Return Ef f. Solids
03/24 2
03/25 2
03/26 2
03/27 2
03/28 2

03/29 2
03/30 2
03/31 2
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Table Cb:   Biodegradation in Reactor II, Apr 1990

Cui. Cui. Loading
Feed Feed tnfluent Feed .nfluent Reactor MLSS Reactor Rate I ffluent

Added COD COD Phenol Phenol HLSS Std. Dev. MLSS Volute (g COD/ COD

Date (111 ( ͣ«/l) ( ͣg) (tg/l) ( ͣg) (ig/l) (M/1) X Brror (1) g SS*d) (ig/l)

04/01 400 5401 182192 1208 46380 2579 50 1.9 2.6 0,67 ....

04/02 400 6401 184353 1208 46863 — ... ERR 2.5 0.67 ---

04/03 200 5401 185433 1208 47106 — ... ERR 2.7 0.34 ---

04/04 400 5401 187593 1208 47588 2907 91 3,1 2.5 0.69 1426

04/05 400 5401 189754 1208 48071 — ... ERR 2.5 0.69 1487

04/06 400 5401 191914 1208 48555 — ... ERR 2.6 0.69 ---

04/07 400 6315 194440 1156 49017 — ... ERR 2.5 0,70 ---

04/08 400 6315 196966 1156 49479 3172 157 4.9 2.5 0,64 ---

04/09 400 6315 199492 1156 49942 — ... ERR 2.5 0,64 ---

04/10 400 6315 202018 1156 50404 — ... ERR 2.5 0.64 ---

04/11 400 6315 204544 1156 50867 — ... ERR 2.6 0,64 ---

04/12 400 6315 207070 1156 51329 — ... ERR 2.55 0,64 ---

04/13 400 6315 209596 1156 51791 3723 52 1.4 2.56 0,53 ---

04/14 400 6315 212122 1156 52254 — ... ERR 2.56 0.53 ---

04/15 400 6315 214648 1156 52716 — ... ERR 2.5 0.53 ---

04/16 400 8315 217174 1156 53179 — ... ERR 2.7 0.63 ---

04/17 400 6315 219700 1156 53641 — ... ERR 2.55 0.63 1935

04/18 400 6315 222226 1166 54103 3550 171 4.8 2.55 0.56 ---

04/19 400 6315 224752 1156 54566 — ... ERR 2.5 0.56 1368

04/20 400 6315 227278 1156 55028 — ... ERR 2.5 0.66 —

04/21 400 6315 229804 1156 55491 .... ... ERR 2.6 0,56 —

04/22 400 6315 232330 1156 55953 — ... ERR 2.6 0,56 —

04/23 400 6315 234856 1156 56415 — ... ERR 2.5 0,56 —

04/24 400 6315 237382 1156 56878 — ... ERR 2.5 0.66 —

04/25 400 6315 239908 1156 57340 — ... ERR 2.5 0.56 —

04/26 400 6315 242434 1156 57803 — ... ERR 2.5 0.56 ....

04/27 0 6315 242434 1156 57803 — .„ ERR 2.6 0.00 —

04/28 0 6315 242434 1156 57803 — ... ERR 2.5 0.00

04/29 400 6315 244960 1156 58265 — ... ERR 2.5 0.56 —

04/30 400 6315 247486 1156 58727 — ... ERR 2.6 0.56 —

05/01 0 6315 247486 1156 58727 — ... ERR 2.5 0.00 —
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Table C5; Biodegradation in Reactor II, Apr 1990

Reactor Cui. Eff. Eff. Reactor ;ui. Eff.Effluent React  Feed

COD COD Phenol Std. Dev, Phenol Phenol Phenol HLSS Cycles Period Period

Date ( ͣ£l (ig) (•g/11 (•«/l| X Error (Ml ( ͣg) (•g/l). per day (hrs)  (hrs)

04/01 ERR 21845 0.0 0.0 ERR 0.0 480 768 6    4

04/02 ERR 22436 ... ... ERR ERR 480 6    4

04/03 ERR 22732 3.5 ... ERR 8.8 481 6    4

04/04 2995 23302 0 0 ERR 0.0 481 6    4

04/05 3122 23897 21.8 0.2 0.9 45.8 489 6    4

04/06 ERR 24492 50.4 0.5 1.0 110.9 510 8    4

04/07 ERR 25086 143.9 1.6 1.1 302,2 567 1124 6     4

04/08 ERR 25681 94.2 0.9 1.0 197.8 605 6     4

04/09 ERR 26276 76.4 0.2 0.3 160.4 635 6     4

04/10 ERR 26870 53 1.2 2.3 111.3 657 6    4

04/11 ERR 27465 36.3 0.5 1.4 76.2 671 6    4

04/12 ERR 28060 18.7 0.2 1.1 40.2 679 6    4

04/13 ERR 28654 2.6 0.7 26.9 5.6 680 6    4

04/14 ERR 29249 1.8 0 0.0 3.9 680 6    4

04/15 ERR 29844 0.6 0.8 133.3 1.3 681 6    4

04/16 ERR 30438 11.9 0.5 4.2 27.4 685 6    4

04/17 4161 31212 3.5 0 0.0 7.5 687 6    4

04/18 ERR 31986 18.9 0 0,0 40.6 694 6    4

04/19 3923 32734 2.3 0.7 30.4 4.8 695 6    4

04/20 ERR 33481 31.1 0.2 0.6 65,3 708 6    4

04/21 ERR 34228 104.6 0,7 0.7 230.1 750 6    4

04/22 ERR 34975 131.5 1.9 1.4 276.2 802 6    4

04/23 ERR 35723 169.7 0.7 0.4 356,4 870 6    4

04/24 ERR 36470 184.7 0 0.0 387.9 944 6    4

04/25 ERR 37217 212.9 0 0.0 447.1 1029 8    0

04/26 ERR 37964 267,5 1 0.4 561.8 1136 6    4

04/27 ERR 37964 157.3 0 0.0 393.3 1136 6    4

04/28 ERR 37964 34.3 1 2.9 85.8 1136 6    4

04/29 ERR 38711 98.9 0.2 0.2 207,7 1176 6    4

04/30 ERR 39459 177.5 0.7 0.4 372.8 1247 S    4

05/01 ERR 39459 108.3 0,2 0.2 270.8 1247 6    4

#
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Table C5; Biodegradation in Reactor II, Apr 1990

Settle Effluent

Period Voluae

Date (hrs) (ill

04/01 2 450

04/02 2 400

04/03 2 600

04/04 2 400

04/05 2 400

04/06 2 500

04/07 2 400

04/08 2 400

04/09 2 400

04/10 2 400

04/11 2 400

04/12 2 450

04/13 2 470

04/14 2 440

04/15 2 415

04/16 2 590

04/17 2 450

04/18 2 450

04/19 2 400

04/20 2 500

04/21 2 400

04/22 2 400

04/23 2 400

04/24 2 400

04/25 2 20

04/2G 2

04/27 2

04/28 2

04/29 2

04/30 2

05/01 2
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