Deconvolution of a Multi-Component Interaction Network Using Systems Chemistry - Supporting Information

Soumyadip Ghosh ${ }^{\dagger}$, Pritam Mukhopadhyay ${ }^{\dagger}$, Lyle Isaacs ${ }^{\dagger, *}$
${ }^{\dagger}$ Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, and ${ }^{\ddagger}$ School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.

Table of Contents		Pages
List of compounds used in the experiments		S2
${ }^{1} \mathrm{H}$ NMR Spectra of Guests $\mathbf{1 - 4}$		S3
${ }^{1} \mathrm{H}$ NMR Spectra of Hosts 5-8		S4
${ }^{1} \mathrm{H}$ NMR Spectra of β-CD•Guest Complexes		S5
${ }^{1} \mathrm{H}$ NMR Spectra of CB[6]•Guest Complexes		S6
${ }^{1} \mathrm{H}$ NMR Spectra of CB[7]•Guest Complexes		S7
${ }^{1}$ H NMR Spectra of CB[8]•Guest Complexes		S8
${ }^{1} \mathrm{H}$ NMR Spectra of Selected Pathways		S9 - S14
Details of the Computational Studies		S15-S28

Figure S1. Structures of the compounds used in the study.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for: A) 1, B) 2, C) 3, and D) 4. $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{SiCD}_{2} \mathrm{CD}_{2} \mathrm{CO}_{2} \mathrm{D}(\Delta)$ is used as internal standard.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for: A) 5, B) 6, C) 7, and D) $8\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}(1: 1), 298 \mathrm{~K}, 1 \mathrm{mM}\right) .\left(\mathrm{CD}_{3}\right)_{3} \mathrm{SiCD}_{2} \mathrm{CD}_{2} \mathrm{CO}_{2} \mathrm{D}(\Delta)$ is used as internal standard.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture of: A) 5 and $\mathbf{1}$, B) 5 and $\mathbf{2}$, C) 5 and $\mathbf{3}$, and D) 5 and 4. $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{SiCD}_{2} \mathrm{CD}_{2} \mathrm{CO}_{2} \mathrm{D}(\Delta)$ is used as internal standard.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture of: A) 6 and 1, B) 6 and 2, C) 6 and 3, and D) 6 and 4. $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{SiCD}_{2} \mathrm{CD}_{2} \mathrm{CO}_{2} \mathrm{D}(\Delta)$ is used as internal standard.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture of: A) 7 and $\mathbf{1 , B)} 7$ and $\mathbf{2}, \mathrm{C}) 7$ and $\mathbf{3}$, and D) 7 and 4 . $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{SiCD}_{2} \mathrm{CD}_{2} \mathrm{CO}_{2} \mathrm{D}(\Delta)$ is used as internal standard.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture of: A) 8 and 1, B) 8 and 2, C) 8 and $\mathbf{3}$, and D) 8 and 4. $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{SiCD}_{2} \mathrm{CD}_{2} \mathrm{CO}_{2} \mathrm{D}(\Delta)$ is used as internal standard.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}\right)$ recorded for an equimolar mixture after addition of 1 eq. of: A) $\mathbf{1}$, B) $\mathbf{8}$, C) $\mathbf{3}$, D) $\mathbf{5}$, E) $\mathbf{4}$, F) $\mathbf{7}$, G) $\mathbf{2}$, H) 6 .

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture after addition of 1 eq. of: A) $\mathbf{1}$, B) $\mathbf{3}$, C) $\mathbf{2}$, D) $\mathbf{4}$, E) $\mathbf{8}$, F) $\mathbf{5}$, G) $\mathbf{7}$, and H) 6 .

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture after addition of 1 eq. of: A) $\mathbf{6}$, B) $\mathbf{7}$, C) $\mathbf{5}$, D) $\mathbf{8}$, E) $\mathbf{4}$, F) $\mathbf{3}$, G) $\mathbf{2}$, and H) $\mathbf{1}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture after addition of 1 eq. of: A) $\mathbf{6}$, B) $\mathbf{1}$, C) $\mathbf{5}$, D) $\mathbf{2}$, E) $\mathbf{7}$, F) $\mathbf{3}$, G) $\mathbf{8}$, and H) 4 .

Figure S12. ${ }^{1}$ H NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture after addition of 1 eq. of: A) $\mathbf{7}$, B) $\mathbf{3}$, C) $\mathbf{6}$, D) $\mathbf{1}$, E) $\mathbf{5}$, F) $\mathbf{2}$, G) 8 , and H) 4 .

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.4,298 \mathrm{~K}, 1 \mathrm{mM}$) recorded for an equimolar mixture after addition of 1 eq. of: A) 1, B) $\mathbf{7}$, C) $\mathbf{2}$, D) $\mathbf{8}$, E) $\mathbf{3}$, F) $\mathbf{5}$, G) $\mathbf{4}$, and H) 6 .

A Sample Determination of Key Parameters In the Step-by-step Formation of a FourComponent System From Gepasi Output Files.

The Gepasi Output files were imported into Microsoft Excel. Sample Microsoft Excel (.xls) files are deposited in the supporting information.

Column A-M: Data obtained from Gepasi output file.

Column A - D: Initial composition of the system in each state.
Column E-L: Steady state composition of the system in each state.

Formulas written below were applied to all cells under those column.
Column O: Total number of components present in each state.
Formula: O2 $=\operatorname{SUM}(\mathrm{A} 2: D 2)$

Determination of whether a particular state is self-sorted or non self-sorted:
This has been determined based on the assumption that all components in a self-sorted state have mole fractions either less than 0.1 or more than 0.9 . Accordingly non-self-sorted states have one or more components in the range $0.1 \leq \chi \leq 0.9$.

Column $\mathrm{Q}-\mathrm{X}$: Formula: $\mathrm{Q} 2=\operatorname{IF}(\mathrm{E} 2>0.1,1,0)$
Column Z - AG: Formula Z2 $=\operatorname{IF}(\mathrm{E} 2<0.9,1,0)$
Column AI: Formula: AI2 $=$ SUM (Q2:X2:Z2:AG2)
Column AL: Formula: AL2 $=\operatorname{IF}(\mathrm{AK} 2=8,1,0)$
Column AN - AQ: Steady state concentration of AM, AN, BM, and BN (same as column I2 L2)

Calculation of the free energy of each state:
Column AS - AV: Formula: AS2 = PRODUCT(I2,LN(AN2))
Column AX: Formula: AX2 = SUM(AS2:AV2)
Column AZ: Formula: AZ2 =PRODUCT(AX2,298,0.00198)
Column BB: Formula: BB1 = =PRODUCT(AZ2,-1)

The Gepasi output file for the simulation of an eight component system was processed in a similar manner.

Matlab Code Used for the Processing of the Gepasi Output Files for the Stepwise

 Formation of the Four Component Mixture.\% Lines that start with >> are Matlab commands and \% are just comments.
\% All sixteen possible states $\left(2^{4}\right)$ that occur in a stepwise formation of a four-component system can be concisely represented by a [4×16] matrix.
>> $\mathrm{a}=[0000 ; 0010 ; 0001 ; 1000 ; 0100 ; 1100 ; 1010 ; 0110 ; 1001 ; 0101 ; 001$ $1 ; 1110 ; 1101 ; 1011 ; 0111 ; 1111$]
\% For example:

$\mathrm{a}=$| 0 | 0 | 0 | 0 | no component |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | M |
| 0 | 0 | 0 | 1 | N |
| 1 | 0 | 0 | 0 | A |
| 0 | 1 | 0 | 0 | B |
| 1 | 1 | 0 | 0 | $\mathrm{~A}+\mathrm{B}$ |
| 1 | 0 | 1 | 0 | $\mathrm{~A}+\mathrm{M}$ |
| 0 | 1 | 1 | 0 | $\mathrm{~B}+\mathrm{M}$ |
| 1 | 0 | 0 | 1 | $\mathrm{~A}+\mathrm{N}$ |
| 0 | 1 | 0 | 1 | $\mathrm{~B}+\mathrm{N}$ |
| 0 | 0 | 1 | 1 | $\mathrm{M}+\mathrm{N}$ |
| 1 | 1 | 1 | 0 | $\mathrm{~A}+\mathrm{B}+\mathrm{M}$ |
| 1 | 1 | 0 | 1 | $\mathrm{~A}+\mathrm{B}+\mathrm{N}$ |
| 1 | 0 | 1 | 1 | $\mathrm{~A}+\mathrm{M}+\mathrm{N}$ |
| 0 | 1 | 1 | 1 | $\mathrm{~B}+\mathrm{M}+\mathrm{N}$ |
| 1 | 1 | 1 | 1 | $\mathrm{~A}+\mathrm{B}+\mathrm{M}+\mathrm{N}$ |

\% where "one" represent the presence of a component and "zero" represent absence of a component in a particular state. Elements each row vector represents full configuration of one particular state and each column vector represent one particular component.
\% Next, we define every possible connection between states uniquely. If addition of one or more elements changes the system from one particular state to another; there will be a total of 256 such possible transitions which can be represented by a [16×16] matrix.

```
>> z=zeros(16,16)
>> for J=1:16,
for I=J:16,
b=abs(a(I,:)-a(J,:));
z(I,J)=sum(b);
end
end
```

```
>> z
Z =
\begin{tabular}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 3 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 3 & 1 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 3 & 3 & 1 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 1 & 1 & 3 & 2 & 2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 1 & 3 & 1 & 2 & 4 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 3 & 3 & 4 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 2 & 4 & 2 & 2 & 1 & 1 & 1 & 3 & 3 & 3 & 0 & 0 & 0 & 0 & 0 \\
3 & 4 & 2 & 2 & 2 & 1 & 3 & 3 & 1 & 1 & 3 & 2 & 0 & 0 & 0 & 0 \\
3 & 2 & 2 & 2 & 4 & 3 & 1 & 3 & 1 & 3 & 1 & 2 & 2 & 0 & 0 & 0 \\
3 & 2 & 2 & 4 & 2 & 3 & 3 & 1 & 3 & 1 & 1 & 2 & 2 & 2 & 0 & 0 \\
4 & 3 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 0
\end{tabular}
```

$\% \mathrm{z}_{\mathrm{i}, \mathrm{j}}$ (element in $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column) in the lower triangle represents the number of components need to be added in the transformation from one state to another. In the experiment we added one component at a time i.e. $\mathrm{z}_{\mathrm{i}, \mathrm{j}}=1$.
\% We introduce three more column vectors m, n, and p :
$\% \mathrm{~m}$ represents total number of components in each state (corresponding to each row of a).
$\gg \mathrm{m}=[0 ; 1 ; 1 ; 1 ; 1 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 3 ; 3 ; 3 ; 3 ; 4]$
$\% \mathrm{n}$ represents free energy of each state (corresponding to each row of a).
>> n $=[0 ; 0 ; 0 ; 0 ; 0 ; 0 ;-12.2272 ;-8.1436 ;-6.7716 ;-6.7716 ; 0 ;-12.1026 ;-6.7930 ;-12.1737$;
-7.8253; -18.8742]
$\%$ p represents whether a state is self-sorted or not (corresponding to each row of a). A selfsorted state is represented by " 1 " and non self-sorted state is represented by " 0 ". >> $\mathrm{p}=[1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 0 ; 1 ; 0 ; 1]$
\% The following set of commands plots self-sorted and non self-sorted states separately.
\gg hold on
\gg for $\mathrm{k}=1: 16$,
$\mathrm{X}(1)=\mathrm{M}(\mathrm{k})$;
$\mathrm{Y}(1)=\mathrm{N}(\mathrm{k})$;
if $\mathrm{p}(\mathrm{k})==1$;
plot(X,Y,'go');
else $\operatorname{plot}(\mathrm{X}, \mathrm{Y}$, 'ro');
end
end

\% The following set of commands connects two adjacent states if at least one of the is non selfsorted (two red circles or one red and one green circle)
\gg hold on
\gg for $u=1: 16$,
for $v=1: 16$,
$X(1)=m(v)$;
$\mathrm{Y}(1)=\mathrm{n}(\mathrm{v})$;
$X(2)=m(u)$;
$\mathrm{Y}(2)=\mathrm{n}(\mathrm{u})$;
$\operatorname{if}(\mathrm{z}(\mathrm{v}, \mathrm{u})==1) \& \&((\mathrm{p}(\mathrm{v})==0) \|(\mathrm{p}(\mathrm{u})==0))$
plot(X,Y,'r')
end
end
end

\% The following set of commands connects two adjacent self-sorted states (green circles) by a green line.
\gg hold on
\gg for $u=1: 16$,
for $v=1: 16$,
$\mathrm{X}(1)=\mathrm{M}(\mathrm{v})$;
$\mathrm{Y}(1)=\mathrm{N}(\mathrm{v})$;
$\mathrm{X}(2)=\mathrm{M}(\mathrm{u})$;
$\mathrm{Y}(2)=\mathrm{N}(\mathrm{u})$;
if $((\mathrm{z}(\mathrm{v}, \mathrm{u})==1) \& \&(\mathrm{P}(\mathrm{v})==1) \& \&(\mathrm{P}(\mathrm{u})==1))$
$\operatorname{plot}\left(X, Y, g^{\prime}\right)$
end
end
end
\% Final Plot:

Figure S14: A plot showing free energies of all the states in the stepwise formation of fourcomponent system. The overall free energy of the system decreases as more components are added.

Figure S15: A four dimensional hypercube representing all the states in the stepwise formation of four component system.

Figure S16: A four dimensional hypercube representing all the states in a binary form in the stepwise formation of four component system.

Figure S17: Depiction of the connectivity among states in the stepwise formation of a four component system. A element $\mathrm{z}_{\mathrm{i}, \mathrm{j}}$ in matrix z indicates the number of components need to be added in the transformation from one state to another. In the experiment we added one component at a time i.e. $\mathrm{z}_{\mathrm{i}, \mathrm{j}}=1$. Green and red circles represent self-sorted and non self-sorted states respectively. Connectivities are represented by blue lines.

Matlab codes for Figure 8a, and 8b.
clear all
\% Lines starting with \% are just comments.
\% These are the known values obtained from the simulation of the stepwise formation of a eight component system.
>> a = composition_8comp;
>> m = components_8comp;
>> n = delta_G_8comp;
>> p = self_sorting;
\% This plots self-sorted and non self-sorted states separately.
>> for $\mathrm{j}=1: 256$,
for $\mathrm{i}=\mathrm{j}: 256$,
$\mathrm{b}=\mathrm{abs}(\mathrm{A}(\mathrm{i},: \mathrm{)}-\mathrm{A}(\mathrm{j},: \mathrm{:})$);
$\mathrm{z}(\mathrm{i}, \mathrm{j})=\operatorname{sum}(\mathrm{b})$;
end
end
\gg hold on
\gg for $\mathrm{k}=1: 256$,
$X(1)=m(k)$;
$\mathrm{Y}(1)=\mathrm{n}(\mathrm{k})$;
if $\mathrm{p}(\mathrm{k})==1$;
plot(X,Y,'go');
else $\operatorname{plot}(\mathrm{X}, \mathrm{Y}$, 'ro');
end
end
\% This connects between two adjacent self-sorted states (green circles) by a green line.
>> hold on
\gg for $u=1: 256$,
for $\mathrm{v}=1: 256$,
$\mathrm{X}(1)=\mathrm{M}(\mathrm{v})$;
$\mathrm{Y}(1)=\mathrm{N}(\mathrm{v})$;
$\mathrm{X}(2)=\mathrm{M}(\mathrm{u})$;
$\mathrm{Y}(2)=\mathrm{N}(\mathrm{u})$;
if $((\mathrm{Z}(\mathrm{v}, \mathrm{u})==1) \& \&(\mathrm{P}(\mathrm{v})==1) \& \&(\mathrm{P}(\mathrm{u})==1))$
$\operatorname{plot}(\mathrm{X}, \mathrm{Y}, \mathrm{g}$ ')
end
end
end
\% This connects two adjacent states if at least one of the is non self-sorted (two red circles or one red and one green circle).
>> hold on

```
>> for u= 1:256,
for v= 1:256,
X(1)=M(v);
Y(1)=N(v);
X(2)=M(U);
Y(2)= N(U);
if (Z(V,U)== 1) && ((P(V) == 0) || (P(U) == 0))
Z=floor(Z)
plot(X,Y,'r')
end
end
end
```

Model for Figure 8c-8f.
Figure 8c
Command in (1) is replaced by:
if $((\mathrm{z}(\mathrm{v}, \mathrm{u})==1) \& \&(\mathrm{p}(\mathrm{v})==1) \& \&(\mathrm{p}(\mathrm{u})==1))$
$\operatorname{plot}\left(X, Y, \mathrm{~g}^{\prime}\right)$
Figure 8d
Command in (1) is replaced by:
$\operatorname{if}((\mathrm{z}(\mathrm{v}, \mathrm{u})==1) \& \&(\mathrm{p}(\mathrm{v})==0) \& \&(\mathrm{p}(\mathrm{u})==0))$
plot(X,Y,'r')
Figure 8e
Command in (1) is replaced by:
$\operatorname{if}((\mathrm{z}(\mathrm{v}, \mathrm{u})==1) \& \&(\mathrm{p}(\mathrm{v})==1) \& \&(\mathrm{p}(\mathrm{u})==0))$
$\operatorname{plot}(\mathrm{X}, \mathrm{Y}, \mathrm{b} \mathrm{b})$
Figure 8f
Command in (1) is replaced by:
$\operatorname{if}((\mathrm{z}(\mathrm{v}, \mathrm{u})==1) \& \&(\mathrm{p}(\mathrm{v})==0) \& \&(\mathrm{p}(\mathrm{u})==1))$
$\operatorname{plot}\left(\mathrm{X}, \mathrm{Y}, \mathrm{k}^{\prime}\right)$

Model for Figure 10a - 10d.
Addition of all four guests followed by all four hosts:
>> a = composition_8comp;
>> m = components_8comp;
$\gg \mathrm{n}=$ delta_G_8comp;
>> p = self_sorting;
>> whos
Name Size Bytes Class

a	31×8	1984 double array
m	31×1	248 double array
n	31×1	248 double array
p	31×1	248 double array

Grand total is 341 elements using 2728 bytes

```
>> for j= 1:31,
for i= j:31,
b= abs(a(i,:)-a(j,:));
z(i,j)= sum(b);
end
end
>> hold on
>> for k= 1:31,
X(1)=m(k);
Y(1)= n(k);
if p(k)==1;
plot(X,Y,'go');
else plot(X,Y,'ro');
end
end
>> for u = 1:31,
for v = 1:31,
X(1) = m(v);
Y(1) = n(v);
X(2) = m(u);
Y(2) = n(u);
if ((z(v,u) == 1) && (p(v)== 1) && (p(u) == 1))
plot(X,Y,'g')
end
end
end
>> for u= 1:31,
for v= 1:31,
X(1)=m(v);
Y(1)= n(v);
X(2)=m(u);
Y(2)= n(u);
if (z(v,u) == 1) && ((p(v) == 0) | (p(u) == 0))
plot(X,Y,'r')
end
end
end
```


Alternate Addition Sequences:

```
>> a = composition_8comp;
>> m = components_8comp;
>> n = delta_G_8comp;
>> p = self_sorting;
>> whos
    Name Size Bytes Class
\begin{tabular}{lcc} 
a & \(126 \times 8\) & 8064 double array \\
\(m\) & \(126 \times 1\) & 1008 double array \\
\(n\) & \(126 \times 1\) & 1008 double array \\
p & \(126 \times 1\) & 1008 double array
\end{tabular}
```

Grand total is 1386 elements using 11088 bytes

```
>> for j= 1:126,
for i= j:126,
b= abs(a(i,:)-a(j,:));
z(i,j)= sum(b);
end
end
>> hold on
>> for k= 1:126,
X(1)=m(k);
Y(1)= n(k);
if p(k)==1;
plot(X,Y,'go');
else plot(X,Y,'ro');
end
end
>> for u = 1:126
for v = 1:126
X(1) = m(v);
Y(1) = n(v);
X(2) = m(u);
Y(2) = n(u);
if ((z(v,u) == 1) && (p(v)== 1) && (p(u) == 1))
plot(X,Y,'g')
end
end
end
>> for u=1:126
for v= 1:126
```

$X(1)=m(v)$;
$Y(1)=n(v)$;
$X(2)=m(u)$;
$Y(2)=n(u)$;
if $(\mathrm{z}(\mathrm{v}, \mathrm{u})==1) \& \&((\mathrm{p}(\mathrm{v})==0) \|(\mathrm{p}(\mathrm{u})==0))$
$\operatorname{plot}\left(X, Y,{ }^{\prime} r^{\prime}\right)$
end
end
end

Model for Figure 11.
clear all
$\mathrm{W} 1=\operatorname{deltaG}(1,:)$;
W2= $\operatorname{deltaG}(2: 9,:)$;
W3 = deltaG(10:37,:);
W4= deltaG(38:93,:);
W5 = deltaG(94:163,:);
W6= deltaG(164:219,:);
W7 = deltaG(220:247,:);
W8= deltaG(248:255,:);
W9= deltaG(256,:);
g1=reshape(W1,6*1,1);
$\gg \mathrm{g} 2=$ reshape $(\mathrm{W} 2,6 * 8,1)$;
$\gg \mathrm{g} 3=$ reshape $(\mathrm{W} 3,6 * 28,1)$;
>> g4=reshape(W4,6*56,1);
$\gg \mathrm{g} 5=$ reshape(W5,6*70,1);
>> g6=reshape(W6,6*56,1);
$\gg \mathrm{g} 7=$ reshape(W7,6*28,1);
\gg g8=reshape(W8,6*8,1);
\gg g9 $=$ reshape(W9,6*1,1);
$\gg \operatorname{hist}(\mathrm{g} 5,20)$
$\gg \mathrm{N}=\operatorname{hist}(\mathrm{g} 5,20)$;
$\gg[\mathrm{N}, \mathrm{X}]=\operatorname{hist}(\mathrm{g} 5)$;
$\gg \operatorname{plot}(\mathrm{N}, \mathrm{X})$
$\gg \operatorname{plot}(\mathrm{X}, \mathrm{N})$
>>
$\gg \mathrm{N} 1=\operatorname{hist}(\mathrm{g} 1)$;
$\gg \mathrm{N} 2=\operatorname{hist}(\mathrm{g} 2)$;
$\gg \mathrm{N} 3=\operatorname{hist}(\mathrm{g} 3)$;

```
>> N4= hist(g4);
>> N5= hist(g5);
>> N6= hist(g6);
>> N7= hist(g7);
>> N8= hist(g8);
>> N9= hist(g9);
>> [N1,X]= hist(g1);
>> plot(X,N1)
>> [N2,X]= hist(g2);
>> [N3,X]= hist(g3);
>> [N4,X]= hist(g4);
>> [N5,X]= hist(g5);
>> [N6,X]= hist(g6);
>> [N7,X]= hist(g7);
>> [N8,X]= hist(g8);
>> [N9,X]= hist(g9);
>> N= [N1;N2;N3;N4;N5;N6;N7;N8;N9]
>> X=linspace(-50,5,10);
X =
-50.0000 -43.8889 -37.7778 -31.6667 -25.5556 -19.4444 -13.3333 -7.2222 -1.1111
5.0000
>> [N9,X]= hist(g9,X);
>> [N9,X]= hist(g9,X);
>> hist(g9,X)
>> subplot(9,1,1)
hist(g1,X)
subplot(9,1,2)
hist(g2,X)
subplot(9,1,3)
hist(g3,X)
subplot(9,1,4)
hist(g4,X)
subplot(9,1,5)
hist(g5,X)
subplot(9,1,6)
hist(g6,X)
subplot(9,1,7)
hist(g7,X)
subplot(9,1,8)
hist(g8,X)
subplot(9,1,9)
hist(g9,X)
```

